High performance piezoelectric AlN MEMS resonators for precise sensing in liquids

M. Schneider, G. Pfusterschmied, F. Patocka, U. Schmid

Piezoelectric silicon micro-machined resonators triggered in the two-dimensional roof-tile shaped mode exhibit exceptionally high quality factors even in highly viscous liquids. In combination with an all-electric readout, this enables precise measurements in liquid media with high output signals, if the electrode design and the anchor geometry are tailored to match the selected order of the roof-tile shaped mode. This paper provides an overview of this promising class of resonator modes for micro-electromechanical systems (MEMS) and highlights three application scenarios. In the food industry, the MEMS sensor can be used to monitor the fermentation process in wine by tracking the density and hence, the concentration of ethanol. In technical lubricants, the concentration of ferrous particles can be monitored by integrating a magnetic actuator on the resonator. Finally, even in highly viscous bitumen, the MEMS sensor is successfully used to measure the viscosity of this material.

Keywords: liquid sensing; MEMS; resonators; piezoelectric; realtime monitoring

1. Introduction
Microelectromechanical systems (MEMS) based resonator sensors are utilized in a wide variety of fields to detect both physical and chemical quantities. This includes the sensing of density and viscosity in liquids [1–3], pressure sensing in gases [4, 5] and the sensing of mass changes when used as micro balance for the detection of chemical and biological agents [6–11]. Of the various types of resonator geometries (strings, membranes, etc.), cantilever based devices have attracted much attention due to the low impact of residual stress on key device parameters like the resonance frequency. Cantilever modes are into different basic types of mode shapes: transversal, torsional, extensional and lateral.

Transversal or out-of-plane modes are primarily used for atomic force microscopy and micro balance applications [9, 12]. When comparing the performance of these modes in liquids, it was found, that the quality factor, which is in liquids primarily linked to viscous damping, does not exceed 35 [9]. This is a limitation when going into liquids with higher viscosity, as the increased damping will not allow any oscillation of the resonator to occur. To overcome this drawback to at least some degree, lateral or in-plane modes can be used, which can reach quality factors between 65 and 100 in water [9, 13, 14].

This paper will give an overview over a MEMS based piezoelectric sensor platform developed at ISAS, TU Wien. This sensor platform utilizes a novel type of resonator mode, which features unprecedented quality factors in water of up to 366 for higher mode orders. As a consequence, measurements not just in water, but also in highly viscous liquids like lubrication oil, or even bitumen are enabled. The devices presented in this paper are all based on this sensor platform, the design however varies depending on the application.

2. Methods
2.1 Sensor design and fabrication
The sensor fabrication process starts with a 4 inch silicon on insulator (SOI) wafer with a typical device layer thickness of 20 µm. The sensor fabrication process starts with a 4 inch silicon on insulator (SOI) wafer with a typical device layer thickness of 20 µm. The sensor fabrication process starts with a 4 inch silicon on insulator (SOI) wafer with a typical device layer thickness of 20 µm.

1https://mst.isas.tuwien.ac.at.

Schneider, Michael, Institute of Sensor and Actuator Systems, TU Wien, Gusshausstraße 27-29, A-1040 Vienna, Austria (E-mail: michael.schneider@tuwien.ac.at);
Pfusterschmied, Georg, Institute of Sensor and Actuator Systems, TU Wien, Gusshausstraße 27-29, A-1040 Vienna, Austria; Patocka, Florian, Institute of Sensor and Actuator Systems, TU Wien, Gusshausstraße 27-29, A-1040 Vienna, Austria; Schmid, Ulrich, Institute of Sensor and Actuator Systems, TU Wien, Gusshausstraße 27-29, A-1040 Vienna, Austria.
The wafer is covered by a bi-layer of 250 nm thermal oxide and 80 nm LPCVD silicon nitride to ensure electrical isolation of the bottom electrodes. These electrodes are deposited using evaporation and patterned via a lift-off procedure. Subsequently, the piezoelectric layer of aluminum nitride (AlN) is deposited using reactive magnetron sputtering and the top electrode is realized in the same way as the bottom electrodes. The device is defined by a top side deep reactive ion etch (DRIE) step and released by a backside DRIE step as the bottom electrodes. The device is defined by a top side deep reactive ion etch (DRIE) step and released by a backside DRIE step followed by the removal of the buried oxide by hydrofluoric acid.

A typical device geometry with two electrode stripes is shown in Fig. 1. The finished devices are placed in dual inline packages and to minimize 1/ΔG max and to maximize 1/ΔG min. This can be challenging especially in liquids, as the high damping will reduce the quality factor and hence, ΔG. A more detailed description of the mathematical modeling approach of the resonator can be found in [15].

Electrical measurements of the MEMS resonators both in air and in liquids are done with an Agilent 4294A impedance analyzer under controlled temperature conditions. Optical measurements of the out-of-plane movement are performed with a Polytec MSA 400 laser Doppler vibrometry system. Density ρ and dynamic viscosity μ of the investigated liquids are measured with a Stabinger SVM 3000 viscometer at defined temperatures. The test liquids included deionized water, ethanol, isopropanol, D5, N10, N35, N100, S200 and S500. Doing so, dynamic viscosity at room temperature were varied up to 615 mPa s [17]. Vibrational modes are specified using the notation by Leissa [18].

3. Results

The following sections will present a short overview of the most important results achieved with the AlN MEMS resonator sensor platform developed at ISAS.

3.1 Roof-tile shaped modes

Figure 3 shows both optical and electrical spectra of a 2017 µm × 1272 µm cantilever resonator in both air and isopropanol with the corresponding mode shapes for each resonance. The high damping of most resonance modes is clearly visible; however, one mode shape features high quality factors independent of the environmental conditions, labeled as 13 mode. This mode shape is representative for a new class of torsional type modes: the roof-tile shaped modes. Subsequent studies using the same sensor design approach confirmed this result and demonstrated high quality factors for the 12 mode of 10 in highly viscous liquids like D500. Furthermore, a direct correlation between the quality factor and 1/√(ρμ) was found, which shows the potential for this sensor to measure both the density and dynamic viscosity of liquids [17].

By increasing the drive frequency, higher orders of the 12 mode can be excited. The impact on the quality factor in deionized water is shown up to the 10th order in Fig. 4. Hexadecimal numbering is used for the Leissa nomenclature. The insets show the corresponding mode shape and the dashed line represents viscous damping deduced from theoretical considerations where the cantilever is
approximated by a sphere to enable an analytically solution of the Navier-Stokes equations [19]. The corresponding results for the resonance frequency f_{res}, Q and ΔG are given in Table 1. A quality factor of 366 was measured for the 1B mode in water at a frequency of 3.5 MHz, which was the highest value measured up to that time for cantilever type resonators in liquid media. While Q continuously increases with increasing f_{res}, ΔG does not feature a clear trend. This is due to the fact, that the electrode design can act as a filter for higher modes due to partial or complete cancelation of charges, if the electrode covers areas with both positive and negative volume strains [20]. It is therefore necessary to tailor the electrode design.

3.2 Electrode and anchor optimization

The roof-tile shaped modes in cantilever type resonators generally feature only a single nodal line along the x-axis (the anchor) and multiple nodal lines along the y-axis. This enables an optimized electrode design (OED) by using multiple electrode stripes perpendicular to the anchor nodal line, which simplifies the electrical feed lines significantly.

To increase device performance, effort was invested in a tailored mode specific anchor design by moving from a single side clamped cantilever type resonator to a double side clamped bridge type resonator. Compared to a typical bridge design, the resonating plate is only fixed at the nodal lines, which minimizes the anchor strain and basically results in a design mimicking the mathematical free-free boundary condition best. The results for these resonators in liquids with respect to Q are shown in Fig. 5 and for ΔG in Fig. 6, respectively. The quality factor increases as expected with increasing mode order and decreases with increasing $1/\sqrt{\rho \mu}$. An impact of OED on Q was not observed. ΔG on the other hand was significantly improved by OED. The highest value $\Delta G = 379 \mu S$ was measured for the 05 mode in isopropanol. Compared to the result without OED, this corresponds to an improvement by a factor of 77 and demonstrates the importance of OED.

3.3 Applications

The fermentation of grape must into wine involves yeasts, which convert sugars in the must into ethanol. During this process, it is possible for the yeasts to stop growing and not produce ethanol any longer. This is referred to as stuck fermentation and poses a serious problem in wine making, if not detected at an early stage. The different ethanol concentrations in normal and stuck states of fermentation results in a slight variation of the density of the grape must and can thus be detected by the presented MEMS resonator sensor, shown in Fig. 7.
For this application, the sensor in the package is fully coated by a 4 µm thick amorphous silicon dioxide film to eliminate any parasitic leakage currents through the grape must, which would result in a lower R_p value. The sensor is operated in the 15-mode and tested in model solutions N_{1-9} and S_{1-9}, which represent both normal and stuck fermentation stages [22]. The resonance frequency and quality factor are measured and used to calculate the density of the liquid according to [22, 23].

Figure 8 shows both the ethanol concentration and the resonance frequency for normal as well as stuck fermentation. It is clearly visible, that the ethanol concentration deviates from the normal fermentation characteristics already at an early stage of the process. In addition, an excellent correlation between f_{res} and the ethanol concentration is observed.

Figure 9 shows the density variation with continuous fermentation, measured with both the MEMS sensor and a Stabinger viscometer. The results of the bulky, table-top sized Stabinger lab equipment are in excellent agreement with those from the MEMS sensor. This also demonstrates, that it is possible to distinguish between the normal and stuck fermentation branch at a very early stage during the fermentation process with an integrated MEMS sensor approach.

Similar measurements were performed on Airen grape must after a filtering process to remove large grape skin particles. The monitoring is done ex-situ on samples taken every 5 hours after centrifugation. A shift in the resonance frequency comparable to Fig. 8 is observed, demonstrating that this sensor system has the potential to monitor even this complex biological process precisely compared to state of the art equipment.

In the above mentioned lab experiment, any particles are removed to avoid contamination of the sensor. In technical liquids like lubrication oils on the other hand, the detection of particles is of high interest as the amount of such particles gives a direct indication with respect to the wear in the mechanical components such as pumps, of a hydraulic system. Since most machine parts are made of steel, the most prominent type of wear particle is ferrous debris.

In order to detect such particles efficiently with the MEMS resonator sensor developed at ISAS, it is necessary to actively attract those ferrous particles to the sensor surface. This is done by a planar coil, which is placed close to the tip of the cantilever type resonator and loaded with a current of 150 mA. Note, that this coil is realized as part of the microfabrication process of the sensor. The final sensor is shown in Fig. 10.
The added mass of the ferrous particles Δm will shift the resonance frequency according to

$$\Delta f = -\frac{1}{2M} \Delta m \phi^2(x_{Am},y_{Am}). \tag{1}$$

M is the total oscillation mass and $\phi(x_{Am},y_{Am})$ is the value of the mode shape function at the position of the mass [24]. The mode shape function describes the position dependence of the shift in f_{res} due to particle-related mass loading. Regions with high displacement amplitudes will be significantly more responsive compared to those with low amplitude (i.e. the nodal lines). The coil is designed to mainly attract particles in regions with high responsivity to maximize the overall performance of the sensor.

The MEMS device is tested in a model solution of deionized water and dispersed iron oxide (Fe$_3$O$_4$) nanoparticles with a hydrodynamic diameter of 250 nm and a final concentration of 350 µg/ml. To compensate for any parasitic sensor drift due to temperature or unintended sedimentation, a pair of cantilever sensors is used with only one coil active, enabling a differential measurement approach (see Fig. 10). The resonance spectrum is fitted by the phase function, which allowed an accuracy in the determination of f_{res} of 50 Hz. The results of this study are shown in Fig. 11.

The coil is current loaded at the time t_1. The instant increase in f_{res} can be attributed to current induced heating. A steady decrease of f_{res} is then observed over a period of 100 min., as ferrous particles are collected and the sensor mass is increased. Note, that the reference sensor provides a stable output characteristic as a function of time.

Using Eq. (1) and integrating over the cantilever surface yields the total accumulated mass as shown in Fig. 11b). After 100 min., the total mass is about 0.49 µg, which corresponds to a mass responsivity of 82.85 pg/Hz. Given the accuracy of f_{res} with 50 Hz, this results in a limit of detection for this sensor of 4 ng. The high responsivity is impressive for a sensor design of this size, since approaches with similar responsivities typically utilize much smaller sensor geometries [24, 26, 27].

Finally, the outstanding performance in terms of quality factors can be utilized to even measure the viscosity of extremely viscous materials like bitumen. For this purpose, bitumen is heated up to 100°C, placed on the MEMS sensor and annealed for 10 min. to ensure complete sensor coverage as shown in Fig. 12. The bitumen covered sensor is then placed into a Vötsch VCL4006 climate chamber to perform impedance spectroscopy in a temperature range between 75 and 150°C. A Lorentzian is fitted to the conductance spectrum shown in Fig. 13 to measure both f_{res} and Q, which is then used to determine the dynamic viscosity of the investigated bitumen derivatives as described in [22, 25].

The results are shown in Fig. 14 for three types of bitumen derivative at various temperatures. The reference values are measured with a Brookfield DV3T viscometer. Basically, the results of both the
MEMS sensor and the viscometer are in good agreement. With this cantilever-based resonator, the viscosity can be measured up to a dynamic viscosity of 64000 mPa s with a moderate quality factor of 4 at 75°C.

4. Conclusions
A promising class of mechanical modes is introduced, labeled as roof-tile shaped modes, and their benefit and potential for cantilever-type MEMS devices were presented. This class of 2-dimensional mode features extremely high quality factors in liquid media. While high quality factors are often not necessary in applications in vacuum or air, they are of utmost importance for applications in liquids, especially when the latter are highly viscous. Due to the high damping in such environments, a low quality factor in air would result in no measureable signal after immersion. Besides the careful selection of the mode class, a high output sensor signal is achieved by matching the electrode design to the specific resonance mode shape.

These roof-tile shape resonator based sensors have been successfully operated and evaluated in three application scenarios: wine fermentation, detection of ferrous particles in liquids and viscosity measurements of bitumen. All in all, this broad range demonstrates the versatility and the potential of this technology platform for measurements of bitumen. All in all, this broad range demonstrates the versatility and the potential of this technology platform for imaging based upon nanoelectromechanical systems. J. Appl. Phys., 95(5), 2682–2689. https://doi.org/10.1063/1.1642738.

References
1. Manzaneque, T., et al. (2017): Characterization and simulation of the first extensional mode of rectangular micro-plates in liquid media. Appl. Phys. Lett., 101, 151904. https://doi.org/10.1063/1.4758470.
2. Riesch, C., et al. (2009): A suspended plate viscosity sensor featuring in-plane vibration and piezoelectric readout. J. Micromech. Microeng., 19, 075010. https://doi.org/10.1088/0960-1317/19/7/075010.
3. Sell, J. K., Niedermayer, A. O. (2012): Jakoby B reactance-locked loop for driving resonant sensors. In 2012 IEEE I2MTC – proceedings of the international instrumentation and measurement technology conference (pp. 1113–1116). https://doi.org/10.1109/I2MTC.2012.6220667.
4. Blom, F. R., Buixaixa, S., Elwenspoek, M., Fluitman, J. H. J. (1992): Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry. J Vac Sci Technol B, 10(1), 19–26.
5. Elkin, S. L., Yang, X. T., Roukes, M. L. (2004): Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys., 95(5), 2682–2689. https://doi.org/10.1063/1.1642738.
6. Abadali, G., et al. (2011): Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection. Nanotechnology, 12(2), 100–104. https://doi.org/10.1088/0957-4484/12/2/305.
7. Dufour, I., Fadel, L. (2003): Resonant micromachined cantilever type chemical sensors: analytical modeling in view of optimization. Sens. Actuators B, Chem., 91(1–3), 353–361. https://doi.org/10.1016/S0925-4005(03)00110-2.
8. Ichikawa, T., Liu, J., Kommo, M., Manda, R., Mihara, T. (2007): A high-quality-factor silicon cantilever for a low detection-limit resonant mass sensor operated in air. J. Micromech. Microeng., 17(12), 2491–2494. https://doi.org/10.1088/0960-1317/17/12/015.
9. Johnson, B. N., Mutharasu, R. (2012): Biosensing using dynamic-mode cantilever sensors: a review. Biosens. Bioelectron., 27(1), 1–18. https://doi.org/10.1016/j.bios.2011.10.054.
10. Lavrik, N. V., Sepaniak, M. J., Datskos, P. G. (2004): Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum., 75(7), 2229–2233. https://doi.org/10.1063/1.1783252.
11. Ziegler, C. (2004): Cantilever-based biosensors. Anal. Bioanal. Chem., 379(7–8), 946–959. https://doi.org/10.1002/2004.004.2694-y.
12. Song, Y., Bhushan, B. (2008): Atomic force microscopy dynamic modes: modeling and applications. J. Phys. Condens. Matter, 20(22), 225012. https://doi.org/10.1088/0953-8984/20/22/225012.
13. Beadle, D. L., Asse, F., Heinrich, S. M., Dufour, I., Brand, O. (2012): Geometrical considerations for the design of liquid-phase biochemical sensors using a cantilever’s fundamental in-plane mode. Sens. Actuators B, Chem., 164(1), 7–14. https://doi.org/10.1016/j.snb.2012.01.033.
14. Sen, J. H., Brand, O. (2008): High Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment. J. Microelectromech. Syst., 17(2), 483–493. https://doi.org/10.1117/1.2945328.
15. Kucera, M., Manzaneque, T., Sánchez-Rojas, J. L., Blom, F. A., Mert-Zaes, A. (2017): Characterization of a roof tile-shaped out-of-plane vibrational mode in aluminum-nitride-actuated self-sensing micro-resonators for liquid monitoring purposes. Appl. Phys. Lett., 104(23), 233501. https://doi.org/10.1063/1.4982172.
16. Hernandez, J., et al. (2010): Characterization and displacement control of low surface stress AlN-based piezoelectric micro-resonators. Microsyst. Technol., 16(5), 855–861. https://doi.org/10.1108/092552010111015-y.
17. Kucera, M., Manzaneque, T., Sánchez-Rojas, J. L., Bittner, A., Schmid, U. (2013): Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop. J. Micromech. Microeng., 23(8), 085009. https://doi.org/10.1088/0960-1317/23/8/085009.
18. Kucera, M., et al. (2014): Characterization of a roof tile-shaped out-of-plane vibrational mode in aluminum-nitride-actuated self-sensing micro-resonators in liquid media. Appl. Phys. Lett., 105(18), 183502. https://doi.org/10.1063/1.4892449.
19. Sanchez-Rojas, J. L., et al. (2010): Modal optimization and filtering in piezoelectric microplate resonators. J. Micromech. Microeng., 20(5), 055027. https://doi.org/10.1088/0960-1317/20/5/055027.
20. Plusterenschmidt, G., et al. (2014): Roof tile-shaped modes in quasi-free-supported piezoelectric microplate resonators in high viscous fluids. Sens. Actuators B, Chem., 237, 999–1006. https://doi.org/10.1016/j.snb.2016.02.029.
M. Schneider et al. High performance piezoelectric AlN MEMS resonators for precise...