Supporting Information

for

Metal-free glycosylation with glycosyl fluorides in liquid SO₂

Krista Gulbe, Jevgeņija Lugojina, Edijs Jansons, Artis Kinens and Māris Turks

Beilstein J. Org. Chem. 2021, 17, 964–976. doi:10.3762/bjoc.17.78

Copies of NMR spectra
1. Glycosyl donors .. S2-2
2. Intermediates isolated in the synthesis of 2-deoxy glucosyl fluoride α-19 S2-19
3. Target glycosides .. S2-24
4. Side-products .. S2-88
1. GLYCOSYL DONORS
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
β_9

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
α-11

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
α-12

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)

S2-10
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
^{1}H NMR (500 MHz, CDCl$_3$)

^{13}C NMR (126 MHz, CDCl$_3$)
1^H NMR (500 MHz, CDCl$_3$)

1^C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
β-S11

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
\^{1}H NMR (500 MHz, CDCl\textsubscript{3})

\[^{13}C\text{NMR (126 MHz, CDCl}\textsubscript{3})\]
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
2. INTERMEDIATES ISOLATED IN THE SYNTHESIS OF
2-DEOXY GLUCOSYL FLUORIDE \(\alpha \)-19
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

$\alpha, \beta = 81.19$

13C NMR (126 MHz, CDCl$_3$)

$\alpha, \beta = 81.19$
$\alpha\beta = 77.23$
3. TARGET GLYCOSIDES
1H NMR (300 MHz, CDCl$_3$)

13C NMR (75.5 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (300 MHz, CDCl$_3$)

13C NMR (75.5 MHz, CDCl$_3$)
1H NMR (300 MHz, CDCl$_3$)

13C NMR (75.5 MHz, CDCl$_3$)
β-3d

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
α-3e

1H NMR (300 MHz, CDCl$_3$)

13C NMR (75.5 MHz, CDCl$_3$)
1H NMR (300 MHz, CDCl$_3$)

13C NMR (75.5 MHz, CDCl$_3$)
\[
\alpha-3f
\]

\(^1\)H NMR (500 MHz, CDCl\(_3\))

\[^{13}\)C NMR (126 MHz, CDCl\(_3\))

S2-34
1H NMR (500 MHz, CDCl₃)

13C NMR (126 MHz, CDCl₃)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (300 MHz, CDCl$_3$)

13C NMR (75.5 MHz, CDCl$_3$)
α-3i

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
β-3j

1H NMR (500 MHz, CDCl$_3$)

β-3j

α-2-adamantanol (2j)
β-3k

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)

S2-43
α-3l

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
β-3m

1H NMR (300 MHz, CDCl$_3$)

13C NMR (75.5 MHz, CDCl$_3$)
α-3n

1H NMR (300 MHz, CDCl$_3$)

13C NMR (75.5 MHz, CDCl$_3$)
^{1}H NMR (300 MHz, CDCl$_3$)

^{13}C NMR (75.5 MHz, CDCl$_3$)
1H NMR (300 MHz, CDCl$_3$)

13C NMR (75.5 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
^{1}H NMR (500 MHz, CDCl$_3$)

^{13}C NMR (126 MHz, CDCl$_3$)
^{1}H NMR (500 MHz, CDCl$_3$)

^{13}C NMR (126 MHz, CDCl$_3$)
α-8b

1H NMR (300 MHz, CDCl$_3$)

13C NMR (75.5 MHz, CDCl$_3$)
\(^1H \text{NMR} \ (500 \text{ MHz, CDCl}_3) \)

\(^{13}C \text{NMR} \ (126 \text{ MHz, CDCl}_3) \)
β-10a

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
α-10b

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
$^{1}\text{H NMR (500 MHz, CDCl}_3\text{)}$

\[\text{Compound } \alpha-13a\]

$^{13}\text{C NMR (126 MHz, CDCl}_3\text{)}$
$^\beta$-13a

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)

S2-63
\(^1H \text{NMR (500 MHz, CDCl}_3) \)

\(^{13}C \text{NMR (126 MHz, CDCl}_3) \)
β-13b

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

\[\alpha-14b \]

13C NMR (126 MHz, CDCl$_3$)
\(\alpha-17a \)

\(^1\)H NMR (500 MHz, CDCl\(_3\))

\(^{13}\)C NMR (126 MHz, CDCl\(_3\))
\[^{1}H\text{ NMR (500 MHz, CDCl}_3\text{)}\]

\[^{13}C\text{ NMR (126 MHz, CDCl}_3\text{)}\]

\[\alpha\text{-17b}\]
α-17c

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
β-17c

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
α-17d

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
α-17e

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
\[1^H\text{NMR (500 MHz, CDCl}_3\text{)}\]

\[13C\text{NMR (126 MHz, CDCl}_3\text{)}\]
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
\(^1H \text{ NMR} \ (500 \text{ MHz, CDCl}_3) \)

\(^13C \text{ NMR} \ (126 \text{ MHz, CDCl}_3) \)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
^{1}H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
4. SIDE-PRODUCTS
^{1}H NMR (500 MHz, CDCl$_3$)

^{13}C NMR (75.5 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H-13C HMBC (CDCl$_3$)

α,α-S14
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
$^{1}H\text{-}^{13}C$ HMBC (CDCl$_3$)

A = H-C4 ↔ Piv
B = H-C2 ↔ Piv
C = H-C6 ↔ Piv
D = H-C1' ↔ C1

α-S15
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
S17

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)

$\alpha: \beta = 69:31$
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)

S2-97
$^{1}H-^{13}C$ HMBC (CDCl$_3$)

A = H- C3 ↔ Piv
B = H- C4 ↔ Piv
C = H- C6 ↔ Piv
α-S19 & β-S20 (66:34)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
α-S21

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
\[\alpha^{21}S2 \]

\[\text{H}^{13}\text{C} \text{HMBC (CDCl}_{3}\text{)} \]

- A = H-C3 ↔ Piv
- B = H-C4 ↔ Piv
- C = H-C6 ↔ Piv
- D = H-C1 ↔ C1

\[\text{A} = (5.17, 78.66), \quad \text{B} = (4.95, 176.35), \quad \text{C} = (3.86, 179.17), \quad \text{D} = (3.34, 87.81) \]

\[\text{O} \quad \text{PivO} \quad \text{PivO} \quad \text{HO} \quad \text{O} \]

\[\text{Q Piv} \]

\[\text{Diagram showing molecular structure with HMBC peaks.} \]
α-S22

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
$^{1}\text{H NMR (500 MHz, CDCl}_3\text{)}$

$^{13}\text{C NMR (126 MHz, CDCl}_3\text{)}$
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
H NMR (500 MHz, CDCl₃)

\[
\begin{align*}
\alpha : \beta &= 72:28
\end{align*}
\]

C NMR (126 MHz, CDCl₃)

\[
\begin{align*}
\alpha : \beta &= 72:28
\end{align*}
\]
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
S28

1H NMR (500 MHz, CDCl$_3$)

![NMR Spectrum](image)

13C NMR (126 MHz, CDCl$_3$)

![NMR Spectrum](image)

α:β = 63:37
S29

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)

\[\alpha : \beta = 50:50 \]
1H-13C HMBC (CDCl$_3$)

A = β-H-C3 ↔ Piv
B = α-H-C(3,4); β-H-C4 ↔ Piv
C = β-H-C6 ↔ Piv
D = α-H-C8 ↔ Piv
E = H-C'1 ↔ C1
α-S30

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)

$\alpha, \beta = 34.66$