Platelet Indices as Diagnostic Marker for Kawasaki Disease

Sung Hoon Kim¹, In Ji Hwang², and Young Kuk Cho³*,

¹Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, ²Department of Pediatrics, Chonnam National University Hospital, ³Department of Pediatrics, Chosun University Hospital, College of Medicine, Chosun University, Gwangju, Korea

Various candidate biomarkers have been investigated for the early and accurate diagnosis of Kawasaki disease (KD). We aimed to evaluate platelet activity using platelet indices (PI) in patients with KD or simple febrile illness to determine whether these indices might support a diagnosis of KD. Another objective of the study was to delineate the changes in PI from the acute to convalescent phases of KD. A total of 225 patients with complete KD (cKD), 110 with incomplete KD (iKD), and 71 with simple febrile illness (control) were enrolled. PI included mean platelet volume (MPV), platelet distribution width (PDW), and plateletcrit (PCT). We serially measured the serum PI four times for each patient with KD from the acute to convalescent phases: on D0 (day of intravenous immunoglobulin (IVIG) treatment) and repeated on days 2 (D2), 14 (D14), and 56 (D56) after IVIG therapy. Data from the control group were collected during the acute stage of the disease (D0). The platelet counts in the cKD (341±103×10³/mm³) and iKD (374±135×10³/mm³) at diagnosis were higher than the control group (290±128×10³/mm³). The PCT in the cKD (0.284±0.085%) and iKD (0.313±0.109%) groups at diagnosis were also higher than the control group (0.246±0.108%). However, the MPV and PDW levels in the KD group were not statistically significant. Therefore, platelet count and PCT are adjuvant parameters for the differential diagnosis of KD from a simple febrile illness.

Key Words: Kawasaki Disease; Platelet Indices; Biomarker

INTRODUCTION

Kawasaki disease (KD) is characterized by systemic inflammation in medium-sized arteries especially in coronary arteries during acute febrile phase.¹,³ About 15-25% of KD patients develop coronary artery lesions, including coronary aneurysms, if they are not treated effectively.⁴ Therefore, a prompt and accurate diagnosis and timely treatment of KD is necessary.³ However, since there is no definitive diagnostic laboratory test for KD, the diagnosis and treatment is sometimes delayed.⁵ Therefore, various candidate biomarkers for suspicion of KD have been investigated.⁷ A characteristic laboratory feature of the subacute phases of KD is thrombocytosis, with platelet counts over than 500,000/mm³.¹,³ In contrast, thrombocytopenia in the acute stage is a risk factor for earlier coronary aneurysm development.⁵,⁶ Not only are platelets dynamic blood particles whose primary function is hemostasis or the prevention of bleeding, but those are also immune cells that initiate and accelerate many vascular inflammatory conditions.⁶ Platelet activity can be evaluated with platelet indices (PI) including, mean platelet volume (MPV), platelet distribution width (PDW) and plateletcrit (PCT).⁷ PI is are included in routine blood counts, which may be a more sensitive index than platelet number as a marker in various inflammatory and infectious disease.⁷,⁸ There are only few studies on the changes of PI in KD.⁸,¹⁰ Hu et al.⁹ found MPV to be significantly lower in the 23 KD patients than 33 febrile illness controls. Liu et al.¹⁰ demonstrated that the 309 patients with KD had significantly lower MPV and PDW values than 160 healthy control subjects. However, they enrolled a small number of patients compared with healthy control. Furthermore, they investigated PI only at the
acute phase. In this study, therefore, we evaluated PI including MPV, PDW and PCT in patients with KD or simple febrile illness as to whether these indexes might support a diagnosis of KD. And we also delineate the changes in PI from the acute to convalescent phases.

MATERIALS AND METHODS

1. Patient selection
We enrolled patients with KD who were admitted to Chonnam National University Hospital between December 2007 and March 2016. Patients with KD were diagnosed on the basis of classic clinical criteria according to the guidelines. The diagnosis was complete Kawasaki disease (cKD) if more than four clinical diagnostic criteria were fulfilled. Patients were categorized as incomplete KD (iKD) when they had persistent fever that lasted five days or longer but with fewer than four of the other features, and if other possible causes of fever had been excluded. We also enrolled 71 age-matched children who visited our hospital for an evaluation of acute febrile diseases. Patients with known inherited or acquired disorders of platelet function were excluded from the study.

2. Peripheral venous blood examination
Serum samples were obtained to measure serum PI, including MPV, PDW, and PCT levels on day 0 (D0), which was when intravenous immunoglobulin (IVIG) was initiated in patients with cKD and iKD, and the day of admission in the simple febrile illness group. Blood samples for the determination of complete blood cell counts (CBC) were collected in tubes containing ethylenediaminetetraacetic acid (EDTA). All measurements, including PI, were performed within 2 h after blood sampling because of the known effect of EDTA on platelet volume. These samples were analyzed on a UniCel DxH 800 (Beckman Coulter, Brea, CA) or Advia 2010i Hematology System (Siemens Healthcare Diagnostics, Eschborn, Germany), under strict daily quality control.

C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin, total protein, albumin, lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatinine, creatine kinase (CK), CK-myooglobin (CK-MB), amylase, and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were obtained from both patients with KD and controls. We serially measured serum PI, WBC, CRP, and ESR four times for each patient with KD from the acute to convalescent phase: on D0 (day of IVIG treatment) and repeated on days 2 (D2), 14 (D14), and 56 (D56) after IVIG therapy. Data from the control group were collected only during the acute stage of the disease (D0). We compared the D0 values of cKD, iKD, and control groups and those of patients with cKD versus iKD at later time points.

3. Statistical analysis
The unpaired two-tailed t-test or chi-square test was used to assess the statistical significance of differences in the values of independent variables. Analysis of variance (ANOVA) was used to compare data among more than three groups, followed by Tukey’s honest significant difference post-hoc test. When homogeneity of variance was not present according to Levene’s test, Dunnett’s T3 test was used as the post-hoc test. When a normal distribution was not observed, as assessed by the Shapiro-Wilk test, the Kruskal-Wallis test was used, followed by the Bonferroni correction. The cutoff values for diagnosing KD were obtained from the receiver operating characteristic (ROC) curve analysis. Continuous variables were expressed as mean ± standard deviation. All values were considered statistically significant at p<0.05. The SPSS software package (version 20.0; SPSS, IBM Inc., Chicago, IL, USA) was used for all data analyses.

4. Ethics statement
This study was approved by the Institutional Review Board of Chonnam National University Hospital (Protocol no.I-2009-09-103). All data were confidentially treated.
TABLE 1. Demographic characteristics and laboratory findings at diagnosis in patients with complete Kawasaki disease (KD), incomplete KD, and simple febrile illness (Control)

	Complete KD	Incomplete KD	Control
n	Value	n Value	n Value
Age (years)	225 2.9±1.8	110 2.2±1.8 †	71 2.9±2.3
Sex (boy/girl)	225 141/84	110 66/44	71 49/22
Duration of fever prior to admission (days)	225 4.2±2.0	110 4.5±2.4	71 4.3±4.2
Total fever duration (days)	225 6.0±1.8	110 6.4±2.5	71 6.0±5.0
White blood cell (count/mm³)	222 14,382±4,641	110 14,305±5,339	71 11,740±6,273 † ‡
Neutrophil (%)	221 3.1±12.8	110 2.8±2.7	71 0.9±1.3 † ‡
Eosinophil (%)	222 5.0±10.0	110 2.8±2.7	71 0.9±1.3 † ‡
Hemoglobin (g/dL)	222 11.4±1.1	110 11.1±1.2	71 11.5±1.3 †
Platelet (×10³/mm³)	222 341±103	110 374±135	71 290±128 † ‡
Mean platelet volume (fl)	222 8.4±1.1	110 8.5±0.9	71 8.6±1.3
Platelet distribution width (%)	222 16.5±13.0	110 15.0±11.5	71 15.6±13.1
Plateletcrit (%)	222 0.28±0.085	110 0.31±0.109	71 0.24±0.085 † ‡
C-reactive protein (mg/dL)	221 8.3±5.2	107 7.9±5.9	69 4.2±4.6 †
Erythrocyte sedimentation rate (mm/hr)	93 66±26	38 75±28	19 40±34 †
Aspartate aminotransferase (U/L)	222 96±144	109 70±111 †	71 98±265
Alanine aminotransferase (U/L)	222 113±171	109 75±120 †	71 45±94 † ‡
Total bilirubin (mg/dL)	148 6.0±0.8	63 0.7±0.9 *	28 0.7±1.2
Total protein (g/dL)	206 6.4±0.8	98 6.5±0.7	67 6.6±0.6
Albumin (g/dL)	211 3.6±0.6	102 3.7±0.5	69 3.9±0.5 † ‡
Lactate dehydrogenase (U/L)	88 620±190	43 627±271	24 1,258±1,623 † ‡
Blood urea nitrogen (mg/dL)	218 8.7±4.7	107 7.8±4.6	70 9.7±4.7 †
Creatinine (mg/dL)	217 0.2±0.1	106 0.3±0.1	69 0.3±0.1
Creatine kinase (IU/L)	186 187±468	95 106±248	35 753±2565 † ‡
Amylase (U/L)	53 58±57.2	20 51±60.5	14 39±13.4
N-terminal prohormone of Brain Natriuretic Peptide (pg/mL)	217 1,931±3,630	109 1,445±2,312	54 924±2,141 † ‡

IVlg: intravenous immunoglobulin administration, KD: Kawasaki disease. Data are shown as mean±SD. †p<0.05, ‡p<0.01 vs. complete KD, ¶p<0.05, ††p<0.01 vs. incomplete KD.

2. Clinical presentations in patients with Kawasaki disease

Among the 225 patients with cKD, 71 patients (31.6%) met the five diagnostic clinical criteria of KD, and the remaining 154 patients (68.4%) met only four criteria. Of the total sample, 221 (98.2%) had bilateral bulbar conjunctival injections, 215 (95.6%) had changes in the oral mucosa, 208 (92.4%) had polymorphous rashes, 24 (21.8%) had changes in the peripheral extremities, and 38 (34.5%) had cervical adenopathy. All clinical criteria for diagnosing KD were significantly more prevalent in patients with cKD than in those with iKD (p<0.001).

3. Laboratory findings at the time of diagnosis and changes over time

Laboratory findings of the cKD, iKD, and febrile illness control groups at D0 are shown in Fig. 1 and Table 1. At the time of diagnosis, WBC count, percentage of eosinophils, CRP, and ESR levels in cKD and iKD patients were significantly higher than those in the controls. Serum albumin, ALT, LDH, CK, and NT-proBNP levels in cKD and iKD patients were significantly lower than the controls. The percentage of neutrophils in patients with cKD was significantly higher than in patients with iKD (p<0.001) and febrile illness controls (p=0.003). ALT levels in patients with cKD were also significantly higher than patients with iKD (p=0.018).
FIG. 1. Dot plots of white blood cells (A), C-reactive protein level (B), erythrocyte sedimentation rate (C), alanine aminotransferase (D), platelet count (E), mean platelet volume (F), platelet distribution width (G), and plateletcrit (H) in patients with febrile illness (control), complete Kawasaki disease (KD), and incomplete KD at diagnosis. *p<0.05, †p<0.01, NS: not significant.

4. Laboratory changes in cKD and iKD after IVIG treatment

As shown in Table 2, WBC counts in both the cKD and iKD group on D2 and D14 were lower than in the control group. The WBC counts in both cKD and iKD group at D2, D14, and D56 were also lower than those at D0. The ESR in both the cKD and iKD groups at D0 and D2 was higher than that in the control group. The increased ESR on D0 and D2 gradually decreased on D14 and D56. In both the cKD and iKD groups, the increased CRP on D0 gradually decreased on D2, D14, and D56.

5. Platelet index levels at the time of diagnosis and changes over time

The platelet counts in the cKD and iKD groups were consistently higher than those in the control group. The platelet counts in the cKD group at D2 and D14 were higher than those at D0 and D56 (Table 1, Fig. 1E and 2A). The platelet count in iKD group at D2 was higher than that at D0 and D56 (Table 1, Fig. 1E and 2B).

At the time of diagnosis, the MPV in patients with cKD (8.4±1.1 fL) and iKD (8.5±0.9 fL) did not differ from those in the control (8.6±1.3 fL). However, the MPV in the cKD group at D2 (7.7±1.2, p<0.001), D14 (7.2±0.8, p<0.001), and D56 (7.4±0.8, p<0.001) were lower than those in the control group. The MPV on D2 was lower than that on D0 (p<0.001). The MPV on D14 and D56 was lower than that on D2 (p<0.001 and p=0.020, respectively) (Fig. 1F and 2C). The MPV in the iKD group at D2 (7.7±1.0, p<0.001), D14 (7.3±0.8, p<0.001), and D56 (7.4±0.7, p<0.001) were lower than those in the control group, and were also lower than that on D0 (p<0.001) (Fig. 1F and 2D).

On D0, the PDW in patients with cKD (16.5±13.0%) and iKD (15.0±11.5%) also did not differ from those in controls (15.6±13.1%). However, the PDW in the cKD group at D2 (21.1±13.3%, p<0.001), D14 (21.4±11.2%, p<0.001), and D56 (22.4±12.0%, p<0.001) were higher than those in the control group, which were also higher than those at D0 (p<0.001) (Fig. 1G and 2E). The PDW in the iKD group at D2 (22.5±14.9%, p<0.001), D14 (20.9±11.6%, p<0.001), and
TABLE 2. Laboratory findings of patients with complete and incomplete Kawasaki disease (KD) on day of diagnosis and 2, 14, and 56 days after intravenous immunoglobulin treatment and simple febrile illness (Control) at diagnosis

	Complete KD	Incomplete KD	Control
	n Value	n Value	n Value
Platelet (×10^3/mm³)			
At diagnosis	222 341±103	110 374±135	71 290±128^{1,7}
2 days after treatment	220 417±139	106 460±177⁶	
14 days after treatment	213 404±132	103 413±154	
56 days after treatment	186 348±84	89 349±86	
Mean platelet volume (fl)			
At diagnosis	222 8.4±1.1	110 8.5±0.9	70 8.6±1.3
2 days after treatment	219 7.7±1.2	106 7.7±1.0	
14 days after treatment	213 7.2±0.8	103 7.3±0.8	
56 days after treatment	186 7.4±0.8	89 7.4±0.7	
Platelet distribution width (%)			
At diagnosis	222 16.5±13.0	110 15.0±11.5	70 15.6±13.1
2 days after treatment	219 21.1±13.3	106 22.5±14.9	
14 days after treatment	213 21.4±11.2	103 20.9±11.6	
56 days after treatment	186 22.4±12.0	89 22.1±11.6	
Plateletcrit (%)	222 0.284±0.085	110 0.313±0.109	70 0.246±0.108^{1,7}
2 days after treatment	219 0.318±0.101	106 0.349±0.132	
14 days after treatment	213 0.291±0.095	103 0.301±0.110	
56 days after treatment	186 0.255±0.061	89 0.255±0.060	
White blood cell (count/mm³)			
At diagnosis	222 14,382±4,641	110 14,305±5,339	71 11,740±6,273^{1,7}
2 days after treatment	218 8,903±4,647	106 8,608±3,762	
14 days after treatment	213 8,487±2,463	103 8,870±3,122	
56 days after treatment	186 8,993±2,072	89 8,738±2,317	
Erythrocyte sedimentation rate (mm/hr)			
At diagnosis	93 66±26	38 75±28	19 40±34^{1,7}
2 days after treatment	158 75±27	77 76±27	
14 days after treatment	208 42±26	101 38±25	
56 days after treatment	181 11±11	86 11±15	
C-reactive protein (mg/dL)			
At diagnosis	219 8.3±5.2	107 7.9±5.9	69 4.2±4.6^{1,7}
2 days after treatment	217 4.7±4.1	106 3.6±3.3¹	
14 days after treatment	210 0.3±1.0	103 0.2±0.4	
56 days after treatment	185 0.1±0.3	89 0.1±0.3	

KD: Kawasaki disease. Data are shown as mean±SD. *p<0.05, †p<0.01 vs. complete KD, ‡p<0.01 vs. incomplete KD.

6. Cutoff value of platelet count and PCT levels for diagnosing KD

We used ROC curves to obtain the cutoff values of platelet count and PCT in patients with cKD, iKD, and all KD patients compared with the simple febrile illness control group (Table 3, Fig. 3). The cut-off value of platelet count in the cKD patient group was 280×10^3/mm³, with a sensitivity of 71.6% and a specificity of 63.4% (area under the curve [AUC]=0.677, p<0.001), and the cutoff value of PCT was 0.245%, with a sensitivity of 65.3% and specificity of 60.0% ([AUC]=0.666, p<0.001) (Table 3, Fig. 3A). For the iKD patient group, the cutoff value of platelet count was 280×10^3/mm³, with a sensitivity of 74.3% and specificity of 63.4% (area under the curve [AUC]=0.708, p<0.001), and the cutoff value of PCT was 0.255%, with a sensitivity of

D56 (22.1±11.6%, p<0.001) were higher than those in the control group, and were also higher than those at D0 (p<0.001) (Fig. 1G and 2F).

PCT in the cKD group at D0 (0.284±0.085%, p<0.001), D2 (0.318±0.101%, p<0.001), and D14 (0.291±0.095%, p<0.001) were higher than those in the control group (0.246±0.108%). PCT increased at D2 compared to D0, and then gradually decreased at D14 and D56 (0.255±0.061%) (Fig. 1H and 2G). The PCT in the iKD group at D0 (0.313±0.109%, p<0.001), D2 (0.349±0.132%, p<0.001), and D14 (0.301±0.110%, p<0.001) were higher than those in the control group. PCT decreased at D14 and D56 (0.255±0.060%) compared to that at D2 (Fig. 1H and 2H).
FIG. 2. Dot plots of platelet count (A, B), mean platelet volume (C, D), platelet distribution width (E, F), and platelet-crit (G, H) in patients with febrile illness (control), complete Kawasaki disease (KD), and incomplete KD at diagnosis and 2, 14, and 56 days after intravenous immunoglobulin (IVIG) treatment. *p<0.05, †p<0.01.
69.1% and specificity of 65.7% ([AUC]=0.710, p<0.001) (Table 3, Fig. 3B).

The cutoff value of platelet count in the total (complete and incomplete) KD patient group was 280×10³/mm³, with a sensitivity of 72.6% and specificity of 63.4% (area under the curve [AUC]=0.688, p<0.001), and the cutoff value of PCT was 0.250%, with a sensitivity of 67.5% and specificity of 60.0% ([AUC]=0.681, p<0.001) (Table 3, Fig. 3C).

DISCUSSION

In this study, we found that patients with KD had significantly higher platelet counts and PCT levels than simple febrile control subjects at the time of diagnosis. There were no statistically significant differences in the MPV and PDW between the KD and control groups.

Although the laboratory findings in KD are not specific for diagnosis, a characteristic laboratory feature of the subacute phases of KD is thrombocytosis.3 In contrast, thrombocytopenia at KD presentation is known to be a risk factor for earlier coronary aneurysm development and may be a sign of disseminated intravascular coagulation.3,6,7 In our study, platelet count was higher in both the cKD and iKD groups than in controls. When the cut-off value of platelet count was determined as 280×10³/mm³, the diagnosis of KD was supported by a sensitivity of 72.6% and specificity of 63.4%. The platelet count increased at 2 and 14 days after IVIG treatment in patients with cKD and iKD, respectively, and decreased 56 days after IVIG treatment.

Platelet volume is correlated with platelet function, and PI may be a more sensitive index than platelet number as a marker of clinical interest in various disorders.7 Although clinical utility and validity of PI have not been established yet, PI has been demonstrated as a marker of pro-inflammatory and pro-thrombotic state in cardiovascular diseases.12 In our study, we found that there was no significant difference in MPV between KD groups and febrile illness controls. However, MPV gradually decreased until 14 days after IVIG treatment in patients with KD. Hu et al.9 and Liu et al.10 demonstrated that patients with KD had significantly lower MPV values than febrile and healthy control subjects, respectively. Recently, Roy et al.8 proposed that at MPV ≤10.0 fl, KD can be diagnosed with 75% sensitivity and 80% specificity from 28 KD children and 50 febrile illness children. Although the reason for reduced MPV in KD remains unclear, the mechanism for decreased MPV may be because of the consumption or sequestration of the enlarged platelets in the vasculature, or the regulation defect of thrombopoiesis.10 Furthermore, inflammatory mediators stimulate the bone marrow to produce smaller platelets by shortening their maturation time, therefore smaller platelets enter the blood stream and active platelets are destroyed at the site of inflammation; hence, MPV is decreased.11

PDW is another indicator of platelet volume directly measured by flow cytometry, which reflects the consistency of the size and distribution of platelets.13,14 An increase in PDW indicates a deterioration in the size consistency of platelet volume, which means that megakaryocyte hyperplasia is responsible for PDW increase. In contrast, a decrease in PDW correlates with increased consistency. Under normal bone marrow function, MPV is positively associated with PDW.14 PDW has an inverse relationship with the severity of inflammatory disease.13,15,16 Liu et al.10 demonstrated that the 309 patients with KD had significantly lower PDW values than 160 healthy control

TABLE 3. Diagnostic cut-off values of platelet count and plateletcrit in patients with complete, incomplete, and total (complete and incomplete) Kawasaki disease (KD) compared to patients with simple febrile illness

Complete KD	Cut off value	Sensitivity (%)	Specificity (%)
Platelet (×10³/mm³)	280	71.6	63.4
Plateletcrit (%)	0.245	65.3	60.0

Incomplete KD	Cut off value	Sensitivity (%)	Specificity (%)
Platelet (×10³/mm³)	280	74.5	63.4
Plateletcrit (%)	0.255	69.1	65.7

Total KD	Cut off value	Sensitivity (%)	Specificity (%)
Platelet (×10³/mm³)	280	72.6	63.4
Plateletcrit (%)	0.250	67.5	60.0

FIG. 3. Receiver operating characteristics (ROC) curves of platelet count and plateletcrit in patients with complete Kawasaki disease (KD) (A), incomplete KD (B) and total KD patients (C) compared with the simple febrile illness control group.
subjects. In the current study, there were no significant differences in PDW between KD and febrile illness controls. However, PDW increased at 2, 14, and 56 days after IVIG treatment in patients with KD. Unlike other PI that are measured directly by a machine, PCT is the volume percentage of platelets in the whole blood volume and is positively associated with platelet count and MPV. Evaluation of PCT can help determine the severity of the inflammatory process in the follow-up and treatment process, and PCT is higher in the active phase than in the remission period of rheumatoid arthritis. Recently, Ergelen and Uyarel reported high PCT values (>0.237%) as a predictor of long-term cardiovascular mortality in patients with acute coronary syndrome. In our study, we found that patients with complete and incomplete KD had significantly higher PCT levels than control subjects. Therefore, we suggest that the diagnosis of iKD can be supported by a sensitivity of 67.5% and specificity of 60.0% when the cut-off value of PCT is determined to be 0.250%. PCT levels increased 2 days after IVIG treatment in patients with cKD and iKD. The platelet count gradually decreased by a sensitivity of 67.5% and specificity of 60.0% when the cut-off value of PCT is determined to be 0.250%. PCT values owing to different severities or cascades of inflammation. Furthermore, we found relatively low sensitivity and specificity of the cut-off values, PCT is one of the adjuvant parameters for the early diagnosis of KD from simple febrile illnesses.

Our study has a few limitations. We enrolled a relatively small number of patients with simple febrile illnesses as the control group. The control patients had heterogeneous febrile illnesses, which could have affected the measured PI values owing to different severities or cascades of inflammation. Furthermore, we found relatively low sensitivity and specificity of the cut-off values for platelet count and PCT. Further large prospective investigations are required to select higher cut-off values for platelet count and PCT as diagnostic parameters.

In conclusion, patients with KD have significantly higher platelet counts and PCT levels than simple febrile control subjects at the time of diagnosis. Platelet count and PCT are adjuvant parameters for the differential diagnosis of complete KD and incomplete KD from simple febrile illnesses.

ACKNOWLEDGEMENTS

This study was supported by a research fund from the Chosun University (2020).

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Kawasaki T, Kosaki F, Okawa S, Shigematsu I, Yanagawa H. A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 1974;54:271-6.
2. Amano S, Hazama F, Kubagawa H, Tasaka K, Haebra H, Hamashima Y. General pathology of Kawasaki disease. On the morphological alterations corresponding to the clinical manifestations. Acta Pathol Jpn 1980;30:681-94.
3. McCrindle BW, Rowley AH, Burns JC, Bolger AF, Gewitz M, et al.; American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Cardiovascular Surgery and Anesthesia; Council on Epidemiology and Prevention. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 2017;135:e927-99. Erratum in: Circulation 2019;140:e181-4.
4. Kato H, Ichinose E, Yoshioka F, Takechi T, Matsumaga S, Suzuki K, et al. Fate of coronary aneurysms in Kawasaki disease: serial coronary angiography and long-term follow-up study. Am J Cardiol 1982;49:1758-66.
5. Beken B, Unal S, Cetin M, Gunerik F. The relationship between hematological findings and coronary artery aneurysm in kawasaki disease. Turk J Haematol 2014;31:199-200.
6. Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood 2014;123:2759-67.
7. Budak YI, Polat M, Huysal K. The use of platelet indices, platelet-crit, mean platelet volume and platelet distribution width in emergency non-traumatic abdominal surgery: a systematic review. Biochem Med (Zagreb) 2016;26:178-93.
8. Roy S, Majumdar SD, Chakrabarty S, Chakravarti S. Mean platelet volume as a marker of Kawasaki disease in children. Indian J Child Health 2017;4:318-21.
9. Hu Y, Zhou C, Chen L. Significance of platelet parameters in children with Kawasaki disease in diagnosis and prognosis. J Appl Clin Pediatr 2007;22:982-3.
10. Liu R, Gao F, Huo J, Yi Q. Study on the relationship between mean platelet volume and platelet distribution width with coronary artery lesion in children with Kawasaki disease. Platelets 2012;23:11-6.
11. Thompson CB, Diaz DD, Quinn PG, Lapins M, Kurtz SR, Valeri CR. The role of anticoagulation in the measurement of platelet volumes. Am J Clin Pathol 1983;80:327-32.
12. Endler G, Klimesch A, Sunder-Plassmann H, Schillinger M, Exner M, Mannhalter C, et al. Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease. Br J Haematol 2002;117:399-404.

13. Vakili M, Ziaee V, Moradinejad MH, Raeeskarami SR, Kompani F, Rahamouz T. Changes of platelet indices in juvenile idiopathic arthritis in acute phase and after two months treatment. Iran J Pediatr 2016;26:e5006.

14. Chen J, Liu Y, Liu W, Wu Z. A meta-analysis of the biomarkers associated with coronary artery lesions secondary to Kawasaki disease in Chinese children. J Huazhong Univ Sci Technolog Med Sci 2011;31:705.

15. İsk M, Şahin H, Hüseyin E. New platelet indices as inflammatory parameters for patients with rheumatoid arthritis. Eur J Rheumatol 2014;1:144-6.

16. Öztürk ZA, Dag MS, Kuyumcu ME, Cam H, Yesil Y, Yilmaz N, et al. Could platelet indices be new biomarkers for inflammatory bowel diseases? Eur Rev Med Pharmacol Sci 2013;17:334-41.

17. O’Malley T, Langhorne P, Elton RA, Stewart C. Platelet size in stroke patients. Stroke 1995;26:995-9.

18. Ergelen M, Uyarel H. Plateletcrit: a novel prognostic marker for acute coronary syndrome. Int J Cardiol 2014;177:161.

19. Lin KH, Chang SS, Yu CW, Lin SC, Liu SC, Chao HY, et al. Usefulness of natriuretic peptide for the diagnosis of Kawasaki disease: a systematic review and meta-analysis. BMJ Open 2015;5:e006703.

20. Ko TM, Kuo HC, Chang JS, Chen SP, Liu YM, Chen HW, et al. CXCL10/IP-10 is a biomarker and mediator for Kawasaki disease. Circ Res 2015;116:876-83.

21. Hirono K, Foell D, Xing Y, Miyagawa-Tomita S, Ye F, Ahlmann M, et al. Expression of myeloid-related protein-8 and -14 in patients with acute Kawasaki disease. J Am Coll Cardiol 2006;48:1257-64.