New records of mushrooms for the mycobiota of Azerbaijan

Elgun H. MUSTAFABAYLI, Dilzara N. AGHAYEVA

Institute of Botany, Azerbaijan National Academy of Sciences
40 Badamdar Highway, Baku AZ1004, Azerbaijan
a_dilzara@yahoo.com

Mustafabayli E.H., Aghayeva D.N. 2019. New records of mushrooms for the mycobiota of Azerbaijan. Ukrainian Botanical Journal, 76(4): 356–361.

Abstract. The article reports data on 24 new records of mushrooms in Azerbaijan. Fungal specimens were collected during 2014–2018 in Shaki District of Azerbaijan. These are Auriscalpium vulgare, Boletus aereus, B. edulis var. arenarius, B. variipes, Caloboletus radicans, Calocybe gambosa, Cantharellus subalbidus, Clavariadelphus pistillaris, Cortinarius triumphans, Hemileccinum depilatum, Hortiboletus rubellus, Hydnellum concrecens, Inonotus obliquus, Marasmius capillaris, Phaeomarasmius erinaceus, Phallus ravenelli, Ramaria obtusissima, Rheubariboboletus armeniacus, Rubroboletus legialiae, R. lupinus, R. satanas, Russula turci, Suillus collinitus, and Tremella mesenterica. For each specimen, its locality, biotope and collection data are indicated and photographs are provided.

Keywords: Azerbaijan, Basidiomycota, Caucasus, fungi, macromycetes, Shaki District

Introduction

Dedicated studies of macromycetes of Azerbaijan were launched in the early 1960s. Currently about 2300 specimens of more than 800 taxa of mushrooms collected within the country are deposited at the Mycological Herbarium of the Institute of Botany (BAK), ANAS (Sadiqov, 1972, 2007; Sadiqov, Aghayeva, 2016). That is not a large number of species taking into account rich diversity of microfungi in Azerbaijan. Based on what has been discovered, we can suggest that many species have not been revealed and explored yet. The mushroom diversity in Shaki District studied during several recent years revealed a number of species that are new for the study area, as well as for the country.

Shaki District is located along the Southern Caucasian mountain range. Most of its area is occupied by both coniferous and broadleaf forest ecosystems where oak, beech, birch, hornbeam are dominant tree species. The aim of the article is to present data on new species of mushrooms found in Shaki District, which have not been previously registered in Azerbaijan.

Materials and methods

Specimens were collected during mycological surveys in Shaki District of Azerbaijan during 2014–2018. All samples were air-dried and deposited at the BAK Herbarium; deposition (inventory) numbers are provided below in the list. The sampling localities and their GPS coordinates are as follows: around the walls of the Gelersen-Gorersen fortress (41º15'48.57"N, 47º13'40.43"E, 1220 ± 50–60 m a.s.l.); along Gilehli, hazelnut forest (41º12'14.29"N, 47º12'40.01"E, 835–860 m a.s.l.); in the vicinity of the village of Gilehli, near the road. All samples were deposited at the Mycological Herbarium of the Institute of Botany (BAK), ANAS, Baku. For each specimen, its locality, biotope and collection data are indicated and photographs are provided.
Phenological characteristics were recorded and micro-morphological features were examined under the microscope Nikon Eclipse E100, ZEISS (China). Microstructures were mounted in sterile water, statistics included a minimum of 20 measurements. Both size and shape of basidiospores were considered, results were estimated as average of 25 measurements for each specimen. Identification was carried out based on available literature (Wasser, 1980; Arora, 1986; Moser, 1980, 1986; Dudka, Wasser, 1987; Bondartseva, 1998; Horak, 2005; etc.). Nomenclature updates and taxonomic rearrangements are provided as in the Index Fungorum database (http://www.indexfungorum.org).

Results and discussion

In total, 24 species of the Agaricomycetes belonging to 9 orders and 15 families represent new records for Azerbaijan (Fig. 1). Below we list the species of fungi and discuss peculiarities of some taxa and records.

Agaricales
Cortinariaceae
Cortinarius triumphans Fr. (Fig. 1, A)
Mustafabey oak-beech, chestnut-beech forest, on forest litter. 06.10.2016 (BAK1635).

In the Transcaucasia this species was previously reported from Georgia and Armenia (Key..., 1985).

Inocybaceae
Phaeomarasmius erinaceus (Fr.) Scherff. ex Romagn. (Fig. 1, B)
Mustafabey oak-beech, chestnut-beech forest, on dead wood. 06.10.2016 (BAK1641).

Lyophyllaceae
Calocybe gambosa (Fr.) Donk (Fig. 1, C)
Naringala pine forest, on forest litter. 22.10.2013 (BAK1557).

In the Transcaucasian region the species has been reported from Georgia and Armenia (Key..., 1985).

Marasmiaceae
Marasmius capillaris Morgan (Fig. 1, D)
Mustafabey oak-beech, chestnut-beech forest, on dead fallen leaf. 27.07.2016 (BAK1614).

Boletales
Boletaceae
Boletus aereus Bull. (Fig. 1, E)
Mustafabey oak-beech, chestnut-beech forest, on forest soil. 17.08.2018 (BAK1652).

Boletus edulis var. *arenarius* H.Engel, Krieglst & Dermek (Fig. 1, F)
Mustafabey oak-beech, chestnut-beech forest, on forest soil. 25.08.2018 (BAK1665).

Based on our observation, *B. edulis* var. *arenarius* differs from *B. edulis* var. *edulis* by its smaller, reddish-yellow cap, as well as a long and curved stipe.

Boletus variipes Peck (Fig. 1, G)
Mustafabey oak-beech, chestnut-beech forest, on forest soil. 25.08.2018 (BAK1664).

Caloboletus radicans (Pers.) Vizzini (Fig. 1, H)
Mustafabey oak-beech, chestnut-beech forest, on forest soil. 25.08.2018 (BAK1667).

We found the form of this species previously known as *Xerocomus armeniacus* f. *luteolus* H.Engel & Antonín; later the species was transferred to the genus *Xerocomellus* (Quél.) Šutara (2008). Currently, *X. armeniacus* f. *luteolus* is synonymised with *Rheubarbarioboletus armeniacus*. In our observation, forma *luteolus* differs in color of the stipe and pileus, being greenish-yellow, which is distinct from the reddish Burgundy color of the typical form. Spore size of the species is also slightly different according to literature: 9–15 × 4–6 µm in A. Dermek & A.Pilát (1974) and 11.6–13.9 (−15.2) × 5.0–5.8 µm in A.E.Hills (2009). Spores in our measurements were fusiform, light-brown, greenish, with 1–2 oil drops, 12.5–16.0 × 4.0–5.5 µm.

Hemileccinum depilatum (Redeuilh) Šutara (Fig. 1, I)
Mustafabey oak-beech, chestnut-beech forest, on forest soil. 25.08.2018 (BAK1667).

Hortiboletus rubellus (Krombh.) Simonini, Vizzini & Gelardi (Fig. 1, J)
Mustafabey oak-beech, chestnut-beech forest, on forest soil. 25.08.2018 (BAK1653).

Rheubarbarioboletus armeniacus (Quél.) Vizzini, Simonini & Gelardi (Fig. 1, K)
Mustafabey oak-beech, chestnut-beech forest, on forest litter. 10.07.2016 (BAK1596).

We found the form of this species previously known as *Xerocomus armeniacus* f. *luteolus* H.Engel & Antonín; later the species was transferred to the genus *Xerocomellus* (Quél.) Šutara (2008). Currently, *X. armeniacus* f. *luteolus* is synonymised with *Rheubarbarioboletus armeniacus*. In our observation, forma *luteolus* differs in color of the stipe and pileus, being greenish-yellow, which is distinct from the reddish Burgundy color of the typical form. Spore size of the species is also slightly different according to literature: 9–15 × 4–6 µm in A. Dermek & A.Pilát (1974) and 11.6–13.9 (−15.2) × 5.0–5.8 µm in A.E.Hills (2009). Spores in our measurements were fusiform, light-brown, greenish, with 1–2 oil drops, 12.5–16.0 × 4.0–5.5 µm.

Rubroboletus legaliae (Pilát & Dermek) Della Magg. & Trassin. (Fig. 1, L)
Mustafabey oak-beech, chestnut-beech forest, on forest litter. 25.08.2018 (BAK1619).

Rubroboletus lupinus (Fr.) Costanzo & Gelardi, Simonini & Vizzini (Fig. 1, M)
Fig. 1. New records of mushrooms for Azerbaijan (original photos). A: Cortinarius triumphants; B: Phaeomarasmius erinaceus; C: Calocybe gambosa; D: Marasmius capillaris; E: Boletus aereus; F: B. edulis var. arenarius; G: B. variipes; H: Caloboletus radicans; I: Hemileccinum depilatum; J: Hortiboletus rubellus; K: Rheubabariboletus armeniacus; L: Rubroboletus legaliae
Fig. 1 (continuation). M: Rubroboletus lupinus; N: R. satanas; O: Suillus collinitus; P: Cantharellus subalbidus; Q: Clavariadelphus pistillaris; R: Ramaria obtusissima; S: Inonotus obliquus; T: Phallus ravenelii; U: Auriscalpium vulgare; V: Russula turci; W: Hydnellum concrescens; X: Tremella mesenterica
Mustafabey oak-beech, chestnut-beech forest, on forest litter. 18.08.2018 (BAK1659).

Rubroboletus satanas (Lenz) Kuan Zhao & Zhu L. Yang (Fig. 1, N)
Gilehli, hazelnut forest, on forest litter. 25.08.2018 (BAK1650).

Suillaceae
Suillus collinitus (Fr.) Kuntze (Fig. 1, O)
Around the Shaki Khans’ Palace fortress walls, coniferous forest, on soil. 20.11.2016 (BAK1600).

Cantharellales
Cantharellaceae
Cantharellus subalbidus A.H.Sm. & Morse (Fig. 1, P)
Mustafabey oak-beech, chestnut-beech forest, on soil. 23.07.2017 (BAK1631).

Gomphales
Clavariadelphaceae
Clavariadelphus pistillaris (L.) Donk (Fig. 1, Q)
Mustafabey oak-beech, chestnut-beech forest, on soil. 06.10.2016 (BAK1620).

Gomphaceae
Ramaria obtusissima (Peck) Corner (Fig. 1, R)
Mustafabey oak-beech, chestnut-beech forest, on soil. 26.11.2015 (BAK1630).

Hymenochaetales
Hymenochaetaceae
Inonotus obliquus (Fr.) Pilát (Fig. 1, S)
Along the Gelersen-Görersen fortress walls, on Betula sp. 23.07.2017 (BAK1657).

Phallales
Phallaceae
Phallus ravenelii Berk. & M.A. Curtis (Fig. 1, T)
Around the Shaki Khans’ Palace fortress walls, coniferous forest, on soil. 25.07.2017 (BAK1621).

Russulales
Auriscalpiaceae
Auriscalpium vulgare Gray (Fig. 1, U)
Naringala pine forest, on cone of *Pinus sylvestris*. 08.05.2017 (BAK1647).

Russulaceae
Russula turci Bres. (Fig. 1, V)
Mustafabey oak-beech forest, on forest soil. 16.08.2016. (BAK1615).

In the Transcaucasian region it has been reported from Georgia (Key..., 1985).

Thelophorales
Bankeraceae
Hydnellum concrescens (Pers.) Banker (Fig. 1, W)
Naringala pine forest, among mosses in coniferous forest. 26.11.2015 (BAK1634).

Tremellales
Tremellaceae
Tremella mesenterica Retz. (Fig. 1, X)
Naringala pine forest, on dead pine branches. 27.07.2017 (BAK1627).

All identified taxa can be subdivided into three ecological groups: symbiotrophs, humus saprotrophs, and xylotrophs. Most of the species are symbiotrophs, including *Cortinarius triumphans* (Cortinariaceae) and *Calocybe gambosa* (Lyophyllaceae) from the order Agaricales. The highest number of species are representatives of the order Boletales: *Boletus aereus*, *B. edulis* var. *arenarius*, *B. variipes*, *Caloboletus radicans*, *Hemileccinum depilatum*, *Hortiboletus rubellus*, *Rheubarbariboletus armeniacus*, *Rubroboletus legaliae*, *R. lupinus*, and *R. satanas* (Boletaceae) and one more species — *Suillus collinitus* (Suillaceae). *Cantharellus subalbidus* (Cantharellaceae), *Clavariadelphus pistillaris* (Clavariadelphaceae), *Hydnellum concrescens* (Bankeraceae), and *Russula turci* (Russulaceae) belong to the same ecological group. These fungi are associated with some species of trees, such as *Quercus iberica* M.Bieb., *Castanea sativa* Mill., *Fagus sylvatica* L., *Carpinus betulus* L., *Ulmus minor* Mill., and *Pinus sylvestris* L.

Humus saprotrophs include *Ramaria obtusissima* (Gomphaceae), *Phallus ravenelii* (Phallaceae).

Xylotrophs can be divided into three subgroups: fungi occurring on cones, leaves, and stems. *Phaeomarasmius erinaceus* (Inocybaceae) was recorded on dead wood of hornbeam and beech trees. *Marasmius capillaris* was found on dead fallen leaves of oak and beech, *Auriscalpium vulgare* — on cones of dead pine trees and *Tremella mesenterica* — on stem of broadleaf tree species. Parasitic *Inonotus obliquus* (Hymenochaetaeaceae), a widely distributed species in the study area, was identified on a birch tree.

Fungal diversity studies rely on the data about collected samples, images and identified fungal taxa in certain area. This information provides a source for scientific research and management of natural resources for the mutual benefit of humans and nature. The reported research represents a new contribution to the existing data on mushroom diversity of Azerbaijan.
Aghayeva D.N., Sadiqov A.S. 2009. Proceedings of the Institute of Botany ANAS (Azerbaijan National Academy of Sciences), 29: 176–183. [Ağayeva D.N., Sadiqov A.S. 2009. Büyük Qafqaz və Talışdan toplanılmış müxtəlif ekoloji gruplara aid makromisətlər. AMEA Botanika İnstitutunun elmi əsərləri, 29: 176–183].

Arora D. 1986. Mushrooms Demystified: A Comprehensive Guide to the Fleshy Fungi. 2nd ed. Berkeley: Ten Speed Press, 959 pp. [Arora D. 1986. Mushroom: A Comprehensive Guide to the Fleshy Fungi. Berkeley: Ten Speed Press, 959 pp.].

Bondartseva M.A. 1998. Handbook of fungi of Russia. Order Aphillophorales, issue 2. St. Petersburg: Nauka, 391 pp. [Bondartseva M.A. 1998. Определитель грибов России. Порядок Афиллофоровые, вып. 2. Санкт-Петербург: Наука, 391 с.].

Dermek A., Pilát M. 1974. Poznávajme huby. Veda: Vydavatelstvo Slovenskej Akadémie Vied, 256 s. [Дермек А., Пилат М. 1974. Poznávajme huby. Veda: Vydavatelstvo Slovenskej Akadémie Vied, 256 s.].

Dudka I.A., Wasser S.P. 1987. Griby. Spravochnik mikologa i gribnika. Kiev: Naukova Dumka, 534 pp. [Дудка И.А., Вассэр С.П. 1987. Грибы. Справоchnik mikologa i gribnika. Kiev: Naukova Dumka, 534 с.].

Dudka I.A., Wasser S.P. 1987. Griby. Spravochnik mikologa i gribnika. Kiev: Naukova Dumka, 534 pp. [Dudka I.A., Wasser S.P. 1987. Griby. Spravochnik mikologa i gribnika. Kiev: Naukova Dumka, 534 pp.].

Grunert G., Grunert B. 2002. Fungi. Moscow: Astrel, 287 pp. [Грюнерт Г., Грюнерт Б. 2002. Fungi. Moscow: Astrel, 287 с.].

Hills A.E. 2009. The genus Xerocomus. A personal view, with a key to the British species. Field Mycology, 9(3): 77–96.

Key to agaric mushrooms of Transcaucasica. 1985. Ed. I.G. Nakhturishvili. Tbilisi: Metsniereba, 264 pp. [Key to agaric mushrooms of Transcaucasica. 1985. Ed. I.G. Nakhturishvili. Tbilisi: Metsniereba, 264 с.].

Šutara J. 2008. Xerocomus s. l. in the light of the present state of knowledge. Czech Mycology, 60(1): 29–62.

Zerova M.Ya., Sosin P.E., Rozhenko G.L. 1979. Identification manual of fungi of Ukraine, vol. 5, book 2. Boletales, Strobilomyceetales, Tricholomatales, Entolomatales, Russulales, Agaricales, Gusteromycetes. Kyiv: Naukova Dumka, 564 pp. [Zerova M.Ya., Sosin P.E., Rozhenko G.L. 1979. Выделявник грибів України, т. 5, книга 2. Болеталіні, стробіломіцетальні, трихоломатальні, ентоломатальні, русуальні, агарикальні, гастероміцети. Київ: Наукова думка, 564 с.].

Mosser M. 1986. Guida alla determinazione dei fungi (Polyporales, Boletales, Agaricales, Russulales). Trento: Saturnia, 565 pp.

Pilát A. 1969. Houby Československa ve svém životním prostředí. Praha: Academia Nakladatelství Československé Academie Věd, 267 s.

Sadiqov A.S. 1972. Transaction of Azerbaijan National Academy of Sciences, 1: 32–36. [Садыхов А.С. 1972. Новые для Азербайджана агариковые грибы. Известия АН Азербайджанской ССР. Серия биологических наук, 1: 32–36].

Sadiqov A.S. 2007. Edible and poisonous mushrooms of Azerbaijan. Baku: Elm, 109 pp. [Азərbaycanıñ yəməli və şəhərlər gəbələkləri. Baki: Elm, 109 s.].

Sadiqov A.S., Aghayeva D.N. 2016. Proceedings of the Azerbaijan National Academy of Sciences (Biological and Medical Sciences), 71(2): 43–49. [Sadiqov A.S., Ağayeva D.N. 2016. Azərbaycan üçün yeni makromisətlər. AMEA-nın Xəbərləri (biologiya və tibb elmləri), 71(2): 43–49].

Recommended for publication by V.P. Heluta