2-blocks in strongly biconnected directed graphs

Raed Jaberi

Abstract
A directed graph \(G = (V, E) \) is called strongly biconnected if \(G \) is strongly connected and the underlying graph of \(G \) is biconnected. A strongly biconnected component of a strongly connected graph \(G = (V, E) \) is a maximal vertex subset \(L \subseteq V \) such that the induced subgraph on \(L \) is strongly biconnected. Let \(G = (V, E) \) be a strongly biconnected directed graph. A 2-edge-biconnected block in \(G \) is a maximal vertex subset \(U \subseteq V \) such that for any two distinct vertices \(v, w \in U \) and for each edge \(b \in E \), the vertices \(v, w \) are in the same strongly biconnected components of \(G \setminus \{b\} \). A 2-strongly biconnected block in \(G \) is a maximal vertex subset \(U \subseteq V \) of size at least 2 such that for every pair of distinct vertices \(v, w \in U \) and for every vertex \(z \in V \setminus \{v, w\} \), the vertices \(v \) and \(w \) are in the same strongly biconnected component of \(G \setminus \{v, w\} \). In this paper we study 2-edge-biconnected blocks and 2-strong biconnected blocks.

Keywords: Directed graphs, Graph algorithms, Strongly biconnected directed graphs, 2-blocks

1. Introduction

Let \(G = (V, E) \) be a directed graph. A 2-edge block of \(G \) is a maximal vertex subset \(L_e \subseteq V \) with \(|L_e| > 1 \) such that for each pair of distinct vertices \(x, y \in L_e \), \(G \) contains two edge-disjoint paths from \(x \) to \(y \) and two edge-disjoint paths from \(y \) to \(x \). A 2-strong block of \(G \) is a maximal vertex subset \(B_s \subseteq V \) with \(|B_s| > 1 \) such that for each pair of distinct vertices \(x, y \in B_s \) and for every vertex \(w \in V \setminus \{x, y\} \), \(x \) and \(y \) belong to the same strongly connected component of \(G \setminus \{w\} \). \(G \) is called strongly biconnected if \(G \) is strongly connected and the underlying graph of \(G \) is biconnected. This class of directed graphs was introduced by Wu and Grumbach [11]. A strongly biconnected component of \(G \) is a maximal vertex subset \(C \subseteq V \) such that the induced subgraph on \(C \) is strongly biconnected [11]. Let \(G = (V, E) \) be a strongly biconnected directed graph. An edge \(e \in E \) is a b-bridge if the subgraph \(G \setminus \{e\} = (V, E \setminus \{e\}) \) is not strongly biconnected. A vertex
$w \in V$ is a b-articulation point if $G \setminus \{w\}$ is not strongly biconnected, where $G \setminus \{w\}$ is the subgraph obtained from G by deleting w. G is 2-edge-strongly-biconnected (respectively, 2-vertex-strongly biconnected) if $|V| > 2$ and G has no b-bridges (respectively, b-articulation points). A 2-edge-biconnected block in G is a maximal vertex subset $U \subseteq V$ such that for any two distinct vertices $v, w \in U$ and for each edge $b \in E$, the vertices v, w are in the same strongly biconnected components of $G \setminus \{b\}$. The 2-edge blocks of G are disjoint [5]. Notice that 2-edge-biconnected blocks are not necessarily disjoint, as shown in Figure 1.

![Figure 1: A strongly biconnected directed graph G. The vertex subset $\{9, 10, 11, 12, 13, 14, 15\}$ is a 2-edge block of G. Notice that the vertices 15, 12 are not in the same 2-edge-biconnected block because 15 and 12 are not in the same strongly biconnected component of $G \setminus \{(2, 15)\}$. Moreover, G has two 2-edge-biconnected blocks $U_1 = \{9, 10, 11, 12, 13, 14\}$ and $U_2 = \{4, 15\}$. U_1 and U_2 share vertex 4.](image)

A 2-strong-biconnected block in G is a maximal vertex subset $U \subseteq V$ of size at least 2 such that for every pair of distinct vertices $v, w \in U$ and for every vertex $z \in V \setminus \{v, w\}$, the vertices v and w are in the same strongly biconnected component of $G \setminus \{z\}$.

2
Blocks, articulation points, and bridges of an undirected graph can be calculated in $O(n + m)$ time [2, 10, 8]. In [4], Georgiadis presented a linear time algorithm to test whether a directed graph is 2-vertex-connected. Strong articulation points and strong bridges of a directed graph can be computed in $O(n + m)$ time [7, 1]. Jaberi [5] presented algorithms for computing 2-strong blocks, and 2-edge blocks of a directed graph. Georgiadis et al. [2, 3] gave linear time algorithms for determining 2-edge blocks and 2-strong blocks. Wu and Grumbach [11] introduced the concept of strongly biconnected directed graphs and the concept of strongly biconnected components. Jaberi [6] studied b-bridges in strongly biconnected directed graphs. In this paper we study 2-edge-biconnected blocks and 2-strong biconnected blocks.

2. 2-edge-biconnected blocks

In this section we study 2-edge-biconnected blocks and present an algorithm for computing them. Let $G = (V, E)$ be a strongly biconnected directed graph. For every pair of distinct vertices $x, y \in V$, we write $x \leftrightarrow y$ if for any edge $b \in E$, the vertices x, y belong to the same strongly biconnected component of $G \setminus \{b\}$. A 2-edge-biconnected block in G is a maximal subset of vertices $U \subseteq V$ with $|U| > 1$ such that for any two vertices $x, y \in U$, we have $x \leftrightarrow y$. A 2-edge-strongly-biconnected component in G is a maximal vertex subset $C_{2eb} \subseteq V$ such that the induced subgraph on C_{2eb} is 2-edge-strongly biconnected. Note that the strongly biconnected directed graph in Figure 1 contains one 2-edge-strongly biconnected component $\{9, 10, 11, 12, 13, 14\}$, which is a subset of the 2-edge-biconnected block $\{9, 10, 11, 12, 13, 14, 4\}$.

Lemma 2.1. Let $G = (V, E)$ be a strongly biconnected directed graph and let C_{2eb} be a 2-edge-strongly biconnected component of G. Then C_{2eb} is a subset of a 2-edge-biconnected block of G.

Proof. Let x and y be distinct vertices in C_{2eb} and let $e \in E$. Let $G[C_{2eb}]$ be the induced subgraph on C_{2eb}. By definition, the subgraph obtained from $G[C_{2eb}]$ by deleting e is still strongly biconnected. Therefore, we have $x \leftrightarrow y$.

2-edge blocks are disjoint [5]. Note that 2-edge biconnected blocks are not necessarily disjoint. But any two of them share at most one vertex, as illustrated in Figure 1.

Lemma 2.2. Let U_1, U_2 be distinct 2-edge-biconnected blocks of a strongly biconnected directed graph $G = (V, E)$. Then $|U_1 \cap U_2| \leq 1$.

3
Proof. Assume for the purpose of contradiction that $|U_1 \cap U_2| > 1$. Let $x \in U_1 \setminus (U_1 \cap U_2)$ and let $y \in U_2 \setminus (U_1 \cap U_2)$. Let $v, w \in U_1 \cap U_2$ with $v \neq w$ and let $b \in E$. Notice that x, v belong to the same strongly connected component of $G \setminus \{b\}$ since $x
leftrightarrow v$. Moreover, v, y belong to the same strongly connected component of $G \setminus \{b\}$. Consequently, x, y are in the same strongly connected component of $G \setminus \{b\}$. Then, the vertices x, y do not lie in the same strongly biconnected component of $G \setminus \{b\}$. Suppose that C_x, C_y are two strongly biconnected components of $G \setminus \{b\}$ such that $x \in C_x$ and $y \in C_y$. There are two cases to consider.

1. $v \in C_x \cap C_y$. In this case $w \notin C_x \cap C_y$. Suppose without loss of generality that $v \notin C_x$. Then w, y are not in the same strongly biconnected components of $G \setminus \{b\}$. But this contradicts that $v
leftrightarrow y$

2. $v \notin C_x \cap C_y$. Suppose without loss of generality that $v \in C_x$. Then v, y do not lie in the same strongly biconnected component of $G \setminus \{b\}$. But this contradicts that $v
leftrightarrow y$

□

Using similar arguments as in Lemma 2.2, we can prove the following.

Lemma 2.3. Let $G = (V, E)$ be a strongly biconnected directed graph and let $\{w_0, w_1, \ldots, w_t\} \subseteq V$ such that $w_0
leftrightarrow w_t$ and $w_{i-1} \nleftrightarrow w_i$ for $i \in \{1, 2, \ldots, t\}$. Then $\{w_0, w_1, \ldots, w_t\}$ is a subset of a 2-edge biconnected block of G.

Lemma 2.4. Let $G = (V, E)$ be a strongly biconnected directed graph and let v, w be two distinct vertices in G. Let b be an edge in G such that b is not a b-bridge. Then, the vertices v, w are in the same strongly biconnected component of $G \setminus \{b\}$

Proof. Immediate from definition. □

Algorithm 2.5 shows an algorithm for computing all the 2-edge biconnected blocks of a strongly biconnected directed graph.

The correctness of this algorithm follows from Lemma 2.2, Lemma 2.3, and Lemma 2.4.

Theorem 2.6. Algorithm 2.3 runs in $O(n^3)$ time.

Proof. The b-bridges of G can be computed in $O(nm)$ time [6]. Strongly biconnected components can be calculated in linear time [11]. Lines 7–11 take $O(b.n^2)$, where b is the number of b-bridges in G. The time required for building G^{eb} in lines 12–16 is $O(n^2)$. Moreover, the blocks of an undirected graph can be found in linear time using Tarjan’s algorithm. [6, 8]. □
Algorithm 2.5.
Input: A strongly biconnected directed graph $G = (V, E)$.
Output: The 2-edge biconnected blocks of G.
1. Compute the b-bridges of G
2. If G has no b-bridges then
3. Output V.
4. else
5. Let L be an $n \times n$ matrix.
6. Initialize L with 1s.
7. for each b-bridge b of G do
8. calculate the strongly biconnected components of $G \setminus \{b\}$
9. for each pair $(x, y) \in V \times V$ do
10. if x, y in different strongly biconnected components of $G \setminus \{b\}$ then
11. $L[x, y] \leftarrow 0$.
12. $E^{eb} \leftarrow \emptyset$.
13. for every pair $(x, y) \in V \times V$ do
14. if $L[x, y] = 1$ and $L[y, x] = 1$ then
15. $E^{eb} \leftarrow E^{eb} \cup \{(x, y)\}$
16. $G^{eb} \leftarrow (V, E^{eb})$
17. Compute all the blocks of size ≥ 2 in G^{eb} and output them.

3. 2-strong-biconnected blocks

In this section we illustrate some properties of 2-strong-biconnected blocks. The strongly biconnected directed graph in Figure 2 has two 2-strong biconnected blocks $L_1 = \{1, 2, 3, 4\}$ and $L_2 = \{3, 4, 5, 6\}$. Note that L_1 and L_2 share two vertices. The intersection of any two distinct 2-strong biconnected blocks contains at most 2 vertices. Note also that the subgraph induced by the 2-strong biconnected block L_1 has no edges.

Let $G = (V, E)$ be a strongly biconnected directed graph. A 2-vertex-strongly biconnected component C_{2sb} is a maximal vertex subset $C_{2sb} \subseteq V$ such that the induced subgraph on C_{2sb} is 2-vertex-strongly biconnected. Each 2-vertex-strongly biconnected component C_{2sb} of G is a subset of a 2-strong-biconnected-block of G. Furthermore, each 2-vertex-strongly biconnected component C_{2sb} of G is 2-vertex connected. Therefore, the subgraph induced by C_{2sb} contains at least $2|C_{2sb}|$ edges. In contrast to, the subgraphs induced by the 2-strong-biconnected blocks do not necessarily contain edges.
Figure 2: A strongly biconnected directed graph $G = (V, E)$. The vertices 2 and 6 are in the same 2-strong block of G but they do not belong to the same 2-strong-biconnected-block of G since they are not in the same strongly biconnected component of $G \setminus \{4\}$. Moreover, G has two 2-strong biconnected blocks $L_1 = \{1, 2, 3, 4\}$ and $L_2 = \{3, 4, 5, 6\}$. Note that $|L_1 \cap L_2| = 2$
References

[1] D. Firmani, G.F. Italiano, L. Laura, A. Orlandi, F. Santaroni, Computing strong articulation points and strong bridges in large scale graphs, SEA, LNCS 7276, (2012) 195–207.

[2] L. Georgiadis, G.F. Italiano, L. Laura, N. Parotsidis, 2-Edge Connectivity in Directed Graphs, SODA (2015) 1988–2005.

[3] L. Georgiadis, G.F. Italiano, L. Laura, N. Parotsidis, 2-Vertex Connectivity in Directed Graphs, ICALP (1)2015 : 605–616

[4] L. Georgiadis, Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t paths in digraphs, In Proc. 37th ICALP, Part I, LNCS 6198 (2010) 738–749.

[5] R. Jaberi, Computing the 2-blocks of directed graphs. RAIRO - Theor. Inf. and Applic. 49(2)(2015)93–119

[6] R. Jaberi, b-articulation points and b-bridges in strongly biconnected directed graphs. CoRR abs/2007.01897 (2020)

[7] G.F. Italiano, L. Laura, F. Santaroni, Finding strong bridges and strong articulation points in linear time, Theoretical Computer Science 447 (2012) 74–84.

[8] J. Schmidt, A Simple Test on 2-Vertex- and 2-Edge-Connectivity, Information Processing Letters, 113 (7) (2013) 241—244

[9] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1(2) (1972) 146–160

[10] R.E. Tarjan, A note on finding the bridges of a graph, Information Processing Letters, SIAM J. Comput. 2(6) (1974.) 160–161

[11] Z. Wu, S. Grumbach, Feasibility of motion planning on acyclic and strongly connected directed graphs. Discret. Appl. Math. 158(9) : 1017–1028(2010)