BACKGROUND GEOMETRY
IN GAUGE GRAVITATION THEORY

Gennadi Sardanashvily

Department of Theoretical Physics, Moscow State University,
117234 Moscow, Russia
E-mail: sard@grav.phys.msu.su

Abstract

Dirac fermion fields are responsible for spontaneous symmetry breaking in gauge gravitation theory because the spin structure associated with a tetrad field is not preserved under general covariant transformations. Two solutions of this problem can be suggested.

(i) There exists the universal spin structure $S \to X$ such that any spin structure $S^h \to X$ associated with a tetrad field h is a subbundle of the bundle $S \to X$. In this model, gravitational fields correspond to different tetrad (or metric) fields. (ii) A background tetrad field h and the associated spin structure S^h are fixed, while gravitational fields are identified with additional tensor fields $q^{\lambda \mu}$ describing deviations $\tilde{h}_a^\lambda = q^{\lambda \mu} h_\mu^a$ of h. One can think of \tilde{h} as being effective tetrad fields. We show that there exist gauge transformations which keep the background tetrad field h and act on the effective fields by the general covariant transformation law. We come to Logunov’s Relativistic Theory of Gravity generalized to dynamic connections and fermion fields.

1 Introduction

Existence of Dirac fermion fields implies that, if a world manifold X is non-compact in order to satisfy causality conditions, it is parallelizable, that is, the tangent bundle TX is trivial and the principal bundle LX of oriented frames in TX admits a global section $[4]$.

Dirac spinors are defined as follows $[2, 3]$. Let M be the Minkowski space with the metric

$$\eta = \text{diag}(1, -1, -1, -1),$$

written with respect to a basis $\{e^a\}$. By $C_{1,3}$ is meant the complex Clifford algebra generated by M. This is isomorphic to the real Clifford algebra $\mathbb{R}_{2,3}$ over \mathbb{R}^5. Its subalgebra generated
by \(M \subset \mathbb{R}^5 \) is the real Clifford algebra \(\mathbb{R}_{1,3} \). A Dirac spinor space \(V_s \) is defined as a minimal left ideal of \(\mathbb{C}_{1,3} \) on which this algebra acts on the left. We have the representation

\[
\gamma : M \otimes V_s \rightarrow V_s, \quad \bar{e}^a = \gamma(e^a) = \gamma^a,
\]

of elements of the Minkowski space \(M \subset \mathbb{C}_{1,3} \) by the Dirac matrices on \(V_s \). The explicit form of this representation depends on the choice of the ideal \(V_s \). Different ideals lead to equivalent representations (1). The spinor space \(V_s \) is provided with the spinor metric

\[
a(v, v') = \frac{1}{2}(v^+ \gamma^0 v' + v'^+ \gamma^0 v).
\]

Let us consider morphisms preserving the representation (1). By definition, the Clifford group \(G_{1,3} \) consists of the invertible elements \(l_s \) of the real Clifford algebra \(\mathbb{R}_{1,3} \) such that the inner automorphisms

\[
l_s e l_s^{-1} = l(e), \quad e \in M,
\]

defined by these elements preserve the Minkowski space \(M \subset \mathbb{R}_{1,3} \). Since the action (3) of the group \(G_{1,3} \) on \(M \) is not effective, one usually considers its spin subgroup

\[
L_s = \text{Spin}^0(1, 3) \simeq \text{SL}(2, \mathbb{C}).
\]

This is the two-fold universal covering group \(z_L : L_s \rightarrow L \) of the proper Lorentz group \(L = SO^0(1, 3) \). The group \(L \) acts on \(M \) by the generators

\[
L_{ab}^c_d = \eta_{ad} \delta^c_b - \eta_{bd} \delta^c_a.
\]

The spin group \(L_s \) acts on the spinor space \(V_s \) by the generators

\[
L_{ab} = \frac{1}{4}[\gamma_a, \gamma_b].
\]

Since, \(L_{ab}^+ \gamma^0 = -\gamma^0 L_{ab} \), the group \(L_s \) preserves the spinor metric (2). The transformations (4) and (3) preserve the representation (1), that is,

\[
\gamma(lM \otimes l_s V_s) = l_s \gamma(M \otimes V_s).
\]

A Dirac spin structure on a world manifold \(X \) is said to be a pair \((P_s, z_s)\) of an \(L_s \)-principal bundle \(P_s \rightarrow X \) and a principal bundle morphism of \(P_s \) to the frame bundle \(LX \) with the structure group \(GL_4 = GL^+(4, \mathbb{R}) \) [2, 4, 5]. Owing to the group epimorphism \(z_L \), every bundle morphism \(z_s \) factorizes through a bundle epimorphism of \(P_s \) onto a subbundle \(L^h X \subset LX \) with
the structure group L. Such a subbundle L^hX is called a Lorentz structure [3, 7]. It exists since X is parallelizable.

By virtue of the well-known theorem [10], there is one-to-one correspondence between the Lorentz subbundles of the frame bundle LX and the global sections h of the quotient bundle

$$\Sigma = LX/L \to X.$$ (6)

This is the two-fold covering of the bundle of pseudo-Riemannian metrics in TX, and sections of Σ are tetrad fields. Let P^h be the L_s-principal bundle covering L^hX and

$$S^h = (P^h \times V_s)/L_s$$ (7)

the associated spinor bundle. Sections s^h of S^h describe Dirac fermion fields in the presence of the tetrad field h.

Indeed, every tetrad field h yields the structure

$$T^*X = (L^hX \times M)/L$$

of the L^hX-associated bundle of Minkowski spaces on T^*X, and defines the representation

$$\gamma_h : T^*X \otimes S^h = (P^h \times (M \otimes V_s))/L_s \to (P^h \times (M \otimes V_s))/L_s = S^h,$$

$$\gamma_h : T^*X \ni t^* = \hat{x}_\lambda dx^\lambda \mapsto \hat{x}_\lambda \tilde{dx}^\lambda = \hat{x}_\lambda h^a_\lambda(x)\gamma^a,$$ (8)

of covectors on X by the Dirac matrices on elements of the spinor bundle S^h. The crucial point is that different tetrad fields h define non-equivalent representations (8) [8, 9]. It follows that every Dirac fermion field must be considered in a pair with a certain tetrad field.

Thus, we come to the well-known problem of describing fermion fields in the presence of different gravitational fields and under general covariant transformations. Recall that general covariant transformations are automorphisms of the frame bundle LX which are the canonical lift of diffeomorphisms of a world manifold X. They do not preserve the Lorentz subbundles of LX. The following two solutions of this problem can be suggested.

(i) One can describe the total system of the pairs of spinor and tetrad fields if any spinor bundle S^h is represented as a subbundle of some fibre bundle $S \to X$ [11-14]. To construct S, let us consider the two-fold universal covering group \widetilde{GL}_4 of the group GL_4 and the corresponding principal bundle \widetilde{LX} covering the frame bundle LX [2,15-17]. Note that the group \widetilde{GL}_4 admits only infinite-dimensional spinor representations [18]. At the same time, \widetilde{LX} has the structure of the L_s-principal bundle $\widetilde{LX} \to \Sigma$ [13, 14]. Then let us consider the associated spinor bundle

$$S = (\widetilde{LX} \times V_s)/L_s \to \Sigma$$
which is the composite bundle $S \to \Sigma \to X$. We have the representation
\begin{align*}
\gamma_\Sigma : & (\Sigma \times T^*X) \otimes \Sigma \to S, \\
\gamma_\Sigma : & dx^\lambda \mapsto \sigma^\lambda_a \gamma_a.
\end{align*}
(9)
of covectors on X by the Dirac matrices. One can show that, for any tetrad field h, the restriction of $S \to \Sigma$ to $h(X) \subset \Sigma$ is a subbundle of $S \to X$ which is isomorphic to the spinor bundle S^h, while the representation γ_Σ (9) restricted to $h(X)$ is exactly the representation γ_h (8). The bundle $\tilde{L}X$ inherits general covariant transformations of LX [15]. They, in turn, induce general covariant transformations of S, which transform the subbundles $S^h \subset S$ to each other and preserve the representation (9) [13, 14].

(ii) This work is devoted to a different model. A background tetrad field h and the associated background spin structure S^h are fixed, while gravitational fields are identified with the sections of the group bundle $Q \to X$ associated with LX (in the spirit of Logunov’s Relativistic Gravitation Theory (RGT) [19]). We will show that there exists an automorphism \tilde{f}_h of LX over any diffeomorphism f of X which preserves the Lorentz subbundle $L^hX \subset LX$.

2 Gauge transformations

With respect to the tangent holonomic frames $\{\partial_\mu\}$, the frame bundle LX is equipped with the coordinates (x^λ, p^λ_a) such that general covariant transformations of LX over diffeomorphisms f of X take the form
\[
\tilde{f} : (x^\lambda, p^\lambda_a) \mapsto (f^\lambda(x), \partial_\mu f^\lambda(x)p^\mu_a).
\]
They induce general covariant transformations
\[
\tilde{f} : (p, v) \cdot GL_4 \mapsto (\tilde{f}(p), v) \cdot GL_4
\]
of any LX-associated bundle
\[
Y = (LX \times V)/GL_4,
\]
where the quotient is defined by identification of elements (p, v) and $(pg, g^{-1}v)$ for all $g \in GL_4$.

Given a tetrad field h, any general covariant transformation of the frame bundle LX can be written as the composition $\tilde{f} = \Phi \circ \tilde{f}_h$ of its automorphism \tilde{f}_h over f which preserves L^hX and some vertical automorphism
\begin{equation}
\Phi : p \mapsto p\phi(p), \quad p \in LX,
\end{equation}
(10)
where ϕ is a GL_4-valued equivariant function on LX, i.e.,

$$\phi(pg) = g^{-1}\phi(p)g, \quad g \in GL_4.$$

Since X is parallelizable, the automorphism \tilde{f}_h exists. Indeed, let z^h be a global section of L^hX. Then, we put

$$\tilde{f}_h : L_xX \ni p = z^h(x)g \mapsto z^h(f(x))g \in L_{f(x)}X.$$

The automorphism \tilde{f}_h restricted to L^hX induces an automorphism of the principal bundle P^h and the corresponding automorphism \tilde{f}_s of the spinor bundle S^h, which preserve the representation (8).

Turn now to the vertical automorphism Φ. Let us consider the group bundle $Q \to X$ associated with LX. Its typical fibre is the group GL_4 which acts on itself by the adjoint representation. Let $(x^\lambda, q^\lambda_\mu)$ be coordinates on Q. There exist the left and right canonical actions of Q on any LX-associated bundle Y:

$$\rho_l : Q \times X \to Y,$$

$$\rho_l : ((p, g) \cdot GL_4, (p, v) \cdot GL_4) \mapsto (p, gv) \cdot GL_4,$$

$$\rho_r : ((p, g) \cdot GL_4, (p, v) \cdot GL_4) \mapsto (p, g^{-1}v) \cdot GL_4.$$

Let Φ be the vertical automorphism (10) of LX. The corresponding vertical automorphisms of an associated bundle Y and the group bundle Q read

$$\Phi : (p, v) \cdot GL_4 \mapsto (p, \phi(p)v) \cdot GL_4,$$

$$\Phi : (p, g) \cdot GL_4 \mapsto (p, \phi(p)g\phi^{-1}(p)) \cdot GL_4.$$

For any Φ, there exists the fibre-to-fibre morphism

$$\overline{\Phi} : (p, q) \cdot GL_4 \mapsto (p, \phi(p)q) \cdot GL_4$$

of the group bundle Q such that

$$\rho_l(\overline{\Phi}(Q) \times Y) = \Phi(\rho_l(Q \times Y)), \quad (11)$$

$$\rho_r(\overline{\Phi}(Q) \times \Phi(Y)) = \rho_r(Q \times Y). \quad (12)$$

For instance, if $Y = T^*X$, the expression (11) takes the coordinate form

$$\rho_l : (x^\lambda, q^\lambda_\mu, \dot{x}_\mu) \mapsto (x^\lambda, \dot{x}_\lambda q^\lambda_\mu),$$

$$\overline{\Phi} : (x^\lambda, q^\lambda_\mu) \mapsto (x^\lambda, S^\lambda_\nu q^\nu_\mu),$$

$$\rho_r(x^\lambda, S^\lambda_\nu q^\nu_\mu, \dot{x}_\alpha(S^{-1})^\alpha_\lambda) = (x^\lambda, \dot{x}_\lambda q^\lambda_\mu).$$
Hence, we obtain the representation

\[\gamma_Q : (Q \times T^* X) \otimes (Q \times S^h) \to (Q \times S^h), \]

\[\gamma_Q = \gamma_h \circ \rho_r : (q, t^*) \mapsto \dot{x}_Q^\lambda \mu \hat{d}x^\mu = \dot{x}_h^\lambda \mu h_{a}^\mu \gamma^a, \] (13)

on elements of the spinor bundle \(S^h \). Let \(q_0 \) be the canonical global section of the group bundle \(Q \to X \) whose values are the unit elements of the fibres of \(Q \). Then, the representation \(\gamma_Q \) (13) restricted to \(q_0(X) \) comes to the representation \(\gamma_h \) (8).

Sections \(q(x) \) of the group bundle \(Q \) are dynamic variables of the model under consideration. One can think of them as being tensor gravitational fields of Logunov’s RTG. There is the canonical morphism

\[\rho_l : Q \times \Sigma \to \Sigma, \]

\[\rho_l : ((p, g) \cdot GL_4, (p, \sigma) \cdot GL_4) \mapsto (p, g\sigma) \cdot GL_4, \quad p \in LX, \]

\[\rho_l : (x^\lambda, q^\lambda_\mu, \sigma^\mu_a) \mapsto (x^\lambda, q^\lambda_\mu h^\mu_a). \]

This morphism restricted to \(h(X) \subset \Sigma \) takes the form

\[\rho_h : Q \to \Sigma, \]

\[\rho_h : ((p, g) \cdot L, (p, \sigma_0) \cdot L) \to (p, g\sigma_0) \cdot L, \quad p \in L^h X, \quad \]

\[\rho_h : (x^\lambda, q^\lambda_\mu) \mapsto (x^\lambda, q^\lambda_\mu h^\mu_a), \] (14)

where \(\sigma_0 \) is the center of the quotient \(GL_4/L \).

Let \(\Sigma_h \), coordinatized by \(\tilde{\sigma}^\mu_a \), be the quotient of the bundle \(Q \) by the kernel \(\text{Ker}_h \rho_h \) of the morphism (14) with respect to the section \(h \). This is isomorphic to the bundle \(\Sigma \) provided with the Lorentz structure of an \(L^h X \)-associated bundle. Then the representation (13), which is constant on \(\text{Ker}_h \rho_h \), reduces to the representation

\[(\Sigma_h \times T^* X) \otimes (\Sigma_h \times S^h) \to (\Sigma_h \times S^h), \]

\[(\tilde{\sigma}, t^*) \mapsto \dot{x}_h^\lambda \mu \tilde{\sigma}^\mu_a \gamma^a. \] (15)

Thence, one can think of a section \(\tilde{h} \neq h \) of the bundle \(\Sigma_h \) as being an effective tetrad field, and can treat \(\tilde{g}^{\mu\nu} = \tilde{h}^\mu_a \tilde{h}^\nu_b \eta_{ab} \) as an effective metric. A section \(\tilde{h} \) is not a true tetrad field, while \(\tilde{g} \) is not a true metric. Covectors \(\tilde{h}^a = \tilde{h}^a_\mu \hat{d}x^\mu \) have the same representation by \(\gamma \)-matrices as the covectors \(h^a = h^a_\mu \hat{d}x^\mu \), while Greek indices go down and go up by means of the background metric \(\hat{g}^{\mu\nu} = h^a_\mu h^b_\nu \eta_{ab} \).
Given a general covariant transformation \(\tilde{f} = \Phi \circ \tilde{f}_h \) of the frame bundle \(LX \), let us consider the morphism

\[
\tilde{f}_Q : Q \to \Phi \circ \tilde{f}_h(Q), \quad S^h \to \tilde{f}_s(S^h), \quad T^*X \to \tilde{f}(T^*X).
\]

This preserves the representation (13), i.e., \(\gamma_Q \circ \tilde{f}_Q = \tilde{f}_s \circ \gamma_Q \), and yields the general covariant transformation \(\tilde{\sigma}_a^\lambda \mapsto \partial_\mu f^\lambda \tilde{\sigma}_a^\mu \) of the bundle \(\Sigma_h \).

Thus, we recover RTG [19] in the case of a background tetrad field \(h \) and dynamic gravitational fields \(q \).

3 Gauge theory of RTG

We follow the geometric formulation of field theory where a configuration space of fields, represented by sections of a bundle \(Y \to X \), is the finite dimensional jet manifold \(J^1Y \) of \(Y \), coordinatized by \((x^\lambda, y^i, y^{i\lambda})\) [14, 21]. Recall that \(J^1Y \) comprises the equivalence classes of sections \(s \) of \(Y \to X \) which are identified by their values and values of their first derivatives at points \(x \in X \), i.e.,

\[
y^i \circ s = s^i(x), \quad y^{i\lambda} \circ s = \partial_\lambda s^i(x).
\]

A Lagrangian on \(J^1Y \) is defined to be a horizontal density

\[
L = \mathcal{L}(x^\lambda, y^i, y^{i\lambda})\omega, \quad \omega = dx^1 \cdots dx^n, \quad n = \dim X.
\]

The notation \(\pi^\lambda_i = \partial_\lambda y^i \mathcal{L} \) will be used.

A connection \(\Gamma \) on the bundle \(Y \to X \) is defined as a section of the jet bundle \(J^1Y \to Y \), and is given by the tangent-valued form

\[
\Gamma = dx^\lambda \otimes (\partial_\lambda + \Gamma^i_\lambda \partial_i).
\]

For instance, a linear connection \(K \) on the tangent bundle \(TX \) reads

\[
K = dx^\lambda \otimes (\partial_\lambda + K^\mu_{\nu, \alpha} \partial_\nu \partial_\alpha).
\]

Every world connection \(K \) yields the spinor connection

\[
K_h = dx^\lambda \otimes [\partial_\lambda + \frac{1}{4}(\eta^{kb} h^a_\mu - \eta^{ka} h^b_\mu)(\partial_\lambda h^a_\mu - h^a_\mu K^\mu_{\nu, \nu}) L_{ab}^A B y^B \partial_A].
\]
on the spinor bundle S^h with coordinates (x^λ, y^A), where L_{ab} are generators \cite{3, 12, 14, 22}.

Using the connection K_h and the representation γ_Q \cite{13}, one can construct the following Dirac operator on the product $Q \times S^h$:

$$D_Q = q^\lambda \mu h^\mu_\gamma A D_\lambda,$$

where $D_\lambda = y^A_\lambda - K^A_\lambda$ are the covariant derivatives relative to the connection \cite{17}. The operator \cite{18} restricted to $q_0(X)$ recovers the familiar Dirac operator on S^h for fermion fields in the presence of the background tetrad field h and the world connection K.

Thus, we obtain the metric-affine generalization of RTG where dynamic variables are tensor gravitational fields q, general linear connections K and Dirac fermion fields in the presence of a background tetrad field h \cite{20}. The configuration space of this model is the jet manifold J^1Y of the product

$$Y = Q \times C_K \times S^h,$$

where $C_K = J^1LX/GL_4$ is the bundle whose sections are world connections K. The bundle \cite{19} is coordinatized by $(x^\mu, q^\mu_\nu, k^\alpha_\mu_\nu, y^A)$. A total Lagrangian on this configuration space is the sum

$$L = L_{MA} + L_q(q, g) + L_D$$

where L_{MA} is a metric-affine Lagrangian, expressed into the curvature

$$R^\alpha_\mu_\beta = k^\alpha_\mu_\beta - k^\alpha_\mu_\lambda k_\lambda^\beta + k^\alpha_\mu_\epsilon k^\epsilon_\lambda^\beta - k^\alpha_\epsilon k^\epsilon_\mu^\beta$$

and the effective metric $\tilde{\sigma}^{\mu\nu} = \tilde{\sigma}^\alpha_\mu_\beta \tilde{\sigma}^\beta_\nu \eta^{ab}$, the Lagrangian L_q depends on tensor gravitational fields q and the background metric g, and

$$L_D = \{ \frac{i}{2} \tilde{\sigma}^\lambda_\mu [y^A_\mu (\gamma^0 \gamma^q)^A_B (y^B_\lambda - \frac{1}{4} (\eta^{kh} \sigma^{-1a}_\mu - \eta^{ka} \sigma^{-1b}_\mu) (\tilde{\sigma}^\mu_\lambda - \tilde{\sigma}^\mu_\epsilon k^\epsilon_\lambda^\lambda_\nu) L_{ab}^C c y^C - (y^A_\lambda - \frac{1}{4} (\eta^{kh} \sigma^{-1a}_\mu - \eta^{ka} \sigma^{-1b}_\mu) (\tilde{\sigma}^\mu_\lambda - \tilde{\sigma}^\mu_\epsilon k^\epsilon_\lambda^\lambda_\nu) y^A C L_{ab}^C A (\gamma^0 \gamma^q)^A_B c y^C] - m y^A_\lambda (\gamma^0)^A_B c y^B \} | \tilde{\sigma} |^{-1/2}, \quad \tilde{\sigma} = \det(\tilde{\sigma}^{\mu\nu})$$

is the Lagrangian of fermion fields in metric-affine gravitation theory \cite{12-14}, where tetrad fields are replaced with the effective tetrad fields $\tilde{\sigma}$. If

$$L_{AM} = (-\lambda_1 R + \lambda_2) | \tilde{\sigma} |^{-1/2}, \quad L_q = \lambda_3 g_{\mu\nu} \tilde{\sigma}^{\mu\nu} | \sigma |^{-1/2}, \quad L_D = 0,$$

where $R = \tilde{\sigma}^{\mu\nu} R^\alpha_\mu_\alpha \rho$, the familiar Lagrangian of RTG is recovered.
4 Energy-momentum conservation law

We follow the standard procedure of constructing Lagrangian conservation laws which is based on the first variational formula \[14, 23\]. This formula provides the canonical splitting of the Lie derivative of a Lagrangian \(L\) along a vector field \(u\) on \(Y \to X\). We have

\[
\partial_\lambda u^\lambda \mathcal{L} + \left[u^\lambda \partial_\lambda + u^i \partial_i + (d_\lambda u^i - y_\mu^i \partial_\lambda u^\mu) \partial_i^\lambda \right] \mathcal{L} = (22)
\]

\[(u^i - y_\mu^i u^\mu)(\partial_i - d_\lambda \partial_i^\lambda)\mathcal{L} - d_\lambda [\pi^\lambda_\iota(u^\mu y_\mu^i - u^i) - u^\lambda \mathcal{L}].\]

This identity restricted to the shell

\[(\partial_i - d_\lambda \partial_i^\lambda)\mathcal{L} = 0, \quad d_\lambda = \partial_\lambda + y_\mu^i \partial_i + y_\mu^\lambda \partial_i^\mu,\]

comes to the weak equality

\[
\partial_\lambda u^\lambda \mathcal{L} + \left[u^\lambda \partial_\lambda + u^i \partial_i + (d_\lambda u^i - y_\mu^i \partial_\lambda u^\mu) \partial_i^\lambda \right] \mathcal{L} \approx (23)
\]

\[-d_\lambda [\pi^\lambda_\iota(u^\mu y_\mu^i - u^i) - u^\lambda \mathcal{L}].\]

If the Lie derivative of \(L\) along \(u\) vanishes (i.e., \(L\) is invariant under the local 1-parameter group of gauge transformations generated by \(u\)), we obtain the weak conservation law

\[0 \approx -d_\lambda [\pi^\lambda_\iota(u^\mu y_\mu^i - u^i) - u^\lambda \mathcal{L}].\]

For the sake of simplicity, let us replace the bundle \(Q\) in the product \((19)\) with the bundle \(\Sigma_h\), and denote

\[Y' = \Sigma_h \times C_K \times S^h.\]

There exists the canonical lift on \(Y'\) of every vector field \(\tau\) on \(X\):

\[
\tilde{\tau} = \tau^\mu \partial_\mu + (\partial_\nu \tau^\alpha k_{\mu}^{\alpha \beta} - \partial_\beta \tau^\nu k_{\mu}^{\alpha \beta} - \partial_\mu \tau^\nu k_{\nu}^{\alpha \beta} + \partial_{\mu \beta} \tau^\alpha) \frac{\partial}{\partial k_{\mu}^{\alpha \beta}} + \partial_\nu \tau^\mu \tilde{\sigma}^\nu \frac{\partial}{\partial \tilde{\sigma}^\nu} + (24)
\]

\[
\frac{1}{4}(\eta_{k_{\mu}^{a \beta}} - \eta_{k_{\mu}^{b \beta}})(\tau^\lambda \partial_\lambda k_{\mu}^{a \beta} - k_{\mu}^{a \beta} \partial_\nu \tau^\nu)(L_{ab}^e B^e \partial_A - L_{ab}^e c^d \tilde{\sigma}^\nu \frac{\partial}{\partial \tilde{\sigma}^\nu}),
\]

where \(L_{ab}^c d\) are generators \((4)\). This lift is the generator of gauge transformations of the bundle \(Y'\) induced by morphisms \(\tilde{f}_Q\) \((16)\). Its part acting on Greek indices is the familiar generator of general covariant transformations, whereas that acting on the Latin ones is a local generator of vertical Lorentz gauge transformations.
Let us examine the weak equality (23) in the case of the Lagrangian (20) and the vector field (24). In contrast with L_q, the Lagrangians L_{MA} and L_D are invariant under the above-mentioned gauge transformations. Then, using the results of [12, 14], we bring (23) into the form
\[
\partial_\lambda (\tau^\lambda L_q) + (\partial_\alpha \tau^\mu \tilde{g}^{\alpha\nu} + \partial_\alpha \tau^\nu \tilde{g}^{\alpha\mu}) \frac{\partial L_q}{\partial \tilde{g}^{\mu\nu}} \approx 0
\] (25)
d\lambda (2\tau^\mu \tilde{g}^{\lambda\alpha} \frac{\partial L_q}{\partial \tilde{g}^{\alpha\mu}} + \tau^\lambda L_q - d_\mu U^{\mu\lambda}),
\]
where
\[
U = 2 \frac{\partial L_{AM}}{\partial R_{\mu\lambda\alpha\nu}} (\partial_\nu \tau^\alpha - k_{\sigma}^{\alpha} \tau^\sigma)
\]
is the generalized Komar superpotential of the energy-momentum of metric-affine gravity [12, 14, 24].

A glance at the expression (25) shows that, if the Lagrangian L (20) contains the Higgs term L_q, the energy-momentum flow is not reduced to a superpotential, and the familiar covariant conservation law
\[
\tilde{\nabla}_\alpha \hat{t}_\lambda \approx 0, \quad \hat{t}_\lambda = 2\tilde{g}^{\alpha\mu} \frac{\partial L_q}{\partial \tilde{g}^{\mu\nu}} \] (26)
takes place. Here, $\tilde{\nabla}_\alpha$ are covariant derivatives relative to the Levi-Civita connection of the effective metric \tilde{g}. In the case of the standard Lagrangian L_q (21) of RTG, the equality (26) comes to the well-known condition
\[
\nabla_\alpha (\tilde{g}^{\alpha\mu} \sqrt{|\tilde{g}|}) \approx 0,
\]
where ∇_α are covariant derivatives relative to the Levi-Civita connection of the background metric g. On solutions satisfying this condition, the energy-momentum flow in RTG reduces to the generalized Komar superpotential just as it takes place in General Relativity [25], Palatini formalism [26, 27], metric-affine and gauge gravitation theories [12, 14, 24].

References

[1] R. Geroch, Spinor structure of space-time in general relativity, J. Math. Phys. 9 (1968) 1739.
[2] H.Lawson and M-L. Michelson, *Spin Geometry* (Princeton Univ. Press, Princeton, 1989).

[3] J.Crawford, Clifford algebra: Notes on the spinor metric and Lorentz, Poincaré and conformal groups, *J. Math. Phys.* 32 (1991) 576.

[4] S.Avis and C.Isham, Generalized spin structure on four dimensional space-times, *Comm. Math. Phys.* 72 (1980) 103.

[5] I.Benn and R.Tucker, *An Introduction to Spinors and Geometry with Applications in Physics* (Adam Hilger, Bristol, 1987).

[6] R.Zulanke and P.Wintgen, *Differential geometrie und Faserbündel, Hochschulbucher fur Mathematik, Band 75* (VEB Deutscher Verlag der Wissenschaften, Berlin, 1972).

[7] F.Gordejuela and J.Masqué, Gauge group and G-structures, *J. Phys. A* 28 (1995) 497.

[8] G.Sardanashvily, Gauge gravitation theory, *Int. J. Theor. Phys.* 30 (1991) 721.

[9] G.Sardanashvily and O.Zakharov, *Gauge gravitation theory* (World Scientific, Singapore, 1992).

[10] S.Kobayashi and K.Nomizu, *Foundations of Differential Geometry, Vol.1.* (John Wiley, N.Y. - Singapore, 1963).

[11] G.Sardanashvily, On the geometry of spontaneous symmetry breaking, *J. Math. Phys.* 33 (1992) 1546.

[12] G.Sardanashvily, Stress-energy-momentum conservation law in gauge gravitation theory, *Class. Quant. Grav.* 14 (1997) 1371.

[13] G.Giachetta, L.Mangiarotti and G.Sardanashvily, Universal spin structure in gauge gravitation theory, E-print: gr-qc/9505078.

[14] G.Giachetta, L.Mangiarotti and G.Sardanashvily, *New Hamiltonian and Lagrangian Methods in Field Theory* (World Scientific, Singapore, 1997).

[15] L.Dabrowski and R.Percacci, Spinors and diffeomorphisms, *Comm. Math. Phys.* 106 (1986) 691.

[16] S.Switt, Natural bundles. II. Spin and the diffeomorphism group, *J. Math. Phys.* 34 (1993) 3825.
[17] R.Fulp, J.Lawson and L.Norris, Geometric prequantization on the spin bundle based on n-symplectic geometry: the Dirac equation, *Int. J. Theor. Phys.* **33** (1994) 1011.

[18] F. Hehl, J. McCrea, E. Mielke and Y. Ne’eman, Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilaton invariance, *Phys. Rep.* **258** (1995) 1.

[19] A.Logunov, Yu.Loskutov and M.Mestvirishvili, Relativistic theory of gravity, *Int. J. Mod. Phys. A* **3** (1988) 2067.

[20] G. Sardanashvily, Relativistic theory of gravity: Gauge approach In vol.: *Proceedings of the XIX Workshop on High Energy Physics and Field Theory, Protvino, 1996* (Protvino, IHEP Press, 1997) p.184.

[21] G.Sardanashvily, *Generalized Hamiltonian Formalism for Field Theory. Constraint Systems* (World Scientific, Singapore, 1995).

[22] A.Aringazin and A.Mikhailov, Matter fields in spacetime with vector non-metricity, *Class. Quant. Grav.* **8** (1991) 1685.

[23] G.Sardanashvily, Stress-energy-momentum tensors in constraint field theories, *J. Math. Phys.* **38** (1997) 847.

[24] G.Giachetta and G.Sardanashvily, Stress-energy-momentum of affine-metric gravity. Generalized Komar superpotential, *Class. Quant. Grav.* **13** (1996) L67.

[25] J.Novotný, On the conservation laws in General Relativity, *Geometrical Methods in Physics, Proceeding of the Conference on Differential Geometry and its Applications (Czechoslovakia 1983)*, Ed. D.Krupka (Brno, University of J.E.Purkyné, 1984) p.207.

[26] J.Novotný, J.Novotný, Energy-momentum complex of gravitational field in the Palatini formalism, *Int. J. Theor. Phys.* **32** (1993) 1033.

[27] A.Borowiec, M.Ferraris, M.Francaviglia and I.Volovich, Energy-momentum complex for nonlinear gravitational Lagrangians in the first-order formalism, *GRG* **26** (1994) 637.