Topical Review

Recent advances in field effect transistor biosensor technology for cancer detection: a mini review

Lemeng Chao1,*, Ying Liang2, Xiao Hu1, Huanhuan Shi3,*, Ting Xia1, Hong Zhang1 and Huiling Xia1,*

1 Department of Medical Engineering, Inner Mongolia People’s Hospital, Hohhot 010017, People’s Republic of China
2 School of Computer Information, Inner Mongolia Medical University, Hohhot 010110, People’s Republic of China
3 School of Measuring and Option Engineering, Nanchang Hangkong University, Nanchang 330063, People’s Republic of China

E-mail: lemengchaocsu@163.com and nmyyxhl@163.com

Received 24 August 2021, revised 23 November 2021
Accepted for publication 2 December 2021
Published 13 December 2021

Abstract
Cancer is an incurable disease, and the treatment process is extremely painful. Early detection may ease the treatment process and prevent cancer from spreading beyond the primary disease area. However, conventional screening tests have long detection times and lack the required sensitivity for early detection. Consequently, traditional cancer biosensors, including amplification refractory mutation system, digital polymerase chain reaction, next generation sequencing, western blot, electrochemical, and mechanical biosensors, have been studied in recent years. Specifically, field effect transistor (FET) biosensors, are attractive pocketable devices with short detection time capabilities. Because FET biosensors have outstanding electrical and mechanical properties, FET biosensors have been studied for their efficacy in the early detection of cancer. Traditional detection methods of cancer biomarkers include the use of FET biosensors for the detection of cancer biomarkers, especially gene, antigen, and protein characteristics. This review presents the latest strategies in FET applications in cancer biosensing and compares their advantages and disadvantages regarding sensing principle, configuration, and performance. Especially, FET biosensors for the detection of cancer biomarkers, which include antibodies, nucleic acids, proteins are highlighted. Mechanical and electrical properties of FET devices and their effect on performance is discussed. This review provides a guiding role in the design and development of FET-based biosensors.

Keywords: field effect transistor, biosensor, cancer, detection, application

(Some figures may appear in color only in the online journal)
1. Introduction

Diseases of malignant tumors seriously affect human health and have a high mortality rate that threatens human lives. Its early detection and diagnosis can reduce patient mortality and improve the effect of the treatment [1–4]. Cancer biomarkers are a valuable tool for staging certain cancers, monitoring cancer development, and assess the prognosis of treatment [5–7]. After the formation of tumor, changes in the levels of several biomarkers can be detected in blood samples or other body fluid samples [8, 9]. In order to distinguish subtle changes in levels of biomarkers in complex clinical blood samples or other body fluid samples, therefore, diagnostic analysis must be rapid, sensitive and selective. Traditional cancer detection technologies often involve multiple steps such as more complicated pretreatment, time consuming nucleic acid amplification, and target detection, which are not suitable for clinical practical applications.

With the high development of microelectromechanical system (MEMS) technology, micro device with clinical sample detection functions can be manufactured and integrated with a mini-chip [10]. MEMS such as carbon nanotube field effect transistor (CNT-FET) and nanowire FET (NW-FET), have received much attention because of their ability to directly convert interaction of the receptor with target molecules immobilized on the surface of the FET channel into electrical signals [11]. Sensing performs sample detection by detecting changes in the conductivity of the FET channel, which is caused by an interaction of analyte molecules from sample with the receptor on the device channel. The change in the effective charge of the molecule causes a change in the threshold voltage and current of the FET sensor [12]. To the best of our knowledge, the conductivity of the FET channel is highly sensitive to the detection of analyte-receptor binding.

Therefore, the FET sensor provides a comprehensive and effective method for detecting various biomolecules [13]. FET-sensing technology enable many processes that are important to human life, such as environmental monitoring [14–16], medical diagnostics [17–20], food safety [21–23], gas detection [24–26], etc. FET biosensors are similar to complementary metal oxide semiconductor circuits. Furthermore, they can be fabricated at a very small size for a low-cost using MEMS technology [24].

The nano-scale cancer FET biosensor is a versatile and multiphasic technological tool that can achieve early and rapid cancer detection [27]. FET biosensing in Indirect detection of drain current (I_D) by controlling the gate electrode voltage (V_G). The FET response is determined by a change in the channel surface potential of the biological sample, which is affected by charged molecules [28, 29]. In recent years, FET biosensors have been described as ideal candidates for early detection of different cancers [30]. FET devices enhanced with nanomaterials have been used for early detection of cancer [31]. Typical biomarkers for early detection of cancer are deoxyribo nucleic acid (DNA), protein, and antibodies, although there are other useful biomarkers [32–34]. Measurement of cancer biomarkers can provide important information that supports: (a) making a diagnosis, assessing disease severity, and determining the efficacy of treatment, (b) indexing organ or tissue function, and (c) determining risk biomarkers for the prediction of cancer, which guides future development of high-performance biosensors.

2. Structure and working principle of FET biosensor

FET biosensors primarily consist of two parts—a sensitive film composed of semiconductor material used for biomolecule recognition and a signal conduction component, which is the traditional FET device [35–37]. The manufacturing process of FET biosensor involves preparing the source (source, S) and drain (drain, D) on the silicon substrate via an etching process and then preparing the gate (gate, G) between S and D [38, 39]. Between the S and D of the FET, a sensitive film is prepared and biological functional substances are fixed on its surface. A measurement circuit is added to form a complete FET biosensor [40, 41]. When the fixed biological functional substance comes into contact with the substance to be tested, a specific reaction occurs, causing the electrons of the sensitive membrane to move, thereby indicating the amount of the substance to be tested (figure 1). Bias voltage detection methods of FET biosensors are usually divided into top, back, or solution gate.

2.1. Top-gate biosensor

The top-gate biosensor can be used as an extremely effective detection method; however, the preparation method of the biosensor is relatively simple. The top gate can be used as a sensing component, and a piezoresistive effect can be used to alter the signal emitted from the FET. Consequently, the strain in the cantilever reduces the mobility of electrons in the base, thereby reducing the leakage current. As shown in figure 2(A), Chalklen et al [42] used a top-gate biosensor to detect the deflection of the cantilever and the adsorption of the analyte. Bungon et al [43] used a top-gate biosensor to detect the deflection of the cantilever and the adsorption of the analyte. Bungon et al [43] demonstrated the use of evaporated chromium and sputtered gold on a p++ Si/SiO2 substrate.

The contact lithography patterning and metal lift-off technology fabricated the top-gate FET biosensor for Alzheimer’s disease protein biomarker clusterin detection. Jeseung et al [44] developed a metal-semiconductor FET biosensor with a CNT film. A gold top-gate is placed in the middle of the CNT channel, and the probe antibody is fixed on a gold top-gate with antibody binding protein G or an Escherichia coli outer membrane with the Z domain of protein A. This biosensor has high sensitivity (figure 2(B)).

2.2. Back-gate biosensor

The back-gate biosensor has maximum detection area. A silicon substrate is used as a common back gate, and a silicon dioxide is used as a gate dielectric layer of this type of FET.
biosensors [45]. The source and drain are formed via sputtering deposition and depositing patterned metal layers such as titanium. Second, the preparation of CNTs needs to be grown in an oxygen plasma atmosphere, and the vapor deposition growth of the electrode part needs to be coated with photoresist and patterned. Then, the photoresist was removed with organic solvents. Finally, annealing the device in vacuum (figure 3(A)) [46].

Figure 3(B) shows the Debye shielding effect in a back-gate graphene-FET [47]. Positive ions in the solution are attracted to the channel of FET. Antibody is a larger biomarker, when using face of FET channel in response to the back-gate this method to detect antibodies, if it is larger than the Debye length of the FET biosensor, the analyte will not attracted to the biological receptor, and thus the recognition reaction is less likely to occur. If we do not
consider other testing reasons, the detection method using back-gate biosensor of maximum detection area is relatively simply.

2.3. Solution-gate biosensor

The most common method of preparation produces a solution-gate FET biosensor, which can better simulate the human physiological environment. A reaction chamber made of polydimethylsiloxane is fixed on the substrate using silicone. The miniaturized Ag/AgCl electrochemical reference electrode is immersed in the reaction chamber as a gate electrode for sample functionalization (figure 4(A)). Then, drain-source voltage \(V_{ds} \) and gate-source voltage \(V_{gs} \) is applied to force the device to operate \([48, 49]\) bio-sensor devices that use graphene or reduction Graphene Oxide (rGO) as active materials in solution-gated FETs are superior to those that use other kinds of active materials \([50]\). Due to the nano electric double layer (EDL) at the graphene-solution interface, these devices exhibit high sensitivity to various analytes and operate at low-gate potentials \([51]\).

Ag/AgCl is the most common liquid gate electrode. Zeimpekis et al \([52]\) provided a comprehensive evaluation of pH and protein sensing when using Ag/AgCl as the gate electrode (figure 4(B)). Most FETs are unstable under water-based conditions, have low sensitivity, and require traditional Ag/AgCl electrodes for gating. Han et al \([53]\) proposed a solution-gated graphene FET for real-time monitoring of microscale loop-mediated isothermal DNA amplification. The source, drain, and gate of the sensor all use gold electrodes (figure 4(C)).

3. Biomarker for traditional cancer detection and analysis

Biomarkers are considered to be indicators of various diseases (including cancer, viral infections, and autoimmune diseases) \([54, 55]\). Recently, a large number of specific biomarkers were discovered, which has led to the rapid development of biode-tection sensors to detect DNA, protein, antibody, and other biomarkers for traditional cancer detection \([56, 57]\).

3.1. Gene

DNA biomarker detection have been developed and evaluated for the tumor genotyping in liquid biopsy samples, their performance in clinical detection has been accepted \([58, 59]\). The range of potential gene detection biomarkers includes but is not limited to ribonucleic acid (RNA) transcripts, DNA and epigenetic changes \([60, 61]\).

Among them DNA methylation biomarker detection is considered to be an important part of epigenetic modification and has become a hot research topic in recent decades \([62]\). It usually occurs when a methyl group is added to the fifth carbon atom of cytosine while the base sequence of DNA remains unchanged \([63]\). With the development of analysis technology to deepen DNA methylation research, DNA methylation detection strategies based on biosensing technology have been developed \([64]\). Larsen et al \([65]\) reviewed the latest advances in DNA methylation-based biomarkers for the detection of bladder, prostate, kidney, and upper urinary tract cancer, and explained the clinical application potential of biomarkers of DNA methylation (figure 5).
3.2. Antigen

Antigen refers to all substances that can induce an immune response in the body. When individuals suffer from cancer, the level of cancer antigen in the blood will increase greatly [66]. The detected antigen can be used as a biomarker of primary cancer or metastatic cancer, meanwhile, the growth rate and invasiveness of the tumor can be evaluated by the antigen level correspondingly. For instance, carcinoembryonic antigen (CEA) is a typical biomarker for colon cancer and rectal cancer [67].

T-cell receptor gamma chain alternating reading frame protein (TARP) was first discovered in human prostate cancer and androgen-sensitive prostate cancer [68, 69]. Since then, TARP has been found in breast cancer and endometrial cancer, salivary gland tumors, and acute myeloid leukemia in children and adults [70]. Interestingly, TARP promotes tumor cell proliferation and migration, reflected in the poor survival rates [71, 72]. Expression of TARP in malignant cells and its role in tumorigenesis while having limited expression in normal tissues have aroused interest regarding its potential use as a therapeutic target, which has led to the development of immunotherapy target strategies [73].

As a traditional method of early cancer detection, electrochemistry is a laboratory method that can effectively and quickly diagnose early cancer lesions. Cotchim et al [74] used graphene/methylene blue-chitosan/antibody and bovine serum albumin on indium tin oxide glass electrodes to create a new type of multiple label-free electrochemical immunosensor for the simultaneous measurement of three types of tumors markers, including CEA, cancer antigen 153, and cancer antigen 125 (figure 6).
3.3. Protein

Protein is the main working substance of the human body, and it involves in all molecular signaling pathways in human cells. When cancer occurs, cells start growing out of control and secreting abnormal proteins in the cancer tissue. Such as, the dormant pancreatic stellate cells in normal tissues will be only activated in pancreatic cancer tissues, secrete proteins, and deliver stimulating signals to tumor cells to promote the development and progression of pancreatic cancer [75].

Secreted extracellular protein induced by transforming growth factor β (TGFβ1 or β1IGH3) regulates many biological functions during embryonic development and the pathogenesis of human diseases, including cell adhesion and bone formation [76, 77]. TGFBI is most studied in hereditary corneal dystrophy, wherein mutations in TGFBI cause it to accumulate in the cornea [78]. In cancer, early research focused on TGFBI as a tumor suppressor, partly by improving chemotherapy sensitivity. However, in established tumors, TGFBI promotes tumor progression to a large extent, and its elevated levels are associated with poor clinical outcomes [79]. The mechanism of targeting TGFBI has potential clinical application in the treatment of advanced cancer, and assessment of the TGFBI expression level can be used as a biomarker of resistance to chemotherapy and progression of tumor [80, 81].

Western blot analysis is a traditional method for early detection of cancer protein biomarker that involves the presence of UNIVmAb reactive antigens in circulation. Huang et al [82] used Western blot assay to perform analysis on cervical cancer serum samples. The experiment was confirmed that miR-193b regulates the expression of CCND1 mRNA in cervical cancer cells (figure 7).

3.4. Other

Exosomal microRNA (miRNA) detection based on double-stranded specific nuclease-triggered rolling circle amplification is used for the detection of cancer cells. Among them, exosomal miRNA is a promising noninvasive biomarker for liquid biopsy [83]. Electrochemical impedance spectroscopy is used to detect interleukin-6 biomarkers as an immunosensor for the detection of cancer [84] Through functional processing of ordinary organic FET (OFET) devices to detect cancer, the proposed OFET-based biosensor provides more extensive analysis, and thus can be used in clinical applications for the diagnosis of early liver cancer [27, 85].

Confocal fluorescence imaging is one of the most important methods for detecting cancer biomarkers. He et al [86] used fluorescent probes to perform confocal fluorescence imaging of HeLa cancer cells (figure 8), KB cancer cells, and V79 normal cells. Although this work successfully proved that biomarkers can be used to detect cancer cells, the cost of confocal fluorescence imaging is extremely high,
and the biomarkers need to be labeled to obtain accurate results.

4. Bioreceptors used for FET cancer biosensors

Various advantages of the aforementioned biomarkers have laid a good foundation for the development of FET biosensors. To reduce the cost of samples to be tested, low-cost portable in vitro biosensors are in urgent need of development. Therefore, development of FET biosensors for rapid label-free detection have become a hot research topic. Rapid diagnostics utilizing a free-label system have enabled many opportunities in modern medicine for the clinical detection, cancer diagnosis, and treatment of infectious diseases [49, 87]. In addition, the recent global epidemic of the novel coronavirus (COVID-19) illustrates that the demand for rapid and flexible nucleic acid detection technology for the detection and diagnosis of diseases has not been met [8, 88]. The detection capability of biosensors is essential for a wide range of diagnostic applications [89].

4.1. Antibodies

Antibody is a protective protein produced by antigen stimulation. In order to achieve the early diagnosis of cancer and choose better targeted drugs to treat cancer, the detection of cancer-specific antibodies is of great significance [90].

A typical heterogeneous immunoassay includes multiple steps of antibody modification, cultivate, and washing cycles, as well as data readout and biological signal amplification [91]. From the initial antibody modification step to the final data analysis stage, immunoassay results usually take days to weeks to obtain. Various cancer cell detection technologies have been developed, including cytological detection, fluorescence imaging, magnetic resonance imaging, computed tomography, x-ray photography, and ultrasound [92, 93]. However, disadvantages of these detection method include high cost and the long time required to perform the experimental procedures or operate the instruments. Therefore, to reduce the mortality of certain cancers, it is necessary to develop a simple to use, rapid detection, and cost-effective early detection method for cancer patients in preclinical diagnosis. In this regard, point of care handheld devices provide a promising alternative to existing laboratory-based immunochemical analysis [94].

This prompted us to explore whether we can further improve sensitivity by using CNT FETs tightly coupled with engineered antibody components. Lerner et al [95] transformed the 23C3 monoclonal antibody into a single-chain variable fragment antibody. They observed that the 23C3 single-chain antibody retains its ability to bind to osteopontin (OPN), which will make it an effective diagnostic alternative to the Hu23C3 therapeutic antibody. They observed the antigen-specific, concentration dependent sensor response to OPN in the buffer and determined that the measured responses collected from 10 to 15 devices can be used to reliably distinguish between pure buffers and buffers containing OPN at a concentration of 1 pg ml$^{-1}$ or 30 fm liquid (figure 9(A)).

Figure 9. (A) Functionalization scheme for OPN attachment. Reprinted with permission from [95]. Copyright (2012) American Chemical Society. (B) Schematic specific detection process of the prostate specific antigen (PSA). Reprinted from [96], Copyright (2018), with permission from Elsevier.

Sungkyung et al [96] reported a cheap and simple FET biosensor, which uses paper combined with multiwalled CNTs as a substrate. The PSA antibody is fixed on the surface of the sensor channel, and the binding levels of PSA and PSA antigens are indirectly detected via changes in resistance to detection. Furthermore, the maximum detection limit is \sim50 times higher than that of enzyme linked immunosorbent assay (figure 9(B))

4.2. Aptamers

Aptamers are oligonucleotides or peptides, which have high specificity and affinity for their associated targets in cells. Aptamers serve as a mediator between targeted therapy method and its targeted disease site, selectively delivers drugs to the cancer site to kill cancer cells. Compared to antibody, aptamers are easier to obtain and modify, moreover, they have lower immunogenicity. In such manner, aptamers can be anchored on the biosensor to specifically capture small molecules, proteins such cytokines [97].

As the basic response of the immune system to disease, inflammation can eliminate the source of infection [98, 99].

However, certain diseases, such as middle east respiratory syndrome, COVID-19, and other diseases, may cause excessive and long-term inflammation [100, 101]. This reaction is called a ‘cytokine storm’, and it leads to higher mortality due to serious damage of human organs, developing rapidly of the patient’s condition, or acute respiratory distress syndrome. Simultaneously, cytokines are important markers of biological trauma, sepsis, cancer, and rheumatism [87, 102]. Therefore, there is an urgent need to develop a sensor that can be worn instantly for the continuous detection of cytokine levels in patients, which can distinguish deterioration of the condition of patients with acute infectious diseases and monitor their health status in daily life.
The sensor can be used for clinical noninvasive detection of cytokines in human saliva and other biological fluids. Wang et al. [103] developed a sensitive and renewable aptamer graphene-Nafion FET (GNFET) biosensor that can rapidly and consistently detect cytokine biomarkers in undiluted human biological fluids. The experimental results show that the sensor has high consistency and sensitivity in detecting the representative inflammatory cytokine biomarker interferon gamma (IFN-γ) in undiluted sweat containing a variety of impurities under various conditions. The detection range is 0.015–250 nm, and the detection limit is 740 fm. The biosensor repeatability and sensitivity detects cytokine biomarkers in human biological fluids (figure 10).

4.3. DNA

Among these detectors, electronic detectors can achieve rapid and real-time DNA signal readout because of the transduction elements (such as nanoparticles [104, 105], organic conductive materials [106], and carbon-based materials [107, 108]). The microresponse to the readable signal can be amplified within a few seconds. Advancements such as miniaturization and improved portability make electronic-based DNA detectors a promising technology to exploit for further commercial applications.

The ideal choice for personalized medicine is an electronic DNA biosensor with single-nucleotide resolving power. Hwang et al. [109] used DNA tweezers with graphene FET for detection of single-nucleotide polymorphism (SNP) and wirelessly transmitted data for analysis. By observing Dirac point displacement and resistance change, the picomolar sensitivity of quantitative SNP detection can be obtained. Implementing DNA tweezer probes and high-quality graphene field effect tubes increases the sensitivity of SNP detection by >1000 times and significantly improves the analysis characteristics of detection of SNP (figure 11).

Although DNA recognition has been achieved by many biosensors and various sensing probes, there have been few reports on the use of biological interactions between DNA and biomolecules for DNA detection. Li et al. [45] reported a peptide-based CNT thin film transistor biosensor, which achieved detection of sensitive sequence-independent DNA (figure 12). In that study, they used polypeptides as natural molecules, which have the special binding ability to bind to universal DNA and achieve excellent selectivity to DNA after functionalization. In the presence of DNA, can be observed within a few minutes of ions, which may be due to the van der Waals force adsorption that occurs between DNA and peptides with opposite zeta potential. With the gradual increase of DNA concentration, the ΔV_{ON} signal conforms to the Hill–Langmuir model ($R^2 = 0.98$), which indicates that there is a negative synergy between peptide and DNA.

5. Considerations in choosing a bioreceptor material

Due to the high degree of specificity and sensitivity of biosensor detection, this technology has a wide range of applications in the field of diagnosis. Latest advancements in the use of nanomaterial-mediated bioaffinity sensors for disease biosensing, point of care testing, and medical management have been previously described [110–112]. The sensor material is one of the most important components to consider in the manufacture of FET biosensors [47, 113, 114]. Many popular nanomaterials have attracted the special interest of scientists as sensors [115, 116]. By applying corresponding molecular functionalized FET sensors to specific target molecules and nonspecific molecules, the specificity and selectivity of the FET sensor array can be studied.

5.1. Specificity

Highly specific molecular recognition is a key capability of biosensors. Affinity sensors rely on selective binding interactions between analytes and biological components (such as antibodies, nucleic acids, or receptors). Bao et al. [117] reported a silicon nanoribbon FET biosensor for CEA detection. To eliminate other unexpected factors that may affect the time-lapse relationship, a bovine albumin solution was allowed to be used simultaneously (figure 13(A)). Cheung et al. [49] used label-free FETs to detect short oligonucleotides and distinguish sequences with different individual bases. Their study demonstrated the ability of single-stranded DNA FET biosensor to detect complementary RNA sequences and distinguish single nucleotide variant RNA sequences. The development and implementation of FET biosensors that can quickly detect and distinguish oligonucleotides has brought developments for the diagnosis of disease and precision medicine (figure 13(B)). Yang et al. [118] reported a MoS$_2$ FET sensor array for the detection of bladder cancer biomarkers. The MoS$_2$ FET sensor functionalized with antibody molecules exhibited a high current response to specific target protein molecules but not to nontarget proteins. The sensor response of the molecule is extremely low, which indicates that the MoS$_2$ FET sensor they designed has high selectivity.
Figure 11. Schematic of DNA-tweezers probe with high-quality graphene FET probe design. [109] John Wiley & Sons. [Copyright © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim].

Figure 12. Schematic representation of the novel-peptide-based CNT biosensor. Reproduced from [45] with permission of The Royal Society of Chemistry.

Figure 13. (A) Different concentrations of CEA (red curve) and bovine serum albumin (BSA) (black curve) 0.01 × phosphate-buffered saline solution flowed through the microfluidic channel. Reprinted with permission from [112]. Copyright (2019) American Chemical Society. (B) Sequences of DNA used for FET biosensor measurements with different types of mismatches from the attachment location. Reprinted with permission from [49]. Copyright (2020) American Chemical Society.
5.2. Sensitivity

The field effect mobility \(\mu_{\text{FET}} \) and drain current \(I_D \) can be measured when the sensors are exposed to the target biomarker. Among them, field effect mobility \(\mu_{\text{FET}} \) is usually derived from the equation as follows:

\[
\mu_{\text{FET}} = \frac{g_m L}{W C_{\text{tot}} V_{ds}}
\]

where \(L \) is the channel length, \(W \) is the channel width, \(C_{\text{tot}} \) is the gatel capacitance per unit of channel area, \(V_{ds} \) is the source–drain voltage, and \(g_m \) is the differential transconductance [119]. The higher the mobility the FET biosensor has, the better conductivity will be.

Different materials have different detection limits for the same biomarker. PSA has been proved to be an extremely useful biomarker for early detection of prostate cancer. Wang et al. [120] reported that the MoS\(_2\) field effect biosensor achieved clear signals to the PSA solution, with the concentration down to 375 fm.

Differences in the detection of the same biomarker have also been reported. An FET configured with a silicon NW-based structure can perform ultrasensitive, label-free, and real-time detection of PSA. Kim et al. [121] reported that the conductance changes depending on PSA concentrations and pH values in the solution according to the isoelectric point of the PSA, which provides evidence that supports the real-time detection of 1 fg ml\(^{-1}\) PSA. Rani et al. [122] demonstrated silicon NW ionic-sensitive FET (Si NW-ISFET) arrays. Concentration-dependent measurements were performed in a wide range (1 pg ml\(^{-1}\)–1 \(\mu \)g ml\(^{-1}\)), which covers the clinical range of interest. The aforementioned tests were performed under relatively harsh conditions. As serum proteome is very complex, containing high levels of salts and other interfering compounds, Huang et al. [123] employed a poly-Si NW FET device to detected PSA. The results indicated that the sensor could detect trace PSA at <5 fg ml\(^{-1}\) in a microfluidic channel.

6. Current challenges and outlook

In summary, FET biosensors enable consistent specific and sensitive detection of cytokines in human biological fluids for label-free analysis to achieve real-time monitoring of wearable devices. The advantage of nanomaterials in tumor marker detection lies in the presence of magnetic, optical, or special structures in nanoparticles. When these materials are combined with specific tumor-targeting ligands, including small molecules, peptides, and monoclonal antibodies, these nanomaterials can target biomarkers and vasculature to tumors with high sensitivity and specificity. But there are certain challenges in clinical applications, and the environmental adaptability of nanomaterials remains unsolved.

Moreover, the cavity length and oxide thickness of nanomaterials have been affecting the sensor’s performance of \(I_{ON}, I_{OFF}, I_{ON}/I_{OFF}, V_{th}, \) and sensitivity. This affects the detection limit of the FET biosensor. At present, the detection limit of a large number of biosensors has far exceeded clinical needs. Therefore, the focus should now shift to practical implementation of these sensors, which can lead to improved testing and diagnosis.

The design of next-generation cancer FET biosensors should focus on rapid detection, implantability, and portability and should provide the following features: (a) precise positioning and treatment; (b) dose monitoring; (c) simultaneous monitoring of multiple and diverse tumors. Improving the technology for early screening of patients with cancer will lead to an improvement in their survival rate. In addition, cancer FET biosensors are being integrated wirelessly into microdevices for early detection of cancer. Theoretically, FET biosensors can detect any tumor marker or physiological abnormality and wirelessly transmit monitoring data to electronic equipment attached to the surface of the body. The electronic device programmed with an algorithm can then determine a suitable treatment plan, including the appropriate dosage, method, and duration of therapy.

Due to the global challenge of the COVID-19 pandemic, we recommend that biomarker-specific probes be modified with FET biosensors to achieve convenient and rapid monitoring of COVID-19 infection in human patients. This kind of sensor has the potential to play a critical role in providing rapid information about the condition of patients with acute infectious diseases, which can assist hospitals in stratifying COVID-19 patients of Suffering from different mutant viruses for prioritization and optimization of treatment.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This research was funded by the National Natural Science Foundation of China (81960539), the Science and Technology program of Inner Mongolia Autonomous Region (2019GG116), and the Transformation of Scientific and Technological Achievements Foundation of Inner Mongolia Autonomous Region.

ORCID iDs

Lemeng Chao https://orcid.org/0000-0003-3157-4616
Huanhuan Shi https://orcid.org/0000-0003-2570-4226

References

[1] Vemia F, Valvano M, Fabiani S, Stefanelli G, Longo S, Viscido A and Latella G 2021 Are volatile organic compounds accurate markers in the assessment of colorectal cancer and inflammatory bowel diseases? A review Cancers 13 2361
[2] Bhushan A, Gonzalves A and Menon J U 2021 Current state of breast cancer diagnosis, treatment, and theranostics Pharmaceutics 13 723
[3] Huang W-L et al 2021 CDK9 inhibitor induces the apoptosis of b-cell acute lymphocytic leukemia by inhibiting
c-Myc-mediated glycolytic metabolism. Front. Cell Dev. Biol. 9 641271

[4] Peng Y L et al 2020 HOXC10 promotes tumour metastasis by regulating the EMT-related gene Slug in ovarian cancer Aging 12 19375–98

[5] Bunimovich Y L, Shin Y S, Yeo W S, Amori M, Kwong H and Heath J R 2006 Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution J. Am. Chem. Soc. 128 16323–31

[6] Nasrollahpour H, Islaidi I, Rashidi M R, Hashemi E A, Naseri A and Khazilzadeh B 2021 Ultrasonic bioassaying of HER-2 protein for diagnosis of breast cancer using reduced graphene oxide/chitosan as nanobiocompatible platform Cancer Nanotechnol. 12 10

[7] Yu L, Li H, Li Z Y, Jia J C, Wu Z Y, Wang M, Li F, Feng Z Q, Xia H L and Gao G X 2020 Long non-coding RNA HAND2-A51 inhibits growth and migration of gastric cancer cells through regulating the miR-590-3p/KCNT2 axis Oncotargets Ther. 13 3187–96

[8] Chen Y, Zhai L Y, Zhang L M, Ma X S, Liu Z, Li M M, Chen J X and Duan W J 2021 Breast cancer plasma biopsy by in situ determination of exosomal microRNA-1246 with a molecular beacon AnaLYZ 146 2264–76

[9] Ishihara R, Kitane R, Akiyama Y, Inomata S, Hosokawa K, Maeda M and Kikuchi A 2021 Multiplex microRNA detection on a surface-functionalized power-free microfluidic chip Anal. Chem. 37 747–51

[10] Kim H S, Abbas N and Shin S 2021 A rapid diagnosis of SARS-CoV-2 using DNA hydrogel formation on microfluidic pores Biosens. Bioelectron. 177 113005

[11] Hahm J and Lieber C M 2004 Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors Nano Lett. 4 51–54

[12] Chao L, Shi H, Nie K, Dong B, Ding J, Long M and Liu Z 2020 Applications of field effect transistor biosensors integrated in microfluidic chips Nanosci. Nanotechnol. Lett. 12 427–45

[13] Yen L C, Pan T M, Lee C H and Chao T S 2016 Label-free and real-time detection of ferritin using a horn-like polycrystalline-silicon nanowire field-effect transistor biosensor Sens. Actuators B 230 398–404

[14] Noh J H et al 2021 First experimental demonstration of robust HZO/beta-Ga2O3 ferroelectric field-effect transistors as synaptic devices for artificial intelligence applications in a high-temperature environment IEEE Trans. Electron Devices 68 2515–21

[15] Yang S H et al 2019 Oxygen-sensitive layered MoTe2 channels for environmental detection ACS Appl. Mater. Interfaces 11 47047–53

[16] Yin M J, Li Z R, Lv T R, Yong K T and An Q F 2021 Low-voltage driven flexible organic thin-film transistor humidity sensors Sensors Actuators B 339 129887

[17] Li J H, Wu D, Yu Y, Li T X, Li K, Xiao M M, Li Y R, Zhang Z Y and Zhang G J 2021 Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor biosensor Biosens. Bioelectron. 183 113206

[18] Shariati M, Vaezjalali M and Sadeghi M 2021 Ultrasonic sensitive and easily reproducible biosensor based on novel doped MoS2 nanowires field-effect transistor in label-free approach for detection of hepatitis B virus in blood serum Anal. Chem. Acta 70 3061–8

[19] Li G Y, Chen Y, Yu F Z, Vierreck J, Reeyes P I, Mendelsohn R, Galoppini E and Lu Y C 2021 MgZnO dual gate thin film transistor for the sensitive determination of modified folic acid IEEE Sens. J. 21 7242–9

[20] Cui F Y and Zhou H S S 2020 Diagnostic methods and potential portable biosensors for coronavirus disease 2019 Biosens. Bioelectron. 165 112349

[21] Wang Y H, Bi Y L, Wang R R, Wang L, Qu H and Zheng L 2021 DNA-gated graphene field-effect transistors for specific detection of arsenic(III) in rice J. Agric. Food Chem. 69 1398–404

[22] Raghavan V S, O’Driscoll B, Bloo J M, Li B, Katar P, Sethi J, Gorthi S S and Jenkins D 2021 Emerging graphene-based sensors for the detection of food adulterants and toxicants—a review Food Chem. 355 129547

[23] Rodriguez R S, O’Keefe T L, Froehlich C, Lewis R E, Sheldon T R and Haynes C L 2021 Sensing food contaminants: advances in analytical methods and techniques Anal. Chem. 93 23–40

[24] Hong Y, Wu M, Hong Y, Jeong Y, Jung G, Shin W, Park J, Kim D, Jang D and Lee J H 2021 FET-type gas sensors: a review Sens. Actuators B 330 129240

[25] Jung G et al 2021 A low-power embedded poly-Si micro-heater for gas sensor platform based on a FET transducer and its application for NO2 sensing Sens. Actuators B 334 129642

[26] Yang S X, Jiang C B and Wei S H 2017 Gas sensing in 2D materials Appl. Phys. Rev. 4 34

[27] Sun C, Li R, Song Y, Jiang X, Zhang C, Cheng S and Hu W 2021 Ultrasonic sensitive and reliable organic field-effect transistor-based biosensors in early liver cancer diagnosis Anal. Chem. 93 6188–94

[28] Bangma C H, Roemeling S and Schroder F H 2007 Overdiagnosis and overtreatment of early detected prostate cancer World J. Urol. 25 3–9

[29] Chartrupayaon N, Zhang M L, Bosze W, Choa Y H and Myung N V 2015 One-dimensional nanostructures based bio-detection Biosens. Bioelectron. 63 432–43

[30] Gutierrez-Sanz O, Andoy N M, Filipiak M S, Haustein N and Tarasov A 2017 Direct, label-free, and rapid transistor-based immunodetection in whole serum ACS Sens. 2 1278–86

[31] Im M, Ahn J-H and Choi Y-K 2008 Integrated current readout circuit and DMFET array for label-free detection of cancer marker (IEEE) pp 707–8

[32] Maki W C, Mishra N N, Cameron E G, Filanoski B, Rastogi S K and Maki G K 2008 Nanowire-transistor based ultra-sensitive DNA methylation detection Biosens. Bioelectron. 23 780–7

[33] Shao N, Wickstrom E and Panchapakesan B 2008 Nanotube-antibody biosensor arrays for the detection of circulating breast cancer cells Nanotechnology 19 465105

[34] Li Y, Zeng B, Yang Y, Liang H, Yang Y and Yuan Q 2020 Design of high stability thin-film transistor biosensor for the diagnosis of bladder cancer Chin. Chem. Lett. 31 1387–91

[35] Li D, Chen H, Fan K, Labunov V, Lazarouk S, Yue X, Liu C, Yang X, Dong L and Wang G 2021 A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA Biosens. Bioelectron. 181 113147

[36] Xian M H et al 2021 Fast SARS-CoV-2 virus detection using disposable cartridge strips and a semiconductor-based biosensor platform J. Vac. Sci. Technol. B 39 7

[37] Yu Y, Li Y-T, Jin D, Yang F, Wu D, Xiao M-M, Zhang H, Zhang Z-Y and Zhang G-J 2019 Electrochemical and label-free quantification of exosomes with a reduced graphene oxide field effect transistor biosensor Anal. Chem. 91 10679–86

[38] Bhat K S, Ahmad R, Mahmoudi T and Hahn Y B 2021 High performance chemical sensor with field-effect transistors array for selective detection of multiple ions Chem. Eng. J. 417 8
[39] Qiu H, Ippolito S, Galanti A, Liu Z and Samori P 2021 Asymmetric dressing of WSe2 with (macro)molecular switch: fabrication of quaternary-responsive transistors ACS Nano 15 10668–77

[40] Qi L, Hu Q, Kang Q, Bi Y, Jiang Y and Yu L 2019 Detection of biomarkers in blood using liquid crystals assisted with aptamer-target recognition triggered in situ rolling circle amplification on magnetic beads Anal. Chem. 91 11653–60

[41] Presnova G V, Tcinaiaik J I, Bozhev I V, Rubtsova M Y, Shorokhov V V, Trifonov A S, Ulyashova M M, Krupein V A and Presnov D E B 2019 Thyroglobulin detection by biosensor based on two independent Si NW FETs Int. Conf. on Micro- and Nano-Electronics 2018 (Proc. SPIE) ed V F Luki chev and K V Rudenko vol 110222019

[42] Chalikten L, Jing Q and Kar-Narayan S 2020 Biosensors based on mechanical and electrical detection techniques Sensors 20 5605

[43] Bungon T, Haslam C, Damia S, O’Driscol B, Whitley T, Davey P, Siligardi G, Charment J and Awan S A 2021 Graphene FET sensors for Alzheimer’s disease protein detection Carbon 181 121–31

[44] Oh J, Yoo G, Chang Y W, Kim H J, Jose J, Kim E, Pyun J C and Yoo K H 2013 A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum Biosens. Bioelectron. 50 345–50

[45] Li W, Gao Y, Zhang J, Wang X, Yin F, Li Z and Zhang M 2020 Universal DNA detection realized on peptide based carbon nanotube biosensors Nanoscale Adv. 2 717–23

[46] Zida S I, Yang C-C, Khung Y L and Lin Y-D 2020 Fabrication and characterization of an aptamer-based N-type silicon nanowire FET biosensor for VEGF detection J. Med. Biol. Eng. 40 601–9

[47] Novoduchk I, Bajcsy M and Yavuz M 2021 Graphene-based field effect transistor biosensors for breast cancer detection: a review on biosensing strategies Carbon 172 431–53

[48] Zhou L, Wang K, Sun H, Zhao S, Chen X, Qian D, Hao H and Zhao J 2019 Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers Nano-Micro Lett. 11 20

[49] Cheung K M, Abendroth J M, Nakatsuka N, Zhu B, Yang Y, Andrews A M and Weiss P S 2020 Detecting DNA and RNA and differentiating single-nucleotide variations via field-effect transistors Nano Lett. 20 5982–90

[50] Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 The chemistry of graphene oxide Chem. Soc. Rev. 39 228–40

[51] Santos F, Vieira N C S, Zambianci N A, Janegitz B C and Montezuma D, Henrique R and Jeronimo C 2004 Generation of single nucleotide polymorphisms associated with female cancers PLoS One 8 662126

[52] Santos F, Vieira N C S, Zambianci N A, Janegitz B C and Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 The chemistry of graphene oxide Chem. Soc. Rev. 39 228–40

[53] Santos F, Vieira N C S, Zambianci N A, Janegitz B C and Montezuma D, Henrique R and Jeronimo C 2004 Generation of single nucleotide polymorphisms associated with female cancers PLoS One 8 662126

[54] Tomasetti M, Amati M, Neuzil J and Santarelli L 2017 Circulating epigenetic biomarkers in lung malignancies: from early diagnosis to therapy Lung Cancer 107 65–72

[55] Costa-Pinheiro P, Montezuma D, Henrique R and Jeronimo C 2015 Diagnostic and prognostic epigenetic biomarkers in cancer Epitomics 7 1003–15

[56] Balgkouranidou I et al 2015 Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients Mutat. Res. Fundam. Mol. Mechat. 778 46–51

[57] Brotons A, Aran-Ais R M, Feliu J M, Montiel V, Iniesta J, Costa-Pinheiro P, Montezuma D, Henrique R and Jeronimo C 2004 Generation of single nucleotide polymorphisms associated with female cancers PLoS One 8 662126

[58] Brotons A, Aran-Ais R M, Feliu J M, Montiel V, Iniesta J, Vidal-Iglesias F J and Solla-Gullon J 2016 Electrochemical detection of cytosome and 5-methylcytosine on Au(111) surfaces Electrochem. Commun. 65 27–30

[59] Zhang S, Huang J, Lu J R, Liu M, Chen X, Su S S, Mo F and Zheng J S 2020 Electrochemical and optical biosensing strategies for DNA methylation analysis Curr. Med. Chem. 27 6159–87

[60] Larsen L K, Lind G E, Guldberg P and Dahl C 2019 DNA-methylation-based detection of uterine cancer in urine: overview of biomarkers and considerations on biomarker design, source of DNA, and detection technologies Int. J. Mol. Sci. 20 2657

[61] Li B, Tan H J, Jenkins D, Raghavan V S, Rosa B G, Guder F, Pan G H, Yeatman E and Sharp D J 2020 Clinical detection of neurodegenerative blood biomarkers using graphene immunosensor Carbon 168 144–62

[62] Kim N H, Lee M Y, Park J H, Park D L, Sohn C I, Choi K and Jung Y S 2018 Serum CE A and CA19-9 levels are associated with the presence and severity of colorectal neoplasia Oncol. Med. J. 58 918–24

[63] Carlsson B, Trottemann T H and Essand M 2004 Generation of cytotoxic T lymphocytes specific for the prostate and breast tissue antigen TARP Prostate 61 161–70

[64] Essand M, Vasmatzis G, Brinkmann U, Duray P, Lee B and Pastan I 1999 High expression of a specific T-cell receptor gamma transcript in epithelial cells of the prostate Proc. Natl Acad. Sci. USA 96 9287–92

[65] Depreter B et al 2020 Clinical significance of TARP expression in pediatric acute myeloid leukemia Hemasphere 4 4

[66] Hillerdal V, Nilsson B, Carlsson B, Eriksson F and Essand M 2012 T cells engineered with a T cell receptor against the prostate antigen TARP specifically kill HLA-A2(+) prostate and breast cancer cells Proc. Natl Acad. Sci. USA 109 15877–81

[67] Kobayashi H, Nagato T, Oikawa K, Sato K, Kimura S, Aoki N, Omiya R, Tateno M and Celis E 2005 Recognition of prostate and breast tumor cells by helper T lymphocytes specific for a prostate and breast tumor-associated antigen, TARP Clin. Cancer Res. 11 3869–78
[73] Vanhooren J, Derpoorter C, Depreter B, Deneweth L, Philippe J, de Moerloose B and Lammens T 2021 TARP as antigen in cancer immunotherapy Cancer Immunol. Immunother. 70 3061–8
[74] Cotchim S, Thavarungkul P, Kanatharana P and Limbut W 2020 Multiplexed label-free electrochemical immunosensor for breast cancer precision medicine Anal. Chem. Acta 1130 60–71
[75] Shi Y et al 2019 Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring Nature 569 131–5
[76] Ahfeldt S K, Wang J, Gao Y, Snider P and Conway S J 2016 Initial suppression of transforming growth factor-beta signaling and loss of TGFβI causes early alveolar structural defects resulting in bronchopulmonary dysplasia Am. J. Pathol. 186 777–93
[77] Ahmed A A et al 2007 The extracellular matrix protein TGFβI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel Cancer Cell 12 514–27
[78] Allaman-Pillet N, Oberson A and Schorderet D F 2017 Bigh3 silencing increases retinoblastoma tumor growth in the murine SV40-TAg-Rb model Oncotarget 8 15490–506
[79] Costanza B et al 2019 Transforming growth factor beta-induced, an extracellular matrix interacting protein, enhances glycolysis and promotes pancreatic cancer cell migration Int. J. Cancer 145 1570–84
[80] Corona A and Blobe G C 2021 The role of the extracellular matrix protein TGFβI in cancer Cell. Signal. 84 7
[81] Januchowski R, Zawierucha P, Rucinski M and Zabel M 2014 Microarray-based detection and expression analysis of extracellular matrix proteins in drug-resistant ovarian cancer cell lines Oncol. Rep. 32 1981–90
[82] Huang C X, Liang J X, Lin S D, Wang D Y, Xie Q S, Lin Z Q and Yao T T 2020 N-6-methyladenosine associated silencing of miR-193b promotes cervical cancer aggressiveness by targeting CCND1 Front. Oncol. 11 666597
[83] Zhan X, Yang S, Huang G, Yang L, Zhang Y, Tian H, Xie F, Lamy de La C M, Yang X and Fu W 2021 Streptavidin-functionalized terahertz metamaterials for attomolar exosomal microRNA assay in pancreatic cancer based on duplex-specific nucleic-acid-activated rolling circle amplification Biosens. Bioelectron. 188 113314
[84] Barman S C, Sharifuzzaman M, Abu Zahed M, Park C, Yoon S H, Zhang S, Kim H, Yoon H and Park J Y 2021 A highly selective and stable cationic polyelectrolyte encapsulated black phosphorene based impedimetric immunosensor for interleukin-6 biomarker detection Biosens. Bioelectron. 186 113287
[85] Selvaraj M, Greco P, Sensi M, Saygin G D, Belllassai N, D’Agata R, Spoto G and Biscarini F 2021 Label free detection of miRNA-21 with electrolyte gated organic field effect transistors (EGOFETs) Biosens. Bioelectron. 182 9
[86] He D D, Liu W, Sun R, Fan C, Xu J Y and Ge J J 2015 N-pyridinium-2-y1 Darrow Red analogue: unique near-infrared lysosome-biomarker for the detection of cancer cells Anal. Chem. 87 1499–502
[87] Farid S et al 2015 Detection of interferon gamma using graphene and aptamer based FET-like electrochemical biosensor Biosens. Bioelectron. 71 294–9
[88] Panahi A, Sadighbayan D, Forouhi S and Ghafar-Zadeh E 2021 Recent advances of field-effect transistor technology for infectious diseases Biosensors 11 50
[89] Hong M T et al 2018 DNA nanowires and graphene transistor enable label-free genotyping Adv. Mater. 30 9
[90] Wu J, Qiu T, Fan P T, Yu D H, Ju Z G, Qu X W, Gao X, Mao C B and Wang L 2011 Detection of serum anti-P53 antibodies from patients with colorectal cancer in china using a combination of P53-and phage-ELISA: correlation to clinical parameters Asian Pac. J. Cancer Prevention 12 2921–4
[91] Zhang S J, Wang X Y, Zhang R, Cui Y J, Zhang H M, Song W J, Hou X H, Fu S B, Gao Q Z and Liu S N 2021 A GLUT1 inhibitor-based fluorogenic probe for Warburg effect-targeted drug screening and diagnostic imaging of hyperglycemic cancers Anal. Chim. Acta 1167 11
[92] Karamouzis M V, Badra F A and Papavasiliou A G 2007 Breast cancer: the upgraded role of HER-3 and HER-4 Int. J. Biochem. Cell Biol. 39 851–6
[93] Kim J H, Im K S, Kim N H, Yhee J Y, Nho W G and Sur J H 2011 Expression of HER-2 and nuclear localization of HER-3 protein in canine mammary tumors: histopathological and immunohistochemical study Vet. J. 189 318–22
[94] Rajesh G Z, Vishnubhotla R, Ducos P, Serrano, M D, Ping J, Robinson M K and Johnson A T C 2016 Genetically engineered antibody functionalized platinum nanoparticles modified CVD-graphene nanohybrid transistor for the detection of breast cancer biomarker, HER3 Adv. Mater. Interfaces 3 1600124
[95] Lerner M B, D’Souza J, Pazina T, Dailey J, Goldsmith B R, Robinson M K and Johnson A T C 2012 Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers ACS Nano 6 5143–9
[96] Ji S, Lee M and Kim D 2018 Detection of early stage prostate cancer by using a simple carbon nanotube/paper biosensor Biosens. Bioelectron. 102 345–50
[97] Wang Y, Wang Y, Liu X L, Wu L J, Ding L H, Effah C Y, Wu Y J, Xiong Y M and He L L 2022 Construction and bioapplications of aptamer-based dual recognition strategy Biosens. Bioelectron. 195 113661
[98] Monteiro S et al 2021 Differential inflammasome activation predisposes to acute-on-chronic liver failure in human and experimental cirrhosis with and without previous decompensation Gut 70 379–87
[99] An Q B, Gan S Y, Xu J N, Bao Y, Wu T S, Kong H J, Zhong L J, Ma Y M, Song Z Q and Niu L 2019 A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring Electrochem. Commun. 107 7
[100] Amato L et al 2021 Multiple detection and spread of novel strains of the SARS-CoV-2 B.1.177 (B.1.177.75) lineage that test negative by a commercially available nucleocapsid gene real-time RT-PCR Emerg. Microbes Infections 10 1148–55
[101] Szkąt T and Kossiakoff A A 2021 Engineered ultra-high affinity synthetic antibodies for SARS-CoV-2 neutralization and detection J. Mol. Biol. 433 12
[102] Chitko-mckown C G et al 2021 Detection of bovine inflammatory cytokines IL-1beta, IL-6, and TNF-alpha with a multiplex electrochemiluminescent assay platform Vet. Immunol. Immunopathol. 237 110274
[103] Wang Z, Hao Z, Wang X, Huang C, Liu Q, Zhao X and Pan Y 2021 A flexible and regenerative aptameric graphene-Nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications Adv. Funct. Mater. 31 2005958
[104] Ma M Y, Chao L M, Zhao Y H, Ding J F, Huang Z C, Long M Q, Wang F L, Jiang J and Liu Z C 2021 High-sensitivity detection of concanavalin a using MoS2-based field effect transistor biosensor J. Appl. Phys. 144 54 S
[105] Nien Y H, Su T Y, Chou J C, Kuo P Y, Lai C H, Ho C S, Dong Z X, Kang Z X and Lai T Y 2021 Improving the drift effect and hysteresis effect of ube biosensor based on graphene oxide/nickel oxide sensing film modified either by Au nanoparticles or gamma-Fe2O3 nanoparticles using
back-end calibration circuit *IEEE J. Electron Devices Soc.* **9** 242–9

[106] Zhang Q, Majumdar H S, Kaisti M, Prabhu A, Ivaska A, Osterbacka R, Rahman A and Levon K 2015 Surface functionalization of ion-sensitive floating-gate field-effect transistors with organic electronics *IEEE Trans. Electron Devices* **62** 1291–8

[107] Yao X S, Zhang Y L, Jin W L, Hu Y F and Cui Y 2021 Carbon nanotube field-effect transistor-based chemical and biological sensors *Sensors* **21** 18

[108] Anvarifard M K, Ramezani Z and Amiri I S 2020 Label-free detection of DNA by a dielectric modulated armchair-graphene nanoribbon FET based biosensor in a dual-nanogap setup *Mater. Sci. Eng. C* **117** 10

[109] Hwang M T *et al* 2018 DNA nanotweezers and graphene transistor enable label-free genotyping *Adv. Mater.* **30** 1802440

[110] Alizadeh N and Salimi A 2018 Ultrasensitive bioaffinity electrochemical sensors: advances and new perspectives *Electroanalysis* **30** 2803–40

[111] Zhou L *et al* 2017 Label-free graphene biosensor targeting cancer molecules based on non-covalent modification *Biosens. Bioelectron.* **87** 701–7

[112] Park H, Lee H, Jeong S H, Lee E, Lee W, Liu N, Yoon D S, Kim S and Lee S W 2019 MoS$_2$ field-effect transistor-amyloid-beta(1–42) hybrid device for signal amplified detection of MMP-9 *Anal. Chem.* **91** 8252–8

[113] Kumar A, Tripathi M M and Chaujar R 2019 Sub-30nm In$_2$O$_3$:Sn gate electrode recessed channel MOSFET: a biosensor for early stage diagnostics *Vacuum* **164** 46–52

[114] Hao Z, Pan Y, Shao W, Lin Q and Zhao X 2019 Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva *Biosens. Bioelectron.* **134** 16–23

[115] Huo Z H, Peng Y Y, Zhang Y F, Gao G Y, Wan B S, Wu W Q, Yang Z, Wang X D and Pan C F 2018 Recent advances in large-scale tactile sensor arrays based on a transistor matrix *Adv. Mater. Interfaces* **5** 180161

[116] Barman U, Goswami N, Ghosh S S and Paily R P 2021 Fabrication of glutathione-S-transferase-ZnO nanoconjugate ensemble FET device for detection of glutathione *IEEE Trans. Electron Devices* **68** 1242–9

[117] Bao Z, Sun J, Zhao X, Li Z, Cui S, Meng Q, Zhang Y, Wang T and Jiang Y 2017 Top-down nanofabrication of silicon nanoribbon field effect transistor (Si-NR FET) for carcinoembryonic antigen detection *Int. J. Nanomed.* **12** 4623–31

[118] Yang Y, Zeng B, Li Y, Liang H, Yang Y and Yuan Q 2020 Construction of MoS$_2$ field effect transistor sensor array for the detection of bladder cancer biomarkers *Sci. China Chem.* **63** 997–1003

[119] Dai X, Yo R, Hsu H-H, Deng P, Zhang Y and Jiang X 2019 Modularized field-effect transistor biosensors *Nano Lett.* **19** 6658–64

[120] Wang L, Wang Y, Wong J I, Palacios T, Kong J and Yang H Y 2014 Functionalized MoS$_2$ nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution *Small* **10** 1101–5

[121] Kim A, Ah C S, Yu H Y, Yang J-H, Baek I-B, Ahn C-G, Park C W, Jun M S and Lee S 2007 Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors *Appl. Phys. Lett.* **91** 103901

[122] Rani D, Pachauri V, Madaboshi N, Jolly P, Xuan-Thang V, Estrela P, Chu V, Conde J P and Ingebrandt S 2018 Top-down fabricated silicon nanowire arrays for field-effect detection of prostate-specific antigen *ACS Omega* **3** 8471–82

[123] Huang Y-W, Wu C-S, Chuang C-K, Pang S-T, Pan T-M, Yang Y-S and Ko F-H 2013 Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor *Anal. Chem.* **85** 7912–8