Title
Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks.

Permalink
https://escholarship.org/uc/item/5ph1x3f6

Authors
Zhao, Suwen
Sakai, Ayano
Zhang, Xinshuai
et al.

Publication Date
2014-06-30

DOI
10.7554/elife.03275

Peer reviewed
Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks

Suwen Zhao†, Ayano Sakai‡, Xinshuai Zhang‡, Matthew W Vetting‡, Ritesh Kumar‡, Brandan Hillerich§, Brian San Francisco, Jose Solbiati‡, Adam Steves¶, Shoshana Brown¶, Eyal Akiva¶, Alan Barber¶, Ronald D SeidelΩ, Patricia C Babbitt¶, Steven C Almo*†, John A Gerlt‡,§,°, Matthew P Jacobson*†

1Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States; 2Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, United States; 3Department of Biochemistry, Albert Einstein College of Medicine, New York, United States; 4Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States; 5Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States; 6Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States

Abstract Metabolic pathways in eubacteria and archaea often are encoded by operons and/or gene clusters (genome neighborhoods) that provide important clues for assignment of both enzyme functions and metabolic pathways. We describe a bioinformatic approach (genome neighborhood network; GNN) that enables large scale prediction of the in vitro enzymatic activities and in vivo physiological functions (metabolic pathways) of uncharacterized enzymes in protein families. We demonstrate the utility of the GNN approach by predicting in vitro activities and in vivo functions in the proline racemase superfamily (PRS; InterPro IPR008794). The predictions were verified by measuring in vitro activities for 51 proteins in 12 families in the PRS that represent ∼85% of the sequences; in vitro activities of pathway enzymes, carbon/nitrogen source phenotypes, and/or transcriptomic studies confirmed the predicted pathways. The synergistic use of sequence similarity networks and GNNs will facilitate the discovery of the components of novel, uncharacterized metabolic pathways in sequenced genomes.

DOI: 10.7554/eLife.03275.001

Introduction

The explosion in the number of sequenced eubacterial and archaeal genomes provides a challenge for the biological community: >50% of the proteins/enzymes so identified have uncertain or unknown in vitro activities and in vivo physiological functions. Genome context can provide important clues for assignment of functions to individual enzymes and, also, guide the discovery of novel metabolic pathways: pathways often are encoded by operons and/or gene clusters. However, large-scale approaches are required to efficiently mine this information for entire protein/enzyme families (Dehal et al., 2010; Caspi et al., 2012; Markowitz et al., 2012; Franceschini et al., 2013; Overbeek et al., 2014).

In this manuscript, we describe the use of a new bioinformatic strategy, genome neighborhood networks (GNNs), to discover the enzymes, transport systems, and transcriptional regulators that constitute metabolic pathways, thereby facilitating prediction of their individual in vitro activities and combined in vivo
metabolic functions. As the first demonstration of its use, we applied this approach to the functionally
diverse proline racemase superfamily (PRS) and predicted functions for >85% of its members. The predic-
tions were verified using high-throughput protein expression and purification, in vitro enzyme activity
measurements, microbiology (phenotypes and transcriptomics), and X-ray crystallography.

Three enzymatic activities have been described for the PRS: proline racemase (ProR; eubacteria
[Stadtman et al., 1957] and eukaryotes [Reina-San-Martín et al., 2000], 4R-hydroxyproline 2-epimerase
(4HypE; eubacteria [Adams and Frank, 1980; Goytia et al., 2007; Gavina et al., 2010]), and
trans 3-hydroxy-L-proline dehydratase (t3HypD; eukaryotes [Visser et al., 2012] and eubacteria [Watanabe
et al., 2014]); these reactions and the pathways in which they participate are shown in
Figure 1. The previously characterized ProRs and 4HypEs catalyze racemization/epimerization of the
α-carbon in a 1,1-proton transfer mechanism that, in the structurally characterized enzymes, uses two general acidic/
basic Cys residues located on opposite faces of the active site ([Buschiazzo et al., 2006; Rubinstein
and Major, 2009]). The syn-dehydration reaction catalyzed by t3HypD requires a general basic catalyst
to abstract the proton from the α-carbon; its conjugate acid likely functions as the general acidic catalyst
to facilitate departure of the 3-hydroxyl group. Sequence alignment of the functionally characterized
t3HypDs and ProRs suggests the presence of a single active site Cys residue in the active sites of the
t3HypDs (the second Cys in ProR is replaced by a Thr residue).

Results

Sequence similarity network for the PRS
A sequence similarity network (SSN) (Atkinson et al., 2009) for 2333 unique sequences in the PRS
(InterPro family IPR008794; release 43.0) was constructed and displayed at various e-value thresholds
(Figure 2). When the network is displayed with an e-value threshold of 10^{-55} (> ~35% sequence
identity is required to draw an edge [line] between nodes [proteins]), the majority of the members of
the PRS are located in a single functionally heterogeneous cluster (Figure 2A). As the e-value threshold
stringency is increased to 10^{-110} (sequence identity required to draw an edge is increased to > ~60%),
the PRS separates into 28 clusters and 49 singletons (Figure 2B). For analyses of the genome neighborhoods (vide infra), each cluster in the 10^{-110} network was assigned a unique color and number as shown in Figure 2B (the node colors in Figure 2A depict their association with the clusters in Figure 2B).

At the e-value threshold of 10^{-110} (Figure 2B) the nodes for the experimentally characterized functions—ProR (magenta; cluster 7), 4HypE (blue and red; clusters 1 and 2, respectively), and t3HypD (brown; cluster 8)—are located in separate clusters that account for $\sim 30\%$ of the sequences in the PRS. When the e-value threshold is relaxed to 10^{-55}, most of the clusters merge, although the nodes associated with the two previously characterized 4HypE clusters in the 10^{-110} network remain separated. Sequence alignments predict that the active sites of both characterized 4HypE clusters contain two active site Cys residues. We conclude that these two families of 4HypEs evolved from divergent, but homologous, ancestors.

At the e-value threshold of 10^{-110} (Figure 2B), the separated clusters are expected to be isofunctional because, from sequence alignments, their active sites are formed from conserved amino acid residues (acid/base catalysts and specificity determining residues). Although many of the clusters are predicted to have the two active site Cys residues found in the structurally characterized ProR (PDB: 1W61) and 4HypE (PDB: 2AZP [Liu et al.]), others are missing one or both of the Cys residues. The previously uncharacterized enzymes with differing residues could either represent new functions or additional examples of evolution of the ProR, 4HypE, and t3HypD functions from divergent, but homologous, ancestors.

GNN for the PRS

We predicted functions for $\sim 80\%$ of the remaining members of the PRS by analyzing the SSN for the proteins (including enzymes, transport systems, and transcriptional regulators) encoded by the genome
neighborhoods for ‘all’ members of the PRS (specifically, ± 10 genes relative to the gene encoding each PRS member, the query). A protein in this genome neighborhood SSN, designated the ‘genome neighborhood network’ (GNN), is expected to be functionally related to a query in the PRS if they are located in an operon and/or gene cluster that encodes a metabolic pathway that includes the query. By analyzing many genome neighborhoods simultaneously, e.g., for all members of the PRS, the signals associated with functionally related proteins will be amplified; the signals associated with functionally

Figure 2 Sequence similarity networks (SSNs) for the PRS. (A) The SSN displayed with an e-value threshold of 10\(^{-55}\) (≈35% sequence identity). (B) The SSN displayed with an e-value threshold of 10\(^{-110}\) (≈60% sequence identity).

DOI: 10.7554/eLife.03275.004
unrelated genome proximal proteins that occur ‘randomly’ across many species will contribute to the background ‘noise’. We propose that this large-scale approach is more efficient in identifying ‘all’ of the enzymes/transport systems/transcriptional regulators in a conserved metabolic pathway than by a one-genome-at-a-time analysis.

Our approach for visualizing a GNN first assigns a unique query color and number to the members of each cluster in the input SSN that separates the members of the PRS into clusters that are likely to be isofunctional (e^{-10} in this work). After collecting the genome neighbors, we assign each of them the same color as the color of the query; with this strategy, proteins that are encoded by the same genome neighborhood as the query are easily identified in the GNN because they share the same color as the query. We then perform an all-by-all BLAST on the sequences of the genome neighbors and display the results as an SSN using an e-value threshold of 10^{-20}; this SSN is the GNN. Using this e-value threshold, most of the clusters in the GNN contain the members of distinct protein families and superfamilies (e.g., Pfam families); however, in some cases, divergent families in functionally diverse superfamilies may be found in separate clusters. Genome neighborhood proteins that occur randomly across divergent species and are functionally unrelated to the queries are expected to be located in small clusters with multiple colors, so these can be quickly identified visually and discarded from further analysis. The PRS queries from the input SSN (‘zero sequences’ in collecting the ±10 neighbors) are not displayed in the GNN, except when multiple members of the PRS are proximal on the genome, that is, when one PRS member is in the genome neighborhood of another (vide infra).

The GNN for the PRS (Figure 3A) contains many clusters (protein families). In some clusters, all of the nodes have the same color, that is, they are identified by a single query cluster in the SSN (e.g., the clusters in Figure 3B,C). However, in most clusters the nodes have multiple colors, that is, they are identified by several query clusters in the SSN (e.g., the clusters in Figure 3D–H); this suggests that different query clusters in the SSN have the same in vitro activity and in vivo metabolic function. The clusters in the GNN (Figure 3A) are labeled with their Pfam annotations. The ligand/substrate specificities and/or reaction mechanisms that characterize these families are then used to predict the individual in vitro activities and the shared metabolic pathway identified by a query cluster.

Retrospective tests of GNN: ProR and 4HypE functions

As a retrospective use of the GNN, the ProR function is encoded by anaerobic eubacteria that ferment L-proline and is represented by the magenta cluster (cluster 7) in the SSN (Figure 2B). The first step in the catabolism of L-proline is racemization to D-proline (by ProR) that is reduced to 2-keto-5-aminopentanoate by D-proline reductase (Kabisch et al., 1999) (by PrdAB; Figure 1). In the GNN, the clusters for the PrdA and PrdB polypeptides in D-proline reductase are uniformly magenta, as expected if the genes encoding ProR and PrdAB are colocalized with the gene encoding ProR (Figure 3B,C). The lack of other colors in the PrdAB clusters in the GNN implies that no other clusters in the SSN have the ProR function.

As a second retrospective example, the 4HypE function has been assigned to members of the blue (cluster 1) and red (cluster 2) clusters in the SSN (Figure 2B). In the GNN, clusters identified by the blue and red clusters include the D-amino acid oxidase (DAAO; Figure 3D) (Watanabe et al., 2012), dihydricronicinate synthase (DHDPS; Figure 3E) (Singh and Adams, 1965; Watanabe et al., 2012), and aldehyde dehydrogenase (Figure 3F) (Koo and Adams, 1974; Watanabe et al., 2007) superfamilies as well as components of several types of transport systems. As we and others recently established for organisms that use trans-4-hydroxy-L-proline betaine as sole carbon and nitrogen source (Zhao et al., 2013; Kumar et al., 2014), the catabolic pathway for trans-4-hydroxy-L-proline (4Hyp) (Figure 1) can be initiated by the epimerization of t4Hyp to cis-4-hydroxy-D-proline (c4Hyp) by 4HypE, followed by reactions catalyzed by c4Hyp oxidase (a member of the DAAO superfamily), c4Hyp imino acid dehydratase/deaminase (a member of the DHDPS superfamily), and a-ketoglutarate semialdehyde dehydrogenase (a member of the aldehyde dehydrogenase superfamily). Thus, the occurrence of blue and red nodes in these three clusters in the GNN is expected.

Discovery of new families of 4HypEs

The DAAO (Figure 3D), DHDPS (Figure 3E), and aldehyde dehydrogenase (Figure 3F) clusters also contain nodes with other colors from the SSN (Figure 2B), including orange (cluster 9), pale green (cluster 11), and teal (cluster 4). Proteins from the orange and pale green clusters were purified and assayed using a library of proline derivatives (Figure 4). As expected, members of the orange and pale
Figure 3. The genome neighborhood network (GGN) for the PRS. (A) The GNN displayed with an e-value threshold of 10^{-20}. The nodes are colored by the color of query nodes in the SSN (Figure 2A). The clusters are labeled with the UniProtKB/TrEMBL annotations. (B–I) Selected superfamily clusters from the GNN showing node colors. (B) D-proline reductase PrdA. (C) D-proline reductase, PrdB. (D) D-amino acid oxidase (DAAO). (E) Dihydrolipoamide synthase (DHDS). (F) Aldehyde dehydrogenase. (G) Ornithine cyclodeaminase (OCD). (H) Malate/L-lactate dehydrogenase 2 (MLD2). (I) Proline racemase.

DOI: 10.7554/eLife.03275.005
green clusters catalyze the 4HypE reaction (Tables 1 and 2). We were unable to purify proteins from the teal cluster (insolubility), so we used the growth phenotypes of the encoding organisms and transcriptomics to identify their in vitro enzymatic activities and in vivo metabolic functions. As predicted from the GNN, *Bacillus cereus* ATCC14579 (cluster 4, teal) and *Streptomyces lividans* TK24 (cluster 11, pale green) both utilize t4Hyp as sole carbon source (Table 3); also, the genes encoding the predicted 4HypEs (Table 4) and the proximal genes encoding the predicted c4Hyp oxidases, c4Hyp imino acid dehydratase/deaminases, and α-ketoglutarate semialdehyde dehydrogenases (Table 5) are up-regulated when the encoding organism is grown on t4Hyp as carbon source (Table 4). The purified proteins from the orange groups are promiscuous for the 3HypE reaction (Tables 1 and 2), but their genome neighborhood context identifies their physiological functions as 4HypE.

X-ray structure of a novel 4HypE

The X-ray structure of one of the previously functionally assigned 4HypEs (Uniprot: Q4KGU2; locus tag: PFL_1412; red, cluster 2) was determined in the presence of the substrate, t4Hyp and, also, pyrrole-2-carboxylate (PYC), a stable analogue of the enolate anion intermediate (Figure 5A,B; Table 6). These are the first liganded structures of a 4HypE and the first structure of a PRS with an authentic substrate. These structures corroborate the positioning of the active site Cys/Cys pair (Cys 88, Cys 236) to facilitate substrate epimerization, highlight residues specific to the coordination of the 4-hydroxyl group, and validate the hypothesis that PYC and substrate bind in a similar fashion. In addition, the X-ray structure of one of the newly functionally assigned 4HypEs (Uniprot: B9K4G4; locus tag: Avi_7022; orange, cluster 8) was determined in the presence of its substrate, t4Hyp. The active site contains Ser 93 on one face and Cys 255 on the opposite face (Figure 5C). Thus, despite the conserved ability of
this enzyme to catalyze the 4HypE reaction (a two-base 1,1-proton transfer reaction), the Cys–Cys general acid/base pair observed in the structure of Q4KGU2 from the red cluster is not conserved. This observation highlights the structural diversity associated with evolution of function in the PRS. Without the information provided by the GNNs, the 4HypE function would not have been expected.

Table 1. Mass spectroscopy screening results in D$_2$O. Hits were observed by mass shift for racemization/epimerization (+1) and dehydration (−17) for reactions performed

Locus tag	UniProt	L-Pro	D-Pro	t4Hyp	t2Hyp	f3OH-2H$_2$O	clc-3-QH-L-Pro
Clust1: blue							
Pde1_4859	A3QF11	0	0	+1	+1	0	0
Shen_2353	A9AQW9	0	0	+1	+1	0	0
Bm1_5245	A6WXK7	0	0	+1	+1	0	0
Oa1_1111	D2QN44	0	0	+1	+1	+1	+1
Sin_1478	B7JHU6	0	0	+1	+1	+1	+1
Arai_8151	Q8FY5O	0	0	+1	+1	0	0
B1792	A1BBMS	0	0	+1	+1	+1	+1
Clust2: red							
A1S_1325	A3MAA9	0	0	+1	+1	+1	+1
Bamb_3550	Q8B9R9	0	0	+1	+1	+1	+1
Boe3_2315_47180	B4HEE6	0	0	+1	+1	+1	+1
B0MU_40462	B3DWE2	0	0	+1	+1	+1	+1
RTH_5067	Q2T3J4	0	0	+1	+1	-17	0
CV_2526	Q7NJ77	0	0	+1	+1	+1	+1
Csal_2705	Q1QU06	0	0	+1	+1	0	0
PFL_1412	A5SVY6	0	0	+1	+1	+1	+1
Ppt_1265	Q1QBF3	+1	+1	+1	+1	+1	+1
Pre_1219	A3MAA9	0	0	+1	+1	+1	+1
XCC2415	Q8P533	0	0	+1	+1	+1	+1
Bm1_4447	A9ALS2	0	0	+1	+1	+1	+1
ABAYE2385	B0BV44	0	0	+1	+1	+1	+1
BURFS1106b_1521	C5ZMD2	+1	+1	+1	+1	+1	+1
BURFS1110b_A1687	Q3JHA9	0	0	+1	+1	+1	+1
PA1268	Q94776	0	0	+1	+1	+1	+1
Clust3: egtheskyblue							
Pde1_1184	A1B195	0	0	0	-17	0	
SIAM614_28502	A0NXQ9	0	0	0	-17	0	
Atu4588	A9C2Q1	0	0	-1	+1	-17	0
Ay_7022	B9K4G4	0	0	0	-17	0	
Oa1_0439	A6W6W16	0	0	+1	0	0	
SM_b20270	Q92WR9	0	0	+1	+1	-17	0
BME1586	Q8YFD6	0	0	+1	+1	+1	+1
DRO037	Q8GZ13	0	0	0	-17	0	
Clust4: navy							
BC_0905	Q81H81	0	0	+1	+1	-17	0
BCE_0994	Q73CS0	0	0	+1	+1	-17	0
BT9727_0799	Q6HMS9	0	0	+1	+1	-17	0
Clust5: orange							
Ay_0518	B9QV3	0	0	+1	+1	+1	+1
Atu0399	A9CKB4	0	0	+1	+1	+1	+1
RHE_C000452	Q2KD13	0	0	+1	+1	+1	+1
Arab_0731	B9J8G8	0	0	+1	+1	+1	+1
Clust6: palegreen							
Srex_4604	D2AVB7	0	0	+1	+1	0	0
Clust7: olive							
Bamb_3769	Q0B950	0	0	0	-17	0	
Bm1_4260	A9AGK8	0	0	+1	+1	+1	+1
Clust8: salmon							
Csal_2339	Q1QV19	0	0	-1	+1	0	0
Macq_2141	A1U2K1	0	0	0	0	0	0
Clust9: lime							
Rph17029_3164	A3P3J8	0	0	+1	+1	0	0
RSP_3519	Q3JWG2	0	0	+1	+1	0	0
Clust10: cyan							
SIAM614_28492	A0NXQ7	0	0	+1	+1	0	0
SAP1_1481	B9R4E3	0	0	+1	+1	0	0
SPOA266	Q5LKW3	0	0	+1	+1	+1	+1
Clust11: steelblue							
Spa1_1705	A6H392	0	0	0	0	-17	0
Bwscw_2821	B1KJ76	0	0	+1	+1	-17	0
Clust12:							
Pilm_2713	DSSG54	0	0	+1	+1	+1	+1

DOI: 10.7554/elife.03275.007
Table 2. Kinetic constants for 3/4HypE and t3HypD activities of the screened PRS targets

Cluster	Locus tag	UniProt	Function	k_{cat} [s$^{-1}$]	K_m [mM]	k_{cat}/K_m[M$^{-1}$s$^{-1}$]
1	Pden_4859	A1BBM5	3HypE	0.34 ± 0.03	-	-
				4HypE	5.6 ± 0.5	11 ± 2
					77	
		A6WXX7	3HypE	9.6 ± 2	7.1 ± 0.6	13000
			4HypE		89 ± 2	
		BTH_II2067	t3HypD	17 ± 3	26 ± 9	660
		Q2T3J4	4HypE	40 ± 4	1.4 ± 0.4	28000
		Q7NU77	3HypE	30 ± 0.6	57 ± 4	520
2			4HypE	70 ± 7	6.8 ± 3	10000
	Pput_1285	A5VZY6	3HypE	4.8 ± 0.6	19 ± 5	250
			4HypE	26 ± 0.7	0.54 ± 0.08	48000
			4HypR	2.8 ± 0.1	200 ± 20	14
	XCC2415	Q8P833	3HypE	28 ± 0.4	0.67 ± 0.05	42000
			4HypE	1.3 ± 0.07	15 ± 3	86
			3HypE			
3	Pden_1184	A1B195	t3HypD	ndb	ndb	ndb
	S1AM614_28502	A0NXQ9	t3HypD	15 ± 0.9	7.8 ± 1	1900
		A9CH01	t3HypD	27 ± 1	4.2 ± 0.8	6300
			4HypE	0.40 ± 0.02	2.0 ± 0.3	200
	Avi_7022	B9K4G4	t3HypD	4.3 ± 0.4	15 ± 3	280
		A6WW16	t3HypD	0.064 ± 0.002	1.3 ± 0.2	49
	Oant_0439	Q92WR9	t3HypD	7.9 ± 0.2	3.8 ± 0.4	2100
			4HypE	0.089 ± 0.01	6.3 ± 2	14
5	SM_b20270	D08556	3HypE	0.085 ± 0.003	2.6 ± 0.4	33
			4HypE	0.082 ± 0.005	4.5 ± 1	18
	BR0337	Q8G213	3HypD	17 ± 2	5.1 ± 2	3300
	BCE_0994	Q73CS0	t3HypD	ndb	ndb	ndb
			4HypE	1.2 ± 0.03	3.2 ± 0.3	370
	BT9727_0799	Q6HMS9	t3HypD	23 ± 5	7.5 ± 3	3100
			4HypE	0.16	-	-
9	Avi_0518	B9JQV3	3HypE	0.75 ± 0.04	4.8 ± 0.9	160
			4HypE	1.3 ± 0.07	5.6 ± 0.5	230
	Atu0398	A9CKB4	3HypE	4.0 ± 0.6	25 ± 7	160
			4HypE	0.86 ± 0.1	4.6 ± 2	190
	RHE_CH00452	Q2KD13	3HypE	0.94 ± 0.06	2.1 ± 0.7	450
			4HypE	1.9 ± 0.08	2.1 ± 0.3	880

Table 2. Continued on next page
Discovery of novel families of t3HypDs and Δ1-Pyr2C reductases

The t3HypD function previously was assigned to eukaryotic members of the PRS (Visser et al., 2012), so their genome neighbors are not represented in the GNN. However, the members of the navy cluster (cluster 5; species of Bacilli) identify several clusters in the GNN, including families of the components of TRAP and ABC transport systems, families of peptidases, and a family in the ornithine cyclodeaminase superfamily (OCDS); several members of the olive cluster (cluster 12) also identify the same OCDS cluster (Figure 3G). Members of the OCDS catalyze NAD(P)⁺/NAD(P)H-dependent reactions that involve the ketimines obtained by oxidation of α-amino acids (Goodman et al., 2004; Schröder et al., 2004; Gatto et al., 2006); some have been reported to catalyze the reduction of the ketimine of proline (Hallen et al., 2011) (and oxidation of L-proline; Figure 6A). Using purified proteins, we determined that members of both the navy (cluster 5) and olive (cluster 12) clusters in the SSN

Table 3. Growth phenotypes of bacterial strains when grown on the indicated carbon sources

Organism	t4Hyp	c4Hyp	t3Hyp	cis-3-OH-L-proline	L-Pro	D-glucose
Agrobacterium tumefaciens C58	++	++	−	−	+++	+++
Sinorhizobium meliloti 1021	++	++	−	++	+++	+++
Labrenzia aggregate IAM12614	+	+	+	+++	+++	+++
Pseudomonas aeruginosa PAO1	++	++	−	−	+++	+++
Paracoccus denitrificans PD1222	+++	+++	+	+++	+++	+++
Rhodobacter sphaeroides 2.4.1	+	+	−	−	+++	+++
Rhodobacter sphaeroides 2.4.1ΔRSP3519	−	+	−	−	+++	+++
Bacillus cereus ATCC14579	++	++	+	+	+++	+++
Roseovarius rubinhibens ISM	++	++	−	−	+++	+++
Escherichia coli MG1655	−	−	−	−	+++	+++
Streptomyces lividans TK24	+++	+++	+	ND	+++	+++

'*+++*' represents robust growth (like growth on D-glucose); '++/+ represents slow growth phenotype; '−−' represents growth-deficient phenotype; 'ND', not determined

DOI: 10.7554/eLife.03275.009
catalyze the t3HypD reaction (Tables 1 and 2). We also determined that members of the OCDS cluster catalyze the NADPH-dependent reduction of the ketimine of proline to form L-proline (Figure 6A, B). The catabolic pathway for trans-3-hydroxy-L-proline is known to proceed by dehydration, nonenzymatic tautomerization of the dehydration product to the ketimine of proline and, finally, reduction of the ketimine to form L-proline (Figure 1). In the OCDS SSN (Figure 6A), the previously characterized proline ketimine reductases are located in clusters/families distinct from the members of the OCDS identified in our GNN. Thus, assignment of the t3HypD function to the members of navy and olive clusters in the SSN would not have been possible without the synergistic information contained in the GNN.

Structure of a novel t3HypD

We determined the structure of a t3HypD (B9K4G4) from the light sky blue cluster (cluster 3) in the presence of PYC (Table 6). Instead of the typical PRS Cys/Cys pair, B9K4G4 contains Ser 90 in a similar conformation as was determined for B9JQV3 from the orange cluster (4HypE activity) and Thr 256 on the opposing face (Figure 5D). Thr 256 mimics the conformation of the typical PRS Cys residue but with the side-chain methylene positioned against the anomeric carbon. Again, the assignment of function enabled by the GNNs identifies convergent evolution of function within the PRS.

Table 4. Transcriptional analysis of PRS members

Organism/Locus Tag	t4Hyp	t3Hyp
Agrobacterium tumefaciens C58		
A9CKB4	12 ± 2	11 ± 1.5
A9CFV0	3 ± 1	NC
A9CH01	64 ± 5	32 ± 4
Sinorhizobium meliloti 1021		
Q92WS1	5 ± 1	3 ± 1
Q92WR9	5.5 ± 1.5	3.5 ± 1
Labrenzia aggregate IAM12614		
A0NXQ7	22 ± 2	5 ± 1
A0NXQ9	12 ± 2	6 ± 2
Pseudomonas aeruginosa PA01		
Q9I489	8 ± 2	5 ± 1
Q9I476	35 ± 3	7 ± 2
Paracoccus denitrificans PD1222		
A1B0W2	2.0 ± 0.5	NC
A1B195	NC	NC
A1B7P4	NC	NC
A1BBM5	4.5 ± 0.5	NC
Rhodobacter sphaeroides 2.4.1		
Q3WG2	10 ± 1	NC
Bacillus cereus ATCC14579		
Q81HB1	4 ± 1	4.5 ± 1
Q81CD7	22 ± 2	18 ± 3
Roseovarius nubinhibens ISM		
A3SLP2	12 ± 2	4 ± 1.5

Fold change in expression for each gene when grown on the indicated carbon source, relative to growth on D-glucose. The identities of the bacterial species and the protein encoded by each gene are indicated. Fold-changes are the averages of five biological replicates with standard deviation (p value <0.005). NC, no change

DOI: 10.7554/eLife.03275.010
Members of the light sky blue (cluster 3) cluster in the SSN identify the same (super)families identified by both the 4HypE and t3HypD clusters (transport systems, transcriptional regulators, DAAO [Figure 3D], DHDPs [Figure 3E], aldehyde dehydrogenase [Figure 3F], and OCD [Figure 3G]); however, several members of the light sky blue cluster identify a GNN cluster annotated as the malate/L-lactate dehydrogenase 2 superfamily (MLD2; NADH-dependent oxidoreductases) (Muramatsu et al., 2005) (Figure 3H).

Using purified members of the PRS, we determined that the light sky blue cluster is functionally heterogeneous (and some members are promiscuous) for the 4HypE and t3HypD functions (Tables 1 and 2).

We also determined that members of the MLD2 superfamily in the GNN catalyze the reduction of Table 5.

Discovery of additional families of 4HypEs, t3HypDs, and Δ1-Pyr2C reductases

Members of the light sky blue (cluster 3) cluster in the SSN identify the same (super)families identified by both the 4HypE and t3HypD clusters (transport systems, transcriptional regulators, DAAO [Figure 3D], DHDPs [Figure 3E], aldehyde dehydrogenase [Figure 3F], and OCD [Figure 3G]); however, several members of the light sky blue cluster identify a GNN cluster annotated as the malate/L-lactate dehydrogenase 2 superfamily (MLD2; NADH-dependent oxidoreductases) (Muramatsu et al., 2005) (Figure 3H).

Using purified members of the PRS, we determined that the light sky blue cluster is functionally heterogeneous (and some members are promiscuous) for the 4HypE and t3HypD functions (Tables 1 and 2).

We also determined that members of the MLD2 superfamily in the GNN catalyze the reduction of Table 5.

Organism/	Uniprot	Enzyme	Cluster	t4Hyp	t3Hyp	L-Pro
Locus tag						
Bacillus cereus ATCC 14579						
Bc_0905	BTH81	ProR	navy	121 ± 11	87 ± 10	NC
Bc_0906	BTH90	OCD	20 ± 3	14 ± 2	NC	
Bc_2832	B81CE9	ALDH	630 ± 39	625 ± 57	13 ± 2	
Bc_2833	B81CD9	DHDP	644 ± 61	496 ± 37	8 ± 0.7	
Bc_2834	B81CDB	ProR	hot pink	394 ± 27	485 ± 29	8 ± 1
Bc_2835	B81CD7	ProR	teal	408 ± 15	567 ± 33	5 ± 0.5
Bc_2836	B81CD6	oxidase	623 ± 37	633 ± 42	10 ± 0.6	
Streptomyces lividans TK24						
SSPG_01342	D6EJL0	DAAO	81 ± 5	20 ± 5	NC	
SSPG_01341	D6EJK9	oxidase	65 ± 9	6 ± 0.2	NC	
SSPG_01340	D6EJK8	oxidase	225 ± 22	30 ± 3	3 ± 0.4	
SSPG_01339	D6EJK7	DHDP	136 ± 5	16 ± 0.2	NC	
SSPG_01338	D6EJK6	ProR	pale green	171 ± 8	23 ± 1	3 ± 0.2
Agrobacterium tumefaciens C58						
Atu_0398	A9CKB4	ProR	orange	14 ± 0.4	16 ± 0.6	NC
Atu_3947	Q7CTP1	DAAO	NC	4 ± 0.2	NC	
Atu_3948	Q7CTP2	AldR	NC	NC	NC	
Atu_3949	Q7C7P3	OCD	NC	NC	NC	
Atu_3950	Q7C7P4	ALDH	NC	NC	NC	
Atu_3951	A9CFU8	LysR	NC	NC	NC	
Atu_3952	A9CFU9	DAAO	NC	NC	NC	
Atu_3953	Q7C7V0	ProR	blue	NC	NC	NC
Atu_3958	Q7C7Q2	DAAO	NC	NC	NC	
Atu_3959	Q7CTQ3	ALDH	NC	NC	NC	
Atu_3960	A9CFV4	DHDP	NC	NC	NC	
Atu_3961	Q7CTQ3	GntR	NC	NC	NC	
Atu_3965	A9CFW8	ProC	NC	NC	NC	
Atu_4675	A9CGZ4	DHDP	148 ± 2	87 ± 7	NC	
Atu_4676	Q7C7K1	MLD2	30 ± 5	40 ± 7	NC	
Atu_4678	A9CGZ5	SBP	198 ± 18	79 ± 8	NC	
Atu_4682	A9CGZ9	DAAO	294 ± 15	14 ± 3	NC	
Atu_4684	A9CH01	ProR	light sky blue	116 ± 14	8 ± 1	NC
Atu_4691	A9CH04	2-Hacid_dh	NC	NC	NC	

Fold changes in expression for the indicated gene when grown on the indicated carbon source, relative to growth on D-glucose. Fold changes are the averages of three biological replicates with standard deviation. NC, no change.

DOI: 10.7554/eLife.03275.011
proline ketimine (Table 7). Thus, the GNN provided essential information for predicting/assigning functions to the members of the light sky blue cluster in the PRS SSN.

Discussion

Although in most cases interpretations of the functional relationships of the clusters in the GNN with those in the query SSN are straightforward, complications can arise. For example, in several species, two members of the PRS are encoded by proximal genes, that is, a 4HypE and a t3HypD; these species can utilize both t4Hyp and trans-3-hydroxy-L-proline as carbon and nitrogen sources. Thus, the GNN contains a cluster for the PRS (right-hand cluster in the top row [when used as query, each PRS finds the adjacent PRS; Figure 3I]). For these species, clusters in the GNN are a composite of two genome contexts, that is, the proteins/enzymes that participate in both catabolic pathways. These situations can be deconvoluted by coloring the nodes identified by two queries with the colors for both query clusters in the GNN. With the genome contexts/metabolic pathways identified for ‘genome-isolated’ 4HypEs and t3HypDs, this complication is easy to identify and understand.
The GNN also is useful to assess the physiological importance of in vitro promiscuity. Several of the purified proteins catalyze both the 4HypE and t3HypD reactions (Tables 1 and 2). Some of these promiscuous proteins identify both the OCD or MLD2 superfamilies (predicting the t3HypD pathway) and the DAAO, DHDPS, and aldehyde dehydrogenase superfamilies (predicting the 4HypE pathway) in their genome neighborhoods (Figure 7). In these cases, we conclude that the in vitro promiscuity is not an ‘artifact’ but is physiologically significant.

As established in this study, the majority of the members of the PRS catalyze only the three previously characterized (known) reactions (Figure 1). As a result, we were able to use the GNN without any additional information to correctly predict functions for all of the highly populated clusters/families (>85% of the members; Figure 8). Because of this simplicity, the PRS provides a

| Table 6. Data Collection and Refinement Statistics*

UNIPROT / CLUSTER / PROTEIN	Resolution (Å)	Unique reflections	Rwork (%)	Rfree (%)	
Pseudomonas putida F1	1.5 (1.5-1.52)	72128	15.9 (22.6)	17.1 (23.7)	
Pseudomonas putida DSM 3043	17.5 (25.4)	20.5 (26.2)	18.4 (26.4)	15.6 (18.5)	
Xanthomonas campestris	1.7 (1.7-1.72)	70700	15.2 (21.5)	13.8 (19.7)	
Burkholderia multivorans	1.75 (1.75-1.77)	58574	15.2 (21.5)	13.8 (19.7)	
	1.75 (1.75-1.78)				
PDBID	2JBD	4J07	4JCL	4JUU	4K7X

DIFFRACTION DATA STATISTICS

Space Group	Resolution (Å)	Unique reflections	Rwork (%)	Rfree (%)
P21212	1.3 (1.3-1.31)	72128	15.9 (22.6)	17.1 (23.7)
P21212	17.5 (25.4)	20.5 (26.2)	18.4 (26.4)	15.6 (18.5)
P21212	1.75 (1.75-1.77)	58574	15.2 (21.5)	13.8 (19.7)
P21212	1.75 (1.75-1.78)			

REFINEMENT STATISTICS

Resolution (Å)	Unique reflections	Rwork (%)	Rfree (%)
1.3 (1.3-1.31)	72128	15.9 (22.6)	17.1 (23.7)
17.5 (25.4)	20.5 (26.2)	18.4 (26.4)	15.6 (18.5)
1.75 (1.75-1.77)	58574	15.2 (21.5)	13.8 (19.7)
1.75 (1.75-1.78)			

Residues / Waters / Atoms total

| 308 / 453 / 3142 | 626 / 752 / 6225 | 620 / 494 / 5780 | 626 / 596 / 5841 | 314 / 463 / 3223 |

Bfactor / Protein/Waters/Ligand

| 17.3 / 31.2 / 21.7 | 19.3 / 30.5 / 27.9 | 24.8 / 33.6 / 30.6 | 23.9 / 35.2 / 37.3 | 15.6 / 34.0 / 30.6 |

Ligand

| Citrate | Sulfate | - | Phosphate / UNL | Phosphate |

RMSD Bond Lengths (Å) / Angles (°)

| 0.008 / 1.283 | 0.009 / 1.325 | 0.011 / 1.332 | 0.010 / 1.26 | 0.009 / 1.268 |

Ramachandran Favor / Outliers (%)

| 98.7 / 0.0 | 96.8 / 0.0 | 98.2 / 0.0 | 99.0 / 0.0 | 97.7 / 0.0 |

Clashscore

| 2.32 (99° pcl) | 3.02 (98° pcl) | 3.74 (97° pcl) | 4.14 (97° pcl) | 3.12 (97° pcl) |

Overall score

| 1.01 (99° pcl) | 1.29 (95° pcl) | 1.16 (99° pcl) | 1.22 (99° pcl) | 1.16 (99° pcl) |

aData in parenthesis is for the highest resolution bin

bScores are ranked according to structures of similar resolution as formulated in MOLPROBITY

Table 6. Continued on next page
A lucid illustration of the strategy by which a query SSN and its GNN can be used to predict and assign enzymatic functions.

However, large-scale prediction and assignment of function to members of many functionally diverse (super)families will be more complicated than that described for the PRS and require information from complementary experimental and computational approaches. The use of GNNs is restricted to those enzymes that are encoded by proximal operons and/or gene clusters in eubacteria and archaea. For Escherichia coli K-12, 60% of the genes are located in polycistronic transcriptional units that may provide linked functional information that can be used to identify pathways; 40% are located in monocistronic transcriptional units (http://regulondb.ccg.unam.mx/menu/tools/regulondb_overviews/chart_form.jsp).

Table 6. Continued

UNIPROT / CLUSTER / PROTEIN	Pseudomonas fluorescens PF-5	Pseudomonas fluorescens PF-5	Agrobacterium thaliana	Agrobacterium vitis 54	Agrobacterium vitis 54
Organism	Pseudomonas fluorescens PF-5	Pseudomonas fluorescens PF-5	Agrobacterium thaliana	Agrobacterium vitis 54	Agrobacterium vitis 54
PDBID	4J9W	4J9X	4K8L	4K7G	4L80

DIFFRACTION DATA STATISTICS

Space Group	a=56.2 b=74.6 c=97.4	a=64.8 b=96.8 c=109.2	a=77.3 b=78.3 c=114.4	a=54.9 b=108.8 c=116.2	a=178.0 b=178.0 c=49.7
Unit Cell (Å, °)	P2_1	P2_2_2_1	I222	P4_2_2	P4_2_2
Resolution (Å)	1.6 (1.6-1.69)	1.7 (1.7-1.79)	1.9 (1.9-2.0)	2.0 (2.0-2.1)	1.7 (1.7-1.79)
Completeness (%)	99.9 (99.5)	99.5 (99.0)	99.8 (100.0)	100 (100)	99.9 (99.9)
Redundancy	3.6 (3.5)	6.7 (6.0)	7.2 (7.3)	14.1 (13.2)	10.4 (7.9)
Mean(l)/std(l)	6.9 (1.7)	11.6 (1.5)	6.0 (1.3)	11.6 (3.3)	18.3 (2.7)
Rmerge (%)	0.093 (0.434)	0.088 (0.531)	0.09 (0.594)	0.17 (0.836)	0.078 (0.745)

REFINEMENT STATISTICS

Resolution (Å)	1.6 (1.6-1.62)	1.7 (1.7-1.72)	1.9 (1.9-1.97)	2.0 (2.0-2.02)	1.7 (1.72-1.70)
Unique reflections	90740	77405	27674	86628	87548
Rmerge (%)	19.7 (28.8)	19.4 (23.5)	16.8 (17.6)	13.6 (19.5)	15.8 (22.9)
Rmerge (%)	23.2 (33.8)	22.5 (27.5)	20.7 (21.7)	16.6 (22.9)	19.2 (27.3)
Residues / Waters / Atoms total	A1-A310, B1-B310 [1-310]				
Bfactor Protein/Waters/Ligand	21.1 / 32.2 / 12.9	22.9 / 34.0 / 16.3	31.3 / 37.7 / -	24.1 / 37.5 / 15.2	25.1 / 36.2 / 17.9
Ligand	(PYC) Pymol	(H-Hyp) Trans-4OH-L-Proline	(PYC) Pymol	(P44-OHP) Trans-4OH-L-Proline / Acetate	(P44-OHP) Trans-4OH-L-Proline / Acetate
RMSD Bond Lengths (Å) / Angles (°)	0.006 / 1.079	0.006 / 1.093	0.011 / 1.349	0.011 / 1.311	0.010 / 1.320
Ramachandran Favored / Outliers (%)	98.7 / 0.0	98.5 / 0.0	98.3 / 0.0	98.0 / 0.3	98.4 / 0.3
Clashscore a	1.59 (99th pct)	1.82 (99th pct)	6.6 (93rd pct)	2.8 (99th pct)	2.2 (99th pct)
Overall score b	0.97 (100th pct)	0.94 (100th pct)	1.36 (98th pct)	1.08 (100th pct)	1.0 (100th pct)

a Data in parenthesis is for the highest resolution bin
b Scores are ranked according to structures of similar resolution as formulated in MOLPROBITY

DOI: 10.7554/eLife.03275.013
Thus, genome neighborhood context is not a general solution to infer functions for many proteins/ enzymes of unknown function encoded eubacterial and archaeal genomes. Even for those proteins encoded by polycistronic transcriptional units, complete metabolic pathways may be encoded by multiple transcriptional units (mono- and/or polycistronic) that are not genome proximal; these pathways and their component enzymes and ligand binding proteins (solute binding proteins for transport systems and transcriptional regulators) may be recognized by regulon analyses that identify conserved binding sites for transcriptional regulators (Ravcheev et al., 2013; Rodionov et al., 2013).

To the extent that genome neighborhoods and/or regulons allow the identification of the components of unknown/novel metabolic pathways, the locations of these proteins/enzymes in the SSNs for their (super)families will provide restrictions on their ligand/substrate specificities and/or reaction mechanisms (Atkinson et al., 2009). Also, as we recently demonstrated (Zhao et al., 2013), in silico (virtual) docking of ligand libraries to multiple binding proteins and enzymes in an unknown metabolic pathway (pathway docking) is a powerful approach to enhance the reliability of docking to predict novel ligand/substrate specificities and identify novel metabolic pathways.

Irrespective of the many complications associated with assignment of function to unknown proteins/ enzymes, we conclude that GNNs provide a novel approach for large-scale analysis and visualization of genome neighborhood context in enzyme (super)families. We are continuing to improve the use of GNNs as well as regulon analyses and pathway docking to facilitate the discovery of novel enzymes and the metabolic pathways in which they function.
Table 7. Kinetic constants for the proline ketimine reductases (members of the malate/Llactate dehydrogenase 2 [MLD2] and ornithine cyclodeaminase [OCD] superfamilies) that are in the genome neighborhoods of members of the PRS

Cluster	UniProt	Locus tag	Cofactor	k_{cat} [s$^{-1}$]	K_{m} [mM]	k_{cat}/K_{m} [M$^{-1}$s$^{-1}$]
MLD2_PRS_light skyblue (2)	Q7CVK1	Atu4676	NADPH	32 ± 1	0.33 ± 0.04	99000
	Q91492	PA1252	NADPH	1.6 ± 0.05	0.41 ± 0.06	3900
	Q4K018	PFL_1416	NADPH	20 ± 0.8	1.1 ± 0.2	18000
	Q0BV52	Bamb_3547	NADPH	54 ± 13	9.4 ± 4	5700
	A9ALD3	8mul_4451	NADPH	33 ± 2	7.4 ± 1	4400
MLD2_PRS_red (2)	Q4KAT3	PFL_3547*	NADPH	-	-	-
OCD_PRS_light skyblue (3)	A1B196	Pden_1185	NADPH	260 ± 20	3.1 ± 0.7	85000
	A3S939	EEE8_06353*	NADH	88 ± 20	16 ± 6	5100
	A3SU01	NAS141_11281*	NADPH	39 ± 4	1.2 ± 0.4	32000
	Q16D96	RD1_0323*	NADPH	15 ± 1	0.27 ± 0.07	54000
	Q5LVV0	SPO3821*	NADPH	130 ± 20	3.0 ± 0.9	43000
	Q3IZ8	RSP_0854*	NADPH	66 ± 4	0.43 ± 0.09	150000
	Q81HB0	BC_0906	NADPH	15 ± 1	0.47 ± 0.1	31000
	Q73CR9	BCS_0995	NADPH	15 ± 1	1.1 ± 0.3	13000
	Q6HMS8	B19727_0800	NADH	2.1 ± 0.3	7.6 ± 3	270
	Q6FAS5	BCE33L0803	NADPH	5.8*	-	-
OCD_PRS_navy (5)	Q0BV53	Bamb_3766	NADPH	106 ± 4	1.6 ± 0.2	64000
	Q2TS96	BTH_11457*	NADPH	73 ± 2	0.39 ± 0.05	190000
	Q3JFG0	BURPS1710b.A.2543*	NADH	7.8 ± 0.5	0.64 ± 0.1	12000
	A9AH1	8mul_4263	NADH	32 ± 3	31 ± 13	990
OCD_PRS_olive (12)	Q485RB	CPRS_1455	NADPH	35 ± 0.8	1.8 ± 0.2	20000
	A3QH73	Show_2955	NADPH	6.7 ± 0.7	1.6 ± 0.6	4300
			NADH	0.37 ± 0.1	26 ± 10	14

*Highly homologous to MLD2 or OCD which are in the gene context of proline racemase. † The enzyme didn’t saturate. ‡ K_{m} too small (< 0.03mM).
Figure 7. Mapping members of GNN clusters back to the SSN for the PRS. (A) SSN for the PRS with cluster numbers. (B) D-amino acid oxidase (DAAO). (C) Dihydridopicolinate synthase (DHPS). (D) Aldehyde dehydrogenase. (E) Ornithine cyclodeaminase (OCD). (F) Malate/L-lactate dehydrogenase 2 (MLD2). (G) The color scheme for B–F.
DOI: 10.7554/eLife.03275.016
Materials and methods

Sequence similarity networks (SSN)
The SSNs for the PRS (Figure 2) and the OCDS (Figure 5A) were created using Pythoscape v1.0 (Barber and Babbit, 2012) that is available for download from http://www.rbvi.ucsf.edu/trac/Pythoscape. The input sequences were downloaded from the InterPro webpages of PRS and OCDS: http://www.ebi.ac.uk/interpro/entry/IPR008794, http://www.ebi.ac.uk/interpro/entry/IPR003462, respectively. Cytoscape v2.8 (Smoot et al., 2011) is used for visualization and analysis of the SSN.

Genome neighborhood network (GNN)
The GNN for the PRS (Figure 3) was also created using Pythoscape v1.0 (Barber and Babbit, 2012). At an e-value cutoff 10^{-10}, each cluster in the SSN was assigned a unique cluster number and color, which are used for labeling and coloring genome context sequences. Genome context sequences were collected from the ±10 gene range of each PRS member and used as the input sequences for making the GNN using the procedure for generating a SSN.

Protein production
Genes for members of the PRS that are encoded by the genomic DNAs in the Macromolecular Therapeutics Development Facility at the Albert Einstein College of Medicine were cloned into pNIC28-BSA4-based expression vectors as previously described (Sauder et al., 2008).

Protein expression
The pNIC28-BSA4-based expression plasmids were transformed into Escherichia coli BL21(DE3) containing the pRIL plasmid (Stratagene, Agilent Technologies, Inc., Wilmington, DE) and used to inoculate 20 ml 2xYT cultures containing 50 μg/ml kanamycin and 34 μg/ml chloramphenicol. Cultures were
allowed to grow overnight at 37°C in a shaking incubator; these were used to inoculate 2 L of PASM-5052 auto-induction medium (Studier). The cultures were placed in a LEX48 airlift fermenter and incubated at 37°C for 5 hr and then at 22°C overnight (16–20 hr). The cells were collected by centrifugation at 6000×g for 10 min and stored at −80°C.

Purification of proteins

Cells were resuspended in Lysis Buffer (20 mM HEPES, pH 7.5, containing 20 mM imidazole, 500 mM NaCl, and 5% glycerol) and lysed by sonication. Lysates were clarified by centrifugation at 35,000×g for 45 min. The clarified lysates were loaded on a 1-mL His60 Ni-NTA column (Clontech) using an AKTAxpress FPLC (GE Healthcare). The columns were washed with 10 column volumes of Lysis Buffer and eluted with buffer containing 20 mM HEPES, pH 7.5, containing 500 mM NaCl, 500 mM imidazole, and 5% glycerol. The purified proteins were loaded onto a HiLoad S200 16/60 PR gel filtration column equilibrated with a buffer containing 20 mM HEPES, pH 7.5, 150 mM NaCl, 5% glycerol, and 5 mM DTT. The purities of the proteins were analyzed by SDS-PAGE. The proteins were snap frozen in liquid N₂ and stored at −80°C.

Crystallization

Proteins were screened for crystallization conditions using commercially available screens (MCSG 1, 2, and 4 [Microlytic, Woburn MA] and MIDAS [Molecular Dimensions, Altamonte Springs FL]) using sitting drop vapor diffusion 96-well INTELLIPATES (Art Robbins Instruments, Sunnyvale CA), a PHOENIX crystallization robot (Art Robbins Instruments), and stored and monitored in a Rock Imager 1000 (Formulatrix, Waltham MA) plate hotel. Protein (1 μl) was combined with an equivalent volume of precipitant and equilibrated against a 70 μl reservoir of the same precipitant at room temperature (∼292 K).

- A5VZY6 (27.9 mg/mL, 15 mM HEPES, pH 7.5, containing 150 mM NaCl, and 5 mM DTT) was crystallized in 0.1 M sodium acetate, pH 4.6, containing 1.5 M LiSO₄; the crystals grew as rectangular bricks over a 1-week period (SPG-P2₁2₁2). For the cryoprotectant, the LiSO₄ concentration was increased to 1.8M.

- A5VZY6 was also crystallized (27.9 mg/mL, 15 mM HEPES, pH 7.5, containing 150 mM NaCl, and 5 mM DTT) in 0.2 M diammonium hydrogen citrate, pH 5.0, containing 20% (wt/vol) PEG 3350; the crystals grew as wedges over a 1-week period. The cryoprotectant contained 20% glycerol.

- Q1QU06 (21.1 mg/mL, 15 mM HEPES, pH 7.5, containing 150 mM NaCl, and 5 mM DTT) was crystallized in 0.2 M di-ammonium hydrogen citrate, pH 5.0, containing 20% (wt/vol) PEG 3350; the crystals grew as plates over 2–3 days. The cryoprotectant contained 20% glycerol.

- XCC2415 (29.3 mg/mL, 15 mM HEPES, pH 7.5, containing 150 mM NaCl, and 5 mM DTT) was crystallized in 0.1 M HEPES, pH 7.5, containing 0.8 M sodium phosphate and 0.8 M potassium phosphate and grew as thin rods over 2–3 days. The cryoprotectant contained 20% glycerol.

- B3D6W2 (21.8 mg/mL, 15 mM HEPES, pH 7.5, containing 150 mM NaCl, and 5 mM DTT) was crystallized in 0.1 M phosphate-citrate, pH 4.2, containing 1.6 M NaH₂PO₄, and 0.4 M K₂HPO₄ and grew as large rods over 2 weeks. The cryoprotectant contained 20% glycerol.

- Q4KGU2 (25.7 mg/mL, 15 mM HEPES, pH 7.5, containing 150 mM NaCl, and 5 mM DTT) was crystallized in 0.2 M ammonium acetate, 0.1 M trisodium citrate, pH 5.6, containing 14% PEG4000, 5% glycerol, and either 20 mM PYC or 50 mM t4Hyp and grew as thick plates over 2–3 days. The cryoprotectant contained 20% glycerol.

- For A6WW16, B9K4G4, and B9JQV3, TEV protease (Tropea et al., 2009) was added at a 1/80 ratio prior to crystallization setup. The samples were incubated on ice for 2 hr, and the buffer was exchanged with 15 mM HEPES, pH 7.5, containing 5 mM DTT by dilution and centrifugal filtration. The extent of TEV cleavage was not measured.

- A6WW16 (17.3 mg/mL, 15 mM HEPES, pH 7.5, containing 5 mM DTT) was crystallized in 0.2 M sodium nitrate and 20% PEG3350 and grew as leaf petals over 2 to 3 weeks. The cryoprotectant contained 20% glycerol.

- B9K4G4, (17.1 mg/mL, 15 mM HEPES, pH 7.5, containing 5 mM DTT) was crystallized in 0.1 M sodium acetate, pH 4.6, containing 1 M ammonium citrate and 25 mM pyrrole 2-carboxylate. Crystals grew from an initial precipitate as multifaceted crystals over a month. The cryoprotectant contained 20% glycerol.

- B9JQV3 (30.0 mg/mL, 15 mM HEPES, pH 7.5, containing 5 mM DTT) was crystallized in 0.1 M sodium acetate, containing 25% Peg4000, 8% 2-propanol, and 200 mM t4Hyp and grew as tetragonal rods over 2–3 days. The cryoprotectant contained 20% 2-propanol.
Structure determination

Diffraction data were collected on beamline 31-ID (LRL-CAT, Advanced Photon Source, Argonne National Laboratory, IL) from single crystals at 100 K and a wavelength of 0.9793 Å. Data were integrated using MOSFLM (Battye et al., 2011) and scaled in SCALA (Evans, 2006).

Suitable molecular replacement models existed for all of the protein targets of this study. These included, 2AZP, a putative 4HypE (from cluster 2) determined unliganded by the Midwest Center for Structural Genomics, and 1TM0 (Forouhar et al., 2007), a putative t3HypD (cluster 3, also similar to cluster 9) with an unliganded and disordered active site, determined by the Northeast Structural Genomics Consortium. Molecular replacement computations were performed in AMORE (Navaza, 1994) utilizing the structure that exhibited the greatest homology to the target. If this was unsuccessful, either due to the particular issues with the space group, asymmetric unit composition, or a different orientation of the two domains, molecular replacement was performed with each of the domains separately within PHENIX (Adams et al., 2004; Zwart et al., 2008).

Iterative cycles of manual rebuilding within COOT (Emsley and Cowtan, 2004) and refinement within PHENIX were performed until the entire sequence was modeled. Inclusion of ligands, TLS (translation/libration/screw) refinement (domains chosen automatically within PHENIX) (Winn et al., 2001; Painter and Merritt, 2006) and editing of the solvent structure were performed in the final refinement cycles.

With one exception, the entire sequences of all of the targets could be modeled, except for a small number of residues at the N- or C-termini. The one outlier was A6WW16 that had several disordered regions around the active site similar to the previously determined structure from this cluster (1TM0, cluster 3, light sky blue). Due to the relatively weak binding of the proline racemase family members for their substrates, inhibitors and substrates were included at high concentrations (25–200 mM). Even at these concentrations, several structures were determined from cluster 2 that bound anionic ligands (phosphate, citrate, etc) from the crystallization medium rather than the co-crystallized ligand, and the degree of domain closure about that ligand varied. For all of the structures liganded with either PYC or t4Hyp, the structures are determined in a closed state with Ca–Ca distances of 7–8 Å for the opposing active site catalytic Cys–Cys (cluster 2, red), Ser–Thr (cluster 3, light sky blue) or Ser–Cys dyad (cluster 9, orange). In the case of Q4KGU2, the ligand was t4Hyp state based on the electron density. In contrast, for B9JQV3, the density for the ligand had significant planer character, suggesting a mixture of t4Hyp and c4Hyp.

ESI-MS screening of ProR, 4HypE, and t3HypD activities

Enzyme activity was screened by the mass change resulting from racemization/epimerization (+1 peak shift) and/or dehydration (~17 peak shift) for reactions in D2O. Each enzyme (1 μM) was incubated with substrate libraries (Table 1) containing proline and proline betaine derivatives (0.1 mM each) along with 20 mM ammonium bicarbonate in D2O at a final volume of 200 μl at 30°C for 16 hr. 50 μl of the reaction mixture was aliquoted and dried with an Eppendorf vacufuge concentrator. The residue was suspended in 10 μl of H2O, and 5 μl of the solution was mixed with the 5 μl of 50% methanol containing 0.4% (vol/vol) formic acid. A 10 μl sample was analyzed for ESI-MS.

1H NMR assay to confirm PRS reactions

If a change in mass was observed in the ESI-MS screening assays, a 1H NMR assay was performed to determine the product. Each reaction mixture contained 1 μM enzyme, 10 mM substrate, and 25 mM sodium phosphate buffer, pH 8, in a total volume of 800 μl D2O. The mixture was incubated at 30°C for 16 hr before acquisition of the 500 MHz (Hunter et al., 2012) H NMR spectrum (Figure 9).

Polarimetric assay to determine PRS kinetics

The enzyme activity was measured in a Jasco P-1010 polarimeter with a Hg 405-nm filter at 25°C by quantitating the change in optical rotation. The assay mixture contained 1 mM dithiothreitol (DTT) and 50 mM Na+-phosphate buffer, pH 8.0.

UV spectrophotometric assay for Δ1-Pyr2C reductase activity

Δ1-Pyr2C reductase assays were performed by measuring the decrease in the absorbance of NAD(P)H at 340 nm at 25°C with a Cary 300 Bio UV-Visible spectrophotometer (Varian). The reaction mixture (300 μl) contained variable concentrations of Pyr2C, 50 mM Tris-HCl buffer, pH 7.6, 0.16 mM NAD(P)H, and enzyme.
The reaction mixture contained 10 mM Δ^1-Pyr2C, 1 μM enzyme, 0.16 mM NADPH, 25 mM phosphate-Na buffer, pD 8.0, 1 U/ml alcohol dehydrogenase (NADP^+ dependent from *Thermoanaerobium brockii*, Sigma) and 80 μl isopropanol in a total volume of 800 μl of D_2O; the reaction was incubated at 30°C for 16 hr. The solvent was removed by lyophilization, 800 μl of D_2O was added, and the ^1H NMR spectrum was recorded. Representative spectra are shown in Figure 10.

^1H NMR assay for Δ^1-Pyr2C reductase activity

A ^1H NMR assay for Δ^1-Pyr2C reductase activity

The reaction mixture contained 10 mM Δ^1-Pyr2C, 1 μM enzyme, 0.16 mM NADPH, 25 mM phosphate-Na buffer, pD 8.0, 1 U/ml alcohol dehydrogenase (NADP^+ dependent from *Thermoanaerobium brockii*, Sigma) and 80 μl isopropanol in a total volume of 800 μl of D_2O; the reaction was incubated at 30°C for 16 hr. The solvent was removed by lyophilization, 800 μl of D_2O was added, and the ^1H NMR spectrum was recorded. Representative spectra are shown in Figure 10.
Bacterial strains and growth conditions

Bacterial strains are listed in Table 8. All strains were grown at 30°C with shaking at 225 rpm and were routinely cultured in Tryptic Soy Broth (Difco), supplemented with 30 g L⁻¹ sea salts (Sigma-Aldrich) for Labrenzia aggregata IAM12614 and Roseovarius nubinhibens ISM.

For gene expression analyses and carbon utilization studies, strains were cultured in the following defined media:
Table 8. Strains used in this study

Organism	Strain
Agrobacterium tumefaciens C58	RS3519F.KO
Sinorhizobium meliloti 1021	RS3519R.KO
Labrenzia aggregata IAM12614	
Pseudomonas aeruginosa PAO1	
Paracoccus denitrificans PD1222	
Rhodobacter sphaeroides 2.4.1	
Rhodobacter sphaeroides 2.4.1 ΔRSP3519	
Bacillus cereus ATCC14579	
Roseovarius rubinhibens ISM	
Escherichia coli MG1655	
Streptomyces lividans TK24	

DOI: 10.7554/eLife.03275.020

Table 9. Oligonucleotide primers used for construction of the RS3519 knock-out in Rhodobacter sphaeroides 2.4.1

Oligo	Sequence (5′–3′)
RS3519F.KO	CATATGATGCCGCTTCAGGACGTGATAACG
RS3519R.KO	GCTGAGCTCAGGAGGACGAAGAACCGCGGTCC

DOI: 10.7554/eLife.03275.021

Table 10. qRT-PCR primers for transcriptional analysis of individual proline racemase superfamily members

Oligo	Sequence (5′–3′)
Atu16s-F	GACACGGCCAAAAACTCTTAC
Atu16s-R	GGGCTCTTCTCTCCGACTACC
Atu0398-F	TCCACCTTCCAGAAGGCAAT
Atu0398-R	GGTGACGAGGTCGTTCAAGA
Atu3953-F	CAGCCTCACTGGCCATCAGG
Atu3953-R	GTTGTGTGACCAATGATCCC
Atu4684-F	GAAGAGGCGCATAGATTTG
Atu4684-R	CGAAACCACAAAGCCTTGTT
Bc16s-F	CTCTGTCTCTGAGATTTGG
Bc16s-R	TGTGATGCCAGGTCTAAGG
Bc0905-F	CTTCACTGACGGGACAATGAGA
Bc0905-R	GTTACCGTCTGGTACGGGCAAA
Bc2835-F	AACAGACCCGCTGTACCTCG
Bc2835-R	ACTAAGCGCCGGTGTTATACT
La16s-F	TGTTGGGTTGAAGGCTTAC
La16s-R	TGCGTGTATCCTTACGAC
La28492-F	TGTGAAAGACGGAGGCCAAG
La28492-R	AAAAGCCCGAGCTGTTCTTT
La28502-F	CGCCTGAAATCGACAGCCATA

Table 10. Continued on next page

Agrobacterium tumefaciens C58 was cultured in M9 minimal medium (per liter: 12.8 g Na₂HPO₄·7H₂O, 3.0 g KH₂PO₄, 0.5 g NaCl, 1.0 g NH₄Cl); B. cereus ATCC 14579 was cultured in a modified Spizizen’s minimal medium (Spizizen., 1958) (per liter: 2.0 g (NH₄)₂SO₄, 11.0 g K₂HPO₄, 6.0 g KH₂PO₄, 1.0 g sodium citrate·2H₂O).

Streptomyces lividans TK24 was cultured in a modified minimal medium of Hopwood (Hopwood., 1967) (per liter: 1.0 g (NH₄)₂SO₄, 0.5 g K₂HPO₄, 0.005 g FeSO₄·7H₂O). M9 minimal medium, and Spizizen’s minimal medium were supplemented with the following trace metals (per liter: 0.003 mg CuSO₄·5H₂O, 0.025 mg H₃BO₃, 0.007 mg CoCl₂·6H₂O, 0.016 mg MnCl₂·4H₂O, 0.003 mg ZnSO₄·7H₂O, 0.3 mg FeSO₄·7H₂O). The minimal medium of Hopwood was supplemented with the following trace metals (per liter: 0.08 mg ZnCl₂, 0.4 mg FeCl₃·6H₂O, 0.02 mg CuCl₂·2H₂O, 0.02 mg MnCl₂·4H₂O, 0.02 mg Na₂B₄O₇·10H₂O, 0.02 mg (NH₄)₂MoO₄·4H₂O).

All other strains were grown in the following defined medium (per liter: 17.0 g K₂HPO₄, 2.5 g (NH₄)₂SO₄, 2.0 g NaCl) supplemented with the following trace metals (0.3 mg FeSO₄·7H₂O, 0.003 mg ZnSO₄·7H₂O, 0.003 mg CuSO₄·5H₂O, 0.025 mg H₃BO₃), supplemented with 30 g L⁻¹ sea salts (Sigma-Aldrich) for L. aggregata IAM12614 and R. rubinhibens ISM. All of the above defined media were additionally supplemented with 1 mM MgSO₄, 100 µM CaCl₂, and vitamins (33 µM thiamine, 41 µM biotin, 10 nM nicotinic acid). 20 mM of one of the following served as the sole source of carbon: D-glucose (Thermo Fisher), L-proline (Calbiochem), or L-3Hyp (BOC Sciences), c3Hyp (Chem Impex Int’l), t4Hyp (Bachem), c4Hyp (Sigma-Aldrich), or L-proline (CalBiochem).

Plasmid construction for gene disruption

RSP3519 was amplified from Rhodobacter sphaeroides 2.4.1 genomic DNA using Pfu DNA polymerase (Thermo) with primers RSP3519F and RSP3519R (Table 9). The resulting PCR product was inserted into the pGEM T Easy vector (Promega) to

Zhao et al. eLife 2014;3:e03275. DOI: 10.7554/eLife.03275

24 of 32
generate plasmid pRK_RSP3519-1. pRK_RSP3519-1 was digested with Smal and ligated to a 900 bp blunt-ended chloramphenicol resistance cassette to generate pRK_RSP3519-2. pRK_RSP3519-2 was then used as the template in a PCR with primers RSP3519F and RSP3519R. The resulting product was digested with EcoRI and ligated into pSUP202 to give the plasmid used for gene disruption: pRK_RSP3519-3. To disrupt RSP3519, pRK_RSP3519-3 was electroporated into R. sphaeroides 2.4.1, and double crossover chromosomal gene disruptions were selected by resistance to chloramphenicol and sensitivity to ampicillin (Matsson et al., 1998).

Cell preparation for gene expression analysis

Starter cultures were initiated from a single colony and grown in the appropriate rich medium overnight. This culture was used to inoculate the appropriate minimal medium (1% inoculum) supplemented with 20 mM D-glucose; the cultures were grown until OD_{600} 0.3–0.5. The cells were pelleted by centrifugation (4750×g for 5 min at 4°C), washed once, and resuspended in minimal medium with no carbon source. For gene expression analysis of individual PRS genes, cultures were divided into two equal volumes, 20 mM D-glucose was added to one volume and 20 mM trans-4-hydroxy-L-proline or trans-3-L-hydroxy proline was added to the other, and cultures were grown for three additional hr prior to cell harvest.

For evaluation of whole genome neighborhoods of select PRS targets (orange, navy, hotpink, pale green, blue, and sky blue clusters) in A. tumefaciens C58, B. cereus ATCC 14579, and S. lividans TK24, cultures were divided into four equal volumes, supplemented with D-glucose, trans-4-hydroxy-L-proline, trans-3-hydroxy-L-proline, or L-proline to a final concentration of 20 mM, and grown until OD_{600} 0.8–1.0. At the time of cell harvest, one volume of RNAprotect Bacteria Reagent (Qiagen) was added to two volumes of each culture. Samples were mixed by vortexing for 10 s and then incubated for 5 min at room temperature. Cells were pelleted by centrifugation (4750×g for 5 min at 4°C), the supernatant was decanted, and cell pellets were stored at −80°C until further use.

RNA isolation

RNA isolation was performed in an RNAse-free environment at room temperature using the RNeasy Mini Kit (Qiagen) per the manufacturer’s instructions. For B. cereus ATCC 14579 and S. lividans TK24, cells were initially disrupted using a modified bead-beating procedure: cells were resuspended in 400 µl Soil Pro Lysis Buffer (MP Bio), transferred to
Lysis Matrix E tubes (MP Bio), and agitated horizontally on a Vortex Mixer (Fisher) with Vortex Adapter (Ambion) for 10 min at speed 10. Beads and cellular debris were pelleted by centrifugation at 16,000 × g for 5 min. 200 µl of the supernatant was used for subsequent RNA isolation. Cell pellets for all other organisms were disrupted according to the ‘Enzymatic Lysis Protocol’ in the RNAprotect Bacteria Reagent Handbook (Qiagen); lysozyme (Thermo-Pierce) was used at 15 mg ml−1. RNA concentrations were determined by absorption at 260 nm using the Nanodrop 2000 (Thermo) and absorption ratios A260/A280 and A260/A230 were used to assess sample integrity and purity. Isolated RNA was stored at −80°C until further use.

Reverse transcription and quantitative real-time PCR
Reverse transcription (RT) PCRs for *A. tumefaciens* C58 and *B. cereus* ATCC 14579 were performed with 300 ng of total isolated RNA using the ProtoScript First Strand cDNA Synthesis Kit (NEB) as per the manufacturer’s instructions. For *S. lividans* TK24 RT-PCRs were performed with 300 ng of total RNA using the Transcriptor First Strand cDNA Synthesis Kit (Roche), with 2.5% DMSO added to relieve secondary structures. All other RT-PCRs were performed with 1 µg of total RNA using the RevertAid H Minus First Strand cDNA Synthesis Kit (Fermentas).

Primers for quantitative real-time (qRT) PCR for *A. tumefaciens* C58 and *B. cereus* ATCC 14579 gene targets were designed using the Primer3 primer tool; amplicons were 150–200 bps in length; primers for all other qRT-PCRs were designed using the Universal ProbeLibrary System (Roche); amplicons were 66–110 bps in length. Primer sequences are provided in Tables 10 and 11. Primers were 18–27 nucleotides in length and had a theoretical Tm of 55–60°C. Primer efficiency was determined to be at least 90% for each primer pair.

qRT-PCRs were carried out in 96-well plates using the Roche LightCycler 480 II instrument with the LightCycler 480 SYBR Green I Master Mix (Roche) per the manufacturer’s instructions. Each 10-µl reaction contained 1 µM of each primer, 5 µl of SYBR Green I Master Mix, and an appropriate dilution of cDNA. Reactions were run as follows: one cycle at 95°C for 5 min, 45 cycles at 95°C for 10 s, 50°C for 10 s, 72°C for 10 s, and a final dissociation program at 95°C for 15 s, 60°C for 1 min, and 95°C for 15 s. Minus-RT controls were performed to verify the absence of genomic DNA in each RNA sample for each gene target analyzed. Gene expression data were expressed as crossing threshold (CT)
values. Data were analyzed by the $2^{-\Delta\Delta CT}$ (Livak) method (Livak and Schmittgen, 2001), using the 16S rRNA gene as a reference. Each qRT-PCR was performed in triplicate, and fold-changes are the averages of at least three biological replicates.

Data deposition

The atomic coordinates and structure factors for ‘4R-hydroxyproline 2-epimerases’ (4HypE) from *Pseudomonas putida* F1 (citrate-ligated, PDBID:4JBD; sulfate-ligated, PDBID:4JD7), *Chromohalobacter salexigens* DSM 3043 (apo, PDBID:4JCI), *Xanthomonas campestris* (phosphate-ligated, PDBID:4JUJ), *Burkholderia multivorans* (phosphate-ligated, PDBID:4K7X), *Pseudomonas fluorescens* Pf-5 (pyrrole 2-carboxylate-ligated, PDBID:4J9W; trans-4-hydroxy-L-proline-ligated, PDBID:4J9X), *Ochrobactrum anthropic* (apo, PDBID:4K7G), and *Agrobacterium vitis* S4 (trans-4-hydroxy-L-proline-ligated, PDBID:4LB0) and ‘trans-3-hydroxy-L-proline dehydratase’ (t3HypD) from *Agrobacterium vitis* S4 (pyrrole 2-carboxylate-ligated, PDBID:4K7G) have been deposited in the Protein Data Bank, www.pdb.org.

UniProt accession IDS

This manuscript describes functional characterization of proteins with the following UniProt accession IDs: A0NXQ7, A0NXQ9, A1B0W2, A1B195, A1B196, A1B7P4, A1BBM5, A1U2K1, A3M4A9, A3PPJ8, A3QF11, A3QH73, A35939, A3S0U1, A5VZy6, A6WW16, A6WXx7, A8H392, A9AKG8, A9AKH1, A9AL52, A9ALD3, A9AQw9, A9CFU8, A9CFV9, A9CFV0, A9CFV4, A9CFW8, A9CGZ4, A9CGZ5, A9CGZ9, A9CH01, A9CH04, A9CK78, B0VB44, B1KJ76, B3D6W2, B4EHE6, B9J8G8, B9JHU6, B9JQV3, B9K4G4, B9R4E3, C5ZMD2, D2AV87, D2QN44, D55854, D6EJK6, D6EJK7, D6EJK8, D6EJK9, D6EL0, Q0B950, Q0B953, Q0B979, Q0B952, Q169D6, Q1QBF3, Q1QU06, Q1QV19, Q2KD13, Q2T3J4, Q2T5J6, Q3IWG2, Q3IZJ8, Q3JFZ0, Q3JHA9, Q4BSR8, Q4KAT3, Q4KG7b, Q4KGU2, Q5LKW3, Q5LW0, Q6FA5, Q6HMS8, Q6HMS9, Q73CR9, Q73CS0, Q7CFV0, Q7CTP1, Q7CTP2, Q7CTP3, Q7CTP4, Q7CTQ2, Q7CTQ3, Q7CTQ5, Q7CV71, Q7N7U77, Q81C6D, Q81CD7, Q81CD8, Q81CD9, Q81CE0, Q81HB0, Q81HB1, Q8FY50, Q8YP833, Q8YFD6, Q92WR9, Q92WS1, Q9476, Q9I489, and Q9I492.

Acknowledgements

This research was supported by a program project grant and three cooperative agreements from the US National Institutes of Health (P01GM071790, U54GM093342, U54GM074945, and U54GM094662). Molecular graphics and analyses were performed with the UCSF Chimera package; Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS P41-GM103311). We thank Dr John ‘Scooter’ Morris for help in using Cytoscape for visualizing complex sequence networks. We gratefully acknowledge Rafael Toro and Rahul Bohsle for maintenance of the AECOM crystallization facility and assistance and advice on crystallization experiment assembly. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Use of the Lilly Research Laboratories Collaborative Access Team (LRL-CAT) beamline at Sector 31 of the Advanced Photon Source was provided by Eli Lilly Company, which operates the facility.

Additional information

Funding

Funder	Grant reference number	Author
National Institute of General Medical Sciences	P01GM071790	Patricia C Babbitt, Steven C Almo, John A Gerlt, Matthew P Jacobson
Author contributions
SZ, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; AS, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; XZ, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; MWV, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; RK, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; BH, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; JS, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; RDS, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; SCA, Conception and design, Analysis and interpretation of data, Drafting or revising the article; JAG, Conception and design, Analysis and interpretation of data, Drafting or revising the article; MPJ, Conception and design, Analysis and interpretation of data, Drafting or revising the article

Additional files

Major dataset
The following datasets were generated:

Author(s)	Year	Dataset title	Dataset ID and/or URL	Database, license, and accessibility information
Vetting MW, Toro R, Bhosle R, Al Obaidi NF, Morisco LL, Wasserman SR, Sojitra S, Washington E, Scott Glenn A, Chowdhury S, Evans B, Hammonds J, Stead M, Hillerich B, Love J, Seidel RD, Imker HJ, Gerlt JA, Almo SC	2013	Crystal structure of pput_1285, a putative hydroxyproline epimerase from pseudomonas putida f1 (target efi-506500), open form, space group i2, bound citrate	http://www.rcsb.org/pdb/explore/explore.do?structureId=4JBD	Publicly available at RCSB Protein Data Bank
Vetting MW, Toro R, Bhosle R, Al Obaidi NF, Morisco LL, Wasserman SR, Sojitra S, Washington E, Scott Glenn A, Chowdhury S, Evans B, Hammonds J, Stead M, Hillerich B, Love J, Seidel RD, Imker HJ, Gerlt JA, Almo SC	2013	Crystal structure of pput_1285, a putative hydroxyproline epimerase from Pseudomonas putida f1 (target EFI-506500), open form, space group P212121, bound sulfate	http://www.rcsb.org/pdb/explore/explore.do?structureId=4JD7	Publicly available at RCSB Protein Data Bank
Vetting MW, Toro R, Bhosle R, Al Obaidi NF, Morisco LL, Wasserman SR, Sojitra S, Washington E, Scott Glenn A, Chowdhury S, Evans B, Hammonds J, Stead M, Hillerich B, Love J, Seidel RD, Imker HJ, Gerlt JA, Almo SC, Enzyme Function Initiative

2013 Crystal structure of csal_2705, a putative hydroxyproline epimerase from CHROMOH- ALOBACTER SALEXIGENS (TARGET EFI-506486), SPACE GROUP P212121, unliganded http://www.rcsb.org/pdb/explore/explore.do?structureId=4JCI Publicly available at RCSB Protein Data Bank.

Vetting MW, Toro R, Bhosle R, Al Obaidi NF, Morisco LL, Wasserman SR, Sojitra S, Washington E, Scott Glenn A, Chowdhury S, Evans B, Hammonds J, Stead M, Hillerich B, Love J, Seidel RD, Imker HJ, Gerlt JA, Almo SC, Enzyme Function Initiative

2013 Crystal structure of a putative hydroxyproline epimerase from xanthomonas campestris (TARGET EFI-506516) with bound phosphate and unknown ligand http://www.rcsb.org/pdb/explore/explore.do?structureId=4JUU Publicly available at RCSB Protein Data Bank.

Vetting MW, Toro R, Bhosle R, Al Obaidi NF, Morisco LL, Wasserman SR, Sojitra S, Washington E, Scott Glenn A, Chowdhury S, Evans B, Hammonds J, Stead M, Hillerich B, Love J, Seidel RD, Imker HJ, Gerlt JA, Almo SC, Enzyme Function Initiative

2013 Crystal structure of a 4-hydroxyproline epimerase from burkholderia multivorans, target efi-506479, with bound phosphate, closed domains http://www.rcsb.org/pdb/explore/explore.do?structureId=4K7X Publicly available at RCSB Protein Data Bank.

Vetting MW, Toro R, Bhosle R, Al Obaidi NF, Morisco LL, Wasserman SR, Sojitra S, Washington E, Scott Glenn A, Chowdhury S, Evans B, Hammonds J, Stead M, Hillerich B, Love J, Seidel RD, Imker HJ, Gerlt JA, Almo SC, Enzyme Function Initiative

2013 Crystal structure of the complex of a hydroxyproline epimerase (TARGET EFI-506499, PSEUDOMONAS FLUORESCENS PF-5) with the inhibitor pyrrole-2-carboxylate http://www.rcsb.org/pdb/explore/explore.do?structureId=4J9W Publicly available at RCSB Protein Data Bank.

Vetting MW, Toro R, Bhosle R, Al Obaidi NF, Morisco LL, Wasserman SR, Sojitra S, Washington E, Scott Glenn A, Chowdhury S, Evans B, Hammonds J, Stead M, Hillerich B, Love J, Seidel RD, Imker HJ, Gerlt JA, Almo SC, Enzyme Function Initiative

2013 Crystal structure of the complex of a hydroxyproline epimerase (TARGET EFI-506499, PSEUDOMONAS FLUORESCENS PF-5) with trans-4-hydroxy-l-proline http://www.rcsb.org/pdb/explore/explore.do?structureId=4J9X Publicly available at RCSB Protein Data Bank.

Vetting MW, Toro R, Bhosle R, Al Obaidi NF, Morisco LL, Wasserman SR, Sojitra S, Washington E, Scott Glenn A, Chowdhury S, Evans B, Hammonds J, Stead M, Hillerich B, Love J, Seidel RD, Imker HJ, Gerlt JA, Almo SC, Enzyme Function Initiative

2013 Crystal structure of a putative 4-hydroxyproline epimerase/3-hydroxyproline dehydratse from the soil bacterium ochrobacterium anthropi, target efi-506495, disordered loops http://www.rcsb.org/pdb/explore/explore.do?structureId=4K8L Publicly available at RCSB Protein Data Bank.

Vetting MW, Toro R, Bhosle R, Al Obaidi NF, Morisco LL, Wasserman SR, Sojitra S, Washington E, Scott Glenn A, Chowdhury S, Evans B, Hammonds J, Stead M, Hillerich B, Love J, Seidel RD, Imker HJ, Gerlt JA, Almo SC, Enzyme Function Initiative

2013 Crystal structure of a putative 4-hydroxyproline epimerase/3-hydroxyproline dehydratse from agrobacterium vitis, target efi-506470, with bound pyrrole 2-carboxylate, ordered active site http://www.rcsb.org/pdb/explore/explore.do?structureId=4K7G Publicly available at RCSB Protein Data Bank.
The following previously published datasets were used:

Author(s)	Year	Dataset title	Dataset ID and/or URL	Database, license, and accessibility information
Vetting MW, Toro R, Bhosle R, Al Obaidi NF, Morisco LL, Wasserman SR,	2013	Crystal structure of a hydroxyproline epimerase from agrobacterium vitis,	http://www.rcsb.org/pdb/explore/explore.do?structureId=4LB0	Publicly available at RCSB Protein Data Bank.
Washington E, Scott Glenn A, Chowdhury S, Evans B, Hammond J, Stead M,		target efi-506420, with bound trans-4-oh-l-proline		
Hillerich B, Love J, Seidel RD, Imker HJ, Gerit JA, Almo SC, Enzyme				
Function Initiative				
Buschiazzo A, Goytia M, Shaeffer F, Degrave W, Shepard W, Gregoire C,	2006	Crystal structure, catalytic mechanism, and mitogenic properties of Trypanosoma	http://www.rcsb.org/pdb/explore/explore.do?structureId=1W61	Publicly available at RCSB Protein Data Bank.
Chamond N, Cosson A, Berne man A, Coatnoan N, Alzari P, Minoprio P		cruzi proline racemase		
Liu Y, Gorodichtkenskaia E, Skarina Y, Yang C, Joachimiak A, Edwards A,	2005	Crystal Structure of PA1268 Solved by Sulfur SAD	http://www.rcsb.org/pdb/explore/explore.do?structureId=2A2P	Publicly available at RCSB Protein Data Bank.
Pai EF, Savchenko A, Midwest Center for Structural Genomics				
Forouhar F, Chen Y, Xiao R, Ho CK, Ma L-C, Cooper B, Acton TB, Montelione	2004	Crystal Structure of the putative proline racemase from Brucella melitensis,	http://www.rcsb.org/pdb/explore/explore.do?structureId=1TM0	Publicly available at RCSB Protein Data Bank.
GT, Hunt JF, Tong L, Northeast Structural Genomics Consortium		Northeast Structural Genomics Genomics Target LR31		

References

Adams E, Frank L. 1980. Metabolism of proline and the hydroxyprolines. *Annual Review of Biochemistry* **49**:1005–1061. doi: 10.1146/annurev.bi.49.070180.005041.

Adams PD, Gopal K, Grosse-Kunstleve RW, Hung LW, Looerger TR, McCoy AJ, Moriarty NW, Pai RK, Read RJ, Romo TD, Sacchetti JC, Sauer NK, Storoni LC, Terwilliger TC. 2004. Recent developments in the PHENIX software for automated crystallographic structure determination. *Journal of Synchrotron Radiation* **11**:53–55. doi: 10.1107/S0909049503024130.

Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC. 2004. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. *PLOS ONE* **4**:e4345. doi: 10.1371/journal.pone.0004345.

Barber AE, Babbitt PC. 2012. Pythoscape: a framework for generation of large protein similarity networks. *Bioinformatics* **28**:2845–2846. doi: 10.1093/bioinformatics/bts532.

Batty TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. 2011. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. *Acta Crystallographica Section D, Biological Crystallography* **67**:271–281. doi: 10.1109/annurev.bi.49.070180.005041.

Buschiazzo A, Goytia M, Schaeffer F, Degrave W, Shepard W, Grégoire C, Chamond N, Cosson A, Berneman A, Coatnoan N, Alzari P, Minoprio P. 2006. Crystal structure, catalytic mechanism, and mitogenic properties of Trypanosoma cruzi proline racemase. *Proceedings of the National Academy of Sciences of the United States of America* **103**:1705–1710. doi: 10.1073/pnas.0509010103.

Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krümmenacker M, Latendresse M, Mueller LA, Ong O, Paley S, Pajar A, Shearer AG, Travers M, Weeraseginghe D, Zhang P, Karp P. 2012. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. *Nucleic Acids Research* **40**:D742–D753. doi: 10.1093/nar/gkr1014.

Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, Chivian D, Friedland GD, Huang KH, Keller K, Novichkov PS, Dubchak IL, Alm EJ, Arkin AP. 2010. MicrobesOnline: an integrated portal for comparative and functional genomics. *Nucleic Acids Research* **38**:D396–D400. doi: 10.1093/nar/gkp919.

Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. *Acta Crystallographica Section D, Biological Crystallography* **60**:2126–2132. doi: 10.1107/S0907444904019158.

Evans P. 2006. Scaling and assessment of data quality. *Acta Crystallographica Section D, Biological Crystallography* **62**:72–82. doi: 10.1107/S0907444905036693.

Forouhar F, Kuzin A, Seetharaman J, Lee I, Zhou W, Abashidze M, Chen Y, Yong W, Janjua H, Fang Y, Wang D, Cunningham K, Xiao R, Acton TB, Pichersky E, Klessig DF, Porter CW, Montelione GT, Tong L. 2007. Functional insights from structural genomics. *Journal of Structural and Functional Genomics* **8**:37–44. doi: 10.1007/s10969-007-9018-3.
et al. 2013. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research 41:D808–D815. doi: 10.1093/nar/gks1094.

Gatto GJ, Boyne MT, Kelleher NL, Walsh CT. 2006. Biosynthesis of piperocic acid by Rapl, a lysine cycloaminase encoded in the rapamycin gene cluster. Journal of the American Chemical Society 128:3838–3847. doi: 10.1021/ja0587603.

Gavina JM, White CE, Finan TM, Britz-Mckibbin P. 2010. Determination of 4-hydroxyproline-2-epimerase activity by capillary electrophoresis: a stereoselective platform for inhibitor screening of amino acid isomerases. Electrophoresis 31:2831–2837. doi: 10.1111/j.1365-2179.2010.07806.x.

Goodman JL, Wang S, Alam S, Ruzicka FJ, Frey PA, Wedekind JE. 2004. Ornithine cycloaminase: structure, mechanism of action, and implications for the mu-crystallin family. Biochemistry 43:13883–13891. doi: 10.1021/bi048207i.

Goytia M, Chamond N, Cosson A, Coatnoan N, Hernandez D, Berneeman A, Minoprio P. 2007. Molecular and structural discrimination of proline racemase and hydroxyproline-2-epimerase from nosocomial and bacterial pathogens. PLOS ONE 2:e885. doi: 10.1371/journal.pone.0000885.

Hallén A, Cooper AJL, Jamie JF, Haynes PA, Willows RD. 2011. Mammalian forebrain ketimine reductase identified as μ-crystallin; potential regulation by thyroid hormones. Journal of Neurochemistry 118:379–387. doi: 10.1111/j.1471-4159.2011.07220.x.

Hopwood DA. 1967. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriological Reviews 31:373–403.

Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Lopez R, Madera M, Martin JE, McAnulla C, McEwen AJ, Mi H, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Scrace Y, Sigrist CJ, Simos A, Skarina T, Tate J, Thimmann KR, Thomas PD, Wu CH, Yatsis H, Yong SY. 2011. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Research 40:D306–D312. doi: 10.1093/nar/gkr948.

Kabisch UC, Gräntzdörffer A, Schierhorn A, Rücknagel KP, Arendresen JR, Pich A. 1999. Identification of d-proline reductase from Clostridium sticklandii as a Selenoenzyme and Indications for a catalytically active pyruvoyl mechanism of action, and implications for the mu-crystallin family. J. Biol. Chem. 274:8445–8454. doi: 10.1074/jbc.274.13.8445.

Kan-No N, Matsu-Ura H, Jikihara S, Yamamoto T, Endo N, Moriyama S, Nagahisa E, Sato M. 2005. Tauropine dehydrogenase from the marine sponge Suberites domuncula. J. Biochem. 138:13883–13891. doi: 10.1021/bi048207i.

Koo PH, Adams E. 1974. Alpha-ketoglutaric semialdehyde dehydrogenase of Pseudomonas. The Journal of Biological Chemistry 249:1704–1716.

Kumar R, Zhao S, Vetting MW, Wood BM, Sakai A, Cho K, Solbiati J, Almo SC, Sweedler JV, Jacobson MP, Gerlt JA, Cronan JE. 2014. Prediction and biochemical demonstration of a catabolic pathway for the osmoprotectant proline betaine. mBio 5:e00933-13. doi: 10.1128/mBio.00933-13.

Li C, Lu CD. 2009. Arginine racemization by coupled catabolic and anabolic dehydrogenases. Proceedings of the National Academy of Sciences of the United States of America 106:906–911. doi: 10.1073/pnas.0808269106.

Liu Y, Gorodichcenskaia E, Skarina T, Yang C, Joachimiak A, Edwards A, Pai EF, Savchenko A. 2005. PDB ID: 2AZP. Midwest Center for Structural Genomics (MCSG). Crystal Structure of PA1268 Solved by Sulfur SAD.

Liva KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi: 10.1097/01.meth.2001.1262.

Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Hunttemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC. 2012. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Research 40:D115–D122. doi: 10.1093/nar/gkr1044.

Mattson M, Ackrell BA, Cochran B, Hederstedt L. 1998. Carboxin resistance in Paracoccus denitrificans conferred by a mutation in the membrane-anchor domain of succinate:quinone reductase. Archives of Microbiology 170:27–37. doi: 10.1007/s002030050611.

Muramatsu H, Miura H, Kubota Y, Yasuda M, Ueda M, Kurihara T, Esaki N. 2005. The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADP-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline. The Journal of Biological Chemistry 280:5329–5335. doi: 10.1074/jbc.M411918200.

Navaza J. 1994. AMoRe: an automated package for molecular replacement. Acta Crystallography 50:157–163. doi: 10.1107/S0108767393007597.

Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research 42:D206–D214. doi: 10.1093/nar/gkt1226.

Painter J, Merritt EA. 2006. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallographica Section D, Biological Crystallography 62:439–450. doi: 10.1107/S0907444906005270.

Plese B, Grebeniuk VA, Schröder HC, Breter HJ, Müller IM, Müller WEB. 2008. Cloning and expression of a tauropine dehydrogenase from the marine sponge Suberites domuncula. Mar Biol 153:1219–1232. doi: 10.1007/s00227-007-0896-5.
Ravcheev DA, Godzik A, Osterman AL, Rodionov DA. 2013. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicon: comparative genomics reconstruction of metabolic and regulatory networks. **BMC Genomics** 14:873. doi: 10.1186/1471-2164-14-873.

Reina-San-Martin B, Degrave W, Rougeot C, Cosson A, Chamond N, Cordeiro-Da-Silva A, Arala-Chaves M, Coutinho A, Minoprio P. 2000. A B-cell mitogen from a pathogenic trypanosome is a eukaryotic proline racemase. **Nature Medicine** 6:890–897.

Rodionov DA, Rodionova IA, Li X, Ravcheev DA, Tarasova Y, Portnoy VA, Zengler K, Osterman AL. 2013. Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima. **Frontiers in Microbiology** 4:244. doi: 10.3389/fmicb.2013.00244.

Rubinstein A, Major DT. 2009. Catalyzing racemizations in the absence of a cofactor: the reaction mechanism in proline racemase. **Journal of the American Chemical Society** 131:8513–8521. doi: 10.1021/ja900716y.

Sauder MJ, Rutter ME, Bain K, Rooney I, Gheyi T, Atwell S, Thompson DA, Emtage S, Burley SK. 2008. High throughput protein production and crystallization at NYSGXRC. **Methods in Molecular Biology** 426:561–575. doi: 10.1007/978-1-60327-058-8_37.

Schröder I, Vadas A, Johnson E, Lim S, Monbouquette HG. 2004. A novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and mu-crystallin. **Journal of Biological Chemistry** 186:7680–7689. doi: 10.1128/JB.186.22.7680-7689.2004.

Singh RM, Adams E. 1965. Enzymatic deamination of delta-1-pyrroline-4-hydroxy-2-carboxylate to 2,5-dioxovalerate (alpha-ketogluaric semialdehyde). **The Journal of Biological Chemistry** 240:4344–4351.

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. 2011. Cytoscape 2.8: new features for data integration and network visualization. **Bioinformatics** 27:431–432. doi: 10.1093/bioinformatics/btt675.

Spizizen J. 1958. Transformation of biochemically deficient strains of bacillus subtilis by deoxyribonucleate. **Proceedings of the National Academy of Sciences of the United States of America** 44:1072–1078. doi: 10.1073/pnas.44.10.1072.

Stadtman TC, Elliott P. 1957. Studies on the enzymic reduction of amino acids. II. Purification and properties of D-proline reductase and a proline racemase from *Clostridium sticklandii*. **The Journal of Biological Chemistry** 228:983–997.

Tropea JE, Cherry S, Waugh DS. 2009. Expression and purification of soluble His(6)-tagged TEV protease. **Methods in Molecular Biology** 498:297–307. doi: 10.1007/978-1-59745-196-3_19.

Visser WF, Verhoeven-Duf NM, de Koning TJ. 2012. Identification of a human trans-3-hydroxy-L-proline dehydratase, the first characterized member of a novel family of proline racemase-like enzymes. **The Journal of Biological Chemistry** 287:21654–21662. doi: 10.1074/jbc.M111.363218.

Watanabe S, Yamada M, Ohitsu I, Makino K. 2007. alpha-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline. Molecular and metabolic convergent evolution. **The Journal of Biological Chemistry** 282:6685–6695. doi: 10.1074/jbc.M610572000.

Watanabe S, Morimoto D, Fukumori F, Shinomiya H, Nishiwaki H, Kawano-Kawada M, Sasaki Y, Tozawa Y, Watanabe Y. 2012. Identification and characterization of D-hydroxy-2-carboxylate deaminase involved in novel L-hydroxyproline metabolism of bacteria: metabolic convergent evolution. **The Journal of Biological Chemistry** 287:32674–32688. doi: 10.1074/jbc.M112.374272.

Watanabe S, Tanimoto Y, Yamauchi S, Tozawa Y, Sawayama S, Watanabe Y. 2014. Identification and characterization of trans-3-hydroxy-L-proline dehydratase and Delta(1)-pyrroline-2-carboxylate reductase involved in trans-3-hydroxy-L-proline metabolism of bacteria. **FEBS Open Bio** 4:240–250. doi: 10.1016/j.fob.2014.02.010.

Winn MD, Isupov MN, Murshudov GN. 2001. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallographica Section D, Biological Crystallography 57:122–133. doi: 10.1107/S0907444900014736.

Zhao S, Kumar R, Sakai A, Vetting MW, Wood BM, Brown S, Bonanno JB, Hillerich BS, Seidel RD, Babbitt PC, Almo SC, Sweeney JV, Gerlt JA, Cronan JE, Jacobson MP. 2013. Discovery of new enzymes and metabolic pathways by using structure and genome context. **Nature** 502:698–702. doi: 10.1038/nature12576.

Zwart PH, Afonine PV, Grosse-Kunstleve RW, Hung LW, Iloeger TR, McCoy AJ, Mcke M, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Storoni LC, Terwilliger TC, Adams PD. 2008. Automated structure solution with the PHENIX suite. **Methods in Molecular Biology** 426:419–435. doi: 10.1007/978-1-60327-058-8_28.