Prevalence of active trachoma and its associated factors among 1–9 years of age children from model and non-model kebeles in Dangila district, northwest Ethiopia

Almaw Genet1*, Zewdu Dagnew2*, Gashaw Melkie3‡, Awoke Keleb4‡, Achenef Motbainor5‡, Amare Mebrat6‡, Cheru Tesema Leshargie2**

1 Awi Zone, Dangila Woreda Health Office, Dangila, Ethiopia, 2 Department of Public Health, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia, 3 Department of Environmental Health, School of Public Health, Teda Health Science College, Gondar, Ethiopia, 4 Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia, 5 School of Public Health, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia, 6 School of Public Health, College of Medicine and Health Science, Woldia University, Woldia, Ethiopia

* These authors contributed equally to this work.
‡ GM, AK, AM and AM also contributed equally to this work.
* chertesema@gmail.com

Abstract

Background

Trachoma is the leading infectious disease that leads to blindness worldwide, especially in developing countries. Though Ethiopia had targeted a trachoma elimination program by 2020, the problem worsens, particularly in the Amhara Region. Even though sustained intervention measures are undertaken across the region, it is unclear why trachoma is still a significant public health problem. So, this study assessed the prevalence of active trachoma and associated factors among 1–9 years of age children from model and non-model kebeles in Dangila district Amhara Region, Northwest Ethiopia.

Methods

A community-based comparative cross-sectional study was conducted from 20th September 2019 to 29th October 2019. A multistage stratified random sampling technique was used to reach 704 children from model and non-model kebeles. Samples were allocated proportionally to model and non-model kebeles. A structured and pretested data collection tool and observational checklist was used to manage the necessary data. Data were coded and entered in Epidata version 4.6, and further analysis was done using SPSS version 20 software. Bivariable and multivariable logistic regression analysis was employed to identify factors associated with active trachoma. Adjusted Odds Ratios (AOR), p-value, and respected Confidence Interval (CI) were used to report the findings.
Results

Seven hundred four children were included in this study, with a response rate of 97.8%. The overall prevalence of active trachoma was 6% (95% CI: 4.5, 8.1). The prevalence of active trachoma among non-model and model Kebele was not significantly different. Still, the prevalence of active trachoma among children from model Kebele were [4.5%, (95% CI: 2.4%, 7.1%)] relatively lower compared with non-model kebeles, [7.6%, 95% CI: (4.9%, 10.9%)]. Moreover, not using latrine (AOR = 4.29, 95% CI: 1.96, 9.34), fly-eye contact (AOR = 2.59, 95% CI: 1.11, 6.03), presence of sleep in eyes (AOR = 2.46, 95% CI: 1.10, 5.47), presence of ocular discharge (AOR = 2.79, 95% CI: 1.30, 6.00), presence of nasal discharges (AOR = 2.67, 95% CI: 1.21, 5.90) and washing faces with soap (AOR = 0.22, 95% CI: 0.07, 0.69) were found significantly associated with the prevalence of active trachoma among children 1–9 years old.

Conclusions

The prevalence of active trachoma in the model and non-model kebeles was high and did not show a statistical difference. Attention to be given to latrine utilization, washing face with soap, and other personal hygiene activities.

Introduction

Trachoma is a disease of the eye caused by infection with the bacteria Chlamydia Trachomatis [1, 2]. Blindness from trachoma is an irreversible and endemic disease in 44 countries worldwide [2]. Active trachoma causes follicular inflammation of the tarsal conjunctiva. Children under nine years are the primary reservoir of the bacteria for active trachoma because active trachoma prevalence decreases while aging increases [3, 4]. Model kebeles were set by the Ethiopian government’s five-year health sector strategic transformation plan to combat infectious diseases, specially NTDS, including active trachoma [5]. A model kebele needs to be free from open defecation, adequately constructed, utilized latrine, and improved personal and environmental hygiene. Furthermore, improved school health where the residents meet the following interrelated criteria as ≥80% of residents are model households, ≥85% of residents owned improved latrines, and ≥85% of schools become models [5].

Globally, around 50 million people are infected with trachoma, and 3 to 10 million people are becoming blind due to the infection [6]. The annual economic loss due to trachoma-related blindness and visual impairment was 2.9–5.3 billion US dollars [6, 7]. Nowadays, 40.6 million people worldwide suffer from active trachoma, of which 77% are from 29 endemic African countries, including Ethiopia [8]. Ethiopia, India, Nigeria, Sudan, and Guinea, account for 48.5% of the global burden of active trachoma [1]. In Ethiopia, trachoma is the second major cause of blindness and the third major cause of low vision [9]. Despite the sustained effort that excelled in stopping the problem, trachoma is still a significant public health problem in Ethiopia, with the peak prevalence in Amhara Region at 62.6% [10–12].

Several factors contribute to the occurrence of active trachoma. Evidence identified that secretions around the eyes that attract flies, scarcity of water for personal hygiene, limited access and utilization of latrines, overcrowded living conditions, close contact, and sleeping in the same bed with infected persons increased trachoma prevalence [13–16]. The occurrence of
active trachoma among 1–9 years of age-old children was also associated with different socio-demographic characteristics like age, family size, sex status [16–18], educational level of the household head, and household economic status [17, 18].

SAFE (Surgery, Antibiotics, Facial cleanliness, and Environmental improvement)-based interventions have been implemented in endemic countries, including Ethiopia [19, 20]. Due to that, the Dangila district graduated as free of trachoma four years ago by achieving <5% prevalence of active trachoma and stopping Mass Drug Administrations (MDA). Therefore, the only intervention left for sustaining a <5% prevalence of active trachoma is the F and E components of the SAFE strategy by implementing health extension packages that substantially affect maintaining lower trachoma prevalence in the district. However, evidence on the effect of health extension packages on the prevalence of trachoma after stopping MDA in the study area is limited [21]. Therefore, considering the problem and variability of risk factors, this study aimed to assess the prevalence of active trachoma and associated factors among children aged 1–9 years old in the health extension package non-model and model kebeles of Dangila District in Ethiopia.

Methods

Study design, setting, and period

A comparative cross-sectional study was conducted in Dangila district from October to November 2019. Dangila district is the 3rd most populous and covers a large geographical area among the twelve districts at Awi-zonal administration. Danglia district (woreda) is a part of the Amhara region and Awi zone and is located in the western part of Ethiopia. Furthermore, it is found 78 km away from Bahir Dar regional city in the Southeast direction. The district had six health centers and thirty-one health posts or kebeles. Of these, 15 kebeles were verified as model kebele on the district transformation agenda by model kebele criteria. The rest 16 are non-model kebeles [21]. The district’s projected total population based on the 2007 national population census in 2020 is 154,876 and 35,786 households [22].

Study population

All children whose age was found in the range of 1–9 years old in the Dangila district were the source population. Children aged 1–9 years living in the model and non-model kebeles were included in this study. On the contrary, temporarily residing children were excluded.

Study variables

The outcome variable showed signs of active trachoma among children aged 1 to 9 years old. The explanatory variables were age and sex of the child, residence, parental education, wealth index, availability of latrine facility, type of latrine, latrine utilization, household size, source of water, accessibility of water, the quantity of daily water used, presence of feces near the compound, waste disposal sites, solid waste disposal methods, availability of livestock, frequency of face washing, using soap for washing, discharge on the eye, facial cleanliness and presence of flies on a child’s face, knowledge of mothers about trachoma and number of under ten years children.

Operational definitions

Active trachoma: The presence of Trachomatous inflammation–follicular or Trachomatous inflammation- intense [6].
Trachomatous inflammation -follicular (TF): The presence of five or more follicles in the upper tarsal conjunctiva, each with at least 0.5 mm diameter in size [23].

Trachomatous inflammation- intense (TI): is pronounced inflammatory thickening of the upper tarsal conjunctiva that obscures more than half of the standard deep vessels [23].

Knowledge: assessed by developing trachoma transmission, prevention and control measures related questions. If the mother answered ≥ 80% of knowledge-related questions, then the mother classified as knowledgeable 50%-79% was reasonably knowledgeable. Less than 50% were classified as less knowledgeable [24].

Model kebeles: where the residents meet the following interrelated criteria as ≥80% of residents are model households, ≥85% of residents attended facility-based delivery, ≥85% of residents owned improved latrines, and ≥85% of schools become models [5].

Non-model kebeles:—The low performance of the five interrelated criteria, namely; model HH (≤80%), Facility delivery (≤85%), improved latrine ownership (≤85%), and model schools (≤85%) as well as for urban kebeles it includes model youth centers performance (≤85) [5].

Sample size determination and sampling procedures

The sample size was determined by using the second objective using factors significantly associated with active trachoma by considering the following assumptions: 95% confidence level, 80% power of the study, two comparison groups population ratio 1:1, considering the availability of flies on the face children as significant determinants of trachoma and the proportion in the exposed group was 45.9%, the proportion in the unexposed group was 29% with an adjusted odds ratio (AOR) of 1.98 and design effect 2 [25]. The calculated sample size was 720 households with 1–9 years of age-old children, including a 10% non-response rate.

Multistage stratified sampling followed by a simple random sampling technique was used to select kebeles and households. Stratification of the kebeles was done based on their model and non-model kebele status. Of all kebeles in the district, 35% (5 kebeles in the model and five kebeles in the non-model) were randomly selected. Those kebeles are Chara-01, Dubi, Dimsa, and Affessa from graduated model kebeles; on the other way, Gumdrri, Abadra, Misrak Zelesa, Gissa Balegiziabher, and Dengeshita were selected randomly from non-model kebele strata. Population proportion allocation was proposed to determine the required sample size for each randomly selected kebele.

In a total of 2087 and 3049 households, at least one children were aged 1–9 years old in model and non-model kebele, respectively. Households with children aged 1–9 years old were selected using a systematic random sampling technique. To determine the interval of Households in selected Kebele, the Kth interval value was used. Every 8th and 5th interval was used to allocate the sample size to model and non-model kebeles, respectively. Before starting the sampling, pen spiring was conducted to indicate the starting location of the village. Finally, one child was selected using the lottery method when two or more children live in 1–9 years old per a single household. Finally, 720 households were selected using a systematic sampling technique.

Data collection tools and procedures

Data were collected using a pretested structured questionnaire, observational checklists, and physical examination. The data collection tool was developed after reviewing other available literature [8, 15, 24, 26–30]. The questionnaire had five parts: socio-demographic variables, child behavioural factors, parents or caregivers’ knowledge, and environmental or household-related variables. Firstly, the questionnaire was developed in English, translated into Amharic
(local language), and returned to English to check its consistency. Four trained public health professionals who collected the household data had previous data collection experience. The clinical assessment of active trachoma signs in each child was assessed by two TT-trained surgeon nurses using 2.5x loupes. The data collector documented the presence of any ocular or nasal secretions and any fly-eye contact during data collection before clinical examination of children’s eyes. Trained TT surgeon trachoma grader nurses examined both eyes for active trachoma signs using the WHO Trachoma Grading System [29]. The examiner cleaned his hands with a disinfectant solution (alcohol) before making eye contact and examining the children.

Data management and analysis

The questionnaire was pretested using 5% of the total sample in another kebele which was not included in the study, and the necessary amendments were done after the pre-test. After the data collection, the information was reviewed, and incomplete questionnaires were returned to the data collectors for revisiting the respondent and completion. Data were coded and entered in Epidata version 4.6 and exported to SPSS version 20 for analysis. Descriptive statistics were used to describe data. Principal Component Analysis (PCA) generated a wealth index and divided households into poor, medium, and high economic groups.

The sampling adequacy for PCA was assessed using Kaiser-Meyer-Olkin (KMO) statistics. The KMO measures the adequacy of sampling thoroughly and the sampling adequacy for each variable that indicates the proportion of variance the variables might be caused. Sampling adequacy set at communality value > 0.5 with P-value > 0.05 and complex structure factor (Eugene value) greater than one was considered [26]. Bivariate and multivariable logistic regression analyses identified variables significantly associated with active trachoma. Model fitness was checked using the Hosmer-Lemeshow test (P-value < 0.05). A backward stepwise logistic regression model was used during multivariable logistic regression to control confounding effects. During bivariable logistic regression analysis, variables with a p-value < 0.25 were considered candidates for multivariable logistic regression analysis [27, 30]. Statistically significant association of independent variable with dependent variable was declared at P-value < 0.05.

Ethical considerations

Debre Markos University assessed ethics. An approval letter was obtained from the College of Health Sciences Ethical Review Committee. Moreover, the support letter was secured from the study setting, Dangila district Administrative and Health offices. The parents or guardians were informed about the study’s purpose, and verbal informed consent was obtained before data collection. Mothers or caregivers were also informed that they had the full right to discontinue participating in the study. Confidentiality was ensured by omitting the name and ID of the participants. A separated, secured, and conducive interview setting was selected. Each respondent was assured that their information was confidential and used only for research. Trachoma-infected children were referred to the nearest health facility.

Results

Socio-demographic characteristics of the respondent

A total of 704 children in the age range of 1 to 9 years completed their responses, providing a response rate of 97.8%. Slightly more than half (55%) of the respondents were from the model kebeles. The mean (± standard deviation (SD)) age of children was 4.8 (±2.3) years and 4.0 (±2.2) years old from model and non-model kebeles, respectively. The proportion of female
children who participated in this study was 185 (52.6%) from the model and 182 (51.7%) from non-model kebeles. The majority, 347 (98.6%) of the households, have two children, and 345 (98%) of them were from model and non-model kebeles. Regarding household economic status, 140 (39.8%) of households in the model and 95 (27%) were in the high financial group based on assets owned (Table 1).

Environmental and housing conditions of the households

Nearly all households had sanitation facilities in their compound. For instance, 97.8% and 96% of model and non-model kebele households had latrine access. Of them, 98.6% from model kebele and 72.7% from non-model kebele properly utilize latrine. However, human feces were detected near 3.7% and 50.8% of households among model and non-model kebeles, respectively (Table 2).

Childhood behavioral factors

Of 704 children, 669 (95%) had a habit of face washing. In contrast, only fifteen 15 (4.3%) in model and 20 (5.6%) in non-model kebeles had no tradition of washing their face regularly.

Table 1. The respondents’ socio-economic and demographic characteristics from model and non-model kebele of Dangila district, northwest Ethiopia, 2019 (n = 704).

Characteristics	Kebele category	Totally	Chi-square		
	Model Kebele (n = 352)	Non-model kebele (n = 352)			
	No %	No %	No %	P-value	
Sex	Male	167 47.4	170 48.3	337 47.9	0.763
	Female	185 52.6	182 51.7	367 52.1	
Education status of a child	Not attended	246 69.9	281 79.8	527 74.8	0.002
	Primary	106 30.1	71 20.1	177 25.2	
Education status of mothers	No formal education	265 75.3	292 83	557 79.1	0.085
	Primary & above	87 24.7	60 17	147 20.9	
The educational level of husbands	No formal education	203 64.3	254 75	457 69.8	0.025
	Primary and above	113 35.7	85 25	198 30.2	
Children’s age	1–5 years	215 61.1	261 74.1	476 67.6	0.001
	6–9 years	137 38.9	91 25.9	228 32.4	
Age of mothers or caregivers	≤ 29	50 14.2	107 30.4	157 22.3	0.001
	30–44	251 71.3	223 63.4	474 67.3	
	45–59	51 14.5	22 6.2	72 10.4	
Family size	≤ 5	220 62.5	169 48	389 55.3	0.001
	>5	132 37.5	183 52	315 44.7	
Sleeping in the same bed	Yes	142 42	265 45.4	407 57.8	0.001
	No	210 58	87 54.5	297 42.2	
Wealth index	Poor	113 32.1	120 34.1	233 33.1	0.001
	Medium	99 28.1	137 38.9	236 33.5	
	Higher or rich	140 39.8	95 27	235 33.4	
Residence	Urban	71 20.2	12 3.4	83 11.8	0.001
	Rural	281 79.8	340 96.6	621 88.2	

https://doi.org/10.1371/journal.pone.0268441.t001
There is a difference between children’s model and non-model kebeles’ hygiene behavior, especially facial hygiene. Similarly, 55.4%, 19.9%, and 29.7% of the children from the model kebele were observed washing their faces once, twice and more than twice a day, respectively, using soap. On the contrary, 73.5%, 17.5%, and 9% of the children from the non-model kebele were presented with washing their faces once, twice and more than twice a day, respectively, using soap (Table 3).

Prevalence of active trachoma

Of all 704 children examined for the presence or absence of trachoma in their eyes, 43 children were positive for active trachoma. The overall prevalence of active trachoma was 6.1% (95% CI: 4.5%, 8.1%). The prevalence found to be 4.5% (95% CI: 2.4%, 7.1%) in the model and 7.7% (95% CI: 4.9%, 10.9%) in the non-model kebeles (Fig 1).

Factors associated with active trachoma

During the bivariate logistic regression, latrine utilization, residence, animal waste, solid waste disposal pit, ocular discharge, nasal discharge, flies on the face, fly-eye contact, sleep on the eye, antibiotics medication, and washing faces by soap were found to be a p-value less than or equal to 0.25 and selected as a candidate for the final multivariable analysis. But, the other variables, such as socio-economic variables with a p-value > 0.25, are not selected for multivariable analysis. During the multivariable logistic regression analysis, variables like the experience of fly-eye contact, the presence of sleep in the eye, the presence of discharge on the eye, face washing with soap, and nasal discharge were significantly associated with the prevalence of active trachoma.

The odds of having active trachoma among children (1–9) from households who did not utilize latrine was 4.3 times higher than children from families using latrine (AOR = 4.3, 95% CI: 2.4, 7.1).
Characteristics	Model Kebele (n = 352)	Non-model kebele (n = 352)	Total	Chi-square
	No %	No %	No %	P-value
Face washing regularly	Yes 337 95.7	332 94.3	669 95	0.386
	No 15 4.3	20 5.6	35 5	
How many times wash your face per day?	One 170 55.4	244 73.5	414 61.8	0.001
	Twice 67 19.9	58 17.5	125 18.6	
	> twice 100 29.7	30 9	130 19.4	
Ocular discharge	Yes 130 36.9	91 25.8	221 31.4	0.038
	No 222 63.1	261 74.2	483 68.6	
Nasal discharge	Yes 114 32.4	142 40.3	256 36.4	0.028
	No 238 67.6	210 59.7	448 63.6	
Fly-eye contact	Yes 144 40.9	186 52.8	330 46.9	0.001
	No 208 59.1	166 47.2	374 53.1	
Drying material use	Regularly 9 2.6	7 2.1	16 2.4	
	Sometimes 89 26.4	87 26.2	176 26.3	0.923
	Never 239 71.4	238 71.7	477 71.3	
Flies observed on the face	Yes 114 32.4	142 40.3	256 36.4	0.201
	No 238 67.6	210 59.7	448 63.6	
Use soap for face washing	Yes 343 97.4	330 94	673 95.6	0.017
	No 9 2.6	22 6	31 4.4	
Sleep in the eye	Yes 148 42	162 45.4	310 43.8	0.288
	No 204 58	190 54.5	394 56.2	
Azithromycin Rx status	None 237 67.3	283 80.4	520 73.9	0.001
	At least one time 115 32.7	69 19.6	184 26.1	

https://doi.org/10.1371/journal.pone.0268441.t003

Fig 1. Prevalence of active trachoma among children aged 1–9 years from model and non-model kebele in Dangila district, northwest Ethiopia, 2019.

https://doi.org/10.1371/journal.pone.0268441.g001
CI: 2.0, 9.3). In the same manner, children who had fly-eye contact were three times (AOR = 2.6, 95% CI: 1.1, 6.0) higher than children who had no fly-eye contact. Having an ocular and nasal discharge were 2.8 and 2.7 times higher to develop active trachoma than their counterparts, as well as children’s who had a sleep (collection of crusted secretions in the canthus of the eyes) were 2.5 times more likely to develop active trachoma. Lastly, the odds of having active trachoma among children (1–9) years old who had an experience of face washing with soap were 77.9% lower than their counterparts (AOR = 0.2, 95% CI: 0.1, 0.7) (Table 4).

Discussion

In Ethiopia, trachoma is the leading infectious disease that causes blindness and death [1]. The current study found that the overall prevalence of active trachoma infection among children 1–9 years old was 6.1% (95% CI: 4.5, 8.1%). The current study found comparable evidence with a previous study conducted in the Dera district [10], Gondar Zuria District [31], North and South Wollo Zones [32]. Furthermore, our study finding is lower than the previous findings reported in Zala district [33], Leku town [17], Medawulabo [34], and Lemo district [35]. The lower prevalence in the current study might be due to the better implementation of the SAFE strategy, such as A (antibiotics), F (facial cleanness), and E (environmental management) components. The previous study in Zala district, Leku town, and Medawulabo reported that about 85.6%, 59.0%, and 44.1% of children wash their faces regularly, respectively. However, in the current study, 95% of children washed their faces regularly every day. Moreover, the discrepancy might be because the current study setting graduated from MDA four years ago. Furthermore, environmental improvements in access to sanitation facilities and improved water sources have an essential role in reducing active trachoma in the current study. However, the finding was higher than in previous studies conducted in the Casamance region of Senegal and Amhara region, Ethiopia, after implementing a three-year SAFE strategy [36, 37].

Furthermore, the prevalence of active trachoma in non-model and model and kebele differs at 7.7% (95% CI: 4.9, 10.9) and 4.5% (95% CI: 2.4, 7.1), respectively, the difference was not statistically significant. This consistent finding might be because the two study settings have had the same awareness and knowledge about trachoma signs, transmission mechanisms, and prevention methods. About 99.4% of mothers who live in the model had information about trachoma, while approximately the exact figure (98.9%) of mothers residing in non-model kebele had information about trachoma. Similarly, 38.9% and 32.9% of children’s mothers who live in the model and non-model households had good knowledge about trachoma. Besides this, the availability of latrines in both kebeles is nearly similar. Moreover, the similarity may be due to children’s hygiene practices such as face washing and soap use in both kebeles.

The difference in model and non-model kebeles did not persist after multivariable analysis, indicating that both areas require continued implementation of trachoma control interventions to increase the prevalence under the elimination target of 5%. The lower-level maternal education might also explain the difference. The educational status of mothers has played a significant role in reducing trachoma prevalence as educated mothers had positive attention in caring for and teaching their children about trachoma prevention mechanisms. On the other hand, it may be due to the study conducted at the district discontinued MDA supplementation four years ago.

After completing five annual MDA rounds, the pooled prevalence was higher than the 5% criteria set under the WHO trachoma elimination program and impact surveys in five districts in the Amhara region [38, 39]. This similarity may be due to the implementation of SAFE interventions that results may help the district sustain a lower prevalence of active trachoma.
The pooled prevalence was higher than the 5% criteria set under the WHO trachoma elimination program; the prevalence of active trachoma in non-model kebele was higher [40]. These might be due to the re-emergence of Chlamydia infection as the district discontinued

Table 4. Regression analysis of associated factors of active trachoma among children aged (1–9 years) from Dangila district, northwest Ethiopia, 2019.

Characteristics	Active trachoma (n = 704)	Absent	COR (95%CL)	AOR (95%CL)
	Present	Absent		
Maternal education				
Not formal Edu	37	520	0.60 (0.25, 1.45)	
Primary and more	6	141	1	
Children living place				
Non-model kebele	27 (7.7%)	325 (92.3%)	1.75 (0.93, 3.30)	1.23 (0.96, 2.34)
Model kebele	16 (4.5%)	336 (95.5%)	1	1
Utilization of latrine (n = 682)				
No	17 (17.9%)	78 (82.1%)	6.18 (3.10, 12.30)	4.29 (1.96, 9.34)**
Yes	20 (3.4%)	567 (96.6%)	1	1
Residence				
Urban	2 (2.4%)	81 (97.6%)	2.86 (0.68, 12.06)	3.74 (0.72, 19.37)
Rural	41 (6.6%)	580 (93.4%)	1	1
Animal faces				
Yes	34 (8.6%)	361 (91.4%)	2.41 (1.13, 5.11)	2.07 (0.80, 5.37)
No	9 (3.8%)	230 (96.2%)	1	1
Solid waste disposal pit				
Yes	17 (4%)	406 (96%)	1	1
No	26 (9.3%)	255 (90.7%)	2.45 (1.30, 4.58)	2.06 (0.95, 4.48)
Ocular discharge				
Yes	28 (6%)	206 (94%)	4.12 (2.16, 7.89)	2.79 (1.30, 6.00)**
No	15 (12%)	455 (88%)	1	1
Nasal discharge				
Yes	29 (11.3%)	227 (89.7%)	3.96 (2.05, 7.65)	2.67(1.21, 5.90)*
No	14(5.1)	434(96.9)	1	1
Flies on face				
Yes	28(11.9)	206(88.1)	4.12 (2.16, 7.89)	1.99 (0.83, 4.74)
No	15(5.1)	455(96.9)	1	1
Fly-eye contact				
Yes	32(9.7%)	298(90.3%)	3.54 (1.76, 7.15)	2.59 (1.11, 6.03)*
No	11(2.9%)	363(97.1%)	1	1
Sleep on the eye				
Yes	29(9.4%)	281(90.6%)	2.80 (1.45, 5.40)	2.46 (1.10, 5.47)*
No	14(3.6%)	380(96.4%)	1	1
Antibiotics medication				
None	3(1.6%)	181(98.4%)	0.20 (0.06, 0.65)	0.30 (0.09, 1.06)
At least one time	40(7.7%)	480(92.3%)	1	1
Washing faces with soap				
No	8(25.2%)	23(74.2%)	0.158 (0.07, 0.38)	0.22 (0.07, 0.69)**
Yes	35(5.2%)	638(94.8%)	1	1

Significant at P < 0.05

*P<0.01

**P<0.001.

https://doi.org/10.1371/journal.pone.0268441.t004

The pooled prevalence was higher than the 5% criteria set under the WHO trachoma elimination program; the prevalence of active trachoma in non-model kebele was higher [40]. These might be due to the re-emergence of Chlamydia infection as the district discontinued...
MDA supplementation (the last rounds of MDA were conducted in the district four years later in 2015). Such re-emergence in the communities is supported by previous studies conducted in five districts in Ethiopia and reported that active infection re-emergence was 1.4% in recently treated communities and 4.3% not treated communities [37].

In this study analysis, different factors have an association with active trachoma. Latrine utilization, washing faces with soap, fly-eye contact experience, sleep in the eyes, discharge on the eye and nose were variables found to be significantly associated with the prevalence of active trachoma among children (1-9y rears) old. The probability of being infected with active trachoma was higher in children 1–9 years old who had ocular and nasal discharges than those who had not. The finding is consistent with previous studies in Gambia and Tanzania [41], southern and northern Wollo zone districts, and rural Ethiopia [32, 42]. This might be due to the infected discharge from the nose and eye transmitting infection via fingers, flies, or fomites [43, 44] and through direct contact with nasal and ocular secretions [45].

This study also revealed that children (1–9) who had fly-eye contact were more likely to risk active trachoma than their counterparts. This finding is supported by the previous studies conducted in Ankober district and rural Ethiopia [42, 46]. This may be due to sleep (collection of crusted secretions in the canthus of the eyes) that is caused by due to secretion of ocular and nasal discharge in the eye. This may be due to sleep in the eye and ocular and nasal discharge. The presence of nasal and ocular secretions and crusts, which attract flies, leads to increased fly-eye contact and an increased risk of trachoma infection [28, 33, 47, 48].

Not using a latrine can be considered an indicator of hygienic behavior. Children (1–9 years old) who lived in households that did not use latrines were more likely to be affected by active trachoma. This finding aligns with a study conducted in the Gonji kolela, Baso-Liben, and Ankober districts[46, 47, 49]. This could be due to practicing open defecation near the house being a favorable environment for breeding Musca sorbens; these are a reservoir of the causative agent, Chlamydia trachomatis, and an essential contributor to disease transmission.

This study also revealed that using soap for face washing is significantly associated with reducing active trachoma prevalence. This finding is consistent with the previous studies in Leku town and the Baso-Liben district [17, 47]. The possible explanation for this may be that face washing with water and soap improves the facial cleanliness of the children, and their faces should not receive eye-seeking flies, which reduces the risk of acquiring trachoma.

Conclusions

In this study, the prevalence of active trachoma among children 1–9 years old was 6% and had not shown statistically significant variation between model and non-model kebeles. The prevalence of active trachoma among children 1–9 years old in the Dangila District was in line with the WHO-recommended trachoma elimination program. Latrine utilization, using soap, the experience of fly-eye contact, the presence of sleep, discharge on the eye and the nose were significantly associated with the prevalence of active trachoma among children (1–9 years old). Therefore, an intervention area needs to be improving personal hygiene-related activities such as washing children’s faces thoroughly with soap, removing dirt (ocular and nasal discharge), and eye sleeping from their faces. Significant emphasis on the use of sanitation services, especially on latrine construction and use, is also required to eliminate open defecation.

Limitation of the study

One of the strengths of this study is including large sample size. Moreover, this study investigated children in the 1–9 year age group in accordance with WHO guidelines. It is possible that the responses to the questionnaire might have social desirability bias and potential recall.
bias. However, many components such as environmental hygiene conditions, water source, and facial hygiene were directly observed. The other limitation of this study was the lack of qualitative components for triangulation.

Supporting information

S1 File.
(DOCX)

S2 File.
(DOCX)

S1 Dataset.
(SAV)

Author Contributions

Conceptualization: Almaw Genet, Achenef Motbainor, Cheru Tesema Leshargie.

Data curation: Almaw Genet, Awoke Keleb.

Formal analysis: Almaw Genet, Awoke Keleb, Amare Mebrat, Cheru Tesema Leshargie.

Investigation: Almaw Genet, Zewdu Dagnew, Achenef Motbainor, Amare Mebrat.

Methodology: Almaw Genet, Gashaw Melkie, Awoke Keleb, Achenef Motbainor, Amare Mebrat, Cheru Tesema Leshargie.

Resources: Almaw Genet.

Software: Almaw Genet, Amare Mebrat, Cheru Tesema Leshargie.

Supervision: Almaw Genet, Zewdu Dagnew, Cheru Tesema Leshargie.

Validation: Almaw Genet, Zewdu Dagnew, Achenef Motbainor, Amare Mebrat.

Visualization: Almaw Genet.

Writing – original draft: Almaw Genet, Gashaw Melkie, Awoke Keleb.

Writing – review & editing: Almaw Genet, Zewdu Dagnew, Gashaw Melkie, Awoke Keleb, Achenef Motbainor, Amare Mebrat, Cheru Tesema Leshargie.

References

1. Mariotti SP, Pascolini D, Rose-Nussbaumer J: Trachoma: global magnitude of a preventable cause of blindness. British Journal of Ophthalmology 2009(5):563–568. https://doi.org/10.1136/bjo.2008.148494 PMID: 19098034

2. World Health Organization (WHO): Trachoma—World Health Organization Key facts. 9 May 2021.

3. Chawicha K, Asnake M, Kassie G, Nigatu T, Belachew M, Zerihun H: The status of hygiene and sanitation practice among rural model families of the Health Extension Program (HEP) in Wolayta and Kembata Tembaro Zones of Southern Nations, Nationalities and Peoples’ Region of Ethiopia. Ethiopian Journal of Health Development 2012, 26(2):93–100.

4. Australia C: CDNA National Guidelines for the Public Health Management of Trachoma. Do Health, Editor. 2014.

5. Federal Ministry of health: Woreda Transformation Agenda Concepts and its Theory of Change. 2018.

6. World Health Organization (WHO): Trachoma fact-sheets (Epidemiology and clinic features, Distribution, Economic impact, Prevention and control and WHO response. 2022, 13(5):855.
7. Resnikoff S, Pascolini D, Mariotti SP, Pokharel GP: Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bulletin of the World Health Organization 2008, 86:63–70. https://doi.org/10.2471/blt.07.041210 PMID: 18235892
8. World Health Organization (WHO): Alliance for the Global Elimination of Blinding Trachoma by the year 2020: Progress report on elimination of trachoma. Weekly Epidemiological Record = Relevé épidémiologique hebdomadaire 2014, 89(39):421–428. PMID: 25275153
9. Berhane Y, Worku A, Beijiga A, Adamu L, Alemayehu W, Bedri A, et al: Prevalence and causes of blindness and low vision in Ethiopia. Ethiopian Journal of Health Development 2007, 21(3):204–210.
10. Alemayehu Metadel, Koye Digsu N, Tariku Amare, Kedir Yirmam: Prevalence of active trachoma and its associated factors among rural and urban children in Derna Woreda, Northwest Ethiopia: a comparative cross-sectional study. Biomed research international 2015. https://doi.org/10.1155/2015/570898 PMID: 25954753
11. World Health Organization: Global WHO alliance for the elimination of blinding trachoma by 2020. Weekly Epidemiological Record = Relevé épidémiologique hebdomadaire 2012, 87(17):161–168. PMID: 22574352
12. Berhane Y, Worku A, Beijiga A, Adamu L, Alemayehu W, Bedri A, et al: Prevalence of trachoma in Ethiopia. The Ethiopian Journal of Health Development (EJHD) 2007, 21(3).
13. Bailey R, Downes B, Downes R, Mabey D: Trachoma and water use; a case control study in a Gambian village. Transactions of the Royal Society of Tropical Medicine and Hygiene 1991, 85(6):824–828. https://doi.org/10.1016/0035-9203(91)90470-j PMID: 1801366
14. Brechner RJ, West S, Lynch M: Trachoma and flies: individual vs environmental risk factors. Archives of Ophthalmology 1992, 110(5):687–689. https://doi.org/10.1001/archopht.1992.01080170109035 PMID: 1580846
15. Oswald WE, Stewart AE, Kramer MR, Endeshaw T, Zerihun M, Melak B, et al: Active trachoma and community use of sanitation, Ethiopia. Bulletin of the World Health Organization 2017, 95(4):250. https://doi.org/10.2471/BLT.16.177758 PMID: 28479620
16. West SK, Congdon N, Katale S, Mele L: Facial cleanliness and risk of trachoma in families. Archives of Ophthalmology 1991, 109(6):855–857. https://doi.org/10.1001/archopht.1991.01080060119038 PMID: 2043075
17. Abebo Teshome Abuka, Tesfaye Dawit Jember: Prevalence and distribution of active trachoma among children 1–9 years old at Leku town, southern Ethiopia. Current Pediatric Research 2017, 21(3).
18. Assefa N, Abbram Roba A, Abdosah T, Kemal J, Demissie E: Prevalence and Factors Associated with Trachoma among Primary School Children in Harari Region, Eastern Ethiopia. Ophthalmology Research: An International Journal 2017, 7(3).
19. World Health Organization: Global elimination of blinding trachoma. Geneva: World Health Organization; 1998. World Health Assembly, Resolution 1998, 51(1).
20. Roba AA, Wondimu A, Patel D, Zondervan M: Effects of intervention with the SAFE strategy on trachoma across Ethiopia. Journal of Epidemiology & Community Health 2011, 65(7):626–631. https://doi.org/10.1136/jech.2009.094763 PMID: 20693489
21. Dangila woreda Health Office: 2018/2019 Annual report the woreda 2019.
22. Knoema: Population and Households Statistics of Ethiopia 17 January 2019.
23. Australia CDN: CDNA National Guidelines for the Public Health Management of Trachoma. Do Health, Editor 2014.
24. Lewetegn Moges, Getachew Meron, Kebede Tadesse, Tadesse Gemenchu, Tsegahun Asfaw: Prevalence of Intestinal Parasites among Preschool Children and Maternal Knowledge, Attitude and Practice on Prevention and Control of Intestinal Parasites in Senbete and Bete Towns, North Shoa, Ethiopia. International Journal of Biomedical Materials Research 2019, 71(1):1–7.
25. Mpyet C, Lass BD, Yahaya HB, Solomon AW: Prevalence of and risk factors for trachoma in Kano state, Nigeria. PLoS One 2012, 7(7):e40421. https://doi.org/10.1371/journal.pone.0040421 PMID: 22792311
26. Ayuni NW, Sari IG: Analysis of factors that influencing the interest of Bali State Polytechnic’s students in entrepreneurship. In: Journal of Physics: Conference Series: 2018: IOP Publishing. 2018; 012071.
27. Bendel RB, Afifi AA: Trachoma and water use; a case control study in a Gambian village Journal of the American Statistical association 1991, 85(6):824–828.
28. Mpyet C, Lass BD, Yahaya HB, Solomon AW: Prevalence and risk factors for trachoma in Kano state, Nigeria. PLoS One 2012, 7(7):e40421. https://doi.org/10.1371/journal.pone.0040421 PMID: 22792311
29. Thylefors B, Dawson CR, Jones BR, West SK, Taylor HR: A simple system for the assessment of trachoma and its complications. *Bulletin of the World Health Organization* 1987, 65(4):477. PMID: 3500800

30. Zhang Z: Model building strategy for logistic regression: purposeful selection. *Annals of translational medicine* 2016, 4(6). https://doi.org/10.21037/atm.2016.02.15 PMID: 27127764

31. Destaye Shiferaw, Haimanot Gebrehiwot Moges: Risk factors for active trachoma among children aged 1-9 years in Maksegnit town, Gondar Zuria District, Northwest Ethiopia. *Saud J Health Sci* 2013, 2(3):202–206.

32. Tadesse B, Worku A, Kume A, Yimer SA: Effect of water, sanitation and hygiene interventions on active trachoma in North and South Wollo zones of Amhara Region, Ethiopia: A Quasi-experimental study. *PLoS neglected tropical diseases* 2017, 11(11):e0006080. https://doi.org/10.1371/journal.pntd.0006080 PMID: 29125849

33. Mengistu Kassahun, Shegaze Mulugeta, Wololdemichael Kifle, Gesessew Haileay, Yahannes Markos: Prevalence and factors associated with trachoma among children aged 1–9 years in Zala district, gamo gofa Zone, southern ethiopia. *Clinical Ophthalmology* 2016, 10:1663–1670. https://doi.org/10.2147/OPTH.S107619 PMID: 27621585

34. Kemal Kassim, Kassim Jeylan, Aman Rameto, Abduku Mohammedawel, Tegegne Meekonnen, Biniyam Sahiledengle: Prevalence of active trachoma and associated risk factors among children of the pastoralist population in Madda Walabu rural district, Southeast Ethiopia: a community-based cross-sectional study. *BMC infectious diseases* 2019, 19(1):1–7.

35. Woldekidan E, Daka D, Legesse D, Laelago T, Beteko B: Prevalence of active trachoma and associated factors among children aged 1 to 9 years in rural communities of Lemo district, southern Ethiopia: community based cross sectional study. *BMC Infectious Diseases volume* 2019, 19(1):1–8.

36. Emma M Harding-Itchul Kadiempeul, Sarr Boubacar, Sane Awa, Badij Souleymane, Sillah Amsama, et al: Population-based prevalence survey of follicular trachoma and trachomatous trichiasis in the Casamance region of Senegal. *BMC public health* 2018, 18(1):62.

37. Ngondi Jeremiah, Gebre Teshome, Shargie Estifanos B., Adamu Liknaw, Ejigsewamu Yeshewalebrat, Tesfay Tesfaye, et al: Evaluation of three years of the SAFE strategy (Surgery, Antibiotics, Facial cleanliness and Environmental improvement) for trachoma control in five districts of Ethiopia hyperendemic for trachoma. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2009, 103(10):1001–1010. https://doi.org/10.1016/j.trstmh.2008.11.023 PMID: 19178920

38. Nash Scott D, Stewart Aisha E P, Astale Tigist, Sata Esthutu, Zerihun Mulat, Gesesse Demelash, et al: Trachoma prevalence remains below threshold in five districts after stopping mass drug administration: results of five surveillance surveys within a hyperendemic setting in Amhara, Ethiopia. 538–45 2018, 112(12):538–545. https://doi.org/10.1093/trstmh/try096 PMID: 30265355

39. Solomon Anthony W, World Health Organization, International Trachoma Initiative: Trachoma control a guide for programme managers. 2015.

40. World Health Organization: Validation of elimination of trachoma as a public health problem. In., Dr. Solomon A.edn: World Health Organization; 2016.

41. Emma M Harding-Itchul, Tansy Edwards, Harman Mukwa, Beatriz Munoz, Holland Martin J., Burr Sarah E., et al: Trachoma Prevalence and Associated Risk Factors in The Gambia and Tanzania: Baseline Results of a Cluster Randomised Controlled Trial. *PLoS neglected tropical diseases* 2010, 4(11). https://doi.org/10.1371/journal.pntd.0000861 PMID: 21072224

42. Edwards Tansy, Harding-Itchul Emma M., Hailu Girum, Andreaxon Aura, Mabey David C., Todd Jim, et al: Risk factors for active trachoma and Chlamydia trachomatis infection in rural Ethiopia after mass treatment with azithromycin. *Tropical medicine & international health* 2008, 13(4):556–565.

43. Harding-Itchul EM, Edwards T, Sillah A, Sarr-Sissoho I, Ayee EA: Risk factors for active trachoma in The Gambia. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2008, 102(12):1255–1262. https://doi.org/10.1016/j.trstmh.2008.04.022 PMID: 18502459

44. Zack R, Mukwa H, Zack E, Munoz B, West SK: Issues in defining and measuring facial cleanliness for national trachoma control programs. *Trans R Soc Trop Med Hyg* 2010, 102(5):426–431. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2008, 102(5):426–431. https://doi.org/10.1016/j.trstmh.2008.02.001 PMID: 18346769

45. Ngondi J, Gebre T, Sharige EB, Graves PM, Ejigsewamu Y, Tesferi T, et al: Risk factors for active trachoma in children and trichiasis in adults: a household survey in Amhara Regional State, Ethiopia. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2008, 102(5):432–438. https://doi.org/10.1016/j.trstmh.2008.02.014 PMID: 18394663

46. Golovaty Ilya, Jones Larissa, Gelaye Bizu, Tilahun Melkie, Belete Habtamu, Kumie Abera, et al: Access to water source, latrine facilities and other risk factors of active trachoma in Ankober, Ethiopia. *PLoS One* 2009, 4(8):e6702. https://doi.org/10.1371/journal.pone.0006702 PMID: 19693271
47. Ketema Kassahun, Tiruneh Moges, Woldeyohannes Desalegn, Muluye Dagnachew: Active trachoma and associated risk factors among children in Baso Liben District of East Gojam, Ethiopia. *BMC Public Health* 2012, 12(1):1–7. https://doi.org/10.1186/1471-2458-12-1105 PMID: 23259854

48. Ngondi J, Matthews F, Reacher M, Onsarigo A, Matende I, Baba S, et al: Prevalence of risk factors and severity of active trachoma in southern Sudan: an ordinal analysis *The American Journal of Tropical Medicine and Hygiene* 2007, 77(1):126–132. PMID: 17620643

49. Nigusie A, Berhe R, Gedefaw M: Prevalence and associated factors of active trachoma among children aged 1–9 years in rural communities of Gonji Kolella district, West Gojjam Zone, North West Ethiopia. *BMC Research Notes* 2015, 8(1):1–9. https://doi.org/10.1186/s13104-015-1529-6 PMID: 26530131