Preliminary data on the effect of semi-synthetic baits for Noctuidae (Lepidoptera) on the non-target Lepidoptera species

Antal Nagy1 – István Szarukán1 – Ferenc Gém1 – Rita Nyitrai1 – Bence Füsti-Molnár1 – Attila Némerth1 – Lajos Kozák2 – Attila Molnár3 – Krisztián Katona4 – Szabolcs Szanyi5 – Zoltán Varga5 – Miklós Tóth6

1Institute of Plant Protection, University of Debrecen, Hungary
2Department of Nature Conservation Zoology and Game Management, University of Debrecen, Hungary
3Department of Biology and Chemistry, Ferenc Rákóczi II. Transcarpathian Hungarian Institute, Beregszász, Ukraine
4Faculty of Biology, Uzhhorod National University, Uzhhorod, Ukraine
5Department of Evolutionary Zoology, University of Debrecen, Hungary
6Plant Protection Institute, CAR HAS, Budapest, Hungary

nagyanti@agr.unideb.hu

SUMMARY

Noctuidae are one of the most important Lepidoptera groups containing dangerous pest species. Monitoring and detection of these pest species is routinely performed by traps baited with sex-pheromones. Baits that attract both males and females were developed for improved pest management. First the effectiveness of different synthetic compounds was evaluated. We also tested semi-synthetic baits that contained both synthetic and natural components (wine and beer). These were more attractive for moths considering species richness and abundance. Disadvantage of this increased effectiveness is that the traps catch more non target, rare and even protected species. In this study we analysed the effect of semi-synthetic baits developed for Noctuid moths containing wine on other non-target Lepidopterans. In the six sampling sites traps caught 17158 individuals of 183 Lepidoptera species. The number of Noctuidae species was 124, while their proportion was 84.4%. The traps caught 813 individuals of 9 protected and 20 valuable species, which was only 4.7% of all Lepidopterans. In contrast the mean proportion of 33 dangerous and potential pest species was 31.3% (5375 individuals). Number and abundance of both protected and pest species were affected by landscape structure. The risks of catching non-target species was higher in species rich natural and semi-natural landscape. In homogenous arable lands the number and proportion of valuable Lepidopterans was not significant.

Keywords: pest monitoring, food attractants, loss of biodiversity, semi-synthetic baits

INTRODUCTION

Noctuidae is one of the most important families of Lepidoptera because of several dangerous and economically important pest species. The monitoring of these pests, which is an important part of the IPM (Integrated Pest Management) strategy against them, is generally performed by different trapping methods. In the last decades, widely used sex pheromone-baited traps have replaced the light traps used before. These baited traps can easily be used and are very effective and species specific, but lure only male moths. However, data of females are more valuable for pest control decisions, so the development of female catching baits have been ongoing since the 1970’s (Creighton et al., 1973; Cantelo and Jacobson, 1979; Landolt, 2000; Landolt and Alfaro, 2001; Tóth et al., 2010). The effectiveness of several synthetic compounds (e.g. phenylacetaldehyde, isoamyl-alcohol and isobutanol in combination with acetic acid) were proved to be effective for Noctuid moths. The effectiveness of these synthetic baits can be increased with wine and beer as natural additives. These ‘semi-synthetic’ baits lure more species and more individuals than the synthetic ones (Nagy et al., 2014; Tóth et al., 2015). These synthetic and semi-synthetic baits are more general attractants than species specific pheromones. Using these traps, several important pest species can be monitored in the same time minimizing sampling effort (Tóth et al., 2010). The remarkable disadvantage of the lack of specificity is the risk of catching non-target and even rare or protected species. In some cases, even the more specific traps baited with sex pheromone can also catch non target species (Olenici et al., 2007), but the probability of non-target catches might be much higher in case of traps baited with feeding attractants.

In the present study, the effect of semi-synthetic baits, consisting of isoamyl alcohol, acetic acid and wine, was analysed on the non-pest, non-target Lepidoptera species. We used data from different studies, which aimed to develop ‘bisex’ (attractive for both males and females) baits or faunistic analysis of natural and semi-natural habitats. Our goal was to determine the amount of the non-target effect and provide a basis for further investigations.
MATERIAL AND METHODS

In the present analysis we used data of different studies on semi-synthetic baits for trapping Noctuid pest species. The sampling was carried out in six locations in East and Northeast Hungary (5 sites) and West Ukraine (1 site) during 2013-2014. Four of the sampling sites (Forró, Balmazújváros, Debrecen-Ondód, Hernádnémeti) were located in mostly agricultural landscape surrounded by intensively used arable lands while the others (Nagycsere and Nagydobrony) were surrounded with more diverse extensively used landscapes (Figure 1, Table 1).

Figure 1: Location of the sampling sites and linear transects of the traps in the six studied sites in 2013-2014 (Source: GoogleEarth).
Noctuidae moths (Hadeninae and Acronictinae subfamilies, which cumulative ratio was 80.4% (11653 individuals) among sampled sites. The baits showed much higher effectiveness in case of species belonging to Xyleninae, Noctuinae, moths was 14487 that was the 84.4% of the identified Lepidopterans and their ratio varied between 70.2 -95.5 by ecosystems than in the most diverse extensively used landscapes (67.2 -72.5%). The total number of Noctuid ratio of Noctuidae species among all sampled Lepidoptera was higher (82.9 -90.6%) in the less diverse agro-sites 126 Noctuidae species of 17 subfamilies were sampled, which were 68.9% of all sampled Lepidoptera. The

Table 2

Hepialidae only one specimen was caught that also could not be identified at species level (see Appendix 1). The 2.7 % (n=484) of the specimens could be identified only at the family level. In case of characterized with total and mean number of species and individuals in case of groups, families and species. The

Table 1

Sampling area	N	E	Start	Finish
Forró | 47° 19.770' | 21° 3.773' | 1st July 2013 | 1st November 2013 |
Debrecen-Ondód | 47° 32.031' | 21° 31.053' | 2nd July 2013 | 2nd November 2013 |
Nagydobrony | 48° 25.619' | 22° 25.128' | 20th July 2014 | 19th October 2014 |
Nagycsere | 47° 31.847' | 21° 46.910' | 17th July 2014 | 12th November 2014 |
Hernádnémeti | 48° 9.595' | 21° 2.991' | 2nd July 2014 | 16th November 2014 |
Balmazújváros | 47° 36.202' | 21° 26.352' | 8th July 2014 | 22nd November 2014 |

In Forró, Ondód, Hernádnémeti and Balmazújváros the effect of natural compounds (wine and beer) and their extracts on the efficiency of synthetic lures was tested. In Nagycsere the Noctuidae fauna of a semi-natural landscape, while in Nagydobrony the fauna of the protected Nagydobrony Game Reserve was studied using synthetic and semi-synthetic baits for Noctuid species. We use the data collected by semi-synthetic baits contain mixture of isoamyl alcohol, acetic acid and red wine (1:1:1, 3 ml), which was used in all of the six studies. Polypropylene tubes with 4 ml capacity were used as dispensers (Tóth et al., 2015). The mixture was administered on dental rolls inside the tubes. The lure could evaporate across a small opening with 4 mm in diameter, which was opened when setting out in the field. The trapped moths were killed by an insecticide strip.

During the studies CSALOMON® VarL+ traps were used in five (Balmazújváros, Ondód, Hernádnémeti and Forró) or four (Nagycsere, Nagycsere) repetitions. The traps were placed in the sites on trees situated in the edge of the sites in 1.8-2 m height. The distance between the traps was 40-100 m depending on the design of the given study. The sampling periods of Noctuid moths in the six sampling sites studied in 2013-2014

RESULTS AND DISCUSSION

In the six sampling sites the traps caught 17642 Lepidoptera that belonged to 184 species and nine families (see Appendix 1). The 2.7 % (n=484) of the specimens could be identified only at the family level. In case of Hepialidae only one specimen was caught that also could not be identified at species level (Table 2). Beyond that 843 individuals of Vespidae species (Vespa crabro, V. germanica and Polistes sp.) and 11 honey-bees (Apis mellifera) were sampled.

The most species rich sites were Nagycsere (128) and Nagydobrony (91), which can be characterised by most diverse landscape structure than the others, where the species number ranged between 57 and 70. The mean number of species per trap was higher in Nagycsere (71.3±7.1) while in Ondód a trap lured only 33.2 (±5.5) species on the average. The abundance of Lepidoptera generally was higher in the less diverse arable lands. The number of individuals per trap was the highest in Balmazújváros (1162±127.1), however the abundance was relatively high also in the species rich Nagycsere (640.8±95.3) (Table 2).

The semi-synthetic bait used in these samplings was developed to monitor noctuid pest species. In the six sites 126 Noctuidae species of 17 subfamilies were sampled, which were 68.9% of all sampled Lepidoptera. The ratio of Noctuidae species among all sampled Lepidoptera was higher (82.9-90.6%) in the less diverse agro-ecosystems than in the most diverse extensively used landscapes (67.2-72.5%). The total number of Noctuid moths was 14487 that was the 84.4% of the identified Lepidoptera and their ratio varied between 70.2-95.5 by sites. The baits showed much higher effectiveness in case of species belonging to Xyleninae, Noctuinae, Hadeninae and Acronictinae subfamilies, which cumulative ratio was 80.4% (11653 individuals) among sampled Noctuidae moths (Table 2).
The characteristic variables of samples taken in the six studied sites in 2013-2014. N: number of individuals, Ntrap: mean number of individuals per trap [individuals/trap], S: number of species, Strap: mean number of species by trap [species/trap], SD: standard deviation

Number of individuals	Forró	Ondód	Hernánméneti	Balmazujváros								
	N	Ntrap	±SD	N	Ntrap	±SD	N	Ntrap	±SD	N	Ntrap	±SD
Heptalidae	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
Pyralidae	77	15.4	9.2	245	49.0	24.7	756	151.2	31.8	124	24.8	8.3
Nymphalidae	0	0.00	0.00	0	0.00	0.00	33	6.6	4.2	370	74.0	20.6
Sphingidae	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
Geometridae	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
Thyatiridae	0	0.00	0.00	2	0.4	0.9	33	6.6	4.2	370	74.0	20.6
Nolidae	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
Erebidida	53	10.6	4.4	37	7.4	2.4	104	20.8	15.0	19	3.8	2.2
Noctuidae	2791	558.2	137.6	646	129.2	35.2	2458	491.6	52.2	5297	1059.4	122.7
Xyleniinae	991	198.2	50.4	363	72.6	23.9	896	179.2	23.8	3287	657.4	70.4
Noctuidae	103	20.6	4.3	43	8.6	3.8	429	85.8	12.1	1262	252.4	47.7
Hadeninae	912	182.4	48.6	72	14.4	1.8	563	112.6	23.3	191	38.2	5.7
Other Noctuidae subfam.	537	107.4	23.0	94	18.8	13.0	447	89.4	19.5	421	84.2	19.5
non identified Lepidoptera*	140	28.0	14.7	12	2.4	2.2	2	0.4	0.5	0	0.0	0.0
identified Lepidoptera	2921	584.2	140.9	930	186.0	58.8	3351	670.2	61.3	5810	1162.0	127.1

Number of species	S	Strap	±SD									
Lepidoptera species number	64	48.4	3.4	59	33.2	5.4	70	56.7	2.2	57	44.6	3.4
Xyleniinae	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
Pyralidae	2	1.2	0.4	3	2.2	0.4	3	2.8	0.4	3	2.8	0.4
Nymphalidae	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
Sphingidae	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
Geometridae	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
Thyatiridae	0	0.00	0.00	1	0.2	0.4	3	1.8	0.4	3	1.8	0.4
Nolidae	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00
Erebidida	4	3.2	0.4	6	3.0	1.2	6	4.2	1.3	3	1.6	0.5
Noctuidae	58	44.0	3.4	49	27.8	4.5	58	48.8	1.8	48	38.4	3.2
Xyleniinae	28	19.0	3.1	24	14.2	2.9	27	21.6	1.1	25	20.0	1.4
Noctuidae	8	7.2	0.4	8	5.0	1.0	10	10.0	0.0	10	7.8	1.1
Hadeninae	11	10.4	0.9	9	4.4	0.9	12	9.6	0.5	8	6.2	1.1
Other Noctuidae subfam.	17	7.4	1.1	8	4.2	0.4	9	7.6	1.5	5	4.4	0.9
Nagydobrony	91	57.0	5.4	128	71.3	7.1	183	51.1	12.6	61.5	12.6	12.6
Nagysere	1	0.3	0.5	0	0.0	0.0	1	0.04	0.19			
Total	92	57.3	5.4	51	71.8	7.1	184	51.2	12.6	61.7	12.6	12.6

*Individuals identified only in family level.

In Forró all the five most abundant species, in Ondód, Hernánméneti and Balmazujváros four, while Nagysere and Nagydobrony three of them were Noctuid moths. Beyond them the bats lured high number of Hypsopygia costalis (Pyralidae), Pelosia muscera (Erebidae) and two Thyatiridae species (Tethea ocularis and Thyatia batis). The most abundant species of the sites are mostly occurred in all sites, but the locally dominant
Pelosia muscerda, Cirrhia icterica and Cranioptera ligustri occurred only in two sites with higher habitat diversity (Nagycsere and Nagydrbony). The common and polyphagous Agrochola circellaris, Mythimna albipuncta, Xestia xanthographa and Acronicta rumicis were dominant in three sites. The also widely distributed Cirrhia ocellaris, Hypsopygia costalis, Allophyes oyacanthae, Trachea atriplicis, Tethea ocularis and Agrotis segetum reached high relative frequencies in two whereas the others only in one site (Table 3). Most of these species feed on tree canopy and only 6 of them can be regarded as real or potential pest species. Among them only Agrotis segetum, which can cause significant damage in most crops and even in horticulture, is a harmful pest.

Table 3
Five most abundant species of the studied sites with their relative frequencies [RF%] and number of occupied sites. The species are ordered decreasingly by their summarised RF%.

Species	Forró	Hernádnémeti	Balmazújváros	Nagydobrony	Nagycsere	Sum	site (n=6)
Agrochola circellaris	28.48	5.222	19.21	11.51	9.58	6	6
Hypsopygia costalis	24.84	4.775	11.93	7.06	6	6	6
Allophyes oyacanthae	10.58	17.62	4.59	6			
Trachea atriplicis	13.45	12.57	4.14	6			
Mythimna albipuncta	12.26	4.731	5.103	3.99	6		
Acronicta rumicis	5.067	6.882	6.625	3.22	6		
Tethea ocularis	5.923	5.269	6.299	4.955	2.88	3	
Agrotis segetum	5.146	5.146	5.559	1.29	5		
Acronicta megacephala	5.146	1.89	6	1.68	2		
Pelosia muscerda	16.36	6.087	1.29	6			
Acrochola helvola	4.487	0.80	1.68	4			
Cirrhia icterita	3.348	0.31	0.74	2			

* pest species

The number of harmful and potentially significant pest species was 32 in the samples. Most of them (20) belong to the Noctuidae family and there were 5 Erebidae, 2 Geometridae, 3 Pyralidae and 2 Thytiridae species. The mean number of pest species per trap was lower in Debrecen-Ondód (12.0±2.0) while this value reached the maximum in Hernádnémeti (17.6±1.1). The total number of pests was 5373 which was 31.3% of all Lepidoptera samples. The ratio of the pest species was higher in the agricultural sites then in the most diverse ones. The mean proportion of Noctuiidae was 74.6(±18.2).% and the Pyralidae was 18.1(±19.1)% while the other three family played a minor role. Baits lured the most individuals of Hypsopygia costalis, Agrochola circellaris, Acronicta rumicis, Agrotis segetum and Noctua pronuba. Most of them occurred at all of the studied sites, but the Hypsopygia costalis was caught only the agricultural sites. In Balmazújváros high abundance of Agrochola circellaris and Acronicta megacephala was caused by nearby poplar plantation. These plantations can be a source of these pests. Considerable part of the pest species could be found with low abundance and 8 of them occurred only in the two more diverse species rich sites (Table 4).

The traps caught 34 individuals of seven protected Noctuidae, one Erebidae and one Nymphalidae species in all of the six sampling sites. Six of them and 19 other species are interesting and valuable in faunistical aspect. They mostly belong to the Noctuidae family however there were two Erebidae and two Geometridae species. During the studies totally 411 individuals of these valuable species were sampled, which is 2.4% of the Lepidoptera identified at species level while the ratio of the protected Lepidoptera was only 0.2%. In Balmazújváros protected species were not sampled and only one valuable species could be found, however the number of protected species was also low both in the species rich Nagycsere and Nagydrbony. The number of faunistically interesting and protected species was much lower in the agricultural sites (max. 7 species) than in the two semi natural ones (14 and 15 species). The number of valuable species was the highest in Nagycsere where 4 protected and 11 faunistically interesting species were trapped. The ratio of valuable individuals differed between 2.9-4.5% by sites, but the ratio of protected species was lower than 1% in each site (Table 5).
Semi-synthetic baits used in this study attract a large amount of Noctuid moths. Both the species number and abundance were high in each sampling sites, although they depend on the landscape structure. High landscape diversity results in higher species richness but in case of abundance it does not cause differences. The bait also lured Vespidae species with relatively high abundance, but did not attract honey-bees. Most of the sampled Lepidopterans belonged to the Noctuidae family (totally 124 species). Among them the species of Noctuidae, Erebidae and Geometridae families was the highest. Among the most abundant species there were six pests: *Agrochola circellaris*, *Hypsopygia costalis*, *Acronicta rumicis*, *Agritis segetum*, *Acronicta megacephala* and *Thyatiria batis*. The dominant species of arable land and more diverse sites were different. The total number of pest species was 32. Most of them (20) were noctuid moths containing such harmful ones as *Agritis segetum*, *Agritis exclamationis*, *Agritis ipsilon*, *Lacanobia oleracea* etc. The summarised proportion of these species was 31.3\% among all identified Lepidopterans. Considering their economic importance the majority of the caught Lepidopterans were indifferent. Both number and abundance of protected and valuable species was low, however the risk of catching valuable and non-target species was higher in the natural and semi natural sites. The traps caught totally 411 individuals of 28 protected and/or faunistically interesting species, which was a very little part (2.4\%) of all sampled Lepidopterans.

On the basis of these preliminary results the use of the tested semi-synthetic bait does not endanger the populations of non-target Lepidopterans. For more detailed results we should carry out further studies and should analyse these and other ongoing studies together.

Table 4

Family	Forró	Ondód	Hernád-németi	Balma-zújváros	Nagy-dobrony	Nagy-csere	Sum
Noctuidae	61	181	160	693	12	104	121
Pyralidae	76	231	688	44	0	0	103
Noctuidae	148	64	222	68	16	34	552
Noctuidae	173	49	88	99	25	46	480
Noctuidae	29	29	102	95	17	103	375
Noctuidae	1	2	9	299	3	11	325
Noctuidae	70	7	69	17	21	13	197
Noctuidae	40	1	10	1	32	48	132
Noctuidae	38	1	53	23	11	3	129
Noctuidae	0	0	20	2	88	17	127
Pyralidae	0	0	3	50	7	0	124
Noctuidae	26	24	25	36	0	11	122
Noctuidae	14	0	2	8	12	68	104
Noctuidae	11	4	48	16	7	13	99
Noctuidae	81	1	4	0	1	3	90
Noctuidae	38	7	28	6	0	0	79
Pyralidae	1	11	18	9	0	0	39
Thyatiridae	0	2	12	2	14	1	31
Noctuidae	9	1	13	1	0	0	24
Noctuidae	0	0	0	0	1	22	23
Noctuidae	9	8	2	0	0	0	19
Erebididae	15	1	0	0	0	0	16
Noctuidae	4	1	0	0	5	4	14
Erebididae	0	1	0	0	11	0	12
Erebididae	0	0	0	0	0	3	3
Erebididae	0	0	0	0	0	1	1
Erebididae	0	0	0	0	0	1	1
Erebididae	0	0	0	0	0	1	1
Erebididae	0	0	0	0	0	1	1
Erebididae	0	0	0	0	0	1	1
Erebididae	0	0	0	0	0	1	1
Total number of pests	844	629	1623	1490	276	511	5373
Ratio of pests among all Lepidoptera (%)	28.9	67.6	48.4	25.6	17.5	20.0	31.3
Total number of identified Lepidoptera	2921	930	3351	5810	1583	2563	17158
Table 5

List of the protected and faunistically interesting species caught in the six sampling sites in 2013-2014 with their number of individuals and ratio among all sampled Lepidoptera and taxonomy. P: protected, F: faunistically interesting

Prot.	Family	Forró	Ondód	Hernád- néméti	Balmaz- újváros	Nagy- dobony	Nagy- csere	Sum
P/F	Noctuidae	Meganeaphria bimaculosa	2	0	0	0	0	2
P/F	Noctuidae	Energia paleacea	0	0	0	2	3	5
P/F	Noctuidae	Lithophane semibrunea	0	1	1	0	2	4
P/F	Noctuidae	Marmora maura	0	0	0	0	3	0
P/F	Noctuidae	Orbona fragariae	4	0	0	0	0	1
P/F	Erebidae	Staurophora celsia	0	0	0	0	0	9
P	Erebidae	Catocala fraxini	0	0	0	1	1	2
P	Noctuidae	Cataphe aichymiata	0	1	0	0	0	1
P	Nymphalidae	Apatura ilia	0	0	0	0	2	0
F	Erebidae	Catocala hynemaeca	0	1	75	0	0	76
F	Erebidae	Herminia tenax	0	0	0	0	1	1
F	Geometridae	Eupha unangulata	0	0	0	2	0	2
F	Geometridae	Idaea muricata	0	0	0	0	14	14
F	Noctuidae	Eucarta amethystina	0	0	0	0	2	0
F	Noctuidae	Eucarta virgo	22	0	0	14	1	37
F	Noctuidae	Diarsia rubi	0	0	0	0	5	5
F	Noctuidae	Euxoa segnilla	0	0	0	2	7	9
F	Noctuidae	Xestia castanea	0	0	0	2	0	2
F	Noctuidae	Xestia seestriata	0	0	0	0	2	4
F	Noctuidae	Agrochola humilis	3	3	2	0	8	16
F	Noctuidae	Agrochola laevis	3	9	2	0	34	48
F	Noctuidae	Agrochola lota	0	0	1	0	33	34
F	Noctuidae	Athemia centrago	0	0	0	0	4	4
F	Noctuidae	Blepharita satura	0	0	0	0	1	1
F	Noctuidae	Dryobotodes eremita	45	7	14	0	0	66
F	Noctuidae	Helotropha leucostigma	0	0	0	0	1	1
F	Noctuidae	Tilacea citrus	0	0	0	0	1	1
F	Noctuidae	Xylena essolea	5	3	20	14	0	54

Number of valuable species: 7, 7, 7, 1, 14, 15, 28
Number of protected species: 1, 2, 2, 1, 0, 5, 4, 9
Number of valuable individuals: 84, 25, 115, 14, 71, 102, 411
Number of protected individuals: 6, 2, 1, 0, 9, 16, 34
Ratio of valuable individuals: 2.88, 2.69, 3.43, 0.24, 4.49, 3.98, 2.40
Ratio of protected individuals: 0.21, 0.22, 0.03, 0.00, 0.57, 0.62, 0.20
Total number of identified Lepidoptera: 2921, 930, 3351, 5810, 1583, 2563, 17158

ACKNOWLEDGEMENT

Szaboecs Szanyi was supported by the Collegium Talentum grant of the Edutus High School.

REFERENCES

Chreighton, C. S.-Mcfadden, T. L.-Cuthbert, E. R. (1973): Supplementary data on phenylacetaldehyde: an attractant for lepidoptera. Canteleo, W. W.-Jacobson, M. (1979): Phenylacetaldehyde attracts moths to bladder flower and blacklight traps. Environmental Entomology 8:444-447.
Jermy, T.-Balázs, K. (1993): A növényvédelmi állattan kézikönyve 4/A-B. Akadémiai Kiadó, Budapest. 830 p.
Kálvány, P. J. (2000): New chemical attractants for trapping Lacanobia subjuncta, Mamestra configurata, and Xestia c-nigrum (Lepidoptera: Noctuidae) as potential tools for pest management. Environmental Entomology 29:805-809.
KóC (2001): 13/2001. (V. 9.) KöM rendelet a védett és a fokozottan védett növény- és állatfajok közzétételéről, valamint az Európai Közösségben természetvédelmi szempontból jelentős növény- és állatfajok közvetítéséről. Budapest.
Landolt, P. J.-Alfaro, F. J. (2000): New chemical attractants for trapping Lacanobia subjuncta, Mamestra configurata, and Xestia c-nigrum (Lepidoptera: Noctuidae). Journal of Agricultural Entomology 17:158-166.
Landolt, P. J.-Alfaro, F. J. (2001): Trapping Lacanobia subjuncta, Xestia c-nigrum and Mamestra configurata (Lepidoptera: Noctuidae) with acetic acid and 3-methyl-1-butanol in controlled release dispensers. Environmental Entomology 30:566-562.
Mészáros Z.-Szabócs, Cs. (2012): A magyarországi nagylepék gyakorlati alapú. Szabócs József Magyar Lepkészeti Egyesület. Budapest.
Nagy, A.-Szarkán, I.-Gém, F.-Nagy, I.-Tóth, M. (2014): Vizsgálatok bagolylepkék (Lepidoptera: Noctuidae) fogására kifejlesztett fogásismerete. Agrártudományi Közlemények (Acta Agraria Dedreceniensis) 2014/62: 86-91.
Olenič, N.-Capuse, I.-Olenič, V.-Opresan, I.-Milic, I. (2007): Non-target Lepidopteran species in pheromone traps baited with attractants for several Tortricid moths. Annales ICAS 50: 185-201.
Szabócs, Cs.-Leskó, K. (1999): Lepidoptera – lep-kék. 354 – 409. In: Tóth, J. (Ed.): Erdészeti rovatran. Agroinform kiadó. Budapest.
Tóth, J. (1999): Erdészeti rovatran. Agroinform Kiadó, Budapest. 480 p.
Appendix 1

List of the sampled Lepidoptera species with their taxonomy and conservational status. Pest species are signed with asterix (*). P: protected, F: faunistically interesting

Family	Subfamily	Species
Hepialidae		one unidentified species
* Pyralidae	Pyralinae	H ypopygota costalis (Fabricius 1775)
* Pyralidae	Pyralinae	Pyralis farinalis (Linnaeus, 1758)
* Pyralidae	Pyraustinae	O strinia nabialis (Hübner, 1796)
P Nymphalidae	Aputarinae	Aputura ila ([Denis & Schiff ermüller], 1775)
Nymphalidae	Nymphalinae	Araschnia levana (Linnaeus, 1758)
Nymphalidae	Nymphalinae	Nymphalis c-album (Linnaeus, 1758)
Nymphalidae	Satyrinae	M inos dryas (Scopoli, 1763)
Nymphalidae	Satyrinae	Pararge aegeria tircis (Godart, 1821)
Sphingidae	Macroglossinae	D eltephila porcellus (Linnaeus, 1758)
Geometridae	Ennominae	A peira syringaria (Linnaeus, 1758)
Geometridae	Ennominae	Cabera exanthemata (Scopoli, 1763)
* Geometridae	Ennominae	E ctopis crepusciliaria ([Denis et Schiffermüller], 1775)
Geometridae	Ennominae	Ematurga atomaria (Linnaeus, 1758)
Geometridae	Ennominae	Hypomecis punctinalis (Scopoli, 1763)
Geometridae	Ennominae	Hypomecis roboraria ([Denis & Schiffermüller], 1775)
Geometridae	Ennominae	Ligidia adustata ([Denis & Schiffermüller], 1775)
Geometridae	Ennominae	Macaria notata (Linnaeus, 1758)
* Geometridae	Ennominae	Peribatodes rhomboidaria ([Denis & Schiffermüller], 1775)
Geometridae	Larentinae	Cosmorhoe ocellata (Linnaeus, 1758)
Geometridae	Larentinae	Episrita autumnata (Borkhausen, 1794)
F Geometridae	Larentinae	Eupha unangulata (Haworth, 1809)
Geometridae	Sterrhinae	Idaea aversata (Linnaeus, 1758)
F Geometridae	Sterrhinae	Idaea marica (Hufnagel, 1787)
* Thyatiridae	Thyatirinae	H abroxyme pyrithoides (Hufnagel, 1766)
Thyatiridae	Thyatirinae	Tethe a ocularis (Linnaeus, 1758)
Thyatiridae	Thyatirinae	Tethe a or ([Denis et Schiffermüller], 1775)
* Thyatiridae	Thyatirinae	The tira haitis (Linnaeus, 1758)
Nolidae	Nolinae	N oha crassatula (Hübner, 1793)
Nolidae	Nolinae	Nycteola degenerana (Hübner, 1799)
* Erebidae	Arctinae	Phragmatobia fuliginosa (Linnaeus, 1758)
Erebidae	Aventinae	Trisateles emortalis ([Denis & Schiff ermüller], 1775)
* Erebidae	Calpinae	Sciloapteryx labiris (Linnaeus, 1758)
Erebidae	Catocalinae	Catocala electa (Vieweg, 1790)
Erebidae	Catocalinae	Catocala elocata (Esper, 1788)
P Erebidae	Catocalinae	Catocala fraxini (Linnaeus, 1758)
Erebidae	Catocalinae	Catocala fulminea (Scopoli, 1763)
F Erebidae	Catocalinae	Catocala hymenaea ([Denis & Schiff ermüller], 1775)
Erebidae	Catocalinae	Catocala mappa (Linnaeus, 1758)
Erebidae	Catocalinae	Catocala promissa (Denis & Schiffermüller, 1775)
Erebidae	Catocalinae	Catocala sponsa (Linnaeus, 1767)
Erebidae	Catocalinae	Dysgonia algira (Linnaeus, 1767)
* Erebidae	Catocalinae	Euclidia glyptica (Linnaeus, 1758)
Erebidae	Catocalinae	Lygephila cracciae ([Denis & Schiff ermüller], 1775)
Erebidae	Catocalinae	Lygephila pastinum (Treitschke, 1826)
Erebidae	Eustrotinae	Protodeltote pygarga (Hufnagel, 1766)
Erebidae	Herminiinae	Herminia grinialis ([Denis & Schiff ermüller], 1775)
Erebidae	Herminiinae	Herminia tarsispennalis (Treitschke, 1835)
F Erebidae	Herminiinae	Herminia lemnalis (Rebel, 1899)
Erebidae	Hyponinae	Hyponia proboscis (Linnaeus, 1758)
Erebidae	Hyponinae	Hyponia rostralis (Linnaeus, 1758)
Erebidae	Lithosinae	Eilema griseola (Hübner, 1803)
Erebidae	Lithosinae	Lithosia quadra (Linnaeus, 1758)
Erebidae	Lithosinae	Pelsia muscera (Hufnagel, 1766)
Erebidae	Lithosinae	Wiria sororculus (Hufnagel, 1766)
* Erebidae	Lymantrinae	Lymantria dispar (Linnaeus, 1758)
* Erebidae	Lymantrinae	Lymantria monacha (Linnaeus, 1758)
Family	Subfamily	Species
--------------	-----------	---
Noctuidae	Acontiinae	*Aedea leucomalas* (Linnaeus, 1758)
Noctuidae	Acroacininae	*Acronicta auricula* ([Denis & Schiff errmüller], 1775)
Noctuidae	Acrocininae	*Acronicta euphorbiae* ([Denis & Schiff errmüller], 1775)
Noctuidae	Acrocininae	*Acronicta megacephala* ([Denis & Schiff errmüller], 1775)
*Noctuidae	Acrocininae	*Acronicta psi* (Linnaeus, 1758)
*Noctuidae	Acrocininae	*Acronicta rumicis* (Linnaeus, 1758)
Noctuidae	Acrocininae	*Cramiophora ligustris* ([Denis & Schiffermüller], 1775)
Noctuidae	Acrocininae	*Moma alpium* (Osebeck, 1778)
Noctuidae	Amphipyrinae	*Amphiptyra berbera svensoni* (Fletcher, 1968)
Noctuidae	Amphipyrinae	*Amphiptyra livida* ([Denis & Schiff errmüller], 1775)
Noctuidae	Amphipyrinae	*Amphiptyra pyraumed* (Linnaeus, 1758)
Noctuidae	Amphipyrinae	*Amphiptyra tragocephus* (Clerck, 1759)
Noctuidae	Bryophilinae	*Cycasia alga* (Fabricius, 1775)
*Noctuidae	Cotochilinae	*Catathela alenschista* ([Denis & Schiff errmüller], 1775)
*Noctuidae	Condicinae	*Eucarta amethystina* (Hübner, 1803)
*Noctuidae	Condicinae	*Eucarta virgo* (Treitschke, 1825)
*Noctuidae	Cyrtptinae	*Gloia alga* (Esper, 1789)
Noctuidae	Ctenuchinae	*Amata phegea* (Linnaeus, 1758)
Noctuidae	Hadeniinae	*Hada plebeja* (Linnaeus, 1761)
*Noctuidae	Hadeniinae	*Hadula trifoli* (Hufnagel, 1766)
Noctuidae	Hadeniinae	*Lacanobia contigua* ([Denis & Schiff errmüller], 1775)
*Noctuidae	Hadeniinae	*Lacanobia oleracea* (Linnaeus, 1758)
Noctuidae	Hadeniinae	*Lacanobia suasa* ([Denis & Schiffermüller], 1775)
Noctuidae	Hadeniinae	*Lacanobia thallassina* (Hufnagel, 1766)
Noctuidae	Hadeniinae	*Lacanobia w-latinum* (Hufnagel, 1766)
Noctuidae	Hadeniinae	*Leucania obsolata* (Hübner 1803)
*Noctuidae	Hadeniinae	*Mamestrina brassicae* (Linnaeus, 1758)
Noctuidae	Hadeniinae	*Mythimna (Mythimna) pallens* (Linnaeus, 1758)
Noctuidae	Hadeniinae	*Mythimna albipuncta* ([Denis et Schiffermüller], 1775)
Noctuidae	Hadeniinae	*Mythimna farrago* (Fabricius, 1787)
Noctuidae	Hadeniinae	*Mythimna l-album* (Linnaeus, 1767)
Noctuidae	Hadeniinae	*Mythimna turca* (Linnaeus, 1761)
Noctuidae	Hadeniinae	*Mythimna vitellina* (Hübner, 1808)
Noctuidae	Hadeniinae	*Thorema cespitis* ([Denis & Schiffermüller], 1775)
*Noctuidae	Hadeniinae	*Heliostethina* *Heliocerus armeria* (Hübner, 1808)
Noctuidae	Hadeniinae	*Pyrrha umbra* (Hufnagel, 1766)
*Noctuidae	Noctuiinae	*Agrotis exclamationis* (Linnaeus, 1758)
*Noctuidae	Noctuiinae	*Agrotis ipsilon* (Hufnagel, 1766)
*Noctuidae	Noctuiinae	*Agrotis segetum* ([Denis et Schiffermüller], 1775)
Noctuidae	Noctuiinae	*Asyly laborum* (Linnaeus, 1761)
F Noctuidae	Noctuiinae	*Diarsia rubi* (Vieweg, 1790)
F Noctuidae	Noctuiinae	*Euxoa septilis* (Duponchel, 1837)
Noctuidae	Noctuiinae	*Metagonorisma depuncta* (Linnaeus, 1761)
Noctuidae	Noctuiinae	*Noctua fenestra* (Schreber, 1759)
Noctuidae	Noctuiinae	*Noctua interjecta* Hübner, 1803
Noctuidae	Noctuiinae	*Noctua interposita* (Hübner, 1790)
Noctuidae	Noctuiinae	*Noctua jane* (Borkhausen, 1972)
Noctuidae	Noctuiinae	*Noctua janina* ([Denis & Schiffermüller], 1775)
Noctuidae	Noctuiinae	*Noctua orbina* (Hufnagel, 1766)
*Noctuidae	Noctuiinae	*Noctua prunina* (Linnaeus, 1758)
Noctuidae	Noctuiinae	*Ochropus plecta* (Linnaeus, 1761)
Noctuidae	Noctuiinae	*Xestiya varia* ([Denis & Schiffermüller], 1775)
F Noctuidae	Noctuiinae	*Xestiya castanea* (Esper, 1798)
*Noctuidae	Noctuiinae	*Xestiya c-nigrum* (Linnaeus, 1758)
F Noctuidae	Noctuiinae	*Xestiya sextipigata* (Haworth, 1809)
*Noctuidae	Noctuiinae	*Xestiya sanforgrapha* ([Denis & Schiff errmüller], 1775)
Noctuidae	Oncocemiinae	*Calophasia lunula* (Hufnagel, 1766)
*Noctuidae	Pantheinae	*Colocasia coryli* (Linnaeus, 1758)
*Noctuidae	Plusiinae	*Autographa gamma* (Linnaeus, 1758)
*Noctuidae	Plusiinae	*Maculaniwpga confusa* (Stephens, 1850)
Noctuidae	Psaphidinae	*Alliophyodes australasii* (Linnaeus, 1758)
P/F Noctuidae	Psaphidinae	*Meganephria bimaculosa* (Linnaeus, 1767)
Noctuidae	Rivulinae	*Rivula sericealis* (Scopoli, 1763)
*Noctuidae	Xyleniinae	*Actinotia polyodon* (Clerck, 1759)
*Noctuidae	Xyleniinae	*Agrochola cirsellaris* (Hufnagel, 1766)
Noctuidae	Xyleniinae	*Agrochola helvola* (Linnaeus, 1758)
F Noctuidae	Xyleniinae	*Agrochola humila* ([Denis & Schiff errmüller], 1775)
F Noctuidae	Xyleniinae	*Agrochola laevi* (Hübner, 1803)
Noctuidae	Xyleniinae	*Agrochola littora* (Linnaeus, 1758)
F Noctuidae	Xyleniinae	*Agrochola lata* (Clerck, 1759)
Noctuidae	Xyleniinae	*Agrochola lechynnis* ([Denis & Schiffermüller], 1775)
Noctuidae	Xyleniinae	*Agrochola macilenta* (Hübner, 1803)
Noctuidae	Xyleniinae	*Agrochola nitida* ([Denis et Schiffermüller], 1775)
Continuation of Appendix 1.

Family	Subfamily	Species
Noctuidae	Xyleninae	*Ammosoma caecimacula* ([Denis & Schiff ermüller], 1775)
Noctuidae	Xyleninae	*Apamea anceps* ([Denis & Schiff ermüller], 1775)
Noctuidae	Xyleninae	*Apamea lioxyta* ([Denis & Schiff ermüller], 1775)
Noctuidae	Xyleninae	*Apamea monoglypha* (Hufnagel, 1766)
Noctuidae	Xyleninae	*Aporophyla lutentia* ([Denis & Schiff ermüller], 1775)
F Noctuidae	Xyleninae	*Acethmia centrago* (Haworth, 1809)
Noctuidae	Xyleninae	*Athetis furvula* (Hübner, 1808)
Noctuidae	Xyleninae	*Athetis gloteosa* (Treitschke, 1835)
F Noctuidae	Xyleninae	*Blepharita satura* ([Denis & Schiff ermüller], 1775)
F Noctuidae	Xyleninae	*Brachylonia viminalis* (Fabricius, 1777)
Noctuidae	Xyleninae	*Caradrina clavipalpis* (Scopoli, 1763)
Noctuidae	Xyleninae	*Caradrina kadeni Freyer, 1836
Noctuidae	Xyleninae	*Caradrina morpheus* (Hufnagel, 1766)
Noctuidae	Xyleninae	*Cirrhia gilvago* ([Denis & Schiff ermüller], 1775)
Noctuidae	Xyleninae	*Cirrhia icteritia* (Hufnagel, 1766)
Noctuidae	Xyleninae	*Cirrhia ocellaris* (Borkhausen, 1792)
Noctuidae	Xyleninae	*Conistra erythrocephala* ([Denis & Schiff ermüller], 1775)
Noctuidae	Xyleninae	*Conistra ligula* (Esper, 1791)
Noctuidae	Xyleninae	*Conistra rhodogosia* (Scopoli, 1763)
* F Noctuidae	Xyleninae	*Conistra vaccini* (Linnaeus, 1761)
Noctuidae	Xyleninae	*Conistra veronicae* (Hübner, 1813)
Noctuidae	Xyleninae	*Cosmia affinis* (Linnaeus, 1767)
F Noctuidae	Xyleninae	*Cosmia trapezina* (Linnaeus, 1758)
Noctuidae	Xyleninae	*Dryobotodes eremita* (Fabricius, 1775)
Noctuidae	Xyleninae	*Dypterygia scabriuscula* (Linnaeus, 1758)
P/F Noctuidae	Xyleninae	*Enargia paleacea* (Esper, 1788)
Noctuidae	Xyleninae	*Euplexia lucipara* (Linnaeus, 1758)
Noctuidae	Xyleninae	*Eupserlia transversa* (Hufnagel, 1766)
Noctuidae	Xyleninae	*Griposia aprilina* (Linnaeus, 1758)
F Noctuidae	Xyleninae	*Helotropha leucostigma* (Hübner, [1808])
Noctuidae	Xyleninae	*Hoplodrina ambigua* ([Denis & Schiff ermüller, 1775])
Noctuidae	Xyleninae	*Hoplodrina blanda* ([Denis & Schiff ermüller, 1775])
P/F Noctuidae	Xyleninae	*Lithophane ornithopus* (Hufnagel, 1766)
Noctuidae	Xyleninae	*Lithophane semibrunnea* (Haworth, 1809)
Noctuidae	Xyleninae	*Mesapamea secalis Remm, 1983
Noctuidae	Xyleninae	*Mesapamea secalis* (Linnaeus, 1758)
Noctuidae	Xyleninae	*Mesogona acetosellae* ([Denis & Schiff ermüller], 1775)
Noctuidae	Xyleninae	*Mesoligia furuncula* ([Denis & Schiff ermüller], 1775)
P/F Noctuidae	Xyleninae	*Mormo maura* (Linnaeus, 1758)
Noctuidae	Xyleninae	*Oligia latruncula* ([Denis & Schiff ermüller], 1775)
Noctuidae	Xyleninae	*Oligia strigilis* (Linnaeus, 1758)
P/F Noctuidae	Xyleninae	*Orbona fragariae* (Vieweg, 1790)
Noctuidae	Xyleninae	*Parastichitis suspicata* (Hübner, 1817)
* F Noctuidae	Xyleninae	*Philogophora meticulosa* (Linnaeus, 1758)
Noctuidae	Xyleninae	*Pseudoastritia candidula* ([Denis et Schiff ermüller], 1775)
Noctuidae	Xyleninae	*Ruina ferruginea* (Esper, 1785)
P/F Noctuidae	Xyleninae	*Sauraphora celsia* (Linnaeus, 1758)
Noctuidae	Xyleninae	*Thalpophila matura* (Hufnagel, 1766)
Noctuidae	Xyleninae	*Tilacea anrago* (Denis & Schiff ermüller, 1775)
F Noctuidae	Xyleninae	*Tilacea citrago* (Linnaeus, 1758)
Noctuidae	Xyleninae	*Trachea amplipectis* (Linnaeus, 1758)
Noctuidae	Xyleninae	*Xanthia gilvago* ([Denis & Schiff ermüller], 1775)
Noctuidae	Xyleninae	*Xanthia icteritia* (Hufnagel, 1766)
Noctuidae	Xyleninae	*Xanthia ocellaris* (Borkhausen, 1792)
Noctuidae	Xyleninae	*Xanthia togata* (Esper, 1788)
F Noctuidae	Xyleninae	*Xylena exsoleta* (Linnaeus, 1758)