Research Article

The Structure of EAP-Groups and Self-Autopermutable Subgroups

Shima Housieni1 and Mohammad Reza Rajabzadeh Moghaddam1,2,3

1Department of Mathematics, Islamic Azad University, Mashhad Branch, Mashhad 9187147578, Iran
2Department of Mathematics, Khayyam University, Mashhad 9189747178, Iran
3Centre of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Iran

Correspondence should be addressed to Mohammad Reza Rajabzadeh Moghaddam; rezam@ferdowsi.um.ac.ir

Received 19 May 2014; Accepted 16 September 2014; Published 11 December 2014

Academic Editor: K. C. Sivakumar

Copyright © 2014 S. Housieni and M. R. R. Moghaddam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A subgroup H of a given group G is said to be autopermutable, if $HH^\alpha = H^\alpha H$ for all $\alpha \in \text{Aut}(G)$. We also call H a self-autopermutable subgroup of G, when $HH^\alpha = H^\alpha H$ implies that $H^\alpha = H$. Moreover, G is said to be EAP-group, if every subgroup of G is autopermutable. One notes that if α runs over the inner automorphisms of the group, we obtain the notions of conjugate-permutability, self-conjugate-permutability, and ECP-groups, which were studied by Foguel in 1997, Li and Meng in 2007, and Xu and Zhang in 2005, respectively. In the present paper, we determine the structure of a finite EAP-group when its centre is of index 4 in G. We also show that self-autopermutability and characteristic properties are equivalent for nilpotent groups.

1. Introduction

Let H be a subgroup of a given group G. Then we call H to be autopermutable, if $HH^\alpha = H^\alpha H$ for all $\alpha \in \text{Aut}(G)$. The subgroup H is said to be self-autopermutable, if $HH^\alpha = H^\alpha H$ implies that $H^\alpha = H$. Moreover, we call the group G to be an EAP-group if every subgroup of G is autopermutable. Clearly, if α runs over the inner automorphisms of the group, we obtain the notions of conjugate-permutability [1], self-conjugate-permutability [2], and ECP-groups [3], respectively. One notes that the subgroup $H = \langle b \rangle$ of the Dihedral group $D_n = \langle a, b : a^2 = b^2 = 1, ab = a^{-1} \rangle$ is conjugate-permutable, which is not autopermutable. To see this, consider the automorphism α which sends a and b into a and ab, respectively. Clearly HH^α is not a subgroup of G, which means that $HH^\alpha \neq H^\alpha H$. It is easily seen that similar examples can be obtained by taking a direct product of D_n with any other group. Also, every noncharacteristic normal subgroup of a given group is an example for a self-conjugate-permutable subgroup which is not self-autopermutable. Moreover, D_8 is an ECP-group, which is not an EAP-group.

In the present paper, we determine the structure of a finite EAP-group, when its centre is of index 4. We also prove that self-autopermutability and characteristic properties are equivalent in nilpotent groups.

2. Finite EAP-Groups

In this section, we determine the structure of finite EAP-groups, when their centres are of index 4. In fact we prove the following theorem.

Theorem 1. Let G be a finite group with the centre of index 4. Then G is an EAP-group if and only if the Sylow 2-subgroup of G is one of the following forms:

(i) Q_8;
(ii) $\langle a, b \mid a^{2n+1} = b^2 = 1, a^b = a^{2n+1} \rangle, n \geq 3$;
(iii) $\mathbb{Z}_2 \times Q_8$;
(iv) $\langle a, b, c, d \mid a^2 = b^2 = c^4 = d^4 = 1, b \in Z(G), [a, c] = [a, d] = c^3, [c, d] = 1 \rangle$;

In the present paper, we determine the structure of a finite EAP-group, when its centre is of index 4. We also prove that self-autopermutability and characteristic properties are equivalent in nilpotent groups.
We remark that a nonabelian group is said to be Hamiltonian, if all of its subgroups are normal. The following result gives our claim, when G is a 2-group with cyclic centre of index 4.

Theorem 2. Let G be a finite 2-group with cyclic centre of index 4. Then G is an EAP-group if and only if G ≅ Qₘ or \(a^2 = b^2 = c^2 = d^2 = e^4 = 1, a, b, c, d, e \in Z(G) \), for all n ≥ 3.

Proof. Consider the group G to be Qₘ. Since Qₘ is Hamiltonian group, the result follows easily. Now assume G = \(\langle a, b | a^{2^{m+1}} = b^2 = 1, a^b = a^{2^{m+1}} \rangle \), for all n ≥ 3. One can easily check that G contains exactly three proper subgroups of orders 2, for 1 ≤ i ≤ n + 1. We also observe that the subgroups of orders 2 are automorphisms and as the subgroups of orders 2ⁿ+1 are normal, they are also automorphisms. Now, one can check that there are exactly two cyclic and one noncyclic subgroups of orders 2, 2 ≤ i ≤ n, so that one of the cyclic subgroups is central and hence all the subgroups of G satisfy the required property.

Conversely, assume that G is an EAP-group, Z(G) = \(\langle x | x^{2^{m+1}} = 1 \rangle \), G/Z(G) = \(\langle Z(G), aZ(G), bZ(G), abZ(G) \rangle \), where \(a^2, b^2 \in Z(G) \) and so \(|a|, |b| = 2^{m+1} \). In case n = 1, then the group G is either Dₘ or Qₘ. As explained before, Dₘ cannot be an EAP-group and hence G ≅ Qₘ. Now suppose n > 1 and the elements a and b are both of order 2. Then every element \(y \in G \) has the following form (as G is nilpotent of class 2):

\[
y = a^ib^jx^k, \quad 0 \leq i, j < 2, \quad 0 \leq k < 2^n. \tag{1}
\]

Clearly, the map \(\alpha \) given by \(\alpha(y) = b^ja^ib^jx^k \) is an automorphism of G, which sends a into b. Thus HH⁴⁻⁺ and HH⁻⁺⁻ for the subgroup H = \(\langle b \rangle \), which contradicts the assumption. Now, if |a|, |b| < 2ⁿ⁺⁺ we may replace a and b by the elements ax⁻¹ and bx⁻¹, both of which are of order 2. This reduces to the previous case. Therefore we must have a and b of order 2ⁿ⁺⁺. Then G has a cyclic subgroup of order 2ⁿ⁺⁺ and so G is of order 2ⁿ⁺⁺ with the centre of index 4. Hence, by [4, 5.3.4], the group G has the following presentation:

\[
G = \langle a, b | a^{2^{m+1}} = b^2 = 1, a^b = a^{2^{m+1}} \rangle, \quad n \geq 3. \tag{2}
\]

This is an EAP-group and so the proof is completed. □

The following result considers the case when G is a 2-group with noncyclic centre of index 4.

Theorem 3. Let G be a finite 2-group with noncyclic centre of index 4. Then G is an EAP-group if and only if G is one of the following forms:

(i) G = \(\mathbb{Z}_2 \times Qₘ \);

(ii) G = \(\langle a, b, c, d, e | a^2 = b^2 = c^2 = d^2 = e^4 = 1, a, b, c, d, e \in Z(G) \rangle \),

(iii) G = \(\langle a, b, c, d, e | a^2 = b^2 = c^2 = d^2 = e^4 = 1, a, b, c \in Z(G) \rangle \),

(iv) G = \(\langle a, b, c, d, e | a^2 = b^2 = c^2 = d^2 = e^4 = 1, a, b, c, d \in Z(G) \rangle \).

Proof. The sufficient condition is obvious. We only need to prove the necessity condition. Let G be an EAP-group and G/Z(G) = \(\langle Z(G), aZ(G), bZ(G), abZ(G) \rangle \), where a², b² ∈ \(Z(G) \). Assume that Z(G) is not an elementary abelian 2-group. Since Z(G) is the direct product of its cyclic subgroups, by the same argument as in Theorem 2, there are no EAP-groups in this case. Now, assume that Z(G) is an elementary abelian 2-group. Clearly G must be a group of order either 16 or 32. The structure of such groups is given as follows in [5]. If |G| = 16, then

(i) G = \(\mathbb{Z}_2 \times D₄ \);

(ii) G = \(\langle a, b | a^4 = b^4 = 1, bab⁻¹ = a^3 \rangle \approx \mathbb{Z}_4 \times \mathbb{Z}_4 \);

(iii) G = \(\mathbb{Z}_2 \times Q₄ \);

(iv) G = \(\langle a, b, c, d | a^2 = b^2 = c^2 = d^2 = 1, a, b, c, d, [c, d] = 1 \rangle \).

As D₄ is not an EAP-group, hence the group of form (i) cannot be an EAP-group. For the group of form (ii) we can consider H = \(\langle b \rangle \) and \(\alpha \in \text{Aut}(G) \) which sends a and b into a and ab, respectively. Clearly, HH⁴⁻⁺ and HH⁻⁺⁻ and hence G cannot be an EAP-group. Thus when |a| = |b|, then G is of the form given in either (iii) or (iv).

Assume |G| = 32. Then such groups in the list of small groups with elementary abelian centres of index 4 are only of the following forms:

(i) G = \(\langle a, b, c | a^4 = b^4 = c^2 = 1, [a, b] = c, [a, c] = [b, c] = 1 \rangle \);

(ii) G = \(\langle a, b, c, d, e | a^2 = b^2 = c^2 = d^2 = e^4 = 1, a, b, c, d \in Z(G) \rangle \);

(iii) G = \(\langle a, b, c, d, e | a^2 = b^2 = c^2 = d^2 = e^4 = 1, a, b, c, d, e \in Z(G) \rangle \);

(iv) G = \(\langle a, b, c, d, e | a^2 = b^2 = c^2 = d^2 = e^4 = 1, a, b, c, d, e \in Z(G) \rangle \).

For the group of form (i) we may consider the cyclic subgroup \(H = \langle b \rangle \) and \(\alpha \in \text{Aut}(G) \) which sends a, b, c, and d into a, ab, ac, and ed, respectively. In case the group G is of form (ii), we consider \(H = \langle e \rangle \) and \(\alpha \in \text{Aut}(G) \) which sends a, b, c, d, and e into a, ab, ac, be, and ed, respectively. Also if the group is considered to be of form (iii), one may consider \(H = \langle e \rangle \) and \(\alpha \in \text{Aut}(G) \) which sends a, b, c, d, and e into e, b, c, d, and a, respectively. Now, one can easily check that in these cases HH⁴⁻⁺⁺ and so G cannot be an EAP-group. Hence, when |G| = 32, then G is of either form (iv) or form (v). The proof is complete. □

Proof of Theorem 1. The necessity condition is obvious and Theorems 2 and 3 establish the result, when G is a 2-group. If G is not a 2-group, then we may write G = \(S_1 \times S_2 \cdots \times S_k \),
in such a way that S_1 is a Sylow p_1-subgroup and S_i is an abelian Sylow p_i-subgroup, where p_i is an odd prime number, for $2 \leq i \leq k$. Clearly, $\text{Aut}(G) \equiv \text{Aut}(S_1) \times \text{Aut}(S_2) \times \cdots \times \text{Aut}(S_k)$ and for any subgroup H of G, $H \equiv H_1 \times H_2 \times \cdots \times H_k$, where $H_i \leq S_i$ for $1 \leq i \leq k$. Thus H is an autopermutable subgroup of G if H_1 is an autopermutable subgroup of S_1. This completes the proof.

3. Self-Autopermutable Subgroups in Nilpotent Groups

We call a subgroup H of a given group G to be weakly characteristic, when $H^\alpha \leq N_G(H)$ implies that $H^\alpha = H$ for all $\alpha \in \text{Aut}(G)$. Also, given the subgroups H and K, then H satisfies the subcharacteriser condition, if $H \trianglelefteq K$ implies that $N_{\text{Aut}(G)}(K) \leq N_{\text{Aut}(G)}(H)$, where $N_{\text{Aut}(G)}(K) = \{\alpha \in \text{Aut}(G) ; K^\alpha = K\} \leq \text{Aut}(G)$. Clearly, if one considers the inner automorphisms of the group then weakly normal and normaliser condition properties are obtained.

The following result of [6] shows that self-conjugate-permutable, weakly normal property, and subnormaliser condition are equivalent for p-subgroups of a given group.

Theorem 4 (see [6], Proposition 3.3). Let H be a p-subgroup of a group G. Then the following properties are equivalent:

(i) H is a self-conjugate-permutable subgroup;
(ii) H is a weakly normal subgroup;
(iii) H satisfies the subnormaliser condition.

In this section, it is shown that self-autopermutable subgroups in nilpotent groups are always characteristic.

Proposition 5. Let H be a subgroup of a group G.

(i) If H is self-autopermutable, then H is weakly characteristic in G.
(ii) If H is weakly characteristic, then H satisfies the subcharacteriser condition in G.

Proof. (i) If $H^\alpha \leq N_G(H)$, as $H \trianglelefteq N_G(H)$, we have $HH^\alpha = H^\alpha H$. Applying the condition that H is self-autopermutable subgroup of the group G, we get $H^\alpha = H$. By definition, H is weakly characteristic.

(ii) Let $K \leq G$, such that $H \trianglelefteq K$. We have $H^\alpha \leq K^\alpha = K \leq N_{\text{Aut}(G)}(K)$ for every $\alpha \in N_{\text{Aut}(G)}(K)$. Since H is weakly characteristic in G, we have $H^\alpha = H$. Thus $\alpha \in N_{\text{Aut}(G)}(H)$ and the result is obtained.

The following theorem is one of the main results in this section.

Theorem 6. Let H be a subgroup of a nilpotent finite group G. If H satisfies the subcharacteriser condition then H is characteristic in G.

Proof. Write $G \equiv P_1 \times P_2 \times \cdots \times P_t$, where P_i is a Sylow p_i-subgroup of G, for $1 \leq i \leq t$. We may also write $H \equiv H_1 \times H_2 \times \cdots \times H_t$, with $H_i \leq P_i$, $1 \leq i \leq t$. Since H satisfies the subcharacteriser condition in G, one can easily see that H_i satisfies the subcharacteriser condition in P_i. Therefore $H_i \trianglelefteq P_i$ implies that H_i is characteristic in P_i, which proves the result.

Finally, we show that self-autopermutability, weakly characteristic, and subcharacteriser conditions are equivalent, for every subgroup of a nilpotent group.

Corollary 7. Let H be a subgroup of a finite nilpotent group G. Then

(i) H is a self-autopermutable;
(ii) H is a weakly characteristic;
(iii) H satisfies the subcharacteriser condition in G.

Proof. The result follows by Proposition 5 and Theorem 6.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] T. Foguel, “Conjugate-permutable subgroups,” Journal of Algebra, vol. 191, no. 1, pp. 233–239, 1997.
[2] S. Li and Z. Meng, “Groups with conjugate-permutable conditions,” Mathematical Proceedings of the Royal Irish Academy, vol. 107, no. 2, pp. 115–121, 2007.
[3] M. Xu and Q. Zhang, “On conjugate-permutable subgroups of a finite group,” Algebra Colloquium, vol. 12, no. 4, pp. 669–676, 2005.
[4] D. J. Robinson, A Course in the Theory of Groups, Springer, New York, NY, USA, 2nd edition, 1996.
[5] The GAP Group, “Algorithms and Programming,” Version 4.4.12, 2008, http://www.gap-system.org.
[6] Z. Shen, W. Liu, and X. Kong, “Finite groups with self-conjugate permutable subgroups,” Communications in Algebra, vol. 38, no. 5, pp. 1715–1724, 2010.