Abstract. We prove vanishing of z-eigen distributions on a split real reductive group which change according to a non-degenerate character under the left action of the unipotent radical of the Borel subgroup, and are equivariant under the right action of a spherical subgroup.

This is a generalization of a result by Shalika, that concerned the group case. Shalika’s result was crucial in the proof of his multiplicity one theorem. We view our result as a step in the study of multiplicities of quasi-regular representations on spherical varieties.

As an application we prove non-vanishing of spherical Bessel functions.

1. Introduction

1.1. Main results. In this paper we prove the following generalization of Shalika’s result [Sha74 §2].

Theorem A. Let G be a split real reductive group and H be its spherical subgroup. Let U be the unipotent radical of a Borel subgroup B of G. Let ψ be a non-degenerate character of U and χ be a character of H. Let Z be the complement to the union of open $B \times H$-double cosets in G. Let z be the center of the universal enveloping algebra of the Lie algebra \mathfrak{g} of G.

Then there are no non-zero z-eigen $(U \times H, \psi \times \chi)$-equivariant distributions supported on Z.

This result in the group case ([Sha74 §2]) was crucial in the proof of Shalika’s multiplicity one theorem.

Our proof begins by applying the technique used by Shalika. However, this technique was not enough for this generality and we had to complement it by using integrability of the singular support, as in [AG09].

Theorem A provides a new tool for the study of the multiplicities of the irreducible quotients of the quasi-regular representation of G on Schwartz functions on G/H, see §1.4 below for more details.

1.2. Non-vanishing of spherical Bessel functions. Another application of Theorem A is to the study of spherical Bessel distributions and functions.

Definition 1.2.1. Let G be a split real reductive group, and $H \subset G$ be a spherical subgroup. Let (π, V) be a (smooth) irreducible admissible representation of G. Let ϕ be an (H, χ)-equivariant continuous functional on V and v be a (U, ψ)-equivariant continuous functional on the contragredient representation \tilde{V}. Define the spherical Bessel distribution by

$$\xi_{v, \phi}(f) := \langle v, \pi^*(f)\phi \rangle.$$

Define the spherical Bessel function to be the restriction $j_{v, \phi} := \xi_{v, \phi}|_{G-Z}$.

Date: March 25, 2014.

2010 Mathematics Subject Classification. 20G05, 22E45, 46F99.

Key words and phrases. Vanishing of distributions, spherical spaces, multiplicity, Shalika, Bessel function.
It is well-known that \(j_{v,\phi} \) is a smooth function.

Theorem A easily implies the following corollary.

Corollary B. Suppose that \(v \) and \(\phi \) are non-zero. Then \(j_{v,\phi} \neq 0 \).

1.3. **Non-archimedean analogs.**

Over non-archimedean fields, the universal enveloping algebra does not act on the distributions. However, the Bernstein’s center \(\text{End}_{G \times G}(L(G)) \) does act. In [AGS] we study this action in details. In [AGK] we prove, using [AGS, Theorem A], analogs of Theorem A and Corollary B for non-archimedean fields of characteristic zero. These analogs are somewhat weaker for general spherical pairs, but are of the same strength for the group case and for Galois symmetric pairs. The group case of the non-archimedean counterpart of Corollary B was proven before in [LM, Appendix B].

1.4. **Relation with multiplicities in regular representations of symmetric spaces.**

Let \((G,H) \) be a symmetric pair of real reductive groups. Suppose that \(G \) is quasi-split and let \(B \subset G \) be a Borel subgroup. Let \(k \) be the number of open \(B \)-orbits on \(G/H \).

Theorem A can be used in order to study the following conjecture.

Conjecture C. Let \((\pi,V) \) be a (smooth) irreducible admissible representation of \(G \). Then the dimension of the space \((V^*)^H \) of \(H \)-invariant continuous functionals on \(V \) is at most \(k \). In particular, any complex reductive symmetric pair is a Gel'fand pair.

We suggest to divide this conjecture into two cases

- \(\pi \) is non-degenerate, i.e. \(\pi \) has a non-zero continuous \((U,\psi)\)-equivariant functional for some non-degenerate character \(\pi \) of \(U \)
- \(\pi \) is degenerate.

In the first case, the last conjecture follows from the following one

Conjecture D. Let \(U \) be the unipotent radical of \(B \) and let \(\psi \) be its non-degenerate character. Let \(z \) be the center of the universal enveloping algebra of the Lie algebra \(g \) of \(G \). Let \(\lambda \) be a character of \(z \).

Then the dimension of the space of \((z,\lambda)\)-eigen \((U,\psi)\)-equivariant distributions on \(G/H \) does not exceed \(k \).

We believe that Theorem A can be useful in approaching this conjecture, since it allows to reduce the study of distributions to the union of open \(B \)-orbits.

1.5. **Acknowledgements.** We thank Erez Lapid for pointing out to us the application to non-vanishing of spherical Bessel functions. We also thank Vladimir Hinich, Omer Offen and Eitan Sayag for useful discussions. D.G. was partially supported by ISF grant 756/12 and a Minerva foundation grant. A.A. was partially supported by NSF grant DMS-1100943 and ISF grant 687/13;

2. **Preliminaries**

2.1. **Conventions.**

- By an algebraic manifold we mean a smooth real algebraic variety.
- We will use capital Latin letters to denote Lie groups and the corresponding Gothic letters to denote their Lie algebras.
- Let a Lie group \(G \) act on a smooth manifold \(M \). For a vector \(v \in g \) and a point \(x \in M \) we will denote by \(vx \in T_xM \) the image of \(v \) under the differential of the action map \(g \mapsto gx \). Similarly, we will use the notation \(hx \), for any subspace \(h \subset g \).
- We denote by \(G_x \) the stabilizer of \(x \) in \(G \) and by \(g_x \) its Lie algebra.
2.2. Tangential and transversal differential operators. In this subsection we shortly review the method of [Sha74 §2]. For a more detailed description see [JSZ11 §§2.1].

Definition 2.2.1. Let M be a smooth manifold and N be a smooth submanifold.

- A vector field v on M is called tangential to N if for every point $p \in N$, $v_p \in T_p N$ and transversal to N if for every point $p \in N$, $v_p \notin T_p N$.
- A differential operator D is called tangential to N if every point $p \in N$ has an open neighborhood $U_x \subset N$ such that $D|_{U_x}$ is a finite sum of differential operators of the form $\phi V_1 \cdots V_r$ where ϕ is a smooth function on U_x, $r \geq 0$, and V_i are vector fields on U_x tangential to $U_x \cap N$.

Lemma 2.2.2 (cf. the proof of [Sha74 Proposition 2.10]). Let M be a smooth manifold and N be a smooth submanifold. Let D be a differential operator on M tangential to N and V be a vector field on M transversal to N. Let η be a distribution on M supported in N such that $D\eta = V\eta$. Then $\eta = 0$.

2.3. Singular support. Let M be an algebraic manifold and η be a distribution on M. The singular support of η is defined to be the singular support of the D-module generated by η and denoted $SS(\eta) \subset T^* M$.

We will shortly review the properties of the singular support that are most important for this paper. For more detailed overview we refer the reader to [AG09 §§2.3 and Appendix B].

Notation 2.3.1. For a point $x \in M$

- we denote by $SS_x(\eta)$ the fiber of x under the natural projection $SS(\eta) \to M$,
- for a submanifold $N \subset M$ we denote by $CN^M_N \subset T^* M$ the conormal bundle to N in M, and by $CN^M_{N,x}$ the conormal space at x to N in M.

Lemma 2.3.2 (See e.g. [AG09 Fact 2.3.9 and Appendix B]). Let an algebraic group G act on M. Suppose that η is G-equivariant. Then

$$SS(\eta) \subset \{(x, \phi) \in T^* M \mid \forall \alpha \in g, \phi(\alpha(x)) = 0\} = \bigcup_{x \in M} CN^M_{G,x}.$$

Lemma 2.3.3. Let G be a real reductive group, $N \subset g^*$ be the nilpotent cone and \mathfrak{z} be the center of the universal enveloping algebra $U(\mathfrak{g})$. Let ξ be a \mathfrak{z}-eigen distribution on G. Identify $T^* G$ with $G \times g^*$ using the right action. Then $SS(\xi) \subset G \times N$.

This lemma is well-known but we will prove it here for the benefit of the reader.

Proof. Consider the standard filtrations on $U(\mathfrak{g})$ and on the ring of differential operators $D(G)$. Consider \mathfrak{g} as the space of left-invariant vector fields on G. Then the natural map $i : U(\mathfrak{g}) \to D(G)$ is a morphism of filtered algebras. We have a commutative diagram

$$\begin{array}{ccc}
Gr U(\mathfrak{g}) & \xrightarrow{Gr(i)} & Gr D(G) \\
\pi_U & & \pi_D \\
S(\mathfrak{g}) & \xrightarrow{\sim} & O(T^* G),
\end{array}$$

Where \sim and π_U are the algebra homomorphisms which extend the natural embeddings $\mathfrak{g} \to Gr U(\mathfrak{g})$ and $g \to O(T^* G)$, and π_D is the algebra homomorphism which extends the natural embedding of vector fields on G into $D(G)$. By the PBW theorem the vertical maps are isomorphisms. This implies that $Gr(i)$ is an embedding, and thus the filtration on $U(\mathfrak{g})$ is the one induced from $D(G)$ using the embedding i. Therefore we have the following commutative diagram
\[\mathcal{U}(\mathfrak{g}) \xrightarrow{i} D(G) \]
\[\xrightarrow{\sigma_U} \xrightarrow{\sigma_D} \]
\[Gr\mathcal{U}(\mathfrak{g}) \xrightarrow{Gr(i)} GrD(G) \]
\[\xrightarrow{\pi_U} \xrightarrow{\pi_D} \]
\[S(\mathfrak{g}) \xrightarrow{i} \mathcal{O}(T^*G), \]

where \(\sigma_U \) and \(\sigma_D \) are the (nonlinear) symbol maps. Note that the map \(i \) is a section of the restriction map \(r : \mathcal{O}(T^*G) \rightarrow \mathcal{O}(T_x^*G) \cong \mathcal{O}(\mathfrak{g}^*) \cong S(\mathfrak{g}) \).

In order to prove the lemma it is enough to show that \(SS_x(\xi) \subset \mathcal{N} \). Note that \(\mathcal{N} \) is the zero set the ideal \(I \subset S(\mathfrak{g}) = \mathcal{O}(\mathfrak{g}^*) \) generated by all homogeneous non-constant \(\mathfrak{g} \)-invariant polynomials. We have to show that for any homogeneous \(p \in S(\mathfrak{g})^0 \) of degree \(d > 0 \), there exists non-constant \(u \in \mathfrak{g} \) such that \(r(\pi_D^{-1}(\sigma_D(i(u)))) = p \), or equivalently (in view of the above) that \(\sigma_U(u) = \pi_U(p) \).

Let \(s : S(\mathfrak{g}) \rightarrow \mathcal{U}(\mathfrak{g}) \) be the symmetrization map. It is easy to see that \(\sigma_U^d(s(p)) = \pi_U(p) \), where \(\sigma_U^d \) denotes the \(d \)'s symbol. Since \(\pi_U \) is an isomorphism this implies that \(\sigma_U^d(s(p)) \neq 0 \) and thus \(\pi_U(s(p)) = \sigma_U^d(s(p)) = \pi_U(p) \). This implies the assertion.

\[\square \]

Theorem 2.3.4 (Integrability theorem, cf. [Gab81, GQS71, KKS73, Mal78]). The \(SS(\eta) \) is a coisotropic subvariety of \(T^*M \).

This theorem implies the following corollary (see [Aiz13, §3] for more details).

Corollary 2.3.5. Let \(N \subset M \) be a closed algebraic submanifold. Suppose that \(\xi \) is supported in \(N \). Suppose further that for any \(x \in N \), we have \(CN_M^x \not\subset SS_x(\eta) \). Then \(\eta = 0 \).

3. PROOF OF THE MAIN RESULT

3.1. Sketch of the proof. We decompose \(G \) into \(B \times H \)-double cosets. Each double coset \(O \) we decompose \(O = O_s \cup O_c \) in a certain way. We prove the required vanishing by coset, using Shalika’s method (see §2.2) for \(O_s \) and singular support analyses (see §2.3) for \(O_c \).

3.2. Notation and lemmas.

Notation 3.2.1.

- Fix a torus \(T \subset B \) and let \(\mathfrak{t} \subset \mathfrak{b} \) denote the corresponding Lie algebras. Let \(\Phi \) denote the root system, \(\Phi^+ \) denote the set of positive roots and \(\Delta \subset \Phi^+ \) denote the set of simple roots. For \(\alpha \in \Phi \) let \(\mathfrak{g}_\alpha \subset \mathfrak{g} \) be the root space corresponding to \(\alpha \).

- Let \(C \in \mathfrak{g} \) denote the Casimir element.

- We choose \(E_\alpha \in \mathfrak{g}_\alpha \), for any \(\alpha \in \Phi \) such that \(C = \sum_{\alpha \in \Phi^+} E_{-\alpha} E_\alpha + D \), where \(D \) is in the universal enveloping algebra of the Cartan subalgebra \(\mathfrak{t} \).

- Let \(O \subset G \) be a \(B \times H \)-double coset. Consider the left action of \(u \) on \(O \) and define

\[O_c := \left\{ x \in O \mid \sum_{\alpha \in \Delta} d\psi(E_\alpha)E_{-\alpha}x \in T_x O \right\} \]

and \(O_s := O \setminus O_c \).

We will need the following lemmas, that will be proved in subsequent subsections.

Lemma 3.2.2. Let \(x \in G \). Let \(\xi \) be a 3-eigen \((U \times H, \psi \times \chi)\) equivariant distribution on \(G \). Then \(SS_x(\xi) \subset CN_{\mathcal{D}x}(\eta) \).

Lemma 3.2.3. Let \(O \subset Z \) be a \(B \times H \)-double coset. Then \(O_s \neq \emptyset \).
3.3. **Proof of Theorem A** Suppose that there exists a non-zero \(\mathfrak{g} \)-eigen \((U, \psi)\)-equivariant distribution \(\xi \) supported on \(Z \).

For any \(B \times H \)-double coset \(\mathcal{O} \subseteq G \), stratify \(\mathcal{O}_c \) to a union of smooth locally closed varieties \(\mathcal{O}_c^i \).

The collection

\[
\{ \mathcal{O}_c^i | \mathcal{O} \text{ is a } B \times H - \text{double coset} \} \cup \{ \mathcal{O}_c | \mathcal{O} \text{ is a } B \times H - \text{double coset} \}
\]

is a stratification of \(G \). Reorder this collection to a sequence \(\{ S_i \}_{i=1}^N \) of smooth locally closed subvarieties of \(G \) s.t. \(U_k := \bigcup_{i=1}^k S_i \) is open in \(G \) for any \(1 \leq k \leq N \).

Let \(k \) be the maximal integer such that \(\xi|_{U_{k-1}} = 0 \). Let \(\eta := \xi|_{U_k} \). We will now show that \(\eta = 0 \), which leads to a contradiction.

Case 1. \(S_k = \mathcal{O}_c \) for some double coset \(\mathcal{O} \).

Recall that we have the following decomposition of the Casimir element

\[
C = \sum_{\alpha \in \Phi^+} E_{-\alpha} E_\alpha + D
\]

Since \(\eta \) is \(\mathfrak{g} \)-eigen and \((U, \psi)\)-equivariant, we have, for some scalar \(\lambda \),

\[
\lambda \eta = C \eta = \sum_{\alpha \in \Phi^+} E_{-\alpha} E_\alpha \eta + D \eta = \sum_{\alpha \in \Phi^+} E_{-\alpha} d\psi(E_\alpha) \eta + D \eta = \sum_{\alpha \in \Delta} E_{-\alpha} d\psi(E_\alpha) \eta + D \eta
\]

Let \(V := \sum_{\alpha \in \Delta} d\psi(E_{-\alpha}) E_{\alpha} \) and \(D' := \lambda Id - D \). We have \(V \eta = D' \eta \), and it is easy to see that \(D' \) is tangential to \(\mathcal{O}_s \), and \(V \) is transversal to \(\mathcal{O}_s \). Now, Lemma 2.2.2 implies \(\eta = 0 \) which is a contradiction.

Case 2. \(S_k \subseteq \mathcal{O}_c \) for some orbit \(\mathcal{O} \).

By Corollary 2.3.3 it is enough to show that for any \(x \in S_k \) we have

\[
CN^G_{S_k,x} \not\subseteq SS_x(\eta).
\]

By Lemma 3.2.2 \(SS_x(\eta) \subseteq CN^G_{\mathcal{O},x} \). By Lemma 3.2.3 \(S_k \subseteq \mathcal{O} \), thus \(CN^G_{S_k,x} \supseteq CN^G_{\mathcal{O},x} \) which implies (1).

\(\square \)

3.4. **Proof of Lemma 3.2.2**

Proof. Let \(\mathfrak{h} \) denote the Lie algebra of \(H \) and \(ad(x) \mathfrak{h} \) denote its conjugation by \(x \). Identify \(T^*_x G \) with \(\mathfrak{g}^* \) using multiplication by \(x^{-1} \) on the right. Then

\[
CN^G_{BxH,x} = (1 + u + ad(x) \mathfrak{h})^{\perp}.
\]

Since \(\xi \) is \(\mathfrak{u} \times \mathfrak{h} \)-equivariant, Lemma 2.3.2 implies that \(SS_x(\xi) \subseteq (1 + ad(x) \mathfrak{h})^{\perp} \). Since \(\xi \) is also \(\mathfrak{g} \)-eigen, Lemma 2.3.3 implies that \(SS_x(\xi) \subseteq \mathcal{N}_x \), where \(\mathcal{N}_x \subseteq \mathfrak{g}^* \) is the nilpotent cone.

Now we have

\[
SS_x(\xi) \subseteq (1 + u + ad(x) \mathfrak{h})^{\perp} \cap \mathcal{N} = (1 + u + ad(x) \mathfrak{h})^{\perp} = CN^G_{BxH,x}.
\]

\(\square \)

3.5. **Proof of Lemma 3.2.3** First we need the following lemmas and notation.

Lemma 3.5.1. Let \(K \subseteq K_i \subseteq G \) for \(i = 1, \ldots, n \) be algebraic subgroups. Suppose that \(K_i \) generate \(G \). Let \(Y \) be a transitive \(G \)-space. Let \(y \in Y \). Assume that \(Ky \) is Zariski dense in \(K_i y \) for each \(i \). Then \(Ky \) is Zariski dense in \(Y \).

Proof. By induction we may assume that \(n = 2 \). Let

\[
O_l := K_1 K_2 \cdots K_l y.
\]
It is enough to prove that for any l the orbit Ky is dense in O_l. Let us prove it by induction on l. Suppose that we have already proven that Ky is dense in O_{l-1}. Then
\[
Ky = K_2y = K_2Ky = K_2O_{l-1}y.
\]
Thus Ky is dense in K_2O_{l-1}. Similarly, K_2O_{l-1} is dense in $K_1K_2O_{l-1} = O_l$. \hfill \Box

Notation 3.5.2.

- Let Y denote the symmetric space G/H, and Z' denote the image of Z in Y.
- For a simple root $\alpha \in \Delta$, denote by $P_\alpha \subset G$ the parabolic subgroup whose Lie algebra is $g_{-\alpha} \oplus b$.

Lemma 3.5.3. Let $x \in Z'$. Then there exists a simple root $\alpha \in \Delta$ such that $g_{-\alpha}x \not\subseteq bx$.

Proof. Assume the contrary. Then for any $\alpha \in \Delta$, $T_xP_\alpha x = T_xBx$. Thus Bx is Zariski dense in $P_\alpha x$. By Lemma 3.5.1 this implies that Bx is dense in Y, which contradicts the condition $x \in Z'$. \hfill \Box

Proof of Lemma 3.5.3. Note that O_{α} is invariant with respect to the right action of H. Let O'_{α} denote the image of O' in Y, and let $O'_{\alpha'}$ denote the image of $O_{\alpha'}$ in Y. Choose $x \in O'_{\alpha'}$ and let $a : B \to O'$ denote the action map. It is enough to show that $a^{-1}(O'_{\alpha}) \neq B$.

By Lemma 3.5.3 we can choose $\alpha \in \Delta$ such that $g_{-\alpha}x \not\subseteq bx$. For any $\varepsilon > 0$ there exists $t \in T$ s.t. $\alpha(t) = 1$ and $\forall \beta \neq \alpha \in \Delta$ we have $|\beta(t)| < \varepsilon$. It is easy to see that for ε small enough, $t \notin p^{-1}(O'_{\alpha})$. \hfill \Box

References

[AG90] A. Aizenbud, D. Gourevitch, Multiplicity one theorem for $(GL_{n+1}(\mathbb{R}), GL_n(\mathbb{R}))$, Selecta Mathematica, 15/2, pp. 271-294 (2009). See also arXiv:0808.2729 [math.RT].
[AGK] A. Aizenbud, D. Gourevitch, A. Kemarsky Vanishing of certain equivariant distributions on p-adic spherical spaces, preprint available at http://www.wisdom.weizmann.ac.il/~dimagur/Publication_list.html.
[AGS] A. Aizenbud, D. Gourevitch, E. Sayag: Finite distributions on p-adic groups, preprint available at http://www.wisdom.weizmann.ac.il/~dimagur/Publication_list.html.
[Aiz13] A full analog of integrability theorem for distributions on p-adic spaces and applications, Israel Journal of Mathematics (2013), 193, Issue 1, pp 233-262. See also arXiv:0811.2768 [math.RT].
[Gab81] O. Gabber, The integrability of the characteristic variety. Amer. J. Math. 103/3 (1981).
[GKS71] V. Guillemin, D. Quillen, S. Sternberg, The integrability of characteristics. Comm. Pure Appl. Math. 23/1 (1970).
[JSZ11] D. Jiang, B. Sun, and C.-B. Zhu: Uniqueness of Ginzburg-Rallis models: the Archimedean case, Transactions of the AMS, 363, n. 5, (2011), 2763-2802.
[KKS73] M. Kashiwara, T. Kawai, and M. Sato, Hyperfunctions and pseudo-differential equations (Katata, 1971), pp. 265–529, Lecture Notes in Math., 287, Springer, Berlin, 1973.
[LM] E. Lapid, Z. Mao: On Whittaker - Fourier coefficients of automorphic forms on \mathbb{S}_n, preprint available at http://www.math.huji.ac.il/~erezla/papers/master010413.pdf.
[Mal78] B. Malgrange: L’invariantiante des caracteristiques des systemes differentiels et microdifferentiels Séminaire Bourbaki 38th Année (1977/78), Exp. No. 522, Lecture Notes in Math., 710, Springer, Berlin, 1979.
[Sha74] J.A. Shalika: Multiplicity one theorem for GL_n, Ann. Math. 100 (1974), 171-193.
Avraham Aizenbud, Faculty of Mathematics and Computer Science, Weizmann Institute of Science, POB 26, Rehovot 76100, Israel
E-mail address: aizenr@gmail.com
URL: http://www.wisdom.weizmann.ac.il/~aizenr/

Dmitry Gourevitch, Faculty of Mathematics and Computer Science, Weizmann Institute of Science, POB 26, Rehovot 76100, Israel
E-mail address: dimagur@weizmann.ac.il
URL: http://www.wisdom.weizmann.ac.il/~dimagur