Resveratrol inhibits bile acid-induced gastric intestinal metaplasia via the PI3K/AKT/p-FoxO4 signalling pathway

Wenquan Lu¹,² | Zhen Ni³ | Shuqin Jiang⁴ | Mingfu Tong²,⁵ | Jian Zhang² | Jing Zhao²,⁶ | Chenchen Feng²,⁷ | Qiaoyu Jia¹ | Jingyun Wang¹ | Tingting Yao¹ | Hanbing Ning¹ | Yongquan Shi²

¹Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
²State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air force Military Medical University, Xi'an, China
³Department of Gastroenterology, The General Hospital of Western Theater Command, Chengdu, China
⁴Pediatric Development and Behavior Department, The third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
⁵Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
⁶Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
⁷Postgraduate Department, Xi'an Medical University, Xi'an, China

Correspondence
Yongquan Shi, State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, No. 127 West Changle Road, Xi'an, Shaanxi 710032, China.
Email: shiyquan@fmmu.edu.cn

Hanbing Ning, Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, Henan 450003, China.
Email: nhbing419@qq.com

Funding Information
National Natural Science Foundation of China, Grant/Award Number: 81873554; Shaanxi Science and Technology Innovation Team Project, Grant/Award Number: 2018TD-003

Gastric intestinal metaplasia (GIM) is the essential pre-malignancy of gastric cancer. Chronic inflammation and bile acid reflux are major contributing factors. As an intestinal development transcription factor, caudal-related homeobox 2 (CDX2) is key in GIM. Resveratrol has potential chemopreventive and anti-tumour effects. The aim of the study is to probe the effect of resveratrol in bile acid-induced GIM. We demonstrated that resveratrol could reduce CDX2 expression in a time- and dose-dependent manner in gastric cell lines. A Cignal Finder 45-Pathway Reporter Array and TranSignal Protein/DNA Array Kit verified that resveratrol could increase Forkhead box O4 (FoxO4) activity and that Chenodeoxycholic acid (CDCA) could reduce FoxO4 activity. Furthermore, bioinformatics analysis showed that FoxO4 could bind to the CDX2 promoter, and these conjectures were supported by chromatin-immunoprecipitation (ChIP) assays. Resveratrol can activate FoxO4 and decrease CDX2 expression by increasing phosphorylation. Ectopic FoxO4 expression can up-regulate FoxO4 phosphorylation and suppress CDCA-induced GIM marker expression. Finally, we found a reverse correlation between p-FoxO4 and CDX2 in tissue arrays. This study validates that resveratrol could reduce bile acid-induced GIM through the PI3K/AKT/p-FoxO4 signalling pathway.

Abbreviations: AKT, also called PKB, protein kinase B; BCA, Bicinchoninic acid; CDCA, Chenodeoxycholic acid; CDX2, Caudal-related homeobox 2; ChIP, Chromatin-immunoprecipitation; DAB, Diaminobenzidine; DMSO, Dimethyl sulfoxide; FoxD1, Forkhead box D1; FoxO4, Forkhead box O4; FXR, Farnesoid X receptor; GC, Gastric cancer; GIM, Gastric intestinal metaplasia; HDCA6, Histone deacetylase 6; HNF4α, Hepatocyte nuclear factor 4 alpha; IHC, Immunohistochemistry; IM, Intestinal metaplasia; Klf4, Kruppel-like factor 4; Lipo2000, Lipofectamine 2000; MAPK, Mitogen-activated protein kinase; NF-κB, Nuclear factor-kappa B; PI3K, phosphoinositide 3-kinase; Res, Resveratrol; RIPA, Radio immunoprecipitation assay; SHP, Small heterodimer partner.

Wenquan Lu, Zhen Ni, Shuqin Jiang, and Mingfu Tong contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd.

Phytotherapy Research. 2021;35:1495–1507.
INTRODUCTION

Gastric cancer (GC) is the fifth highest incidence and third highest mortality in cancer-related diseases among the world population (Bray et al., 2018; Etemadi, Safiri, Sepanlou, Ikuta, & Bisignano, 2020; Fitzmaurice et al., 2019), and it is the second most common type of cancer and the third leading cause of cancer-associated mortality in China (Gao & Wu, 2019; Yang et al., 2018). Gastric intestinal metaplasia (GIM), especially that caused by bile acid reflux.

KEYWORDS

bile acid, FoxO4, gastric intestinal metaplasia, PI3K/AKT, resveratrol

MATERIALS AND METHODS

2.1 Cell lines and cell culture

GES-1, BGC823, SGC7901 and AGS cell lines were cultured in RPMI-1640 (1X) (1640; C11875500BT, Thermo Scientific Gibco, USA) and were purchased from the American Type Culture Collection (ATCC, USA). MKN45, MKN28, AZ521 and HCT116 cell lines (obtained from ATCC, USA) were maintained in Dulbecco’s modified Eagle’s medium basic (1X) (DMED; C11995500BT, Thermo Scientific Gibco, USA). All media were supplemented with 10% foetal bovine serum (04-001-1A, Biological Industries, Israel). All cell lines were authenticated by STR DNA profiling and were tested for mycoplasma contamination. The cell lines were cultured in a 37°C humidified incubator with 95% air and 5% CO2 (Thermo Scientific, China). Phosphate buffered saline, pH 7.4, basic (1X) (PBS; C10010500BT, Thermo Scientific Gibco, USA), was used as wash medium.

2.2 Cell transfection

HiPerFec transfection reagent (Lat No.160039992, Qiagen, USA) was used to transfect 100 nM of FoxO4 siRNA (Shanghai GenePharma Co., Ltd., China; the sequences for the FoxO4 siRNA are shown in Table 1) into GES-1 and BGC823 cells for 24 hr according to the manufacturer’s instructions. The cells were harvested for the next experiments at 24 hr post-transfection. Furthermore, to obtain a stable cell line, AGS cells were infected with FoxO4 lentiviruses (multiplicity of infection, MOI = 40, Shanghai GeneChem Co. Ltd., China). Lipofectamine 2000 (Lipo 2000; Cat. No. 11668019, Thermo Invitrogen, USA) transfection reagent was used according to the manufacturer’s instructions. The infection efficiency was detected by RT-qPCR after selection with 2 μg/ml puromycin for 2 weeks. All transfection conditions used Opti-MEM reduced serum medium (Opti-MEM; No. 31985070, Thermo Scientific Gibco, USA) without antibiotics.

Name	Sense(5’-3’)	Antisense(5’-3’)
FoxO4-homo-417	CGCGAUAUAGACCUAGAUUTT	AUCUAGUCUAUGACGCGTT
FoxO4-homo-1,235	CAGCUUCAGUCAGCUAGUATT	UAACUAGUCUAGACUGUGTT
FoxO4-homo-1820	GUGACAUAGGAUAACUGAATT	AUGAUGUAUCAGACUGCTT
Negative control	UUCUCCGAACGUGUCAGUUTT	ACGUGACACGUUCGAGATT

TABLE 1 FoxO4 siRNA sequences
2.3 | Reagents

Chemical reagents (obtained from Med-Chem Express, MCE, USA) were dissolved in dimethyl sulfoxide (DMSO; Lot #SHB2446V, Sigma-Aldrich, USA) for storage in a −80°C freezer. Cold, dry nitrogen was used.

Anti-β-actin (A1978, 1:5000) was purchased from Sigma-Aldrich (USA), and GAPDH (MB001, 1:5000) and tubulin β (BS148M, 1:5000) were purchased from Bioworld Technology (USA). Primary antibodies were obtained from Cell Signalling Technology (USA).

2.4 | Transcription factor array

The identities of the DNA pull-down proteins were determined by an established procedure using a Cignal Transcription Protein/DNA Array Kit (Panomics, USA) according to the manufacturer’s protocol. In short, the pulled-down proteins were incubated with the Cignal probe mix (a set of biotin-labelled oligonucleotides corresponding to consensus sequences of 345 known transcription factors as shown in Tables S1 and S3) to allow the formation of DNA/protein complexes, which were then separated from the unbound probes by agarose gel electrophoresis. The probes in the complexes were extracted and hybridized to a TransSignal Array. The hybridized probes were visualized using the chemiluminescent imaging system provided with the TransSignal Protein/DNA Array Kit (Panomics, USA) and exposed to X-ray film. For the treatment group, GES-1 cells were incubated with 200 μM of CDCA for 24 hr. The negative control group was incubated with the same concentration of DMSO. Then, total RNA was extracted 24 hr later.

To use the Cignal Finder 45-Pathway Arrays (CCA 901L; Qiagen, Germany; Tables S2 and S4) in the plate format, a reverse transfection method must be employed. This approach involves seeding the AGS cell line onto the transfection complexes (containing the Attractene transfection reagent [Qiagen, Germany] and test nucleic acids) on the first day following the manufacturer’s protocol. Then, resveratrol was added to the cells the following day after 16 hr of transfection and incubated for 6 hr prior to assay development. The luciferase assay was carried out using the Dual-Luciferase Reporter Assay System (Promega, USA) following the manufacturer’s protocol for developing the assay.

2.5 | Protein extraction and western blotting

Radio immunoprecipitation assay lysis buffer (RIPA; HY-K1001, Med-Chem Express, USA) containing protease inhibitor cocktail phosphatase inhibitor cocktail I and III, and deacetylase inhibitor cocktail (HY-K0010, HY-K0021, HY-K0023, HY-K0030, Med-Chem Express, USA) was used to extract protein from the cell lines. Proteins were quantified using the bicinchoninic acid (BCA) method following the manufacturer’s protocol (23227, Thermo Scientific, USA). The cell lysates were then mixed with SDS-PAGE sample loading buffer (P0015, Beyotime, China) and stored in a −20°C freezer. Proteins were separated using a 7.5 to 12% TGX FastCast Acrylamide Kit (La No.1610171, 1610173, 1610175, Bio-Rad Lab. Inc., USA). Then, the proteins were transferred onto a nitrocellulose membrane (T71623, Pall Corporation, Port Washington, USA) at 25 V for 7 min using Trans-Blot Turbo Transfer Buffer (10026938, 690B023295, Bio-Rad Scientific, USA), and blocked for 2 hr with 10% non-fat milk in 1x TBS/0.1% (v/v) Tween-20 at room temperature. Primary antibodies were added and incubated at 4°C overnight. Each primary antibody was used according to the manufacturer’s protocol. Grayscale analysis of the blot bands was performed using Image Lab software (version 5.1, USA), and the values (three for each band) were normalized to that of the β-actin control.

2.6 | Total RNA extraction and RT-PCR

A Takara MiniBEST Universal RNA Extraction Kit (Takara, China) was used to extract total RNA from all cell lines according to the manufacturer’s instructions. PCR primers for GAPDH, CDX2, Villin1, Klf4, cadherin17, FoxO4, and Muc2 were purchased from TsingKeBio (Shaanxi, China). The PCR primer details are shown in Table 2. Reverse transcription PCR was performed using a PrimeScript RT reagent kit (TaKaRa, China) according to the manufacturer’s instructions. Quantitative real-time PCR was performed using SYBR Premix Ex Taq II (TaKaRa, China). Fluorescence was detected with a CFX96 detection system (Bio-Rad, USA). GAPDH levels were considered internal controls for the assays, and each sample was assayed in triplicate.

2.7 | Tissue microarray and immunohistochemistry

GIM tissue microarrays were purchased from Alenabio Biotech (ICG00011c: contains 49 cases of GIM arrays). Of these 49 IM tissues, 45 were male (91.8%). The median age of all 49 IM tissues was 46 years (range 32–78 years). Patients with mild intestinal metaplasia were 20 (40.8%), patients with moderate intestinal metaplasia were 14 (28.6%) and patients with severe intestinal metaplasia were 15 (30.6%). All 49 cases were HP negative when these specimens were taken. For the normal tissue samples, we obtained 12 biopsy specimens from normal patients who underwent gastroscopy biopsy at the First Hospital of Zhengzhou University (Zhengzhou, China). Of these 12 normal patients, 6 were male (50.0%). The median age of all 12 normal patients was 38 years (range 19–57 years). All patients were HP negative to eliminate the impact of HP infection. All specimens were typed by the Department of Pathology at the First Hospital of Zhengzhou University. All patients gave their informed consent prior to their inclusion in the study. All protocols in this research study were approved by the Medical Ethics Committee of Zhengzhou University.
TABLE 2 PCR primers sequences

Gene	Forward	Reverse
GAPDH	5'-GCACGGTCAAGGCTGAGAAC-3'	5'-TGGTGAGCCGCTATGGGA-3'
CDX2	5'-TTCACTACAGTCTGCTACACA-3'	5'-CTGGGTTCTGGAACAGGTT-3'
Klf4	5'-GTGCCCCCGAATAACAGCTCA-3'	5'-TTCTACCCTGTGGTTGC-TG-3'
Villin1	5'-CGACTCTGATCTGCTGCTACACA-3'	5'-CCGGTTGAAAGCTGCGTTGA-3'
Cadherin17	5'-AGCAGTGCCAGACTGGGATAC-3'	5'-TCAGATGCTTGAGCACTTTCAACA-3'
MUC2	5'-GTATCCATAGCAGCTTGGATGGG-3'	5'-GCCACAGTGTAGCCAGCGG-3'
FoxO4	5'-TGGGCTAATCCCTCTCTTTCC-3'	5'-AGAAGCACCTCTTCCTGCTGA-3'

For immunohistochemistry (IHC), target molecules were analysed on tissue microarray chips (Shanghai Outdo Biotechnology, China) using a CDX2 antibody (ab76541, 1:1000, Abcam, USA) and a phosphor-FoxO4 Ser197 antibody (Cat. No. D155059, Sangon Biotech, China). The slides were then incubated with HRP-conjugated secondary antibodies (Dako, Denmark). Next, the proteins were in situ with DAB chromogenic substrate (Dako, Denmark), followed by counter-staining with haematoxylin. Two observers scored the IHC results in a blinded manner. The expression-level score depended on the percentage of stained cells per tissue was detected semi-quantitatively as follows: 0 (<1%); 1 for weak staining; 2 for moderate staining; and 3 for strong staining. The percentage of stained cells was determined at the protein and mRNA levels in IHC.

2.8 Immunofluorescence

Cells were seeded on a four-well Glass slide (PEZGS16, Millicell, Germany) for 4–6 hr, treated with or without chemicals, fixed with 4% paraformaldehyde for 30 min and permeabilized with 0.1% Triton X-100 in PBS for 10 min. Blocking solution was applied for 30 min at room temperature. Then primary antibodies, anti-CDX2 (ab76541, 1:500, Abcam, UK) and anti-p-FoxO4 Ser197 (Cat. No. D155059, 1:100, Sangon Biotech, China), were added for incubation at 4°C overnight. Alexa Fluor 488/Cy3 conjugated secondary antibodies (EK012, EK021, 1:800) were added and incubated for 2 hr at room temperature. Immunostaining signals and DAPI-stained nuclei images were scanned at room temperature using a CDX2 and p-FoxO4 S197 distribution on a per-slide basis, in 100 cells of each condition. No imaging medium was used. For better visualization, the images were adjusted using the levels and brightness/contrast tools in Photoshop according to the guidelines for the presentation of digital data.

2.9 Dual-luciferase reporter assays

We obtained 2000-bp fragments of the CDX2 (NM_001265) promoter region from NCBI (https://www.ncbi.nlm.nih.gov/) and predicted them with the JASPAR2020 database (http://jaspar.genereg.net/; Table 3). Truncation experiments were used to verify the promoter region. Wild-type (WT) and corresponding mutated FoxO4 promoter fragments, containing the predicted FoxO4 binding sites, were PCR-amplified and cloned into the firefly luciferase reporter plasmid pGL3-basic (Promega, USA). Luciferase activity was detected with a dual-luciferase reporter assay kit (E1910, Promega, USA) 24 hr after transfection in GE1-1 cells treated with or without CDCA for 24 hr. Then, the ratio of firefly:Renilla luminescence was calculated for each well. Finally, the sample well ratio was normalized to the ratio of a control well, and the relative fold-change of the CDCA group relative to the control group was calculated.

2.10 Chromatin immunoprecipitation

Chromatin-immunoprecipitation (ChIP) assays were performed using an EZ ChIP Kit (Millipore, USA). Cells were cross-linked with 1% paraformaldehyde for 10 min at 37°C, and the reaction was quenched with 2.5 M glycine for 5 min at room temperature. DNA was immunoprecipitated from the cell lysates with a FoxO4 antibody (Cat. #720154, Thermo Scientific Invitrogen, USA) and subjected to FoxO4 binding site amplification (Table 4). The amplified fragments were then analysed on an agarose gel. A non-specific IgG antibody was used as a negative control.

2.11 Statistical analysis

SPSS software (version 23.0, USA) was applied for subsequent statistical analyses. The data are shown as the mean ± SEM, and Student’s t test was used for comparisons between two groups. The rank test was used for categorical variables, and the Shapiro–Wilk test was used to determine whether the continuous variables had a Gaussian distribution. The linear correlation coefficient (Pearson’s) was used to evaluate the correlation between p-FoxO4 and CDX2 protein expression levels in IHC.

3 RESULTS

3.1 Resveratrol inhibits the expression of CDX2 and downstream intestinal markers in a time- and dose-dependent manner in GC cells

The basic expression of CDX2 was measured at the protein and mRNA levels in gastric cells (Figure 1A). AGS and MKN45 cell lines have high expression of CDX2 molecules, while other cell lines have low expression. CDX2 expression was low in GE1-1 cells and high in AGS and MKN45 cells. Our previous work showed that CDX2
expression was dramatically increased after CDCA stimulation at the protein and mRNA levels (Figure 1B); in fact, they were close to the levels in the positive control HCT116 intestinal cells. Furthermore, the immunofluorescence results illustrated that CDCA induced CDX2 expression in the cytoplasm and nucleus of GES-1 cells. These results reveal that FoxO4 regulates CDX2 expression by interaction in FoxO4 binding to the CDX2 promoter region (Figure 4C,D). In addition, CDX2 promoter activity was up-regulated because of the reduction in endogenous p-FoxO4, CDX2 and intestinal markers no longer had inhibitory effects and significantly reduced. Cell immunofluorescence results revealed that resveratrol increased FoxO4 Ser197 phosphorylation and reduced the increase in CDX2 induced by CDCA, but the FoxO4 changes were not consistent (Figure 3E–H). Collectively, these results illustrate that FoxO4 works by increasing its phosphorylation and nuclear translocation.

3.3 | Resveratrol activated FoxO4 through phosphorylation and nuclear translocation

Next, we aimed to further investigate the mechanism of FoxO4 activation after resveratrol stimulation. We found that p-FoxO4 Ser262 was increased in a time- and dosage-dependent manner. However, there was no obvious change in regular FoxO4 at the protein level in the AGS cell line (Figure 3A,B). Similar to this result, the same pattern of p-FoxO4 Ser262 expression was found in CDCA-induced GES-1 cells (Figure 3C,D). Moreover, FoxO4 expression was significantly reduced. Cell immunofluorescence results revealed that resveratrol increased FoxO4 Ser197 phosphorylation and reduced the increase in CDX2 induced by CDCA, but the FoxO4 changes were not consistent (Figure 3E–H). Collectively, these results illustrate that FoxO4 works by increasing its phosphorylation and nuclear translocation.

3.4 | FoxO4 inhibits CDX2 expression by directly targeting the CDX2 promoter region which was screened by bioinformatics prediction and ChIP

We further elucidated the connection between FoxO4 and the CDX2 signalling pathway. Reporter genes, containing the CDX2 promoter, were transfected into GES-1 cells, which were then treated with CDCA. This analysis revealed that CDCA-based CDX2 regulation was controlled by potential FoxO4 binding sites located between −2000 and −323 bp (Figure 4A). ChIP assays further confirmed that FoxO4 binds to three regions (ChIP 2: −899 to −893 bp and −844 to −838 bp; ChIP 3: −330 to −324 bp) (Figure 4B). After the CDCA addition, CDX2 promoter activity was up-regulated because of the reduction in FoxO4 binding to the CDX2 promoter region (Figure 4C,D). These results revealed that FoxO4 regulates CDX2 expression by binding to its promoter in gastric cells.

3.5 | CDX2 expression was negatively regulated by p-FoxO4

To identify the relationship between p-FoxO4 and CDX2, GES-1 and BGC823 cells, which have low internal CDX2 expression, were chosen for siFoxO4 transfection to observe the changes in intestine-specific markers. We found that upon the absolute decrease in endogenous p-FoxO4, CDX2 and intestinal markers no longer had inhibitory effects and significantly
Resveratrol inhibits the expression of CDX2 and downstream intestinal markers in gastric cells and bile acid-induced GIM. (A) The basic expression of CDX2 was measured at the protein (upper) and mRNA levels (lower) in GC cells and gastric epithelial cells (GES-1). (B) The protein (upper) and mRNA (lower) expression levels of CDX2 were measured after CDCA stimulation (incubation time: 24 hr; dosage: 200 μM). The intestinal cancer cell line, HCT116, served as a positive control. (C) Cell immunofluorescence showed CDX2 expression in CDCA-induced GIM (incubation time: 6 hr; dosage: 200 μM). Green: CDX2, Blue: Nuclei, red: Cytoskeletal protein. (D) Resveratrol down-regulated CDX2 and Klf4 protein expression in a dose-dependent manner in CDCA-induced GIM (dosage of CDCA: 50 μM, Pre-treatment for 24 hr) according to western blot analyses. (E–G) Resveratrol decreased the expression of CDX2 and downstream intestinal markers in a time- and dose-dependent manner in AGS and MKN45 cells at the protein (upper) and mRNA (lower) levels. Unless otherwise specified, β-actin, tubulin-β and GAPDH were used as default western blot and RT-PCR internal references. *p < .05; **p < .01; ***p < .001; ns, not significant [Colour figure can be viewed at wileyonlinelibrary.com]
increased at the protein and mRNA levels in GES-1 and BGC823 cells (Figure 5A,B). After AGS cells were transfected with FoxO4 lentivirus, CDX2 protein and mRNA levels decreased as the relative exogenous p-FoxO4 level increased (Figure 5C). These results illustrate that CDX2 expression was negatively regulated by p-FoxO4.

3.6 Resveratrol is able to activate FoxO4 through the PI3K/AKT pathway

To investigate the mechanism of FoxO4 activation after resveratrol treatment, the inhibitor PI3K/AKT pathway LY294004, siFoxO4 and Lv-FoxO4 were used. LY294004 blocked the phosphorylation of AKT.
at Ser473 and Thr308 to block the PI3K/AKT pathway (Figure 6A). It further reduced the phosphorylation of FoxO4, thereby reducing the decreasing of CDX2 by resveratrol (Figure 6B). The relative expression changes in p-AKT Ser473, p-AKT Thr308, p-FoxO4 Ser262 and CDX2 clearly indicated the relationship between p-AKT and p-FoxO4 (Figure 6C). To explore the effect of resveratrol on CDX2 in the absence of p-FoxO4, siFoxO4 was transfected into AGS cells. Resveratrol weakened the reduction in CDX2 levels in the absence of p-FoxO4 (Figure 6D). The relative expression changes in p-FoxO4 Ser262 and CDX2 clearly indicated the relationship between p-FoxO4 and CDX2 (Figure 6E). GES-1 cells were transfected with Lv-FoxO4 to observe the relationship between CDCA and p-FoxO4. The absolute increase in p-FoxO4 weakened the effect of CDCA on CDX2 (Figure 6F,G). These results revealed that resveratrol can activate FoxO4 through PI3K/AKT pathway activation.

3.7 | p-FoxO4 and CDX2 showed a reverse correlation in normal and GIM tissue array

Finally, to examine whether the above-described regulation in gastric cell lines is clinically relevant, IHC for p-FoxO4 and CDX2 was applied to 12 normal tissues and 49 IM tissues. Compared with that in normal tissues, CDX2 was significantly increased in IM tissues. The p-FoxO4 levels were decreased in IM tissues compared with normal tissues (Figure 7A,B; normal: 6.583 ± 0.570, n = 12; 1.417 ± 0.398, n = 12; Wilcoxon matched pairs, p value = .0005; IM: 2.367 ± 0.301, n = 49; 6.959 ± 0.464, n = 49; paired t test, p value <.0001). In addition, the expression of CDX2 and p-FoxO4 showed a reverse correlation (Figure 7C; n = 61, r = −.5216, p value <.0001). In summary, these results showed that the PI3K/AKT/p-FoxO4/CDX2 pathway is inactive in human gastric IM.
DISCUSSION

In this study, we discovered a resveratrol-induced pathway involving active AKT and downstream FoxO4 activated by phosphorylation. The pathway antagonized the induction of CDX2 by bile acids and may contribute to the treatment of IM.

Currently, the function of CDX2 in regulating intestinal differentiation is widely accepted. Furthermore, the previous work of our group has focused on the molecular mechanisms driving CDX2 and its downstream intestine-specific marker expression by bile acids in the oesophagus and stomach, which include the FXR/SHP/NF-κB pathway (Zhou et al. 2018), the miR-92a/FOXD1/NF-κB pathway (Li et al. 2019) and the HNF4α/HDCA6/CDX2 pathway (under review). Our previous study provides evidence that fractions of bile acids induce an intestine-like phenotype in gastric cell lines. CDCA can well induce the increase of intestinal markers at 100 μM concentration (Li et al. 2019). Here, our study confirmed that resveratrol could prevent the increase in CDX2 induced by bile acids. GES-1 cells were used to mimic gastric epithelial cells suffering from bile acids reflux (Li et al. 2019). Nevertheless, in the near future, a more persuasive model using primary human gastric cells will be required.

Together with our previous study, our results show that bile acids can promote increases in CDX2 and intestinal markers. Through review and analysis, resveratrol, a polyphenolic compound contained in red wine, was shown to have antioxidant, anti-inflammatory and anti-tumour effects (Chassot et al., 2018; Huminiecki & Horbaczuk, 2018; J. Xu et al., 2017; Y. Zhang et al., 2019). Most studies have shown that the target of resveratrol is generally Sirt1 (T. Liu et al., 2017; Wood et al., 2004). As a pharmacological agent, resveratrol has a wide spectrum of targets, whose biological

FIGURE 4 FoxO4 inhibits CDX2 expression by directly targeting the CDX2 promoter region. (A) Serially truncated CDX2 promoter constructs were cloned into pGL3-luciferase reporter plasmids and transfected into GES-1 cells. Four hours after transfection, the cells were treated with CDCA (200 μM) for 24 hr, and the relative luciferase activities were determined 72 hr later. (B) A ChIP assay demonstrated the direct binding of FoxO4 to the CDX2 promoter in GES-1 cells. M: Marker. (CD) qRT-PCR of the ChIP products validated the binding capacity of FoxO4 to the CDX2 promoter. Means ± SEM of a representative experiment (n = 3) performed in triplicate is shown. *p < .05; **p < .01; ***p < .001; ns, not significant
activities may thus be dependent on its simultaneous activity on multiple molecular targets (Pirola & Frojdo, 2008). Here, active FoxO4, a common target of resveratrol and bile acids, has been the focus of our research. The Forkhead box O (FoxO) transcription factor family contains four related members: FoxO1, FoxO3, FoxO4 and FoxO6 (Daitoku, Sakamaki, & Fukamizu, 2011; Maiese, Chong, & Shang, 2008; Sykes et al., 2011). We previously discovered the role of Fox4 as a negative regulator of GC and CRC (X. Liu et al., 2011; Su et al., 2014). Phosphorylation by PKB/AKT1 inhibits transcriptional activity and is responsible for nuclear localization and accumulation (Mandai et al., 2018; F. Zhang, Virshup, & Cheong, 2018). In our study, we found that resveratrol could increase p-FoxO4 and nuclear accumulation, which inhibited CDX2 transcription by binding directly to the promoter of CDX2. Cellular immunofluorescence confirmed this result. However, other studies identified that activation of the PI3K/AKT or MAPK pathway induced FoxO4 phosphorylation and resulted in its export from the nucleus into the cytoplasm with a reduction in DNA-binding activity (Roy, Srivastava, & Shankar, 2010; Takaishi et al., 1999). These findings provide evidence that p-FoxO4 may play an essential role in promoting the progression of IM due to bile acid reflux.

Notably, PI3K/AKT and MAPK are oncogenic signalling pathways that are usually activated in various cancers and target FoxO4 in similar ways to inhibit its anti-cancer function. Similarly, isoorientin and momordin Ic induced cell death by up-regulating FoxO4, mediated by inhibition of the PI3K/AKT and MAPK pathways in human hepatoblastoma cancer cells (Wang et al., 2014; Yuan et al., 2012). In our study, inhibition of the PI3K/AKT cascade by LY294004 decreased FoxO4 phosphorylation and nuclear accumulation, and subsequently increased CDX2 expression. When p-FoxO4 was reduced by 75% or less, the inhibitory effect on CDX2 could be ablated. Conversely, if the absolute content of p-FoxO4 is increased, CDX2 transcription will be inhibited. However, other experimental studies suggest that inhibiting the PI3K/AKT cascade by LY294002 increased FoxO4 transcription, which might be caused by impaired FoxO3 phosphorylation and thus results in increased FoxO3 activity (Franz et al., 2016). Furthermore, acute starvation or caloric restriction has been shown to trigger an increase in FoxO4 mRNA levels in skeletal muscles (Furuyama et al., 2002; Mofarrahi et al., 2014). Together with our results, these findings provide evidence that FoxO4 may be activated by resveratrol via PI3K/AKT activation.

In summary, we propose a schematic model of gastric IM development (Figure S2). This figure illustrates that in gastric epithelial cells, bile acid-stimulated IM induces the up-regulation of CDX2 and downstream intestine-specific markers via the miR-92a-1-5p/FoxD1/NF-kB pathway, the FXR/SHP/NF-kB pathway and FoxO4/CDX2 pathway. Resveratrol induces up-regulation in p-AKT, leading to an increase of p-FoxO4 and nuclear accumulation, which inhibits CDX2 transcription and IM formation. This new PI3K/AKT/p-FoxO4/CDX2 pathway may help clarify the mechanism underlying the regulatory effects of resveratrol in gastric IM and shed new light on the early prevention and reversal of gastric IM.
FIGURE 6 Resveratrol activated FoxO4 through the PI3K/AKT pathway. (A,B) The PI3K/AKT pathway inhibitor LY294004 partially blocked the effect of resveratrol on CDX2 at the protein level. (C) Relative protein levels of p-AKT Ser473, p-AKT Thr308, p-FoxO4 Ser262 and CDX2 after treatment with the inhibitor LY294004. (D) AGS cells were transfected with siFoxO4. After a relative decrease in p-FoxO4 resulted from the absolute reduction in FoxO4, the ability of resveratrol to reduce CDX2 weakened. (E) Relative protein levels of p-FoxO4 Ser262 and CDX2 after siFoxO4 transfection. (F) GES-1 cells were transfected with FoxO4 lentivirus. The relative increase in p-FoxO4 suppressed the up-regulation of CDX2 induced by CDCA. (G) Relative protein levels of p-FoxO4 Ser262 and S197 and CDX2 after Lv-FoxO4 transfection.
ACKNOWLEDGEMENTS
This study was supported by the National Natural Science Foundation of China (No. 81873554) and Shaanxi Science and Technology Innovation Team Project (No. 2018TD-003).

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

ORCID
Yongquan Shi https://orcid.org/0000-0001-9515-7577

REFERENCES
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394–424.
Chassot, L. N., Scolaro, B., Roschel, G. G., Cogliati, B., Cavalcanti, M. F., Abdalla, D. S. P., & Castro, I. A. (2018). Comparison between red wine and isolated trans-resveratrol on the prevention and regression of atherosclerosis in LDLr(-/-) mice. The Journal of Nutritional Biochemistry, 61, 48–55.
Correa, P., Haenszel, W., Cuello, C., & Ruiz, B. (1990). Gastric precancerous process in a high risk population: Cohort follow-up. Cancer Research, 15, 4737–4740.
Correa, P., Haenszel, W., Cuello, C., Tannenbaum, S., & Archer, M. (1975). A model for gastric cancer epidemiology. Lancet, 2, 58–60.
Daitoku, H., Sakamaki, J., & Fukamizu, A. (2011). Regulation of FoxO transcription factors by acetylation and protein–protein interactions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1813, 1954–1960.
Etemadi, A., Safiri, S., Sepanlou, S. G., Ikuta, K., Bisignano, C., Shakeri, R., & Malekzadeh, R. (2020). The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease study 2017. The Lancet Gastroenterology & Hepatology, 5, 42–54.
Farhadianjad, H., Emanat, H., & Zand, H. (2019). The effect of resveratrol on cellular senescence in normal and cancer cells: Focusing on cancer and age-related diseases. Nutrition and Cancer, 71, 1175–1180.
Fenner, A. (2017). Prostate cancer: Resveratrol inhibits the AR. Nature Reviews. Urology, 14, 642.
Franz, F., Weidinger, C., Krause, K., Gimm, O., Drahle, H., & Fuhrer, D. (2016). The transcriptional regulation of FOXO genes in Thyrocytes. Hormone and Metabolic Research, 48, 601–606.
Furuyama, T., Yamashita, H., Kitayama, K., Higami, Y., Shimokawa, I., & Mori, N. (2002). Effects of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 (FKHR, FKHR1, and AFX) in the rat skeletal muscles. Microscopy Research and Technique, 59, 331–334.
Gao, K., & Wu, J. (2019). National trend of gastric cancer mortality in China (2003–2015): A population-based study. Cancer Communications, 39, 24.
Global Burden of Disease Cancer Collaboration, Fitzmaurice, C., Abate, D., Abbasi, N., Abbastabar, H., Abd-Allah, F., … Murray, C. J. L. (2019).
