On a Diophantine equation with five prime variables

Min Zhang* & Jinjiang Li†
Department of Mathematics, China University of Mining and Technology*
Beijing 100083, P. R. China

Abstract: Let \([x]\) denote the integral part of the real number \(x\), and \(N\) be a sufficiently large integer. In this paper, it is proved that, for \(1 < c < \frac{1121682}{5471123}, c \neq 2\), the Diophantine equation \(N = [p_1^c] + [p_2^c] + [p_3^c] + [p_4^c] + [p_5^c]\) is solvable in prime variables \(p_1, p_2, p_3, p_4, p_5\).

Keywords: Diophantine equation; prime number; exponential sum

MR(2010) Subject Classification: 11P05, 11P32, 11L07, 11L20

1 Introduction and main result

Let \([x]\) be the integral part of the real number \(x\). In 1933–1934, Segal [15, 16] first considered the Waring’s problem with non–integer degrees, who showed that for any sufficiently large integer \(N\) and \(c > 1\) being not an integer, there exists an integer \(k_0 = k_0(c) > 0\) such that the equation

\[N = [x_1^c] + [x_2^c] + \cdots + [x_k^c]\]

is solvable for \(k \geq k_0(c)\). Later, Segal’s bound for \(k_0(c)\) was improved by Deshouillers [4] and by Arkhilev and Zhitkov [1], respectively. Let \(G(c)\) be the least of the integers \(k_0(c)\) such that every sufficiently large integer \(N\) can be written as a sum of not more than \(k_0(c)\) numbers with the form \([n^c]\). In particular, Deshouillers [5] and Gritsenko [8] considered the case \(k = 2\) and gave \(G(c) = 2\) for \(1 < c < \frac{4}{3}\) and \(1 < c < \frac{55}{41}\), respectively.

In 1937, Vinogradov [19] solved asymptotic form of the ternary Goldbach problem. He proved that, for sufficiently large integer \(N\) satisfying \(N \equiv 1 \pmod{2}\), the following equation

\[N = p_1 + p_2 + p_3\]

† Corresponding author.
E-mail addresses: min.zhang.math@gmail.com (M. Zhang), jinjiang.li.math@gmail.com (J. Li).
is solvable in primes p_1, p_2, p_3. As an analogue of the ternary Goldbach problem, in 1995, Laporta and Tolev [13] investigated the solvability of the following equation

$$N = [p_1^c] + [p_2^c] + [p_3^c]$$

in prime variables p_1, p_2, p_3. Define

$$R_s(N) = \sum_{N = [p_1^c] + [p_2^c] + \cdots + [p_s^c]} (\log p_1)(\log p_2)\cdots(\log p_s).$$

Laporta and Tolev [13] showed that the sum $R_3(N)$ has asymptotic formula for $1 < c < 17/16$ and gave

$$R_3(N) = \Gamma_3\left(1 + \frac{1}{c}\right)\Gamma\left(\frac{3}{c}\right)N^{3/c-1} + O\left(N^{3/c-1} \exp\left(-\frac{\log N}{3}\right)\right).$$

for any $0 < \delta < 1/3$. Later, Kumchev and Nedeva [12] improved the result of Laporta and Tolev [13], and enlarged the range of c to $12/11$. Afterwards, Zhai and Cao [20] refined the result of Kumchev and Nedeva [12], who extended the range of c to $258/235$. In 2018, Cai [3] enhanced the result of Zhai and Cao [20] and gave the upper bound of c as $137/119$.

In 1938, Hua [10] proved that every sufficiently large integer N, which satisfies $N \equiv 5 \pmod{24}$, can be represented as five squares of primes, i.e.,

$$N = p_1^2 + p_2^2 + p_3^2 + p_4^2 + p_5^2.$$

In this paper, as an analogue of Hua’s five square theorem, we shall investigate the solvability of the following Diophantine equation

$$N = [p_1^c] + [p_2^c] + [p_3^c] + [p_4^c] + [p_5^c]$$

in prime variables p_1, p_2, p_3, p_4, p_5, and devote to establish the following result.

Theorem 1.1 Let $1 < c < \frac{11216182}{5471123}, c \neq 2$, and N be a sufficiently large integer. Then we have

$$R_5(N) = \frac{\Gamma_5\left(1 + \frac{1}{c}\right)}{\Gamma\left(\frac{5}{c}\right)}N^{5/c-1} + O\left(N^{5/c-1} \exp\left(-\frac{\log N}{4}\right)\right),$$

where the implied constant in the O–term depends only on c.

Notation. Throughout this paper, we suppose that $1 < c < \frac{11216182}{5471123}, c \neq 2$. Let p, with or without subscripts, always denote a prime number; ε always denote arbitrary small positive constant, which may not be the same at different occurrences. As usual,
we use \([x], \{x\} \) and \(\|x\|\) to denote the integral part of \(x\), the fractional part of \(x\) and the distance from \(x\) to the nearest integer, respectively. Also, we write \(e(x) = e^{2\pi ix}\); \(f(x) \ll g(x)\) means that \(f(x) = O(g(x))\); \(f(x) \asymp g(x)\) means that \(f(x) \ll g(x) \ll f(x)\).

We also define

\[
P = N^{1/c}, \quad \tau = P^{1-c-\varepsilon}, \quad S(\alpha) = \sum_{p \leq P} (\log p) e(\lfloor pf\rfloor \alpha),
\]

\[
S^*(\alpha) = \sum_{p \leq P} (\log p) e(p^c \alpha), \quad S(\alpha, X) = \sum_{X < p \leq 2X} (\log p) e(\lfloor p^c \rfloor \alpha),
\]

\[
S^*(\alpha, X) = \sum_{X < p \leq 2X} (\log p) e(p^c \alpha), \quad T(\alpha, X) = \sum_{X < n \leq 2X} e(\lfloor nc\rfloor \alpha).
\]

2 Preliminary Lemmas

In this section, we shall state some preliminary lemmas, which are required in the proof of Theorem 1.1.

Lemma 2.1 Let \(f(x)\) be a real differentiable function in the interval \([a, b]\). If \(f'(x)\) is monotonic and satisfies \(|f'(x)| \leq \theta < 1\). Then we have

\[
\sum_{a < n \leq b} e^{2\pi if(n)} = \int_a^b e^{2\pi if(x)} \, dx + O(1).
\]

Proof. See Lemma 4.8 of Titchmarsh [17].

Lemma 2.2 Let \(L, Q \geq 1\) and \(z_\ell\) be complex numbers. Then we have

\[
\left| \sum_{L < \ell \leq 2L} z_\ell \right|^2 \leq \left(2 + \frac{L}{Q}\right) \sum_{|q| < Q} \left(1 - \frac{|q|}{Q}\right) \sum_{L < \ell + q, \ell - q \leq 2L} z_{\ell + q} z_{\ell - q}.
\]

Proof. See Lemma 2 of Fouvry and Iwaniec [6].

Lemma 2.3 Suppose that \(f(x) : [a, b] \to \mathbb{R}\) has continuous derivatives of arbitrary order on \([a, b]\), where \(1 \leq a < b \leq 2a\). Suppose further that

\[
|f^{(j)}(x)| \asymp \lambda_1 a^{1-j}, \quad j \geq 1, \quad x \in [a, b].
\]

Then for any exponential pair \((\kappa, \lambda)\), we have

\[
\sum_{a < n \leq b} e(f(n)) \ll \lambda_1^\kappa a^\lambda + \lambda_1^{-1}.
\]

Proof. See (3.3.4) of Graham and Kolesnik [7].
Lemma 2.4 Let x be not an integer, $\alpha \in (0, 1)$, $H \geq 3$. Then we have

$$e(-\alpha \{x\}) = \sum_{|h| \leq H} c_h(\alpha)e(hx) + O\left(\min\left(1, \frac{1}{H\|x\|}\right)\right),$$

where

$$c_h(\alpha) = \frac{1 - e(-\alpha)}{2\pi i(h + \alpha)}.$$

Proof. See Lemma 12 of Buriev [2] or Lemma 3 of Kumchev and Nedeva [12]. □

Lemma 2.5 Suppose $Y > 1$, $\gamma > 0$, $c > 1$, $c \notin \mathbb{Z}$. Let $\mathcal{A}(Y; c, \gamma)$ denote the number of solutions of the inequality

$$|n_1^c + n_2^c - n_3^c - n_4^c| < \gamma, \quad Y < n_1, n_2, n_3, n_4 \leq 2Y,$

then

$$\mathcal{A}(Y; c, \gamma) \ll (\gamma Y^{4-c} + Y^2)Y^\varepsilon.$$

Proof. See Theorem 2 of Robert and Sargos [14]. □

Lemma 2.6 For $1 < c < 3$, $c \neq 2$, we have

$$\int_0^1 |S(\alpha)|^4 d\alpha \ll (P^{4-c} + P^2)P^\varepsilon.$$

Proof. By a splitting argument, it is sufficient to show that

$$\int_0^1 |S(\alpha, P/2)|^4 d\alpha \ll (P^{4-c} + P^2)P^\varepsilon.$$

Trivially, we have

$$\int_0^1 |S(\alpha, P/2)|^4 d\alpha = \sum_{P/2 < p_1, p_2, p_3, p_4 \leq P} (\log p_1) \cdots (\log p_4) \int_0^1 e\left(\left([p_1^c] + [p_2^c] - [p_3^c] - [p_4^c]\right)\alpha\right) d\alpha \ll (\log P)^4 \sum_{P/2 < n_1, n_2, n_3, n_4 \leq P} \frac{1}{[n_1^c] + [n_2^c] = [n_3^c] + [n_4^c]}.$$

On the other hand, if $[n_1^c] + [n_2^c] = [n_3^c] + [n_4^c]$, we can deduce that

$$|n_1^c + n_2^c - n_3^c - n_4^c| = |\{n_1^c\} + \{n_2^c\} - \{n_3^c\} - \{n_4^c\}| \leq 2.$$

By Lemma 2.5, we derive that

$$\int_0^1 |S(\alpha, P/2)|^4 d\alpha \ll (\log P)^4 \cdot \mathcal{A}(P/2; c, 2) \ll (P^{4-c} + P^2)P^\varepsilon,$$

which completes the proof of Lemma 2.6. □
Lemma 2.7 For \(1 < c < 3, c \neq 2\), we have
\[
\int_{-\tau}^{\tau} |S^*(\alpha)|^4 d\alpha \ll P^{4-c} \log^6 P.
\]

Proof. By a splitting argument, it is sufficient to show that
\[
\int_{-\tau}^{\tau} |S^*(\alpha, P/2)|^4 d\alpha \ll P^{4-c} \log^5 P.
\] (2.1)

We have
\[
\int_{-\tau}^{\tau} |S^*(\alpha, P/2)|^4 d\alpha
= \sum_{P/2 < p_1, p_2, p_3, p_4 \leq P} (\log p_1) \cdots (\log p_4) \int_{-\tau}^{\tau} e((p_1^c + p_2^c - p_3^c - p_4^c)\alpha) d\alpha
\ll \sum_{P/2 < p_1, p_2, p_3, p_4 \leq P} (\log p_1) \cdots (\log p_4) \min \left(\tau, \frac{1}{|p_1^c + p_2^c - p_3^c - p_4^c|}\right)
\ll \mathcal{U} \tau \log^4 P + \mathcal{V} \log^4 P,
\] (2.2)

where
\[
\mathcal{U} = \sum_{P/2 < n_1, n_2, n_3, n_4 \leq P} 1, \quad \mathcal{V} = \sum_{P/2 < n_1, n_2, n_3, n_4 \leq P} \frac{1}{|n_1^c + n_2^c - n_3^c - n_4^c|}.
\]

We have
\[
\mathcal{U} \ll \sum_{P/2 < n_1 \leq P} \sum_{P/2 < n_2 \leq P} \sum_{P/2 < n_3 \leq P} \sum_{P/2 < n_4 \leq P} \frac{1}{(n_1^c + n_2^c - n_3^c - n_4^c)^{1/c} \in \mathbb{P}^c}
\ll \sum_{P/2 < n_1, n_2, n_3 \leq P} \left(1 + \left(n_1^c + n_2^c - n_3^c + 1/\tau\right)^{1/2} - \left(n_1^c + n_2^c - n_3^c - 1/\tau\right)^{1/2}\right),
\]
and by the mean–value theorem
\[
\mathcal{U} \ll P^3 + \frac{1}{\tau} P^{4-c}.
\] (2.3)

Obviously, \(\mathcal{V} \leq \sum_{\ell} \mathcal{V}_\ell\), where
\[
\mathcal{V}_\ell = \sum_{P/2 < n_1, n_2, n_3, n_4 \leq P} \frac{1}{|n_1^c + n_2^c - n_3^c - n_4^c|}.
\] (2.4)

and \(\ell\) takes the values \(\frac{2k}{\tau}\), \(k = 0, 1, 2, \ldots\), with \(\ell \ll P^c\). Then, we derive that
\[
\mathcal{V}_\ell \ll \frac{1}{\ell} \sum_{P/2 < n_1, n_2, n_3, n_4 \leq P} \frac{1}{(n_1^c + n_2^c + n_3^c + n_4^c)^{1/c} \in \mathbb{P}^c}
\]
\[
\ll \frac{1}{\ell} \sum_{P/2 < n_1, n_2, n_3, n_4 \leq P} \frac{1}{(n_1^c + n_2^c + n_3^c + n_4^c)^{1/c} \in \mathbb{P}^c}.
\]
For $\ell \geq \frac{1}{c}$ and $P/2 < n_1, n_2, n_3 \leq P$ with $n_1^c + n_2^c - n_3^c \asymp P^c$, it is easy to see that
\[
(n_1^c + n_2^c - n_3^c + 2\ell)^{1/c} - (n_1^c + n_2^c - n_3^c + \ell)^{1/c} > 1.
\]
Hence, by the mean–value theorem, we get
\[
\mathcal{V}_\ell \ll \frac{1}{\ell} \sum_{P/2 < n_1, n_2, n_3 \leq P} \left((n_1^c + n_2^c - n_3^c + 2\ell)^{1/c} - (n_1^c + n_2^c - n_3^c + \ell)^{1/c} \right) \ll P^{4-c}. \quad (2.5)
\]
Combining (2.2)–(2.5), we obtain the desired estimate (2.1), which completes the proof of Lemma 2.7.

Lemma 2.8 Let $3 < U < V < Z < X$ and suppose that $Z - \frac{1}{2} \in \mathbb{N}$, $X \geq 64Z^2U$, $Z \geq 4U^2$, $V^3 \geq 32X$. Assume further that $F(n)$ is a complex–valued function such that $|F(n)| \leq 1$. Then the sum
\[
\sum_{X < n \leq 2X} \Lambda(n) F(n)
\]
may be decomposed into $O(\log^{10} X)$ sums, each of which either of Type I:
\[
\sum_{M < m \leq 2M} a(m) \sum_{K < k \leq 2K} F(mk)
\]
with $K \gg Z$, where $a(m) \ll m^\varepsilon$, $MK \asymp X$, or of Type II:
\[
\sum_{M < m \leq 2M} a(m) \sum_{K < k \leq 2K} b(k) F(mk)
\]
with $U \ll M \ll V$, where $a(m) \ll m^\varepsilon$, $b(k) \ll k^\varepsilon$, $MK \asymp X$.

Proof. See Lemma 3 of Heath–Brown [9].

Lemma 2.9 For any $\varepsilon > 0$, the pair $\left(\frac{32}{205} + \varepsilon, \frac{269}{410} + \varepsilon \right)$ is an exponential pair.

Proof. See the Corollary of Theorem 1 of Huxley [11].

Lemma 2.10 For any real number θ, there holds
\[
\min \left(1, \frac{1}{H\|\theta\|} \right) = \sum_{h=-\infty}^{+\infty} a_h e(h\theta),
\]
where
\[
a_h \ll \min \left(\frac{\log 2H}{H}, \frac{1}{|h|}, \frac{H}{h^2} \right).
\]
Proof. See p.245 of Heath–Brown [9].
Lemma 2.11 Let \(1 < c < \frac{11216182}{5471123}\), \(c \neq 2, P^\frac{5}{6} \ll X \ll P, H = X^{\frac{1414}{781589}}\) and \(c_h(\alpha)\) denote complex numbers such that \(|c_h(\alpha)| \ll (1 + |h|)^{-1}\). Then, for any \(\alpha \in (\tau, 1 - \tau)\), if \(M \ll X^{\frac{204417}{1563178}}\), we have

\[
S_I(\alpha) := \sum_{|h| \leq H} c_h(\alpha) \sum_{M < m \leq 2M} a(m) \sum_{K < k \leq 2K} e((h + \alpha)(mk)^c) \ll X^{\frac{770175}{781589} \epsilon},
\]

where \(a(m) \ll m^\epsilon\) and \(MK \asymp X\).

Proof. Obviously, we have

\[
|S_I(\alpha)| \ll X^\epsilon \max_{|\xi| \in (\tau, H+1)} \sum_{M < m \leq 2M} \left| \sum_{K < k \leq 2K} e(\xi(mk)^c) \right|.
\]

Then we use Lemma 2.3 to estimate the inner sum over \(k\) in (2.6) with exponential pair \((\kappa, \lambda)\) and derive that

\[
S_I(\alpha) \ll X^\epsilon \max_{|\xi| \in (\tau, H+1)} \sum_{M < m \leq 2M} \left(|\xi|^\kappa X^\kappa K^{-1})^\kappa K^\lambda + \frac{K}{|\xi| X^\epsilon} \right)
\]

\[
 \ll X^\epsilon \max_{|\xi| \in (\tau, H+1)} \left(|\xi|^\kappa X^\kappa K^{-1})^\kappa K^\lambda + \frac{MK}{|\xi| X^\epsilon} \right)
\]

\[
 \ll X^\epsilon (H^\kappa X^\kappa + \lambda^{-1} K^\kappa + 1 - \epsilon - 1),
\]

From Lemma 2.9, by taking

\[
(\kappa, \lambda) = A^3BABABABABABABA \left(\frac{32}{205} + \frac{269}{410} + \epsilon \right)
\]

\[
= \left(\frac{13643}{643770} + \epsilon, \frac{580013}{643770} + \epsilon \right),
\]

we can see that, if \(M \ll X^{\frac{204417}{1563178}}\), then there holds

\[
S_I(\alpha) \ll X^{\frac{770175}{781589} \epsilon},
\]

which completes the proof of Lemma 2.11.

Lemma 2.12 Let \(1 < c < \frac{11216182}{5471123}\), \(c \neq 2, P^\frac{5}{6} \ll X \ll P, H = X^{\frac{1414}{781589}}\) and \(c_h(\alpha)\) denote complex numbers such that \(|c_h(\alpha)| \ll (1 + |h|)^{-1}\). Then, for any \(\alpha \in (\tau, 1 - \tau)\), if there holds \(X^{\frac{22828}{781589}} \ll M \ll X^{\frac{3998717}{10942246}}\), then we have

\[
S_{II}(\alpha) := \sum_{|h| \leq H} c_h(\alpha) \sum_{M < m \leq 2M} a(m) \sum_{K < k \leq 2K} b(k) e((h + \alpha)(mk)^c) \ll X^{\frac{770175}{781589} \epsilon},
\]

where \(a(m) \ll m^\epsilon\), \(b(k) \ll k^\epsilon\) and \(MK \asymp X\).
Proof. Let $Q = X^{\frac{235}{233-AB} \log X}^{-1}$. From Lemma 2.2 and Cauchy’s inequality, we derive that

$$\left| S_{II}(\alpha) \right| \ll \sum_{|h| \leq H} |c_h(\alpha)| \sum_{K < k \leq 2K} b(k) \sum_{M < m \leq 2M} a(m)e((h + \alpha)(mk)^c)$$

$$\ll \sum_{|h| \leq H} |c_h(\alpha)| \left(\sum_{K < k \leq 2K} |b(k)| \right)^\frac{1}{2} \left(\sum_{K < k \leq 2K} \sum_{M < m \leq 2M} a(m)e((h + \alpha)(mk)^c) \right)^\frac{1}{2}$$

$$\ll K^{\frac{1}{2}+\varepsilon} \sum_{|h| \leq H} |c_h(\alpha)| \left(\sum_{K < k \leq 2K} \frac{M}{Q} \sum_{0 \leq q < Q} \left(1 - \frac{q}{Q} \right) \right) \times \sum_{M + q < m \leq 2M - q} a(m + q) a(m - q) e((h + \alpha)n^c \Delta_c(m, q)) \right)^\frac{1}{2}$$

$$\ll K^{\frac{1}{2}+\varepsilon} \sum_{|h| \leq H} |c_h(\alpha)| \left(\frac{X^2}{Q} + \frac{X}{Q} \sum_{1 \leq q < Q} \sum_{M < m \leq 2M} \sum_{K < k \leq 2K} e((h + \alpha)n^c \Delta_c(m, q)) \right)^\frac{1}{2}$$

(2.7)

where $\Delta_c(m, q) = (m + q)^c - (m - q)^c$. Thus, it is sufficient to estimate the sum

$$S_0 := \sum_{K < k \leq 2K} e((h + \alpha)n^c \Delta_c(m, q)).$$

By Lemma 2.3 with the exponential pair $(\kappa, \lambda) = AB(0, 1) = (\frac{1}{6}, \frac{2}{3})$, we have

$$S_0 \ll (|h + \alpha|X^{c-1}q)^\frac{1}{6}K^{\frac{2}{3}} + \frac{1}{|h + \alpha|X^{c-1}q}.$$

Putting the above estimate into (2.7), we obtain that

$$S_{II}(\alpha) \ll X^\varepsilon \sum_{|h| \leq H} |c_h(\alpha)| \left(\frac{X^2}{Q} + \frac{X}{Q} \sum_{1 \leq q < Q} \sum_{M < m \leq 2M} \right)$$

$$\times \left((|h + \alpha|X^{c-1}q)^\frac{1}{6}K^{\frac{2}{3}} + \frac{1}{|h + \alpha|X^{c-1}q} \right)^\frac{1}{2}$$

$$\ll X^\varepsilon \sum_{|h| \leq H} |c_h(\alpha)| \left(\frac{X^2}{Q} + \frac{X}{Q} \left(H^{\frac{1}{6}}X^{\frac{1}{2}(c-1)}MK^{\frac{2}{3}}Q^{\frac{2}{3}} + X^{1-c}M^{-1}Q^{\frac{1}{2}} \log Q \right) \right)^\frac{1}{2}$$

$$\ll X^{1+\varepsilon}Q^{-\frac{1}{2}} \sum_{|h| \leq H} |c_h(\alpha)| \ll X^{1+\varepsilon}Q^{-\frac{1}{2}} \sum_{|h| \leq H} \frac{1}{|h|} \ll X^{\frac{235}{233-AB}+\varepsilon},$$

8
which completes the proof of Lemma 2.12.

Lemma 2.13 For $\alpha \in (\tau, 1-\tau)$, there holds

$$S(\alpha) \ll P^{\frac{770175}{471589}+\varepsilon}.$$

Proof. First, we have

$$S(\alpha) = U(\alpha) + O(P^{1/2}),$$

where

$$U(\alpha) = \sum_{n \leq P} \Lambda(n)e([n^c]\alpha).$$

By a splitting argument, it is sufficient to prove that, for $P^{5/6} \ll X \ll P$ and $\alpha \in (\tau, 1-\tau)$, there holds

$$U^*(\alpha) := \sum_{X < n \leq 2X} \Lambda(n)e([n^c]\alpha) \ll X^{\frac{770175}{471589}+\varepsilon}. \tag{2.8}$$

By Lemma 2.4 with $H = X^{\frac{11414}{781589}}$, we have

$$U^*(\alpha) = \sum_{X < n \leq 2X} \Lambda(n)e(n^c\alpha - \{n^c\} \alpha) = \sum_{X < n \leq 2X} \Lambda(n)e(n^c\alpha) - \{n^c\} \alpha)$$

$$= \sum_{X < n \leq 2X} \Lambda(n)e(n^c\alpha) \left(\sum_{|h| \leq H} c_h(\alpha)e(hn^c) + O\left(\min\left(1, \frac{1}{H||n^c||}\right) \right) \right)$$

$$= \sum_{|h| \leq H} c_h(\alpha) \sum_{X < n \leq 2X} \Lambda(n)e((h + \alpha)n^c) + O\left(\log X \cdot \sum_{X < n \leq 2X} \min\left(1, \frac{1}{H||n^c||}\right) \right).$$

By Lemma 2.10 and Lemma 2.3 with the exponential pair $(\kappa, \lambda) = AB(0, 1) = (\frac{1}{6}, \frac{2}{3})$, we derive that

$$\sum_{X < n \leq 2X} \min\left(1, \frac{1}{H||n^c||}\right)$$

$$= \sum_{X < n \leq 2X} \sum_{\ell = -\infty}^{+\infty} a_{\ell}e(\ell n^c) \ll \sum_{\ell = -\infty}^{+\infty} |a_{\ell}| \sum_{X < n \leq 2X} e(\ell n^c)$$

$$\ll \frac{X \log 2H}{H} + \sum_{1 \leq \ell \leq H} \frac{1}{\ell} \sum_{X < n \leq 2X} e(\ell n^c) + \sum_{\ell > H} \frac{H}{\ell^2} \sum_{X < n \leq 2X} e(\ell n^c)$$

$$\ll \frac{X \log 2H}{H} + \sum_{1 \leq \ell \leq H} \frac{1}{\ell} (X^{c-1} \ell)^{\frac{1}{6}} X^{\frac{1}{2}} + \frac{1}{\ell \ell^c-1}) + \sum_{\ell > H} \frac{H}{\ell^2} (X^{c-1} \ell)^{\frac{1}{6}} X^{\frac{1}{2}} + \frac{1}{\ell \ell^c-1})$$

$$\ll X^{\frac{770175}{471589}} \log X + H^{\frac{1}{3}} X^{\frac{c}{2}} + X^{1-c} \ll X^{\frac{770175}{471589}} \log X. \tag{2.9}$$
Taking $U = X^{\log^{10} X}$, $V = X^{\log_{10}^{12} X}$, and $Z = [X^{\log_{10}^{18} X}]^2 \pm \frac{1}{2}$ in Lemma 2.8, it is easy to see that the sum
\[
\sum_{|h| \leq H} c_h(\alpha) \sum_{X < n \leq 2X} \Lambda(n)e((h + \alpha)n^c)
\]
can be represented as $O(\log^{10} X)$ sums, each of which either of Type I
\[
S_I(\alpha) = \sum_{|h| \leq H} c_h(\alpha) \sum_{M < m \leq 2M} a(m) \sum_{K < k \leq 2K} e((h + \alpha)(mk)^c)
\]
with $K \gg Z, a(m) \ll m^\epsilon, MK \asymp X$, or of Type II
\[
S_{II}(\alpha) = \sum_{|h| \leq H} c_h(\alpha) \sum_{M < m \leq 2M} a(m) \sum_{K < k \leq 2K} b(k)e((h + \alpha)(mk)^c)
\]
with $U \ll M \ll V, a(m) \ll m^\epsilon, b(k) \ll k^\epsilon, MK \asymp X$. For the Type I sums, by noting the fact that $K \gg Z$ and $MK \asymp X$, we deduce that $M \ll X^{\log_{10}^{12} X}$. From Lemma 2.11, we have $S_I(\alpha) \ll X^{770175 + \epsilon}$. For the Type II sums, by Lemma 2.12, we have $S_{II}(\alpha) \ll X^{770175 + \epsilon}$. Therefore, we conclude that
\[
\sum_{|h| \leq H} c_h(\alpha) \sum_{X < n \leq 2X} \Lambda(n)e((h + \alpha)n^c) \ll X^{770175 + \epsilon}.
\]
(2.10)

From (2.8)–(2.10), we complete the proof of Lemma 2.13.

Lemma 2.14 For $\alpha \in (0, 1), c \notin \mathbb{Z}$, we have
\[
T(\alpha, X) \ll X^{\frac{c+1}{2}} \log X + \frac{1}{\alpha X^{c-1}}.
\]

Proof. Taking $H_1 = X^{\frac{2-c}{2}}$, and by Lemma 2.4, we deduce that
\[
T(\alpha, X) = \sum_{X < n \leq 2X} e((\alpha n^c - \{n^c\})\alpha)
= \sum_{X < n \leq 2X} e(\alpha n^c) \left(\sum_{|h| \leq H_1} c_h(\alpha)e(hn^c) + O\left(\min\left(1, \frac{1}{H_1\|n^c\|}\right) \right) \right)
= \sum_{|h| \leq H_1} c_h(\alpha) \sum_{X < n \leq 2X} e((h + \alpha)n^c) + O\left(\sum_{X < n \leq 2X} \min\left(1, \frac{1}{H_1\|n^c\|}\right) \right).
\]
(2.11)

From Lemma 2.10, we get
\[
\sum_{X < n \leq 2X} \min\left(1, \frac{1}{H_1\|n^c\|}\right) = \sum_{X < n \leq 2X} \sum_{k=\infty}^{\infty} a_k e(kn^c) \ll \sum_{k=-\infty}^{\infty} |a_k| \left| \sum_{X < n \leq 2X} e(kn^c) \right|.
\]
(2.12)
Then we shall use Lemma 2.3 with the exponential pair \((\kappa, \lambda) = AB(0, 1) = (\frac{1}{6}, \frac{2}{3})\) to estimate the sum over \(n\) on the right-hand side in (2.12), and derive that

\[
\sum_{X < n \leq 2X} \min \left(1, \frac{1}{H_1 \|n^c\|}\right) \ll \frac{X \log 2H_1}{H_1} + \sum_{1 \leq k \leq H_1} \frac{1}{k} \left| \sum_{X < n \leq 2X} e(kn^c) \right| + \sum_{k > H_1} \frac{H_1}{k^2} \left| \sum_{X < n \leq 2X} e(kn^c) \right|
\]

\[
\ll \frac{X \log 2H_1}{H_1} + \sum_{1 \leq k \leq H_1} \frac{1}{k} \left((X^{c-1}k)^{\frac{2}{3}}X^{\frac{2}{3}} + \frac{1}{kX^{c-1}} \right)
\]

\[
+ \sum_{k > H_1} \frac{H_1}{k^2} \left((X^{c-1}k)^{\frac{2}{3}}X^{\frac{2}{3}} + \frac{1}{kX^{c-1}} \right)
\]

\[
\ll X^{\frac{c+1}{4}} \log X + H_1^{\frac{2}{3}}X^{\frac{2c}{3} + \frac{1}{4}} + X^{1-c} \ll X^{\frac{c+1}{4}} \log X. \tag{2.13}
\]

Similarly, for the first term in (2.11), we have

\[
\sum_{|h| \leq H_1} c_h(\alpha) \sum_{X < n \leq 2X} e((h + \alpha)n^c)
\]

\[
= c_0(\alpha) \sum_{X < n \leq 2X} e(\alpha n^c) + \sum_{|h| \leq H_1} c_h(\alpha) \sum_{X < n \leq 2X} e((h + \alpha)n^c)
\]

\[
\ll \frac{1}{\alpha X^{c-1}} + \sum_{|h| \leq H_1} \frac{1}{h} \left(((h + \alpha)X^{c-1})^{\frac{2}{3}}X^{\frac{2}{3}} + \frac{1}{(h + \alpha)X^{c-1}} \right)
\]

\[
\ll \frac{1}{\alpha X^{c-1}} + H_1^{\frac{2}{3}}X^{\frac{2c}{3} + \frac{1}{4}} + X^{1-c}
\]

\[
\ll \frac{1}{\alpha X^{c-1}} + X^{\frac{c+1}{4}} \log X. \tag{2.14}
\]

Combining (2.11)–(2.14), we complete the proof of Lemma 2.14. \(\blacksquare\)

3 Proof of Theorem 1.1

By the definition of \(S_5(N)\), it is easy to see that

\[
S_5(N) = \int_0^1 S^5(\alpha)e(-N\alpha)d\alpha = \int_{-\tau}^{1-\tau} S^5(\alpha)e(-N\alpha)d\alpha
\]

\[
= \int_{-\tau}^{\tau} S^5(\alpha)e(-N\alpha)d\alpha + \int_{\tau}^{1-\tau} S^5(\alpha)e(-N\alpha)d\alpha
\]

\[
= S_5^{(1)}(N) + S_5^{(2)}(N), \tag{3.1}
\]

say. In order to prove Theorem 1.1, we need the two following propositions, whose proofs will be given in the following two subsections.
Proposition 3.1 For $1 < c < \frac{11216182}{3471123}$, $c \neq 2$, there holds
\[
R_5^{(1)}(N) = \frac{\Gamma^5(1 + 1/c)}{\Gamma(5/c)} N^{5/c - 1} + O(N^{5/c - 1} \exp \left(\frac{-\log N}{4} \right)).
\]

Proposition 3.2 For $1 < c < \frac{11216182}{3471123}$, $c \neq 2$, there holds
\[
R_5^{(2)}(N) \ll N^{5/c - 1 - \varepsilon}.
\]

From Proposition 3.1 and Proposition 3.2, we obtain the result of Theorem 1.1.

3.1 Proof of Proposition 3.1

In this subsection, we shall concentrate on establishing Proposition 3.1. Define
\[
G(\alpha) = \sum_{m \leq N} \frac{1}{c} m^{\frac{1}{c} - 1} e(m\alpha),
\]
\[
\mathcal{H}_1(N) = \int_{-\tau}^{\tau} G^5(\alpha)e(-N\alpha)d\alpha,
\]
\[
\mathcal{H}(N) = \int_{\frac{-1}{2}}^{\frac{1}{2}} G^5(\alpha)e(-N\alpha)d\alpha.
\]

Then we can write
\[
R_5^{(1)}(N) = (R_5^{(1)}(N) - \mathcal{H}_1(N)) + (\mathcal{H}_1(N) - \mathcal{H}(N)) + \mathcal{H}(N). \quad (3.2)
\]

As is shown in Theorem 2.3 of Vaughan [18], we derive that
\[
\mathcal{H}(N) = \frac{\Gamma^5(1 + 1/c)}{\Gamma(5/c)} P^{5-c} + O(P^{4-c}). \quad (3.3)
\]

By Lemma 2.8 of Vaughan [18], we know that
\[
\mathcal{H}_1(N) - \mathcal{H}(N) \ll \int_{\frac{-1}{2}}^{\frac{1}{2}} |G(\alpha)|^5 d\alpha \ll \int_{\frac{-1}{2}}^{\frac{1}{2}} \alpha^{-\frac{5}{2}} d\alpha \ll \tau^{1-\frac{5}{2}} \ll P^{5-c-\nu} \quad (3.4)
\]
for some $\nu > 0$. Next, we consider the estimate of $|R_5^{(1)}(N) - \mathcal{H}_1(N)|$. We have
\[
R_5^{(1)}(N) - \mathcal{H}_1(N) \ll \int_{-\tau}^{\tau} |S^5(\alpha) - G^5(\alpha)| d\alpha
\]
\[
\ll \int_{-\tau}^{\tau} |S(\alpha) - G(\alpha)||S(\alpha)|^4 + |G(\alpha)|^4| d\alpha
\]
\[
\ll \sup |S(\alpha) - G(\alpha)| \times \left(\int_{-\tau}^{\tau} |S(\alpha)|^4 d\alpha + \int_{\frac{-1}{2}}^{\frac{1}{2}} |G(\alpha)|^4 d\alpha \right). \quad (3.5)
\]

From Lemma 2.8 of Vaughan [18], we know that
\[
G(\alpha) \ll \min (N^{\frac{1}{c}}, |\alpha|^{-\frac{1}{c}}).
\]

Therefore, there holds
\[
\int_{-\tau}^{\tau} |G(\alpha)|^4 \, d\alpha \ll \int_{0}^{\tau} \min \left(N^{1/2}, |\alpha|^{-1/2} \right)^4 \, d\alpha.
\]
\[
\ll \int_{0}^{\tau} N^2 \, d\alpha + \int_{\tau}^{1} \alpha^{-\frac{3}{2}} \, d\alpha \ll N^{2/3} - 1 \ll P^{1-\epsilon}.
\]
(3.6)

For \(|\alpha| \leq \tau\), we have
\[
S(\alpha) = \sum_{p \leq P} (\log p)e(p^\epsilon \alpha) + O(\tau P) = S^*(\alpha) + O(\tau P).
\]
(3.7)

Therefore, from Lemma 2.7, we obtain
\[
\int_{-\tau}^{\tau} |S(\alpha)|^4 \, d\alpha \ll \int_{-\tau}^{\tau} |S^*(\alpha)|^4 \, d\alpha + O(\tau^5 P^4) \ll P^{1-\epsilon} \log^6 P.
\]
(3.8)

Finally, we consider the upper bound of \(|S(\alpha) - G(\alpha)|\) under the condition \(|\alpha| \leq \tau\).

Trivially, by (3.7), we have
\[
S(\alpha) = \sum_{n \leq P} \Lambda(n)e(n^\epsilon \alpha) + O(P^{1/2}) + O(\tau P)
\]
\[
= \sum_{n \leq P} \Lambda(n)e(n^\epsilon \alpha) + O(P^{1-\epsilon}).
\]
(3.9)

From Lemma 2.1, we know that, for \(|\alpha| \leq \tau\) and \(u \geq 2\), there holds
\[
\sum_{1 < m \leq u} e(m\alpha) = \int_{1}^{u} e(t\alpha) \, dt + O(1).
\]

By partial summation and the above identity, we deduce that
\[
\sum_{n \leq P} \Lambda(n)e(n^\epsilon \alpha) = \int_{1}^{P} e(t^\epsilon \alpha) d \left(\sum_{n \leq t} \Lambda(n) \right) = \int_{1}^{P} e(t^\epsilon \alpha) \, dt + O(P \exp (- (\log P)^{1/3}))
\]
\[
= \int_{1}^{N} \frac{1}{c} u^\frac{1}{2} \log u \, du + O(P \exp (- (\log P)^{1/3}))
\]
\[
= \int_{1}^{N} \frac{1}{c} u^\frac{1}{2} \, d \left(\int_{1}^{u} e(t\alpha) \, dt \right) + O(P \exp (- (\log P)^{1/3}))
\]
\[
= \int_{1}^{N} \frac{1}{c} u^\frac{1}{2} \, d \left(\sum_{1 < m \leq u} e(m\alpha) + O(1) \right) + O(P \exp (- (\log P)^{1/3}))
\]
\[
= \sum_{m \leq N} \frac{1}{c} m^\frac{1}{2} \log m \, du + O(P \exp (- (\log P)^{1/3}))
\]
\[
= G(\alpha) + O(P \exp (- (\log P)^{1/3})).
\]
(3.10)

From (3.9) and (3.10), we deduce that
\[
\sup_{|\alpha| \leq \tau} |S(\alpha) - G(\alpha)| \ll P \exp (- (\log P)^{1/3}).
\]
(3.11)
inserting (3.6), (3.8) and (3.11) into (3.5), we get

$$\mathcal{R}_5^{(1)}(N) - \mathcal{K}_1(N) \ll P^{5-c} \exp \left(- \frac{1}{2} \log P\right).$$

By (3.2)–(3.4) and (3.12), we obtain the desired result of Proposition 3.1.

3.2 Proof of Proposition 3.2

In this subsection, we devote to prove Proposition 3.2. First, we have

$$S(\alpha) = \sum_{p \in P^{5/6}} (\log p) e\left([p^c] \alpha\right) + \sum_{p^{5/6} < p \in P} (\log p) e\left([p^c] \alpha\right).$$

By a splitting argument, (3.13) and Lemma 2.6, we deduce that

$$\mathcal{R}_5^{(2)}(N) \ll (\log P) \max_{p^{5/6} \leq X \leq P} \left| \int_{\tau}^{1-\tau} S^4(\alpha) S(\alpha, X) e(-N\alpha) d\alpha \right| + P^{\frac{5}{2}} \int_{0}^{1} |S(\alpha)|^4 d\alpha$$

$$\ll (\log P) \max_{p^{5/6} \leq X \leq P} \left| \int_{\tau}^{1-\tau} S^4(\alpha) S(\alpha, X) e(-N\alpha) d\alpha \right| + P^{\frac{5}{2} + \epsilon} (P^{4-c} + P^{2})$$

$$\ll (\log P) \max_{p^{5/6} \leq X \leq P} \left| \int_{\tau}^{1-\tau} S^4(\alpha) S(\alpha, X) e(-N\alpha) d\alpha \right| + P^{5-c-\epsilon}.$$ \hspace{1cm} (3.14)

For $P^{5/6} \ll X \ll P$, we have

$$\int_{\tau}^{1-\tau} S^4(\alpha) S(\alpha, X) e(-N\alpha) d\alpha$$

$$\leq \sum_{X < p \leq 2X} (\log p) \int_{\tau}^{1-\tau} S^4(\alpha) e\left([p^c] - N\alpha\right) d\alpha$$

$$\ll \sum_{X < p \leq 2X} (\log p) \left| \int_{\tau}^{1-\tau} S^4(\alpha) e\left([p^c] - N\alpha\right) d\alpha \right|.$$

By Cauchy’s inequality, we deduce that

$$\left| \int_{\tau}^{1-\tau} S^4(\alpha) S(\alpha, X) e(-N\alpha) d\alpha \right|$$

$$\ll X^{\frac{1}{2} + \epsilon} \left(\sum_{X < n \leq 2X} \left| \int_{\tau}^{1-\tau} S^4(\alpha) e\left([n^c] - N\alpha\right) d\alpha \right|^2 \right)^{\frac{1}{2}}$$

$$= X^{\frac{1}{2} + \epsilon} \left(\sum_{X < n \leq 2X} \int_{\tau}^{1-\tau} S^4(\alpha) e\left([n^c] - N\alpha\right) d\alpha \cdot \int_{\tau}^{1-\tau} S^4(\beta) e\left([n^c] - N\beta\right) d\beta \right)^{\frac{1}{2}}$$

$$= X^{\frac{1}{2} + \epsilon} \left(\int_{\tau}^{1-\tau} S^4(\beta) e(-N\beta) d\beta \int_{\tau}^{1-\tau} S^4(\alpha) T(\alpha - \beta, X) e(-N\alpha) d\alpha \right)^{\frac{1}{2}}$$
\[X^{\frac{1}{2} + \varepsilon} \left(\int_{\tau}^{1-\tau} |S(\beta)|^4 \, d\beta \int_{\tau}^{1-\tau} |S(\alpha)|^4 |T(\alpha - \beta, X)| \, d\alpha \right)^{\frac{1}{2}}. \] (3.15)

For the inner integral in (3.15), we have
\[\int_{\tau}^{1-\tau} |S(\alpha)|^4 |T(\alpha - \beta, X)| \, d\alpha \]
\[\ll \left(\int_{(\tau,1-\tau) \cap \{ |\alpha - \beta| \leq X^{-c} \}} + \int_{(\tau,1-\tau) \cap \{ |\alpha - \beta| > X^{-c} \}} \right) |S^4(\alpha)T(\alpha - \beta, X)| \, d\alpha. \] (3.16)

For the first term on the right-hand side of (3.16), we use Lemma 2.13 and the trivial estimate \(T(\alpha - \beta, X) \ll X \) to deduce that
\[\int_{(\tau,1-\tau) \cap \{ |\alpha - \beta| \leq X^{-c} \}} |S^4(\alpha)T(\alpha - \beta, X)| \, d\alpha \]
\[\ll X \cdot \sup_{\alpha \in (\tau,1-\tau)} |S(\alpha)|^4 \times \int_{|\alpha - \beta| \leq X^{-c}} \, d\alpha \ll P^{3080700 \times \varepsilon} X^{1-c}. \] (3.17)

For the second term on the right-hand side of (3.16), by Lemma 2.13 and Lemma 2.14, we obtain
\[\int_{(\tau,1-\tau) \cap \{ |\alpha - \beta| > X^{-c} \}} |S^4(\alpha)T(\alpha - \beta, X)| \, d\alpha \]
\[\ll \int_{(\tau,1-\tau) \cap \{ |\alpha - \beta| > X^{-c} \}} |S(\alpha)|^4 \left(X^{\frac{1}{2} + \varepsilon} \log X + \frac{1}{|\alpha - \beta| X^{c-1}} \right) \, d\alpha \]
\[\ll X^{\frac{1}{2} + \varepsilon} \times \int_{0}^{1} |S(\alpha)|^4 \, d\alpha + \sup_{\alpha \in (\tau,1-\tau)} |S(\alpha)|^4 \times \int_{|\alpha - \beta| > X^{-c}} \left\{ \frac{1}{|\alpha - \beta| X^{c-1}} \right\} \, d\alpha \]
\[\ll X^{\frac{1}{2} + \varepsilon} \left(P^{1-c} + P^2 \right) P^\varepsilon + P^{3080700 \times \varepsilon} X^{1-c}. \] (3.18)

Combining (3.16) and (3.18), we conclude that
\[\int_{\tau}^{1-\tau} |S^4(\alpha)T(\alpha - \beta, X)| \, d\alpha \ll X^{\frac{1}{2} + \varepsilon} \left(P^{1-c} + P^2 \right) P^\varepsilon + P^{3080700 \times \varepsilon} X^{1-c}. \] (3.19)

Inserting (3.19) into (3.15), we obtain
\[\left| \int_{\tau}^{1-\tau} S^4(\alpha)S(\alpha, X)e(-N\alpha) \, d\alpha \right| \]
\[\ll X^{\frac{1}{2} + \varepsilon} \left(X^{\frac{1}{2} + \varepsilon} \left(P^{1-c} + P^2 \right) P^\varepsilon + P^{3080700 \times \varepsilon} X^{1-c} \right) \left(P^{4-c} + P^2 \right) P^\varepsilon \]
\[\ll X^{1 + \frac{11}{12}} \left(P^{4-c} + P^2 \right) P^\varepsilon + P^{\frac{1540350}{781589} \times \varepsilon} \left(P^{\frac{4}{3} - c} + P \right) X^{1 - \frac{1}{2}}. \]

For \(1 < c < 2 \), we have
\[\left| \int_{\tau}^{1-\tau} S^4(\alpha)S(\alpha, X)e(-N\alpha) \, d\alpha \right| \]
\[
\ll P^{c+11/14} \cdot P^{4-c+\varepsilon} + P^{\frac{1540350}{731123} + \varepsilon} \cdot P^{\frac{4-c}{2}} \cdot P^{\frac{5}{2}} \ll P^{5-c-\varepsilon}. \tag{3.20}
\]

For \(2 < c < \frac{11216182}{5471123}\), we have
\[
\left| \int_{-\tau}^{1-\tau} S^4(\alpha)S(\alpha, X)e(-N\alpha)d\alpha \right| \ll P^{c+11/14} \cdot P^{2+\varepsilon} + P^{\frac{1540350}{731123} + \varepsilon} \cdot P \cdot P^{\frac{5}{2}(1-\frac{c}{2})} \ll P^{5-c-\varepsilon}. \tag{3.21}
\]

From (3.14), (3.20) and (3.21), we deduce that
\[
\mathcal{R}^{(2)}_5(N) \ll P^{5-c-\varepsilon}
\]
provided that \(1 < c < \frac{11216182}{5471123}, c \neq 2\), which completes the proof of Proposition 3.2.

Acknowledgement

The authors would like to express the most sincere gratitude to Professor Wenguang Zhai for his valuable advices and constant encouragement.

References

[1] G. I. Arkhipov, A. N. Zhitkov, *On Warings problem with non-integer degrees*, Izv. Akad. Nauk SSSR, 48 (1984), 1138–1150.

[2] K. Buriev, *Additive problems with prime numbers*, Thesis, Moscow University, 1989.

[3] Y. C. Cai, *On a Diophantine equation involving primes*, Ramamujan J., DOI: 10.1007/s11139-018-0027-6.

[4] J. M. Deshouillers, *Problème de Waring avec exposants non entiers*, Bull. Soc. Math. France, 101 (1973), 285–295.

[5] J. M. Deshouillers, *Un problème binaire en théorie additive*, Acta Arith., 25 (1974), no. 4, 393–403.

[6] E. Fouvry, H. Iwaniec, *Exponential sums with monomials*, J. Number Theory, 33 (1989), no. 3, 311–333.

[7] S. W. Graham, G. Kolesnik, *Van der Corput’s Method of Exponential Sums*, Cambridge University Press, New York, 1991.
[8] S. A. Gritsenko, *Three additive problems*, Russian Acad. Sci. Izv. Math., 41 (1993), no. 3, 447–464.

[9] D. R. Heath-Brown, *The Pjateckii-Šapiro prime number theorem*, J. Number Theory, 16 (1983), no. 2, 242–266.

[10] L. K. Hua, *Some results in the additive prime number theory*, Quart. J. Math. Oxford Ser. (2), 9 (1938), no. 1, 68–80.

[11] M. N. Huxley, *Exponential sums and the Riemann zeta function V*, Proc. London Math. Soc. (3), 90 (2005), no. 1, 1–41.

[12] A. Kumchev, T. Nedeva, *On an equation with prime numbers*, Acta Arith., 83 (1998), no. 2, 117–126.

[13] M. B. S. Laporta, D. I. Tolev, *On an equation with prime numbers*, Math. Notes, 57 (1995), no. 5–6, 654–657.

[14] O. Robert, P. Sargos, *Three–dimensional exponential sums with monomials*, J. Reine Angew. Math., 591 (2006), 1–20.

[15] B. I. Segal, *On a theorem similar to the Waring theorem*, Dokl. Akad. Nauk. SSSR, 1 (1933), 47–49.

[16] B. I. Segal, *The Waring theorem with fractional and irrational degrees*, Trudy Mat. Inst. Steklov., 5 (1934), 73–86.

[17] E. C. Titchmarsh, *The Theory of the Riemann Zeta–Function, 2nd edn.*, (Revised by D. R. Heath–Brown), Oxford University Press, Oxford, 1986.

[18] R. C. Vaughan, *The Hardy–Littlewood Method, 2nd edn.*, Cambridge University Press, Cambridge, 1997.

[19] I. M. Vinogradov, *Representation of an odd number as the sum of three primes*, Dokl. Akad. Nauk. SSSR, 15 (1937), 291–294.

[20] W. G. Zhai, X. D. Cao, *A Diophantine equation with prime numbers*, Acta Math. Sinica (Chin. Ser.), 45 (2002), no. 3, 443–454.