ABSTRACT

Wound healing is a vital physiological process that helps to retain the integrity of the skin after it has been damaged, whether by accident or by a deliberate operation. In Tinsukia district, Assam, tribal people and folklore traditions employ a wide variety of plants/plant extracts/decoctions or pastes to cure wounds. This study is designed to explore the ethnomedicinal plants used for the wound healing properties by the people of Tinsukia district, Assam. The Documentation of potential ethnobotanical information of traditionally used medicinal plant with wound healing activity will facilitates the scientific evaluation to look forward into a leading scientific prospect for the development of new herbal therapy for wound healing.

Keywords: Medicinal plants; ethnomedicine; wound healing; traditional healthcare; Tinsukia district.
1. INTRODUCTION

A wound is a disruption of the skin’s normal state as a result of damage to its continuity caused by a pathological process, whether internal or external. Wounds are common in everyday life, and they can lead to serious complications. If not treated properly, significant consequences can occur [1].

More than 1.2 million people have died in automobile accidents around the world, with 20-50 million individuals suffering non-fatal injuries such as wounds [2]. Trauma (48.00 percent), foot ulcers (28.00 percent), and pressure sores are the leading causes of acute and chronic injuries in the global population (21.00 percent) [3]. Acute wounds develop quickly and the healing process can be predicted. For instance, injuries sustained as a result of trauma or surgery. The healing process for persistent wounds, such as pressure ulcers, cancer-related lesions, and others, cannot be predicted [4]. In underdeveloped countries, it is estimated that 1-2 percent of the population may experience a chronic injury at some point in their lives [5].

Wound treatment and management are important for both acute and chronic wounds. But chronic wounds are a major source of concern for both patients and clinicians; chronic wounds impact a huge number of patients and significantly diminish their quality of life. According to current estimates, almost 6 million people worldwide suffer from chronic wounds [6].

Wound healing agents research is one of the burgeoning fields in modern biomedical science. Many traditional healers around the world, particularly in countries like India and China, have important knowledge of many lesser-known, previously undiscovered wild plants that are utilized by traditional healers to cure wounds. Several medications of plant, mineral, and animal origin are described in old texts of Indian systems of medicine like Ayurveda for their therapeutic characteristics as 'Vranaropaka.' In addition to the classical systems of Indian medicine, folk and tribal medicine uses a variety of herbs and animal products to treat cuts and wound. Some of these plants have been experimentally examined for wound healing action in various pharmacological models and human patients, but the potential of the majority of them has yet to be discovered [7].

2. WOUND HEALING PROCESS

All of the body’s tissues and organs experience wound healing. Many of these repair mechanisms are found in all tissues of the body. While the healing process is continual, it is divided into stages at random to better explain the physiological processes occurring in the wound and surrounding tissue [8]. Healing is a dynamic procedure involving coordinated interactions between many immunological and biological systems. Various stages of the healing process necessitate a series of carefully and precisely managed processes and activities that correspond to the appearance of various cell types in the wound bed. The numerous processes that occur in acute tissue recovery as a result of tissue damage can be grouped into four time-dependent phases: hemostasis, inflammation, proliferation, and remodelling (Table 1) [9].

2.1 Hemostasis

When the skin is wounded, the body’s natural reaction to stop bleeding is to constrict the artery walls. Following that, primary and secondary hemostasis are aided by two contemporaneous and mechanistically related mechanisms [8]. For primary hemostasis, platelet aggregation and the formation of platelet plugs inside the sub-endothelial matrix are required. The activation of the coagulation cascade, in which soluble fibrinogen is converted into insoluble strands that make up the fibrin mesh, is referred to as secondary hemostasis. The platelet plug and fibrin mesh unite to create a thrombus, which stops bleeding, releases accompaniments and growth factors, and acts as a temporary scaffold for infiltrating wound-healing cells [10].

2.2 Inflammation

The inflammatory process begins soon after the injury and can persist anywhere from 24 to 48 hours, with some cases lasting up to two weeks. The inflammatory phase quickly starts hemostatic pathways to control the bleeding at the wound site. As a result, clinically discernible cardinal indications of inflammation, skin redness, colour, tumour, pain, and functio-laesa appear [11]. This process is defined by vasoconstriction and platelet aggregation to cause blood clotting and, as a result, vasodilation and phagocytosis to cause inflammation at the wound site [12].
2.3 Proliferation

After persistent damage has stopped, hemostasis has been achieved, and an immune system has been successfully established, the acute wound advances toward tissue repair [13]. On the third day after the damage, the proliferative process begins and lasts for about two weeks. It is defined by fibroblast migration and the deposition of newly produced extracellular matrix, which acts as a replacement for the fibrin and fibronectin provisional network. The macroscopic stage of wound healing can be noticed as an abundance of granulation tissue formation [14].

2.4 Remodeling

In this final stage of wound healing, the granulation tissue goes through a steady decline. The epidermis of skeletal muscle, dermal vasculature, nerves, and myofibers are modified, resulting in the development of functional tissue [15]. The granulation tissue fibroblast and myofibroblast's vascular components are reduced, and PBMC cells die or leave the site. Similarly, the levels of structural and hydration-related glycosaminoglycans and proteoglycans are decreasing. Collagen metalloproteinases produced by fibroblasts and macrophages destroy Type III collagen in granulation tissue and replace it with Type I collagen, which is then rearranged into parallel fibrils, resulting in a low-cellularity scar. This final stage will take months to complete [16].

3. PHYSIOLOGY OF WOUND HEALING

Wound healing is a critical but difficult process in humans and animals, involving a diverse process driven by successive yet overlapping phases such as hemostasis/inflammation, proliferation, and remodelling [24]. Following a skin injury, the exposed sub-endothelium, collagen, and tissue factor activate platelet aggregation, resulting in degranulation and the release of chemotactic factors (chemokines) and growth factors (GFs) to form the clot, and all of the above procedures will achieve successful hemostasis [25]. The first cells to emerge at the injury site, neutrophils, sweep up debris and bacteria to provide a favourable environment for wound healing. Following this, macrophages amass germs and enhance phagocytosis, causing tissue injury. The hemostasis and inflammatory phases can take up to 72 hours to complete [26].

The first cells to emerge at the injury site, neutrophils, sweep up debris and bacteria to provide an ideal environment for wound healing. Macrophages collect germs and facilitate phagocytosis, causing tissue injury. The hemostasis and inflammatory phases usually take 72 hours to complete [27]. The transforming growth factor-b family (TGF-b, which includes TGF-b1, TGF-b2, and TGF-b3), the interleukin (IL) family, and angiogenesis factors (i.e., vascular epidermal growth factor) are all involved in this phase. This stage lasts for days or weeks [28].

The final stage of wound healing is the remodelling phase, which requires a precise balance of existing cell death and new cell creation [29]. In this phase, which lasts a few months or years, the gradual destruction of abundant ECM and immature type III collagen, as well as the formation of mature type I collagen, are crucial. Any deviations during this phase could result in excessive wound healing or chronic wounds [30].

Table 1. Stages of wound healing

S.N.	PHASES	Time of phase	Cells involved	Functions	Ref
1	Hemostasis	Instantaneous	Platelets	Haemorrhage control	[17]
2	Inflammation	2-5 days Some cases (2 weeks)	Neutrophils Macrophages	Removal of cell debris and infection causing agents	[18, 19]
3	Proliferation	3 days to 2 weeks	Lymphocytes Fibroblasts Keratinocytes	Formation of granulation tissue, angiogenesis	[20, 21]
4	Remodelling	21 days to 2 years	Fibroblasts	Collagen formation & scar maturation	[22, 23]
4. WOUND HEALING MANAGEMENT BY MEDICINAL PLANTS

Classical systems of Indian medicine, particularly Ayurveda, Siddha, and Unani, a large number of medicinal plants were used for the treatment of skin diseases such as cuts and wounds. Medicinal plants have been used for centuries to treat a variety of skin and dermatological disorders, particularly cuts, and wounds [31]. The Indian epic Ramayana describes a traditional application of plant-based medicine in the treatment of injuries. When Lord Rama’s brother Lakshman was mortally wounded on the battlefield in Lanka, medicinal plants from the Himalayas were used to treat him and return him to fighting strength [32].

People in developed countries are also seeking alternatives to modern wound healing therapies such as antibiotics, corticosteroids, and so on, owing to their side effects. In the case of chronic wound pathogenesis that does not heal, more understanding is required. Pathogenesis and failure to heal are two inseparable aspects that have guarded and heightened the use of herbal drugs as wound healing agent [33].

Various information regarding ethnomedicinal plants with wound healing activity is widely disseminated, with reports in leading journals devoted to ethnobotany and traditional medicine. In this review, we have presented plants that are widely used in traditional in Tinsukia District, Assam and have been reported in ethnobotanical literature for use in wound healing, classifying these plants based on their use in wounds. We have also indicated the same along with the part that have been reported to be used in the healing of the wound. The part used becomes even more important because, in order to provide ethnopharmacological evidence for these plants, researchers must ensure that they use the specific part mentioned in traditional medicines rather than random screening. Table 2 lists some lesser-known plants indigenous to Tinsukia District that are widely used in traditional medicine. It describes the plant, the part used, and the mode of preparation.
Table 2. Ethnobotanical information on wound healing plants available in Tinsukia District, Assam

S.N.	Scientific Name	Family	Local Name	Part used	Mode of preparations
1	Abies webbianm Linn.	Pinaceae	Talish	Leaves	The paste of the leaves is applied to wounds.
2	Abroma augusta Linn.	Sterculiaceae	Gorokhia korai	Roots	Roots paste is applied on the wounds.
3	Abrus precatorius Linn.	Leguminosae	Kunchmoni	Seeds	Dry the seeds in the shade, powder it and powder is applied in wounds.
4	Acacia catechu Wild.	Leguminosae	Kher	Stem bark	Stem barks are cut and its juice is applied on the wounds.
5	Acalypha australia Linn.	Euphorbiaceae	Kachugaon	Leaves	The paste of the leaves is applied to wounds.
6	Achyranthus bidentata Blure	Amaranthaceae	Apamarga	Whole plant	Plant is first grind into paste and then applied on the wounds.
7	Acorus calamus Linn.	Aracaceae	Boch	Rhizome& leaves	A paste of rhizome and leaves is applied to wounds.
8	Adiantum lunulatum Burm.	Polypodiaceae	Sharujeena	Leaves	The paste of the leaves is applied to wounds.
9	Aegle marmelos Linn.	Rutaceae	Bel	Leaves & seeds	Leaves are grind into paste along with black pepper, slightly heated and applied on the wounds.
10	Ageratum conyoides Linn.	Asteraceae	Gundhua bon	Leaves & young shoots	Paste and juice is applied to wounds.
11	Albizia lebbeck Benth.	Leguminosae	Sirish	Roots	Roots paste is applied on the wounds.
12	Alocasia denudate Linn.	Araceae	Bon kochu	Stems	Stems are cut and its juice is applied on the wounds.
13	Aloe vera Linn.	Asphodelaceae	Sal Kuwori	Leaves	Gel is applied to wounds.
14	Amaranthus tricolor Linn.	Amaranthaceae	Bishalya karani	Leaves	Leaf paste is mixed with spit and applied to wounds for quick heal.
15	Amomum subulatum Roxb.	Zingiberaceae	Dangor-elachi	Seeds	Dry the seeds in the shade, powder it and powder is applied in wounds.
16	Anthocephalus cadamba Miq	Rubiaceae	Kadam	Stem bark	Stem barks are cut and its juice is applied on the wounds.
17	Aquilaria agalocha Roxb.	Thymelaeaceae	Agar	Latex	Latex is directly applied to wounds.
18	Argemone maxicana Linn.	Papaveraceae	Siyal kata	Roots	Roots paste is applied on the wounds.
19	Artemesia vulgaris Linn.	Compositae	Nilum	Stems	Stems are cut and its juice is applied on the wounds.
20	Azadirachta indica Linn.	Meliaceae	Neempat	Leaves	Boiled Leaves water are used for washing the wounds. And Leaves paste mixed with mustard oil is also used for wound healing.
21	Baliospermum monatanum	Euphorbiaceae	Donti	Leaves	The paste of the leaves is applied to wounds.
22	Bambsa balcooa Roxb	Poaceae	Bhakukaban	Culm	Paste of culm are applied directly on wounds.
23	Bassia longifolia Linn.	Sapotaceae	Mahua	Seeds	Dry the seeds in the shade, powder it and powder is applied in wounds.
24	Bauhinia purpurpura Linn.	Leguminosae	Kanchan	Gum	Gum is directly applied to wounds.
25	Blechnum Orientae Linn.	Blechnaceae	Bonoria dhekia	Fronds	Fronds are crushed and is applied on the wounds.
26	Boerhaavia diffusa Linn.	Nyctaginaceae	Purnana	Whole plant	Plant is first grind into paste and then applied on the wounds.
27	Bridelia retusa Spreng.	Euphorbiaceae	Kunhi	Bark, fruit	Juice is applied to wounds.
28	Bryophyllum pinnatum Kuntz.	Crassulaceae	Dupor Tenga	Leaves	The paste of the leaves is applied to wounds.
29	Caesalpinia bonducella F.	Leguminosae	Letaguti	Seeds	Dry the seeds in the shade, powder it and powder is applied in wounds.
30	Caesalpinia sappan Linn.	Leguminosae	Baggam	Seeds	Dry the seeds in the shade, powder it and powder is applied in wounds.
31	Calamus floribundus	Arecaceae	Lejai bet	Shoots & roots	Paste is applied to wounds.
S.N.	Scientific Name	Family	Local Name	Part used	Mode of preparations
------	----------------	--------	------------	-----------	----------------------
32	Callicarpa arborea Roxb.	Verbenaceae	Bonmola	Barks	The bark is powdered and mixed to form a paste with its juice and applied to wounds.
33	Calotropis gigantea Linn.	Asclepiadaceae	Akon	Milky juice	The milky juice is applied to wounds.
34	Camellia sinensis Linn.	Theaceae	Sahpat	Leaves	The paste of the leaves is applied to wounds. Decoction also used to heal wounds.
35	Capparis sepiaria Linn.	Capparidaceae	Gobindaphal	Roots	Roots paste is applied on the wounds.
36	Carica papaya Linn.	Caricaceae	Omita	Latex	Latex is directly applied to wounds.
37	Catharanthus roseus Linn.	Apocynaceae	Nayantara	Leaves	The paste of the leaves is applied to wounds.
38	Cedrus deodara Roxb. Loud.	Pinaceae	Devdaru	Seeds	The paste of the leaves is applied to wounds.
39	Celastrus panniculatus Wild.	Celastraceae	Politai	Seeds	Dry the seeds in the shade, powder it and powder is applied in wounds.
40	Centella asiatica Linn.	Apiaceae	Bormanuni	Leaves	Leaf paste is applied to wounds.
41	Cissampelos pareira Linn.	Celastraceae	Garialota	Leaves & Stems	Paste of leaves mixed with that of stem is applied in wounds.
42	Citronella odorata Linn.	Rutaceae	Bagh Dhaka bon	Leaves	Leaves paste is applied to wounds.
43	Citrus medica Linn.	Rutaceae	Biratenga	Fruits	Fruits juice is applied on the wounds.
44	Clitoria ternatea Linn.	Leguminosae	Aparajita	Seeds, Roots	Paste is applied on the wounds.
45	Curcuma longa Linn.	Zingiberaceae	Haladhi	Rhizomes	Rhizome is grind into paste and mixed with mustard oil and applied on the wounds.
46	Curcuma zedoaria Linn.	Zingiberaceae	Kochura	Rhizomes	Rhizome is grind into paste and mixed with mustard oil and applied on the wounds.
47	Cynodon dactylon Linn.	Poaceae	Dubari bon	Whole plant	Plant is first grind into paste and then applied on the wounds.
48	Datura fastuosa Linn.	Solanaceae	Dhutara	Leaves	The paste of the leaves is applied to wounds.
49	Drymaria cordata Linn.	Cucurbitaceae	Jabor	Roots	Roots paste is applied on the wounds.
50	Eclipta prostrata Linn.	Asteraceae	Laj Bador	Leaves	Leaves are crushed with spit and applied on the wounds.
51	Embelia ribes Burm.f.	Myrsinaceae	Vidang	Fruits	Fruits juice is applied on the wounds.
S.N.	Scientific Name	Family	Local Name	Part used	Mode of preparations
------	-----------------------------	-----------------	------------	-----------	---
61	Emblica officinalis Gaertn.	Euphorbiaceae	Amlokhi	Barks	The crushed bark is applied to wounds.
62	Eryngium foetidum Linn.	Apiaceae	Man dhania	Leaves	Leaves juice is applied to wounds.
63	Euophorbia nerifolia Linn.	Euphorbiaceae	Sarausiju	Latex	Latex is directly applied to wounds.
64	Eupatorium odoratum Linn.	Asteraceae	Jarmani bon	Leaves, young shoots	Leaf paste is mixed with spit and applied to wounds for quick heal.
65	Euphorbia hirta Linn.	Euphorbiaceae	Paal chedi	Whole plant	Plant is first grind into paste and then the paste is slightly heated and applied on the wounds.
66	Euphorbia thymfolia R.Br.	Euphorbiaceae	Gakhiroti-bon	Whole plant	Plant is first grind into paste and then applied on the wounds.
67	Ficus bengalensis Linn.	Moraceae	borgos	Stem bark	Stems are cut and its juice is applied on the wounds.
68	Ficus hispida Linn.f.	Moraceae	Kheksha-dimoru	Stem bark	Stems are cut and its juice is applied on the wounds.
69	Ficus lacor Buch.Ham.	Moraceae	Pakori	Stem bark	Stems are cut and its juice is applied on the wounds.
70	Firminia coloranta (Roxb.R. Br.)	Sterculiaceae	Odal	Bark & leaves	The paste of the barks and leaves is applied to wounds.
71	Gloriosa superba Linn.	Liliaceae	Ulat-chandal	Roots	Roots paste is applied on the wounds.
72	Glycyrrhiza glabra	Gabaceae	Jeshimadhu	Roots	Roots paste is applied on the wounds.
73	Grewia serrulata DC.	Tiliaceae	Kukurhuta	Leaves	The paste of the leaves is applied to wounds.
74	Grewia tiliaefolia Vah.Linn.	Tiliaceae	Huktapata	Stem bark	Stems are cut and its juice is applied on the wounds.
75	Gymnema sylvestre R.Br.	Asclepiadaceae	Madhunashini	Leaves	The paste of the leaves is applied to wounds.
76	Heliotropium indicum Linn.	Boraginaceae	Hati-huria	Leaves	The paste of the leaves is applied to wounds.
77	Hemidesmus indicus R.Br.	Asclepiadaceae	Anantamul	Roots	Roots paste is applied on the wounds.
78	Holarrheena antidysenterica	Apocyanaceae	Dudhkuri	Stem bark	Stems are cut and its juice is applied on the wounds.
79	Hydrocotyle sibthorpioides Lamk.	Apiaceae	Khoru manimuni	Leaves	Leaves are grind into paste and mixed with coconut oil and applied to wounds before going to bed at night.
80	Hydrocolea zeylanica Vah.Linn.	Hydrophyllaceae	Leheti-sak	Roots	Roots paste is applied on the wounds.
81	Icorrhiza kurroa Royle exBenth.	Scrophulariaceae	Katki	Rhizomes	Powdered dry rhizome is applied in wounds
82	Imperata cylindrica (Linn.) Raesch.	Poaceae	Ulu-bon	Fruits	The powdered dry fruits is applied on wound.
83	Jasminum auriculatum Vah.Linn.	Oleaceae	Khorika jai	Flowers	Paste is applied on the wounds.
84	Jasminum sambac At.	Oleaceae	Jasmeen	Leaves	The paste of the leaves is applied to wounds.
85	Justicia gendarussa	Acanthaceae	Tita bahak	Leaves	The paste of the leaves is used for wound healing.
86	Kaempferia rotunda LINN.	Zingiberaceae	Bluhmichampa	Tubers	Paste is applied on the wounds.
87	Lippia nodiflora Mich.	Verbenaceae	Jal-pipali	Fruits	Fruits juice is applied on the wounds.
88	Lufta acutangula Linn.	Cucurbitaceae	Jika	Leaves	The leaf juice is applied to wounds.
89	Luvunga scandens Buch.Ham.	Rutaceae	Long-phul	Roots	Roots paste is applied on the wounds.
90	Melastoma malabathricum Linn.	Melastomataceae	Phuluki	Barks & roots	The bark and the roots are used for curing wounds
91	Melocanna baccifera (Roxb). Kurz.	Poaceae	Tavai	Stems	The glossy surface of stem or cortex is applied to cure wounds.

276
S.N.	Scientific Name	Family	Local Name	Part used	Mode of preparations
92	Mesua assami Linn.	Calusiaceae	Nahar	Flowers & barks	Paste is applied on the wounds.
93	Microsorum punctatum (Linn.) CopeLinn.	Polypodiaceae	Kapau dhekia	Leaves	Leaves juice is applied to wounds.
94	Mikania micrantha H. B. K	Asteraceae	Japaniota	Leaves	The paste of the leaves is applied to wounds.
95	Mimosa pudica	Mimosaceae	Nilaij bon	Leaves	Leaves are crushed along with Eupatorium odoratum and applied on the wounds.
96	Mimusops elengi Linn.	Sapotaceae	Bokul	Stem bark	Stems are cut and its juice is applied on the wounds.
97	Morinda citrifolia Linn.	Rubiaceae	Nuni	Leaves & fruits	The paste of the leaves and fruits is applied to wounds.
98	Moringa oleifera Lam.Syn.	Moringaceae	Sajina	Roots	Roots paste is applied on the wounds.
99	Mucuna pruriens Bak.	Leguminosae	Bandor-kekua	Roots	Roots paste is applied on the wounds.
100	Mussaenda roxburghii Hook. f.	Rubiaceae	Sonarupa	Leaves	Leaves paste is applied to wounds.
101	Myrica nagi Thunb.	Myricaceae	Nagatenga	Stem bark	Stems are cut and its juice is applied on the wounds.
102	Naravelia feylavica(D.C)	Ranunculaceae	Goropsoi	Leaves	The paste of the leaves is applied to wounds.
104	Nelumbo nucifera Wild.	Nymphaeaceae	Padam	Stem bark	Stems are cut and its juice is applied on the wounds.
105	Nicotiana tabacum Linn.	Solanaceae	Dhatap-goch	Leaves	Leaf is crushed and the juice is applied to wounds.
106	Ocimum sanctum Linn.	Lamiaceae	Tulsi	Leaves	The paste of the leaves is used for wound healing.
107	Olea europaea Linn.	Oleaceae	Jolphi	Leaves	The paste of the leaves is applied to wounds.
108	Oroxyllum indicum Linn.	Bignoniaceae	Bhat ghila	Seeds & barks	Dry the seeds in the shade, powder it and powder is applied in wounds.
109	Oxalis corniculata Linn.	Oxalidaceae	Tengechi-tenga	Leaves	Leaves are grinded into paste and are applied in wounds.
110	Papaver somiferum Linn.	Papaveraceae	Afing	Seeds	Dry the seeds in the shade, powder it and powder is applied in wounds.
111	Parkia roxburghii G. Don	Mimosaceae	Khorial	Fruits	The green portion of the fruit is mixed with little amount of water and applied to wounds.
112	Phragmites maxima Blatte.	Gramineae	Nalkhagari	Roots	Roots paste is applied on the wounds.
113	Piper betle Linn.	Piperaceae	Paan	Leaves	The paste of the leaves is applied to wounds.
114	Piper longum Linn.	Piperaceae	Pigil	Roots	Roots paste is applied on the wounds.
115	Pluchea lanceolata Oliver &Hiern.	Compositae	Rasnapat	Leaves	The paste of the leaves is applied to wounds.
116	Plumbago zeylanica Linn.	Plumbaginaceae	Bogaagetcha	Roots	Roots paste is applied on the wounds.
117	Pogostemon benghalensis (Burm.) Kuntze.	Lamiaceae	Sukloti	Leaves	The paste of the leaves is applied to wounds.
118	Pongamia glabra Vent.	Leguminosae	Koroch	Seeds & Leaves	The paste of the leaves is applied to wounds.
119	Pouzolzia zeylanica (Linn.Benn. & R. Br.	Urticaceae	Borali bukua	Whole plant	Plant is first grind into paste and then applied on the wounds.
120	Prunus mahaleb Linn.	Rosaceae	Cherry	Roots	Roots paste is applied on the wounds.
S.N.	Scientific Name	Family	Local Name	Part used	Mode of preparations
------	---------------------------------	------------------	------------	----------------------	--
121	*Psoralia corylifolia* Linn.	Leguminosae	Habucha	Seeds	Dry the seeds in the shade, powder it and powder is applied in wounds.
122	*Rannunculus scleratus* Linn.	Rannunculaceae	Bon-dhonia	Whole plant	Plant is first grind into paste and then applied on the wounds.
123	*Rhynchostylis retusa* Linn.	Orchidaceae	Kopouphool	Leaves, stems &	The paste of the leaves is applied to wounds.
				barks	
124	*Rubia cordifolia* Linn.	Rubiaceae	Majathi	Roots	Roots paste is applied on the wounds.
125	*Salix tetrasperma* Roxb.	Salicaceae	Bhe	Stem bark & flowers	Stems are cut and its juice is applied on the wounds.
126	*Salmalia malabarica* Schott & EndLinn.	Pedaliaceae	Simolu		Stems are cut and its juice is applied on the wounds.
127	*Santalum album* Linn.	Santalaceae	Chandan	Wood	Powder is mixed with water and applied to wounds.
128	*Saraca indica* Linn.	Leguminosae	Ashok-goch	Stem bark	Stems are cut and its juice is applied on the wounds.
129	*Semecarpus anacardium* Linn.	Anacardaceae	Bor-bhola	Roots	Roots paste is applied on the wounds.
130	*Sesamum indicum* Linn.	Pedaliaceae	Til	Seeds	Dry the seeds in the shade, powder it and powder is applied in wounds.
131	*Shorea robusta* Gaertn.f.	Dipterocarpaceae	Sal-goch	Resin	Collected resin is applied to wounds.
132	*Sida cordifolia* Linn.	Malvaceae	Bor Sonborial	Roots	Roots paste is applied on the wounds.
133	*Smilax perfoliata* Lour.	Smilaceae	Tikoniborua	Roots	Root paste is used in the treatment of quick healing of wound.
134	*Spaeranthus indicus* Linn.	Compositae	Bhu-kadam	Flowers	Paste is applied on the wounds.
135	*Spermactyton suaveolens* Linn.	Rubiaceae	Bon champa	Roots	Roots paste is applied on the wounds.
136	*Spilanthes acmela* (auct.nonLinn. Mert.)	Asteraceae	Bonoria	Fruits	Infusion of fruits is applied to wounds.
137	*Spilanthes paniculata* DC.	Asteraceae	malkathi		
138	*Strebulus asper* Lour.	Moraceae	Shoura	Leaves	Leaves are cooked and taken as food, helps in healing wounds.
139	*Swertia chirata* Buch.Ham.	Gentianaceae	Chirta	Roots	Roots paste is applied on the wounds.
140	*Tagetes erecta* Linn.	Asteraceae	Narji		The paste of the leaves and stems juice is applied to wounds.
141	*Terminalaira belerica* Roxb.	Combreaceae	Bauri	Fruits	Fruits juice is applied on the wounds.
142	*Thespesia populnea* Soland Ex Correa.	Malvaceae	Paras pipal		The paste is applied to wounds.
5. ETHNOPHARMACOLOGICAL VALIDATION

A number of plants such as Tagetes erecta, Ageratum conyzoides have been reported to offer wound-healing properties. The majority of these investigations include screening plants or extracts for wound healing efficacy on a random basis. We have tabulated (Table 3) some of the plants, which have been pharmacologically validated for their wound healing activity. The models in which these plants and the extracts have been reported for activity are also included in Table 2. This information becomes useful when one considers coming out with a modern medication or formulation utilizing conventional wisdom. Almost all of the plants that have been studied pharmacologically are also used traditionally. Some very common plants like Aloe vera, Azadirachta indica have been extensively reported in Ayurveda, Siddha and Unani systems of medicines for their wound healing potential.

In animal models (in vivo), a number of secondary metabolites/active chemicals derived from plants have been shown to be active principles responsible for wound healing. Some of the most important ones include asiaticoside, Asiatic acid, and madecassic acid from *Centella asiatica* (Ref 58), curcumin from *Curcuma longa* (Ref 64), phenolic acids (protocatechuic, p-hydroxybenzoic, p-coumaric, ferulic and vanillic acids) from *Chromolaena odorata* (Ref 59).
Fig: *Bryophyllum pinnatum* (Dupor tenga)
Fig: *Camellia sinensis* (Sah)
Fig: *Carica papya* (Amita)

Fig: *Catharanthus roseus* (Nayantora)
Fig: *Centella asiatica* (Bor manimuni)
Fig: *Spilanthes paniculata* (Huhoni Bon)

Fig: *Tagetes erecta* (Naeji ful)
Fig: *Smilax perfoliata* (Tikoni Borua)
Fig: *Rhyncostylis retusa* (Kopou ful)
Fig: Pogostemon benghalensis (Sukloti))
Fig: Piper betle (Pan)
Fig: Ocimum sanctum (Tulshi)

Fig: Mimosa pudica (Nilai Bon)
Fig: Mesua assami (Nahor)
Fig: Hydrocotyle sibthorpioides (Horu Manimuni)

Fig: Eclipta prostrata (Keheraj)
Fig: Datura fastuosa (Dhotura)
Fig: Dillenia indica (Otenga)
Fig: *Eryngium foetidum* (Man dhonia)

Fig: *Justicia gendarussa* (Tita Bahok)

Fig: *Santalum album* (Chandan)

Fig: *Amaranthus tricolor* (Bishalyakarni)

Fig: *Calamus floribundus* (Lejai Bet)

Fig: *Jasminum auriculatum* (Khorika Jai)

Fig: *Mikania micrantha* (Japani Lota)

Fig: *Mimusops elengi* (Bokul)

Fig: *Olea europaea* (Jolphai)
Fig. 2. Following are some picture of the ethnomedicinal plants available in Tinsukia District, Assam with high efficacy towards wound healing
Name of the plant	Active constituents	Extract/Fraction	Pharmacological profile	Ref
Abroma augusta Linn.	Alkaloids, abromine, sterol, friedelin, β-sitosterol, abromasterol, taraxeryl acetate, taraxerol	Alcoholic root extract	In-vivo (Wistar rats) In-vivo, excision & dead space wound model	[34]
Acacia catechu Wild.	Glycosides, carbohydrates, proteins, saponins, gums, phytosterols, tannins	Aqueous and alcoholic bark extract	In-vivo (Rats) Incision & excision wound model	[35]
Acorus calamus Linn.	Acorenone, monoterpene hydrocarbons, sequestrate ketones, b-gurjunene, isoshyobunine, alpha-asarone, beta-asarone, calamendiol, a-selinene, a-calacorene, calamusenone, camphone, shyobunone	Ethanolic leaf Extracts	Topical (Wistar albino rats) Incision & excision wound model	[36]
Aegle marmelos	Marmesin, marmin, psoralen, scopoletin, umbelliferone, xanthotoxin	Methanolic and aqueous seeds extract	Topical (Male Wistar rats) Incision & excision wound model	[37]
Ageratum conyzoides	Terpenes, sterols, chromenes, flavoines	Ethanolic leaf extract	Topical (Male Wistar rats) Incision wounds model (tensile strength)	[38]
Albizia lebbeck	Flavonoids, saponins, phenols, and tannins	Ethanolic root extract	In-vivo (foster albino rats) Incision, excision & dead space wound model	[39]
Alocasia denudata	Steroid, Beta-Sitosterol, Levoglucosan, Beta.-D-Galactofuranose, Alpha.-D-Glucopyranose, D-Glucopyranose, D-Xylose	Aqueous stem juice	Topical (Male Wistar rats)	[40]
Aloe vera	Vitamins, enzymes, minerals, sugars, lignin, saponins, salicylic acids, amino acids	Gel	Topical (Female Sprague Dawley rats)	[41]
Anthocephalus cadamba	Triterpenes, tripernoid glycosides, saponins, indole alkaloids cadamidine,3a-dihydrocadamidine, cadamine, isocadamine, ethanehydrophydacadamine	Aqueous and ethanolic plant extract	Topical (Wistar rats) Incision & excision wound model (tensile strength)	[42]
Artocarpus communis	Alkaloids, flavonoids, terpenoids, steroids and tannin	Ethanolic leaf extract	Topical (Guinea Pig)	[43]
Azadirachta indica	Glycosides, diterpenes, triterpenes, flavonoids, steroids	Methanolic leaf extract	Topical (Sprague Dawley male rats) Incision & excision wound model	[44]
Balsamopera monanatum	Flavonoids, alkaloids, tannins, phenolic compounds and steroids	Methanolic root extract	In-vivo (Albino rats) Incision wound model	[45]
Blechnum orientae	Alkaloids, Tannins, Sapopins, Quinones, Terpenoids, Steroids, Flavonoids, Phenol, Coumarins	Methanolic leaf extract	Topical (Sprague-Dawley rats)	[46]
Boerhaavia diffusa	Amino acids, fatty acids, flavonoid, glycosides, isoflavonoids (rotenoids), steroids (ecdysteroids), alkaloids	Methanol and chloroform leaf extract	In-vitro (cell viability and wound scratch assays) In-vivo excision wound assays in rat models.	[47]
Bridelia retusa	Tannins, alkaloids, amino acids, flavonoid, glycosides, steroids, Terpenoids	Methanol and aqueous bark extract	Topical (Wistar albino rats) Incision & excision wound model	[48]
Name of the plant	Active constituents	Extract/Fraction	Pharmacological profile	Ref
--	--	------------------	--	------
Bryophyllum pinnatum	Polyphenols, tannins, glycosaponins, flavonoids, steroidal glycosides	Petroleum ether, alcohol and water leaf extract	In-vivo (albino rats) Excision, resutured incision & Dead space wound model	[49]
Caesalpinia bonducella F.	Alkaloid, phenol, flavonoid, tannin, lignin	Ethyl acetate and methanol leaf, bark and root extract	Topical (Male Wistar albino rats) Excision wound model	[50]
Caesalpinia sappan Linn.	Phanginin F, phanginin G, phanginin H, phanginin I, phanginin J, phanginin K, phanginin L, phanginin M, 1maringenin, homoeriodictyol, steric acid, serlyticin A, kaempferol	Ethanol extract	In-vivo (Swiss albino mice) Cell proliferation and viability	[51]
Callicarpa arborea.	Bauerenol, β-sitosterol and betulinic acid	Methanolic barks extracts	Topical (rats) Incision, excision & dead space wound model	[52]
Calotropis gigantea Linn.	Cardiac glycosides, flavonoids, terpenoids, alkaloids, tannins, & resins	Ethanol root bark extract	In-vivo (Wistar albino rats) Incision, excision & dead space wound model	[53]
Camellia sinensis Linn.	Caffeine, gallic acid, catechin, epicatechin, epigallocatechin, epigallocatechin-gallate, epicatechingallate	Methanolic leaf infusion	Topical (male Sprague Dawley rats) Excision wound model	[54]
Carica papaya Linn.	Saponins, Tannins, Triterpenes, Sterols, Alkaloids, Flavonoids	Ethanol seed extract	Topical (Sprague-Dawley rats) Excision wound mode	[55]
Catharanthus roseus Linn.	Linolenic acid, ethyl ester, stearic acid, phytol, hexadecanoic acid, limonene, geraniol, citral	Ethanol flower extract	Topical (Sprague Dawley rats) Incision, excision & dead space wound model	[56]
Celastrus panniculatus Wild.	Alkaloids, glycosides, amino acids, phenolic compounds, tannins, fixed oil, carbohydrates, phenolic compounds, flavonoids, saponins, sterols, triterpenoids	Seed oil gel	Topical (Wister albino rats) Excision and burn wound model	[57]
Centella asiatica Linn.	Terpenes (monoterpenes, sesquiterpenes, diterpenes, triterpenes, tetraterpenes), phenolic compounds (flavonoids, phenylpropanoids, tannins), polyacetylenes group, alkaloids, carbohydrates, vitamin, mineral and amino acid	Isolated asiaticoside sterile saline dosage form	In-vivo & In-vitro (Guinea pig & Sprague Dawley male rats) Chick choioallantoic membrane and excision wound model	[58]
Chromolaena odorata	Alkaloids, flavonoids, tannins, saponins, terpenoids, anthraquinones, cardiac glycosides and carbohydrates	Aqueous and ethanolic leaf extracts	Topical (Wistar albino rats) Excision wounds model	[59]
Citrus maxima Linn.	Colocynthin, 2,4-di-tert butyl phenol, squalene, δ-tocopherol	Methanolic leaves, stem, root, fruit pulp and seed extract	Topical (Wistar rats) Excision wounds model	[60]
Clitonia ternatea	Flavonol glycoside, phenolic compounds	Seed and root extracts	In-vivo & topical (rats) Incision, excision & dead space wound model	[61]
Crocus sativus.	Crocin, crocetin, picrocrocin, safranal, zeaxanthin	Aqueous ethanolic peel extract	Topical (Male Wistar rats)	[62]
Name of the plant	Active constituents	Extract/Fraction	Pharmacological profile	Ref
-----------------------------------	--	--------------------------------	---	-----
Curculigo orchioides.	Phenols, tannins, alkaloids, saponin, flavonoids	Methanolic root extract	In-vivo (Male Swiss albino mice) Excision wounds model	[63]
Curcuma longa Linn.	Curcuminoinds, curcumin, demethoxycurcumin, bisdemethoxycurcumin.	Ethanaloc root extract	Topical (Rats) Excision wounds model	[64]
Cynodon dactylon Linn.	Carbohydrates, glycosides, flavonoids, saponins, alkaloids, phenolic compounds, tannins, fixed oil, mucilage	Hydroalcoholic whole plant extract	Topical (Male Albino Wistar rats) Excision wounds model	[65]
Cyperus rotundus	Sesquiterpene, cyperene-1, cyperene-2, cyperenone, α-cyperone12, mustakone, β-selene, sugretol triacetate, sugenol, copadiene, epoxyguaienerotundone, cyperenol, cyperolone, eugenol, cyperol, isocyperol,	Ethanaloc tuber extract	Topical (Male Wistar rats) Incision, excision & dead space wound model	[66]
Datura fastuosa	Hyoscyamine, hyoscyine, atropine, daturinl, cholesterol, sterol, baimantuoluoline A, baimantuoluoline B, daturataturin A	Ethanaloc aerial parts extract	Topical (Wistar Albino rats) Incision, excision & dead space wound model	[67]
Delonix regia	Saponins, alkaloids, carotene, hydrocarbons, phytoxins, flavonoids, tannins, steroids, carotenoids, galactomannon, lupeol, β-sitosterol, terpenoids, glycosides, carbohydrates	Water and ethanol leaf and bark extracts	In-vivo (Albino rats) Incision wound model	[68]
Embelia ribes.	Embelin (3-undecyl 2,5- dihydroxy, 1,4-benzoquinone), an alkaloid christembleine, vialing, 2,5-dihydroxy-4-undecyl-3, 6-benzoquinone	Ethanaloc leaf extract	Topical (Male Wistar rats) Incision, excision & dead space wound model	[69]
Emblica officinalis.	Phyllaemblicin acid, phyllaemblicin a, phyllaemblicin b, phyllaemblicin c, corilagon, geraniin, galic acid, phyllaemblicin, ellagic acid, vitamin C	Aqueous and ethanaloc bark extract	In-vivo (Wistar rats) Incision & excision wound model	[70]
Euphorbia nerifolia	Flavonoids, saponins, tannins, alkaloids, euphol, nerifoliol, nerifolenine, euphorbon, resin, gum, caoutchouc, malate of calcium	Ethanaloc leaf extract	In-vivo (Wistar albino rats) Excision & dead space wound model	[71]
Euphorbia hirtaLinn.	Tannins, triterpenoids, flavonoids and alkaloids.	Ethanol, methanol and water whole plant extract	Topical (Male Wistar rats) Incision & dead space wound model	[72]
Ficus bengalensis.	Alkaloids, flavonoids, saponins, phenols, tannins, diterpenes, phytosterols, proteins, resins	Aqueous leaf extract	In-vivo (Male Sprague dawley rats) Excision wounds model	[73]
Ficus hispida	Glycosides, Carbohydrates, Sterols, Saponins, Tannins, Flavonoids, Triterpenoids	Methanaloc leaf extract	In-vivo (Wistar Albino rats) Excision wound model	[74]
Ficus lacor.	Carbohydrates, phenolic, protein,terpenoids, , free amino acids	Aqueous leaf extract	Topical (Albino Wister rats) Excision wound model	[75]
Grewia tiliaeolia.	Tannins, terpenoids, flavonoids, steroids, saponins,	Methanaloc bark extract	In-vivo (Wistar rats) Incision, excision & dead space wound model	[76]
Gymnema sylvestre.	Tannins, flavonoids, phytosterols, cardiac glycosides	Alcoholic leaf extract	In-vivo (Wistar rats) Incision, excision & dead space wound model	[77]
Heliotropium indicum	Alkaloids, Carbohydrates, Gums, mucilages, Proteins, amino acids, Tannins, phenolic compounds, Steroids, sterols Triterpenoids, Saponins ,Flavonoids	Petroleum ether, chloroform, methanol, and aqueous leaf extract	Topical (Wistar albino rats) Incision, excision & dead space wound model	[78]
Name of the plant	Active constituents	Extract/Fraction	Pharmacological profile	Ref
--------------------------------	---	----------------------------------	--	------
Hemidesmus indicus	Phenols, alkaloids, flavonoids, glycosides, saponins, tannins, phytosterols,	Methanolic and aqueous root	Topical (Wistar rats)	[79]
	terpenoids	extract	Excision wound model	
Hydrolea zeylanica	Alkaloids, flavonoids, phenols and phenolic compounds, tannins, glycosides,	Methanolic leaf extract	In-vivo (Wistar albino rats)	[80]
	triterpenes, steroids, saponins		Excision and incision wound model	
Jasminum auriculatum	Alkaloids, carbohydrates, tannins, flavonoids, steroids, terpenoids, saponins,	Petroleum ether, chloroform,	Topical (Albino rats)	[81]
	phenolic compounds	ethanol and water leaf extract	Excision and incision wound model	
Jasminum sambac	Carbohydrates, flavonoids, steroids, saponins, proteins, amino-acids, glycosides	Aqueous and ethanol leaf extract	Topical (Albino mice)	[82]
			Excision wound model	
Kaempferia rotunda	Flavonoids, crotepoxid, chalcones, quercetin, siostosterol, stigmosterol, syringic	Aqueous and methanol leaf	Topical (Wister Albino rats)	[83]
	acid, protocatechic acid	extract	Excision and incision wound model	
Melastoma malabathricum	Flavonoids, tannins	Aqueous leaf extract	Topical (Sprague Dawley rats)	[84]
			Excision wound model	
Mikania micrantha	Sesquiterpene lactones, phenolic compounds, tannins, flavonoids,	Ethanolic leaf extract	In-vitro	[85]
			Cytotoxicity activity & cell cycle analysis	
Mimosa pudica Linn.	Amino acid (d-Alanin, 1-Alanine ethylamide), Carbohydrates, Quercetin, D-	Ethanolic leaf extract	Topical (Sprague Dawley rats)	[86]
	Pinitol, L-Mimosine, Mimosanic acid, Mimosaminine, P-coumaric acid		Excision & burn wound models	
Mimusops elengi Linn.	Taraxerol, taraxerone, ursolic acid, betulinic acid, V-spinosterol, W-sitosterol,	Methanolic stem bark extract	Topical (Albino mice)	[87]
	lupeol, mixture of triterpenoid,saponins, alkaloid isoretronecyltiglate		Incision, excision & dead space wound model	
Morinda citrifolia	Phenols, alkaloids, triterpenoids, steroids, carboxylic acids	Ethanolic leaf extract	In-vivo (Sprague Dawley male rats)	[88]
			Excision & dead space wound model	
Moringa oleifera	Fatty acid, vitamin E, carotenoid, amino acid, glycoside like niazin, niacin,	Aqueous leaf extract	In-vivo (Male Swiss Albino Mice)	[89]
	niadin, niazimin, niaziminin		Excision, resutured incision & dead space wound model	
6. CONCLUSION

A number of plants used traditionally and by indigenous peoples have not been validated or examined in light of the traditional claim. The majority of plant/plant extract pharmacological reports test the organic soluble extracts of dried plants for their ability to heal wounds in rats and mice, but the main concern is that the most traditional claims of plants as wound healing agents involve the use of fresh plants as pastes in water. When it comes to wound healing medicines, this is a huge issue because the organic solvent extract of dry plant material is validated, while the aqueous extract of fresh plants is employed; the chemical components will be quite different in both circumstances. In this review, we found that leaf is the most commonly utilized in traditional and tribal medicine to treat wounds (51%), followed by bark and root (19%), flowers and seeds(2%) (Table 1).

Another important issue with pharmacological validation is that the exact mechanism of the wound healing process is unknown; as a result, most researchers limit their plant screening to simple wound healing and do not get into the specifics. It's important to remember that a variety of factors play a role in wound healing, including epithelization, antioxidant defence, and metabolic changes (hydroxyproline). This review will assist pharmacologists in understanding the particular component of the plant and its exact function in traditional medicine, thereby bolstering Ethnopharmacological claims and increasing global acceptance of plant-based wound healing agents.

In addition, there hasn't been a concentrated attempt by researchers to investigate the concept of synergism in wound healing. The synergism of the prospective plants described in this analysis can be used to build a universally accepted wound healing formulation, if properly tested and proven scientifically, can operate as a substitute for or even replace modern wound healing medicines. As a result, the primary goal of this study is to identify and forecast plants, particularly those of Indian origin, that have the potential to become modern medication substitutes.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Gonzalez ACDO, Andrade ZDA, Costa TF. Wound healing – A literature review. Anais Brasileiros de Dermatologia. 2016;91(5): 614–620.
2. Gurtner G. Wound healing: Normal and abnormal. In C. International Wound Journal. 2007;12(3):293–301.
3. Hurley H, Knepper B, Price D. Avoidable antimicrobial exposure for uncomplicated skin and soft tissue infections in the ambulatory care setting. Am J Med. 2013;12(126):1099–1106.
4. Gupta N, Gupta SK, Shukla VK, Singh SP. An Indian community-based epidemiological study of wounds. Journal of Wound Care. 2004;13(7):123–129.
5. Gjikj.
6. Richardson M. Acute wounds: An overview of the physiological healing process. Nurs Times. 2004;50(3), 100–107.
7. Vanwijck R. Surgical biology of wound healing. Belgique (Brussels). 2001;11(5): 175–84.
8. Furie B, Furie BC. Mechanisms of Thrombus Formation. N Engl J Med. 2008; 359(9):938–49.
9. Pool JG. Normal hemostatic mechanisms: A review. Am J Med. 1977;43(7):76–80.
10. Nagori BP, Solanki R. Role of Medicinal Plants in Wound Healing. Res J Med Plant. 2011;5(4):392–440.
11. Li J, Chen J, Kirsener R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25(7):9–18.
12. Hart J. Inflammation I: Its role in the healing of acute wounds. Journal of Wound Care. 2002;11(6):205–209.
13. Flanagan M. The physiology of wound healing, J Wound Care. 2000;9(17):299–300.
14. Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immun. 2016;44(3):450–62.
15. Kumar B, Vinaykumar M, Govindarajan R, Pushpangadan P. Ethnopharmacological approaches to wound healing exploring medicinal plants of India. J Ethnopharmacol. 2007;11(4):103–13.
16. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and
regeneration. Nat. 2008;453(7193):314–21.

17. Reineke JM, Sorg H. Wound Repair and Regeneration. Euro Surg Res. 2012;49(1):35–43.

18. Wu Y, Chen S. Apoptotic cell: linkage of inflammation and wounding healing, Front Pharmacol. 2014;5(1):142-148.

19. Koh TJ, DiPietro LA. Inflammation and wound healing: The role of the macrophage, Exp Rev Mol Med. 2011;13(23):1–12.

20. Guo S, DiPietro LA. Critical review in oral biology & medicine: Factors affecting wound healing, J Dent Res. 2010;89(3):219–29.

21. Robson MC. Cytokine manipulation of the wound, Clin Plastic Surg. 2003;30(1):57–65.

22. Dulmovits BM, Herman IM. Microvascular remodeling and wound healing: A role for pericytes, Int J Biochem Cell Biol. 2012;44(11):1800–12.

23. Li B, Wang JC. Fibroblasts and myofibroblasts in wound healing: Force generation and measurement, J Tissue Viability. 2011;20(4):108–20.

24. Rivera AE, Spencer JM. Clinical aspects of full-thickness wound healing. Clin Dermatol. 2007;25(1):39–48.

25. Martin P. Wound healing - Aiming for perfect skin regeneration. Sci. 1991;276(5309):75–81.

26. Fife CE, Carter MJ. Wound care outcomes and associated cost among patients treated in US outpatient wound centers. Data from the US wound registry. Wounds. 2012;24:10–7.

27. Shenoy C, Patil MB, Ravikumar. Preliminary phytochemical investigation and wound healing activity of Allium cepa (Liliaceae). Int J Pharm Pharm Sci. 2009;2(2).

28. Biswas TK, Mukherjee B. Plant medicines of Indian origin for wound healing activity: A Review. Int J Lower Extremity Wounds. 2003;2:25–36.

29. Dahanukar SA, Kulkarni RA, Rege NN. Pharmacology of medicinal plants and natural products. Indian J Pharm. 2000;32:81–118.

30. Kumar B, Govindarajan M, Pusphagandan R. Ethnopharmacological approaches to wound healing—Exploring medicinal plants of India. Ethnopharmacology. 2007;114(2):103–13.

31. Biswas TK, Mukherjee B. Plant medicines of Indian origin for wound healing activity. Lower Extremity Wounds. 2003;2:25–39.

32. Li B, Wang JC. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability. 2011;20(4):108–20.

33. Dulmovits BM, Herman IM. Microvascular remodeling and wound healing: A role for pericytes, Int J Biochem Cell Biol. 2012;44(11):1800–12.

34. Shanbhag T, Dattachaudhuri A, Shenoy S, Bairy KL. Wound healing activity of Abroma augusta in Wister rats. Asian Pac J Trop Med. 2009;2(4):6-10.

35. Reddy BMK, Gowda KPS, Arora AK. Study of wound healing activity of aqueous and alcoholic bark extracts of Acacia catechu on rats. Jour of Pharm Sci. 2011;1(3):220-25.

36. Jain N, Jain R, Jain A, Jain DK, Chandel HS. Evaluation of wound-healing activity of Acorus calamus Linn. Natural Product Research: Formerly Natural Product Letters. 2010;24(6):534-41.

37. Sharma, GN, Dubey SK, Satì N, Sandya J. Evaluation of wound healing activity of Aegle marmelos seed. January. Pharmacology Online. 2011;2:171-78.

38. Arulprakash K, Rajenderan M, Ponrasu T, Gayathri VS. Efficacy of Ageratum conyzoides on tissue repair and collagen formation in rats efficacy of Ageratum conyzoides on tissue repair and collagen formation in rats. Clinical and Experimental Dermatology. 2012;37:418–24.

39. Joshi A, Sengar N, Prasad SK, Goel RJ, Singh A, Hemlatha S. Wound Healing Potential of the Root Extract of Albizzia lebbeck. Planta Med. 2013;79:737–43.

40. Mazlyzam AL, Zulasyraf M, Zaki M, Leng M, Hidayah N, Rahman A et al. Journal of ethnopharmacology; 2015.

41. Yadav KCH, Kumar JR, Basha SI, Guijula R, Santhamma B. Wound healing activity of Aloe vera gel on experimental rat models. Int J Pharma Bio Sci. 2012;3(2):63-72.

42. Umachigi SP, Kumar GS, Jayaveera KN, Kumar DV, Kumar A, Dhanapal R. Antimicrobial, wound healing and antioxidant activities of Anthocephalus
cadamba. Afr. J. Trad. CAM. 2007;4(4): 481–87.

43. Pandey BP, Thapa R, Upreti A. Chemical composition, antioxidant and antibacterial activities of essential oil and methanol extract of Artemisia vulgaris and Gaultheria fragrantissima collected from Nepal. Asian Pacific Journal of Tropical Medicine; 2017.

44. Barua CC, Talukdar A, Barua AG, Chakraborty A, Sarma, RK, Bora RS. Evaluation of the wound healing activity of methanolic extract of Azadirachta indica (neem) and Tinospora cordifolia (guduchi) in rats. 2010;170–77.

45. Kumar H, Jain SK, Singh N, Dixit V, Singh P. Wound healing activity of the plant of Baliospermum montanum wildl. IJPGR. 2011;2(4):1073-76.

46. Lai HY, Lim YY, Kim KH. Potential dermal wound healing agent in Blechnum orientale Linn. Complementary and Alternative Medicine. 2011;11:62.

47. Juneja K, Mishra R, Chauhan S, Gupta S, Roy P, Sir car D. Metabolite profiling and wound-healing activity of Boerhavia diffusa leaf extracts using in vitro and in vivo models. Journal of Traditional and Complementary Medicine; 2019.

48. Deore UV, Tatiya AU, Surana SJ. Wound healing activity of Bridelia retusa bark in experimental animals. Int J Pharm Pharm Sci. 2014;6(4):102-05.

49. Khan M, Patil PA. Influence of Bryophyllum pinnatum (Lam.) leaf extract on wound healing in albino rats. Journal of Natural Remedies. 2004; 4(1):41 – 46

50. Chandra J, Murthy M., & Ramesh R. Evaluation of the wound healing activity of Caesalpinia bonducella and Cyclea peltata extracts in experimentally induced diabetic rats. Int J Pharm Pharm Sci. 2017;9(10):5–8.

51. Tewtrakul S, Tuncharoen P, Sudsai T, Karalai C, Ponglimanont C, Yodsaoe O. Antiinflammatory and wound healing effects of Caesalpinia sappan L. Phytother Res. 2015;29(6):850–56.

52. Shihan MH, Al Mahmud Z, Qais N, Riaz M. Pharmacological evaluation of stem bark of Callicarpa arborea Roxb. Dhaka Univ J Pharm Sci. 2015;14(1):10–17.

53. Deshmukh PT, Fernandes J, Atul A, Toppo E. Wound healing activity of Calotropis gigantea root bark in rats. Journal of Ethnopharmacology. 2009;125:178–81.

54. Hajiaghaalipour F, Kanthimathi MS, Abdu ll MA, Sanusi J. The effect of Camellia sinensis on wound healing potential in an animal model. Evidence-Based Complementary and Alternative Medicine. 2013;1-7.

55. Nayak BS, Ramdeen R, Adogwa A, Marshall JR. Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. Int Wound J; 2012.

56. Nayak BS, Pereira LMP. Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats.BMC Complementary and Alternative Medicine. 1984;6(41):1-6.

57. Maurya H, Dwivedi V. Wound Healing Potential of Celastrus paniculatus seed oil in rat model. Int Res J Pharmacol. 2020; 02(01):1-8.

58. Shukla A, Rasik AM, Jain GK, Shankar R, Kulshrestha DK, Dhawan BN. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. Journal of Ethnopharmacology. 1999;65:1–11.

59. Pandith H, Zhang X, Liggett J, Min K, Gritsanapan W, Baek SJ. Hemostatic and wound healing properties of Chromolaena odorata leaf extract. ISRN Dermatology. 2013;1-8.

60. Gupta SC, Tripathi T, Paswan SK, Agarwal AG, Rao CV, Om P. Phytochemical investigation, antioxidant and wound healing activities of Citrullus colocynthis (bitter apple). Asian Pac J Trop Biomed. 2018;8(8), 418–24.

61. Solanki YB, Jain SM. Wound healing activity of Cittoria ternata L. in experimental animal models. Pharmacolgia. 2012;3(6):160-68.

62. Khorasani G, Hosseinimehr SJ, Zamani P. The Effect of Saffron (Crocus Sativus) extract for healing of second degree burn wound in rats. Keio J Med. 2008;57(4): 190-95.

63. Singh A, Bajpai S, Singh N, Kumar V, Gour J, Singh P et al. Wound healing activity of standardized extract of Curculigo orchioides in streptozotocin–induced diabetic mice. Asian Pac J Trop Dis. 2014; 4:546–553.

64. Purohit SK, Solanki R, Mathur V, Mathur M. Evaluation of ethanolic extract of Curcuma longa rhizomes in male albino rats. Asian J Pharm Res. 2013;3(2):79-81.
65. Kumar A, Kashyap P. Wound healing activity of *Cynodon dactylon* (L.) in albino wister rats. Int J Phytophar. 2013;3(3):63-67.

66. Puratchikody A, Devi CN, Nagalakshmi G. Wound Healing Activity of *Cyperus rotundus* Linn. Indian J Pharm Sci. 2006;68(1):97-101.

67. Vimal A, Suseela, L, Vadivu R. Wound healing activity of ethanolic extract of aerial parts of *Datura fastuosa* Linn on Wistar Albino rats. J Pharm Res. 2009;2(3):1010-12.

68. Sunday AW, Ifeanyi OE, Ezeja MI. Wound healing potentials of leaf and bark extracts of *Delonix regia*. World J Pharm Pharm Sci. 2014;3(4):133-42.

69. Swamy KHM, Krishna V, Shankarmurthy K, Rahiman AB, Mankani KL, Mahadevan KM et al. Wound healing activity of embelin isolated from the ethanol extract of leaves of *Embelia ribes* Bum. J Ethnopharmacol. 200; 109(3):529-34.

70. Talekar YP, Das B, Paul T, Talekar DY, Apte KG, Parab PB. Wound healing activity of aqueous and ethanolic extract of the bark of *Emblica officinalis* in wistar rats. Inventi Rapid: Planta Activa. 2012;4:1-5.

71. Bigoniya P, Rana AC. Wound healing activity of *Euphorbia nerifolia* leaf ethanolic extract in rats. J Nat Rem. 2007;7(1):94-101.

72. Bigoniya P, Agrawal S, Verma NK. Potential wound healing activity of *Euphorbia hirta* Linn total flavonoid fraction. Int J Pharm Sci Res Rev. 2013;22(2):149–156.

73. Chowdhary N, Kaur M, Singh A, Kumar B. (2014). Wound Healing Activity of Aqueous Extracts of *FicusReligiosa* and *Ficus Benghalensis* Leaves in Rats. Int J Res Pharm Biotech. 2014;2(2):1071–81.

74. Ramandeep S, Preeti T, Alok S, Satinder K. Wound healing activity of leaf methanolic extract of *Ficus hispida* Linn. Afr J Pharm Pharmacol. 2014;8(1):21-23.

75. Pradeep YN, Raju BK, Reema R. Evaluation of the wound healing effect of a polyherbal formulation. Pharmacology Online. 2009;3:136–41.

76. Ahmed BMK, Krishna V, Malleshappa KH. *In vivo* wound healing activity of the methanolic extract and its isolated constituent, Gulonic Acid γ-Lactone, obtained from *Grewia tiliaefolia*. Planta Med. 2009;75(5):478-82.

77. Malik JK, Manvi FV, Nanjiware BR, Singh S. Wound healing properties of alcoholic extract of *Gymnema sylvestre* R. Br. Leaves in rats. J Pharm Res. 2009;2(6):1029-30.

78. Dash GK, Murthy PN. Studies on wound healing activity of *Heliotropium indicum* Linn. Leaves on Rats. ISRN Pharmacol. 2011;1–8.

79. Ganesan S, Parasuraman S, Maheswaran SU, Ganasekar N. Wound healing activity of *Heimdesmus indicus* formulation. J Pharmacol Pharmacother. 2012;3(1):66–67.

80. Qureshi D, Reddy A, Kumar S, Nousheen L. Chemical composition and wound healing activity of methanolic leaf extract of *Hydrolea zeylanica* Vahl by in vivo excision and incision models. Int J Gre Pharm. 2017;11:114-20.

81. Mittal A, Sardana S, Pandey A. Evaluation of wound healing, antioxidant and antimicrobial efficacy of *Jasminum auriculatum* Vahl. leaves. Avice J Phyтомed. 2015;6(3):295-304.

82. Sabharwal S, Aggarwal S, Vats M, Sardana S. Preliminary phytochemical investigation and wound healing activity of *Jasminum sambac* (Linn) alt. (Oleaceae) leaves. Int J Pharmacog Phytochem Res. 2012;4(3):146–150.

83. Imam S, Rout S, Sutar N. Wound healing activity of *Kaempferia rotunda* Linn leaf extract. Int JCurrMicrobiol App Sci. 2013;2(12):74–78.

84. Samsurizal N, Marzian N. Wound healing activities of *Melastoma malabathricum* leaves extract in Sprague Dawley rats. Int J Pharma Sci Rev Res. 2013;20:20-23.

85. Sarimah MN, Mizaton HH. The wound healing activity of *Mikania micrantha* Ehanolic Leaf Extract. J Funda App Sci. 2018;10(6):425–37.

86. Singh PM, Bharghava S, Bhadur RS, Sharma GS. Wound healing potential of alcoholic extract of *Mimosas pudica* Linn. leaves. Pharmacologyonline. 2010;2:32–38.

87. Gupta N, Jain UK. Investigation of wound healing activity of methanolic extract of stem bark of *Mimusops opselengi* Linn. Afr J Tradit Complement Altern Med. 2011;8(2):98-103.
88. Nayak BS, Sandiford S, Maxwell A. Evaluation of the wound-healing activity of ethanolic extract of Morinda citrifolia L. leaf. EviComple Alter Med. 2009;6(3):351–356.

89. Rathi B, Patil PA, Baheti AM. Evaluation of aqueous extract of pulp and seeds of Moringa oleifera for wound healing in albino rats. J Nat Rem. 2004;4(2):145–149.