Capacitated Domination: Constant Factor Approximations for Planar Graphs *

Mong-Jen Kao and D.T. Lee

Department of Computer Science and Information Engineering,
National Taiwan University, Taiwan.
Email: d97021@csie.ntu.edu.tw, dtlee@iis.sinica.edu.tw

Abstract

We consider the capacitated domination problem, which models a service-requirement assigning scenario and which is also a generalization of the dominating set problem. In this problem, we are given a graph with three parameters defined on the vertex set, which are cost, capacity, and demand. The objective of this problem is to compute a demand assignment of least cost, such that the demand of each vertex is fully-assigned to some of its closed neighbours without exceeding the amount of capacity they provide. In this paper, we provide the first constant factor approximation for this problem on planar graphs, based on a new perspective on the hierarchical structure of outer-planar graphs. We believe that this new perspective and technique can be applied to other capacitated covering problems to help tackle vertices of large degrees.

1 Introduction

For decades, Dominating Set problem has been one of the most fundamental and well-known problems in both graph theory and combinatorial optimization. Given a graph $G = (V, E)$ and an integer k, Dominating Set asks for a subset $D \subseteq V$ whose cardinality does not exceed k such that every vertex in the graph either belongs to this set or has a neighbour which does. As this problem is known to be NP-hard, approximation algorithms have been proposed in the literature [1, 10, 12].

A series of study on capacitated covering problem was initiated by Guha et al., [9], which addressed the capacitated vertex cover problem from a scenario of Glycomolecule ID (GMID) placement. Several follow-up papers have appeared since then, studying both this topic and related variations [4, 7, 8]. These problems are also closely related to work on the capacitated facility location problem, which has drawn a lot of attention since 1990s. See [3, 16].

Motivated by a general service-requirement assignment scenario, Kao et al., [13, 14] considered a generalization of the dominating set problem called Capacitated Domination, which is defined as follows. Let $G = (V, E)$ be a graph with three non-negative parameters defined on each vertex $u \in V$, referred to as the cost, the capacity, and the demand, further denoted by $w(u)$, $c(u)$, and $d(u)$, respectively. The demand of a vertex stands for the amount of service it requires from its adjacent vertices, including the vertex itself, while the capacity of a vertex represents the amount of service each multiplicity (copy) of that vertex can provide.

*This work was supported in part by the National Science Council, Taipei 10622, Taiwan, under the Grants NSC99-2911-I-002-055-2, NSC98-2221-E-001-007-MY3, and NSC98-2221-E-001-008-MY3.
By a demand assignment function \(f \) we mean a function which maps pairs of vertices to non-negative real numbers. Intuitively, \(f(u, v) \) denotes the amount of demand of \(u \) that is assigned to \(v \). We use \(N_G(v) \) to denote the set of neighbours of a vertex \(v \in V \).

Definition 1 (feasible demand assignment function). A demand assignment function \(f \) is said to be feasible if \(\sum_{u \in N_G[v]} f(v, u) \geq d(v) \), for each \(v \in V \), where \(N_G[v] = N_G(v) \cup \{v\} \) denotes the neighbours of \(v \) unions \(v \) itself.

Given a demand assignment function \(f \), the corresponding capacitated dominating multi-set \(D(f) \) is defined as follows. For each vertex \(v \in V \), the *multiplicity* of \(v \) in \(D(f) \) is defined to be \(x_f(v) = \lceil \frac{\sum_{u \in N_G[v]} f(u, v)}{c(v)} \rceil \). The cost of the assignment function \(f \), denoted \(w(f) \), is defined to be \(w(f) = \sum_{u \in V} w(u) \cdot x_f(u) \).

Definition 2 (Capacitated Domination Problem). Given a graph \(G = (V, E) \) with cost, capacity, and demand defined on each vertex, the capacitated domination problem asks for a feasible demand assignment function \(f \) such that \(w(f) \) is minimized.

For this problem, Kao et al., [14], presented a \((\Delta + 1)\)-approximation for general graphs, where \(\Delta \) is the maximum vertex degree of the graph, and a polynomial time approximation scheme for trees, which they proved to be NP-hard. In a following work [13], they provided more approximation algorithms and complexity results for this problem. On the other hand, Dom et al., [6] considered a variation of this problem where the number of multiplicities available at each vertex is limited and proved the \(W[1] \)-hardness when parameterized by treewidth and solution size. Cygan et al., [5], made an attempt toward the exact solution and presented an \(O(1.89^n) \) algorithm when each vertex has unit demand. This result was further improved by Liedloff et al., [15].

Our Contributions We provide the first constant factor approximation algorithms for the capacitated domination problem on planar graphs. This result can be considered a break-through with respect to the pseudo-polynomial time approximations given in [13], which is based on a dynamic programming on graphs of bounded treewidth. The approach used in [13] stems from the fact that vertices of large degrees will fail most of the techniques that transform a pseudo-polynomial time dynamic programming algorithm into approximations, i.e., the error accumulated at vertices of large degrees could not be bounded.

In this work, we tackle this problem using a new approach. Specifically, we give a new perspective toward the hierarchical structure of outer-planar graphs, which enables us to further tackle vertices of large degrees. Then we analyse both the primal and the dual linear programs of this problem to obtain the claimed result. We believe that the approach we provided in this paper can be applied to other capacitated covering problems to help tackle vertices of large degrees as well.

2 Preliminary

We assume that all the graphs considered in this paper are simple and undirected. Let \(G = (V, E) \) be a graph. We denote the number of vertices, \(|V|\), by \(n \). The set of neighbors of a vertex \(v \in V \) is denoted by \(N_G(v) = \{u : (u, v) \in E\} \). The closed neighborhood of \(v \in V \) is denoted by \(N_G[v] = N_G(v) \cup \{v\} \). We use \(\deg_G(v) \) and \(\deg_G[v] \) to denote the cardinality of \(N_G(v) \) and \(N_G[v] \), respectively. The subscript \(G \) in \(N_G[v] \) and \(\deg_G[v] \) will be omitted when there is no confusion.

A planar embedding of a graph \(G \) is a drawing of \(G \) in the plane such that the edges intersect only at their endpoints. A graph is said to be planar if it has a planar embedding. An outer-planar
Minimize \(\sum_{u \in V} w(u)x(u) \)

subject to

\[
\begin{align*}
\sum_{v \in N[u]} f(u,v) - d(u) & \geq 0, \quad u \in V \\
c(u)x(u) - \sum_{v \in N[u]} f(v,u) & \geq 0, \quad u \in V \\
d(v)x(u) - f(v,u) & \geq 0, \quad v \in N[u], \ u \in V \\
f(u,v) & \geq 0, \quad x(u) \in \mathbb{Z}^+ \cup \{0\}, \ u,v \in V
\end{align*}
\]

(1)

domination is a graph which adopts a planar embedding such that all the vertices lie on a fixed circle, and all the edges are straight lines drawn inside the circle. For \(k \geq 1 \), \(k \)-outerplanar graphs are defined as follows. A graph is 1-outerplanar if and only if it is outer-planar. For \(k > 1 \), a graph is called \(k \)-outerplanar if it has a planar embedding such that the removal of the vertices on the unbounded face results in a \((k-1)\)-outerplanar graph.

An integer linear program (ILP) for capacitated domination is given in (1). The first inequality ensures the feasibility of the demand assignment function \(f \) required in Definition 1. In the second inequality, we model the multiplicity function \(x \) as defined. The third constraint, \(d(v)x(u) - f(v,u) \geq 0 \), which seems unnecessary in the problem formulation, is required to bound the integrality gap between the optimal solution of this ILP and that of its relaxation. To see that this additional constraint does not alter the optimality of any optimal solution, we have the following lemma.

Lemma 1. Let \(f \) be an arbitrary optimal demand assignment function. We have \(d(v) \cdot x_f(u) - f(v,u) \geq 0 \) for all \(u \in V \) and \(v \in N[u] \).

Proof of Lemma 1. Without loss of generality, we may assume that \(d(v) \geq f(v,u) \). For otherwise, we set \(f(v,u) \) to be \(d(v) \) and the resulting assignment would be feasible and the cost can only be better. If \(x_f(u) = 0 \), then we have \(f(v,u) = 0 \) by definition, and this inequality holds trivially. Otherwise, if \(x_f(u) \geq 1 \), then \(d(v) \cdot x_f(u) - f(v,u) \geq f(v,u) \cdot (x_f(u) - 1) \geq 0 \).

However, without this constraint, the integrality gap can be arbitrarily large. This is illustrated by the following example. Let \(\alpha > 1 \) be an arbitrary constant, and \(T(\alpha) \) be an \(n \)-vertex star, where each vertex has unit demand and unit cost. The capacity of the central vertex is set to be \(n \), which is sufficient to cover the demand of the entire graph, while the capacity of each of remaining \(n - 1 \) petal vertices is set to be \(\alpha n \).

Lemma 2. Without the additional constraint \(d(v)x(u) - f(v,u) \geq 0 \), the integrality gap of the ILP (1) on \(T(\alpha) \) is \(\alpha \), where \(\alpha > 1 \) is an arbitrary constant.

Proof of Lemma 2. The optimal dominating set consists of a single multiplicity of the central vertex with unit cost, while the optimal fractional solution is formed by spending \(\frac{1}{\alpha n} \) multiplicity at a petal vertex for each unit demand from the vertices of this graph, making an overall cost of \(\frac{1}{\alpha} \) and therefore an arbitrarily large integrality gap.

Indeed, with the additional constraint applied, we can refrain from unreasonably assigning a small amount of demand to any vertex in any fractional solution. Take a petal vertex, say \(v \), from
as example, given that \(d(v) = 1 \) and \(f(v, v) = 1 \), this constraint would force \(x(v) \) to be at least 1, which prevents the aforementioned situation from being optimal.

For the rest of this paper, for any graph \(G \), we denote the optimal values to the integer linear program (1) and to its relaxation by \(\text{OPT}(G) \) and \(\text{OPT}_f(G) \), respectively. Note that \(\text{OPT}_f(G) \leq \text{OPT}(G) \).

3 Constant Approximation for Outer-planar Graphs

Without loss of generality, we assume that the graphs are connected. Otherwise we simply apply the algorithm to each of the connected component separately. In the following, we first classify the outer-planar graphs into a class of graphs called general-ladders and show how the corresponding general-ladder representation can be extracted in \(O(n \log^3 n) \) time in §3.1. Then we consider in §3.2 and §3.3 both the primal and the dual programs of the relaxation of (1) to further reduce a given general-ladder and obtain a constant factor approximation. We analyse the algorithm in §3.4 and extend our result to planar graphs in §3.5.

3.1 The Structure

First we define the notation which we will use later on. By a total order of a set we mean that each pair of elements in the set can be compared, and therefore an ascending order of the elements is well-defined. Let \(P = (v_1, v_2, \ldots, v_k) \) be a path. We say that \(P \) is an ordered path if a total order \(v_1 \prec v_2 \prec \ldots \prec v_k \) or \(v_k \prec v_{k-1} \prec \ldots \prec v_1 \) is defined on the set of vertices.

Definition 3 (General-Ladder). A graph \(G = (V, E) \) is said to be a general-ladder if a total order on the set of vertices is defined, and \(G \) is composed of a set of layers \(\{L_1, L_2, \ldots, L_k\} \), where each layer is a collection of subpaths of an ordered path such that the following holds. The top layer, \(L_1 \), consists of a single vertex, which is referred to as the anchor, and for each \(1 < j < k \) and \(u, v \in L_j \), we have (1) \(N[u] \subseteq L_{j-1} \cup L_j \cup L_{j+1} \), and (2) \(u < v \) implies \(\max_{p \in N[u] \cap \mathcal{L}_{j+1}} p \leq \min_{q \in N[v] \cap \mathcal{L}_{j+1}} q \).

Note that each layer in a general-ladder consists of a set of ordered paths which are possibly connected only to vertices in the neighbouring layers. See Fig. 1 (a). Although the definition of general-ladders captures the essence and simplicity of an ordered hierarchical structure, there are planar graphs which fall outside this framework. See also Fig. 1 (b).

In the following, we state and argue that every outerplanar graph meets the requirements of a general-ladder. We assume that an outer-planar embedding for any outer-planar graph is given as well. Otherwise we apply the \(O(n \log^3 n) \) algorithm provided by Bose [2] to compute such an embedding.

![Figure 1: (a) A general-ladder with anchor c. (b) A 2-outerplanar graph which fails to be a general-ladder. (c) The subdivision formed by a vertex u in an outer-planar embedding.](image)
Let $G = (V, E)$ be an outer-planar graph, $u \in V$ be an arbitrary vertex, and \mathcal{E} be an outer-planar embedding of G. We fix u to be the smallest element and define a total order on the vertices of G according to their orders of appearances on the outer face of \mathcal{E} in a counter-clockwise order. For convenience, we label the vertices such that $v = v_1$ and $v_1 < v_2 < v_3 < \ldots < v_n$.

Let $N(u) = \{v_{\pi_1}, v_{\pi_2}, \ldots, v_{\pi_{\deg(u)}}\}$ denote the neighbours of u such that $v_{\pi_1} < v_{\pi_2} < \ldots < v_{\pi_{\deg(u)}}$. $N(u)$ divides the set of vertices except u into $\deg(u) + 1$ subsets, namely, $S_0 = \{v_2, v_3, \ldots, v_{\pi_1}\}$, $S_i = \{v_{\pi_i}, v_{\pi_i+1}, \ldots, v_{\pi_{i+1}}\}$ for $1 \leq i < \deg(u)$, and $S_{\deg(u)} = \{v_{\pi_{\deg(u)}}, v_{\pi_{\deg(u)}+1}, \ldots, v_n\}$. See Fig. 2 (c) for an illustration.

For any $0 < i < j < \deg(u)$, $v_{\pi_i-1} < p < v_{\pi_i}$, and $v_{\pi_j-1} < q < v_{\pi_j}$, there is no edge connecting p and q. Otherwise it will result in a crossing with the edge (u, v_{π_i}), contradicting to the fact that \mathcal{E} is a planar embedding.

For $1 \leq i < \deg(u)$, we partition S_i into two sets L_i and R_i as follows. Let d_{S_i} denote the distance function defined on the induced subgraph of S_i. Let $L_i = \{v : v \in S_i, d_{S_i}(v_{\pi_i}, v) \leq d_{S_i}(v, v_{\pi_{i+1}})\}$ and $R_i = S_i \setminus L_i$.

Lemma 3. We have $\max_{a \in L_i} a < \min_{b \in R_i} b$ for all $1 \leq i < \deg(u)$.

Proof of Lemma 3. For convenience, let $a = \max_{a \in L_i} a$ and $b = \min_{b \in R_i} b$. Since $L_i \cap R_i = \emptyset$, we have $a \neq b$. Assume that $b < a$. Recall that in an outer-planar embedding, the vertices are placed on a circle and the edges are drawn as straight lines. Since \mathcal{E} is an outer-planar embedding, the shortest path from a to v_{π_i} must intersect with the shortest path from b to $v_{\pi_{i+1}}$. Let c be the vertex for which the two paths meet. Since L_i and R_i form a partition of S_i, either $c \in L_i$ or $c \in R_i$.

If $c \in L_i$, then $d_{S_i}(c, v_{\pi_i}) \leq d_{S_i}(c, v_{\pi_{i+1}})$ by definition, which implies that $d_{S_i}(b, v_{\pi_i}) \leq d_{S_i}(b, v_{\pi_{i+1}})$, a contradiction to the fact that $b \in R_i$. On the other hand, if $c \in R_i$, then $d_{S_i}(c, v_{\pi_i}) > d_{S_i}(c, v_{\pi_{i+1}})$, and we have $d_{S_i}(a, v_{\pi_i}) > d_{S_i}(a, v_{\pi_{i+1}})$, a contradiction to the fact $a \in L_i$. In both cases, we have a contradiction. Therefore we have $a < b$.

Let $\ell(v) \equiv d_C(u, v)$ and $\ell_i(v) \equiv \min\{d_{S_i}(v_{\pi_{i-1}}, v), d_{S_i}(v_{\pi_{i+1}}, v)\}$, for any $1 \leq i < \deg(u)$ and $v \in S_i$. Observe that $\ell(v) = \ell_i(v) + 1$, for any $1 \leq i < \deg(u)$ and $v \in S_i$. Now consider the set of the edges connecting L_i and R_i. Note that, this is exactly the set of edges connecting vertices on the shortest path between v_{π_i} and $\max_{a \in L_i} a$ and vertices on the shortest path between $v_{\pi_{i+1}}$ and $\min_{b \in R_i} b$. We have the following lemma, which states that, when the vertices are classified by their distances to u, these edges can only connect vertices between neighbouring sets and do not form any crossing. See also Fig. 3.

Lemma 4. For any edge (p, q), $p \in L_i$, $q \in R_i$, connecting L_i and R_i, we have
\[|\ell(p) - \ell(q)| \leq 1, \quad \text{and} \]
\[\nexists \text{ edge } (r, s), \quad (r, s) \neq (p, q), \quad r \in L_i, \quad s \in R_i, \quad \text{such that } \ell(r) = \ell(q) \quad \text{and} \quad \ell(p) = \ell(s).\]

Proof of Lemma 4. The first half of the lemma follows from the definition of \(\ell\). If \(|\ell(p) - \ell(q)| > 1\), without loss of generality, suppose that \(\ell(p) > \ell(q) + 1\), by going through \((p, q)\) then following the shortest path from \(q\) to \(u\), we find a shorter path for \(p\), which is a contradiction. The second half follows from the fact that \(E\) is a planar embedding.

Below we present our structural lemma, which states that, when the vertices are classified by their distances to \(u\), these edges can only connect vertices between neighbouring sets and do not form any crossing.

Lemma 5. Any outer-planar graph \(G = (V, E)\) together with an arbitrary vertex \(u \in V\) is a general-ladder anchored at \(u\), where the set of vertices in each layer are classified by their distances to the anchor \(u\).

Proof of Lemma 5. We prove by induction on the number of vertices of \(G\). First, an isolated vertex is a single-layer general-ladder. For non-trivial graphs, let \(S_0, S_1, \ldots, S_{\deg(u)}\) be the subsets defined as above. By assumption, the induced subgraphs of \(S_0\) and \(S_{\deg(u)}\) are general-ladders with anchors \(v_{\pi_1}\) and \(v_{\pi_{\deg(u)}}\), respectively. Furthermore, the layers are classified by \(\ell - 1\). That is, vertex \(v\) belongs to layer \(\ell(v) - 1\). Similarly, the induced subgraphs of \(L_i\) and \(R_i\) are also general-ladders with anchors \(v_{\pi_i}\) and \(v_{\pi_{i+1}}\) whose layers are classified by \(\ell_i\).

Now we argue that these general-ladders can be arranged properly to form a single general-ladder with anchor \(u\) and layers classified by \(\ell\). Since there is no edge connecting \(p\) and \(q\) for any \(p, q\) with \(v_{\pi_{i+1}} < p < v_{\pi_i}\) and \(v_{\pi_{i-1}} < q < v_{\pi_i}\), \(0 < i < \deg(u)\), we only need to consider the edges connecting vertices between \(L_i\) and \(R_i\). By Lemma 4, when the general-ladders \(L_i\) and \(R_i\) are hung over \(v_{\pi_i}\) and \(v_{\pi_{i+1}}\), respectively, the edges between them connect exactly only vertices from adjacent layers and do not form any crossing. Therefore, it constitute as a single general-ladder together with \(u\) and the lemma follows.

Extracting the General-ladder Let \(G = (V, E)\) be the input outer-planar graph and \(u \in V\) be an arbitrary vertex. We identify the corresponding general-ladder as follows.

Compute the shortest distance of each vertex \(v \in V\) to \(u\), denoted by \(\ell(v)\). Let \(M = \max_{v \in V} \ell(v)\). We create \(M + 1\) empty queues, \(\text{layer}(0), \text{layer}(1), \ldots, \text{layer}(M)\), which will be used to maintain the set of layers. Retrieve an outer-planar embedding of \(G\) and traverse the outer face, starting from \(u\), in a counter-clockwise order. For each vertex \(v\) visited, we attach \(v\) to the end of \(\text{layer}(\ell(v))\).
Theorem 6. Given an outer-planar graph G and its outer-planar embedding, we can compute in linear time a general-ladder representation for G.

Proof of Theorem 6. Since the number of edges in a planar graph is linear in the number of vertices, the shortest-path tree computation takes linear time. The traversal of the outer face also takes linear time.

For the rest of this paper we will denote the layers of this particular general-ladder representation by L_0, L_1, \ldots, L_M. The following additional structural property comes from the outer-planarity of G and our construction scheme.

Lemma 7. For any $0 < i \leq M$ and $v \in L_i$, we have $|N(v) \cap L_{i-1}| \leq 2$. Moreover, if v has two neighbours in L_i, say, v_1 and v_2 with $v_1 \prec v \prec v_2$, then there is an edge joining v_1 (and v_2, respectively) and each neighbouring vertex of v in L_{i-1} that is smaller (larger) than v.

Proof of Lemma 7. First, since the layers are classified by the distances to the anchor u, if $|N(v) \cap L_{i-1}| \geq 3$, then consider the shortest paths from vertices in $N(v) \cap L_{i-1}$ to u. At least one vertex would be surrounded by other two paths, contradicting the fact that G is an outer-planar graph.

The second part is obtained from a similar argument. Let $v' \in N(v) \cap L_{i-1}$ be a neighbour of v in L_{i-1}. If v' is not joined to either v_1 or v_2, then consider the shortest paths from u to v_1, v', v_2, and v, respectively. v' would be a vertex in the interior, which is a contradiction.

The Decomposition The idea behind this decomposition is to help reduce the dependency between vertices of large degrees and their neighbours such that further techniques can be applied. To this end, we tackle the demands of vertices from every three layers separately.

For each $0 \leq i < 3$, let $R_i = \bigcup_{j \geq 0} L_{3j+i}$. Let $G_i = (V_i, E_i)$ consist of the induced subgraph of R_i and the set of edges connecting vertices in R_i to their neighbours. Formally, $V_i = \bigcup_{v \in R_i} N[v]$ and $E_i = \bigcup_{v \in R_i} \bigcup_{u \in N[v]} e(u, v)$. In addition, we set $d(v) = 0$ for all $v \in G_i \setminus R_i$. Other parameters remain unchanged.

Lemma 8. Let f_i, $0 \leq i < 3$, be an optimal demand assignment function for G_i. The assignment function $f = \sum_{0 \leq i < 3} f_i$ is a 3-approximation of G.

Proof of Lemma 8. First, for any vertex $v \in V$, the demand of v is considered in G_i for some $0 \leq i < 3$ and therefore is assigned by the assignment function f_i. Since we take the union of the three assignments, it is a feasible assignment to the entire graph G.

Since the demand of each vertex in G_i, $0 \leq i < 3$, is no more than that of in the original graph G, any feasible solution to G will also serve as a feasible solution to G_i. Therefore we have $OPT(G_j) \leq OPT(G)$, for $0 \leq j < 3$, and the lemma follows.

3.2 Removing More Edges

We describe an approach to further simplifying the graphs G_i, for $0 \leq i < 3$. Given any feasible demand assignment for G_i, we can properly reassign the demand of a vertex to a constant number of neighbours while the increase in terms of fractional cost remains bounded.

For each $v \in R_i$, we sort the closed neighbours of v according to their cost in ascending order such that $w(\pi_v(1)) \leq w(\pi_v(2)) \leq \ldots \leq w(\pi_v(deg[v]))$, where $\pi_v : \{1, 2, \ldots, deg[v]\} \rightarrow N[v]$ is an injective function. For convenience, we set $\pi_v(deg[v] + 1) = \phi$. Suppose that $v \in L_\ell$. We identify the following four vertices.
• Let \(j_v, 1 \leq j_v \leq \text{deg}[v] \), be the smallest integer such that \(c(\pi_v(j_v)) > d(v) \). If \(c(\pi_v(j_v)) \leq d(v) \) for all \(1 \leq j \leq \text{deg}[v] \), then we let \(j_v = \text{deg}[v] + 1 \).

• Let \(k_v, 1 \leq k_v < j_v \), be the integer such that and \(w(\pi_v(k_v)) / c(\pi_v(k_v)) \) is minimized. \(k_v \) is defined only when \(j_v > 1 \).

• Let \(p_v = \max_{u \in N[v] \cap \mathcal{L}_{\ell-1}} u \) and \(q_v = \max_{u \in N[v] \cap \mathcal{L}_{\ell+1}} u \).

\[
j_v, p_v = \max_{u \in N[v] \cap \mathcal{L}_{\ell-1}} u
\]
\[
k_v, q_v = \max_{u \in N[v] \cap \mathcal{L}_{\ell+1}} u
\]

Intuitively, \(\pi_v(j_v) \) is the first vertex in the sorted list whose capacity is greater than \(d(v) \), and \(\pi_v(k_v) \) is the vertex with best cost-capacity ratio among the first \(j_v - 1 \) vertices. \(p_v \) and \(q_v \) are the rightmost neighbour of \(v \) in layer \(\mathcal{L}_{\ell-1} \) and \(\mathcal{L}_{\ell+1} \), respectively.

We will omit the function \(\pi_v \) and use \(j_v, k_v \) to denote \(\pi_v(j_v), \pi_v(k_v) \) without confusion. The reduced graph \(\mathcal{H}_i \) is defined as follows. Denote the set of neighbours to be disconnected from \(v \) by \(R(v) = N[v] \setminus (\mathcal{L}_\ell \cup \{j_v \cup k_v \cup p_v \cup q_v\}) \), and let \(\mathcal{H}_i = \mathcal{G}_i \setminus \bigcup_{u \in R(v)} \bigcup_{u \in R(v)} \{e(u, v)\} \). Roughly speaking, in graph \(\mathcal{H}_i \) we remove the edges which connect vertices in \(R_i \), say \(v \), to vertices not in \(R_i \), except possibly for \(j_v, k_v, p_v, \) and \(q_v \). See Fig. 4. Note that, although our reassigning argument applies to arbitrary graphs, only when two vertices are unimportant to each other can we remove the edge between them.

Lemma 9. In the subgraph \(\mathcal{H}_i \), we have

- For each \(v \not\in \mathcal{R}_i \), at most one incident edge of \(v \) which was previously in \(\mathcal{G}_i \) will be removed.

- For each \(v \in \mathcal{R}_i \), the degree of \(v \) in \(\mathcal{H}_i \) is upper-bounded by 6.

- \(\text{OPT}_f(\mathcal{H}_i) \leq 2 \cdot \text{OPT}_f(\mathcal{G}_i) \)

Proof of Lemma 9. For the first part, let \(v \not\in \mathcal{R}_i \) be a vertex and denote \(\mathcal{S} = N[v] \cap \mathcal{R}_i \) the set of neighbours of \(v \) that are in \(\mathcal{R}_i \). By the definition of general-ladders, for any \(u \in \mathcal{S} \), \(u \neq \max_{a \in \mathcal{S}} a \), we have either \(p_v = v \) or \(q_u = v \), since \(v \) serves as the rightmost neighbour of \(u \). Therefore, by our approach, only the edge between \(v \) and \(\max_{a \in \mathcal{S}} a \) will possibly be removed.

For the second part, for any \(v \in \mathcal{R}_i \), \(v \) has at most two neighbours in the same layer, since each layer is a subgraph of an ordered path. We have removed all the edges connecting \(v \) to vertices not in \(\mathcal{L}_k \), except for at most four vertices, \(j_v, k_v, p_v, \) and \(q_v \). Therefore \(\text{deg}(v) \leq 6 \).

Now we prove the third part of this lemma. Let \(f_{\mathcal{G}_i} \) be an optimal demand assignment for \(\mathcal{G}_i \), and \(x_{\mathcal{G}_i} \) be the corresponding multiplicity function. Note that, from the second and the third inequalities of (1), for each \(v \in V \) and \(u \in N[v] \), we have

\[
x_{\mathcal{G}_i}(u) \geq \max \left\{ \frac{f_{\mathcal{G}_i}(v, u)}{d(v)}, \frac{f_{\mathcal{G}_i}(v, u)}{c(u)} \right\}.
\]
Maximize $\sum_{u \in V} d(u)y_u$

subject to

$$c(u)z_u + \sum_{v \in N[u]} d(v)g_{u,v} \leq w(u), \quad u \in V$$

$$y_u \leq z_v + g_{v,u}, \quad v \in N[u], \quad u \in V$$

$$y_u \geq 0, \quad z_u \geq 0, \quad g_{v,u} \geq 0, \quad v \in N[u], \quad u \in V$$

For each $v \in \mathcal{R}_i$ and $u \in R(v)$ such that $f_{\mathcal{G}_i}(v, u) \neq 0$, we modify this assignment as follows. If $\pi_v^{-1}(u) \geq j_v$, then we assign it to j_v instead of to u. Otherwise, we assign it to k_v. That is, depending on whether $\pi_v^{-1}(u) \geq j_v$, we raise either $f_{\mathcal{G}_i}(v, j_v)$ or $f_{\mathcal{G}_i}(v, k_v)$ by the amount of $f_{\mathcal{G}_i}(v, u)$ and then set $f_{\mathcal{G}_i}(v, u)$ to be zero. Note that, after this reassignment, the modified assignment function $f_{\mathcal{G}_i}$ will be a feasible assignment for \mathcal{H}_i as well.

In order to cope with this change, $x_{\mathcal{G}_i}(j_v)$ or $x_{\mathcal{G}_i}(k_v)$ might have to be raised as well until both the second and the third inequalities are valid again. If $\pi_v^{-1}(u) \geq j_v$, then $x_{\mathcal{G}_i}(j_v)$ is raised by at most $\max\{f_{\mathcal{G}_i}(v, u)/d(v), f_{\mathcal{G}_i}(v, u)/c(j_v)\}$, which is equal to $f_{\mathcal{G}_i}(v, u)/d(v)$, since $c(j_v) > d(v)$. Hence the total cost will be raised by at most

$$w(j_v) \cdot \frac{f_{\mathcal{G}_i}(v, u)}{d(v)} \leq w(j_v) \cdot \max\left\{\frac{f_{\mathcal{G}_i}(v, u)}{d(v)}, \frac{f_{\mathcal{G}_i}(v, u)}{c(u)}\right\} \leq w(u) \cdot x_{\mathcal{G}_i}(u),$$

by equation (2) and the fact that $w(j_v) \leq w(u)$. Similarly, if $\pi_v^{-1}(u) < j_v$, the cost is raised by at most

$$w(k_v) \cdot \max\left\{\frac{f_{\mathcal{G}_i}(v, u)}{d(v)}, \frac{f_{\mathcal{G}_i}(v, u)}{c(k_v)}\right\} = w(k_v) \cdot \frac{f_{\mathcal{G}_i}(v, u)}{c(k_v)} \leq w(u) \cdot \frac{f_{\mathcal{G}_i}(v, u)}{c(u)} \leq w(u) \cdot x_{\mathcal{G}_i}(u),$$

since we have $\frac{w(k_v)}{c(k_v)} \leq \frac{w(u)}{c(u)}$ by definition of k_v and equation (2).

In both cases, the extra cost required by this specific demand reassignment between v and u is bounded by $w(u) \cdot x_{\mathcal{G}_i}(u)$. Since, by Lemma 9, we have at most one such pair for each $u \notin \mathcal{R}_i$, the overall cost is at most doubled and this lemma follows.

We also remark that, although $OPT_f(\mathcal{H}_i)$ is bounded in terms of $OPT_f(\mathcal{G}_i)$, an α-approximation for \mathcal{H}_i is not necessarily a 2α-approximation for \mathcal{G}_i. That is, having an approximation \mathcal{A} with $OPT(\mathcal{A}) \leq \alpha \cdot OPT(\mathcal{H}_i)$ does not imply that $OPT(\mathcal{A}) \leq 2\alpha \cdot OPT(\mathcal{G}_i)$, for $OPT(\mathcal{H}_i)$ could be strictly larger than $OPT_f(\mathcal{H}_i)$. Instead, to obtain our claimed result, an approximation with a stronger bound, in terms of $OPT_f(\mathcal{H}_i)$, is desired.

3.3 Greedy Charging Scheme

In this section, we show how we can further approximate the optimal solution for the reduced graph \mathcal{H}_i by a primal-dual charging argument. We apply a technique from 14 to obtain a feasible solution for the dual program of the relaxation of (1), which is given in (3) and for which we will further provide a sophisticated analysis on how the cost of each multiplicity we spent can be distributed to each unit demand it covered in a careful way. Thanks to the additional structural property provided in Lemma 7, we can further tighten the approximation ratio.
We first describe an approach to obtaining a feasible solution to (3) and how a corresponding feasible demand assignment can be found. Note that any feasible solution to (3) will serve as a lower bound to any feasible solution of (1) by the linear program duality.

During the process, we will maintain a vertex subset, \(V^\phi \), which contains the set of vertices with non-zero unassigned demand. For each \(u \in V \), let \(d^\phi(u) = \sum_{v \in N[u] \cap V^\phi} d(v) \) denote the amount of unassigned demand from the closed neighbours of \(u \). We distinguish between two cases. If \(c(u) < d^\phi(u) \), then we say that \(u \) is heavily-loaded. Otherwise, \(u \) is lightly-loaded. During the process, some heavily-loaded vertices might turn into lightly-loaded due to the demand assignments of its closed neighbours. For each of these vertices, say \(v \), we will maintain a vertex subset \(D^*(v) \), which contains the set of unassigned vertices in \(N[v] \cap V^\phi \) when \(v \) is about to fall into lightly-loaded.

For other vertices, \(D^*(v) \) is defined to be an empty set.

Initially, \(V^\phi \equiv \{ u : u \in L_i, d(u) \neq 0 \} \) and all the dual variables are set to be zero. We increase the dual variable \(y_u \) simultaneously, for each \(u \in V^\phi \). To maintain the dual feasibility, as we increase \(y_u \), we have to raise either \(z_u \) or \(g_{u,w} \), for each \(v \in N[u] \). If \(u \) is heavily-loaded, then we raise \(z_u \). Otherwise, we raise \(g_{u,w} \). Note that, during this process, for each vertex \(u \) that has a closed neighbour in \(V^\phi \), the left-hand side of the inequality \(c(u)z_u + \sum_{v \in N[u]} d(v)g_{u,v} \leq w(u) \) is constantly raising. As soon as one of the inequalities \(c(u)z_u + \sum_{v \in N[u]} d(v)g_{u,v} \leq w(u) \) is met with equality (saturated) for some vertex \(u \in V \), we perform the following operations.

If \(u \) is lightly-loaded, we assign all the unassigned demand from \(N[u] \cap V^\phi \) to \(u \). In this case, there are still \(c(u) - d^\phi(u) \) units of capacity free at \(u \). We assign the unassigned demand from \(D^*(u) \), if there is any, to \(u \) until either all the demand from \(D^*(u) \) is assigned or all the free capacity in \(u \) is used. On the other hand, if \(u \) is heavily-loaded, we mark it as heavy and delay the demand assignment from its closed neighbours.

Then we set \(Q_u = N[u] \cap V^\phi \) and remove \(N[u] \) from \(V^\phi \). Note that, due to the definition of \(d^\phi \), even when \(u \) is heavily-loaded, we still update \(d^\phi(p) \) for each \(p \in V \) with \(N[p] \cap N[u] \neq \emptyset \), if needed, as if the demand was assigned. During the above operation, some heavily-loaded vertices might turn into lightly-loaded due to the demand assignments (or simply due to the update of \(d^\phi \)). For each of these vertices, say \(v \), we set \(D^*(v) \equiv N[v] \cap (V^\phi \cup Q_u) \). Intuitively, \(D^*(v) \) contains the set of unassigned vertices from \(N[v] \cap V^\phi \) when \(v \) is about to fall into lightly-loaded.

This process is continued until \(V^\phi = \emptyset \). For those vertices which are marked as heavy, we iterate over them according to their chronological order of being saturated and assign at this moment all the remaining unassigned demand from their closed neighbours to them. A high-level description of this algorithm is given in Fig. 5.

Let \(f^*: V \times V \rightarrow R^+ \cup \{0\} \) denote the resulting demand assignment function, and \(x^*: V \rightarrow Z^+ \cup \{0\} \) denotes the corresponding multiplicity function. The following lemma bounds the cost of the solution produced by our algorithm.

Lemma 10. For any \(H_i \) obtained from a general-ladder \(G_i \), we have \(w(f^*) \leq 7 \cdot OPT_f(\mathcal{H}_i) \).

Proof of Lemma 10. We argue in the following that, for each \(u \in V \), the cost resulted by \(u \), which is \(w(u) \cdot x^*(u) \), can be distributed to a certain portion of the demands from the vertices in \(N[u] \) such that each unit demand, say from vertex \(v \in N[u] \), receives a charge of at most \(7 \cdot y_u \).

Let \(u \in V \) be a vertex with \(x^*(u) > 0 \). If \(u \) has been marked as heavy, then by our scheme, we have \(g_{u,v} = 0 \) and \(y_u = z_u \) for all \(v \in N[u] \). Therefore \(w(u) = c(u) \cdot z_u = c(u) \cdot y_u \), and for each multiplicity of \(u \), we need \(c(u) \) units of demand from \(N[u] \). If \(x^*(u) > 1 \), then at least \(c(u) \cdot (x^*(u) - 1) \) units of demand are assigned to \(u \), and by distributing the cost to them, each unit of demand gets charged at most twice. If \(x^*(u) = 1 \), then we charge the cost to any \(c(u) \) units of demand that are counted in \(d^\phi(u) \) when \(u \) is saturated. Since \(u \) is a heavily-loaded vertex, \(d^\phi(u) > c(u) \) and there will be sufficient amount of demand to charge.
Algorithm Greedy-Charging

1: \(V^\phi \leftarrow \{u : u \in V, d(u) \neq 0\} \), \(V^* \leftarrow V \).
2: \(d^\phi(u) \leftarrow \sum_{v \in N[u]} d(v) \), for each \(u \in V \).
3: \(w^\phi(u) \leftarrow w(u) \), for each \(u \in V \).
4: Let \(Q \) be a first-in-first-out queue.
5: while \(V^\phi \neq \phi \) do
6: \(r_v \leftarrow \frac{w^\phi(v)}{\min\{c(v), d^\phi(v)\}} \), for each \(v \in V^* \).
7: \(u \leftarrow \arg \min \{r_v : v \in V^*\} \). [\(u \) is the next vertex to be saturated.]
8: \(w^\phi(v) \leftarrow w^\phi(v) - w^\phi(u) \), for each \(v \in V^* \).
9: if \(d^\phi(u) \leq c(u) \) then
10: Assign \(c(u) - d^\phi(u) \) amount of unassigned demand from \(D^*(u) \), if there is any, to \(u \).
11: else
12: Attach \(u \) to the queue \(Q \) and mark \(u \) as heavy.
13: end if
14: Let \(S_u \leftarrow N[u] \cap V^\phi \).
15: Remove \(N[u] \) from \(V^\phi \) and update the corresponding \(d^\phi(v) \) for \(v \in V \).
16: For each \(v \in V^* \) such that \(d^\phi(v) = 0 \), remove \(v \) from \(V^* \).
17: for all vertex \(v \) becomes lightly-loaded in this iteration do
18: \(D^*(v) \leftarrow N[v] \cap (V^\phi \cup S_u) \).
19: end for
20: end while
21: while \(Q \neq \phi \) do
22: Extract a vertex from the head of \(Q \), say \(u \).
23: Assign the unassigned demand from \(N[u] \) to \(u \).
24: end while
25: end while
26: end if
27: end while
28:

Figure 5: The high-level pseudo-code for the primal-dual algorithm.

On the other hand, if \(u \) is lightly-loaded, then \(x^*(u) = 1 \) and we have two cases. If \(\sum_{v \in N[u]} d(v) \leq c(u) \), then \(u \) is lightly-loaded in the beginning and we have \(z_u = 0 \) and \(y_v = g_{u,v} \) for each \(v \in N[u] \), which implies \(w(u) = \sum_{v \in N[u]} d(v) \cdot g_{u,v} = \sum_{v \in N[u]} d(v) \cdot y_v \). The cost \(w(u) \) of \(u \) can be distributed to all the demand from its closed neighbours, each unit demand, say from vertex \(v \in N[u] \), gets a charge of \(y_v \).

If \(\sum_{v \in N[u]} d(v) > c(u) \), then \(u \) is heavily-loaded in the beginning and at some point turned into lightly-loaded. Let \(U_0 \subseteq D^*(u) \) be the set of vertices whose removal from \(V^\phi \) makes this change. By our scheme, \(z_u \) is raised in the beginning and at some point when \(d^\phi(u) \) is about to fall under \(c(u) \), we fixed \(z_u \) and start raising \(g_{u,v} \) for \(v \in D^*(u) \setminus U_0 \). Note that, we have \(y_{u_0} = z_u \) for all \(u_0 \in U_0 \), \(y_v = z_u + g_{u,v} \) for each \(v \in D^*(u) \setminus U_0 \), and \(g_{u,v} = 0 \) for \(v \in N[u] \setminus D^*(u) \cup U_0 \). Let \(d_{U_0}^* = c(u) - \sum_{v \in D^*(u) \setminus U_0} d(v) \). We have \(w(u) = c(u) \cdot z_u + \sum_{v \in N[u]} d(v) \cdot g_{u,v} = \left(d_{U_0}^* + \sum_{v \in D^*(u) \setminus U_0} d(v)\right) \cdot z_u + \sum_{v \in D^*(u) \setminus U_0} d(v) \cdot g_{u,v} \leq \sum_{v \in U_0} d_v \cdot y_v + \sum_{v \in D^*(u) \setminus U_0} d(v) \cdot y_v \). Again the cost \(w(u) \) of the single multiplicity can be distributed to the demand of vertices in \(D^*(u) \).

Finally, for each unit demand, say demand \(d \) from vertex \(u \), consider the set of vertices \(V_d \subseteq N[u] \) that has charged \(d \). First, by our assigning scheme, \(V_d \) consists of at most one heavily-loaded vertex.
If \(d \) is assigned to a heavily-loaded vertex, then, by our charging scheme, we have \(|V_d| = 1\), and \(d \) is charged at most twice. Otherwise, if \(d \) is assigned to a lightly-loaded vertex, then, by our charging scheme, each vertex in \(V_d \) charges \(d \) at most once, disregarding heavily-loaded or lightly-loaded vertices.

By the above argument and Lemma 9, we have \(w(f^*) = \sum_{u \in V} w(u)x^*(u) \leq \sum_{u \in V} d(u) \cdot \deg[u] \cdot y_u \leq 7 \cdot \sum_{u \in V} d(u) \cdot y_u \leq 7 \cdot OPT_f(H_i) \), where the last inequality follows from the linear program duality of (1) and (3).

![Figure 6: Situations when a unit demand of \(u \) is fully-charged.](image)

Thanks to the structural property provided in Lemma 7, given the fact that the input graph is outer-planar, we can modify the algorithm slightly and further improve the bound given in the previous lemma. To this end, we consider the situations when a unit demand from a vertex \(u \) with \(\deg[u] = 7 \) and argue that, either it is not fully-charged by all its closed neighbours, or we can modify the demand assignment, without raising the cost, to make it so.

Lemma 11. Given the fact that \(H_i \) comes from an outerplanar graph, we can modify the algorithm to obtain a demand assignment function \(f^* \) such that \(w(f^*) \leq 6 \cdot OPT_f(H_i) \).

Proof of Lemma 11. Consider any unit demand, say demand \(d \) from vertex \(u \) in \(L_j \), and let \(V_d \subseteq N[u] \) be the set of vertices that has charged \(d \) by our charging scheme.

First, we have \(|N[u]| \leq 7\) by Lemma 9. By our charging scheme, \(|N[u]| < 7\) implies \(|V_d| < 7\). In the following, we assume \(|N[u]| = 7\) and argue that either we have \(|V_d| < 7\), or we can modify the solution such that \(|V_d| < 7\). By assumption, \(k_u, p_u, q_u \) are well-defined. Let \(u_1, u_2 \in N(u) \cap L_j \) denote the set of neighbours of \(u \) in \(L_j \) such that \(u_1 \prec u \prec u_2 \). By Lemma 7 depending on the layer to which \(j_u \) and \(k_u \) belong, we have the following two cases.

Both \(j_u \) and \(k_u \) belong to \(L_{j+1} \). If two of \(\{j_u, k_u, q_u\} \), say, \(j_u \) and \(k_u \), are not joined to \(u_1 \) and \(u_2 \) by any edge, then at most one of \(j_u \) and \(k_u \) can charge \(d \), since \(u \) is the only vertex with possibly non-zero demand in their closed neighbourhoods. When the first closed neighbour of \(u \) is saturated and \(u \) is removed from \(V^\phi \), both \(j_u \) and \(k_u \) will be removed from \(V^* \) and will not be picked in later iterations. Therefore, at most one of \(j_u \) and \(k_u \) can charge \(d \).

On the other hand, if two of \(\{j_u, k_u, q_u\} \), say \(j_u \) and \(q_u \), are joined to \(u_1 \) and \(u_2 \), respectively, then we argue that at most two out of \(\{j_u, u, q_u\} \) can charge \(d \). Indeed, \(u_1 \), \(u \), and \(u_2 \) are the only vertices with non-zero demands in the closed neighbourhoods of \(\{j_u, u, q_u\} \). After two of \(\{j_u, u, q_u\} \) is saturated, \(u_1 \), \(u \), and \(u_2 \) will be removed from \(V^\phi \). Therefore, at most two out of \(\{j_u, u, q_u\} \) can charge \(d \). See also Fig. 6 (a) and (b).

Only one of \(\{j_u, k_u\} \) belongs to \(L_{j+1} \) and the other belongs to \(L_{j-1} \). Without loss of generality, we assume that \(j_u \in L_{j-1} \) and \(k_u \in L_{j+1} \). By Lemma 7 both \(j_u \) and \(p_u \) are joined either to \(u_1 \) or \(u_2 \) separately. Since \(H_i \) is outerplanar, we have \(j_u \prec u \prec p_u \), otherwise \(j_u \) will be contained inside the face surrounded by \(p_u, u_1 \), and \(u \), which is a contradiction. See also Fig. 6 (c).
If both \(k_u \) and \(q_u \) are not joined to either \(u_1 \) or \(u_2 \), then by a similar argument we used in previous case, at most one of \(k_u \) and \(q_u \) can charge \(d \). Now, suppose that, one of \(\{ k_u, q_u \} \), say, \(k_u \), is joined to \(u_1 \) by an edge. We argue that, if both \(u_1 \) and \(k_u \) have charged \(d \) after \(d \) has been assigned in a feasible solution returned by our algorithm, then we can cancel the multiplicity placed on \(k_u \) and reassign to \(u_1 \) the demand which was previously assigned to \(k_u \) without increasing the cost spent on \(u_1 \).

If \(u_1 \) is lightly-loaded in the beginning, then the above operation can be done without extra cost. Otherwise, observe that, in this case, \(u_1 \) must have been lightly-loaded when \(d \) is assigned so that it can charge \(d \) later. Moreover, \(u_1 \) is also in the set \(V^\phi \) and not yet served, for otherwise \(k_u \) will be removed from \(V^* \) and will not be picked later. In other words, at this moment when \(u_1 \) becomes lightly-loaded, we have \(u_1 \in V^\phi \), meaning that it is possible to assign the demand of \(u_1 \) to itself later without extra cost.

On the other hand, if \(u_1 \) or \(k_u \) is the first one to charge \(d \), consider the relation between \(q_u \) and \(u_2 \). If there is no edge between \(q_u \) and \(u_2 \), then \(q_u \) will not be picked and will not charge \(d \). Otherwise, if \(\{ q_u, u_2 \} \) exists in \(\mathcal{H}_2 \), then it is a symmetric situation described in the last sequel.

In both cases, either we have \(|V_d| \leq 6 \) or we can modify the solution returned by the algorithm to make \(|V_d| \leq 6 \) to hold. Therefore we have \(w(f^*) \leq 6 \cdot OPT_f(H_i) \) as claimed.

3.4 Overall Analysis

We summarize the whole algorithm and our main theorem. Given an outer-planar graph \(G = (V, E) \), we use the algorithm described in §3.1 to compute a general-ladder representation of \(G \), followed by applying the decomposition to obtain three subproblems, \(\mathcal{G}_0, \mathcal{G}_1, \) and \(\mathcal{G}_2 \). For each \(\mathcal{G}_i \), we use the approach described in §3.2 to further remove more edges and obtain the reduced subgraph \(\mathcal{H}_i \), for which we apply the algorithm described in §3.3 to obtain an approximation, which is a demand assignment function \(f_i \) for \(\mathcal{H}_i \). The overall approximation, e.g., the demand assignment function \(f \), for \(G \) is defined as \(f = \sum_{0 \leq i < 3} f_i \).

Theorem 12. Given an outer-planar graph \(G \) as an instance of capacitated domination, we can compute a constant factor approximation for \(G \) in \(O(n^2) \) time.

Proof of Theorem 12. First, we argue that the procedures we describe can be done in \(O(n^2) \) time. It takes \(O(n \log^2 n) \) time to compute an outer-planar representation of \(G \) \[2\]. By Theorem 6 computing a general-ladder representation takes linear time. The construction of \(\mathcal{G}_i \) takes time linear in the number of edges, which is linear in \(n \) since \(G \) is planar.

In the construction of the reduced graphs \(\mathcal{H}_i \), for each vertex \(v \), although we use a sorted list of the closed neighbourhood of \(v \) to define \(j_v, k_v, p_v, \) and \(q_v \), the sorted lists are not necessary and \(\mathcal{H}_i \) can be constructed in \(O(n) \) time by a careful implementation. This is done in a two-passes traversal on the set of edges of \(\mathcal{G}_i \) as follows. In the first pass, we iterate over the set of edges to locate \(j_v \), \(p_v \), and \(q_v \), for each vertex \(v \in V \). Specifically, we keep a current candidate for each vertex and for each edge \((u, v) \in E \) iterated, we make an update on \(u \) and \(v \) if necessary. In the second pass, based on the \(j_v \) computed for each \(v \in V \), we iterate over the set of edges again to locate \(k_v \). The whole process takes time linear in the number of edges, which is \(O(n) \).

In the following, we explain how the primal-dual algorithm, i.e., the algorithm presented in Figure 5 can be implemented to compute a feasible solution in \(O(n^2) \) time. First, we traverse the set of edges in linear time to compute the value \(d^\phi(v) \) for each vertex. In each iteration, the next vertex to be saturated, which is the one with minimum \(w^\phi(v) / \min \{c(v), d^\phi(v)\} \), can be found in linear time. The update of \(w^\phi(v) \) for each \(v \in V^* \) described in line 8 can be done in linear time. When a vertex \(v \in N[u] \) with non-zero demand is removed from \(V^\phi \), we have to update the value
$d^b(v')$ for all $v' \in N[v]$. By Lemma 9, the closed degree of such vertices is bounded by 7. This update can be done in $O(1)$ time. The construction of S_0 can be done in linear time. Since $d^b(v)$ can only decrease, each vertex can turn into lightly-loaded at most once. Therefore the process time for these vertices is bounded in linear time. The outer-loop iterates at most $O(n)$ times. Therefore the whole algorithm runs in $O(n^2)$ time.

The feasibility of the demand assignment function f is guaranteed by Lemma 8 and the fact that H_i is a subgraph of G_i. Since $H_i \subseteq G_i$, the demand assignment we obtained for H_i is also a feasible demand assignment for G_i. Therefore, f is feasible for G_i. By the definition of f, Lemma 11, Lemma 9, and Lemma 8, we have

$$
\begin{align*}
\sum_{0 \leq i < 3} w(f(i)) &\leq \sum_{0 \leq i < 3} OPT(f(H_i)) \\
&\leq 12 \cdot \sum_{0 \leq i < 3} OPT(f(G_i)) \\
&\leq 36 \cdot OPT(G).
\end{align*}
$$

3.5 Extension to Planar Graphs

We describe how our outer-planar result can be extended to obtain a constant factor approximation for planar graphs under a general framework due to [1]. This is done as follows. Given a planar graph G, we generate a planar embedding and retrieve the vertices of each level using the linear-time algorithm of Hopcroft and Tarjan [11].

![Planar Graph Diagram]

Figure 7: (a) 3-outerplanar graph. (b) Local connections with respect to a vertex v. Bold edges represent links in the ladder extracted from L_1. Thin edges represent links between L_1 and the other two levels, L_0 and L_2.

Let m be the number of levels of this embedding. Let OPT be the cost of the optimal demand assignment of G, and OPT_j be the cost contributed by vertices at level j. For convenience, in the following, for $j \leq 0$ or $j > m$, we refer the vertices in level j to an empty set and the corresponding cost OPT_j is defined to be zero.

For $0 \leq i < 3$, we define C_i as $\sum_{0 \leq j \leq \frac{m}{3}} (OPT_{3j-i} + OPT_{3j-i+2})$. Since $\sum_{0 \leq i < 3} C_i \leq 2 \cdot OPT$, there exist an i_0 with $0 \leq i_0 < 2$ such that $C_{i_0} \leq \frac{2}{3} \cdot OPT$. For each $0 \leq j \leq \frac{m}{3}$, define the graph G_j to be the graph induced by vertices between level $3 \cdot j - i_0$ and level $3 \cdot j - i_0 + 2$. The parameters of the vertices in G_j are set as follows. For those vertices who are from level $3 \cdot j - i_0$ and level $3 \cdot j - i_0 + 2$, their demands are set to be zero. The rest parameters are remained unchanged. Clearly, G_j is a 3-outerplanar graph, and we have $\sum_{0 \leq j \leq \frac{m}{3}} OPT(G_j) \leq OPT + \frac{2}{3} \cdot OPT$, where $OPT(G_j)$ is the cost of the optimal demand assignment of G_j.

In the following, we sketch how our algorithm for outerplanar graphs can be modified slightly and applied to G_j for each $0 \leq j \leq \frac{m}{3}$ to obtain a constant approximation for G_j. For convenience,
we denote the set of vertices from the three levels of G_j by L_0, L_1, and L_2, respectively. See Fig. 7 (a).

- **Obtaining the General Ladders.** For each level L_i, $0 \leq i < 3$, which constitutes an outerplanar graph by itself, we define a total order over it according to the order of appearances of the vertices in counter-clockwise order. The general-ladder is extracted from L_1 as we did before. Furthermore, for each vertex in the ladder, its incident edges to vertices in L_0 and L_2 are also included.

- **Removing Redundant Edges.** In addition to the four vertices we identified for each vertex v with non-zero demand, we identify two more vertices, which literally corresponds to the rightmost neighbours of v in level L_0 and L_2, respectively. See also Fig. 7 (b). Then, the first part of Lemma 9 still holds, the degree bound provided in the second part is increased by 2, and the third part holds automatically without alteration.

The rest parts of our algorithm remain unchanged. From the above argument, we have the following theorem.

Theorem 13. Given a planar graph G as an instance of capacitated domination, we can compute a constant factor approximation for the G in polynomial time.

4 Conclusion

The results we provide seem to have room for further improvements. One reason is that, due to the flexibility of the ways the demand can be assigned, it seems not promising to come up with an approximation threshold. However, when the demand cannot be split, it is not difficult to prove a constant approximation threshold. Therefore, it would be very interesting to investigate the problem complexity on planar graphs.

Second, as we have shown in §3.1 the concept of general-ladders does not extend directly to k-outerplanar graphs for $k \geq 2$. It would be interesting to formalize and extend this concept to k-outerplanar graphs, for it seems helpful not only to our problem, but also to most capacitated covering problems as well.

Acknowledgements.

The authors would like to thank the anonymous referees for their very helpful comments on the layout of this work.

References

[1] B. S. Baker, *Approximation algorithms for np-complete problems on planar graphs*, J. ACM, 41 (1994), pp. 153–180.

[2] P. Bose, *On embedding an outer-planar graph in a point set*, CGTA: Computational Geometry: Theory and Applications, 23 (1997), p. 2002.

[3] F. A. Chudak and D. P. Williamson, *Improved approximation algorithms for capacitated facility location problems*, Math. Program., 102 (2005), pp. 207–222.

[4] J. Chuzhoy, *Covering problems with hard capacities*, SIAM J. Comput., 36 (2006), pp. 498–515.
[5] M. Cygan, M. Pilipczuk, and J. Wojtaszczyk, *Capacitated domination faster than $o(2^n)$*, in SWAT 2010, 2010, pp. 74–80. 10.1007/978-3-642-13731-0_8.

[6] M. Dom, D. Lokshtanov, S. Saurabh, and Y. Villanger, *Capacitated domination and covering: A parameterized perspective*, in IWPEC, 2008, pp. 78–90.

[7] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srinivasan, *An improved approximation algorithm for vertex cover with hard capacities*, J. Comput. Syst. Sci., 72 (2006), pp. 16–33.

[8] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan, *Dependent rounding in bipartite graphs*, in FOCS 2002, 2002, pp. 323–332.

[9] S. Guha, R. Hassin, S. Khuller, and E. Or, *Capacitated vertex covering*, J. Algorithms, 48 (2003), pp. 257–270.

[10] D. Hochbaum, *Approximation algorithms for the set covering and vertex cover problems*, SIAM Journal on Computing, 11 (1982), pp. 555–556.

[11] J. Hopcroft and R. Tarjan, *Efficient planarity testing*, J. ACM, 21 (1974), pp. 549–568.

[12] D. S. Johnson, *Approximation algorithms for combinatorial problems*, in the 5th annual ACM symposium on Theory of computing, 1973, pp. 38–49.

[13] M.-J. Kao and H.-L. Chen, *Approximation algorithms for the capacitated domination problem*, in FAW 2010, 2010, pp. 185–196.

[14] M.-J. Kao, C.-S. Liao, and D. T. Lee, *Capacitated domination problem*, Algorithmica, 60 (2011), pp. 274–300. 10.1007/s00453-009-9336-x.

[15] M. Liedloff, I. Todinca, and Y. Villanger, *Solving capacitated dominating set by using covering by subsets and maximum matching*, in WG 2010, 2010, pp. 88–99.

[16] D. B. Shmoys, E. Tardos, and K. Aardal, *Approximation algorithms for facility location problems (extended abstract)*, in STOC 1997, 1997, pp. 265–274.