W-ALGEBRAS RELATED TO PARAFERMION ALGEBRAS

CHONGYING DONG, CHING HUNG LAM, AND HIROMICHI YAMADA

Abstract. We study a W-algebra of central charge \(2(k - 1)/(k + 2)\), \(k = 2, 3, \ldots\) contained in the commutant of a Heisenberg algebra in a simple affine vertex operator algebra \(L(k, 0)\) of type \(A_1^{(1)}\) with level \(k\). We calculate the operator product expansions of the W-algebra. We also calculate some singular vectors in the case \(k \leq 6\) and determine the irreducible modules and Zhu’s algebra. Furthermore, the rationality and the \(C_2\)-cofiniteness are verified for such \(k\).

1. Introduction

A Virasoro field and its finitely many primary fields generate a W-algebra of various kinds. Those W-algebras are important in the study of vertex operator algebras, for they provide many interesting examples. In [15], a possible structure of a W-algebra \(W(2, 3, 4, 5)\) with primary fields of conformal weight 3, 4 and 5 was discussed. Such an algebra was constructed in the commutant of a Heisenberg algebra in a Weyl module \(V(k, 0)\) for an affine Lie algebra \(\widehat{sl}_2\) of type \(A_1^{(1)}\) with level \(k\) in [1]. Our main concern is the commutant \(K_0\) of a Heisenberg algebra in a simple quotient \(L(k, 0)\) of \(V(k, 0)\), where \(k\) is an integer greater than 1. The commutant \(K_0\), including the characters of its irreducible modules, was studied in [2] (see [14] also). In this paper, we study \(K_0\) from a point of view of vertex operator algebra. The central charge of \(K_0\) is \(2(k - 1)/(k + 2)\), which coincides with the central charge of the parafermion algebra. We refer the reader to [7] for the relationship between \(K_0\) and the parafermion algebra.

It is also known that \(K_0\) appears as the commutant of a certain subalgebra in the vertex operator algebra \(V_{\sqrt{2}A_{k-1}}\) associated with \(\sqrt{2}A_{k-1}\), where \(\sqrt{2}A_{k-1}\) denotes \(\sqrt{2}\) times an ordinary root lattice of type \(A_{k-1}\) [18]. Such a realization of \(K_0\) leads to a natural study of \(V_{\sqrt{2}A_{k-1}}\) as a module for \(K_0\). The \(K_0\)-module structure of \(V_{\sqrt{2}A_{k-1}}\) for some special \(k\) is expected to play an important role in a better understanding of the moonshine vertex operator algebra \(V^\natural\) [12].

It is widely believed that \(K_0\) is a rational and \(C_2\)-cofinite vertex operator algebra. It is also anticipated that \(K_0\) has exactly \(k(k + 1)/2\) inequivalent irreducible modules (see Conjecture [4,6]). In this paper, we treat these subjects. The key of our arguments here is a detailed analysis of some singular vectors. Unfortunately, we do not succeed in describing those singular vectors explicitly for a general \(k\). Therefore, we restrict ourselves to the case \(k \leq 6\). We determine Zhu’s algebra and classify the irreducible modules of \(K_0\) for \(k \leq 6\). Moreover, we show that \(K_0\) is rational and \(C_2\)-cofinite for such \(k\). In the case \(k \geq 3\), we show that \(K_0\) is generated by a primary field of weight 3.

The organization of the paper is as follows. In Section 2, we introduce the conformal vector \(\omega\) of central charge \(2(k - 1)/(k + 2)\) and Virasoro primary vectors \(W^3, W^4\) and

2000 Mathematics Subject Classification. 17B69, 17B65.
W^5 of weight 3, 4 and 5, respectively in the commutant N_0 of a Heisenberg algebra in the Weyl module $V(k, 0)$ for \mathfrak{sl}_2 with level k, where k is an integer greater than 1. Such a vector W^i, $i = 3, 4, 5$ is unique up to a scalar multiple. Let W^i_γ be a component operator, that is, the coefficient of x^{-n-1} in the vertex operator associated with W^i. The vectors $W^i_\gamma W^j$, $3 \leq i \leq j \leq 5$, $0 \leq n \leq i+j-1$ are known in [1]. We compute these vectors in the Weyl module $V(k, 0)$ and express them as linear combinations of vectors of normal form (see (2.12)). The computation has been done by a computer algebra system Risa/Asir. The results can be found in Appendix B. In the computation of the vectors $W^i_\gamma W^j$, we do not assume that k is an integer greater than 1. Thus in Appendix B we can think of the parameter k as a formal variable. Using the explicit expression of $W^i_\gamma W^j$ as a linear combination of vectors of normal form, we study a subalgebra \tilde{W} of the commutant N_0 generated by ω, W^3, W^4 and W^5. It turns out that \tilde{W} is in fact generated by W^3 if $k \geq 3$. As a consequence, the automorphism group of \tilde{W} is of order 2 and it is generated by an automorphism which maps W^3 to its negative if $k \geq 3$. We also show that Zhu’s algebra of \tilde{W} is commutative. It is known that \tilde{W} has two (resp. four) linearly independent singular vectors of weight 8 (resp. 9) [1]. We use these singular vectors to determine Zhu’s algebra of K_0 for $k = 5, 6$ in Section 5. In addition to them, a weight 10 singular vector is necessary to establish the C_2-cofiniteness for $k = 5, 6$ in Section 5.

Since k is an integer greater than 1, the vertex operator algebra $V(k, 0)$ possesses a unique maximal ideal J, which is generated by $e(-1)^{k+1}1$. In Section 3 we study the commutant K_0 of a Heisenberg algebra in the quotient vertex operator algebra $L(k, 0) = V(k, 0)/J$. We denote the image of \tilde{W} in $L(k, 0)$ by \mathcal{W}. Then \mathcal{W} is a subalgebra of K_0. The ideal J is not contained in the commutant N_0. It is expected that a unique maximal ideal $J \cap N_0$ of N_0 is generated by a weight $k + 1$ vector $u^0 = f(0)^{k+1}e(-1)^{k+1}1$ (see Lemma 3.1, Conjecture 3.3).

In Section 4, we embed $L(k, 0)$ into a vertex operator algebra V_L associated with a lattice L of type A_{2k}^{\pm}. This is accomplished by the use of level-rank duality [7, Chapter 14]. Let V^aff be a subalgebra of V_L obtained by the embedding. Then $V^\text{aff} \cong L(k, 0)$. There is a sublattice L' of L isomorphic to $\sqrt{2}A_{k-1}$ such that the vertex operator algebra $V_{L'}$ associated with L' is the commutant of the vertex operator algebra $V_{Z\gamma}$ associated with a rank one lattice $Z\gamma$ in V_L. We have $V_L \supset V^\text{aff} \supset V_{Z\gamma}$ and $K_0 \cong V^\text{aff} \cap V_{L'}$. That is, K_0 is isomorphic to the commutant of $V_{Z\gamma}$ in V^aff. This consideration has some advantages. For instance, using the representation theory of the vertex operator algebra $V_{Z\gamma}$, we construct a certain family of irreducible K_0-modules inside V_{L^\perp} and study their properties, where L^\perp is the dual lattice of L.

The singular vectors of weight at most 10 in \mathcal{W} are calculated explicitly for any k. However, this is not the case for u^0. We can describe u^0 as a linear combination of vectors of normal form only for a given small k. For this reason, we deal with only the case $k \leq 6$ in Section 5. If $k = 2$, 3 or 4, then \mathcal{W} is degenerate. In fact, it turns out that u^0 is a scalar multiple of W^{k+1} for $k = 2, 3, 4$. In such a case, \mathcal{W} is isomorphic to a well-known vertex operator algebra. Thus the main part of Section 5 is devoted to the case $k = 5, 6$. We show that $\mathcal{W} = K_0$ and classify its irreducible modules. Moreover, we show that K_0 is rational and C_2-cofinite. We note that K_0 is related to a 2A, 3A, 4A, 5A or 6A element of the Monster simple group according as $k = 2, 3, 4, 5$ or 6 (see [19].
Section 3, Appendix B], [21, Section 4]). In fact, this is part of the motivation of our work.

The argument heavily depends on singular vectors \(v^0, v^1 \) and \(v^2 \) of weight 8, 9 and 10, respectively in \(\tilde{W} \) and on singular vectors \(u^r = (W^3)^r u^0 \) of weight \(k + 1 + r \), \(r = 0, 1, 2, 3 \) in \(W \). It seems that we can take \(W^3 v^0 \) and \((W^3)^2 v^0 \) in place of \(v^1 \) and \(v^2 \), respectively. However, we do not verify it. The importance of \(u^0 \) is clear from the degenerate case, namely, the case \(k = 2, 3, 4 \), for \(u^0 \) is a scalar multiple of \(W^3, W^4 \) or \(W^5 \) in such a case. It would be difficult to express \(u^r \), \(r = 0, 1, 2, 3 \) in terms of \(\omega, W^3, W^4 \) and \(W^5 \) for an arbitrary \(k \). We should take a different approach for a general case.

Our notation is fairly standard [12, 20]. Let \(V \) be a vertex operator algebra and \((M, Y_M)\) be its module. Then \(Y_M(v, x) = \sum_{n \in \mathbb{Z}} v_n x^{-n-1} \) is the vertex operator associated with \(v \in V \). The linear operator \(v_n \) on \(M \) is called a component operator. For a subalgebra \(U \) of \(V \) and a subset \(S \) of \(M \), let \(U \cdot S = \text{span}\{u_n w \mid u \in U, w \in S, n \in \mathbb{Z}\} \), which is the \(U \)-submodule of \(M \) generated by \(S \).

Part of the results in this paper was announced in [6]. We remark that \(N_0 \) (resp. \(K_0 \)) is denoted by \(\tilde{W} \) (resp. \(W \)) in [6]. In this paper, we distinguish \(N_0 \) and \(\tilde{W} \) (resp. \(K_0 \) and \(W \)) clearly to avoid confusion.

2. \(\tilde{W} \) and its singular vectors

Let \(\{h, e, f\} \) be a standard Chevalley basis of \(sl_2 \). Thus \([h, e] = 2e, [h, f] = -2f, [e, f] = h\) for the bracket and \(\langle h, h \rangle = 2, \langle e, f \rangle = 1, \langle h, e \rangle = \langle h, f \rangle = \langle e, e \rangle = \langle e, f \rangle = 0 \) for the normalized Killing form. We fix an integer \(k \geq 2 \). Let \(V(k, 0) = V_{sl_2}(k, 0) \) be a Weyl module for the affine Lie algebra \(\hat{sl}_2 = sl_2 \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}C \) with level \(k \), that is, a Verma module for \(\tilde{sl}_2 \) with level \(k \) and highest weight 0. Let \(\mathbb{1} \) be its canonical highest weight vector, which is called the vacuum vector. Then \(sl_2 \otimes \mathbb{C}[t] \) acts as 0 and \(C \) acts as \(k \) on \(\mathbb{1} \). We denote by \(h(n), e(n) \) and \(f(n) \) the operators on \(V(k, 0) \) induced by the action of \(h \otimes t^n, e \otimes t^n \) and \(f \otimes t^n \), respectively. Thus \(h(n) \mathbb{1} = e(n) \mathbb{1} = f(n) \mathbb{1} = 0 \) for \(n \geq 0 \) and

\[
[a(m), b(n)] = [a, b](m + n) + m(a, b)\delta_{m+n,0}k
\]

for \(a, b \in \{h, e, f\} \). The elements

\[
h(-i_1) \cdots h(-i_p) e(-j_1) \cdots e(-j_q) f(-m_1) \cdots f(-m_r) \mathbb{1}, \quad \quad (2.2)
\]

\(i_1 \geq \cdots \geq i_p \geq 1, j_1 \geq \cdots \geq j_q \geq 1, m_1 \geq \cdots \geq m_r \geq 1 \) form a basis of \(V(k, 0) \).

Let \(a(x) = \sum_{n \in \mathbb{Z}} a(n) x^{-n-1} \) for \(a \in \{h, e, f\} \) and

\[
a(x)_n b(x) = \text{Res}_{x_1} \left((x_1 - x)^n a(x_1) b(x) - (-x + x_1)^n b(x) a(x_1) \right).
\]

Then the vertex operator \(Y(v, x) = \sum_{n \in \mathbb{Z}} v_n x^{-n-1} \in (\text{End} V(k, 0))[\![x, x^{-1}]\!] \) associated with \(v = a^1(n_1) \cdots a^r(n_r) \mathbb{1} \) is given by

\[
Y(a^1(n_1) \cdots a^r(n_r) \mathbb{1}, x) = a^1(x)_{n_1} \cdots a^r(x)_{n_r} \quad \quad (2.3)
\]
for $a^i \in \{h, e, f\}$ and $n_i \in \mathbb{Z}$, where 1 denotes the identity operator. Set
\[
\omega_{\text{aff}} = \frac{1}{2(k+2)} \left(\frac{1}{2} h(-1)^2 \mathbb{1} + e(-1)f(-1)\mathbb{1} + f(-1)e(-1)\mathbb{1} \right)
\]
\[
= \frac{1}{2(k+2)} \left(-h(-2)\mathbb{1} + \frac{1}{2} h(-1)^2 \mathbb{1} + 2e(-1)f(-1)\mathbb{1} \right).
\]
Then $(V(k,0), Y, \mathbb{1}, \omega_{\text{aff}})$ is a vertex operator algebra with the conformal vector ω_{aff}, whose central charge is $3k/(k+2)$ [13] (see [20], Section 6.2) also. The vector of the form (2.2) is an eigenvector for $(\omega_{\text{aff}})_i$ with eigenvalue $i_1 + \cdots + i_p + j_1 + \cdots + j_q + m_1 + \cdots + m_r$. The eigenvalue is called the weight of the vector in $V(k,0)$. We denote the weight of v by $\text{wt} v$.

We consider two subalgebras $\tilde{\mathfrak{h}} = \mathbb{C} h \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C} C$ and $\tilde{\mathfrak{h}}_s = (\oplus_{n \neq 0} \mathbb{C} h \otimes t^n) \oplus \mathbb{C} C$ of the Lie algebra \tilde{s}_2. Let $V_{\tilde{\mathfrak{h}}}(k,0)$ be the subalgebra of $V_{\tilde{s}_2}(k,0)$ with basis $h(-i_1) \cdots h(-i_p)\mathbb{1}$, $i_1 \geq \cdots \geq i_p \geq 1$. That is, $V_{\tilde{\mathfrak{h}}}(k,0)$ is a vertex operator algebra associated with the Heisenberg algebra $\tilde{\mathfrak{h}}_s$ of level k. The conformal vector of $V_{\tilde{\mathfrak{h}}}(k,0)$ is given by
\[
\omega_{\gamma} = \frac{1}{4k} h(-1)^2 \mathbb{1}.
\]
Its central charge is 1.

Now, $V(k,0)$ is completely reducible as a $V_{\tilde{\mathfrak{h}}}(k,0)$-module. More precisely,
\[
V(k,0) = \bigoplus_{\lambda} M_{\tilde{\mathfrak{h}}}(k, \lambda) \otimes N_{\lambda}.
\]
Here $M_{\tilde{\mathfrak{h}}}(k, \lambda)$ denotes an irreducible highest weight module for $\tilde{\mathfrak{h}}$ with a highest weight vector v_{λ} such that $h(0)v_{\lambda} = \lambda v_{\lambda}$ and
\[
N_{\lambda} = \{v \in V(k,0) \mid h(m)v = \lambda \delta_{m,0}v \text{ for } m \geq 0\}.
\]
The index λ runs over all even integers, since the eigenvalues of $h(0)$ in $V(k,0)$ are even integers. In fact, $h(0)$ acts as $2(q-r)$ on the vector of the form (2.2).

In the case $\lambda = 0$, $M_{\tilde{\mathfrak{h}}}(k,0)$ is identical with $V_{\tilde{\mathfrak{h}}}(k,0)$ and N_0 is the commutant [13, Theorem 5.1] of $V_{\tilde{\mathfrak{h}}}(k,0)$ in $V(k,0)$. The commutant N_0 is a vertex operator algebra with the conformal vector $\omega = \omega_{\text{aff}} - \omega_{\gamma}$;
\[
\omega = \frac{1}{2k(k+2)} \left(-kh(-2)\mathbb{1} - h(-1)^2 \mathbb{1} + 2ke(-1)f(-1)\mathbb{1} \right),
\]
whose central charge is $3k/(k+2) - 1 = 2(k-1)/(k+2)$. Since the conformal vector of $V_{\tilde{\mathfrak{h}}}(k,0)$ is ω_{γ}, we have $N_0 = \{v \in V(k,0) \mid (\omega_{\gamma})_0v = 0\}$ by [13, Theorem 5.2]. It is also the commutant of $\text{Vir}(\omega_{\gamma})$ in $V(k,0)$, where $\text{Vir}(\omega_{\gamma})$ is the subalgebra of $V(k,0)$ generated by ω_{γ}. Since $\omega_1v = (\omega_{\text{aff}})_1v$ for $v \in N_0$, the weight of v in N_0 agrees with that in $V(k,0)$.

By a direct computation, we see that the dimension of the weight i subspace $(N_0)_i$ of N_0 is 2, 4 and 6 for $i = 3, 4$ and 5, respectively. Furthermore, we can verify that there is up to a scalar multiple, a unique Virasoro primary vector W^i in $(N_0)_i$ for $i = 3, 4, 5$. Here a Virasoro primary vector of weight i means that $\omega_3 W^i = \omega_3 W^i = 0$ and $\omega_1 W^i = iW^i$. In this paper, we take
\[
W^3 = k^2 h(-3)\mathbb{1} + 3kh(-2)h(-1)\mathbb{1} + 2h(-1)^3 \mathbb{1} - 6kh(-1)e(-1)f(-1)\mathbb{1}
+ 3k^2 e(-2)f(-1)\mathbb{1} - 3k^2 e(-1)f(-2)\mathbb{1},
\]
As to W^4 and W^5, see Appendix A. We denote by \tilde{W} the subalgebra of N_0 generated by ω, W^3, W^4 and W^5. Actually, \tilde{W} coincides with $W(2, 3, 4, 5)$ of [1].

Remark 2.1. Our W^3, W^4 and W^5 are scalar multiples of W^3, W^4 and W^5 in the notation of [1] Appendix A. In fact,

$$W^3 = \frac{1}{2}W_3,$$

$$W^4 = \frac{16k + 17}{144k(2k + 3)}W_4,$$

$$W^5 = -\frac{64k + 107}{3456k^2(2k + 3)(3k + 4)}W_5.$$

Notice that h, e, f and ω are denoted by J^0, J^+, J^- and L, respectively in [1].

Recall that W^i_n is a component operator, that is, the coefficient of x^{-n-1} in the vertex operator associated with W^i. The computation of $W^i_nW^j$, $3 \leq i \leq j \leq 5$, $0 \leq n \leq i + j - 1$ has been done in [1]. In this paper, we compute the commutation relation (2.1) of the operators W^i_n associated with W in these four elements. We also notice that ω is treated as a formal variable. That is, we do not assume that k is an integer greater than 1 in the computation. Hence in Appendix B, k can be considered as a formal variable.

Our computation of $W^i_nW^j$’s in $V(k, 0)$ has been done by a computer algebra system Risa/Asir. During the computation, we only use the condition $a(n)\mathbb{1} = 0$ for $a \in \{h, e, f\}$, $n \geq 0$, the commutation relation (2.1) and the definition (2.3) of vertex operators on $V(k, 0)$. The parameter k is treated as a formal variable. That is, \tilde{W} is closed within these four elements. We also notice that

$$W^5W^3 = 12k^3(k - 2)(k - 1)(3k + 4)\mathbb{1},$$

$$W^4W^3 = 0,$$

$$W^3W^3 = 36k^3(k - 2)(k + 2)(3k + 4)\omega.$$
Remark 2.3. From $W_3^3W_3^3$, $W_3^3W_3^3$ and $W_3^3W_3^4$, we see that \tilde{W} is generated by a single element W_3^3 if $k \geq 3$. It turns out that W_3^3, W_4^4 or W_5^5 is contained in a maximal ideal of \tilde{W} if $k = 2$, 3 or 4 (see Section 5 for detail). These are the degenerate cases.

Let $\text{Vir}(\omega)$ be the subalgebra of \tilde{W} generated by ω. Each $W_i^iW_j^j$, $3 \leq i \leq j \leq 5$, $0 \leq n \leq i + j - 1$ is a linear combination of elements in $\text{Vir}(\omega)$, $\text{Vir}(\omega) \cdot W_p^p\mathbb{1}$ with $p < i + j$ and $m \leq -1$, and $\text{Vir}(\omega) \cdot W_r^rW_s^s\mathbb{1}$ with $r + s < i + j$, $r \leq s$ and $k, m, r \leq -1$, where $p, r, s \in \{3, 4, 5\}$ (see Appendix B). Note also that $\omega_iW_i^i = 0$ if $n \geq 2$, $\omega_iW_i^i = iW_i^i$ and $\omega_0W_i^i = W_i^i\mathbb{1}$ for $i = 3, 4, 5$. Hence, using basic formulas for a vertex operator algebra [20], (3.1.9), (3.1.12)

$$[u_m, v_n] = \sum_{i \geq 0} \binom{m}{i} (uv)_{m+n-i},$$

$$\sum_{i \geq 0} (-1)^i \left(\binom{m}{i} (u_{m-i}v_{n+i} - (-1)^m v_{m+n-i} u_i) \right).$$
we obtain the following lemma by induction.

Lemma 2.4. \tilde{W} is spanned by the elements

$$\omega_{-i_1} \cdots \omega_{-i_s} W_3^3 \cdots W_3^3 W_3^4 \cdots W_3^4 W_5^5 \cdots W_5^5 W_5^5 \mathbb{1}$$

with $i_1 \geq \cdots \geq i_p \geq 1$, $j_1 \geq \cdots \geq j_q \geq 1$, $m_1 \geq \cdots \geq m_r \geq 1$ and $n_1 \geq \cdots \geq n_s \geq 1$.

An element of the form (2.12) is said to be of normal form. Another notation is more convenient on some occasion. Set $L(n) = \omega_{n+1}$, $W_3^3(n) = W_3^3_{n+2}$, $W_4^4(n) = W_4^4_{n+3}$ and $W_5^5(n) = W_5^5_{n+4}$. All of these operators are of weight $-n$. The spanning set of \tilde{W} can also be described by

$$L(-i_1) \cdots L(-i_p) W_3^3(-j_1) \cdots W_3^3(-j_q) \cdot W_4^4(-m_1) \cdots W_4^4(-m_r) W_5^5(-n_1) \cdots W_5^5(-n_s) \mathbb{1}$$

with $i_1 \geq \cdots \geq i_p \geq 2$, $j_1 \geq \cdots \geq j_q \geq 3$, $m_1 \geq \cdots \geq m_r \geq 4$ and $n_1 \geq \cdots \geq n_s \geq 5$.

The weight of the vector (2.13) is

$$i_1 + \cdots + i_p + j_1 + \cdots + j_q + m_1 + \cdots + m_r + n_1 + \cdots + n_s.$$

A vector u of a \tilde{W}-module is called a highest weight vector for \tilde{W} with highest weight (a_2, a_3, a_4, a_5) if $L(n)u = W_3^3(n)u = 0$ for $n \geq 1$, $L(0)u = a_2u$ and $W_3^3(0)u = a_3u$ for $i = 3, 4, 5$. By a similar argument as above, we see that the vectors

$$L(-i_1) \cdots L(-i_p) W_3^3(-j_1) \cdots W_3^3(-j_q) \cdot W_4^4(-m_1) \cdots W_4^4(-m_r) W_5^5(-n_1) \cdots W_5^5(-n_s)u$$

with $i_1 \geq \cdots \geq i_p \geq 1$, $j_1 \geq \cdots \geq j_q \geq 1$, $m_1 \geq \cdots \geq m_r \geq 1$ and $n_1 \geq \cdots \geq n_s \geq 1$ span the \tilde{W}-submodule $\tilde{W} \cdot u$ generated by such a highest weight vector u.

An automorphism of the Lie algebra sl_2 given by $h \mapsto -h$, $e \mapsto f$, $f \mapsto e$ lifts to an automorphism θ of the vertex operator algebra $V(k, 0)$ of order 2. The Virasoro element ω_7 is invariant under θ by (2.4). Hence θ induces an automorphism of N_0. In fact, $\theta \omega = \omega$ and $\theta W^3 = -W^3$ by (2.6) and (2.7), respectively, and so $\theta W^4 = W^4$ and $\theta W^5 = -W^5$ by
Let $\theta v = (−1)^{q+\bar{s}}v$ for an element v of the form (2.12). Let $W^\pm = \{ v \in W | \theta v = \pm v \}$.

Theorem 2.5. If $k \geq 3$, then the automorphism group $\text{Aut} \tilde{W}$ of \tilde{W} is $\langle \theta \rangle$, a group of order 2 generated by θ.

Proof. Let $\sigma \in \text{Aut} \tilde{W}$. Since any Virasoro primary vector of weight 3 in N_0 is a scalar multiple of W^3, we have $\sigma W^3 = \xi W^3$ for some scalar $\xi \neq 0$. Then $\sigma(W^3 W^3) = \xi^2 W^3 W^3$. Now, $W^3 W^3$ is a nonzero scalar multiple of the vacuum vector 1 since we are assuming that $k \geq 3$. Thus $\xi^2 = 1$ and the assertion holds, for \tilde{W} is generated by W^3.

We will consider Zhu’s algebra $A(\tilde{W})$ of \tilde{W}. Zhu’s algebra $A(V)$ of a vertex operator algebra $(V, Y, \mathbb{1}, \omega)$ introduced by Zhu [23] is very powerful for the study of irreducible V-modules. For $u, v \in V$ with u being homogeneous, let

$$u * v = \sum_{i \geq 0} \binom{\text{wt}(u) + m}{i} u_{i-1} v,$$

$$u \circ v = \sum_{i \geq 0} \binom{\text{wt}(u)}{i} u_{i-2} v.$$

(2.15)

We extend these two binary operations to arbitrary $u, v \in V$ by linearity. The subspace $O(V)$ spanned by all $u \circ v$ with $u, v \in V$ is a two-sided ideal with respect to $*$. We denote by $[v]$ the image of $v \in V$ in the quotient space $A(V) = V/O(V)$. Then $A(V)$ is an associative algebra with the identity $[1]$ by the binary operation $[u] * [v] = [u * v]$. We write $u \sim v$ if $[u] = [v]$.

We need some formulas. By [23] Lemma 2.1.2,

$$\sum_{i \geq 0} \binom{\text{wt}(u) + m}{i} u_{i-n-2} v \in O(V) \text{ for } n \geq m \geq 0.$$

(2.16)

By (2.15), $u_{-1} v$ can be written as a linear combination of $u * v$ and $u_o v$, $n \geq 0$. Note that $\text{wt}(u_o v) = \text{wt} u + \text{wt} v - n - 1$, $n > 0$ is strictly smaller than $\text{wt}(u_{-1} v)$ for homogeneous elements $u, v \in V$. For $n \geq 0$, (2.16) implies that $[u_{-n-2} v]$ is a linear combination of $[u_{i-n-2} v]$, $i \geq 1$. As before, note that $\text{wt}(u_{i-n-2} v) < \text{wt}(u_{i-n-2} v)$ for $i \geq 1$.

Another useful formula [23] Lemma 2.1.3 is

$$u * v - v * u \sim \sum_{j \geq 0} \binom{\text{wt}(u) - 1}{j} u_j v.$$

(2.17)

It follows from [22] (4.2), (4.3) that

$$[L(-n)v] = (-1)^n((n - 1) [\omega] * [v] + [L(0)v]) \text{ for } n \geq 1.$$

(2.18)

If v is homogeneous, then $[L(-1)v] = -(\text{wt} v)[v]$ and so [23] (1.2.17) implies that

$$[v_{-m-1} \mathbb{1}] = \frac{(-1)^m}{m!} \left(\prod_{i=0}^{m-1} (\text{wt}(v) + i) \right) [v] \text{ for } m \geq 0.$$

(2.19)

Let $o(v) = v_{\text{wt}(v)-1}$ for a homogeneous element $v \in V$ and extend it to an arbitrary element by linearity. If $U = \oplus_{n=0}^{\infty} U(n)$ is an admissible V-module as in [9] with $U(0) \neq 0$, then $o(v)$ acts on its top level $U(0)$. Zhu’s theory [23] Theorems 2.1.2 and 2.2.2 can be summarized as follows.
(1) \(o(u)o(v) = o(u \ast v) \) as operators on \(U(0) \) and \(o(v) \) acts as 0 if \(v \in O(V) \). Hence \(U(0) \) is an \(A(V) \)-module, where \([v]\) acts as \(o(v) \) on \(U(0) \).

(2) \(U \mapsto U(0) \) is a bijection between the set of equivalence classes of irreducible admissible \(V \)-modules and the set of equivalence classes of irreducible \(A(V) \)-modules.

We now study Zhu’s algebra \(A(\tilde{W}) = \tilde{W}/O(\tilde{W}) \) of \(\tilde{W} \). First, we show that \(A(\tilde{W}) \) is generated by \([\omega] \), \([W^3] \), \([W^4] \), and \([W^5] \). For this purpose, take an element \(v \) of the form \((2.12)\). It is sufficient to confirm that \([v]\) is a linear combination of monomials in \([\omega] \), \([W^3] \), \([W^4] \), and \([W^5] \). We proceed by induction on weight. By \((2.18)\), we may assume that \([v]\) is a linear combination of the images in \([\omega] \), \([W^3] \), \([W^4] \), and \([W^5] \) as required. Actually, \((2.19)\) is useful in computing \([v]\).

Next, we show that \(A(\tilde{W}) \) is commutative. By a property of Zhu’s algebra, \([\omega] \) lies in the center of \(A(\tilde{W}) \) \[23\], Theorem 2.1.1\]. It follows from \((2.17)\) that

\[W^3 \ast W^4 - W^4 \ast W^3 = W_0^3 W^4 + 2W_1^3 W^4 + W_2^3 W^4. \]

Using an explicit expression of \(W_n^3 W^4 \), \(n = 0, 1, 2 \) as a linear combination of vectors of normal form \((2.12)\) given in Appendix \[12\] we can describe its image \([W_n^3 W^4]\) in \(A(\tilde{W}) \) as a polynomial in \([\omega] \), \([W^3] \) and \([W^5] \). In fact, we can verify that

\[[W^3] \ast [W^4] - [W^4] \ast [W^3] = [W_0^3 W^4] + 2[W_1^3 W^4] + [W_2^3 W^4] = 0. \]

Likewise, we have

\[[W^3] \ast [W^5] - [W^5] \ast [W^3] = [W_0^3 W^5] + 2[W_1^3 W^5] + [W_2^3 W^5] = 0, \]

\[[W^4] \ast [W^5] - [W^5] \ast [W^4] = [W_0^4 W^5] + 3[W_1^4 W^5] + 3[W_2^4 W^5] + [W_3^4 W^5] = 0. \]

Thus \(A(\tilde{W}) \) is commutative. We have obtained the following lemma.

Lemma 2.6. \(A(\tilde{W}) \) is commutative and it is generated by \([\omega] \), \([W^3] \), \([W^4] \) and \([W^5] \).

The above lemma implies that \(w_2 \mapsto [\omega] \), \(w_3 \mapsto [W^3] \), \(w_4 \mapsto [W^4] \), \(w_5 \mapsto [W^5] \) define a homomorphism \(\varphi \) of associative algebras from a polynomial algebra \(\mathbb{C}[w_2, w_3, w_4, w_5] \) of four variables \(w_2, w_3, w_4, w_5 \) onto \(A(\tilde{W}) \). In particular, \(A(\tilde{W}) \) is spanned by

\[[\omega]^{rp} [W^3]^{rq} [W^4]^{rs} [W^5]^{ss}, \quad p, q, r, s \geq 0, \quad (2.20) \]

where \([u]^{rp}\) is a product of \(p \) copies of \([u]\) in \(A(\tilde{W}) \).

We will study linear relations among vectors of normal form \((2.12)\) of small weight. The generating function of the number of vectors of normal form with respect to weight is

\[\frac{(1 - q)^4(1 - q^2)^3(1 - q^3)^2(1 - q^4)}{\prod_{n \geq 1}(1 - q^n)^4}. \]
The sum of its first several terms are
\[1 + q^2 + 2q^3 + 4q^4 + 6q^5 + 11q^6 + 16q^7 + 29q^8 + 44q^9 + 72q^{10} + \cdots. \]

We express all vectors of normal form (2.12) of weight at most 10 as linear combinations of the basis (2.2) of \(V(k, 0) \). By a direct calculation, we can verify that those vectors of normal form of weight at most 7 are all linearly independent. However, this is not the case if the weight is greater than 7 \([2, (2.1.9)]\). There are 29 vectors of normal form of weight 8, which span a subspace of dimension 27. Thus the dimension of the weight 8 subspace of \(\widetilde{W} \) is 27. If we eliminate \((W^3_2)^21\) and \(W_{-1}^3W_{-2}^41\), then the remaining 27 vectors form a basis of the weight 8 subspace of \(\widetilde{W} \). That is, there are two nontrivial linear relations in the weight 8 subspace of \(\widetilde{W} \). One involves \((W^3_2)^21\) and the other involves \(W_{-1}^3W_{-2}^41\). Such a nontrivial linear relation is called a null field \([1, 15]\). Recall that \(\widetilde{W}^\pm = \{v \in \widetilde{W} | \theta v = \pm v\} \). Among 29 vectors of normal form (2.12) of weight 8, we see that 17 are contained in \(\widetilde{W}^+ \) and the remaining 12 are contained in \(\widetilde{W}^- \). Note that \((W^3_2)^21 \in \widetilde{W}^+ \) and \(W_{-1}^3W_{-2}^41 \in \widetilde{W}^- \). Thus there is up to a scalar multiple, a unique nontrivial linear relation in each weight 8 subspace of \(\widetilde{W}^+ \) and \(\widetilde{W}^- \). Let \(v^0 \) be a nontrivial linear relation in the weight 8 subspace of \(\widetilde{W}^+ \). It is a linear combination of the 17 vectors of normal form of weight 8 in \(\widetilde{W}^+ \). An explicit form of such a linear combination can be found in Appendix 2.4. It is obtained by describing each of those 17 vectors as a linear combination of the basis (2.2). Actually, \(v^0 = 0 \) in \(V(k, 0) \).

We can express the image of each of those 17 vectors of normal form in Zhu’s algebra \(A(\widetilde{W}) \) as a linear combination of the elements of the form (2.20) by using a similar argument as in the proof of Lemma 2.6. Then the image \([v^0]\) of \(v^0 \) in \(A(\widetilde{W}) \) becomes a linear combination of the elements of the form (2.20). Replace \([\omega], [W^3], [W^4] \) and \([W^5]\) with \(w_2, w_3, w_4 \) and \(w_5 \) respectively in \([v^0]\). Then we obtain
\[
Q_0 = -8k^4(k + 2)^2(3k + 4)(4k - 1)(64k + 107)(k^2 + k + 1)w_2^2 \\
+ 4k^4(k + 2)^3(3k + 4)(64k + 107)(80k^2 + 30k + 61)w_3^2 \\
- 112k^4(k + 2)^4(3k + 4)(6k - 5)(64k + 107)w_4^2 \\
+ 2k(16k + 17)^2(2k^2 + k + 5)w_3 \\
+ k(k + 2)(16k + 17)^2(26k + 83)w_2w_3 \\
+ 2k^2(k + 2)(64k + 107)(8k^2 + 9k - 8)w_2w_4 \\
- 4k^2(k + 2)^2(36k + 61)(64k + 107)w_2^2w_4 \\
+ 2(64k + 107)w_3^2 + (16k + 17)^2w_3w_5.
\]

Since \(v^0 = 0 \), the above polynomial lies in the kernel of \(\bar{\phi} \). One may discuss the image in Zhu’s algebra of a nontrivial linear relation in the weight 8 subspace of \(\widetilde{W}^- \). However, the polynomial obtained in this manner becomes \(0 \). Thus the null field of weight 8 in \(\widetilde{W}^- \) gives no information on \(A(\widetilde{W}) \).

Next, we study null fields of weight 9. There are 44 vectors of normal form (2.12) of weight 9. Among them, 22 vectors are contained in \(\widetilde{W}^+ \) and the other 22 vectors are contained in \(\widetilde{W}^- \). We eliminate \(W_{-3}^3W_{-2}^41, W_{-3}^3W_{-2}^41, W_{-1}^3W_{-3}^11, W_{-1}^3W_{-2}^51 \) and \(W_{-1}^3W_{-2}^51 \). Then
the remaining 40 vectors form a basis of the weight 9 subspace of \tilde{W}. We take a nontrivial linear relation v^1 in \tilde{W}^- which involves $W_3^1W_4^1\mathbb{1}$ (see Appendix C.2). We calculate $[v^1]$ by a similar method as above and obtain the following polynomial.

$$Q_1 = -16k^3(k + 2)(2k + 1)(13k^3 + 24k^2 + 7k + 10)w_2w_3$$
$$+ 4k^3(k + 2)^2(1040k^3 + 2232k^2 + 1213k + 1116)w_2^2w_3$$
$$- 16k^3(k + 2)^3(674k^2 + 637k - 1100)w_2^3w_3$$
$$+ (16k + 17)(64k + 107)w_3^2 + 2k(68k^2 + 119k + 20)w_3w_4$$
$$- 4(k + 2)(358k + 559)w_2w_3w_4 + 4k^2(k + 2)(3k + 4)(4k - 1)w_2w_5$$
$$- 112k^2(k + 2)^2(3k + 4)w_2^2w_5 + 4w_4w_5.$$

As before, $v_1^1 = 0$ in $V(k, 0)$ and the polynomial Q_1 lies in the kernel of $\tilde{\rho}$. No further relation in $A(\tilde{W})$ is obtained from the null fields of weight 9.

Let $C_2(\tilde{W})$ be the subspace of \tilde{W} spanned by the elements $u_{-2}v$ with $u, v \in \tilde{W}$. The quotient space $\tilde{W}/C_2(\tilde{W})$ has a commutative Poisson algebra structure [23, Section 4.4]. Since $(L(-1)v)_n = -nv_{n-1}$, we have $u_{-m}v \in C_2(\tilde{W})$ for $m \geq 2$. By Lemma 2.4, we see that $x_2 \mapsto \omega + C_2(\tilde{W})$, $x_i \mapsto W^i + C_2(\tilde{W})$, $i = 3, 4, 5$ define a homomorphism $\tilde{\rho}$ of associative algebras from a polynomial algebra $\mathbb{C}[x_2, x_3, x_4, x_5]$ of four variables x_2, x_3, x_4, x_5 onto $\tilde{W}/C_2(\tilde{W})$.

We consider the images of some null fields in $\tilde{W}/C_2(\tilde{W})$. The nontrivial linear relation involving $W_3^1W_4^1\mathbb{1}$ is written by vectors of normal form contained in $C_2(\tilde{W})$ (see Appendix C.1). Hence its image in $\tilde{W}/C_2(\tilde{W})$ is trivial. On the other hand, $(W_3^2)^2\mathbb{1}$ is a linear combination of vectors of normal form not all of which lie in $C_2(\tilde{W})$ (see Appendix C.1). Therefore, its image in $\tilde{W}/C_2(\tilde{W})$ is a nonzero polynomial in $\omega + C_2(\tilde{W})$, $W^i + C_2(\tilde{W})$, $i = 3, 4, 5$. Replace $\omega + C_2(\tilde{W})$ and $W^i + C_2(\tilde{W})$ with x_2 and x_i, $i = 3, 4, 5$, respectively in the polynomial and multiply it by $(17/9)k(k + 1)(16k + 17)^2(64k + 107)$.

Let B_0 be the polynomial obtained in this manner. Then

$$B_0 = -112k^4(k + 2)^4(3k + 4)(6k - 5)(64k + 107)x_2^4$$
$$+ k(k + 2)(16k + 17)^2(26k + 83)x_2x_3^2$$
$$- 4k^2(k + 2)^2(36k + 61)(64k + 107)x_2^2x_4$$
$$+ 2(64k + 107)x_2^3 + (16k + 17)^2x_3x_5.$$

Since $(W_3^2)^2\mathbb{1} \in C_2(\tilde{W})$, B_0 lies in the kernel of $\tilde{\rho}$. Likewise, we consider the images of the four nontrivial linear relations among the vectors of normal form of weight 9 in $\tilde{W}/C_2(\tilde{W})$. We obtain only one nonzero polynomial B_1 up to a scalar multiple in this manner, namely,

$$B_1 = 16k^3(k + 2)^3(674k^2 + 637k - 1100)x_2^3x_3 - (16k + 17)(64k + 107)x_3^3$$
$$+ 4k(k + 2)(358k + 559)x_2x_3x_4 + 112k^2(k + 2)^2(3k + 4)x_2^2x_5 - 4x_4x_5.$$

In fact, the polynomial B_1 comes from the null field v^1.

The weight 10 subspace of \tilde{W}^+ is of dimension 35, while there are 40 vectors of normal form in the subspace. We eliminate $\omega - 1(W^3_2)^2 1, (W^3_3)^2 1, (W^4_2)^2 1, W^3_2 W^5_2 1,$ and $W^3_2 W^5_3 1.$ Then the remaining 35 vectors form a basis of the weight 10 subspace of $\tilde{W}^+.$ For instance, $(W^3_2)^2 1$ can be written uniquely as a linear combination of those 35 vectors just as in the case for weight 8 or 9. We denote by W_1^k the nontrivial linear relation in \tilde{W} involving $(W^3_2)^2 1.$ Take the image of \tilde{W} in $\tilde{W}/C_2(\tilde{W})$ and replace $\omega + C_2(\tilde{W})$ and $W^1 + C_2(\tilde{W})$ with x_2 and $x_1,$ $i = 3, 4, 5,$ respectively. Then we obtain a polynomial in $x_2, x_3, x_4, x_5.$ Its suitable constant multiple B_2 is as follows.

$$B_2 = 16k^5(k + 2)^5(6k - 5)(64k + 107)$$

$$- k^2(k + 2)^2(16k + 17)(29745920k^5 + 282149936k^4$$

$$+ 715730704k^3 + 459700602k^2 - 375262083k - 379918040)x_2^5x_3^2$$

$$- 20k^3(k + 2)^3(64k + 107)$$

$$\cdot (81056k^4 - 691736k^3 - 2503316k^2 - 1005811k + 1451208)x_2^3x_4$$

$$+ 17(k + 1)(16k + 17)(64k + 107)^3x_2x_4$$

$$- 2k(k + 2)(64k + 107)(979064k^3 + 3791032k^2 + 4574059k + 1616792)x_2x_4$$

$$- k(k + 2)(16k + 17)^2(256632k^3 + 825008k^2 + 598779k - 114896)x_2x_3x_5$$

$$- 34(k + 1)(16k + 17)^2(64k + 107)x_5.$$

We note that B_0, B_1 and B_2 lie in the kernel of $\tilde{\rho}.$ These polynomials will be used in Section 5.

Remark 2.7. We eliminate $(W^3_2)^2 1$ and $W^3_2 W^3_2 1$ from the vectors of normal form $\omega - k + 1$ vector $e(-1)^k 1.$ The quotient algebra $L(k, 0) = V(k, 0)/\mathcal{J}$ is the simple vertex operator algebra associated with an affine Lie algebra $s\hat{\mathfrak{l}}_2$ of type $A_1^{(1)}$ with level $k.$ Since the Heisenberg vertex operator algebra $V_{\mathfrak{h}}(k, 0)$ is a simple subalgebra of $V(k, 0),$ it follows that $\mathcal{J} \cap V_{\mathfrak{h}}(k, 0) = 0.$ Thus $V_{\mathfrak{h}}(k, 0)$ can be considered as a subalgebra of $L(k, 0).$ Just as in (2.5), we have that $L(k, 0)$ is a completely reducible $V_{\mathfrak{h}}(k, 0)$-module and we can write

$$L(k, 0) = \bigoplus \lambda M_{\mathfrak{h}}(k, \lambda) \otimes K_{\lambda},$$

where

$$K_{\lambda} = \{v \in L(k, 0) \mid h(m)v = \lambda \delta_{m,0}v \text{ for } m \geq 0\}.$$
Note that K_0 is the commutant of $V_b^\gamma(k,0)$ in $L(k,0)$. Similarly, \mathcal{J} is completely reducible as a $V_b^\gamma(k,0)$-module. Hence by [2.5],

$$\mathcal{J} = \oplus \lambda M_b^\lambda(k,\lambda) \otimes (\mathcal{J} \cap N_\lambda).$$

In particular, $\mathcal{I} = \mathcal{J} \cap N_0$ is an ideal of N_0 and $K_0 \cong N_0/\mathcal{I}$.

Lemma 3.1. \mathcal{I} is a unique maximal ideal of N_0.

Proof. The top level of the subalgebra $V_b^\gamma(k,0) \otimes N_0$ of $V(k,0)$ is $C\mathbb{1}$, and so it is the top level of N_0 also. Hence N_0 has a unique maximal ideal, say S. Since \mathcal{J} does not contain $\mathbb{1}$, we have $\mathcal{I} \subset S$. The subspace $V(k,0) \cdot S$ spanned by $u_\gamma v$, $u \in V(k,0)$, $v \in S$, $\gamma \in \mathbb{Z}$ is an ideal of $V(k,0)$. Let $u \in M_b^\gamma(k,\lambda) \otimes N_\lambda$ and $v \in S$. Since $S \subset V_b^\gamma(k,0) \otimes N_0$ and $M_b^\gamma(k,\lambda) \otimes N_\lambda$ is a $V_b^\gamma(k,0) \otimes N_0$-module, the skew symmetry [20, (3.1.30)] in the vertex operator algebra $V(k,0)$ implies that $u_\gamma v$ lies in $M_b^\gamma(k,\lambda) \otimes N_\lambda$. Then we see from [2.5] that the intersection of $V(k,0) \cdot S$ and $V_b^\gamma(k,0) \otimes N_0$ is $V_b^\gamma(k,0) \otimes S$. Thus $V(k,0) \cdot S$ is a proper ideal of $V(k,0)$ and so it is contained in the unique maximal ideal \mathcal{J}. Therefore, $\mathcal{I} = S$ as required.

The vector $e(-1)^{k+1}\mathbb{1}$ is not contained in N_0. For $r \geq 1$ and an integer n, we calculate that

$$h(n)f(0)^r e(-1)^r \mathbb{1} = (-2rf(0)^{r-1}f(n) + f(0)^r h(n)) e(-1)^r \mathbb{1}$$

$$= -2rf(0)^{r-1}f(n)e(-1)^r \mathbb{1} + 2rf(0)^r e(-1)^r e(n-1) \mathbb{1}$$

$$+ f(0)^r e(-1)^r h(n) \mathbb{1}$$

in $V(k,0)$ by using (2.10). Moreover,

$$f(n)e(-1)^r \mathbb{1} = \begin{cases} r(k + r + 1)e(-1)^{r-1} \mathbb{1} & \text{if } n = 1, \\ 0 & \text{if } n \geq 2. \end{cases}$$

Hence, $h(n)f(0)^r e(-1)^r \mathbb{1} = 0$ if $n = 0$ or $n \geq 2$, and

$$h(1)f(0)^r e(-1)^r \mathbb{1} = -2rf(0)^{r-1}f(1)e(-1)^r \mathbb{1}$$

$$= -2r^2(k - r + 1)f(0)^{r-1}e(-1)^{r-1} \mathbb{1}.$$

In particular, $h(n)f(0)^{k+1} e(-1)^{k+1} \mathbb{1} = 0$ for $n \geq 0$. This proves the next theorem.

Theorem 3.2. $f(0)^{k+1} e(-1)^{k+1} \mathbb{1} \in \mathcal{I}$.

It seems natural to expect the following properties of $f(0)^{k+1} e(-1)^{k+1} \mathbb{1}$ (see Section 5).

Conjecture 3.3. (1) The unique maximal ideal \mathcal{I} of N_0 is generated by a weight $k + 1$ vector $f(0)^{k+1} e(-1)^{k+1} \mathbb{1}$.

(2) The automorphism θ acts as $(-1)^{k+1}$ on $f(0)^{k+1} e(-1)^{k+1} \mathbb{1}$.

We have considered the elements ω_{aff}, ω_γ, ω, W^3, W^4 and W^5 of $V(k,0)$. For simplicity of notation, we use the same symbols to denote their images in $L(k,0) = V(k,0)/\mathcal{J}$. Then ω is the conformal vector of K_0. Moreover, $K_0 = \{ v \in L(k,0) \mid (\omega_\gamma)_0 v = 0 \}$ by [13, Theorem 5.2]. It is also the commutant of $\text{Vir}(\omega_\gamma)$ in $L(k,0)$. The automorphism θ of $V(k,0)$ induces an automorphism of $L(k,0)$. We denote it by the same symbol θ. Let
\(\mathcal{W} \) be a subalgebra of \(K_0 \) generated by \(\omega, W^3, W^4 \) and \(W^5 \). Thus \(\mathcal{W} \) is a homomorphic image of \(\hat{\mathcal{W}}. \) We are interested in \(\mathcal{W} \). The following theorem is a direct consequence of Remark 2.3 and Theorem 2.5.

Theorem 3.4. If \(k \geq 3 \), then the vertex operator algebra \(\mathcal{W} \) is generated by \(W^3 \) and its automorphism group \(\text{Aut} \mathcal{W} = \langle \theta \rangle \) is of order 2.

4. **Irreducible Modules for \(K_0 \)**

In the preceding section, \(K_0 \) is defined to be the commutant of \(V_0^z(k, 0) \) in \(L(k, 0) \). We will follow the argument in [7] to realize \(K_0 \) in a vertex operator algebra associated with a lattice and construct some of its irreducible modules. Those irreducible \(K_0 \)-modules will be denoted by \(M^{i,j}, 0 \leq i \leq k, 0 \leq j \leq k - 1 \). Actually, \(M^{0,0} = K_0. \)

Let \(L = Z\alpha_1 + \cdots + Z\alpha_k \) with \(\langle \alpha_p, \alpha_q \rangle = 2\delta_{pq} \). Thus \(L \) is an orthogonal sum of \(k \) copies of a root lattice of type \(A_1 \). Its dual lattice is \(L^\perp = \frac{1}{2}L \). The commutator map \(c_0(\cdot, \cdot) \) defined in [20] Remark 6.4.12 is trivial on \(L^\perp \) so that the twisted group algebras \(C\{L \} \) and \(C\{L^\perp \} \) considered in [20] Section 6.4 are isomorphic to ordinary group algebras \(C[L] \) and \(C[L^\perp] \) of additive groups \(L \) and \(L^\perp \), respectively. Denote a standard basis of \(C[L^\perp] \) by \(e^\alpha, \alpha \in L^\perp \) with multiplication \(e^\alpha e^\beta = e^{\alpha+\beta} \). We consider the vertex operator algebra \(V_L = M(1) \otimes C[L] \) associated with the lattice \(L \) and its module \(V_{L^\perp} = M(1) \otimes C[L^\perp] \). Here, \(M(1) = [\alpha_p(-n); 1 \leq p \leq k, n \geq 1] \) as a vector space. The vertex operator algebra \(V_L \) is spanned by \(\beta_1(-n_1) \cdots \beta_r(-n_r) e^\alpha, \beta_i \in \{\alpha_1, \ldots, \alpha_k\}, \alpha \in L, n_1 \geq \cdots \geq n_r \geq 1 \). Let \(\gamma = \alpha_1 + \cdots + \alpha_k. \) Thus \(\langle \gamma, \gamma \rangle = 2k. \) Set

\[
H = \gamma(-1)1, \quad E = e^{\alpha_1} + \cdots + e^{\alpha_k}, \quad F = e^{-\alpha_1} + \cdots + e^{-\alpha_k},
\]

where \(1 = 1 \otimes 1 \) is the vacuum vector.

Then \(H_0H = 0, H_1H = 2k1, H_0E = 2E, H_1E = 0, H_0F = -2F, H_1F = 0, E_0F = H, E_1F = k1, E_0E = E_1E = F_0F = F_1F = 0 \) and \(A_nB = 0 \) for \(A, B \in \{H, E, F\}, n \geq 2 \) in the vertex operator algebra \(V_L. \) Therefore, the component operators \(H_n, E_n \) and \(F_n, n \in Z, \) which are endomorphisms of \(V_L \) or \(V_{L^\perp} \), give a representation of \(sl_2 \) with level \(k \) under the correspondence

\[
H_n \leftrightarrow h(n), \quad E_n \leftrightarrow e(n), \quad F_n \leftrightarrow f(n).
\]

We have

\[
(E_{-1})^j1 = j! \sum_{I \subset \{1, 2, \ldots, k\} \mid |I| = j} e^{\alpha_I}, \quad (F_{-1})^j1 = j! \sum_{I \subset \{1, 2, \ldots, k\} \mid |I| = j} e^{-\alpha_I},
\]

and \((E_{-1})^{k+1}1 = (F_{-1})^{k+1}1 = 0, \) where \(\alpha_I = \sum_{p \in I} \alpha_p \) for a subset \(I \) of \(\{1, 2, \ldots, k\}. \) In particular, \((E_{-1})^k1 = k! e^\gamma \) and \((F_{-1})^k1 = k! e^{-\gamma}. \) Moreover,

\[
e^{-\gamma} \cdot (E_{-1})^j1 = \frac{j!}{(k-j)!} (F_{-1})^{k-j}1, \quad e^\gamma \cdot (F_{-1})^j1 = \frac{j!}{(k-j)!} (E_{-1})^{k-j}1
\]

in the group algebra \(C[L]. \)

Let \(V^{\text{aff}} \) (resp. \(V^{\gamma} \)) be the subalgebra of \(V_L \) generated by \(H, E \) and \(F \) (resp. \(e^\gamma \) and \(e^{-\gamma} \)). Then \(V_L \supset V^{\text{aff}} \supset V^{\gamma} \) with \(V^{\text{aff}} \cong L(k, 0) \) and \(V^{\gamma} \cong V_{Z\gamma}, \) where \(V_{Z\gamma} \) is the vertex operator algebra associated with a rank one lattice \(Z\gamma. \) Note that \(V^{\gamma} \) contains \((e^\gamma)^{2k-2}e^{-\gamma} = H. \) The \(-1 \) isometry of the lattice \(L^\perp \) lifts to a linear isomorphism \(\theta \) of
We have Proposition 4.1. Moreover, \(V\) trivial. Its restriction to \(V\) is an automorphism of the vertex operator algebra \(V_L\). We have \(\theta H = -H, \theta E = F\) and \(\theta F = E\). Thus the restriction of the automorphism \(\theta\) here to \(V_{\text{aff}}\) agrees with the automorphism of \(L(k, 0) = V(k, 0)/J\) induced by the automorphism \(\theta\) of \(V(k, 0)\) discussed in Section 2.

For simplicity of notation, we use the same symbols \(\omega_{\text{aff}}, \omega, W^3, W^4\) and \(W^5\) to denote their images in \(V_{\text{aff}} \cong L(k, 0)\) under the correspondence (4.1). Then

\[
\omega_{\text{aff}} = \frac{1}{2(k + 2)} \left(\frac{1}{2} H_{-1} H + E_{-1} F + F_{-1} E \right),
\]

\[
\omega_\gamma = \frac{1}{4k} H_{-1} H,
\]

\[
\omega = \frac{1}{2k(k + 2)} \left(-H_{-1} H + k(E_{-1} F + F_{-1} E) \right),
\]

\[
W^3 = k^2 H_{-3} \mathbb{I} + 3k H_{-2} H + 2H_{-1} H_{-1} H - 6k H_{-1} E_{-1} F + 3k^2 (E_{-2} F - E_{-1} F_{-2} \mathbb{I}).
\]

Let \(L' = \bigoplus_{p=1}^{k-1} \mathbb{Z}(\alpha_p - \alpha_{p+1})\), which is \(\sqrt{2}\) times a root lattice of type \(A_{k-1}\). We have

\[
L' = \{ \alpha \in L \mid \langle \alpha, \gamma \rangle = 0 \}.
\]

Moreover,

\[
L = \bigcup_{i=0}^{k-1} (i\alpha_1 + L' \oplus \mathbb{Z}\gamma)
\]

is a coset decomposition of \(L\) by \(L' \oplus \mathbb{Z}\gamma\) (4.1).

Let \(V_{L'} = M(1)' \otimes \mathbb{C}[L']\) be the vertex operator algebra associated with \(L'\), where \(M(1)' = \{ (\alpha_p - \alpha_q)(-n) \mid 1 \leq p < q \leq k, n \geq 1 \}\) as a vector space and \(\mathbb{C}[L']\) is an ordinary group algebra of the additive group \(L'\). Then \(V_{L'} \cong V_{\mathbb{Z}A_{k-1}}\) is a subalgebra of \(V_L\). By (4.2) and (4.3), the following proposition holds (see [13, Theorem 5.2] also).

Proposition 4.1. We have \(V_{L'} = \{ v \in V_L \mid \langle \omega_\gamma \rangle v = 0 \text{ for } n \geq 0 \}\). In particular, \(K_0 \cong V_{\text{aff}} \cap V_{L'}\).

We will describe \(\omega\) and \(W^3\) explicitly as elements of \(V_{L'}\) (see [13, Lemma 4.1]). In the vertex operator algebra \(V_L\) we have

\[
H_{-1} H = \sum_{1 \leq p \leq k} \alpha_p(-1)^2 \mathbb{I} + \sum_{1 \leq p, q \leq k} \alpha_p(-1)\alpha_q(-1) \mathbb{I},
\]

\[
E_{-1} F + F_{-1} E = \sum_{1 \leq p \leq k} \alpha_p(-1)^2 \mathbb{I} + 2 \sum_{1 \leq p, q \leq k} \alpha_p(-1)\alpha_q(-1) \mathbb{I}.
\]

Now, \((\alpha_p - \alpha_q)(-1)^2 = \alpha_p(-1)^2 + \alpha_q(-1)^2 - 2\alpha_p(-1)\alpha_q(-1)\) and so

\[
\frac{1}{2} \sum_{1 \leq p, q \leq k} (\alpha_p - \alpha_q)(-1)^2 = (k - 1) \sum_{1 \leq p \leq k} \alpha_p(-1)^2 - \sum_{1 \leq p, q \leq k} \alpha_p(-1)\alpha_q(-1).
\]
Hence we obtain (see [18, Lemma 4.1])

\[
\omega = \frac{1}{4k(k+2)} \sum_{1 \leq p,q \leq k, p \neq q} (\alpha_p - \alpha_q)(-1)^2 \mathbb{1} + \frac{1}{k+2} \sum_{1 \leq p,q \leq k, p \neq q} e^{\alpha_p - \alpha_q}. \tag{4.4}
\]

Moreover, we calculate that

\[
H_{-3} \mathbb{1} = \sum_{1 \leq p \leq k} \alpha_p(-3) \mathbb{1},
\]

\[
H_{-2} H = \sum_{1 \leq p,q \leq k} \alpha_p(-2) \alpha_q(-1) \mathbb{1},
\]

\[
H_{-1} H_{-1} = \sum_{1 \leq p,q,r \leq k} \alpha_p(-1) \alpha_q(-1) \alpha_r(-1) \mathbb{1},
\]

\[
H_{-1} E_{-1} F = \left(\sum_{1 \leq p \leq k} \alpha_p(-1) \right) \left(\sum_{1 \leq q \leq k} \frac{1}{2} (\alpha_q(-2) \mathbb{1} + \alpha_q(-1)^2 \mathbb{1}) + \sum_{1 \leq q,r \leq k, q \neq r} e^{\alpha_q - \alpha_r} \right),
\]

\[
E_{-2} F - E_{-1} F \mathbb{1} = \frac{1}{3} \sum_{1 \leq p \leq k} (-\alpha_p(-3) \mathbb{1} + \alpha_p(-1)^3 \mathbb{1})
\]

\[
+ \sum_{1 \leq p,q \leq k, p \neq q} (\alpha_p(-1) + \alpha_q(-1)) e^{\alpha_p - \alpha_q}.
\]

Using these equations, we have

\[
W^3 = \sum_{1 \leq p,q,r \leq k} (\alpha_p - \alpha_q)(-1)^2(\alpha_p - \alpha_r)(-1) \mathbb{1}
\]

\[
- 3k \sum_{1 \leq q,r \leq k, q \neq r} \left(\sum_{1 \leq p \leq k} (\alpha_p - \alpha_q)(-1) + \sum_{1 \leq p \leq k, p \neq r} (\alpha_p - \alpha_r)(-1) \right) e^{\alpha_q - \alpha_r}. \tag{4.5}
\]

Equation (4.5) in particular implies that \(W^3 = 0\) in \(V_L\), if \(k = 2\) (see Section 5.1). We identify \(V^\text{aff}\) with \(L(k,0)\) and \(V^\gamma\) with \(V_{\mathbb{Z}^\gamma}\) from now on.

It is well known that the vertex operator algebra associated with a positive definite even lattice is rational [3]. We study a decomposition of \(V^\text{aff}\) into a direct sum of irreducible modules for \(V^\gamma = V_{\mathbb{Z}^\gamma}\). Any irreducible module for \(V_{\mathbb{Z}^\gamma}\) is isomorphic to one of \(V_{\mathbb{Z}^\gamma+n\gamma/2k}^\gamma\), \(0 \leq n \leq 2k-1\) [3]. Let \(V^\gamma \cdot v\) be the \(V^\gamma\)-submodule of \(V_{\mathbb{Z}^\gamma}^\gamma\) generated by an element \(v\) of \(V_{\mathbb{Z}^\gamma}^\gamma\). Then \(V^\gamma \cdot (E_{-1})^j \mathbb{1}\) (resp. \(V^\gamma \cdot (F_{-1})^j \mathbb{1}\)) is isomorphic to \(V_{\mathbb{Z}^\gamma+j\gamma/k}^\gamma\) (resp. \(V_{\mathbb{Z}^\gamma-j\gamma/k}^\gamma\)).

Now, the action of \(H_0 = \gamma(0)\) on \(e^{n\gamma/2k}\) is given by \(H_0 e^{n\gamma/2k} = ne^{n\gamma/2k}\). Moreover, the eigenvalues of \(H_0\) on \(V^\text{aff}\) are even integers, since \(h(0)u = 2(q-r)u\) for a vector \(u\) of the form (2.2) in \(V(k,0)\). Hence \(V_{\mathbb{Z}^\gamma+n\gamma/2k}^\gamma\) does not appear as a direct summand in \(V^\text{aff}\) unless \(n\) is even. Let

\[
M^0_j = \{ v \in V^\text{aff} \mid H_m v = -2j \delta_{m,0} v \text{ for } m \geq 0 \}
\]

for \(0 \leq j \leq k-1\). Then \(V^\text{aff} = \bigoplus_{j=0}^{k-1} (V^\gamma \cdot (F_{-1})^j \mathbb{1}) \otimes M^0_j\) as \(V^\gamma\)-modules. That is, the following lemma holds.

Lemma 4.2. \(L(k,0) = \bigoplus_{j=0}^{k-1} V_{\mathbb{Z}^\gamma-j\gamma/k}^\gamma \otimes M^0_j\) as \(V_{\mathbb{Z}^\gamma}^\gamma\)-modules.
In the case \(j = 0 \), \(M^{0,0} \) coincides with the commutant \(K_0 \) of \(V_b(k,0) \) in \(L(k,0) \). The restriction of \(\theta \) to \(M^{0,0} \), which we denote by the same symbol \(\theta \), is an automorphism of \(M^{0,0} \) of order 2.

In order to describe irreducible \(M^{0,0} \)-modules contained in \(V_{L^+} \), let

\[
v^i = \sum_{I \subseteq \{1,2,\ldots,k\}} e^{\alpha_i/2}, \quad v^{i,j} = \frac{1}{j!}(F_0)^j v^i
\]

for \(0 \leq i \leq k, 0 \leq j \leq i \). Note that \(v^0 \) is the vacuum vector 1 and \(v^{i,0} = v^i \). In fact\(^2\),

\[
v^{i,j} = \sum_{I \subseteq \{1,2,\ldots,k\}} \sum_{|J| = j} e^{\alpha_I/2} v^{i,J}
\]

From this explicit form of \(v^{i,j} \), we see that \(\theta v^{i,j} = v^{i-j,j} \), \(0 \leq i \leq k, 0 \leq j \leq i \).

We have \(H_0 v^{i,j} = (i-2j)v^{i,j} \), \(E_0 v^{0,i} = 0 \), \(E_0 v^{i,j} = (i-j+1)v^{i-1,j} \) for \(1 \leq j \leq i \), \(F_0 v^{i,j} = (j+1)v^{i+1,j} \) for \(0 \leq j \leq i-1 \), \(F_0 v^{i,j} = 0 \), and \(H_n v^{i,j} = E_n v^{i,j} = F_n v^{i,j} = 0 \) for \(n \geq 1 \). Hence the subspace \(U^i \) of \(V_{L^+} \) spanned by \(v^{i,j} \), \(0 \leq j \leq i \) is an \(i+1 \) dimensional irreducible module for \(\text{span}\{H_0,E_0,F_0\} \cong sl_2 \). Furthermore, the \(V^\text{aff} \)-submodule \(V^\text{aff} \cdot v^i \) of \(V_{L^+} \) generated by \(v^i \) is isomorphic to an irreducible \(L(k,0) \)-module \(L(k, U^i) \) with top level \(U^i \)\(^{13} \). If \(i = 0 \), then \(U^0 = \mathbb{C}1 \) and \(L(k, U^0) \) coincides with \(L(k,0) \). We denote \(L(k, U^i) \) by \(L(k,i) \) for a general \(i \) also and identify it with \(V^\text{aff} \cdot v^i \). Let

\[
M^{i,j} = \{ v \in V^\text{aff} \cdot v^i \mid H_m v = (i-2j)\delta_{m,0} v \text{ for } m \geq 0 \}
\]

for \(0 \leq i \leq k, 0 \leq j \leq k-1 \). Each \(M^{i,j} \) is an \(M^{0,0} \)-module. We decompose \(V^\text{aff} \cdot v^i \) into a direct sum of irreducible \(V^\gamma \)-modules and obtain the following lemma, which is a generalization of Lemma\(^4,2 \).

Lemma 4.3. \(L(k,i) = \bigoplus_{j=0}^{k-1} V_{Z\gamma+(i-2j)\gamma/2k} \otimes M^{i,j} \) as \(V_{Z\gamma} \)-modules.

Next, we consider an isomorphism \(\sigma = \exp(2\pi\sqrt{-1}\gamma(0)/2k) \) induced by the action of \(\gamma(0) \) on \(V_{L^+} \). Recall that \(h(0)u = 2(q-r)u \) for \(u \in V(k,0) \) being as in \((2.2) \) and that \(H_0 v^{i,j} = (i-2j)v^{i,j} \). Thus there are exactly \(k \) distinct eigenvalues \(i-2j \), \(0 \leq j \leq k-1 \) modulo \(2k \) of the action of \(\gamma(0) = H_0 \) on \(L(k,i) \). Hence \(\sigma \) has \(k \) distinct eigenvalues \(\exp(2\pi\sqrt{-1}(i-2j)/2k) \), \(0 \leq j \leq k-1 \) on \(L(k,i) \). Let \(L(k,i) = \bigoplus_{j=0}^{k-1} L(k,i)^j \) be the eigenspace decomposition, where \(L(k,i)^j \) is the eigenspace for \(\sigma \) on \(L(k,i) \) with eigenvalue \(\exp(2\pi\sqrt{-1}(i-2j)/2k) \). Since \(\langle \gamma, (i-2j)\gamma/2k \rangle = i-2j \), Lemma\(^4,3 \) implies that

\[
L(k,i)^j = V_{Z\gamma+(i-2j)\gamma/2k} \otimes M^{i,j}. \tag{4.6}
\]

For convenience, we understand the second parameter \(j \) of \(M^{i,j} \) to be modulo \(k \). We study some basic properties of \(M^{0,0} \)-modules \(M^{i,j} \), \(0 \leq i \leq k, 0 \leq j \leq k-1 \).

Theorem 4.4. (1) \(M^{i,j} \) is an irreducible \(M^{0,0} \)-module.

(2) \(M^{i,j} \cong M^{k-i,k-i+j} \) as \(M^{0,0} \)-modules.

(3) The automorphism \(\theta \) of \(M^{0,0} \) induces a permutation \(M^{i,j} \mapsto M^{i,j} \) on these irreducible \(M^{0,0} \)-modules.

(4) The top level of \(M^{i,j} \) is a one dimensional space \(\mathbb{C}v^{i,j} \), \(0 \leq i \leq k, 0 \leq j \leq \min\{i,k-1\} \).

\(^2\)The corresponding equation on page 31 of [6] is incorrect.
Proof. We first show the assertion (1). By Lemma 4.2, \(L(k, 0) = \oplus_{j=0}^{k-1} V_{Z \gamma - j \gamma/k} \otimes M^{0,j} \). Suppose \(M^{0,j} \) is not an irreducible \(M^{0,0} \)-module and let \(U \) be a proper submodule of \(M^{0,j} \). Take \(0 \neq u \in U \). Let \(S = L(k, 0) \cdot u \) be the subspace of \(L(k, 0) \) spanned by \(v_n u \), \(v \in L(k, 0) \), \(n \in \mathbb{Z} \), which is an ideal of \(L(k, 0) \). Actually, \(L(k, 0) \) is equal to \(S \), since it is a simple vertex operator algebra. Now, let \(v \in V_{Z \gamma - r \gamma/k} \otimes M^{0,r} \). Then the fusion rules \(V_{Z \gamma + a} \times V_{Z \gamma + b} = V_{Z \gamma + a+b} \) of irreducible \(V_{Z \gamma} \)-modules [7, Chapter 12] imply that \(v_n u \) lies in \(V_{Z \gamma - (r+j) \gamma/k} \otimes M^{0,r+j} \). Hence \(S \cap (V_{Z \gamma - j \gamma/k} \otimes M^{0,j}) = V_{Z \gamma - j \gamma/k} \otimes U \), which contradicts the fact that \(L(k, 0) = S \). Thus \(M^{0,j} \) is an irreducible \(M^{0,0} \)-module. We apply a similar argument to the irreducible \(L(k,0) \)-module \(L(k,i) \) and use the decomposition in Lemma 4.3. Then we obtain (1).

Next, we show the assertion (2). A multiplication by \(e^{-\gamma/2} \) on the group algebra \(\mathbb{C}[L^1] \) induces a linear isomorphism \(\psi : u \otimes e^\beta \mapsto u \otimes e^{\beta - \gamma/2}, u \in M(1), \beta \in L^1 \) of \(V_L \) onto itself. Since \(M^{0,0} \) is contained in \(V_L \) by Proposition 4.1, it follows from (4.2) and the definition of \(V_{V_i} \) that \(\psi \) commutes with the vertex operator \(V_{V_i} \) associated with any \(v \in M^{0,0} \). Thus \(\psi \) is an isomorphism of \(M^{0,0} \)-modules. We have \(\psi(V_{Z \gamma + (i-2) \gamma/2k}) = V_{Z \gamma + (i-k-2j)(i-j) \gamma/2k} \). Hence (2) holds.

We show the assertion (3). Since \(\theta^j \psi^j = v^{i,j} \), \(U^i \) is invariant under \(\theta \). Moreover, \(\theta(H_m v) = -H_m \theta(v) \) for \(m \in \mathbb{Z} \) and \(v \in V^{aff} \cdot v^i \), since \(\theta H = -H \). Thus (3) holds. Actually, \(\theta \) maps \(V_{Z \gamma + (i-2j) \gamma/k} \) onto \(V_{Z \gamma + (i-2j) \gamma/k} \).

Finally, we show the assertion (4). The top level of the irreducible \(L(k,0) \)-module \(L(k, i) \) is \(U^i = \oplus_{j=0}^{k} \mathbb{C} v^{i,j} \). Moreover, \(\gamma(0)v^{i,j} = (i-2j)v^{i,j} \) and so \(v^{i,j} \in L(k, i)^j \), \(0 \leq j \leq \min\{i, k-1\} \). That is, the eigenvalues of \(\sigma \) on the eigenvectors \(v^{i,j} \), \(0 \leq j \leq \min\{i, k-1\} \) are all different. The only exception is the case \(i = k \) and \(j = 0, k \). Hence the top level of \(L(k,i)^j \) is a one dimensional space \(\mathbb{C} v^{i,j} \) unless \(i = k \) and \(j = 0 \). In such a case the top level of \(M^{i,j} \) is also \(\mathbb{C} v^{i,j} \) by (4.6). As to the top level of \(M^{k,0} \), recall that \(v^{k,0} = e^{\gamma/2} \) and \(v^{k,k} = e^{-\gamma/2} \), on which \(\sigma \) acts as \(-1 \). Thus the top level of \(L(k,k)^0 \) is a two dimensional space \(\mathbb{C} v^{k,0} + \mathbb{C} v^{k,k} \), which coincides with the top level of \(V_{Z \gamma + \gamma/2} \). Therefore, the top level of \(M^{k,0} \) is one dimensional by (4.6). This proves (4). Note that \(M^{k,0} \cong M^{0,0} \) as \(M^{0,0} \)-modules by the assertion (2). Indeed, the isomorphism \(\psi \) of \(M^{0,0} \)-modules maps \(v^{k,0} \) to the vacuum vector \(\mathbb{1} \) and \(\mathbb{1} \) to \(v^{k,k} \).

One may prove the irreducibility of \(M^{i,j} \) in a different manner. Indeed, each irreducible \(L(k, 0) \)-module \(L(k, i) \) is \(\sigma \)-stable, for \(\sigma \) is an inner automorphism. We see from (4.6) that the space \(L(k, 0)^{(\sigma)} \) consisting of the elements of \(L(k, 0) \) fixed by \(\sigma \) is \(V_{Z \gamma} \otimes M^{0,0} \). By [11, Theorem 5.4], the eigenspace \(L(k, i)^j \) for \(\sigma \) is an irreducible \(L(k, 0)^{(\sigma)} \)-module. Hence (4.6) implies that \(M^{i,j} \) is irreducible as a module for \(M^{0,0} \). In the proof of Theorem 1.4 (1), we have shown that \(v_n u \in V_{Z \gamma - (r+j) \gamma/k} \otimes M^{0,r+j} \) by using the fusion rules of \(V_{Z \gamma} \). This fact comes from (4.6) also. The isomorphism of \(M^{0,0} \)-modules discussed in Theorem 1.4 (2) is a special case of [8, Corollary 5.7] (see [8, Remark 5.8] also). That is, it is a kind of spectrum flow.

The character of \(M^{i,j} \) is known [2, 14]. In fact,

\[
\chi M^{i,j} = \eta(\tau) c_{i-2j}(\tau)
\]

by [14, (3.34)]. Note that \(k, l \) and \(m \) of [14] are \(k, i \) and \(i - 2j \), respectively in our notation. Then [14, (3.36), (3.40)] mean \(c_{i-2j} = c_{i-2(j-k)} \), \(c_{i-2j} = c_{2j-i} \), and \(c_{i-2j} = c_{k+i-2j} \). As to
the first equation, recall that our j of $M^{i,j}$ is considered to be modulo k. The remaining
two equations are compatible with Theorem 4.4 (3) and (2), respectively.

Proposition 4.5. The weight 0 operators $o(\omega) = \omega_1$, $o(W^p) = W^p_{p-1}$, $p = 3, 4, 5$ act on
$v^{i,j}$, $0 \leq i \leq k$, $0 \leq j \leq i$ as follows.

$$
o(\omega) v^{i,j} = \frac{1}{2(k + 2)} \left(k(i - 2j) - (i - 2j)^2 + 2k(i - j + 1)j \right) v^{i,j},$$

$$
o(W^3) v^{i,j} = \left(k^2(i - 2j) - 3k(i - 2j)^2 + 2(i - 2j)^3 - 6k(i - 2j)(i - j + 1)j \right) v^{i,j},$$

$$
o(W^4) v^{i,j} = \left(2k^2(k^2 + k + 1)(i - 2j) - k(13k^2 + 8k + 2)(i - 2j)^2 + 2k(11k + 6)(i - 2j)^3 - (11k + 6)(i - 2j)^4 + 4k^2(k - 3)(k - 2)(i - j + 1)j - 4k^2(6k - 5)(i - 2j)(i - j + 1)j + 4k(11k + 6)(i - 2j)^2(i - j + 1)j - 2k^2(6k - 5)(i - j + 1)(i - j + 2)(j - 1)j \right) v^{i,j},$$

$$
o(W^5) v^{i,j} = \left(-2k^3(k^2 + 3k + 5)(i - 2j) + 5k^2(5k^2 + 6k + 6)(i - 2j)^2 - 20k(4k^2 + 3k + 1)(i - 2j)^3 + 5k(19k + 12)(i - 2j)^4 - 2(19k + 12)(i - 2j)^5 + 10k^2(5k^2 - 14k + 20)(i - 2j)(i - j + 1)j - 20k^2(10k - 7)(i - 2j)^2(i - j + 1)j + 10k(19k + 12)(i - 2j)^3(i - j + 1)j - 10k^2(10k - 7)(i - 2j)(i - j + 1)(i - j + 2)(j - 1)j \right) v^{i,j}.$$

Proof. We use the representation of \hat{sl}_2 given by the correspondence (4.1), namely

(i) $h(0) v^{i,j} = (i - 2j)v^{i,j}$,

(ii) $e(0) v^{i,0} = 0$, $e(0) v^{i,j} = (i - j + 1)v^{i-1,j}$ for $1 \leq j \leq i$,

(iii) $f(0) v^{i,j} = 0$, $f(0) v^{i,j} = (j + 1)v^{j+1,j}$ for $0 \leq j \leq i - 1$,

(iv) $a(n) v^{i,j} = 0$ for $a \in \{h, e, f\}$, $n \geq 1$.

Recall the vertex operator $Y(u, x)$ of the $L(k, 0)$-module $L(k, i)$. For $a \in \{h, e, f\}$ and

$$m \geq 1,$$

$$Y(a(-m) 1, x) = \frac{1}{(m - 1)!} \left(\frac{d}{dx} \right)^{m-1} a(x).$$

Hence the coefficient $o(a(-m))$ of x^{-m} in $Y(a(-m) 1, x)$ is $(-1)^{m-1}a(0)$. Let $a^1, \ldots, a^r \in \{h, e, f\}$ and $m_1, \ldots, m_r \geq 1$. The vertex operator $Y(u, x)$ associated with the vector

$$u = a^1(-m_1) \cdots a^r(-m_r) 1$$

is given recursively by

$$Y(u, x) = \frac{1}{(m_1 - 1)!} \left(\frac{d}{dx} \right)^{m_1-1} a^1(x)^- Y(a^2(-m_2) \cdots a^r(-m_r) 1, x)$$

$$+ Y(a^2(-m_2) \cdots a^r(-m_r) 1, x) \left(\frac{1}{(m_1 - 1)!} \left(\frac{d}{dx} \right)^{m_1-1} a^1(x)^+ \right).$$
where \(a(x)^- = \sum_{n<0} a(n)x^{-n-1} \) and \(a(x)^+ = \sum_{n\geq0} a(n)x^{-n-1} \). The operator \(o(u) \) is the coefficient of \(x^{-m_1-\cdots-m_r} \) in \(Y(u, x) \). Since \(a(n)v^{i,j} = 0 \) for \(n \geq 1 \), we have

\[
o(a^1(-m_1)\cdots a^r(-m_r)1)v^{i,j} = (-1)^{m_1+\cdots+m_r-r}a^r(0)\cdots a^1(0)v^{i,j}.
\]

For instance, \(o(h(-2)) \), \(o(h(-1)^2) \) and \(o(e(-1))f(-1)) \) act on \(v^{i,j} \) as \(-(i-2j)\), \((i-2j)^2\) and \((i-j+1)j\), respectively. Therefore, we obtain \(o(\omega)v^{i,j} \). The action of \(o(W^3) \), \(o(W^4) \) and \(o(W^5) \) on \(v^{i,j} \) can be calculated similarly. \(\square \)

Let \(a(i, j) \) and \(b(i, j) \) be the eigenvalues of the operators \(o(\omega) \) and \(o(W^3) \) on \(v^{i,j} \) given in Proposition 4.5, respectively. We can verify that \(a(i, i-j) = a(i, j) \) and \(b(i, i-j) = -b(i, j) \). These relations are compatible with Theorem 4.4 (3), since \(\theta \) fixes \(\omega \) and maps \(W^3 \) to its negative. Similar relations hold for the eigenvalues of \(o(W^4) \) and \(o(W^5) \) on \(v^{i,j} \).

We close this section with the following conjecture.

Conjecture 4.6.

1. \(M^{i,j}, 0 \leq i \leq k, 0 \leq j \leq i \) are not isomorphic each other except the isomorphisms \(M^{i,j} \cong M^{k-i,0} \). There are \(k(k+1)/2 \) inequivalent irreducible \(M^{0,0} \)-modules among those \(M^{i,j} \)'s.

2. \(M^{0,0} = W \) and there are exactly \(k(k+1)/2 \) inequivalent irreducible \(M^{0,0} \)-modules, which are represented by \(M^{i,j}, 0 \leq i \leq k, 0 \leq j \leq i-1 \). Furthermore, Zhu’s algebra \(A(M^{0,0}) \) of \(M^{0,0} \) is generated by \([\omega] \) and \([W^3] \) if \(k \geq 3 \).

3. The vertex operator algebra \(M^{0,0} \) is rational and \(C_2 \)-cofinite.

5. Case \(k \leq 6 \)

In this section we will show that Conjecture 4.6 is true for \(k \leq 6 \). Indeed, one may verify that there are \(k(k+1)/2 \) different pairs of eigenvalues of the operators \(o(\omega) \) and \(o(W^3) \) on the top level \(C_0v^{i,j} \) of \(M^{i,j}, 0 \leq i \leq k, 0 \leq j \leq i-1 \) once \(k \) is given (see Proposition 4.5). That is, \(o(\omega) \) and \(o(W^3) \) are expected to be sufficient to distinguish inequivalence of those irreducible \(M^{0,0} \)-modules \(M^{i,j} \)'s. This is the case if \(k \) is a small positive integer, say \(k \leq 6 \). In this way we see that the assertion (1) of Conjecture 4.6 is true for \(k \leq 6 \).

The singular vector discussed in Section 3 plays a crucial role in the proof of the remaining assertions of Conjecture 4.6. Let \(u^0 = f(0)^{k+1}e(-1)^{k+1}1 \). By Theorem 3.2, \(u^0 \in \tilde{I} \) and so \(u^0 = 0 \) in \(K_0 = M^{0,0} \). Our argument is based on a detailed analysis of the vector \(u^0 \). First of all, we express \(u^0 \) as a linear combination of the basis (2.2) of \(V(k, 0) \). The expression enables us to write \(u^0 \) as a linear combination of the vectors of normal form (2.12) of weight \(k+1 \). This in particular implies that \(\tilde{W} \) contains \(u^0 \). Unfortunately, we do not succeed in handling this process for a general \(k \). It seems difficult even to show that \(u^0 \in \tilde{W} \). Therefore, we discuss only the case \(k \leq 6 \) in this section. Actually, \(u^0 \) is a scalar multiple of \(W^3, W^4 \) or \(W^5 \) in the case \(k = 2, 3 \) or 4. In such a degenerate case, \(W \) is isomorphic to a well-known vertex operator algebra (see below for details). Thus we concentrate on the cases \(k = 5 \) and 6.

We study Zhu’s algebra \(A(W) \) of \(W \) for the classification of irreducible \(W \)-modules. It turns out that the null fields \(v^0 \) and \(v^1 \) considered in Section 2 and \(u^r = (W^3)^ru^0 \), \(r = 0, 1, 2, 3 \) are sufficient to determine \(A(W) \) in the case \(k = 5, 6 \). Once all irreducible \(W^r \)-modules are known, we can show that \(W = M^{0,0} \). One more null field \(v^2 \) is necessary
for the proof of the C_2-cofiniteness of \mathcal{W}. Finally, we use [4, Proposition 5.11] to establish the rationality of the vertex operator algebra \mathcal{W}.

5.1. Case $k = 2$. In this case u^0 is a scalar multiple of W^3. In fact, we have $u^0 = -3W^3$. Thus $W^3 \in \tilde{I}$. Now, $W_1^3W^3 = (72/7)W^4$ by (2.8), for we are assuming that $k = 2$. Hence $W^4 \in \tilde{I}$. Then (2.9) implies that $W^5 \in \tilde{I}$. Therefore, W^3, W^4 and W^5 become 0 in M^0. The vertex operator algebra \mathcal{W} is generated by the conformal vector ω and it is isomorphic to a simple Virasoro vertex operator algebra $L(1/2, 0)$ of central charge $1/2$. It is well known that $L(1/2, 0)$ has exactly three irreducible modules $L(1/2, h), h = 0, 1/2, 1/16$, where $L(c, h)$ denotes an irreducible highest weight module with highest weight h for a Virasoro algebra of central charge c. Actually, M^0, M^2 and M^4 are isomorphic to those irreducible modules, respectively. Moreover, we have $\mathcal{W} = M^0$. Thus Conjecture 4.6 is true for $k = 2$.

5.2. Case $k = 3$. In this case $u^0 = -(8/13)W^4$ is a scalar multiple of W^4. Thus $W^4 \in \tilde{I}$. Then (2.9) with $k = 3$ implies that $W^5 \in \tilde{I}$. Hence W^4 and W^5 become 0 in M^0. The vertex operator algebra \mathcal{W} is isomorphic to a three state Potts model $L(4/5, 0) \oplus L(4/5, 3)$. It is known that a three state Potts model has exactly six irreducible modules [17]. Moreover, we have $\mathcal{W} = M^0$. The results in [17] agree with the assertions of Conjecture 4.6. The vertex operator algebra $V_{L'} \cong V_{\sqrt{2}A_2}$ was studied in detail [17]. For the relationship between M^0 and a three state Potts model, see [2, Section 5], [14, Appendix B].

5.3. Case $k = 4$. In this case $u^0 = (15/22)W^5$ is a scalar multiple of W^5 and so W^5 becomes 0 in M^0. The vertex operator algebra \mathcal{W} is isomorphic to $V_{z_\beta}^+$ with $\langle \beta, \beta \rangle = 6$, which has exactly ten irreducible modules [10]. Moreover, we have $\mathcal{W} = M^0$. The results in [10] agree with the assertions of Conjecture 4.6. The vertex operator algebra $V_{L'} \cong V_{\sqrt{2}A_2}$ was studied in detail [5].

5.4. Case $k = 5$. Let v^0 and v^1 be as in Section 2. In addition to these two null fields of \mathcal{W}, we consider the image of u^0 under the operator W_3^3 successively, that is, $u^r = (W_3^3)^ru^0, r = 1, 2, 3$. The weight of u^r is $k + 1 + r$. We first express u^r as a linear combination of the basis (2.2) of $V(k, 0)$, and then express it as a linear combination of the vectors of normal form (2.12). For instance,

$$
u^0 = -(56260915200/97)\omega_{-5}11 - (47822745600/97)\omega_{-3}\omega_{-1}11
+ (43180603200/97)(\omega_{-2})^211 + (33230937600/97)(\omega_{-1})^311
- (4032/5)(W_{-1}^3)^211 + (550368/97)\omega_{-1}W_{-1}^411 + (340704/97)W_{-3}^411.$$

This equation is obtained from the expression of the vectors $v^0, \omega_{-5}11, \omega_{-3}\omega_{-1}11, (\omega_{-2})^211, (\omega_{-1})^311, (W_{-1}^3)^211, \omega_{-1}W_{-1}^411$ and W_{-3}^411 as linear combinations of the basis (2.2) of $V(k, 0)$. The above expression of u^0 implies that $u^0 \in \tilde{W}^+$. As to u^1, u^2 and u^3, see Appendix D)

Next, take the image in Zhu’s algebra $A(\tilde{W}) = \tilde{W}/O(\tilde{W})$ of the right hand side of the expression of u^r as a linear combination of the vectors of normal form. Then we can express the image $[u^r]$ of u^r in $A(\tilde{W})$ as a linear combination of elements of the form

$\tilde{\nu} = \frac{k^2}{4} - \frac{k}{4}$.

\[\text{In the table of [10] page 186] the action of } J \text{ on the top level of } V_{L+\alpha/2}^\pm \text{ should read } k^2/4 - k/4.\]
(2.20). We then replace $[\omega], [W^3], [W^4]$ and $[W^5]$ with w_2, w_3, w_4 and w_5, respectively in the expression of $[u^r]$. Let P_r, $r = 0, 1, 2, 3$ be the polynomial in w_2, w_3, w_4, w_5 obtained from u^r in this manner. Actually, we multiply it by a suitable integer. Then we have

\[
\begin{align*}
P_0 &= 82418000w_2^3 - 36225000w_2^2 + (1365w_4 + 2530000)w_2 - 194w_3^2 - 130w_4, \\
P_1 &= (5116834800w_2^3 - 3289532400w_2 - 49959w_4 + 190779600)w_3 \\
&- 3354260w_2w_5 + 479180w_5, \\
P_2 &= -51997017891021000w_4^2 + 301201024956142500w_2^2 \\
&+ (-8403180446500w_4 - 4771869340518000)w_2^2 \\
&+ (123120505775w_2^2 + 1890038332025w_4 + 2220670158630000)w_2 \\
&- 180544972860w_3^2 + 33957081w_3w_5 + 1437404w_2^2 - 102193394550w_4, \\
P_3 &= -46312512741411w_3^3 \\
&+ (8531538341629506000w_2^3 - 737916475955662500w_2^2 \\
&+ (433503066092460w_4 - 286997147877132000)w_2 \\
&- 37952176698930w_4 + 27372745589112000)w_3 \\
&+ 6990074602966000w_2^2w_5 - 1318615129549900w_2w_5 \\
&- 3246519796w_4w_5 + 53681912466000w_5.
\end{align*}
\]

Since W is a homomorphic image of \tilde{W}, Zhu’s algebra $A(W)$ of W is a homomorphic image of $A(\tilde{W})$. Take the composition with the surjective homomorphism $\tilde{\varphi} : \mathbb{C}[w_2, w_3, w_4, w_5] \rightarrow A(\tilde{W})$ of associative algebra considered in Section 2. Then we obtain a surjective homomorphism $\varphi : \mathbb{C}[w_2, w_3, w_4, w_5] \rightarrow A(W)$. The kernel of φ contains the polynomials Q_0 and Q_1 studied in Section 2 with $k = 5$, for $\tilde{v}^0 = \tilde{v}^1 = 0$ in $V(k, 0)$. The kernel also contains the above four polynomials P_0, P_1, P_2 and P_3, for u^0, u^1, u^2 and u^3 lie in \tilde{I}. We can verify that a Gröbner basis of the ideal P of $\mathbb{C}[w_2, w_3, w_4, w_5]$ generated by P_0, P_1, P_2, P_3, Q_0 and Q_1 with $k = 5$ consists of the five polynomials

\[
\begin{align*}
R_1 &= w_2(5w_2 - 6)(5w_2 - 4)(7w_2 - 6)(7w_2 - 2) \\
&\quad \cdot (35w_2 - 23)(35w_2 - 17)(35w_2 - 3)(35w_2 - 2), \\
R_2 &= w_3(5w_2 - 6)(5w_2 - 4)(35w_2 - 23)(35w_2 - 17)(35w_2 - 3)(35w_2 - 2), \\
R_3 &= p(w_2) + 564841728w_3^2, \\
R_4 &= q(w_2) + 14685884928w_4, \\
R_5 &= r(w_2)w_3 + 5575284w_5,
\end{align*}
\]

where $p(w_2), q(w_2)$ and $r(w_2)$ are polynomials in w_2 of degree 8, 8 and 5, respectively. The common factor of R_1 and $p(w_2)$ is $w_2(7w_2 - 6)(7w_2 - 2)$ and that of R_1 and $q(w_2)$ is w_2, while $r(w_2)$ has no common factor with R_1. The Gröbner basis implies that $\mathbb{C}[w_2, w_3, w_4, w_5]/P$ is a 15 dimensional space with basis $w_2^m + P$, $0 \leq m \leq 8$, $w_2^nw_3 + P$, $0 \leq n \leq 5$. In particular, $\mathbb{C}[w_2, w_3, w_4, w_5]/P$ is generated by $w_2 + P$ and $w_3 + P$.

We do not show that $W = M^{0,0}$ so far. Hence the 15 inequivalent irreducible $M^{0,0}$-modules $M^{i,j}$ constructed in Section 4 may not be irreducible nor inequivalent as W-modules. Let $N^{i,j}$ be the W-submodule of $M^{i,j}$ generated by $v^{i,j}$, so that the top level
of \(N^{i,j} \) is a one dimensional space \(\mathbb{C}v^{i,j} \). Then \(N^{i,j} \) has a unique maximal submodule, possibly 0. Consider the quotient module \(U^{i,j} \) of \(N^{i,j} \) by its unique maximal submodule. It is an irreducible \(\mathcal{W} \)-module with top level \(\mathbb{C}v^{i,j} \). By Proposition \ref{4.2.3} we know how \(o(\omega) \), \(o(W^3) \), \(o(W^4) \) and \(o(W^5) \) act on \(\mathbb{C}v^{i,j} \). We can verify that the 15 quartets of the eigenvalues of these four operators on \(\mathbb{C}v^{i,j} \) are all different and that they agree with the solutions \((w_2, w_3, w_4, w_5)\) of a system of equations

\[R_1 = R_2 = R_3 = R_4 = R_5 = 0. \tag{5.1} \]

By \cite[Theorem 2.2.2]{23}, we conclude that \(A(\mathcal{W}) \cong \mathbb{C}[w_2, w_3, w_4, w_5]/\mathcal{P} \) and any irreducible \(\mathcal{W} \)-module is isomorphic to one of \(U^{i,j} \)'s. Furthermore, \(\mathbb{C}[w_2, w_3, w_4, w_5]/\mathcal{P} \) is semisimple, for the system of equations \((5.1)\) has no multiple root. Hence \(A(\mathcal{W}) \) is semisimple. Note that \(A(\mathcal{W}) \) is generated by \([\omega]\) and \([W^3]\). This is consistent with the fact that the 15 pairs of the eigenvalues of \(o(\omega) \) and \(o(W^3) \) on \(\mathbb{C}v^{i,j} \) are all different. That is, \(o(\omega) \) and \(o(W^3) \) are sufficient to distinguish \(U^{i,j} \)'s.

Now, suppose \(\mathcal{W} \neq M^{0,0} \) and consider the quotient \(\mathcal{W} \)-module \(M^{0,0}/\mathcal{W} \). It has integral weights. We can easily verify that the weight \(n \) subspace of \(\mathcal{W} \) coincides with that of \(M^{0,0} \) for a small \(n \), say \(n = 0, 1, 2 \). Therefore, the weight of any irreducible quotient of \(M^{0,0}/\mathcal{W} \) is greater than 2. This is a contradiction since the weight of the top level of \(U^{i,j} \) is at most 6/5 and 0 is the only integral one. Thus \(\mathcal{W} = M^{0,0} \) and the assertion (2) of Conjecture \ref{4.6} is true for \(k = 5 \).

It remains to prove the \(C_2 \)-cofiniteness and the rationality of \(\mathcal{W} \). We have studied \(u^r \), \(r = 0, 1, 2, 3 \) and the null fields \(v^0 \) and \(v^1 \) modulo \(O(\tilde{\mathcal{W}}) \) for the determination of Zhu’s algebra of \(\mathcal{W} \). As to the proof of the \(C_2 \)-cofiniteness, we consider \(u^r \), \(r = 0, 1, 2, 3 \) and the null fields \(v^0 \), \(v^1 \) and \(v^2 \) modulo \(C_2(\tilde{\mathcal{W}}) \). In fact, \(u^r \), \(r = 0, 1, 2, 3 \), \(v^0 \) and \(v^1 \) are not sufficient to show the \(C_2 \)-cofiniteness. Take the image in \(\tilde{\mathcal{W}}/C_2(\tilde{\mathcal{W}}) \) of the right hand side of the expression of \(u^r \) as a linear combination of vectors of normal form given in Appendix \ref{D}. It is a polynomial in \(\omega + C_2(\tilde{\mathcal{W}}) \) and \(W^i + C_2(\tilde{\mathcal{W}}) \), \(i = 3, 4, 5 \). Replace \(\omega + C_2(\tilde{\mathcal{W}}) \) and \(W^i + C_2(\tilde{\mathcal{W}}) \) with \(x_2 \) and \(x_i \), \(i = 3, 4, 5 \), respectively in the polynomial and multiply it by a suitable integer. Let \(A_r \), \(r = 0, 1, 2, 3 \) be the polynomial obtained from \(u^r \) in this manner. Then

\[
A_0 = 82418000x_2^3 + 1365x_2x_3^2 - 194x_3^2,
\]
\[
A_1 = 730976400x_3x_2^2 - 479180x_2x_3^2 - 7137x_4x_3,
\]
\[
A_2 = 51997017891021000x_2^4 + 8403180446500x_2x_3^2 - 1231205050775x_2^2x_3
\quad - 33957081x_2x_3^2 - 1437404x_4,
\]
\[
A_3 = 8531538341629506000x_3x_2^3 + 6990074602966000x_2x_3^2
\quad + 433503066092460x_2x_3^2 - 46312512741411x_3^3 - 3246519796x_3x_4.
\]

Let \(C_2(\mathcal{W}) \) be the subspace of \(\mathcal{W} \) spanned by \(u_{-2}v \) with \(u, v \in \mathcal{W} \). Since \(\mathcal{W} \) is a homomorphic image of \(\tilde{\mathcal{W}} \), there is a homomorphism from \(\tilde{\mathcal{W}}/C_2(\tilde{\mathcal{W}}) \) onto \(\mathcal{W}/C_2(\mathcal{W}) \). Its composition \(\rho \) with the surjective homomorphism \(\tilde{\rho} : \mathbb{C}[x_2, x_3, x_4, x_5] \to \tilde{\mathcal{W}}/C_2(\tilde{\mathcal{W}}) \) discussed in Section \ref{2} is a homomorphism from \(\mathbb{C}[x_2, x_3, x_4, x_5] \) onto \(\mathcal{W}/C_2(\mathcal{W}) \). The kernel of \(\rho \) contains the polynomials \(B_0, B_1 \) and \(B_2 \) studied in Section \ref{2} with \(k = 5 \). It also contains the above four polynomials \(A_r \), \(r = 0, 1, 2, 3 \), for \(u^r \) is 0 in \(\mathcal{W} \). Let \(A \) be the
ideal of \(\mathbb{C}[x_2, x_3, x_4, x_5] \) generated by \(A_r, r = 0, 1, 2, 3 \) and \(B_s, s = 0, 1, 2 \) with \(k = 5 \). We can verify that a Gröbner basis of \(\mathcal{A} \) consists of the eleven polynomials

\[
\begin{align*}
S_1 &= x_2^6, \\
S_2 &= x_3x_4^4, \\
S_3 &= 2780750x_2^5 - 29x_3^2x_2^2, \\
S_4 &= 378000x_3x_2^3 - x_3^3, \\
S_5 &= 82418000x_2^2 + 1365x_4x_2 - 194x_3^2, \\
S_6 &= 33674025000x_2^5 + 377x_4x_3^2, \\
S_7 &= 804763750000x_2^4 + 61327280x_3x_2^2 - 2379x_4^2, \\
S_8 &= 730976400x_3x_2^2 - 479180x_5x_2 - 7137x_4x_3, \\
S_9 &= 4633930000x_2^4 - 28315x_3^2x_2 - 13x_5x_3, \\
S_{10} &= 2018093000x_3x_2^3 + 13x_5x_4, \\
S_{11} &= 173625253725000x_2^5 - 377x_5^2.
\end{align*}
\]

From \(S_1, S_4, S_7 \) and \(S_{11} \), we see that \(\mathbb{C}[x_2, x_3, x_4, x_5]/\mathcal{A} \) is finite dimensional. This establishes the \(C_2 \)-cofiniteness of \(\mathcal{W} \) for \(k = 5 \).

The set of eigenvalues of the action of \(o(\omega) \) on \(\mathbb{C}v^{i,j}, 0 \leq i \leq 5, 0 \leq j \leq i - 1 \) is

\[
\mathcal{E} = \{0, 2/35, 3/35, 2/7, 17/35, 23/35, 6/7, 4/5, 6/5\}.
\]

The difference of any two rational numbers in the set \(\mathcal{E} \) is not an integer. Thus by a similar argument as in the proof of [4, Lemma 5.13], we have that any \(\mathcal{W} \)-module generated by an irreducible \(A(\mathcal{W}) \)-module is irreducible. Hence the vertex operator algebra \(\mathcal{W} \) is rational by [4, Proposition 5.11]. Thus the assertion (3) of Conjecture [4.6] is true for \(k = 5 \).

5.5. Case \(k = 6 \). The argument is essentially the same as in the case \(k = 5 \). The six singular vectors \(u^0, u^1, u^2, u^3, v^0 \) and \(v^1 \) are sufficient for the determination of Zhu’s algebra \(A(\mathcal{W}) \), while we need one more singular vector \(v^2 \) for the proof of the \(C_2 \)-cofiniteness of \(\mathcal{W} \). Indeed, we have

\[
u^0 = -((1420529376000/55483)\omega_3 W_3 \mathbb{1} + (1356106752000/55483)\omega_{-1}^3 W_3 \mathbb{1}) + (19141808000/491)\omega_2 W_2 \mathbb{1} - (2212337344000/55483)\omega_{-1} W_3 \mathbb{1} + (2043429304000/55483)W_3^2 \mathbb{1} - (33950/339)W_3^2 W_4 \mathbb{1} - (4632320/491)W_{-5} \mathbb{1} - (1995840/491)W_{-3}^5 \mathbb{1}
\]

in the case \(k = 6 \). In particular, \(v^0 \in \mathcal{W}^- \).

Set \(u^r = (W_3)^r u^0, r = 1, 2, 3 \) as in Section 5.4. We consider the polynomial \(P_r \in \mathbb{C}[w_2, w_3, w_4, w_5] \) obtained from \(u^r \) in a similar manner as in the case \(k = 5 \). Let \(\mathcal{P} \) be the ideal of \(\mathbb{C}[w_2, w_3, w_4, w_5] \) generated by the six polynomials \(P_r, r = 0, 1, 2, 3, Q_0 \) and \(Q_1 \) with \(k = 6 \). We calculate that a Gröbner basis of \(\mathcal{P} \) consists of the following five
polynomials.

\[
R_1 = w_2(2w_2 - 3)(3w_2 - 4)(4w_2 - 3)(4w_2 - 1)(6w_2 - 5)(12w_2 - 7)(12w_2 - 1) \\
\quad \cdot (32w_2 - 23)(32w_2 - 3)(96w_2 - 101)(96w_2 - 41)(96w_2 - 5),
\]

\[
R_2 = w_3(3w_2 - 4)(6w_2 - 5)(12w_2 - 7)(12w_2 - 1) \\
\quad \cdot (32w_2 - 23)(96w_2 - 101)(96w_2 - 41)(96w_2 - 5),
\]

\[
R_3 = p(w_2) + 2399941984319748410712448453175w_5^2,
\]

\[
R_4 = q(w_2) + 5999854960799371026781121329375w_4,
\]

\[
R_5 = r(w_2)w_3 + 171818959801082568975w_5,
\]

where \(p(w_2), q(w_2)\) and \(r(w_2)\) are polynomials in \(w_2\) of degree 12, 12 and 7, respectively. The common factor of \(R_1\) and \(p(w_2)\) is \(w_2(2w_2 - 3)(4w_2 - 3)(4w_2 - 1)(32w_2 - 3)\) and that of \(R_1\) and \(q(w_2)\) is \(w_2\), while \(r(w_2)\) has no common factor with \(R_1\). The Gröbner basis implies that \(\mathbb{C}[w_2, w_3, w_4, w_5]/\mathcal{P}\) is a 21 dimensional space with basis \(w_2^m + \mathcal{P}, 0 \leq m \leq 12, w_2^3w_3 + \mathcal{P}, 0 \leq n \leq 7\).

In the case \(k = 6\), we have 21 inequivalent irreducible \(M^{0,0}\)-modules \(M^{i,j}\). Consider an irreducible subquotient \(U^{i,j}\) of \(M^{i,j}\) as in the case \(k = 5\). The 21 quartets of the eigenvalues of \(o(\omega)\), \(o(W^3)\), \(o(W^4)\) and \(o(W^5)\) on \(\mathbb{C}v^{i,j}\) are all different and they agree with the solutions \((w_2, w_3, w_4, w_5)\) of a system of equations \(R_1 = R_2 = R_3 = R_4 = R_5 = 0\). Thus \(A(W)\) is isomorphic to \(\mathbb{C}[w_2, w_3, w_4, w_5]/\mathcal{P}\). Moreover, it is semisimple and generated by \([\omega]\) and \([W^3]\).

The set of eigenvalues of \(o(\omega)\) on \(\mathbb{C}v^{i,j}\), \(0 \leq i \leq 6, 0 \leq j \leq i - 1\) is

\[
\mathcal{E} = \{0, 5/96, 1/12, 1/4, 3/32, 41/96, 7/12, 3/4, 23/32, 101/96, 5/6, 4/3, 3/2\}.
\]

Thus the weight of \(v^{i,j}\) is at most 3/2 and 0 is the only integral one. By a similar argument as in the case \(k = 5\), we have that \(W = M^{0,0}\) and the assertion (2) of Conjecture 4.6 holds.

For the proof of the \(C_2\)-cofiniteness of \(W\), we use \(u^r, r = 0, 1, 2, 3\) and \(v^s, s = 0, 1, 2, 3\). Consider seven polynomials \(A_r, r = 0, 1, 2, 3\) and \(B_s, s = 0, 1, 2\) obtained in a similar manner as in the case \(k = 5\). We can verify that the ideal \(\mathcal{A}\) generated by these seven polynomials is of finite codimension in \(\mathbb{C}[x_2, x_3, x_4, x_5]\). Thus \(W\) is \(C_2\)-cofinite.

Let \(U\) be an irreducible \(A(W)\)-module. Then \(U = \mathbb{C}u\) is one dimensional and \(L(0)u = \lambda u\) for some \(\lambda \in \mathcal{E}\). We want to show that any \(W\)-module \(M\) generated by \(U\) is irreducible (see [4, Lemma 5.13]). If \(\lambda \neq 5/96\), then \(\mathcal{E} \cap (\lambda + \mathbb{Z}) = \{\lambda\}\) and so there is no singular vector for \(W\) of weight greater than \(\lambda\) in \(M\). By a similar argument as in the proof of [4, Lemma 5.13], we obtain that \(M\) is an irreducible \(W\)-module.

Suppose \(\lambda = 5/96\). We can assume that \(u = v^{1,0}\) or \(u = v^{5,0}\). The \(W\)-module \(M\) is spanned by the elements of the form \((2.14)\). Thus the weight \(\lambda + 1\) subspace of \(M\) is spanned by \(L(-1)u, W^p(-1)u, p = 3, 4, 5\). Let

\[
v = c_1L(-1)u + c_2W^3(-1)u + c_3W^4(-1)u + c_4W^5(-1)u
\]

be an element of \(M\) of weight \(\lambda + 1\).

We first consider the case \(u = v^{1,0}\). Then \(L(0), W^3(0), W^4(0)\) and \(W^5(0)\) act on \(u\) as \(5/96, 20, 780\) and \(-1560\), respectively. We study \(L(1)v\) and \(W^p(1)v, p = 3, 4, 5\). Each of these vectors is a scalar multiple of \(u\). Let \(L(1)v = \eta_1u, W^p(1)v = \eta_{p-1}u, p = 3, 4, 5\).
Using the expression of $W^i_W^j$, $3 \leq i \leq j \leq 5$, $0 \leq n \leq i+j-1$ as a linear combination of vectors of normal form given in Appendix B together with basic formulas (2.10) and (2.11), we can determine the constant η_p, $p = 1, 2, 3, 4$. In fact, a suitable constant multiple F_p of η_p is as follows.

\[
F_1 = c_1 + 576c_2 + 29952c_3 - 74880c_4,
\]
\[
F_2 = 113c_1 + 65088c_2 + 3384576c_3 + 400721629860c_4,
\]
\[
F_3 = 13c_1 + 7488c_2 + 13498935756c_3 - 973440c_4.
\]
\[
F_4 = 6217083815033c_1 + 16960079666412680418c_2 + \ldots
\]
\[
+ 18621409427868416c_3 - 62241257449122360326409060c_4.
\]

We can verify that a system of equations $F_1 = F_2 = F_3 = F_4 = 0$ has only the trivial solution $c_1 = c_2 = c_3 = c_4 = 0$. That is, there is no nonzero vector v of weight $\lambda + 1$ in M such that $L(1)v = 0$ and $W^p(1)v = 0$, $p = 3, 4, 5$. Since $\mathcal{E} \cap (\lambda + \mathbb{Z}) = \{\lambda, \lambda + 1\}$, this implies that M has no singular vector of weight greater than λ. Hence M is irreducible.

Next, we deal with the case $u = v^{5,0}$. The operators $L(0)$, $W^3(0)$, $W^4(0)$ and $W^5(0)$ act on u as $5/96$, -20, 780 and 1560, respectively. We only need to replace c_3 with $-c_3$ and c_5 with $-c_5$ in F_1, F_2, F_3 and F_4, and we obtain that M is irreducible.

Now, we can apply [4, Proposition 3.11] to conclude that the vertex operator algebra W is rational. Thus the assertion (3) of Conjecture 4.6 is true for $k = 6$.

Acknowledgments

The authors would like to thank Toshiyuki Abe, Tomoyuki Arakawa, Atsushi Matsuo and Hiroshi Yamauchi for helpful advice. Part of our computation was done by a computer algebra system Risa/Asir. The authors are indebted to Kazuhiro Yokoyama for a lot of advice concerning the system. H. Y. is grateful to Lachezar S. Georgiev and Victor G. Kac for valuable discussions on the subject. Chongying Dong was partially supported by NSF grants and a research grant from University of California at Santa Cruz, Ching Hung Lam was partially supported by NSC grant 95-2115-M-006-013-MY2 of Taiwan, Hiromichi Yamada was partially supported by JSPS Grant-in-Aid for Scientific Research No. 20540012.

Appendix A. Virasoro primary vectors W^3, W^4 and W^5

$W^3 = k^2h(-3)1 + 3kh(-2)h(-1)1 + 2h(-1)^31 - 6kh(-1)e(-1)f(-1)1$
$+ 3k^2e(-2)f(-1)1 - 3k^2e(-1)f(-2)1,$

$W^4 = -2k^2(k^2 + k + 1)h(-4)1 - 8k(k^2 + k + 1)h(-3)h(-1)1 - k(5k^2 - 6)h(-2)^21$
$- 2k(11k + 6)h(-2)h(-1)^21 - (11k + 6)h(-1)^41 + 4k^2(6k - 5)h(-2)e(-1)f(-1)1$
$+ 4k(11k + 6)e(-1)f(-1)1 - 4k^2(5k + 11)h(-1)e(-2)f(-1)1$
$+ 4k^2(5k + 11)h(-1)e(-1)f(-2)1 + 8k^2(k - 3)(k - 2)e(-3)f(-1)1$
$- 4k^2(3k^2 - 3k + 8)e(-2)f(-2)1 - 2k^2(6k - 5)e(-1)^2f(-1)1$
$+ 8k^2(k^2 + k + 1)e(-1)f(-3)1,$
\[W^5 = -2k^3(k^2 + 3k + 5)h(-5)I - 10k^2(k^2 + 3k + 5)h(-4)h(-1)I \]
\[- 5k^2(3k^2 - 4)h(-3)h(-2)I - 5k(7k^2 + 12k + 16)h(-3)h(-1)I \]
\[- 15k(3k^2 - 4)h(-2)h(-1)I - 5k(19k + 12)h(-2)h(-1)^3I - 2(19k + 12)h(-1)^5I \]
\[+ 10k^2(4k^2 - 7k + 8)h(-3)e(-1)f(-1)I + 20k^2(10k - 7)h(-2)h(-1)e(-1)I \]
\[+ 10k(19k + 12)h(-1)^3e(-1)f(-1)I - 5k^2(11k^2 - 14k + 12)h(-2)e(-2)f(-1)I \]
\[- 5k^2(17k + 64)h(-1)^2e(-2)f(-1)I + 15k^2(3k^2 - 4)h(-2)e(-1)f(-2)I \]
\[+ 5k^2(17k + 64)h(-1)^2e(-1)f(-2)I + 30k^2(k - 4)(k - 3)h(-1)e(-3)f(-1)I \]
\[- 40k^2(k^2 + 3k + 5)h(-1)e(-2)f(-2)I - 10k^2(10k - 7)h(-1)e(-1)^2f(-1)I \]
\[+ 10k^2(3k^2 + 19k + 8)h(-1)e(-1)f(-3)I - 10k^3(k - 4)(k - 3)e(-4)f(-1)I \]
\[+ 20k^3(k - 4)(k - 3)e(-3)f(-2)I + 5k^3(10k - 7)e(-2)e(-1)f(-1)I \]
\[- 10k^3(2k^2 - 4k + 17)e(-2)f(-3)I - 5k^3(10k - 7)e(-1)^2f(-2)f(-1)I \]
\[+ 10k^3(k^2 + 3k + 5)e(-1)f(-4)I. \]

APPENDIX B. \(W^i_nW^j, 3 \leq i \leq j \leq 5, 0 \leq n \leq i + j - 1 \)

B.1. \(W^3_nW^3, 0 \leq n \leq 5. \)

\[W^3_5W^3 = 12k^3(k - 2)(k - 1)(3k + 4)I, \]
\[W^3_4W^3 = 0, \]
\[W^3_3W^3 = 36k^3(k - 2)(k + 2)(3k + 4)\omega_{-1}I, \]
\[W^3_2W^3 = 18k^3(k - 2)(k + 2)(3k + 4)\omega_{-1}I, \]
\[W^3_1W^3 = -(162k^3(k - 2)(k + 2)(3k + 4)/(16k + 17))\omega_{-3}I \]
\[+ (288k^3(k - 2)(k + 2)^2(3k + 4)/(16k + 17))\omega_{-1}\omega_{-1}I \]
\[+ (36k(2k + 3)/(16k + 17))W^4_1I, \]
\[W^3_0W^3 = -(108k^3(k - 2)(k + 2)(3k + 4)/(16k + 17))\omega_{-4}I \]
\[+ (288k^3(k - 2)(k + 2)^2(3k + 4)/(16k + 17))\omega_{-2}\omega_{-1}I \]
\[+ (18k(2k + 3)/(16k + 17))W^4_2I. \]

B.2. \(W^3_nW^4, 0 \leq n \leq 6. \)

\[W^3_5W^4 = W^3_4W^4 = W^3_3W^4 = W^3_2W^4 = 0, \]
\[W^3_1W^4 = 48k^2(k - 3)(2k + 1)(2k + 3)W^3_1I, \]
\[W^3_0W^4 = 16k^2(k - 3)(2k + 1)(2k + 3)W^3_2I, \]
\[W^3_1W^4 = (1248k^2(k - 3)(k + 2)(2k + 1)(2k + 3)/(64k + 107))\omega_{-1}W^3_1I \]
\[- (48k^2(k - 3)(2k + 1)(2k + 3)(2k + 7)/(64k + 107))W^3_3I \]
\[- (12k(3k + 4)(16k + 17)/(64k + 107))W^5_1I, \]
\[W^3_0W^4 = (120k^2(k - 3)(k + 2)(2k + 3)(16k + 17)/(64k + 107))\omega_{-2}W^3_1I \]
\[+ (48k^2(k - 3)(k + 2)(2k + 3)(8k - 11)/(64k + 107))\omega_{-1}W^3_2I \]
\[- (12k^2(k - 3)(2k + 3)(32k^2 + 47k - 52)/(64k + 107))W^3_4I \]
\[- (24k(3k + 4)(16k + 17)/(5(64k + 107)))W^5_2I. \]
B.3. $W_n^3 W^5$, $0 \leq n \leq 7$.

\[
W_2^3 W^5 = W_6^3 W^5 = W_3^3 W^5 = W_4^3 W^5 = 0,
\]
\[
W_2^3 W^5 = -(15/2)k^2(k - 4)(5k + 8)W^4_1 \mathbb{I},
\]
\[
W_3^3 W^5 = -(6480k^4(k + 2)(k + 3)(2k + 3)\omega_5 \mathbb{I}
- (360k^4(k + 2)^2(2k + 3)(3k + 4)(32k^2 + 797k + 863)/(16k + 17))\omega_3 \omega_1 \mathbb{I}
+ (45k^4(k + 2)^2(2k + 3)(3k + 4)(1408k^2 + 1315k - 977)/(16k + 17))\omega_2 \omega_2 \mathbb{I}
+ (240k^4(k + 2)^3(2k + 3)(3k + 4)(202k - 169)/(16k + 17))\omega_1 \omega_1 \omega_1 \mathbb{I}
- 15k(2k + 3)(41k + 61)W^3_1 W^3_1 \mathbb{I}
+ (60k^2(k + 2)(404k^2 + 1170k + 835)/(16k + 17))\omega_1 W^4_1 \mathbb{I}
+ (15k^2(2176k^3 + 9481k^2 + 13792k + 6708)/(2(16k + 17)))W^3_3 \mathbb{I},
\]
\[
W_4^3 W^5 = -(3240k^4(k + 2)(k + 3)(2k + 3)(3k + 4)(12k^2 + 8k - 17)/(16k + 17))\omega_6 \mathbb{I}
- (120k^4(k + 2)^2(2k + 3)(3k + 4)(184k^2 + 1669k + 1801)/(16k + 17))\omega_4 \omega_1 \mathbb{I}
+ (2700k^4(k + 2)^2(2k + 3)(3k + 4)(8k^2 + 5k + 5)/(16k + 17))\omega_3 \omega_2 \mathbb{I}
+ (240k^4(k + 2)^3(2k + 3)(3k + 4)(202k - 169)/(16k + 17))\omega_2 \omega_1 \omega_1 \mathbb{I}
- 10k(2k + 3)(41k + 61)W^3_2 W^3_1 \mathbb{I}
+ (60k^2(k + 2)(2k + 3)(64k + 107)/(16k + 17))\omega_2 W^4_1 \mathbb{I}
+ (60k^2(k + 2)(138k^2 + 382k + 257)/(16k + 17))\omega_1 W^4_2 \mathbb{I}
+ (15k^2(104k^3 + 317k^2 + 308k + 108)/(16k + 17))W^4_4 \mathbb{I}.
\]

B.4. $W_n^4 W^4$, $0 \leq n \leq 7$.

\[
W_2^4 W^4 = 16k^4(k - 3)(k - 2)(k - 1)(2k + 1)(3k + 4)(16k + 17)\mathbb{I},
\]
\[
W_6^4 W^4 = 0,
\]
\[
W_3^4 W^4 = 64k^4(k - 3)(k - 2)(k + 2)(2k + 1)(3k + 4)(16k + 17)\omega_1 \mathbb{I},
\]
\[
W_4^4 W^4 = 32k^4(k - 3)(k - 2)(k + 2)(2k + 1)(3k + 4)(16k + 17)\omega_2 \mathbb{I},
\]
\[
W_5^4 W^4 = -96k^4(k - 3)(k - 2)(k + 2)(k + 5)(2k + 1)(3k + 4)\omega_3 \mathbb{I}
+ 672k^4(k - 3)(k - 2)(k + 2)^2(2k + 1)(3k + 4)\omega_1 \omega_1 \mathbb{I}
+ 72k^4(4k^3 - 15k^2 - 33k - 4)W^4_1 \mathbb{I},
\]
\[
W_7^4 W^4 = -64k^4(k - 3)(k - 2)(k + 2)(k + 5)(2k + 1)(3k + 4)\omega_4 \mathbb{I}
+ 672k^4(k - 3)(k - 2)(k + 2)^2(2k + 1)(3k + 4)\omega_2 \omega_1 \mathbb{I}
+ 36k^2(4k^3 - 15k^2 - 33k - 4)W^4_2 \mathbb{I},
\]
\[W_1^4 W^4 = 1920k^4(k + 2)(2k + 3)(3k + 4)(4k^3 + 12k^2 - 4k - 9)\omega \cdot 5 \mathbb{1} \]
\[+ 32k^5(2k + 1)(3k + 4)(6k^2 + 180k + 53k + 13)\omega \cdot 1 \]
\[- 120(k + 2)^2(3k + 4)(5k + 4)(6k + 5)\omega \cdot 2 \]
\[+ 8k(k + 1)(16k + 17)^2 W^3_1 W^3_1 \]
\[- 48k^2(k + 2)(52k^2 + 109k + 50)\omega \cdot 1 W^3_1 \]
\[- 4k^2(142k^3 + 503k^2 + 1753k + 640)W^4_1, \]
\[W_0^4 W^4 = 1440k^4(k + 2)(2k + 3)(3k + 4)(4k^3 + 12k^2 - 4k - 9)\omega \cdot 6 \]
\[+ 96k^4(k + 2)^2(3k + 4)(11k + 13)(6k + 55k + 41)\omega \cdot 1 \]
\[- 48k^4(k + 2)^2(3k + 4)(136k^3 + 180k^2 + 161k + 75)\omega \cdot 2 \]
\[- 480k^4(k + 2)^3(3k + 4)(5k + 4)(6k + 5)\omega \cdot 1 \]
\[+ 8k(k + 1)(16k + 17)^2 W^3_1 W^3_1 \]
\[- 24k^2(k + 2)(52k^2 + 109k + 50)\omega \cdot 2 W^4_1 \]
\[- 24k^2(k + 2)(52k^2 + 109k + 50)\omega \cdot 1 W^4_1 \]
\[- 12k^2(20k^2 + 45k + 29k + 8)W^4_1. \]

B.5: \(W_1^4 W^5 \), \(0 \leq n \leq 8 \)
\[W_8^4 W^5 = W_7^4 W^5 = W_6^4 W^5 = 0, \]
\[W_5^4 W^5 = -(40k^3(k - 2)(k - 3)(2k + 1)(5k + 8)(16k + 17)W^3_1 \mathbb{1}, \]
\[W_4^4 W^5 = -(40/3)k^3(k - 2)(k - 3)(2k + 1)(5k + 8)(16k + 17)W^3_2 \mathbb{1}, \]
\[W_3^4 W^5 = -(1320k^3(k - 4)(k - 3)(2k + 1)(5k + 8)(16k + 17)/(64k + 107))\omega \cdot 1 W^3_1 \mathbb{1} \]
\[+ (40k^3(k - 4)(k - 3)(2k + 1)(5k + 8)(16k + 17)/(64k + 107))W^3_2 \mathbb{1} \]
\[+ (180k^2(3k + 4)(32k^3 - 236k^2 - 535k - 125)/(64k + 107))W^4_1 \mathbb{1}, \]
\[W_2^4 W^5 = -(160k^3(k - 4)(k - 3)(2k + 1)(5k + 8)(16k + 17)/(64k + 107))\omega \cdot 2 W^3_1 \mathbb{1} \]
\[- (80/3)k^3(k - 4)(k - 3)(2k + 1)(5k + 8)(14k - 23)(16k + 17)/(64k + 107))\omega \cdot 2 W^3_2 \mathbb{1} \]
\[+ (60k^3(k - 4)(k - 3)(16k + 17)(8k^2 + 12k - 11)/(64k + 107))W^4_1 \mathbb{1} \]
\[+ (72k^2(3k + 4)(32k^3 - 236k^2 - 535k - 125)/(64k + 107))W^5_1 \mathbb{1}, \]
\[W_1^4 W^5 = (20k^3(k + 2)(5k + 8)(2624k^4 - 83108k^3 + 341706k^2 - 433511k + 177319)/(64k + 107))\omega \cdot 3 W^3_1 \mathbb{1} \]
\[+ (120k^3(k + 2)^2(2k + 1)(5k + 8)(16k - 9)(75k + 74)/(64k + 107))\omega \cdot 1 W^3_1 \mathbb{1} \]
\[+ ((10/3)k^3(k + 2)(5k + 8)(16k + 17)(7960k^3 + 18296k^2 + 6119k - 4457)/(64k + 107))\omega \cdot 2 W^3_2 \mathbb{1} \]
\[- ((40/3)k^3(k + 2)(5k + 8)(28800k^4 + 128704k^3 + 133404k^2 - 43341k - 76171) \]
\[/ (64k + 107))\omega \cdot 1 W^3_2 \mathbb{1} \]
\[+ ((20/3)k^3(k + 8)(5k + 8)(45440k^5 + 358008k^4 + 884944k^3 + 619369k^2 - 360351k - 404824) \]
\[/ (64k + 107))W^5_1 \mathbb{1} \]
\[- 10k(5k + 8)(20k + 19)W^3_1 W^4_1 \mathbb{1}, \]
\[- (40k^2(k + 2)(3k + 4)(116k^2 + 55k + 1171)/(64k + 107))\omega \cdot 1 W^5_1 \mathbb{1} \]
\[- (120k^3(2k + 3)(3k + 4)(88k^2 + 202k + 97)/(64k + 107))W^5_1 \mathbb{1}. \]
\[W_6^4 W^5 = - (60k^3(k + 2)(5k + 8)(16k + 17)(236k^3 + 2566k^2 + 5577k + 3207)/(64k + 107)) \omega^{-4} W_1^3 1 + (240k^3(k + 1)(k + 2)^2(5k + 8)(10k - 7)(16k + 17)/(64k + 107)) \omega^{-2} W_1^3 1 + (40k^3(k + 2)(5k + 8)(6976k^4 + 26048k^3 + 28428k^2 + 2426k - 6881)/(64k + 107)) \omega^{-1} W_1^3 1 \]

B.6. \(W_n^5 W^5 \), 0 \(\leq n \leq 9 \).

\[W_0^5 W^5 = 40k^5(k - 4)(k - 3)(k - 2)(k - 1)(2k + 1)(5k + 8)(64k + 107) 1, \]
\[W_1^5 W^5 = 0, \]
\[W_2^5 W^5 = 200k^5(k - 4)(k - 3)(k - 2)(2k + 1)(5k + 8)(64k + 107) \omega^{-1} 1, \]
\[W_3^5 W^5 = 100k^5(k - 4)(k - 3)(k - 2)(2k + 1)(5k + 8)(64k + 107) \omega^{-2} 1, \]
\[W_4^5 W^5 = -(300k^5(k - 4)(k - 3)(k - 2)(2k + 1)(2k + 7)(5k + 8)(64k + 107)/(16k + 17)) \omega^{-1} W_1^3 1 + (2600k^5(k - 4)(k - 3)(k - 2)(k + 2)^2(2k + 1)(5k + 8)(64k + 107)/(16k + 17)) \omega^{-1} W_1^3 1 \]
\[+ (450k^5(k - 4)(5k + 8)(32k^3 - 236k^2 - 535k - 125)/(16k + 17)) W_1^4 1, \]
\[W_5^5 W^5 = -(200k^5(k - 4)(k - 3)(k - 2)(2k + 1)(2k + 7)(5k + 8)(64k + 107)/(16k + 17)) \omega^{-4} W_1^3 1 + (2600k^5(k - 4)(k - 3)(k - 2)(k + 2)^2(2k + 1)(5k + 8)(64k + 107)/(16k + 17)) \omega^{-1} W_1^3 1 \]
\[+ (225k^5(k - 4)(5k + 8)(32k^3 - 236k^2 - 535k - 125)/(16k + 17)) W_1^4 1, \]
\[W_6^5 W^5 = (400k^5(k + 2)(9728k^7 - 345370k^6 - 2884229k^5 - 7339690k^4 - 5652707k^3 + 3682145k^2 + 6580220k + 1862400)/(16k + 17)) \omega^{-5} 1 \]
\[- (600k^5(k + 2)^2(256k^6 + 790k^5 + 1054568k^4 + 4865734k^3 + 8044197k^2 + 5415116k + 1171136)/(16k + 17)) \omega^{-3} W_1^3 1 \]
\[- (25k^5(k + 2)^2(137728k^6 - 4923496k^5 - 24095252k^4 - 35522641k^3 - 12391265k^2 + 8406500k + 3657600)/(16k + 17)) \omega^{-2} W_1^3 1 \]
\[- (200k^5(k + 2)^3(12288k^5 - 487882k^4 - 1447853k^3 - 491400k^2 + 1135840k + 463040)/(16k + 17)) \omega^{-1} W_1^3 1 \]
\[+ (150k^5(k + 2)(1632k^4 - 54468k^3 - 209305k^2 - 225706k - 59200)/(16k + 17)) W_1^3 1 + 25k^5(544k^4 - 16660k^3 - 65657k^2 - 72453k - 19600) W_1^3 1 + (150k^5(k + 2)(1632k^4 - 54468k^3 - 209305k^2 - 225706k - 59200)/(16k + 17)) \omega^{-1} W_1^3 1 \]
\[- (25k^5(6816k^5 - 206652k^4 - 1172123k^3 - 2196873k^2 - 1637466k - 371200)/(16k + 17)) W_1^3 1, \]
\[W_2^5 W^5 = \frac{(300k^5(k + 2)(9728k^7 - 345370k^6 - 2884229k^5 - 7339690k^4 - 5652707k^3 + 3682145k^2
+ 6580220k + 1862400)/(16k + 17))\omega_{-6}\mathbb{I}}{\omega_{-6} - 6}\]
\[+ \frac{(100k^5(k + 2)^2(11264k^6 - 476132k^5 - 8238118k^4 - 32234405k^3 - 50927083k^2
- 34091060k - 7406592)/(16k + 17))\omega_{-4}\mathbb{I}}{\omega_{-4} - \omega_{-1}\mathbb{I}} - \frac{(150k^5(k + 2)^2(12800k^6 - 428732k^5 - 1910710k^4 - 3040001k^3 - 2661901k^2
- 1600364k - 379776)/(16k + 17))\omega_{-2}\mathbb{I}}{\omega_{-2} - \omega_{-1}\mathbb{I}} - \frac{(300k^5(k + 2)^3(12288k^5 - 487882k^4 - 1447853k^3 - 491400k^2 + 1135840k + 463040)/(16k + 17))\omega_{-1}\mathbb{I}}{\omega_{-1} - \omega_{-1}\mathbb{I}} + \frac{25k^2(544k^4 - 16660k^3 - 65657k^2 - 72453k - 19600)W_{-2}^3W_{-1}\mathbb{I}}{\omega_{-2}W_{-1}\mathbb{I}} - \frac{(75k^3(k + 2)(1632k^4 - 54468k^3 - 209305k^2 - 225706k - 59200)/(16k + 17))\omega_{-2}W_{-1}\mathbb{I}}{\omega_{-2}W_{-1}\mathbb{I}} - \frac{(75k^3(k + 2)(1632k^4 - 54468k^3 - 209305k^2 - 225706k - 59200)/(16k + 17))\omega_{-1}W_{-2}\mathbb{I}}{\omega_{-2}W_{-1}\mathbb{I}} - \frac{(75k^3(384k^5 - 10608k^4 - 43480k^3 - 52785k^2 - 21126k - 3200)/(16k + 17))W_{-1}\mathbb{I}}{\omega_{-1}W_{-2}\mathbb{I}}. \]
\[W_1^5 W_5 = -(25k^5(k + 2)(170027057152k^{10} + 2356580095488k^9 + 13676829114720k^8 \\
+ 42735238046312k^7 + 7479365683474k^6 + 6082864002771k^5 \\
- 186300342678k^4 - 94115224713312k^3 - 92379208458276k^2 \\
- 41524853935184k - 7347787324608)/(17(k + 1)(16k + 17)^2(64k + 107)) \omega_7 \mathbb{I} \\
- (600k^5(k + 2)^2(3950979072k^9 + 64351956480k^8 + 426934964416k^7 + 1559551526014k^6 \\
+ 3508072702889k^5 + 580429991599k^4 + 475848076095k^3 + 2785329492007k^2 \\
+ 924445415740k + 132238676112)/(17(k + 1)(16k + 17)^2(64k + 107)) \omega_5 \omega_1 \mathbb{I} \\
+ (150k^5(k + 2)^2(1929743840k^9 + 207821377280k^8 + 951110388112k^7 + 2382556615296k^6 \\
+ 3466010214237k^5 + 2750850253947k^4 + 729192953742k^3 - 542736421532k^2 \\
- 472337350908k - 105657243168)/(17(k + 1)(16k + 17)^2(64k + 107)) \omega_4 \omega_2 \mathbb{I} \\
- (600k^5(k + 2)^2(9399296k^9 + 115780640k^8 + 833628608k^7 + 3394583580k^6 \\
+ 6845449350k + 353888811k^4 - 10856512820k^3 - 2151965045k^2 \\
- 14915524340k + 3556147692)/(17(k + 1)(16k + 17)^2(64k + 107)) \omega_3 \omega_3 \mathbb{I} \\
- (100k^5(k + 2)^2(49197952k^7 + 1316567424k^6 + 7996912590k^5 + 22351947279k^4 + 34102766376k^3 \\
+ 29430436515k^2 + 13488718172k + 2525554272)/(17(k + 1)(16k + 17)^2(64k + 107)) \omega_3 \omega_1 \omega_1 \mathbb{I} \\
+ ((25/2)^5(k + 2)^3(1808895488k^7 + 12570420576k^6 + 34774013520k^5 \\
+ 47177699946k^4 + 28725570387k^3 + 203645169k^2 - 8060040140k \\
- 264690336)/(17(k + 1)(16k + 17)^2) \omega_2 \omega_2 \omega_1 \mathbb{I} \\
+ (200k^5(k + 2)^4(87914016k^6 + 45846908k^5 + 817692930k^4 + 409776935k^3 \\
- 39461175k^2 - 507021564k - 148662512)/(17(k + 1)(16k + 17)^2) \omega_1 \omega_1 \omega_1 \omega_1 \mathbb{I} \\
- ((25/2)^5(k + 2)(23714656k^5 + 162824160k^4 + 438179214k^3 + 573852691k^2 \\
+ 361829501k + 86225720)/(17(k + 1)(64k + 107)) \omega_1 W_1^2 W_2^1 \mathbb{I} \\
- (25k^2(2088128k^6 + 10843456k^5 + 10746960k^4 - 34653451k^3 - 92307847k^2 \\
- 7711088k - 20771320)/(17(k + 1)(64k + 107)) W_3^3 W_3^1 \mathbb{I} \\
- (300k^3(k + 2)(504864k^6 + 454764k^5 - 10972571k^4 - 41935547k^3 - 63119109k^2 \\
- 4286543k - 10561420)/(17(k + 1)(16k + 17)^2) \omega_3 W_1^2 \mathbb{I} \\
+ (150k^3(k + 2)^2(9637952k^5 + 58430080k^4 + 139113500k^3 + 162223837k^2 \\
+ 92206985k + 20184520)/(17(k + 1)(16k + 17)^2) \omega_1 W_1^4 \mathbb{I} \\
- ((7/8)^5(k + 2)^2(10958592k^6 + 71925552k^5 + 180045944k^4 + 196657979k^3 \\
+ 56586147k^2 - 47214608k - 24536960)/(17(k + 1)(16k + 17)^2) \omega_2 W_4^2 \mathbb{I} \\
+ ((25/2)^4(k + 2)^2(81593088k^6 + 609224400k^5 + 1877915632k^4 + 3065560093k^3 \\
+ 279794176k^2 + 1347940946k + 262697360)/(17(k + 1)(16k + 17)^2) \omega_1 W_4^3 \mathbb{I} \\
- (150^5(18189312k^6 + 131109696k^5 + 275959096k^4 - 155647282k^5 - 1459360618k^4 - 2182319517k^3 \\
- 1238636927k^2 - 142994954k + 43729880)/(17(k + 1)(16k + 17)^2(64k + 107)) W_4^5 \mathbb{I} \\
- (75k^2(21712k^4 + 134672k^3 + 395445k^2 + 266275k + 78990)/(17(k + 1)(16k + 17)^2) W_4^1 W_4^1 \mathbb{I} \\
- ((7/2)(47824k^4 + 265368k^3 + 534533k^2 + 455349k + 133560)/(17(k + 1)(64k + 107))) W_4^1 W_4^5 \mathbb{I},
\]
\[W_0^5 W^5 = -(200 k^5 (k + 2) (5244455936 k^{10} + 7019685904 k^9 + 3981532469 k^8 + 1233587976582 k^7 + 220101621153 k^6 + 2027732203871 k^5 + 165492882072 k^4 - 1736353418536 k^3 - 1889476600504 k^2 - 869314211744 k - 154555766032) \)/((16 k + 17) (131 k^2 + 351 k + 229)) \omega \omega_8 \mathbb{I} \\
- (400 k^5 (k + 2)^2 (724906768 k^9 + 13032033712 k^8 + 92438438140 k^7 + 355708801440 k^6 + 835873623678 k^5 + 1257476731455 k^4 + 1218124586462 k^3 + 734755072085 k^2 + 250569685256 k + 36757401408) \)/((16 k + 17)^2 (131 k^2 + 351 k + 229)) \omega \omega_6 \omega_1 \mathbb{I} \\
- (400 k^5 (k + 2)^2 (214796800 k^9 + 2717542336 k^8 + 13231630738 k^7 + 30829431549 k^6 + 28628760321 k^5 - 20502956550 k^4 - 80533588567 k^3 - 85066432663 k^2 - 41491861540 k - 7925033520) \)/((16 k + 17)^2 (131 k^2 + 351 k + 229)) \omega \omega_5 \omega_2 \mathbb{I} \\
+ (200 k^5 (k + 2)^2 (268100608 k^9 + 2728543168 k^8 + 12034185208 k^7 + 30531316020 k^6 + 50376301665 k^5 + 58543428453 k^4 + 50148887738 k^3 + 30806117372 k^2 + 1175806152 k + 1966237968) \)/((16 k + 17)^2 (131 k^2 + 351 k + 229)) \omega \omega_4 \omega_3 \mathbb{I} \\
+ (1200 k^5 (k + 2)^3 (57147904 k^8 + 134150272 k^7 - 1594361818 k^6 - 10000010232 k^5 - 25615972350 k^4 - 35776722093 k^3 - 28439133457 k^2 - 1204226386 k^1 - 2090245832) \)/((16 k + 17)^2 (131 k^2 + 351 k + 229)) \omega \omega_4 \omega_1 \omega_1 \mathbb{I} \\
+ (200 k^5 (k + 2)^3 (10186188 k^8 - 2776465367 k^7 - 28779796440 k^6 - 112345101336 k^5 - 234716374893 k^4 - 28779482491 k^3 - 207844230254 k^2 - 8132486600 k^1 - 13505087256) \)/((16 k + 17)^2 (131 k^2 + 351 k + 229)) \omega \omega_3 \omega_2 \omega_1 \mathbb{I} \\
+ (25 k^5 (k + 2)^3 (410452736 k^6 + 3102590048 k^6 + 9337359325 k^5 + 13766811166 k^4 + 9179515875 k^3 + 4416256912 k^2 - 2501518260 k^1 - 881437904) \)/((16 k + 17) (131 k^2 + 351 k + 229)) \omega \omega_2 \omega_2 \omega_1 \mathbb{I} \\
+ (400 k^5 (k + 2)^4 (632017152 k^7 + 4297675600 k^6 + 11097398636 k^5 + 1223816128 k^5 + 1797240891 k^4 - 8140638059 k^3 - 681774300 k^2 - 1683752944) \)/((16 k + 17)^2 (131 k^2 + 351 k + 229)) \omega \omega_2 \omega_1 \omega_1 \omega_1 \mathbb{I} \\
- (25 k^2 (k + 2) (1346512 k^5 + 9136620 k^4 + 24342198 k^3 + 31659247 k^2 + 19927547 k + 4787240) \)/((131 k^2 + 351 k + 229)) \omega_2 W_3^2 W_1^3 \mathbb{I} \\
- (100 k^2 (k + 2) (227056 k^5 + 1523004 k^4 + 3994369 k^3 + 5084081 k^2 + 3107416 k + 716920) \)/((131 k^2 + 351 k + 229)) \omega_1 W_2^2 W_2^3 \mathbb{I} \\
+ (25 k^2 (218864 k^6 + 1387084 k^5 + 3127878 k^4 + 2581115 k^3 - 382393 k^2 - 1483740 k - 448840) \)/((131 k^2 + 351 k + 229)) W_3^2 W_2^3 \mathbb{I} \\
+ (300 k^3 (k + 2) (13304576 k^7 + 146690032 k^6 + 668880716 k^5 + 1643048125 k^4 + 2351854427 k^3 + 1958853655 k^2 + 874329498 k + 159392280) \)/((16 k + 17)^2 (131 k^2 + 351 k + 229)) \omega_4 W_2^1 \mathbb{I} \\
+ (300 k^3 (k + 2)^2 (44903552 k^6 + 347191688 k^5 + 1102896188 k^4 + 1838425452 k^3 + 1691025439 k^2 + 810350893 k + 156998080) \)/((16 k + 17)^2 (31 k^2 + 351 k + 229)) \omega_2 W_1 W_2^1 \mathbb{I} \\
- (75 k^3 (k + 2) (12201216 k^7 + 95826768 k^6 + 305102656 k^5 + 494975652 k^4 + 412040321 k^3 + 138210893 k^2 - 14086422 k - 13469960) \)/((16 k + 17)^2 (131 k^2 + 351 k + 229)) \omega_3 W_2^1 \mathbb{I}
\begin{align*}
&+ (300k^3(k + 2)^2(12518976k^6 + 93551364k^5 + 286503394k^4 + 459301951k^3 + 405337557k^2 \\
&+ 185853764k + 34297340)/(16 + 17)^2(131k^2 + 351k + 229))\omega_{-1}W_{4,2}^1 \mathbb{1} \\
&+ (50k^3(k + 2)(8988192k^6 + 73184988k^5 + 245480957k^4 + 433108373k^3 + 422458956k^2 \\
&+ 214916428k + 44202700)/(16 + 17)^2(131k^2 + 351k + 229))\omega_{-2}W_{4,3}^1 \mathbb{1} \\
&+ (150k^3(k + 2)(2k + 3)(2310272k^6 + 14302664k^5 + 3597052k^4 + 47185363k^3 + 34385905k^2 \\
&+ 12495594k + 1193880)/(16 + 17)^2(131k^2 + 351k + 229))\omega_{-1}W_{4,1}^4 \mathbb{1} \\
&- (50k^3(3095808k^8 + 22633488k^7 + 54967200k^6 + 17421355k^5 - 157516472k^4 - 327442197k^3 - 312185014k^2 - 170931184k - 48119360)/(16 + 17)^2(131k^2 + 351k + 229))W_{4,6}^1 \mathbb{1} \\
&- (75k(2k + 3)(64k + 107)(368k^3 + 1897k^2 + 2671k + 950)/(16 + 17)^2(131k^2 + 351k + 229))W_{4,1}^2 \mathbb{1} \\
&- (50k(2k + 3)(5k + 8)(388k^2 + 863k + 405)/(131k^2 + 351k + 229))W_{3,2}^2 W_{5,1}^5 \mathbb{1}.
\end{align*}
C.1. Linear relations in the weight 8 subspace. We express \((W^3_2)^2 \mathbb{1}\) and \(W^3_1 W^4_2 \mathbb{1}\) as linear combinations of the remaining 27 vectors of normal form of weight 8.

\[
(W^3_2)^2 \mathbb{1} = -(18k^3(k + 2)(3k + 4)(217088k^5 + 132352k^4 + 1864570k^3 - 459533k^2 - 145384k - 18520)/(17(k + 1)(16k + 17)^2(64k + 107)))\omega_{-7} \mathbb{1}
\]

\[
- (288k^3 + 2)(3k + 4)(6976k^4 + 112048k^3 + 316803k^2 + 301883k + 91892)/(17(k + 1)(16k + 17)^2(64k + 107)))\omega_{-5} \omega_{-1} \mathbb{1}
\]

\[
+ (54k^3(k + 2)^2(3k + 4)(56320k^4 - 6240k^3 - 136598k^2 - 541975k - 173763)/(17(k + 1)(16k + 17)^2(64k + 107)))\omega_{-4} \omega_{-2} \mathbb{1}
\]

\[
+ (972k^3(k + 2)^2(3k + 4)(1792k^4 + 5096k^3 + 6100k^2 + 4783k + 229)/(17(k + 1)(16k + 17)^2(64k + 107)))\omega_{-3} \mathbb{1}
\]

\[
+ (72k^3(k + 2)^3(3k + 4)(920k^2 + 1598k + 187)/(17(k + 1)(16k + 17)^2)\omega_{-3}(\omega_{-1})^2 \mathbb{1}
\]

\[
+ (9k^3(k + 2)^3(3k + 4)(5792k^3 - 1566k - 3425)/(17(k + 1)(16k + 17)^2)\omega_{-2}^2 \omega_{-1} \mathbb{1}
\]

\[
- (1008k^3(k + 2)^3(3k + 4)(6k - 5)/(17(k + 1)(16k + 17)^2)\omega_{-1}^4 \mathbb{1}
\]

\[
+ (9(k + 2)(26k + 83)/(17(k + 1)(64k + 107)))\omega_{-1}(W^3_2)^2 \mathbb{1}
\]

\[
- (6(380k^2 + 822k + 301)/(17(k + 1)(64k + 107)))W_{-3}^3 W_{-1}^3 \mathbb{1}
\]

\[
+ (54k^3(k + 2)^2(120k^2 + 141k - 34)/(17(k + 1)(16k + 17)^2)\omega_{-3}W_{-1}^4 \mathbb{1}
\]

\[
- (36k^2(k + 2)^2(36k + 61)/(17(k + 1)(16k + 17)^2)\omega_{-3}W_{-1}^4 \mathbb{1}
\]

\[
+ (27k^2(k + 2)(78k^2 + 1565k + 664)/(68(k + 1)(16k + 17)^2)\omega_{-2}W_{-1}^4 \mathbb{1}
\]

\[
+ (9(k + 2)(496k^2 + 889k + 214)/(17(k + 1)(16k + 17)^2)\omega_{-1}W_{-1}^4 \mathbb{1}
\]

\[
+ (54k(2688k^4 + 9208k^3 + 9951k^2 + 5793k + 3788)/(17(k + 1)(16k + 17)^2(64k + 107)))W_{-1}^5 \mathbb{1}
\]

\[
+ (18/(17k(k + 1)(16k + 17)^2)W_{-1}^4 \mathbb{1}
\]

\[
+ (9/(17k(k + 1)(64k + 107)))W_{-1}^3 W_{-1}^5 \mathbb{1}
\]

\[
W_{-1}^3 W_{-1}^5 \mathbb{1} = (8k^2(k + 2)(2k + 3)(320k^2 - 155k - 621)/(64k + 107))\omega_{-4}W_{-1}^3 \mathbb{1}
\]

\[
- (8k^2(k + 2)^2(2k + 3)(136k - 109)/(64k + 107))\omega_{-2}W_{-1}^3 \mathbb{1}
\]

\[
+ (16k^2(k + 2)(2k + 3)(40k^2 - 310k - 327)/(64k + 107))\omega_{-3}W_{-1}^5 \mathbb{1}
\]

\[
+ (16k^2(k + 2)^2(2k + 3)(136k - 109)/(3(64k + 107)))\omega_{-3}W_{-1}^5 \mathbb{1}
\]

\[
+ (8k^2(k + 2)(2k + 3)(168k^2 - 16k + 31)/(64k + 107))\omega_{-2}W_{-1}^5 \mathbb{1}
\]

\[
- (20k^2(k + 2)(2k + 3)(64k^2 + 167k - 180)/(64k + 107))\omega_{-1}W_{-1}^5 \mathbb{1}
\]

\[
+ (24k^2(2k + 3)(32k^3 + 344k^2 + 347k - 516)/(64k + 107))W_{-1}^6 \mathbb{1}
\]

\[
+ (4/3)W_{-1}^3 W_{-1}^5 \mathbb{1}
\]

\[
+ (4k(k + 2)(16k + 17)/(64k + 107))\omega_{-2}W_{-1}^5 \mathbb{1}
\]

\[
- (9(k + 2)(16k + 17)/(5(64k + 107)))\omega_{-1}W_{-1}^5 \mathbb{1}
\]

\[
- (8(7k + 9)(16k + 17)/(5(64k + 107)))W_{-1}^5 \mathbb{1}
\]

C.2. Linear relations in the weight 9 subspace. We can express \(W_{-3}^3 W_{-3}^2 \mathbb{1}\), \(W_{-2}^3 W_{-4}^2 \mathbb{1}\), \(W_{-1}^3 W_{-3}^3 \mathbb{1}\), and \(W_{-1}^3 W_{-5}^2 \mathbb{1}\) as linear combinations of the remaining 40 vectors of normal form.
form of weight 9. For instance, $W_{-3}^3 W_{-3}^3$ is expressed as follows. We omit the expression of $W_{-3}^3 W_{-3}^3$, $W_{-2}^3 W_{-2}^4$ and $W_{-1}^3 W_{-1}^5$, for they are not used in our argument.

$$W_{-3}^3 W_{-3}^3 = (16k^2(k + 2)(1283648k^5 + 3440448k^4 - 3245504k^3 - 18055627k^2 - 18583431k - 5789692)$$

$$/(64k + 107)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$- (8k^2(k + 2)^2(455808k^4 + 2175980k^3 + 3327583k^2 + 1752535k + 133700)$$

$$/((64k + 107)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$- (k^2(k + 2)^2(8192k^3 - 432k^2 - 30515k - 15420)/(1424k^2 + 3241k + 1542))(W_{-2}^3 W_{-2}^3$$

$$+ (16k^2(k + 2)^3(674k^2 + 63k - 1100)/(1424k^2 + 3241k + 1542))(W_{-1}^3 W_{-1}^3$$

$$+ (8k^2(k + 2)(5k + 8)(16k + 17)(58944k^3 - 96692k^2 - 505205k - 340649)$$

$$/((64k + 107)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$+ (4k^2(k + 2)^2(5k + 8)(16k + 17)(11248k^2 - 3953k - 6251)$$

$$/((64k + 107)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$+ (8k^2(k + 2)^2(1209472k^3 + 1405772k^2 - 12112961k^3 - 3415532k^2 - 32424710k - 10585768)$$

$$/((64k + 107)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$+ (32k^2(k + 2)^2(627872k^4 + 2346827k^3 + 2091732k^2 - 1239437k - 1843412)$$

$$/((64k + 107)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$+ (3k^2(k + 2)(4445184k^5 + 20157312k^4 + 34479058k^3 + 27362195k^2 + 8585804k - 569072)$$

$$/((64k + 107)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$- (8k^2(k + 2)^2(6894208k^5 + 54479264k^4 + 15313147k^3 + 19292401k^2 + 10564731k + 33600368k + 9480832)/(64k + 107)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$- (16k + 17)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$+ (4k^2(k + 2)(358k + 559)/(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$+ (8k^2k^2 + 1392k + 1075)/(1424k^2 + 3241k + 1542)W_{-3}^3 W_{-3}^3$$

$$+ (112k^2 + 236 + 31)/(1424k^2 + 3241k + 1542)W_{-3}^3 W_{-3}^3$$

$$+ (112k^2 + 236 + 31)/(1424k^2 + 3241k + 1542)W_{-3}^3 W_{-3}^3$$

$$- (2k(k + 2)(192k^2 + 229k - 400)/(5(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$- (16k^2(k + 2)(16k + 17)(168k^2 + 3815k + 1786)$$

$$/((64k + 107)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$- (96k(k + 17)(2687k^3 + 10929k^2 + 12927k + 5342)$$

$$/((64k + 107)(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3$$

$$- (4/(k(1424k^2 + 3241k + 1542))W_{-3}^3 W_{-3}^3. $$

Appendix D. u^0, u^1, u^2 and u^3 in Case $k = 5$

We express $u^0 = f(0)^{k+1} (-1)^{k+1} u$ and $u^r = (W^3)^r u^0$, $r = 1, 2, 3$ as linear combinations of the vectors of normal form in the case $k = 5$.
\[u^0 = -\left(56260915200/97\right)\omega_{-5} \mathbb{I} - \left(47822745600/97\right)\omega_{-3}\omega_{-1} \mathbb{I} + \left(43180603200/97\right)(\omega_{-2})^2 \mathbb{I} + \left(33230937600/97\right)(\omega_{-1})^3 \mathbb{I} - \left(4032/5\right)(W_{-2}^3)^2 \mathbb{I} + \left(550368/97\right)\omega_{-1}W_{-1}^4 \mathbb{I} + \left(340704/97\right)W_{-3}^2 \mathbb{I}, \]

\[u^1 = -\left(17721088761600/5917\right)\omega_{-3}W_{-1}^2 \mathbb{I} + \left(13262835501600/5917\right)(\omega_{-1})^2 W_{-3}^2 \mathbb{I} + \left(221863017600/61\right)\omega_{-2}W_{-2}^4 \mathbb{I} - \left(365470963200/97\right)\omega_{-1}W_{-3}^3 \mathbb{I} + \left(21001925203200/5917\right)W_{-3}^3 \mathbb{I} - \left(2122848/97\right)W_{-3}^4 \mathbb{I} - \left(389631360/61\right)\omega_{-1}W_{-5}^3 \mathbb{I} - \left(3401438440/61\right)W_{-5}^3 \mathbb{I}, \]

\[u^2 = \left(8181452462686782123600000/9757133\right)\omega_{-5} \mathbb{I} + \left(8868381288151420627200000/9757133\right)\omega_{-4}\omega_{-1} \mathbb{I} - \left(5147471345450314255200000/9757133\right)\omega_{-4}\omega_{-2} \mathbb{I} + \left(23321410696693972800000/9757133\right)(\omega_{-3})^2 \mathbb{I} + \left(47380877265410942400000/159953\right)\omega_{-3}(\omega_{-1})^2 \mathbb{I} - \left(41194303644229799800000/159953\right)(\omega_{-2})^2 \mathbb{I} - \left(32478871712964566400000/159953\right)(\omega_{-1})^2 \mathbb{I} + \left(4985850497040000/1037\right)\omega_{-1}(W_{-1}^3 \mathbb{I}) - \left(42034377168000/1037\right)W_{-3}^2 W_{-1}^2 \mathbb{I} - \left(8566112126376000/159953\right)\omega_{-3}W_{-2}^4 \mathbb{I} - \left(524887446958560000/159953\right)(\omega_{-1})^2 W_{-3}^4 \mathbb{I} + \left(3017834596261800/159953\right)\omega_{-2}W_{-2}^4 \mathbb{I} - \left(340143285584592000/159953\right)\omega_{-1}W_{-4}^3 \mathbb{I} + \left(357554169263088000/9757133\right)W_{-4}^3 \mathbb{I} + \left(89784495360/159953\right)(W_{-1}^4 \mathbb{I})^2 + \left(13751156160/1037\right)W_{-3}^2 W_{-1}^2 \mathbb{I}, \]

\[u^3 = \left(633349572703577384045440000/45093457\right)\omega_{-5}W_{-1}^3 \mathbb{I} - \left(304333657131610010822400000/45093457\right)\omega_{-4}\omega_{-1}W_{-1}^3 \mathbb{I} + \left(1141592140148275607400000/464881\right)\omega_{-2}W_{-3}^3 \mathbb{I} + \left(69658304251736590588800000/45093457\right)(\omega_{-1})^3 W_{-3}^3 \mathbb{I} + \left(175753574599043599200000/464881\right)\omega_{-4}W_{-2}^3 \mathbb{I} - \left(620956662666585739200000/464881\right)\omega_{-2}W_{-1}W_{-2}^3 \mathbb{I} - \left(5158511194620039076800000/45093457\right)\omega_{-3}W_{-3}^3 \mathbb{I} + \left(820496583738354986582400000/45093457\right)(\omega_{-1})^2 W_{-3}^3 \mathbb{I} + \left(15050173408252695423000000/464881\right)\omega_{-2}W_{-2}^3 \mathbb{I} - \left(2704800801881903228784000000/45093457\right)\omega_{-1}W_{-3}^3 \mathbb{I} + \left(314127287318119508442720000000/45093457\right)W_{-3}^3 \mathbb{I} - \left(63906101745998400/7621\right)(W_{-1}^3 \mathbb{I})^3 \mathbb{I} + \left(5804030066903728000/739237\right)\omega_{-1}W_{-1}^3 W_{-4}^2 \mathbb{I} + \left(70446353688003384000/739237\right)W_{-3}^2 W_{-1}^3 \mathbb{I} + \left(29475630099262095840000/45093457\right)\omega_{-3}W_{-2}^3 \mathbb{I} + \left(570725611182967968000000/45093457\right)(\omega_{-1})^2 W_{-2}^3 \mathbb{I} - \left(586292703314111956800/45093457\right)\omega_{-2}W_{-2}^5 \mathbb{I} - \left(82578847924067040000/464881\right)\omega_{-1}W_{-5}^3 \mathbb{I} - \left(2748731861102520384000/464881\right)W_{-5}^5 \mathbb{I} - \left(434544013612800/739237\right)W_{-4}^2 W_{-2}^3 \mathbb{I}. \]

References

[1] R. Blumenhagen, W. Eholzer, A. Honecker, K. Hornfeck and R. Hübel, Coset realization of unifying W-algebras, Internat. J. Modern Phys. A10 (1995), 2367–2430.

[2] A. Cappelli, L. S. Georgiev and I. T. Todorov, Parafermion Hall states from coset projections of abelian conformal theories, Nucl. Phys. B599 (2001), 499–530.

[3] C. Dong, Vertex algebras associated with even lattices, J. Algebra 160 (1993), 245–265.
[4] C. Dong, C.H. Lam, K. Tanabe, H. Yamada and K. Yokoyama, Z_3 symmetry and W_3 algebra in lattice vertex operator algebras, *Pacific J. Math.* 215 (2004), 245–296.

[5] C. Dong, C.H. Lam and H. Yamada, Decomposition of the vertex operator algebra $V_{\sqrt{2}A_1}$, *J. Algebra* 222 (1999), 500–510.

[6] C. Dong, C.H. Lam and H. Yamada, W-algebras in lattice vertex operator algebras, in *Lie Theory and Its Applications in Physics VII*, ed. by H.-D. Doebner and V. K. Dobrev, Proc. of the VII International Workshop, Varna, Bulgaria, 2007, *Bulgarian J. Phys.* 35 supplement (2008), 25–35.

[7] C. Dong and J. Lepowsky, *Generalized Vertex Algebras and Relative Vertex Operators*, Progress in Math., Vol. 112, Birkhäuser, Boston, 1993.

[8] C. Dong, H.-S. Li and G. Mason, Simple currents and extensions of vertex operator algebras, *Commun. Math. Phys.* 180 (1996), 671–707.

[9] C. Dong, H.-S. Li and G. Mason, Modular-invariance of trace functions in orbifold theory and generalized moonshine, *Commun. Math. Phys.* 214 (2000), 1–56.

[10] C. Dong and K. Nagatomo, Representations of vertex operator algebra V_L^+ for rank one lattice L, *Commun. Math. Phys.* 202 (1999), 169–195.

[11] C. Dong and G. Yamskulna, Vertex operator algebras, generalized doubles and dual pairs, *Math. Zeit.* 241 (2002), 397–423.

[12] I. B. Frenkel, J. Lepowsky and A. Meurman, *Vertex Operator Algebras and the Monster*, Pure and Applied Math., Vol. 134, Academic Press, Boston, 1988.

[13] I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, *Duke Math. J.* 66 (1992), 123–168.

[14] D. Gepner and Z. Qiu, Modular invariant partition functions for parafermionic field theories, *Nucl. Phys.* B285 (1987), 423–453.

[15] K. Hornfeck, W-algebras with set of primary fields of dimensions (3, 4, 5) and (3, 4, 5, 6), *Nucl. Phys.* B407 (1993), 237–246.

[16] V. G. Kac, *Infinite-dimensional Lie Algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990.

[17] M. Kitazume, M. Miyamoto and H. Yamada, Ternary codes and vertex operator algebras, *J. Algebra* 223 (2000), 379–395.

[18] C.H. Lam and H. Yamada, Decomposition of the lattice vertex operator algebra $V_{\sqrt{2}A_1}$, *J. Algebra* 272 (2004), 614–624.

[19] C.H. Lam, H. Yamada and H. Yamauchi, McKay’s observation and vertex operator algebras generated by two conformal vectors of central charge 1/2, *Internat. Math. Res. Papers*, 2005:3 (2005), 117–181.

[20] J. Lepowsky and H.-S Li, *Introduction to Vertex Operator Algebras and Their Representations*, Progress in Math., Vol. 227, Birkhäuser, Boston, 2004.

[21] A. Matsuo, Norton’s trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry, *Commun. Math. Phys.* 224 (2001), 565–591.

[22] W. Wang, Rationality of Virasoro vertex operator algebras, *Internat. Math. Res. Notices* 7 (1993), 197–211.

[23] Y. Zhu, Modular invariance of characters of vertex operator algebras, *J. Amer. Math. Soc.* 9 (1996), 237–302.

*Department of Mathematics, University of California, Santa Cruz, CA 95064
E-mail address: dong@math.ucsc.edu*

*Department of Mathematics and National Center for Theoretical Sciences, National Cheng Kung University, Tainan, Taiwan 701
E-mail address: chlam@mail.ncku.edu.tw*

*Department of Mathematics, Hitotsubashi University, Kunitachi, Tokyo 186-8601, Japan
E-mail address: yamada@math.hit-u.ac.jp*