Two limit cases of twisted hBN bilayers and their excitonic response

J. C. G. Henriques¹, B. Amorim¹, R. M. Ribeiro¹,² and N. M. R. Peres¹,²

¹Department and Centre of Physics, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal and
²International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330, Braga, Portugal

In this paper we discuss the optical response due to the excitonic effect of two types of hBN bilayers: AB and AA'. Understanding the properties of these bilayers is of great utility to the study of twisted bilayers at arbitrary angles, since these two configurations correspond to the limit cases of 0° and 60° rotation. To obtain the excitonic response we present a method to solve a four-band Bethe-Salpeter equation, by casting it into a 1D problem, thus greatly reducing the numerical burden of the calculation when compared with strictly 2D methods. We find results in good agreement with ab initio calculations already published in the literature for the AA' bilayer, and predict the excitonic conductivity of the AB bilayer, which remains largely unstudied. The main difference in the conductivity of these two types of bilayers is the appearance of a small, yet well resolved, resonance between two larger ones in the AB configuration. This resonance is due to a mainly interlayer exciton, and is absent in the AA' bilayer. Also, the conductivity of the AB bilayer is due to both intralayer and interlayer excitons and is dominated by p-states, while intralayer s-states are the relevant ones for the AA' configuration, like in a monolayer. The effect of introducing a bias in the AA' bilayer is also discussed.

I. INTRODUCTION

In its monolayer form, hexagonal boron nitride (hBN) is an insulator with a direct band gap located at the vertices of the first Brillouin zone, with a magnitude close to 6 eV [1]. Contrarily to transition metal dichalcogenides (TMDs) [2], the lack of heavy metals leads to a rather small spin orbit coupling effect. The simplicity of its band structure and the large band gap, make this an excellent material for the exploration of fundamental physics. Due to its structural similarity with graphene, hBN monolayers are often used as a substrate for graphene [3–5], or to encapsulate other materials, protecting them from the environment [6]. On their own, hBN monolayers are mostly studied because of their optical response dominated by excitonic resonances. In the simplest possible picture, an exciton is formed when an electron is promoted to the conduction band, leaving a hole in the valence band. These two particles, having opposite charges, interact via an electrostatic potential [7], leading to the formation of a bound state. This composite quasi-particle is then responsible for the optical absorption inside the band gap of the material. This optical response has been essential for the exploration of hBN in deep-UV optoelectronics [1, 8, 9].

The description of the excitonic effect deviates significantly from the single particle response, since to capture the physics of excitons, many body effects have to be accounted for; this is usually achieved by solving the Bethe-Salpeter equation (BSE). This integral equation in momentum space is composed of a kinetic term (obtained from the single particle response) and an interaction term, which, in general, couples the electronic degrees of freedom of all the bands of the system via an electrostatic potential. For the case of an hBN monolayer (or monolayer TMDs for the same matter), one can simplify the problem by considering just a single pair of bands, which couple more efficiently than the remaining ones. This version of the BSE can then be solved using many methods, with different degrees of numerical complexity, ranging from fully numerical calculations [10–13], to semi-analytical [14, 15] and variational approaches [16–18].

A natural extension to the case of a single hBN monolayer, is to consider the case of bilayers [19]. The ground state configuration for this type of system is the AA’ bilayer [20, 21], where the two monolayers are perfectly aligned along the stacking direction, but the boron and nitrogen atoms sit on opposite sites in the two planes.

Figure I.1. Schematic representation of the lattice of AB and AA’ hBN bilayers. The nearest neighbors in-plane and out-of-plane hoppings are γ_0 and γ_1, respectively. The nearest neighbours distance is a.
Another relevant type of bilayer, with a stability capable of competing with the AA’ configuration, is the AB bilayer, where two monolayers are shifted relatively to each other. Contrarily to the monolayers, both of these bilayers present a band gap with an indirect nature [21], located between the K point in the valence band and the midway point between the K and K’ points in the conduction band.

Another important aspect regarding the AB and AA’ bilayers is that one configuration can be obtained from the other by a rotation of 60° between the constituent monolayers, making them the limiting cases of a 0° and 60° rotation in the study of twisted bilayers. Although the first theoretical studies on bilayers date back to the time when graphene was first isolated [22, 23], the interest on the topic only grew since then, remaining an active field of research at the time of writing [24, 25]. Hence, understanding the optical response of these two configurations is of great utility to the study of arbitrary twist angles.

Contrarily to the case of hBN monolayers, solving the BSE for the bilayers is a rather complex process. In fact, this is the reason why in the current literature this type of problem is almost exclusively treated with sophisticated numerical approaches [27-31]. Although accurate, these procedures are rather complex and require huge computational power. It is clear, then, that a simpler approach to describe these systems is needed. This is precisely the motivation behind the current paper, where we study two relevant configurations for the exploration of twisted hBN bilayers, while presenting a simpler method to study the excitonic physics in this type of system, with little computational effort. Even though the excitonic response of the AA’ bilayer has already been studied in the literature, the AB bilayer remains largely unexplored.

The text is organized as follows. In Sec. II we consider the first part of our study will be dedicated to the electronic band structure of the AB bilayer, with its study separated into three stages: first, we study the electronic band structure with a tight-binding model; then, we introduce the Bethe-Salpeter equation, and discuss how it can be solved in order to obtain the exciton energies and wavefunctions; finally, we combine the results of the two previous stages and evaluate the longitudinal conductivity of the AB bilayer. To characterize the single particle bands of the AB bilayer, let us start by constructing a minimal tight binding Hamiltonian directly in momentum space. In our minimal model we account only for nearest neighbor hopping, both in the in-plane and out-of-plane directions; the effect of additional hopping parameters is discussed later in the text. Following the notation established in Fig. 1.1, we consider the basis \{ |1,b⟩, |2,b⟩, |2,t⟩, |1,t⟩ \}, where 1 and 2 refer to the sub-lattices (containing boron and nitrogen atoms, respectively), and b/t denotes the bottom/top layer, and find the following Hamiltonian in momentum-space:

\[
H^{AB}_{TB,p} = \begin{bmatrix}
E_{1,b} & \gamma_0 \phi(p) & \gamma_1 & 0 \\
\gamma_0 \phi^*(p) & E_{2,b} & 0 & 0 \\
\gamma_1 & 0 & E_{2,t} & \gamma_0 \phi^*(p) \\
0 & 0 & \gamma_0 \phi(p) & E_{1,t}
\end{bmatrix},
\]

where \(E_{i,\lambda}\) is the on-site energy of the atom \(i\) of the \(\lambda\) layer, \(\gamma_0\) is the hopping parameter between nearest neighbors in each monolayer, \(\gamma_1\) is the interlayer hopping connecting atoms which are vertically aligned, and \(\phi(p) = e^{i a p_x} + e^{-i a (p_x \sqrt{3} + p_y)} / 2 + e^{i a (p_x \sqrt{3} - p_y)} / 2\) is a factor which follows from the geometrical configuration of the lattice, where \(a\) is the nearest neighbor distance. Noting that for the AB configuration we have \(E_{1,b} = E_{1,t}\) and \(E_{2,b} = E_{2,t}\), we define \(E_{1,b} = E_g / 2 = -E_{2,b}\) to fix the zero of energy. The |1,b/t⟩ and |2,b/t⟩ sublattices contain boron and nitrogen atoms, respectively. To obtain the values of the different parameters we fit the energy spectrum of this Hamiltonian to DFT calculations, the details of which we give in Appendix A where we also show the tight binding bands fitted to the \(ab\) \textit{initio} results. Doing so we find \(E_g = 4.585\) eV, \(\gamma_0 = 2.502\) eV and \(\gamma_1 = 0.892\) eV. It is well known that the most common functionals used in DFT underestimate the fundamental band gap, which can be corrected using advanced
functionals or GW calculations. This type of approach is, however, beyond the scope of our work. When the excitonic problem is treated we simply consider the corrected band gap to be \(E_g = 6.9 \text{ eV} \), where the band gap correction of \[25\] was considered (note that even if the correction to the band gap differs from the one used here, it should not impact the qualitative nature of the results, and even then qualitative nature should not be drastically changed). If the limit \(\gamma_1 \to 0 \) is considered, we recover a block diagonal Hamiltonian, where each block describes the electronic properties of a single hBN monolayer, as expected.

Since we will be mostly interested on the low energy optical response, we restrict our analysis to the Dirac valleys, that is, the region around the vertices of the first Brillouin zone (1BZ), also known as the \(K/K' \) points. To do this, we write \(\mathbf{p} = \tau \mathbf{K} + \mathbf{k} \) and approximate \(\phi(\tau \mathbf{K} + \mathbf{k}) \) to first order in \(\mathbf{k} \) as \(\phi(\tau) \approx -\frac{1}{2} \tau (\tau k_x - i k_y) \), with \(\tau = \pm 1 \) labeling the \(K/K' \) points respectively. Notice that, hereinafter, the values of \(\mathbf{k} = (k_x, k_y) \) are measured relatively to these points in the reciprocal space. With this approximation one finds the following low energy Hamiltonian

\[
H_{\text{low, } \mathbf{k}}^{AB} = \sigma_+ \otimes \left[\hbar v_F (\tau k_x \sigma_x + k_y \sigma_y) + \frac{E_g}{2} \sigma_z \right] + \sigma_- \otimes \left[\hbar v_F (\tau k_x \sigma_x - k_y \sigma_y) - \frac{E_g}{2} \sigma_z \right] + \sigma_x \otimes \sigma_+ \gamma_1, \tag{II.2}
\]

where \(\sigma_\pm = (I \pm \sigma_z)/2 \) and \(\hbar v_F = 3\gamma_0 a/2 \). Diagonalizing this Hamiltonian we find the energy dispersion relations

\[
E_k^{\lambda, \eta} = \frac{\lambda}{2} \sqrt{E_g^2 + 4\hbar^2 v_F^2 k^2 + 2\gamma_1 + 2\gamma_1 \eta \Lambda_k} \tag{II.3}
\]

with \(\Lambda_k = \sqrt{\gamma_1^2 + 4\gamma_1 \eta \gamma_2^2} \), \(\lambda = \pm 1 \) (when used as a number) or \(\lambda = c/v \) (when used as an index) and \(\eta = \pm 1 \). Just like in the case of an hBN monolayer, the energy spectrum is the same for \(\tau = 1 \) or \(\tau = -1 \), since we ignore the small effect of spin-orbit coupling in this system. In Fig. II.1 we depict the band structure obtained from the tight binding model as well as from the low energy approximation in the vicinity of the Dirac points; the agreement between the two results is clear, as it should. Moreover we find that the bands associated with the index \(\eta = +1 \) take an approximately parabolic shape, while those with \(\eta = -1 \) present a momentum dependence proportional to \(k^4 \). A similar band structure is found on bilayer TMDs, such as 3R-MoS\(_2\) \[32\]. The eigenvectors associated with each band read

\[
|u_{\mathbf{k}}^{\eta, \tau} \rangle = \frac{1}{\sqrt{\nu_{\mathbf{k}, \eta}}} \left[\begin{array}{c} \tau e^{i \eta} \cos \gamma_1 + \eta \Lambda_k \\ -\tau e^{i \eta} \sin \gamma_1 \Lambda_k \\ \tau e^{i \eta} \cos \gamma_1 \\ -\tau e^{i \eta} \sin \gamma_1 \end{array} \right], \tag{II.4}
\]

\[
|u_{\mathbf{k}}^{\eta, \tau} \rangle = \frac{1}{\sqrt{\nu_{\mathbf{k}, \eta}}} \left[\begin{array}{c} e^{2i \eta} (E_g - 2E_{\mathbf{k}, \eta}^\gamma) (\gamma_1 - \eta \Lambda_k) \\ -\tau e^{i \eta} \sin \gamma_1 \Lambda_k \\ \tau e^{i \eta} \gamma_1 + \eta \Lambda_k \\ 1 \end{array} \right], \tag{II.5}
\]

where \(\nu_{\mathbf{k}, \eta} \) are normalization factors and \(\theta = \arctan(k_y/k_x) \). Just like for any other state vector, these spinors are defined up to a global phase factor (for example \(e^{i \theta} \)). The particular choice used in Eq. II.5 was made in order to simplify the numerical formulation of the excitonic problem, which will be discussed in the following section. At last, let us note for future reference that for small momentum these vectors take the approximate form

\[
|u_{\mathbf{k}}^{\eta, \tau} \rangle \approx \begin{bmatrix} 0 \\ e^{2i \eta} \\ 0 \\ 0 \end{bmatrix}, \quad |u_{\mathbf{k}}^{\eta, \tau} \rangle \approx \begin{bmatrix} e^{i \theta} \sin \frac{\xi}{2} \\ 0 \\ -e^{i \theta} \cos \frac{\xi}{2} \\ 0 \end{bmatrix}, \tag{II.6}
\]

\[
|u_{\mathbf{k}}^{\eta, \tau} \rangle \approx \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad |u_{\mathbf{k}}^{\eta, \tau} \rangle \approx \begin{bmatrix} e^{i \theta} \cos \frac{\xi}{2} \\ 0 \\ e^{i \theta} \sin \frac{\xi}{2} \\ 0 \end{bmatrix}, \tag{II.7}
\]

with \(\xi = \arctan(2\gamma_1/E_g) \).
B. Excitonic problem

Now that the single particle bands and Bloch factors were determined, let us tackle the problem of obtaining the excitonic energies and wavefunctions.

To obtain the energies and wave functions of the excitons in the AB bilayer we shall solve the well known Bethe-Salpeter equation (BSE). The BSE is an integral equation in momentum space, which requires the information of the single particle approximation, and whose solution determines the excitonic spectrum. Explicitly, for an exciton with zero center of mass momentum, this equation reads:

\[(E_k^e - E_k^v) \psi_{cv}(k) - \sum_{\mathbf{q},\mathbf{q}'\nu'} V(\mathbf{k} - \mathbf{q})\langle u_\mathbf{k}^{\mathbf{q}} | u_\mathbf{q}'^{\mathbf{v}} \rangle \langle u_\mathbf{q}'^{\mathbf{v}} | u_\mathbf{k}^{\mathbf{v}} \rangle \psi_{\mathbf{q}'\nu'}(\mathbf{q}) = E \psi_{cv}(k),\]

(username)\hspace{1cm} (II.8)

where, for the sake of a simpler notation, we have omitted the indexes \(\tau\) and \(\eta\), which are now included in the band index \((c/c'\text{ or } v/v')\). Here, the sum is performed over the momentum \(\mathbf{q}\) and all the bands of our model; \(\psi_{cv}(k)\) refers to the exciton’s wave function projected onto the pair of bands \((v, c)\), \(E\) corresponds to the exciton’s energy and \(V(\mathbf{k} - \mathbf{q})\) is the Fourier transform of the electron-hole interaction, which we model with the Rytova-Keldysh potential \([7, 33, 34]\). This potential can be obtained from the solution of the Poisson equation for a charge embedded in a thin film, and is known to accurately capture the electrostatic interaction in 2D materials; it reads

\[V(\mathbf{k}) = \frac{\hbar c\alpha}{\epsilon k(1 + r_0 k)},\]

(username)\hspace{1cm} (II.9)

with \(c\) the speed of light, \(\alpha \sim 1/137\) the fine structure constant, \(\epsilon\) the mean dielectric constant of the media above and below the monolayer and \(r_0\) an in-plane screening length, which is related to the 2D polarizability of the system \([35]\). We now note that Eq. (II.8) corresponds, in fact, to a set of four coupled equations, one for each pair of valence and conduction bands \((v, c)\), defining an eigenvalue problem. In this type of system, the formation of an exciton can not be \textit{a priori} assigned to a single pair of bands, but rather to a cooperative process where the four bands of the model contribute to the formation of an entity. Furthermore, from Eq. (II.8), one already sees that the phases chosen for the Bloch factors in Eq. (II.5) have an impact on the BSE, since different phase choices lead to different angular dependencies for the term \(\langle u_\mathbf{k}^{\mathbf{q}} | u_\mathbf{q}'^{\mathbf{v}} \rangle \langle u_\mathbf{q}'^{\mathbf{v}} | u_\mathbf{k}^{\mathbf{v}} \rangle\). We stress, however, that when a physical quantity is computed, for example a conductivity, its final result is independent from the phase one initially chose for the Bloch factors.

Solving the BSE is no simple task, and, as mentioned in the introduction, different techniques are frequently employed to achieve this. The approach we consider here is to use the results of the tight binding model we previously presented, and to reduce the BSE to a 1D integral equation, which can then be easily solved with a single numerical quadrature. In what follows we give a brief description of the approach we use, with a more detailed technical discussion presented in Appendix C.

The first step to transform the BSE into a 1D integral equation is to consider the system to be isotropic, which allows us to write the exciton’s wave function as the product of a radial and an angular components, such as \(\psi_{cv}(k) = f_{cv}(k)e^{im\theta_\eta}\), with \(m\) an integer. At first, one might be tempted to associate the value of \(m\) with the angular momentum of the exciton, however this is not necessarily true. From the study of hBN monolayers (or other systems which can be treated with a two band model), it is known that the number which characterizes the angular momentum is obtained from a combination of the \(m\) present in the envelop function \(\psi_{cv}(k)\) with an additional contribution stemming from the pseudospin of the system \([36, 37]\). However, for a model with four bands (like the one we currently consider) the identification of the pseudospin contribution is unclear, and because of that we will refrain from attributing an angular quantum number to excitons that appear from the solution of the BSE when the four bands are accounted for. In Appendix C we give a more detailed discussion on this.

Making use of the above mentioned proposal for the wave function \(\psi_{cv}(k) = f_{cv}(k)e^{im\theta_\eta}\), the BSE acquires the form:

\[(E_k^e - E_k^v) f_{cv}(k) - \sum_{\mathbf{q},\mathbf{q}'\nu'} \int dq dq'd\theta_\eta V(\mathbf{k} - \mathbf{q})\langle u_\mathbf{k}^{\mathbf{q}} | u_\mathbf{q}'^{\mathbf{v}} \rangle \langle u_\mathbf{q}'^{\mathbf{v}} | u_\mathbf{k}^{\mathbf{v}} \rangle \times f_{\mathbf{q}'\nu'}(q)e^{im(\theta_\eta - \theta_\eta)} = Ef_{cv}(k),\]

(username)\hspace{1cm} (II.10)

We now note that according to Eq. (II.9), \(V(\mathbf{k} - \mathbf{q})\) is a function of \(k, q\) and \(\cos(\theta_\eta - \theta_k)\), that is \(V(\mathbf{k} - \mathbf{q}) \equiv V(k, q, \theta_\eta - \theta_k)\). Knowing this, one easily sees that if the angular dependence of the spinor product \(\langle u_\mathbf{k}^{\mathbf{q}} | u_\mathbf{q}'^{\mathbf{v}} \rangle \langle u_\mathbf{q}'^{\mathbf{v}} | u_\mathbf{k}^{\mathbf{v}} \rangle\) only contains terms of the form \(e^{im(\theta_\eta - \theta_\eta)}\), with \(m\) a real number, then the integral over \(d\theta_\eta\) can be converted into an integral over a new variable \(\vartheta = \theta_\eta - \theta_k\), independent of \(q\) and \(k\). By removing the momentum dependence from the angular integral, its evaluation can be thought of as an independent step of the calculation, thus effectively transforming the BSE into a 1D integral equation (whose only integration variable is now \(q\)), which can then be easily solved (see Appendix C). This approach is computationally advantageous when compared with a strictly two dimensional calculation (which scales as \(N^4\) while the simpler 1D problem scales as \(N^2\), with \(N\) the number of points in the numerical quadrature).

The key point now is to find the spinor’s phase choice which guarantees that their product has the desired angular dependence. First, we note that for the term \(\langle u_\mathbf{k}^{\mathbf{q}} | u_\mathbf{q}'^{\mathbf{c}} \rangle \langle u_\mathbf{q}'^{\mathbf{v}} | u_\mathbf{k}^{\mathbf{v}} \rangle\) with \(c = c'\) and \(v = v'\), the angular dependence always presents the form we are seeking, regardless of the phase choice, since the phase of each \(|\text{ket}\rangle\) is balanced by the phase of the \langle\text{bra}\rangle with which it is
contracted. This is precisely what one finds in the case of monolayers, where the BSE can consistently be transformed into a 1D integral equation \cite{14}. What about the remaining terms where \(c \neq c' \) and/or \(v \neq v' \)? Depending on the phase choice for the spinors one may find that unwanted terms, such as \(e^{i\theta_k} e^{-i\theta_p} \), with \(p \neq n \), appear. Using Eq. (II.5), however, produces the desired angular dependence for all the products of spinors that appear in the BSE, thus allowing us to convert the excitonic problem into a 1D integral equation.

Using the method we have just now highlighted, and discuss in more detail in Appendix C, we solved the BSE for the AB bilayer for different values of \(m \) (which, we recall, does not correspond directly to the angular quantum number). We considered the bilayer to be suspended, \(\epsilon = 1 \), and used \(r_0 = 16 \text{Å} \) in agreement with the value found from \textit{ab initio} calculations in \cite{29}. When solving the BSE we employed a Gauss-Legendre quadrature, containing 100 points, which we verified to be more than enough to guarantee the convergence of the energies and wave functions for the first ten excitonic states.

In panels (a) to (c) of Fig. (II.2) we depict the wave functions, \(|\Psi(k)|^2 = \sum_{cv} |\psi_{cv}(k)|^2 \), associated with three of the states found from the solution of the BSE. These states are some of the most relevant ones for the linear optical response of the system (computed in the following section), and their energies read \(E_{n=1} = 5.71 \text{ eV} \), \(E_{n=2} = 6.13 \text{ eV} \) and \(E_{n=3} = 6.34 \text{ eV} \). Analyzing the three panels, we see that the \(n = 1 \) and \(n = 3 \) states present wave functions which are similar to those found in the bound states of the 2D Hydrogen atom \cite{38} (which in turn are similar to those of its three dimensional counterpart). In fact, since these wave functions are zero at the origin, have an approximately linear behavior for small momentum, and present zero and one nodes, respectively, they bare a particular resemblance with the 2p and 3p states of the Hydrogen atom. At odds with this, the wave function of the \(n = 2 \) state presents a more exotic behavior, with a broad shoulder instead of a node, unlike an Hydrogenic wave function.

To gain more information about these states, especially regarding their configuration in real space, we compute the projection of their wave functions onto the electron and hole sub-lattices, which can be written as:

\[
\Psi_{\alpha\beta}(r_e, r_h) = \sum_{k, c, v} e^{i(K+k)\cdot(r_e-r_h)} \psi_{cv}(k) u_{k,c}^\alpha (\psi_{k,v}^\beta)^* ,
\]

(II.11)

where \(r_e \) and \(r_h \) are the electron and hole positions, respectively, and \(u_{k,c}^\alpha \) refers to the \(\alpha \) sub-lattice entry of the Bloch factor \(|\psi_{k,c}| \) (an analogous definition holds for \(\psi_{k,v}^\beta \)). For simplicity we consider \(r_h = 0 \) and study the behavior of the wave function with \(r_e \). Notice how the term \(K + k \) appears on the complex exponential because the momenta are being measured relatively to the Dirac point; however, the contribution from \(K \) vanishes when the square modulus of the wave function is considered. In Fig. (II.2) (d)-(f) we depict the real space wave functions when the hole is place on the nitrogen atom of the bottom layer (\(|2, b\rangle \)); the position of the hole is marked by a small black dot in the center of each figure. For the \(n = 1 \) exciton, we find that the wave function is mainly distributed on the bottom layer boron sites (this is the reason we apparently only see a triangular lattice, instead of a honeycomb one), that is, on the same layer as the hole, with a smaller portion being present on the top layer; this distribution of the wave function indicates that this state has a predominantly intralayer nature. On the other hand, for the \(n = 2 \) and \(n = 3 \) excitons, we find a rather significant part of the wave function spread over the top layer, indicating the interlayer character of these excitations. To more easily understand how the wave function behaves for different positions of the hole, we present in Table II.3 the values found for the integrated square modulus of the wave function, \(\int |\Psi_{\alpha\beta}(r_e, 0)|^2 dr_e \), which gives the probability of finding the electron on one of the layers, for each possible location of the hole. From the inspection of this table, one finds that: i) there is a clear preference for the hole to be located on the \(|2, t/b\rangle \) sublattices (containing nitrogen atoms), given the small values found for the integrated wave function when the hole is located on either \(|1, b/t\rangle \) sublattices; ii) we confirm
the previous assignment of the $n = 1$ exciton as mainly intralayer, while the $n = 2$ and $n = 3$ ones are mostly interlayer.

C. Optical conductivity

Now that the the BSE was solved for the AB bilayer, we are ready to evaluate its conductivity due to the excitonic effect. Following Ref. [39], we write the conductivity for a multiband system as

$$\frac{\sigma(\omega)}{\sigma_0} = \frac{i}{\pi} \sum_n \frac{\Omega_n \Omega_n^*}{E_n - \hbar \omega + (\omega \rightarrow -\omega)^*},$$ \hspace{1cm} (II.12)$$

where $\sigma_0 = e^2/4\hbar$ is the conductivity of graphene, the sum over n runs over the different exciton states with energy E_n and

$$\Omega_n = \sum_{vck} \psi^{(n)}_{vck}(k) \Omega_{vck}$$ \hspace{1cm} (II.13)$$

where Ω_{vck} is the position operator interband matrix element, which we write as

$$\Omega_{vck} = \frac{\langle u_k^c | H, r | u_k^t \rangle}{E_k^c - E_k^t},$$ \hspace{1cm} (II.14)$$

with H standing for the low energy tight binding Hamiltonian. The evaluation of the interband matrix element is crucial to determine which of the solutions of the BSE couple with the electric field, and consequently contribute to the conductivity. For the current system, the interband matrix elements imposes that only states with $m = \pm \tau$ may give a finite contribution (we recall once more that this does not correspond to the angular quantum number). Not only that, but the sum over the bands also plays a role in determining which states couple more efficiently with light due to the possibility of existing constructive or destructive interference between the different terms. Using the solutions of the BSE given in the previous section, we compute the optical response of the system due to a linearly polarized electric field; its conductivity is depicted in Fig. II.3, where a phenomenological broadening of 35 meV was considered for all resonances. The shaded blue area corresponds to the conductivity accounting for 10 exciton states (all with $m = \tau$, since we found the $m = \mp \tau$ states to have rather small oscillator strengths); the contributions of the states highlighted in Fig. II.2 are depicted in the same color as the corresponding wave functions. From this figure, we see that the longitudinal conductivity of the AB hBN bilayer has its more pronounced feature on the first resonance, while a set of lower intensity ones appear at higher energies. Furthermore, the conductivity of the AB bilayer presents a small, yet noticeable, resonance between the first and third peaks, which can be ascribed to the second state of Fig. II.2. Above the third resonance and up to approximately 6.5 eV, three resonances appear. These peaks, however, overlap significantly, making it difficult to resolve them. Moreover, since our model is based on a low energy approximation, the results are expected to become progressively less accurate as we approach the band edge. Due to these two reasons we focus our analysis solely on the first three resonances.

D. Exciton angular quantum number

Having determined the complete longitudinal conductivity using the results of the four band BSE, we shall now carry out a complementary analysis to gain further insight on the nature of each resonance, especially regarding the angular quantum number of the excitons behind them.

As a first, and somewhat naive, approach, we return to the BSE and restrict it to a single pair of valence and conduction bands. In particular, we consider only the bands which present an energy dispersion in k^4, since

n	Bottom	Top
1	0.01	0.00
	0.34	0.26
	0.03	0.34
	0.00	0.01
	0.00	0.00
2	0.02	0.02
	0.61	0.61
	0.17	0.17
	0.01	0.01
	0.00	0.00
3	0.01	0.00
	0.17	0.08
	0.08	0.00
	0.00	0.57
	0.16	0.01

Table I. Integrate values of the square modulus of the sublattice resolved real space wave function for the AB bilayer. The horizontal top row indicates the sublattice where the hole is placed, while the two columns on the left indicate the exciton we are considering, and the layer where the electron is located.
intuition tells us that these should dominate in the low energy response. Because in this approximation we are effectively treating a two band problem, we can identify the contribution of the pseudo-spin to the angular quantum number (see Appendix B).

Let us define the excitonic wave function in real space for a two band model \[36\] as

\[\Psi_{\alpha,\beta}(r_x, r_h) = \sum_k e^{i(k + k') \cdot (r_x - r_h)} \psi_{\alpha,\beta}(k) u_{k,c}^\alpha (u_{k,v}^\beta)^* \]

(II.15)

which is analogous to the previously given definition, only this time without the sum over the bands, since a single pair is being considered. From Eq. (II.7), one sees that for small momentum the product \[u_{k,c}^\alpha (u_{k,v}^\beta)^* \] approximately introduces an additional phase of \[e^{-2i\tau \theta} \] (recall that only the bands with \(\eta = -1 \) are being currently considered), which can be combined with the angular part of \(\psi_{\alpha,\beta}(k) \). Hence, within this approximation, we may define the angular quantum number of the exciton as \(m_X = m + m_{ps} \) where \(m_{ps} = -2\tau \) is the pseudo-spin contribution to the angular quantum number, and \(m \) is the contribution from the envelope function \(\psi_{\alpha,\beta}(k) \).

When the conductivity is evaluated, the interband matrix element imposes that only states with \(m = \pm \tau \) may couple with the external excitation. Thus, taking into consideration the definition of the angular quantum number \(m_X \), we find that, at least approximately, only states with angular quantum numbers \(m_X = -\tau \) or \(m_X = -3\tau \) are optically bright. In analogy with the Hydrogen atom, we label these states as \(p \)- and \(f \)-states, since the modulus of their angular quantum number is 1 and 3, respectively. These selection rules are in line with the momentum space wave functions depicted in Fig. II.2.

In Fig. II.3, we depict the conductivity found with this two band approximation, where once again a phenomenological broadening of 35 meV was considered; only the first two \(p \)-states were accounted for since the \(f \)-states appear above these two, and with a far smaller oscillator strength. Comparing this result with the one of Fig. II.3, one clearly sees the resemblance between the two conductivities, both in the location of the resonances as well as their relative magnitude. The absolute magnitude, is slightly different from what was found when the four band BSE was solved; this is to be expected, since in the current approximation we are neglecting the contribution of other pairs of bands to the conductivity. Thus, it appears that one can confidently assign, at least approximately, the Hydrogenic labels of \(2p \) and \(3p \) states to the excitons which originate the first and third resonances of the conductivity in Fig. II.3. Note, however, how the small resonance at approximately 6 eV in Fig. II.3 is absent in this approximation. By repeating this procedure for all possible pairs of bands, we find that using the \(\eta = -1 \) bands gives the best results when compared with the four band calculation. Moreover, we note that the small resonance is only ever captured when the four bands are accounted for, indicating a clear difference of this exciton when compared with the other two we are considering (which can be approximately captured by selecting two of the four bands of our model).

To further confirm the correct labeling of the resonances we can follow the ideas of Ref. \[40\], where the process of folding a tight binding Hamiltonian on itself, i.e. applying a Lowdin partitioning \[41, 42\], was used to obtain the optical selection rules of a 3R-MoS2 bilayer. In a succinct manner, to obtain an effective \(2 \times 2 \) Hamiltonian from a given \(4 \times 4 \) model Hamiltonian, one should start by finding the unitary transformation which diagonalizes the model Hamiltonian at \(k = 0 \). Then, the unitary transformation should be applied to the model Hamiltonian with finite \(k \), and the basis should be reordered such that the low energy diagonal terms appear on the upper left \(2 \times 2 \) block. At last, the effective Hamiltonian is obtained from this one through the relation

\[(H_{\text{eff}})_{ij} = \tilde{H}_{ij} + \frac{1}{2} \sum_l \tilde{H}_{il} \tilde{H}_{lj} - \frac{1}{4} \tilde{H}_{ij} \tilde{H}_{ij} - \frac{1}{4} \tilde{H}_{ll} \tilde{H}_{ll} \]

(II.16)

with \(i, j = \{1, 2\} \) and \(l = \{3, 4\} \); \(\tilde{H} \) corresponds to the model Hamiltonian after applying the unitary transformation and rearranging its basis. Hence, using the described procedure to project the high energy bands onto the low energy ones, we obtain the following effective two band Hamiltonian:

\[H_{\text{eff}} \approx \left(\begin{array}{cc} \frac{E_2}{2} & -\frac{\hbar^2 e^2}{\gamma_1} k^2 e^{-2i\tau \theta} \\ -\frac{\hbar^2 e^2}{\gamma_1} k^2 e^{2i\tau \theta} & \frac{E_2}{2} \end{array} \right) \]

(II.17)

According to Ref. \[40\], the winding number associated with this Hamiltonian is \(w = -2\tau \); and the optical selection rules follow from the winding number as \(m_X = w \pm \tau \), when trigonal warping is neglected. Thus, using this alternative approach, we once again find selection rules
which only allow the excitation of states with \(m_X = -\tau \) and \(m_X = -3\tau \), that is, \(p \) and \(f \)-states. If the effect of trigonal warping had been included, for example by introducing hopping to second neighbors (either in the in-plane or out of plane directions), the set of selection rules would be extended to include \(s \)- and \(d \)-states (with angular quantum number 0 and 2, respectively), due to an additional contribution of a factor of 3 to \(m_X \) stemming from the symmetry of the lattice. Since the resonances associated with these states would be proportional to the square of the associated hopping integral, which is significantly smaller than the nearest neighbors hopping \(\gamma \), the effective low energy Hamiltonian will give a less detailed description on how the results of the previous section carry on to the current one, in what follows we will focus on AA’ bilayers. In this section we will focus on AA’ bilayers. In this type of bilayer, the two monolayers are vertically aligned, with a nitrogen/boron atom. A depiction of this type of bilayer, the two monolayers are vertically aligned, with a nitrogen/boron atom.

A. Tight binding model

To obtain the low energy band structure of the AA’ bilayer we will once more use a tight binding Hamiltonian \(H_{\text{TB}} \) written directly in momentum space. Working in the basis \(|1,b\rangle, |2,b\rangle, |1,t\rangle, |2,t\rangle\) (see Fig. I.1), we write

\[
H_{\text{TB},p}^{A'A'} = \begin{bmatrix}
E_g/2 & \gamma_0 \phi^*(p) & 0 & \gamma_1 \\
\gamma_0 \phi(p) & -E_g/2 & \gamma_1 & 0 \\
0 & \gamma_1 & E_g/2 & \gamma_0 \phi(p) \\
\gamma_1 & 0 & \gamma_0 \phi^*(p) & -E_g/2
\end{bmatrix}
\]

(III.1)

Here we have considered \(E_{1,b} = E_{1,t} \) and \(E_{2,b} = E_{2,t} \), and defined \(E_g \) as \(E_{1,b} = E_{g}/2 = -E_{2,b} \). The \(|1,b/t\rangle\) and \(|2,b/t\rangle\) contain boron and nitrogen atoms, respectively. As in the previous section, \(\gamma_0 \) and \(\gamma_1 \) refer to the intra and interlayer nearest neighbors hoppings, respectively, and \(\phi(p) \) is a phase factor whose expression is the same as in the previous section. Notice how for the AA’ bilayer the Hamiltonian presents twice as many \(\gamma_1 \) than for the AB configuration, in agreement with the increased number of atoms which are vertically aligned. As before, if \(\gamma_1 \rightarrow 0 \), one is left with a block diagonal Hamiltonian describing two decoupled monolayers. To obtain the numerical values for the different parameters of the model, the energy spectrum of the tight binding Hamiltonian was fitted to DFT calculations (obtained in an identical manner to what was described in the previous section), yielding \(E_g = 4.65 \text{ eV}, \gamma_0 = 2.491 \text{ eV} \) and \(\gamma_1 = 0.595 \text{ eV} \).

In the low energy approximation, that is, near the Dirac points, we write \(\phi_x(k) \approx -\frac{\sqrt{\pi}}{2} a (\tau k_x - ik_y) \), and find the effective low energy Hamiltonian

\[
H^{A'A'}_{\text{low},k} = \sigma_+ \otimes \left[h v_F (\tau k_x \sigma_x - k_y \sigma_y) + \frac{E_g}{2} \sigma_z \right] + \sigma_- \otimes \left[h v_F (\tau k_x \sigma_x + k_y \sigma_y) + \frac{E_g}{2} \sigma_z \right] + \sigma_x \otimes \sigma_z \gamma_1,
\]

(III.2)

where \(\sigma_\pm = (I \pm \sigma_z) / 2 \) and \(h v_F = 3\gamma_0 a / 2 \), and as before \(k = (k_x, k_y) \) is a momentum measured relatively to the Dirac points.

Diagonalizing this Hamiltonian, the following dispersion relation is found:

\[
E_k^\lambda = \frac{\lambda}{2} \sqrt{E_g^2 + (2\gamma_1 + 3\eta \gamma_0 a k)^2}
\]

(III.3)

with \(\lambda = \pm 1 \) or \(c/v \) depending if it is used as a number or as an index, and \(\eta = \pm 1 \). As in the case of the AB bilayer, we see that the energy dispersion is independent of the valley index \(\tau \). The depiction of \(E_k^\lambda \) near the \(K \) point is given in Fig. III.1. There, we see that the band structure of the AA’ bilayer presents a drastically different shape to that of the AB bilayer. While before we found that the two valence/conduction bands were clearly separated in energy, here we see that a critical point exist at \(k = 0 \) where the bands touch. Moreover, contrarily to the AB bilayer, where the extrema of the bands were located at zero momentum, here we find the band maxima and minima at \(k = 2\gamma_1/3\gamma_0 a \). The eigenvectors found from...
the diagonalization of the low energy Hamiltonian are

\[
|u_{n\eta k}\rangle = \frac{1}{\sqrt{\psi_{n\eta k}}}
\begin{pmatrix}
\frac{E_a - \sqrt{E_a^2 + 4(\gamma_1 + \eta \hbar \nu_F k)^2}}{2(\gamma_1 + \eta \hbar \nu_F k)} e^{-i\theta}

\eta T e^{-i\theta} E_a - \sqrt{E_a^2 + 4(\gamma_1 + \eta \hbar \nu_F k)^2}

1
\end{pmatrix},
\]

\[
|u'_{n\eta k}\rangle = \frac{1}{\sqrt{\psi_{n\eta k}}}
\begin{pmatrix}
\frac{E_a + \sqrt{E_a^2 + 4(\gamma_1 + \eta \hbar \nu_F k)^2}}{2(\gamma_1 + \eta \hbar \nu_F k)} e^{-i\theta}

\eta T e^{-i\theta} E_a + \sqrt{E_a^2 + 4(\gamma_1 + \eta \hbar \nu_F k)^2}

1
\end{pmatrix},
\]

(III.4)

where \(C_{n\eta k}/\psi_{n\eta k}\) are normalization factors.

B. Excitons and conductivity

In order to obtain the excitonic energies and wave functions of the AA’ bilayer, one must return to the BSE, first presented in Eq. (II.8). Because in the previous section we already discussed the nuances of the BSE, and outlined our approach to solving it, we do not repeat the same analysis here. Instead, we note only that the spinors given in Eq. (III.4) already have the phase choice which allows the transformation of the BSE from a 2D integral equation, to a 1D problem (see Appendix C for details on how to solve the 1D integral equation).

Considering a suspended bilayer (\(\epsilon = 1\)), and once again using \(r_0 = 16\)Å [29], we solve the BSE and find the energies and wave functions of the excitons for the AA’ bilayer. We stress that, similarly to the case of the AB configuration, when the BSE was solved a corrected band gap of \(E_g = 6.96\) eV was considered to match the value reported in Ref. [29]. Once again, the exact value of the band gap should not have a significant impact on the qualitative analysis of the results. As in the previous section we solved the BSE using a 100-point Gaussian-Legendre quadrature, which guaranteed the convergence of the excitonic energies and wave functions of the first ten states.

In Fig. III.2 (a) and (b) we depict the wave functions \(|\Psi(k)|^2 = \sum_{cv} |\psi_{cv}(k)|^2\) of two of the states found by solving the BSE. These two states have energies

\(E_{n=1} = 5.64\) eV and \(E_{n=2} = 6.36\) eV and correspond to the first two bright states of the system, i.e, the ones that originate the first resonances of the optical conductivity (shown below). We note that both of these states are doubly degenerate, without accounting for spin or valley degeneracy. Analyzing the representation of the wave functions in momentum space we realize that both resemble the wave functions of the s-states of the Hydro-
gen atom, since both are finite at the origin, and then decay to zero with zero and one nodes for the $n = 1$ and $n = 2$ states, respectively. Because of the unique band structure of the AA’ bilayer, and contrarily to what we did in the AB configuration, here we can’t reduce the four band problem, to an approximate two band one, since it is impossible to define a pair of bands which could be considered the most relevant one for the low energy response. Hence, the labeling of these states as s-states is based solely on their wave functions in analogy with the Hydrogen atom for which only s-states have finite wave functions at the origin.

In the panels (c) and (d) of Fig. III.2 we depict the wave function of the two states in real space when the hole is placed on the sub-lattice $|t, 2\rangle$ (corresponding to a nitrogen atom), and find that both are mostly intralayer excitons, since the real space wave function is mainly distributed over same layer where the hole is located. If the hole is placed on the sub-lattice $|b, 2\rangle$ (also a nitrogen atom) the results are identical to the ones depicted, only this time the wave function is almost entirely distributed over the bottom layer. When the hole is placed in either $|b/t, 1\rangle$ sublattices (with boron atoms), the resulting real space wave function is essentially zero, indicating the preference of holes to appear on nitrogen atoms. These considerations are further backed by the values found when the wave function is integrated over each layer for a given position of the hole, which we show in Table II. The identification of these two states as being due to (mainly) intralayer s-excitons agrees with [29], where the same conclusion was obtained from ab initio calculations and symmetry considerations.

Now that the solutions of the BSE were found, we can evaluate the longitudinal conductivity of the AA’ bilayer. Using the definition given in Eq. (I.12) for the conductivity, we obtain the result depicted in Fig. III.3 where the area shaded in blue corresponds to the conductivity obtained accounting for 10 exciton states (once again states with $m = \pm \tau$ are selected, only this time both present identical oscillator strengths.). The dark blue and orange outlines are the individual contributions of the two s-states whose wave functions were depicted in Fig. III.2 First, we highlight the resemblance between our result and that of Ref. [29], especially for the first resonances, where we see that the location of the first two peaks, as well as their relative intensity, is similar in both works. At higher energies, however, we observe significant differences between our conductivity and the one obtained with ab initio calculations. This mismatch at higher energies was to be expected, since ours is a low energy theory, incapable of capturing the more nuanced features near the band edge. Nonetheless, the similarities at lower energies are a good indicator of the validity of our results. The conductivity of the AA’ bilayer resembles that of the monolayer [15], since in both cases the s-states are the bright one, and both present a set of resonances with monotonically decreasing oscillator strength. When compared to the conductivity of the AB bilayer, we find that the small peak between the first two resonances of Fig. III.3 is absent in the AA’ configuration; hence, this small resonance can then be seen as a fingerprint of the AB stacking.

Table II

| $n = 1$ | $|1, b\rangle$ | $|2, b\rangle$ | $|1, t\rangle$ | $|2, t\rangle$ |
|---|---|---|---|---|
| Bottom | 0.01 | 0.46 | 0.00 | 0.02 |
| Top | 0.00 | 0.02 | 0.01 | 0.46 |

| $n = 2$ | $|1, b\rangle$ | $|2, b\rangle$ | $|1, t\rangle$ | $|2, t\rangle$ |
|---|---|---|---|---|
| Bottom | 0.01 | 0.33 | 0.00 | 0.14 |
| Top | 0.00 | 0.14 | 0.01 | 0.33 |

The inset shows a schematic depiction of the monolayer conductivity [19].

C. The effect of bias

One of the main features of the AA’ bilayer is its peculiar band structure, particularly the degeneracy at $k = 0$. An interesting thing to consider is the effect of lifting said degeneracy. To study this possibility, we now briefly consider the case of a biased AA’ bilayer. The bias can be introduced in the system through the application of a vertical displacement field. Since the application of such a field breaks the inversion symmetry of the AA’ bilayer, one may expect new optical selection rules for the biased bilayer when compared to the unbiased case.

To introduce the effect of bias in our low energy model, we need only add a new contribution to the low energy
Hamiltonian given in Eq. (III.2):
\[H_{\text{bias}} = VI \otimes \sigma_z, \quad (III.5) \]
with \(V \) the quantifying the magnitude of the bias, \(I \) the identity matrix and \(\sigma_z \) the \(z \) Pauli matrix. The bands associated with this new Hamiltonian are depicted in Fig. III.4 where we see that for a small bias the degeneracy at \(k = 0 \) is indeed lifted, and the lower energy conduction band acquires the form of a Mexican hat, similar to what is found in biased bilayer graphene. As the bias increases, so does the separation between the two bands, and the shape of the bottom band becomes closer to a simple parabolic dispersion. We also note that, although we only show the results for positive bias, the bands for negative bias are identical to the ones presented here.

Solving the BSE (using same parameters we used in the unbiased case) with this new Hamiltonian, we obtain the result depicted in Fig. III.5, where different values for \(V \) are considered (the results for negative bias are identical). First, despite the reduction of the band gap, reflecting a reduction of its binding energy. Furthermore, we note that the initially simple features at higher energies become significantly more complex as the bias increases, since different new small resonances start to appear. From the inspection of the real space wave functions, we find that these new small resonances are associated with excitons which appear to be mainly interlayer (electron and hole in opposite layers). The excitons originating the larger resonances, which in the unbiased case were almost entirely intralayer, see their interlayer component increase. At last we note that in the presence of external bias the conductivity becomes more alike the one found for the AB bilayer, something we assign to the breaking of inversion symmetry.

As we saw in Fig. III.2, at zero bias, the resonances on the conductivity are essentially due to s-states, whose wave functions are finite at \(k = 0 \). However, as soon as some bias is introduced in the system, the symmetry of the problem changes, and the optical selection rules are affected. Since for the biased bilayer we can split the bands into low energy and high energy groups, an approximate two band model can be employed (see Sec. III.D), allowing us to establish approximate optical selection rules. Applying the Lowdin partitioning, as described prior to Eq. (II.16), we find the following effective two band Hamiltonian:
\[H_{\text{Bias, eff}} = \begin{pmatrix} \Delta(-|V|) - \frac{9\gamma_0^2\Delta(|V|)k^2}{8V^2-4V^2E_g^2} & \frac{9\gamma_0^2\Delta(|V|)k^2}{8V^2-4V^2E_g^2} \\ -\frac{9\gamma_0^2\Delta(|V|)k^2}{8V^2-4V^2E_g^2} & \Delta(-|V|) \end{pmatrix}, \quad (III.6) \]

where \(\Delta(x) = \sqrt{(E_g/2 + x)^2 + \gamma_1^2} \). In its current form, this Hamiltonian holds for both \(V > 0 \) and \(V < 0 \) (but clearly fails to describe \(V = 0 \), the unbiased case). Using the procedure of Ref. [40] one more time, we identify the winding number as \(w = 0 \), and as a consequence the bright excitons are those with \(m_X = \pm \tau \), that is, \(p \)-states. If trigonal warping had been considered, for example by including non-vertical interlayer hoppings, then states with \(m = \pm 2 \) and \(m = \pm 4 \) could also be excited (due to an additional factor of 3 stemming from the lattice symmetry contributing to \(m_X \)). Note how for the biased AA’ bilayer the s-states are dark even if trigonal warping is considered, in stark contrast with the unbiased case, where s-states dominate the optical response.

![Figure III.4](image-url)

Figure III.4. Conduction bands of the biased AA’ bilayer, for three different bias values, \(V = 0 \) meV, \(V = 20 \) meV and \(V = 100 \) meV. The valence bands present and identical dispersion relation.

![Figure III.5](image-url)

Figure III.5. Optical conductivity for the biased AA’ bilayer for different bias values. The results for negative bias are identical. The different conductivities are vertically shifted for clarity. Also depicted is the location of the band gap for each bias value.

In this paper we studied the optical conductivity due to excitonic effects of two types of hBN bilayers, the AB and AA’ configurations. The comprehension of the properties of these bilayers is of great utility in the study of twisted bilayers at arbitrary angles, since the results we presented correspond to the limit cases of 0° and 60° rotation. To obtain the excitonic spectrum of each type of bilayer we solved the Bethe-Salpeter equation (BSE) using the

IV. DISCUSSION
Bloch factors given by a low energy four-band Hamiltonian. To ease the numerical weight of the calculation we avoided the process of solving a 2D integral equation by a judicious choice of the phases of the Bloch factors, allowing us to cast the BSE into a 1D problem, which can then be solved in a rather efficient way. We emphasize that the method we presented to solve the four-band BSE gives better results than those of effective theories, such as the Lowdin partitioning. Although useful to extract optical selection rules, this type of effective approach fails to accurately predict the optical response (as we saw for the AB bilayer), and may even be impossible to apply (as we saw for the AA' bilayer). Moreover, our approach is far less computationally expensive than methods which require the solution of the BSE in two dimensions, allowing the exploration of such systems by a broader audience.

Regarding the conductivities of the two considered bilayers, we found that the AB configuration presents an optical response where both intralayer and interlayer excitons participate. In particular, we found the first (and largest) excitonic resonance to be due to a mainly intralayer exciton, followed by a small, yet well resolved, resonance due to an interlayer exciton (which is only captured when the four bands of the model are accounted for); this small peak is followed by a larger one, also due to a mainly interlayer exciton. Furthermore, we found that for the AB bilayer the two main resonances in the optical conductivity could be assigned with the Hydrogenic label of p-states (angular quantum number equal to 1); f-states (angular quantum number 3) are also allowed to be excited albeit with tiny oscillator strengths, and s-states (angular quantum number 0) appear if trigonal warping is accounted for.

For the AA' bilayer we found an optical conductivity dominated by mainly intralayer excitons, to which we assigned the Hydrogenic label of s-states due to the lineshape of the wave functions in momentum space, in agreement with [12]. Contrarily to the AB stacking, the conductivity of the AA' bilayer presented a set of resonances with monotonically decreasing magnitude (similar to the monolayer). Hence, the small peak between two larger ones in the AB bilayer is a clear differentiating feature between the two considered stackings.

When the case of a biased AA' bilayer was studied, we found that the s-states became dark, and the p-states dominated the optical spectrum; the change of optical selection rules is a consequence of the symmetry breaking introduced by the bias. Moreover, as the bias increased we found that the first (and more pronounced) resonance was shifted to higher energies, going against the trend of the band gap, which decreased with increasing bias. We also found that the introduction of the bias lead to an overall more complex optical response, due to the increased contribution from interlayer excitons.

ACKNOWLEDGMENTS

B.A., R.M.R and N.M.R.P acknowledge support by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020. J.C.G.H. acknowledges the Center of Physics for a grant funded by the UIDB/04650/2020 strategic project. B.A. and N.M.R.P acknowledge support from FCT-Portugal through Project EXPL/FIS-MAC/0953/2021. B.A. further acknowledges funding from FCT-Portugal via Grant CEECIND/02936/2017. R.M.R. and N.M.R.P. also acknowledge support from the European Commission through the project GrapheneDriven Revolutions in ICT and Beyond (Ref. No. 881603, CORE 3) and the project PTDC/FIS-MAC/2045/2021. N.M.R.P. further acknowledges COMPETE 2020, PORTUGAL 2020, FEDER and the FCT through projects POCI-01-0145-FEDER-028114, POCI-01-0145-FEDER-02888 and PTDC/NANOPT/29265/2017.

Appendix A: Details on the DFT calculations

Density Functional Theory (DFT) calculations were performed using the software package QUANTUM ESPRESSO [43]. We used a scalar-relativistic norm-conserving pseudopotential [44, 45] and the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) [46]. The plane-wave cut-off was 80 Ry and for the integration over the Brillouin-zone the scheme proposed by Monkhorst-Pack [47] with a grid of 18×18×1 k-points was used. A vacuum size between the layer images of 25 bohr was enough to avoid interactions between the periodic images. We also included the van der Waals correction proposed by Grimme [48, 49]. Atoms were relaxed to establish the spacing between layers. The tight-binding parameters were obtained by fitting the DFT bands along a path in the first Brillouin zone as depicted in Fig. A.1. Only the valence bands were fitted, since the DFT calculations capture less accurately the empty states of the conduction bands [10].

![Figure A.1. Fit of the tight binding bands to the results found from DFT calculations. For the AB bilayer we find $E_g = 4.585$ eV, $\gamma_0 = 2.502$ eV and $\gamma_1 = 0.892$ eV. For the AA' bilayer we obtain $E_g = 4.650$ eV, $\gamma_0 = 2.491$ eV and $\gamma_1 = 0.595$ eV.](image-url)
Appendix B: On the exciton’s angular quantum number

1. Two band system

Let us start by considering the problem of an hBN monolayer, which we take as a concrete example of a two band system \[14\]. We model the monolayer with a two band Dirac Hamiltonian to describe its low energy electronic properties. From the diagonalization of the Hamiltonian, one easily shows that the Bloch factors take the form \[14\]:

\[
\begin{align*}
|u_{c,k}| &= \left[e^{i\theta} \sin \xi_k, \cos \xi_k \right]^T , \\
|w_{c,k}| &= \left[e^{i\theta} \cos \xi_k, -\sin \xi_k \right]^T ,
\end{align*}
\]

where \(c/v\) labels the conduction/valence band, \(\theta = \arctan k_y/k_x\) and \(\xi_k\) is a function which approaches zero as the momentum \(k\) vanishes. Alternatively, we could have defined the Bloch factors as:

\[
\begin{align*}
|w_{c,k}| &= \left[e^{i\theta} \sin \xi_k, \cos \xi_k \right]^T , \\
|w_{v,k}| &= \left[\cos \xi_k, -e^{-i\theta} \sin \xi_k \right]^T ,
\end{align*}
\]

since state vectors are only defined up to a global phase factor.

Let us now introduce excitons in this system. We consider that, as in the main text, the wave function of an exciton in momentum space can be written as \(\psi^{\alpha}(k) = f^{\alpha}(k)e^{i\theta}\). The real space wave function can be defined as

\[
\begin{align*}
\Psi^{u}_{\alpha}(r_e, r_h) &= \sum_k e^{i(K+k)\cdot(r_e-r_h)} f^{\alpha}(k)e^{i\theta} u_{k,c}^{\alpha} (u_{k,v}^{\beta})^* , \\
\Psi^{w}_{\alpha\beta}(r_e, r_h) &= \sum_k e^{i(K+k)\cdot(r_e-r_h)} f^{\alpha}(k)e^{i\theta} u_{k,c}^{\alpha} (u_{k,v}^{\beta})^* ,
\end{align*}
\]

where \(r_e\) and \(r_h\) are the electron and hole positions, respectively, and \(u_{k,c}^{\beta}\) refers to the \(\alpha\) sub-lattice entry of the Bloch factor \(u_{k,c}\) (an analogous definition holds for \(u_{k,v}^{\beta}\)). From the definition of the Bloch factors, and recalling that \(l_{k-\alpha} = 0\), we see that the product \(w_{k,c}^{\alpha} (u_{k,v}^{\beta})^*\) approximately introduces a phase \(e^{-i\theta}\) in the definition of the wave function, while \(w_{k,c}^{\alpha} (u_{k,v}^{\beta})^*\) introduces no phase. Hence, when we define the wave function with the \(u\)-Bloch factors, we find a pseudo-spin angular quantum number of \(m_{u}^{ps} = -1\), while for the \(w\)-Bloch factors we have \(m_{w}^{ps} = 0\). Notice how we focused our analysis near \(k = 0\), since that is where selection rules are stronger: momentum dependence tends to weaken optical selection rules.

For a linearly polarized electric field, one can show that the optical response is proportional to \(\sum_k \psi^{\alpha\beta}(k) |u_{k,c}^{\alpha}\rangle |u_{k,v}^{\beta}\rangle\). Like we did in the main text, the matrix element of the position operator can be found from the commutator of the Hamiltonian with the position operator itself. As we said in the beginning, we are considering a Dirac Hamiltonian to model the system. Because of that, we can write \(\Omega_{u/w}\) as

\[
\begin{align*}
\Omega^u_{u/w} &\propto \sum_k f^{\alpha}(k) e^{i\theta} \langle u_{k,c}^{\alpha} | \sigma^x | u_{k,v}^{\beta}\rangle \frac{E_{u,c,k} - E_{u,c,k}}{E_{u,c,k} - E_{v,k}} , \\
\Omega^w_{u/w} &\propto \sum_k f^{\alpha}(k) e^{i\theta} \langle w_{k,v}^{\alpha} | \sigma^x | u_{k,v}^{\beta}\rangle \frac{E_{v,k} - E_{u,c,k}}{E_{u,c,k} - E_{v,k}} ,
\end{align*}
\]

with \(E_{u/c,k}\) the dispersion relations of the model Hamiltonian, which are obviously independent of the phase choice for the Bloch factors. Converting the sum over \(k\) into a 2D integral in momentum space, and carrying out the necessary calculations, one finds that \(\Omega_u\) and \(\Omega_w\) are only finite if \(m_u = \pm 1\) and \(m_w = 0, -2\), respectively. Thus, at first, it may appear that the choice of phase for the Bloch factors changes the optical selection rules, since different angular dependencies for the exciton envelope function are selected. However, when the contribution of the pseudo-spin angular quantum number is taken into account, we see that \(m_u + m_{u}^{ps} = m_w + m_{w}^{ps} = 0, -2\). The sum of these two contributions is independent of the phase chosen for the Bloch factors, and is the appropriate angular quantum number \[26\].

2. Four band system

In the first part of this appendix we saw how to define the appropriate angular quantum number for a two band system such as an hBN monolayer. To achieve this one must sum the angular quantum number from the excitonic envelope function with the angular quantum number given by the Bloch factors, to obtain the appropriate angular quantum number; while the first two depend on the phase chosen for the Bloch factors, the last one is independent of it (as it should, in order to be an approximately good quantum number).

Let us now consider a four band model, such as the ones treated in main text. For such a system, the real space exciton wave function reads

\[
\Psi_{\alpha\beta}(r_e, r_h) = \sum_{k,c,v} e^{i(K+k)\cdot(r_e-r_h)} f^{\alpha}(k)e^{i\theta} u_{k,c}^{\alpha} (u_{k,v}^{\beta})^* ,
\]

which differs from the definition given in the first part of this appendix due to the sums over the bands. The problem in defining an angular quantum number for the exciton in a four band system lies in the definition of the pseudo-spin contribution. While the contribution from the envelope function to the angular quantum number is still well defined, the same can not be said for the pseudo-spin part, since, in principle, each of the terms
that $|u_{\nu,k}\rangle\langle u_{\nu,k}|$ can contribute with a different complex exponential (which is the case for the two systems treated in the main text), thus stopping us from obtaining a well-defined n_{bps}, with which the appropriate angular quantum number of the exciton (independent of phase choices) could be determined. Although this could be bypassed with a phase choice that, for example, left all the spinors without complex exponentials in the $k \to 0$ limit, that would no be helpful for our approach, where a specific phase choice has to be performed to cast the BSE into a 1D problem, thus simplifying its numerical solution.

Appendix C: Solving the BSE

In this appendix we shall give a more in depth description on how to numerically solve the Bethe-Salpeter equation (BSE) presented in the main text. The method we present is an extension of the one applied for the Hydrogen atom in Ref. [33]. We take Eq. (1.10) of the main text as our starting point:

$$ (E_k^c - E_k^v) f_{cv}(k) - \sum_{c'v'} \int q dq d\theta q V(k - q) \langle u_{k,c}'|u_{q,c}\rangle \langle u_{q,v}'|u_{k,v}\rangle f_{cv'}(q) e^{im(\theta_q - \theta_k)} = Ef_{cv}(k). \quad (C.1) $$

As discussed in the main text, we consider the spinor product to have the following form

$$ \langle u_{k,c}'|u_{q,c}\rangle \langle u_{q,v}'|u_{k,v}\rangle = \sum_{\lambda} A_{\lambda}^{cc'vv'}(k,q) e^{i\lambda(\theta_q - \theta_k)}, \quad (C.2) $$

where λ is some integer, and $A_{\lambda}^{cc'vv'}(k,q)$ are coefficients determined by the explicit computation of the spinor product. Inserting this into the previous equation, and noting that $V(k - q) \equiv V(k, q, \theta_q - \theta_k)$, one finds

$$ (E_k^c - E_k^v) f_{cv}(k) - \sum_{c'v'} \sum_{\lambda} \int q dq d\theta q A_{\lambda}^{cc'vv'}(k,q) f_{cv'}(q) e^{i(m+\lambda)\theta} = Ef_{cv}(k), \quad (C.3) $$

where we introduced the variable change $d\theta_q \to d\theta$ with $\theta = \theta_q - \theta_k$. Now, recalling the definition of $V(k, q, \theta)$, we introduce a new function, $\mathcal{I}_\nu(k,q)$, which corresponds to the integral over $d\theta$, that is

$$ \mathcal{I}_\nu(k,q) = \int_0^{2\pi} \frac{\cos(\nu\theta)}{\kappa(k,q,\theta)[1 + r_0\kappa(k,q,\theta)]} d\theta. \quad (C.4) $$

with $\kappa(k,q,\theta) = \sqrt{k^2 + q^2 - 2kq\cos\theta}$. Notice how only $\cos(\nu\theta)$ enters the integral, since the analogous term in $\sin(\nu\theta)$ vanishes by symmetry. From inspection, it should be clear that when $q = k$ the function $\mathcal{I}_\nu(k,q)$ is numerically ill-behaved, and as such must be treated carefully. Looking at its definition, one sees that we can express $\mathcal{I}_\nu(k,q)$ in terms of partial fractions as

$$ \mathcal{I}_\nu(k,q) = \int_0^{2\pi} \frac{\cos(\nu\theta)}{\kappa(k,q,\theta)} d\theta - r_0 \int_0^{2\pi} \frac{\cos(\nu\theta)}{[1 + r_0\kappa(k,q,\theta)]} d\theta \quad (C.5) $$

$$ \equiv \mathcal{J}_\nu(k,q) - K_\nu(k,q), \quad (C.6) $$

where from these two terms only the first one, $\mathcal{J}_\nu(k,q)$, is problematic when $k = q$, since $K_\nu(k,q)$ contains an additional 1 in the denominator which prevents any divergence. Before we explain how to avoid this numerical problem, let us first express the BSE in a more convenient manner. First, we write

$$ (E_k^c - E_k^v) f_{cv}(k) - \sum_{c'v'} \sum_{\lambda} \int_0^{2\pi} \{ \mathcal{J}_{m+\lambda}(k,q) A_{\lambda}^{cc'vv'}(k,q) f_{cv'}(q) - K_{m+\lambda}(k,q) A_{\lambda}^{cc'vv'}(k,q) f_{cv'}(q) \} q dq = Ef_{cv}(k). \quad (C.7) $$

Then, we define $B_{mc'vv'}(k,q) = \sum_{\lambda} \mathcal{J}_{m+\lambda}(k,q) A_{\lambda}^{cc'vv'}(k,q)$ and $C_{mc'vv'}(k,q) = \sum_{\lambda} K_{m+\lambda}(k,q) A_{\lambda}^{cc'vv'}(k,q)$. With these new definitions, one finds

$$ (E_k^c - E_k^v) f_{cv}(k) - \sum_{c'v'} \int_0^{2\pi} B_{mc'vv'}(k,q) f_{cv'}(q) q dq + \sum_{c'v'} \int_0^{2\pi} C_{mc'vv'}(k,q) f_{cv'}(q) q dq = Ef_{cv}(k). \quad (C.8) $$
Now, let us focus on the numerical problem associated with $B_m^{c,v'} (k, q)$. To treat the divergence that appears when $k = q$, we introduce an auxiliary function $g_m(k, q)$ and introduce the modification

$$
\int_0^\infty B_m^{c,v'} (k, q) f_c v'(q) dq \rightarrow \int_0^\infty \left[B_m^{c,v'} (k, q) f_c v'(q) - g_m(k, q) f_c v'(k) \right] dq + f_c v'(k) \int_0^\infty g_m(k, q) dq,
$$

(C.9)

with g_m defined in such a way that $\lim_{q \to k} \left[B_m^{c,v'} (k, q) - g_m(k, q) \right] = 0$. Following Ref. [38], we define g_m as

$$
g_m = B_m^{c,v'} (k, q) \frac{2k^2}{k^2 + q^2}.
$$

(C.10)

With the analytical part of the calculation taken care of, we shall now discuss how to numerically solve the equation we have arrived to. To achieve this, we first introduce a variable change which transforms the improper integral over $[0, \infty)$, into one with finite integration limits, such as $[0, 1]$; with this goal in mind we introduce $q = \tan(\pi x/2)$. Afterwards, we discretize the variables k and x (and consequently q), and find

$$(E_{k_i} - E_{k_i}') f_{cv}(k_i) + \sum_{c'v'} \sum_{j=1}^{N} C_m^{c,c',v'} (k_i, q_j) f_{c',v'}(q_j) \frac{dq}{dx_j}$$

$$- \sum_{c'v'} \sum_{j \neq i} B_m^{c,c',v'} (k_i, q_j) f_{c',v'}(q_j) q_j \frac{dq}{dx_j} w_j - f_{c',v'}(k_i) \left\{ \int_0^\infty g_m(k_i, p) dp - \sum_{j \neq i} g_m(k_i, q_j) \frac{dq}{dx_j} \right\} = Ef_{cv}(k_i)
$$

(C.11)

where N is the number of points and w_j is the weight function of the chosen numerical quadrature; also, $q_j \equiv q(x_j)$ and $dq/dx_j \equiv [dq/dx]_{x=x_j}$. Furthermore, we note that $\int_0^\infty g_m(k_i, p) dp$ is numerically well behaved as opposed to the original integral, $\int_0^\infty B_m^{c,c',v'} (k_i, p) dp$. Regarding the choice of quadrature, we employ a Gauss-Legendre quadrature, which is defined as [50]

$$
\int_a^b f(y) dy \approx \sum_{i=1}^{N} w_i f(y_i)
$$

(C.12)

where

$$
y_i = \frac{a + b + (b - a) \xi_i}{2},
$$

(C.13)

with ξ_i the i–th zero of the Legendre polynomial $P_N(y)$, and

$$
w_i = \frac{b - a}{(1 - \xi_i)^2 [P_N'(\xi_i)]^2}
$$

(C.14)

with $P_N'(\xi_i) \equiv [dP_N(y)/dy]_{y=\xi_i}$.

At last, the only thing left to do is to realize that this equation can be expressed as an eigenvalue problem of a $4N \times 4N$ matrix. This matrix can be thought of as a 4×4 matrix of matrices, each one with dimensions $N \times N$. The 16 blocks come from the different combinations of the indexes c, c', v and v', with each block corresponding to a $N \times N$ matrix stemming from the numerical discretization of the integral. Solving the eigenvalue problem one finds the exciton energies and wave functions.

[1] J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, and D. Basov, Nature Reviews Materials 4, 552 (2019).
[2] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, and B. Urbaszek, Rev. Mod. Phys. 90, 021001 (2018).
[3] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature nanotechnology 5, 722 (2010).
[4] A. Kretinin, Y. Cao, J. Tu, G. Yu, R. Jalil, K. Novoselov, S. Haigh, A. Gholini, A. Mishchenko, M. Lozada, T. Georgiou, C. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hacho, K. Watanabe, T. Taniguchi, A. Geim, and R. Gorbachev, Nano letters 14, 3270 (2014).

[5] M. Ashadi, M. Hadavi, and Z. Sarri, Physica E: Low-dimensional Systems and Nanostructures 87, 312 (2017).

[6] I. Epstein, A. J. Chaves, D. A. Rhodes, B. Frank, K. Watanabe, T. Taniguchi, H. Giessen, J. C. Hone, N. M. Peres, and F. H. Koppens, 2D Materials 7, 035031 (2020).

[7] P. Cudazzo, I. V. Tolatly, and A. Rubio, Phys. Rev. B 84, 085406 (2011).

[8] K. Watanabe, T. Taniguchi, and H. Kanda, Nature materials 3, 404 (2004).

[9] Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Science 317, 932 (2007).

[10] F. Fuchs, C. Rödl, A. Schleife, and F. Bechstedt, Phys. Rev. B 78, 085103 (2008).

[11] H.-P. Komsa and A. V. Krasheninnikov, Phys. Rev. B 88, 085318 (2013).

[12] T. Galvani, F. Paleari, H. P. C. Miranda, A. Molina-Sánchez, L. Wirtz, S. Latil, H. Amara, and F. m. c. Ducastelle, Phys. Rev. B 94, 125303 (2016).

[13] S. Di Sabatino, J. Berger, and F. Romaniello, Faraday Discussions 224, 467 (2020).

[14] A. Taghizadeh and T. G. Pedersen, Phys. Rev. B 99, 235433 (2019).

[15] J. Henriques, G. Ventura, C. Fernandes, and N. Peres, Journal of Physics: Condensed Matter 32, 025304 (2020).

[16] R. Ditchfield, W. Hehre, and J. Pople, The Journal of Chemical Physics 52, 5001 (1970).

[17] C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, Phys. Rev. B 89, 205436 (2014).

[18] M. F. M. Quintela and N. M. Peres, The European Physical Journal B 93, 1 (2020).

[19] R. M. Ribeiro and N. M. R. Peres, Phys. Rev. B 83, 235312 (2011).

[20] Y. Fujimoto and S. Saito, Phys. Rev. B 94, 245427 (2016).

[21] D. Wickramaratne, L. Weston, and C. G. Van de Walle, The Journal of Physical Chemistry C 122, 25524 (2018).

[22] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Phys. Rev. Lett. 99, 256802 (2007).

[23] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Phys. Rev. B 86, 155449 (2012).

[24] L. Xian, D. M. Kennes, N. Tancogne-Dejean, M. Altarelli, and A. Rubio, Nano letters 19, 4934 (2019).

[25] N. R. Walet and F. Guinea, Phys. Rev. B 103, 125427 (2021).

[26] K. Yao, N. R. Finney, J. Zhang, S. L. Moore, L. Xian, N. Tancogne-Dejean, F. Liu, J. Ardelean, X. Xu, D. Haltbetal, et al., Science Advances 7, eabe8691 (2021).

[27] W. Aggoune, C. Cocchi, D. Nabok, K. Rezouali, M. A. Belkhir, and C. Draxl, Phys. Rev. B 97, 241114 (2018).

[28] C. Attaccalite, M. Grünig, H. Amara, S. Latil, and F. m. c. Ducastelle, Phys. Rev. B 98, 165126 (2018).

[29] F. Palaeari, T. Galvani, H. Amara, F. Ducastelle, A. Molina-Sánchez, and L. Wirtz, 2D Materials 5, 045017 (2018).

[30] K. Mengle and E. Kioupakis, APL Materials 7, 021106 (2019).

[31] Y. Suzuki and K. Watanabe, Physical Chemistry Chemical Physics 22, 2908 (2020).

[32] I. Paradisasanos, S. Shree, A. George, N. Leisgang, C. Robert, K. Watanabe, T. Taniguchi, R. J. Warburton, A. Turchanin, X. Marie, I. C. Gerber, and B. Urbaszek, Nature communications 11, 1 (2020).

[33] S. Rytova, Moscow University Physics Bulletin 22 (1967).

[34] L. Keldysh, Sov. J. Exp. and Theor. Phys. Lett. 29, 659 (1979).

[35] T. Tian, D. Scullion, D. Hughes, L. H. Li, C.-J. Shih, J. Coleman, M. Chhowalla, and E. J. Santos, Nano letters 20, 841 (2019).

[36] C.-H. Park and S. G. Louie, Nano letters 10, 426 (2010).

[37] T. Cao, M. Wu, and S. G. Louie, Phys. Rev. Lett. 120, 087402 (2018).

[38] C. Y.-P. Chao and S. L. Chung, Phys. Rev. B 43, 6530 (1991).

[39] T. G. Pedersen, Phys. Rev. B 92, 235432 (2015).

[40] X. Zhang, W.-Y. Shan, and D. Xiao, Phys. Rev. Lett. 120, 077401 (2018).

[41] P.-O. Lowdin, The Journal of Chemical Physics 19, 1396 (1951).

[42] R. Winkler, S. Papadakis, E. De Poortere, and M. Shayegan, Spin-Orbit Coupling in Two-Dimensional Electron and Hole Systems, Vol. 41 (Springer, 2003).

[43] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Scuozolo, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, Journal of Physics: Condensed Matter 21, 395502 (20pp) (2009).

[44] D. R. Hamann, Phys. Rev. B 88, 085117 (2013).

[45] M. Schlipf and F. Gygi, Computer Physics Communications 196, 36 (2015).

[46] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[47] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

[48] S. Grimme, Journal of computational chemistry 27, 1877 (2006).

[49] V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and A. Vittadini, Journal of computational chemistry 30, 934 (2009).

[50] P. Kythe and P. Puri, Computational methods for linear integral equations (Springer Science & Business Media, 2011).