Seasonal Variations in Obsessive-Compulsive Disorder: Analysis of Prospective-Clinical Data

Ebru ALTINTAŞ¹, Meryem Özlem KÜTÜK², A. Evren TUFAN³

¹Department of Psychiatry, Başkent University Faculty of Medicine, Adana, Turkey
²Department of Child and Adolescent Psychiatry, Başkent University Faculty of Medicine, Adana, Turkey
³Department of Child and Adolescent Psychiatry, Abant Izzet Baysal University Medical Faculty, Bolu, Turkey

ABSTRACT

Introduction: Few studies have investigated potential seasonal changes in anxiety disorders. This study aimed to evaluate whether seasonal changes influence the severity of obsessive and compulsive symptoms in obsessive-compulsive disorder (OCD). The relationship between comorbid anxiety and depression symptoms and the seasons was also investigated. Furthermore, we compared the differences between retrospective data reliant on patients’ recall and data obtained by prospective observation.

Methods: The Yale-Brown Obsessive Compulsive Scale (Y-BOCS), Y-BOCS Symptom Checklist, Beck Anxiety Scale, and Beck Depression Scale were administered to 148 patients with OCD in each of the four seasons over a year. The relationships between the seasons and the scales based on retrospective observations of the patients, and between the seasons and scales based on prospective data collected over the year were analyzed. Scores from clinical assessments were compared between the different seasons.

Results: The severity of obsessive and compulsive symptoms, did not show seasonal changes. Multi-level growth models suggested that the change in Y-BOCS Total scores across seasons could be explained by subjective symptoms of depression and anxiety and their interactions. Importantly, results obtained using prospective observations from structured clinical assessment differed from those obtained using retrospective observations of patients.

Conclusions: Our study does not support the existence of seasonal variations in symptoms of OCD. Future studies are needed to delineate seasonal variations in OCD symptoms.

Keywords: Obsessive-compulsive disorder, seasonality, anxiety, depression

INTRODUCTION

The effects of the seasons on human emotions, behaviors, and physiology have been recognized for many centuries. In particular, the seasons are known to influence sleep, appetite, mood, and energy. The changes induced by the seasons may not only influence the normal population but also that of individuals with psychiatric disorders (1).

Within the context of psychopathology, the most significant disorder associated with the seasons is Seasonal Affective Disorder (SAD). Also, depression, suicidality, appetite and sleep are known to be affected by the seasons (2). Several studies in various cultural contexts have found that symptoms of anxiety and depression may be influenced by the seasons (3, 4). In contrast, multi-center studies investigating large case series of patients presenting to psychiatry outpatient clinics have not found seasonal effects on clinical presentation (5).

Fewer studies have investigated the relationship between anxiety disorders and the seasons. Nonetheless, a study using data from the Netherlands Study of Depression and Anxiety (NESDA) reported that depressive symptoms experienced by patients with anxiety disorders increased in winter (6). De Graaf et al. investigated seasonal changes in the prevalence of mental disorders, and potential associations with gender and age. They reported no statistically significant seasonal variations in the main category of anxiety disorders. However, they did report that panic disorder and generalized anxiety disorder were more prevalent in winter, and obsessive compulsive disorder (OCD) was more prevalent in autumn (7).

Obsessive-compulsive disorder is a multidimensional and etiologically heterogeneous disorder, ranked as the fourth most common mental disorder after depressive disorder, specific phobia, and substance abuse (8). Epidemiologic studies report lifetime prevalence rates of OCD ranging between 1.6% and 3.0% (8). Despite its importance from a public health perspective and clues about seasonality of symptoms; temporal trends in symptoms of patients with OCD have been rarely studied (7, 8). There are limited case reports of patients with OCD displaying seasonal variations in symptoms (9). Also a cross-sectional study from Turkey reported that among a clinical sample of patients with OCD more than half reported seasonal mood changes while those seasonal affective changes did not affect severity of OCD (10). The seasons and sunlight may also affect serotonergic function in the central nervous system, although this effect may not be observed among patients with OCD (11). Cheng et al. reported that patients with OCD were significantly more likely to be born...
during August to November and that this effect was more pronounced in males (12). In a recent, pilot study, Vitale et al. found that patients with OCD and tics displayed seasonal changes in obsessions and compulsions but not tics (13). According to their results, OCD symptoms were most severe in autumn and winter and that chronotype may have limited effects on seasonality. In a recent review, Cox and Olatunji, reported that results of studies on circadian and circannual rhythms and OCD are inconsistent but decreased light exposure may increase OCD symptoms and the symptoms may display diurnal variability (14). According to the results of previous studies, consideration of potential seasonal changes (by asking patients about perceived seasonal influences, as well as monitoring symptoms across seasons) may improve quality of life, and inform approaches to disease management in OCD, especially among colder climates and those with depressive symptoms. Furthermore, investigation of seasonal changes may inform etiological mechanisms of the pathophysiology of OCD (9, 10, 12).

**Aims**

Except Vitale et al., none of the previous studies of seasonality in patients with OCD was conducted prospectively and seasonality was mostly evaluated with changes in prevalence (6, 7, 10, 13). Therefore, the aim of this prospective observational study was to determine whether there are seasonal changes in the severity of obsessive and compulsive symptoms in OCD. Additionally, we aim to investigate seasonal changes in comorbid symptoms of anxiety and depression. Finally, we compare the differences between data obtained retrospectively from patients’ recall and data obtained by prospective observation.

**METHODS**

**Study Center, Sampling and Time Frame**

The study was conducted at the Department of Psychiatry of Başkent University School of Medicine between June 2013 and January 2019. Written informed consent was obtained from all patients or from parents of patients if they were younger than 18 years old.

Within the time frame patients with a primary diagnosis of Obsessive Compulsive Disorder as per DSM-IV-TR criteria (F42.2 in ICD) were approached for potential participation. Hoarding Disorder, Skin Picking Disorder, Other and Unspecified Obsessive Compulsive Disorder (F42.3, 42.4, 42.8 and 42.9 in ICD; respectively), obsessive compulsive disorder symptoms in psychotic disorders, comorbid bipolar spectrum disorders (cyclothymia, BP-I and II), intellectual disability, neurological disorder requiring treatment (i.e. seizures, migraine etc.) were criteria for exclusion. Patients aged less than 15 years old or with a history of any serious and progressive organic physical disease were also excluded, as were women who were pregnant or breast-feeding.

A total of 148 patients with OCD were recruited between June 2013 and January 2019 from the. Thirteen patients were excluded for a variety of reasons. These included patients with alternative diagnoses (schizophrenia, schizophreniform disorder or bipolar affective disorder) and those with intellectual disability or severe neurologic disorder (Figure 1).

Study participants were recruited from the Adana County of the Republic of Turkey. Participants experience a sunny coastal climate (average sunny days 300/year), with an average temperature of 19°C. Average hours of sunlight between 1985–2016 for the study region was reported to be 7.3–8.1 hours/day (Daily sunlight magnitude for Turkey. Meteorology General Directorate of the Ministry of Forestry and Waterworks of the RoT. Turkish. https://www.mgm.gov.tr/FILES/resmi-istatistikler/Turkiye-Gunluk-Guneslenme-Siddeti.pdf, Accessed on 07.07.2017).

The patients were not aware of the study hypothesis and Y-BOCS evaluations were conducted by research assistants blinded to the study hypothesis. All of the patients received naturalistic treatment in accordance with the choices of their primary clinicians. Only selective serotonin reuptake inhibitors (SSRI) were used within the effective dose range for the Obsessive Compulsive Disorder. 127 patients were treated with SSRI monotherapy (n=29 fluoxetine 60–80 mg/day; n=18 fluvoxamine 200–300 mg/day; n=23 escitalopram 60–90 mg/day; n=25 sertraline 200–300 mg/day; n=32, paroxetine 40–60 mg/day) and twenty one of patients were used at least 2 SSRIs.

**Data Collection**

Patients were followed prospectively for one year. During the initial assessment, diagnoses of OCD and any comorbid psychiatric disorders were established by a clinician using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) (APA, 1994). Other clinical assessments were administered including the Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and Y-BOCS Symptoms Checklist. More details regarding the assessments used are provided below.

The primary research question of this study concerned whether or not OCD presentation changed seasonally, and if it did, in which season (s) this was. Initially, patients were asked to recall whether or not the severity of their OCD symptoms changed in particular seasons. According to their answers, patients were divided into two groups: seasonal and non-seasonal. All patients were evaluated on four occasions at which the BDI, BAI, and Y-BOCS were administered: spring (21st March – 22nd June); summer (22nd June – 23rd September); autumn (23rd September – 22nd December); and winter (22nd December – 21st March). The data collected from patients on all of the four seasons were evaluated for seasonal changes.
Ethics Statement
This study adhered to the tenets of the Declaration of Helsinki and was approved by the Başkent University Institutional Review Board and Ethics Committee (Project no: KA 13/115). It was supported by the Başkent University Research Fund.

Study Instruments
Structured Clinical Interview for DSM-IV - Axis I Disorders: Diagnosis was ascertained using the SCID-I. The SCID-I is a structured clinical interview to diagnose the presence of Axis I psychiatric disorders (15). It consists of six modules examining diagnostic criteria for a total of 38 Axis I disorders. Accep levels of validity and reliability for the Turkish version used in this study have been established (16).

Yale-Brown Obsessive Compulsive Scale: The presence and severity of OCD symptoms were measured by the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), assessed using a structured interview. The scale includes 19 items, only 10 of which we used to calculate the total score: 5 for obsessions and 5 for compulsions. Each item rates from 0 (no symptoms) to 4 (extreme symptoms), with a total range of 0 to 40 (17). Accep levels of validity and reliability for the Turkish version used in this study have been established (18).

Yale-Brown Obsessive Compulsive Symptom Checklist: The Y-BOCS Symptom Checklist includes over 60 symptoms organized according to 15 categories of different types of obsessions and compulsions (18).

Beck Depression Inventory: We used the Turkish version of the Beck Depression Inventory (BDI) to assess depressive symptoms. The BDI is a self-report inventory with 21 items, each consisting of four statements scored 0 to 3, with total scores ranging from 0 to 63 (19). Reliability and validity for the Turkish version have been established, and scores of 17 or above were found to indicate major depression in the Turkish population. (20).

Beck Anxiety Inventory: The Beck Anxiety Inventory (BAI) is a 21-item scale widely used to measure the severity of anxiety (21). Accep validity and reliability has been reported in various populations, including in Turkish samples (22). Each item is scored from 0 to 3, in increasing order of severity. The scores for each of these 21 items were totaled at the end of the psychological evaluation.

Statistical Analysis
All statistical analyses were carried out using SPSS 17.0 (SPSS Inc., Chicago, IL). Continuous measurements were summarized as mean and standard deviation (for normal data). Categorical variables were summarized as counts and percentages.

Little’s Missing Completely at Random (MCAR) test was used to analyze whether data were lost at random. (23). This test is used to evaluate whether “missing” observations in multi-variate, quantitative data are completely independent of observed and unobserved data by using a chi-square distribution. Rejection of the null hypothesis (P<0.05) suggests that the data is not completely missing at random and likelihood-based inferences may not be valid.

Sociodemographic and clinical variables of patients and their relationships with season of visit (including obsessions and compulsions) were evaluated with multinomial log-linear tests. Log-linear analyses are used to evaluate probabilities of observations in cells of large contingency s according to multi-nomial or Poisson distribution assumptions and they may be followed with post-hoc chi-square tests (24).

RESULTS
Sample Characteristics
The baseline sample had a mean age of 31.8 years (S. D. =10.2) with a mean education of 11.9 (S. D. =3.5) years. Symptoms of OCD according to subjective reports started at a mean age of 23.2 (S. D. =9.6) years. Mean duration of untreated symptoms was 61.7 (S. D. =60.7) months. Mean age at first psychiatric evaluation for OCD symptoms was found to be 30.9 (S. D. =10.0) years. Among the baseline sample, twenty-six patients (17.6%) had a diagnosis of OCD without any comorbidities. Of the remaining patients with comorbid psychiatric disorders, 56 (37.8%) had depressive disorder, 5 (3.4%) had somatization disorder, 27 (18.2%) had social anxiety disorder, 30 (20.3%) had generalized anxiety disorder, and 4 (2.5%) had panic disorder. One-fourth of the sample were lost at the spring visit, with lost follow-up gradually increasing through the year (34.5%, 39.9% and 54.1% for the summer, autumn and winter visits; respectively). Data were missing at random (Little’s MCAR, p=1.0). Multi-nominal log linear analysis demonstrated that socio-demographic and clinical features were similar for visit samples (Table 1 and 2). Therefore, no imputations for missing values were attempted. Socio-demographic characteristics are summarized in Table 1 while content of OCD symptoms are summarized in Table 2.

Associations Between Scores Obtained at Follow-Up and Seasonal Changes Identified by Retrospective Observations of Patients
At initial presentation, patients were asked whether the severity of their symptoms showed any changes with seasons. Sixty-four patients (43.2%) stated that their disease is associated with seasonal changes. Subjective seasonality was not associated with loss at follow-up (Table 1). Multivariate analysis of variance for repeated measures showed that patients who reported the experience of seasonal changes did not differ significantly from those who reported no seasonal changes on scores for the Y-BOCS, BAI or BDI, in any of the seasons (p=0.22, Greenhouse-Geisser correction, Box’s M=270.4, p=0.00, Pillai’s Trace used).

Seasonal Influences on Symptoms Based on Prospective Measurements Across one Year
When MANOVA with repeated measures was used to evaluate effects of seasons on psychometric scales; no statistically significant effects were found (Table 3).
Table 1. Sociodemographic and clinical features of patients with OCD according to season of visit

| % (n)                              | Baseline | Spring | Summer | Autumn | Winter | P*    |
|------------------------------------|----------|--------|--------|--------|--------|-------|
| Comorbidity                        | 81.1 (120) | 77.5 (86) | 78.4 (76) | 78.7 (70) | 77.9 (53) | 1.0   |
| Comorbid MDD                       | 41.2 (61)  | 40.5 (45)  | 41.2 (40)  | 40.4 (36)  | 39.7 (27)  | 0.99  |
| FH OCD (+)                         | 37.2 (55)  | 39.6 (44)  | 40.2 (39)  | 42.7 (38)  | 42.6 (29)  | 0.99  |
| Consanguinity                      | 18.2 (27)  | 17.1 (19)  | 15.5 (15)  | 18.0 (16)  | 14.7 (10)  | 0.85  |
| Stressor at onset                  | 69.6 (103) | 73.9 (82)  | 72.2 (70)  | 68.5 (61)  | 70.6 (48)  | 1.0   |
| Stressor in last 6 months          | 54.7 (81)  | 55.9 (62)  | 54.6 (53)  | 49.4 (44)  | 54.4 (37)  | 0.97  |
| Subjective seasonality             | 41.9 (62)  | 44.1 (49)  | 43.3 (42)  | 44.9 (40)  | 42.6 (29)  | 1.0   |
| Limited insight                    | 58.8 (87)  | 57.7 (64)  | 56.7 (55)  | 61.8 (55)  | 57.4 (39)  | 1.0   |
| Suicidality                        | 15.5 (23)  | 15.3 (17)  | 16.5 (16)  | 13.5 (12)  | 13.2 (9)   | 1.0   |
| Hospitalization                    | 8.1 (12)   | 9.0 (10)   | 10.3 (10)  | 7.9 (7)    | 7.4 (5)    | 1.0   |
| Limited social supports            | 27.0 (40)  | 27.0 (30)  | 27.8 (27)  | 28.1 (25)  | 27.9 (19)  | 1.0   |

*Multinomial Log-linear test.

MDD: major depressive disorder; FH, family history.

Table 2. Obsessions and compulsions of patients with OCD according to season of visit

| % (n)                              | Baseline | Spring | Summer | Autumn | Winter | P*    |
|------------------------------------|----------|--------|--------|--------|--------|-------|
| Obsessions                         |          |        |        |        |        |       |
| Contamination                      | 71.6 (106) | 71.2 (79) | 70.1 (68) | 70.8 (63) | 73.5 (50) | 0.84  |
| Religious                          | 25.0 (37)  | 27.9 (31)  | 28.9 (28)  | 28.1 (25)  | 27.9 (19)  | 0.99  |
| Somatic                            | 15.5 (23)  | 11.7 (13)  | 10.3 (10)  | 13.5 (12)  | 10.3 (7)   | 0.95  |
| Sexual                             | 14.9 (22)  | 12.6 (14)  | 11.3 (11)  | 14.6 (13)  | 11.8 (8)   | 0.99  |
| Doubt                              | 31.8 (47)  | 31.5 (35)  | 33.0 (32)  | 33.7 (30)  | 30.9 (21)  | 1.0   |
| Hoarding                           | 8.8 (13)   | 7.2 (8)   | 7.2 (7)    | 7.9 (7)    | 5.9 (4)    | 1.0   |
| Aggression                         | 39.9 (59)  | 33.3 (37)  | 34.0 (33)  | 37.1 (33)  | 32.4 (22)  | 0.84  |
| Symmetry                           | 24.3 (36)  | 19.8 (22)  | 20.6 (20)  | 24.7 (22)  | 16.2 (11)  | 0.42  |
| Other                              | 0.7 (1)    | 0.0 (0)    | 0.0 (0)    | 0.0 (0)    | 0.0 (0)    | 0.99  |

Compulsions

| % (n)                              | Baseline | Spring | Summer | Autumn | Winter | P*    |
|------------------------------------|----------|--------|--------|--------|--------|-------|
| Cleaning                           | 69.6 (103) | 71.2 (79) | 70.1 (68) | 71.9 (64) | 75.0 (51) | 0.70  |
| Control                            | 49.3 (73)  | 46.8 (52)  | 48.5 (47)  | 48.3 (43)  | 45.6 (31)  | 0.99  |
| Repeating                          | 37.8 (56)  | 35.1 (39)  | 38.1 (37)  | 37.1 (33)  | 30.9 (21)  | 0.67  |
| Hoarding                           | 9.5 (14)   | 8.1 (9)   | 7.2 (7)    | 6.7 (6)    | 5.9 (4)    | 1.0   |
| Ordering                           | 23.6 (35)  | 21.6 (24)  | 22.7 (22)  | 22.5 (20)  | 19.1 (13)  | 0.99  |
| Listing                            | 5.4 (8)    | 2.7 (3)    | 3.1 (3)    | 4.5 (4)    | 2.9 (2)    | 0.96  |
| Reassurance                        | 10.8 (16)  | 10.8 (12)  | 10.3 (10)  | 9.0 (8)    | 7.4 (5)    | 0.92  |
| Confession                         | 23.6 (35)  | 21.6 (24)  | 20.6 (20)  | 20.2 (18)  | 17.6 (12)  | 0.99  |

*Multinomial Log-linear

Based on reliable change criteria (25), reliable change occurred in 24.3%, 27.0% and 30.4% of patients; respectively for the summer- spring, autumn- summer and winter- autumn visits in terms of Y-BOCS Total scores. Rates of reliable deterioration in those visits were 11.5%, 13.5% and 16.9% ; respectively. Clinically significant deterioration in Y-BOCS Total scores occurred in 2.0% of patients (n=3) in spring and 0.7% each (n=1) in summer and winter. None of the patients with OCD displayed clinically significant deterioration in autumn.

As the measurements were nested within individuals, were done at fixed intervals and that list-wise deletion due to attrition may have affected results of MANOVA; we conducted multi-level regression growth models to determine the predictors of variance in Y-BOCS Total scores according to visits. All variables were centered according to their means. Covariance type was specified to allow heteroscedasticity and auto-correlation between measurements. Although the model involving the main effects of BAI, BDI and gender explained more of the variance in residuals; the
We also found no statistically significant changes in OCD symptoms with seasons of visit in our clinical sample, patients reporting seasonality also did not differ in terms of their clinical and sociodemographic features from patients with no report of seasonality. However, with multi-level growth modeling, there was a signal that individual levels of especially depressive and anxious symptoms and their interactions could affect yearly changes in obsessive-compulsive symptoms. This model could explain 52.0% of the seasonal variability in OCD symptoms and three of the five model fit criteria (Table 4) were adequate.

Studies investigating seasonal changes in anxiety disorders have mostly concerned panic disorder and have used cross-sectional retrospective designs. The reliance of previous studies on the recall of participants is a major limitation. Our study overcomes this by investigating clinical presentations prospectively across seasons, carefully monitoring disease severity in each patient in each season. We also compared retrospective data from the patients with prospective data, finding that the two methods obtained differing results. These differences should be considered when interpreting results from previous studies, and should inform the design of future studies of seasonal variations in mental disorders.

The psychometric evaluations of patients with OCD according to season of visit are presented in Table 3. The Y-BOCS Total Z scores for individuals in our sample could be calculated with the equation:

\[ Y_{\text{Growth}} = 0.13 + 0.07B_{\text{AI}} + 0.73B_{\text{DI}} - 0.15B_{\text{Di}}B_{\text{AI}} \]

\[(0.09) (0.06) (0.06) (0.04)\] (Standard Errors)

**DISCUSSION**

As far as we are aware, the present study is the second (13) prospective observational study to investigate seasonal changes in OCD and the first to be conducted on a large sample size. In this single-center, prospective study we found that almost one half of participants with OCD recall seasonal changes in their symptoms while none were found to display seasonal changes in prospective follow-up. Retrospective report of seasonality in symptoms of OCD did not affect the psychometric scores of patients at follow-up. Clinically significant deterioration could be observed in few of the patients and multi-level growth models supported the importance of subjective depressive and anxiety complaints in changes of obsessive-compulsive symptoms.

Previous studies have reported seasonal changes in various disorders, such as recurrent depressive disorder, bipolar disorder, and panic disorder. However, very few studies have been conducted to assess other anxiety disorders. The most commonly used scale in studies of seasonal changes in mental disorders is the Seasonal Pattern Assessment Questionnaire (SPAQ) (27, 28). This self-assessment questionnaire comprises a total of 16 questions. The first 10 questions regard socio-demographic characteristics. The following six questions evaluate mood, social activities, atypical depressive symptoms (e.g., sleep and increased appetite), and energy levels. SPAQ scores from the Netherlands Survey of Depression and Anxiety (NESDA) suggested that patients with depressive, anxiety, or comorbid depressive and anxiety disorders experienced lower mood during the winter and that this increase in low mood was greater than that seen in healthy controls (28). Furthermore, an earlier study by the same authors reported that depressive symptoms (but not anxiety symptoms) are slightly increased in winter in patients with anxiety disorders (6). However, a major limitation of the SPAQ is its reliance on retrospective information. It also does not adequately assess symptoms of anxiety. Moreover, it does not include questions that directly evaluate obsessive or compulsive symptoms (27).

Studies on epidemiological samples with other measures also suggested temporal trends. The HUNT trial recruited 60.995 participants, all of whom were evaluated monthly (except for July) using the Hospital Anxiety and Depression Scale (HADS) (7). It was reported that anxiety and depression comorbidities were the most prevalent in spring and in the month of October, but that levels of anxiety showed no significant differences in any of the seasons. In contrast, Harmatz et al. evaluated 322 healthy individuals in each season using the SPAQ and BDI and found that anxiety scores were lowest in the summer but highest in the winter (27). In the Hordaland health study of 11054 participants from the general population, the Global Seasonality Score (a component of the SPAQ) and the HADS revealed significant differences in levels of anxiety and depression depending on the season (29).

Table 3. Psychometric evaluations of patients with OCD according to season of visit

| Means, S. D. | Baseline (n=111) | Spring (n=111) | Summer (n=97) | Autumn (n=89) | Winter (n=68) | P* |
|-------------|------------------|---------------|--------------|--------------|--------------|----|
| YBOCS– O | 9.8±5.1 | 9.8±5.1 | 9.7±4.6 | 9.9±5.5 | 9.5±4.6 | 0.71† |
| YBOCS– C | 8.9±5.2 | 8.9±5.2 | 8.9±4.8 | 8.4±5.0 | 8.9±4.7 | 0.53 |
| BAI | 18.4±13.3 | 18.4±13.2 | 17.7±12.8 | 17.3±12.4 | 16.4±12.6 | 0.97† |
| BDI | 16.9±11.5 | 16.9±11.5 | 16.7±11.8 | 15.4±10.9 | 15.9±10.4 | 0.70 |

*Multi-variate analysis of variance for repeated measures.
†With Greenhouse-Geisser correction.
Table 4. Model fit for multi-level regression growth models of individual Y-BOCS Total scores according to seasons of visit

| Model                        | Pseudo-R2 | -2LL   | AIC    | AICC   | CAIC   | BIC    |
|------------------------------|-----------|--------|--------|--------|--------|--------|
| Unconditional                | -         | 1053.7 | 1061.7 | 1061.8 | 1081.6 | 1077.6 |
| Conditional- BAI             | 32.0%     | 946.5  | 956.5  | 956.7  | 981.4  | 976.4  |
| Conditional- BDI             | 48.0%     | 820.5  | 830.5  | 830.7  | 855.4  | 850.4  |
| Conditional- BAI and BDI     | 52.0%     | 819.1  | 831.1  | 831.3  | 860.9  | 854.9  |
| Conditional- BAI, BDI, BAI X BDI | 52.0%   | 810.6  | 824.6  | 825.0  | 859.4  | 852.4  |
| Conditional- BAI, BDI and gender | 56.0% | 827.9  | 839.9  | 840.1  | 869.6  | 863.6  |
| Conditional- BAI, BDI, BAI X BDI X Gender | 52.0% | 813.6  | 827.6  | 827.9  | 862.3  | 855.3  |
| Conditional- BAI, BDI, FH of OCD | 52.0% | 821.1  | 835.1  | 835.4  | 870.8  | 862.8  |

*Pseud-R2, % of reduction in level one residual variance when unconditional model is compared with the conditional model. -2LL, -2 log likelihood; AIC, Akaike information criteria; AICC, Hurvich and Tsai’s criterion; CAIC, Bozdogan’s criterion; BIC, Bayesian information criterion, all information criteria except pseudo-R2 is expressed as smaller is better.

 provides data in a region with a Mediterranean climate, in which there is a lot of sunlight throughout all the seasons. This is a novel setting because the majority of previous studies have investigated seasonal changes in regions with cold climates (5, 6, 30). In those studies, seasonal variations were more pronounced in colder climates.

Strengths and Limitations

Our results should be evaluated within their context and limitations. First, the sample was obtained from a single center and does not represent the general population, limiting the generalizability of the results. Future studies of seasonal variations in OCD should consider using multiple sites and/or community samples to increase the representativeness of the sample. Second, socio-demographic data was collected retrospectively and so may be subject to memory bias. Third attrition was high. Fourth assumptions of multi-variate analyses were violated for some of the analyses and compensatory adjustments had to be made (i.e. using Pillai’s trace for Box’s M). Fifth, using multi-method evaluations of seasonality within our study (i.e. with patient report, with CGI-S scores, with SPAQ etc.) would have strengthened our results. Sixth, we did not evaluate obsessive compulsive symptoms with self-reports. Seventh, we did not evaluate for family history of affective disorders and/or seasonal affective disorder which may be confounders. Eighth, we did not evaluate for the effects of chronotype and past history of tics (13). Ninth, rather than multi-level growth models, time series analysis may have been used in analyses. Lastly, the patients were undergoing naturalistic treatment and this may have affected seasonal changes. However, the patients in the study by Vitale et al. were also undergoing naturalistic treatment and they reported seasonal variations in OCD symptoms.

CONCLUSION

In conclusion, our data provide no evidence for the existence of seasonal changes in the symptoms of OCD and suggest that the temporal variations may be due to depressive and anxious symptoms. Additionally, the way in which seasonal changes are measured (prospectively or retrospectively, self– report clinician evaluated) as well as “the sampling method” (i.e. clinical vs. community) may influence the results.

Acknowledgements: We thank staff at each site for their contributions (including data managers, analysts, and research assistants)

Ethics Committee Approval: This study adhered to the tenets of the Declaration of Helsinki and was approved by the Başkent University Institutional Review Board and Ethics Committee (Project no: KA 13/115).

Informed Consent: Written informed consent was obtained from all patients or from parents of patients if they were younger than 18 years old.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - EA; Design - EA; Supervision - EA; Resource - EA; Materials - EA; Data Collection and/or Processing - EA; Analysis and/or Interpretation - EA; Literature Search - EA; MOK, AET; Writing - EA, MOK, AET, Critical Reviews - EA, AET.

Conflict of Interest: The authors declare no conflicts of interest.

Financial Disclosure: This study was supported by the Başkent University Research Fund.

REFERENCES

1. Friborg O, Rosenvinge JH, Wynn R, Gradisar M. Sleep timing, chronotype, mood, and behavior at an Arctic latitude (69°N). Sleep Med 2014;15:798-807. [Crossref]
2. Yip PSF, Chao A, Chiu CWF. Seasonal variation in suicides: Diminished or vanished. Experience from England and Wales, 1982-1996. Br J Psychiatry 2000;177:366-369. [Crossref]
3. Stordal E, Morken G, Myklebust A, Neckelmann D, Dahl AA. Monthly variation in prevalence rates of comorbid depression and anxiety in the general population at 63–65 degrees North: the HUNT Study. J Affect Dis 2008;106:273–278. [Crossref]
4. Schlager D, Schwartz JE, Bremet E. Seasonal variations of current symptoms in a healthy population. Br J Psychiatry 1993;163:322–326. [Crossref]
5. Magnusson A, Axelsson J, Karlsson MM, Öskarsson H. Lack of seasonal mood change in the Icelandic population: results of a cross-sectional study. Am J Psychiatry 2000;157:234–238. [Crossref]
6. Winthorst WH, Post WJ, Meesters Y, Penninx BW, Nolen WA. Seasonality in depressive and anxiety symptoms among primary care patients and in patients with depressive and anxiety disorders; results from the Netherlands Study of Depression and Anxiety. BMC Psychiatry 2011;11:198. [Crossref]
7. de Graaf R, van Dorsselaar S, ten Have M, Schoemaker C, Vollebergh WA. Seasonal variations in mental disorders in the general population of a country with a maritime climate: findings from the Netherlands mental health survey and incidence study. Am J Epidemiol 2005;162:654–661. [Crossref]
8. Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 2010;15:53–63. [Crossref]
9. Sinha P, Bakhla AK, Patnaik AK, Chaudhury S. Seasonal obsessive-compulsive disorder. Ind Psychiatry J 2014;23:160–162. [Crossref]
10. Tan O, Metin B, Onen Unsalver B, Hızlı Sayar G. Seasonal mood changes in patients with obsessive-compulsive disorder. Psychiatry Res 2017;258:166–170. [Crossref]
11. Reimold M, Kobiella A, Smolka M, Stahlschmidt A, Knobel A, Rapp M, Batra A, Reischl G, Bares R, Heinz A. [11C] DASB PET Seasonal changes of cerebral serotonin transporters. J Nucl Med 2010;51:274. https://jnmm.jnm.snmjournals.org/content/51/supplement_2/274
12. Cheng C, Lin C-H, Chou P-H, Tsai C-J, Lan T-H, Nestadt G. Season of birth in obsessive-compulsive disorder. Depress Anxiety 2014;31:972–978. [Crossref]
13. Vitale JA, Brnguglio M, Galentino R, Dell’Osso B, Malgaroli A, Banfi G, Porta M. Exploring circannual rhythms and chronotype effect in patients with Obsessive-Compulsive Tic Disorder (OCTD): A pilot study. J Affect Disord 2020;262:286–292. [Crossref]
14. Cox RC, Olatunji BO. Circadian Rhythms in Obsessive-Compulsive Disorder: Recent Findings and Recommendations for Future Research. Curr Psychiatry Rep 2019;21:54. [Crossref]
15. First MB, Williams Janet BW, Spitzer RL, Gibbon M. Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Clinician Version: (SCID-CV) American Psychiatric Press, Inc; Washington DC, 1996. https://eprovide.mapi-trust.org/instruments/structured-clinical-interview-for-dsm-iv-axis-i-disorders
16. Özkurkcuğil A, Aydemir O, Yıldız M, Esen Danaci A, Koroglu E. Turkish translation and reliability study of Structured Clinical Interview for DSM-IV-TR Axis I Disorders. Drug Treat J 1999;12:233–236.
17. Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, Heninger GR, Charney DS. The Yale-Brown Obsessive Compulsive Scale: I. Development, use, and reliability. Arch Gen Psychiatry 1989;46:1006–1011. [Crossref]
18. Tek C, Ulug B, Rezaki BG, Tannirverdi N, Mercan S, Demir B, Vargel S. Yale-Brown Obsessive Compulsive Scale and US National Institute of Mental Health Global Obsessive Compulsive Scale in Turkish: reliability and validity. Acta Psychiatr Scand 1995;91:410–413. [Crossref]
19. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry 1961;4:561–571. [Crossref]
20. Hisli Şahin N. Reliability and validity of the Beck Depression Inventory among university students. Turk J Psychol 1989;7(2):3–13. https://www.researchgate.net/publication/233791614_Use_of_the_Beck_Depression_Inventory_with_Turkish_University_Students_Reliability_validity_and_Factor_Analysis
21. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consul Clin Psychol 1988;56:893–897. [Crossref]
22. Ulusoy M. Reliability and validity study of the Beck Anxiety Inventory. Unpublished Dissertation. Bakırköy Hospital for Mental and Nervous Disorders. İstanbul: 1993.
23. Li C. Little’s test of missing completely at random. Stata J 2013;13:795–809. [Crossref]
24. Dahinden C, Kalisch M, Bühlmann P. Decomposition and model selection for large contingency tables. Biom J 2010;52:233–252. [Crossref]
25. Evans C, Margison F, Barkham M. The contribution of reliable and clinically significant change methods to evidence-based mental health. Evid Bas Ment Health 1998;1:70–72. [Crossref]
26. Bickel R. Multilevel analysis for applied Research: It’s just regression! New York: The Guildford Press; 2007. p.285–330.
27. Harmatz MG, Well AD, Overtree CE, Kawamura KY, Rosal M, Ockene IS. Seasonal variation of depression and other moods: a longitudinal approach. J Biol Rhythms 2000;15:344–350. [Crossref]
28. Winthorst WH, Roest AM, Bos EH, Meesters Y, Penninx BW, Nolen WA, de Jonge P. Self-attributed seasonality of mood and behavior: a report from the Netherlands study of depression and anxiety. Depress Anxiety 2014;31:517–523. [Crossref]
29. Oyane NM, Bjelland I, Pallesen S, Holsten F, Bjorvatn B. Seasonality is associated with anxiety and depression: the Hordaland health study. J Affect Disord 2008;105:147–155. [Crossref]
30. McConville C, McQuaid M, McCartney A, Gilmore W. Mood and behavior problems associated with seasonal changes in Britain and Ireland. Int J Soc Psychiatry 2002;48:103–114. [Crossref]