ORE REVISITED: AN ALGORITHMIC INVESTIGATION OF THE
SIMPLE COMMUTATOR PROMISE PROBLEM

by
JAMES L. ULRICH

A dissertation submitted to the Graduate Faculty in Mathematics in partial
fulfillment of the requirements for the degree of Doctor of Philosophy, The City
University of New York
2006
This manuscript has been read and accepted for the Graduate Faculty in Mathematics in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy.

Professor Michael Anshel
Date Chair of Examining Committee

Professor Józef Dodziuk
Date Executive Officer

Professor Roman Kossak

Professor Cormac O’Sullivan

Professor Burton Randol

Professor Vladimir Shpilrain

Supervision Committee

THE CITY UNIVERSITY OF NEW YORK
ORE REVISITED: AN ALGORITHMIC INVESTIGATION OF THE
SIMPLE COMMUTATOR PROMISE PROBLEM
by
James Ulrich
Advisor: Professor Michael Anshel.

Motivated by a desire to test the security of the public key exchange protocol of I. Anshel, M. Anshel, and D. Goldfeld, (“An Algebraic Method for Public-Key Cryptography”, Mathematical Research Letters, vol. 6, pp. 1-5, 1999), we study algorithmic approaches to the simple commutator decision and promise problems (SCDP/SCPP) for the braid groups B_n. We take as our point of departure a seminal paper of O. Ore, (“Some Remarks on Commutators”, Proceedings of the American Mathematical Society, Vol. 2, No. 2, pp. 307-314, 1951), which studies the SCPP for the symmetric groups.

Our results build on the work of H. Cejtin and I. Rivin, (“A Property of Alternating Groups”, arXiv:math.GR/0303036). We extract, from their proof that any element of the alternating subgroup of S_n can be written as a product of two n-cycles, an explicit algorithm for solving the SCPP for S_n. We define a model of computation with respect to which the algorithm executes in time $O(n^2)$.

We then extend the algorithm to a subset of permutation braids of the braid groups B_n, to show that any element of the commutator subgroup $[B_n, B_n]$ may be efficiently written as the product of a pure braid and a simple commutator of permutation braids. We use this result to define a probabilistic approach to the SCDP/SCPP, posing for future research the question of whether such an algorithm may be made efficient with respect to a measure of complexity such as that defined in a work of I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain (“Average-Case Complexity and Decision Problems in Group Theory”, Advances in Math. vol. 190, pp. 343-359, 2005).
I wish to thank my advisor, Professor Michael Anshel, for his steady guidance over the course of my graduate career. It is only slightly less a tautology than the statement $1 = 1$ to say that without him, this work would not have been possible. I also wish to thank the other members of my defense committee, Professors Cormac O'Sullivan, Burton Randol, and Vladimir Shpilrain, for their time and helpful advice. Thanks are also due Professors Joan Birman, Edgar Feldman, Minhyong Kim, Roman Kossak, Henry Pinkham, Dennis Sullivan, Lucien Szpiro, and Alphonse Vasquez for their generous assistance at various key points of my studies. Thanks too are due my colleagues Tara Brendle, Arjune Budhram, Hessam Hamidi-Tehrani, and Brendan Owens for their support, educational and otherwise, for lo these many years. Of course, I must also thank Jocelyn, my love and partner, for her general willingness to put up with me, as well as my mother and father, Mary Louise and David, for scraping together between them just enough math DNA to give me a fighting chance.
Contents

List of Figures vii
1. Introduction: Ore’s commutator problem. 1
2. Classical Turing machines and computational complexity 3
 2.1. Classical Turing machines 3
 2.2. Concerning Computational Complexity 5
3. The simple commutator decision problem for S_n. 7
 3.1. Preliminaries concerning S_n 7
 3.2. The Cejtín-Rivin algorithm for the SCPP for S_n 8
 3.3. Implementation of Cejtín-Rivin in pseudo-code 9
 3.4. An aside: complexity of the preceding constructs 11
 3.5. Algorithm: Expression of an element of A_n as a simple commutator of elements of S_n 13
 3.6. Example of application of Cejtín-Rivin algorithm 22
 3.7. Complexity of the Cejtín-Rivin algorithm 22
 3.8. Word reduction in S_n 25
4. The Braid Groups B_n 27
 4.1. The braid groups B_n: algebraic, geometric, and topological definitions 27
 4.2. A homomorphism from B_n to S_n 27
 4.3. Right greedy normal form 28
5. The SCPP for B_n: Extension of Cejtín-Rivin 32
 5.1. The simple commutator promise problem for B_n 32
 5.2. An extension of the Cejtín-Rivin algorithm to the SCPP for permutation braids 32
 5.3. A probabilistic algorithm for the SCPP for B_n 35
6. Summary and questions for further research 36
7. Figures 37
References 39
LIST OF FIGURES
1. Introduction: Ore’s commutator problem.

In the August 2004 issue of the Notices of the American Mathematical Society [4], Michael Aschbacher reported on the state of the Gorenstein, Lyons, and Solomon program, begun in the 1980s, to establish a formal, cohesively written proof of the classification theorem for simple finite groups. The theorem states that all finite simple groups fall into one of the following classes: groups of prime order, alternating groups, groups of Lie type (that is, having a representation involving automorphisms of a vector space over a finite field), or one of 26 “sporadic” groups (that is, exceptions to the preceding). The classification theorem is central to the study of finite groups G, since the simple factors of a composition series for G, in Aschenbacher’s words, “exert a lot of control over the gross structure of G.” (Recall that a composition series for G is a sequence of normal subgroups $1 = G_0 < G_1 < \cdots < G_n = G$, where each G_i is simple – that is, contains no normal proper subgroups).

Accordingly, a conjecture given by Oystein Ore in his seminal 1951 paper “Some remarks on commutators” [31] has been of interest to researchers concerned with the classification problem. In that paper, Ore studies the symmetric group S_n (which we recall is the group of permutations of a set of n elements), and its alternating and derived subgroups. (Recall that the alternating subgroup $A_n \subset S_n$ is the subgroup of permutations that can be written as products of an even number of transpositions – that is, swaps – of adjacent elements. Recall also that the derived group or commutator subgroup $S'_n \subset S_n$ is the group generated by the simple commutators of S_n, which are elements of the form $[x,y] := x y x^{-1} y^{-1}$, for x, y in S_n). In general, elements of the commutator subgroup of a given group are not themselves simple commutators (see [9], [22]). Ore conjectures in the paper that every element of a simple group G of finite order is in fact a simple commutator of elements of G. A key result of his paper is:

Proposition 1.0.1 (Ore, [31], theorem 7). For $n \geq 5$, every element of the alternating group A_n is a simple commutator of elements of A_n.

The authors Ellers and Gordeev, in “On the Conjectures of J. Thompson and O. Ore” [12], note that a stronger conjecture is attributed to R. C. Thompson: *every finite simple group G contains a conjugacy class C such that $C^2 = G$, which implies Ore’s conjecture. (An explanation of why Thompson’s conjecture implies Ore’s is given in [3]).* The authors describe many examples of groups for which the Thompson conjecture is known to be true, including the projective special linear group $\text{PSL}_n(K)$ for K a finite field, and show that the conjecture holds for all groups of Lie type over finite fields containing more than 8 elements.

The work of Cejtin and Rivin [11] is of particular interest to us, as it asserts the following:

Proposition 1.0.2 (Cejtin and Rivin, [11]). There is an efficient algorithm to write every element σ of A_n as a product of two n-cycles.

From this, the authors show that there is an efficient algorithm to solve the *simple commutator promise problem* (SCPP) for S_n. In general, given an arbitrary group G, and $g \in G$ guaranteed to be a simple commutator, the SCPP for G asks for explicit $x, y \in G$ such that $g = [x, y]$.
We will be concerned here with the symmetric groups S_n and also with the braid groups B_n, defined below. The braid groups play a central role in knot theory and the topology of 3 and 4-dimensional manifolds [2] [6] [26] [34] [19] [30]. They also play a significant role in the public key exchange protocol of Anshel, Anshel, and Goldfeld [1]. Hence finding an efficient method of solving the SCPP for B_n is an area of active research, as is finding efficient methods for solving the related conjugacy search problem: given elements $u, w \in B_n$, find $x \in B_n$ such that $u = xwx^{-1}$.

In what follows below, we will examine the SCPP for the symmetric groups S_n and the braid groups B_n. Where the braid groups are concerned, we will restrict the problem to those elements w of a braid group B_n that are simple commutators $w = [x, y]$ of permutation braids x, y, where a permutation braid is a positive braid such that no two strands cross twice. Any element of a braid group B_n is a product of permutation braids and their inverses, and for a given B_n, there is a bijective map between the set of permutation braids of B_n and S_n. We will examine ways in which the Cejtin-Rivin algorithm can be used to address the SCPP for B_n, restricted to simple commutators of permutation braids.

To make the discussion of computational complexity somewhat more rigorous, we will first define our model of a classical Turing machine, along with our versions of the notions of alphabets, words, and languages, in order to map between algorithms expressed in terms of Turing machines and those expressed through algebraic and symbolic operations (i.e. "psuedo-code"). This will allow us to define our notions of computational complexity. We will then describe the Cejtin-Rivin algorithm for the simple commutator promise problem for S_n, and discuss its complexity. We will present an explicit program, in terms of algebraic and symbolic operations, to implement the algorithm. Following this, we will provide definitions of the relevant concepts of braid groups. We will explore the extension of the Cejtin-Rivin algorithm to simple commutators of elements of permutation braids. Finally, we will describe possible avenues for future research.
2. Classical Turing machines and computational complexity

In this section we describe the classical Turing machine, a model of computing that will allow us to discuss algorithmic complexity.

2.1. Classical Turing machines

In order to speak about the complexity of computational problems, we need to have some sort of computer in mind. So we define the notion of a Turing machine, which is a simple but powerful model of a computer, generally attributed to Alan Turing (1912-1954). We use the formulation given by [27].

Definition 2.1.1. For our purposes, an alphabet Σ will denote a subset of the set whose elements are the upper and lower-case letters of the English alphabet, the digits 0 through 9, the symbols \sqcup and \triangleright, and the standard English punctuation symbols. A language L is then a subset of Σ^*, the set of all finite strings of symbols from Σ. So, for example, if $\Sigma = \{0, 1\}$ then we might have $L \subseteq \Sigma^*$, $L = \{0, 10, 100, 110, 1000, 1010, \cdots\}$, the set of all even numbers, expressed in binary form.

Definition 2.1.2. A classical, single-tape, deterministic Turing machine (CD TM) consists of:

(i) a quintuple $(K, \Sigma, \delta, s, H)$ where K is a finite set of states; Σ is an alphabet containing the blank symbol \sqcup and the left end symbol \triangleright; $s_i \in K$ is the initial state; $s_f \in K$ is the halting state; δ is the transition function from $K \times \Sigma$ to $K \times (\Sigma \cup \{\leftarrow, \rightarrow\})$ such that for all $q \in K$, if $\delta(q, \triangleright) = (p, b)$ then $b = \rightarrow$ and such that for all $q \in K$ and $a \in \Sigma$, if $\delta(q, a) = (p, b)$ then $b \neq \triangleright$.

(ii) a unidirectionally infinite (to the right) tape consisting of squares, each containing one symbol from Σ, a finite number of which are not the blank symbol. The input $w \in \Sigma^*$ consists of symbols from $\Sigma \setminus \{\triangleright, \sqcup\}$, and follows the \triangleright at the left end of the tape; the first blank symbol denotes the end of input.

(iii) a tape head that can read from and write to the tape, and move left and right along the tape.

It is held that what can be computed on any given existing (classical) computer may also be computed on this version of a Turing machine; this assertion is known as the Church-Turing thesis (see [29] p. 125). The machine works as follows. The machine starts in the initial state s_i, with the tape head positioned over the square immediately to the right of the left end symbol. The tape reads the symbol b at that square. The transition function $\delta(s_i, b)$ then yields a tuplet (k, b'). If $b' = \rightarrow$, the tape head moves right one square; if $b' = \leftarrow$, the tape head moves left one square (if not already at the left end of the tape); otherwise, the tape head replaces the symbol in the current square with b'. The machine then enters the state k. If $k = s_f$, the machine halts, and the contents of the tape at that time is said to be the output of the machine.

Example 2.1.3 (addition of two n digit binary numbers). Let Σ be the alphabet $\{0, 1\}$ and let L be the set of all pairs of symbols from Σ; that is, $L = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$.
Then here is a description of the Turing Machine that accepts a pair from \(L \), and adds the two elements of the pair together, outputting the result. We assume that the input \(w \) consists of the sequence \(ab \) where \(a \) is the first element of the pair, and \(b \) the second element. For convenience, we assume that the machine output will begin on the third square of the tape.

Turing Machine to add two 1-digit binary numbers:

input: Two binary digits in successive tape squares.

states: \(K = \{ s_i, s_f, s_c, s_{nc}, s_{ob}, s_{1b} \} \)

transition function \(\delta \):

\[
\begin{align*}
\delta(s_i, 1) &= (s_c, \rightarrow) \quad \delta(s_c, 1) = (s_1, \rightarrow) \quad \delta(s_1, \sqcup) = (s_1, 1) \\
\delta(s_1, 1) &= (s_0, \rightarrow) \quad \delta(s_0, \sqcup) = (s_f, 0) \quad \delta(s_i, 1) = (s_c, \rightarrow) \\
\delta(s_c, 0) &= (s_{1b}, \rightarrow) \quad \delta(s_{1b}, \sqcup) = (s_f, 1) \quad \delta(s_i, 0) = (s_{nc}, \rightarrow) \\
\delta(s_{nc}, 1) &= (s_{1b}, \rightarrow) \quad \delta(s_i, 0) = (s_{nc}, \rightarrow) \quad \delta(s_{nc}, 0) = (s_{ob}, \rightarrow) \\
\delta(s_{ob}, \sqcup) &= (s_f, 0)
\end{align*}
\]

The machine examines the contents of the first square; if the content is a 1, it enters the state \(s_c \); otherwise it enters the state \(s_{nc} \). It then advances to the next square. If the state is \(s_c \) and the content of the second square is 1, it advances to the next square, outputs 10, and terminates. Otherwise if the state is \(s_c \) and the contents of the second square is 0, it advances one square, outputs 1, and terminates. It behaves in similar fashion for the case in which the content of the first square is 0.

More generally, one can describe a single-tape Turing machine that adds two \(n \)-digit (binary) numbers, in part as follows:

Turing Machine to add two \(n \)-digit binary numbers:

input: Two \(n \)-digit binary numbers \(a \) and \(b \), each terminated by a blank, and printed on the input tape left to write (least significant digit of each number on the left).

states: \(K = s_i, a_1, b_1, c_1, c_{1e}, r, r_c, n_c, \cdots \)

transition function \(\delta \):

state/transitions for the for the case in which we have no carry, and both the current digit of \(a \) and the current digit of \(b \) are 1:

\[
\begin{align*}
\delta(n, 1) &= (X, a_1) \quad \delta(s_i, 1) = (X, a_1) \quad \delta(a_1, X) = (\rightarrow, a_1) \\
\delta(a_1, !\sqcup) &= (\rightarrow, a_1) \quad \delta(a_1, \sqcup) = (\rightarrow, b_1) \quad \delta(b_1, Y) = (\rightarrow, b_1) \\
\delta(b_1, 1) &= (Y, c_{1e}) \quad \delta(c_{1e}, !\sqcup) = (\rightarrow, c_{1e}) \quad \delta(c_{1e}, \sqcup) = (1, r_c) \\
\delta(r_c, !X) &= (\leftarrow 1, r_c) \quad \delta(r_c, X) = (\rightarrow 1, n_c)
\end{align*}
\]

Here \(!S \) denotes "any symbol other than \(S \)." The machine starts with the tape head at the leftmost digit of \(a \), and reads the digit. If the digit is 1, it enters the state \(a_1 \) (to record that it read a 1 from \(a \)), marks the square with an \(X \), and moves the tape head to the right. If it encounters any symbol other than a blank, it remains in state \(a_1 \), and continues to move to the right. Otherwise, it enters the state \(b_1 \) (to record that it is now processing digits of \(b \), having read a 1 from \(a \)), and moves the tape
head to the right. It continues to move to the right until it stops at the next digit of \(b \) to be processed (this will be the first non-Y digit). If that digit is 1, it marks the square with a \(Y \), enters the state \(c_4 \), (to record that it should output a 1, and that a carry occurred), and moves the tapehead to the next output square. There it records a 1, and enters the state \(r_4 \) (to record that a carry has occurred, and that it must now reverse to the left to find the next digit of \(a \) to process). The sets of states corresponding to the other scenarios (current digit of \(a \) is 0, current digit of \(b \) is 1, carry or no carry), as well as end of input logic, follow similarly.

2.2. Concerning Computational Complexity

An inspection of the example of the Turing machine given for adding two 1 digit numbers reveals that it will require at most 5 invocations of the transition function \(\delta \). The more general machine that adds two \(n \)-digit binary numbers needs to invoke the transition function on the order of \(2^n \) times, for each pair of digits it processes (one from each number to be added). This is because the single tape head must move back and forth across the numbers as it adds them. It follows that the single tape, classical, deterministic Turing machine \(M \) described above will add two \(n \)-digit binary integers in a number of invocations \(Cn^2 + B \) of the transition function \(\delta \) of \(M \), for constants \(C \) and \(B \).

In general, given a Turing machine \(M \) designed to compute some problem, one asks for an upper bound \(f(l) \) on the number of required invocations of the \(\delta \) function of \(M \), terms of the length \(l \) of the input. Such an upper bound provides a rough measure of the time complexity of the problem. Hence, we would say that there is a quadratic-time algorithm to compute the addition of two binary integers, or that addition of integers is “quadratic time,” with respect to the Turing machine described above. (We equate one invocation of the transition function with one “clock tick.”)

Definition 2.2.1 (order of complexity). One says that an algorithm executes in time \(O(f(l)) \), where \(f \) is a given function of the length \(l \) of the input, if there exists some Turing machine \(M \), such that there exist constants \(c \) and \(l_0 \) such that, for all values of \(l \) greater than \(l_0 \), the number \(N \) of invocations of the transition function of \(M \) required by the algorithm satisfies \(N \leq cf(l) \). If there exists a polynomial function \(f(l) \) for which this is true, we say the algorithm executes in “polynomial time”, and we say that it is a member of the (time) complexity class \(\mathbf{P} \) of polynomial-time algorithms. Such algorithms are considered “tractable” – that is, amenable to computation. By contrast, problems having greater than polynomial-time complexity are considered “intractable”.

Definition 2.2.2 (complexity in terms of higher-level programming languages). In the following, we will consider an algorithm for the SCPP for \(S_n \), given by Cejtin and Rivin in [11], to which the authors have assigned the time complexity \(O(n) \). As explained in [29], pp.135-142, we will adopt the hypothesis that if we can specify an algorithm in a high-level programming language such as C, C++, or Java, or in a pseudo-code equivalent (defined below), then there is a multi-tape, classical, deterministic Turing machine, following that given in [10], such that it can act as an “interpreter” for the algorithm. That is, the machine \(M \) can accept the pseudo-code
algorithm A and a given input I to the algorithm, and apply the algorithm A to the input I. We further suppose that it can do so in a way such that, for each execution of a pseudo-code statement, the machine M invokes its transition function once and only once. Then we say that the algorithm is $O(f(n))$ if, for any algorithm input I of length n, the machine will complete processing in $O(f(n))$ transition invocations. We will say that A is efficient if the corresponding number of transition invocations $f(n)$ is a polynomial in n.
3. The simple commutator decision problem for S_n.

In this section we describe the Cejtin-Rivin algorithm for the simple commutator promise problem for the symmetric groups S_n, provide an implementation of the algorithm in pseudo-code, and discuss its complexity.

3.1. Preliminaries concerning S_n

Remark 3.1.1 (a definition of S_n). Recall again some basic facts concerning the symmetric group S_n, which is the group of permutations of the set $\{1, 2, \cdots, n\}$. That is, a permutation $\sigma \in S_n$ is a $1-1$ map from the set $\{1, 2, \cdots, n\}$ to itself. One may imagine the elements being the points $\{(0,1), (0,2), \cdots, (0,n)\} \in \mathbb{R}^2$, with point $(0, i)$ initially labelled by the label $l_{(0, i)} = i$. A permutation σ is then specified by a re-assignment of the labels associated to the points: $l_{(0, i)} \rightarrow \sigma((0, i))$. For example, consider the element $\sigma \in S_3$ given by $(l_{(0,1)} = 1, l_{(0,2)} = 2, l_{(0,3)} = 3) \rightarrow (l_{(0,1)} = 2, l_{(0,2)} = 1, l_{(0,3)} = 3)$. This is the element that interchanges the labels associated to the points $(0,1)$ and $(0,2)$.

The permutations form a group under composition, the group being generated by the standard generators τ_i, where τ_i denotes the interchange of the labels associated to the elements in the $(0, i)$ and $(0, i+1)$-th positions. (From now on, we will denote the element $(0, i)$ simply by the integer i, and speak of “permuting elements i and j,” though we really mean to permute the labels associated to $(0, i)$ and $(0, j)$). So in our above example, we would write that $\sigma(1) = 2, \sigma(2) = 1, \text{ and } \sigma(3) = 3.$ When multiplying permutations, we read from right to left, hence $(1, 2) \circ (2, 3)$ means “first exchange the elements 2 and 3, then exchange the elements 1 and 2.”

Remark 3.1.2 (alternating subgroup A_n of S_n). The alternating subgroup A_n of S_n is the group of permutations that may be expressed as a product of an even number of adjacent transpositions. Such permutations are called even.

Remark 3.1.3 (cyclic decomposition of elements of S_n). One may record a permutation $\sigma \in S_n$ in terms of its cyclic decomposition, a cycle being a circular sequence $i \rightarrow j \rightarrow k \rightarrow \cdots \rightarrow i$ of elements exchanged by the permutation. One typically elides the 1-cycles. So, for example, the permutation $\sigma \in S_5$ taking the elements $1, 2, 3, 4, 5$ to $3, 4, 1, 2, 5$ could be written $\sigma = (13)(24)(5) = (13)(24)$. The order in which the cycles appear does not change the corresponding permutation, nor do cyclic permutations of the sequence in which the integers of any given cycle appear. (So $(13)(24)$ and $(42)(31)$ denote the same permutation).

Remark 3.1.4 (order of a cycle). The number of elements appearing in a cycle is known as the order of the cycle; a specification of the number of cycles of each order appearing in σ, counted by multiplicity, gives the type of the cyclic decomposition of σ. So, in our example, σ consists of two 2-cycles (and implicitly, a single 1-cycle). A permutation π will be conjugate to a given permutation σ if and only if π and σ are of same cyclic decomposition type. An element of A_n will consist of cycles of odd order, and an even number of cycles of even order.

Remark 3.1.5 (standard representation of S_n). Finally, we obtain a faithful linear representation ρ of Σ as the matrix group generated by the images of the standard generators τ_i under ρ, where $\rho(\tau_i)$ is the $n \times n$ matrix given by interchanging the i and $i+1$-th columns of the identity matrix of $GL(n, \mathbb{R})$.

3.2. The Cejtin-Rivin algorithm for the SCPP for S_n

The paper “A Property of Alternating Groups,” co-authored by Henry Cejtin and Igor Rivin ([11]) shows [theorem 1, page 1] that there is an efficient algorithm to write any even permutation σ in S_n as a product of two n-cycles p_1 and p_2; that is, $\sigma = p_1 p_2$. Since p_1 and p_2 are both n-cycles, it follows from remark 3.1.4 that $p_2 = \nu p_1 \nu^{-1}$ for some $\nu \in S_n$. Moreover, if p_1 is an n-cycle, then so is p_1^{-1}: if $p_1 = (i_1 i_2 \cdots i_n i_1)$, then $p_1^{-1} = (i_n i_{n-1} \cdots i_2 i_1)$. Hence, p_2 and p_1^{-1} are both n-cycles, too. Thus $p_2 = \tau p_1^{-1} \tau^{-1}$ for some $\tau \in S_n$. So we have $\sigma = [p_1, \tau]$, for some $\tau \in S_n$.

Moreover, we can readily identify such a τ, since if $p_1^{-1} = (i_1 i_2 \cdots i_{n-1})$ and $p_2 = (j_1 j_2 \cdots j_n)$, then τ is the unique permutation such that $\tau(i_1) = j_1, \tau(i_2) = j_2, \cdots, \tau(i_n) = j_n$ (see [32], p. 3).

We provide a brief summary of the (constructive) proof of the theorem as given in the paper. We will then provide a detailed implementation of a functional equivalent of the algorithm constructed in the proof; we will express the algorithm in pseudo-code, as defined below. A complexity analysis of the implementation will then yield a concrete verification that the algorithm posited by the theorem is indeed efficient, providing an efficient solution for the SCPP for S_n.

Note: the authors place the algorithm in the complexity class $O(n)$, but do not specify a model of computation. Moreover, the algorithm is not given explicitly as pseudo-code, but implicitly, in the course of proving constructively, by induction, the existence of a method for writing any element $\sigma \in A_n \subset S_n$ as a product of two n-cycles.

We show below that, using the definition (2.2.2), our pseudo-code implementation will have complexity $O(n^2)$, for input a word w in the standard generators of S_n, having fixed length k, for variable n, and that it will execute in time $O(k)$, for fixed n and variable k.

3.2.1. Review of Cejtin-Rivin proof. Now, in the paper, the authors first show (lemma 3, p.2), that given a permutation p in S_n, such that:

1) it is the product of two permutations s_1 and s_2

2) s_1 acts non-trivially only on $1, \cdots, t$, and s_2 acts non-trivially only on $t+1, \cdots, t+s$ where $n = t + s$

3) $s_1 = p_{11}p_{12}$ where p_{11} and p_{12} are t-cycles

4) $s_2 = p_{21}p_{22}$ where p_{21} and p_{22} are s-cycles

then $p = s_1 s_2 = (p_{11}p_{12} v)(v p_{12} p_{22})$ is a product of two $(t+s)$-cycles, where $v = (t, t+s)$.

The authors next prove:
Lemma 4: if n is odd, then any n-cycle σ is a product of two n-cycles ρ_1 and ρ_2.

Lemma 5: if $n = 4m$, and $\sigma \in S_n$ is a product of two disjoint $2m$-cycles, then σ is a product of two n-cycles ρ_1 and ρ_2.

Lemma 6: if $n = 2s + 2t$, where $s < t$, and if $\sigma \in S_n$ is a product of a $2s$-cycle and a $2t$-cycle, such that the cycles are disjoint, then σ is a product of two n-cycles ρ_1 and ρ_2.

The proofs of lemmas 4, 5, 6 each provide explicit cyclic decompositions of the n-cycles ρ_1 and ρ_2.

In the proof of the theorem itself, it is first noted that the theorem holds for $n = 1$. The proof proceeds by induction. Given an element $\sigma \in A_{n+1}$, the alternating group of S_{n+1}, if the element consists of exactly one (odd) cycle, or if it is a product of exactly two (necessarily even) cycles, then the proof follows from the constructions given in lemmas 4, 5, and 6. If, on the other hand, σ is a product of more than two cycles, it follows that it can be written as a product of two disjoint even permutations c_1 and c_2, or else as the product where c_1 acts non-trivially only on $1, \ldots, t$ and c_2 acts non-trivially only on $t + 1, \ldots t + s$ where $t + s = n + 1$. The inductive hypothesis and lemma 3 then combine to say that σ is a product of two $n + 1$ cycles: the inductive hypothesis says that c_1 is a product of two t-cycles p_{11} and p_{12} and c_2 is a product of two s-cycles p_{21} and p_{22}; lemma 3 says that σ is then a product of two $s + t$-cycles.

One must still obtain explicit expressions for the p_{ij} in this latter case. The authors show that c_1 can always be written as a product of exactly one or two cycles, from which the expressions for p_{11} and p_{12} follow directly from lemmas 4, 5, and 6. To obtain the expressions for p_{21} and p_{22}, one must recursively apply the argument of the proof to $\sigma' = c_2$; clearly no more than $n - 3$ recursions will be required, since any 3-cycle can be written as a product of no more than two cycles. What remains to be shown is that the entire process can be coded into an algorithm that can execute on the Turing machine described above in an efficient manner.

As promised above, we next present an explicit implementation of the Cejtin-Rivin algorithm, using “pseudo-code” that can be translated both to the language of Turing machines as described above, and to modern computer programming languages such as C++. We will then assess the complexity of the algorithm to see how far it varies from the $O(n)$ bounds set by Cejtin and Rivin. It is clear from the discussion above that any reasonable implementation of the Cejtin-Rivin algorithm will fall in the complexity class P.

3.3. Implementation of Cejtin-Rivin in pseudo-code

We here present an explicit implementation of the Cejtin-Rivin algorithm described above. The algorithm is expressed in pseudo-code. It is difficult to define pseudo-code in mathematically precise terms. Here, we will define pseudo-code to be a set of human-readable instructions, such that they would provide, to a human trained in
the art of computer programming, all the information necessary to create a computer program, written in the computer language C++, to perform an algorithm such as that developed by Cejtín-Rivin, as described above. (More concretely, we can say that pseudo-code must have the property that every statement maps in an “obvious” way to a programming language such as C, C++, or Java). We assume in our pseudocode that we are free to utilize the following types of programming operations, each of which has a direct implementation in terms of the Turing machine defined above, and also in a higher-level programming language such as C.

3.3.1. Types of operations comprising pseudo-code to be used below. The types of operations to be used in the pseudo-code below are:

Operation Type 1: read a string symbols from an input device.

Operation Type 2: write a string of symbols to an output device.

Operation Type 3: declare a program variable. Program variables are integers, or lists thereof. Lists of integers are said to be arrays and have the property that the integer in the i-th position of the array s (arranging the list horizontally, and counting left to right, starting with 0), may be written or read via the notation $s(i)$. (Observe that we can represent a matrix as an array of arrays).

Operation Type 4: assign a value to a variable. We may assign integral values to integers (using the notation $i = n$ to assign the value n to integer i), and lists of integral values to arrays of integers. In a Turing machine, a program variable may be represented by the reservation of a fixed amount of space beginning at a certain location on the storage tape. We assume that all program variables occupy appropriate storage to make assignment statements valid.

Operation Type 5: perform a logical operation or algebraic operation, such as testing whether a program variable i is zero, or comparing two integers to see if they are equal, or adding one integer to another. The equality operation is denoted $i == j$; the “test for zero” operation will be denoted $!i$.

Operation Type 6: iterate a series of instructions for some count. That is, we have access to iterative control structures such as “while condition A is true, do sequence of statements B” or “if condition A is true, then do sequence of statements B” or “for integer $x = 0$, while $x < N$, do sequence of statements B, then increment x by 1”. Where we have a sequence of instructions that are to be implemented as part of a control structure, we indent the instructions underneath the instruction defining the control structure condition. Numbering each statement within an algorithm, we also assume the existence of the infamous “Go To (line number)” control operation.

Operation Type 7: call a subalgorithm, or “function”. This allows us to organize the transitions of our Turing machine into functions, which are self-contained subalgorithms accepting input and producing output. Functions may invoke other functions.
Lists of variables of varying types (called “arguments”) may be passed from the in-
voking function to the function invoked, and lists of variables of varying types may
also be passed from the invoked function back to the invoking function.

We use “call F(arg1,arg2,...,argN)” to denote the invocation of function F, passing
input “arg1,arg2,...,argN”. We use, within a function, “return(arg1,arg2,...,argN)” to
denote return to the invoking function, passing back “arg1,arg2,...,argN”. A function
may invoke itself.

All these operations are directly expressible in a wide variety of computer program-
ning languages. We also allow comments to be interspersed with the psuedo-code;
we place comment text between “/*” and “ */” on the line preceding the psuedo-code
line to which the comment applies. The comments are not regarded as part of the
algorithm.

3.4. An aside: complexity of the preceding constructs

Lemma 3.4.1. The constructs 1 – 7 of the preceding section all execute on a classical,
single-tape, deterministic Turing machine in an number of operations that is of order
$O(n^2)$, where n is the size (in tape cells) of the input to the operation.

proof: All complexity bounds are given with respect to the single-tape, deterministic
Turing machine described above. For all operations, we assume a fixed number of
tape squares between the tape head at the beginning of the operation, and the nearest
tape location at which data is to be read or written (i.e. we do not count any
intervening “extraneous” tape data that we must navigate around due to our machine
having just one tape).

Operations of type 1 and 2 are $O(n)$ by construction, and definition 2.1.2.

Operations of type 3 amount to reserving a certain blank portion of the storage
tape of 2.1.2 and writing an initial value to that section of the tape. This operation
is $O(n)$ because operation 2 is. Operations of type 4 involve overwriting a section of
the storage tape reserved by an operation of type 3. Operations of type 5 amount
to comparison of an integer to determine if all digits of the integer are 0 (“test for
zero”), or addition or subtraction of two integers, or to subtraction of two integers,
after which the sign of the result is checked (comparison, equality testing). Note that
subtraction may be performed in the same manner as addition, by first converting
the subtrahend to its negative. By example 2.1.3, addition is an $O(n^2)$ operation;
negatation of a binary number simply entails the inversion of all 0s and 1s, followed
by the addition of the number 1 (“two’s complement” representation of a number).

Operations of type 6 involve the repeated invocation of a given sequence of transi-
tion functions, where the number of invocations is controlled by a counter which is
decremented or incremented after each invocation. The invocations are terminated
when the counter reaches a set value. Since initialization of an integer, and the sub-
traction or addition of two integers, are at most $O(n^2)$ operations, the act of iteration
is $O(n^2)$ (without consideration of the thing iterated). Here n is the storage size of
the counter in tape cells.

Operations of type 7 amount to copying a series of symbols to a blank section of the
storage tape, invoking a set sequence of transition functions which produce output
on another section of the storage tape, and then reading the result of that output.
Hence function invocation is simply an operation of type 2, followed by a series of operations of type 1 (without regard to the complexity of the invoked function). Hence an operation of type 7 is of order $O(n)$.

As explained in definition (2.2.2), in what follows we will regard each operation of types 1 – 7 as constituting one clock tick.
3.5. **Algorithm: Expression of an element of** A_n **as a simple commutator** **of elements of** S_n

We here present, using the constructs of the pseudo-code language described above, an implementation of the Cejtin-Rivin algorithm for the SCPP for S_n \[33\].

PROBLEM: Express $n \in A_n$ **as a simple commutator.**

INPUT: A positive integer n, and an element σ of the alternating subgroup A_n of S_n, expressed as a word $w(\sigma)$ in the standard generators τ_i of S_n, where τ_j is denoted by the integer j.

OUTPUT: The element σ expressed as a simple commutator of elements ρ_1 and ρ_2 of S_n; that is, an expression of σ as $\rho_1 \rho_2 \rho_1^{-1} \rho_2^{-1}$. The elements ρ_1 and ρ_2 will each be expressed as words in the standard generators of S_n; with the integer i denoting the generator τ_i. Each word will be separated by a 0, and the entire output will be terminated by 00. The output should be read left to right (and applied right to left).

ALGORITHM:

1. We have that the input w is of the form $w = i_1i_2i_3\cdots i_k$ where each i_j is an integer between 1 and $n - 1$.
2. Perform subalgorithm A, passing (w, n) as input. Let the output of A be denoted by M. Then M is an $n \times n$ matrix that is the standard representation of the permutation given by w.
3. Perform subalgorithm B, passing (M, n) as input. Let the output of B be denoted by d. Then d is a sequence of integers representing the cyclic decomposition of the permutation represented by M.
4. Perform subalgorithm C, passing (d, n) as input. Let the output of C be denoted by the pair (c_1, c_2), where c_1 and c_2 are both products of cycles, with each cycle being given by a sequence of integers. (For the exact format of c_1 and c_2, see the description of the output of subalgorithm B).
5. We have that c_1 and c_2 are each a product of cycles, expressed in the form $i_1i_2\cdots i_{j-1}i_j0i_{j+1}\cdots i_k0\cdots 0i_l\cdots i_m00$. Let S denote the matrix output by subalgorithm E, invoked with input c_1. Perform the same steps for c_2 to obtain a matrix T. Then S and T are both matrices representing permutations, each of which consists of a single n-cycle.
6. Let C_1 denote the sequence of integers obtained from the output of subalgorithm B, invoked with input S. Similarly define the sequence C_2, obtained from B with input T. Then C_1 is of the form $i_1i_2\cdots i_n$ and C_2 is of the form $j_1j_2\cdots j_n$.
7. Let C_3 denote the reverse of the sequence of integers C_1 (that is, C_3 is the inverse of the n-cycle C_1). Let τ denote the output of subalgorithm D, invoked with the input (C_3, C_2). That is, τ is a sequence of integers defining the cyclic decomposition of a permutation, which we also denote τ, such that $C_2 = \tau C_3 \tau^{-1}$ (see the output of subalgorithm B for the format of the integers comprising the cyclic decomposition).
8. Write to output the sequence of integers $F(C_1)0F(\tau)0F(C_2)0F(\tau)^R00$ where $F(z)$ denotes the non-0 portion of output of subalgorithm F, invoked with input z, and $F(z)^R$ denotes the reverse of the word given by the non-0 portion of $F(z)$. Terminate.
3.5.1. **Subalgorithm A.** Convert the sequence of transpositions W to its matrix M as given by the standard matrix representation of S_n defined in 3.1.5.

INPUT: a positive integer n, and sequence of transpositions W, expressed as a string of of integers, with the integer i denoting the transposition $(i, i + 1)$.

OUTPUT: the matrix M representing the permutation given by W.

ALGORITHM:

1. Let M be the $n \times n$ identity matrix of $GL(n, \mathbb{R})$.
2. For each integer i of the input w (reading right to left)
 3. Let C_1 be the column of M having 1 in the i-th position
 4. Let C_2 be the column of M having 1 in the $(i + 1)$-th position
 5. swap columns C_1 and C_2
5. return M.
3.5.2. Subalgorithm B. Obtain the cyclic decomposition of M.

INPUT: a positive integer n, and a permutation of S_n given by its matrix M under the standard representation.

OUTPUT: a sequence of integers providing the cyclic decomposition of M. The end of each cycle in the decomposition is marked by 0. The last cycle in the decomposition is succeeded by 00. That is, the output will be of the form:

\[i_1 i_2 \cdots i_k 0 i_{k+1} i_{k+2} \cdots i_{k+r} 0 i_{k+r+1} i_{k+r+2} \cdots 0 \cdots 0 \cdots i_{n-1} i_n 00 \]

including 1-cycles, and where the cycles are disjoint.

ALGORITHM:

1. Let d be an array of 0s of length $2n$. Let $d(i)$ denote the i-th element of the array, with 0 denoting the first element. Let integers $col, start, i$ all be set to 1. Let integer $x = 0$. Let $d(x) = i$.
2. Let $x = x + 1$.
3. Let i be the position (counting from 1) in which the number 1 appears in the column given by col.
4. If $i == start$
 5. Let $d(x) = 0$. Let $start$ be the position j (counting from 1) of the first column of M such that j does not appear in d, or $start = 0$ if no such column.
5. If $start == 0$
 7. Let $d(x) = d(x + 1) = 0$. Return d.
6. Else let $col = start$ and $d(x) = col$. Go to 2.
8. Else let $d(x) = i$. Let $col = i$. Go to 2.
3.5.3. **Subalgorithm C.** Express as a product of two \(n \)-cycles the even permutation given by the cyclic decomposition \(d \).

INPUT: the parameters \((d, n)\), where \(d \) is the cyclic decomposition a permutation of \(S_n \). The expression \(d \) will be of the form:

\[
i_1i_2\cdots i_k0i_{k+1}i_{k+2}\cdots i_{k+r}0i_{k+r+1}i_{k+r+2}\cdots 0\cdots 0\cdots i_{n-1}i_n00
\]

where the 0s separate the individual cycles and the composition is terminated by 00 (see the output of subalgorithm \(B \)).

OUTPUT: two \(n \)-cycles \(c_1, c_2 \). Each \(n \)-cycle will be expressed as a product of (not necessarily disjoint) cycles, where each individual cycle has the form as described in the definition of the output of subalgorithm \(B \). The \(n \)-cycles \(c_1 \) and \(c_2 \) will be separated by the sequence “00”. The string \(c_100c_2 \) will be succeeded by 000.

ALGORITHM:

1. If \(d \) consists of exactly one cycle (counting 1-cycles) of length \(n \), that is, if \(d \) is of the form \((i_1, i_2, \cdots i_n)\) where \(n \) is odd

 /* apply lemma 4 */

2. Let \(c_1 = c_2 = i_1i_2\cdots i_n0i_1i_2\cdots i_n^{((n+1)/2)-1} \)

3. Return \(c_100c_2000 \)

4. Else if \(d \) consists of exactly two cycles of lengths \(2m \) each, where \(n = 4m \), that is, if \(d \) is of the form \(i_1, i_3, \cdots, i_{4m-1}, 0, i_2, i_4, \cdots, i_{4m} \)

 /* apply lemma 5 */

5. Let \(c_1 = c_2 = i_1i_2i_3i_4\cdots i_{4m-1}i_{4m} \)

6. Return \(c_100c_2000 \).

7. Else if \(d \) consists of exactly two cycles \(\rho_1 \) and \(\rho_2 \) of lengths \(2s \) and \(2t \) respectively, with \(s < t \), \(n = 2s + 2t \), and \(\rho_1 = i_1i_3\cdots i_{4s-1} \) and

 \[
 \rho_2 = i_2i_4\cdots i_{2s+2t}i_{4s+1}i_{4s+3}\cdots i_{2s+2t-1}
 \]

 /* apply lemma 6 */

8. Let \(c_1 = i_1i_{4s+1}i_{4s+2t}i_{4s+3}\cdots i_{2s+2t}i_2i_3\cdots i_4s \)

9. Let \(c_2 = i_1i_2i_3\cdots i_n \).

10. Return \(c_100c_2000 \).

11. Else if \(d \) contains a cycle of odd order \(d_1 \), such that \(d_1 = i_1i_2\cdots i_k \)

 /* peel off an odd cycle and apply lemma 4; re-invoke subalgorithm on remainder */

12. Let \(d_2 \) denote the product of the remaining cycles. Observe that \(d_1 \) may be regarded as an even permutation on a set of \(k \) integers \(\{i_1, i_2, \cdots i_k\} \), and \(d_2 \) may be regarded as an even permutation on a disjoint set of \(n - k \) integers. Let
\[c_{11} = c_{12} = \begin{cases} \text{denote the product of the remaining cycles. Ob-} & \text{serve that } e_1 \text{ is of the form:} \\ & e_1 = i_1i_3 \cdots i_{4m'-1}0i_2i_4 \cdots i_{4m'} \\ & \text{where } 4m' = n', \text{ or else } e_1 \text{ is of the form:} \\ & e_1 = i_1i_3 \cdots i_{4s'-1}0i_2i_4 \cdots i_{2s' + 2t'}i_{4s'+1}i_{4s'+3} \cdots i_{2s' + 2t' - 100} \\ & \text{with } 2s' + 2t' = n'. \end{cases} \]

13. set \((c_{21}, c_{22}) = \text{the output of subalgorithm } C, \text{ invoked with input} \)
\((d_2, n - k)\). We have that \(c_{21}c_{22}\) is a permutation acting on the set of integers
\(\{j_1, j_2, \cdots, j_r\}\), where \(\{j_1, j_2, \cdots, j_r\} \cap \{i_1, i_2, \cdots, i_k\} = \emptyset\)
and \(\{i_1, i_2, \cdots, i_k, j_1, j_2, \cdots, j_r\} = \{1, 2, \cdots, n\}\).

14. Let \(u\) denote the maximum of \(\{i_1, i_2, \cdots, i_k\}\) and \(v\) denote the maximum
of \(\{j_1, j_2, \cdots, j_r\}\).

15. Let \(c_1 = c_{11}0c_{21}0uv\). Let \(c_2 = uv0c_{12}0c_{22}\) (re-arranging and/or removing
0, 00, 000 delimiters as required).

16. Return \(c_100c_2000\).

17. Else \(d\) consists of an even number of cycles of even order

denoted \(d_0d_20 \cdots 0d_{2k}00\).

18. Let \(c_1 = d_10d_200\). Let \(e_2\) denote the product of the remaining cycles. Ob-
serve that \(e_1\) may be regarded as a permutation on a set of integers \(\{i_1, i_2, \cdots, i_{n'}\}\)
for \(n' < n\). We have that either \(e_1\) is of the form:

\[e_1 = i_1i_3 \cdots i_{4m'-1}0i_2i_4 \cdots i_{4m'} \]
where \(4m' = n'\), or else \(e_1\) is of the form:

\[e_1 = i_1i_3 \cdots i_{4s'-1}0i_2i_4 \cdots i_{2s' + 2t'}i_{4s'+1}i_{4s'+3} \cdots i_{2s' + 2t' - 100} \]
with \(2s' + 2t' = n'\).

19. Let \((c_{11}, c_{12})\) be the output of subalgorithm \(C\), invoked with
input \((e_1, n')\). Observe that with this input, \(C\) will return without invoking itself again.

20. Let \((c_{21}, c_{22})\) be the output of subalgorithm \(C\), invoked with
input \((e_2, n - n')\). Observe that \(e_2\) may be regarded as a permutation acting on the set
of \(n - n'\) integers \(\{j_1, j_2, \cdots, j_{n-n'}\}\), such that \(\{i_1, i_2, \cdots, i_{n'}\} \cap \{j_1, j_2, \cdots, j_{n-n'}\} = \emptyset\)
and \(\{i_1, i_2, \cdots, i_{n'}, j_1, j_2, \cdots, j_{n-n'}\} = \{1, 2, \cdots, n\}\).

21. Let \(u\) denote the maximum of \(\{i_1, i_2, \cdots, i_{n'}\}\) and \(v\) denote the maximum
of \(\{j_1, j_2, \cdots, j_{n-n'}\}\).

22. Let \(c_1 = c_{11}0c_{21}0uv\). Let \(c_2 = uv0c_{12}0c_{22}\) (re-arranging and/or removing
0, 00, 000 delimiters as required).

23. return \(c_100c_2000\).
3.5.4. *Subalgorithm D*. Conjugator of two n-cycles c_1, c_2.

INPUT: a positive integer n, and two n-cycles c_1 and c_2 (which are necessarily conjugate) each expressed in cyclic decomposition form (see the output of subalgorithm B).

OUTPUT: the cyclic decomposition (expressed as in the output of subalgorithm B) of a permutation τ such that $c_2 = \tau c_1 \tau^{-1}$.

ALGORITHM:

1. Let d be an array of 0s of length $2n$. Let $d(i)$ denote the i-th element of the array, (counting left to right from 0). Let $c_i(j)$ denote the value of the j-th integer of the cycle c_i (counting from left to right from 0). Let integers val, i be set to 0. Let integer $start = c_1(i)$. Let integer $x = 0$. Let $d(x) = start$.
2. Let $x = x + 1$
3. Let $val = c_2(i)$
4. If $val == start$
5. Let $d(x) = 0$. Let $start = c_1(i)$, where i is set to the position (counting left to right from 0) of the first integer of c_1 such that $c_1(i)$ does not appear in d, or $start = 0$ if no such column.
6. If $start == 0$
7. Let $d(x) = d(x + 1) = 0$. Return d.
8. Else let $start = c_1(i)$ and $d(x) = start$. Go to 2.
9. Else let $d(x) = val$. Set i equal to the position (counting left to right from 0) of the integer of c_1 such that $c_1(i) == val$. Go to 2.
3.5.5. Subalgorithm E. Convert a product of (not necessarily disjoint) cycles to its matrix M as given by the standard matrix representation of S_n defined in 3.1.5.

INPUT: a positive integer n, and a product of (not necessarily disjoint) cycles S in the form of one member of the pair of permutations as output by subalgorithm C.

OUTPUT: the matrix M representing the permutation given by S.

ALGORITHM:

1. Let M be the $n \times n$ identity matrix of $GL(n, \mathbb{R})$. For each cycle C of S, reading right to left:
 2. Let i be the first integer of C (processing left to right). Let $C_p = C_n$ be copies of column i of M. Let $s = i$.
 3. If the next integer j of C is not 0
 4. Let C_n be a copy of column j of M.
 5. Let column j of M equal column C_p.
 6. Let $C_p = C_n$. Let i be the next integer of C. Go to 3.
 7. Else if the next integer j of C following i is 0
 8. Let column s of $M = C_p$. continue with next iteration of the For loop.
 9. Let T be an $n \times n$ matrix of 0s. For each integer $k = 1 \cdots n$
 10. Assign to column k of T the number of the column of M in which 1 appears in position k
 11. Let $M = T$.

3.5.6. Subalgorithm F. Express the cyclic decomposition d as a word in the standard generators τ_i of S_n.

INPUT: a positive integer n, and the (non-empty) cyclic decomposition d of a permutation of S_n. The expression d will be of the form:

$$i_1i_2\cdots i_k0i_{k+1}i_{k+2}\cdots i_{k+r}0\cdots i_{k+r+1}i_{k+r+2}\cdots i_n00$$

where the 0s separate the individual cycles and the composition is terminated by 00 (see the output of subalgorithm B).

OUTPUT: a sequence of integers $i_1 \cdots i_j$, terminated with a 0, where each i_k corresponds to the generator τ_{i_k} of S_n. The output should be applied right to left.

ALGORITHM:

1. Let integer $i = 0$. Counting from 0, and reading left to right, let $d(k)$ denote the k-th integer of the input d. Let w be an array of n^3 integers, all initialized to 0. Let the integer $x = 0$. We denote by $w(x)$ the x-th entry of w, counting from 0, and reading left to right. Let integer $s = d(i)$. Let $i = i + 1$. Go to step 6.

 /* check to see if we are done with all cycles */
2. If $d(i) == 0$ and $d(i + 1) == 0$
 /* we are. begin new cycle. s records our starting point */
3. Let $s = d(i + 1)$. Let $i = i + 2$.
4. /* examine the next integer in the cycle. record in w a transposition between that integer and our our starting point s, where the transposition is expressed as a sequence of adjacent transpositions. */
5. Let integer $a = x$. Let integer $c = 0$. Let integer f be the greater of s and $d(i)$. Let integer t be the smaller of s and $d(i)$.
6. While $t < f$
7. 8. Let $w(x) = t$. Let $x = x + 1$. Let $c = c + 1$. Let $t = t + 1$.
8. /* now, if we had more than one adjacent transposition, repeat all but the last, in inverse order. the goal: the swap (m,p), where $(p > m)$, is replaced with ($(m, m+1)(m+1, m+2)\cdots (p, m+1)(m+1, m+2)\cdots (m,m+1)$ read right to left. */
9. 10. If $c > 1$
10. Let $c = c - 1$. While $c > 0$.
11. 11. Let $w(x) = w(a + c - 1)$. Let $c = c - 1$. Let $x = x + 1$.
12. Write w^R to output, where w^R denotes the reverse of w. Let $i = i + 1$.

Clear w. Go to step 2.
3.6. Example of application of Cejtin-Rivin algorithm

We provide an example of the preceding. Let \(\sigma \in S_7 \) be given by the word \(\tau_6\tau_4\tau_1\tau_2 \). Algorithm \(A \) converts this word to a permutation matrix given by the ordered list \(3,1,2,5,4,7,6 \), where, counting left to right from 1, digit \(i \) indicates the position of the integer 1 in column \(i \). Algorithm \(B \) converts this to the cyclic decomposition \((123)(45)(67)\). We pass \((123)(45)(67),7\) to algorithm \(C \). Algorithm \(C \) “peels off” the odd cycle \((123)\), and invokes itself twice with inputs \(i_1 = ((123),3) \) and \((45)(67),4\). To input \(i_1 \), the algorithm applies Cejtin-Rivin lemma 4 to obtain output \(c_{11} = c_{12} = (123)(123) \). To input \(i_2 \), the algorithm applies Cejtin-Rivin lemma 5 to obtain output \(c_{21} = c_{22} = (4657) \). (In this example, no further recursion is required. In general, each invocation of algorithm \(C \) on the “remainder” left after peeling off of one or two cycles, to which Cejtin-Rivin lemmas 4, 5, 6 can be directly applied, will lead to further invocations.) Algorithm \(C \) then applies Cejtin-Rivin lemma 3, with \(t = 3, s = 4 \), to obtain \(p_1 = c_{11}c_{21} = (123)(123)(4657)(37) \) and \(p_2 = \nu c_{21}c_{22} = (37)(4657)(123)(123) \), so that \(\sigma \sim p_1p_2 \). We apply algorithms \(E \) and then \(B \) to convert \(p_1 \) and \(p_2 \) to \(n \)-cycle form: \(p_1 \sim C_1 = (1346572) \) and \(p_2 \sim C_2 = (1746532) \). We then apply algorithm \(D \) to \(C_1^{-1} = (2756431), C_2 \) to obtain \(\tau = (12)(45) \) such that \(C_2 = \tau C_1^{-1} \tau^{-1} \). We finally apply algorithm \(F \) to \(C_1, C_3, \tau, \tau^{-1} \) to obtain a word:

\[
[F(C_1), F(\tau)] = [\tau_3\tau_4\tau_5\tau_6\tau_7\tau_1\tau_4\tau_7, \tau_4\tau_1] \sim \sigma
\]

3.7. Complexity of the Cejtin-Rivin algorithm

Here we analyze the complexity of the Cejtin-Rivin algorithm.

Proposition 3.7.1 (complexity of implementation of Cejtin-Rivin). The implementation of the Cejtin-Rivin algorithm given above for the SCPP for \(S_n \) executes in time \(O(n^2) \), for input of fixed length \(k \), and time \(O(k) \), for fixed \(n \). (Recall that by time, we mean the total number executions of pseudo-code statements of types \(1 - 7 \).)

The relation between \(k \) and \(n \) can perhaps be described as follows: though for any \(\sigma \in S_n \), and for any positive integer \(k \), there exists an unreduced word representative \(w \) of \(\sigma \) such that \(\text{length}(w) > k \), we also have that any element of \(S_n \) may be represented by a word \(w' \) of length at most \(n(n-1)/2 \).

proof: By \ref{2.2.2} it suffices to show that, for fixed \(k \), the number of invocations of statements of types \(1 - 7 \) grows as \(O(n^2) \), and that for fixed \(n \), the number of invocations of statements of types \(1 - 7 \) grows as \(O(k) \).

Now, by inspection, the main algorithm requires a fixed finite number of operations of types \(1 - 4 \) and 7. It must read a string of \(k \) symbols, each in the interval \([0,n-1]\), and pass these as a block to subalgorithm \(A \). That requires \(O(k) \) operations, and is not dependent on \(n \). The output of subalgorithm \(A \) is a matrix representative of an element of \(S_n \), (in the standard representation), which we may implement as an array of integers of size \(n \), where each element \(i \) of the array is an integer \(j \) recording the position \(j \) in which the 1 appears in column \(i \). This array is passed to subalgorithm \(B \), requiring \(O(n) \) operations. Subalgorithm \(B \) returns a string of integers bounded by \(n^2 \) (the string is a cyclic decomposition of the permutation given by the input, where each cycle has length at most \(n \), and where there are at most \(n \) cycles). This
is passed to subalgorithm \(C \), requiring \(O(n^2) \) operations. Subalgorithm \(C \) returns a string of size \(O(n) \) representing a product of two \(n \)-cycles \(c_1 \) and \(c_2 \). These are each passed to subalgorithm \(E \), requiring \(O(n) \) operations. Subalgorithm \(E \) returns strings of length \(O(n) \), which are passed to subalgorithm \(B \), requiring \(O(n) \) operations. Subalgorithm \(B \) returns strings of length \(O(n) \), which are passed to subalgorithm \(D \), requiring \(O(n) \) operations. Subalgorithm \(D \) returns a string of length \(O(n^2) \) representing a permutation \(\tau \), which is then inverted, requiring \(O(n^2) \) operations. Finally \(C_1, C_1^{-1}, \tau, \) and \(\tau^{-1} \) are passed to subalgorithm \(F \), requiring \(O(n^2) \) operations. The output of each call to subalgorithm \(F \) will be a string of length \(O(n^2) \), which is then written to output; this will require \(O(n^2) \) operations. Hence the main algorithm requires a number of operations of types 1 – 7 that is at worst \(O(n^2) \) and \(O(k) \) (not counting the number of operations required by each subalgorithm). Now we must verify that the same can be said of each subalgorithm (each of which is invoked a fixed number of times by the main algorithm).

Subalgorithm \(A \) accepts an input \(w \) consisting of pairs of integers denoting transpositions. For each operation \(w \), it must interchange two \(n \)-digit strings of symbols. Therefore, for a fixed \(n \), it is linear in \(w \).

Subalgorithm \(B \) involves inspection of each cell of the \(n \times n \) array that it accepts as input, coupled with the writing of a string of length bounded by \(2n \). Its execution time is therefore \(O(n^2) \).

Subalgorithm \(C \) will require a number of operations of types 1 – 5 that is linear in \(n \), if the cyclic decomposition of the permutation it accepts as input consists of exactly one or two cycles. Otherwise, the subalgorithm invokes itself, after which it performs a number of operations of types 1 – 5 that is linear in \(n \). Each invocation of \(C \) requires a number of operations that is linear in \(n \). The number of self-invocations required grows linearly with \(n \). Hence the subalgorithm is \(O(n^2) \). It does not depend on \(k \).

Subalgorithm \(D \) must compare two \(n \)-digit strings that it accepts as input. It must separately perform \(n \) searches of a \(3n + 1 \)-digit array. It is therefore quadratic in \(n \).

Subalgorithm \(E \) is the inverse of subalgorithm \(B \), and involves the reading of a string of length \(j \) that is a linear multiple of \(n \), coupled with, for each symbol of \(j \), the exchange of a fixed number of integers in a list of length \(n \). It then scans the list \(n \) times to create a new list of length \(n \), which is then copied to the original list. Its execution time is then \(O(n^2) \). It does not depend on \(k \).

Subalgorithm \(F \) accepts an input bounded by \(Ln \) for some constant \(L \). It requires \(n \) iterations of a sequence of operations of types 1 – 5, where number of steps in the sequence is also bounded by \(Dn \) for some constant \(D \). Hence the algorithm is quadratic in \(n \).
Since each subalgorithm is at worst linear in k and at worst quadratic in n, by the argument in the beginning of this proof, the algorithm itself is, too. Note that subalgorithms B and D could be improved by representing the elements of the standard representation of S_n, not by matrices, but by arrays of integers, such that array entry i contains the number j if the column i of the corresponding matrix contains a 1 in the j-th position. (It is less clear how to linearize subalgorithm C, as it must recurse $O(n)$ times, invoking $O(n)$ operations for each recursion.) \square
3.8. Word reduction in S_n

We shall have need in what follows for a technique by which one can reduce an arbitrary word w representing an element $\sigma \in S_n$ to a unique word $\rho(\sigma)$ that will we call the canonical representative of σ.

Definition 3.8.1 (ShortLex order). Let the alphabet Σ in definition 2.1.1 be provided with a total order; that is, a reflexive, transitive, antisymmetric relation $<$ such that for all $a,b \in \Sigma$, either $a < b$ or $b < a$. The we can define the ShortLex order $<$ on Σ^*, where for any two strings $v,w \in \Sigma^*$, we have $v < w$ if an only if v is shorter than w, or else v and w are of the same length, and $v(i) < w(i)$, where the $v(i)$ and $w(i)$, the i-th letters of v and w, are the first at which the two string differ (reading right to left and counting from one). The ShortLex order is a well-ordering; any subset of Σ^* will have a unique smallest element given by the ShortLex order. [13]

Example 3.8.2. Let Σ_n be the alphabet $\Sigma_n = \{1, 2, 3, \ldots, n-1\}$. Then we can impose the total order $1 < 2 < 3 < \cdots < n - 1$ on Σ_n. Then for strings $13243, 13245 \in \Sigma_6$, we have that $13243 < 13245$.

Remark 3.8.3 (the group S_n as a language). Associate to the symbol $i \in \Sigma_n$ the generator τ_i of S_n. We can then regard the group S_n as the group of equivalence classes of strings over Σ_n, where two strings u and v are equivalent if and only if we can transform the string u to the string v by repeated application of the following identifications:

1. $(ii \sim e), ((i+1)i(i+1) \sim i(i+1)i), ((i+k)i \sim i(i+k)\{\text{for } k > 1\})$.

where e denotes the empty string. (That is, S_n is the group having generators $1, 2, \cdots n-1$ and relations $ii = e, (i+1)i(i+1) = i(i+1)i, (i+k)i = i(i+k)\{\text{for } k > 1\}$).

Definition 3.8.4 (reducible). Observe that the identifications $(u \sim v)$ given in 1 are listed with the ShortLex smaller term on the right. We say that a string $u \in \Sigma_n^*$ is reducible to a string $v \in \Sigma_n^*$, denoted $u \rightarrow^* v$, if by repeated application of the identifications 1 u can be transformed to v, and such that $v < u$ in the ShortLex order.

Given a set of rules S such as the above, but such that each pair of rules $(u_1 \sim v_1), (u_2 \sim v_2)$ satisfy the following two properties (where e denotes the empty string):

2. if $u_1 = rs$ and $u_2 = st$ with $s, t, r \in \Sigma_n^*$, and $s \neq e$,
then there exists $w \in \Sigma_n^*$ such that $v_1t \rightarrow^* w$ and $rv_2 \rightarrow^* w$

3. if $u_1 = rst$ and $u_2 = st$ with $s, t, r \in A_n^*$, and $s \neq e$,
then there exists $w \in \Sigma_n^*$ such that $u_1 \rightarrow^* w$ and $rv_2t \rightarrow^* w$

one can reduce any word w representing an element of S_n to a canonical form $r(w)$, such that for each $\sigma \in S_n$, we have a unique representative $r(w)$, obtainable from any word w representing σ. This reduction is given by the following algorithm [13, pp.116-126]:

Definition 3.8.5 (ShortLex order). Let the alphabet Σ in definition 2.1.1 be provided with a total order; that is, a reflexive, transitive, antisymmetric relation $<$ such that for all $a,b \in \Sigma$, either $a < b$ or $b < a$. The we can define the ShortLex order $<$ on Σ^*, where for any two strings $v,w \in \Sigma^*$, we have $v < w$ if an only if v is shorter than w, or else v and w are of the same length, and $v(i) < w(i)$, where the $v(i)$ and $w(i)$, the i-th letters of v and w, are the first at which the two string differ (reading right to left and counting from one). The ShortLex order is a well-ordering; any subset of Σ^* will have a unique smallest element given by the ShortLex order. [13]

Example 3.8.2. Let Σ_n be the alphabet $\Sigma_n = \{1, 2, 3, \ldots, n-1\}$. Then we can impose the total order $1 < 2 < 3 < \cdots < n - 1$ on Σ_n. Then for strings $13243, 13245 \in \Sigma_6$, we have that $13243 < 13245$.

Remark 3.8.3 (the group S_n as a language). Associate to the symbol $i \in \Sigma_n$ the generator τ_i of S_n. We can then regard the group S_n as the group of equivalence classes of strings over Σ_n, where two strings u and v are equivalent if and only if we can transform the string u to the string v by repeated application of the following identifications:

1. $(ii \sim e), ((i+1)i(i+1) \sim i(i+1)i), ((i+k)i \sim i(i+k)\{\text{for } k > 1\})$.

where e denotes the empty string. (That is, S_n is the group having generators $1, 2, \cdots n-1$ and relations $ii = e, (i+1)i(i+1) = i(i+1)i, (i+k)i = i(i+k)\{\text{for } k > 1\}$).

Definition 3.8.4 (reducible). Observe that the identifications $(u \sim v)$ given in 1 are listed with the ShortLex smaller term on the right. We say that a string $u \in \Sigma_n^*$ is reducible to a string $v \in \Sigma_n^*$, denoted $u \rightarrow^* v$, if by repeated application of the identifications 1 u can be transformed to v, and such that $v < u$ in the ShortLex order.

Given a set of rules S such as the above, but such that each pair of rules $(u_1 \sim v_1), (u_2 \sim v_2)$ satisfy the following two properties (where e denotes the empty string):

2. if $u_1 = rs$ and $u_2 = st$ with $s, t, r \in \Sigma_n^*$, and $s \neq e$,
then there exists $w \in \Sigma_n^*$ such that $v_1t \rightarrow^* w$ and $rv_2 \rightarrow^* w$

3. if $u_1 = rst$ and $u_2 = st$ with $s, t, r \in A_n^*$, and $s \neq e$,
then there exists $w \in \Sigma_n^*$ such that $u_1 \rightarrow^* w$ and $rv_2t \rightarrow^* w$

one can reduce any word w representing an element of S_n to a canonical form $r(w)$, such that for each $\sigma \in S_n$, we have a unique representative $r(w)$, obtainable from any word w representing σ. This reduction is given by the following algorithm [13, pp.116-126]:

3.8.1. Reduction algorithm A for S_n

.PROBLEM: Reduction of w to its canonical form.

INPUT: a word $w \in \Sigma^*$

OUTPUT: $A(w)$

ALGORITHM:

1. Select the subset of rules $S_1 \subset S$ such that for each rule, the left-hand side matches a substring of w.
2. If $S_1 = \{\emptyset\}$, terminate.
3. Let $S_2 \subset S_1$ be the set of rules in S_1 such that for each rule, the first character of the matching substring of w is as far to the left of w as possible.
4. Let $S_3 \subset S_2$ be the set of rules in S_2 have the smallest left-hand sides, in ShortLex order.
5. Let $r \in S_3$ be the rule having the shortest right-hand side, in ShortLex order.
6. Apply rule r to the left-most possible substring of w. Go to step 1.

Such a set of rules S constitute what is known as a complete set S of Knuth-Bendix rules. The relations given above for S_n are not a complete set of Knuth-Bendix rules. However, given a finitely presented group G having generators $X = \{x_1, x_2, \ldots, x_n\}$ and relations $R = \{(u_1, v_1), (u_2, v_2), \ldots (u_m, v_m)\}$, such that $u_i > v_i$ with respect to a ShortLex order, one can attempt to obtain a complete set of Knuth-Bendix rules as follows [13], pp.116-126. The procedure will always terminate for a finite group G [21]:

1. start with the set of rules $S_0 = S$ given by the (u_i, v_i).
2. For each pair of rules $r_1, r_2 \in S_i$ such that the left-hand sides overlap (are either of the form $r_1 = (uv, x)$ and $r_2 = (vw, y)$ with $v \neq e$, or $r_1 = (v, x)$ and $r_2 = (uvw, y)$:
 3. If no such overlap, terminate.
4. Else perform the reduction process desribed above on the word uvw, once starting with rule r_1, to obtain a word t_1, and once starting with r_2, to obtain a word t_2.
5. If $t_1 \neq t_2$ (say $t_1 < t_2$), add the rule (t_2, t_1) to S_i to obtain a new set S_{i+1}.
6. Go to 2.

Remark 3.8.5 (complexity of the reduction process). In what follows, we assume the existence of efficient implementations of algorithms for word reduction in S_n, (that is, polynomial time for fixed k and varying n, and also polynomial time for fixed n and varying k), that are functionally equivalent to the preceding (see for example the programs listed in [21] p. 8).
4. The Braid Groups B_n

In this section we present information about the braid groups B_n, with a focus on braids as equivalence classes of words in the standard Artin generators and their relations.

4.1. The braid groups B_n: algebraic, geometric, and topological definitions

Definition 4.1.1 (Braid Group: algebraic definition, [30], p.23). The braid group on n strands (denoted B_n) is given by the generators $\sigma_1 \cdots \sigma_{n-1}$ subject to the relations

$$\sigma_i\sigma_j = \sigma_j\sigma_i \quad \text{if } |i - j| > 2, \ 1 \leq i, j \leq n - 1$$
$$\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1} \quad 1 \leq i \leq n - 2.$$

Definition 4.1.2 (Braid Group: geometric definition, [30], p.22). A braid on n strands may be regarded geometrically as the union of n arcs embedded in $\mathbb{R}^2 \times [0, 1]$, such that the boundary is the set $\{1, 2, \ldots, n\} \times \{0\} \times \{0, 1\} \in \mathbb{R}^2 \times [0, 1]$ and such that no arc has a critical point with respect to the boundary (see figure 1). Two braids are isotopic if they are related by an isotopy of $\mathbb{R}^2 \times [0, 1]$ preserving the boundary and the vertical coordinate. Any geometric braid is obtained by attaching vertically a series of elementary braids, with each elementary braid given by an elementary braid diagram (which is the projection of the braid onto the $x-z$ plane, with the y-axis directed vertically outwards from the face of the page). Each elementary braid corresponds to a generator of the braid group (see figure 2). Isotopy introduces an equivalence relation on the set of braids, and the set of equivalence classes is a group, with action given by the attaching process just described. This group is in fact isomorphic to the group of equivalence classes of words in the σ_i^\pm given in the preceding definition see ([28]). Finally, a pure braid is one for which each each strand i beginning at $(x_i,0) \in \mathbb{R}^2 \times [0, 1]$ ends at $(x_i,1) \in \mathbb{R}^2 \times [0, 1]$.

Definition 4.1.3 (Braid Group, topological definition, [25], p.8). A third definition of the braid group, equivalent to the preceding two, may be given as follows. Let Y_n denote the set of all n-tuples (z_1, \cdots, z_n) of points in \mathbb{C} such that $z_i \neq z_j$ for $i \neq j$. Let $X_n = Y_n/S_n$: this is the configuration space of n (unordered) points in \mathbb{C}. Select a base point $p \in X_n$. Then B_n is the fundamental group $\pi_1(X_n,p)$ of X_n.

Definition 4.1.4 (Braid word, word length, [28], pp.15-19). Let b be a braid represented by a word w in the braid group generators σ_i and their inverses. We will refer to such w as braid words. The number of σ_i^\pm appearing in the word w is said to be the word length of w, denoted $l(w)$. If w is a word of minimal length representing b, then $\ |b| = l(w)$ is said to be the length of b (observe that the braid relations preserve word length, so any word of minimal length representing b determines the length of b).

For example, if b is the braid word $\sigma_1\sigma_1\sigma_2$, then $\ |b| = l(w) = 3$.

4.2. A homomorphism from B_n to S_n

Remark 4.2.1 (projection of $B_n \to S_n$, [13], ch. 9). A braid b maps the set of points $\{1,2,\cdots,n\} \times \{0\} \times \{0\}$ to the set of points $\{1,2,\cdots,n\} \times \{0\} \times \{1\}$. The map is
1 \rightarrow 1$, and the point $\{i\} \times \{0\} \times \{0\}$ is taken to the point $\{b(i)\} \times \{0\} \times \{1\}$. Hence, a braid defines a permutation:

$$\begin{bmatrix}
1 & 2 & \cdots & n \\
 b(1) & b(2) & \cdots & b(n)
\end{bmatrix}$$

In other words, letting τ_i, for $i = 1, \cdots, n - 1$, denote the standard generators of the symmetric group S_n (where τ_i denotes the permutation of the i-th and $i + 1$-th elements), one obtains a surjective group homomorphism $\rho : B_n \rightarrow S_n$ given by $\rho(\sigma_i) \rightarrow \tau_i$.

4.3. Right greedy normal form

The information in this section is taken from chapter 9 of [13].

Definition 4.3.1 (permutation braids, [13], pp.182-190). A positive braid is a braid consisting only of positive crossings (that is, crossings represented only by the σ_i, and not by any σ_i^{-1}). A permutation braid is a positive braid in which no two strands cross twice. We denote the permutation braids of B_n by D_n.

Remark 4.3.2 (isomorphism of D_n and S_n, [13], pp.182-190). It is known that the permutation braids D_n are in $1 \rightarrow 1$ correspondence with the elements of the symmetric group S_n. The isomorphism is given by the restriction to D_n of the map $\rho : B_n \rightarrow S_n$ defined above.

Remark 4.3.3 (permutations given by sets of labels exchanged under permutation, [13], pp.182-190). Consider the action of an element σ of S_n on the set of integers $\{1, 2, \cdots, n\}$. Let $R_\sigma = \{(i,j) \mid i < j$ and $\sigma(j) < \sigma(i)\}$. This set characterizes the permutation σ. We can define a partial order relation \geq on S_n by letting $\sigma \geq \tau$ if $R_\sigma \supseteq R_\tau$ (recall a partial order relation on a set S is a binary operation on S that is reflexive, antisymmetric, and transitive).

Given two permutations σ and τ, and the order relation \geq, there is a unique maximal element $\sigma \wedge \tau$ such that $\sigma \geq \sigma \wedge \tau$ and $\tau \geq \sigma \wedge \tau$. The element is given by the recursive formula:

$$R_{\sigma \wedge \tau} = \{(i, k) \in R_\sigma \cap R_\tau \mid (i, j) \in R_{\sigma \wedge \tau} \text{ or } (j, k) \in R_{\sigma \wedge \tau} \forall j \text{ s.t. } i < j < k\}.$$

(Observe that for starters, any pairs $(i, i + 1) \in R_\sigma \cap R_\tau$ will also appear in $R_{\sigma \wedge \tau}$). It turns out that there is also a unique minimal element $\sigma \vee \tau$ larger than both σ and τ.

Definition 4.3.4 (heads and tails). Let P_n be the set of positive braids of B_n. Let $\alpha, \beta, \gamma \in P$. If $\alpha \beta = \beta \gamma$, we say that α is a head of β and γ is a tail of β (one writes $\alpha \prec \beta$ and $\gamma \succ \beta$). It turns out (see [13] p. 188) that for braids $\alpha, \beta \in D_n$, we have $\alpha \prec \beta$ iff $\rho(\alpha) \geq \rho(\beta)$.

Remark 4.3.5 (facts about D_n, [13], pp.186-187). There is a unique maximal element of D_n = the element $m \in D_n$ such that $R_{\rho(m)} \supseteq R_{\rho(l)} \forall l \in D_n$. It is known as the “Gar- side element,” denoted Ω. It is given by $\Omega = (\sigma_1 \sigma_2 \cdots \sigma_{n-1})(\sigma_1 \sigma_2 \cdots \sigma_{n-2}) \cdots (\sigma_1)$,
which is a 180-degree twist of all strands. Here and in the remainder of this section, we apply braid words from right to left (treating the word as an operator on B_n), and draw them horizontally, moving right to left, with strand 1 on the top; for positive crossings, the i-th strand will pass over the $(i + 1)$-th. Hence the Garside element of D_3 is $(\sigma_1 \sigma_2) \sigma_1$ (see figure ??). We have the relations $\Omega \sigma_i = \sigma_{n-i} \Omega$, and $b \Omega^2 = \Omega^2 b$ for all $b \in B_n$. We choose for each element d_k of D_n a representative braid word w_k and call this the canonical representative of d_k. For instance, for D_3 we may choose the representatives $\{e, \sigma_1, \sigma_2, \sigma_1 \sigma_2, \sigma_2 \sigma_1, \sigma_1 \sigma_2 \sigma_2\}$, where e denotes the braid word consisting of no letters. In what follows, we shall always choose canonical representatives corresponding to the canonical representatives of elements of S_n as described in subsection 3.8.

Definition 4.3.6 (right greedy normal form (r.g.n.f.), [13] pp.191-196). A braid word w is in right greedy normal form if it is written in the form:

$$w = w_1 w_2 \cdots w_m \Omega^p$$

where each w_k is the canonical representative of an element of D_n, such that if two strands that are adjacent at the boundary of w_k and w_{k-1} cross in w_{k-1}, then they cross in w_k, and where p may be positive or negative, and where none of the w_k is Ω. The integer p in (6) is called the infimum of w, and the integer m is called the canonical length of w. In what follows, we denote the right greedy normal form of a braid word w to r.g.n.f.(w) in time quadratic in the length of w.

Remark 4.3.7 (Existence and Uniqueness of r.g.n.f. [13], p.195). There is a unique braid word in r.g.n.f. for each braid $b \in B_n$.

Remark 4.3.8 (Method of writing a braid in right-greedy normal form [7]). Given a braid word w, having k letters σ_i^{-1}, we may transform it into r.g.n.f as follows:

1. For each $\sigma_i^{-1} \in w$, multiply w on the right by $\Omega^2 \Omega^{-2}$. Call this new braid word w'.

2. Using the commutivity of Ω^2, move a copy of Ω^2 to the immediate left of each σ_i^{-1}. This replaces each σ_i with a positive word of the form $\Omega(\bullet)$, where (•) consists of $|\Omega| - 1$ letters. Call this braid word w''.

3. Using Ω^2, move all copies of $\Omega \in w''$ to the immediate left of the Ω^{-2k} term added in step 1. This yields a word of the form:

$$w''' = \sigma_{p_1} \sigma_{p_2} \cdots \sigma_{p_m} \Omega^r$$

where r is positive or negative, and all the σ_{p_j} are positive twists.

4. Next we want to express the subword $p = \sigma_{p_1} \cdots \sigma_{p_m}$ as product of canonical representatives of D_n. We proceed as follows. Scanning from right to left, we find
the largest substring s of letters of p, $s = \sigma_{p_1} \cdots \sigma_{p_m}$, such that s represents a tail of the braid represented by p, and such that no two strands of s cross twice. Replace the substring with its canonical representative $w_k \in D_n$. Repeat this procedure iteratively beginning with the remaining $\sigma_{p_1} \cdots \sigma_{p_{m-1}}$ letters, to obtain a braid word:

$$w^{(4)} = w_1 w_2 \cdots w_q \Omega^r$$

5. We have that each w_k represents a braid that is a tail of the braid represented by the $w_1 \cdots w_{k-1}$. We want the w_k to have the property that if two strands that are adjacent at the boundary of w_k and w_{k-1} cross in w_{k-1}, then they cross in w_k. It turns out that this is equivalent to saying (see [13] pp.190-196) that each w_k is maximal tail for the word $w_1 \cdots w_k$. This means that w_k represents the maximal element of D_n, such that the element is a tail of the braid given by $w_1 \cdots w_k$. (That is, if v_j is any other element of D_n that is a tail of $w_1 \cdots w_k$, then $\rho(w_k) \geq \rho(v_j)$). (We can define a “minimal head” of $w_1 \cdots w_k$ analogously).

We can obtain a word $w^{(5)}$ in such a form as follows. Consider the product ab of two canonical representatives a and b of elements of D_n. Let b^R denote the reversal of b, that is, if $b = \sigma_{i_1} \cdots \sigma_{i_k}$, then $b^R = \sigma_{i_k} \cdots \sigma_{i_1}$. Let $m(a, b)$ be the canonical representative of the element mapped by ρ to the element $\rho(a) \wedge (\rho(\Omega) \rho(b^R))$ of S_n. It turns out (see [13], p. 191, Prop. 9.2.1) that $m(a, b)$ is the unique maximal tail of a, such that $m(a, b)b \in D_n$.

So, we proceed as follows. We consider the product $w_1 w_2$, let $t_0 = w_1$, let $w_{q+1} = e$, and let $h_1 = t_0 m(t_0, w_2)^{-1}$. That is, h_1 is the minimal head of $t_0 w_2$. Let $t_1 = m(t_0, w_2) w_2$. Next we let $h_2 = t_1 m(t_1, w_3)^{-1}$. Then let $t_2 = m(t_1, w_3) w_3$. In general we have

$$h_i = t_{i-1} m(t_{i-1}, w_{i+1})^{-1}, \quad t_i = m(t_{i-1}, w_{i+1}) w_{i+1}$$

We obtain a sequence

$$w^{(5)} = h_1 h_2 \cdots h_{q-1} t_q \Omega^r$$

where each h_i satisfies the properties of [13, 6] as does t_q.

Example 4.3.9 (computing r.g.n.f. for a simple commutator of elements of D_3). An example is in order. The elements of D_3 have representatives as follows:

$e, \sigma_1, \sigma_2, \sigma_1 \sigma_2, \sigma_2 \sigma_1, \sigma_1 \sigma_2 \sigma_1$. Under ρ, these elements map to permutations given by the following R-sets:

$$R_{\rho(\sigma_1)} = \{(1,2)\}$$
$$R_{\rho(\sigma_2)} = \{(2,3)\}$$
$$R_{\rho(\sigma_1 \sigma_2)} = \{((1,2),(1,3))\}$$
$$R_{\rho(\sigma_2 \sigma_1)} = \{((1,3),(2,3))\}$$
$$R_{\rho(\Omega)} = \{(1,2),(1,3),(2,3)\}$$

(11)
The complimentary permutations $\rho(\Omega)\rho(\sigma)$ are given by:

$$
\begin{align*}
R_{\rho(\Omega)\rho(\sigma_1)} &= \{(1,3), (2,3)\} \\
R_{\rho(\Omega)\rho(\sigma_2)} &= \{(1,2), (1,3)\} \\
R_{\rho(\Omega)\rho(\sigma_1\sigma_2)} &= \{(1,2)\} \\
R_{\rho(\Omega)\rho(\sigma_2\sigma_1)} &= \{(2,3)\} \\
R_{\rho(\Omega)\rho(\Omega)} &= \emptyset
\end{align*}
$$

(12)

The reversals of each element are given by $\sigma_i^R = \sigma_i$, $(\sigma_1\sigma_2)^R = \sigma_2\sigma_1$, $\Omega^R = \Omega$.

So, say we are given a braid word $w = [\sigma_1, \sigma_2] = \sigma_1\sigma_2\sigma_1^{-1}\sigma_2^{-1}$. We apply steps 1 and 2 to obtain:

$$
w^{(2)} = \sigma_1\sigma_2\Omega^2\sigma_1^{-1}\Omega^2\sigma_2^{-1}\Omega^{-4} = \sigma_1\sigma_2(\Omega\sigma_1\sigma_2)(\Omega\sigma_2\sigma_1)\Omega^{-4}.
$$

(13)

Now we move the Ω’s to the right to obtain $w^{(3)} = \sigma_1\sigma_2\sigma_2^{-1}\Omega^{-1}$. Working right to left, we then factor this as $w^{(4)} = (\sigma_1\sigma_2)(\sigma_2)\Omega^{-1}$. Then we set $t_0 = (\sigma_1\sigma_2)$. Now $m(\sigma_1\sigma_2, \sigma_2) = \rho(\sigma_1\sigma_2) \cap (\rho(\Omega)\rho(\sigma_2^R))$. This is the wedge of the sets $\{(1,3), (2,3)\}$ and $\{(1,2), (1,3)\}$, which is \emptyset, and this corresponds to the canonical representative e. So $h_1 = (\sigma_1, \sigma_2)e^{-1} = (\sigma_1\sigma_2)$ and $t_1 = e\sigma_2 = \sigma_2$. Then $m(t_1, w_3) = m(\sigma_2, e) = \sigma_2$ so $h_2 = t_1m(\sigma_2, e)^{-1} = e$ and $t_2 = m(\sigma_2, e)w_3 = \sigma_2$ So we have $w^{(5)} = h_1t_2 = (\sigma_1\sigma_2)\sigma_2$. (In this particular case, we were not able to pull any additional crossings to the right in step 5.)

Remark 4.3.10 (right greedy normal form is in P). It is known ([13], [7]) that an algorithm exists to convert an arbitrary braid word to right greedy normal form in time quadratic in the length of the braid word. From this together with ([13.7], it follows that there is a polynomial time algorithm for solving the word problem in B_n; that is, there is a classical Turing machine that can compare two arbitrary braid words w_1, w_2, for fixed n, in time polynomial in the sum of the lengths of w_1 and w_2.

Remark 4.3.11 (positive cancellation). Positive braids obey a right cancellation law: for positive braids a, a', b, we have that $a'b = ab$ iff $a = a'$. A similar law holds for left cancellation. Note that in what follows, we will write, for braid words w_1, w_2, that $w_1 = w_2$ when w_1 and w_2 are identical as braid words (that is, they consist of exactly the same sequence of σ_1^\pm, and $w_1 \sim w_2$ when w_1 and w_2 representative equivalent braids, but are not necessarily identical as braid words (that is, they are equivalent as braid words under the braid relations, but may have different “spellings”). For example, we will write $w_1 \sim w_2$ if $w = \sigma_1\sigma_2\sigma_1$ and $w_2 = \sigma_2\sigma_1\sigma_2$. We will write $w_1 = w_2$ if both are the strings $\sigma_1\sigma_2\sigma_1$. Given a braid word w, \bar{w} will denote the corresponding braid.
5. The SCPP for B_n: Extension of Cejtin-Rivin

In this section we describe an extension of the Cejtin-Rivin algorithm to a subset of the permutation braids of B_n.

5.1. The simple commutator promise problem for B_n

Definition 5.1.1 (simple commutator promise problem). The simple commutator promise problem (SCPP) for the braid groups is defined as follows: Let w be a braid word representing a braid $\gamma \in B_n$, such that γ is of the form $\gamma = [a,b] := aba^{-1}b^{-1}$ for braids a and b. Find braid words x and y such that $[x,y]$ represents the braid γ; that is, $[x,y] \sim w$.

Definition 5.1.2 (related conjugacy problem). One active area of braid group research is the conjugacy problem: given two braid words w and w', can one determine whether a braid word x exists such that $w \sim xw'x^{-1}$? That is, do the two braid words represent conjugate braids? No polynomial time solution is currently known for this problem, though exponential time algorithms exist (see [7]). Related to this is the “search” version of the conjugacy problem: given braid words g and h that represent conjugate braids, can one find a braid word x such that $g \sim xhx^{-1}$? As with the conjugacy problem itself, no known polynomial time algorithm for the conjugacy search problem (CSP) currently exists.

Remark 5.1.3. Naturally, the simple commutator promise problem and the conjugacy search problems are related. One way to see this: say w is a braid word representing a simple commutator γ. Say one had a method of finding a braid word a such that $w \sim [a,x]$ for some braid word x. Then to solve the SCPP, one would need to find a braid word x satisfying:

(14) \hspace{1cm} xa^{-1}x^{-1} \sim a^{-1}w

5.2. An extension of the Cejtin-Rivin algorithm to the SCPP for permutation braids

We would like to extend the Cejtin-Rivin algorithm described above to solve the SCPP for braids that are simple commutators of permutations braids; that is, for all braids of the form $[d_1,d_2]$ for $d_1, d_2 \in D$. We will denote this set of braids by $[D_n, D_n]$, though we must remember that the set does not have the structure of a subgroup of B_n, since the product of two elements of $[D_n, D_n]$ need not be in $[D_n, D_n]$.

Definition 5.2.1 (inverse of $\rho : B_n \to S_n$). As we saw above, we have that the set of permutation braids D_n is in $1-1$ correspondence with the elements of the group S_n, with the correspondence given by the natural projective homomorphism $\rho : B_n \to S_n$, when restricted to D_n. For $\sigma \in S_n$, let $\rho^{-1}(\sigma)$ denote the unique element $d \in D_n$ such that $\rho(d) = \sigma$.
Now, let b be an element of the set $[D_n, D_n]$. Then $b = [d_1, d_2]$ for $d_1, d_2 \in D_n$. Since b is a simple commutator, any expression of b as a word in the standard Artin generators of B_n will contain an even number of generators, as the braid relations preserve word length. Hence $\rho(b) \in A_n$, the commutator subgroup of S_n. (Indeed, by the same argument, for any element b of the commutator subgroup $[B_n, B_n]$, we have that $\rho(b) \in A_n$.) Let $CR(\sigma)$ be the result of applying the Cejtin-Rivin algorithm described above to the permutation $\sigma \in A_n$. So we have that $CR(\rho(b)) = [\psi_1, \psi_2]$ for permutations ψ_1, ψ_2 of S_n. We would like to know: when is it the case that $b = [\rho^{-1}(\psi_1), \rho^{-1}(\psi_2)]$? We denote the subset of all such elements in $[D_n, D_n]$ by K.

Definition 5.2.2 (the set of braid words K). For each $\sigma \in A_n \subset S_n$, let $CR(\sigma)$ be the simple commutator $[\psi_1(\sigma), \psi_2(\sigma)]$ that is the output of the Cejtin-Rivin algorithm applied to σ. Let w_{σ, ψ_i} be the canonical representative (as defined in 4.3.5) of the element $\rho^{-1}(\psi_i(\sigma)) \in D_n$. Let

$$K = \{[w_{\psi_1, \sigma}, w_{\psi_2, \sigma}] | \sigma \in A_n \subset S_n\}$$

Lemma 5.2.3 (surjectivity of ρ onto A_n, when restricted to simple commutators of D_n). The restriction of ρ to the elements of $[D_n, D_n]$ maps surjectively onto the alternating subgroup $A_n \subset S_n$.

Proof: Given $\sigma \in A_n$, we have that $CR(\sigma) = [\psi_1(\sigma), \psi_2(\sigma)]$ for $\psi_1(\sigma), \psi_2(\sigma) \in S_n$. This defines an element

$$d = \rho^{-1}(\psi_1(\sigma))\rho^{-1}(\psi_2(\sigma))\rho^{-1}(\psi_1^{-1}(\sigma))\rho^{-1}(\psi_2^{-1}(\sigma)) \in [D_n, D_n]$$

Then, since $d \in B_n$ and ρ maps B_n homomorphically to S_n, we have that

$$\rho(d) = \rho(\rho^{-1}(\psi_1(\sigma))\rho^{-1}(\psi_2(\sigma))\rho^{-1}(\psi_1^{-1}(\sigma))\rho^{-1}(\psi_2^{-1}(\sigma))) = \rho(\rho^{-1}(\psi_1(\sigma)))\rho(\rho^{-1}(\psi_2(\sigma)))\rho(\rho^{-1}(\psi_1^{-1}(\sigma)))\rho(\rho^{-1}(\psi_2^{-1}(\sigma))) = \psi_1(\sigma)\psi_2(\sigma)\psi_1^{-1}(\sigma)\psi_2^{-1}(\sigma) = \sigma,$$

the next to last equality given by the 1–1-ness of ρ when restricted to D_n.

We may characterize as follows the set K:

Proposition 5.2.4. The set $K \in [D_n, D_n]$ is the set of braids having a braid word representative in K. Given an efficient algorithm $A(w)$ for writing any word representative w of $\sigma \in S_n$ in canonical form, there is an efficient algorithm to express any $k \in K$ as a simple commutator of elements of D_n. The algorithm can accept any $d \in [D_n, D_n]$, and will return 0 if the element $d \notin K$.

Proof: We first show that if $k \in K$, then it has a braid word representative $w \in K$. If $k \in K$, then by definition we have that $CR(\rho(k)) = [\psi_1(\rho(k)), \psi_2(\rho(k))]$ and $[\rho^{-1}(\psi_1(k)), \rho^{-1}(\psi_2(k))] = k$. Then $w = [w_{\psi_1, \rho(k)}, w_{\psi_2, \rho(k)}] \in K$ and w is a braid word representative of k.

Now if $w = [w_1, w_2] \in K$, then it represents a braid $k \in K$; precisely, the braid k given by $[b_1, b_2]$ where b_i is the permutation braid canonically represented by w_i.

Next, given an element $d \in [D_n, D_n]$, expressed as a braid word w_b in the standard Artin generators t_i of B_n, we can compute its projection $\rho(d)$, expressed as a word
in the standard generators \(\tau_i \) of \(S_n \), by replacing each \(t_i \) or \(t_i^{-1} \) with \(\tau_i \). Denote the word so computed by \(w_s \). Clearly there is an algorithm to perform this conversion, such that it will execute on a classical Turing machine, as given above, in time that is polynomial in the length \(l \) of \(w_b \) (it will consist of \(O(l) \) invocations of operations of types 1–5). We can then pass \(w_s \) to our implementation of the Cejtin-Rivin algorithm, which as we saw is \(O(n^2) \) and \(O(k) \) where \(k \) is the length of \(w_s \); we have that \(k \) is bounded by the length of \(w_b \). Denote the output of \(CR(w_s) \) by \(CR(w_s) = [\psi_1, \psi_2] \). The length of \(CR(w_s) \), by definition of our \(CR \) implementation, is bounded by a quadratic function of \(n \). We can compute \(\rho^{-1}(\psi_1) \) and \(\rho^{-1}(\psi_2) \), expressed as canonical representatives, by first reducing each \(\psi_i \) to its canonical representative \(A(\psi_1) \) (see \[3.8.1\]), and then replacing each \(\tau_i \) of \(A(\psi_1) \) with \(t_i \). Hence, given an arbitrary braid word representative \(w_b \) representing an element of \(d \in [D_n, D_n] \), we can compute the image \(w_s = \rho(w_b) \in S_n \), then compute \(CR(w_s) = [\psi_1, \psi_2] \), and then compute \([\rho^{-1}(A(\psi_1)), \rho^{-1}(A(\psi_2))] \), all in time polynomial in the length of \(w_b \) (for fixed \(n \)), and also in \(n \) (for fixed input length).

Finally, we can compute \(r.g.n.f.(d) \) and \(r.g.n.f.([\rho^{-1}(A(\psi_1)), \rho^{-1}(A(\psi_2))] \). The operation \(r.g.n.f.(d) \), as noted above, is quadratic in the length of its input. If the right greedy normal forms of the two words are equal, then \([w_1, w_2] \) expresses \(d \) as a simple commutator, and the output of our algorithm will be the word \(w_1 w_2 w_1^{-1} w_2^{-1} \). If they are not equal, then \(d \notin K \), and the output of our algorithm will be 0. Hence our algorithm, as we have just shown, is polynomial time in the length of the braid word \(w \), representing a braid \(b \in B_n \) given as input, and is also polynomial time in \(n \). \(\square \).

Example 5.2.5 (Example of computation of \(d \) as a simple commutator). The braid \(k = \sigma_2 \sigma_1 \Omega \in K \subset B_3 \) projects under \(\rho \) to the permutation (123). This can be expressed, via Cejtin-Rivin, as \([\tau_2 \tau_1, \tau_1 \tau_2 \tau_1] \). This corresponds to \(k = [\sigma_2 \sigma_1, \Omega] \).

Corollary 5.2.6. Let \(b \in [B_n, B_n] \) be a braid word representing a product of simple commutators. Given an efficient algorithm \(A(w) \) for writing any word representative \(w \) of \(\sigma \in S_n \) in canonical form, there exists an efficient algorithm to express \(b \) as the product of a pure braid and a simple commutator of permutation braids.

Proof: Compute \(CR(\rho(b)) \), the output of which we denote \([\psi_1, \psi_2] \). Compute \(A(\psi_1) \) and \(A(\psi_2) \), and then replace each \(\tau_i \) of \(\psi_j \) (where \(\tau_i \) a generator of \(S_n \)), with \(t_i \) (the corresponding generator of \(B_n \)). This gives an expression \([w_1, w_2] \) for \(d \in [D_n, D_n] \), in a canonical form induced by \(A \), by the surjectivity of \(\rho : [D_n, D_n] \to A_n \subset S_n \). Since the kernel of \(\rho \) is the subgroup of pure braids \(P \subset B_n \), we have that \(b = p d \) for some \(p \in P \), where \(p = b[d_1, d_2]^{-1} \). By the preceding proposition and the conditions of our hypothesis, this expression for \(b \) can be computed in time polynomial in the length of \(b \). Hence there is an efficient algorithm to express any element of the commutator subgroup of \(B_n \) as the product of a pure braid and a simple commutator of permutation braids. \(\square \)
5.3. A probablistic algorithm for the SCPP for B_n

Now, given a braid word b representing an element of $\gamma \in B_n$, such that we are
guaranteed γ is a simple commutator, we can write b in the form $b = p[d_1, d_2]$ as above. We know there must be a sequence $p[d_1, d_2] = w_0 \rightarrow w_1 \rightarrow \cdots \rightarrow w_n = [a, b]$ where each w_i is obtained from w_{i-1} by one subword substitution corresponding to a defining relation of the braid group. We know moreover that there is some minimal N_b such that there is a sequence $p[d_1, d_2] = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_n = [a, b]$, having a subset of terms $v_0 = v_{k_0}, v_{k_1}, \cdots, v_{k_m} = v_n$, where $1 \leq k_1 < k_2 < \cdots < k_m \leq n$, such that for all i:

1. $k_{i+1} - k_i < N_b$
2. $v_i = h_i [a_i, b_i]$, where $|h_i| < |p_i|$, for $h_i, a_i, b_i \in B$.
3. $|h_i + 1| < |h_i|$
4. $|h_1| < |p|$

for $h_i, a_i, b_i \in B$, where $||$ denotes word length.

We accordingly define the K-bounded version of the SCPP problem as follows: given b an arbitrary braid word representing a simple commutator, find such a sequence, for $N_b = K$, if one exists. We can define a probablistic algorithm for searching for such a sequence as follows:

INPUT: A braid word b guaranteed to be a simple commutator.

ALGORITHM:

1. Randomly select integer $M \in \mathbb{Z}^+$. Write the word b in the form $b_0 = p[d_1, d_2]$ in the manner described above. Let the output O be set to e (the empty word).
2. For each $i = 0, 1, \cdots M$:
 3. Randomly select $N_i \in \mathbb{Z}^+$ s.t. if $i > 0$, then $N_i > N_{i-1}$. Randomly Let $j = 0$.
 4. While $j < N_i$:
 5. Randomly select a subword of b_i that can be rewritten via a rule given by one of the braid relations, and apply the rule.
 6. If the result b_{i+1} is of the form $[a, b]$, append the symbol \rightarrow followed by the word $[a, b]$ followed by (N_i) to O. Terminate with success.
 7. Else if b_i satisfies properties (2) − (4) above, append the symbol \rightarrow followed by the word b_{i+1} to O. set $j = 0$.
5. Else $j = j + 1$.
6. Terminate with failure.
6. Summary and questions for further research

In this manuscript, we first discussed motivations for studying the commutator subgroups of various finite groups. We then defined the simple commutator promise problem (SCPP), and studied the problem for the case of the symmetric group S_n, applying the work of Cejtin and Rivin. We then extended the algorithm to a small but notable subset of elements of the braid group B_n; namely, to a subset K of the set of simple commutators of permutation braids, such that K is in 1–1 correspondence with the simple commutators of S_n. We found that any element of the commutator subgroup of B_n can be expressed efficiently as the product of an element of K and a pure braid.

We here pose a few questions for further research:

1. Can the Cejtin-Rivin algorithm be extended to a larger subset of braids than the set K defined above (5.2.2)? What are the necessary and sufficient conditions that the commutator subgroup $[G,G]$ of a given group G must satisfy, in order for the simple commutator promise problem to be efficiently solvable for G?

2. Given an arbitrary braid word b that represents a simple commutator of braids, are there values of N_b and M_b such that the probabilistic algorithm of the preceding section will terminate with a probability of success P, such that $P > \frac{1}{2}$, and such that (for fixed n) the algorithm will execute on a single-tape classical deterministic Turing machine in time polynomial in the length of the input b, and such that the algorithm will execute in time polynomial in n, for input of fixed length?

3. The above discussion of complexity concerns worst-case scenarios, but there are other measures of complexity; see for example the description of average-case complexity in [23]. Can we use the above results to find an algorithm that solves the SCPP for B_n, with average-case complexity polynomial in both n and the length of the algorithm input, relative to a discrete probability measure μ on the set of braid words? What measure should be used?

4. It is known that braid groups have a faithful linear representation [5] [8]. Can this representation be used to obtain a solution to the simple commutator promise problem for B_n?

5. There are alternatives to the classical Turing machine model of computing, in particular the quantum model, which replaces the transition functions of the Turing machine with unitary operations on a finite dimensional Hilbert space, as described in [29]. It is known that braid groups can be used as a model for a method of computation that is equivalent in power to the quantum model [14] [15] [15] [17] [18]. Can either of these models yield an efficient solution to the simple commutator promise problem for the braid groups?
7. Figures

figure 1: a braid diagram corresponding (bottom to top) to $\sigma_1\sigma_2\sigma_3^{-1}$

figure 2: a braid diagram corresponding to σ_i
figure 3: a braid diagram corresponding to $\Omega \in B_3$
References

1. Iris Anshel, Michael Anshel, Dorian Goldfeld, *An Algebraic Method for Public-Key Cryptography*, Mathematical Research Letters, vol. 6, pp. 1-5, 1999.

2. Colin C. Adams, *The Knot Book*, New York: Freeman Press, 2001.

3. Z. Arad, M. Herzog (eds.), “Products of Conjugacy Classes in Groups”, *Lecture Notes in Mathematics*, no. 1112, New York: Springer-Verlag, 1985.

4. Michael Aschbacher, “Classification of the Finite Simple Groups”, *Notices of the AMS*, vol. 51, no. 7, pp.736-740.

5. S. Bigelow, *Representations of Braid Groups*, ICM 2002 Vol. III 1-3.

6. Joan Birman, *Braids, Links, and Mapping Class Groups*, Annals of Mathematics Studies vol. 82, Princeton: Princeton UP, 1975.

7. Joan Birman, Tara Brendle, *Braids, a Survey*, preprint, published as J.S. Birman and T.E Brendle, “Braids: A Survey,” *Handbook of Knot Theory*, W.Menasco and M. Thistlethwaite, eds., Amsterdam: Elsevier B.V, 2005, pp. 19-103.

8. Ryan Budney, “On the image of the Lawrence-Krammer representation”, arXiv:math.GT/0202246.

9. Phyllis Joan Cassidy, “Products of Commutators are Not Always Commutators: An Example”, *American Mathematical Monthly*, Vol. 86, No. 9, p.722, 1979.

10. Bernard Domanski, Michael Anshel, ”The Complexity of Dehn’s Algorithm for Word Problems in Groups”, *J. Algorithms* Vol, 6, No.4, pp. 543-549, 1985.

11. Henry Cejtin and Igor Rivin, “A Property of Alternating Groups”, arXiv:math.GR/0303036.

12. Erich W. Ellers, Nikolai Grodeev, “On the Conjectures of J. Thompson and O. Ore”, *Transactions of the AMS*, Vol 350, Num 9, Sep 1998.

13. David B. A. Epstein, J.W. Cannon, D.F. Holt, S. V. Levy, M. S. Paterson, W.P. Thurston, *Word Processing in Groups*, Boston: Jones and Bartlett, 1992.

14. Michael H. Freedman, “P/NP, and the quantum field computer”, *Proc. Natl. Acad. Sci. USA*, Vol. 95, pp.98-101, Jan 1998.
15. Michael H. Freedman, Alexei Kitaev, Zhengang Wang, “Simulation of topological field theories by quantum computers”, arXiv:quant-ph/0001071

16. Michael H. Freedman, Kevin Walker, Zhengan Wang, “Quantum SU(2) faithfully detects mapping class groups modulo center”, Geometry and Topology, Vol. 6 (2002), pp.523-539.

17. M.H. Freedman, personal communication, 2003.

18. Michael H. Freedman, Michael Larsen, Zhengan Wang, “A modular functor which is universal for quantum computing”, arXiv:quant-ph/0001108

19. Robert E. Gompf, Andras I. Stipsicz, 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics vol. 20, Providence: AMS, 1999.

20. Juan Gonzales-Meneses, “braiding” (software program), www.personal.us.es/meneses

21. Derek F. Holt, “Rewriting Techniques in Finitely Presented Groups and Monoids, Lectures given at New Mexico State University, January 3-7, 1997”, www.math.unl.edu/ shermiller2/hs/holt2.ps

22. I.M. Isaacs, Commutators and the Commutator Subgroup, The American Mathematical Monthly, Vol. 84, No. 9, pp.720-722, 1977.

23. Ilya Kapovich, Alexei Myasnikov, Paul Schupp, Vladimir Shpilrain, “Average-Case Complexity and Decision Problems in Group Theory”, Advances in Math. vol. 190, pp. 343-359, 2005.

24. Christian Kassel, Quantum Groups, Graduate Texts in Mathematics vol. 155, New York: Springer-Verlag, 1995.

25. Christian Kassel, Marc Rosso, Vladimir Turaev, Quantum Groups and Knot Invariants, Paris: SMF No. 5, 1997.

26. R.C. Kirby, A calculus for framed links in S^3, Invent. Math. Vol. 105, pp.35-56, 1978.

27. Harry R. Lewis and Christos H. Papadimitriou, Elements of the Theory of Computation, 2nd. ed. London: Prentice-Hall, 1998.

28. Kunito Murasugi, Bohdan I. Kurpita, A Study of Braids, Netherlands: Kluwer, 1999.
29. Michael A. Nielsen and Isaac I. Chuang, *Quantum Computation and Quantum Information*, Cambridge: Cambridge UP, 2000.

30. Tomotada Ohtsuki, *Quantum Invariants, a Study of Knots, 3-manifolds, and Their Sets*, Singapore: World Scientific, 2002.

31. Oystein Ore, *Some Remarks on Commutators*, Proceedings of the American Mathematical Society, Vol. 2, No. 2, pp.3-07-314, 1951.

32. Bruce E. Sagan, *The Symmetric Group, Representations, Combinatorial Algorithms, and Symmetric Functions*, 2nd ed., New York: Springer, 2001.

33. James Ulrich, “CR”, C++ source code for implementation of the Cejtin-Rivin algorithm, available by email request to the author at julrich@gc.cuny.edu

34. Edward Witten, “Quantum Field Theory and the Jones Polynomial,” *Communications in Mathematical Physics*, Vol 121, pp.351-399, 1989.