Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19

M. Nishibori

Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan

A B S T R A C T

In 2016, sepsis was newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis remains one of the crucial medical problems to be solved worldwide. Although the world health organization has made sepsis a global health priority, there remain no specific and effective therapy for sepsis so far. Indeed, over the previous decades almost all attempts to develop novel drugs have failed. This may be partly ascribable to the multifactorial complexity of the septic cascade and the resultant difficulties of identifying drug targets. In addition, there might still be missing links among dysregulated host responses in vital organs. In this review article, recent advances in understanding of the complex pathophysiology of sepsis are summarized, with a focus on neutrophil extracellular traps (NETs), the significant role of NETs in thrombosis/embolism, and the functional roles of plasma proteins, histidine-rich glycoprotein (HRG) and inter-alpha-inhibitor proteins (IAIPs). The specific plasma proteins that are markedly decreased in the acute phase of sepsis may play important roles in the regulation of blood cells, vascular endothelial cells and coagulation. The accumulating evidence may provide us with insights into a novel aspect of the pathophysiology of sepsis and septic ARDS, including that in COVID-19.

© 2022 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Sepsis is an infection-associated pathological condition that frequently leads to life-threatening and interactive organ failures such as acute respiratory distress syndrome (ARDS), circulatory shock, renal failure and disseminated intravascular coagulation (DIC). Sepsis is also accompanied by a decreased level of consciousness due to CNS disturbance. Much basic and clinical research has been conducted to extensively characterize the pathophysiology of sepsis. Although this great research effort has led to accumulated knowledge of the clinical management of sepsis and gradually improved the outcome of patients, sepsis remains the leading cause of death worldwide, with both high mortality and morbidity. Therefore, the world health organization recently made sepsis a global health priority.

Because sepsis accompanies the systemic inflammation due to infection, the efforts to develop anti-septic drugs have generally targeted inflammation-related and coagulation-related molecules. Table 1 provides a list of representative clinical trials. Unfortunately, this series of clinical trials has failed to yield any clinical breakthroughs, despite the various treatments showing favorable effects in animal models. Therefore, at present there is no available drug specific for sepsis treatment.

In 2016, sepsis was renamed Sepsis-3 and redefined as life-threatening multi-organ failure with infection. Although the original causes of infection, kinds of pathogens, and routes of infection and the preceding compromising conditions of patients vary from case to case, there might be a common biological cascade of events that includes respiratory failure, circulatory shock, renal failure and/or DIC.

In the last several years, the worldwide SARS-Cov-2 pandemic has led to the death of increasing numbers of patients due to ARDS and embolism/thrombosis. One form of neutrophil activation, may not only inhibit diffusion of bacteria in the blood stream but also facilitate the intravascular coagulation and the damage to vascular endothelial cells, leading to the formation of immunothrombi. Such
processes should involve the trapping of red blood cells (RBCs) in the clot and may be associated with the release of hemoglobin and subsequently heme and Fe^{2+} from the clot.33–35

In this review, I will summarize the recent advances in understanding of the sepsis pathophysiology, with a particular focus on NETs, endotheliopathy, and RBCs. I will also provide novel insights regarding specific plasma glycoproteins that are rapidly decreased during sepsis and that both regulate the interaction between blood cells and vascular endothelial cells and control the coagulation process.

2. Sepsis pathophysiology

2.1. Animal models of sepsis

Cecal ligation and puncture (CLP) has been used as a convenient animal model of polymicrobial sepsis in mice or rats because the severity and lethality can be controlled by the number of punctures, the size of the puncture needle and the volume of intestinal contents ejected. This model principally resembles the perforation in the lower intestinal tract in humans. Many candidate drugs for the treatment of sepsis have been evaluated using this model. Table 1 summarizes the major clinical trials of candidate drugs. As is well known, all of these pharmaceuticals failed to achieve the targeted effect—namely, an improvement of 28-day survival in patients (Table 1)—although these drugs were effective against animal models. One of the reasons for the clinical failure of these candidate drugs appears to the diversity of original diseases and the variation in individual disease severity and underlying conditions.1,2,4,5,6

Another cause may be the sepsis-induced dysregulation of plural organs that are essential for life.1,2,5,6 Multiorgan failure-related events during sepsis include respiratory failure, circulatory shock, renal failure, DIC and CNS disturbance.1,2,4,5,6,28 These failures are interrelated and form a negative spiral response leading to crucial organ failure.39,57 Therefore, the regulation of both NETs and systemic conditions, neutrophils can release chromatin DNA as a web-like structure called a NET without disrupting the plasma membrane, in association with an accompanying release of histones, neutrophil elastase and myeloperoxidase on web-like DNA (Fig. 1). NETs can trap and kill bacteria by using proteinases and myeloperoxidase, thereby preventing the diffusion of bacteria into the blood stream and surrounding tissues.28,31,32 There is increasing evidence that this mode of neutrophil activation may be involved in different kinds of disease conditions.31–35 In sepsis, uncontrolled generation of NETs that adhere to injured vascular endothelial cells facilitates platelet aggregation and coagulation on the attached sites.26–28 The resultant formation of thrombus is called “immunothrombosis” because it is initiated by the adhesion of NETs to vascular endothelial cells (Fig. 1). Recent research on sepsis suggests that the systemic occurrence of immunothrombosis is a state of DIC,57 leading to the impairment of tissue microcirculation and oxygenation, and finally organ failure.39,57 Therefore, the regulation of both NETs and immunothrombosis are thought to be important targets for

Table 1

Drugs or apparatus	Number of patients	Primary endpoint	Outcome	Reference
Anti-Lipid A mAb	543	Survival at 28 days	No effect	12
rh IL-1R antagonist	893	Survival at 28 days	No effect	13
Anti-TNF-α mAb	971	Survival at 28 days	No effect	14
rh Soluble TNF-R-Fc	141	Survival at 28 days	No effect	15
Antithrombin	2314	Survival at 28 days	No effect	16
rh TNF-BS5-lgG1	1342	Survival at 28 days	No effect	17
rh Activated protein C	1690	Survival at 28 days	Effective	18
TAK-242	274	Survival at 28 days	No effect	19
rh Activated protein C	1697	Survival at 28 days & 90 days	No effect	20
Eritoran	1961	Survival at 28 days	No effect	21
PolymyxinB-immobilized Column	450	Survival at 28 days	No effect	22
Vitamin C, thiamine, and hydrocortisone	501	Ventilation- and vasopressor- free days	No effect	23
Vitamin C, thiamine, and hydrocortisone	205	SOFA score at 72 h	No effect	24

rh: Recombinant human.
the treatment of DIC, which leads to the impairment of tissue microcirculation and finally organ failure.

Before we can regulate NETs, we first need to uncover their molecular mechanisms of NETs. The major cascade of intracellular signaling that gives rise to NETs has been clarified as the following. Calcium mobilization from intracellular stores triggered by stimulation from various receptors leads to an increase in cytoplasmic free calcium levels. This in turn activates protein kinase C and NADPH oxidase to form reactive oxygen species (ROS). Intracellular ROS activates peptidylarginine deiminase 4 (PAD4) and the subsequent conversion of arginine residue into citrulline, thereby facilitating decondensation of chromatin. Simultaneously, neutrophil elastase and myeloperoxidase move from azurophilic granules to the cytoplasm and then the nuclear compartment. Finally, the disruption of the nuclear membrane occurs and the neutrophils release DNA attaching citrullinated histones, proteinases and myeloperoxidase.

To demonstrate the NETs in the tissue preparations from animals and from autopsy samples, one approach would be to detect the citrullinated histone on the extracellular DNA released from neutrophils. Usually, NETs are associated with aggregation of platelets and fibrin formation. Immunothrombus has been reported to be present under many disease conditions, including ARDS in COVID-19.

Autopsy studies have revealed that thrombosis and embolism are an exacerbating factors in COVID-19 and often increase the risk of mortality. Clinical examinations have shown that the elevation of D-dimer, a degradation product of polymerized fibrin, and an increase in the neutrophil/lymphocyte ratio may be present in severe COVID-19. An increase in red blood cell distribution width (RDW) is also a marker, which suggests that a disorder of RBC lineage or hemolysis may be present in severe COVID-19. Consistent with the finding that RDW was higher in patients with severe than patients with mild COVID-19, haptoglobin, a hemoglobin-scavenging protein in plasma, was reported to be reduced in patients with severe COVID-19, supporting the notion that hemolysis may be involved in the elevation of RDW. Further research will be needed along this line, because hemoglobin and its degradation products, heme and Fe2+, have strong toxic effects on different types of cells and enhance the inflammatory responses.

Heme, a degradative product of hemoglobin, is a ligand for many receptors of pattern recognition receptor RAGE and MD-2. The latter binding triggers MD-2/TLR-4 signaling. Recently, lower concentrations of heme were demonstrated to induce the endothelial adhesion of human neutrophils associated with ROS production, whereas at higher concentrations heme induced NETs. These results suggest that heme stimulates neutrophils differentially depending on its concentration and mechanisms. It seems probable that a high concentration of heme in the extracellular space is one of the endogenous stimulants that induce NETs. Recently, NETs have been suggested to be involved in the development of thrombosis in association with different underlying diseases. It is possible that NETs and hemolysis are closely related (Fig. 1).

3. A plasma protein, histidine-rich glycoprotein (HRG)

HRG is a multifunctional plasma protein of about 75 kDa. HRG was first isolated as one of four serum proteins adsorbed tightly to carboxymethyl-cellulose with high content of histidine residues. The normal concentration of HRG in plasma is around 1–1.5 μM in humans. The half-life of plasma HRG in human was estimated to be 3 days using 125I-labeled HRG, whereas that in mice was reported to be much shorter (15 h). This suggests a species difference in the turnover of HRG in plasma.

HRG is composed of six domains: cystatin-like domain 1, cystatin-like domain 2, proline-rich domain 1, histidine-rich domain, proline-rich domain 2, and C-terminal domain. One of the remarkable features of HRG is that HRG binds to a diverse range of factors, including fibrinogen, plasminogen, thrombospondin, FXIIa, C1q, zinc, heme, Fe2+, IgG, heparin, heparan sulfate, heparanase, glutathione peroxidase, DNA/RNA, polyphosphate, and lipopolysaccharide (LPS; an outer membrane constituent of the gram negative bacteria). Through the binding to fibrinogen, FXIIa and plasminogen, HRG appears to regulate both coagulation and fibrinolysis. The interaction of HRG with thrombospondin may have dual effects on angiogenesis, depending on the coexisting factors in the micro-milieu.
Recent studies have shown that HRG has marked effects on human neutrophils. In an in vitro study of purified human neutrophils from peripheral blood, physiological concentrations of HRG induced a round morphology with reduced microvilli on the cell surface. Although the spontaneous release of extracellular ROS from the round neutrophils was strongly suppressed compared with that from non-round neutrophils in the absence of HRG, the phagocytic activity against bacteria was enhanced in the round neutrophils. Moreover, the round neutrophils passed through the artificial microchannels more easily than non-round cells and exhibited a lower adhesion on the vascular endothelial cells. Furthermore, the treatment of human whole blood with anti-HRG antibody was found to slow the passage of leukocytes through microchannels. Taken together, these functional regulations of human neutrophils by physiological concentrations of HRG imply that HRG maintains the basal and quiescent state of circulating human neutrophils by physiological concentrations of HRG. The treatment of neutrophils with low levels of spontaneous ROS production. Conversely, once they encounter bacteria, these round neutrophils exhibit a higher mobility and phagocytic activity, suggesting that HRG maintains neutrophils in a state ready for activation. These observations are consistent with the observation of antibacterial effects of HRG in vivo.

3.1. HRG effects on neutrophils

Recent studies have shown that HRG has marked effects on human neutrophils. In an in vitro study of purified human neutrophils from peripheral blood, physiological concentrations of HRG induced a round morphology with reduced microvilli on the cell surface. Although the spontaneous release of extracellular ROS from the round neutrophils was strongly suppressed compared with that from non-round neutrophils in the absence of HRG, the phagocytic activity against bacteria was enhanced in the round neutrophils. Moreover, the round neutrophils passed through the artificial microchannels more easily than non-round cells and exhibited a lower adhesion on the vascular endothelial cells. Furthermore, the treatment of human whole blood with anti-HRG antibody was found to slow the passage of leukocytes through microchannels. Taken together, these functional regulations of human neutrophils by physiological concentrations of HRG imply that HRG maintains the basal and quiescent state of circulating neutrophils with low levels of spontaneous ROS production. Conversely, once they encounter bacteria, these round neutrophils exhibit a higher mobility and phagocytic activity, suggesting that HRG maintains neutrophils in a state ready for activation. These observations are consistent with the observation of antibacterial effects of HRG in vivo.

3.2. HRG effects on RBCs

The effects of HRG on red blood cells (RBC) have also been reported. Platelets and mast cells contain zinc ion in their granules, which is released from these cells during secretory response. A low concentration of zinc (20 μM) induced phosphatidylserine-dependent aggregation of RBCs. This aggregation was completely inhibited by the presence of physiological concentrations of HRG (1 μM). Zinc ion elicited an increase in intracellular free calcium, which was inhibited by HRG, and the increase in calcium seemed to be a trigger of a cellular cascade leading to the expression of phosphatidylserine on RBCs. In the same study, aggregated RBCs tended to attach to the surface of a monolayer of vascular endothelial cells in culture. Once coagulation starts, RBCs should contribute to the clot formation by deforming themselves into a cuboid shape. During the disseminated intravascular coagulation (DIC) under a septic condition, some degree of hemolysis may occur in the clots, leading to the release of hemoglobin and heme. Since heme itself elicits hemolysis, there might be a vicious cycle between DIC and hemolysis. Very interestingly, in addition to zinc-induced RBC aggregation, HRG strongly inhibited heme-induced hemolysis through its high capacity binding activity to heme (Fig. 1), implying that HRG might scavenge zinc and heme from the extracellular space. These effects of HRG should lead to the control or prevention of the vicious cycle. Hemoglobin as well as heme once released by hemolysis should in turn stimulate the vascular endothelial cells and even be harmful depending on the concentrations. Thus, the aggregation of RBC may be one of the factors contributing to endothelial injury and subsequent formation of thrombi within the vasculature. It is worth pointing out that LPS may facilitate hemolysis via direct membrane interactions.

Although relatively little attention has been paid to the shape change and the aggregatory response of RBCs, the release of hemoglobin and its degradative products into the extracellular space during hemolysis must be very important, because the hemolytic products exert harmful effects on different kinds of cells besides vascular endothelial cells through their peroxidase activity and ROS production. Collectively, these effects of HRG suggest that HRG maintains the homeostasis and quiescence of RBCs in addition to neutrophils.

3.3. HRG effects on vascular endothelial cells: an emerging functional role of high mobility group box-1 (HMGB1) in systemic inflammation

Both LPS and TNF-α have been shown to stimulate endothelial cells in terms of expression of adhesion molecules, loosing of intercellular cadherin, cytoskeletal rearrangement and cytokine production, in association with an increase in endothelial permeability. These effects of LPS and TNF-α were strongly inhibited by HRG, probably through a reduction of NF-κB activation and suppression of p38 and JNK kinases, as judged by an analysis of intracellular signaling. Thus, HRG has strong protective effects on vascular endothelial cells in vitro.

Since the pathophysiologic processes of sepsis are extremely complex, there are many factors involved in the development of the septic cascade: pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and a diverse
range of mediators including coagulation factors, complements, cytokines, and many bioactive substances.1,2,25

In 1999, high mobility group box-1 (HMGB1) was rediscovered as a late mediator of endotoxemia in mice.125 Originally, HMGB1 was called chromatin DNA-binding nuclear protein, and was known to play roles within nuclei, such as for the regulation of transcription activity, stabilization of chromatin structure and DNA repair.126 Research into the extracellular roles of HMGB1 opened a new aspect of cell-derived alarmins, later called damage-associated molecular patterns (DAMPs).127 HMGB1 is now characterized as a representative DAMP.128,129 Initially, HMGB1 was reported to be released from necrotic cells: however, it was soon demonstrated that under different stimuli and stressors HMGB1 can be translocated from nuclei to the cytosolic compartment, and ultimately released extracellularly.130 Once released into the extracellular space, HMGB1 appears to be an enhancer of inflammatory responses through the direct binding to RAGE and toll-like receptor-4/2.127 In addition, HMGB1 enhances the inflammatory responses by forming complexes with IL-1\beta and CXCL12, since these complexes increase the affinities of cytokines for their cognate receptors.131,132

There have been numerous reports concerning the involvement of HMGB1 in a diverse range of inflammatory responses in many disease conditions, including stroke,133–135 traumatic brain injury,136,137 spinal cord injury,138 epilepsy,139 lung inflammation,141 arthritis,142 and reperfusion injury of many organs.143,144 HMGB1 is a ubiquitous protein, and therefore, any kind of cell could be a source of extracellular HMGB1 under different conditions. Among the candidate cells, the release of HMGB1 from macrophages has been well demonstrated.145 Some chemical modifications on HMGB1, such as acetylation146 or phosphorylation,147 may be involved in the initiating the dissociation of HMGB1 from chromatin DNA and triggering its translocation. The secretory pathway of HMGB1 has not been clarified yet.148

Gao et al.123,124 showed that TNF-\alpha and LPS induced the translocation and release of HMGB1 from vascular endothelial cells. This release response was strongly inhibited by physiological concentrations of HRG123,124 (Fig. 2). The inhibition of HMGB1 release was accompanied by a simultaneous reduction in the secretion of cytokines such as IL-6, IL-8, IL-1\alpha and IFN-\gamma (Fig. 2). The effects of HRG on vascular endothelial cells appears to be mediated at least in part by a cell surface receptor, C-type lectin family protein A1 (CLEC1A).124 The results of profiling of HRG activity on different types of cells are summarized in Fig. 3.

HRG maintained the E-cadherin-dependent intercellular attachment of vascular endothelial cells and the integrity of cellular contact, as discussed above.123,124 Thus, HRG appears to control the cellular shape, intercellular adhesion, HMGB1 release and activation state of vascular endothelial cells and to maintain their quiescence under a healthy condition. The rapid decrease in plasma levels of HRG observed in septic mice59 and patients84,149 suggests that the quiescence-controlling effects of HRG on vascular endothelial cells will be weakened or lost under a septic condition, contributing to the strong interaction between blood cells and endothelial cells. The surface plasmon resonance showed that HRG directly binds to HMGB1 (Nishibori, unpublished observation). These results, as a whole, suggest that plasma protein HRG plays a very important role in the inhibition of mobilization of a representative DAMP, HMGB1, and in the regulation of its activity in the extracellular space. Since HMGB1 has been proposed as a good drug target for different kinds of diseases,128 much attention should be paid to its relationship with HRG.39

Fig. 2. Effects of HRG on LPS-induced translocation of HMGB1 and cytokine production in vascular endothelial cells (EA.hy926) in culture. The cells were incubated with LPS (100 ng/ml) in the presence or absence of HRG (1 \textmu M) for 4 or 12 h. The translocation of HMGB1 was visualized immunohistochemically (upper panels). The cytokine levels were determined in the supernatants of cultures (lower panels) (modified from the data123).
3.4. HRG effects on a mouse sepsis model

Wake et al.\(^59\) observed a marked decrease in plasma levels of HRG in a CLP septic mouse model with high mortality\(^59\) (Fig. 4). This rapid decrease in plasma HRG levels was due to a reduction in hepatic HRG production, degradation by proteases such as thrombin, and consumption of HRG deposited on intravascular thrombi.\(^59\) The septic mice developed lung inflammation associated with the cytokine production and infiltration of neutrophils, which sometimes exhibited the NET formation and contributed to immunothrombosis. In addition, hematological analysis showed that the mice developed a DIC state with reduced platelet counts and prolonged PT/APTT. All these manifestations were strongly inhibited by the supplementary treatment with purified HRG from fresh frozen human plasma, in association with a remarkable improvement of mortality\(^59\) (Fig. 4). In contrast, knockdown of HRG expression in the liver by siRNA and subsequent marked reduction of plasma levels of HRG significantly exacerbated the mortality in the mild CLP mice\(^59\) (Fig. 4). These observations were consistent with the above-mentioned homeostatic and regulatory effects of HRG on blood cells and vascular endothelial cells in vitro. HRG binds to Fe\(^{2+}\), leading to a diminution of hydroxyl radical production by the Fenton reaction.\(^94\) HRG also exhibits antioxidant activity against peroxyl radical by oxidation of HRG itself as a substrate. Moreover, HRG enhanced the activity of glutathione peroxidase, a well-known antioxidant enzyme.\(^94\) All these effects of HRG observed in cell-free systems may contribute to the antiseptic effects of HRG, because the oxidative stress, including that from ROS, causes tissue damage and injuries at inflammatory sites. Taken together, these effects of HRG on both cells and cell-free systems suggest that HRG might be a very important factor for preventing the progression of septic state into lethality.

4. Other important plasma protein IAIPs in sepsis

Inter-alpha-inhibitor proteins (IAIPs) consist of one or two heavy peptide chains connected by glycosaminoglycan to a light chain, called bikunin.\(^150\) Heavy chains and a light chain are encoded by different genes and there are six kinds of splicing variants for heavy chains. Thus, IAIPs are the family composed of a short form with bikunin and one of heavy chains, and a long form with bikunin and the heterogenous combination of heavy chains.\(^150\) IAIPs show Kunitz-type proteinase inhibitor activity against a broad spectrum of proteinases and share the additional activities. One of these activities is an inhibitory effect on histone H3-induced platelet aggregation.\(^151\) Another is a spherical shape-inducing effect on neutrophils, as observed in HRG.\(^152\) The latter effect appears similar to the spherical-shape induction by HRG, but the distribution pattern of fibrous actin in neutrophils suggests that the regulation of the cytoskeletal arrangement may differ between IAIPs and HRG.\(^152\) IAIPs also maintain the basal state of neutrophils, keeping the spontaneous ROS production at a level as low as that in HRG. The plasma levels of IAIPs are decreased significantly in neonatal\(^153,154\) and mature\(^155\) septic mice, and the administration of purified IAIPs from human plasma has been shown to improve the lethality in septic animals.\(^156\) We can conclude that the kinetic pattern as negative acute phase protein during systemic inflammation, the in vivo antiseptic effects and the effects on neutrophils were similar to both HRG and IAIPs.\(^153,154\) In septic patients suffering from dengue, a virus infection, there was a good correlation between the extent of decrease in plasma IAIPs and severity of disease.\(^157\) Thus, it was suggested that plasma protein IAIPs exert anti-septic effects along with HRG.\(^158\) Similar to HRG, IAIPs were demonstrated to bind directly to HMGB1.\(^159\) Investigation of the functional modulation of HMGB1 activity by IAIPs should be pursued.
5. Novel aspects of septic pathophysiology

ARDS is one of the major manifestations in severe sepsis and often the direct cause of death in septic patients. In ARDS, the respiratory function is severely impaired by lung inflammatory responses, which include the activation of alveolar epithelial cells and residual macrophages, the permeability increase of lung capillaries, and the adhesion and infiltration of leukocytes into lung parenchyma. In addition, lung vascular endothelial cells should be activated strongly or injured expressing adhesion molecules on their surface. Such vascular endothelial cells may undergo a dramatic change in their surface properties from an anti-coagulation state to a pro-coagulation state, losing thrombomodulin, diminution of glycocalyx and expression of tissue factor. The increase in capillary permeability may also induce plasma protein leakage and interstitial edema formation. All these cellular and plasma components should contribute to the inflammatory responses in the lung that lead to the impairment of gas exchange in the lung.

Among these contributing factors, recent studies have suggested that NETs may play an important role not only in endothelial injury by ROS but also in the formation of intravascular immunothrombosis. Thus, it is suggested that NETs play a role in the expansion of the inflammatory response between capillary and alveolar epithelial cells that goes beyond mere bacterial trapping.

The pathological processes in the progression of sepsis can be drawn as mutually-related negative spirals incorporating respiratory failure, circulatory shock, renal failure, CNS disturbance, DIC and immune paralysis. In the clinical studies, Kuroda et al. observed that the stratified plasma levels of HRG in septic patients upon admission to the ICU can predict the prognosis and outcome of patients. The efficacy of the determination of plasma HRG as a biomarker was much greater compared with that of the current plasma markers, presepsin and procalcitonin. This means that we may be able to identify among the total septic patients in the ICU those critically ill patients who will steadily worsen and that we may be able to make this determination at an earlier time point. Collectively, these results lead us to hypothesize that the decrease in plasma HRG levels occurs somewhat upstream of the sepsis cascade. The causal relationship between the decrease in plasma HRG levels and the development of septic symptoms may be one of the reasons why supplementary treatment with HRG had beneficial effects in septic animals. This was also true for IAIPs. The flow diagram in Fig. 6 shows a hypothetical cascade of sepsis incorporating functional roles of HRG and IAIPs in the maintenance of homeostasis of blood cells, vascular endothelial cells and coagulation/fibrinolysis.

6. COVID-19

SARS-CoV-2 infection gave rise to a world wide pandemic starting from the end of 2019. It is well known that there are considerable variations in manifestation among the infected
population-ranging from no symptoms to severe ARDS with high mortality due to complications such as embolism/thrombosis. Clinical examinations of the COVID-19 patients have revealed that the increases in D-dimer, RDW and the ratio of neutrophils/lymphocytes are more typical findings in severely ill patients when compared with those in patients with mild symptoms. The
increase in D-dimer implies coagulopathy. Consistent with this finding, autopsy studies have demonstrated that different types of embolism and thrombosis are observed among patients deceased from COVID-19, including deep vein thrombosis, lung embolism, multiple microvascular thrombosis, and thrombi in cerebral and cardiac arteries.155,160,161 In these cases, embolism/thrombosis may have been the cause of death. On the other hand, it was reported that other parameters suggesting typical DIC were lacking.165–70 Taken together, these results show that the elements of endotheliopathy and endothelitis, but not simple coagulopathy, may contribute to the thrombosis/embolism in severe COVID-19.159,70

Recent proteomic analyses on plasma proteins using mass-spectrometry revealed that several changes were prominent in the HRG and IAIPs levels of severe and mild COVID-19 patients.162,163 Very interestingly, these include a dramatic and significant decrease in the levels of HRG and some of IAIPs at an early time point in those patients who go on to develop a severe course of illness.162,164 It has thus been proposed that the HRG and IAIPs levels may be of prognostic value as early biomarkers of COVID-19.162,165

Based on the activities of HRG and IAIPs and their characteristic kinetics in plasma, Nishibori & Stonestreet (2021)165 suggested that these plasma proteins represent not only excellent biomarkers of COVID-19 but also possible therapeutic targets. In regard to HRG, Gao et al. (2020)124 identified a receptor for HRG, CLEC1A, by using co-transfection of genes for a transmembrane tethered HRG ligand and candidate receptor into HEK293T cells and by immunoprecipitation of a complex. Therefore, it might be possible that a drug with agonist activity for CLEC1A could be an alternative therapy for sepsis in addition to supplementary HRG.

HRG appears to maintain vascular endothelial cells in a basal state, preventing their unnecessary interaction with blood cells. This may lead to the maintenance of the integrity of endothelial cells by restricting the capillary permeability and the homeostatic regulation of endothelial cells with anti-inflammatory and anti-coagulation activities on their surfaces. Since one of the deleterious and lethal factors in severe COVID-19 seems to be thrombosis/embolism due to endotheliopathy/endothelitis, the above mentioned effects of HRG on vascular endothelial cells could play a homeostatic role and protect against damage induced by SARS-CoV-2. Therefore, it is worth mentioning again that a decrease in plasma HRG from the early time point of COVID-19 might be an excellent marker to estimate the prognosis of patients and distinguish between mild and severe cases.162 Further studies are necessary along this line.

In a model of highly pathogenic influenza A (H3N2) infection model to human lung microvascular endothelial cells in vitro, Namba et al. (2021)165 observed that the infection-dependent translocation and release of HMGB1 in non-infected cells. The direct trigger to induce HMGB1 release from non-infected cells was demonstrated to be TNF-α that was secreted from infected cells. If this is also true for endothelitis after the infection with SARS-CoV-2, and the released HMGB1 facilitates the NETosis predisposing to the immunothrombosis on the surface of vascular endothelial cells, then anti-HMGB1 therapy may be useful for inhibiting the progress of inflammatory responses in capillary vessels as shown in influenza A infection.161,166,167

7. Perspectives

We focus our attention to the understanding of pathogenesis of sepsis, including SARS-CoV-2 virus-induced ARDS. The vigorous studies revealed that endotheliopathy/endothelitis should be very important for pathophysiology of both ARDS and accompanying thrombosis/embolism. In addition to the well known factors, such as inflammatory cytokines, DAMPs/PAMPs, coagulation factors and complements, the decrease in specific plasma glycoproteins, HRG and IAIPs, may play crucial roles in impairment of homeostatic interaction between blood cells and vasculatures with regard to the prevention of NETs and hemolysis. Further works are needed along this line.

Declaration of competing interest

The author has been an advisor of the Japan Blood Products Organization and obtains the research support from the company.

Acknowledgements

The author thank Ms. Mariko Yata for her help for preparing the manuscript. This work was supported in part by grants from JSPS KAKENHI grant Number JP19H03408 and from the Japan Agency for Medical Research and Development (AMED, 21lk0201085).

References

1. Rittirsch D, Fluri MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8(10):776–787.
2. Fink MP, Warren HS. Strategies to improve drug development for sepsis. Nat Rev Drug Discov. 2014;13:741–758.
3. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–810.
4. Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15(11):1318–1322.
5. Alves-Filho JC, Sonego F, Souto FO, et al. Interleukin-33 tetanus toxins sepsis by enhancing neutrophil influx to the site of infection. Nature Med. 2010;16(6):708–713.
6. Ekaney ML, Otto GP, Sossdorf M, et al. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care. 2014;18:843.
7. Marrow KN, Coopersmith CM, Ford ML. IL-17, IL-27, and IL-33: a novel axis linked to immunological dysfunction during sepsis. Front Immunol. 2019;10:1–8.
8. Rivers E, Nguyen BV, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New Engl J Med. 2001;345(19):1368–1377.
9. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;47:1181–1247.
10. Reinhart K, Daniels R, Kiskuny N, Monchado FR, Schachter RD, Finfer S. Recognizing sepsis as a global health priority: a WHO resolution. New Engl J Med. 2017;377(5):414–417.
11. Jaccaz D, Kluge S, Nierhaus A. Sepsis-pathophysiology and therapeutic concepts. Front Med. 2021;8:628302.
12. Ziegler EJ, Fisher Jr GJ, Sprung CL, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A sepsis study group. N Engl J Med. 1991;324(7):429–436.
13. Fisher Jr GJ, Dhainaut JP, Opal SM, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhl-1a sepsis syndrome study group. JAMA. 1994;271(23):1836–1843.
14. Abraham E, Wunderlin R, Silverman H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb sepsis study group. JAMA. 1996;275(12):934–941.
15. Fisher Jr GJ, Agost JM, Opal SM, et al. Treatment of septic shock with the tumor necrosis factor receptor: fc fusion protein. N Engl J Med. 1999;334(26):1697–1702.
16. Warren BL, Eid A, Singer P, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA. 2001;286(15):1869–1878.
17. Abraham E, Laterre PF, Carbino J, et al. Lenrecet (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1,342 patients. Crit Care Med. 2001;29(3):503–510.
18. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709.
19. Rice TW, Wheeler AP, Bernard GR, et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit Care Med. 2010;38(8):1685–1694.
20. Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–2064.
21. Opal SM, Laterre PF, Vladutiu C, et al. Etorocetam, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA. 2013;309(11):1154–1162.
22. Dellingier RP, Bagshaw SM, Antonelli M, et al. Effect of targeted Polyvinyl X B hemofiltration on mortality in patients with septic shock and elevated endotoxin level: the EUPHORES randomized clinical trial. JAMA. 2018;320(14):1455–1463.
23. Sevriansky JE, Rothman RE, Hager DN, et al. Effect of vitamin C, thiamine, and hydrocortisone on ventilator- and vasopressor-free days in patients with sepsis: the VICTAS randomized clinical trial. JAMA. 2021;325(8):742–750.
24. Moskowitz A, Huang DT, Hou PC, et al. Effect of ascorbic acid, corticosteroids, and thiamine on organ injury in septic shock: the ACTS randomized clinical trial. JAMA. 2020;324(7):642–650.
25. Van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunology. 2021;54(9):2450–2467.
26. Borczuk AC. Pulmonary pathology of COVID-19: a review of autopsy studies. Curr Opin Pulm Med. 2021;7:184–192.
27. Batah SS, Fabro AT. Pulmonary pathology of ARDS in COVID-19: a pathological correlation with sepsis severity. De J Cell Biol. 2021;206(2):617–623.
28. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535.
29. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2016;213(7):1487–1499.
30. Kimball AS, Obi AT, Diaz JA, Henke PK. The emerging role of NETs in venous thrombosis. Trends Mol Med. 2021;27:184.
31. Leppkes M, Knopf J, Naschberger E, et al. Vascular occlusion by neutrophil extracellular traps is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010;107(21):9813–9818.
32. Nakazawa D, Tomaru U, Suzuki A, et al. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2012;64(11):3779–3787.
33. Döring Y, Soehnlein O. Neutrophil extracellular traps in atherosclerosis and arteriosclerosis. Circ Res. 2017;120(4):736–743.
34. Radermecker C, Detrembleur N, Guiot J, et al. Neutrophil extracellular traps infiltrate the lung airway, intestinal, and vascular compartments in severe COVID-19. J Exp Med. 2020;217, e20200102.
35. Barnes BJ, Adrovder JM, Baxter-Stoltzus A, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med. 2020;217, e2006052.
36. Cicco S, Cucco G, Raccanelli V, Vacca A. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): two potential targets for COVID-19 treatment. Med Inflamm. 2020;2020:7527953.
37. Wake H, Mori S, Liu K, et al. Histidine-rich glycoprotein prevents septic lethality through regulation of immunothrombosis and inflammation. J Thromb Haemost. 2020;18(2):223–231.
38. May O, Yatime L, Merle NS, et al. The receptor for advanced glycation end products regulates neutrophil adhesion and lung injury during experimental sepsis. Blood. 2020;136:1169–1179.
39. Jaremkö KM, Chen-Roettjer J, Chen L, Regan RF. Accelerated hemolysis and neurotoxicity in neuron-glia-blood cot-cultures. J Neurochem. 2010;114:1063–1073.
40. Zheng Y, Tan X, Cao S. The critical role of erythropoietin and microglia/macrophages in clot resolution after intracerebral hemorrhage: a review of the mechanism and potential therapeutic targets. Cell Mol Neurobiol. 2022. https://doi.org/10.1007/s10571-021-11175-3.
41. Galea L, Durand E, Jaldy J, et al. Iron deposition in the brain after aneurysmal subarachnoid hemorrhage. Stroke. 2022. https://doi.org/10.1161/STROKEAHA.121.036645.
42. Rubio I, Osuchowski MF, Shankar-Hari M, et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect Dis. 2019;19(12):e422–e436.
43. Matthey MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest. 2012;122(8):2731–2740.
44. Martin-Fernandez M, Tamayo-Velasco A, Aller R, Gonzalo-Benítez H, Martínez-Paz P, Tamayo E. Endothelial dysfunction and neutrophil degranulation as central events in sepsis physiopathology. Int J Mol Sci. 2021;22:6272.
45. Nishibori M, Stonestreet B. Understanding of COVID-19 pathology: much more than just viremia. Front Immunol. 2021;12:5898.
46. Zheng X, Chen W, Gong F, Chen Y, Chen E. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review. Front Cell Immunol. 2021;12:5899.
47. Joffre J, Hellina S, Ince C, Ait-Ouella H. Endothelial responses in sepsis. Am J Respir Crit Care Med. 2020;202(3):361–370.
48. Fernández S, Palmo M, Molina P, et al. Progressive endothelial cell damage in correlation with sepsis severity. Deftitoride as a contender. J Thromb Haemost. 2021;19:1948–1958.
49. Opal SM, van der Poll T. Endothelial barrier dysfunction in septic shock. J Intern Med. 2015;277(3):277–293.
50. Janssen D, Baasberg C, Schmidt EP, et al. Identification of the endothelial glycocalyx in lipopolysaccharide-induced experimental endotoxemia. Am J Pathol. 2019;188(8):1526–1535.
51. Tanaka K, Koike Y, Shimura T, et al. In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model. PLoS One. 2014;9(11), e111888.
52. Kolaczkowska E, Jenne CN, Surewaard BG, et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun. 2015;6:6673.
53. Habib C, Fünrohr A, Pummer C, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Nat Protoc. 2012;7(11):2848–2861.
54. Nakazawa D, Tomaru U, Suzuki A, et al. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2012;64(11):3779–3787.
55. Döring Y, Soehnlein O. Neutrophil extracellular traps infiltrate the lung airway, intestinal, and vascular compartments in severe COVID-19. J Exp Med. 2020;217, e20200102.
56. Barnes BJ, Adrovder JM, Baxter-Stoltzus A, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med. 2020;217, e2006052.
57. Cicco S, Cucco G, Raccanelli V, Vacca A. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): two potential targets for COVID-19 treatment. Med Inflamm. 2020;2020:7527953.
58. Wake H, Mori S, Liu K, et al. Histidine-rich glycoprotein prevents septic lethality through regulation of immunothrombosis and inflammation. J Thromb Haemost. 2020;18(2):223–231.
59. May O, Yatime L, Merle NS, et al. The receptor for advanced glycation end products regulates neutrophil adhesion and lung injury during experimental sepsis. Blood. 2020;136:1169–1179.
60. Jaremkö KM, Chen-Roettjer J, Chen L, Regan RF. Accelerated hemolysis and neurotoxicity in neuron-glia-blood cot-cultures. Stroke. 2022. https://doi.org/10.1161/STROKEAHA.121.036645.
61. Iba T, Levy JH, Alhara K, et al. Newly developed recombinant antithrombin protects the endothelial glycocalyx in an endotoxin-induced rat model of sepsis. J Int Med. 2020;22(1):176.
100. Bosshart H, Heinzelmann M. Endotoxin-neutralizing effects of histidine-rich glycoprotein.

101. Jones AL, Hulett MD, Parish CR. Histidine-rich glycoprotein: a novel adaptor protein in histidine-rich glycoprotein in pI-12 and during thrombolytic therapy. Thrombosis Res. 1981;23:121–131.

102. Wakabayashi S, Koide T. Histidine-rich glycoprotein: a possible modulator of endothelial dysfunction. FEBS J. 1998;1516–1522.

103. Simantov R, Febbraio M, Crombie R, Asch AS, Nachman RL, Silverstein RL. Histidine-rich glycoprotein inhibits the antiangiogenic effect of thromboxane A2 in the rat aorta. Circ Res. 1994;75:21–26.

104. Merle NS, Grunewald M, et al. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. JCI Insight. 2018;3(12), e99510.

105. Wang D, Liu K, Wake H, et al. Anti-high mobility group box-1 monoclonal antibody treatment provides protection against in vivo experimental stroke in rats. FASEB J. 2013;304:467–476.

106. Cines DB, Lebedeva T, Nagaswami C, et al. Clot contraction: compression of fibrinogen and fibrin. Blood Adv. 2020;4(19):2371–2372.

107. Balk and colleagues. Intracellular hemolysis acti- vates complement via cell-free heme and heme-loaded microvesicles. JCI Insight. 2018;3(12), e99510.

108. Dantas E, Diaz FE, Gerber PP, et al. Decrease in histidine-rich glycoprotein as a novel biomarker to predict sepsis among systemic response syndrome. Crit Care Med. 2018;46(4):570–576.

109. Lijnen HR, Hulett MD, Parish CR. Histidine-rich glycoprotein: a potential target for therapeutic intervention. J Pharmacol Sci. 2012;1140.

110. Pan Y, Deng L, Wang H, He K, Xia Q. Histidine-rich glycoprotein (HRGP): plenoptic and paradoxical effects on macrophage, tumor microenvironment, angiogenesis, and other physiological and pathological processes. Gen Dis. 2022;2:381–392.

111. Pan Y, Deng L, Wang H, He K, Xia Q. Histidine-rich glycoprotein (HRGP): plenoptic and paradoxical effects on macrophage, tumor microenvironment, angiogenesis, and other physiological and pathological processes. Gen Dis. 2022;2:381–392.

112. Takahashi Y, Wake H, Sakaguchi M, et al. Histidine-rich glycoprotein stimulates human neutrophil phagocytosis and prolongs survival through CLEC1A. J Immunol. 2021;206(4):737–750.

113. Zhong H, Wake H, Liu K, et al. Effects of histidine-rich glycoprotein on erythrocyte aggregation and hemolysis: implications for a role under septic conditions. J Pharmacol Exp Ther. 2020;375:406–413.

114. Nosaka N, Yashiro M, Wake H, et al. Anti-high mobility group box-1 monoclonal antibody treatment provides protection against influenza A virus (H1N1)-induced pneumonia in mice. Crit Care. 2015;19:249,
142. Andersson U, Erlandsson-Harris H. HMGB1 is a potent trigger of arthritis. J Intern Med. 2004;255(3):344–350.

143. Sugihara M, Sadamori H, Nishibori M, et al. Anti-high mobility group box-1 monoclonal antibody improves ischemia/reperfusion injury and mode of lever regeneration after partial hepatectomy. Am J Surg. 2016;211(1):179–188.

144. Nakata K, Okazaki M, Shimizu D, et al. Protective effects of anti-HMGB1 monoclonal antibody on lung ischemia reperfusion injury in mice. Biochem Biophys Res Commun. 2021;573:164–170.

145. Tsuibo S, Miyazaki T, Ikeda Y, et al. Caspase-dependent HMGB1 release from macrophages participates in peripheral neuropathy caused by bortezomib, a proteasome-inhibiting chemotherapeutic agent, in mice. Cells. 2021;10(10):2550.

146. Yang K, Fan M, Wang X, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022;29(1):133–146.

147. Youn JH, Shin JS. Neucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol. 2006;177:7889–7897.

148. Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54:91–102.

149. Kuroda S, Ishi K, Mihara Y, et al. Histidine-rich glycoprotein as a prognostic biomarker for sepsis. Sci Rep. 2021;11(1):10223.

150. Lord MS, Melrose J, Day AJ, Whitelock JM. The inter-a-trypsin inhibitor family: versatile molecules in biology and pathology. J Histochem Cytochem. 2020;68:907–927.

151. Chaaban H, Keshari RS, Silasi-Mansat R, et al. Inter-alpha inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury. Blood. 2015;125:2286–2296.

152. Htwe SS, Wake H, Liu K, et al. Inter-alpha inhibitor proteins maintain neutrophils in a resting state by regulating shape and reducing ROS production. Blood Adv. 2018;2:1923–1934.

153. Baek YW, Brokat S, Padbury JF, Pinar H, Hixson DC, Lim YP. Inter-alpha inhibitor proteins in infants and decreased levels in neonatal sepsis. J Pediatr. 2003;143:11–15.

154. Singh K, Zhang LX, Bendelja K, et al. Inter-alpha inhibitor protein administration improves survival from neonatal sepsis in mice. Pediatr Res. 2010;68:242–247.

155. Wu R, Cui X, Lim YP, et al. Delayed administration of human inter-alpha inhibitor proteins reduces mortality in sepsis. Crit Care Med. 2004;32:1747–1752.

156. Lim YP, Bendelja K, Opal SM, Siryaporn E, Hixson DC, Palardy JL. Correlation between mortality and the levels of inter-alpha inhibitors in the plasma of patients with severe sepsis. J Infect Dis. 2003;188:919–926.

157. Koraka P, Lim YP, Shin MD, et al. Plasma levels of inter-alpha inhibitor proteins in children with acute Dengue virus infection. PLoS One. 2010;5:e9967.

158. Hatayama K, Chen RH, Hanson J, et al. High mobility group box-1 and inter-alpha-inhibitor proteins: in vitro binding and co-localization in cerebral cortex after hypoxic-ischemic injury. FASEB J. 2021;5(3), e21399.

159. Nishibori M, Wake H, Morimatsu H. Histidine-rich glycoprotein as an excellent biomarker for sepsis and beyond. Crit Care. 2018;22(1):205.

160. Stober VP, Lim YP, Opal S, Zhou L, Kimata K, Garantziotis S. Inter-alpha inhibitor ameliorates endothelial inflammation in sepsis. Lung. 2019;197:361–369.

161. Wiersinga WJ, Rhodes A, Cheng AC, Peacock S, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). JAMA. 2020;324:782–793.

162. Vollmy F, van den Toorn H, Chiozzi RZ, et al. A serum proteome signature to predict mortality in severe COVID-19 patients. Life Sci Alliance. 2021;4(1), e202101099.

163. Geyer PE, Arend FM, Doll S, et al. High-resolution serum proteome trajectories in COVID-19 reveal patient-specific seroconversion. EMBO Mol Med. 2021;13(8), e14167.

164. Demichev V, Tober-Lau P, Lemke O, et al. Time-resolved proteomic and prognostic map in COVID-19. Cell Syst. 2021;12(8):780–794. e7.

165. Namba T, Tsuge M, Yashiro M, et al. Anti-high mobility group box-1 monoclonal antibody suppressed hyper-permeability and cytokine production in human pulmonary endothelial cells infected with influenza A virus. Inflamm Res. 2021;70(10–12):1101–1111.

166. Nosaka N, Hatayama K, Yamada M, et al. Anti-high mobility group box-1 monoclonal antibody treatment of brain edema induced by influenza infection and lipopolysaccharide. J Med Virol. 2018;90(7):1192–1198.