Draft Genome Sequence of a Metronidazole-Resistant Bacteroides fragilis Strain Isolated in Ecuador

Jeannete Zurita,a,b Gabriela Sevillano,b Ariane Paz y Miño,b Francisco Flores,c,d Marcela Boverae

aFacultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
bUnidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
cDepartamento de Ciencias de la Vida y Agricultura, Universidad de las Fuerzas Armadas–ESPE, Sangolquí, Ecuador
dCentro de Investigación de Alimentos (CIAL), Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito, Ecuador
eHospital de los Valles, Quito, Ecuador

ABSTRACT Here, we report the draft genome sequence of Bacteroides fragilis strain Z&Z143, a metronidazole-resistant bacterium isolated from a blood culture from an Ecuadorian patient hospitalized in a medical institution in Quito, Ecuador. We describe a new variant of the nim genes, which is associated with metronidazole resistance.

Bacteroides fragilis is a predominant organism in the colon microbiota (1). It is one of the most common antimicrobial drug for the treatment of B. fragilis infections is metronidazole (3). Worldwide, the prevalence of metronidazole-resistant B. fragilis has been reported to be between 0.5% and 7.8% (4). The resistance is often conferred by the nim genes, which encode 5-nitroimidazole reductase (5). Before this analysis, 11 variants of the nim gene (nimA to nimK) had been identified, mainly in Bacteroides spp. and rarely in other anaerobes (6).

B. fragilis was isolated from a blood culture from a patient who had abdominal surgery and was hospitalized in Quito, Ecuador. It was obtained using a Bactec lytic anaerobic blood culture bottle (Becton, Dickinson, USA) after routine subculture on a BBL Bacteroides bile esculin (BBE) agar plate (Becton, Dickinson) at 37°C in an anaerobic atmosphere for 24 h. The API 20A system (bioMérieux, Marcy l’Etoile, France) was applied for the identification of B. fragilis (Z&Z143). MICs were determined using a Sensititre anaerobe MIC ANO2B plate (Thermo Fisher Scientific, USA). The results were interpreted according to Clinical and Laboratory Standards Institute (CLSI) guidelines (7). Total DNA from the B. fragilis Z&Z143 strain, harvested from BBE agar, was extracted using the High Pure PCR template preparation kit (Roche Diagnostics, Switzerland), according to the manufacturer’s instructions. The TruSeq Nano DNA library preparation kit (Illumina) was used to prepare libraries that were sequenced using the Illumina HiSeq system in 100-bp paired-end runs, producing a total of 10,317,898 reads. The Trimmomatic version 0.39 tool was used to trim and filter low-quality reads. Assembly was conducted with Velvet 1.2 (https://cge.cbs.dtu.dk/services/Assembler/) (8), resulting in 75 contigs >200 bp in size and an estimated genome size of 5 Mb. Antimicrobial resistance genes were determined using ResFinder (9). Default parameters were used for all software.

The isolated B. fragilis strain was characterized according to its phenotypic and genotyping resistance (Table 1).

The draft genome of metronidazole-resistant B. fragilis Z&Z143 has a length of 5,158,698 bp, with an N50 value of 196,742 bp, genome coverage of 200.0×, and G+C content of 43.1%. A total of 4,320 protein-coding genes and 71 RNA-coding sequences were detected after manual inspection of the annotations using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (https://www.ncbi.nlm.nih.govgenome/annotation_prok/) (10).

Volume 8 Issue 49 e01125-19
mra.asm.org
Functional annotation with the PGAP highlighted genes that were associated with the nitroimidazole reductase protein, which is responsible for the metronidazole resistance in this strain. A BLAST search of the Z&Z143 nitroimidazole resistance gene resulted in a nucleic acid identity of 89% with the \textit{nimC} gene of \textit{Bacteroides thetaiotaomicron} (GenBank accession number NG_048013) and 83% with the \textit{nimF} gene of \textit{Bacteroides vulgatus} (GenBank accession number AJ515145). The presence of this \textit{nim} gene in \textit{B. fragilis} was further confirmed by PCR using the NIM-3 and NIM-5 primers (11). The new variant of the \textit{nim} gene conferring metronidazole resistance described in this study was named \textit{nimL} (GenBank accession number MK251988).

The increasing diversity of \textit{nim} gene variants is of great concern because there is a possibility for new emerging multidrug-resistant \textit{Bacteroides} strains. Furthermore, the activity of metronidazole, traditionally used as an empirical therapy for anaerobic infections, might be compromised.

Data availability. The genome sequence was deposited under GenBank accession number SRKB00000000, BioProject number PRJNA530267, SRA accession number SRR10193381, and BioSample accession number SAMN11310039.

ACKNOWLEDGMENT

This study was supported by grant MICO14 from the Unidad de Investigaciones en Biomedicina from Zurita & Zurita Laboratorios.

REFERENCES

1. Aldridge KE, Sanders CV. 2002. Susceptibility trending of blood isolates of the \textit{Bacteroides} fragilis group over a 12-year period to clindamycin, ampicillin-sulbactam, cefotixin, imipenem, and metronidazole. Anaerobe 8:301–305. https://doi.org/10.1016/S1075-9964(03)00028-3.

2. Wexler HM. 2007. \textit{Bacteroides}: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621. https://doi.org/10.1128/CMR.00008-07.

3. Löfmark S, Edlund C, Nord CE. 2010. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis 1:S16–S23. https://doi.org/10.1086/647939.

4. Ghotaslou R, Bannazadeh Baghi H, Alizadeh N, Yekani M, Arbabi S, Memar MY. 2018. Mechanisms of \textit{Bacteroides} fragilis group resistance to metronidazole. Infect Genet Evol 64:156–163. https://doi.org/10.1016/j.meegid.2018.06.020.

5. Carlier JP, Sellier N, Rager MN, Reyssset G. 1997. Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic strains of \textit{Bacteroides} fragilis. Antimicrob Agents Chemother 41:1495–1499. https://doi.org/10.1128/AAC.41.7.1495.

6. Alauzet C, Lozniewski A, Marchandin H. 2019. Metronidazole resistance and \textit{nim} genes in anaerobes: a review. Anaerobe 55:40–53. https://doi.org/10.1016/j.janaerobe.2018.10.004.

7. CLSI. 2019. Performance standards for antimicrobial susceptibility testing, 29th ed. CLSI supplement M100. CLSI, Wayne, PA.

8. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Scheiritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361. https://doi.org/10.1128/JCM.06094-11.

9. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/10.1093/jac/dks261.

10. Tatusova T, Dicuccio M, Badreddin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614. https://doi.org/10.1093/nar/gkw569.

11. Trinh S, Reyssset G. 1996. Detection by PCR of the \textit{nim} genes encoding 5-nitroimidazole resistance in \textit{Bacteroides} spp. J Clin Microbiol 34:2078–2084.

TABLE 1 Phenotypic and genotypic antimicrobial susceptibility profile

Antimicrobial	MIC breakpoint (mg/liter)	Resistance interpretive category^a	Resistance gene
Ampicillin-sulbactam	16/8	R	cepA
Amoxicillin-clavulanic acid	4/2	S	
Cefotetan Na	≤4	S	
Penicillin	≥4	R	
Imipenem	≤0.12	R	
Meropenem	≤0.5	S	
Clindamycin	≥8	R	ermF
Cefoxitin	4	S	
Metronidazole	≥16	R	nimL
Chloramphenicol	≥64	R	Chloramphenicol-acetyltransferase
Ampicillin	≥16	R	
Piperacillin	128	R	
Tetracycline	≥8	R	tetQ
Mezlocillin	128	NA	
Piperacillin-tazobactam	2/4	R	

^aThe results were interpreted using CLSI M100, 29th ed. (7). R, resistant; S, susceptible; NA, CLSI breakpoints were not available.