An Analysis of the Genetic Diversity of Bread Wheat x Spelt Breeding Lines in Terms of Their Resistance to Powdery Mildew and Leaf Rust

Klaudia Goriewa-Duba 1,*, Adrian Duba 2, Elżbieta Suchowilska 1 and Marian Wiwart 1

1 Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-724 Olsztyn, Poland; ela.suchowilska@uwm.edu.pl (E.S.); wiwart@uwm.edu.pl (M.W.)
2 Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland; adrian.duba@uwm.edu.pl

* Correspondence: klaudia.goriewa@uwm.edu.pl

Received: 1 April 2020; Accepted: 4 May 2020; Published: 7 May 2020

Abstract: The main aim of this study was to analyze the genetic diversity of breeding lines derived from bread wheat and spelt (bread wheat cvs. Zebra, Torka and Kontesa; spelt breeding lines S10–S14) in terms of their resistance to infections caused by Blumeria graminis f. sp. tritici and Puccinia triticina Eriks. The genomes of all analyzed lines harbored the markers for Pm2a, Pm4b and Pm6a alleles, which confer resistance to the infection caused by B. graminis f. sp. tritici. The markers for Pm4c and Pm4a alleles were also identified in many objects. The high number of Pm markers was noted in the crosses Zebra × S11 and Zebra × S12 whose genomes harbored the markers for Pm2a, Pm3d, Pm4a-4c and Pm6c. Most of the studied lines harbored the marker linked to the Lr10 gene, which encodes resistance to the infection caused by P. triticina in wheat. The analysis of the presence of markers linked to the resistance to infections caused by B. graminis f. sp. tritici and P. triticina demonstrated that Zebra × S12 was the most promising breeding line with the highest number of markers for genes/alleles encoding resistance to powdery mildew and leaf rust. This breeding line was also highly resistant to both pathogens under field conditions.

Keywords: bread wheat; spelt; bread wheat-spelt crosses; powdery mildew; leaf rust

1. Introduction

Biodiversity conservation in crops, in particular wheat, is one of the greatest challenges facing cereal breeders in the 21st century [1]. Modern bread wheat (Triticum aestivum L.) varieties have to be characterized by high yields, high protein content, as well as high resistance to biotic and abiotic stressors [2]. High-yielding varieties of bread wheat could account for up to 90% of wheat grown around the world in the 21st century [3]. However, only a limited number of local varieties, many of which are closely interrelated, can be used as breeding materials, which narrows down the gene pool of bread wheat [4]. For this reason, taxa that are closely related to T. aestivum are increasingly used for the creative breeding of new varieties with desirable agronomic traits, high nutritional value, high processing suitability, as well as resistance to the most dangerous fungal pathogens [5]. Hexaploid spelt (Triticum spelta L.) is one of such taxa. It is believed that spelt evolved into bread wheat through multiple mutations [6]. There are practically no crossing barriers between the two species, which enables the production of fertile and stable hybrids that can be characterized by higher quality grain and greater resistance to pathogens than bread wheat. Allohexaploid spelt, closely related to bread wheat, has a similar genetic structure to T. aestivum. At present, spelt is produced mainly in organic farms because it has lower agronomic requirements than bread wheat and can be grown in...
areas with less favorable soil and climate conditions. Selected morphological traits of spelt, including non-free-threshing spikelets, low spike density, and genetic polymorphism of different populations contribute to its resistance to fungal pathogens [7,8].

Powdery mildew and leaf rust are the most ubiquitous foliar diseases of spring wheat in Central Europe. Global food security could be compromised by fungal diseases in wheat farms, which is why efforts are being made to screen new breeding materials for sources of resistance to these diseases. Powdery mildew caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici Em. Marchali (Bgt) and leaf rust caused by Puccinia triticina Eriks. (Prt) are among the most dangerous diseases of wheat. Infections caused by B. graminis f. sp. tritici and P. triticina can decrease yields by as much as 14%-60% [9].

Resistant cultivars of wheat continue to attract growing interest as the most economical and environmentally-friendly approach to disease control, which eliminates fungicides and minimizes yield losses caused by fungal diseases [10]. The use of molecular markers in analyses of potential breeding materials enables rapid screening of plant genotypes.

In genetic terms, plants possess qualitative and quantitative resistance to pathogens, which is conditioned by major gene or multiple genes. In most cases, resistance to powdery mildew and leaf rust is encoded monogenically in wheat. However, pathogens can easily overcome single-gene resistance. Therefore, wheat breeders are searching for the most effective methods of combining resistance genes in the gene pyramiding process. This broad-spectrum technique is applied to increase the durability of crop resistance to plant pathogens [11]. Breeding materials have to be screened for markers linked to Pm and Lr genes, which encode resistance to infections caused by B. graminis f. sp. tritici and P. triticina, respectively. To date, more than 77 formal Pm genes and more than 30 temporarily designated genes (such as PmYB or PmWFJ) have been identified in 56 chromosomal loci in bread wheat [12,13]. Most Pm genes are localized on the chromosomes of A- and B-genomes (46.2% and 35.1% of all Pm genes, respectively). The Pm genes mapped on chromosomes 1D-2D and 5D-7D account for 18.7% of all Pm genes. The mean number of powdery mildew resistance gene alleles has been determined as 3 in the A-genome, 1.19 in the B-genome, and 1.31 in the D-genome, which clearly indicates that every Pm locus in the A-genome of bread wheat contains a higher number of alleles than the corresponding loci in B- and D-genomes [13]. Genes encoding resistance to powdery mildew have multi-allelic sites, where selected Pm genes that respond differently to Bgt isolates are located at the same locus in different genotypes. Such genes include Pm1 (Pm1a-1e), Pm2 (Pm2a-2c, PmX3986-2, PmWFJ, PmD57-5D, PmLX66 and other), Pm3 (Pm3a-3j), Pm4 (Pm4a-4e), Pm5 (Pm5a-Pm5e) and Pm24 (Pm24a-Pm24b) [14,15]. The presence of many alleles of the Pm gene in the wheat genome constitutes a genetic base for increased resistance to powdery mildew. Some of the mentioned genes are considered as effective. During the evaluation of the putative resistance genes in wheat bread, other factors should be also considered, e.g., the number of Bgt isolates virulent to particular gene. An example is Pm2a, which is believed not to be highly effective against Bgt isolates. Despite the above, the number of Bgt isolates virulent to Pm2a remained relatively low in some parts of the world [16]; thus, this allele can be used in breeding studies. The investigated in this study marker for the Pm3d allele has been identified mostly in European cultivars of bread wheat. To date, its presence has been confirmed in Nordic cultivars of spring wheat [17,18], including Zebra, as well as breeding materials originating from Germany, the UK, and the Netherlands [17]. According to Li et al. [19], the Pm3d allele is gradually disappearing from bread wheat populations. The Pm4 locus is one of the most widely recognized loci of genetic resistance to powdery mildew, which exists alone or in combination with other powdery mildew resistance genes in many resistant cultivars of wheat [20]. The Pm4a resistance allele has been used in breeding efforts for several decades [20,21]. However, research suggests that this locus ceased to confer resistance in wheat growing areas such as Central and Eastern Europe, south-west China and the USA [21].

To date, over 80 leaf rust resistance genes have been described [22]. Most Lr genes are located on the short arm of chromosome 2B [23], and much fewer Lr genes are found on the chromosomes of the A-genome [24]. Most of these genes confer race-specific resistance. However, quick pathogen adaptation may result in the breakdown of Lr resistance genes [25]. The above shift the focus in
resistance breeding from race-specific/qualitative resistance (R-gene resistance) conditioned by a single large-effect gene to non-race-specific/quantitative resistance. Polygenic resistance is conditioned by many small-effect genes in the genome, which contribute to the achievement of durable resistance.

To counteract the global threat of powdery mildew and leaf rust, systematic efforts are being made to screen new breeding materials for resistance genes. Genetic similarity resulting from the same number of chromosomes ($2n = 6x = 42$) and considerable homology between bread wheat and spelt chromosomes creates new opportunities for developing stable and high-yielding hybrids [26]. Breeding programs require diverse genetic material as a source of genes encoding agriculturally desirable traits. Cultivars Torka and Zebra are elite wheat cultivars (E) with the highest flour strength and high protein content, whereas Kontesa is a high-yielding cultivar of quality class A [27]. In principle, such hybrids constitute valuable breeding materials, including in resistance breeding. These efforts gave rise to hybrids between spelt breeding lines and bread wheat cultivars. The relevant research is also being carried out by the Department of Plant Breeding and Seed Production of the University of Warmia and Mazury (UWM) in Olsztyn, Poland [28].

The spelt lines bred by the UWM in Olsztyn differ in morphological traits and certain agronomic traits. A cytogenetic study also revealed differences in the distribution of repetitive sequences, which could indicate that bread wheat and spelt hybrids are genetically variable [26]. The objective of this study was to evaluate the health status of bread wheat and spelt hybrids and their parental forms (three spring wheat cultivars: Torka, Zebra, and Kontesa, and five spelt lines bred by the UWM in Olsztyn: S10, S11, S12, S13 and S14) under field conditions. Selected markers linked to the genes that encode resistance to infections caused by *B. graminis f. sp. tritici* and *P. triticina* in wheat were also applied, and their interaction effects on the severity of powdery mildew and leaf rust were determined to select the most valuable wheat-spelt lines.

2. Materials and Methods

The experimental material comprised 72 breeding lines representing 24 F$_7$ and F$_8$ generation hybrids from single crosses between *T. spelta x T. aestivum* and *T. aestivum x T. spelta* and their parental forms: spring spelt breeding lines (S10, S11, S12, S13 and S14 selected from a large group of accessions obtained from the National Center for Plant Genetic Resources in Radzików, Poland) characterized by high technological and nutritional properties, selected at the Department of Plant Breeding and Seed Production of the University of Warmia and Mazury in Olsztyn, Poland, and three spring cultivars of bread wheat: two elite cultivars: Torka and Zebra and one bread cultivar—Kontesa (Table 1). The absence of T x S13 cross was caused by significant differences in flowering dates of parental forms. Wheat lines were bulk harvested, in F$_7$ generation classic negative selection has been applied—the plants, which differ significantly from the whole population in terms of phenotypic traits (e.g., spike shape, height etc.), were removed from further analyses.

The bread wheat cultivars have different gene pools. Cultivar Torka is slightly less resistant to leaf rust and powdery mildew than cv. Zebra and cv. Kontesa is characterized by a slightly lower technological value than previously described bread cultivars, nevertheless Kontesa has a relatively high yield making this cultivar interesting for future breeding studies. Spelt lines were previously investigated in terms of possible suitability for nutritional purposes and resistance to fungal pathogens causing FHB (Fusarium Head Blight), powdery mildew and leaf rust. The assessment of health status was conducted during field experiments. Starting the crossing, no molecular analyses were performed to confirm the presence of leaf rust and powdery mildew resistance genes. The parental spelt lines selected from genebank accessions fully meet “true spelt” criteria in terms of phenotypic traits. Three morphologically varied lines were selected under field conditions from each of the 24 groups of sister lines.
Table 1. Breeding lines and parental forms analyzed in the study.

Object	Origin	Breeding Line
1	T × S10	1, 1', 1''
2	T × S11	2, 2', 2''
3	T × S12	3, 3', 3''
4	T × S14	4, 4', 4''
5	K × S10	5, 5', 5''
6	K × S11	6, 6', 6''
7	K × S12	7, 7', 7''
8	K × S13	8, 8', 8''
9	K × S14	9, 9', 9''
10	Z × S10	10, 10', 10''
11	Z × S11	11, 11', 11''
12	Z × S12	12, 12', 12''
13	Z × S13	13, 13', 13''
14	Z × S14	14, 14', 14''
15	S10 × T	15, 15', 15''
16	S11 × T	16, 16', 16''
17	S12 × T	17, 17', 17''
18	S13 × T	18, 18', 18''
19	S14 × T	19, 19', 19''
20	S10 × K	20, 20', 20''
21	S11 × K	21, 21', 21''
22	S12 × K	22, 22', 22''
23	S13 × K	23, 23', 23''
24	S14 × K	24, 24', 24''
25	N/A	T
26	N/A	K
27	N/A	Z
28	N/A	S10
29	N/A	S11
30	N/A	S12
31	N/A	S13
32	N/A	S14

Key: T—cv. Torka, K—cv. Kontesa, Z—cv. Zebra, S10-S14—spring spelt breeding lines; abbreviations: e.g., T × S10—Torka × S10, etc.

2.1. An Evaluation of the Health Status of Wheat-Spelt Breeding Lines and Their Parental Forms

The field experiment was performed at the Agricultural Experiment Station in Balcyny, Poland (53°36' N latitude, 19°51' E longitude). Spelt and wheat were grown and harvested in accordance with good agricultural practices. The field experiment was carried out in a randomized complete block design (RCBD) with three replications. Spikelets (spelt and wheat-spelt lines) or seeds (bread wheat) were sown in triplicate with 10 × 20 cm spacing and were fertilized with N/P/K (nitrogen/phosphorus/potassium) 60/25/80 kg/ha in plots with an area of 6 m². The severity of powdery mildew and leaf rust was
evaluated in plants naturally infected with *B. graminis* f. sp. *tritici* and *P. triticina* in 2017 and 2018. A minimum of 25 plants selected randomly from each object were examined in the flowering stage (BBCH 65) [29,30]. Three leaves from each replicate were collected to evaluate the disease severity based on the average percentage of affected leaf area on the scale proposed by the European and Mediterranean Plant Protection Organization [31].

2.2. Identification of Resistance Genes

DNA was isolated from two-week-old seedlings with the use of the Genomic Micro AX Plant Gravity kit (A&A Biotechnology, Poland). The quantity and quality of DNA were measured with a spectrophotometer (nanoMaestro Gen, Poland) at 260 nm and 280 nm wavelength. The isolated genetic material was stored in TE buffer at −20 °C to prevent DNA degradation. The PCR assay involved the PCR Mix RAPID kit (A&A Biotechnology, Poland) with the appropriate primers. The selected primers were specific for the genes encoding resistance to powdery mildew: *Pm2* (Xcfd81-5D, [32]), *Pm3d* (*Pm3d*, [17]), *Pm4a* (Xgwm356, [33]), *Pm4b* (Me8/Em7-220, STS-241 and Xgwm382-125, [34]), *Pm4c* (=*Pm23*) (Xbarc122, [35]), *Pm4d* (Xgwm526, [33]) and *Pm6* (NAU/STS BCD135-2, [34]) (Table 2), and leaf rust: *Lr1* (pTAG621, [36]), *Lr9* (SCS5550, [37]), *Lr10* (*Lr10*, [38]), *Lr24* (SCS73719, [39]), and *Lr28* (SCS421370, [40]) (Table 2). Amplifications were conducted in Whatman Biometra T-personal Thermocycler. The amplification conditions for the primer sets for identifying DNA markers linked to resistance genes are listed in Table 3. Gel electrophoresis was conducted in agarose (Blirt, Poland) with ethidium bromide to visualize the amplicons. DNA bands were visualized in the Biogenet DIGIDOC gel imaging system (Biogenet, Poland).

3. Results

3.1. Evaluation of Plant Health in a Field Experiment

The health status of wheat plants was evaluated in the full flowering stage (BBCH 65) in 2017 and 2018. Symptoms of infection were expressed by the percentage of affected leaf area: none—0%–1%, low—2%–30%, high—>30% (P—parental forms, L—breeding lines). In most plants, symptoms of powdery mildew were not observed or were weak in the first year of the experiment. The only exceptions were lines originated from S13 x K, which were characterized by a high percentage of affected leaf area (>30%) (Table 4).

In 2018, the infections were less severe than in the previous year, which could be attributed to different weather conditions High average temperatures and low total precipitation were noted in 2018 (Figure 1). Data were provided by the Meteorological Station in Balczyn. The infection pattern was similar in both years: cultivars Torka and Zebra and spelt lines S11–S13 showed no symptoms of *B. graminis* f. sp. *tritici* infection, and the most infected lines were 23–23" (S13 x K) (Figure 2).

Wheat leaves were more severely affected by *P. triticina* than *B. graminis* f. sp. *tritici*, but the noted symptoms were regarded as mild. In 2017, the parental lines of *T. spelta* did not exhibit symptoms of *P. triticina* infection. Most of the lines were also free of leaf rust symptoms in 2018. Mostly mild disease symptoms were noted in bread wheat in both years of the experiment. Leaf rust was observed in cvs. Torka, Zebra and Kontesa in 2017 and 2018. Line 18′ (S13 x T) was the only wheat-spelt line characterized by high susceptibility to *P. triticina* infections in both years of the study (Figure 3).
3.1. Evaluation of Plant Health in a Field Experiment

Mostly mild disease symptoms were noted in bread wheat in both years of the experiment. Leaf rust infections were less severe in 2018 compared to 2017, possibly due to weather conditions. The parental lines of cv. Torka showed symptoms of leaf rust in 2017 and 2018, with the only line 18′ showing symptoms in both years.

Symptoms of infection were expressed by the percentage of affected leaf area: none—0%–20%; mild—20%–40%; moderate—40%–60%; severe—60%–80%; very severe—80%–100%.

Figure 1. Weather conditions in the growing seasons of 2016/2017 and 2017/2018.

Figure 2. Symptoms of B. graminis f. sp. tritici infection on the leaves of the analyzed wheats A—cv. Torka, B—cv. Zebra, C—cv. Kontesa, D—spelt line S11, E—spelt line S12, F—spelt line S13, G—wheat x spelt line 23 (S13 × T).

Figure 3. Symptoms of leaf rust caused by P. triticina on the leaves of bread wheat cv. Torka (A) and spelt-wheat line 18′ (S13 × T) (B).
Table 2. Primer sequences for DNA markers linked to powdery mildew and leaf rust resistance genes in wheat.

Disease	Gene	Marker	Sequence 5’-3’ (F)	Sequence 5’-3’ (R)	Product Size (bp)
Powdery mildew					
Pm2	Xcdf81-5D	TATCCCCAATCCCCTCTTTTTC	GTCAATTGTGGCTTGTCCCT	283	
Pm3d	Pm3d	TGACTATTCGTGGGTCA	GACTGCGGACAGTTCAGC	1109	
Pm4a	Xgwm356	AGCGTTCTTGGGAATTAGAGA	CCAATCAGGCTGCAACAAAC	130	
Pm4b	Me8/Em7, 220	TGAGTCCAAACCCTGGTGC	GACTGCTGCAAGATTAAC	220	
	STS-241	TCTATCTGTTTTACTTCTTCT	GTCTCGTCTTACATTCTTACATACA	241	
	Xgwm382, 125	GTCAGATACGGGCTGCAAT	CTAATCAGCACATATTTCATCA	125	
Pm4c	Xbarc122	CCCGTGTATATCCAAGGATG	CAGCCCTTGTGATGATG	375	
Pm6	NAU/STSBCD135-2	GCTCCGAAGAAGAAGAAGA	TCTCTGCTTCTCCTGTGATGT	135	
Leaf rust					
Lr1	pTAG621	GGTTCGTCGTAATCTACTATA	CCTTGCCAGCCCAAAAG	560	
Lr9	SC5550	TGGCCCTCCTAAAGAAGGAGGAGGAAG	TCGCCCTCTGAACTTGATAT	550	
Lr10	Lr10	GTGATGCTGAGTGGTTCC	AGGTGCGATTGAGTTATTT	310	
Lr24	SCS73719	TCGTCCAGATCAGAATGTG	CTTGTGCATTACAGCTGTG	719	
Lr28	SCS423570	ACGAAGGTAAGTCTCCAACCA	AGTGCGAGGATTTAACC	570	

* primer pair amplifying polymorphic DNA.
Table 3. Amplification conditions for primer sets for identifying DNA markers linked to powdery mildew and leaf rust resistance genes.

Disease	Gene	Marker	Cycle Conditions
Powdery mildew	Pm2	Xcfd81-5D	94 °C–5 min; 35 cycles (94 °C–30 s; 60 °C–30 s; 72 °C–1 min); 72 °C–10 min
	Pm3d	Pm3d	94 °C–3 min; 35 cycles (94 °C–1 min; 58 °C–1 min; 72 °C–1 min); 72 °C–5 min
	Pm4a	Xgwm356	94 °C–3 min; 45 cycles (94 °C–1 min; 55 °C–1 min; 72 °C–2 min); 72 °C–10 min
	Pm4b	Me8/Em7_220	94 °C–3 min; 35 cycles (94 °C–40 s; 50 °C–1 min; 72 °C–1 min); 72 °C–5 min
		STS241	94 °C–3 min; 35 cycles (94 °C–40 s; 50 °C–1 min; 72 °C–1 min); 72 °C–5 min
		Xgwm382_125	94 °C–3 min; 35 cycles (94 °C–40 s; 60 °C–1 min; 72 °C–1 min); 72 °C–5 min
	Pm4c	Xbarc122	94 °C–3 min; 35 cycles (94 °C–40 s; 52 °C–1 min; 72 °C–1 min); 72 °C–5 min
	Pm4d	Xgwn526	94 °C–3 min; 45 cycles (94 °C–1 min; 55 °C–1 min; 72 °C–2 min); 72 °C–10 min
	Pm6	NAU/ST Laurea135-2	94 °C–4 min; 31 cycles (94 °C–30 s; 55 °C–1 min; 72 °C–1 min); 72 °C–1 min
Leaf rust	Lr1	pTAG621	94 °C–5 min; 30 cycles (94 °C–1 min; 55 °C–1 min; 72 °C–2 min); 72 °C–10 min
	Lr9	SCS5550	94 °C–2 min; 30 cycles (94 °C–1 min; 60 °C–1 min; 72 °C–1 min); 72 °C–7 min
	Lr10	Lr10	94 °C–3 min; 35 cycles (94 °C–45 s; 57 °C–45 s; 72 °C–30 s); 72 °C–3 min
	Lr24	SCS73719	94 °C–2 min; 35 cycles (94 °C–1 min; 55 °C–1 min; 72 °C–1 min); 72 °C–7 min
	Lr28	SCS421370	94 °C–2 min; 35 cycles (94 °C–1 min; 60 °C–1 min; 72 °C–1 min); 72 °C–5 min
Table 4. The health status of the investigated wheat accessions in two experimental years (2017 and 2018).

Object	Origin	Breeding Line	Category	Average Score								
1	T × S10	None	0%	None	0%	None	0%	None	Low	5%		
1'				None								
1''				None								
2	T × S11	None	0%	None	0%	None	0%	None	Low	5%		
2'				None								
2''				None								
3	T × S12	None	0%	None	1%	Low	10%					
3'				None		None	0%	None	Low	10%		
3''				None								
4	T × S14	None	1%	None	0%	None	1%		Low	5%		
4'				None								
4''				None								
5	K × S10	None	0%	None	0%	Low	5%		None	0%		
5'				None								
5''				None								
6	K × S11	None	0%	None	0%	Low	10%		None	1%		
6'				None								
6''				None								
7	K × S12	None	0%	None	0%	Low	5%		None	0%		
7'				None								
7''				None								
Table 4. Cont.

Object	Origin	Breeding Line	Category	Average Score	Category	Average Score	Category	Average Score	Category	Average Score
8	K × S13	8	None	0%	None	0%	None	0%	None	0%
		8'		1%						
		8“		0%	Low	10%	None	0%	Low	5%
9	K × S14	9	None	0%	None	0%	None	0%	None	0%
		9'		1%						
		9“		1%						
		10	None	0%	Low	10%	None	0%	Low	5%
		10'		0%						
		10“		0%						
11	Z × S11	11	None	0%	None	0%	Low	5%	None	1%
		11'		1%						
		11“		0%						
12	Z × S12	12	None	0%	None	0%	Low	5%	None	0%
		12'		0%	Low	10%	None	0%	Low	5%
		12“		0%						
13	Z × S13	13	None	0%	None	0%	None	0%	Low	10%
		13'		0%						
		13“		1%						
14	Z × S14	14	None	0%	None	0%	None	0%	None	1%
		14’		1%						
		14“		0%						
Table 4. Cont.

Object	Origin	Breeding Line	Category	Average Score						
15	S10 × T	15	None	0%	Low	10%	None	0%	None	0%
		15’	None	0%	Low	5%	None	1%	None	0%
		15’’	None	0%	None	0%	None	0%	None	1%
16	S11 × T	16	None	0%	None	0%	None	0%	None	1%
		16’	None	1%	None	0%	None	1%	None	0%
		16’’	None	0%	None	0%	None	1%	None	1%
17	S12 × T	17	None	0%	None	0%	None	0%	None	0%
		17’	None	0%	None	1%	None	0%	None	0%
		17’’	None	0%	None	0%	None	1%	None	1%
18	S13 × T	18	Low	5%	None	1%	None	1%	None	1%
		18’	Low	5%	None	1%	High	35%	High	60%
		18’’	Low	10%	None	1%	None	1%	Low	10%
19	S14 × T	19	Low	10%	None	0%	None	0%	Low	10%
		19’	Low	15%	None	1%	Low	5%	Low	15%
		19’’	Low	10%	None	1%	None	1%	Low	5%
20	S10 × K	20	Low	5%	None	1%	None	1%	None	0%
		20’	Low	5%	None	1%	None	1%	None	0%
		20’’	Low	5%	None	1%	None	1%	None	1%
21	S11 × K	21	None	0%	None	0%	None	1%	None	1%
		21’	None	0%	None	1%	None	1%	None	1%
		21’’	None	0%	None	1%	None	1%	None	1%
Table 4. Cont.

Object	Origin	Breeding Line	Category	Average Score						
22	S12 × K	22	None	0%	None	0%	Low	5%	None	1%
		22'	1%			0%	None	0%		1%
		22"	0%			1%	Low	10%		1%
23	S13 × K	23	High	40%	Low	5%	High	30%	Low	15%
		23'	35%			15%	High	40%		15%
		23"	40%			5%	Low	20%		15%
24	S14 × K	24	None	1%	Low	5%	High	30%	Low	10%
		24'	0%			15%	None	1%	None	1%
		24"	0%			20%	None	1%	None	1%
25	N/A	T	None	1%	None	1%	High	30%	Low	5%
26		Z	None	0%	None	0%	Low	5%	Low	10%
27		K	Low	10%	Low	5%	Low	10%	Low	15%
28	N/A	S10	Low	10%	None	0%	None	0%	None	0%
29		S11	None	0%	None	0%	None	0%	None	0%
30		S12	None	0%	None	0%	None	0%	None	0%
31		S13	None	0%	None	0%	None	0%	Low	10%
32		S14	Low	15%	None	0%	None	0%	None	0%
3.2. Identification of Pm Resistance Genes

The amplification products of the following markers were identified in the electropherograms of the studied breeding lines and their parental forms: *Pm2a* allele, *Pm3d* allele, *Pm4a* allele, three markers for the *Pm4b* allele, *Pm4c* allele, and *Pm6* gene (Figure 4). A PCR product with a size of 140–160 bp linked to the *Pm4d* allele (Figures 5 and 6) was not observed in any of the studied forms. An analysis of wheat-spelt lines revealed the highest number of markers linked to *Pm* genes in lines Z × S11 (line 11′) and Z × S12 (line 12), where the presence of markers linked to *Pm2a*, *Pm3d*, *Pm4a-4c*, and *Pm6* genes was confirmed (Figure 6).

![Figure 4. Identification of Pm gene markers in exemplary genotypes. Key: A (Pm2a): lane 1—S10, lane 2—cv. Zebra, lane 3—Z × S11 (breeding line 11), B (Pm3d): lane 1—cv. Zebra, C (Pm4a): lane 1—S11, lane 2—Z × S11 (breeding line 11), lane 3—Z × S12 (breeding line 12″), D (Pm4b): lane 1—S10, lane 2—S11, lane 3—Z × S11 (breeding line 11), lane 4—S10 × K (breeding line 20), E (Pm4c): lane 1—S12, lane 2—Z × S11 (breeding line 11′), lane 3—Z × S12 (breeding line 12), F (Pm6): lane 1—cv. Kontesa, lane 2—S10 × K (breeding line 20).](image-url)
Figure 5. Identification of gene markers associated with wheat resistance to *B. graminis* f. sp. *tritici* in bread wheat cultivars and five spelt lines as the parental forms of bread wheat-spelt breeding lines.

Figure 6. Identification of gene markers associated with wheat resistance to *B. graminis* f. sp. *tritici* in bread wheat and spelt lines Key: T—cv. Torka, Z—cv. Zebra, K—cv. Kontesa, N—null lines (e.g., T x S10 is abbreviated as 1), P—prim lines (e.g., T x S10’ is abbreviated as 1’), B—bis lines (e.g., T x S10” is abbreviated as 1”).
A PCR product with a size of 283 bp was found in all tested objects, which confirmed the presence of the \textit{Pm2a} gene marker. Most objects did not harbor the marker for the \textit{Pm3d} allele, which was identified only in the genome of bread wheat cv. Zebra and in lines where cv. Zebra was the parental form, excluding lines 10', 12' and 14'' (Z \times S10, Z \times S12 and Z \times S14, respectively) (Figures 5 and 6). The marker for the \textit{Pm4a} allele was identified in the genome of spelt lines S11 and S12, and in a large number of lines where S11 and S12 were the parental forms. It should be noted that the presence of the marker for the \textit{Pm4a} allele was a differentiating factor in the lines derived from a single cross. All parental forms, excluding spelt line S12, harbored all three markers for the \textit{Pm4b} allele. Line S12 did not contain the STS\textsubscript{241} marker, but the presence of the two remaining markers for the \textit{Pm4b} allele suggests that the genome of this spelt line harbors the \textit{Pm4b} gene (Figures 5 and 6). In the parental forms of the evaluated wheat-spelt lines, the marker for the \textit{Pm4c} allele was identified in the genomes of bread wheat cvs. Torka and Zebra, and in spelt lines S12 and S13 (Figure 5). The marker for the \textit{Pm4c} allele was also found in most lines derived from the parental forms that harbored this marker. The only exceptions were the lines originating from K \times S12 and Z \times S14 crosses, where the marker for the \textit{Pm4c} allele was not identified despite its presence in the parental genome (Figure 6). The marker for the \textit{Pm6} gene was not present in the lines originating from S10 \times K, S11 \times K and S14 \times K crosses. The marker for the \textit{Pm6} gene was present in the genomes of all parental forms and in all breeding lines (Figures 5 and 6).

3.3. Identification of \textit{Lr} Resistance Genes

The presence of PCR products with a size of 560 bp, 550 bp, and 719 bp, corresponding to \textit{Lr1}, \textit{Lr9} and \textit{Lr24} gene markers, respectively, was not confirmed in any parental forms of the analyzed wheat-spelt lines and in any of the lines (Figure 7). Products corresponding to the \textit{Lr10} gene marker were identified in bread wheat cv. Kontesa and in spelt lines S12 and S14. The \textit{Lr10} gene marker was found in all wheat-spelt lines whose both parental forms harbored the \textit{Lr10} gene, as well as in most of the lines derived from bread wheat cv. Kontesa (Figures 7–9). Selected lines originating from crosses between Z \times S12, Z \times S14, S12 \times T, and S14 \times T also harbored the \textit{Lr10} gene marker. The \textit{Lr28} gene marker was identified in the genome of bread wheat cv. Zebra and spelt line S10 (Figure 7). This marker was identified based on the presence of a product with a size of 570 bp, which was found in the lines derived from the above parental forms (Figure 9).

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{Figure7.png}
\caption{Identification of gene markers associated with wheat resistance to \textit{P. triticina} in bread wheat cultivars and five spelt as the parental forms of bread wheat-spelt breeding lines.}
\end{figure}
Figure 8. Identification of gene markers associated with wheat resistance to *P. triticina* in bread wheat and spelt lines. Key: T—cv. Torka, Z—cv. Zebra, K—cv. Kontesa, N—null lines (e.g., T × S10 is abbreviated as 1), P—prim lines (e.g., T × S10' is abbreviated as 1'), B—bis lines (e.g., T × S10'' is abbreviated as 1'').
was also high in the bread wheat cultivars examined by Kowalczyk et al. [41]. In the present study, the marker linked to the \(\text{Pm2a} \) allele in molecular analyses of more than 2500 accessions from 85 countries. In the current study, the frequency of the \(\text{Pm3d} \) allele was also low in the parental forms of the analyzed wheat-spelt lines. The absence of the marker for the \(\text{Pm3d} \) allele could be widely distributed in spelt populations. However, further research involving a larger number of genotypes is required to validate this observation. According to Li et al. [19], the \(\text{Pm3d} \) allele is gradually disappearing from bread wheat populations. The cited authors did not identify the marker for the \(\text{Pm3d} \) allele in molecular analyses of more than 2500 accessions from 85 countries. In the current study, the frequency of the \(\text{Pm3d} \) allele was also low in the parental forms of the analyzed wheat-spelt lines.

In this experiment, bread wheat cv. Zebra and spelt line S12 harbored a higher number of markers for genes/alleles encoding resistance to powdery mildew than other parental forms of the analyzed wheat-spelt lines. The marker linked to the \(\text{Pm2a} \) allele was present in each object, and its frequency was also high in the bread wheat cultivars examined by Kowalczyk et al. [41]. In the present study, the \(\text{Pm2a} \) allele was identified in all parental spelt lines, which suggests that this allele could be widely distributed in spelt populations. However, further research involving a larger number of genotypes is required to validate this observation. According to Li et al. [19], the \(\text{Pm3d} \) allele is gradually disappearing from bread wheat populations. The cited authors did not identify the marker for the \(\text{Pm3d} \) allele in molecular analyses of more than 2500 accessions from 85 countries. In the current study, the frequency of the \(\text{Pm3d} \) allele was also low in the parental forms of the analyzed wheat-spelt lines.

In Poland, the percentage of \(B. \text{graminis} \) f. sp. \(\text{tritici} \) isolates virulent to the \(\text{Pm4a} \) allele was high (>50%) already in the first years of the 21st century [42]. The absence of the marker for the \(\text{Pm4a} \) allele in the analyzed bread wheat cultivars suggests that this gene had been gradually withdrawn from breeding programs. All of the evaluated lines and their parental forms contained at least two markers for the \(\text{Pm4b} \) allele. The majority of \(\text{Bgt} \) isolates in the world is not virulent to this allele [21]. These findings point to cyclic changes in the population of \(\text{Bgt} \) isolates. In the early years of the 21st century, \(\text{Bgt} \) isolates in Poland were highly virulent to cultivars harboring the \(\text{Pm4b} \) allele [42]. However, the structure of \(\text{Bgt} \) isolates has not been researched extensively in Poland. The virulence structure of \(B. \text{graminis} \) f. sp. \(\text{tritici} \) isolates from triticale was investigated by Czembor et al. [43]. Previous reports had revealed that \(B. \text{graminis} \) f. sp. \(\text{tritici} \) expanded its host range from wheat to the closely related triticale [44], which suggests that the pathogen’s virulence structure in wheat populations continues to change. Kowalczyk et al. [45] demonstrated that triticale and bread wheat hybrids containing the \(\text{Pm4b} \) allele were resistant to \(\text{Bgt} \) isolates in Poland, which indicates that this allele plays an important role in resistance breeding. The third allele of the \(\text{Pm4} \) gene—\(\text{Pm4c} \) (previously identified as \(\text{Pm23} \))—is responsible for broad-spectrum resistance to \(\text{Bgt} \) isolates [46]. In this study, the \(\text{Pm4c} \) allele was identified in bread wheat cvs. Torka and Zebra, in spelt lines S12 and S13, and in the genomes of many lines derived from at least one parental form harboring this allele. The presence of several

![Figure 9. Identification of \(Lr \) gene markers in exemplary genotypes. Key: T—cv. Torka, Z—cv. Zebra, K—cv. Kontesa, (A) \((Lr10) \): lane 1—cv. Kontesa, lane 2—S12, lane 3—K × S10 (breeding line 5); (B) \((Lr28) \): lane 1—cv. Zebra, lane 2—S10, lane 3—Z × S12 (breeding line 12).](image-url)
alleles of a given resistance gene in one breeding line or cultivar can significantly expand its resistance spectrum [14]. Therefore, the lines derived from the crosses between Z × S11 and Z × S12, containing a higher number of markers for Pm4 alleles, should theoretically be more resistant to B. graminis f. sp. tritici under field conditions, which was confirmed by the present experiment. The marker for the Pm6 gene was identified in all tested objects, which could be attributed to the fact that this gene has been widely used in breeding programs since the 1980s [47,48].

Zebra was the only bread wheat cultivar that contained the marker for the Pm3d gene, and it also harbored the markers for the Pm2a allele, Pm4b-4c alleles, and the Pm6 gene. There is a general scarcity of research of the structure of genes conditioning resistance to Bgt in spelt. Longin et al. [49] reported that spelt was characterized by similar or even higher susceptibility to B. graminis f. sp. tritici infections relative to bread wheat. In view of the above findings, the spelt lines (S10–S14) could constitute valuable material for resistance breeding because none of them displayed symptoms of B. graminis f. sp. tritici infection during the experiment, or the observed symptoms were mild. The genomes of these lines harbored the markers linked to genes and alleles encoding resistance to powdery mildew: Pm2a, Pm4a, Pm4b, Pm4c, and Pm6. Line S12 emerged as an interesting genetic resource due to the presence of markers for Pm2a, Pm4a-4c, and Pm6.

Lines 11’ (Z × S11) and line 12 (Z × S12) appear to be particularly valuable sources of genetic resistance to B. graminis f. sp. tritici because they harbored the markers for Pm2a, Pm3d, Pm4a-4c and Pm6. During the entire experiment, none of these lines exhibited symptoms of powdery mildew under field conditions. These observations suggest that a combination of Pm2 (Pm2a allele), Pm4 (a-c alleles), and Pm6 resistance genes should effectively protect wheat-spelt lines against the disease. However, it is also possible that the presence of one particular resistance allele, e.g., Pm4a or Pm3d, may strongly contribute to field resistance to B. graminis f. sp. tritici given that bread wheat—spelt genotypes and their parental forms characterized by the presence of Pm4a or Pm3d in their genomes were without infection during field experiment regardless of the gene combination.

In the current study, three of the eight parental forms (cv. Kontesa and spelt lines S12 and S14) harbored the Lr10 marker (seedling resistance gene), whereas the Lr28 marker was identified in cv. Zebra and spelt line S10. The genetic basis of resistance in the studied cereals was limited to only these two genes. The investigated cultivars and breeding lines were also screened for Lr1, Lr9, and Lr24 resistance markers whose effectiveness had been previously demonstrated in both field and greenhouse experiments [50]. However, none of these markers were identified in the studied plant material. The health status assessment conducted in this experiment revealed that spelt was highly resistant to P. triticina infections. However, spelt lines S10, S11, and S13 probably contained also other resistance genes than those identified in this study, i.e., Lr1, Lr9, Lr10, Lr24, and Lr28. Lines 5’, 12 and 20 (K × S10, Z × S12, and S10 × K, respectively) harbored the markers for both Lr10 and Lr28. Most importantly, most of these lines do not display symptoms of leaf rust or displayed low level of symptoms (breeding line 12) during the two-year study. According to Tomkowiak et al. [51] Lr10 and Lr28 genes encode broad-spectrum resistance to various races of P. triticina in Europe and Central Asia. Leśniowska-Nowak et al. [52] also noted that the Lr10 gene is widely used in Polish breeding programs. Based on the evaluated combinations of genes encoding resistance to Bgt and Prt, line 12 (Z × S12) emerged as the most promising accessions harboring the highest number of markers for genes and alleles that confer resistance to the infections caused by these pathogens. Line 12 was also highly resistant to powdery mildew and leaf rust under field conditions. In the group of true spelt lines, line S12 appears to be particularly well suited for resistance breeding. Several genes and alleles encoding resistance to powdery mildew (Pm2a, Pm4a, Pm4b, Pm4c, and Pm6) and leaf rust (Lr10) were identified in the genome of line S12. This spelt line was also highly resistant to B. graminis f. sp. tritici and P. triticina in both years of the field experiment. Several of the phenotypically homogenous wheat-spelt lines were characterized by high resistance to both pathogens in the field, mostly the lines derived from the crosses between Z × S12, Z × S11, Z × S14, S11 × T. These objects constitute sources of genetic material for broad-spectrum resistance breeding. This study also demonstrated that the
genetic sources of resistance to Bgt and Prt were similar in bread wheat and spelt. Therefore, both species can be used to obtain new breeding materials and develop bread wheat cultivars whose genetic composition not only guarantees high nutritional value and desirable technological properties of grain, but also high resistance to fungal pathogens. *Triticum spelta* can also be a valuable donor of resistance genes that can be used in the pyramidization process. Further research involving a larger number of *T. spelta* accessions and varieties is needed to identify Bgt and Lrt resistance genes. True spelt lines S10–S14 that had been previously used for simple crossing were selected from a large number of genebank accessions based on their technological suitability (yield, resistance to lodging, resistance to pathogens) because the main aim of research efforts was to obtain simple crosses and lines for further creative breeding. It appears that some of the genebank accessions of *T. spelta*, characterized by less desirable agronomic and performance traits, may harbor interesting resistance genes. However, further research focusing on resistance breeding is needed to validate this assumption.

Author Contributions: Conceptualization, K.G.-D. and M.W.; methodology, K.G.-D., A.D., and E.S.; software, E.S. and M.W.; validation, K.G.-D., A.D., E.S., and M.W.; formal analysis, K.G.-D. and A.D.; investigation, K.G.-D. and A.D.; resources, M.W. and E.S.; data curation, K.G.-D. and M.W.; writing—original draft preparation, K.G.-D. and A.D.; writing—review and editing, K.G.-D. and A.D.; visualization, K.G.-D.; supervision, M.W.; project administration K.G.-D. and M.W.; funding acquisition, K.G.-D. and M.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Centre in Poland (project Preludium 14 [2017/27/N/NZ9/00058]).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Maich, R.H.; Steffolani, M.E.; Di Rienzo, J.A.; Leon, A.E. Association between grain yield, grain quality and morpho-physiological traits along ten cycles of recurrent selection in bread wheat (*Triticum aestivum* L.). *Cereal Res. Commun.* 2017, 45, 146–153. [CrossRef]

2. Tayyar, S. Variation in grain yield and quality of Romanian bread wheat varieties compared to local varieties in northwestern Turkey. *Rom. Biotechnol. Lett.* 2010, 15, 5189–5196.

3. Smale, M.; Reynolds, M.P.; Warburton, M.; Skovmand, B.; Trethewan, R.; Singh, R.P.; Ortiz-Monasterio, I.; Crossa, J. Dimensions of diversity in modern spring bread wheat in developing countries from 1965. *Crop Sci.* 2002, 42, 1766–1779. [CrossRef]

4. Reif, J.C.; Zhang, P.; Dreisigacker, S.; Warburton, M.L.; van Ginkel, M.; Hoisington, D.; Bohn, M.; Melchinger, A.E. Wheat genetic diversity trends during domestication and breeding. *Theor. Appl. Genet.* 2005, 110, 859–864. [CrossRef]

5. Arzani, A.; Ashraf, M. Cultivated ancient wheats (*Triticum* spp.): A potential source of health-beneficial food products. *Compr. Rev. Food Sci. Food Saf.* 2017, 16, 477–488. [CrossRef]

6. Dvorak, J.; Deal, K.R.; Luo, M.C.; You, F.M.; von Borstel, K.; Dehghani, H. The origin of spelt and free-threshing hexaploid wheat. *J. Hered.* 2012, 103, 426–441. [CrossRef]

7. Vivwart, M.; Perkowski, J.; Jackowiak, H.; Packa, D.; Borusiewicz, A.; Musko, M. Response of some cultivars of spring spelt (*Triticum spelta*) to *Fusarium culmorum* infection. *Die Bodenkultur* 2004, 103, 3.

8. Mankevičienė, A.; Jablonskytė-Raščė, D.; Maikštėnienė, S. Occurrence of mycotoxins in spelt and common wheat grain and their products. *Food Addit. Contam. Part A* 2014, 31, 132–138. [CrossRef]

9. Draz, I.S.; Abou-Elseoud, M.S.; Kamara, A.E.M.; Alaa-Eldein, O.A.E.; El-Bebany, A.F. Screening of wheat genotypes for leaf rust resistance along with grain yield. *Ann. Agric. Sci.* 2015, 60, 29–39. [CrossRef]

10. Huang, X.Q.; Röder, M.S. Molecular mapping of powdery mildew resistance genes in wheat: A review. *Euphytica* 2004, 137, 203–223. [CrossRef]

11. Revathi, P.; Tomar, S.M.S.; Singh, N.K. Marker assisted gene pyramiding of leaf rust resistance genes Lr24, Lr28 along with stripe rust resistance gene Yr15 in wheat (*Triticum aestivum* L.). *Indian J. Genet. Pl. Br.* 2010, 70, 349–354.

12. Jin, Y.; Xu, H.; Ma, P.; Fu, X.; Song, L.; Xu, Y.; Zhang, X.; An, D. Characterization of a new *Pm2* allele associated with broad-spectrum powdery mildew resistance in wheat line Subtil. *Sci. Rep.* 2018, 8, 475. [CrossRef] [PubMed]
13. Tang, S.; Hu, Y.; Zhong, S.; Luo, P. The Potential Role of Powdery Mildew-Resistance Gene Pm40 in Chinese Wheat-Breeding Programs in the Post-Pm21 Era. *Engineering* **2018**, *4*, 500–506. [CrossRef]

14. Ma, P.; Xu, H.; Li, L.; Zhang, H.; Han, G.; Xu, Y.; Fu, X.; Zhang, X.; An, D. Characterization of a new Pm2 allele conferring powdery mildew resistance in the wheat germplasm line FG-1. *Front. Plant Sci.* **2016**, *7*, 546. [CrossRef] [PubMed]

15. McIntosh, R.A.; Dubcovsky, J.; Rogers, W.J.; Morris, C.F.; Xia, X.C. Catalogue of gene symbols for wheat. *Suppl. Annu. Wheat News.* **2017**, *53*, 1–20.

16. Miedaner, T.; Flath, K. Effectiveness and environmental stability of quantitative powdery mildew (*Blumeria graminis*) resistance among winter wheat cultivars. *Plant Breed.* **2007**, *126*, 553–558. [CrossRef]

17. Tommasini, L.; Yahiaoui, N.; Srichumpa, P.; Keller, B. Development of functional markers specific for seven *Pm3* resistance alleles and their validation in the bread wheat gene pool. *Theor. Appl. Genet.* **2006**, *114*, 165–175. [CrossRef]

18. Peusha, H.; Enno, T.; Jakobson, I.; Ts[tilde]mbalova, J.; Ingver, A.; Järve, K. Powdery mildew resistance of Nordic spring wheat cultivars grown in Estonia. *Acta Agric. Scand. Sect. B–Soil Plant Sci.* **2008**, *58*, 289–296. [CrossRef]

19. Li, G.; Xu, X.; Bai, G.; Carver, B.F.; Hunger, R.; Bonman, J.M. Identification of novel powdery mildew resistance sources in wheat. *Crop Sci.* **2016**, *56*, 1817–1830. [CrossRef]

20. Huang, X.Q.; Hsam, S.L.K.; Zeller, F.J. Identification of powdery mildew resistance genes in common wheat (*Triticum aestivum* L. em Thell.). IX. Cultivars, land races and breeding lines grown in China. *Plant Breed.* **1997**, *116*, 233–238. [CrossRef]

21. Li, N.; Jia, H.; Kong, Z.; Tang, W.; Ding, Y.; Liang, J.; Ma, H.; Ma, Z. Identification and marker-assisted transfer of a new powdery mildew resistance gene at the *Pm4* locus in common wheat. *Mol. Breed.* **2017**, *37*, 79. [CrossRef]

22. Sharma, C.; Saripalli, G.; Kumar, S.; Gautam, T.; Kumar, A.; Rani, S.; Jain, N.; Prasad, P.; Raghuvanshi, S.; Jain, M.; et al. A study of transcriptome in leaf rust infected bread wheat involving seedling resistance gene Lr28. *Funct. Plant Biol.* **2018**, *45*, 1046–1064. [CrossRef] [PubMed]

23. Sapkota, S.; Hao, Y.; Johnson, J.; Lopez, B.; Bland, D.; Chen, Z.; Sutton, S.; Buck, J.; Youmans, J.; Mergoum, M. Genetic mapping of a major gene for leaf rust resistance in soft red winter wheat cultivar AGS 2000. *Mol. Breed.* **2019**, *38*, 9. [CrossRef]

24. Pinto da Silva, G.B.; Zanella, C.M.; Martinelli, J.A.; Chaves, M.S.; Hiebert, C.W.; McCallum, B.D.; Boyd, L.A. Quantitative Trait Loci Conferring Leaf Rust Resistance in Hexaploid Wheat. *Phytopathology* **2018**, *108*, 1344–1354. [CrossRef]

25. McIntosh, R.A.; Yamaizaki, Y.; Dubcovsky, J.; Rogers, W.; Morris, C.; Appels, R.; Xia, X.C. Catalogue of genes for wheat. In *Proceedings of the 12th International Wheat Genetics Symposium, Yokohama, Japan, 8–14 September 2013*; Ogihara, Y., Takumi, S., Handa, H., Eds.; Springer: Yokohama, Japan, 2015.

26. Goriewa-Duba, K.; Duba, A.; Kwiatek, M.; Wiśniewska, H.; Wachowska, U.; Wiwart, M. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (*Triticum aestivum* L.) and spelt (*Triticum spelta* L.). *Theor. Appl. Genet.* **2017**, *133*, 1817–1830. [CrossRef]

27. *List of Agriculture Cultivars Research Center for Cultivar Testing*; COBORU: Słupia Wielka, Poland, 2008.

28. Suchowilska, E.; Wiwart, M.; Kraska, R.; Kandler, W. Do *Triticum aestivum* L. and *Triticum spelta* L. Hybrids Constitute a Promising Source Material for Quality Breeding of New Wheat Varieties? *Agronomy* **2020**, *10*, 43. [CrossRef]

29. Witzenberger, A.; Hack, H. Explanations of the BBCH decimal code for the growth stages of cereals-with illustrations. *Gesunde Pflanzen* **1990**, *42*, 308–321.

30. Lancashire, P.D.; Bleigholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; WEBER, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. *Ann. Appl. Biol.* **1991**, *119*, 561–601. [CrossRef]

31. EPPO. European and mediterranean plant protection organization. Guideline for the efficacy evaluation of fungicides, foliar diseases of cereals Bulletin. *EPPO* **1998**, *28*, 279–290.

32. Qiu, Y.; Sun, X.; Zhou, R.; Kong, X.; Zhang, S.; Jia, J. Identification of microsatellite markers linked to powdery mildew resistance gene Pm40 in wheat. *Cereal Res. Commun.* **2006**, *34*, 1267–1273. [CrossRef]

33. Röder, M.S.; Korzun, V.; Wendehake, K.; Plasschke, J.; Tixier, M.H.; Leroy, P.; Ganal, M.W. A microsatellite map of wheat. *Genetics* **1998**, *149*, 2007–2023. [PubMed]
34. Ji, J.; Qin, B.; Wang, H.; Cao, A.; Wang, S.; Chen, P.; Zhuang, L.; Du, Y.; Liu, D.; Wang, X. STS markers for powdery mildew resistance gene *Pm6* in wheat. *Euphytica* 2008, 163, 159–165. [CrossRef]
35. Song, Q.J.; Shi, J.R.; Singh, S.; Fickus, E.W.; Costa, J.M.; Lewis, J.; Gill, B.S.; Ward, R.; Cregan, P.B. Development and mapping of microsatellite (SSR) markers in wheat. *Theor. Appl. Genet.* 2005, 110, 550–560. [CrossRef] [PubMed]
36. Feuillet, C.; Messmer, M.; Schachermayr, G.; Keller, B. Genetic and physical characterization of the *Lr1* leaf rust resistance locus in wheat (*Triticum aestivum* L.). *Mol. Gen. Genet.* MGG 1995, 248, 553–562. [CrossRef]
37. Sohail, Y. Molecular Assessment of *Puccinia triticina* and Available Wheat Genetic Resources to Combat Leaf Rust in Pakistan. Doctoral Dissertation, Quaid-I-Azam University Islamabad Pakistan, Islamabad, Pakistan, 2015.
38. Schachermayr, G.; Feuillet, C.; Keller, B. Molecular markers for the detection of the wheat leaf rust resistance gene *Lr10* in diverse genetic backgrounds. *Mol. Breed.* 1997, 3, 65–74. [CrossRef]
39. Gupta, S.K.; Charpe, A.; Koul, S.; Prabhhu, K.V.; Haq, Q.M.R. Development and validation of molecular markers linked to an *Aegilops umbellulata*–derived leaf-rust-resistance gene, *Lr9*, for marker-assisted selection in bread wheat. *Genome* 2005, 48, 823–830. [CrossRef]
40. Cherukuri, D.P.; Gupta, S.K.; Charpe, A.; Koul, S.; Prabhhu, K.V.; Singh, R.B.; Haq, Q.M.R. Molecular mapping of *Aegilops speltoides* derived leaf rust resistance gene *Lr28* in wheat. *Euphytica* 2005, 143, 19–26. [CrossRef]
41. Kowalczyzk, K.; Hsam, S.L.; Zeller, F.J. Identification of powdery mildew resistance genes in common wheat (*Triticum aestivum* L. em. Thell.). XI. Cultivars grown in Poland. *J. Appl. Genet.* 1998, 3, 225–236.
42. Svec, M.; Szunics, L.; Miklovicova, M.; Slovakova, T.; Tisova, V.; Hauptvogel, P. Identification of genes for resistance to wheat powdery mildew in Hungarian, Polish and Slovak wheat cultivars. *Plant Prot. Sci.* −Prague 2002, 38, 64–72. [CrossRef]
43. Czembor, H.J.; Domeradzka, O.; Czembor, J.H.; Mańkowski, D.R. Virulence structure of the powdery mildew (*Blumeria graminis*) population occurring on triticale (x *Triticosecale*) in Poland. *J. Phytopathol.* 2014, 162, 499–512. [CrossRef]
44. Walker, A.S.; Bouguenec, A.; Confais, J.; Morgant, G.; Leroux, P. Evidence of host-range expansion from new powdery mildew (*Blumeria graminis*) infections of triticale (x *Triticosecale*) in France. *Plant Pathol.* 2011, 60, 207–220. [CrossRef]
45. Kowalczyzk, K.; Gruszeczka, D.; Nowak, M.; Leśniewska-Nowak, J. Resistance of triticale hybrids with *Pm4b* and *Pm6* genes to powdery mildew. *Acta Biol. Ser. Bot.* 2011, 53, 57–67. [CrossRef]
46. Zhou, R.; Zhu, Z.; Kong, X.; Huo, N.; Tian, Q.; Li, P.; Jin, C.; Dong, J.; Jia, J. Development of wheat near-isogenic lines for powdery mildew resistance. *Theor. Appl. Genet.* 2005, 110, 640–648. [CrossRef] [PubMed]
47. Bennett, F.G. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. *Plant Pathol.* 1984, 33, 279–300. [CrossRef]
48. Shah, L.; Rehman, S.; Ali, A.; Yahya, M.; Riaz, M.W.; Si, H.; Ma, C.; Lu, J. Genes responsible for powdery mildew resistance and improvement in wheat using molecular marker-assisted selection. *J. Plant Dis. Prot.* 2018, 125, 145–158. [CrossRef]
49. Longin, C.F.H.; Würschum, T. Genetic variability, heritability and correlation among agronomic and disease resistance traits in a diversity panel and elite breeding material of spelt wheat. *Plant Breed.* 2014, 133, 459–464. [CrossRef]
50. Nocente, F.; Gazza, L.; Pasquini, M. Evaluation of leaf rust resistance genes *Lr1*, *Lr9*, *Lr24*, *Lr47* and their introgression into common wheat cultivars by marker-assisted selection. *Euphytica* 2007, 155, 329–336. [CrossRef]
51. Tomkowiak, A.; Kurasiak-Popowska, D.; Mikołajczyk, S.; Weigt, D.; Niemann, J.; Kiel, A.; Lisewska, A.; Nawracała, J.; Matyśik, P.; Rokicki, M.; et al. Identyfikacja genu *Lr19* warunkująca odporność na rdzę brunatną powodowaną przez *Puccinia recondita* f. *sp. tritici* w zagranicznych odmianach pszenicy ozymej *Triticum aestivum* L. *Prog. Plant Prot.* 2016, 56, 318–323. [CrossRef]
52. Leśniewska-Nowak, J.; Grądzielewska, A.; Majek, M. Identification of the gene resistant to leaf rust in selected European wheat cultivars and Multiplex PCR development. *Ann. Univ. Mariae Curie-Skłodowska Sect. E Agric.* 2013, 68, 20–28. [CrossRef]