Gromov’s macroscopic dimension conjecture

Dmitry V Bozotov

In this note we construct a closed 4–manifold having torsion-free fundamental
group and whose universal covering is of macroscopic dimension 3. This yields a
counterexample to Gromov’s conjecture about the falling of macroscopic dimension.

57R19; 57R20

1 Introduction

The following definition was given by M Gromov [2]:

Definition 1.1 Let V be a metric space. We say that \(\dim \varepsilon V \leq k \) if there is a \(k \)–
dimensional polyhedron \(P \) and a proper uniformly cobounded map \(\phi: V \to P \) such that
\(\text{Diam}(\phi^{-1}(p)) \leq \varepsilon \) for all \(p \in P \). A metric space \(V \) has macroscopic \(\dim_{mc} V \leq k \) if
\(\dim \varepsilon V \leq k \) for some possibly large \(\varepsilon < \infty \). If \(k \) is minimal, we say that \(\dim_{mc} V = k \).

Gromov also stated the following questions which, for convenience, we state in the
form of conjectures:

C1 Let \((M^n, g)\) be a closed Riemannian \(n \)–manifold with torsion-free fundamental
group, and let \((\tilde{M}^n, \tilde{g})\) be the universal covering of \(M^n \) with the pullback metric. Suppose
that \(\dim_{mc}(\tilde{M}^n, \tilde{g}) < n \). Then \(\dim_{mc}(\tilde{M}^n, \tilde{g}) < n - 1 \).

In [1] we proved C1 for the case \(n = 3 \).

Evidently, the following conjecture would imply C1 (see also (C) of Section 2):

C2 Let \(M^n \) be a closed \(n \)–manifold with torsion-free fundamental group \(\pi \) and let
\(f: M^n \to B\pi \) be a classifying map to the classifying space \(B\pi \). Suppose that \(f \) is
homotopic to a mapping into the \((n - 1) \)–skeleton of \(B\pi \). Then \(f \) is in fact homotopic
to a mapping into the \((n - 2) \)–skeleton of \(B\pi \).

In this note we show that both conjectures fail for \(n \geq 4 \).

We always assume that universal covering are equipped with the pullback metrics.

Published: 14 October 2006

DOI: 10.2140/agt.2006.6.1669
Framed cobordism, Pontryagin manifolds and classification of mappings to the sphere

Let M be a smooth compact manifold possibly with a boundary and let (N, v) and (N', w) be closed n–submanifolds in the interior of M with trivial normal bundles and framings v and w, respectively.

Definition 1.2 Two framed submanifolds (N, v) and (N', w) are *framed cobordant* if there exists a cobordism $X \subset M \times [0, 1]$ between N and N' and a framing u of X such that

\[
u(x, t) = (v(x), 0) \quad \text{for } (x, t) \in N \times [0, \varepsilon),
\]

\[
u(x, t) = (w(x), 1) \quad \text{for } (x, t) \in N' \times (1 - \varepsilon, 1].
\]

Remark 1.3 If $(N', w) = \emptyset$ we say (N, v) is *framed cobordant to zero*.

Now let $f : M \to S^p$ be a smooth mapping and $y \in S^p$ be a regular value of f. Then f induces the following framing of the submanifold $f^{-1}(y) \subset M$. Choose a positively oriented basis $\nu = (v^1, \ldots, v^p)$ for the tangent space $T(S^p)_y$. Notice that for each $x \in f^{-1}(y)$ the differential $df_x : T_xM \to T(S^p)_y$ vanishes on the subspace $Tf^{-1}(y)_x$ and isomorphically maps its orthogonal complement $Tf^{-1}(y)_x^\perp$ onto $T(S^p)_y$. Hence there exists a unique vector

$$w_i^j \in Tf^{-1}(y)_x^\perp \subset TM_x$$

which is mapped by df_x to v_i. So we have an induced framing $w = f^*\nu$ of $f^{-1}(y)$.

Definition 1.4 This framed manifold $(f^{-1}(y), f^*\nu)$ will be called the *Pontryagin manifold* associated with f.

Theorem 1.5 (Milnor [3]) If y' is another regular value of f and ν' is a positively oriented basis for $T(S^p)_{y'}$, then the framed manifold $(f^{-1}(y), f^*\nu)$ is framed cobordant to $(f^{-1}(y'), f^*\nu')$.

Theorem 1.6 (Milnor [3]) Two mappings from $(M, \partial M)$ to (S^p, s_0) are smoothly homotopic if and only if the associated Pontryagin manifolds are framed cobordant.
2 The construction of an example

Consider a circle bundle $S^3 \times S^1 \to S^2 \times S^1$ obtained by multiplying the Hopf circle bundle $S^3 \to S^2$ by S^1. Take also the trivial circle bundle $T^4 = S^1 \times T^3 \to T^3$ and produce a connected sum

$$M^4 = S^3 \times S^1 \#_{s^1} T^4$$

of these circle bundles along small tubes consisting of the circle fibers equipped with natural trivialization. Clearly

(A) M^4 is the total space of the circle bundle

$$p : M^4 \to M^3 = S^2 \times S^1 \# T^3;$$

(B) $\pi_1(M^4) = \pi_1(M^3)$. Denote this group by π;

(C) $B\pi = S^1 \vee T^3$ and $\dim_{mc} M^4 \leq 3$. Indeed, the classifying map $f : M^4 \to B\pi$ can be lifted to the proper cobounded (by $\text{Diam}(M^4)$) map $\tilde{f} : M^4 \to \tilde{B}\pi$ of the universal coverings;

(D) the classifying map $f : M^4 \to B\pi$ can be defined as the composition

$$M^4 \xrightarrow{p} S^2 \times S^1 \# T^3 \xrightarrow{f_1} S^2 \times S^1 \vee T^3 \xrightarrow{f_2} S^1 \vee T^3,$$

where f_1 is a quotient map which maps a separating sphere S^2 to a point, and f_2 is the mapping which coincides with the projection onto the generating circle of $S^2 \times S^1$ and is the identity on T^3–component.

Let $g : S^1 \vee T^3 \to S^3$ be a degree one map which maps S^1 to a point. Then the following composition $J = g \circ f_2 \circ f_1 : M^3 \to S^3$ also has degree one.

Theorem 2.1 The mapping $f : M^4 \to B\pi$ is not homotopic into the 2–skeleton of $B\pi$.

Proof Let $\pi : E \to M^3$ be a two-dimensional vector bundle associated with the circle bundle $p : M^4 \to M^3$. Let E_0 denote E without zero section $s : M^3 \hookrightarrow E$ and $j : M^4 \hookrightarrow E_0$ be a unit circle subbundle of E.

The following diagram is homotopically commutative:

$$\begin{array}{ccc}
M^4 & \xhookrightarrow{i} & E_0 \\
\downarrow p & & \downarrow \text{embedding} \\
M^3 & \xhookrightarrow{s} & E
\end{array}$$

Obviously, j and s are homotopy equivalences.
Recall that we have the Thom isomorphism (see Milnor and Stasheff [4])

\[\Phi: H^k(M^3; \Lambda) \to H^{k+2}(E, E_0; \Lambda) \]

defined by

\[\Phi(x) = (\pi^* x) \cup u, \]

where \(\Lambda \) is a ring with unity, and \(u \) denotes the Thom class.

The Thom class \(u \) has the following properties [4]:

(a) If \(e \) is the Euler class of \(E \) then we have the Thom–Wu formula

\[\Phi(e) = u \cup u. \]

(b) \(s^*(u) = e. \)

Let

\[M_p = M^4 \times I/(x \times 1 \sim p(x)) \]

be the cylinder of the map \(p: M^4 \to M^3 \). Then we have natural embeddings

\[i_1: M^4 \to M^4 \times 0 \subseteq M_p \quad \text{and} \quad i_2: M^3 \to M^3 \times 1 \subseteq M_p \]

and a natural retraction \(r: M_p \to M_3 \). It is easy to see that \(M_p \) is just a \(D^2 \)-bundle associated to the circle bundle \(p: M^4 \to M^3 \) and \(r|_{M^4} = p \).

Recall that the Thom space \((T(E), \infty) \) is the one point compactification of \(E \). Denote \(T(E) \) by \(T \). Clearly, \(T \) is homeomorphic to the quotient space \(M_p/M^4 \) and

\[H^*(T, \infty; \Lambda) \cong H^*(E, E_0; \Lambda) \quad (1) \]

is a ring isomorphism (see Milnor and Stasheff [4] for more details).

If \(g \circ f : M^4 \to S^3 \) is nullhomotopic then we can extend the map \(J: M_3 \times 1 \to S^3 \) to a mapping \(G: T \to S^3 \). This means that the composition

\[M^3 \xrightarrow{i_2} M_p \xrightarrow{\text{quotient}} \xrightarrow{G} S^3 \]

has degree 1 and \(G^*: H^3(S^3, s_0; \Lambda) \to H^3(T, \infty; \Lambda) \) is nontrivial.

Let \(a \in H^*(E, E_0; \Lambda) \) denote a class corresponding to the class \(G^*(\bar{s}) \) by isomorphism \((1) \), where \(\bar{s} \) is a generator of \(H^3(S^3, \Lambda) \).

Let us consider the following exact sequence of pair:

\[H^3(E, E_0; \Lambda) \xrightarrow{\xi} \xrightarrow{\psi} H^3(E; \Lambda) \xrightarrow{\psi} H^3(E_0; \Lambda) \]
Since E is homotopy equivalent to M^3, we have $H^i(E; \Lambda) = H^i(M^3; \Lambda)$. Clearly $s^*\xi(a) = J^*(\bar{s})$. (Note that $J^*(\bar{s})$ is a generator of $H^3(M^3; \Lambda)$).

Let us note that $e \mod 2$ is equal to the Stiefel–Whitney class w_2 which is nonzero. Indeed, the restriction of E onto the embedded sphere $i: S^2 \subset M^3$ is the vector bundle associated with the Hopf circle bundle, and so $i^*w_2 \neq 0$. By the Thom construction above there exists a class $z \in H^1(M^3; \mathbb{Z}_2)$ such that $\Phi(z) = a$. Thus

$$s^*\xi(a) = z \cup w_2 = \{\text{generator of } H^3(M^3; \mathbb{Z}_2)\}.$$

Recall the basic properties of Steenrod squares [6, 4]:

1. For each n, i and $Y \subset X$ there exists an additive homomorphism
 $$Sq^i: H^n(X, Y; \mathbb{Z}_2) \to H^{n+i}(X, Y; \mathbb{Z}_2).$$

2. If $f: (X, Y) \to (X', Y')$ is a continuous map of pairs, then
 $$Sq^i \circ f^* = f^* \circ Sq^i.$$

3. If $a \in H^n(X, Y; \mathbb{Z}_2)$, then $Sq^0(a) = a$, $Sq^n(a) = a \cup a$ and $Sq^i(a) = 0$ for $i > n$.

4. We have Cartan’s formula:
 $$Sq^k(a \cup b) = \sum_{i+j=k} Sq^i(a) \cup Sq^j(b).$$

5. $Sq^1 = w_1: H^{m-1}(M; \mathbb{Z}_2) \to H^m(M; \mathbb{Z}_2)$, where M is a closed smooth manifold and w_1 is the first Stiefel–Whitney class of the tangent bundle TM. This follows from the coincidence of the class w_1 with the first Wu class v_1 [4]. It is well known that $w_1 = 0$ if M is an orientable manifold.

Let us show that $Sq^2(\Phi(z)) \neq 0$. Using the properties above, it is easy to see that $Sq^1(z) = Sq^2(z) = 0$. Using the Thom–Wu formula (1), we have

$$Sq^2(\Phi(z)) = \pi_z \cup Sq^2(u) = \pi_z \cup u \cup u = \pi_z \cup \Phi(w_2) = \Phi(z \cup w_2) \neq 0.$$

Whence $0 = G^*(Sq^2(\bar{s})) = Sq^2(G^*(\bar{s})) \neq 0$. This contradiction implies that the composition $g \circ f: M^4 \to S^3$ is not homotopic to zero and $f: M^4 \to B\pi$ can not be deformed into the 2–skeleton of $B\pi$. \square

Corollary 2.2 The Pontryagin manifold $(p^{-1}(m), p^*(w))$ is not cobordant to zero, where (m, w) is any framed point of M^3.

Algberaic & Geometric Topology 6 (2006)
Proof Indeed, from Theorem 2.1 and Theorem 1.6 it follows that if \(s \in S^3 \) is a regular point of \(g \circ f : M^4 \to S^3 \), then the Pontryagin manifold \((f^{-1}(g^{-1}(s)), f^*(g^*(v))) \) is not cobordant to zero, where \(v \) is a framing at \(s \). Thus the Pontryagin manifold \((p^{-1}(m), p^*(w)) \) for \((m, w) = (J^{-1}(s), (J^*(v)) \) is also not cobordant to zero. Now the statement follows from Theorem 1.5 and regularity of the map \(p : M^4 \to M^3 \).

3 The main theorem

Definition 3.1 A metric space is called uniformly contractible (UC) if there exists an increasing function \(Q : \mathbb{R}_+ \to \mathbb{R}_+ \) such that each ball of radius \(r \) contracts to a point inside a ball of radius \(Q(r) \).

It is well known that the universal covering of a compact \(K(\tau, 1) \) space is UC (see Gromov [2] for more details).

Denote by \(\rho \) the distance function on \(\widetilde{B}_\pi \).

Lemma 3.2 Let \(\widetilde{f} : \widetilde{M}^4 \to \widetilde{B}_\pi \) be a lifting of a classifying map to the universal coverings. If \(\dim_{mc} \widetilde{M}^4 \leq 2 \), then there exists a short homotopy \(\widetilde{F} : \widetilde{M}^4 \times I \to \widetilde{B}_\pi \) of \(\widetilde{f} \) such that \(\widetilde{F}(x, 0) = \widetilde{f}(x) \) and \(\widetilde{F}(x, 1) \) is a through mapping

\[
\widetilde{F}(x, 1) : \widetilde{M}^4 \to P^2 \to \widetilde{B}_\pi,
\]

where \(P^2 \) is a 2–dimensional polyhedron and “short homotopy” means that we have \(\rho(\widetilde{f}(x), \widetilde{F}(x, t)) \leq \text{const} \) for each \(x \in \widetilde{M}^4 \), \(t \in I \).

Proof Let \(h : \widetilde{M}^4 \to P \) be a proper cobounded continuous map to some 2–dimensional polyhedron \(P \). Using a simplicial approximation of \(h \), we can suppose that \(h \) is a simplicial map between such triangulations of \(\widetilde{M}^4 \) and \(P \), that the preimage of the star of each vertex is uniformly bounded (recall that \(h \) is proper). Since \(\widetilde{f} \) is a quasi-isometry, the \(\widetilde{f} \)–image \(\widetilde{f}(h^{-1}(\text{St}(v))) \) of the preimage of the star of each vertex \(v \in P \) is bounded by some constant \(d \). Let \(M_h \) be the cylinder of \(h \) with natural triangulation consisting of the triangulations of \(\widetilde{M}^4 \) and \(P \) and the triangulations of the simplices \(\{v_0, \ldots, v_k, h(v_k), \ldots, h(v_p)\} \), where \(\{v_0, \ldots, v_p\} \) is a simplex in \(\widetilde{M}^4 \) with \(v_0 < v_1 < \ldots, < v_p \) [5].

Consider the map \(\tilde{f}_0 : (M_h)^0 \to \widetilde{B}_\pi \) from 0–skeleton \((M_h)^0 \) of \(M_h \) which coincides with \(\widetilde{f} \) on the lower base of \((M_h)^0 \) and with the composition \(\tilde{f} \circ t_0 \) on the upper base of \((M_h)^0 \), where \(t_0 : (P)^0 \to \widetilde{M}^4 \) is a section of \(h \) defined on the 0–skeleton \((P)^0 \) of \(P \).
Since \tilde{B}_1 is uniformly contractible, we can extend \tilde{f}_0 to M_h using the function Q of the definition of UC-spaces as follows:

By the construction above, \tilde{f}_0–image of every two neighbouring vertexes of M_h lies into a ball of radius d. Therefore we can extend the map \tilde{f}_0 to a mapping $\tilde{f}_1: (M_h)^1 \to \tilde{B}_1$ such that $\rho(\tilde{f}(x),\tilde{f}_1(x,t)) \leq d$, $x \in (M_h)^0$. The \tilde{f}_1–image of the boundary of arbitrary 2–simplex of M_h lies into a ball of radius $3d$. So we can extend \tilde{f}_1 to a mapping $\tilde{f}_2: (M_h)^2 \to \tilde{B}_1$ so that $\rho(\tilde{f}(x),\tilde{f}_2(x,t)) \leq 4Q(3d)$, $x \in (M_h)^1$. Similarly, continue \tilde{f}_2 to mappings $\tilde{f}_3, \ldots, \tilde{f}_5$ defined on skeletons $(M_h)^3, \ldots, (M_h)^5 = M_h$ respectively, so that $\rho(\tilde{f}(x),\tilde{f}_5(x,t)) \leq c$, where c is a constant.

Main Theorem $\dim_{mc} \tilde{M}^4 = 3$.

Proof Let $q: \tilde{B}_1 \to \tilde{B}_1/(\tilde{B}_1 \setminus D^3) \cong S^3$ be a quotient map, where D^3 is an embedded open 3–dimensional ball.

Suppose that $\dim_{mc} \tilde{M}^4 \leq 2$ and let $h: \tilde{M}^4 \to P$ be a proper cobounded continuous map to some 2–dimensional polyhedron P as in Lemma 3.2. It is not difficult to find a compact smooth submanifold with boundary $W \subset \tilde{M}^4$ such that W contains a ball of arbitrary fixed radius r. Since \tilde{f} is a quasi-isometry, using Lemma 3.2 we can choose r big enough such that $D^3 \subset \tilde{f}(W)$ and $\tilde{F}(\partial W \times I) \cap D^3 = \emptyset$, where \tilde{F} denotes the short homotopy from Lemma 3.2. Thus we have a homotopy

$$q \circ \tilde{F}: (W, \partial W) \times I \to (S^3, s_0)$$

which maps $\partial W \times I$ into the base point s_0. Since $\dim P = 2$, from Lemma 3.2 it follows that $q \circ \tilde{F}(x, 0)$ is homotopic to zero. Therefore $q \circ \tilde{F}(x, 0) = q \circ \tilde{f}$ is homotopic to zero (and $q \circ \tilde{f}$ is smoothly homotopic to zero [3]). Let (s, v) be a framed regular point in S^3 for the map $q \circ \tilde{f}$. Then the Pontryagin manifold

$$(\tilde{f}^{-1} \circ q^{-1}(s), \tilde{f}^* q^*(v))$$

must be cobordant to zero (see Theorem 1.6). Let $(\tilde{\Omega}, w)$ be a framed nullcobordism which is embedded in $W \times I$ with the boundary $(\tilde{f}^{-1} \circ q^{-1}(s), \tilde{f}^* q^*(v))$.

Consider the covering map $\tau: \tilde{M}^4 \times I \to M^4 \times I$. Then $\tau(\tilde{f}^{-1} \circ q^{-1}(s), \tilde{f}^* q^*(v))$ is an immersed framed submanifold of M^4 which coincides with the Pontryagin manifold $(p^{-1}(m), p^*(\nu))$ of some framed point $(m, \nu) \in M^3$. And $\tau(\tilde{\Omega}, w)$ is an immersed framed submanifold of $M^4 \times I$. Using the Whitney Embedding Theorem [7], we can make a small perturbation of $\tau(\tilde{\Omega}, w)$ identically on the small collar of the boundary to obtain a framed nullcobordism with the boundary $\tau(\tilde{f}^{-1} \circ q^{-1}(s), \tilde{f}^* q^*(v))$. But this is impossible by Corollary 2.2.

Algebraic & Geometric Topology 6 (2006)
Remark 3.3 By similar arguments one can prove that
\[\dim_{mc}(\tilde{M}^4 \times T^p) = p + 3. \]

Question Does \(M^4 \times T^p \) admit a PSC–metric for some \(p \)?

Acknowledgements
I thank Professor Gromov for useful discussions and attention to this work during my visit to the IHES in December 2005. Also I thank the referee for the useful remarks and S Maksimenko for the help in preparation of the article.

References

[1] D V Bolotov, *Macroscopic dimension of 3–manifolds*, Math. Phys. Anal. Geom. 6 (2003) 291–299 MR1997917
[2] M Gromov, *Positive curvature, macroscopic dimension, spectral gaps and higher signatures*, Preprint (1996)
[3] J W Milnor, *Topology from the differentiable viewpoint*, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va. (1965) MR0226651
[4] J W Milnor, J D Stasheff, *Characteristic classes*, Annals of Mathematics Studies 76, Princeton University Press, Princeton, NJ (1974) MR0440554
[5] E H Spanier, *Algebraic topology*, McGraw-Hill Book Co., New York (1966) MR0210112
[6] N E Steenrod, *Cohomology operations*, Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J. (1962) MR0145525
[7] H Whitney, *Differentiable manifolds*, Ann. of Math. (2) 37 (1936) 645–680 MR1503303

B Verkin Institute for Low Temperature Physics
Lenina ave 47, Kharkov 61103, Ukraine
bolotov@univer.kharkov.ua

Received: 2 March 2006