ON A PROPERTY OF FERMI CURVES OF 2-DIMENSIONAL PERIODIC SCHRÖDINGER OPERATORS

EVA LÜBCKE

Abstract. We consider a compact Riemann surface with a holomorphic involution, two marked fixed points of the involution and a divisor obeying an equation up to linear equivalence of divisors involving all this data. Examples of such data are Fermi curves of 2-dimensional periodic Schrödinger operators. We show that the equation has a solution if and only if the two marked points are the only fixed points of the involution.

1. Introduction

Let X be a compact Riemann surface of genus $g < \infty$ and $\sigma : X \to X$ a holomorphic involution with two fixed points P_1 and P_2. Then the linear equivalence $D + \sigma(D) \simeq K + P_1 + P_2$ is solvable by a divisor D of degree g if and only if P_1 and P_2 are the only fixed points of σ. It is known that on Fermi curves of 2-dimensional periodic Schrödinger operators, there exists a holomorphic involution σ with two fixed points such that the pole divisor of the corresponding normalized eigenfunctions obeys this linear equivalence, see [N-V]. It was remarked in [N-V] without proof that I.R. Shafarevich and V. V. Shokurov pointed out that $D + \sigma(D) \simeq K + P_1 + P_2$ can hold if and only if P_1 and P_2 are the only fixed points of σ. To prove this assertion, we basically use the results reflecting the connection between the Jacobian variety and the Prym variety which was shown in [Mu]. Since we are mainly using the ideas shown there and not the whole concept, we will explain later how this connection involves here.

2. A two-sheeted covering

Let X be a compact Riemann surface, σ a holomorphic involution on X and $P_1, P_2 \in X$ fixed points of σ, i.e. $\sigma(P_i) = P_i$ for $i = 1, 2$. For $p, q \in X$ let $p \sim q :\iff (p = q \lor p = \sigma(q))$ and define $X_\sigma := X/\sim$. Let $\pi : X \to X_\sigma$ be the canonical two-sheeted covering map. Since the subgroup of $\text{Aut}(X)$ generated by σ is \mathbb{Z}_2, X_σ is a compact Riemann surface and $\pi : X \to X_\sigma$ is holomorphic, compare [Mu, Theorem III.3.4]. Due to the construction of X_σ, the fixed points of σ coincide with the ramification points of π. The set of ramification points of π we denote by r_π. Then the map π is locally

1991 Mathematics Subject Classification. Primary 14H81; Secondary 14H40.

Key words and phrases. Fermi curves, divisors, Jacobian variety.

Date: June 8, 2016.
bigholomorphic on \(X \setminus r_\pi \), see \cite{Fo} Corollary I.2.5. We define the ramification divisor of \(\pi \) on \(X \) as \(R_\pi := \sum_{p \in r_\pi} p \). In general, the ramification divisor is defined as \(R_\pi := \sum_{p \in X} (\text{mult}_p(\pi) - 1) \cdot p \), where the multiplicity \(\text{mult}_p(\pi) \) of \(\pi \) in \(p \) denotes the number of sheets which meet in \(p \), compare \cite{Mir} Definition II.4.2. Since \(\text{mult}_p(\pi) = 1 \) for \(p \in X \setminus r_\pi \) and \(\text{mult}_p(\pi) = 2 \) for \(p \in r_\pi \), this coincides with the above definition. Furthermore, \(b_\pi := \pi[r_\pi] \) is the set of branchpoints of \(\pi \) on \(X_\sigma \). The involution \(\sigma \) extends to an involution on the divisors on \(X \) by \(\sigma(\sum_{p \in X} a(p)p) := \sum_{p \in X} a(p)\sigma(p) \) which we also denote as \(\sigma \). So the degree of a divisor is conserved under \(\sigma \). We define the pullback of a point \(p_\sigma \in X_\sigma \) as

\[
\pi^*p_\sigma := \sum_{p \in \{\pi^{-1}\{p_\sigma\}\}} \text{mult}_p(\pi)p.
\]

With this definition, the pullback of a divisor \(D := \sum_{p_\sigma \in X_\sigma} a(p_\sigma)p_\sigma \) on \(X_\sigma \) is defined as \(\pi^*D := \sum_{p_\sigma \in X_\sigma} a(p_\sigma)\pi^*p_\sigma \). Since \(\pi \) is a non-constant holomorphic map between two Riemann surfaces, every meromorphic 1-form on \(X_\sigma \) can be pulled back to a meromorphic 1-form \(\omega := \pi^*\omega_\sigma \) on \(X \), compare for example \cite{Mir} Section IV.2.

Lemma 2.1. Let \(X, X_\sigma \) and \(\pi \) be given as above and let \(\omega_\sigma \) be a non-constant meromorphic 1-form on \(X_\sigma \).

(a) The divisor of \(\pi^*\omega_\sigma \) on \(X \) is given by \((\pi^*\omega_\sigma) = \pi^*(\omega_\sigma) + R_\pi \).

(b) Let \(g_\sigma \) be the genus of \(X_\sigma \). Then there exists a divisor \(\tilde{K} \) on \(X \) with \(\text{deg}(\tilde{K}) = 2g_\sigma - 2 \) such that \((\pi^*\omega_\sigma) = \tilde{K} + \sigma(\tilde{K}) + R_\pi \).

Proof. (a) Due to \cite{Mir} Lemma IV.2.6] one has for \(p \in X \) that

\[
\text{ord}_p(\pi^*\omega_\sigma) = (1 + \text{ord}_p(\omega_\sigma))\text{mult}_p(\pi) - 1
\]

with \(\text{ord}_p(\pi^*\omega_\sigma) \) as defined in \cite{Mir} Section IV.1.9. Inserting this into the definition of \((\pi^*\omega_\sigma) = \sum_{p \in X} \text{ord}_p(\pi^*\omega) \) yields the assertion.

(b) One has \(\text{deg}(K_\sigma) = \text{deg}(\omega_\sigma) = 2g_\sigma - 2 \) where \(K_\sigma \) is the canonical divisor on \(X_\sigma \). Let \(p_\sigma \in X_\sigma \) be a point in the support of \((\omega_\sigma) \) as defined in \cite{Mir} Section V.1. For \(p_\sigma \notin b_\pi \) one has \(\pi^*p_\sigma = p + \sigma(p) \) with \(p \neq \sigma(p) \in X \) and for \(p_\sigma \in b_\pi \) it is \(\pi^*p_\sigma = 2p \) with \(p \in r_\pi \). For \(p_\sigma \notin b_\pi \), let one of the pulled back points in \(\pi^*p_\sigma \) be the contribution to \(\tilde{K} \) and for \(p_\sigma \in b_\pi \) the pulled back point is counted with multiplicity one in \(\tilde{K} \). Then \(\pi^*(K) = \tilde{K} + \sigma(\tilde{K}) \) and the claim follows from (a).

\[\square\]

Now we are going to construct a symplectic cycle basis of \(H_1(X, \mathbb{Z}) \) from a symplectic cycle basis of \(H_1(X_\sigma, \mathbb{Z}) \). The holomorphic map \(\sigma : X \to X \) induces a homomorphism of \(H_1(X, \mathbb{Z}) \) which we denote as
\[
\sigma_\sharp : H_1(X, \mathbb{Z}) \to H_1(X, \mathbb{Z}), \quad \gamma \mapsto \sigma_\sharp \gamma.
\]
Let g_σ be the genus of X_σ and $A_{\sigma,1}, \ldots, A_{\sigma,g_\sigma}$, $B_{\sigma,1}, \ldots, B_{\sigma,g_\sigma}$ be representatives of a symplectic basis of $H_1(X_\sigma, \mathbb{Z})$, i.e.

$$A_{\sigma,i} \ast A_{\sigma,\ell} = B_{\sigma,i} \ast B_{\sigma,\ell} = 0 \quad \text{and} \quad A_{\sigma,i} \ast B_{\sigma,\ell} = \delta_{i\ell},$$

where \ast is the intersection product between two cycles. From Riemann surface theory it is known that such a basis exists, compare e.g. [Mir, Section VIII.4]. Due to Hurwitz’s Formula, e.g. [Mir, Theorem II.4.16], one knows that $\sharp \pi = 2n$ is even for a two sheeted covering $\pi : X \to X_\sigma$ and that the genus g of X is given by $g = 2g_\sigma + n - 1$. Hence a basis of $H_1(X, \mathbb{Z})$ consists of $4g_\sigma + 2n - 2$ cycles. The aim is to construct a symplectic basis of $H_1(X, \mathbb{Z})$ which we denote as $A_i^\sigma, B_i^\sigma, C_j, D_j$ and which has the following two properties: First of all, the only non-trivial pairwise intersections between elements of the basis of $H_1(X, \mathbb{Z})$ must be given by $A_i^\sigma \ast B_i^\sigma = \sigma^\ast A_i^\sigma \ast \sigma^\ast B_i^\sigma = C_j \ast D_j = 1$.

Secondly, the involution σ^\ast has to map A_i^σ to $\sigma^\ast A_i^\sigma$ and vice versa, B_i^σ to $\sigma^\ast B_i^\sigma$ and vice versa and has to act on C_j and D_j as $\sigma^\ast C_j = -C_j$ and $\sigma^\ast D_j = -D_j$. Here, and from now on, we consider $i, \ell \in \{1, \ldots, g_\sigma\}$ and $j, k \in \{1, \ldots, n-1\}$ as long as not pointed out differently. The difference in the notation of the cycles indicates the origin of these basis elements: the A- and B-cycles on X will be constructed via lifting a certain symplectic cycle basis of $H_1(X_\sigma, \mathbb{Z})$ via π and the C- and D-cycles originate from the branchpoints of π.

We will start by constructing the C- and D-cycles. A sketch of the idea how to do this is shown for $n = 3$ and $g_\sigma = 0$ in figure 1. We connect the points in b_π pairwise by paths s_j for $j = 1, \ldots, n$. The set of points corresponding to a path $s_j : [0,1] \to X_\sigma$ we denote by $[s_j] := \{s_j(t) \mid t \in [0,1]\}$ and use the same notation for any other path considered as a set of points in X or X_σ. Let $[s_j]_\sigma$ be the corresponding set with $t \in (0,1)$. The paths s_j are constructed in such a way that every branchpoint is connected with exactly one other branchpoint and such that $s_k \cap s_j = \emptyset$ for $k \neq j$. This is possible since the branchpoints lie discrete on X_σ: suppose the first two branchpoints are connected by s_1 such that s_1 contains no other branchpoint. Then one can find a small open tubular neighborhood $N(s_1)$ of s_1 in X_σ with boundary $\partial N(s_1)$ in X_σ isomorphic to S^1. To see that $X_\sigma \setminus [s_1]$ is

\[\text{Figure 1.}\]
path connected, let γ be a path in X_σ which intersects $\partial N(s_1)$ in the two points $p_1, p_2 \in X_\sigma$. Then there is a path $\tilde{\gamma}$ such that $\tilde{\gamma}|_{X_\sigma \setminus N(s_1)} = \gamma|_{X_\sigma \setminus N(s_1)}$ and such that the points p_1 and p_2 are connected via a path of $\partial N(s_1)$. Hence $X_\sigma \setminus \{s_1\}$ is path connected. Like that one can gradually choose s_2, \ldots, s_n. To find a path s_j not intersecting s_1, \ldots, s_{j-1}, consider $X_\sigma \setminus (\{s_1\} \cup \cdots \cup \{s_{j-1}\})$ which is path connected and repeat the above procedure until all branchpoints are sorted in pairs. The preimage of s_j under π yields two paths in X which both connect the preimage of the connected two branchpoints. These preimages are ramification points of π and we denote them as b_j^1 and b_j^2. A suitable linear combination of the two paths on X then defines a cycle C_j for $j = 1, \ldots, n$. Since π is unbranched on $N \setminus r_\pi$, i.e. a homeomorphism, and since $\pi|_{r_\pi} = b_\pi \subset \{s_1\} \cup \cdots \cup \{s_n\}$, $\pi^{-1}[X_\sigma \setminus (\{s_1\} \cup \cdots \cup \{s_n\})]$ consists of two disjoint connected manifolds whose boundaries both equal to $\pi^{-1}[\{s_1\} \cup \cdots \cup \pi^{-1}[\{s_n\}]$ and σ interchanges those manifolds. We will call them M and $\sigma[M]$. Since the n C-cycles are the boundary of M respectively $\sigma[M]$, they are homologous to another, i.e. $C_n = -\sum_{i=1}^{n-1} C_i$, so this construction yields maximal $n-1$ C-cycles which are not homologous to each other. These n cycles we orientate as the boundary of the Riemann surface M. We will see later on that, due to the intersection numbers, the cycles C_1, \ldots, C_{n-1} are not homologous to each other. By construction, each cycle C_j contains the two ramification points b_j^1 and b_j^2 of π and no other ramification points.

The next step is to construct $n-1$ D-cycles such that one has $C_j \ast D_k = \delta_{jk}$. We will see that it is possible to connect $\pi(b_j^2)$ with $\pi(b_{j+1}^1)$ by a path t_j for $j = 1, \ldots, n-1$ such that $t_j \cap t_k = \emptyset$ for $j \neq k$. Since $X_\sigma \setminus (\{s_1\} \cup \cdots \cup \{s_n\})$ is path connected, also $X_\sigma \setminus (\{s_1\} \cup \cdots \cup \{s_n\})$ is path connected. So one can connect b_j^2 with b_j^1 with a path t_1 in X_σ not intersecting s_3, \ldots, s_n and the path $s_1 + t_1 + s_2$ in X_σ contains no loop. As above, one can chose a small open neighborhood $N(\{s_1\} \cup \{t_1\} \cup \{s_2\})$ with boundary isomorphic to S^1. Therefore, $X_\sigma \setminus (\{s_1\} \cup \cdots \cup \{s_n\} \cup \{t_1\})$ is path connected. Repeating this procedure shows that $X_\sigma \setminus (\{s_1\} \cup \cdots \cup \{s_n\} \cup \{t_1\} \cup \cdots \cup \{t_j\})$ remains path connected and that $\sum_{i=1}^{j}(s_{m} + t_{m}) + s_{j+1}$ contains no loop for $j = 1, \ldots, n-1$. This yields the desired $n-1$ paths t_j in X_σ. Lifting these paths via π yields each $n-1$ paths on M and $n-1$ paths on $\sigma[M]$. The paths on M and $\sigma[M]$ which result from the lift of t_j both start at b_j^2 and end in b_{j+1}^1. Hence identifying these end points with each other yields a cycle on X which we denote as \bar{D}_j. We orientate \bar{D}_j such that $C_j \ast \bar{D}_j = 1$ and $C_{j+1} \ast \bar{D}_j = -1$ for $j \in \{1, \ldots, n-1\}$. Due to the construction of \bar{D}_j one
has $C_i \ast \tilde{D}_j = 0$ for $i \notin \{j, j + 1\}$. Defining $D_j := \sum_{l=j}^{n-1} \tilde{D}_l$ yields for $k < j$

$$C_j \ast D_j = C_j \ast \sum_{l=j}^{n-1} \tilde{D}_l = C_j \ast \tilde{D}_j = 1, \quad C_k \ast D_j = C_k \ast \sum_{l=j}^{n-1} \tilde{D}_l = 0$$

$$C_j \ast D_k = C_j \ast \sum_{l=k}^{n-1} \tilde{D}_l = C_j \ast (\tilde{D}_j + \tilde{D}_{j-1}) = 1 - 1 = 0$$

and hence $n - 1$ cycles which obey $C_k \ast D_j = \delta_{kj}$. Two cycles can not be homologous to each other if the intersection number of each one of those cycles with a third cycle is not equal, hence $C_k \ast D_j = \delta_{kj}$ implies that the above construction yields $2n - 2$ cycles C_j and D_j which are not homologous to each other. To construct the missing $4g_\sigma$ cycles, we choose a symplectic cycle basis $A_{\sigma,i}, B_{\sigma,i}$ of $H_1(X_\sigma, \mathbb{Z})$ such that they intersect none of the paths s_1, \ldots, s_n and t_1, \ldots, t_{n-1}. This is possible since all of these paths in X_σ are contractible and hence can be contracted to a point. On the preimage of $X_\sigma \setminus \bigcup_{j=1}^{n-1} ([s_j] \cup [t_j]) \cup [s_n])$, the map π is a homeomorphism. So each of the cycles in $H_1(X_\sigma, \mathbb{Z})$ is lifted to one cycle in M and one cycle in $\sigma[M]$ via π and those two cycles are interchanged by σ. Thus lifting the whole basis yields $4g_\sigma$ cycles on X where we denote the $2g_\sigma$ cycles lifted to M as A_i and B_i and the corresponding cycles lifted to $\sigma[M]$ as $\sigma_1 A_i$ and $\sigma_2 B_i$. Then these cycles obey the desired transformation behavior under σ. Since M and $\sigma[M]$ are disjoint, the intersection number of the lifted cycles on X stays the same as the intersection number of the corresponding cycles on X_σ if two cycles are lifted to the same sheet M respectively $\sigma[M]$ or equals zero if they are lifted to different sheets. Furthermore, the construction of these cycles ensured that the lifted A- and B-cycles do not intersect any of the C- and D-cycles on X. Hence $A_i, \sigma_1 A_i, B_i, \sigma_2 B_i, C_j$ and D_j are in total $4g_\sigma + 2n - 2$ cycles which obey condition (1). So by Hurwitz Formula, they represent a symplectic basis of $H_1(X, \mathbb{Z})$ and the A- and C-cycles are disjoint. That the C- and D-cycles constructed like this have the desired transformation behavior under σ is shown in the next lemma.

Lemma 2.2. For $C_j, D_j \in H_1(X, \mathbb{Z})$ as defined above one has $\sigma_2 C_j = -C_j$ and $\sigma_1 D_j = -D_j$.

Proof. Every cycle C_j is the preimage of a path in X_σ and X_σ is invariant under σ. So $\sigma[C_j] = [C_j]$ and the two points b_j^1 and b_j^2 stay fixed. Therefore $\sigma_2 C_j = \pm C_j$. Since σ commutes the two lifts of the path s_j in X_σ, i.e. b_j^1 and b_j^2 are the only fixed points of σ on C_j, one has $\sigma_2 C_j = -C_j$. By the same means, since D_j also consists of the two lifts of t_j which are interchanged by σ, one also has $\sigma_1 D_j = -D_j$.

3. **Decomposition of $H_1(X, \mathbb{Z})$**

With help of the Abel map Ab one can identify the elements of $H_1(X, \mathbb{Z})$ with a lattice in \mathbb{C}^g such that $\text{Jac}(X) \simeq \mathbb{C}^g / \Lambda$, compare [Mir, Section VIII.2].
To do so, let $\omega_1, \ldots, \omega_g \in H^0(X, \Omega)$ be a basis of the $g = 2g_\sigma + n - 1$ holomorphic differential forms on X which are normalized with respect to the A, $\sigma x A$- and C-cycles, i.e.

$$\oint_{A_i} \omega_\ell = \delta_\ell i, \quad \oint_{\sigma x A_i} \omega_{g_\sigma + \ell} = \delta_\ell i, \quad \oint_{C_j} \omega_{2g_\sigma + k} = \delta_{jk}$$

and all other integrals over one of the A- and C-cycles with another element of the basis of $H^0(X, \Omega)$ are equal to zero. Furthermore, note that the construction of the A-cycles yields $\sigma^* \omega_i = \omega_{g_\sigma + i}$ for $i = 1, \ldots, g_\sigma$ and that Lemma 2.2 implies $\sigma^* \omega_{2g_\sigma + j} = -\omega_{2g_\sigma + j}$. We define

$$\omega_i^\pm := \frac{1}{2}(\omega_i \pm \omega_{g_\sigma + i}) \quad \text{and} \quad \omega_{g_\sigma + j}^- := \omega_{2g_\sigma + j}.$$

Direct calculation shows that these differential forms also yield a basis of $H^0(X, \Omega)$. For a path γ in X, we define the vectors

$$\Omega_\gamma := \left(\int_\gamma \omega_k \right)_{k=1}^g, \quad \Omega_\gamma^+ := \left(\int_\gamma \omega_k^+ \right)_{k=1}^{g_\sigma}, \quad \Omega_\gamma^- := \left(\int_\gamma \omega_k^- \right)_{k=1}^{g_\sigma + n - 1}$$

and the following lattices generated over \mathbb{Z} as

$$\Lambda := \langle \Omega_{A_1}, \Omega_{\sigma x A_1}, \Omega_{C_j}, \Omega_{B_1}, \Omega_{\sigma x B_1}, \Omega_{D_j} \rangle_{i=1, \ldots, g_\sigma}^{j=1, \ldots, n-1},$$

$$\Lambda^+ := \langle \Omega_{A_1 + \sigma x A_1}, \Omega_{B_1 + \sigma x B_1} \rangle_{i=1, \ldots, g_\sigma}^{j=1, \ldots, n-1},$$

$$\Lambda^- := \langle \Omega_{A_1 - \sigma x A_1}, \Omega_{B_1 - \sigma x B_1} \rangle_{i=1, \ldots, g_\sigma}^{j=1, \ldots, n-1}.$$

Furthermore, the mapping

$$\Phi : \mathbb{C}^g \rightarrow \mathbb{C}^{g_\sigma + n - 1}, \quad \left(\begin{array}{c} v_1 \\ \vdots \\ v_{g_\sigma} \end{array} \right) \mapsto \left(\begin{array}{c} \frac{1}{2}(v_1 + v_{g_\sigma + 1}) \\ \vdots \\ \frac{1}{2}(v_{g_\sigma} + v_{2g_\sigma}) \end{array} \right) \oplus \left(\begin{array}{c} \frac{1}{2}(v_1 - v_{g_\sigma + 1}) \\ \vdots \\ \frac{1}{2}(v_{g_\sigma} - v_{2g_\sigma}) \end{array} \right) \oplus \left(\begin{array}{c} v_{g_\sigma + 1} \\ \vdots \\ v_{2g_\sigma + n - 1} \end{array} \right)$$

is obviously linear and bijective. Hence Φ is a vector space isomorphism.

Lemma 3.1. For every path γ on X one has

$$\Phi(\Omega_\gamma) = \Omega_\gamma^+ \oplus \Omega_\gamma^- = \Omega_{\frac{1}{2}(\gamma + \sigma x \gamma)}^+ \oplus \Omega_{\frac{1}{2}(\gamma - \sigma x \gamma)}^-.$$
Proof. The first equality follows immediately from the definition of \(\Phi \) and the differential forms in \(\Omega(A) \):

\[
\Phi(\Omega_A) = \Phi \left(\begin{array}{c}
\int_{\gamma} \omega_1 \\
\vdots \\
\int_{\gamma} \omega_g
\end{array} \right) = \left(\begin{array}{c}
\frac{1}{2} (\int_{\gamma} \omega_1 + \omega_{g+1}) \\
\vdots \\
\frac{1}{2} (\int_{\gamma} \omega_g + \omega_{2g})
\end{array} \right) \oplus \left(\begin{array}{c}
\frac{1}{2} (\int_{\gamma} \omega_1 - \omega_{g+1}) \\
\vdots \\
\frac{1}{2} (\int_{\gamma} \omega_g - \omega_{2g})
\end{array} \right)
\]

Since \(\omega^+_k = \sigma^* \omega_k^+ \) for \(k = 1, \ldots, g \)\(_\sigma\) and \(\omega^-_k = -\sigma^* \omega_k^- \) for \(k = 1, \ldots, g \sigma + n - 1 \) one has

\[
\int_{\gamma} \omega_k^+ = \frac{1}{2} \left(\int_{\gamma} \omega_k^+ + \sigma^* \omega_k^+ \right) = \int_{\frac{1}{2} (\gamma + \sigma_2 \gamma)} \omega_k^+
\]

as well as

\[
\int_{\gamma} \omega_k^- = \frac{1}{2} \left(\int_{\gamma} \omega_k^- - \sigma^* \omega_k^- \right) = \int_{\frac{1}{2} (\gamma - \sigma_2 \gamma)} \omega_k^-
\]

which implies the second equality.

\[\square\]

Corollary 3.2. The generators of \(\Phi^{-1}(\Lambda_+ \oplus \Lambda_-) \) span a basis of \(\mathbb{C}^g \) over \(\mathbb{R} \), the generators of \(\Lambda_+ \) span a basis of \(\mathbb{C}^{g_+} \) over \(\mathbb{R} \) and the generators of \(\Lambda_- \) span a basis of \(\mathbb{C}^{g_- + n - 1} \) over \(\mathbb{R} \).

Proof. Since \(\text{Jac}(X) = \mathbb{C}^g / \Lambda \) is a complex torus, the generators of \(\Lambda \) given in \(\Omega(A) \) are a basis of \(\mathbb{C}^g \) over \(\mathbb{R} \), compare for example \[L3\], Section II.2. Basis transformation yields that \(\Omega_{A_i + \sigma_2 A_i}, \Omega_{A_i - \sigma_2 A_i}, \Omega_{B_i + \sigma_2 B_i}, \Omega_{B_i - \sigma_2 B_i}, \Omega_{C_j} \) and \(\Omega_{D_j} \) are also a basis of \(\mathbb{C}^g \) over \(\mathbb{R} \). Since \(\Phi \) is a vector space isomorphism with

\[
\Phi(\Omega_{A_i + \sigma_2 A_i}) = \Omega_{A_i + \sigma_2 A_i}^+ \oplus 0, \quad \Phi(\Omega_{A_i - \sigma_2 A_i}) = 0 \oplus \Omega_{A_i - \sigma_2 A_i}^+,
\]

\[
\Phi(\Omega_{B_i + \sigma_2 B_i}) = \Omega_{B_i + \sigma_2 B_i}^+ \oplus 0, \quad \Phi(\Omega_{B_i - \sigma_2 B_i}) = 0 \oplus \Omega_{B_i - \sigma_2 B_i}^+,
\]

\[
\Phi(\Omega_{C_j}) = 0 \oplus \Omega_{C_j}^+, \quad \Phi(\Omega_{D_j}) = 0 \oplus \Omega_{D_j}^+
\]

the generators of \(\Phi^{-1}(\Lambda_+ \oplus \Lambda_-) \) yield a basis of \(\mathbb{C}^g \) over \(\mathbb{R} \). Since \(\Phi \) is an isomorphism, the generators of \(\Lambda_+ \) are a basis of \(\mathbb{C}^{g_+} \) and the generators of \(\Lambda_- \) of \(\mathbb{C}^{g_- + n - 1} \) over \(\mathbb{R} \). \[\square\]

In the sequel, we will apply \(\Phi \) and \(\Phi^{-1} \) to lattices. Note that, for shortage of notation, we abuse the notation in the sense that \(\Phi(\Lambda) \) denotes the lattice in \(\mathbb{C}^{g_+} \oplus \mathbb{C}^{g_- + n - 1} \) spanned by the image of the generators of \(\Lambda \) under \(\Phi \) and analogously for \(\Phi^{-1} \) applied to lattices.
Lemma 3.3. (a) $\Lambda_+ \oplus 0 = \Phi(\Lambda) \cap (\mathbb{C}^{g_0} \oplus 0)$, $0 \oplus \Lambda_+ = \Phi(\Lambda) \cap (0 \oplus \mathbb{C}^{g_0+n-1})$.

(b)

$$\Phi(\Lambda) = (\Lambda_+ \oplus \Lambda_-) + M$$

with

$$M := \left\{ \sum_{i=1}^{g_0} \left(\frac{a_i}{2} \Omega_{A_i+\sigma_i A_i}^+ + \frac{b_i}{2} \Omega_{B_i+\sigma_i B_i}^+ \right) \oplus \sum_{i=1}^{g_0} \left(\frac{a_i}{2} \Omega_{A_i-\sigma_i A_i}^- + \frac{b_i}{2} \Omega_{B_i-\sigma_i B_i}^- \right) \mid a_i, b_i \in \{0, 1\} \right\}.$$

(c) $M \cap (\Lambda_+ \oplus \Lambda_-) = \{0\}$

Proof. Obviously, $\Lambda_+ \oplus 0$ is contained in $\Phi(\Lambda) \cap (\mathbb{C}^{g_0} \oplus 0)$. To see that $\Phi(\Lambda) \cap (\mathbb{C}^{g_0} \oplus 0)$ is also a subset of $\Lambda_+ \oplus 0$, note that for every $\gamma \in \Lambda$ there exists coefficients $a_i, a_{\sigma_i}, b_i, b_{\sigma_i}, c_j, d_j \in \mathbb{Z}$ such that

$$\gamma = \sum_{i=1}^{g_0} a_i \Omega_{A_i} + a_{\sigma_i} \Omega_{\sigma_2 A_i} + b_i \Omega_{B_i} + b_{\sigma_i} \Omega_{\sigma_2 B_i} + c_j \Omega_{C_j} + d_j \Omega_{D_j}.$$

The generators of Λ_+ and Λ_- are linearly independent, compare Corollary 3.2. So the second equality in Lemma 3.1 shows that $\Phi(\gamma) \in \mathbb{C}^{g_0} \oplus 0$ can only hold if $c_j = d_j = 0$, $a_i = a_{\sigma_i}$ and $b_i = b_{\sigma_i}$. Then for such γ it is

$$\Phi(\gamma) = 2a_i \Omega_{A_i}^+ + 2b_i \Omega_{B_i}^+ \oplus 0 = a_i \Omega_{A_i+\sigma_i A_i}^+ + b_i \Omega_{B_i+\sigma_i B_i}^- \oplus 0 \in \Lambda_+ \oplus 0.$$

The equality $0 \oplus \Lambda_- = \Phi(\Lambda) \cap (0 \oplus \mathbb{C}^{g_0+n-1})$ follows in the same manner. So the first part holds.

To get insight into the second part, we will show that for the set of cosets one has

$$\Phi(\Lambda)/\Lambda_+ \oplus \Lambda_- = \{ \lambda + (\Lambda_+ \oplus \Lambda_-) \mid \Phi(\lambda) \in \Lambda \}$$

$$= \{ \lambda + (\Lambda_+ \oplus \Lambda_-) \mid \Phi(\lambda) \in M \}.$$

The lattice Λ is a finitely generated abelian group, so also $\Phi(\Lambda), \Lambda_+$ and Λ_- are finitely generated abelian groups and $\Phi(2\Lambda) \subset \Lambda_+ \oplus \Lambda_- \subset \Phi(\Lambda)$, where the second inclusion is obvious and the first inclusion holds since any element 2γ of 2Λ be decomposed as $2\gamma = 2\left(\frac{1}{2}(\gamma + \sigma_2 \gamma) + \frac{1}{2}(\gamma - \sigma_2 \gamma) \right)$. Therefore, $\Phi(\Lambda)/(\Lambda_+ \oplus \Lambda_-) \subset \Phi(\Lambda)/\Phi(2\Lambda)$ and the set of the $(\Lambda : 2\Lambda) = 2^{2g}$ elements contained in $\Phi(\Lambda)/\Phi(2\Lambda)$ is the maximal set of points which are not contained in $\Lambda_+ \oplus \Lambda_-$. In $\Phi(\Lambda)$. One has $\Phi(\Omega_{C_j}), \Phi(\Omega_{D_j}) \in \Lambda_+ \oplus \Lambda_- \subset \Phi(\Lambda)$. Therefore, all points in M are linear combinations of $\Phi(\Omega_{A_i}), \Phi(\Omega_{\sigma_2 A_i}), \Phi(\Omega_{B_i})$ and $\Phi(\Omega_{\sigma_2 B_i})$ with coefficients in $\{0, 1\}$. Since $\Omega_{A_i} = \Omega_{A_i+\sigma_2 A_i} - \sigma_{\sigma_2 A_i}$, one has that $[\Phi(\Omega_{A_i})] = [\Phi(\Omega_{\sigma_2 A_i})]$ and $[\Phi(\Omega_{B_i})] = \ldots$
Furthermore, \(\deg(\tilde{\sigma}) \) since \(\deg \) acts linear on divisors and is invariant under \(\deg \). Due to Corollary 3.2, these representations of \(\Phi(\Omega_A) \) as a vector in \(\mathbb{C}^9 \) in the basis given by the generators of \(\Lambda_+ \oplus \Lambda_- \) is unique, i.e. \(\Phi(\Omega_A) \not\in \Lambda_+ \oplus \Lambda_- \) and by the same means \(\Phi(\Omega_{\sigma A}), \Phi(\Omega_{B_i}), \Phi(\Omega_{\sigma B_i}) \not\in \Lambda_+ \oplus \Lambda_- \). The linear independence of the generators of \(\Lambda \) then yields equality in (6). Hence \((\Phi(\Lambda) : \Lambda \oplus A) \) means \(\Phi(\Omega_A) \), but that the quotient of this direct sum divided by a finite set of \(\sum_{j=1}^{g_2} b_j^1 - b_j^2 \). The explicit calculations in Lemmata 3.1 and 3.3 are mirroring this connection and the finite set of points which are divided out of the direct sum in [Mu] Section 2, Data II] are exactly the points in \(M \).

Remark 3.4. In [Mu] it was shown that \(\text{Jac}(X_\sigma) \simeq \mathbb{C}^{g_2}/\Lambda_+ \) and that the Prym variety \(P(X, \sigma) \) can be identified with \(\mathbb{C}^{g_2+n-1}/\Lambda_- \). Furthermore, it was also shown that the direct sum \(\text{Jac}(X_\sigma) \oplus P(X, \sigma) \) is only isogenous to \(\text{Jac}(X) \), but that the quotient of this direct sum divided by a finite set of points is isomorphic to \(\text{Jac}(X) \). The explicit calculations in Lemmata 3.1 and 3.3 are mirroring this connection and the finite set of points which are divided out of the direct sum in [Mu] Section 2, Data II] are exactly the points in \(M \).

4. The fixed points of \(\sigma \) and the linear equivalence

Theorem 4.1. Let \(X \) be a Riemann surface of genus \(g \), \(K \) a canonical divisor on \(X \), \(\sigma : X \to X \) a holomorphic involution and \(P_1, P_2 \in X \) fixed points of \(\sigma \). Then there exists a divisor \(D \) of degree \(g \) on \(X \) which solves

\[
D + \sigma(D) \simeq K + P_1 + P_2
\]

if and only if \(\sigma \) has exactly the two fixed points \(P_1 \) and \(P_2 \).

Proof. Assume that \(\sigma \) has more fixed points then \(P_1 \) and \(P_2 \), i.e. \(n > 1 \), and that (7) holds. Due to Lemma 2.1 there exists a divisor \(\tilde{K} \) of degree \(2g_2 - 2 \) on \(X \) such that \(K = \tilde{K} + \sigma(\tilde{K}) \). Theorem 4.1 yields \(D - \tilde{K} + \sigma(D - \tilde{K}) \simeq R_\sigma + P_1 + P_2 \). We sort the \(2n \) ramification points in \(r_\sigma \) into pairs as it was done in the construction of the \(C \)-cycles and denote the two fixed points on \(C_\sigma \) as \(P_1 \) and \(P_2 \). Then equation (7) reads as \(D - \tilde{K} + \sigma(D - \tilde{K}) \simeq \sum_{j=1}^{n-1} (b_j^1 + b_j^2) + 2P_1 + 2P_2 \). With \(\bar{D} := D - \tilde{K} + \sum_{j=1}^{n-1} b_j^1 - P_1 - P_2 \) this is equivalent to

\[
\bar{D} + \sigma(\bar{D}) + \sum_{j=1}^{n-1} (b_j^1 - b_j^2) \simeq 0.
\]

Furthermore, \(\deg(\bar{D} + \sigma(\bar{D}) + \sum_{j=1}^{n-1} (b_j^1 - b_j^2)) = 0 \) and \(\deg(\sum_{j=1}^{n-1} (b_j^1 - b_j^2)) = 0 \). Since \(\deg \) acts linear on divisors and is invariant under \(\sigma \), this yields \(\deg(\bar{D}) = 0 \). So counted without multiplicity, there are as many points

\[
[\Phi(\Omega_{\sigma B_i})] \text{ in } \Phi(\Lambda)/\Lambda_+ \oplus \Lambda_-
\]

and thus

\[
M \subseteq \left\{ \sum_{i=1}^{g_2} a_i \Phi(\Omega_{A_i}) + b_i \Phi(\Omega_{B_i}) \mid a_i, b_i \in \{0, 1\} \right\}.
\]
with positive sign as with negative sign in \tilde{D}, i.e.
$\tilde{D} = \sum_{k=1}^{f}(p_{1}^{k} - p_{2}^{k})$.
Let $\gamma_{k} : [0, 1] \to X$ be a path with $\gamma_{k}(0) = p_{1}^{k}$ and $\gamma_{k}(1) = p_{2}^{k}$. Then $\sigma \gamma_{k} : [0, 1] \to X$ is a path with $\sigma(\gamma_{k}(0)) = \sigma(p_{1}^{k})$ and $\sigma(\gamma_{k}(1)) = \sigma(p_{2}^{k})$. Then define $\gamma_{D} := \sum_{k=1}^{f} \gamma_{k}$ and $\sigma \gamma_{D} := \sum_{k=1}^{f} \sigma \gamma_{k}$. Analogously, let $\gamma_{R,j}$ be defined as the paths $\gamma_{R,j} : [0, 1] \to X$ such that $\gamma_{R,j}(0) = b_{j}^{1}$ and $\gamma_{R,j}(1) = b_{j}^{2}$ for $j = 1, \ldots, n-1$. Then, due to the construction of the C-cycles, one has $\gamma_{R,j} - \sigma \gamma_{R,j} = C_{j}$. We define $\gamma_{R} := \sum_{j=1}^{n-1} \gamma_{R,j}$. Set $\gamma := \gamma_{D} + \sigma \gamma_{D} + \gamma_{R}$ and let $\omega_{1}, \ldots, \omega_{g}$ be the canonical basis of $H^{0}(X, \Omega)$ normalized with respect to A- and C-cycles as in (2). Again we use the identification $\text{Jac}(X) = \mathbb{C}^{g}/\Lambda$ via the Abel map Ab with the basis of holomorphic 1-forms on X normalized as in (2). Due to (5), the linear equivalence can also be expressed as

$$\text{Ab} \left(\tilde{D} + \sigma(\tilde{D}) + \sum_{i=1}^{n-1} (b_{1}^{i} - b_{2}^{i}) \right) = 0 \mod \Lambda.$$

This equation can only hold if $\Omega_{\gamma} \in \Lambda$. Due to Lemma 3.1 we can split $\Omega_{\gamma} \in \mathbb{C}^{g}$ uniquely by considering $\Phi(\Omega_{\gamma}) = \Omega_{\gamma}^{+} \oplus \Omega_{\gamma}^{-}$ Due to the decomposition of Λ in (3), $\Omega_{\gamma} \in \Lambda$ is equivalent to $\Omega_{\gamma}^{+} \oplus \Omega_{\gamma}^{-} \in (\Lambda_{+} \oplus \Lambda_{-}) + M$ as defined in Lemma 3.3. So we want to show that $\Omega_{\gamma}^{+} \oplus \Omega_{\gamma}^{-}$ is not contained in any of the translated copies of $\Lambda_{+} \oplus \Lambda_{-}$ if $n > 1$. Since it will turn out that it is Ω_{γ}^{-} which leads to this assertion, we determine the explicit form of Ω_{γ}^{-}. For every $\omega^{-} \in H^{0}(X, \Omega)$ such that $\sigma^{*} \omega^{-} = -\omega^{-}$ one has

$$\int_{\gamma_{D}} \omega^{-} = \int_{\gamma_{D}} \omega^{-} + \int_{\gamma_{D}} \sigma^{*} \omega^{-} = \int_{\gamma_{D}} \omega^{-} - \int_{\gamma_{D}} \omega^{-} = 0$$

as well as

$$2 \int_{\gamma_{R,i}} \omega^{-} = \int_{\gamma_{R,i}} \omega^{-} - \int_{\gamma_{R,i}} \sigma^{*} \omega^{-} = \int_{\gamma_{R,i}} \omega^{-} - \int_{\gamma_{R,i}} \omega^{-} = \int_{\gamma_{R,i}} \omega^{-} - \int_{C_{i}} \omega^{-},$$

i.e. $\int_{\gamma_{R,i}} \omega^{-} = \frac{1}{2} \int_{C_{i}} \omega^{-}$. Since $\gamma - \sigma \gamma = 2 \gamma_{R}$ one has

$$\Omega_{\gamma}^{-} = \left(\int_{\gamma_{R,i}} \omega^{-} \right)^{g_{a}+n-1}_{k=1} = \frac{1}{2} \left(\sum_{k=1}^{n} \int_{C_{k}} \omega^{-}_{k} \right)^{g_{a}+n-1}_{k=1}.$$

Due to the normalization of the holomorphic 1-forms defined in (2) one has $\Omega_{\gamma}^{-} = \frac{1}{2} \sum_{k=1}^{n} \Omega_{C_{k}}$. If $\Omega_{\gamma}^{+} \oplus \Omega_{\gamma}^{-}$ would be contained in one of the translated copies of $\Lambda_{+} \oplus \Lambda_{-}$, then Ω_{γ}^{-} would be contained in the second component of the direct sum in one of the translated copies of Λ_{-} introduced in Lemma 3.3. This is not possible, since the generators of $\Lambda_{+} \oplus \Lambda_{-}$ are linearly independent and only integer linear combinations of C-cycles are contained in all translated lattices. Therefore, $\Omega_{\gamma} \notin \Lambda$ for $n > 1$. For $n \leq 1$, there are no C-cycles in $H_{1}(X, \mathbb{Z})$ and equation (5) would read as $D + \sigma(D) \simeq 0$. So equation (7) can only hold if $n \leq 1$. Since P_{1} and P_{2} are fixed points of σ
one has $n = 1$.
Let now P_1 and P_2 be the only fixed points of σ. Then Lemma 2.1 yields that there exists a divisor \tilde{K} on X with $\deg(\tilde{K}) = 2g_{\sigma} - 2$ such that

$$K = \tilde{K} + \sigma(\tilde{K}) + P_1 + P_2.$$

Define $D := \tilde{K} + P_1 + P_2$. The Hurwitz Formula for $n = 1$ yields $\deg(D) = 2g_{\sigma} = g$, compare e.g. [Mir, Theorem II.4.16], and one has

$$D + \sigma(D) = \tilde{K} + \sigma(\tilde{K}) + 2P_1 + 2P_2 \simeq K + P_1 + P_2.$$

\[\square \]

References

[Fo] O. Forster: Lectures on Riemann surfaces. Graduate Texts in Mathematics 81. Springer, New York (1981).
[L-B] H. Lange, C. Birkenhake: Complex abelian varieties. Grundlehren der mathematische Wissenschaften 302. Springer, Berlin (1992).
[Mu] D. Mumford: Prym Varieties I. Contribution to Analysis, 325-350, Academic Press, New York (1974)
[Mir] R. Miranda: Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathematics 5. American Mathematical Society, (1995).
[N-V] S. Novikov, A.P. Veselov: Finite-Zone two-dimensional Schrödinger Operators. Potential operators. Soviet Math. Dokl. 30, 588-591 (1984)

Mathematics Chair III, Universität Mannheim, D-68131 Mannheim, Germany
E-mail address: eluebcke@mail.uni-mannheim.de