Relic gravitational waves in the frame of slow-roll inflation with a power-law potential, and their detection

Minglei Tong

National Time Service Center, Chinese Academy of Sciences, Xi’an, Shaanxi 710600, People’s Republic of China
and
Key Laboratory of Time and Frequency Primary Standards, Chinese Academy of Sciences, Xi’an, Shaanxi 710600, People’s Republic of China

E-mail: mltong@ntsc.ac.cn

Received 31 October 2012, in final form 9 January 2013
Published 13 February 2013
Online at stacks.iop.org/CQG/30/055013

Abstract

We obtained the analytic solutions of relic gravitational waves (RGWs) for the slow-roll inflation with a power-law form potential of the scalar field, \(V = \lambda \phi^n \). Based on a reasonable range of \(n \) constrained by cosmic microwave background (CMB) observations, we give tight constraints of the tensor-to-scalar ratio \(r \) and the inflation expansion index \(\beta \) for the fixed scalar spectral index \(n_s \). Even though, the spectrum of RGWs in low frequencies hardly depends on any parameters, the high frequency parts will be affected by several parameters, such as \(n_s \), the reheating temperature \(T_{RH} \) and the index \(\beta_s \) describing the expansion from the end of inflation to the reheating process. We analyzed in detail all the factors which would affect the spectrum of RGWs in high frequencies including the quantum normalization. We found that the future GW detectors SKA, eLISA, BBO and DECIGO are promising to catch the signals of RGWs. Furthermore, BBO and DECIGO have the potential not only to distinguish the spectra with different parameters but also to examine the validity of the quantum normalization.

PACS numbers: 04.30.−w, 98.80.Es, 98.80.Cq

(Some figures may appear in colour only in the online journal)

1. Introduction

The validity of general relativity and quantum mechanics makes sure the generation of a stochastic background of relic gravitational waves (RGWs) [1–6] during the early inflationary stage, whose primordial amplitude could be determined by the quantum normalization at the time of the wave modes crossing the horizon during the inflation. Since the interaction of RGWs with other cosmic components is very weak, the evolution of RGWs are mainly determined by
the behavior of cosmic expansion including the current acceleration [7, 8]. Therefore, RGWs could serve as a unique tool to study the very early Universe earlier than the recombination stage when the cosmic microwave background (CMB) radiation was generated. As an interesting source for gravitational wave (GW) detectors, RGWs exist everywhere and anytime unlike GWs radiated by the usual astrophysical process. Moreover, RGWs spread a very broad range of frequency, 10^{-18}–10^{10} Hz, making themselves become one of the major scientific goals of various GW detectors with different response frequency bands. The current and planed GW detectors contain the ground-based interferometers, such as LIGO [9], Advanced LIGO [10, 11], VIRGO [12, 13], GEO [14], KAGRA [15] and ET [16, 17] aiming at the frequency range 10^3–10^8 Hz; the space interferometers, such as the future eLISA/NGO [18, 19] which is sensitive in the frequency range 10^{-4}–10^{-1} Hz, BBO [20, 21] and DECIGO [22, 23] which both are sensitive in the frequency range 0.1–10 Hz; and the pulsar timing array, such as PPTA [24, 25] and the planned SKA [26] with the frequency window 10^{-9}–10^{-6} Hz. Besides, there are some potential very high frequency GW detectors, such as the waveguide detector [27], the proposed Gaussian maser beam detector around GHz [28] and the 100 MHz detector with a pair of 75 cm baseline synchronous recycling interferometers [29]. Furthermore, the very low frequency portion of RGWs also contribute to the anisotropies and polarizations of CMB [30], yielding a magnetic type polarization of CMB as a distinguished signal of RGWs. WMAP [31–34], Planck [35], the ground-based ACTPol [36] and the proposed CMBpol [37] are of this type.

The reheating temperature, T_{RH}, carries rich information of the early Universe, and relates to the decay rate of the inflation as $T_{RH} \propto \sqrt{\Gamma}$ [38, 39]. Recently, the temperature of the reheating, T_{RH}, was evaluated [40] according to the CMB observations by WMAP 7 [34], combining with the slow-roll inflation scenarios. Furthermore, the resultant RGWs was studied in [41]. However, these pieces of work underwent the assumption of a fixed form of the potential of the scalar field driving the slow-roll inflation, $V(\phi) = \frac{1}{2}m^2\phi^2$. In this paper, we study a more general case of $V(\phi) = \lambda\phi^n$ [42], where λ is constant. Moreover, we adopt the limitation $n < 2.1$ obtained from the spectrum of CMB [43]. For a non-fixed value of n, it is hard to evaluate the temperature of the reheating process, T_{RH}, using the method employed in [40]. Thus, we choose several values of T_{RH} lying in the range of $\sim 10^4$–10^8 GeV, where the lower limit and the upper limit of T_{RH} are obtained from the constraints in [43] and [44], respectively. In the text, one will see that n and T_{RH} affect the increases of the scale factor in the early stages of the Universe. Once all the expansion histories of different stages are determined, the evolutions of the RGWs at various phases can be determined subsequently. For the present time, the solutions of RGWs can be obtained, whose different frequency bands correspond to the k modes re-entered the horizon at different phases. On the other hand, the anisotropies due to the tensor metric perturbations (GWs) can be scaled to those due to the observations of the scalar perturbations by introducing a parameter r called the tensor-to-scalar ratio. Under the frame of the slow-roll inflation scenario, r will be constrained in a narrow range due to the constraints from n for a given value of the scalar spectral index n_s. Similarly, the inflation expansion index β will also be constrained in a narrow range. Besides, there is a simple relation between n and the preheating expansion index β, describing the expansion behavior of the Universe from the end of inflation to the reheating process. As will be shown below, the RGWs in the very high frequencies are sensitively dependent on the parameters n_s, β, and T_{RH}. Furthermore, the spectra of RGWs also depends on the condition of the quantum normalization. To this end, the spectra of RGWs given by different parameters and different conditions will confront the various current and planed GW detectors. The future detectors BBO and DECIGO are quite promising not only to determine various parameters but also to examine the validity of the quantum normalization.
Throughout this paper, we use the units \(c = h = k_B = 1 \). Indices \(\lambda, \mu, \nu, \ldots \) run from 0 to 3, and \(i, j, k, \ldots \) run from 1 to 3.

2. RGWs in the accelerating universe

In a spatially flat universe, the existence of perturbations modifies the Friedmann–Robertson–Walker metric to be

\[
dx^2 = a^2(\tau)[-d\tau^2 + (\delta_{ij} + h_{ij})\, dx^i\, dx^j],
\]

(1)

where \(a(\tau) \) is the scale factor, \(\tau \) is the conformal time and \(h_{ij} \) stands for the perturbations to the homogenous and isotropic spacetime background. In general, there are three kinds of perturbations: scalar perturbation, vectorial perturbation and tensorial perturbation. In this paper we only consider the tensorial perturbation, that is, GWs. In the transverse-traceless (TT) gauge, \(h_{ij} \) satisfies: \(\frac{\partial h_{ij}}{\partial \tau} = 0 \) and \(h_{ij} = 0 \), where we used the Einstein summation convention. In the Fourier \(k \)-modes space, it can be written as

\[
h_{ij}(\tau, x) = \sum_{\sigma} \int \frac{d^3k}{(2\pi)^3/2} \epsilon_{ij}^{(\sigma)}(k) e^{ikx},
\]

(2)

where \(\sigma = +, \times \) stands for the two polarization states, the comoving wave number \(k \) is related with the wave vector \(k \) by \(k = (\delta_{ij} k^i k^j)^{1/2} \), \(h_{ij}^{(\sigma)}(\tau) = h_k^{(\sigma)}(\tau) \) ensuring \(h_{ij} \) be real, and the polarization tensor \(\epsilon_{ij}^{(\sigma)} \) satisfies [2]

\[
\epsilon_{ij}^{(\sigma)} = 2\delta_{\sigma\sigma} \epsilon_{ij}^{(s)}, \quad \epsilon_{ij}^{(s)} \delta_{ij} = 0, \quad \epsilon_{ij}^{(s)} n^i = 0, \quad \epsilon_{ij}^{(s)} (-k) = \epsilon_{ij}^{(s)}(k).
\]

(3)

In terms of the mode \(h_k^{(\sigma)} \), the wave equation is

\[
h_k^{(\sigma)}(\tau) + 2\frac{a'(\tau)}{a(\tau)} h_k^{(\sigma)}(\tau) + k^2 h_k^{(\sigma)}(\tau) = 0,
\]

(4)

where a prime means taking derivative with respect to \(\tau \). The two polarizations of \(h_k^{(\sigma)}(\tau) \) have the same statistical properties and give equal contributions to the unpolarized RGWs background, so the super index \((\sigma)\) can be dropped. The approximate solutions of equation (4) are well analyzed in [2, 3, 7], and are detailed in [41] given an accelerating universe at present. Furthermore, the analytic solutions were also studied by many authors [8, 45–48]. For a power-law form of the scale factor \(a(\tau) \propto \tau^\alpha \), the analytic solution to equation (4) is a linear combination of Bessel and Neumann functions

\[
h_k(\tau) = \tau^{1/\alpha - 1} \left[C_1 J_{\nu - 1}(k \tau) + C_2 N_{\nu - 1}(k \tau) \right],
\]

(5)

where the constants \(C_1 \) and \(C_2 \) for each stage are determined by the continuities of \(h_1(\tau) \) and \(h_2(\tau) \) at the joining points \(\tau_1, \tau_2, \tau_3 \) and \(\tau_4 \) [8, 45]. Therefore, all the constants in the solutions of RGWs can be completely fixed, once the initial condition is given. In a spatially flat \((k = 0) \) universe, the scale factor indeed has a power-law form in various stages [2, 41, 45, 47]. It is described by the following successive stages.

The inflationary stage:

\[
a(\tau) = l_0 |\tau|^{1+\beta}, \quad -\infty < \tau \leq \tau_1,
\]

(6)

where the inflation index \(\beta \) is a model parameter describing the expansion history during inflation. The special case of \(\beta = -2 \) corresponds to the exact de Sitter expansion. However, both the model-predicted and the observed results indicate that the value of \(\beta \) could differ slightly from \(-2\).

The preheating stage:

\[
a(\tau) = a_\tau |\tau - \tau_p|^{1+\beta_\tau}, \quad \tau_1 \leq \tau \leq \tau_2,
\]

(7)

where the parameter \(\beta_\tau \) describes the expansion behavior of the preheating stage from the end of inflation to the occurrence of the reheating process followed by the radiation-dominant
stage. In some literary works [41, 49], β_5 is set to be 1; however, we take β_5 as a free parameter in the paper.

The radiation-dominant stage:
\[
a(\tau) = a_0(\tau - \tau_1), \quad \tau_1 \leq \tau \leq \tau_2.
\]
(8)

The matter-dominant stage:
\[
a(\tau) = a_m(\tau - \tau_m)^2, \quad \tau_2 \leq \tau \leq \tau_E.
\]
(9)

The accelerating stage up to the present time τ_0 [7]:
\[
a(\tau) = l_H|\tau - \tau_0|^{-\gamma}, \quad \tau_E \leq \tau \leq \tau_0,
\]
(10)

where γ is a Ω_Λ-dependent parameter, and Ω_0 is the energy density contrast. To be specific, we take $\gamma \simeq 1.97$ [50] for $\Omega_0 = 0.73$ [34] in this paper. It is convenient to choose the normalization $|\tau_0 - \tau_m| = 1$, i.e. the present scale factor $a(\tau_0) = l_H$. From the definition of the Hubble constant, one has $l_H = \gamma / H_0$, where $H_0 = 100 h$ km s$^{-1}$Mpc$^{-1}$ is the present Hubble constant. We take $h \simeq 0.704$ [34] throughout this paper. Supposing β and β_5 are model parameters, all the constants included through equation (6) to equation (10) can be fixed by the continuity of $a(\tau)$ and $a'(\tau)$ at the four given joining points τ_1, τ_2, τ_3 and τ_4, if one knows the increases of the scale factor of various stages, i.e. the definite values of $\xi_1 \equiv a(\tau_1)/a(\tau)$, $\xi_2 \equiv a(\tau_2)/a(\tau_1)$, $\xi_3 \equiv a(\tau_3)/a(\tau_2)$ and $\xi_4 \equiv a(\tau_4)/a(\tau_3)$.

The spectrum of RGWs $h(k, \tau)$ is defined by
\[
\langle h^2(\tau) \rangle \equiv \int_0^\infty h^2(k, \tau) \frac{dk}{k},
\]
(11)

where the angle brackets mean ensemble average. The dimensionless spectrum $h(k, \tau)$ relates to the mode $h_k(\tau)$ as [47]
\[
h(k, \tau) = \frac{\sqrt{2}}{\pi} k^{3/2} h_k(\tau).
\]
(12)

The one that we are interested in is the present RGWs spectrum $h(k, \tau_0)$. The characteristic comoving wave number at a certain joining time τ_0 is give by [41]
\[
k_0 \equiv k(\tau_0) = \frac{2\pi a(\tau_0)}{1/H(\tau_0)}.
\]
(13)

After a long but simple calculation, it is easy to obtain $k_H = 2\pi \gamma$ and the following relations:
\[
\frac{k_E}{k_H} = \frac{\xi_1^{-\frac{1}{2}}}{\xi_2}, \quad \frac{k_2}{k_1} = \xi_2, \quad \frac{k_3}{k_2} = \xi_4, \quad \frac{k_4}{k_3} = \xi_5^{1/\gamma}.
\]
(14)

In the present universe, the physical frequency relates to a comoving wave number k as
\[
f = \frac{k}{2\pi a(\tau_0)} = \frac{k}{2\pi l_H}.
\]
(15)

The present energy density contrast of RGWs defined by $\Omega_{GW} = \langle \rho_e \rangle / \rho_c$, where $\rho_e = \frac{1}{8\pi G} h_{ij} h_{ij}$ is the energy density of RGWs and $\rho_c = 3H_0^2/8\pi G$ is the critical energy density, is given by [3, 5]
\[
\Omega_{GW} = \frac{\int_{f_{\text{low}}}^{f_{\text{upper}}} \Omega_\phi(f) \frac{df}{f}}{f},
\]
(16)

with
\[
\Omega_\phi(f) = \frac{2\pi^2}{3} \frac{f_{\text{upper}}^2}{f^2} \left(\frac{f}{H_0} \right)^2
\]
(17)

being the dimensionless energy density spectrum. We have used a new notation, $h_k(f) = h(f, \tau_0)/\sqrt{2}$, called the characteristic strain spectrum [5] or chirp amplitude [51]. The lower and upper limit of integration in equation (16) can be taken to be $f_{\text{low}} \simeq f_E$ and $f_{\text{upper}} \simeq f_1$, respectively, since only the wavelength of the modes inside the horizon contribute to the total energy density.
3. The increases of the scale factor

For the simple ΛCDM model, the late-time acceleration of the universe is well know. One easily has $\xi_F = 1 + z_E \equiv (\Omega_\Lambda / \Omega_m)^{1/3} \simeq 1.4$, where z_E is the redshift when the accelerating expansion begins. The increase of the scale factor duration of the matter-dominated stage can also be obtained straightforwardly, $\xi_M = a(t_M) / a(t_E) = (1 + z_E)^{-1}$ with $z_E = 3240$ [34]. However, the histories of the radiation-dominated stage and the preheating stage are not known well. Recently, Mielczarek [40] proposed a method to evaluate the reheating temperature, T_{RH}, under the frame of the slow-roll inflation model with a quadratic potential $V(\phi) = \frac{1}{2} m^2 \phi^2$ combing the observations from WMAP. Using this method, ξ_ϕ and ξ_M can be determined subsequently with the evaluation of T_{RH} [41]. In this paper, we consider a more general power-law form of the potential, $V(\phi) = \lambda \phi^n$, where λ is a constant. For this general form of $V(\phi)$, it is hard to obtain the analytic expression of the energy density of the universe at the end of inflation, and in turn, it is hard to obtain the temperature of reheating analytically. Hence, we will take some reasonable values of T_{RH} constrained by CMB observations [43].

Firstly, we discuss the value of ξ_ϕ. After reheating, the universe is filled with the relativistic plasma, which undergoes an adiabatic expansion as long as the entropy transfer between the radiation and other components can be neglected. The adiabatic approximation leads to the conservation of the entropy, i.e. $dS = 0$. It implies $s a^3 = \text{const}$, where the entropy density s of radiation is given by

$$s = \frac{2\pi^2}{45} g_s T^3.$$ \hfill (18)

Here, g_s counts the effective number of relativistic species contributing to the radiation entropy. Another similar quantity g, counting the effective number of relativistic species contributing to the energy density of radiation, relates to energy density:

$$\rho = \frac{\pi^2}{30} g T^4.$$ \hfill (19)

The behavior of g and g_s with different energy scale were demonstrated in [46]. At the energy above ~ 0.1 MeV, one has $g = g_s$. Moreover, at the energy scales above ~ 1 TeV, $g = 106.75$ in the standard model, and $g \sim 220$ in the minimal extension of supersymmetric standard model, respectively. On the other hand, at the energy scales below ~ 0.1 MeV, $g = 3.36$ and $g_s = 3.91$, respectively. According to the conservation of entropy, one easily gets the increase of the scale factor from the reheating till the recombination [40],

$$\frac{a_{rec}}{a(\tau_*)} = \frac{T_{RH}}{T_{rec}} \left(\frac{g_{es}}{g_{s*}} \right)^{1/3},$$ \hfill (20)

where a_{rec} and T_{rec} stand for the scale factor and the temperature at the recombination, respectively. g_{es} and g_{s*} count the effective number of relativistic species contributing to the entropy during the reheating and that during recombination, respectively. As discussed in [43], the lower band of the reheating energy scale is 17.3 TeV constrained by the observed scalar power spectrum of CMB at 95$\%$ of the confidence limit. Thus, in this paper we assume $g_{es} \simeq 200$ eclectically, which was also employed in [43]. On the other hand, one has $g_{s*} = 3.91$ including the contributions of the effective number from photons and three species of massless neutrinos to the radiation entropy during the recombination, since the energy scale at the recombination $T_{rec} = T_{CMB}(1 + z_{rec}) \sim 10^{-7}$ MeV. Under the assumption of $g_{es} \simeq 200$, the lower bound of $T_{RH} \gtrsim 6 \times 10^3$ GeV was obtained [43]. On the other hand, gravitinos production gives an upper bound [52]. For instance, in the framework of the constrained minimal supersymmetric standard model [44], the upper bound of T_{RH} was found that $T_{RH} \lesssim a$ few $\times 10^7$ GeV from over-production of ^6Li from bound state effects, and moreover, T_{RH}
can be relaxed to \(\lesssim 3 \times 10^{15} \) GeV coming from the energy scale at the end of inflation [43]. Based on equation (20), one easily obtain

\[
\zeta_s = a(\tau_2) \frac{a_{rec}}{a(\tau_2)} = \frac{T_{RH}}{T_{CMB} (1 + z_{eq}) (g_{*s})^{1/3}},
\]

where we have used \(T_{rec} = T_{CMB} (1 + z_{rec}) \). With \(T_{CMB} = 2.725 K = 2.348 \times 10^{-13} \) GeV [34], one has \(\zeta_s \approx 5 \times 10^{16} \) for example. Secondly, we discuss the evaluation of \(\zeta_1 \). First of all, we briefly recall the slow-roll inflation model. For slow-roll inflation, the evolution is described by the usual slow-roll parameters [53]:

\[
\epsilon \equiv \frac{m^2_{Pl}}{16\pi} \left(\frac{V'}{V} \right)^2,
\]

\[
\eta \equiv \frac{m^2_{Pl}}{8\pi} \left(\frac{V''}{V} \right),
\]

which are required to be much small than unity for the slow-roll approximation to be valid. \(\epsilon \) approaches unity at the end of inflation. When the slow-roll conditions are satisfied, inflation continues keeping the Hubble rate nearly constant, and the primordial tensor power spectrum and the scalar power spectrum are respectively given as [48, 51]:

\[
\Delta_\mathcal{H}^2(k, \tau_*) \approx \frac{16}{\pi} \left(\frac{H_*}{m_{Pl}} \right)^2,
\]

\[
\Delta_\mathcal{R}^2(k, \tau_*) \approx \frac{1}{\pi \epsilon} \left(\frac{H_*}{m_{Pl}} \right)^2,
\]

where \(H_* \) is the Hubble rate during inflation, and \(\tau_* \) stands for the moment when the \(k \) mode exits the horizon. On the other hand, based on the observations of CMB, the present scalar power spectrum can be expanded in power laws,

\[
\Delta_\mathcal{H}^2(k) = \Delta_\mathcal{H}^2(k_0) \left(\frac{k}{k_0} \right)^{n_t},
\]

\[
\Delta_\mathcal{R}^2(k) = \Delta_\mathcal{R}^2(k_0) \left(\frac{k}{k_0} \right)^{n_s-1},
\]

where \(\Delta_\mathcal{H}^2(k_0) \) and \(\Delta_\mathcal{R}^2(k_0) \) are the power spectrum of the tensor perturbations and curvature perturbations evaluated at the pivot wave number \(k_0 = a(\tau_0) = 0.002 \) Mpc\(^{-1} \) [34], respectively. Furthermore, under the slow-roll approximation, at the pivot wave number \(k_0 \) the spectral parameters are given by [53]

\[
n_t \simeq -2\epsilon,
\]

\[
n_s \simeq 1 - 6\epsilon + 2\eta.
\]

In general, the spectral indices \(n_t \) and \(n_s \) are \(k \)-dependent, described by the running parameters \(\alpha_t \equiv \delta n_t / \delta \ln k \) and \(\alpha_s \equiv \delta n_s / \delta \ln k \), respectively [47, 53–55]. However, \(\alpha_t \) and \(\alpha_s \) are only second-order small quantities. Moreover, if one uses the quantum normalization (see below) as the initial condition for the generation of RGWs, \(\alpha_t \) should be exactly zero. On the other hand, as will be seen below, non-zero \(\alpha_t \) would induce an \(n_s \) greater than 1, which make it difficult to evaluate the increase of the scale factor from the \(k_0 \) mode exiting the horizon during inflation to the end of inflation. Hence, in this paper we will simply set \(\alpha_t = \alpha_s = 0 \). Note that Even though the value of \(n_t \) is quite uncertain, \(n_s \) can be well constrained by CMB [34] or
BAO [56]. The ratio of the primordial tensor power spectrum to the scalar power spectrum is defined as [48, 51]

\[r \equiv \frac{\Delta_\gamma^2(k, \tau_i)}{\Delta_\zeta^2(k, \tau_i)} = 16\epsilon, \]

based on equations (23) and (24). Therefore, at the pivot number \(k_0 \), one has

\[r = \frac{\Delta_\gamma^2(k_0, \tau_i)}{\Delta_\zeta^2(k_0, \tau_i)} \approx \frac{\Delta_\gamma^2(k_0)}{\Delta_\zeta^2(k_0)} = 16\epsilon, \]

(30)

where \(\tau_i \) is the \(k_0 \) mode which exits the horizon during inflation. The approximation of the second equation in equation (30) accounts for the fact that the pivot \(k_0 \) wave mode re-entered the horizon a little earlier than the present time, and then has suffered a decay. Therefore, the ratio \(\Delta_\gamma^2(k_0)/\Delta_\zeta^2(k_0) \) cannot exactly reflect the true value of \(r \) given by its definition; however, the deviation would be expected to be less than \(\sim 0.8\% \) [41]. Hence, we will use this approximation when confronted with the CMB observations. Furthermore, under this approximation, one has a simple relation

\[n_t = 2\beta + 4, \]

(31)

since the primordial spectrum of RGWs has a power-law form \(\Delta(k_0) \approx \Delta(k_0, \tau_i) \propto k^{2\beta+4} \) [41]. WMAP 7 Mean [34] fixed \(\Delta_\zeta^2(k_0) = \Lambda_i = (2.43 \pm 0.11) \times 10^{-9} \). Thus, the non-zero value of \(r \) implies the existence of GW background, which induced uniquely the B-mode polarization of CMB [57]. At present only observational constraints on \(r \) have been given [33, 34]. The upper bounds of \(r \) are recently constrained [34] as \(r < 0.24 \) by WMAP+BAO+H\(_0\) and \(r < 0.36 \) by WMAP 7 only for \(\alpha_s = 0 \), and \(r < 0.49 \) for \(\alpha_s \neq 0 \) by both the combination of WMAP+BAO+H\(_0\) and the WMAP 7 only, respectively. Furthermore, using a discrete, model-independent measure of the degree of fine-tuning required, if \(0.95 \lesssim n_r < 0.98 \), in accord with current measurements, the tensor-to-scalar ratio satisfies \(r \approx 10^{-2} \) [58]. Therefore, one can normalize the RGWs at \(k = k_0 \) using equation (30), if \(r \) can be determined definitely.

As analyzed by Mielczarek [40], for the pivot wave number \(k_0^p \), the total increase of the scale factor from the mode exiting the horizon during inflation up to the present time can be evaluated as

\[\xi_{\text{tot}} \simeq \frac{H_*}{k_0^p}. \]

(32)

Due to equations (24) and (26), one has

\[\frac{1}{\pi \epsilon} \left(\frac{H_*}{m_{\text{pl}}^2} \right)^2 \approx \Delta_\zeta^2(k_0), \]

(33)

where the approximation \(\Delta_\zeta^2(k_0) \approx \Delta_\zeta^2(k_0, \tau_i) \) was used. Taking the form \(V(\phi) = \lambda \phi^n \), one can easily have a relation

\[\epsilon = \frac{n(1 - n_s)}{2(n + 2)}, \]

(34)

from equations (22) and (28). Plugging equations (33) and (34) into equation (32) gives

\[\xi_{\text{tot}} \simeq \frac{m_{\text{pl}}^2}{k_0^p} \sqrt{\frac{\pi n}{2(n + 2)}} \left(1 - n_s \right) \Delta_\zeta^2(k_0). \]

(35)

On the other hand, if we assume that the universe underwent a quasi-de Sitter expansion (\(\beta \approx -2 \)), then the increase of a scalar factor from the moment of \(k_0 \) mode exiting the horizon during inflation to the end of inflation is give by

\[\xi_s = \epsilon^N, \]

(36)
where N is the e-folding number, which can be estimated as
\[
N \simeq - \frac{8\pi}{m_{\text{Pl}}^2} \int_{\phi_0}^{\phi_f} V(\phi) \, d\phi.
\] (37)

Concretely, for $V(\phi) = \lambda \phi^n$, one can obtains
\[
N \simeq \frac{n+2}{2(1-n_\phi)},
\] (38)

with the help of equations (22) and (28). So, if $n = 2$, equation (38) reduces to the result shown in [40]. Plugging equation (38) into equation (36), and using the identity
\[
\zeta_{\text{tot}} = \zeta_{\xi_1} \zeta_{\xi_2} \zeta_{\xi_3} \zeta_{\xi_4},
\] (39)

one can easily obtain the complete expression of ζ_1,
\[
\zeta_1 = \frac{m_{\text{Pl}}}{k_0^3} \pi \Delta_R^2(k_0)(1-n_\phi) \frac{n}{2(n+2)} \left[\frac{T_{\text{CMB}}}{T_{\text{RH}}} \left(\frac{S_{\text{et}}}{S_{\text{et}}} \right) \right]^{1/3} \exp \left[- \frac{n+2}{2(1-n_\phi)} \right].
\] (40)

One can examine that, for $n = 2$, the above expression reduces to equation (11) in [41] after using equation (7) in the same reference. In the following, let us see the reasonable range of the index n constrained by both theories and observations. As well known, at the end of inflation, the scalar field ϕ oscillates quickly around some point where $V(\phi)$ has a minimum. In the limit that the oscillation rate is much greater than Hubble expansion rate H, and ignoring the coupling between the scalar field ϕ and other components, it is found that [42] the scalar field oscillations behave like a fluid with $p = \bar{\rho} \rho$, where the average equation of state $\bar{\rho}$ depends on the form of the potential $V(\phi)$. For $V(\phi) = \lambda \phi^n$, one has
\[
\bar{\rho} = \frac{n-2}{n+2}
\] (41)

and ρ decreases as $a^{-6n/(n+2)}$. In particular, $n = 2$, one has $\bar{\rho} = 0$ and $\rho \propto a^{-3}$, which imply a matter-dominant-like expansion of the preheating stage [49]. Adding the consideration of the coupling between the scalar field and the resulting relativistic particle creation, Martin and Ringeval [43] verified the relation (41) using a numerical method, and it was found that the average $\bar{\rho}$ never deviates from zero exceeding 8%. From theoretical consideration, one should have $\bar{\rho} < 1$ to satisfy the positivity energy conditions; while $\bar{\rho} > -1/3$ to make sure that the inflation must stop and the preheating stage begins. Due to equation (41), the condition $-1/3 < \bar{\rho} < 1$ leads to $n > 1$. On the other hand, Martin and Ringeval [43] firstly gave a constraint on n based on the CMB observations, $n < 2.1$. Therefore, based on both the theories and observations, the index n is constrained to be
\[
1 < n < 2.1.
\] (42)

Note that there is a relation between n and β_ν. According to the energy conservation equation and the Friedmann equation,
\[
\dot{\rho} + 3\frac{a}{a} \rho (1 + \bar{\rho}) = 0,
\] (43)

\[
\left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi G}{3} \rho,
\] (44)

one can easily obtain $a \propto t^{2/(3+3\bar{\rho})} \propto t^{2/(1+3\bar{\rho})}$. Using equations (7) and (41), and allowing for $\rho \propto a^{-6n/(n+2)}$, one has
\[
\beta_\nu = \frac{4 - n}{2(n - 1)}.
\] (45)

Then, in principle, the expression of ζ_1 in equation (40) can be rewritten as a function of β_ν. From the combination of equations (42) and (45), one finds that, $n > 1$ leads to $\beta_\nu > -0.5$ and $n < 2.1$ leads to $\beta_\nu > 0.86$, respectively. Based on the range of n (or β_ν) discussed above, we try to constrain some parameters combining with CMB observations.
4. Parameter constraints from observations

As shown in the previous section, many parameters are dependent on the value of n_s. Seven-year WMAP Mean [34] gives $n_s = 0.967 \pm 0.014$ and $n_s = 0.982^{+0.020}_{-0.019}$ when one also considers the tensor mode contributions to the anisotropies of CMB. Moreover, the combination WMAP+BAO+H_0 Mean gives $n_s = 0.968 \pm 0.012$ and $n_s = 0.973 \pm 0.014$ when the tensor mode contributions are included. Independently, SDSS III predicts $n_s = 0.96 \pm 0.009$ [56]. As can be seen in equation (40), ζ is sensitively dependent on n_s, and in turn one can expect that the spectrum of RGWs also depend sensitively on n_s in the very high frequencies. Therefore, for a general demonstration, we consider the cases: $n_s = 0.96, 0.97$ and 0.98, respectively.

Firstly, let us constrain the tensor-to-scalar ratio r. According to equations (22) and (29), it is straightforward to obtain

$$r = \frac{8n}{n+2}(1-n_s).$$ (46)

We show this relation in figure 1. One can see that r increases slowly with n. r lies in $(0.11, 0.16)$, $(0.08, 0.12)$, and $(0.05, 0.08)$ for $n_s = 0.96$, $n_s = 0.97$ and $n_s = 0.98$, respectively. Similarly, from equations (27) and (31), one has

$$\beta = -2 - \frac{n}{2(n+2)}(1-n_s).$$ (47)

which is shown in figure 2. The parameter β is constrained in the range of $(-2.007, -2.010)$, $(-2.005, -2.008)$ and $(-2.003, -2.005)$ for $n_s = 0.96$, $n_s = 0.97$ and $n_s = 0.98$, respectively. Therefore, the range of n in equation (42) leads to very tight constraints on r and β, which are limited in very narrow ranges with definite value of n_s.

Now, let us see the increase of the scale factor during preheating stage ζ_1, which is expressed in equation (40). We plot it in figure 3 as a function of n with definite values of T_{RH}. Allowing for the expansion of the universe, one would expect that $\xi_1 > 1$. As can be seen in figure 3, the cases of $n_s = 0.96$ and 0.97 can make sure that the resultant ζ_1 is much larger than 1; however, the case of $n_s = 0.98$ cannot be compatible with the fact that $\zeta_1 > 1$ in the whole range of n as shown in equation (42). If n_s is determined well to be as high as 0.98, it will give very tight constraints on n. Concretely, $n \lesssim 1.7$ and $n \lesssim 1.3$ for $T_{RH} = 10^4$ GeV.
and $T_{RH} = 10^8$ GeV, respectively. What we are more interested in are the characteristic frequencies given by equation (15). With the help of equation (14), one can easily obtain the characteristic frequencies: $f_H = H_0 \simeq 2.28 \times 10^{-18}$ Hz, $f_H = H_0 \simeq 2.28 \times 10^{-18}$ Hz, $f_L \simeq 1.93 \times 10^{-18}$ Hz, $f_L \simeq 9.3 \times 10^{-17}$ Hz. The value of f_s depends linearly on T_{RH}. For instance, $f_s \simeq 4.54 \times 10^{-3}$ Hz for $T_{RH} = 10^4$ GeV and $f_s \simeq 45.4$ Hz for $T_{RH} = 10^8$ GeV, respectively. Since $f_1 = f_s \frac{\zeta_1}{\zeta_1 - 1}$, it depends on the values of n (or β_s), n_s and T_{RH}. It is worthwhile to be studied in detail, since the characteristic frequency f_1 is approximately the highest frequency of RGWs. The modes whose frequency higher than f_1 decay with the expansion of the Universe [2, 3]. We plot f_1 as a function of n with definite n_s and T_{RH} in figure 4. One can see that the behavior of f_1 along with the increasing n is quite different for different values of n_s. For the case of $n_s = 0.98$, we plotted f_1 using dotted lines for the values of n constrained by $\zeta_1 > 1$ which are shown in figure 3. In the part of large n, f_1 is
Figure 4. The upper limit frequency f_1 as a function of n for different combinations of n_s and T_{RH}. The dotted parts for $n_s = 0.98$ are constrained by the condition $\zeta_1 > 1$ shown in figure 3.

larger for smaller values of n_s. On the other hand, in the limit of $n \to 1$, f_1 becomes a fixed value independent of n_s, and moreover, the asymptotic fixed f_1 is larger for a larger value of T_{RH}. It is easy to understand if one has found that $\beta_s \to +\infty$ as $n \to 1$ from equation (45) which leads to $f_1 \to f_s$. The value of f_1 should be below the constraint from the rate of the primordial nucleosynthesis, $f_1 \lesssim 3 \times 10^{10}$ Hz [2]. When the acceleration epoch is considered, the constraint becomes $f_1 \simeq 4 \times 10^{10}$ Hz. This will in turn give some constraints on n, n_s, and T_{RH}.

As analyzed in our previous work [41], when the quantum normalization for the generation of RGWs during inflation is employed, one has

$$\Delta_{\text{RG}}(k_0)r^{1/2} = 8\sqrt{\pi} l_P l_0 T_{\text{RH}}^{-\frac{3}{2}} \left(\frac{\zeta_1}{\zeta_2} \right)^{\beta_s - \gamma_E} \left(\frac{k_0}{k_H} \right)^{\beta},$$

(48)

where $l_P = \sqrt{G}$ is the Planck length. In equation (48), there are totally six parameters: r, β_s, n_s, n, T_{RH}, and l_P. However, among them only three are independent, due to equations (45), (46) and (47). We show the $T_{\text{RH}} - \beta$ relation with definite values of n_s in figure 5. First of all, we define the range of $6 \times 10^3 - 10^8$ GeV as region I, while the range of $6 \times 10^3 - 3 \times 10^{15}$ GeV as region II. It is found that, under the condition of quantum normalization, $n_s = 0.96$ and $n_s = 0.98$ can be ruled out, since the resultant T_{RH} is outside region II. If one considers the gravitinos production problem, the case $n_s = 0.97$ would also be ruled out, since the resultant T_{RH} lies well inside region I for the whole range of β given by equation (47). Moreover, as shown in figure 5, the quantum normalization will give little tighter constraints on the range of β for $n_s = 0.967$ and $n_s = 0.968$. Note that these results are based on the validity of quantum normalization; however, it is not the unique initial condition. Let us make a comparison with the previous results in [41]. Taking $n_s = 0.966$ for example, $n = 2$ leads to $T_{\text{RH}} \simeq 3.4 \times 10^6$ GeV; while $T_{\text{RH}} \simeq 2.8 \times 10^{12}$ GeV shown in figure 1 in [41]. Hence, the discrepancy of T_{RH} at six orders of magnitude, indicates that the quantum normalization may not be a good initial condition. However, one should also keep in mind that we have used many approximations, which would also contribute a lot to the discrepancy of T_{RH} discussed above. Note that, if one does not consider quantum normalization, the zero point energy should be removed or
Figure 5. The relation between T_{RH} and β based on equation (48) due to the condition of quantum normalization.

else the cosmological constant would be 120 orders of magnitude larger than observed. Some effective methods have been proposed, such as the decaying vacuum model [59]. In following section, we will demonstrate the spectra of RGWs with and without quantum normalization, respectively.

5. The spectra of RGWs and their detection

In this section, we demonstrate the energy density spectra of RGWs with reasonable values of the parameters and discuss the detection due to the current running and planned GW detectors.

As discussed in the previous sections, there are many parameters involved in the spectrum of RGWs. They are n_s, n, r, β, β_s and T_{RH}. However, among them only three are independent due to equations (45)–(47). Furthermore, n_s has been constrained well from observations of CMB, BAO and H_0. Since the spectrum of RGWs in high frequencies sensitively depends on n_s, we discuss two cases of $n_s = 0.968$ and $n_s = 0.973$, respectively, based on the combination of WAMP+BAO+H_0 [34]. In the following, we regard β_s and T_{RH} as parameters, and choose some representative values of them since they have large uncertainties. In order to give a complete discussion, we will consider the spectra of RGWs both with and without quantum normalization. As analyzed in section 3, T_{RH} is constrained to be $T_{\text{RH}} \sim 10^4 - 10^8$ GeV, and β_s is limited to be larger than 0.86. Firstly, let us see the case of no quantum normalization.

Setting $\beta_s = 1$, figure 6 shows the energy density spectra of RGWs, $\Omega_{\text{GW}}(f)$, with different values of n_s and T_{RH}. One can see that all the $\Omega_{\text{GW}}(f)$ nearly overlap each other in the low frequencies. This is because the spectrum for $f \leq f_s$ is only related to r and β [41], and, moreover, the differences of r and β are very small between the case $n_s = 0.968$ and the case $n_s = 0.973$ due to equations (46) and (47). Explicitly, one has $r = 0.128$, $\beta = -2.008$ for $n_s = 0.968$ and $r = 0.108$, $\beta = -2.007$ for $n_s = 0.973$, respectively. However, in the part of high frequencies, $\Omega_{\text{GW}}(f)$ exhibits different properties for different combinations of n_s and T_{RH}. On one hand, for the same value of T_{RH}, the spectrum $\Omega_{\text{GW}}(f)$ with $n_s = 0.968$ and that with $n_s = 0.973$ have the same ‘turning point’ from which $\Omega_{\text{GW}}(f)$ decreases rapidly with the increasing frequency, and the ‘turning point’ is just f_s which is only dependent on T_{RH}. Moreover, the decreasing slope of the logarithm of the two spectra for $f \geq f_s$ is nearly
Figure 6. The energy density spectra of RGWs for the fixed $\beta_s = 1$ with different combinations of n_s and T_{RH}, without considering the quantum normalization.

Figure 7. The energy density spectra of RGWs for the fixed $T_{RH} = 10^6$ GeV with different combinations of n_s and β_s, without considering the quantum normalization.

the same since $\Omega_{GW}(f) \propto f^{4+2\beta-2\beta_s}$ [41] which is reduced to $\Omega_{GW}(f) \propto f^{-2}$ for $\beta \approx -2$ and $\beta_s = 1$. However, the $\Omega_{GW}(f)$ with a smaller n_s has a larger upper limit frequency f_1 which responds to a lower amplitude of $\Omega_{GW}(f)$. On the other hand, for the same value of n_s, the $\Omega_{GW}(f)$ with a higher T_{RH} leads to not only a larger f_s but also to a larger f_1 since $f_1 \propto T_{RH}^{1/2}$ for $\beta_s = 1$ which can seen from the combination of equations (14), (21) and (40). Figure 7 shows the energy density spectra of RGWs for the fixed value $T_{RH} = 10^6$ GeV. One can see that a larger β_s leads to a steeper slope of the logarithm of $\Omega_{GW}(f)$ and a smaller f_1 for the same values of n_s. In words, T_{RH} determines the value of f_s, β_s determines the slope of the logarithm of $\Omega_{GW}(f)$ for the fact that $\beta \approx -2$, and f_1 depends on all the three parameters especially n_s. Secondly, let us consider the case of the quantum normalization. Due
Figure 8. The energy density spectra of RGWs under the condition of the quantum normalization.

Table 1. The definitions of h_c with different parameters. 'N' stands for 'No' meaning that the condition of the quantum normalization is not considered; while 'Y' stands for 'Yes' meaning that the condition of the quantum normalization is considered.

h_c	n_s	β_s	T_{RH}	Quantum normalization
h_{c1}	0.968	1	10^4 GeV	N
h_{c2}	0.968	1	10^6 GeV	N
h_{c3}	0.968	4	10^6 GeV	N
h_{c4}	0.973	1	10^6 GeV	N
h_{c5}	0.968	1	2×10^{11} GeV	Y
Figure 9. The strain of RGWs with different parameters for $n_s = 0.968$, $\beta_s = 1$ and $T_{RH} = 10^6$ GeV confronts the current and planned GW detectors. The sensitivity curves of PPTA and SKA using the pulsar timing technique are taken from [25] and [60], respectively. The curve of BBO is generated using the online ‘sensitivity curve generator’ [19] with the parameters in table II of [20] and table I of [21]. The curve of DECIGO is taken from [22].

Figure 10. The characteristic amplitude of RGWs in high frequencies confronting the instrument noise $\sqrt{\mathcal{H}(f)}$ of BBO, ultimate DECIGO [23], AdvLIGO and ET.

even though AdvLIGO and ET are hard to catch the signals of RGWs, BBO has the potential to distinguish RGWs with different parameters or different conditions in the frequency band 10^{-2}–10^0 Hz. Furthermore, the ultimate DECIGO has the capability to distinguish them more easily. Thus, the future BBO and DECIGO detections provide an important tool not only for determining the parameters but also for examining the validity of the quantum normalization when RGWs were generated during inflation. It is worthwhile to point out that, at frequencies...
lower than 10^{-2} Hz the signals of RGWs are contaminated by the confusion noise produced by galactic binaries [61]. Hence, we should focus on the frequencies higher than 10^{-2} in order to distinguish various spectra of RGWs.

6. Conclusions and discussions

In the frame of the slow-roll inflation with a power-law form $V = \lambda \phi^n$, we calculated the analytic solutions of RGWs. In the narrow range $1 < n < 2.1$, the tensor-to-scalar ratio r and the inflation expansion index β are both tight limited to lie in narrow ranges for a given value of the scalar spectral index n_s. Concretely, r lies in (0.11, 0.16), (0.08, 0.12) and (0.05, 0.08) for $n_s = 0.96$, $n_s = 0.97$ and $n_s = 0.98$, respectively; while β lies in the range of $(-2.007, -2.010)$, $(-2.005, -2.008)$ and $(-2.003, -2.005)$ for $n_s = 0.96$, $n_s = 0.97$ and $n_s = 0.98$, respectively. Moreover, the preheating expansion index β_s is constrained to be $\beta_s > 0.86$. We found that the spectrum of RGWs in high frequencies depends on the parameters n_s, β_s and T_{RH}. Explicitly, T_{RH} determines f_s where the flat RGWs spectrum decreases suddenly. β_s determines the decreasing slope of the logarithm of the spectrum. Whereas, the upper limit frequency f_1 is dependent on all the three parameters n_s, β_s and T_{RH}. Besides, the quantum normalization for the generation of RGWs also affect the spectrum of RGWs in high frequencies.

Among the current and planed GW detectors, SKA using the pulsar timing technique and the space-based interferometers eLISA, BBO and DECIGO are promising to catch the signals of RGWs. Furthermore, BBO and DECIGO have the potential not only to distinguish the spectra with different parameters but also to examine the validity of the quantum normalization. Therefore, RGWs could become the most important tool to know the physics of the very early Universe such as the inflation and reheating process. Even though we chose a series power-law form potential of the scalar field, as shown in [42], a polynomial form of the potential will be dominated by the lowest power of ϕ in V. In this case, the conclusion is not substantially modified. In our previous work [41], we obtained the $r - \beta$ relation for a particular potential $V = \frac{1}{2} m^2 \phi^2$. However, for the more general case $V = \lambda \phi^n$, it is hard to obtain a complete analytic solution of T_{RH} and in turn the increases of the scale factor ζ_s and ζ_1. Therefore, in this paper, we set a series reasonable values of T_{RH} as additional parameters. The determination of n_s is very important, since it sensitively affects our results. The future CMB experiments such as the Plank satellite [35], the ground-based ACTPol [36] and the planned CMBPol [37] will help us to determine the more convincible value of n_s. Therefore, one can expect accordingly that the spectrum of RGWs would be known better.

In principle, our analysis is valid for the slow-roll inflation with other forms of the potential $V(\phi)$. However, for some particular forms of $V(\phi)$, it would be difficult to obtain the analytic result of ζ_1 as a function of the parameters included in $V(\phi)$. Moreover, one could not effectively constrain the parameters in $V(\phi)$. However, one can still calculate ζ_1 numerically according to the whole calculating processes presented in [40], and then calculate the spectra of RGWs accordingly. More general inflationary models other than the slow-roll inflation and the slow-roll inflation with other forms of $V(\phi)$ would be studied in our future work.

Acknowledgments

This work is supported by the National Science Foundation of China under Grant No. 11103024 and the program of the light in China’s Western Region of CAS.
References

[1] Grishchuk L P 1975 Sov. Phys.—JETP 40 409
Grishchuk L P 1997 Class. Quantum Grav. 14 1445
[2] Grishchuk L P 2001 Lecture Notes in Physics vol 562 (Berlin: Springer) p 167 (arXiv:gr-qc/0002035)
[3] Grishchuk L P 2007 arXiv:gr-qc/0707.3319
[4] Starobinsky A A 1979 JEPT Lett. 30 682
Starobinsky A A 1985 Sov. Astron. Lett. 11 133
Rubakov V A, Sazhin M and Veryaskin A 1982 Phys. Lett. B 115 189
Fabri R and Pollock M D 1983 Phys. Lett. B 125 445
Abbott L F and Wise M B 1984 Nucl. Phys. B 244 541
Allen B 1988 Phys. Rev. D 37 2078
Sahni V 1990 Phys. Rev. D 42 453
Tashiro H, Chiba T and Sasaki M 2004 Class. Quantum Grav. 21 1761
Henriques A B 2004 Class. Quantum Grav. 21 3057
Zhao W and Zhang Y 2006 Phys. Rev. D 74 043503
[5] Maggiore M 2000 Phys. Rep. 331 283
[6] Giovannini M 2010 PMC Phys. A 4 1
[7] Zhang Y et al 2005 Class. Quantum Grav. 22 1383
[8] Zhang Y et al 2006 Class. Quantum Grav. 23 3783
[9] http://www.ligo.caltech.edu/
[10] http://www.ligo.caltech.edu/advLIGO/
[11] Waldman S J (the LIGO Scientific Collaboration) 2011 arXiv:1103.2728
[12] Freise A et al 2005 Class. Quantum Grav. 22 S869 http://www.virgo.infn.it/
[13] https://www.cascina.virgo.infn.it/senscurve/
[14] Willke B et al 2002 Class. Quantum Grav. 19 1377 http://geo600.aei.mpg.de/; http://www.geo600.uni-hannover.de/geocurves/
Barriga P, Zhao C and Blair D G 2005 Gen. Rel. Grav. 37 1609
[15] Somiya K 2012 Class. Quantum Grav. 29 124007
[16] Punturo M et al 2010 Class. Quantum Grav. 27 194002
[17] Hild S et al 2011 Class. Quantum Grav. 28 094013
[18] Amaro-Seoane P et al 2012 Class. Quantum Grav. 29 124016 http://elisa-ngo.org/
[19] http://www.srl.caltech.edu/~shane/sensitivity/
[20] Crowder J and Cornish N J 2005 Phys. Rev. D 72 083005
[21] Cutler C and Harms J 2006 Phys. Rev. D 73 042001
[22] Kawamura S et al 2006 Class. Quantum Grav. 23 S125–31
[23] Kudoh H, Taruya A, Hiramatsu T and Himemoto Y 2006 Phys. Rev. D 73 064006
[24] Hobbs G 2008 Class. Quantum Grav. 25 114032
Hobbs G 2008 J. Phys.: Conf. Ser. 122 012003
Manchester R N 2008 AIP Conf. Proc. 983 584 arXiv:0710.5026
Manchester R N 2010 AIP Conf. Proc. 983 584 arXiv:1004.3602
[25] Jenet F A et al 2006 Astrophys. J. 653 1571
[26] Kramer M et al 2004 New Astron. 48 993 www.skatelescope.org
[27] cruise A M 2000 Class. Quantum Grav. 17 2525
Cruise A M and Ingleby R M J 2005 Class. Quantum Grav. 22 S479
Cruise A M and Ingleby R M J 2006 Class. Quantum Grav. 23 6185
Tong M L and Zhang Y 2008 Chin. J. Astron. Astrophys. 8 314
[28] Li F Y, Tang M X and Shi D P 2003 Phys. Rev. D 67 104008
Li F Y et al 2008 Eur. Phys. J. C 56 407
Tong M L, Zhang Y and Li F Y 2008 Phys. Rev. D 78 024041
[29] Akutsu T et al 2008 Phys. Rev. Lett. 101 101101
[30] Zaldarriaga M and Sefajak U 1997 Phys. Rev. D 55 1830
Kamionkowski M, Kosowsky A and Stebbins A 1997 Phys. Rev. D 55 7368
Keating B G, Timbie P T, Polnarev A and Steinberger J 1998 Astrophys. J. 495 580
Pritchard J R and Kamionkowski M 2005 Ann. Phys., NY 318 2
Zhao W and Zhang Y 2006 Phys. Rev. D 74 083006
Xia T Y and Zhang Y 2008 Phys. Rev. D 78 123005
Xia T Y and Zhang Y 2009 Phys. Rev. D 79 083002
Zhao W and Baskaran D 2009 Phys. Rev. D 79 083003
[31] Peiris H V et al 2003 Astrophys. J. Suppl. 148 213
Spergel D N et al 2003 Astrophys. J. Suppl. 148 175
[32] Spergel D N et al 2007 Astrophys. J. Suppl. 170 377
Page L et al 2007 Astrophys. J. Suppl. 170 335
[33] Hinshaw G et al 2009 Astrophys. J. Suppl. 180 225
Dunkley J et al 2009 Astrophys. J. Suppl. 180 306
[34] Komatsu E et al 2011 Astrophys. J. Suppl. 192 18
[35] Planck Collaboration 2006 arXiv:astro-ph/0604069 http://www.rssd.esa.int/index.php?project=Planck
[36] Niemack M D et al 2010 Proc. SPIE 7741 77411S
[37] Dunkley J et al 2009 CMBPol Mission Concept Study: Prospects for Polarized Foreground Removal (New York: AIP)
[38] Kolb E W and Turner M S 1990 The Early Universe (Reading, MA: Addison-Wesley)
[39] Nakayama K, Saito S, Suwa Y and Yokoyama J 2008 J. Cosmol. Astropart. Phys. JCAP06(2008)020
[40] Mielczarek J 2011 Phys. Rev. D 83 023502
[41] Tong M 2012 Class. Quantum Grav. 29 155006
[42] Turner M S 1983 Phys. Rev. D 28 1243
[43] Martin J and Ringeval C 2010 Phys. Rev. D 82 023511
[44] Bailly S, Choi K-Y, Jedamzik K and Roszkowski L 2009 J. High Energy Phys. JHEP05(2009)103
[45] Miao H X and Zhang Y 2007 Phys. Rev. D 75 104009
[46] Watanabe Y and Komatsu E 2006 Phys. Rev. D 73 123515
[47] Tong M L and Zhang Y 2009 Phys. Rev. D 80 084022
[48] Kuroyanagi S, Chiba T and Sugiyama N 2009 Phys. Rev. D 79 103501
[49] Starobinsky A A 1980 Phys. Lett. B 91 99
[50] Zhang Y, Tong M L and Fu Z W 2010 Phys. Rev. D 81 101501
[51] Boyle L A and Steinhardt P J 2008 Phys. Rev. D 77 063504
[52] Kilopov M Y and Linde A D 1984 Phys. Lett. B 138 265
Giudice C F, Tkachev I and Riotto A 1999 J. High Energy Phys. JHEP08(1999)009
Lemoine M 1999 Phys. Rev. D 60 103522
Maroto A L and Mazumdar A 2000 Phys. Rev. Lett. 84 1655
Kallosh R, Kofman L, Linde A D and Proeyen A Van 2000 Phys. Rev. D 61 103503
Buonanno A, Lemoine M and Olive K A 2000 Phys. Rev. D 62 083513
Copeland E J and Seto O 2005 Phys. Rev. D 72 023506
Jedamzik K 2006 Phys. Rev. D 74 103509
Kawasaki M, Kohri K, Moroi T and Yotsuyanagi A 2008 Phys. Rev. D 78 065011
[53] Liddle A R and Lyth D H 1992 Phys. Lett. B 291 391
Liddle A R and Lyth D H 1993 Phys. Rep. 231 1
Liddle A R and Lyth D H 2000 Cosmological Inflation and Large-Scale Structure (Cambridge: Cambridge University Press)
[54] Kosowsky A and Turner M S 1995 Phys. Rev. D 52 R1739
[55] Grishchuk L P and Solokhin M 1991 Phys. Rev. D 43 2566
[56] Sanchez A G et al 2012 arXiv:1203.6616
[57] Amaire M, Hirata C and Seljak U 2005 Phys. Rev. D 72 123006
Amblard A, Cooray A and Kaplinghat M 2007 Phys. Rev. D 75 083508
[58] Boyle L A, Steinhardt P J and Turok N 2006 Phys. Rev. Lett. 96 111301
[59] Borges H A and Carneiro S 2005 Gen. Rel. Grav. 37 1385
Carneiro S 2007 J. Phys. A: Math. Theor. 40 6841
Tong M and Noh H 2011 Eur. Phys. J. C 71 1586
[60] Sesana A, Vocchio A and Colacino C N 2008 Mon. Not. R. Astron. Soc. 390 192
Liu J 2009 Mon. Not. R. Astron. Soc. 400 1850
Liu J, Han Z, Zhang F and Zhang Y 2010 Astrophys. J. 719 1546 and references therein