Identification of Protein–Ligand Binding Sites by the Level-Set Variational Implicit-Solvent Approach

Zuojun Guo,† Bo Li,‡ Li-Tien Cheng,§ Shenggao Zhou,‡ J. Andrew McCammon,∥ and Jianwei Che*†

†Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
‡Department of Mathematics and Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112, United States
§Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112, United States
∥Department of Chemistry and Biochemistry, Department of Pharmacology, Howard Hughes Medical Institute, and Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0365, United States

ABSTRACT: Protein–ligand binding is a key biological process at the molecular level. The identification and characterization of small-molecule binding sites on therapeutically relevant proteins have tremendous implications for target evaluation and rational drug design. In this work, we used the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA) to locate and characterize potential protein–small-molecule binding sites. We applied our method to a data set of 15 protein–ligand complexes and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified pockets and that 71.8% of the identified pockets are occupied by cocrystallized ligands. For 228 tight-binding protein–ligand complexes (i.e., complexes with experimental pK_a values larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization of binding pockets with topological and physicochemical parameters was used to assess the “ligandability” of the pockets. The results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.

1. INTRODUCTION

Many biological processes, such as signal transduction, cell regulation, and the immune response, involve protein–ligand binding. The identification and characterization of protein binding sites for small molecules are crucial to the understanding of the functions of both endogenous ligands and drug molecules. Despite our increased knowledge about proteins, there are many proteins with unknown binding sites. Even for the ones with known sites, it is still possible to find additional binding sites (e.g., allosteric binding sites) that provide new means to modulate the protein function.

There are about 30 000 genes in the human genome. It is speculated that only 10% are amendable for small-molecule modulation. Among them, less than half have therapeutic potential.¹ Analysis of data from major pharmaceutical companies indicates that less than 2% of projects succeed to get drugs to market throughout the discovery and development phases. This poor success rate is mainly associated with two central problems: the identification and validation of disease-specific targets and the development of specific molecules that can modulate these targets with good therapeutic windows.² Because some biological targets are not “druggable”, ~60% of small-molecule drug discovery projects fail at the stage of “hit-to-lead”.² Knowing the locations and physicochemical properties of the target protein binding sites prior to screening or optimization offers tremendous benefits with respect to time and cost.

Most marketed small-molecule drugs target protein–ligand interactions (PLIs). Recently, the demand for bioavailable protein–protein interaction (PPI) modulators is growing.³,⁴ For PLI, the analysis of available crystallographic structures has indicated that most small molecules prefer hydrophobic protein pockets with more complex topological features than typical protein surfaces.⁵–⁷ Small-molecule binding sites usually consist of deep concave pockets that can maximize favorable protein–ligand contacts. Similar to the cores of proteins, the binding sites of small molecules are often made of hydrophobic residues that could positively contribute to the binding of organic molecules in aqueous environments. On the other hand, general PPI sites are relatively large and flat with both polar and apolar residues (700–2000 Å² contact surface area).⁸–¹¹ Historically, these interfaces are considered to be “undruggable” by small molecules. With detailed characterization of unique aspects of the interaction surfaces, however, some encouraging breakthroughs have been achieved in the past decades for...
certain cases. Recently, 12 small molecules targeting PPIs, such as the inhibitors for p53–MDM2, BCL-2 family–BH3 domain, and tubulin–α–tubulin–β interactions, have been clinically developed.

In principle, binding sites at protein surfaces can be detected experimentally. Hajduk and co-workers used heteronuclear-NMR-based screening to identify and characterize hot spots on protein surfaces. By screening of a large number of diverse “fragmentlike” or “leadlike” compounds (approximately 10,000) against 23 target proteins, this method predicted that 90% of the ligands bind to specific locations on the protein surface. The NMR hit rates of particular sites showed high correlation with the probability of finding high-affinity ligands. The hit rates were also correlated with the pocket apolar surface area (with low-hit-rate pockets having ~35% lower apolar surface area) for the known pockets. On the basis of the results for a large number of diverse compounds and targets, it is believed that certain properties of small-molecule binding sites should be common to general molecular recognition. Seco et al. used molecular dynamics (MD) simulations with explicit binary water/organic solvent to study this phenomenon. Isopropyl alcohol (iPrOH) molecules were used to represent generic druglike small molecules with relatively high diffusion coefficients. After sufficient sampling, iPrOH molecules tended to replace water at the protein binding hot spots. The local density of iPrOH was proportional to the interaction strength with the protein.

Most of the computational studies to identify protein active sites can be categorized into three major classes: geometry-based cavity detection algorithms, energetics-based methods, and pocket physicochemical property-based analysis. Geometric algorithms have been developed to detect putative binding pockets since the early days. Examples are POCKET, SURFNET, APROPOS, LIGSITE, CAST, PASS, CASTp, etc. These methods are all based on steric complementarity and involve moving probes with different sizes around the protein surface to detect the accessible and inaccessible regions. Various algorithms have been reviewed elsewhere. When the binding sites have well-defined pockets, these methods are fast and accurate. PocketFinder by Abagyan and co-workers expands the geometric method by contouring a smooth van der Waals (vdW) potential for the target protein to identify candidate ligand binding sites. This method partially accounts for nonpolar energetic properties but neglects electrostatic and desolvation effects. SiteMap, developed by Schrödinger, Inc., identifies potential binding sites by linking together “site points” that are likely to contribute to tight protein–ligand or protein–protein binding. This method showed >96% sensitivity in a validation test of S38 proteins with co-crystallized ligand.

More sophisticated methods combining physical properties and knowledge-based properties have also been developed. One of the caveats for most of these methods is their relatively low specificity. They are able to find most small-molecule binding sites, but they also identify many other functionally irrelevant pockets (i.e., false positives) as potential binding sites. For any novel protein, it is a challenge to separate the correct pockets from multiple false positives.

Our current work is based on the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA). In this VISM-CFA approach, the molecular solvation process is described by minimization of a solvation free energy functional of all possible solute–solvent interfaces. The final stable equilibrium solute–solvent surface balances the interactions among various solvation contributions, including surface tension, vdW interactions, and electrostatics. Comparison between the local geometries of the equilibrium VISM surface and the protein molecular surface illustrates the strength of local hydrophobicity or hydrophilicity near the protein surface. In principle, the balanced description by VISM surfaces can characterize potential small-molecule binding pockets on target proteins. With such a physics-based method, we aim to describe the properties of generic protein surfaces where a druglike small molecule could potentially bind and to provide a geometrical and physicochemical characterization of these regions. All of the protein–ligand complexes used in this study were co-crystallized structures. A set of topological and energetic parameters from quantitative analysis of the protein–ligand binding sites were used to predict the target protein “ligandability”. We believe that this method can be very helpful for rational drug design and target evaluation.

2. MATERIALS AND METHODS

2.1. Materials and Preparation. Our data set consisted of 515 biologically relevant protein–ligand complexes from the PDBbind database. The proteins belong to 40 families, among which the top 10 are shown in Table 1. Within the data set, subsets of 228 proteins with experimental pKi values larger than 6 were used in a tight-binding case study.

functional type	count (PDB)
hydrolase	298
transferase	26
chaperone	21
transporter	20
isomerase	17
transcription factor	15
oxidoreductase	12
aspartyl protease	11
hormone receptor	7
lyase	4

We used the “Protein Preparation” workflow in Maestro to prepare the input files from original Protein Data Bank (PDB) files. Hydrogen atoms were added, N- and C- termini were incorporated, missing side chains were added, and appropriate bond orders were assigned. Then, improp was used to relax the complexes and remove unphysical contacts with the heavy atoms constrained. Co-crystallized ligands and the corresponding protein targets were separated with the standard Schrödinger protocol (i.e., pv_convert.py). The numbers of heavy atoms for the co-crystallized ligands ranged from 24 to 144. In this data set, we visually checked all 515 complexes and found no ligand that formed a covalent bond with its receptor. Most of the ligands (72%) were small organic molecules with molecular weight (MW) less than 600 Da, and we also included 92 known drugs in their respective targets in our study; 72 ligands were peptides or peptide-like small molecules, and 10 ligands were nucleotides. The total number of atoms for each target protein ranged from 1100 to 9200 with co-crystallized ligands. Waters play a crucial role in the mediation of protein–ligand and protein–protein interactions. Proteins are covered with water molecules with varying degrees of tightness.
according to the physicochemical properties of the protein surface and the ionic conditions. When a ligand binds to a protein surface, it must displace bound waters in that region to interact with the protein directly. Understanding of the behavior of water molecules near a protein surface greatly improves the characterization of protein–ligand binding. In our study, we analyzed the VISM equilibrium surface to obtain hydrophobic pockets near the protein surface. The treatment of water molecules as an implicit solvent in this theory averages the behavior of water molecules near a protein surface. The treatment of water molecules as an implicit solvent averages the hydrophobic pockets near the protein surface. The treatment of water molecules as an implicit solvent in this theory averages the behavior of water molecules near a protein surface greatly improves the characterization of protein–ligand binding.

For the target “ligandability” analysis, 27 protein targets described by Cheng et al. were used. All of these targets were also contained in the whole data set. For each target, one representative crystallographic structure was chosen. The targets were angiotensin-converting enzyme 1 (ACE-1) (PDB entry 1o86), acetylcholinesterase (1gpk), aldose reductase (1pwl), DNA gyrase B (1kji), cyclooxygenase 2 (4cox), cAbI kinase (1iep), EGFR kinase (1m17), P38 kinase (1kv1), cyclin-dependent kinase 2 (CDK2) (1ke9), enoyl reductase (1c14), HIV reverse transcriptase (RT) NNRITI site (1ep4), HIV RT nucleotide site (1t03), HIV-1 protease (1hvr), fungal Cyp51 (1ea1), HMG CoA reductase (1hwi), IMPDH (1nf7), phosphodiesterase 4D2 (PDE-4D) (1oyn), phosphodiesterase 5A (PDE-5A) (1udt), penicillin binding protein (PBP) (1qmf), thrombin (1ktt), neumirandase (1a4q), factor Xa (1ez4), MDM2 (1rv1), protein-tyrosine phosphatase 1B (PTP-1B) (1g1f), cathepsin K (1nlj), HIV integrase (1qsf4), and caspase 1 (ICE-1) (1bmq).

2.2. Level-Set Implementation of VISM-CFA. The level-set implementation of VISM-CFA has been described extensively in previous publications. Set implementation of VISM-CFA has been described (ICE-1) (1bmq). In short, we optimize the free energy of the solvation system, G, as a functional of all possible solute–solvent interfaces Γ:

\[
G[\Gamma] = P\text{Vol}(\Omega_m) + \int_{\Gamma} \gamma(1 - 2\tau H) \, dS \\
+ \rho_w \sum_{i=1}^{N} \int_{\Omega_m} U(||x - x_i||) \, dV \\
+ \frac{1}{32\pi \varepsilon_0} \left(\frac{1}{\varepsilon_w} - \frac{1}{\varepsilon_m} \right) \int_{\Omega_m} \sum_{i=1}^{N} \frac{Q(x - x_i)^2}{|x - x_i|^3} \, dV
\]

(1)

where there are assumed to be N solute atoms located at $x_1, ..., x_N$ inside the solute region Ω_m with point charges $Q_1, ..., Q_N$ respectively. The first term, $P\text{Vol}(\Omega_m)$, is the volumetric part of the energy for creating the solute cavity Ω_m in which P is the pressure difference between the solvent liquid and solute vapor. The second term is the surface energy, where $\gamma(x) = \gamma_0(1 - 2\tau H(x))$, in which γ_0 is the constant macroscopic surface tension for a planar solvent liquid–vapor interface, τ is the first-order correction coefficient, often termed the Tolman coefficient, $H(x)$ is the mean curvature, defined as the average of the two principal curvatures, and S is the interface area. The third term is the energy of the vdW interaction between the solute atoms and the continuum solvent. The bulk solvent density ρ_w was set to 0.0333 Å⁻³. The last term represents the electrostatic contribution to the solvation free energy. It is defined by the Born cycle as the difference between the energies of the vacuum and solvated states, where ε_0 is the vacuum permittivity, ε_w is the relative permittivity of the solute molecule, and ε_m is the relative permittivity of the solvent.

To minimize the free-energy functional (eq 1), an initial surface that encloses all of the solute atoms located at $x_1, ..., x_N$ is chosen. In this pocket-finding study, we chose a loose initial surface in which the closest solute atom (from the edge of the vdW sphere) was at least 1.5 water diameters away from the surface. The initial interface can have a very large value of the free energy. The system is subsequently moved in the direction of steepest descent of the free energy by the level-set method until a minimum is reached. We performed the level-set VISM-CFA calculations for the target proteins after removing the
The unique features captured by VISM surfaces are consistent from the molecular surface in the concave and hydrophobic regions for further characterization using VISM-CFA. We set the macroscopic planar surface tension as the putative binding pockets of target proteins and extract the black, red, and blue surfaces represent VISM isosurfaces with lower level-set values. The equilibrium solute—solvent energy density as given by

\[q_{\text{vdW}}(x) = \rho_w \sum_{i=1}^{N} U((x - x_i)) \]

and the electrostatic solute—solvent solvation energy density is given by

\[q_{\text{elec}}(x) = \frac{1}{32\pi \epsilon_0^2 \epsilon_m} \left(\frac{1}{\sigma_{\text{vdW}}} - \frac{1}{\sigma_{\text{elec}}} \right) \sum_{i=1}^{N} \frac{Q(x - x_i)}{|x - x_i|^3} \]

The estimated total penalty for desolvation (i.e., the opposite process of solvation) for each identified pocket is obtained as the sum of the vdW dehydration energy \(\Delta G_{\text{vdW}} \), the electrostatic dehydration energy \(\Delta G_{\text{elec}} \) and the dehydration energy penalty caused by the surface, \(\Delta G_{\text{surf}} \). The vdW and electrostatic contributions to the total dehydration energy penalty are obtained using the individual components of the solvation energy density (i.e., eqs 3 and 4) with the opposite sign by volume integration over the binding pocket region. The dehydration energy penalty caused by the surface area, \(\Delta G_{\text{surf}} \) is modeled using the curvature-corrected surface tension term:

\[\Delta G_{\text{surf}} = -\int_{S_{\text{binding}}} \gamma_{\text{surf}}(1 - 2\tau H(x)) \, dS \]

where \(\Gamma_{\text{binding}} \) is the surface of the binding pocket region. Local regions inside the pockets can be relatively hydrophobic or hydrophilic, as characterized by the local hydration energy distribution \(\varphi_{\text{solvent}}(x) \). On the basis of complementary ligand—protein binding interactions, the relatively strong hydrophobic regions of a binding pocket are usually occupied by hydrophobic functional groups of a ligand. However, occupation of hydrophilic regions is unlikely to contribute to the binding affinity significantly for many druglike ligands (apolar molecules with rarely more than one formal charge). It has been argued that the ligand—protein electrostatic interactions and desolvation penalties counteract each other and that the combination provides insubstantial contributions to the binding affinity.

Theoretical and experimental studies have indicated that occupation of hydrophobic pockets is the main contributor to
the binding affinity, while hydrophilic regions mainly contribute to the drug specificity.\(^5\) Here we estimate the optimal binding affinity as the contribution from the apolar surface area:

\[
\Delta G_{\text{optimal}} = -\int_{\Omega_{\text{apolar_surface}}} \gamma_0 (1 - 2\tau H(x)) \, dS
\]

In the previous study of p53/MDM2 hydration,\(^3\) we compared the water density around the MDM2 with the hydration energy distribution \(\varphi_{\text{solvent-solvent}}(x)\) and found that for \(\varphi_{\text{solvent-solvent}}(x) < -0.06 \text{ kcal mol}^{-1} \text{ Å}^{-3}\), the water density was larger that its bulk value (hydrophilic regions). Therefore, \(\Omega_{\text{apolar_surface}}\) is defined as the region where \(\varphi_{\text{solvent-solvent}}(x) \geq -0.06 \text{ kcal mol}^{-1} \text{ Å}^{-3}\). In the current level-set VISM model, spatial and orientational distribution of water around protein are ignored. The entropic contributions from these factors might lead to systematic overestimation.

2.5. Statistical Validation of Identified Pockets

The predicted binding pockets are validated by volume overlaps between the identified pockets and the cocryrstallized ligands. A significant overlap indicates that the identified pocket is a ligand binding pocket. The volume-overlap method is argued to be a more precise method than methods based on the pocket–ligand center distance, where the actual spatial configuration of the identified pocket and the corresponding cocrystallized ligand is ignored. Box plots are used for comparison of the topological and physicochemical characters of ligand-occupied pockets and unoccupied ones.

3. RESULTS AND DISCUSSION

3.1. Performance of Protein Binding Pocket Identification through VISM-CFA

VMD was used for visualization inspection. Figure 2a displays the identified pockets aligned with the original complex (PDB entry 1sqn), with the target protein shown in gray cartoon, the ligand shown as a stick model, and the identified pockets highlighted by transparent surfaces. The primary (deepest) pocket is shown in red, the secondary pocket in blue, the tertiary pocket in green, and the fourth pocket in yellow. The cocrystallized ligand binds to the primary pocket. (b) Hydrophilic regions for the identified primary binding pocket and overlapping with the cocrystallized ligand are shown in blue wireframe. The top-right region is occupied by the ligand hydroxyl group (–OH), and the bottom one is occupied by a carbonyl group (C==O). (c) Topological and energetic parameters for the identified protein pockets.

Index	Depth (Å)	SAS (Å²)	Volume (Å³)	Shape (Principal moments of inertia)	Hydrophobic Fraction (%)	Optimal Binding Affinity (kcal/mol)	Dehydration Penalties (vdW, Surf, Elec, Tot) (kcal/mol)
Pocket_1	11.0	88.7	306.7	(0.42, 0.91, 1)	74.8	-9.0	(4.09, -14.36, 3.42, -6.86)
Pocket_2	6.8	41.3	197.6	(0.29, 0.90, 1)	60.0	-3.9	(1.58, -8.63, 4.48, -2.57)
Pocket_3	6	67.0	239.1	(0.55, 0.76, 1)	12.6	-0.9	(2.69, -14.25, 13.67, 2.11)
Pocket_4	2.4	42.4	204.8	(0.12, 0.92, 1)	50.6	-3.3	(1.97, -7.83, 8.36, 2.50)

Figure 2. (a) Identified pockets (PDB entry 1sqn), in which the target protein is shown as a gray-colored cartoon, the ligand as sticks colored by atom name, and the identified pockets as transparent surfaces. The primary pocket is shown in red, the secondary pocket in blue, the tertiary pocket in green, and the last pocket in yellow. The cocrystallized ligand binds to the primary pocket. (b) Hydrophilic regions for the identified primary binding pocket and overlapping with the cocrystallized ligand are shown in blue wireframe. The top-right region is occupied by the ligand hydroxyl group (–OH), and the bottom one is occupied by a carbonyl group (C==O). (c) Topological and energetic parameters for the identified protein pockets.

\(\Delta G_{\text{optimal}}\) represents the optimal binding affinity.

\(\Omega_{\text{apolar_surface}}\) is the region where the hydration energy is less than a certain threshold.

\(\varphi_{\text{solvent-solvent}}(x)\) is the hydration energy distribution.

\(\gamma_0\) is the surface tension.

\(\tau\) is the temperature.

\(H(x)\) is the hydration energy.

\(dS\) is the differential surface area.

\(\text{vdW, Surf, Elec, Tot}\) represents various energetics contributions.

Journal of Chemical Theory and Computation

DOI: 10.1021/ct500867u
J. Chem. Theory Comput. 2015, 11, 753–765
pockets were identified, and 505 identified pockets were occupied by cocrystallized ligands. Among them, 398 proteins had only the primary pocket identified, 107 proteins had two putative pockets, 54 proteins had more than two putative pockets, and only three protein targets (PDB entries 1qmf, 1t03, and 2qft) showed as many as five pockets. In the crystallographic complexes, 96.9% of the ligands are bound to the VISM-CFA-identified pockets, 71.8% of the identified pockets are occupied by the cocrystallized ligands, 92.4% of the ligands bind to the deepest site, 4.7% of the ligands bind to the second-deepest pocket, 0.6% of the ligands bind to the third-deepest pocket, 90.7% of the ligands bind to identified pocket with the largest volume, 88.3% of the ligands bind to the pocket that is both deepest and largest, and 91.1% of the ligands bind to the pocket with the maximum estimated binding affinity.

In this data set, we chose 228 complexes with experimental $pK_d > 6$ as tight binders. For this subset, 99.1% of the ligands bind to the pocket identified by VISM-CFA, 96.9% of the ligands bind to the deepest site, 94.2% bind to the largest-volume site, 93.0% bind to the pocket that is both deepest and largest, and 97% bind to the pocket with the maximum estimated binding affinity. For comparison, in an exhaustive study of 5616 protein–ligand complexes using PocketFinder,28 which incorporates a modified LJ potential that was believed to be more sensitive and specific in terms of pocket identification, 96.8% of the ligands were found to bind in the identified pockets. However, only 5% of the proteins had only one pocket identified, 17% were identified with two pockets, 20% of the proteins showed three identified pockets, and more than half of the proteins were predicted to have more than three pockets. The largest protein showed 17 identified pockets. Our method is based solely on our physical implicit-solvent model with unmodified vdW and electrostatic potentials. The sensitivity reached 96.9%, which is as high as those for the best literature-reported methods. At the same time, we significantly improved the specificity, as 77.3% of the proteins had only one protein binding pocket identified, 12.4% showed two pockets, 7.0% showed three identified pockets, and no protein had more than five putative binding pockets. In VISM theory, the equilibrium VISM surfaces are the consequence of balanced interactions between the solute and solvent. Strong attractive interactions between the solute and solvent (i.e., solute–solvent electrostatic interactions) draw the VISM surface closer to the solute until it is counterbalanced by the repulsive part of the vdW interactions and minimal solvent surface tension. The pockets identified by VISM-CFA tend to be deep and contain significant hydrophobic characteristics. This self-consistent physical chemical description is largely missing from other methods.

Among the 515 ligand–protein complexes, there are 16 cases where cocrystallized ligands do not bind to the VISM-CFA-identified pockets. Table 3 lists these PDB codes and the binding information on the cocrystallized ligands. They can be classified into five different categories. For the first two cases (PDB entries 1l83 and 220l), we found that the ligands are very small ring molecules with fewer than 10 heavy atoms and are completely enclosed by the molecular surface and deeply buried inside the protein. The target protein is T4 lysozyme and 2lqtv, and 2qft, showed as many as 17 identified pockets, and 30 proteins had more than two putative binding pockets. In VISM theory, the equilibrium VISM surfaces are the consequence of balanced interactions between the solute and solvent. Strong attractive interactions between the solute and solvent (i.e., solute–solvent electrostatic interactions) draw the VISM surface closer to the solute until it is counterbalanced by the repulsive part of the vdW interactions and minimal solvent surface tension. The pockets identified by VISM-CFA tend to be deep and contain significant hydrophobic characteristics. This self-consistent physical chemical description is largely missing from other methods.

Table 2. Binding Site Identification Performance of VISM-CFA in 515 Target Proteins

result	set of 515 proteins (%)	set of 228 tight binders (%)
deepest pocket (primary)	92.4	96.9
largest pocket	90.7	94.2
best optimal binding affinity (OBA) pocket	91.1	97.0
both deepest and largest pocket	88.3	93.0
identified pocket site	96.9	99.1

“All 515 proteins contained a cocrystallized ligand. *Subset of 228 proteins that contain a ligand with experimental pK_d larger than 6.

Table 3. Data for the 16 Ligand–Protein Complexes in Which the Cocrystallized Ligand Does Not Bind to the VISM-CFA-Identified Pocket

case	PDB ID	target	ligand binding mode
1	1l83	T4 lysozyme	small ligand bound to deep buried cavity
2	220l	T4 lysozyme	small ligand bound to deep buried cavity
3	1oss	Streptomyces griseus trypsin (SGT)	small ligand bound to deep buried cavity
4	1gbs	glutathione S-transferase (GST)	charged ligand bound to shallow pocket
5	2r5a	MBT repeats of sex comb on midleg (Scm)	charged ligand bound to shallow pocket
6	2vty	MBT repeats of sex comb on midleg (Scm)	charged ligand bound to shallow pocket
7	2ht9	lectin from Rastonia solanacearum	charged ligand bound to shallow pocket
8	2kjq	adhesin subunit (DrazE/AtAE)	charged ligand bound to shallow pocket
9	1hwi	HMG-COA reductase	charged ligand bound to shallow pocket
10	1fao	pleckstrin homology domains	Tetrakins(phosphate) as the ligand (strong charge)
11	1e9d	14-3-3 protein	non-natural peptide as the ligand
12	2ink	human pin1	non-natural peptide as the ligand
13	1m48	interleukin-2	non-natural peptide as the ligand
14	1nlj	human cathepsin K	non-natural peptide as the ligand
15	1f5q	ADP-ribosylation factor-like protein 3	nucleic acid base with phosphate as the ligand
16	1t03	HIV-1 nucleotide RT	nucleic acid base with phosphate as the ligand
bind to the protein surfaces with relatively strong polarity and shallow topological features that are unlikely to be captured by the VISM calculation.

3.2. Comparison between the Topological and Physicochemical Characters of Ligand-Occupied Pockets and Unoccupied Ones. In the 703 VISM-CFA-identified pockets for the 515 protein targets, 505 identified pockets are occupied by cocrystallized ligand and 198 pockets are unoccupied. We compared the topological and physicochemical characters of the ligand-occupied pockets and the unoccupied ones. In Figure 3, pocket depth, SAS area, pocket volume, and pocket shape comparisons are shown as box plots. In these figures, the red-colored boxes represent the distributions of unoccupied pockets while the blue boxes are for ligand-occupied pockets. The black bar at the right side of each box indicates the 95% confidence interval of the mean. In Figure 3a–c, the plots show statistically significant differences (p value < 0.05) in pocket depth, SAS area, and volume. The ligand-occupied pockets tend to be deeper with relatively larger volumes and SAS areas. The median depth of occupied binding pockets is 6.8 Å, compared with 3.3 Å for unoccupied ones. The median SAS area of occupied binding pockets is 163.7 Å².
compared with 42.0 Å² for unoccupied ones. The median volume of occupied binding pockets is 536.6 Å³, compared with 173.8 Å³ for unoccupied pockets. Figure 3d shows the comparison of the normalized ratios of first and second principal moments. If the value is close to 1, the pocket is dislikewise, whereas the pocket shape is tubelike if the value is close to 0. While the shape differences between ligand-occupied and unoccupied pockets are not statistically significant (two-tailed p value = 0.41), the shape distribution of ligand-occupied pockets (i.e., first quartile = 0.32, median = 0.39, third quartile = 0.53) is generally narrower than that of the unoccupied ones (i.e., first quartile = 0.29, median = 0.40, third quartile = 0.61), which indicates that tubelike pockets are slightly favored by the small-molecule ligands.

Figure 4 compares the physicochemical properties of ligand-occupied and unoccupied pockets. In Figure 4a–c, the box plots indicate statistically significant differences between the pocket hydrophobic fractions, solvent-accessible surface tension-based optimal binding affinities, and pocket dehydration energies for the ligand-occupied pockets (blue boxes) and the unoccupied pockets (red boxes). In Figure 4a, 75% of the ligand-occupied pockets show pocket hydrophobic fractions greater than 60%, compared with just 50% for unoccupied pockets. This distribution is much narrower and concentrated around a large hydrophobic fraction for occupied pockets. The difference in distributions indicates that a high percentage of hydrophobicity is an important factor for ligand binding, but it obviously is not the only factor. Figure 4b,c shows the estimated optimal binding affinities when a hypothetical ligand occupies only the pocket hydrophobic fraction and the total pocket dehydration energies. Both of them confirm that the occupied pockets are thermodynamically favored by the small-molecule ligands.

3.3. Characterization of the Influence of Protein Conformational Changes on the Binding Pocket. Target proteins can undergo conformational changes when bound with different ligands. It is important to investigate multiple crystallographic structures for a given protein target to understand the pocket characteristics. In this study, we chose the “closed” and “open” conformations of heat shock protein 90 (HSP90) as an example to illustrate the quality of binding site identification and characterize the protein pockets of different conformations through VISM-CFA.

The molecular chaperone HSP90 has been reported to help cancer cell survival through stabilization of key proteins responsible for a malignant phenotype. In a comprehensive yeast protein interaction study, hundreds of proteins were revealed to interact with HSP90. It is known that HSP90 also interacts with numerous oncoproteins, including Cdk4, Akt, BCR-ABL, p53, and v-src. It is of high interest to study the binding sites and find potential small-molecule inhibitors. Both NMR and X-ray crystallographic studies have confirmed that there are “closed” and “open” conformations of HSP90. Fluorescence resonance energy transfer (FRET) assay studies indicated that a small compound binds HSP90 with a Kᵦ of 18 ± 1 μM, while a larger one is 5-fold more potent with a Kᵦ of 4 ± 1 μM.33

Figure 5a,b shows the binding sites of the “closed” and “open” conformations of HSP90 identified by VISM-CFA. Only one primary binding site (shown as a red transparent surface) was found for each conformation. In Figure 5c,d, the blue-colored wireframe indicates the pocket hydrophilic regions. In both ligand–protein complexes, the hydrophilic aminopyrimidine ring of the ligand overlaps well with the pocket hydrophilic regions (blue wireframe). In Figure 5c, the strongly hydrophobic trifluoromethyl group is mainly located in the hydrophobic regions (no blue wireframe). In Figure 5d, the larger ligand also arranges itself in such a manner as to complement the binding pocket physiochemical features to maximize the binding affinity. Both NMR spectroscopy and X-ray crystallographic results indicate a high level of protein flexibility for the HSP90 binding pocket, and it undergoes a conformational change between the “closed” and “open” states when different ligands are bound. With a large ligand (Figure 5b), the HSP90 binding site is wider to open the binding area and accommodate the tighter-binding inhibitor (i.e., 5-fold increase in binding affinity). With different target protein conformations, the pockets identified by VISM-CFA have different characters although they are around the same protein surface region. As shown in Table 4, the “open” pocket is relatively large and deep. The pocket depth and size are nearly doubled in going from the “closed” to the “open” conformation. Both the optimal binding affinity and total pocket dehydration energy indicate the increasing ligand binding potency of the “open” conformation. The occupancy of a large-sized ligand is facilitated by the large solvent-accessible surface of the “open” pocket.

It is argued that conformational differences of target proteins affect the prediction performance of potential ligand binding sites. On the basis of the comparison of different conformational structures in a limited set of protein targets, VISM-CFA seems to tolerate a certain degree of conformational flexibility and to be able to predict nearly identical binding locations for each target. Abagyan et al.28 demonstrated that the conformational differences between the occupied and empty pockets do not significantly affect the pocket prediction results for a large
number of protein–ligand complexes. For PPI interfaces, our VISM-CFA-based algorithm can be applied to individual protein subunits to detect the potential "pockets" at the PPI interface and help evaluate the feasibility of modulating PPIs. Keskin et al.54 suggested that "hot spots" at a PPI interface and their "neighboring" residues in the protein binding "hot regions" are often preorganized by evolution in the unbound protein state.38,55,56 When a protein binds with different partners, different combinations of "hot regions" may be involved. Similarly, there are characteristic regions in small-molecule binding pockets that are evolutionarily conserved to interact with natural ligands. They are routinely explored by synthetic ligands in drug design. Although we have also used a large set of static crystallographic structures to study the volumetric, topological, and energetic characters of the potential protein binding pockets, we must emphasize that it is still not a comprehensive and exhaustive study. Protein binding sites are flexible and dynamic. It would be beneficial to combine advanced protein conformational sampling techniques (e.g., accelerated molecular dynamics) with our VISM-CFA pocket identification method, which would provide new insights into the binding pocket dynamics and enable the exploration of transient pockets for new drug discovery opportunities.

The results of the above studies indicate that the equilibrium VISM surfaces can provide statistically confident predictions of the locations and characters of potential protein small-molecule binding pockets. The above results are also consistent with the observation that hydrophobic driving forces dominate small-molecule ligand–protein binding processes.57

3.4. Assessing Target Protein Ligandability with the Potential Binding Pocket Topological and Physicochemical Properties

The ability to assess the "ligandability" of target proteins is highly valuable.7,12 The ligandability information on a gene family is often used to identify specific target proteins. Nevertheless, estimations of gene family

| Table 4. Parameters for the "Closed" and “Open” Binding Pockets of HSP90 | Table 5. Topological and Energetic Information for VISM-CFA-Identified Pockets for the 27 Targets Classified As “Druggable”, "Difficult", and “Undruggable” by Cheng et al.31 |
ligandability can vary dramatically. Computational approaches have been developed mainly according to the topological and physiochemical properties of the protein binding pocket in order to distinguish “druggable” and “difficult” from “undruggable.” In the structural-based maximal binding affinity model developed by Cheng et al., structural information on the target binding site is used to estimate the ligandability of the target. They derived the maximal achievable binding affinity for binding of a druglike ligand with a protein pocket (ΔG_{MAP}) from physical-based desolvation penalties:

$$\Delta G_{\text{MAP}} \approx (-300 \AA^3) f_{\text{nonpolar}} \left(\frac{\gamma_0}{1 - \frac{\phi}{r}} \right) + C$$

(7)

where f_{nonpolar} is the ratio of pocket nonpolar SASA to the total pocket SASA, which discriminates the relatively hydrophobic pockets from the rest, γ_0 is the planar surface tension, r is the overall pocket curature to characterize the enclosure of the potential binding pocket, and C is a constant to account for system error. Despite many inherent exceptions and crude approximations and the subjective “druggability” classification for 27 targets, the performance of the maximal binding affinity method is very reasonable for druggability prediction. We used this method to test whether the information obtained by VISM-CFA surface analysis can also provide target protein druggability assessments.

Table 5 shows the topological and energetic information for the ligand occupying the primary putative pockets. The four “undruggable” targets (caspase 1, HIV integrase, cathepsin K, and PTP-1B) show the lowest optimal binding affinities (greater than -2 kcal/mol) with the smallest pocket volumes ($<200 \AA^3$) or no identifiable binding pocket. The protein surfaces for this category are relatively flat compared with those of the other 23 targets. One prerequisite for a binding pocket for a small organic ligand is the presence of a suitable surface cavity with hydrophobicity. From the comparison of the pocket topological information, the pocket size is an important factor to discriminate “druggable” and “undruggable” protein targets. For the other 23 targets, there are marketed drugs or advanced drug candidates. All of them show reasonably good optimal binding affinities (less than -5 kcal/mol) compared with the “undruggable” targets.

In the “druggable” targets, the binding pocket of MDM2 is a PPI that interacts with a regulator of tumor suppressor p53. It shows an optimal binding affinity as -8.50 kcal/mol for the pocket regions with relatively large pocket volume of $218.63 \AA^3$. With about 20 years of effort, MDM2 has been recognized as a druggable PPI interface suitable for small-molecule drugs. This benefits from the strong hydrophobicity inside of this pocket. The pocket hydrophobic fraction is as high as 90.21% with a small electrostatic dehydration penalty of $\sim 1.84 \text{ kcal/mol}$. The P1/P2 ratio of 0.33 indicates a tube-shaped binding pocket, consistent with the small-molecule pocket analysis. The compound nutlin-2 (PDB entry 1rv1) displaced p53 protein from the binding pocket of MDM2 with a median inhibitory concentration (IC_{50}) of 140 nM. In Figure 6, we align the p53–MDM2 complex, the nutlin-2–MDM2 complex, and the VISM-CFA-predicted binding pocket. Nutlin-2 closely mimics the interactions of the p53 peptide to bind with MDM2. In the nutlin-2–MDM2 complex, two bromophenyl moieties insert deeply into the p53 Leu26 and Trp23 binding pockets. The ethyl ether side chain from nutlin-2 directly inserts into the p53 Phe19 pocket. The shape of nutlin-2 shows good complementarity to the VISM-CFA-identified pocket, and the polar groups (e.g., bromine atoms) of the compound also align well with the hydrophilic regions of the pockets (blue wireframe). We must emphasize that PPIs and “druggability” are profoundly complex topics that are far from being resolved. In addition, the difficulty of finding small-molecule PPI modulators is confounded by that fact that legacy compound collections are biased toward known drug targets such as enzymes and G-protein-coupled receptors. They do not necessarily reflect the best properties for PPI modulators. Therefore, the “druggability” assessment of the PPI should be treated with caution.

Thrombin is categorized as an outlier in several widely used “druggability” prediction methods. Thrombin (1ktt) and factor Xa (1eq) are two serine proteases that are thought to have similar druggability since they are in the same protein family. Most inhibitors for thrombin are produgs that are categorized as “difficult” by Cheng et al. Meanwhile, the factor Xa inhibitors (e.g., ravixaban and apixaban) are not produgs and are classified as “druggable”. Interestingly, several druggability assessment methods show a better druggability potential for thrombin, such as the Dscore in SiteMap, the hotspot index in Watermap, and even the structure-based maximal binding affinity model of Cheng et al. In our VISM pocket “ligandability” prediction study, thrombin also shows a better optimal binding affinity by 6.6 kcal/mol with a slightly larger pocket compared with factor Xa. Strictly speaking, “druggability” is different from “ligandability”, as many factors other than the interaction with its target play important roles for a ligand to be a drug, such as its pharmacokinetic and toxicology profiles. In order to be consistent and facilitate the comparison with previous studies, we investigated the 27
pharmacological targets by Cheng et al.\(^\text{31}\) and kept their original “druggability” classifications.

Many kinase inhibitors have been approved for cancer and other disease treatments. With about 518 kinases in the human genome, the inhibition of kinase activities can lead to marked physiological responses through a phosphotransfer cascade.\(^\text{62}\) Three different kinases were included in this study. While all of the ligands are in the “druggable” group with optimal binding affinities less than −10 kcal/mol, all of them show relatively high electrostatic dehydration penalties of around 80 kcal/mol. This indicates that ligand selectivity could be a key for ligand design.

In the structure-based maximal affinity model of Cheng et al.\(^\text{31}\), the binding sites are defined as the regions within 5.0 Å of the cocrystallized ligand or α-spheres, and a common size factor for all druglike ligands is used rather than the actual pocket size itself. In the case of ACE-1 for instance, the pocket is a continuous long tube inside of the protein, and the ligand occupies less than 10% of the volume. The putative binding site defined by the cocrystallized ligand substantially underestimates the binding potency of the target. In the present study, all of the binding pockets were identified according to the target protein without ligand present, which is completely different from the model developed by Cheng et al. Both their method and ours can estimate binding affinities on the basis of the hydrophobic fractions of pocket surface areas. However, binding of druglike ligands and target proteins is hydrophobically driven in most but certainly not all cases.\(^\text{57}\) In the case of HMG-CoA reductase, drug ligands have a conserved glutaminyl group that makes substantial hydrogen-bonding and ion-pair interactions with the protein.\(^\text{63}\) The clinically most advanced irreversible kinase inhibitors of EGFR kinase are engineered to form a covalent bond with a cysteine residue located at the entrance of the ATP binding site. The formation of a covalent bond between the ligand and protein could yield an effectively “infinite” affinity potency for the ATP binding site.\(^\text{62}\)

Statistically, druglike molecules prefer to bind target proteins with higher SASA hydrophobic fractions and surface complexities to make more contacts and gain higher binding affinity. However, many other factors should also be considered in the target druggability assessment, as it is an extremely complex issue involving not just high binding affinity but also pharmacokinetics and toxicology.

4. CONCLUSIONS

We have developed a method to identify and characterize potential small-molecule binding sites using the VISM-CFA equilibrium surface and the protein molecular surface. Compared with previous geometrical- or physical-based methods, our method properly incorporates electrostatic contributions and does not impose subjective size restrictions. The pocket prediction performance is enhanced through the exclusion of shallow and polar pockets where druglike ligands are unlikely to bind. In this study, individual pockets were listed and characterized. For 515 protein–ligand complexes, 96.9% of the ligands were found to be bound to the pockets identified by VISM-CFA. For 228 tight-binding protein–ligand complexes (i.e., ones with experimental pIC\(_50\) larger than 6), 99.1% of the cocrystallized ligands were found to be in the VISM-CFA-identified pockets. The hydration energy density maps were consistent with cocrystallized ligand binding modes, and therefore, they also provide guidance for structural-based drug design. Quantitative characterization with volumetric, topological, and energetic parameters was also conducted. By the statistical comparison of these parameters for ligand-bound and unbound pockets, we found that the ligand-bound pockets are likely to be deeper with relatively larger fractions of hydrophobicity than unoccupied pockets. This is consistent with previous theoretical and experimental studies suggesting that druglike molecules prefer hydrophobic protein surfaces with complementary geometry. In addition, we used these binding pocket characteristics to assess the protein target “ligandability”. Using the same 27 targets as studied by Cheng et al.\(^\text{41}\), the Dscore in SiteMap,\(^\text{30}\) and the hotspot index from Watermap,\(^\text{49}\) we found that all of the undruggable targets lack relatively large pockets. Pockets with greater hydrophilic character (i.e., higher electrostatic dehydration penalty) are required for higher specificity for the ligand design, such as kinase targets.

The VISM-CFA-based algorithm provides a very sensitive and specific method to identify small-molecule binding sites on proteins. In addition, it offers a quantitative means to estimate the level of ligandability. A software package based on level-set VISM is to be made publicly available for the analysis of biomolecular solvation.\(^\text{64}\) We believe that it can be very useful for rational drug design.

AUTHOR INFORMATION

Corresponding Author

E-mail: jianwei.che@gmail.com.

Funding

This work was supported by the U.S. National Science Foundation (NSF) through Grant DMS-1319731 (B.L. and L.T.C.), the NSF Center for Theoretical Biological Physics (CTBP) through Grant PHY-0822283 (B.L. and J.A.M.), the National Institutes of Health through Grant R01GM096188 (J.C., L.T.C., Z.G., B.L., and J.A.M.), and the Genomics Institute of the Novartis Research Foundation (J.C. and Z.G.). Work in the J.A.M. group was supported by NSF, NIH, HHMI, NBCR, and CTBP.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge Dr. Joachim Dzubiella for critical reading of the manuscript.

REFERENCES

1. Hopkins, A. L.; Groom, C. R. The druggable genome. Nat. Rev. Drug Discovery 2002, 1, 727–730.

2. Brown, D.; Superti-Furga, G. Rediscovering the sweet spot in drug discovery. Drug Discovery Today 2003, 8, 1067–1077.

3. Fuller, J. C.; Burgoyne, N. J.; Jackson, R. M. Predicting druggable binding sites at the protein–protein interface. Drug Discovery Today 2009, 14, 155–161.

4. Wells, J. A.; McClendon, C. L. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 2007, 450, 1001–1009.

5. Miller, D. W.; Dill, K. A. Ligand binding to proteins: The binding landscape model. Protein Sci. 1997, 6, 2166–2179.

6. Liang, J.; Edelsbrunner, H.; Woodward, C. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 1998, 7, 1884–1897.

7. Campbell, S. J.; Gold, N. D.; Jackson, R. M.; Westhead, D. R. Ligand binding: Functional site location, similarity and docking. Curr. Opin. Struct. Biol. 2003, 13, 389–395.
(8) Bahadur, R. P.; Chakrabarti, P.; Rodier, F.; Janin, J. A dissection of specific and non-specific protein–protein interfaces. J. Mol. Biol. 2004, 336, 943–955.

(9) Nooren, I. M.; Thornton, J. M. Structural characterisation and functional significance of transient protein–protein interactions. J. Mol. Biol. 2003, 325, 991–1018.

(10) Janin, J.; Bahadur, R. P.; Chakrabarti, P. Protein–protein interaction and quaternary structure. Q. Rev. Biophys. 2008, 41, 133–180.

(11) Chakrabarti, P.; Janin, J. Dissecting protein–protein recognition sites. Proteins 2002, 47, 334–343.

(12) Nero, T. L.; Morton, C. J.; Holien, J. K.; Wielens, J.; Parker, M. W. Oncogenetic protein interfaces: Small molecules, big challenges. Nat. Rev. Cancer 2014, 14, 248–262.

(13) Meier, C.; Cairns-Smith, S.; Schulze, U. Can emerging drug classes improve R&D productivity? Drug Discovery Today 2013, 18, 607–609.

(14) Hajduk, P. J.; Huth, J. R.; Fesik, S. W. Druggability indices for protein targets derived from NMR-based screening data. J. Med. Chem. 2005, 48, 2518–2525.

(15) Seco, J.; Luque, F. J.; Barril, X. Binding site detection and druggability index from first principles. J. Med. Chem. 2009, 52, 2363–2371.

(16) Levitt, D. G.; Banaszak, L. J. Pocket—A Computer-Graphs Method for Identifying and Displaying Protein Cavities and Their Surrounding Amino-Acids. J. Mol. Graphics 1992, 10, 229–234.

(17) Laskowski, R. A. SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graphics 1995, 13, 323–330.

(18) Peters, K. P.; Fauck, J.; Frommel, C. The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol. 1996, 256, 201–213.

(19) Hendlich, M.; Rippmann, F.; Barnickel, G. LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graphics Modell. 1997, 15, 359–363.

(20) Brady, G. P., Jr.; Stouten, P. F. Fast prediction and visualization of protein binding pockets with PASS. J. Comput-Aided Mol. Des. 2000, 14, 383–401.

(21) Binkowski, T. A.; Naghibzadeh, S.; Liang, J. CASTp: Computed Atlas of Surface Topography of Proteins. Nucleic Acids Res. 2003, 31, 3552–3555.

(22) Schneider, S.; Zacharias, M. Combining geometric pocket detection and desolvation properties to detect putative ligand binding sites on proteins. J. Struct. Biol. 2012, 180, 546–550.

(23) Leis, S.; Schneider, S.; Zacharias, M. In silico prediction of binding sites on proteins.Curr. Med. Chem. 2010, 17, 1550–1562.

(24) Zheng, X.; Gan, L.; Wang, E.; Wang, J. Pocket-based drug design: Exploring pocket space. AAPS J. 2013, 15, 228–241.

(25) Perot, S.; Sperandio, O.; Miteva, M. A.; Camproux, A. C.; Villoutreix, B. O. Druggable pockets and binding site centric chemical space: A paradigm shift in drug discovery. Drug Discovery Today 2010, 15, 656–667.

(26) Jalencas, X.; Mestres, J. Identification of Similar Binding Sites To Detect Distant Polypharmacology. Mol. Inf. 2013, 32, 976–990.

(27) Trosset, J. Y.; Vodvor, N. Structure-based target druggability assessment. Methods Mol. Biol. 2013, 986, 141–164.

(28) An, J.; Totrov, M.; Abagyan, R. Pocketome via Comprehensive Identification and Classification of Ligand Binding Envelopes. Mol. Cell. Proteomics 2005, 4, 752–761.

(29) Halgren, T. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des. 2007, 69, 146–148.

(30) Halgren, T. A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 2009, 49, 377–389.

(31) Cheng, A. C.; Coleman, R. G.; Smyth, K. T.; Cao, Q.; Soulard, P.; Caffrey, D. R.; Salzberg, A. C.; Huang, E. S. Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol. 2007, 25, 71–75.
ping in a bottom-up Systems Biology approach. *Phys. Biol.* 2005, 2, S24–S35.

(55) Hu, Z.; Ma, B.; Wolfson, H.; Nussinov, R. Conservation of polar residues as hot spots at protein interfaces. *Proteins* 2000, 39, 331–342.

(56) Ma, B.; Elkayam, T.; Wolfson, H.; Nussinov, R. Protein–protein interactions: Structurally conserved residues distinguish between binding sites and exposed protein surfaces. *Proc. Natl. Acad. Sci. U.S.A.* 2003, 100, 5772–5777.

(57) Davis, A. M.; Teague, S. J. Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. *Angew. Chem., Int. Ed.* 1999, 38, 737–749.

(58) Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. *Science* 2004, 303, 844–848.

(59) Janin, J.; Henrick, K.; Moult, J.; Eyck, L. T.; Sternberg, M. J.; Vajda, S.; Valoser, I.; Wodak, S. J. CAPRI: A Critical Assessment of Predicted Interactions. *Proteins* 2003, 52, 2–9.

(60) Roehrig, S.; Straub, A.; Pohlmann, J.; Lampe, T.; Pernerstorfer, J.; Schlemmer, K. H.; Reinemer, P.; Perzborn, E. Discovery of the novel antithrombotic agent 5-chloro-N-((5S)-2-oxo-3-[4-(3-oxomorpholin-4-yl)phenyl]-1,3-oxazolidin-5-yl)methylthiophene-2-carboxamide (BAY 59-7939): An oral, direct factor Xa inhibitor. *J. Med. Chem.* 2005, 48, 5900–5908.

(61) Pinto, D. J.; Orwat, M. J.; Koch, S.; Rossi, K. A.; Alexander, R. S.; Smallwood, A.; Wong, P. C.; Rendina, A. R.; Luettgen, J. M.; Knabb, R. M.; He, K.; Xin, B.; Wexler, R. R.; Lam, P. Y. Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. *J. Med. Chem.* 2007, 50, 5339–5356.

(62) Zhang, J.; Yang, P. L.; Gray, N. S. Targeting cancer with small molecule kinase inhibitors. *Nat. Rev. Cancer* 2009, 9, 28–39.

(63) Istvan, E. S.; Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. *Science* 2001, 292, 1160–1164.

(64) Zhou, S.; Cheng, L.-T.; Sun, H.; Che, J.; Dzubiella, J.; Li, B.; McCammon, J. A. LS-VISM: A software package for analysis of biomolecular solvation. *J. Comput. Chem.* 2013, submitted.