Residue Kinetics of Ethofumesate in Texturally Diverse Soils of Sugar Beet Crop under Field Conditions

Shishir Tandon and Suman Lata Pal

Department of Chemistry (Agricultural Chemicals), College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India

Correspondence should be addressed to Shishir Tandon; shishir_tandon2000@yahoo.co.in

Received 13 February 2021; Accepted 7 July 2021; Published 20 July 2021

Academic Editor: Franck Rabilloud

Copyright © 2021 Shishir Tandon and Suman Lata Pal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Indiscriminate use of pesticides and growing awareness of environmental and health problems had led to monitoring their residues in soil and crops. Ethofumesate is one of the widely used herbicides for controlling weeds in sugar beet. Dissipation kinetics and terminal residues of ethofumesate were investigated in two diverse soils under subtropical field conditions. Ethofumesate dissipated slowly after application and follows biphasic first-order kinetics in soils. The average half-life for initial and later phases in sandy loam soil, respectively, was 14.54 and 20.42 and 51.83 and 65.21 days, while for silty clay loam, it was 10.09 and 13.00 and 71.42 and 73.10 days, respectively. Recoveries in soil, leaves, and beetroot ranged from 78.15 to 88.05, 77.01 to 88.58, and 76.25 to 84.50%, respectively. Detection limits for soil, roots, and leaves was 0.002 μg g⁻¹. At harvest, no residues were detected in soils, leaves, and sugar beetroots. Residues were below the maximum residue limits in sugar beetroots and leaves as set by EU (0.2 ppm). Ethofumesate is safe from weed control and environmental aspects as it does not persist for a long duration in soils and does not appear to pose any adverse effect on human/animal health under subtropical field conditions.

1. Introduction

Beta vulgaris (sugar beet) is an important sugar crop, containing 14–20% sucrose which is used for making sugar and ethanol, a source of biofuel. Owing to the higher potential of sugar beet as a raw material for the production of sugar and ethanol, tropical sugar beet hybrids were introduced recently. Weeds are a threat to the cultivation and harvest operations of sugar beet and are a major limitation for profitable sugar production. Competition from uncontrolled annual weeds can reduce crop yields by 26–100% [1, 2].

Ethofumesate [(±)-2-ethoxy-2,3-dihydro-3,3-dimethylbenzofuran-5-yl methanesulfonate], a benzofuran group of selective systemic herbicide, is widely applied as pre- and early postemergence herbicide for effectively controlling a wide range of grasses and broad-leaved weeds for up to 10 weeks in sugar beet, other beet crops, turf, ryegrass, pasture grasses, onions, oilseed poppies, strawberries, sunflowers, Phaseolus beans, tobacco, and other crops at 0.3–2.0 kg ha⁻¹ and is available as EC, SC, SE, and OD formulations or may be coformulated with phenmedipham, bromoxynil, ioxynil, desmedipham, or metamitron. It acts by inhibiting the growth of meristems, retards cell division, and limits cuticle formation (lipid synthesis) [3, 4]. Ethofumesate is a potential groundwater contaminant [5]. Ethofumesate causes toxicity in chronic animal feeding studies and is also reported to cause some developmental toxicity in the offspring of pregnant rabbits [6]. Foliar injury and growth inhibition caused by ethofumesate vapor were observed on wild higher plant species, showing inhibition potential of ethofumesate on nontarget organisms [7, 8]. Ethofumesate is considered to be “slightly toxic” to freshwater fish [9].

Ethofumesate is considered a persistent herbicide, stable to hydrolysis and anaerobic soil metabolism. Under low moisture aerobic conditions in sandy loam soil, the half-life was 253 days whereas, under moist conditions in silt loam
and sandy loam soils, the half-life was 83 and 122 days, respectively [9]. Scanty information [10] is available on the persistence study of ethofumesate in soils and crops under tropical conditions, although some work on persistence from other regions is reported [11–16].

Excessive and repeated use of agrochemicals leads to accumulation of residues in the soil, crop production, and groundwater causing phytotoxicity, susceptible intercrops or succeeding crops or nontarget organisms, and ultimately health hazards [17–20]. Herbicides are found as bound residues which make them not only unavailable to the targets but also pollute the soil ecosystem in a number of ways. There is a need to monitor herbicides residue in various commodities to assess buildup, biomagnifications, and bioaccumulation and adverse effects if any. The aim of this study was to study the dissipation kinetic of ethofumesate herbicide under subtropical climatic field conditions and monitor persistence in the environment, residues in edible commodities, and groundwater contamination.

2. Materials and Methods

2.1. Instruments and Chemicals. Agilent 1120 Compact LC technologies HPLC, Buchi Rotavapor, and SPE (Solid Phase Extraction) miniplastic florisil columns (6.0×0.75 cm id) packed with 500 mg florisil packing material (Sigma-Aldrich, USA) were used for estimation. Analytical grade ethofumesate (98.98% purity) and formulation (50 SC (Suspension Concentrate)) were obtained from courtesy M/S Punjab Chemicals and Crop Protection Limited, India. All the used chemicals were of analytical or HPLC grade (E. Merck/Hi Media).

2.2. Herbicide Treatments and Sampling. Field trials on sugar beet (var. Shubhra) were conducted during the winter season at G.B. pant University of Agriculture and Technology, Pantnagar (29° 3′ North, 79° 31′ East with an altitude of 243.84 MSL.). The experimental field plot size was 6 m × 5 m. Sugar beet was planted with a spacing of 50 cm. The experiment was laid out in randomized block design with 24 replicates. The experimental field plots size was 6 m × 5 m. Each experimental plot has a size of 10 m × 2 m. The use of recommended herbicide treatments and finally on the harvesting day (162 days after treatment) with the help of tube auger. The soil was pooled, air dried, and passed through a 2 mm sieve before further processing. Subsamples were drawn randomly using the quartering technique and kept in air-tight bags and stored in deep freeze (−20°C) until extraction. The soil was analyzed for pH, CEC, organic carbon, CaCO₃ percent and proportion of sand silt, and clay fraction by standard analytical procedures. Sugar beet leaves (0.50 kg) and sugar beet (1.0 kg) samples were collected from all treated and control plots at harvest time. Leaves and sugar beet roots were chopped into small pieces using stainless steel knife and macerated in a motorized mixer blender. Groundwater (5 L, 20 m depth) was collected from the nearest borewell (50 m far) at different days. Samples were immediately sent to the laboratory and stored at −20°C until used. Data were subjected to analysis to determine standard deviation among the replicates. The amount of ethofumesate residues was estimated by HPLC.

2.3. Soil Texture and Weather Conditions. The analysis of soil revealed that the texture of soil was of silty clay loam with high silt percentage (45.20%) and organic content (1.04%) with pH (7.27) while the other soil was sandy loam in nature having sand percentage (71.35%) with low organic content (0.44%) and the pH was 6.94. The temperature during the experimental period varied from 6.3 to 29.5 ± 1°C, rainfall varied from 2.5 to 11.2 mm, and relative humidity varied from 27 to 65 ± 5%. The weather condition was almost similar for both years during the experimental periods.

2.4. Extraction Methodology. Extraction was done as given by Pal (2012) [21] with some modifications briefly, representative soil sample (25 gm) was weighed, and 100 mL of acetone (5:1, v/v) was added and shaken for 45 min on an orbital shaker followed by centrifugation at 5000 rpm for 10 min. The process was repeated three times. The combined extract was filtered and transferred into a separatory funnel, and 50 mL of 5% sodium chloride solution was added and washed with 25 mL n-hexane twice. The hexane washing was discarded, the aqueous phase was again partitioned with 50 mL dichloromethane thrice, and the organic layer was collected and passed through anhydrous sodium sulfate to remove traces of water. The solvent was removed by rotary vacuum evaporation at 35 ± 1°C to dry. The residue was dissolved in 2 mL methanol, and the samples were filtered through a 0.22 μm PTFE disc filter prior to HPLC analysis.

The beetroot or leaf sample (25 gm) was cut and macerated with 100 mL methanol followed by shaking for 45 min, centrifuged, and filtered. The procedure was repeated twice more. The supernatant was pooled and partitioned with 100 mL (50 + 25 + 25) dichloromethane. The organic layer was collected, dried over anhydrous sodium sulfate, and evaporated to dryness under reduced pressure at 35 ± 1°C. The residue was dissolved in 1 mL methanol and subjected to cleanup. Cleanup was done using a Florisil SPE (solid phase extraction) cartridge, prewashed with 5 mL each of n-hexane. The sample was loaded on a cartridge and eluted with 5 mL dichloromethane: methanol (2:1 v/v). The eluted sample was dried under the stream of nitrogen and redissolved in a 1 mL mobile phase. The samples were filtered through a 0.22 μm PTFE disc filter prior to HPLC analysis.

Water was collected from the groundwater source at different time intervals. Representative water (100 mL) was...
partitioned with 200 mL dichloromethane \((100 + 50 + 50)\). The organic layers were pooled, were dried over anhydrous sodium sulfate, and were evaporated to dryness under reduced pressure at \(35 \pm 1^\circ\text{C}\). The residue was dissolved in 1 mL methanol, filtered through 0.22 \(\mu\text{m}\) PTFE disc filter, and subjected to HPLC analysis.

2.5. Statistics and Degradation Kinetics. The experiment was laid in randomized block design fashion, and all the treatments were replicated thrice. The experimental data were subjected to statistical analysis to determine standard deviation among the replicates. The amount of ethofumesate residues that remained at different intervals was fitted to first-order exponential decay equation \(C_t = C_0 e^{-kt}\) where \(C_t\) is the concentration \((\mu\text{g g}^{-1})\) at time \(t\) (day), \(C_0\) is the initial concentration \((\mu\text{g g}^{-1})\) at \(t = 0\), \(k\) is the rate constant \((\text{day}^{-1})\), and \(t\) is the time in days. The half-life was computed using the equation, \(t_1/2 = [0.693/k]\), where \(k\) is the rate constant in days.

2.6. Chromatographic Conditions. The optimized operating chromatographic parameters were column C-18 [ODS-2, 5 \(\mu\text{m}\), \((250\text{ mm} \times 4.6\text{ mm})\)], and the mobile phase was composed of methanol: water \((70:30, \text{v/v})\) with an isocratic mode at a flow rate of 1 mL min\(^{-1}\) and UV detection at 222 nm.

2.7. Method Validation and Recovery Studies. The method was validated by evaluating analytical curves and linearity, specificity, the limit of detection (LOD), the limit of quantification (LOQ), accuracy (% RSD), and recovery. The linearity of the instrument and the method was evaluated by analytical curves at seven concentration levels \((0.001, 0.01, 0.05, 0.5, 1.0, 5.0,\) and \(10.0\ \mu\text{g mL}^{-1}\) ethofumesate) with three replicate injections per concentration. The average detector response in terms of area under the peak was used for the preparation of the calibration curve. The percent relative standard deviation (% RSD) was calculated to check the accuracy of the result. The sensitivity of the method was determined using the ratio between the estimated standard deviation of the linear coefficient and the slope of the analytical curve. The LOD and LOQ for ethofumesate were determined by considering 3 and 10 times the slope of the analytical curve. DK_the LOD and LOQ for ethofumesate were obtained values were 0.0008 \(\mu\text{g mL}^{-1}\), and the limit of quantification (LOQ) for soil, roots, and water, respectively (Table 1). The limit of detection (LOD) was 0.0008 \(\mu\text{g mL}^{-1}\), and the limit of quantification (LOQ) for soil, roots, leaves, and water was 0.002 \(\mu\text{g g}^{-1}\).

The average percent persistence values in sandy loam soil at different time intervals were calculated considering the amount of herbicides on the 0\(^{\text{th}}\) day \((4\text{ hours after application})\) as 100%. The persistence of ethofumesate at 2.0 kg ha\(^{-1}\) decreased to 94.31% on the 1\(^{\text{st}}\) day and then degraded rapidly up to 57.81% on the 10\(^{\text{th}}\) day of application. After the 10\(^{\text{th}}\) day, the rate of degradation was slow and persistence decreased constantly. Persistence decreased to 36.01 and 29.38% on the 30\(^{\text{th}}\) day and 60\(^{\text{th}}\) day of application, respectively. On the 100\(^{\text{th}}\) day after application, the persistence was only 10.90% and was below the quantifiable limit \(<0.002 \mu\text{g g}^{-1}\) on the 120\(^{\text{th}}\) day of application. At a double recommended application rate, the persistence decreased in almost the same manner as in recommended dose. Herbicide decreased rapidly up to 66.83% on the 10\(^{\text{th}}\) day, and further dissipation was slow and almost linear dissipation pattern till the 120\(^{\text{th}}\) day (14.39%). No detectable residue was observed on the 135\(^{\text{th}}\) day and 150\(^{\text{th}}\) day of application (Figure 1).

In silty clay loam soil, the percent dissipation values at different time intervals were calculated considering the amount of herbicide on the 0\(^{\text{th}}\) day \((4\text{ hours after application})\) as 0%. The ethofumesate dissipation at recommended dose increased from 0 to 11.06% from the 0\(^{\text{th}}\) day \((4\text{ hr after application})\) to the 1\(^{\text{st}}\) day and increased rapidly up to 52.65% on the 10\(^{\text{th}}\) day of application. After that, dissipation became slow and was almost linear. The percent dissipation of compound was 61.94% and 78.31% on the 45\(^{\text{th}}\) and 90\(^{\text{th}}\) day of application, respectively. On the 120\(^{\text{th}}\) day, the residue dissipated was 88.49% and was below the detectable limit \(<0.002 \mu\text{g g}^{-1}\) on the 135\(^{\text{th}}\) day of application. The soil was treated at 4.0 kg a.i. per ha ethofumesate, and the percent dissipation increased from 0 to 5.39% from the 0\(^{\text{th}}\) day to the 1\(^{\text{st}}\) day of application. On the 5\(^{\text{th}}\) and 10\(^{\text{th}}\) days, the dissipation was rapid and it was 23.28 and 41.66%. From the 15\(^{\text{th}}\) day, the dissipation was almost gradual and constant up to the 135\(^{\text{th}}\) day. The dissipation values on the 60\(^{\text{th}}\), 90\(^{\text{th}}\), and 120\(^{\text{th}}\) days were 69.11, 74.50, and 86.51%, respectively, and were below the detectable limit on the 150\(^{\text{th}}\) day of application (Figure 1).

Dissipation followed the first-order kinetics as highly significant \(R^2\) values indicated that the dissipation conformed to the first-order kinetics for both soils and treatments. Ethofumesate in both soils accounted for a biphasic
degradation pattern at both application rates. It is evident from Table 2, in both soils, the dissipation of ethofumesate during the initial phase was many folds higher than the later phase. The half-life calculated in sandy loam soil and silty clay loam for the initial phase at the recommended rate was 14.54 and 10.09 days, respectively, while, for the later phase, it was 51.84 days and 71.42 days, respectively, whereas, at double recommended rate, the half-life for the first phase, respectively, was 20.42 and 13.00 days while, for later phase, it was 51.21 and 73.10 days, respectively.

Soil factors like soil texture, temperature, pH, and organic carbon content influence residues, retention, and degradation rates of pesticides [22–25]. Degradation of ethofumesate has been reported in the medium silty loam soil; they found a two-staged degradation process rapid initial phase followed by a slower process [15]. A similar trend in the present study confirms that the degradation of ethofumesate shows a biphasic pattern in both soils. Biphasic dissipation behavior in soils for herbicides has also been reported [26–29]. Ethofumesate is a moderately persistent herbicide with a half-life in bare soil of 51 days compared to 3 days in turfgrass [9, 11]. In the field study, 88–91% of the ethofumesate dissipated after 24 weeks in sandy loam soil, compared to 72–77% in loam soil which were 7.7 and 12.6 weeks, respectively [30]. In soils, persistence is also related to soil temperature; DT50 of ethofumesate under warm moist conditions was <35 days while, under cold dry conditions, it was >98 days [3]. In sugar beet cultivation, ethofumesate was found to be the most persistent herbicide compared to other herbicides in sandy loam and clay soil types [12], Schweizer [31] reported the dissipation of ethofumesate in sugar beet soil after 24 weeks of application. The DT50 values ranged from 52 to 78 days under field experiments of ethofumesate in sugar beet [32].

In the present investigation, the initial rapid loss might be due to hot subtropical climatic condition which causes higher volatilization/degradation of ethofumesate from the soil surface. Similar studies have been reported [31], where

| Table 1: Percent recoveries of ethofumesate herbicide from soil, leaves, and beetroot. |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
Matrix	Conc. (ppm)	Amount injected (ng)	Amount recovered (ng)	% recovery
Ethofumesate				
Soil	0.002	0.01	0.007 ± 0.005	78.15
	0.01	0.05	0.040 ± 0.05	80.08
	0.1	0.50	0.416 ± 0.02	83.20
	1.0	5.00	4.281 ± 0.05	85.62
	2.5	12.5	11.006 ± 0.04	88.05
Sugar beet leaves	0.002	0.01	0.007 ± 0.003	77.01
	0.01	0.05	0.040 ± 0.04	81.00
	0.1	0.50	0.421 ± 0.02	84.23
	1.0	5.00	4.312 ± 0.05	86.25
	2.5	12.5	11.072 ± 0.03	88.58
Sugar beetroots	0.002	0.01	0.007 ± 0.005	76.25
	0.01	0.05	0.039 ± 0.02	79.14
	0.1	0.50	0.406 ± 0.02	81.25
	1.0	5.00	4.147 ± 0.03	82.95
	2.5	12.5	10.562 ± 0.02	84.50
Water	0.002	0.01	0.008 ± 0.002	89.13
	0.01	0.05	0.045 ± 0.01	90.50
	0.1	0.50	0.456 ± 0.04	91.30
	1.0	5.00	4.607 ± 0.03	92.15
	2.5	12.5	11.718 ± 0.04	93.75

Figure 1: Dissipation of ethofumesate in soils.
ethofumesate persisted about twice as long in soil under cold as that applied under warm weather. Goring et al. [30] also pointed out that factors as chemical structure, temperature, water, and oxygen and various soil properties such as organic matter, pH, and type of microbial population can all affect the rate of degradation of herbicides in soil. Soil type (especially clay and organic matter content) influences speed, run, and final residues of ethofumesate in soils [15].

Slower dissipation rate of ethofumesate in the early phase in sandy loam soil could in the present study be attributed to low organic matter and low pH (6.94) whereas a faster dissipation rate in silty clay loam may be attributed to the fact that soil contains higher clay content, high content of organic matter, and relatively higher pH (7.27) which favors the microbial environment and higher microbial population leading to faster degradation. Degradation of ethofumesate in the soil is entirely due to the action of soil microorganisms activity [11, 33], and the activity was largely affected by organic carbon content in the soils [32]. Rahman [34] reported that the dissipation of ethofumesate was faster in warm and wet/moist conditions.

The half-life of ethofumesate in the present results reveals that it was higher at double recommended dose than the recommended dose and was more in silty clay loam compared to sandy loam soil (Table 2). This could be because, at a low application rate, rapid dissipation is due to the effect of many biotic and abiotic factors acting on a less concentrated compound while, at a high rate of application, the dissipation was slow which could be owed to the limited exposure of higher concentrated compound to biotic and abiotic factors. A higher half-life of herbicide/pesticides at a high application rate in soils might also be due to inhibition of soil microbial population, leading to slow degradation of herbicide. The slower dissipation rate of ethofumesate in the later phase of both soils could also be attributed to the soil properties like soil colloids, which strongly bind the herbicide and minimize its losses and also render them chemical less prone to physical and biochemical modes of degradation. McAuliffe and Appleby [35] reported that, upon application of ethofumesate to dry soil, the activity loss is probably due to both strong adsorption and chemical degradation.

At harvest of sugar beet, the active ingredients in leaves and the root were not detected at both application rates for both cropping year and residues were below MRL (Maximum Residue Limits) set by EU (European Union) and FSSAI. At harvest, the absence of ethofumesate residues may be due to enzymatic action of plant and metabolites formation and/or conjugates with compounds like sugar, amino acid, etc. present in the plant. The EU-MRL and FSSAI (Food Safety and Standards Authority of India) for beetroots and sugar beet are 0.2 μg g⁻¹ [36, 37]. Residues of ethofumesate herbicides were detected in roots of sugar beet at the highest applied concentration but did not exceed acceptable values for the EU [13]. In sugar beetroot samples, the residues of active substances were lower (<0.001 μg g⁻¹) than those in the soil and were below MRL values [38].

The metabolic pathways of ethofumesate in the soil and plants had been well studied and investigated by other researchers. They found that, in soil, oxidative dealkylation would be expected to initiate ring opening, leading to the carboxylic acid analogous. The major compound found was 2,3-dihydro-3,3-dimethyl-2-oxo-5-benzofuranyl methanesulfonate. In plants, ethofumesate undergoes dealkylation at the ethoxy side-chain and hydroxylation at the 2 positions, yielding ethofumesate-2-hydroxy (NC 8493), ethofumesate lactone (NC 9607), and ethofumesate carboxylic acid (NC 20645) which is conjugated or further degraded to the keto metabolite. The keto metabolite may further undergo ring opening, forming (g-2-hydroxy-5-methanesulfonyl-oxy-phenyl)-isobutyric acid) which is also conjugated [39, 40].

4. Conclusion

In this study, a simple and reliable residue method for the determination of ethofumesate in sugar beet and soil was used. The validation methods (linearity, LOQ, precision, and RSD) were satisfactory as per international guidelines. Recoveries were in the acceptable range, i.e., from 76 to 93% for the matrices. Dissipation in soil for ethofumesate showed a biphasic degradation pattern. The half-life for the initial phase at the recommended rate in sandy loam soil and silty clay loam was 14.54 and 10.09 days, respectively, while, for the later phase, it was 51.83 days and 71.42 days, respectively. Residues were below MRL in the edible part and were below detection limits in the nonedible part of sugar beet. Ethofumesate optimum usage can be inferred as safe for controlling weeds and consumption of foods for humans and animals and is also less hazardous from an environmental point of view.
Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

The authors are thankful to PCCPL (M/S Punjab Chemicals and Crop Protection Limited, India) for providing analysis and formulation of ethofumesate for research purposes. The authors are also thankful to G.B. Pant University for providing the necessary facilities for research work.

References

[1] M. May, “"Crop protection in sugar beet," Pesticide Outlook, vol. 12, no. 5, pp. 188–191, 2001.
[2] F. Cioni and G. Maines, "Weed control in sugarbeet," Sugar Tech, vol. 12, no. 3-4, pp. 243–255, 2011.
[3] C. D. S. Tomlin, A World Compendium—The Pesticide Manual, pp. 409–411, British Crop Protection Council, Hampshire, UK, 13th edition, 2006.
[4] I. Deveikytė, V. Seibutis, V. Feiza, and D. Feizeien, "Control of annual broadleaf weeds by combinations of herbicides in sugar beet," Zemdirbyste-Agriculture, vol. 102, no. 2, p. 147–152, 2015.
[5] PAN Pesticides Database, "Chemicals ethofumesate—identification, toxicity, use, water pollution potential, ecologic toxicity and regulatory information," 2015, http://www.pesticideinfo.org/Detail_Chemical.jsp?Rec_Id=PC33242.
[6] New York State Department of Environmental Conservation Ethofumesate, 2009, http://pmep.cce.cornell.edu/profiles/herbgrowthreg/dalaponethephon/ethofumesate/norton_den_0309.pdf.
[7] J. Franzaring, C. Kempenaar, and L. J. M. Van der Erden, "Effects of vapours of chlorpropham and ethofumesate on wild plant species," Environmental Pollution, vol. 114, no. 1, pp. 21–28, 2001.
[8] P. Xu, Y. Wang, Y. Zhang, J. Li, and H. Wang, "Toxicity and bioaccumulation of ethofumesate enantiomers in earthworm Eisenia fetida," Chemosphere, vol. 112, pp. 163–169, 2014.
[9] USEPA, "Reregistration eligibility decision for ethofumesate, 2005, https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_PC-110601_1-Sep-05.pdf.
[10] P. Janaki, C. Chinnusamy, N. K. Prabakaran, and K. Senthil, "Dissipation kinetics of ethofumesate in sugar beet under tropical Indian condition by GC-MS," Asian Journal of Chemistry, vol. 27, no. 11, pp. 4017–4021, 2015.
[11] D. S. Gardner and B. E. Branham, "Mobility and dissipation of ethofumesate and halofenozide in turfgrass and bare soil," Journal of Agricultural and Food Chemistry, vol. 49, no. 6, pp. 2894–2898, 2001.
[12] P. Laitinen, K. Siimes, L. Eronen et al., "Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils," Pest Management Science, vol. 62, no. 6, pp. 473–491, 2006.
[13] M. Kucharski and J. Sadowski, "Effect of adjuvants on herbicide residues level in soil and plant," Journal of Plant Diseases and Protection (Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderheft), vol. 20, pp. 971–975, 2006.
[14] M. Kucharski, "Impact of adjuvants on: phenmedipham, desmedipham and ethofumesate residues in soil and plant," Pestcyd, vol. 2007, no. 3-4, pp. 53–59, 2007.
[15] M. Kucharski and J. Sadowski, "Degradation of ethofumesate in soil under laboratory conditions," Polish Journal of Environmental Studies, vol. 18, no. 2, pp. 243–247, 2009.
[16] M. Kucharski, "Changes in application system-influence on herbicides residue in soil and sugar beet roots," Journal of Plant Protection Research, vol. 49, no. 4, pp. 421–425, 2009.
[17] S. Tandon, "Degradation kinetics of anilofos in soil and residues in rice crop at harvest," Pest Management Science, vol. 70, no. 11, pp. 1706–1710, 2014.
[18] N. Sharma, N. Sharma, R. Pant, and S. Tandon, "Terminal residue analysis of acephate and methamidofos in rice," Indian Journal of Plant Protection, vol. 45, no. 4, pp. 249–253, 2017.
[19] S. Tandon, "Dissipation dynamics of fenoxaprop-p-ethyl and fenoxaprop acid under Indian rice field conditions," International Journal of Environmental Analytical Chemistry, vol. 97, no. 14-15, pp. 1352–1361, 2018.
[20] S. Tandon, "Degradation of fenoxaprop-p-ethyl and its metabolite in soil and wheat crop," Journal of Food Protection, vol. 82, no. 11, pp. 1959–1964, 2019.
[21] S. L. Pal, "Persistence/dissipation, adsorption-desorption and leaching behaviour of ethofumesate and oryzalin herbicides in soil and water," Ph.D. thesis, G. B. Pant University of Agriculture & Technology, Pantnagar, India, vol. 183, 2012.
[22] S. Tandon and R. "Pant, "Kinetics of diuron under aerobic condition and residue analysis in sugarcane under subtropical field conditions," Environmental Technology, vol. 40, no. 1, pp. 86–93, 2019.
[23] S. Tandon, "Herbicide residues in rice-wheat cropping system in Uttarakhand," in Herbicide Residue Research in India, S. Sondhia, P. P. Choudhury, and A. R. Sharma, Eds., pp. 253–260, Springer Verlag, Berlin, Germany, 1st edition, 2019.
[24] A. Makkar, P. Kaur, P. Kaur, and M. S. Bhullar, "Dissipation of pendimethalin in soil under direct seeded and transplanted rice field," Bulletin of Environmental Contamination and Toxicology, vol. 104, no. 2, pp. 293–300, 2020.
[25] L. Kaur and P. Kaur, "Degradation of imazethapyr in soil: impact of application rate, soil physicochemical properties and temperature," International Journal of Environmental Science and Technology, 2021.
[26] A. Srivastava, S. Pandey, and S. Tandon, "Fate of pendimethalin herbicide in soil and pea plant (Pisum sativum L.)," Environmental Science: An Indian Journal, vol. 1, no. 1, pp. 29–33, 2006.
[27] S. Tandon, "Persistence of pendimethalin in soil and potato tuber," Potato Journal, vol. 35, no. 1-2, pp. 93–95, 2008.
[28] D. C. Odero and D. L. Shaner, "Dissipation of pendimethalin in organic soils in Florida," Weed Technology, vol. 28, no. 1, pp. 82–88, 2014.
[29] P. Kaur and M. S. Bhullar, "Effect of repeated application of pendimethalin on its persistence and dissipation kinetics in soil under field and laboratory conditions," Environmental Technology, vol. 40, no. 8, pp. 997–1005, 2017.
[30] C. Goring, D. A. Laskowski, J. W. Hawaker, and R. W. Meikle, "Principles of pesticide degradation in soil," in Environmental Dynamics of Pesticides, V. H. Freed and R. Haque, Eds., pp. 136–172, Plenum Press, New York, NY, USA, 1975.
[31] D. E. Schweizer, "Persistence and movement of ethofumesate in soil*," Weed Research, vol. 16, no. 1, pp. 37–42, 1976.
[32] M. Kucharski and J. Sadowski, "Influence of adjuvant on dissipation of ethofumesate in soil," Postepy Ochronie Rolnictwa/Progress in Plant Protection, vol. 42, p. 592, 2002.

[33] S. D. Hoogstraten, C. van Baker, and S. D. Horne, "Ethofumesate behavior in the soil," in Proceedings of the 12th British Weed Control Conference, pp. 503–509, Brighton, UK, May 1974.

[34] A. Rahman, "Effect of Climatic and Edaphic Factors on the Persistence and Movement of Ethofumesate," pp. 557–563, British Crop Protection Council, London, UK, 1978.

[35] D. McAuliffe and A. P. Appleby, "Activity loss of ethofumesate in dry soil by chemical degradation and adsorption," Weed Science, vol. 32, no. 4, pp. 468–471, 1984.

[36] EU Pesticide Database, "Ethofumesate," 2019, http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=pesticide.residue.CurrentMRL&language=EN&pestResidueId=89.

[37] FSSAI (Food Safety and Standards Authority of India), "Food safety and standards (contaminants, toxins and residues) regulations," FSSAI, Ministry of Health and Family Welfare. Compendium_Contaminants_Regulations_20_05_2019.pdf, FSSAI, New Delhi, India, 2019, https://www.fssai.gov.in/dam/jcr:%20755c6420a74b44f493014ddd289b23fc/Contaminants_Regulations.pdf.

[38] B. Wujek, M. Kucharski, and K. Domaradzki, "Weed control programs in sugar beet (Beta vulgaris L.): influence on herbicidal residue and yield quality," Journal of Food Agriculture and Environment, vol. 3&4, no. 10, pp. 606–609, 2012.

[39] T. R. Roberts, D. H. Hutson, P. W. Lee, P. H. Nicholls, M. C. Roberts, and L. Croucher, Metabolic Pathways of Agrochemicals: Part 1: Herbicides and Plant Growth Regulators, pp. 136–138, Royal Society of Chemistry, London, UK, 1st edition, 1998.

[40] EFSA (European Food Safety Authority), "Conclusion on the peer review of the pesticide risk assessment of the active substance ethofumesate," EFSA Journal, vol. 14, no. 1, p. 4374, 2016.