1. Preface

Scientific experts from eight countries gathered to share their views and experience on the latest research on natural products for cancer prevention and therapy. The traditionally used herbal medicines, medicinal plants, plant extracts, fractions, and phytochemicals for cancer prevention and therapy were discussed throughout the meeting. The scientific program comprised of 12 plenary lectures, 23 oral presentations, and 72 posters, providing an opportunity for more than 130 natural product scientists to present their research in three days. Abstracts for plenary talks, oral presentations, and posters were published as proceedings of the meeting in the special issue of Proceedings, Volume 1 and Issue 10 (http://www.mdpi.com/2504-3900/1/10). The aim of this biannual meeting was to foster discussion and disseminate the results of the research on natural products that are used for cancer prevention and therapy. During the meeting, the scientific committee members of the meeting who attended the conference had been selected as judges to evaluate all of the oral and poster presentations and the three best oral and poster presentation awards have been granted to the young scientists. The participants were able to network and engage in discussion for potential collaboration to advance our knowledge on utility of natural products for prevention and treatment of cancer.

2. Summary of the Scientific Presentations

2.1. Plenary Lectures

The meeting was successfully focused on the natural products being investigated for their efficiency in several cancer types and for their potency in cancer prevention. Only the plenary lectures have been summarized here in this manuscript, and all of the other oral and poster presentations have been listed where the abstracts can be reached from http://www.mdpi.com/2504-3900/1/10.

2.1.1. Growth Factors Responsible from the Cancer Progress: Role of Natural Products

Mükerrem Betül Yerer

Growth factors are one of the main factors responsible from the uncontrolled cell progress in cancer. Up to date many scientists have focused on these factors either as the marker or as the targets in several cancer types. Yerer has presented a plenary lecture on the natural products targeting these factors (Nerve growth factor (NGF), epidermal growth factor (EGF), hepatocyte growth factors (HGF), fibroblast growth factors (FGF), vascular endothelial growth factors (VEGF), platelet derived growth factor (PDGF), and transforming growth factor (TGF-β) (http://www.mdpi.com/2504-3900/1/10/979) [1].

Nutrients 2018, 10, 8; doi:10.3390/nu10010008 www.mdpi.com/journal/nutrients
2.1.2. Natural Products for Cancer Prevention and Therapy: Progress, Pitfalls and Promise

Anupam Bishayee

The presentation of Bishayee highlighted studies on cancer preventive and therapeutic attributes of various naturally occurring agents and underlying mechanisms of action, with special emphasis on results reported from our laboratory. Current limitations, challenges, and future directions of research for successful cancer drug development based on natural products will also be discussed (http://www.mdpi.com/2504-3900/1/10/982) [2].

2.1.3. Novel Anticancer Capacities of Saffron

Amr Amin

Amr Amin has presented a plenary lecture on the anticancer effects of the saffron’s main active ingredient “safranal” against HCC using in vitro, in silico, and network analyses. In their studies, in addition to the unique and differential cell cycle arrest, safranal showed pro-apoptotic effect through activation of both intrinsic and extrinsic initiator caspases implicating ER stress-mediated apoptosis (http://www.mdpi.com/2504-3900/1/10/834) [3].

2.1.4. Cardiac Glycosides as Novel Modulators of Cancer Cell Survival

Marc Diederich

This plenary lecture focused on Cardiac Glycosides (GCs) can be considered as pharmacological agents, allowing for cancer cells to switch from one cell death modality to another. All the findings encourage to further explore a potential for CGs in general as cancer cell death modulators alone or in combination with other targeted treatments (http://www.mdpi.com/2504-3900/1/10/972) [4].

2.1.5. Ins and Outs of Flavonoids in Cancer Prevention vs. Cancer Therapy: A Lesson from Quercetin in Leukemia

Gian Luigi Russo, Maria Russo, Carmela Spagnuolo, Idolo Tedesco, Stefania Moccia

Russo et al. has critically reviewed the clinical and pre-clinical studies on the concept that polyphenols, being antioxidant compounds, can fight cancer. They suggest that a clear distinction must be done between the use of polyphenols, such as flavonoids, in cancer treatment versus cancer prevention, starting from adequate and specifically selected cellular models. As an example, he has present data on the potential application of quercetin against chronic lymphocytic leukemia (CLL) (http://www.mdpi.com/2504-3900/1/10/977) [5].

2.1.6. Anticancer Potential of Flavones

Randolph RJ Arroo, Didem Şöhretoğlu, Demetrios A Spandidos, Vasilis P Androutsopoulos

Flavones are abundantly present in common fruits and vegetables, many of which have been associated with cancer prevention. Taking into account that no flavonoid based drugs are clinically used in cancer therapy, Randolph has focused on the flavones—which constitute a subgroup of the flavonoids—show some structural analogy with estrogen, and are known to interact with human estrogen receptors, either as agonist or as antagonist. Thus, whereas epidemiological and pre-clinical data seem to indicate a high potential for flavonoids, from the point of view of the pharmaceutical industry and drug developers, they are considered poor candidates (http://www.mdpi.com/2504-3900/1/10/975) [6].
2.1.7. Resveratrol in Cancer Prevention and Treatment: Focusing on Molecular Targets and Mechanism of Action

Adriano Borriello

The relevance of these mechanisms and their translation in clinical therapy has been discussed in Borelli’s plenary lecture. Resveratrol and its mechanism of action has been emphasized by her in cancer cells and in experimental models of senescence, inflammation, obesity, and metabolic diseases. Its molecular targets act at different levels: (1) specific molecular pathways (like p53, NF-kappaB, PKC, PI3K, MDM2, LATS1, STK3 and several others); (2) epigenetic control of gene transcription through sirtuin activation; (3) cell division cycle and differentiation; (4) apoptosis and autophagy; and, (5) cellular redox homeostasis [7].

2.1.8. Cynaropicrin: A Promising Natural Agent with Antitumor and Antiviral Activities

Mahmoud F. Elsebai, Jukka Hakkola, Mohamed Mehiri, Juana Diez

Human infection with HCV is currently recognized as the leading cause of hepatocellular carcinoma (HCC), which demands liver transplantation, which was estimated to result in \sim10,000 deaths in the US only in the year 2011. Elsebai has presented a plenary lecture on cynaropicrin as a potential agent for treatment and prevention of HCC by indirect way through inhibition of HCV and in a direct way evidenced by the many antitumor activities in literature [8].

2.1.9. Relationship between Structure of Phenolics and Anticancer Activity

Müberra Koşar

Many phenolic compounds have been investigated for their potential use as cancer chemopreventive agents. Phenolic compounds consist of one or more hydroxyl substitution on the aromatic ring system. Koşar has emphasized that Cinnamic acid esters, such as caffeic acid phenethyl and benzyl esters, display selective antiproliferative activity against some types of cancer cells. Flavonoids consist of a large group of polyphenolic compounds having a benzoγ-pyrone structure, and are ubiquitously present in plants. This structure can be responsible from the anticancer activities of these compounds [9].

2.1.10. Pristimerin is a Promising Natural Product against Breast Cancer In Vitro and In Vivo through Apoptosis and the Blockage of Autophagic Flux

Buse Cevatemre, Konstantinos Dimas, Bruno Botta and Engin Ulukaya

Ulukaya has given a lecture on the pristimerin’s cytotoxic potential on particularly cancer stem cells (CSCs) should be much more important due to the CSCs’ recent role in recurrence of cancer. He has presented their studies on Pristimerin that has been shown to suppress the proliferation of various cancer cell lines at relatively lower concentrations, of which, the IC50 values are around 0.5–4 µM [10].

2.1.11. Can Curcumin Be Employed to Promote the Integration of Oncology and Natural Products?

Mutlu Demiray and Fatemeh Bahadori

Curcumin is multi-targeted molecule with pleotropic nature, which inhibits NF-κB and related proteins promoting effectiveness of tyrosine kinase inhibitors (TKIs). Demiray has presented their clinical studies with curcumin on adenoid cystic carcinoma where they have treated patients for 72 months by oral curcumin and eight months by i.v curcumin. Disease control rate was 89.3% (15/17),
and no any grade III-IV toxicities was observed related to curcumin reflecting the clinical use of curcumin on adenoid cystic carcinoma patients (http://www.mdpi.com/2504-3900/1/10/980) [11].

2.1.12. Therapeutic Potential of Black Pepper Compound for BRaf Resistant Melanoma

Neel M. Fofaria, Sharavan Ramachandran, and Sanjay K. Srivastava

Srivastava’s presentation mainly focused on the combination of BRAF inhibitors with Mcl-1 inhibitor such as piperlongumine may have therapeutic advantage to melanoma patients with acquired resistance to BRAF inhibitors alone or in combination with MEK1/2 inhibitors (http://www.mdpi.com/2504-3900/1/10/981) [12].

2.2. Oral and Poster Presentations

Title	Authors	Link
Effect of Pomegranate Extract and Tangeretin on Specific Pathways in the Rat Breast Cancer Model Induced with DMBA [13].	H. Fatih Gul et al.	http://www.mdpi.com/2504-3900/1/10/983
Synergistic Cytotoxic Effects of Resveratrol in Combination with Ceramide Metabolizing Enzymes in Ph + Acute Lymphoblastic Leukemia [14].	Osman Oğuz et al.	http://www.mdpi.com/2504-3900/1/10/984
Characterization of cycloartane-type sapogenol derivatives for prostate cancer chemoprevention [15].	Bilge Debelec-Butuner et al.	http://www.mdpi.com/2504-3900/1/10/985
Epibrassinolide treatment caused autophagy or apoptosis decision in a time-dependent manner through ER stress in colon cancer cells [16].	Pınar Obakan-Yerlikaya et al.	http://www.mdpi.com/2504-3900/1/10/986
Determination of Silymarin molecule activity in colon cancer by AgNOR technique [17].	Merve Alpay et al.	http://www.mdpi.com/2504-3900/1/10/987
The cytotoxic effect of Lysimachia savranii on the neuroblastoma cells [18].	Gonca Dönmez et al.	http://www.mdpi.com/2504-3900/1/10/988
Autocrine Growth Hormone-triggered curcumin resistance abolished by NF-kB signaling pathway dependent on inflammatory cytokines and active polyamine catabolic machinery in MCF-7, MDA-MB-453 and MDA-MB-231 breast cancer cells [19].	Ajda Çoker Gürkan et al.	http://www.mdpi.com/2504-3900/1/10/989
The effect of Lysimachia savranii on the migration of the breast cancer cells [20].	İlşıl Aydemir et al.	http://www.mdpi.com/2504-3900/1/10/990
Investigation of cytotoxic effect of Origanum minutiflorum on cancer cells [21].	Oktay Özkan et al.	http://www.mdpi.com/2504-3900/1/10/991
Celastrol modulates lipid synthesis via PI3K/Akt/mTOR signaling axis to finalize cell death response in prostate cancer cells [22].	Elif Damla Arisan et al.	http://www.mdpi.com/2504-3900/1/10/992
Title	Authors	Link
-------	---------	------
Investigation of the Effect of Paclitaxel and Pycnogenol on Mitochondrial Dynamics in Breast Cancer Therapy [23].	Suna Saygılı et al.	http://www.mdpi.com/2504-3900/1/10/993
Effects of curcumin on lipid peroxidation and antioxidant enzymes in kidney, liver, brain and testis of mice bearing Ehrlich Solid Tumor [24].	Mustafa Nisari et al.	http://www.mdpi.com/2504-3900/1/10/994
Curcumin enhances the efficacy of 5-FU in Colo205 cell lines [25].	Ebru Öztürk et al.	http://www.mdpi.com/2504-3900/1/10/995
Effect of a New Sapogenol Derivative (AG-07) on Cell Death via Necrosis [26].	Yalcin Erzurumlu et al.	http://www.mdpi.com/2504-3900/1/10/996
Cytotoxic and Antiinflammatory Activity Guided Studies on Plantago holosteum Scop [27].	Yasin Genc et al.	http://www.mdpi.com/2504-3900/1/10/997
Continuously monitoring the cytotoxicity of API-1, α-chaconine and α-solamine on human lung carcinoma A549 [28].	Ebru Öztürk et al.	http://www.mdpi.com/2504-3900/1/10/998
The effects of α-chaconine on ER-α positive endometrium cancer cells [29].	Ayşe Kübra Karaboğa Arslan et al.	http://www.mdpi.com/2504-3900/1/10/999
Investigation of apoptotic effect of sinapic acid in Hep3B and HepG2 human hepatocellular carcinoma cells [30].	Canan Eroğlu et al.	http://www.mdpi.com/2504-3900/1/10/1000
Cytotoxic and Antioxidant Activity of four Cousinia Species of Stenocephalae Bunge. Section [31].	Leyla Paşayeva et al.	http://www.mdpi.com/2504-3900/1/10/1001
Apoptotic effect of Ginnalin A on MDA-MB-231 and MCF7 human breast cancer cell lines [32].	Ebru Avcı et al.	http://www.mdpi.com/2504-3900/1/10/1002
Cytotoxic effects of coumarin compounds imperatorin and osthole, alone and in combination with 5-fluorouracil in colon carcinoma cells [33].	Ayşe Eken et al.	http://www.mdpi.com/2504-3900/1/10/1003
Screening of some Apiaceae and Asteraceae plants for their cytotoxic potential [34].	Perihan Gürbüz et al.	http://www.mdpi.com/2504-3900/1/10/1004
Cycloextrine Based Nanogels and Phase Solubility Studies of Flurbiprofen as a Chemopreventive Agent [35].	Ayşe Nur Oktay et al.	http://www.mdpi.com/2504-3900/1/10/1005

Poster Presentations

Title	Authors	Link
Effect of a synthesized compound against cancerous cell line and synthesis of copper ion incorporated 1-(3,4-diaminophenyl) ethane-based hybrid nanoflowers [36].	Burcu Somtürk Yılmaz et al.	http://www.mdpi.com/2504-3900/1/10/1006
Development of effective anticancer drug candidates against breast and colon cancers [37].	Senem Akkoç et al.	http://www.mdpi.com/2504-3900/1/10/1007
Title	Authors	Link
--	--	---
Synthesis of copper ion incorporated aminoguanidine derivatives-based hybrid nanoflowers [38].	Sevtap Çağlar Yavuz et al.	http://www.mdpi.com/2504-3900/1/10/1008
Evaluation of anti-proliferative and cytotoxic properties of chlorogenic acid against breast cancer cell lines by real time monitoring [39].	Onur Bender et al.	http://www.mdpi.com/2504-3900/1/10/1009
Investigation of Apoptotic Effects of Usnic Acid on Hepatocellular Carcinoma [40].	Beste Yurdacan et al.	http://www.mdpi.com/2504-3900/1/10/1010
In vitro Cytotoxic Effect Evaluation of Dioscorea communis (L.) Caddick & Wilkin Rhizome and Stem Extracts on Hepatocellular Carcinoma Cells [41].	Unal Egeli et al.	http://www.mdpi.com/2504-3900/1/10/1011
The Effect of Herbal Medicine on Neuroblastoma Cell Line in Culture [42].	Buşra Şen et al.	http://www.mdpi.com/2504-3900/1/10/1012
The foods containing miR-193b may inhibit the growth of breast cancer cells [43].	Dilek Asci Celik et al.	http://www.mdpi.com/2504-3900/1/10/1013
Is the dietary miR-193b a novel cell cycle arresting source for breast carcinoma? [44].	Nilgün Gurbuz et al.	http://www.mdpi.com/2504-3900/1/10/1014
The effects of Wortmannin and EGCG and combined treatments on MDA-MB-231 breast cancer cell lines via inactivation of PI3K signaling pathway [45].	Elgin Turkoz Uluer et al.	http://www.mdpi.com/2504-3900/1/10/1015
The effects of Paclitaxel and Metformin and combined treatments on TLR signaling pathway on MDA-MB-231 breast cancer cell lines [46].	Melike Ozgul et al.	http://www.mdpi.com/2504-3900/1/10/1016
Inhibition of telomerase activity by cucurbitacin I in colon cancer cell line, LS174T [47].	Emir Tosun et al.	http://www.mdpi.com/2504-3900/1/10/1017
Effect of cucurbitacin I on proliferation and migration in colorectal cancer cell line, LS174T [48].	Emir Tosun et al.	http://www.mdpi.com/2504-3900/1/10/1018
In vitro anticancer and cytotoxic activities of some plant extracts on HeLa and Vero cell lines [49].	Fulya Tugba Artun et al.	http://www.mdpi.com/2504-3900/1/10/1019
Anticancer Effects of Oleocanthal and Pinus Pinaster on Breast Cancer Cell in Culture [50].	Mahmud Özkut et al.	http://www.mdpi.com/2504-3900/1/10/1020
Antiproliferative and Apoptotic Effects of the Medicinal Plants on Breast Cancer Cell Lines [51].	Pınar Kılıçaslan Sönmez et al.	http://www.mdpi.com/2504-3900/1/10/1021
The role of trophoblastic stem cells conditioned media on JAR cell culture [52].	Hilal Kabadayı et al.	http://www.mdpi.com/2504-3900/1/10/1022
The effect of pycnogenol and paclitaxel on DNA damage in human breast cancer cell line [53].	Hulya Birinci et al.	http://www.mdpi.com/2504-3900/1/10/1023
Title	Authors	Link
-------	---------	------
Investigation of the effects of paclitaxel and pycnogenol on inflammatory response (PTX3, BDNF, IGF2R) in human breast cancer cell line [54].	Hülya Birinci et al.	http://www.mdpi.com/2504-3900/1/10/1024
Is There Any Protective Effect of Pomegranate and Tangeretin on the DMBA-Induced Rat Breast Cancer Model? [55].	H. Fatih Gul et al.	http://www.mdpi.com/2504-3900/1/10/1025
The neurotoxic effects of Origanum minutiflorum [56].	İsmail Sari et al.	http://www.mdpi.com/2504-3900/1/10/1026
The Cytotoxic and Apoptotic Effects of Usnic Acid on Prostate Cancer versus Normal Cells [57].	İsıl Ezgi Eryılmaz et al.	http://www.mdpi.com/2504-3900/1/10/1027
Antiproliferative Effect of Methanolic Extract of Linum arboretum on A549 Cells [58].	Özgur Vatan et al.	http://www.mdpi.com/2504-3900/1/10/1028
Investigation of in vitro Cytotoxic Effects of Montivipera xanthina on Healthy and Cancer Human Lung Cell Lines [59].	Hüzyeyfe Huriyet et al.	http://www.mdpi.com/2504-3900/1/10/1029
Development and Characterization of Paclitaxel-loaded PLGA Nanoparticles and Evaluation of Cytotoxicity on MCF-7 cell line by MTT Assay [60].	Merve Çelik Tekeli et al.	http://www.mdpi.com/2504-3900/1/10/1030
Effects of Fulvic Acid on Different Cancer Cell Lines [61].	S. Kerem Aydin et al.	http://www.mdpi.com/2504-3900/1/10/1031
Antioxidant, antibacterial and antiproliferative activities of Turkish rhubarb (Rheum palmatum L.) leaf extracts [62].	Mehmet Berköz et al.	http://www.mdpi.com/2504-3900/1/10/1032
The Effect of Herbal Medicine on Colon Cancer Cells in Culture [63].	Pelin Toros et al.	http://www.mdpi.com/2504-3900/1/10/1033
The Effect of Herbal Medicine on Prostate Cancer Cells in Culture [64].	Pelin Toro et al.	http://www.mdpi.com/2504-3900/1/10/1034
Determination of Antioxidant Capacity, Phenolic Acid Composition and Antiproliferative Effect Associated with Phenylalanine Ammonia Lyase (PAL) Activity in Some Plants Naturally Growing under Salt Stress [65].	Seda Şirin et al.	http://www.mdpi.com/2504-3900/1/10/1035
Development and Characterization of Paclitaxel-loaded PLGA Nanoparticles and Cytotoxicity Assessment by MTT assay on A549 cell line [66].	Sedat Ünal et al.	http://www.mdpi.com/2504-3900/1/10/1036
Evaluation of in vitro anti-proliferative activity of St. John’s wort (Hypericum perforatum Linn.) plant extract on cervix adenocarcinoma [67].	Rana Kavurmacı et al.	http://www.mdpi.com/2504-3900/1/10/1037
The cytotoxic effect of Annona muricata leaf extract on triple negative breast cancer cell line [68].	Rana Kavurmacı et al.	http://www.mdpi.com/2504-3900/1/10/1038
Title	Authors	Link
--	--------------------------------	---------------------------------------
Cytotoxic activity of *Achillea coarctata* Poir. Extract [69].	Sevil Albayrak et al.	http://www.mdpi.com/2504-3900/1/10/1039
Cytotoxic activity of Endemic *Astragalus argaeus* Boiss. from Turkey [70].	Sevil Albayrak et al.	http://www.mdpi.com/2504-3900/1/10/1040
Lactic Acid Bacteria Mediated Apoptosis Induction: Natural way of colon cancer cells’ inhibition [71].	Şebnem Kurhan et al.	http://www.mdpi.com/2504-3900/1/10/1041
Synthesized a new organic compound’s cytotoxic activity quantum mechanics calculations and docking studies [72].	Senem Akkoç et al.	http://www.mdpi.com/2504-3900/1/10/1042
Anticancer Activity of *Centaurea babylonica* L. [73].	Elif Dündar et al.	http://www.mdpi.com/2504-3900/1/10/1043
Cytotoxic Effects of Functional Foods *Momordica charantia* L. and *Lycium barbarum* L. Extracts on Prostate Cancer Cells [74].	Guzide Satir Basaran et al.	http://www.mdpi.com/2504-3900/1/10/1044
Cytotoxic Effects of Kynurenic acid and Quinaldic acid in Hepatocellular Carcinoma (HepG2) cell line [75].	Pınar Atalay Dündar et al.	http://www.mdpi.com/2504-3900/1/10/1045
The Effects of Benzoxasol Derivate Compounds in Breast Cancer Cells [76].	Funda Kosova et al.	http://www.mdpi.com/2504-3900/1/10/1046
Potential Cytotoxic Activity of *Psephellus pyrrhoblepharus* Extracts [77].	Pelin Taştan et al.	http://www.mdpi.com/2504-3900/1/10/1047
Screening of *Onosma* species for Cytotoxic Activity [78].	Özge Güzel et al.	http://www.mdpi.com/2504-3900/1/10/1048
Apoptotic Effects of *Mount Bulgar Viper* (*Montivipera bulgardaghica*) PLA2 and SVMPs Venom Peptide fractions on HeLa and A549 Cancer Cells [79].	Yalçın Erzurumlu et al.	http://www.mdpi.com/2504-3900/1/10/1049
Turkish Propolis Extract Increases Apoptosis via Induction of Mitochondrial Membrane Potential Loss in MCF-7 Cells [80].	Sema Misir et al.	http://www.mdpi.com/2504-3900/1/10/1050
The Effect of Gilaburu (*Viburnum opulus*) Juice on Ehrlich Ascites Tumor (EAT) Cell Culture [81].	Özsə Al et al.	http://www.mdpi.com/2504-3900/1/10/1051
Synthesis and characterizations of folate-conjugated PLGA-PEG nanoparticles loaded with dual agents [82].	Yüksel Öğüncü et al.	http://www.mdpi.com/2504-3900/1/10/1052
Selective cytotoxic activity of *Scutellaria* species [83].	Zeynep Doğan et al.	http://www.mdpi.com/2504-3900/1/10/1053
The Antiproliferative Effect of Alpha Tocopherol in F98 Cell Culture [84].	Remzi Soner Cengiz et al.	http://www.mdpi.com/2504-3900/1/10/1054
Analysis of the Cytotoxic Effects of *Eryngium billardieri* Delar. Extracts on MCF7 Cell Line [85].	Leyla Paşayeva et al.	http://www.mdpi.com/2504-3900/1/10/1055
Cytotoxic Effects of *Alchemilla mollis* (Buser) Rothm. Extracts on MCF7 cell line [86].	Selen Ilgün et al.	http://www.mdpi.com/2504-3900/1/10/1056
Title	Authors	Link
--	-----------------------	--
Comparative Evaluation of the cytotoxic effects of stem and flower extracts of *Rhaponticoides iconiensis* (Hub.-Mor.) M.V.Agab. & Greuter [87].	Eren Demirpolat et al.	http://www.mdpi.com/2504-3900/1/10/1057
Goji berry fruit extract suppresses cell proliferation of breast cancer cells by inhibiting EGFR/ERK signaling [88].	Hatice Bekci et al.	http://www.mdpi.com/2504-3900/1/10/1058
Biologically transformed Propolis Exhibits Cytotoxic Effect on A375 Malignant Melanoma Cells in vitro [89].	Hikmet Memmedov et al.	http://www.mdpi.com/2504-3900/1/10/1059
Rheum ribes extract increase the expression level of miR-200 family in human colorectal cancer cells [90].	Ilknur Cinar et al.	http://www.mdpi.com/2504-3900/1/10/1060
Potential effects of *Liquidambar orientalis* Mill. against HT-29 and HCT-116 cell lines [91].	Sumeyra CETINKAYA et al.	http://www.mdpi.com/2504-3900/1/10/1061
The Effect of Tocopherol-α On the Cell Viability in Caco-2 Cell Line [92].	Ayşenur Gök et al.	http://www.mdpi.com/2504-3900/1/10/1062
In vitro Antioxidant and Anticancer Activities of Some Local Plants from Bolu Province of Turkey [93].	Kadriye Nur Kasapoğlu et al.	http://www.mdpi.com/2504-3900/1/10/1063
Survey of the apoptotic effect of Ginnalin A on Hep3B human hepatocellular carcinoma cell line [94].	Pınar Özden et al.	http://www.mdpi.com/2504-3900/1/10/1064
Ameliorative effects of Carvacrol on Cyclophosphamide-induced testis damage and oxidative stress [95].	Mustafa Cengiz et al.	http://www.mdpi.com/2504-3900/1/10/1066
Synthesis of Anthocyanin-rich Red Cabbage Nanoflowers and Their Antimicrobial and Cytotoxic Properties [96].	Suheyl Furkan Konca et al.	http://www.mdpi.com/2504-3900/1/10/1067
Cytotoxic potentials of some Asteraceae plants from Turkey on HeLa cell line [97].	Kübra Uzun et al.	http://www.mdpi.com/2504-3900/1/10/1068
The Role of Lidocaine in the Dunning Model Rat Prostate Cancer Cells: Cell Kinetics and Motility [98].	Esma Purut et al.	http://www.mdpi.com/2504-3900/1/10/1069
Pelargonium endlicherianum Fenzl. Root extract suppresses cell proliferation of prostate cancer cells [99].	Selda EREN et al.	http://www.mdpi.com/2504-3900/1/10/1070
Assessment of antioxidant and cytotoxic activity of known antioxidants compared to neopterin [100].	Gözde Girgin et al.	http://www.mdpi.com/2504-3900/1/10/1071
Comparison of radical scavenging and cytotoxic activities of well-known non-enzymatic antioxidants [101].	Suna Sabuncuoğlu et al.	http://www.mdpi.com/2504-3900/1/10/1072
A Study on the Synthesis and Anticancer Activities of Novel 6-Methoxy Flavonyl Piperazine Derivatives [102].	Meltem Ceylan-Unküşoy et al.	http://www.mdpi.com/2504-3900/1/10/1073
Poster Presentations

Title	Authors	Link
Effect of Paclitaxel Loaded Chitosan Nanoparticles and Quantum Dots on Breast Cancer [103].	Gülen Melike Demir et al.	http://www.mdpi.com/2504-3900/1/10/1074
Turkish Medicinal Plants Used in Cancer Treatment and Evaluation of Plant Usage in the Oncology Clinic of the Istanbul University Faculty of Medicine [104].	Buṣra Teke et al.	http://www.mdpi.com/2504-3900/1/10/1075
Is Acteosid Effects on Colon Cancer Stem Cells Via Inflammation and/or Apoptosis? [105].	Fatma Firat et al.	http://www.mdpi.com/2504-3900/1/10/1076
Analysis of the Cytotoxic Effects of Achillea millefolium L. Extracts on MCF7 Cell Line [106].	Esra Köngül et al.	http://www.mdpi.com/2504-3900/1/10/1077

3. Author Affiliations

- Abdurrahim Kocyigit, Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Sanyer, Turkey
- Ademi Fahri Pirhan, Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
- Adnan Ayhanci, Biology Department, Art and Science Faculty, Eskişehir Osmangazi University, Eskişehir, Turkey
- Adriana Borriello, Department of Biochemistry, Biophysics and General Pathology, University of Campania “L. Vanvitelli”, Naples, Italy
- Ahmet Baysar, Department of Chemical Engineering, Inonu University, Malatya, Turkey
- Ahmet Cumaoğlu, Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
- Ahmet Savran, Department of Arts and Sciences, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
- Ajda Çoker-Gürkan, Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
- Ali Karagoz, Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
- Amr Amin, Biology Department, UAE University, Abu Dhabi, United Arab Emirates
- Anupam Bishayee, Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, USA
- Arzu Atalay, Biotechnology Institute, Ankara University, Ankara, Turkey
- Aysun Bozkir, Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Ayhan Altıntaş, Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Aynur İşık, Department of Molecular Biology and Genetics, Faculty of Science, Gazi University, Ankara, Turkey
- Ayse Baldemir, Department of Pharmaceutical botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
- Ayse Nalbantsoy, Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Aysun Adan, Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
Aysun Ökçesiz, Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Ayşe Eken, Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Ayşe Kübra Karaboğa Arslan, Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Ayşe Nur Oktay, Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
Ayşe Zeynep Ünal, Toxicology Department, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
Ayşenur Gök, Ankara University, Faculty of Veterinary Medicine, Ankara, Turkey
Basseem Radwan, Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Bayram Göçmen, Zoology Section, Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
Belma Aslım, Gazi University, Faculty of Science, Department of Biology, Teknikokullar, Ankara, Turkey
Benjamin-Florian Hempel, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, Berlin, Germany
Beraat Özçelik, Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Turkey
Berrin Tunca, Medical Biology Department, Faculty of Medicine, Uludag University, Bursa, Turkey
Beste Yurdacan, Medical Biology Department, Faculty of Medicine, Uludag University, Gorukle, Bursa, Turkey
Bijen Kıvçak, Department of Pharmacognosy, Faculty of Pharmacy, Ege University, İzmir, Turkey
Bilge Debelec-Butuner, Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, İzmir, Turkey
Bruno Botta, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Roma, piazzale Aldo Moro 5, Roma, Italy
Burak Durmaz, Department of Medical Biochemistry, Ege University, Turkey
Burcu Somtürk Yılmaz, Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
Büşra Şen, Department of Histology and Embryology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
Büşra Teke, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
Canan Eroğlu, Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
Canan Türkoglu, Department of Biology, Faculty of Art and Life Sciences, Manisa Celal Bayar University, Manisa, Turkey
Carmela Spagnuolo, Institute of Food Sciences, National Research Council, Avellino, Italy
Çiğdem Yücel, Erciyes University Faculty of Pharmacy Department of Pharmaceutical Technology
Damla Akogullari, Faculty of Medicine, Department of Histology & Embryology, Manisa Celal Bayar University, Manisa, Turkey
Daniel Petras, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, Berlin, Germany
Demetrios A. Spandidos, Department of Toxicology, Medical School, University of Crete, Crete GR, Greece
Didar Tasdemir, Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Didem Şöhretoğlu, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
Dilek Asci Çelik, Department of Medical Biology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
Dilek Ceylan, Genome and Stem Cell Center, University of Erciyes, Kayseri, Turkey
Ebru Avci, Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
Ebru Öztürk, Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Efe Kurtdede, Ankara, Turkey
Elgin Turkoz Uluer, Department of Histology & Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
Elif Damla Arısan, Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
Elif Dündar, Department of Pharmaceutical Botany, Graduate School of Health Sciences, Anadolu University, Eskişehir, Turkey
Emin Sanpınar, Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
Emine Akalın Uruşak, Faculty of Pharmacy, İstanbul University, Istanbul, Turkey
Emir Tosun, Department of Chemical Engineering, İnönü University, Malatya, Turkey
Engin Ulukaya, Department of Clinical Biochemistry, Faculty of Medicine, İstinye University, Istanbul, Turkey
Ercan Kurar, Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
Ercüment Olmez, Faculty of Medicine, Department of Pharmacology, Celal Bayar University, Manisa, Turkey
Erdal Bedir, Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, İzmir, Turkey
Erem Bilensoy, Hacettepe University Faculty of Pharmacy Department of Pharmaceutical Technology
Eren Demirpolat, Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Erkan Yılmaz, Biotechnology Institute, Ankara University, Ankara, Turkey
Eser Yıldırım Sözmen, Department of Medical Biochemistry, Ege University, Turkey
Esma Purut, Department of Biology, Faculty of Science, University of Istanbul, Istanbul, Turkey
Esra Köngül, Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Esra Küpeli Akkol, Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
Evren Demircan, Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, İstanbul Technical University, Turkey
Ezgi Balkan, Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Turkey
Fatemeh Bahadori, Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bezmialem Vakif University, İstanbul, Turkey
Kemal Sami Korkmaz, Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Konstantinos Dimas, Department of Pharmacology, Faculty of Medicine, University of Thessaly, Larissa, Greece
Kübra Uzun, Pharmacognosy Dept., Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Latife Merve Oktay, Faculty of Medicine Department of Medical Biology, Ege University, Turkey
Leyla Paşayeva, Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
Mahmoud F. Elsebai, Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
Mahmud Özkut, Department of Histology & Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
Marc Diederich, College of Pharmacy, Seoul National University, Seoul, Korea
Maria usso, Institute of Food Sciences, National Research Council, Avellino, Italy
Mehmet Berköz, Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Yuzuncu Yıl University, Van, Turkey
Mehmet Ibrahim Tuğlu, Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
Mehmet Zülfü Yıldız, Zoology Section, Department of Biology, Faculty of Arts and Science, Adıyaman University, Adıyaman, Turkey
Mehtap Nisari, Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
Melike Ozgul, Department of Histology & Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
Meltem Ceylan-Ünlüsoy, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
Mert Burak Ozturk, Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
Mert İhan, Department of Pharmaceutical Technology, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
Merve Alpay, Department of Biochemistry, Faculty of Medicine, Duzce University, Düzce, Turkey
Merve Çelik Tekeli, Erciyes University Faculty of Pharmacy Department of Pharmaceutical Technology
Merve Çelik, Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Kultur University, Istanbul, Turkey
Merve Karaman, Department of Biology, Balikesir University, Balikesir, Turkey
Merve Uğur, Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Kultur University, Istanbul, Turkey
Metin Yıldırım, Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
Miroslaw Krośniak, Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Krakow, Poland
Mohamed Mehiri, Nice, France
Mustafa Cengiz, Department of Mathematics and Science Education, Education Faculty, Siirt University, Siirt, Turkey
Mustafa Nisari, Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Nuh Naci Yazgan, Kayseri, Turkey
Mustafa Öztatlıcı, Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
Osman Üstün, Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey

Oya Bozdağ-Dündar, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey

Özer Yılmaz, Department of Biology, Science and Art Faculty, Uludag University, Bursa, Turkey

Ozgur Teksoy, Biology Department, Art and Science Faculty, Eskişehir Osmangazi University, Eskişehir, Turkey

Ozgur Tag, Cancer Biology Laboratory, Department of Chemistry, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey

Ozgur Vatan, Department of Biology, Science and Art Faculty, Uludag University, Bursa, Turkey

Ömer Taş, Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey

Özge Al, School of Medicine, Department of Anatomy, Erciyes University, Kayseri, Turkey

Özge Güzel, Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, Izmir, Turkey

Özge Rencüzoğulları, Ataköy Campus, Department of Molecular Biology and Genetics, Istanbul Kultur University, İstanbul, Turkey

Özlem Temiz-Arpacı, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey

Pelin Taştan, Department of Pharmacognosy, Faculty of Pharmacy, Ege University, Izmir, Turkey

Pelin Toros, Department of Histology & Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey

Perihan Gürbüz, Pharmacognosy Dept., Faculty of Pharmacy, Erciyes University, Kayseri, Turkey

Petek Ballar, Faculty of Pharmacy, Department of Biochemistry, Ege University, Izmir, Turkey

Pınar Atalay Dündar, Department of Basic Sciences, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey

Pınar İkiz, Pharmacognosy Dept., Faculty of Pharmacy, Hacettepe University, Ankara, Turkey

Pınar K. Sönmez, Department of Histology & Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey

Pınar Kılıçaslan Sönmez, Department of Histology and Embryology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey

Pınar Obakan-Yerlikaya, Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, İstanbul, Turkey

Pınar Özden, Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey

Pınar K. Sönmez, Department of Histology & Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey

Rana Kavurmaci, Department of Advanced Technology, Ahi Evran University, Kırşehir, Turkey

Randolph R. J. Arroo, Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK

Recep Eröz, Department of Genetics, Faculty of Medicine, Duzce University, Duzce, Turkey

Remzi Soner Cengiz, Faculty of Veterinary Medicine, Turkey

Remziye Kendirci, Department of Histology and Embryology, School of Medicine, Manisa Celal Bayar University, Manisa, Turkey

Renata Francik, Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Krakow, Poland

Roderich D. Süßmuth, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, Berlin, Germany
Acknowledgments: The authors are indebted to Erciyes University Rectorate and Erciyes University Faculty of Pharmacy and Larkin University, College of Pharmacy for their valuable contributions to the organization and to the Research Foundation of Erciyes University (Project Number: TSS-2017-7720) for their financial support of this symposium. Also to the local organizing committee members (Perihan Gürbüz, Eren Demirpolat, Ahmet Cumaoğlu, Gökçe Şeker Karatoprák, Ayşe Kübra Karaboğa Aslan, Ebru Öztürk and Görkem Kismalı) for their accomplished work.

Author Contributions: M.B.Y. wrote the manuscript and A.B. reviewed and edited the document.

Conflicts of Interest: There is not any conflict of interest to declare.
References

1. Yerer, M.B. Growth Factors Responsible from the Cancer Progress: Role of Natural Products. *Proceedings 2017*, 1, 979. [CrossRef]

2. Bishayee, A. Natural Products for Cancer Prevention and Therapy: Progress, Pitfalls and Promise. *Proceedings 2017*, 1, 982. [CrossRef]

3. Amin, A. Novel Anticancer Capacities of Saffron. *Proceedings 2017*, 1, 834. [CrossRef]

4. Diederich, M. Cardiac Glycosides as Novel Modulators of Cancer Cell Survival. *Proceedings 2017*, 1, 972. [CrossRef]

5. Russo, G.L.; Russo, M.; Spagnuolo, C.; Moccia, S. Ins and Outs of Flavonoids in Cancer Prevention vs. Cancer Therapy: A Lesson from Quercetin in Leukemia. *Proceedings 2017*, 1, 977. [CrossRef]

6. Arroo, R.R.J.; Söhretoğlu, D.; Spandidos, D.A.; Androutsopoulos, V.P. Anticancer Potential of Flavones. *Proceedings 2017*, 1, 975. [CrossRef]

7. Borriello, A. Resveratrol in Cancer Prevention and Treatment: Focusing on Molecular Targets and Mechanism of Action. *Proceedings 2017*, 1, 976. [CrossRef]

8. Elsebai, M.F.; Hakkola, J.; Mehiri, M.; Diez, J. Cynaropicrin: A Promising Natural Agent with Antitumor and Antiviral Activities. *Proceedings 2017*, 1, 974. [CrossRef]

9. Koşar, M. Relationship between Structure of Phenolics and Anticancer Activity. *Proceedings 2017*, 1, 978. [CrossRef]

10. Cevatemre, B.; Dimas, K.; Botta, B.; Ulukaya, E. Pristimerin is a Promising Natural Product against Breast Cancer in vitro and in vivo through Apoptosis and the Blockage of Autophagic Flux. *Proceedings 2017*, 1, 973. [CrossRef]

11. Demiray, M.; Bahadori, F. Can Curcumin be Employed to Promote the Integration of Oncology and Natural Products? *Proceedings 2017*, 1, 980. [CrossRef]

12. Fofaria, N.M.; Ramachandran, S.; Srivastava, S.K. Therapeutic Potential of Black Pepper Compound for B Raf Resistant Melanoma. *Proceedings 2017*, 1, 981. [CrossRef]

13. Oğuz, O.; Adan, A. Synergistic Cytotoxic Effects of Resveratrol in Combination with Ceramide Metabolizing Enzymes in Ph + Acute Lymphoblastic Leukemia. *Proceedings 2017*, 1, 984. [CrossRef]

14. Debelec-Butuner, B.; Ozturk, M.B.; Tag, O.; Akgun, I.H.; Bedir, E.; Korkmaz, K.S. Characterization of Cycloartane-Type Sapogenol Derivatives for Prostate Cancer Chemoprevention. *Proceedings 2017*, 1, 985. [CrossRef]

15. Alpay, M.; Eröz, R.; Kismali, G.; Kurtdele, E. Determination of Silymarin Molecule Activity in Colon Cancer by AgNOR Technique. *Proceedings 2017*, 1, 987. [CrossRef]

16. Dönmez, G.; Kirık, F.E.; Aydemir, I.; Sari, İ.; Özkan, O.; Savran, A.; Tuğlu, M.I. The Cytotoxic Effect of *Lysimachia savranii* on the Neuroblastoma Cells. *Proceedings 2017*, 1, 988. [CrossRef]

17. Gürkan, A.J.; Çelik, M.; Uğur, M.; Arisan, A.D.; Obakan, Yerlikaya, P.; Palavan, U.; Palavan, U.; Palavan, U. N. Autocrine Growth Hormone-Triggered Curcumin Resistance Abolished by NF-κB Signaling Pathway Dependent on Inflammatory Cytokines and Active Polyamine Catabolic Machinery in MCF-7, MDA-MB-453 and MDA-MB-231 Breast Cancer Cells. *Proceedings 2017*, 1, 989. [CrossRef]

18. Aydemir, I.; Sari, İ.; Dönmez, G.; Kirık, F.E.; Özkan, O.; Savran, A.; Tuğlu, M.I. The Effect of *Lysimachia Savranii* on the Migration of the Breast Cancer Cells. *Proceedings 2017*, 1, 990. [CrossRef]

19. Özkan, O.; Aydemir, I.; Sara, İ.; Dönmez, G.; Kirık, F.E.; Savran, A.; Tuğlu, M.I. Investigation of Cytotoxic Effect of *Origanum Minutiflorum* on Cancer Cells. *Proceedings 2017*, 1, 991. [CrossRef]

20. Arisan, E.D.; Rencüzoğulları, Ö.; Çoker-Gürkan, A.; Obakan-Yerlikaya, P.; Palavan-Ünsal, N. Celastrol Modulates Lipid Synthesis via PI3K/Akt/mTOR Signaling Axis to finalize Cell Death Response in Prostate Cancer Cells. *Proceedings 2017*, 1, 992. [CrossRef]

21. Soygıl, S.; Birinci, H.; Şen, B.; Özatlıcî, M.; İnan, S.; Özbilgin, K. Investigation of the Effect of Paclitaxel and Pycnogenol on Mitochondrial Dynamics in Breast Cancer Therapy. *Proceedings 2017*, 1, 993. [CrossRef]
24. Nisari, M.; Yılmaz, S.; Ertekín, T.; Ceylan, D.; İnanç, N.; Al, Ö.; Ülger, H. Effects of Curcumin on Lipid Peroxidation and Antioxidant Enzymes in Kidney, Liver, Brain and Testis of Mice Bearing Ehrlich Solid Tumor. *Proceedings 2017*, *1*, 994. [CrossRef]

25. Öztürk, E.; Karaboğa Arslan, A.K.; Radwan, B.; Yerer, M.B. Curcumin Enhances the Efficacy of 5-FU in Colo205 Cell Lines. *Proceedings 2017*, *1*, 995. [CrossRef]

26. Erzurumlu, Y.; Tag, O.; Yılmaz, S.; Ballar, P.; Bedir, E. Effect of a New Sapogenol Derivative (AG-07) on Cell Death via Necrosis. *Proceedings 2017*, *1*, 996. [CrossRef]

27. Genc, Y.; Harput, U.S.; Saracoğlu, I. Cytotoxic and Antiinflammatory Activity Guided Studies on *Plantago holostea* Semp. *Proceedings 2017*, *1*, 997. [CrossRef]

28. Öztürk, E.; Karaboğa Arslan, A.K.; Yerer, M.B. Continuously Monitoring the Cytotoxicity of API-1, α-Chaconine and α-Solanine on Human Lung Carcinoma A549. *Proceedings 2017*, *1*, 998. [CrossRef]

29. Karaboğa Arslan, A.K.; Yerer, M.B. The Effects of α-Chaconine on ER-α Positive Endometrium Cancer Cells. *Proceedings 2017*, *1*, 999. [CrossRef]

30. Eroğlu, C.; Kurar, E.; Avci, E.; Vural, H. Investigation of Apoptotic Effect of Sinapic Acid in Hep3B and HepG2 Human Hepatocellular Carcinoma Cells. *Proceedings 2017*, *1*, 1000. [CrossRef]

31. Paşayeva, L.; Üstün, O.; Demirpolat, E.; Karatoprak, G.S.; Tugay, O.; Koşar, M. Cytotoxic and Antioxidant Activity of Four *Castoria* Species of Stenocephalae Bunge Section. *Proceedings 2017*, *1*, 1001. [CrossRef]

32. Avci, E.; Eroğlu, C.; Özden, P.; Vural, H.; Kurar, E. Apoptotic Effect of Ginnalin A on MDA-MB-231 and MCF7 Human Breast Cancer Cell Lines. *Proceedings 2017*, *1*, 1002. [CrossRef]

33. Kavak, A.; Karaboğa Arslan, A.K.; Öztürk, E.; Ökçesiz, A.; Yerer, M.B. Cytotoxic Effects of Coumarin Compounds Imperatorin and Osthole, Alone and in Combination with 5-Fluorouracil in Colon Carcinoma Cells. *Proceedings 2017*, *1*, 1003. [CrossRef]

34. Gürbüz, P.; Uzun, K.; Öztürk, E.; Yerer, M.B. Screening of Some Apiaceae and Asteraceae Plants for Their Cytotoxic Potential. *Proceedings 2017*, *1*, 1004. [CrossRef]

35. Oktay, A.N.; İlbasımı Tamer, S.; Celebi, N. Cyclodextrine Based Nanogels and Phase Solubility Studies of Flurbiprofen as a Chemopreventive Agent. *Proceedings 2017*, *1*, 1005. [CrossRef]

36. Oktay, A.N.; İlbasımı Tamer, S.; Celebi, N. Cyclodextrine Based Nanogels and Phase Solubility Studies of Flurbiprofen as a Chemopreventive Agent. *Proceedings 2017*, *1*, 1005. [CrossRef]

37. Somtürk Yılmaz, B.; Akkoç, S.; Özdemir, N. Effect of a Synthesized Compound against Cancerous Cell Line and Synthesis of Copper Ion Incorporated 1-(3,4-Diaminophenyl) Ethanone-Based Hybrid Nanoflowers. *Proceedings 2017*, *1*, 1006. [CrossRef]

38. Akkoç, S.; Özer, İ.; Kayser, V. Development of Effective Anticancer Drug Candidates against Breast and Colon Cancers. *Proceedings 2017*, *1*, 1007. [CrossRef]

39. Çağlar Yavuz, S.; Somtürk Yılmaz, B.; Özdemir, N.; Sarpinar, E. Synthesis of Copper Ion Incorporated Aminoguanidine Derivatives-Based Hybrid Nanoflowers. *Proceedings 2017*, *1*, 1008. [CrossRef]

40. Bender, O.; Atalay, A. Evaluation of Anti-Proliferative and Cytotoxic Properties of Chlorogenic Acid against Breast Cancer Cell Lines by Real Time Monitoring. *Proceedings 2017*, *1*, 1009. [CrossRef]

41. Yurdacan, B.; Egeli, Ü.; Güney Eskiler, G.; Eryılmaz, I.E.; Çeçener, G.; Tunca, B. Investigation of Apoptotic Effects of Ustic Acid on Hepatocellular Carcinoma. *Proceedings 2017*, *1*, 1010. [CrossRef]

42. Şen, B.; Toros, P.; Sönmez, P.K.; Özkut, M.; Öztürk, Ş.; Çöllü, F.; İnan, S.; Tuğluk, İ. The Effect of Herbal Medicine on Neuroblastoma Cell Line in Culture. *Proceedings 2017*, *1*, 1012. [CrossRef]

43. Celik, D.A.; Gurbuz, N. The Foods Containing miR-193b May Inhibit the Growth of Breast Cancer Cells. *Proceedings 2017*, *1*, 1013. [CrossRef]

44. Gurbuz, N.; Celik, D.A. Is the Dietary miR-193b a Novel Cell Cycle Arresting Source for Breast Carcinoma? *Proceedings 2017*, *1*, 1014. [CrossRef]

45. Turkoz Uluer, E.; Ozgul, M.; Oral, T.; Ozbilgin, K.; İnan, S. The Effects of Wortmannin and EGCG and Combined Treatments on MDA-MB-231 Breast Cancer Cell Lines via Inactivation of PI3K Signaling Pathway. *Proceedings 2017*, *1*, 1015. [CrossRef]

46. Ozgul, M.; Turkoz Uluer, E.; Oral, H.; Akogullari, D.; Ozbilgin, K.; İnan, S. The Effects of Paclitaxel and Metformin and Combined Treatments on TLR Signaling Pathway on MDA-MB-231 Breast Cancer Cell Lines. *Proceedings 2017*, *1*, 1016. [CrossRef]
47. Tosun, E.; Baysar, A. Inhibition of Telomerase Activity by Cucurbitacin I in Colon Cancer Cell Line, LS174T. *Proceedings 2017*, 1, 1017. [CrossRef]
48. Tosun, E.; Baysar, A. Effect of Cucurbitacin I on Proliferation and Migration in Colorectal Cancer Cell Line, LS174T. *Proceedings 2017*, 1, 1018. [CrossRef]
49. Artun, F.T.; Karagoz, A.; Özcan, G.; Melikoglu, G.; Anıl, S.; Kultur, S.; Sutlupinar, N. In Vitro Anticancer and Cytotoxic Activities of Some Plant Extracts on HeLa and Vero Cell Lines. *Proceedings 2017*, 1, 1019. [CrossRef]
50. Özkut, M.; Albayrak, G.; Kılıçaslan Sönmez, P.; Şen, B.; Toros, P.; Öztürk, Ş.; Çölli, F.; İnan, S.; Tuğlu, M.I. Anticancer Effects of Oleocanthal and Pinus Pinaster on Breast Cancer Cell in Culture. *Proceedings 2017*, 1, 1020. [CrossRef]
51. Kılıçaslan Sönmez, P.; Albayrak, G.; Özkut, M.; Şen, B.; Toros, P.; Öztürk, Ş.; Çölli, F.; İnan, S.; Tuğlu, M.I. Antiproliferative and Apoptotic Effects of the Medicinal Plants on Breast Cancer Cell Lines. *Proceedings 2017*, 1, 1021. [CrossRef]
52. Kabadayı, H.; Kendirci, R.; Vatansever, H.S. The Role of Trophoblastic Stem Cells Conditioned Media on JAR Cell Culture. *Proceedings 2017*, 1, 1022. [CrossRef]
53. Birinci, H.; Şen, B.; Saygı, S.; Ölmaz, E.; Türköz Uluer, E.; Özbilgin, K. The Effect of Pycnogenol and Paclitaxel on DNA Damage in Human Breast Cancer Cell Line. *Proceedings 2017*, 1, 1023. [CrossRef]
54. Birinci, H.; Şen, B.; Saygı, S.; Ölmaz, E.; İnan, S.; Özbilgin, K. Investigation of the Effects of Paclitaxel and Pycnogenol on Inflammatory Response (PTX3, BDNF, IGF2R) in Human Breast Cancer Cell Line. *Proceedings 2017*, 1, 1024. [CrossRef]
55. Gul, H.F.; Ilhan, N.; Susam, S.; Tatar, O.; İlan, N. Is There Any Protective Effect of Pomegranate and Tangeretin on the DMBA-Induced Rat Breast Cancer Model? *Proceedings 2017*, 1, 1025. [CrossRef]
56. Sari, İ.; Dönmez, G.; Kırık, F.E.; Aydemir, I.; Özkan, O.; Savran, A.; Vural, K.; Tuğlu, M.I. The Neurotoxic Effects of *Origanum minutiflorum*. *Proceedings 2017*, 1, 1026. [CrossRef]
57. Eryilmaz, I.E.; Güney Eskiler, G.; Melikoglu, G.; Anıl, S.; Kultur, S.; Sutlupinar, N. In Vitro Anticancer and Cytotoxic Activities of Some Plant Extracts on HeLa and Vero Cell Lines. *Proceedings 2017*, 1, 1019. [CrossRef]
58. Vatan, O.; Yılmaz, O.; Huriyet, H.; Cavas, T.; Cinkılıç, N. Antiproliferative Effect of Methanolic Extract of *Achillea coarctata* Poir. Extract. *Proceedings 2017*, 1, 1029. [CrossRef]
59. Huriyet, H.; Cavas, T.; Vatan, O.; Cinkılıç, N. Investigation of In Vitro Cytotoxic Effects of Montivipera perforatum Linn. Plant Extract on Cervix Adenocarcinoma. *Proceedings 2017*, 1, 1030. [CrossRef]
60. Berköz, M.; Yıldırım, M.; Allahverdiyev, O.; Krosniak, M.; Francik, R.; Bozan, N.; Yalin, S. Antioxidant, Antibacterial and Antiproliferative Activities of Turkish Rhubarb (*Rheum palmatum* L.) leaf Extracts. *Proceedings 2017*, 1, 1031. [CrossRef]
61. Aydin, S.K.; Dalgic, S.; Karaman, M.; Kirlangic, O.F.; Yıldırım, H. Effects of Fulvic Acid on Different Cancer Cell Lines. *Proceedings 2017*, 1, 1032. [CrossRef]
62. Tekeli, M.C.; Yücel, Ç.; Ünal, S.; Şeker Karatoprak, G.; Aktaş, Y.; Bilensoy, E. Development and Characterization of Paclitaxel-loaded PLGA Nanoparticles and Evaluation of Cytotoxicity on MCF-7 cell line by MTT Assay. *Proceedings 2017*, 1, 1030. [CrossRef]
63. Aydin, S.K.; Dalgic, S.; Karaman, M.; Kirlangic, O.F.; Yıldırım, H. Effects of Fulvic Acid on Different Cancer Cell Lines. *Proceedings 2017*, 1, 1032. [CrossRef]
64. Şirin, S.; Ashm, B. Determination of Antioxidant Capacity, Phenolic Acid Composition and Antiproliferative Effect Associated with Phenylalanine Ammonia Lyase (PAL) Activity in Some Plants Naturally Growing under Salt Stress. *Proceedings 2017*, 1, 1035. [CrossRef]
65. Ünal, S.; Yücel, Ç.; Çelik Tekeli, M.; Şeker Karatoprak, G.; Aktaş, Y.; Bilensoy, E. Development and Characterization of Paclitaxel-Loaded PLGA Nanoparticles and Cytotoxicity Assessment By MTT Assay on A549 Cell Line. *Proceedings 2017*, 1, 1036. [CrossRef]
66. Kavurmacı, R.; Yalçın, S. Evaluation of In Vitro Anti-Proliferative Activity of St. John’s Wort (*Hypericum perforatum* Linn.) Plant Extract on Cervix Adenocarcinoma. *Proceedings 2017*, 1, 1037. [CrossRef]
67. Kavurmacı, R.; Yalçın, S. The Cytotoxic Effect of Annona muricata Leaf Extract on Triple Negative Breast Cancer Cell Line. *Proceedings 2017*, 1, 1038. [CrossRef]
68. Albayrak, S.; Silahtarhoğlu, N. Cytotoxic Activity of *Achillea coarctata* Poir. Extract. *Proceedings 2017*, 1, 1039. [CrossRef]
70. Albayrak, S.; Kaya, O. Cytotoxic Activity of Endemic Astragalus argaeus Boiss. from Turkey. *Proceedings 2017*, 1, 1040. [CrossRef]
71. Kurhan, Ş.; Çakir, I. Lactic Acid Bacteria Mediated Apoptosis Induction: Natural Way of Colon Cancer Cells’ Inhibition. *Proceedings 2017*, 1, 1041. [CrossRef]
72. Akkoç, S.; Türkmenoğlu, B.; Çağlar Yavuz, S. Synthesized a New Organic Compound’s Cytotoxic Activity Quantum Mechanics Calculations and Docking Studies. *Proceedings 2017*, 1, 1042. [CrossRef]
73. Dündar, E.; Akalin Çiftçi, G.; Altıntaş, A. Anticancer Activity of Centaurea babylonica L. *Proceedings 2017*, 1, 1043. [CrossRef]
74. Satir Basaran, G.; Bekci, H.; Baldemir, A.; İlğün, S.; Cумаоğлу, A. Cytotoxic Effects of Functional Foods Momordica charantia L. and Lycium barbarum L. Extracts on Prostate Cancer Cells. *Proceedings 2017*, 1, 1044. [CrossRef]
75. Atalay Dündar, P.; İmamoğlu, N.N. Cytotoxic Effects of Kynurenic Acid and Quinaldic Acid in Hepatocellular Carcinoma (HepG2) Cell Line. *Proceedings 2017*, 1, 1045. [CrossRef]
76. Kosova, F.; Temiz-Arpacı, Ö.; Ölmez, E.; Kivçak, B. Potential Cytotoxic Activity of Psephellus pyrrhoblepharus Fractions on HeLa and A549 Cancer Cells. *Proceedings 2017*, 1, 1046. [CrossRef]
77. Taştan, P.; Armagan, G.; Dağcı, T.; Küçük, B. Potential Cytotoxic Activity of Psephellus pyrrhoblepharus Extracts. *Proceedings 2017*, 1, 1047. [CrossRef]
78. Güzel, Ö.; Duman, S.; Yılmaz, S.; Pirhan, A.F.; Bedir, E. Screening of Onosma Species for Cytotoxic Activity. *Proceedings 2017*, 1, 1048. [CrossRef]
79. Erzurumlu, Y.; Petras, D.; Goçmen, B.; Hempel, B.F.; Heiss, P.; Yildiz, M.Z.; Süßmuth, R.D.; Nalbantsoy, A. In Vitro Antioxidant and Anticancer Activities of Some Local Plants from Bolu Province of Turkey. *Proceedings 2017*, 1, 1050. [CrossRef]
80. Misir, S.; Demir, S.; Turan, I.; Aliyazıcıoğlu, Y. Turkish Propolis Extract Increases Apoptosis via Induction of Mitochondrial Membrane Potential Loss in MCF-7 Cells. *Proceedings 2017*, 1, 1051. [CrossRef]
81. Al, Ö.; Ülger, H.; Etekin, T.; Nisari, M.; Susar, H.; Ceylan, D.; Şeker Karatoprak, G. The Effect of Gilaburu (Viburnum opulus) Juice on Ehrlich Ascites Tumor (EAT) Cell Culture. *Proceedings 2017*, 1, 1052. [CrossRef]
82. Öğünç, Y.; Demirel, M.; Seller, Z. Synthesis and Characterizations of Folate-Conjugated PLGA-PEG Nanoparticles Loaded with Dual Agents. *Proceedings 2017*, 1, 1053. [CrossRef]
83. Dogan, Z.; Saracoğlu, I. Selective Cytotoxic Activity of Scutellaria Species. *Proceedings 2017*, 1, 1054. [CrossRef]
84. Cengiz, R.S.; Gök, A.; Kurtdede, E.; Ksmahi, G.; Sel, T. The Antiproliferative Effect of Alpha Tocopherol in F9 Cell Culture. *Proceedings 2017*, 1, 1054. [CrossRef]
85. Paşayeva, L.; Königül, E.; Geylan, R.; Şeker Karatoprak, G.; Tugay, O. Analysis of the Cytotoxic Effects of Eryngium billardieri Delar. Extracts on MCF7 Cell Line. *Proceedings 2017*, 1, 1055. [CrossRef]
86. İlğün, S.; Şeker Karatoprak, G.; Koşar, M. Cytotoxic Effects of Achemilla mollis (Buser) Rothm. Extracts on MCF7 Cell Line. *Proceedings 2017*, 1, 1056. [CrossRef]
87. Demirpolat, E.; Paşayeva, L.; Tugay, O. Comparative Evaluation of the Cytotoxic Effects of Stem and Flower Extracts of Rhaponticoides iconiensis (Hub.-Mor.) M.V.Agab. & Greuter. *Proceedings 2017*, 1, 1057. [CrossRef]
88. Bekci, H.; Sayar Basaran, G.; Baldemir, A.; Cumaoglu, A. Goji Berry Fruit Extract Suppresses Cell Proliferation of Breast Cancer Cells by Inhibiting EGFR/ERK Signalling. *Proceedings 2017*, 1, 1058. [CrossRef]
89. Memmedov, H.; Durmaz, B.; Merve Oktay, L.; Selvi, N.; Kalkan Yıldırım, H.; Yıldırım Sözmen, E. Biologically Transformed Propolis Exhibits Cytotoxic Effect on A375 Malignant Melanoma Cells In Vitro. *Proceedings 2017*, 1, 1059. [CrossRef]
90. Cinar, I.; Cetinkaya, S.; Dursun, H.G. Rheum ribes Extract Increase the Expression Level of miR-200 Family in Human Colorectal Cancer Cells. *Proceedings 2017*, 1, 1060. [CrossRef]
91. Cetinkaya, S.; Cinar, I.; Dursun, H.G. Potential Effects of Liquidambar orientalis Mill. Against HT-29 and HCT-116 Cell Lines. *Proceedings 2017*, 1, 1061. [CrossRef]
92. Gök, A.; Kurtdede, E.; Cengiz, R.S.; Ksmahi, G.; Sel, T. The Effect of Tocopherol-α on the Cell Viability in Caco-2 Cell Line. *Proceedings 2017*, 1, 1062. [CrossRef]
93. Kasapoğlu, K.N.; Köcyigit, A.; Yenigun, V.B.; Balkan, E.; Demircan, E.; Karbancioğlu-Güler, F.; Özçelik, B. In Vitro Antioxidant and Anticancer Activities of Some Local Plants from Bolu Province of Turkey. *Proceedings 2017*, 1, 1063. [CrossRef]
94. Özden, P.; Avci, E.; Vural, H. Survey of the Apoptotic Effect of Ginnalin A on Hep3b Human Hepatocellular Carcinoma Cell Line. *Proceedings 2017*, *1*, 1064. [CrossRef]

95. Cengiz, M.; Teksoy, O.; Sahinturk, V.; Tekin, Y.; Gunes, S.; Aiyhanci, A. Ameliorative Effects of Carvacrol on Cyclophosphamide-Induced Testis Damage and Oxidative Stress. *Proceedings 2017*, *1*, 1066. [CrossRef]

96. Konca, S.F.; Tasdemir, D.; Aydogdu, G.; Yilmaz, E.; Bozkir, A.; Ocsoy, I. Synthesis of Anthocyanin-Rich Red Cabbage Nanoflowers and Their Antimicrobial and Cytotoxic Properties. *Proceedings 2017*, *1*, 1067. [CrossRef]

97. Uzun, K.; İkiz, P.; Daşkınc, R.; Gürbüz, P.; Yalçın, F.N. Cytotoxic Potentials of Some Asteraceae Plants from Turkey on HeLa Cell Line. *Proceedings 2017*, *1*, 1068. [CrossRef]

98. Purut, E.; Altun, S. The Role of Lidocaine in the Dunning Model Rat Prostate Cancer Cells: Cell Kinetics and Motility. *Proceedings 2017*, *1*, 1069. [CrossRef]

99. Eren, S.; Bekci, H.; Satır Basaran, G.; Seker Karatoprak, G.; Cumaoglu, A. *Pelargonium endlicherianum* Fenzl. Root Extract Suppresses Cell Proliferation of Prostate Cancer Cells. *Proceedings 2017*, *1*, 1070. [CrossRef]

100. Girgin, G.; Sabuncuoğlu, S.; Ünal, A.Z.; Baydar, T. Assessment of Antioxidant and Cytotoxic Activity of Known Antioxidants Compared to Neopterin. *Proceedings 2017*, *1*, 1071. [CrossRef]

101. Sabuncuoğlu, S.; Üunal, A.Z.; Girgin, G. Comparison of Radical Scavenging and Cytotoxic Activities of Well-Known Non-Enzymatic Antioxidants. *Proceedings 2017*, *1*, 1072. [CrossRef]

102. Ceylan-Ünlüsoy, M.; Bozdağ-Dündar, O. A Study on the Synthesis and Anticancer Activities of Novel 6-Methoxy Flavonyl Piperazine Derivatives. *Proceedings 2017*, *1*, 1073. [CrossRef]

103. Demir, G.M.; Ilhan, M.; Küpeli Akkol, E.; Taştan, H.; Işık, A.; Tuncer Değim, I. Effect of Paclitaxel Loaded Chitosan Nanoparticles and Quantum Dots on Breast Cancer. *Proceedings 2017*, *1*, 1074. [CrossRef]

104. Teke, B.; Akalın Uruşak, E. Turkish Medicinal Plants Used in Cancer Treatment and Evaluation of Plant Usage in the Oncology Clinic of the Istanbul University Faculty of Medicine. *Proceedings 2017*, *1*, 1075. [CrossRef]

105. Firat, F.; Türkoğlu, C.; Özdal Kurt, F.; Vatansever, H.S. Is Acteosid Effects On Colon Cancer Stem Cells via Inflammation and/or Apoptosis? *Proceedings 2017*, *1*, 1076. [CrossRef]

106. Köngül, E.; Taş, Ö.; Paşayeva, L.; Şeker Karatoprak, G. Analysis of the Cytotoxic Effects of *Achillea millefolium* L. Extracts on MCF7 Cell Line. *Proceedings 2017*, *1*, 1077. [CrossRef]