Training Design on Distance Learning Approach for Secondary School Teachers in English

Julianne Grace B. Bugaoisan
Department of Education- Division of Laoag City, Philippines.

*Corresponding Author Email: juliannegrace.bugaoisan@deped.gov.ph

ABSTRACT

This study primarily aimed to propose a training design to intensify distance learning approach for all teachers in English based on the identified low level of instructional competence and readiness on the implementation of the said approach. This study used descriptive-correlational design. Data were gathered from all 71 English teachers in the Division of Laoag City during the SY 2020-2021. A survey questionnaire was administered with the use of google forms to determine the demographic profile, level of instructional competence, level of readiness on distance learning approach, level of proficiency in ICT and the problems encountered during the implementation of distance learning approach. Based on the study, the researcher found that most teachers in English belong to age ranging from 24-31, female, single, and only two finished doctoral degree. Furthermore, teachers in English have a Satisfactory level of instructional competence on the three types of distance learning namely online distance learning, modular distance learning and tv/radio-based instruction. In addition, Moderately Ready is the overall level of readiness of teachers on distance learning approach. There is a significant relationship between age and sex in the level of instructional competence along tv/radio-based instruction. Moreover, there is a strong significant relationship between the instructional competence of teachers and the level of readiness on the implementation of distance learning approach.

INTRODUCTION

In the wake of pandemic brought about by COVID-19, a lot of challenges bombarded different sectors and industries all over the world. These changes and challenges did not excuse the fraction of the academe. Academic institutions tediously studied how to adjust and adopt to the new learning environment. All countries laid strategies to cater learning continuity. Most governments around the world temporarily closed educational institutions in an endeavor to contain the spread of the COVID-19 pandemic (Union, 2020).

In the Philippine context, the mandate of President Duterte (2020) on not to allow face-to-face instruction unless the vaccine is already available, is the basis of the Department of Education in developing learning continuity plan. In the official statement of the Deped Secretary, Briones (2020) said, “The department is fully engaged in readying operations based on our Basic Education-Learning Continuity Plan (BE-LCP), from the Central Office down to the school level. We are updating our policies, realigning our finances, and collaborating with our partners so that our goals of providing quality education and protecting the safety and health of constituents will be achieved. Meanwhile, the groundwork for blended learning is well underway.
Radio, television, online, and modular learning—which are pre-existing methods and were already used for decades—are being prepared and updated for this year. At the same time, teachers are being trained on utilizing newer platforms and innovative tools to aid their professional development” (Department of Education, 2020).

Distance learning modalities are new and unfamiliar approaches for students, parents and teachers, so they need to be supported. Teachers need to undergo trainings aligned with the learning modalities they are engaged in. Even the use of familiar technology – mobile phones and SMS—requires training: not necessarily in the use of the technology, but in the pedagogy of teaching through these methods (UNICEF, 2002). The sudden shift of educational environment and teaching style cause an imperative adaptation of teacher. To be able to effectively go with the transition, teachers must have the openness and willingness to try new things. Teachers must adjust from their traditional ways to cope with the demands of this change.

As stipulated on DepEd Memorandum DM-CI-2020-00162, schools may organize professional development (PD) activities to enhance teachers’ understanding of and skills in the use of LMS. These PD activities may include Learning Action Cell (LAC), coaching, formal training which can be done with the aid of online platforms. Uploading documents, pre-recorded video lessons, audio lessons and self-learning modules, typing discussion posts, moderating virtual collaboration, navigating modules, and designing assessment in an online environment are some of the online learning tasks that some teachers may need orientation and coaching.

For a variety of reasons, faculty resist efforts go into distance learning. They resist individually or as a whole, often seeking the guidance of union representatives. While individual faculty members may have individual reasons to refuse participating in the latest wave of distance education, there are several reasons why they resist distance education. They have specifically expressed concern for the adequacy of institutional support, the change in interpersonal relations, and quality. They are accustomed to being the experts. Fear of appearing incompetent may cause them to elude involvement in any activity for which they have not had the proper training, including appearing on camera or conducting class via computer. They may feel they have not been provided with adequate training or experience to competently manage teaching distance learning courses. In summary, distance education technologies create a major change in the way instruction is delivered. They require new skills for both the instructor and the student (Bower, 2001).

Limited or lack of knowledge and skills of teachers on the implementation of distance learning approach have preceded to undesirable outcomes. The self-learning modules that were designed by the teachers have identified typographical and editing errors. It can easily also be included that these modules were not properly evaluated upon the level of the students. In the case of tv/radio-based instruction, teachers were forced to learn new skills on video recording and editing through peer coaching and video tutorial available on Youtube. This concern has also led others to finance video editors and video recorders to properly deliver their video lesson. These inadequacies are mere reflection of teachers’ incompetence in delivering this approach.

There have been many studies carried out in the competencies of teachers on distance learning approach, however, majority of its focus only on online distance learning approach. Implementation of modular distance learning and radio-based instruction are not given much emphasis. Moreover, there are no studies yet on the level of instructional competence and readiness on the three-distance learning approach. The researcher being a teacher, recognizes the significance of determining these to specifically target the needs of the teachers in this new normal in the academe. Hence, the need to conduct this research.

LITERATURE REVIEW

As stipulated on DepEd Order No. 12, s. 2020, given the epidemiological picture, the direction of overall government response, and the directive of the Secretary to find ways for learning to continue in a safe and healthy environment amid COVID-19, it is clear that distance learning will be a key modality of learning delivery in the incoming school year. DepEd adheres to the position of “Closure of schools or use of alternative learning modalities (e.g., online/distance learning)” in the Risk Severity Grading and Risk-based Public Health Standards provided by DOH in its Administrative Order No. 2020-0015, dated April 27, 2020, with the subject Guidelines on the Risk-Based Public Health Standards for COVID-19 Mitigation. The risk severity grading has been applied by Executive Order (EO) No. 11210, issued by the President on April 30, 2020, in the classification of cities, provinces, and regions in the country (Department of Education, 2020).

Distance learning refers to a learning delivery modality where learning takes place between the teacher and the learners who are geographically remote from each other during instruction. This modality has three types: Modular Distance Learning (MDL), Online Distance Learning (ODL), and TV/Radio-based Instruction (Department of Education 2020). In the official statement of Briones (2020), it states that in line with the fourth pillar of Sulong EduKalidad which is to increase the engagement of
stakeholders for support and collaboration, DepEd, through the issuance of DM No. 048, s. 2020, called for proposals for professional development programs and courses from both DepEd units and non-DepEd Learning Service Providers. This opens to non-DepEd learning service providers the opportunity to contribute to the education of our children. DepEd also issued DM No. 050, s. 2020 which provided professional development priorities for teachers and school leaders for the school year 2020-2023, which includes training programs in light of COVID-19 for the incoming school year.

A study showed that the number of times faculty had taught online was an important consideration in how motivated faculty are in the online modality; with more experience in the online modality, self-confidence levels increase. Less experienced faculty report that they struggle to communicate because of the absence of face-to-face interaction, are unfamiliar with effective online pedagogy, lack the opportunity to observe online teaching before engaging in it, lack the opportunity to experiment with the technologies of online teaching, and have inadequate time to learn about online teaching (Shea, 2007). Carrolet al. (2013) found that faculty who has more teaching experience online also has greater perceived ability to perform pedagogical competencies online.

Female faculty place higher importance on online competencies. With women having a greater preference for using technology in instruction than men do (Peluchette & Rust, 2005), it is not surprising that there is a higher rate of female involvement in online teaching and course development (Seaman, 2009). Our sample similarly reflected that the majority of those teaching online are female (72%). Results show that female faculty perceptions were significantly higher than male faculty perceptions about the importance of course design, course communication, and time management. The results of this study are similar to Briggs’s (2005) survey, which found differences between genders in their perceptions of the importance of online teaching roles and competencies, and Chase (2002), who found differences in gender on instructional design practice, particularly on course design. Males and females tend to differ in communication styles, such that males see themselves as more precise, while females see themselves as more animated (Montgomery and Norton, 1981).

The study of Ventayen (2019) dealt with the teachers’ competencies in the application of technological tools in teaching. The hypothesis which reads as “There is a significant relationship between the level of competencies of the teachers across the profile variables.” stands not accepted. Thus, the null hypothesis is accepted. With a low average mean on the seriousness of the problems encountered by the teachers in the utilization of technological tools in teaching and learning activities, it is concluded that respondents do not have any major problems encountered in utilization of technological tools. It is also concluded that there is no significant relationship between the level of competency of Foreign English teachers across their profile variables. Since the demographic profile of respondents is no way correlated to the level of competency of Foreign English Teachers the management should take into account the hurdles experienced by teachers and also should motive the schoolteachers to pay more focus in improving the teaching methodology by citing good examples. It is also suggested that they should focus on effective teaching planning and strategies in using technological tools. The schoolteachers are also suggested to create a platform whereby the student’s individual differences, individual thinking can be considered. It is also important for every teacher to update their current stock of knowledge by keeping in mind the recent development and advancement in the society particularly in the world of technology. It is also advised that teacher should come out with new creative ideas, new practices, and new grade system which one enable students to learn faster. In addition to focusing on teaching it is also advised that the teacher should be a good content developer of learning materials in a new fashion and make it accessible and resourceful to the students. It is the duty of a teacher to ensure ideal atmosphere and encourage slow learners with the help of other members. The teacher should regularly attend training and orientation program to equip with the latest knowledge.

Faculty who teaches online can range from novice to expert in their ability. The experience gained from years of teaching online impacts online course design and facilitation. Our findings show that faculty with little to no online teaching experience have lower perceptions of their ability in online teaching than those with more than five years’ experience. Most faculty have no formal education training, relying primarily on their experience as a student and face-to-face instructor. With the continuous change with online technologies, readiness to teach online may be in a state of flux (Varvel, 2007). It is not surprising that faculty new to online teaching have lower perceptions of their ability to teach online. The findings of this study are in agreement with Carril et al. (2013), who found that faculty with more teaching experience online have greater perceived levels of proficiency to perform pedagogical competencies. This indicates the need for faculty with little online teaching experience (i.e., less than five years) to experience high-quality online instruction, perhaps by participating in a course as a student. This will provide a sense of what more experienced faculty are doing in their online classes, which may in turn increase their perceptions of and confidence in their ability to teach online (Ventayen 2019).
In a literature and identified 64 potential barriers to the implementation of distance education. They surveyed several thousand persons involved in distance education, instructional technology, and training. Of those responding, 1,150 were teachers or trainers, 648 were managers, 167 were administrators in higher education, and the remaining responders were researchers and students. When the data were analyzed, the strongest barriers to distance education were identified. These are as follows: increased time commitment; lack of money to implement distance education programs; organizational resistance to change; lack of shared vision for distance education in the organization; lack of support staff to help course development; lack of strategic planning for distance education; slow pace of implementation; faculty compensation or incentives; difficulty keeping up with technological changes; and lack of technology-enhanced classrooms, labs, or infrastructure (Berge and Muienlburg, 2000).

Educators are facing unprecedented challenges, including the disruption of established instructional programs and routines, the rapid transition from in-person teaching to remote learning, the emotional toll of isolation due to social distancing efforts, and uncertainty about personal safety and health. While it is difficult to find bright spots in a pandemic, teachers now have an opportunity to reflect on how to foster teacher well-being practices that encourage teachers to build and strengthen caring relationships with one another and with their students and prioritize designing and sustaining classrooms where everyone feels emotionally and physically safe and supported (Porter 2020).

In addition, the problems encountered by teachers in offering distance learning education are the challenges on knowledge and skills required in delivering distance learning education classes, problems on establishing communication with students, challenges on having stable internet access intended for distance learning education, challenges on the use of phones, laptops, and tablets or any devices for distance learning education, and challenges on the use of any Learning Management (Lapada et al. 2020).

Moreover, the respondents also agreed that they encountered challenges in the use of social media, emails and other platforms of distance learning education, giving instruction and responding to queries through email and messages, encouraging participation and utilization of features in online classes, time management in the conduct of classes, monitoring of responses, availability of students and other online classes issues and the sudden shift from face to face to online classes. Lastly, respondents also agreed that they faced problems managing the stress caused by community quarantine at home and in between online classes demands. The same is true with beating the deadlines and requirements set by the school administrators, establishing a network of communication among stakeholders such as parents for support at home, checking and evaluating students output from the email of an online learning.

METHODOLOGY

Research Design

The study utilized the descriptive-correlational research. It described the demographic profile of the teacher-respondents, their level of instructional competence, level of readiness, and the problems encountered in the implementation of distance learning approach. It also explored relationships of the variables. The Research and Development (R&D) design was used to develop a training program for the intensification of instructional competence of teachers in English.

Locale of the Study

The location of the participating schools is in the Division of Laoag City composed of seven (7) public secondary schools namely: Ilocos Norte College of Arts and Trades, Ilocos Norte National High School, Ilocos Norte Regional School of Fisheries, Gabu National High School, Caoacan High School, Balatong Integrated School, and San Mateo Integrated School.

Population

A total enumeration of respondents was used in the study. The respondents comprised all the teachers in English both in the Junior High School and in the Senior High School in the seven public secondary schools of Laoag City. All the teachers were taken as respondents to have a whole picture of the situation arising in the division.

Date Gathering Instruments

This study used survey-questionnaire to determine the respondents’ demographic profile, level of instructional competence, level of readiness, level of proficiency in ICT and the problems encountered in the implementation on distance learning approach. The survey-questionnaire used was patterned after the research of Kihoza et al. (2016), Vetayen (2018) and Spaulding (2007) with some modifications to localize the study.

Part I of the questionnaire includes the demographic profile of all the teacher-respondents. It contains their age, sex, civil status, length of teaching experience, highest educational attainment, and number of seminars or trainings attended. Meanwhile, Part
Il contains thirty-item instructional competency questionnaire. Moreover, Part III contains twenty-five-item questionnaire to determine the level of readiness of the respondents on distance learning approach. In addition, Part IV consists of fifteen-item questionnaire to determine the level of proficiency in ICT of the respondents. Lastly, Part V contains twenty-five-item problems encountered by teachers on the implementation of distance learning approach.

Data Gathering Procedure

After the finalization of the thesis proposal, the researcher conducted a preliminary visit to the Department of Education, Laoag City Division to obtain the number of teachers in English from the different public secondary schools in Laoag City. The researcher requested permission to conduct the study to the Schools Division Superintendent. Upon approval, the researcher distributed the questionnaire to the teacher-respondents online through google forms. Data gathered were tabulated, interpreted and analyzed using appropriate statistical tool.

Statistical Tools

The teacher-respondents’ demographic profile was treated using frequency count.

Meanwhile, mean scores assessed the level of instructional competence and level of proficiency in ICT using the following range intervals:

Range of Interval	Descriptive Interpretation
4.51-5.00	Outstanding
3.51-4.50	Very Satisfactory
2.51-3.50	Satisfactory
1.51-2.50	Unsatisfactory
1.00-1.50	Poor

The level of readiness on distance learning approach was interpreted using the following range intervals with their corresponding descriptions:

Range of Interval	Descriptive Interpretation
4.51-5.00	Completely Ready
3.51-4.50	Almost Ready
2.51-3.50	Moderately Ready
1.51-2.50	Slightly Ready
1.00-1.50	Not Yet Ready

In addition, mean scores assessed the problems encountered in the implementation using the following range intervals:

Range of Interval	Descriptive Interpretation
4.51-5.00	Strongly Agree
3.51-4.50	Agree
2.51-3.50	Slightly Agree
1.51-2.50	Slightly Disagree
1.00-1.50	Disagree

The Pearson (r) correlation was employed to test of relationship between the teacher-respondents’ demographic profile, level of instructional competence, and level of readiness on distance learning approach.

RESULTS AND DISCUSSION

Profile of Teachers as to Age, Sex, Civil Status, Length of Teaching Experience, Highest Educational Attainment and Number of Trainings Attended

Table 1 presents the distribution of respondents in terms of age, sex, civil status, length of teaching experience, highest educational attainment and number of trainings attended.

Age

There were 29 (40.85%) aged 24-31; 18 (25.35%) aged 32-39; 17 (23.94%) aged 40-47; 5 (7.04%) aged 48-55; and 2 (2.82%) aged 56 and above. The table shows that most of the teachers are in the early adulthood of 24-31 (25.35%), which means that teachers of this age are beginning to grow in their career.

Sex

There were 20 (28.17%) males and 51 (71.83%) females. It is apparent that most of the English teachers in the City Schools
Division of Laoag City are females, which could be because English subject, particularly in the field of language and literature involves more of reading, writing and speaking engagement where females can sustain more than males.

Civil Status
Among the 71 teachers, 38 (53.52%) were single and 33 (46.48%) were already married. It could be deduced that majority of the respondents are engrossed in their career and are more aggressive for professional development and growth.

Length of Teaching Experience
There were 47 (66.20%) who were 8 years and below in the service, 13 (18.31%) who were 9-16 years in teaching, 6 (8.45%) who were 17-24 years, and 5 (7.04%) were 25-32 years in service. The data imply that most of the teachers are still young and new in the field of teaching.

Highest Educational Attainment
Based on the table, 34 respondents (47.89%) finished bachelor’s degree, 24 (33.80%) are in the master’s degree Level, 10 (14.08%) finished master’s degree, 1 (1.41%) is in Doctor’s level and 2 (2.82%) finished Doctor’s Degree. It clearly indicates that most of the teachers possess only the basic educational requirement to teach in the schools.

Number of Trainings or Seminars Attended
There were 18 (25.35%) who have attended 1-2 trainings and seminars, 34 (47.89%) attended 4-6 trainings or seminar and 19 (26.76%) attended 7-9 trainings or seminar. This reveals that most of the respondents have adequate grounds of professional development.

Table 1. Demographic Profile of the Respondents N=71.

Profile	Frequency	Percentage (%)
Age		
24-31	29	40.85
32-39	18	25.35
40-47	17	23.94
48-55	5	7.04
56 and above	2	2.82
Sex		
Male	20	28.17
Female	51	71.83
Civil Status		
Single	38	53.52
Married	33	46.48
Length of Teaching Experience		
1-8 years	47	66.20
9-16 years	13	18.31
17-24 years	6	8.45
25-32 years	5	7.04
Highest Educational Attainment		
Bachelor’s Degree	34	47.89
Master’s Level	24	33.80
Master’s Degree	10	14.08
Doctor’s Level	1	1.41
Doctor’s Degree	2	2.82
Number of Trainings Attended		
1-2 Trainings/Seminar	18	25.35
4-6 Trainings/Seminar	34	47.89
7-9 Trainings/Seminar	19	26.76
Level of Instructional Competence on Distance Learning Approach along Online Distance Learning, Modular Distance Learning and TV/Radio-based Instruction

Table 2 presents the instructional competence of the respondents specifically on the implementation of distance learning approach. It is divided into three namely: online distance learning, modular distance learning and tv/radio-based instruction. The last table shows the overall mean of the three-distance learning approach.

Table 2A. Instructional Competence of Respondents on Online Distance Learning Approach

Online Distance Learning	Weighted Mean	Descriptive Interpretation
1. Usage of education-oriented social networking site (e.g Edmodo, Google Classroom)	3.51	VS
2. Operation of Microsoft office applications (e.g Word Processors, Spreadsheets, Publisher, Excel)	3.80	VS
3. Enhancement of slide presentations by adding sound, customizing animation and inserting images	3.54	VS
4. Inclusion of simulation or animation and applications in online class	3.30	S
5. Creation of teaching aids with the use of personal computer	3.65	VS
6. Utilization of various synchronous and asynchronous communication tool (e.g email, chat, white boards, forum, blogs)	3.65	VS
7. Generation of monitor tool for students’ performance	3.56	VS
8. Construction of learning website	2.75	S
9. Exploration of electronic means in administering quizzes and examinations	3.32	S
10. Manipulation of educational software to conduct synchronous drill and practice	3.14	S

Mean 3.42 S

Legend:
1.00-1.50 Poor (P)
1.51-2.50 Unsatisfactory (U)
2.51-3.50 Satisfactory (S)
3.51-4.50 Very Satisfactory (VS)
4.51-5.00 Outstanding (O)

Instructional Competence on Online Distance Learning

The first-ten indicators show the respondents’ instructional competence on online distance learning approach. Out of ten (10) indicators, the respondents assessed five of the indicators as Very Satisfactory and five indicators as Satisfactory with an overall weighted mean of 3.42 or Satisfactory.

It is evident from the results that ‘Operation of Microsoft office applications’ got the highest weighted mean of 3.80 or Very Satisfactory. This was followed by ‘Creation of teaching aids with the use of personal computer and utilization of various synchronous and asynchronous communication tool’ with a numerical value of 3.65 or Very Satisfactory. In contrast, the three indicators with lowest weighted mean were construction of learning website (2.75) or Satisfactory, ‘Manipulation of educational software to conduct synchronous drill and practice’ (3.14) or Satisfactory and ‘Inclusion of simulation or animation and applications in online class’ (3.30) or Satisfactory.

The results were further strengthened with the study of Aydin (2005) on the perceptions of ability and importance for online teaching competencies. Results disclose that faculty who has higher perceptions of the importance of these competencies and yet lower perceptions of their ability with regard to these competencies, recognize the need for improvement to perform better at online teaching.
Table 2B. Instructional Competence of Respondents on Modular Distance Learning Approach

Modular Distance Learning	Weighted Mean	Descriptive Interpretation
1. Writing of learning materials aligned with the MELC and DepEd standards	3.93	VS
2. Usage of word processor to enter and edit text and images	4.03	VS
3. Creation of assessments aligned with the MELC and the level of the students	3.90	VS
4. Design of remediation activities	3.72	VS
5. Operation of scanner and printer	4.18	VS
6. Making varied individual learning activities	3.83	VS
7. Photo editing and layout	3.37	S
8. Customization of activities and lesson discussion	3.72	VS
9. Organization of activities and lessons	3.96	VS
10. Construction of typographical and grammatical error-free modules.	3.85	VS

Mean 3.85 VS

Instructional Competence on Modular Distance Learning

The table reflects the level instructional competence on modular distance learning of the respondents. An examination of the table shows that out of ten (10) indicators, nine (9) were rated as Very Satisfactory and one (1) Satisfactory. The overall weighted mean of their instructional competence on modular distance learning was 3.85 or Very Satisfactory, which conveys that the teacher-respondents are competent on implementing modular distance learning.

It is important to note that the indicators which gained the highest numerical values was ‘Operation of scanner and printer’ (4.18) or Very Satisfactory and ‘Use of word processor to enter and edit text and images’ (4.03) or Very Satisfactory. However, the indicator that obtained the lowest numerical value of 3.37 or Satisfactory was ‘Photo editing and layout’.

Table 2C. Instructional Competence of Respondents on TV/Radio-based Instruction

TV/Radio-based Instruction	Weighted Mean	Descriptive Interpretation
1. Creation of video and audio lesson in a personal computer	3.28	S
2. Usage of varied teaching techniques on video and audio lessons	3.31	S
3. Operation of various video editing software (Filmora, Kinemaster, etc.)	2.85	S
4. Manipulation of materials used at the audio and video recording studio	3.00	S

Instructional Competence on TV/Radio-based Instruction

It can be gleaned from the table that the weighted means of the indicators ranged only from 2.85-3.49. All of the indicators were rated by the teachers as Satisfactory. Among the three distance learning approach, tv/radio-based instruction acquired the lowest overall mean with a numerical value of 3.12 or Satisfactory. It can be inferred that the teacher-respondents are not yet equipped with adequate skills and knowledge in implementing tv/radio-based instruction. The result also displays that tv/radio-based instruction was rarely used even in the delivery of face-to-face instruction.

Further examination of the responses, the two indicators with highest mean include ‘Storing of digital images using optical media and online repositories’ (3.49) or Satisfactory and ‘Usage of varied teaching techniques on video and audio lesson’ (3.31) or Satisfactory. In contrary, the indicators with lowest mean were as follow: ‘Operation of various video editing software’ with a weighted mean of 2.85 or Satisfactory; ‘Incorporation of animated graphics and moving text’ with a weighted mean of 2.93 or Satisfactory; and ‘Combination of video footages and soundtracks and adding simple enhancements’ with a weighted mean of 2.99 or Satisfactory. These findings were undoubtedly the reason of the superintendent to hire video editors and video recorders to assist teachers. However, it would be better if teachers can learn the basics of making video lesson for future use.
5. Incorporation of animated graphics and moving text 2.93 S
6. Customization of audio clips and videos taken online 3.01 S
7. Conversion of video file to audio file (vice-versa) 3.14 S
8. Combination of video footages and soundtracks and adding simple enhancements (e.g. transitions, titles, etc.) 2.99 S
9. Configuration of scanners, cameras and cell phones to acquire digital images 3.18 S
10. Storing of digital images using optical media (CD, DVD, flash disk) and online repositories 3.49 S

Mean 3.12 S

Legend:
4.51-5.00 Outstanding (O)
3.51-4.50 Very Satisfactory (VS)
2.51-3.50 Satisfactory (S)
1.51-2.50 Unsatisfactory (U)
1.00-1.50 Poor (P)

Level of Instructional Competence on Distance Learning Approach

Based on the table, the overall mean on the instructional competence of the respondents on distance learning approach has a numerical value of 3.46 or Satisfactory. It could be deduced that teachers are still grasping knowledge and skill on the sudden shift of this pedagogical style.

Table 2D. Summary Table on the Instructional Competence of Respondents

Distance learning Approach	Weighted Mean	Descriptive Interpretation
Online Distance Learning	3.42	S
Modular Distance Learning	3.85	VS
TV/Radio-based Instruction	3.12	S

Overall Mean 3.46 S

These findings validated Kolb’s Experiential Learning Theory (1984) which states that learning involves the acquisition of abstract concepts that can be applied flexibly in a range of situations. There are two parts of the Kolb’s Experiential Learning Theory. The first is that learning follows a four-stage cycle. Kolb believed that, ideally, learners progressed through the stages to complete a cycle, and, as a result, transformed their experiences into knowledge. The second part to Kolb’s Theory focused on learning styles, or the cognitive processes that occurred in order to acquire knowledge. Essentially, Kolb believed that individuals could demonstrate their knowledge, or the learning that occurred, when they were able to apply abstract concepts to new situations. Further, the theory exposes that the motivation for the development of new concepts is provided by new experiences. Knowledge results from the combination of grasping and transforming experience. The entire theory is based on this idea of converting experience into knowledge.

Level of Readiness on Distance Learning Approach along Online Distance Learning, Modular Distance Learning and TV/Radio-based Instruction

Table 3 displays the level of readiness of the respondents on the implementation of distance learning approach.

Readiness on Online Distance Learning

The first ten indicators pose the level of readiness of teachers in English on the implementation of online distance learning approach. The overall weighted mean was 3.40 with a verbal interpretation of Moderately Ready. It can be deduced that teacher-respondents have only fair level of readiness on online distance learning approach.
Table 3A. Level of Readiness of Respondents on Online Distance Learning Approach

Online Distance Learning	Weighted Mean	Descriptive Interpretation
1. I attend training programs to increase my awareness about ICT integration.	3.80	AR
2. I am provided with ICT coordinator who can give technical support.	3.55	AR
3. I have complete technological devices to conduct my online class.	3.44	MR
4. I am provided with updated hardware and software.	3.21	MR
5. I employ virtual classroom tool like GoToMeeting, Adobe Connect, WebEx or Skype in teaching.	3.11	MR
6. I operate school’s learning management system to supplement my classroom teaching.	3.08	MR
7. I utilize learning materials and technological devices provided by the school.	3.34	MR
8. I run synchronous and asynchronous web-based communication tools like instant messengers, voice, and teleconferencing.	3.68	AR
9. I use search engines, web directories, and bookmarks	3.61	AR
10. I have a stable internet connection.	3.18	MR

Mean 3.40 MR

Legend:
4.51-5.00 Completely Ready (CR)
3.51-4.50 Almost Ready (AR)
2.51-3.50 Moderately Ready (MR)
1.51-2.50 Slightly Ready (SR)
1.00-1.50 Not Yet Ready (NR)

Based on Table 3A, the indicators that have the highest weighted mean were ‘Attending programs to increase awareness on ICT integration’ (3.80) or Almost Ready and ‘Running synchronous and asynchronous web-based communication tool’ (3.68) or Almost Ready. On the other hand, the three indicators that have the lowest numerical values include: ‘Operating school’s learning management system’ (3.08) or Moderately Ready, ‘Employing virtual classroom tool in teaching’ (3.11) or Moderately Ready, and ‘Connecting to stable internet’ (3.18) or Moderately Ready. These findings summarize that the respondents are having difficulty in operating school’s learning management system, virtual classroom tool and internet connection because these are not being provided properly. Among the secondary schools in Laoag City division, there is no learning management system recorded. This validates the results for how teachers can gain skills in operating it when it is not even available. The same is true with using virtual classroom tool; teachers are not knowledgeable with it because they prefer using messenger room, google meet and zoom. The findings were further supported by the study of Smith & Greene (2013) in which teachers had low level of using e-learning technologies and they had difficulties in learning and using it.

Readiness on Modular Distance Learning

Table 3B displays the respondents’ level of readiness on modular distance learning approach. Out of ten (10) indicators, the respondents assessed seven of the indicators as Almost Ready and three indicators as Moderately Ready with an overall weighted mean of 3.66 “Almost Ready”. It is clear that teachers are prepared with sufficient knowledge, skill and equipment in the implementation of modular distance learning.

Table 3B Level of Readiness of Respondents on Modular Distance Learning Approach.

Modular Distance Learning	Weighted Mean	Descriptive Interpretation
1. I am knowledgeable of using Microsoft Office software.	4.21	AR
2. I can use available scanner, printer, and photocopier in school.	4.28	AR
3. I have a lot of reference materials in writing modules.	3.62	AR
4. I am well-versed in installing and troubleshooting printing problems.	3.31	MR
5. I am provided with language editors and illustrators.	3.70	AR
6. I have received various trainings in module writing.	3.15	MR
7. I attend available training programs to increase my knowledge on module writing. 3.31 MR
8. There are available and ready-to-print modules for all learning area, 3.70 AR

Table 3C. Level of Readiness of Respondents on TV/Radio-based Instruction

TV/Radio-based Instruction	Weighted Mean	Descriptive Interpretation
1. I am provided with complete technological devices in recording video lessons.	2.94	MR
2. I am provided with technical assistance, when I record for both radio-based and video	3.14	MR
lessons.		
3. I am equipped with knowledge in editing video and audio lessons.	2.76	MR
4. I am provided with updated software to edit video and audio lesson.	2.77	MR
5. I attend training programs to increase my knowledge on TV/Radio-based Instruction.	2.90	MR
6. I am knowledgeable of operating the technological devices used in recording video	2.86	MR
lessons.		
7. I can operate settings of all the technological devices to achieve high quality video	2.82	MR
and audio		

Mean 2.89 MR

Legend:

4.51-5.00 Completely Ready (CR)
3.51-4.50 Almost Ready (AR)
2.51-3.50 Moderately Ready (MR)
1.51-2.50 Slightly Ready (SR)
1.00-1.50 Not Yet Ready (NR)

Based on the table, the indicators with the highest weighted mean include ‘ Provision of technical assistance’ (3.14) or Moderately Ready and ‘ Provision of complete technological devices in recording video and audio lesson’ (2.94) or Moderately Ready. However, the indicator that got the lowest numerical value 2.76 Moderately Ready was ‘ Editing video and audio lessons’ along with ‘ Provision of updated software to edit video and audio lesson’ (2.77) and ‘ Operation of settings in all the technological devices’ (2.82). This finding relates with the low the instructional competence in video editing. These findings validate the provision of the technical assistants in the recording studio.
Level of Readiness on Distance Learning Approach

It is evident in Table 3D that the overall mean on the level of readiness on distance learning approach was 3.32 or Moderately Ready. This indicates that teachers of English are not yet fully prepared in the implementation of distance learning thus there is a low instructional competence.

Table 3D. Summary Table on the Level of Readiness of Respondents on Distance Learning

Distance learning Approach	Weighted Mean	Descriptive Interpretation
Online Distance Learning	3.40	MD
Modular Distance Learning	3.66	AR
TV/Radio-based Instruction	2.89	MD

| Overall Mean | 3.46 | MD |

These findings on the level of readiness can further be validated in the study of Lapada et al. (2020), which states that the respondents encountered challenges in the use of social media, emails and other platforms of distance learning education, giving instruction and responding to queries through email and messages, encouraging participation and utilization of features in online classes, time management in the conduct of classes, monitoring of responses, availability of students and other online classes issues and the sudden shift from face to face to online classes. Moreover, the problems encountered by teachers in offering distance learning education are the challenges on knowledge and skills required in delivering distance learning education classes, problems on establishing communication with students, challenges on having stable internet access intended for distance learning education, and challenges on the use of any devices for distance learning education. This result concerns the statement UNICEF (2002), in which distance learning modalities are new and often unfamiliar approaches for students, parents and teachers.

Level of Proficiency in ICT

Table 4 presents the level of proficiency in ICT of the respondents. The table comprises of 15 indicators to determine the areas where they mastered as well as the part they need to improve. It is observed that weighted mean ranged from 2.77-3.93 have an overall mean of 3.50 Satisfactory.

Further examination of the responses, the indicators with the highest numerical value include ‘Usage of storage devices for storing and sharing computer files’ (3.93) or Very Satisfactory and ‘Organizing and operation of computer peripherals’ (3.85) or Very Satisfactory. In contrary, the top three indicators that have the lowest numerical value were: ‘Manipulation of computer setting of various software and hardware’ (2.77); ‘Analysis of assessment data using spreadsheets and statistical applications’ (2.90); and ‘Configuration of peripherals and installation of drivers when required’ (2.94). All these indicators have a descriptive interpretation of Satisfactory.

This can be supported with the statement of Young (1997) which states that faculty need to learn how to select, manage, use, and/or produce videos for course lectures, welcome videos, and demonstrations. Designing a course that supplements or replaces classroom lectures with online content requires more technical competencies, such as instructional websites and interactive learning environments.

Table 4. Level of Proficiency of Respondents in ICT

Indicators	Weighted Mean	Descriptive Interpretation
1. Operation of computer peripherals (i.e., printer, scanner, modem, digital camera, speaker, etc.)	3.85	VS
2. Configuration of peripherals and installation of drivers when required	2.94	S
3. Manipulation of computer settings of various software and hardware	2.77	S
4. Understanding the basic functions of the operating system	3.58	VS
5. Organization and management of computer files, folders, and directories	3.80	VS
6. Usage of storage devices (i.e., hard disk, diskette, CD, flash memory, etc.) for storing and sharing computer files | 3.93 | VS
7. Protecting of computer from virus, spyware, adware, malware and hackers | 3.49 | S
8. Communicating to online and offline help facilities for troubleshooting, maintenance, and update of application | 3.49 | S
9. Connecting to the internet via dial-up or LAN (Local Area Network) | 3.56 | VS
10. Downloading and installing relevant applications including freeware, shareware, updates, patches, viewers, and support applications | 3.65 | S
11. Joining and using shared printers, shared folders and other devices within a network | 3.54 | VS
12. Searching and collecting textual and non-textual information from online and offline sources | 3.75 | VS
13. Storing and organizing collected information using directories, drives or databases | 3.66 | VS
14. Distributing, sharing, publishing and printing information via print or web | 3.63 | VS
15. Analysis of assessment data using spreadsheets and statistical applications | 2.90 | S

Legend:

4.51-5.00 Outstanding (O)
3.51-4.50 Very Satisfactory (VS)
2.51-3.50 Satisfactory (S)
1.51-2.50 Unsatisfactory (U)
1.00-1.50 Poor (P)

The results were supported with the findings that expansion of online content, Web 2.0 tools, and audio- and video-based learning materials has put pressure on faculty to curate digital online resources for online students (Espiritu, 2016). Coppola et al. (2002) states that faculty get frustrated with technical glitches and the amount of time required to type text for instruction or communication. Faculty must learn to access technical assistance, not only to seek help for their issues but also to ensure learners are provided assistance when required, especially students using adaptive or assistive technologies (Varvel, 2007).

Relationship between the Demographic Profile and Level of Instructional Competence

This section presents the relationship between demographic profile of the respondents and their instructional competence. It can be gleaned from the table, that the profile in terms of age and instruction competence in tv/radio-based instruction are significantly related as showed by the obtained coefficient correlation of -.236 with a p-value of .047 which is lower than the 0.01 level of significance. This result indicates that teachers have only a satisfactory level in tv/radio-based instruction because most of them are still young and new in the service as was observed in the data gathered on the profile of the respondents. The result can be supported with these finding of Carrol et al. (2013) that faculty who has more teaching experience online has greater perceived ability to perform pedagogical competencies.

Table 5. Relationship between the Demographic Profile and Level of Instructional Competence

Demographic Profile	Instructional Learning Competence on Distance Approach			
	Online Distance Learning	Modular Distance Learning	TV/Radio-based Instruction	
Age	Pearson Cor.	-.207	-.182	-.236*
	Sig (2-tailed)	.083	.129	.047
	N	71	71	71
Sex	Pearson Cor.	-.127	.025	-.235*
	Sig (2-tailed)	.293	.839	.049
In addition, the table conveys the profile in terms of sex and instruction competence in tv/radio-based instruction which are significantly related as exhibited by the obtained coefficient correlation of -.235 with a p-value of .049 which is lower than the 0.01 level of significance. This suggests that male teachers have a higher potential and skill in implementing tv/radio-based instruction than female because they are more knowledgeable in manipulating and operating devices used in this approach. Though most video lessons developed in the Division of Laoag City is dominated by female talents, the ability to prepare, operate, edit and setup the studio outweigh it. This finding validated this study where it states that men rated their ability to use instructional technology higher than women did (Spotts et al. 1997).

In addition, the table conveys the profile in terms of sex and instruction competence in tv/radio-based instruction which are significantly related as exhibited by the obtained coefficient correlation of -.235 with a p-value of .049 which is lower than the 0.01 level of significance. This suggests that male teachers have a higher potential and skill in implementing tv/radio-based instruction than female because they are more knowledgeable in manipulating and operating devices used in this approach. Though most video lessons developed in the Division of Laoag City is dominated by female talents, the ability to prepare, operate, edit and setup the studio outweigh it. This finding validated this study where it states that men rated their ability to use instructional technology higher than women did (Spotts et al. 1997).

Further examination of the results, civil status, length of teaching experience, highest educational attainment and numbers of trainings or seminars have no significant relationship with the instructional competence of teacher on distance learning approach. This result accepts the null hypothesis which states that there is no significant relationship between the demographic profile and level of instructional competence of respondents on distance learning approach.

Relationship between the Level of Instructional Competence and Level of Readiness

Table 6 presents the data on the relationship between the respondents’ level of instructional competence and their level of readiness on three distance learning approach. Based on the figures shown, the level of instructional competence has a strong significant relationship with the level of readiness of the respondents on the implementation of distance learning approach. This proves the findings gathered on the level of instructional competence and level of readiness among the respondents.

Level of Instructional Competence	Level of Readiness on Distance Learning Approach			
	Online Distance Learning	Modular Distance Learning	TV/Radio-based Instruction	
Online	Pearson Cor.	.701**	.577**	.595**
Distance Learning	Sig (2-tailed)	.000	.000	.000
N	71	71	71	
Modular	Pearson Cor.	.719**	.697**	.555**
Distance Learning	Sig (2-tailed)	.000	.000	.000
N	71	71	71	
TV/Radio-based Instruction	Pearson Cor.	.656**	.582**	.713**
Instruction	Sig (2-tailed)	.000	.000	.000
N	71	71	71	

** Correlation is significant at the 0.01 level (2-tailed)
* Correlation is significant at the 0.05 level (2-tailed)
It can be gleaned from the table that the level of instructional competence in terms of online distance learning is significantly related to the level of readiness on the implementation of the said approach along online distance learning (.701), modular distance learning (.597), and tv/radio-based instruction (.595) with p-value of .000, which is lower than the 0.01 level of significance.

In terms of the level of instructional competence along with modular distance learning, it is significantly related to the level of readiness on distance learning approach along online distance learning (.719), modular distance learning (.697) and tv/radio-based instruction (.565) with p-value of .000 which is lower than the 0.01 level of significance.

Moreover, the level of instructional competence in terms of tv/radio-based instruction is significantly related to the level of readiness on the implementation of the said approach along online distance learning (.656), modular distance learning (.582), and tv/radio-based instruction (.713) with p-value of .000, which is lower than the 0.01 level of significance.

This implies that the readiness on the implementation of distance learning approach depends on the teachers’ instructional competence. If the teachers have a low instructional competence their level of readiness follows. This agrees to the null hypothesis which states that there is no significant relationship between the level of instructional competence and level of readiness of respondents on distance learning approach. It can further be confirmed by the study of Downing and Dyment (2013). They examined teacher educators’ readiness and preparation as well as their perceptions in preparing preservice teachers in a fully online environment and found that teachers considered online teaching time consuming. Based on the research examined, it was revealed that faculty new to online teaching felt the lack of readiness to teach online and needed technical and pedagogical support.

Problems Encountered by the Respondents in the Implementation of Distance Learning Approach

Table 7 presents the results of the problems encountered by the respondents in the implementation of distance learning approach. Out of 25 indicators the respondents assessed 12 of the indicators as Agree, two indicators as Slightly Agree, and one Strongly agree with an overall weighted mean of 3.89 or agree.

Problem Variables	Weighted Mean	Descriptive Interpretation
1. Lack of gadgets or technological resources	4.27	A
2. Unstable internet connection	4.56	STA
3. Limited learning materials or references	4.08	A
4. Inadequate skills in operating devices	3.97	A
5. Insufficient skill and knowledge on the use of software applications	3.96	A
6. Absence of pedagogical models	3.82	A
7. Constrained time to prepare	4.21	A
8. Extra workloads	4.34	A
9. Not enough technical and pedagogical support	3.90	A
10. Difficulty in balancing different learning need	4.13	A
11. Insufficient training development or enhancement seminar	3.90	A
12. Lack of proper funding	3.94	A
13. Low level of proficiency in ICT	3.68	A
14. Risk in the privacy and account security	3.87	A
15. Limited students’ engagement	4.13	A
16. Lack of teachers’ interest on using distance learning approach	3.31	SLA
17. Limited coordination of the parents with the teacher	3.80	A
18. Lack of parental guidance of students	4.06	A
19. Resistance to pedagogical change	3.44	SLA
20. Lack of strategic planning	3.58	A
21. Slow pace of implementation	3.65	A
22. Faculty compensation or incentives	3.54	A
23. Difficulty on keeping up with technological changes	3.69	A
24. Complicated and long process of work 3.86 A
25. Invalidity of students’ responses and answer 3.93 A

Legend:

Score Range	Interpretation
4.51-5.00	Strongly Agree (STA)
3.51-4.50	Agree (A)
2.51-3.50	Slightly Agree (SLA)
1.51-2.50	Disagree (D)
1.00-1.50	Strongly Disagree (SDA)

Based on the figures shown, teachers are facing difficulty in the sudden shift of pedagogical technique. The indicator that has the highest numerical value was ‘Unstable internet connection’ which was rated 4.56 as Strongly Agree followed by the following indicators: ‘Extra workloads’ (4.34), ‘Constrained time to prepare’ (4.21), ‘Lack of gadget or technological resources’ (4.27), ‘Limited student’s engagement’ (4.13) and ‘Difficulty in balancing different learning need’ (4.13). All of these indicators have a descriptive interpretation of Agree. On the other hand, the indicators with the lowest weighted mean include ‘Lack of teachers’ interest on using distance learning approach’ (3.31) or Slightly Agree and ‘Resistance to pedagogical change’ (3.44) or Slightly Agree.

This is further supported with the study of Berge and Muilenburg (2000) which reviewed the literature and identified 64 potential barriers to the implementation of distance education. They surveyed several thousand persons involved in distance education, instructional technology, and training. Of those responding, 1,150 were teachers or trainers, 648 were managers, 167 were administrators in higher education, and the remaining responders were researchers and students. When the data were analyzed, the strongest barriers to distance education were identified. These are as follows: increased time commitment; lack of support staff to help course development; lack of strategic planning for distance education; slow pace of implementation; faculty compensation or incentives; difficulty keeping up with technological changes; and lack of technology-enhanced classrooms, laboratory or infrastructure.

Training Design on Distance Learning Approach for Teachers in English

Rationale

The sudden shift of educational landscape worldwide was one of the effects of Covid-19 pandemic. Being used to face-to-face instruction for such a long time and immediately altered to multiple modalities would truly cause too much burden for teachers. Thus, teachers have to plunge themselves and be upskilled on a new modality, the distance learning approach to ensure that quality of education is still the topmost priority of the department. Teachers must learn to embrace emerging innovative methods of teaching in the new normal scenario of education.

Though it has been concluded that tv/radio-based instruction, modular distance learning and online distance learning are being practiced long before the pandemic, it is not a guarantee that these are being employed properly. It is apparent from a study conducted by the proponent that teachers have a low level of instructional competence and level of readiness on the implementation of distance learning approach.

The teachers who have the potential to cope with the demands of the multiple modalities are always being forced to conduct online class, write modules, make video lessons or conduct tv/radio-based instruction. Few teachers were tapped because majority of them have inadequate skills and knowledge. More so, teachers do not have the complete technological devices to execute it.

The proper conduct and implementation of distance learning approach is hindered due to insufficient teachers’ competence. Hence, the urgent need for teachers to retool themselves and intensify their skill and knowledge on this learning approach.

Objective

The objective of this training program is to intensify the competencies of teachers on distance learning approach

Implementers of the Program

- Schools Division Superintendents
- Education Program Supervisors
- School Heads
- Curriculum Heads
Resource Speakers

- Accredited Pedagogy Trainer
- Online Educational Platform and Educational Software Experts
- DepEd Officials

Participants

The participants to the training/seminar workshop are the teachers in English and the school heads of the City Schools Division of Laoag.

Schedule and Venue of Activities

The activities will be held on May 3-5, 2021, as follows:

Activity	Date	Venue
Training/Seminar Workshop on ICT in Education	May 3, 2021	River Mount Hotel
Training/Seminar Workshop on Online Distance Learning	May 4, 2021	River Mount Hotel
Training/Seminar Workshop on TV/Radio-based Instruction	May 5, 2021	River Mount Hotel

Budgetary Requirement

Activities	Proposed Budget	Source of Fund
Speakers’ Professional Fee	P 100,000.00	• Local Funds
Snacks	P 21,300.00	• MOOE
Lunch	P 25,560.00	• Sponsors
Facilities	P 8,000.00	
Miscellaneous	P 2,000.00	
Total	P 156,860.00	

TRAINING MATRIX

TIME	ACTIVITY	Topic Emphasis
Day 1		
Morning		
7:30 – 8:30	Registration	
(60 Minutes)		
8:30 – 9:30	Opening Program	
(60 Minutes)		
9:30 – 10:00	Rationale	1. Legal Basis on the Implementation of Distance Learning Approach (DepEd Order No. 8 and 12 S. 2020)
(30 Minutes)		2. Objective of Implementing Distance Learning Approach amidst Covid-19 Pandemic
10:00 – 10:15	Health Break	
(60 Minutes)		
10:15 – 12:00	LECTURE SESSION Topic 1. Basics of ICT in Education	1. Uses of Laptop, Technological Devices and Computer Peripherals
(105 Minutes)		2. Getting to Know More About Microsoft Office 365
		3. Manipulation of the Different Features of Microsoft Office 365
Lunch		
1:00 – 3:00	LECTURE SESSION Topic 2. Computer Settings of	1. Commonly Used Software and Hardware
(120 minutes)		2. Photo Editing and Layout Software
Time	Activity	
-----------	--	
3:00 – 3:15	Health Break	
3:15 – 4:00	LECTURE SESSION Topic 3: Configuration of Computer Peripherals and Installation of Drivers	
4:00 – 5:00	Workshop #1	

Day 2

Morning

Time	Activity
8:30 – 9:30	Warm – Up Exercises (Zumba Dance)
9:30 – 10:00	LECTURE SESSION Topic 1. Basics on the Implementation of Online Distance Learning Approach
10:00 – 10:15	Health Break
10:15 – 12:00	LECTURE SESSION Topic 2. Getting to Know the Online Educational Software and Online Learning Platforms

LUNCH

AFTERNOON

Time	Activity
1:00 – 3:00	LECTURE SESSION Topic 3. Electronic Means in Administering Quizzes and Examination Topic 4. Designing Learning Management System
3:00 – 3:15	Health Break
3:15 – 4:00	Online Class Simulation Using the Different Online Educational Software and Online Learning Platforms
4:00 – 5:00	Presentation of Output

Day 3

Morning

Time	Activity
8:30 – 9:30	Warm – Up Exercises (Zumba Dance)
9:30 – 10:00	LECTURE SESSION Topic 1. Basics on the Implementation of TV/Radio-based Instruction

1. Commonly Used Computer Peripherals
2. Step-By-Step Process in Installing Drivers
3. Troubleshooting Techniques of Commonly Used Hardware
4. Step-By-Step Process in Configuring Settings of Common Software and Hardware

Day 2:

LUNCH

AFTERNOON

Time	Activity
1:00 – 3:00	LECTURE SESSION Topic 3. Electronic Means in Administering Quizzes and Examination Topic 4. Designing Learning Management System
3:00 – 3:15	Health Break
3:15 – 4:00	Online Class Simulation Using the Different Online Educational Software and Online Learning Platforms
4:00 – 5:00	Presentation of Output
CONCLUSION

Based on the findings of the study, the following conclusions were drawn. Teachers in English are in the early adulthood, mostly female; most of them have bachelor’s degree, and mostly young and new in the service. The respondents have a Satisfactory level of instructional competence on distance learning approach. In addition, Moderately Ready is their level of readiness on distance learning approach. There is a significant relationship between demographic profile and level of instructional competence on distance learning approach. The same is true with the level of instructional competence and level of readiness of the respondents on the aforementioned approach.

REFERENCES

Aduwa-Ogiegbaen, S. (2009). Journal of Computing in Teacher Education 17 for Technology in Education. 26. https://files.eric.ed.gov/fulltext/EJ856113.pdf

Bawden, D. Origins and concepts of digital literacy. Digit. Lit. Concepts Policies Pract. 2008, 30, 17–32.

Bower, B. L. (2001). Distance Education: Facing the Faculty Challenge. Online Journal of Distance Learning Administration, 4(2). https://www.westga.edu/~distance/ojdla/summer42/bower42.html

Cher Ping Lim, and Libing Wang. 2017. Blended Learning for Quality Higher Education: Selected Case Studies on Implementation from Asia-Pacific. Bangkok: Unesco Bangkok Office.

Curtis Jay Bonk, and Charles Ray Graham. 2006. The Handbook of Blended Learning: Global Perspectives, Local Designs. San Francisco: Pfeiffer.

Designing a Training Program. (2011). Github.io. https://saylordotorg.github.io/text_human-resource-management/s12-04-designing-a-training-program.html

Deped Memorandum No. 048, s. 2020
Deped Order No. 12 s. 2020
Deped Order No. 8 s. 2020

Dubey, A. D. (2016). ICT in Education. International Journal of Information and Communication Technology Education, 12(4), 37–50. https://doi.org/10.4018/jictte.2016100104

Esguerra, D. J. (2020, June 8). Briones: Philippines used to blend learning. INQUIRER.net. https://newsinfo.inquirer.net/1288063/briones-philippines-used-to-blended-learning

July 3, M. T. Q. P. on, & 2020. (2020, July 3). DepEd clarifies blended, distance learning modalities for SY 2020-2021. Pia.gov.ph.
Kaleta, R., Skibba, K., & Joosten, T. (2007). Discovering, designing and delivering hybrid courses. In: Picciano, A. and Dziuban, C. (Eds.), Blended learning: Research perspectives, Needham, MA: Sloan Center for Online Education (SCOLE), 111-143.

Kenney, J., & Newcombe, E. (2011). Adopting a blended learning approach: Challenges encountered and lessons learned in an action research study. Online Learning, 15(1). https://doi.org/10.24059/oli.v15i1.182

Kihoza, P. D., Zlotnikova, I., Bada, J. K., & Kalegele, K. (2016). An assessment of teachers’ abilities to support blended learning implementation in Tanzanian secondary schools. Contemporary Educational Technology, 7(1). https://doi.org/10.30935/cedtech/6163

Knerl, L. (2020, March 18). 10 best distance learning tools for teachers. HP.com; HP. https://store.hp.com/us/en/tech-takes/best-distance-learning-tools-for-teachers

Levels of Use, a Dimension of the Concerns-Based Adoption Model (CBAM). (n.d.). Sedl.org. https://sedl.org/cbam/levels_of_use.html

Official Statement | Department of Education. (n.d.). https://www.deped.gov.ph/2020/06/08/official-statement-4/

Peluchette, J. V., & Rust, K. A. (2005). Technology use in the classroom: Preferences of management faculty members. Journal of Education for Business, 80(4), 200–205.

Regional Educational Laboratory Program (REL): Pacific. (n.d). ies.ed.gov. https://ies.ed.gov/ncee/edlabs/regional/pacific/blogs/blog28_reflecting-on-teacher-wellbeing-during-COVID-19-pandemic.asp

Seaman, J. (2009). Online learning as a strategic asset. Volume II: The paradox of faculty voices—views and experiences with online learning. Results of a national faculty survey, part of the online education benchmarking study conducted by the APLU-Sloan National Commission on Online Learning. Association of Public and Land-Grant Universities.

Shea, P. (2007). Bridges and barriers to teaching online college courses: A study of experienced faculty in thirty-six colleges. Journal of Asynchronous Learning Networks, 11(2), 73–128.

Spotts, T., Bowman, M., & Mertz, C. (1997). Gender and use of instructional technologies: A study of university faculty. Higher Education, 34(4), 421–436.

Traxler, J. (2018). Distance Learning—Predictions and Possibilities. Education Sciences, 8(1), 35. https://doi.org/10.3390/eds8010035

UNESCO. (2020, March 5). Distance learning solutions. UNESCO. https://en.unesco.org/covid19/educationresponse/solutions

Varvel, V. E. (2007). Master online teacher competencies. Online Journal of Distance Learning Administration, 10(1), 1–41.

Ventayen, R. J. M. (2018, November 22). Educator’s competencies on the application of technological tools in teaching. Papers.ssrn.com. https://ssrn.com/abstract=3491717

Ventayen, R. J. M., Salcedo, R., Orlanda-Ventayen, C. C., Ventayen, L. M., & Ventayen, T. J. M. (2019, December 15). Senior high school teachers’ practices and readiness in blended learning environment: Basis for a blended learning preparedness framework. Papers.ssrn.com. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3504189

Warschauer, M., & Healey, D. (1998). Computers and language learning: an overview. Language Teaching, 31(2), 57–71. https://doi.org/10.1017/s0261444800012970

Young, J. R. (1997). Rethinking the role of the professor in an age of high-tech tools. Chronicle of Higher Education, 44(6), 26–28.

Publisher’s note: Instabright International Guild of Researchers and Educators, Inc. remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022.