Introduction

The Centers for Medicare & Medicaid Services recently announced a voluntary plan to cap out-of-pocket costs associated with insulin products in participating enhanced Part D plans. However, this model will not apply to other high-cost glucose-lowering medications such as sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists. These classes are increasingly used as second-line agents for patients with type 2 diabetes despite only a modest effect on glycemic control (approximately 0.8% to 1%) because of mounting evidence of cardiovascular benefits. We sought to examine contemporary coverage and out-of-pocket costs for beneficiaries filling either an SGLT2 inhibitor or GLP-1 receptor agonist prescription in Medicare Part D.

Methods

This cross-sectional study used the 2019 quarter 1 Prescription Drug Plan Formulary, Pharmacy Network, and Pricing Information Files to assess drug coverage, formulary restrictions, median retail prices, and annual out-of-pocket costs associated with commonly used SGLT2 inhibitors and GLP-1 receptor agonists (Table) across Part D plans (both stand-alone and Medicare Advantage). Because each drug is available in several different formulations and package sizes, we report estimates for only the most commonly dispensed National Drug Code according to Medicaid State Drug Utilization Data for 2019 and that represented the drug label’s recommended maintenance dose. We excluded combination products because they are infrequently used. We calculated the percentage of Part D plans that covered each drug without formulary restrictions, defined as having no prior authorization and no step therapy requirements. We also calculated the median retail price

Table. Coverage, Formulary Restrictions, and Retail Prices for SGLT2 Inhibitors and GLP-1 Receptor Agonists Across Medicare Part D Prescription Drug Plans in 2019 for 3992 Plans

Drug	Covered, % (95% CI)*	Covered without prior authorization and without step therapy, % (95% CI)	Covered at tiers 1-3, % (95% CI)	Retail price for 30-d supply, median (IQR), $c
GLP-1 receptor agonists				
Liraglutide	92.8 (90.8-94.8)	84.3 (81.9-86.8)	89.6 (87.2-92)	942 (931-969)
Semaglutide (injection)	70.8 (67.3-74.3)	65.9 (62.3-69.6)	67.2 (63.6-70.9)	816 (800-839)
Exenatide ER	94.1 (92.8-95.4)	85.2 (83.2-87.3)	70.5 (67.1-73.9)	732 (707-741)
Exenatide	73.9 (70.4-77.4)	57.5 (53.6-61.4)	9.3 (7.8-10.9)	745 (737-774)
Dulaglutide	93.7 (92.4-95.1)	87.4 (85.5-89.3)	85.7 (83.5-87.9)	765 (738-774)
Lixisenatide	3.5 (2-4.9)	3.2 (1.8-4.6)	0 (0-0)	657 (647-658)
SGLT2 inhibitors				
Empagliflozin	98.5 (97.9-99.1)	95.4 (94.3-96.4)	98.3 (97.7-98.9)	504 (498-519)
Canagliflozin	57.4 (53.2-61.7)	53.2 (49.1-57.4)	50.9 (46.8-55)	520 (507-527)
Dapagliflozin	65.8 (62.2-69.3)	63.7 (60.1-67.3)	41.5 (37.3-45.8)	503 (498-518)
Ertugliflozin	6.3 (4.7-8)	5.5 (3.9-7.1)	0.7 (0.4-1)	300 (285-303)

Abbreviations: GLP-1, glucagon-like peptide 1; IQR, interquartile range; SGLT2, sodium-glucose cotransporter 2.

* All percentages weighted by average plan enrollment during quarter 1 of 2019.

b Tier 1 = preferred generic drug, tier 2 = generic, tier 3 = preferred brand name. Higher tiers are typically associated with higher out-of-pocket costs for beneficiaries.

c Median retail drug costs for 30-day supply of most commonly dispensed dose at in-area retail pharmacies, obtained from the pricing table of the Part D formulary files.
and interquartile range (IQR) for a 30-day supply for each drug. We reported the percentage of plans that covered each drug at tiers 1 to 3 (ie, as a preferred brand-name drug or better). All estimates were weighted by average plan enrollment during quarter 1 of 2019. Plans with enrollment less than 10 were excluded.

We estimated the median annual out-of-pocket costs for Part D beneficiaries not eligible for low-income subsidies for each drug by using 2 approaches: using the 2019 standard Part D benefit design (ie, 25% of the brand-name drug costs during the initial coverage and coverage gap phases and 5% during catastrophic coverage after a deductible of $415), and using plan-specific benefit information from the formulary files to calculate plan estimated out-of-pocket costs (ie, deductible and co-pay/coinsurance were drawn from observed formulary data). All analyses were performed with SAS version 9.4 and R version 3.6.1. This study follows the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline for cross-sectional studies and was determined to be exempt by the University of Pittsburgh institutional review board.

Results

Coverage and retail prices for SGLT2 inhibitors and GLP-1 receptor agonists were variable for 3992 Part D plans during quarter 1 2019 (Table). Excluding ertugliflozin and lixisenatide (which were covered by only 6% and 3% of plans, respectively), coverage without prior authorization and without step therapy requirements ranged from 53.2% (95% CI, 49.1%-57.4%) for canagliflozin to 95.4%.
(95% CI, 94.3%-96.4%) for empagliflozin. Median retail prices for a 30-day supply ranged from $300 (IQR, $285-$303) for ertugliflozin to $942 (IQR, $931-$969) for liraglutide.

Median estimated annual out-of-pocket costs ranged from $1211 (IQR, $1167-$1221) for ertugliflozin to $2447 (IQR, $2441-$2464) for liraglutide with the standard Part D benefit design. In comparison, median out-of-pocket costs with an algorithm based on plan-specific benefits data were lower, ranging from $1097 (IQR, $932-$1271) for empagliflozin to $2080 (IQR, $1771-$2648) for exenatide (Figure).

Discussion

Coverage for SGLT2 inhibitors and GLP-1 receptor agonists was generally high in 2019 Part D plans, although variable across specific drugs. However, Medicare beneficiaries not eligible for low-income subsidies or Medicaid potentially face very high out-of-pocket costs for SGLT2 inhibitors and GLP-1 receptor agonists. With the exception of less commonly prescribed drugs such as lixisenatide and ertugliflozin, the average beneficiary covered by a Part D plan could spend at least $1000 annually for 1 SGLT2 inhibitor and greater than $1500 for 1 GLP-1 receptor agonist. Although these products are used less frequently than insulin, these annual out-of-pocket costs are on par with—and in some cases exceed—those associated with insulin, and may be unaffordable for the hundreds of thousands of older adults with diabetes and elevated cardiovascular risk who may receive clinical benefit from one of these newer agents.

Our analysis has 2 main limitations. First, although we weighted our analyses by plan enrollment, we could not account for diabetes-specific enrollment. Second, out-of-pocket cost calculations assumed that beneficiaries only use 1 drug at a time, when in fact older adults using SGLT2 inhibitors and GLP-1 receptor agonists commonly fill other prescriptions, including metformin and insulin. Therefore, our results may overestimate out-of-pocket costs for these drugs among patients who would have reached catastrophic coverage because of simultaneous use of multiple higher-cost drugs. Some beneficiaries may also be insulated from high out-of-pocket costs through patient assistance programs. Although median retail prices do not include proprietary rebates, they do influence the amounts patients pay as coinsurance.
Administrative, technical, or material support: Luo, Rothenberger, Hernandez.
Supervision: Luo, Rothenberger, Gellad.

Conflict of Interest Disclosures: Dr Luo reports receiving personal fees and nonfinancial support from Health Action International and Alosa Health outside the submitted work. Dr Hernandez reports receiving personal fees from Bristol-Myers Squibb and Pfizer outside the submitted work. No other disclosures were reported.

Funding/Support: Research reported in this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health (NIH) under award KL2TR001856.

Role of the Funder/Sponsor: The NIH had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

REFERENCES
1. Thomas K. Insulin costs may be capped in a Medicare program. New York Times. March 11, 2020.
2. DeJong C, Kazi DS, Dudley RA, Chen R, Tseng C-W. Assessment of national coverage and out-of-pocket costs for sacubitril/valsartan under Medicare Part D. JAMA Cardiol. 2019;4(8):828-830. doi:10.1001/jamacardio.2019.2223
3. Dusetzina SB, Huskamp HA, Keating NL. Specialty drug pricing and out-of-pocket spending on orally administered anticancer drugs in Medicare Part D, 2010 to 2019. JAMA. 2019;321(20):2025-2027. doi:10.1001/jama.2019.4492
4. Hartung DM, Johnston K, Geddes J, Leichtling G, Priest KC, Korthuis PT. Buprenorphine coverage in the Medicare Part D program for 2007 to 2018. JAMA. 2019;321(6):607-609. doi:10.1001/jama.2018.20391
5. Kazi DS, Lu CY, Lin GA, et al. Nationwide coverage and cost-sharing for PCSK9 inhibitors among Medicare Part D plans. JAMA Cardiol. 2017;2(10):1164-1166. doi:10.1001/jamacardio.2017.3051
6. Tseng C-W, Masuda C, Chen R, Hartung DM. Impact of higher insulin prices on out-of-pocket costs in Medicare Part D. Diabetes Care. 2020;43(4):e50-e51. doi:10.2337/dc19-1294