Parallel Packing Squares into a Triangle

Janusz Januszewski, Xi Liu, Zhanjun Su, and Łukasz Zielonka

Abstract. Assume that T_h is a triangle with the interior angles at the base of the measure not greater than 90°, with the base length 1 and the height h. Let S be a square with a side parallel to the base of T_h and let $\{S_n\}$ be a collection of the homothetic copies of S. A tight upper bound of the sum of the areas of squares from $\{S_n\}$ that can be parallel packed into a triangle T_h is determined.

Mathematics Subject Classification. 52C15, 05B40.

Keywords. Packing, parallel packing, square, triangle.

1. Introduction

Let P be a polygon and let S_i be a square for $i = 1, 2, \ldots$ One side of P is called the base of P. A collection S_1, S_2, \ldots is said to be packed into P if their union is contained in P and if these squares have pairwise disjoint interiors. A packing is called parallel if a side of each packed square is parallel to the base of P.

The goal is to pack the squares into P with high density. The area of a polygon R is denoted by $|R|$. Let $g(P)$ be the greatest number such that any collection of squares of the total area not greater than $g(P) \cdot |P|$ can be parallel packed into P.

Assume that S is a square and that T_h is a triangle with the interior angles at the base of the measure not greater than 90°, with the base length 1 and the height h. There are many results concerning packing squares or rectangles.

This research was partially supported by National Natural Science Foundation of China (11471095), the NSF of Hebei Province (A2021205008), and the Science Foundation of Hebei Normal University (L2020Z01).
Moon and Moser [11] showed that \(\varrho(S) = 1/2 \); in this case the most effective usual packing is the parallel packing. In many publications in which squares are placed into a rectangle, when authors write “packing” they mean “parallel packing” (see for example [1,2,5,8–10,12]). Let us add that for packing squares or rectangles of the side lengths not greater than 1 into a large square the most effective packings are not parallel (see [3,7]).

The following results concerning parallel packing squares into a triangle were known:
- \(\varrho(T_{\sqrt{3}/2}) = 2\sqrt{3} - 3 \) for an equilateral triangle \(T_{\sqrt{3}/2} \) (see [6]),
- \(\varrho(T_{\sqrt{2}} \geq (16 - 6\sqrt{2})/23 \) for a right triangle \(T_{\sqrt{2}} \) (see [4]),
- \(\varrho(T_{\sqrt{2}/2}) = 6\sqrt{2} - 8 \) and \(\varrho(T_{\sqrt{2}/3}) = 6\sqrt{2}/(11 + 6\sqrt{2}) \) (see [13]).

The aim of this note is to show that
\[
\varrho(T_{h}) = \min \left\{ \frac{2h}{(h+1)^2}, \max \left[\frac{4h}{(2h+1)^2}, \frac{4h}{(h+2)^2} \right] \right\}.
\]

Without loss of generality one can assume that \(\alpha \geq \beta \) (see Fig. 1).

2. Upper Bounds

Claim 1. A square of the side length not greater than \(h/(h+1) \) can be parallel packed into \(T_{h} \) while one square of the side length greater than \(h/(h+1) \) cannot.

Proof. Let \(a \) be the greatest number such that the square of the side length equal to \(a \) can be parallel packed into \(T_{h} \) (see Fig. 1). By Thales’s intercept theorem, \(\frac{1}{a} = \frac{h}{h+a} \), i.e., \(a = \frac{h}{h+1} \). \(\square \)

Corollary 1. Any square of the area not greater than \(2h/(h+1)^2 \cdot |T_{h}| \) can be parallel packed into \(T_{h} \). Moreover, \(\varrho(T_{h}) \leq 2h/(h+1)^2 \).

Proof. If the area of a square equals \(2h/(h+1)^2 \cdot |T_{h}| = h^2/(h+1)^2 \), then its side length is equal to \(h/(h+1) \). \(\square \)
Claim 2. Two congruent squares of the side length smaller than or equal to \(\max\left[\frac{h}{2h+1}, \frac{h}{h+2}\right] \) can be parallel packed into \(T_h \) while two squares of the side length greater than \(\max\left[\frac{h}{2h+1}, \frac{h}{h+2}\right] \) cannot.

Proof. Let \(b \) be the greatest number such that two squares of the side length equal to \(b \) can be parallel packed into \(T_h \) along the base of \(T_h \) (see Fig. 2). By Thales’s intercept theorem, \(\frac{1}{2b} = \frac{h}{h-b} \), i.e., \(b = \frac{h}{2b+1} \). Moreover, let \(d \) be the greatest number such that two squares of the side length equal to \(d \) can be parallel packed into \(T_h \) “vertically” as on Fig. 3. By Thales’s intercept theorem, \(\frac{1}{d} = \frac{h}{h-2d} \), i.e., \(d = \frac{h}{h+2} \).

Corollary 2. Any two congruent squares of the sum of the areas not greater than \(\max\left[\frac{4h}{(2h+1)^2}, \frac{4h}{(h+2)^2}\right] \cdot |T_h| \) can be parallel packed into \(T_h \). Moreover, \(\varrho(T_h) \leq \max\left[\frac{4h}{(2h+1)^2}, \frac{4h}{(h+2)^2}\right] \).

Proof. If the area of a square equals
\[
\frac{1}{2} \cdot \max\left[\frac{4h}{(2h+1)^2}, \frac{4h}{(h+2)^2}\right] \cdot |T_h| = \max\left[\frac{h^2}{(2h+1)^2}, \frac{h^2}{(h+2)^2}\right],
\]
then its side length is equal to $\max\left(\frac{h}{2h+1}, \frac{h}{h+2}\right)$. □

It can be check that $4h/(2h+1)^2 \geq 4h/(h+2)^2$ provided $h \leq 1$. Moreover, $2h/(h+1)^2 \leq 4h/(2h+1)^2$ for $h \leq \sqrt{2}/2$ and $2h/(h+1)^2 \leq 4h/(h+2)^2$ for $h \geq \sqrt{2}$. Let

$$\varrho_h = \min\left\{ \frac{2h}{(h+1)^2}, \max\left[\frac{4h}{(2h+1)^2}, \frac{4h}{(h+2)^2} \right] \right\}$$

$$= \begin{cases}
\frac{2h}{(h+1)^2} & \text{for } 0 < h \leq \frac{1}{2} \sqrt{2} \\
\frac{4h}{(2h+1)^2} & \text{for } \frac{1}{2} \sqrt{2} < h \leq 1 \\
\frac{4h}{(h+2)^2} & \text{for } 1 < h \leq \sqrt{2} \\
\frac{2h}{(h+1)^2} & \text{for } h > \sqrt{2}
\end{cases}$$

It is easy to verify that $\varrho_h \leq 1/2$.

Corollary 3. For any $h > 0$, $\varrho(T_h) \leq \varrho_h$.

Proof. If either $h \leq \frac{1}{2} \sqrt{2}$ or $h > \sqrt{2}$, then $\varrho_h = \frac{2h}{(h+1)^2}$. By Corollary 1 we get $\varrho(T_h) \leq \frac{2h}{(h+1)^2} = \varrho_h$. Note that the worst case appears when one square is packed: one square of the area greater than $\varrho_h|T_h|$ cannot be packed into T_h.

If $\frac{1}{2} \sqrt{2} < h \leq 1$, then $\varrho_h = \frac{4h}{(2h+1)^2} = \max\left[\frac{4h}{(2h+1)^2}, \frac{4h}{(h+2)^2} \right]$. By Corollary 2 we obtain $\varrho(T_h) \leq \varrho_h$. Now the worst case appears when two squares are packed: two congruent squares of the total area greater than $\varrho_h|T_h|$ cannot be packed either along the base of T_h or vertically. However, it is possible to pack two congruent squares of the total area equal to $\varrho_h|T_h|$ horizontally (see Fig. 2).

If $1 < h \leq \sqrt{2}$, then $\varrho_h = \frac{4h}{(h+2)^2} = \max\left[\frac{4h}{(2h+1)^2}, \frac{4h}{(h+2)^2} \right]$. By Corollary 2 we get $\varrho(T_h) \leq \varrho_h$. In that case the worst case appears when two squares are packed: two congruent squares of the total area greater than $\varrho_h|T_h|$ cannot be packed either along the base of T_h or vertically, but it is possible to pack two congruent squares of the total area equal to $\varrho_h|T_h|$ vertically (see Fig. 3).

In Sect. 5 we will show that $\varrho(T_h) \geq \varrho_h$.

3. Lemmas

Claim 3. Any two squares of the sum of the areas not greater than $\varrho_h \cdot |T_h|$ can be parallel packed into T_h.

Proof. The conditions $\alpha \geq \beta$ and $h \cot \alpha + h \cot \beta = 1$ (see Fig. 3) imply that

$$2 \cot \alpha \leq \cot \alpha + \cot \beta = \frac{1}{h}.$$
Let S_1 and S_2 be the squares of the side lengths a_1, a_2, respectively and let

$$a_1^2 + a_2^2 \leq g_h \cdot |T_h| \leq \max \left[\frac{2h^2}{(2h+1)^2}, \frac{2h^2}{(h+2)^2} \right].$$

First we show that if S_1 and S_2 cannot be packed along the base of T_h, then $a_1^2 + a_2^2 > \frac{2h^2}{(2h+1)^2}$. If S_2 cannot be parallel packed into T_h ”horizontally” as on Fig. 4, left, then $a_1 \cot \alpha + a_1 + a_2 + a_2 \cot \beta > 1$. Since

$$1 < a_1 \cot \alpha + a_1 + a_2 + a_2 \cot \beta = a_1 \cot \alpha + a_1 + a_2 + a_2 \left(\frac{1}{h} - \cot \alpha \right),$$

it follows that $a_1 + a_2 > \frac{2h}{2h+1}$, i.e., $a_2 > \frac{2h}{2h+1} - a_1$. Thus

$$a_1^2 + a_2^2 > a_1^2 + \left(\frac{2h}{2h+1} - a_1 \right)^2 = 2 \left(a_1^2 - \frac{2ha_1}{2h+1} + \frac{2h^2}{(2h+1)^2} \right) \geq 2 \left(\frac{h^2}{(2h+1)^2} - \frac{2h^2}{(2h+1)^2} + \frac{2h^2}{(h+2)^2} \right) = \frac{2h^2}{(h+2)^2}.$$

This means that $a_1^2 + a_2^2 \leq \frac{2h^2}{(h+2)^2}$. In that case we show that S_1 and S_2 can be packed into T_h ”vertically” as on Fig. 4, right. The assumption $a_1^2 \leq g_h \cdot |T_h|$, by Corollary 1 implies that S_1 can be packed into T_h. Let $p = a_1^2 + a_2^2$. Hence $a_1 + a_2 = a_1 + \sqrt{p - a_1^2}$. The function $f(a_1) = a_1 + \sqrt{p - a_1^2}$ has a local maximum at $a_1 = \sqrt{p}/2$. This means that $a_1 + a_2 \leq \sqrt{p}/2 + \sqrt{p}/2 = \sqrt{2p}$. Since $a_1 + a_2 = \sqrt{2p}$ for $a_1 = a_2$, it follows that if two congruent squares of the total area p can be parallel packed into T_h, then any two squares of the total area p can be packed into T_h. By Corollary 2 two congruent squares of the total area greater than $2h^2/(2h+1)^2$ and not greater than $2h^2/(h+2)^2$ can be parallel packed into T_h ”vertically”. \hfill \Box
Let \(sT_h \) be the image of \(T_h \) after a homothety with the ratio \(s \). Clearly, \(sT_h \) is a triangle of the base length \(s \) and the height \(sh \). Since affine transformations preserve relative areas, by Claim 1 and 3 we get the following result.

Corollary 4. Any square of the area not greater than \(\varrho_h \cdot |sT_h| \) can be parallel packed into \(sT_h \). Moreover, two squares of the sum of the areas not greater than \(\varrho_h \cdot |sT_h| \) can be parallel packed into \(sT_h \).

The following two inequalities will be used in the proof of Lemma 3.

Lemma 1. Let \(f(x, h) = (1 + x^2)/(2h + 4hx + x) \). If \(h > 0 \) and if \(x \leq 1 \), then \(f(x, h) > \varrho_h/(2h) \).

Proof. Assume that \(h > 0 \) and that \(x \leq 1 \). We will show that

\[
f(x, h) > \frac{\varrho_h}{2h} = \begin{cases}
\frac{1}{(h+1)^2} & \text{for } h \in (0, \frac{1}{2}\sqrt{2}] \cup (\sqrt{2}, +\infty) \\
\frac{2}{(2h+1)^2} & \text{for } h \in (\frac{1}{2}\sqrt{2}, 1] \\
\frac{2}{(h+2)^2} & \text{for } h \in (1, \sqrt{2}]
\end{cases}
\]

Observe that

\[
f(x, h) - \frac{1}{(h+1)^2} = \frac{x^2h^2 + 2x^2h + x^2 - 4hx - x + h^2 + 1}{(2h + 4hx + x)(h+1)^2} = \frac{(hx - 1)^2(1-x) + (x-h)^2 + x^3h^2}{(2h + 4hx + x)(h+1)^2} > 0
\]

for \(h > 0 \). Moreover, if \(h \geq \sqrt{2}/2 \), then \(1/(h+1)^2 \geq 2/(2h+1)^2 \) and, consequently, \(f(x, h) > \frac{2}{(2h+1)^2} \). Finally observe that

\[
f(x, h) - \frac{2}{(h+2)^2} = \frac{x^2h^2 + 4x^2h + 4x^2 - 8hx - 2x + h^2 + 4}{(2h + 4hx + x)(h+2)^2} = \frac{(hx - 2)^2(1-x) + (2x-h)^2 + x^3h^2 + 2x}{(2h + 4hx + x)(h+2)^2} > 0.
\]

\[\square\]

Lemma 2. Let \(g(y, h) = (2 + y)/(6h + 4hy + 1) \). If \(h > 0 \) and if \(y > 0 \), then \(g(y, h) > \varrho_h/(2h) \).

Proof. We proceed as in the proof of Lemma 1. Observe that

\[
g(y, h) - \frac{1}{(h+1)^2} = \frac{h^2 + (y+1)(h-1)^2}{(6h + 4hy + 1)(h+1)^2} > 0
\]

and

\[
g(y, h) - \frac{2}{(h+2)^2} = \frac{4 + 2(h-1)^2 + y(h-2)^2}{(6h + 4hy + 1)(h+2)^2} > 0.
\]

\[\square\]
4. Packing Squares into Trapezoids

In the main packing method squares will be packed in trapezoid-shape layers. In this section an algorithm for packing squares into trapezoids is described.

Assume that S_i is a square of the side length a_i, where $a_1 \geq a_2 \geq \ldots$. Let L be a trapezoid of the base length $b(L)$, with the height $h(L)$ and with the base angles measuring α and β, where $90^\circ \geq \alpha \geq \beta$ (see Fig. 5, left). Moreover assume that $a_1(1 + \cot \alpha) + a_2(1 + \cot \beta) \leq b(L)$ and that $h(L) = a_1$ (see Fig. 5, right).

Description of the L-method for packing S_1, S_2, \ldots into L.

- The first square S_1 is packed into L as far to the left as possible. Let L_1 be the part of L lying to the right of S_1, i.e., the trapezoid of the height $h(L_1) = a_1$, of the base length $b(L_1) = b(L) - a_1(1 + \cot \alpha)$ and with the base angles measuring 90° and β (see Fig. 5, right).
- If $a_2 > \frac{1}{2}a_1$ (see Fig. 5), then S_2 is packed into L_1 in the left-bottom corner; then $L_{2,1}$ is the part of L_1 lying to the right of S_2, i.e., either $L_{2,1}$ is the trapezoid of the height $h(L_1) = a_1$, of the base length $b(L_1) = b(L) - a_1(1 + \cot \alpha) - a_2$ and with the base angles measuring 90° and β or $L_{2,1}$ is the triangle of the base length $b(L_1) = b(L) - a_1(1 + \cot \alpha) - a_2$, with the base angles measuring 90° and β, and of the height not greater than $h(L) = a_1$. If $a_2 \leq \frac{1}{2}a_1$, then L_1 is partitioned into smaller trapezoids. Let m_2 be an integer such that $2^{-m_2-1}a_1 < a_2 \leq 2^{-m_2}a_1$. Then L_1 is divided into 2^m_2 trapezoids $L_{1,1}^+, \ldots, L_{1,2^{m_2}}^+$ of the height $h_2 = 2^{-m_2}a_1$ (see Fig. 6). The square S_2 is packed into $L_{1,1}^+$ as far to the left as possible, i.e., in the left-bottom corner. New trapezoids are defined as follows:
Proof. Case 1: Lemma 3. Moreover assume that h by a ϱ of the height h_{k-1} were defined. Next square S_k is placed in the following way. If $a_k > \frac{1}{2}h_{k-1}$, then let j be the smallest integer such that $b(L_{k-1,j}) \geq a_k(1 + \cot \beta)$ (we find the lowest lying trapezoid into which S_k can be packed). Then S_k is packed into $L_{k-1,j}$ in the left-bottom corner. New trapezoids are defined: $L_{k,j}$ is the part of $L_{k-1,j}$ lying to the right of S_k and $L_{k,i} = L_{k-1,i}$ for $i \neq j$ (it is possible that some trapezoids are triangles). For example, squares S_2, S_3 and S_4 are packed on Fig. 8 (left) by this rule. Moreover, squares S_4, \ldots, S_{10} are packed by this rule on Fig. 9, left. If $a_k \leq \frac{1}{2}h_{k-1}$, then each trapezoid $L_{k-1,i}$ is partitioned into smaller trapezoids. Let n_k be an integer such that $2^{-n_k}h_{k-1} < a_k \leq 2^{-n_k+1}h_{k-1}$. Then $L_{k-1,i}$ (for $i = 1, \ldots, 2^{m_k-1}$) is divided into 2^n trapezoids $L_{k-1,i}(i-1)2^{n_k+1}, \ldots, L_{k-1,i}2^{n_k}$ of the height $2^{-n_k}h_{k-1}$ (see Fig. 6, right). Let j be the smallest integer such that $b(L_{k-1,j}) \geq a_k(1 + \cot \beta)$ (we find the lowest lying trapezoid into which S_k can be packed). The square S_k is packed into $L_{k-1,j}$ in the left-bottom corner. New trapezoids are defined: $L_{k,j}$ is the part of $L_{k-1,j}$ lying to the right of S_k and $L_{k,i} = L_{k-1,i}$ for $i \neq j$ and $i \in \{1, 2, \ldots, 2^{m_k}\}$, where $m_k = m_{k-1}n_k$ (it is possible that some trapezoids are triangles). For example, squares S_3 and S_9 are packed on Fig. 9 (right) by this rule.

Lemma 3. Assume that S_i is a square of the side length a_i for $i = 1, 2, \ldots$, where $a_1 \geq a_2 \geq \ldots$. Let L be a trapezoid of the base length $b(L)$, with the height $h(L) = a_1$ and with the base angles measuring α and β (see Fig. 5, left). Moreover assume that $a_1(1 + \cot \alpha) + a_2(1 + \cot \beta) \leq b(L)$. If S_1 is the first square that cannot be packed into L by the L-method, then $|S_1| + \ldots + |S_{z-1}| > \varrho h \cdot |L|$.

Proof. Since any homothety preserves relative areas, without loss of generality one can assume that $b(L) = 1$.

Consider four cases.

Case 1: $z = 3$, $a_3 \geq a_1/2$. (see Fig. 7)

Let $x = a_2/a_1$. Since a_2 cannot be packed into L, it follows that $a_1 \cot \alpha + a_1 + a_2 + a_3 \cot \beta > 1$. Recall that $\cot \alpha + \cot \beta = 1/h$ and $\cot \alpha \leq \frac{1}{2h}$. By

$$1 < a_1 \cot \alpha + a_1 + a_2 + a_3 \cot \beta = a_1 \cot \alpha + a_1 + 2a_2 + a_3 \left(\frac{1}{h} - \cot \alpha\right)$$

$$= (a_1 - a_2) \cot \alpha + a_1 + 2a_2 + a_3 \cdot \frac{1}{h} \leq \frac{1}{2h} (a_1 - a_1 x) + a_1 + 2a_1 x + a_1 x \cdot \frac{1}{h}$$

$$= a_1 \left(\frac{1 + x}{2h} + 1 + 2x\right) = a_1 \cdot \frac{1 + x + 4hx + 2h}{2h}$$
we get
\[a_1 > \frac{2h}{1 + 2h + 4hx + x}. \]

Denote by \(\varrho(L) \) the ratio of the sum of the areas of squares packed into \(L \) to the area of \(L \). Only two squares are packed in \(L \), therefore
\[
\varrho(L) = \frac{a_1^2 + a_2^2}{a_1 - \frac{1}{2}a_2^2(\cot \alpha + \cot \beta)} = \frac{a_1^2 + (xa_1)^2}{a_1 - \frac{a_2^2}{2h}} = \frac{a_1(1 + x^2) \cdot 2h}{2h - a_1}.
\]

Since the function \(f(a_1) = 2ha_1(1 + x^2)/(2h - a_1) \) is increasing, it follows that
\[
\varrho(L) > \frac{2h(1 + x^2) \cdot 2h}{1 + 2h + 4hx + x} \cdot \frac{1 + 2h + 4hx + x}{2h \cdot (2h + 4hx + x)} = 2h \frac{(1 + x^2)}{2h + 4hx + x}.
\]

By Lemma 1, \(\varrho(L) > 2h \cdot \varrho_h/(2h) = \varrho_h \).

Case 2: \(z > 3 \), \(a_z \geq a_1/2 \).

Let \(L^- \) be the trapezoid with \(b(L^-) = 1 - a_3 - \ldots - a_{z-1} \), with the height \(a_1 \) and the base angles with the same measures as the base angles of \(L \) (see Fig. 8, where \(z = 5 \)). Moreover, let \(sL^- \) be the image of \(L^- \) after a homothety with the ratio \(s \) such that the larger base of \(sL^- \) is equal to 1. By Case 1, the density of packing squares \(sS_1 \) and \(sS_2 \) into \(sL^- \) is greater than \(\varrho_h \). This implies that the density of packing squares \(S_1 \) and \(S_2 \) into \(L^- \) is greater than \(\varrho_h \). The density of packing squares \(S_3, \ldots, S_{z-1} \) into the rectangle \(R_L = (a_3 + \ldots + a_{z-1}) \times a_1 \) is greater than \(1/2 \geq \varrho_h \). Clearly, \(|L^-| + |R_L| = |L| \). As a consequence, the density of packing squares \(S_1, S_2, \ldots, S_{z-1} \) into \(L \) is greater than \(\varrho_h \).

Case 3: \(z \geq 3 \), \(a_1/4 < a_z \leq a_1/2 \).

Let \(k \) be the smallest integer such that \(a_k < a_1/2 \) (see Fig. 9, left). Obviously, \(k \leq z \). Let \(L_{k-1,1} \) be the part of \(L_1 \) lying to the right of \(S_{k-1} \), i.e., either the trapezoid of the height \(h_r = h(L_{k-1,1}) \), of the base length \(b_r = b(L_{k-1,1}) \) and with the base angles measuring 90° and \(\beta \) or the triangle...
of the base length $b_r = b(L_{k-1,1})$, with the base angles measuring 90° and β, and of the the height not greater than $h_r = h(L_{k-1,1})$.

Squares S_k, S_{k+1}, \ldots are packed into two rectangular trapezoids $L_{k-1,1}^+$ and $L_{k-1,2}^+$ with disjoint interiors, where $L_{k-1,1} = L_{k-1,1}^+ \cup L_{k-1,2}^+$ (it is possible that trapezoids are triangles).

Assume that S_v is the first square that cannot be packed into $L_{k-1,1}^+$. Clearly $a_v \leq h_r/2$ and $a_z \leq h_r/2$ (see Fig. 10, right).

Let $p_2 = |S_k| + \ldots + |S_{z-1}|$, i.e., p_2 is equal to the sum of the areas of squares packed into $L_{k-1,1}^+$.

Subcase 3A: $b_r \geq a_v (1 + \cot \beta) + \frac{1}{2} h_r \cot \beta$. Observe that (see Fig. 10, right)

$$p_2 \geq [b_r - a_v (1 + \cot \beta)] a_v + [b_r - a_z (1 + \cot \beta) - \frac{1}{2} h_r \cot \beta] a_z.$$

Let

$$p_1 = [b_r - \frac{1}{2} h_r (1 + \cot \beta)] \frac{1}{2} h_r.$$
Figure 10. Subcase 3A

and let \(y = (2p_1)/(a_1h_r) \). Obviously, \(p_1 \) is equal to the area of the gray rectangle and \(ya_1 \) is equal to the base length of the gray rectangle on Fig. 10, left.

Since

\[
p_2 - p_1 \geq b_r (a_v + a_z - \frac{1}{2}h_r) + (1 + \cot \beta) \left(\frac{1}{4}h_r^2 - a_v^2 - a_z^2 \right) - \frac{1}{2}h_r a_z \cot \beta
\]

\[
> \left[a_v (1 + \cot \beta) + \frac{1}{2}h_r \cot \beta \right] (a_v + a_z - \frac{1}{2}h_r)
\]

\[
+ (1 + \cot \beta) \left(\frac{1}{4}h_r^2 - a_v^2 - a_z^2 \right) - \frac{1}{2}h_r a_z \cot \beta
\]

\[
= a_z (1 + \cot \beta) (a_v - a_z) + \frac{1}{2}h_r \left(\frac{h_r}{2} - a_v \right)
\]

and \(a_z \leq a_v \leq h_r/2 \), we get \(p_2 > p_1 \). Hence, to show that \(\sum_{i=1}^{z-1} |S_i| > \varrho_h |L| \), it suffices to verify that

\[
a_1^2 + \ldots + a_{k-1}^2 + p_1 > \varrho_h |L|.
\]

First assume that \(k = 2 \). We argue as in Case 1. By conditions \(a_1 \cot \alpha + a_1 + ya_1 + \frac{1}{2}a_1 + \frac{1}{2}a_1 \cot \beta = 1 \), \(\cot \alpha + \cot \beta = 1/h \) and \(\cot \alpha \leq 1/(2h) \), we get

\[
1 = a_1 \cot \alpha + a_1 + ya_1 + \frac{1}{2}a_1 + \frac{1}{2}a_1 \cot \beta
\]

\[
= a_1 \cot \alpha + \frac{3}{2}a_1 + ya_1 + \frac{1}{2}a_1 \left(\frac{1}{h} - \cot \alpha \right)
\]

\[
= \frac{1}{2} a_1 \cot \alpha + \frac{3}{2} a_1 + ya_1 + \frac{a_1}{2h}
\]

\[
\leq \frac{1}{2} a_1 \cdot \frac{1}{2h} + \frac{3}{2} a_1 + ya_1 + \frac{a_1}{2h} = a_1 \cdot \frac{3h + 2yh + \frac{3}{2}}{2h}.
\]

Consequently,

\[
a_1 \geq \frac{4h}{6h + 4yh + 3}.
\]
Now we estimate the packing density:

\[
\frac{a_1^2 + p_1}{|L|} = \frac{a_1^2 + \frac{1}{2} a_1 \cdot ya_1}{a_1 - \frac{a_1^2}{2h}} = h(2 + y) \cdot \frac{a_1}{2h - a_1} \\
\geq h(2 + y) \cdot \frac{\frac{4h}{6h + 4y + 3}}{\frac{4h}{6h + 4y + 3}} = 2h \cdot \frac{2 + y}{6h + 4hy + 1}.
\]

By Lemma 2, \(a_1^2 + p_1 > |L| \cdot 2h \cdot \frac{\varrho}{h} = \varrho |L|\).

If \(k > 2\), then we argue as in Case 2.

Subcase 3B: \(b_r < \frac{1}{2} h_r (1 + \cot \beta)\). This assumption implies that a square of the side length greater than \(\frac{h_r}{2}\) cannot be packed in \(L_{k-1,1}\). By Case 1 and Case 2, \(a_1^2 + \ldots + a_{k-1}^2 > \varrho |L|\).

Subcase 3C: \(\frac{1}{2} h_r (1 + \cot \beta) \leq b_r \leq a_v (1 + \cot \beta) + \frac{1}{2} h_r \cot \beta\). The total area of squares packed in two trapezoids contained in \(L_{k-1,1}\) (see Fig. 11, right) is not smaller than

\[
p_2^- = [b_r - a_v (1 + \cot \beta)] a_v.
\]

In this subcase, similarly as in Subcase 3a, it suffices to check that \(p_2^- (L_{k-1,1}) \geq p_1^- (L_{k-1,1})\), where

\[
p_1^- = [b_r - \frac{1}{2} h_r (1 + \cot \beta)] \cdot \frac{1}{2} h_r
\]

\((p_1^-\) is equal to the area of the gray rectangle on Fig. 11, left). Observe that

\[
p_2^- - p_1^- = b_r a_v - a_v^2 (1 + \cot \beta) - \frac{1}{2} h_r b_r + \frac{1}{4} h_r^2 (1 + \cot \beta) \\
= \left(\frac{1}{4} h_r^2 - a_v^2\right) (1 + \cot \beta) + b_r a_v - \frac{1}{2} b_r h_r \\
= \left(\frac{1}{2} h_r - a_v\right) \left(\frac{1}{2} h_r + a_v\right) (1 + \cot \beta) + \left(\frac{1}{2} h_r - a_v\right) b_r \\
= \left(\frac{1}{2} h_r - a_v\right) \left[\frac{1}{2} h_r \cot \beta + a_v (1 + \cot \beta) - b_r + \frac{1}{2} h_r\right].
\]

By \(\frac{1}{2} h_r - a_v \geq 0\) and \(\frac{1}{2} h_r \cot \beta + a_v (1 + \cot \beta) - b_r > 0\), we get \(p_2^- - p_1^- > 0\).

Case 4: \(z \geq 3\), \(a_z \leq a_1/4\) (see Fig. 9, right).
We proceed in the same way as in Case 3. The sum of the areas of squares packed into two trapezoids $L_{l,i}^+, L_{l,i+1}^+$ contained in the trapezoid $L_{l,i}^+ \cup L_{l,i+1}^+$ is greater than the area of the corresponding “gray” rectangle of the height $h(L_{l,i})$ and the base length $b(L_{l,i}) - h(L_{l,i}) \cdot (1 + \cot \beta)$ contained in $L_{l,i}^+ \cup L_{l,i+1}^+$. □

5. Main Result

Theorem 1. Any collection of squares of the total area not greater than $\varrho_h \cdot |T_h|$ can be parallel packed into T_h.

Proof. Let S_1, S_2, \ldots be a collection of squares of the total area not greater than $\varrho_h \cdot |T_h|$. There is no loss of generality in assuming that $a_1 \geq a_2 \geq \ldots$, where a_i denotes the side length of S_i.

Squares will be packed into trapezoid-shape layers in such a way that the packing density in each layer, i.e., the ratio of the sum of packed squares to the area of the layer, is greater than ϱ_h.

Since $a_1^2 + a_2^2 + \ldots \leq \varrho_h \cdot |T_h|$, by Corollary 1 the first square can be packed into T_h. Moreover, if there are at least two squares in the collection (i.e., if $z > 1$), then, by Claim 3, squares S_1 and S_2 can be packed into T_h either horizontally or vertically, i.e., either $a_1(1 + \cot \alpha) + a_2(1 + \cot \beta) \leq 1$ or $a_1 + a_2 \leq 2h/(h + 2)$ (see the proof of Claim 3).

If $a_1(1 + \cot \alpha) + a_2(1 + \cot \beta) \leq 1$ (see Fig. 13), then let L^1 be the trapezoid contained in T_h with the base length 1, the height a_1 and the base angles measuring α and β. This trapezoid is called the basic layer. Squares S_1, S_2, \ldots are packed into L^1 by the L-method. Denote by S_{n_1} the first square that cannot be packed into L^1 ($n_1 = 3$ on Fig. 13). By Lemma 3, the total area of squares packed into L^1 is not smaller than $\varrho_h \cdot |L^1|$.

If $a_1(1 + \cot \alpha) + a_2(1 + \cot \beta) > 1$ and at the same time $a_1 + a_2 \leq \frac{2h}{2h + 1}$ (this case is possible for $h > 1$), then we pack S_1 and S_2 “vertically”. The first condition implies that $1 < (a_1 + a_2)(2h + 1)/(2h)$ (see the proof of Claim 3). Let $\lambda = a_1 + a_2$. The so-called double layer L^1 of the height λ is created for packing only two squares, see Fig. 12. In that case $n_1 = 3$ (S_{n_1} is the first square that is not packed into L^1) and $\lambda > 2h/(2h + 1)$. It is easy to verify that $a_1^2 + a_2^2 \geq (\lambda/2)^2 + (\lambda/2)^2 = \lambda^2/2$. Recall that $\varrho_h \leq 1/2$ while the packing density in the double layer is not smaller than $1/2$:

$$\frac{a_1^2 + a_2^2}{1 \cdot \lambda - \frac{\lambda^2}{2h}} \geq \frac{1}{2} \frac{\lambda^2}{\lambda - \frac{\lambda^2}{2h}} = \frac{h \lambda}{2h - \lambda} \geq \frac{\frac{2h}{2h + 1}}{2h - \frac{2h}{2h + 1}} = 1/2.$$

Since the sum of the areas of the squares packed into L^1 is greater than $\varrho_h \cdot |L^1|$, it follows that the total area of the remaining squares is smaller than $\varrho_h \cdot |T_1|$, where $T_1 = T_h \setminus L^1$.

For packing squares $S_{n_1}, S_{n_1+1}, \ldots$ the new layer L^2 of the base length $1 - a_1 \cot \alpha - a_1 \cot \beta$, with the base angles measuring α and β and with the
height either \(a_{n_1} \) or \(a_{n_1} + a_{n_1+1} \) is created directly above \(L^1 \) (see Fig. 13, where \(L^2 \) is a double layer). If \(a_{n_1} (1 + \cot \alpha) + a_{n_1+1} (1 + \cot \beta) \leq b(L^2) \), then we place \(S_{n_1}, S_{n_1+1}, \ldots \) into the basic layer \(L^2 \) of the height \(a_{n_1} \) by the \(L \)-method (denote by \(S_{n_2} \) the first square that cannot be packed into \(L^2 \)). Otherwise, we pack \(S_{n_1} \) and \(S_{n_1+1} \) into the double layer of the height \(a_{n_1} + a_{n_1+1} \) and we take \(n_2 = n_1 + 2 \).

Assume that the layers \(L^1, \ldots, L^p \) were created and that \(S_{n_p} \) is the first square that cannot be packed into \(L^p \). The total area of squares packed into each \(L^i \) \((i = 1, \ldots, p)\) is greater than \(\varrho_p \cdot |L^i| \). This implies that \(a_{n_p+1}^2 + a_{n_p+2}^2 + \ldots \) is smaller than \(\varrho_h \) times the area of \(T_p = T_h \setminus \bigcup_{i=1}^{p} L^i \). By Corollary 4, \(S_{n_p} \) can be packed into \(T_p \). Moreover by Claim 3, \(S_{n_p} \) and \(S_{n_p+1} \) can be packed into \(T_p \) provided \(z \geq n_p + 1 \). There is an empty space in \(T_h \) to create either the basic or the double layer to pack \(S_{n_p} \) and \(S_{n_p+1} \). This means that all the squares can be packed into \(T_h \). \(\square \)

The following result is a consequence of Theorem 1 and Corollary 3.
Corollary 5. For any $h > 0$, \(\varrho(T_h) = \varrho_h \).

Funding This research was partially supported by National Natural Science Foundation of China (11471095), the NSF of Hebei Province (A2021205008), and the Science Foundation of Hebei Normal University (L2020Z01).

Availability of data and material Not applicable.

Declartions

Conflict of interest The authors declare that they have no conflict of interest.

Code availability Not applicable.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] Bálint, V.: A packing problem and geometrical series. In: Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, vol. 51 of Annals of Discrete Mathematics, pp. 17–21. Elsevier (1992)

[2] Chalcraft, A.: Perfect square packings. J. Comb. Theory Ser. A 92, 158–172 (2000)

[3] Erdős, P., Graham, R.L.: On packing squares with equal squares. J. Comb. Theory Ser. A 19(1), 119–123 (1975)

[4] Fu, M., Lian, Y., Zhang, Y.: On parallel packing and covering of squares and cubes. Results Math. 74(4), 1–13 (2019)

[5] Grzegorek, P., Januszewski, J.: A note on three Moser’s problems and two Paulhus’ lemmas. J. Comb. Theory Ser. A 162, 222–230 (2019)
[6] Januszewski, J.: Parallel packing and covering of an equilateral triangle with sequences of squares. Acta Math. Hung. 125(3), 249–260 (2009)
[7] Januszewski, J.: Packing rectangles into a large square. Period. Math. Hung. 72(1), 90–101 (2016)
[8] Januszewski, J., Zielonka, Ł: A note on perfect packing of squares and cubes. Acta Math. Hung. 163(2), 530–537 (2021)
[9] Joós, A.: On packing of rectangles in a rectangle. Discrete Math. 341(9), 2544–2552 (2018)
[10] Joós, A.: Perfect square packings. Math. Rep., accepted
[11] Moon, J.W., Moser, L.: Some packing and covering theorems. Colloq. Math. 17, 103–110 (1967)
[12] Paulhus, M.M.: An algorithm for packing squares. J. Comb. Theory Ser. A 82(2), 147–157 (1998)
[13] Su, Z., Lu, M., Liu, X.: Parallel packing of triangles with squares. Rocky Mountain J. Math., accepted. https://projecteuclid.org/journals/rmj/Camrocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/210129-ZhanjunSu.pdf (2021). Accessed 16 Aug 2021

Janusz Januszewski and Lukasz Zielonka
Institute of Mathematics and Physics
Bydgoszcz University of Science and Technology
Al. Prof. S. Kaliskiego 7
85-789 Bydgoszcz
Poland
e-mail: januszew@pbs.edu.pl;
Lukasz.Zielonka@pbs.edu.pl

Xi Liu and Zhanjun Su
School of Mathematical Sciences
Hebei Normal University
Shijiazhuang 050024
China
e-mail: 1298789840@qq.com;
suzj888@163.com

Received: August 16, 2021.
Accepted: December 20, 2021.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.