An $\alpha\beta$-Frame Moving Average Filter to Improve the Dynamic Performance of Phase-Locked Loop

JINBO LI (Member, IEEE), QIN WANG, LAN XIAO (Member, IEEE), YINFENG HU, QUNFANG WU (Member, IEEE), AND ZEHAO LIU

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Corresponding author: Jinbo Li (jinbo.l@foxmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61673210, and in part by the Jiangsu Qing Lan Project.

ABSTRACT The moving average filter (MAF) is one of the most widely used methods to block harmonics in a phase-locked loop (PLL). This paper proposes a simple structure for MAF to work directly in the $\alpha\beta$-frame (called $\alpha\beta$MAF). Compared with the standard dq-frame MAF (dqMAF) used as an in-loop filter, $\alpha\beta$MAF acts as a prefilter and significantly improves the PLL dynamic response. Its derivation process and implementation is described in detail in both continuous and discrete time domains. In an adaptive prefilter-based PLL, a frequency feedback loop (FFL) is indispensable, but it is not easy to design. Therefore, nonadaptive $\alpha\beta$MAF is suggested, and a corrector is added to eliminate the phase error at off-nominal frequencies. In this paper, the small signal model of the proposed PLL is carried out through the perspective of frequency shift, which simplifies the derivation process. The effectiveness of the proposed technique is confirmed through simulation and experimental results.

INDEX TERMS Moving average filter (MAF), phase locked loop (PLL), prefilter, grid synchronization.

I. INTRODUCTION

With the growth of renewable energy sources and nonlinear loads, the grid synchronization task becomes more challenging, and the synchronization approach may significantly influence the performance of grid-connected equipment. A phase-locked loop (PLL) is a widely used synchronization technology [1]–[5]. To enhance the PLL performance, many filtering techniques have been proposed. As a band-rejection filter, the notch filter (NF) blocks the harmonics at selected frequencies and passes all other harmonics [6], [7]. The complex coefficient filter (CCF) is an interesting filter that has an asymmetrical frequency response around zero frequency [8], [9]. The delayed signal cancellation (DSC) operator is a kind of finite-impulse-response (FIR) filter and can be employed in the dq- or $\alpha\beta$-frame [1], [10]–[14]. To block all harmonics under complex conditions, multiple NFs, CCFs or DSC operators are required. The second-order generalized integrator (SOGI) is a single-input and dual-output structure [15]. To enhance the rejection capability, different methods have been proposed, such as the multiple SOGIs (MSOGIs), fourth-order generalized integrator, and combination of other filters and SOGI, etc., but their computation and complexity are undoubtedly increased [7], [16]–[19].

The traditional moving average filter works in the dq-frame (called dqMAF) and can block multiple characteristic frequency harmonics under adverse grid conditions [20]–[24]. When the window length of dqMAF is equal to the fundamental period, the DC offset and all integer harmonics can be eliminated by one dqMAF unit. In [21], to improve the rejection capability of the PLL, dqMAF is used to replace a low-pass filter (LPF). In the synchronous reference frame PLL (SRF-PLL), the filters can be classified into two categories: in-loop filters and prefilters [1]. The in-loop filter is placed in the PLL feedback loop, and the prefilter is placed in front of the PLL feedback loop. A common drawback of in-loop filters is that phase delay is introduced into the feedback loop, slowing down the response speed of the PLL.

Usually, the PLL has only one dq-frame, and dqMAF is placed in this dq-frame with a proportional-integral (PI) controller and used as an in-loop filter. When the window length is large, the slowdown of the dynamic response caused by dqMAF is very pronounced. To handle this...
problem, many approaches have been proposed. In [20], a proportional-integral-derivative (PID) controller is used to replace the PI controller. The derivative compensates for the phase delay caused by the dqMAF, but weakens the harmonic rejection capability. In [22], a phase-lead compensator (PLC) is used to reduce the delay. The window length of this compensator is equal to that of the dqMAF, which significantly increases the number of samples stored in the digital controller and also weakens the harmonic rejection capability. In [23] an improved dqMAF (IMAF) is proposed. A correction link is added to improve the response speed, and an adaptive IMAF with weighted mean value (WMV) is used to improve the harmonic rejection capability, and a quasi-type-1 (QT1) PLL is adopted to further improve the response speed. In [24], a special structure is proposed to shorten the window length of dqMAF to 1/6 fundamental period. In this structure, the phase delay of the feedback loop is reduced, but it can block only the nontriplet odd harmonics and DC offset. In [25], to improve the dynamic response, the dqMAF with a short window length is proposed to eliminate only high-frequency harmonics, and a delay operation period filter (DOPF) is added to eliminate fundamental frequency negative-sequence (FFNS) component. However, this method exhibits very limited rejection capability for most low order harmonics. In [26], another method for shortening the window length is suggested, and it includes both DSC operator and dqMAF. Even harmonics and DC offset are eliminated by a special $\alpha\beta$ DSC operator (acts as a prefilter), and then odd harmonics are eliminated by a dqMAF (acts as an in-loop filter). In this structure, the window length of dqMAF is shortened to a half of the fundamental period, but a phase delay is still introduced into the control loop. To compensate the delay caused by the dqMAF, a QT1-PLL is adopted. In some works, the PLL with dqMAF-based prefiltering stage (dqPMAF) is used, which requires two dq-frames [27]–[29]. In the dqPMAF-PLL, the dqMAF is placed in the front dq-frame, and the PI controller is placed in the back one. This structure provides a favourable dynamic performance, but the additional dq-frame increases computational burden.

In general, adaptive filters are used in the PLLs [1]. To achieve frequency adaptivity, the filter parameters must be adjusted in real time to match the grid frequency, and an additional FFL is required [13], [27]. The FFL makes the system highly nonlinear and increases the complexity of implementation [14]. In this paper, nonadaptive $\alpha\beta$MAF is suggested. When grid voltage is at off-nominal frequencies, an additional FFL is required [13], [27]. The FFL makes the system highly nonlinear and increases the complexity of implementation [14].

This paper is organized as follows. Section II provides an analysis of dqMAF-PLL. In Section III, the structures of $\alpha\beta$ MAF in both the continuous and discrete time domains are presented. The small signal model and control parameters of the proposed PLL are also analyzed. Section IV provides the simulation and experimental results. Section V concludes this paper.

II. ANALYSIS OF DQ MAF-PLL

A. IMPLEMENTATION OF dqMAF IN THE CONTINUOUS TIME DOMAIN

The transfer function of dqMAF in the continuous time domain can be expressed as [20], [23]

$$G_{dqMAF}(s) = \frac{v(t)}{v_g(t)} = \frac{1 - e^{-T_{o}\omega}}{T_o\omega}$$

(1)

The transfer function (1) can be rewritten as

$$G_{dqMAF}(s) = G_{CF}(s)G_{I}(s)$$

(2)

where

$$G_{CF}(s) = \frac{1 - e^{-T_{o}\omega}} {T_o\omega}$$

(3)

$$G_{I}(s) = \frac{1}{s}$$

(4)

G_{CF} and G_{I} are the transfer functions of the comb filter (CF) [30] and integrator, respectively.

FIGURE 1. The implementation of dqMAF in the continuous time domain.

According to (2), $G_{dqMAF}(s)$ is equal to the product of $G_{CF}(s)$ and $G_{I}(s)$. In the continuous time domain, dqMAF can be implemented by a cascade of CF and integrator; therefore, dqMAF is also called a cascade integrator comb (CIC) filter in some works [31]–[33]. Fig. 1 shows the implementation of dqMAF.

By substituting $s = j\omega$ into (1), the frequency response of dqMAF can be obtained as

$$G_{dqMAF}(j\omega) = \left| \frac{\sin(\omega T_o/2)}{\omega T_o/2} \right| \leq \frac{\omega T_o}{2}$$

(5)

TABLE 1. Blocked harmonics for different window lengths.

Window length T_o	$T_o/2$	$T_o/6$
	ω harmonics in the dq-frame	
0, -1, +1, +2, +3, +4	$\omega = \frac{\pi}{T_o}$	0, 1, 2, 3, 4, 5, 6, 7, 8, ...
	$\omega = \frac{\pi}{T_o}$	0, 1, 2, 3, 4, 5, 6, 7, 8, ...

The nominal grid period $T_n = 0.02$ s and nominal grid angular frequency $\omega_n = 2\pi/T_n = 2\pi \times 50$ rad/s are considered in this paper. The window length T_o should be selected according to the actual harmonics [20], [24]. The window lengths for different application scenarios are summarized in Table 1.
B. IMPLEMENTATION OF dqMAF IN THE DISCRETE TIME DOMAIN

In the digital control system, dqMAF must be discretized. In this paper, f_s and T_s represent the system sampling frequency and period, respectively. Assume the window length T_o contains N_o samples, i.e., $T_o = N_oT_s$.

The transfer function of dqMAF in the z domain can be expressed as [20], [23]

$$G_{dqMAF}(z) = \frac{1}{N_o} \frac{1 - z^{-N_o}}{1 - z^{-1}}$$

The transfer function (6) can be rewritten as

$$G_{dqMAF}(z) = G_{CF}(z)G_{BDI}(z)$$

where

$$G_{CF}(z) = \frac{1 - z^{-N_o}}{N_o}$$

$$G_{BDI}(z) = \frac{1}{1 - z^{-1}}$$

FIGURE 2. The implementation of dqMAF in the discrete time domain.

$G_{CF}(z)$ and $G_{BDI}(z)$ are the transfer functions of the CF and the backward-difference integrator (BDI) [34] in the z domain, respectively. As shown in Fig. 2, dqMAF can be implemented by a cascade of the CF and BDI in the discrete time domain.

C. THE STRUCTURE OF dqMAF-PLL

Fig. 3 shows the structure of dqMAF-PLL [20]–[24], where $\hat{\omega}_o$ and $\hat{\theta}$ are the estimations of the grid frequency and phase, respectively.

FIGURE 3. The structure of dqMAF-PLL.

The dqMAF is placed in the dq-frame and acts as an in-loop filter, which slows down the PLL dynamic response. An amplitude normalization scheme (ANS, i.e., v_d/v_q) is also added to the PLL [1]. In [12] and [35], the structure of conventional PLL is analyzed. In the dqMAF-PLL, an integrator works as the voltage-controlled oscillator (VCO).

III. THE PROPOSED METHOD

A. IMPLEMENTATION OF $\alpha\beta$MAF IN THE CONTINUOUS TIME DOMAIN

In frequency domain, the transformation of the stationary reference frame ($\alpha\beta$-frame) and synchronous reference frame (dq-frame) corresponds to a frequency shift [36]–[38]. Therefore, the transfer function of $\alpha\beta$MAF can be obtained by substituting s of the transfer function (1) with $s - j\omega_n$ (corresponding to a frequency shift from the dq-frame to the $\alpha\beta$-frame) in the s domain, yields

$$G_{\alpha\beta MA}(s) = G_{dqMAF}(s - j\omega_n) = \frac{1}{T_o} e^{-T_o(s-j\omega_n)}$$

Note that the window length T_o is unchanged in the derivation from (1) to (10). In what follows, we will derive the implementation structure of the transfer function (10).

By defining $m = T_o/T_o$, (10) can be rewritten as

$$G_{\alpha\beta MA}(s) = G_{C-\alpha\beta}(s)G_{CI}(s)$$

where

$$G_{C-\alpha\beta}(s) = \frac{1}{s - j\omega_n}$$

$$G_{CI}(s) = \frac{1}{T_o}$$

$G_{C-\alpha\beta}(s)$ and $G_{CI}(s)$ are the transfer functions of the complex comb filter (called C-CF to distinguish it from the abbreviation of the complex coefficient filter) and complex integrator (CI) [34], respectively. In (12), $c_1 = \cos(2\pi/m)$ and $c_2 = \sin(2\pi/m)$, and Table 2 lists the values of c_1 and c_2 with different window lengths.

FIGURE 4. The structure of $\alpha\beta$MAF in the continuous time domain.

According to (11), $\alpha\beta$MAF can be implemented by a cascade of the C-CF and CI in the continuous time domain, as shown in Fig. 4. The dqMAF is a single-input and single-output filter, and the $\alpha\beta$MAF is a dual-input and dual-output filter.
TABLE 2. The values of c_1 and c_2 with different window lengths.

T_o	T_n	$T_o/2$	$T_o/6$
c_1	1	-1	1/2
c_2	0	0	$\sqrt{3}/2$

The frequency response of $\alpha\beta$ MAF can be obtained as

$$G_{\alpha\beta \text{MAF}}(j\omega) = \left| \frac{\sin((\omega - \omega_0)T_o/2)}{(\omega - \omega_0)T_o/2} \right| - \frac{(\omega - \omega_0)T_o}{2} \tag{14}$$

Fig. 5 shows frequency response plots of $\alpha\beta$ MAF and dq MAF, where $T_o = 0.01$ s. The difference of the amplitude- and phase-frequency responses between $\alpha\beta$ MAF and dq MAF is equal to the nominal frequency. If the response curves of dq MAF are moved 50 Hz to the right along the frequency axis, they coincide with the response curves of $\alpha\beta$ MAF.

B. IMPLEMENTATION OF $\alpha\beta$ MAF IN THE DISCRETE TIME DOMAIN

The transfer functions (6) can be rewritten as

$$G_{dq \text{MAF}}(e^{j\omega T_s}) = \frac{1}{N_o} \frac{1 - e^{-j\omega T_s N_o}}{1 - e^{-j\omega T_s}} \tag{15}$$

Assume that the nominal period T_n contains N_n samples and that $m = N_n/N_o$. The expression of $\alpha\beta$ MAF can be obtained by substituting ω with $(\omega - \omega_0)$ in (15), yields

$$G_{\alpha\beta \text{MAF}}(e^{j\omega T_s}) = G_{dq \text{MAF}}(e^{j(\omega - \omega_0)T_s N_n}) = \frac{1}{N_o} \frac{1 - e^{-j(\omega - \omega_0)T_s N_n}}{1 - e^{-j(\omega - \omega_0)T_s}} \tag{16}$$

where

$$\omega_o T_s = 2\pi f_n T_s = \frac{2\pi f_s T_s}{N_n} = \frac{2\pi}{N_n} \tag{17}$$

According to (16), the transfer function of $\alpha\beta$ MAF in the z domain can be obtained as

$$G_{\alpha\beta \text{MAF}}(z) = \frac{1 - z^{-N_o} e^{\frac{2\pi}{N_n}}}{N_o - 1 - z^{-1} e^{\frac{2\pi}{N_n}}} \tag{18}$$

The transfer function (18) can be rewritten as

$$G_{\alpha\beta \text{MAF}}(z) = G_{\text{CF}}(z)G_{\text{CBDI}}(z) \tag{19}$$

where

$$G_{\text{CF}}(z) = \frac{1 - z^{-N_o} e^{\frac{2\pi}{N_n}}}{N_o - 1} = 1 - z^{-1}(c_3 + jc_4) \tag{20}$$

$$G_{\text{CBDI}}(z) = \frac{1}{1 - z^{-1}(c_3 + jc_4)} \tag{21}$$

$G_{\text{CF}}(z)$ and $G_{\text{CBDI}}(z)$ are the transfer functions of the C-CF and complex BDI (CBDI) in the z domain, respectively. The values of c_1 and c_2 are listed in Table 2. To obtain the implementation structure of the CBDI, the transfer function (21) is rewritten as

$$G_{\text{CBDI}}(z) = \frac{1}{1 - z^{-1}(c_3 + jc_4)}$$

where $c_3 = \cos(2\pi/N_n)$ and $c_4 = \sin(2\pi/N_n)$. According to (22), Fig. 6 shows the implementation structure of CBDI.

C. PHASE ERROR CORRECTION UNDER A FREQUENCY-VARYING GRID

According to Fig. 5, the $\alpha\beta$ MAF causes a phase error at off-nominal frequencies. According to (14), the phase error
caused by $\alpha\beta$MAF can be obtained as

$$\varphi = \hat{\theta} - \theta^+ = -\frac{\Delta \omega_e T_\omega}{2}$$ \hspace{1cm} (23)

where $\Delta \omega_e$ denotes the deviation frequency.

FIGURE 7. The structure of $\alpha\beta$MAF in the discrete time domain.

In the derivation of (23), no approximation is made. Fig. 8 shows the phase error φ caused by $\alpha\beta$ MAF with different window lengths.

The window length T_ω is a constant in (23). Fig. 9 shows the proposed PLL structure (called $\alpha\beta$CMAF-PLL), where a phase corrector is included in the $\alpha\beta$MAF-PLL, and $\hat{\theta}$ and θ^+ are the estimations of the grid angular frequency and phase, respectively. This corrector contains only one multiplication and one addition, and can be easily implemented.

D. SMALL SIGNAL MODEL AND CONTROL PARAMETER DESIGN

Fig. 10 shows the small signal model of conventional SRF-PLL, where θ^+ and $\hat{\theta}$ are the phase of fundamental frequency positive-sequence (FFPS) component and the estimated phase of SRF-PLL, respectively [1], and the amplitude of FFPS component is equal to 1 in the model.

Based on the perspective of the frequency shift, the small signal model of the proposed PLL can be obtained easily. The small signal model of SRF-PLL is established in the dq-frame, but the $\alpha\beta$MAF operates in the $\alpha\beta$-frame. To analyze the influence of $\alpha\beta$MAF on the small signal model of SRF-PLL, an operation contrary to formula (10) is required, i.e., substituting s of the $\alpha\beta$MAF transfer function with $s + j\omega_n$ (corresponding to a frequency shift from the $\alpha\beta$-frame to the dq-frame), yields

$$G_{\alpha\beta}(s + j\omega_n) = G_{dq}(s) = \frac{1}{T_\omega} \frac{1 - e^{-T_\omega s}}{s}$$ \hspace{1cm} (24)

According to Fig. 9, Fig. 10 and formula (24), Fig. 11 shows the small signal model of the proposed $\alpha\beta$CMAF-PLL.

According to Fig. 11, the closed-loop transfer function of $\alpha\beta$CMAF-PLL can be obtained as

$$G_{cl}(s) = \frac{\Delta \hat{\theta}_c}{\Delta \theta^+} = \frac{1 + e^{-T_\omega s} (kp + kiT_\omega/2)s + ki}{T_\omega s^2 + kp\omega^2 + ki}$$ \hspace{1cm} (25)

Since the control loop corresponds to a second-order function, it is easy to design, and the proportional and integral gains can be expressed as [13], [39]

$$\begin{cases} kp = 2\zeta \omega_n \\ ki = \omega_n^2 \end{cases}$$

where ζ and ω_n are the damping factor and natural angular frequency, respectively. Here, $\zeta = 1$ and $\omega_n = 2\pi \times 35$ rad/s are selected, and the corresponding control parameters are $kp = 439.6$ and $ki = 48312$.

Fig. 12 shows a dynamic performance comparison between the actual $\alpha\beta$CMAF-PLL and its small signal model. A $+25^\circ$ phase jump and a $+5$ Hz frequency step change are triggered in turn. The small signal model accurately predicts the dynamic behaviour of the $\alpha\beta$CMAF-PLL, which confirms its accuracy.

In the $\alpha\beta$MAF, the expressions of c_3 and c_4 include trigonometric functions. When nonadaptive $\alpha\beta$MAF is adopted, the values of c_3 and c_4 are constant. Therefore, the coefficients c_1, c_2, c_3 and c_4 can be directly assigned constant values, and no trigonometric function needs to be performed in the nonadaptive $\alpha\beta$MAF, which is of great significance for some low-cost digital controllers or at a high sampling frequency [40]–[42]. Compared with dqPMAF and space-vector Fourier transform (SVFT) [1], [29], the implementation structure of the $\alpha\beta$MAF is simpler and requires less computation burden in most scenarios. Compared with the modeling methods in [14] and [29], the proposed modeling method (based on the perspective of the frequency shift) in this paper is relatively simpler and more intuitive.

Nonadaptive $\alpha\beta$MAF may have an imperfect disturbance rejection capability when grid voltage suffers large frequency drift. Fortunately, in actual grid, the fluctuation range of voltage frequency is very limited around the nominal value [43], which is a key reason why nonadaptive $\alpha\beta$MAF is recommended. In a digital control system, the structure of $\alpha\beta$MAF

TABLE 3. Control parameters of the PLLS.

	$\alpha\beta$CMAF-PLL	dqMAF-PLL	IMAF-QT1	MAFPLC-PLL
k_p	439.6	41.67	38.25	177.71
k_i	48312	723.38	/	15791
FIGURE 9. The structure of the proposed $\alpha\beta$CMAF-PLL.

TABLE 4. Summary of the test results.

Performance Index	$\alpha\beta$CMAF-PLL	dqMAF-PLL	IMAF-QT1	MAFPLC-PLL	
Test 1: Phase jump with voltage sag	Phase/frequency settling time (ms)	39.05/42.32	143.43/124.6	47.3/61.03	65.71/62.15
	Phase overshoot (°)	20.13	20.8	0	28.82
	Peak frequency error (Hz)	7.22	2.41	5.52	9.08
Test 2: Phase jump with harmonics	Phase/frequency settling time (ms)	37.53/40.13	139.48/97.21	37.53/56.27	61.36/64.3
	Phase overshoot (°)	5.42	3.52	2.63	7.07
	Peak frequency error (Hz)	1.43	0.45	1.91	2.15
Test 3: DC offset	Phase/frequency settling time (ms)	20.15/11.83	36.87/0	29.33/24.19	Instability ($^\circ$)
	Peak phase error (°)	3.04	1.27	3.95	/
	Peak frequency error (Hz)	0.92	0.09	0.97	/
Test 4: Frequency step change with voltage sag	Phase/frequency settling time (ms)	36.15/35.78	146.97/116.32	63.08/56.63	44.52/41.79
	Frequency overshoot (Hz)	0	0	0	0.38
	Peak phase error (°)	8.11	28.19	8.83	6.53
Test 5: Frequency step change with harmonics	Phase/frequency settling time (ms)	0/35.78	131.54/102.5	37.43/49.02	44.12/48.79
	Frequency overshoot (Hz)	0.03	0	0.03	0.32
	Peak phase error (°)	0.42	7.94	6.35	3.31

$^\circ$ In this paper, a PLL settles to a steady state when the following conditions are satisfied at the same time: 1) the phase fluctuation is less than 0.5°; 2) the frequency fluctuation is less than 0.2 Hz.

in the continuous time domain (Fig. 4) is not recommended, and may cause rounding errors, because an ideal continuous integrator is difficult or impossible to implement in the discrete time domain. Note that adaptive $\alpha\beta$MAF may also suffer rounding errors. Moreover, in the adaptive prefilter-based PLL, an additional FFL is required, which makes the system tuning sensitive and is not easy to design.

IV. SIMULATION AND EXPERIMENTAL VERIFICATION

In this section, the proposed $\alpha\beta$CMAF-PLL, standard dqMAF-PLL [20], IMAF-based QT1-PLL (IMAF-QT1) [23], and dqMAF-PLL with PLC (MAFPLC-PLL) [22] are compared through simulation and experimental results. The window lengths of all MAFs are equal to 0.02 s. Table 3 lists the control parameters of all PLLs. The control parameters of dqMAF-PLL and MAFPLC-PLL have been analysed in [20] and [22], respectively. In [23], the recommended phase margin (PM) of IMAF-QT1 is 45°, which corresponds to $k_p = 38.25$.

In the tests, it is considered that a PLL settles to a steady state when the following conditions are satisfied at the same time: the phase fluctuation is less than 0.5°, and frequency fluctuation is less than 0.2 Hz.
Throughout the simulations and experiments, the sampling frequency is set as 10 kHz. The simulation results are carried out in the MATLAB/Simulink environment. Two 32-bit floating-point 150-MHz Texas Instruments TMS320F28335 digital signal processors (DSPs) are used to obtain the experimental results. The amplitude of the FFPS component is set as 1.0 pu.

A. TEST 1: PHASE JUMP WITH VOLTAGE SAG

In this test, a $\pm 50^\circ$ phase jump and a symmetrical three-phase voltage sag (0.6 pu) is triggered. The grid frequency is fixed at 50 Hz.

Fig. 14 shows the simulation and experimental results. The experimental voltages are not shown here to save space. The phase settling times of $\alpha\beta$ CMAF-PLL, dq MAF-PLL, IMAF-QT1 and MAFPLC-PLL are 39.05 ms, 143.43 ms, 47.3 ms, and 65.71 ms, respectively, and the corresponding frequency settling times are 42.32 ms, 124.6 ms, 61.03 ms and 62.15 ms, respectively. The $\alpha\beta$ CMAF-PLL exhibits the shortest phase and frequency settling times.

B. TEST 2: PHASE JUMP WITH HARMONICS

In this test, the grid frequency is fixed at 48 Hz. A -10° phase jump and single-phase voltage sag (v_a: 0.75 pu) is triggered. To further verify the robustness of all PLLs, some odd harmonics are also injected. The orders of harmonics are $+3$, $+5$, $+7$ and $+9$, and their amplitudes are all equal to 0.05 pu.

Fig. 15 shows the simulation and experimental results. The $\alpha\beta$ CMAF-PLL and dq MAF-PLL exhibit the shortest and longest settling times, respectively.

C. TEST 3: DC OFFSET

In this test, an asymmetrical DC offset (v_a: 0.1 pu, v_b: -0.1 pu, v_c: 0.1 pu) is injected, and the grid frequency is fixed at 47 Hz.
Fig. 16 shows the simulation and experimental results. The MAFPLC-PLL cannot effectively block the DC offset, so it suffers from large oscillatory errors and is considered unstable. The $\alpha\beta$ CMAF-PLL, dqMAF-PLL, and IMAF-QT1 can block the disturbance and restore steady state.

FIGURE 15. Performance of the phase jump with harmonics.

![Graph](image1)

(b) Experimental results of the phase jump with harmonics.

FIGURE 16. Performance of the DC offset.

![Graph](image2)

(b) Experimental results of the DC Offset

D. TEST 4: FREQUENCY STEP CHANGE WITH VOLTAGE SAG

The initial grid frequency is 51 Hz. A -3 Hz frequency step change and an asymmetrical three-phase voltage sag (v_a: 0.5 pu, v_b: 0.7 pu, v_c: 0.9 pu) is triggered.

The simulation and experimental results are shown in Fig. 17. The phase settling times of $\alpha\beta$CMAF-PLL, dqMAF-PLL, IMAF-QT1 and MAFPLC-PLL are 36.15 ms, 146.97 ms, 63.08 ms and 44.52 ms, respectively, and the corresponding frequency settling times are 35.78 ms, 116.32 ms, 57.63 ms and 41.79 ms, respectively. The $\alpha\beta$ CMAF-PLL still experiences the shortest settling time.

E. TEST 5: FREQUENCY STEP CHANGE WITH HARMONICS

In this test, the initial grid frequency is 50 Hz, and a $+1$ Hz frequency step change and an asymmetrical three-phase voltage sag (v_a: 0.8 pu, v_b: 0.8 pu, v_c: 1 pu) are triggered.
To further verify the robustness of PLLs, all integer harmonics (the highest order of the harmonics is not higher than 20, i.e., $h \leq 20$) are injected, and their amplitudes are not larger than the maximum allowed values of the IEC standards [44].

Fig. 18 shows the simulation and experimental results. The $\alpha\beta$ CMAF-PLL experiences the shortest settling time and the smallest peak phase error, whereas the dqMAF-PLL experiences the longest settling time and the largest peak phase error.

The detailed information of all test results is listed in Table 4. Compared with standard dqMAF-PLL, $\alpha\beta$ CMAF-PLL improves the dynamic response, which is consistent with the theoretical prediction. Table 5 lists the required samples of different filters in the discrete time domain.

Filter	$\alpha\beta$MAF	dqMAF	IMAF	MAFPLC
Required samples	$2N_s+2$	$2N_s+2$	$4N_s+8$	$3N_s+1$

- In the IMAF [23], the structure of dqMAF with weighted mean value (WMV) is adopted, which improves the performance of PLL, but also increases the required samples.
- In the MAF with PLC (MAFPLC) [22], the window length of PLC is equal to that of the dqMAF.
V. CONCLUSION

This paper proposes an implementation structure of MAF in the $\alpha\beta$-frame. Compared with the standard dqMAF, the proposed $\alpha\beta$MAF does not introduce a phase delay into the feedback loop, and significantly improves the dynamic response of the PLL. In the continuous time domain, $\alpha\beta$ MAF is implemented by a cascade of complex comb filter and complex backward-difference integrator. Nonadaptive $\alpha\beta$MAF is suggested and its coefficients are all constant. By directly assigning constant values to these coefficients, no trigonometric function needs to be performed, which is useful for some low-cost digital controllers or at a high sampling frequency. The phase corrector can eliminate the phase error caused by nonadaptive $\alpha\beta$MAF at off-nominal frequencies. This corrector requires only one multiplication and one addition, so it is easy to implement. The small-signal model of the proposed PLL is carried out, and the control parameters are also tuned. The simulation and experimental results demonstrate the effectiveness of the proposed technique.

REFERENCES

[1] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Three-phase PLLs: A review of recent advances,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1894–1907, Mar. 2017.

[2] M. Xie, H. Wen, C. Zha, and Y. Yang, “DC offset rejection improvement in single-phase SOGI-PLL algorithms: Methods review and experimental evaluation,” IEEE Access, vol. 5, pp. 12810–12819, 2017.

[3] Y. Bai, X. Guo, B. Wang, and Y. Li, “Fully digital grid synchronization under harmonics and unbalanced conditions,” IEEE Access, vol. 7, pp. 109969–109981, 2019.

[4] M. S. Reza, F. Sadeque, A. M. Y. M. Ghias, and B. Wang, “A novel low voltage ride-through technique of three-phase grid-connected inverters based on a nonlinear phase-locked loop,” IEEE Access, vol. 7, pp. 66609–66622, 2019.

[5] X. He, H. Geng, and G. Yang, “A generalized design framework of notch filter based frequency-locked loop for three-phase grid voltage,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 7072–7084, Sep. 2018.

[6] F. Gonzalez-Espin, E. Figueres, and G. Garcera, “An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2718–2731, Jun. 2012.

[7] X. Guo, W. Wu, and Z. Chen, “Multiple-complex coefficient-filter-based phase-locked loop and synchronization technique for three-phase grid-interfaced converters in distributed utility networks,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1194–1204, Apr. 2011.

[8] M. Ramezani, S. Golestan, S. Li, and J. M. Guerrero, “A simple approach to enhance the performance of complex-coefficient filter-based PLL in grid-connected applications,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 5081–5085, Jun. 2018.

[9] H. A. Hamed, A. F. Abdou, E. H. E. Bayoumi, and E. E. El-Kholy, “Frequency adaptive CDSC-PLL using axis drift control under adverse grid condition,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2671–2682, Apr. 2017.

[10] M. Chen, L. Peng, B. Wang, and W. Wu, “Accurate and fast harmonic detection based on the generalized trigonometric function delayed signal cancellation,” IEEE Access, vol. 7, pp. 3438–3447, 2019.

[11] Y. F. Wang and Y. W. Li, “Grid synchronization PLL based on cascaded delayed signal cancellation,” IEEE Trans. Power Electron., vol. 26, no. 7, pp. 1987–1997, Jul. 2011.

[12] S. Golestan, J. M. Guerrero, J. C. Vasquez, A. M. Abusorrah, and Y. Al-Turki, “Research on variable-length transfer delay and delayed-signal-cancellation-based PLLs,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8388–8398, Oct. 2018.
[36] L. Harnefors, “Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2239–2248, Aug. 2007.

[37] R. Cardenas, C. Juri, R. Pena, J. Clare, and P. Wheeler, “Analysis and experimental validation of control systems for four-leg matrix converter applications,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 141–153, Jan. 2012.

[38] S. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, “Performance improvement of a prefiltered synchronous-reference-frame PLL by using a PID-type loop filter,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3469–3479, Jul. 2014.

[39] S. Golestan, J. M. Guerrero, and G. Gharehpetian, “Five approaches to deal with problem of DC offset in phase-locked loop algorithms: Design considerations and performance evaluations,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 648–660, Jan. 2016.

[40] M. S. Reza, M. M. Hossain, and A. M. Y. M. Ghias, “Open-loop approach for robust detection of selective harmonic in single-phase system,” IEEE Trans. Ind. Informat., vol. 15, no. 12, pp. 6260–6269, Dec. 2019.

[41] S. Golestan, A. Vidal, A. G. Yepes, J. M. Guerrero, J. C. Vasquez, and J. Doval-Gandoy, “A true open-loop synchronization technique,” IEEE Trans. Ind. Informat., vol. 12, no. 3, pp. 1093–1103, Jun. 2016.

[42] H. Hu, Programmable Digital Signal Processors: Architecture, Programming, and Applications. New York, NY, USA: Marcel Dekker, 2002.

[43] Voltage Characteristics of Electricity Supplied by Public Distribution Networks. CENELEC Standard EN50160, 2006.

[44] M. McGranaghan and G. Beaulieu, “Update on IEC 61000-3-6: Harmonic emission limits for customers connected to MV, HV and EHV,” in Proc. IEEE Transmiss. Distrib. Conf. Exhib., May 2006, pp. 1158–1161.

JINBO LI (Member, IEEE) received the B.S. degree in electrical engineering from Beijing Jiaotong University (BJTU), Beijing, China, in 2010, and the M.S. degree in electronics and communication engineering from Ningxia University (NXU), Yinchuan, China, in 2016. He is currently pursuing the Ph.D. degree in electrical engineering with the Department of Electrical Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China.

From 2010 to 2014, he was an electrical engineer of a hydropower plant in Lijiang, China. His current research interests include renewable energy generation systems, grid synchronization, and power quality.

QIN WANG received the B.S., M.S., and Ph.D. degrees in electrical engineering from the Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 1987, 1996, and 2011, respectively.

In 1996, he joined the Teaching and Research Division, Faculty of Electrical Engineering, NUAA, where he became an Associate Professor at the College of Automation Engineering, in 2005. He is currently a Professor with the Jiangsu Key Laboratory of New Energy Generation and Power Conversion, NUAA. He has authored or coauthored more than 30 technical papers in journals and conferences, and has also published three books. His current research interests include renewable energy generation systems, power quality, multi-input dc/dc converters, and soft switching dc/dc converters.

LAN XIAO (Member, IEEE) received the B.S. and Ph.D. degrees in electrical engineering from the Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 1993 and 1998, respectively.

In 1999, she joined the College of Automation Engineering, NUAA, as a Faculty Member, where she is currently a Professor with the Jiangsu Key Laboratory of New Energy Generation and Power Conversion. She has authored or coauthored over 50 technical papers in journals and conferences. Her current research interests include renewable energy generation systems, multi-input dc/dc converters, and soft switching dc/dc converters.

YINFENG HU was born in Chongqing, China, in 1996. He received the B.S. degree in electrical engineering from the Huaizhong University of Science and Technology (HUST) in 2018. He is currently pursuing the M.S. degree in electrical engineering with the Department of Electrical Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China.

His current research interests include renewable energy generation systems, power electronics, and motor drive.

QUNFANG WU (Member, IEEE) received the Ph.D. degree in electrical engineering from the Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 2018.

Since September 2018, he has been a Post-doctoral Researcher with the Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI, USA. His current research interests include dc–dc conversion, wide-band-gap semiconductor power device applications, gate driver technologies, and renewable energy generation systems.

ZEHAO LIU received the B.S. degree in electrical engineering and automation and the M.S. degree in control science and engineering from Xidian University (QFNU), Xian, China, in 2015 and 2018, respectively. He is currently pursuing the Ph.D. degree in electrical engineering with the Department of Electrical Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing, China.

His current research interests include modular multilevel converters, wind energy, and power electronics.

* * *