Density functional approach to nonlinear rheology

J. Reinhardt1, F. Weysser2 and J. M. Brader1

1 Department of Physics, University of Fribourg - CH-1700 Fribourg, Switzerland
2 Institut Charles Sadron, CNRS - Strasbourg Cedex 2, France, EU

received 22 January 2013; accepted in final form 10 April 2013
published online 7 May 2013

PACS 82.70.Dd – Colloids
PACS 83.60.Rs – Shear rate-dependent structure (shear thinning and shear thickening)
PACS 05.20.Jj – Statistical mechanics of classical fluids

Abstract – We present a density-functional–based closure of the pair Smoluchowski equation for Brownian particles under shear flow. Given an equilibrium free-energy functional as input, the theory provides first-principles predictions for the flow-distorted pair correlation function and associated rheological quantities over a wide range of volume fractions and flow rates. Taking two-dimensional hard disks under shear flow as an illustrative model, we calculate the pair correlation function, viscosity and normal-stress difference under both steady and start-up shear.

Copyright © EPLA, 2013

Introduction. – The addition of colloidal particles to a Newtonian liquid gives rise to a nonlinear rheological response, characterized by a strain-rate–dependent viscosity, finite normal-stress differences and nontrivial transient dynamics [1]. Understanding the interplay between particle interactions and external stress or strain fields remains a major theoretical challenge and much effort has been invested in the search for tractable closure relations which capture the essential physics of systems driven out of equilibrium [2]. Realistic models for which the competing effects of Brownian motion, potential and hydrodynamic interactions are simultaneously active pose particular difficulties [3].

The microstructural distortion induced by an external flow field is encoded in the nonequilibrium n-particle correlation functions. For pairwise interacting Brownian particles, knowledge of the pair distribution function alone is sufficient to calculate the full stress tensor, indicating that specific features in this quantity can be correlated with nonlinearities in the macroscopic rheology. Such an approach was employed in recent experiments by Cheng \textit{et al.} [4] and Koumakis \textit{et al.} [5] in which confocal microscopy was used to analyze the microstructural changes associated with the onset of shear thinning, thickening and yielding. Brownian and Stokesian dynamics simulations of hard spheres have provided further insight [6], but a general theoretical method with firm thermodynamic foundations is still lacking. Existing theories either focus on states close to the glass transition by employing mode-coupling approximations [7–10], the Enskog approach [11], or attempt to extend exact low volume fraction results [12,13] to finite volume fraction ones using liquid-state integral equation closures of the pair Smoluchowski equation [14–18].

In this paper we present a conceptually simple method by which the pair correlations and nonlinear rheology of Brownian suspensions can be predicted using the dynamical density functional theory (DDFT) [19,20]. The accurate treatment of packing effects and robust mean-field description of phase equilibria provided by modern density functional approximations are inherited by our theory, thus providing a simple and flexible framework within which the interplay between particle interactions, diffusion and external driving may be studied. An advantage of our approach is that we provide a clear link between the rheology and an underlying equilibrium free-energy functional, which is used to close the theory. This is in contrast to integral-equation–type approaches which employ factorization or Ornstein-Zernicke theory to approximate the triplet correlations [14–18] and frequently suffer from thermodynamic inconsistency problems [21]. This feature is of particular importance for systems exhibiting equilibrium phase transitions, as the proximity of the chosen thermodynamic state point to underlying phase boundaries may influence the rheological response. The present method is conceptually straightforward and may be applied to calculate the viscosity and normal stresses of any model for which there exists an explicit approximation of the free-energy functional. It thus becomes possible to exploit the vast array of available equilibrium density functional approximations (for representative examples see [22–25]) for rheological studies. Moreover, recent developments aiming to extend the DDFT beyond the adiabatic
Theory. – We consider a system of \(N \) Brownian particles interacting via isotropic pairwise interactions, homogeneously dispersed in an incompressible Newtonian fluid of given viscosity. In the absence of hydrodynamic interactions the probability distribution of particle positions is given by the Smoluchowski equation \[\frac{\partial \Psi(t)}{\partial t} + \sum_i \nabla_i \cdot \mathbf{j}_i = 0, \] which is the probability distribution of particle position at \(t \). The conservative force on particle \(i \) is generated from the potential energy according to \(\mathbf{F}_i = -\nabla_i \sum_j u(r_{ij}) \).

To preserve translational invariance we omit external potentials and consider a velocity \(\mathbf{v}_i(t) = \mathbf{k}(t) \cdot \mathbf{r}_i \), where \(\mathbf{k}(t) \) is the traceless velocity gradient tensor.

Integration of (1) over the centre of mass of a pair of particles and the remaining \(N-2 \) coordinates leads to the pair Smoluchowski equation for the flow-distorted pair distribution in which only the relative coordinate \(\mathbf{r}_{12} = \mathbf{r}_2 - \mathbf{r}_1 \) appears,

\[\frac{\partial g_{12}(t)}{\partial t} + \nabla \cdot \mathbf{j}_{12} = 0, \]

where \(\nabla = \nabla_2 - \nabla_1 \) and time arguments have been suppressed. The pair flux consists of terms due to affine Brownian motion, direct and indirect interactions

\[j_{12} = \mathbf{v}(\mathbf{r}_{12})g_{12}(\mathbf{r}_{12}) - \Gamma [k_B T \nabla g_{12}(\mathbf{r}_{12}) + g_{12}(\mathbf{r}_{12}) \nabla u(\mathbf{r}_{12}) + \frac{\rho}{2} \int d\mathbf{r}_3 g^{(3)}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) \nabla_2 u(\mathbf{r}_{23}) - \nabla_1 u(\mathbf{r}_{13})], \]

with \(\Gamma \equiv 2\beta D_0 \) and \(\rho = N/V \). The integral terms represent the residual influence of the particles which have been integrated out and require knowledge of \(g^{(3)}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) \). In the absence of flow the pair flux vanishes and (3) reduces to the exact second member of the YBG hierarchy [29].

The thermodynamic stress can be calculated directly from \(g(\mathbf{r}) \) by integration [30],

\[\sigma(t) = -k_B T \rho \mathbf{1} + \frac{1}{2} \rho^2 \int d\mathbf{r} \int d\mathbf{r} \nabla u'(\mathbf{r})g(\mathbf{r}, t), \]

where the subscript indicates that the source of inhomogeneity is the particle located at \(\mathbf{r}_1 \), now viewed formally as an external field perturbing the density distribution.

An equilibrium sum rule may now be used to relate the r.h.s. of (5) to the gradient of the one-body direct correlation function [20],

\[-k_B T g(\mathbf{r}_{12}) \nabla c_{12}^{(1)}(\mathbf{r}_2) = \int d\mathbf{r}_3 \rho_{12}(\mathbf{r}_2, \mathbf{r}_3) \rho \nabla_2 u(\mathbf{r}_{23}), \]

where \(c_{12}^{(1)}(\mathbf{r}_2) \) is the direct correlation function at \(\mathbf{r}_2 \) in an external field generated by the particle at \(\mathbf{r}_1 \). The assumption that (6) holds also in nonequilibrium constitutes an adiabatic approximation [32], namely that the inhomogeneous pair density relaxes instantaneously to that of an equilibrium system with density profile \(\rho g(\mathbf{r}_{12}, t) \); the pair density is slaved to the instantaneous equilibrium profile. Because flow-induced correlations are neglected, effects like flow-induced symmetry breaking cannot be described. Given the Helmholtz free energy

\[F[\rho(\mathbf{r}, t)] = k_B T \int d\mathbf{r} \rho(\mathbf{r}, t) \ln(\Lambda^3 \rho(\mathbf{r}, t)) - 1 \]

+ \(\mathcal{F}_{\text{ex}}[\rho(\mathbf{r}, t)] + \int d\mathbf{r} u(\mathbf{r}) \rho(\mathbf{r}, t), \]

with thermal wavelength \(\Lambda \), the direct correlation function is generated by differentiation of the excess contribution

\[c_{12}^{(1)}(\mathbf{r}) = -\beta \delta \mathcal{F}_{\text{ex}}[\rho(\mathbf{r})] \rho(\mathbf{r}). \]

Employing (5)–(8) and exploiting the symmetry of the direct correlation function enables us to approximate the integral term in (3), yielding a closed equation of motion,

\[\frac{\partial g(\mathbf{r}, t)}{\partial t} = -\nabla \cdot j(\mathbf{r}, t), \]

\[j(\mathbf{r}, t) = \mathbf{v}(\mathbf{r}, t)g(\mathbf{r}, t) - \Gamma g(\mathbf{r}, t) \nabla \mathcal{F}[\rho(\mathbf{r}, t)] \rho(\mathbf{r}, t). \]

The adiabatic approximation neglects the influence of interactions on the velocity field, which results in the appearance of the material time derivative in (10). Equations (7), (9) and (10) thus provide a closed theory for calculating the pair correlation function which requires only that the equilibrium excess free-energy functional corresponding to the pair potential \(u(r) \) is known.

Given the constitutive law \(g(\mathbf{r}, t) \) of the stress tensor, and thus the macroscopic rheology, can be obtained from (4). Closures equivalent to (10) have been applied for the one-body density [26,27].

To test our approach we conduct a numerical case study for a two-dimensional system of hard disks of radius \(R \) subject to shear flow \(\mathbf{v}(\mathbf{r}, t) = \mathbf{\hat{y}}(t) \cdot \mathbf{e}_x \). This can be considered as a demanding test case, as the discontinuous nature of the interaction potential leads to strong spatial variations in \(g(\mathbf{r}) \) which require both an accurate equilibrium functional as input to the dynamical theory and precise numerical algorithms with sufficient resolution. We employ a recently proposed approximation.
for F_{ex} due to Roth et al. [25], which ensures that the $g_0(r)$ generated by our theory in the absence of flow is in excellent agreement with simulation data. For steady flows the relative importance of advection with respect to Brownian motion is quantified by the Péclet number $Pe = \gamma R^2/2D_0$, which emerges naturally from (9) upon scaling time with $2D_0$ and taking the disk radius as the unit of length. Working in two dimensions enables accurate numerical solution of (9) using modest computation time and yields a phenomenology similar to that of three-dimensional fluids.

Numerical solution. – The numerical solution of (9) and (10) for hard disks poses several difficulties. i) We are primarily interested in the value of $g(r)$ at contact, i.e., on a circle of radius $2R$ around the centre of the fixed test particle (see eq. (4)). The requirement to have grid points located precisely on discontinuities in $g(r)$ is incompatible with uniform Cartesian grids of the type usually employed in DDFT calculations, and would require the use of a very fine grid spacing to obtain results of sufficient accuracy, resulting in high computational demands. ii) The no-flux boundary conditions imposed by the hard-disk test particle require special treatment to ensure that the continuity equation (9) is respected; the particle number should not drift significantly during the time evolution. iii) The equation is stiff when fine grids are employed, so care is required for the time integration.

To overcome the geometrical incompatibilities of spherical particles and Cartesian grids, we choose a finite-element–like discretisation, allowing the grid to be partially refined in regions of interest, such as the region of rapid variation in $g(r)$ close to contact.

What distinguishes the present problem from those occuring in standard computational fluid dynamics is that the fundamental measure free-energy functional employed requires the evaluation of nonlocal spatial convolutions which are challenging to evaluate when working on an unstructured grid: fast-Fourier-transform techniques cannot be used. An advantage of the FMT approach is that the weight functions are density independent and have limited range. It is thus possible to precalculate the convolution, so that it can be evaluated at each iteration with only a matrix-vector product and the solution of a sparse linear system, operations that are highly optimized in modern numerical linear algebra libraries. We have implemented this scheme using the finite-element framework deal.II [33].

To realise the hard walls both the density and the density flux have to be discretized. This enables accurate implementation of the boundary condition that the flux normal to the hard boundary must vanish, but increases the computational effort when compared to a discretization of the density alone. The resulting differential equation for $g(r,t)$ is stiff, i.e., its Jacobian has eigenvalues of very large magnitude stemming from the diffusion term [34]. This results in stability issues of the numerical solution when using simple time-stepping methods, unless very small step sizes are chosen. The finer the grid is chosen, the more pronounced the stiffness and the smaller the steps necessary for stable time integration, dramatically increasing the computational demand. Often implicit Runge-Kutta methods allow an efficient solution of stiff differential equations. In this case the large dimension of the problem and its nonlinearity prohibit the use of these methods. We thus make use of a class of explicit Runge-Kutta methods that are specifically tailored for stiff equations [35].

Simulations. – The simulation data were obtained using an event-driven algorithm whose detailed description for the nonsheared case and extension to treat external fields can be found in [36,37]. We simulate a system of $N = 1000$ hard disks with radius R undergoing Brownian motion with the dimensionless diffusion coefficient $D_0/(2v_0 R) = 0.005$. Here v_0 is generated from a Gaussian velocity distribution imposed by the thermostat, ensuring that the distribution has the dimensionless variance of $m_0 v_0^2/(k_B T) = 2$. The Brownian time as defined in [36] is set to $\tau_B = v_0/2R = 0.01$. Equilibration runs were performed, ensuring $\gamma t \gg 1$ (cf. [37]) or $D_0 t/R^2 > 10^3$ (cf. [36]), respectively.

In the simulation the pair distribution functions can be directly extracted from the particle positions. For the zero-shear viscosity we use the collision-based method from [37] which avoids the cumbersome numerical evaluation of the limit $\gamma \to 0$. The viscosity can hence be calculated via

$$\eta_0 = \frac{1}{2k_B T}\lim_{t\to\infty} \frac{1}{t} \left\langle \sum_{coll} r_{ij}^y v_{ij}^y \right\rangle,$$

where r_{ij}^y stands for the y-component of the relative coordinate between particles i and j and v_{ij}^x for the x-component of the particles’ relative velocity, while the sum runs over all collisions during the simulation time in the simulation box with the area A.

Steady shear. – In fig. 1 we compare $g(r)$ from DDFT with Brownian dynamics data for an area fraction $\phi = 0.6$ and three values of Pe. The chosen area fraction lies well below the crystallization value for $\phi_{ct} = 0.69$ but still represents a dense, strongly interacting colloidal liquid. At the lowest shear rate considered, $Pe = 0.5$, the microstructure is only slightly distorted away from equilibrium and the ring structure of nearest, next-nearest etc. neighbour peaks is still clearly visible, reflecting the fact that Brownian forces dominate over shear forces in this regime. As $Pe = 0.5$ is a close-to-equilibrium state, the good agreement between theory and simulation owes much to the high quality of the excess free-energy functional employed [25], which generates the equilibrium structure. The most noticeable discrepancy is an overestimation of the higher-order peak heights in the two extensional quadrants $(xy > 0)$. At the intermediate shear rate, $Pe = 2$, shear forces start to dominate and the microstructure becomes qualitatively different from equilibrium. Peaks in $g(r,t)$ which lie in the compressional quadrant increase in

28011-p3
amplitude and are narrowed as particles begin to pile up against the test particle. In contrast, the microstructure in the extensional quadrants becomes weaker due to particle depletion in the wake behind the test particle. Even at this relatively modest value of Pe we observe the formation of lane-type structures in the extensional quadrants, arising from excluded area packing constraints. At the highest shear rate considered, Pe = 5, the microstructure is quite different from that in equilibrium with a very pronounced laning structure in the extensional quadrants. While the qualitative level of agreement between theory and simulation remains good, the packing structure appears to be underestimated by the theory, an effect which we attribute to the adiabatic approximation used to close eq. (3).

In fig. 2 we show the zero-shear viscosity \(\eta_0 = \lim_{\dot{\gamma} \to 0} \sigma_{xy} \dot{\gamma} \) as a function of area fraction. For \(\phi < 0.45 \) the calculated \(\eta_0 \) is in good quantitative agreement with Brownian dynamics, but for larger values of \(\phi \) the simulation data exhibits a rapid increase not captured by theory. This discrepancy is due to the onset of slow structural relaxation at high area fractions which becomes partially lost upon making an adiabatic closure of the theory. For area fractions in excess of \(\phi_{cr} = 0.69 \), crystallization becomes an issue. Although our theory is in principle sensitive to crystallization (by virtue of the generating functional employed [25]) the results presented here follow the disordered branch of the free-energy, which in reality becomes metastable above \(\phi_{cr} \). For large values of \(\phi \) approaching random close packing (\(\phi_{rcp} \approx 0.82 \) for disks [38]), an accurate numerical solution of (9) becomes difficult and the viscosity becomes large. The input free-energy functional becomes singular at \(\phi = 1 \). For comparison we also show simulation data generated for a binary disk mixture in which half of the particles have diameter unity and the other half diameter 1.4. This mixture does not crystallize [36] and the close agreement with the monodisperse simulations suggests that the neglect of crystallization in our theory is not responsible for the discrepancy. The inset to fig. 2 shows the rate-dependent viscosity from DDFT for several values of the area fraction within the range \(0 < \phi < \phi_{cr} \). The Newtonian plateau is followed by a regime of shear thinning characterized by an area-fraction-dependent thinning exponent.

To investigate the features of \(g(r) \) responsible for the shear thinning behaviour, we plot in fig. 3 \(g(r) \) at a fixed area fraction, \(\phi = 0.4 \), for a Péclet number in the linear regime (\(Pe = 0.5 \), left panel in the figure) and...
Density functional approach to nonlinear rheology

Fig. 4: (Colour on-line) Start-up shear stress scaled by the long-time limit for $\phi = 0.45$ and different Pe. For low shear rates the stress increases monotonically. For Pe larger than a critical value, there is an overshoot whose relative magnitude increases with the shear rate. Inset: relative magnitude of the overshoot which increases with the shear rate and decreases with the area fraction.

In the shear thinning regime ($Pe = 5$, right panel in the figure). In determining the rheology of hard-particle systems, only the angular dependence of the contact value $g_\theta^+ \equiv \sin(\theta)\cos(\theta)(g^+ - \theta)/Pe$ which contributes to the viscosity in (4). In the lower panel of fig. 3 we show f^+ as a function of θ (where the angle is measured clockwise, starting from the top). The angular variation of f^+ shows the reduction in the height of the depletion peak at $\theta = \pi/4$ which, when integrated, leads to shear thinning. The density aggregation in the compressional quadrant at $\theta = 3\pi/4$ has only a very minor effect on the rheology.

Start-up shear. – In fig. 4 we show the shear stress following the switch on of steady shear, $\dot{\gamma}(t) = \dot{\gamma}(t)$. This time-dependent shear field generates a transient response as the system evolves from equilibrium to the steady state [39]. See also supplementary material: phi_0.1_pe_0.05.avi, phi_0.1_pe_0.8.avi, phi_0.3_pe_0.05.avi, phi_0.3_pe_0.8.avi, phi_0.6_pe_0.05.avi, phi_0.6_pe_0.8.avi. For small shear rates the stress monotonically approaches its long-time value, but for more rapid shearing it first increases to a maximum value before slowly decaying to the steady state. The stress overshoot is a well-known effect related to the passage from a regime of primarily elastic response to one of dissipative steady-state flow (see [5] and [40] for recent investigations of this phenomenon). Both numerical simulations and experiment have found that the height of the overshoot maximum, relative to the steady-state shear stress, increases as a function of shear rate but decreases with density [5,40]. The former effect is a rather trivial consequence of applying a stonger driving force, whereas the latter effect arises from the fact that suspensions at larger volume fraction have a smaller average distance between particle surfaces. Systems for which the particles are densely packed begin plastic flow at smaller values of strain and are thus unable to accumulate large elastic stresses prior to the onset of flow. Our numerical results, shown in the inset to fig. 4, are entirely consistent with this physical picture. Also consistent with the findings of Koumakis et al. is the fact that the critical Péclet number for which the overshoot first occurs is density dependent (see inset fig. 4).

In the two upper panels of fig. 5 we show the evolution of the first normal-stress difference $N_1 = \sigma_{xx} - \sigma_{yy}$ following start-up shear flow for various shear rates at fixed area fraction and for various area fractions at fixed shear rate. The general trends follow closely those of the shear stress, but the overshoot is greatly suppressed and is not visible on the scale of the figure for the shear rates considered. The shear stress following switch-on shear also allows to obtain the shear modulus simply by differentiation with respect to time as follows from the corresponding Green-Kubo relation [39]. It can be seen that the relaxation time of the modulus decreases both with increasing shear and increasing packing fraction. The bottom right panel shows the modulus for $\phi = 0.2$. We note that at this area fraction the shear modulus, $G(t)$, becomes negative at long times for $Pe > 1$ as a result of the stress overshoot.

Summary. – In summary, we have developed a test particle approach to calculating the shear-distorted pair correlation function of a colloidal suspension. Integration of the anisotropy generates the stress tensor, from which the nonlinear viscosity and normal-stress differences may be calculated without further approximation. The second normal-stress difference $N_2 \equiv \sigma_{xx} - \sigma_{zz}$ was not considered explicitly here, due to our choice to focus on a two-dimensional model system, but is predicted by the theory when applied to three-dimensional systems. Furthermore,
the analysis of our equations, (7), (9) and (10), shows that in three dimensions there will be a nonvanishing distortion of $g(r)$ in the vorticity direction. This has been highlighted as an important challenge for theories of the nonequilibrium pair correlation functions [17]. Due to our rather advanced algorithms for solving the DDFT equations we believe that full three-dimensional calculations are entirely feasible and numerical studies of more realistic model fluids are the subject of further investigation.

The approach taken in the present work is close in spirit to the micro-rheological studies performed in [41] and [42]. While these works were focused on the density distribution about obstacles dragged through a suspension, we have focused on using the test particle method to obtain the bulk distorted pair correlations as a gateway to macroscopic rheological studies. A key feature of our work is that rheological quantities are explicitly connected to an underlying free-energy functional and that the method can be generally applied to investigate the rheology of any underlying free-energy functional and that the method can be generally applied to investigate the rheology of any model system for which a free-energy expression is available. The structural predictions of the theory for hard disks compare well with the simulation data; however, discrepancies are clear in the zero-shear viscosity at intermediate and high area fraction. This discrepancy can be attributed to the adiabatic closure approximation, within which the equal-time, pair density is assumed to be instantaneously equilibrated to that of an equilibrium system with density $\rho(r,t)$. Generalized Enskog or mode-coupling theories [2,29,43] provide a more sophisticated treatment of relaxation time scales, but an inferior account of the microstructure. Given that recent developments promise to go beyond adiabaticity [26–28], there would seem to be potential to improve our description of structural relaxation. Work along these lines is ongoing.

We thank Roland Roth for useful discussions, Artem Aero for careful reading of the manuscript and the Swiss National Science Foundation for financial support.

REFERENCES

[1] Larson R. G., The Structure and Rheology of Complex Fluids (Oxford University Press) 1998.
[2] Brader J. M., J. Phys.: Condens. Matter, 22 (2010) 363101.
[3] Dhont J. K. G., An Introduction to the Dynamics of Colloids (Elsevier, Amsterdam) 1996.
[4] Cheng X., McCoy J. H., Isrealachvili J. N. and Cohen I., Science, 333 (2011) 1276.
[5] Koumakis N., Laurati M., Egeliafa S. U., Brady J. F. and Petekidis G., Phys. Rev. Lett., 108 (2012) 098303.
[6] Brady J. F., Chem. Eng. Sci., 56 (2001) 2921.
[7] Brader J. M., Th. Voigtmann M. E. and Cates M., Phys. Rev. Lett., 98 (2007) 058301.
[8] Brader J. M., Cates M. E. and Fuchs M., Phys. Rev. Lett., 101 (2008) 138301.
[9] Fuchs M. and Cates M. E., J. Rheol., 53 (2009) 957.
[10] Brader J. M., Cates M. E. and Fuchs M., Phys. Rev. E, 86 (2012) 021403.
[11] Lutsko J. F., Phys. Rev. E, 66 (2002) 051109.
[12] Brady J. F. and Morris J. F., J. Fluid Mech., 348 (1997) 103.
[13] Bergenholtz J., Brady J. F. and Vicic M., J. Fluid Mech., 456 (2002) 239.
[14] Wagner N. J. and Russel W. B., Physica A, 155 (1989) 475.
[15] Russel W. B. and Gast A. P., J. Chem. Phys., 84 (1985) 1815.
[16] Lionberger R. A. and Russel W. B., J. Chem. Phys., 106 (1997) 402.
[17] Szamel G., J. Chem. Phys., 114 (2001) 8708.
[18] Nazockdast E. and Morris J. F., Soft Matter, 8 (2012) 4223.
[19] Marconi U. M. B. and Tarazona P., J. Chem. Phys., 110 (1999) 8032.
[20] Archer A. J. and Evans R., J. Chem. Phys., 121 (2004) 4246.
[21] Brader J. M., Int J. Thermophys., 27 (2006) 394.
[22] Schmidt M. et al., Phys. Rev. Lett., 85 (2000) 1934.
[23] Brader J. M., Esztermann A. and Schmidt M., Phys. Rev. E, 66 (2002) 031401.
[24] Esztermann A., Reich H. and Schmidt M., Phys. Rev. E, 73 (2006) 011409.
[25] Roth R., Mecke K. and Oettel M., J. Chem. Phys., 136 (2012) 181101.
[26] Brader J. M. and Krüger M., Mol. Phys., 109 (2011) 1029.
[27] Krüger M. and Brader J. M., EPL, 96 (2011) 68006.
[28] Schmidt M. and Brader J. M., arXiv:1301.2526 (2013).
[29] Hansen J.-P. and McDonald I. R., Theory of Simple Liquids (Academic Press London) 1986.
[30] Irving J. H. and Kirkwood J. G., J. Chem. Phys., 18 (1950) 817.
[31] Brader J. M., J. Chem. Phys., 128 (2008) 104503.
[32] Reinhardt J. and Brader J. M., Phys. Rev. E, 85 (2012) 011404.
[33] Bangerth W., Hartmann R. and Kanschat G., ACM Trans. Math. Software, 33 (2007) article No. 24.
[34] Hairer E. and Wanner G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (Springer) 2010.
[35] Anderson C. R. and Elion C. J., Technical Report, Department of Mathematics, University of California, Los Angeles (2004).
[36] Weysser F. and Hajnal D., Phys. Rev. E, 83 (2011) 041503.
[37] Henrich O., Weysser F., Cates M. E. and Fuchs M., Philos. Trans. R. Soc. A, 367 (2009) 5033.
[38] Berrymaj J. G., Phys. Rev. A, 27 (1983) 1053.
[39] Zaouch J. et al., J. Phys.: Condens. Matter, 20 (2008) 404210.
[40] Amann C. P. et al., J. Rheol., 57 (2013) 149.
[41] Rauscher M., Dominguez A., Krüger M. and Penza F., J. Chem. Phys., 127 (2007) 244906.
[42] Penza F., Dzubiella J. and Tarazona P., Phys. Rev. E, 68 (2003) 061407.
[43] Cohen E. G. D., Verberg R. and de Schepper I. M., Physica A, 251 (1998) 251.