Research Article

The association of TNF-α −308G/A and −238G/A polymorphisms with type 2 diabetes mellitus: a meta-analysis

Xiaoliang Guo1,2, Chenxi Li1,2, Jiawei Wu1,2, Qingbu Mei1,2, Chang Liu1,2, Wenjing Sun1,2, Lidan Xu1,2,* and Songbin Fu1,2,*

1Laboratory of Medical Genetics, Harbin Medical University, 157 Baqian Road, Nangang District, Harbin 150081, China; 2Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China

Correspondence: Lidan Xu (xuld@ems.hrbmu.edu.cn) or Songbin Fu (fusb@ems.hrbmu.edu.cn)

Introduction

Diabetes is a global epidemic, with an estimated worldwide prevalence of 1 in 11 adults (approximately 425 million people in 2017), and is projected to increase to 629 million people by 2045 (http://www.diabetesatlas.org/). Individuals with type 2 diabetes mellitus (T2DM) accounted for 90% of this total [1]. T2DM is a complex metabolic disorder and usually involves pancreatic islet dysfunction and insulin-secreting β cell failure in the endocrine pancreas (Islets of Langerhans), allowing for the secretion of more insulin to counteract insulin resistance in peripheral tissues (adipose, skeletal muscle and liver). Ultimately, T2DM shows an uncontrolled increase in blood glucose levels [2], therefore the pathogenesis of T2DM is insulin resistance [3].

Some in vivo and in vitro studies have shown that tumor necrosis factor-α (TNF-α) induces insulin resistance to some extent, through the inhibition of intracellular signaling from the insulin receptor [4,5]. The disease has a strong genetic component, however few genes have been identified [1]. Several genome-wide association scans (GWAS) have been performed for T2DM and several candidate genes...
have been proposed [6–10]. Of multiple candidate genes, the TNF-α promoter polymorphisms −308G/A and −238G/A have been studied in T2DM etiology [11].

Currently, it is inconclusive whether these polymorphisms (−308G/A and −238G/A) in the TNF-α promoter lead to T2DM susceptibility. Two large-scale British association analyses found these polymorphisms were not robustly associated with T2DM [11,12] and similar results have been observed in China [13,14] and India [15]. However, studies have also suggested that −308G/A and −238G/A are risk factors for T2DM in Egypt [16] and Iran [17]. Studies from different racial backgrounds may produce conflicting results and these independent studies are confusing and controversial. Therefore, we performed a large-scale meta-analysis to investigate associations between these polymorphisms and T2DM.

Materials and methods

Literature search

This meta-analysis was conducted according to the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis 2009 (PRISMA2009). All published studies up to October 2018 were searched using the PubMed, Embase, EBSCO, OVID, and Web of science database. We used the following terms: 'TNF-α', 'TNF-alpha', 'tumor necrosis factor-alpha', 'T2DM', 'type 2 diabetes mellitus', 'type 2 diabetes', 'type II diabetes', 'non-insulin dependent diabetes', 'NIDDM', 'polymorphism', 'variation', '−308G/A', 'rs1800629', '−238G/A' and 'rs361525'. Relevant references in selected articles were also included.

All articles were independently reviewed by two investigators. Studies were assessed against the following inclusion criteria: (1) the associated study of TNF-α polymorphisms (−308G/A and −238G/A) with the risk of T2DM, (2) the study was case–control designed, (3) sufficient information on genotype frequencies (GG, AA and GA) in both cases and controls to estimate an odds ratio (OR) with a 95% confidence interval (95% CI), (4) all data were original. Exclusion criteria were as follows: (1) other DM (diabetes) types were excluded, (2) non-human studies, (3) reviews, meta-analysis and non-case–control studies and (4) studies not published in English.

Quality score assessment

Study quality was assessed to guarantee the strength of results and conclusions. Quality assessment was performed according to the Newcastle–Ottawa Quality Assessment Scale (NOS), which is a validated scale for nonrandomized studies in meta-analyses [18]. This NOS uses a star system to assess the quality of a study in three domains: selection, comparability and exposure/outcome. The NOS assigns a maximum of 5 stars for selection (in the case of cross-sectional studies), 2 stars for comparability, and 3 stars for outcome/exposure. Studies achieving a score of at least 8 stars were classified as being at low risk of bias (i.e., thus reflecting the highest quality). A maximum of 9 scores, including selection, comparability and exposure items were awarded. Any score disagreements were decided by a third researcher.

Data extraction

Data were independently extracted by two investigators using a standardized form. For each study, the following information was extracted: (1) name of first author; (2) year of publication; (3) ethnicity of population; (4) sample sizes and genotype distributions; (5) allele frequency of the major variant. Ethnicity was categorized as Caucasian, Asian and African.

Statistical analysis

The Hardy–Weinberg equilibrium (HWE) test was calculated using the Chi-squared test. The distribution of allele frequencies in controls was considered to deviate from HWE when $P < 0.05$. STATA (15.0; Stata Corporation, College Station, TX, U.S.A.) software was used to calculate meta-analysis results. Individual study heterogeneity was assessed by Cochran’s Q test and the I^2 statistic ($P < 0.10$ and $I^2 > 50\%$ indicates evidence of heterogeneity) [19]. The fixed-effects model (Mantel–Haenszel method) was used to estimate the pooled OR [20], when there was no evidence of heterogeneity, otherwise the random-effects model (DerSimonian and Laird method) was used [20,21]. ORs with corresponding 95% CIs were calculated to assess associations between TNF-α promoter polymorphisms (−308G/A and −238G/A) and T2DM risks. Five genetic models were used in this meta-analysis: (1) the allele model (A allele vs. G allele); (2) the dominant model (GA+AA vs. GG); (3) the recessive model (AA vs. GA+GG); (4) the codominant model (GA vs. GG; AA vs.GG) and (5) the overdominant model (GG+AA vs. GA). A P-value <0.05 was accepted as the significant threshold for each genetic model. Three subgroups, including Caucasian, Asian and African, based on ethnicity, were analyzed to reduce influences from genetic backgrounds. A meta-regression was
Figure 1. Study flow diagram

Identification

977 citations searched in PubMed, Embase, EBSCO, OVID and Web of science databases and through search of reference signs in relevant articles

766 were excluded for not relevant to TNF-α -308G/A, -238G/A and type 2 diabetes

Screening

211 publications for further assignment

124 were excluded due to no fulfilling inclusion criteria (review, meta-analysis and not case-control studies)

Eligibility

87 publications left for data extraction

37 publications were excluded due to not provide sufficient genotype information

Included

49 publications were included in the meta-analysis

14 studies for TNF-α -238G/A

49 studies for TNF-α -308G/A
used to search the source of heterogeneity [22], which contained publication year, sample size, ethnicity, HWE and number of studies. The 10000 times Monte Carlo permutation test approach was used for assessing the statistical significance of meta-regression [23,24]. \(I^2 \) res explained the proportion of residual variation due to heterogeneity, and \(\text{adj } R^2 \) explained the proportion of between-study variation due to heterogeneity [25,26]. An \(I^2 \) res close to 100% and \(\text{adj } R^2 \) close to 0% further indicated no effects on heterogeneity. Pooled estimates were performed to sensitivity analysis which involved omitting one study at a time followed by recalculation to test for robustness of the summary effects [26]. To increase transparency, risk of bias ratings and meta-analyses were displayed together. Funnel plots were used to investigate the risk of publication bias [23]. Egger’s and Begg’s regression tests evaluated publication bias with quantitative analysis [27]. A \(P \)-value <0.05 was accepted as statistically significant.

Figure 2. Forest plot of the association of TNF-\(\alpha \) −308G/A and type 2 diabetes (A vs. G) in random-effects model

Each square is proportional to the study-specific weight.
Figure 3. Forest plot of the association of TNF-α −238G/A and type 2 diabetes (A vs. G) in fixed-effects model
Each square is proportional to the study-specific weight.

Results
Study characteristics
Based on the above search strategy, 977 publications were identified in the initial search. Approximately 766 articles were excluded after scanning titles and abstracts as being non-relevant to T2DM and TNF-α −308G/A and −238G/A. Through in-depth full-text analysis of the remaining 211 publications, 49 publications were used for the final meta-analysis (Figure 1). These 49 publications contained 16246 patients and 13973 controls and were included in the −308G/A analysis, of which 14 publications, with 4935 patients and 5260 controls, were included in the −238G/A analysis. According to NOS classifications, three points or lower indicated low quality, however no publications were of low quality. The main characteristics of selected publications are shown in Table 1.

Overall population
The meta-analysis showed a significant association between TNF-α −308G/A and T2DM risk in the allele model (OR = 1.239, 95% CI = 1.108–1.385, P = 0.000); the dominant model (OR = 1.280, 95% CI = 1.116–1.469, P = 0.000); the recessive model (OR = 1.57, 95% CI = 1.065–2.29, P = 0.001); the overdominant model (OR = 1.49, 95% CI = 1.02–2.21, P = 0.049); and the codominant model (OR = 1.691, 95% CI = 1.310–2.184, P = 0.000). TNF-α −238G/A was not associated (P > 0.05) with T2DM in all genetic models (Table 2). After Bonferroni correction, our results were also significantly associated. The forest plot of the −308G/A polymorphism is shown in Figure 2 and −238G/A is shown in Figure 3.

Subgroup by ethnicity
To derive heterogeneity and assess the genetic background, we carried out a subgroup analysis, where the overall population was divided into three subgroups, namely Caucasian, Asian and African. The subgroup analysis showed significant associations between −308G/A and T2DM risk in the Caucasian population in the allele model (OR = 1.224, 95% CI = 1.060–1.413, P = 0.006); the dominant model (OR = 1.282, 95% CI = 1.085–1.514, P = 0.004); the overdominant model (OR = 1.225, 95% CI = 1.050–1.423, P = 0.005), and also in Asian populations in the allele model (OR = 1.324, 95% CI = 1.078–1.626, P = 0.007); the dominant model (OR = 1.367, 95% CI = 1.065–1.754, P = 0.014); the recessive model (OR = 1.789, 95% CI = 1.357–2.357, P = 0.000); the codominant model (OR = 2.368,
Author	Year	Country	Ethnicity	Genotype in case	Genotype in control	P of HWE	NOS							
Patel et al.	2018	India	Asian	388 (90.5%)	351 (91.1%)	0.348	6							
Umapathy et al.	2018	India	Asian	538 (56.1%)	402 (75.4%)	0.001	4							
Hemmed et al.	2018	India	Asian	862 (61.3%)	673 (75.4%)	0.080	5							
Fathy et al.	2018	Kuwaiti	Caucasian	117 (73.5%)	62 (90.7%)	0.001	6							
Rodrigues et al.	2018	Brazil	Caucasian	102 (76.5%)	67 (85.7%)	0.279	6							
Mortazavi et al.	2018	India	Asian	214 (13.8%)	91 (12.1%)	0.080	5Fathy et al.	2018	Kuwaiti	Caucasian	117 (73.5%)	62 (90.7%)	0.001	6
Rodriquez et al.	2017	Brazil	Caucasian	102 (76.5%)	67 (85.7%)	0.279	6							
Mortazavi et al.	2018	India	Asian	214 (13.8%)	91 (12.1%)	0.080	5							
Jamil et al.	2017	India	Asian	198 (178.9%)	138 (87.0%)	0.004	7							
Churnosov et al.	2017	Russia	Caucasian	236 (74.6%)	156 (92.6%)	0.180	5							
Mortazavi et al.	2017	Iran	Caucasian	214 (13.8%)	91 (12.1%)	0.080	5							
Rodrigues et al.	2017	Brazil	Caucasian	102 (76.5%)	67 (85.7%)	0.279	6							
Mortazavi et al.	2017	Iran	Caucasian	214 (13.8%)	91 (12.1%)	0.080	5							
Jamil et al.	2017	India	Asian	198 (178.9%)	138 (87.0%)	0.004	7							
Churnosov et al.	2017	Russia	Caucasian	236 (74.6%)	156 (92.6%)	0.180	5							
Mortazavi et al.	2017	Iran	Caucasian	214 (13.8%)	91 (12.1%)	0.080	5							
Rodrigues et al.	2017	Brazil	Caucasian	102 (76.5%)	67 (85.7%)	0.279	6							
Mortazavi et al.	2017	Iran	Caucasian	214 (13.8%)	91 (12.1%)	0.080	5							
Jamil et al.	2017	India	Asian	198 (178.9%)	138 (87.0%)	0.004	7							
Churnosov et al.	2017	Russia	Caucasian	236 (74.6%)	156 (92.6%)	0.180	5							

Continued over
Author	Year	Country	Ethnicity	TNF-α -308G/A	Genotype in case	Genotype in control	P of HWE	NOS
				Total GG (%)	GA (%)	AA (%)		
Wang et al. [66]	2008	China	Asian	181 (86.7%)	23 (12.7%)	1 (0.6%)	0.362	5
Kim et al. [34]	2006	Korea	Asian	198 (87.9%)	24 (12.1%)	0 (0.0%)	0.240	4
Willer et al. [67]	2006	Finland	Caucasian	761 (74.6%)	184 (24.1%)	9 (1.2%)	0.235	6
Santos et al. [68]	2006	Chile	Caucasian	30 (90.6%)	3 (10.0%)	0 (0.0%)	0.552	4
Zeggini et al. [12]	2005	Britain	Caucasian	761 (76.8%)	260 (33.5%)	32 (4.1%)	0.480	6
Tsaiou et al. [69]	2004	Greece	Caucasian	30 (90.6%)	3 (9.4%)	0 (0.0%)	0.538	4
Zouari et al. [70]	2004	Tunisia	African	280 (70.0%)	64 (22.9%)	20 (7.1%)	0.698	4
Shiau et al. [14]	2003	China	Asian	257 (84.8%)	35 (13.6%)	4 (1.6%)	0.002	5
Li et al. [71]	2003	Sweden	Caucasian	488 (68.2%)	141 (28.9%)	14 (2.9%)	0.456	6
Heijmans et al. [72]	2002	Netherlands	Caucasian	79 (83.8%)	22 (27.8%)	6 (7.6%)	0.012	5
Furuta et al. [73]	2002	Japan	Asian	132 (89.3%)	3 (2.3%)	0 (0.0%)	0.899	5
Rasmussen et al. [74]	2000	Denmark	Caucasian	243 (74.5%)	98 (29.9%)	5 (1.5%)	0.896	4
Kamizono et al. [75]	2000	Japan	Asian	213 (98.1%)	4 (1.9%)	0 (0.0%)	0.751	4
Pandey et al. [76]	1999	Belgium	Caucasian	214 (67.3%)	61 (28.5%)	9 (4.2%)	0.233	4
Hamann et al. [77]	1995	America	Caucasian	138 (78.3%)	27 (19.6%)	3 (2.2%)	0.604	5
Kung et al. [78]	2010	China	Asian	23 (100.0%)	0 (0.0%)	0 (0.0%)	0.001	6
Ko et al. [79]	2003	China	Asian	339 (83.8%)	50 (14.7%)	5 (1.5%)	0.238	4
Morris et al. [80]	2003	Australia	Caucasian	91 (58.2%)	32 (32.2%)	6 (6.6%)	0.427	4
Sobic et al. [81]	2012	India	Asian	113 (5.4%)	100 (88.5%)	7 (8.1%)	0.000	5
				Total GG (%)	GA (%)	AA (%)		
Rasmussen et al. [82]	2000	Denmark	Caucasian	236 (86.9%)	31 (13.1%)	0 (0.0%)	0.459	4
Kim et al. [34]	2007	Korea	Asian	198 (77.7%)	21 (10.6%)	0 (0.0%)	0.491	4
Sesti et al. [50]	2015	Britain	Caucasian	695 (89.4%)	66 (9.5%)	5 (0.7%)	0.365	7
Santos et al. [68]	2006	Chile	Caucasian	30 (90.3%)	6 (6.7%)	0 (0.0%)	0.604	4
Li et al. [71]	2003	Sweden	Caucasian	488 (94.3%)	27 (9.5%)	1 (0.2%)	0.581	6
Dhamodharan et al. [53]	2015	India	Asian	133 (67.2%)	29 (19.8%)	4 (2.9%)	0.805	5
Patel et al. [15]	2018	India	Asian	320 (91.3%)	27 (8.4%)	1 (0.3%)	0.785	7
Fathy et al. [44]	2018	Kuwait	Asian	172 (98.3%)	2 (1.7%)	0 (0.0%)	0.938	6
Boraska et al. [63]	2010	Britain	Caucasian	133 (88.5%)	170 (11.3%)	3 (0.2%)	0.296	6
Zeggini et al. [12]	2005	Britain	Caucasian	560 (83.9%)	87 (15.5%)	3 (0.5%)	0.908	6
Jamil et al. [47]	2017	India	Asian	88 (86.7%)	12 (12.2%)	1 (1.0%)	0.094	7
Shiau et al. [14]	2003	China	Asian	257 (84.8%)	35 (13.6%)	4 (1.6%)	0.002	5
Guzman-Flores et al. [61]	2011	Mexico	Caucasian	259 (84.9%)	31 (12.0%)	8 (3.1%)	0.622	5
Mukhopadhyaya et al. [83]	2010	India	Asian	40 (85.7%)	3 (7.5%)	2 (5.0%)	0.805	4

1 Deviated from HWE.
Table 2 Association between TNF-α -308G/A and -238G/A and type 2 diabetes

Genetic model	Ethnicity	I^2 (%)	P (heterogeneity)	OR (95% CI)	P-value	P for publication bias	Effects model	
TNF-α -308G/A A vs G	Overall	73.7	0.000	1.239 (1.108–1.385)	0.000	0.268	0.000	Random
	Caucasian	74.6	0.000	1.224 (1.060–1.413)	0.006	0.135	0.363	Random
	Asian	69.2	0.000	1.324 (1.078–1.626)	0.007	0.809	0.249	Random
	African	56.2	0.077	0.960 (0.679–1.356)	0.815	0.174	0.015	Random
GA+AA vs GG	Overall	74.6	0.000	1.280 (1.116–1.469)	0.000	0.096	0.275	Random
	Caucasian	74.6	0.000	1.282 (1.085–1.514)	0.004	0.069	0.376	Random
	Asian	71.7	0.000	1.367 (1.065–1.754)	0.014	0.174	0.532	Random
	African	57.6	0.070	0.844 (0.522–1.363)	0.487	0.487	0.234	Random
AA vs GG+GA	Overall	38.3	0.008	1.446 (1.154–1.813)	0.001	0.207	0.125	Random
	Caucasian	51.3	0.005	1.240 (0.908–1.692)	0.176	0.469	0.276	Random
	Asian	0.0	0.497	1.789 (1.357–2.357)	0.000	0.284	0.363	Random
	African	9.4	0.346	1.809 (0.890–3.677)	0.102	0.497	0.561	Random
GA vs GG+AA	Overall	67.8	0.000	1.181 (1.041–1.341)	0.008	0.364	0.604	Random
	Caucasian	66.3	0.000	1.225 (1.050–1.423)	0.005	0.243	0.594	Random
	Asian	63.7	0.000	1.230 (0.977–1.548)	0.079	0.846	0.619	Random
	African	50.5	0.109	0.707 (0.455–1.098)	0.123	0.174	0.452	Random
AA vs GG	Overall	47.4	0.001	1.691 (1.310–2.184)	0.000	0.285	0.068	Random
	Caucasian	62.8	0.000	1.399 (0.969–2.018)	0.073	0.506	0.244	Random
	Asian	0.0	0.842	2.368 (1.779–3.153)	0.000	0.365	0.157	Random
	African	11.6	0.335	1.605 (0.765–3.369)	0.211	1.000	0.942	Random
AA vs GA	Overall	31.8	0.029	1.150 (0.918–1.441)	0.224	0.285	0.068	Random
	Caucasian	46.8	0.013	1.031 (0.756–1.405)	0.847	0.506	0.244	Random
	Asian	0.0	0.533	1.138 (0.834–1.553)	0.414	0.365	0.157	Random
	African	0.0	0.414	2.230 (1.160–4.287)	0.016	1.000	0.942	Random
TNF-α -238G/A A vs G	Overall	23.0	0.205	1.064 (0.944–1.200)	0.309	0.524	0.821	Fixed
	Caucasian	32.3	0.170	1.076 (0.938–1.234)	0.295	0.453	0.860	Fixed
	Asian	22.0	0.288	1.027 (0.802–1.316)	0.832	0.881	0.639	Fixed
GA+AA vs GG	Overall	8.3	0.382	1.045 (0.921–1.187)	0.936	0.396	0.947	Fixed
	Caucasian	15.8	0.306	1.056 (0.914–1.220)	0.459	0.293	0.801	Fixed
	Asian	13.5	0.328	1.011 (0.774–1.320)	0.492	0.881	0.719	Fixed
AA vs GG+GA	Overall	0.0	0.497	1.554 (0.896–2.692)	0.085	0.881	0.754	Fixed
	Caucasian	31.2	0.202	1.795 (0.888–4.533)	3.628	0.573	0.350	Fixed
	Asian	0.0	0.810	1.243 (0.516–2.977)	0.619	0.327	0.680	Fixed
GA vs GG+AA	Overall	0.0	0.462	1.021 (0.897–1.162)	0.758	0.396	0.908	Fixed
	Caucasian	4.1	0.398	1.029 (0.889–1.192)	0.698	0.453	0.689	Fixed
	Asian	8.4	0.383	0.990 (0.751–1.304)	0.943	0.662	0.813	Fixed
AA vs GG	Overall	0.0	0.496	1.569 (0.905–2.721)	0.078	0.881	0.748	Fixed
	Caucasian	31.6	0.198	1.807 (0.894–3.654)	0.064	0.348	0.414	Fixed
	Asian	0.0	0.811	1.262 (0.523–3.048)	0.596	0.142	0.356	Fixed

Continued over
Table 2 Association between TNF-α -308G/A and -238G/A and type 2 diabetes (Continued)

Genetic model	Ethnicity	I² (%)	P (heterogeneity)	OR (95% CI)	P-value	P for publication bias	Effects model	
AA vs GA	Overall	0.0	0.533	1.429 (0.808–2.526)	0.178	0.881	0.748	Fixed
	Caucasian	24.3	0.252	1.688 (0.822–3.466)	0.117	0.348	0.414	Fixed
	Asian	0.0	0.778	1.079 (0.424–2.748)	0.852	0.142	0.356	Fixed

† P<0.05.
‡ P<0.01.
§ P<0.001.

95% CI = 1.779–3.153, P=0.000) and no associations between −308G/A and T2DM risk in African populations (P>0.05). For −238G/A, it was not associated (P>0.05) with T2DM in the subgroup population (Table 2).

Meta-regression and sensitivity analysis
The following covariates were considered for meta-regression: publication year, sample size, ethnicity and HWE in controls. The −308G/A results revealed no influence on the publication year (I² res = 91.89%, adj R² = 5.37%, P=0.084), sample size (I² res = 94.31%, adj R² = 1.11%, P=0.215), HWE (I² res = 92.83%, adj R² = 2.97%, P=0.882) and ethnicity, including Caucasian (P=0.106), Asian (P=0.127), using the 10000 times Monte Carlo permutation test. The −238G/A results revealed no influence from publication year (P=0.573), sample size (P=0.498) and ethnicity, including Caucasian (P=0.864) and Asian (P=0.735), using the 10000 times Monte Carlo permutation test. Sensitivity analysis revealed that some studies [17,28–32] have observed bias (Figure 4). But no significant changes in heterogeneity were observed after excluding these studies except study by Golshani et al. [17]. After its removal, the heterogeneity was greatly reduced in the Caucasian subgroup (from 74.6 to 47.4), but there was still a significant association between −308G/A and T2DM (OR = 1.148, 95% CI = 1.033–1.277, P=0.011).

Publication bias
Publication bias data for TNF-α −308G/A and −238G/A, in all genetic models are shown in Table 2. The continuity corrected results showed no existing publication bias (P>0.05). The Begg’s and Egger’s tests showed no existing publication bias in the overall population for all genetic models (Table 2). There are no bias and asymmetry found in Begg’s and Egger’s funnel plots (Figures 5 and 6).

Discussion
T2DM is a complex disease where environmental and genetic factors interact. Family-based studies have found that T2DM has a strong genetic component [33] with several candidate genes identified [1]. Among these candidate genes, the TNF-α −308G/A and −238G/A polymorphisms have been widely studied. Although numerous studies have focused on these associations, their conclusions have been controversial [13,17,34,35]. A previous meta-analysis by Feng et al. [36], did not find any significant associations between the TNF-α −308 G/A polymorphism and T2DM risk in Caucasian and Asian populations. In contrast, a more recent meta-analysis by Zhao et al. [37], suggested that the TNF-α −308A variant increased by approximately 21% in T2DM incidence. Similarly, the results of two meta-analyses, of small sample sizes, showed that TNF-α −238G/A was not associated with T2DM [38,39]. Moreover, some meta-analyses were limited to specific countries and regions [40–42]. Therefore, we performed a comprehensive large-scale meta-analysis to investigate these associations.

For this meta-analysis, in order to derive reliable results, we added 12 new studies, performed quality score assessments and added multiple genetic models. Compared with previous meta-analyses [36,37], we demonstrate that TNF-α −308G/A is a risk factor for T2DM, not only in Asian but also in Caucasian populations. Additionally, we found that TNF-α −238G/A is not associated with T2DM in overall and subgroup populations. These observations illustrate the necessity for more comprehensive analyses and multiple genetic models. To prevent possible interference from heterogeneity to our results, we sought to explain the source of heterogeneity and eliminate it. First, subgroup analysis of ethnicity and genetic models reduced between-study heterogeneity. We found that heterogeneity was reduced, but there was still high heterogeneity. Next, our meta-regression analysis attempted to reveal these heterogeneous sources. These results showed that publication year, sample size, ethnicity...
Figure 4. Sensitive analysis in TNF-α -308G/A study (A) and -238G/A study (B).

There is a bias and asymmetry in TNF-α -308G/A study.

(Caucasian, Asian, African) and HWE were not the sources of between-study heterogeneity ($P>0.05$). Finally, we performed sensitivity analysis to explore the impact of a single study; our results revealed that the study by Golshani et al. [17] may have been the major contributor to this heterogeneity.
Begg’s funnel plot shows centered at the fixed-effect summary OR, visual inspection of the funnel plot is roughly symmetrical and indicates that there is no bias ($P > 0.05$). Egger’s funnel plot with fitted regression line, intercept represents the degree of asymmetry, close to zero, the smaller the bias. The Egger’s test indicates that there are no small-study effects (intercept = 0.514, 95% CI = $-1.504–1.532$) and bias ($P > 0.05$).
Figure 6. Publication bias of Begg’s test (A) and Egger’s test (B) in TNF-α -238G/A study

Begg’s funnel plot shows centered at the fixed-effect summary OR, visual inspection of the funnel plot is roughly symmetrical and indicates that there is no bias ($P>0.05$). Egger’s funnel plot with fitted regression line, intercept represents the degree of asymmetry, close to zero, the smaller the bias. The Egger’s test indicates that there are no small-study effects (intercept = -0.048, 95% CI = -1.405–1.309) and bias ($P>0.05$).
The advantages of this meta-analysis are that it expands to large-scale studies. While strictly complying with the inclusion criteria, we updated 12 studies not included in previous meta-analysis, our results are more comprehensive. To guarantee the quality of the meta-analysis, NOS and HWE analyses were conducted to assess the quality of included studies to avoid potential influences and increase the strength of the results. A strict search strategy of literature inclusion and data extraction was performed by two investigators according to inclusion and exclusion criteria. Furthermore, sensitivity analysis and meta-regression were also performed to increase the robustness of our conclusions. Subgroup analysis by ethnicity and the source of the control population were used to explain the effect of genetic background and study design.

There were some limitations to this meta-analysis. First, only studies in English were included, studies published in other languages were excluded. Second, because we excluded literature without original data, some studies were excluded. Third, other potential interactions including environmental factors, environment–gene interactions and gene–gene interactions. Additionally, some potential covariates (e.g. age, sex) were not included due to insufficient information from selected publications.

In conclusion, our meta-analysis identified that TNF-α –308G/A were associated with T2DM susceptibility. Additionally, we found that TNF-α –238G/A is not associated with T2DM in overall and subgroup populations. In the future, the influences of genetic loci, combined with environmental factors, may provide important treatment therapies for T2DM, therefore, well-conceived studies are warranted to confirm the important data presented here.

Author Contribution

All authors have contributed to the paper. Lidan Xu and Songbin Fu participated in the design of the study. Xiaoliang Guo and Chenxi Li drafted the article and wrote the manuscript. Jiawei Wu, Chang Liu, Qingbu Mei and Wenjing Sun assisted with analysis and interpretation of data. All authors read and approved the final manuscript.

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

This work was supported by the Program for Changjiang Scholars and Innovative Research Team in University of China [grant number IRT1230]. The authors declare that they do not have any financial or personal relationships with other people or organizations that could inappropriately influence this work; there are no professional or personal interests of any nature or kind in any product, service, or company that could be construed as influencing the position presented in this manuscript.

Abbreviations

GWAS, genome-wide association scans; HWE, Hardy–Weinberg equilibrium; NOS, Newcastle–Ottawa Quality Assessment Scale; OR, odds ratio; TNF-α, tumor necrosis factor-α; T2DM, type 2 diabetes mellitus; 95% CI, 95% confidence interval.

References

1 Stumvoll, M., Goldstein, B.J. and van Haften, T.W. (2005) Type 2 diabetes: principles of pathogenesis and therapy. *Lancet* **365**, 1333–1346, https://doi.org/10.1016/S0140-6736(05)61032-X
2 Lawlor, N., Khetan, S., Ucar, D. and Stitzel, M.L. (2017) Genomics of Islet (Dys)function and Type 2 diabetes. *Trends Genet.* **33**, 244–255, https://doi.org/10.1016/j.tig.2017.01.010
3 Moller, D.E. and Flier, J.S. (1991) Insulin resistance–mechanisms, syndromes, and implications. *N. Engl. J. Med.* **325**, 938–948, https://doi.org/10.1056/NEJM199109263251307
4 Feinstein, R., Kanety, H., Papa, M.Z., Lunenfeld, B. and Karasik, A. (1993) Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. *J. Biol. Chem.* **268**, 26055–26058
5 Hotamisligil, G.S., Murray, D.L., Choy, L.N. and Spiegelman, B.M. (1994) Tumor necrosis factor alpha inhibits signaling from the insulin receptor. *Proc. Natl. Acad. Sci. U.S.A.* **91**, 4854–4858, https://doi.org/10.1073/pnas.91.11.4854
6 Saxena, R., Voight, B.F., Lyssenko, V., Burt, T., Cakmak, G., de Bakker, P.I., Chen, H. et al. (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. *Science* **316**, 1331–1336, https://doi.org/10.1126/science.1142358
7 Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D. et al. (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. *Nature* **445**, 881–885, https://doi.org/10.1038/nature05616
8 Scott, L.J., Mohlke, K.L., Bonnycastle, L.L., Willer, C.J., Li, Y., Duren, W.L. et al. (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. *Science* **316**, 1341–1345, https://doi.org/10.1126/science.1142382
9 Burton, P.R., Clayton, D.G., Cardon, L.R., Craddock, N., Deloukas, P. and Duncanson, A. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature* **447**, 661–678, https://doi.org/10.1038/nature05911

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
10 Zeggini, E., Weedon, M.N., Lindgren, C.M., Frayling, T.M., Elliott, K.S., Lange, L. et al. (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341, https://doi.org/10.1126/science.1142364

11 Boraska, V., Rayner, N.W., Groves, C.J., Frayling, T.M., Diakite, M., Rockett, K.A. et al. (2010) Large-scale association analysis of TNF/LTA gene region polymorphisms in type 2 diabetes. BMC Med. Genet. 11, 69, https://doi.org/10.1186/1471-2350-11-69

12 Zeggini, E., Groves, C.J., Parkinson, J.R., Halford, S., Owen, K.R., Frayling, T.M. et al. (2005) Large-scale studies of the association between variation at the TNF/LTA locus and susceptibility to type 2 diabetes. Diabetologia 48, 2013–2017, https://doi.org/10.1007/s00125-005-1902-4

13 Liu, H.L., Lin, Y.G., Wu, J., Sun, H., Gong, Z.C., Hu, P.C. et al. (2008) Impact of genetic polymorphisms of leptin and TNF-alpha on rosiglitazone response in Chinese patients with type 2 diabetes. Eur. J. Clin. Pharmacol. 64, 663–671, https://doi.org/10.1007/s00028-006-0483-9

14 Shiha, M.Y., Wu, C.Y., Huang, C.N., Hu, S.W., Lin, S.J. and Chang, Y.H. (2003) TNF-alpha polymorphisms and type 2 diabetes mellitus in Taiwanese patients. Tissue Antigens 61, 393–397, https://doi.org/10.1034/j.1399-0039.2003.00059.x

15 Patel, R., Paltt, S.P., Rathwa, N., Ramachandran, A.V. and Begum, R. (2018) Genetic variants of tumour necrosis factor-α and its levels: a correlation with dyslipidemia and type 2 diabetes susceptibility. Clin. Nutr. 38, 1414–1422, https://doi.org/10.1016/j.clnu.2018.06.962

16 El Naggar, G.F. and El-Serogy, H. (2013) Is there a relation between TNF-α 308 polymorphism and type 2 diabetes? A population study in the Iranian Kurdish Ethnic Group. Osong Public Health Res. Perspect. 6, 94–99, https://doi.org/10.1007/pjp.2015.01.003

17 Huang, Y., Li, Z., Zhang, L., Zhang, Y., Yang, Y., Tang, Y. et al. (2014) The TNF-alpha -308G/A polymorphism is associated with type 2 diabetes mellitus in a population of northern Chinese Han patients. Shanghai Kou Qiang Yi Xue, 28, 255–258

18 Liu, H., Niu, Y., Wu, C., Sun, H., Gong, Z.C., Hu, P.C. et al. (2008) Impact of genetic polymorphisms of leptin and TNF-alpha on rosiglitazone response in Chinese patients with type 2 diabetes. Eur. J. Clin. Pharmacol. 64, 663–671, https://doi.org/10.1007/s00028-006-0483-9

19 Higgins, J.P., Thompson, S.G., Deeks, J.J. and Altman, D.G. (2003) Measuring inconsistency in meta-analyses. Stat. Med. 22, 603–605, https://doi.org/10.1002/sim.1482

20 Mantel, N. and Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748

21 DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. Control. Clin. Trials 7, 177–188, https://doi.org/10.1016/0197-2456(86)90046-2

22 Egger, M., Smith, G.D. and Phillips, A.N. (1997) Meta-analysis: principles and procedures. BMJ 315, 1533–1537, https://doi.org/10.1136/bmj.315.7121.1533

23 Sterne, J.A., Sutton, A.J., Ioannidis, J.P., Terrin, N., Jones, D.R., Lau, J. et al. (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343, d4002, https://doi.org/10.1136/bmj.d4002

24 Mutze, T., Konietzke, F., Munk, A. and Friede, T. (2017) A studentized permutation test for three-arm trials in the "gold standard" design. Stat. Med. 36, 883–898, https://doi.org/10.1002/sim.7176

25 Tannier-Smith, E.E. and Tipton, E. (2014) Robust variance estimation with dependent effect sizes: practical considerations including a software tutorial in stata and spss. Res. Synth. Methods 5, 13–30, https://doi.org/10.1002/jrsm.1091

26 Egger, M., Smith, G.D. and Phillips, A.N. (1997) Meta-analysis: principles and procedures. BMJ 315, 1533–1537, https://doi.org/10.1136/bmj.315.7121.1533

27 Knapp, G. and Hartung, J. (2003) Improved tests for random effects meta-regression with a single covariate. Stat. Med. 22, 2693–2710, https://doi.org/10.1002/sim.1482

28 Liu, H., Niu, Y., Wu, C., Sun, H., Gong, Z.C., Hu, P.C. et al. (2008) Impact of genetic polymorphisms of leptin and TNF-alpha on rosiglitazone response in Chinese patients with type 2 diabetes mellitus. Shanghai Kou Qiang Yi Xue, 28, 255–258

29 Hameed, I., Masoodi, S.R., Malik, P.A., Mir, S.A., Ghazanfar, K. and Ganai, B.A. (2018) Genetic variations in key inflammatory cytokines exacerbates the risk of diabetic nephropathy by influencing the gene expression. Eur. J. Clin. Pharmacol. 74, 125–132, https://doi.org/10.1007/s00228-017-2356-9

30 Poulsen, P., Kyvik, K.O., Vaag, A. and Beck-Nielsen, H. (1999) Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance—a population-based twin study. Diabetologia 42, 125–132, https://doi.org/10.1007/s001250051131

31 Wang, L.-L., Du, Z.-W., Liu, J.-N., Wu, M., Song, Y., Jiang, R.-H. et al. (2012) Association of UCP3, APN, and TNF-α gene polymorphisms with type 2 diabetes in a population of northern Chinese Han patients. Shanghai Kou Qiang Yi Xue, 28, 255–258

32 Liu, B., Yu, N., Tan, L.S., Liu, J.B., Guo, Y. and Pan, Y.P. (2011) A study of frequency of TNF alpha gene with type 2 diabetes mellitus with chronic periodontitis. Shanghai Kou Qiang Yi Xue 20, 169–173

33 Poulsen, P., Kyvik, K.O., Vaag, A. and Beck-Nielsen, H. (1999) Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance—a population-based twin study. Diabetologia 42, 125–132, https://doi.org/10.1007/s001250051131

34 Kim, H.R., Lee, M.K. and Park, A.J. (2006) The -308 and -238 polymorphisms of the TNF-alpha promoter gene in Type 2 diabetes mellitus. Korean J. Lab. Med. 26, 58–63, https://doi.org/10.3343/kjljm.2006.26.1.58

35 Pan, H.Y., Zhang, P.X., Ni, F.Y. and Li, Q. (2006) Association between tumour necrosis factor-alpha-308 G/A polymorphism and type 2 diabetes mellitus. Chin. J. Clin. Rehabil. 10, 72–74

36 Feng, R.N., Zhao, C., Sun, C.H. and Li, Y. (2011) Meta-analysis of TNF 308 G/A polymorphism and type 2 diabetes mellitus. PLoS ONE 6, e18480, https://doi.org/10.1371/journal.pone.0018480

37 Zhao, Y., Li, Z., Zhang, L., Zhang, Y., Yang, Y., Tang, Y. et al. (2014) The TNF-alpha -308G/A polymorphism is associated with type 2 diabetes mellitus: an updated meta-analysis. Mol. Biol. Rep. 41, 73–83, https://doi.org/10.1007/s11033-013-2839-1

38 Meng, N., Zhang, Y., Li, H., Ma, J. and Qu, Y. (2014) Association tumour necrosis factor promoter polymorphisms (TNF-α 238 G/A and TNF-α 308 G/A) with diabetic mellitus, diabetic retinopathy and diabetic nephropathy: a meta-analysis. Curr. Eye Res. 39, 194–203, https://doi.org/10.3109/02713683.2013.834942

39 Feng, R., Li, Y., Zhao, D., Wang, C., Niu, Y. and Sun, C. (2009) Lack of association between TNF 238 G/A polymorphism and type 2 diabetes: a meta-analysis. Acta Diabetol. 46, 339–343, https://doi.org/10.1007/s00592-009-0118-3
66 Wang, N., Huang, K., Zou, H., Shi, Y., Zhu, J., Tang, W. et al. (2008) No association found between the promoter variants of TNF-α and diabetic retinopathy in Chinese patients with type 2 diabetes. *Curr. Eye Res.* **33**, 377–383, https://doi.org/10.1080/02713680802008220

67 Willer, C.J., Bonnycastle, L.L., Connelly, K.N., Duren, W.L., Jackson, A.U., Scott, L.J. et al. (2007) Screening of 134 single nucleotide polymorphisms (SNPs) previously associated with type 2 diabetes replicates association with 12 SNPs in nine genes. *Diabetes* **56**, 256–264, https://doi.org/10.2337/db06-0461

68 Santos, M.J., Patino, G.A., Angel, B.B., Martinez, H.J., Perez, B.F., Villarreal, B.A. et al. (2006) [Association between tumor necrosis factor-alpha promoter polymorphisms and type 2 diabetes and obesity in Chilean elderly women]. *Rev. Med. Chil.* **134**, 1099–1106

69 Tsiaou, A., Hatzigelaki, E., Chaidaroglou, A., Manginas, A., Koniavitou, K., Degiannis, D. et al. (2004) TNF-alpha, TGF-beta1, IL-10, IL-6, gene polymorphisms in latent autoimmune diabetes of adults (LADA) and type 2 diabetes mellitus. *J. Clin. Immunol.* **24**, 591–599, https://doi.org/10.1007/s10875-004-6239-0

70 Zuari Bouassida, K., Chouchane, L., Jellouli, K., Cherif, S., Haddad, S., Gabbouj, S. et al. (2004) Polymorphism of stress protein HSP70-2 gene in Tunisians: susceptibility implications in type 2 diabetes and obesity. *Diabetes Metab.* **30**, 175–180, https://doi.org/10.1016/S1262-3636(07)70104-0

71 Li, H., Groop, L., Nilsson, A., Weng, J. and Tuomi, T. (2003) A combination of human leukocyte antigen DQB1*02 and the tumor necrosis factor alpha promotor G308A polymorphism predisposes to an insulin-deficient phenotype in patients with type 2 diabetes. *J. Clin. Endocrinol. Metab.* **88**, 2767–2774, https://doi.org/10.1210/jc.2002-020506

72 Heijmans, B.T., Westendorp, R.G., Droog, S., Kluft, C., Knoek, D.L. and Slagboom, P.E. (2002) Association of the tumour necrosis factor alpha -308G/A polymorphism with the risk of diabetes in an elderly population-based cohort. *Genes Immun.* **3**, 225–228, https://doi.org/10.1038/sj.gene.6363859

73 Furuta, M., Yano, Y., Ito, K., Gabazza, E.C., Katsuki, A., Tanaka, T. et al. (2002) Relationship of the tumor necrosis factor-alpha -308 A/G promoter polymorphism with insulin sensitivity and abdominal fat distribution in Japanese patients with type 2 diabetes mellitus. *Diabetes Res. Clin. Pract.* **56**, 141–145, https://doi.org/10.1016/S0168-8227(01)00358-8

74 Rasmussen, S.K., Urhammer, S.A., Jensen, J.N., Hansen, T., Borch-Johnsen, K. and Pedersen, O. (2000) The -238 and -308 G→A polymorphisms in latent autoimmune diabetes of adults (LADA) and type 2 diabetes mellitus. *Diabetes Technol. Ther.* **2**, 211–217, https://doi.org/10.1089/dia.2000.2.211

75 Kamizono, S., Yamada, K., Seki, N., Higuchi, T., Kimura, A., Nonaka, K. et al. (2000) Susceptible locus for obese type 2 diabetes mellitus in the 5′-flanking region of the tumor necrosis factor-alpha gene. *Tissue Antigens* **55**, 449–452, https://doi.org/10.1034/j.1399-0039.2000.550508.x

76 Pandey, J.P., Zamani, M. and Cassiman, J.J. (1999) Epistatic effects of genes encoding tumor necrosis factor-alpha, immunoglobulin allotypes, and HLA antigens on susceptibility to non-insulin-dependent (type 2) diabetes mellitus. *Immunogenetics* **49**, 860–864, https://doi.org/10.1007/s002510050565

77 Hamann, A., Mantzoros, C., Vidal-Puig, A. and Flier, J.S. (1995) Genetic variability in the TNF-α promoter with insulin sensitivity and abdominal fat distribution in Japanese patients with type 2 diabetes mellitus. *Diabetes Res. Clin. Pract.* **30**, 197–201, https://doi.org/10.1016/0168-8227(95)90001-5

78 Kung, W.J., Lin, C.C., Liu, S.H. and Chaung, H.C. (2010) Association of interleukin-10 polymorphisms with cytokines in type 2 diabetic nephropathy. *Tissue Antigens* **75**, 532–536, https://doi.org/10.1111/j.1399-0039.2010.01471.x

79 Ko, G.T., Lee, S.C., Pu, Y.B., Ng, M.C., So, W.Y., Thomas, N. et al. (2003) Tumour necrosis factor-alpha promoter gene polymorphism at -308 (genotype AA) in Chinese subjects with type 2 diabetes. *Diabet. Med.* **20**, 167–168, https://doi.org/10.1046/j.1464-5491.2003.00829.1.x

80 Morris, A.M., Heilbronn, L.K., Noakes, M., Kind, K.L. and Clifton, P.M. (2003) -308 NcoI polymorphism of tumour necrosis factor alpha in overweight Caucasians. *Diabetes Res. Clin. Pract.* **62**, 197–201, https://doi.org/10.1016/j.diabres.2003.08.002

81 Sobti, R.C., Kler, R., Sharma, V.P., Talwar, K.K. and Singh, N. (2012) Risk of obesity and type 2 diabetes with tumor necrosis factor-alpha 308G/A gene polymorphism in metabolic syndrome and coronary artery disease subjects. *Mol. Cell. Biochem.* **360**, 1–7, https://doi.org/10.1007/s11010-011-0917-2

82 Rasmussen, S.K., Urhammer, S.A., Jensen, J.N., Hansen, T., Borch-Johnsen, K. and Pedersen, O. (2000) The -238 and -308 G→A polymorphisms of the tumor necrosis factor alpha gene promotor are not associated with features of the insulin resistance syndrome or altered birth weight in Danish Caucasians. *J. Clin. Immunol.* **20**, 167–168, https://doi.org/10.1046/j.1464-5491.2000.00829.1.x

83 Mukhopadhyaya, P.N., Acharya, A., Chavan, Y., Furohit, S.S. and Mutha, A. (2010) Metagenomic study of single-nucleotide polymorphism within candidate genes associated with type 2 diabetes in an Indian population. *Genet. Mol. Res.* **9**, 2060–2068, https://doi.org/10.4238/vol9-4gmr883