Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives

Henry M Kariithi1†, Irene K Meki3,4†, Daniela I Schneider5†, Linda De Vooght6†, Fathiya M Khamis7†, Anne Geiger8†, Guler Demirbaş-Uzel3†, Just M Višk4, ikbal Agah iNCE9, Sorge Kelm10, Flobert Njiokou11, Florence N Wamwiri12, Imna I Malele13, Brian L Weiss5 and Adly M M Abd-Alla3,2*

Abstract

With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends on the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013–2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiopathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP’s major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.

Keywords: Glossina, Microbiota, Paratransgenesis, Vector competence, Trypanosoma-refractoriness, sterile insect technique, Hytrosaviridae

Background

Tsetse flies (Diptera; Glossinidae) transmit African trypanosomes across sub-Saharan Africa. These protozoan parasites are the causative agents of human and animal African trypanosomoses (HAT and AAT, respectively), which are neglected tropical diseases that are fatal if left untreated [1, 2]. A lack of effective prophylactic vaccines and drugs that target trypanosomes [3, 4] makes control of the tsetse vector an appealing alternative to reduce disease transmission. One attractive vector control method is the sterile insect technique (SIT), which is effective when included as a component of an area-wide integrated pest management (AW-IPM) approach [5–8]. SIT involves the mass production of sterilized male adults, which subsequently out-compete wild males in mating with wild virgin females in the field [9]. These matings are non-productive, eventually resulting in the decline and elimination of the target wild insect populations [10].

The successful and sustained eradication of Glossina austeni Newstead and AAT from Unguja Island in 1997 [7], in which SIT played a pivotal role, inspired African Governments to implement similar campaigns against tsetse on mainland Africa. SIT has also been employed to suppress G. palpalis gambiensis and G. tachinoides populations in Burkina Faso, G. p. palpalis in Nigeria [11, 12], and G. pallidipes in Ethiopia [13]. Challenges associated with improving SIT effectiveness include successful colony establishment [14], management of pathogenic infections that reduce colony fitness [15, 16] and compromised performance of field-released sterile males.
Importantly, the ability of released sterile males to vector trypanosomes increases the risk of transmitting disease in foci where trypanosomes are actively circulating. Furthermore, irradiation used for sterilization may negatively impact tsetse fitness (e.g. by damaging the tsetse host and its associated beneficial microbiota [18, 19].

The joint FAO/IAEA-sponsored coordinated research projects
To enhance the SIT programs, the Joint Division of FAO/IAEA initiated a five-year (2013–2018) Coordinated Research Project (CRP) on enhancing tsetse fly refractoriness to trypanosome infections [20]. Composed of 22 research teams from 18 countries, the CRP involved four Research Coordination Meetings (RCMs) to review the results, progress and plan future research activities.

This paper highlights the major achievements towards answering the following four key research questions of the CRP: (1) Can the elucidation of tsetse-trypanosome molecular interactions assist in the development of novel methods and approaches to reduce or prevent the transmission of trypanosomes by irradiated tsetse flies? (2) Are tsetse’s symbiome and the fly’s competence as a vector of trypanosomes affected by radiation? (3) Can tsetse symbionts be used to develop novel vector and disease control tools, complementary to the SIT? (4) Can the characterization of tsetse’s symbiome and viral pathogens improve the efficacy of SIT? [20]. Many other concepts that emerged while addressing the above-mentioned research questions were addressed during the course of the CRP.

Table 1 The Five-year (2013–2018) CRP objectives, outputs and achievements (published papers)

Specific objectives	Expected output	Published papersa
(i). Elucidate tsetse-trypanosome interactions and understand determinants of vector competence.	(i). Molecular interplay of tsetse-trypanosomes characterized. (ii). Factors affecting trypanosome infections in tsetse determined. (iii). Tsetse vectorial competence assessed via comparative genomics and transcriptomics.	[102–146]; ([21, 26, 43, 107, 147])
(ii). Acquire better understanding of the physiology of tsetse-microbiota-pathogen tripartite interactions.	(i). Microbiota of multiple trypanosome-infected and uninfected tsetse species and hybrids determined. (ii). Trypanosome-microbiota interactions in model tsetse species and hybrids determined. (iii). Impacts of viral pathology on the tsetse symbionts determined.	[42, 47, 53, 58, 59, 148–172]; ([44, 54, 72, 93, 173, 174])
(iii). Determine effects of radiation in tsetse, its microbiota and pathogens.	(i). Effects of radiation on tsetse vectors, their symbionts and pathogens determined. (ii). Mutagenic effect of radiation on paratransgenesis determined.	[175]; ([95, 99])
(iv). Analyse SGHV-microbiota interactions in multiple tsetse species.	(i). Functional SGHV genes identified as candidates for developing antiviral mitigation strategy. (ii). Latency SGHV genes identified as tools for host interacting proteins. (iii). Mechanisms of SGHV’s escape from host defense response determined. (iv). SGHV haplotypes and evolution in lab-reared and wild tsetse fly populations determined.	[75, 76, 79, 81, 82, 84, 176, 177]; ([28, 77, 78, 80, 83])
(v). Develop novel symbiont-based, SIT-compatible anti-trypanosomiasis strategies.	(i). Wolbachia-based population suppression and/or replacement strategies assessed. (ii). Trypanosome-refractory paratransgenic tsetse lines developed.	[94, 108, 178]; ([109])

aArticles in round brackets are published in the current issue of the BMC Special Issue. The remaining articles in this table have either been or are submitted for publication elsewhere during the five years (2013–2018) CRP period.
Current status and achievements
During the course of the CRP (2013–2018) more than seventy scientific papers, detailing experimentally derived data related to achieving the project’s objectives, were published in peer reviewed journals. This special issue includes several of these papers, findings from which are briefly summarized in this introductory chapter along with the overall outcome of the project and future perspectives.

Tsetse species resolution
Correct taxonomic identification of insects is imperative for many reasons including the fact that studies conducted on different taxa may be reported by the same species (names), thus creating confusion. It is therefore important to properly identify field-captured tsetse species during characterization of their inhabiting microbial communities (including parasites, pathogens and symbionts). During the CRP, Augustinos and colleagues [21; this issue] evaluated the use of different molecular tools that can be used to efficiently and accurately distinguish distinct *Glossina* species using samples deriving from laboratory colonies and museum collections as well as all those collected in the field. The combined use of relatively inexpensive molecular genetic techniques, along with the identification of species specific microsatellites and mitochondrial and nuclear markers, will facilitate accurate identification of several tsetse species in the future.

Trypanosome co-infections in tsetse flies
Molecular epidemiological surveys indicate that tsetse fly midguts, sampled from various HAT and AAT foci (including Fontem [22, 23] Campo and Bipindi [22, 24], Bafia [25] and Faro and Deo [26; this issue] in Cameroon) are infected with multiple trypanosome species. Application of nuclear ribosomal internal transcribed spacer (ITS) and/or trypanosome species-specific primers revealed that 53–82% of flies housed infections with trypanosome of a single species (*T. brucei* sl., *T. congolense* “forest” and “savannah” types, *T. vivax* and *T. simiae*), 18–47% were infected with two or three of the aforementioned species. In the Malanga HAT focus in Democratic Republic of Congo, 13.87% and 1.9% of *G. p. palpalis*
had single and mixed trypanosome infections, respectively [27]. To assess the prevalence of trypanosome infection in a geographically broader area, Ouedraogo et al. [28; this issue] screened 3102 individual tsetse flies comprised of four species collected in five countries in west Africa. Results from this study indicate that trypanosome infections prevalence varied between tsetse species and location, but was on average substantial. In other words, infection prevalence ranged widely from 2.2–61.1% in flies sampled from different species in different locations. Furthermore, mixed infection was rarely observed (<10%), and could be attributed to host specificity and/or preferences (human, domestic and wild animals) of particular tsetse species [29–32] and/or sensitivity of the PCR assay.

Modulations of tsetse gene expression during trypanosome infections
During SG infections, T. b. brucei suppresses the expression of the most abundant proteins in G. m. morsitans SGs, especially the proteins involved in the blood feeding process (e.g. Tsal1/2, TAg5, TSGF-1/2, 5′-Nuc, ADA and Spg3) [33]. This reduction in protein expression may significantly reduce fly feeding performance, consequently promoting vector competence via increase of the fly’s biting frequency. Further, the parasite upregulates expression of specific host proteins that are essential for parasite maturation, particularly proteins (e.g. CaMK, Serp-2, V-ATPases, and ArgK) involved in the regulation of stage-specific parasite differentiation [33, 34]. In response to the SG infection, tsetse overexpresses at least 15 immunity-related proteins [See Table 3 in Ref.33]. In the midguts of G. pallidipes, which is more refractory to midgut colonization by trypanosomes compared to G. m. morsitans [35], T. b. brucei-challenge did not significantly modulate most of the genes (>93%) in infected flies compared to uninfected controls [36]. However, whereas T. b. brucei induced expression of metabolism-associated genes in teneral flies (24 h post challenge), immunity-related and oxidative stress (ROS) genes were induced during late infection stages (48 h post challenge) [36]. Induction of expression of immunity and ROS genes is partially implicated in trypanosome-refractoriness in G. m. morsitans [37]. Notably, unlike in G. m. morsitans, in which only a small proportion of midgut infections progress to the SG, all G. palli- dipes with trypanosome gut infections end up hosting mature SG infections [35]. Together, these data are applicable in designing strategies to interfere with metacyclogenesis and transmission of the mammalian-infective metacyclic (MT) parasites in the SGs of G. pallidipes. The SG tissue bottleneck (in trypanosome transmission) represents a vulnerable and attractive intervention point to enhance natural tsetse refractoriness to trypanosomes or to reduce the vectorial competence of the sterile males used in SIT campaigns.

Role of Sodalis in the establishment of trypanosome infections in tsetse midguts
Sodalis glossinidius, tsetse’s facultative endosymbiont, may modulate the ability of trypanosomes to establish an infection in tsetse’s midgut. However, the mechanism(s) that underlies this association is poorly understood [38–40]. This CRP addressed this knowledge gap by further exploring the relationship between Sodalis and trypanosome infection in tsetse. Geiger et al. [41] observed a correlation between specific Sodalis genotypes and tsetse’s ability to establish trypanosomes infection.

Hamidou et al. [42] demonstrated that Sodalis-hosted prophages also mediate trypanosome infection establishment by affecting Sodalis densities. However, certain studies on field-caught tsetse did not indicate any strong associations between Sodalis densities and trypanosome infections [26; this issue, 43; this issue]. In addition, a correlation between trypanosome infection and Sodalis presence observed in Kenya [43; this issue] was weak or nonexistent. However, the authors thought that tsetse-trypanosome-microbiota interactions could be influenced by other factors such as tsetse’s ecology and community compositions, but only in some species of trypanosomes. However, Griffith et al., [44; this issue] found that Sodalis densities were significantly higher in trypanosome-infected, wild-caught flies compared to their uninfected counterparts. Additionally, other confounding factors may indirectly affect vectorial competence, including tsetse flies age, sex, habitat, species of trypanosome, and Sodalis genotypes and their modulation of the host’s immune system [43, this issue]. These factors may influence Sodalis densities, which may indirectly impact trypanosome prevalence within tsetse and the fly’s vectorial competence for trypanosome transmission.

Insights into tsetse-microbiota-pathogen tripartite interactions
Tsetse symbionts
Taxonomic composition of microbial communities housed in the gut of wild tsetse
Enteric microbes impact several aspects of their host’s physiology [45]. In tsetse, the obligate mutualist Wig-glesworthia mediates numerous aspects of the fly’s physiology, including nutrition, reproduction and immune system maturation and function [46–48]. Over the course of this CRP, researchers performed studies to characterize the taxonomic composition of
environmentally acquired bacteria housed in the gut of field-captured and colonized tsetse. This information is an important prelude to understanding how this population of microbes impacts tsetse’s fitness and susceptibility to trypanosome infection. Using culture dependent and independent techniques, prominent bacterial taxa found in guts from field captured tsetse included *Serratia, Enterobacter, Enterococcus, Acinetobacter, Providencia, Sphingobacterium, Chryseobacterium, Lactococcus, Staphylococcus*, and *Pseudomonas, Bacillus, Mesorhizobium, Paracoccus, Microbacterium, Micrococcus, Arthrobacter, Corynebacterium, Curtobacterium, Vagococcus*, and *Dietzia* spp. ([44, 49–54]; this issue). The sources and mechanisms by which tsetse flies acquire this diverse enteric microbiota remain unclear. However, tsetse hosts from specific ecosystems could differ in their microbial diversities [55]. Flies could ingest bacteria present on host skin when probing for a blood meal [56], or host blood may contain bacteria that are ingested by flies during feeding on a septic host. Identification of diverse bacteria in tsetse tissues that also house trypanosomes raises the question whether these bacteria influence trypanosome infections. Environmentally acquired bacteria found in the gut of other disease vectors (i.e., *Anopheles gambiae*) exhibit direct anti-parasitic properties [57]. As such, tsetse’s gut microbiota should be explored in more detail to determine if bacteria that exhibit anti-trypanosomal properties are present in the fly’s gut.

Discovery and characterization of Spiroplasma, a potential fourth symbiont of tsetse

One of the major achievements of this CRP is the discovery of *Spiroplasma* as a fourth endosymbiont (in addition to *Wigglesworthia, Sodalis*, and *Wolbachia*) in some wild and laboratory-reared tsetse populations [58, 59]. While the function of this bacterium in tsetse is currently unknown, it likely to impact colony fitness. However, in *Drosophila, Spiroplasma* is a maternally [60] and horizontally transmitted mutualist [61]. Some lineages of *Spiroplasma* confer their hosts with important traits, including defense against pathogens (e.g. parasites and bacteria), either singly or in associations with other symbionts such as *Wolbachia* [62–65]. The poorly understood mechanism(s) of *Spiroplasma-Wolbachia* associations presents an intriguing research topic, given that *Wolbachia* (found mainly in reproductive organs) and *Spiroplasma* (resides primarily in the hemolymph, but can also invade other tissues such as ovaries, fat body and SGs) exhibit similar tissue tropisms. Research on the *Glossina-Spiroplasma* association is required to determine if the bacterium presents commensal, mutualist or pathogenic phenotypes in the fly. Additionally, it will be important to determine the relationship between *Spiroplasma* and other constituents of tsetse’s microbiota, including bacterial symbionts, viral pathogens and trypanosomes. Finally, studies should be performed to determine if *Spiroplasma* can be utilized to develop novel symbiont-based strategies aimed at blocking trypanosome transmission.

Role of Wolbachia in tsetse speciation and generation of fertile hybrid tsetse colonies

Symbiont-induced cytoplasmic incompatibility (CI) acts as an efficient post-mating barrier to hybrid formation, making it an important parameter in preserving species borders [66–69]. In tsetse, *Wolbachia* efficiently triggers CI within [70] and between species [71]. During the CRP, *Wolbachia* related research focused on two main topics: 1) the development of diagnostic tools sensitive to detect low titer *Wolbachia* infections in tsetse species, and 2) exploration of *Wolbachia*’s role in tsetse speciation. In relation to the first topic, Schneider et al. [72; this issue], compared classic endpoint PCR with high-sensitivity blot-PCR and demonstrated that the latter technique facilitates more sensitive detection of low-titer *Wolbachia in the* *morsitans* and *palpalis* groups than does classic endpoint PCR. In addition, the authors used a high-end Stellaris’ rRNA-FISH based technique to localize *Wolbachia* in situ in high and low-titer *Glossina* species, and demonstrated that with this highly sensitive method, even low amounts of *Wolbachia* can be traced in specific tissues. The results also highlight that more tissues and organs than previously recorded are infested with *Wolbachia* in subspecies of the *morsitans* and *palpalis* groups. The novel, highly sensitive molecular *Wolbachia* detection tools developed during the CRP [72; this issue] should expedite further investigations on the tsetse hybrid colonies.

With regard to *Wolbachia*’s role in tsetse speciation, previously published data indicate that mating between *Wolbachia*-free *G. morsitans* females and wild type *G. morsitans* males results in significantly reduced larval deposition and adult eclosion rates [70]. Similarly, mating between wild type *G. morsitans* and *G. centralis* triggers high CI levels due to the presence of two incompatible *Wolbachia* strains [71]. However, premating barriers to hybrid formation are rather weak or completely absent, as members of various *Glossina* species mate readily [73]. Nevertheless, the negative effects of CI led to the consideration of generating tsetse hybrids for population control [74]. This consideration is based on the assumption that among artificially created hybrids between closely related *Glossina* species, males are post-zygotically incompatible with both parental species due to their natural hybrid sterility. Such pseudo-sterile tsetse males can be complementary to the SIT programs.
Experiments performed during the CRP demonstrated that knockdown of native Wolbachia in G. m. morsitans males prior to their mating with G. m. centralis females results in successful establishment of a hybrid line, which is now maintained in the IPCL tsetse production facility in Seibersdorf, Austria (unpublished data). Therefore, prior to employing hybrid flies to existing SIT programs, further investigations are necessary to determine how symbiont status and mating competence are affected in the hybrid background, and whether the hybrids and wild type flies are equally fit.

Tsetse fly pathogens
In addition to microbial communities associated with tsetse flies, pathogens such as the SGHV (Hytrosaviridae) and entomopathogenic fungi (EPF) infect tsetse flies and hence affect fly fitness both in insect mass rearing facilities and in the field. During the CRP, research was conducted to gain a better understanding on the impact of these pathogens on tsetse fly fitness and susceptibility to trypanosomes.

Salivary gland hypertrophy viruses
Pathobiology of GpSGHV haplotypes and the prospects for integrated antiviral strategies
Over the course of the CRP, the following topics related to SGHV were investigated: 1) improvement of virus control strategies [75], 2) explore genomic differences between virus isolates [76], 3) virus host range [77], 4) the impact of virus infection on tsetse fitness, 5) genetic diversity of field collected viral isolates, and 6) the impact of virus infection on the expression of tsetse immune genes. Comparative analyses of the Ethiopian and Ugandan GpSGHV strains [76] suggest that the differential virus-pathologies (i.e. outbreaks of the salivary gland hypertrophy symptoms, SGH) in G. pallidipes colonies are due to factors such as differences in viral gene contents, host genetics and ecologies, and virus-host co-evolutionary histories [78]; this issue. GpSGHV pathological effects and the host's response to the virus infection vary amongst different Glossina species. For instance, in G. pallidipes, GpSGHV infection results in significant upregulation of host genes associated with pathways promoting viral infection compared to upregulation of genes associated with antiviral responses in virus-infected G. m. morsitans [79]. We now have clues that more GpSGHV strains exist in multiple Glossina species, and that G. pallidipes may influence GpSGHV evolution [78, 80]; this issue. Susceptibilities of tsetse to GpSGHV infections, and the negative impacts of viral infections on the fly's fecundity, adult eclosion and survival, differ amongst different fly species [77, 81]; this issue. The narrow GpSGHV host range (only in Glossina species) and lack of overt SGH in the majority of tsetse hosts do not preclude implementing precautionary antiviral measures in tsetse production facilities that rear multiple species [15, 16, 78, 82].

Insights into the roles of tsetse immunity during symptomatic GpSGHV infections in lab-bred tsetse colonies
We have ascertained that GpSGHV infection provokes the RNA interference (RNAi) defense response, as evidenced by significant upregulation of the expression of key RNAi pathway genes (Ago-1, Ago-2 and Dcr-2) in virus-injected flies (asymptomatically infected) compared to the non-infected flies [83; this issue]. These data imply that both siRNA and miRNA pathways (two of the RNAi machinery pathways) provide antiviral defense in asymptomatic infected flies, but the pathways are highly compromised during symptomatic infections. The third RNAi machinery pathway (piRNA pathway) appeared not to be involved in tsetse's defense mechanism against GpSGHV, as virus infection did not affect the expression of Ago-3 gene, a key gene in the piRNA pathway [83]. In addition to the RNAi, we have indications that GpSGHV infection alters the host miRNA profile in G. pallidipes, thus indicating possible functional importance of miRNAs in symptomatic infections [84; MS in Prep.]. Notably, the majority of the upregulated miRNAs were predicted to target over 700 host mRNAs, of which 150 mRNAs were immune-related. miRNA expression profiles are also modulated by the insect microbiota, and may therefore contribute to the outcomes of virus infection as has been demonstrated in the dengue mosquito vector Aedes aegypti [85]. Recent data suggest that the absence (or low densities) of Wolbachia positively correlates with SGHV outbreaks in G. pallidipes colonies compared with other Glossina species that rarely exhibit overt SGH symptoms [86]. Whether differences in Wolbachia prevalence in tsetse species is linked to differences in GpSGHV infections (e.g. via modulations of miRNAs) requires further investigations.

Entomopathogenic fungi
EPF have been proposed as potential mosquito control agents [87]. The EPF Metarhizium anisopliae (Metsch.) Sorok may suppress wild tsetse populations when auto-disseminated from devices mounted on pyramidal traps [88]. Furthermore, horizontal transmission of the EPF was demonstrated between M. anisopliae-infected G. pallidipes and fungus-free flies during mating [89]. These characteristics make M. anisopliae a suitable candidate to be combined with SIT. Prior to causing death,
fungal infection can significantly reduce tsetse feeding and reproduction [90–92]. Therefore, the complementary action of EPF on reducing tsetse’s blood feeding and reproduction capacity, and potential effects on trypanosome development within the vector, could influence disease epidemiology and transmission. During the CRP, Wamiti et al. [93; this issue] conducted research focused on determining the impact of EPF on trypanosome infection. The results indicate that infection of G. f. fuscipes with M. anisopliae resulted not only in significant reduction in T. congolense titers, but also hindered the fly’s vectorial competence (ability to acquire and transmit trypanosomes to mice). The precise mechanism(s) underlying the fungal-mediated anti-trypanosome impacts remain to be elucidated.

Effects of irradiation on tsetse, its microbiota and trypanosome infections
One of the major objectives of this CRP was to investigate the possibility of combining paratransgenesis with SIT to control tsetse population size and simultaneously reduce their vector competence. Paratransgenesis involves genetically modifying tsetse’s commensal endosymbiont Sodalis so that it produces anti-trypanosome factors. Modified Sodalis are reintroduced into female flies, which subsequently present a trypanosome refractory phenotype ([94]; see section “Prospects of developing symbiont-based anti-trypanosome strategies” below for more details). As sterile males are produced via exposure to irradiation, the impact of this treatment on modified Sodalis is crucial for the implementation of the combined approach. To this end, Demirbaş-Uzel et al. [95; this issue] investigated the correlation between tsetse developmental stage (22- day old pupae, 29-day old pupae and 7-old adults) at the time of radiation exposure and impact on Sodalis density. The results indicate that irradiation of seven-days old G. m. morsitans adults significantly reduced Sodalis densities. Furthermore, the recovery of Sodalis densities was significantly higher in the adults that emerged from puparia that had been irradiated on day 22 post larviposition as compared to the flies that had been irradiated as adults [95]. Results also indicate that irradiation of puparia on day 22 post larviposition has no effect on the vectorial capacity of the emerged males to transmit trypanosomes. The recovery of Sodalis titers in sterile males opens the door to combine paratransgenesis with SIT for tsetse control. In addition, pupal irradiation is operationally advantageous in terms of handling and transportation compared to adult irradiation [96].

Field released sterile males must efficiently identify and mate with wild females. Therefore, one component of the CRP investigated the effects of various doses of ionizing radiation on tsetse cuticular hydrocarbon (CHCs; e.g. n-alkanes, alkenes and methyl-branched hydrocarbons) profiles. CHCs act as sex pheromones for species, sex, and mate recognition in Drosophila [97] and tsetse [98]. Engl et al. [99; this issue] investigated the impact of bacterial symbionts and irradiation on tsetse CHC profiles. They discovered that antibiotic-mediated knockdown of tsetse’s indigenous microbiota significantly reduced tsetse’s CHC profiles and correspondingly impacted mate choice. [99; this issue]. However, no significant differences in CHC profiles were observed between irradiated and non-irradiated G. m. morsitans flies [99]. These findings call for further research into the roles of microbiota (e.g. Wigglesworthia) in tsetse’s mating behavior (in terms of CHC synthesis), and how the effects of irradiation on the microbiota can be reversed in irradiated males before inductive releases during SIT applications.

Prospects of developing symbiont-based anti-trypanosome strategies
The development of trypanosome-refractory sterile males would make SIT much less controversial, particularly when applied in trypanosome-endemic locations [20]. The viviparous reproduction of tsetse is not directly amenable to germ-line transformation for the purpose of ectopically expressing trypanocidal transgenes in an effort to reduce the fly’s vector competence [100]. However, trypanosome-refractoriness can be indirectly conferred to tsetse via paratransgenesis, whereby genetically engineered symbionts express molecules that block trypanosome development and/or transmission [101] (Fig. 2). This approach works in triatome bugs [102] and mosquitoes [103, 104]. Sodalis is an ideal bacterium for expressing effector molecules in paratransgenic tsetse because it (i) resides in close proximity to trypanosomes; (ii) can be cultured and engineered in vitro; (iii) can be re-introduced into tsetse after transformations; (iv) is maternally transmitted to fly progenies, and (v) is rigorously restricted to the tsetse host niche [105]. Engineered Sodalis can express and release significant amounts of functional nanobodies that target trypanosome surface epitopes in different tsetse tissues [94, 106]. Moreover, improved strategies have been developed to: (i) identify and determine population dynamics of tsetse species in a particular area [107; this issue], (ii) establish stable chromosomal expression in Sodalis allowing strong and constitutive expression of anti-trypanosome compounds [108], and (iii) sustainably colonize tsetse and its subsequent generations with genetically modified Sodalis through microinjection into third-instar larvae [109; this issue]. Sodalis-mediated inhibition of parasite development in paratransgenic tsetse remains to be demonstrated.
Conclusions

A large body of information related to enhancing tsetse fly refractoriness to trypanosome infections was acquired over the course of this CRP. However, many challenges and questions remain, which include, but are not limited to 1) developing more efficient tools to correctly classify field captured tsetse flies, 2) further deciphering the functional association between tsetse’s microbiota (including environmentally acquired enteric bacteria, endosymbiotic microbes and pathogenic or symbiotic viruses and fungi) and the fly’s physiology and trypanosome vector competency, 3) optimizing SIT irradiation protocols so that the treatment has a minimal effect of tsetse/endosymbiont fitness, and 4) maximizing the efficiency of tsetse paratransgenesis. Theoretical and technical knowledge acquired from experiments performed using the model tsetse species, G. m. morsitans (and its associated microorganisms), serves as a foundation for similar studies in other, more epidemiologically relevant tsetse species.

This CRP served as a platform for scientists from African, European and North American countries to interact, exchange ideas and develop long-term, mutually beneficial collaborations. Additionally, the extensive collaborations established during the CRP will continue in a new five-year CRP, which will address various issues related to the improvement of colony management in tsetse mass rearing for SIT applications (http://www-naweb.iaea.org/nafa/ipc/crp/new-crps-ipc.html).

Finally, African members of this CRP can disseminate knowledge and expertise acquired to additional research communities in other tsetse-endemic regions of sub-Saharan Africa and to national authorities to promote the novel insights in tsetse and trypanosomosis control.

Abbreviations

16S rRNA: 16S ribosomal RNA; 5′-Nuc: 5′-nucleotidase-related saliva protein; ADA: Adenine deaminase; Ago: Argonaute; AMP: Antimicrobial peptide; ArgK: Arginine kinase; AW-IPM: Area-wide integrated pest management; BSF: Bloodstream form; CaMK: Ca2+/calmodulin-dependent protein kinase; CHCs: Cuticular hydrocarbons; Ci: Cytoplasmic incompatibility; CRP: Coordinated research project; Dcr: Dicer; DEG: Differentially expressed gene; DENV: Dengue virus; dsRNA: Double-stranded RNA; EPF: Entomopathogenic fungus; FAO: Food and Agricultural Organization of the United Nations; GpSGHV: Glossina pallidipes salivary gland hypertrophy virus; HGT: Horizontal gene transfer; IAEA: International Atomic Energy Agency; Imd: Immune deficiency; MdSGHV: Musca domestica salivary gland hypertrophy virus; miRNA: Micro RNA;
MLST: Multi locus sequence typing; MT parasites: Mammalian-infective metacyclic parasites; PGPR-LB: Peptidoglycan-recognition protein LB; piRNA: Piwi-interacting RNA; RCM: Research Coordination Meetings; RNAi: RNA interference; RNA-Seq: Ribonucleic acid (RNA) sequencing; ROS: Reactive oxygen species; SG: Salivary gland; siRNA: Short interfering RNA; SIT: Sterile insect technique; Spg3: 5′-nucleotidase-related 5′-protein-3; TaSG: Salivary antigen-S-protein; Tbc: Trypanosoma brucei brucei; Tbg: Trypanosoma brucei gambiense; Tbr: Trypanosoma brucei rhodesiense; Tc: Trypanosoma congoense; Tsal1/2: Tsetse salivary gland proteins 1 & 2; TSOF-1/2: Tsetse salivary gland growth factors 1 & 2; V-ATPase: Vacuolar-type H+ -ATPase

Acknowledgements
We thank Dr. Geoffrey M. Attardo from the University of California, Davis, for his kind effort in preparing Fig. 1. This work was funded by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria (Coordinate Research Project No. D42015). Melki I. K. is a recipient of a sandwich PhD grant from Wageningen University. All the colleagues who participated in the CRP and contributed to the review of the articles in this Special Issue are cordially acknowledged.

Funding
This work and the publication was funded by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA (CRP No.: D4.20.15) Vienna, Austria.

About this supplement
This article has been published as part of BMC Microbiology Volume 18 Supplement 1, 2018: Enhancing Vector Refractoriness to Trypanosome Infection. The full contents of the supplement are available online at https://bmcmicrobiol.biomedcentral.com/articles/supplements-volume-18-supplement-1.

Authors’ contributions
HK, IM, DS, DL, FK, AG and GD-U wrote the first draft of the manuscript. HK and AA coordinated the writing of the manuscript. JV, AI, SK, FN, FW, MI, and BH contributed to manuscript writing. All authors read and approved the final version of the manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature Remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya.
2Molecular Department, Vector and Vector Borne Diseases Institute, Tanzania Veterinary Laboratory Agency, Majani Mapana, Off Korgowe Road, Box, 1026, Tanzania, Uganda.
3Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria.
4Laboratory of Virology, Wageningen University and Research Wageningen 6708 PB, The Netherlands.
5Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510, USA.
6Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
7International Centre of Insect Physiology and Ecology, P.O. Box 20772, 00110, Nairobi, Kenya.
8INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France.
9Institute of Chemical, Environmental & Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
10Department of Medical Microbiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, 34752, Ataşehir, Istanbul, Turkey.
11Centre for Biomolecular Interactions Bremen, Faculty for Biology & Chemistry, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany.
12Laboratory of Parasitology and Ecology, Faculty of Sciences, Department of Animal Biology and Physiologu, Université of Yaoundé 1, Yaoundé, BP 812, Cameroon.
13Trypanosomiasis Research Centre, Kenya Agricultural & Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya.

Published: 23 November 2018

References
1. Mattioli RC, Feldmann U, Hendrickx G, Wint W, Jannin J, Slingenbergh J. Tsetse and trypanosomiasis intervention policies supporting sustainable animal-agricultural development. J Food Agric Environ. 2004;2:310–4.
2. Cecchi G, Mattioli RC, Slingenbergh J, De La Rocque S. Land cover and tsetse fly distributions in sub-Saharan Africa. Med Vet Entomol. 2008;22: 364–73.
3. Barrett MP, Vincent IM, Burchmore RJ, Kazibwe AJ, Matovu E. Drug resistance in human African trypanosomiasis. Future Microbiol. 2011;6; 1037–47.
4. Geerts S, Holmes PH, Eisler MC, Diall O. African bovine trypanosomiasis: the problem of drug resistance. Trends Parasitol. 2001;17:25–8.
5. Schofield CJ, Kabayo JP. Trypanosomiasis vector control in Africa and Latin America. Parasit Vectors. 2008;124.
6. Vreysen MJ. Prospects for area-wide integrated control of tsetse flies (Diptera: Glossinidae) and trypanosomiasis in sub-Saharan Africa. Rev Soc Entomológica Argent. 2006;65:1–21.
7. Vreysen MJ, Saleh K, Mramba F, Parker A, Feldmann U, Dyck VA, et al. Sterile insects to enhance agricultural development: the case of sustainable tsetse eradication on Unguja Island, Zanzibar, using an area-wide integrated pest management approach. PLoS Negl Trop Dis. 2014;8:e2857.
8. Vreysen MJB. Principles of area-wide integrated tsetse fly control using the sterile insect technique. Med Trop. 2001;61:397–411.
9. Vreysen MJB, Saleh K, Lancelot R, Boyer J. Factory tsetse flies must behave like wild flies: a prerequisite for the sterile insect technique. PLoS Negl Trop Dis. 2011;5:e907.
10. Molyneux DH, Hopkins DR, Zagaria N. Disease eradication, elimination and control: the need for accurate and consistent usage. Trends Parasitol. 2004; 20347–51.
11. Okhandamade MA, Feldmann U, Takken W, Tenabe SO, Hamann HJ, Onah I, et al. Eradication of Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae) from agropastoral land in Central Nigeria by means of the sterile insect technique. In: Oforfi ED, Van de Vloedt AMV, editors. Sterile insect technique for tsetse control and eradication. Vienna: International Atomic Energy Agency. 1990. p. 5–23.
12. Politzar H, Merot P, Brandt FE. Experimental aerial release of sterile males of Glossina palpalis gambians and of Glossina tachinoides in a biological control operation. Rev D’élevage Méd Vét Pays Trop. 1984;37:108–202.
13. Kebede A, Ashenafl H, Daya T. A review on sterile insect technique (SIT) and its potential towards tsetse eradication in Ethiopia. Adv Life Sci Technol. 2015;37:24–44.
14. Erserin M. Welcome to Ethiopia’s fly factory. Science. 2007;317:310.
15. Abd-Alla AMM, Kariithi HM, Mohamed AH, Lapiz E, Parker AG, Vreysen MJB. Managing hytrosavirus infections in Glossina palpalis palpalis and of Glossina tachinoides in a biological control operation. Rev D’élevage Méd Vét Pays Trop. 1984;37:108–202.
16. Abd-Alla AMM, Kariithi HM, Mohamed AH, Lapiz E, Parker AG, Vreysen MJB. Managing hytrosavirus infections in Glossina palpalis palpalis and of Glossina tachinoides in a biological control operation. Rev D’élevage Méd Vét Pays Trop. 1984;37:108–202.
17. Terblanche JS, Chown SL. Factory flies are not equal to wild flies. Science. 2007;317:1678.
18. Lauzon CR, Potter SE. Description of the irradiated and nonirradiated midgut of Ceratitis capitata Wiedemann (Diptera: Tephritidae) and Anastrepha ludens Loew (Diptera: Tephritidae) used for sterile insect technique. J Pest Sci. 2012;85:217–26.
19. Engel P, Moran NA. The gut microbiota of insects: diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.
20. Abbeele VDJ, Bourtiz K, Weiss B, Cordón-Rosales C, Miller W, Abd-Alla AMM, et al. Enhancing tsetse fly refractoriness to trypanosome infection: a new IAEA coordinated research project. J Inverter Pathol. 2013;112:514–7.
62. Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world - advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol. 2014;28:341–55.

63. Jaenike J, Unckless R, Cockburn S, Boelio L, Perlman S. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science. 2010;329:212–5.

64. Shokal U, Yadav S, Atti J, Accetta J, Kenney E, Banks K, et al. Effects of co-occurring Wolbachia and Spiroplasta endosymbionts on the Drosophila immune response against insect pathogenic and non-pathogenic bacteria. BMC Microbiol. 2016;16:16.

65. Ratka C, Gross R, Feldhaar H. Endosymbiont tolerance and control within insect hosts. Insects. 2012;3:533–72.

66. Telschow A, Flor M, Kobayashi Y, Hammerton P, Werren JH. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: mainland-island model. PLoS One. 2007;2:e701.

67. Brucker RM, Bordenstein SR. The hologenomic basis of speciation involves gut bacteria occurring heterologous tsetse fly host. Impact of Hytrosavirus genetic diversity and eco-regional spread in Glossina pallidipes. Front Microbiol. 2018;9.https://doi.org/10.3389/fmicb.2018.00701.

68. Brucker RM, Bordenstein SR. Post mating barriers to gene flow among species and subspecies of tsetse flies (Diptera: Glossinidae). Can J Zool. 1990;68:1727–34.

69. Gooding R. Genetics of sterility among Glossina morsitans sspp and G. swynnertoni hybrids. Zanzibar. United Republic of Tanzania: Backhuys Publishers; 1999. p. 99–109.

70. Abd-Alla AM, Marin C, Parker AG, MJB V, Vlak JM, et al. Expression and extracellular release of a functional anti-trypanosome nanobody in different tsetse fly tissues via a bacterial symbiont Sodalis glossinidius. Microb Cell Factories. 2014;13:156.

71. Demirbaş-Uzel G, Parker AG, Vreysen MJ, Abd-Alla AMM. Combining paratransgenesis with SIT: impact of ionizing radiation on the DNA copy number of Sodalis glossinidius in tsetse flies. BMC Microbiol. 2018; https://doi.org/10.1186/s12866-018-1283-8.

72. de Beer CJ, Moya B, Boikanyo SN, Matsilati D, Yamada H, Venter GJ, et al. Evaluation of radiation sensitivity and mating performance of Glossina brevipalpis males. PLoS Negl Trop Dis. 2017;11:e0005473.

73. Everaerts C, Farine JP, Cobb M, Ferveur J-F. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS One. 2012;7:e59067.

74. Carlson DA, Mramba F, Sutton BD, Bernier UR, Geden CJ. Sex pheromone of the tsetse species, Glossina austeni: isolation and identification of natural hydrocarbons, and bioassay of synthesized compounds. Med Vet Entomol. 2005;19:470–9.

75. Engl T, Michalkova V, Weiss BS, Demirbaş-Uzel G, Takac P, Miller WJ, et al. Effect of antibiotic treatment and gamma-irradiation on cuticular hydrocarbon profiles and mate choice in tsetse flies (Glossina m. morsitans). BMC Microbiol. 2018; https://doi.org/10.1186/s12866-018-1277-6.

76. Hajek AE, St. Leger RJ. Interactions between fungal pathogens and insect vectors of human disease: an approach using transgenic symbiotic bacteria from vector species. BMC Microbiol. 2018;https://doi.org/10.1186/s12866-018-1296-3.

77. McQuilken MP, Halmer P, Rhodes DJ. Application of microorganisms to seeds. In: Burges HD, editor. Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. 1st ed. Dordrecht: Kluwer Academic Publisher; 1998. p. 255–85.

78. Hajek AE, St. Leger RJ. Interactions between fungal pathogens and insect hosts. Annu Rev Entomol. 1994;39:293–322.

79. Demirbaş-Uzel G, Kariithi HM, Parker AG, Vreysen MJB, Mach RL, Bouyer J, et al. Expression and extracellular release of a functional anti-trypanosome nanobody in different tsetse fly tissues via a bacterial symbiont Sodalis glossinidius. Microb Cell Factories. 2014;13:156.

80. Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci. 2017;114:3274–8.

81. Medlock J, Atkins KE, Thomas DN, Aksoy S, Galvan AP. Evaluating paratransgenesis as a potential control strategy for African trypanosomiasis. PLoS Negl Trop Dis. 2013;7:e2374.

82. De Voogt L, Caljon G, De Ridder K, Van Den Abbeele J. Delivery of a functional anti-trypanosome nanobody in different tsetse fly tissues via a bacterial symbiont Sodalis glossinidius. Microb Cell Factories. 2014;13:156.

83. Meki IK, Ince AI, Boeren S, Murungi EK, Meki IK, Otieno EA, et al. Expression profile of G. pallidipes miRNA during infection by the Glossina pallidipes salivary gland hypertrophy virus. Preip. 2018.

84. Zhang G, Hussain M, O'Neill SL, Asgari S. Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus infection in Aedes aegypti. Proc Natl Acad Sci. 2013;110:10276–81.

85. Meki IK, Kariithi HM, Bourziti K, Schneider DI, Kelley K, Miller WJ, et al. Trans-generational transmission of the Glossina pallidipes hytopathogenicity virus depends on the presence of a functional symbiome. PLoS One. 2013;8:e61150.

86. Scholte EJ, Knols BG, Samson RA, Takken W. Entomopathogenic fungi for control of tsetse flies. J Invertebr Pathol. 2013;112:583–8.

87. Scholte EJ, Kariithi HM, Parker AG, Vreysen MJB, Ros VID, Vlak JM, et al. Comparative analysis of salivary gland proteomes of two mainland-island model. PLoS One. 2017;12:e0189256.
108. De Vooght L, Caljon G, Van Hees J, Van Den Abbeele J. Paternal transmission of a secondary symbiont during mating in the viviparous tsetse fly. Mol Biol Evol. 2015;32:1977–80.

109. De Vooght L, Van Keer S, Van Den Abbeele J. Towards improving tsetse fly paratransgenesis: stable colonization of Glossina morsitans monticola with genetically modified Sodalis. BMC Microbiol. 2018; https://doi.org/10.1186/s12866-018-1382-9.

110. Isaac C, Ciosi M, Hamilton A, Scullion KM, Dede P, Igbinosa JB, et al. Molecular identification of different trypanosome species and subspecies in tsetse flies of northern Nigeria. Parasit Vectors. 2016;9:301.

111. Abbeele JVD, Rotureau B. New insights in the interactions between African trypanosomes and tsetse flies. Front Cell Infect Microbiol. 2013;2:63.

112. International Glossina Genome Initiative, Attardo GM, Abila PP, Auma JE, Mireji PO, Hansen IA, et al. Human African trypanosomiasis research gets a boost: unraveling the tsetse fly genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science. 2014;344:380–6.

113. Adam Y, Bouyer J, Dayo G-K, Mahama CI, Vreysen MJB, Cecchi G, et al. Population structure of Glossina tachinoides populations in three river basins of the upper west region of Ghana and implications for tsetse control. Infect Genet Evol. 2014;28:89–95.

114. Aksoy S, Attardo G, Berriman M, Christoffels A, Lehane M, Masiga D, et al. Human African trypanosomiasis research gets a boost: unravelling the tsetse genome. PLoS Negl Trop Dis. 2014;8:e2624.

115. Aksoy S, Weiss BL, Attardo GM, Abila PP, Auma JE, Baumann AA, Benoit JB, et al. Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science. 2014;344:380–6.

116. Adam Y, Bouyer J, Dayo G-K, Mahama CI, Vreysen MJB, Cecchi G, et al. Genetic comparison of Glossina tachinoides populations in three river basins of the upper west region of Ghana and implications for tsetse control. Infect Genet Evol. 2014;28:89–95.

117. Alves-e-Silva TL, Savage AF, Aksoy S. Transcript abundance of putative lipid phosphate phosphatases during development of Trypanosoma brucei in the tsetse fly. Ann J Trop Med Hyg. 2016;94:180–3.

118. Awuoche EO, Weiss BL, Vigneron A, Mireji PO, Aksoy E, Nyambega B, et al. Molecular characterization of tsetse's proboscis and its response to Trypanosoma congolense infection. PLoS Negl Trop Dis. 2017;11:e0005657.

119. Benoit JB, Attardo GM, Baumann AA, Michalkova V, Aksoy S. Adenostrophic viviparity in tsetse flies: potential for population control and as an insect model for lactation. Annu Rev Entomol. 2015;60:351–80.

120. Benoit JB, Attardo GM, Michalkova V, Krause TB, Bohova J, Zhang Q, et al. A novel highly divergent protein family identified from a viviparous insect by RNA-seq analysis: a potential target for tsetse fly-specific abscisic acids. PLoS Genet. 2014;10:e1003874.

121. Benoit JB, Hansen IA, Attardo GM, Michalkova V, Mireji PO, Bargyl JL, et al. Aquaporins are critical for provision of water during laracation and intrauterine progeny hydration to maintain tsetse fly reproductive success. PLoS Negl Trop Dis. 2014;8:e2517.

122. Beschin A, Van Den Abbeele J, De Baetselier P, Van Hees J. De Baetselier P, Van Hees J, Lemesre J-L, Vincendeau P, et al. Escaping deleterious immune response in their hosts: lessons from trypanosomatids. Front Immunol. 2016;7:212.

123. Geiger A, Hamidou Soumana I, Tschudi C, Pernollet JF, Sabin C, et al. Differential expression of midgut proteins in Glossina fuscipes fuscipes challenged with Trypanosoma brucei gambiense: an insect-trypanosome-parasites. Front Cell Infect Microbiol. 2015;5:e63.

124. Hyseni C, Kato AB, Okedi LM, Masembe C, Ouma JO, Aksoy S, et al. The population structure of Glossina fuscipes fuscipes in the Lake Victoria basin in Uganda: implications for vector control. Parasit Vectors. 2012;5:222.

125. Kamidi CM, Saarman NP, Dion K, Mireji PO, Ouma C, Murilla GA, et al. Multiple evolutionary origins of Trypanosoma evansi in Kenya. PLoS Negl Trop Dis. 2017;11:e0005895.

126. Kariithi K, Murilla GA, Thande PC, Wamwiri FN, Auma JE, et al. Presence of extensive Wolbachia infections in tsetse flies of northern Nigeria. Parasit Vectors. 2016;9:301.

127. Kolev NG, Franklin JB, Vigneron A, Aksoy S, Tschudi C. Genetic diversity of Glossina fuscipes fuscipes along the shores of Lake Victoria in Tanzania and Kenya: implications for management. Parasit Vectors. 2017;10:268.

128. Manangwa O, Maweni Y, Maire I, Msangi A, Mramba F, Nkwengulila G. Distribution and population size of Glossina fuscipes fuscipes (tsetse flies) along the Lake Victoria, for trypanosomiasis management in Tanzania. Livest Res Rural Dev. 2015;27:31.

129. Miresco-vi, Caljon G, Van Den Abbeele J. Tsetse fly tolerance to T brucei infection; transcriptome analysis of trypanosome-associated changes in the tsetse fly salivary gland. BMC Genomics. 2016;17:971.

130. Okeyo WA, Saarman NP, Merrigal M, Dion K, Bakera R, Mireji PO, et al. Temporal genetic differentiation in Glossina pallidipes tsetse fly populations in Kenya. Parasit Vectors. 2017;10:471.

131. Opiro R, Saarman NP, Chichoco R, Opiyo EA, Dion K, Halyard A, et al. Evidence of temporal stability in allelic and mitochondrial haplotype diversity in populations of Glossina fuscipes fuscipes (Diptera: Glossinidae) in northern Uganda. Parasit Vectors. 2016;9:258.

132. Opio R, Saarman NP, Chichoco R, Opiyo EA, Dion K, Halyard A, et al. Genetic diversity and population structure of the tsetse fly Glossina fuscipes fuscipes (Diptera: Glossinidae) in northern Uganda: implications for vector control. PLoS Negl Trop Dis. 2017;11:e0005485.

133. PLoS Negl Trop Dis. 2017;11:e0005485.

134. Savage AF, Kolev NG, Franklin JB, Vigneron A, Aksoy S, Tschudi C. Transcriptome profiling of Trypanosoma brucei brucei development in the tsetse fly vector Glossina morsitans. PLoS One. 2016;11:e0168677.

135. Scolari F, Benoit JB, Michalkova V, Aksoy E, Takac P, Abd-Alla AMM, et al. The spermatheca in Glossina morsitans monticola: insights into male contributions to reproduction. Sci Rep. 2016;6:20334 Article number.

136. Tsagmo Ngoune JM, Njiokou F, Loriod B, Kame-Ngasse G, Fernandez-Nunez N, Rioualan C, et al. Temporal profiling of midguts prepared from Trypanosoma pallidipalps collected from two distinct Cameroon foci: coordinated signatures of the midguts' remodeling as T congolense-supportive niches. Front Immunol. 2017;8:876.

137. Waespy M, Gbem TT, Benschneider L, Jock A-P, Day CJ, Hartley-Tassell L, et al. Carbohydrate recognition specificity of trans-sialidase lectin domain from Trypanosoma congolense. PLoS Negl Trop Dis. 2015;9:e0004120.

138. Xiao Z, Silva TLA E, Cronin L, Savage AF, O'Neill M, Nirima B, et al. Immunogenicity and serological cross-reactivity of saliva proteins among different tsetse species. PLoS Negl Trop Dis. 2015;9:e0004038.

139. Waespy M, Gbem TT, Benschneider L, Jock A-P, Day CJ, Hartley-Tassell L, et al. Carbohydrate recognition specificity of trans-sialidase lectin domain from Trypanosoma congolense. PLoS Negl Trop Dis. 2015;9:e0004120.
