Sea-level records from the U.S. mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3

Citation
Pico, T. J. R. Creveling, and J. X. Mitrovica. 2017. “Sea-level records from the U.S. mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3.” Nature Communications 8 (1): 15612. doi:10.1038/ncomms15612. http://dx.doi.org/10.1038/ncomms15612.

Published Version
doi:10.1038/ncomms15612

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33490941

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Sea-level records from the U.S. mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3

T. Pico1, J.R. Creveling2 & J.X. Mitrovica1

The U.S. mid-Atlantic sea-level record is sensitive to the history of the Laurentide Ice Sheet as the coastline lies along the ice sheet’s peripheral bulge. However, paleo sea-level markers on the present-day shoreline of Virginia and North Carolina dated to Marine Isotope Stage (MIS) 3, from 50 to 35 ka, are surprisingly high for this glacial interval, and remain unexplained by previous models of ice age adjustment or other local (for example, tectonic) effects. Here, we reconcile this sea-level record using a revised model of glacial isostatic adjustment characterized by a peak global mean sea level during MIS 3 of approximately − 40 m, and far less ice volume within the eastern sector of the Laurentide Ice Sheet than traditional reconstructions for this interval. We conclude that the Laurentide Ice Sheet experienced a phase of very rapid growth in the 15 kyr leading into the Last Glacial Maximum, thus highlighting the potential of mid-field sea-level records to constrain areal extent of ice cover during glacial intervals with sparse geological observables.

1Harvard University, Department of Earth and Planetary Sciences, Cambridge, Massachusetts 02138, USA. 2 Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, Corvallis, Oregon 97331, USA. Correspondence and requests for materials should be addressed to T.P. (email: tpico@g.harvard.edu).
R
c
econstructing the pace of ice growth towards the Last Glacial Maximum (LGM, 26 ka) is critical to our understanding of
ice age climate and ice sheet stability. Nevertheless, global ice volume, or equivalent global mean sea level (GMSL), and the
 corresponding geographical distribution of ice remain uncertain through Marine Isotopic Stage 3 (MIS 3; 60–26 ka) leading into the
LGM. Oxygen isotope records from marine sediment cores provide a proxy for global ice volume after correcting for
temperature-dependent fractionation; however uncertainties in this correction and other complications in mapping isotope
values to ice volumes have yielded estimates of peak MIS 3 GMSL that range from −30 to −60 m relative to present day.
Geological records of sea level during MIS 3 are sparse because ancient markers in the far field of former ice sheets are presently
submerged, while those in the near field have been erased by the subsequent advance and retreat of the major continental ice
sheets. Moreover, glacial isostatic adjustment (GIA) and tectonic uplift contaminate the present-day elevation of available sea-level
records. Studies that applied GIA modelling to fit oxygen isotope records and geological sea-level markers have published discordant
inferences of peak MIS 3 GMSL, varying from 85 m (ref. 8) to −55 m (ref. 9), and most recently −37.5 ± 7 m (ref. 10).

The geological markers of Pleistocene sea-level oscillations extending from Virginia to North Carolina in the Albemarle Embayment (Fig. 1), on the Laurentide Ice Sheet’s (LIS) peripheral bulge, require a re-evaluation of ice volume and extent during
MIS 3. This record indicates that MIS 3 relative sea level (RSL) reached present-day elevations from −50 to 35 ka in this region (Fig. 1; Supplementary Table 1), but GIA calculations predict that these markers should presently be found as much as −70 m below sea level. Tectonic uplift of the markers is insufficient to explain their present-day elevation and sediment compaction has led to only minor subsidence in this region.

Here, we present a new set of GIA calculations that explore the sensitivity of the predictions to peak GMSL and LIS geometry
during MIS 3. We conclude that a revised GIA model can reconcile the MIS 3 sea-level record at the Albemarle Embayment under two conditions: (1) peak GMSL reached near −40 m and (2) the eastern sector of LIS was significantly reduced during MIS 3 compared with previous reconstructions of ice extent.

Results

The U.S. Mid-Atlantic sea-level record. The Albemarle Embayment geological record includes interfluvial, estuarine, intertidal and shallow marine lithofacies arranged in depositional sequences that record repeated sea-level highstands dated primarily by optically stimulated luminescence to MIS 5e, 5c, 5a and 3 (ref. 11) (Fig. 1; Supplementary Table 1; Supplementary Note 1). We adopt the minimum elevation of terrestrial facies and the maximum elevation of marine facies as upper and lower bounds, respectively, of MIS 5a (~80 ka) and mid-MIS 3 (50–35 ka) sea level. For the MIS 5a data (Fig. 1; Supplementary Table 1), we bound a cluster of sea-level data from 2.5 to 7 m in agreement with previous assessments of sea-level records in the region. We assume that rare terrestrial markers found at elevations below this range do not represent a constraint on the MIS 5a highstand, but rather a lower sea level reached during late MIS 5a or MIS 4. Furthermore, calculations described below (and detailed in Supplementary Note 3) demonstrate that RSL predictions for MIS 3 are relatively insensitive to the height of sea level during MIS 5a.

For the MIS 3 interval spanning 50–35 ka, three marine indicators constrain RSL to be above −0.9, −3 and −2 m (ref. 11). We thus adopt the elevation of the highest of these

Figure 1 | Present elevation of sea-level indicators from the Last Interglacial to the Last Glacial Maximum for the Albemarle Embayment. Field localities are shown by yellow dots on the inset map. Upwards pointing triangles represent marine indicators (lower bound), downwards-oriented triangles represent terrestrial indicators (upper bound), and circles designate tidal facies. Error bars span 2-σ age uncertainties on individual sea-level data. Marine Isotope Stages 5e, 5c, 5a and 3 are labelled at 120, 100, 80 and 60–26 ka, respectively. The shaded region covers the time interval examined within the present analysis and the orange rectangles mark the bounds on MIS 5a and MIS 3 sea level based on the plotted data (MIS 5a: 2.5–7.5 m; MIS 3: −1 to 1 m). The white star on the inset map marks the location of RSL predictions presented herein.
Many previous inferences of GMSL during the last glacial phase, particularly MIS 3, reconstruct higher peak sea level (smaller global ice volume) than adopted in the ICE-5G history. To proceed in our analysis, we revise the ICE-5G ice history on the basis of results from two recent GIA analyses. First, following the Pico et al. analysis of sediment core records from the Bohai Sea, peak GMSL during MIS 3 is placed at -37.5 m at 44 ka. Second, we adopt GMSL values of -15 and -10 m for MIS 5a and 5c, respectively; these values are within bounds (5a: -18 to 0 m, 5c: -20 to 1 m) derived by Creveling et al. on the basis of globally distributed sea-level markers from both periods. The GMSL curve for the revised ice model, ICE-PC, is shown in Fig. 2a (blue line). The RSL prediction based on this model (Fig. 2b, solid blue) maintains the assumption that the pre-LGM global ice geometry is equivalent to the deglacial phase whenever GMSL values are equal. This prediction is consistent with observational constraints for the MIS 5a highstand, but misfits MIS 3 data. Notably, this Earth–ice model pairing predicts a peak RSL of -12 m at 44 ka, well below the observational bounds of -4 to 4 m.

We performed a suite of simulations to explore the sensitivity of our predictions to the adopted ice history. Specifically, we generated 100 synthetic ice histories in which we varied GMSL randomly across the glacial phase but confined GMSL to -37.5 ± 7 m at 44 ka (ref. 10), and to -15 m and -10 m, for MIS 5a and MIS 5c, respectively (Fig. 3a, blue lines; see Methods for detailed ice history construction). Using these ice histories, we
Revising the geometry of the Laurentide Ice Sheet during MIS 3.

We next explored the impact of changing the geometry of the LIS on the local RSL predictions at the Albemarle Embayment. While few field data constrain the evolution of the LIS before the LGM2,4,5, a recent field-based study by Dalton et al.34 suggests that large portions of eastern Laurentia were ice-free during MIS 3 (Fig. 4). This conclusion implies limited or no ice growth from MIS 5a to MIS 3 within large areas of the sector of the LIS closest to the Albemarle Embayment. To investigate the effect of this revised ice geometry on RSL predictions, we constructed an ice model, ICE\textsubscript{PC2}, with a GMSL history identical to that shown by the blue line in Fig. 2a, but that was distinguished from the ICE\textsubscript{PC} history in the following ways: (1) the eastern sector of the LIS is ice-free from 80 to 44 ka, consistent with the conclusions of Dalton et al.34, and (2) the ice removed in this exercise, equivalent to 6.8 m of GMSL, is distributed uniformly over the western sector of the LIS, and the Cordilleran and Fennoscandian Ice Sheets. The latter resulted in an increase in ice thickness of ~170 m in each region (Fig. 4; See Methods for details on ice model construction). The post-LGM ice geometry remains identical to the ICE-5G and ICE\textsubscript{PC} models, and thus we no longer assume that global ice geometry prior and subsequent to the LGM were identical whenever the GMSL values match. The simulation, based on this revised ICE\textsubscript{PC2} ice model and the viscoelastic Earth model discussed above, predicts a RSL of ~3 m at 44 ka, consistent with the sea-level record at the Albemarle Embayment (Fig. 2b).

Discussion

What physics underlies this improved fit to the MIS 3 sea-level record in the mid-Atlantic coastal region? Crustal deformation and the direct gravitational effect of the surface load dominate sea-level predictions in this location and yield a RSL history that departs significantly from GMSL. To assess the relative contribution of each process, we decomposed the RSL prediction based on ice models ICE\textsubscript{PC} and ICE\textsubscript{PC2} into these two components (Supplementary Fig. 1; Supplementary Note 2). Ice model ICE\textsubscript{PC2} is defined by a reduced eastern sector of the LIS, and therefore a smaller surface load compared with the ICE\textsubscript{PC} model. This smaller ice load results in a reduced direct gravitational effect (expressed as a sea-level fall) and a reduced crustal deformation (a smaller upward deflection of the Earth’s surface, expressed as sea-level rise), compared to the ICE\textsubscript{PC} prediction. The latter effect dominates, resulting in a net sea-level rise compared to the ICE\textsubscript{PC} ice distribution and the fit evident in Fig. 2b (dashed blue line). We explore the sensitivity of the RSL decomposition to variations in Earth structure in Supple-
ICEPC2 simulation. For example, we once again randomly varied peak GMSL during MIS 5a and MIS 5c in the range of −16 to 0 m and −20 to 0 m, respectively, within bounds derived by Creveling et al., to test the sensitivity of the RSL predictions to this level of uncertainty. This suite of simulations perturbed the peak RSL prediction during MIS 3 by less than 0.7 m, and thus our conclusions in regard to ice cover during MIS 3 are insensitive to the GMSL values adopted for MIS 5a and 5c.

We also performed tests in which the geometry of ice removed from the eastern sector of the LIS was varied by shifting the upper latitudinal limit of the ice-free region, and by considering scenarios in which various regions within the eastern sector of the LIS remained glaciated (see Supplementary Fig. 3). We conclude that increasing the ice in the eastern sector by 20% of the ice volume removed to construct the ice history ICEPC2 (or 1.5 m GMSL) from 80 to 44 ka, and shifting the distribution of this ice within the sector, can lower the RSL predictions by up to 3 m (Supplementary Table 2). Finally, to assess the sensitivity of the predictions to the adopted Earth model, we ran simulations in which the lower mantle viscosity was both increased and decreased by 5 × 10^21 Pa s. The predicted RSL at 44 ka was perturbed by a maximum of 3 m at the Albemarle Embayment and (2) the eastern sector of the LIS largely ice-free over an extended period from MIS 5a through mid-MIS 3, consistent with recent field-based evidence.

Methods

Ice history construction. We created 100 ice models that are distinguished from Version 1.2 of ICE-5G (Peltier & Fairbanks, 2006) by their GMSL history before the Last Glacial Maximum. These ice histories randomly sample GMSL values under the following constraints: at LIG, 122 ka, GMSL = 0; at 110 ka, MIS 5d, GMSL = −40 m; at MIS 5c, GMSL = −10 m; at MIS 5a, GMSL = −15 m; during MIS 3 before 44 ka, GMSL varies in the range −40 to −80 m; at 44 ka, the GMSL value is pinned within the range −37.5 ± 7 m (Fig. 3a). We also impose the constraint that sea level must fall between 44 ka and LGM. We produce two sets of 100 ice models from these GMSL curves. The first set is constructed by assuming that ice geometry in the pre-LGM period is identical to the time in the post-LGM period with the same GMSL value. The second set assumes that a large portion of the eastern sector of the LIS is ice-free from 80 to 44 ka (see Fig. 4). In the latter case, the ice volume removed from the eastern sector of the LIS (equivalent GMSL of 6.8 m) is distributed over the LGM extent of the western sector of the LIS, the Cordilleran Ice Sheet and over Fennoscandia, resulting in an increase in ice thickness of 170 m in these regions.

We note that while RSL predictions at the Albemarle Embayment are sensitive to ice geometry of the eastern LIS, these predictions will be relatively insensitive to the geographic distribution of ice cover in regions in the far field of the mid-Atlantic U.S. East Coast. As an example, we performed a simple test in which the ice removed from the eastern sector of LIS to construct the ICEPC2 model was distributed uniformly over Fennoscandia and Antarctica (rather than over the western sector of the LIS) and found that the predicted sea-level highstand at our test site at 44 ka was only perturbed by 0.6 m.

Data availability. The data sets generated during and/or analysed during the current study are available from the corresponding author on request.

References.

1. Siddall, M., Rohling, E. J., Thompson, W. G. & Waelbroeck, C. Marine Isotope Stage 3 sea level fluctuations: data synthesis and new outlook. *Hemisphere* 46, 1–29 (2008).
2. Pemberton, J. et al. North American Ice Sheet build-up during the last glacial cycle. *Quat. Sci. Rev.* 29, 2036–2051 (2010).
3. Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. *Quat. Sci. Rev.* 21, 295–305 (2002).
4. Dyke, A. S. et al. The Laurentide and Innuittau Ice Sheet during the Last Glacial Maximum. *Quat. Sci. Reviews* 21, 9–31 (2002).
5. Clark, P. U. et al. Initiation and development of the Laurentide and Cordilleran Ice Sheets following the Last Interglaciation. *Quat. Sci. Rev.* 12, 79–114 (1993).
6. Chappell, J., Ota, Y. & Berryman, K. Late quaternary coseismic uplift history of Huon Peninsula, Papua New Guinea. *Quat. Sci. Rev.* 15, 7–22 (1996).
7. Mitrovica, J. X. & Milne, G. A. On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quat. Sci. Rev. 21, 2179–2190 (2002).
8. Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006).
9. Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).
10. Pico, T., Mitrovica, J. X., Ferrier, K. L. & Braun, J. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quat. Sci. Rev. 152, 72–79 (2016).
11. Parham, P. R. et al. Quaternary coastal lithofacies, sequence development and stratigraphy in a passive margin setting, North Carolina and Virginia, USA. Sedimentology 60, 503–547 (2013).
12. Parham, P. R., Riggs, S. R., Culver, S. J., Mallinson, D. J. & Wehmiller, J. F. Quaternary depositional patterns and sea-level fluctuations, northeastern North Carolina. Quat. Res. 67, 83–99 (2007).
13. Mallinson, D., Burdette, K., Mahan, S. & Brook, G. Optically stimulated luminescence age controls on late Pleistocene and Holocene coastal lithosomes, North Carolina, USA. Quat. Res. 69, 97–109 (2008).
14. Godderis, Y. Micropaleontological record of Quaternary paleoenvironments in the Central Albianmar Embayment, North Carolina, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 305, 227–249 (2011).
15. Cronin, T. M., Szabo, B. J., Ager, T. A., Hazel, J. E. & Owens, J. P. Quaternary climates and sea levels of the U.S. Atlantic coastal plain. Science 211, 233–240 (1981).
16. Maxon, R., Szabo, B. J. & Owens, J. P. Geological Survey Professional Paper 1067-E (Surface and Shallow Subsurface Geologic Studies in the Emerged Coastal Plain of the Middle Atlantic States, United States Government Printing Office, Washington, 1982).
17. Van De Plassche, O. et al. Estimating tectonic uplift of the Cape Fear Arch (southeastern United States) using reconstructions of Holocene relative sea level. J. Quat. Sci. 29, 749–759 (2014).
18. Doar, W. R. & Kendall, C. G. S. C. An analysis and comparison of observed Pleistocene South Carolina (USA) shoreline elevations with predicted elevations derived from Marine Oxygen Isotope Stages. Quat. Res. 82, 164–174 (2014).
19. Brain, M. J. et al. Quantifying the contribution of sediment compaction to late Holocene salt-marsh sea-level reconstructions, North Carolina, USA. Quat. Res. 83, 41–51 (2015).
20. Wehmiller, J. F., Edwards, R. L. & Martin-McNaughton, J. Uranium-series coral ages from the US Atlantic Coastal Plain-the ‘80 ka problem’ revisited. Quaternary International 120, 3–14 (2004).
21. Hill, D. F., Griffiths, S. D., Pelletier, W. R., Horton, B. P. & Törnqvist, T. E. Higher-order numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. J. Geophys. Res. Ocean. 116, 1–16 (2011).
22. Farrell, W. E. & Clark, J. A. On Postglacial Sea Level. Geophys. J. R. Astron. Soc. 46, 647–667 (1976).
23. Kendall, R. A., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level – II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005).
24. Milne, G. A. & Mitrovica, J. X. Postglacial sea-level change on a rotating Earth: New Jersey Coastal Plain to continental shelf and slope. Sediment. Geol. 134, 197–207 (2000).
25. Dejong, B. D. et al. Pleistocene relative sea levels in the Chesapeake Bay region and their implications for the next century. GSA Today 25, 4–10 (2015).
26. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–17 (2005).
27. Dannenmann, S., Lindsey, B. K., Oppo, D. W., Rosenthal, Y. & Beaufort, L. East Asian monsoon forcing of suborbital variability in the Sulu Sea during Marine Isotope Stage 3: link to Northern Hemisphere climate. Geochim. Geophys. Geosyst. 4, 1001 (2003).
28. Culver, S. J. et al. Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth Planet. Sci. Lett. 206, 253–271 (2003).
29. Shackleton, N. J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 1897–1902 (2000).
30. Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000-year centennial-scale marine record of southern hemisphere climatic oscillation. Science 16, 10–10–8 (2003).
31. Hughes, P. & Wunsch, C. A depth-derived Pleistocene age model: Uncertainty estimates, sedimentation variability, and nonlinear climate change. Paleoceanography 19, PA1028 (2004).
32. Simms, A. R., DeWitt, R., Rodriguez, A. B., Lambeck, K. & Anderson, J. B. Revisiting marine isotope stage 3 and 5a (MIS3-5a) sea levels within the southwestern Gulf of Mexico. Glob. Planet. Change 66, 100–111 (2008).
33. Curry, B. B. Absence of glaciation in illinois during Marine Isotope Stages 3 through 5 Quat. Res. 46, 19–26 (1996).
34. Colgan, P. M., Vanderbilt, C. A. & Braunschneider, K. N. Athens Subepisode (Wisconsin Episode) non-glacial and older glacial sediments in the subsurface of southwestern Michigan, USA. Quat. Res. 84, 382–397 (2015).