Phytochemical Investigation and Biological Screening of Ethyl Acetate Fraction of *Salvia hispanica* L. Aerial Parts

Ehsan M. Abou Zeid, Afaf E. Abdel Ghani, Marwa Y. Mahmoud*, Rehab H. Abdallah

ABSTRACT

Introduction: *Salvia hispanica* L. is an annual herbaceous plant commonly known as "Chia", native of southern Mexico and northern Guatemala. The aim of this study is isolation, identification of secondary metabolites and evaluation of biological activities of ethyl acetate fraction of *Salvia hispanica* L. aerial parts. **Methods:** Air dried powdered of *Salvia hispanica* L. aerial parts was extracted by maceration and fractionated using light petroleum, dichloromethane and ethyl acetate solvents. Ethyl acetate fraction was subjected to column and thin layer chromatography for isolation of secondary metabolites that are characterized by UV-Vis, FTIR, EI-MS, 1D and 2D NMR spectral analyses. UPLC-ESI-MS/MS technique was used on the same fraction. **In-vitro** biological evaluation of the fraction carried out for anti-oxidant activity using DPPH assay, anti-obesity activity using pancreatic lipase inhibitory assay, anti-diabetic activity using α-amylase inhibition assay and anti-cancer activities using cell viability assay. **Results:** Six compounds were isolated including 1,2,4,5 tetrahydroxy benzene (1), leucantho flavone (2), rhamnetin (3), apigenin-7-β-D-glucoside (4), rosmarinic acid (5) and kaempferol-7-O-β-D-glucoside (6). The identification of thirty seven compounds byUPLC-ESI-MS/MS analysis. A strong DPPH scavenging activity with IC₅₀ 13.11 compared to ascorbic acid, anti-obesity activity with IC₅₀ 59.3 compared to orlistate, anti-diabetic activity with IC₅₀ 95.2 compared to acarbose. High cytotoxic activity against lung carcinoma, colon carcinoma and moderately cytotoxic activity against prostate carcinoma cell lines. **Conclusions:** *Salvia hispanica* L. is a strong anti-oxidant and anti-carcinogenic against lung and colon cancer.

Key words: Anti-oxidant, Anti-obesity, Leucantho flavone, *Salvia hispanica*, 1,2,4,5-tetrahydroxy benzene, UPLC-ESI-MS/MS.

INTRODUCTION

Family *Lamiaceae* consists of about 250 genera and 7000 species worldwide.1 The genus *Salvia* has about 1000 species.2 Chia seeds protein content ranged from 18.5 to 22.3%, fat content ranged between 21.5 and 32.7% with their high-quality fatty acids.3 The survey involving chia seeds indicate the presence of phenolic acids and flavonoids which have the most appropriate antioxidant activity4,5 and showed anti-obesity, anti-diabetic, anti-oxidant and anti-microbial activities.6-13 On the other hand, the study of *S. hispanica* L. aerial parts indicate the presence of neoclerodane diterpenoids14,15 also tentative identification of phenolics.16 There is no phytochemical investigation about *S. hispanica* cultivated in Egypt so this work focuses on it, resulted in the isolation of main bioactive phytochemical constituents that including 1,2,4,5 tetrahydroxy benzene (first report to be isolated from nature), leucantho flavone and rhamnetin (first report to be isolated from *Salvia*). UPLC-ESI-MS/MS analysis for the first time on *S. hispanica* L. aerial parts cultivated in Egypt and evaluation of biological activities of ethyl acetate fraction.

MATERIALS AND METHODS

General

UV spectra were recorded on Shimadzu U.V.-1700 spectrophotometer (Japan). EI/MS spectra on Shimadzu GC-MS-QP5050A.1H- and 13C-NMR spectral analyses were carried out using Bruker (Switzerland) at 400 and 100 MHz, respectively. Rotatory evaporator (Büchi, Germany). HPLC analysis were recorded on Shimadzu LC-10AT with a Shimadzu UV-10A detector. Infrared spectral analysis were recorded in a Pye-Unicam SP 3000 FTIR spectrophotometer of Alpha (100523), Jasko, Germany. Infrared spectral analysis were recorded in a Pye-Unicam SP 3000 FTIR spectrophotometer of Alpha (100523), Jasko, Merck, Germany. INFRA-IR analysis were recorded in a Pye-Unicam SP 3000 FTIR spectrophotometer of Alpha (100523), Jasko, England.

Plant material

The aerial parts were collected in the flowering stage from mushtohor farm, Tokh, Egypt in March 2018. The plant was identified and verified by Dr. Hussein Abdelbaset, (Professor of Plant Taxonomy, Faculty of Science, Zagazig University). A voucher specimen (Lam.5-10) was deposited in the Herbarium of the Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Egypt.

Extraction and fractionation

The air dried powdered aerial parts of *Salvia hispanica* L. (3 kg) was extracted by cold maceration (5 times x 7 L) using 70% aqueous ethanol. The total extract was evaporated under reduced pressure at 50 °C yielded 540 gm of dark green viscous residue. The residue (400 gm) was dissolved in methanol: water mixture (1:9) then subjected to fractionation using light petroleum 60-80 °C (9x 500 ml) then...
dichloromethane (7x 500 ml) and finally ethyl acetate (5x 500 ml). The fractions were washed with distilled water and dried over anhydrous sodium sulphate then the solvent of each fraction was distilled off under reduced pressure at 50 °C to yield 68 gm of light petroleum fraction, 4 gm of dichloromethane fraction and 14 gm of ethyl acetate fraction.

Isolation

About 11gm of ethyl acetate fraction was dissolved in a least amount of methanol and adsorbed on 250 gm silica gel for column and the solvent was evaporated completely. The dry zone was applied on the top of silica gel column (5 x 120 cm, 200 g) packed by wet method using dichloromethane and the polarity was increased gradually using methanol to yield 55 fractions. Fractions (15-20) eluted by 4% MeOH/CH₂Cl₂ were combined, concentrated then subjected to TLC examination, revealed the presence of one major orange spot using anisaldehyde-sulphuric acid and crystallized from dichloromethane-methanol mixture to afford pale yellow needle shaped crystals of compound 1. Fractions (21-26) eluted by 6% MeOH/CH₂Cl₂ were combined, concentrated then subjected to TLC examination, revealed the presence of two major yellow spots using ammonia vapour and crystallized to afford yellow powder of compound 2. Fractions (27-33) eluted by 8% MeOH/CH₂Cl₂ were combined, concentrated then subjected to TLC examination, revealed the presence of two major yellow spots using ammonia vapour and crystallized to afford yellow powder of compound 3. Fractions (34-40) eluted by 25% MeOH/CH₂Cl₂ were combined, concentrated then subjected to TLC examination, revealed the presence of one major orange spot using anisaldehyde-sulphuric acid and crystallized from dichloromethane-methanol mixture to afford pale yellow needle shaped crystals of compound 2. Fractions (41-53) eluted by 30% MeOH/CH₂Cl₂ were combined, concentrated then subjected to TLC examination, revealed the presence of two yellow spots, fractions were pooled, concentrated and subjected to rechromatographic separation using Sephadex column LH-20 (2 × 50 cm, 3gm), eluted with 100% methanol. Compound 6 was isolated as a yellow powder with R f 0.48 (CH₂Cl₂ : CH₃OH; 9:1). FT-IR(KBr. 3163, 1685, 1582, 1444. EI-MS: m/z 414[(M + H) - Glu] +. 1 H-NMR(CD3OD, 100 MHz); δ(ppm) 7.05(1H,s,H-2), 6.70(1H,s,H-5), 6.94(1H,d,J=8Hz,H-6), 7.53(1H,d,J=16 Hz,H-7), 6.30(1H,d,J=16 Hz,H-8), 6.79(1H,dd,J=2,8Hz,H-3'), 6.69(1H,dd,J=8Hz,H-5'), 6.65(1H,dd,J=8Hz,H-5''), 2.97(1H,dd,J=8,12Hz,H-7a'), 3.12(1H,dd,J=12Hz,H-7b') and 5.11(1H,dd,J=8Hz,H-8'). C-NMR (CDOD, 100 MHz); δ(ppm) 128.95(C-5), 114.29(C-2), 143.38(C-3), 144.54(C-4), 115.10(C-5), 124.58(C-6), 147.96(C-7), 114.83(C-8), 167.7(C-9), 129.90(C-10), 112.30(C-2), 145.24(C-3), 145.32(C-4), 116.13(C-5), 121.51(C-6), 37.41(C-7), 76.47(C-8) and 170.7(C-9).

Kampferol-7-O-β-D-glucoside(5): yellow powder with m.p 247-250°C and Rf 0.43(ETHOAc:OCH₃:H₂O; 6:1:0.3). UV(λmax, MeOH): 268, 338 nm, (+NaOAc): 274, 394 nm, (+AlCl₃):273, 383 nm, (+AlCl₃ + HCl): 274, 389 nm, (+NaOAc+H₂BO₂): 269,338 nm.EI-MS: m/z = 361 [M+H] +. 1 H-NMR(CD3OD, 400 MHz); δ(ppm) 6.07(1H,s,H-5), 6.84(1H,t,J=8Hz,H-6'), 6.89(1H,d,J=8Hz,H-6''), 6.92(1H,d,J=8Hz,H-5''), 6.98(1H,d,J=8Hz,H-7'), 7.00(1H,d,J=8Hz,H-7''), 7.08(1H,d,J=8Hz,H-8'), 7.22(1H,d,J=8Hz,H-8''). C-NMR (CDOD, 100 MHz); δ(ppm) 115.27(C-2), 114.49(C-3), 137.76(C-4), 137.84(C-5), 124.91(C-6), 129.00(C-7), 129.50(C-8), 141.28(C-9), 141.55(C-10), 147.72(C-11), 147.94(C-12), 166.52(C-13), 166.55(C-14), 166.70(C-15), 167.80(C-16), 167.92(C-17).

LC/MS instrument and separation technique

The sample (100µg/ml) solution was prepared using HPLC analytical grade solvent of MeOH, filtered using a membrane disc filter (0.2µm) then subjected to LC-ESI-MS analysis. Samples injection volumes (10µl) were injected into the UPLC instrument equipped with reverse phase C18 column (ACQUITY UPLC - BEH C18 1.7 µm particle size - 2.1 × 50 mm Column). Sample mobile phase was prepared by filtering using 0.2 µm filter membrane disc and degassed by sonication before injection. Mobile phase elution was made with the flow rate of 0.2 ml/min using gradient mobile phase comprising two eluents: eluent A is H₂O acidified with 0.1% formic acid and eluent B is MeOH acidified with 0.1% formic acid. Elution was performed using the above gradient. The parameters for analysis were carried out using negative ion mode as follows: source temperature 150 °C, cone voltage 30 eV, capillary voltage 3 kV, desolvation temperature 440 °C, cone gas flow 50 L/h, and desolvation gas flow 900 L/h. Mass spectra were detected in
the ESI between \(m/z \) 100–1000. The peaks and spectra were processed using the Maslynx 4.1 software and tentatively identified by comparing its retention time and mass spectrum with reported data.

Biological activities

The biological activities of ethyl acetate fraction of *S. hispanica* L. aerial parts were carried out at Regional Center for Mycology and Biotechnology (RCMB) at Al-Azhar University, Cairo, Egypt.

Antioxidant activity

The antioxidant activity using DPPH method ac. Briefly, ethyl acetate fraction was determined at different concentration 2.5, 5, 10, 20, 40, 80, 160, 320, 640 and 1280 μg/ml that were added respectively to 3 ml DPPH solution, the decrease in absorbance at 515 nm was determined continuously, with data being recorded at 1 min intervals until the absorbance stabilized (16 min). The 50% inhibitory concentration (IC\(_50\)) of ethyl acetate fraction and the standard (ascorbic acid) were estimated.

Anti-obesity activity

The anti-obesity activity was determined by pancreatic lipase inhibitory assay. Briefly, ethyl acetate fraction with different concentrations (1000 to 7.81 μg/ml) were pre-incubated with 100 μg/ml of lipase for 10 min at 37°C. The reaction was then started by adding 0.1 mL p-nitrophenyl butyrate substrate, after incubation at 37°C for 10 min at 37°C. The reaction was then started by adding 0.1 mL p-nitrophenyl butyrate substrate, after incubation at 37°C for 15. The amount of p-nitrophenol released in the reaction was measured using Multiplate Reader. IC\(_50\) value of ethyl acetate fraction and the standard (acarbose) were estimated.

Anti-diabetic activity

The anti-diabetic activity was determined by a -amylose inhibition method. Briefly, 1ml of the fraction of various concentrations (1000 to 7.81 μg/ml) were pre-incubated with 100 μg/ml of lipase for 10 min at 37°C. The reaction was then started by adding 0.1 mL p-nitrophenyl butyrate substrate, after incubation at 37°C for 15. The amount of p-nitrophenol released in the reaction was measured using Multiplate Reader. IC\(_50\) value of ethyl acetate fraction and the standard (acarbose) were estimated.

Cytotoxic activity

The anti-cancer activity using cell viability assay. Briefly, the cell lines used were human Lung cancer cell line (A-549), human prostate carcinoma cells (PC-3) and colon carcinoma cells (HCT-116), ethyl acetate fraction used in various concentrations (500 to 0 μg/ml), the IC\(_50\) value of ethyl acetate fraction and the standard (orlistat) were estimated.

RESULTS

Chemical investigations

Six compounds were isolated and identified using physical investigations in addition to spectral analyses that compared with the available literature data as seen in Table 1. The compounds were arranged according to retention time (R\(_t\)) and divided according to different classes to phenolic derivatives (11), flavonoid aglycones (8), flavonoid-O-glycosides (7), flavonoid-C-glycosides (4), tannins (1), diterpenoids (2), lignin (2), coumarin (1), and triterpenoids(1).

Phenol derivatives

Compound 1 with\([M-H]^- \) at \(m/z \) 317 showed the product ion at \(m/z \) 151 [galloloy moiety] and \(m/z \) 107 [-CO, (44Da)]\(^{26}\). The identification of compounds 2 and 4 were confirmed by the product ions at \(m/z \) 135\(^+\) and 29,\(^+\) respectively that formed by the neutral loss of CO\(_2\)(44Da). The product ion at \(m/z \) 179 [(caffeic acid – H)](-) from the parent ion at \(m/z \) 433 of compound 3 revealed to loss of arbutin moiety.\(^{33}\) Phenolic acid glycosides were tentatively identified due to cleavage of the glycosidic bond resulting in the \(m/z \) of the phenolic acid, and then neutral losses of H\(_2\)O and CO\(_2\)as in case of compounds 16, 22 and 25.\(^{31}\) Compounds 17 and 27 gave the molecular ion peak [M-H] at \(m/z \) 359 and 373, respectively. The MS\(^+\) spectrum showed the product ions at

Abou Zeid EM, et al.: Phytochemical Investigation and Biological Screening of Ethyl Acetate Fraction of *Salvia hispanica* L. Aerial Parts

Pharmacognosy Journal, Vol 14, Issue 1, Jan-Feb, 2022
Abou Zeid EM, et al.: Phytochemical Investigation and Biological Screening of Ethyl Acetate Fraction of Salvia hispanica L. Aerial Parts
Pharmacognosy Journal, Vol 14, Issue 1, Jan-Feb, 2022

Table 1: Tentatively identified Compounds from ethyl acetate fraction of S. hispanica L. aerial parts using UPLC-ESI-MS/M

No.	Tentative assignment	R_t (min)	MWT	[M-H]	[M+H]	MS/MS	Ref
1	Galloyl dihydrocoumaric acid	1.04	318	317		151,107	25
2	Caffeic acid	5.76	180	179		135	8
3	Caffeoyl arbutin	7.29	434	433		179,161,133	26
4	Caffeoyl shikmic acid	7.59	336	335		291	27
5	Herbacetin rhamnoside	7.97	448	447		357,327,297	28
6	Kaempferol-8-C-glucoside	7.99	448	447		357,327,299,297	29
7	or Orientin	7.99	448	447		357,327	28
8	Iso-orientin	8.25	448	447		339,327	28
9	Vitexin	8.52	432	431		341,311,283	30
10	Iso-vitexin	8.54	432	433		413,313	30
11	Naringenin-O-hexoside	8.66	434	433		272	31
12	Kaempferol-O-glucoside	8.72	448	449		287	32
13	Apigenin-O-glucoside	8.95	432	431		269,153	33
14	Scutellarein-O-hexoside	9.04	448	449		287	34
15	Rutin or Hesperidin	9.25	610	609		360	35
16	Quercetin-O-glucoside	9.27	464	463		360,171,131	36
17	Syringic acid glucoside	9.79	360	359		197,179,161,135	8
18	Rosmarinic acid	10.20	360	359		197,179,161,135,73	8
19	Methyl-O-ellagic acid	10.65	316	315		300	37
20	Medioresinol-O-glucoronide	11.03	564	563		387,207,193	38
21	Caftaric acid	11.17	312	313		181	39
22	Quercetin-3-methyl ether	11.23	316	317		302,153	40
23	Ferulic acid hexoside	11.30	356	357		179,177	41
24	Rhamnetin or isorhamnetin	11.31	316	315		360,165	40
25	Myricetin	11.32	318	317		151	42
26	Danshenu glucuronide	11.34	374	373		197,179,175,135,123	8
27	Embellifterone	11.35	162	163		135	43
28	Methyl rosmarinic acid	11.77	374	373		179,161,135	8
29	Luteolin or kaempferol	12.19	286	285		217,199,151,133	32
30	Leucantholavine or eupatolin	12.48	346	345		330,315	33, 44
31	Syringetin	12.48	346	345		330,315	45
32	VISIDULIN III	12.50	346	345		330,287,243	46
33	1,2,4,5-tetrahydroxy benzene	12.65	142	143		110,78	8
34	Medioresinol	12.84	388	387		207,179	47
35	Jaceosidin or Tricin	13.39	330	329		314,299	33, 48
36	Carnosol	17.07	330	329		285	8
37	Salvimarind B	28.90	390	391		491	49
38	Triterpenoids d.v.s	30.13	663	664		551,495,439	32

Underlined numbers represent the base peak.

Figure 1: Chemical structures of the isolated compounds.
Figure 2: Negative mode UPLC-ESI-MS/MS chromatogram of ethyl acetate fraction of *S. hispanica* L. aerial parts.

Figure 3: Positive mode UPLC-ESI-MS/MS chromatogram of ethyl acetate fraction of *S. hispanica* L. aerial parts.

Figure 4: (A): DPPH scavenging capacity of *S. hispanica* L. ethyl acetate fraction and ascorbic acid. (B): Anti-obesity activity of *S. hispanica* L. ethyl acetate fraction and orlistat. (C): Anti-diabetic activity *S. hispanica* L. ethyl acetate fraction and acarbose.
Flavonoid-Aglycones

Methodology

Data analysis was performed using the following steps:

• Identification of compound 29 showed the molecular ion peak \([\text{M-H}^{-}]\) at \(m/z\) 357.

• Fragmentation at \(m/z\) 110 and 78 of compound 32 formed due to loss of successive hydroxyl groups.

Lignans

Compounds 25 and 30 that were tentatively identified as medioresinol-O-glucoronide and medioresinol according to precursor ions \([\text{M-H}^{-}]\) at \(m/z\) 563 and 387, respectively. The MS\(^2\) spectrum of compound 25 showed the fragment ions at 387\([\text{M-H-Glu}]^{-}\) and 207\([\text{M-H-Glu-180}]^{-}\).

Coumarins

Compounds 26 (umbelliferone) showed the fragment ion at 135 \([-\text{CO(28 Da)}]\).

Biological activities

Anti-obesity activity

This promising result is due to presence of flavonoids and phenolic content as the presence of hydroxyl groups in the phenolic compounds are responsible of anti-oxidation effect as the hydroxyl group consider necessary component as a radical scavenger. The DPPH scavenging percentage of ethyl acetate fraction of \(S. \text{hispanica}\) L. aerial parts was investigated on the α amylase enzyme using acarbose as standard then IC\(_{50}\) value was calculated (Figure 4C). The results showed that ethyl acetate fraction has anti-obesity activity with IC\(_{50}\) 114.9 compared to orlistat that showed IC\(_{50}\) 12.50 μg/ml.

Anti-diabetic activity

The inhibition activity of ethyl acetate fraction of \(S. \text{hispanica}\) L. aerial parts was investigated on the α amylase enzyme using acarbose as standard then IC\(_{50}\) value was calculated (Figure 4C). The results showed that ethyl acetate fraction significantly inhibited the α-amylase enzyme with IC\(_{50}\) 95.2 compared to acarbose with IC\(_{50}\) 34.71 µg/ml. \(S. \text{hispanica}\) is rich in omega-3 fatty acids which have positive effect on insulin resistance.

Cytotoxic activity

Cytotoxic activity of ethyl acetate fraction of \(S. \text{hispanica}\) L. aerial part was evaluated against human Lung cancer cell line (A-549), human prostate carcinoma (PC-3) and colon carcinoma (HCT-116) using viability assay with vinblastine as standard. The criteria used to categorize the activity against cancer cell lines based on IC\(_{50}\) values as follows: IC\(_{50}\) ≤ 20 μg/ml = highly active, IC\(_{50}\) 21 - 200 μg/ml = moderately active, IC\(_{50}\) 201 - 500 μg/ml = weakly active and IC\(_{50}\) > 501 μg/ml = inactive. The presence of flavonoids, phenolics, tannins and glycosides are responsible for cytotoxic activities. The results revealed...
that the ethyl acetate fraction showed a highly cytotoxic activity against A-549 and HCT-116 cell lines with IC₅₀ of 15 ± 0.8 µg/ml and 19.5 ± 0.6 µg/ml µg/ml respectively but showed a moderately cytotoxic activity against PC-3 with IC₅₀ of 26.3 ± 1.1 µg/ml (Figures 5A, 5B and 5C).

CONCLUSION

The biological study of S. hispanica L. aerial parts indicates that the ethyl acetate fraction has powerful anti-oxidant, cytotoxic, anti-obesity and anti-diabetic activities. Phytochemical study indicated the presence of phenolic acids, flavonoids, tannins, diterpenoids, lignans and triterpenoids. Further studies are required to detect the exact mechanism of action and to characterize more chemical compounds responsible for the pharmacological activities of S. hispanica L.

DECLARATION OF COMPETING INTEREST

There are no conflicts to declare.

ACKNOWLEDGMENTS

The authors thank Prof Dr. Hussein Abdelbaset (Allah bless his soul), Professor of Plant Taxonomy, Faculty of Science, Zagazig University, Egypt for plant identification.

REFERENCES

1. Bakr A. Comparative botanical studies on some lamiaceous plants in Egypt. Annals of Agricultural Science, Moshtohor. 2017;55(2):303-312.
2. El-Sahhar KF, R Nassar, HM Farag. Comparative botanical studies of some Salvia species (Lamiaceae) grown in Egypt. I Morphological characteristics. Research journal of pharmaceutical biological and chemical sciences. 2016;7(3):1985-2000.
3. Porras-Lloaiza P. Physical properties, chemical characterization and fatty acid composition of Mexican Chia (Salvia hispanica L.) seeds. International journal of food science & technology. 2014;49(2):571-577.
4. Taga MS, E Miller, D Pratt. Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society. 1984;61(6):928-931.
5. Ali NM. The promising future of Chia, Salvia hispanica L. Journal of Biomedicine and Biotechnology. 2012.
6. Rahman MJ, AC de Camargo F Shahidi. Phenolic and polyphenolic profiles of Chia seeds and their in vitro biological activities. Journal of Functional Foods. 2017;35:622-634.
7. De Falco B, M Amato V Lanzotti. Chia seeds products: an overview. Phytochemistry Reviews. 2017;16(4):745-760.
8. Oliveira-Alves SC. Characterization of phenolic compounds in Chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chemistry. 2017;232:295-305.
9. Abdel-Aty AM. Egyptian chia seeds (Salvia hispanica L.) during germination: Upgrading of phenolic profile, antioxidiant, antibacterial properties and relevant enzymes activities. Food Science and Biotechnology. 2021;30(6):723-734.
10. LT. Chia induces clinically discrete weight loss and improves lipid profile only in altered previous values. Nutricion hospitalaria. 2015;31(3):1176-1182.
11. da Silva BP. Chia seed shows good protein quality, hypoglycemic effect and improves the lipid profile and liver and intestinal morphology of Wistar rats. Plant Foods for Human Nutrition. 2016;71(3):225-230.
12. Vuksan V. Salba-chia (Salvia hispanica L.) in the treatment of overweight and obese patients with type 2 diabetes: A double-blind randomized controlled trial. Nutrition, Metabolism and Cardiovascular Diseases. 2017;27(2):138-146.
13. Elshafie HS. Chemical composition and antimicrobial activity of chia (Salvia hispanica L.) essential oil. European Food Research and Technology. 2018;244(8):1675-1682.
14. Fan M. Neo-clerodane diterpenoids from aerial parts of Salvia hispanica L. and their cardioprotective effects. Phytochemistry. 2019;166:112065.
15. Fan M. Rearranged neoclerodane diterpenoids from the aerial parts of Salvia hispanica L. Fitooterapia. 2020;146:104672.
16. Amato M. Nutritional quality of seeds and leaf metabolites of Chia (Salvia hispanica L.) from Southern Italy. European Food Research and Technology. 2015;241(5):615-625.
17. Leaves L, L Leaves. Antioxidant activity by DPPH radical scavenging method of ageratum conyzoides. American Journal of Ethnomedicine. 2014;11(4):244-249.
18. Kim YS. Anti-obesity effect of Morus bombycis root extract: anti-lipase activity and lipolytic effect. Journal of ethnopharmacology. 2010;130(3):621-624.
19. Narkhede M. In vitro anti-diabetic activity of Caesalpina digyna (R.) methanol root extract. Asian Journal of Plant Science and Research. 2011;12(1):101-106.
20. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods. 1983;65(1-2):55-63.
21. Gomha SM, SM Riyadh EA Mahmmoud. Synthesis and anti-cancer activity of thiazoles, 1, 3-thiazines, and thiazolidine using chitosan-grafted-poly (vinylpyridine) as basic catalyst. Heterocycles: an international journal for reviews and communications in heterocyclic chemistry. 2015;91(6):1227-1243.
22. Oleninovik D, N Chirikova. Rhamninetin glycosides from the genus Spiraea. Chemistry of Natural Compounds. 2018;54(1):41-45.
23. Peng HY, Xh Zhang, Jz Xu. Apigenin-7-O-β-D-glycoside isolation from the highly copper-tolerant plant Elsholtzia splendens. Journal of Zhejiang University-SCIENCE B. 2016;17(6):447-454.
24. Shahat AA. Flavonoids from Cressa cretica. Pharmaceutical biology. 2004;42(4-5):349-352.
25. Shrestha A. Determination of hydroxyccinamic acids present in Rhododendron species. Phytochemistry. 2017;144:216-225.
26. Bujor OC. Extraction, identification and antioxidant activity of the phenolic secondary metabolites isolated from the leaves, stems and fruits of two shrubs of the Ericaceae family. PhD. Thesis, National Institute for Agricultural Research, Avignon Université d’Avignon, Romania. 2016.
27. Parveen I. Isolation, identification and quantitation of hydroxyccinamic acid conjugates, potential platform chemicals, in the leaves and stems of Miscanthus giganteus using LC-ESI-MSn. Phytochemistry. 2011;72(18):2370-2384.
28. Nadeem M. Antidiabetic functionality of Vitex negundo L. leaves based on UHPLC-QTOF-MS/MS based bioactives profiling and molecular docking insights. Industrial Crops and Products. 2020;152:112445.
29. Hassan WH, S Abdelaziz, ZM Al Yousef. Chemical composition and their antioxidant and antiproliferative activities. Journal of agricultural and food chemistry. 2013;61(44):10507-10515.
30. Sun Y. Qualitative and quantitative analysis of phenolics in Tetrastigma hemsleyanum and their antioxidant and antiproliferative activities. Journal of agricultural and food chemistry. 2013;61(44):10507-10515.
31. Şıbul F. HPLC-MS/MS profiling of wild-growing scentless chamomile. Acta Chromatographica. 2020;32(2):86-94.
32. Abu-Reidah IM. HPLC–DAD–ESI/MS/MS screening of bioactive components from *Rhus coraina* (Sumac) fruits. Food chemistry. 2015;166:179-191.

33. Tian D. Anti-inflammatory chemical constituents of *Flos Chrysanthemi Indici* determined by UPLC-MS/MS integrated with network pharmacology. Food & Function. 2020;11(7):6340-6351.

34. Lin LZ. Identification and quantification of flavonoids of Mexican oregano (*Lippia graveolens*) by LC-DAD-ESI/MS analysis. Journal of food composition and analysis. 2007;20(4):381-398.

35. Al-Jaber, HI AK Shakya, ZA Elagbar. HPLC profiling of selected phenolic acids and flavonoids in *Salvia eugyptia*, *Salvia hirsoyntima* and *Salvia vinda* growing in Jordan and their in vitro antioxidant activity. PeerJ. 2020;8:e9769.

36. Saffi L. Targeted and untargeted LC-MS polyphenolic profiling and chemometric analysis of propolis from different regions of Croatia. Journal of pharmaceutical and biomedical analysis. 2019;165:162-172.

37. Kumar S, A Singh, B Kumar. Identification and characterization of phenolics and terpenoids from ethanolic extracts of *Phyllanthus* species by HPLC-ESI-QTOF-MS/MS. Journal of pharmaceutical and biomedical analysis. 2017;124(1):214-222.

38. Marzouk MM. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chernosystematic significance. J. Appl. Pharm. Sci. 2018;8:116-122.

39. Chen HJ, BS Inbaraj, BH Chen. Determination of phenolic acids and flavonoids in *Taraxacum formosanum* Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique. International journal of molecular sciences. 2012;13(1):260-285.

40. Falcão SL. Phenolic profiling of Portuguese propolis by LC–MS Spectrometry: Uncommon propolis rich in flavonoid glycosides. Phytochemical Analysis. 2013;24(4):309-318.

41. Fang N, S Yu, RL Prior. LC/MS/MS characterization of phenolic constituents in dried plums. Journal of Agricultural and Food Chemistry. 2002;50(12):3579-3585.

42. Lin Y. Metabolite identification of myricetin in rats using HPLC coupled with ESI-MS. Chromatographia. 2012;75(11):655-660.

43. Zhou L, J Li, C Yan. Simultaneous determination of three flavonoids and one coumarin by LC-MS/MS: Application to a comparative pharmacokinetic study in normal and arthritic rats after oral administration of *Daphne genkwa* extract. Biomedical Chromatography. 2018;32(7):e4233.

44. Jamzad Z. Leaf surface flavonoids in Iranian species of *Nepeta (Lamiaceae)* and some related genera. Biochemical systematics and ecology. 2003;31(6):587-600.

45. Taamali A. LC-MS-based metabolite profiling of medicinal extracts from the medicinal and aromatic species *Mentha pulegium* and *Origanum majorana*. Phytochemical Analysis. 2015;26(5):320-330.

46. Wang Y. Characterization of fifty-one flavonoids in a Chinese herbal prescription Longdan Xiegan Decoction by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry and photodiode array detection. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute Research in Mass Spectrometry. 2008;22(12):1767-1778.

47. Hussien TA. Cytotoxic and antioxidant activities of secondary metabolites from *Pulicaria undulata*. Int J Pharm Pharm Sci. 2016;8(9):150-155.

48. Han B. Comprehensive characterization and identification of antioxidants in *Foulium Artemiae Argyi* using high-resolution tandem mass spectrometry. Journal of Chromatography B. 2017;1063:84-92.

49. Medana C. Determination of salvonins and dinivarotins in *Salvia divinorum* leaves by liquid chromatography/multistage mass spectrometry. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute Research in Mass Spectrometry. 2006;20(2):131-136.

50. Hossain MB. Characterization of phenolic composition in *Lamiaceae* species by LC–ESI-MS/MS. Journal of agricultural and food chemistry. 2010;58(19):10576-10581.

51. Pourmorad F, S Hosseiminehr, N Shahabimajid. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African journal of biotechnology. 2006;5(11):1142-1145.

52. Mihafu FD. Effect of chia seeds (*Salvia hispanica*) on postprandial glycaemia, body weight and hematological parameters in rats fed a high fat and fructose diet. International Journal of Biological and Chemical Sciences. 2020;14(5):1752-1762.

53. Martino H. Chia Seed (*Salvia hispanica L.*): Digested Total Protein Prevented Adipose Tissue Inflammation and Reduce Obesity Complications in Mice Fed a High-Fat Diet. Current Developments in Nutrition. 2020;4(Supplement_2):436-436.

54. Oyalo J, M Mburu. Health Potential of Chia (*Salvia hispanica L.*) Seeds-Derived α-linolenic Acid and α-linolenic Acids: A Review. European Journal of Agriculture and Food Sciences. 2021;3(4):5-10.

55. Din Zu. Nutritional, phytochemical and therapeutic potential of chia seed (*Salvia hispanica L.*): A mini-review. Food Hydrocolloids for Health. 2021;1:100010.

56. Rubavathi S. Studies on Antioxidant and Anti-obesity Activity of *Salvia hispanica* (Chia Seeds) Extracts. Journal of Drug Delivery and Therapeutics. 2020;10(3-s):98-106.

57. Nakai M. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. Journal of Agricultural and Food Chemistry. 2005;53(11):4593-4598.

58. Devashri PP. Beneficial effects of flaxseed oil and fish oil diet are through modulation of different hepatic genes involved in lipid metabolism in streptozotocin–nicotinamide induced diabetic rats. Genes & nutrition. 2013;8(3):329-342.

59. Srisawat T. Phytochemical screening and cytotoxicity of crude extracts of *Vatica diospyroides* Symington Type LS. Tropical Journal of Pharmaceutical Research. 2013;12(1):71-76.

60. Muthusami VKG. Dietary Evaluation, Antioxidant and Cytotoxic Activity of Crude Extract from Chia Seeds (*Salvia hispanica L.*) against Human Prostate Cancer Cell Line (PC-3). 2016.
GRAPHICAL ABSTRACT

ABOUT AUTHORS

Prof. Dr. Ehsan Mahmoud AbouZeid
graduated in pharmaceutical sciences in 1974, Cairo University and subsequently completed her MSc (1981) at University of Zagazig and PhD (1986). Assistant PhD (1986) through a channel system mission with institute of pharmaceutical chemistry, Storrs University, America. Professional in 2003 as Prof. of pharmacognosy at Faculty of Pharmacy, Zagazig University, Egypt.

Prof. Dr. Afaf Elsayed Abdelghani
graduated in pharmaceutical sciences in 1981 and subsequently completed her MSc (1985) at University of Zagazig and PhD (1990) degree in Doctorate of philosophy through a channel system mission with the institute of pharmaceutical chemistry, Bonn University, Germany. Assistant Prof. (1998). Professional in May 2005 as Prof. of pharmacognosy at Faculty of Pharmacy, Zagazig University, Egypt.

Ass. Prof. Rehab Hamed Abdallah
graduated in pharmaceutical sciences in 1997 and subsequently completed her MSc (2003) at University of Zagazig and PhD (2008). Assistant Prof. (2019)of pharmacognosy at Faculty of Pharmacy, Zagazig University, Egypt.

Marwa Youssri Mahmoud Kamel
demonstrator of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Egypt.

Cite this article: Abou Zeid EM, Ghani AEA, Mahmoud MY, Abdallah RH. Phytochemical Investigation and Biological Screening of Ethyl Acetate Fraction of Salvia hispanica L. Aerial Parts. Pharmacogn J. 2022;14(1): 226-234.