Calculation and research of the diaphragm compressor main elements

A Lebedev¹, E Fateeva¹, Y Kozhukhov¹,³, S Kartashev¹, I Toloknova², A Burakov², and A Tikalov²

¹ Peter the Great St. Petersburg Polytechnic University Federal State Autonomous Educational Institution of Higher Education, St. Petersburg, Russia
² Joint Stock Company «Compressor»

E-mail: ³kozhukhov_yv@mail.ru

Abstract. The article presents the experience of calculating and studying of the high-pressure membrane compressor main elements research experience, running on gaseous oxygen. The following issues are considered: determining the distribution and limiting disks surface profile, compressor main loaded elements strength calculation, modeling the temperature distribution in the membrane block during operation. These studies can be useful for further membrane compressor units development and can be used as a basis for calculations and new installations design.

1. Introduction

This article presents the main research in the most critical diaphragm compressor parts. The object of research is a membrane compressor unit with a suction pressure of 2.94 MPa, a discharge pressure of 29.4 MPa, and a capacity of 18 Nm³/h, designed for compressing oxygen gas and civil and industrial shipping needs. Diaphragm compressor design and production is a little studied and Russian compressor market complex branch. Membrane compressor production today in Russia is engaged in a small number of power engineering industries, one of them is JSC "Compressor", whose task was to produce a small-sized membrane compressor operating in a high-pressure zone, the working medium is high-purity oxygen [1-5]. This article subject is the membrane compressor strength characteristics study and the temperature distribution in the membrane unit.

2. Methods

The research purpose is to calculate and study the compressor units strength characteristics and temperature distributions in the membrane unit using modern software systems, namely ANSYS and SolidWorks [6-7].

The following compressor elements strength calculations were performed:

1. The membrane strength calculation.
2. The crankshaft calculation dynamics and strength.
3. The plunger strength calculation.

A calculation was also performed to determine the temperature distributions in the membrane block.

2.1 Initial data for the membrane strength calculation
Membrane verification calculation for strength begins with determining the minimum thickness of the membrane from the strength condition according to the method [1], p. 711, p. 46. We accept a membrane thickness of 4 mm.

The stresses that occur in the membrane during operation are determined by the formulas (1), (2) [1, p. 46]:

\[
\sigma_{rp} = \frac{E \delta^2}{R^2} \cdot \frac{2(q+1)}{(q-1)^2} \cdot \left[\frac{(3-\mu)(q+1)}{8(1-\mu)} - \frac{2(q+2-\mu)}{q(q+3)(1-\mu)} + \frac{2q+1-\mu}{4q(1-\mu)} - \frac{g^2q}{4q} + \frac{2}{q+3} \cdot g^{q+1} - \frac{q+1}{8} \cdot g^2\right]
\]

\[
\sigma_{rp} = \frac{E \delta^2}{R^2} \cdot \frac{2(q+1)}{(q-1)^2} \cdot \left[\frac{(3-\mu)(q+1)}{8(1-\mu)} - \frac{2(q+2-\mu)}{q(q+3)(1-\mu)} + \frac{2q+1-\mu}{4q(1-\mu)} - \frac{g^2q}{4q} + \frac{2}{q+3} \cdot g^{q+1} - \frac{3(q+1)}{8}\right].
\]

where
- \(E \) - modulus for steel is assumed to be equal to \(E = 0,198 \cdot 10^6 \) Pa;
- \(\mu \) - the Poisson’s ratio equal to be equal to \(\mu = 0,3 \);
- \(R \) - membrane radius in the seal, we take it equal to \(R = 0,05 \) m.
- \(g \) - relative radius, determined by the formula (3):

\[
g = \frac{R_{current}}{R_{tightness}}
\]

\(\delta \) - deflection of the membrane at the Central point is assumed to be equal to \(\delta = 1,3 \) mm

2.2 Initial data for the crankshaft and plunger strength calculation

The crankshaft strength calculation will be performed in the ANSYS 19.2 software package using the StaticStructural and Model software packages [8, 9].

The crankshaft model is built using the KOMPASS 3D software package. The model definition starts with the grid construction. The grid model is constructed with the main element 8 mm size (fig. 1).

\[\text{Table 5} \]

![Table 5](image)

Figure 1. Mesh characteristics the crankshaft

The main support surfaces and the shaft speed \(\omega_1=78.5 \) rad/s Fig.2.

Figure 2. Crankshaft fixation simulation

Similarly, with the preparation for the crankshaft calculation, the plunger model prepare. The grid model is constructed with the main element 8 mm size (fig. 3).
2.3 Initial data for the temperature distribution in the membrane block

When designing a membrane compressor, an important point is to study the temperature distribution in the membrane unit. Due to the small compression cavity volume, membrane frequent vibrations and a high compression ratio, the compressed gas temperature, and therefore the working parts, is high, so it is important to take into account the temperature distributions in the membrane block.

Temperature distributions are studied using the SolidWorks Flow Simulation software package [10-12].

The problem to be solved is internal we install plugs on all holes Fig.5.

Table 1. System general settings

Parameter	Value
Ambient temperature	20 °C
External ambient pressure	0,1 MPa
Wall heat transfer coefficient	\(\lambda = 34 \text{ kW/m}^\circ \text{K} \)
Wall temperature	20 °C
Since the designed compressor is a membrane hydraulic drive, the working media oxygen and oil were selected (since its density is quite close to the direct working fluid PEF-130TU6-02-1072-86 characteristics). The flow of working media subdomains are determined Fig. 6.

![Flow subdomain for the liquid on the left and for the oxygen on the right](image)

Figure 6. Flow subdomain for the liquid on the left and for the oxygen on the right

3 Results

3.1 Membrane strength calculation

The membrane strength calculations were performed using the Microsoft Excel software package. The results are shown in Figure 7.

![Stress distribution](stress_distribution)

Figure 7. Stress distribution (specify what these stresses are) from the center to the membrane periphery

From the data obtained, it can be seen that when working with a flat membrane, the most dangerous points are the membrane center and the sealing points. Comparing the calculated and experimental data, we find that the obtained distribution does not contradict the thin shells theory.

3.2 Crankshaft and plunger strength calculation

Using the built-in ANSYS Static Structural module, consider the crankshaft strength, which accounts for the working environment main load [13-15].

The calculated values are total deformations and equivalent Mises stresses, Fig.8, 9.
An important condition in determining the strength crankshaft characteristics is to determine the critical speed, the speed at which the shaft occur greatest vibration amplitudes. ANSYS Modal has determined which shaft corresponds type to ours [16]. To do this, the number of harmonics for calculation was set to 12, since usually in practice only the most dangerous ones are paid attention to – bending ones, and all possible forms of vibrations (bending, transverse, longitudinal, rotational) will be modeled. It is enough to consider the first 3 harmonics for a complete picture.

The geometry, grid model, and research model are taken from the shaft analysis in ANSYS Static Structural [17, 18].

To control the waveform, solutions in the form of Total Deformation are selected in the Solution tab. Animations of these values provide information about the oscillation shape [19-21]. The first three natural frequencies are shown in Fig. 10.
Figure 10. Natural frequencies: a) first harmonic b) second harmonic c) third harmonic

The study results are shown in table 2:

Table 2. Shaft natural frequencies

Harmonic number	Natural frequency, rad/s
1	410.3
2	3209.2
3	3368.2

The compressor shaft rotation speed is 12.5 rad/s, and the first critical frequency rotation frequency is 410.3 rad/s. Thus, the designed high-pressure diaphragm compressor shaft operates at a sufficient distance from the first critical frequency and is rigid.

In the ANSYS Static Structural software module, consider the plunger strength, which accounts for the main load of the working environment [22, 23]. During the study, the following values were calculated: total deformations and equivalent Mises stresses, Fig. 11, 12.
From the results obtained, it can be seen that the maximum deformations occur on the end plunger surface, where the maximum load falls. The maximum stresses arising in the plunger are 18.5 MPa, which satisfies the strength condition: \(\sigma_{\text{max}} \leq \sigma \) for the steel material 38X2MYA GOST 4543-71 with \(\sigma = 980 \) MPa.

3.3 Temperature distribution in the membrane block

When setting the research task, it was found that it was necessary to find out how the temperature is distributed in the working area of the membrane unit, this temperature is transmitted to the elements of the membrane unit from the injected gas. During gas compression, the discharge temperature becomes 112 °C at the outlet of the membrane unit.

The limiting case was considered when the discharge temperature is constant and equal to 112 °C, i.e. the compressor unit operates at a given mode and the pressure and temperature of the suction and discharge are in equilibrium. The following conditions are set for the gas cavity, according to table 3:

Table 3. The boundary conditions for the gas chamber

Boundary condition	Values
«volume flow rate at the inlet»	0,0002 m³/s
«the volumetric flow rate at the exit»	0,00002 m³/s
«discharge pressure»	30 MPa (\(T_\text{n}=112 \) °C)

For the hydraulic cavity, according to table 4:

Table 4. The boundary conditions for the gas chamber

Boundary condition	Values
«inlet mass flow rate»	0,0665 kg/s
«inlet pressure»	3,0 MPa (\(T_\text{n}=40 \) °C)

Figure 13 shows a temperature distribution picture in the cross-section, which shows the temperature distribution at cross-section each point.

Figure 13. Temperature distribution in the membrane block cross section

Heat exchange inside a metal membrane was considered. At the interface between hot oxygen and the membrane, the strongest heat exchange occurs. Due to the membrane small thickness, the temperature quickly becomes the same across the entire cross-section. Figure 14 shows the temperature distribution at the gas - liquid interface between a metal plate.
Figure 14. Temperature distribution in the cross section at the gas-liquid interface between a metal plate

The greatest interest in the study is the change in the temperature of the working fluid. Entering the hydraulic cavity with a temperature of 40 °C, the working fluid comes into contact with the distribution disk, through which a small volume for each revolution of the shaft enters the hydraulic cavity enclosed between the membrane and the disk. There is a liquid in the volume equal to \(V = 0.000003 \, m^3 \) in contact with the heated membrane and heat exchange occurs. Due to the large temperature difference and the working fluid small volume, rapid heating occurs. After moving the plunger to the lower dead center, the liquid from the volume between the membrane and the disk is again mixed with the total amount of liquid in the membrane block and heat exchange occurs Fig. 15.

Figure 15. Change in liquid temperature

4. Conclusions
The analysis of the main results of the calculations and studies allows us to note the following points for each of the studies.

An important point in the design is to determine the strength characteristics of the main loaded structural elements. It is necessary that these elements meet the strength conditions.

In terms of the strength calculation of the membrane, it is worth noting the importance of meeting the strength conditions of its main loaded places, namely the center and attachment in the sealing of the membrane block.

For the crankshaft, the most dangerous place was identified, namely the junction of the shaft and flywheel, which also meets all the requirements of the strength condition.

The plunger was subjected to an end load and it was found that it fully meets the strength conditions.

A simulation of the temperature distribution in the membrane block was also performed, which showed that oxygen entering the gas cavity of the membrane block heats the walls of the cavity, which at the initial stage have a temperature equal to the ambient temperature. When interacting with a hot gas, intense heat exchange occurs, due to which each point near the boundary changes its temperature. Heat exchange occurs unevenly due to the difference in the temperature parameters of suction and discharge, so the membrane unit will be heated unevenly.

Thus, the results obtained allow for more correct design of membrane compressor units and will be useful as an information base for future research in this area, as well as for use in design.
References
[1] Altukhov S M and Rumyantsev V A 1967 Membrane Compressors Mechanical Engineering
[2] Plastinin P I 2000 Piston compressors Moscow, “Kolos”
[3] Shchuka I O 2012 Improving the operational properties of the membrane block of the membrane-plunger compressor Dissertation for the degree of candidate of technical Sciences, Omsk
[4] Fotin B S, Pirumov I B, Prilutsky I K and Plastinin P I 1987 Piston compressors Mechanical Engineering
[5] Tarasov V M 1987 Operation of compressor installations Mechanical Engineering
[6] Aksenov A A, Danilishin A M, Dubenko A M and Kozhukhov Y V 2017 Development of the virtual experimental bench on the basis of modernized research centrifugal compressor stage test unit with the 3D impeller IOP Conference Series: Materials Science and Engineering 232(1) https://doi.org/10.1088/1757-899X/232/1/012042.
[7] Aksenov A A, Danilishin A M, Kozhukhov Y V and Simonov A M 2018 Numerical simulation of gas-dynamic characteristics of the semi-open 3D impellers of the two-element centrifugal compressors stages AIP Conference Proceedings 2007 https://doi.org/10.1063/1.5051886.
[8] Aksenov A, Kozhukhov Y, Sokolov M and Simonov A 2018 Analysis and modernization of real gas thermodynamic calculation for turbocompressors and detander units MATEC Web of Conferences 245 https://doi.org/10.1051/matecconf/201824509005.
[9] Kozhukhov Y V, Marchenko R S, Ilyin I V, Aksenov A A and Nguyen M H 2019 An architectural approach to process control of gas compressor stations with a low temperature separation gas preparation unit based on a digital twin E3S Web of Conferences 140 https://doi.org/10.1051/e3sconf/201914010007.
[10] Aksenov A A, Kozhukhov Y V, Lebedev A A, Petrov A Y and Nguyen M H 2019 Contamination effects study in the centrifugal compressor flow stage by means of numerical simulation methods E3S Web of Conferences 140 https://doi.org/10.1051/e3sconf/201914007005.
[11] Lebedev A A, Aksenov A A, Lebedeva S M, Petrov A Y and Nguyen M H 2019 Improving the reliability of the compressor unit using the wavelet transform method E3S Web of Conferences 140 https://doi.org/10.1051/e3sconf/201914005013.
[12] Rakhmanina L A, Zuev A V, Petrov A Y, Aksenov A A and Nguyen M H 2019 The investigation of absolute flow non-uniform velocity distributions influence at the centrifugal compressor axial radial impeller inlet using numerical calculation methods in ANSYS CFX E3S Web of Conferences 140 https://doi.org/10.1051/e3sconf/201914005008.
[13] Lebedev A, Gileva L, Danilishin A and Sokolov M 2018 Surge protection system development in centrifugal compressor with an indicative method using numerical simulation of unsteady processes and analysis of pressure fluctuation signals MATEC Web of Conferences 245 https://doi.org/10.1051/matecconf/201824509010.
[14] Gileva L V, Kozhukhov Y V and Zuev A V 2018 Improvement methods for design of turbocompressors inlet radial chambers AIP Conference Proceedings 2007 https://doi.org/10.1063/1.5051911.
[15] Gileva L, Kartashov S, Zuev A and Ivanov V 2018 Verification of the CFD calculation for the centrifugal compressor medium flow model stages with the help of supercomputer MATEC Web of Conferences 245 EDP Sciences https://doi.org/10.1051/matecconf/201824509011.
[16] Sokolov M, Sadovsky N, Zuev A, Gileva L and Nguyen M H 2019 Real gas state equations comparative analysis for low-temperature calculations E3S Web of Conferences EDP Sciences 140 https://doi.org/10.1051/e3sconf/201914005007.
[17] Danilishin A M, Kozhukhov Y V, Neverov V V, Malev K G and Mironov Y R 2017 The task of validation of gas-dynamic characteristics of a multistage centrifugal compressor for a natural gas booster compressor station AIP Conference Proceedings 1876 https://doi.org/10.1063/1.4998866.
[18] Danilishin A M, Kozhukhov Y V and Yun V K 2015 Multi-objective optimization for impeller shroud contour, the width of vane diffuser and the number of blades of the centrifugal compressor stage based on the CFD calculation IOP Conference Series: Materials Science and Engineering 90 https://doi.org/10.1088/1757-899X/90/1/012046.

[19] Ivanov V M, Kozhukhov Y V and Danilishin A M 2019 Calculation of the impellers head characteristics of the low-flow centrifugal compressor stages based on quasi-three-dimensional inviscid and viscous methods AIP Conference Proceedings 2141 https://doi.org/10.1063/1.5122114.

[20] Kozhukhov Y V, Yun V K, Reshetnikova L V and Prokopovich M V 2015 Numerical Investigation of Different Radial Inlet Forms for Centrifugal Compressor and Influence of the Deflectors Number by Means of Computational Fluid Dynamics Methods with Computational Model Validation IOP Conference Series: Materials Science and Engineering 9th International Conference on Compressors and Their Systems, London DOI: 10.1088/1757-899X/90/1/012047.

[21] Danilishin A M, Kartashov S V, Kozhukhov Y V and Kozin E G 2017 The methodology for the existing complex pneumatic systems efficiency increase with the use of mathematical modeling IOP Conference Series: Materials Science and Engineering 232(1) DOI: 10.1088/1757-899X/232/1/012069

[22] Yablokov A, Yanin I, Danilishin A and Zuev A 2018 Ansys CFX numerical study of stages centrifugal compressor with low-flow rate coefficient MATEC Web of Conferences 245 DOI: 10.1051/matecconf/201824509002.

[23] Danilishin A M, Kozhukhov Y V and Simonov A M 2019 Gas-dynamic designing and profiling complex for the two-element centrifugal compressor stage with 3D impeller AIP Conference Proceedings 2141 DOI: 10.1063/1.5122115.