Correspondence

Meta-analysis of SUMO1
Brian J Wilson

Address: Molecular Oncology Group, Room H5-45, McGill University Health Centre, 687 Pine Avenue West, Montréal, Québec, H3A 1A1, Canada
Email: Brian J Wilson - brian.wilson2@mcgill.ca

Abstract
An abundantly growing body of literature implicates conjugation of SUMO in the regulation of many proteins and processes, yet the regulation of SUMO pathways is poorly understood. To gain insight into the players in the SUMO1 pathway I have performed an in-silico co-expression meta-analysis of SUMO1, comparing many different multi-microarray studies of various normal and human tumour tissues, from the Oncomine database. This serves as a data-driven predictor of pathway partners of SUMO1. While the data obtained need to be confirmed by future independent experiments and can currently only be considered a hypothesis, results implicate defender against cell death (DADI) and the anti-apoptotic DEK oncogene as new pathway partners of SUMO1.

Discussion

Oncomine [1] meta-analysis was performed as previously described [2,3]. Briefly, 15 multi-array studies were analyzed for common overlapping co-expressed genes of SUMO1, using muti-array studies within the Oncomine integrated cancer database. This technique gives insight into which pathways the searched gene (in this case SUMO1) are involved in, although it is impossible to tell if co-expressed gene products are complexed to SUMO1, act upstream of SUMO1 or downstream of SUMO1. Therefore, while limited, this technique is important for generating leads to assess both the pathways SUMO1 is important for, and regulation of SUMO1 itself.

After meta-analysis there were over 400 consistently co-expressed genes at the cutoff of 3 studies (Additional File 1). Table 1 shows the genes with the higher cutoff of 4 studies. This high number may be expected as SUMO1 is a general factor and involved in many processes. I note that the archetype SUMO1-modified promyelocytic leukemia (PML) was co-expressed with SUMO1, acting as validation of the results [4]. While the Ubc9 conjugation enzyme was not found to be co-expressed many other ubiquitin-conjugating enzymes were (UBE2N, UBE4A, UBE2G1, UBE2V2, UBE2E1, UBE2D2, UBE2A, UBE1C, CUL4A), as was the SUMO1 activating enzyme subunit 2 (UBA2). Transcription factors shown to be modified by SUMO were also co-expressed, such as HIF1α, Rb, YY1, and SMAD4 [5-9]. Interestingly RARα is also co-expressed and while it has never been shown to be a target of SUMO1 the PML-RARα fusion has been shown to be a target of SUMO1 mediated degradation [10]. It would be interesting to investigate if RARα itself is a SUMO1 target. Also co-expressed is the NF-κB subunit RelA. While RelA also is not a proven target of SUMO1 NF-κB is regulated indirectly by SUMO1 modification of IκB Kgamma/NEMO or IκB [11,12].

A similar meta-analysis was attempted for SUMO2 and SUMO3. However, SUMO2 was not expressed to levels that allowed for meta-analysis, and the results of SUMO3 meta-analysis gave fewer co-expressed genes than for SUMO1 (Additional File 2). There was a small overlap (37 genes) of co-expressed genes of SUMO1:SUMO3, but this does not necessarily imply that both are involved in completely distinct pathways. Rather, the meta-analysis tech-
Table 1: Oncomine meta-analysis of SUMO1 co-expressed genes

GENE	%	GENE NAME
SUMO1	100%	SMT3 suppressor of mif two 3 homolog 1 (S. cerevisiae)
DAD1	67%	defender against cell death 1
DEK	53%	DEK oncogene (DNA binding)
UBE2N	47%	ubiquitin-conjugating enzyme E2N (UBC13 homolog, yeast)
SET	47%	SET translocation (myeloid leukemia-associated)
SLC25A5	40%	solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5
SFRS3	40%	splicing factor, arginine/serine-rich 3
RPA1	40%	replication protein A1, 70 kDa
RCN2	40%	Reticulocalbin 2, EF-hand calcium binding domain
RB1	40%	retinoblastoma 1 (including osteosarcoma)
PSMD14	40%	proteasome (prosome, macropain) 26S subunit, non-ATPase, 14
PSMC2	40%	proteasome (prosome, macropain) 26S subunit, ATPase, 2
PSMA2	40%	proteasome (prosome, macropain) subunit, alpha type, 2
NUP153	40%	nucleoporin 153 kDa
GLO1	40%	glyoxalase 1
DPM1	40%	dolichyl-phosphate mannosyltransferase polypeptide 1, catalytic subunit
DARS	40%	Aspartyl-tRNA synthetase
CD164	40%	CD164 antigen, sialomucin
CCT8	40%	chaperonin containing TCP1, subunit 8 (theta)
BNIp2	40%	BCL2 adenovirus E1B 19 kDa interacting protein 2
YY1	33%	YY1 transcription factor
VPS16	33%	vacuolar protein sorting 16 (yeast)
USP1	33%	ubiquitin specific protease 1
UBE4A	33%	ubiquitination factor E4A (homologous to yeast UFD2)
UBE2G1	33%	ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, C. elegans)
TSNAx	33%	translin-associated factor X
SSBP1	33%	single-stranded DNA-binding protein 1
SMAD4	33%	SMAD, mothers against DPP homolog 4 (Drosophila)
SIAHBP1	33%	siah binding protein 1
SEC61B	33%	Sec61 beta subunit
RFI	33%	RAP1 interacting factor homolog (yeast)
RBMX	33%	RNA binding motif protein, X-linked
PSMA3	33%	proteasome (prosome, macropain) subunit, alpha type, 3
PPP6C	33%	protein phosphatase 6, catalytic subunit
POLD2	33%	polymerase (DNA directed), delta 2, regulatory subunit 50 kDa
NCBP2	33%	nuclear cap binding protein subunit 2, 20 kDa
IRS1	33%	insulin receptor substrate 1
ILF3	33%	interleukin enhancer binding factor 3, 90 kDa
HMGN4	33%	high mobility group nucleosomal binding domain 4
H2AFV	33%	H2A histone family, member V
G22P1	33%	thyroid autoantigen 70 kDa (Ku antigen)
EIF253	33%	eukaryotic translation initiation factor 2, subunit 3 gamma, 52 kDa
CUL1	33%	cullin 1
C10orf7	33%	chromosome 10 open reading frame 7
B2W1	33%	basic leucine zipper and W2 domains 1
BRD2	33%	bromodomain-containing 2
A TP6V0B	33%	ATPase, H+ transporting, lysosomal 21 kDa, V0 subunit c’
A TP5J	33%	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6
WEEI	27%	WEEI homolog (S. pombe)
VBP1	27%	von Hippel-Lindau binding protein 1 (prefoldin 3)
UQ CRC1	27%	ubiquinol-cytochrome c reductase core protein 1
UB XD2	27%	UBX domain containing 2
TSN	27%	translin
TNIIP1	27%	TNFAIP3 interacting protein 1
TEBP	27%	unactive progesterone receptor, 23 kDa
TAX1B P3	27%	Tax1 (human T-cell leukemia virus type 1) binding protein 3
TANK	27%	TRAF family member-associated NFKB activator
SYPL	27%	synaptophysin-like protein
SUPT6H	27%	suppressor of Ty 6 homolog (S. cerevisiae)
Gene	Description	
----------	--	
SUPT5H	27% suppressor of Ty 5 homolog (S. cerevisiae)	
SUCLG1	27% succinate-CoA ligase, GDP-forming, alpha subunit	
SRI	27% sorcin	
SON	27% SON DNA binding protein	
SNRPD3	27% small nuclear ribonucleoprotein D3 polypeptide 18 kDa	
SNAP23	27% synaptosomal-associated protein, 23 kDa	
SMAP	27% small acidic protein	
S100A1I	27% S100 calcium binding protein A1I (calgizzarin)	
RW1	27% RW1 protein	
RSN	27% restin (Reed-Steinberg cell-expressed intermediate filament-associated protein)	
RPL36AL	27% ribosomal protein L36a-like	
RPA3	27% replication protein A3, 14 kDa	
RNF4	27% ring finger protein 4	
RBL2	27% retinoblastoma-like 2 (p130)	
RBBP4	27% retinoblastoma binding protein 4	
RARS	27% arginyl-tRNA synthetase	
RANBP2	27% RAN binding protein 2	
RAE1	27% RAE1 RNA export 1 homolog (S. pombe)	
RAB1A	27% RAB1A, member RAS oncogene family	
PXMP3	27% peroxisomal membrane protein 3, 35 kDa (Zellweger syndrome)	
PTPN12	27% protein tyrosine phosphatase, non-receptor type 12	
PTMA	27% prothymosin, alpha (gene sequence 2B)	
PSMA5	27% proteasome (prosome, macropain) subunit, alpha type, 5	
PSMA4	27% proteasome (prosome, macropain) subunit, alpha type, 4	
PRKDC	27% protein kinase, DNA-activated, catalytic polypeptide	
PML	27% promyelocytic leukemia	
PHKB	27% phosphoflase kinase, beta	
NOLC1	27% nucleolar and coiled-body phosphoprotein	
MUC2	27% mucin 2, intestinal/tracheal	
MPI	27% mannose phosphate isomerase	
MGAT1	27% mannosyl (alpha-1,3-)glycoprotein beta-1,2-N-acetylgalactosaminyltransferase	
MCP	27% membrane cofactor protein (CD46, trophoblast-lymphocyte cross-reactive antigen)	
MARK3	27% MAP/microtubule affinity-regulating kinase 3	
MARK2	27% MAP/microtubule affinity-regulating kinase 2	
MARCK5	27% myristoylated alanine-rich protein kinase C substrate	
MAP2K3	27% mitogen-activated protein kinase kinase 3	
LIMK2	27% LIM domain kinase 2	
LEREP04	27% likely ortholog of mouse immediate early response, erythropoietin 4	
KPN2	27% karyopherin alpha 2 (RAG cohort 1, importin alpha 1)	
KIAA0092	27% translokin	
IL13RA1	27% interleukin 13 receptor, alpha 1	
HSPE1	27% heat shock 10 kDa protein 1 (chaperonin 10)	
HNRPA0	27% heterogeneous nuclear ribonucleoprotein A0	
HMGN3	27% high mobility group nucleosomal binding domain 3	
HLA-A	27% major histocompatibility complex, class I, A	
HIF1A	27% hypoxia-inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor)	
HAT1	27% histone acetyltransferase 1	
HADHA	27% hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme A hydratase (trifunctional protein), alpha subunit	
GTF3C2	27% general transcription factor IIIC, polypeptide 2, beta 110 kDa	
GRSF1	27% G-rich RNA sequence binding factor 1	
GA17	27% dendritic cell protein	
G3BP	27% Ras-GTPase-activating protein SH3-domain-binding protein	
FUBP3	27% far upstream element (FUSE) binding protein 3	
FMRI	27% fragile X mental retardation 1	
FKBP1A	27% FK506 binding protein 1A, 12 kDa	
FDFT1	27% farnesyl-diphosphate farnesyltransferase 1	
FAM3C	27% family with sequence similarity 3, member C	
EWSR1	27% Ewing sarcoma breakpoint region 1	
EPS8	27% epidermal growth factor receptor pathway substrate 8	
EIF359	27% eukaryotic translation initiation factor 3, subunit 9 eta, 116 kDa	
EFNA1	27% ephrin-A1	
DYRK1A	27% dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A	
Oncomine meta-analysis of SUMO1 co-expressed genes

Gene	Percent
DLG1	27%
DDOST	27%
DCTN6	27%
DBI	27%
DAZAP2	27%
DAG1	27%
CUL4A	27%
CSG6	27%
COG2	27%
CEBPD	27%
CDC34	27%
CD9	27%
CCT6A	27%
CBX3	27%
CARS	27%
C1D	27%
C14orf32	27%
BUB3	27%
BSG	27%
BLOC1S1	27%
BIRC2	27%
ARMC2	27%
ANP32A	27%

Table 1: Oncomine meta-analysis of SUMO1 co-expressed genes (Continued)

The technique has a high false-negative rate meaning that while the co-expressed genes we see are significant we will never get full coverage of every co-expressed gene as the stringency level of analysis is high.

SUMO1 was also seen to be involved in cell death pathways. In 67% (10 out of 15) of the studies analyzed SUMO1 was co-expressed with the DAD1 gene. This was the highest co-expression with SUMO1 in the meta-analysis. As the name suggests DAD1 is anti-apoptotic and can be upregulated in cancer [13,14]. Other SUMO1 co-expressed genes involved in cell death pathways include RELA, FADD, BCL2A1, BAK1, TNFRSF1A. The high co-expression with DAD1 is a novel finding and may prove important to SUMO1 pathways.

DEK oncogene was the next highest co-expressed gene (53%) with SUMO1. The DEK protein is important for chromatin structure, and may also play a role in cell death pathways by inhibiting apoptosis [15-17].

While co-expression meta-analysis data has previously been shown to have a high correlation with known pathways in other studies [2,3], prudence should still be used when interpreting novel findings until they can be proven in a separate experimental system. For this reason the meta-analysis list is presented here only as a predictive data-driven hypothesis. The next step is experimental analysis of DEK and DAD1 proteins to assess whether they are targets of SUMO1 conjugation, protein-complex partners of SUMO1, or act upstream or downstream of SUMO1.

In summary, it is interesting that both of the highest co-expressed genes of SUMO1 are anti-apoptotic, and it is tempting to speculate that this may be an important pathway of SUMO1 regulation.

Conclusion

Using co-expression meta-analysis from the Oncomine database SUMO1 co-expressed with many gene products, some which are already known to be in SUMO1 pathways. Novel predicted pathway partners include the DEK oncogene and DAD1, both of which co-expressed in over half of all studies analyzed. However, in what regard they take part in SUMO1 pathways remains to be further investigated.

Competing interests
The author declares that they have no competing interests.

Authors’ contributions
BW conceived and designed the study, performed the meta-analysis, and wrote the manuscript.

Additional material

Additional file 1
SUMO1 meta-analysis. Oncomine meta-analysis of SUMO1 with cutoff of 3 studies (20%). Click here for file [http://www.biomedcentral.com/content/supplementary/1756-0500-1-60-S1.xls]
Acknowledgements

BW is funded by a McGill University Health Centre fellowship. I thank Annie Tremblay for helpful discussions.

References

1. Oncomine: [http://www.oncomine.org].
2. Wilson BJ, Giguere V: Identification of novel pathway partners of p68 and p72 RNA helicases through Oncomine meta-analysis. BMC Genomics 2007, 8:419.
3. Wilson BJ, Giguere V: Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway. Mol Cancer 2008, 7:49.
4. Muller S, Matsunis MJ, Dejean A: Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. Emba J 1998, 17:61-70.
5. Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, Choi SJ, Kim KW: Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 2004, 324:394-400.
6. Ledl A, Schmidt D, Muller S: Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor. Oncogene 2005, 24:3810-3818.
7. Deng Z, Yan M, Sui G: PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger. Mol Cell Biol 2007, 27:3780-3792.
8. Sternerdorf T, Jensen K, Will H: Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell Biol 1997, 139:1621-1634.
9. Lin X, Liang M, Liang YY, Bruniciardi FC, Melchior F, Feng XH: Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J Biol Chem 2003, 278:18714-18719.
10. Duprez E, Saurin AJ, Desterro JM, Lallemand-Breitenbach V, Howe K, Boddy MN, Solomon E, de The H, Hay RT, Freemont PS: SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci 1999, 112(Pt 3):381-393.
11. Huang TT, Wueurzberger-Davis SM, Wu ZH, Miyamoto S: Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 2003, 115:565-576.
12. Carbia-Nagashima A, Gerez J, Perez-Castro C, Paz-Pareda M, Silberstein S, Stalla GK, Hollo W, Arzt J: RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 2007, 131:309-323.
13. Hong NA, Flannery M, Hsieh SN, Cado D, Pedersen R, Winsor A: Mice lacking DAD1, the defender against apoptotic death-1, express abnormal N-linked glycoproteins and undergo increased embryonic apoptosis. Dev Bio 2000, 220:76-84.
14. Tanaka K, Kondoh N, Shuda M, Matsubara O, Imazeki N, Ryo A, Nakatsuki T, Hada A, Goseki N, Igarashi T, Haszus K, Alhara T, Horiiuchi S, Yamanoto N, Yamanoto M: Enhanced expression of mRNAs of antisecretory factor-1, p96, DADI and CDC34 in human hepatocellular carcinomas. Biochem Biophys Acta 2001, 1536:1-12.
15. Waldmann T, Scholten I, Kappes F, Hu HG, Knippers R: The DEK protein – an abundant and ubiquitous constituent of mammalian chromatin. Gene 2004, 343:1-9.
16. Cleary J, Sittwala KV, Khodadoust MS, Kwok RP, Mor-Vaknin N, Cebat M, Cole PA, Markowitz DM: p300/CBP-associated factor drives DEK into interchromatin granule clusters. J Biol Chem 2005, 280:31760-31767.

17. Wise-Draper TM, Allen HV, Jones EE, Habash KB, Matsuo H, Wells SI: Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol 2006, 26:7506-7519.