Rapid Detection of *Bifidobacterium bifidum* in Feces Sample by Highly Sensitive Quartz Crystal Immunosensor

Kaijian Hou¹†, Pingsen Zhao²†, Yongru Chen³†, Guiping Li⁴, Yu Lin⁵, Danjie Chen⁶, Dan Zhu¹, Zezhen Wu¹, Danchun Lian⁷, Xiaojun Huang⁷ and Jilin Li⁷*

¹Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China, ²Department of Laboratory Medicine, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China, ³Department of Emergency Intensive Care Unit (EICU), The First Affiliated Hospital of Shantou University Medical College, Shantou, China, ⁴Department of Endocrine and Metabolic Diseases, The Third People’s Hospital of Huizhou, Huizhou, China, ⁵Department of Endocrinology, Jieyang People’s Hospital, Jieyang, China, ⁶Department of Endocrinology, Puning People’s Hospital, Puning, China, ⁷Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China

In this work, a quartz crystal microbalance (QCM) sensor has been fabricated using immunoassay for sensitive determination of *Bifidobacterium bifidum*. Au nanoparticle has been used for amplifying sandwich assays. The proposed immunosensor exhibited a linear detection range between $10^3$ and $10^5$ CFU/mL with a limit of detection of $2.1 \times 10^2$ CFU/mL. The proposed immunosensor exhibited good selectivity for *B. bifidum* sensing with low cross reactivity for other foodborne pathogens such as *Lactobacillus acidophilus*, *Listeria monocytogenes*, and *Escherichia coli*. In addition, the proposed immunosensor has been successfully used for *B. bifidum* detection in feces samples and food samples. The frequency decreases of 12, 17, and 10 Hz were observed from the milk samples consisting of the mixtures of *L. acidophilus*, *L. monocytogenes*, and *E. coli*. The frequency decreases of 8, 15, and 7 Hz were observed from the feces samples consisting of the mixtures of *L. acidophilus*, *L. monocytogenes*, and *E. coli*.

Keywords: quartz crystal microbalance sensor, *Bifidobacterium bifidum*, immunosensor, Au nanoparticle, feces sample

INTRODUCTION

Under normal circumstances, the intestinal microorganisms in the human body form a relatively balanced state. Once the balance is damaged, it will lead to the imbalance of intestinal flora (Horie et al., 2017; Xue et al., 2018). Some intestinal microorganisms, such as *Clostridium perfringens*, overproduce in the intestinal tract and produce harmful substances such as ammonia, amines, hydrogen sulfide, manure, indole, nitrite, and bacterial toxins, which will further affect the health of the body (Ashida et al., 2018; Duranti et al., 2019). *Bifidobacterium bifidum* is an important intestinal beneficial microorganism. *B. bifidum*, as a physiological beneficial bacterium, has many important physiological functions for human health, such as biological barrier, anti-tumor, immune enhancement, improvement of gastrointestinal function, and anti-aging (Wang et al., 2016; Mauras et al., 2018; Din et al., 2020). *B. bifidum* can inhibit the growth of harmful bacteria, resist the infection of pathogenic bacteria, and synthesize vitamins needed by human body. It can promote...
the absorption of minerals, produce organic acids such as acetic acid, propionic acid, butyric acid, and lactic acid to stimulate intestinal peristalsis and promote defecation. It can prevent constipation, purify the intestinal environment, decompose carcinogens, stimulate the human immune system, and improve the disease resistance (Gomi et al., 2018; Bondue et al., 2019; Speciale et al., 2019). It is of crucial importance to identify B. bifidum either in food and excreta. Although the normal microbiological isolation methods have been widely used for identifying bacterial strains, they are time-consuming (Yang et al., 2017; Cheng et al., 2018; Faraki et al., 2020). Therefore, the development of a fast method for B. bifidum identification is very essential for sample scanning.

The biosensor first immobilizes the bioactive components (enzyme, antibody, tissue, cell) on the transducer. When the target analyte is recognized by the immobilized bioactive components, the biochemical reaction can be immediately converted into a quantifiable electrical signal through the transducer (Fu et al., 2015; Huertas et al., 2019; Alamgholiloo et al., 2020; Fouladgar et al., 2020; Karimi-Maleh et al., 2020). Since the rise of biosensor in the late 1960s, after nearly half a century of development, biosensor has become a comprehensive and interdisciplinary field, which is used in food safety testing, environmental testing, and clinical diagnosis. QCM is a new type of micro mass sensor based on quartz crystal resonance, which was developed in 1960s. According to the piezoelectric effect of quartz crystal, the resonance frequency of quartz crystal will change with the mass of adsorbed material, and they are in a positive proportion (Bearzotti et al., 2017; Speller et al., 2017; Wang A. et al., 2017; Ayankojo et al., 2018). QCM immunosensor is a specific biosensor combining the high sensitivity of quartz crystal and the high specificity of immune response (Bearzotti et al., 2017; Speller et al., 2017; Wang L. et al., 2017; Ayankojo et al., 2018; Zhang et al., 2018). At present, QCM immunosensor has been widely used in clinical testing, food hygiene, environmental testing, as well as other fields of chemical analysis, and biological analysis. The detection of bacteria by QCM is a new and attractive Research Topic in electronic informatics and medicine (Muckley et al., 2016; Tai et al., 2016; Chen et al., 2018; Ding et al., 2018; Lal and Tiwari, 2018; Temel et al., 2019).

In this work, a QCM immunosensor has been developed for sensitive determination of B. bifidum. Monoclonal and polyclonal antibody have been used with the signal amplifying based on the Au nanoparticle. The proposed immunosensor exhibited a wide linear detection range with a low detection of limit. The sensitivity was enhanced when the antibody-conjugated Au nanoparticle. We believe the proposed assay was validated by cross reactivity investigation using Lactobacillus acidophilus, Listeria monocytogenes and Escherichia coli.

**MATERIALS AND METHODS**

**Reagents, Bacterial Strains, and Instruments**

Polyclonal antibody and mouse monoclonal antibody against B. bifidum were purchased from San Ying Biotechnology Co., Ltd (Wuhan, China). Mouse IgG, 11-mercaptopoundecanoic acid (11-MUDA), bovine serum albumin (BSA), and ethanolamine hydrochloride were purchased from Linc-Bio Science Co., Ltd (Shanghai, China). Au colloidal (AuNPs) with 20 nm was purchased from Shenzhen Nano Tech Co., Ltd (Shenzhen, China). All other common regents were supplied by Sinopharm Chemical Reagent Co., Ltd (Shanghai, China) and used without further purification. A QCA922 quartz crystal analyzer (Princeton, USA) has been used for sensing with an Au coated chips. Bifidobacterium bifidum (B. bifidum), L. acidophilus, L. monocytogenes, and E. coli strains were purchased from American Type Culture Collection (ATCC, Manassas, VA). MRS (de Man, Rogosa, and Sharpe) and Bifidus Selective Medium (BSM) were used as growth media.

**Sensor Chip Preparation**

Piranha solution has been used for removing any impurities on the QCM Au chip. Then, the Au chip was immersed into 20 mM thiol (11-MUDA), prepared using ethanol) overnight for fabricating carboxy-terminated thiol layer on the Au surface. After rinse by ethanol and water, the Au chip was used for baseline correction under 10 mM PBS (pH 7.4). A mixture solution of EDC (0.4 M)-NHS (0.1 M) at ratio of 1:1 was then used for sensor activation. Then, different concentrations of polyclonal or mouse monoclonal antibodies against B. bifidum were immobilized on the Au chip. Then, capture and control were carried out by injected either polyclonal or mouse monoclonal antibodies and mouse IgG antibody. Then, BSA (50 µg/mL) and ethanolamine (1 M) were used for blocking and capping the sensors.

**Detection of B. bifidum**

Direct detection of B. bifidum was carried out by the injection of different concentrations of B. bifidum cells suspension prepared in PBS over above-mentioned polyclonal, mouse monoclonal, and mouse IgG antibodies fabricated sensor. The detection was carried out by comparing either B. bifidum captured polyclonal or mouse monoclonal antibodies with the control group.

The sandwich assay with antibody-AuNPs conjugation was prepared according to previous methods with some modifications (Uludag and Tothill, 2012). Typically, 0.1 mL of polyclonal or mouse monoclonal antibodies was added into 0.5 mL of AuNPs suspension with 2 h slow stirring. Then, 0.1 mL of BSA (10%) was introduced to the mixture with 2 h slow stirring. A centrifugation process was carried out to remove the excess of BSA and AuNPs. The detection process of using antibody-AuNPs conjugation was similar to the direct detection except the polyclonal and mouse monoclonal antibodies were replaced by the polyclonal-AuNPs and mouse monoclonal-AuNPs antibodies. Non-linear regression with four parameter logistic equations has been used for construing the calibration curves (Karpinski, 1990).

**Selectivity Test**

L. acidophilus, L. monocytogenes, and E. coli have been used for evaluating the specificity of the assay to B. bifidum. The selectivity test only carried out using antibody-AuNPs conjugation. The detection process of
Hou et al. Immunosensor for Bifidobacterium bifidum Detection

FIGURE 1 | (A) Frequencies recorded at QCM when different concentrations of polyclonal antibody immobilized on the Au chip surface. (B) Frequencies performance of QCM after introduction of B. bifidum after the immobilization of different concentrations of polyclonal antibody.

FIGURE 2 | (A) Frequencies recorded at QCM when different concentrations of mouse monoclonal antibody immobilized on the Au chip surface. (B) Frequencies performance of QCM after introduction of B. bifidum after the immobilization of different concentrations of mouse monoclonal antibody.

FIGURE 3 | (A) Frequencies recorded at QCM when different concentrations of B. bifidum introduced using polyclonal antibody immobilized sensor, mouse monoclonal antibody immobilized sensor, and mouse IgG antibody immobilized sensor. Plots of Frequency vs. concentrations of B. bifidum using (B) polyclonal antibody immobilized sensor and (C) mouse monoclonal antibody immobilized sensor.
RESULTS AND DISCUSSION

Figure 1 shows the optimization of the immobilization of polyclonal antibody on the Au chip surface. Different concentrations of polyclonal antibody were introduced using the standard B. bifidum. As shown in Figure 1A, the frequency was initially increased when the polyclonal antibody increased from 10 to 50 µg/mL. Then, the frequency decreased when the further increase of the polyclonal antibody. Figure 1B shows the binding response of B. bifidum at these concentrations of polyclonal antibody used. It can be seen that the best response was achieved when the concentration of polyclonal antibody at 50 µg/mL. Therefore, 50 µg/mL of polyclonal antibody has been selected in this study.

Figure 2 shows the optimization of the immobilization of mouse monoclonal antibody on the Au chip surface. Different
concentrations of mouse monoclonal antibody were introduced using the standard \textit{B. bifidum}. As shown in Figure 2A, the frequency was initially increased when the mouse monoclonal antibody increased from 10 to 40 \(\mu\)g/mL. Then, the frequency decreased when the further increase of the mouse monoclonal antibody. Figure 2B shows the binding response of \textit{B. bifidum} at these concentrations of mouse monoclonal antibody used. It can be seen that the best response was achieved when the concentration of mouse monoclonal antibody at 50 \(\mu\)g/mL. Therefore, \(50 \times 10^4 \mu\)g/mL mouse monoclonal antibody has been selected in this study. Both studies suggested a high concentration of antibodies could result in a high steric hindrance, which lower the sensitivity of the sensor. Similar results were obtained for \textit{Campylobacter jejuni} and \textit{Vibrio harveyi} as well (Buchatip et al., 2010; Masdor et al., 2016).

\textit{B. bifidum} can be directed detected using both polyclonal and mouse monoclonal antibodies immobilized Au chips. Figure 3 shows the frequency changes when different concentrations of \textit{B. bifidum} introduced in the QCM system in the presence of polyclonal antibody immobilized sensor, mouse monoclonal antibody immobilized sensor, and mouse IgG antibody immobilized sensor. As shown in Figures 3B,C, sigmoidal relationship between frequency change signals and concentrations of \textit{B. bifidum} were obtained for both polyclonal antibody immobilized sensor and mouse monoclonal antibody immobilized sensor. The linear portions of the concentrations of \textit{B. bifidum} between \(10^2\)-\(10^6\) and \(10^5\)-\(10^8\) CFU/mL were obtained for polyclonal antibody immobilized sensor and mouse monoclonal antibody immobilized sensor, respectively. The limit of detection (LOD) of polyclonal antibody immobilized sensor and mouse monoclonal antibody immobilized sensor can be calculated to be \(3 \times 10^5\) and \(3 \times 10^6\) CFU/mL, respectively. Since the polyclonal antibody immobilized sensor exhibited a lower LOD, it has been further used for construction of sandwich assay.

The sandwich assay has been constructed using polyclonal antibody against \textit{B. bifidum}. The sandwich assay could improve sensitivity as well as prevented the false negative results (Amani et al., 2018). Figure 4A shows the sensing performance of using polyclonal antibody as the capture and detection antibody with schematic diagram. Figure 4B shows the sensing performance of using polyclonal antibody as the capture and mouse monoclonal antibody as the detection antibody with schematic diagram. It can be seen that both sandwich assay exhibited sigmoidal relationship between frequency and concentrations of \textit{B. bifidum}. Linear portions of the concentrations of \textit{B. bifidum} between \(10^4\)-\(10^8\) and \(10^5\)-\(10^6\) CFU/mL were observed using polyclonal antibody and mouse monoclonal antibody as the detection antibodies, respectively. The LOD of using polyclonal antibody and mouse monoclonal antibody as the detection antibodies can be calculated to be \(2.0 \times 10^4\) and \(3.3 \times 10^5\) CFU/mL, respectively. These results indicated that the sandwich assay could increase the sensitivity of the QCM sensor (Cervera-Chiner et al., 2018; Makhneva et al., 2018; Pohanka, 2020). In order to further enhance the sensitivity of the QCM immunosensor, Au nanoparticles were introduced for forming the antibody-AuNPs conjugation (Zheng et al., 2015; Wang L. et al., 2017; Fu et al., 2020; Xu et al., 2020). Figure 5A shows the sensing performance of using polyclonal antibody-AuNPs conjugation as detection layer with schematic diagram. Figure 5B shows the sensing performance of using mouse monoclonal antibody-AuNPs conjugation as detection layer with schematic diagram. A linear portions of the concentrations of \textit{B. bifidum} between \(10^2\) and \(10^5\) CFU/mL was observed using polyclonal antibody-AuNPs conjugation as detection layer. The LOD of using mouse monoclonal antibody-AuNPs conjugation can be calculated to be \(2.1 \times 10^5\) CFU/mL. No clear linear portions of the concentrations of \textit{B. bifidum} can be observed using mouse monoclonal antibody-AuNPs conjugation as detection layer. The results recorded in this study are very competitive with previous reports (Fung and Wong, 2001; Guo et al., 2012; Skládal, 2016; Della Ventura et al., 2017; Wang L. et al., 2017; Wang R. et al., 2017; Gao et al., 2018; Pohanka, 2018a, b, 2019). Table 1 showed the sensing performance comparison.

The selectivity of the proposed QCM immunosensor has been tested by \textit{L. acidophilus}, \textit{L. monocytogenes}, and \textit{E. coli}. As shown in Figure 6, <10\% of cross reactivities were observed by \textit{L. acidophilus}, \textit{L. monocytogenes}, and \textit{E. coli}, suggesting the proposed QCM immunosensor exhibited an excellent selectivity toward \textit{B. bifidum}.

The applicability of the novel QCM immunosensor to determine \textit{B. bifidum} in milk and feces were also carried out. For the detection of \textit{B. bifidum} in real samples, the QCM sensor was firstly calibrated by the measurement in the absence of \textit{B. bifidum}. As shown in Figure 7, frequency change of 3 and 7 Hz were recorded from the milk sample and feces sample

---

**TABLE 1**: Sensing performance of the proposed QCM sensor with other reports.

| Analyte                  | Linear detection range | Limit of detection | References            |
|-------------------------|------------------------|--------------------|-----------------------|
| \textit{S. paratyphi}   | \(10^2\)-\(10^6\) CFU/mL | \(1.7 \times 10^2\) CFU/mL | Fung and Wong, 2001   |
| \textit{E. coli} O157:H7| 0–1 log CFU/mL         | –                  | Guo et al., 2012      |
| \(\alpha\)-Amylase      | –                      | 1 \(\mu\)g/mL      | Della Ventura et al., 2017 |
| H5N1 avian influenza virus | \(2^{-4}\)-\(2^{-1}\) HAUs/50 \(\mu\)L | \(2^{-4}\) HAU/50 \(\mu\)L | Wang L. et al., 2017 |
| Albumin                 | 35–55 mg/mL            | 0.234 mg/mL        | Pohanka, 2018a        |
| \textit{S. aureus}      | –                      | 5.18 \(\times 10^8\) CFU/mL | Pohanka, 2020        |
| \textit{B. bifidum}     | \(10^3\)-\(10^5\) CFU/mL | \(2.1 \times 10^2\) CFU/mL | This work             |
Hou et al. Immunosensor for Bifidobacterium bifidum Detection

FIGURE 6 | Selectivity performance of the proposed QCM immunosensor toward B. bifidum sensing compared with that of the Lactobacillus acidophilus, Listeria monocytogenes and Escherichia coli.

FIGURE 7 | Specific detection of $10^4$ CFU/mL of B. bifidum, Lactobacillus acidophilus, Listeria monocytogenes and Escherichia coli inoculated on milk and feces samples.

Selectivity performance of the proposed QCM immunosensor toward B. bifidum sensing compared with that of the Lactobacillus acidophilus, Listeria monocytogenes and Escherichia coli. The results indicate that the QCM system developed in the present study is practical for the simultaneous enrichment and detection of viable B. bifidum in real samples.

CONCLUSION

In this work, an advanced piezoelectric biosensor-QCM system was proposed. In order to further enhance the sensitivity of the QCM immunosensor, Au nanoparticles were introduced for forming the antibody-AuNPs conjugation. A linear portions of the concentrations of B. bifidum between $10^3$ and $10^5$ CFU/mL was observed using polyclonal antibody-AuNPs conjugation as detection layer. The LOD of using mouse monoclonal antibody-AuNPs conjugation can be calculated to be $2.1 \times 10^2$ CFU/mL. The selectivity of the proposed QCM immunosensor has been tested by L. acidophilus, L. monocytogenes, and E. coli. The applicability of the novel QCM immunosensor to determine B. bifidum in milk and feces were tested. The frequency decreases of 12, 17, and 10 Hz were observed from the milk samples consisting of the mixtures of L. acidophilus, L. monocytogenes, and E. coli. The frequency decreases of 8, 15, and 7 Hz were observed from the feces samples consisting of the mixtures of L. acidophilus, L. monocytogenes, and E. coli.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. Written informed consent from the participants was not required to participate in this study in accordance with the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

KH, YC, and JL contributed conception and design of the study. GL, YL, and DC conducted QCM experiments. DZ and ZW performed the statistical analysis. DL and XH did the characterizations. KH and YC wrote the manuscript. All authors contributed to the article and approved the submitted version.

REFERENCES

Alamgholiloo, H., Rostamnia, S., Hassankhani, A., Liu, X., Eftekhari, A., Hasanzadeh, A., et al. (2020). Formation and stabilization of colloidal ultrasmall palladium nanoparticles on diamine-modified Cr-MIL-101: synergetic boost to hydrogen production from formic acid. J. Colloid Interface Sci. 567, 126–135. doi: 10.1016/j.jcis.2020.01.087

Amani, J., Maleki, M., Khoshroo, A., Sobhani-Nasab, A., and Rahimi-Nasrabadi, M. (2018). An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuronal-specific enolase via electrochemically amplified detection. Anal. Biochem. 548, 53–59. doi: 10.1016/j.ab.2018.02.024

Ashida, H., Tanigawa, K., Kiyohara, M., Kato, T., Katayama, T., and Yamamoto, K. (2018). Bifunctional properties and characterization of a novel sialidase with
esterase activity from *Bifidobacterium bifidum*. *Biosci. Biotechnol. Biochem.* 82, 2030–2039. doi: 10.1007/s10529-018-1497944

Ayankojo, A. G., Reut, J., Beronzjak, R., Opik, A., and Syrski, V. (2018). Molecularly imprinted poly (meta-phenylenediamine) based QCM sensor for detecting Amoxicillin. *Sens. Actuators B Chem.* 258, 766–774. doi: 10.1016/j.snb.2017.11.139

Bearzotti, A., Macagnano, A., Papa, P., Venditti, I., and Zampetti, E. (2017). A study of a QCM sensor based on pentacene for the detection of BTX vapors in air. *Sens. Actuators B Chem.* 240, 1160–1164. doi: 10.1016/j.snb.2016.09.097

Bondue, P., Crévecoeur, S., Brose, F., Daube, G., Seghaye, M.-C., Griffiths, M. W., et al. (2019). Corrigendum: cell-free spent media obtained from *bifidobacterium bifidum* and Bifidobacterium crudlactis grown in media supplemented with 3'-Sialyllactose modulate virulence gene expression in *Escherichia coli* 0157: H7 and *Salmonella Typhimurium*. *Front. Microbiol.* 10:2490. doi: 10.3389/fmicb.2019.02490

Buchatip, S., Ananthanawat, C., Sithigurungul, P., Sangvanich, P., Rengpipat, S., and Hoven, V. P. (2010). Detection of the shrimp pathogenic bacteria, Vibrio harveyi, by a quartz crystal microbalance-specific antibody based sensor. *Sens. Actuators B Chem.* 145, 259–264. doi: 10.1016/j.snb.2009.12.003

Cervera-Chiner, L., Juan-Borrás, M., March, C., Arnau, A., Escribe, I., Montoya, J., et al. (2018). Oral determination of c-reactive protein. *Int. J. Electrochem. Sci.* 13, 812–821. doi: 10.20964/2018.01.49

Gomi, A., Yamaji, K., Watanabe, O., Yoshioka, M., Miyazaki, K., Iwama, Y., et al. (2018). *Bifidobacterium bifidum* YIT 10347 fermented milk exerts beneficial effects on gastrointestinal discomfort and symptoms in healthy adults: a double-blind, randomized, placebo-controlled study. *J. Dairy Sci.* 101, 4830–4841. doi: 10.3168/jds.2017-13803

Hou et al. Immunosensor for *Bifidobacterium bifidum*. *Sens. Actuators B Chem.* 38, 177–183. doi: 10.1016/j.snb.2012.05.024

Horie, M., Miura, T., Hirakata, S., Hosoyama, A., Sugino, S., Umeno, A., et al. (2017). Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. *Exp. Anim.* 66, 405–416. doi: 10.1538/expanim.17-0021

Huertas, C. S., Calvo Lozano, O., Mitchell, A., and Lechuga, L. M. (2019). Advanced evanescent-wave optical biosensors for the detection of nucleic acids: an analytic perspective. *Front. Chem.* 7:724. doi: 10.3389/chem.2019.00724

Karimi-Maleh, H., Karimi, F., Alizadeh, M., and Sanati, A. L. (2020). Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. *Chem. Rec.* doi: 10.1002/tcr.201900092. [Epub ahead of print.]

Karpinski, K. (1990). Optimality assessment in the enzyme-linked immunosorbent assay (ELISA). *Biometrics* 46, 381–390. doi: 10.2307/2531443

Lal, G., and Tiwari, D. (2018). Investigation of nanoclay doped polymeric composites on piezoelectric Quartz Crystal Microbalance (QCM) sensor. *Sens. Actuators B Chem.* 262, 64–69. doi: 10.1016/j.snb.2018.01.200

Makheva, E., Farka, Z., Skládal, P., and Zajíčková, L. (2018). Cyclopropylamine plasma polymer surfaces for label-free SPR and QCM immunosensing of *Salmonella*. *Sens. Actuators B Chem.* 276, 447–455. doi: 10.1016/j.snb.2018.08.055

Masor, N. A., Altintas, Z., and Tothill, I. E. (2016). Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor. *Biosens. Bioelectron.* 78, 328–336. doi: 10.1016/j.bios.2015.11.033

Maurus, A., Chain, F., Faucheur, A., Ruffié, P., Gontier, S., Riffel, B., et al. (2018). A new Bifidobacteria expression system (BEST) to produce and deliver interleukin-10 in *Bifidobacterium bifidum*. *Front. Microbiol.* 9:3075. doi: 10.3389/fmicb.2018.03075

Mullkey, E. S., Lynch, J., Kumar, R., Sumpter, B., and Ivanov, I. N. (2016). PEDOT: PSS/QCM-based multimodal humidity and pressure sensor. *Sens. Actuators B Chem.* 230, 91–98. doi: 10.1016/j.snb.2016.05.054

Pohanka, M. (2018a). Piezoelectric immunosensor for the determination of immunoglobulin G. *Int. J. Electrochem. Sci.* 13, 8784–8791. doi: 10.20964/2018.09.01

Pohanka, M. (2018b). The determination of human albumin by a quartz crystal microbalance immunosensor. *Int. J. Electrochem. Sci.* 13, 8471–8480. doi: 10.20964/2018.09.14

Pohanka, M. (2019). Piezoelectric immunosensor for the determination of c-reactive protein. *Int. J. Electrochem. Sci.* 14, 8470–8478. doi: 10.20964/2019.09.02

Pohanka, M. (2020). QCM immunosensor for the determination of *Staphylococcus aureus* antigen. *Chem. Pap.* 74, 451–458. doi: 10.1007/s11696-019-00889-5

Skladál, P. (2016). Piezoelectric biosensors. *TA/RC Trends Anal. Chem.* 79, 127–133. doi: 10.1016/j.trac.2013.12.009

Speciale, I., Verma, R., Di Lorenzo, F., Molinaro, A., Im, S.-H., and de Castro, C. (2019). *Bifidobacterium bifidum* presents on the cell surface a complex mixture of glucans and galactans with different immunological properties. *Carbohydr. Polym.* 218, 269–278. doi: 10.1016/j.carbpol.2019.05.006

Spiller, N. C., Siraj, N., McCarter, K. S., Vaughan, S., and Warner, I. M. (2017). QCM virtual sensor array: vapor identification and molecular weight approximation. *Sens. Actuators B Chem.* 246, 952–960. doi: 10.1016/j.snb.2017.02.042

Tai, H., Zhen, Y., Liu, C., Ye, Z., Xie, G., Du, X., et al. (2016). Facile development of high performance QCM humidity sensor based on protonated polyethyleneimine-graphene oxide nanocomposite thin film. *Sens. Actuators B Chem.* 230, 501–509. doi: 10.1016/j.snb.2016.01.105

Temel, F., Erdemir, S., Ozcelik, E., Tabakci, B., and Tabakci, M. (2019). Rapid and real-time detection of arginine enantiomers by QCM sensor having a Calix [4] arene receptor bearing asymmetric centers. *Talanta* 204, 172–181. doi: 10.1016/j.talanta.2019.05.093
Uludag, Y., and Tothill, I. E. (2012). Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. *Anal. Chem.* 84, 5898–5904. doi: 10.1021/ac300278p

Wang, A., Wang, C., Fu, L., Wong-Ng, W., and Lan, Y. (2017). Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. *Nano-Micro Lett.* 9:47. doi: 10.1007/s40820-017-0148-2

Wang, G.-H., Chen, C.-Y., Lin, C.-P., Huang, C.-L., Lin, C., Cheng, C.-Y., et al. (2016). Tyrosinase inhibitory and antioxidant activities of three *Bifidobacterium bifidum*-fermented herb extracts. *Ind. Crops Prod.* 89, 376–382. doi: 10.1016/j.indcrop.2016.05.037

Wang, L., Wang, Z., Xiang, Q., Chen, Y., Duan, Z., and Xu, J. (2017). High performance formaldehyde detection based on a novel copper (II) complex functionalized QCM gas sensor. *Sens. Actuators B Chem.* 248, 820–828. doi: 10.1016/j.snb.2016.12.015

Wang, R., Wang, L., Callaway, Z. T., Lu, H., Huang, T. J., and Li, Y. (2017). A nanowell-based QCM aptasensor for rapid and sensitive detection of avian influenza virus. *Sens. Actuators B Chem.* 240, 934–940. doi: 10.1016/j.snb.2016.09.067

Xu, Y., Lu, Y., Zhang, P., Wang, Y., Zheng, Y., Fu, L., et al. (2020). Infrageneric phylogenetics investigation of Chimonanthus based on electroactive compound profiles. *Bioelectrochemistry* 133:107455. doi: 10.1016/j.bioelechem.2020.107455

Xue, M., Ji, X., Liang, H., Liu, Y., Wang, B., Sun, L., et al. (2018). The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer. *Food Funct.* 9, 1214–1223. doi: 10.1039/C7FO01677H

Yang, D., Wu, X., Yu, X., He, L., Shah, N. P., and Xu, F. (2017). Mutual growth-promoting effect between *Bifidobacterium bifidum* WBB103 and *Listeria monocytogenes* CMCC 54001. *J. Dairy Sci.* 100, 3448–3462. doi: 10.3168/jds.2016-11804

Zhang, D., Wang, D., Zong, X., Dong, G., and Zhang, Y. (2018). High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method. *Sens. Actuators B Chem.* 262, 531–541. doi: 10.1016/j.snb.2018.02.012

Zheng, Y., Fu, L., Han, F., Wang, A., Cai, W., Yu, J., et al. (2015). Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. *Green Chem. Lett. Rev.* 8, 59–63. doi: 10.1080/17518253.2015.1075069

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Hou, Zhao, Chen, Li, Lin, Chen, Zhu, Wu, Lian, Huang and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.