The origin of magnetic fields in galaxies: observational tests with the Square Kilometre Array

RAINER BECK
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany

Accepted 2006 Mar 21

Abstract. The all-sky survey of Faraday rotation, a Key Science Project of the planned Square Kilometre Array, will accumulate tens of millions of rotation measure measurements toward background radio sources and will provide a unique database for characterizing the overall magnetic geometry of magnetic fields in galaxies and in the intergalactic medium. Deep imaging of the polarized synchrotron emission from a large number of nearby galaxies, combined with Faraday rotation data, will allow us to test primordial, gas flow, and dynamo models for field origin and amplification. The SKA will find the first magnetic fields in young galaxies and determine the timescale for building up small-scale turbulent and large-scale coherent fields. The spectrum of dynamo modes, if existing, will be resolved. The present-day coherent field may keep memory of the direction of the seed field which can be used for mapping the structure of the seed field before galaxy formation.

Key words: galaxies: evolution – galaxies: magnetic fields – techniques: polarimetric

1. Introduction

Galactic magnetism may have evolved in subsequent stages: (1) Field seeding by primordial fields embedded in the protogalaxy, or fields ejected into the protogalaxy by AGN jets, radio lobes, early supernova remnants, or gamma-ray bursts. (2) Field amplification by compressing or shearing flows, turbulent flows, magneto-rotational instability, and dynamos. (3) Field ordering by the large-scale dynamo.

Models referring to one or more of these stages can be tested by observations. Radio astronomy provides the best tools to measure galactic magnetic fields. The planned Square Kilometre Array (SKA) will allow fundamental advances in studying the origin and evolution of magnetic fields.

2. Models of magnetic field origin and evolution

2.1. “Primordial” models

A protogalactic seed field (not necessarily a primordial field from the early Universe) was amplified by compression during galaxy collapse and shearing by the differentially rotating disk. To avoid winding up and field decay by reconnection, Fujimoto & Sawa [1987] assumed field diffusion through the disk gas. If the seed field was random, the sheared field becomes anisotropic random. If the seed field had a large-scale direction, the structure of the resulting field depends on the angle between the seed field and the rotation axis of the disk (Sofue 1990). A seed field perpendicular to the rotation axis
develops into a large-scale bisymmetric configuration in the disk (Fig. 1), while a parallel seed field becomes dipolar (Fig. 1). A non-uniform large-scale seed field may form an axisymmetric field in the central part of the disk (Fig. 1).

A more realistic “primordial” model was developed by Howard & Kulsrud (1997) who introduced coupling of the field to gas clouds allowing for ambipolar diffusion. Any seed field develops into an anisotropic random field with frequent reversals on a scale of about 100 pc, the coherence length of the field. Averaging the field over the galaxy generally yields a non-zero value, a weak large-scale field.

“Primordial” models are unrealistic because they neglect deviations from axisymmetric rotation of the gas, such as spiral density waves. Furthermore, such models suffer from a fundamental problem: Shear by differential rotation increases the average field strength, not the magnetic flux, while magnetic flux is lost into intergalactic space by magnetic diffusion. Estimation of turbulent diffusion leads to a decay time of the field of only \(10^8\) y (Ruzmaikin et al. 1988). To maintain the field strength, field amplification by gas flows or a dynamo is required.

2.2. “Flow” models

The present-day strength and structure of galactic magnetic fields may also be the result of local compression and shear by gas flows. In a kinematic approach Otmanowska-Mazur et al. (2002) showed that the gas flow in a barred galaxy (modelled in N-body simulations) can amplify fields and generate spiral structures with coherence lengths of a few 100 pc. Total magnetic energy and total magnetic flux decrease; a small-scale dynamo (Sect. 2.3) is required to maintain the field.

Dynamic MHD models of turbulent gas flows in galaxies driven by supernova explosions were computed only for limited volumes of about 1 kpc\(^3\) (Korpi et al. 1999; de Avillez & Breitschwerdt 2005). The magnetic field is sheared and compressed by the flow and reveals a spectrum of coherent structures up to \(\approx 100\) pc size. The strongest fields are located in the regions of cold, dense gas. This agrees well with the interpretation of the radio – infrared correlation (Sect. 3).

2.3. Dynamo models

The mean-field \(\alpha-\Omega\) dynamo model is based on differential rotation and the \(\alpha\)-effect (Ruzmaikin et al. 1988; Beck et al. 1996). The physics of dynamo action still faces theoretical problems (Kulsrud 1999; Brandenburg & Subramanian 2005). The dynamo is the only known model which is able to generate large-scale coherent magnetic fields of spiral shape. These coherent fields can be represented as a superposition (spectrum) of modes with different azimuthal and vertical symmetries. In a smooth, axisymmetric gas disk the strongest mode is that with the azimuthal mode number \(m = 0\) (axisymmetric spiral field), followed by the weaker \(m = 1\) (bisymmetric spiral field), etc (Elstner et al. 1992). These modes cause typical variations of Faraday rotation along the azimuthal direction in a galaxy (Krause 1990). In flat, uniform disks the axisymmetric mode with even vertical symmetry (quadrupole) is excited most easily (Baryshnikova et al. 1987) while in spherical objects the odd symmetry (dipole) dominates. The timescale for building up a coherent field from a turbulent one is \(\approx 10^7\) y (Beck et al. 1994).

Real galaxies are not uniform. Consequently, recent dynamo models include the non-axisymmetric gas distribution in spiral arms (Moss 1998) or the gas flow in a bar potential (Moss et al. 2001), hence combining dynamo and flow models. Higher modes may be amplified faster than in the standard model. Gravitational interaction with another galaxy may also modify the mode spectrum and enhance the bisymmetric mode (Moss 1995).

3. Testing the models – present status

Total synchrotron intensity is a measure of total field strength and density of cosmic-ray electrons (and positrons). Assuming equipartition between the energy densities of magnetic field and cosmic rays, this energy density is similar to that of turbulent gas motion in galaxies (Beck 2005), as imposed by dynamo models. Synchrotron intensity is closely correlated with infrared intensity. This striking fact tells us that cosmic-ray acceleration and field amplification are continuous processes and related to star formation, e.g. by field coupling to the ionized envelopes of cold gas clouds (Niklas & Beck 1997). However, the correlation is violated for very young starburst galaxies (Roussel et al. 2003). This could be due to the time needed for the evolution of massive stars to supernova remnants, which are believed to be the main cosmic-ray accelerators, but could also be the result of the finite timescale for dynamo amplification.

Most galaxies reveal spiral patterns in their polarization vectors, even flocculent or irregular galaxies. The radially decreasing pitch angles of the observed spiral patterns agree with the predictions of dynamo models (Beck 1993; Shukurov 2000). The spiral field can be coherent or incoherent (anisotropic). Faraday rotation measures (RM) are a signature of coherent regular fields. Large-scale RM patterns observed in several galaxies (Krause 1990; Beck 2005) show that some fraction of the magnetic field in galaxies has a large-scale coherent direction. The classical case is the strongly dominating axisymmetric field in the Andromeda galaxy M 31 (Berkhuijsen et al. 2003; Fletcher et al. 2004).

A few more cases of dominating axisymmetric fields are known (e.g. the LMC, Gaensler et al. 2005), while dominating bisymmetric fields are rare (Krause et al. 1989). The two magnetic arms in NGC 6946 (Beck & Hoernes 1996), with the field directed towards the galaxy’s centre in both, are a signature of superposed \(m = 0\) and \(m = 2\) modes. However, for most of the (about 20) nearby galaxies for which multi-frequency observations are available, angular resolutions and/or signal-to-noise ratios are still insufficient to reveal a mixture of magnetic modes – if existing.

Polarization angles are ambiguous by \(\pm 180^\circ\) and hence insensitive to field reversals. Compression or stretching of turbulent fields with random orientations generates incoherent anisotropic random fields which reverse their direction frequently within the telescope beam, so that Faraday rotation of the extended polarized emission is small while the
4. Testing the models with the SKA

The all-sky survey of Faraday rotation, a SKA Key Science Project, will accumulate tens of millions of rotation measurements toward background radio sources (Gaensler et al. 2004). This will provide a unique database for understanding the structure and evolution of magnetic fields in galaxies and in the intergalactic medium (Beck & Gaensler 2004). Faraday tomography of the Milky Way at $\lesssim 1$ GHz will yield a three-dimensional picture of the magnetic field within a few kpc of the Sun. High-resolution synchrotron imaging at $\gtrsim 5$ GHz of a large number of nearby galaxies, combined with RM data, will allow us to determine their magnetic field structure, and to test both the dynamo and primordial field theories for field origin and amplification.

Typical polarization intensities of nearby galaxies at 5 GHz are ~ 0.1 mJy per 15″ beam. Within a 1″ beam, ~ 0.4 mJy is expected which the SKA can detect in ~ 1 hour of integration. This will allow polarization and Faraday rotation mapping in galaxies out to a distance of about 100 Mpc. Furthermore, such observations will reveal a large number of RMs toward background sources which can be used for an independent investigation of the detailed field structure.

4.1. Primordial against dynamo models

A large sample of data on the total and polarized synchrotron intensity and Faraday rotation in young galaxies will clarify the timescales for the generation of large-scale coherent and of small-scale fields, to be compared with the models. The SKA will also provide RMs toward sources behind galaxies with little or no star formation, like dwarfs and ellipticals, where no synchrotron emission is detectable but magnetic fields may exist, triggered by turbulence driven by type I supernovae (Moss & Shukurov 1996).

The SKA will confidently determine the Fourier spectrum of dynamo modes. The azimuthal mode of order m has $2m$ reversals and can be detected if $\gtrsim 10 (m + 1)$ independent azimuthal sectors are resolved in the disk of the galaxy. Let Θ be the telescope’s angular resolution, R the mean radius of polarized emission, i the disk’s inclination ($i = 0$ for face-on) and D its distance. The highest resolvable mode is $m_{\text{max}} \approx \pi R \cos i / 50 D - 1$. To resolve all modes up to $m = 4$ in a galaxy of 5 kpc radius and 45° inclination at a distance of 100 Mpc, a resolution of $\sim 1''$ at $\gtrsim 5$ GHz is required which the SKA will provide with high signal-to-noise ratio. As the average RMs signal from a coherent field parallel to the disk varies with $\sin i$, mildly inclined galaxies are preferable.

The SKA has the potential to increase the galaxy sample with well-known field patterns by up to three orders of magnitude. The conditions for the excitation of dynamo modes can be clarified. For example, interactions with companion galaxies may enhance the bisymmetric $m = 1$ mode (Sect. 2.1). A dominance of bisymmetric fields for non-interacting galaxies would be in conflict with existing dynamo models and would support the primordial field origin (Sect. 2.1).

Galactic dynamo models also predict the preferred generation of quadrupolar patterns (Sect. 2.3) where the field in the...
disk has the same sign above and below the plane. Primordial models predict dipolar patterns with a reversal in the plane (Fig. 1) which can be distinguished by observing RMs in edge-on galaxies. However, their polarized emission is weak in the disk (due to strong depolarization) and also in the halo (strong energy losses of the cosmic-ray electrons). The determination of the global vertical field symmetry has not been possible yet. This experiment also must await the SKA.

RMs toward background sources will allow us to trace coherent fields to large galactic radii and hence to derive restrictions for dynamo action. If the α effect is driven by supernova remnants or by Parker loops (Hanasz, this volume), dynamo modes should be excited preferably in the star-forming regions. If the magneto-rotational instability is the source of turbulence and of the α effect (Sellwood & Balbus 1999; Kitchatinov & Rüdiger 2004), field amplification will be seen out to large galactic radii.

4.2. Large-scale seed fields

Most of the (few) galaxies known to host a dominating axisymmetric $m = 0$ mode possess a radial field component, which is directed inwards (Krause & Beck 1998). Dynamo models preserve the memory of the direction of the large-scale seed field. The sign of the radial field component follows from the observed Faraday rotation (RMs) and rotational velocity along the line of sight (v_r) on the major axis (Fig. 3): opposite signs of RMs and v_r indicate an inward-directed field, same signs an outward-directed field. SKA’s sensitivity and broad frequency bands will allow to observe galaxies out to more than 100 Mpc distance and to map the structure of the large-scale seed field before galaxy formation.

4.3. Gas flow and small-scale dynamo

The failure to detect a coherent magnetic field in a resolved galaxy and the detection of predominantly turbulent fields with the SKA would indicate that mean-field dynamo action (Sect. 4.3) is unimportant (e.g. due to its long timescale) and that gas flows structure the field, supported by the small-scale or fluctuation dynamo (Subramanian 1998; Brandenburg & Subramanian 2005; see also this volume), which amplifies turbulent, incoherent magnetic fields, does not rely on differential rotation, and can work in all galaxy types.

References

de Avillez, M. A., Breitschwerdt, D.: 2005, A&A 436, 585
Baryshnikova, Y., Ruzmaikin, A., Sokoloff, D.D., Shukurov, A.: 1987, A&A 177, 27
Beck, R.: 1993, in: F. Krause et al. (eds.), The Cosmic Dynamo, Kluwer, Dordrecht, p. 283
Beck, R.: 2005, in: R. Wielebinski, R. Beck (eds.), Cosmic Magnetic Fields, Springer, Berlin, p. 41
Beck, R., Hoernes, P.: 1996, Nature 379, 47
Beck, R., Gaensler, B. M.: 2004, in: C. Carilli, S. Rawlings (eds.), Science with the Square Kilometre Array, New Astronomy Rev. 48, 1289
Beck, R., Poedz, A. D., Shukurov, A., Sokoloff, D.: 1994, A&A 289, 94
Beck, R., Brandenburg, A., Moss, D., Shukurov, A., Sokoloff, D.: 1996, ARA&A 34, 155
Beck, R., Brandenburg, A., Moss, D., Shukurov, A., Sokoloff, D.: 2005, A&A 444, 739
Berkhuijsen, E. M., Beck, R., Hoernes, P.: 2003, A&A 398, 938
Brandenburg, A., Subramanian, K.: 2005, Phys. Rep. 417, 1
Chyży, K. T., Beck, R.: 2004, A&A 417, 541
Chyży, K. T., Knapik, J., Bomans, D. J., Klein, U., Beck, R., Soida, M., Urbanik, M.: 2003, A&A 405, 513
Elstner, D., Meinel, R., Beck, R.: 1992, A&AS 94, 587
Fletcher, A., Berkhuijsen, E., Beck, R., Shukurov, A.: 2004, A&A 414, 53
Fujimoto, K., Sawa, T.: 1987, PASJ 39, 375
Gaensler, B. M., Beck, R., Feretti, L.: 2004, in: C. Carilli, S. Rawlings (eds.), Science with the Square Kilometre Array, New Astronomy Rev. 48, 1003
Gaensler, B. M., Havercorn, M., Staveley-Smith, L., et al.: 2005, Science 307, 1610
Han, J. L., Beck, R., & Berkhuysjen, E. M.: 1998, A&A 335, 1117
Howard, A. M., Kulsrud, R. M.: 1997, ApJ 483, 648
Kitchatinov, L. L., Rüdiger, G.: 2004, A&A 424, 565
Korpi, M. J., Brandenburg, A., Shukurov, A., Tuominen, I.: 1999, A&A 350, 230
Krause, M.: 1990, in: R. Beck et al. (eds.), Galactic and Intergalactic Magnetic Fields, Kluwer, Dordrecht, p. 187
Krause, M., Beck, R., Hummel, E.: 1989, A&A 217, 17
Kulsrud, R. M.: 1999, A&A 37, 37
Moss, D.: 1995, MNRAS 275, 191
Moss, D.: 1998, MNRAS 297, 860
Moss, D., Shukurov, A.: 1996, MNRAS 279, 229
Moss, D., Shukurov, A., Sokoloff, D., Beck, R., Fletcher, A.: 2001, A&A 380, 55
Niklas, S., Beck, R.: 1997, A&A 320, 54
Ottmanowska-Mazur, K., Elstner, D., Soida, M., Urbanik, M.: 2002, A&A 384, 48
Roussele, H., Helou, G., Beck, R., et al.: 2003, ApJ 593, 733
Ruzmaikin, A. A., Sokoloff, A., Sokoloff, D.: 1988, Magnetic Fields of Galaxies, Kluwer, Dordrecht
Sellwood, J. A., Balbus, S. A.: 1999, ApJ 511, 660
Shukurov, A., 2000: in: E. M. Berkhuysjen et al. (eds.), The Interstellar Medium in M 31 and M 33, Shaker, Aachen, p. 191
Sofue, Y.: 1990, in: R. Beck et al. (eds.), Galactic and Intergalactic Magnetic Fields, Kluwer, Dordrecht, p. 227
Subramanian, K.: 1998: MNRAS 294, 718