Choroidal Neovascularization after Multiple Evanescent White Dot Syndrome in a Patient with Pre-existing Pigment Epithelial Detachment

Taewoong Um, Joo Yong Lee

Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Purpose: To report a case of choroidal neovascularization (CNV) occurring after resolution of multiple evanescent white dot syndrome (MEWDS) in a patient with pre-existing pigment epithelial detachment.

Case summary: A 31-year-old woman with decreased vision in the right eye as her main complaint visited our clinic. Initial examination showed mild inflammation of the anterior chamber and disc swelling with multiple white dots on the fundus. Hyper-fluorescent spots on fluorescein angiography (FA) and hypo-fluorescent spots on indocyanine green angiography (ICGA) were observed. Optical coherence tomography (OCT) showed small pigment epithelial detachment (PED) at the macula, but there was no angiographic evidence of active CNV. She was diagnosed with MEWDS. After 1 month of treatment with an oral corticosteroid, the white dots completely disappeared. Two weeks later, she complained of a central scotoma in the same eye. OCT showed intraretinal and subretinal hemorrhages in the macula and subretinal fluid (SRF), with FA and ICGA showing a hyper-fluorescent spot on the fovea with leakage, findings compatible with active CNV. SRF did not resolve after six serial intravitreal injections of bevacizumab, half-fluence photodynamic therapy, and or serial intravitreal injections of aflibercept, but resolved completely after three serial intravitreal injections of ranibizumab.

Conclusions: Active CNV can occur after MEWDS resolution in patients with predisposing conditions. Close follow-up after MEWDS resolution may be needed to detect CNV, particularly in patients with macular abnormalities such as PED.

Keywords: Choroidal neovascularization; Multiple evanescent white dot syndrome (MEWDS)

Introduction

Multiple evanescent white dot syndrome (MEWDS) is an inflammatory chorioretinopathy characterized by the presence of unilateral, multiple, faint white dots in the mid-peripheral fundus [1,2]. Despite MEWDS usually being a self-limiting disease with good prognosis, choroidal neovascularization (CNV) secondary to MEWDS may occur [3-6]. This report describes a patient with pre-existing pigment epithelial detachment (PED) who experienced CNV 2 weeks after the resolution of MEWDS.
Case Report

A 31-year-old woman who experienced decreased vision in her right eye 2 days earlier (best corrected visual acuity [BCVA] was 20/200) visited our clinic. She had also experienced flu-like symptoms a few days earlier. Initial slit-lamp examination of her right eye showed mild inflammation in the anterior chamber and disc swelling with multiple white dots. Optical coherence tomography (OCT) showed PED, fluorescein angiography (FA) revealed hyper-fluorescent spots, and indocyanine green angiography (ICGA) showed hypo-fluorescent spots corresponding to multiple white dots on the fundus (Fig. 1A-C). There was no angiographic evidence of active CNV, but ICGA showed small, multiple pinpoint-like hyper-fluorescent spots along the margin of the fovea (Fig. 1C). She was diagnosed with MEWDS superimposed on previously existing PED. After 1 month of treatment with oral prednisolone and steroid eye-drops, the white dots completely disappeared and her visual acuity improved to 20/60. However, mild inflammation was still observed in the anterior chamber and there was evidence of mild foveal hemorrhage (Fig. 1D).

Two weeks after the complete disappearance of the white dots, the BCVA in the right eye remained stable at 20/60, but she complained of a small central scotoma in that eye. OCT showed intraretinal hemorrhage with serous detachment of the macula and subretinal fluid (SRF). FA and ICGA revealed hyper-fluorescent spots on the fovea with progressive leakage, findings consistent with active CNV (Fig. 2). She was diagnosed with active CNV after MEWDS and treated with a series of intravitreal injections of bevacizumab, an antibody to vascular endothelial growth factor (VEGF).

One month after the first bevacizumab injection, her visual acuity improved to 20/20 and SRF on OCT decreased. However, despite six serial intravitreal injections of bevacizumab, SRF did not completely resolve (Fig. 3A, B). She was therefore started on half-fluence photodynamic therapy.

Figure 1. Findings in the right eye of this patient during the initial examination and after 1 month of treatment with oral steroid. Fundus photograph showing multiple white dots and mild disc swelling (A). Optical coherence tomography showing pigment epithelial detachment (B). Fluorescein angiography showing multiple hyper-fluorescent spots (left) and indocyanine green angiography (ICGA) showing hypo-fluorescent spots (right), corresponding to the white dots on the fundus. There was no evidence of active choroidal neovascularization, but small, multiple pinpoint-like hyper-fluorescent spots were found along the margin of fovea on ICGA (right) (C). Complete resolution of multiple white dots at the posterior pole and disc swelling after 1 month oral steroids therapy. Mild foveal hemorrhage was observed (D).

Figure 2. Findings in the right eye of this patient at presentation of a central scotoma. Fundus photograph, showing intraretinal and subretinal hemorrhages and serous detachment on the macula (A). Optical coherence tomography, showing subretinal fluid, intraretinal fluid, and intraretinal hyper-/hypo-reflective lesions (B). Fluorescein angiography (left) and indocyanine green angiography (right), showing a hyper-fluorescent spot on the fovea (C).
(PDT). One month later, her visual acuity improved to 20/40 and SRF decreased slightly. Two months after PDT, her visual acuity again decreased to 20/60, and SRF increased (Fig. 3C, D). She was therefore treated with intravitreal injections of another anti-VEGF agent, aflibercept. However, after two injections, her visual acuity and SRF did not improve (Fig. 3E, F). She was therefore started on intravitreal injections of a third anti-VEGF agent, ranibizumab. After three serial intravitreal injections of ranibizumab, her visual acuity improved to 20/40 and SRF was completely resorbed (Fig. 4).

Discussion

MEWDS is an inflammatory chorioretinopathy characterized by the presence of unilateral, multiple, faint white dots in the mid-peripheral fundus. MEWDS is usually self-limiting, with good visual outcomes [1,2].

CNV can occur secondary to inflammatory chorioretinopathies, such as MEWDS [3-6], multifocal choroiditis [7] and punctate inner choroidopathy [8]. CNV secondary to MEWDS, however, is rare [5,6] because the duration of MEWDS and the extent of inflammation are relatively limited [9], but this condition can cause a severe loss of visual acuity in such patients.

Previous reports describing patients with pre-existing CNV before MEWDS have suggested that baseline chorioretinal inflammatory conditions are related to the occurrence of CNV and MEWDS [10,11]. In some patients, inflammation at the level of the choroid was found to result in ischemia of the choriocapillaris–retinal pigment epithelium complex, with this ischemia triggering choroidal neovascularization [10,12,13].

Several characteristics of the present patient suggested that she might have already had vascularized PED in the macula at the time of her MEWDS diagnosis, rather than de novo CNV secondary to MEWDS. First, OCT showed that PED had multiple, not just round curvatures, and that the mild hyper-reflective lesion inside the PED was compatible with vascularized PED. Second, ICGA at the time of MEWDS diagnosis showed small, multiple pinpoint-like hyper-fluorescent spots along the margin of the fovea, with these marginal hyper-fluorescent spots being the same as the areas of PED on OCT. Third, the sites of suspicious foveal hemorrhages 1 month after oral corticosteroid therapy were the same as those of the intraretinal hemorrhages that occurred 2 weeks later. Fourth, the CNV site on ICGA was identical to the site of the previous PED.

CNV in our patient was resistant to intravitreal injec-
tions of bevacizumab and aflibercept, as well as PDT, while being responsive to intravitreal ranibizumab. CNV before MEWDS has been treated successfully with intravitreal bevacizumab [10] and CNV secondary to MEWDS has been found to be responsive to a single intravitreal injection of ranibizumab [4] or single PDT [3]. To our knowledge, there have been no previous reports on activated CNV after MEWDS in patients with pre-existing PED, precluding a comparison of our results with those of previous patients. The resistance to bevacizumab and PDT in our patient may have been due to the occurrence of an inflammatory condition during activation of CNV after MEWDS.

In summary, inflammatory conditions developing after MEWDS may be related to the activation of CNV. Following complete resolution of MEWDS, patients, especially those with macular abnormalities, should be closely followed-up to detect the onset of CNV.

Conflicts of interest
The authors have no proprietary or commercial interest in any material discussed in this article.

References

1. Jampol LM, Sieving PA, Pugh D, et al. Multiple evanescent white dot syndrome: I. Clinical findings. Arch Ophthalmol 1984;102:671-4.
2. Ryan PT. Multiple evanescent white dot syndrome: a review and case report. Clin Exp Optom 2010;93:324-9.
3. Löw U, Palmowski AM, Weich CM, Ruprecht KW. Choroidal neovascularization followed in a patient with "multiple evanescent white dot syndrome" (MEWDS) -- a case report. Klin Monbl Augenheilk 2004;221:1051-3.
4. Rouvas AA, Ladas ID, Papakostas TD, et al. Intravitreal ranibizumab in a patient with choroidal neovascularization secondary to multiple evanescent white dot syndrome. Eur J Ophthalmol 2007;17:996-9.
5. Oh KT, Christmas NJ, Russell SR. Late recurrence and choroidal neovascularization in multiple evanescent white dot syndrome. Retina 2001;21:182-4.
6. Wyhinny GJ, Jackson JL, Jampol LM, Caro NC. Subretinal neovascularization following multiple evanescent white-dot syndrome. Arch Ophthalmol 1990;108:1384-5.
7. Dreyer RF, Gass DJ. Multifocal choroiditis and panuveitis. A syndrome that mimics ocular histoplasmosis. Arch Ophthalmol 1984;102:1776-84.
8. Watzke RC, Packer AJ, Folk JC, et al. Punctate inner choroidopathy. Am J Ophthalmol 1984;98:572-84.
9. Sieving PA, Fishman GA, Jampol LM, Pugh D. Multiple evanescent white dot syndrome. II. Electrophysiology of the photoreceptors during retinal pigment epithelial disease. Arch Ophthalmol 1984;102:675-9.
10. Papadia M, Herfort CP. Idiopathic choroidal neovascularization as the inaugural sign of multiple evanescent white dot syndrome. Middle East Afr J Ophthalmol 2010;17:270-4.
11. Machida S, Fujiwara T, Murai K, et al. Idiopathic choroidal neovascularization as an early manifestation of inflammatory choriotreotinal disease. Retina 2008;28:703-10.
12. Giovannini A, Scassellati-Sforzolini B, Mariotti C, D’Altobrando E. Indocyanine green angiographic findings in idiopathic choroidal neovascularization. Int Ophthalmol 1996-1997;20:171-9.
13. Callanan D, Gass JD. Multifocal choroiditis and choroidal neovascularization associated with the multiple evanescent white dot and acute idiopathic blind spot enlargement syndrome. Ophthalmology 1992;99:1678-85.