Adding Negative Prices to Priced Timed Games

Highlights 2014, Paris
Results presented this week at CONCUR 2014

Benjamin Monmege
Université Libre de Bruxelles, Belgium

Thomas Brihaye (UMons)
Gilles Geeraerts (ULB)
Shankara Krishna, Lakshmi Manasa, Ashutosh Trivedi (IITB)

September 2014
Priced Timed Games

Timed Automaton with partition of states between 2 players + reachability objective + rates in locations + costs over transitions

Semantics in terms of infinite game with weights
Priced Timed Games

Timed Automaton with partition of states between 2 players + reachability objective + rates in locations + costs over transitions

Semantics in terms of infinite game with weights

Cost of a play:
- ∞ if not reached
- Otherwise, total payoff up to

$(\ell_1, 0)$
Priced Timed Games

Timed Automaton with partition of states between 2 players + reachability objective + rates in locations + costs over transitions

Semantics in terms of infinite game with weights

\[
(\ell_1, 0) \xrightarrow{0.4, \rightarrow} (\ell_4, 0.4)
\]
Priced Timed Games

Timed Automaton with partition of states between 2 players
+ reachability objective
+ rates in locations
+ costs over transitions

Semantics in terms of infinite game with weights

Cost of a play:
\[\begin{cases} + \infty & \text{if not reached} \\ \text{total payoff up to otherwise} \end{cases} \]
Priced Timed Games

Timed Automaton with partition of states between 2 players
+ reachability objective
+ rates in locations
+ costs over transitions

Semantics in terms of infinite game with weights

\[
(\ell_1, 0) \xrightarrow{0.4, \leftarrow} (\ell_4, 0.4) \xrightarrow{0.6, \rightarrow} (\ell_5, 0) \xrightarrow{1.5, \leftarrow} (\ell_4, 0) \xrightarrow{1.1, \rightarrow} (\ell_5, 0) \xrightarrow{2, \rightarrow} (\checkmark, 2)
\]
Priced Timed Games

Timed Automaton with partition of states between 2 players
+ reachability objective
+ rates in locations
+ costs over transitions

Semantics in terms of infinite game with weights

\[
\begin{align*}
(x < 1, x := 0, 0) & \quad x \leq 2, 0 \\
& \quad (\ell_2) \\
& \quad (\ell_3) \\
& \quad (x \leq 2) \\
& \quad x > 1, 1 \\
(\ell_1) & \quad x > 0 \\
& \quad x := 0, 0 \\
[x \leq 2] & \quad x \leq 1, 1 \\
& \quad (\ell_4) \\
& \quad (x \leq 2) \\
& \quad x \geq 1 \\
& \quad x := 0, 0 \\
& \quad (\ell_5) \\
& \quad (x \leq 2) \\
& \quad x \geq 1, 2 \\
(\ell_6) & \quad \checkmark
\end{align*}
\]

Cost of a play:
- \(\infty\) if not reached
- Total payoff up to otherwise

\[
\begin{align*}
\ell_1, 0 \quad \rightarrow & \quad 0.4, \rightarrow & \quad (\ell_4, 0.4) \quad \rightarrow & \quad (\ell_5, 0) \\
0.4 + 1 & \quad \rightarrow & \quad 0.6 & \quad \rightarrow & \quad 1.5 & \quad \rightarrow & \quad 1.1 & \quad \rightarrow & \quad 2 \\
-3 \times 0.6 & \quad \rightarrow & \quad +1.5 & \quad \rightarrow & \quad -3 \times 1.1 & \quad \rightarrow & \quad +2 \times 2 \rightarrow & \quad (\checkmark, 2) \\
& \quad = 3.8
\end{align*}
\]
Timed Automaton
with partition of states
+ reachability objective
 + rates in locations
 + costs over transitions

Semantics in terms of
infinite game with weights

Cost of a play:
{\[x < 1, x := 0,0\]}
{\[x > 1,1\]}
{\[x \geq 1\]}
{\[x := 0,0\]}

\[
\begin{align*}
(\ell_1, 0) \xrightarrow{0.4, \downarrow} (\ell_4, 0.4) \xrightarrow{0.6, \rightarrow} (\ell_5, 0) & \quad 0.4 + 1 \quad -3 \times 0.6 \quad +1.5 \quad -3 \times 1.1 \quad +2 \times 2 + 2 = 3.8 \\
(\ell_1, 0) \xrightarrow{0.2, \uparrow} (\ell_2, 0) \xrightarrow{0.9, \rightarrow} (\ell_3, 0.9) & \quad 0.2 \quad +0.9 \quad -0.2 \quad -0.9 \quad \ldots = +\infty (\checkmark \text{ not reached})
\end{align*}
\]
Priced Timed Games

Timed Automaton with partition of states between 2 players
+ reachability objective
+ rates in locations
+ costs over transitions

Semantics in terms of infinite game with weights

Cost of a play: \[
\begin{cases}
 +\infty & \text{if } \checkmark \text{ not reached} \\
 \text{total payoff up to } \checkmark & \text{otherwise}
\end{cases}
\]
Strategies and objectives

Strategy for each player: mapping of finite runs to a delay and an action
Strategies and objectives

Strategy for each player: mapping of finite runs to a delay and an action

Goal of player \circ: reach \checkmark and minimize the cost
Goal of player \Box: avoid \checkmark or, if not possible, maximize the cost
Strategies and objectives

Strategy for each player: mapping of finite runs to a delay and an action

Goal of player ○: reach ✓ and minimize the cost
Goal of player □: avoid ✓ or, if not possible, maximize the cost

Main object of interest:
\[\overline{\text{Val}}(\ell, v) = \inf_{\sigma_\circ \in \text{Strat}_\circ} \sup_{\sigma_\square \in \text{Strat}_\square} \text{Wt}(\text{Play}((\ell, v), \sigma_\circ, \sigma_\square)) \in \mathbb{R} \cup \{-\infty, +\infty\} \]

What player ○ can guarantee as a payoff? and design good strategies
State of the art

$F \leq K$: \exists a strategy in the PTG (priced timed game) for player \Box
reaching \checkmark with a cost $\leq K$?
F_{\leq K} \triangleright: \exists \text{ a strategy in the PTG (priced timed game) for player } \bigcirc \text{ reaching } \checkmark \text{ with a cost } \leq K?

- One-player case (*Priced timed automata*): optimal reachability problem is PSPACE-complete
 - Algorithm based on regions [Bouyer, Brihaye, Bruyère, and Raskin, 2007];
 - and hardness shown for timed automata with at least 2 clocks [Fearnley and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]
State of the art

\(F_{\leq K} \): \(\exists \) a strategy in the PTG (priced timed game) for player \(\bigcirc \) reaching \(\checkmark \) with a cost \(\leq K \)?

- One-player case (**Priced timed automata**): optimal reachability problem is PSPACE-complete
 - Algorithm based on regions [Bouyer, Brihaye, Bruyère, and Raskin, 2007];
 - and hardness shown for timed automata with at least 2 clocks [Fearnley and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]
- 2-player PTGs: **undecidable** [Bouyer, Brihaye, and Markey, 2006a], even with only non-negative costs and 3 clocks
State of the art

\(F \leq K \vdash: \exists \) a strategy in the PTG (priced timed game) for player \(\bigcirc \) reaching \(\checkmark \) with a cost \(\leq K \)?

- **One-player case (Priced timed automata):** optimal reachability problem is PSPACE-complete
 - Algorithm based on regions [Bouyer, Brihaye, Bruyère, and Raskin, 2007];
 - and hardness shown for timed automata with at least 2 clocks [Fearnley and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]
- **2-player PTGs:** undecidable [Bouyer, Brihaye, and Markey, 2006a], even with only non-negative costs and 3 clocks
- **PTGs with non-negative costs and strictly non-Zeno cost cycles:** exponential algorithm [Bouyer, Cassez, Fleury, and Larsen, 2004, Alur, Bernadsky, and Madhusudan, 2004]
State of the art

$F_{\leq K}^\top$: \exists a strategy in the PTG (priced timed game) for player \bigcirc reaching \top with a cost $\leq K$?

- One-player case (Priced timed automata): optimal reachability problem is PSPACE-complete
 - Algorithm based on regions [Bouyer, Brihaye, Bruyère, and Raskin, 2007];
 - and hardness shown for timed automata with at least 2 clocks [Fearnley and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]

- 2-player PTGs: undecidable [Bouyer, Brihaye, and Markey, 2006a], even with only non-negative costs and 3 clocks

- PTGs with non-negative costs and strictly non-Zeno cost cycles: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen, 2004, Alur, Bernadsky, and Madhusudan, 2004]

- One-clock PTGs with non-negative costs: exponential algorithm [Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013]
State of the art

\[F_{\leq K}\checkmark \colon \exists \text{ a strategy in the PTG (-priced timed game) for player } \bigcirc \text{ reaching } \checkmark \text{ with a cost } \leq K? \]

- One-player case (**Priced timed automata**): optimal reachability problem is *PSPACE*-complete
 - Algorithm based on regions [Bouyer, Brihaye, Bruyère, and Raskin, 2007];
 - And hardness shown for timed automata with at least 2 clocks [Fearnley and Jurdziński, 2013, Haase, Ouaknine, and Worrell, 2012]
- 2-player PTGs: **undecidable** [Bouyer, Brihaye, and Markey, 2006a], even with only non-negative costs and 3 clocks
- PTGs with **non-negative costs and strictly non-Zeno cost cycles**: exponential algorithm [Bouyer, Cassez, Fleury, and Larsen, 2004, Alur, Bernadsky, and Madhusudan, 2004]
- **One-clock** PTGs with **non-negative costs**: exponential algorithm [Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013]

This talk: **PTGs with negative costs**
Undecidability Results:
Constrained-Price Reachability

- Known: $F_{\leq K}$ undecidable for 3 or more clocks

Proof by reduction of 2-counter machines: $x_1 = \frac{1}{2c_1}$, $x_2 = \frac{1}{3c_2}$, x_3 for work

Theorem:

$F_{\leq K}$ undecidable for PTGs with 2 or more clocks
idem for $F_{\geq K}$, $F_{> K}$, $F_{= K}$, $F_{< K}$

New encoding: $x_1 = \frac{1}{5c_1 7c_2}$, x_2 for work

Simulation of “$\ell_k: \text{decrement } c_1; \text{goto } \ell_{k+1}$” for Reach($= 1$)

Diagram: State transitions and conditions for each state.
Other Undecidability Results

Theorem: Time-bounded Reachability

The following problem is undecidable for PTGs with 6 or more clocks:

Input: $K, T \in \mathbb{N}$

Question: $F \leq T \leq K$: \exists strategy for \bigcirc that reaches \checkmark

with cost $\leq K$ within time T?

Theorem: Repeated Reachability

The following problem is undecidable for PTGs with 3 or more clocks:

Input: $\eta \geq 0$

Question: $GF_{[-\eta,\eta]}$: \exists strategy for \bigcirc that visits \checkmark

infinitely often with a cost in $[-\eta, \eta]$?
Regain decidability?
More complex when negative costs

- Value $-\infty$: detection is as hard as mean-payoff. No hope for complexity better than $\text{NP} \cap \text{co-NP}$, or pseudo-polynomial.

- Memory complexity
 - Player \bigcirc needs memory, even in the untimed setting: as seen in Axel’s talk
 - Player \square may require infinite memory
One-clock Bi-Valued PTGs (1BPTGs)

Assumption: rates of locations \(\{p^-, p^+\} \) included in \(\{0, +d, -d\} \) (\(d \in \mathbb{N} \)) (no assumption on costs of transitions)

- Techniques of [Bouyer, Cassez, Fleury, and Larsen, 2004, Alur, Bernadsky, and Madhusudan, 2004] not applicable, e.g., because of Zeno costs cycles
- Exponential algorithms of [Bouyer, Larsen, Markey, and Rasmussen, 2006b, Rutkowski, 2011, Hansen, Ibsen-Jensen, and Miltersen, 2013] not working because of presence of negative costs
Intuition: it is sufficient for both players to play arbitrarily close to borders of regions, so that corner-point abstraction [Bouyer, Brinksma, and Larsen, 2008] can be adapted to this game setting...

Theorem:

- Computation of the value $\overline{\text{Val}}(\ell, v)$ of states of a 1BPTG in pseudo-polynomial time
- Synthesis of ε-optimal strategies for player \bigcirc in pseudo-polynomial time

Theorem: Non-negative case

In case of a 1BPTG with only non-negative costs, all complexities drop down to polynomial.
Sketch of proof

1. Reduce the space of strategies in the 1BPTG
 ▶ restrict to uniform strategies w.r.t. timed behaviors

2. Build a finite priced game \mathcal{G}
 ▶ based on corner-point abstraction

3. Study \mathcal{G}
 ▶ thanks to the results presented in Axel’s talk

4. Lift results of \mathcal{G} to the original 1BPTG

\[
\begin{align*}
x &< 1, x := 0, 0 \\
x &> 0, x := 0, 0 \\
x &\leq 1, x := 0, 0 \\
x &\geq 1, x := 0, 0 \\
x &\leq 1, x := 0, 0 \\
x &\geq 1, x := 0, 0 \\
x &\leq 1, x := 0, 0 \\
x &\geq 1, x := 0, 0 \\
\end{align*}
\]
Complete article published in the proceedings of CONCUR 2014\(^1\)

Results

- More undecidability results due to the presence of negative costs
- 1BPTGs are determined: \(\text{Val}(\ell, v) = \overline{\text{Val}}(\ell, v)\)
- Computation of the values, and synthesis of \(\varepsilon\)-optimal strategies for both players, in pseudo-polynomial time
- Strategy complexity: finite memory for \(\bigcirc\), infinite memory for \(\square\)
- In case of \(\geq 0\) prices, non-trivial class of 1-clock PTGs in PTIME
- Lifting of corner point abstraction to quantitative game setting

\(^1\)See also http://arxiv.org/abs/1404.5894 for a complete version
Results

- More undecidability results due to the presence of negative costs
- 1BPTGs are determined: \(\text{Val}(\ell, v) = \overline{\text{Val}}(\ell, v) \)
- Computation of the values, and synthesis of \(\varepsilon \)-optimal strategies for both players, in pseudo-polynomial time
- Strategy complexity: finite memory for \(\bigcirc \), infinite memory for \(\square \)
- In case of \(\geq 0 \) prices, non-trivial class of 1-clock PTGs in PTIME
- Lifting of corner point abstraction to quantitative game setting

- Implementation and test of this algorithm for real instances
- Decidability results for a bigger subset of PTGs with negative weights? careful since players may need to play far from boundaries in case of 2 clocks, or 1 clock and 3 distinct rates...

\(^1\text{See also } \text{http://arxiv.org/abs/1404.5894 for a complete version} \)
Summary and Future Work

\[x ≤ 1 \]

\[x = 1, x := 0 \]

\[x = 1 \]

\[0 \xrightarrow{\text{x} ≤ 1} 1 \]

\[1 \xrightarrow{\text{x} = 1} -1 \]

\[-1 \xrightarrow{\text{x} = 1} \]

\[y = 0 \]

\[x = 1 \]

\[y = 1 \]

\[0 \xrightarrow{\text{x} ≤ 1, y := 0} 0 \]

\[0 \xrightarrow{\text{y} = 0} 1 \]

\[0 \xrightarrow{\text{x} = 1} 0 \]

\[0 \xrightarrow{\text{y} = 1} 1 \]

\[1 \xrightarrow{\text{x} = 1} 0 \]

\[1 \xrightarrow{\text{y} = 1} 0 \]
Thank you for your attention

Questions?
Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for weighted timed games. In Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP’04), volume 3142 of Lecture Notes in Computer Science, pages 122–133. Springer, 2004.

Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies in priced timed game automata. In Proceedings of the 24th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’04), volume 3328 of Lecture Notes in Computer Science, pages 148–160. Springer, 2004.

Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results on weighted timed automata. Information Processing Letters, 98(5):188–194, 2006a.

Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost optimal strategies in one-clock priced timed games. In Proceedings of the 26th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’06), volume 4337 of Lecture Notes in Computer Science, pages 345–356. Springer, 2006b.

Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On the optimal reachability problem of weighted timed automata. Formal Methods in System Design, 31(2):135–175, 2007.
Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal infinite scheduling for multi-priced timed automata. *Formal Methods in System Design*, 32(1):3–23, 2008.

John Fearnley and Marcin Jurdziński. Reachability in two-clock timed automata is pspace-complete. In *Proceedings of ICALP’13*, volume 7966 of *Lecture Notes in Computer Science*, pages 212–223. Springer, 2013.

Christoph Haase, Joël Ouaknine, and James Worrell. On the relationship between reachability problems in timed and counter automata. In *Proceedings of RP’12*, pages 54–65, 2012.

Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A faster algorithm for solving one-clock priced timed games. In *Proceedings of the 24th International Conference on Concurrency Theory (CONCUR’13)*, volume 8052 of *Lecture Notes in Computer Science*, pages 531–545. Springer, 2013.

Michał Rutkowski. Two-player reachability-price games on single-clock timed automata. In *Proceedings of the Ninth Workshop on Quantitative Aspects of Programming Languages (QAPL’11)*, volume 57 of *Electronic Proceedings in Theoretical Computer Science*, pages 31–46, 2011.