Quantificação de Dano em DNA em Diferentes Tecidos em Ratos com Insuficiência Cardíaca

Quantification of DNA Damage in Different Tissues in Rats with Heart Failure

Giuseppe Potrick Stefani,1 Ramiro Barcos Nunes,1 Douglas Dalcim Rossato,2 Vitor Scotta Hentschke,1 Marlise Di Domenico,1 Pedro Dal Lago,2 Cláudia Ramos Rhoden1

Universidade Federal de Ciências da Saúde de Porto Alegre,1 Porto Alegre, RS – Brasil
Centro Universitário Franciscano,2 Santa Maria, RS – Brasil

Resumo

Fundamento: A insuficiência cardíaca crônica (ICC) é uma síndrome complexa que compreende alterações estruturais e funcionais no coração, mantendo demanda sanguínea adequada a todos os tecidos. Poucas investigações procuraram avaliar o dano oxidativo ao DNA na ICC.

Objetivo: Quantificar o dano ao DNA utilizando o ensaio cometa no ventrículo esquerdo (VE), pulmões, diafragma, gastrocnêmio e sóleo em ratos com ICC.

Métodos: Doze ratos Wistar machos (300 a 330 g) foram selecionados para o estudo: placebo (n = 6) e ICC (n = 6). Os animais foram submetidos a infarto do miocárdio através de ligadura da artéria coronária esquerda. Após seis semanas, os animais foram sacrificados. Foi realizada uma suspensão celular dos tecidos. O ensaio cometa foi realizado para avaliar as quebras de fita simples e dupla no DNA. Nível de significância (p) < 0,05.

Resultados: O grupo ICC apresentou maiores valores de pressão diastólica final do ventrículo esquerdo (PDFVE), congestão pulmonar, hipertrofia cardíaca e menores valores de derivados máximos positivos e negativos da pressão do VE, pressão sistólica do VE (p < 0,05). O grupo ICC apresentou maior dano ao DNA (% de DNA da cauda, momento da cauda e momento da cauda de Olive) em comparação ao placebo (p < 0,001). O tecido com maior dano foi o sóleo, comparado ao VE e ao gastrocnêmio no grupo ICC (p < 0,05).

Conclusão: Nossos resultados indicam que a ICC afeta todos os tecidos, de maneira central e periférica, sendo mais afetada no músculo esquelético (sóleo) e está positivamente correlacionada com a disfunção do VE. (Arq Bras Cardiol. 2020; 114(2):234-242)

Palavras-chave: Insuficiência Cardíaca; Ratos; Ratos Endogâmicos; Distribuição Tecidual; Dano ao DNA; Ensaio Cometa.

Abstract

Background: Chronic heart failure (CHF) is a complex syndrome which comprises structural and functional alterations in the heart in maintaining the adequate blood demand to all tissues. Few investigations sought to evaluate oxidative DNA damage in CHF.

Objective: To quantify the DNA damage using the comet assay in left ventricle (LV), lungs, diaphragm, gastrocnemius and soleus in rats with CHF.

Methods: Twelve male Wistar rats (300 to 330 g) were selected for the study: Sham (n = 6) and CHF (n = 6). The animals underwent myocardial infarction by the ligation of the left coronary artery. After six weeks, the animals were euthanized. It was performed a cell suspension of the tissues. The comet assay was performed to evaluate single and double strand breaks in DNA. Significance level (p) considered < 0.05.

Results: The CHF group showed higher values of left ventricle end-diastolic pressure (LVEDP), pulmonary congestion, cardiac hypertrophy and lower values of maximal positive and negative derivatives of LV pressure, LV systolic pressure (p < 0.05). CHF group showed higher DNA damage (% tail DNA, tail moment and Olive tail moment) compared to Sham (p < 0.001). The tissue with the highest damage was the soleus, compared to LV and gastrocnemius in CHF group (p < 0.05).

Conclusion: Our results indicate that the CHF affects all tissues, both centrally and peripherically, being more affected in skeletal muscle (soleus) and is positively correlated with LV dysfunction. (Arq Bras Cardiol. 2020; 114(2):234-242)

Keywords: Heart Failure; Rats; Rats Inbred Strains; Tissue Distribution; DNA Damage; Comet Assay.

Full texts in English - http://www.arquivosonline.com.br
Introdução

A insuficiência cardíaca é uma síndrome complexa que caracteriza anomalias estruturais e funcionais do coração na manutenção da demanda sanguínea adequada. A insuficiência cardíaca crônica (ICC) afeta aproximadamente 1 a 2% da população de países desenvolvidos e sua prevalência aumenta pelo menos 10% em adultos idosos. Uma das causas mais comuns de insuficiência cardíaca é o infarto do miocárdio (IM), que induz a remodelação cardíaca patológica.

Esa síndrome não afeta apenas o coração, mas também outros órgãos, como pulmões e músculos esqueléticos. A ICC é caracterizada por alterações na mecânica ventilatória que prejudicam a captação e o suprimento de oxigênio aos sistemas. A hipoperfusão, que é sustentada por uma disfunção ventricular em um ciclo vicioso, induz estresse oxidativo na maioria dos tecidos. O estresse oxidativo é um estado em que a célula está em desequilíbrio oxidativo, formando espécies reativas que sua capacidade neutralizadora. Foi proposto em outro estudo que biomarcadores do estresse oxidativo, como a concentração do dano oxidativo e orientar o tratamento em pacientes com ICC.

Como as espécies reativas de oxigênio (ERO) podem danificar diferentes biomoléculas, como lipídios, proteínas e DNA, os danos nos ácidos nucleicos não foram consistentemente investigados na ICC. Um biomarcador que já foi alvo de investigação é a concentração de 8-hidroxi-2-desoxiguanosina (8-OHdG). No entanto, sua medição reflete o dano oxidativo e orientar o tratamento em pacientes com ICC.

O ensaio do cometa mede diretamente a extensão do dano ao DNA, constituindo por quebras de fita simples e dupla do DNA. Esse método permite sua medida no sangue, a avaliação de diferentes tecidos, como o ventrículo esquerdo, os pulmões e os músculos esqueléticos (diafragma, gastrocnêmio e sóleo) em ratos afetados pela doença.

Métodos

Animais

Foram selecionados 12 ratos machos Wistar (100 dias de idade, de 300 a 330 g) da Unidade de Melhoramento Animal da Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA, Brasil). Os animais foram alojados em grupos de três animais por gaiola, que receberam comida e água ad libitum em uma sala específica mantida a 22°C sob um ciclo claro e escuro de 12:12 horas.

O manejo dos animais obedeceu à Lei nº 11.794, de 08/08/2008, Lei nº 6.899, de 15/07/2009, e à Resolução nº 879, de 15/02/2008 (CFMV), além de outras disposições aplicáveis ao uso de animais para pesquisa. O experimento cumpriu as resoluções do Conselho Nacional de Experimentação Animal, o Guia para o Cuidado e Uso de Animais de Laboratório (Instituto de Recursos Animais de Laboratório, Academia Nacional de Ciências, Washington, D.C., 1996), bem como dos Princípios Éticos em Experimentação Animal do Conselho Nacional de Controle de Experimentação Animal (CONCEA).

Este estudo foi aprovado por CEUA/UFCSPA, sob o número de protocolo 114/13.

Indução de Infarto do Miocárdio (IM)

Os animais foram anestesiados com xilazina (12 mg/kg ip) e cetamina (90 mg/kg ip), intubados e ventilados artificialmente. Foram realizada a ligadura da artéria coronária esquerda. As operações placebo foram realizadas conforme descrito em outro estudo. Após as cirurgias, os animais receberam uma injeção de cetoprofeno (5,4 mg/kg ip) a cada 6 horas – completando 48 horas – e penicilina (70.000 unidades/ml ip). As cirurgias foram realizadas por um cirurgião. A taxa de mortalidade pós-operatória foi de 15%. Após a indução do IM, foram designadas 6 semanas de recuperação, necessárias para os animais desenvolverem ICC. Foram utilizadas diferentes variáveis para caracterizar e documentar a insuficiência cardíaca desenvolvida por esses animais, como presença de trombos atriais esquerdos, derrames torácicos, congestão pulmonar, hipertrofia ventricular esquerda e dieta do peso corporal.

Insuficiência Cardíaca

Os animais que apresentaram pressão diastólica final do ventrículo esquerdo (PDEVF) maior que 15,0 mmHg, aumento da razão peso ventricular direito/peso corporal (> 0,8 mg/g) e presença de congestão pulmonar foram considerados positivos para ICC.

Avaliação Hemodinâmica

Após a sexta semana, os animais foram anestesiados com xilazina (12 mg/kg i.p.) e cetamina (90 mg/kg i.p.). Um cateter de polietileno (PE-50) foi colocado na artéria carótida direita. A pressão arterial foi registrada e o cateter foi posicionado no ventrículo esquerdo para realizar o registro da pressão ventricular. Os dados foram registrados por um transdutor de pressão (strain gauge, Narco Biosystem Miniature Pulse Transducer RP-155, Houston, Texas, EUA), acoplado a um amplificador de pressão. Os sinais analógicos de pressão foram digitalizados por um sistema de aquisição de dados (CODAS-Data Acquisition System, Akron, Ohio, EUA) com uma taxa de amostragem de 2.000 Hz. Esses dados foram utilizados para determinar a pressão arterial diastólica (PAD), a pressão arterial sistólica (PAS), a pressão arterial média (PAM), a frequência cardíaca (FC), a pressão sistólica do ventrículo esquerdo (PSVE), a PDEVF e a dp/dt máxima positiva e negativa do ventrículo esquerdo (+=dp/dt max , -dp/dt max), conforme descrito anteriormente. Os animais que apresentaram PDEVF superior a 15 mmHg na avaliação hemodinâmica foram considerados com disfunção ventricular esquerda.
Coleta de Tecidos
Os animais foram sacrificados por overdose de infusão intravenosa do pentobarbital anestésico (80 mg/kg i.p.). Depois disso, foram removidos os pulmões, o diafragma, o gastrocnêmio direito, o sóleo direito e o coração. O ventrículo esquerdo foi separado do ventrículo direito para o ensaio do cometa. Todas as amostras foram armazenadas a −80°C para análise posterior.

Determinação de tamanho do infarto, hipertrofia cardíaca e congestão pulmonar e hepática
Os corações foram removidos e pesados, sem sangue dentro da câmara e sem átrios. O tamanho da área de infarto foi determinado por planimetria. Para avaliar a hipertrofia cardíaca, a massa de órgãos foi expressa como uma proporção da massa corporal/massa corporal - mg/g). Consideraram-se os animais com hipertrofia ventricular direita (ou seja, relação massa corporal/peso do ventrículo direito > 0,80 mg/g). Para determinar a congestão pulmonar e hepática, os pulmões e o fígado de cada animal foram removidos, pesados e desidratados (80°C) por 48 horas e depois pesados novamente para avaliar a porcentagem de água.

Eletroforese em gel de célula única (SCGE)
A eletroforese em gel de célula única (SCGE) foi realizada em condições alcalinas (pH > 13,0). Todos os procedimentos foram realizados evitando qualquer incidência direta de luz. Para o ensaio, uma suspensão celular do tecido foi centrifugada em tampão PBS (pH = 7,40) e homogeneizada. O tamanho da cauda do cometa em 50 a 100 células, de acordo com os comprimentos, diâmetros, raios e dimensões de cometas individuais. Porcentagens de DNA da cauda, momento da cauda e momento da cauda de Olive foram utilizadas como parâmetros de quantificação de danos.

Quantificação de danos no DNA
Todos os parâmetros apresentados na sessão de resultados referentes ao SCGE foram calculados pelo software CASP (CASP Labs®, Polônia). A porcentagem de DNA na fórmula da cauda, momento da cauda e momento da cauda de Olive está disponível para consulta nos dados complementares. A porcentagem de DNA da cauda, momento da cauda e o produto do comprimento da cauda e a porcentagem de DNA na cauda. O momento da cauda é caracterizado como o produto do comprimento da cauda e a porcentagem de DNA na cauda. O momento da cauda de Olive, que é outro parâmetro para dano ao DNA, compreende o produto da distância (relativa ao eixo x) entre o centro de gravidade da cabeça e o centro de gravidade da cauda do cometa e a porcentagem de DNA da cauda.

Tamanho da amostra e análise estatística
Para uma diferença mínima de 23 unidades arbitrárias de momento de cauda de ± 4 DP, foi possível determinar a diferença estatística mínima de dois grupos com três animais cada. Em nossa investigação, decidimos usar seis animais em cada grupo. Os dados são apresentados em média ± DP. O teste de normalidade de Shapiro-Wilk foi utilizado para avaliar a distribuição das variáveis. Para comparações entre os grupos, um teste t de Student não pareado e uma análise de variância bidirecional foram realizados entre os diferentes tecidos com um teste post hoc de Tukey. Foi considerada uma significância de 5%. A análise estatística foi realizada usando o SigmaPlot, versão 12.0 para Windows, e os gráficos foram criados pelo GraphPad Prism, versão 5.0 para Windows.

Resultados
Parâmetros Morfológicos
Os animais não apresentaram diferença em relação a massa corporal inicial nem à final. Aqueles submetidos a IM apresentaram área média de infarto de 36%. Foi possível observar maior proporção de massa miocárdica, massa ventricular direita e esquerda/corpo em relação ao grupo placebo, indicando remodelação cardíaca em ambos os ventrículos. Em relação à congestão pulmonar e hepática, as taxas mais elevadas da primeira foram observadas apenas no grupo ICC (Tabela 1).

Parâmetros Hemodinâmicos
Foi observada menor pressão arterial média no grupo ICC em comparação ao grupo placebo. A PAS e a PAD, bem como a FC, não apresentaram diferença em relação ao grupo controle (Tabela 2). Em relação às variáveis de pressão ventricular, observou-se PSVE e PPDFV maior no grupo ICC, quando comparado ao grupo placebo (Tabela 2). A derivada positiva máxima da pressão ventricular (+dP/dt_+max) apresentou alterações no grupo ICC, apresentando valores mais baixos, assim como a derivada negativa máxima da pressão ventricular (-dP/dt_-max), que apresentou valores mais baixos quando comparados ao grupo controle (Tabela 2).
Tabela 1 – Massa corporal, características morfo-métricas cardíacas, área infartada e congestão pulmonar e hepática de ratos de cirurgia placebo e ratos com disfunção ventricular esquerda

Variáveis	Placebo	ICC
Massa Corporal Inicial (g)	330,25 ± 17,24	328,29 ± 18,12
Massa Corporal Final (g)	400,50 ± 29,61	356,38 ± 32,23
Área Infartada (%)	---	36,39 ± 8,11
MM/MC (mg/g)	2,56 ± 0,08	3,29 ± 0,46*
LV/BM (mg/g)	1,88 ± 0,21	2,36 ± 0,47*
RV/BM (mg/g)	0,58 ± 0,12	1,40 ± 1,01*
Congestão Pulmonar (%)	65,67 ± 9,34	87,31 ± 3,36*
Congestão Hepática (%)	70,46 ± 1,05	71,43 ± 1,07

Os valores são apresentados em média ± DP; n = 6 para todos os grupos. Placebo: ratos de cirurgia placebo; ICC: ratos com insuficiência cardíaca crônica; MM/MC: Relação massa miocárdica/massa corporal; VE/MC: relação massa ventricular esquerda/massa corporal; VD/MC: relação massa ventricular direita/massa corporal. * P < 0,05 comparado ao grupo placebo.

Tabela 2 – Pressão arterial média, diastólica e sistólica, pressão diastólica final do ventrículo esquerdo, pressão sistólica do ventrículo esquerdo e alteração máxima/minima do ventrículo esquerdo ao longo do tempo de ratos de cirurgia placebo e ratos com disfunção ventricular esquerda

Variáveis	Placebo	ICC
PAM (mmHg)	93,01 ± 14,70	76,78 ± 5,83*
PAD (mmHg)	73,54 ± 16,28	67,54 ± 7,15
PAS (mmHg)	99,75 ± 20,91	85,93 ± 5,51
Frequência cardíaca (bpm)	253,56 ± 70,84	245,19 ± 57,69
PDFVE (mmHg)	5,40 ± 2,26	32,55 ± 5,32*
PSVE (mmHg)	104,24 ± 6,03	89,15 ± 3,15*
+ dP/dtmax (mmHg/s)	6,264,33 ± 1,566,47	4,281,63 ± 708,75*
- dP/dtmin (mmHg/s)	5,209,63 ± 1,274,09	2,823,80 ± 540,65*

Os valores são apresentados em média ± DP; n = 6 para todos os grupos. Placebo: ratos de cirurgia placebo; ICC: ratos com insuficiência cardíaca crônica; PAM: pressão arterial média; PAD: pressão arterial diastólica; PAS: pressão arterial sistólica; PDFVE: pressão diastólica final do ventrículo esquerdo; PSVE: pressão sistólica do ventrículo esquerdo; +dP/dtmax: derivada positiva máxima da pressão ventricular; -dP/dtmin: derivada negativa máxima da pressão ventricular. * P < 0,05 comparado ao grupo placebo.

Parâmetros de dano ao DNA

Valores mais elevados de dano ao DNA foram observados em todas as variáveis (% de DNA da cauda, momento da cauda e momento da cauda de Olive) no grupo ICC, em todos os tecidos analisados (Tabela 3). O dano ao DNA pode ser observado na formação e frequência de cometas nas células do ventrículo esquerdo, do pulmão, do diafragma, do gastrocnêmio e do sóleo (Figura 1).

A pesar de o dano no DNA ser notavelmente maior em ratos com ICC em todos os tecidos, quando comparado a outros tecidos na mesma condição patológica, observou-se maior dano no sóleo em relação ao gastrocênemio e ao ventrículo esquerdo no grupo com ICC. A diferença entre o dano tecidual ao DNA em animais placebo e os de ICC pode ser observada na Figura 2.

Discussão

Embora existam algumas investigações usando o ensaio cometa na ICC, até onde sabemos, este é o primeiro estudo a relatar a extensão total do dano ao DNA em diferentes tecidos em um modelo experimental de ICC. O principal achado dessa investigação é a reprodutibilidade e aplicabilidade da SCGE no modelo experimental de IM. Animais com ICC demonstraram maior extensão de dano ao DNA do que o grupo controle no coração, pulmões, diafragma e músculos esqueléticos. Esse achado apoia a principal hipótese de que a ICC afeta a estabilidade do DNA, não localmente, mas sistemicamente.

Considerando que a ICC é uma síndrome complexa, é essencial investigar a extensão dos danos que a hipoperfusão pode promover. Foi apresentado um modelo in vivo de ICC cujo dano era de duas a seis vezes maior do que na ausência de insuficiência cardíaca. Os animais deste estudo demonstraram alterações tradicionais observáveis na ligadura do modelo de insuficiência cardíaca da artéria coronária esquerda em ratos.22,23 Observou-se PDFVE média acima de 30 mmHg, caracterizando disfunção ventricular.14 Além disso, alterações hemodinâmicas tradicionais foram observadas em animais com ICC, como menor PSVE e derivados máximos positivos e negativos da pressão ventricular. Os parâmetros morfológicos também mostraram alterações significativas na hipertrofia ventricular esquerda e direita, bem como congestão pulmonar. Todos esses parâmetros (hemodinâmicos e morfológicos) caracterizam a presença de ICC.12,24,25
O método SCGE, realizado em condições alcalinas, permite avaliar os danos no DNA global. O dano observado nos cometas é formado por rupturas de fita simples e dupla não acopladas à cromatina, em fragmentos de DNA. A avaliação do 8-OHdG em pacientes com ICC foi recentemente proposta. O 8-OHdG é uma base de purina oxidada, um dos produtos oxidativos mais frequentes do DNA. A maioria das lesões no DNA pode se manifestar em quebras de fita simples e dupla, e não apenas em subprodutos oxidativos. As espécies reativas de oxigênio podem danificar o DNA e formar bases oxidativas, como a 8-OHdG, a 5-hidroxiuracil, a 2-hidroxiadenina e a 4,6-diamino-5-formamidopiridina.

Algumas advertências devem ser feitas antes de comparar os resultados medidos por danos no DNA nuclear, como em nosso estudo, aos resultados obtidos nas concentrações de base de purina oxidada. O dano ao DNA medido pelo ensaio de cometa reflete o dano geral, exceto a medição de 8-OHdG que não pode afirmar o mesmo.27

Uma metanálise recente demonstrou que oito estudos avaliaram o dano oxidativo do DNA à lesão específica do 8-OHdG no DNA. Todas as investigações demonstraram maiores concentrações de 8-OHdG em pacientes com ICC. A justificativa para concentrações mais altas de produtos oxidantes de DNA indica que a maior extensão de dano genotóxico contribui grandemente para a oxidação do DNA mitocondrial. Os miócitos cardíacos apresentam o maior conteúdo de mitocôndrias, o que pode indicar maior formação de ERO e contribuir significativamente para a disfunção mitocondrial. Embora este estudo não tenha quantificado a concentração de 8-OHdG, consideramos os danos ao DNA mais amplamente utilizados para avaliar a quebra das cadeias de DNA. O estudo de Jaenisch et al. também desenvolvido por nosso laboratório, utilizou o mesmo método de avaliação de danos ao DNA (versão alcalina do ensaio cometa) em animais com ICC submetidos a treinamento muscular respiratório. Em relação à extensão do dano ao DNA de ratos placebo em comparação com ratos com ICC, a porcentagem de DNA na cauda do cometa foi relativamente semelhante aos resultados obtidos na investigação em células do diaphragma.30

Um achado interessante deste estudo foi o maior dano ao DNA nas células do sóleo do que nas do ventrículo esquerdo, o que corrobora o fato de que, após IM, o ventrículo se adapta funcional e morfologicamente e o músculo periférico sofre alterações histolóxicas e bioquímicas.31,32 A fase aguda do IM é caracterizada pela necrose dos miócitos cardíacos, que expande a área de necrose do ventrículo esquerdo nas horas seguintes, afetando estruturas adjacentes.33 Nesta fase do IM, a extensão do dano ao DNA é provavelmente maior do que em qualquer outro tecido, como pode ser observado em citocinas pró-inflamatórias e mediadores autofágicos.34,35

O fato de os cardiomiócitos apresentarem uma taxa de renovação de aproximadamente 1% em jovens e cerca de 0,45% em idosos reforça nossos achados sobre a diferença de dano ao DNA entre os tecidos de ratos com ICC. O ventrículo esquerdo mostra alta adaptabilidade para modificar sua geometria e capacidade de reparar os principais produtos oxidativos do DNA. Demonstrou-se que o principal problema da ICC não são as alterações centrais do coração, mas sim que esta também afeta, indiretamente, todos os outros órgãos. A complexidade do cenário da ICC, como remodelação cardíaca, alterações na mecânica ventilatória e hemodinâmica e estado pró-inflamatório sistêmico, leva à formação de radicais livres de diferentes formas. Esse estado disfuncional crítico estabelece uma condição de estresse oxidativo em diferentes órgãos e sistemas.36,37

Nossa hipótese foi de que as células musculares esqueléticas teriam maior dano ao DNA em ICC. Por esse motivo, optamos por analisar dois músculos esqueléticos diferentes (músculo sóleo e gastrocnêmio) por suas diferentes proporções de tipo de fibra em ratos com ICC. O músculo esquelético da ICC é altamente afetado pela hipoperfusão que aumenta o dano oxidativo interno, principalmente nas mitocôndrias. Como o músculo esquelético é alvo de dano oxidativo, era esperado que houvesse maior dano observado em nossos achados. Na ICC, o sistema de defesa antioxidante nos músculos esqueléticos pode diminuir constantemente ao longo do tempo. É provável que o dano oxidativo observado no músculo sóleo seja explicado por sua característica morfológica (por exemplo, maior número de capilares por fibra, predominância de fibras tipo I, maior atividade do metabolismo aeróbio). Por outro lado, o músculo gastrocnêmio apresenta morfologia de características mistas, com uma distribuição percentual mais equilibrada em relação ao tipo de fibras e portanto menor dependência do metabolismo aeróbio. Por esse motivo, imaginamos que apresentasse menos danos ao DNA que o músculo sóleo.

Tabela 3 – Quantificação do DNA em diferentes tecidos de animais e ratos de cirurgia placebo e ratos com insuficiência cardíaca crónica

	Placebo	ICC				
Ventrículo esquerdo	7,65 ± 3,35	1,37 ± 0,59	33,29 ± 7,70*	10,51 ± 3,31*		
Pulmões	17,86 ± 3,93	7,31 ± 2,15	36,20 ± 5,17*	23,30 ± 7,25*		
Diafragma	6,86 ± 2,63	1,82 ± 0,79	41,23 ± 13,86*	14,06 ± 6,51*		
Gastrocnêmio	7,63 ± 4,66	1,43 ± 0,70	28,07 ± 15,53*	8,69 ± 5,14*	6,17 ± 3,53*	
Sóleo	11,54 ± 2,46	1,53 ± 0,96	1,84 ± 0,76	55,79 ± 11,53*	20,90 ± 5,32*	12,83 ± 3,68*

Os valores são apresentados em média ± DP; n = 6 para todos os grupos. Placebo, Ratos de cirurgia placebo; ICC: Ratos com insuficiência cardíaca crónica.

* = p < 0,01 versus placebo em relação à variável e seu tecido correspondente.
A maquinaria antioxidante muda ao longo do tempo no ciclo celular (por exemplo: proliferação e diferenciação miogênica), demonstrando maior expressão da atividade de enzimas antioxidantes em mioblastos do que em miotubos, aumentando assim a probabilidade de mortalidade sob estresse oxidativo. Esse fenômeno é interessante, uma vez que o desuso dos músculos esqueléticos devido à intolerância ao exercício é comum em pacientes com ICC, além de estar relacionado à diminuição da sinalização do gatilho antioxidante-estimulante da contração muscular.
O músculo sóleo não possui a mesma capacidade de adaptação que o ventrículo esquerdo, o que pode explicar por que o dano no DNA foi maior.

Limitações

Este trabalho mostra poucas limitações, como a ausência de avaliação de danos ao DNA em outros tecidos (fígado, estruturas encefálicas e outros músculos esqueléticos). Outra limitação que pode enriquecer nossos achados é a mensuração da mutagênese. A avaliação da mutagênese da ICC, juntamente com a SCGE, pode levar a um cenário mais robusto de dano ao DNA e à falta de reparo dessas lesões. Nosso projeto tem como objetivo avaliar os danos longitudinais que o modelo experimental de ICC pode levar e suas diferenças em relação aos tecidos; portanto, a capacidade do DNA de reparar suas lesões não pôde ser levada a diante.

Conclusão

Nossos resultados mostram danos ao DNA usando SCGE no modelo experimental de ICC por IM. A disfunção do ventrículo esquerdo afeta claramente o tecido cardíaco, pulmões, diafragma, gastrocnêmio e sóleo e foi associada à extensão do dano ao DNA, afetando mais o músculo sóleo do que o ventrículo esquerdo e o gastrocnêmio. O teste do cometa demonstrou ser uma ferramenta confiável para quantificar danos ao DNA em diferentes tecidos de animais com ICC e o músculo sóleo demonstrou ser mais afetado pela insuficiência cardíaca do que o ventrículo esquerdo e o gastrocnêmio.

Contribuição dos autores

Concepção e desenho da pesquisa, Obtenção de dados, Análise e interpretação dos dados, Redação do manuscrito e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Stefani GP, Nunes RB, Rossato DD, Hentschke VS, Di Domenico M, Dal Lago P, Rhoden CR; Análise estatística: Stefani GP, Nunes RB, Rossato DD, Hentschke VS, Dal Lago P, Rhoden CR.

Potencial conflito de interesses

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo foi financiado pela Capes, CNPq, UFCSPA.

Vinculação acadêmica

Este artigo é parte de dissertação de Mestrado de Giuseppe Potrick Stefani pela Universidade Federal de Ciências da Saúde de Porto Alegre.

Aprovação ética e consentimento informado

Este estudo foi aprovado pelo Comitê de Ética do CEUA/ UFCSPA sob o número de protocolo 114/13. Todos os procedimentos envolvidos nesse estudo estão de acordo com a Declaração de Helsinki de 1975, atualizada em 2013.
1. Yamaguchi T, Izumi Y, Nakamura Y, Yamazaki T, Shiota M, Sano S, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart. Eur Heart J. 2012;34(14):803–69.

2. Yamaguchi T, Izumi Y, Nakamura Y, Yamazaki T, Shiota M, Sano S, et al. Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. Int J Cardiol. 2015 Jan 15;178:239–46.

3. Zizola C, Schulze PC. Metabolic and structural impairment of skeletal muscle in heart failure. Heart Fail Rev. 2013;18(5):623–30.

4. Tsutsui H, Kinugawa S, Matsuhashi S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2181-90.

5. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil. 2015;36(6):377–93.

6. Kobulnik J, Delgado D. Experimental biomarkers in heart failure: An update. Expert Rev Cardiovasc Ther. 2012;10(9):1119–32.

7. Tsutsui H, Ide T, Kinugawa S. Mitochondrial oxidative stress, DNA damage, and heart failure. Circ Res. 2011;13(1):29–36.

8. Collins AR. The comet assay: A method to measure DNA damage in individual cells. Nat Protoc. 2006;1(1):23–9.

9. Olive PL, Banáth JP. The comet assay: A method to measure DNA damage and its repair with the comet assay. Biochim Biophys Acta - Gen Subj. 2014;1840(2):794–800.

10. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, et al. Selective activation of cardiac angiotensin gene expression in heart failure. J Appl Physiol. 2011;111(6):1664–70.

11. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil. 2015;36(6):377–93.

12. Cicogna AC, Robinson KG, Conrad CH, Singh K, Squire R, Okoshi MP, et al. Direct Effects of Colchicine on Myocardial Function: Studies in Hypertrophied and Failing Spontaneously Hypertensive Rats. Hypertension. 1999;33(1):60–5.

13. Sjaastad I, Sejersted OM, Ilebekk A, Bjornheir R, Bjornheir R, et al. Respiratory muscle training decreases diaphragm DNA damage in rats with heart failure. Can J Physiol Pharmacol. 2011;90(3):253–61.

14. Martínez PF, Okoshi K, Zornoff LAM, Oliveira SA, Campos DHS, Lima ARR, et al. Echocardiographic detection of congestive heart failure in postinfarction rats. J Appl Physiol. 2011;111(2):543–51.

15. Nunes RB, Tonetto M, Machado N, Chazan M, Heck TG, Veiga ABG, et al. Physical exercise improves plasmatic levels of IL-10, left ventricular end-diastolic pressure, and muscle lipid peroxidation in chronic heart failure rats. J Appl Physiol. 2008;104(6):1641–7.

16. Jaenisch RB, Hentschke VS, Quagliotto E, Cavinato PR, Xavier LL, et al. Respiratory muscle training improves hemodynamics, autonomic function, baroreceptor sensitivity, and respiratory mechanics in rats with heart failure. J Appl Physiol. 2011;111(6):1664–70.

17. Lindpaintner K, Lu W, Weidermajer N, Schieffer B, Just H, Ganten D, et al. Selective activation of cardiac angiotensin gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol. 1993;25(2):133–43.

18. Sici UPR, Fernandes T, Hashimoto NY, Mota CF, Arambel MA, Rosa KT, et al. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics. 2011;43(11):665–73.
40. Cousin W, Ho ML, Desai R, Tham A, Chen RV, Kung S, et al. Regenerative Capacity of Old Muscle Stem Cells Declines without Significant Accumulation of DNA Damage. PLoS One. 2013;8(5):e63528.

41. Vahidi Ferdousi L, Rocheteau P, Chayot R, Montagne B, Chaker Z, Flamant P, et al. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Res. 2014;13(3):492–507.

42. Aimo A, Borrelli C, Vergaro G, Piepoli MF, Caterina AR De, Mirizzi G, et al. Targeting Mitochondrial Dysfunction in Chronic Heart Failure: Current Evidence and Potential Approaches. Curr Pharm Des. 2016;22(31):4807–22.

43. Rosca MG, Hoppel CL. Mitochondrial dysfunction in heart failure. Heart Fail Rev. 2013;18(5):607–22.

44. Lieber RL, Smallwood LH, Rainiero MP, Ward SR, Eng CM, Lahey M. Scaling of muscle architecture and fiber types in the rat hindlimb. J Exp Biol. 2008;211(Pt 14):2336-45.

45. Armstrong RB, Phelps RO. Muscle fiber type composition of the rat hindlimb. Am J Anat. 1984;171(3):259-72.

46. Gosker HR, Wouters EFM, Van Der Vusse GJ, Schols AMWI. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: Underlying mechanisms and therapy perspectives. Am J Clin Nutr. 2000;71(5):1033-47.