An Fc Double-Engineered CD20 Antibody with Enhanced Ability to Trigger Complement-Dependent Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity

Tim Wirt Sophia Rosskopf Thies Rösner Klara Marie Eichholz Anne Kahrs Sebastian Lutz Anna Kretschmer Thomas Valerius Katja Klausz Anna Otte Martin Gramatzki Matthias Peipp Christian Kellner

Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University of Kiel, Kiel, Germany

Keywords
Antibody therapy · Fc engineering · ADCC · CDC · CD20

Summary
Background: Engineering of the antibody’s fragment crystallizable (Fc) by modifying the amino acid sequence (Fc protein engineering) or the glycosylation pattern (Fc glyco-engineering) allows enhancing effector functions of tumor targeting antibodies. Here, we investigated whether complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) of CD20 antibodies could be improved simultaneously by combining Fc protein engineering and glyco-engineering technologies. Methods and Results: Four variants of the CD20 antibody rituximab were generated: a native IgG1, a variant carrying the EFTAE modification (S267E/H268F/S324T/G236A/I332E) for enhanced CDC as well as glyco-engineered, non-fucosylated derivatives of both to boost ADCC. The antibodies bound CD20 specifically with similar affinity. Antibodies with EFTAE modification were more efficacious in mediating CDC, irrespective of fucosylation, than antibodies with wild-type sequences due to enhanced C1q binding. In contrast, non-fucosylated variants had an enhanced affinity to FcγRIIIA and improved ADCC activity. Importantly, the double-engineered antibody lacking fucose and carrying the EFTAE modification mediated both CDC and ADCC with higher efficacy than the native CD20 IgG1 antibody. Conclusion: Combining glyco-engineering and protein engineering technologies offers the opportunity to simultaneously enhance ADCC and CDC activities of therapeutic antibodies. This approach may represent an attractive strategy to further improve antibody therapy of cancer and deserves further evaluation.

© 2017 S. Karger GmbH, Freiburg

Introduction
Therapeutic antibodies represent potent treatment options in cancer therapy [1, 2]. In particular, CD20 antibodies are well established in the treatment of B-cell lymphomas and leukemias, and several CD20 antibodies, including rituximab, ofatumumab and obinutuzumab, are approved for clinical use [3]. However, monoclonal antibodies rarely cure patients as monotherapy, not all patients benefit from this generally well-tolerated therapeutic option, and relapses still remain a serious problem. Thus, further improving antibody therapy is a major issue in current translational research.

Deeper insights into antibody effector function provided the basis for the generation of ‘fit-for-purpose’ antibodies by rational design [1, 2, 4, 5]. In vitro tumor targeting antibodies like rituximab can eliminate malignant cells by different means, including induction of cell death, complement-dependent cytotoxicity (CDC), and recruitment of effector cells for antibody-dependent cell-mediated cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) by engagement of activating Fcγ receptors (FcyR). However, antibodies may vary in effector functions depending on the isotype, the target antigen and its expression levels, or the engagement of FcγR.

While FcγR engagement leads to the release of inflammatory signals and recruitment of effector cells, the extent and type of signal are determined by a number of factors. These include the isotype of the antibody and the type of FcγR, which are both grouped into type I or type II antibodies [10], which both trigger their respective responses [11, 12]. Type I antibodies (e.g. rituximab) strongly mediate CDC, but weakly elicit direct cell death, while type II antibodies (e.g. obinutuzumab) are grouped into type I or type II antibodies [10], which both trigger their respective responses [11, 12]. Type I antibodies (e.g. rituximab) strongly mediate CDC, but weakly elicit direct cell death, while type II antibodies (e.g. obinutuzumab) are grouped into type I or type II antibodies [10], which both trigger their respective responses [11, 12]. Type I antibodies (e.g. rituximab) strongly mediate CDC, but weakly elicit direct cell death, while type II antibodies (e.g. obinutuzumab) are grouped into type I or type II antibodies [10], which both trigger their respective responses [11, 12]. Type I antibodies (e.g. rituximab) strongly mediate CDC, but weakly elicit direct cell death, while type II antibodies (e.g. obinutuzumab) are grouped into type I or type II antibodies [10], which both trigger their respective responses [11, 12]. Type I antibodies (e.g. rituximab) strongly mediate CDC, but weakly elicit direct cell death, while type II antibodies (e.g. obinutuzumab) are grouped into type I or type II antibodies [10], which both trigger their respective responses [11, 12].
or the recognized epitope [6–10]. Traditionally, CD20 antibodies are grouped into type I or type II antibodies [10], which both trigger ADCC effectively, but differ in their capacities to trigger CDC or direct cell death. Thus, type I antibodies (e.g. rituximab) strongly mediate CDC, but weakly elicit direct cell death, while type II antibodies (e.g. obinutuzumab) efficiently induce direct cell death but exert poor CDC activity. Yet, in vivo the situation is more complex, and the relative contribution of different antibody functions is not fully understood. Animal models have suggested that functions mediated by the fragment crystalizable (Fc) such as CDC or effector cell recruitment are crucial in CD20 antibody therapy [11–14]. Clinically, improved responses to rituximab or other therapeutic antibodies were observed in patients with homozygous expression of the FcγRIIIA-158V allelic variant, which binds the antibody Fc domain with higher affinity, in comparison to patients carrying the low-affinity FcγRIIIA-158F allele [15–19], pointing to a role of FcγRIIIA-expressing natural killer (NK) cells, macrophages, or monocytes. Moreover, activation of NK cells upon rituximab infusion was demonstrated in patients with the high-affinity FcγRIIIA polymorphism [20]. Whereas these results indicate a pivotal role for FcγR engagement and effector cell activation, a contribution of CDC in antibody therapy has not been proven [21]. However, regarding CD20 antibody therapy, a role of CDC has been supported by studies showing that complement is consumed upon rituximab infusion, that patients may benefit from infusion of plasma as a source of complement, and that post-rituximab treatment expression levels of inhibitory membrane-bound complement regulatory protein (mCRP) CD59 were increased in antibody-resistant chronic lymphocytic leukemia (CLL) patients [22–25].

Fc engineering strategies represent a promising approach to further enhance the efficacy of antibody therapy. Considering ADCC and CDC as important antibody functions, Fc modifications enhancing affinity to activating FcγR or C1q have gained peculiar interest. Two different technologies, either modification of the glycosylation pattern (Fc glyco-engineering) or alteration of the amino acid sequence (Fc protein engineering), have been established. Fc glyco-engineering was applied in particular to enhance ADCC. Thus, glyco-engineered antibodies, now lacking fucosylation of the N297-linked oligosaccharide, had a selectively enhanced affinity to FcγRIIIA and exerted improved efficacy in inducing ADCC by NK cells [26–28]. With obinutuzumab, a first glyco-engineered CD20 antibody has been approved for treatment of CLL [29–31]. Fc protein engineering approaches were employed to promote either FcγR or C1q binding [4]. A number of amino acid exchanges were identified, which markedly increased affinity to activating FcγR and substantially enhanced ADCC and CDC [32, 33]. In other studies amino acid alterations were found to specifically enhance CDC [34–36]. Alternatively, CDC activity was enhanced by generation of mixed-isotype IgG1/IgG3 variants of rituximab or by conversion of IgG1 into IgG3 antibodies [37, 38]. In another attempt, CDC was augmented by introducing distinct amino acid exchanges favoring antibody hexamer assembly [39, 40]. However, although distinct Fc modifications were identified that either promoted ADCC or CDC, simultaneous enhancement of both effector functions by amino acid alteration remains difficult, probably due to an overlap in the putative binding site for C1q [41] and the binding site for classical FcγR [42, 43]. Actually, some CDC-optimized antibody variants had a drop in ADCC activity, why additional rescue modifications were required [34].

In an attempt to engineer antibodies for both enhanced ADCC and CDC, we investigated whether both functions could be improved simultaneously by combining protein engineering and glyco-engineering technologies. Therefore, five amino acid exchanges (S267E/H268F/S324T/G236A/I332E, referred to as EFTAE), which in combination were shown to enhance CDC while maintaining the ADCC activity of native IgG1 antibodies [34], were introduced into the Fc domain of the CD20 antibody rituximab. The antibody was then expressed in a fully fucosylated form or as a glyco-engineered, non-fucosylated derivative, and ADCC and CDC activities of these differentially modified antibodies were analyzed in comparison to the corresponding native IgG1 molecule.

Material and Methods

Cell Culture

Daunia (Burkitt lymphoma) and baby hamster kidney BHK-21 cells (American Type Culture Collection, Manassas, VA, USA) were cultured in RPMI 1640 Glutamax-1 medium (Thermo Fisher Scientific, Walldorf, MA, USA) supplemented with 10% fetal calf serum (FCS, Thermo Fisher Scientific), 100 U/ml penicillin, and 100 μg/ml streptomycin (Thermo Fisher Scientific, R10+ medium). MEC-2 cells (CLL; German Collection of Microorganism and Cell Cultures (DSMZ), Braunschweig, Germany) were maintained in Iscove’s medium (Thermo Fisher Scientific) containing 20% FCS, 100 U/ml penicillin, and 100 μg/ml streptomycin. GRANTA-519 (mantle cell lymphoma; DSMZ) and Chinese hamster ovary CHO-K1 cells (DSMZ) were kept in DMEM medium (Thermo Fisher Scientific) supplemented with 10% FCS, 100 U/ml penicillin and 100 μg/ml streptomycin. CHO glycosylation-mutant Lecl3 cells [44, 45] were grown in MEM alpha medium containing nucleosides (Thermo Fisher Scientific) and supplemented with 10% dialyzed FCS (Thermo Fisher Scientific), 100 U/ml penicillin and 100 μg/ml streptomycin. Medium of transfected CHO-K1 and Lecl3 cells was supplemented with 500 μg/ml hygromycin B (Thermo Fisher Scientific). BHK-21 cells stably transfected with expression vectors encoding FcεRI y chain and either human FcγRII 158V (BHK-CD16-158V) or FcγRIIIA 158F (BHK-CD16-158F) allelic variants were cultured in medium supplemented with 10 μmol/l methotrexate (Sigma-Aldrich, Munich, Germany) and 500 μg/ml gentamicin (Thermo Fisher Scientific) [46].

Antibodies

For generation of antibody expression vector sequences encoding variable light (VL) and heavy (VH) chains of rituximab were synthesized de novo (Eurorins, Ebersberg, Germany) according to published sequences [47]. VL was ligated in frame into antibody x light (LC) chain expression vector pseudcc2-LC [48]. The sequence encoding VH was inserted in heavy chain (HC) expression vectors pseudcc2-HC (encoding a native IgG1 Fc domain [48]) and pseuda2-HC-ETFAE (encoding the engineered Fc domain with amino acid substitutions S267E/H268F/S324T/G236A/I332E [34], unpublished data). Similarly, expression vectors for corresponding HER2 antibody variants were constructed using VL and VH sequences from antibody trastuzumab [49]. Correctness of cloned sequences was confirmed by Sanger sequencing of final constructs. For expression, CHO-K1 or Lecl3 cells were stably transfected with antibody LC and HC.
An Fc Double-Engineered CD20 Antibody with Enhanced Complement-Dependent Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity

Wirt et al.

Resulting from positions of amino acid substitutions S267E/H268F/S324T/G236A/I332E (EFTAE-modification; in magenta) within the constant heavy chain (CH) 2 domain, which enhance CDC activity, and the fucose residue (in yellow), which is critical for FcγRIII binding and ADCC. The VH chain is depicted in light grey and the heavy chain in dark grey. The N297-linked glycan is colored in green. The IgG model structure is based on the pdb file provided by Dr. Mike Clark [57] and was modified using Discovery Studio Visualizer (Biorvia, San Diego, CA, USA).

B The EFTAE modification was introduced into Fc domain sequences of antibody rituximab (RTX-EFTAE). Both RTX-EFTAE and a variant with a wild-type Fc domain (RTX-wt) sequence were expressed in CHO-K1 and Lec13 cells to generate fucosylated antibodies (RTX-wt-CHO and RTX-EFTAE-CHO) and corresponding non-fucosylated derivatives (RTX-wt-Lec13 and RTX-EFTAE-Lec13), respectively.

C After purification by affinity chromatography, fucosylation of antibodies was analyzed by lectin blot using biotinylated *A. aurantiaca* lectin and HRP-conjugated neutrAvidin protein showing that antibodies produced in Lec13 cells lacked fucose in contrast to antibodies expressed in CHO-K1 cells. As a control antibody heavy chains were detected by Western blot analysis using HRP-conjugated anti-human IgG Fc antibody. Data from one representative experiment out of two performed are presented.

expression constructs with the Amoeba Nucleofector System (Lonza, Cologne, Germany) using transfection kit V according to the manufacturer’s recommendations as described previously [50]. After 48 h, medium was exchanged by culture medium containing 500 µg/ml hygromycin B. Stably transfected production lines were established by selection with hygromycin B (500 µg/ml). After establishing single-cell subclones by limiting dilution, single clones with moderate to high production rates were identified by flow cytometry analysis of supernatants. Antibodies were purified from cell culture supernatant with CaptureSelect™ IgG CH1 Affinity Matrix (Thermo Fisher Scientific) and affinity chromatography using gravity flow columns (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer’s recommendations. Antibody concentration and integrity were determined by quantitative capillary electrophoresis using Experion™ Pro260 technology (Bio-Rad Laboratories) in accordance with the manufacturer’s protocol. Trastuzumab was purchased from Roche (Penzberg, Germany).

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), Western Blot, and Lectin Blot Analysis

SDS-PAGE under reducing and non-reducing conditions was performed according to standard procedures [50]. Briefly, 1–2 µg of purified antibodies was loaded on 6% or 12% polyacrylamide gels. Gels were either stained directly with colloidal Coomassie brilliant blue staining solution (Carl Roth GmbH, Karlsruhe, Germany) or blotted to PVDF membranes. Human IgG Fc was detected using goat anti-human IgG HRP conjugate (Sigma Aldrich) as previously described [50]. Lectin blots using biotinylated *Aleuria aurantia* lectin (Vector Laboratories, Burlingame, CA, USA) and HRP-conjugated NeutrAvidin (Thermo Fisher Scientific) were performed as previously described [50].

Flow Cytometry

For indirect immunofluorescence staining, 3 × 10⁶ cells were washed in phosphate-buffered saline supplemented with 1% bovine serum albumin (Sigma Aldrich) and 0.1% sodium-azide (pA Bio buffer). Cells were incubated with antibodies at the indicated concentrations on ice for 30 min, washed twice with 500 µl PBA buffer, and stained with FITC-conjugated anti-human IgG Fc F(ab)₂ fragments of polyclonal goat antibodies (DAKO, Glostrup, Denmark) or FITC-labeled goat anti-mouse IgG Fc F(ab)₂; antibodies (Sigma Aldrich). After a final wash, cells were analyzed on a Navios flow cytometer (Beckman Coulter, Brea, CA, USA). 10,000 events were counted, and dead cells and cellular debris were excluded by using appropriate forward and side scatter gates. To analyze C1q deposition 3 × 10⁶ Daubi cells were first incubated with antibodies at 25 µg/ml in 50 µl R10+ medium on ice for 20 min. Human serum was added to R10+ medium to a final concentration of 2% and incubated for neutralization of C5 with eculizumab (Alexion Pharma GmbH, Munich, Germany) at a concentration of 200 µg/ml at room temperature for 20 min. Then 50 µl were added to antibody-coated cells. Cells were incubated at 37 °C for 10 min and then washed three times. Finally, cells were incubated with a murine FITC-conjugated anti-C1q antibody (DAKO) for 1 h, cells were washed three times, re-suspended in cold PBA, and analyzed for cell-bound C1q by flow cytometry. Expression of mCRPs was determined using mouse anti-human CD46 IgG1 (Thermo Fisher Scientific), CD55 IgG1 (BioRad), and CD59 IgG2a antibodies (EXBIO, Vestec, Czech Republic) at a concentration of 50 µg/ml. As isotypes purified murine hydridoma antibody myc-IgG1 antibody 9E10 (ATCC) and anti-keyhole limpet hemocyanin IgG2a antibody (R&D Systems, Minneapolis, MN, USA) were used.

Cytotoxicity Assay

CDC and ADCC were determined in standard ⁵¹Cr release experiments as described [50]. Human mononuclear cells (MNCs) and plasma, which were purified by affinity chromatography from cell culture supernatant (data not shown). Importantly, all antibodies exerted similar affinity to CD20 irrespective of their Fc domain modification as revealed by comparison of dose-dependent binding curves using Experion™ Pro260 technology (Bio-Rad Laboratories) in accordance with the manufacturer’s protocol. Trastuzumab was purchased from Roche (Penzberg, Germany).

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), Western Blot, and Lectin Blot Analysis

SDS-PAGE under reducing and non-reducing conditions was performed according to standard procedures [50]. Briefly, 1–2 µg of purified antibodies was loaded on 6% or 12% polyacrylamide gels. Gels were either stained directly with colloidal Coomassie brilliant blue staining solution (Carl Roth GmbH, Karlsruhe, Germany) or blotted to PVDF membranes. Human IgG Fc was detected using goat anti-human IgG HRP conjugate (Sigma Aldrich) as previously described [50]. Lectin blots using biotinylated *Aleuria aurantia* lectin (Vector Laboratories, Burlingame, CA, USA) and HRP-conjugated NeutrAvidin (Thermo Fisher Scientific) were performed as previously described [50].

Flow Cytometry

For indirect immunofluorescence staining, 3 × 10⁶ cells were washed in phosphate-buffered saline supplemented with 1% bovine serum albumin (Sigma Aldrich) and 0.1% sodium-azide (pA Bio buffer). Cells were incubated with antibodies at the indicated concentrations on ice for 30 min, washed twice with 500 µl PBA buffer, and stained with FITC-conjugated anti-human IgG Fc F(ab)₂ fragments of polyclonal goat antibodies (DAKO, Glostrup, Denmark) or FITC-labeled goat anti-mouse IgG Fc F(ab)₂; antibodies (Sigma Aldrich). After a final wash, cells were analyzed on a Navios flow cytometer (Beckman Coulter, Brea, CA, USA). 10,000 events were counted, and dead cells and cellular debris were excluded by using appropriate forward and side scatter gates. To analyze C1q deposition 3 × 10⁶ Daubi cells were first incubated with antibodies at 25 µg/ml in 50 µl R10+ medium on ice for 20 min. Human serum was added to R10+ medium to a final concentration of 2% and incubated for neutralization of C5 with eculizumab (Alexion Pharma GmbH, Munich, Germany) at a concentration of 200 µg/ml at room temperature for 20 min. Then 50 µl were added to antibody-coated cells. Cells were incubated at 37 °C for 10 min and then washed three times. Finally, cells were incubated with a murine FITC-conjugated anti-C1q antibody (DAKO) for 1 h, cells were washed three times, re-suspended in cold PBA, and analyzed for cell-bound C1q by flow cytometry. Expression of mCRPs was determined using mouse anti-human CD46 IgG1 (Thermo Fisher Scientific), CD55 IgG1 (BioRad), and CD59 IgG2a antibodies (EXBIO, Vestec, Czech Republic) at a concentration of 50 µg/ml. As isotypes purified murine hybridoma antibody myc-IgG1 antibody 9E10 (ATCC) and anti-keyhole limpet hemocyanin IgG2a antibody (R&D Systems, Minneapolis, MN, USA) were used.

Cytotoxicity Assay

CDC and ADCC were determined in standard ⁵¹Cr release experiments as described [50]. Human mononuclear cells (MNCs) and plasma, which were separated from citrate-anticoagulated blood by healthy volunteers by density gradient centrifugation using EasyColl (Biochrom, Berlin, Germany), served as a source of effector cells and complement, respectively. In CDC assays, plasma was used at 25%, and recombinant hirudin (RfLudan®, Bayer HealthCare Pharmaceuticals, Wayne, NJ, USA) was added to a concentration of 10 µg/ml as anticoagulant. In ADC experiments MNCs were applied at an effector-to-target cell ratio of 40:1.

Statistical Analysis

Graphical and statistical analyses were performed using GraphPad Prism 5.0 software. P values were calculated using repeated measures ANOVA and Bonferroni post-tests. The null hypothesis was rejected for p < 0.05.
Results

With the aim to enhance CDC and ADCC simultaneously, the Fc domain of the CD20 antibody rituximab was double-engineered by combining Fc protein engineering and Fc glyco-engineering technologies (fig. 1). Thus, the amino acid substitutions S267E/H268F/S324T/G236A/I332E (EFTAE modification), which previously have been shown to enhance CDC while preserving ADCC activity, were introduced into the antibody constant heavy region 2 (fig. 1A). To also increase its ADCC activity, the antibody was glyco-engineered by expression in Lec13 cells, which produce IgG1 molecules lacking Fc fucosylation (fig. 1B). By expression in CHO-K1 cells, a fucosylated EFTAE-modified derivative was generated as a control. Similarly, corresponding native wild-type CD20 antibody sequences were expressed in CHO-K1 or Lec13 cells to generate corresponding antibody variants lacking the EFTAE modification (fig. 1B). This resulted in four different CD20 antibodies, which were referred to as RTX-wt-CHO, RTX-EFTAE-CHO, RTX-wt-Lec13, or RTX-EFTAE-Lec13 (double-engineered Fc domain for enhanced CDC and ADCC), RTX-wt-CHO (unmodified IgG1 Fc domain), RTX-EFTAE-CHO (protein-engineered Fc) or RTX-wt-Lec13 (glyco-engineered Fc). The antibodies were purified by affinity chromatography from cell culture supernatants of stably transfected cell lines. Integrity and purity of antibody preparations were confirmed by reducing or non-reducing SDS-PAGE and subsequent Coomassie blue staining (unpublished data). To determine the fucosylation status of antibody variants expressed in different host cell lines, lectin blots using biotinylated *Aleuria aurantia* lectin were performed (fig. 1C). In agreement with previous findings [50], antibodies expressed in CHO-K1 cells (i.e., RTX-wt-CHO and RTX-EFTAE-CHO) were fucosylated, whereas their derivatives produced in Lec13 cells (i.e., RTX-wt-Lec13 and RTX-EFTAE-Lec13) lacked fucosylation.

Analysis of CD20 binding by flow cytometry revealed that antigen specificity was not altered by expression in different cell lines or Fc modifications. Thus, all rituximab variants bound both CD20-positive MEC-2 cells (fig. 2A) and CHO-K1 cells that were stably transfected with human CD20 (CHO-K1-CD20; fig. 2B). In contrast, no binding to non-transfected CHO-K1 cells (fig. 2B) and CD20-negative tumor cell lines (e.g., SK-BR-3 cells) was observed (data not shown). Importantly, all antibodies exerted similar affinity to CD20 irrespective of their Fc domain modification as revealed by comparison of dose-dependent binding curves using CHO-K1-CD20 cells and flow cytometry analysis (fig. 2C). Thus, CD20 specificity and binding avidity was maintained despite different Fc manipulations.

Efficient deposition of C1q on target cells is a prerequisite for induction of CDC via the classical pathway. Therefore, it was analyzed whether the EFTAE modification enhanced the abilities of the antibodies to fix C1q on CD20-positive lymphoma cells and, if this strategy was applicable, to non-fucosylated antibodies (fig. 3A). To this, CD20-positive Daudi cells were opsonized with RTX-wt-CHO, RTX-EFTAE-CHO, RTX-wt-Lec13, or RTX-EFTAE-Lec13, then incubated with human serum as a source of C1q in the presence of the C5 neutralizing antibody eculizumab to block CDC, and finally reacted with a C1q-specific antibody. Flow cytometry analysis revealed that higher amounts of C1q were bound by target cells coated with RTX-EFTAE-CHO or RTX-EFTAE-Lec13, presumably due to an increased gain in affinity to C1q achieved by the EFTAE modification. Obviously, C1q binding efficacy was similar for the protein-engineered RTX-EFTAE-CHO antibody variant and the double-engineered antibody RTX-EFTAE-Lec13.
An Fc Double-Engineered CD20 Antibody with Enhanced Complement-Dependent Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity

Wirt et al.

Transfus Med Hemother 2017;44:292–300

Fig. 3. Induction of CDC by rituximab antibody variants. A Daudi cells were coated with RTX-wt-CHO, RTX-EFTAE-CHO, RTX-wt-Lec13 or RTX-EFTAE-Lec13 (concentration: 50 µg/ml) and then incubated in the presence of human serum (1%) as a source of C1q. Eculizumab was added to block CDC. Deposition of C1q was analyzed with a FITC-coupled mouse anti-human C1q antibody by flow cytometry. Bars represent mean values ± SEM (n = 3). B CDC by rituximab variants in comparison to corresponding HER2-specific control antibodies was analyzed by 51Cr release experiments using Daudi cells as targets in the presence of 25% human plasma. Antibodies were applied at 10 µg/ml. Mean values ± SEM are depicted. Significant differences between CD20 antibodies and similarly designed control antibodies are indicated (*, P ≤ 0.05; n = 3). C Dose-dependent induction of CDC against Daudi (n = 3), GRANTA-519 (n = 4) and MEC-2 (n = 4) cells by rituximab variants. Human plasma (25%) was added as a source of complement. Statistically significant differences in CDC between engineered antibodies and the native CD20 IgG1 molecule are indicated (*, P ≤ 0.05). D Daudi, GRANTA-519 and MEC-2 cells were incubated with specific antibodies against mCRPs CD46, CD55 or CD59 (blue peaks) or isotype matched control antibodies (white peaks), which were subsequently detected with secondary FITC-conjugated goat anti-mouse IgG F(ab’)2 fragments, and expression levels were analyzed by flow cytometry. Results from one representative experiment are shown (n = 3; MFI, mean fluorescence intensity).
To analyze the ability of rituximab variants to kill lymphoma cells by CDC, ⁵¹Cr release experiments were performed using human plasma and Daudi Burkitt’s lymphoma cells (fig. 3B). All CD20 antibodies triggered efficient CDC against Daudi cells, whereas similarly constructed control antibodies directed against HER2 and harboring the corresponding Fc modifications were not effective. Thus, RTX-wt-CHO, RTX-EFTAE-CHO, RTX-wt-Lec13, and RTX-EFTAE-Lec13 triggered CDC in a target antigen-dependent manner. When dose-dependent induction of CDC was analyzed, CD20 antibody variants were all effective at nanomolar concentrations but, importantly, differed markedly in their potency (fig. 3C). Thus, RTX-EFTAE-CHO and RTX-EFTAE-Lec13 had equal activity and were most effective showing an approximately 4- to 5-fold lower half-maximum effective concentration than RTX-wt-CHO and RTX-wt-Lec13. The observed differences in the CDC activity between antibodies were even more pronounced, when GRANTA-519 mantle cell lymphoma or MEC-2 CLL cells were used as target cells. Here, antibodies lacking the EFTAE modification hardly triggered CDC, whereas RTX-EFTAE-CHO and RTX-EFTAE-Lec13 induced substantial target cell lysis, although higher concentrations were required in comparison to experiments with Daudi cells.

One explanation for the observed differences in the susceptibility of these cell lines to CDC may be variation in the expression of mCRPs CD46, CD55, and CD59. Therefore cell lines were analyzed for surface levels of CD46, CD55, and CD59 by flow cytometry (fig. 3D). Interestingly, MEC-2 and GRANTA-519 cells expressed significantly higher levels of all three mCRPs than the CDC-sensitive Daudi cells. Thus, expression of complement defense proteins may contribute to the observed differences between cell lines in CDC assays.

Next, to examine the affinity of different antibody constructs to FcγRIIIA, dose-dependent binding to BHK cells stably transfected with either FcγRIIIA-158V or FcγRIIIA-158F expression con-
An Fc Double-Engineered CD20 Antibody with Enhanced Complement-Dependent Cytotoxicity and Antibody-Dependent Cell-Mediated Cytotoxicity

Wirt et al.

11.10.17 20:48

Simultaneously, an Fc double-engineered variant of the CD20 antibody rituximab was generated by combining protein engineering and glyco-engineering technologies. The resulting non-fucosylated CD20 antibody with the EFTAE modification [34] was more efficacious in mediating CDC and ADCC against lymphoma or leukemia cells than the corresponding native IgG1. These results suggest that glyco-engineering and protein engineering technologies can be applied to the same antibody molecule, which offers the opportunity to generate antibodies with both enhanced ADC and CDC activity.

Fc-engineered antibodies are increasingly gaining importance in antibody therapy of cancer [1, 4]. Whereas antibodies optimized for CDC to our knowledge have not been evaluated in patients, to date two Fc glyco-engineered antibodies (i.e., mogamulizumab and obinutuzumab) with enhanced FcyRIIA binding and ADCC activity have been approved for clinical use. However, it remains unclear, whether these Fc modifications indeed translate into higher therapeutic efficacy in patients since direct comparisons between Fc-engineered antibodies and their corresponding native IgG1 counterparts in patients are still lacking [51].

Different murine models have suggested that both complement and effector cell recruitment represent important in vivo effector functions for antibodies targeting CD20 or other tumor-associated antigens, suggesting that enhancement of both effector functions may be beneficial. Of note, the relative contribution of complement and FcyR engagement varied between different murine models: in some models the therapeutic efficacy of the antibody largely depended on CDC, whereas in other models the antibody strictly required FcyR engagement [11–13]. In patients, tumor cell characteristics, such as target antigen expression levels or cell surface expression of antitgens that regulate sensitivity to CDC or ADCC, may determine which killing mechanism is available to the therapeutic antibody. Thus, the expression of antigens inhibiting effector cell activation (e.g. human leukocyte antigens or CD47 [5, 52]) or receptors promoting cellular cytotoxicity (e.g. NKG2D [53]) may play a role. Likewise expression of mCRPs may protect tumor cells from CDC and thus lower the relative contribution of this elimination mechanism [54]. However, inhibitory effects may be overcome with Fc-engineered antibodies, as also suggested in the current study. Thus, rituximab variants with the EFTAE modification triggered CDC against MEC-2 and GRANTA-519 cells, which abundantly expressed mCRPs and were almost resistant to CDC by the native IgG1 antibody.

More recent animal data suggest that in vivo mechanisms of CD20 antibodies are affected by additional factors such as tumor burden or the anatomic location [14]. Whereas low tumor load was eradicated by CDC, in the situation of high tumor load both complement and FcyR engagement were required. In addition, an impact of the tumor microenvironment on antibody functions has been suggested [55]. Thus, in human CD20 transgenic mice, depletion of distinct B-cell compartments were dependent on different mechanisms [55]. While CDC was the underlying elimination mechanism in killing of marginal-zone B cells, FcyR-dependent killing mechanisms were required for elimination of blood B cells as well as eradication of lymph node and follicular B cells in the spleen. Thus, in certain situations both CDC and effector cell-mediated killing mechanisms may be required for sufficient target cell depletion, suggesting that particularly in such situations double-engineered antibodies with both enhanced ADC and CDC activity may have advantages over native antibodies, or antibodies optimized only for one effector function.

Enhancing of CDC and ADCC simultaneously is difficult to achieve by amino acid alterations alone. In one approach, Fc glyco-engineering was applied to an IgG1/IgG3 mixed-isotype antibody, which resulted in enhanced CDC and ADCC activities [37]. Results of the current study provide profound evidence that augmented ADCC and CDC activity can also be achieved by combining Fc protein engineering and Fc glyco-engineering technology. Type I CD20 antibodies such as rituximab are typically characterized by strong potency to trigger CDC and ADCC, which at least in part is attributed to favorable characteristics of the target antigen and the recognized epitope [25]. Whether this double-engineering approach is applicable to other CD20 antibodies or antibodies targeting other antigens still needs to be investigated. The observed high efficacy of Fc-engineered antibodies suggests a potential to enhance the therapeutic efficacy of antibodies by combining these approaches.
higher ADCC activity with MNC effector cells presumably reflects NK cell activity in short-time 3Cr release experiments. If double-engineered, non-fucosylated antibodies endowed with the EFTAE modification also have a higher activity in the activation of myeloid effector cells for ADCC or ADCP to be determined. The influence of the EFTAE modification may be more pronounced with myeloid effector cells than with NK cells since this modification affects affinity to both activating FcγRIIA and inhibitory FcγRIIB receptors [34] which are both expressed by macrophages and monocytes, but not by NK cells [56].

In conclusion, ADCC and CDC activities of therapeutic antibodies may be enhanced simultaneously by combining Fc glyco- and protein engineering technologies as exemplified here for non-fucosylated CD20 antibodies harboring the EFTAE modification, which exerted significantly improved effector functions. Thus, this double-engineering approach may represent an attractive strategy to further improve antibody therapy of tumors and may deserve further evaluation towards clinical testing.

Acknowledgements

Professor Pamela Stanely (Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA) is kindly acknowledged for providing the cell line Le13. M. P. is supported by the Mildred Scheel professorship program by the Deutsche Krebshilfe e. V. C. K. and M. P. are supported by a research grant from the Wilhelm Sander Foundation (2014.134.1). M.P. and T.V. received research support by the Deutsche Forschungsgemeinschaft (PE1425/5-1 and VA1249/1-1). We thank Anja Musculus and Britta von Below for excellent technical assistance.

Disclosure Statement

The authors declare no competing financial interests.

References

1. Weiner GI: Building better monoclonal antibody-based therapeutics. Nat Rev Cancer 2015;15:361–370.
2. Scott AM, Wolchok JD, Old LJ: Antibody therapy of cancer. Nat Rev Cancer 2012;12:278–287.
3. Lim SH, Levy R: Translational medicine in action: anti-CD20 therapeutic in lymphoma. Immunity 2014;39:1519–1524.
4. Kellner CI, Derer S, Valerius T, Peipp M: Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions. Methods 2014;65:105–113.
5. Ferris RL, Jaffe EM, Ferrone S: Tumor antigen-targeted, monovalent antibody-based immunotherapy: clinical response, cellular immunity, and immunoscape. J Clin Oncol 2010;28:4390–4399.
6. Niew R, Sakurai M, Kobayashi Y, Urash A, Matsushita K, Ueda R, Nakamura K, Shitara K: Enhanced natural killer cell killing and activation by low-fucose IgG1 antibodies result in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res 2005;11:2327–2336.
7. van Meerten T, van Rijn RS, Hol S, Hagenbeek A, Ebele SB: Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin Cancer Res 2006;12:4027–4035.
8. Beers SA, Glenew MJ, White AJ: Influence of immuno-globulin Fc isotype on therapeutic antibody function. Blood 2016;127:1097–1101.
9. Nederfieldt G, Lammens A, Mandoli G, Groens GI, Schaefer W, Schwager F, Franke A, Weichmann K, Jenewein S, Slootstra JW, Timmerman P, Brannstrom A, Lindey SB: Complement-induced death by rituximab is due to antibody-dependent cytotoxicity. J Clin Oncol 2006;18:358–367.
10. Clynes RA, Towers TL, Presta LG, Ravetch JV: Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2006;8:443–446.
11. de Haan S, Jansen JH, Borus P, Beusekens FJ, Bakema JE, Bus DL, Martens A, Verboom JP, Parren PW, van de Winkel JG, Lessen JH: In vivo cytotoxicity of type 1 CD20 antibodies critically depends on Fc receptor ITAM signaling. Cancer Res 2010;70:3209–3217.
12. Borus P, Jansen JH, de Haan S, Beusekens FJ, van der Poel CE, Bervat L, Nederend M, Golay J, van de Winkel JG, Parren PW, Lessen JH: The in vivo mechanism of action of CD20 monoclonal antibodies depends on local tumor burden. Haematologica 2011;96:1822–1830.
13. Margott G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Walter H: Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphisms in FcgammaRIIIa gene in IgG Fc receptor FcgammaRIIIa gene. Blood 2002;99:754–758.
14. Weng WK, Levy R: Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 2003;21:3940–3947.
15. Parsky DG, Dornan J, Goldman BH, Braziel RM, Fisher JL, Leblanc M, Maloney DG, Press OW, Miller TP, Rimma LM: Fc gamma receptor 3a genotype predicts overall survival in follicular lymphoma patients treated on SWOG trials with combined monoclonal antibody plus chemotherapy but not chemotherapy alone. Haematologica 2012;97:937–942.
16. Massaquoi A, Nald S, Bente R, Pezoza D, Capelli R, Musial M, Laccobio D, Zorabai A, Camisa R, Buixi G, Neri TM, Ardizoni A: Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2 neu-positive metastatic breast cancer. J Clin Oncol 2008;26:1789–1796.
17. Bibes F, Lopez-Cerezo E, De Faye F, Therzena S, Ychou M, Blanchard F, Lamy A, Peron-Delcroix F, Frebort B, Michel P, Saburin JC, Boissiere-Michet F: Impact of FcgammaRIIIa (FcgammaRIIIa) polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 2009;27:1122–1129.
18. Veramash S, Wang SY, Dahle G, Blackwell S, Jacobus L, Koutson T, Butler A, Link RK, Weiner GI: Rituximab infusion induces NK activation in lymphoma patients with the high-affinity CD16 polymorphism. Blood 2011;118:3347–3349.
19. Weng WK, Levy R: Expression of complement inhibitors CD34, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood 2001;98:1352–1357.
20. Bannerji R, Kataka S, Bhnn SW, Pearson M, Young D, Reed JC, Bredt JC: Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol 2003;21:1466–1471.
21. Kennedy AD, Beem PV, Selga MD, Dillon DL, Lindorfer MA, Hoss CE, Demersson J, Williams MR, Taylor RP: Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia. J Immunol 2004;172:3280–3288.
22. Klefish A, Schattner A, Glotli H, Rachmawietz EA: Addition of fresh frozen plasma as a source of complement to rituximab in advanced chronic lymphocytic leukemia. Lancet Oncol 2007;8:361–362.
23. Lim SH, Beers SA, French RR, Johnson PW, Glennie MJ, Craig MS: Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 2010;95:135–143.
24. Ferrara C, Stuart F, Sondemand P, Brunek P, Umama P: The carbohydrate at FcgammaRIIA Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J Biol Chem 2006;281:5032–5036.
25. Ferrara C, Grieu S, Jager C, Sondemand P, Brunek P, Waldbauer I, Hennig M, Ruf A, Baer AC, Stihle M, Umama P, Beng J: Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci U S A 2011;108:12669–12674.
26. Shields RL, Lal J, Keck R, O’Connell L, Hong K, Meng YG, Wiekert SH, Preeta LG: Lack of sucrose on human IgG1-N-linked oligosaccharide improves binding to human Fgammara III and antibody-dependent cellular toxicity. J Biol Chem 2002;277:26733–26740.
Lee CH, Romain G, Yan W, Watanabe M, Charab W, Moore GL, Chen H, Karki S, Lazar GA: Engineered Fc domain antibodies with enhanced direct and immune effector function mediated B-cell cytotoxicity. Blood 2010; 115:4393–4402.

Illidge T, Klein C, Sehn LH, Davies A, Salles G, Cartron G: Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities. Cancer Res 2008; 68:784–792.

Ka, Stilgenbauer S, Dohner H, Langerak AW, Ritgen MS, Illmer T, Opat S, Owen CJ, Samoylova O, Kreuzer W, Wendtner CM, Chagorova T, de la Serna J, Dilhuydy MS, Illmer T, Opal S, Owen CJ, Samoylova O, Kreuzer KA, Stilgenbauer S, Dohner H, Langenki, AW, Riigen M, Kneba M, Askanias I, Humphrey K, Wenger M, Haliek M: Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 2014;370:1091–1110.

Illidge T, Klein C, Sehn LH, Davies A, Salles G, Cartron G: Obinutuzumab in hematologic malignancies: lessons learned to date. Cancer Treat Rev 2015;41:784–792.

Lazar GA, Ding W, Kariki S, Vafa O, Peng JS, Hyun L, Chen H, Karki S, Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chen H, Karki S, Lazar GA: Engineered antibodies with increased activity to recruit complement. Immunol Res 2010;45:292–300.

30 Mossner E, Brucker P, Moser S, Puntenner U, Schmidt C, Herre S, Grau R, Gerdes C, Nopora A, van Puttenlook E, Ferrara C, Sondermann P, Jager C, Steun P, Feretti G, Fries T, Schull C, Baur S, Del Porto J, Del Negro C, Dabich K, Dyer MJ, Poppema S, Klein C, Umano P: Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 2010; 115:4393–4402.

Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chagorova T, de la Serna J, Dilhuydy MS, Illmer T, Opal S, Owen CJ, Samoylova O, Kreuzer KA, Stilgenbauer S, Dohner H, Langenki, AW, Riigen M, Kneba M, Askanias I, Humphrey K, Wenger M, Haliek M: Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 2014;370:1091–1110.

Illidge T, Klein C, Sehn LH, Davies A, Salles G, Cartron G: Obinutuzumab in hematologic malignancies: lessons learned to date. Cancer Treat Rev 2015;41:784–792.

Lazar GA, Ding W, Kariki S, Vafa O, Peng JS, Hyun L, Chen H, Karki S, Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chen H, Karki S, Lazar GA: Engineered antibodies with increased activity to recruit complement. Immunol Res 2010;45:292–300.

Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chagorova T, de la Serna J, Dilhuydy MS, Illmer T, Opal S, Owen CJ, Samoylova O, Kreuzer KA, Stilgenbauer S, Dohner H, Langenki, AW, Riigen M, Kneba M, Askanias I, Humphrey K, Wenger M, Haliek M: Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 2014;370:1091–1110.

Illidge T, Klein C, Sehn LH, Davies A, Salles G, Cartron G: Obinutuzumab in hematologic malignancies: lessons learned to date. Cancer Treat Rev 2015;41:784–792.