Thorup-Zwick Emulators are Universally Optimal Hopsets*

Shang-En Huang Seth Pettie
University of Michigan University of Michigan

May 2, 2017

Abstract

A \((\beta, \epsilon)\)-hopset is, informally, a weighted edge set that, when added to a graph, allows one to get from point \(a\) to point \(b\) using a path with at most \(\beta\) edges (“hops”) and length \((1 + \epsilon) \text{dist}(a,b)\). In this paper we observe that Thorup and Zwick’s sublinear additive emulators are also actually \((O(k/\epsilon)^k, \epsilon)\)-hopsets for every \(\epsilon > 0\), and that with a small change to the Thorup-Zwick construction, the size of the hopset can be made \(O(n^{1 + \frac{1}{k+1}})\). As corollaries, we also shave “\(k\)” factors off the size of Thorup and Zwick’s \([20]\) sublinear additive emulators and the sparsest known \((1 + \epsilon, O(k/\epsilon)^{k-1})\)-spanners, due to Abboud, Bodwin, and Pettie \([1]\).

1 Introduction

Let \(G = (V, E, w)\) be a weighted undirected graph. Define \(\text{dist}_G^{(\beta)}(u,v)\) to be the length of the shortest path from \(u\) to \(v\) in \(G\) that uses at most \(\beta\) edges, or “hops.” Whereas \(\text{dist}_G = \text{dist}_G^{(\infty)}\) is a metric, \(\text{dist}_G^{(\beta)}\) is not in general. A set \(H \subseteq \binom{V}{2}\) of weighted edges is called a \((\beta, \epsilon)\)-hopset if for every \(u, v \in V\),

\[
\text{dist}_G(u, v) \leq \text{dist}_G^{(\beta)}(u,v) \leq (1 + \epsilon) \text{dist}_G(u, v).
\]

Background. Cohen \([7]\) formally defined the notion of a hopset, but the idea was latent in earlier work \([21, 14, 6, 18]\). Cohen’s \((\beta, \epsilon)\)-hopset had size \(O(n^{1+1/\kappa} \log n)\) and \(\beta = (\epsilon^{-1} \log n)^{O(\log \kappa)}\). Elkin and Neiman \([9]\) showed that a constant hopbound \(\beta\) suffices (when \(\kappa, \epsilon\) are constants). In particular, their hopset has size \(O(n^{1+1/\kappa} \log n \log \kappa)\) and \(\beta = O(\epsilon^{-1} \log \kappa)^{\log \kappa}\). Abboud, Bodwin, and Pettie \([1]\) recently proved that the tradeoffs of \([9]\) are essentially optimal: for any integer \(k\), any hopset of size \(n^{1+\frac{1}{k+1}}\) must have \(\beta = \Omega((c_k/\epsilon)^{k+1})\), where \(c_k\) is a constant depending only on \(k\). \(^1\) There are other constructions of hopsets \([9, 11, 12, 19]\) that are designed for parallel or dynamic environments; their tradeoffs (between hopset size and hopbound) are worse than \([7, 9]\) and the ones presented here. See Table \([3]\).

Hopsets, Emulators, and Spanners. Recall that \(G\) is an undirected graph, possibly weighted. A spanner is a subgraph of \(G\) such that \(\text{dist}_H(u,v) \leq f(\text{dist}_G(u,v))\) for some nondecreasing stretch function \(f\). An emulator of an unweighted graph \(G\) is a weighted edge set \(H\) such that \(\text{dist}_H(u,v) \in \left[\text{dist}_G(u,v), f(\text{dist}_G(u,v)) \right]\). Syntactically, the definition of hopsets is closely related to emulators. The difference is that hopsets have a hopbound constraint but are allowed to use original edges in \(G\) whereas emulators must use only \(H\). The purpose of emulators is to compress the graph metric \(\text{dist}_G^\beta\): ideally \(|H| \ll |E(G)|\). Historically, the literature on hopset constructions \([7, 9]\) has been noticeably more complex than those of spanners and emulators, many

*Supported by NSF Grants CCF-1514383 and CCF-1637546.

\(^1\)Note that setting \(\kappa = 2^{k+1} - 1\) in the Elkin-Neiman construction gives \(\beta = O(k/\epsilon)^k\), where \(\log \kappa = |\log \kappa| = k\). Thus, saving any \(\delta\) in the exponent of the hopset increases \(\beta\) significantly. In general, the statement of \([9]\) obscures the nature of the tradeoff: there are not distinct tradeoffs for each \(\kappa \in \{1, 2, 3, \ldots\}\), but only for \(\kappa \in \{1, 3, 7, \ldots, 2^{k+1} - 1, \ldots\}\).
of which [9, 2, 8, 20, 4, 15, 1] are quite elegant. Our goal in this work is to demonstrate that there is nothing intrinsically complex about hopsets, and that a very simple construction improves on all prior constructions and matches the Abboud-Bodwin-Pettie lower bound.

New Results. Thorup and Zwick [20] designed their emulator for unweighted graphs, and proved that it has size $O(kn^{1+\frac{1}{2k-1}})$ and a sublinear additive stretch function $f(d) = d + O(kd^{1-1/k})$. In this paper we show that the Thorup-Zwick emulator, when applied to a weighted graph, produces a (β, ϵ)-hopset that achieves every point on the Abboud-Bodwin-Pettie [11] lower bound tradeoff curve. Moreover, with two subtle modifications to the construction, we can reduce the size to $O(n^{1+\frac{1}{2k+1-\delta}})$, shaving off a factor k. Our technique also applies to other constructions, and as corollaries we improve the size of Thorup and Zwick’s emulator [20] and Abboud, Bodwin, and Pettie’s $(1+\epsilon, \beta)$-spanners.\(^2\)

Theorem 1. Fix any weighted graph G and integer $k \geq 1$. There is a (β, ϵ)-hopset for G with size $O(n^{1+\frac{1}{2k+1-\delta}})$ and $\beta = 2\left(\frac{(4+o(1))k}{\epsilon}\right)^k$.

Theorem 2. (cf. [20]) Fix any unweighted graph G and integer $k \geq 1$. There is a sublinear additive emulator H for G with size $O(n^{1+\frac{1}{2k+1-\delta}})$ and stretch function $f(d) = d + (4 + o(1))kd^{1-1/k}$.

Theorem 3. (cf. [11]) Fix any unweighted graph G, integer $k \geq 1$, and real $\epsilon > 0$. There is a $(1+\epsilon, (4 + o(1))k/\epsilon^{k-1})$-spanner H for G with size $O((k/\epsilon)^h n^{1+\frac{1}{2k+1-\delta}})$, where $h = \frac{3^{2^{k-1}-(k+2)-1}}{2^{2k+1-1}} < 3/4$.

Remark 1. In recent and independent technical report, Elkin and Neiman [10] also observed that Thorup and Zwick’s emulator yields an essentially optimal hopset. They proposed a modification to Thorup and Zwick’s construction that reduces the size to $O(n^{1+\frac{1}{2k+1-\delta}})$ (eliminating a factor k), but increases the hopbound β from $O(k/\epsilon)^k$ to $O((k+1)/\epsilon)^{k+1}$. For example, their technique does not imply any of the improvements found in Theorems [11, 2] or 3.

2 The Hopset Construction

In this section, we present the construction of the hopset based on Thorup and Zwick’s emulator [20], then analyze its size, stretch, and hopbound.

The construction is parameterized by an integer $k \geq 1$ and a set $\{q_i\}$ of sampling probabilities. Let $V = V_0 \supseteq V_1 \supseteq V_2 \supseteq \cdots \supseteq V_k \supseteq V_{k+1} = \emptyset$ be the vertex sets in each layer. For each $i \in [0, k)$, each vertex in V_i is independently promoted to V_{i+1} with probability q_{i+1}/q_i. Thus $E[|V_i|] = nq_i$. For each vertex $v \in V$

\(^2\)A $(1+\epsilon, \beta)$-spanner of an unweighted graph is one with stretch function $f(d) = (1+\epsilon)d + \beta$.

Authors	Size	Hopbound	Stretch
Klein and Subramanian [14]	$O(n)$	$O(\sqrt{n} \log n)$	1
Thorup and Zwick [19]	$O(kn^{1+1/\kappa})$	2	$2\kappa - 1$
Cohen [7]	$O(n^{1+\frac{1}{2-\log n}})$	$((\log n)/\epsilon)^{O(\log \kappa)}$	$1 + \epsilon$
Elkin and Neiman [9]	$O(n^{1+\frac{1}{2-\log n}})$	$O((\log \kappa)/\epsilon)^{\log \kappa}$	$1 + \epsilon$
Abboud, Bodwin, and Pettie [11]	$n^{1+\frac{1}{2k+1-\delta}}$	$\Omega(c_k/\epsilon^{k+1})$	$1 + \epsilon$
New	$O\left(n^{1+\frac{1}{2k+1-\delta}}\right)$	$O(k/\epsilon)^k$	$1 + \epsilon$

Table 1: Tradeoffs between size and hopbound of previous hopsets. Fix the parameter $\kappa = 2^{k+1} - 1$ to compare [11, 9] against the lower bound [11] and the new result.
and \(i \in [1,k] \), define \(p_i(v) \) to be any vertex in \(V_i \) such that \(\text{dist}_G(v,p_i(v)) = \text{dist}_G(v,V_i) \). For any vertex \(v \in V_i \setminus V_{i+1} \), define \(B(v) \) to be:

\[
B(v) = \{ u \in V_i \mid \text{dist}_G(v,u) < \text{dist}_G(v,p_{i+1}(v)) \}
\]

Note that \(p_{k+1}(v) \) does not exist; by convention \(\text{dist}_G(v,p_{k+1}(v)) = \infty \). The hopset is defined to be \(H = E_0 \cup E_1 \cup \cdots \cup E_k \), where

\[
E_i = \bigcup_{v \in V_i \setminus V_{i+1}} \{(v,u) \mid u \in B(v) \cup \{p_{i+1}(v)\}\}.
\]

The length of an edge in \(H \) is always the distance between its endpoints. This concludes the description of the construction.

2.1 Size Analysis

The expected size of \(E_i \) is at most \(\mathbb{E}[|V_i|](q_i/q_{i+1}) = nq_i^2/q_{i+1} \), for each \(i \in [0,k] \), and is \((nq_k)^2\) if \(i = k \). Following Pettie [17], we choose \(\{q_i\} \) such that the layers of the hopset have geometrically decaying sizes.

Setting \(q_i = n^{-2^{i+1}-1} \cdot 2^{-2^i} \cdot 2^{-i+1} \), the expected size of \(E_i \), for \(i \in [0,k] \), is

\[
(nq_i)^2 = n^2 \left(n^{-2^{i+1}-1} \cdot 2^{-2^i} \right)^2 \leq n^{-1} \cdot 2^{1+2} = n^2 \cdot 2^{-1+2}.
\]

The expected size of \(E_k \) is

\[
(nq_k)^2 = n^2 \left(n^{-2^k-i} \cdot 2^{-2^i} \right)^2 \leq n^{1+2} \cdot 2^{-k+2}.
\]

so the expected size of \(H \) is at most

\[
\sum_{i=0}^{k} \mathbb{E}[|E_i|] \leq n^{1+2} \left(\sum_{i=0}^{k} 2^{-i+2} \right) = O(n^{1+2}).
\]

2.2 Stretch and Hopbound Analysis

Let us first give an informal sketch of the analysis. Let \(a, b \) be vertices. Choose an integer \(r \geq 2 \), and imagine dividing up the shortest \(a-b \) path into \(r^k \) intervals of length \(\mu = \text{dist}_G(a,b)/r^k \), where \(\mu \) defines one “unit” of length. Once \(r \) and \(\mu \) are fixed we prove that given any two vertices \(u, v \) at distance at most \(r^i \mu \), there is \(\text{either an} \ h_i\)-hop path \(a \) to \(v \) with additive stretch \(O(ir^{i-1}) \cdot \mu \), or there is an \(h_i\)-hop path from \(u \) to \(v \) with additive stretch \(O(ir^{i-1}) \cdot \mu \). Of course, when \(i = k \) the set \(V_{k+1} = \emptyset \) is empty, so we cannot be in the second case. Since, by definition of \(\mu \), \(\text{dist}_G(a,b) \leq r^k \mu \), there must be an \(h_k\)-hop path with additive stretch \(O(kr^{k-1}) \cdot \mu \). In order for this stretch to be \(\epsilon \text{dist}_G(a,b) \) we must set \(r = \Theta(k/\epsilon) \).

So, to recap, the integer parameter \(r = \Theta(k/\epsilon) \) depends on the desired stretch \(\epsilon \), and \(r \) determines the hopcount sequence \((h_i)\), which is defined inductively as follows.

\[
\begin{align*}
h_0 &= 1, \\
h_i &= (r+1)h_{i-1} + r \\
\end{align*}
\]

for \(i \in [1,k] \).

The parameter \(\beta \) of the hopset is exactly \(h_k \). It is straightforward to show that \(h_k < 2(r+1)^k \). Once \(r \) and \((h_i)\) are fixed, Theorem [4] is proved by induction.
Theorem 4. For any fixed real \(\mu \) (the “unit”), for all \(i \in [0, k] \) and any pair \(u, v \in V \) such that \(\text{dist}_G(u, v) \leq r^i \mu \), at least one of the following statements holds.

\[\begin{align*}
(i) & \quad \text{dist}^{(h_i)}_{G \cup H}(u,v) \leq \text{dist}_G(u,v) + ((r+4)^i - r^i)\mu, \\
(ii) & \quad \text{There exists } u_{i+1} \in V_{i+1} \text{ such that } \text{dist}^{(h_i)}_{G \cup H}(u,u_{i+1}) \leq (r+4)^i \mu.
\end{align*} \]

Proof. The proof is by induction on \(i \). In the base case \(i = 0 \) and \(h_0 = 1 \). Let \(u, v \in V \) with \(\text{dist}_G(u, v) \leq r^0 \mu = \mu \). If \((u, v) \in H \) then \(\text{dist}^{(1)}_{G \cup H}(u,v) = \text{dist}_G(u, v) \) so (i) holds. Otherwise, \((u, v) \notin H \), meaning \(v \notin B(u) \). If \(u \in V_0 \setminus V_1 \) then \(\text{dist}^{(1)}_{G \cup H}(u,p_1(u)) \leq \text{dist}_G(u,v) \leq \mu \), and if \(u \in V_1 \) then \(p_1(u) = u \), so \(\text{dist}^{(1)}_{G \cup H}(u,p_1(u)) = 0 \). In each case, (ii) holds.

Now assume \(i > 0 \). Consider vertices \(u, v \in V \) with \(\text{dist}_G(u, v) \leq r^i \mu \) and let \(P \) be a shortest \(u-v \) path in \(G \). Then, as shown in Figure 1 we partition \(P \) into at most \(2r-1 \) segments \((u_0 = u, u_1), (u_1, u_2), \ldots, (u_{2r-1}, u_r = v) \) as follows. Starting at \(u_0 = u \), we pick \(u_1 \) to be the farthest vertex on \(P \) such that \(\text{dist}_G(u_0, u_1) \leq r^i-1 \mu \), and let \((u_1, u_2) \) be the next edge on the path. Repeat the process until we reach \(u_r = v \), oscillating between selecting segments that have length at most \(r^i-1 \mu \) and single edges.

- **Multi-hop segment:** the shortest path from \(u_s \) to \(u_{s+1} \) satisfies \(\text{dist}_G(u_s,u_{s+1}) \leq r^{i-1} \mu \).
- **Single-hop segment:** the segment is actually an edge \((u_s, u_{s+1}) \in E \).

By the induction hypothesis, each multi-hop segment satisfies (i) or (ii) within \(h_{i-1} \) hops. Moreover, in each greedy iteration the sum of the lengths from picked multi-hop segment and immediately followed single-hop segment is strictly greater than \(r^i \mu \) except the last one. Therefore, by the pigeonhole principle, there are at most \(r \) multi-hop segments on \(P \) and at most \(r-1 \) single-hop segments on \(P \).

If condition (i) holds for all multi-hop segments, then in at most \(rh_{i-1} + r - 1 \leq h_i \) hops,

\[
\begin{align*}
\text{dist}^{(h_i)}_{G \cup H}(u,v) & \leq \text{dist}_G(u,v) + r((r+4)^i - r^{i-1})\mu \\
& \leq \text{dist}_G(u,v) + ((r+4)^i - r^i)\mu,
\end{align*}
\]

\[\text{Note that if the first edge has length more than } r^{i-1} \mu, \text{ then } u_1 = u_0.\]
and condition (i) holds for P

Otherwise, condition (i) does not hold for at least one multi-hop segment. Consider the first multi-hop segment (u_{j_1},u_{j_1+1}) and the last multi-hop segment (u_{j_2-1},u_{j_2}) that do not satisfy condition (i). By condition (ii), there exist u' and $v' \in V_i$ satisfying

$$\text{dist}_{G_{i+1}}(u_{j_1},u') \leq (r+4)^{i-1} \mu$$

$$\text{dist}_{G_{i+1}}(u_{j_2},v') \leq (r+4)^{i-1} \mu.$$

Now we have two cases depending on whether $(u',v') \in H$ or not. If $(u',v') \in H$, then by the triangle inequality, we can get from u_{j_1} to u_{j_2} with $2h_{i-1}+1$ hops and additive stretch

$$\text{dist}_{G_{i+1}}(u_{j_1},u_{j_2}) - \text{dist}_{G}(u_{j_1},u_{j_2}) \leq \text{dist}_{G_{i+1}}(u_{j_1},u') + \text{dist}_{G}(u',u_{j_2}) - \text{dist}_{G}(u_{j_1},u_{j_2})$$

$$\leq 2 \text{dist}_{G_{i+1}}(u_{j_1},u') + 2 \text{dist}_{G_{i+1}}(u',u_{j_2})$$

$$\leq 4(r+4)^{i-1} \mu.$$

We know there are a total of at most $r-1$ multi-hop segments satisfying condition (i). Hence, within at most $(r-1)h_{i-1} + r - 1 + 2h_{i-1} + 1 \leq h_i$ hops, we can get from u to v with additive stretch

$$\text{dist}_{G_{i}}(u,v) \leq (r-1)((r+4)^{i-1} - r^{i-1}) \mu + \text{dist}_{G_{i+1}}(u_{j_1},u_{j_2})$$

$$\leq [(r-1)((r+4)^{i-1} - r^{i-1}) + 4(r+4)^{i-1}] \mu$$

$$\leq (r+3)(r+4)^{i-1} - r^i + r^{i-1}] \mu$$

$$\leq (r+4)^{i-1} \mu$$

and condition (i) holds for P in this case.

On the other hand, suppose that $(u',v') \notin H$. Since both $u', v' \in V_i$ but $(u',v') \notin H$, we know that $u'' = p_{i+1}(u') \in V_{i+1}$ must exist with $\text{dist}_{H}(u',u'') \leq \text{dist}_{G}(u',v')$. Hence, we can get from u_{j_1} to u'' via an $(h_{i-1} + 1)$-hop path with length

$$\text{dist}_{G_{i+1}}(u_{j_1},u'') \leq \text{dist}_{G_{i+1}}(u_{j_1},u') + \text{dist}_{H}(u',u'')$$

$$\leq \text{dist}_{G_{i+1}}(u_{j_1},u') + \text{dist}_{G}(u',v')$$

$$\leq 2 \text{dist}_{G_{i+1}}(u_{j_1},u') + \text{dist}_{G}(u_{j_1},u_{j_2}) + \text{dist}_{G_{i+1}}(u_{j_2},v')$$

$$\leq 3(r+4)^{i-1} \mu + \text{dist}_{G}(u_{j_1},u_{j_2}).$$

Similar to the previous case, there are at most $r-1$ multi-hop segments appeared before u_{j_1}, and all of them are satisfying condition (i). Hence, the surplus

$$\text{dist}_{G_{i}}(u,u_{j_2}) \leq \text{dist}_{G}(u,u_{j_2}) + (r-1)((r+4)^{i-1} - r^{i-1}) \mu.$$

Therefore, in at most $(r-1)h_{i-1} + r - 1 + h_{i-1} + 1 \leq h_i$ hops,

$$\text{dist}_{G_{i}}(u,u'') \leq \text{dist}_{G_{i+1}}(u_{j_1},u_{j_2}) + \text{dist}_{G_{i+1}}(u_{j_1},u') + \text{dist}_{G}(u',v')$$

$$\leq [(r-1)((r+4)^{i-1} - r^{i-1}) + 3(r+4)^{i-1}] \mu + \text{dist}_{G}(u,u_{j_2})$$

$$\leq [(r+2)(r+4)^{i-1} - r^i + r^{i-1}] \mu + \text{dist}_{G}(u,u_{j_2})$$

$$\leq [(r+4)^{i-1} - r^i] \mu + \text{dist}_{G}(u,u_{j_2})$$

$$\leq (r+4)^{i-1} \mu$$

$$(\text{dist}_{G}(u,u_{j_2}) \leq \text{dist}_{G}(u,v) \leq r^i \mu)$$

\Box
Proof of Theorem 1. Fix \(u, v \in V \) and \(d = \text{dist}_G(u, v) \). Define \(\epsilon' = \ln(1 + \epsilon) \). Notice that \(1/\epsilon' = (1 + o(1))(1/\epsilon) \). Set \(r = \lceil 4k/\epsilon' \rceil = \Theta(k/\epsilon) \) and \(\mu = d/r^k \). By Theorem 4, since \(V_{k+1} = \emptyset \), condition (i) must hold: within \(h_k < 2(r + 1)^k \) hops we have

\[
d_G^{(h_k)}(u, v) \leq \text{dist}_G(u, v) + ((r + 4)^k - r^k)\mu \\
= d + \left(\frac{4k}{r} + \frac{4^2(r^2)}{r^2} + \frac{4^3(r^3)}{r^3} + \cdots \right) d \\
\leq \left(1 + \epsilon' + \frac{\epsilon'^2}{2!} + \frac{\epsilon'^3}{3!} + \cdots \right) d \\
\leq \epsilon' d = (1 + \epsilon)d. \]

Observe that if we set \(k = \log \log n - O(1) \) the size becomes linear.

Corollary 1. Every \(n \)-vertex graph has an \(O(n) \)-size \((\beta, \epsilon)\)-hopset with \(\beta = 2(4 + o(1))k \) and \(k = \log \log n - O(1) \).

3 Conclusion

In this paper our goal was to demonstrate that hopset constructions need not be complex, and that optimal hopsets can be constructed with a simple and elegant algorithm, namely a small modification to Thorup and Zwick’s emulator construction [20]. From a purely quantitative perspective our hopsets also improve on the sparseness and/or hopbound of other constructions [7, 9, 10]. As a happy byproduct of our construction, we also shave small factors off the best sublinear additive emulators [20] and \((1 + \epsilon, \beta)\)-spanners [1].

We now have a good understanding of the tradeoffs available between \(\beta \) and the hopset size when the stretch is fixed at \(1 + \epsilon \), \(\epsilon > 0 \) being a small real. However, when \(\epsilon = 0 \) or \(\epsilon \) is large, there are still gaps between the best upper and lower bounds. For example, when \(\epsilon = 0 \) a trivial hopset has size \(O(n) \) with \(\beta = O(\sqrt{n} \log n) \). A construction of Hesse [13] (see also [1, §6]) implies that \(\beta \) must be at least \(n^\delta \) for some \(\delta \), but it is open whether \(O(n) \)-size hopsets exist with \(\beta \ll \sqrt{n} \). At the other extreme, Thorup and Zwick’s distance oracles imply that \(O(\kappa n^{1+1/\kappa}) \)-size hopsets exist with \(\beta = 2 \) and stretch \(2\kappa - 1 \). Is this tradeoff optimal? Are there other tradeoffs available when \(\beta \) is a fixed constant (say 3 or 4), independent of \(\kappa \)?

Acknowledgement. Thanks to Richard Peng for help with the references for zero-stretch hopsets.

References

[1] A. Abboud, G. Bodwin, and S. Pettie. A hierarchy of lower bounds for sublinear additive spanners. In *Proceedings 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 568–576, 2017.

[2] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortest paths (without matrix multiplication). *SIAM Journal on Computing*, 28(4):1167–1181, 1999.

[3] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. *Discrete and Computational Geometry*, 9:81–100, 1993.

[4] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and \((\alpha, \beta)\)-spanners. *ACM Trans. Algorithms*, 7(1), 2010.

[4] Let \(H \) be a clique on a set of \(\sqrt{n} \) vertices chosen uniformly at random.
[5] A. Bernstein. Fully dynamic $(2 + \epsilon)$-approximate all-pairs shortest paths with fast query and close to linear update time. In Proceedings 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 693–702, 2009.

[6] E. Cohen. Using selective path-doubling for parallel shortest-path computations. Journal of Algorithms, 22(1):30–56, 1997.

[7] E. Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest paths. J. ACM, 47(1):132–166, 2000.

[8] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal on Computing, 29(5):1740–1759, 2000.

[9] M. Elkin and O. Neiman. Hopsets with constant hopbound, and applications to approximate shortest paths. In Proceedings 57th Annual IEEE Symposium on Foundations of Computer Science, (FOCS), pages 128–137, 2016.

[10] M. Elkin and O. Neiman. Linear-size hopsets with small hopbound, and distributed routing with low memory. CoRR, abs/1704.08468, 2017.

[11] M. Henzinger, S. Krinninger, and D. Nanongkai. Decremental single-source shortest paths on undirected graphs in near-linear total update time. In Proceedings 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 146–155, 2014.

[12] M. Henzinger, S. Krinninger, and D. Nanongkai. A deterministic almost-tight distributed algorithm for approximating single-source shortest paths. In Proceedings 48th Annual ACM Symposium on Theory of Computing (STOC), pages 489–498, 2016.

[13] W. Hesse. Directed graphs requiring large numbers of shortcuts. In Proceedings 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 665–669, 2003.

[14] P. N. Klein and S. Subramanian. A randomized parallel algorithm for single-source shortest paths. Journal of Algorithms, 25(2):205–220, 1997.

[15] M. B. T. Knudsen. Additive spanners: A simple construction. In Proceedings 14th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pages 277–281, 2014.

[16] G. L. Miller, R. Peng, A. Vladu, and S. C. Xu. Improved parallel algorithms for spanners and hopsets. In Proceedings 27th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 192–201, 2015.

[17] S. Pettie. Low distortion spanners. ACM Trans. Algorithms, 6(1):7:1–7:22, 2009.

[18] H. Shi and T. H. Spencer. Time-work tradeoffs of the single-source shortest paths problem. Journal of Algorithms, 30(1):19–32, 1999.

[19] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.

[20] M. Thorup and U. Zwick. Spanners and emulators with sublinear distance errors. In Proceedings 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 802–809, 2006.

[21] J. D. Ullman and M. Yannakakis. High-probability parallel transitive-closure algorithms. SIAM J. Comput., 20(1):100–125, 1991.