Platelet-rich plasma: why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration

G. Filardo · E. Kon · A. Roffi · B. Di Matteo · M. L. Merli · M. Marcacci

Received: 30 August 2013 / Accepted: 22 October 2013 / Published online: 26 November 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract

Purpose The aim of this review was to analyze the available evidence on the clinical application of this biological approach for the injective treatment of cartilage lesions and joint degeneration, together with preclinical studies to support the rationale for the use of platelet concentrates, to shed some light and give indications on what to treat and what to expect from intra-articular injections of platelet-rich plasma (PRP).

Methods All in vitro, in vivo preclinical and clinical studies on PRP injective treatment in the English language concerning the effect of PRP on cartilage, synovial tissue, menisci, and mesenchymal stem cells were considered. A systematic review on the PubMed database was performed using the following words: (platelet-rich plasma or PRP or platelet concentrate or platelet lysate or platelet supernatant) and (cartilage or chondrocytes or synoviocytes or menisci or mesenchymal stem cells).

Results Fifty-nine articles met the inclusion criteria: 26 were in vitro, 9 were in vivo, 2 were both in vivo and in vitro, and 22 were clinical studies. The analysis showed an increasing number of published studies over time. Preclinical evidence supports the use of PRP injections that might promote a favourable environment for joint tissues healing. Only a few high-quality clinical trials have been published, which showed a clinical improvement limited over time and mainly documented in younger patients not affected by advanced knee degeneration.

Conclusions Besides the limits and sometimes controversial findings, the preclinical literature shows an overall support toward this PRP application. An intra-articular injection does not just target cartilage; instead, PRP might influence the entire joint environment, leading to a short-term clinical improvement. Many biological variables might influence the clinical outcome and have to be studied to optimize PRP injective treatment of cartilage degeneration and osteoarthritis.

Level of evidence IV.

Keywords PRP · Growth factors · Knee · Intra-articular · Injection · Cartilage

Introduction

A healthy joint requires a fine-tuned balance between molecular signals regulating homeostasis, damage, restoration, and remodelling. This balance is determined both at the level of single cells and the whole tissue architecture, and it also involves interactions among different tissues such as cartilage, bone, synovium, ligaments, tendons, and menisci [46]. Different factors are able to impair the maintenance of homeostasis in a joint that has been damaged or strained, and they may progressively lead to osteoarthritis (OA) [27, 29].

A wide spectrum of treatments is available, from non-pharmacological modalities to dietary supplements and pharmacological therapies, as well as minimally invasive procedures involving injections of various substances...
aimed at restoring joint homeostasis and providing clinical improvement and, possibly, a disease-modifying effect [39]. When these treatments fail, more invasive surgical approaches can be attempted to avoid metal resurfacing through the restoration of the mechanical balance and the regeneration of the articular surface, although results are still controversial [21, 22]. Even though some of these approaches have been shown to offer a satisfactory clinical outcome at midterm follow-up, rehabilitation is long and results are often unpredictable, incomplete, and limited over time [10, 15, 16, 18, 37].

The search for a minimally invasive solution to improve the status of the joint surface and allow a fast return to full activity is therefore highly desirable. In this landscape, a novel promising injective treatment is platelet-rich plasma (PRP), a blood derivative that has a higher platelet concentrate than whole blood. When activated, platelets release a group of biologically active proteins that bind to the transmembrane receptors of their target cells, thus leading to the expression of gene sequences that ultimately promote cellular recruitment, growth, and morphogenesis, and modulating inflammation as well [3]. Therefore, PRP represents an appealing biological approach to favour the healing of tissues otherwise doomed by a low healing potential, such as cartilage. This led to the wide use of PRP, which shows promising results as a minimally invasive injective treatment of cartilage degeneration and OA, both in preclinical and clinical studies [40, 67]. However, besides the increasing interest both among physicians and the scientific community, results are sometimes contradictory with no clear treatment indications, due to low-level clinical studies and the lack of understanding on the mechanism of action of this blood derivative [40].

The aim of this review was to analyze systematically the available evidence on the clinical application of this biological approach for the injective treatment of cartilage lesions and joint degeneration, together with preclinical studies to support the rationale for this use of platelet concentrates, to shed some light and give indications on what to treat and what to expect from intra-articular injections of PRP.

Materials and methods

All in vivo, in vivo preclinical and clinical studies on PRP injective treatment in the English language concerning the effect of PRP on cartilage, synovial tissue, and menisci were considered. Since PRP injections could be used as augmentation procedure after bone marrow stimulation techniques or other cell type transplantations, the analysis of studies dealing with the PRP effect on mesenchymal stem cells (MSCs) of various origins for cartilage treatment was also included. A systematic review on the PubMed database was performed using the following words: (Platelet-Rich Plasma OR PRP OR Platelet Concentrate OR Platelet Lysate OR Platelet Supernatant) AND (Cartilage OR Chondrocytes OR synoviocytes OR menisci OR mesenchymal stem cells). Reference lists from the selected papers were also screened. Relevant data were then extracted and collected in three tables, separating in vitro, in vivo preclinical studies, and clinical studies (case reports were not considered) (Tables 1, 2, 3). Two studies focused on in vitro and preclinical in vivo evaluations and were reported in both Tables 1 and 2. The in vitro studies were divided according to the cell population targeted. With regard to clinical trials, only comparative and randomized controlled trials (RCTs) were discussed further in the present manuscript.

Results

According to the search strategy, 388 papers were screened, among these 59 met the inclusion criteria: 26 were in vitro, 9 were in vivo, 2 were both in vivo and in vitro, and 22 were clinical studies. The analysis of per year publication showed increasing interest in this topic with an increasing number of published studies over time, in particular with regard to reports documenting results of the clinical injective application of PRP (Fig. 1).

In vitro studies

Chondrocytes

Seventeen papers investigated the effect of PRP on chondrocytes (Table 1) [1, 5, 11, 19, 28, 33, 44, 48, 54, 57, 59, 61, 69, 73, 75–77]. In particular, 13 papers reported an increase in chondrocyte proliferation rate. Muraglia et al. [54] even showed that PRP promoted cell proliferation in conditions where fetal calf serum (FCS) had no proliferation stimulating effect, as in chondrocytes from elderly patients. Four papers by Drengk et al. [11], Gaissmaner et al. [19], Kaps et al. [33], and Yang et al. [76] observed, together with the increase in cell proliferation, an inhibition of chondrogenic markers expression. Conversely, 10 papers reported an increase in chondrocyte proliferation rate without affecting chondrogenic phenotype maintenance. Hildner et al. [28] even documented that proliferation and chondrogenic redifferentiation potential were higher when human articular chondrocytes were previously expanded with platelet lysate (PL) instead of FCS. Besides the overall proliferation increase with phenotype maintenance, Park et al. [57] underlined another key point: the
Publications	PRP characteristics	PRP effects
Chondrocytes		
Yin [77]	Platelet count: 2,604 ± 602 × 10^3/ml Activation: – No leukocytes	Increase in proliferation and ECM deposition in the integration area between agarose scaffold and cartilage samples Higher scaffold integration strength
Muraglia [54]	Platelet count: 10 × 10^6/μl No activation Leukocytes: –	Increase in cell proliferation more than FCS, also in chondrocytes from elderly patients
Hildner [28]	Platelet count: – Activation: – Leukocytes: –	Increase in proliferation Better redifferentiation potential than FCS expanded cells
Park [57]	Platelet count: 6–10 × 10^7/μl No activation Leukocytes: –	Dose-dependent increase in chondrocytes proliferation maintained at 4 days in 5, 10, 20 % PRP Chondrogenic phenotype maintenance Time-dependent increase in angiogenic and antiangiogenic factors expression (VEGF, ChM-I)
Lee [44]	Platelet count: – Activation: – No leukocytes	Increased chondrocyte proliferation in time-dependent manner Enhanced hydrogel scaffold–chondrocyte maturation
Pereira [59]	Platelet count: 1 × 10^7/ml Activation: freezing and thawing Leukocytes: –	Increase in cell proliferation Chondrogenic phenotype maintenance but decrease over time in micromass pellet cultures Initial enhancement of inflammatory response, followed by its resolution
van Buul [72]	Platelet count: 845.3 × 10^5/ml Activation: CaCl_2 Leukocytes: present	Normalization of collagen II, aggrecan, ADAMTS4, MMP13 and PTGS2 expression altered by IL-1β No influence on GAG content Dose-dependent down-regulation of IL-1β induced NF-kB activation
Wu [75]	Platelet count: – Activation: Thrombin Leukocytes: –	Dose-dependent increase in chondrocyte proliferation in collagen 3D arthritic model Restoration of collagen II, PG, integrin α1β1 and CD 44 expression inhibited by IL-1β and TNFα Inhibition of IL-1β, COX-2, and MMP-2 genes expression
Bendinelli [5]	Platelet count: 1,850 ± 320 × 10^6/ml Activation: Thrombin + CaCl_2 Leukocytes: present	Antiinflammatory effect: inhibition of NF-kβ transactivation activity through HGF, IL-4, and TNFα, and inhibition of monocyte-like cells chemotaxis
Spreafico [69]	Platelet count: 1,460 × 10^7/μl Activation: Ca-gluconate Leukocytes: –	5 % PRP: optimal concentration for chondrocytes proliferation increase Higher PRP concentration does not further induce cell proliferation Increase in collagen II and PG production at day 2 that decreases over time
Drengk [11]	Platelet count: – Activation: CaCl_2 Leukocytes: –	Increase in chondrocyte proliferation, but inhibition of chondrogenic markers expression
Pettersson [60]	Platelet count: – Activation: – Leukocytes: –	No beneficial effect on chondrocyte seeded macroporous gelatin microcarriers in terms of histologic characteristics and proteoglycan deposition up to 16 weeks
Saito [61]	Platelet count: 1,081 ± 150 × 10^5/μl Activation: Thrombin + CaCl_2 No leukocytes	Increase in GAG content
Akeda [1]	Platelet count: 1,399 ± 174 × 10^3/ml Activation: Thrombin + CaCl_2 Leukocytes: –	Stable cell phenotype Increase in cell proliferation and amount of collagen II and PG synthesis, more than PPP or FBS
Publications	PRP characteristics	PRP effects
--------------	--------------------	-------------
Gaismaier [19]	Platelet count: –	Increase in chondrocyte proliferation in dose-dependent manner (stable above 10 %) with inhibition of chondrogenic markers expression in monolayer culture as well as in 3D culture model
Kaps [33]	Platelet count: –	Growth promotion activity comparable or superior to mitogenic stimulation by FCS on articular and nasal septal chondrocytes
Yang [76]	Platelet count: –	Increase in chondrocytes proliferation with 1 % PS
Mifune [48]	Platelet count: 230 × 10⁴/ml	Promotion of proliferation, adhesion, and migration of MDSCs
Moreira Teixeira [53]	Platelet count: –	High collagen II gene expression and synthesis
Gonzales [23]	Platelet count: 140 ± 20 × 10⁹/l	Same positive effect as FBS for meniscal cell culture
Ishida [30]	Platelet count: 104.5 × 10⁴/ml	Increase in meniscal cells proliferation in a dose-dependent manner
Anitua [2]	Platelet count: 494 × 10⁶/ml	Increase in HA secretion, further enhancement in the presence of IL-1β
Hildner [28]	Platelet count: –	Increase in proliferation
Kruger [42]	Platelet count: 0.6–1.3 × 10¹⁰/ml	Increase CSP migration with 0.1–100 % PRP, especially with 5 % PRP
Moreira Teixeira [53]	Platelet count: –	Induced formation of cartilage matrix rich in PG and collagen II
Murphy [55]	Platelet count: 10⁶/µl	PRP is more mitogenic than FBS on MSCs derived from human and rat BM and from rat compact bone
Mishra [52]	Platelet count: 10⁶/ml	Induction of MSCs proliferation

MSCs + chondrocytes

Promotion of proliferation, adhesion, and migration of MDSCs

Chemo-attractant properties in hydrogel

Combination with hydrogel allowed retention of PRP at the defect site

Meniscal cells

Same positive effect as FBS for meniscal cell culture

Dose-dependent effect: 10 and 20 % PRP increased proliferation rate and influenced more type I collagen and aggrecan expression at day 7 with respect to 5 % PRP

Synoviocytes

Increase in MMP1, 3, IL-6 and decrease in PDGF-ββ, MIP-1β, RANTES in OA synoviocytes

Higher pro-inflammatory response than PPP treatment

Increase in HA secretion, further enhancement in the presence of IL-1β

Angiogenesis switched to a more balanced status

No effect on MMP1, 3, and VEGF amounts elicited by IL-1β

Mesenchymal stem cells

Increase in GAG and cartilage markers

Better redifferentiation potential than FCS expanded cells

Increase CSP migration with 0.1–100 % PRP, especially with 5 % PRP

Induction in chondrogenic markers’ expression

In hydrogel-PL increase in BMSCs proliferation rate, adhesion, and migration

No beneficial effect on collagen II mRNA expression in MSCs with chondrogenic medium and PL, but higher expression in control medium and PL

PRP is more mitogenic than FBS on MSCs derived from human and rat BM and from rat compact bone

Higher increase in MSCs proliferation rate and migration with ucPRP with respect to aPRP

Induction of MSCs proliferation

Increase in chondrogenic markers’ expression (SOX9, Aggrecan)
time-dependent regulation and the dose-dependency effect. In particular, they tested different PRP concentrations (0.1, 1, 5, 10, and 20 %) showing an increase in cellular viability in a dose-dependent manner. Yang et al. [76] reported that 1 % of platelet supernatant (PS) is sufficient to stimulate chondrocyte proliferation, whereas 10 % PS stimulated chondrocyte mass formation. Spreafico et al. [69] studied PRP releasate (PRPr) at 1, 5, and 10 % and found that 5 % was the optimal concentration to increase chondrocyte proliferation. Moreover, Gaissmarner et al. [19] provided evidence of cell proliferation increase with 1 or 10 % PS, but no further stimulation occurred using concentrations above 10 %.

Together with chondrogenic phenotypic maintenance, other authors also documented an increase in matrix molecule production. Akeda et al. [1] documented that PRP treatment led to higher amounts of collagen II and PG synthesis than platelet poor plasma (PPP) or fetal bovine serum (FBS). Since cell–matrix interactions play an important role in maintaining cartilage homeostasis, Wu et al. [75] designed a simple 3D chondrocyte model: in a collagen matrix, the authors mimicked an OA environment by IL-1ß and TNFα induction. Also in this model, PRP increased the membrane receptors integrin α1β1 and CD44 and favoured type II collagen and PG production. In another experimental model, Yin et al. [77] reported that PRP allowed the integration of an agarose construct with cartilage samples, showing a denser extracellular matrix (ECM) deposition in the integration area. Interestingly, Pereira et al. [59] found that the PRP stimulatory effect was limited over time: after an initial positive staining for collagen type II and PG, at 20 doublings the matrix/cells ratio decreased. Similarly, Spreafico et al. [69] documented an increase in PG release 2 days after PRPr treatment, followed by a decrease after 9 days, although at 20 days PG release remained still high.

Four papers focused on the role of PRP in OA chondrocytes as inflammation modulation. Pereira et al. [59] found that PL enhanced the initial inflammatory response and subsequently triggered its resolution through the regulation of nuclear factor kappa B (NF-kB) and cyclooxygenase-2 (COX-2), the principal actors of inflammatory cascade. Van Buul et al. [73] and Bendinelli et al. [5] confirmed the regulation of these key pathways by PRP in inflammatory conditions. Van Buul et al. [73] showed a dose-dependent down-regulation of IL-1ß-induced NF-kB activation, whereas Bendinelli et al. [5] showed that inhibition of NF-kB transactivation activity was mediated by HGF, a cytokine present in PRP α-granules. Moreover, they suggested another anti-inflammatory action by inhibiting monocyte-like cell chemotaxis. Wu et al. [75] also investigated the anti-inflammatory potential of PRP in their 3D system: PRP counteracted the inflammatory cascade elicited by IL-1ß and TNFα, showing an inhibition of IL-1ß, COX-2, and MMP-2 gene expression.

One article investigated the role of PRP as analgesic compound. Lee et al. [44] showed that the addition of PRP to a chondrocyte/hydrogel culture led to an immediate increase in mRNA levels of cannabinoid receptor CB1 and CB2 (receptors involved in analgesic and anti-inflammatory effects).

Chondrocytes and MSCs co-culture

In a system of OA chondrocytes and muscle-derived MSCs (MDSCs), Mifune et al. [48] observed that PRP promoted proliferation, adhesion, and migration of MDSCs. During chondrogenic pellet culture, PRP tended not only to increase the number of type II collagen-producing cells, but also to increase cell apoptosis, which, however, was not confirmed by the in vivo evaluation. Moreira Teixeira et al. [53] showed high expression and synthesis of collagen II from co-culturing chondrocytes and expanded bone marrow MSCs (BMSCs) when PL/hydrogel was added. Moreover, they investigated the retention of PL/hydrogel construct in a cartilage fragment: the combination with hydrogel allowed the retention of PRP at the defect site, filling up irregularities at the cartilage surface.
Publication	Animal model	Lesion type	PRP characteristics	Protocol	PRP effects
Mifune [48]	36 rats	OA	Platelet count: 230 × 10⁷/ml Activation: Thrombin + CaCl₂	1 injection (30 µl)	Promotion of collagen II synthesis and suppression of chondrocyte apoptosis only when applied with MDSCs at 4 weeks At 12 weeks, lost beneficial effect
Hapa [25]	42 rats	Chondral lesion	Platelet count: 13.8 × 10⁷/ml Activation: – Leukocytes: –	1 intra-op injection (150 µl) 1 intra-articular injection (150 µl)	Better cartilage healing and increase in type II collagen expression at 6 weeks
Guner [24]	20 rats	OA	Platelet count: – Activation: Thrombin + CaCl₂ Leukocytes: –	3-weekly injections (50 µl)	No significant effects regarding cartilage healing at short term (2 weeks after injection cycle)
Serra [66]	36 rabbits	Osteochondral lesion	Platelet count: – Activation: CaCl₂ No leukocytes	7 injections every 2 days (0.25 ml)	No macroscopic, microscopic, and biomechanical additional benefits from PRP injections up to 19 weeks
Kwon [43]	21 rabbits	OA	Platelet count: 2664 ± 970 × 10³/µl Activation: – Leukocytes: –	1 injection (0.3 ml)	Better cartilage regeneration in all OA degrees at 4 weeks, in particular in moderate knee OA
Milano [49]	30 sheep	Chondral lesion	Platelet count: 868 ± 112 × 10³/ml No activation No leukocytes	5-weekly injections (3 ml)	Improvement in macroscopic, histologic, and biomechanical cartilage repair after microfractures, with more durable results No hyaline cartilage production up to 12 months
Milano [50]	30 sheep	Chondral lesion	Platelet count: 2 × conc No activation No leukocytes	5-weekly injections (2–3 ml)	Promotion of cartilage healing until 6 months after treatment (not at 12 months) No hyaline cartilage production
Lipross [45]	15 pigs	AR	Platelet count: 1 × 10⁸/µl Activation: – Leukocytes: –	2 injections every 2 weeks (5 ml)	Reduction in IL-6 expression and staining, and VEGF staining Recovery of chondral protein concentration levels Reduction in IL-1ß and IGF-1 on synoviocytes
Milano [51]	15 sheep	Chondral lesion	Platelet count: 1,415 ± 164 × 10³/ml Liquid PRP: no activation PRP gel: Ca–gluconate + fibrin glue Leukocytes: –	1 injection (5 ml)	Improvement in macroscopic, histologic and biomechanical scores, no hyaline cartilage production Better results with PRP gel at 6 months
Saito [61]	33 rabbits	OA	Platelet count: 1.081 ± 150 × 10⁷/µl Activation: – No leukocytes	2 injections at 4 weeks and 7 weeks after OA induction (100 µl)	Suppression of OA progression morphologically and histologically by PRP impregnated hydrogel microspheres (not significantly by the use of PRP only)
Carmona [7]	4 horses	OA	Platelet count: 250 ± 71.8 × 10⁷/ml Activation: CaCl₂ Leukocytes: present	3 injections at 2-week interval (10–20 ml)	Improvement in both degree of lameness and joint effusion, with normal synovial fluid parameters Marked improvement at 2 months maintained up to 8 months
Synoviocytes

Anitura et al. [2] investigated the role of PRGF (‘preparation rich in growth factors’: a low-concentrate PRP without leukocytes) on OA synoviocytes with or without exposition to IL-1β, to mimic the overproduction of proinflammatory cytokines in the joint environment during OA progression. PRGF significantly enhanced HA secretion compared to PPP both with and without IL-1β and switched angiogenesis to a more balanced status, but did not modify the IL-1β-induced rise of matrix metallo-protease (MMP) 1, 3 and vascular endothelial growth factor (VEGF) produced by synovial cells. Indeed, Browning et al. [6] even showed an increase in MMP-1 and MMP-3 in OA synoviocytes incubated with PRP, thus suggesting that the application of PRP to synovial joints might be associated with deleterious effects due to a pro-inflammatory response that might lead to an accelerated cartilage catabolism.

Meniscal cells

Ishida et al. [30] showed the usefulness of PRP not only because of its proliferation effect, but also its induction of GAG synthesis. PRP up-regulated the viability of meniscal cells in a dose-dependent manner, as well as the mRNA expression of biglycan and decorin. Gonzales et al. [23] investigated whether PRP might fully replace FBS for cultured tissue engineering constructs. The study results showed that PRP presents the same positive effect as FBS for meniscal cell culture and showed that dosage is an important aspect of the induced effect: 10 and 20 % PRP increased proliferation rate and influenced more type I collagen and aggregan expression at day 7 of culture with respect to 5 % PRP.

Stem cells

Eight papers investigated the effect of PRP on MSCs of different origin: 1 on subchondral cortico-spongious bone (CSP) cells, 1 on commercial human MSCs, 4 on BMSCs, and 2 on adipose-derived MSCs (ADMSCs).

Kruger et al. [42] investigated the migration and chondrogenic differentiation of human subchondral progenitors. In particular, a chemotactic assay revealed that PRP significantly stimulates the migration of CSPs, together with their chondrogenic differentiation and production of PG and collagen type II. Zaky et al. [78] and Drengk et al. [11] confirmed an induced chondrogenic differentiation of BMSCs, which also presented a higher proliferation rate. Mishra et al. [52] documented the same behaviour on MSCs with a higher proliferation rate and a selective differentiation along the chondrogenic line: SOX9 and aggrecan (chondrogenic markers) were increased much more than RUNX2 (osteogenic marker). Conversely, Moreira Teixeira et al. [53] reported that PL, besides inducing a significant increase in BMSCs proliferation rate and migration, did not induce an increase in collagen type II.

Hildner et al. [28] focused on ADMSCs and showed strongly enhanced proliferation rates with retained chondrogenic differentiation potential and even a tendency toward increased chondrogenic differentiation of PL-expanded ADMSCs compared to FCS. Kakudo et al. [32] studied the proliferation of ADMSCs treated with PRP with or without activation and at different concentrations (1, 5, 10, or 20 %). Results showed the importance of both PRP activation and correct dosage: in fact, the stronger promotion of proliferation was observed in PRP activated with calcium chloride and autologous thrombin and applied at 5 %, whereas at higher platelet concentrations the proliferation rate decreased in a dose-dependent manner.

Finally, Murphy et al. [55] tested two different types of PRP: one derived from human adult peripheral blood and one derived from human umbilical cord blood (ucPRP), showing the superiority of ucPRP with regard to MSCs proliferation and migration induction.

In vivo preclinical studies

Concerning in vivo preclinical studies dealing with PRP injective treatment, we found 11 papers: 3 on rat, 3 on rabbit, 3 on sheep, 1 on pig, and 1 on horse, which showed heterogeneous results for heterogeneous indications.

Five papers focused on OA treatment. Contrasting results have been reported in the small animal model. In fact, whereas Guner et al. [24] did not find any immediate (2 weeks after the injection cycle) benefit of PRP on cartilage tissue in rat joints previously damaged with intra-articular formalin injection, Mifune et al. [48] found in a rat OA model, induced by monosodium iodoacetate injection, that PRP had no marked effect by itself, but increased the cartilage repair effect of MDSCs, with a better histologic appearance, higher number of cells producing type II collagen, and lower levels of chondrocyte apoptosis at 4 weeks, although at 12 weeks its effects were lost. Kwon et al. [43] confirmed the benefit of PRP in a rabbit model of collagenase-induced OA: intra-articular injections influenced positively cartilage regeneration in all OA severity degrees, with a more evident effect in moderate OA. Saito et al. [61] used a rabbit OA model of anterior cruciate ligament resection for the treatment with gelatin hydrogel microspheres impregnated with PRP: injections markedly suppressed OA progression both morphologically and histologically (less significant results were obtained by the use of PRP only). Finally, Carmona
Publication	Level of evidence	Pathology	N Patients	Protocol	Dose and platelet count	Leukocyte Activation	Follow-up	Results		
Koh [35]	Case series	Knee chondropathy or OA	18	PRP + MSCs	1 injection of PRP + MSCs followed by 2-weekly injections of PRP	3 ml PRP for each injection	Yes	Ca-chloride	24 months	Statistical improvement in pain and function
Jang [31]	Case series	Knee chondropathy or OA	65	PRP	1 injection	6 ml PRP platelet count: n.a.	n.a.	No	12 months	Increasing age, and advanced degeneration result in a decreased potential for PRP injection therapy
Hart [26]	Case series	Knee chondromalacia	50	PRP	6-weekly injections After 3 months other 3-weekly injections	6 ml PRP 459,000 plts/l	n.a.	No	12 months	Significant pain reduction and quality of live improvement in low degree of cartilage degeneration not confirmed by MRI
Patel [58]	Randomized trial	Knee chondropathy or OA	52	Single injections	1 injection versus 2 injections 3 weeks apart	8 ml PRP 310 × 10^13 plts/μl (238 × 10^7 plts in total)	No	Ca-chloride	6 months	Significant clinical improvement in PRP group within 2–3 weeks until 6 months, but deteriorating after 6 months No differences between 1 and 2 injections
Gobbi [20]	Case series	Knee chondropathy or OA	50	PRP	2 monthly injections	4 ml PRP 2× basal plt count	Yes	No	12 months	Statistical improvement in pain and function. Good results also in patients with history of cartilage surgery
Koh [34]	Case series	Knee chondropathy or OA	25	PRP/MSCs	1 injection of PRP/ MSCs followed by 2-weekly injections of PRP	3 ml PRP for each injection	Yes	Ca-chloride	17 months	Short-term results revealed reduction in pain and improving function
Torrero [70]	Case series	Knee chondropathy or OA	30	PRP	1 injection	n.a.	No	No	6 months	One PRP injection provided encouraging results in pain and function at 6 months’ follow-up
Napolitano [56]	Case series	Knee chondropathy or OA	27	PRP	3-weekly injections of PRP	5 ml PRP 2.3 × basal plt count	n.a.	Ca-gluconate	6 months	PRP proved to be an effective treatment option for OA
Publication	Level of evidence	Pathology	N Patients	Protocol	Dose and platelet count	Leukocyte Activation	Follow-up	Results		
-------------	-------------------	-----------	------------	----------	------------------------	---------------------	-----------	---------		
Spakova [68]	Comparative trial	Knee chondropathy or OA	60 PRP versus 60 HA	3-weekly injections of PRP	3 ml PRP 4.5× basal plt count	Yes	No	6 months	Superior results in PRP group at short-term evaluation	
Sanchez [64]	Randomized trial	Knee chondropathy or OA	79 PRP versus 74 HA	3-weekly injections of PRP	8 ml PRGF platelet count: n.a.	No	Ca-chloride	6 months	Higher percentage of responders in PRP group but no clear superiority of the biological approach	
Cerza [8]	Randomized trial	Knee chondropathy or OA	60 ACP versus 60 HA	4-weekly injections of ACP	5.5 ml ACP platelet count: n.a.	No	No	6 months	Superior clinical outcome for PRP in all groups of treatment	
Filardo [14]	Randomized trial	Knee chondropathy or OA	55 PRP versus 54 HA	3-weekly injections of PRP	5 ml PRP 5× basal plt count	Yes	Ca-chloride	12 months	Clinical improvement in both groups without significant inter-group difference. Better trend for PRP in low-grade cartilage pathology	
Kon [41]	Comparative trial	Knee chondropathy or OA	50 PRP versus 50 L WHA versus 50 HWHA	3-weekly injections of PRP	5 ml PRP 6× basal plt count (6 billion plts in total)	Yes	Ca-chloride	12 months	Best results for PRP in chondropathy group, no statistical difference among treatments for higher degree of cartilage degeneration	
Filardo [17]	Comparative trial	Knee chondropathy or OA	72 L-PRP versus 72 L-free-PRP	3-weekly injections of PRP	PRP: 5 ml 949,000 plts/μl PRGF: 5 ml 315,000 plts/μl	PRP: yes PRGF: no	PRP and PRGF: Ca-chloride	12 months	Comparable clinical results with higher post-injective pain in leukocyte-rich PRP group	
Kon [13, 36]	Case series	Knee chondropathy or OA	100 PRP	3 injections of PRP 2 weeks apart	5 ml PRP 6× basal plt count (6.8 billion plts in total)	Yes	Ca-chloride	24 months	Significant pain reduction and functional recovery. Time-dependent effect of PRP injections with a mean beneficial effect of 9 months	
Wang-Saegusa [74]	Case series	Knee chondropathy or OA	261 PRP	3 injections of PRP 2 weeks apart	n.a.	No	Ca-chloride	6 months	Satisfactory results at 6 months' evaluation in a large cohort of patients	
Sampson [62]	Case series	Knee chondropathy or OA	14 PRP	3 injections of PRP 1 month apart	6 ml PRP platelet count: n.a.	Thrombin in Ca-chloride suspension	6 months	Clinical improvement at short-term evaluation		
et al. [7] used a large animal model to analyze the effect of PRP injections: in a study on 4 horses with OA, 3 injections of PRP led to a significant improvement in both the degree of lameness and joint effusion. The most marked improvement was observed 2 months after treatment and persisted for 8 months with no adverse events.

Five studies focused on the injective treatment of chondral or osteochondral lesions. Also in this case, results were controversial. Serra et al. [66] performed 7 PRP injections every other day in rabbit joints where a full-thickness osteochondral lesion was previously made surgically on the medial femoral condyle. A fibrous–cartilaginous tissue was found with no benefit from PRP. Hapa et al. [25] evaluated PRP as augmentation in rat cartilage lesions after microfractures: at week 6, the microfracture group score was worse than that of the PRP + microfracture group, which had an increased degree of type II collagen staining. Milano et al. [51] used one PRP injection as augmentation procedure of microfracture in a sheep model. Although no hyaline cartilage was obtained, PRP offered better macroscopic, histologic, and biomechanical results. The PRP administration modality proved to be important for the final outcome, with better results when PRP was surgically applied as a gel over the treated lesion. However, this required a more invasive approach. Thus, in a further evaluation in sheep, Milano et al. [49, 50] focused on the injective approach: 5-weekly injections of PRP promoted a better spontaneous repair and also a better and more durable reparative response when applied after microfractures with respect to isolated microfractures, albeit without producing hyaline cartilage.

Finally, only 1 paper focused on rheumatoid arthritis (RA). Lippross et al. [45] reproduced RA in pigs: the animals were systemically immunized by bovine serum albumin (BSA) injections, and arthritis was induced by intra-articular BSA injection. The injection of PRP attenuated the arthritic changes on synovium and cartilage by modulating the activity of inflammation mediators. In particular, IL-6 and VEGF staining was reduced, but concerning gene expression, only IL-6 levels were
significantly lower after PRP application. Focusing on protein quantification, all chondral protein concentrations returned to healthy tissue levels, and in synovial samples, besides the low levels of IL-6 and VEGF, the authors showed a reduction in IGF-1 and IL-1 in PRP groups, whereas TNFα was not altered.

Clinical studies

Intra-articular clinical application of PRP has been tested in several clinical studies to date. The present search identified 22 clinical trials that met the inclusion criteria: among these, 13 were case series, 4 were comparative studies, and 5 were randomized trials. The majority of the available papers deal with application in the knee.

The first comparative evaluation was performed by Sanchez et al. [63] in 2008 who published a retrospective observational study on 60 patients, 30 treated with 3 knee intra-articular injections of PRGF and 30 with 3 injections of hyaluronic acid (HA). Results at 5 weeks were encouraging, with PRGF showing better efficacy in pain control. Afterwards, Kon et al. [41] in 2011 performed a prospective comparative study testing PRP against low molecular weight HA (LW–HA) and high molecular weight HA (HW–HA) in 3 homogeneous groups of 50 patients each. The results showed a better performance for the PRP group at 6 months of follow-up. In particular, PRP produced superior results in the ‘chondropathy’ group. Conversely, in the early OA group the difference with HA was not significant and in the severe OA group no difference in clinical outcome was observed. Another interesting finding was that patients aged up to 50 years old had a greater chance to benefit from the PRP approach. The same authors showed a reduction in IGF-1 and IL-1 in PRP groups, whereas TNFα was not altered.

Discussion

This systematic review confirmed the increasing interest in PRP as an injective treatment for cartilage degeneration and OA, with an increasing number of published studies over time.

PRP is a fashionable treatment, offering the possibility to deliver a high concentration of autologous growth factors and bioactive molecules in physiologic proportions, with low costs and in a minimally invasive way. This explains the wide application of this blood derivative to several tissues and heterogeneous pathologies in different fields of medicine [38]. The rationale for using platelets for the treatment of different tissues is that they constitute a reservoir of growth factors that are critical to regulate the tissue healing process, which is quite similar in all kinds of tissues. However, whereas the rationale for PRP use in other tissues is clear, since platelets represent the first response to a tissue damage where they participate in stopping the vessel bleeding and trigger the healing cascade [9], less intuitive is the rationale for PRP use in cartilage, which is a physiologically vessel-free tissue. Moreover, whereas some
molecules such as TGF-β might justify its use in cartilage, PRP also contains other molecules such as VEGF that do not take part or might even jeopardize cartilage homeostasis and regeneration [48, 72]. Thus, it is mandatory to investigate whether the overall effect of PRP is also beneficial for the peculiar requirements of cartilage tissue before an indiscriminate human application.

The systematic analysis of in vitro studies published up to now shows an overall positive effect of PRP on cartilage tissue. Besides some controversial results, most of the findings supported the role of PRP in increasing chondrocyte proliferation, without affecting chondrogenic phenotype and with an increase in the production of matrix molecules. These properties of PRP have provided positive results also in the animal model: preclinical studies confirmed the usefulness of PRP treatment in different pathology models, with good results in cartilage regeneration after acute focal lesions, as well as in the more complex environment of joint osteoarthritic degeneration, and even in the challenging RA setting.

Clinical studies on PRP injective treatment for joint degeneration also showed overall good results. Nonetheless, both the rapid clinical benefit and the limited effect over time are in contrast with the timing required by a hypothetically induced cartilage regeneration process. Despite the wide majority of studies focusing on cartilage tissue, it is actually likely that the clinical benefit reported after PRP injection is attributable to other action mechanisms.

An intra-articular injection does not just target cartilage, instead PRP might influence the entire joint environment, and some in vitro studies confirm the effects of PRP on other cell sources. Synoviocytes are affected by platelet releasate, as well as meniscal cells and also MSCs that seem to be induced by PRP and act synergistically toward tissue healing. The chemo-attractant activity of PRP may contribute to the recruitment of other cells that might migrate into the damaged tissues, thus triggering the healing response [42, 53]. PRP has several potential effects by enhancing the cell signalling cascade in all joint tissues and inducing positive changes in the whole joint environment through a milieu of actions. Among these, tissue regeneration is actually not the only and maybe not the most important PRP mechanism of action, and increasing evidence supports the complex role of PRP in modulating inflammation. PRP showed both pro- and anti-inflammatory activities: an initial pro-inflammatory action [59] was reported, with synoviocyte stimulation for MMP and cytokine release [2], followed by a limitation of the inflammatory response by decreasing inflammatory molecules and preventing chemotaxis of monocytes-like cells [44, 75].

An overall down-modulation of the joint inflammation can explain the well-documented pain reduction, which is the most prominent and disabling symptom of cartilage lesions and knee OA. However, some findings suggest another intriguing aspect of PRP action mechanism, with a direct analgesic effect: Lee et al. [44] showed the role of PRP in the augmentation of cannabinoid receptors CB1 and CB2, which might be involved in the analgesic effects. Further studies need to focus on understanding and possibly optimizing the analgesic and anti-inflammatory effects of PRP.

PRP might not lead to hyaline cartilage regeneration and might not change the clinical history with significant disease-modifying properties, but it still might offer a clinical benefit with symptoms and function improvement and possibly a slowdown of the degenerative processes.

The central feature in OA cartilage degeneration is the so-called apoptosis (programmed cell death); thus, chondrocytes apoptosis is a potential therapeutic target for OA interventions. The exact mechanism behind the PRP regulation of the apoptotic pathway is unclear, but it is likely that PRP might have an overall effect in slowing down the apoptosis cascade. Among the hypothesized mechanisms, recent findings identified IGF-1 protein as a possible effector of apoptosis inhibition: Yin et al. [77] found that IGF-1 may down-regulate the expression of programmed cell death 5 (PDCD5), thus inhibiting the apoptosis of osteoarthritic chondrocytes. Interestingly, Mifune et al. [48] observed an increased cell apoptosis in the in vitro setting, which, however, was not confirmed by the subsequent in vivo experiment, where lower levels of apoptosis were detected. Thus, the authors suggested that it was the complex interaction of PRP with the different joint structures (synovium, fat pad, bone marrow,…), which might positively influence chondrocytes apoptosis.

The controversial findings reported underline the limits of preclinical studies, which do not exactly represent the peculiar human pathophysiology. Nonetheless, although such experimental settings do not replace the fundamental role of robust clinical trials, in vitro studies can suggest mechanisms of action and directions for improvement and might explain some controversial findings in the reports of PRP application in humans. As for other tissues [71], in vitro studies have shown the importance of the dosage of the potent platelet-derived growth factors, with different platelet concentrations leading to different results. Activation might also play an important role, as well as the appropriate cell population which is also a key aspect for obtaining optimal results [38]. With regard to this, leukocytes are a controversial PRP component, since some authors attribute better results to leukocyte depletion, because of the supposed deleterious effects of proteases and reactive oxygen species released from white cells, whereas other authors consider them as a source of cytokines and enzymes that may also be important for the prevention of infections [17]. Several other variables have to be considered, such as the preparation methods and the
consequent presence of other cells, storage modalities, application protocols, and many other aspects that might not be of secondary importance for determining PRP properties and clinical efficacy [38]. The number of names and acronyms encountered searching for studies on this biological treatment approach, such as PRP, PRGF, ACP, PL, clearly represents the complexity of this field and explains the difficulties in literature analysis, study comparison, and understanding some contradictory results.

With the limits of a complex field still in its infancy, few studies and some controversial results, this systematic review still showed some important aspects. The first one is that the increasing interest in this topic is being translated into research with a growing number of papers published over time, which show promise in shedding some more light on PRP use in the near future. The second one is that, besides the limits and sometimes controversial findings of in vitro and animal studies, the preclinical literature documented an overall support toward PRP application for the injective treatment of cartilage lesions and OA. Moreover, some conclusions can be drawn also with regard to human application, which can be of clinical usefulness. The first one is the safety of PRP injections, with no major adverse events reported in the literature and only some reports of self-limiting immediate pain and swelling reaction [17, 36, 41]. The second one is that all studies seem to agree on an overall clinical benefit of PRP. Better results with respect to saline have been shown, and some studies suggest a slight superiority of PRP with respect to visco supplementation [8, 14, 58, 64]. However, not all patient categories present the same results that are more significant in younger patients affected by not too advanced degeneration. Many biological variables might influence the clinical outcome and have to be studied to optimize PRP injective treatment in case of cartilage degeneration and OA.

Conclusions

One of the emerging fields of PRP treatment is its injective application for cartilage degeneration and OA, as shown by an increasing number of papers published on this topic over time. Preclinical evidence supports the use of PRP injections that might promote a favourable environment for joint tissues healing, targeting not only cartilage but also synovial and meniscal tissues. A few high-quality trials have been published, which showed the clinical usefulness of PRP but only with an improvement limited over time and mainly in younger patients not affected by advanced degeneration. Many biological variables might influence the clinical outcome and have to be studied to optimize PRP injective treatment in case of cartilage degeneration and OA.

Acknowledgments E. Pignotti, K. Smith: Task Force, Rizzoli Orthopaedic Institute, Bologna, Italy. This work was supported by the following grant: Regione Emilia-Romagna—Programma di ricerca Regione-Università 2010–2012.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Akeda K, An HS, Okuma M, Attawia M, Miyamoto K, Thonar EJ, Lenz ME, Sah RL, Masuda K (2006) Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthritis Cartil 14(12):1272–1280
2. Anitura E, Sánchez M, Nurden AT, Zalduegu MM, de la Fuente M, Azofra J, Andía I (2007) Platelet-released growth factors enhance the secretion of hyaluronic acid and induce hepatocyte growth factor production by synovial fibroblasts from arthritic patients. Rheumatology (Oxford) 46(12):1769–1772
3. Anitura E, Sánchez M, Orive G (2010) Potential of endogenous regenerative technology for in situ regenerative medicine. Adv Drug Deliv Rev 15:62(7–8):741–752
4. Battaglia M, Guaraldi F, Vannini F, Buscio T, Buda R, Galletti S, Giannini S (2011) Platelet-rich plasma (PRP) intra-articular ultrasound-guided injections as a possible treatment for hip osteoarthritis: a pilot study. Clin Exp Rheumatol 29(4):754
5. Bendinelli P, Matteucci G, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA (2010) Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-κB inhibition via HGF. J Cell Physiol 225(3):757–766
6. Browning SR, Weiser AM, Woolf N, Golish SR, SanGiovanni TP, Scuderi GJ, Carballo C, Hanna LS (2012) Platelet-rich plasma increases matrix metalloproteinases in cultures of human synovial fibroblasts. J Bone Joint Surg Am 94(23):e1721–e1727
7. Carmona JU, Arguelles D, Climent F, Prades M (2007) Autologous platelet concentrates as a treatment of horses with osteoarthrosis: a preliminary pilot clinical study. J Equin Vet Sci 27;4:167–170
8. Cerza F, Carni S, Carcangiu A, Di Vavo I, Schiavilla V, Pecora A, De Biasi G, Ciuffreda M (2012) Comparison between hyaluronic acid and platelet-rich plasma, intra-articular infiltration in the treatment of gonarthrosis. Am J Sports Med. doi: 10.1177/0363546512461902
9. Cole BJ, Seroyer ST, Filarido G, Bajaj S, Fortier LA (2010) Platelet-rich plasma: where are we now and where are we going? Sports Health 2(3):203–210
10. Della Villa S, Kon E, Filardo G, Ricci M, Vincentelli F, Delco-
gliano M, Marcacci M (2010) Does intensive rehabilitation per-
mit early return to sport without compromising the clinical
outcome after arthroscopic autologous chondrocyte implantation
in highly competitive athletes? Am J Sports Med 38(1):68–77

11. Drengk A, Zapf A, Stürmer EK, Stürmer KM, Frosch KH (2009)
Influence of platelet-rich plasma on chondrogenic differentiation
and proliferation of chondrocytes and mesenchymal stem cells.
Cells Tissues Organs 189(5):317–326

12. Filardo G, Di Matteo B, Kon E (2013) Treatment with platelet-
rich plasma is more effective than placebo for knee osteoarthritis:
a prospective, double-blind, randomized trial. Letter to editor.
Am J Sports Med 41(9):NP42–NP44

13. Filardo G, Kon E, Buda R, Timoncini A, Di Martino A, Cenacchi
A, Fornasari PM, Giannini S, Marcacci M (2011) Platelet-rich plasma
intra-articular knee injections for the treatment of degenerative
cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol
Arthrosc 19(4):528–535

14. Filardo G, Kon E, Di Martino A, Di Matteo B, Merli ML, Ce-
cacchi A, Fornasari PM, Marcacci M (2012) Platelet-rich plasma
vs hyaluronic acid to treat knee degenerative pathology: study
design and preliminary results of a randomized controlled trial.
BMC Musculoskelet Disord 13(1):229

15. Filardo G, Kon E, Di Martino A, Iacono F, Marcacci M (2011)
Arthroscopic second-generation autologous chondrocyte implantation:
a prospective 7-year follow-up study. Am J Sports Med 39(10):2153–2160

16. Filardo G, Kon E, Di Martino A, Patella S, Altadonna G, Balboni
F, Bragonzoni L, Visani A, Marcacci M (2012) Second-genera-
tion arthroscopic autologous chondrocyte implantation for the
 treatment of degenerative cartilage lesions. Knee Surg Sports
Traumatol Arthrosc 20(9):1704–1713

17. Filardo G, Kon E, Pereira Ruiz MT, Vaccaro F, Gualtieri R, Di
Martino A, Cenacchi A, Fornasari PM, Marcacci M (2012)
Platelet-rich plasma intra-articular injections for cartilage
degeneration and osteoarthritis: single- versus double-spinning
approach. Knee Surg Sports Traumatol Arthrosc 20(10):20–209

18. Filardo G, Vannini F, Marcacci M, Andriolo L, Ferruzzi A,
Giannini S, Kon E (2013) Matrix-assisted autologous chondro-
cyte transplantation for cartilage regeneration in osteoarthritis
knees: results and failures at midterm follow-up. Am J Sports
Med 41(1):95–100

19. Gaismaier C, Fritz J, Krackhardt T, Flesch I, Aicher WK,
Ashmaakhni N (2005) Effect of human platelet supernatant on
proliferation and matrix synthesis of human articular chondro-
cytes in monolayer and three-dimensional alginate cultures.
Biomaterials 26(14):1953–1960

20. Gobbi A, Kannazikos G, Mahajan V, Malchira S (2012) Platelet-
rich plasma treatment in symptomatic patients with knee osteo-
arthritis: preliminary results in a group of active patients. Sports
Health 4(2):162–172

21. Gomoll AH, Filardo G, Almqvist L, Esregueira-Mendes J,
Marcacci M, Rodkey WG, Steadman JR, Zaffagnini S, Kon E
(2012) Surgical treatment for early osteoarthritis. Part II:
allografts and concurrent procedures. Knee Surg Sports Traumatol
Arthrosc 18(6):902–907

22. Gomoll AH, Filardo G, de Girolamo L, Esregueira-Mendes J,
Marcacci M, Rodkey WG, Steadman JR, Zaffagnini S, Kon E
(2012) Surgical treatment for early osteoarthritis. Part I:
cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc
20(3):450–466

23. Gonzales VK, de Mulder EL, de Boer T, Hannink G, van Tienen
TG, van Heerde WL, Buma P (2013) Platelet-rich plasma can
replace fetal bovine serum in human meniscus cell cultures.
Tissue Eng Part C Methods. doi:10.1089/ten.tec.2013.0009

24. Guner S, Buyukbeci O (2012) Analyzing the effects of platelet
gel on knee osteoarthritis in the rat model. Clin Appl Throm
Hemost. doi:10.1177/1076029612452117

25. Hapa O, Çakici H, Yüksel HY, Firat T, Küskner A, Aygın H
(2013) Does platelet-rich plasma enhance microfracture treatment
for chronic focal chondral defects? An in vivo study performed in
a rat model. Acta Orthop Traumatol Turc 47(3):201–207

26. Hart R, Safi A, Komzak M, Jajnert P, Puskeiler M, Hartová P
(2013) Platelet-rich plasma in patients with tibiofemoral cartilage
degeneration. Arch Orthop Trauma Surg. doi:10.1007/s00024-
013-1782-x

27. Heijink A, Gomoll AH, Madry H, Drobnic D, Filardo G, Es-
regueira-Mendes J, Van Dijk CN (2012) Biomechanical con-
siderations in the pathogenesis of osteoarthritis of the knee. Knee
Surg Sports Traumatol Arthrosc 20(3):423–435

28. Hildner F, Eder MJ, Hofker H, Abell J, Redl H, van Griensven
M, Gabriel C, Peterbauer-Scherb A (2013) Human platelet lysate
successfully promotes proliferation and subsequent chondrogenic
differentiation of adipose-derived stem cells: a comparison with
articular chondrocytes. J Tissue Eng Regen Med. doi:10.1002/
term.1649

29. Hunter DJ, Felson DT (2006). Osteoarthritis BMJ 18;332(7542):
639–642

30. Ishida K, Kuroda R, Miwa M, Tabata Y, Yokugo A, Kawamoto
T, Sasaki K, Doita M, Kurosaka M (2007) The regenerative
effects of platelet-rich plasma on meniscal cells in vitro and its
in vivo application with biodegradable gelatin hydrogel. Tissue
Eng 13(5):1103–1112

31. Jang SJ, Kim JD, Cha SS (2013) Platelet-rich plasma (PRP)
injections as an effective treatment for early osteoarthritis. Eur J
Orthop Surg Traumatol 23(5):573–580

32. Kakudo N, Minakata T, Mitsutaka N, Kushida S, Notohidargo FZ,
Kusumoto K (2008) Proliferation-promoting effect of platelet-
rich plasma on human adipose-derived stem cells and human
dermal fibroblasts. Plast Reconstr Surg 122(5):1352–1360

33. Kaps C, Loch A, Haisch A, Smolian H, Burmester GR, Häuptl T,
Sittinger M (2002) Human platelet supernatant promotes prolif-
eration but not differentiation of articular chondrocytes. Med Biol
Eng Comput 40(4):485–490

34. Koh YG, Choi YJ (2012) Infrapatellar fat pad-derived mesen-
chymal stem cell therapy for knee osteoarthritis. Knee
19(6):902–907

35. Koh YG, Jo SB, Kwon OR, Suh DS, Lee SW, Park SH, Choi YJ
(2013) Mesenchymal stem cell injections improve symptoms of
knee osteoarthritis. Arthroscopy 29(4):748–755

36. Kon E, Buda R, Filardo G, Di Martino A, Timoncini A, Cenacchi
A, Fornasari PM, Giannini S, Marcacci M (2010) Platelet-rich
plasma: intra-articular knee injections produced favorable results
on degenerative cartilage lesions. Knee Surg Sports Traumatol
Arthrosc 18(4):472–479

37. Kon E, Filardo G, Condello V, Collarile M, Di Martino A, Zorzi
C, Marcacci M (2011) Second-generation autologous chondro-
cyte implantation: results in patients older than 40 years. Am J
Sports Med 39(8):1668–1675

38. Kon E, Filardo G, Di Martino A, Marcacci M (2011) Platelet-rich
plasma (PRP) to treat sports injuries: evidence to support its use.
Knee Surg Sports Traumatol Arthrosc 19(4):516–527

39. Kon E, Filardo G, Drobnic D, Madry H, Jelic M, van Dijk N, Della
Villa S (2012) Non-surgical management of early knee osteoar-
thritis. Knee Surg Sports Traumatol Arthrosc 20(3):436–449

40. Kon E, Filardo G, Matteo BD, Marcacci M (2013) PRP for the
treatment of cartilage pathology. Open Orthop J 3(7):120–128

41. Kon E, Mandelbaum B, Cakici H, Yuksel HY, Fehre M, Aral M,
Delcogliano M, Timoncini A, Fornasari PM, Giannini S, Marcacci M (2011)
Platelet-rich plasma intra-articular injection versus hyaluronic-
acid viscosupplementation as treatments for cartilage pathology:
from early degeneration to osteoarthritis. Arthroscopy 27(11):1490–1501

42. Krüger JP, Hondke S, Endres M, Pruss A, Siclari A, Kaps C (2012) Human platelet-rich plasma stimulates migration and chondrogenic differentiation of human subchondral progenitor cells. J Orthop Res 30(6):845–852

43. Kwon DR, Park GY, Lee SU (2012) The effects of intra-articular platelet-rich plasma injection according to the severity of collagenase-induced knee osteoarthritis in a rabbit model. Ann Rehabil Med 36(4):458–465

44. Lee HR, Park KM, Joung YK, Park KD, Do SH (2012) Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CBI and CB2. J Control Release 159(3):332–337

45. Lippross S, Moeller B, Haas H, Tobidnezad M, Steubesand N, Wruck CJ, Kurz B, Seekamp A, Pufe T, Varoga D (2011) Intraarticular injection of platelet-rich plasma reduces inflammation in a pig model of rheumatoid arthritis of the knee joint. Arthritis Rheum 63(11):3344–3353

46. Lories RJ (2008) Joint homeostasis, restoration, and remodeling in osteoarthritis. Best Pract Res Clin Rheumatol 22(2):209–220

47. Mei-Dan O, Carmont MR, Laver L, Mann G, Maffulli N, Nyska M (2012) Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med 40(3):534–541

48. Mifune Y, Matsumoto T, Takayama K, Ota S, Li H, Meszaros M (2012) Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med 41(2):356–364

49. Pereira RC, Scaranani M, Benelli R, Strada P, Reis RL, Cancetda R, Gentili C (2013) Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution. Tissue Eng Part A 19(11–12):1476–1488

50. Pettersson S, Wetterö J, Tengvall P, Kritz G (2009) Human articular chondrocytes on macroporous gelatin microcarriers form structurally stable constructs with blood-derived biological glues in vitro. J Tissue Eng Regen Med 3(6):450–460

51. Saito M, Takahashi KA, Arai Y, Inoue A, Sakao K, Tonomura H, Honjo K, Nakagawa S, Inoue H, Tabata Y, Kubo T (2009) Intraarticular administration of platelet-rich plasma with biodegradable gelatin hydrogel microspheres prevents osteoarthritis progression in the rabbit knee. Clin Exp Rheumatol 27(2):201–207

52. Sampson S, Reed M, Silvers H, Meng M, Mandelbaum B (2010) Injection of platelet-rich plasma in patients with primary and secondary knee osteoarthritis: a pilot study. Am J Phys Med Rehabil 89(12):961–969

53. Sánchez M, Anitua E, Azofra J, Aguirre JJ, Andia I (2008) Intra-articular injection of an autologous preparation rich in growth factors for the treatment of knee OA: a retrospective cohort study. Clin Exp Rheumatol 26(5):910–913

54. Sánchez M, Fiz N, Azofra J, Usabiaga J, Aduriz Relache E, Garcia Gutierrez A, Albillos J, Gariña R, Aguirre JJ, Padilla S, Orive G, Anitua E (2012) A randomized clinical trial evaluating platelet rich in growth factors (PRGF-Endoret) versus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis. Arthroscopy 28(8):1070–1078

55. Sánchez M, Guadilla J, Fiz N, Andia I (2012) Ultrasound-guided platelet-rich plasma injections for the treatment of osteoarthritis of the hip. Rheumatology (Oxford) 51(1):144–150

56. Spacerr CI, Soler C, Carillo JM, Sopena JJ, Redondo JL, Cugat R (2013) Effect of autologous platelet-rich plasma on the repair of full-thickness articular defects in rabbits. Knee Surg Sports Traumatol Arthrosc 21(8):1730–1736

57. Smyth NA, Murawski CD, Fortier LA, Cole BJ, Kennedy JG (2013) Platelet-rich plasma in the pathologic processes of cartilage: review of basic science evidence. Arthroscopy 29(8):1399–1409

58. Spaková T, Rosocha J, Lacko M, Harvanová D, Gharaibeh A (2012) Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid. Am J Phys Med Rehabil 91(5):411–417

59. Spredačto A, Chellini F, Frediani B, Bernardini G, Niccolini S, Serchi T, Colodolà G, Paffetti A, Galeazzi M, Marcolongo R, Santucci A (2009) Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J Cell Biochem 1:108(5):1153–1165

60. Torricelli P, Fini M, Filardo G, Tschon M, Piscchedda M, Pacorini A, Kon E, Giardino R (2011) Regenerative medicine for the
treatment of musculoskeletal overuse injuries in competition horses. Int Orthop 35(10):1569–1576

72. Tschon M, Fini M, Giardino R, Filardo G, Dallari D, Torricelli P, Martini L, Giavaresi G, Kon E, Maltarello MC, Nicolini A, Carpi A (2011) Lights and shadows concerning platelet products for musculoskeletal regeneration. Front Biosci (Elite Ed) 1(3):96–107

73. van Buul GM, Koevoet WL, Kops N, Bos PK, Verhaar JA, Weinans H, Bernsen MR, van Osch GJ (2011) Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med 39(11):2362–2370

74. Wang-Saegusa A, Cugat R, Ares O, Seijas R, Cuscó X, Garcia-Balletbó M (2011) Infiltration of plasma rich in growth factors for osteoarthritis of the knee short-term effects on function and quality of life. Arch Orthop Trauma Surg 131(3):311–317

75. Wu CC, Chen WH, Zao B, Lai PL, Lin TC, Lo HY, Shieh YH, Wu CH, Deng WP (2011) Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis. Biomaterials 32(25):5847–5854

76. Yang SY, Ahn ST, Rhie JW, Lee KY, Choi JH, Lee BJ, Oh GT (2000) Platelet supernatant promotes proliferation of auricular chondrocytes and formation of chondrocyte mass. Ann Plast Surg 44(4):405–411

77. Yin Z, Yang X, Jiang Y, Xing L, Xu Y, Lu Y, Ding P, Ma J, Xu Y, Gui J (2013) Platelet-rich plasma combined with agarose as a bioactive scaffold to enhance cartilage repair: an in vitro study. J Biomater Appl. doi:10.1177/0885328213492573

78. Zaky SH, Ottone A, Strada P, Cancedda R, Mastrogiacomo M (2008) Platelet lysate favours in vitro expansion of human bone marrow stromal cells for bone and cartilage engineering. J Tissue Eng Regen Med 2(8):472–481