GEOMETRIC CHARACTERIZATION OF q-PSEUDOCONVEX DOMAINS IN \mathbb{C}^n

HEDI KHEDHIRI

Abstract. In this paper, we investigate the notion of q-pseudoconvexity to discuss and describe some geometric characterizations of q-pseudoconvex domains $\Omega \subset \mathbb{C}^n$. In particular, we establish that Ω is q-pseudoconvex, if and only if, for every boundary point, the Levi form of the boundary is semipositive on the intersection of the holomorphic tangent space to the boundary with any $(n-q+1)$-dimensional subspace $E \subset \mathbb{C}^n$. Furthermore, we prove that the Kiselman’s minimum principal holds true for all q-pseudoconvex domains in $\mathbb{C}^p \times \mathbb{C}^n$ such that each slice is a convex tube in \mathbb{C}^n.

1. Introduction

We study in this paper the notion of q-pseudoconvexity from a geometric point of view. We consider smoothly q-pseudoconvex domains Ω in \mathbb{C}^n which are defined by smooth q-subharmonic function ρ such that $d\rho \neq 0$ on $\partial \Omega$. We will prove in Section 2 that, for q-pseudoconvex domains $\Omega \subset \mathbb{C}^n$ such that $2 \leq q \leq n$, the function $-\log d(z, \mathbb{C}\Omega)$ is q-subharmonic. Note that by taking in account our convention about this notion, according to [5], this isn’t generally the case for 1-pseudoconvex domains. By considering the function

$$\delta_\Omega(z, E) = \sup\{r > 0, z + B_E(r) \subset \Omega\},$$

which is the distance from z to $\partial \Omega$ in the multi-complex direction supported by a q-dimensional subspace E of \mathbb{C}^n, we obtain a new understanding of the concept of q-pseudoconvexity. We will see here that the function $-\log d(z, \mathbb{C}\Omega)$ is one of the most important tools in studying q-pseudoconvexity. In addition, we will show that the concepts of the weak q-pseudoconvexity and the strong q-pseudoconvexity are equivalent and we say simply q-pseudoconvexity. By using the function $\delta_\Omega(z, E)$, we legitimate the q-pseudoconvexity of the Hartogs domains when $n \geq 2q + 2$.

Received March 1, 2016.

2010 Mathematics Subject Classification. 32T, 32U05, 32U10.

Key words and phrases. q-pseudoconvex domain, q-subharmonic function, exhaustion function, Levi form of the boundary.

©2017 Korean Mathematical Society

543
In Section 3, we shall give a full rigorous proof of the local property of q-pseudoconvexity, that differs of such given in [5]. Furthermore, we characterize the q-pseudoconvexity by the Levy form of the defining function and we prove that Ω is q-pseudoconvex, if and only if, for every boundary point, the Levi form of the boundary is semi-positive on the intersection of the holomorphic tangent space to the boundary with any $(n - q + 1)$-dimensional subspace $E \subset \mathbb{C}^n$.

In Section 4, we attempt to show that the Kiselman’s minimum principle holds true for all q-pseudoconvex domains in $\mathbb{C}^p \times \mathbb{C}^n$ such that each slice is a convex tube in \mathbb{C}^n.

Now, let’s give the definition of a q-subharmonic function.

Definition 1.1. A function $u : \Omega \to [-\infty, +\infty]$, $u \not\equiv -\infty$, is called q-subharmonic if for every $(n - q + 1)$-dimensional complex subspace $E \subset \mathbb{C}^n$, the restriction $u|_{E \cap \Omega}$ is subharmonic. This means that for all compact set $K \subset E \cap \Omega$ and for every continuous harmonic function h on K such that $u \leq h$ on ∂K, we have $u \leq h$ on K.

Observe here that n-subharmonic functions are usual plurisubharmonic functions and 1-subharmonic functions are usual subharmonic functions. Further details about the notion of q-subharmonic functions and their properties can be obtained from [5] or [8].

The set of q-subharmonic functions on Ω will be denoted $q\text{-Sh}(\Omega)$.

Example 1.1. Consider in \mathbb{C}^n the Riez kernel [6], $K(\alpha, z)$ defined by the expression

$$(1.2) \quad K(\alpha, z) = -\frac{|z|^{2(\alpha - q)}}{H_q(\alpha)}$$

where $H_q(\alpha) = \frac{\pi^{2n/2}2^{2\alpha}\Gamma(\alpha)}{\Gamma(q - \alpha)}$ and $1 \leq \alpha < q \leq n$.

For every q-dimensional subspace $E \subset \mathbb{C}^n$, an easy computation far from the origin of the Laplacian $\Delta K|_E$ of the restriction on E of the function $K(\alpha, .)$ defined by (1.2), yields up to a positive constant

$$(1.3) \quad \Delta K|_E(\alpha, z) = -K|_E(\alpha - 1, z).$$

Then (1.3) implies that K is $(n - q + 1)$-subharmonic on \mathbb{C}^n. In case $q = n$ and $\alpha = 1$, K is the Newton kernel.

We may introduce the notion of a q-pseudoconvex domain in \mathbb{C}^n where $n \geq 2$, by considering an integer $1 \leq q \leq n$ and a smoothly domain $\Omega \subset \mathbb{C}^n$ with a defining function ρ such that $d\rho \not\equiv 0$ on $\partial \Omega$ and we define this notion as the following:

Definition 1.2. We say that Ω is q-pseudoconvex if there is a neighborhood U of $\overline{\Omega}$ and a q-subharmonic function $\rho : U \to \mathbb{R} \cup \{-\infty\}$ such that $d\rho \not\equiv 0$ on $\partial \Omega$ and $\Omega = \{z \in \mathbb{C}^n / \rho(z) < 0\}$.

Example 1.2. Consider an example of 3-pseudoconvex domain in $\mathbb{C}^5 = \mathbb{C}^3 \times \mathbb{C}^2$, which is a variant of the Kohn-Nirenberg example [4] of a pseudoconvex
domain in \mathbb{C}^2:
$$
\Omega = \{(z', z, w) \in \mathbb{C}^5 : 3|z'|^2 - |z|^4 - |z_3|^4 + \Re(w) + |z|^{2k} + t|z|^2\Re(z^{2k-2}) < 0\}
$$
where $t \in \mathbb{R}$ and $k \in \mathbb{N}$, $k \geq 2$, are fixed parameters. We can easily check that if $|t| \leq \frac{k^2 - 2}{2k}$, then the restriction on every 3-complex subspace $E \subset \mathbb{C}^5$, of the defining function of Ω given by $\rho(z_1, z_2, z_3, z, w) = 3|z|^2 - |z_2|^4 - |z_3|^4 + \Re(w) + |z|^{2k} + t|z|^2\Re(z^{2k-2})$ is subharmonic. Which means that Ω is a 3-pseudoconvex domain in \mathbb{C}^5.

In [2], Dinh introduced the notion of p-pseudoconcavity of a closed subset X of a complex manifold \mathbb{C}^n as follows:

We say that X is p-pseudoconcave if for every open set $U \subset V$ and every holomorphic map f from a neighborhood of \overline{U} into \mathbb{C}^p, we have $f(X \cap U) \subset \mathbb{C}^p \setminus \Omega$ where Ω is the unbounded component of $\mathbb{C}^p \setminus f(X \cap \partial \Omega)$.

As it is mentioned above, n-pseudoconvex domains are just the usual pseudoconvex domains which are domains of holomorphy with smooth boundary. In addition, strictly q-pseudoconvex domains are defined at the boundary by smooth strictly q-subharmonic functions.

Definition 1.3. A function $u \in q\text{-Sh}(\Omega)$ is said to be strictly q-subharmonic if $u \in L^1_{loc}(\Omega)$ and if for every point $x_0 \in \Omega$ there exist a neighborhood ω of x_0 and $c > 0$ such that $u - c|z|^2$ is q-subharmonic in ω.

Remark 1.1. By induction on $1 \leq k \leq q$, we can show that a function u is strictly q-subharmonic on Ω means that for every point $x_0 \in \Omega$, there exist $c > 0$ and a neighborhood ω of x_0 such that

$$(dd^c u)^k \wedge \beta^{n-k} \geq c\beta^n \quad \omega \quad \forall \ k = 1, \ldots, q,$$

where β is the Kahler form on \mathbb{C}^n.

Definition 1.4. Let $\Omega \subset \mathbb{C}^n$ be an open subset and a function $\psi : \Omega \rightarrow [-\infty, +\infty]$. Then ψ is said to be an exhaustion, if all sub-level sets $\Omega_c = \{z \in \Omega / \psi(z) < c\}, c \in \mathbb{R}$, are relatively compact. Furthermore, we say that

1. Ω is weakly q-pseudoconvex, if there exists a smooth q-subharmonic exhaustion function $\psi \in q\text{-Sh}(\Omega) \cap \mathcal{C}^\infty(\overline{\Omega})$;
2. Ω is strongly q-pseudoconvex, if there exists a smooth strictly q-subharmonic exhaustion function $\psi \in q\text{-Sh}(\Omega) \cap \mathcal{C}^\infty(\overline{\Omega})$.

The main results of this paper are the followings:

Theorem 2.2. Let $2 \leq q \leq n$ be a nonnegative integer, Ω be an open subset in \mathbb{C}^n and E be a $(n-q+1)$-dimensional complex subspace. Then the following properties are equivalent:

1. Ω is strongly q-pseudoconvex;
2. Ω is weakly q-pseudoconvex;
3. Ω has a q-subharmonic exhaustion function;
(4) the function \((z, \xi_1, \ldots, \xi_{n-q+1}) \mapsto -\log \delta_\Omega(z, \xi_1, \ldots, \xi_{n-q+1})\) is \(q\)-subharmonic on \(\Omega \times E^{n-q+1}\);

(5) the function \(z \mapsto -\log d(z, \partial \Omega)\) is \(q\)-subharmonic on \(\Omega\).

Theorem 3.2. Let \(2 \leq q \leq n\) be a nonnegative integer. An open subset \(\Omega \subset \mathbb{C}^n\) with smooth boundary is \(q\)-pseudoconvex, if and only if, for every \((n-q+1)\)-dimensional complex subspace \(E \subset \mathbb{C}^n\), the Levi form \(L_{\partial \Omega, z}|_{E \cap \mathcal{T}_{\partial \Omega, z}}\) is semi-positive at every point of \(\partial \Omega\).

In case \(q = n\), Theorem 2.2 and Theorem 3.2 were proved in [1].

Theorem 4.1. Let \(\Omega = \Omega_1 \times \Omega_2 \subset \mathbb{C}^p \times \mathbb{C}^n\) be a \(q\)-pseudoconvex domain such that each slice

\[
\Omega_\zeta = \{z \in \mathbb{C}^n; (\zeta, z) \in \Omega\}, \quad \zeta \in \mathbb{C}^p,
\]

is a convex tube \(\omega_\zeta + i\mathbb{R}^n, \omega_\zeta \subset \mathbb{C}^p\). Then, for every \(q\)-subharmonic function \(v(\zeta, z)\) on \(\Omega\) that does not depend on \(z\), the function \(u(\zeta) = \inf_{z \in \Omega} v(\zeta, z)\) is \(q\)-subharmonic or locally \(-\infty\) on \(\Omega_2 = \text{pr}_{\mathbb{C}^n}(\Omega)\).

In case \(q = n\), Theorem 4.1 was proved in [3].

2. Geometric characterizations of \(q\)-pseudoconvex domains

In this section, we will discuss some characterizations of \(q\)-pseudoconvex domains in \(\mathbb{C}^n\).

Let \(E \subset \mathbb{C}^n\) be a \(q\)-dimensional subspace. We denote by \(B_E(r)\) the ball in \(E\) of center 0 and radius \(r\), when \(E = \mathbb{C}^q, B_{\mathbb{C}^q}(r)\) will be simply denoted \(B(r)\). For \(r_0 > 0\) and \(z_0 \in \Omega\), we denote by \(z_0 + B_E(r_0)\) the set of points of the form \(z_0 + t_1\xi_1 + \cdots + t_q\xi_q\), where \((t_1, \ldots, t_q) \in B_E(1)\) and \(\{\xi_1, \ldots, \xi_q\}\) is an orthonormal basis of \(E\). We also denote \(S_E(r)\) the sphere of center 0 and of radius \(r\) in \(E\). For any \(z \in \Omega\), we put

\[
(2.4) \quad \delta_\Omega(z, E) = \sup\{r > 0, z + B_E(r) \subset \Omega\}.
\]

The expression \((2.4)\) is the distance from \(z\) to \(\partial \Omega\) in the multi-complex direction supported by \(E\).

If \(\{\xi_1, \ldots, \xi_q\}\) is an orthonormal basis of \(E\), then we will sometimes denote the distance from \(z\) to \(\partial \Omega\) by \(\delta_\Omega(z, \xi_1, \ldots, \xi_q)\). So we have

\[
(2.5) \quad \delta_\Omega(z, \xi_1, \ldots, \xi_q) = \sup\{r > 0 / z + t_1\xi_1 + \cdots + t_q\xi_q \in \Omega, (t_1, \ldots, t_q) \in B(r)\}.
\]

We will need the following elementary proposition to characterize \(q\)-subharmonic functions.

Proposition 2.1. Let \(v : \Omega \to [-\infty, +\infty[\) be an upper semi continuous function and suppose that \(1 \leq q \leq n\). Then \(v\) is \(q\)-subharmonic, if and only if, for every \((n-q+1)\)-dimensional complex subspace \(E \subset \mathbb{C}^n\), for any closed ball \(B = z_0 + B_E(1) \subset \Omega\) and any polynomial \(P \in \mathbb{C}[t_1, \ldots, t_{n-q+1}]\) such that

\[
v(z_0 + t_1\eta_1 + \cdots + t_{n-q+1}\eta_{n-q+1}) \leq \Re P(t_1, \ldots, t_{n-q+1})
\]
whenever $|t_1|^2 + \cdots + |t_{n-q+1}|^2 = 1$
then $v(z_0) \leq \Re P(0)$, where $\{\eta_1, \ldots, \eta_{n-q+1}\}$ is any orthonormal basis of E.

Proof. It is clear that the condition is necessary. Indeed, the function

$$ (t_1, \ldots, t_{n-q+1}) \mapsto \Re P(t_1, \ldots, t_{n-q+1}) $$

is pluriharmonic and hence the function $(t_1, \ldots, t_{n-q+1}) \mapsto v(z_0 + t_1 \eta_1 + \cdots t_{n-q+1} \eta_{n-q+1}) - \Re P(t_1, \ldots, t_{n-q+1})$ is subharmonic in a neighborhood of $B_E(1)$, so it satisfies the maximum principal on $B_E(1)$. To prove the sufficiency, let $v = \lim v_\mu$ be a strictly decreasing sequence of continuous functions on ∂B such that $v = \lim v_\mu$ on ∂B.

Without loss of generalities, we may assume that v_μ is smooth on a small neighborhood of S_E and

$$ v_\mu(z_0 + t_1 \eta_1 + \cdots + t_{n-q+1} \eta_{n-q+1}) = \Re P_\mu(t_1, \ldots, t_{n-q+1}) $$

whenever $|t_1|^2 + \cdots + |t_{n-q+1}|^2 = 1$

where $P_\mu \in \mathbb{C}[t_1, \ldots, t_{n-q+1}]$. Then, we have

$$ v(z_0 + t_1 \eta_1 + \cdots + t_{n-q+1} \eta_{n-q+1}) \leq \Re P_\mu(t_1, \ldots, t_{n-q+1}) $$

whenever $|t_1|^2 + \cdots + |t_{n-q+1}|^2 = 1$.

and thanks to (2.6), we get

$$ v(z_0) \leq \Re P_\mu(0) $$

$$ \leq \frac{1}{\text{area}(S_E)} \int_{S_E} \Re P_\mu(\xi) d\sigma(\xi) $$

$$ = \frac{1}{\text{area}(S_E)} \int_{S_E} v_\mu(z_0 + t_1 \eta_1 + \cdots t_{n-q+1} \eta_{n-q+1}) d\sigma(t). $$

If we take the limit of (2.7) when $\mu \to +\infty$, then we find that v satisfies the mean value inequality. \square

In the following theorem, we give some characterizations of q-pseudoconvex domains.

Theorem 2.2. Let $2 \leq q \leq n$ be a nonnegative integer, Ω be an open subset in \mathbb{C}^n and E be a $(n-q+1)$-dimensional complex subspace. Then, the following properties are equivalent:

1. Ω is strongly q-pseudoconvex;
2. Ω is weakly q-pseudoconvex;
3. Ω has a q-subharmonic exhaustion function;
4. the function $(z, \xi_1, \ldots, \xi_{n-q+1}) \mapsto -\log d_\Omega(z, \xi_1, \ldots, \xi_{n-q+1})$ is q-subharmonic on $\Omega \times E^{n-q+1}$;
5. the function $z \mapsto -\log d(z, C\Omega)$ is q-subharmonic on Ω.

We say that Ω is a q-pseudoconvex domain, when one of these properties holds.
Proof. We have to prove the following sequence of implications:

(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (1)

\bullet It is clear by definitions, that implications (1) \Rightarrow (2) \Rightarrow (3) are obvious.

\bullet For the implication (3) \Rightarrow (4), we use Proposition 2.1. Consider in $\Omega \times E^{n-q+1}$ a ball of the form

$$B = (z_0, \xi^1, \ldots, \xi^{n-q+1}) + B_E(1)(\eta^1, \ldots, \eta^{n-q+1}, \alpha^1, \ldots, \alpha^{n-q+1})$$

where, for all $j = 1, \ldots, n-q+1$, $\xi^j = (\xi^j_1, \ldots, \xi^j_{n-q+1})$, $\eta^j = (\eta^j_1, \ldots, \eta^j_{n-q+1})$, $\alpha^j = (\alpha^j_1, \ldots, \alpha^j_{n-q+1})$ are vectors in E and $B_E(1)(\eta^1, \ldots, \eta^{n-q+1}, \alpha^1, \ldots, \alpha^{n-q+1})$ is defined by the set

$$\{(t_1\eta^1_1, \ldots, t_{n-q+1}\eta^{n-q+1}_1, t_1\alpha^1_1, \ldots, t_{n-q+1}\alpha^{n-q+1}_1), (t_1, \ldots, t_{n-q+1}) \in B(1)\}.$$

Consider also a polynomial $P \in \mathbb{C}[t_1, \ldots, t_{n-q+1}]$ such that

$$- \log \delta(z_0 + t_1\eta^1_1 + \cdots + t_{n-q+1}\eta^{n-q+1}_1), \xi^1 + t_1\alpha^1_1, \ldots, \xi^{n-q+1} + t_{n-q+1}\alpha^{n-q+1}) \leq \Re P(t_1, \ldots, t_{n-q+1})$$

for $|t_1|^2 + \cdots + |t_{n-q+1}|^2 = 1$.

We have to show that the inequality (2.8) holds for $|t_1|^2 + \cdots + |t_{n-q+1}|^2 < 1$. Consider the holomorphic function $h : E \times E \to \mathbb{C}^n$ defined by

$$h(t, w) = z_0 + \sum_{j=1}^{n-q+1} t_j \eta^j + w_j \exp(-P(t_1, \ldots, t_{n-q+1}))(\xi^j + t_j \alpha^j).$$

By (2.9), we have for all $t \in \hat{B}$, $f(t, 0) = z_0 + \sum_{j=1}^{n-q+1} t_j \eta^j \in pr_1(\hat{B})$, where $pr_1 : E \times \mathbb{C}^n \to \mathbb{C}^n$ is the first projection. Hence we may deduce

$$h(\hat{B}_E \times \{0\}) = pr_1(\hat{B}) \subset \Omega.$$

Equation (2.8) implies that $|\exp(-P)| \leq \delta$ on ∂B, which leads to deduce that the following assertion holds

$$h(\partial(B_E \times B_E)) \subset \Omega.$$

We want to conclude that $h(\hat{B}_E \times B_E) \subset \Omega$. Let I be the set of radii $r \geq 0$ such that $h(\hat{B}_E \times rB_E) \subset \Omega$. Then, I is an open interval $]0, \text{sup}_K \psi [$. Since any q-dimensional complex subspace of $E \times E$ is isomorphic to $\{0\} \times E$ or $E \times \{0\}$, we may deduce that $\psi \circ h$ is a q-subharmonic function on a neighborhood of $\hat{B}_E \times rB_E$. The maximum principle applied with respect to $t = (t_1, \ldots, t_{n-q+1})$ implies that $\psi \circ h(t, w) \leq c$ on $\hat{B}_E \times rB_E$. Hence $h(\hat{B}_E \times rB_E) \subset \Omega_c \subset \Omega$ and $h(\hat{B}_E \times (R + \varepsilon)B_E) \subset \Omega$ for some $\varepsilon > 0$, a contradiction.

\bullet The implication (4) \Rightarrow (5): we have

$$- \log d(z, E) = \sup_{\xi_1, \ldots, \xi_{n-q+1} \in B_E, E \subset \mathbb{C}^n} (- \log \delta(z, \xi_1, \ldots, \xi_{n-q+1})).$$
Assertion (2.12) implies that $-\log d(z, \mathcal{C})$ is a continuous function on Ω and satisfies the mean value inequality:

- The implication (5) \implies (1). It is clear that

$$u(z) = |z|^2 + \max(\log d(z, \mathcal{C})^{-1}, 0)$$

is a strictly q-subharmonic continuous exhaustion function. Replace $|z|^2$ by $M|z|^2$, if necessary, where $M > 0$ is sufficiently big we get

(2.13)

$$u(z) = M|z|^2 + \max(\log d(z, \mathcal{C})^{-1}, 0).$$

Applying the Richberg’s theorem for the function defined by (2.13), we may conclude the existence of $\Psi \in C^\infty(\Omega)$ strictly q-subharmonic such that $u \leq \Psi \leq u + 1$. Then Ψ is the required exhaustion function. \hfill \Box

Example 2.1. Consider in \mathbb{C}^4

$$\Omega = \{(z_1, z_2, z_3, z_4) \in \mathbb{C}^4; 3|z_1 + z_2 + z_3 + z_4|^2 - 2|z_3 + z_4|^2 - 2|z_4|^2 < 0\}.$$

A direct calculation shows that the complex Hessian of the defining function of Ω, given by $\rho(z) = 3|z_1 + z_2 + z_3 + z_4|^2 - 2|z_3 + z_4|^2 - 2|z_4|^2$, is not positive. Hence ρ is not plurisubharmonic and so Ω is not pseudoconvex. However, we can easily check that the restriction of ρ, on each complex subspace $\{z_j = z_k = 0\}$, $1 \leq j \neq k \leq 4$, is subharmonic. So Ω has a 3-subharmonic exhaustion function, which leads to conclude by Theorem 2.2 that Ω is a pseudoconvex.

Proposition 2.3. (1) Let $\Omega \subseteq \mathbb{C}^n$ be a q-pseudoconvex domain ($\rho \geq 0$). Then $\Omega \times \Omega'$ is a q-pseudoconvex domain of $\mathbb{C}^n \times \mathbb{C}^n$. Furthermore, if $F : \mathbb{C}^n \to \mathbb{C}^n$ is a map defined by $F(z) = F(z', w) = f(w)$ where $f : \mathbb{C}^n \to \mathbb{C}^n$ is a unitary transformation, then the inverse image $F^{-1}(\Omega')$ is q-pseudoconvex.

(2) If $(\Omega_n)_{n \in I}$ is a family of q-pseudoconvex open subsets of \mathbb{C}^n, the interior of the intersection $\Omega = (\cap_{n \in I} \Omega_n)^o$ is q-pseudoconvex.

(3) If $(\Omega_j)_{j \in \mathbb{N}}$ is a non decreasing sequence of q-pseudoconvex open subsets of \mathbb{C}^n, then $\Omega = \cup_{j \in \mathbb{N}} \Omega_j$ is q-pseudoconvex.

Proof. (1) If we have for all $c \in \mathbb{R}$ and for all $c' \in \mathbb{R}$, $\Omega_c = \{z \in \mathbb{C}^n / \psi_1(z) < c\} \subseteq \Omega$ and $\Omega_{c'} = \{w \in \mathbb{C}^n / \psi_2(w) < c'\} \subseteq \Omega'$, where ψ_1 and ψ_2 are smooth q-subharmonic exhaustion functions, then we can write $(\Omega \times \Omega')_{c+c'} = \{z, w \in \mathbb{C}^n \times \mathbb{C}^n / \psi_1(z) + \psi_2(w) < c + c'\} \subseteq \Omega \times \Omega'$ and $(F^{-1}(\Omega'))_{c+c'} = \{z, w \in \mathbb{C}^n \times \mathbb{C}^n / \psi_1(z) + \psi_2(f(w)) < c + c'\} \subseteq F^{-1}(\Omega')$. The second assertion holds since $\psi_2 \circ f$ is q-subharmonic because f is a unitary transformation. So $(z, w) \mapsto \psi_1(z) + \psi_2(w)$ and $z \mapsto \psi_1(z) + \psi_2(f(z))$ are exhaustion functions of $\Omega \times \Omega'$ and $F^{-1}(\Omega')$ respectively.

(2) We have $-\log d(z, \mathcal{C}) = \sup_{s \in I} - \log d(z, \mathcal{C}_s)$, so the function $z \mapsto -\log d(z, \mathcal{C})$ is q-subharmonic.

(3) We have $-\log d(z, \mathcal{C}) = \lim_{j \to +\infty} - \log d(z, \mathcal{C}_j)$ and this limit is q-subharmonic. \hfill \Box
2.1. Further examples

Example 2.2. Let \((f_{i,j})_{1 \leq i \leq N, 1 \leq j \leq N'}\) be a finite family of analytic functions on \(\mathbb{C}^n\) such that for all \(i = 1, \ldots, N\), \(\dim \text{Vect}\{f_{i,j}, j = 1, \ldots, N'\} \geq n - q + 1\). Recall here that for all \(i = 1, \ldots, N\), the dimension of each subspace \(V_i = \text{Vect}\{f_{i,j}, j = 1, \ldots, N'\}\), depends on the functions \(f_{i,j}, j = 1, \ldots, N'\). For all \(1 \leq j \leq N\), let
\[
P_j = \{z \in \mathbb{C}^n; |f_{i,j}(z)|^2 + \cdots + |f_{i,j}(z)|^2 - |f_{i,j}(z)|^2 - \cdots - |f_{N,j}(z)|^2 < 1\}
\]
where \((f_{i,j})_{j=1,\ldots,n-q+1}\) is an independent subfamily of \((f_{i,j})_{1 \leq i \leq N, 1 \leq j \leq N'}\). Put \(P = \bigcup_{j=1}^{N'} P_j\), then \(P\) is a \(q\)-pseudoconvex domain. In case \(\dim \text{Vect}\{f_{i,j}, i = 1, \ldots, N\} = n - q + 1\) \(N = 1\) (which means that \(q = n\) then \(P\) is a polyhedron and it is pseudoconvex.

Example 2.3. Consider \(n\) and \(q\) such that \(n \geq 2q + 2\) and \(\omega \subset \mathbb{C}^{n-q}\) be a \(q\)-pseudoconvex domain. Let \(u : \omega \to [-\infty, +\infty[\) be an upper semi-continuous function. Consider the Hartogs domain
\[
\Omega = \{(z_1, \ldots, z_{n-q+1}, z') \in \mathbb{C}^{n-q+1} \times \omega; \frac{1}{2} \log(|z_1|^2 + \cdots + |z_{n-q+1}|^2) + u(z') < 0\}.
\]
Then \(\Omega\) is \(q\)-pseudoconvex, if and only if, \(u\) is \(q\)-subharmonic. Indeed, to see the necessary condition, using notation (2.5), we may observe that \(u(z') = -\log \delta_{\Omega_j}(0, z'), (\xi_1, \ldots, \xi_{n-q+1})\) where \(\{\xi_1, \ldots, \xi_{n-q+1}\}\) is the canonical basis of \(\mathbb{C}^{n-q+1}\). Conversely, assume that \(u\) is \(q\)-subharmonic and continuous. If \(\psi\) is a \(q\)-subharmonic exhaustion function of \(\omega\), then, since \(u\) is continuous and since \(x \mapsto \frac{1}{|x|}\) is convex and increasing on \([-\infty, 0[\), then
\[
\psi(z') + \left|\frac{1}{2} \log(|z_1|^2 + \cdots + |z_{n-q+1}|^2) + u(z')\right|^{-1}
\]
is a \(q\)-subharmonic exhaustion function of \(\Omega\). If \(u\) is not assumed to be continuous, we may replace \(u\) by \(u * \chi_{\varepsilon}\) and write \(\Omega = \Omega_{\varepsilon}\) where
\[
\Omega_{\varepsilon} = \{(z_1, \ldots, z_{n-q+1}, z'), d(z', \mathbb{C} \omega) > \varepsilon, \frac{1}{2} \log(|z_1|^2 + \cdots + |z_{n-q+1}|^2) + u * \chi_{\varepsilon} < 0\}.
\]
We may conclude by application of property (3) of Proposition 2.3.

3. Levi form of the boundary of \(q\)-pseudoconvex domains

In this section we shall characterize the \(q\)-pseudoconvexity by the Levi form of the boundary \(\partial \Omega\). The holomorphic tangent space is by definition the largest complex subspace which is contained in the tangent space \(T_{\partial \Omega}\) to the boundary: \(hT_{\partial \Omega} = T_{\partial \Omega} \cap JT_{\partial \Omega}\), where \(J\) is the almost complex structure that is the...
operator of multiplication by \(i = \sqrt{-1} \). The holomorphic tangent space \(hT_{\partial \Omega, z} \) is the complex hyperplane of vectors \(\xi \in \mathbb{C}^n \) such that
\[
(3.14) \quad d' \rho(z) \xi = \sum_{1 \leq j \leq n} \frac{\partial \rho}{\partial z_j} \xi_j = 0.
\]
The Levi form on \(hT_{\partial \Omega} \) is defined at every point \(z \in \partial \Omega \) by
\[
(3.15) \quad L_{\partial \Omega, z}(\xi) = \frac{1}{|\nabla \rho(z)|} \sum_{1 \leq j, k \leq n} \frac{\partial^2 \rho}{\partial z_j \partial z_k} \xi_j \xi_k, \quad \xi \in hT_{\partial \Omega, z}.
\]

Let’s begin this section by showing that \(q \)-pseudoconvexity of an arbitrary domain in \(\mathbb{C}^n \) is a local property of the boundary. An other proof of this fact was given in [5].

Proposition 3.1. Let \(\Omega \subset \mathbb{C}^n \) be a domain such that every point \(z_0 \in \partial \Omega \) has a neighborhood \(U \) such that \(U \cap \Omega \) is \(q \)-pseudoconvex. Then \(\Omega \) is \(q \)-pseudoconvex.

Proof. Let \(z_0 \in \partial \Omega \) and let \(U \cap \Omega \) be a neighborhood of \(z_0 \). Since \(U \cap \Omega \) is \(q \)-pseudoconvex then it is defined in a neighborhood of \(\partial(\Omega \cap U) \) by a \(q \)-subharmonic function \(\rho \). Let \(V \) be a neighborhood of \(\partial \Omega \), then the function defined by \(w = \sup_{r>0, U \subset V} \rho_{U \cap B(0, r)} \) is \(q \)-subharmonic on \(V \). Let \(\chi \) be an increasing convex function such that
\[
(3.16) \quad \forall r \geq 0, \ \chi(r) > \sup_{(\Omega \setminus V) \cap B(0, r) \cap U} \rho_{U \cap B(0, r)}.
\]
Since the function \(z \mapsto \sum_{j=1}^n |z_j|^2 - (n-q+1)|z_n|^2 \) is \(q \)-subharmonic, then by (3.16) the function
\[
\psi(z) = \max \left(\chi \left(\sum_{j=1}^n |z|^2 - (n-q+1)|z_n|^2 \right), w(z) \right)
\]
coincides with \(\chi \left(\sum_{j=1}^n |z|^2 - (n-q+1)|z_n|^2 \right) \) in a neighborhood of \(\Omega \setminus V \). Hence \(\psi \) is an exhaustion \(q \)-subharmonic on \(\Omega \). \(\square \)

Theorem 3.2. Let \(2 \leq q \leq n \). An open subset \(\Omega \subset \mathbb{C}^n \) with smooth boundary is \(q \)-pseudoconvex if and only if, for every \((n-q+1) \)-dimensional complex subspace \(E \subset \mathbb{C}^n \), the Levi form \(L_{\partial \Omega, z}|E \cap hT_{\partial \Omega, z} \) is semipositive at every point of \(\partial \Omega \).

Proof. Consider a \((n-q+1) \)-dimensional complex subspace \(E \subset \mathbb{C}^n \). Without loss of generalities we may assume \(E = \{ \xi_1 = \cdots = \xi_q = 0 \} \). Let \(\delta(z) = d(z, \Omega) \), \(z \in \Omega \), then the function \(\rho = -\delta \) is smooth near \(\partial \Omega \). Suppose that \(\Omega \) is \(q \)-pseudoconvex, then the function \(-\log(-\rho) \) is \(q \)-subharmonic which means that for all \(z \in \Omega \) near \(\partial \Omega \) and for all \(\xi \in E \), we have
\[
(3.17) \quad \sum_{q+1 \leq j, k \leq n} \left(\frac{1}{|\rho|} \frac{\partial^2 \rho}{\partial z_j \partial \bar{z}_k} + \frac{1}{\rho^2} \frac{\partial \rho}{\partial z_j} \frac{\partial \rho}{\partial \bar{z}_k} \right) \xi_j \bar{\xi}_k \geq 0.
\]
As we have

\[\sum_{q+1 \leq j, k \leq n} \frac{1}{\rho^2} \frac{\partial \rho}{\partial z_j} \frac{\partial \rho}{\partial z_k} \xi_j \xi_k = \left| \sum_{q+1 \leq j \leq n} \frac{1}{\rho} \frac{\partial \rho}{\partial z_j} \xi_j \right|^2, \]

then inequality (3.17) gives that

\[\sum_{q+1 \leq j, k \leq n} \frac{\partial^2 \rho}{\partial z_j \partial z_k} \xi_j \xi_k \geq 0 \quad \text{whenever} \quad \sum_{q+1 \leq j \leq n} \frac{\partial \rho}{\partial z_j} \xi_j = 0 \]

and this is also true at the limit on \(\partial \Omega \), which means that \(\rho \) is \(q \)-subharmonic. Conversely, suppose that \(\Omega \) is not \(q \)-pseudoconvex, then by Theorem 2.2, the function \(-\log(\delta) \) is not \(q \)-subharmonic in any neighborhood of \(\partial \Omega \). Hence there exist a \((n-q+1)\)-dimensional subspace \(E \subset \mathbb{C}^n \) and an orthonormal basis \(\{\xi_1, \ldots, \xi_{n-q+1}\} \subset E \) such that the Laplacian of the function

\[(t_1, \ldots, t_{n-q+1}) \mapsto \log(\delta(z + t_1 \xi_1 + \cdots + t_{n-q+1} \xi_{n-q+1})) \]

is strictly positive at point \((t_1, \ldots, t_{n-q+1}) = (0, \ldots, 0)\) for some \(z \) in the neighborhood of \(\partial \Omega \). By Taylor’s formula, we have

\[(3.18) \quad \log(\delta(z + t_1 \xi_1 + \cdots + t_{n-q+1} \xi_{n-q+1})) = \log(\delta(z)) + \sum_{1 \leq j \leq n-q+1} \Re(a_j t_j + b_j t_j^2) + c_j |t_j|^2 + o(|t|^2), \]

where \(a_j, b_j \in \mathbb{C} \) and \(c_j = \left(\frac{\partial^2 \log(\delta(z + t_1 \xi_1 + \cdots + t_{n-q+1} \xi_{n-q+1}))}{\partial t_j^2} \right)_{|t_j=0} > 0 \). Let \(z_0 \in \partial \Omega \) such that \(\delta(z) = |z - z_0| \) and put

\[(3.19) \quad h(t_1, \ldots, t_{n-q+1}) = z + \sum_{1 \leq j \leq n-q+1} t_j \xi_j + \exp \left(\sum_{1 \leq j \leq n-q+1} a_j t_j + b_j t_j^2 \right) (z_0 - z). \]

We have \(h(0) = z_0 \), write \(\delta(z + t_1 \xi_1 + \cdots + t_{n-q+1} \xi_{n-q+1}) = \delta(z + t \xi) \) as

\[
\delta(z + t \xi) = \delta \left[z + t \xi + \exp \left(\sum_{1 \leq j \leq n-q+1} a_j t_j + b_j t_j^2 \right) (z_0 - z) \right.
\]
\[
- \exp \left(\sum_{1 \leq j \leq n-q+1} a_j t_j + b_j t_j^2 \right) (z_0 - z) \left. \right] = \left| h(t) - z_0 - \exp \left(\sum_{1 \leq j \leq n-q+1} a_j t_j + b_j t_j^2 \right) (z_0 - z) \right|.
\]
and use the triangle inequality, by (3.18) and (3.19) we get
\[
\delta(h(t)) \geq \delta(z + t\xi) - \delta(z) \geq \delta(z) \left| \exp\left(\sum_{1 \leq j \leq n-q+1} a_j t_j + b_j t_j^2 \right) - 1 \right|
\]
\[
\geq \delta(z) \exp \left(\sum_{1 \leq j \leq n-q+1} \Re(a_j t_j + b_j t_j^2) \right) \exp\left(\sum_{1 \leq j \leq n-q+1} (c_j |t_j|^2) \right)
\]
\[
- \delta(z) \exp \left(\sum_{1 \leq j \leq n-q+1} a_j t_j + b_j t_j^2 \right)
\]
\[
\geq \delta(z) \left| \exp \left(\sum_{1 \leq j \leq n-q+1} a_j t_j + b_j t_j^2 \right) \right| \left[\exp \left(\sum_{1 \leq j \leq n-q+1} \frac{c_j |t_j|^2}{2} \right) - 1 \right]
\]
\[
\geq \delta(z) \frac{|t|^2}{6}
\]
when $|t|$ is sufficiently small and $c = \min_{1 \leq j \leq n-q+1} c_j$. Since $h(\delta(0)) = \delta(z_0) = 0$, we get at $t = 0$ for all $1 \leq j \leq n-q+1$,
\[
\frac{\partial \delta(h(t))}{\partial t_j} = \sum_{1 \leq k \leq n-q+1} \frac{\partial \delta}{\partial z_k}(z_0) \frac{\partial h}{\partial t_j}(0) = 0
\]
and
\[
\frac{\partial^2 \delta(h(t))}{\partial t_j \partial t_l} = \sum_{1 \leq k,l \leq n-q+1} \frac{\partial^2 \delta}{\partial z_k \partial z_l}(z_0) \frac{\partial h}{\partial t_j}(0) \frac{\partial h}{\partial t_l}(0) > 0.
\]
Therefore $\nabla h(0) \in hT_{\partial\Omega,z}\cap E$ and $L_{\partial\Omega,z}(\nabla h(0)) < 0$. \qed

Definition 3.1. Consider $2 \leq q \leq n$. The boundary $\partial\Omega$ is said to be weakly (resp. strongly) q-pseudoconvex, if for every $z \in \partial\Omega$ and every $(n-q+1)$-dimensional complex subspace $E \subset \mathbb{C}^n$, $L_{\partial\Omega,z}$ is semi-positive (resp. positive definite) on $E \cap hT_{\partial\Omega,z}$.

Example 3.1. Consider in \mathbb{C}^3, $\Omega = \{ \rho < -1 \}$ where $\rho(z) = 3(|z_1|^2 + |z_2|^2) - 2|z_3|^2$. Then, it is clear that Ω is 2-pseudoconvex and $0 \not\in \Omega$. Further, by (3.14) and (3.15), at every point $z \in \partial\Omega$, the holomorphic tangent space to $\partial\Omega$ is given by the equation $3\overline{z}_1\xi_1 + 3\overline{z}_2\xi_2 - 2\overline{z}_3\xi_3 = 0$ and the Levi form on $hT_{\partial\Omega,z}$ is given by
\[
L_{\partial\Omega,z}(\xi) = \frac{3(|\xi_1|^2 + |\xi_2|^2) - 2|\xi_3|^2}{\sqrt{1 + 6|z_3|^2}}.
\]
An easy computation yields that for all $j = 1, 2, 3$ we have $L_{\partial\Omega,z,E_j \cap hT_{\partial\Omega,z}} \geq 0$ where $E_j = \{ \xi_j = 0 \}$. Indeed, we may chose $z \in \partial\Omega$ such that $z_3 \neq 0$. For all $\xi \in E_j \cap hT_{\partial\Omega,z}$, we have
\[
\frac{|\xi_3|^2}{|\xi_3|^2} = \left(\frac{2}{3} \right) + \frac{6|z_1|^2}{9|z_2|^2}.
\]
Hence, \(\frac{3|\xi|^2 - 2|\xi|^2}{\sqrt{1+|\xi|^2}} \geq 0 \) on \(E_1 \cap hT_{\partial \Omega} \). Similarly, we prove that for all \(\xi \in E_2 \cap hT_{\partial \Omega} \), we have \(L_{\partial \Omega} (\xi) \geq 0 \). Finally, it is obvious that \(L_{\partial \Omega} \) is positive definite on \(E_3 \cap hT_{\partial \Omega} \) but semi-positive on \(E_j \cap hT_{\partial \Omega} \), \(j = 1, 2 \) so \(\partial \Omega \) is weakly \(2 \)-pseudoconvex.

Example 3.2. For any \(C < 0 \), let consider \(\Omega_C = \{ z \in \mathbb{C}^n, K(\alpha, z) < C \} \), where \(K \) is the \((n-q) \)-subharmonic function given by (1.2). It is clear that \(z \mapsto K(\alpha, z) \) is smooth near the boundary \(\partial \Omega_C \). For all \(1 \leq j \leq n \), an easy computation yields,

\[
\frac{\partial K}{\partial z_j} = -(\alpha-q)\bar{z}_jK(\alpha-1, z)
\]

and

\[
\begin{align*}
-\frac{1}{H_q(\alpha)} \frac{\partial^2 K}{\partial z_j \partial z_j} &= (\alpha-q)|z|^{2(\alpha-q-2)} \left(|z|^2 + (\alpha-q-1)|z_j|^2 \right) \quad \text{if } j = k \\
-\frac{1}{H_q(\alpha)} \frac{\partial^2 K}{\partial z_j \partial \bar{z}_k} &= (\alpha-q)(\alpha-q-1)z_j\bar{z}_k|z|^{2(\alpha-q-2)} \quad \text{if } j \neq k.
\end{align*}
\]

Let \(E \subset \mathbb{C}^n \) be a \(q \)-dimensional subspace. Without loss of generalities, we may assume that \(E \) is given by the equations \(\xi_{q+1} = \cdots = \xi_n = 0 \). Hence, we find that, at every point \(z \in \partial \Omega_C \), the intersection of the holomorphic tangent space to \(\partial \Omega \) with \(E \), is given by the equation \(\sum_{1 \leq j \leq q} \bar{z}_j \xi_j = 0 \) and the Levi form on \(hT_{\partial \Omega} \cap E \) is given by

\[
L_{\partial \Omega,z|hn\partial \Omega,z\cap E}(\xi) = \frac{q-\alpha}{H_q(\alpha)|\nabla K(\alpha, z)|} \left(q|\xi|^2|z|^{2(\alpha-q-1)} + (\alpha-q-1)|z|^2|\xi|^{2(\alpha-q-2)} \left| \sum_{j=1}^q z_j \xi_j \right|^2 \right),
\]

where \(|\nabla K(\alpha, z)| = (q-\alpha)|z||K(\alpha-1, z)| \) is the modulus of the complex gradient of \(K \). By the Cauchy-Schwartz inequality we find that

\[
L_{\partial \Omega,z|hn\partial \Omega,z\cap E}(\xi) \geq \frac{q-\alpha}{H_q(\alpha)|\nabla K(\alpha, z)|} (q+(\alpha-q-1))|\xi|^2|z|^{2(\alpha-q-1)} \geq 0.
\]

The last inequality holds true on \(E \cap hT_{\partial \Omega} \) for every \(q \)-dimensional complex subspace \(E \subset \mathbb{C}^n \).

4. **Kiselman’s minimum principale for \(q \)-subharmonic functions**

Let \(v \) be a \(q \)-subharmonic function on \(\Omega \times \Omega' \subset \mathbb{C}^n \times \mathbb{C}^p \). The partial minimum function on \(\Omega \) defined by

\[
u(\zeta) = \inf_{z \in \Omega} v(\zeta, z)\]
need not be \(q \)-subharmonic. Indeed, consider the following counterexample of a 2-subharmonic function in \(\mathbb{C}^3 \times \mathbb{C} \) given by
\[
v(z_1, z_2, z_3, z_4) = |z_4 + z_3 + z_2 + z_1|^2 - |z_3 + z_2 + z_1|^2 = |z_4|^2 + 2\Re(z_4(z_3 + z_2 + z_1)).
\]
We have \(u(z_1, z_2, z_3) = -|z_1 + z_2 + z_3|^2 \) and it is clear that \(u \) is not \(q \)-subharmonic for \(q = 2, 3 \).

However, the minimum property holds true when \(v(\zeta, z) \) depends only on \(\Re(z) \).

Theorem 4.1. Let \(\Omega = \Omega_1 \times \Omega_2 \subset \mathbb{C}^p \times \mathbb{C}^n \) be a \(q \)-pseudoconvex domain such that each slice
\[
\Omega_\zeta = \{ z \in \mathbb{C}^n ; (\zeta, z) \in \Omega \}, \quad \zeta \in \mathbb{C}^p
\]
is a convex tube \(\omega_\zeta + i\mathbb{R}^n, \omega_\zeta \subset \mathbb{C}^p \). Then, for every \(q \)-subharmonic function \(v(\zeta, z) \) on \(\Omega \) that does not depend on \(\Im(z) \), the function \(u(\zeta) = \inf_{z \in \Omega} v(\zeta, z) \) is \(q \)-subharmonic or locally \(\equiv -\infty \) on \(\Omega_2 = \text{pr}_{\mathbb{C}^n}(\Omega) \).

Proof. The idea of the proof is inspired from [1]. Consider a \((n-q+1)\)-complex subspace of \(\mathbb{C}^p \times \mathbb{C}^n \) such that \(L = \{ \zeta_1 = \cdots = \zeta_{q+1} = \zeta_{q+2} = \cdots = \zeta_n = 0 \} \) and \(q = s + t \). The hypothesis implies that \(v(\zeta, z) |_{L \cap \Omega} \) is convex in \(x = \Re(z) \). We may, first, assume that \(v \) is smooth, \(q \)-subharmonic in \((\zeta, z) \) and \(v(\zeta, z) |_{L \cap \Omega} \) is strictly convex in \(x \) and
\[
\lim_{x \to a \in \Omega \cup \{ \infty \}} v(\zeta, x) = +\infty \text{ for every } \zeta \in \omega'.
\]
Then the function \(x \mapsto v_{L \cap \Omega}(\zeta, x) \) has a unique minimum point \(x = g(\zeta) \) solution of the equations \(\frac{\partial}{\partial z_k} = 0 \). As the matrix \(\left(\frac{\partial^2 v}{\partial z_k \partial z_l} \right) \) is positive definite, the implicit function theorem shows that \(g \) is smooth. Let \(B \) a ball contained in \(\Omega \) defined by the parametrization
\[
L \simeq \mathbb{C}^{n-q+1} \ni (w_1, \ldots, w_{n-q+1}) \mapsto \zeta_0 + w_1 a_1 + \cdots + w_{n-q+1} a_{n-q+1}
\]
where \(a_1, \ldots, a_{n-q+1} \in \mathbb{C}^n \) and \(w = (w_1, \ldots, w_{n-q+1}) \in B_{n-q+1} \). There exists a holomorphic function \(f \) on the unit ball \(B_{E}(1) \) whose real part solves the Dirichlet problem
\[
(4.21) \quad \Re f(t_1, \ldots, t_{n-q+1}) = g(\zeta_0 + t_1 a_1 + \cdots + t_{n-q+1} a_{n-q+1}).
\]
Since the function
\[
(w_1, \ldots, w_{n-q+1}) \mapsto v(\zeta_0 + w_1 a_1 + \cdots + w_{n-q+1} a_{n-q+1}, f(w_1, \ldots, w_{n-q+1}))
\]
is subharmonic, we get the mean value inequality
\[
v(\zeta_0, f(0)) \leq \frac{1}{\text{area}(S_E)} \int_{S_E} v(\zeta_0 + t_1 a_1 + \cdots + t_{n-q+1} a_{n-q+1}, f(t_1, \ldots, t_{n-q+1}))d\sigma(t)
\]
\[
= \frac{1}{\text{area}(S_E)} \int_{S_E} v(\zeta_0 + t_1 a_1 + \cdots + t_{n-q+1} a_{n-q+1}, g(t_1, \ldots, t_{n-q+1}))d\sigma(t).
\]
The last equality holds since we have, by (4.21), \(\Re f = g \) on \(\partial B_{n-q+1} \) and \(v(\zeta, z) = v(\zeta, \Re(z)) \) by hypothesis. We have

\[
\text{(4.22) } u(\zeta_0) \leq v(\zeta_0, f(0)) \quad \text{and} \quad u(\zeta) = v(\zeta, g(\zeta))
\]
	herefore, we see by (4.22) that \(u \) satisfies the mean value inequality, thus \(u_{|\mathcal{L}^+\Omega'} \) is subharmonic.

Let now extend the result to an arbitrary \(q \)-subharmonic function \(v \). We may suppose \(n - q + 1 \leq p \leq n \). Let \(\psi(\zeta, z) \) a positive continuous \(q \)-subharmonic function on \(\Omega \) which depends only on \(\Re(z) \) and is an exhaustion of \(\Omega \cap (\mathbb{C}^p \times \mathbb{R}^n) \), we may choose such a function as

\[
\psi(\zeta, z) = \max \left(\sum_{j=1}^{p} \zeta_j + \sum_{j=1}^{n} |z_j|^2 - \sum_{j=n-q+2}^{n} |\zeta_j|^2 - \sum_{j=n-q+2}^{n} |z_{n-j}|^2 - \log \delta_{\Omega}(\zeta, z, L) \right).
\]

There is an increasing sequence \(C_j \to +\infty \) such that each function obtained from (4.23) and defined by \(\psi_j = (C_j - \psi \ast \rho_j^{-1}) \) is an exhaustion of a \(q \)-pseudoconvex open set \(\Omega_j \Subset \Omega \) whose slices are convex tubes and such that \(d(\Omega_j, \mathcal{C}\Omega) > \frac{2}{j} \). Let

\[
\text{(4.24) } v_j(\zeta, z) = v \ast \rho_j^{-1}(\zeta, z) + \frac{1}{j} |\Re(z)|^2 + \psi_j(\zeta, z),
\]

then (4.24) gives a decreasing sequence of \(q \)-subharmonic functions on \(\Omega_j \) satisfying the previous conditions. As \(v = \lim v_j \), we see that \(u = \lim u_j \) is \(q \)-subharmonic.

As we see, it is clear that the image \(F(\Omega) \) of a \(q \)-pseudoconvex domain \(\Omega \) by a holomorphic map \(F \) need not be \(q \)-pseudoconvex. Indeed, Consider the domain \(\Omega \) defined as the following

\[
\Omega = \{ (z', z_5) = (z_1, \ldots, z_5) \in \mathbb{C}^5; \log |z_1| + v(z_2, z_3, z_4, z_5) < 0 \},
\]

where \(v \) is the function given by example (4.20). If \(\Omega' \subset \mathbb{C}^4 \) is the image of \(\Omega \) by the projection map \((z', z_5) \mapsto z' \), then we have

\[
\Omega' = \{ (z_1, z_2, z_3, z_4) \in \mathbb{C}^4; \log |z_1| + u(z_2, z_3, z_4) < 0 \},
\]

where the function \(u \) is given by \(u(z_2, z_3, z_4) = \inf_{z_5 \in \mathbb{C}} v(z_2, z_3, z_4, z_5) \). It is clear that \(\Omega' \) is not \(2 \)-pseudoconvex. However, we have the following result.

\[\text{Proposition 4.2.} \text{ Let } \Omega \subset \mathbb{C}^p \times \mathbb{C}^n \text{ be a } q \text{-pseudoconvex open set such that all slices } \Omega_\zeta, \zeta \in \mathbb{C}^p, \text{ are convex tubes in } \mathbb{C}^n. \text{ Then the projection } \Omega' \text{ of } \Omega \text{ on } \mathbb{C}^p \text{ is } q \text{-pseudoconvex.} \]

\[\text{Proof.} \text{ Let } v \text{ be a } q \text{-subharmonic function on } \Omega \text{ equal to the function } \psi \text{ defined in the proof of Theorem 2.2. Then } u \text{ is a } q \text{-subharmonic exhaustion function of } \Omega'. \]
References

[1] J. P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/demailly/books.html
[2] T.-C. Dinh, Polynomial hulls and positive currents, Arxiv:math/0206308V2[math.CV] 30 sep. 2002.
[3] C. O. Kiselman, The partial Legendre transformation for plurisubharmonic functions, Invent. Math. 49 (1978), no. 2, 137–148.
[4] J. J. Kohn, The range of the tangential Cauchy-Riemann operator, Duke Math. J. 53 (1986), no. 2, 525–545.
[5] N. V. Khue, L. M. Hai, and N. X. Hong, q-subharmonicity and q-convex domains in \mathbb{C}^n, Math. Slovaca 63 (2013), no. 6, 1247–1268.
[6] M. Riesz, Intégrale de Riemann-Liouville et potentiels, Acta Sci. Szeged 9 (1936), 1–42.
[7] S. Saber, The $\overline{\partial}$-problem on q-pseudoconvex domains with applications, Math. Slovaca 63 (2013), no. 3, 521–530.
[8] A. Sadullaev and B. Abdullaev, Potential Theory in the Class of m-Subharmonic Functions, Proc. Steklov Inst. Math. 279 (2012), no. 1, 155–180.

HEDI KHEDHIRI
DÉPARTEMENT DE MATHÉMATIQUES
INSTITUT PRÉPARATOIRE AUX ÉTUDES D’INGÉNIEURS DE MONASTIR
RUE IBN ELJAZZAR
MONASTIR 5019, TUNISIE
E-mail address: khediri_h@yahoo.fr