Duality for actions of weak Kac algebras and crossed product inclusions of II$_1$ factors

Dmitri Nikshych *

October 5, 1998

Abstract

We show that indecomposable weak Kac algebras are free over their Cartan subalgebras and prove a duality theorem for their actions. Using this result, for any biconnected weak Kac algebra we construct a minimal action on the hyperfinite II$_1$ factor. The corresponding crossed product inclusion of II$_1$ factors has depth 2 and an integer index. Its first relative commutant is, in general, non-trivial, so we derive some arithmetic properties of weak Kac algebras from considering reduced subfactors.

1 Introduction

It is well understood now that Kac algebras (Hopf C*-algebras) are closely related with the subfactors theory: it was announced by Ocneanu and proved in [23], [12], [3], [1] that irreducible depth 2 inclusions of type II factors come from crossed products with Kac algebras. This result was recently extended to the case of general (i.e., not necessarily irreducible) finite index depth 2 subfactors in [17], where it was shown that if $N \subset M \subset M_1 \subset M_2 \subset \ldots$ is the Jones tower constructed from such a subfactor $N \subset M$, then $K = M' \cap M_2$ has a natural structure of a finite-dimensional weak Kac algebra (if the index $[M : N]$ is integer) or a weak Hopf C*-algebra (if $[M : N]$ is non-integer) and there is a minimal action of K on M_1 such that

* UCLA, Department of Mathematics, 405 Hilgard Avenue, Los Angeles, CA 90095-1555; E-mail: nikshych@math.ucla.edu
M is the fixed point subalgebra of M_1 and M_2 is isomorphic to the crossed product of M_1 and K. This result establishes an injective correspondence between finite index depth 2 subfactors of a given II$_1$ factor and weak C^*-Hopf algebras.

It is natural to ask if this correspondence is one-to-one in the case of the hyperfinite II$_1$ factor. Note that in [25] Yamanouchi constructed an outer action of any finite dimensional Kac algebra K on the hyperfinite II$_1$ factor R, here the outerness means that $R' \cap R \bowtie K = \mathbb{C}$, i.e. the first relative commutant of the crossed product inclusion $R \subset R \bowtie K$ is minimal. His construction used the Takesaki duality for actions of Kac algebras [3].

In this work we extend this result to weak Kac algebras, i.e., we show that any weak Kac algebra has a minimal action on R. Finite dimensional weak Kac algebras generalize both finite groupoid algebras and usual Kac algebras. Note that weak Kac algebra is a special case of a weak Hopf C^*-algebra introduced in [3] and [13], which is characterized by the property $S^2 = \text{id}$. It was shown in [16] that the category of weak Kac algebras is equivalent to the categories of generalized Kac algebras of T. Yamanouchi [24] and Kac bimodules (an algebraic version of Hopf bimodules [8]). Compared with these objects, the advantage of the language of weak Kac algebras is that their definition is transparently self-dual, so it is easy to work with both weak Kac algebra and its dual simultaneously.

The paper is organized as follows.

In Section 2 we collect the necessary definitions and facts about weak Kac algebras, their actions and crossed-products, and their Cartan subalgebras; we also give a brief description of the basic construction for $*$-algebras.

In Section 3 we introduce a λ-Markov condition for weak Kac algebras. A weak Kac algebra K satisfies the λ-Markov condition if the normalized Haar trace on K is the λ-Markov trace for the inclusion $K_s \subset K$, where K_s is the source Cartan subalgebra of K. This condition is automatically satisfied if K is indecomposable, i.e., not isomorphic to the direct sum of two weak Kac algebras. Theorem 3.5 shows that being λ-Markov is equivalent to the freeness of K over its Cartan subalgebras; in particular, λ^{-1} must be a positive integer. As a corollary, we obtain that indecomposable weak Kac algebras of prime dimension are group algebras of cyclic groups, which extends the well-known result of Kac [14].

Also in this section we introduce and study basic properties of connected and biconnected weak Kac algebras, i.e., those for which the inclusion $K_s \subset K$ is connected (resp. inclusions $K_s \subset K$ and $K_s^* \subset K^*$ are
connected). The latest class of indecomposable weak Kac algebras is the most important for the applications to subfactors in Section 5, so we describe a way of constructing biconnected weak Kac algebras from two-sided crossed-products introduced in [13].

The central result of Section 4 is a duality theorem for actions of weak Kac algebras. This theorem is an analogue of the well known duality results for actions of locally compact groups [14], Kac algebras [4], and Hopf algebras [2]. It states that if K satisfies the λ-Markov condition and acts on a C^*-algebra (von Neumann algebra) A, then the dual crossed product algebra $(A\rtimes K)^*\rtimes K$ is isomorphic to $A \otimes M_{\lambda^{-1}}(\mathbb{C})$. Let us note that a similar result for depth 2 inclusions of von Neumann algebras was proved in [8].

In Section 5 for any biconnected weak Kac algebra K we construct a minimal action on the hyperfinite II$_1$ factor R (where the minimality means that the relative commutant $R' \cap R\rtimes K$ is minimal). The resulting crossed product inclusion $R \subset R\rtimes K$ of II$_1$ factors has depth 2 and an integer index λ^{-1}. We compute the standard invariant of this inclusion, and show, in particular, that the first relative commutant is isomorphic to the Cartan subalgebra of K: $R' \cap R\rtimes K \cong K_s$.

Finally, in Section 6 we construct examples of irreducible subfactors reducing the inclusion $R \subset R\rtimes K$ by the minimal projection in $K_s = R' \cap R\rtimes K$. In this way we can associate an irreducible finite depth subfactor of R with every irreducible representation of K or K_s. This allows us to derive certain arithmetic properties of biconnected weak Kac algebras.

Acknowledgement. The author is deeply grateful to L. Vainerman for many important discussions. He also would like to thank S. Popa and E. Effros for helpful advices, and E. Vaysleb for his useful comments on the preliminary version of this paper.

2 Preliminaries

2.1 Weak Kac algebras [8], [16].

Throughout this paper all weak Kac algebras are supposed to be finite-dimensional.

The notion of weak Kac algebra [16] is a special case of a more general concept of weak C^*-Hopf algebra introduced in [8]; see [16] for a discussion on equivalence of weak Kac algebras with other algebraic versions of quan-
tum groupoid (generalized Kac algebras of T. Yamanouchi [24] and Kac bimodules).

A weak Kac algebra K is a finite dimensional C^*-algebra equipped with the following linear maps

(a) comultiplication $\Delta : K \to K \otimes K$,
(b) counit $\varepsilon : K \to \mathbb{C}$,
(c) antipode $S : K \to K$,

where Δ is a (not necessarily unital) homomorphism of C^*-algebras, ε is a positive (not necessarily multiplicative) functional, S is a $*$-preserving anti-multiplicative and anti-comultiplicative involution (i.e., $S^2 = \text{id}$) such that the following identities hold (we denote $\varepsilon(x) = (\text{id} \otimes \varepsilon)((1 \otimes x)\Delta(1))$ and $\varepsilon_t(x) = (\varepsilon \otimes \text{id})(\Delta(1)(x \otimes 1))$):

(1) $(\Delta \otimes \text{id})\Delta = (\text{id} \otimes \Delta)\Delta$, $\varepsilon \otimes \text{id})\Delta = \text{id} = (\text{id} \otimes \varepsilon)\Delta$,
i.e., K is a coalgebra,

(2) $\varepsilon_s(xy) = (\text{id} \otimes \varepsilon)((1 \otimes x)\Delta(y))$,

(3) $(\varepsilon \otimes \text{id})\Delta(x) = (1 \otimes x)\Delta(1)$,

(4) $m(S \otimes \text{id})\Delta(x) = \varepsilon_s(x)$, $x, y \in K$,

where m denotes multiplication.

The following identities are equivalent to the above axioms (2)–(4) respectively.

(2') $x\varepsilon_t(y) = (\varepsilon \otimes \text{id})(\Delta(x)(y \otimes 1))$,

(3') $(\text{id} \otimes \varepsilon_t)\Delta(x) = \Delta(1)(x \otimes 1)$,

(4') $m(\text{id} \otimes S)\Delta(x) = \varepsilon_t(x)$, $x, y \in K$.

The dual vector space K^* has a natural structure of a weak Kac algebra given by dualizing the structure operations of K:

$\langle \phi \psi, x \rangle = \langle \phi \otimes \psi, \Delta(x) \rangle$ (multiplication),
$\langle \Delta(\phi), x \otimes y \rangle = \langle \phi, xy \rangle$ (comultiplication),
$\langle S(\phi), x \rangle = \langle \phi, S(x) \rangle$ (antipode),
$\langle \phi^*, x \rangle = \langle \phi, S(x^*) \rangle$ ($*$-operation),
for all $\phi, \psi \in K^*$, $x, y \in K$. Unit is given by ε and counit is by $\phi \mapsto \langle \phi, 1 \rangle$.

Below we collect the most important results of the theory of weak Kac algebras. The proofs can be found in [16].

The maps ε_s and ε_t are called source and target counital maps respectively, we have $\varepsilon_s^2 = \varepsilon_s$ and $\varepsilon_t^2 = \varepsilon_t$. Their images are unital C^*-subalgebras, called Cartan subalgebras of K:

\[K_s = \{ x \in K \mid \varepsilon_s(x) = x \} = \{ x \in K \mid \Delta(x) = 1 \otimes x_2 = 1 \otimes 1 \cdot x \}, \]
\[K_t = \{ x \in K \mid \varepsilon_t(x) = x \} = \{ x \in K \mid \Delta(x) = x_1 \otimes 1 = 1 \cdot x \otimes 1 \}. \]

Cartan subalgebras commute: $[K_s, K_t] = 0$; also we have $S \circ \varepsilon_s = \varepsilon_t \circ S$ and $S(K_s) = K_t$.

Like usual finite-dimensional Kac algebras (= Hopf C^*-algebras), weak Kac algebras have integrals in the following sense.

There exists a unique projection $p_\varepsilon \in K$, called a Haar projection, such that for all $x \in K$:

\[p_\varepsilon x = p_\varepsilon \varepsilon_s(x), \quad xp_\varepsilon = \varepsilon_t(x)p_\varepsilon, \quad \varepsilon_s(p_\varepsilon) = \varepsilon_t(p_\varepsilon) = 1. \]

There exists a unique faithful trace τ on K, called a normalized Haar trace, such that

\[(\tau \otimes \text{id})\Delta = (\tau \otimes \varepsilon_s)\Delta, \quad (\text{id} \otimes \tau)\Delta = (\varepsilon_t \otimes \tau)\Delta, \quad \tau \circ \varepsilon_s = \tau \circ \varepsilon_t = \varepsilon. \]

Note that normalized Haar projection and trace are unimodular, i.e. $S(p_\varepsilon) = p_\varepsilon$ and $\tau \circ S = \tau$. By duality, τ is the normalized Haar projection for the dual weak Kac algebra K^*.

The maps

\[E_s : K \to K_s : E_s(x) = (\tau \otimes \text{id})\Delta(x), \]
\[E_t : K \to K_t : E_t(x) = (\text{id} \otimes \tau)\Delta(x) \]

define τ-preserving conditional expectations (see 2.3. for the definition) from K to Cartan subalgebras.

To fix the notation in what follows, let

\[K \cong \bigoplus_{i=1}^N M_{d_i}(\mathbb{C}), \quad K_s \cong K_t \cong \bigoplus_{\alpha=1}^L M_{m_\alpha}(\mathbb{C}), \]

5
and let $\{e^{(i)}_{kl}\} (i = 1 \ldots N; k,l = 1,\ldots,d_i)$ be a system of matrix units in K, $\{f^{(\alpha)}_{rs}\} \in K_s$, and $\{g^{(\alpha)}_{rs}\} \in K_t$ ($\alpha = 1,\ldots,L; r,s = 1,\ldots,m_\alpha$). By [16] we have:

$$\Delta(p_\varepsilon) = \sum_i \frac{1}{d_i} \sum_{kl} e^{(i)}_{kl} \otimes S(e^{(i)}_{ik}),$$

$$\Delta(1) = \sum_\alpha \frac{1}{m_\alpha} \sum_{rs} f^{(\alpha)}_{rs} \otimes S(f^{(\alpha)}_{sr}) = \sum_\alpha \frac{1}{m_\alpha} \sum_{rs} S(g^{(\alpha)}_{sr}) \otimes g^{(\alpha)}_{rs}.$$

In particular, p_ε is cocommutative, i.e., $\Delta(p_\varepsilon) = \varsigma \Delta(p_\varepsilon)$, where ς is the flip on the tensor product $K \otimes K$.

Also we denote $\Lambda = (\Lambda_{ij})$ the $(L \times N)$ inclusion matrix [9] of K_s (or K_t) into K.

2.2 Actions, dual actions, and crossed-products [15].

By a \ast-algebra we understood an associative algebra over \mathbb{C} equipped with an antilinear anti-automorphism of order 2 (involution), $x \mapsto x^\ast$.

Action of a weak C^\ast-Hopf algebra on a \ast-algebra was defined in [15]. We slightly modify that definition, since we consider only those actions for which the map $x \mapsto (x \triangleright 1)$ ($x \mapsto (1 \triangleleft x)$) is injective on a Cartan subalgebra. We need definitions of left and right actions.

A left (resp. right) action of a weak Kac algebra K on a unital \ast-algebra A is a linear map

$$K \otimes A \ni h \otimes a \mapsto (h \triangleright a) \in A \quad \text{(resp. } A \otimes K \ni a \otimes h \mapsto (a \triangleleft h) \in A),$$

defining a structure of a left (resp. right) K-module on A such that:

1. $h \triangleright ab = (h_{(1)} \triangleright a)(h_{(2)} \triangleright b)$ (resp. $ab \triangleleft h = (a \triangleleft h_{(1)})(b \triangleleft h_{(2)})$),
2. $(h \triangleright a)^\ast = Sh^\ast \triangleright a^\ast$ (resp. $(a \triangleleft h)^\ast = a^\ast \triangleleft Sh^\ast$),
3. $h \triangleright 1 = \varepsilon_t(h) \triangleright 1$, and $h \triangleright 1 = 0$ iff $\varepsilon_t(h) = 0$
 (resp. $1 \triangleleft h = 1 \triangleleft \varepsilon_s(h)$, and $1 \triangleleft h = 0$ iff $\varepsilon_s(h) = 0$).

If A is a C^\ast-algebra or a von Neumann algebra then we also require that the map $a \mapsto (h \triangleright a)$ (resp. $a \mapsto (a \triangleleft h)$) to be norm continuous or weakly continuous for all $h \in K$.
Note that the map $z \mapsto (z \triangleright 1)$ (resp. $z \mapsto (1 \triangleleft z)$) defines an injective *-homomorphism from K_t (resp. K_s) to A. Thus, A must contain a *-subalgebra isomorphic to a Cartan subalgebra of K.

A *trivial* left (resp. right) action of K on K_t (resp. K_s) is given by

$$h \triangleright a = \varepsilon_t(ha) \quad \text{(resp. } a \triangleleft h = \varepsilon_s(ah)), \quad h \in K, \ a \in K_t \text{(resp. } K_s).$$

A *dual* left (resp. right) action of K^* on K is given by

$$\phi \triangleright h = h_{(1)} \langle \phi, h_{(2)} \rangle \quad \text{(resp. } h \triangleleft \phi = \langle \phi, h_{(1)} \rangle h_{(2)}), \quad \phi \in K^*, \ h \in K.$$

Given a left (resp. right) action of K on a *-algebra A, there is a left (resp. right) *crossed product* *-algebra* $A\rtimes K$ (resp. $K\triangleright A$) constructed as follows. As a \mathbb{C}-vector space it is $A \otimes_{K_t} K$ (resp. $K \otimes_{K_s} A$), where K is a *-algebra* (von Neumann algebra). There is a left K_t-module (resp. right K_s-module) via multiplication and A is a right K_t-module (resp. left K_s-module) via multiplication by image of K_t (resp. K_s) under $z \mapsto (z \triangleright 1)$ (resp. $z \mapsto (1 \triangleleft z)$); that is, we identify

$$a(z \triangleright 1) \otimes h \equiv a \otimes zh \quad \text{(resp. } hz \otimes a \equiv h \otimes (1 \triangleleft z)a),$$

for all $a \in A, h \in K, z \in K_t(K_s)$. Let $[a \otimes h]$ (resp. $[h \otimes a]$) denote the class of $a \otimes h$ (resp. $h \otimes a$). A *-algebra* structure is defined by

$$[a \otimes h][b \otimes k] = [a(h_{(1)} \triangleright b) \otimes h_{(2)} k], \quad [a \otimes h]^* = [(h_{(1)}^* \triangleright a^*) \otimes h_{(2)}^*]$$

for all $a, b \in A, h, k \in K$. The maps $i_A : a \mapsto [a \otimes 1_K]$ (resp. $a \mapsto [1_K \otimes a]$) and $i_K : h \mapsto [1_A \otimes h]$ (resp. $h \mapsto [h \otimes 1_A]$) are inclusion of *-algebras such that* $A \rtimes K = i_A(A) i_K(K)$ (resp. $K \triangleright A = i_K(K) i_A(A)$). Moreover, if A is a C^*-algebra (von Neumann algebra), then the crossed product is naturally *-isomorphic to a norm closed (weakly closed) *-algebra of operators on some Hilbert space, i.e., it becomes a C^*-algebra (von Neumann algebra).

For the crossed products constructed from the trivial actions of K on Cartan subalgebras we have

$$K_t \rtimes K \cong K \quad \text{and} \quad K \triangleright K_s \cong K.$$

A left (resp. right) *dual action* of K^* on the crossed product $A \rtimes K$ (resp. $K \triangleright A$) is defined as

$$\phi \triangleright [a \otimes h] = [a \otimes (\phi \triangleright h)] \quad \text{(resp. } [h \otimes a] \triangleleft \phi = [(h \triangleleft \phi) \otimes a]).$$
for all \(a \in A, h \in K, \phi \in K^* \). The action of \(K^* \) on \(K \) defined above is dual to the trivial action of \(K \) on a Cartan subalgebra.

2.3 The basic construction for \(*\)-algebras [23].

Let \(B \) be a unital \(*\)-algebra, \(A \) be its \(*\)-subalgebra containing the unit of \(B \). A conditional expectation \(E : B \rightarrow A \) is a faithful (i.e., such that \(E(Bb) = 0 \) implies \(b = 0 \), for \(b \in B \)) linear \(*\)-preserving map satisfying

\[
E(ab) = aE(b), \quad E(ba) = E(b)a, \quad \text{and} \quad E(a) = a,
\]

for all \(a \in A, b \in B \). A finite family \(\{ u_1, \ldots, u_n \} \subset B \) is called a quasi-basis for \(E \) if

\[
b = \sum_i u_i E(u_i^* b) \quad \text{for all} \quad b \in B.
\]

It is called a basis if “coefficients” \(E(u_i^* b) \) are unique, i.e., if \(\sum_i u_i a_i = 0, a_i \in A \Leftrightarrow a_i = 0 (\forall i) \). A conditional expectation \(E \) is of finite-index type if there exists a quasi-basis for \(E \). In this case index of \(E \) is defined as

\[
\text{Index } E = \sum_i u_i u_i^* \in B.
\]

Index \(E \) belongs to the center of \(B \) and does not depend on the choice of quasi-basis.

The basic construction for \(E \) is a \(*\)-algebra \(B \otimes_A B \) with multiplication and involution given by

\[
(b_1 \otimes b_2)(b_3 \otimes b_4) = b_1 E(b_2 b_3) \otimes b_4, \quad (b_1 \otimes b_2)^* = b_2^* \otimes b_1^*,
\]

for all \(b_1, b_2, b_3, b_4 \in B \). Note that the unit of this algebra is \(\sum_i u_i \otimes u_i^* \), where \(\{u_i\} \) is the quasi basis for \(E \).

In what follows we consider only conditional expectations of finite-index type for which a basis (not just a quasi-basis) exists.

In this case \(B \otimes_A B \) is canonically isomorphic to \(\text{End}_A^r(B) \), the algebra of endomorphisms of \(B \) viewed as a right \(A \)-module; the isomorphism \(\phi : B \otimes_A B \rightarrow \text{End}_A^r(B) \) is given by

\[
\phi(b_1 \otimes b_2)(b) = b_1 E(b_2 b), \quad b, b_1, b_2 \in B.
\]

\(B \) is canonically identified with the subalgebra of left multiplication operators \((x \mapsto bx) \) for \(x \in B \) in \(\text{End}_A^r(B) \). Clearly, \(\text{End}_A^r(B) \cong M_n(A) \), the \(*\)-algebra of \((n \times n) \) matrices over \(A \), since \(B \) is free of rank \(n \) over \(A \).

Note that \(e_A = E \in \text{End}_A^r(B) \) is a projection such that
(1) \(e_A be_A = E(b)e_A \) for all \(b \in B \),
(2) the map \(A \ni a \mapsto ae_A \in \text{End}^*_A(B) \) is injective,
and \(\text{End}^*_A(B) \) is generated by \(B \) and \(e_A \).

Conversely, if \(C \) is a \(* \)-algebra containing \(B \) as a unital \(* \)-subalgebra and generated by \(B \) and some projection \(e_A \) satisfying properties (1) and (2) above then \(C \) is canonically \(* \)-isomorphic to \(B \otimes_A B \), the isomorphism is given by \(b_1e_A b_2 \mapsto b_1 \otimes b_2 \).

Due to this fact, we will denote the basic construction for \(E \) by \(\langle B, e_A \rangle \).

When \(A \) and \(B \) are \(C^* \)-algebras (von Neumann algebras) then \(\langle B, e_A \rangle \) naturally becomes a \(C^* \)-algebra (von Neumann algebra).

3 \(\lambda \)-Markov Condition and Connected Weak Kac Algebras

We show that indecomposable weak Kac algebras have the Markov property (i.e., \(E_s(p_c) \) is a scalar). We prove that this property is equivalent to existence of a basis for \(E_s \), i.e., to freeness of \(K \) over the Cartan subalgebra \(K_s \), and can be expressed in terms of the inclusion matrix of \(K_s \subset K \).

We also introduce notions of connected and biconnected weak Kac algebras which are important for applications to the theory of subfactors.

Definition 3.1 A weak Kac algebra \(K \) is **decomposable** if it is isomorphic to the direct sum of two weak Kac algebras, \(K \cong K_1 \oplus K_2 \); otherwise \(K \) is **indecomposable**.

Clearly, decomposable weak Kac algebras are of little interest in themselves. Indecomposability can be expressed in terms of the algebra \(K_s \cap K_t \cap Z(K) \), the **hypercenter** of \(K \) \([\ref{hypercenter} \text{ }] \) (here \(Z(K) \) is the center of \(K \)).

Proposition 3.2 \(K \) is indecomposable iff the hypercenter of \(K \) is trivial, i.e. \(K_s \cap K_t \cap Z(K) = \mathbb{C} \).

Proof. If \(q \) is a projection in \(K_s \cap K_t \cap Z(K) \), then \(S(q) = q \), \(\Delta(q) = (q \otimes q)\Delta(1) \), and \(\Delta(qh) = (q \otimes q)\Delta(h) \) for all \(h \in K \). Therefore, \(qK \) and \((1-q)K \) are weak Kac algebras and \(K = qK \oplus (1-q)K \). Conversely, if \(K \) is decomposable and \(K_1 \) is its direct summand, then \(\varepsilon_s(1_{K_1}) = \varepsilon_t(1_{K_1}) = 1_{K_1} \) and the unit of \(K_1 \) belongs to the hypercenter of \(K \).

It turns out that indecomposable weak Kac algebras satisfy a crucial \(\lambda \)-Markov condition.
Definition 3.3 A weak Kac algebra K satisfies a λ-Markov condition if

$$E_s(p_\varepsilon) = E_t(p_\varepsilon) = \lambda$$

for some $\lambda > 0$ (note that since p_ε is cocommutative, we always have $E_s(p_\varepsilon) = E_t(p_\varepsilon)$).

Proposition 3.4 If K is indecomposable, then it satisfies the λ-Markov condition for some λ.

Proof. Note that

$$E_s(p_\varepsilon) = E_t(p_\varepsilon) = \sum_i \frac{1}{d_i} \sum_k e_{kk}^{(i)} \tau(e_{kk}^{(i)}) = \sum_i \tau_i \sum_k e_{kk}^{(i)} \in Z(K),$$

where $\tau_i = \tau(e_{kk}^{(i)})$ does not depend on k. Therefore, if $E_s(p_\varepsilon) \neq \lambda$, then the hypercenter is non-trivial and K is decomposable by Proposition 3.2.

The following theorem describes the λ-Markov condition in several equivalent ways.

Theorem 3.5 The following conditions are equivalent:

(i) K satisfies the λ-Markov condition,

(ii) $\tau = \lambda \text{Tr}$ where Tr is the trace of the left regular representation of K on itself,

(iii) $(\Lambda\Lambda^t)\vec{m} = \lambda \vec{m}$, where $\vec{m} = (m_1 \ldots m_L)$ is the dimension vector of a Cartan subalgebra, and Λ is the $L \times M$ inclusion matrix of $K_s \subset K$.

(iv) $n = \lambda^{-1}$ is an integer and there is a basis $\{x_\nu\}_{\nu=1 \ldots n}$ for E_s, i.e. a basis of K over K_s such that $x = \sum_\nu x_\nu E_s(x_\nu^* x)$ for all $x \in K$,

(v) $n = \lambda^{-1}$ is an integer and there is a basis $\{y_\nu\}_{\nu=1 \ldots n}$ for E_t, i.e. a basis of K over K_t such that $y = \sum_\nu y_\nu E_t(y_\nu^* y)$ for all $y \in K$.

Proof. (i)\iff(ii). As we have seen in the proof of Proposition 3.4, $E_s(p_\varepsilon) = \lambda$ iff there is λ such that $\tau(e_{kk}^{(i)}) = \lambda d_i$, i.e., $\tau = \lambda \text{Tr}$.

(i)\iff(iii). It suffices to prove that (iii) holds true if and only if Tr is normalized by conditions $(\text{Tr} \otimes \text{id})\Delta(1) = (\text{id} \otimes \text{Tr})\Delta(1) = \lambda^{-1}$ (it was
shown in [16] that \((\text{Tr} \otimes \text{id}) \Delta = (\text{Tr} \otimes \varepsilon_s) \Delta\) and \((\text{id} \otimes \text{Tr}) \Delta = (\varepsilon_t \otimes \text{Tr}) \Delta\).

Since \(\text{Tr} \circ S = \text{Tr}\), we have

\[
(\text{Tr} \otimes \text{id}) \Delta(1) = \sum_{\alpha=1}^{K} \frac{1}{m_\alpha} \sum_r \text{Tr}(g_{rr}^{(\alpha)}) g_{rr}^{(\alpha)} = \sum_{\alpha=1}^{K} \frac{1}{m_\alpha} \sum_i \Lambda_{\alpha i} d_i \sum_r g_{rr}^{(\alpha)}
\]

\[
(\text{id} \otimes \text{Tr}) \Delta(1) = \sum_{\alpha=1}^{K} \frac{1}{m_\alpha} \sum_r \varepsilon_t(f_{rr}^{(\alpha)}) \text{Tr}(f_{rr}^{(\alpha)}) = \sum_{\alpha=1}^{K} \frac{1}{m_\alpha} \sum_i \Lambda_{\alpha i} d_i \sum_r f_{rr}^{(\alpha)}.
\]

This shows that (ii) is equivalent to the following condition :

\[
\sum_i \Lambda_{\alpha i} d_i = \lambda^{-1} m_\alpha, \quad \alpha = 1, \ldots, L.
\]

But \(d_i = \sum_{\beta=1}^{L} \Lambda_{\beta i} m_\beta\) since the inclusion \(K_s \subset K\) is unital. Hence, we can rewrite the last condition as

\[
\sum_{i=1}^{N} \sum_{\beta=1}^{L} \Lambda_{\alpha i} \Lambda_{\beta i} m_\beta = \lambda^{-1} m_\alpha, \quad \alpha = 1 \ldots L,
\]

which means precisely that \((\Lambda \Lambda^t) \vec{m} = \lambda^{-1} \vec{m}\).

(iii)⇒(iv). It is clear that \(\lambda^{-1}\) is a positive rational number since all entries of \((\Lambda \Lambda^t)\) and \(\vec{m}\) are positive integers. On the other hand, \(\lambda^{-1}\) is an algebraic integer, since it is an eigenvector of the integer matrix \((\Lambda \Lambda^t)\), therefore, \(\lambda^{-1}\) is an integer.

For all \(\alpha = 1, \ldots, L\) and \(r = 1, \ldots, m_\alpha\) define \(K_{\alpha r} = K f_{rr}^{(\alpha)}\). We have

\[
\dim(K_{\alpha r}) = \text{Tr}(f_{rr}^{(\alpha)}) = \sum_i a_{\alpha i} d_i = nm_\alpha.
\]

For all \(y, z \in K_{\alpha r}\) :

\[
E_s(y^* z) = f_{rr}^{(\alpha)} E_s(y^* z) f_{rr}^{(\alpha)} = (y, z) f_{rr}^{(\alpha)},
\]

where \((y, z)\) is a scalar since \(f_{rr}^{(\alpha)}\) is minimal in \(K_s\). Clearly, \((\cdot, \cdot)\) defines an inner product in \(K_{\alpha r}\), which is non-degenerate since \(E_s\) is faithful. Let us choose an orthonormal bases \(\{x_{\mu r}^{\alpha}\}, (\mu = 1, \ldots, nm_\alpha)\) in \(K_{\alpha r}\), \(\alpha = 1, \ldots L, r = 1, \ldots, m_\alpha\) in such a way that

\[
x_{\mu t}^{\alpha t} = x_{\mu r}^{\alpha r} f_{rr}^{(\alpha)} \quad \text{for all} \quad t, r = 1 \ldots m_\alpha, \quad \mu = 1 \ldots nm_\alpha.
\]

Then we have the following relation

\[
E_s((x_{\mu r}^{\alpha r})^* x_{\mu r'}^{\alpha' r'}) = \delta_{\alpha \alpha'} \delta_{\mu \mu'} f_{rr}^{(\alpha)} \quad \text{for all} \quad \alpha, \alpha'; \quad \mu, \mu'; \quad r, r'.
\]
We claim that
\[x_\nu = \sum_\alpha \sum_{rs} \frac{1}{\sqrt{m_\alpha}} \exp \left(\frac{2sr\pi i}{m_\alpha} \right) x_{\nu+ (s-1)n}^{\alpha_r} \quad \nu = 1, \ldots, n, \]
is a basis of \(K \) over \(K_s \). Indeed:
\[
\sum_\nu x_\nu E_s(x_\nu^* x_\nu^\beta) = \sum_\nu \sum_{\alpha rs} \frac{1}{m_\alpha} x_{\nu+ (s-1)n}^{\alpha_r} E_s((x_{\nu+ (s-1)n}^{\alpha_r})^* x_\nu^{\beta})
= \frac{1}{m_\beta} \sum_r x_\nu^{\beta r} f_r^{(\beta)} = x_\nu^{\beta}
\]
for all \(\beta = 1 \ldots K, \ t = 1 \ldots m_\beta, \ \mu = 1 \ldots nm_\beta \). Next,
\[
E_s(x_\nu^* x_\nu^\beta) = \sum_{\alpha r' s'} \frac{1}{m_\alpha} \exp \left(\frac{2(s r' - s' r') \pi i}{m_\alpha} \right) E_s((x_{\nu+ (s-1)n}^{\alpha_r})^* x_{\nu+ (s'-1)n}^{\beta r'})
= \delta_{\nu k} \sum_{\alpha r' s} \frac{1}{m_\alpha} \exp \left(\frac{2s (r - r') \pi i}{m_\alpha} \right) f_{rr'}^{(\alpha)}
= \delta_{\nu k} \sum_{\alpha r} f_{rr}^{(\alpha)} = \delta_{\nu k}.
\]
Since ‘\(E_s \)-orthogonality’ implies linear independence over \(K_s \), we conclude that \(\{x_\nu\} \) is a basis for \(E_s \).

(iv)⇒(iii). If there is a basis for \(E_s : K \to K_s \) then the basic construction \(\langle K, e_{K_s} \rangle \) is isomorphic to \(M_n(K_s) \). This means that that the inclusion matrix \(B \) of the inclusion \(K_s \subset \langle K, e_{K_s} \rangle \) satisfies \(B \bar{m} = \lambda^{-1} \bar{m} \). But \(B = \Lambda \Lambda^t \).

(iv)⇔(v). We will prove (iv)⇒(v), the converse implication is completely analogous. If \(x = \sum_\nu x_\nu E_s(x_\nu^* x) \) then \(Sx^* = \sum_\nu Sx_\nu^* E_t(Sx_\nu Sx^*) \), since \(E_t = S \circ E_s \circ S \), and we can take \(y_\nu = Sx_\nu^* \), \(\nu = 1 \ldots \lambda \) as a basis for \(E_t \).

Corollary 3.6 If the equivalent conditions of Theorem 3.5 are satisfied then \(\tau \) is a \(\lambda \)-Markov trace for the inclusion \(K_t \subset K \) (\(K_s \subset K \)).

Proof. We need to show that \(\Lambda^t \Lambda \bar{t} = \lambda^{-1} \bar{t} \), where \(\bar{t} \) is the ‘trace-vector’ corresponding to \(\tau \) (\(\mathbb{1} \), 3.2.3(ii)). Since \(\tau = \lambda \Tr \), we have \(\bar{t} = \lambda \bar{d} \), where \(\bar{d} = (d_1 \ldots d_N) \) is the ‘dimension-vector’ of \(K \). Using Theorem 3.5(iii) we compute
\[
\Lambda^t \Lambda \bar{t} = \lambda \Lambda^t \Lambda \bar{d} = \lambda \Lambda^t \Lambda \bar{m} = \Lambda \bar{m} = \bar{d} = \lambda^{-1} \bar{t}.
\]
Remark 3.7 (i) Proposition 3.2 says that K is indecomposable iff the matrix Λ is indecomposable in the sense of [9]. In this case Theorem 3.5(iii) implies that \vec{m} is the Perron-Frobenius eigenvector of the matrix $(\Lambda \Lambda^t)$. It is well-known that in this case the corresponding eigenvalue λ^{-1} is equal to the spectral radius of $(\Lambda \Lambda^t)$, so

$$\lambda^{-1} = ||\Lambda \Lambda^t|| = ||\Lambda||^2.$$

(ii) Theorem 3.5(iv) and (v) show that an indecomposable weak Kac algebra K is free over its Cartan subalgebras K_s and K_t. In particular, $\dim K_s$ divides $\dim K$ and

$$\lambda^{-1} = \frac{\dim K}{\dim K_s}.$$

(iii) Conditional expectations E_s and E_t are of index-finite type and their index is an integer scalar: $\text{Index } E_s = \text{Index } E_t = \lambda^{-1}$.

Corollary 3.8 If K is indecomposable and $\dim K = p$, where p is a prime, then $K \cong \mathbb{C}Z_p$, a group algebra of a simple abelian group.

Proof. Remark 3.7(ii) implies that Cartan subalgebras of K must be 1-dimensional, so K is a Kac algebra. But in this case the result is well known [11].

The λ-Markov condition is invariant under duality.

Proposition 3.9 K satisfies the λ-Markov condition iff K^* satisfies the λ-Markov condition (with the same λ).

Proof. Since K satisfies the λ-Markov condition iff every its indecomposable component does, it sufficed to prove this statement in the case when K is indecomposable. But this is trivial by Proposition 3.4 and Remark 3.7(ii), since $\dim K_s = \dim K^*_s$.

Connected weak Kac algebras (i.e., those with connected Bratteli diagram of the inclusion $K_s \subset K$) form a subclass of indecomposable weak Kac algebras important for the applications to subfactors in section 5.

Definition 3.10 A weak Kac algebra K is connected if the inclusion $K_s \subset K$ is connected, i.e., $K_s \cap Z(K) = \mathbb{C}$ (or, equivalently, $K_t \cap Z(K) = \mathbb{C}$), where $Z(\cdot)$ denotes the center of an algebra. K is biconnected if both K and K^* are connected.
Proposition 3.11 (cf. [15]) The following conditions are equivalent:

(i) K is connected,

(ii) $K_*^a \cap K_*^t = \mathbb{C}$,

(iii) p_ε is a minimal projection in K (i.e., the counital representation of K (cf. [14], Section 2.2) is irreducible).

Proof. (i)⇒(ii). Suppose that there is $\beta \in K_*^a \cap K_*^t$, $\beta \notin \mathbb{C}$. Since the Cartan subalgebras commute, β must belong to $Z(K_*^a)$, the center of K_*^a. Consider the element $b \in K \cong K^{**}$ defined as $\langle b, \phi \rangle = \langle 1, \beta \phi \rangle$ for all $\phi \in K^*$. We can compute:

$$
\langle b, \phi(1)\phi(2) \rangle = \langle 1, \beta \phi(1)\phi(2) \rangle = \langle 1, \beta(1)\phi(1)\beta(2)\phi(2) \rangle = \beta \phi,
$$

$$
\phi(1)\langle b, \phi(2) \rangle = \phi(1)\langle 1, \beta \phi(2) \rangle = \varepsilon(1)\phi(1, \beta \varepsilon(2)) = \beta \phi,
$$

therefore, $b \in Z(K)$. Also, for all $\phi \in K^*$ we have

$$
\langle \varepsilon_s(b), \phi \rangle = \langle b, \varepsilon_s(\phi) \rangle = \langle 1, \beta \varepsilon_s(\phi) \rangle = \langle 1, \beta \phi \rangle = \langle b, \phi \rangle,
$$

therefore $\varepsilon_s(b) = b$ and $b \in K_s$. Thus, $Z(K) \cap K_s \neq \mathbb{C}1$, so K is not connected.

(ii)⇒(i). If K is not connected, then there exists $b \in Z(K) \cap K_t$, $b \notin \mathbb{C}$. Define $\beta \in K^*$ by $\beta : x \mapsto \varepsilon(bx)$. We have, for all $x \in K$:

$$
\langle \beta, \varepsilon_s(x) \rangle = \varepsilon(b(1))\varepsilon(x(1)) = \varepsilon(x(b(2))) = \varepsilon(xb),
$$

$$
\langle \beta, \varepsilon_t(x) \rangle = \varepsilon(b(2))\varepsilon(1(1)) = \varepsilon(bx) = \varepsilon(xb),
$$

from where $\varepsilon_s(\beta) = \beta = \varepsilon_t(\beta)$ and $K_*^a \cap K_*^t \neq \mathbb{C} \varepsilon$.

(i)⇒(iii). If there is a proper subprojection q of p_ε then from the formula for $\Delta(p_\varepsilon)$ we get $\varepsilon_s(q) \neq 1$ and $\varepsilon_s(q) \in Z(K)$, so K is not connected.

(iii)⇒(i). Let P_ε be the central support of p_ε. It was shown in [14] that the quotient map $K \mapsto P_\varepsilon K$ (which is a homomorphism of weak Kac algebras) is one-to-one on the Cartan subalgebras. Therefore, $K_s \cap Z(K)$ is contained in $Z(P_\varepsilon K)$, and $K_s \cap Z(K) = \mathbb{C}$ when p_ε is minimal.

A very general method of constructing connected weak Kac algebras from two-sided crossed-products was introduced in [13]. Let H be a usual finite-dimensional Kac algebra (i.e., finite-dimensional Hopf C^*-algebra) acting on a finite-dimensional C^*-algebra A on the left via $h \otimes a \mapsto (h \triangleright a)$ and on the right via $a \otimes h \mapsto (a \triangleleft h)$, $a \in A$, $h \in H$.

14
Definition 3.12 A two-sided crossed-product C^*-algebra $A \rtimes H \ltimes A$ is defined as a vector space $A \otimes H \otimes A$ with multiplication and involution given by

\[(b \otimes h \otimes a)(b' \otimes h' \otimes a') = b(h(1) \triangleright b') \otimes h(2)h'(1) \otimes (a \triangleleft h'(2))a',\]

\[(b \otimes h \otimes a)^* = (h^*_1 \triangleright b^*) \otimes h^*_2 \otimes (a^* \triangleleft h^*_2),\]

for all $a,a',b,b' \in A, h,h' \in H$.

Let $\{f^\alpha_{rs}\}$ be a system of matrix units in $A = \bigoplus \alpha M_{m\alpha}(\mathbb{C})$ and τ be the trace of the left regular representation of A on itself. Given a $*$-anti-automorphism S_A of A define

\[1 \otimes 1 = \sum_{\alpha rs} \frac{1}{m\alpha} f^\alpha_{rs} \otimes S_A(f^\alpha_{sr})\]

(any projection $P \in A \otimes A$ with the properties $\mu(id \otimes S_A^{-1})P = \mu(S_A \otimes id)P = 1$ and $(id \otimes \tau)P = (\tau \otimes id)P = 1$, where μ denotes the multiplication in A, has such a form, cf. [16], Lemma 2.3.6).

Suppose that the above actions of H on A satisfy

\[1 \otimes (h \triangleright 1) = (1 \otimes h) \otimes 1 \quad \forall h \in H.\]

Proposition 3.13 ([13]) There is a structure of a weak Kac algebra on $K = A \rtimes H \ltimes A$ defined by

\[\Delta(b \otimes h \otimes a) = (b \otimes h(1) \otimes 1_{(1)}) \otimes ((h(2) \triangleright 1_{(2)}) \otimes h(3) \otimes a)\]

\[\varepsilon(b \otimes h \otimes a) = \tau((S_H(h) \triangleright b)a)\]

\[S(b \otimes h \otimes a) = S_A(a) \otimes S_H(h) \otimes S_A^{-1}(b)\]

The source and target Cartan subalgebras of K are

\[K_s = \{1 \otimes 1 \otimes a \mid a \in A\}, \quad K_t = \{b \otimes 1 \otimes 1 \mid b \in A\}.\]

Clearly, $K_s \cap K_t = \mathbb{C}$, so K^* is connected by Proposition 3.11. It is easy to check that if the fixed points algebras

\[A^H = \{b \in A \mid h \triangleright b = \varepsilon(h)b \quad \forall h \in H\},\]

\[H_A = \{a \in A \mid a \triangleleft h = \varepsilon(h)a \quad \forall h \in H\}\]

are trivial, then $K_s \cap Z(K) = \mathbb{C}$, and K is biconnected.

In the special case when $H = \mathbb{C}$ acts trivially on A, K^* is isomorphic to the full matrix algebra $M_d(\mathbb{C})$, $d = \dim A$. Such weak Kac algebras were classified in [16].
Example 3.14 Let A be a Kac subalgebra of H^* and actions of H on A be induced by the dual actions of H on H^*:

$$h \triangleright a = a_{(1)} \langle h, a_{(2)} \rangle, \quad a \triangleleft h = \langle h, a_{(1)} \rangle a_{(2)}.$$

Define $1_{(1)} \otimes 1_{(2)} = \Delta(p)$, where p is the Haar projection in A. Since p is cocommutative, the condition $1_{(1)} \otimes (h \triangleright 1_{(2)}) = (1_{(1)} \triangleleft h) \otimes 1_{(2)}$ is satisfied for all $h \in H$ and $K = A \triangleright H \triangleleft A$ is a biconnected weak Kac algebra with $\lambda^{-1} = (\dim H)(\dim A)$.

In Section 6 we derive some arithmetic properties of biconnected weak Kac algebras from the existence of a minimal action of any such algebra on the hyperfinite II$_1$ factor.

4 Duality for actions

In this section K is a weak Kac algebra satisfying the λ-Markov condition (e.g., indecomposable) and acting on a C^*-algebra A. Left actions are assumed everywhere; the right counterparts of the results below can be obtained similarly and are left to the reader.

Lemma 4.1 For all $a \in A$,

$$(n \triangleright a) = a(n \triangleright 1), \quad n \in K_s \quad (n \triangleright a) = (n \triangleright 1)a, \quad n \in K_t.$$

Proof. For all $n \in K_s$ we have

$$n \triangleright a = (n_{(1)} \triangleright a)(n_{(2)} \triangleright 1) = (1_{(1)} \triangleright a)(1_{(2)} n \triangleright 1) = a(n \triangleright 1),$$

and similarly the second statement.

Proposition 4.2 The map $E_A: A \triangleright K \to A$, defined as

$$E_A([a \otimes h]) = a(E_t(h) \triangleright 1), \quad a \in A, \ h \in K,$$

is a faithful conditional expectation. If \{y_\nu\}_{\nu=1}^n is a basis for E_t as in Theorem 3.5(v), then \{[1 \otimes y_\nu]\}_{\nu=1}^n is a basis for E_A.

16
Proof. For all $z \in K$, we compute

$$E_A([a \otimes zh]) = a(E_t(zh) \triangleright 1) = a(zE_t(h) \triangleright 1)$$

$$= a(z \triangleright 1)(E_t(h) \triangleright 1) = E_A([a(z \triangleright 1) \otimes h]),$$

therefore E_A is well-defined on $A \rtimes K$. Clearly, $E_A|_A = id_A$. Let us check other properties (using Lemma 4.1):

$$E_A([a \otimes [b \otimes h][c \otimes 1]]) = E_A([ab(h(1) \triangleright c) \otimes h(2)])$$

$$= ab(h(1) \triangleright c)(E_t(h(2)) \triangleright 1) = ab(E_t(h) \triangleright c)$$

$$= ab(E_t(h) \triangleright 1)c = aE_A([b \otimes h])c,$$

for all $a, b, c \in A$ and $h \in K$, so E_A is a conditional expectation. We have $h = \Sigma_{\nu} y_{\nu} E_t(y_{\nu}'h) = \Sigma_{\nu} E_t(h y_{\nu}) y_{\nu}'$ for all $h \in K$ by Theorem 3.5(v), so

$$[a \otimes h] = \Sigma_{\nu} [a \otimes E_t(h y_{\nu}) y_{\nu}'] = \Sigma_{\nu} [a(E_t(h y_{\nu}) \triangleright 1) \otimes 1][1 \otimes y_{\nu}']$$

$$= \Sigma_{\nu} [E_A([a \otimes h][1 \otimes y_{\nu}']) \otimes 1][1 \otimes y_{\nu}'],$$

applying the involution we get

$$[a \otimes h] = \Sigma_{\nu} [1 \otimes y_{\nu}][E_A([1 \otimes y_{\nu}'][a \otimes h]) \otimes 1], \quad a \in A, \ h \in K.$$

Therefore, every $x \in A \rtimes K$ can be written as $x = \Sigma_{\nu} [1 \otimes y_{\nu}][a_{\nu} \otimes 1]$ for some a_{ν}, $\nu = 1 \ldots n$. Since $E_A([1 \otimes y_{\nu}y_{\kappa}]) = \delta_{\nu,\kappa}$, we have

$$E_A(x^{*}x) = \Sigma_{\nu, \kappa} E_A([a_{\nu}^{*} \otimes 1][1 \otimes y_{\nu}'][1 \otimes y_{\kappa}][a_{\kappa} \otimes 1] = \Sigma_{\nu} a_{\nu}^{*}a_{\nu},$$

and $x = 0$ iff $E_A(x^{*}x) = 0$ iff $a_{\nu} = 0$ ($\forall \nu$). This proves that E_A is faithful and $\{(1 \otimes y_{\nu})\}_{\nu=1 \ldots n}$ is a basis for E_A.

Remark 4.3 Index $E_A = Index E_t = \lambda^{-1}$.

In what follows we consider C^*-algebras A, K, K^*, $A \rtimes K$, and $K \rtimes K^*$ as subalgebras of $(A \rtimes K) \rtimes K^*$ in an obvious way with inclusion maps denoted by i_A, i_K etc.

Lemma 4.4 Let $e_A = i_{K^*}(\tau) \in (A \rtimes K) \rtimes K^*$. Then

(i) $e_A i_A \rtimes K(x) e_A = i_A(E_A(x)) e_A$ for all $x \in A \rtimes K$,

(ii) the map $A \ni a \mapsto i_A(a)e_A \in (A \rtimes K) \rtimes K^*$ is injective.
Moreover, \(E_{A \rtimes K}(e_A) = \lambda \).

Proof. For all \(a \in A, \ h \in K \) we compute
\[
e_A i_{A \rtimes K}([a \otimes h]) e_A = \bigl[\tau(1) \triangleright [a \otimes h] \otimes \tau(2) \bigr]
= [\tau(1) \triangleright [a \otimes h] \otimes \varepsilon(\tau(2))] [1_{A \rtimes K} \otimes \tau]
= [\tau \triangleright [a \otimes h] \otimes \varepsilon][1_{A \rtimes K} \otimes \tau] = i_A(E_a([a \otimes h])) e_A,
\]
which proves (i). Next, we compute
\[
E_{A \rtimes K}(i_A(a) e_A) = E_{A \rtimes K}([a \otimes 1] \otimes \tau) = [a \otimes 1]\{\lambda \varepsilon \triangleright [1 \otimes 1]\} = \lambda i_A(a),
\]
thus proving that the map \(a \mapsto i_A(a) e_A \) is injective. Taking \(a = 1 \) in the last formula, we obtain \(E_{A \rtimes K}(e_A) = \lambda \).

Proposition 4.5 \((A \rtimes K) \rtimes K^* = (A \rtimes K) e_A (A \rtimes K) \).

Proof. Observe that for all \(a \in A, \ g, h \in K \)
\[
i_{A \rtimes K}([a \otimes h]) e_A i_K(g) = i_A(a) (i_K(h) e_A i_K(g)).
\]
Since \((A \rtimes K) \rtimes K^* = \text{span}\{i_A(a) i_{K \rtimes K^*}(x) \mid a \in A, \ x \in K \rtimes K^*\} \) it suffices to show that \(K \rtimes K^* = KeK \) (here \(e_K = [1_0 \otimes \tau] \in K \rtimes K^* \).

For this purpose, we need to show that every element of \(K \rtimes K^* \) can be written as a linear combination of elements \(i_K(h) e_K i_K(g) \), \(h, g \in K \).

Let \(\{\phi_{ij}^\gamma\} \) be a system of matrix units in \(K^* \). Since \(\tau \) is the normalized Haar projection in \(K^* \), we have
\[
\Delta(\tau) = \sum_{\gamma} \frac{1}{c_{\gamma}} \sum_{ij} \phi_{ij}^\gamma \otimes S(\phi_{ji}^\gamma),
\]
for some integers \(c_{\gamma} \). Let \(\{v_{ij}^\gamma\} \) be the system of comatrix units in \(K \) dual to \(\{\phi_{ij}^\gamma\} : \Delta(v_{ij}^\gamma) = \sum_k v_{ik}^\gamma \otimes v_{kj}^\gamma, \varepsilon(v_{ij}^\gamma) = \delta_{ij} \).

Fix \(x \in K \) and let \(h_k = x S(v_{ik}^\gamma), \ g_k = c_{\gamma} v_{kl}^\gamma \) (\(x \in K \)) for some \(\gamma, p, l \) (\(k = 1 \ldots m_{\gamma} \)). Then
\[
\sum_k i_K(h_k) e_K i_K(g_k) = \sum_{kijm} [x S(v_{ik}^\gamma) v_{km}^\gamma \otimes \langle \phi_{ij}^\gamma, v_{ml}^\gamma \rangle S(\phi_{ji}^\gamma)]
= \sum_{km} [x S(v_{ik}^\gamma) v_{km}^\gamma \otimes S(\phi_{lm}^\gamma)]
= \sum_{m} [x \varepsilon_s(v_{pm}^\gamma) \otimes S(\phi_{lm}^\gamma)]
= [x \otimes \sum_m \langle \varepsilon(1), v_{pm}^\gamma \rangle \varepsilon(2) S(\phi_{lm}^\gamma)].
\]
Since \(x \in K \) is arbitrary, it remains to show that elements of the form
\[
\psi^\gamma_{lp} = \sum_m \langle \varepsilon^{(1)}, v^\gamma_{pm} \rangle \varepsilon^{(2)} S(\phi^\gamma_{lm})
\]
form a linear basis for \(K^* \). We have
\[
\langle S(\psi^\gamma_{lp}), v^\beta_{pq} \rangle = \sum_m \langle \phi^\gamma_{lm}, v^\beta_{pq} \rangle \langle \varepsilon^{(1)}, v^\beta_{pm} \rangle S(\varepsilon^{(2)}) S(\phi^\gamma_{lm}) = \delta_{\gamma \beta} \delta_{lp} \sum_m \langle \varepsilon, v^\gamma_{mq} S(v^\gamma_{pm}) \rangle = \delta_{\gamma \beta} \delta_{lp} \delta_{pq},
\]
therefore, \(\psi^\gamma_{lp} = S(\phi^\gamma_{lp}) \).

Corollary 4.6 \((A \rhd K) \rhd K^* \cong (A \rhd K, e_A)\), i.e., \((A \rhd K) \rhd K^*\) is the basic construction for the conditional expectation \(E_A \).

Proof. Propositions 4.2 and 4.5 show that \((A \rhd K) \rhd K^*\) is generated by \(A \rhd K\) and projection \(e_A \), in the way characterizing the basic construction (see 2.3).

The following result is an analogue of the Takesaki duality theorem for actions of Kac algebras 3 and Hopf algebras 2.

Theorem 4.7 (Duality for actions) Let \(K \) be a weak Kac algebra satisfying the \(\lambda \)-Markov condition, acting on a \(C^* \)-algebra \(A \). Then
\[
(A \rhd K) \rhd K^* \cong A \otimes M_n(\mathbb{C}), \quad \text{where } n = \lambda^{-1}.
\]

Proof. By Proposition 4.2 there is a basis for \(E_A \), therefore \((A \rhd K, e_A) \cong A \otimes M_n(\mathbb{C})\), and the result follows from Corollary 4.6.

Lemma 4.8 Let \(K \) be a weak Kac algebra acting on the right on a \(* \)-algebra \(A \). Then \(K_t \subset A' \cap K \rhd A \).

Proof. If \(z \in K_t \), then
\[
i_A(a)i_K(z) = [z^{(1)} \otimes (a \rhd z^{(2)})] = [z1^{(1)} \otimes (a \rhd 1^{(2)})]
\]
\[
= [z \otimes a] = i_K(z)i_A(a),
\]
thus, \(K_t \subset A' \cap K \rhd A \).

Definition 4.9 A right action of \(K \) on \(A \) is minimal if \(K_t = A' \cap K \rhd A \).
5 Construction of a minimal action of a biconnected weak Kac algebra on the hyperfinite II$_1$ factor.

In this section we assume that K is a biconnected weak Kac algebra, in particular it satisfies the λ-Markov condition for some $\lambda = n^{-1}$.

Lemma 5.1 Let K act on a finite-dimensional C^*-algebra A. Suppose that tr is a trace on $A\rtimes K$, and E_A from Proposition 4.2 is the tr-preserving conditional expectation. Then $tr_1 = tr \circ E_{A\rtimes K}$ is a trace on $(A\rtimes K, e_A)$, extending tr and satisfying $E_{A\rtimes K}(e_A) = \lambda$. In other words, if tr is a trace on $A\rtimes K$ such that E_A preserves it, then tr is a λ-Markov trace for the inclusion $A \subset A\rtimes K$, and tr_1 is its λ-Markov extension to $(A\rtimes K, e_A)$.

Proof. Clearly, tr_1 is a positive functional on $(A\rtimes K, e_A)$ extending tr. Let us show that tr_1 is a trace. By Lemma 4.4, $E_{A\rtimes K}(e_A) = \lambda$, therefore

$$tr_1((x_1e_Ay_1)(x_2e_Ay_2)) = tr_1((x_1E_A(y_1x_2)e_Ay_2)) = \lambda tr(E_A(y_1x_2)E_A(y_1x_2)) = tr_1((x_2e_Ay_2)(x_1e_Ay_1)),$$

for all $x_1, y_1, x_2, y_2 \in A\rtimes K$. Since $(A\rtimes K, e_A)$ is spanned by elements of the form xe_Ay, $(x, y \in A\rtimes K)$ the result follows from [10], 3.2.5.

Remark 5.2 In conditions of Lemma 5.1, e_A is the Jones projection for the inclusion $i_K(K) \subset A\rtimes K$ with respect to the Markov trace tr and $E_{A\rtimes K} : (A\rtimes K, e_A) \rightarrow A\rtimes K$ is the tr-preserving conditional expectation.

Note that the map $\phi \mapsto (\phi \triangleright 1)$ gives an isomorphism between K^*_t and K_s in the crossed product algebra $K\rtimes K^*$.

Proposition 5.3 Suppose that K is connected and let tr be the unique Markov trace for the inclusion $i_K(K) \subset K\rtimes K^*$. Then

$$i_K(K) \cup i_K(K_s) \equiv i_K^*(K_t^*) \cup i_K^*(K_s^*) \subset i_K^*(K^*)$$

is a symmetric commuting square with respect to tr.

Proof. By Corollary 3.6, \(\tau \) is a Markov trace for the inclusion \(K_t \subset K \), and \(E_t \) is the \(\tau \)-preserving conditional expectation. Since \(K \bowtie K^* = (K_t \bowtie K) \bowtie K^* \), it follows from Lemma 5.1 that \(\text{tr} \) extends \(\tau \) and \(E_K : K \bowtie K^* \to K \) is the \(\tau \)-preserving conditional expectation. We have

\[
E_K(i_{K^*}(\phi)) = E_K([1 \otimes \phi]) = i_K(\phi \bowtie 1) \in i_K(K_s),
\]

for all \(\phi \in K^* \). This proves that the square is commuting. It is symmetric since \(K_\bowtie K^* = i_K(K) i_{K^*}(K^*) \).

Corollary 4.6 implies that the sequence

\[
K_t \subset K \subset K_\bowtie K^* \subset K_\bowtie K^* \bowtie K \subset \cdots \subset M
\]

is the Jones tower for the inclusion \(K_t \subset K \) on \(K \). When \(K \) is connected, all the inclusions in this sequence are connected and the union of these \(C^* \)-algebras admits a unique tracial state, consequently, its von Neumann algebra completion \(M \) with respect to this trace is a copy of the hyperfinite \(\text{II}_1 \) factor. Using the standard procedure of iterating the basic construction we can construct a von Neumann subalgebra \(N \subset M \) from the above symmetric commuting square.

Proposition 5.4 The lattice of \(C^* \)-algebras obtained by iterating the basic construction (in the horizontal direction) for the symmetric commuting square from Proposition 5.3 is given by two sequences of alternating crossed products with \(K \) and \(K^* \):

\[
K \subset K \bowtie K^* \subset K \bowtie K^* \bowtie K \subset \cdots \subset M
\]

where we identify all \(C^* \)-subalgebras with their images in \(M \).

Proof. Identities \(K^* \bowtie K = \langle K, e_K \rangle \), \(K^* \bowtie K \bowtie K^* = \langle K^* \bowtie K, e_K \bowtie K^* \rangle \) etc. follow immediately from Proposition 4.5.

Proposition 5.5 There is a *-isomorphism between finite dimensional \(C^* \)-algebras

\[
A' = \underbrace{K \bowtie K^* \bowtie \cdots \bowtie K \bowtie K^*}_{2r \text{ factors}} \quad \text{and} \quad B' = \underbrace{K \bowtie K^* \bowti K \bowtie K^*}_{2r \text{ factors}}.
\]

21
given by the ‘identity’ map
\[[h^1 \otimes \phi^1 \otimes \cdots \otimes h^r \otimes \phi^r] \mapsto [h^1 \otimes \phi^1 \otimes \cdots \otimes h^r \otimes \phi^r], \]
where \(h^i \in K, \phi^i \in K^\ast \).

Proof. By the definition of crossed product, the above algebras are isomorphic to
\[K \otimes_{K_i=K_i^s} K^\ast \otimes_{K_i=K_i^s} \cdots \otimes_{K_i=K_i^s} K^\ast \]
as vector spaces. By Theorem 4.7 we know that these algebras are isomorphic to
\[M_{n^r}(\mathbb{C}) \otimes K, \]
where \(n = \lambda^{-1} \). To see that the ‘identity’ map defines a *-algebra isomorphism, it suffices to note that
\[[h^1 \otimes \phi^1 \otimes \cdots \otimes h^r \otimes \phi^r] \cdot A [g^1 \otimes \psi^1 \otimes \cdots \otimes g^r \otimes \psi^r] = [h^1 (\phi^1 \triangleright g^1) \otimes \cdots \otimes h^r (\phi^r \triangleright g^r) \otimes \phi^r] \]
for all \(h^i, g^i \in K, \phi^i, \psi^i \in K^\ast, i = 1 \ldots r \), i.e. multiplications in \(A^r \) and \(B^r \) are the same.

Corollary 5.6 The lattice of algebras from Proposition 5.4 is isomorphic to
\[K \subset K \triangleright K^\ast \subset K \triangleright K^\ast \triangleright K \subset \cdots \subset M \]
\[K_s \subset K^\ast \subset K^\ast \triangleright K \subset \cdots \subset N. \]

Proof. Clearly, the isomorphisms constructed in Proposition 5.5 are compatible with all inclusions of the lattice from Proposition 5.4.

Our next goal is to show that there is a right action of \(K \) on \(N \) such that \(M \cong K \triangleleft N \).

Proposition 5.7 Let \(i_K : h \mapsto [h \otimes \varepsilon \otimes 1 \otimes \cdots] \) be the inclusion of \(K \) in \(M \), \(E_N : M \to N \) be the trace preserving conditional expectation. Then the map
\[x \triangleleft h = \lambda^{-1} E_N(i_K (p_x) x i_K (h)), \quad x \in N, h \in K \]
defines a right action of \(K \) on \(N \) such that \(M = K \triangleleft N \) (cf. [22], Sect. 5).
Proof. There is a right action of \(K \) on the \(*\)-subalgebra given by the union of the generating sequence of \(C^* \)-algebras of \(N \):

\[
[\phi \otimes g \otimes \cdots] \triangleright h = [(\phi \triangleleft h) \otimes g \otimes \cdots], \quad h, g \in K, \phi \in K^*.
\]

We have

\[
[\phi \otimes g \otimes \cdots] \triangleright h = \lambda^{-1}[(\varepsilon \triangleleft E_s(p_{\varepsilon}))(\phi \triangleleft h) \otimes g \otimes \cdots] = \lambda^{-1}E_N([p_{\varepsilon} \otimes (\phi \triangleleft h) \otimes g \otimes \cdots])
\]

to a weakly continuous action of \(K \) on \(N \). Clearly, \(K \triangleright N = i_k(K)N = M \).

Corollary 5.8 \([M : N] = \lambda^{-1}\).

Proof. Follows from Remark 4.3 and Proposition 5.1.9 in [10].

Let us compute the higher relative commutants of the inclusion \(N \subset M \).

Lemma 5.9 Let \(K \) act on the left on a \(C^* \)-algebra \(A \) then

\[
i_{K^*}(K^*)' \cap i_{A \otimes K}(A \otimes K) \cap (A \otimes K) \otimes K^* = i_A(A).
\]

Proof. Let \(C = i_{K^*}(K^*)' \cap i_{A \otimes K}(A \otimes K) \cap (A \otimes K) \otimes K^* \) and \(x \in C \).

Recall that \(e_A = i_{K^*}(\tau) \). Then \(xe_A = e_Axe_A = E_A(x)e_A \) and since the map \(A \otimes K \ni x \mapsto i_{A \otimes K}(x)e_A \) is injective (Lemma 4.4), it follows that \(x \in i_A(A) \) and \(C \subset i_A(A) \).

Conversely, for all \(a \in A, \phi \in K^* \) we have

\[
i_{K^*}(\phi)i_A(a) = [i_{A \otimes K} \otimes \phi][[\phi_{(1)} \triangleright [a \otimes 1] \otimes \varepsilon]] = [(\phi_{(1)} \triangleright [a \otimes 1]) \otimes \phi_{(2)}] = [[a \otimes 1] \triangleright [\phi_{(1)} \triangleright [1 \otimes 1] \otimes \phi_{(2)}] = [[a \otimes 1] \triangleright \phi] = i_A(a)i_{K^*}(\phi),
\]

therefore \(i_A(A) = C \).

Proposition 5.10 Let \(N \subset M = M_0 \subset M_1 \subset M_2 \cdots \) be the Jones tower constructed from the inclusion \(N \subset M \). Then

\[
N' \cap M_n \cong \cdots \otimes K \otimes K^* \otimes K_t, \quad n \geq 0
\]

\[
M' \cap M_n \cong \cdots \otimes K^* \otimes K \otimes K_t^*, \quad n \geq 1.
\]

In particular, the action of \(K \) is minimal.
Proof. Iterating the basic construction for the commuting square from Proposition 5.3 in the vertical direction and using Proposition 5.5 we get the lattice

\[
\begin{array}{c}
\cdots \quad \cdots \\
\cup \\
K^*\triangleleft K \\ \\
K \\
\cup \\
K_t \equiv K_s \\
\cup \\
K^* \\
\end{array}
\]

The Ocneanu compactness argument ([10], 5.7) and Lemma 5.9 imply that

\[
N' \cap M = K_t, \quad N' \cap M_1 = K^*, \quad N' \cap M_2 = K \triangleright\triangleleft K^* \ldots
\]

Similarly, one computes the relative commutants for \(M \).

Corollary 5.11 ([15]) *The inclusion \(N \subset M \) is of depth 2.*

Proof. We have seen in Section 4 that \(K \triangleright\triangleleft K^* \cong K_t \otimes M_n(\mathbb{C}) \), where \(n = \lambda^{-1} \). Therefore, \(\dim Z(N' \cap M) = \dim Z(N' \cap M_2) \), and \(N \subset M \) is of depth 2.

Corollary 5.12 *The \(\lambda \)-lattice of higher relative commutants [18] of the inclusion \(N \subset M \) is given by*

\[
\begin{array}{c}
\mathbb{C} \subset K_t \equiv K_s \subset K \subset K^* \triangleleft K \subset K \triangleright\triangleleft K^* \subset \cdots \\
\cup \\
K_t \equiv K_s \\
\cup \\
K^* \\
\end{array}
\]

Remark 5.13 In a similar way one can construct a left minimal action of a biconnected weak Kac algebra on the hyperfinite \(\text{II}_1 \) factor.

6 Examples of subfactors and arithmetic properties of biconnected weak Kac algebras

Let \(K \) be a biconnected weak Kac algebra. Recall the notation

\[
K \cong \bigoplus_{i=1}^{N} M_{d_i}(\mathbb{C}), \quad K_s \cong K_t \cong \bigoplus_{\alpha=1}^{L} M_{m_{\alpha}}(\mathbb{C}),
\]

24
from Section 2.1. Let us also denote $d = \dim K$. We have $\dim K = d\lambda^{-1}$.

Reducing the inclusion $N \subset M = K\rhd N$ constructed in Section 5 by a minimal projection $q \in N' \cap M = K_t$ we get an irreducible inclusion $qN \subset qMq$ of hyperfinite II_1 factors with index $[qMq : qN] = \tau(q)^2\lambda^{-1}$, where τ is the normalized trace on M ($qN \subset qMq$ is of finite depth [1], and therefore extremal, see [19, 1.3.6]). But $\tau(q) = \frac{m_\alpha}{d}$, when $q \in M_{Ma}(\mathbb{C})$, therefore

$$[qMq : qN] = \frac{m_\alpha^2 \lambda^{-1}}{d^2}.$$

Note that since $qN \subset qMq$ has a finite depth, its index is an algebraic integer. But by Theorem 3.3, λ^{-1} is an integer, so $[qMq : qN]$ is rational. Therefore, $[qMq : qN]$ is an integer.

Corollary 6.1 d^2 divides $m_\alpha^2 \lambda^{-1}$ for all α.

Corollary 6.2 If $\lambda^{-1} = p$ is a prime, then $K \cong \mathbb{CZ}_p$.

Proof. By the previous corollary we must have $d = 1$, so $\dim K = d\lambda^{-1} = p$ and the result follows from Corollary 3.8.

Next, reducing the inclusion $M \subset M_2$ by a minimal projection q from the relative commutant $M' \cap M_2 = K$ we get an irreducible inclusion $qM \subset qM_2q$. Clearly, this inclusion depends only on the equivalence class of q, so inclusions of the above type are in one-to-one correspondence with irreducible representations of K. The index is

$$[qM_2q : qM] = \tau(q)^2[M_2 : M] = \tau(q)^2\lambda^{-2} = \left(\frac{d_i}{d}\right)^2,$$

whenever $q \in M_{d_i}(\mathbb{C})$. Again, the index must be an integer, so we get the following arithmetic property of biconnected weak Kac algebras.

Corollary 6.3 The dimension of a Cartan subalgebra of K divides the degree of any irreducible representation of K, i.e. d divides d_i for all i. In particular, d^2 divides $\dim K$, and d divides $\lambda^{-1} = [M : N]$.

Finally, let us remark that considering the biconnected weak Kac algebra $K = H \bowtie H^* \bowtie H$ constructed from a Kac algebra H as in Example 3.14, we can associate an irreducible subfactor with any irreducible representation of H (since we have $K_t = H$ in this case).
References

[1] D. Bisch. On the structure of finite depth subfactors. In : Algebraic methods in Operator Theory, Birkhäuser, (1994) 175–194.

[2] R. Blattner, S. Montgomery. A duality theorem for Hopf module algebras. J. Algebra, 95 (1985), no. 1, 153–172.

[3] G. Böhm, F. Nill and K. Szlachányi. Weak Hopf Algebras I: Integral theory and C*-structure, math.QA/9805116 (1998).

[4] M.-C. David. Paragroupe d’Adrian Ocneanu et Algebre de Kac. Pacif. J. of Math., 172, no. 2 (1996), 331–363.

[5] M. Enock and R. Nest. Inclusions of factors, multiplicative unitaries and Kac algebras, J. Funct. Analysis, 137 (1996), 466–543.

[6] M. Enock et J.-M. Schwartz. Produit croise d’une algebre de von Neumann par une algebre de Kac II. Publ. RIMS Kyoto Univ., 16 (1980), no.1, 189-232.

[7] M. Enock and J.-M. Schwartz. Kac algebras and duality for locally compact groups, Springer-Verlag, 1989.

[8] M. Enock and J.-M. Vallin. Inclusions of von Neummann algebras and quantum groupoids, Inst. Math. de Jussieu, Prépublication 156 (1998).

[9] F.M. Goodman, P. de la Harpe and V.F.R. Jones. Coxeter graphs and towers of algebras, MSRI Publ. 14, Springer-Verlag, (1989).

[10] V. Jones and V.S. Sunder. Introduction to subfactors, Cambridge University Press, (1997).

[11] G.I. Kac. Certain arithmetic properties of ring groups, Functional Anal. Appl., 6 (1972), 158–160.

[12] R. Longo. A duality for Hopf algebras and subfactors I. Comm. Math. Phys., 159 (1994), 133–150.

[13] F. Nill. Axioms for weak bialgebras, math.QA/9805104 (1998)

[14] Y. Nakagami, M. Takesaki. Duality for crossed products of von Neumann algebras, Lecture Notes in Math., vol. 731, Springer-Verlag, New-York, (1979).
[15] F. Nill, K. Szlachányi, H.-W. Wiesbrock. Weak Hopf algebras and reducible Jones inclusions of depth 2. I: From Crossed products to Jones Towers, *math.QA/9806130* (1998).

[16] D. Nikshych, L. Vainerman. Algebraic versions of a finite-dimensional quantum groupoid, *math.QA/9808054* (1998).

[17] D. Nikshych, L. Vainerman. A characterization of depth 2 subfactors of II₁ factors. *math.QA/9810028* (1998).

[18] S. Popa. An axiomatization of the lattice of higher relative commutants of a subfactor. *Invent. Math.* **120** (1995), no. 3, 427–445.

[19] S. Popa. Classification of amenable subfactors of type II. *Acta Math.* **172** (1994), 163–255.

[20] J. Renault. A groupoid approach to C^*-algebras, *Lecture Notes in Math.* **793**, Springer-Verlag, 1980.

[21] M.E. Sweedler. Hopf algebras, *Mathematics Lecture Note Series* W. A. Benjamin, Inc., New York (1969).

[22] W. Szymański. Finite index subfactors and Hopf algebra crossed products. *Proc. Amer. Math. Soc.* **120** (1994), no. 2, 519–528.

[23] Y. Watatani Index for C^*-subalgebras *Memoirs of the AMS* **424** (1990).

[24] T. Yamanouchi. Duality for generalized Kac algebras and a characterization of finite groupoid algebras, *J. Algebra*, **163** (1994), 9–50.

[25] T. Yamanouchi. Construction of an outer action of a finite-dimensional Kac algebra on the AFD factor of type II₁. *Internat. J. Math.* **4** (1993), no. 6, 1007–1045.