Multiferroic Properties of CaMn$_3$O$_{12}$

Guoquan Zhang,1 Shuai Dong,2 Zhibo Yan,1 Yanyan Guo,1 Qinfang Zhang,3,4 Seiji Yunoki,3,4 Elbio Dagotto,5,6 and J.-M. Liu1,7

1Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
2Department of Physics, Southeast University, Nanjing 21189, China
3Computational Condensed Matter Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
4CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
5Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
6Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
7International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China

(Dated: November 2, 2011)

We report that CaMn$_3$O$_{12}$ is a new magnetic multiferroic material. The appearance of a ferroelectric polarization coinciding with the magnetic phase transition (~ 90 K) suggests the presence of ferroelectricity induced by magnetism, further confirmed by its strong magnetoelectric response. With respect to other known magnetic multiferroics, CaMn$_3$O$_{12}$ displays attractive multiferroic properties, such as a high ferroelectric critical temperature and large polarization. More importantly, these results open a new avenue to search for magnetic multiferroics in the catalogue of doped oxides.

PACS numbers: 75.80.+q, 75.47.Lx, 75.30.Kz

I. INTRODUCTION

Multiferroics, with coexisting ferroelectric (FE) and magnetic orders that are mutually coupled, have attracted considerable interest for their technological relevance and fundamental science challenges.$^{1-3}$ To avoid the natural exclusion between ferroelectricity and magnetism, there are several routes to achieve multiferroicity. Based on the microscopic origin of the FE polarization (P), multiferroics can be classified into two families.2 Type-I multiferroics, where ferroelectricity and magnetism have different origins, often present high critical temperatures (T_C’s) and polarizations. However, the coupling between magnetism and ferroelectricity is usually weak. In contrast, type-II multiferroics (i.e. magnetic multiferroics), where the ferroelectricity is caused by a particular magnetic order, are more interesting and important since both orders tend to be strongly coupled.

Since the discovery of TbMnO$_3$, several magnetic multiferroics have been found. However, in the spiral spin multiferroics, the FE polarizations are regulated by the Dzyaloshinskii-Moriya (DM) interaction, which originates from the spin-orbit coupling and, thus, is very weak. This problem can be partially overcome in exchange-striction multiferroics. For instance, the predicted FE P in the E-type AFM manganites is of the order of 10000 μC/m2, which has been recently confirmed in experiments.14,15 However, the FE T_C’s of the E-type AFM manganites remain low (typically ~ 30 K), due to the magnetic frustration, namely the competition between nearest-neighbor (NN) and next-nearest-neighbor (NNN) exchange interactions.14,15

Among all the magnetic multiferroics, the narrow-bandwidth perovskite manganites define a very fertile field. In recent years, the undoped $REMnO_3$ case ($RE =$ Rare Earth) has been intensively studied, both theoretically and experimentally. In addition, recent theoretical calculations predicted that doped manganites may provide additional magnetic multiferroic phases with even better physical properties.16,17 The expected spin structures of the new multiferroics are rather complex, involving zigzag-chains, and they are stabilized by mechanisms that do not involve superexchange frustration, such as electronic self-organization into stripes or correlation effects, which may be strong enough to obtain a high FE T_C. Also, the origin of the FE P in these systems involves several aspects: not only a DM contribution from noncollinear spin pairs can be present, but also additional components triggered by spin dimmers and charge-orbital ordering are available.16,17

In this manuscript, we will study the quadruple manganite CaMn$_7$O$_{12}$, which is an ideal candidate to host new magnetic multiferroic phases. From the structural point of view, CaMn$_7$O$_{12}$ belongs to the quadruple (AA’)$_3$B$_4$O$_{12}$ family, which becomes more explicit by writing the chemical formula as $(Ca^{2+}Mn^{3+})_3(Mn^{2.25+})_4O_{12-\delta}$. This perovskite-derived structure consists of a three-dimensional array of corner-sharing BO$_6$ octahedra, which are considerably tilted due to the small size of the A-site (Ca$^{2+}$Mn$^{3+}$), as shown in Fig. 1(a). Therefore, the B-site Mn-O-Mn bond is short and bended, giving rise to a very narrow bandwidth system with robust DM interaction, considered very important in multiferroic manganites. In addition, different from normal perovskite manganites, the Jahn-Teller (JT) distortion (Q_2 mode) in CaMn$_7$O$_{12}$ is weak.18 This weak Q_2 mode and a moderate Jahn-Teller Q_3 mode can stabilize some multiferroic phases (such as the predicted “SOS” phase, which are difficult to form in normal narrow bandwidth perovskite manganites with strong JT
distortion. Furthermore, in this quadruple structure, the A-site Ca$^{2+}$Mn$^{3+}$ are fully ordered, different from the random distribution of A-site cations in standard chemically doped perovskites. The reduction of quenched disorder provides an extra advantage to stabilize complex spin patterns at a relatively high temperature (T).

Quadruple perovskite manganites have not been much studied, particularly with regards to their multifunctionality. Imamura et al. and Mezzadri et al. reported room-χ-ferroelectricity (evidenced from the cation displacements) in BiMn$_2$O$_{12}$.[22,23] However, its polarization is difficult to measure due to its low resistivity at room-T. Since the ferroelectricity in BiMn$_2$O$_{12}$ is caused by the well-known 6s^2 lone pair of Bi$^{3+}$ instead of a magnetic order, then this material is not a magnetic multiferroic. As for CaMn$_2$O$_{12}$, Sánchez-Andújar et al. reported a magnetodielectric effect at low T.[24] However, it has been well recognized that a magnetodielectric effect may be unrelated to a true magnetoelectric coupling.[25]

II. METHODS

Polycrystalline samples of CaMn$_2$O$_{12}$ were prepared using the standard sol-gel method. Ca(NO$_3$)$_2$·4H$_2$O and Mn(NO$_3$)$_2$ (50%) were chosen as reagents and treated in the same way as reported in previous literature.[27] To avoid the impurities Mn$_2$O$_3$, Mn$_3$O$_4$ or maybe CaMnO$_3$, the obtained sol-gel precursors were ground and then heated in air at 800 $^\circ$C/48 h, 925 $^\circ$C/48 h, and 950 $^\circ$C/48 h, respectively, with intermediate grindings. The resultant powders were pressed into pellets and sintered in air at 970 $^\circ$C for 60 h. As a result of a careful preparation, the samples are found to be in a single phase, as shown in Fig. 1(b). The average grain size (diameter) is \sim1.0 μm according to the scanning electron microscope (SEM) micrograph (not shown).

The sample crystallinity was characterized by X-ray diffraction (XRD) with Cu $K\alpha$ radiation at room temperature. The dc magnetic susceptibility (χ) as a function of T was measured using the Quantum Design superconducting quantum interference device (SQUID), and specific-heat measurements using the “physical properties measurement system” (PPMS) were performed. To measure the dielectric constant ε and polarization P, gold pastes were used as electrodes while the varying T and magnetic field H environment was provided by PPMS. The ε versus T data were collected using the HP4294 impedance analyzer at various frequencies. The polarization P as a function of T was measured using the pyroelectric current method plus a careful exclusion of other possible contributions, such as those from the detrapped charges. The samples were first poled under selected electric fields from 120 K to 8 K, and then the pyroelectric currents, using the Keithley 6514A electrometer, were integrated by warning the sample at different ramping rates of $2 \sim 6$ K/min, respectively. At present, this pyroelectric current process is the most widely used method to measure ferroelectricity in magnetic multiferroics, since their polarizations are usually too weak (typically 3 – 4 orders of magnitude weaker than traditional ferroelectrics) to be verified by FE hysteresis loops.

III. RESULTS AND DISCUSSION

Let us first consider the magnetic properties. The T-dependence of the magnetic susceptibility (χ) is shown in Fig. 2(a). Upon cooling, first, a small kink in χ appears at $T_{N1} \sim 90$ K, indicating an AFM transition, in agreement with previous literature.[29,30] When the sample is further cooled down to $T_{N2} \sim 48$ K, χ rapidly grows. Below T_{N2}, the zero-field-cooling (ZFC) and field-cooling (FC) χ’s diverge from each other. Using the Curie-Weiss law to fit the data above ~ 90 K, a good paramagnetic (PM) behavior above T_{N1} is observed, as indicated by the
FIG. 2. (color online) (a) The magnetic susceptibility (χ, left axis, FC and ZFC) and specific heat (C_p, right axis) versus T. Inverse of χ (FC and ZFC) versus T. The Curie-Weiss law provides a good fit above T_{N1}. (c) The magnetic hysteresis loops at two typical T's. The loops show PM behaviors (linear $M - H$ relationship without a coercive field) above T_{N1} and a weak FM-like signal (with a coercive field ~ 450 Oe) at a low T. The inset in the fourth quadrant is a zoomed view near $H = 0$. The horizontal and vertical scales are $[-3000, 3000]$ Oe and $[-5, 5]$ emu/g, respectively.

The Curie-Weiss temperature Θ is ~ -50 K. Such a Curie-Weiss behavior and a negative Θ confirm the PM-AFM transition at T_{N1}. The phase transitions at T_{N1} and T_{N2} are further confirmed by the specific heat C_p, which exhibits sharp anomalies at both T's, as shown in Fig. 2(a). In addition, magnetic hysteresis loops were measured, as shown in Fig. 2(c), indicating a weak ferromagnetic (FM) signal at low T's.

The dielectric and FE properties were the main focus of this effort. First, the dielectric constant ε as a function of T, was measured at frequency $f = 1$ kHz, as shown in Fig. 3(a). A small but clear anomaly in $\varepsilon(T)$ was identified at 90 K indicating a FE transition, coinciding with T_{N1}, the AFM transition point. Even more interesting, as shown below a FE polarization emerges at this AFM transition, suggesting the presence of ferroelectricity induced by magnetism. In other words, CaMn$_2$O$_{12}$ is here shown to be a magnetic multiferroic material. The reliability of the measured $P(T)$ is evidenced by the pyroelectric current (I) as a function of T with different warming rates: 2 K/min, 4 K/min, and 6 K/min, as indicated in Fig. 3(a). The peaks of the three $I - T$ curves do not shift along the T-axis, and the integral of $I(t)$ for the three curves are almost identical (not shown), indicating that the de-trapped charges, if they exist, do not contribute appreciably to the measured current and, then, the intrinsic pyroelectric current is dominant. We also measured $P(T)$ under positive and negative poling electric fields $E = \pm 3.5$ kV/cm, respectively. The polarity of P is determined by the sign of E, as shown in Fig. 3(c), confirming the existence of ferroelectricity in CaMn$_2$O$_{12}$.

Under the poling field $E = 3.5$ kV/cm, the measured P reaches up to ~ 240 μC/m2 at 8 K. However, the real saturated FE P is much larger due to the high coercive field. For example, by using a larger poling field $E = 7$ kV/cm (the highest field we can apply in the current stage), the FE P increases to ~ 450 μC/m2 at 8 K. The E-dependence of P at 8 K is presented in Fig. 4(b). Since the $P - E$ curve does not saturate up to $E = 7$ kV/cm, a larger saturated P is to be expected, which could be measured with higher poling fields (or using thin films). In addition, a tiny anomaly in the pyroelectric current emerges at T_{N2} under $E = 7$ kV/cm, as shown in Fig. 4(a), which gives rise to a small increase of P. However, this anomaly at T_{N2} is not distinct under $E = 3.5$ kV/cm, as shown in Fig. 3(a).

The existence of magnetic multiferroicity has been further confirmed by the presence of a strong magnetoelectric (ME) response, as shown by the magnetic field, H, dependence of P. During the measurement, the sample is cooled from 120 K to 8 K under various H's and using a fixed $E = 3.5$ kV/cm. As shown in Fig. 4(c), the measured P is suppressed by the applied H, e.g. it decreases to ~ 160 μC/m2 at 8 K under $H = 9$ T, while T_c is almost unchanged which suggests a robust magnetic transition. The ME response, defined as $(P(0) - P(H))/P(0) \times 100\%$,
reaches up to 30% under $H = 9$ T (see inset of Fig. 4(c)). Considering the polycrystalline nature of the sample, this ME response is large (i.e. comparable with those of REMnO$_3$ (RE=Eu$_{1-x}$Y$_x$ and Lu) polycrystals) implying the presence of magnetism-induced ferroelectricity.

Compared with other magnetic multiferroics, the multiferroicity of CaMn$_7$O$_{12}$ is remarkable. First, the observed FE T_c is considerably higher than in typical magnetic multiferroics. For example, the T_c’s of orthorhombic REMnO$_3$ (RE=Tb, Dy, Eu$_{1-x}$Y$_x$, Ho, Y, Tm, and Lu) are all below 35 K. Second, the observed P (saturated value $>450 \mu$C/m2) is quite large as compared with other magnetic multiferroics, considering the polycrystalline nature of the sample. For REMnO$_3$, the FE P of a high-quality polycrystal is estimated to be only 1/6 of the single crystal one. Therefore, the expected saturated P of CaMn$_7$O$_{12}$ single crystal can be larger than 2700 μC/m2, which is already larger than in DyMnO$_3$ (\sim2000 μC/m2). Even comparing with the E-AFM manganites (e.g. \sim600 – 900 μC/m2 for high-quality polycrystals with a poling field $E = 8$ kV/cm), the value 450 μC/m2 (with $E = 7$ kV/cm) of CaMn$_7$O$_{12}$ is remarkable. The large P of CaMn$_7$O$_{12}$ could originate from the following two mechanisms. First, a robust DM interaction may exist in this material. As shown in Fig. 1(a), the B-site Mn-O-Mn bonds are much more bending than those in normal perovskites, which gives rise to a larger DM interaction. Second, the exchange stiffness may also exist in these materials.

Finally, it should be noted that the spin order of CaMn$_7$O$_{12}$ is very complex. Earlier neutron studies found that the fittings using collinear spin modes were not quite successful. Thus, it is crucial to carry out additional high-precision neutron investigations to figure out better the magnetic order of CaMn$_7$O$_{12}$, which is essential to further clarify its microscopic multiferroic mechanism.

Recently, after our first submission of this manuscript, we noticed an experimental investigation by Johnson et al. that also reported the existence of magnetic multiferroicity in this compound, and in addition they find a noncollinear spin order in this material via neutron studies. Their results agree with our data quite well, as exemplified by the following facts:

(1) The FE T_c’s are identical at T_{N2}.
(2) The FE P reported by Johnson et al. is quite large: up to 2870 μC/m2 for a single crystal, which is about 6 times our maximum value 450 μC/m2 for polycrystalline samples.
(3) The $P-T$ curves are also very similar.
(4) Their neutron studies suggest that the FE P is induced by a noncollinear spin order, compatible with our report of a strong magnetoelectric response.
(5) A small anomaly in P at T_{N2} was also noticed in their single crystal with a poling field $E = 4.4$ kV/cm. In Ref. 33, the spin order between T_{N1} and T_{N2} has been resolved: this spin order is quite complex with a noncollinear structure (involving both the A-site and B-site Mn cations) and it contradicts earlier neutron diffraction results. However, the magnetic order below T_{N2} remains unclear. Therefore, overall the magnetic multiferroic character of CaMn$_7$O$_{12}$ is nicely confirmed by Johnson et al., while the clarification of the underlying microscopic mechanism still needs further experimental and theoretical careful investigations.

IV. CONCLUSION

In summary, we have found that the quadruple perovskite CaMn$_7$O$_{12}$ is a magnetic multiferroic material. Its multiferroic properties are interesting (large-P, high-T_c, and a strong magnetoelectric response) when compared with other known magnetic multiferroic manganites. A new physical mechanism appears to be needed to explain our results. Considered more broadly, these results for CaMn$_7$O$_{12}$ open a new route to pursue higher T_c and larger-P magnetic multiferros via the use of doped oxides. This is interesting since most previous verified multiferroic materials are actually undoped, since doping was expected to bring extra carriers and destroy the insulating behavior required by ferroelectricity. Our results show that this is not necessarily correct for narrow-bandwidth oxides. Besides further investigating the properties of CaMn$_7$O$_{12}$, our effort suggests that it would be important to search for additional new magnetic multiferroics in the quadruple perovskite family.
ACKNOWLEDGMENTS

We thank Silvia Picozzi for bringing quadruple manganites to our attention and Riccardo Cabassi for helpful discussion. This work was supported by the 973 Projects of China (2009CB623303, 2011CB922101) and the National Science Foundation of China (50832002, 11004027). Q.F.Z and S.Y. were supported by CREST-JST. E.D. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

*sdong@seu.edu.cn
liujm@nju.edu.cn

1. S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
2. M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
3. K. F. Wang, J.-M. Liu, and Z. F. Ren, Adv. Phys. 58, 321 (2009).
4. N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
5. D. Khomskii, Physics 2, 20 (2009).
6. T. Kimura, T. Goto, H. Shintani, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).
7. I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
8. H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
9. I. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev Lett. 97, 227204 (2006).
10. S. Picozzi, K. Yamauchi, B. Sanyal, I. A. Sergienko, and E. Dagotto, Phys. Rev. Lett. 99, 227201 (2007).
11. S. Ishiwata, Y. Kaneko, Y. Tokunaga, Y. Taguchi, T. Arima, and Y. Tokura, Phys. Rev. B 81, 100411(R) (2010).
12. V. Y. Pomjakushin et al., M. Kenzelmann, A. Dönni, A. B. Harris, T. Nakajima, S. Mitsuda, M. Tachibana, L. Keller, J. Mesot, H.Kitazawa, and E. Takayama-Muromachi, New J. Phys. 11, 043019 (2009).
13. T. C. Han and H. H. Chao, Appl. Phys. Lett. 97, 232902 (2010).
14. S. Dong, R. Yu, S. Yunoki, J.-M. Liu, and E. Dagotto, Phys. Rev. B 78, 155121 (2008).
15. M. Mochizuki and N. Furukawa, Phys. Rev. B 80, 134416 (2009).
16. G. Giovannetti, S. Kumar, J. van den Brink, and S. Picozzi, Phys. Rev. Lett. 103, 037601 (2009).
17. S. Dong, R. Yu, J.-M. Liu, and E. Dagotto, Phys. Rev. Lett. 103, 107204 (2009).
18. A. N. Vasilev and O. S. Volkova, Low Temp. Phys. 33, 895 (2007).
19. R. Przenioslo, I. Sosnowska, E. Suard, A. Hewat, and A. N. Ficht, Physica B 344, 358 (2004).
20. A. Prodi, E. Gilioli, A. Gauzzi, F. Licci, M. Marezio, F. Bolzoni, Q. Huang, A. Santoro, and J. Lynn, Nat. Mater. 3, 48 (2004).
21. A. Prodi et al., E. Gilioli, R. Cabassi, F. Bolzoni, F. Licci, Q. Huang, J. Lynn, M. Affronte, A. Gauzzi, and M. Marezio, Phys. Rev. B 79, 085105 (2009).
22. N. Imamura, M. Karpipinen, T. Motohashi, D. Fu, M. Roh, and H. Yamauchi, J. Am. Chem. Soc. 130, 14948 (2008).
23. F. Mezzadri, G. Calestani, M. Calicchio, E. Gilioli, F. Bolzoni, R. Cabassi, M. Marezio, and A. Migliori, Phys. Rev. B 79, 100106(R) (2009).
24. M. Sánchez-Andújar, S. Yáñez-Vilar, N. Biskup, S. Castro-García, J. Mira, J. Rivas, and M. A. Señarís-Rodríguez, J. Magn. Magn. Mater. 321, 1739 (2009).
25. G. Catalan, Appl. Phys. Lett. 88, 102902 (2006).
26. P. G. Radelli, G. Iannone, M. Marezio, H. Y. Hwang, S.-W. Cheong, J. D. Jorgensen, and D. N. Argyriou, Phys. Rev. B 56, 8265 (1997).
27. K. S. Shankar, S. Kar, G. N. Subbanna, and A. K. Raychaudhuri, Solid State Commun. 129, 479 (2004).
28. X. Li, H. Zhang, F. Chi, S. Li, B. Xu, and M. Zhao, Mater. Sci. Eng. B 18, 209 (1993).
29. R. Przenioslo, I. Sosnowska, D. Hohlwein, T. Hauß, and I. O. Troyanchuk, Solid State Commun. 111, 687 (1999).
30. R. Przenioslo, I. Sosnowska, E. Suard, and T. Hansen, Appl. Phys. A - Mater. 74, S1731 (2002).
31. I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina, A. V. Sobolev, A. V. Baranov, G. Demazeau, O. S. Volkova, V. M. Cherepanov, E. A. Goodilin, A. V. Knotko, and M. Isobe, Phys. Rev. B 76, 214407 (2007).
32. R. Przenioslo, I. Sosnowska, E. Suard, A. Hewat, and A. N. Fitch, J. Phys.: Condens. Matter 14, 5747 (2002); R. Przenioslo, I. Sosnowska, M. Zöllte, D. Hohlwein, and I. O. Troyanchuk, Physica B 241, 730 (1998); R. Przenioslo, I. Sosnowska, P. Strunz, D. Hohlwein, T. Hauß, and I. O. Troyanchuk, ibid. 276, 547 (2000).
33. R. D. Johnson, L. C. Chapon, D. K. Khalyavin, P. Manuel, P. G. Radelli, and C. Martin, arXiv:1110.4585.
34. Due to the voltage-divider effect between grain boundaries in polycrystalline samples, the “effective” poling fields to FE domains are smaller than the nominal ones. Thus, the efficiency of a poling field is higher in single crystals than in polycrystals.