Interplay between music, emotion and cognitive function in health and disease

David Soto
Division of Neuroscience and Mental Health; Imperial College London; London, UK

Key words: music, emotion, cognition, brain damage, neuropsychology, neuroplasticity

Music is one of the oldest and most powerful means to afford communication and convey emotion. Here I review recent research on the inter-relations between music, emotion and cognitive function both in healthy individuals and neurological patients with brain damage. This topic is timely given the increasing amount of evidence on the cognitive enhancing effects triggered by music exposure. The focus of this paper will be on how the brain can be stimulated by music and how music, through the emotional reaction, can in turn modify brain function. There are clear associations between music listening, musical training and general cognitive performance. However, future studies are needed to enhance understanding of the precise nature of the cognitive and neural mechanisms by which music influences cognition.

Music processing stems from the initial coding of sound waves in the ears, followed by tonotopic sound processing in the cochlear system and subsequent processing by a network of subcortical structures including medial geniculate thalamic nuclei before reaching the primary auditory cortex. Music perception is a complex process that involves the coordination of different brain regions. There are interactions between auditory cortical systems coding sound pitch and pitch relations across time, pre-motor and motor areas for tempo and rhythm and pre-frontal cortex for tonality (reviewed in ref. 3). The specific feature relations between the different musical components such as pitch, tempo and tonality may determine the emotional component of the music; however, since music preference is highly idiosyncratic, the emotional power of a given musical piece will be greatly influenced by the individual’s musical tastes and preferences.

Emotional responses to music have been categorized according to valence and arousal dimensions. Pleasant music listening activates brain areas involved in emotion and reward such as the dorsal and orbital parts of the prefrontal cortex and trigger enhanced neuronal responding and increased connectivity in mesolimbic brain areas (i.e., nucleus accumbens and ventral tegmental area) that also respond to rewards. The fact that these emotional and reward-related regions are part of a dopaminergic system points out to the suggestion that pleasurable music listening may lead to dopamine neurotransmitter release — although to the best of my knowledge this has not been tested directly and awaits future confirmation.

The effects of music listening on arousal have been demonstrated by recording the heart rate and the galvanic skin responses. Overall, the picture emerging from these studies suggests that music selected by the individual may be a powerful way of enhancing autonomic arousal (i.e., increasing the strength of the galvanic skin response). Sad music, in contrast with happy music, can reduce the level of arousal (i.e., decreasing skin conductance and slowing the heart rate). To the extent that arousal can facilitate the speed of our reactions to relevant behavioral targets and improve the orienting of attention, music-induced alertness can be a powerful tool to modulate general cognitive performance. It is likely, however, that music effects on alertness are modulated by individual preferences for particular musical genres.

Music Influences Cognition in Health

This topic has not received much investigation to date, however, there is evidence that music listening can enhance several aspects of cognitive processing such as attention and creativity. A well-known effect of music listening on cognitive performance is the so-called ‘Mozart effect’. This is an improvement in spatial reasoning skills when participants are exposed to Mozart relative to other control conditions. Further research is consonant with the suggestion that the ‘Mozart effect’ may be due to the emotional reaction induced by the interaction between music exposure and the observer’s musical preferences. In this regard, it should be noted there is a clear link between emotional state and general cognitive functioning. Positive affect can lead to a more flexible and creative way of approaching problem solving, it can improve the scope of memory recall in word association tasks and it can enhance the scope of visual spatial attention processes as well as improve the selection of visual targets across time. From this follows that pleasant music listening, through general positive affect induction, ought to trigger a similar facilitation of cognitive processing.

There is evidence for correlations between musical training and other human skills such as math and verbal abilities such as memory for words and reading processes. Musical training also appears to be associated with a more rapid linguistic development in healthy child and with improved spelling skills in children with dyslexia. It is difficult, however, to establish a causal relationship between music training and general cognitive benefits.
role of musical training from these investigations alone since these associations between musical training and cognitive performance may arise due to other factors. For example, individuals that undergo musical training may possess general enhanced cognitive capacities to start with. Also musical training effects may lead to an improvement of general cognitive capacities related to attention and memory function which can in turn influence performance on a wide range of cognitive tasks. In fact, musical training may lead to brain plasticity changes in a wide range of brain networks related to skilled motor processing, auditory and verbal processing, memory and attention, which in turn may transfer to benefit performance in many cognitive domains. It is also possible that individuals that undergo musical training may also benefit from the emotional enhancing influence of the music experience and through this impact on emotion, general cognitive processing can be enhanced.

Music-Based Restoration of Cognition in Disease

Nowadays, music is being used to improve brain function after brain insult in a wide range of neurological patient populations. The benefits of music-based therapy on cognitive recovery expand emotion, attention, memory and motor processes. There is even data suggesting that joint musical and kinetic stimulation can help to improve the clinical condition in cases of vegetative states after brain injury. Motor training paired with exposure to auditory rhythms appears to be an effective mean of activating the motor system in stroke survivors and this can lead to improvements of motor function in the paretic arm. There is also interesting evidence that musical-based training (i.e., learning to play a musical instrument) can be a powerful way of improving recovery of motor skills after stroke. Auditory-motor feedback through music exposure can also lead to motor task improvements in the precision of arm and finger movements in patients with Parkinson disease.

In the memory and verbal domains, there is evidence that music exposure can influence verbal and autobiographical recall in patients with Alzheimer disease and dementia. There are also case reports of patients with aphasia that show improved speech when the patients sing familiar music lyrics relative to when the patients merely speak excerpts of familiar lyrics. Thus, the musical component related to ‘singing’ the lyrics influenced speech production in these patients. In line with this, there is evidence that music therapy of speech based on melodic intonation (i.e., the incorporation of musical components such as melody and rhythm in the speech produced by the patient) can be effective to rehabilitate speech in aphasic patients. Functional neuroimaging of the brain provided evidence of reactivation of Broca’s area and the left prefrontal cortex when patients repeated words with melodic intonation relative to production without melodic intonation.

Two recent studies demonstrated the power of music to enhance awareness in stroke patients. There is evidence that one hour of music listening a day over a period of two months can lead to a higher cognitive recovery in a general stroke population compared to patients groups on standard therapy care or other auditory-stimulation control conditions. Significant improvements though music listening can be observed in verbal memory and the control of attentional focusing. Moreover, music listening is also associated with significant mood improvements in the post-stroke stage. There is also striking evidence of pleasant music effects on the degree of awareness of chronic stroke patients that suffer from visual neglect. Visual neglect is a debilitating condition that follows brain lesions usually in the right hemisphere, where patients appear unaware of visual stimuli presented in the side of space contralateral to the brain lesion, despite having intact perceptual pathways. Interestingly, the visual neglect syndrome can be overcome by having patients to listen to their pleasant music listening. A recent study showed that awareness of neglect patients for stimuli in their impaired visual field can be markedly improved when neglect patients listen to pleasant music relative to silence or unpreferred music. This recovery induced by pleasant music correlated with enhanced functional activation in emotional regions of the orbitofrontal cortex and attentional brain regions in spared areas of the parietal cortex and early visual regions. These findings are consistent with the suggestion that music influences visual cognition through positive affect.

The specific neural mechanism of the music effect remains to be established. Musically induced arousal and positive mood are likely moderators of the influence of music in cognition. Music may lead to enhanced or optimal neurotransmitter release either by activating noradrenergic transmission which is critical for alertness and attention or by supporting dopaminergic activity in fronto-striatal networks that support working memory processing. Neurotransmitter release induced by music may boost the transmission of neural signals and the cognitive resources available for cognitive processing. It is early days however to describe precisely the nature of the neural mechanisms by which music influences cognition. Pleasant music listening and musical training may engage neuroplastic mechanisms both in the healthy and the injured brain. However, the nature of mechanisms supporting the interplay between music exposure, neuroplasticity and cognitive enhancement remains to be established.

Music is universally enjoyed by all cultures across the world and it is a rather rich source of sensory stimulation. The use of music for the treatment of cognitive disorders after brain insult is a benign, simple and non-expensive way of influencing brain function compared to other invasive treatments and pharmacological interventions. This resource should be exploited at its maximum level.

Acknowledgements

Many thanks to Antonio Pantelias-Garces for his assistance in the preparation of this manuscript. This work was supported by grants from the British Academy, the Hammersmith Trustees Research Ethics Committee and the Royal Society.
References

1. Popescu M, Otsuka A, Ioannides AA. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study. Neuroimage 2004; 21:1622-38.

2. Janata P, Birk JL, Van Horn JD, Leman M, Tillmann B, Bharucha JJ. The cortical topography of tonal structures underlying western music. Science 2002; 296:2166-70.

3. Peretz I, Zatorre RJ. Brain organization for music. Annu Rev Psychol 2005; 56:89-114.

4. Peretz I, Gagnon L, Bouchard B. Music and emotion: perceptual determinants, immediacy and isolation after brain damage. Cognition 1998; 68:111-41.

5. Bigand E, Vieilledent S, Madurell F, Marozeau J, Dacquet A. Multidimensional scaling of emotional responses to music: the effect of musical expertise and excerpt's duration. Cogn Emotion 2005; 19:1139-39.

6. Blood AJ, Zatorre RJ, Bermudez P, Evans AC. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 1999; 2:382-7.

7. Blood AJ, Zatorre RJ. Phasic alerting of neglect patients overcomes their effect over orienting in the attention network test. Exp Brain Res 2005; 167:27-51.

8. Fenske J, Eastwood JD. Modulation of focused attention by faces expressing emotion: Evidence from flanker tasks. Emotion 2003; 3:327-43.

9. Olivers CNL, Nieuwenhuis S. The beneficial effects of additional task load, positive affect and instruction on the attentional blink. J Exp Psychol: Hum Percept Perform 2006; 32:364-79.

10. Overy K. Dyslexia and music. From timing deficits to procedural difficulties. J Exp Psychol: Hum Percept Perform 2006; 32:364-79.

11. Hyde KL, Lerch J, Norton A, Forgeard M, Winner ED. Investigating emotion with music: an fMRI study of the physiological arousal hypothesis. Psychol Sci 1999; 10:336-52.

12. Rowe G, Hirsh JB, Anderson AK. Positive affect increases the breadth of attentional selection. Proc Nat Acad Sci USA 2007; 104:383-8.

13. Rauscher FH, Shaw GL. Ky KN. Listening to Mozart enhances spatial-temporal reasoning: towards a neuropsychological basis. Neurosci Lett 1995; 185:44-7.

14. Rauscher FH, Shaw GL, Ky KN. Music and spatial task performance. Nature 1993; 365:611.

15. Nantais KM, Schellenberg EG. The Mozart effect: An artifact of preference? Psychol Sci 1999; 10:370-3.

16. Schellenberg EG, Nakata T, Hunter PG, Tamoto S. Exposure to music and cognitive performance: Tests of children and adults. Psychol Music 2007; 35:5-19.

17. Isen AM, Daubman KA, Nowicki GP. Positive affect facilitates creative problem solving. J Pers Soc Psychol 1987; 52:1122-31.

18. Isen AM, Daubman KA. The influence of affect on categorization. J Pers Soc Psychol 1984; 47:1206-17.

19. Isen AM, Johnson MMS, Metz R, Robinson GF. The influence of positive affect on the unusualness of word associations. J Pers Soc Psychol 1985; 48:1413-26.

20. Bernatzky G, Bernatzky P, Hesse HP, Staffen W, Olivers CNL, Plassmann A, Mentzel HJ, Miltner WH. Dissociation between singing and speaking in expressive aphasia: the role of song familiarity. Neuropsychologia 2008; 46:1505-12.

21. Bellin P, Van Eckhoor P, Zilmbovicus M, Remy P, Mathis P, Guillaume S, et al. Recovery from fluency deficits after medic栓 ion therapy: a PET study. Neurology 1996; 47:1504-11.

22. Sarkamo T, Tervaniemi M, Soinila S, Autilt T, Silvennoinen HM, Laine M, et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 2008; 131:866-76.

23. Soto D, Funes MJ, Guzmán-García A, Warbrick T, Roethlein P, Humphreys GW. Pleasant music overcomes the loss of awareness in patients with visual neglect. Proc Natl Acad Sci USA 2009; 106:6011-6.

24. Smith A, Nutt D. Noradrenaline and attention lapses. Nature 1996; 380:291.

25. Thaut MH, Kenyon GP, Hurr CP, McIntosh GC, Hoemberg V. Kinematic optimization of spatiotemporal patterns in parietal arm training with stroke patients. Neuropsychologia 2002; 40:1073-81.

26. Thaut MH, Massie C, Thaut M. Rhythmic auditormotor entrainment improves hemiparetic arm kinematics during reaching movements: a pilot study. Top Stroke Rehabil 2009; 16:69-79.

27. Schneider S, Schöne PW, Altenmüller E, Münte TF. Using musical instruments to improve motor skill recovery following a stroke. J Neurol 2007; 254:1339-46.

28. Bernatzyk G, Bernatzy P, Hesse HP, Staffen W, Ladamer G. Stimulating music increases motor coordination in patients afflicted with Morbus Parkinson. Neurol Lett 2004; 361:4-8.

29. Thompson RG, Moulin CJ, Hayre S, Jones RW. Music enhances category fluency in healthy older adults and Alzheimer’s disease patients. Exp Aging Res 2001; 31:91-9.

30. Isen AM, Daubman KA, Nowicki GP. Positive affect facilitates creative problem solving. J Pers Soc Psychol 1987; 52:1122-31.

31. Isen AM, Johnson MMS, Metz R, Robinson GF. The influence of positive affect on the unusualness of word associations. J Pers Soc Psychol 1985; 48:1413-26.

32. Rowe G, Hirsh JB, Anderson AK. Positive affect increases the breadth of attentional selection. Proc Nat Acad Sci USA 2007; 104:383-8.

33. Fenske J, Eastwood JD. Modulation of focused attention by faces expressing emotion: Evidence from flanker tasks. Emotion 2003; 3:327-43.

34. Olivers CNL, Nieuwenhuis S. The beneficial effects of additional task load, positive affect and instruction on the attentional blink. J Exp Psychol: Hum Percept Perform 2006; 32:364-79.

35. Vaughn K. Music and mathematics: modest support for the oft-claimed relationship. J Esthet Educ 2000; 14:349-66.

36. Ho YC, Cheung MC, Chan AS. Music training produces verbal but not visual memory: cross-cultural and developmental. J Neurosci 2008; 28:9632-9.

37. Vaughn K. Music and mathematics: modest support for the oft-claimed relationship. J Esthet Educ 2000; 14:349-66.

38. Ho YC, Cheung MC, Chan AS. Music training produces verbal but not visual memory: cross-cultural and developmental. J Neurosci 2008; 28:9632-9.

39. Bernatzky G, Bernatzky P, Hesse HP, Staffen W, Olivers CNL, Plassmann A, Mentzel HJ, Miltner WH. Dissociation between singing and speaking in expressive aphasia: the role of song familiarity. Neuropsychologia 2008; 46:1505-12.

40. Belin P, Van Eckhoor P, Zilmbovicus M, Remy P, François C, Guillaume S, et al. Recovery from fluency deficits after medic栓 ion therapy: a PET study. Neurology 1996; 47:1504-11.

41. Sarkamo T, Tervaniemi M, Soinila S, Autilt T, Silvennoinen HM, Laine M, et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 2008; 131:866-76.

42. Soto D, Funes MJ, Guzmán-García A, Warbrick T, Roethlein P, Humphreys GW. Pleasant music overcomes the loss of awareness in patients with visual neglect. Proc Natl Acad Sci USA 2009; 106:6011-6.

43. Smith A, Nutt D. Noradrenaline and attention lapses. Nature 1996; 380:291.

44. Belin P, Van Eckhoor P, Zilmbovicus M, Remy P, François C, Guillaume S, et al. Recovery from fluency deficits after medic栓 ion therapy: a PET study. Neurology 1996; 47:1504-11.

45. Sarkamo T, Tervaniemi M, Soinila S, Autilt T, Silvennoinen HM, Laine M, et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 2008; 131:866-76.

46. Soto D, Funes MJ, Guzmán-García A, Warbrick T, Roethlein P, Humphreys GW. Pleasant music overcomes the loss of awareness in patients with visual neglect. Proc Natl Acad Sci USA 2009; 106:6011-6.

47. Smith A, Nutt D. Noradrenaline and attention lapses. Nature 1996; 380:291.

48. Muller U, von Cramon DY, Pollmann S. D1- versus D2-receptor modulation of visuospatial working memory in humans. J Neurosci 1998; 18:2720-8.