REGULARITY OF KÄHLER-RICCI FLOW

*GANG TIAN AND **ZHENLEI ZHANG

Abstract. In this short note we announce a regularity theorem for Kähler-Ricci flow on a compact Fano manifold (Kähler manifold with positive first Chern class) and its application to the limiting behavior of Kähler-Ricci flow on Fano 3-manifolds. Moreover, we also present a partial C^0 estimate to the Kähler-Ricci flow under the regularity assumption, which extends previous works on Kähler-Einstein metrics and shrinking Kähler-Ricci solitons (cf. [17], [11], [20], [15]). The detailed proof will appear in [23].

1. Introduction

Let M be a Fano n-manifold and g_0 be any Kähler metric with Kähler class $2\pi c_1(M)$. Consider the normalized Kähler-Ricci flow:

\[
\frac{\partial g}{\partial t} = g - \text{Ric}(g), \quad g(0) = g_0.
\]

It was proved in [1] that (1.1) has a global solution $g(t)$ for $t \geq 0$. The main problem is to understand the limit of $g(t)$ as t tends to ∞.

By Perelman’s non-collapsing result [12], there is a uniform constant $\kappa = \kappa(g(0)) > 0$ satisfying:

\[
\text{vol}_{g(t)}(B_{g(t)}(x, r)) \geq \kappa r^{2n}, \quad \forall t \geq 0, r \leq 1.
\]

Since the volume stays the same along the Kähler-Ricci flow, this implies that for any sequence $t_i \to \infty$, by taking a subsequence if necessary, $(M, g(t_i))$ converge to a limiting length space (M_{∞}, d) in the Gromov-Hausdorff topology:

\[
(M, g(t_i)) \xrightarrow{d_{GH}} (M_{\infty}, d).
\]

The question is the regularity of M_{∞}. A desirable picture is given in the following folklore conjecture.

Conjecture 1.1 ([18], also see [9]). $(M, g(t))$ converges (at least along a subsequence) to a shrinking Kähler-Ricci soliton with mild singularities.

*The first author is supported in part by a National Science Foundation grant.

**The second author is supported by a grant of Beijing Municipal Commission of Education.

It is often referred as the Hamilton-Tian conjecture (see [18]).
Here, ”mild singularities” may be understood in two ways: (i) A singular set of codimension at least 4, and (ii) a singular set of a normal variety. By extending the partial C^0-estimate conjecture [19] to Kähler-Ricci flow, one can show that these two approaches are actually equivalent (see Section 3 or [23]).

As pointed out by the second named author, this conjecture implies the Yau-Tian-Donaldson conjecture, in the case of Fano manifolds. The conjecture states that if a Fano manifold M admits a Kähler-Einstein metrics if it is K-stable. Recently, solutions were provided for this conjecture in the case of Fano manifolds ([20], also see [6, 7, 8]).

2. Regularity of Kähler-Ricci flow

Let M be a Fano n-manifold and $g(t)$ a normalized Kähler-Ricci flow in the Kähler class $2\pi c_1(M)$. Let (M_∞, d) be a sequence limit of the Kähler-Ricci flow as phrased in (1.3). The main regularity result is the following theorem:

Theorem 2.1. Suppose that for some uniform $p > n$ and $\Lambda < \infty$,

$$
\int_M |\text{Ric}(g(t))|^p dv_{g(t)} \leq \Lambda.
$$

Then the limit M_∞ is smooth outside a closed subset S of (real) codimension ≥ 4 and d is induced by a smooth Kähler-Ricci soliton g_∞ on $M_\infty \setminus S$. Moreover, $g(t_i)$ converge to g_∞ in the C^∞-topology outside S

The proof of the theorem relies on Perelman’s Pseudolocality theorem [12] of Ricci flow and a regularity theory for manifolds with L^p bounded Ricci curvature (p bigger than half dimension) and uniformly local volume noncollapsing condition as in (1.2). This is a generalization of the regularity theory of Cheeger-Colding [2, 3, 4] and Cheeger-Colding-Tian [5]. The proof can be carried out following the lines given in these papers under the framework established by Petersen-Wei [13, 14] on the geometry of manifolds with integral bounded Ricci curvature. Note that due to an example of Yang [25], the uniformly volume noncollapsing condition (1.2) can not be replaced by a lower bound of total volume or local volume of metric balls of a definite size.

We shall show in [23] that there is a uniform L^1 bound on the Ricci curvature along the Kähler-Ricci flow on any Fano manifold. Therefore, by the above regularity result, we have

Corollary 2.2. Conjecture [1] i.e., the Hamilton-Tian conjecture, holds for dimension $n \leq 3$.

In the case of Del-Pezzo surfaces, Conjecture [1] follows from [24] and [10].

\[2\]The convergence with these properties is usually referred as the convergence in the Cheeger-Gromov topology, see [17] for instance.
3. **Partial C^0 estimate of Kähler-Ricci flow**

The partial C^0 estimate of Kähler-Einstein manifolds plays the key role in Tian’s program to resolve the Yau-Tian-Donaldson conjecture, see [17], [18], [19], [11] and [20] for examples. An extension of the partial C^0 estimate to shrinking Kähler-Ricci solitons was given in [15]. These works are based on the compactness of Cheeger-Colding-Tian [5] and its generalizations to solitons by [22]. We shall generalize these to the Kähler-Ricci flow on Fano manifolds in [23] under the regularity assumption of the limit M_∞.

Let $u(t)$ denote the Ricci potentials of the Kähler-Ricci flow $g(t)$ which satisfy

\[
(3.1) \quad \text{Ric}(g(t)) + \partial\bar{\partial}u(t) = g(t).
\]

The Hermitian metrics $\tilde{g}(t) = e^{-\frac{1}{2}u(t)}g(t)$ have $\omega(t)$, the Kähler forms of $g(t)$, as their Chern curvature forms. Let $H(t)$ be the induced metric on K^{-l}_M, the l-th power of the anti-canonical bundle ($l \geq 1$), and D be the Chern connection of $H(t)$ on K^{-l}_M.

Let ∇ and $\bar{\nabla}$ denote the $(1,0)$ and $(0,1)$ part of the Levi-Civita connection respectively. Then, at any time t, we have the Bochner type formula for $\sigma \in H^0(M, K^{-l}_M)$

\[
(3.2) \quad \Delta |\nabla \sigma|^2 = |\nabla \nabla \sigma|^2 + |\bar{\nabla} \nabla \sigma|^2 - ((n+2)l-1)|\nabla \sigma|^2 - \langle \partial\bar{\partial}u(\nabla \sigma, \cdot), \nabla \sigma \rangle
\]

and the Weitzenböck type formulas for $\xi \in C^\infty(M, T^{1,0}M \otimes K^{-l}_M)$

\[
(3.3) \quad \Delta_\partial \xi = \bar{\nabla}^* \nabla \xi + (l+1)\xi - \partial\bar{\partial}u(\xi, \cdot),
\]

\[
(3.4) \quad \Delta_\bar{\partial} \xi = \nabla^* \nabla \xi - (n-1)l\xi,
\]

where Δ_∂ is the Hodge Laplacian of ∂. By [20] there is a uniform bound of Sobolev constant under the Kähler-Ricci flow. Then apply the Moser iteration one can prove the gradient estimate to $\sigma \in H^0(M, K^{-l}_M)$ and L^2 estimate to solutions $\partial\bar{\partial} = \xi \in C^\infty(M, T^{1,0}M \otimes K^{-l}_M)$; see Lemmas 4.1 and 5.4 of [20]. The gradient estimate implies $\dim H^0(M, K^{-l}_M) \leq N_l$ uniformly at any time t. We remark that Perelman’s C^1 estimate to $u(t)$ [16] will be used in the iteration arguments to cancel the bad terms containing $\partial\bar{\partial}u(t)$.

Now, let $\{s_{t,i,l}\}_{i=1}^{N_{t,l}}$ be an orthonormal basis of $H^0(M, K^{-l}_M)$ with respect to the L^2 norm defined by $H(t)$ and Riemannian volume form, and put

\[
(3.5) \quad \rho_{t,i}(x) = \sum_{i=1}^{N_{t,l}} |s_{t,i,l}|_H^2(x), \quad \forall x \in M.
\]

By using arguments similar to those in [11] or [20], we can prove

Theorem 3.1 (Partial C^0 estimate). If $(M, g(t_i)) \xrightarrow{dGH} (M_\infty, g_\infty)$ as phrased in Theorem 2.1, then the partial C^0 estimate

\[
(3.6) \quad \inf_{t_i} \inf_{x \in M} \rho_{t_i,i}(x) > 0
\]
holds for a sequence of $l \to \infty$.

A direct corollary of this is to refine the regularity in Theorem 2.1.

Theorem 3.2. Suppose $(M, g(t)) \xrightarrow{dGH} (M_\infty, g_\infty)$ as phrased in Theorem 2.1. Then M_∞ is a normal projective variety and S is a subvariety of complex codimension at least 2.

Finally, let us indicate how to deduce the Yau-Tian-Donaldson conjecture from the Hamilton-Tian conjecture. Suppose M is K-stable as defined in [15]. Then, under the Kähler-Ricci flow $g(t)$, we get a shrinking Kähler-Ricci soliton. This, together with the uniqueness theorem on shrinking solitons, we can conclude that the Lie algebra of holomorphic vector fields on M_∞ is reductive. Then the K-stability implies the vanishing of Futaki invariant of M_∞, consequently, the limit (M_∞, g_∞) is Kähler-Einstein. If M_∞ is not biholomorphic to M, then the eigenspaces of the first eigenvalues of $-\Delta_g(t) + g^{ij}(t)\partial_i u(t)\partial_j$ will converge to a subspace of potential functions on M_∞ whose complex gradients are nontrivial holomorphic vector fields, cf. [27]. These vector fields induce the required degeneration of M to M_∞, with vanishing Futaki invariants. This gives a contradiction to the K-stability of M. So we have

Theorem 3.3. Suppose M is K-stable. If $(M, g(t)) \xrightarrow{dGH} (M_\infty, g_\infty)$ as phrased in Theorem 2.1, then M coincides with M_∞ and admits a Kähler-Einstein g_∞.

In view of the regularity of low dimensional Kähler-Ricci flow in §2 we have

Corollary 3.4. The Yau-Tian-Donaldson conjecture holds for dimension $n \leq 3$.

References

[1] H.D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math., 81 (1985), 359-372.

[2] J. Cheeger and T. H. Colding, Lower bounds on the Ricci curvature and the almost rigidity of warped products, Annal. Math., 144 (1996), 189-237.

[3] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below I, J. Diff. Geom., 46 (1997), 406-480.

[4] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below II, J. Diff. Geom.,

[5] J. Cheeger, T. H. Colding and G. Tian, On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal., 12 (2002), 873-914.

[6] X.X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities, arXiv:1211.4566

[7] X.X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds, II: limits with cone angle less than 2π, arXiv:1212.4714

[8] X.X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2π and completion of the main proof, arXiv:1302.0282

[9] X.X. Chen and G. Tian, Ricci flow on Kähler-Einstein manifolds, Duke Math. Jour., 131 (2006), 17-73.
[10] X.X. Chen and B. Wang, *Space of Ricci flows I*, Comm. Pure Appl. Math., 65 (2012), 1399-1457.
[11] S. Donaldson and S. Sun, *Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry*, arXiv:1206.2609v1
[12] G. Perelman, *The entropy formula for the Ricci flow and its geometric applications*, arXiv:math.DG/0211159.
[13] P. Petersen and G.F. Wei, *Relative volume comparison with integral curvature bounds*, Geom. Funct. Anal., 7 (1997), 1031-1045.
[14] P. Petersen and G.F. Wei, *Analysis and geometry on manifolds with integral Ricci curvature bounds. II*, Trans. AMS., 353 (2001), 457-478.
[15] D. H. Phong, J. Song and J. Sturm, *Degeneration of Kähler-Ricci solitons on Fano manifolds*, arXiv:1211.5849v1
[16] N. Sesum and G. Tian, *Bounding scalar curvature and diameter along the Kähler-Ricci flow (after Perelman)*, J. Inst. Math. Jussieu, 7 (2008), 575-587.
[17] G. Tian, *On Calabi’s conjecture for complex surfaces with positive first Chern class*, Invent. Math., 101 (1990), 101-172.
[18] G. Tian, *Kähler-Einstein metrics with positive scalar curvature*, Invent. Math., 130 (1997), 1-39.
[19] G. Tian, *Existence of Einstein metrics on Fano manifolds*, Metric and Differential Geometry, Prog. Math., 297 (2012), 119-159.
[20] G. Tian, *K-stability and Kähler-Einstein metrics*, arXiv:1211.4669.
[21] G. Tian, S.J. Zhang, Z.L. Zhang and X.H. Zhu, *Supremum of Perelman’s entropy and Kähler-Ricci flow on a Fano manifold*, arXiv:1107.4018.
[22] G. Tian and Z.L. Zhang, *Degeneration of Kähler-Ricci solitons*, Intern. Math. Res. Notices, 2012, 957-985.
[23] G. Tian and Z.L. Zhang, *Long-time limits of the Kähler-Ricci flow*, preprint.
[24] G. Tian and X.H. Zhu *Convergence of Kähler-Ricci flow*, J. Amer. Math. Soc. 20 (2007), 675-699.
[25] D. Yang, *Convergence of Riemannian manifolds with integral bounds on curvature I*, Ann. scient. Éc. Norm. Sup., 25 (1992), 77-105.
[26] Q. S. Zhang, *A uniform Sobolev inequality under Ricci flow*, Int. Math. Res. Not., 2007, 1-12.
[27] Z.L. Zhang, *Kähler-Ricci flow on Fano manifolds with vanished Futaki invariants*, Math. Res. Lett., 18 (2011), 969-982.

BICMR, PEKING UNIVERSITY, YIHEYUAN ROAD 5, BEIJING 100871, CHINA

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON NJ 08544, USA

E-mail address: gtian@math.pku.edu.cn

SCHOOL OF MATHEMATICS, CAPITAL NORMAL UNIVERSITY, XIANSANHUAN NORTH ROAD 105, BEIJING 100048, CHINA

E-mail address: zhleigo@yahoo.com.cn