MuMu: Cooperative Multitask Learning-Based Guided Multimodal Fusion

Md Mofijul Islam, Tariq Iqbal
School of Engineering and Applied Science, University of Virginia
{mi8uu,tiqbal}@virginia.edu

Abstract
Multimodal sensors (visual, non-visual, and wearable) can provide complementary information to develop robust perception systems for recognizing activities accurately. However, it is challenging to extract robust multimodal representations due to the heterogeneous characteristics of data from multimodal sensors and disparate human activities, especially in the presence of noisy and misaligned sensor data. In this work, we propose a cooperative multitask learning-based guided multimodal fusion approach, MuMu, to extract robust multimodal representations for human activity recognition (HAR). MuMu utilizes an auxiliary activity-group-specific feature to direct our proposed Guided Multimodal Fusion Approach (GM-Fusion) for extracting complementary multimodal representations, designed as the target task. We evaluated MuMu by comparing its performance to state-of-the-art multimodal HAR approaches on three activity datasets. Our extensive experimental results suggest that MuMu outperforms all the evaluated approaches across all three datasets. Additionally, the ablation study suggests that MuMu significantly outperforms the baseline models ($p < 0.05$), which do not use our guided multimodal fusion. Finally, the robust performance of MuMu on noisy and misaligned sensor data poses that our approach is suitable for HAR in real-world settings.

Introduction
Understanding human activity ensures effective human-autonomous system collaboration in various settings, from autonomous vehicles to assistive living to manufacturing (Sabokrou et al. 2019; Iqbal and Riek 2017, 2021; Yasar and Iqbal 2021, 2022; Green et al. 2022b,a). For example, accurate activity recognition could aid collaborative robots in assisting a worker by bringing tools or autonomous vehicles in requesting to take over the controls from a distracted driver to ensure safety (Iqbal et al. 2019; Pakdamanian et al. 2020).

Human activity recognition (HAR) has been extensively studied by utilizing unimodal sensor data, such as visual (Ryoo et al. 2017; Zhang and Parker 2011; Fan et al. 2018), skeleton (Arzani et al. 2017; Ke et al. 2017; Yan, Xiong, and Lin 2018; Iqbal, Rack, and Riek 2016), and wearable sensors (Frank, Kubota, and Riek 2019; Batzianoulis et al. 2017). However, unimodal methods struggle to recognize activity in various real-world scenarios for multiple reasons. First, distinct activities can be mistakenly classified as the same when relying on visual sensors (Kong et al. 2019). For example, carrying a light and a heavy object activities look similar from visual modalities; however, they have distinct physical sensor data (Fig.1-a & b: Gyroscope & Acceleration). Second, unimodal methods may fail to recognize activities when the sensor data is noisy (Fig.1-c). In these cases, using multiple modalities can compensate for the weaknesses of any particular modality in recognizing an activity.

Several multimodal learning approaches have been proposed to accurately recognize human activities by fusing data from multiple sensors (Feichtenhofer et al. 2019; Kong et al. 2019; Roitberg et al. 2015; Joze et al. 2020; Liu et al. 2019; Perez-Rua et al. 2019; Hasan et al. 2019; Islam and Iqbal 2020). Although these approaches work adequately in many scenarios, some crucial challenges remain in achieving robust recognition performance, particularly when data from multiple sensors are missing or misaligned.

First, disparate activity-groups require different modalities to accurately recognize activities (an activity-group consists of a set of activities), that exhibit similar characteristics. For example, Kubota et al. (2019) found that data from the motion capture system helps to recognize gross-motion activities involving arm and leg movements (e.g., walking), whereas data from wearable sensors helps to recognize fine-grained motion activities involving hand or finger movements (e.g., grasping). Thus, if a model can exploit the characteristics of activity-groups while extracting the multimodal representations, then that model can improve HAR performance. Moreover, in many existing datasets, activities are grouped into categories based on shared characteristics (Kubota et al. 2019; Awad et al. 2018). For example, Kong et al. (2019) grouped human activities into three groups: complex (e.g., carrying), simple (e.g., kicking), and desk (e.g., using PC). Surprisingly, apart from grouping the activities, these auxiliary activity-groups labels have not been utilized in extracting multimodal representations.

Second, most existing multimodal learning approaches assume non-noisy and time-aligned multimodal sensor data during training and testing phases. These assumptions limit
the applicability of the existing approaches in real-world settings, as the presence of misaligned and noisy sensor data is not uncommon due to occlusion and sensor noises (Fig. 1-c). Thus, we need to develop and evaluate the multimodal learning approaches in the presence of noisy and misaligned sensor data to ensure their applicability in real-world settings.

To address the aforementioned challenges, we propose a novel Cooperative Multitask Learning-based Guided Multimodal Fusion Approach (MuMu) for HAR. In MuMu, we have designed two cooperative tasks: an auxiliary and a target task. First, MuMu extracts activity-group-specific features for activity-group recognition (auxiliary task). Second, the activity-group-specific features direct our Guided Multimodal Fusion Approach (GM-Fusion) to extract robust multimodal representations for recognizing activities (target task). Here, both tasks work cooperatively, where the auxiliary task guides the target task to extract complementary multimodal representations appropriately.

We compared the performance of MuMu to several state-of-the-art HAR algorithms on three multimodal activity datasets (MMAct (Kong et al. 2019), UTD-MHAD (Chen, Jafari, and Kehtarnavaz 2015) and UCSD-MIT (Kubota et al. 2019)). The experimental results suggest that MuMu outperforms all the evaluated approaches in all evaluation conditions. MuMu achieved an improvement of 4.45% and 3.61% (F1-score) on the MMAct dataset for the cross-subject and cross-session evaluations, compared to the state-of-the-art approaches, respectively. Additionally, MuMu achieved an improvement of 6.86% and 2.48% (top-1 accuracy) on the UCSD-MIT and the UTD-MHAD datasets for leave-one-subject-out evaluation settings, compared to the evaluated approaches, respectively. Furthermore, our qualitative analysis suggests that MuMu can appropriately prioritize the modalities while extracting complementary representations, even in the presence of noisy and misaligned sensor data (Fig. 1). Moreover, our ablation study suggests that MuMu significantly outperforms the baseline learning approaches ($p < 0.05$), which do not use guided fusion.

Related Work

Multimodal Learning: Several multimodal learning approaches have been developed for various tasks, such as video classification (Feichtenhofer et al. 2019; Xiao et al. 2020), activity recognition (Islam and Iqbal 2021; Long et al. 2018; Joze et al. 2020), and visual question answering (Lu et al. 2019; Li et al. 2019). Some of these approaches have been designed to extract representations from similar types of modalities (Feichtenhofer, Pinz, and Wildes 2016, 2017; Zhang et al. 2018). For example, Simonyan and Zisserman (2014) designed a two-stream CNN-based model to extract spatial and temporal features from the visual modalities. Similarly, Feichtenhofer et al. (2019) proposed a two-stream learning model to extract spatial-temporal features by varying the data sampling rate in those streams. However, these approaches depend on human experts to determine which layers’ representations should be fused. These manual fusion approaches often introduce bias in the model and produce suboptimal representations.

Multitask Learning: Several multitask learning models have been designed which aim to share knowledge across tasks to improve these tasks’ performance (Ruder 2017; Hashimoto et al. 2016; Zhang and Yang 2017; Guo et al. 2018).
three learning modules (Fig. 2): Guided Multimodal Fusion Approach (MuMu) consists of our proposed Cooperative Multitask Learning-based J (\(J\))

Activity Group Classification

Target Task

Activity Group Classification

Self Multimodal Fusion

Guided Multimodal Fusion

Unimodal Feature Encoders (Shared across tasks)

Multimodal Sensor Data

Figure 2: MuMu: Cooperative Multitask Learning-based Guided Multimodal Fusion Approach. The Unimodal Feature Encoder encodes unimodal spatial-temporal features. The Auxiliary Task module fuses the unimodal features to extract the activity-group-specific features. The activity-group features guide the Target Task module to fuse and extract complementary multimodal representations by employing a Guided Multimodal Fusion Approach. We have designed a multitask learning loss for end-to-end training.

• Target Task Learning (TTL) Module utilizes the activity-group-specific features from the auxiliary task as prior information to appropriately fuse and extract multimodal representations for activity recognition.

UFE: Unimodal Feature Encoder

We have adopted the Unimodal Feature Encoder (UFE) architecture from the work by Islam and Iqbal (2020). In our implementation, UFE independently encodes data from each modality \(m\) in four steps. First, UFE segments the raw data and produces \(X_m^u = (x_{m,1}^u, x_{m,2}^u, \ldots, x_{m,S_m}^u) \in \mathbb{R}^{B \times S_m \times D_m^u}\), where \(B\) is the batch size, \(S_m\) is the segment size, and \(D_m^u\) is the raw feature dimension of modality \(m\). Second, UFE encodes the spatial features of each segment of modality \(m \in M\). Third, UFE utilizes an LSTM to encode unimodal spatial-temporal features. Fourth, a self-attention model has been employed to extract salient unimodal features, \(X_u = (x_1^u, x_2^u, \ldots, x_M^u) \in \mathbb{R}^{B \times M \times D_u}\), from the spatial-temporal features \(D_u\) is the unimodal feature embedding size). Instead of utilizing a resource intensive multi-head self-attention model, which was used by Islam and Iqbal (2020), in this work, we have adopted a lightweight self-attention model from Long et al. (2018). MuMu uses the unimodal features, \(X_u\), in the subsequent learning modules to produce multimodal representations.

ATL: Auxiliary Task Learning Module

In the auxiliary task learning step, MuMu fuses the unimodal features to extract activity-group-specific multimodal representation for classifying the activity-groups in two steps:

• Unimodal Feature Encoder (UFE) encodes modality-specific spatial-temporal features.

• Auxiliary Task Learning (ATL) Module extracts activity-group-specific multimodal representations.

MuMu: Multitask Learning-based Guided Multimodal Fusion Approach

Problem Formulation

We define a cooperative multitask learning problem, which involves learning the auxiliary and the target tasks cooperatively for multimodal fusion. Similar to the multi-class activity recognition problem, we aim to recognize a set of \(K\) activities, \(A = (A_1, \ldots, A_K)\), by extracting multimodal representations \((X^r)\) from \(M\) heterogeneous modalities, \(X^r = (X_{1}^r, \ldots, X_{M}^r)\) \((r\) stands for raw feature). We have termed this activity recognition \(A_i \in A\) as the target task.

Activity datasets defined activity-group in various ways. For example, UCSM-MIT uses human motion to define activity-group (gross & fine), whereas the MMAct dataset uses the complexity of the activities (complex, simple & desk). As different activity-groups share disparate characteristics, they require different modalities for recognizing activities (Kubota et al. 2019). Thus, we divide the activity set \(A\) into \(N\) activity-groups \((G)\), where \(G = (G_1, \ldots, G_N)\). Here, each activity-group \((G_i)\), consists of \(J_i\) unique activities that share similar characteristics, where \(G_i = (A_{i,1}, \ldots, A_{i,J_i})\), and \(A_{i,j} \in A\). We have termed the activity-group recognition \((G_i \in G)\) as the auxiliary task.

Approach Overview

Our proposed Cooperative Multitask Learning-based Guided Multimodal Fusion Approach (MuMu) consists of three learning modules (Fig. 2):

- Unimodal Feature Encoder (UFE) encodes modality-specific spatial-temporal features.
- Auxiliary Task Learning (ATL) Module extracts activity-group-specific multimodal representations.
Self Multimodal Fusion Approach (SM-Fusion): MuMu uses SM-Fusion to extract activity-group-specific salient features. SM-Fusion assigns attention weight (α_m) to each modality for fusing unimodal features, X^u_m, and extracting multimodal auxiliary representation, X^{aux}. The attention weight, α_m, is calculated in the following way:

$$\gamma_m = (W^{aux})^T X^u_m$$

$$\alpha_m = \frac{\exp(\gamma_m)}{\sum_{m \in M} \exp(\gamma_m)}$$

Here, W^{aux} is a learnable parameter. We have utilized a 1D-CNN with a filter size of 1 to calculate α_m. Finally, this weight is used to fuse the unimodal features and extract multimodal auxiliary representation, X^{aux}:

$$X^{aux} = \sum_{m \in M} \alpha_m X^u_m$$

Activity-Group Classification: The auxiliary representation, X^{aux}, is passed through a auxiliary task learning network, F^{aux}, to classify the activity-group:

$$y^{aux} = F^{aux}(X^{aux})$$

TTL: Target Task Learning Module
In MuMu, we have designed a target task to extract multimodal representations and classify activities in two steps. First, MuMu uses activity-group features from the auxiliary task to direct our proposed Guided Multimodal Fusion Approach (GM-Fusion) to extract multimodal representations. Because activity-group features can help to prioritize the salient modalities to extract multimodal representations appropriately. Second, MuMu uses fused representations to classify the activities. In MuMu, the auxiliary and the target tasks work cooperatively to extract complementary multimodal representations for recognizing activities accurately.

Guided Multimodal Fusion Approach (GM-Fusion): GM-Fusion uses the activity-group-specific features from auxiliary task as prior information, X^{aux}, to extract multimodal representations. First, GM-Fusion projects the extracted unimodal features, X^u, to produce unimodal key (K^u) and value (V^u) feature vectors in the following way:

$$K^u = X^u W^K, V^u = X^u W^V$$

Here, W^K and W^V are learnable parameters. These unimodal key and value vectors are used to extract the multimodal representation. Second, GM-Fusion projects multimodal auxiliary representation, X^{aux}, to produce auxiliary query feature vector (Q^{aux}).

$$Q^{aux} = X^{aux} W^Q$$

Here, W^Q is a learnable parameter. This auxiliary query feature vector (Q^{aux}) is used as a prior to extract complementary multimodal representation, X^c, by utilizing the unimodal key (K^u) and value (V^u) feature vectors:

$$X^c = \sigma\left(\frac{Q^{aux} K^u T}{\sqrt{D^u}}\right) V^u$$

$$X^c = W^o X^c$$

Here, W^o is a learnable projection parameter.

Activity Classification: Multimodal representation, X^c, is concatenated with activity-group-specific features, X^{aux}, for activity classification. X^c is passed through a target task learning network, F^t, to classify the activities:

$$X^f = W^f [X^c; X^{aux}]$$

$$y^t = F^t(X^f)$$

Here, W^f is a learnable projection parameter.

Multitask Learning Loss
We have designed a multitask learning loss for end-to-end training of MuMu. This loss is used to train the auxiliary and the target tasks jointly. First, we use cross-entropy auxiliary loss, L^{aux}, to train the auxiliary task for activity-group classification. L^{aux} enforces the auxiliary task branch to learn the activity-group-specific multimodal representations.

$$L^{aux}(y^{aux}, \hat{y}^{aux}) = \frac{1}{B} \sum_{i=1}^{B} y^{aux}_i \log \hat{y}^{aux}_i$$

Second, we calculate the cross-entropy loss, L^t, to train the target task for activity classification. This loss ensures that the target task learns the robust multimodal representations for activity recognition.

$$L^t(y^t, \hat{y}^t) = \frac{1}{B} \sum_{i=1}^{B} y^t_i \log \hat{y}^t_i$$

Finally, the auxiliary and target task losses are combined for end-to-end training of MuMu:

$$loss = L^t(y^t, \hat{y}^t) + \beta^{aux} L^{aux}(y^{aux}, \hat{y}^{aux})$$
We evaluated MuMu’s performance by comparing it against the state-of-the-art HAR approaches on three datasets: MMAct, UTD-MHAD, and UCSD-MIT. For MMAct dataset, we followed originally proposed cross-subject and cross-session evaluation settings and reported F1-scores (Tables 1 & 2). The results suggest that MuMu outperforms state-of-the-art approaches on both cross-subject and cross-session evaluation settings with improvements of 4.45% and 3.61% in F1-score, respectively. For UTD-MHAD and UCSD-MIT datasets, we followed leave-one-subject-out cross-validation and reported top-1 accuracies (Tables 4 & 3). The results suggest that MuMu outperforms the best performing baselines with improvements of 6.86% and 2.48% in top-1 accuracy on UCSD-MIT and UTD-MHAD datasets, respectively.

Discussion: The experimental results (Tables 1, 2, 4 & 3) suggest that MuMu outperforms all the state-of-the-art approaches in all evaluation conditions. Moreover, the results indicate that attention-based HAR methods (i.e., MuMu, Keyless (Long et al. 2018) and HAMLET (Islam and Iqbal 2020)) outperform Non-Attention-based methods (i.e., PoseMap (Liu and Yuan 2018) and TSN (Wang et al. 2016)). Unlike MuMu, the other attention-based methods do not consider the activity-group information to extract multimodal representations. In our implementation, MuMu utilizes the activity-group information to extract complementary representations using our Guided Multimodal Fusion approach (GM-Fusion). GM-Fusion allows the prioritization of different modalities based on the activity-group information extracted by the auxiliary task learning module. Thus, the experimental results posit that incorporating activity-group information allows the extraction of complementary representations effectively to improve the HAR accuracy.

Although state-of-the-art multimodal HAR approaches show comparatively better performance on cross-session evaluation settings (Tables 2 & 4), the performance degrades on challenging cross-subject evaluation conditions for all evaluated baselines (Tables 1 & 3). The performance degrades because MMAct and UCSD-MIT datasets contain data samples that enforce the utilization of the wearable sensors to recognize activities accurately, where the wearable sensor data vary considerably across subjects (see Fig. 1). To address this challenge, MuMu utilizes activity-group features to guide GM-Fusion to extract salient multi-modal features.

Results and Discussion

Comparison with Multimodal Approaches

Results: We evaluated MuMu’s performance by comparing it against the state-of-the-art HAR approaches on three datasets: MMAct, UTD-MHAD, and UCSD-MIT. For MMAct dataset, we followed originally proposed cross-subject and cross-session evaluation settings and reported F1-scores (Tables 1 & 2). The results suggest that MuMu outperforms state-of-the-art approaches on both cross-subject and cross-session evaluation settings with improvements of 4.45% and 3.61% in F1-score, respectively. For UTD-MHAD and UCSD-MIT datasets, we followed leave-one-subject-out cross-validation and reported top-1 accuracies (Tables 4 & 3). The results suggest that MuMu outperforms the best performing baselines with improvements of 6.86% and 2.48% in top-1 accuracy on UCSD-MIT and UTD-MHAD datasets, respectively.

Discussion: The experimental results (Tables 1, 2, 4 & 3) suggest that MuMu outperforms all the state-of-the-art approaches in all evaluation conditions. Moreover, the results indicate that attention-based HAR methods (i.e., MuMu, Keyless (Long et al. 2018) and HAMLET (Islam and Iqbal 2020)) outperform Non-Attention-based methods (i.e., PoseMap (Liu and Yuan 2018) and TSN (Wang et al. 2016)). Unlike MuMu, the other attention-based methods do not consider the activity-group information to extract multimodal representations. In our implementation, MuMu utilizes the activity-group information to extract complementary representations using our Guided Multimodal Fusion approach (GM-Fusion). GM-Fusion allows the prioritization of different modalities based on the activity-group information extracted by the auxiliary task learning module. Thus, the experimental results posit that incorporating activity-group information allows the extraction of complementary representations effectively to improve the HAR accuracy.
modal representations for recognizing activities accurately. On the other hand, state-of-the-art approaches fused unimodal features without considering activity-group information. Additionally, in the cross-subject evaluation conditions, MuMu outperforms the F1-score of state-of-the-art approaches on MMAct and UCSD-MIT datasets with an improvement of 4.45% and 6.86%, respectively. These performance improvements indicate that MuMu can generate robust multimodal representation by prioritizing the salient modalities more than other approaches.

Impact of Supplementary Modalities
To investigate whether additional modalities help to improve the performance of learning models, we evaluated the performance of MuMu and two baseline approaches (Keyless (Long et al. 2018)) and HAMLET (Islam and Iqbal 2020)) with various combinations of modalities. We conducted this study on the UTD-MHAD dataset with RGB, Depth, Skeleton, Physical sensors modalities. The experimental results suggest that MuMu outperformed the evaluated baselines on all the combinations of modalities tested (see Table 5).

Results & Discussion: In Table 5, the results suggest that incorporating additional modalities helps MuMu to improve the HAR accuracy. However, additional modalities do not always improve the performance of two baselines. For example, incorporating the depth modality degrades the accuracy of the baseline methods, whereas the HAR accuracy of MuMu improves slightly with this additional modality.

The performance of the baselines degrades, as additional modalities may not provide salient information to recognize activities accurately. For example, visual modality may not provide salient information for gesture recognition (e.g., wave, swipe), whereas physical sensors can help recognize activities accurately. The baselines either concatenated or used self-attention to fuse unimodal features without considering the characteristics of activity-group, which results in performance degradation with supplementary modalities. However, MuMu uses activity-group information to guide the target task for prioritizing and fusing the additional modalities to extract complementary multimodal representations for recognizing activities accurately. Therefore, it is essential to prioritize the salient modalities for extracting robust representation to recognize activities accurately.

Impact of Noisy Modalities
We conducted both quantitative and qualitative experiments to evaluate the performance of MuMu and three baselines (Non-Attention, HAMLET, and Keyless) in the presence of noisy and misaligned sensor data. We developed the Non-Attention method for evaluation purposes, where we extract unimodal features using CNN+LSTM model without using an attention mechanism. The extracted unimodal features are concatenated to classify activities.

We conducted this study in cross-subject evaluation setting on MMAct dataset with visual modalities (View 1 & 2) and non-visual modalities (Gyroscope, Orientation & Acceleration). We randomly dropped raw features either from visual or non-visual modalities with 50% probability to introduce noise. The quantitative and qualitative experimental results are presented in Table 6 and Fig 1, respectively.

Results & Discussion: The experimental results suggest that MuMu outperforms the evaluated baselines in the presence of noisy data (Table 6). In MuMu, our proposed Guided Multimodal Fusion Approach (GM-Fusion) appropriately prioritizes the modalities and extracts the robust multimodal representation from noisy sensor data for accurate activity recognition. However, the baseline multimodal learning approaches either use Non-Attention or self-attention based multimodal fusion, which may not effectively extract complementary multimodal representations.

Additionally, the qualitative results of multimodal attention visualization (Fig. 1-Bottom row) indicate the same phenomenon that MuMu can prioritize the salient modalities to extract complementary representations from noisy and misaligned sensor data. For example, although the gyroscope and acceleration data provide distinctive features for carry-heavy activity, MuMu adjusts the multimodal attention weights when we introduce noise in those modalities (Fig. 1-Bottom row), by paying more attention to the non-noisy modality (Orientation) and less attention to noisy modalities (Gyroscope and Acceleration), which contribute to better HAR performance on noisy data (Table 6). In Fig. 1-Center row, it can be observed that HAMLET, which uses a self-attention based fusion approach, increased the attention weight to the noisy sensor data (i.e., Acceleration in Fig 1(c)) compared to the attention weight assigned on the non-noisy data samples (Fig 1(a & b)). These qualitative results indicate that self-attention based fusion may not appropriately prioritize the noisy sensor data to extract robust multimodal representations (Fig. 1-Center row), which also reflects in the quantitative results in Table 6.

Ablation Study and Significance Analysis
To investigate the importance of various modules of MuMu, we developed three single-task-based baseline models by re-

Learning Methods	Modality Combinations	RGB	S+P	R+S+P
Keyless	R+S	90.20	92.67	83.87
HAMLET	R+S	95.12	91.16	90.09
MuMu	R+S	96.10	97.44	97.60

Table 5: Performance comparison (Accuracy %) of the impact of modality changes on UTD-MHAD dataset. R: RGB, D: Depth, S: Skeleton, P: Physical Sensors.

Learning Methods	No Noisy Modalities	Noisy Modalities
	Visual	Non-Visual
Non-Attention	68.29	66.30
HAMLET	69.35	64.10
Keyless	71.83	67.94
MuMu	76.28	74.22

Table 6: Performance comparison (F1-Score %) of the impact of noisy data on MMAct dataset. Visual: RGB (View 1 & 2), Non-visual: Gyroscope, Orientation & Acceleration.
Table 7: Ablation study of MuMu components on MMAct Dataset. B1: Non-Attention, B2: Unimodal Attention, B3: Uni + Multimodal Attention. † Self-Attention based Multimodal Fusion, * Guided Multimodal Fusion, § Significance analysis at α = 0.05 (Following Dror et al. (2019))

Model Type	Learning Models	Average F1-Score	Standard Deviation	Significant Over
Single Task	B1	68.48%	1.26	None
	B2 †	70.52%	0.98	B1 & B3
	B3 †	69.19%	0.72	B1
Multitask	MuMu *	75.97%	0.29	B1, B2 & B3

moving the auxiliary task learning branch in MuMu (Fig. 2). The Non-Attention model (B1) does not employ any attention approach in extracting unimodal or fusing multimodal features. The Unimodal Attention model (B2) employs an attention approach to extract unimodal features and concatenate multimodal features (similar to Keyless (Long et al. 2018)). The Unimodal + Multimodal Attention model (B3) uses an attention approach to extract unimodal and fuse multimodal features (similar to HAMLET (Islam and Iqbal 2020)). We trained and tested these models five times with different initialization of the learning parameters. Finally, we conducted the significance analysis at level α = 0.05 by following the procedure proposed by Dror, Shlomov, and Reichart (2019). We conducted this experimental analysis on MMAct dataset in cross-subject evaluation setting.

Results and Discussion: The experimental results in Table 7 suggest that the baseline B3, which uses an attention approach to prioritize the modalities, fails to outperform B2 significantly. Here, B2 uses the attention approach only to extract unimodal features. These results indicate that how a multimodal learning approach fuses the information is crucial in improving the HAR performance.

Moreover, the experimental results in Table 7 indicate that MuMu significantly outperforms all the baseline models and improves the HAR accuracy. The primary difference between MuMu and the baseline models is that MuMu uses activity-group features to guide the target task for extracting multimodal representations. Thus, this experimental analysis indicates that MuMu, with the help of our guided multimodal fusion approach, can appropriately fuse multimodal features to improve the HAR accuracy significantly.

Qualitative Analysis

We conducted two qualitative analyses to evaluate the effectiveness of our guided multimodal fusion approach. First, we visualized the attention weights to evaluate whether MuMu can prioritize the salient modalities (Fig. 1). Second, we visualized t-SNE embeddings of unimodal and multimodal representations obtained using MuMu (Fig. 3-Right) and HAMLET with self-attention based fusion (Islam and Iqbal 2020) (Fig. 3-Left). We conducted these studies on the MMAct dataset in cross-subject evaluation setting.

Attention Visualization: Our experimental analysis (Fig. 1) suggests that appropriately prioritizing the relevant modalities aids in improved HAR performance. The results in Fig. 1-a & b indicate that MuMu can appropriately prioritize the salient modalities (Gyroscope and Acceleration) in extracting complementary representations to distinguish visually similar activities (i.e., carry-light and carry-heavy). Additionally, when the data from these modalities are noisy, MuMu adjusts the attention weights to the non-noisy modalities (i.e., visual and orientation) to extract robust representations (Fig. 1). These results indicate that MuMu can adjust attention weights based on the extracted unimodal features to produce complementary representations. On the other hand, the self-attention based fusion approach can not appropriately prioritize the relevant modalities (Fig. 1), which results in performance degradation (Table 7).

Feature Visualization (t-SNE): In Fig. 3, one can observe that the features are sparsely distributed with fractured clusters when obtained from HAMLET, whereas the features are more compact and smoothly distributed when obtained from MuMu. Specifically, for visual modalities, MuMu produces clustered representations, whereas HAMLET produces sparsely distributed representations. This visualization indicates that MuMu can extract non-overlapping distinctive representations, resulting in an improved HAR performance.

Conclusion

In this work, we have proposed a cooperative multitask learning-based guided multimodal fusion approach, MuMu. MuMu first extracts activity-group features for activity-group recognition (Auxiliary task). MuMu then utilizes the activity-group features in the Guided Multimodal Fusion (GM-Fusion) module to extract complementary multimodal representations for HAR (Target task). Our extensive experimental results suggest that MuMu outperforms state-of-the-art approaches on three multimodal activity recognition datasets in all evaluation conditions. Additionally, the robust performance on noisy data indicates the applicability of MuMu in real-world settings. Future work will focus on evaluating the performance of MuMu on other multimodal learning tasks, such as human motion prediction, visual-language navigation, and action or video retrieval.
References

Achille, A.; Lam, M.; Tewari, R.; Ravichandran, A.; Maji, S.; Fowlkes, C. C.; Soatto, S.; and Perona, P. 2019. Task2Vec: Task Embedding for Meta-Learning. In *ICCV*.

Arzani, M. M.; Fathy, M.; Aghajan, H.; Azirani, A. A.; Rahemifar, K.; and Adeli, E. 2017. Structured prediction with short/long-range dependencies for human activity recognition from depth skeleton data. In *IROS*.

Awad, G.; Butt, A.; Curtis, K.; Lee, Y.; Fiscus, J.; Godil, A.; Joy, D.; Delgado, A.; Smeaton, A.; Graham, Y.; et al. 2018. Trecvid 2018: Benchmarking video activity detection, video captioning and matching, video storytelling linking and video search. In *Proceedings of TRECVID 2018*.

Batzianoulis, I.; El-Khoury, S.; Piroldini, E.; Coscia, M.; Micera, S.; and Billard, A. 2017. EMG-based decoding of grasp gestures in reaching-to-grasping motions. *RAS*.

Chen, C.; Safari, R.; and Kehtarnavaz, N. 2015. UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. In *2015 IEEE ICIP*, 168–172.

Crawshaw, M. 2020. Multi-Task Learning with Deep Neural Networks: A Survey. *arXiv preprint arXiv:2009.09796*.

Dror, R.; Shlomov, S.; and Reichart, R. 2019. Deep dominance-how to properly compare deep neural models. In *ACL*, 2773–2785.

Fan, L.; Huang, W.; Gan, C.; Ermon, S.; Gong, B.; and Huang, J. 2018. End-to-end learning of motion representation for video understanding. In *CVPR*, 6016–6025.

Feichtenhofer, C.; Fan, H.; Malik, J.; and He, K. 2019. SlowFast Networks for Video Recognition. In *CVPR*.

Feichtenhofer, C.; Pinz, A.; and Wildes, R. P. 2016. Spatiotemporal Residual Networks for Video Action Recognition. In *NeurIPS*.

Feichtenhofer, C.; Pinz, A.; and Wildes, R. P. 2017. Spatiotemporal multiplier networks for video action recognition. In *CVPR*, 4768–4777.

Frank, A. E.; Kubota, A.; and Riek, L. D. 2019. Wearable activity recognition for robust human-robot teaming in safety-critical environments via hybrid neural networks. In *IROS*, 449–454. *IEEE*.

Gagné, C. 2019. A Principled Approach for Learning Task Similarity in Multitask Learning. In *IJCAI*.

Green, H. N.; Islam, M. M.; Ali, S.; and Iqbal, T. 2022a. iSpy a Humorous Robot: Evaluating the Perceptions of Humor Types in a Robot Partner. In *AAAI Spring Symposium on Putting AI in the Critical Loop: Assured Trust and Autonomy in Human-Machine Teams*.

Green, H. N.; Islam, M. M.; Ali, S.; and Iqbal, T. 2022b. Who’s Laughing NAO? Examining Perceptions of Failure in a Humorous Robot Partner. In *ACM/IEEE International Conference on Human-Robot Interaction (HRI)*, 313–322.

Guo, M.; Haque, A.; Huang, D.-A.; Yeung, S.; and Fei-Fei, L. 2018. Dynamic task prioritization for multitask learning. In *ECCV*, 270–287.

Guo, P.; Lee, C.-Y.; and Ulbricht, D. 2020. Learning to branch for multi-task learning. In *International Conference on Machine Learning*, 3854–3863. PMLR.

Hasan, M. K.; Rahman, W.; Bagher Zadeh, A.; Zhong, J.; Tanveer, M. I.; Morency, L.-P.; and Hoque, M. E. 2019. UR-FUNNY: A Multimodal Language Dataset for Understanding Humor. In *EMNLP-IJCNLP*, 2046–2056.

Hashimoto, K.; Xiong, C.; Tsuruoka, Y.; and Socher, R. 2016. A joint many-task model: Growing a neural network for multiple nlp tasks. *arXiv preprint arXiv:1611.01587*.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image recognition. In *CVPR*, 770–778.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the knowledge in a neural network. *NeurIPS*.

Hou, Y.; Li, Z.; Wang, P.; and Li, W. 2016. Skeleton optical spectra-based action recognition using convolutional neural networks. *IEEE Transactions on Circuits and Systems for Video Technology*.

Imran, J.; and Kumar, P. 2016. Human action recognition using RGB-D sensor and deep convolutional neural networks. In *ICACCI*.

Iqbal, T.; Li, S.; Fourie, C.; Hayes, B.; and Shah, J. A. 2019. Fast Online Segmentation of Activities from Partial Trajectories. In *ICRA*.

Iqbal, T.; Rack, S.; and Riek, L. D. 2016. Movement Coordination in Human-Robot Teams: A Dynamical Systems Approach. *IEEE Transactions on Robotics*, 32(4): 909–919.

Iqbal, T.; and Riek, L. D. 2017. Human Robot Teaming: Approaches from Joint Action and Dynamical Systems. *Humanoid Robotics*.

Iqbal, T.; and Riek, L. D. 2021. Temporal Anticipation and Adaptation Methods for Fluent Human-Robot Teaming. In *2021 IEEE International Conference on Robotics and Automation (ICRA)*, 3736–3743.

Islam, M. M.; and Iqbal, T. 2020. HAMLET: A Hierarchical Multimodal Attention-based Human Activity Recognition Algorithm. In *2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 10285–10292.

Islam, M. M.; and Iqbal, T. 2021. Multi-GAT: A Graphical Attention-based Hierarchical Multimodal Representation Learning Approach for Human Activity Recognition. In *IEEE Robotics and Automation Letters (RA-L)*.

Jang, E.; Gu, S.; and Poole, B. 2016. Categorical reparameterization with gumbel-softmax. *arXiv preprint arXiv:1611.01144*.

Joze, H. R. V.; Shaban, A.; Iuzzolino, M. L.; and Koishida, K. 2020. MMTM: Multimodal Transfer Module for CNN Fusion. In *CVPR*.

Ke, Q.; Bennamoun, M.; An, S.; Sohel, F.; and Boussaid, F. 2017. A new representation of skeleton sequences for 3d action recognition. In *CVPR*, 3288–3297.

Kong, Q.; Wu, Z.; Deng, Z.; Klinkigt, M.; Tong, B.; and Murakami, T. 2019. MMAct: A Large-Scale Dataset for Cross Modal Human Action Understanding. In *ICCV*, 8658–8667.
Kubota, A.; Iqbal, T.; Shah, J. A.; and Riek, L. D. 2019. Activity recognition in manufacturing: The roles of motion capture and sEMG+ inertial wearables in detecting fine vs. gross motion. In ICRA.

Li, C.; Zhong, Q.; Xie, D.; and Pu, S. 2018. Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation. IJCAI.

Li, L. H.; Yatskar, M.; Yin, D.; Hsieh, C.-J.; and Chang, K.-W. 2019. VisualBERT: A Simple and Performant Baseline for Vision and Language. In NeurIPS.

Liu, G.; Qian, J.; Wen, F.; Zhu, X.; Ying, R.; and Liu, P. 2019. Action Recognition Based on 3D Skeleton and RGB Frame Fusion. In IROS, 258–264.

Liu, M.; and Yuan, J. 2018. Recognizing human actions as the evolution of pose estimation maps. In CVPR.

Liu, S.; Johns, E.; and Davison, A. J. 2019. End-To-End Multi-Task Learning With Attention. In CVPR, 1871–1880.

Liu, T.; Kong, J.; and Jiang, M. 2019. RGB-D Action Recognition Using Multimodal Correlative Representation Learning Model. IEEE Sensors Journal, 19(5): 1862–1872.

Long, X.; Gan, C.; De Melo, G.; Liu, X.; Li, Y.; Li, F.; and Wen, S. 2018. Multimodal keyless attention fusion for video classification. In AAAI.

Lu, J.; Batra, D.; Parikh, D.; and Lee, S. 2019. ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks. In NeurIPS.

Münzner, S.; Schmidt, P.; Reiss, A.; Hanselmann, M.; Stiefelhagen, R.; and Dürichen, R. 2017. CNN-Based Sensor Fusion Techniques for Multimodal Human Activity Recognition. In ACM ISWC, 158–165.

Ofli, F.; Chaudhry, R.; Kurillo, G.; Vidal, R.; and Bajcsy, R. 2013. Berkeley mhad: A comprehensive multimodal human action database. In WACV, 53–60. IEEE.

Pakdamanian, E.; Sheng, S.; Baee, S.; Heo, S.; Kraus, S.; and Feng, L. 2020. DeepTake: Prediction of Driver Takeover Behavior using Multimodal Data. In CHI.

Perez-Rua, J.-M.; Vielzeuf, V.; Pateau, S.; Baccouche, M.; and Jurie, F. 2019. MFAS: Multimodal Fusion Architecture Search. In CVPR.

Roitberg, A.; Somani, N.; Perzylo, A.; Rickert, M.; and Knoll, A. 2015. Multimodal Human Activity Recognition for Industrial Manufacturing Processes in Robotic Workcells. In ICMI.

Ruder, S. 2017. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098.

Ryoo, M. S.; Rothrock, B.; Fleming, C.; and Yang, H. J. 2017. Privacy-Preserving Human Activity Recognition from Extreme Low Resolution. In AAAI.

Sabokrou, M.; PourReza, M.; Fayyaz, M.; Entezari, R.; Fathy, M.; Gall, J.; and Adeli, E. 2019. AVID: Adversarial Visual Irregularity Detection. In ACCV, 488–505.

Samyoun, S.; Islam, M. M.; Iqbal, I.; and Stankovic, J. 2022. M3Sense: Affect-Agnostic Multitask Representation Learning using Multimodal Wearable Sensors. In ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT).

Simonyan, K.; and Zisserman, A. 2014. Two-stream convolutional networks for action recognition in videos. In NeurIPS, 568–576.

Søgaard, A.; and Goldberg, Y. 2016. Deep multi-task learning with low level tasks supervised at lower layers. In ACL.

Standley, T.; Zamir, A.; Chen, D.; Guibas, L.; Malik, J.; and Savarese, S. 2020. Which tasks should be learned together in multi-task learning? In ICML, 9120–9132. PMLR.

Sun, X.; Panda, R.; Feris, R.; and Saenko, K. 2020. AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning. In NeurIPS, volume 33, 8728–8740.

Vandenhende, S.; Georgoulis, S.; Proesmans, M.; Dai, D.; and Van Gool, L. 2020. Revisiting multi-task learning in the deep learning era. arXiv preprint arXiv:2004.13379.

Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; and Van Gool, L. 2016. Temporal segment networks: Towards good practices for deep action recognition. In ECCV.

Wang, P.; Wang, S.; Gao, Z.; Hou, Y.; and Li, W. 2017. Structured images for RGB-D action recognition. In CVPRW, 1005–1014.

Xiao, F.; Lee, Y. J.; Grauman, K.; Malik, J.; and Feichtenhofer, C. 2020. Audiovisual SlowFast Networks for Video Recognition. arXiv preprint arXiv:2001.08740.

Xu, P.; Madotto, A.; Wu, C.-S.; Park, J. H.; and Fung, P. 2018. Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, ACL.

Yan, S.; Xiong, Y.; and Lin, D. 2018. Spatial temporal graph convolutional networks for skeleton-based action recognition. In AAAI.

Yasar, M. S.; and Iqbal, T. 2021. A Scalable Approach to Predict Multi-Agent Motion for Human-Robot Collaboration. In IEEE Robotics and Automation Letters (RA-L).

Yasar, M. S.; and Iqbal, T. 2022. Robots That Can Anticipate and Learn in Human-Robot Teams. In HRI.

Zamir, A. R.; Sax, A.; Shen, W.; Guibas, L. J.; Malik, J.; and Savarese, S. 2018. Taskonomy: Disentangling Task Transfer Learning. In CVPR.

Zhong, H.; and Parker, L. E. 2011. 4-dimensional local spatio-temporal features for human activity recognition. In IROS.

Zhong, S.; Yang, Y.; Xiao, J.; Liu, X.; Yang, Y.; Xie, D.; and Zhuang, Y. 2018. Fusing geometric features for skeleton-based action recognition using multilayer LSTM networks. IEEE Transactions on Multimedia, 20(9): 2330–2343.

Zhang, Y.; and Yang, Q. 2017. A survey on multi-task learning. arXiv preprint arXiv:1707.08114.

Zhou, F.; Shui, C.; Abbasi, M.; Robitaille, L.-É.; Wang, B.; and Gagné, C. 2020a. Task Similarity Estimation Through Adversarial Multitask Neural Network. IEEE Transactions on Neural Networks and Learning Systems.

Zhou, L.; Cui, Z.; Xu, C.; Zhang, Z.; Wang, C.; Zhang, T.; and Yang, J. 2020b. Pattern-Structure Diffusion for Multi-Task Learning. In CVPR.