Some stability and exact results in generalized Turán problems

Dániel Gerbner
Alfréd Rényi Institute of Mathematics
gerbner.daniel@renyi.hu

Abstract

Given graphs H and F, the generalized Turán number $\text{ex}(n, H, F)$ is the largest number of copies of H in n-vertex F-free graphs. Stability refers to the usual phenomenon that if an n-vertex F-free graph G contains almost $\text{ex}(n, H, F)$ copies of H, than G is in some sense similar to some extremal graph. We obtain new stability results for generalized Turán problems and derive several new exact results.

1 Introduction

A fundamental question in graph theory is the following. Given a graph F, what is the largest number of edges that an n-vertex F-free graph can have? This quantity is called the Turán number and is denoted by $\text{ex}(n, F)$. Turán [19] proved that $\text{ex}(n, K_{k+1}) = |E(T(n,k))|$, where the Turán graph $T(n,k)$ is the complete k-partite graph with each part of order $\lfloor n/k \rfloor$ or $\lceil n/k \rceil$. Let us call a vertex or an edge of a graph color-critical if deleting that vertex or edge decreases the chromatic number. Simonovits [17] showed that if $\chi(F) = k + 1$ and F has a color-critical edge, then for sufficiently large n, we have $\text{ex}(n, F) = |E(T(n,k))|$. Gerbner and Palmer [10] defined F-Turán-good graphs as graphs H with $\text{ex}(n, H, F) = \mathcal{N}(H, T(n, \chi(F) - 1))$ for sufficiently large n. In this language Zykov's theorem implies that cliques are K_k-Turán-good (note that his result holds for every n). We say that H is weakly F-Turán-good if $\text{ex}(n, H, F) = \mathcal{N}(H, T)$ for some complete $(\chi(F) - 1)$-partite graph T. In this case a straightforward optimization finds T for given H, but we are unable to execute this optimization for general H. Győri, Pach and Simonovits [12] showed that complete multipartite graphs are weakly K_k-Turán-good. They also showed a bipartite graph which is not K_3-Turán-good.
Gerbner and Palmer [10] showed that C_4 is F_2-Turán-good, where F_2 consists of two triangles sharing a vertex. Note that F_2 does not have a color-critical edge, thus the Turán-graph is not edge-maximal: one more edge can be added without creating an F_2, but that edge is not in any C_4. Gerbner [7] showed that there are F-Turán-good graphs if and only if F has a color-critical vertex.

Let us call H asymptotically F-Turán-good if $\text{ex}(n, H, F) = (1 + o(1))N(H, T(n, \chi(F) - 1))$, and weakly asymptotically F-Turán-good if $\text{ex}(n, H, F) = (1 + o(1))N(H, T)$ for some complete $(\chi(F) - 1)$-partite graph T. A theorem of Gerbner and Palmer [10] states that if $\chi(F) = k$, then $\text{ex}(n, H, F) \leq \text{ex}(n, H, K_k) + o(n^{\lvert V(H) \rvert})$. It implies that if $\chi(H) \leq k$ and H is (weakly) asymptotically K_{k+1}-Turán-good, then H is also (weakly) asymptotically F-Turán-good. Another theorem of Gerbner and Palmer [11] states that paths are asymptotically F-Turán-good for non-bipartite graphs F.

In extremal graph theory problems often the graphs where a parameter takes its maximum all have a similar structure. A very common phenomenon is that graphs where the parameter is close to its maximum are in some sense close to the extremal graphs. The prime example is the following theorem.

Theorem 1.1 (Erdős-Simonovits stability theorem [3, 4, 18]). Let $\chi(F) = k + 1$. If G is an n-vertex F-free graph with $|E(G)| \geq \text{ex}(n, F) - o(n^2)$, then G can be obtained from $T(n, k)$ by adding and removing $o(n^2)$ edges.

Let us turn to known stability results concerning generalized Turán problems. As most of these results are similar to Theorem 1.1 we introduce a notation.

Let $\chi(H) < \chi(F) = k + 1$. We say that H is F-Turán-stable if the following holds. If G is an n-vertex F-free graph with $N(H, G) \geq \text{ex}(n, H, F) - o(n^{\lvert V(H) \rvert})$, then G can be obtained from $T(n, k)$ by adding and removing $o(n^2)$ edges. Theorem 1.1 states that K_2 is F-Turán-stable for every non-bipartite F. We say that H is weakly F-Turán-stable if the following holds. If G is an n-vertex F-free graph with $N(H, G) \geq \text{ex}(n, H, F) - o(n^{\lvert V(H) \rvert})$, then G can be obtained from a complete k-partite graph by adding and removing $o(n^2)$ edges. We remark that if H is (weakly) F-Turán-stable, then H is (weakly) asymptotically F-Turán-good.

Ma and Qiu [16] obtained the following generalization of Theorem 1.1.

Theorem 1.2 (Ma, Qiu [16]). Let $r < \chi(F)$. Then K_r is F-Turán-stable.

A different kind of stability result is due to the author [6]. Assume that F has a color-critical edge and $\chi(F) > r$. If G is an n-vertex F-free graph with chromatic number more than $\chi(F) - 1$, then $\text{ex}(n, K_r, F) - N(K_r, G) = \Omega(n^{r-1})$.

Most other stability results in this area were obtained either as a lucky coincidence when the proof of a bound on $\text{ex}(n, H, F)$ gives a stronger result (e.g. $\text{ex}(n, P_4, C_5)$ in [11]), or as a lemma towards a bound on $\text{ex}(n, H, F)$ (e.g. $\text{ex}(n, C_5, K_k)$ in [14]).

A more systematic approach to this latter type of stability results is due to Hei, Hou and Liu [13]. They showed that if $\chi(H) < \chi(F)$, F has a color-critical edge, the Turán graph contains the most copies of H among complete k-partite graphs and H is F-Turán-stable,
then H is F-Turán-good. In fact, instead of F-Turán-stability, they used the following weaker property: If G is an n-vertex F-free graph with $N(H,G) = \text{ex}(n,H,F)$, then G can be obtained from $T(n,k)$ by adding and removing $o(n^2)$ edges. They also showed that if F has a color-critical edge, then paths are F-Turán-stable.

Liu, Pikhurko, Sharifzadeh and Staden [15] introduced a general framework for studying graphs parameters that do not decrease by Zykov symmetrization, and proved that under some conditions, a stability result is also implied. Symmetrization does not decrease $\text{ex}(n, H, K_{k+1})$ if H is complete multipartite. It is not hard to see that the additional conditions are also satisfied, thus their results imply that complete multipartite graphs are weakly K_k-Turán-stable.

Now we are ready to list our contributions.

Proposition 1.3. Let $\chi(F) = k + 1$ and H be weakly asymptotically F-Turán-good and weakly K_{k+1}-Turán-stable. Then H is weakly F-Turán-stable. Furthermore, if H is asymptotically F-Turán-good and K_{k+1}-Turán-stable, then H is F-Turán-stable.

Combining the above proposition with the known results mentioned earlier, we obtain that complete multipartite graphs and paths are F-Turán-stable for every F with larger chromatic number.

We can extend the result of Hei, Hou and Liu [13] to the weak case.

Theorem 1.4. Let $\chi(F) > \chi(H)$ and assume that F has a color-critical edge. If H is weakly F-Turán-stable, then H is weakly F-Turán-good. Moreover, the same property is also implies by the weaker assumption that there is an n-vertex F-free graph G with $N(H,G) = \text{ex}(n,H,F)$ can be obtained from a complete $(\chi(F) - 1)$-partite graph by adding and removing $o(n^2)$ edges.

Combined with results mentioned earlier, the above theorem implies that complete multipartite graphs H are weakly F-Turán-good if $\chi(H) < \chi(F)$ and F has a color-critical edge. This was proved by the author [8] in the case $\chi(F) = 3$. Note that if H is F-Turán-stable, then H is weakly F-Turán-good by the above theorem, but not necessarily F-Turán-good: it is possible that the extremal graph is only slightly unbalanced. This is the case for $H = K_{1,3}$ and $F = K_3$: it was shown by Brown and Sidorenko [2] that the bipartite graph with the most copies of $K_{1,3}$ is either $K_{k,n-k}$ or $K_{k+1,n-k-1}$, where $k = \lfloor \frac{n}{2} - \sqrt{(3n-4)/2} \rfloor$.

Theorem 1.4 is the special case $r = 1$ of the next theorem.

Theorem 1.5. Let $\chi(F) = k + 1$, $\chi(H) = k$ and assume that F has a color-critical vertex. Let r be the smallest number such that there is a color-critical vertex v in F that is adjacent to exactly r vertices of one of the color classes in the k-coloring of the graph we obtain by

1 Their statement is weaker. They use is later for H satisfying additional properties, and they assume those properties in this theorem, but those properties are not actually used in the proof.

2 Their statement is again weaker. They use it later in the above described way, thus they only need to consider n-vertex F-free graphs G with $N(P_k,G) = \text{ex}(n,P_k,F)$, but their proof also works for G with $N(P_k,G) \geq \text{ex}(n,P_k,F) - o(n^k)$.
deleting v from F. Assume that if we embed graphs of maximum degree less than r into each part of a complete k-partite graph T_0, we do not obtain any copies of H besides those contained in T_0.

Assume that there is an n-vertex F-free graph G with $N(H,G) = \text{ex}(n,H,F)$, such that G can be obtained from a complete k-partite graph T by adding and removing $o(n^2)$ edges. Then H is weakly F-Turán-good.

We remark that the assumptions of the theorem ensure that we can embed a graph with maximum degree $r-1$ into one part of T, but the resulting graph contains $N(H,T)$ copies of H.

Using stability, we can obtain a result on the structure of the extremal graphs for $\text{ex}(n,H,F)$ in some cases. Let $d_G(H,v)$ denote the number of copies of H containing v in G. Observe that for vertices u,v in $T(n,k)$, we have $d_{T(n,k)}(H,v) = (1 + o(1))d_{T(n,k)}(H,u)$.

Theorem 1.6. Let $\chi(H) < \chi(F) = k + 1$, and assume that H is F-Turán-stable. Let G be an n-vertex F-free graph which contains $\text{ex}(n,H,F)$ copies of F. Then for every vertex $u \in G$ we have $d_G(H,u) \geq (1 + o(1))d_{T(n,k)}(H,u)$.

Note that for the ordinary Turán case, this is known [17]. Let us now state some of the exact results of generalized Turán problems that follow from our theorems (together with known results).

Theorem 1.7. (i) If $\chi(F) = k + 1$, $\chi(F)$ has a color-critical edge, H is K_{k+1}-Turán-stable, then H is weakly F-Turán-good. In particular, complete r-partite graphs and paths are weakly F-Turán-good. If H is also K_{k+1}-Turán-good, then H is also F-Turán-good.

(ii) If $\chi(F) = k + 1$, $\chi(F)$ has a color-critical vertex and H is a complete k-partite graph with each part sufficiently large, then H is weakly F-Turán-good.

(iii) Let F have chromatic number at least 4 and a color-critical edge. Then C_5 is F-Turán-good.

(iv) If F has a color-critical edge, then any union of cliques of order less than $\chi(F)$ is F-Turán-good.

(v) Let us assume that F has a color-critical edge and $\chi(F) = k + 1$. The K_{k+1}-Turán-good graphs listed in Theorem 2.3 are also F-Turán-good.

We remark that (iv) generalizes a theorem of the author [9], who showed that matchings are F-Turán-good if F has a color-critical edge.

In the next section, we state the lemmas we need. We also state and prove a proposition that give stability for several generalized Turán problem. We present the proofs of Proposition 1.3 and of Theorems 1.5, 1.6 and 1.7 in Section 3.

2 Preliminaries

We will use the removal lemma [5].
Lemma 2.1 (Removal lemma). If an n-vertex graph G contains $o(n^{|V(H)|})$ copies of H, then we can delete $o(n^2)$ edges from G to obtain an H-free graph.

We will combine this with a result of Alon and Shikhelman [1].

Proposition 2.2. $\text{ex}(n, K_k, F) = \Theta(n^k)$ if and only if $\chi(F) > k$.

We will also use the following lemma.

Lemma 2.3. Let us assume that $\chi(H) < \chi(F)$ and H is weakly F-Turán-stable, i.e. $\text{ex}(n, H, F) = \mathcal{N}(H, T) - o(n^{|V(H)|})$ for some complete multipartite n-vertex graph T. Then every part of T has order $\Omega(n)$.

Proof. Assume the statement does not hold and let $A_1, \ldots, A_{\chi(F)-1}$ be the parts of T. Let A_1 be the smallest part and A_2 be the largest part. Then $|A_2| \geq n/(\chi(F) - 1)$. Let U be a subset of A_2 of order $n/(2(\chi(F) - 1))$ and move U from A_2 to A_1 to obtain another F-free graph T'. This way we remove only those copies of H that contain an edge between U and A_2, thus $o(n^{|V(H)|})$ copies. Let us take a proper $\chi(H)$-coloring of H, and embed a color class into U, another color class into $A_2 \setminus U$, and the other color classes to $A_3, \ldots, A_{\chi(H)}$. This way we obtain $\Theta(n^{|V(H)|})$ copies of H that are in T' and not in T, thus $\mathcal{N}(H, T') > \mathcal{N}(H, T) + \Theta(n^{|V(H)|}) > \text{ex}(n, H, F)$, a contradiction completing the proof. ■

There are several results [12, 10, 7] that take F-Turán-good graphs as building blocks and form new F-Turán-good graphs.

Let $\chi(H), \chi(H') \leq k$. Let H_1 be the vertex-disjoint union of H and H'. Assume first that H contains a copy X of K_k, then let H_2 be the graph obtained by taking H_1 and a clique Y in H', and connecting vertices of Y and X arbitrarily. Assume now that H has a unique k-coloring. Let H_3 obtained by taking H and a K_k with with vertices v_1, \ldots, v_k, and adding additional edges such that for every $i \leq k$, there is a copy of K_k in H_3 containing v_i, but not containing any v_j for $j > i$ and assume that $\chi(H_3) = k$.

Theorem 2.4. (i) (Gerbner, Palmer [11]) Let H' be a K_{k+1}-Turán-good graph and $H = K_k$. Then H_2 is K_{k+1}-Turán-good.

(ii) (Gerbner [7]) Let H be a K_{k+1}-Turán-good graph. Then H_3 is K_{k+1}-Turán-good.

Here we show how the same arguments as used in [11] and [7] give similar statements for (weakly) asymptotically Turán-good and (weakly) Turán-stable graphs. The first statement of the next proposition is complicated because we need to emphasize that the nearly extremal complete multipartite graph is the same graph for both H and H'.

Proposition 2.5. Let $\chi(H), \chi(H') \leq k$ and $\chi(F) > k$. Let $\text{ex}(n, H, F) = (1+o(1))\mathcal{N}(H, T)$ and $\text{ex}(n, H', F) = (1+o(1))\mathcal{N}(H', T)$ for some complete k-partite n-vertex graph T. Then $\text{ex}(n, H_1, F) = (1+o(1))\mathcal{N}(H_1, T)$. Let $\text{ex}(n, H, K_{k+1}) = (1+o(1))\mathcal{N}(H, T)$ and $\text{ex}(n, H', K_{k+1}) = (1+o(1))\mathcal{N}(H', T)$ for some complete k-partite n-vertex graph T. Then $\text{ex}(n, H_2, K_{k+1}) = (1+o(1))\mathcal{N}(H_2, T)$. If H is asymptotically K_{k+1}-Turán-good, then H_3 is also asymptotically K_{k+1}-Turán-good. Moreover, H_3 is K_{k+1}-Turán-stable.
Furthermore, if H or H' are weakly F-Turán-stable, then H_1 is also weakly F-Turán-stable. Similarly, if H or H' are K_{k+1}-Turán-stable, then H_2 is also weakly K_{k+1}-Turán-stable.

We remark that the stability of H_i is implied if we have stability for any of H and H'. In the case of H_3, H' is replaced by K_k, for which we have stability by Theorem 1.2, thus we have stability automatically for H_3.

Proof. Let G be an n-vertex K_{k+1}-free graph. We count the copies of H_i by picking H, a vertex-disjoint H', and then the additional edges. Clearly picking H and then picking H' can be done $(1+o(1))N(H,T(n,k))$ and $(1+o(1))N(H',T(n,k))$ ways, thus it is asymptotically maximized by the Turán graph. This completes the proof for H_1.

For H_2, we consider the bipartite graph G' with X and Y embedded into G' as the two parts, with the edges of G between them. It was shown in [10] that a matching covering Y is missing from G'. On the other hand, in the Turán graph only such a matching is missing, thus the Turán graph also maximizes G', meaning that the bipartite graph obtained this way in G is a subgraph of the bipartite graph obtained this way in $T(n,k)$. This implies that the number of ways to pick the additional edges is maximized in $T(n,k)$ also.

For H_3, we pick a copy K of K_k and H. Then we need to finish the embedding of H_3 into G by adding the additional edges. We claim that there is at most one way to do that. Indeed, we go through the vertices v_i in H in increasing order. When we pick v_i, there is a copy of K_k in H_3 containing v_i such that the other vertices are already embedded into G. Since G is K_{k+1}-free, we have that those vertices have at most one common neighbor in G, thus there is at most one way to choose v_i. On the other hand, in the Turán graph there is always a way to finish the embedding (see the proof of Proposition 1.3 in [7]), thus the number of ways to pick the additional edges is maximized in $T(n,k)$ also.

Finally, if G cannot be obtained from T (or $T(n,k)$) by adding and removing $o(n^2)$ edges, then $N(H,G) < \alpha N(H,T)$ (or $N(H,G) < \alpha N(H,T(n,k))$) for some $\alpha < 1$ (or the same holds with H' in place of H). Thus the above calculations give the bounds $N(H_1,G) < (1+o(1))\alpha N(H_1,T)$ and $N(H_2,G) < (1+o(1))\alpha N(H_2, T(n,k))$, a contradiction. ■

We remark that in this case we obtain that two (and by induction any number of) copies of H have the same asymptotically extremal complete multipartite graph T, and if we have stability for H, then we have it for the multiple copies.

3 Proofs

Let us start with the proof of Proposition 1.3 that we restate here for convenience.

Proposition. Let $\chi(F) = k + 1$ and H be weakly asymptotically F-Turán-good and weakly K_{k+1}-Turán-stable. Then H is weakly F-Turán-stable. Furthermore, if H is asymptotically F-Turán-good and K_{k+1}-Turán-stable, then H is F-Turán-stable.
Proof. Let G be an n-vertex F-free graph. We start by applying the removal lemma and Proposition 2.2 to obtain a K_{k+1}-free graph G_0 by removing $o(n^2)$ edges. As we removed $o(n^{V(H)})$ copies of H this way, we have that $\mathcal{N}(H,G_0) \geq ex(n,H,F) - o(n^{V(H)}) = (1 + o(1))\mathcal{N}(H,T)$ for some complete k-partite graph T. As H is weakly K_{k+1}-Turán-stable, this means that G_0 can be obtained from T by adding and removing $o(n^2)$ edges, thus so does G. The furthermore part follows the same way, $T = T(n,k)$ in that case. \hfill \blacksquare

We continue with the proof of Theorem 1.5 that we restate here for convenience.

Theorem. Let $\chi(F) = k+1$, $\chi(H) = k$ and assume that F has a color-critical vertex. Let r be the smallest number such that there is a color-critical vertex v in F that is adjacent to exactly r vertices of one of the color classes in the k-coloring of the graph we obtain by deleting v from F. Assume that if we embed graphs of maximum degree less than r into each part of a complete k-partite graph T_0, we do not obtain any copies of H besides those contained in T_0.

Assume that there is an n-vertex F-free graph G with $\mathcal{N}(H,G) = ex(n,H,F)$, such that G can be obtained from a complete k-partite graph T by adding and removing $o(n^2)$ edges. Then H is weakly F-Turán-good.

Proof. Let $k = \chi(F) - 1$ and G be an n-vertex F-free graph with $\mathcal{N}(H,G) = ex(n,H,F)$, that can be obtained from a complete k-partite graph T with parts V_1, \ldots, V_k by adding and removing $o(n^2)$ edges. We pick T such that we need to add and remove the least number of edges this way. In particular, every vertex $v \in V_i$ is connected at least as many vertices in every V_j a in V_i (otherwise we could move v to V_j).

Let E denote the set of edges in G that are not in T (i.e., those inside a part V_i). Let $r(u)$ denote the number of edges incident to u in T that are not in G, i.e. the missing edges between u and vertices in other part. Then we have $\sum_{u \in V(G)} r(u) = o(n^2)$, thus there are $o(n)$ vertices u with $r(u) = \Omega(n)$. Let A denote the set of vertices with $r(u) = o(n)$ and $A_i = A \cap V_i$, then $|A_i| = |V_i| - o(n)$. By Lemma 2.3, we have that $|A_i| = \Omega(n)$. For $u \in V_i \setminus A_i$, we have that u is adjacent to $\Omega(n)$ vertices in every V_j, thus in every A_j.

Recall that there are edges v_1, \ldots, v_r in F such that by deleting these edges we obtain a k-partite graph with v, v_1, \ldots, v_r in the same part. Let f_1 denote the order of that part and f_2, \ldots, f_k denote the order of the other parts.

We claim that every vertex in V_i is adjacent to less than r vertices of A_i. Assume otherwise, without loss of generality let uu_1, \ldots, uu_r be edges with $u \in V_i, u_1, \ldots, u_r \in A_i$. Let B_i denote the neighborhood of u in A_i, then $|B_i| = \Omega(n)$ and every vertex of $A \setminus A_i$ is connected to $|B_i| - o(n)$ vertices of B_i. We pick $f_1 - r - 1$ other vertices in A_i. These f_1 vertices have $|B_i| - o(n)$ common neighbors in B_2, we pick f_2 of them, and so on. For every i, we pick f_i vertices from B_i that are joined to every vertex picked earlier. This is doable, since all but $o(n)$ vertices of B_i are connected to each of the vertices picked earlier. This way we find a copy of F in G, a contradiction.

Let X be a smallest set of vertices inside $V(G) \setminus A$ such that every $K_{1,r}$ inside E contains at least one vertex of X. By the above, $\sum_{u \in X} r(u) = \Omega(n|X|)$. On the other hand, there are at most $\binom{|X|}{2}$ edges of E inside X, and at most $|X|(r-1)$ edges of E go out from X.\hfill \Box
Consider a set S of H-free graphs G. Let f be one of the partite sets of the resulting Turán graph. Let v be a vertex in G such that $|v| > 0$. In particular in the setting of Theorem 1.4, if an F-free n-vertex graph G has chromatic number more than k, then G contains $\Omega(n^{\chi(H)-1})$ copies of H.

Let us continue with Theorem 1.6 that we restate here for convenience.

Theorem. Let $\chi(H) < \chi(F) = k + 1$, and assume that H is F-Turán-stable. Let G be an n-vertex F-free graph which contains $\Omega(n^{\chi(H)-1})$ copies of F. Then for every vertex $u \in G$ we have $d_G(H, u) \geq (1 + o(1))d_{T(n,k)}(H, v)$.

Proof. G can be transformed to $T(n, k)$ by adding and removing $o(n^2)$ edges. Let V_1 be one of the partite sets of the resulting Turán graph. Let $f(v)$ denote the number of copies of H that are removed this way and contain v. Then we have $\sum_{v \in V(G)} f(v) = o(n^{\chi(H)})$. Consider a set S of $|V(F)|$ vertices in V_1 such that $\sum_{v \in S} f(v)$ is minimal. Then by averaging $\sum_{v \in S} f(v) \leq \frac{|S|}{|V_1|} \sum_{v \in V_1} f(v) = o(n^{\chi(H)-1})$.

Now we apply a variant of Zykov’s symmetrization [20]. Let us consider copies of H that contain exactly one vertex s of S, and if sv is an edge of the copy of H, then v is in the common neighborhood of S in G (i.e., we do not use the edges from s to vertices not in the common neighborhood of S). Let $d_G(H, S)$ denote the number of such copies. Observe that each vertex of S is in $\frac{d_G(H, S)}{|S|}$ such copies of H.

Let x denote the number of copies of H that contain u and a vertex from S, then $x = O(n^{\chi(F)-2})$. If $d_G(H, u) < \frac{d_G(H, S)}{|S|} - x$, then we remove the edges incident to u from G and connect u to the common neighborhood of S. This way we do not create any copy of F, as the copy should contain u, but u could be replaced by any vertex of S that is not already in the copy to create a copy of F in G. We removed $d_G(H, u)$ copies of H, but added at least $\frac{d_G(H, S)}{|S|} - x$ copies, a contradiction.

Therefore, we have

$$d_G(H, u) \geq d_G(H, S) - x \geq d_{T(n,k)}(H, S) - \sum_{v \in S} f(r, v) - x = d_{T(n,k)}(H, S) - o(n^{\chi(H)-1}).$$

Since $S \subseteq V_1$, the common neighborhood of S in $T(n, k)$ is the same as the neighborhood of any vertex of S, thus $d_{T(n,k)}(H, S) = d_{T(n,k)}(H, s)$, completing the proof.

We continue with the proof of Theorem 1.7 which is too long to restate here.

Proof of Theorem 1.7. The first sentence of (i) follows from combining Proposition 1.3 and Theorem 1.4. In the case H is also K_{k+1}-Turán-good, we have that the Turán graph maximizes the number of copies of H among complete k-partite n-vertex graphs. If H is complete multipartite, we apply the result of Liu, Pikhurko, Sharifzadeh and Staden [15] mentioned
in the introduction, stating that H is K_{k+1}-Turán-stable. If H is a path, we apply the result of Hei, Hou and Liu \[13\].

To prove (ii), we combine Proposition \[1.3\] and Theorem \[1.5\] with the result of Liu, Pikhurko, Sharifzadeh and Staden \[15\]. We need to show that the assumption on H of Theorem \[1.5\] is satisfied. Let $u, v \in U_1$ and assume that uv is an edge in a copy of H. Without loss of generality, $u \in V_1$, $v \in V_2$. Then at most $2r - 2$ other vertices of U_1 can be in H. This means that every U_i contains either at most one color class of H or at most $2r$ vertices of H. If each color class of H has order more than $2r$, this is impossible.

To prove (iii), we use results of Lidický and Murphy \[14\]. They proved that for $k \geq 3$, C_5 is K_{k+1}-Turán-good and K_{k+1}-Turán-stable. This implies that C_5 is weakly F-Turán-stable by Proposition \[1.3\] hence C_5 is weakly F-Turán-good by Theorem \[1.4\] where $\chi(F) = k + 1$. A weakly F-Turán-good and K_{k+1}-Turán-good graph is clearly F-Turán-good, since the complete k-partite graph with the most copies of C_5 is the Turán graph.

To prove (iv), we apply induction on the number of components. Let us assume that the statement holds for graphs with at most ℓ components, let H be the vertex-disjoint union of ℓ cliques and H' be another clique. Then we can use Proposition \[2.5\] to show that the vertex-disjoint union H_1 of H and H' is F-Turán-stable. Then Theorem \[1.4\] implies that H_1 is weakly F-Turán-good. Let us assume that the extremal complete multipartite graph T contains parts A and B with $|A| < |B| - 1$. Then we move a vertex from B to A.

We claim that the number of copies of H_1 does not decrease this way. Indeed, every copy of H_1 intersects $A \cup B$ in a matching and some isolated vertices. Matchings are K_3-Turán-good (first shown in \[12\]), thus their number does not decrease this way. Clearly, such intersections are extended the same number of times to a copy of H_1 with vertices from the other parts, hence the number of copies of H_1 also does not decrease. Repeating this we eventually arrive to the Turán graph without decreasing the number of copies of H_1, which completes the proof.

To prove (v), recall that in Section 2, we described how to obtain graphs H_2 and H_3 starting from H and H'. These are generalizations of the constructions in \[11, 9\]. Therefore, applying Proposition \[2.5\] we obtain that the graphs listed are K_{k+1}-Turán-stable. Theorem \[1.4\] imply that they are weakly F-Turán-good. A weakly F-Turán-good and K_{k+1}-Turán-good graph is clearly F-Turán-good, completing the proof.

\[
\]

\textbf{Funding:} Research supported by the National Research, Development and Innovation Office - NKFIH under the grants KH 130371, SNN 129364, FK 132060, and KKP-133819.

\textbf{References}

[1] N. Alon, C. Shikhelman. Many T copies in H-free graphs. \textit{Journal of Combinatorial Theory, Series B}, \textbf{121}, 146–172, 2016.
[2] J. I. Brown, A. Sidorenko. The inducibility of complete bipartite graphs. *Journal of Graph Theory*, **18**(6), 629–645, 1994.

[3] P. Erdős. Some recent results on extremal problems in graph theory, *Theory of Graphs* (Internl. Symp. Rome), 118–123, 1966.

[4] P. Erdős. On some new inequalities concerning extremal properties of graphs, in *Theory of Graphs* (ed P. Erdős, G. Katona), Academic Press, New York, 77–81, 1968.

[5] P. Erdős, P. Frankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. *Graphs Combin.*, **2**, 113–121, 1986.

[6] D. Gerbner. Counting multiple graphs in generalized Turán problems. *arXiv preprint arXiv:2007.11645*, 2020.

[7] D. Gerbner. On Turán-good graphs. *arXiv preprint arXiv:2012.12646*, 2020.

[8] D. Gerbner. A non-aligning variant of generalized Turán problems. *arXiv preprint arXiv:2109.02181*, 2021.

[9] D. Gerbner. Generalized Turán problems for small graphs, *Discussiones Mathematicae Graph Theory*, 2021.

[10] D. Gerbner, C. Palmer. Counting copies of a fixed subgraph in F-free graphs. *European Journal of Combinatorics* **82** (2019) Article 103001.

[11] D. Gerbner, C. Palmer. Some exact results for generalized Turán problems. *European Journal of Combinatorics*, **103**, 103519, 2022.

[12] E. Győri, J. Pach, and M. Simonovits. On the maximal number of certain subgraphs in K_r-free graphs. *Graphs and Combinatorics*, **7**(1), 31–37, 1991.

[13] Doudou Hei, Xinmin Hou, Boyuan Liu, Some exact results of the generalized Turán numbers for paths, *arXiv preprint arXiv:2112.14895*, 2021.

[14] B. Lidický, K. Murphy. Maximizing five-cycles in K_r-free graphs. *European Journal of Combinatorics*, 97, 103367, 2021.

[15] H. Liu, O. Pikhurko, M. Sharifzadeh, and K. Staden. Stability from graph symmetrisation arguments with applications to inducibility. *arXiv preprint arXiv:2012.10731*, 2020.

[16] J. Ma, Y. Qiu, Some sharp results on the generalized Turán numbers. *European Journal of Combinatorics*, **84**, 103026, 2018.
[17] M. Simonovits. A method for solving extremal problems in graph theory, stability problems. *Theory of Graphs, Proc. Colloq., Tihany, 1966, Academic Press, New York*, 279–319, 1968.

[18] M. Simonovits. Extremal graph problems with symmetrical extremal graphs. Additional chromatic conditions, *Discrete Math. 7*, 349–376, 1974.

[19] P. Turán. Egy gráffelméleti szélsőértékeladatról. *Mat. Fiz. Lapok, 48*, 436–452, 1941.

[20] A. A. Zykov. On some properties of linear complexes. *Matematiceskii Sbornik,66*(2), 163–188, 1949.