Data Article

Dataset of GWAS-identified variants underlying venous thromboembolism susceptibility and linkage to cancer aggressiveness

Valéria Tavaresa,b, Ricardo Pintoa, Joana Assisa,c, Deolinda Pereiraa,d, Rui Medeirosa,b,c,e,*

a Molecular Oncology and Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edificio Laboratórios, 1st piso, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
b ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
c FMUP, Faculty of Medicine, Porto University, Porto, Portugal
d Oncology Department, Portuguese Institute of Oncology, 4200-072 Porto, Portugal
e CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal

\textbf{Article history:}
Received 31 January 2020
Revised 24 February 2020
Accepted 3 March 2020
Available online 9 March 2020

\textbf{Keywords:}
Venous thromboembolism
GWAS
SNPs
Validation reports
Cancer hallmarks

\textbf{ABSTRACT}

Venous thromboembolism (VTE) is a common cardiovascular disease, for which several single nucleotide polymorphisms (SNPs) underlying susceptibility were identified. Apart from candidate gene approach, genome-wide association studies (GWAS) have contributed to the identification of novel VTE-associated SNPs, including some with no clear role in the haemostatic system. These genetic variants constitute potential cancer-related biomarkers, particularly predictive and prognostic biomarkers, as a two-way association between VTE and cancer is well established. The present dataset comprises the data obtained from GWAS performed to identify genetic variants associated with VTE risk. Furthermore, this dataset also comprises data regarding previously reported candidate gene and validation reports performed in adults of European ancestry that also analysed the VTE GWAS-identified variants. Lastly, to evaluate the impact of these

* Corresponding author at: Molecular Oncology and Viral Pathology Group-Research Center, Portuguese Institute of Oncology, Edificio Laboratórios, 1st piso, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.

\textit{E-mail address:} ruimedei@ipoporto.min-saude.pt (R. Medeiros).

https://doi.org/10.1016/j.dib.2020.105399
2352-3409/© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
genetic variants in carcinogenesis, a broad search was made, which has let us to establish putative links between several VTE-associated genes and cancer hallmarks in a review article entitled “Venous thromboembolism GWAS reported genetic makeup and the hallmarks of cancer: linkage to ovarian tumour behaviour”.

© 2020 Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications table
Subject
Specific subject area
Type of data
How data were acquired
Data format
Parameters for data collection
Description of data collection
Data source location
Data accessibility
Related review article

Value of the data

- Given the existence of a tight and bilateral relationship between VTE and cancer, VTE-associated single nucleotide polymorphisms (SNPs) constitute potential cancer-related predictive and prognostic biomarkers that are currently in need.
- Considering the growing incidence of VTE among cancer patients, with its underlying negative impact on patient prognosis, this dataset can benefit researchers and clinicians that work in the oncology field, who are interested in the genetic susceptibility for VTE, and how VTE-associated SNPs can be linked to cancer progression.
- This database can be used for the development of several experiments as the majority of VTE genetic variants with a putative role in cancer progression have not been studied among
cancer patients, particularly ovarian cancer patients who are frequently diagnosed with VTE and/or present a blood hypercoagulability state in the blood coagulation tests.

1. Data

Table 1 comprises the data obtained from GWAS performed to identify genetic variants that are associated with VTE susceptibility. Table 2 includes the data of a genome-wide search of pairwise SNP interactions associated with VTE risk. Table 3 encompasses data regarding previously reported candidate gene and validation reports of GWAS-identified SNPs that are associated with VTE risk. Table 4 includes putative links between VTE-associated genes and several cancer hallmarks.

2. Experimental design, materials and methods

(1) GWAS addressing VTE susceptibility:

All SNPs statistically associated \((P < 0.05)\) with susceptibility to VTE (deep vein thrombosis, pulmonary embolism or both) were gathered by screening \textit{NHGRI-EBI GWAS catalogue} and respective articles. No restriction was made regarding the origin and age of the population. In total, 12 VTE GWAS were collected, including ten in populations of European ancestry (one searching for pairwise SNP interactions associated with disease risk and one performed to determine the genetic factors of paediatric VTE) and two in Afro-American populations (Fig. 1).

(2) Other reports reporting VTE-associated SNPs:

After gathering all GWAS-identified SNPs associated with VTE risk, data regarding validation and candidate gene reports that stated the same associations were also collected, using the NCBI database, in order to confirm the GWAS findings (Fig. 1). Only SNPs reported by VTE GWAS among adults of European ancestry were considered. Hence, only validation and candidate gene reports with adults of European ancestry with incident VTE and with no strong risk factors were...
Report accession on NHGRI-EBI GWAS catalogue	Associated SNPs	Population	No. cases/controls (combined)	MAF	Locus	Gene/Variant	Overall risk	Allelic OR (95% CI)	P-value
GCST000354	rs2420371	European	419/1228 (Discovery phase)	0.15^a	1q24.2	F5/intr	2.27 (1.62; 3.18)^c	8.08 × 10^{-10}	
	rs1208134	ancestry		0.12^a	1q24.2	CCDC181/ intr	2.29 (1.58; 3.32)^c	3.47 × 10^{-7}	
	rs657152			0.54^b	chr9: 133,263,862^b	ABO/intr^a	1.89 (1.51; 2.36)^c	2.22 × 10^{-11}	
	rs505922			0.52^a	chr9: 133,273,813^b	ABO/intr^a	1.91 (1.53; 2.39)^c	1.48 × 10^{-14}	
	rs630014			0.37^a	9q34.2	ABO/intr	0.64 (0.51; 0.80)^c	2.00 × 10^{-7}	
	rs2420371^v	European	1150/801 (Replication phase I)	0.21^a	1q24.2	F5/intr	1.39 (1.17; 1.64)^c	3.00 × 10^{-5}	
	rs1208134^v	ancestry		0.19^a	1q24.2	CCDC181/ intr	1.57 (1.31; 1.88)^c	2.89 × 10^{-7}	
	rs6025			0.01	1q24.2	F5/mis	2.01 (1.63; 2.48)^c	9.91 × 10^{-11}	
	rs657152^g			0.51^a	chr9: 133,263,862^b	ABO/intr^a	1.75 (1.51; 2.03)^c	1.20 × 10^{-13}	
	rs505922^g			0.49^a	chr9: 133,273,813^b	ABO/intr^a	1.81 (1.56; 2.11)^c	3.72 × 10^{-15}	
	rs630014^g			0.38^a	9q34.2	ABO/intr	0.66 (0.57; 0.76)^c	1.21 × 10^{-8}	
	rs8176719			0.34	9q34.2	ABO/fra	0.33 (0.26; 0.42)^c	1.70 × 10^{-18}	
	rs8176750			0.05	9q34.2	ABO/fra	0.53 (0.38; 0.74)^c	2.46 × 10^{-4}	
	rs2420371^v	European	607/607 (Replication phase II)	0.10^a	1q24.2	F5/intr	1.44 (1.07; 1.93)^c	1.80 × 10^{-3}	
	rs6025			0.01	1q24.2	F5/mis	2.46 (1.55; 3.93)^c	1.50 × 10^{-4}	
	rs657152^g			0.47^a	chr9: 133,263,862^b	ABO/intr^a	1.58 (1.34; 1.87)^c	5.19 × 10^{-8}	
	rs505922^g			0.46^a	chr9: 133,273,813^b	ABO/intr^a	1.65 (1.39; 1.95)^c	7.25 × 10^{-9}	
	rs630014^g			0.38^a	9q34.2	ABO/intr	0.63 (0.53; 0.74)^c	5.01 × 10^{-8}	
	rs8176719			0.34	9q34.2	ABO/fra	0.53 (0.41; 0.69)^c	2.21 × 10^{-6}	
GCST000621	rs3813948	European	419/1228 (in silico GWAS)	0.09^a	1q23.1	C4BPB/nc	–	0.011	
	rs3813948	ancestry	1706/1379 (Replication phase)	0.09^a	1q23.1	C4BPB/nc	1.24 (1.00; 1.53)	0.046	
GCST001253	rs16861990	European	1542/1110 (Discovery phase)	0.13^a	1q24.2	NM7/intr	2.49^ -	2.75 × 10^{-15}	
	rs1208134	ancestry		0.13^a	1q24.2	CCDC181/ intr	2.53^c	3.29 × 10^{-16}	
	rs2420371			0.15^a	1q24.2	F5/intr	2.62^ -	8.44 × 10^{-10}	
	rs2066865			0.28^a	4q32.1	FGC/inter	1.55^ -	1.17 × 10^{-10}	
	rs6825454			0.30^a	4q31.3	FG/A/inter	1.50^ -	1.32 × 10^{-9}	
	rs10029715			0.12^a	4q35.2	FIT1-ASFlintr	–	3.20 × 10^{-9}	
	rs2073828			0.32^a	chr9: 133,261,737^c	ABO/intr^a	–	3.57 × 10^{-9}	
	rs657152			0.49^a	chr9: 133,263,862^b	ABO/intr^a	1.70^ -	1.10 × 10^{-8}	
	rs500498			0.33^a	chr9: 133,273,232^b	ABO/intr^a	–	1.03 × 10^{-12}	
	rs505922			0.49^a	chr9: 133,273,813^b	ABO/intr^a	1.85^ -	1.06 × 10^{-23}	
	rs630014			0.38^a	9q34.2	ABO/intr	0.63^c	4.40 × 10^{-14}	
	rs495828			0.36^a	9q34.2	ABO/rr	1.64^ -	1.78 × 10^{-14}	
	rs1018827	European	1961/2338 (meta-analysis)^d	0.07	1q24.2	F5/intr	2.52^ -	2.41 × 10^{-26}	
	rs7659024			0.30	4q31.3	FGC/inter	1.53^ -	1.93 × 10^{-11}	
	rs505922			0.35	chr9: 133,273,813^b	ABO/intr^a	1.92^ -	1.39 × 10^{-34}	
	rs3756008			0.32	4q35.2	FIT1/inter	1.40^ -	6.46 × 10^{-11}	

(continued on next page)
Table 1 (continued)

Report accession on NHGRI-EBI GWAS catalogue	Associated SNPs	Population	No. cases/controls (combined)	MAF	Locus	Gene/Variant	Overall risk	Allelic OR (95% CI)	P-value
GCST001557	rs6025	98.64% European ancestry (USA)	1503/1459 (Discovery phase)	0.01	1q24.2	F5/mis	3.75 (2.76; 4.60)	1.68 × 10−22	
	rs8176719			0.34	9q34.2	ABO/fra	1.47 (1.32; 1.64)	5.68 × 10−12	
	rs2519093			0.14	chr9: 133,266,646b	ABO/intrb	1.69 (1.48; 1.91)	8.08 × 10−16	
	rs495828			0.16	9q34.2	ABO/ir	1.65 (1.46; 1.86)	2.96 × 10−16	
	rs7538157V			<0.01	1q24.2	BLZF1/intr	2.69 (2.09; 3.45)	1.04 × 10−16	
	rs16861990V			0.06	1q24.2	NME7/intr	2.02 (1.66; 2.45)	1.69 × 10−12	
	rs2038024			0.13	1q24.2	SLC19A2/nc	1.53 (1.32; 1.78)	1.12 × 10−8	
	rs1799963			<0.01	11p11.2	F2/utr	2.46 (1.70; 3.55)	1.69 × 10−6	
	rs6025	98.64% European ancestry (USA)	1407/1418 (Replication phase)	0.01	1q24.2	F5/mis	2.56 (1.97; 3.32)	1.40 × 10−12	
	rs8176719			0.34	9q34.2	ABO/fra	1.58 (1.40; 1.78)	9.75 × 10−14e	
	rs2519093			0.14	chr9: 133,266,646b	ABO/intrb	1.85 (1.61; 2.13)	1.37 × 10−17	
	rs495828			0.16	9q34.2	ABO/ir	1.76 (1.54; 2.01)	3.60 × 10−17	
	rs16861990			0.06	1q24.2	NME7/intr	1.79 (1.47; 2.18)	4.89 × 10−9	
	rs2038024			0.13	1q24.2	SLC19A2/nc	1.17 (0.89; 1.54)	0.25	
	rs6427196	European ancestry	1618/44,499 (Discovery phase)	0.09	1q24.2	F5/utr	1.82 (1.58; 2.10)	1.97 × 10−16	
	rs687621			0.38	chr9: 133,261,662b	ABO/utr	1.37 (1.26; 1.49)	3.42 × 10−14	
	rs4253399			0.26	4q35.2	F11/utr	1.15 (1.06; 1.24)	7.59 × 10−4	
	rs6536024			0.46	4q32.1	FGG/interg	0.79 (0.73; 0.87)	4.04 × 10−7	
	rs6764623			0.35	3p26.3	CNTN6/interg	1.23 (1.11; 1.38)	9.56 × 10−5	
	rs4979078			0.33	9q31.3	SUSDI/utr	1.31 (1.17; 1.47)	2.46 × 10−6	
	rs7164569			0.33	15q13.3	OTUD7A/syn	0.84 (0.76; 0.92)	3.54 × 10−4	
	rs3733860			0.17	5q13.3	SV2C/utr	1.22 (1.09; 1.37)	6.27 × 10−4	
	rs6427196	European ancestry	3231/3536 (Replication phase)	0.09	1q24.2	F5/utr	2.31 (2.04; 2.62)	2.56 × 10−38	
	rs687621			0.38	chr9: 133,261,662b	ABO/utr	1.75 (1.62; 1.89)	1.20 × 10−44	
	rs4253399			0.26	4q35.2	F11/utr	1.32 (1.23; 1.43)	2.07 × 10−13	
	rs6536024			0.46	4q32.1	FGG/interg	0.81 (0.75; 0.87)	5.59 × 10−8	
	rs6764623			0.35	3p26.3	CNTN6/interg	1.14 (1.05; 1.24)	2.00 × 10−3	
	rs4979078			0.33	9q31.3	SUSDI/utr	1.11 (1.00; 1.24)	4.70 × 10−2	
	rs7164569			0.33	15q13.3	OTUD7A/syn	0.88 (0.82; 0.95)	2.00 × 10−3	
	rs3733860			0.17	5q13.3	SV2C/utr	1.17 (1.05; 1.30)	3.00 × 10−3	
	rs6427196	European ancestry	4849/48,035 (Combined data of all nine studies)	0.09	1q24.2	F5/utr	2.07 (1.89; 2.28)	4.47 × 10−51	
	rs687621			0.38	chr9: 133,261,662b	ABO/utr	1.55 (1.47; 1.64)	1.55 × 10−52	
	rs4253399			0.26	4q35.2	F11/utr	1.24 (1.17; 1.31)	2.78 × 10−14	
	rs6536024			0.46	4q32.1	FGG/interg	0.80 (0.76; 0.85)	1.75 × 10−11	
	rs6764623			0.35	3p26.3	CNTN6/interg	1.18 (1.10; 1.26)	1.57 × 10−6	
	rs4979078			0.33	9q31.3	SUSDI/utr	1.21 (1.11; 1.30)	3.06 × 10−6	
	rs7164569			0.33	15q13.3	OTUD7A/syn	0.87 (0.81; 0.92)	3.27 × 10−6	
	rs3733860			0.17	5q13.3	SV2C/utr	1.19 (1.10; 1.29)	8.06 × 10−6	

(continued on next page)
Report accession on NHGRI-EBI GWAS catalogue	Associated SNPs	Population	No. cases/controls (combined)	MAF	Locus	Gene/Variant	Overall risk	Allelic OR (95% CI)	P-value
GCST002808	rs6025	European ancestry	7507/52,632 (Discovery phase)	0.01	1q24.2	F5/mis	3.25 (2.91; 3.64)	1.10 × 10^{-6}	
	rs4524			0.27	1q24.2	F5/mis	1.20 (1.14; 1.26)	2.65 × 10^{-11}	
	rs2066865			0.30	4q32.1	FGG/ inter	1.24 (1.18; 1.31)	1.03 × 10^{-16}	
	rs4253417			0.30	4q35.2	F11/intr	1.27 (1.22; 1.34)	1.21 × 10^{-21}	
	rs520965			0.37	chr9: 133,274,084	ABO/intr⁵	1.55 (1.48; 1.63)	4.23 × 10^{-75}	
	rs179963			0.01	11p11.2	F2/intr	2.29 (1.75; 2.99)	1.73 × 10^{-9}	
	rs6087685			0.39	20q11.22	PROCR/intr	1.15 (1.10; 1.21)	1.65 × 10^{-8}	
	rs4602861			0.39	8q23.1	ZFPM2/intr	1.20 (1.13; 1.27)	3.48 × 10^{-9}	
	rs78707713			0.05	10q22.1	TSPAN15/intr	1.28 (1.19; 1.39)	5.74 × 10^{-11}	
	rs2288904			0.18	19p13.2	SLC4A2/mis	1.19 (1.12; 1.26)	1.07 × 10^{-9}	
	rs78707713	European ancestry	3009/2586 (Replication phase)	0.05	10q22.1	TSPAN15/intr	1.42 (1.24; 1.62)	2.21 × 10^{-7}	
	rs2288904			0.18	19p13.2	SLC4A2/mis	1.28 (1.16; 1.40)	2.64 × 10^{-7}	
	rs4602861	European ancestry	10,516/55,218 (combined data)	0.39	8q23.1	ZFPM2/intr	–	5.04 × 10^{-7}	
	rs78707713			0.05	10q22.1	TSPAN15/intr	–	1.67 × 10^{-16}	
	rs2288904			0.18	19p13.2	SLC4A2/mis	–	2.75 × 10^{-15}	
GCST003377	rs2323307⁶	West African ancestry	146/432 (Discovery phase)	0.15	4q22.2	ATOH1/inter	2.79 (1.80; 4.30)	2.25 × 10^{-7}	
	rs73692310	Ancestry (80%)		0.15	7p12.3	IGFBP3/inter	3.04 (2.00; 4.70)	1.73 × 10^{-9}	
	rs58952918⁶	European and Asian ancestry		0.17	18p11.32	AP005230.1/intr	2.48 (1.70; 3.70)	1.07 × 10^{-8}	
	rs28496996	Asian ancestry		0.17	18p11.32	AP005230.1/intr	2.44 (1.60; 3.60)	1.13 × 10^{-8}	
	rs2144940			0.31	20p11.21	THBD, CD93/inter	2.18 (1.60; 2.90)	3.52 × 10^{-7}	
	rs2567617⁷			0.31	20p11.21	THBD, CD93/inter	2.17 (1.60; 2.90)	4.01 × 10^{-7}	
	rs1998081			0.27	20p11.21	THBD, CD93/inter	2.28 (1.60; 3.10)	5.17 × 10^{-7}	
	rs687621			0.38	chr9: 133,261,662	ABO/intr⁶	1.55 (1.20; 2.00)	2.00 × 10^{-3}	
	rs505922			0.35	chr9: 133,273,813	ABO/intr⁶	1.52 (1.20; 2.00)	2.00 × 10^{-3}	
	rs657152			0.39	chr9: 133,263,862	ABO/intr⁶	1.39 (1.10; 1.80)	0.03	
	rs73692310	West African ancestry	94/65 (Replication phase)	0.09	7p12.3	IGFBP3/inter	1.27 (0.04; 2.70)	0.60	
	rs28496996	Ancestry (77%)		0.13	18p11.32	AP005230.1/intr	1.34 (0.60; 2.60)	0.45	
	rs2144940	European and Asian ancestry		0.35	20p11.21	THBD, CD93/inter	1.89 (1.10; 3.30)	0.02	
	rs1998081	Asian ancestry		0.30	20p11.21	THBD, CD93/inter	1.94 (1.10; 3.50)	0.02	
	rs73692310	West African ancestry	240/497 (Combined data)	0.02	7p12.3	IGFBP3/inter	–	2.48 × 10^{-8}	
	rs28496996	Ancestry (79%)		0.03	18p11.32	AP005230.1/intr	–	6.37 × 10^{-8}	
	rs2144940	European and Asian ancestry		0.12	20p11.21	THBD, CD93/inter	–	1.88 × 10^{-8}	
	rs1998081	Asian ancestry		0.11	20p11.21	THBD, CD93/inter	–	4.62 × 10^{-8}	

(continued on next page)
Table 1 (continued)

Report accession on NHGRI-EBI GWAS catalogue	Associated SNPs	Population	No. cases/controls (combined)	MAF	Locus	Gene/Variant	Overall risk	Allelic OR (95% CI)	P-value
GCST003390	rs6025	European ancestry	6135/252,827 (Discovery phase)	0.01	1q24.2	F5/mis	2.93 (2.72; 3.15)	3.60 × 10^{-17}	
	rs7654093			0.31	4q32.1	FGG/inter	1.22 (1.17; 1.27)	2.00 × 10^{-10}	
	rs4444878			0.32	4q35.2	F11-ASI/inter	0.81 (0.78; 0.84)	7.00 × 10^{-28}	
	rs1799963			<0.01	11p11.2	F2/utr	0.51 (0.46; 0.58)	1.30 × 10^{-24}	
	rs34234989			0.39	20q11.22	PROCRA/inter	0.89 (0.85; 0.92)	6.70 × 10^{-9}	
	rs529565			0.37	chr9: 133,274,084	ABO/intr	0.72 (0.70; 0.75)	7.10 × 10^{-6}	
	rs9797861			0.21	19p13.2	SLCA42/inter	1.15 (1.09; 1.20)	6.10 × 10^{-9}	
	rs114209171			0.24	Xq28	FUND2/nc	1.15 (1.11; 1.20)	7.00 × 10^{-13}	
	rs72798544			0.01	2p21	TSPAN15/inter	1.17 (1.10; 1.24)	2.90 × 10^{-7}	
	rs17490626			0.04	10q22.1	TSPAN15/inter	0.73 (0.65; 0.82)	4.40 × 10^{-7}	
	rs113092656			0.01	6p24.1	TSPAN15/inter	0.73 (0.65; 0.82)	4.40 × 10^{-7}	
	rs60942712	European ancestry	26,112 participants (Replication phase)	0.06	3p11.1	TMEM170B/ADTRP/inter	1.21 (1.12; 1.31)	8.00 × 10^{-7}	
	rs114209171	European ancestry	26,112 participants (Replication phase)	0.24	Xq28	FUND2/nc	1.08 (1.02; 1.14)	0.01	
GCST004012	rs1304029	European ancestry	212 children with VTE / 424 parents and siblings (Discovery phase)	0.48	6q13	B3GAT2/inter	0.48 (0.36; 0.65)	2.00 × 10^{-6}	
	rs9293858			0.26	6q13	RIMS1/inter	0.48 (0.34; 0.67)	8.00 × 10^{-6}	
	rs2748331			0.41	6q13	B3GAT2/rr	0.49 (0.36; 0.67)	1.80 × 10^{-5}	
	rs10498910			0.12	6q14.1	LOC105377862/inter	2.21 (1.47; 3.31)	6.89 × 10^{-5}	
	rs914958			0.23	1p22.1	ABC4/inter	0.50 (0.36; 0.70)	1.80 × 10^{-5}	
	rs4529013			0.28	4q21.3	MAPK10/inter	0.53 (0.39; 0.72)	2.00 × 10^{-5}	
	rs9957519			0.27	18q23	-/inter	0.46 (0.32; 0.68)	2.10 × 10^{-5}	
	rs1865590			0.31	2q22.1	THSD7B/inter	1.97 (1.44; 2.68)	2.40 × 10^{-5}	

(continued on next page)
Table 1 (continued)

Report accession on NHGRI-EBI GWAS catalogue	Associated SNPs	Population	No. cases/controls (combined)	MAF	Locus	Gene/Variant	Overall risk	Allelic OR (95% CI)	P-value
rs9606534	0.17	chr22:16,916,985^h	IGKV20R22-4/rr	0.43	(0.29; 0.63)	3.30 × 10^{−5}			
rs495828	0.16	9q34.2	ABO/rr		−	–	6.44 × 10^{−4}		
rs505922	0.35	chr9:133,273,813^h	ABO/intr^b		−	–	4.03 × 10^{−4}		
rs657152	0.39	chr9:133,263,862^h	ABO/intr^b	1.77	(1.34; 2.32)	3.44 × 10^{−5}			
rs13146272	0.44	4q35.1	CVP4V2/miss		−	–	9.58 × 10^{−4}		
rs925451	0.29	4q35.2	F11/intr		−	–	2.76 × 10^{−3}		
rs11128790	0.06	3p24.3	RFTN1/intr	2.95	(1.78; 4.90)	3.40 × 10^{−5}			
rs4792119	0.21	17p12	SHISA6/intr	0.51	(0.37; 0.71)	3.50 × 10^{−5}			
rs9399770	0.48	6q16.3	-/inter	0.55	(0.42; 0.74)	4.00 × 10^{−5}			
rs17576372	0.27	1p22.1	TGFBR3/intr	1.84	(1.37; 2.47)	4.57 × 10^{−5}			
rs10247053	0.25	7p15.2	-/inter	0.53	(0.39; 0.72)	5.35 × 10^{−5}			
rs636434	0.34	6q12	EYS/intr	1.79	(1.34; 2.39)	5.35 × 10^{−5}			
rs10190178	0.31	2q22.1	THSD7B/intr	1.91	(1.40; 2.62)	6.15 × 10^{−5}			
rs5014872	0.12	2p16.3	LOC73100/Interb	0.46	(0.32; 0.68)	6.21 × 10^{−5}			
rs3823606	0.04	7q11.21	TPST1/intr		−	–	6.27 × 10^{−5}		
rs1565242	0.11	15q26.1	LOC10537082/Intrb	0.44	(0.29; 0.67)	7.23 × 10^{−5}			
rs1958059	0.31	14q13.1	NPS53/intr	0.45	(0.31; 0.67)	7.28 × 10^{−5}			
rs1521882	0.23	2q33.1	KIAA0212/intr	2.13	(1.46; 3.11)	7.48 × 10^{−5}			
rs17781793	0.05	12q15	MRPL40P1/inter	0.38	(0.23; 0.63)	7.81 × 10^{−5}			
rs4775384	0.31	15q22.2	AC104574.2/intr	0.41	(0.26; 0.65)	8.36 × 10^{−5}			
rs1948650	0.33	15q14	DPH6-DT/intr	1.84	(1.34; 2.51)	8.71 × 10^{−5}			
rs436985	0.34	5q12.1	Csof64/intr	0.58	(0.44; 0.76)	9.13 × 10^{−5}			
rs4926448	0.47	1q44	SCCPDH/intr	0.57	(0.43; 0.76)	9.38 × 10^{−5}			
rs11153626	0.22	6q22.1	FAM162B/inter	1.85	(1.34; 2.54)	9.49 × 10^{−5}			
rs2214810	0.26	7p15.2	-/inter	0.54	(0.40; 0.74)	9.62 × 10^{−5}			
rs2748331 European ancestry	0.41	6q13	B3GAT2/rr		−	–	7.88 × 10^{−7}		
rs9446340	0.23	6q13	B3GAT2/Inter		−	–	1.48 × 10^{−3}		
rs10498910	0.12	6q14.1	LOC105377862/Intrb		−	–	5.74 × 10^{−5}		
rs2748331 European ancestry	0.41	6q13	B3GAT2/rr	1.20	(1.02; 1.40)	0.02^b			
rs1304029 European ancestry	0.48	6q13	B3GAT2/intr	1.18	(1.02; 1.36)	0.03^b			

(continued on next page)
Report accession on NHGRI-EBI GWAS catalogue	Associated SNPs	Population	No. cases/controls (combined)	MAF	Locus	Gene/Variant	Overall risk	Allelic OR (95% CI)	P-value
GCST004068	rs138916004^a	African ancestry (Discovery phase)	393/4941 (Continued)	< 0.01	12q14.3	LEMD3/intr	3.17 (2.13; 4.72)^b	1.27 × 10^{−8}	
	rs3804476^c	African ancestry (African-Americans)	0.28	6p25.1	LY6/intr	1.83 (1.48; 2.26)^b	1.97 × 10^{−8}		
	rs142143628^a	European ancestry	< 0.01	22q12.2	LOC10030298/intr^d	4.97 (2.80; 8.83)^b	4.35 × 10^{−8}		
	rs6025	European ancestry (Phase)	0.01	1q24.2	F5/mis	5.00 (2.02; 11.03)^b	2.00 × 10^{−4}		
	rs8176746	European ancestry	0.15	8q34.2	ABO/mis	1.33 (1.09; 1.62)^b	5.00 × 10^{−3}		
	rs8176719	European ancestry	0.34	8q34.2	ABO/fra	1.30 (1.11; 1.53)^b	2.00 × 10^{−3}		
	rs77121243^e	European ancestry	0.03	11p15.4	HBB/miss	1.51 (1.11; 2.06)	9.00 × 10^{−3}		
GCST004256	rs6025	European ancestry (Discovery phase)	3290/116,868 (Replication)	0.01	1q24.2	F5/mis	3.49 (2.96; 4.11)	7.10 × 10^{−5}	
	rs2606865	European ancestry (Phase)	0.30	4q32.1	FGG/inter	1.21 (1.15; 1.29)	3.10 × 10^{−1}		
	rs4253416	European ancestry (Phase)	0.41	4q35.2	F11/intr	1.18 (1.12; 1.24)	2.00 × 10^{−3}		
	rs2519093	European ancestry (Phase)	0.14	chr9:133,266,456^f	ABO/intr^a	1.41 (1.32; 1.50)	6.00 × 10^{−6}		
	rs8176645	European ancestry (Phase)	0.38	9q34.2	ABO/intr^a	1.28 (1.22; 1.35)	4.40 × 10^{−2}		
	rs1799963	European ancestry (Phase)	< 0.01	11p11.2	F2/inter	2.63 (2.03; 3.40)	4.90 × 10^{−1}		
	rs3136516	European ancestry (Phase)	0.28	11p11.2	F2/inter	1.10 (1.04; 1.15)^b	3.30 × 10^{−4}		
	rs4602861	European ancestry (Phase)	0.39	8q23.1	ZFM2/inter	1.08 (1.03; 1.15)	4.50 × 10^{−3}		
	rs4602861	European ancestry (Phase)	0.39	8q23.1	ZFM2/inter	1.13 (1.08; 1.19)	5.04 × 10^{−7}		
	rs3316516	European ancestry (Phase)	0.28	11p11.2	F2/inter	1.10 (1.06; 1.15)^b	5.65 × 10^{−6}		
	rs4602861	European ancestry (Phase)	0.39	8q23.1	ZFM2/inter	1.11 (1.07; 1.15)	4.88 × 10^{−10}		
	rs3136516	European ancestry (Phase)	0.28	11p11.2	F2/inter	1.10 (1.06; 1.15)^b	7.60 × 10^{−9}		

The data shown in Table 1 concerning locus, type of genetic variant, as well as MAF values for all populations were obtained on the "Ensembl" database. For intergenic variants, the nearest gene indicated.

MAF: minor allele frequency; **OR:** odds ratio; **Inter:** Intergenic variant, **Intr:** Intronic variant, **Mis:** Missense variant, **Fra:** Frameshift variant, **NC:** non-coding transcript exon variant, **Syn:** synonymous variant, **UTR:** 3 prime UTR variant, **RR:** regulatory region variant.

^a MAF values for cases in the Report
^b Data obtained from “NCBI” database
^c OR/RR associated with the minor allele
^d 99 SNPs reached genome-wide significant (p < 2 × 10^{−8}), but only the hit SNPs of each locus (F5, FGC, F11 and ABO) were included in the table
^e Data after adjusting for rs6025
^f SNPs predominantly found in populations of African descent
[§] After Bonferroni correction, the P-values became insignificant
[§] P-values of permutation testing
^a After adjusting for sickle cell risk variant (HBB rs77121243-T allele) and other cofactors
^a After adjusting for rs1799963.
^a SNPs not significantly associated with VTE risk after adjusting for rs6025
[§] SNPs not significantly associated with VTE risk after adjusting for ABO blood group (rs8176719 and rs8176750)
^a SNPs not tested in replication cohort due to high LD or due to failed assay
^x SNPs further replicated using parametric bootstrap, internal cross-validation and meta-analysis methods
^b SNP merged into rs334 according to “NCBI” database
Locus	Gene/Variant	Population	No. cases/controls (combined)	MAF	Locus	Gene/Variant	OR	P-value
rs493014	GCST001913	European ancestry	1953/2338 (Meta analysis of two previous GWAS)	0.30	9q34.2	SURF6/inter	1.64	6.00 x 10^{-11}
rs886090				0.32	9q34.2	SURF6/mis		
rs1336472				0.40	1p31.3	AK4/utr	1.54	4.24 x 10^{-10}
rs4715555				0.38	6p12.1	HMGCLL1/inter		
rs380904				0.29	8q24.3	ZC3H3/intr	1.67	4.51 x 10^{-10}
rs8086028				0.30	18p11.22	PIEZO2/utr		
rs6815916				0.09	4q34.3	TNEM3-AS1/inter	2.10	6.84 x 10^{-10}
rs6092326				0.47	20q13.31	FAM209B/inter		
rs2282015				0.41	10q26.13	AL160290.2/intr	1.50	8.36 x 10^{-10}
rs13050454				0.42	21q21.3	AP001595.1/inter		
rs7648704				0.33	3p22.3	TRIM71/rr	1.56	9.89 x 10^{-10}
rs4868644				0.49	5q35.2	RNF44/inter		
rs1985317				0.41	9q33.1	ALA45644.1/inter	0.66	1.32 x 10^{-9}
rs827637				0.46	10p14	ACO44784.1/inter		
rs2321744				0.10	13q13.2	RFC3/inter	0.49	1.38 x 10^{-9}
rs6497540				0.42	16p13.2	GRIN2A/intr		
rs315122				0.30	12q15	YEATS4/intr	2.05	1.42 x 10^{-9}
rs884483				0.12	15q23	TLE3/inter		
rs1423386				0.20	5q12.1	LBRCT70/inter	1.73	1.63 x 10^{-9}
rs6491679				0.29	13q33.1	FGF14/intr		
rs7714670				0.44	5q13.2	ARHGEF28/miss	1.52	1.75 x 10^{-9}
rs12880735				0.35	14q12	AL390334.1/intr		
rs9392653				0.28	6p25.1	PPPIR3G/inter	1.74	1.83 x 10^{-9}
rs7780976				0.19	7p21.2	DGX8/inter		
rs9804128				0.26	1p36.13	IGSF21/intr	1.71	1.90 x 10^{-9}
rs4784379				0.24	16q12.2	IRX3/inter		
rs1364505				0.32	7q32.3	PLXNA4/intr	1.80	2.10 x 10^{-9}
rs1204660				0.16	20q11.22	UQCC1/intr		
rs2288073				0.29	2q23.3	FAM228A/miss	1.60	2.11 x 10^{-9}
rs10771022				0.34	12p12.1	SOX5/intr		
rs1367228				0.44	2p16.1	EFEMP1/intr	1.49	2.20 x 10^{-9}
rs3905075				0.40	13q33.3	FAM155AT1/intr		
rs536477				0.43	1q43	CHR3/intr	0.63	2.93 x 10^{-9}
rs1937920				0.27	10p15.1	AKR1C2/inter		
rs2710201				0.06	7q36.2	ACTR3B/inter	0.40	3.30 x 10^{-9}
rs3780293				0.35	9q21.2	GNAH4/intr		
rs12541254				0.34	8p22	DLC1/intr	1.65	3.33 x 10^{-9}
rs305009				0.23	15q23	TLE3/inter		

(continued on next page)
Report	Pairwise SNP interactions**	Population	No. cases/controls (combined)	MAF	Locus	Gene/Variant	OR	P-value
rs4507975				0.29	1q25.2	PAPPA2/intr	0.65	3.58 × 10⁻⁹
rs9914518				0.47	1p13.1	GSG112/intr	0.67	3.82 × 10⁻⁹
rs2771051				0.37	9q33.1	-/inter	0.63	3.86 × 10⁻⁹
rs827637				0.46	10p14	-/inter	0.63	3.86 × 10⁻⁹
rs1056089				0.31	5q35.1	SMIM23/intr	0.63	3.86 × 10⁻⁹
rs11072930				0.29	15q25.1	ARNT2/intr	1.88	4.46 × 10⁻⁹
rs10504130				0.14	18q11.22	PCMTD1/intr	0.43	4.54 × 10⁻⁹
rs2847351				0.31	18p11.22	APCDD1/intr	1.86	4.70 × 10⁻⁹
rs318497				0.49	6p25.22	AL133351.3/nc	0.43	4.54 × 10⁻⁹
rs7019259				0.07	9q21.2	PSAT1/intr	0.43	4.54 × 10⁻⁹
rs6695223				0.13	1p22.3	WDR63/intr	0.58	4.85 × 10⁻⁹
rs1763510				0.39	6q23.2	SK1/intr	2.13	5.26 × 10⁻⁹
rs1336708				0.25	1q33.1	FGF14-IT1/intr	2.03	7.14 × 10⁻⁹
rs1423386				0.20	5q12.1	CKS1BP3/intr	2.13	5.26 × 10⁻⁹
rs6771316				0.13	3p13	LINCO0877/intr	2.13	5.26 × 10⁻⁹
rs10986432				0.17	9q33.3	OLFML2A/intr	2.13	5.26 × 10⁻⁹
rs664910				0.30	3p21.3	MGCL1/intr	1.50	6.63 × 10⁻⁹
rs877228				0.46	15q22.2	ROR2/intr	1.50	6.63 × 10⁻⁹
rs9945428				0.30	18q11.22	FBX015/intr	0.62	6.88 × 10⁻⁹
rs4823535				0.27	2q13.33	FAM19A5/intr	2.03	7.14 × 10⁻⁹
rs1910358				0.23	5q14.2	C5orf17/intr	2.03	7.14 × 10⁻⁹
rs9981595				0.11	21q22.2	BRWD1/intr	2.03	7.14 × 10⁻⁹
rs6771725				0.27	3q26.31	NAAAL1D2/intr	2.22	8.60 × 10⁻⁹
rs10507246				0.09	12q24.21	TBX5/intr	2.22	8.60 × 10⁻⁹
rs16865717				0.28	2p25.2	RSD2/intr	1.56	8.82 × 10⁻⁹
rs2009559				0.36	20q12	-/inter	1.56	8.82 × 10⁻⁹
rs3023845				0.16	12q23.1	ACO07513/intr	1.69	8.82 × 10⁻⁹
rs20382277				0.38	16p13.3	RAB11FIP3/intr	1.69	8.82 × 10⁻⁹
rs10476160				0.20	5q35.2	SNX11/intr	0.62	9.09 × 10⁻⁹
rs1707420				0.48	8p23.2	-/inter	0.62	9.09 × 10⁻⁹
rs971572				0.32	1q25.3	TSEN15/intr	0.42	9.30 × 10⁻⁹
rs10828151				0.07	10p12.31	NEBL/intr	0.42	9.30 × 10⁻⁹
rs6858430				0.21	4q34.1	ADAM29/intr	1.62	9.67 × 10⁻⁹
rs4800250				0.40	1p11.22	TAF4B/intr	0.67	9.91 × 10⁻⁹
rs467650				0.37	5q15	RGMB/intr	0.67	9.91 × 10⁻⁹
rs7153749				0.44	1q23.1	LINCO1500/intr	0.67	9.91 × 10⁻⁹

++ The interactions did not reach the Bonferroni correction for the number of investigated interactions; MAF – minor allele frequency; OR – odds ratio
Table 3
SNPs reported by VTE GWAS in European populations and their analysis in previously reported candidate gene studies or validation studies also in European populations.

Gene	SNP	Type of Report	No. cases/controls (combined)	MAF (cases)	OR (95% CI)	P-value	References
F5	rs6025	Candidate gene approach	471/474	0.01*	6.50 (1.80–23.00) (GG vs. AG)	<0.05	[1]
	rs4524	Candidate gene approach	1488/1439	0.25***	0.77 (0.68–0.87)	2.51 x 10^-5	[2]
	rs1018827	Validation	1040/16,936	0.07*	1.53 (1.29–1.79) (AA vs. AG)	6.53 x 10^-6	[3]
	rs6427196	Validation	1040/16,936	0.09*	1.51 (1.28–1.78) (CC vs. CG)	9.21 x 10^-6	[3]
	rs2420371	–	–	–	–	–	–
F2	rs1799963	Candidate gene approach	471/474	<0.01*	2.80 (1.40–5.60)	<0.05	[4]
	rs3136516	Candidate gene approach	428/795	0.28*	1.50 (1.00–2.20)	<0.05	[5]
	rs2066865	Candidate gene approach	471/471	0.30*	2.40 (1.50–3.90)	0.002	[6]
	FGB/FGA/FGG	–	–	–	–	–	–
	rs6825454	Candidate gene approach	419/1228	0.31	–	2.80 x 10^-4	[7]
	rs7659024	Validation	1040/16,936	0.30*	1.40 (1.09–1.78) (AA vs. GG)	3.03 x 10^-2	[3]
	rs6536024	Validation	1040/16,936	0.46*	–	**0.23	[3]
	rs7654093	–	–	–	–	–	–
F11	rs3756008	Candidate gene approach	1837/2204	0.41**	1.28 (1.15–1.43)	6.33 x 10^-6	[2]
	rs4253399	Candidate gene approach	1488/1439	0.24**	1.68 (1.48–1.91)	8.08 x 10^-16	[2]
	rs4253417	–	–	–	–	–	–
	rs4444878	–	–	–	–	–	–
	rs4253418	–	–	–	–	–	–
ABO	rs2519093	Candidate gene approach	1488/1439	0.24**	1.47 (1.32–1.64)	5.68 x 10^-12	[2]
	rs505922	Validation	1040/16,936	0.35*	1.78 (1.46–2.15) (CC vs. TT)	5.17 x 10^-11	[3]
	rs630014	Validation	1040/16,936	0.42**	0.75 (0.67–0.84)	2.67 x 10^-7	[2]
ABO	rs8176719	Validation	1040/16,936	0.42**	1.62 (1.09–2.38)	0.015	[9]
	rs8176721	Validation	96/148	0.48	1.74 (1.43–2.10) (AA vs. GG)	5.45 x 10^-10	[3]
	rs495828	Validation	1040/16,936	0.16*	2.09 (1.64–2.63) (GG vs. TT)	1.72 x 10^-10	[3]
	rs8176750	–	–	–	–	–	–
	rs657152	–	–	–	–	–	–
	rs529565	–	–	–	–	–	–
	rs8176645	–	–	–	–	–	–
C4BPB	rs3813948	Validation	1433/1402	0.07	–	0.25	[10]
NME7	rs16861990	Validation	1040/16,936	0.06*	4.11 (2.14–7.33) (CC vs. AA)	2.90 x 10^-7	[3]
PROCR	rs6087685	Validation	1040/16,936	0.39*	–	**0.92	[3]
	rs34234989	–	–	–	–	–	–

(continued on next page)
Gene	SNP	Type of Report	No. cases/controls (combined)	MAF (cases)	OR (95% CI)	P-value	References
TSPAN15	rs78707713	Validation	1040/16,936	0.05∗	0.77 (0.66–0.91) (TT vs. TC)	6.22 × 10⁻³	[3]
	rs17490626						
ZFPM2	rs4602861						
SLC44A2	rs2288904	Validation	1040/16,936	0.18∗	0.63 (0.44–0.89) (AA vs. GG)	2.42 × 10⁻²	[3]
	rs9797861†						
SLC19A2	rs2038924						
CCDC181	rs1208134						
CNTN5	rs6764623						
SUSD1	rs4979078						
OTUD7A	rs7164569						
SV2C	rs3733860						
FUNDC2	rs114209171						
COX7A2L	rs72798544						
	rs113092656						
EPHA3	rs60942712						

MAF: minor allele frequency; **OR**: odds ratio.

∗ MAF values obtained from “Ensembl” database

∗∗ Total MAF in the report (cases and controls)

† SNP in high LD with rs6427196, particularly for European ancestry populations \(r^2>0.81\), according to “Ensembl” database

‡ SNP in high LD with rs2066865 for all populations according to “Ensembl” database \(r^2>0.81\)

§ SNP in high LD with rs8176719, particularly for European ancestry populations \(r^2>0.90\), according to “Ensembl” database

∥ SNP in high LD with rs6087685 for all populations according to “Ensembl” database \(r^2>0.86\) except in Kenya population

¶ SNP in high LD with rs78707713 for most populations, particularly the European ancestry populations \(r^2=1\), according to “Ensembl” database

†† SNP in high LD with rs2288904 for most populations, particularly the European ancestry populations \(r^2>0.90\), according to “Ensembl” database.
Table 4
VTE related-genes reported by GWAS and their putative links with cancer hallmarks.

Genes	HUGO nomenclature	Molecular processes that promote carcinogenesis	Potential cancer hallmarks
F5	Coagulation Factor V	Generation of thrombin	Metastasis, angiogenesis, immune evasion and apoptosis [11]
CCDC181 (C1orf14)	Coiled-Coil Domain Containing 181	Despite the unknown role in carcinogenesis, this gene is frequently methylated in patients with prostate cancer [12]	Genome instability and mutation
ABO	ABO Blood Group	Activation of adhesion molecules [13]	Inflammation, immune evasion and metastasis [13, 14]
C4BPB	Complement Component 4 Binding Protein Beta	Inactivation of protein S, which is an important cofactor to activated protein C and constitutes a ligand for the Axl family of receptor tyrosine kinases [16, 17]	Inflammation and apoptosis [16] Proliferation signalling, invasion and apoptosis through Axl receptor tyrosine kinase signalling [18]
NME7/FGB/FGG	NME/NM23 Family Member 7	Embryonic Stem Cell Renewal [19]	Metastasis
	Fibrinogen Beta Chain/ Fibrinogen Gamma Chain/ Fibrinogen Alpha Chain	Formation of fibrin clot	Angiogenesis [11]
		Immune response [20]	Immune evasion and inflammation
		Augmentation of the proliferative effect of fibroblast growth factor-2 (FGF-2) [21]	Proliferative signalling and angiogenesis [21]
F11	Coagulation Factor XI	Generation of Factor Xa	Apoptosis [22]
		Generation of thrombin	Metastasis, angiogenesis, immune evasion and apoptosis [11]
			Cancer metabolism
SLC19A2	Solute Carrier Family 19 Member 2	Metabolism	Metastasis, angiogenesis, immune evasion and apoptosis [11]
F2	Coagulation Factor II, thrombin	Generation of thrombin	Proliferative signalling and metastasis [11]
CNTN6	Contactin 6	Activating of Notch signalling pathway [23]	Metastasis [24]
OTUD7A	OTU Deubiquitinase 7A	Modulation of nuclear factor kappa B (NF-κB) expression through interaction with TNF receptor associated factor 6 (TRAF6)	Apoptosis and inflammation [26]
SV2C	Synaptic Vesicle Glycoprotein 2C	Modulation of dopamine release [25]	

(continued on next page)
Table 4 (continued)

Genes	HUGO nomenclature	Molecular processes that promote carcinogenesis	Potential cancer hallmarks
SUSD1	Sushi Domain Containing 1	Unknown role in carcinogenesis	unknown
PROCR	Protein C Receptor	Protein C pathway	Proliferative signalling, invasion, metastasis, apoptosis and immune evasion [27]
ZFPM2 (FOG2)	Zinc Finger Protein, FOG Family Member 2	GATA transcriptional network	Angiogenesis [28]
TSPAN15	Tetraspanin 1S	Mediates signal transduction events that play a role in the regulation of cell activation, growth, development and motility.	Apoptosis, invasion and inflammation [29]
SLC44A2	Solute Carrier Family 44 Member 2	Metabolism	Metastasis, angiogenesis and immune evasion [33]
FUND2C	FUN14 Domain Containing 2	Modulation of platelet survival [32]	Cancer metabolism
COX7A2L	Cytochrome C Oxidase Subunit 7A2 Like	Regulation of oxidative phosphorylation	Metastasis, angiogenesis and immune evasion [33]
EPHA3	EPH Receptor A3	Regulation of developmental events	Cancer metabolism
		Regulation of cytoskeletal organization, cell-cell adhesion and cell migration	Invasion and metastasis [34]
			Angiogenesis [35]
B3GAT2	Beta-1,3-Glucuronyltransferase 2	Mismatch repair deficiency [36]	Genome instability and mutation
THBD	Thrombomodulin	Protein C pathway	Angiogenesis [28]
LEMD3 (MAN1)	LEM Domain Containing 3	Regulation of transforming growth factor-beta (TGF-beta) signalling at the inner nuclear membrane	Invasion and metastasis [37]
			Proliferative signalling, invasion and apoptosis [38]
LY86 (MD-1)	Lymphocyte Antigen 86	Innate Immune System	Immune evasion [39]
LOC100130298	HCG1816373-Like	Unknown role in carcinogenesis	Inflammation

The data shown in Table 4 concerning the HUGO nomenclature and the molecular process involved in carcinogenesis were obtained from "Genecards" database (exceptions are referenced).
taken into account. To our best knowledge, the majority of VTE GWAS-reported SNPs are currently lacking validation.

(3) Putative links between VTE-associated genes and cancer hallmarks:

A vast search using NCBI, GeneCards and Ensembl databases (Fig. 1) was made to collect data concerning VTE-associated genes and how they may be implicated in many cancer-related processes that contribute to cancer growth and progression.

Acknowledgements

We would like to thank the Liga Portuguesa Contra o Câncer-Centro Regional do Norte, Ministério da Saúde de Portugal (CFICS-45/2007), I.P.O.-Porto Projects CI-IPOP-91-2015 and CI-IPOP-22-2015, and Fundação para a Ciência e Tecnologia (FCT).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] F. Rosendaal, T. Koster, J. Vandenbroucke, P. Reitsma, High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance)[see comments], Blood 85 (1995) 1504–1508.
[2] J.A. Heit, J.M. Cunningham, T.M. Petterson, S.M. Armasu, D.N. Rider, M. de Andrade, Genetic variation within the anticoagulant, procoagulant, fibrinolytic and innate immunity pathways as risk factors for venous thromboembolism, J. Thromb. Haemost. 9 (2011) 1133–1142.
[3] M. Crous-Bou, I. De Vivo, C.A. Camargo Jr, R. Varraso, F. Grodstein, M.K. Jensen, P. Kraft, S.Z. Goldhaber, S. Lindström, C. Kabrhel, Interactions of established risk factors and a GWAS-based genetic risk score on the risk of venous thromboembolism, Thromb. Haemost. 116 (2016) 705–713.
[4] S.R. Poort, F.R. Rosendaal, P.H. Reitsma, R.M. Bertina, A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis, Blood 88 (1996) 3698–3703.
[5] I. Martinelli, T. Battaglioli, A. Tosetto, C. Legnani, L. Sottile, R. Ghiotto, P. Mannucci, Prothrombin A1991G polymorphism and the risk of venous thromboembolism, J. Thromb. Haemost. 4 (2006) 2582–2586.
[6] S.U. de Willige, M.C. de Visser, J.J. Houwing-Duistermaat, F.R. Rosendaal, H.L. Vos, R.M. Bertina, Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen γ’ levels, Blood 106 (2005) 4176–4183.
[7] D.-A. Tréguoët, S. Heath, N. Saut, C. Biron-Andreani, J.-F. Schved, G. Pernod, P. Galan, L. Drouet, D. Zelenika, I. Juhan-Vague, Common susceptibility alleles are unlikely to contribute as strongly as the FV and ABO loci to VTE risk: results from a GWAS approach, Blood 113 (2009) 5298–5303.
[8] I.D. Bezemer, L.A. Bare, C.J. Doggen, A.R. Arellano, C. Tong, C.M. Rowland, J. Catanese, B.A. Young, P.H. Reitsma, J.J. Devlin, Gene variants associated with deep vein thrombosis, JAMA 299 (2008) 1306–1314.
[9] L. Manco, C. Silva, T. Fidalgo, P. Martinho, A.B. Sarmento, M.L. Ribeiro, Venous thromboembolism risk associated with ABO, F11 and FGG loci, Blood Coagul. Fibrinolysis 29 (2018) 528–532.
[10] M. Bruzelli, M. Bottai, M. Sabater-Lleal, R. Strawbridge, A. Bergendal, A. Silveira, A. Sundström, H. Kieler, A. Hamsten, J. Odeberg, Predicting venous thrombosis in women using a combination of genetic markers and clinical risk factors, J. Thromb. Haemost. 13 (2015) 219–227.
[11] V. Tavares, R. Pinto, J. Assis, D. Pereira, R. Medeiros, Venous thromboembolism GWAS reported genetic makeup and the hallmarks of cancer: linkage to ovarian tumour behaviour, Biochim. Biophys. Acta Rev. Cancer 1873 (2020) 188331.
[12] S. Strand, T. Orntoft, K. Sørensøen, Prognostic DNA methylation markers for prostate cancer, Int. J. Mol. Sci. 15 (2014) 16544–16576.
[13] S. Kiechl, G. Paré, M. Barbalic, L. Qi, J. Dupuis, A. Delghani, J.C. Bis, R.C. Laxton, Q. Xiao, E. Bonora, Association of variation at the ABO locus with circulating levels of soluble intercellular adhesion molecule-1, soluble P-selectin, and soluble E-selectin: a meta-analysis, Circ. Cardiovasc. Genet. 4 (2011) 681–686.
[14] M. Franchini, G.M. Liumbruno, G. Lippi, The prognostic value of ABO blood group in cancer patients, Blood Transfus. 14 (2016) 434.
[15] M. Franchini, F. Frattini, S. Crestani, C. Bonfanti, G. Lippi, von Willebrand factor and cancer: a renewed interest, Thromb. Res. 131 (2013) 290–292.
[16] S.M. Rezende, R.E. Simmonds, D.A. Lane, Coagulation, inflammation, and apoptosis: different roles for protein S and the protein S–C4b binding protein complex, Blood 103 (2004) 1192–1201.
[17] T.N. Stitt, G. Conn, M. Goret, C. Lai, J. Bruno, C. Radzlejewski, K. Mattsson, J. Fisher, D.R. Gies, P.F. Jones, The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases, Cell 80 (1995) 661–670.

[18] J.D. Paccez, M. Vogelsang, M.I. Parker, L.F. Zerbini, The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications, Int. J. Cancer 134 (2014) 1024–1033.

[19] C.H. Wang, N. Ma, Y.T. Lin, C.C. Wu, M. Hsiao, F.L. Lu, C.C. Yu, S.Y. Chen, J. Lu, A shRNA functional screen reveals Nme6 and Nme7 are crucial for embryonic stem cell renewal, Stem Cells 30 (2012) 2199–2211.

[20] G. Girmann, H. Pees, G. Schwarze, P. Scheurle, Immunosuppression by micromolecular fibrinogen degradation products in cancer, Nature 259 (1976) 399.

[21] A. Sahni, P. Simpson-Haidaris, S. Sahni, G. Vaday, C. Francis, Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2), J. Thromb. Haemost. 6 (2008) 176–183.

[22] S.H. Versteeg, C.A. Spek, D.J. Richel, M.P. Peppelenbosch, Coagulation factors Vila and Xa inhibit apoptosis and anoikis, Oncogene 23 (2004) 410.

[23] X.-Y. Cui, Q.-D. Hu, M. Tekaya, Y. Shimoda, B.-T. Ang, D.-Y. Nie, L. Sun, W.-P. Hu, M. Karsak, T. Duka, NB-3/Notch1 pathway via Deltex1 promotes neural progenitor cell differentiation into oligodendrocytes, J. Biol. Chem. 279 (2004) 25858–25865.

[24] Z. Xu, L. Lei, L. Wang, F. Zhang, X. Hu, Y. Gui, Snail1-dependent transcriptional repression of Cezanne2 in hepatocellular carcinoma, Oncogene 33 (2014) 2836.

[25] A.R. Dunn, K.A. Stout, M. Oza, K.M. Lohr, C.A. Hoffman, A.I. Bernstein, Y. Li, M. Wang, C. Sgobio, N. Sastry, Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease, Proc. Natl. Acad. Sci. 114 (2017) E2253–E2262.

[26] Y.-L. Lan, X. Wang, J.-S. Xing, Z.-L. Yu, J.-C. Lou, X.-C. Ma, B. Zhang, Anti-cancer effects of dopamine in human glialoma: involvement of mitochondrial apoptotic and anti-inflammatory pathways, Oncotarget 8 (2017) 88488.

[27] E. Ducros, S. Mirshahi, D. Azzazene, S. Camilleri-Broët, E. Mery, H. Al Farsi, H. Althawadi, S. Besbess, J. Chidiac, E. Pujade-Lauraine, Endothelial protein C receptor expressed by ovarian cancer cells as a possible biomarker of cancer onset, Int. J. Oncol. 41 (2012) 433–440.

[28] M. Uchiba, K. Okajima, Y. Oike, Y. Ito, K. Fukudome, H. Isobe, T. Suda, Activated protein C induces endothelial cell proliferation by mitogen-activated protein kinase activation in vitro and angiogenesis in vivo, Circ. Res. 95 (2004) 34–41.

[29] M.S. Kumar, D.C. Hancock, M. Molina-Arcas, M. Steckel, P. East, M. Diefenbacher, E. Armerentos-Monterroso, F. Lasailly, N. Matthews, E. Nye, The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer, Cell 149 (2012) 642–655.

[30] S.H. Choi, D. Ruggiero, R. Sorice, C. Song, T. Nuttle, A.V. Smith, M.P. Concas, M. Traglia, C. Barbieri, N.C. Ndiaye, Six novel loci associated with circulating VEGF levels identified by a meta-analysis of genome-wide association studies, PLoS Genet. 12 (2016) e1005874.

[31] B. Zhang, Z. Zhang, L. Li, Y.-R. Qin, H. Liu, C. Jiang, T.-T. Zeng, M.-Q. Li, D. Xie, Y. Li, TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling, Nat. Commun. 9 (2018) 1423.

[32] Q. Ma, C. Zhu, W. Zhang, N. Ta, R. Zhang, L. Liu, D. Feng, H. Cheng, J. Liu, Q. Chen, Mitochondrial PIP3-binding protein FUNDC2 supports platelet survival via Akt signaling pathway, Cell Death Differ. 26 (2019) 321.

[33] S. Jain, J. Harris, J. Ware, Platelets: linking hemostasis and cancer, Arterioscler. Thromb. Vasc. Biol. 30 (2010) 2362–2367.

[34] X. Chen, B. Lu, Q. Ma, C.D. Ji, J.Z. Li, EphA3 inhibits migration and invasion of esophageal cancer cells by activating the mesenchymal-epithelial transition process, Int. J. Oncol. 54 (2019) 722–732.

[35] X.Y. Lv, J. Wang, F. Huang, P. Wang, J.G. Zhou, B. Wei, S.H. Li, EphA3 contributes to tumor growth and angiogenesis in human gastric cancer cells, Oncol. Rep. 40 (2018) 2408–2416.

[36] M. Noda, H. Okayama, K. Tachibana, W. Sakamoto, K. Saito, A.K.T. Min, M. Ashizawa, T. Nakajima, K. Aoto, T. Momma, Glycosyltransferase gene expression identifies a poor prognostic colorectal cancer subtype associated with mismatch repair deficiency and incomplete glycan synthesis, Clin. Cancer Res. 24 (2018) 4468–4481.

[37] N. Zheng, Z. Huo, B. Zhang, M. Meng, Z. Cao, Z. Wang, Q. Zhou, Thrombomodulin reduces tumorigenic and metastatic potential of lung cancer cells by up-regulation of E-cadherin and down-regulation of N-cadherin expression, Biochem. Biophys. Res. Commun. 476 (2016) 252–259.

[38] B. Kaminska, A. Wesolowska, M. Danilikiewicz, TGF beta signalling and its role in tumour pathogenesis, Acta Biochim. Pol. Engl. Ed. 52 (2005) 329.

[39] L. Corelik, R.A. Flavell, Transforming growth factor-β in T-cell biology, Nat. Rev. Immunol. 2 (2002) 46.