A Corrected Simplified Proof of Chen’s Theorem

Zihao Liu

*International Department, The Affiliated High School of SCNU,
Email: mailto:travor_lzh@163.com

Abstract

In 1973, J.-R. Chen [2] showed that every large even integer is a sum of a prime and a product of at most two primes. In this paper, the author indicates and fixes the issues in a simplified proof of this result given by Pan et al. [7]

Keywords: Chen’s theorem, Goldbach’s problem, Sieve theory, Switching principle

I. Introduction

For brevity, let \(\{1, c\} \) denote the following proposition:

There exists a constant \(N_0 \) such that for all even \(N > N_0 \), there exists a prime \(p < N - 1 \) such that \(N - p \) is a product of at most \(c \) primes.

Initially, the study of \(\{1, c\} \) assumes the truthfulness of the Generalized Riemann Hypothesis for Dirichlet L-function:

Proposition 1 (GRH). Let \(\pi(x; q, l) \) denote the number of primes \(p \) such that \(p \leq x, p \equiv l \pmod{q} \)

If \((l, q) = 1 \), then

\[
\pi(x; q, l) = \frac{\text{li} x}{\varphi(q)} + O(\sqrt{x \log x}) \tag{1}
\]

where \(\text{li} x \) denotes the logarithmic integral function.

Assuming GRH, Estermann [4] proves \(\{1, 6\} \) in 1932. Subsequently, this result is improved to \(\{1, 4\} \) by Wang [11] using the sieves of Buchstab [13] and Selberg [9]. Then in 1962, Wang [12] applies Kuhn’s methods [6] and shows \(\{1, 3\} \) holds under GRH.

In 1965, Bombieri [1] and Vinogradov [10] apply the large sieve method [3] and prove the following unconditional mean value theorem:

Theorem 1 (Bombieri-Vinogradov). For all fixed \(A > 0 \), there exists \(B = B(A) \) such that for all large \(x \):

\[
\sum_{q \leq x} \max_{\nu \leq x} \max_{(l, q) = 1} \left| \pi(x; q, l) - \frac{\text{li} x}{\varphi(q)} \right| < \frac{x}{\log^A x}
\]
By replacing (1) with Theorem 1 while estimating error terms, Estermann’s \{1, 6\} and Wang’s \{1, 4\} and \{1, 3\} become unconditional results.

To prove \{1, 2\}, Chen applies the Jurkat–Richert theorem\(^*\) and proves\(^†\) that if \(W(N)\) denotes the number of primes \(p\) such that \(N - p\) has no prime factors \(\leq N^{\frac{1}{3}}\) and has most one prime factor in \((N^{\frac{1}{3}}, N^{\frac{1}{2}}]\), then for sufficiently large even \(N\)

\[
W(N) \geq 2.6408 \mathfrak{S}(N) \frac{N}{\log^2 N} \tag{2}
\]

where \(\mathfrak{S}(N)\), the singular series for the Goldbach’s problem, is defined as

\[
\mathfrak{S}(N) = \prod_{p|N} \frac{p - 1}{p - 2} \prod_{p > 2} \left(1 - \frac{1}{(p - 1)^2}\right)
\]

It follows from pigeonhole principle that \(W(N)\) gives a lower bound for the number of ways to express \(N\) as a sum of a prime and a product of at most three primes, and \(N - p\) counted by \(W(N)\) has exactly three prime factors if and only if

\[
N - p = p_1 p_2 p_3, \quad N^{\frac{1}{10}} < p_1 \leq N^{\frac{1}{3}} < p_2 < p_3 \tag{3}
\]

To estimate primes satisfying (3), Chen devised the following switched sum

\[
\Omega = \sum_a \sum_{N - a p_3 \text{ prime}} f(a)
\]

where \(f(a)\) is the characteristic function for the condition that

\[
a = p_1 p_2, \quad N^{\frac{1}{10}} < p_1 \leq N^{\frac{1}{3}} < (N/p_1)^{\frac{1}{2}} \tag{4}
\]

Then, he applies the Selberg’s sieve [9] and the large sieve to obtain

\[
\Omega \leq 3.9404 \mathfrak{S}(N) \frac{N}{\log^2 N} \tag{5}
\]

By symmetry, it is evident that the number of primes \(p\) satisfying (3) is bounded by half of \(\Omega\), so \{1, 2\} is deduced as the number of ways to express \(N\) as a sum of a prime and a product of at most two primes is no less than

\[
W(N) - \frac{\Omega}{2} \geq \left(2.6408 - \frac{3.9404}{2}\right) \mathfrak{S}(N) \frac{N}{\log^2 N} > 0.67 \mathfrak{S}(N) \frac{N}{\log^2 N}
\]

Soon after Chen, Pan et al. [7] simplified the proof of (5) by introducing the following new mean value theorem:

Theorem 2 (Pan et al.). Let \(\pi(x; a, q, l)\) denote the number of primes satisfying

\[
ap \leq x, ap \equiv l \pmod{q}
\]

and \(\Delta(x; a, q, l)\) be defined by

\[
\Delta(x; a, q, l) = \pi(x; a, q, l) - \frac{\li}{\varphi(q)}
\]

\[^*\]Chen himself regards this as Richert’s sieve [8], but the sieve method in Richert’s paper is essentially the Jurkat–Richert theorem [5].

\[^†\]See Lemma 9 of [2]
Then for every fixed $A > 0$, there exists $B = B(A)$ such that

$$
\sum_{q \leq x} \mu^2(q) \frac{3^{\omega(q)}}{q} \max_{y \leq x} \max_{l(q) = 1} \left| \sum_{(a,q) = 1} f(a) \Delta(a; a, q, l) \right| \ll \frac{x}{\log A}.
$$

Theorem 2 is devoted to give upper estimate for the error terms emerged from the estimation of Ω. However, this result does not serve to estimate all the error terms appeared in the upper bound sieve for Ω.

In this paper, we present a corrected version of Pan et al.’s proof of (5). The issues in their original proof are discussed and resolved in section IV.

II. AUXILIARY LEMMAS

Lemma 1. Let $\beta > \alpha > 0$ be fixed. Then for all $x \geq 2$, the sum

$$
\sum_{x^\alpha < p \leq x^\beta} \frac{1}{p}
$$

is bounded.

Proof. Mertens’ second theorem asserts that there exists a fixed constant B_1 such that

$$
\sum_{p \leq x} \frac{1}{p} = \log \log x + B_1 + O \left(\frac{1}{\log x} \right)
$$

so we have

$$
\sum_{x^\alpha < p \leq x^\beta} \frac{1}{p} = \log \frac{\beta}{\alpha} + O \left(\frac{1}{\log x} \right)
$$

This suggests the sum is bounded. Q.E.D.

Lemma 2. Let $A > 0$ be a fixed constant. Then for any integer $n \geq 1$

$$
\sum_{d|n} \frac{\mu^2(d) A^{\omega(d)}}{\varphi(d)} \ll (\log \log 3n)^A
$$

where $\omega(n)$ denotes the number of distinct prime factors of n. In particular, if n is the product of distinct primes $\leq y$, then

$$
\sum_{d|n} \frac{\mu^2(d) A^{\omega(d)}}{\varphi(d)} = \sum_{d|n} \frac{A^{\omega(d)}}{\varphi(d)} \ll (\log y)^A
$$

Proof. It is evident that the left hand side is multiplicative, so by definition we have

$$
\sum_{d|n} \frac{\mu^2(d) A^{\omega(d)}}{\varphi(d)} = \prod_{p|n} \left(1 + \frac{A}{p - 2} \right) \leq \exp \left\{ \sum_{p|n} \frac{A}{p - 1} \right\}
$$

To estimate the remaining sum, we replace the denominator:

$$
\sum_{p|n} \frac{1}{p - 1} = \sum_{p|n} \frac{1}{p} + \sum_{p|n} \frac{1}{p(p - 1)} = \sum_{p|n} \frac{1}{p} + O(1)
$$

3
Now, we introduce a parameter $1 \leq u \leq n$ so that

$$\sum_{\nu | n} \frac{1}{p} \leq \sum_{p \leq u} \frac{1}{p} + \sum_{\nu | n} \frac{1}{p} \leq \sum_{p \leq u} \frac{1}{p} + \frac{\omega(n)}{u}$$

$$= \log \log u + O(1) + O\left(\frac{\log n}{u}\right)$$

where the last line follows from (7) and the fact that $\omega(n) = O(\log n)$. Plugging this result back with $u = \log 3n$, we obtain

$$\sum_{d | n} \mu_2(d) A^{\omega(d)} \leq \exp\left\{A \log \log \log 3 n + O(1)\right\} \ll (\log \log 3 n)^{A}$$

If n is the product of primes $\leq y$, then by Chebyshev’s estimates we have

$$\log n = \sum_{p \leq y} \log p \ll y$$

Thus, (8) is also proven.

Q.E.D.

Lemma 3 (Selberg’s sieve). Let Q denote the product of primes $\leq z = N^{\frac{1}{4}}$ that do not divide N. There exists real sequence λ_d satisfying

1. $\lambda_1 = 1$.
2. $\lambda_d = 0$ for $d > z$ or $d \nmid Q$.
3. $|\lambda_d| \leq 1$.

such that

$$\sum_{d_1, d_2} \frac{\lambda_{d_1} \lambda_{d_2}}{\phi([d_1, d_2])} = [8 + O(\epsilon)] N / \log N$$

Proof. See Lemma 2 and §4 of [12]. Q.E.D.

Lemma 4. For large N, we have

$$\sum_{a} f(a) \frac{1}{a \log(N/a)} \leq 0.49254 \log N$$

Proof. According Equation 4 and Equation 7, we can use partial summation to transform the leftmost sum into

$$= \sum_{N^{\frac{1}{4}} < p_1 \leq N^{\frac{1}{4}}} \sum_{N^{\frac{1}{4}} < p_2 \leq (N/p_1)^{\frac{1}{4}}} \frac{1}{p_1 p_2 \log(x/p_1 p_2)}$$

$$\sim \int_N^{N^{\frac{3}{4}}} \frac{dx}{x \log x} \int_N^{N^{\frac{1}{4}}} \frac{1}{\log N - \log x - \log y} \frac{dy}{y \log y}$$

$$= \frac{1}{\log N} \int_0^{\frac{1}{4}} \frac{d\alpha}{\alpha} \int_{\frac{1}{2}}^{1 - \alpha} \frac{d\beta}{\beta(1 - \alpha - \beta)} \ll 0.49254 \frac{1}{\log N}$$

where the last inequality follows the numerical calculations in (28) of [2]. Q.E.D.
III. Preliminary treatments for Ω

Since every prime number is either co-prime to Q or a divisor of Q, we have

$$\Omega \leq \sum_a f(a) \sum_{ap \leq N} \frac{\lambda_d}{d(N-ap)}$$

where λ_d is defined as in Lemma 3. By an interchanging of summation, there is

$$M = \sum_{a} f(a) \sum_{ap \leq N} \sum_{d_1, d_2(N-ap,Q)} \lambda_{d_1} \lambda_{d_2}$$

$$= \sum_{d_1, d_2} \lambda_{d_1} \lambda_{d_2} \sum_{a} f(a)$$

$$= \sum_{d_1, d_2} \lambda_{d_1} \lambda_{d_2} \sum_a f(a) \pi(N; a, [d_1, d_2], N) = M_1 + R$$

where M_1 and R satisfy:

$$M_1 = \sum_{d_1, d_2} \frac{\lambda_{d_1} \lambda_{d_2}}{\varphi([d_1, d_2])} \sum_a f(a) \ln \frac{N}{a}$$

$$|R| \leq \sum_{d \leq N^{1/2}} 3^{\omega(d)} \left| \sum_a f(a) \pi(N; a, d, N) \right|$$

where the factor $3^{\omega(d)}$ follows from the fact that there are exactly $3^{\omega(d)}$ pairs of d_1, d_2 satisfying $[d_1, d_2] = d$. To estimate the main term, notice that

$$\ln x = \frac{x}{\ln x} + O \left(\frac{x}{\ln^2 x} \right)$$

so plugging Lemma 3 and Lemma 4 into (9) gives

$$M_1 \leq [8 + O(\varepsilon)] \frac{\Theta(N)}{\log N} \frac{0.49254 N}{\log N} \leq 3.94033 \Theta(N) \frac{N}{\log^4 N}$$

Thus the remaining task is to estimate the error term in (10).

IV. Salvaging the estimation of R

The authors of [7] concluded

$$R \ll \frac{N}{\log^4 N}$$
merely from Theorem 2 because they assume \(f(a) \neq 0 \) automatically ensures \(a \) is co-prime to \(d \). However, due to (4), it is possible for \(a \) to possess a prime divisor \(\leq N^{\frac{1}{10} - \frac{1}{2}} \), so their arguments for (12) are incorrect.

To salvage (12) and their proof of Chen’s theorem, we consider each case separately. After applying Theorem 2 to estimate the sum over \((a, d) = 1 \), all we need is to estimate the remaining situation where \((a, d) > 1 \):

\[
R \ll \frac{N}{\log^4 N} + \sum_{d \mid Q, d \leq N^{1/2}} 3^{\omega(d)} \sum_{(a,d) > 1} f(a) |\Delta(N; a, d, N)|
\]

(13)

Since \((a, d) > 1 \) implies \(\pi(N; a, d, N) \leq 1 \), it follows from (6) and Lemma 2 that

\[
R_1 \ll \sum_{d \mid Q} 3^{\omega(d)} \max_{d \leq N^{1/2}} \sum_{(a,d) > 1} f(a) \frac{N}{a \log(N/a)}
\]

\[
\ll (\log N)^3 \max_{d \leq N^{1/2}} \sum_{(a,d) > 1} f(a) \frac{N}{a \log(N/a)}
\]

\[
\ll N(\log N)^2 \max_{d \leq N^{1/2}} \sum_{(a,d) > 1} \frac{f(a)}{a}
\]

where the last \(\ll \) follows from the fact that \(f(a) \neq 0 \) implies \(a \leq N^{\frac{2}{5}} \). Due to (4), \((a, d) > 1 \) if and only if \(p_1 \mid d \), so

\[
\sum_{(a,d) > 1} \frac{f(a)}{a} \leq \sum_{p \mid p_1} \sum_{N^{\frac{2}{10} - \frac{1}{5}} < p \leq N^{\frac{2}{10} - \frac{1}{5}}} \frac{1}{p} \sum_{p_2 \mid p_1} \frac{1}{p_2}
\]

\[
\leq \sum_{p \mid p_1} \frac{1}{p_1} \sum_{N^{\frac{2}{10} - \frac{1}{5}} < p_2 \leq N^{\frac{2}{10} - \frac{1}{5}}} \frac{1}{p_2}
\]

Now, we apply Lemma 1 with \(x = N, \alpha = \frac{1}{4}, \beta = \frac{1}{4} \), so that

\[
\sum_{(a,d) > 1} \frac{f(a)}{a} \ll \sum_{p \mid p_1} \frac{1}{p} < 10N^{-\frac{1}{10}} \frac{\log N}{\log 2} \sum_{p \mid d} \log p \ll N^{-\frac{1}{10}}
\]

Plugging this result back, we obtain \(R_1 \ll N^{\frac{1}{10} \log^2 N} \). Finally, combining (11) and (13), we conclude that for large \(N \)

\[
\Omega \leq M_1 + R + N^{\frac{1}{10} \log^2 N} \leq 3.94033 \mathbb{S}(N) \frac{N}{\log^2 N}
\]

\[
+ O \left(\frac{N}{\log^4 N} + N^{\frac{1}{10} \log^2 N} + N^{\frac{1}{11}} \right)
\]

This gives (5), so the proof of \(\{1,2\} \) is now complete.
REFERENCES

[1] E. Bombieri. On the large sieve. *Mathematika*, 12(2):201–225, December 1965.

[2] Jing-Run Chen. On the representation of a larger even integer as the sum of a prime and the product of at most two primes. *Scientia Sinica*, 16(2), 1973.

[3] Harold Davenport. *Multiplicative Number Theory*, volume 74 of *Graduate Texts in Mathematics*. Springer New York, New York, NY, 1980.

[4] Theodor Estermann. Eine neue Darstellung und neue Anwendungen der Viggo Brunschen Methode. *J. Reine Angew. Math.*, 1932(168):106–116, 1932.

[5] W. B. Jurkat and H.-E. Richert. An improvement of Selberg’s sieve method. *Acta Arithmetica*, 11(2):217–240, 1965.

[6] Paul Kuhn. Über die Primteiler Eines Polynoms. *Proceedings of the International Congress of Mathematicians, Amsterdam*, 2:35–37, 1954.

[7] Cheng-Dong Pan, Yuan Wang, and Xia-xi Ding. On the representation of every large even integer as a sum of a prime and an almost prime. *Scientia Sinica*, 18(5):599–610, 1975.

[8] H.-E. Richert. Selberg’s sieve with weights. *Mathematika*, 16(1):1–22, June 1969.

[9] Atle Selberg. On an Elementary Method in the Theory of Primes. *Norske Vid. Selsk. Forh. Trondheim*, 19:64–67, 1947.

[10] A. I. Vinogradov. Über die Dichtehypothese für die Dirichletschen L-Reihen. *Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya*, 29:903–934, 1965.

[11] Yuan Wang. On the representation of large even integer as a sum of a prime and a product of at most 4 primes (Conditional result). *Acta Mathematica Sinica*, 6(4):565–582, 1956.

[12] Yuan Wang. On the representation of large integer as a sum of a prime and an almost prime. *Scientia Sinica*, 11(8):1033–1054, 1962.

[13] Yuan Wang, editor. *The Goldbach conjecture*. Number v. 4 in Series in pure mathematics. World Scientific, River Edge, NJ, 2nd ed edition, 2002.