This is a repository copy of Combined inhibitor free-energy landscape and structural analysis reports on the mannosidase conformational coordinate.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/83836/

Version: Published Version

Article:
Williams, Rohan J, Iglesias-Fernández, Javier, Stepper, Judith orcid.org/0000-0003-3201-8099 et al. (8 more authors) (2014) Combined inhibitor free-energy landscape and structural analysis reports on the mannosidase conformational coordinate. Angewandte Chemie International Edition. pp. 1087-1091. ISSN 1433-7851

https://doi.org/10.1002/anie.201308334

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Mannosidases catalyze the hydrolysis of a diverse range of polysaccharides and glycoconjugates, and the various sequence-based mannosidase families have evolved ingenious strategies to overcome the stereoelectronic challenges of mannose chemistry. Using a combination of computational chemistry, inhibitor design and synthesis, and X-ray crystallography of inhibitor/enzyme complexes, it is demonstrated that mannoimidazole-type inhibitors are energetically poised to report faithfully on mannosidase transition-state conformation, and provide direct evidence for the conformational itinerary used by diverse mannosidases, including β-mannanases from families GH26 and GH113. Isofagomine-type inhibitors are poor mimics of transition-state conformation, owing to the high energy barriers that must be crossed to attain mechanistically relevant conformations, however, these sugar-shaped heterocycles allow the acquisition of ternary complexes that span the active site, thus providing valuable insight into active-site residues involved in substrate recognition.

Mannosidases are glycoside hydrolases (GHs) which catalyze the cleavage of glycosidic linkages in mannose-containing glycoconjugates and polysaccharides. α-Mannosidases are important in N-glycan biosynthesis and protein quality control and their inhibition may allow intervention in diseases which utilize N-linked glycans for protein folding.β-Mannosidases are important in the degradation of plant-derivedmannans (β-mannan, glucomannan, galactomannan) and are of industrial significance in the detergent, food, biofuels, and oil and gas industries. Biochemical studies of mannosidases from different sequence-based families have highlighted that a variety of conformational itineraries and a range of mechanistic strategies are employed for glycosidic bond cleavage. The study of the diverse pathways employed by mannosidases can inform synthetic efforts designed to overcome the often recalcitrant chemistry of mannose.

A rationalization of the rate enhancement achieved by an enzyme pivots upon an understanding of its transition state. This understanding in turn can instruct the development of transition-state analogue inhibitors, which have exciting potential as drug candidates. Mannosidase inhibitors are designed to mimic the charge, planarity, and conformation of the oxocarbenium ion-like “exploded” transition state(s) of mannosidase-catalyzed hydrolysis. Upon protonation, isofagomine-type inhibitors, exemplified by isofagomine (IFG) and ManIFG, resemble a glycosyl cation with charge localized at C1, but are poor mimics of transition-state conformation.

Figure 1. Structures of isofagomine (1), mannoimidazole (2), ManIFG (3), and ManMIm (4).
Alternatively, mannoimidazole (MIm)-type inhibitors, for example, 2, are qualitatively good models of a manno-2-propanoyl oxocarbenium ion-like transition state, with sp^2 hybridization of equivalent atoms and the potential for anti protonation$^{[7]}$ of the imidazole functionality. Structural studies aimed at identifying the conformation of the transition state and flanking ground states on the reaction coordinate, utilizing 2, and related inhibitors as transition-state and ground-state mimics, identified a $S_1 \rightarrow B_{5,4} \rightarrow S_0$ conformational itinerary for mannosidases of families GH26,$^{[10]}$ GH113, and related enzymes (Supporting Information). This conformational itinerary was used to obtain new transition-state and ground-state mimics, including inhibitors, for these two families, the isofagomine and mannoimidazole inhibitor “warheads” were used to develop new inhibitors targeted at the representative β-mannanases from families GH26 and GH113, β-1,4-mannobiohydrolase from Cellivibrio japonicus CjMan26C, and endo-β-1,4-mannanase from Alcylobacillus acidocaldarius AaManA, respectively. The synthesis of 3 and 4 is outlined in Scheme 1 (see the Supporting Information).

Compounds 3 and 4 are potent inhibitors of CjMan26C with K_I values of (263 ± 15) and (194 ± 8) nM, respectively, thus partly reflecting an unusually high-affinity −2 subsite.$^{[15]}$ Soaking 3 and 4 into crystals of CjMan26C yielded complexes that diffracted to a resolution of 1.2 and 1.1 Å, respectively, with inhibitors occupying the −2 and −1 subsites (Figure 2a; see Figures S1a, S2; Table S1 in the Supporting Information). The MIm moiety in the −1 subsite of the CjMan26C/4 complex adopts a $B_{5,4}$ conformation, which is consistent with the proposed $S_1 \rightarrow B_{5,4} \rightarrow S_0$ glycosylation conformational itinerary for GH26.

Compounds 3 and 4 are weaker inhibitors of AaManA with K_I values of (0.26 ± 0.04) and 1.3 mM, respectively, which are consistent with this enzyme exhibiting a preference for binding elongated substrates in the −2 and −1 subsites (Figure 2b; see Figure S2 and Table S1). By invoking the principle of least nuclear motion, this complex is diagnostic of a $S_1 \rightarrow B_{5,4} \rightarrow S_0$ conformational itinerary for family GH113. Soaking 3, either

Scheme 1. a) 4-Toluoyl chloride, DMAP, pyridine, CH_2Cl_2, 88 %; b) TFA, Et$_3$SiH, CH_2Cl_2, 93 %; c) 16, Tf$_2$O, 2,4,6-tri-tert-butylpyrimidine, 60 %; d) 1. NaOMe, 2, H$_2$, Pd(OH)$_2$, AcOH/H$_2$O/THF, 80 %; e) PdCl$_2$, NaH, DMF, 78 %; f) 1. H$_2$, NIS, acetone, 0°C, 78 %; 2. DMSO, Ac$_2$O, 2,5,8; g) 1. NH$_3$, Et$_3$O, reflux; 2. DMSO, Ac$_2$O, 3. HCO$_2$H, NaBH$_4$ (CN), MeCN, 74 % over 4 steps; h) Lawesson’s reagent, pyridine, toluene, 99 %; i) HOCH$_2$CH(OH)Me$_2$, 2. PMBCl, NaH, DMF, 78 %; j) TfOH, NIS, CH$_2$Cl$_2$, 39 %; k) TFOH, NIS, CH$_2$Cl$_2$, 0°C, 39 %; l) H$_2$ (6 bar), Pd(OH)$_2$, AcOH/MeOH/H$_2$O, 58 %. MIm = 4-(N,N-dimethylamino)pyridine, DMF = N,N-dimethylformamide, DMSO = dimethylsulfoxide, NIS = N-iodosuccinimide, PMB = para-methoxybenzyl, TFA = trifluoroacetic acid, THF = tetrahydrofuran, Ts = 4-toluenesulfonyl.

Table 1. a) 4-Toluoyl chloride, DMAP, pyridine, CH_2Cl_2, 88 %; b) TFA, Et$_3$SiH, CH_2Cl_2, 93 %; c) 16, Tf$_2$O, 2,4,6-tri-tert-butylpyrimidine, 60 %; d) 1. NaOMe, 2, H$_2$, Pd(OH)$_2$, AcOH/H$_2$O/THF, 80 %; e) PdCl$_2$, NaH, DMF, 78 %; f) 1. H$_2$, NIS, acetone, 0°C, 78 %; 2. DMSO, Ac$_2$O, 2,5,8; g) 1. NH$_3$, Et$_3$O, reflux; 2. DMSO, Ac$_2$O, 3. HCO$_2$H, NaBH$_4$ (CN), MeCN, 74 % over 4 steps; h) Lawesson’s reagent, pyridine, toluene, 99 %; i) HOCH$_2$CH(OH)Me$_2$, 2. PMBCl, NaH, DMF, 78 %; j) TfOH, NIS, CH$_2$Cl$_2$, 39 %; k) TFOH, NIS, CH$_2$Cl$_2$, 0°C, 39 %; l) H$_2$ (6 bar), Pd(OH)$_2$, AcOH/MeOH/H$_2$O, 58 %. MIm = 4-(N,N-dimethylamino)pyridine, DMF = N,N-dimethylformamide, DMSO = dimethylsulfoxide, NIS = N-iodosuccinimide, PMB = para-methoxybenzyl, TFA = trifluoroacetic acid, THF = tetrahydrofuran, Ts = 4-toluenesulfonyl.
observed on-enzyme, the mimicry, with all mechanistically relevant half-chair (4) the FEL of have been observed for isofagomine-type inhibitors bound to mannosidases (Figure 3a). Other conformations energetically accessible (Figure 3b). A global binding amino acid residues across the subsites, provides the first complete mapping of substrate–biose is observed within 1 and 2 subsites, whilst β,1,4-mannobiose is observed within +1 and +2 subsites. Depicted electron density maps are REFMAC maximum-likelihood/σa-weighted 2Fo−Fc syntheses contoured at 0.41, 0.38, and 0.41 electrons per Å³, respectively. To understand the intrinsic conformational preferences of 1[14] and 2, we employed QM calculations to construct a conformational FEL. The FEL of a) reveals that the 3C₁ conformation is preferred, with the mechanistically relevant 3′C₁ and 2,5-B₂₅ conformations located 5 and 8 kcal mol⁻¹ higher in energy, respectively, and with a greater than 10 kcal mol⁻¹ barrier for their interconversion (Figure 3a). These data suggest that IFG is a poor transition-state mimic and consistent with this the 4C₁ conformation is the only conformation observed for isofagomine-type inhibitors when bound to mannosidases (Figure 3a). Other conformations have been observed for isofagomine-type inhibitors bound to glucosidases/cellulases (see Figure S3). In striking contrast, the FEL of a) is consistent with good transition-state shape mimicry, with all mechanistically relevant half-chair (4H₁ and 4H₂), envelope (E, E, E, and E), and boat (2,5-B or B₂₅) conformations energetically accessible (Figure 3b). A global minimum was found near the 3H₁ conformation in half-chair 2,5-H₂₅ conformations, both of which have been observed on-enzyme. The other conformation of 2, which has been observed on-enzyme, the 2,5-B, was near a saddle point between these local minima and was 5 kcal mol⁻¹ higher in energy than the 3H₁ conformation. The FEL for b) reveals that the conformations relevant to the reaction coordinate are all energetically accessible, and moreover, that a B₂₅ conformation is less stable than the E and H conformations. This in turn suggests that the observation of a B₂₅ conformation for on-enzyme is of special mechanistic significance, with the enzyme inducing the inhibitor to adopt a conformation to match the transition state.

Collectively, the conformations of mannoimidazole-type inhibitors bound to mannosidases of diverse families highlights that mannosidases readily modulate the ligand conformational landscape. This conclusion is consistent with FEL
analysis of α-d-mannopyranose bound to a GH47 α-mannosidase, and established that the enzyme reshapes the conformational landscape, thus defining the energetically accessible space.[11] For enzymes from GH2, [21] GH26,[13] and GH47,[11] conformations of ground states adjacent to the transition state (Michaelis, glycosyl-enzyme or product complexes) provide strong evidence that mannimidazole-type inhibitors authentically report transition-state conformation on-enzyme. However, the 4H_1 conformation reported for the complex of 2 and *Drosophila melanogaster* Golgi GH38 α-mannosidase II (DgmGManII) is inconsistent with this interpretation.[19] On the basis of a glycosyl–enzyme intermediate in a 3S_0 conformation,[9] and theory,[22] a $B_{3,5}$ transition-state conformation is predicted. Inspection of the density map reveals significant residual electron density in the complex,[23] and re-refinement of these data with 2 in two conformations shows that 30–40% of the ligand binds as a second transition-state mimicking conformer in an approximate $B_{3,5}$ conformation (see Figure S4).

We next analyzed the atomic charges and ring planarity of the four mechanistically relevant conformations (4H_1, 4H_4, $B_{3,5}$, 2,5β) of 2. We combined the values of the charge development at the C1 atom (q$_{C1}$), the CS-O5-C1-C2 dihedral angle, and the free energy for a large set of representative structures into a unique index (named ‘TS index’, TSi, see the Supporting Information), in the spirit of the previously reported preactivation index for isolated aldohexoses.[11,24] Table S2 and Figures S5 and S6 show that there is no single conformation with the optimum values for every parameter (score = 100). The TSi values (see Figure S7) reveal that even though the H conformations are favored over B conformations when solely considering their energy (Figure 2b), they possess different TSi values. Most importantly, the two transition-state mimicking conformations that have been observed on-enzyme, 4H_1 and $B_{3,5}$, have the highest TSi values. Therefore, as observed for glycans bound to GHs,[3,25] the inhibitor conformation on-enzyme is not only dictated by the relative energy of the molecule itself but also by structural and electronic properties.

In conclusion, the calculated FEL of 2 shows a preference for 4H_1 and 4H_4 half-chair conformations, and that a $B_{3,5}$ conformation represents a higher energy, but easily accessible saddle point between these two minima and thus that mannimidazole-type inhibitors, in contrast to the isoallozime-type, are energetically poised to faithfully report transition-state conformation. X-ray structures of 4 with two β-mannanases from GH26 and GH113 provide the first direct evidence for a $B_{3,5}$ conformation of the transition state of the enzyme-catalyzed reaction of these families. Previous work with GH47 α-mannosidases found that 2 bound in a 4H_4 conformation, implicating a 3S_0→4H_4→1C_2 itinerary for this family (Figure 4a). The $B_{3,5}$ conformation has now been observed for mannimidazole-type inhibitors in complex with α- and β-mannosidases from five GH families: GH2, GH26, GH38, and GH113 (Figure 4b). A 3S_0→$B_{3,5}$→1S_0 conformational itinerary is common to all of these families, a result that unifies mannanoses which operate through both retaining and inverting, and metal-dependent and metal-independent mechanisms.

Received: September 24, 2013
Published online: December 11, 2013

Keywords: computational chemistry · conformation analysis · enzymes · inhibitors · transition states

[1] G. Z. Lederkremer, *Curr. Opin. Struct. Biol.* 2009, 19, 515.
[2] L. R. S. Moreira, E. X. F. Filho, *Appl. Microbiol. Biotechnol.* 2008, 79, 165.
[3] G. J. Davies, A. Planas, C. Rovira, *Acc. Chem. Res.* 2012, 45, 308.
[4] S. Fushinobu, V. D. Alves, P. M. Coutinho, *Curr. Opin. Struct. Biol.* 2013, 23, 652.
[5] D. Crich, *Acc. Chem. Res.* 2010, 43, 1144.
[6] V. L. Schramm, *ACS Chem. Biol.* 2013, 8, 71.
[7] T. D. Heightman, A. T. Vasella, *Angew. Chem.*** 1999, 111, 794; *Angew. Chem. Int. Ed.* 1999, 38, 750.
[8] L. E. Taillford, W. A. Offen, N. Smith, C. Dumon, C. Morland, J. Gratien, M. P. Heck, R. V. Stick, Y. Blieriot, A. Vasella, H. J. Gilbert, G. J. Davies, *Nat. Chem. Biol.* 2008, 4, 306.
[9] S. Nuñez, D. A. Kunz, S. G. Withers, D. R. Rose, *J. Biol. Chem.* 2003, 278, 48074.
[10] Y. Zhu, M. D. L. Suits, A. J. Thompson, S. Chavan, Z. Dinev, C. Dumon, N. Smith, K. Moreman, Y. Xiang, A. Siriwijesada, S. Williams, H. J. Gilbert, G. J. Davies, *Nat. Chem. Biol.* 2010, 6, 125.
[11] A. J. Thompson, J. Dabin, J. Iglesias-Fernandez, A. Ardevol, Z. Dinev, S. J. Williams, O. Bande, A. Siriwijesada, C. Morland, T. C. Hu, D. K. Smith, H. J. Gilbert, C. Rovira, G. J. Davies, *Angew. Chem.* 2012, 124, 11159; *Angew. Chem. Int. Ed.* 2012, 51, 10997.
[12] A. Cartmell, E. Topakas, V. M. A. Ducros, M. D. L. Suits, G. J. Davies, H. J. Gilbert, *J. Biol. Chem.* 2008, 283, 34403.
[13] V. M. A. Ducros, D. L. Zechel, G. N. Murshadov, H. J. Gilbert, L. Szabo, S. Stoll, S. G. Withers, G. J. Davies, *Angew. Chem.* 2002, 114, 2948; *Angew. Chem. Int. Ed.* 2002, 41, 2824.
[14] Y. Zhang, J. Ju, H. Peng, F. Gao, C. Zhou, Y. Zeng, Y. Xue, Y. Li, B. Henriissats, G. F. Gao, Y. Ma, *J. Biol. Chem.* 2008, 283, 31551.
[15] L. E. Taillford, V. M. Ducros, J. E. Flint, S. M. Roberts, C. Morland, D. L. Zechel, N. Smith, M. E. Bjornvad, T. V. Borchert, K. S. Wilson, G. J. Davies, H. J. Gilbert, *Biochemistry* 2009, 48, 7009.
[16] The FEL of protonated isoallozime is dominated by an intramolecular hydrogen bond which is not relevant to the enzyme-bound species and so the neutral species was studied.
[17] A. J. Thompson, R. J. Williams, Z. Hakki, D. S. Alonzi, T. Wennke, T. M. Glotzer, K. Songsrirote, J. E. Thomas-Oates, T. M. Wrodnigg, J. Spreatz, A. E. Stutz, T. D. Butters, S. J. Williams, G. J. Davies, *Proc. Natl. Acad. Sci. USA* 2012, 109, 781.
[18] See Ref. [8].
[19] D. A. Kunz, C. A. Tarling, S. G. Withers, D. R. Rose, *Biochemistry* 2008, 47, 10058.
[20] See Ref. [10].
[21] W. A. Offen, D. L. Zechel, S. G. Withers, H. J. Gilbert, G. J. Davies, Chem. Commun. 2009, 2484.
[22] L. Petersen, A. Ardevol, C. Rovira, P. J. Reilly, J. Am. Chem. Soc. 2010, 132, 8291.
[23] See Ref. [19].
[24] X. Biarnés, A. Ardevol, A. Planas, C. Rovira, A. Laio, M. Parrinello, J. Am. Chem. Soc. 2007, 129, 10686.
[25] A. Ardevol, X. Biarnés, A. Planas, C. Rovira, J. Am. Chem. Soc. 2010, 132, 16058.