An exotic superfluid phase has been predicted for an ultracold gas of fermionic atoms. This phase requires strong attractive interactions in the gas, or correspondingly atoms with a large, negative s-wave scattering length. Here we report on progress toward realizing this predicted superfluid phase. We present measurements of both large positive and large negative scattering lengths in a quantum degenerate Fermi gas of atoms. Starting with a two-component gas that has been evaporatively cooled to quantum degeneracy, we create controllable, strong interactions between the atoms using a magnetic-field Feshbach resonance. We then employ a novel rf spectroscopic technique to directly measure the mean-field interaction energy, which is proportional to the s-wave scattering length. Near the peak of the resonance we observe a saturation of the interaction energy; it is in this strongly interacting regime that superfluidity is predicted to occur. We have also observed anisotropic expansion of the gas, which has recently been suggested as a signature of superfluidity. However, we find that this can be attributed to a purely collisional effect.

The possibility of superfluidity in an atomic Fermi gas has been studied theoretically [1–5]. Analogous to superconductivity in metals and superfluidity in liquid 3He, this fermionic superfluid phase requires effectively attractive interactions in the gas. In addition, these interactions need to be relatively strong if the phase transition is to occur at a temperature T_c that can be realized with current experimental techniques. Magnetic-field tunable Feshbach scattering resonances provide a unique tool that could create these conditions in an ultracold atomic Fermi gas. These resonances arise when the collision energy of two free atoms coincides with that of a quasi-bound molecular state [6,7]. By varying the strength of the external magnetic field the experimenter can tune relative energies through the Zeeman effect and thus control the strength of the interactions as well as whether they are effectively repulsive or attractive.

A novel superfluid phase, termed “resonance superfluidity,” is predicted for a Fermi gas near a Feshbach resonance peak [2,3]. Unique properties of this phase include a T_c that is a relatively large fraction of the Fermi temperature T_F. With predicted T_c/T_F as high as 0.5, resonance superfluidity may have more in common with exotic high-T_c superconductors than with ordinary superfluidity. In fact, resonance superfluidity would exist in a crossover regime between the physics of Bose-Einstein condensation, which occurs for composite bosons made up of tightly bound fermions, and BCS-type superconductivity, which occurs for pairs of fermions that are loosely correlated in momentum space (Cooper pairs). The experimental investigation of resonance superfluidity, and its dependence on magnetic-field detuning from the Feshbach resonance, could provide new insight into these two types of quantum fluids.

Interactions in ultracold gases arise predominantly from binary s-wave collisions whose strength can be characterized by a single parameter, the s-wave scattering length a. Across a Feshbach resonance a can in principle be varied from $-\infty$ to $+\infty$, where $a < 0$ ($a > 0$) corresponds to effectively attractive (repulsive) interactions. In atomic Fermi gases Feshbach resonances have been seen in their enhancement of elastic [8–10] and inelastic [9–12] collision rates. However collision cross sections depend on a^2 and are not sensitive to whether the interactions are attractive or repulsive. The mean-field energy, on the other hand, is a quantum mechanical, many-body effect that is proportional to na, where n is the number density. For Bose-Einstein condensates with repulsive interactions the mean-field energy and therefore a can be determined from the size of the trapped condensate [13,14], while attractive interactions cause large condensates to become mechanically unstable [15,16]. For an atomic Fermi gas the mean-field interaction energy has a much smaller impact on the thermodynamics. Fermionic atoms obey the Pauli exclusion principle and occupy higher energy states of the external trapping potential. Correspondingly a trapped Fermi gas has a lower density and larger kinetic energy. The mean-field energy thus does not have an observable effect on the cloud size or momentum distribution [17]. In this work we introduce a novel rf spectroscopic technique that measures the mean-field energy directly. With this technique we have measured both positive and negative scattering lengths in a Fermi gas of atoms that is tuned near the peak of a Feshbach resonance.

Experimental techniques The experiments reported here (see Fig. 1) employ previously developed techniques for cooling and spin state manipulation of 40K [8,18]. Because of the quantum statistics of fermions a mixture of two components, for example atoms in different internal spin states, is required to have s-wave interactions in the ultracold gas [19]. With a total atomic spin $I = 9/2$ in its lowest hyperfine ground state, 40K has ten available Zeeman spin-states $|f, m_f\rangle$. Atoms in a 90/10 mixture of the $m_f = 9/2$ and $m_f = 7/2$ states are held in...
a magnetic trap and cooled by forced evaporation [18]. The gas is then loaded into a far-off resonance optical dipole trap where rf transitions are used to obtain the desired spin composition [8]. First, the gas is completely transferred to the $m_f=-9/2$ and $m_f=-7/2$ states using adiabatic rapid passage. We apply a 15 ms rf frequency sweep across all ten spin states at a field of 20 G. We then move to a higher field, 240 G, where the Zeeman transitions are no longer degenerate and apply an rf $\pi/2$ pulse on the $m_f=-9/2$ to $m_f=-7/2$ transition. After the coherence is lost (which takes less than 100 ms) we are left with a mixture of two components, whose relative population can be controlled with the rf pulse duration.

FIG. 1. Flowchart of the experiment. We start from a room temperature vapor and cool 10^5 fermionic atoms to 20 nK in roughly 2.3 minutes. Data are acquired by repeating this experiment cycle.

With this spin mixture we further evaporatively cool the gas by lowering the optical trap depth. The optical power is ramped from 900 mW to 8 mW in 2.9 seconds. During this evaporation, the radial frequency of the optical trap ν_r varies from 2800 to 270 Hz and the trap aspect ratio $\lambda = \nu_z / \nu_r$ remains constant at 0.016 [20]. Starting with 2×10^7 atoms at $T/T_F \approx 4$ our evaporation reaches $T/T_F = 0.1$ with 10^5 atoms remaining. To measure the quantum degeneracy of the evaporatively cooled gas we take resonant absorption images of the cloud after expansion from the optical trap. These images reflect the momentum distribution of the ultracold gas and are surface fit to a Thomas-Fermi profile [21]. In the fits the fugacity z is left as a free parameter that measures the amount of distortion from a Gaussian shape. The value of z obtained from the fit can then be compared to T/T_F obtained from the measured temperature T and calculated Fermi temperature $T_F = h \nu_r (6 \pi N_0)^{1/3}$, where N_0 is the total number of $m_f=-9/2$ atoms and h is Planck’s constant.

The results of this analysis, shown in Fig. 2, verify that the gas is cooled well into the quantum degenerate regime with T/T_F reaching as low as 0.1.

Controlling interactions To control the interactions in the two-component Fermi gas we access a magnetic-field Feshbach resonance in the collisions between atoms in the $|9/2, -9/2\rangle$ and $|9/2, -5/2\rangle$ spin states [22]. At magnetic fields B near the resonance peak, the mean-field energy in the Fermi gas was measured using rf spectroscopy (see Fig. 3a). First, optically trapped atoms were evaporatively cooled in a 72/28 mixture of the $m_f=-9/2$ and $m_f=-7/2$ spin states. After the evaporation the optical trap was recompressed to either $\nu_r = 1390$ Hz or $\nu_r = 2770$ Hz. In addition the magnetic field was ramped to the desired value near the resonance. We then quickly turned on the resonant interaction by transferring atoms from the $m_f=-7/2$ state to the $m_f=-5/2$ state with a 73 μs rf π-pulse. The fraction of $m_f=-7/2$ atoms remaining after the pulse was measured as a function of the rf frequency.

The relative number of $m_f=-7/2$ atoms was obtained from a resonant absorption image of the gas taken after 1 ms of expansion from the optical trap. Atoms in the $m_f=-7/2$ state were probed selectively by leaving the magnetic field high and taking advantage of nonlinear Zeeman shifts. Sample rf absorption spectra, taken in the $\nu_r = 1390$ Hz trap, are shown in Fig. 3b. At magnetic fields well away from the Feshbach resonance we are able to transfer all of the $m_f=-7/2$ atoms to the $m_f=-5/2$ state and the rf lineshape has a width limited by the pulse duration. The rf frequency for maximum transfer

![Graph](image_url)
depends predictably on the current in the magnetic field coils and provides a calibration of B. We estimate that the values of B reported here have a systematic uncertainty of ±0.05 gauss. At the Feshbach resonance we observe two changes to the rf spectra. First, the frequency for maximum transfer is shifted relative to the expected value from the magnetic field calibration. Second, the maximum transfer is reduced and the measured lineshape is wider.

![Diagram](image)

FIG. 3. Schematic of the rf spectroscopy measurement (a) and example rf lineshapes (b). With atoms originally in the $m_f=-9/2$ and $m_f=-7/2$ Zeeman states, we apply an rf pulse to transfer atoms from $m_f=-7/2$ to $m_f=-5/2$. In (b) we plot the peak optical depth (OD) of the remaining $m_f=-7/2$ gas, measured after expansion, versus rf frequency ν_f. The scattering length a_{bg} was obtained from Gaussian fits to absorption images. The numerical factor 0.5 multiplying n_p was determined by modelling the transfer with a pulse-width limited Lorentzian integrated over a Gaussian density profile in the two radial directions.

Both of these effects arise from the mean-field energy due to strong interactions between $|9/2, -9/2\rangle$ and $|9/2, -5/2\rangle$ atoms at the Feshbach resonance. The mean-field energy produces a density-dependent frequency shift given by

$$\Delta \nu = \frac{2\hbar}{m} n_f (a_{59} - a_{79}),$$

where m is the atom mass, $\hbar = h/2\pi$, n_f is the number density of atoms in the $m_f = -9/2$ state, and a_{59} (a_{79}) is the scattering length for collisions between atoms in the $m_f = -9/2$ and $m_f = -5/2$ ($m_f = -7/2$) states. Here we have ignored a non-resonant interaction term proportional to the population difference between the $m_f = -7/2$ and $m_f = -5/2$ states; this term equals 0 for a perfect π-pulse. For our spatially inhomogeneous trapped gas, the density dependence broadens the lineshape and lowers the maximum transfer. This effect on both sides of the Feshbach resonance peak. In contrast, the frequency shift for maximum transfer reflects the scattering length and changes sign across the resonance.

We have measured the mean-field shift $\Delta \nu$ as a function of B near the Feshbach resonance peak. The rf frequency for maximum transfer was obtained from Lorentzian fits to spectra like those shown in Fig. 3b. The expected resonance frequency was then subtracted to yield $\Delta \nu$. The scattering length a_{bg} was obtained using Eqn.1 with $n_9 = 0.5n_p$ and $a_{79} = 174a_o$ where a_o is the Bohr radius \cite{8}. The peak density of the trapped $m_f = -9/2$ gas n_p was obtained from Gaussian fits to absorption images. The numerical factor 0.5 multiplying n_p was determined by modelling the transfer with a pulse-width limited Lorentzian integrated over a Gaussian density profile in the two radial directions.

The measured scattering length as a function of B is shown in Fig. 4. This plot, which combines data taken for two different trap strengths and gas densities, shows that we are able to realize both large positive and large negative values of a_{bg} near the Feshbach resonance peak. The solid line in Fig. 4 shows a fit to the expected form for a Feshbach resonance $a = a_{o}(1 - \frac{B}{B_{pk}})$ \cite{4}. Data within ±0.5 gauss of the peak were excluded from the fit. With $a_{o} = 174a_o$ we find that the Feshbach resonance peak occurs at 224.21 ± 0.05 G and has a width w of 9.7 ± 0.6 G.

![Plot](image)

FIG. 4. Scattering length versus magnetic field near the Feshbach resonance peak. The scattering length a_{bg} was obtained from measurements of the mean-field energy taken for $T/T_F = 0.4$ and two different densities: $n_p = 1.8x10^{14}$ cm$^{-3}$ (\bullet) and $n_p = 5.8x10^{13}$ cm$^{-3}$ (squares). We estimate a systematic uncertainty in a_{bg} of ±50% due to uncertainty in our measurement of the trapped gas density.

When B is tuned very close to the Feshbach resonance
peak we expect the measured a_{59} to have a maximum value of approximately $1/k_F$ due to the unitarity limit. Here $\hbar k_F$ is the Fermi momentum for the $m_f=-9/2$ gas. This saturation can be seen in the data shown in Fig. 4. Two points that were taken within ±0.5 gauss of the Feshbach resonance peak, one on either side of the resonance, clearly lie below the fit curve. Observation of this saturation demonstrates that we can access the strongly interacting regime with $a_{59}k_F$ is greater than 1. It is in this regime that resonance superfluidity is predicted to occur. Using the fit discussed above, we find that the unitarity-limited point on the attractive interaction side of the resonance (higher B) corresponds to a gas that actually has $a_{59}k_F \approx 11$.

Anisotropic expansion Having obtained a precise map of a_{59} versus B we investigated the expansion of the Fermi gas near the Feshbach resonance. Anisotropic expansion has been put forth as a possible signature of superfluidity [23] and has recently been observed in a 6Li Fermi gas [24]. However, a normal gas in the hydrodynamic regime, where the collision rate is large compared to the trap oscillator frequencies, is expected to exhibit the same anisotropy in expansion [23,25]. In this case, collisions during the expansion transfer kinetic energy from the elongated axial cloud dimension into the radial direction. A large magnitude scattering length, such as is required for resonance superfluidity, enhances the collision rate in the gas and could cause the normal gas to approach the hydrodynamic regime.

We have utilized our ability to tune a_{59} with the magnetic-field Feshbach resonance to investigate these effects. After evaporatively cooling atoms in a 45/55 mixture of the $m_f=-9/2$ and $m_f=-7/2$ spin states, the optical trap power was increased to yield a trap characterized by $\nu_r = 1230$ Hz. In addition, the magnetic field was ramped to the desired value near the resonance. We then transferred atoms from the $m_f=-7/2$ state to the $m_f=-5/2$ state with a 29 μs rf π-pulse [26]. Expansion was initiated by turning off the optical trapping beam with an acousto-optic modulator 0.3 ms after the rf pulse. The magnetic field remained high for 5 ms of expansion and a resonant absorption image was taken after a total expansion time of 20 ms.

We find that the ratio of the axial and transverse widths of the expanded cloud, σ_z/σ_y, decreases at the peak of the Feshbach resonance (Fig. 5). This effect depends on having strong interactions during the expansion: we do not see any change in σ_z/σ_y if the magnetic field, and consequently the resonant interactions, is switched off at the same time as the optical trap. The anisotropic expansion is basically symmetric about the peak of the resonance and thus is not sensitive to the sign of the interactions (repulsive or attractive). Therefore the anisotropic expansion observed here is not a signature of superfluidity but rather a collisional effect.

![Anisotropic expansion at the Feshbach resonance peak. The aspect ratio σ_z/σ_y of the expanded cloud decreases at the Feshbach resonance because of an enhanced elastic collision rate. Note that σ_z/σ_y, measured after 20 ms of expansion, drops below 1, indicating that the initially smaller radial size has grown larger than the axial size. The data were taken for $N = 2.4 \times 10^5$ atoms at $T/T_F = 0.34$.](image)

To see if hydrodynamic expansion of the normal gas is expected we can calculate the elastic collision rate Γ in the gas [27]. For this calculation T and N are obtained from Thomas-Fermi fits to absorption images of clouds away from the Feshbach resonance where we find that $T/T_F = 0.34$. Using an elastic collision cross section given by $\sigma = 4\pi a_{59}^2$ and $|a_{59}| = 2000$ (as was measured near the resonance peak), we find $\Gamma = 46$ kHz. With $\Gamma/\nu_r = 37$ and $\Gamma/\nu_z = 2400$ it is not surprising that we observe anisotropic expansion. For a gas that was fully hydrodynamic, with $\Gamma \gg \nu_r, \nu_z$, we would expect our measured aspect ratio to reach 0.4 [23,25].

Future prospects In conclusion, we have measured the mean-field energy in a Fermi gas of atoms for both strong attractive and strong repulsive interactions. The rf spectroscopy technique demonstrated here allows one to measure both the sign and strength of the interactions and thus take full advantage of the control over interactions afforded by a magnetic-field Feshbach resonance. In addition to the ability to create strong attractive interactions in the gas, we have demonstrated two other ingredients that are key to the goal of realizing Cooper pairing in a gas of atoms. We are able to cool the optically trapped gas to $T/T_F \approx 0.1$, and precisely control the spin composition. In addition the rf spectroscopy demonstrated here could provide a method for detecting “resonance superfluidity” by measuring the binding energy of Cooper pairs [28–30]. Finally, we have observed anisotropic expansion of the strongly interacting Fermi gas, and find that this is a collisional effect that occurs for both attractive and repulsive interactions.
Quantum Physics Division, National Institute of Standards and Technology.

[1] H. T. C. Stoof, M. Houbiers, C. A. Sackett, and R. G. Hulet, Superfluidity of spin-polarized 6Li. *Phys. Rev. Lett.* **76**, 10-13 (1996).

[2] M. Holland, S. J. J. M. Kokkelmans, M. L. Chiofalo, and R. Walser, Resonance superfluidity in a quantum degenerate Fermi gas *Phys. Rev. Lett.* **87**, 120406 (2001).

[3] E. Timmermans, K. Furuya, P. W. Milloni, and A. K. Kerman, Prospect of creating a composite Fermi-Bose superfluid. *Phys. Lett. A* **285**, 228-233 (2001).

[4] S. J. J. M. F. Kokkelmans, M. L. Chiofalo, R. Walser, and M. J. Holland, Resonance superfluidity: Renormalization of resonance scattering theory. *Phys. Rev. A* **65**, 053617 (2002).

[5] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin, High-temperature superfluidity of fermionic atoms in optical lattices. *Phys. Rev. Lett.* **89**, 220407 (2002).

[6] W. C. Stwalley, Stability of spin-aligned hydrogen at low temperatures and high magnetic fields: new field-dependent scattering resonances and predissociations. *Phys. Rev. Lett.* **37**, 1628-1631 (1976).

[7] E. Timmermans, K. Furuya, and H. T. C. Stoof, Threshold and resonance phenomena in ultracold ground-state collisions. *Phys. Rev. A* **47**, 4114 (1993).

[8] T. Loftus, C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Resonant control of elastic collisions in an optically trapped Fermi gas of atoms. *Phys. Rev. Lett.* **88**, 173201 (2002).

[9] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Tuning p-wave interactions in an ultracold Fermi gas of atoms. *Phys. Rev. Lett.* **90**, 053201 (2003).

[10] K. M. O’Hara et al., Measurement of the zero crossing in a Feshbach resonance of fermionic 6Li. *Phys. Rev. A* **66**, 041401 (2002).

[11] S. Jochim et al., Magnetic field control of elastic scattering in a cold gas of fermionic lithium atoms. *Phys. Rev. Lett.* **89**, 273202 (2002).

[12] K. Dieckmann et al., Decay of an ultracold fermionic lithium gas near a Feshbach resonance. *Phys. Rev. Lett.* **89**, 203201 (2002).

[13] S. Inouye et al., Observation of Feshbach resonances in a Bose-Einstein condensate *Nature* **392**, 151-154 (1998).

[14] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Stable 85Rb Bose-Einstein condensates with widely tunable interactions. *Phys. Rev. Lett.* **85**, 1795-1798 (2000).

[15] J. M. Gerton, D. Strekalov, I. Prodan, and R. G. Hulet, Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions. *Nature* **408**, 692-695 (2000).

[16] J. L. Roberts et al., Controlled collapse of a Bose-Einstein condensate. *Phys. Rev. Lett.* **86**, 4211-4214 (2001).

[17] B. DeMarco, S. B. Papp, and D. S. Jin, Pauli blocking of collisions in a quantum degenerate atomic Fermi gas. *Phys. Rev. Lett.* **86**, 5409-5412 (2001).

[18] B. DeMarco and D. S. Jin, Onset of Fermi degeneracy in a trapped atomic gas. *Science* **285**, 1703-1706 (1999).

[19] B. DeMarco, J. L. Bohn, J. P. Burke, Jr., M. Holland, and D. S. Jin, Measurement of p-wave threshold law using evaporatively cooled fermionic atoms. *Phys. Rev. Lett.* **82**, 4208-4211 (1999).

[20] The radial trap frequency ν_r was measured by exciting a shape oscillation of the cloud. The axial frequency ν_z was measured by modulating the optical trap power to parametrically heat the gas.

[21] D. A. Butts and D. S. Rokhsar, Trapped Fermi gases. *Phys. Rev. A* **55**, 4346-4350 (1997).

[22] This Feshbach resonance in 40K, which had not previously been observed, was predicted by C. Ticknor and J. L. Bohn, unpublished.

[23] C. Menotti, P. Pedri, and S. Stringari, Expansion of an interacting Fermi gas. *Phys. Rev. Lett.* **89**, 250502 (2002).

[24] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, Observation of a strongly interacting degenerate Fermi gas of atoms. *Science* **298**, 2179-2182 (2002).

[25] Yu. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Evolution of a Bose gas in anisotropic time-dependent traps. *Phys. Rev. A* **55**, R18-R21 (1997).

[26] The short duration of this pulse gives a frequency width that allows us to transfer most ($>70\%$) of the $m_f = -7/2$ atoms in spite of mean-field shifts at the Feshbach resonance peak.

[27] M. J. Holland, B. DeMarco, and D. S. Jin, Evaporative cooling of a two-component degenerate Fermi gas. *Phys. Rev. A* **61**, 053610 (2000).

[28] K. G. Petrosyan, Fermionic atom laser. *JETP Lett.* **70**, 11-16 (1999).

[29] P. Torma and P. Zoller, Laser probing of atomic Cooper pairs. *Phys. Rev. Lett.* **85**, 487-490 (2000).

[30] G. M. Bruun, P. Torma, M. Rodriquez, and P. Zoller, Laser probing of Cooper-paired trapped atoms. *Phys. Rev. A* **64**, 033609 (2001).

Acknowledgements We thank S. Inouye and M. Holland for discussions. This work was supported by NSF, ONR, and NIST, and C. A. R. acknowledges support from the Hertz Foundation.