Supporting information

An efficient and robust exfoliated bentonite/Ag\textsubscript{3}PO\textsubscript{4}/AgBr plasmonic photocatalyst for degradation of parabens

Jianchao Maa, Shurong Yanga, Huixian Shib, *, Jin Panga, Xiaopeng Zhanga, Yuxing Wanga, Hongqi Sunc, *

aCollege of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P.R. China

bInstitute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P.R. China

cSchool of Engineering, Edith Cowan University, Joondalup, Western Australia, 6027, Australia

*Corresponding authors.

E-mail: shihuixian@tyut.edu.cn (H. Shi), h.sun@ecu.edu.au (H. Sun)

![Graph](image_url)

Fig. S1. The effect of the ratio of AgBr to Ag\textsubscript{3}PO\textsubscript{4} in different mass ratio on the degradation of MPB.
Table S1. Textural properties of the samples

Name	BET/(m²/g)	Pore volume/(cm³/g)	Average aperture/(Å)
Exfoliated-bentonite	16.3595	0.022304	43.185
EB/Ag₃PO₄	4.5035	0.029572	47.788
EB/Ag₃PO₄/AgBr	13.2130	0.057100	100.378

Fig. S2. Transient photocurrent response for the EB/Ag₃PO₄/AgBr (30%) hybrids under visible light irradiation;
Fig. S3 Relationship curves between irradiation time and C/C₀ for MBP, EPB, PPB and BuPB on EB/Ag₃PO₄/AgBr (30%) composites.
Fig. S4. UV-vis spectra changes of (a) MPB, (b) EPB, (c) PPB, (d) BuPB solution during the photocatalytic degradation by the as-prepared photocatalyst in visible light illumination.

Fig. S5. Photodegradation pathways of methylparaben