Dried-Atella as an affordable supplementary feed resource for a better sheep production: in the case of Washera lambs in Ethiopia

Fana Shiferaw,†,‡ Bimrew Asmare,†,1 Musie H. Melekot,† and Wilbert F. Pellikaan‡

†Department of Animal Science, Bahir Dar University, P.O. 79, Bahir Dar, Ethiopia
‡Department of Animal Sciences, Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, the Netherlands
1Corresponding author: limasm2009@gmail.com

ABSTRACT

Ethiopia has a huge livestock population that includes sheep, which can be considered as a significant potential for the advancement of the country’s economy. However, due to a shortage of appropriate supplementary feed and its escalating price, the production and productivity of sheep fattening in Ethiopian smallholder farmers are below its potential. Moreover, the use of Dried-Atella as an affordable supplementary feed resource for a better sheep production is not investigated and well documented. The aim of this study was to assess the comparative supplementation effects of Dried-Atella and Niger seed cakes (NSCs) on total dry matter and nutrient intake, body weight change, and carcass characteristics of Washera lambs. The experiment was conducted using a completely randomized design with three treatments replicated five times. The treatments are described as follows: Treatment 1 = Natural pasture hay (NPH) (800 g/d) + Wheat bran (WB) (160 g/d) + salt and water (ad libitum); Treatment 2 = NPH (800 g/d) + WB (160 g/d) + NSC (163 g/d) + salt and water (ad libitum); and Treatment 3 = NPH (800 g/d) + WB (160 g/d) + Dried-Atella (330 g/d) + salt and water (ad libitum). The finding elucidated that the crude protein (CP) content of Dried Atella, WB, NPH, and NSC were about 25.07%, 16.57%, 4.48%, and 38.04%, respectively. The result also indicated that the average mean value of the feed and CP intake of the sheep fed Dried-Atella was significantly higher than the other treatments (P-value = 0.000). With regard to the CP digestibility and dry matter digestibility, animals supplemented with Dried-Atella were significantly higher than the control group with P-value = 0.000 and P-value = 0.028, respectively. The body weight gain of the sheep is significantly higher (P-value = 0.008) for feeds supplemented with Dried-Atella than feeds without any supplement. In terms of economic profitability, a slightly better benefit was recorded in feed supplements with Dried-Atella than supplements with NSC, animal feed without any supplement exhibited loss. Considering its effect on feed intake, CP intake, and its digestibility, body weight gain, and carcass characteristics of lambs, Dried-Atella is a promising affordable supplementary feed resource for better sheep production in Ethiopia.

Key words: dried-Atella, economic analysis, Niger seed cake, nutrient intake, Washera lambs

INTRODUCTION

Ethiopia has diversified agro-ecological conditions with various species of domestic and wild animals that significantly contribute to the national economy. The country is endowed with a huge livestock population including sheep. Among the total livestock production, sheep production is a major component of the livestock sector in Ethiopia (Tadesse et al., 2020). In Ethiopia, the estimated sheep population is more than 30 million (FAO, 2019). About 40% of the total livestock populations of the country are found in the Amhara region. The estimated sheep and goat population of the Amhara region is about 8.4 million, and most of the producers in the region prefer sheep fattening over goat fattening (Mekuria et al., 2018). In the Amhara region, Washera breeds are predominantly used because of their fast growth rate, including weight gain than other breeds (Getachew et al., 2017). The lower risks, short generation interval, and relatively smaller requirement of initial investment inspire most of the rural farmers as well as peri-urban and urban dwellers to get involved in the sheep fattening activities (Selamawit and Matiwos, 2015). However, feed shortage and its escalating price are limiting the sheep productivity in all parts of the country (Hizkels et al., 2008; Yenesew et al., 2013; Matawork and Mitiku, 2017). Therefore, to avoid this problem and help the sheep fattening business of the rural poor farmers, it is important to look for alternative feed supplements that can be available in the vicinity at an affordable price. Niger seed cake (NSC) is one of the oilseed cakes commonly used as a protein supplement in the diet of farm animals in Ethiopia. It is mostly cultivated in different regions of Ethiopia and India and comprises around 50% and 3% oilseed production of the countries, respectively (Bhagya and Shanthika, 2003). Another potential byproduct called Atella is a clear, traditional alcoholic beverage which is distilled from a fermentation product called Tella. However, since NSC is relatively becoming less accessible due to low seed yield and high price of the case, it was vital to seek alternative supplement for growing lambs in the country. Hence, the use of the relatively cheap and accessible supplement, Atella was included in the current study. Atella is the major cheap...
non-conventional feed supplement resource in Ethiopia in general and in the Amhara region in particular (Mekuria et al., 2018; Gizaw et al., 2017). NSC and Atella have relatively high crude protein (CP) and are supposed to provide the required nutrients for growing lambs and because of this reason we want to assess in vivo effects using local animals. Our hypothesis was that Atella and NSC have a similar supplementary effect on nutrient utilization, body weight change, and carcass characteristics of growing Washera lambs. Therefore, the objective of this study was to evaluate the comparative supplementation effects of Dried-Atella and NSCs on nutrient intake, body weight change, carcass characteristics, and socioeconomic feasibility of Washera lambs.

MATERIALS AND METHODS

Description of the Study Area
The study was conducted on the Zenzelma Campus of Bahir Dar University farm. Zenzelma is one of the kebeles (Kebele is lower-level administrative unit in Ethiopia) in Bahir Dar Zuria Woreda, West Gojjam Zone of Amhara region, Ethiopia. According to Zenzelma kebele agricultural office (2017), the area is geographically located between 11°35’N and 11°40’N latitude and 37°24’E and 37°29’ E longitude with a latitudinal range of 1917 above mean sea level.

Experimental Animals and Their Management
Fifteen male Washera sheep with an average age of less than 1 yr (from 9 mo to 1 yr) but greater than 6 mo and with an average initial body weight of 21.02 ± 1.42 kg was purchased from the local market of Adet town. And then, the sheep was quarantined for 21 d. During this quarantine period, each animal was treated against internal parasites by Albendazole and external parasites by Ivermectin. Animals were continuously observed for the incidence of any disease during the observational period. The animal’s management was conducted according to Bahir Dar University Research and Community service protocol, ethical review board.

Treatments and Experimental Design
In the treatment supplement formulation, the basal diet hay, salt, and water were offered as adlib. The supplements were given considering the requirements of a 20 kg of tropical growing sheep should receive approximately 69 g to 145 g of CP per day for maintenance (Ranjhan, 1980). Based on these, the treatment combinations were the following:

- **T1** = NPH(adlib) + WB (160 g);
- **T2** = NPH (Adlib) + WB (160 g) + NSC (163 g);
- **T3** = NPH(adlib) + WB (160 g) + Atella (330 g).

In the current experiment, a completely randomized design with five replications has been applied to set apart the different treatments for the sheep. In this experiment, three different supplements/diets were tested on three treatment groups consisting five replications per treatment for 3 mo. The basal diet and supplements were offered separately for each lamb during the experimental period, and refusals were also measured for each individual lamb in treatments. The experiment consisted 90 d of growth and 11 d of digestibility trials, including 15 d of initial feeding trial and 3 d of fecal bag adaptation periods.

Data Collection

Feed intake Natural pasture hay (NPH) that has been used as a basal diet was chopped into 5 to 10 cm of height to improve its palatability. The feed offered and refused was measured daily using a sensitive balance, and the difference between the daily total feed offered, and the daily feed refused by each sheep was considered as daily feed intake on DM basis. At the end of the experiment, representative samples of offered and refused basal diet as well as feces pooled samples were taken to the laboratory for the chemical analysis of each treatment.

Digestibility After 90 d of adaptation and feeding trial, by using similar dietary treatments, a digestibility trial was followed by using feces collecting bag fitted to each experimental sheep. The sheep had been allowed to a 3-d adaptation period for fecal bags. Feces were collected daily for seven consecutive days from each experimental sheep and pooled over treatments. The feces were then mixed thoroughly, and 20% of daily feces output of each sheep were taken and bulked per treatment and taken to the laboratory for the chemical analysis of each fecal samples. Based on that, the apparent digestibility coefficient of DM, Organic Matter (OM), CP, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF) was determined by McDonald et al. (2010).

Chemical composition analysis Representative samples of feeds offered, refused, and feces were analyzed for their dry matter and nutrient contents. The samples were dried in an oven and milled using a laboratory miller to pass through a 1-mm sieve screen and then analyzed for DM and ash content according to the procedure of AOAC (2005). Then, the two-stage method indicated by (Tilley and Terry, 1963) was followed to determine IVOMD and then metabolizable energy (ME) content was estimated using the equation: ME (MJ/kg DM) = 0.16 × IVOMD (McDonald et al., 2010). Nitrogen content was determined using Kjeldahl procedure, and CP was determined as N × 6.25. NDF, ADF, and Acid Detergent Lignin (ADL) were analyzed following the recommendation of Van Soest and Robertson (1985).

Body weight change and feed conversion efficiency The body weight of the lamb was measured in 9 d of intervals after overnight fasting. Body weight gain (BWG) was determined as a difference between the final and initial body weight. The feed conversion efficiency was calculated as a proportion of daily BWG to daily feed intake.

FCE = ADG in kg/dry matter intake (DMI) in kg and BWG = final body weight – initial BWG

Partial Budget Analysis

The partial budget analysis was employed using the procedure of Upton (1979). All costs related to feed preparation were added to the total variable cost. At the end of the experiment, experienced lamb dealers estimated the selling price of the sheep. The difference between the purchasing and selling price of the sheep in each treatment was considered as total return (TR). The net income (NI) was calculated by subtracting the total variable cost (TVC) from the TR. The change in net income (ΔNI) was calculated as the difference between the change in TR (ΔTR) and the change in total variable cost (ΔTVC). The marginal rate of return (MRR) measures the increase in net income (ΔNI) associated with each
additional unit of expenditure (total variable cost) (ΔTVC).

\[\text{MRR} \% = \frac{\text{ΔNI}}{\text{ΔTVC}} \times 100. \]

Carcass evaluation To determine the carcass characteristics of experimental lambs, all the experimental lambs from each treatment were deprived of feed and water overnight and weighed before slaughter, and this weight was considered as slaughter weight (SW). According to the local people’s meat consumption tradition, offals from lambs were classified as non-edible, edible offals, and main carcass components. The non-edible offal components are the head without tongue, skin, feet, penis, spleen, lung with trachea, gall bladder, esophagus, pancreas, bladder, and gut content. On the other hand, the edible offal components comprise blood, heart, liver, kidney, tongue, reticulo-rumen, omaso-abomasum, hind gut, kidney fat, pelvic fat, omental, and mesenteric fat, and testes, and the main-carcass components contain forequarters, neck region, sternum brisket, thoracic and lumbar region, rib-eye muscle, abdominal muscle, hind quarters, pelvic (rump) region, tail fat weight, and ribs. All components were weighed, recorded, and documented separately. Empty body weight (EBW), hot carcass weight (HCW), rib-eye muscle area, and dressing percentage (DP) were determined individually for each lamb. Whereas calculation of rib-eye muscle area was accomplished by tracing the cross-sectional areas of the 12th and 13th ribs after cutting perpendicular to the backbone. Fat thickness over rib-eye muscle area per each experimental sheep was measured by using a ruler, and the mean of the two sides was considered as fat thickness. The dressing percentage was calculated as proportions of HCW to SW and EBW. The selling price of the sheep was estimated by the consumers before the slaughter of the sheep, which was used to compare the profitability of sheep fattening with different feed supplements.

Statistical Analysis

In this study, the statistical package for social sciences version 26 was used to analyze the data collected. Before analysis, the normality test was conducted using Shapiro-Wilk test. Data on feed intake, digestibility, weight gain, and carcass parameters were analyzed by compare means and analysis of variance. Multiple comparisons (least significant difference) were used to summarize the significant differences between each treatment means. \(P \)-values ≤ 0.05 and \(P \)-values ≤ 0.001 were considered as significantly different.

The model employed for this experiment was:

\[Y_{ij} = \mu + \tau_j + \varepsilon_{ij} \]

where \(Y_{ij} \) is the response variable, \(\mu \) is the population mean, \(\tau \) is the treatment effect, and \(\varepsilon_{ij} \) is the random error.

RESULTS

Chemical Composition of Treatment Feeds

The finding revealed that NSC had higher DM, Ash, and CP content than the rest of the treatments, while NPH had a greater NDF, ADF, and ADL content but lower CP content than the rest of the treatments (Tables 1 and 2). On the other hand, the CP content of the offered feed was higher than that of the refusal diet.

Table 1. Chemical composition of NPH and supplements intakes

Parameters	NPH	WB	NSC	Atella
DM	914	913.5	939	933.6
OM	884	954.7	859.6	886.7
Ash	117	45.3	140.4	113.3
CP	44.8	165.7	380.4	250.7
NDF	742.1	420.5	423.1	317.5
ADF	508.1	226.4	269.5	83.1
ADL	86.6	40.4	69	81.4

Table 2. Chemical composition of NPH and supplements refusals

Parameters	NPH	NPH	NPH
DM	914	912	919
OM	893	904	896
Ash	107	96.5	104.2
CP	39.7	39.4	37
NDF	757	737.5	767.6
ADF	502.1	511	508
ADL	91	92.4	92.1

Feed and Nutrient Intake

The result indicated that no significant difference \((P\text{-value} = 0.075) \) was observed in basal DMI among the three treatments (Table 3). In contrast, there was a significant difference \((P\text{-value} = 0.000) \) across the three treatments for total DMI, organic matter intake, and crude protein intake (CPI).

Dry Matter and Nutrient Digestibility

According to this investigation, a significantly higher \((P\text{-value} = 0.000) \) crude protein digestibility coefficient (CPDC) was retrieved from Dried-Atella-supplemented groups (Table 4). On the contrary, significantly lower \((P\text{-value} = 0.000) \) CPDC was recorded from the non-supplemented groups.

Body Weight Change and Feed Conversion Efficiency

According to this finding, although the lambs had almost the same initial average body weight, at the end of the feeding trial, the final average body weight of \(T_3 \) groups became significantly heavier than \(T_2 \) \((P\text{-value} = 0.025) \), \(T_1 \) \((P\text{-value} = 0.025) \), \(T_2 \) \((P\text{-value} = 0.025) \), \(T_1 \) \((P\text{-value} = 0.025) \), and \(T_1 \) \((P\text{-value} = 0.025) \). The feed conversion efficiency documented from \(T_3 \) was also significantly higher than \(T_1 \) and \(T_2 \) \((P\text{-value} = 0.025) \).

Carcass Component

According to this result, significantly higher SW \((P\text{-value} = 0.039) \), EBW \((P\text{-value} = 0.001) \), and HCW \((P\text{-value} = 0.045) \) were achieved by \(T_3 \) than \(T_1 \) and \(T_1 \) groups (Table 6). Regarding the rib-eye muscle area, no significant
Table 3. Feed intake of Washera lambs fed NPH as a basal diet and supplements

Parameters	Treatments	T1	T2	T3	SE	P-value
Basal DMI, g/d	474.51a	429.40b	456.93b	17.88	0.075	
WB DMI, g/d	146.16	146.16	146.16	0.00		
NSC DMI, g/d	0	153.06	0	0.00		
Atella DMI, g/d	0	0	308.09	0.00		
Total DMI, g/d	620.67a	728.61b	911.17b	911.17b	17.88	0.000
Total DMI, %BW	2.8a	3.0b	3.5c	0.001	0.000	
TOMI, g/d	559b	650.69	816.64a	15.81	0.000	
TCPI, g/d	41.91b	90.18	109.70b	0.71	0.000	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TADFI, g/d	244.72a	259.92b	259.53b	8.03	0.140	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TCPI, g/d	41.91b	90.18	109.70b	0.71	0.000	
TOMI, g/d	559b	650.69	816.64a	15.81	0.000	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TADFI, g/d	244.72a	259.92b	259.53b	8.03	0.140	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TCPI, g/d	41.91b	90.18	109.70b	0.71	0.000	
TOMI, g/d	559b	650.69	816.64a	15.81	0.000	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TADFI, g/d	244.72a	259.92b	259.53b	8.03	0.140	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TCPI, g/d	41.91b	90.18	109.70b	0.71	0.000	
TOMI, g/d	559b	650.69	816.64a	15.81	0.000	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TADFI, g/d	244.72a	259.92b	259.53b	8.03	0.140	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TCPI, g/d	41.91b	90.18	109.70b	0.71	0.000	
TOMI, g/d	559b	650.69	816.64a	15.81	0.000	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TADFI, g/d	244.72a	259.92b	259.53b	8.03	0.140	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TCPI, g/d	41.91b	90.18	109.70b	0.71	0.000	
TOMI, g/d	559b	650.69	816.64a	15.81	0.000	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TADFI, g/d	244.72a	259.92b	259.53b	8.03	0.140	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TCPI, g/d	41.91b	90.18	109.70b	0.71	0.000	
TOMI, g/d	559b	650.69	816.64a	15.81	0.000	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	
TADFI, g/d	244.72a	259.92b	259.53b	8.03	0.140	
TNDFI, g/d	369.96b	396.03b	445.16b	11.73	0.000	

Table 4. Apparent digestibility coefficient of nutrients in sheep fed NPH as a basal diet and supplements intakes

Parameters	Treatments	T1	T2	T3	SE	SL	P-value
DMDC	0.6509a	0.6984b	0.7249b	0.02955	-	0.076	
OMDC	0.6658a	0.7101a	0.7414a	0.02837	-	0.060	
CPDC	0.6262a	0.7870b	0.8311b	0.02737	***	0.000	
NDFDC	0.6798a	0.6373b	0.6873b	0.03096	-	0.259	
ADFDC	0.6382a	0.6203b	0.6295b	0.03364	-	0.321	
ADLDC	0.5121a	0.5631b	0.6281b	0.04107	*	0.046	

DISCUSSION

Chemical Composition of Treatment Feeds

The DM, OM, and CP contents of NPH offered in this study were lower than the findings of Feyissa et al. (2015) and Mekuria et al. (2018). The CP content found from this study was also lower than the CP (8%) requirement of ruminants recommended for meeting the maintenance requirement and the optimum microbial activity (6% to 8%; Tadesse et al., 2014; Matawork and Mitiku, 2017). The basal diet (NPH) CP alone in the current study did not fulfill the maintenance requirements of lambs even at the initial stage of growth of lambs, the late stage of growth, otherwise demand more CP for maintenance. Hence, it is possible to declare that the current basal diet must have been supplemented with protein sources to fulfill maintenance and growth requirements of lambs. The variation in the chemical composition of NPH might be due to the different stages of maturity at the time of harvesting, storage condition, plant species of parent crops, and moisture content of the hay. Besides this, the CP, NDF, ADF, and ADL contents of the offered feed were higher than the refused. This could be associated with the better nutritious part of the plants selected and eaten by the experimental lambs. The value of DM and OM of WB obtained from this study agrees with the finding of Mekuriaw and Asmara (2018) who performed the experiment in the same study area. The ash content recorded in this study was lower than the report of Gatenby (1986), but it was comparable with the result of Gebrehiwot et al. (2017). The CP content of WB obtained from this study was approximately similar to the findings of Tadesse et al. (2014) and Gebrehiwot et al. (2017). In contrast to the result of this study, a lower CP was obtained by Mekuriaw and Asmara (2018) and Tulu et al. (2018). The deviation in the nutrient content of WB is possibly because of processing and the quality of the original grain used in the milling industries. The CP (38.04%) content of NSC found from this research was higher than the discovery of Tadesse et al. (2014), Ayele et al. (2017), and Duguma et al. (2019). The fluctuation in the chemical composition of NSC reported by different sources could be due to the difference in the processing method used by producers to produce NSC and environmental variation where the nouge seed was produced. The DM content...
Dried-Atella as an affordable supplementary feed resource for a better sheep production

The nutrient content variation could be due to divergences in the methods and ingredients used for the preparation of Atella (a brew made locally).

Feed and Nutrient Intake

In this study, significantly lower total DMI was recorded in T1 groups of animals than the rest of the treatment groups. This might be due to the additional DM obtained from the supplemented feed and the higher digestibility of supplemented feed which fermented quickly and gave a space for forage intake. On the other hand, markedly enhanced total DMI was achieved in the T3 group than in the T2 group of animals. This might be associated with the discrepancy in the amount of a supplement provided and the inconsistent quantity of basal diet ingested by the animal.

The CPI of the supplemented group of animals had a significantly higher CPI than the control (non-supplemented) group. The outcome of the current study matches with many previous studies, such as Tekliye et al. (2018), Duguma et al. (2019), and Znabu et al. (2019), which demonstrated that supplementation boosts the CPI of the sheep. This could be tied to the superior CP content of supplemented feeds and the total DMI of the supplemented group of animals. The supplemented group of animals had significantly greater MEI than the non-supplemented group of animals. Even so, in the comparison between the supplemented groups of animals, T3 had significantly higher MEI than T2. The maintenance and growth (50 to 200 g gain) ME requirement for 20 kg lamb is about 4.5 to 7.9 MJ/d (ARC, 1980). Hence, the predicted MEI of the sheep obtained from this

Table 5. Live weight parameters and feed conversion efficiency of Washera sheep fed grass hay basal diet, NSC and Atella

Body weight changes	Treatments	T1	T2	T3	P-value
Initial body weight, kg	21.02a ± 2.331	21.04a ± 1.152	21.02a ± 0.531	1.000	
Final body weight, kg	22.20a ± 2.248	24.2a ± 1.288	25.80a ± 1.703	0.025	
Body weight change, kg	1.189	3.168	4.783	0.000	
Average body weight gain, g/d	15.70	42.10	63.70	0.000	
Feed conversion efficiency, kg ADG/kg DMI	0.026a	0.061b	0.070bc	0.000	

(a b c letters in the same row having different superscript are significantly different at P ≤ 0.05; in the same row having different superscript are significantly different at P ≤ 0.05. * indicates significant difference between treatments; ** depicts a strong significant difference between the treatments.

Table 6. Live weight parameters of Washera sheep fed grass hay as a basal dietand, supplemented with NSC and Atella

Parameters	Treatments	T1	T2	T3	SE	P-value
SW, kg	22.37a ± 2.51	24.82a ± 1.66	26.12a ± 1.57	1.241	0.045	
EBW, kg	16.73a ± 1.37	18.86a ± 1.41	19.84a ± 0.91	0.791	0.043	
HC, kg	8.86a ± 0.72	10.15a ± 1.39	10.80a ± 0.68	0.624	0.038	
Dressing percentage, % SW	39.4	40.9	41.4			
Dressing percentage, % EBW	53	53.8	54.4			
Fat thickness, cm²	0.32a ± 0.13	0.30a ± 0.07	0.50a ± 0.32	0.13	0.520	
Rib eye area, cm²	7.9a ± 0.67	8.87a ± 1.52	10.62a ± 0.65	0.652	0.020	

Table 7. Edible offal components of Washera sheep fed grass hay as a basal diet supplemented with Atella and NSC

Edible offal	Treatments	T1	T2	T3	P-value
Blood	0.873a ± 0.071	0.844a ± 0.071	0.964a ± 0.256	0.056	
Heart	0.091a ± 0.014	0.101a ± 0.007	0.105a ± 0.010	0.066	
Liver	0.245a ± 0.021	0.295a ± 0.011	0.308a ± 0.024	0.044	
Kidney	0.057a ± 0.006	0.063a ± 0.007	0.063a ± 0.005	0.061	
Tongue	0.115a ± 0.015	0.112a ± 0.012	0.102a ± 0.019	0.053	
Reticulorumen	0.535a ± 0.075	0.624a ± 0.056	0.547a ± 0.025	0.065	
Omasum abomasum	0.277a ± 0.0216	0.264a ± 0.012	0.307a ± 0.074	0.058	
Hind gut	0.808a ± 0.168	0.808a ± 0.053	0.951a ± 0.055	0.067	
Kidney fat	0.039a ± 0.006	0.034a ± 0.019	0.026a ± 0.017	0.065	
Pelvic fat	0.028a ± 0.007	0.029a ± 0.013	0.053a ± 0.013	0.041	
Omental mesenteric fat	0.028a ± 0.007	0.041a ± 0.021	0.046a ± 0.024	0.033	
Testicle	0.207a ± 0.050	0.248a ± 0.064	0.258a ± 0.054	0.054	

SD = Standard Deviation. Means followed with different superscripts in a column are significantly different (P ≤ 0.05).
and nutrient intake. Atella resulted in a better total DMI NPH with 330 g DM of for maintenance and growth. Generally, supplementation of the above-mentioned energy demand of the animals used study (6.61 MJ/d to 12.28 MJ/d) was within the range of the above-mentioned energy demand of the animals used for maintenance and growth. Generally, supplementation of NPH with 330 g DM of Atella resulted in a better total DMI and nutrient intake.

Table 8. Non-edible offal components of Washera sheep fed grass hay as a basal diet supplemented with Atella and NSC

Non edible offal	Treatments	P-value		
	T₁	T₂	T₃	
Mean ± SD	Mean ± SD	Mean ± SD		
Head without tongue	1.214± 0.152	1.208± 0.102	1.277± 0.101	0.065
Skin	2.271± 0.185	2.960± 0.089	2.880± 0.120	0.024
Penis	0.059± 0.008	0.067± 0.018	0.064± 0.004	0.022
Feet	0.575± 0.035	0.550± 0.039	0.573± 0.028	0.004
Lung with trachea	0.322± 0.032	0.316± 0.061	0.354± 0.052	0.026
Spleen	0.027± 0.003	0.036± 0.008	0.040± 0.007	0.041
Gall bladder with bile	0.015± 0.004	0.015± 0.003	0.015± 0.004	0.067
Esophagus	0.058± 0.030	0.040± 0.013	0.041± 0.010	0.065
Gut content	5.640± 1.169	5.960± 1.212	6.280± 0.954	0.063
Bladder	0.014± 0.003	0.023± 0.007	0.033± 0.025	0.030
Pancreas	0.030± 0.004	0.031± 0.004	0.033± 0.010	0.066

SD = Standard deviation.
Means followed with different superscripts in a column are significantly different (P ≤ 0.05).
* indicates significant difference between treatments; ** depicts a strong significant difference between the treatments.

Table 9. Main carcass components of Washera sheep fed grass hay as a basal diet supplemented with Atella and NSC

Main carcass component	Treatments	P-value		
	T₁	T₂	T₃	
Mean ± SD	Mean ± SD	Mean ± SD		
Forequarter	2.281± 0.238	2.610± 0.230	2.520± 0.217	0.044
Neck region	0.603± 0.076	0.667± 0.071	0.698± 0.050	0.025
Sternum	0.323± 0.054	0.337± 0.071	0.454± 0.056	0.034
Thoracic and lumbar	0.542± 0.015	0.587± 0.060	0.663± 0.051	0.038
Rib-eye region	0.523± 0.086	0.649± 0.074	0.670± 0.113	0.056
Abdominal muscle	0.360± 0.076	0.418± 0.054	0.448± 0.041	0.009
Hind quarter	2.540± 0.219	2.670± 0.228	2.900± 0.141	0.007
Pelvic	0.704± 0.084	0.752± 0.061	0.760± 0.061	0.015
Fat tail	0.473± 0.112	0.830± 0.229	1.105± 0.192	0.044
Ribs	0.323± 0.048	0.363± 0.067	0.379± 0.060	0.063

SD = Standard deviation.
Means followed with different superscripts in a column are significantly different (P ≤ 0.05).
* indicates significant difference between treatments; ** depicts a strong significant difference between the treatments.

Dry Matter and Nutrient Digestibility
In this study, a higher nutrient digestibility was indicated in the supplemented group of animals than non-supplemented animals. In the same manner, Teklehaymanot (2019) and Ayenew et al. (2012) also stated enhanced nutrient digestibility among supplemented animals than non-supplemented animals. In the present study, a significant difference in CPDC between supplemented and non-supplemented treatment groups was spotted. The reason could be in ruminant nutrition, the CP from supplement diets might have improved microbial efficiency to enhance fermentative digestion as the microbes’ efficiency usually improved through supplementation, as stated by McDonald et al. (2010). This finding was similar to the earlier studies of Tulu et al. (2018) and Znabu et al. (2019). Perhaps, this is associated with the increased nutrient supply, especially nitrogen to rumen microbes. On the other hand, the digestibility of nutrients in T₁ was better than in T₃ animals. This is probably associated with the higher CPI of T₁ of animals, which leads to better CPDC.

Live Weight Change and Feed Conversion Efficiency
In line with the current study, the finding of Gatenby (1986), Rodriguez et al. (2014), and Teklehaymanot (2019) documented a greater final body weight and daily weight gain in the supplemented animals than the non-supplemented animals. This could be due to the essential nutrients provided to rumen microorganisms by supplementary feeds to improve the microbial activity in the rumen. The final BWG recorded in the present study was superior to the findings of different studies (Worku et al., 2015; Mekuriaw and Asmare, 2018; Mekcha et al., 2019). In contrary to this, the higher body weight gain than the current work was recorded by Shigdaf et al. (2013) and Mengistie et al. (2009), who reported 28.77 kg and 31.04 kg, respectively. In the present analysis, higher ADG (63.7 g/d) was attained as compared to the ADG (45 g/d) of Washera sheep fed grass hay and supplemented with 330 g of sun-dried Atella reported by (Abreham et al.,
Dried-Atella as an affordable supplementary feed resource for a better sheep production

Moreover, in this study, an increase in BWG of 0.70 kg was obtained as compared to the research of Worku et al. (2020).

Carcass Component

Similar to the current finding, in the previous studies of Assefa et al. (2015), Abebe and Tamir (2016), and Worku et al. (2020), an increased SW, EBW, HCW, DP, and rib eye area were reported. In this study, better SW was performed by the T3 group as compared to T2. This is possibly associated with the higher Feed Conversion Efficiency (FCE) and BWG performed by supplemented animals. In the present investigation, the dressing percentage based on EBW was higher than the dressing percentage based on SW. This shows the influence of digesta (full gut) on dressing percentage. The supplemented treatment groups of this study achieved a higher rib-eye muscle area than the non-supplemented groups. Similarly, the previous study of Ayele et al. (2018), Duguma et al. (2019), and Worku et al. (2020) depicted a positive effect of supplementation on the rib-eye muscle area. However, in the current study among the supplemented group of animals, the greater rib-eye muscle area was achieved by T3 followed by the T2 animals. This variation might be associated with the higher live weight gain of the T3 group of animals. The greater fat thickness obtained from the T3 group of animals might be associated with the higher total DMI, MEI, and digestibility of nutrients.

Edible Carcass Component

The current study revealed that there was no significant difference in terms of weight of kidney fat and omental mesenteric fat except for pelvic fat among the three treatments. This could be associated with the MEI and energy content of the feed provided. However, the kidney fat and Omental mesenteric fat obtained from this result were higher than the finding of Mekcha et al. (2019), but according to the current finding, but smaller than reports of Tekliye et al. (2018).

Non-edible Carcass Component

Based on this study, the gut content was higher in the supplemented groups than non-supplemented groups. Similarly, ARC (1980) reported an increase in the gut content through supplementation. This might be involved with the higher total DMI of the supplemented group of lambs.

Main Carcass Component

In the present finding, the supplemented sheep had significantly higher fat tail weight than the non-supplemented groups. This might be linked with the lowered total MEI of the control group of animals. This statement agreed with the report of Tesfaye et al. (2011) and Fitwi and Tadesse (2013) who reported a higher weight of tail fat among the supplemented experimental animals.

Partial Budget Analysis

Considering the benefit-cost ratio of these inquiries, a higher benefit-cost ratio was recorded from T3 followed by T2. This means that for every 1 USD investment for the fattening of Washera sheep fed grass hay as a basal diet supplemented with Atella and NSC, there was a gain of about 1.1 USD (T3) and 1.07 USD (T2), respectively. This implies the net benefits of T3 are 30% higher than the net benefits of T2. To conclude, supplementation of NPH with 330 g DM of Atella resulted in a better net profit than supplementation of NPH with 163 g DM of NSC. Hence, supplementation of NPH with 330 g DM of Atella was found to be potentially more practicable, affordable, and economically more feasible for smallholder farmers engaged in sheep fattening. However, further work is required to look into the effect of supplementation of NPH with NSC and NPH with Atella on fatty acid profile analysis, the physicochemical composition of meat, and meat composition. In addition to this, a higher digestibility of ADL was recorded in T1 than T2. Hence, the authors suggest that further study would be important to investigate the reason behind the higher digestibility of ADL, which might be associated with the breed or the capability of anaerobic fungi.

ACKNOWLEDGMENTS

The first author acknowledges the following persons. Her words fail short to express the contributions, genuine support, and encouragement that she obtained from Mrs. Ingrid Coninx, Dr. Judith Klostermann, Dr. Adebabay Kebede, Ms. Lutte Thys, and Mrs. Dieuwertje Lont. They are unforgettable and supportive people for her. She would also like to extend her gratitude to her ideal family; Dr. Shiferaw W/Tsadik, Dr. Amlaz Gizew, Dr. Tewodros Tefera, and other REALISE project members for their support during this thesis work. She is really indebted to Mr. Moges Asmare, Mrs. Mantegebosh Abebe, Mr. Marye Sinishaw, and Mrs. Getaneh Takele, who helped her in the management of experimental sheep. The author would also like to acknowledge BENEFIT-REALISE projector for funding this research.

AUTHOR CONTRIBUTIONS

All authors contributed in research conceptualization, experimental design, data collection and analysis, and final draft manuscript writing.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest in the publication of this paper.

ETHICS APPROVAL

Not applicable.

CONSENT TO PARTICIPATE

Not applicable.
CONSENT FOR PUBLICATION

All authors agreed on the publication of this paper and assigned corresponding author responsible in charge for correspondence during manuscript publishing.

DATA AVAILABILITY

Data is available with the corresponding author upon request.

CODE AVAILABILITY

Not applicable.

LITERATURE CITED

Abreham, H., G. Animut, A. Hailemichael, D. Tedla, and F. Baragabr. 2019. Effect of commercial and non-conventional feeds, leaves of indigenous and improved multipurpose tree supplementation on feed intake, digestibility and growth performance of sheep. Open Agric. J. 13(1):207–214.

AOAC. 2005. Official methods of analysis. 18th ed. Arlington (VA): Association of Official Analytical Chemists.

Agricultural Research Council (ARC). 1980. The nutrient requirements of ruminant livestock. Farnham Royal (UK): Common Wealth Agricultural Bureaux; p. 351.

Assefa, F., M. Urge, and G. Animut. 2015. Weight gain and carcass characteristics of Adilo sheep fed urea treated wheat straw supplemented with enset (Ensete Vinctricosum), Atella and their mixtures. J. Biol., Agric. Healthcare. 5(11):186–195.

Ayele, S., M. Urge, G. Animut, and M. Yusuf. 2017. Feed intake, digestibility, growth performance and blood profiles of three Ethiopian fat tail hair sheep fed hay supplemented with two levels of concentrate supplement. Open J. Anim. Sci. 7:149–167. doi:10.4236/ojas.2017.72013

Ayele, S., M. Urge, G. Animut, and M. Yusuf. 2018. Comparative slaughter performance and carcass quality of three fat tail hair sheep supplemented two level of concentrate. Trop. Anim. Health Prod. 51:187–198. doi:10.1007/s11250-018-1675-7

Ayenew, A., T. Berhan, and M. Solomon. 2012. Feed intake, digestibility and live weight change of lambs fed finger millet (Eleusinecoracana) straw supplemented with Atella, Noug seed (Guizotiaabyssinica) cake and their mixtures. Agric. Trop. Subtrop. 45(3):105–111. doi:10.2478/v10295-012-0018-3

Bhagya, S., and S. Shamanthaka. 2003. The Reference in Scientific Document Supply 2003, 36, 703. Cited by Matiwes, S. and Bhagwan, S. 2015. Nutrient composition of NSC (GuizotiaAbyssinica (l. f.) cass.) cultivated in different parts of Ethiopia. Bull. Chem. Soc. Ethiop. 29(3):341–355. doi:10.4314/bcses.v29i3.2

Duguma, C., M. Urge, and U. Galmessa. 2019. Effect of replacement of concentrate with Lablab purpureus hay on feed intake, digestibility, live weight gain and carcass characteristics of Horro sheep fed natural pasture hay as basal diet. Glob. Sci. J. 7(11):597–614.

Food and Agricultural Organization (FAO). 2019. The future of livestock in Ethiopia. Opportunities and challenges in the face of uncertainty. Rome: FAO.

Feyissa, F., G. Kitaw, and G. Assifa. 2015. Nutritional qualities of agro-industrial by-products and local supplementary feeds for dairy cattle feeding. Ethiop. J. Agric. Sci. 26(1):13–26.

Fitwi, M., and G. Tadesse. 2013. Effect of sesame cake supplementa- tion on feed intake, bodyweight gain, feed conversion efficiency and carcass parameters in the ration of sheep fed on wheat bran and teff (Eragrostistuff) straw. Momonpa Ethiop. J. Sci. 5(1):89–106. doi:10.4314/mejs.v5i1.85333

Gatenby, R. 1986. Sheep production in the tropics and sub-tropics. London and New York: Longman.

Gebrehiwot, G., T. Negesse, and A. Abebe. 2017. Effect of feeding Leucaenaelensocephala leaves and Pods on feed intake, digestibility, body weight change and carcass characteristic of Central-Highland sheep fed basal diet Wheat Bran and Natural Pasture Hay in Ti- gray, Ethiopia. Int. J. Environ. Agric. Biotech. 10(3):367–376. doi:10.5938/2230-732X.2017.00045.6

Getachew, M., T. Firew, and M. Yeshambel. 2017. Sheep fattening practices in Fogera District, Amhara National Regional State, Ethiopia. J. Biol. Agric. Healthcare. 7(15):24–50. ISSN 2224-3208 (Paper) ISSN 2225-093X (Online).

Gizaw, S., A. Ebro, Y. Tesfaye, Z. Mekuriaw, Y. Mekasha, D. Hoekstra, B. Gebremedhin, and A. Tegegne. 2017. Feed resources in the highlands of Ethiopia: A value chain assessment and intervention options. LIVES Working Paper 27. Nairobi, Kenya: International Livestock Research Institute (ILRI).

Hizkel, K., M. Yoseph, and T. Yosef. 2008. A study on sheep farming practices in relation to future production strategies in Bensa district of Southern Ethiopia. Trop. Anim. Health Prod. 50:865–874. doi:10.1007/s11250-017-1509-x

Matawork, M., and G. Mitiku. 2017. Sheep production system, marketing and constraints in Ethiopia. J. Biol. Agric. Healthcare. 7(19):34–42.

McDonald, P., R. Edwards, J. Greanhalgh, C. Morgan, L. Sinclair, and R. Wilkinson. 2010. Animal nutrition, 7th ed. London: Prentice Hall; p. 1–665.

Mekcha, E., B. Alemu, and S. Ayele. 2019. Effect of Atella, Brunt and their mixture supplementation on feed intake, digestibility and body weight change of Washera Sheep fed oat (Avena sativa) straw basal diet, in Machackel District East GojjamZone. J. Agric. Econ. Rural Develop. 5(1):55–562.

Mekuria, S., A. Teshager, and A. Endeshaw. 2018. Small ruminant fattening practices in Amhara region, Ethiopia. Agric. Food Secur. 7:1–9. doi:10.1186/s40066-018-0218-9

Mekuriya, Y., and B. Asmare. 2018. Nutrient intake, digestibility and growth performance of Washera lambs fed natural pasture hay supplemented with graded levels of Ficus thomsonii (Chibba) leaves as replacement for concentrate mixture. Agric. Food Secur. 7(32):1–8. doi:10.1186/s40066-018-0184-2

Mengistie, T., A. Girma, G. Solomon, L. Sisay, M. Abebe, and T. Markos. 2009. Growth performance of Washera. J. Trop. Anim. Health Prod. 42(4):659–667. doi:10.1007/s11250-009-9473-x

Ranjhan, S. K., 1980. Animal nutrition and feeding practice in India. Vikas Publishing House, New Delhi, 350 p.

Rodriguez, A., E. Gonzalez, and P. Randel. 2014. Performance and meat carcass characteristics of locally slaughtered sheep and goats raised by gezira native tropical grasses with or without supplementation. J. Agric. Univ. P. R. 98(2):129–146.

Selamawit, D., and H. Matiwos. 2015. Sheep and goat production practice in agroforestry systems of Gedio zone, Ethiopia. Int. J. Environ. Agric. Biotech. 7(15):24–50. ISSN 2224-3208 (Online). doi:10.5897/IJEB2014.0563

Shigdaf, M., T. Mengistie, M. Zeleke, M. Getinet, M. Hailu, and H. Aynalem. 2013. Evaluation of reproductive performances and survival rate of Washera sheep under farm and station management systems in Amhara region, Ethiopia. J. Agric. Food Ind. Organ. 2(7):206–215.

Tadesse, A., G. Gebeheyu, and T. Berhan. 2020. Body weight gain and carcass yield characteristics of Wollo highland sheep and their F1 crossbreeds [Online First]. Intech Open. 1–20. doi:10.5772/intechopen.92340

Tadesse, E., T. Negesse, and G. Abebe. 2014. Supplemental feeding options for fattening sheep on-farmin southern Ethiopia. Afric. Sci. Res. J. 4(11):193–200.

Teklehaymanot, A. 2019. Feed intake, digestibility and growth performance of Begait sheep fed hay basal diet and supplemented with Tisara (Pterocarpuslucens), Pigeon pea (Cajanuscajanu) leaves and concentrate mixture. Int. J. Livest. Prod. 10(9):204–212. doi:10.5897/IJLP2018.0563

Tekliye, L., Y. Mekuriaw, B. Asmare, and F. Mehret. 2018. Nutrient intake, digestibility, growth performance and carcass characteristics of Farta sheep fed urea-treated rice straw supplemented with...
graded levels of dried Sesbaniasesan leaves. *Agric. Food Secur.* 7(77):1–10. doi:10.1186/s40066-018-0226-9

Tesfaye, G., G. Solomon, L. Sisay, and T. Mengistie. 2011. Breeding practices, growth, and carcass potential of fat-tailed Washera sheep breed in Ethiopia. *J. Trop. Anim. Health Prod.* 43(7):1443–1448. doi:10.1007/s11250-011-9874-5

Tilley, J., and R. Terry. 1963. A two stage method for the in vitro digestion of forage crops. *J. Br. Grassl. Soc.* 18:104–111.

Tulu, A., Y. Khushi, and D. Challi. 2018. Supplementary value of two Lablab purpureus cultivars and concentrate mixture to natural grass hay basal diet based on feed intake, digestibility, growth performance and net return of Horrosheep. *Int. J. Livest. Prod.* 9(6):140–150. doi:10.5897/IJLP2017.0444

Upton, M. 1979. *Farm management in Africa: the principle of production and planning.* Oxford: Oxford University Press; p. 282–298.

Van Soest, P., and J. Robertson. 1985. *Analysis of forages and fibrous foods a laboratory manual for animal science.* Ithaca (NY): Cornell University.

Worku, A., G. Animut, M. Urge, and K. Gebeeyew. 2015. Effect of different levels of dried Sugar Cane tops inclusion on the performance of Washera sheep fed basal diet of Grass Hay, Ethiopia. *J. Adv. Dairy Res.* 3:133. doi:10.4172/2329-888X.1000133

Worku, A., M. Urge, G. Animut, and G. Asefa. 2020. Comparative slaughter performance and meat quality of Rutana, Gumuz and Washera sheep of Ethiopia supplemented with different levels of concentrate. *Open J. Anim. Sci.* 10:48–63.

Yenesew, A., T. Firew, and T. Azage. 2013. Assessment of sheep production system in Borie District, North Western Ethiopia. *Glob. J. Agric. Res.* 1(2):29–47.

Zenzelmakebele Agricultural Office. 2017. Zenzelmakebele location data. Zenzelma Kebele.

Znabu, H., T. Negesse, A. Sisay, and M. Ftiwi. 2019. Effect of supplementing graded levels of wet brewery grain by-product to natural pasture hay and wheat bran based diet on the performance of Tigray highland sheep, Northern Ethiopia. *J Dairy Vet. Anim. Res.* 8(5):205–214. doi:10.15406/jdvar.2019.08.00268