Foundations

Stone algebras: 3-valued logic and rough sets

Arun Kumar · Shilpi Kumari

Accepted: 22 July 2021 / Published online: 6 August 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In this article, we propose 3-valued semantics of the logics compatible with Stone and dual Stone algebras. We show that these logics can be considered as 3-valued by establishing soundness and completeness results. We also establish rough set semantics of these logics where the third value can be interpreted as not certain but possible.

Keywords
Stone algebras · 3-valued logic · Rough sets

1 Introduction
In 1940, Moisil introduced 3-valued Łukasiewicz algebras as the algebraic models of 3-valued Łukasiewicz logic.

Definition 1 (Boicescu et al. 1991) An abstract algebra \((A, \lor, \land, \sim, \nabla, 0, 1)\) is a 3-valued Łukasiewicz algebra if for any \(x, y \in A\):

1. \((A, \lor, \land, \sim, 0, 1)\) is a De Morgan algebra, i.e.,
 \begin{enumerate}
 \item \(\sim \sim x = x\),
 \item \(\sim (x \lor y) = \sim x \land \sim y\).
 \end{enumerate}
2. \(\sim x \lor \nabla x = 1\),
3. \(x \land \sim x = \sim x \land \nabla x\),
4. \(\nabla (x \land y) = \nabla x \land \nabla y\).

It is well-known that the various algebras appear as reduct algebras (Boicescu et al. 1991) of the 3-valued Łukasiewicz algebras. So, it is natural to ask the question.

- Can we provide 3-valued (n-valued) logics compatible with reduct algebras of 3-valued Łukasiewicz algebras?

Kumar and Banerjee (2017) answered this question affirmatively in the case of Kleene algebras. They introduced a logic \(\mathcal{L}_K\) for Kleene algebras, which is sound and complete with respect to a 3-valued consequence relation. In this paper, we show that the logic of Stone (dual Stone) algebras are sound and complete with respect to a 3-valued semantics defined via a 3-valued consequence relation.

In other aspects of this paper, we make explicit connections between logic of Stone (dual Stone) algebras and rough sets. Rough set theory, introduced by Pawlak (1982, 1991) as a tool to deal with uncertainty in an information system. This deals with a domain \(U\) and an equivalence relation \(R\) on \(U\). In Pawlakian rough sets theory, the equivalence relation \(R\) is interpreted as the indiscernibility relation on the domain \(U\). \(x R y\) if and only if \(x\) is indiscernible to \(y\) with respect to attributes present in the information system. The pair \((U, R)\) is called a (Pawlak) approximation space. For any \(A \subseteq U\), one defines the lower and upper approximations of \(A\) in the approximation space \((U, R)\), denoted \(L A\) and \(U A\), respectively, as follows. For \(x \in U\), let \([x]\) denote the equivalence class of \(x\) modulo \(R\),

\[
L A := \bigcup \left\{ [x] : [x] \subseteq A \right\}, \quad (*)
\]
\[
U A := \bigcup \left\{ [x] : [x] \cap A \neq \emptyset \right\}.
\]

Definition 2 Let \((U, R)\) be an approximation space. For each \(A \subseteq U\), the ordered pair \((L A, U A)\) is called a rough set in \((U, R)\).

Notation 1 \(\mathcal{RS}\) denotes the collection of all rough sets for an approximation space \((U, R)\).

Notation 2 Let \(U\) be a set. Then

- \(\mathcal{P}(U)\) denote the power set of \(U\),
- for any \(A \subseteq U\), \(A^c\) denote the set theoretic complement of \(A\) in \(U\).
In rough set theory, the definition (**) has been interpreted in the following manner.

1. \(x \) certainly belongs to \(A \), if \(x \in LA \), i.e., all objects which are indiscernible to \(x \) are in \(A \).
2. \(x \) certainly does not belong to \(A \), if \(x \notin UA \), i.e., all objects which are indiscernible to \(x \) are not in \(A \).
3. Membership of \(x \) in \(A \) is not certain, but possible, if \(x \in UA \setminus LA \). This is the case when some objects indiscernible to \(x \) are in \(A \), while some others, also indiscernible to \(x \), are in \(A^c \). In rough set terminology, sets of the form \(UA \setminus LA \) are referred as boundary of \(A \).

These interpretations have led too much work in the study of connections between 3-valued algebras or logics and rough sets, see for instance Banerjee (1997), Düntsch (1997), Pagliani (1998), Iturrioz (1999), Avron and Konikowska (2008), Ciucci and Dubois (2014), Kumar and Banerjee (2017), Panicker and Banerjee (2019) and Nakayama et al. (2020). Its worth mention here some recent works.

- Kumar and Banerjee (2017) represented a given Kleene algebra in terms of Kleene algebra formed by rough sets for some appropriate approximation space. This imparted the 3-valued and rough set semantics of the logic \(L_K \) (of Kleene algebras). The interpretations 1, 2 and 3 have been explicitly captured in Kumar (2020).
- Panicker and Banerjee (2019) adopted yet other definition of rough sets [first discussed by Pagliani (1998)] to explore the C-algebraic structures of rough sets. As in Pagliani (1998), for an approximation space \((U, R) \) and \(A \subseteq U \), the pair \((LA, (UA)^c) \) is called a rough set. The collection of all the rough sets for an approximation space \((U, R) \) forms a C-algebra. Further they have proved that a C-algebra is embeddable into C-algebra formed by rough sets for some appropriate approximation space. It is worth mention here that the C-algebras are the algebraic counterpart of McCarthy’s three-value logic [cf. Panicker and Banerjee (2019)] and unlike our case where the set of truth values of proposed logic \(L_S \) is a Stone algebra, a C-algebra may not form even a semi-lattice.

In the last part of this article, we capture interpretations 1, 2 and 3 via logics compatible with Stone and dual Stone algebras.

The rest of this paper is organized as follows. In Sect. 2, we present some basic results of Stone algebras that will be used in the sequel. In Sect. 3, we extend the distributive lattice logic (Dunn 1995) to obtain the logic \(L_S (L_{DS}) \) of Stone (dual Stone) algebras. We further propose a 3-valued consequence relation \(\models^3_1 (\models^{DS}_0) \) and show that the logic \(L_S (L_{DS}) \) is sound and complete with respect to the \(\models^3_1 (\models^{DS}_0) \).

In Sect. 4, we provide the rough set semantics of the logic \(L_S (L_{DS}) \) and capture the the interpretations 1, 2 and 3.

2 Stone algebras: some known facts

Stone algebras (lattices) were introduced by Gratzer and Schmidt (1957) and have been extensively studied in the literature (Chen and Gratzer 1969a,b; Katrňák 1973; Priestley 1974, cf. Balbes and Dwinger 1974).

Definition 3 (Gratzer and Schmidt 1957)

An algebra \(S := (S, \lor, \land, \sim, 0, 1) \) is a Stone algebra if

1. \((S, \lor, \land, \sim, 0, 1) \) is a bounded distributive pseudo-complemented lattice, i.e., \(\forall a \in S, \sim a = \max\{c \in S : a \land c = 0\} \) exists.
2. \(\sim a \lor \sim a = 1 \), for all \(a \in S \).

The dual notion of a given Stone algebra is known as dual Stone algebra. To make this article self-contained, we explicitly define the dual Stone algebra.

Definition 4

An algebra \(DS := (DS, \lor, \land, \sim, 0, 1) \) is a dual Stone algebra if

1. \((DS, \lor, \land, \sim, 0, 1) \) is a bounded distributive pseudo-complemented lattice, i.e., \(\forall a \in DS, \sim a = \min\{c \in DS : a \lor c = 1\} \) exists.
2. \(\sim a \land \sim a = 0 \), for all \(a \in DS \) (dual Stone property).

Let \(B = (B, \lor, \land, 0, 1) \) be a Boolean algebra. Consider the set \(B^{[2]} := \{(a, b) : a \leq b, a, b \in B\} \). It is well known that \(B^{[2]} = (B^{[2]}, \lor, \land, (0, 0), (1, 1)) \) is a bounded distributive lattice, where \(\lor \) and \(\land \) are componentwise join and meet inherited from \(B \).

Moreover, we have the following results.

Proposition 1 (Boicescu et al. 1991; Gratzer 2009)

Let \(B = (B, \lor, \land, 0, 1) \) be a Boolean algebra.

1. \(B^{[2]} := (B^{[2]}, \lor, \land, \sim, (0, 0), (1, 1)) \) is a Stone algebra, where, for \((a, b) \in B^{[2]} \), \(\sim (a, b) := (b^c, b^r) \).
2. \(B^{[2]} := (B^{[2]}, \lor, \land, \sim, (0, 0), (1, 1)) \) is a dual Stone algebra, where, for \((a, b) \in B^{[2]} \), \(\sim (a, b) := (a^c, a^r) \).

Let \(2 = ([0, 1], \lor, \land, \sim, 0, 1) \) be the 2-element Boolean algebra and \(3 = ([0, a, 1], \lor, \land, 0, 1) \) be the 3-element lattice with \(0 \leq a \leq 1 \). Let \(3_1 \) denote the Stone algebra \((3, \sim) \) with \(\sim 1 = 0 = \sim a \), \(\sim 0 = 1 \) and \(3_3 \) denote the dual Stone algebra \((3, \sim) \) with \(\sim 1 = 0 \), \(\sim 0 = 1 = \sim a \).

Theorem 1 (Gratzer 1969, 2009)

...
1. A Stone algebra $\mathcal{S} = (S, \vee, \wedge, \sim, 0, 1)$ is embedded into $2^I \times 3^J$, for some index sets I and J.

2. A dual Stone algebra $\mathcal{DS} = (DS, \vee, \wedge, \sim, 0, 1)$ is embedded into $2^I \times 3^J$, for some index sets I and J.

Now, as 2 is embedded into algebras $\mathcal{3}_-$ and $\mathcal{3}_\sim$, hence the above theorem can be restated in terms of $\mathcal{3}_-$ and $\mathcal{3}_\sim$. So, in particular if B is a Boolean algebra, then the Stone algebra $\mathcal{B}^{(2)}_3$ and dual Stone algebra $\mathcal{B}^{(2)}_3$ can be embedded into $\mathcal{3}_\sim$ and $\mathcal{3}_\sim$, respectively, for appropriate index sets I and J.

Definition 5 (Davey and Priestley 2002) Let $\mathcal{L} := (L, \vee, \wedge, 0, 1)$ be a complete lattice.

(i) An element $a \in L$ is said to be completely join irreducible, if $a = \bigvee S$ implies that $a \in S$, for every subset S of L.

(ii) A set S is said to be join dense in \mathcal{L}, provided for every element $a \in L$, there is a subset S' of S such that $a = \bigvee S'$.

The illustration of importance of completely join irreducible elements can be seen by a result of Birkhoff.

Lemma 1 (Birkhoff 1995) Let L and K be two completely distributive lattices. Further, let \mathcal{J}_L and \mathcal{J}_K be join dense in L and K, respectively. Let $\phi : \mathcal{J}_L \to \mathcal{J}_K$ be an order isomorphism. Then the extension map $\Phi : L \to K$ given by $\Phi(x) := \bigvee (\phi(J(x)))$ (where $J(x) := \{a \in \mathcal{J}_L : a \leq x\}$), $x \in L$, is a lattice isomorphism.

Kumar and Banerjee (2017) characterized the completely join irreducible elements of lattices $\mathcal{3}^I$ and $\mathcal{B}^{(2)}_3$, where B is a complete atomic Boolean algebra.

Let $i, k \in I$. Denote by f^x_i, $x \in \{a, 1\}$, the following element in $\mathcal{3}^I$.

$$f^x_i(k) := \begin{cases} x & \text{if } k = i \\ 0 & \text{otherwise} \end{cases}$$

Proposition 2 (Kumar and Banerjee 2017)

1. The set of completely join irreducible elements of $\mathcal{3}^I$ is given by:

$$\mathcal{J}_{\mathcal{3}^I} = \{f^0_i, f^1_i : i \in I\}.$$

Moreover, $\mathcal{J}_{\mathcal{3}^I}$ is join dense in $\mathcal{3}^I$.

2. Let B be a complete atomic Boolean algebra. The set of completely join irreducible elements of $\mathcal{B}^{(2)}_3$ is given by

$$\mathcal{J}_{\mathcal{B}^{(2)}_3} = \{(0, a), (a, a) : a \in \mathcal{J}_B\}.$$

Moreover, $\mathcal{J}_{\mathcal{B}^{(2)}_3}$ is join dense in $\mathcal{B}^{(2)}_3$.

Figure 1 shows the Hasse diagrams of $\mathcal{J}_{\mathcal{3}^I}$ and $\mathcal{J}_{\mathcal{B}^{(2)}_3}$.

We also established the following isomorphisms.

Theorem 2 (Kumar and Banerjee 2017)

1. The sets of completely join irreducible elements of $\mathcal{3}^I$ and $(\mathcal{2}^I)^{(2)}$ are order isomorphic.

2. The algebras $\mathcal{3}^I$ and $(\mathcal{2}^I)^{(2)}$ are lattice isomorphic.

Now, we know that the pseudo- and dual pseudo-negations (if exist) are defined via the order of the given partially ordered sets. Moreover, Stone and dual Stone algebras are equational algebras. Hence, using Lemma 1 and Theorem 2, we can re-write Theorem 1 as

Theorem 3 1. The Stone algebras $\mathcal{3}^I$ and $(\mathcal{2}^I)^{(2)}$ are isomorphic.

2. The dual Stone algebras $\mathcal{3}_\sim^I$ and $(\mathcal{2}^I)^{(2)}_\sim$ are isomorphic.

3. Let S be a Stone algebra. Then there is an (index) set I such that S can be embedded into Stone algebra $(\mathcal{2}^I)^{(2)}$.

4. Let DS be a dual Stone algebra. Then there is an (index) set I such that DS can be embedded into dual Stone algebra $(\mathcal{2}^I)^{(2)}_\sim$.

3 3-Valued semantics of logics for Stone and dual Stone algebras

In this section, we focus on the study of the logics corresponding to the classes of Stone and dual Stone algebras and the structures $\mathcal{B}^{(2)}_3$ and $\mathcal{B}^{(2)}_3$. Our approach to the study is motivated by Dunn’s (1999) 4-valued semantics of the De Morgan consequence system: $\vdash_{0,1}$ (or \vdash_0 or \vdash_1), wherein valuations are defined in the 4-element De Morgan algebra. The 4-valued semantics arises from the fact that each element of a De Morgan algebra can be looked upon as a pair of sets.
In a similar way, we exploit Theorem 3 to provide a 3-valued semantics of the logic for Stone algebras. However, by an easy consequence of Stone’s representation theorem and Theorem 3, we have:

Theorem 4. 1. Let $S = (S, \lor, \land, \neg, 0, 1)$ be a Stone algebra. Then there is a set U such that S can be embedded into Stone algebra formed by $(P(U))^2$.
2. Let $DS = (DS, \lor, \land, \neg, 0, 1)$ be a dual Stone algebra. Then there is a set U such that DS can be embedded into dual Stone algebra formed by $(P(U))^2$.

3.1 Bounded distributive lattice logic with negation

Bounded distributive lattices are algebraic models of the bounded distributive lattice logic ($BDLL$), an extension of distributive lattice logic introduced by Dunn (1995). The study of logics in this section is based on $BDLL$. Let us present the logic. The language consists of

- the set P of propositional variables, whose elements are denoted by p, q, r, \ldots
- propositional constants \top and \bot
- logical connectives \lor and \land.

The set F of well-formed formulas of the logic is then given by the scheme:

\[\alpha := p \mid \top \mid \bot \mid \alpha \lor \beta \mid \alpha \land \beta, \]

where p is a propositional variable.

Definition 6 (Dunn 1999) The bounded distributive lattice logic ($BDLL$) is a binary consequence system $\vdash \subseteq F \times F$ with the following postulates and rules:

1. $\alpha \vdash \alpha$ (Reflexivity),
2. $\alpha \vdash \beta, \beta \vdash \gamma / \alpha \vdash \gamma$ (Transitivity),
3. $\alpha \land \beta \vdash \alpha, \alpha \land \beta \vdash \beta$ (Conjunction Elimination),
4. $\alpha \vdash \beta, \alpha \vdash \gamma / \alpha \vdash \beta \land \gamma$ (Conjunction Introduction),
5. $\alpha \vdash \alpha \lor \beta, \beta \vdash \alpha \lor \beta$ (Disjunction Introduction),
6. $\alpha \vdash \gamma, \beta \vdash \gamma / \alpha \lor \beta \vdash \gamma$ (Disjunction Elimination),
7. $\alpha \land (\beta \lor \gamma) \vdash (\alpha \land \beta) \lor (\alpha \land \gamma)$ (Distributivity),
8. $\alpha \vdash \top$ (Top),
9. $\bot \vdash \alpha$ (Bottom).

The postulates and rules from 1 to 7 precisely define the distributive lattice logic. The term $\alpha \vdash \beta$ in the above representation of logic is called a consequent. Intuitively, $\alpha \vdash \beta$ reflects that β is a consequence of α.

Let us add a unary connective \neg to the language of $BDLL$. Let F_- be the set of formulas defined using the following rule:

\[\alpha := p \mid \top \mid \bot \mid \alpha \lor \beta \mid \alpha \land \beta \mid -(\alpha), \]

By an extension L of $BDLL$, we mean a binary consequence system $\vdash \subseteq F_\times F_-$ which contains all the postulates and rules of the logic $BDLL$. By $\alpha \vdash_L \beta$, we shall mean that the consequent $\alpha \vdash \beta$ is derivable in the logical system L (where the notion of derivability is defined in the classical manner).

In this paper, the various semantics of a logic L are defined using valuations.

Definition 7 Let $A = (A, \lor, \land, \neg, 0, 1)$ be a lattice-based algebra, where \neg is a unary operation on A. A map $v : F_- \rightarrow A$ is called a valuation on A if $\forall \alpha, \beta \in F_-\ldash v(\alpha) = v(\beta)$.

The notion of local (global) validity is defined in the following manner:

Definition 8 Let $(A, \lor, \land, \neg, 0, 1)$ be a lattice-based algebra.

- A consequent $\alpha \vdash \beta$ is valid in A under the valuation v, if $v(\alpha) \leq v(\beta)$. If the consequent is valid under all valuations on A, then it is valid in A, and denote it as $\alpha \vdash_A \beta$.

Let A be a class of algebras of the type $(A, \lor, \land, \neg, 0, 1)$.

- If the consequent $\alpha \vdash \beta$ is valid in each algebra of A, then we say $\alpha \vdash \beta$ is valid in A, and denote it as $\alpha \vdash_A \beta$.

3.2 The logics L_S, L_DS and their 3-valued semantics

Let U be a set and $A \subseteq U$. Then for any $x \in U$, either $x \in A$ or $x \in A'$. This distinguished property of '\in' leads to the True-False semantics of classical propositional logic. Now, if v is a valuation from classical propositional sentences to $P(U)$, then v determines a family of 2-valued valuations $\{v_s : x \in U\}$ on classical propositional sentences, where $v_s(\gamma) = 1$ if $x \in v(\gamma)$ and $v_s(\gamma) = 0$ if $x \notin v(\gamma)$. Utilizing this fact along with Stone’s representation theorem, one establishes the equivalency between True-False semantics, set theoretic semantics and algebraic semantics of classical propositional logic.

In this section, we follow the same approach to establish the completeness results for L_S and L_DS (defined below).
Definition 9 Let ~ be a unary connective added to the language of BDLL. Then, for \(\alpha, \beta \in \mathcal{F}, L_5 \) denotes the logic BDLL along with following rules and postulates.

1. \(\alpha \vdash \beta \rightarrow \sim \alpha \) (Contraposition)
2. \(\sim \alpha \land \sim \beta \vdash \sim (\alpha \lor \beta) \) (\(-\)-linearity).
3. \(\top \vdash \sim \bot \) (Nor).
4. \(\alpha \land \beta \vdash \gamma / \alpha \land \gamma \vdash \beta \),
5. \(\alpha \land \sim \alpha \vdash \bot \),
6. \(\top \vdash \alpha \lor \sim \alpha \).

Definition 10 Let ~ be a unary connective added to the language of BDLL. Then, for \(\alpha, \beta \in \mathcal{F}, L_{DS} \) denotes the logic BDLL along with following rules and postulates.

1. \(\alpha \vdash \beta \rightarrow \sim \beta \vdash \sim \alpha \) (Contraposition)
2. \(\sim (\alpha \land \beta) \vdash \sim \alpha \lor \sim \beta \) (\(-\)-linearity).
3. \(\top \vdash \bot \) (Nor).
4. \(\gamma \vdash \alpha \lor \beta \vdash \alpha \lor \sim \gamma \).
5. \(\top \vdash \alpha \lor \sim \alpha \).
6. \(\sim \alpha \land \sim \sim \alpha \vdash \bot \).

Now, we introduce the following classes of algebras.

\[A_5 := \text{class of all Stone algebras}, \]
\[A_{DS} := \text{class of all dual Stone algebras}, \]
\[SB^{[\text{2}]}, := \text{class of all } B_1^{[\text{2}]}, \]
\[DSB^{[\text{2}]}, := \text{class of all } B_2^{[\text{2}]}, \]
\[S(P(U))^{[\text{2}]}, := \text{class of all Stone algebras formed by the collection } P(U)^{[\text{2}]}, \]
\[DS(P(U))^{[\text{2}]}, := \text{class of all dual Stone algebras formed by the collection } P(U)^{[\text{2}]}. \]

Now, utilizing Theorems 3 and 4, in the classical manner we get the results.

Theorem 5 1. For \(\alpha, \beta \in \mathcal{F}, \alpha \vdash L_5 \beta \) if and only if \(\alpha \vdash A_5 \beta \) and only if \(\alpha \vdash A_{DS} \beta \).
2. For \(\alpha, \beta \in \mathcal{F}, \alpha \vdash L_{DS} \beta \) if and only if \(\alpha \vdash A_{DS} \beta \).

Now, let us define the following semantic consequence relations.

Definition 11 1. Let \(\alpha, \beta \in \mathcal{F} \).

(i) \(\alpha \vdash \beta \) if and only if, for all valuations \(v \) in \(\mathcal{F} \), \(v(\alpha) = 1 \) then \(v(\beta) = 1 \) (Truth preservation).
(ii) \(\alpha \vdash \beta \) if and only if, for all valuations \(v \) in \(\mathcal{F} \), \(v(\beta) = 0 \) then \(v(\alpha) = 0 \) (Falsity preservation).
(iii) \(\alpha \vdash \beta \) if and only if, \(\alpha \vdash \beta \) and \(\beta \vdash \beta \).

2. Let \(\alpha, \beta \in \mathcal{F} \).

Note that converse of the above statements are not true, for example \(\mathcal{F} \alpha \vdash \mathcal{F} \alpha \) but \(\mathcal{F} \alpha \vdash \mathcal{F} \alpha \) and \(\mathcal{F} \beta \vdash \mathcal{F} \beta \) but \(\mathcal{F} \beta \vdash \mathcal{F} \beta \). This is contrary to the Dunn’s “De Morgan consequence relations \(\vdash_{0,1} \) and \(\vdash_{0,1} \) “ where all these three turn out to be equivalent.

Theorem 6 1. \(\alpha \vdash \beta \) if and only if \(\alpha \vdash \beta \) for any \(\alpha, \beta \in \mathcal{F} \).
2. \(\alpha \vDash_{D_{S}(U)_{3}} \beta \) if and only if \(\alpha \vDash_{0}^{D_{S}} \beta \), for any \(\alpha, \beta \in \mathcal{F}_{\sim} \).

Proof. 1. Let \(\alpha \vDash_{S}(U)_{3} \beta \), and \(v : \mathcal{F}_{\sim} \to \mathcal{B} \) be a valuation.

By Theorem 4, \(\alpha \vDash_{S}(U)_{3} \beta \) is embedded to a Stone algebra of \(\mathcal{P}(U)_{3} \) for some set \(U \). If this embedding is denoted by \(\phi \), \(\phi \circ v \) is a valuation in \(\mathcal{P}(U)_{3} \). Then \((\phi \circ v)(\alpha) \leq (\phi \circ v)(\beta) \) implies \(v(\alpha) \leq v(\beta) \). Thus, if \(v(\alpha) = 1 \), we have \(v(\beta) = 1 \).

Now, let \(\alpha \vDash_{1}^{S} \beta \). Let \(U \) be a set, and \(\mathcal{P}(U)_{3} \) be the corresponding Stone algebra. Let \(v \) be a valuation on \(\mathcal{P}(U)_{3} \)—we need to show \(v(\alpha) \leq v(\beta) \). For any \(\gamma, \delta \in \mathcal{F}_{\sim} \), let us show that \(v(\alpha) \leq v(\beta) \).

Consider any \(\gamma, \delta \in \mathcal{F}_{\sim} \), with \(v(\gamma) := (A, B), \ A, B \subseteq U \). It is easy to show that \(v(\gamma) \) is embeddable into Stone (dual Stone) algebra formed by rough sets. Alternatively, we can also prove this assertion by using Lemma 2, \(v(\beta) = 1 \). This implies \(x \in C' \), whence \(A' \subseteq C' \).

On the other hand, if \(x \notin D' \), \(v(\beta) = 0 \). Then by our assumption \(\alpha \vDash_{0}^{D_{S}} \beta \), we have \(v(\alpha) = 0 \), so that \(x \notin B' \), giving \(B' \subseteq D' \).

Finally, we have the following 3-valued semantics of the logics \(L_{S} \) and \(L_{D_{S}} \).

Theorem 7 (3-Valued semantics) For \(\alpha, \beta \in \mathcal{F}_{\sim} \) and \(\alpha', \beta' \in \mathcal{F}_{\sim} \),

1. \(\alpha \vDash_{L_{S}} \beta \) if and only if \(\alpha \vDash_{1} \beta \).
2. \(\alpha' \vDash_{L_{D_{S}}} \beta' \) if and only if \(\alpha' \vDash_{0} \beta' \).

4 Rough set models for 3-valued logics

For an approximation space \((U, R) \), \(R_{S} \subseteq \mathcal{P}(U) \times \mathcal{P}(U) \). So \(R_{S} \) has a natural ordering \(' \leq ' \) (inherited from \(\mathcal{P}(U) \times \mathcal{P}(U) \)).

Pomykala and Pomykala (1988) showed that \((R_{S}, \leq) \) is a Stone algebra. Gehkke and Walker (1992) characterized the lattice structure of rough sets. They showed that \((R_{S}, \leq) \cong 2^{I} \times 3^{J} \) for some appropriate index sets \(I \) and \(J \). Comer (1995) proved that for any index sets \(I \) and \(J \), there is an approximation space \((U, R) \) such that the lattices \(2^{I} \times 3^{J} \) and \(R_{S} \) are isomorphic. Hence, any Stone (dual Stone) algebra is embeddable into Stone (dual Stone) algebra formed by rough sets. Alternatively, we can also prove this assertion by using Theorem 4.

An easy consequence we get the following rough set semantic for the logic \(L_{S} (L_{D_{S}}) \).

Theorem 8. 1. Let \(A_{R_{S}} \) denote the class of all Stone algebras formed by \(R_{S} \). Then we have for \(\alpha, \beta \in \mathcal{F}_{\sim} \): \(\alpha \vDash_{L_{S}} \beta \) if and only if \(\alpha \vDash_{A_{R_{S}}} \beta \).
2. Let \(A_{D_{S}R_{S}} \) denote the class of all dual Stone algebras formed by \(R_{S} \). Then we have for \(\alpha, \beta \in \mathcal{F}_{\sim} \): \(\alpha \vDash_{L_{D_{S}}} \beta \) if and only if \(\alpha \vDash_{A_{D_{S}R_{S}}} \beta \).

Kumar (2020) captured the interpretations 1, 2 and 3 through the logic compatible with Kleene algebras. Now, we follow
the same approach to capture the interpretations 1, 2 and 3 through the logics \(\mathcal{L}_S \) and \(\mathcal{L}_{DS} \). Let us define the following semantic consequence relations.

Definition 12 Let \(\alpha \) be a formula in \(\mathcal{F}_- \) and \(v \) be a valuation in \(\mathcal{RS}_- \) for some approximation space \((U, R) \) such that \(v(\alpha) := (LA, UA), A \subseteq U \). Then for \(x \in U \),

\[
\begin{align*}
&v, x \models_{RS}^1 \alpha \quad \text{if and only if } x \in LA, \\
&v, x \not\models_{RS}^1 \alpha \quad \text{if and only if } x \notin LA, \\
&v, x \not\models_{RS}^u \alpha \quad \text{if and only if } x \notin UA.
\end{align*}
\]

Let \(\alpha \) be a formula in \(\mathcal{F}_- \) and \(v \) be a valuation in \(\mathcal{RS}_- \) for some approximation space \((U, R) \) such that \(v(\alpha) := (LA, UA), A \subseteq U \). Then for \(x \in U \),

\[
\begin{align*}
&v, x \models_{RS}^0 \alpha \quad \text{if and only if } x \in LA, \\
&v, x \not\models_{RS}^0 \alpha \quad \text{if and only if } x \notin LA, \\
&v, x \not\models_{RS}^u \alpha \quad \text{if and only if } x \notin UA.
\end{align*}
\]

The relation \(v, x \models_{RS}^1 \alpha \) can be interpreted as \(\alpha \) is certainly true at \(x \) under the valuation \(v \) in approximation space \((U, R) \), hence captures the interpretation 1. \(v, x \not\models_{RS}^1 \alpha \) captures the interpretation 2 and can be interpreted as \(\alpha \) is certainly false at \(x \) under the valuation \(v \) in approximation space \((U, R) \). Finally, \(v, x \not\models_{RS}^u \alpha \) captures the interpretation 3.

Now, let us define the notions of validity.

Definition 13 Let \(\alpha, \beta, \gamma, \delta \in \mathcal{F}_- \),

1. \(\alpha \models_{RS}^1 \beta \) if and only if \(v, x \models_{RS}^1 \alpha \) implies \(v, x \models_{RS}^1 \beta \), for all valuations \(v \) in \(\mathcal{RS}_- \), and \(x \in U \).
2. \(\alpha \models_{RS}^0 \beta \) if and only if \(v, x \models_{RS}^0 \alpha \) implies \(v, x \models_{RS}^0 \beta \), for all valuations \(v \) in \(\mathcal{RS}_- \), and \(x \in U \).
3. \(\alpha \models_{RS}^u \beta \) if and only if \(\alpha \models_{RS}^1 \beta \) and \(\alpha \models_{RS}^0 \beta \).

Theorem 9 Let \(\alpha, \beta \in \mathcal{F}_- \), and \(\gamma, \delta \in \mathcal{F}_- \). Then

1. \(\alpha \models_{ASRS} \beta \) if and only if \(\alpha \models \beta \) in the class of all approximation spaces.
2. \(\gamma \models_{ASRS} \delta \) if and only if \(\gamma \models \delta \) in the class of all approximation spaces.

Proof Let \(\alpha \models_{ASRS} \beta \). Let \((U, R) \) be an approximation space, and \(v \) be a valuation in \(\mathcal{RS}_- \) with \(v(\alpha) := (LA, UA) \) and \(v(\beta) := (LB, UB) \), \(A, B \subseteq U \).

By the assumption, \(LA \subseteq LB \) and \(UA \subseteq UB \). Now, let us show that \(\alpha \models_{RS}^1 \beta \). So, let \(x \in U \) and \(v, x \models_{RS}^1 \alpha \), i.e., \(x \in LA \). But we have \(LA \subseteq LB \), hence \(v, x \not\models_{RS}^1 \beta \).

Now, suppose \(\alpha \models \beta \) is valid in the class of all approximation spaces. We want to show that \(\alpha \models_{ASRS} \beta \). Let \(v \) be a valuation in \(\mathcal{RS}_- \) as taken above. We have to show that \(LA \subseteq LB \) and \(UA \subseteq UB \). Let \(x \in LA \), i.e., \(v, x \models_{RS}^1 \alpha \).

Hence, by our assumption, \(v, x \models_{RS}^1 \beta \), i.e., \(x \in LB \). So \(LA \subseteq LB \). Now, let \(y \notin UB \), using Lemma 2, we have \(v, y \models_{RS}^0 \beta \). By our assumption, \(v, y \models_{RS}^1 \alpha \), i.e., \(y \notin UA \).

2. The proof of this part is very similar to that of part 1 which uses lemma 2.

\(\square \)

5 Conclusions

This paper presents a relationship between Stone algebras, rough sets and 3-valued logics. We have drawn a line parallel to the line of Boolean algebra—2-valued Boolean algebra—Stone’s representation theorem—classical propositional logic. We have shown that the logic \(\mathcal{L}_S \) (\(\mathcal{L}_{DS} \)) is truly a 3-valued logic via a 3-valued semantics. Further this 3-valued semantics of the logic \(\mathcal{L}_S \) can be interpreted in rough set theory, where the third value can be treated as not certain but possible.

Kumar and Banerjee (2017) analyzed the Stone and dual Stone negations in perp frames (Dunn 1999, 1994, 1996), where negations are viewed as modal operators. We introduced Stone and dual Stone frames and showed that the logics \(\mathcal{L}_S \) and \(\mathcal{L}_{DS} \) are sound and complete, respectively, in these classes of frames. Thus, the perp semantics of the logics \(\mathcal{L}_S \) and \(\mathcal{L}_{DS} \) are established. Hence, in view of Theorems 5–9 we can conclude that algebraic, 3-valued, rough set and perp semantics of the logic \(\mathcal{L}_S \) (\(\mathcal{L}_{DS} \)) are all equivalent.

In future, we would like to discuss the following.
1. Düntsch and Orłowska (2011), discrete duality for Stone algebras have been obtained. So naturally it would be interesting to investigate the relationship between the frame defined there, the logic L_S, 3-valued consequence relation \vdash and the Stone frames defined in Kumar and Banerjee (2017).

2. There has been a lot of study on Topological Boolean algebras (TBAs). Similarly, can we define Topological Stone algebras? Can we obtain representation results of these Topological Stone algebras in terms of $B^{(2]}$ and RS?

3. Hilbert style axiomatization of the logic of Stone algebras.

4. Zhou and Zhao (2011) studied the Stone-like representation theorems of 3-valued Łukasiewicz algebras. Naturally, it would be interesting to investigate the Stone-like representation theorems for the class of Stone algebras determined by rough sets.

5. Applications of the logic L_S in approximate reasoning.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

Avron A, Konikowska B (2008) Rough sets and 3-valued logics. Stud Log 90:69–92
Balbes R, Dwinger P (1974) Distributive lattices. University of Missouri Press, Columbia
Banerjee M (1997) Rough sets and 3-valued Łukasiewicz logic. Fund Inf 31:213–220
Birkhoff G (1995) Lattice theory, colloquium publications, vol XXV, 3rd edn. American Mathematical Society, Providence
Boiicscu V, Filipoiu A, Georgescu G, Rudeanu S (1991) Łukasiewicz-Moisil algebras. North-Holland, Amsterdam
Chen CC, Gratzer G (1969) Stone lattice I: construction theorems. Can J Math 21:884–894
Chen CC, Gratzer G (1969) Stone lattice II: structure theorems. Can J Math 21:895–903
Ciucci D, Dubois D (2014) Three-valued logics, uncertainty management and rough sets. Transactions on rough sets XVII, LNCS, vol 8375. Springer, Berlin, Heidelberg, pp 1–32
Comer S (1995) Perfect extensions of regular double Stone algebras. Algebra Univ 34(1):96–109
Davey BA, Priestley HA (2002) Introduction to lattices and order. Cambridge University Press, Cambridge
Düntsch I (1997) A logic for rough sets. Theor Comput Sci 179:427–436
Düntsch I, Orłowska E (2011) Discrete dualities for double Stone algebras. Stud Log 99(1):127–142
Dunn J (1994) Star and perp: two treatments of negation. In: Tomberlin J (ed) Philosophical perspectives, vol 7. Ridgeview Publishing Company, Atascadero, pp 331–357
Dunn J (1995) Positive modal logic. Stud Log 55:301–317
Dunn J (1996) Generalised ortho negation. In: Wansing H (ed) Negation: a notion in focus. Walter de Gruyter, Berlin, pp 3–26
Dunn J (1999) A comparative study of various model-theoretic treatments of negation: a history of formal negations. In: Gabbay D, Wansing H (eds) What is Negation?. Kluwer Academic Publishers, The Netherlands, pp 23–51
Gratzer G, Schmidt ET (1957) On a problem of M.H. stone. Acta Math Acad Sci Hunger 8:455–460
Gratzer G (1969) Stone algebras form an equational class. J Austr Math Soc 9:308–309
Gratzer G (2009) Lattice theory: first concepts and distributive lattices. Dover Publications Inc
Gehrke M, Walker E (1992) On the structure of rough sets. Bull Pol Acad Sci, Math 40(3):235–255
Iturrioz L (1999) Rough sets and three-valued structures. In: Orłowska E (ed) Logic at work: essays dedicated to the memory of Helena Rasiowa, volume 24 of studies in fuzziness and soft computing. Springer, New York, pp 596–603
Katriňák T (1973) Construction of regular double p-algebras. Proc Am Math Soc 40:75–79
Kumar A, Banerjee M (2017) Kleene algebras and logic: Boolean and rough set representations, 3-valued, rough set and perp semantics. Stud Log 105:439–469
Kumar A (2020) A study of algebras and logics of rough sets based on classical and generalized approximation spaces. In: Peters J, Skowron A (eds) Transactions on rough sets XXII, LNCS, vol 12485. Springer, Germany, pp 123–251
Kumar A, Banerjee M (2017) A semantic analysis of stone and dual stone negations with regularity. In: Ghose S, Prasad S (eds) Logic and its applications. Springer, Berlin, Heidelberg, pp 139–153
Nakayama Y, Akama S, Murai T (2020) Rough set logic for Kleene’s three-valued logic. In: 2020 Joint 11th international conference on soft computing and intelligent systems and 21st symposium on advanced intelligent systems (SCIS-ISIS). IEEE, pp 1–5
Pagliani P (1998) Rough set theory and logic-algebraic structures. In: Orłowska E (ed) Incomplete information: rough set analysis, 3-valued, rough set and perp semantics. Stud Log 84(2):127–143
Panicker G, Banerjee M (2019) Rough sets and the algebra of conditional logic. In: MihaileydeÁ (ed) IICRS, volume 11499 of LNCS. Springer, Cham, pp 28–39
Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356
Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic Publishers
Priestley H (1974) Stone lattices: a topological approach. Fund Math 84(2):127–143
Pomykala J, Pomykala JA (1988) The stone algebra of rough sets. Bull Pol Acad Sci, Math 36:495–508
Zhou H, Zhao B (2011) Stone-like representation theorems and three-valued filters in K_0-algebras (nilpotent minimum algebras). Fuzzy Sets Syst 162:1–26

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.