An in vitro determination of antibacterial effect of silver nanoparticles gel as an intracanal medicament in combination with other medicaments against Enterococcus fecalis

Swaty Jhamb, Ruchi Singla, Amandeep Kaur, Jyoti Sharma¹, Jagat Bhushan

Departments of Conservative Dentistry and Endodontics and ¹Microbiology, Dr. H.S.J.I.D.S and Hospital, Panjab University, Chandigarh, India

Abstract

Aim: The main aim of the study is to compare the antibacterial effect of Silver nanoparticle gel alone and combination of silver nanoparticle gel with various medicaments.

Materials and Methods: Intracanal dressings: Group 1 – Silver Nanocure gel, Group 2 - Silver Nanocure gel + Cavisept gel(1:1), Group 3 - Silver Nanocure gel + Aveu-Cal gel(1:1) , Group 4 – Silver Nanocure gel + Cavisept gel + Aveu-Cal gel(1:1:1) were taken on a culture plate inoculated with E. faecalis. Antibacterial activity was assessed using Agar diffusion test and results were noted as diameter of growth inhibition zone.

Statistical Analysis: Student t –test was used to analyse results.

Results: The diameter of combination of Silver nanocure gel+Cavisept + Aveu-Cal gel(1:1:1) was highest in comparison to other medicaments tested.

Conclusion: Intracanal dressing with a combination of all the three {Silver nanocure gel+Cavisept + Aveu-Cal gel(1:1:1) } is the best treatment for elimination of highly resistant Enterococcus faecalis in root canals.

Keywords: Agar diffusion test, inhibition zone, medicaments

INTRODUCTION

Bacteria and their by-products are responsible for various pulpal and periapical diseases.¹ ² Endodontic infections can be classified as biofilm-mediated infections. Enterococcus faecalis is the most dominant biofilm forming bacteria found in teeth with periradicular pathologies.³ It has an intrinsic resistance to irrigant solutions, intracanal medicaments, several antibiotics, and highly alkaline pH. It has the ability to tolerate starvation, harsh environment, and invade deeply into the dentinal tubules.³ ⁴ To achieve complete success in root canal treatment, suppression of the biofilm is necessary. Cleaning and shaping of the root canal along with irrigation protocol have been shown to effectively decrease the number of microorganisms in the root canal. However, these procedures are unable to completely eliminate bacteria from lateral canals, isthmuses, and apical deltas. The augmentation of the above antibacterial protocol is achieved by utilizing intracanal medicaments.⁴ ⁶

Calcium hydroxide and chlorhexidine have been used since a long time for the removal of E. faecalis. Recently, nanoparticles have come into limelight. Nanoparticles are a class of newer medicaments which are hypothesized to have antibacterial effect. They cause disruption of

Address for correspondence:
Dr. Swaty Jhamb, Room No. 201, Department of Conservative and Endodontics, Dr. H.S.J.I.D.S, Panjab University, Chandigarh, India.
E-mail: drswaty2007@yahoo.co.in

Date of submitted : 30.03.2020
Review completed : 28.06.2020
Date of acceptance : 04.07.2020
Published: 04.08.2020
the biofilm due to their nano size and structure. The nano size provides increased surface area which can absorb other medicaments and exert antimicrobial effect.[7,8] Silver nanoparticles are commonly used as they show strong bactericidal potential against Gram-positive, Gram-negative, and multidrug-resistant bacteria.[9,10] Silver has an ability to interact with bacterial cell wall leading to structural changes and then damaging the tissue protein.

In this study, we compared and evaluated the antibacterial effect of silver nanoparticles alone and combination of silver nanoparticles with calcium hydroxide and chlorhexidine against \textit{E. faecalis}. The study will help us evaluate and find the medicament which is highly efficacious in the removal of \textit{E. faecalis} and hence will lessen the number of endodontic failures.

MATERIALS AND METHODS

\textbf{Culturing enterococcus faecalis}

Pure culture of \textit{E. faecalis} (ATCC 29212) was used as the test microorganism. Bacterial colonies were isolated after 24 h of incubation and then suspended in 5 ml of brain heart infusion broth. They were incubated at 37°C for 4 h. After culturing \textit{E. faecalis} in the culture media, 0.5 McFarland standard of the bacterial suspension was prepared and cultured on Mueller–Hinton agar culture medium by a sterile swab in all directions. Then, in each culture plate, 5 wells measuring 6 mm in diameter and 2 mm in depth were created with a sterile pipette for placement of the material samples.

\textbf{Division into groups}

Four groups were made according to the medicament used:

- Group 1 – Silver nanocure gel
- Group 2 – Silver nanocure gel + Cavisept gel (1:1)
- Group 3 – Silver nanocure gel + Aveu-Cal gel (1:1)
- Group 4 – Silver Nanocure gel + Cavisept gel + Aveu-Cal gel (1:1:1).

\textbf{Microbiologic testing}

The wells were then filled with respective medicament from each group. The process was repeated five times and all microbial tests were performed under aseptic conditions. The plates were then incubated at 37°C for 1 week, and the diameter of the growth inhibition zone was evaluated at 24 h, 48 h, and 1 week after culture. The mean of the three values was calculated and reported as the diameter of zone of inhibition. The results were analyzed using student’s \textit{t}-test.

\textbf{RESULTS}

Antibacterial activity of all the three medicaments in different combinations is shown in Table 1. The results obtained revealed statistically significant difference in the antibacterial effect of combination of silver nanocure gel with various medicaments in comparison to silver nanocure gel alone. Silver nanocure gel in combination with calcium hydroxide (Group 2) was more efficacious as compared to silver nanocure gel alone (Group 1) \((P < 0.00001)\). Antibacterial activity of silver nanocure gel in combination with chlorhexidine (Group 3) was also significantly higher than silver nanocure gel alone \((P < 0.00001)\). When silver nanocure gel was combined with both calcium hydroxide and chlorhexidine (Group 4) the antibacterial activity was again higher in comparison to silver nanocure gel used alone \((P < 0.00001)\). The zone of inhibition for combination of all the three medicaments was maximum [Figure 1].

\textbf{DISCUSSION}

Root canal disinfection is the mainstay of successful endodontic treatment.[11] Major challenges involved in achieving the above-mentioned goal are the microorganism-induced biofilms and the limitations associated with the currently used intracanal medicaments and irrigants in eliminating the same. Hence, in the present study, the effectiveness of four medicaments was studied and their efficacy against \textit{E. faecalis} was estimated. The nanoparticles and their various combinations have been used as intracanal medicaments and their effect on \textit{E. faecalis} is measured by observing the diameter of zone of inhibition in the agar diffusion test.

\textit{E. faecalis} was used as a test organism in the study as it has a major role in the etiology of persistent endodontic infections. It is majorly responsible for root
When silver nanocure gel (Group 1) was used alone, it showed slight antibacterial activity against *E. faecalis*. This can be explained by the fact that silver ions released due to oxidation of nanoparticles bind to the cell membrane and penetrate inside the bacteria and react with specific proteins. This alters the bacterial metabolism and inhibits vital enzymatic systems, such as respiratory process and cellular division, resulting in cell death. The results in the present study are in agreement with the study done by Kim et al.[15]

In Group 2, where silver nanocure gel was used in combination with Cavisept gel showed a more significant antibacterial activity in comparison to silver nanocure gel alone, but it was significantly lesser than the other combinations tested (*P* < 0.0001). Chlorhexidine has a unique property of substantivity.[16-19] However, recent studies have shown that biofilm formation by *E. faecalis* is a major hindrance in the working of chlorhexidine.[20] To increase the efficacy of cavisept gel, silver nanoparticles have been added to it. Its scientific basis is that silver gets ionized and destroys the cell membrane allowing the penetration of chlorhexidine leading to cell death.[21] This helps in increased removal of *E. faecalis* from the root canals and its efficient cleaning.

In Group 3, silver nanocure gel in combination with Aveu-cal gel was used and this also proved significantly more effective against *E. faecalis*. This finding is consistent with other studies.[22-23] This finding was in agreement with the findings of other studies which suggested combination of silver nanoparticles and calcium hydroxide to be better in comparison to silver nanoparticle gel and calcium hydroxide gel used alone.[23] It has been observed that silver nanoparticles from silver nanocure gel create pits in the cell wall of microorganism which leads to disruption of the biofilm.[23,24] The other mechanism of action is increased amount of calcium hydroxide delivery due to changes in bacterial permeability. The release of hydroxyl ions in the root canal environment kills bacteria by damaging the cytoplasmic membrane, denaturation of proteins, and damaging DNA.[24,25] Hence, the above combination helps in effective elimination of *E. faecalis*. The Group 4 where silver nanocure gel was used in combination with Cavisept gel and Aveu-cal gel, showed most significant reduction in the *E. faecalis* activity. All the three medicaments combined have been shown to have a synergistic effect and hence have been able to cause maximum eradication of *E. faecalis* from the microbial flora of root canals. This was observed in our study. As per our knowledge, this is the first study done so far in the English literature that has tested all three medicaments in combination.

Limitations
The limitation of the study is its *in vitro* nature. The above findings need to be tested *in vivo*. The strength of the study is the efficacy of all the three intracanal medicaments studied with latest scientific approach that is in combination with nanotechnology, which is the future of dentistry. We are hopeful of a bright future of these small particles.

CONCLUSION

In this *in vitro* study, it may be concluded that silver nanocure gel, cavisept gel, and Aveu-cal gel combination is the best among for elimination of *E. faecalis* from the root canal.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol 1965;20:340-9.
2. Möller AJ, Fabricius L, Dahleń G, Ohman AE, Heyden G. Influence on periapical tissues of indigenous oral bacteria and necrotic pulp tissue in monkeys. Scand J Dent Res 1981;89:475-84.
3. Madhubala MM, Srinivasan N, Ahamed S. Comparative evaluation of propolis and triantibiotic mixture as an intracanal medicament against *Enterococcus faecalis*. J Endod 2011;37:1287-9.
4. Sabrah AH, Yassen GH, Gregory RL. Effectiveness of antibiotic medicaments against biofilm formation of *Enterococcus faecalis* and *Porphyromonas gingivalis*. J Endod 2013;39:1385-99.
5. Wu D, Fan W, Kishen A, Gutmann JL, Fan W. Evaluation of antibacterial efficacy of Silver nanoparticles against *Enterococcus faecalis* biofilms. J Endod 2014;40:285-90.
6. Delgado RH, Gasparoto Th, Sipert CR, Pinheiro CR, Moraes IG, Garcia RB. Antimicrobial effects of calcium hydroxide and chlorhexidine on *Enterococcus faecalis*. J Endod 2010;36:1389-93.
7. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science 2012;338:903-10.
8. Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: The powerful neoweapon against multi-drug resistant bacteria. J Appl Microbiol. 2012;112:841-52.
9. Morones JR, Blechguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16:2346-53.
10. Ayala-Nunez NV, Villegas HH, Turrent LC, Padilla CR. Silver nanoparticles toxicity and bactericidal effect against methicillin resistant *Staphylococcus aureus*: Nanoscale does matter. J Nanobiotechnology 2009;7:2-9.
11. Siqueira JF Jr., Araújo MC, Garcia PF, Fraga RC, Dantas CJ. Histological evaluation of the effectiveness of five instrumentation techniques for cleaning the apical third of root canals. J Endod 1997;23:499-502.
12. Kishen A. Advanced therapeutic options for endodontic biofilms. Endod Topics 2010;22:99-123.
13. Siqueira JF Jr., Rocas IN, Ricucci D. Biofilm in endodontic infection. Endod Topics 2010;22:33-49.
14. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. *Enterococcus faecalis*: Its role in root canal treatment failure and current concepts in retreatment. J Endod 2006;32:83-8.
15. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007;3:95-101.

16. Mohammadi Z, Abbott PV. The properties and applications of chlorhexidine in endodontics. Int Endod J 2009;42:288-302.

17. Basrani B, Tijander L, Santos JM, Pascon E, Grad H, Lawrence HP, et al. Efficacy of chlorhexidine- and calcium hydroxide-containing medicaments against Enterococcus faecalis in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:618-24.

18. Gomes BP, Souza SF, Ferraz CC, Teixeira FB, Zaia AA, Valdrighi L, et al. Effectiveness of 2% chlorhexidine gel and calcium hydroxide against Enterococcus faecalis in bovine root dentin in vitro. Int Endod J 2003;36:267-75.

19. Shen Y, Qian W, Chung C, Olsen I, Haapasalo M. Evaluation of the effect of two chlorhexidine preparations on biofilm bacteria in vitro: A three-dimensional quantitative analysis. J Endod 2009;35:981-S.

20. Shen Y, Stojicic S, Haapasalo M. Antibacterial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod 2011;37:657-61.

21. Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, et al. Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 2007;4:114-22.

22. de Souza-Filho FJ, Soares Ade J, Vianna ME, Zaia AA, Ferraz CC, Gomes BP. Antimicrobial effect and pH of chlorhexidine gel and calcium hydroxide alone and associated with other materials. Braz Dent J 2008;19:28-33.

23. Javidi M, Afkhami F, Zarei M, Ghazvini K, Rajabi O. Efficacy of a combined nanoparticle/calcium hydroxide root canal medication on elimination of Enterococcus faecalis. Aust Endod J 2014;40:61-5.

24. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;6:2346-53.

25. Mohammadi Z, Shalavi S, Yazdizadeh M. Antimicrobial activity of Calcium hydroxide in endodontics: A Review. Chonnam Med J 2012;48:133-40.