RESIDUE CURRENTS AND FUNDAMENTAL CYCLES

RICHARD LÄRKÄNG & ELIZABETH WULCAN

ABSTRACT. We give a factorization of the fundamental cycle of an analytic space in terms of certain differential forms and residue currents associated with a locally free resolution of its structure sheaf. Our result can be seen as a generalization of the classical Poincaré-Lelong formula. It is also a current version of a result by Lejeune-Jalabert, who similarly expressed the fundamental class of a Cohen-Macaulay analytic space in terms of differential forms and cohomological residues.

1. Introduction

Given a holomorphic function f on a complex manifold X, recall that the classical Poincaré-Lelong formula asserts that $\overline{\partial} \log |f|^2 = 2\pi i [Z]$, where $[Z]$ is the current of integration (or Lelong current) of the divisor Z of f, counted with multiplicities, or, more precisely, (the current of integration of) the fundamental cycle of Z. Formally we can rewrite the Poincaré-Lelong formula as

$$\frac{1}{2\pi i} \overline{\partial} \frac{1}{f} \wedge df = [Z].$$

This factorization of $[Z]$ can be made rigorous if we construe $\overline{\partial}(1/f)$ as the residue current of $1/f$, introduced by Dolbeault, [D], and Herrera and Lieberman, [HL], and defined, e.g., as

$$\lim_{\epsilon \to 0} \overline{\partial} \chi \left(\frac{|f|^2}{\epsilon} \right) \frac{1}{f},$$

where $\chi(t)$ is (a smooth approximand of) the characteristic function of the interval $[1, \infty)$. The current $\overline{\partial}(1/f)$ satisfies that a holomorphic function g on X is in the ideal (sheaf) $\mathcal{J}(f)$ generated by f if and only if $g \overline{\partial}(1/f) = 0$. This is referred to as the duality principle and it is central to many applications of residue currents; in a way $\overline{\partial}(1/f)$ can be thought of as a current representation of the ideal $\mathcal{J}(f)$. In this paper we prove that (the current of integration along) the fundamental cycle of any analytic space admits a natural factorization as a smooth “Jacobian” factor times a residue current, analogous to $[\mathbb{L}]$. More precisely, we consider global analytic subspaces $Z \subset X$, such that \mathcal{O}_Z has a global locally free resolution over \mathcal{O}_X. For example, this is the case for any Z if X is projective. If X is Stein, then any Z has a semi-global resolution, i.e., it has a free resolution on every compact in X.

Date: May 28, 2015.
The authors were supported by the Swedish Research Council.
Let \(Z \subset X \) be a (not necessarily reduced) analytic space. The \textit{fundamental cycle} of \(Z \), seen as a current on \(X \), is the current
\begin{equation}
[Z] = \sum m_i [Z_i],
\end{equation}
where \(Z_i \) are the irreducible components of \(Z_{\text{red}} \), \([Z_i]\) are the currents of integration of the (reduced) subspaces \(Z_i \), and \(m_i \) are the geometric multiplicities of \(Z_i \) in \(Z \).

For generic \(z \in Z_i \), \(O_{Z,z} \) is a free \(O_{Z_i,z} \)-module of constant rank. One way of defining the \textit{geometric multiplicity} \(m_i \) of \(Z_i \) in \(Z \) is as this rank. Equivalently \(m_i \) can be defined as the length of the Artinian ring \(O_{Z_i,z} / \mathfrak{I} \), see, e.g., [F] Chapter 1.5. The equivalence of the two definitions can be proved with the help of [F] Lemma 1.7.2. If \(Z_{\text{red}} = \{ z \} \) is a point, and \(Z \) is defined by an ideal sheaf \(\mathcal{I} \), i.e., \(O_Z = O_X / \mathcal{I} \), then the geometric multiplicity of \((Z_{\text{red}} \text{ in} Z) \) is \(\dim \mathfrak{I} O_{X,z} / \mathcal{I} Z \). If \(\dim Z_i = p > 0 \), then for generic \(z \in Z_i \) and \(H \subset X \) a smooth manifold transversal to \((Z_i, z) \), \(m_i = \dim \mathfrak{I} O_{X,z} / (\mathcal{I} + \mathcal{I}_H) z \), where \(\mathcal{I}_H \) is the ideal of holomorphic functions vanishing on \(H \).

Assume that
\begin{equation}
0 \to E_p \xrightarrow{\varphi_p} E_{p-1} \xrightarrow{\varphi_{p-1}} \cdots \xrightarrow{\varphi_1} E_1 \xrightarrow{\varphi_1} E_0,
\end{equation}
is a locally free resolution of \(O_Z \) over \(O_X \), i.e., an exact complex of locally free \(O_X \)-modules such that \(\text{coker } \varphi_1 \cong O_Z \). If the corresponding vector bundles are equipped with Hermitian metrics we say that \((E, \varphi)\) is a \textit{Hermitian locally free resolution} of \(O_Z \) over \(O_X \). Given such an \((E, \varphi)\), in [AW1] Andersson and the second author constructed an \(\text{End}_E \)-valued, where \(E = \bigoplus E_k \), residue current \(R^E = \sum R^E_k \), where \(R^E_k \) takes values in \(\text{Hom} (E_0, E_k) \). This current satisfies a duality principle and it has found many applications; e.g., it has been used to obtain new results on the \(\bar{\partial} \)-equation on singular varieties, [AS], and a global effective Briançon-Skoda-Huneke theorem, [AW3].

In general, the construction of \(R^E \) involves minimal inverses of the mappings \(\varphi_k \). If \(f \) is a holomorphic function in \(X \) and \(E_0 \cong O_X \) and \(E_1 \cong O_X \) are trivial line bundles, then
\begin{equation}
0 \to O_X \xrightarrow{\varphi_1} O_X,
\end{equation}
where \(\varphi_1 = [f] \), gives a locally free resolution of \(O_Z := O / \mathcal{I} (f) \). In this case (the coefficient of) \(R^E = R^1 \) is just \(\bar{\partial} (1/f) \), and the Poincaré-Lelong formula (1.4) can be written as
\begin{equation}
\frac{1}{2\pi i} d\varphi R^1 = [Z].
\end{equation}

Our main result is the following generalization of (1.5).

\textbf{Theorem 1.1.} Let \(Z \subset X \) be an analytic space of pure codimension \(p \), let \((E, \varphi)\) be a Hermitian locally free resolution of \(O_Z \) over \(O_X \), where \(\text{rank } E_0 = 1 \), and let \(D \) be the connection on \(\text{End}_E \) induced by connections on \(E_0, \ldots, E_p \). Then
\begin{equation}
\frac{1}{(2\pi i)^p p!} D \varphi_1 \cdots D \varphi_p R^E_p = [Z].
\end{equation}

1 The relation between the signs in (1.1) and (1.5) is explained in Section 2.6.

2 The connection \(D \) is defined by (2.4).
Various special cases of Theorem 1.1 and related results have been proved earlier. Assume that Z is a complete intersection of codimension p, i.e., $\mathcal{O}_Z = \mathcal{O}_X / \mathcal{I}$, where \mathcal{J} is a complete intersection ideal, generated by, say, $f = (f_1, \ldots, f_p)$. Then one can give a natural meaning to the product $\bar{\partial}(1/f_p) \wedge \cdots \wedge \bar{\partial}(1/f_1)$, as was first done by Coleff and Herrera in [CH]. They also proved that this so-called Coleff-Herrera product satisfies the following generalization of the Poincaré-Lelong formula (1.1):

\begin{equation}
\frac{1}{(2\pi i)^p} \bar{\partial} \frac{1}{f_p} \wedge \cdots \wedge \bar{\partial} \frac{1}{f_1} \wedge df_1 \wedge \cdots \wedge df_p = [Z].
\end{equation}

Let (E, φ) be the Koszul complex of f; more precisely, let F be a trivial bundle of rank m with global frame e_1, \ldots, e_m, let $E_k = \Lambda^k F$, with frames $e_f = e_1 \wedge \cdots \wedge e_k$, and let $\varphi_k = \delta_f$ be contraction with $\sum f_j e_f^j$. Then the corresponding sheaf complex is a free resolution of \mathcal{O}_Z and

\begin{equation}
R_p^E = \bar{\partial} \frac{1}{f_p} \wedge \cdots \wedge \bar{\partial} \frac{1}{f_1} \wedge e_{\{1, \ldots, p\}} \wedge e_0^*,
\end{equation}

where e_0 is frame of $\Lambda^0 E$, as was proven in [PTY, Theorem 4.1] and [A1, Theorem 1.7].

If we assume that D is trivial with respect to the frames e_f, then

\[D \varphi_1 \cdots D \varphi_p p! df_1 \wedge \cdots \wedge df_p e^*_0 \wedge e_{\{1, \ldots, p\}}, \]

see Example 2.2. Thus the left-hand side of (1.6) equals the left-hand side of (1.7), and so we get back (1.7).

In [DP] Demailly-Passare extended (1.7) to the case when Z is a locally complete intersection, cf. Remark 4.3, and this result was further extended by Andersson in [A2]. Assume that $f = (f_1, \ldots, f_m)$ is a tuple of holomorphic functions or more generally that f is a section of a Hermitian vector bundle F of rank m, and let Z be the corresponding analytic space, defined by $\mathcal{O}_Z = \mathcal{O}_X / \mathcal{J}(f)$, where $\mathcal{J}(f) = \mathcal{J}(f_1, \ldots, f_m)$ is the ideal sheaf defined by f. Furthermore let (E, φ) be the Koszul complex of f, which is pointwise exact (as a vector bundle complex) outside Z_{red}; then the corresponding sheaf complex is exact if and only if $m = p$, where $p = \text{codim } Z$. However, the construction of residue currents R_p^E in [A1, AW1] in fact only requires (1.4) to be generically pointwise exact. The main theorem in [A2], which is a variant of King’s formula, states that if D is the connection induced by the Chern connection on F, then

\begin{equation}
\frac{1}{(2\pi i)^p} D \varphi_1 \cdots D \varphi_p R_p^E = \sum \alpha_i [Z_i],
\end{equation}

where Z_i are the (irreducible) components of Z_{red} and α_i are the corresponding algebraic (or Hilbert-Samuel) multiplicities, see, e.g., [F, Chapter 4.3]. If Z is a locally complete intersection, the algebraic multiplicities coincide with the geometric multiplicities of Z, see, e.g., [F, Example 4.3.5], and thus (1.9) coincides with (1.6).

3 In fact, in [PTY] it was proved that $\bar{\partial}(1/f_p) \wedge \cdots \wedge \bar{\partial}(1/f_1)$ equals the so-called Bochner-Martinelli residue current of f, which by [A3] is the coefficient of R^E (i.e., the current in front of $e_{\{1, \ldots, p\}} \wedge e^*_0$).

4 Again we refer to Section 2.6 for the signs.
In [A4, Example 1] Andersson showed that if \(Z \) and \((E, \varphi)\) are as in Theorem 1.1 and moreover \(Z \) is reduced, then there exists some holomorphic \(\text{Hom}(E_p, E_0) \)-valued form \(\xi \) such that \(\xi R_p^E = [Z] \); in fact, the arguments go through also when \(Z \) is not reduced. Our Theorem 1.1 thus states that \((1/(2\pi i)^p)p!D\varphi_1 \cdots D\varphi_p \) is an explicit such \(\xi \).

In previous works, [LW] and [W], we proved Theorem 1.1 for certain resolutions of monomial ideals by explicitly computing the residue currents \(R_p^E \) and the Jacobian factors \(D\varphi_1 \cdots D\varphi_p \), respectively; see [LW, equation (7.4)] (dimension 2) and [W, Corollary 1.2].

Another result that is closely related to ours, although not formulated in terms of residue currents, is a cohomological version of Theorem 1.1 in the Cohen-Macaulay case due to Lejeune-Jalabert, [LJ1]. Given a free resolution \((E, \varphi)\) of \(O_{Z,z} \) of minimal length, where \(Z \) is a Cohen-Macaulay analytic space, she constructed a generalization of the Grothendieck residue pairing, which in a sense is a cohomological version of the current in [AW1], and proved that the fundamental class of \(Z \) at \(z \) then is represented by \(D\varphi_1 \cdots D\varphi_p \). In Section 6 we describe this in more details and also discuss the relation to our results. The relationship between Lejeune-Jalabert’s residue pairing and the residue currents in [AW1] will be elaborated in [LA3], see also [Lu1, Lu2].

To be precise, the current in the left-hand side of (1.6) takes values in \(\text{End}(E_0) \). However, since \(E_0 \) has rank 1, it is naturally identified with a scalar-valued current. In fact, it is possible to drop the assumption that \(\text{rank } E_0 = 1 \), but to make sense to (1.6) we then need to turn the \(\text{End}(E_0) \)-valued current

\[
\Theta := \frac{1}{(2\pi i)^p p!} D\varphi_1 \cdots D\varphi_p R_p^E
\]

into a scalar-valued current. We will describe two natural ways of doing this. The first one is to take the trace \(\text{tr} \Theta \) of \(\Theta \). Secondly, let \(\tau \) be the natural surjection \(\tau : E_0 \to \text{coker } \varphi_1 \cong O_Z \). Since \(R_p^E \varphi_1 = 0 \), see (2.7) below, one gets a well-defined Hom \((O_Z, E_p) \)-valued current \(R_p^E \tau^{-1} \) by (locally) letting \(R_p^E \tau^{-1} f := R_p^E f_0 \) for any section \(f_0 \) of \(E_0 \) such that \(\tau f_0 = f \). It follows that \(\tau \Theta \tau^{-1} \) is a well-defined \(\text{End}(O_Z) \)-valued current, which can be identified with a scalar-valued current (annihilated by \(J \), where \(J \subset O_X \) is the ideal defining \(Z \)). Note that if \(\text{rank } E_0 = 1 \), then \(\text{tr} \Theta \) and \(\tau \Theta \tau^{-1} \) coincide with \(\Theta \) (regarded as scalar currents).

Theorem 1.2. Let \(Z \subset X \) be an analytic space of pure codimension \(p \), let \((E, \varphi) \) be a Hermitian locally free resolution of \(O_Z \) over \(O_X \), and let \(D \) be the connection on \(\text{End}E \) induced by connections on \(E_0, \ldots, E_p \). Then

\[
(1.10) \quad \frac{1}{(2\pi i)^p p!} \text{tr} (D\varphi_1 \cdots D\varphi_p R_p^E) = [Z]
\]

and

\[
(1.11) \quad \frac{1}{(2\pi i)^p p!} \tau D\varphi_1 \cdots D\varphi_p R_p^E \tau^{-1} = [Z],
\]

where \(\tau \) is the natural surjection \(\tau : E_0 \to \text{coker } \varphi_1 \cong O_Z \).
In view of the discussion above, note that Theorem 1.1 is just a special case of Theorem 1.2.

The proof of Theorem 1.2 is given in Section 4. The first key ingredient are two lemmas, Lemmas 4.1 and 4.2, which assert that the left-hand sides of (1.10) and (1.11), respectively, only depend on Z and not on the choice of (E, ϕ) or D. In particular, it follows that the left-hand side of (1.10) coincides with the left-hand side of (1.11), cf. (4.15). Thus, to prove Theorem 1.2 it is enough to prove (1.10) for a specific choice of resolution and connection. The proofs of Lemmas 4.1 and 4.2 rely on a comparison formula for residue currents due to the first author, [La2], see Section 2.5.

By the dimension principle, Proposition 2.1, for so-called pseudomeric currents, see Section 2.1, it suffices to prove (1.10) generically on Z_{red} (i.e., outside a hypersurface of Z_{red}). For z generically on Z_{red} we can use a certain universal free resolution of $\mathcal{O}_{Z,z}$, based on a construction by Scheja and Storch, [SS], and Eisenbud, Riemenschneider and Schreyer, [ERS]; this is described in Section 3. The inspiration to use this universal free resolution comes from [LJ1]. The resolution is in general far from being minimal, in particular, $\text{rank } E_0 > 1$ in general, but it is explicit enough so that we can explicitly compute (1.10), see Lemma 4.5.

In Theorems 1.1 and 1.2 we assume that Z has pure codimension, or, equivalently, pure dimension. In fact, for the proofs we only need that Z has pure dimension in the weak sense that all irreducible components of Z_{red} have the same dimension, in other words, all minimal primes of \mathcal{J} have the same dimension. In particular, we allow \mathcal{J} to have embedded primes.

Example 1.3. Let $Z \subset \mathbb{C}^2$ be defined by $\mathcal{J} = \mathcal{J}(y^k, x^m y^m) \subset \mathcal{O}_{\mathbb{C}^2}$, where $m < k$. Then Z has pure dimension, since Z_{red} equals $\{y = 0\}$, which is irreducible. However, note that \mathcal{J} has an embedded prime $\mathcal{J}(x, y)$ of dimension 0.

Example 1.4. Let $Z \subset \mathbb{C}^3$ be defined by $\mathcal{J} = \mathcal{J}(xz, yz) \subset \mathcal{O}_{\mathbb{C}^3}$. Then Z does not have pure dimension, since its irreducible components $\{z = 0\}$ and $\{x = y = 0\}$ have dimension 2 and 1, respectively.

We get a version of Theorem 1.1 also when Z does not have pure dimension, without much extra work. However, the formulation becomes slightly more involved. Since the residue currents R_k^E are pseudomermorphic, see Section 2.1 it follows that one can give a natural meaning to the restrictions $1_W R_k^E$ if W is a subvariety of X.

Theorem 1.5. Let $Z \subset X$ be an analytic space. Assume that $\dim X = N$ and $\text{codim } Z = p$. Let (E, ϕ) be a Hermitian locally free resolution of \mathcal{O}_Z over \mathcal{O}_X, where $\text{rank } E_0 = 1$, and let D be the connection on $\text{End} E$ induced by connections on E_0, \ldots, E_p. Let W_k be the union of the components of Z_{red} of codimension k, and define $R_{[k]} := 1_W R_k^E$. Then,

$$
\sum_{k=p}^N \frac{1}{(2\pi i)^k k!} D\phi_1 \cdots D\phi_k R_{[k]} = [Z].
$$
Remark 1.6. As in Theorem 1.2 we could drop the assumption that rank $E_0 = 1$. Using the notation from above, we get
\[
\sum_{k=p}^{N} \frac{1}{(2\pi i)^k k!} \text{tr}(D\varphi_1 \cdots D\varphi_k R_{[k]}) = \sum_{k=p}^{N} \frac{1}{(2\pi i)^k k!} \tau D\varphi_1 \cdots D\varphi_k R_{[k]} \tau^{-1} = [Z],
\]
see Remark 4.7.

It is natural to also consider the “full” currents $D\varphi_1 \cdots D\varphi_k R_k$ and it would be interesting to investigate whether they may capture geometric or algebraic information (in addition to the fundamental cycle). In Section 5 we compute the current $D\varphi_1 D\varphi_2 R^E_2$ for a Hermitian resolution of Z from Example 1.3. We also illustrate Theorem 1.5 by explicitly computing the currents in (1.12) in the situation of Example 1.4.

Acknowledgement: We would like to thank Mats Andersson and Håkan Samuelsson Kalm for valuable discussions on the topic of this paper.

2. Preliminaries

Throughout this paper X will be a complex manifold of dimension N, and $\chi(t)$ will be (a smooth approximand of) the characteristic function of the interval $[1, \infty)$. Let f be a holomorphic function on X or, more generally, a holomorphic section of a line bundle over X. Then there is an associated principal value current $1/f$, [DHL], defined, e.g., as the limit
\[
\lim_{\varepsilon \to 0} \chi(|f|^2/\varepsilon) \frac{1}{f}.
\]
The associated residue current is defined as $\bar{\partial}(1/f)$, cf. (1.2).

2.1. Pseudomeromorphic currents. Following [AW2] we say that a current of the form
\[
\frac{1}{z_1^{a_1}} \cdots \frac{1}{z_k^{a_k}} \bar{\partial} \frac{1}{z_{k+1}^{a_{k+1}}} \wedge \cdots \wedge \bar{\partial} \frac{1}{z_m^{a_m}} \wedge \xi,
\]
where z_1, \ldots, z_N is a local coordinate system and ξ is a smooth form with compact support, is an elementary current. Moreover a current on a X is said to be pseudomeromorphic if it can be written as a locally finite sum of push-forwards of elementary currents under compositions of modifications, open inclusions, or projections.\(^5\)

Note that if T is pseudomeromorphic, then so is $\bar{\partial} T$.

The sheaf of pseudomeromorphic currents, denoted \mathcal{PM}, was introduced to obtain a coherent approach to questions concerning principal and residue currents; in fact, all principal value and residue currents in this paper are pseudomeromorphic. It follows from, e.g., [A2] that currents of integration along analytic subvarieties $W \subset X$ are pseudomeromorphic.

In many ways pseudomeromorphic currents behave like normal currents, i.e., currents T such that T and dT are of order 0. In particular, they satisfy the following dimension principle, [AW2] Corollary 2.4.

\(^5\)In [AW2] only modifications were allowed. This more general class of pseudomeromorphic currents appeared in [AS].
Proposition 2.1. If $T \in PM(X)$ is a (p,q)-current with support on a subvariety $W \subset X$, and $\text{codim } W > q$, then $T = 0$.

Moreover, pseudomeromorphic currents admit natural restrictions to analytic subvarieties, see \cite[Section 3]{AW2} and also \cite[Lemma 3.1]{AW4}. If $T \in PM(X)$, $W \subset X$ is a subvariety of X, and h is a tuple of holomorphic functions such that $W = \{ h = 0 \}$, the restriction $1_W T$ can be defined, e.g., as

$$1_W T := \lim_{\epsilon \to 0^+} (1 - \chi(|h|/\epsilon)) T.$$

This definition is independent of the choice of χ and the tuple h, and $1_W T$ is a pseudomeromorphic current with support on W. If $1_W T = 0$ for all subvarieties $W \subset X$ of positive codimension, then T is said to have the standard extension property, SEP.

2.2. Almost semi-meromorphic currents. Following \cite{AS} we say that a (pseudomeromorphic) current A is almost semi-meromorphic, $A \in ASM(X)$, if there is a modification $\pi : X' \to X$ such that $A = \pi_* (\omega/f)$, where f is a holomorphic section of a line bundle $L \to X'$ that does not vanish identically on X' and ω is a smooth form with values in L. This section is based on \cite[Section 4]{AW4}.

Since semi-meromorphic currents (i.e., currents of the form ω/f) have the SEP, it follows that almost semi-meromorphic currents have the SEP as well. In particular, if a smooth form α, a priori defined outside a subvariety $W \subset X$, has an extension as a current $A \in ASM(X)$, then A is unique. Moreover, $A = \lim_{\epsilon \to 0} \chi(|h|/\epsilon) \alpha$, where h is any (tuple of) holomorphic function(s) that vanishes on W. We will sometimes be sloppy and use the same notation for the smooth form α and its extension.

It follows from the definition that $A \in ASM(X)$ is smooth outside a proper subvariety of X. Following \cite{AW4} we let the Zariski singular support of a be the smallest Zariski-closed set W such that A is smooth outside W. If $A, B \in ASM(X)$, there is a unique current $A \land B \in ASM(X)$ that coincides with the smooth form $A \land B$ outside the Zariski singular supports of A and B.

Assume that $A \in ASM(X)$ has Zariski singular support W. Then

$$\partial A = B + R(A),$$

where $B = 1_{X \setminus W} \partial A$ is the almost semi-meromorphic continuation of the form ∂A and $R(A) = 1_W \partial A$ is the residue of A, see \cite[Section 4.1]{AW4}. Note that $\partial(1/f) = R(1/f)$. If A is the principal value current $A = \lim_{\epsilon \to 0} \chi(|h|/\epsilon) \alpha$, then $R(A) = \lim_{\epsilon \to 0} \partial \chi(|h|/\epsilon) \land \alpha$. For further reference also note that if ω is smooth, then

$$R(\omega \land A) = (-1)^{\text{deg } \omega} \omega \land R(A).$$

2.3. Superstructure. Let

$$0 \to E_0 \xrightarrow{\varphi_0} E_{-1} \xrightarrow{\varphi_{-1}} \cdots \xrightarrow{\varphi_2} E_1 \xrightarrow{\varphi_1} E_0$$

be a complex of locally free \mathcal{O}_X-modules. Then $E := \bigoplus E_k$ has a natural superstructure, i.e., a \mathbb{Z}_2-grading, which splits E into odd and even elements.
E^+ and E^-, where $E^+ = \bigoplus E_{2k}$ and $E^- = \bigoplus E_{2k+1}$. Also $\text{End} E$ gets a superstructure by letting the even elements be the endomorphisms preserving the degree, and the odd elements the endomorphisms switching degrees.

We let \mathcal{E} and \mathcal{E}^\bullet denote the sheaves of smooth functions and forms, respectively, on X and we let $\mathcal{E}^\bullet(E) = \mathcal{E}^\bullet \otimes_\mathcal{E} \mathcal{E}(E)$ and $\mathcal{E}^\bullet(\text{End} E) = \mathcal{E}^\bullet \otimes_\mathcal{E} \mathcal{E}(\text{End} E)$ be the sheaves of form-valued sections of E and $\text{End} E$, respectively. Given a section $\gamma = \omega \otimes \eta$, where ω is a smooth form and η is a smooth section of E or $\text{End} E$, we let $\deg f \gamma := \deg \omega$ and $\deg e \gamma := \deg \eta$. Then $\mathcal{E}^\bullet(E)$ and $\mathcal{E}^\bullet(\text{End} E)$ inherit superstructures by letting $\deg \gamma := \deg f \gamma + \deg e \gamma$. Both $\mathcal{E}^\bullet(E)$ and $\mathcal{E}^\bullet(\text{End} E)$ are naturally left \mathcal{E}^\bullet-modules. We make them into right \mathcal{E}^\bullet-modules by letting

\[
\gamma \omega = (-1)^{(\deg \gamma)(\deg \omega)} \omega \gamma,
\]

where ω is a smooth form, and γ is a section of $\mathcal{E}^\bullet(E)$ or $\mathcal{E}^\bullet(\text{End} E)$. Moreover, if $\beta = \alpha \otimes \xi$ and $\gamma = \omega \otimes \eta$, $\gamma' = \omega' \otimes \eta'$ are sections of $\mathcal{E}^\bullet(E)$ and $\mathcal{E}^\bullet(\text{End} E)$, respectively, we let

\[
\gamma(\beta) = (-1)^{(\deg \gamma)(\deg \beta)} \omega \wedge \alpha \otimes \eta(\xi),
\]

\[
\gamma \gamma' = (-1)^{(\deg \gamma)(\deg \gamma')} \omega \wedge \omega' \otimes \eta' \eta'.
\]

Note that if $\gamma = \alpha \otimes \text{Id}$ then $\gamma \beta = \alpha \beta = \alpha \gamma'$, and $\gamma \gamma' = \gamma' \alpha$, cf. (2.2). Thus we can regard a form α as a (form-valued) endomorphism. Moreover, we have the following associativity: $\gamma(\gamma') \beta = \gamma(\beta')$ and $\gamma \gamma' \gamma'' = \gamma(\gamma' \gamma'')$ if γ'' is a section of $\mathcal{E}^\bullet(\text{End} E)$. Analogously the sheaves $\mathcal{C}^\bullet(E) = \mathcal{C}^\bullet \otimes_\mathcal{E} \mathcal{E}(E)$ and $\mathcal{C}^\bullet(\text{End} E) = \mathcal{C}^\bullet \otimes_\mathcal{E} \mathcal{E}(\text{End} E)$ of current-valued sections of E and $\text{End} E$, respectively, inherit superstructures. Note that (2.1) holds also for E^\bullet-valued smooth forms ω and almost semi-meromorphic currents A if now $\deg \omega$ denotes the total degree.

If E_0, \ldots, E_ν (considered as vector bundles) are equipped with connections $D_{E_0}, \ldots, D_{E_\nu}$, and D_E is the connection $\bigoplus D_{E_i}$ on E, we equip $\text{End} E$ with the induced connection D_{End} defined by

\[
D_{\text{End}}(\gamma(\xi)) = D_{\text{End}}(\gamma)\xi + (-1)^{\deg \gamma} \gamma(D_E \xi),
\]

where ξ is a section of $\mathcal{E}^\bullet(E)$ and γ is a section of $\mathcal{E}^\bullet(\text{End} E)$. It is then straightforward to verify that for arbitrary sections γ, γ' of $\mathcal{E}^\bullet(\text{End} E)$,

\[
D_{\text{End}}(\gamma \gamma') = D_{\text{End}} \gamma \gamma' + (-1)^{\deg \gamma} D_{\text{End}} \gamma'.
\]

Moreover, note that if $\gamma = \alpha \otimes \text{Id}$, then $D_{\text{End}} \gamma = d\alpha$, so, again, we can regard a form α as (form-valued) endomorphism.

Throughout this paper we will use the sign conventions associated with this superstructure, cf. Section 2.6.

Example 2.2. We consider the situation when (E, φ) is the Koszul complex $(K, \phi) = (\wedge \mathcal{O}_X^{\leq p}, \delta_f)$ associated to a tuple (f_1, \ldots, f_p) of holomorphic functions, and e_1, \ldots, e_p is the standard basis of $\mathcal{O}_X^{\leq p}$ so that δ_f is contraction with $f = f_1 e_1^* + \cdots + f_p e_p^*$, see Section 3.2. If we assume that D is trivial with respect to the induced bases $\omega^{\alpha_f} e_I$ of (K, ϕ), then $D\delta_f$ is contraction with $df_1 \wedge e_1^* + \cdots + df_p \wedge e_p^*$. As $df_1 \wedge e_1^*$ is even, we thus get that $D\phi_1 \cdots D\phi_p$
Let \mathcal{G} be a coherent sheaf on X of codim $p > 0$ with a Hermitian locally free resolution (E, φ), i.e., a locally free resolution where the corresponding vector bundles are equipped with Hermitian metrics, cf. the introduction. Let W denote the support of \mathcal{G}. In [AW1] Andersson and the second author defined a $(\Hom(E_0, E)$-valued) current R^E associated with (E, φ), that satisfies that if α is a section of E_0, then $R^E \alpha = 0$ if and only if α belongs to $\text{im} \varphi_1$, [AW1] Theorem 1.1; this can be seen as a duality principle. In particular,

$$R^E_p \varphi_1 = 0. \tag{2.7}$$

We will write $R^E = \sum R^E_k$, where R^E_k is the part of R^E which takes values in $\Hom(E_0, E_k)$.

For further reference let us briefly describe this construction, for details we refer to [AW1]. Given a locally free resolution (E, φ), there are associated sets

$$\cdots Z^E_{k+1} \subset Z^E_k \subset \cdots \subset Z^E_1 = W,$$

which we will refer to as BEF-varieties. The set Z^E_k is defined as the set where φ_k does not have optimal rank. By uniqueness of minimal free resolutions, these sets are in fact independent of the choice of (E, φ), and indeed only depend on G.

Outside of Z^E_k, let $\sigma_k^E : E_{k-1} \to E_k$ be the minimal right inverse of φ_k. Then σ_k^E is smooth outside Z^E_k and it turns out that it has an extension as an almost semi-meromorphic current, and, using the notation from [AW4],

$$R^E_k = R(\sigma_k^E \partial \sigma_{k-1}^E \cdots \partial \sigma_1^E).$$

Clearly R^E_k has support on W and thus $R^E_k = 0$ if $k < p$ by the dimension principle, Proposition 2.1.

It follows from the construction that R^E is ∇-closed, where $\nabla = \varphi - \partial$, i.e., $\varphi_k R^E_k - \partial R^E_{k-1} = 0$ for all k, [AW1] Proposition 2.1]. In particular,

$$\varphi_p R^E_p = 0. \tag{2.8}$$

2.5. A comparison formula for residue currents. Let $\alpha : H \to G$ be a homomorphism of finitely generated $\mathcal{O}_{X,\mathcal{L}}$-modules, and let (F, ψ) and (E, φ) be free resolutions of H and G respectively. We say that a morphism of complexes $a : (F, \psi) \to (E, \varphi)$ extends α if the map $\text{coker} \psi_1 \cong H \to G \cong \text{coker} \varphi_1$ induced by a_0 equals α.

Proposition 2.3. Let $\alpha : H \to G$ be a homomorphism of finitely generated $\mathcal{O}_{X,\mathcal{L}}$-modules, and let (F, ψ) and (E, φ) be free resolutions of H and G respectively. Then, there exists a morphism $a : (F, \psi) \to (E, \varphi)$ of complexes which extends α.

is contraction with

$$(df_1 \wedge e_1^* + \cdots + df_p \wedge e_p^*)^p = p! \; df_1 \wedge e_1^* \wedge \cdots \wedge df_p \wedge e_p^* = p! \; df_1 \wedge \cdots \wedge df_p \wedge e_{1,\ldots,p}^*,$$

i.e.,

$$(2.6) \quad D\varphi_1 \cdots D\varphi_p = p! \; df_1 \wedge \cdots \wedge df_p \wedge e_0 \wedge e_{1,\ldots,p}^*.$$
If $\tilde{a} : (F, \psi) \to (E, \varphi)$ is any other such morphism, then there exists a morphism $s_0 : F_0 \to E_1$ such that $a_0 - \tilde{a}_0 = \varphi_1 s_0$.

The existence of a follows from defining it inductively by a relatively straightforward diagram chase, see [E, Proposition A3.13], and the existence of s_0 follows by a similar argument.

In [La2], the residue currents associated with (E, φ) and (F, ψ) are related by the following comparison formula, see [La2, Theorem 3.2], which is a generalization of the transformation law for Coleff-Herrera products, [DS1], see [La2, Remark 3].

Theorem 2.4. Assume that H and G are two finitely generated $\mathcal{O}_{X, \mathcal{E}}$-modules with Hermitian free resolutions (F, ψ) and (E, φ), respectively. If $a : (F, \psi) \to (E, \varphi)$ is a morphism of complexes, then
\begin{equation}
R^E a_0 - a R^F = \nabla M
\end{equation}
where M is the $\text{Hom}(F_0, E_1)$-valued current
\begin{equation}
M = R\left(\sum_{1 \leq k < \ell \leq \nu} \sigma^E_k \partial \sigma^F_{\ell-1} \cdots \partial \sigma^F_{k+1} a_k \sigma^E_k \partial \sigma^F_{k-1} \cdots \partial \sigma^F_1 \right).
\end{equation}

Note that M has support on $V = (\text{supp } H) \cup (\text{supp } G)$. Let M_k denote the $\text{Hom}(F_0, E_k)$-valued component of M. Then M_k has bidegree $(0, k-1)$, and thus vanishes for $k \leq \text{codim } V$ by the dimension principle, Proposition 2.1.

In particular, if H and G have codimension p, then (2.9) implies that (by taking the $\text{Hom}(F_0, E_p)$-valued part)
\begin{equation}
R^E_p a_0 = a_p R^F_p + \varphi_{p+1} M_{p+1}.
\end{equation}
If, in addition, G is Cohen-Macaulay, i.e., it has a free resolution of length p, and (E, φ) is such a resolution, then
\begin{equation}
R^E_p a_0 = a_p R^F_p.
\end{equation}

Lemma 2.5. We use the notation from Theorem 2.4. Assume that H and G have codimension p and moreover that G is Cohen-Macaulay. Then
\begin{equation}
M_{p+1} = -\sigma^E_{p+1} a_p R^F_p,
\end{equation}
where σ_{p+1} is smooth.

Proof. Note that
\begin{equation}
M_{p+1} = R(\sigma^E_{p+1} a_p \sigma^F_p \partial \sigma^F_{p-1} \cdots \partial \sigma^F_1 + \sigma^E_{p+1} \partial \sigma^F_1 \alpha)
\end{equation}
where α is a sum of compositions of morphisms σ^E_\bullet, $\partial \sigma^E_\bullet$ and a_\bullet. Since G is Cohen-Macaulay, Z^E_{p+1} is empty and thus σ^E_{p+1} is smooth. Recall that σ^E_{p+1} is of odd degree and a_p of even degree. Hence
\begin{equation}
R(\sigma^E_{p+1} a_p \sigma^F_p \partial \sigma^F_{p-1} \cdots \partial \sigma^F_1) \sigma^E_{p+1} a_p R(\sigma^E_p \partial \sigma^F_{p-1} \cdots \partial \sigma^F_1) = -\sigma^E_{p+1} a_p R^F_{p+1},
\end{equation}
cf. (2.1). By construction the morphisms σ^E_\bullet satisfy $\sigma^E_{p+1} \sigma^E_1 = 0$ and thus $\sigma^E_{p+1} \partial \sigma^F_1 = \partial \sigma^F_{p+1} \sigma^E_1$. It follows that
\begin{equation}
R(\sigma^E_{p+1} \partial \sigma^F_1 \alpha) = \partial \sigma^E_{p+1} \wedge R(\sigma_\alpha)
\end{equation}
Now $R(\sigma_\alpha)$ is a pseudomeromorphic $(0, p-1)$-current with support on $(\text{supp } H) \cup (\text{supp } G)$, so it is zero by the dimension principle, Proposition 2.1.
\[\square\]
2.6. Matrix notation. For a section γ of $\mathcal{E}^*(\text{End} E)$ (or $\mathcal{C}^*(\text{End} E)$), let $\{\gamma\}$ denote the matrix representing γ in a local frame of E.

From (2.3) it follows that if β and γ are sections of $\mathcal{E}^*(\text{End} E)$, then

$$\{\beta \gamma\} = (-1)^{(\deg \beta)(\deg \gamma)} \{\beta\} \{\gamma\}. \tag{2.12}$$

If we consider the main formula (1.6) as a product of matrices in a local frame, then by repeatedly using (2.12), the formula becomes

$$[Z] = \frac{1}{(2\pi i)^p p!}(-1)^{p(p-1)/2+p^2} \{D\varphi_1 \cdots D\varphi_p\} \{R_p^E\}. \tag{2.13}$$

In [LW], we explicitly computed the current $D\varphi_1 \cdots D\varphi_p R_p^E$, when (E, φ) is a certain free resolution of a 2-dimensional Artinian monomial ideal, by multiplying matrices, and this is the reason for why the constant $C_p = (-1)^{p(p-1)/2+p^2} = (-1)^{\lfloor p/2 \rfloor}$ appeared in [LW] (7.4).

When (E, φ) is the Koszul complex of a tuple (f_1, \ldots, f_p) of holomorphic functions defining a complete intersection ideal $\mathcal{I}(f)$ of codimension p, then

$$\frac{1}{(2\pi i)^p p!} \{D\varphi_1 \cdots D\varphi_p R_p^E\} = \frac{1}{(2\pi i)^p p!}(-1)^{p^2} \{D\varphi_1 \cdots D\varphi_p\} \{R_p^E\} =$$

$$= \frac{1}{(2\pi i)^p}(-1)^{p^2} \frac{1}{f_1} \cdots \frac{1}{f_p} \rightd_{\varphi_1} \cdots \rightd_{\varphi_p} = [Z],$$

where $\mathcal{O}_Z = \mathcal{O}_x/\mathcal{I}(f)$ and where we have used (2.6) and (1.8) in the second equality and the Poincaré-Lelong formula, (1.7), in the last equality.

Assume that β and γ are $\text{Hom} (E_k, E_k)$- and $\text{Hom} (E_k, E_k)$-valued forms, respectively. Using that for $(i \times j)$- and $(j \times i)$-matrices B and C, $\text{tr}(BC) = \text{tr}(CB)$, together with (2.12), one gets that

$$\text{tr}\{\beta \gamma\} = (-1)^{(\deg \beta)(\deg \gamma)} \text{tr} \{(\beta)\{(\gamma)\} =$$

$$= (-1)^{(\deg \beta)(\deg \gamma) + (\deg \beta)(\deg \gamma)} \text{tr} \{(\gamma)\{(\beta)\} =$$

$$= (-1)^{(\deg \gamma)(\deg \gamma) + (\deg \beta)(\deg \gamma) + (\deg \gamma)(\deg \beta)} \text{tr}\{\beta \gamma\}. \tag{2.13}$$

Hence,

$$\text{tr}\{\beta \gamma\} = (-1)^{(\deg \beta)(\deg \gamma) + (\deg \gamma)(\deg \beta)} \text{tr} \{(\beta)\}. \tag{2.13}$$

Note that both (2.12) and (2.13) hold also when either β or γ is a section of $\mathcal{C}^*(\text{End} E)$.

3. Universal free resolutions

A key ingredient in the proof of Theorem 1.2 is a specific universal free resolution of \mathcal{O}_Z, Z for ζ where Z is Cohen-Macaulay. It is in general far from minimal, but on the other hand the construction is explicit. The universal free resolution, which is a Koszul complex over a certain ring A that we describe below, is a special case of a universal free resolution of Cohen-Macaulay ideals due to Scheja and Storch, [SS, p. 87-88], and Eisenbud, Riemenenschneider and Schreyer, [ERS, Theorem 1.1 and Example 1.1], who however do this in an algebraic setting.
Although [SS] and [ERS] consider an algebraic setting, the construction of the associated complex of free modules works also in the analytic setting. This relies on the fact that if \(O_{Z,\xi} \) is Cohen-Macaulay, then it is a free \(O_{W,\xi} \)-module, where \(\pi : Z \to W \) is a Noether normalization and where we for simplicity denote \(\pi(\xi) \) by \(\xi \). The proof that the associated complex of free modules is a resolution of \(O_{Z,\xi} \) will however not work exactly in the same way, but, using analytic tensor product (cf., Section 2 in [ABM]), it should be possible to modify the proof to work also in the analytic setting.

In order to prove Theorem 1.2 it will be enough to have a free resolution generically on \(Z \). Generically on \(Z \), a Noether normalization \(\pi : Z \to W \) is given by the projection to \(W := Z_{\text{red}} \), and one can there describe \(O_{Z,\xi} \) as a free \(O_{W,\xi} \)-module in an explicit way, see Lemma 3.1. In Lemma 1.3 which we use to prove Theorem 1.2 we will use this description of \(O_{Z,\xi} \) as a free \(O_{W,\xi} \)-module. In this case, we can give a direct proof that the construction of [ERS] and [SS] gives indeed a free resolution of \(O_{Z} \); this is Theorem 3.3.

3.1. The ring \(A \). For a tuple \(\alpha = (\alpha_1, \ldots, \alpha_p) \in \mathbb{N}^p \), we use the multi-index notation \(z^\alpha := z_1^{\alpha_1} \cdots z_p^{\alpha_p} \), and, in addition, we let \(|\alpha| := \alpha_1 + \cdots + \alpha_p \).

Lemma 3.1. Let \(X \) be a complex manifold of dimension \(N \), and assume that \(J \subset O_X \) is the defining ideal of an analytic subspace \(Z \) of \(X \), of codimension \(p \), and let \(n = N - p \). Let \(W = Z_{\text{red}} \) and assume that \(\xi \in W_{\text{reg}} \). Assume that we near \(\xi \) have coordinates \((z, w) \in \mathbb{C}^p \times \mathbb{C}^n \) on \(X \), such that \((z, w)(\xi) = 0 \) and that in these coordinates, \(W = \{ z_1 = \cdots = z_p = 0 \} \). Let \(m \) denote the geometric multiplicity of \(W \) in \(Z \) near \(\xi \).

Then there exists a neighbourhood \(U \subset W \) of \(\xi \), a hypersurface \(Y \subset U \), and tuples \(\alpha^1, \ldots, \alpha^m \in \mathbb{N}^p \geq 0 \) such that for \(\xi \in U \setminus Y \), \(O_{Z,\xi} \) is a free \(O_{W,\xi} \)-module with a basis \(z^{\alpha^1}, \ldots, z^{\alpha^m} \). Moreover, the tuples \(\alpha^i \) satisfy \(|\alpha^1| \geq |\alpha^2| \geq \cdots \geq |\alpha^m| \) and if we express any monomial \(z^\gamma \) in terms of the \(z^{\alpha^i} \), \(z^\gamma = \sum f_i(w) z^{\alpha^i} + J \), then for all \(i \) such that \(f_i \neq 0 \), we have that \(|\alpha^i| \geq |\gamma| \).

Note that if one considers a tuple \(\beta \in \mathbb{N}^p \), then, by the last statement of the lemma, we have for each \(j \),

\[
\beta \cdot z^{\alpha^i} = \sum_{i \leq j} f_i(w) z^{\alpha^i} + J,
\]

and if \(\beta \neq 0 \), then the sum can be taken just over \(i < j \).

Proof. By the Nullstellensatz in \(O_{X,\xi} \), we can choose \(\beta_i \) such that \(z_i^{\beta_i} \in J \) for \(i = 1, \ldots, p \). In particular, the finite set of monomials \(z^\alpha \) such that \(\alpha_i < \beta_i \) must generate \(O_{Z,\xi} \) as an \(O_{W,\xi} \)-module. By coherence, these monomials also generate \(O_{Z,\xi} \) as an \(O_{W,\xi} \)-module for \(\xi \) in some neighbourhood \(U \) of \(\xi \) in \(W \).

We let \(\alpha^i \) be an enumeration of the tuples \(\alpha \) with \(\alpha_k < \beta_k \) for \(k = 1, \ldots, p \), ordered so that \(|\alpha^1| \geq |\alpha^2| \geq \cdots \geq |\alpha^M| \) if \(i \leq j \). We now choose \(\alpha^1, \ldots, \alpha^M \) inductively among the \(\alpha^i \) so that \(z^{\alpha^1}, \ldots, z^{\alpha^M} \) are independent over \(O_{W,\xi} \) in the following way: First, we let \(\alpha^1 = a^1 \), where \(i_1 \) is the first index \(i \) such that \(f_1(w) z^{\alpha^1} = 0 \) in \(O_{Z,\xi} \) implies that \(f_1 = 0 \). Then, if we have already chosen \(\alpha^1, \ldots, \alpha^k \), \(\alpha^{k+1} = a^{k+1} \), we define inductively \(\alpha^{k+1} = a^{k+1} \) as the next \(\alpha^i \) such that if \(f_1(w) z^{\alpha^1} + \cdots + f_k(w) z^{\alpha^k} + f_{k+1}(w) z^{\alpha^{k+1}} = 0 \), then \(f_{k+1} = 0 \). Clearly, \(|\alpha^1| \geq \cdots \geq |\alpha^M| \).
Note that if \(a^k \) is not among the \(\alpha^i \), then there exists a relation \(f_k(w)z^{a^k} = \sum_{j,j<k} g_{k,j}(w)z^{a^j} \) in \(\mathcal{O}_{Z,\zeta} \), where \(f_k \neq 0 \). By possibly shrinking \(U \), we can assume that all the \(f_k \)'s are defined on \(U \). Let \(Y := \bigcup_{k \notin \{i_1,\ldots,i_M\}} \{ f_k = 0 \} \).

Then, outside the hypersurface \(Y \), any \(z^{a^k} \) can be expressed uniquely in terms of \(z^{a^j} \) with \(i_j < k \). Thus, for \(\zeta \in U \setminus Y \), \(\mathcal{O}_{Z,\zeta} \) is a free \(\mathcal{O}_{W,\zeta} \)-module with basis \(z^{a^1}, \ldots, z^{a^m} \). Therefore \(M = m \). In addition, since each \(z^{a^k} \) not among the \(z^{a^i} \) can be written in terms of \(z^{a^j} \), with \(i_j < k \), by the ordering of the \(a^i \), those \(a^k \) will satisfy that \(|\alpha^i| \geq |a^k| \).

Definition 3.2. We consider the situation in Lemma 3.1. Given \(\zeta \in U \setminus Y \), we define the \(\mathcal{O}_{W,\zeta} \)-module

\[
A = A_\zeta := \mathcal{O}_{X,\zeta} \otimes_{\mathcal{O}_{W,\zeta}} \mathcal{O}_{Z,\zeta}.
\]

Note that by Lemma 3.1 \(\mathcal{O}_{Z,\zeta} \) is a free \(\mathcal{O}_{W,\zeta} \)-module of rank \(m \), so \(A \) is a free \(\mathcal{O}_{X,\zeta} \)-module of rank \(m \), i.e., \(A \cong \mathcal{O}_{X,\zeta}^m \). We will denote an element \(f \otimes g \in A \) by \(f [g] \). We will also sometimes use the short-hand notation \(f := f[1] \) and \([g] := 1[g] \). Note that since \(\mathcal{O}_{X,\zeta} \) and \(\mathcal{O}_{Z,\zeta} \) are \(\mathcal{O}_{W,\zeta} \)-algebras, so is \(A \), and the multiplication is defined by \((f_1 [g_1])(f_2 [g_2]) = f_1 f_2 [g_1 g_2] \).

Remark 3.3. Using the notation from above, for \(\zeta \in U \setminus Y \), we have a basis \(z^{a^1}, \ldots, z^{a^m} \) of \(\mathcal{O}_{Z,\zeta} \) as a free \(\mathcal{O}_{W,\zeta} \)-module. This gives a basis \(\left[z^{a^1} \right], \ldots, \left[z^{a^m} \right] \) of \(A \) as a free \(\mathcal{O}_{X,\zeta} \)-module. If \(z^\gamma \) is a monomial, then we can consider (multiplication with) \([z^\gamma] \) as an element in \(\text{End}_{\mathcal{O}_{X,\zeta}}(A) \), and the matrix of \([z^\gamma] \) with respect to the basis \(\left[z^{a^1} \right], \ldots, \left[z^{a^m} \right] \) from Lemma 3.1 is upper triangular by (3.1), and it has zeros along the diagonal unless \(\gamma = 0 \), in which case \([z^\gamma] \) is the identity matrix.

3.2. Universal free resolutions

Let \(R \) be a commutative ring, and let \(x_1, \ldots, x_p \) be elements of \(R \). To fix notation, we remind that the *Koszul complex* of \(x = (x_1, \ldots, x_p) \) is the complex \((\bigwedge^* R^{\oplus p}, \delta_x)\), where the differential \(\delta_x \) is defined by inner multiplication with \(x \), i.e., if we choose as a standard basis \(e_1, \ldots, e_p \) of \(R^{\oplus p} \), then

\[
\delta_x : e_I \mapsto \sum_{i=1}^k (-1)^{i-1} x_I e_{I_i},
\]

where \(I = (I_1, \ldots, I_k) \), and we use the short-hand notation \(e_I = e_{I_1} \wedge \cdots \wedge e_{I_k} \).

In particular, we use the notation \(e_{\emptyset} \) for the basis of \(\bigwedge^0 R^{\oplus p} \cong R \). If the sequence \(x \) is a regular sequence, then it is well-known that \((\bigwedge^* R^{\oplus p}, \delta_x)\) is a free resolution of \(R/(x_1, \ldots, x_p) \), see for example [24, Corollary 17.5].

When \(R = \mathcal{O}_{X,\zeta} \), then \(f = (f_1, \ldots, f_p) \) is a regular sequence if and only if \(\text{codim} \{ f_1 = \cdots = f_p = 0 \} = p \). Hence, for complete intersection ideals, we have an explicitly defined free resolution. The universal free resolution gives an explicit free resolution for more general ideals in \(\mathcal{O}_{X,\zeta} \), but then one considers a Koszul complex over the ring \(A \) instead of over \(\mathcal{O}_{X,\zeta} \).

Theorem 3.4. Assume that we are in the situation of Lemma 3.1, and that we fix some \(\zeta \in U \setminus Y \). Let \(A \) be as in Definition 3.2, and let \(z_i := z_i - [z_i] \in A \) for \(i = 1, \ldots, p \). Then, the Koszul complex \((K, \phi) := (\bigwedge^* A^{\oplus p}, \delta_z)\) of \(z := (z_1, \ldots, z_p) \) is a free resolution of \(\mathcal{O}_{Z,\zeta} \) over \(A \) and \(\mathcal{O}_{X,\zeta} \).
We use for tuples \(\gamma, \eta \in \mathbb{N}_0^p \), the partial ordering that \(\gamma \leq \eta \) if and only if \(\gamma_i \leq \eta_i \) for \(i = 1, \ldots, p \). We also use the short-hand notation \(1 = (1, \ldots, 1) \in \mathbb{N}_0^p \).

Proof. By construction, \(K \) consists of free \(A \)-modules, and since, as explained above, \(A \) is a free \(\mathcal{O}_{X, \zeta} \)-module, \(K \) is also a complex of free \(\mathcal{O}_{X, \zeta} \)-modules. Exactness is independent of whether we consider the complex as \(\mathcal{O}_{X, \zeta} \)-modules or \(A \)-modules, so it is sufficient to prove that \((K, \phi) \) is a free resolution as \(\mathcal{O}_{X, \zeta} \)-modules.

We first prove that \(\text{coker} \phi_1 \cong \mathcal{O}_{Z, \zeta} \). We get a surjective mapping \(\pi : K_0 \to \mathcal{O}_{Z, \zeta} \) by letting \(\pi(f[g]) := fg \). Note that \(\pi(z_i) = 0 \) for \(i = 1, \ldots, p \), so we get a well-defined induced mapping \(\tilde{\pi} : K_0/(\text{im} \phi_1) \to \mathcal{O}_{Z, \zeta} \). Clearly, \(\tilde{\pi} \) is surjective since \(\pi \) is surjective. Next, we claim that

\[
\tag{3.2}
f[g] = [fg] + \sum z_i \eta_i,
\]

for some \(\eta_i \in A \), \(i = 1, \ldots, p \). To prove the claim, we first choose \(\beta_i \) such that \(z_i^{\beta_i} = 0 \) in \(\mathcal{O}_{Z, \zeta} \) for \(i = 1, \ldots, p \), which is possible by the Nullstellensatz. We then make a finite Taylor expansion of \(f \),

\[
f = \sum_{\alpha \leq \beta - 1} f_\alpha(w) z^\alpha + \sum_{i=1}^p z_i^{\beta_i} f_i(z, w).
\]

Using this Taylor expansion, in combination with the formula

\[
z_i^k = \left[z_i^k\right] + (z_i^{k-1} + z_i^{k-2} \left[z_i\right] + \cdots + \left[z_i^{k-1}\right])(z_i - [z_i]),
\]

and the fact that \(\left[z_i^{\beta_i}\right] = 0 \) and \(f_\alpha(w) [g] = [f_\alpha(w)g] \), we get that \(f[g] \) is of the form (3.2). If \(\pi(f \gamma_1 e_0) = 0 \), then \(\sum f_i g_i = 0 \) in \(\mathcal{O}_{Z, \zeta} \), and by (3.2),

\[
\sum f_i [g_i] e_0 = \sum z_j \eta_j e_0 = \phi_1 \eta.
\]

for some \(\eta = (\eta_1, \ldots, \eta_p) \in K_1 \), i.e., \(\sum f_i [g_i] = 0 \) in \(\text{coker} \phi_1 \), so \(\pi \) is injective. We thus get that \(\text{coker} \phi_1 \cong \mathcal{O}_{Z, \zeta} \).

It remains to see that \((K, \phi) \) is exact at levels \(k \geq 1 \). In order to prove this, we first prove that \(\phi_1 \) is pointwise surjective outside of \(W := \{z_1 = \cdots = z_p = 0\} \). If \((z, w) \notin W \), we can assume that, say, \(z_i \neq 0 \). Then \(z_i \) is invertible, with inverse

\[
\gamma_i := \sum_{k=0}^{\infty} \frac{1}{z_i^k} \left[z_i^k\right],
\]

where the series is in fact a finite sum, since \(z_i^k = 0 \) in \(\mathcal{O}_{Z, \zeta} \) for \(k \gg 1 \) by the Nullstellensatz. Then, \(\phi_1(f[g]\gamma_i e_i) = f[g] e_0 \), so \(\phi_1 \) is surjective as a morphism of sheaves. Since the image is \(K_0 \), which is a vector bundle, it is also pointwise surjective. To conclude, \(\phi_1 \) is pointwise surjective outside of \(W \), i.e., \(Z_k^K \subset W \), where \(Z_k^K \) is the first BEF-variety associated to \((K, \phi) \).

We next prove that the complex is exact as a complex of sheaves at level \(k \geq 1 \) outside of \(W \). As above, if \((z, w) \) is outside of \(W \), and, say, \(z_i \neq 0 \), and \(\alpha \in K_k \) is such that \(\phi_1 \alpha = 0 \), then \(\phi_{k+1}(\gamma_i e_i \wedge \alpha) = (\delta_0 \gamma_i) \wedge \alpha = \alpha \), so the complex is exact as a complex of sheaves outside of \(W \). For a free resolution \((E, \varphi) \), \(Z_k^{E} \subset Z_{k+1}^{E} \), for \(k \geq 1 \), see [Ei Corollary 20.12]. Hence, \(Z_k^K \setminus W \subset Z_k^{K} \setminus W = \emptyset \), i.e., \(Z_k^K \subset W \) for \(k \geq 1 \).
To conclude, the complex \((K, \phi)\) of length \(p\) is pointwise exact outside of \(W\), which has codimension \(p\). Thus, it is exact as a complex of sheaves by the Buchsbaum-Eisenbud criterion, \([3]\) Theorem 20.9, because \(\text{codim } Z_k^K \geq p \geq k\) and the pointwise exactness of \((K, \phi)\) outside of \(W\) implies that \(\text{rank } K_k = \text{rank } \phi_k + \text{rank } \phi_{k+1}\). \(\square\)

In general, for \(\zeta \in U \setminus Y\), the universal free resolution \(O_{Z, \zeta}\) is not minimal as a free resolution of \(O_{X, \zeta}\)-modules. To see this, note that \(K_0 \cong A\), so if \(Z\) has geometric multiplicity \(m > 1\) near \(\zeta\), then \(\text{rank } O_{X, \zeta} K_0 = m > 1\), while a minimal free resolution \((E, \varphi)\) of \(O_{Z, \zeta}\) would have \(\text{rank } O_{X, \zeta} E_0 = 1\).

4. Proofs of Theorem 1.2 and Theorem 1.5

A key part in the proof of Theorem 1.2 is to prove that the currents on the left-hand sides of (1.10) and (1.11) are independent of the choice of locally free resolution \((E, \varphi)\) of \(O_Z\) and the choice of connections on \(E_0, \ldots, E_p\). In fact, for future reference, we prove this more generally for free resolutions of finitely generated \(O_{X, \zeta}\)-modules, as the proofs are the same in this situation.

Lemma 4.1. Let \(G\) be a finitely generated \(O_{X, \zeta}\)-module of codimension \(p\), and let \((E, \varphi)\) and \((F, \psi)\) be Hermitian free resolutions of \(G\). Then,

\[
(4.1) \quad \text{tr}(D\varphi_1 \cdots D\varphi_p R^E_p) = \text{tr}(D\psi_1 \cdots D\psi_p R^F_p),
\]

where \(D\) is the connection on \(\text{End}(E \oplus F)\) induced by arbitrary connections on \(E_0, \ldots, E_p\) and \(F_0, \ldots, F_p\).

Lemma 4.2. Let \(G, (E, \varphi), (F, \psi)\) be as in Lemma 4.1 and let \(\eta\) and \(\tau\) be the natural surjections \(\eta : F_0 \to \text{coker } \psi_1 \cong G\) and \(\tau : E_0 \to \text{coker } \varphi_1 \cong G\). Then,

\[
(4.2) \quad \eta D\psi_1 \cdots D\psi_p R^F_p \eta^{-1} = \tau D\varphi_1 \cdots D\varphi_p R^E_p \tau^{-1}.
\]

Here \(R^F_p \eta^{-1}\) and \(R^E_p \tau^{-1}\) are defined as in the text preceding Theorem 1.2.

Remark 4.3. In case rank \(E_0 = \text{rank } F_0 = 1\) these lemmas coincide. When \(G = O_{X, \zeta}/I\), where \(I\) is a complete intersection ideal of codimension \(p\), and \((E, \varphi)\) and \((F, \psi)\) are Koszul complexes of two minimal sets of generators of \(I\), then (4.1) and (4.2) follows rather easily from the transformation law and duality principle for Coleff-Herrera products. This was a key observation which allowed for global versions of the Poincaré-Lelong formula (1.7) for locally complete intersections in [DP]. In order to prove Lemma 4.1 and Lemma 4.2 we use the comparison formula, Theorem 2.4, which is a generalization of the transformation law.

The proofs of both of these lemmas use the following lemma.

Lemma 4.4. Let \((E, \varphi)\) and \((F, \psi)\) be complexes of free \(O_{X, \zeta}\)-modules, and let \(b : (E, \varphi) \to (F, \psi)\) be a morphism of complexes. Let \(D\) be the connection on \(\text{End}(E \oplus F)\) induced by connections on \(E_1, \ldots, E_p\) and \(F_1, \ldots, F_p\). Then,

\[
(4.3) \quad D\psi_1 \cdots D\psi_p b_p = b_0 D\varphi_1 \cdots D\varphi_p + \psi_1 \alpha + \beta \varphi_p
\]

for a smooth \(\text{Hom } (E_p, F_1)\)-valued \((p, 0)\)-form \(\alpha\) and a smooth \(\text{Hom } (E_{p-1}, F_0)\)-valued \((p, 0)\)-form \(\beta\).
Proof. We claim that for any \(1 \leq k \leq p\),
\[
D\psi_1 \cdots D\psi_k b_k D\varphi_{k+1} \cdots D\varphi_p =
D\psi_1 \cdots D\psi_{k-1} b_{k-1} D\varphi_k \cdots D\varphi_p + \psi_1 \alpha_k + \beta_k \varphi_p
\]
for a smooth \(\text{Hom} (E_p, F_1)\)-valued \((p, 0)\)-form \(\alpha_k\) and a smooth \(\text{Hom} (E_{p-1}, F_0)\)-valued \((p, 0)\)-form \(\beta_k\).

To prove the claim, we note first that since \(b\) is a morphism of complexes,
\(\psi_k b_k = b_{k-1} \varphi_k\), and thus,
\[
D\psi_k b_k = D(\psi_k b_k) + \psi_k Db_k = D(b_{k-1} \varphi_k) + \psi_k Db_k =
Db_{k-1} \varphi_k + b_{k-1} D\varphi_k + \psi_k Db_k,
\]
where the signs depend on that \(b\) is an even mapping, while \(\psi\) is odd.

We now replace \(D\psi_k b_k\) in the first line of (4.4) by the expression in the second line of (4.5). Note first that the term coming from the term \(b_{k-1} D\varphi_k\) in the second line of (4.5) equals the first term of the second line of (4.4).

We consider next the term
\[
D\psi_1 \cdots D\psi_{k-1} Db_{k-1} \varphi_k D\varphi_{k+1} \cdots D\varphi_p,
\]
coming from the term \(Db_{k-1} \varphi_k\) in the second line of (4.5). Since \(\varphi_\ell \varphi_{\ell+1} = 0\), we get by the Leibniz rule (2.5) and the fact that \(\varphi_\ell\) has odd degree that
\(\varphi_\ell D\varphi_{\ell+1} = D\varphi_\ell \varphi_{\ell+1}\). Using this repeatedly for \(\ell = k, \ldots, p-1\), we get that (4.6) equals
\[
D\psi_1 \cdots D\psi_{k-1} Db_{k-1} D\varphi_k D\varphi_{k+1} \cdots D\varphi_{p-1} \varphi_p =: \beta_k \varphi_p.
\]

Finally, we consider the term coming from the term \(\psi_k Db_k\) in the second line of (4.5). By using that \(\psi_\ell \psi_{\ell+1} = 0\) and the Leibniz rule, we get that
\(D\psi_\ell \psi_{\ell+1} = \psi_\ell D\psi_{\ell+1}\), and using this repeatedly we get that this term equals
\[
\psi_1 D\psi_2 \cdots D\psi_k Db_k D\varphi_{k+1} \cdots D\varphi_p =: \psi_1 \alpha_k.
\]

To conclude, when replacing \(D\psi_k b_k\) in the first line of (4.4) by the last line of (4.5), we obtain three terms of the form as in the second line of (4.4), and we have thus proved (4.4). \(\square\)

Proof of Lemma 4.1. Since \(G\) has codimension \(p\), it is Cohen-Macaulay outside of a set of codimension \(p+1\). Since both sides of (4.1) are pseudomero-morphic \((p, p)\)-currents, it is by the dimension principle, Proposition 2.1, enough to prove (4.1) where \(G\) is Cohen-Macaulay. We will thus assume for the remainder of the proof that \(G\) is Cohen-Macaulay.

Let \((H, \eta)\) by any free resolution of \(G\). Using (2.13) and (2.7), we get that if \(\xi : H_p \to H_1\) is any smooth morphism, then
\[
\text{tr}(\eta_1 \xi R^H_p) = \pm \text{tr}(\xi R^H_p \eta_1) = 0.
\]

We let \(a : (F, \psi) \to (E, \varphi)\) and \(b : (E, \varphi) \to (F, \psi)\) be morphisms of complexes extending the identity morphism on \(G\), see Section 2.3. Then, \(b \circ a : (F, \psi) \to (F, \psi)\) extends the identity morphism on \(G\). Since the identity morphism on \((F, \psi)\) trivially also extends the identity morphism on \(G\), we get by Proposition 2.3 that there exists \(s_0 : F_0 \to F_1\) such that
\[
\text{Id}_{F_0} = b_0 a_0 + \psi s_0.
\]
We let \(W = \text{tr}(D\psi_1 \cdots D\psi_p R_p^E) \). We then get by (4.7) and (4.8) that
\[
W = \text{tr}(D\psi_1 \cdots D\psi_p R_p^E) = \text{tr}(D\psi_1 \cdots D\psi_p R_p^E b_0 a_0),
\]
and by (2.13),
\[
W = \text{tr}(a_0 D\psi_1 \cdots D\psi_p R_p^E b_0).
\]

By the comparison formula (2.10), applied to \(b : (E, \varphi) \to (F, \psi) \), and Lemma 2.5,
\[
R_p^F b_0 = b_p R_p^E - \psi_{p+1} \sigma_{p+1}^F b_p R_p^E,
\]
where \(\sigma_{p+1}^F \) is smooth. Since \(D\psi_1 \cdots D\psi_p \psi_{p+1} = \psi_1 D\psi_2 \cdots D\psi_{p+1} \), see the previous proof, we get that
\[
W = \text{tr}(a_0 D\psi_1 \cdots D\psi_p b_p R_p^E) - \text{tr}(a_0 \alpha' R_p^E),
\]
where \(\alpha' \) is smooth. Thus, by Lemma 4.1
\[
W = \text{tr}(a_0 b_0 D\varphi_1 \cdots D\varphi_p R_p^E) + \text{tr}(a_0 \psi_1 (\alpha + \alpha') R_p^E) + \text{tr}(a_0 \beta \varphi_p R_p^E).
\]
The last term in the right-hand side of (4.10) vanishes by (2.8). In addition, since \(\alpha \) is a morphism of complexes, \(a_0 \psi_1 = \varphi_1 a_1 \), so the middle term in the right-hand side of (4.10) vanishes by (4.7). Thus, only the first term in the right-hand side of (4.10) remains, i.e.,
\[
W = \text{tr}(a_0 b_0 D\varphi_1 \cdots D\varphi_p R_p^E).
\]
From (2.13) and (4.9) (with the roles of \((E, \varphi)\) and \((F, \psi)\) reversed), we finally conclude that
\[
W = \text{tr}(D\varphi_1 \cdots D\varphi_p R_p^E).
\]

Proof of Lemma 4.2. Since the currents in (1.2) are pseudomeromorphic \((p, p)\)-currents, we may as in the previous proof assume that \(G \) is Cohen-Macaulay. In addition, it is enough to prove (1.2) under the assumption that one of the free resolutions, say, \((E, \varphi)\), has minimal length, \(p \). We let \(a : (F, \psi) \to (E, \varphi) \) and \(b : (E, \varphi) \to (F, \psi) \) be morphisms of complexes extending the identity morphism on \(G \).

We claim that
\[
R_p^E \eta^{-1} = b_p R_p^E \tau^{-1}.
\]
To see this, let \(g \in \mathcal{O}_{Z, \zeta} \), and let \(g_0 \) be such that \(\tau g_0 = g \). Then, by definition,
\[
b_p R_p^E \tau^{-1} g = b_p R_p^E g_0,
\]
cf. the text right before Theorem 1.2. By (1.11), the right-hand side of (1.12) equals \(R_p^E b_0 g_0 \). Since \(b \) extends the identity morphism, \(\eta b_0 g_0 = \tau g_0 = g \). Thus, \(R_p^E b_0 g_0 \) equals by definition \(R_p^E \eta^{-1} g \), which proves the claim.

By (1.11),
\[
\eta D\psi_1 \cdots D\psi_p R_p^E \eta^{-1} = \eta D\psi_1 \cdots D\psi_p b_p R_p^E \tau^{-1}.
\]
By Lemma 4.3, the right-hand side of (1.13) equals
\[
\eta b_0 D\varphi_1 \cdots D\varphi_p R_p^E \tau^{-1} + \eta \psi_1 \alpha R_p^E \tau^{-1} + \eta \beta \varphi_p R_p^E \tau^{-1}.
\]
Since \(\eta \psi_1 = 0 \), the second term in the right-hand side of (4.14) vanishes, and the last term also vanishes by (2.8). To conclude, using that \(\eta b_0 = \tau \), we thus get (4.2).

By Lemma 4.1 and Lemma 4.2
\[
\text{tr}(D\varphi_1 \cdots D\varphi_p R^E_p) \quad \text{and} \quad \tau D\varphi_1 \cdots D\varphi_p R^E_p \tau^{-1}
\]
only depend on \(G \) and not on the choice of free resolution \((E, \varphi)\) of \(G \) and connection \(D \). When rank \(E_0 = 1 \), these currents coincide. If \(G = O_Z \), then there always exists a free resolution \((F, \psi)\) of \(O_Z \) with rank \(F_0 = 1 \), and thus, we get that for any free resolution \((E, \varphi)\) of \(O_Z \),
\[
(4.15) \quad \text{tr}(D\varphi_1 \cdots D\varphi_p R^E_p) = \tau D\varphi_1 \cdots D\varphi_p R^E_p \tau^{-1}.
\]

Proof of Theorem 1.2. Note that by (4.15), it is enough to prove (1.10).

Let \(W = Z_{\text{red}} \). We first consider a point \(\xi \in W_{\text{reg}} \), and apply Lemma 3.1.

We fix a neighbourhood \(V \subset X \) of \(\xi \) contained in the coordinate chart from Lemma 3.1 such that \(W = \{ z_1 = \cdots = z_p = 0 \} \) on \(V \), and \(V \cap W = U \). We first prove that (1.10) holds on \(V \). Note that on \(V \), \([Z] = m[z_1 = \cdots = z_p = 0] \), so we thus want to prove that
\[
(4.16) \quad \frac{1}{(2\pi i)^p p!} \text{tr}(D\varphi_1 \cdots D\varphi_p R^E_p) = m[z_1 = \cdots = z_p = 0].
\]

Lemma 4.5. Let \(\zeta \in U \setminus Y \), and let \((K, \phi)\) be the universal free resolution of \(O_{Z, \zeta} \) from Theorem 3.3. Then
\[
(4.17) \quad \frac{1}{(2\pi i)^p p!} \text{tr}(D\phi_1 \cdots D\phi_p R^K_p) = m[z_1 = \cdots = z_p = 0].
\]

Taking this lemma for granted, using Lemma 4.1 and Theorem 3.4, we get that (4.10) holds on \(U \setminus Y \). Both sides of (4.16) have their support on \(V \cap W = U \), so (4.16) holds in fact on \(V \setminus Y \). Since \(Y \) is a hypersurface of \(W \), and \(W \) has codimension \(p \) in \(V \), \(Y \) has codimension \(p+1 \) in \(V \). As both sides of (4.16) are pseudomeromorphic \((p, p)\)-currents on \(V \) which coincide outside of \(Y \), (4.16) holds on all of \(V \) by the dimension principle, Proposition 2.2.

We have thus proven that any point \(\xi \in W_{\text{reg}} \) has a neighbourhood such that (1.10) holds, and since both sides of (1.10) have support on \(W \), (1.10) holds outside of \(W_{\text{sing}} \). Both sides of (1.10) are pseudomeromorphic \((p, p)\)-currents on \(X \), and \(W_{\text{sing}} \) has codimension \(\geq p+1 \) in \(X \), so we get by the dimension principle that (1.10) holds on all of \(X \).

Proof of Lemma 4.5. We here use the notation from Section 3 and we let \(e_1, \ldots, e_p \) be the standard basis for \(A^{\otimes p} \) over \(A \). Note that over \(O_{X, \xi} \), \(\bigwedge^k A^{\otimes p} \) has the basis \(\left[z^{\alpha^I} \right] e_I \), where \(i = 1, \ldots, m \) and \(I \subset \{ 1, \ldots, p \}, \ |I| = k \). Since by Lemma 4.1 the left-hand side of (4.17) is independent of the choice of connection, we assume that \(D \) is trivial with respect to these bases.

In order to prove (4.17), we first write out the left-hand side as
\[
(4.18) \quad \text{tr}(D\phi_1 \cdots D\phi_p R^K_p) = \sum_{i=1}^m \left(\left[z^{\alpha^I} \right] e_\emptyset \right)^* D\phi_1 \cdots D\phi_p R^K_p \left[z^{\alpha^I} \right] e_\emptyset,
\]
where \((z^{\alpha_1} e_\emptyset, \ldots, (z^{\alpha_m} e_\emptyset)^* \) is the dual basis of the basis \([z^{\alpha_1}] e_\emptyset, \ldots, [z^{\alpha_m}] e_\emptyset \) of \(K_0 \).

We will use the comparison formula, Theorem [2.4], to compute the currents \(R_p^K (z^\alpha) e_{\emptyset} \) appearing in the sum in the right-hand side of (4.15). First of all, by the Nullstellensatz, there exist \(\beta_i \) such that \(z_i^{\beta_i} \in J \) for \(i = 1, \ldots, p \). Throughout this proof, we will let \(\beta_1, \ldots, \beta_p \) denote such a choice. We let \(\epsilon_1, \ldots, \epsilon_p \) be the standard basis of \(O_{X\setminus Z}^\otimes \otimes O_{X\setminus Z} \). We let \((L, \psi) \) be the Koszul complex over \(O_{X\setminus Z} \) of the tuple \((z_1^{\beta_1}, \ldots, z_p^{\beta_p}) \), and we let \(I \) be the ideal generated by this tuple.

Since \(I \) is contained in \(J \), there exists a morphism \(c : (L, \psi) \rightarrow (K, \phi) \) extending the natural surjection \(O_{X\setminus Z}/I \rightarrow O_{Z\setminus Z} \), see Proposition [2.3]. We will construct explicitly such a morphism \(c \). We let \(c_k \) be the map \(L_k = \bigwedge^k O_{X\setminus Z}^\otimes \otimes \bigwedge^k A^\otimes = K_k \) induced by the map \(c_1 : O_{X\setminus Z}^\otimes \rightarrow A^\otimes

\[
c_1 : \epsilon_i \mapsto \sum_{\gamma=0}^{\beta_i-1} z_i^{\beta_i-\gamma-1} [z_i^\gamma] e_i,
\]
i.e., \(c_k \) is defined by

\[
c_k : \epsilon_{i_1} \wedge \cdots \wedge \epsilon_{i_k} \mapsto c_1(\epsilon_{i_1}) \wedge \cdots \wedge c_1(\epsilon_{i_k}).
\]

Here, \(c_0 : L_0 \rightarrow K_0 \) is to be interpreted as \(\epsilon_\emptyset \mapsto [1] e_\emptyset \). It is straightforward to check that \(c \) is a morphism of complexes extending the natural surjection \(O_{X\setminus Z}/I \rightarrow O_{Z\setminus Z} \) by using the formula

\[
(z_j - [z_j]) \left(\sum_{\gamma=1}^{\beta_j-1} z_j^{\beta_j-\gamma-1} [z_j^\gamma] \right) = z_j^{\beta_j} [1] - z_j^{\beta_j} [z_j^1] = 0 \text{ in } O_{Z\setminus Z}.
\]

We now fix some \(i \in \{1, \ldots, m\} \), and let \(\check{c} := ([z^{\alpha_i}] c) : (L, \psi) \rightarrow (K, \phi) \)
(i.e., \(\check{c} \) equals \(c \) composed with multiplication with \([z^{\alpha_i}] \)). This is clearly a morphism of complexes, with \(\check{c}_0(\epsilon_\emptyset) = [z^{\alpha_i}] e_\emptyset \). Thus, using the comparison formula, (2.11), for \(\check{c} \),

\[
R_p^K (z^{\alpha_i}) e_\emptyset e_\emptyset = [z^{\alpha_i}] c_p R_p^L.
\]

Applying this to each term in the sum in (4.15), we get that

\[
\text{tr}(D\phi_1 \cdots D\phi_p) = \sum e_\emptyset [z^{\alpha_i}]^* D\phi_1 \cdots D\phi_p R_p^K [z^{\alpha_i}] e_\emptyset e_\emptyset = \sum e_\emptyset [z^{\alpha_i}]^* D\phi_1 \cdots D\phi_p [z^{\alpha_i}] c_p R_p^L e_\emptyset.
\]

We write the map \(c_p \) as

\[
c_p : \epsilon_{\{1, \ldots, p\}} \mapsto \hat{B} \wedge e_{\{1, \ldots, p\}},
\]

where

\[
\hat{B} = \bigwedge_{\gamma \leq \beta-1} z^{\beta-\gamma-1} [z^\gamma].
\]
Since \([z^{α'}] \) and \(\bar{B} \) commute, being elements of \(A \), we get that
\[
\text{tr}(Dφ_1 \cdots Dφ_p R^K_p) = \sum e^*_φ [z^{α'}]^* Dφ_1 \cdots Dφ_p \bar{B} [z^{α'}] e_{\{1,\ldots,p\}} \epsilon^{L}_{\{1,\ldots,p\}} R^L_p \epsilon_0.
\]
We let \(B \) be the form-valued \(\mathcal{O}_{X,ζ} \)-linear map \(A \to A \) given by
\[
B := e^*_φ Dφ_1 \cdots Dφ_p \bar{B} e_{\{1,\ldots,p\}}.
\]
Using that \(e^*_φ \) and \([z^{α'}]^* \) commute, and that \(e_{\{1,\ldots,p\}} \) and \([z^{α'}] \) commute, we then get that
\[
\text{tr}(Dφ_1 \cdots Dφ_p R^K_p) = \sum [z^{α'}]^* B [z^{α'}] e^{L}_{\{1,\ldots,p\}} R^L_p \epsilon_0 = (\text{tr } B) e^{L}_{\{1,\ldots,p\}} R^L_p \epsilon_0.
\]
Note that by (1.8) and (2.3),
\[
\epsilon^{L}_{\{1,\ldots,p\}} = (-1)^{p^2} \frac{1}{\bar{z}_p^β} \partial \frac{1}{\bar{z}_1^β} \cdot \frac{1}{\bar{z}_p^β} \partial \left(\frac{1}{\bar{z}_1^β} \right).
\]
Moreover, in view of the Poincaré-Lelong formula (1.7), note that
\[
(-1)^{p^2} \frac{1}{(2πi)^p} z^{β-1} dz_1 \cdots dz_p \partial \frac{1}{\bar{z}_p^β} \partial \frac{1}{\bar{z}_1^β} = [z_1 = \cdots = z_p = 0].
\]
Thus, from Lemma 4.6 below, we conclude that (4.17) holds. \(\square \)

Lemma 4.6. Let \(B \) be as in the proof of Lemma 4.5. Then
\[
\text{tr } B = p! m z^{β-1} dz_1 \cdots dz_p.
\]

Proof. As \(φ_k \) is contraction with \(z_1 e_1 + \cdots + z_p e_p \), and \(D \) is assumed to be trivial with respect to the bases \([z^{α'}] \) \(e_I \), we get in the same way as in Example 2.2 that
\[
e^*_φ Dφ_1 \cdots Dφ_p e_{\{1,\ldots,p\}} = p! Dz_1 \cdots Dz_p.
\]
Since \(z_i = z_i - [z_i] \), we thus get that \(B \) is a sum of terms of the form
\[
± dz_I \wedge (D [z_{J_1}]) \cdots (D [z_{J_p}]) z^{β-γ-1} [z^γ],
\]
where \(|I| + |J| = p \), and \(I \cup J = \{1,\ldots,p\} \).

We claim that the traces of all such terms are zero, unless \(|J| = 0 \) and \(γ = 0 \). Recall from Remark 3.3 that, in the basis of \(A \) given by \([z^{α'}], \ldots, [z^{α''}] \), the matrix for multiplication with any monomial \([z^δ] \) is upper triangular, and in addition, it will have zeros on the diagonal if and only if \(δ \neq 0 \). Thus, the matrix of each \(D [z_{J_i}] \) is a (form-valued) upper triangular matrix with zeros on the diagonal, since \(D \) is assumed to be trivial with respect to the bases \([z^{α'}] \) \(e_I \). Since \([z^γ] \) is also upper-triangular, the full product (4.20) is upper-triangular, and with zeros on the diagonal if \(|J| > 0 \) or \(γ \neq 0 \). Thus, the trace is zero in case \(|J| > 0 \) or \(γ = 0 \), which proves the claim.

To conclude,
\[
\text{tr } B = p! dz_1 \wedge \cdots \wedge dz_p z^{β-1} \text{tr } [1],
\]
and since \(\text{tr } [1] = \text{rank}_{\mathcal{O}_{X,ζ}} A = m \), we obtain (4.19). \(\square \)
Proof of Theorem 1.5. We let \([Z]_k\) be the part of the fundamental cycle \([Z]\) of codimension \(k\), i.e., \([Z]_k = \sum m_i[Z_i]\), where the sum is over the irreducible components \(Z_i\) of \(Z_{\text{red}}\) of codimension \(k\), and \(m_i\) is the geometric multiplicity of \(Z_i\) in \(Z\). Thus,

\[
[Z] = \sum_k [Z]_k,
\]

and it is enough to prove that

\[
(4.21) \quad \frac{1}{(2\pi i)^k k!} D\varphi_1 \cdots D\varphi_k R[k] = [Z]_k,
\]

for \(k = \text{codim}\ Z, \ldots, N\). Let \(V_k = W_k \cap (\cup_{q \neq k} W_q)\); then \(V_k\) has codimension \(\geq k + 1\). Note that both sides of (4.21) have support on \(W_k\), and that \(Z\) has pure codimension \(k\) on \(W_k \setminus V_k\). Thus, (4.21) holds on \(X \setminus V_k\) by Theorem 1.4. Since \(\text{codim} V_k \geq k + 1\) and both sides of (4.21) are pseudomeromorphic \((k,k)\)-currents, (4.21) holds everywhere by the dimension principle, Proposition 2.1.

Remark 4.7. By analogous arguments we can prove (1.13). First

\[
\frac{1}{(2\pi i)^k k!} \text{tr}(D\varphi_1 \cdots D\varphi_k R[k]) = \frac{1}{(2\pi i)^k k!} \tau D\varphi_1 \cdots D\varphi_k R[k]^{\tau^{-1}} = [Z]_k,
\]

holds on \(X \setminus V_k\) by Theorem 1.2 and thus it holds everywhere by the dimension principle.

5. Examples of higher degree currents

We will start by illustrating Theorem 1.5 by explicitly computing the left-hand side of (1.12) in the situation of Example 1.4.

Example 5.1. Let \(Z\) be as in Example 1.4. Then \(O_Z\) has a (minimal) free resolution

\[
0 \to O_{C^3} \overset{\varphi_2}{\to} O_{C^3}^\oplus 2 \overset{\varphi_1}{\to} O_{C^3},
\]

where

\[
\{ \varphi_2 \} = \left[\begin{array}{c} -y \\ x \end{array} \right] \quad \text{and} \quad \{ \varphi_1 \} = \left[\begin{array}{cc} x & z \\ y & z \end{array} \right].
\]

Let \(D\) be (induced by) the trivial connections on \(E_0 = O_{C^3}, E_1 = O_{C^3}^\oplus 2, \) and \(E_2 = O_{C^3}\). In [Lä1], the current \(R^E = R_1^E + R_2^E\) was computed explicitly:

\[
\{ R_1^E \} = \frac{1}{|x|^2 + |y|^2} \left[\begin{array}{c} \bar{x} \\ \bar{y} \end{array} \right] \partial_{\bar{z}} \frac{1}{z},
\]

\[
\{ R_2^E \} = \frac{1}{z} \partial_{\bar{y}} \frac{1}{y} + \partial_{\bar{x}} \left(\frac{-\bar{y} - \bar{x}}{|x|^2 + |y|^2} \right) \frac{1}{|x|^2 + |y|^2} \left[\begin{array}{c} \bar{x} \\ \bar{y} \end{array} \right] \wedge \partial_{\bar{z}} \frac{1}{z} =: \frac{1}{z} \partial_{\bar{y}} \frac{1}{y} \wedge \partial_{\bar{x}} \frac{1}{x} + \mu.
\]

Note that the irreducible components \(Z_1 := \{ z = 0 \}\) and \(Z_2 := \{ x = y = 0 \}\) of \(Z\) are of codimension 1 and 2, respectively; thus \(R_1^E[k] = 1_{Z_k} R^E_k\) for \(k = 1, 2\). Since \(R_1^E\) has support on \(Z_1\) it follows that \(R_1^E[k] = R_1^E\). Note that outside the origin \(\{ x = y = z = 0 \}\) \(\mu\) is of the form \(\alpha \wedge \partial(1/z)\), where \(\alpha\) is smooth. Since \(1_{Z_2} \partial(1/z) = 0\) by the dimension principle, Proposition 2.1, it follows that \(1_{Z_2} \mu\) has support at the origin, and thus \(1_{Z_2} \mu = 0\) by the
dimension principle. Hence \(\{ R_2^E \} = 1_{Z_2} \{ R_2^E \} = (1/z)\bar{\partial}(1/y) \land \bar{\partial}(1/x) \). It follows that

\[
\{ D\varphi_1 R_1^{E} \} = - \left[-d(xz) \ d(yz) \right] \land \frac{1}{|x|^2 + |y|^2} \left[\frac{x}{y} \right] \land \bar{\partial}_z \frac{1}{z} = \\
- \left[\frac{x}{y} \right] dz \land \bar{\partial}_z \frac{1}{z} = -dz \land \bar{\partial}_z \frac{1}{z} = 2\pi i[z = 0] = 2\pi i[Z_1]
\]

and

\[
\{ D\varphi_1 D\varphi_2 R_2^E \} = - \left[-d(xz) \ d(yz) \right] \land \left[-\frac{dy}{dx} \right] \land \frac{1}{z} \bar{\partial}_y \frac{1}{y} \land \bar{\partial}_x \frac{1}{x} = \\
- z \left[dx \ dy \right] \left[-\frac{dy}{dx} \right] \land \frac{1}{z} \bar{\partial}_y \frac{1}{y} \land \bar{\partial}_x \frac{1}{x} = -2dy \land dx \land \bar{\partial}_y \frac{1}{y} \land \bar{\partial}_x \frac{1}{x} = 2!(2\pi i)^2[Z_2],
\]

which proves (1.12) in this case. Here we have used the notation from Section 2.6 (and identified a \((1 \times 1)\)-matrix \([a]\) with the entry \(a\)); in particular, the signs are explained by (2.12).

It would be interesting to consider the full currents

\[
(5.1) \quad D\varphi_1 \cdots D\varphi_k R_k^E
\]

(and not only \(D\varphi_1 \cdots D\varphi_k R_k^{E[1]} \)) and investigate whether these capture algebraic or geometric information (in addition to the fundamental cycle). If \((E, \varphi)\) is the Koszul complex of a holomorphic tuple \(f\) it was shown in [ASKWY] that the currents (5.1) satisfy a generalized King’s formula, generalizing (1.9); in particular, the Lelong numbers are the so-called Segre numbers of the ideal generated by \(f\).

We should remark that in the above example we do not know how to interpret the current \(D\varphi_1 D\varphi_2 R_2^E \) or rather the part \(D\varphi_1 D\varphi_2 \mu \). Below, however, we will consider an example where \(D\varphi_1 D\varphi_2 R_2^E \) is a current of integration along the (only) associated prime of codimension 2. For an ideal \(J \) over a local ring \(R \), there is a notion of the length along an associated prime \(p \), defined as the length of the largest ideal in \(R_p/JR_p \) of finite length, see for example for example [EH, Sect. II.3, p. 68]. The length of \(J \) along \(p \) coincides with the geometric multiplicity of \(J(p) \) in \(J \) if \(p \) is a minimal associated prime of \(J \). It would be interesting to see whether these numbers could be recovered from the currents (5.1). However, in view of the example below this does not seem possible.

Example 5.2. Let \(Z \) be as in Example 1.3. Then

\[
0 \to \mathcal{O}_{\mathbb{C}^2} \xrightarrow{\varphi_2} \mathcal{O}_{\mathbb{C}^2}^{\mathbb{N}^2} \xrightarrow{\varphi_1} \mathcal{O}_{\mathbb{C}^2} \to \mathcal{O}_Z,
\]

where

\[
\{ \varphi_2 \} = \left[\begin{array}{c} -x^f \\ y^{k-m} \end{array} \right] \quad \text{and} \quad \{ \varphi_1 \} = \left[\begin{array}{cc} y^k & x^f y^m \end{array} \right],
\]

is a free resolution of \(\mathcal{O}_Z \). Note that, since \(Z_{\text{red}} \) only has one irreducible component \(\{ y = 0 \} \) of codimension 1, \(R_{[2]}^E = 0 \).
Let D be (induced by) the trivial connections on $E_0 = \mathcal{O}_{\mathbb{C}^2}$, $E_1 = \mathcal{O}_{\mathbb{C}^2}^{\oplus 2}$, and $E_2 = \mathcal{O}_{\mathbb{C}^2}$. Then a direct computation yields

$$\{D\varphi_1 D\varphi_2\} = -\ell(2k - m)x^{\ell - 1}y^{k-1}dx \wedge dy = -C x^{\ell-1} y^{k-1} dx \wedge dy,$$

where, as above, we have used the notation from Section 2.6. Next, let (F, ψ) be the Koszul complex of (y, x) and let $a_0 : F_0 \rightarrow E_0$ be given by

$$\{a_0\} = [x^{\ell - 1} y^{k-1}].$$

Then $\{R_2^F\} = \partial(1/x) \wedge \partial(1/y)$ and a_0 can be extended to a morphism of complexes $\tilde{a} : (F, \psi) \rightarrow (E, \varphi)$, where

$$\{a_2\} = [1\] \text{ and } \{a_1\} = \left[\begin{array}{c} x^{\ell - 1} \\ 0 \\ y^{k-m-1} \end{array} \right].$$

If we apply the comparison formula, cf. (2.12), and identify the components that takes values in $\text{Hom} (\mathcal{O}, \mathcal{O})$, we get that

$$R_2^F a_0 - a_2 R_2^F = \varphi_3 M_3 - \partial M_2.$$

Note that $M_2 = 0$ since (E, φ) has length 2. Moreover recall that $M_2 = R(\sigma_2^F a_1 \sigma_1^F)$. Since σ_2^F and σ_1^F both are smooth outside $V := \{x = y = 0\}$ it follows that $\text{supp} M_2 \subset V$. Since M_2 has bidegree $(0, 1)$ it vanishes by the dimension principle. Hence $R_2^F a_0 = a_2 R_2^F$. Thus, we get that

$$\{D\varphi_1 D\varphi_2 R_2^F\} = -C x^{\ell-1} y^{k-1} dx \wedge dy\{R_2^F\} = -C dx \wedge dy\{R_2^F a_0\} =$$

$$= -C dx \wedge dy\{a_2 R_2^F\} = -C dx \wedge dy \wedge \frac{1}{x} \wedge \frac{1}{y} = (2\pi i)^2 C[0],$$

cf. (2.12).

We conclude that

$$D\varphi_1 D\varphi_2 R_2^F = (2\pi i)^2 \ell(2k - m)[0],$$

i.e., $D\varphi_1 D\varphi_2 R_2^F$ is the current of integration along the (only) associated prime $m_{\mathbb{C}^2, \mathcal{O}} = \mathcal{J}(x, y)$ of \mathcal{J} with mass $(2\pi i)^2 \ell(2k - m)$.

We claim that the length of \mathcal{J} along $m_{\mathbb{C}^2, \mathcal{O}}$ equals $\ell(k - m)$. To see this note first that if a is an ideal in $\mathcal{O}_{\mathbb{C}^2, \mathcal{J}}$ not contained in $\mathcal{J}(y^m) \subset \mathcal{O}_{\mathbb{C}^2, \mathcal{J}}$, then there exists some holomorphic function $p(x, y) \neq 0$ in a that is a polynomial of degree $< m$ in y. Thus

$$\cdots \subseteq \mathcal{J}(x^r p(x, y)) \subseteq \mathcal{J}(x^{r-1} p(x, y)) \subseteq \cdots \subseteq \mathcal{J}(x p(x, y)) \subseteq \mathcal{J}(p(x, y)) \subset a$$

is an infinite chain of ideals. Therefore any ideal of finite length must be contained in $\mathcal{J}(y^m)$. Since $\mathcal{J}(y^m)(\mathcal{O}_{\mathbb{C}^2, \mathcal{J}}) \cong \mathcal{O}_{\mathbb{C}^2, \mathcal{J}}(y^{k-m}, x^\ell)$ it follows that $\mathcal{J}(y^m)$ has length $\ell(k - m)$, which proves the claim.

6. Relation to the results of Lejeune-Jalabert

Our results are closely related to results by Lejeune-Jalabert, [1, 11], and we will in this section compare our results with hers.

Throughout this section, we let Z be a (not necessarily reduced) analytic space of dimension n. Assume that Z is a subspace of codimension p of the complex manifold X of dimension $N = n + p$, and let Z be defined by the ideal sheaf $\mathcal{J} \subset \mathcal{O}_X$.

6.1. The Grothendieck dualizing sheaf and residue currents. If \(Z \) is Cohen-Macaulay, then the Grothendieck dualizing sheaf \(\omega_Z \) is
\[
\omega_Z := \mathcal{E}xt^0_{\mathcal{O}_X} (\mathcal{O}_Z, \Omega^N_X),
\]
where \(\Omega^N_X \) is the sheaf of holomorphic \(N \)-forms on \(X \). If \(Z \) is smooth, then \(\omega_Z \) coincides with \(\Omega_Z \).

We consider two different ways of realizing \(\omega_Z \): The first one is to take a locally free resolution \((E, \varphi)\) of \(\mathcal{O}_Z \), apply \(\text{Hom} (\bullet, \Omega^N_X) \) and take cohomology, i.e.,
\[
\omega_Z \cong H^p (\text{Hom} (E, \Omega^N_X)),
\]
so sections of \(\omega_Z \) can locally be represented as equivalence classes of sections of morphisms \(E_p \to \Omega^N_X \).

One can also realize \(\omega_Z \) by taking the Dolbeault complex \((C^{N,\bullet}, \bar{\partial})\) of \((N, \bullet)\)-currents on \(X \), apply \(\text{Hom} (\mathcal{O}_Z, \bullet) \) and take cohomology, i.e.,
\[
\omega_Z \cong H^p (\text{Hom} (\mathcal{O}_Z, C^{N,\bullet})),
\]
see for example [A4 Theorem 1.5]. Using this representation of \(\omega_Z \), sections can thus be identified with equivalence classes of \(\bar{\partial} \)-closed \((N,p)\)-currents annihilated by \(J \). By [A4 Theorem 1.5 and Example 1], the isomorphism
\[
\text{res} : H^p (\text{Hom} (E, \Omega^N_X)) \cong H^p (\text{Hom} (\mathcal{O}_Z, C^{N,\bullet}))
\]
between the different realizations of \(\omega_Z \) can be realized concretely by the residue current on \(E_p \).

\[
\text{res} : [\xi] \mapsto \left[\frac{1}{(2\pi i)^p} \xi R_p^E \tau^{-1} \right],
\]
where \(\tau \) is the natural surjection \(\tau : E_0 \to \text{coker} \varphi_1 \cong \mathcal{O}_Z \) and we consider \(\xi R_p^E \tau^{-1} \) as a scalar current in a similar way as in the introduction.

6.2. Coleff-Herrera currents. A \((q,p)\)-current \(\mu \) on \(X \) is a Coleff-Herrera current on \(Z_{\text{red}} \), denoted \(\mu \in \mathcal{CH}^q_{\text{red}} \), if \(\bar{\partial} \mu = 0, \check{\psi} \mu = 0 \) for all holomorphic functions \(\psi \) vanishing on \(Z_{\text{red}} \), and \(\mu \) has the SEP with respect to \(Z_{\text{red}} \), i.e., for any hypersurface \(V \) of \(Z_{\text{red}} \), the limit \(1_V \mu := \lim_{x \to 0^+} (1 - \chi(|f|/\epsilon)) \mu \) exists and \(1_V \mu = 0 \), where \(f \) is a tuple of holomorphic functions defining \(V \). This description of Coleff-Herrera currents is due to Björk, see [B1 Chapter 3], and [B2] Section 6.2.

Let \(f = (f_1, \ldots, f_p) \in \mathcal{O}_X \) be a tuple of holomorphic functions defining a complete intersection of codimension \(p \). Then, the basic example of a Coleff-Herrera current on \(Z_{\text{red}} \) is the Coleff-Herrera product of \(f \), \(\mu^f = \bar{\partial}(1/f_p) \wedge \cdots \wedge \bar{\partial}(1/f_1) \). Clearly, \(\bar{\partial} \mu^f = 0 \). In addition, \(\mu^f \) has the SEP with respect to \(Z_{\text{red}} \), and \(\check{\psi} \mu^f = 0 \) for all holomorphic functions \(\psi \) vanishing on \(Z_{\text{red}} \) — two properties which holds for all pseudomeromorphic currents \((\ast, p)\)-currents with support on \(Z_{\text{red}} \). The first property follows from the dimension principle, Proposition [2.1] and the second is [AW2 Proposition 2.3].

More generally, let \(\mathcal{G} \) be a coherent sheaf of codimension \(p \) with a locally free resolution \((E, \varphi)\) of length \(p \) (so that in particular, \(\mathcal{G} \) is Cohen-Macaulay). Then \(R_p^E \) is a \(\text{Hom} (E_0, E_p) \)-valued Coleff-Herrera current on

\[\text{We have introduced the factor } 1/(2\pi i)^p \text{ for normalization reasons.}\]
V := supp G. To see this, note first that, by the ∇-closedness of RE and the fact that E has length p, ∂RE = φp+1RRE+1 = 0. The other two properties follow as above since RRe is a pseudomeromorphic (0, p)-current with support on V.

We let (cN• Zred, ∂) denote the Dolbeault complex of (N, •)-currents on X with support on Zred. It was proven in [DS1] (for Zred a complete intersection) and [DS2] Proposition 5.2 (for Zred arbitrary of pure dimension) that Coleff-Herrera currents are canonical representatives in moderate cohomology in the sense that

\[(\ker ∂ : cN,p(Zred) → cN,p+1(Zred)) ≅ CHredN ⊕ ∂cN,p-1(Zred),\]

i.e., each cohomology class in Hp(cN• Zred) has a unique representative which is a Coleff-Herrera current. In particular,

\[(6.3) CHredN ⋂ (\text{im } ∂ : cN,p-1(Zred) → cN,p(Zred)) = \{0\} .\]

6.3. Relation to the results in [LJ1]. In this section, we discuss how the results of Lejeune-Jalabert give our results and vice versa. The main point is to describe how the result of [LJ1] gives the following special case of Theorem 1.2.

Theorem 6.1. Let Z ⊂ X be an analytic space of pure codimension p which is Cohen-Macaulay. Assume that OZ has a locally free resolution (E, φ) over OX of length p, and let D be the connection on EndE induced by connections on E0, . . . , Ep. Then,

\[(6.4) \frac{1}{(2πi)p!} \text{tr}(Dφ1 · · · DφpRRE) = [Z],\]

and

\[(6.5) \frac{1}{(2πi)p!} τDφ1 · · · DφpRREτ−1 = [Z],\]

where τ is the natural surjection τ : E0 → coker φ1 ≅ OZ.

In order to prove Theorem 1.2 in full generality, without assuming that Z is Cohen-Macaulay or that (E, φ) has length p, one can then argue in the same way as in our proof of Theorem 1.2 but using Theorem 6.1 instead of Lemma 4.5. Indeed, first of all, by (4.15), it is sufficient to prove just (1.10). By combining Lemma 4.1 and Theorem 6.1, we first obtain (1.10) in a neighborhood of each Cohen-Macaulay point. By the dimension principle, (1.10) then holds on all of X.

In [LJ1], the fundamental class of Z is considered as a map cZ : ΩZ → ωZ, where ΩZ is the sheaf of holomorphic p-forms on Z.

If α is a section of ΩZ and ̃α is a section of ΩX, which is a representative of α, then γ := ̃α ∧ τDφ1 · · · Dφp is a section of Hom(Ep, ΩX ⊗ OZ). Since (E, φ) has length p, γ induces a section [γ] of Extp(OZ, ΩX ⊗ OZ). We now consider the isomorphism

\[(6.6) ωZ = Extp(OZ, ΩX) ≅ Extp(OZ, ΩX ⊗ OZ) .\]
induced by the surjection $\Omega^N_X \rightarrow \Omega^N_X \otimes \mathcal{O}_Z$, see [ALJ]. Since E_p is locally free, γ can locally be lifted to sections γ_i of $\text{Hom}(E_p, \Omega^N_X)$. Since (E, φ) has length p, these local liftings of γ define sections $[\gamma_i]$ of ω_Z locally. On overlaps, the γ_i's differ by sections of $\text{Hom}(E_p, \Omega^N_X) \otimes F$, and since $F\omega_Z = 0$, the sections $[\gamma_i]$ patch together to a global section of ω_Z, which we denote by $[\tilde{\alpha} \wedge \tau D\varphi_1 \cdots D\varphi_p]$. By construction, $[\tilde{\alpha} \wedge \tau D\varphi_1 \cdots D\varphi_p]$ maps to $[\gamma]$ using the isomorphism (6.6). The main theorem in [LJ1] asserts that this gives the fundamental class of α (times $p!$), i.e.,

(6.7)
$c_Z(\alpha) = \frac{1}{p!} [\tilde{\alpha} \wedge \tau D\varphi_1 \cdots D\varphi_p].$

Note that where the local lifting γ_i of $[\tilde{\alpha} \wedge \tau D\varphi_1 \cdots D\varphi_p]$ is defined, $\gamma_i R_p^E$ coincides with $\gamma R_p^E = \tilde{\alpha} \wedge \tau D\varphi_1 \cdots D\varphi_p R_p^E$ (if we consider the currents as scalar currents). Thus combining (6.7) with the realization (6.2) of the isomorphism (6.1), we get that

(6.8)
$\text{res } c_Z(\alpha) = \frac{1}{(2\pi i)^p p!} \tilde{\alpha} \wedge \tau D\varphi_1 \cdots D\varphi_p R_p^E \tau^{-1} + \bar{\partial} \text{Hom}(\mathcal{O}_Z, C^{N,p-1}).$

It is not entirely clear to us how the fundamental class is defined in [LJ1], but it is reasonable to assume that if one uses the isomorphism (6.1) to represent $c_Z(\alpha)$ as a current, then one should have

(6.9)
$\text{res } c_Z(\alpha) = \tilde{\alpha} \wedge [Z],$

where we by $[Z]$ mean the fundamental cycle (seen as a current on X) as defined in (1.3).

Assuming (6.9), (6.8) then implies that

$\mu := \tilde{\alpha} \wedge [Z] - \frac{1}{(2\pi i)^p p!} \tilde{\alpha} \wedge \tau D\varphi_1 \cdots D\varphi_p R_p^E \tau^{-1} \in \left(\text{im } \bar{\partial} : C^{N,p-1}_{\text{red}} \rightarrow C^{N,p}_{\text{red}} \right).$

By Lemma (1.2), $\tau D\varphi_1 \cdots D\varphi_p R_p^E \tau^{-1}$ is independent of the connection D, and we can thus assume that D is the trivial connection d in a trivialization of E. Then $D\varphi_1 \cdots D\varphi_p$ is a holomorphic $\text{Hom}(E_p, E_0)$-valued morphism, and thus, since R_p^E is a $\text{Hom}(E_0, E_p)$-valued Coleff-Herrera current, $\tau D\varphi_1 \cdots D\varphi_p R_p^E \tau^{-1} \in \mathcal{C}^2_{\text{red}}$. Hence, $\mu \in \mathcal{C}^2_{\text{red}}$, so by (6.3), $\mu = 0$. Since $\mu = 0$ for any choice of the holomorphic p-form $\tilde{\alpha}$ on X, we get that (6.5) holds. Finally, using (1.13), we get that (6.4) holds. To conclude, assuming (6.9), Theorem (6.1) follows from the theorem in [LJ1].

On the other hand, Theorem (6.1) together with (6.9) implies (6.8), which in turn implies (6.7) since (6.2) is an isomorphism. Thus, Lejeune-Jalabert’s result follows from Theorem (6.1) and (6.9). Finally, taking Theorem (6.1) and Lejeune-Jalabert’s result for granted, it follows that (6.9) must be a correct assumption.

REFERENCES

[ABM] J. Adamus, E. Bierstone, and P. D. Milman, Geometric Auslander criterion for flatness, Amer. J. Math. 135 (2013), no. 1, 125–142.

[A1] M. Andersson, Residue currents and ideals of holomorphic functions, Bull. Sci. Math. 128 (2004), no. 6, 481–512.

[A2] M. Andersson, Residues of holomorphic sections and Lelong currents, Ark. Mat. 43 (2005), no. 2, 201–219.
[A3] M. Andersson, *Uniqueness and factorization of Coleff-Herrera currents*, Ann. Fac. Sci. Toulouse Math. **18** (2009), no. 4, 651–661.

[A4] M. Andersson, *Coleff-Herrera currents, duality, and Noetherian operators*, Bull. Soc. Math. France **139** (2011), no. 4, 535–554.

[AS] M. Andersson and H. Samuelsson, *A Dolbeault-Grothendieck lemma on complex spaces via Koppelman formulas*, Invent. Math. **190** (2012), no. 2, 261–297.

[ASKWY] M. Andersson, H. Samuelsson Kalm, E. Wulcan, and A. Yger, *Segre numbers, a generalized King formula, and local intersections*, J. Reine Angew. Math., to appear, available at [arXiv:1009.2458][math.CV].

[AW1] M. Andersson and E. Wulcan, *Residue currents with prescribed annihilator ideals*, Ann. Sci. ´Ecole Norm. Sup. **40** (2007), no. 6, 985–1007.

[AW2] M. Andersson and E. Wulcan, *Decomposition of residue currents*, J. Reine Angew. Math. **638** (2010), 103–118.

[AW3] M. Andersson and E. Wulcan, *Global effective versions of the Briançon–Skoda–Huneke theorem*, Invent. Math. **200** (2015), 607–651.

[AW4] M. Andersson and E. Wulcan, *Direct images of semi-meromorphic currents* (2014), Preprint, Göteborg, available at [arXiv:1411.4832][math.CV].

[ALJ] B. Angéniol and M. Lejeune-Jalabert, *Calcul différentiel et classes caractéristiques en géométrie algébrique*, Travaux en Cours [Works in Progress], vol. 38, Hermann, Paris, 1989.

[B1] J.-E. Björk, *D-modules and residue currents on complex manifolds* (1996), Preprint, Stockholm.

[B2] J.-E. Björk, *Residues and D-modules*, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 605–651.

[CH] N. R. Coleff and M. E. Herrera, *Les courants résiduels associés à une forme méromorphe*, Lecture Notes in Mathematics, vol. 633, Springer, Berlin, 1978.

[DP] J.-P. Demailly and M. Passare, *Courants résiduels et classe fondamentale*, Bull. Sci. Math. **119** (1995), no. 1, 85–94.

[DS1] A. Dickenstein and C. Sessa, *Canoncial representatives in moderate cohomology*, Invent. Math. **80** (1985), no. 3, 417–434.

[DS2] A. Dickenstein and C. Sessa, *Résidus de formes méromorphes et cohomologie modérée*, Géométrie complexe (Paris, 1992), Actualités Sci. Indust., vol. 1438, Hermann, Paris, 1996, pp. 35–59.

[D] P. Dolbeault, *Courants résidus des formes semi-méromorphes*, Séminaire Pierre Lelong (Analyse) (année 1970), Lecture Notes in Math., Vol. 205, Springer, Berlin, 1971, pp. 56–70.

[E] D. Eisenbud, *Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.

[EH] D. Eisenbud and J. Harris, *The geometry of schemes*, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000.

[ERS] D. Eisenbud, O. Riemenschneider, and F.-O. Schreyer, *Projective resolutions of Cohen-Macaulay algebras*, Math. Ann. **257** (1981), no. 1, 85–98.

[F] W. Fulton, *Intersection theory*, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 2, Springer-Verlag, Berlin, 1998.

[HL] M. E. M. Herrera and D. I. Lieberman, *Residues and principal values on complex spaces*, Math. Ann. **194** (1971), 259–294.

[Lä1] R. Lärkäng, *Residue currents with prescribed annihilator ideals on singular varieties*, Math. Z. **279** (2015), no. 1-2, 333–358.

[Lä2] R. Lärkäng, *A comparison formula for residue currents* (2012), Preprint, Göteborg, available at [arXiv:1207.1279][math.CV].

[Lä3] R. Lärkäng, *Explicit versions of the local duality theorem in C^n*, In preparation.

[LW] R. Lärkäng and E. Wulcan, *Computing residue currents of monomial ideals using comparison formulas*, Bull. Sci. Math. **138** (2014), no. 3, 376–392.

[LJ1] M. Lejeune-Jalabert, *Remarque sur la classe fondamentale d’un cycle*, C. R. Acad. Sci. Paris Sér. I Math. **292** (1981), no. 17, 801–804.

[LJ2] M. Lejeune-Jalabert, *Liaison et résidu*, Algèbre géométrie (La Rábida, 1981), Lecture Notes in Math., vol. 961, Springer, Berlin, 1982, pp. 233–240.
[Lu1] J. Lundqvist, *A local Grothendieck duality theorem for Cohen-Macaulay ideals*, Math. Scand. 111 (2012), no. 1, 42–52.

[Lu2] J. Lundqvist, *A local duality principle for ideals of pure dimension* (2013), Preprint, available at [arXiv:1306.6252[math.CV]]

[PTY] M. Passare, A. Tsikh, and A. Yger, *Residue currents of the Bochner-Martinelli type*, Publ. Mat. 44 (2000), no. 1, 85–117.

[SS] G. Scheja and U. Storch, *Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte*, Manuscripta Math. 19 (1976), no. 1, 75–104.

[W] E. Wulcan, *On a representation of the fundamental class of an ideal due to Lejeune-Jalabert* (2013), Preprint, Göteborg, available at [arXiv:1304.5447[math.CV]]

Richard Lärkäng, Department of Mathematics, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany, and Department of Mathematics, Chalmers University of Technology and the University of Gothenburg, 412 96 Göteborg, Sweden

E-mail address: larkang@chalmers.se

Elizabeth Wulcan, Department of Mathematics, Chalmers University of Technology and the University of Gothenburg, 412 96 Göteborg, Sweden

E-mail address: wulcan@chalmers.se