Abstract

Let \(\mathcal{M}_g(2) \) be the moduli space of curves of genus \(g \) with a level-2 structure. We prove that there is always a non hyperelliptic element in the intersection of four thetanull divisors in \(\mathcal{M}_6(2) \). We prove also that for all \(g \geq 3 \), each component of the hyperelliptic locus in \(\mathcal{M}_g(2) \) is a connected component of the intersection of \(g - 2 \) thetanull divisors.

1 Introduction

Let \(C \) be a curve of genus \(g \geq 3 \) over \(\mathbb{C} \) and \(\sigma : \mathbb{Z}^{2g} \longrightarrow H_1(C, \mathbb{Z}) \) a symplectic isomorphism. We associate to \((C, \sigma) \) a period matrix \(Z \) in the Siegel upper half space \(H_g \) and the numbers

\[
\theta[k](Z) := \sum_{r \in \mathbb{Z}^g} \exp \left(\pi \sqrt{-1} \left[t \left(r + \frac{k'}{2} \right) Z \left(r + \frac{k'}{2} \right) + 2 \left(r + \frac{k'}{2} \right) \frac{k''}{2} \right] \right).
\]

for each \(k = (k', k'') \) in \((\mathbb{Z}/2\mathbb{Z})^{2g} \) such as \(k'k'' \) is even. The vanishing of \(\theta[k](Z) \) depends only of \(\sigma(\text{mod} \, 2) \), that is, on the class of \((C, \sigma) \) in \(\mathcal{M}_g(2) \), the moduli space of curves of genus \(g \) on \(\mathbb{C} \) with a level-2 structure. Thus the zero locus of \(\theta[k] \) defines a divisor in \(\mathcal{M}_g(2) \) called thetanull divisor of characteristic \([k]\). In genus 3, each thetanull divisor is a component of the hyperelliptic locus in \(\mathcal{M}_3(2) \). In genus 4, we know since Riemann that each intersection of two thetanull divisors is an union of hyperelliptic components in \(\mathcal{M}_4(2) \). In genus 5, Accola has established in [A1], that with a condition on the three characteristics, the intersection of the corresponding divisors is an union of hyperelliptic components. We propose here to prove that this fails in genus 6:

Theorem 1.1 Each sub-variety of \(\mathcal{M}_6(2) \) intersection of four thetanull divisors contains an element which is not hyperelliptic.
The first step of the proof is to classify the orbits of the action of $\text{Sp}_{2g}(\mathbb{Z}/2\mathbb{Z})$ on the set of quadruplets of thetanull divisors. Afterwards, we finish the proof by verifying that one element of each orbit (and then every quadruplet) defines a subvariety of $\mathcal{M}_{0}(2)$ which contains a bi-elliptic curve. In view of this result, it is unlikely that hyperelliptic components are intersection of $g - 2$ thetanull divisors in higher genus. Nevertheless, in the last part, we prove the following result:

Theorem 1.2 Every component of the hyperelliptic locus in $\mathcal{M}_{g}(2)$ can be defined as a connected component of the intersection of $g - 2$ thetanull divisors.

2 Preliminaries

In what follows we denote by C a curve of genus g over \mathbb{C}. Let $A_{g,2}$ be the moduli space of g-dimensional principally polarized abelian varieties with a level-2 structure. It can be described as follows (see for instance [BL] chapter 4). Let H_{g} be the Siegel generalized half-space:

$$H_{g} = \{ Z \in M_{g}(\mathbb{C}) \mid ^{t}Z = Z, \text{ Im}Z > 0 \}.$$

Then to each Z in H_{g} corresponds the complex torus $\mathbb{C}^{g}/(\mathbb{Z}^{g} + Z.\mathbb{Z}^{g})$ which comes with a natural principal polarization and a level-2 structure. Moreover we let

$$\Gamma_{g}(2) := \{ M \in \text{Sp}_{2g}(\mathbb{Z}) \mid M \equiv 1_{2g}(\text{mod } 2) \}.$$

this group acts on H_{g} in the following way:

$$M.Z := (AZ + B)(CZ + D)^{-1}, \quad M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_{g}(2).$$

Then $A_{g,2}$ is isomorphic to the quotient space $H_{g}/\Gamma_{g}(2)$. We denote by $\mathcal{M}_{g,2}$ the space which parametrizes the pairs (C, σ) where C is a curve of genus g and $\sigma : (\mathbb{Z}/2\mathbb{Z})^{2g} \rightarrow H_{1}(C, \mathbb{Z}/2\mathbb{Z})$ a symplectic isomorphism. $\text{Sp}_{2g}(\mathbb{Z}/2\mathbb{Z})$ acts on $\mathcal{M}_{g,2}$ in a natural way. Let $k = (k', k'') \in (\mathbb{Z}/2\mathbb{Z})^{2g}$ such as $k'.k''$ is even (in what follows, we will say that k is even). Let

$$\theta[k] : \quad H_{g} \rightarrow \mathbb{C}$$

be the function defined by

$$\theta[k](Z) = \sum_{r \in \mathbb{Z}^{g}} \exp \left(\pi \sqrt{-1} \left[^{t} \left(r + \frac{k'}{2} \right) Z \left(r + \frac{k'}{2} \right) + 2 \left(r + \frac{k'}{2} \right) \frac{k''}{2} \right] \right).$$
Let M be in $\Gamma_g(2)$. As a consequence of the transformation formula (see for instance [I] page 176), $\theta[k](M,Z)$ is proportional to $\theta[k](Z)$. By this fact, the zero locus of $\theta[k]$ defines a divisor of $\mathcal{M}_g(2)$ denoted by $\theta[k]_0$ and called the **theta-null divisor** of characteristic $[k]$. Finally, the natural action of $\text{Sp}_{2g}(\mathbb{Z}/2\mathbb{Z})$ on $(\mathbb{Z}/2\mathbb{Z})^{2g}$ induces an action on these hypersurfaces: For each k in $(\mathbb{Z}/2\mathbb{Z})^{2g}$ which is even, for each M in $\text{Sp}_{2g}(\mathbb{Z}/2\mathbb{Z})$, we have

$$M.\theta[k]_0 = \theta[M.k]_0.$$

3 Theta characteristics, symplectic torsors

Each concept of this part can be found (for instance) in [S].

Definition 3.1 Let C be a curve of genus g over \mathbb{C} and K its canonical divisor class. A **theta characteristic** Δ on C is a degree $g-1$ divisor class such as

$$2\Delta \equiv K$$

Moreover Δ is called **even** (resp. **odd**) if $h^0(\Delta) \equiv 0 \pmod{2}$ (resp. $1 \pmod{2}$).

Let $S(C)$ be the set of theta characteristics on C and let $S^+(C)$ be the set of even ones.

Definition 3.2 Let $(J,.)$ be a symplectic pair (that is a $\mathbb{Z}/2\mathbb{Z}$-vector space endowed with a non degenerate, alternate, bilinear form), we say that a pair (S,Q) is a symplectic torsor over $(J,.)$ if there is simply transitive action of J on S denoted $+$ and a mapping $Q : S \to \mathbb{Z}/2\mathbb{Z}$ having the property

$$Q(s) + Q(j_1 + s) + Q(j_2 + s) + Q(j_1 + j_2 + s) = j_1.j_2 \quad (\ast)$$

Example 3.3 Let W be a set of order $2g + 2$. We denote by $P_2(W)$ the set of partitions on W into two subsets. For each subset A of W, we denote by \bar{A} the element $(A; \mathbb{C}_W.A)$ of $P_2(W)$. One has

1. An addition on $P_2(W)$: For each \bar{A} and \bar{B} in $P_2(W)$

$\bar{A} + \bar{B} := \overline{A \cup B - A \cap B}$

2. A map $p : P_2(W) \to \mathbb{Z}/2\mathbb{Z}$ defined by

$$p(\bar{A}) = |A| \pmod{2}.$$
3. A map \(e : P_2^+(W) \times P_2^+(W) \rightarrow \mathbb{Z}/2\mathbb{Z} \) defined by
\[
e(\bar{A}; \bar{B}) := |A \cup B| \pmod{2}.
\]
If \(g \) is even (resp odd) then we have a quadratic form defined on \(P_2^-(W) \) (resp on \(P_2^+(W) \)) by
\[
Q_-(\bar{A}) = \frac{|A| + 1}{2} \pmod{2}
\]
(resp \(Q_+(\bar{A}) = \frac{|A|}{2} \pmod{2} \)).

\((P_2^-(W), Q_-)\) (resp \((P_2^+(W), Q_+)\)) is a symplectic torsor over \((P_2^+(W), e)\) denoted by \(T(W) \).

Example 3.4 For each symplectic pair \((J, .)\), the set of quadratic forms

\[\text{Quad}(J) := \{ q : J \rightarrow \mathbb{Z}/2\mathbb{Z} \mid \forall j_1 \in J, \forall j_2 \in J, q(j_1) + q(j_2) + q(j_1 + j_2) = j_1 \cdot j_2 \}\]endowed with the mapping \(\text{Arf} : \text{Quad}(J) \rightarrow \mathbb{Z}/2\mathbb{Z} \) (see for instance \([\text{Sc}]\)) is a symplectic torsor over \((J, .)\). Moreover we have the following property :
\[\forall q \in \text{Quad}(J), \forall j \in J, \text{Arf}(j + q) = \text{Arf}(q) + q(j)\]

Proposition 3.5 Let \((J_2(C), .)\) be the \(\mathbb{Z}/2\mathbb{Z} \)-vector space of order two points of the Jacobian of \(C \) endowed with the intersection pairing. If we denote by \(Q \) the mapping
\[Q : S(C) \rightarrow \mathbb{Z}/2\mathbb{Z} \quad \Delta \mapsto h_0(\Delta) \pmod{2}\]
then \((S(C), Q)\) is a symplectic torsor over \((J_2(C), .)\).

Remark 3.6 Let \(C \) be an hyperelliptic curve. If we denote by \(W(C) \) the set of its Weierstrass points, then we have a canonical isomorphism of symplectic torsors
\[\widetilde{\beta}_C : T(W(C)) \rightarrow (S(C), Q)\]compatible with the canonical symplectic isomorphism
\[\beta_C : (P_2^+(W(C)), e) \rightarrow (J_2(C), .)\].
Finally, we recall the result established by Mumford in [M]:

Proposition 3.7 The map

\[
(S(C), Q) \rightarrow (\text{Quad}(J_2(C)), \text{Arf})
\]

\[
\Delta \rightarrow \left(q_\Delta : J_2(C) \rightarrow \mathbb{Z}/2\mathbb{Z} \\
j \mapsto Q(\Delta) + Q(j + \Delta) \right)
\]

is an isomorphism of symplectic torsors. In particular it preserves the parity.

4 **Proof of theorem 1.1**

4.1 **Orbits of the action of Sp\(_{12}(\mathbb{Z}/2\mathbb{Z})\) on the sets of four distincts even theta characteristics**

Let \(C\) be a curve of genus 6 over \(\mathbb{C}\). For each set \(\{\Delta_i\}_{i=1,4}\) of four distincts even theta characteristics on \(C\), we can associate the set \(\{\delta_i\}_{i=1,4}\) of theta characteristics on \(C\), defined as

\[
\delta_i \equiv 2K - \sum_{j \neq i} \Delta_j.
\]

Proposition 4.1 Let \(C\) be a curve of genus 6 over \(\mathbb{C}\). The action of \(\text{Sp}_{12}(\mathbb{Z}/2\mathbb{Z})\) on the sets of four even theta characteristics has four orbits \(A_1, \ldots, A_4\), given respectively by the following conditions:

1. \(\sum_{i=1}^{4} \Delta_i \equiv 2K\).
2. \(\{\Delta_i\}_{i=1,4}\) is not in \(A_1\) and all the \(\delta_i\)’s are even.
3. Exactly two of the \(\delta_i\)’s are even.
4. All the \(\delta_i\)’s are odd.

By Proposition 3.7, we can study the action of \(\text{Sp}_{12}(\mathbb{Z}/2\mathbb{Z})\) on the sets of four distinct even quadratic forms on \(J_2(C)\):

Lemma 4.2 Let \(C\) be a curve of genus 6 over \(\mathbb{C}\). Let \(\{q, q+a_1, q+a_2, q+a_3\}\) and \(\{q, q+a_1', q+a_2', q+a_3'\}\) be two sets of four distinct even quadratic forms on \(J_2(C)\) so that

\[
\dim < a_1, a_2, a_3 > = \dim < a_1', a_2', a_3' >.
\]
If it exists $\sigma \in \mathfrak{S}_3$ so that
\[\forall k, l \in \{1, 2, 3\}, \; a_k.a_l = a'_{\sigma(k)}.a'_{\sigma(l)}, \]
then these two sets are in the same orbit of the action of $\text{Sp}_{12}(\mathbb{Z}/2\mathbb{Z})$ on the sets of four distinct even quadratic forms on $\mathcal{J}_2(C)$.

Proof: By taking into account the parity conditions on the quadratic forms, we have:
\[
q(a_1) = q(a'_1), \\
q(a_2) = q(a'_2), \\
q(a_3) = q(a'_3).
\]
Moreover, $\dim < a_1, a_2, a_3 > = \dim < a'_1, a'_2, a'_3 >$ and it exists $\sigma \in \mathfrak{S}_3$ so that
\[\forall k, l \in \{1, 2, 3\}, \; a_k.a_k = a'_{\sigma(k)}.a'_{\sigma(l)}. \]
By Witt’s theorem (see for instance [Sc]) these conditions are equivalent to:
\[\exists f \in \text{O}(q) \text{ so that } \forall k \in \{1, 2, 3\}, \; f(a_k) = a'_{\sigma(k)}. \]
Finally, this is equivalent to the existence of f in $\text{O}(q)$ so that
\[
q_1 = q'_{\tau_1} \circ f^{-1} \\
q_2 = q'_{\tau_2} \circ f^{-1} \\
q_3 = q'_{\tau_3} \circ f^{-1}. \square
\]

Proof of Proposition 4.1: As the action preserves the parity, each orbit is contained in one of the A_i's. By this fact, we have to show the transitivity of this action on these sets:

Let $\Delta_1, \Delta_2, \Delta_3$ and Δ_4 be four even theta characteristics on C. Let q_1, q_2, q_3 and q_4 be the quadratic forms associated to these theta characteristics. For each i in $\{1, 2, 3\}$, let a_i be the element of $\mathcal{J}_2(C)$ so that
\[q_i = q_4 + a_i. \]
If a_1, a_2 and a_3 are linearly dependent then $\Delta_4 + \Delta_1 = \Delta_2 + \Delta_3$.
If a_1, a_2 and a_3 are linearly independent then we have:
\[\forall \{i, j\} \subseteq \{1, 2, 3\}, \]
\[a_i.a_j = 0 \iff \Delta_4 + \Delta_i = \Delta_j \text{ even}. \]
Now let us suppose that \(\{ \Delta_i \}_{i=1\ldots4} \) is in the same orbit as \(\{ \Delta_i^* \}_{i=1\ldots4} \). By this fact, if \(\{ \Delta_i \}_{i=1\ldots4} \) and \(\{ \Delta_i^* \}_{i=1\ldots4} \) are both in \(A_1, A_2, A_4 \), then the transitivity is obvious by lemma 4.2.

Let \(q_1^*, q_2^*, q_3^* \) and \(q_4^* \) be four even quadratic forms on \(J_2(C) \) corresponding to \(\{ \Delta_i^* \}_{i=1\ldots4} \), an other set of even theta characteristics on \(C \). The transitivity of the action (on even quadratic forms) implies that there exists \(M \) in \(\text{Sp}_{12}(\mathbb{Z}/2\mathbb{Z}) \), so that \(M.q_1^* = q_4 \). If we put

\[
q_1' := M.q_1^* \\
q_2' := M.q_2^* \\
q_3' := M.q_3^*
\]

then \(\{ q_1', q_2', q_3', q_4' \} \) is in the same orbit as \(\{ q_1^*, q_2^*, q_3^*, q_4^* \} \).

By this fact, if \(\{ \Delta_i \}_{i=1\ldots4} \) and \(\{ \Delta_i^* \}_{i=1\ldots4} \) are both in \(A_1, A_2, A_4 \), then the transitivity is obvious by lemma 4.2.

Now let us suppose that \(\{ \Delta_i \}_{i=1\ldots4} \) and \(\{ \Delta_i^* \}_{i=1\ldots4} \) are both in \(A_3 \). For each \(i \) in \(\{ 1, 2, 3 \} \), let \(a_i' \) be the element of \(J_2(C) \) so that

\[
q_i = q_4 + a_i'.
\]

If Card (\(\{ i, j \} \subset \{ 1, 2, 3 \} \mid a_i, a_j \} = \text{Card} (\{ i, j \} \subset \{ 1, 2, 3 \} \mid a_i', a_j' \})

then we can conclude again with lemma 4.2. If not, we can suppose for instance, that

\[
\begin{align*}
a_1.a_2 &= 1 & a_1', a_2' &= 1 \\
a_1.a_3 &= 0 & a_1', a_3 &= 1 \\
a_2.a_3 &= 0 & a_2', a_3 &= 0.
\end{align*}
\]

By lemma 4.2 there exist \(a_2'' \) and \(a_3'' \) in \(J_2(C) \) so that

\[
\begin{align*}
a_2.a_2'' &= 1 \\
a_2.a_3'' &= 1 \\
a_2.a_3 &= 0.
\end{align*}
\]

and \(\{ q_4 + a_2, q_4 + a_3'', q_4 + a_3'', q_4 \} \) is in the same orbit as \(\{ q_4 + a_1', q_4 + a_2', q_4 + a_3', q_4 \} \). If we put

\[
q := q_4 + a_2,
\]
then
\[\{q_1, q_2, q_3, q_4\} = \{q + (a_1 + a_2), q, q + (a_3 + a_2), q + a_2\} \]
\[\{q_4 + a_2, q_4 + a_2', q_4 + a_3', q_4\} = \{q, q + (a_2 + a_2'), q + (a_2 + a_3'), q + a_2\}. \]

We can verify that
\[(a_1 + a_2).(a_2 + a_3) = 1 \quad \text{and} \quad a_2.(a_2 + a_2') = 1 \]
\[(a_1 + a_2).a_2 = 1 \quad \text{and} \quad a_2(a_2 + a_3) = 1 \]
\[(a_2 + a_3).a_2 = 0 \quad \text{and} \quad (a_2 + a_2')(a_2 + a_3') = 0. \]
and conclude with the lemma \[\square\]

4.2 Theta characteristics on bi-elliptic curves

Let \(C \) be a bi-elliptic curve of genus 6. By definition this means that there exists an elliptic curve \(X \) and a degree 2 morphism:
\[\pi : C \longrightarrow X \]
The Riemann-Hurwitz theorem implies that \(\pi \) has 10 ramification points denoted \(R_1, \ldots, R_{10} \).

Lemma 4.3 ([A2]) A general bi-elliptic curve has forty even, effective theta characteristics of the form
\[R_i + \pi^*(D_i) \]
where \(R_i \) is one of the ramification points of \(\pi \) and \(D_i \) is a degree two divisor on \(X \).

Remark 4.4
- \(\pi^*(\mathcal{J}(X)) \) has 3 non zero points of order 2 denoted by \(F_1, F_2 \) and \(F_3 \). If for each \(i \) in \(\{1, \ldots, 10\} \), we choose a divisor \(D_i \) so that \(R_i + \pi^*(D_i) \) is an even theta characteristic on \(C \), then the three other even, effective theta characteristics with fixed point \(R_i \) will be
\[R_i + \pi^*(D_i + F_j) \quad j = 1 \ldots 3 \]

Lemma 4.5 Let \(\Delta_1 = R_1 + \pi^*(D_1) \), \(\Delta_2 = R_2 + \pi^*(D_2) \) and \(\Delta_3 = R_3 + \pi^*(D_3) \) be three even effective theta characteristics on a general bi-elliptic curve \(C \). One has
\[\Delta_1 + \Delta_2 - \Delta_3 \text{ even } \iff \begin{cases} \text{two at least of} \\ \text{the } R_i \text{ are the same} \end{cases} \]
Proof: First of all, let us notice that for each \(j, k, l \) so that
\[\{j, k, l\} = \{1, 2, 3\}, \]
\[\Delta_1 + \Delta_2 - \Delta_3 = R_j + R_k - R_l + \pi^* D_j + \pi^* D_k - \pi^* D_l \]
then \(D_j + D_k - D_l \equiv E_l \) where \(E_l \) is a degree two, effective divisor on \(X \); thus \((\Leftarrow)\) is evident.

Now, if we call \(P_l \), the point on \(X \) so that \(\pi^* P_l = 2 R_l \), as on an elliptic curve every linear system of degree \(d \) is of dimension \(d \), there exists \(Q_l \), a point on \(X \) so that
\[R_j + R_k - R_l + \pi^* P_l + \pi^* Q_l \equiv R_j + R_k - R_l + \pi^* D_j + \pi^* D_k - \pi^* D_l \]
But then, by lemma 4.5, for a general bi-elliptic curve, if we are considering, for instance, that \(R_1 \) is the fixed point of the even theta characteristic \(\Delta_1 + \Delta_2 - \Delta_3 \), then \(R_2 + R_3 + \pi^* Q_l \) must be the pullback of an effective degree two divisor. This is possible if and only if \(R_2 = R_3 \).

□

With this lemma, one checks easily the next result which ends our proof.

Proposition 4.6 Let \(C \) be a smooth curve of genus 6 with a degree two morphism
\[\pi: C \rightarrow X \]
onto an elliptic curve \(X \). Let \(R_1, \ldots, R_{10} \) be the ramification points of this morphism and let \(D_1, \ldots, D_{10} \) be some degree two effective divisors on \(X \) so that
\[\{R_i + \pi^* D_i \mid i \in \{1, \ldots, 10\}\} \]
is a set of the even, effective theta characteristic on \(C \). The following sets are in the four orbits of the action of \(\text{Sp}_{12}(\mathbb{Z}/2\mathbb{Z}) \) on the sets of four distinct even theta characteristics on \(C \) :
\[
\begin{align*}
\{R_1 + \pi^* D_1, R_2 + \pi^* (D_2 + F_1), R_1 + \pi^* (D_1 + F_1), R_2 + \pi^* D_2\} & \in A_1 \\
\{R_1 + \pi^* D_1, R_2 + \pi^* (D_2 + F_2), R_1 + \pi^* (D_1 + F_1), R_2 + \pi^* D_2\} & \in A_2 \\
\{R_1 + \pi^* D_1, R_2 + \pi^* (D_2), R_3 + \pi^* (D_3), R_1 + \pi^* (D_2 + F_1)\} & \in A_3 \\
\{R_1 + \pi^* D_1, R_2 + \pi^* D_2, R_3 + \pi^* D_3, R_4 + \pi^* D_4\} & \in A_4.
\end{align*}
\]
5 Proof of theorem 1.2

First of all, we need to recall a result given by Teixidor I Bigas in \[T\] :

Let \(S_1 \) be the scheme which parametrizes the pairs \((C, \Delta)\), where \(C \) is curve of genus \(g \) on \(C \) and \(\Delta \) is a theta characteristic of projective dimension 1 on \(C \). For each \(t = (C, \Delta) \in S_1 \), there is an injective map:

\[
f : T_{S_1(t)} \longrightarrow H^1(T_C)
\]

As by Serre duality \(H^1(T_C) \) is dual to \(H^0(2K) \), we have:

Lemma 5.1 (Teixidor I Bigas) If \(F \) is the fixed part of the linear system \(|\Delta|\) and \(R \) the ramification divisor of the corresponding morphism \(\varphi_\Delta : C \longrightarrow \mathbb{P}^1 \) then \(\text{Im}(f) = (\omega)^\perp \), where \(\omega \) is an element of \(H^0(2K) \) with divisor \(R + 2F \).

By using the particular expression of the theta characteristics on an hyperelliptic curve (see [A,C,G,H] p 288), this lemma has the following consequence: Let \(C \) be an hyperelliptic curve of genus \(g \geq 3 \), \(W := \{p_1, \ldots, p_{2g+2}\} \) the set of its Weierstrass points, \(H \) its hyperelliptic divisor, then for each even theta characteristic \(\Delta \) on \(C \) of dimension 1,

\[
\Delta = H + p_{i_1} + \cdots + p_{i_{g-3}}.
\]

\(\text{Im}(f) \) is the orthogonal of \(\omega \) so that

\[
\text{div}(\omega) = p_1 + \cdots + p_{2g+2} + 2(p_{i_1} + \cdots + p_{i_{g-3}})
\]

Proposition 5.2 Let \((C, \sigma)\) be an hyperelliptic element of \(\mathcal{M}_g(2) \ (g \geq 3) \). Let \(H \) be the hyperelliptic divisor on \(C \). We choose \(p_1, \ldots, p_{g-2}, g-2 \) Weierstrass points on \(C \) and let \(E \) be the divisor \(p_1 + \cdots + p_{g-2} \). Then the \(g-2 \) thetanull divisors associated to the theta characteristics \(\{H+E-p_1, \ldots, H+E-p_{g-2}\} \) intersect transversally at \((C, \sigma)\).

Proof: By the last remark, we have to prove that the linear subsystem of \(H^0(2K) \) generated by

\[
\{F_k = p_1 + \cdots + p_{2g+2} + 2(E-p_k) \mid k = 1, \ldots, g-2\}
\]

has rank \(g-2 \). Let us prove that for each \(k \) in \(\{2, \ldots, g-2\} \), \(F_k \) is not in the linear system generated by \(F_1, \ldots, F_{k-1} \). Let \(C \) be the Riemann surface

\[
y^2 = \prod_{i=1}^{2g+2} (x - x_i) , \quad x : C \longrightarrow \mathbb{P}^1
\]
so that for each i in $\{1, \ldots, 2g+2\}$, $x(p_i) = x_i$. We have then to verify that there does not exist $(\lambda_1 : \cdots : \lambda_{k-1})$ in \mathbb{P}^{k-2} so that $2(E - p_k)$ is the divisor $f \ast 0$ where

$$f = \lambda_1(x-x_2) \cdots (x-x_{g-2}) + \cdots + \lambda_{k-1}(x-x_1) \cdots (x-x_{k-2})(x-x_k) \cdots (x-x_{g-2})$$

Let us suppose it is false. As $2(E - p_k)$ is $2p_1 + \cdots + 2p_{k-1} + 2p_{k+1} + \cdots + 2p_{g-2}$ this implies

$$f(x_1) = \lambda_1(x_1 - x_2)(x_1 - x_2) \cdots (x_1 - x_{g-2}) = 0 \Rightarrow \lambda_1 = 0$$
then

$$f(x_2) = 0 \Rightarrow \lambda_2 = 0$$
then

$$\vdots$$

$$f(x_{k-1}) = \lambda_{k-1}(x_{k-1} - x_1) \cdots (x_{k-1} - x_{k-2})(x_{k-1} - x_k) \cdots (x_{k-1} - x_{g-2}) = 0$$

$$\Rightarrow \lambda_{k-1} = 0$$

Finally we would have $\lambda_1 = \cdots = \lambda_{k-1} = 0$ which it is absurd. □

Each connected component Y of $\mathcal{H}_g(2)$ is uniquely determined by a symplectic isomorphism

$$c_Y : (\mathbb{Z}/2\mathbb{Z})^{2g} \longrightarrow P_2^+\left(\{1, \ldots, 2g + 2\}\right)$$
and an isomorphism between symplectic torsors

$$\widetilde{c}_Y : (\mathbb{Z}/2\mathbb{Z})^{2g} \longrightarrow T(\{1, \ldots, 2g + 2\})$$
in the following way:

Let U be the open subvariety of \mathbb{C}^{2g+2} consisting of points with distinct coordinates. To each point $\xi = (\xi_1, \ldots, \xi_{2g+2})$ in U, we associate the hyperelliptic curve $C(\xi)$ with Weierstrass points $\xi_1, \ldots, \xi_{2g+2}$. We denote by $W(\xi)$ this set. For each ξ in U, the bijection $[1, \ldots, 2g+2] \longrightarrow [\xi_1, \ldots, \xi_{2g+2}]$ induces a symplectic isomorphism

$$\alpha_\xi : P_2^+\left(\{1, \ldots, 2g + 2\}\right) \longrightarrow P_2^+(W(\xi))$$
and an isomorphism between symplectic torsors:

$$\widetilde{\alpha}_\xi : T(\{1, \ldots, 2g + 2\}) \longrightarrow T(W(\xi)).$$
Y is the subspace of $\mathcal{M}_g(2)$ defined as

$$\{(C(\xi), \sigma_\xi) \in \mathcal{H}_{g,2} \mid \xi \in U\},$$

so that for each ξ in U, the following diagrams

$$\begin{array}{c}
P_2^+(\{1, \ldots, 2g + 2\}) \xrightarrow{\alpha_\xi} P_2^+(C(\xi)) \xrightarrow{\beta_{C(\xi)}} J_2(C(\xi)) \\
(\mathbb{Z}/2\mathbb{Z})^{2g} \xrightarrow{\sigma_\xi}
\end{array}$$

$$\begin{array}{c}
T(\{1, \ldots, 2g + 2\}) \xrightarrow{\tilde{\alpha}_\xi} T(W(\xi)) \xrightarrow{\tilde{\beta}_{C(\xi)}} S(C(\xi)) \\
(\mathbb{Z}/2\mathbb{Z})^{2g} \xrightarrow{\sigma_\xi}
\end{array}$$

are commutative. Now let ξ_0 be in U. Let us choose $g - 2$ thetanull divisors which correspond on $C(\xi_0)$, to $g - 2$ theta characteristics in the configuration of Proposition 5.2. By the last diagram, one sees that for each ξ in U, these $g - 2$ thetanull divisors correspond to $g - 2$ theta characteristics on $C(\xi)$ in the same configuration as on $C(\xi_0)$. By this fact, Y is a component of the intersection of these $g - 2$ thetanull divisors. □

Acknowledgment

I would like to thank my thesis advisor A. Beauville for making useful suggestions that lead to the results of this paper.

References

[A1] R. Accola
Some loci in Teichmüller space for genus five defined by vanishing theta nulls. Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp.11–18. Academic Press, New York, 1974.

[A2] R. Accola
Some loci in Teichmüller space for genus six defined by vanishing thetanulls. Differential geometry and complex analysis, 49–63, Springer, Berlin, 1985.
[**A,C,G,H**] E. Arbarello, M. Cornalba, P. Griffiths, J. Harris
Geometry of algebraic curves. Vol. I. Grundlehren der Mathematischen Wissenschaften, 267. Springer-Verlag, New York, 1985.

[**BL**] C. Birkenhake, H. Lange
Complex abelian varieties. Grundlehren der Mathematischen Wissenschaften, 302. Springer-Verlag, Berlin, 1992.

[**D**] R. Donagi
Big Schottky. Invent. Math. 89 (1987), no. 3, 569–599.

[**I**] J. Igusa
Theta functions. Die Grundlehren der mathematischen Wissenschaften, 194. Springer-Verlag, New York-Heidelberg, 1972.

[**M**] D. Mumford
Theta characteristics of an algebraic curve. Ann. Sci. Ecole Norm. Sup. (4) 4 (1971), 181–192.

[**S**] N. Saavedra Rivano
Finite geometries in the theory of theta characteristics. Enseignement Math. (2) 22 (1976), no. 3-4, 191–218.

[**Sc**] W. Scharlau
Quadratic and Hermitian forms. Grundlehren der Mathematischen Wissenschaften, 270. Springer-Verlag, Berlin, 1985.

[**Ts**] S. Tsuyumine
Thetanullwerte on a moduli space of curves and hyperelliptic loci. Math. Z. 207 (1991), no. 4, 539–568.

[**T**] M. Teixidor I Bigas
Half-canonical series on algebraic curves. Trans. Amer. Math. Soc. 302 (1987), no. 1, 99–115.