Numerical investigation of heat transfer characteristics for blood/water-based hybrid nanofluids in free convection about a circular cylinder

Firas A. Alwawi*, Mohammed Z. Swalmeh1, Ibrahim M. Sulaiman3, Nusayba Yaseen2, Hamzeh T. Alkasasbeh4 and Tarik Faris Al Soub2

1 Department of Mathematics, College of Sciences and Humanities in Al-Khobar, Prince Sattam bin Abdulaziz University, Al-Khobar 11942, Saudi Arabia.
2 Faculty of Arts and Sciences, Aqaba University of Technology, 77110, Aqaba, Jordan.
3Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, 21300, Terengganu, Malaysia.
4Department of Mathematics, Faculty of Science, Ajloun National University, P.O.Box 43, Ajloun 26810, Jordan.

ABSTRACT – This paper investigates hybrid nanofluids flowing around a circular cylinder of free convection under the constant surface heat flux. Nanoparticles of copper oxides, Gold, and Aluminum (CuO, Au, Al) are considered to support the heat transfer performance of blood/water-based hybrid nanofluids. The governing model for hybrid nanofluids which is in form of non-linear partial differential equations (PDEs) are first transformed to a more convenient form by similarity transformation approach then approximated numerically by the Keller box method. Several comparatives are performed in this work resulting in the superiority of the hybrid-nanofluid over regular nanofluid in terms of heat transfer rate, velocity, and local skin friction coefficient. Findings confirmed that the surface temperature and temperature field are augmented, with increasing volume fraction for nanoparticles. Also, Gold nanoparticles give a higher result for all examined physical properties than Aluminum and copper oxides nanoparticles.

INTRODUCTION

Thermal properties of heat transfer fluids have recently gained more attention because of its numerous applications in physics, engineering, in addition to their importance in the industry. Numerous literatures have shown that majority of the convectional fluids used for heat transfer including; oil, ethylene glycol, water, and many more, are known to limits the enhancement of heat transfer due to their low thermal conductivity. In recent years, several researchers across the globe have increased their interest in nanofluids to improve heat transfer performance, fluid flow characteristics, the thermal conductivity of the fluid, and many more. Nanofluid was first introduced by Choi and Eastman [1], where the author explained it as being a mixture of the base fluid such as glycol, engine oil, water, and dispersed nanometer-sized particles. The dispersed nanometer-sized particles with an approximate diameter less than 100 nm are from a type of materials made from metals (Cu, Ag), oxides (Al2O3, CuO), carbid (SiC), or carbon nanoparticles (CNTs, MWCNTs, diamond) [2].

The concept of nanofluids by Choi and Eastman [1] and a study on the pattern of nanofluids flow for heat conduction by Kumar et al. [3] has led to numerous studies most of which expand the concept in different directions [4, 5]. A recent study by Buongiorno [6] on heat transfer enhancement of convective transport in nanofluid has garnered considerable attention. The author explored the flow in a porous medium filled with nanofluid. Nield and Kuznetsov [7] extended the Buongiorno model to a porous medium problem by Cheng and Minkowycz [8] and present the impact of nanoparticles on natural convection on the vertical plate of a porous medium. Nield and Kuznetsov [9, 10] further extended their results from [7] to free convection of a porous medium immersed past a vertical plate by a nanofluid. Besides, Tiwari and Das [11] investigation that provided a mathematical model highlighting the effect of nanoparticles volume fraction has received widespread employment lately. Sheremet et al. [12] studied the flow characteristics of nanofluids generated by free convection in a square cavity utilizing Tiwari-Das’s model. Waini et al. [13] Modeled the heat transport through nanofluid under the influences of Dufour and Soret on a moving thin needle via Tiwari-Das’s model. See also these comprehensive references where the governing models have been constructed with the aid of Tiwari-Das’s model [14-17].

Several works of the literature suggest that surface charge or surfactant technology are some of the techniques used to suspend nanoparticles in the nanofluid [18]. Diverting from the vertical plate approach, recent studies considered the convection boundary layer flow over a horizontal circular cylinder, solid sphere, etc. For example, some researchers [19-22] studied the convection boundary layer flow in nanofluid past a solid sphere and horizontal circular cylinder. More studies on the boundary layer flow in a nanofluid over cylinder are given in the following references [23-26].

Lately, the area of nanofluids has been expanding into more extensive, rigorous, and exciting disciplines, with numerous applications in industries such as microelectronics, air-conditioning, refrigeration, mobile computers processors, coolant in machining, and many more. The development of numerical simulation methods was a response to
the continuous demand of numerical computation. These methods usually base on constructive existence proofs. Based on the current trend of research in this area, several authors are now investigating the possibilities of considering fluids containing more than one type of nanoparticle. This process is called hybrid nanofluids. These types of nanofluids are employed in several disciplines for enhancing heat transfer. Suresh et al. [27] are among the first researchers to study the hybrid nanofluid that possesses improved heat transfer advantages with rheological conduct in addition to enhanced thermo-physical features. Other studies on the hybrid nanofluids are presented by Devi and Devi [28] on the flow of hydro-magnetic hybrid Cu-Al2O3/water nanofluid. Hayat et al. [29] analyzed the rotating hybrid flow of Ag- CuO/H2O nanofluid under radiation and partial slip boundary. Khashi‘e et al. [30] present a study on the Riga plate of cylinder surfaces. Waini et al. [31] studied the application of Al2O3-Cu/water in the boundary layer flow for thin needle and sensor surfaces. More studies on hybrid nanofluids can be referred to [32-36].

Human blood is classified as a non-Newtonian fluid that carries physical properties. This fluid is studied as a nanofluid and gives physical behaviors compared with other fluids when using it as base fluid. In addition, there are many studies that consider the human blood as base fluid in convection boundary layer flow. Dash et al. [37] studied the model of flow properties in a Casson fluid in a tube filled with the presence of a homogeneous porous medium using human blood as a base fluid. The problem of magneto-hydrodynamics (MHD) free convection in Casson nanofluid utilizing Carbon Nanotubes (CNTs) suspended in human blood was investigated by Alkasasbeh et al. [38]. The theoretical study for the physical features of a two-dimensional incompressible in the existence of human blood as a hybrid was considered by Sadaf and Abdelsalam [39]. The model of human blood flow has been improved for carbon nanotubes with the effect of thermal radiation and chemical reaction by Kalita et al [40]. Besides that, a lot of researchers examined the convection boundary layer flow using human blood base fluid, such as [41-43].

Motivated by the contributions of researchers as Swalmeh [44] and Alwawi [45], as well as, depending on Suresh et al. [27], and the list of literature discussed above, this article concern on filling the research gap by studying the problem of steady laminar free convection boundary layer flow in presence of an incompressible hybrid nanofluid, on a horizontal circular cylinder. The governing nonlinear partial differential equations were solved using Keller-box numerical method but under some boundary conditions. Keller-box method [46] is a well-known solver that results in the numerical solution of convection boundary layer flow problems. Preliminary results of the involved parameter have been plotted and discussed. Based on the literature considered in this study, the present problem is yet to be explored by researchers, and thus, our results are new.

PROBLEM FORMULATION

As illustrated in Figure 1, a free convection flow of water/human blood containing hybrid nanoparticles about a circular cylinder was assumed. The symbol \(\alpha \) refers to the axis measured on the circumference of the cylinder starting from the point of stagnation and, \(y \) refers to the axis that measures the perpendicular distance to its surface. \(\eta_0 \) indicates constant heat flux, \(T_\infty \) is the surrounded temperature of the liquid which remains fixed, and \(g \) stands for gravity vector.

![Figure 1. Schematic physical model](image)

Based on the above consideration, the mathematical model governing flow for our problem is (see Tiwari and Das [11]):

\[
\frac{\partial (u)}{\partial x} + \frac{\partial (v)}{\partial y} = 0, \quad (1)
\]

\[
\rho_{huf} \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \left(\mu_{huf} + \kappa \right) \frac{\partial^2 u}{\partial y^2} + \beta_{huf} g (T - T_\infty) \sin \left(\frac{x}{a} \right), \quad (2)
\]

\[
\frac{\partial u}{\partial x} + \frac{\partial T}{\partial y} = \alpha_{huf} \frac{\partial^2 T}{\partial y^2}, \quad (3)
\]
alongside the following conditions:
\[\bar{u} = \bar{v} = 0, \quad \frac{\partial T}{\partial \bar{y}} = -q_{\nu} \quad \text{at} \quad \bar{y} = 0, \]
\[\bar{u} \rightarrow 0, \quad T \rightarrow T_{\infty}, \quad \text{as} \quad \bar{y} \rightarrow \infty, \tag{4} \]

The symbols used in this study follow from the notations section. Table 1, present the properties of hybrid nanofluid/nanofluid.

Table 1. Properties of hybrid nanofluid / nanofluid (addressed by Manjunatha et al. [47])
Properties of Nanofluid
\(\rho_{nf} = (1-\gamma_2)\rho_f + \gamma_2\rho_{f}, \)
\((\rho c_p)_{nf} = (1-\gamma_2)(\rho c_p)_{f} + \gamma_2(\rho c_p)_{nf} , \)
\(\beta_{nf} = (1-\gamma_2)\beta_{f} + \gamma_2\beta_{f}, \)
\(\mu_{nf} = \mu_f \frac{1}{(1-\gamma_2)^{2\gamma}}, \)
\(k_{nf} = \frac{(k_f + 2k_f - 2\gamma_2(k_f - k_s))}{(k_f + 2k_f) + \gamma_2(k_f - k_s)}, \)
\(\alpha_{nf} = \frac{k_{nf}}{(\rho c_p)_{nf}} , \)

where \(\gamma_2 \) is the volume fraction for the CuO, \(\gamma_1 \) is the volume fraction for nanoparticles (Au-Al). \(\gamma_1 = \gamma_2 = 0 \) represents a regular Newtonian fluid.

To non-dimensionlization process, we’ll present the following variables:

\[x = \frac{x}{a}, \quad y = Gr^{1/5} \bar{y}, \quad u = \left(\frac{a}{v_f}\right)Gr^{-1/5} \bar{u}, \quad v = \left(\frac{a}{v_f}\right)Gr^{-1/5} \bar{v}, \quad \theta = Gr^{1/5} \left(\frac{T-T_{\infty}}{a d_{nf} k_f}\right), \tag{5} \]

where \(Gr = g \beta_f \left(\frac{a q_{ac} \bar{u}}{k_f}\right) \left(\frac{a^3}{v_f^2}\right) \) is the Grashof number. By utilizing Eq. (5), the governing model become:

\[\frac{\partial u}{\partial x} + \frac{v}{\partial y} = 0, \tag{6} \]

\[\frac{\partial u}{\partial x} + \frac{\partial u}{\partial \gamma} = \rho_f \left(\frac{1}{(1-\gamma_2)^{x(1-\gamma_2)^{2\gamma}}}\right) \frac{\partial^2 u}{\partial y^2} + \frac{1}{\rho_{nf}} \left(1-\gamma_2\right)\left(1-\gamma_1\right)\rho_f \frac{\partial^2 \beta_{f1}}{\partial y^2} + \gamma_2 \frac{\rho_{\beta_{f2}}}{\beta_f} \theta \sin x, \tag{7} \]

\[\frac{\partial \theta}{\partial x} + \frac{\partial \theta}{\partial \gamma} = \frac{k_{nf} / k_f}{\Pr} \left[1 - \gamma_2\left(1-\gamma_1\right) + \gamma_1\left(\rho c_p\right) / \left(\rho c_p\right) + \gamma_2\left(\rho c_p\right) + \gamma_2\left(\rho c_p\right) / \left(\rho c_p\right) \right] \frac{\partial^2 \theta}{\partial y^2}, \tag{8} \]

where \(Pr = \nu_f / \alpha_f \) is the Prandtl number.

Subject to:

\[u = v = 0, \quad \theta' = -1, \quad \text{at} \quad y = 0, \]
\[u \rightarrow 0, \quad \theta \rightarrow 0, \quad \text{as} \quad y \rightarrow \infty, \tag{9} \]
Next, Eq. (6)-(8) are reduced depending on the following transformation:

\[\psi = xf(x, y), \quad \theta = \theta(x, y), \]

and \(\psi \) refers to the stream function defined as:

\[u = -\frac{\partial \psi}{\partial y}, \quad v = \frac{\partial \psi}{\partial x}, \]

consequently, the simplified Eq. (6)-(8) are:

\[\frac{\rho_f}{\rho_{inf}} \left(\frac{1}{(1 - \gamma_1)^{2s} (1 - \gamma_2)^{2s}} \right) \frac{\partial^2 f}{\partial y^2} + \frac{1}{\rho_{inf}} \left((1 - \gamma_2) \left[(1 - \gamma_1) \rho_f + \gamma_1 \frac{\rho_s \beta_2}{\beta_f} \right] + \gamma_2 \frac{\rho_s \beta_1}{\beta_f} \right) \sin \frac{x}{\theta} \]

\[+ f \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial f}{\partial y} \right)^2 = \frac{1}{\text{Pr}} \left((1 - \gamma_1) + \gamma_1 (\rho Cp) \right) \frac{\partial^2 \theta}{\partial y^2} + f \frac{\partial \theta}{\partial y} = \frac{1}{\text{Pr}} \left((1 - \gamma_1) + \gamma_1 (\rho Cp) \right) \frac{\partial^2 \theta}{\partial y^2} \]

with boundary conditions:

\[f = \frac{\partial f}{\partial y} = 0, \theta' = -1 \text{ at } y = 0, \]

\[\frac{\partial f}{\partial y} \rightarrow 0, \theta \rightarrow 0, \text{ as } y \rightarrow \infty. \]

When \(x \) approaches zero \((x \approx 0)\), i.e., at the lower stagnation point, the previous model turns into:

\[\frac{\rho_f}{\rho_{inf}} \left(\frac{1}{(1 - \gamma_1)^{2s} (1 - \gamma_2)^{2s}} \right) \frac{\partial^2 f}{\partial y^2} + \frac{1}{\rho_{inf}} \left((1 - \gamma_2) \left[(1 - \gamma_1) \rho_f + \gamma_1 \frac{\rho_s \beta_2}{\beta_f} \right] + \gamma_2 \frac{\rho_s \beta_1}{\beta_f} \right) \theta = 0, \]

\[\frac{1}{\text{Pr}} \left[(1 - \gamma_1) + \gamma_1 (\rho Cp) \right] \frac{\partial^2 \theta}{\partial y^2} + f \frac{\partial \theta}{\partial y} = 0 \]

and boundary conditions are:

\[f (0) = f' (0) = 0, \theta'(0) = -1 \text{ as } y = 0, \]

\[f' \rightarrow 0, \theta \rightarrow 0 \text{ as } y \rightarrow \infty, \]

where the prime symbol indicates differentiation with respect to \(y \).

The local skin friction coefficient \(C_f \), and local wall temperature \(\theta_w \) can be written as

\[C_f = \frac{Gr^{-15} a^2}{\mu_i v_f} \tau_w, \quad \theta_w = \theta(x, 0), \]

\[\tau_w = \mu_{inf} \left(\frac{\partial u}{\partial y} \right)_{y=0}, \]

where \(\tau_w \) is the wall shear stress.

Applied non-dimensional variables (5) and boundary conditions (9), \(C_f \) becomes:

\[C_f = Gr^{-15} \left(\frac{1}{(1 - \gamma_1)^{2s} (1 - \gamma_2)^{2s}} \right) \frac{\partial^2 f}{\partial y^2} (x, 0), \]
NUMERICAL SOLUTION AND VALIDATION OF RESULTS

There are several reliable numerical methods for solving systems of equations for issues related to heat transfer in the boundary strata region, including the Keller Box method, which was introduced by Keller [46] in 1970. This method became very popular when Cebeci and Bradshaw [48] gave a detailed explanation of it. Later, many researchers relied on it in their studies, such as Nazar et al. [49, 50], Tham et al. [51, 52], Alkasasbeh et al. [53], Alwawi et al. [21, 45] and others. This method begins by transforming the systems of equations to the first degree and then finding the difference equations through the central differences method. Then, the system is linearized using Newton's method and finally written in the form of a matrix-vector and solved using the tri-diagonal elimination method. Also, calculations are also performed via the Matlab program. Numerical and graphical results are obtained for the effect of the parameter related to the flow characteristics. To emphasize the accuracy of our findings, they were compared with previously published outcomes dealt with by Merkin and Pop [54], and Nazar et al. [55] as it can be seen an excellent match of our results with those results in Tables 2 and 3.

Table 2. Comparison of local skin friction coefficient θ_∞ with Newtonian fluid ($\gamma_1 = \gamma_2 = 0$) at Pr = 0.7

x^a	Merkin and Pop [54]	Nazar et al. [55]	Present
0.0	1.996	1.996	1.996
0.2	1.999	1.999	1.999
0.4	2.005	2.004	2.004
0.6	2.014	2.013	2.012
0.8	2.026	2.026	2.025
1.0	2.043	2.044	2.044
1.2	2.064	2.065	2.066
1.4	2.089	2.091	2.090
1.6	2.120	2.123	2.123
1.8	2.158	2.161	2.158
2.0	2.202	2.207	2.206
2.2	2.256	2.262	2.260
2.4	2.322	2.329	2.327
2.6	2.403	2.413	2.411
2.8	2.510	2.523	2.519
3.0	2.660	2.681	2.677
π	2.824	2.828	2.825

Table 3. Comparison of local skin friction coefficient C_f with Newtonian fluid ($\gamma_1 = \gamma_2 = 0$) at Pr = 0.7

x^a	Merkin and Pop [54]	Nazar et al. [55]	Present
0.0	0.000	0.000	0.000
0.2	0.274	0.273	0.274
0.4	0.541	0.540	0.541
0.6	0.793	0.795	0.794
0.8	1.031	1.027	1.029
1.0	1.241	1.235	1.237
1.2	1.422	1.413	1.417
1.4	1.567	1.555	1.559
1.6	1.671	1.657	1.668
1.8	1.732	1.714	1.722
2.0	1.744	1.723	1.735
2.2	1.704	1.680	1.692
2.4	1.608	1.580	1.601
2.6	1.451	1.418	1.443
2.8	1.225	1.188	1.149
3.0	0.913	0.868	0.881
π	0.613	0.574	0.597
RESULTS AND DISCUSSION

The effect of the volume fraction parameters \(\gamma_1, \gamma_2 \) on different physical quantities, such as local wall temperature, and local skin friction, as well as temperature and velocity profiles, have been schemed through Figures 2-9, where the values of volume fraction parameters \(\gamma_1, \gamma_2 \) used ranged between 0.005 and 0.1. Table 4 illustrates the thermo-physical properties of ultrafine particles and base fluids.

Physical properties	Based fluid	Nanoparticles			
	HB	W	Au	Al	CuO
\(k \) (W/mK)	0.492	0.613	314.4	237	18
\(\rho \) (kg/m³)	1053	997.1	19320	2701	6510
\(\rho c_p \) (J/kgK)	3594	4179	128.8	902	540
\(\beta \times 10^{-5} \) (K⁻¹)	0.18	21	1.416	2.31	0.85
\(Pr \)	24	6.2	---

Figure 2 generally shows that the increment of \(\gamma_2 \) on local skin friction \(C_f \) in presence of Au-CuO, Al-CuO suspended in human blood hybrid nanofluid, also CuO suspended in human blood regular nanofluid, augmentation in \(\gamma_2 \) leads to a decrease in its curves values, which mean \(\gamma_2 \) and \(C_f \) have an inverse correlation. We could notice that the hybrid nanofluids have a clear curves elevation in their local skin friction than the regular nanofluid if we take them in comparison. This implies that there is a noticeable difference between their properties and the role of adding other nanoparticles to the base fluid in getting effective results. Adding ultrafine particles of gold (Au) element shows a higher response in properties difference than adding ultrafine particles of Aluminium (Al) element. But their behaviour in response to the varying of \(x \) and \(\gamma_2 \) in this Figure could be considered close. Figure 3 confirms the inverse relation between \(\gamma_2 \) and local skin friction but for different fluid bases human blood and water. In both hybrid nanofluids with Au-CuO the increment of volume fraction \(\gamma_2 \) decreases \(C_f \), but using the water as based fluid reflects on rising the curves higher than human blood with respect to \(x \).

Figure 2. Variation of local skin friction of Au-CuO, Al-CuO/human blood hybrid nanofluids and CuO- human Blood nanofluid for various values of \(x \) and \(\gamma_2 \)

Figure 3. Variation of local skin friction of Au-CuO /water and Au-CuO / human blood hybrid nanofluids for various values of \(x \) and \(\gamma_2 \)
Enhancement of the volume fraction γ_2 with the surface temperature θ_s is presented in Figure 4. It is found that the local wall temperature generally increased by the increase of the volume fraction γ_2 for Au-CuO, Al-CuO/human blood hybrid nanofluid, and CuO/human blood nanofluid. The hybrid nanofluid supports the local wall temperature's values and makes this relationship stronger, and we notice adding Al or Au as a second nanoparticle to the nanofluid does not exhibit much contrast in their results, so they are close (or near) in their effect. The effect (action) of changing the base fluid to the relation of γ_2 versus θ_s is illustrated in Figure 5, which indicates that the water base fluid has the greater values of local wall temperature than the Human blood base fluid as x and γ_2 is getting increased. This may be as a result of the difference between the thermal conductivities values between the water and human blood (see table 4). In fact, the increase in nanoparticle volume fraction led to an increase in thermal conductivity and, as a result, an increase in surface temperature has occurred.

![Figure 4. Variation of local wall temperature of Au-CuO, Al-CuO/human blood hybrid nanofluid and CuO/human blood nanofluid for various values of x and γ_2](image1.png)

![Figure 5. Variation of local wall temperature of Au-CuO/water and Au-CuO/human blood hybrid nanofluids for various values of x and γ_2](image2.png)

The temperature Field $\theta(0,y)$ is the third physical quantity taken into account as the volume fraction γ_2 varies. From Figure 6, we conclude that γ_2 and $\theta(0,y)$ have a direct relationship with all the nanofluids. CuO, Al-CuO/human blood hybrid nanofluids have a stronger correlation to the temperature field increment than CuO/Human Blood nanofluid when the volume fraction and the x are increasing. Using water as a base fluid gives higher temperature curves than the curves of human blood as a base fluid which is seen obviously in Figure 7 for the same hybrid nanoparticles Au-CuO. At this point, we mention that the heat capacity of the water is greater than the human blood according to Table 4 as a possible main reason for the interpretation of the figure. Increased heat transfer from the cylinder's surface to the liquid is caused by an increase in the volume fraction of nanoparticles, which assists in increasing the thickness of the thermal layer, hence raising the temperature of the fluid.
Another inverse correlation investigated between γ_2 and other physical quantities in this study is the velocity field $(df/\partial y)(0, y)$. Figures 8 and 9 clearly show this relation. In Figure 8, the curves values of $(df/\partial y)(0, y)$ get lower and lower along with the increase of γ_2 for human blood hybrid nanofluid with Au-CuO, Al-CuO, and Human blood nanofluid with CuO. This is maybe attributed to the role which γ_2 plays in increasing both the density and the viscosity of the hybrid nanofluid so that the velocity field is decreased. Figure 9 shows the different results obtained for the hybrid nanofluid when using different fluid base water and human blood with Au-CuO nanoparticles. The water base hybrid nanofluid keeps getting the higher values of velocity field during the decrement of γ_2 more than the curves of human blood base hybrid fluid, which seems sensible returning to the lower values of dynamic viscosity of water compared with human blood.
CONCLUSION

This paper investigated the problem of natural convection heat transfer in hybrid nanofluid over a horizontal circular cylinder. Besides, we also considered the constant heat flux boundary condition. From this consideration, the variation of volume fraction of γ_1, γ_2 has been checked for its impact on the following physical quantities, local skin friction C_f, local wall temperature θ_w, temperature $\theta(0,y)$ and velocity profiles $(df/ dy)(0,y)$ for CuO/human blood nanofluid, Au-CuO, Al-CuO suspended in Human Blood /water hybrid nanofluid. The following points conclude the results:

1. The hybrid nanofluid that contains two nanoparticles (CuO and either Au or Al) get clear different properties compared with nanofluid with one component (CuO only) of nanoparticles; Au-CuO, Al-CuO/human blood hybrid nanofluids demonstrate higher values of the physical properties $C_f, \theta_w, \theta(0,y)$ and velocity profiles $(df/ dy)(0,y)$ than CuO/human blood nanofluid.

2. The water base fluid with hybrid nanoparticle Au-CuO manifested an increase of the four physical quantities, namely $C_f, \theta_w, \theta(0,y)$, and velocity profiles $(df/ dy)(0,y)$ compared with the human blood base fluid with hybrid nanoparticle Au-CuO.

3. The increase of volume fraction for the γ_2 leads to an increment in the local wall temperature θ_w and temperature field $\theta(0,y)$ in all cases while decreasing the local skin friction C_f and velocity field $(df/ dy)(0,y)$.

4. Au nanoparticle gives higher results with $C_f, \theta_w, \theta(0,y)$ and velocity field $(df/ dy)(0,y)$ than Al nanoparticle as a hybrid nanoparticle due to the difference of thermo-physical properties between these elements.

NOTATIONS

- a: Radius of cylinder
- C_f: Local skin friction coefficient
- Gr: Grashof number
- g: Gravity vector
- k: Thermal conductivity
- M: Magnetic parameter
- Pr: Prandtl number
- q_s: Surface heat flux
- T: Temperature of the fluid
- T_w: Surrounded temperature
- u: x-component of velocity
- v: y-component of velocity
- v_f: Kinematic viscosity of base fluid
- α: Thermal diffusivity
- β_f: Thermal expansion
- θ: Temperature of nanofluid
- μ_f: Dynamic viscosity
- ρ: Density
- (ρc_p): Heat capacity
- τ_w: Wall shear stress
- γ_1: Volume fraction of Au / Al
- γ_2: Volume fraction of CuO
- ψ: Stream function
- θ_w: Local wall temperature

Subscript

- hnf: Hybrid – nanofluid
- s: Nanoparticles
- nf: Nanofluid
- f: Host fluid
ACKNOWLEDGMENTS
This publication was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Alkhjar, Saudi Arabia.

REFERENCES
[1] S. U. Choi, and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL (United States), 1995.
[2] K. J. Lee, S. H. Yoon, and J. Jang, “Carbon nanofibers: a novel nanofiller for nanofluid applications,” Small, vol. 3, no. 7, pp. 1209-1213, 2007, doi: 10.1002/small.200700066.
[3] D. H. Kumar, H. E. Patel, V. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, “Model for heat conduction in nanofluids,” Phys. Rev. Lett., vol. 93, no. 14, pp. 144301, 2004, doi: 10.1103/PhysRevLett.93.144301.
[4] M. Rashidi, N. V. Ganesh, A. A. Hakeem, B. Ganga, and G. Lorenzini, “Influences of an effective Prandtl number model on nano boundary layer flow of γ Al2O3–H2O and γ Al2O3–C2H6O2 over a vertical stretching sheet,” Int. J. Heat Mass Transf., vol. 98, pp. 616-623, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.03.006.
[5] C.-J. Ho, J. Huang, P. Tsai, and Y. M. Yang, “Water-based suspensions of Al2O3 nanoparticles and MEPCM particles on convection effectiveness in a circular tube,” Int. J. Therm. Sci., vol. 50, no. 5, pp. 736-748, 2011, doi: 10.1016/j.ijthermalsci.2010.11.015.
[6] J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer., vol. 128, no. 3, pp. 240-250, 2006, doi: 10.1115/1.2150854.
[7] D. Nield, and A. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid,” Int. J. Heat Mass Transf., vol. 52, no. 25-26, pp. 5796-5801, 2009, doi: 10.1016/j.ijheatmasstransfer.2009.07.023.
[8] P. Cheng, and W. Minkowycz, “Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike,” J. Geophys. Res., vol. 82, no. 14, pp. 2040-2044, 1977, doi: 10.1029/JB082i014p02040.
[9] D. Nield, and A. Kuznetsov, “The Cheng–Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid,” Int. J. Heat Mass Transf., vol. 54, no. 1-3, pp. 374-378, 2011, doi: 10.1016/j.ijheatmasstransfer.2010.09.034.
[10] A. Kuznetsov, and D. Nield, “Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate,” Int. J. Therm. Sci., vol. 50, no. 5, pp. 712-717, 2011, doi: 10.1016/j.ijthermalsci.2011.01.003.
[11] R. K. Tiwari, and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 50, no. 9-10, pp. 2002-2018, 2007, doi: 10.1016/j.ijheatmasstransfer.2006.09.034.
[12] M. A. Sheremet, T. Grosan, and I. Pop, “Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model,” Transp. Porous Media, vol. 106, no. 3, pp. 595-610, 2015, doi: 10.1007/s11242-014-0415-3.
[13] I. Waini, A. Ishak, and I. Pop, “Dufour and Soret effects on Al2O3–water nanofluid flow over a moving thin needle: Tiwari and Das model,” Int. J. Numer. Method H., vol. 31, no. 3, pp. 766-782, 2020, doi: 10.1108/HFF-03-2020-0177.
[14] K. Zaimi, U. Yashkin, N. A. A. Bakar, and M. Ferdows, “Nanofluid stagnation-point flow using Tiwari and Das model over a stretching/shrinking sheet with suction and slip effects,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 70, no. 1, pp. 62-76, 2020, doi: 10.37934/arfjnts.70.16276.
[15] S. Dinavend, R. Hosseini, and I. Pop, “Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model,” Powder Technol., vol. 311, pp. 147-156, 2017, doi: 10.1016/j.powtec.2016.12.058.
[16] A. Jafarimoghadam, and I. Pop, “Numerical modeling of Glaucott type exponentially decaying wall jet flows of nanofluids using Tiwari and Das’ nanofluid model,” Int. J. Numer. Method H., vol. 29, no. 3, pp. 1010-1038, 2019, doi: 10.1108/HFF-08-2018-0437.
[17] F. A. Alwawi, H. T. Alkasasbeh, A. Rashad, and R. Idris, “MHD natural convection of Sodium Alginate Casson nanofluid over a solid sphere,” Res. Phys., vol. 16, pp. 102818, 2020, doi: 10.1016/j.rinp.2019.102818.
[18] S. N. Md, S. M. Zuki, and R. Nazar, “Mixed convection over a horizontal circular cylinder embedded in porous medium immersed in a nanofluid with convective boundary conditions at lower stagnation point: A numerical solution,” in 2nd International Conference on Material Engineering and Advanced Manufacturing Technology, 2018, pp 02004, doi: 10.1051/matecconf/201818902004.
[19] M. Z. Swalmeh, H. T. Alkasasbeh, A. Hussanan, and M. Mamat, “Heat transfer flow of Cu-water and Al2O3-water micropelar nanofluids about a solid sphere in the presence of natural convection using Keller-box method,” Res. Phys., vol. 9, pp. 717-724, 2018, doi: 10.1016/j.rinp.2018.03.033.
[20] M. Z. Swalmeh, H. T. Alkasasbeh, A. Hussanan, T. Nguyen Thoi, and M. Mamat, “Microstructure and inertial effects on natural convection micropolar nanofluid flow about a solid sphere,” Int. J. Ambient Energy, pp. 1-12, 2019, doi: 10.1080/01430750.2019.1665582.
[21] F. A. Alwawi, H. T. Alkasasbeh, A. Rashad, and R. Idris, “Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect,” Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., vol. 234, no. 13, pp. 2569-2580, 2020, doi: 10.1177/0954406220908624.
A numerical approach for the heat transfer flow of carboxymethyl cellulose-water based Casson nanofluid from a solid sphere generated by mixed convection under the influence of Lorentz force,” *Mathematics*, vol. 8, no. 7, pp. 1094, 2020. doi: 10.3390/math8071094.

A. Rashad, A. Chamkha, and M. Modather, “Mixed convection boundary-layer flow past a horizontal circular cylinder embedded in a porous medium filled with a nanofluid under convective boundary condition,” *Comput. Fluids*, vol. 86, pp. 380-388, 2013. doi: 10.1016/j.compfluid.2013.07.030.

A. M. Aly, “Natural convection over circular cylinders in a porous enclosure filled with a nanofluid under thermo-diffusion effects,” *J. Taiwan Inst. Chem. Eng.*, vol. 70, pp. 88-103, 2017. doi: 10.1016/j.jtice.2016.10.050.

H. Mittal, and Q. M. Al-Mdallal, “A numerical study of forced convection from an isothermal cylinder performing rotational oscillations in a uniform stream,” *Int. J. Heat Mass Transf.*, vol. 127, pp. 357-374, 2018. doi: 10.1016/j.ijheatmasstransfer.2018.07.022.

A. S. Hamarsheh, F. A. Alwawi, H. T. Alkasasbeh, A. M. Rashad, and R. Idris, “Heat Transfer Improvement in MHD Natural Convection Flow of Graphite Oxide/Carbon Nanotubes-Methanol Based Casson Nanofluids Past a Horizontal Circular Cylinder,” *Processes*, vol. 8, no. 11, pp. 1444, 2020. doi: 10.3390/pr8111444.

S. Suresh, K. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties,” *Colloids Surf. A Physicochem. Eng. Asp.*, vol. 388, no. 1-3, pp. 41-48, 2011. doi: 10.1016/j.colsurfa.2011.08.005.

S. A. Devi, and S. S. U. Devi, “Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction,” *Int. J. Nonlinear Sci. Numer. Simul.*, vol. 17, no. 5, pp. 249-257, 2016. doi: 10.1515/jnsns-2016-0037.

T. Hayat, S. Nadeem, and A. Khan, “Rotating flow of Ag-CuOH 2 O hybrid nanofluid with radiation and partial slip boundary effects,” *Eur. Phys. J. E.*, vol. 41, no. 6, pp. 75, 2018. doi: 10.1140/epje/i2018-11682-y.

N. S. Khashi’re, N. M. Arifin, I. Pop, and N. S. Wahid, “Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with Joule heating: A comparative analysis,” *Alexandria Engineering Journal*, vol. 59, no. 3, pp. 1787-1798, 2020. doi: 10.1016/aje.2020.04.048.

I. Waini, A. Ishak, and I. Pop, “Hybrid nanofluid flow past a permeable moving thin needle,” *Mathematics*, vol. 8, no. 4, pp. 612, 2020. doi: 10.3390/math8040612.

M. Yousefi, S. Dinarvand, M. E. Yazdi, and I. Pop, “Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder,” *Int. J. Numer. Method H.*, vol. 28, no. 7, pp. 1716-1735, 2018. doi: 10.1108/HFF-01-2018-0009.

A. A. Hussien, W. Al-Kouz, N. M. Yusop, M. Z. Abdullah, and A. A. Janvekar, “A Brief Survey of Preparation and Heat Transfer Enhancement of Hybrid Nanofluids,” *Stroj. Vestn-J. Mech. E.*, vol. 65, no. 8, pp. 441-453, 2019. doi: 10.5545/sve-jme.2019.6077.

S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinizadeh, and D. Ganji, “Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow,” *Powder Technol.*, vol. 322, pp. 428-438, 2017. doi: 10.1016/j.powtec.2017.09.006.

I. Tili, M. Bhatti, S. M. Hamad, A. A. Barzinjy, M. Sheikholeslami, and A. Shafee, “Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects,” *Physica A Stat. Mech. Appl.*, vol. 534, pp. 122136, 2019. doi: 10.1016/j.physa.2019.122136.

E. H. Aly, and I. Pop, “MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid,” *Powder Technol.*, vol. 367, pp. 192-205, 2020. doi: 10.1016/j.powtec.2020.03.030.

R. Dash, K. Mehta, and G. Jayaraman, “Casson fluid flow in a pipe filled with a homogeneous porous medium,” *Int. J. Eng. Sci.*, vol. 34, no. 10, pp. 1145-1156, 1996. doi: 10.1016/0020-7225(96)00012-2.

H. Alkasasbeh, M. Swalmeh, H. Bani Saeed, F. Al Faqih, and A. Talafha, “Investigation on CNTs-water and human blood based Casson nanofluid flow over a stretching sheet under impact of magnetic field,” *Front. Heat Mass Transf.*, vol. 14, no. 15, 2020. doi: 10.5098/fhms.14.15.

H. Sadaf, and S. I. Abdelsalam, “Adverse effects of a hybrid nanofluid in a wavy non-uniform annulus with convective boundary conditions,” *RSC Adv.*, vol. 10, no. 20, pp. 15035-15043, 2020. doi: 10.1039/DOR Acad. 01134G.

D. Kalita, S. Hazarika, and S. Ahmed, “Applications of CNTs in a vertical channel of porous medium for human blood flow: a rheological model,” *JP J. Heat Mass Tran*, vol. 20, no. 2, pp. 105-120, 2020. doi: 10.17654/HM020020105.

A. Riaz, M. M. Bhatti, R. Ellahi, A. Zeeshan, and S. M Sait, “Mathematical analysis on an asymmetrical wavy motion of blood under the influence entropy generation with convective boundary conditions,” *Symmetry*, vol. 12, no. 1, pp. 102, 2020. doi: 10.3390/sym12010102.

I. Shahzadi, and S. Nadeem, “Inclined magnetic field analysis for metallic nanoparticles submerged in blood with convective boundary condition,” *J. Mol. Liq.*, vol. 230, pp. 61-73, 2017. doi: 10.1016/j.molliq.2017.01.008.

S. Ijaz, and S. Nadeem, “Consequences of blood mediated nano transportation as drug agent to attenuate the atherosclerotic lesions with permeability impacts,” *J. Mol. Liq.*, vol. 262, pp. 565-575, 2018. doi: 10.1016/j.molliq.2018.04.069.

M. Z. Swalmeh, “Numerical Solutions of Hybrid Nanofluids Flow Via Free Convection Over a Solid Sphere,” *J. Adv. Res. Fluid Mech. Therm. Sci.*, vol. 93, no. 1, pp. 34-45, 2021. doi: 10.37934/arfjms.83.1.3445.
F. A. Alwawi, M. Z. Swalmeh, A. S. Qazaq, and R. Idris, “Heat Transmission Reinforcers Induced by MHD Hybrid Nanoparticles for Water/Water-EG Flowing over a Cylinder,” Coatings, vol. 11, no. 6, pp. 623, 2021. doi: 10.3390/coatings11060623.

H. B. Keller, and J. Bramble, “A new difference method for parabolic problems. Numerical Methods for Partial Differential Equations,” Academic Press. New York, USA, 1970.

S. Manjunatha, B. A. Kuttan, S. Jayanthi, A. Chamkha, and B. Gireesha, “Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection,” Helion, vol. 5, no. 4, pp. e01469, 2019. doi: 10.3390/coatings11060623.

T. Cebeci, and P. Bradshaw, Physical and computational aspects of convective heat transfer, New York: Springer Science & Business Media, 2012.

R. Nazar, N. Amin, T. Groşan, and I. Pop, “Free convection boundary layer on a sphere with constant surface heat flux in a micropolar fluid,” Int. Commun. Heat Mass Transf., vol. 29, no. 8, pp. 1129-1138, 2002. doi: 10.1016/S0735-1933(02)00441-4.

R. Nazar, and N. Amin, “Free convection boundary layer on an isothermal sphere in a micropolar fluid,” Int. Commun. Heat Mass Transf., vol. 29, no. 3, pp. 377-386, 2002. doi: 10.1016/S0735-1933(02)00327-5.

L. Tham, R. Nazar, and I. Pop, “Mixed convection boundary layer flow from a horizontal circular cylinder in a nanofluid,” Int. J. Numer. Method H., vol. 22, no. 5, pp. 576-606, 2012. doi: 10.1615/IHTC12.2030.

L. Tham, R. Nazar, and I. Pop, “Mixed convection boundary-layer flow about an isothermal solid sphere in a nanofluid,” Phys. Scr., vol. 84, no. 2, pp. 025403, 2011. doi: 10.1088/0031-8949/84/02/025403.

H. T. Alkasasbeh, M. Z. Swalmeh, A. Hussanan, and M. Mamat, “Numerical Solution of Heat Transfer Flow in Micropolar Nanofluids with Oxide Nanoparticles in Water and Kerosene Oil about a Horizontal Circular Cylinder,” Int. J. Appl. Math., vol. 49, no. 3, pp. 1-8, 2019. doi: 10.1108/09615531211231253.

J. Merkin, and I. Pop, “A note on the free convection boundary layer on a horizontal circular cylinder with constant heat flux,” Wärme- und Stoffübertragung, vol. 22, no. 1, pp. 79-81, 1988. doi: 10.1007/BF01001575.

R. Nazar, N. Amin, and I. Pop, “Free convection boundary layer flow on a horizontal circular cylinder with constant heat flux in a micropolar fluid,” Int. J. Appl. Mech., vol. 7, no. 2, pp. 409-431, 2002.

V. M. Job, and S. R. Gunakala, “Mixed convection nanofluid flows through a grooved channel with internal heat generating solid cylinders in the presence of an applied magnetic field,” Int. J. Heat Mass Transf., vol. 107, pp. 133-145, 2017. doi: 10.1016/j.ijheatmasstransfer.2016.11.021.

S. Dinarvand, M. N. Rostami, R. Dinarvand, and I. Pop, “Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet,” Int. J. Numer. Method H., vol. 29, no. 11, pp. 4408-4429, 2019. doi: 10.1108/HFF-01-2019-0083.