GLOBAL CAUCHY PROBLEMS FOR THE KLEIN-GORDON, WAVE AND FRACTIONAL SCHRÖDINGER EQUATIONS WITH HARTREE NONLINEARITY ON MODULATION SPACES

DIVYANG G. BHIMANI

Abstract. We study Cauchy problem for the Klein-Gordon (HNLKG), wave (HNLW) and Schrödinger (HNLS) equations with cubic convolution (Hartree type) nonlinearity. Some global well-posedness and scattering are obtained for the (HNLKG) and (HNLS) with small Cauchy data in some modulation spaces. Global well-posedness for fractional Schrödinger (fNLSH) equation with Hartree type nonlinearity is obtained with Cauchy data in some modulation spaces. Local well-posedness for (HNLW), (fHNLS) and (HNLKG) with rough data in modulation spaces is shown. This improves known results in Sobolev spaces in some sense. As a consequence, we get local and global well-posedness and scattering in larger than usual L^p–Sobolev spaces and we could include wider class of Hartree type nonlinearity.

1. Introduction and statement of results

The Cauchy problem (local and global existence, regularity and scattering theory) for (HNLKG), (HNLW) and (fHNLS) has been extensively studied with Cauchy data in L^2–based Sobolev spaces (see e.g., [8, 17, 22, 24, 26, 25, 11, 12, 27, 29]). There has been a considerable mathematical interest concerning the low regularity well-posedness and scattering theory for the nonlinear dispersive equations. Generally the Cauchy data in a modulation spaces are rougher than any given one in a fractional Bessel potential space and this low regularity is desirable in many situations.

This section is divided into two subsections. Sections 1.1 and 1.2 will present well-posedness and scattering results for (HNLKG)/(HNLW) and (fHNLS) with Cauchy data in modulation spaces respectively.

1.1. Klein-Gordon-Hartree and wave-Hartree equations. We study the Cauchy problem for the Klein-Gordon and wave equations with Hartree type nonlinearity

\begin{equation}
\tag{1.1}
 u_{tt} + (I - \Delta)u = (V \ast |u|^2)u, \quad u(0) = u_0, \quad u_t(0) = u_1
\end{equation}

and

\begin{equation}
\tag{1.2}
 u_{tt} - \Delta u = (V \ast |u|^2), \quad u(0) = u_0, \quad u_t(0) = u_1,
\end{equation}

where $u(t, x)$ is a complex valued function of $(t, x) \in \mathbb{R} \times \mathbb{R}^d$, $i = \sqrt{-1}$, $u_t = \frac{\partial}{\partial t}$, $u_{tt} = \frac{\partial^2}{\partial t^2}$, I is the identity operator, Δ is the Laplace operator, u_0 and u_1 are complex valued functions.
of \(x \in \mathbb{R}^d \), \(*\) denotes the convolution in \(\mathbb{R}^d \), and \(V \) is of the following type:

\[
V(x) = \frac{\lambda}{|x|^\gamma}, \quad (\lambda \in \mathbb{R}, x \in \mathbb{R}^d, 0 < \gamma < d) \tag{1.3}
\]

The stationary equations

\[-\Delta u + (V * |u|^2)u = \sigma u\]

is obtained by looking for separated solutions of (1.1) and (1.2), where \(u = e^{i\lambda t}u(x)(\sigma = \lambda^2 - 1 \text{ and } \sigma = \lambda^2) \). In case \(V(x) = |x|^{-1} \), the stationary equations was proposed by Hartree as a model for the helium atom. Thus the homogeneous kernel of the form (1.3) is known as Hartree potential.

Menzala-Strauss [22] have studied the well-posedness and asymptotic behavior of equations (1.1) and (1.2). Mochizuki [27] and Hidano [17] have studied scattering theory in the energy space (see also [11, 29]). Recently Miao-Zhang [24, 26] and Miao-Zhang-Zheng [25] have studied global well-posedness and scattering theory for equations (1.1) and (1.2) below energy space. We remark that all previous authors have studied equations (1.1) and (1.2) on \(L^2 \)-based Sobolev spaces. Mainly because generally Klein-Gordon \(G(t) = e^{it(I - \Delta)^{1/2}} \) and wave \(W(t) = e^{it(-\Delta)^{1/2}} \) semigroups fails to be bounded on \(L^p(\mathbb{R}^d) \) if \(p \neq 2 \). Hence we cannot expect to solve equations (1.1) and (1.2) in \(L^p(\mathbb{R}^d) \) for \(p \neq 2 \). We leave the question arises if it is possible to remove \(L^2 \) constraint and consider equations (1.1) and (1.2) in function spaces which are not \(L^2 \) based.

This question has inspired to study equations (1.1) and (1.2) in other function spaces (e.g., modulation spaces \(M^{p,q}(\mathbb{R}^d) \), see Defintion 2.1 below) arising in harmonic analysis. Pioneering steps in this direction was taken by Baoxiang-Lifeng-Boling [1], Baoxiang-Hudzik [30] and Bényi-Gröchenig-Okoudjou-Rogers [2]. In fact, in [30] it is proved that Klein-Gordon equation with power type nonlinearity is globally well-posed with small Cauchy data in \(M^{2,1}(\mathbb{R}^d) \). In [21] it is proved that the Fourier multiplier operator with multiplier \(e^{it|\xi|^\alpha} \) is bounded on \(M^{p,q}(\mathbb{R}^d) \) \((1 \leq p, q \leq \infty)\). (The cases \(\alpha = 1 \) and \(\alpha = 2 \) occurs in the time evolution of the free wave and Schrödinger equations respectively.) Many authors [28, 10, 3, 13, 32, 18, 7] have studied Klein-Gordon and wave equations with power type nonliterary in modulation spaces. However, there is not much progress concerning well-posedness and scattering theory for the equations (1.1) and (1.2) in modulation spaces.

Taking these considerations into account, we are inspired to study equations (1.1) and (1.2) with Cauchy data in modulation spaces. To state results, we set up notations. Set \(2\sigma(p) = (d + 2)\left(\frac{1}{2} - \frac{1}{p}\right) \) \((2 < p < \infty, d \in \mathbb{N}), 1/p + 1/p' = 1 \). We call pair \((p, r)\) is **Klein-Gordon admissible** if there exists another exponent \(\beta \) such that

\[
\begin{align*}
\frac{1}{\beta} + \frac{2}{r} &= 1, \\
\frac{1}{3} &\leq \frac{1}{\beta} \leq \frac{d}{d+2} \wedge d \left(\frac{1}{2} - \frac{1}{p}\right), \\
\frac{1}{4} &\leq p < \frac{1}{2} - \frac{1}{3d}.
\end{align*}
\tag{1.4}
\]
We remark that if pair \((p, r)\) is Klein-Gordon admissible, then \(3 \leq r < \infty\) and \(rd\left(\frac{1}{2} - \frac{1}{p}\right) > 1\). We are now ready to state following theorem.

Theorem 1.1 (Global well-posedness). Let \(2 < p < 3, \frac{1}{p} + \frac{2}{d} - 1 = \frac{1}{2p}, \ s \in \mathbb{R},\) and pair \((p, r)\) is Klein-Gordon admissible. Assume that \((u_0, u_1) \in M_{s+2\sigma}(\mathbb{R}^d) \times M_{s+2\sigma}(\mathbb{R}^d)\) and there exists a small \(\delta > 0\) such that \(\|u_0\|_{M_{s+2\sigma}} + \|u_1\|_{M_{s+2\sigma}} \leq \delta\). Then (1.1) has a unique global solution

\[u \in C(\mathbb{R}, M_{s+1}(\mathbb{R}^d)) \cap C^1(\mathbb{R}, M_{s-1}(\mathbb{R}^d)) \cap L^r(\mathbb{R}, M_{s-1}(\mathbb{R}^d)). \]

One also has the bound

\[\|u\|_{L^r(\mathbb{R}, M_{s+1}(\mathbb{R}^d))} \lesssim \|u_0\|_{M_{s+2\sigma}} + \|u_1\|_{M_{s+2\sigma}}. \]

Noticing \(L^p(\mathbb{R}^d) \subset M^{p,1}(\mathbb{R}^d)\) for \(s > d\) and taking \(s = -2\sigma(p)\) (see Theorem 2.3 below), Theorem 1.1 reveals that we can control initial Cauchy data beyond \(L^p_s-\text{Sobolev spaces}\). To prove Theorem 1.1 we use some algebraic properties (see Proposition 2.4 below) and the integrability of time decay terms for Klein-Gordon semigroup:

\[\|G(t)f\|_{M^{p,q}} \lesssim (1 + |t|)^{-d\theta(1/2-1/p)}\|f\|_{M^{p,q}}, \]

where \(s \in \mathbb{R}, 2 \leq p \leq \infty, 1 < q < \infty, \theta \in [0, 1]\) (see Proposition 2.8 below). We remark that there is no singularity at \(t = 0\) and but preserve the same decay as in the below \(L^p - L^{p'}\) estimate of \(G(t)\). This is a special characteristic of modulation spaces. Recall standard \(L^p - L^{p'}\) estimate of \(G(t)\):

\[\|G(t)f\|_{L^p_{2\sigma}} \leq C\|f\|_{L^{p'}} \quad (2 \leq p < \infty) \]

and since \(|t|^{-d(1/2-1/p)}\) is not integrable, we do not know whether we can use the similar argument under \(L^p, \text{Besov, or Sobolev spaces}\).

Theorem 1.1 reveals that we have \(L^p_t(\mathbb{R}, M_{s+1})\) bound for the solution of (1.1) if the initial data is small enough. This implies we obtain scattering. Specifically, we have

Corollary 1.2 (Scattering). Let \(u_0 \in M^{p,1}_s(\mathbb{R}^d), u_1 \in M^{p,1}_{s-1}(\mathbb{R}^d),\) and let \(u\) is the global solution to (1.1) such that \(\|u\|_{L^1_t(\mathbb{R}, M^{p,1})} \leq M\) for some constant \(M > 0\). Then there exist \(v_1^\pm, v_2^\pm \in M^{p,1}_s(\mathbb{R}^d)\) such that \(v^\pm = G(t)v_1^\pm + G(t)v_2^\pm\) are solutions to the free Klein-Gordon equation \(u_{tt} + (I - \Delta)u = 0\) and

\[\|u(t) - v^\pm\|_{M^{p,1}} \to 0 \text{ as } t \to \pm \infty. \]

It remains open to get the global well-posedness for equations (1.1) and (1.2) and for the large data in modulation spaces. However, we can get local existence with persistency of solutions. Specifically, we have

Theorem 1.3 (Local wellposedness). Let \(V\) is given by (1.3) and \(X = M^{p,q}(\mathbb{R}^d)(1 \leq p \leq 2, 1 \leq q < \frac{2d}{d+\epsilon})\) or \(M^{p,1}_s(\mathbb{R}^d)\) \((1 < p < \infty, s \in \mathbb{R}, \frac{1}{p} + \frac{2}{d} - 1 = \frac{1}{p+\epsilon}, \epsilon > 0)\). Assume that \(u_0, u_1 \in X\). Then

1. there exists \(T^* = T^*(\|u_0\|_X, \|u_1\|_X)\) such that (1.1) has a unique solution \(u \in C([0, T^*), X)\). Moreover, if \(T^* < \infty,\) then \(\limsup_{t \to T^*} \|u(\cdot, t)\|_X = \infty.\)
(2) there exists $T^* = T^*(\|u_0\|_X, \|u_1\|_X)$ such that (1.2) has a unique solution $u \in C([0, T^*), X)$. Moreover, if $T^* < \infty$, then $\limsup_{t \to T^*} \|u(\cdot, t)\|_X = \infty$.

Up to now we cannot know equations (1.1) and (1.2) are locally well posed in $L^p(\mathbb{R}^d)$ but, by Theorem 1.3 in $M^{p,1}(\mathbb{R}^d) \subset L^p(\mathbb{R}^d)$ (see Lemma 2.2 (2) below). $M^{p,1}(\mathbb{R}^d)$ $(p \geq 2$, some $s_1 \in \mathbb{R})$ contains a class of data which are out of control of $H^s(\mathbb{R}^d)$. Notice that taking $s_1 = -d/2$, it follows that $H^s(\mathbb{R}^d) = L^2_s(\mathbb{R}^d) \subset M^{2,1}_s(\mathbb{R}^d) \subset M^{p,1}_s(\mathbb{R}^d)$ for any $s > 0$ (see Theorem 2.3), Theorem 1.3 reveals that we can get local well-posedness for (1.1) and (1.2) below energy spaces and in any dimension.

Remark 1.4. The analogue of Theorem 1.3 holds for the generalized equations (1.1) and (1.2), that is, Klein-Gordon and wave equations with nonlinearity $(V \ast |u|^{2k})u$ $(k \in \mathbb{N})$ when $X = M^{p,1}_s(\mathbb{R}^d)$.

1.2. Fractional Hartree equation

We study fractional Schrödinger equation with cubic convolution nonlinearity

$$
(1.5) \quad i\partial_t u - (-\Delta)^{\alpha/2} u = (V \ast |u|^2)u, u(x, 0) = u_0(x)
$$

where $u : \mathbb{R}_t \times \mathbb{R}^d_x \to \mathbb{C}$, $u_0 : \mathbb{R}^d \to \mathbb{C}$, V is defined by (1.3), and $\alpha > 0$. The fractional Laplacian is defined as

$$
\mathcal{F}[(-\Delta)^{\alpha/2}u](\xi) = |\xi|^{\alpha} \mathcal{F}u(\xi)
$$

where \mathcal{F} denotes the Fourier transform. The equation (1.5) is known as the fractional Hartree equation. Equation (1.5) describes the dynamics of Bose-Einstein condensate, in which all particles are in the same state $u(t, x)$. There is an extensive study of (1.5) with Cauchy data in Sobolev spaces, see e.g., [23, 12, 8] and the references therein.

Recently, for $0 < \gamma < \min\{\alpha, \frac{d}{4}\}$, Bhimani [4] proved global well-posedness for (1.5) in $M^{p,q}(\mathbb{R}^d)(1 \leq p \leq 2, 1 \leq q < 2d/(d + \gamma))$ when $\alpha = 2, d \geq 1$, and with radial Cauchy data when $d \geq 2, \frac{2d}{2d - 1} < \alpha < 2$ (cf. [5, 20]). Manna [21] proved small data global well-posedness for (1.5) with the potential $V \in M^{1,\infty}(\mathbb{R}^d)$. On the other hand, many authors [1, 30, 3, 16, 7] have studied nonlinear Schrödinger equation in modulation spaces. In this paper, using time integrability of time decay factors of time decay estimate (see Proposition 2.7), we obtain global well-posedness and scattering for small Cauchy data in modulation spaces. To state result, we set up notations. We call pair (p, r) **Schrödinger admissible** if there exists another exponent β such that

$$
\begin{align*}
\frac{1}{\beta} + \frac{2}{r} &= 1, \\
\frac{1}{3} &\leq \frac{1}{\beta} \leq 1 \land d \left(\frac{1}{2} - \frac{1}{p} \right), \\
\frac{1}{4} &\leq p < \frac{1}{2} - \frac{1}{3d},
\end{align*}
$$

and

$$(p, r) \neq \left(\frac{2d}{d - 2}, \infty \right).$$
Notice that if pair \((p, r)\) is Schrödinger admissible, then \(3 \leq r \leq \infty\) and \(rd \left(\frac{1}{2} - \frac{1}{p} \right) > 1\). We are now ready to state following theorem.

Theorem 1.5 (Global well-posedness). Let \(2 < p < 3, \frac{1}{p} + \frac{2}{d} - 1 = \frac{1}{2p}, s \in \mathbb{R}, \alpha = 2\) and \((p, r)\) is Schrödinger admissible pair. Assume that \(u_0 \in M_{s,1}^{p,1}(\mathbb{R}^d)\) and there exists a small \(\delta > 0\) such that \(\|u_0\|_{M_{s,1}^{p,1}} \leq \delta\). Then (1.5) has a unique global solution

\[
u \in C(\mathbb{R}, M_{s,1}^{p,1}(\mathbb{R}^d)) \cap L^r(\mathbb{R}, M_{s,1}^{p,1}(\mathbb{R}^d)).
\]

One also has the bound \(\|u\|_{L^r(\mathbb{R}, M_{s,1}^{p,1}(\mathbb{R}^d))} \lesssim \|u_0\|_{M_{s,1}^{p,1}}\).

In [4, Theorem 1.1] global well-posedness for (1.5) studied with the range of \(\gamma \in \min \{d/2, 2\}\). Notice that Theorem 1.5 covers range of \(\gamma > \min \{d/2, 2\}\).

Corollary 1.6 (Scattering). Let \(u_0 \in M_{s,1}^{p,1}(\mathbb{R}^d)\) and let \(u\) is the global solution to (1.5) with initial \(u(0) = u_0\) such that \(\|u\|_{L^1(\mathbb{R}, M_{s,1}^{p,1})} \leq M\) for some constant \(M > 0\) and \(r < \infty\). Then there exist solutions \(e^{it\Delta}u_{\pm}\) to the free Schrödinger equation \(iu_t + \Delta u = 0\) such that

\[
\|u(t) - e^{it\Delta}u_{\mp}\|_{M_{s,1}^{p,1}} \to 0 \text{ as } t \to \infty.
\]

Remark 1.7. Taking Proposition 2.7 into account, the method of proof of Theorem 1.5 may further be applied to equation (1.5) with \(\alpha > 2\) to obtain the global well-posedness for the small data in modulation spaces.

Theorem 1.8 (Global well-posedness). Let \(V \in M_{s,1}^{\infty,1}(\mathbb{R}^d)\) and \(\frac{1}{2} < \alpha \leq 2\). Assume that \(u_0 \in M_{p,q}^{p,q}(\mathbb{R}^d)\) \((1 \leq p, q \leq 2)\). Then there exists a unique global solution of (1.5) such that \(u \in C(\mathbb{R}, M_{p,q}^{p,q}(\mathbb{R}^d))\).

In [20, Theorem 1.2] it is proved that (1.5) with potential \(V \in M_{s,1}^{\infty,1}(\mathbb{R}^d)\) and \(\alpha = 2\) is globally well-posed in \(M_{p,q}^{p,q}(\mathbb{R}^d)\) \((1 \leq q \leq p \leq 2)\). Notice that Theorem 1.8 generalize this result for (1.5) with \(\frac{1}{2} < \alpha < 2\).

Up to now we cannot know (1.5) is locally well-posed in \(L^p(\mathbb{R}^d)\) but, by Theorem 1.9 in \(M_{s,1}^{p,1}(\mathbb{R}^d)\). Local well-posedness for (1.5) are studied by many authors in Sobolev spaces. Modulation spaces enjoy lower derivative regularity (see Proposition 2.3 below) and we can solve (1.5) with the lower regularity assumption for the Cauchy data. Specifically, we have

Theorem 1.9 (Local well-posedness). Let \(V\) is given by (1.3), \(\frac{1}{2} < \alpha \leq 2\) and \(u_0 \in M_{s,1}^{p,1}(\mathbb{R}^d)\) \((1 < p < \infty, s \in \mathbb{R}, \frac{1}{p} + \frac{2}{d} - 1 = \frac{1}{p + \epsilon}, \epsilon > 0)\). Then there exists \(T^* = T^*\(|u_0|_{M_{s,1}^{p,1}}\) such that (1.5) has a unique solution \(u \in \mathcal{C}([0, T^*], M_{s,1}^{p,1}(\mathbb{R}^d))\). Moreover, if \(T^* < \infty\), then \(\lim_{T \to T^*} \|u(\cdot, t)\|_{M_{s,1}^{p,1}} = \infty\).

Remark 1.10.

(1) The analogue of Theorem 1.9 holds for the generalized equation (1.5) and (1.2), that is, fractional Schrödinger equation with nonlinearity \((V * |u|^{2k})u\) \((k \in \mathbb{N})\) when \(X = M_{s,1}^{p,1}(\mathbb{R}^d)\).
(2) We have obtain local well-posedness for generalized equations (1.1), (1.2) and (1.5) with potential \(V \in \mathcal{F}L^q(\mathbb{R}^d) \) \((1 < q < \infty)\) or \(M^{\infty,1}(\mathbb{R}^d) \) or \(V \in M^{1,\infty}(\mathbb{R}^d) \). See Theorems 6.1 and Remark 6.2 below.

The remainder of this paper is organized as follows. In Section 2, we introduce notations and preliminaries which will be used in the sequel. In Section 3, we prove some Strichartz type estimates and boundedness of Hartree nonlinearity in modulation spaces. In Section 4, we prove Theorems 1.1, 1.3 and Corollary 1.2. In Section 5, we prove Theorems 1.5, 1.8 and 1.9 and Corollary 1.6. In Section 6, we give sketch proof of Remark 1.10 (2).

2. Preliminaries

2.1. Notations. The notation \(A \lesssim B \) means \(A \leq cB \) for some constant \(c > 0 \), whereas \(A \asymp B \) means \(c^{-1}A \leq B \leq cA \) for some \(c \geq 1 \) and \(a \wedge b = \min\{a, b\} \). The symbol \(A_1 \hookrightarrow A_2 \) denotes the continuous embedding of the topological linear space \(A_1 \) into \(A_2 \). The \(L^p(\mathbb{R}^d) \) norm is denoted by

\[
\|f\|_{L^p} = \left(\int_{\mathbb{R}^d} |f(x)|^p \, dx \right)^{1/p} \quad (1 \leq p < \infty),
\]

the \(L^\infty(\mathbb{R}^d) \) norm is \(\|f\|_{L^\infty} = \sup_{x \in \mathbb{R}^d} |f(x)| \). For \(1 \leq p \leq \infty \), \(p' \) denotes the Hölder conjugate of \(p \), that is, \(1/p + 1/p' = 1 \). We use \(L^r_t(I, X) \) to denote the space time norm

\[
\|u\|_{L^r_t(I, X)} = \left(\int_I \|u\|_X^r \, dt \right)^{1/r},
\]

where \(I \subset \mathbb{R} \) is an interval and \(X \) is a Banach space. The Schwartz space is denoted by \(\mathcal{S}(\mathbb{R}^d) \) (with its usual topology), and the space of tempered distributions is denoted by \(\mathcal{S}'(\mathbb{R}^d) \). For \(x = (x_1, \ldots, x_d), y = (y_1, \ldots, y_d) \in \mathbb{R}^d \), we put \(x \cdot y = \sum_{i=1}^d x_i y_i \). Let \(\mathcal{F} : \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d) \) be the Fourier transform defined by

\[
\mathcal{F}f(w) = \hat{f}(w) = \int_{\mathbb{R}^d} f(t) e^{-2\pi i t \cdot w} \, dt, \quad w \in \mathbb{R}^d.
\]

Then \(\mathcal{F} \) is a bijection and the inverse Fourier transform is given by

\[
\mathcal{F}^{-1}f(x) = f^\vee(x) = \int_{\mathbb{R}^d} f(w) e^{2\pi i x \cdot w} \, dw, \quad x \in \mathbb{R}^d,
\]

and this Fourier transform can be uniquely extended to \(\mathcal{F} : \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d) \). The Fourier-Lebesgue spaces \(\mathcal{F}L^p(\mathbb{R}^d) \) is defined by

\[
\mathcal{F}L^p(\mathbb{R}^d) = \left\{ f \in \mathcal{S}'(\mathbb{R}^d) : \|f\|_{\mathcal{F}L^p} := \|\hat{f}\|_{L^p} < \infty \right\}.
\]

The standard Sobolev spaces \(W^{s,p}(\mathbb{R}^d) \) \((1 < p < \infty, s \geq 0)\) have a different character according to whether \(s \) is integer or not. Namely, for \(s \) integer, they consist of \(L^p \)-functions with derivatives in \(L^p \) up to order \(s \), hence coincide with the \(L^p_s \)-Sobolev spaces (also known as Bessel potential spaces), defined for \(s \in \mathbb{R} \) by

\[
L^p_s(\mathbb{R}^d) = \left\{ f \in \mathcal{S}'(\mathbb{R}^d) : \|f\|_{L^p_s} := \|\mathcal{F}^{-1}[(\cdot)^s\mathcal{F}(f)]\|_{L^p} < \infty \right\},
\]

where \((\xi)^s = (1 + |\xi|^2)^{s/2} \) \((\xi \in \mathbb{R}^d)\). Note that \(L^p_{s_1}(\mathbb{R}^d) \hookrightarrow L^p_{s_2}(\mathbb{R}^d) \) if \(s_2 \leq s_1 \).
2.2. Modulation spaces. Feichtinger [14] introduced a class of Banach spaces, the so called modulation spaces, which allow a measurement of space variable and Fourier transform variable of a function or distribution on \mathbb{R}^d simultaneously using the short-time Fourier transform (STFT). The STFT of a function f with respect to a window function $g \in S(\mathbb{R}^d)$ is defined by

$$V_g f(x, w) = \int_{\mathbb{R}^d} f(t) g(t-x)e^{-2\pi i w \cdot t} dt, \quad (x, w) \in \mathbb{R}^{2d}$$

whenever the integral exists. For $x, y \in \mathbb{R}^d$ the translation operator T_x and the modulation operator M_y are defined by $T_x f(t) = f(t-x)$ and $M_y f(t) = e^{2\pi i y \cdot t} f(t)$. In terms of these operators the STFT may be expressed as

$$V_g f(x, y) = \langle f, M_y T_x g \rangle$$

where $\langle f, g \rangle$ denotes the inner product for L^2 functions, or the action of the tempered distribution f on the Schwartz class function g. Thus $V : (f, g) \to V_g(f)$ extends to a bilinear form on $S'(\mathbb{R}^d) \times S(\mathbb{R}^d)$ and $V_g(f)$ defines a uniformly continuous function on $\mathbb{R}^d \times \mathbb{R}^d$ whenever $f \in S'(\mathbb{R}^d)$ and $g \in S(\mathbb{R}^d)$.

Definition 2.1 (modulation spaces). Let $1 \leq p, q \leq \infty$, $s \in \mathbb{R}$ and $0 \neq g \in S(\mathbb{R}^d)$. The weighted modulation space $M_{s}^{p,q}(\mathbb{R}^d)$ is defined to be the space of all tempered distributions f for which the following norm is finite:

$$\|f\|_{M_{s}^{p,q}} = \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |V_g f(x, y)|^p dx \right)^{q/p} (1 + |y|^{2sq/2}) dy \right)^{1/q},$$

for $1 \leq p, q < \infty$. If p or q is infinite, $\|f\|_{M_{s}^{p,q}}$ is defined by replacing the corresponding integral by the essential supremum.

For $s = 0$, we write $M_{0}^{p,q}(\mathbb{R}^d) = M^{p,q}(\mathbb{R}^d)$.

Remark 2.1. The definition of the modulation space given above, is independent of the choice of the particular window function. See [15, Proposition 11.3.2(c)].

Applying the frequency-uniform localization techniques, one can get an equivalent definition of modulation spaces [30] as follows. Let Q_k be the unit cube with the center at k, so $\{Q_k\}_{k \in \mathbb{Z}^d}$ constitutes a decomposition of \mathbb{R}^d, that is, $\mathbb{R}^d = \bigcup_{k \in \mathbb{Z}^d} Q_k$. Let $\rho \in S(\mathbb{R}^d)$, $\rho : \mathbb{R}^d \to [0, 1]$ be a smooth function satisfying $\rho(\xi) = 1$ if $|\xi|_{\infty} \leq \frac{1}{2}$ and $\rho(\xi) = 0$ if $|\xi|_{\infty} \geq 1$. Let ρ_k be a translation of ρ, that is,

$$\rho_k(\xi) = \rho(\xi - k) \quad (k \in \mathbb{Z}^d).$$

Denote

$$\sigma_k(\xi) = \frac{\rho_k(\xi)}{\sum_{l \in \mathbb{Z}^d} \rho_l(\xi)}, \quad (k \in \mathbb{Z}^d).$$
Then \(\{\sigma_k(\xi)\}_{k \in \mathbb{Z}^d} \) satisfies the following properties
\[
\begin{align*}
|\sigma_k(\xi)| &\geq c, \forall z \in Q_k, \\
\text{supp } \sigma_k &\subset \{\xi : |\xi - k|_\infty \leq 1\}, \\
\sum_{k \in \mathbb{Z}^d} \sigma_k(\xi) &\equiv 1, \forall \xi \in \mathbb{R}^d, \\
|D^a \sigma_k(\xi)| &\leq C_{|\alpha|}, \forall \xi \in \mathbb{R}^d, \alpha \in (\mathbb{N} \cup \{0\})^d.
\end{align*}
\]

The frequency-uniform decomposition operators can be exactly defined by
\[
\square_k = \mathcal{F}^{-1} \sigma_k \mathcal{F}.
\]

For \(1 \leq p, q \leq \infty, s \in \mathbb{R} \), it is known \cite{14} that
\[
\|f\|_{M^p,q_s} \approx \left(\sum_{k \in \mathbb{Z}^d} \|\square_k(f)\|_{L^p(1 + |k|)^q_s}^q \right)^{1/q},
\]
with natural modifications for \(p, q = \infty \). We notice almost orthogonality relation for the frequency-uniform decomposition operators
\[
\square_k = \sum_{\|\ell\|_\infty \leq 1} \square_{k+\ell} \square_k \quad (k, \ell \in \mathbb{Z}^d)
\]
where \(\|\ell\|_\infty = \max\{|\ell_i| : \ell_i \in \mathbb{Z}, i = 1, \ldots, d\} \).

Lemma 2.2 \cite{31,15,28}. Let \(p, q, p_i, q_i \in [1, \infty] \) \((i = 1, 2) \), \(s_1, s_2 \in \mathbb{R} \). Then
\begin{enumerate}
\item \(M^{p_1,q_1}_{s_1}(\mathbb{R}^d) \hookrightarrow M^{p_2,q_2}_{s_2}(\mathbb{R}^d) \) whenever \(p_1 \leq p_2 \) and \(q_1 \leq q_2 \) and \(s_2 \leq s_1 \).
\item \(M^{p,q}_{s_1}(\mathbb{R}^d) \hookrightarrow L^p(\mathbb{R}^d) \hookrightarrow M^{p,q}_{s_2}(\mathbb{R}^d) \) holds for \(q_1 \leq \min\{p, p'\} \) and \(q_2 \geq \max\{p, p'\} \) with \(\frac{1}{p} + \frac{1}{p'} = 1 \).
\item \(M^{\min\{p', q\}'}(\mathbb{R}^d) \hookrightarrow \mathcal{F} L^p(\mathbb{R}^d) \hookrightarrow M^{\max\{p, q\}'}(\mathbb{R}^d), \frac{1}{p} + \frac{1}{p'} = 1 \).
\item \(S(\mathbb{R}^d) \) is dense in \(M^{p,q}(\mathbb{R}^d) \) if \(p \) and \(q < \infty \).
\item \(M^{p,p}(\mathbb{R}^d) \hookrightarrow L^p(\mathbb{R}^d) \hookrightarrow M^{p,p'}(\mathbb{R}^d) \) for \(1 \leq p \leq 2 \) and \(M^{p,p'}(\mathbb{R}^d) \hookrightarrow L^p(\mathbb{R}^d) \) for \(2 \leq p \leq \infty \).
\item The Fourier transform \(\mathcal{F} : M^{p,p}(\mathbb{R}^d) \rightarrow M^{p,p}(\mathbb{R}^d) \) is an isomorphism.
\item The space \(M^{p,q}_{s_1}(\mathbb{R}^d) \) is a Banach space.
\item The space \(M^{p,q}_{s_2}(\mathbb{R}^d) \) is invariant under complex conjugation.
\end{enumerate}

Theorem 2.3 \cite{19,28}. Let \(1 \leq p, q \leq \infty, s_1, s_2 \in \mathbb{R} \), and
\[
\tau(p, q) = \max \left\{ 0, d \left(\frac{1}{q} - \frac{1}{p} \right), d \left(\frac{1}{q} + \frac{1}{p} - 1 \right) \right\}.
\]

Then \(L^p_{s_1}(\mathbb{R}^d) \subset M^{p,q}_{s_2}(\mathbb{R}^d) \) if and only if one of the following conditions is satisfied:
\begin{enumerate}
\item \(q \geq p > 1, s_1 \geq s_2 + \tau(p, q) \);
\item \(p > q, s_1 > s_2 + \tau(p, q) \);
\item \(p = 1, q = \infty, s_1 \geq s_2 + \tau(1, \infty) \);
\item \(p = 1, q \neq \infty, s_1 > s_2 + \tau(1, q) \).
\end{enumerate}
Proposition 2.4 (Algebra property [3]). Let \(m \in \mathbb{N}, s \geq 0 \). Assume that \(\sum_{i=1}^{m} \frac{1}{p_i} = \frac{1}{p_0}, \sum_{i=1}^{m} \frac{1}{q_i} = m - 1 + \frac{1}{q_0} \) with \(0 < p_i \leq \infty, 1 \leq q_i \leq \infty \) for \(1 \leq i \leq m \). Then we have
\[
\left\| \prod_{i=1}^{m} u_i \right\|_{M^{p_0,q_0}} \lesssim \prod_{i=1}^{m} \| u_i \|_{M^{p_i,q_i}}.
\]

Proposition 2.5 (isomorphism [14]). Let \(0 < p, q \leq \infty, \sigma \in \mathbb{R} \). Then \(J_\sigma : (I - \Delta)^{\sigma/2} : M^{p,q}_s(\mathbb{R}^d) \to M^{p,q}_{s-\sigma}(\mathbb{R}^d) \) is an isomorphic mapping. (We denote \(J_1 = J \).)

Lemma 2.6. Let \(\sigma \in \mathbb{R}, 1 \leq p, q < \infty, \) and \(\Omega \) be a compact subset of \(\mathbb{R}^d \). Then \(S^\Omega = \{ f : f \in S(\mathbb{R}^d) \) and \(\supp \hat{f} \subset \Omega \} \) is dense in \(M^{p,q}_s(\mathbb{R}^d) \).

For \(f \in S(\mathbb{R}^d) \), we define the fractional Schrödinger propagator \(e^{it(-\Delta)^{\alpha/2}} \) for \(t, \alpha \in \mathbb{R} \) as follows:
\[
U(t)f(x) = e^{it(-\Delta)^{\alpha/2}}f(x) = \int_{\mathbb{R}^d} e^{i\pi t|\xi|^\alpha} \hat{f}(\xi) e^{2\pi i \xi \cdot x} d\xi.
\]

When \(\alpha = 2 \), we write \(U(t) = S(t) = e^{-it\Delta} \) (corresponding to usual Schrödinger equation).

The next proposition shows that the uniform boundedness and truncated decay estimates of the Schrödinger propagator \(e^{it(-\Delta)^{\alpha/2}} \) on modulation spaces.

Proposition 2.7 ([9, 30]).

1. Let \(\frac{1}{2} < \alpha \leq 2, 1 \leq p, q \leq \infty \). Then \(\| U(t)f \|_{M^{p,q}} \leq (1 + |t|)^{d\left(\frac{1}{2} - \frac{1}{\alpha}\right)} \| f \|_{M^{p,q}} \).

2. Let \(\alpha \geq 2 \) and \(2 \leq p, q \leq \infty \). Then \(\| U(t)f \|_{M^{p,q}} \leq (1 + |t|)^{-\frac{2d}{\alpha}(\frac{1}{p} - \frac{1}{2})} \| f \|_{M^{p,q}} \).

Now we consider the truncated decay estimate and uniform bounded estimates for the Klein-Gordon semigroup \(G(t) \).

Proposition 2.8 (See Proposition 4.2 in [30]). Let \(G(t) = e^{it(I - \Delta)^{1/2}} \) \((t \in \mathbb{R}) \).

1. Let \(\sigma \in \mathbb{R}, 2 \leq p \leq \infty, 1 \leq q < \infty, \theta \in [0, 1], \) and \(2\sigma(p) = (d + 2) \left(\frac{1}{2} - \frac{1}{p} \right) \). Then we have
\[
\| G(t)f \|_{M^{p,q}} \lesssim (1 + |t|)^{d\theta(1/2 - 1/p)} \| f \|_{M^{p,q}_{s+2\sigma(p)}}.
\]

2. Let \(\sigma \in \mathbb{R} \) and \(1 \leq p, q \leq \infty \). Then we have
\[
\| G(t)f \|_{M^{p,q}} \leq C(1 + |t|)^{d(1/2 - 1/p)} \| f \|_{M^{p,q}}.
\]

Proposition 2.9 (Uniform boundedness of wave propagator [3]). For \(\sigma^1(\xi) = \sin(2\pi t|\xi|)/2\pi|\xi|, \sigma^2(\xi) = \cos(2\pi t|\xi|) \) and \(f \in S(\mathbb{R}^d) \), we define \(H_{\sigma^1} f(x) = \left(\sigma^1 \hat{f} \right)^\vee(x) \) \((x \in \mathbb{R}^d, i = 1, 2) \). Let \(s \in \mathbb{R} \) and \(1 \leq p, q \leq \infty \). Then we have
\[
\| H_{\sigma^1} f \|_{M^{p,q}} \leq c_d(1 + t^2)^{d/4} \| f \|_{M^{p,q}}.
\]

Proposition 2.10 (Bernstein multiplier theorem [30]). Let \(L \in \mathbb{Z}, L > d/2, \partial_{x_i}^\rho \in L^2, i = 1, 2, \ldots, d, 0 \leq \alpha \leq L \). Then \(\rho \) is a multiplier on \(L^p \) \((1 \leq p \leq \infty) \). Moreover there exists a constant \(C \) such that
\[
\| \rho \|_{M_\rho} \leq C \| \rho \|_{L^1}^{1-d/2L} \left(\sum_{i=1}^{d} \| \partial_{x_i}^L \rho \|_{L^2} \right)^{d/2L}.
\]
Proposition 2.11 (BG). Let $\Omega \subset \mathbb{R}^d$ be a compact subset and let $1 \leq p \leq \infty$, $s_p = d\left(\frac{1}{p+1} - \frac{1}{2}\right)$. If $s > s_p$, then there exists a $C > 0$ such that $\|\mathcal{F}^{-1}\phi \mathcal{F}\|_{L^p} \leq C\|\phi\|_{H^s}\|f\|_{L^p}$ holds for all $f \in L^p \Omega$ and $\phi \in H^s(\mathbb{R}^d) = L^2_s(\mathbb{R}^d)$.

3. Nonlinear Estimates in $M^{p,q}_s(\mathbb{R}^d)$

In this section we prove estimates for Hartree nonlinearity (Corollary 3.3 and Lemmas 3.4 and 3.5) and Strichartz type estimates (Proposition 3.6). We shall apply these to prove main theorems in the following sections.

We define fractional integral operator $T_\gamma(0 < \gamma < d)$ as follows

$$T_\gamma f(x) = V_\gamma * f(x) = \pm \int_{\mathbb{R}^d} \frac{f(y)}{|x-y|^\gamma} dy, \quad (f \in \mathcal{S}(\mathbb{R}^d), V_\gamma(x) = \pm |x|^{-\gamma}).$$

It is known T_γ is bounded from $L^p(\mathbb{R}^d)$ to $L^q(\mathbb{R}^d)$ for some specific p, q and γ. Specifically, we have

Proposition 3.1 (Hardy-Littlewood-Sobolev inequality). Assume that $0 < \gamma < d$ and $1 < p < q < \infty$ with $\frac{1}{p} + \frac{\gamma}{d} - 1 = \frac{1}{q}$. Then we have $\|T_\gamma f\|_{L^q} \leq C_{d,\gamma,p}\|f\|_{L^p}$.

We prove analogue of Hardy-Littlewood-Sobolev inequality in case of modulation spaces.

Proposition 3.2. Assume that $0 < \gamma < d$, $1 < p_1 < p_2 < \infty$ with

$$\frac{1}{p_1} + \frac{\gamma}{d} - 1 = \frac{1}{p_2}$$

and $1 \leq q \leq \infty$, $s \geq 0$. Then the map T_γ is bounded from $M^{p_1, q}_s(\mathbb{R}^d)$ to $M^{p_2, q}_s(\mathbb{R}^d)$:

$$\|T_\gamma f\|_{M^{p_2, q}_s} \lesssim \|f\|_{M^{p_1, q}_s}.$$

Proof. We may rewrite the STFT as $V_g(x,w) = e^{-2\pi i x \cdot w} (f * M_w g^*)(x)$ where $g^*(y) = \overline{g(-y)}$. Using Hardy-Littlewood-Sobolev inequality, we obtain

$$\|T_\gamma f\|_{M^{p_2, q}_s} = \|\|V_\gamma * (f * M_w g^*)\|_{L^{p_2}(w)}\|_{L^q_w} \lesssim \|f * M_w g^*\|_{L^{p_1}(w)} \|f\|_{L^q_w} \lesssim \|f\|_{M^{p_1, q}_s}.$$

This completes the proof. \hfill \Box

Corollary 3.3. Let $1 < p < \infty$ and $\frac{1}{p} + \frac{\gamma}{d} - 1 = \frac{1}{p+\epsilon}$ for some $\epsilon > 0$. Then

$$\|(V_\gamma * |f|^{2k}) f\|_{M^{p,1}_s} \lesssim \|f\|^{2k+1}_{M^{p_1,1}_s} \quad (k \in \mathbb{N}).$$

Proof. By Proposition 2.4 and Lemma 2.3, we have

$$\|(V_\gamma * |f|^{2k}) f\|_{M^{p,1}_s} \lesssim \|T_\gamma |f|^{2k}\|_{M^{p,1}_s} \lesssim \|T_\gamma |f|^{2k}\|_{M^{p_1,1}_s} \lesssim \|T_\gamma |f|^{2k}\|_{M^{p+\epsilon,1}_s} \lesssim \|f\|^{2k}\|_{M^{p,1}_s} \lesssim \|f\|^{2k}_{M^{p,1}_s}.$$

This completes the proof. \hfill \Box
Lemma 3.4. Let $1 < p < \infty$ and $\frac{1}{p} + \frac{\sigma}{2} - 1 = \frac{1}{p' + \epsilon}$ for some $\epsilon > 0$. Then we have

$$\|(V_{\gamma} * |f|^2) f - (V_{\gamma} * |g|^2) g\|_{M^{p,1}} \lesssim (\|f\|_{M^{p,1}}^2 + \|f\|_{M^{p,1}} \|g\|_{M^{p,1}} + \|g\|_{M^{p,1}}^2) \|f - g\|_{M^{p,1}}.$$

Proof. Exploiting the ideas of proof as in Corollary 3.3, we obtain

$$\|(V_{\gamma} * |f|^2)(f - g)\|_{M^{p,1}} \lesssim \|f\|_{M^{p,1}}^2 \|f - g\|_{M^{p,1}},$$

and

$$\|(V_{\gamma} * |f|^2)g\|_{M^{p,1}} \lesssim \|f\|_{M^{p,1}}^2 \|g\|_{M^{p,1}} \lesssim \left(\|f\|_{M^{p,1}} \|g\|_{M^{p,1}} + \|g\|_{M^{p,1}}^2\right) \|f - g\|_{M^{p,1}}.$$

This together with the following identity

$$(V_{\gamma} * |f|^2)f - (V_{\gamma} * |g|^2)g = (V_{\gamma} * |f|^2)(f - g) + (V_{\gamma} * (|f|^2 - |g|^2))g,$$

gives the desired inequality. \hfill \Box

Lemma 3.5. Let $2 < p < 2p'$ and $\frac{1}{p} + \frac{\sigma}{d} - 1 = \frac{1}{2p'}$. Then we have

$$\|(V_{\gamma} * |f|^2)f - (V_{\gamma} * |g|^2)g\|_{M^{p',1}} \lesssim (\|f\|_{M^{p',1}}^2 + \|f\|_{M^{p',1}} \|g\|_{M^{p',1}} + \|g\|_{M^{p',1}}^2) \|f - g\|_{M^{p',1}}.$$

Proof. By Proposition 2.4, we have

$$\|(V_{\gamma} * |f|^2)(f - g)\|_{M^{p',1}} \lesssim \|V_{\gamma} * |f|^2\|_{M^{2p',1}} \|f - g\|_{M^{2p',1}} \lesssim \|f\|_{M^{p',1}} \|f - g\|_{M^{p',1}},$$

and

$$\|(V_{\gamma} * (|f|^2 - |g|^2))g\|_{M^{p',1}} \lesssim \|V_{\gamma} * (|f|^2 - |g|^2)\|_{M^{2p',1}} \|g\|_{M^{2p',1}} \lesssim \|f\|_{M^{p',1}} \|g\|_{M^{p',1}} \lesssim \left(\|f\|_{M^{p',1}} \|g\|_{M^{p',1}} + \|g\|_{M^{p',1}}^2\right) \|f - g\|_{M^{p',1}}.$$

Recall that equation (1.1) have the following equivalent form

$$u(t) = K'(t)u_0 + K(t)u_1 - Bf(u),$$

where we denote $\omega = (I - \Delta)$,

$$K(t) = \frac{\sin t\omega^{1/2}}{\omega^{1/2}}, \quad K'(t) = \cos t\omega^{1/2}, \quad B = \int_0^t K(t - \tau) \cdot d\tau.$$

We prove following Strichartz type estimates in modulation spaces.

Proposition 3.6. Let $F(u) = (V_{\gamma} * |u|^2)u$, $p \in (2,3)$, $\frac{1}{p} + \frac{\sigma}{d} - 1 = \frac{1}{2p'}$ and pair (p,r) is Klein-Gordon admissible. Then we have

$$\left\|\int_0^t K(t - \tau) F(u(\tau)) d\tau\right\|_{L^r_x(M^{p,r})} \lesssim \|F(u)\|_{L^{r/3}_{t,x}(\mathbb{R},M^{p',1})} \lesssim \|u\|_{L^3_x(M^{p,1})}^3.$$
Proof. Since \(G(t) = e^{it\omega^{1/2}}\), we have \(K(t)\omega^{1/2} = (G(t) - G(-t))/2i\). By general Minkowski inequality, Propositions 2.8 and 2.5 we have

\[
\left\| \int_0^t K(t - \tau)F(u(\tau))d\tau \right\|_{L^1_t(\mathbb{R},M^{p,1}_s)} \lesssim \left\| \int_0^t \|K(t - \tau)F(u(\tau))\|_{M^{p,1}_s}d\tau \right\|_{L^1_t(\mathbb{R})} \lesssim \left\| \int_0^t (1 + |t - \tau|)^{-\beta(1/2 - 1/p)}\|F(u)\|_{M^{p,1}_{s+\beta\sigma(p)-1}}d\tau \right\|_{L^1_t(\mathbb{R})} \lesssim \left\| \int_0^t (1 + |t - \tau|)^{-\beta(1/2 - 1/p)}h(\tau)d\tau \right\|_{L^1_t(\mathbb{R})} \lesssim \|g \ast h\|_{L^1_t},
\]

where \(h(\tau) = \|F(u)\|_{M^{p,1}_{s+\beta\sigma(p)-1}}, g(t) = (1 + |t|)^{-\beta(1/2 - 1/p)}\) and \(\theta \in [0, 1]\). We divide Klein-Gordon admissible pairs (see (1.4)) into two cases.

Case I: \(\frac{1}{\beta} = \frac{d}{d+2} \wedge d\left(\frac{1}{2} - \frac{1}{p}\right)\). In this case \(\frac{1}{\beta} < 1\) and there exists \(\theta \in (0, 1]\) such that

\[
\frac{1}{\beta} = \theta d\left(\frac{1}{2} - \frac{1}{p}\right) = \frac{d}{d+2} \wedge d\left(\frac{1}{2} - \frac{1}{p}\right).
\]

With this \(\theta\), we have \(\theta 2\sigma(p) - 1 \leq 0\). Since pair \((p, r)\) is Klein-Gordon admissible, we have

\[
\frac{1}{r} = \frac{3}{r} - \frac{1 - \theta(1/2 - 1/p)}{1}
\]

and \(r/3 > 1\). With this \(\theta\), by Hardy-Littlewood-Sobolev inequality in dimension one, we have

\[
\left\| \int_0^t K(t - \tau)F(u(\tau))d\tau \right\|_{L^1_t(\mathbb{R},M^{p,1}_s)} \lesssim \|g \ast h\|_{L^1_t(\mathbb{R})} \lesssim \|F(u)\|_{L^{r/3}(\mathbb{R},M^{p,1}_s)}.
\]

Case II: \(\frac{1}{\beta} < \frac{d}{d+2} \wedge d\left(\frac{1}{2} - \frac{1}{p}\right)\). In this case there exists \(\theta \in [0, 1]\) such that

\[
\frac{1}{\beta} < \theta d\left(\frac{1}{2} - \frac{1}{p}\right) \leq \frac{d}{d+2} \wedge d\left(\frac{1}{2} - \frac{1}{p}\right).
\]

With this \(\theta\), we have \(\beta \theta d\left(\frac{1}{2} - \frac{1}{p}\right) > 1\), and \(\theta 2\sigma(p) - 1 \leq 0\). By Young and Hölder inequalities, we have

\[
\left\| \int_0^t K(t - \tau)F(u(\tau))d\tau \right\|_{L^1_t(\mathbb{R},M^{p,1}_s)} \lesssim \|g \ast h\|_{L^1_t} \lesssim \|g\|_{L^\beta} \left\| \|F(u)\|_{M^{p,1}_s} \right\|_{L^{r/3}} \lesssim \|F(u)\|_{L^{r/3}(\mathbb{R},M^{p,1}_s)}.
\]
By Propositions 2.4 and 3.2 and Lemma 2.2 (1), we have
\[
\|F(u)\|_{L^{r/3}(\mathbb{R}, M^{p_r, 1})} \lesssim \left(\int (\|T_\gamma |u|^2\|_{M^{2p_r, 1}} \|u\|_{M^{2p_r, 1}})^{r/3} dt \right)^{3/r} \\
\lesssim \left(\int (\|u\|_{M^{p, 1}}^2 \|u\|_{M^{p, 1}})^{r/3} dt \right)^{3/r} \\
\lesssim \left(\int \|u\|_{M^{p, 1}}^r dt \right)^{3/r} \lesssim \|u\|_{L^r(\mathbb{R}, M^{p, 1})}^3.
\]

This completes the proof. \(\square\)

Lemma 3.7. Let \(F(u) = (V_\gamma |u|^2)u, p \in (2, 3), \frac{4}{p} + \frac{2}{d} - 1 = \frac{1}{2p} \) and pair \((p, r)\) is Klein-Gordon admissible. Then we have
\[
\left\| \int_0^t K(t - \tau)[F(u(\tau)) - F(v(\tau))]d\tau \right\|_{L^r(\mathbb{R}, M^{p, 1})} \lesssim \|F(u) - F(v)\|_{L^{r/3}(\mathbb{R}, M^{p_r, 1})}.
\]

Proof. By Proposition 3.6 we have
\[
\left\| \int_0^t K(t - \tau)[F(u(\tau)) - F(v(\tau))]d\tau \right\|_{L^r(\mathbb{R}, M^{p, 1})} \lesssim \|F(u) - F(v)\|_{L^{r/3}(\mathbb{R}, M^{p_r, 1})}.
\]

By Proposition 2.4 Lemma 2.2 (1) and Hölder inequality, we obtain
\[
\|(V_\gamma |u|^2)(u - v)\|_{L^{r/3}(\mathbb{R}, M^{p_r, 1})} \lesssim \|u\|_{L^r(\mathbb{R}, M^{p, 1})}^2 \|u - v\|_{L^r(\mathbb{R}, M^{p, 1})}
\]
and
\[
\|(V_\gamma |u|^2 - |v|^2)v\|_{L^{r/3}(\mathbb{R}, M^{p_r, 1})} \lesssim \left(\|u\|_{L^r(\mathbb{R}, M^{p, 1})} \|v\|_{L^r(\mathbb{R}, M^{p, 1})} + \|v\|_{L^r(\mathbb{R}, M^{p, 1})}^3 \right) \|u - v\|_{L^r(\mathbb{R}, M^{p, 1})}.
\]

Lemma 3.8 (1). Let \(V\) be given by (1.3), \(1 \leq p \leq 2, 1 \leq q < \frac{2d}{d + \gamma}\). Then for any \(f, g \in M^{p, q}(\mathbb{R}^d)\), we have
\[
(1) \quad \|(V \ast |f|^2)f\|_{M^{p, q}} \lesssim \|f\|_{M^{p, q}}^3.
\]
\[
(2) \quad \|(V \ast |f|^2)f - (K \ast |g|^2)g\|_{M^{p, q}} \lesssim (\|f\|_{M^{p, q}}^2 + \|f\|_{M^{p, q}} \|g\|_{M^{p, q}} + \|g\|_{M^{p, q}}^2)\|f - g\|_{M^{p, q}}.
\]

4. Proofs of Theorems 1.1 and 1.3

Proof of Theorem 1.1. Recall that equation (1.1) have the following equivalent form
\[
u(t) = K'(t)u_0 + K(t)u_1 - \int_0^t K(t - \tau)F(u(\tau))d\tau =: \mathcal{J}(u)
\]
where
\[
K(t) = \frac{\sin t(I - \Delta)^{1/2}}{(I - \Delta)^{1/2}}, \quad K'(t) = \cos t(I - \Delta)^{1/2}, \quad F(u) = (V_\gamma |u|^2)u.
\]
Denote $X = L^r(\mathbb{R}, M^{p,1}_s(\mathbb{R}^d))$. For $\delta > 0$, put $B_\delta = \{u \in X : \|u\|_X \leq \delta\}$—which is the closed ball of radius δ, and centered at the origin in X. Since $rd \left(\frac{1}{2} - \frac{1}{p}\right) > 1$, we have $(1 + |t|)^{-d\left(\frac{1}{2} - \frac{1}{p}\right)} \in L^r(\mathbb{R})$. Now by Proposition 2.8, we have

$$\|K(t)u_0\|_X \lesssim \left\| (1 + |t|)^{-d\left(\frac{1}{2} - \frac{1}{p}\right)} \right\|_{L^r} \|u_0\|_{M^{p,1}_{s+2\sigma}(p)}.$$

By Propositions 2.8 and 2.5, we have

$$\|K'(t)u_1\|_X \lesssim \left\| (1 + |t|)^{-d\left(\frac{1}{2} - \frac{1}{p}\right)} \right\|_{L^r} \|u_1\|_{M^{p,1}_{s+2\sigma}(p)}.$$

By Proposition 3.6, we have

$$\left\| \int_0^t K(t - \tau)F(u(\tau))d\tau \right\|_X \lesssim \|u\|_X^3.$$

Thus we have

$$\|\mathcal{J}(u)\|_X \lesssim \|u_0\|_{M^{p,1}_{s+2\sigma}(p)} + \|u_1\|_{M^{p,1}_{s+2\sigma}(p)} + \|u\|_X^3.$$

By Lemma 3.7, for any $u, v \in B_\delta$, we have

$$\|\mathcal{J}u - \mathcal{J}v\|_X \lesssim \left(\|u\|_X^2 + \|u\|_X \|v\|_X + \|v\|_X^2 \right) \|u - v\|_X.$$

If we assume that $\delta > 0$ is sufficiently small, then $\mathcal{J} : X \to X$ is a strict contraction. Therefore \mathcal{J} has a unique fixed point and we have $u \in L^r(\mathbb{R}, M^{p,1}_s(\mathbb{R}^d))$. We shall now verify this $u \in C(\mathbb{R}, M^{p,1}_s(\mathbb{R}^d)) \cap C^1(\mathbb{R}, M^{p,1}_{s-1}(\mathbb{R}^d))$ and $\|u\|_{L^r(\mathbb{R}, M^{p,1}_s(\mathbb{R}^d))} \lesssim \|u_0\|_{M^{p,1}_{s+2\sigma}(p)} + \|u_1\|_{M^{p,1}_{s+2\sigma}(p)}$. To prove $u \in C(\mathbb{R}, M^{p,1}_s(\mathbb{R}^d))$, it is equivalent to prove that

$$\|u(t_n, \cdot) - u(t, \cdot)\|_{M^{p,1}_s} \to 0$$

as $t_n \to t$ for arbitrary fixed $t > 0$. We note that

$$\|u(t_n, \cdot) - u(t, \cdot)\|_{M^{p,1}_s} \leq \|K'(t_n)u_0 - K'(t)u_0\|_{M^{p,1}_s} + \|K(t_n)u_1 - K(t)u_1\|_{M^{p,1}_s} + \left\| \int_{t_n}^t K(t - \tau)F(u(\tau)) - \int_0^t K(t - \tau)F(u(\tau)) \right\|_{M^{p,1}_s}.$$

Recall that $u_0, J^{-1}u_1 \in M^{p,1}_s(\mathbb{R}^d)$ (see Proposition 2.3). For I, II, by density Lemma 2.6, Proposition 2.8, triangle inequality, and since $G(t) = e^{it\omega^{1/2}} (\omega = I - \Delta)$, we only need to prove that $G(t)v \in C(\mathbb{R}, M^{p,1}_s(\mathbb{R}^d))$ for $v \in \mathcal{S}^\Omega$. By Hausdorff-Young inequality, we have

$$\|\square_k (G(t_n)v - G(t)v)\|_{L^p} \lesssim \|\sigma_k \left(e^{it\omega(1+|\xi|^2)^{1/2}} - e^{it(1+|\xi|^2)^{1/2}} \right) \hat{v}(\xi)\|_{L^{p'}} \lesssim \left(e^{it\omega(1+|\xi|^2)^{1/2}} - e^{it(1+|\xi|^2)^{1/2}} \right) \hat{v}(\xi)\|_{L^{p'}} \to 0$$

as $t_n \to t$, by Lebesgue dominated convergence theorem. Since $\hat{v} \in \mathcal{S}^\Omega$, there exists only finite number of k such that $\square_k (G(t_n)v - G(t)v) \neq 0$, so we have $\|G(t_n)v - G(t)v\|_{M^{p,1}_s} \to 0$.

as $t_n \to t$. It follows that I and II tend to 0 as $t_n \to t$. For III, we note that

$$III \lesssim \left\| \int_0^{t_n} K(t_n - \tau)F(u(\tau))d\tau - \int_0^{t_n} K(t - \tau)F(u(\tau))d\tau \right\|_{M^{p,1}_s}$$

$$+ \left\| \int_0^{t_n} K(t - \tau)F(u(\tau))d\tau - \int_0^{t} K(t - \tau)F(u(\tau))d\tau \right\|_{M^{p,1}_s}$$

$$\lesssim \int_0^{t_n} \left\| (K(t_n - \tau) - K(t - \tau))F(u(\tau)) \right\|_{M^{p,1}_s} d\tau$$

$$+ \int_t^{t_n} \left\| K(t - \tau)F(u(\tau)) \right\|_{M^{p,1}_s} d\tau$$

$$= \tilde{I} + \tilde{II}.$$

For $\left\| (K(t_n - \tau) - K(t - \tau))F(u(\tau)) \right\|_{M^{p,1}_s} \lesssim \left\| F(u(\tau)) \right\|_{M^{p',1}_s} \lesssim \left\| u \right\|_{M^{3,p,1}_s}^3 \in L^r(\mathbb{R})$. Since $3 \leq r$, we have $L^r[0,t] \subset L^1[0,t]$ and so $\left\| u \right\|_{M^{3,p,1}_s}^3 \in L^1[0,t]$, hence

$$\left\| (K(t_n - \tau) - K(t - \tau))F(u(\tau)) \right\|_{M^{p,1}_s} \in L^1[0,t].$$

Since $\left\| (K(t_n - \tau) - K(t - \tau))F(u(\tau)) \right\|_{M^{p,1}_s} \to 0$ as $t_n \to t$, therefore we have $\tilde{I} \to 0$ as $t_n \to t$. Secondly as in the proof of Proposition 3.6 we obtain

$$\tilde{II} \lesssim \int_{t_n}^t (1 + |t - \tau|)^{-d(1/2 - 1/p)} \left\| F(u(\tau)) \right\|_{M^{p',1}_s} d\tau$$

$$\lesssim \int_{t_n}^t \left\| F(u(\tau)) \right\|_{M^{p',1}_s} d\tau \lesssim \int_{t_n}^t \left\| u \right\|_{M^{3,p,1}_s}^3 d\tau \to 0$$

as $t_n \to t$ as $\left\| u \right\|_{M^{3,p,1}_s} \in L^1([0,t])$. It follows that 4.1 holds.

We now prove that $u_t(t)$ exists and is continuous in $M^{p,1}_s$ sense. For $u_0, J^{-1}u_1 \in M^{p,1}_s(\mathbb{R}^d)$ (see Proposition 2.5), and since $G(t) = e^{it\omega^{1/2}} (\omega = I - \Delta)$, we should only deal with the derivative of $G(t)\psi(x)$ for $\psi \in M^{p,1}_s(\mathbb{R}^d)$ and $\int_0^t K(t - \tau)F(u(\tau))d\tau$. By Lemma 2.6 for every $\epsilon > 0$, there exists $v \in S^\Omega \cap M^{p,1}_s(\mathbb{R}^d)$ such that $\left\| \psi - v \right\|_{M^{p,1}_s} < \epsilon$. For the derivative of $G(t)\psi(x)$ at $t = t_3$ for $\psi \in M^{p,1}_s(\mathbb{R}^d)$, we have

$$\left\| \frac{G(t)\psi - G(t_3)\psi}{t - t_3} - i\omega^{1/2}G(t_3)\psi \right\|_{M^{p,1}_s} = \left\| \frac{G(t)\psi - G(t_3)\psi}{(t - t_3)\omega^{1/2}} - iG(t_3)\psi \right\|_{M^{p,1}_s}$$

$$\leq \left\| \frac{G(t)(\psi - v) - G(t_3)(\psi - v)}{(t - t_3)\omega^{1/2}} \right\|_{M^{p,1}_s}$$

$$+ \left\| \frac{G(t_3)v - G(t_3)(v)}{(t - t_3)\omega^{1/2}} \right\|_{M^{p,1}_s}$$

$$+ \left\| iG(t_3)(\psi - v) \right\|_{M^{p,1}_s}$$

$$= IV + V + VI.$$
For \(V \), by the Hausdorff-Young inequality and the Lebesgue dominated convergence theorem, we have
\[
\left\| \Box_t \left(\frac{G(t)(v) - G(t_3)(v)}{(t-t_3)\omega^{1/2}} - iG(t_3)v \right) \right\|_{L^p} \lesssim \left\| \sigma_k \left(\frac{e^{it\xi} - e^{it_3\xi}}{(t-t_3)\langle \xi \rangle} - i e^{it_3\xi} \right) \hat{v} \right\|_{L^{p'}} \\
\lesssim \rightarrow 0 \text{ as } t \rightarrow t_3.
\]

As \(v \in S^\Omega \cap M^{p,1}_s(\mathbb{R}^d) \), so there is only the finite number of \(k \) such that
\[
\left(\frac{G(t)(v) - G(t_3)(v)}{(t-t_3)\omega^{1/2}} - iG(t_3)v \right) \neq 0.
\]

Thus we get \(V \rightarrow 0 \) as \(t \rightarrow t_3 \), that is, \((G(t)v(x))_t = \iota\omega^{1/2}G(t)v(x) \) in \(M^{p,1}_{s-1}(\mathbb{R}^d) \) for \(v \in S^\Omega \cap M^{p,1}_s(\mathbb{R}^d) \). For \(IV \), by the Bernstein multiplier theorem, we have
\[
\left\| \Box_t \left(\frac{G(t)(\psi - v) - G(t_3)(\psi - v)}{(t-t_3)\omega^{1/2}} \right) \right\|_{L^p} \lesssim \| \psi - v \|_{L^p}.
\]

Using the almost orthogonality of modulation space, we have \(IV \lesssim \| \psi - v \|_{M^{p,1}_s} < \epsilon \). For \(VI \), by Proposition 2.8 [2], we have \(VI = \| iG(t_3)(\psi - v) \|_{M^{p,1}_s} \lesssim \| \psi - v \|_{M^{p,1}_s} < \epsilon \). Accordingly, for \(\psi \in M^{p,1}_s(\mathbb{R}^d) \),
\[
(4.2) \quad (G(t)\psi)_t = \iota\omega^{1/2}G(t)\psi \text{ in } M^{p,1}_s(\mathbb{R}^d).
\]

For the nonlinear part,
\[
\left\| \int_0^t K(t-\tau)F(u(\tau))d\tau - \int_0^{t_3} K(t_3-\tau)F(u(\tau))d\tau \right\|_{M^{p,1}_{s-1}} \lesssim \left\| \int_0^{t_3} (K(t-\tau) - K(t_3-\tau))F(u(\tau))d\tau \right\|_{M^{p,1}_{s-1}}
\]
\[
+ \left\| \int_{t_3}^t K(t-\tau)F(u(\tau))d\tau \right\|_{M^{p,1}_{s-1}} \lesssim \int_0^{t_3} \left\| \left(\frac{K(t-\tau) - K(t_3-\tau)}{t-t_3} - K'(t_3-\tau) \right) F(u) \right\|_{M^{p,1}_{s-1}} d\tau
\]
\[
+ \max_{\tau \in [t_3,t]} \left\| K(t-\tau)F(u(\tau)) \right\|_{M^{p,1}_{s-1}}.
\]

If \(\omega(t,x) \in C(I, M^{p,1}_s(\mathbb{R}^d)) \), then we have \(K(t)\omega(t,x) \in C(I, M^{p,1}_{s-1}(\mathbb{R}^d)) \). In fact taking advantage of [11,2] and the Lebesgue dominated convergence theorem, we can get
\[
\| K(t)\omega(t,x) - K(t_3)\omega(t_3,x) \|_{M^{p,1}_{s-1}} \leq \| (K(t) - K(t_3))\omega(t_3,x) \|_{M^{p,1}_{s-1}}
\]
\[
+ \| K(t)(\omega(t,x) - \omega(t_3,x)) \|_{M^{p,1}_{s-1}} \rightarrow 0 \text{ as } t \rightarrow t_3.
\]
Recall that \(F(u) \in C(\mathbb{R}, M_{s-1}^{p,1}(\mathbb{R}^d)) \) and apply Horton and the Lebesgue dominated convergence theorem, we can get
\[
\left(\int_0^t K(t - \tau)F(u(\tau))d\tau \right)'_{t=t_3} = \int_0^{t_3} K'(t_3 - \tau)F(u(\tau))d\tau \quad \text{in} \quad M_{s-1}^{p,1}(\mathbb{R}^d).
\]
Consequently,
\[
u_t(t) = -J^2K(t)u_0 + K'(t)u_1 - \int_0^t K'(t - \tau)F(u(\tau))d\tau \quad \text{in} \quad M_{s-1}^{p,1}(\mathbb{R}^d).
\]
Next, the proof of time continuity of \(u_t \) is similar to \(u \). It only needs to take care of the difference of smoothness and the action of the Bessel potential. Finally, we obtain \(u \in C(\mathbb{R}, M_{s-1}^{p,1}(\mathbb{R}^d)) \cap C^1(\mathbb{R}, M_{s-1}^{p,1}(\mathbb{R}^d)) \).

Proof of Corollary 7.2 Let
\[
2v_1(t) = u_0 + \frac{u_1}{i\omega^{1/2}} - \int_0^t \frac{G(-\tau)F(u(\tau))}{i\omega^{1/2}}d\tau
\]
and
\[
2v_2(t) = u_0 - \frac{u_1}{i\omega^{1/2}} + \int_0^t \frac{G(-\tau)F(u(\tau))}{i\omega^{1/2}}d\tau.
\]
For \(0 < s < t \), we have
\[
v_1(t) - v_1(s) = -\int_s^t \frac{G(-\tau)F(u(\tau))}{i\omega^{1/2}}d\tau.
\]
Since pair \((p, r)\) is Klein-Gordon admissible, we there exists \(\tilde{\beta} \) such that
\[
\frac{1}{\tilde{\beta}} + \frac{3}{r} = 1, \quad \tilde{\beta}d\left(\frac{1}{2} - \frac{1}{p}\right) > 1.
\]
By Proposition 3.3 and Hölder inequality, we have
\[
\|v_1(t) - v_1(s)\|_{M_{s-1}^{p,1}} \lesssim \int_s^t (1 + |\tau|)^{-d\left(\frac{1}{2} - \frac{1}{r}\right)}\|F(u(\tau))\|_{M_{s-1}^{p,1}}d\tau
\]
\[
\lesssim \int_s^t (1 + |\tau|)^{-d\left(\frac{1}{2} - \frac{1}{r}\right)}\|u\|_{M_{s-1}^{p,1}}^3d\tau
\]
\[
\lesssim \|(1 + |\tau|)^{-d\left(\frac{1}{2} - \frac{1}{r}\right)}\|_{L^{\beta}}\|u\|_{M_{s-1}^{p,1}}^3\|u\|_{M_{s-1}^{p,1}}^3\|_{L^{\beta/(\beta - 1)}}^2.
\]
Since \(\|u\|_{L^r([s,t], M_{s-1}^{p,1})} \leq M \), we have
\[
\|v_1(t) - v_1(s)\|_{M_{s-1}^{p,1}} \lesssim \|u\|_{L^r([s,t], M_{s-1}^{p,1})}^3 \rightarrow 0 \quad \text{as} \quad t, s \rightarrow \infty.
\]
This implies that \(v_1(t) \) is Cauchy in \(M_{s-1}^{p,1}(\mathbb{R}^d) \) as \(t \rightarrow \infty \). Denote \(v_1^+ \) to be the limit:
\[
2v_1^+ = \lim_{t \rightarrow +\infty} 2v_1(t)
\]
\[
= u_0 + \frac{u_1}{i\omega^{1/2}} - \int_0^t \frac{G(-\tau)F(u(\tau))}{i\omega^{1/2}}d\tau
\]
and
\[2v^+ = \lim_{t \to +\infty} 2v_1(t) \]
\[= u_0 - \frac{u_1}{i \omega^{1/2}} + \int_0^t \frac{G(-\tau)F(u(\tau))}{i \omega^{1/2}} d\tau. \]

Similarly, we obtain
\[v^+_2(t) = \lim_{t \to \infty} v_2(t) \quad \text{and} \quad v^-_2(t) = \lim_{t \to \infty} v_2(t). \]

Recall that \(v^\pm = G(t)v_1^\pm + G(t)v_2^\pm \), we note that
\[
\| u(t) - v^+ \|_{M^{p,1}_x} = \left\| \int_t^\infty K(t - \tau)F(u(\tau))d\tau \right\|_{M^{p,1}_x}
\leq \|(1 + |\tau|)^{-d/2 - \frac{1}{p}}\|_{L^{\beta}} \| u \|^3_{M^{p,1}_x} \| L^{r/3,(t,\infty),M^{p,1}_x} \|
\leq \| u \|^3_{L^{r,\infty}(L^{p,1})} \to 0 \quad \text{as} \quad t \to \infty.
\]

So is \(v^- \) respectively. In fact, in our proof we also have \(v_1^+ \in M^{p,1}_x(\mathbb{R}^d) \). \(\square \)

Proof of Theorem 1.3. Equation (1.2) can be written in the equivalent form

\[\frac{\partial}{\partial t} J = \frac{\partial}{\partial t} \int_{\mathbb{R}^d} \tilde{F}(\xi) |\xi|^2 \hat{u}(\xi) d\xi = 0. \]

By using Proposition 2.9 for the first two inequalities below, and Propositions 3.2 and 3.8 for the last inequality, we can write

\[
\begin{align*}
\| \tilde{F}(\xi) |\xi|^2 \hat{u}(\xi) d\xi \|_{X} &\leq C_T \| u \|_{X}, \\
\| \tilde{F}(\xi) |\xi|^2 \hat{u}(\xi) d\xi \|_{X} &\leq C_T \| u \|_{X}, \\
\| \int_0^T (V_\gamma * |u|^2)(\tau)u(\tau)d\tau \|_{X} &\leq T \| u \|^3_{X},
\end{align*}
\]

where \(C_T \) is some constant times \((1 + T^2)^{d/4} \), as before. Thus the standard contraction mapping argument can be applied to \(J \) to complete the proof. This completes the proof of Theorem 1.3 \(\square \). Taking Propositions 2.8, 3.8 and Corollary 3.3 and Lemma 3.4 into account, the standard contraction mapping argument give the proof of Theorem 1.3 \(\square \).

5. **Proofs of Theorems 1.5, 1.8 and 1.9**

In order to prove Theorem 1.8, first we shall prove following Strichartz type estimates for Schrödinger admissible pairs. Specifically, we have

Proposition 5.1. Let \(F(u) = (V_\gamma * |u|^2)u, p \in (2, 3), \frac{1}{p} + \frac{2}{d} - 1 = \frac{1}{2p'}, \) and pair \((p, r) \) is Schrödinger admissible. Then we have

\[
\left\| \int_0^t S(t - \tau)F(u(\tau))d\tau \right\|_{L^r_t(L^{p'}_x)} \lesssim \| F(u) \|_{L_t^{r/3}(\mathbb{R}^{d},M^{p',1}_x)} \lesssim \| u \|^3_{L^{3}(\mathbb{R}^{d},M^{p,1}_x)}.\]
Proof. By general Minkowski inequality, Proposition 2.7, we have
\[
\left\| \int_0^t S(t - \tau)F(u(\tau))d\tau \right\|_{L^r_t(\mathbb{R}, M_{p,1}^p)} \lesssim \left\| \int_0^t \|S(t - \tau)F(u(\tau))\|_{M_{p,1}^p}d\tau \right\|_{L^r_t(\mathbb{R})} \\
\lesssim \left\| \int_0^t (1 + |t - \tau|)^{-d(1/2 - 1/p)}\|F(u)\|_{M_{p,1}^p}d\tau \right\|_{L^r_t(\mathbb{R})} \\
\lesssim \left\| \int_0^t (1 + |t - \tau|)^{-d(1/2 - 1/p)}h(\tau)d\tau \right\|_{L^r_t(\mathbb{R})} \\
\lesssim \left\| g * h \right\|_{L^r_t},
\]
where \(h(\tau) = \|F(u)\|_{M_{p,1}^p}, g(t) = (1 + |t|)^{-d(1/2 - 1/p)}. \) We divide Schrödinger admissible pairs (see (1.6)) into several cases.

Case I: \(\frac{1}{\beta} < d \left(\frac{1}{2} - \frac{1}{p} \right) \wedge 1. \) In this case we have
\[
d\beta \left(\frac{1}{2} - \frac{1}{p} \right) > 1.
\]
Using Young inequality and Hölder’s inequality we have
\[
\left\| \int_0^t S(t - \tau)F(u(\tau))d\tau \right\|_{L^r_t(\mathbb{R}, M_{p,1}^p)} \lesssim \|g\|_{L^\beta} \|F(u)\|_{L^{r/3}(\mathbb{R}, M_{p,1}^p(\mathbb{R}^d))} \\
\lesssim \|u\|_{L^3_t(\mathbb{R}, M_{p,1}^p(\mathbb{R}^d))}^3.
\]

Case II: \(\frac{1}{\beta} = 1 \wedge d \left(\frac{1}{2} - \frac{1}{p} \right), d \left(\frac{1}{2} - \frac{1}{p} \right) > 1. \) In this case, we can get \(\beta = 1 \) and \(r = \infty. \) Obviously
\[
d\beta \left(\frac{1}{2} - \frac{1}{p} \right) > 1,
\]
and therefore, we have the desired result by the same way as Case I.

Case III: \(\frac{1}{\beta} = 1 \wedge d \left(\frac{1}{2} - \frac{1}{p} \right), d \left(\frac{1}{2} - \frac{1}{p} \right) < 1. \) In this case we have
\[
d\beta \left(\frac{1}{2} - \frac{1}{p} \right) = 1.
\]
Since pair \((p, r) \) is Schrödinger admissible, we have
\[
\frac{1}{r} = \frac{3}{r} - \frac{1 - d(1/2 - 1/p)}{1}
\]
and \(r/3 > 1. \) By Hardy-Littlewood-Sobolev inequality in one dimension, we have
\[
\left\| \int_0^t K(t - \tau)F(u(\tau))d\tau \right\|_{L_t^r(\mathbb{R}, M_{p,1}^p)} \lesssim \|g * h\|_{L_t^r(\mathbb{R})} \\
\lesssim \left\| \|F(u)\|_{M_{p,1}^p} \right\|_{L_t^{r/3}} \\
\lesssim \|F(u)\|_{L_t^{r/3}(\mathbb{R}, M_{p,1}^p)} \lesssim \|u\|_{L_t^r(\mathbb{R}, M_{p,1}^p)}^3.
\]
Case IV: \(\frac{1}{d} = 1 \land d \left(\frac{1}{2} - \frac{1}{p} \right), d \left(\frac{1}{2} - \frac{1}{p} \right) = 1 \). In this case

\[
(p, r) = \left(\frac{2d}{d - 2}, \infty \right)
\]

which is not Schrödinger admissible.

\[
\text{Lemma 5.2. Let } F(u) = (V_\gamma \ast |u|^2)u, p \in (2, 3), \frac{1}{p} + \frac{2}{d} - 1 = \frac{1}{2p} \text{ and pair } (p, r) \text{ is Schrödinger admissible. Then we have}
\]

\[
\left\| \int_0^t S(t - \tau)[F(u(\tau)) - F(v(\tau))]d\tau \right\|_{L^r_t(\mathbb{R}, M^3)} \lesssim \left(\|u\|_{L^r_t(\mathbb{R}, M^3)}^2 + \|u\|_{L^r_t(\mathbb{R}, M^3)}\|v\|_{L^r_t(\mathbb{R}, M^3)} + \|v\|_{L^r_t(\mathbb{R}, M^3)}^2 \right) \|u - v\|_{L^r_t(\mathbb{R}, M^3)}^3.
\]

\[
\text{Proof. Using Propositions 2.24 and 5.1, Lemma 2.24 (1) and Hölder inequality, the proof can be produced. We omit the details.}
\]

Proof of Theorem 1.3 For \(\alpha = 2 \), we may rewrite equation (1.3) in the following form

\[
u(t) = S(t)u_0 - \int_0^t S(t - \tau)F(u(\tau))d\tau =: \mathcal{J}(u)
\]

where \(S(t) = e^{-it\Delta} \) and \(F(u) = (V_\gamma \ast |u|^2)u \). Denote \(X = L^r(\mathbb{R}, M^3(\mathbb{R}^d)) \). For \(\delta > 0 \), we put \(B_\delta = \{ u \in X : \|u\|_X \leq \delta \} \) which is the closed ball of radius \(\delta \), and centered at the origin in \(X \). Since \(rd \left(\frac{1}{2} - \frac{1}{p} \right) > 1 \), we have \((1 + |t|)^{-d(\frac{1}{2} - \frac{1}{p})} \in L^r(\mathbb{R}) \). Now by Proposition 2.7, we have

\[
\|S(t)u_0\|_X \lesssim \left((1 + |t|)^{-d(\frac{1}{2} - \frac{1}{p})}\|u_0\|_{M^{2,1}_p} \right)_{L^r} \lesssim \|u_0\|_{M^{2,1}_p}.
\]

By Proposition 5.1, we have

\[
\left\| \int_0^t S(t - \tau)F(u(\tau))d\tau \right\|_X \lesssim \|u\|_{M^{2,1}_p}^3.
\]

Thus we have

\[
\|\mathcal{J}(u)\|_X \lesssim \|u_0\|_{M^{2,1}_p} + \|u\|_{M^{2,1}_p}^3.
\]

By Lemma 5.2 for any \(u, v \in B_\delta \), we have

\[
\|\mathcal{J}u - \mathcal{J}v\|_X \lesssim (\|u\|_X^2 + \|u\|_X\|v\|_X + \|v\|_X^2) \|u - v\|_X.
\]

If we assume that \(\delta > 0 \) is sufficiently small, then \(\mathcal{J} : X \to X \) is a strict contraction. Therefore \(\mathcal{J} \) has a unique fixed point and we have \(u \in L^r(\mathbb{R}, M^{2,1}_p(\mathbb{R}^d)) \) and \(\|u\|_{L^r(\mathbb{R}, M^{2,1}_p(\mathbb{R}^d))} \lesssim \|u_0\|_{M^{2,1}_p} \). We want to show that if \(f \in M^{2,1}_p(\mathbb{R}^d) \) then \(S(t)f \in C(\mathbb{R}, M^{2,1}_p(\mathbb{R}^d)) \). Let \(t > 0 \) and \(t_n \to t \). By Lemma 2.6, Proposition 2.7 and the triangle inequality, we have

\[
\|S(t)f - S(t_n)f\|_{M^{2,1}_p} \leq \|S(t)f - S(t)g\|_{M^{2,1}_p} + \|S(t)g - S(t_n)g\|_{M^{2,1}_p} + \|S(t_n)f - S(t_n)g\|_{M^{2,1}_p}.
\]
We only need to treat the case $f \in S^\alpha$. Using Lemma 2.1[1] and the Hausdorff-Young inequality, we have

$$\|\Box_k (S(t_n) - S(t)) f\|_{L^p} \lesssim \|(S(t_n) - S(t)) f\|_{L^p} \lesssim \|(e^{it_n|x|^2} - e^{it|x|^2}) \hat{f}\|_{L^p} \to 0$$

as $t_n \to t$ by Lebesgue dominated convergence theorem. Since $f \in S^\alpha$, there exist only finite number of k such that

$$\Box_k (S(t_n) - S(t)) f \neq 0$$

and thus we have

$$\|S(t) f - S(t_n) f\|_{M^{p,1}} \to 0 \text{ as } t_n \to t.$$

We write

$$I = \int_0^t S(t - \tau) F(u(\tau)) d\tau - \int_0^{t_n} S(t_n - \tau) F(u(\tau)) d\tau$$

$$= \left(\int_0^{t_n} S(t - \tau) F(u(\tau)) d\tau - \int_0^{t_n} S(t_n - \tau) F(u(\tau)) d\tau\right)$$

$$+ \left(\int_0^t S(t - \tau) F(u(\tau)) d\tau - \int_0^{t_n} S(t - \tau) F(u(\tau)) d\tau\right)$$

$$= I_1 + I_2.$$

For I_2, we have

$$\|I_2\|_{M^{p,1}} \lesssim \int_0^{t_n} \|S(t - \tau) F(u(\tau))\|_{M^{p,1}} d\tau$$

$$\lesssim \int_0^{t_n} (1 + |t - \tau|)^{-d(1/2 - 1/p)} \|F(u(\tau))\|_{M^{p,1}} d\tau$$

$$\lesssim \int_0^{t_n} \|u\|_{M^{p,1}}^3 d\tau$$

$$\lesssim |t - t_n|^2 \|u\|_{L^p([0, t], M^{p,1})}^3 \to 0.$$

For I_1, we have

$$I_1 \lesssim \int_0^{t_n} \|S(\tau)(S(t_n) - S(t)) F(u(\tau))\|_{M^{p,1}} d\tau$$

$$\lesssim \int_I \|(S(t_n) - S(t)) F(u(\tau))\|_{M^{p,1}} d\tau.$$

We note that $\|(S(t_n) - S(t)) F(u(\tau))\|_{M^{p,1}} \lesssim \|F(u(\tau))\|_{M^{p,1}}^3$ and recalling $r \geq 3$ and $u \in L^r(\mathbb{R}, M^{p,1}(\mathbb{R}^d))$, we have $\|u(\tau)\|_{M^{p,1}}^3 \in L^1[0, t]$. Since $F(u) \in M^{p,1}_s(\mathbb{R}^d)$, for every $\tau \in [0, t]$ we have $\|(S(t_n) - S(t)) F(u(\tau))\|_{M^{p,1}} \to 0$. \hfill \square

Proof of Corollary 1.6 We only prove the statement for u_+, since the proof for u_- follows similarly. Let us first construct the scattering state $u_+(0)$. For $t > 0$ define $v(t) = e^{-it\Delta} u(t)$. We will show that $v(t)$ converges in $M^{p,1}_s(\mathbb{R}^d)$ as $t \to \infty$, and define u_+ to be the limit.
Indeed from Duhamel’s formula we have

\(v(t) = u_0 - \int_0^t e^{-it\Delta} F(u(\tau)) d\tau \) \quad \text{(F(u) = (V_x | u|^2)u)}.

Therefore, for \(0 < s < t\), we have

\[v(t) - v(s) = -i \int_s^t e^{-it\Delta} F(u(\tau)) d\tau. \]

Since pair \((p, r)\) is a Schrödinger admissible, there exists \(\bar{\beta}\) such that

\[\frac{1}{\beta} + \frac{3}{r} = 1, \quad \bar{\beta}d\left(\frac{1}{2} - \frac{1}{p}\right) > 1. \]

By Proposition 3.6 and Hölder inequality, we have

\[\|v(t) - v(s)\|_{M_{p,1}^\kappa} \lesssim \int_s^t (1 + |\tau|)^{-d\left(\frac{1}{2} - \frac{1}{p}\right)} \|F(u(\tau))\|_{M_{p',1}^\kappa} d\tau \]
\[\lesssim \int_s^t (1 + |\tau|)^{-d\left(\frac{1}{2} - \frac{1}{p}\right)} \|u\|_{M_{p,1}^\kappa}^3 d\tau \]
\[\lesssim \|1 + |\tau|^{-d\left(\frac{1}{2} - \frac{1}{p}\right)} \|_{L^{\beta}} \|u\|_{M_{p,1}^\kappa}^3 \|_{L^{r/3}([s, t], M_{p,1}^\kappa)} \]
\[\lesssim \|u\|_{L^r([s, t], M_{p,1}^\kappa)}^3. \]

Since \(\|u\|_{L^r(\mathbb{R}, M_{p,1}^\kappa)} \leq M\), we have

\[\|v(t) - v(s)\|_{M_{p,1}^\kappa} \lesssim \|u\|_{L^r([s, t], M_{p,1}^\kappa)}^3 \to 0 \text{ as } t, s \to \infty. \]

This implies that \(v(t)\) is Cauchy in \(M_{s,1}^{p,1}(\mathbb{R}^d)\) as \(t \to \infty\). We define \(u_+\) to be the limit. In view of (5.1), we see that

\[u_+(0) = u_0 - \int_0^\infty e^{-it\Delta} F(u(\tau)) d\tau \]
and thus

\[u_+(t) = e^{it\Delta} u_0 - \int_0^\infty e^{i(t-\tau)\Delta} F(u(\tau)) d\tau. \]

We note that

\[\|u(t) - e^{it\Delta} u_+\|_{M_{p,1}^\kappa} = \left\| \int_t^\infty S(t - \tau) F(u(\tau)) d\tau \right\|_{M_{p,1}^\kappa} \]
\[\lesssim \|1 + |\tau|^{-d\left(\frac{1}{2} - \frac{1}{p}\right)} \|_{L^\beta} \|u\|_{M_{p,1}^\kappa}^3 \|_{L^{r/3}([t, \infty], M_{p,1}^\kappa)} \]
\[\lesssim \|u\|_{L^r([t, \infty], M_{p,1}^\kappa)}^3 \to 0 \text{ as } t \to \infty. \]

In fact, in our proof we also have \(e^{it\Delta} u_0, e^{it\Delta} u_+ \in M_{s,1}^{p,1}(\mathbb{R}^d)\). \(\square\)

In order to prove Theorem 1.8 first we recall following

Lemma 5.3. Let \(V \in M^{\infty,1}(\mathbb{R}^d)\), and \(1 \leq p, q \leq 2\). For \(f \in M^{p,q}(\mathbb{R}^d)\), we have

\[\|(V * |f|^2) f\|_{M^{p,q}} \lesssim \|f\|_{M^{p,q}}^3, \]

and

\[\|(V * |f|^2) f - (V * |g|^2) g\|_{M^{p,q}} \lesssim (\|f\|_{M^{p,q}}^2 + \|f\|_{M^{p,q}} \|g\|_{M^{p,q}} + \|g\|_{M^{p,q}}^2) \|f - g\|_{M^{p,q}}. \]
Proof of Theorem 1.8. Recall (1.5) can be written in the equivalent form

\[u(t) = U(t) u_0 - i \int_0^t U(t - \tau) \[(V \ast |u|^2) u]\, d\tau =: J(u). \]

We first prove the local existence on \([0, T]\) for some \(T > 0\). By Minkowski’s inequality for integrals, Proposition 2.7 and Lemma 2.3, we obtain

\[\|J u\|_{C([0, T], M^{p,q})} \leq C_T \left(\|u_0\|_{M^{p,q}} + cT \|u\|_{M^{p,q}}^3 \right) \]

for some universal constant \(c\). By Proposition 2.7 and the above inequality, we have

\[\|J u\|_{C([0, T], M^{p,q})} \leq C_T \left(\|u_0\|_{M^{p,q}} + cT \|u\|_{M^{p,q}}^3 \right) \]

where \(C_T = (1 + |T|)^d a - \frac{1}{2}\). For \(M > 0\), put

\[B_{T, M} = \{ u \in C([0, T], M^{p,q}(\mathbb{R}^d)) : \|u\|_{C([0, T], M^{p,q})} \leq M \}, \]

which is the closed ball of radius \(M\), and centered at the origin in \(C([0, T], M^{p,q}(\mathbb{R}^d))\). Next, we show that the mapping \(J\) takes \(B_{T, M}\) into itself for suitable choice of \(M\) and small \(T > 0\). Indeed, if we let, \(M = 2C_T\|u_0\|_{M^{p,q}}\) and \(u \in B_{T, M}\), it follows that

\[\|J u\|_{C([0, T], M^{p,q})} \leq \frac{M}{2} + cC_T T M^3. \]

We choose a \(T\) such that \(cC_T T M^2 \leq 1/2\), that is, \(T \leq \tilde{T}(\|u_0\|_{M^{p,q}})\) and as a consequence we have

\[\|J u\|_{C([0, T], M^{p,q})} \leq \frac{M}{2} + \frac{M}{2} = M, \]

that is, \(J u \in B_{T, M}\). By Lemma 5.3 and the arguments as before, we obtain

\[\|J u - J v\|_{C([0, T], M^{p,q})} \leq \frac{1}{2} \|u - v\|_{C([0, T], M^{p,q})}. \]

Therefore, using Banach’s contraction mapping principle, we conclude that \(J\) has a fixed point in \(B_{T, M}\) which is a solution of (1.5).

Indeed, the solution constructed before is global in time: in view of the conservation of \(L^2\) norm, Proposition 2.4 and Lemma 2.2, we have

\[\|u(t)\|_{M^{p,q}} \lesssim C_T \left(\|u_0\|_{M^{p,q}} + \int_0^t \|V \ast |u|^2\|_{M^{\infty, 1}} \|u(\tau)\|_{M^{p,q}} d\tau \right) \]

\[\lesssim C_T \left(\|u_0\|_{M^{p,q}} + \int_0^t \|V\|_{M^{\infty, 1}} \|u(t)\|_{M^{1, \infty}} \|u(\tau)\|_{M^{p,q}} d\tau \right) \]

\[\lesssim C_T \left(\|u_0\|_{M^{p,q}} + \int_0^t \|u(t)\|^2_{L^1} \|u(\tau)\|_{M^{p,q}} d\tau \right) \]

\[\lesssim C_T \left(\|u_0\|_{M^{p,q}} + \|u_0\|^2_{L^2} \int_0^t \|u(\tau)\|_{M^{p,q}} d\tau \right) \]

and by Gronwall inequality, we conclude that \(\|u(t)\|_{M^{p,q}}\) remains bounded on finite time intervals. This completes the proof. \(\square\)
Proof of Theorem 1.9. Recall (1.5) can be written in the equivalent form

\[u(\cdot, t) = U(t)u_0 - i \int_0^t U(t - \tau)[(V * |u|^2)u] \, d\tau =: J(u). \]

By using Proposition 2.7 and Corollary 3.3 we can write

\[
\begin{aligned}
&\left\{ \begin{array}{l}
\|U(t)u_0\|_{M_t^{p,1}} \leq C_T \|u_0\|_{M_t^{p,1}}, \\
\|\int_0^t U(t - \tau)[(V * |u|^2)(\tau)u(\tau)] d\tau\|_X \leq TC_T \|u\|_{M_t^{p,1}}^3,
\end{array} \right.
\end{aligned}
\]

where \(C_T\) is some constant times \((1 + T^2)^{d/4}\), as before. Thus the standard contraction mapping argument can be applied to \(J\) to complete the proof. \(\square\)

6. LOCAL WELL-POSEDNESS WITH POTENTIAL \(V \in \mathcal{F}L^q\) OR \(M^{1,\infty}\) OR \(M^{\infty,1}\)

We consider generalized Klein-Gordon equation with Hartree type linearity:

\[u_{tt} + (I - \Delta)u = (V * |u|^{2k})u, \quad u(0) = u_0, \quad u_t(0) = u_1 \quad (k \in \mathbb{N}). \]

When \(k = 1\), equation (6.1) is coincides with (1.1).

Theorem 6.1 (Local well-posedness). Let \(i = 0, 1\).

1. Assume that \(V \in \mathcal{F}L^q(\mathbb{R}^d)(1 < q < \infty)\) and \(u_i \in M^{1,1}(\mathbb{R}^d)\) Then there exists \(T^* = T^*(\|u_i\|_{M_t^{1,1}})\) such that (6.1) has a unique solution \(u \in C([0, T^*), M^{1,1}(\mathbb{R}^d))\).

2. Assume that \(V \in \mathcal{F}L^q(\mathbb{R}^d)\) with \(1 < q < 2\), and \(u_i \in M^{p, \frac{2q}{q-1}}(\mathbb{R}^d)\) \((1 \leq p \leq 2, q < r < \infty)\). Then there exists \(T^* = T^*(\|u_i\|_{M_t^{p, \frac{2q}{q-1}}})\) such that (1.1) has a unique solution \(u \in C([0, T^*), M^{p, \frac{2q}{q-1}}(\mathbb{R}^d))\).

3. Assume that \(V \in M^{\infty,1}(\mathbb{R}^d)\) and \(u_i \in M^{p,q}(\mathbb{R}^d)\). Then there exists \(T^* = T^*(\|u_i\|_{M_t^{p,q}})\) such that (1.1) has a unique solution \(u \in C([0, T^*), M^{p,q}(\mathbb{R}^d))\).

4. Assume that \(V \in M^{\infty,1}(\mathbb{R}^d)\) and \(u_i \in M^{p,q}(\mathbb{R}^d)\) \((1 \leq p, q \leq 4, 1 \leq q \leq \frac{2k-2}{2k-1}, 1 < k \in \mathbb{N})\). Then there exists \(T^* = T^*(\|u_i\|_{M_t^{p,q}})\) such that (6.1) has a unique solution \(u \in C([0, T^*), M^{p,q}(\mathbb{R}^d))\).

5. Assume that \(V \in M^{1,\infty}(\mathbb{R}^d)\) and \(u_i \in M^{p,1}(\mathbb{R}^d)\) \((1 \leq p \leq \infty)\). Then there exists \(T^* = T^*(\|u_i\|_{M_t^{p,1}})\) such that (1.1) has a unique solution \(u \in C([0, T^*), M^{p,q}(\mathbb{R}^d))\).

Proof. Taking Proposition 2.8 and [6, Lemmas 4.8 and 4.9] and [21] Lemmas 4.2 and 4.3] into account, the standard fixed point argument gives the desired result. We will omit the details. \(\square\)

Remark 6.2. The analogue of Theorem 6.1 is true for equations (1.2) and (1.5).

Acknowledgments. DGB is very grateful to Professor Kasso Okoudjou for hosting and arranging research facilities at the University of Maryland. DGB is thankful to SERB Indo-US Postdoctoral Fellowship (2017/142-Divyang G Bhimani) for the financial support. DGB is also thankful to DST-INSPIRE and TIFR CAM for the academic leave.
REFERENCES

1. Wang Baoxiang, Zhao Lifeng, and Guo Boling, Isometric decomposition operators, function spaces $e_{p,q}^\lambda$ and applications to nonlinear evolution equations, Journal of Functional Analysis 233 (2006), no. 1, 1–39.

2. Árpád Bényi, Karlheinz Gröchenig, Kasso A Okoudjou, and Luke G Rogers, Unimodular fourier multipliers for modulation spaces, Journal of Functional Analysis 246 (2007), no. 2, 366–384.

3. Árpád Bényi and Kasso A Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces, Bulletin of the London Mathematical Society 41 (2009), no. 3, 549–558.

4. Divyang G Bhimani, Global well-posedness for fractional Hartree equation on modulation spaces and fourier algebra, arXiv:1810.04076.

5. , The cauchy problem for the Hartree type equation in modulation spaces, Nonlinear Analysis 130 (2016), 190–201.

6. , The nonlinear Schrödinger equations with harmonic potential in modulation spaces, arXiv preprint arXiv:1810.06556 (2018).

7. Divyang G Bhimani and PK Ratnakumar, Functions operating on modulation spaces and nonlinear dispersive equations, Journal of Functional Analysis 270 (2016), no. 2, 621–648.

8. Thierry Cazenave, Semilinear Schrödinger equations, vol. 10, American Mathematical Soc., 2003.

9. Jiecheng Chen, Dashan Fan, and Lijing Sun, Asymptotic estimates for unimodular fourier multipliers on modulation spaces, Discrete & Continuous Dynamical Systems-A 32 (2012), no. 2, 467–485.

10. JieCheng Chen, Qiang Huang, and XiangRong Zhu, Non-integer power estimate in modulation spaces and its applications, Science China Mathematics 60 (2017), no. 8, 1443–1460.

11. Xing Cheng and Yanfang Gao, Small data global well-posedness for the nonlinear wave equation with nonlocal nonlinearity, Mathematical Methods in the Applied Sciences 36 (2012), no. 3, 99–112.

12. Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, and Tohru Ozawa, On the cauchy problem of fractional schrödinger equation with hartree type nonlinearity, Funkcialaj Ekvacioj 56 (2013), no. 2, 193–224.

13. Elena Cordero and Fabio Nicola, Remarks on fourier multipliers and applications to the wave equation, Journal of Mathematical Analysis and Applications 353 (2009), no. 2, 583–591.

14. Hans G Feichtinger, Modulation spaces on locally compact abelian groups, Universität Wien. Mathematisches Institut, 1983.

15. Karlheinz Gröchenig, Foundations of time-frequency analysis, Springer Science & Business Media, 2013.

16. Weichao Guo and Jiecheng Chen, Stability of nonlinear Schrödinger equations on modulation spaces, Frontiers of Mathematics in China 9 (2014), no. 2, 275–301.

17. Kunio Hidano, Small data scattering and blow-up for a wave equation with a cubic convolution, Funkcialaj Ekvacioj. Serio Internacia 43 (2000), no. 3, 559–588.

18. Tomoya Kato et al., Solutions to nonlinear higher order schrödinger equations with small initial data on modulation spaces, Advances in Differential Equations 21 (2016), no. 3/4, 201–234.

19. Masaharu Kobayashi and Mitsuru Sugimoto, The inclusion relation between sobolev and modulation spaces, Journal of Functional Analysis 260 (2011), no. 11, 3189–3208.

20. Ramesh Manna, Modulation spaces and non-linear Hartree type equations, Nonlinear Analysis 162 (2017), 76–90.

21. , The cauchy problem for non-linear higher order Hartree type equation in modulation spaces, J Fourier Anal Appl, https://doi.org/10.1007/s00041-018-9629-z (2018), 1–31.

22. G Perla Menzala and Walter A Strauss, On a wave equation with a cubic convolution, Journal of Differential Equations 43 (1982), no. 1, 93–105.

23. Changxing Miao, Guixiang Xu, and Lifeng Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data, Journal of Functional Analysis.

24. Changxing Miao and Junyong Zhang, On global solution to the Klein–Gordon–Hartree equation below energy space, Journal of Differential Equations 250 (2011), no. 8, 3418–3447.

25. Changxing Miao, Junyong Zhang, and Jiqiang Zheng, Scattering theory for the radial $H^{1/2}−$critical wave equation with a cubic convolution, Journal of Differential Equations 259 (2015), no. 12, 7199–7237.

26. Changxing Miao and Jiqiang Zheng, Energy scattering for a Klein–Gordon equation with a cubic convolution, Journal of Differential Equations 257 (2014), no. 6, 2178–2224.
27. Kiyoshi Mochizuki, *On small data scattering with cubic convolution nonlinearity*, Journal of the Mathematical Society of Japan **41** (1989), no. 1, 143–160.

28. Michael Ruzhansky, Mitsuru Sugimoto, and Baoxiang Wang, *Modulation spaces and nonlinear evolution equations*, Evolution equations of hyperbolic and Schrödinger type, Springer, 2012, pp. 267–283.

29. Kimitoshi Tsutaya, *Scattering theory for the wave equation of a Hartree type in three space dimensions*, Discrete & Continuous Dynamical Systems-A **34** (2014), no. 5, 2261–2281.

30. Baoxiang Wang and Henryk Hudzik, *The global cauchy problem for the NLS and NLKG with small rough data*, Journal of Differential Equations **232** (2007), no. 1, 36–73.

31. Baoxiang Wang, Zhaohui Huo, Zihua Guo, and Chengchun Hao, *Harmonic analysis method for nonlinear evolution equations*, I, World Scientific, 2011.

32. Guoping Zhao, Jiecheng Chen, and Weichao Guo, *Klein-Gordon equations on modulation spaces*, Abstract and Applied Analysis, vol. 2014, Hindawi, 2014.

Department of Mathematics, University of Maryland, College Park, MD 20742

E-mail address: dbhimani@math.umd.edu