Does herbal medicine reduce the risk of hepatocellular carcinoma?

Yasushi Rino, Norio Yukawa, Naoto Yamamoto

Yasushi Rino, Norio Yukawa, Naoto Yamamoto, Department of Surgery, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan

Author contributions: Rino Y, Yukawa N and Yamamoto N contributed equally to this work; Rino Y, Yukawa N and Yamamoto N designed and wrote the paper.

Conflict-of-interest statement: There are no conflicts of interests regarding the present work.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Yasushi Rino, MD, Department of Surgery, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan. rino@med.yokohama-cu.ac.jp

Telephone: +81-45-7872645
Fax: +81-45-7860226

Received: April 5, 2015
Peer-review started: April 7, 2015
First decision: June 2, 2015
Revised: June 15, 2015
Accepted: August 25, 2015
Article in press: August 25, 2015
Published online: October 7, 2015

Abstract

Many herbal medicines are effective anti-inflammatory agents and may therefore suppress the development of hepatocellular carcinoma (HCC). Recently, treatment with a single-tablet regimen containing ledipasvir and sofosbuvir resulted in high rates of sustained virologic response among patients with hepatitis C virus genotype 1 infection who did not respond to prior interferon-based treatment. Patients with chronic hepatitis C are expected to receive this treatment worldwide. However, many patients have hepatitis-like fatty liver and nonalcoholic steatohepatitis. A strategy to prevent the development of HCC in this subgroup of patients is urgently required. Whether herbal medicines can suppress the development of HCC remains to be established. However, herbal medicines are effective anti-inflammatory agents and may inhibit the development of HCC. Clinical trials exploring the effectiveness of herbal medicines in the prevention and treatment of HCC are therefore warranted. The current lack of knowledge and of educational programs is a barrier to increasing the use of potentially effective herbal medicines and performing prospective clinical trials.

Key words: Herbal medicine; Hepatocellular carcinoma; Anti-inflammatory; Hepatocellular carcinoma prevention; Chronic hepatitis

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Many herbal medicines are effective anti-inflammatory agents and may suppress the development of hepatocellular carcinoma (HCC). Patients with chronic hepatitis C generally receive ledipasvir and sofosbuvir worldwide. However, many patients have hepatitis-like fatty liver and nonalcoholic steatohepatitis. A strategy to prevent the development of HCC is urgently required for this subgroup of patients. Future research needs to explore the effectiveness of herbal medicines in preventing and treating HCC. The current lack of knowledge and of educational programs is a barrier to increasing the use of potentially effective herbal medicines and performing prospective clinical trials.
In 2006, we reported that herbal medicine effectively reduces the risk of HCC in patients with HCV-associated LC. In this report, we review whether herbal medicines are effective anti-inflammatory agents that can potentially suppress the development of HCC.

HCC AND HCV-ASSOCIATED LC

The importance of hepatocytic necrosis in the recurrence of HCC after hepatectomy has been demonstrated in patients with HCV-associated LC and HCC, and suppression of the hepatic necroinflammatory process has been suggested to have an important role in preventing HCC recurrence[9]. Accelerated recurrence of HCC has been shown to be related to high serum ALT levels in patients with HCV-associated LC[5]. Moreover, the development of HCC is more rapid in the presence of high serum ALT levels in patients with HCV-associated LC[10]. Multicentric hepatocarcinogenesis strongly correlates with sustained necroinflammation of the liver in patients with early-stage HCV-associated LC[11]. Sustained alleviation of inflammation, as indicated by low serum ALT levels, provides a survival advantage mainly attributed to the longer non-recurrence interval and possibly fewer recurrences after hepatectomy in HCC patients with HCV-associated LC[12]. Persistently high ALT levels for 3 successive years after the diagnosis of LC can be predictive of a very high incidence of HCC in patients with Child A HCV-associated LC[6], and a serum ALT level of 80 IU was adopted as a cut-off value[6]. Previous studies have suggested that alleviation of inflammation by anti-inflammatory drugs may prolong the recurrence-free interval and decrease the risk of HCC in patients with HCV-associated LC. In 2006, we reported that herbal medicine effectively reduces serum ALT levels[7]. In that study, we analyzed outcomes in patients with HCV-LC who received therapy to reduce ALT levels, with the ultimate goal of finding a way to prevent the development of HCC from HCV-LC. A total of 74 consecutive patients with Child stage A HCV-LC were followed-up for > 10 years to assess the development of HCC. They were divided into two groups: the aggressive treatment group, which received aggressive ALT reduction therapy, and the non-aggressive treatment group, which did not receive aggressive ALT reduction therapy. The patients were then subdivided into 3 sub-groups according to whether their serum ALT levels were high, low, or unclassifiable. In the aggressive treatment group and the non-aggressive treatment group, the high ALT group respectively comprised 9 and 5 patients whose annual mean serum ALT levels were persistently high (≥ 80 IU), and the low ALT group respectively comprised 19 and 20 patients whose annual mean serum ALT levels were persistently low (< 80 IU). The other 11 patients in the aggressive treatment group and 10 patients in the non-aggressive treatment group had fluctuating annual mean serum ALT levels that were unclassifiable (unclassified group). In the non-aggressive treatment group, HCC developed in 65.7% of the patients within 13 years, in contrast to only 41.0% in the aggressive treatment group (P = 0.039). The median time to HCC development was 12.8 years in the aggressive treatment group, as compared with only 3.8 years in the non-aggressive treatment group (P = 0.0013). Multivariate analysis demonstrated that the mode of reduction therapy and ALT levels were significantly related to the development of HCC. The chances of surviving for more than 10 years without developing HCC in these patients with Child stage A HCV-LC were far better in the aggressive treatment group than in the non-aggressive treatment group. These results suggested that aggressive therapy to reduce ALT levels in patients with HCV-LC can significantly prevent the development of HCC. The herbal medicines used for aggressive reduction therapy were sho-saiko-to, juzentaiho-to, and Stronger-Neo Minophagen C (SNMC, glycyrrhizin)[7].

HERBAL MEDICINES

Sho-saiko-to

Sho-saiko-to is a herbal medicine used in Japan to treat chronic viral liver diseases. It acts by reducing inflammatory processes and controlling ALT levels[13]. Sho-saiko-to did not significantly improve liver fibrosis and related laboratory data irrespective of ALT levels in patients with chronic hepatitis C[14]. Some studies have suggested that sho-saiko-to has no effect on liver dysfunction. However, most studies have reported that sho-saiko-to is an effective anti-inflammatory agent. Bupleurum is one of the ingredients of sho-saiko-to. Saikosaponin-A (SSA) and Saikosaponin-D (SSD) are extracted from bupleurum. SSA is an...
Juzen-taiho-to was found to increase the secretion of interferon-γ (IFN-γ) as well as IL-4, IL-5, and IL-6 from stimulated hepatic lymphocytes, whereas IL-2 secretion was reduced. Modulation of cytokine secretion by juzen-taiho-to might not result from changes in the number of cytokine-secreting cells within hepatic lymphocytes. The CD4/CD8 ratio and αβ/γδ T-cell receptor (TCR) ratio in hepatic lymphocytes were unchanged. However, flow cytometric analysis revealed that the population of CD3-positive intermediate cells among natural killer-positive cells (natural killer T cells, NKT cells) increased after oral administration of juzen-taiho-to. Juzen-taiho-to enhanced transcription of IL-12 mRNA in the liver. A rise in the NKT cell population contributes, at least partially, to the modulating effect of juzen-taiho-to on cytokine production in hepatic lymphocytes and macrophages. The production of IL-12 in liver may also contribute to the induction of NKT cells. Juzen-taiho-to is thus considered to suppress hepatic inflammation and induce NKT cells. On the other hand, some authors have reported that juzen-taiho-to does not improve liver dysfunction for the following reasons: The preventive effect of juzen-taiho-to on hyperammonemia occurring after partial hepatectomy was examined. Pre-surgical treatment with juzen-taiho-to was found to significantly suppress this post-surgical hyperammonemia. However, juzen-taiho-to did not improve post-surgical liver dysfunction. Juzen-taiho-to administration stabilized the intestinal microbiota and maintained the pre-surgical microbial environment of the gut. Juzen-taiho-to was thus suggested to be ineffective for liver dysfunction. On the other hand, sho-saiko-to and juzen-taiho-to inhibited necroinflammation and fibrosis in the liver of a mouse model of nonalcoholic steatohepatitis (NASH), although the underlying mechanisms were not fully elucidated. Overall, juzen-taiho-to appears to be an effective anti-inflammatory agent that induces NKT cells (Table 1).

Table 1 Herbal medicines and their effects

Medicine	Target	Anti-inflammatory	HCC
Sho-saiko-to	COX2↑	Effective	Risk reduction?
Juzen-taiho-to	NKT↑	Effective	Risk reduction?
SNMC	MIP-1α↑	Effective	Risk reduction?
Baicalein	Bel-2 family proteins	Prevention of metastasis?	
Ginsenoside	MMP-1		

Baicalein is a component of sho-saiko-to. Ginsenoside is a component of sho-saiko-to and juzen-taiho-to. HCC: Hepatocellular carcinoma; SNMC: Stronger-Neo Minophagen C; COX2: Cyclooxygenase-2; NKT: Natural killer T cell; MIP-1α: Macrophage inflammatory protein-1α; TNF-1α: Tumor necrosis factor-1α; MMP-1: Matrix metalloproteinase-1.

Juzen-taiho-to was found to increase the secretion of interferon-γ (IFN-γ) as well as IL-4, IL-5, and IL-6 from stimulated hepatic lymphocytes, whereas IL-2 secretion was reduced. Modulation of cytokine secretion by juzen-taiho-to might not result from changes in the number of cytokine-secreting cells within hepatic lymphocytes. The CD4/CD8 ratio and αβ/γδ T-cell receptor (TCR) ratio in hepatic lymphocytes were unchanged. However, flow cytometric analysis revealed that the population of CD3-positive intermediate cells among natural killer-positive cells (natural killer T cells, NKT cells) increased after oral administration of juzen-taiho-to. Juzen-taiho-to enhanced transcription of IL-12 mRNA in the liver. A rise in the NKT cell population contributes, at least partially, to the modulating effect of juzen-taiho-to on cytokine production in hepatic lymphocytes and macrophages. The production of IL-12 in liver may also contribute to the induction of NKT cells. Juzen-taiho-to is thus considered to suppress hepatic inflammation and induce NKT cells. On the other hand, some authors have reported that juzen-taiho-to does not improve liver dysfunction for the following reasons: The preventive effect of juzen-taiho-to on hyperammonemia occurring after partial hepatectomy was examined. Pre-surgical treatment with juzen-taiho-to was found to significantly suppress this post-surgical hyperammonemia. However, juzen-taiho-to did not improve post-surgical liver dysfunction. Juzen-taiho-to administration stabilized the intestinal microbiota and maintained the pre-surgical microbial environment of the gut. Juzen-taiho-to was thus suggested to be ineffective for liver dysfunction. On the other hand, sho-saiko-to and juzen-taiho-to inhibited necroinflammation and fibrosis in the liver of a mouse model of nonalcoholic steatohepatitis (NASH), although the underlying mechanisms were not fully elucidated. Overall, juzen-taiho-to appears to be an effective anti-inflammatory agent that induces NKT cells (Table 1).
In mice with ConA-induced hepatitis, the production of IL-6 and IL-10 was enhanced by diammonium glycyrrhizinate (DG), which is extracted and purified from *Radix glycyrrhiza*. DG may protect the liver from injury via two pathways: direct protection of hepatocytes from apoptosis through an IL-6-dependent pathway and indirect suppression of T-cell-mediated inflammation through an IL-10-dependent pathway[28]. On the basis of clinical and histological markers, it was concluded that SNMC can suppress liver necrosis and inflammation in patients with chronic hepatitis C, suggesting that long-term treatment with the product might be useful for preventing liver cirrhosis and HCC[7,29]. SNMC is considered an effective anti-inflammatory agent that suppresses COX-2 mRNA expression (Table 1).

Other herbal medicines

Baicalein and baicalin may have beneficial effects on the development of hepatic steatosis and fibrosis[30-33]. In addition, flavonoids from *Scutellaria baicalensis* Georgi (baicalein, baicalin, and wogonin) dose-dependently decreased HCC cell viability in association with the collapse of mitochondrial membrane potential and the depletion of glutathione content. These flavonoids resulted in a prominent increase in the G2/M population in one HCC cell line, whereas an accumulation of the sub-G1 (hypoploid) peak was observed in another HCC cell line. In other cell lines, baicalein and baicalin dramatically boosted the hypoploid peak, whereas wogonin mainly affected G1 phase accumulation. Baicalein, baicalin, and wogonin might be effective candidates for inducing apoptosis or inhibiting proliferation in various human HCC cell lines[34]. Baicalein is a component of sho-saiko-to.

Ginsenoside inhibited tumor growth in vivo and prolonged mouse survival time by inducing HCC cell apoptosis via an intrinsic pathway by altering Bcl-2 family proteins[35]. Ginsenosides suppress matrix metalloproteinase-1 (MMP-1) expression by inhibiting activator protein-1 and the mitogen-activated protein kinase signaling pathway in human HCC cells. Therefore, ginsenoside has potential for the development of novel chemotherapeutic agents for the treatment and prevention of metastasis from HCC related to MMP-1 expression[36,37]. Ginsenoside is a component of sho-saiko-to and juzen-taiho-to (Table 1).

CONCLUSION

Although there are some negative opinions[14,19], herbal medicines are considered effective anti-inflammatory agents, which could potentially suppress the development of HCC. Currently available evidence indicates that prospective controlled studies of herbal medicines in patients with chronic hepatitis C are warranted.

Recently, treatment with a once-daily, fixed-dose combination tablet containing ledipasvir and sofosbuvir resulted in high rates of sustained virologic response among patients with HCV genotype 1 infection who had not responded to prior interferon-based treatment[38]. Patients with chronic hepatitis C in all countries will generally receive this treatment. However, many patients have hepatitis-like fatty liver and NASH. To date, the prevalence of NASH in the general population has not been clearly defined. An autopsy study from the late 1980s estimated that the prevalence of NASH was 2.7% among lean individuals, rising to 18.5% among markedly obese patients. More recently, a study evaluating donor livers before transplantation found that the prevalence of NASH ranged from 1.1% to 14%[39]. A strategy to prevent the development of HCC in such patients is urgently required.

A national survey evaluating oncologists’ knowledge, attitudes, and practice patterns regarding herb and supplement use by patients with cancer in the United States was reported in December 2014. Oncologists discussed the use of herbs and supplements with 41% of their patients. Two of three oncologists indicated they did not have enough knowledge to respond to questions from patients regarding herbs and supplements, and 59% had not received any education about herbs or supplements[40].

Evidence to show that herbal medicines can suppress the development of HCC remains to be established. However, herbal medicines are effective anti-inflammatory agents and may suppress the development of HCC. Clinical trials exploring the effectiveness of herbal medicines in the prevention and treatment of HCC are therefore warranted. The current lack of knowledge and of educational programs is a barrier to increasing the use of potentially effective herbal medicines and performing prospective clinical trials.

REFERENCES

1. Asaka M, Kato M, Graham DY. Prevention of gastric cancer by Helicobacter pylori eradication. *Intern Med* 2010; 49: 633-636 [PMID: 20371951 DOI: 10.2169/internalmedicine.49.3470]
2. Lennard-Jones JE, Melville DM, Morson BC, Ritchie JK, Williams CB. Precancer and cancer in extensive ulcerative colitis: findings among 401 patients over 22 years. *Gut* 1990; 31: 800-806 [PMID: 2370015 DOI: 10.1136/gut.31.7.800]
3. Belamaric J. Intrahepatic bile duct carcinoma and C. sinensis infection in Hong Kong. *Cancer* 1973; 31: 468-473 [PMID: 4347190 DOI: 10.1002/1097-0142(197302)31:2<468::AID-CANC2820310226>3.0.CO;2-J]
4. Sughara S, Kojiro M. Pathology of cholangiocarcinoma. In: Okuda K, Ishak KG, editors. Neoplasms of the Liver. Tokyo: Springer, 1987: 143-158 [DOI: 10.1007/978-4-431-68349-0_11]
5. Ikeda K, Saitoh S, Arase Y, Chayama K, Suenoki Y, Kobayashi M, Tsubota A, Nakamura I, Murashima N, Kumada H, Kawashima M. Effect of interferon therapy on hepatocellular carcinogenesis in patients with chronic hepatitis type C: A long-term observation study of 1,643 patients using statistical bias correction with proportional hazard analysis. *Hepatology* 1999; 29: 1124-1130 [PMID: 10094956 DOI: 10.1002/hep.510290439]
6. Miyakawa K, Tarao K, Ohshige K, Morinaga S, Ohkawa S,
Okamoto N, Shibuya A, Adachi S, Miura Y, Fujiyama S, Miyase S, Tomita K. High serum alanine aminotransferase levels for the first three successive years can predict very high incidence of hepatocellular carcinoma in patients with Child Stage A HCV-associated liver cirrhosis. *Scand J Gastroenterol.* 2009; 44: 1340-1348. [PMID: 19891585 DOI: 10.1080/03007990903222681]

Rino Y, Tarao K, Morigna S, Ohkawa S, Miyakawa K, Hirokawa S, Masaki T, Tarao N, Yukawa N, Saeki H, Takanashi Y, Imada T. Reduction therapy of alanine aminotransferase levels prevent HCC development in patients with HCV-associated cirrhosis. *Anticancer Res.* 2006; 26: 2221-2226. [PMID: 16821591]

Takami S, Tanami S, Sugimasa Y, Ohkawa S, Akaike M, Tanabe H, Shimizu A, Yoshida M, Nakao S, Kikuta A, Endo O. Close association between high serum ALT and more rapid recurrence of hepatocellular carcinoma in hepatomized patients with HCV-associated liver cirrhosis and hepatocellular carcinoma. *Intervirolology* 2000; 43: 20-26. [PMID: 10773374 DOI: 10.1159/000205019]

Takao K, Rino Y, Takamiya S, Tanami S, Ohkawa S, Sugimasa Y, Miyakawa K, Morigna S, Yoshida M, Shibuya A, Kobuku S, Sakita A. Long-term treatment of chronic hepatitis C with interferon induction by glycyrrhizin and glycyrrhetinic acid in mice. *PLoS One* 2014; 9: e87279. [PMID: 24466347 DOI: 10.1371/journal.pone.0087279]

Shibata S. A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. *Tokagaku Zasshi* 2000; 120: 849-862. [PMID: 11082968]

Fiore C, Eisenhut M, Krause R, Raguzzi E, Pellati D, Armanini D, Bielenberg J. Antiviral effects of Glycyrrhiza species. *Phytother Res* 2008; 22: 141-148. [PMID: 17886224 DOI: 10.1002/ptr.2295]

Lee CH, Park SW, Kim YS, Kang SS, Kim JA, Lee SH, Lee SM. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. *Biol Pharm Bull* 2007; 30: 1899-1904. [PMID: 17917259 DOI: 10.1248/bpb.30.1899]

Feng C, Wang H, Yao C, Zhang J, Tian Z. Diuretics induce apoptosis and arrest at the GO/G1 phase. *Cancer Res* 1994; 54: 448-454. [PMID: 8275481]

Agam Y, Muri S, Kojima T, Tokita H, Kamitsukasa H, Harada H. Does the control of alanine aminotransferase levels lead to a regression of liver fibrosis in chronic hepatitis C patients? *Hepat Res* 2001; 19: 144-157. [PMID: 11164739 DOI: 10.1016/S1386-6346(00)00098-X]

Wu SJ, Tam KW, Tsai VH, Chang CC, Chao JC. Curcumin and saikosaponin inhibit the chemical-induced liver inflammation and fibrosis in rats. *Am J Chin Med* 2010; 38: 99-111. [PMID: 20128048 DOI: 10.1120/s0219415x10006795]

Abe H, Orita M, Konishi H, Aritchi S, Odashima S. Effects of saikosaponin-d on enhanced CC4 liver hepatocarcinot by phenobarbital. *J Pharm Pharmacol* 1985; 37: 555-559. [PMID: 2864416 DOI: 10.1111/j.1365-203X.1985.tb01404.x]

Lu XL, He SX, Ren MD, Wang YL, Zhang YX, Liu EQ. Chemopreventive effect of saikosaponin-d on diethylnitrosamine-induced hepatocarcinogenesis: involvement of CCAAT/enhancer-binding protein β and cyclooxygenase-2. *Mol Med Rep* 2012; 5: 637-644. [PMID: 22159471 DOI: 10.3892/mmr.2011.702]

He S, Lu G, Hou H, Zhao Z, Zhu Z, Lu X, Chen J, Wang Z. Saikosaponin-d suppresses the expression of cyclooxygenase-2 through the phospho-signaling transducer and activator of transcription 3/hypoxia-inducible factor-1α pathway in hepatocellular carcinoma cells. *Mol Med Rep* 2014; 10: 2556-2562. [PMID: 25231214 DOI: 10.3892/mmr.2014.2574]
36 Yoon JH, Choi YJ, Lee SG. Ginsenoside Rh1 suppresses matrix metalloproteinase-1 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathway in human hepatocellular carcinoma cells. *Eur J Pharmacol* 2012; **679**: 24-33 [PMID: 22314224 DOI: 10.1016/j.ejphar.2012.01.020]

37 Yoon JH, Choi YJ, Cha SW, Lee SG. Anti-metastatic effects of ginsenoside Rd via inactivation of MAPK signaling and induction of focal adhesion formation. *Phytomedicine* 2012; **19**: 284-292 [PMID: 21982435 DOI: 10.1016/j.phymed.2011.08.069]

38 Afdhal N, Reddy KR, Nelson DR, Lawitz E, Gordon SC, Schiff E, Nahass R, Ghalib R, Gitlin N, Herring R, Younes ZH, Pockros PJ, Di Bisceglie AM, Arora S, Subramanian GM, Zhu Y, Dvory-Sobol H, Yang JC, Pang PS, Symonds WT, McHutchison JG, Muir AJ, Sulkowski M, Kwo P. Ledipasvir and sofosbuvir for previously treated HCV genotype 1 infection. *N Engl J Med* 2014; **370**: 1483-1493 [PMID: 24725238 DOI: 10.1056/NEJMoa1316366]

39 Williams CD, Stengel J, Asike MJ, Torres DM, Shaw J, Contreras M, Landt CL, Harrison SA. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. *Gastroenterology* 2011; **140**: 124-131 [PMID: 20858492 DOI: 10.1053/j.gastro.2010.09.038]

40 Lee RT, Barbo A, Lopez G, Melhem-Bertrandt A, Lin H, Olopade OI, Curlin FA. National survey of US oncologists’ knowledge, attitudes, and practice patterns regarding herb and supplement use by patients with cancer. *J Clin Oncol* 2014; **32**: 4095-4101 [PMID: 25403205 DOI: 10.1200/JCO.2014.55.8676]
