Integrable geodesic flows on 2-torus: formal solutions and variational principle

Misha Bialy* and Andrey E. Mironov†

Abstract

In this paper we study quasi-linear system of partial differential equations which describes the existence of the polynomial in momenta first integral of the integrable geodesic flow on 2-torus. We proved in [3] that this is a semi-Hamiltonian system and we show here that the metric associated with the system is a metric of Egorov type. We use this fact in order to prove that in the case of integrals of degree three and four the system is in fact equivalent to a single remarkable equation of order 3 and 4 respectively. Remarkably the equation for the case of degree four has variational meaning: it is Euler-Lagrange equation of a variational principle. Next we prove that this equation for \(n = 4 \) has formal double periodic solutions as a series in a small parameter.

1 Introduction

In this paper we study integrable geodesic flows on two-dimensional torus \(T^2 = \mathbb{R}^2/\Gamma \), where \(\Gamma \subset \mathbb{Z}^2 \) is a lattice. Let \(ds^2 = \sum_{i,j=1}^{2} g_{ij}(q) dq_i dq_j \) be a Riemannian metric on 2-torus. The geodesic flow of the metric is called integrable if the Hamiltonian system

\[
\dot{q}^i = \frac{\partial H}{\partial p_i}, \quad \dot{p}^i = -\frac{\partial H}{\partial q^i}, \quad H = \frac{1}{2} \sum_{i,j=1}^{2} g^{ij}(q)p_ip_j,
\]

has a first integral \(F(q,p) : T^*T^2 \to \mathbb{R} \), i.e.

\[
\dot{F} = \{ F,H \} = \left(\frac{\partial H}{\partial q^1} \frac{\partial F}{\partial p_1} - \frac{\partial H}{\partial p_1} \frac{\partial F}{\partial q^1} \right) + \left(\frac{\partial H}{\partial q^2} \frac{\partial F}{\partial p_2} - \frac{\partial H}{\partial p_2} \frac{\partial F}{\partial q^2} \right) = 0,
\]

such that almost everywhere \(F \) is independent with \(H \). There are two kind of Riemannian metrics having polynomial integrals for the geodesic flow. If the metric has the form

\[
ds^2 = \Lambda(\alpha x + \beta y)(dx^2 + dy^2) \quad \text{or} \quad ds^2 = (\Lambda_1(\alpha_1 x + \beta_1 y) + \Lambda_2(\alpha_2 x + \beta_2 y))(dx^2 + dy^2),
\]

*School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Israel; e-mail: bialy@post.tau.ac.il
†Sobolev Institute of Mathematics and Novosibirsk State University, Russia; e-mail: mironov@math.nsc.ru
then there exist polynomial integrals of degree one or degree two. The existence of Riemann metrics with non-reducible polynomial integrals of higher degree is a difficult open problem.

Let us recall some results on integrable geodesic flows on T^2. If the geodesic flow is integrable, then on the torus there are global semi-geodesic coordinates (t, x) (see [3]), i.e.

$$ds^2 = g^2(t, x)dt^2 + dx^2, \quad H = \frac{1}{2} \left(\frac{p_1^2}{g^2} + p_2^2 \right).$$

The polynomial first integral has the form

$$F = \frac{a_0}{g^n} p_1^n + \frac{a_1}{g^{n-1}} p_1^{n-1} + \cdots + \frac{a_{n-2}}{g} p_1^{n-2} p_2^{n-2} + p_1 p_2^{n-1} + p_2^n, \quad a_s = a_s(t, x).$$

The condition $\{F, H\} = 0$ is equivalent to the quasi-linear system of partial differential equations

$$U_t + A(U)U_x = 0, \quad (1)$$

where $U^T = (a_0, \ldots, a_{n-1})$, $a_{n-1} = g$.

$$A = \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 & a_1 \\
0 & a_{n-1} & \cdots & 0 & 0 & 2a_2 - na_0 \\
0 & 0 & a_{n-2} & \cdots & 0 & 3a_3 - (n-1)a_1 \\
0 & 0 & \cdots & a_{n-1} & 0 & (n-1)a_{n-1} - 3a_{n-3} \\
0 & 0 & \cdots & 0 & a_{n-1} & na_n - 2a_{n-2}
\end{pmatrix}.$$

System (1) has remarkable properties. It can be written in the form of conservation laws, i.e. there is a regular change of variables

$$(a_0, \ldots, a_{n-1}) \mapsto (G_1(a), \ldots, G_n(a))$$

such that for some $F_1(a), \ldots, F_n(a)$ the conservation laws hold true

$$(G_i(a))_t + (F_i(a))_x = 0, \quad i = 1, \ldots, n.$$

Moreover, in the hyperbolic domain, where eigenvalues $\lambda_1, \ldots, \lambda_n$ of A are real and pairwise distinct there exist change of variable

$$(a_0, \ldots, a_{n-1}) \mapsto (r_1(a), \ldots, r_n(a))$$

such that the system can be written in Riemann invariants.

$$(r_i)_t + \lambda_i(r)(r_i)_x = 0, \quad i = 1, \ldots, n.$$

Such systems are called semi-Hamiltonian and generalized hodograph method applies [13]. Semi-Hamiltonian systems and in particular systems of hydrodynamic type are very important in mathematical physics (see for example [6], [7], [12]).
It is not clear to us at present if and how the generalized hodograph method can be used to prove non-existence of smooth solutions for a semi-Hamiltonian system. Using the original idea by P. Lax based on analysis along characteristics we proved for the cases $n = 3, 4$ that in the elliptic domain (where matrix A has two complex-conjugated eigenvalues) the behavior of solutions can be analyzed: the integrals of degree three and four are reduced to integrals of degree one or two [4]. Thus non-trivial integrals of degree 3, 4 may exist only in the hyperbolic region of the quasi-linear system (1).

In this paper we study a quasi-linear system (2) which corresponds to the choice of conformal coordinates (x, y) for Riemannian metric $ds^2 = \Lambda(dx^2 + dy^2)$. We assume that the geodesic flow has a polynomial in momenta integral

$$F = a_0(x, y)p_1^n + a_1(x, y)p_1^{n-1}p_2 + \cdots + a_n(x, y)p_2^n.$$

Kozlov and Denisova [8] proved that if Λ is trigonometric polynomial then the geodesic flow has no irreducible polynomial integrals of degree higher than two (see also [9]). By Kolokoltsov’s [10] theorem

\[
a_{n-1} = c_1 + a_{n-3} - a_{n-5} + \cdots, \quad a_n = c_2 + a_{n-2} - a_{n-4} + \cdots,
\]

where c_1, c_2 are some constants. Then the condition $\{H, F\} = 0$, where $H = \frac{p_1^2 + p_2^2}{2\Lambda}$ is equivalent to the system of quasi-linear equations

$$A(U)U_x + B(U)U_y = 0, \quad U = (a_0, a_1, \ldots, a_{n-2}, \Lambda) \quad (2)$$

(see (11) below to specify $A(U), B(U)$ explicitly). This system also can be written in the form of conservation laws and moreover, in the hyperbolic region it admits n Riemann invariants, so the system is semi-Hamiltonian (see [2]).

Let us remind that for semi-Hamiltonian systems the following relations on eigenvalues hold

$$\partial_r \lambda_i \lambda_i - \lambda_k = \partial_r \lambda_j \lambda_j - \lambda_k, \quad i \neq j \neq k \neq i.$$

These relations mean that there exists a diagonal metric on the space of field variables

$$ds^2 = H_1^2(r)dr_1^2 + \cdots + H_n^2(r)dr_n^2 \quad (3)$$

with Christoffel symbols satisfying the identities

$$\Gamma_{ki}^k = \frac{\partial_r \lambda_k}{\lambda_i - \lambda_k}, \quad i \neq k.$$

Let us formulate now our main results. In Theorems 1–7 we assume that $c_1 = 0$. This can be achieved by a rotation in the plane x, y.

Theorem 1 The metric (3) associated with the semi-Hamiltonian system (2) is a metric of Egorov type, i.e. the rotation coefficients

$$\beta_{ij} = \frac{\partial_r H_j}{H_i}, \quad i \neq j$$

3
are symmetric $\beta_{ij} = \beta_{ji}$, or equivalently there is a function $A(r)$ such that
\[
\partial_r A(r) = H^2_i(r).
\]

In fact it follows from theorem of Pavlov and Tsarev [11] that in order to prove Theorem 1 one needs to find two conservation laws of a special form. In the next theorem we state the existence of these conservation laws for (2).

Theorem 2 The system (2) has two conservation laws of the form
\[
P(U)_x + Q(U)_y = 0, \quad Q(U)_x + R(U)_y = 0. \tag{4}
\]

Functions $P(U), Q(U), R(U)$ are found explicitly in Lemma 1 (see below). Remarkably, for $n = 3, 4$ Theorem 2 allows us to reduce system (2) to a single equation.

Theorem 3 Let $n = 3$, and $\lambda(x, y)$ be a solution periodic with respect to the lattice Γ of the equation
\[
\Delta \lambda = \frac{3c^2}{2} \Lambda - 2a_{11} - 2a_{22}. \tag{5}
\]
Then the function λ satisfies the equation
\[
2\lambda_{xx}\lambda_{xy} + \lambda_{yy}(\lambda_{xy} - \lambda_{yy}) + \lambda_{xy}(\lambda_{xx} + \lambda_{yy}) + 4a_{11}\lambda_{xy} + 2a_{12}(\lambda_{xx} + \lambda_{yy}) + 2a_{22}(\lambda_{xy} - \lambda_{yy}) = 0, \tag{6}
\]
where a_{11}, a_{12}, a_{22} are some constants defined by the metric and the integral.

Theorem 4 Let $n = 4$, and $\lambda(x, y)$ be a solution periodic with respect to the lattice Γ of the equation
\[
\Delta \lambda = 2c^2 \Lambda - 2a_{11} - 2a_{22}. \tag{5'}
\]
Then the function λ satisfies the equation
\[
\lambda_{xy}(\lambda_{yyy} - \lambda_{xxx}) + 3(\lambda_{yyy}\lambda_{xy} - \lambda_{xxxy}) + 2(\lambda_{yy}\lambda_{xyy} - \lambda_{xxxxy}) + 4a_{22}\lambda_{xyy} - 4a_{11}\lambda_{xxx} + 2a_{12}(\lambda_{yyy} - \lambda_{xxx}) = 0, \tag{7}
\]
where a_{11}, a_{12}, a_{22} are some constants defined by the metric and the integral.

Our next theorem states that the equations (6) and (7) are in fact equivalent to the system (2).

Theorem 5 Let λ be a solution of the equation (6) or (7) respectively periodic with respect to the lattice Γ which satisfies the condition $\Delta \lambda + 2(a_{11} + a_{22}) > 0$. Then the corresponding solution of the system (2) is periodic also.
Proof of this theorem is very simple for the case $n = 3$ but requires certain topological argument for the case $n = 4$. This argument is given below in Section 4.

Remarkably equation (7) admits the following variational interpretation.

Theorem 6 Equation (7) coincides with the Euler-Lagrange equation of the functional

$$
\mathcal{L}(\lambda) = \int \frac{1}{2} \left(4\lambda_{xy}(a_{22}\lambda_{yy} - a_{11}\lambda_{xx}) + 2a_{12}(\lambda_{yy}^2 - \lambda_{xx}^2) + \lambda_{xy}(\lambda_{yy}^2 - \lambda_{xx}^2) \right) dx
$$

Let us remark that the functional becomes especially simple

$$
\mathcal{L}(\lambda) = \int \frac{1}{2} \lambda_{xy}(\lambda_{yy} - \lambda_{xx})(\frac{1}{\varepsilon} + \Delta \lambda) dx
dy
$$

for the choice of constants a_{ij} where $a_{11} = a_{22} = \frac{1}{4\varepsilon}, a_{12} = 0$. However, at the present moment we have no significant results on the critical points of this functional.

Let us consider now in more details the equation (7) for $a_{12} = 0, a_{11} = a_{22} = \frac{1}{4\varepsilon}$

$$
\lambda_{xxy} - \lambda_{xyy} = \varepsilon(\lambda_{xy}(\lambda_{yyyy} - \lambda_{xxxx}) + 3(\lambda_{yyyy}\lambda_{xyy} - \lambda_{xyy}\lambda_{xxxx}) +
+ 2(\lambda_{yyyy}\lambda_{xyy} - \lambda_{xyy}\lambda_{xxxx})).
$$

The conformal factor of the metric has the form

$$
\Lambda = \frac{1}{c^2} \left(\frac{\Delta \lambda}{2} + \frac{1}{2\varepsilon} \right).
$$

Let us look for a solution of (8) as a formal power series in ε:

$$
\lambda(x, y) = \lambda_0(x, y) + \lambda_1(x, y)\varepsilon + \lambda_2(x, y)\varepsilon^2 + \ldots,
$$

where ε is a small parameter. Then from (8) we have a recursion formula.

$$
(\lambda_k)_{xyy} - (\lambda_k)_{xxy} = \sum_{s=0}^{k-1} < \lambda_s, \lambda_{k-s-1} >
$$

where

$$
< \lambda_p, \lambda_q > = \lambda_{p_{yy}}(\lambda_{q_{yyyy}} - \lambda_{q_{xxxx}}) + 3(\lambda_{p_{yyyy}}\lambda_{q_{xyy}} - \lambda_{p_{xyy}}\lambda_{q_{xxxx}}) + 2(\lambda_{p_{yyyy}}\lambda_{q_{xyy}} - \lambda_{p_{xyy}}\lambda_{q_{xxxx}}).
$$

In the rest of this section we shall assume that $\Gamma \subset \mathbb{R}^2$ is the integer lattice \mathbb{Z}^2. Given initial doubly periodic function λ_0 we wish to find all λ_k recursively by means of equation (10). It is easy to see that (10) has a periodic solution λ_k if the Fourier series of the right hand side does not have monomials of the form

$$
e^{inx}, e^{iny}, e^{in(x+y)}, e^{in(x-y)}.$$

Let us remark also that the periodic solution \(\lambda_k \) of (10) is defined up to addition to \(\lambda_k \) some function of the form

\[
\tilde{\lambda}_k = f_1(x) + f_2(y) + f_3(x-y) + f_4(x+y).
\]

Next theorem states that recursive process is well defined and thus gives formal periodic solution of (8) if the initial function \(\lambda_0 \) and the additions \(\tilde{\lambda}_k \) on every stage \(k \) are chosen symmetric with respect to coordinate axes and diagonals, \(x = 0, y = 0, x = y, x = -y \). It is an important open question if the convergence of the series can be achieved by a good choice of initial function \(\lambda_0 \) and the functions \(\tilde{\lambda}_k \).

Theorem 7 Let

\[
\lambda_0 = \sum_{n \in \mathbb{N}} \alpha_n (\cos(nx) + \cos(ny)) + \sum_{n \in \mathbb{N}} \beta_n (\cos(n(x-y)) + \cos(n(x+y))),
\]

\[
\tilde{\lambda}_k = \sum_{n \in \mathbb{N}} \alpha^n_k (\cos(nx) + \cos(ny)) + \sum_{n \in \mathbb{N}} \beta^n_k (\cos(n(x-y)) + \cos(n(x+y))),
\]

then the recursion formula gives a well defined formal periodic solution (9) of (10).

We prove Theorem 7 in the last section.

Remark It is an interesting fact that substituting into the equation (8)

\[
\lambda = f_1(x) + f_2(y) + f_3(x-y) + f_4(x+y)
\]

one gets an equation on the functions \(f_1, \ldots, f_4 \) which was studied recently in [1]. It was proved later in [5] that there are no new periodic solutions of this equation in this particular form.

2 Proof of Theorems 1 and 2

Let us assume that \(ds^2 = \Lambda(x,y)(dx^2 + dy^2) \) is a metric on \(\mathbb{T}^2 \) and \(F \) is a first integral polynomial in momenta for the geodesic flow

\[
F = a_0(x,y)p_1^n + a_1(x,y)p_1^{n-1}p_2 + \cdots + a_n(x,y)p_2^n.
\]

We have

\[
2\Lambda^2\{H, F\} = 2(a_0p_1^n + a_1p_1^{n-1}p_2 + a_2p_1^{n-2}p_2^2 + \cdots + a_n p_2^n)p_1\Lambda +
\]

\[
+ (na_0p_1^{n-1} + (n-1)a_1p_1^{n-2}p_2 + (n-2)a_2p_1^{n-3}p_2^2 + \cdots + a_{n-1}p_2^{n-1})(p_1^2 + p_2^2)\Lambda_x +
\]

\[
2(a_0p_1^n + a_1p_1^{n-1}p_2 + a_2p_1^{n-2}p_2^2 + \cdots + a_n p_2^n)p_2\Lambda +
\]

\[
+ (a_1p_1^{n-1} + 2a_2p_1^{n-2}p_2 + 3a_3p_1^{n-3}p_2^2 + \cdots + na_n p_2^{n-1})(p_1^2 + p_2^2)\Lambda_y,
\]

6
Let us recall that by Kolokoltsov’s theorem

\[2\Lambda^2\{H, F\} = l_{n+1}p_1^{n+1} + l_n p_1^n p_2 + \cdots + l_0 p_2^{n+1}, \]

\[l_{n+1} = 2a_{0x}\Lambda + na_0\Lambda_x + a_1\Lambda_y, \]

\[l_n = 2a_{1x}\Lambda + (n-1)a_1\Lambda_x + 2a_{0y}\Lambda + 2\Lambda_y, \]

\[l_{n-1} = 2a_{2x}\Lambda + na_0\Lambda_x + (n-2)a_2\Lambda_x + 2a_{1y}\Lambda + a_1\Lambda_y + 3a_3\Lambda_y, \]

\[l_{n-2} = 2a_{3x}\Lambda + (n-1)a_1\Lambda_x + (n-3)a_3\Lambda_x + 2a_{2y}\Lambda + 2a_2\Lambda_y + 4a_4\Lambda_y, \]

\[l_{n-3} = 2a_{4x}\Lambda + (n-2)a_2\Lambda_x + (n-4)a_4\Lambda_x + 2a_{3y}\Lambda + 3a_3\Lambda_y + 5a_5\Lambda_y, \]

\[\dot{\cdots} \dot{\cdots} \dot{\cdots} \dot{\cdots} \dot{\cdots} \]

\[l_3 = 2a_{n-2x}\Lambda + 4a_{n-4}x + 2a_{n-2}\Lambda_x + 2a_{n-3y}\Lambda + (n-3)a_{n-3}\Lambda_y + (n-1)a_{n-1}\Lambda_y, \]

\[l_2 = 2a_{n-1x}\Lambda + 3a_{n-3}x + a_{n-1}\Lambda_x + 2a_{n-2}\Lambda + (n-2)a_{n-2}\Lambda_y + na_n\Lambda_y, \]

\[l_1 = 2a_n\Lambda + 2a_{n-2}\Lambda_x + 2a_{n-1y}\Lambda + (n-1)a_{n-1}\Lambda_y, \]

\[l_0 = a_{n-1}\Lambda_x + 2a_{n}\Lambda + na_{n}\Lambda_y. \]

Let us recall that by Kolokoltsov’s theorem

\[a_{n-1} = c_1 + a_{n-3} - a_{n-5} + \cdots, \quad a_n = c_2 + a_{n-2} - a_{n-4} + \cdots \]

We have the following system of differential equations

\[l_{n+1} = \cdots = l_0 = 0. \] \hspace{1cm} (11)

Lemma 1 If \(n \) is even \(n = 2k \), then the system (11) has the following two conservation laws

\[[(na_0 - (n-2)a_2 + (n-4)a_4 - \cdots + (-1)^{k+1}2a_{n-2})\Lambda]_x + \]

\[[(-n-2)a_1 + (n-4)a_3 - \cdots + (-1)^{k+1}2a_{n-3} + (-1)^{k+1}(n-1)c_1)\Lambda]_y = 0, \]

\[[((n-2)a_1 - (n-4)a_3 + \cdots + (-1)^{k}2a_{n-3} + (-1)^{k+1}c_1)\Lambda]_x + \]

\[[(na_0 - (n-2)a_2 + (n-4)a_4 - \cdots + (-1)^{k+1}2a_{n-2} + (-1)^{k+1}nc_2)\Lambda]_y = 0. \]

If \(n \) is odd \(n = 2k + 1 \) then the system (11) has the following two conservation laws

\[[((n-1)a_0 - (n-3)a_2 + (n-5)a_4 - \cdots + (-1)^{k+1}2a_{n-3} + (-1)^{k}c_1)\Lambda]_x + \]

\[[(-n-1)a_1 + (n-3)a_3 - (n-5)a_5 + \cdots + (-1)^{k}2a_{n-2} + (-1)^{k}nc_2)\Lambda]_y = 0, \]

\[[((n-1)a_1 - (n-3)a_3 + \cdots + (-1)^{k+1}2a_{n-2})\Lambda]_x + \]

\[[((n-1)a_0 - (n-3)a_2 + \cdots + (-1)^{k+1}2a_{n-3} + (-1)^{k+1}(n-1)c_1)\Lambda]_y = 0. \]
Let us consider the following linear combination of equations (11) in Lemma 1 we get two conservation laws of the form (4), where for
\[a_n = 1 \]

Theorems 1 and 2 immediately follow from the Lemma 1. Indeed, if we put
\[c_1 = 0 \]
in Lemma 1 we get two conservation laws of the form (11), where for \(n \) even
\[P = (na_0 - (n - 2)a_2 + (n - 4)a_4 - \cdots + (-1)^{k+1}2a_{n-2})\Lambda, \]
\[Q = -(n - 2)a_0 + (n - 4)a_3 - \cdots + (-1)^{k+1}2a_{n-3})\Lambda, \]
\[R = (-na_0 + (n - 2)a_2 - (n - 4)a_4 + \cdots + (-1)^{k+1}2a_{n-2} + (-1)^knc_2)\Lambda. \]

Analogously for \(n \) odd one has:
\[P = ((n - 1)a_1 - (n - 3)a_3 + \cdots + (-1)^{k+1}2a_{n-2})\Lambda, \]
\[Q = ((n - 1)a_0 - (n - 3)a_2 + \cdots + (-1)^{k+1}2a_{n-3})\Lambda, \]
\[R = -(n - 1)a_1 + (n - 3)a_3 - (n - 5)a_5 + \cdots + (-1)^{k+1}2a_{n-2} + (-1)^knc_2)\Lambda. \]

Proof of Lemma 1

Let us consider the case of even degree \(n = 2k \). Then
\[a_{n-1} = c_1 + a_{n-3} - a_{n-5} + \cdots + (-1)^k a_1, \quad a_n = c_2 + a_{n-2} - a_{n-4} + \cdots + (-1)^{k+1}a_0. \]

Let us consider the following linear combination of equations (11)
\[nl_{n+1} - (n - 2)l_{n-1} + (n - 4)l_{n-3} - \cdots + (-1)^{k+1}2l_3 = \]
\[2(na_0 - (n - 2)a_2 + (n - 4)a_4 - \cdots + (-1)^{k+1}2a_{n-2})\Lambda + \]
\[(n^2a_0 - (n - 2)na_0 - (n - 2)^2a_2 + (n - 4)(n - 2)a_2 + (n - 4)^2a_4 - \cdots \]
\[+ (-1)^{k+1}2 \cdot 4a_{n-4} + (-1)^{k+1}2a_{n-2})\Lambda_x + \]
\[2(-n - 2)a_1y + (n - 4)a_3y - \cdots + (-1)^{k+1}2a_{n-3y})\Lambda + \]
\[(na_1 - (n - 2)a_1 - (n - 2)3a_3 + (n - 4)3a_3 + (n - 4)5a_5 - \cdots + (-1)^{k+1}2(n - 3)a_{n-3} + \]
\[(-1)^{k+1}2(n - 1)a_{n-1})\Lambda_y = \]
\[2(na_0 - (n - 2)a_2 + (n - 4)a_4 - \cdots + (-1)^{k+1}2a_{n-2})\Lambda + \]
\[2(na_0 - (n - 2)a_2 + (n - 4)a_4 - \cdots + (-1)^{k+1}2a_{n-2})\Lambda_x + \]
\[2(-n - 2)a_1y + (n - 4)a_3y - \cdots + (-1)^{k+1}2a_{n-3y})\Lambda + \]
\[2(a_1 - 3a_3 + 5a_5 - \cdots + (-1)^k(n - 3)a_{n-3} + (-1)^{k+1}a_{n-1}(n - 1))\Lambda_y = \]
\[2[(na_0 - (n - 2)a_2 + (n - 4)a_4 - \cdots + (-1)^{k+1}2a_{n-2})\Lambda]_x + \]
\[2(-n - 2)a_1y + (n - 4)a_3y - \cdots + (-1)^{k+1}2a_{n-3y})\Lambda + \]
\[2(a_1 - 3a_3 + 5a_5 - \cdots + (-1)^k(n - 3)a_{n-3} + (-1)^{k+1}(n - 1)(c_1 + a_{n-3} - a_{n-5} + \cdots + (-1)^ka_1))\Lambda_y = \]
\[2[(na_0 - (n - 2)a_2 + (n - 4)a_4 - \cdots + (-1)^{k+1}2a_{n-2})\Lambda]_x + \]
\[2(-n - 2)a_1y + (n - 4)a_3y - \cdots + (-1)^{k+1}2a_{n-3y})\Lambda + \]
We have the first required conservation law. By similar calculations, from (4) it follows that
\[
2[(na_0 - (n - 2)a_2 + (n - 4)a_4 - \cdots + (-1)^{k+1}2a_{n-2})]\Lambda_x + \\
2[(-n - 2)a_1 + (n - 4)a_3 - \cdots + (-1)^{k+1}2a_{n-3}]\Lambda_y + 2(-1)^{k+1}(n - 1)c_1\Lambda_y = 0.
\]

We have the first required conservation law. By similar calculations,

\[
nl_n - (n - 2)l_{n-2} + (n - 4)l_{n-4} + \cdots + (-1)^{k+1}2l_2 = \\
2[[(n - 1)a_0 - (n - 3)a_2 + (n - 5)a_4 - \cdots + (-1)^{k+1}2a_{n-3} + (-1)^{k+1}c_1]\Lambda_x + \\
2[(-n - 1)a_1 + (n - 3)a_3 - (n - 5)a_5 + \cdots + (-1)^{k+1}2a_{n-2} + (-1)^{k+1}nc_2]\Lambda_y = 0.
\]

Let us consider the case of odd degree \(n = 2k + 1 \). Then
\[
a_{n-1} = c_1 + a_{n-3} - a_{n-5} + \cdots + (-1)^{k+1}a_0, \quad a_n = c_2 + a_{n-2} - a_{n-4} + \cdots + (-1)^{k+1}a_1.
\]

By direct calculation we get
\[
(n + 1)l_{n+1} - (n - 1)l_{n-1} + (n - 3)l_{n-3} - \cdots + (-1)^{k+1}2l_2 = \\
2[[(n - 1)a_0 - (n - 3)a_2 + (n - 5)a_4 - \cdots + (-1)^{k+1}2a_{n-3} + (-1)^{k+1}c_1]\Lambda_x + \\
2[(-n - 1)a_1 + (n - 3)a_3 - (n - 5)a_5 + \cdots + (-1)^{k+1}2a_{n-2} + (-1)^{k+1}nc_2]\Lambda_y = 0,
\]

and
\[
(n - 1)l_n - (n - 3)l_{n-2} + (n - 5)l_{n-4} - \cdots + (-1)^{k+1}2l_3 = \\
2[[(n - 1)a_1 - (n - 3)a_3 + \cdots + (-1)^{k+1}2a_{n-2})]\Lambda_x + \\
2[[(n - 1)a_0 - (n - 3)a_2 + \cdots + (-1)^{k+1}2a_{n-3} + (-1)^{k+1}(n - 1)c_1]\Lambda_y = 0.
\]

Lemma 1 and Theorems 1, 2 are proved.

3 Proof of Theorems 3 and 4

Let us consider the case \(c_1 = 0, n = 3 \) in Lemma 1. Then we have conservation laws (4) where
\[
P = -a_1\Lambda, \quad Q = -a_0\Lambda, \quad R = \left(\frac{3}{2}c_2 + a_1\right)\Lambda.
\]

From (4) it follows that
\[
P = h_{yy}, \quad Q = -h_{xy}, \quad R = h_{xx},
\]

where \(h(x, y) \) is some function. From (12) and (13) we obtain
\[
a_0 = \frac{3c_2h_{xy}}{2\Delta h}, \quad a_1 = -\frac{3c_2h_{yy}}{2\Delta h}, \quad \Lambda = \frac{2\Delta h}{3c_2}.
\]

9
For $n = 3$ the equation $l_4 = 0$ has the form

$$a_1 \Lambda_y + 2a_0, \Lambda + 3a_0 \Lambda_x = 0.$$

Let us substitute (14) in the last equation. We get

$$2h_{xx}h_{xxy} + h_{yy}(h_{xxy} - h_{yyy}) + h_{xy}(h_{xxx} + h_{xyx}) = 0.$$

Since a_0, a_1, Λ are periodic function we have

$$h = \lambda + a_{11}x^2 + 2a_{12}xy + a_{22}y^2,$$

where λ is a function periodic with respect to Γ. Then λ satisfies the equation (6). Theorem 3 is proved.

Let us consider the case $c_1 = 0, n = 4$ in Lemma 1. Then we have conservation laws (4) where

$$P = (2a_0 - a_2)\Lambda, \quad Q = -a_1\Lambda, \quad R = (2c_2 - 2a_0 + a_2)\Lambda.$$

(15)

We have

$$P = f_{yy}, \quad Q = -f_{xy}, \quad R = f_{xx},$$

(16)

where $f(x, y)$ is some function. From (15), (16) we get

$$a_1 = 2c_2 f_{xy} \frac{f_{xy}}{\Delta f}, \quad a_2 = -2c_2 f_{yy} \frac{f_{yy}}{\Delta f} + 2a_0, \quad \Lambda = \frac{\Delta f}{2c_2}.$$

(17)

Using (17) from $l_5 = 0$ and $l_4 = 0$ we get

$$a_{0x} = -\frac{1}{(\Delta f)^2}(c_2 f_{yyyy} f_{xy} + c_2 f_{xy} f_{xxy} + 2a_0 \Delta f (f_{xxx} + f_{xyy})), \quad (18)$$

$$a_{0y} = \frac{1}{(\Delta f)^2}(2f_{yy}((c_2 - a_0)f_{yyy} - a_0 f_{xxy})$$

$$- 2f_{xx}(c_2 f_{xy} + a_0 (f_{yyyy} + f_{xyy})) - c_2 f_{xy} (f_{xyy} + f_{xxx})).$$

(19)

We differentiate (18) with respect to y, (19) — with respect to x and take a difference between the results, and after that we substitute into the result instead of a_{0x} and a_{0y} expressions (18) and (19). It gives an equation on f

$$f_{xy}(f_{yyyy} - f_{xxxx}) + 3(f_{yyyy} f_{xy} - f_{xxxx} f_{xy}) + 2(f_{yy} f_{xyy} - f_{xx} f_{xxy}) = 0.$$

Since P, Q and R are periodic functions, f can be written in the form

$$f = \lambda + a_{11}x^2 + 2a_{12}xy + a_{22}y^2,$$

where λ is a function periodic with respect to Γ. This yields (7). Theorem 4 is proved.
4 Proof of Theorems 5 and 6

Let us prove first Theorem 5. We start with the simple case of $n = 3$. Given a periodic solution λ of equation (6) satisfying $\Delta \lambda + 2(a_{11} + a_{22}) > 0$, then it follows from the explicit formulas (14) that the coefficients of the integral a_0, a_1, a_2, a_3 as well as the factor Λ are periodic functions.

In order to treat the case $n = 4$ we proceed with a topological argument as follows. Let λ be a periodic solution of the equation (7) satisfying $\Delta \lambda + 2(a_{11} + a_{22}) > 0$. Coefficients of the integral and the conformal factor Λ are determined by the function

$$f = \lambda + a_{11}x^2 + 2a_{12}xy + a_{22}y^2$$

using the formulas (17), (18), (19). Notice that by Kolokoltsov identities and (17) the functions Λ, a_1, a_3 are periodic with respect to the lattice. However, coefficients a_0 and also a_2, a_4 are not necessarily periodic. Coefficient a_0 is determined by the equations (18), (19) and it is convenient to rewrite them in the form

$$(a_0(\Delta f)^2)_x = -c_2f_{xy}(\Delta f)_y := V \quad (20)$$

$$(a_0(\Delta f)^2)_y = c_2(f_{yy}^2 - f_{xx}^2)_y - c_2f_{xy}(\Delta f)_x := W. \quad (21)$$

The functions $\Delta f, V, W$ are periodic and we need to show that the periods of the 1-form $Vdx + Wdy$ on the torus are zeroes. We have from (20), (21)

$$a_0 = \frac{L(x, y)}{(\Delta f)^2} + \frac{P_0(x, y)}{(\Delta f)^2},$$

where L is a linear function and P_0 and Δf are periodic functions with respect to the lattice. Due to (17) we have for other coefficients an analogous form:

$$a_2 = \frac{2L(x, y)}{(\Delta f)^2} + \frac{P_2(x, y)}{(\Delta f)^2},$$

and since $a_4 = c_2 + a_2 - a_0$ we get also

$$a_4 = \frac{L(x, y)}{(\Delta f)^2} + \frac{P_4(x, y)}{(\Delta f)^2},$$

where P_2, P_4 are periodic functions. In addition, odd coefficients a_1, a_3 are periodic functions. Take now two periodic geodesics γ_1, γ_2 on the covering plane of the configuration torus representing two independent homotopy classes e_1, e_2 of the lattice. Denote by z the intersection point and by

$$z_1 = z + e_1, \quad z_2 = z + e_2$$

the translations of z. Since

$$F = a_0(x, y)p_1^4 + a_1(x, y)p_1^3p_2 + a_2(x, y)p_1^2p_2^2 + a_3(x, y)p_1p_2^3 + a_4(x, y)p_2^4,$$
is the first integral of the geodesic flow we have that the increment of F along the two geodesics γ_1, γ_2 must vanish. But on the other hand we compute:

$$
\Delta F|_{\gamma_1} = \frac{L(e_1)}{(\Delta f)^2} (p'_1)^4 + 2 \frac{L(e_1)}{(\Delta f)^2} (p'_1)^2 (p'_2)^2 + \frac{L(e_1)}{(\Delta f)^2} (p'_2)^4,
$$

$$
\Delta F|_{\gamma_2} = \frac{L(e_2)}{(\Delta f)^2} (p''_1)^4 + 2 \frac{L(e_2)}{(\Delta f)^2} (p''_1)^2 (p''_2)^2 + \frac{L(e_2)}{(\Delta f)^2} (p''_2)^4,
$$

where we used the form of the coefficients a_i. Here we used (p'_1, p'_2) (respectively (p''_1, p''_2)) for the momenta variables corresponding to the tangent vector $\dot{\gamma}_1(z)$ (respectively $\dot{\gamma}_2(z)$) at the intersection point z. But the last two identities reduce to

$$
\Delta F|_{\gamma_1} = \frac{L(e_1)}{(\Delta f)^2} ((p'_1)^2 + (p'_2)^2)^2 = 0,
$$

$$
\Delta F|_{\gamma_2} = \frac{L(e_2)}{(\Delta f)^2} ((p''_1)^2 + (p''_2)^2)^2 = 0.
$$

Thus

$$
L(e_1) = L(e_2) = 0,
$$

which means that the linear function L vanishes. This completes the proof of Theorem 5 for $n = 4$.

Let us finish this section establishing variational form of the equation (7). This becomes clear if one rewrites (7) in the following way:

$$
4a_{22}\lambda_{xyyy} - 4a_{11}\lambda_{xxxx} + 2a_{12}(\lambda_{yyyy} - \lambda_{xxxx}) +
$$

$$
+ (\lambda_{xy}\lambda_{yy})_{yy} - (\lambda_{xy}\lambda_{xx})_{xx} + \frac{1}{2}(\lambda_{yy}^2 - \lambda_{xx}^2)_{xy} = 0.
$$

(22)

It is easy to verify that last equation is indeed Euler-Lagrange equation of the functional of Theorem 6. This completes the proof.

5 Proof of Theorem 7

As in the proof of Theorem 6 let us rewrite equation (8) in the form

$$
\lambda_{xyy} - \lambda_{yyy} =
$$

$$
= \varepsilon (\lambda_{xy}\lambda_{yy})_{yy} - (\lambda_{xy}\lambda_{xx})_{xx} + \frac{1}{2}(\lambda_{yy}^2 - \lambda_{xx}^2)_{xy}.
$$

(23)

Then the recursion step (10) looks as follows:

$$
(\lambda_k)_{xyy} - (\lambda_k)_{yyy} = \sum_{p,q \geq 0, p+q=k-1}^{k-1} A_{pq} + B_{pq} + C_{pq},
$$

(24)
where

\[A_{pq} = ((\lambda_p)_{xy}(\lambda_q)_{yy})_{yy}, \]

\[B_{pq} = -((\lambda_p)_{xy}(\lambda_q)_{xx})_{xx}, \]

\[C_{pq} = \frac{1}{2}((\lambda_p)_{yy}(\lambda_q)_{yy} - (\lambda_p)_{xx}(\lambda_q)_{xx})_{xy}. \]

We prove by induction the following claim. All \(\lambda_k \) have no Fourier monomials of the form

\[e^{inx}, \quad e^{iny}, \quad e^{in(x+y)}, \quad e^{in(x-y)}, \]

and is a function which is symmetric with respect to axes and diagonals.

Assume inductively that for all \(k = 1, ..., K-1 \) the claim holds. In order to construct \(\lambda_K \) one needs that the monomials \((25) \) do not show up in the right hand side of \((24) \). Start with \(e^{inx} \). Such a monomial can appear on the right hand side only from \(B_{pq} \). But the functions \(\lambda_p, \lambda_q \) are even with respect to \(y \), therefore \(B_{pq} \) is odd with respect to \(y \) and so the Fourier coefficient of \(e^{inx} \) must vanish. Analogously, \(e^{iny} \) can appear only from \(A_{pq} \). But this is again an odd function on \(x \) and thus the Fourier coefficient of \(e^{iny} \) must vanish. In order to conclude about the monomials \(e^{in(x+y)}, e^{in(x-y)} \) we notice that the equation \((23) \) and therefore also \((24) \) is invariant on the rotation of the plane by \(-45^\circ\) and so the previous argument can be applied. Thus monomials \((25) \) do not appear and \(\lambda_k \) can be found. One can easily see it is also symmetric with respect to the axes and diagonals. This proves the claim.

Acknowledgments

The first author (MB) was partially supported by ISF grant 128/10, second author (AM) was partially supported by RFBR grant 12-01-00124-a, by grant from Dmitri Zimin’s Dynasty foundation and by grant of the Russian Federation for the State Support of Researches (Agreement No 14.B25.31.0029). This paper was initiated on summer 2013 when both authors participated in Integrable Systems Programme in CIRM (Marseille) and CRM (Barcelona). It is a pleasure to thank the organizers and the Institutions for their support.

References

[1] S.V. Agapov, D.N. Alexandrov. Fourth-Degree Polynomial Integrals of a Natural Mechanical System on a Two-Dimensional Torus // Math. Notes. 2013. V. 93. N. 5. P. 780-783.

[2] M. Bialy. Richness or semi-hamiltonicity of quasi-linear systems that are not in evolution form // Quarterly of Applied Math. 2013. V. 71. P. 787–796.

[3] M. Bialy, A. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus // Discrete and Continuous Dynamical Systems - Series A. 2011. V. 29. N. 1. P. 81–90.
[4] M. Bialy, A. Mironov. Qubic and Quartic integrals for geodesic flow on 2-torus via system of Hydrodynamic type // Nonlinearity. 2011. V. 24. N. 12. P. 3541-3554.

[5] N.V. Denisova, V.V. Kozlov, D.V. Treschev. Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space // Izv. Math. 2012. V. 76. N. 5. P. 907-921.

[6] B.A. Dubrovin, S.P. Novikov. Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory // Russian Math. Surveys. 1989. V. 44. N. 6. P. 35124.

[7] O.I. Mokhov, E.V. Ferapontov. Non-local Hamiltonian operators of hydrodynamic type related to metrics of constant curvature // Russian Math. Surveys. 1990. V. 45. N. 3. P. 218-219.

[8] V.V. Kozlov, N.V. Denisova. Polynomial integrals of geodesic flows on a two-dimensional torus // Sb. Math. 1995. V. 83. N. 4. P. 69-81.

[9] V.V. Kozlov, D.V. Treschev. On the integrability of Hamiltonian systems with toral position space // Math. USSR-Sb. 1989. V. 63. N. 1. P. 121-139.

[10] V.N. Kolokoltsov. Geodesic flows on two-dimensional manifolds with an additional first integral that is polynomial in the velocities // Math. USSR-Izv. 1983. V. 21. N. 2. P. 291-306

[11] M.V. Pavlov, S.P. Tsarev. Tri-Hamiltonian structures of Egorov systems of hydrodynamic type // Funct. Anal. Appl. 2003. V. 37. N. 1. P. 32-45.

[12] D. Serre, Systems of Conservation Laws, Vol. 2, Geometric structures, oscillations, and initial-boundary value problems. Translated from the 1996 French original by I. N. Sneddon, Cambridge University Press, Cambridge, 2000.

[13] S.P. Tsarev. The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method // Math. USSR-Izv. 1991. V. 37. N. 2. P. 397-419.