Monard, François
Functional relations, sharp mapping properties, and regularization of the X-ray transform on disks of constant curvature. (English) Zbl 1464.44003
SIAM J. Math. Anal. 52, No. 6, 5675-5702 (2020).

MSC:
44A12 Radon transform
45Q05 Inverse problems for integral equations
47G10 Integral operators
35A17 Parametrices in context of PDEs

Keywords:
integral geometry; inverse problems; X-ray transform; Radon transform; intertwining differential operators

Full Text: DOI arXiv

References:
[1] M. Agranovsky and B. Rubin, Non-geodesic Spherical Funk Transforms with One and Two Centers, preprint, https://arxiv.org/abs/1904.11457, 2019. - Zbl 07244852
[2] M. Agranovsky and B. Rubin, On Two Families of Funk-Type Transforms, preprint, https://arxiv.org/abs/1908.06794, 2019. - Zbl 1462.44002
[3] Y. M. Assylbekov and P. Stefanov, A Sharp Stability Estimate for the Geodesic Ray Transform, preprint, https://arxiv.org/abs/1806.00707, 2018. - Zbl 1450.44003
[4] K. Astala, T. Iwaniec, and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton University Press, Princeton, NJ, 2009. - Zbl 1182.30001
[5] G. Bal, Ray transforms in hyperbolic geometry, J. Math. Pures Appl., 84 (2005), pp. 1362-1392. - Zbl 1099.44002
[6] A. Beltukov and D. Feldman, Identities among Euclidean Sonar and Radon transforms, Adv. Appl. Math., 42 (2009), pp. 23-41. - Zbl 1166.44001
[7] J. Boman and V. Sharafutdinov, Stability estimates in tomography, Inverse Problems Imaging, 12 (2018), pp. 1245-1262. - Zbl 1401.44002
[8] A. M. Cormack, Representation of a function by its line integrals, with some radiological applications, II, J. Appl. Phys., 35 (1964), pp. 2908-2913. - Zbl 0122.18401
[9] C. L. Epstein and R. Mazzeo, Degenerate Diffusion Operators Arising in Population Biology, Princeton University Press, Princeton, NJ, 2013. - Zbl 1309.47001
[10] F. B. Gonzalez and T. Kakehi, Invariant differential operators and the range of the matrix Radon transform, J. Funct. Anal., 241 (2006), pp. 232-267. - Zbl 1112.44001
[11] F. A. Grunbaum, Differential operators commuting with convolution integral operators, J. Math. Anal. Appl., 91 (1983), pp. 80-93. - Zbl 0506.45018
[12] C. Guillarmou and F. Monard, Reconstruction formulas for X-ray transforms in negative curvature, Ann. Inst. Fourier (Grenoble), 67 (2017), pp. 1353-1392. - Zbl 1410.44002
[13] S. Helgason, Integral Geometry and Radon Transforms, Springer, New York, 2011. - Zbl 1210.53002
[14] S. Holman and G. Uhlmann, On the microlocal analysis of the geodesic X-ray transform with conjugate points, J. Differential Geom., 108 (2018), pp. 459-494. - Zbl 1387.53100
[15] J. Ilmavirta and F. Monard, Integral geometry on manifolds with boundary and applications, in The Radon Transform: The First 100 Years and Beyond, Radon Ser. Comput. Appl. Math. 22, De Gruyter, Berlin, 2019, pp. 43-114. - Zbl 1454.44002
[16] I. M. Johnstone and B. W. Silverman, Speed of estimation in positron emission tomography and related inverse problems, Ann. Statist., 18 (1990), pp. 251-280. - Zbl 0699.62043
[17] T. Kakehi, Integral geometry on Grassmann manifolds and calculus of invariant differential operators, J. Funct. Anal., 168 (1999), pp. 1-45. - Zbl 0976.53081
[18] S. G. Kazantsev and A. A. Bukhgeim, Singular value decomposition for the \(2\)-D fan-beam Radon transform of tensor fields, J. Inverse Ill-Posed Probl., 12 (2004), pp. 245-278. - Zbl 1058.65443
[19] V. Krishnan, On the inversion formulas of Pestov and Uhlmann for the geodesic ray transform, J. Inverse Ill-Posed Probl., 18 (2010), pp. 401-408. - Zbl 1279.44002
[20] A. Kumar and S. K. Ray, Mixed norm estimate for Radon transform on weighted \((L^p)\) spaces, Proc. Indian Acad. Sci. Math. Sci., 120 (2010), pp. 441-456. - Zbl 1207.44003

[21] A. K. Louis, Orthogonal function series expansions and the null space of the Radon transform, SIAM J. Math. Anal., 15 (1984), pp. 621-633, https://doi.org/10.1137/0515047. - Zbl 0533.42018

[22] P. Maass, Singular value decompositions for Radon transforms, in Mathematical Methods in Tomography, Springer, New York, 1991, pp. 6-14. - Zbl 0762.65090

[23] P. Maass, The interior Radon transform, SIAM J. Appl. Math., 52 (1992), pp. 710-724, https://doi.org/10.1137/0152040. - Zbl 0757.44003

[24] R. Mazzeo, Elliptic theory of differential edge operators I, Comm. Partial Differential Equations, 16 (1991), pp. 1615-1664. - Zbl 0745.58045

[25] R. K. Mishra and F. Monard, Range Characterizations and Singular Value Decomposition of the Geodesic X-ray Transform on Disks of Constant Curvature, preprint, https://arxiv.org/abs/1906.09389, 2019.

[26] F. Monard, Numerical implementation of geodesic X-ray transforms and their inversion, SIAM J. Imaging Sci., 7 (2014), pp. 1335-1357, https://doi.org/10.1137/130938557. - Zbl 1296.65186

[27] F. Monard, Efficient tensor tomography in fan-beam coordinates, Inverse Probl. Imaging, 10 (2016), pp. 433-459. - Zbl 1348.35324

[28] F. Monard, Inversion of the attenuated geodesic X-ray transform over functions and vector fields on simple surfaces, SIAM J. Math. Anal., 48 (2016), pp. 1155-1177, https://doi.org/10.1137/15M1016412. - Zbl 06560440

[29] F. Monard, R. Nickl, and G. P. Paternain, Efficient nonparametric Bayesian inference for X-ray transforms, Ann. Statist., 47 (2019), pp. 1113-1147. - Zbl 1417.62060

[30] F. Monard, P. Stefanov, and G. Uhlmann, The geodesic X-ray transform on Riemannian surfaces with conjugate points, Commun. Math. Phys., 337 (2015), pp. 1491-1513, https://doi.org/10.1007/s00220-015-2328-6. - Zbl 1328.53099

[31] V. Palamodov, Reconstruction from limited data of arc means, J. Fourier Anal. Appl., 6 (2000), pp. 243-252.

[32] G. Paternain and G. Uhlmann, Invariant distributions, Beurling transforms and tensor tomography in higher dimensions, Math. Ann., 363 (2015), pp. 305-362. - Zbl 1328.53099

[33] L. Pestov and G. Uhlmann, On the characterization of the range and inversion formulas for the geodesic X-ray transform, Int. Math. Res. Not., 80 (2004), pp. 4331-4347. - Zbl 1075.44003

[34] R. Rubina, Semanistyi fractional integrals and Radon transforms, Contemp. Math., 598 (2013), pp. 221-237. - Zbl 1302.42021

[35] V. A. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002. - Zbl 1362.65139

[36] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ. 23, American Mathematical Society, New York, 1939.

[37] F. Zernike, Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode, Physica, 1 (1934), pp. 689-704. - Zbl 0009.28101

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.