Beyond Octonions

Khaled Abdel-Khalek *†
Dipartimento di Fisica, Università di Lecce
- Lecce, 73100, Italy -

February 2000

Abstract

We investigate Clifford Algebras structure over non-ring division algebras. We show how projection over the real field produces the standard Atiyah-Bott-Shapiro classification.

Quaternions and octonions may be presented as a linear algebra over the field of real numbers \(\mathbb{R} \) with a general element of the form

\[
Y = y_0e_0 + y_ie_i, \quad y_0, y_i \in \mathbb{R}
\]

where \(i = 1, 2, 3 \) for quaternions \(\mathbb{H} \) and \(i = 1..7 \) for octonions \(\mathbb{O} \). We always use Einstein’s summation convention. The \(e_i \) are imaginary units, for quaternions

\[
e_i e_j = -\delta_{ij} + \epsilon_{ijk} e_k, \quad (2)
\]

\[
e_i e_0 = e_0 e_i = e_i, \quad (3)
\]

\[
e_0 e_0 = e_0, \quad (4)
\]

where \(\delta_{ij} \) is the Kronecker delta and \(\epsilon_{ijk} \) is the three dimensional Levi–Cevita tensor, as \(e_0 = 1 \) when there is no confusion we omit it. Octonions have the same structure, only we must replace \(\epsilon_{ijk} \) by the octonionic structure

* khaled@le.infn.it
† Address after 15 February 2000: Feza Gürsey Institute, P.O. Box 6, 81220 Çengelköy, İstanbul, Turkey
constant f_{ijk} which is completely antisymmetric and equal to one for any of the following three cycles

$$123, 145, 176, 246, 257, 347, 365.$$

(5)

The important feature of real, complex, quaternions and octonions is the existence of an inverse for any non-zero element. For the generic quaternionic or octonionic element given in (1), we define the conjugate Y^* as an involution $(Y^*)^* = Y$, such that

$$Y^* = y_0 e_0 - y_i e_i,$$

(6)

introducing the norm as $N(Y) \equiv \|Y\| = YY^* = Y^*Y$ then the inverse is

$$Y^{-1} = \frac{Y^*}{\|Y\|}.$$

(7)

The Norm is nondegenerate and positively definite. We have the decomposition property

$$\|XY\| = \|X\| \|Y\|$$

(8)

$N(xy)$ being nondegenerate and positive definite obeys the axioms of the scalar product.

Going to higher dimensions, we define “hexagonions” (X) by introducing a new element e_8 such that

$$X = Q_1 + Q_2 e_8$$

$$= x_0 e_0 + \ldots + x_{16} e_{16}, \quad x_\mu \in \mathbb{R}$$

(9)

and

$$e_i e_j = -\delta_{ij} + C_{ijk} e_k.$$

(10)

Now, we have to find a suitable form of the completely antisymmetric tensor C_{ijk}. Recalling how the structure constant is written for octonions

$$Q = Q_1 + Q_2 e_4$$

$$= x_0 e_0 + \ldots + x_7 e_7,$$

(11)

where Q are quaternions, we have already chosen the convention $e_1 e_2 = e_3$ which is extendable to (11). We set $e_1 e_4 = e_5$, $e_2 e_4 = e_6$ and $e_3 e_4 = e_7$, but we still lack the relationships between the remaining possible triplets, $\{e_1, e_6, e_7\}; \{e_2, e_5, e_7\}; \{e_3, e_5, e_6\}$ which can be fixed by using

$$e_1 e_6 = e_1 (e_2 e_4) = -(e_1 e_2) e_4 = -e_3 e_4 = -e_7,$$

$$e_2 e_5 = e_2 (e_1 e_4) = -(e_2 e_1) e_4 = +e_3 e_4 = +e_7,$$

$$e_3 e_5 = e_3 (e_1 e_4) = -(e_3 e_1) e_4 = -e_2 e_4 = -e_6.$$
These cycles define all the structure constants for octonions. Returning to \mathbb{X}, we have the seven octonionic conditions, and the decomposition (9). We set $e_1e_8 = e_9$, $e_2e_8 = e_A$, $e_3e_8 = e_B$, $e_4e_8 = e_C$, $e_5e_8 = e_D$, $e_6e_8 = e_E$, $e_7e_8 = e_F$ where $A = 10$, $B = 11$, $C = 12$, $D = 13$, $E = 14$ and $F = 15$. The other elements of the multiplication table may be chosen in analogy with (11). Explicitly, the 35 hexagonionic triplets are

\[(123), \ (145), \ (246), \ (347), \ (176), \ (365), \ (189), \ (28A), \ (38B), \ (48C), \ (58D), \ (68E), \ (78F), \ (1BA), \ (1DC), \ (1EF), \ (29B), \ (2EC), \ (2FD), \ (3A9), \ (49D), \ (4AE), \ (4BF), \ (3FC), \ (3DE), \ (5C9), \ (5AF), \ (5EB), \ (6FD), \ (6CA), \ (6BD), \ (79E), \ (7DA), \ (7CB).\]

This can be extended for any generic higher dimensional \mathbb{F}^n.

It can be shown by using some combinatorics that the number of such triplets N for a general \mathbb{F}^n algebra is $(n > 1)$

\[N = \frac{(2^n - 1)!}{(2^n - 3)! \cdot 3!}, \quad (12)\]

giving

\mathbb{F}^n	n	\dim	N
\mathbb{Q}	2	4	1
\mathbb{O}	3	8	7
\mathbb{X}	4	16	35

and so on.

One may notice that for any non-ring division algebra (\mathbb{F}, $n > 3$), $N > \dim(\mathbb{F}^n)$ except when $\dim = \infty$, i.e. a functional Hilbert space with a Cliff(0, ∞) structure.

It is clear that for any ring or non-ring division algebras, $e_i, e_j \in \mathbb{F}^n$, we have

\[\{e_i, e_j\} = -2\delta_{ij}. \quad (13)\]

As we explained in [1] and [2], treating quaternions and octonions as elements of R^4 and R^8 respectively, we can find the full set of matrices $R(4)$ and $R(8)$ that corresponds to any elements e_i explicitly

For quaternions $e_i \leftrightarrow (E_i)_{\alpha\beta} = \delta_{\alpha\beta} - \delta_{ij} \delta_{\alpha0} + e_{i\alpha\beta}$,

\[\{E_i, E_j\} = -2\delta_{ij} \quad i, j = 1..3, \quad \alpha, \beta = 1..4,\]

For octonions $e_i \leftrightarrow (E_i)_{\alpha\beta} = \delta_{\alpha\beta} - \delta_{ij} \delta_{\alpha0} + f_{i\alpha\beta}$,

\[\{E_i, E_j\} = -2\delta_{ij} \quad i, j = 1..7, \quad \alpha, \beta = 1..8\]
Following, the same translation idea projecting our algebra \mathbb{X} over \mathbb{R}^{16}, any E_i is given by a relation similar to that given in (14),

$$\left(E_i \right)_{\alpha\beta} = \delta_{i\alpha} \delta_{\beta 0} - \delta_{i\beta} \delta_{\alpha 0} + C_{i\alpha\beta}. \tag{15}$$

But contrary to quaternions and octonions, the Clifford algebra (over the real field \mathbb{R}^{16}) closes only for a subset of these E_i’s, namely

$$\{E_i, E_j\} = -2\delta_{ij} \quad \text{for} \quad i, j, k = 1 \ldots 8 \quad \text{not} \quad 1 \ldots 15. \tag{16}$$

Because we have lost the ring division structure. We can find easily that another ninth E_i can be constructed, in agreement with the Clifford algebra classification [3]. There is no standard 16 dimensional representation for Cliff (15). Following this procedure, we can give a simple way to write real Clifford algebras over any arbitrary Euclidean dimensions.

Sometimes, a specific multiplication table may be favored. For example in soliton theory, the existence of a symplectic structure related to the bi-hamiltonian formulation of integrable models is welcome. It is known from the Darboux theorem, that locally a symplectic structure is given up to a minus sign by

$$J_{\text{dim} \times \text{dim}} = \begin{pmatrix} 0 & -1_{\text{dim}} \\ 1_{\text{dim}} & 0 \end{pmatrix}, \tag{17}$$

this fixes the following structure constants

$$C\left(\frac{\text{dim}}{2} \right)_{1(\frac{\text{dim}}{2} + 1)} = -1, \tag{18}$$

$$C\left(\frac{\text{dim}}{2} \right)_{2(\frac{\text{dim}}{2} + 2)} = -1, \tag{19}$$

$$\vdots$$

$$C\left(\frac{\text{dim}}{2} \right)_{(\frac{\text{dim}}{2} - 1)(\text{dim} - 1)} = -1, \tag{20}$$

which is the decomposition that we have chosen in (14) for octonions

$$C_{415} = C_{426} = C_{437} = -1. \tag{22}$$

\footnote{Look to [2] for a non standard representation.}
Generally our symplectic structure is
\[
(1|E(E_{\frac{dim}{2}}))_{\alpha\beta} = \delta_{0\alpha}\delta_{\beta}E_{\frac{dim}{2}} - \delta_{0\beta}\delta_{\alpha}E_{\frac{dim}{2}} - \epsilon_{\alpha\beta}E_{\frac{dim}{2}}.
\] (23)

Moreover some other choices may exhibit a relation with number theory and Galois fields \[4\]. It is highly non-trivial how Clifford algebraic language can be used to unify many distinct mathematical notions such as Grassmanian \[5\], complex, quaternionic and symplectic structures.

The main result of this section, the non-existence of standard associative 16 dimensional representation of \textit{Cliff} \((0, 15)\) is in agreement with the Atiyah–Bott–Shapiro classification of real Clifford algebras \[3\]. In this context, the importance of ring division algebras can also be deduced from the Bott periodicity \[6\].

I would like to thank P. Rotelli for some useful comments.
References

[1] S. De Leo and K. Abdel-Khalek, J. Math. Phys., 38 (1997) 582.
[2] K. Abdel-Khalek, Int. J. Mod. Phys. A13 (1998) 223.
[3] M. F. Atiyah, R. Bott and A. Shapiro, Topology 3 (Suppl. 1) (1964) 3.
[4] G. Dixon, BRX TH-372, hep-th/9503053.
[5] K. Abdel-Khalek, Int. J. Mod. Phys. A13 (1998) 569.
[6] K. B. Marathe and G. Martucci, The mathematical foundations of gauge theories, Amsterdam, North-Holland, 1992.