Coronavirus Disease 2019 Calls for Predictive Analytics Monitoring—A New Kind of Illness Scoring System

John P. Davis, MD1,2; Dustin A. Wessells, BS2,3; J. Randall Moorman, MD2,4–6

Abstract: Coronavirus disease 2019 can lead to sudden and severe respiratory failure that mandates endotracheal intubation, a procedure much more safely performed under elective rather than emergency conditions. Early warning of rising risk of this event could benefit both patients and healthcare providers by reducing the high risk of emergency intubation. Current illness severity scoring systems, which usually update only when clinicians measure vital signs or laboratory values, are poorly suited for early detection of this kind of rapid clinical deterioration. We propose that continuous predictive analytics monitoring, a new approach to bedside management, is more useful. The principles of this new practice anchor in analysis of continuous bedside monitoring data, training models on diagnosis-specific paths of deterioration using clinician-identified events, and continuous display of trends in risks rather than alerts when arbitrary thresholds are exceeded.

Key Words: coronavirus disease 2019; machine learning; predictive monitoring; sepsis

The coronavirus disease 2019 (COVID-19) pandemic is a black swan event for the healthcare system. Overwhelmed hospitals may fail to meet community needs. Strained resources must be targeted to provide the sickest patients with the highest levels of care, while diverting others to outpatient protocols. Triage is imperative, and doctors face nightmarish decisions of allocating ventilators. Only on the battlefield is it so important to gauge the illness severity and trajectory of multiple patients simultaneously.

The first question we hear clinicians asking on arrival in a COVID-19 unit is, “Who is the sickest patient?” They ask because the illness can rapidly lead to lung failure, recognized in the COVID-specific Surviving Sepsis Guidelines that include the need for monitoring of incipient respiratory failure. Remarkably, there is but a single Best Practice Statement: “In adults with COVID-19 receiving non-invasive positive-pressure ventilation or high-flow nasal cannula, we recommend close monitoring for worsening of respiratory status, and early intubation in a controlled setting if worsening occurs.”

In the heart of this pandemic, what does “close monitoring for worsening of respiratory status” mean? Can we look to familiar illness severity scores for help?

In 1981, Knaus et al (3) introduced the Acute Physiology and Chronic Health Evaluation (APACHE) score and, with it, the durably appealing idea that a single number could inform on how sick an ICU patient was. The score grew with the times, evolving from pencil and paper, a tedious look at the first 24 hours, and weights decided upon by experts to a computerized, automated product founded on statistical analyses of many patients. Indeed, 1985’s APACHE-II (4) was more accurate than the Sequential Organ Failure Assessment score (5), Confusion, BUn, RR (respiratory rate), BP (blood pressure), age>65 score (6), and National Early Warning Score (7, 8) in assessing COVID-19 patients in the ICU of the Tongji Hospital in China (9, 10).

These scores, however, were not devised for illnesses like COVID-19 that can lead to rapidly accelerating lung failure. Most use only measurements made on the first day. Their dependence on values that are measured only when a clinician thinks to, like vital signs or laboratory tests, makes them sluggish with respect to the pace of the disease. They allow the illness a headstart
TABLE 1. Illness Severity Scoring Systems

Name	Clinical Target	Sample Size	Years	Inputs	Strategy	Range	Impact	Original Citation(s)
Acute Physiology and Chronic Health Evaluation	Death in ICU	I: 805 II: 5,815 III: 17,440 IV: 110,558	1981–2003	L, VS, D, C, and GCS	O, R	I: 0–130 II: 0–71 III: 0–299 IV: 0–286	No trials	(3, 4, 12, 13)
Systemic inflammatory response syndrome	Death	0	1992	VS and L	O	0–4	RCT: negative	(16)
Sequential Organ Failure Assessment	Multiple organ failure	0	1996	VS, L, M, and GCS	O	0–24	No trials	(5)
Risk of Infection to Severe Sepsis and Shock Score	Infection to severe sepsis/shock	1,531	1997–1998	VS, L, C, and S	R	0–49	No trials	(17)
Oxford BioSignals/Visensia	None	150	2001–2003	VS^a	+	0–10	RCT (18) and A/B (19) studies: no impact on mortality	(20)
Insight	Sepsis	1,394	2001–2007	VS and age	+	Not given	RCT (21) and A/B (22): mortality reduction and fewer readmissions	(23)
Targeted Real-time Early Warning Score	Septic shock in ICU	13,014	2001–2007	VS^b, L, D, and C	+	0–1	No trials	(24)
Long short-term memory	Septic shock in ICU	50,373	2001–2012	VS^b, L, D, and C	+	Not given	No trials	(25)
Heart rate characteristics index	Sepsis	316	2003	VS^a and WF	R	0–6-foldX	RCT (26): mortality reduction	(33)
Etiometry	Inadequate oxygen delivery	0	2015	VS^a	+	0–100	No trials	(28)
Rothman index	Death next 12 mo	22,265	2004	VS, L, and N	+	−91 to 100	No trials	(29)
Early warning score	ICU transfer	19,116	2007–2010	VS^a, L, N, C, D, and M	R, +	0–1	RCT: (30) negative	(30)
(e)CART	Cardiac arrest in hospital	CART: 47,427 eCART: 269,999	2008–2013	VS and L	R, +	0–1,000	No trials	(31, 32)
National Early Warning Score	Acute-illness severity	0	2012	VS, M, and alert, verbal, pain, unresponsive	O	0–20	RCT (33): negative	(7, 8)
Artificial intelligence sepsis expert	Sepsis	27,527	2013–2015	VS^a, L, D, C, organ system scoring, and M	+	0–1	No trials	(34)
that can be impossible to catch up to. Whatever advantage they offer in the calibrated synthesis of many kinds of information, they lose with their pace or lack of it.

There are other misalignments. As shown in Table 1, the targets that current scores are trained to detect are diffuse and include death (in the hospital [44] or for any cause up to a year later [29]), cardiac arrest (31), sepsis (34), septic shock in the ICU (24), hemorrhage (38, 45), and readmission (44). Their inputs are often intermittent, slowly moving, or static predictors. Their weighting of values and ranges is sometimes based on expert opinion from the pre-COVID-19 era. Their scoring ranges are often nonintuitive. Their impacts have often been untested even in non-COVID-19 settings. We note that trials that used triggered alerts rather than continuous displays have had, at best, mixed results (18, 19, 35, 46–48). These were APACHE-like tools and statistical models based on measured values taken when clinicians thought they needed them.

We live, though, in the era of Artificial Intelligence and Big Data, and the promise of clinical decision support for bedside clinicians based on automated mathematical analysis of streaming data is known to us all. In addition, continuous cardiorespiratory monitoring is readily available in every ICU and many acute care ward settings. We have the appealing opportunity to analyze mathematically the voluminous continuous cardiorespiratory monitoring data to detect early signs of patient deterioration. The effort to collect, store, and analyze the 150 MB of data per patient per day seems worth the cost of Event Trajectories—which reports two risks, a

Name	Clinical Target	Sample Size	Years	Inputs	Strategy	Range	Impact	Original Citation(s)
Continuous Monitoring of Event Trajectories	Sepsis, death, hemorrhage, intubation, and transfer to ICU	60,986	2013–2020	VS, L, and WF	R	0–6-foldX	A/B: (37) Reduced septic shock	(37–42)
Ambient Clinical Aware	Severe sepsis	587	2015	VS, L, M	+	0–1	No trials	(43)
Google	Death in hospital, length of stay, and readmissions	126,000	2018	VS, L, D, C, N, and M	+	No trials	(44)	

(e)CART = electronic Cardiac Arrest Risk Triage, + = other mathematical methods, A/B = before and after comparison, C = comorbidities, D = demographics, FoldX = fold-increase in risk compared with average, GCS = Glasgow Coma Scale, L = labs, M = medications, N = nursing notes, O = opinion, R = regression, RCT = randomized clinical trial, S = organ system scoring, VS = vital signs, WF = waveforms (continuous data inputs).

VS when recorded by nurses: q s.

VS when recorded by nurses: q 1 min.

in volunteers injected with endotoxin (52) and concluded that systemic inflammation uncoupled the heart and lungs, and presumably uncoupled others, leading to multiple organ dysfunction syndrome (53). A comprehensive modern view is that many organs are coupled in physiologic networks (54, 55) that can be modulated during sleep and illness.

Signatures differ from illness to illness, from hospital unit to hospital unit, and across the spectrum of age. In septic neonatal ICU (NICU) premature infants, for example, we identified the unique signature of abnormal heart rate characteristics (reduced variability and transient decelerations) hours prior to clinical presentation (56). A heart rate characteristic index (27) based on novel mathematical analytics (49, 57–59) led to a continuous display of the fold-increase in the risk of neonatal sepsis in the next 24 hours (26, 50, 60). In the largest randomized trial in neonatology, the display led to a more than 20% relative reduction in death in nine NICUs (26), a durable effect (61) mostly attributable to a reduction in deaths from sepsis (62).

Although this illness signature holds for several neonatal illnesses, the same is not true for adults (38). For example, the physiologic signature of acute respiratory acute failure differed from that of hemorrhage in adult ICUs. In addition, although these two illness signatures were similar in our medical and surgical ICUs, the signatures of sepsis in the two units differed—in the surgery ICU, sepsis presented more like respiratory failure, and in the medical ICU, more like circulatory shock. A display that we devised for other ICUs and wards—Continuous Monitoring of Event Trajectories—which reports two risks, an x,y plot of the 3-hour trajectory of the fold-increase in risk of a respiratory event as a function of the fold-increase in risk of a cardiovascular one, led to a 50% reduction of the rate of septic shock in a surgical and trauma ICU (37, 63).

On one of our hospital floors, the finding was the same—signatures of the most common reasons for patient deterioration leading to ICU transfer differed greatly from one another, and no single predictive model sufficed (64). For example, a model trained on all

Commentary
the ICU transfer events did not outperform the strategy of using multiple models, each of which was tuned to clinical deterioration scenarios specific to a hospital ward.

How should we monitor COVID-19 patients? Since the illness has physiologic features similar to other forms of viral sepsis (65) and acute respiratory distress syndrome (ARDS) (66), we might use predictive analytics monitoring models trained on patients who, on individual chart review, had sepsis using Surviving Sepsis Campaign criteria, or respiratory failure leading to emergent intubation as documented by procedure notes from attending anesthesiologists (38, 39). We note the recent finding that cytokine levels in patients with COVID-19 plus ARDS are lower than those in patients with sepsis plus ARDS (67), consistent with the clinical picture of primary respiratory deterioration. We propose that it may be better to follow lung function than to follow the markers of systemic inflammation in the blood.

Following lung function, like looking for signatures of illness, in our view requires continuous recording of organ function: the more highly resolved, the better. Pinsky et al recently demonstrated the additional information of noninvasive and

Requirement	Realization
Authoritative sources	
Black boxes are unacceptable	Guidelines for reporting studies (80–82)
Time is a scarce resource	No user keystrokes required
Complexity and lack of usability thwart use	Simple, intuitive displays
Relevance and insight are essential	Made by clinicians for clinicians
Delivery of knowledge and information must be respectful	Suggestions about patients that clinicians might wish to see next; no mandates for action
Scientific foundation must be strong	Models that are trained on events identified by clinicians
Provide measurable value in addressing a recognized problem area or area for improvement	Reduced mortality in premature infants (26) and reduced septic shock in adults (37)
Leverage multiple data types to bring the most current and relevant evidence to bear on clinical decisions	Use of all data inputs: labs, vital signs, and cardiorespiratory monitoring (40, 70)
Produce actionable insights from multiple data sources	Indications of respiratory vs cardiovascular vs other forms of instability
Deliver information to the user that allows the user to make final practice decisions	Indication of instability, not a diagnostic test
Demonstrate good usability, including clear displays	Simple, intuitive displays
Are testable in small settings with scalability	(26, 37)
Support quality and value improvement initiatives	(60, 63)

Clinical users

Requirement	Realization
Understand the science	Publications on the algorithm development and validation (Table 1)
Trust the inputs	Data preprocessing to remove noise
Integrate into the EHR	Treat as a vital sign
Optimize clinical pathways	Change from reactive to proactive approaches
Reduce complexity	Provide guidelines for engaging with predictive analytics monitoring
Enhance compatibility	Align tasks with clinician experience
Foster trialability	Promote observation and association
Increase observability	Respected leaders serve as examples
Demonstrate relative advantage	Case examples
invasive heart rate and waveform data in early detection of hemorrhage in pigs (68, 69), affirming clinical studies (45, 70). Heart rate analysis is directly applicable to clinical practice—each heartbeat sends an easily detected signal and allows for detailed analysis of long time-series of interbeat intervals using new and old mathematics (71, 72). A wealth of techniques have been applied in the time domain (73), frequency domain (74), and nonlinear dynamical domain (57, 58), and many machine learning tools from multivariable logistic regression (75) to artificial neural linear dynamical domain (57, 58), and many machine learning applied in the time domain (73), frequency domain (74), and non-old mathematics (71, 72). A wealth of techniques have been heartbeat sends an easily detected signal and allows for detailed Heart rate analysis is directly applicable to clinical practice—each heartbeat sends an easily detected signal and allows for detailed analysis of long time-series of interbeat intervals using new and old mathematics (71, 72). A wealth of techniques have been applied in the time domain (73), frequency domain (74), and nonlinear dynamical domain (57, 58), and many machine learning tools from multivariable logistic regression (75) to artificial neural applied in the time domain (73), frequency domain (74), and nonlinear dynamical domain (57, 58), and many machine learning tools from multivariable logistic regression (75) to artificial neural networks (76, 77) have long been used to combine the results.

Authoritative sources (78, 79) and clinical users (60, 63) have outlined what is required of clinical decision support in the era of artificial intelligence and of predictive analytics monitoring (Table 2). In the table, we propose how the new continuous predictive analytics monitoring systems can realize these requirements. Here, we add four principles that we believe to be of equally paramount importance to an effective monitoring system.

1. Predictive analytics monitoring for clinical decision support for rapidly moving illnesses should incorporate continuous cardiorespiratory monitoring in the ICU and on the floor when it is available, because it adds information to nurse-charted vital signs and laboratory tests (45, 68–70).

2. Predictive analytics monitoring models should be trained on specific targets, because there is no one-size-fits-all model (38, 64).

3. Clinical events that are used for training predictive analytics monitoring models should be identified by clinicians, because they are more accurate than computer searches of clinical databases (70, 83–87).

4. These new kinds of clinical information require new tools and methods for implementation and integration (60, 63, 88).

All of these elements are directly relevant to the problem of COVID-19 respiratory failure. First, patients presenting for acute flu-like illnesses have diagnoses ranging from common viral infection to potentially catastrophic COVID-19 respiratory failure. Just as high-risk scores might predict severe illness and lead to admission to a hospital floor or ICU (40), low-risk scores might predict benign courses and identify patients who can be treated at home. Second, COVID-19 patients admitted to wards can benefit from prediction of rapid, severe pulmonary failure occurring several days into the illness. Third, COVID-19 patients in ICUs treated noninvasively might benefit if predictive monitoring shows risk, allowing them to avoid intubation as they begin to improve on their own. In addition, novel therapies like the antiviral remdesivir and the interleukin-6 receptor antagonist tocilizumab are precious resources and should be reserved for the patients predicted to be at most need. Predictive analytics monitoring can help identify them before the illness is too far advanced. Finally, the illness is very fast-moving, and there is an urgent need to know if patients respond to a course of therapy so that a failing therapy can be quickly stopped and new ones substituted.

To conclude, COVID-19 infection—like other subacute potentially catastrophic illness—can cause rapid clinical deterioration for which early detection might improve outcomes. Volitional measurements of vital signs and labs can come too late. Predictive analytics monitoring that incorporates continuous cardiorespiratory monitoring data and uses targeted analytics that detect specific signatures of individual illnesses fit the clinical need better. Like all clinical decision support, effective predictive analytics monitoring requires intuitive and actionable displays of patient trajectories. It is time to advance these modern tools to the bedside.

ACKNOWLEDGMENTS
We thank Jessica Keim-Malpass, Rebecca Kitzmiller, and Liza Prudente Moorman for suggestions and insights about implementation of predictive analytics monitoring. We also thank our colleagues in the Center for Advanced Medical Analytics, in particular Prof. DE Lake, Sepsis Challenger, for many discussions and insights on predictive analytics monitoring.

REFERENCES
1. Sprung CL, Joynt GM, Christian MD, et al: Adult ICU triage during the coronavirus disease 2019 pandemic: Who will live and who will die? Recommendations to improve survival. Crit Care Med 2020; 48:1196–1202
2. Alhazzani W, Möller MH, Arabi YM, et al: Surviving sepsis campaign: Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med 2020; 48:e440–e469
3. Knaus WA, Zimmerman JE, Wagner DP, et al: APACHE-acute physiologic and chronic health evaluation: A physiologically based classification system. Crit Care Med 1981; 9:591–597
4. Knaus WA, Draper EA, Wagner DP, et al: APACHE II: A severity of disease classification system. Crit Care Med 1985; 13:818–829
5. Vincent JL, Moreno R, Takala J, et al: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 1996; 22: 707–710
6. Lim WS, van der Eerden MM, Laing R, et al: Defining community acquired pneumonia severity on presentation to hospital: An international derivation and validation study. Thorax 2003; 58:377–382
7. London: Royal College of Physicians: 2012: National Early Warning Score (NEWS): Standardising the Assessment of Acute-Illness Severity in the NHS. London, United Kingdom, Royal College of Physicians, 2012
8. Smith GB, Prys-Roberts CR, Meredith P, et al: The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation 2013; 84:465–470
9. Zou X, Li S, Fang M, et al: Acute physiology and chronic health evaluation II score as a predictor of hospital mortality in patients of coronavirus disease 2019. Crit Care Med 2020; 48:e657–e665
10. Peng X, Subbe CP, Zhang L, et al: NEWS can predict deterioration of patients with COVID-19. Resuscitation 2020; 152:26–27
11. Wynants L, Van Calster B, Collins GS, et al: Prediction models for diagnosis and prognosis of covid-19 infection: Systematic review and critical appraisal. BMJ 2020; 369:m1328
12. Knaus WA, Wagner DP, Draper EA, et al: The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991; 100:1619–1636
13. Zimmerman JE, Kramer AA, McNair DS, et al: Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today’s critically ill patients. Crit Care Med 2006; 34:1297–1310
14. Hooper MH, Weavind L, Wheeler AP, et al: Randomized trial of automated, electronic monitoring to facilitate early detection of sepsis in the intensive care unit. Crit Care Med 2012; 40:2096–2101

15. Semler MW, Weavind L, Hooper MH, et al: An electronic tool for the evaluation and treatment of sepsis in the ICU: A randomized controlled trial. Crit Care Med 2015; 43:1595–1602

16. Bone RC, Balk RA, Cerra FB, et al: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101: 1644–1655

17. Alberti C, Brun-Buisson C, Chevet S, et al: European Sepsis Study Group: Systemic inflammatory response and progression to severe sepsis in critically ill infected patients. Am J Respir Crit Care Med 2005; 171: 461–468

18. Watkinson PJ, Barber VS, Price JD, et al: A randomised controlled trial of the effect of continuous electronic physiological monitoring on the adverse event rate in high risk medical and surgical patients. Anaesthesia 2006; 61:1031–1039

19. Hrvanak M, Devita MA, Clontz A, et al: Cardiorespiratory instability before and after implementing an integrated monitoring system. Crit Care Med 2011; 39:65–72

20. Tomassini L, Hann A, Young D: Integrated monitoring and analysis for early warning of patient deterioration. Br J Anaesth 2006; 97:64–68

21. Shimabukuro DW, Barton CW, Feldman MD, et al: Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial. BMJ Open Respir Res 2017; 4:e000234

22. Burdick H, Pino E, Gabel-Comeau D, et al: Effect of a sepsis prediction algorithm on patient mortality, length of stay and readmission: A prospective multicentre clinical outcomes evaluation of real-world patient data from US hospitals. BMJ Health Care Inform 2020; 27:e100109

23. Calvert JS, Price DA, Chettipally UK, et al: A computational approach to early sepsis detection. Comput Biol Med 2016; 74:69–73

24. Henry KE, Hager DN, Pronovost PJ, et al: A targeted real-time early warning score (TREWScore) for septic shock. Sci Transl Med 2015; 7:299ra122

25. Fagerström J, Bång M, Wilhelms D, et al: LiSep LSTM: A machine learning-based prediction model using ward vital signs*.

26. Griffin MP, Moorman JR: Toward the early diagnosis of neonatal sepsis using heart rate characteristic monitoring in very low birth weight neonates: A randomized trial. J Pediatr 2011; 159:900–906.e1

27. Griffin MP, O'Shea TM, Bissonette EA, et al: Abnormal heart rate characteristics preceding neonatal sepsis and sepsis-like illness. Pediatr Res 2003; 53:920–926

28. Baronov D, McManus M, Butler E, et al: Next generation patient monitor powered by in-silico physiology. Am J Physiol Heart Circ Physiol 2015; 309:H1447–H1453

29. Rothman MJ, Rothman SI, Beals J 4th: Development and validation of a risk stratification tool for ward patients. Am J Respir Crit Care Med 2014; 190:694–695

30. Kypnis P, Turk BJ, Wulf DA, et al: Development and validation of an electronic medical record-based alert score for detection of impaired deterioration outside the ICU. J Biomed Inform 2016; 64:10–19

31. Ruminski CM, Clark MT, Lake DE, et al: Impact of predictive analytics based on continuous cardiorespiratory monitoring in a surgical and trauma intensive care unit. J Clin Monit Comput 2015; 33:703–711

32. Moss TJ, Lake DE, Calland JP, et al: Signatures of subacute potentially catastrophic illness in the ICU: Model development and validation. Crit Care Med 2016; 44:1639–1648

33. Politano AD, Riccio LM, Lake DE, et al; Predictive Monitoring in Patients With Trauma (PreMPT) Group: Predicting the need for urgent intubation in a surgical/trauma intensive care unit. Surgery 2013; 154:1110–1116

34. Glass GF, Hartka TR, Keim-Malpass J, et al: Dynamic data in the ED predict requirement for ICU transfer following acute care admission. J Clin Monit Comput 2020 May 19. [online ahead of print]

35. Blackburn HN, Clark MT, Moorman JR, et al: Identifying the low risk patient in surgical intensive and intermediate care units using continuous monitoring. Surgery 2018; 163:811–818

36. Spaeeder MC, Moorman JR, Tran CA, et al: Predictive analytics in the pediatric intensive care unit for early identification of sepsis: Capturing the context of age. Pediatr Res 2019; 86:655–661

37. Harrison AM, Thongpryaoon C, Kashyap R, et al: Developing the surveillance algorithm for detection of failure to recognize and treat severe sepsis. Mayo Clin Proc 2015; 90:166–175

38. Rajkomar A, Oren E, Chen K, et al: Scalable and accurate deep learning with electronic health records. NPJ Digit Med 2018; 1:18

39. De Pasquale M, Moss TJ, Cerutti S, et al: Hemorrhage prediction models in surgical intensive care: bedside monitoring data adds information to lab values. IEEE J Biomed Health Inform 2017; 21:1703–1710

40. Verrillo SC, Cvach M, Hudson KW, et al: Using continuous vital sign monitoring to detect early deterioration in adult postoperative patients. J Nurs Care Qual 2019; 34:107–113

41. Sulter G, Elting JW, Langedijk M, et al: Admitting acute ischemic stroke patients to a stroke care monitoring unit versus a conventional stroke unit: A randomized pilot study. Stroke 2003; 34:101–104

42. Giannini HM, Ginestra JC, Chivers C, et al: A machine learning algorithm to predict severe sepsis and septic shock: Development, implementation, and impact on clinical practice. Crit Care Med 2019; 47:1485–1492

43. Moorman JR, Delos JB, Flower AA, et al: Cardiovascular oscillations at the bedside: Early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiol Meas 2011; 32:1821–1832

44. Holder AL, Clermont G: Using what you get: Dynamic physiologic signatures of critical illness. Crit Care Clin 2015; 31:133–164

45. Katona PG, Jih F: Respiratory sinus arrhythmia: Noninvasive measure of parasympathetic cardiac control. J Appl Physiol 1975; 39:801–805

46. Godin PJ, Fleisher LA, Eidsath A, et al: Experimental human endotoxemia increases cardiac regularity: Results from a prospective, randomized, crossover trial. Crit Care Med 1996; 24:1117–1124

47. Godin PJ, Buchman TG: Uncoupling of biological oscillators: A complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 1996; 24:1107–1116

48. Bashan A, Bartsch RP, Kandelhardt JW, et al: Network physiology reveals relations between network topology and physiological function. Nat Commun 2012; 3:702

49. Bartsch RP, Liu KKL, Bashan A, et al: Network physiology: How organ systems dynamically interact. PLoS One 2015; 10:e0142143

50. Griffin MP, Moorman JR: Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. Pediatrics 2001; 107: 97–104

51. Richman JS, Moorman JR: Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 2000; 278:H2039–H2049

52. Lake DE, Richman JS, Griffin MP, et al: Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol 2002; 283:R789–R797
59. Kovatchev BP, Farhy LS, Cao H, et al: Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory response syndrome. *Pediatr Res* 2003; 54:892–898

60. Kitzmiller RR, Vaughan A, Skeele-Worley A, et al: Diffusing an innovation: Clinician perceptions of continuous predictive analytics monitoring in intensive care. *Appl Clin Inform* 2019; 10:295–306

61. Schelonka RL, Carlo WA, Bauer CR, et al: Mortality and neurodevelopmental outcomes in the heart rate characteristics monitoring randomized controlled trial. *J Pediatr* 2020; 219:48–53

62. Fairchild KD, Schelonka RL, Kaufman DA, et al: Septicemia mortality reduction in neonates in a heart rate characteristics monitoring trial. *Pediatr Res* 2013; 74:570–575

63. Keim-Malpass J, Kitzmiller RR, Skeele-Worley A, et al: Advancing continuous predictive analytics monitoring: Moving from implementation to clinical action in a learning health system. *Crit Care Nurs Clin North Am* 2018; 30:273–287

64. Blackwell JN, Keim-Malpass J, Clark MT, et al: Early detection of inpatient deterioration: One prediction model does not fit all. *Critical Care Explorations* 2020; 2:e0116

65. Odabasi Z, Cinel I: Consideration of severe coronavirus disease 2019 as viral sepsis and potential use of immune checkpoint inhibitors. *Crit Care Explor* 2020; 2:e0141

66. Fan E, Bittler JR, Brochard L, et al: COVID-19-associated acute respiratory distress syndrome: Is a different approach to management warranted? *Lancet Respir Med* 2020; 8:816–821

67. Kox M, Waalders NJB, Kooistra EJ, et al: Cytokine levels in critically ill patients with COVID-19 and other conditions. *JAMA* 2020; 324:1565–1567

68. Wertz A, Holder AL, Guillame-Bert M, et al: Increasing cardiovascular data sampling frequency and referencing it to baseline improve hemorrhage detection. *Crit Care Explor* 2019; 1:e0058

69. Pinsky MR, Wertz A, Clermont G, et al: Parsimony of hemodynamic monitoring data sufficient for the detection of hemorrhage. *Anesth Analg* 2020; 130:1176–1187

70. Moss TJ, Clark MT, Calland JE, et al: Cardiorespiratory dynamics measured from continuous ECG monitoring improves detection of deterioration in acute care patients: A retrospective cohort study. *PLoS One* 2017; 12:e0181448

71. Heart Rate Variability: Standards of Measurement, Physiological Interpretation and Clinical Use: Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. *Circulation* 1996; 93:1043–1065

72. Vest AN, Da Poina G, Li Q, et al: An open source benchmarked toolbox for cardiovascular waveform and interval analysis. *Physiol Meas* 2018; 39:105004

73. Kleiger RE, Miller JP, Bigger JT, et al: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. *Am J Cardiol* 1987; 59:256–262

74. Akselrod S, Gordon D, Ubel FA, et al: Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. *Science* 1981; 213:220–222

75. Harrell F: Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis (Springer Series in Statistics). Second Edition. New York, NY, Springer International Publishing, 2015

76. Rajkomar A, Dean J, Kohane I: Machine learning in medicine. *N Engl J Med* 2019; 380:1347–1358

77. Griffin MP, Scollan DF, Moorman JR: The dynamic range of neonatal heart rate variability. *J Cardiovasc Electrophysiol* 1994; 5:112–124

78. Shortliffe EH, Sepulveda MJ: Clinical decision support in the era of artificial intelligence. *JAMA* 2018; 320:2199–2200

79. Tcheng JE, Bakken S, Bates DW, et al: Optimizing Strategies for Clinical Decision Support: Summary of a Meeting Series. Washington, DC, National Academy of Medicine, 2017

80. Collins GS, Reitsma JB, Altman DG, et al: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. *Ann Intern Med* 2015; 162:55–63

81. Leisman DE, Harhay MO, Lederer DJ, et al: Development and reporting of prediction models: Guidance for authors from editors of respiratory, sleep, and critical care journals. *Crit Care Med* 2020; 48: 623–633

82. Norgeot B, Quer G, Beaulieu-Jones BK, et al: Minimum information about clinical artificial intelligence modeling: The MI-CLAIM checklist.

83. Rhee C, Dantes R, Epstein L, et al; CDC Prevention Epicenter Program: Incidence and trends of sepsis in US Hospitals using clinical vs claims data, 2009-2014. *JAMA* 2017; 318:1241–1249

84. Iwashyna TJ, Odden A, Rohde J, et al: Identifying patients with severe sepsis using administrative claims: Patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis. *Med Care* 2014; 52:e39–e43

85. Odden AJ, Rohde JM, Bonham C, et al: Functional outcomes of general medical patients with severe sepsis. *BMC Infect Dis* 2013; 13:588

86. Ramanathan R, Leavell P, Stockslager G, et al: Validity of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) screening for sepsis in surgical mortalities. *Surg Infect (Larchmt)* 2014; 15:513–516

87. van Mourik MS, van Duijn PJ, Moons KG, et al: Accuracy of administrative data for surveillance of healthcare-associated infections: A systematic review. *BMJ Open* 2015; 5:e008424

88. Kelay T, Kesavan S, Collins RE, et al; iHealth Project Team: Techniques to aid the implementation of novel clinical information systems: A systematic review. *Int J Surg* 2013; 11:783–791