Review Article

Autophagy as a Therapeutic Target in Diabetic Nephropathy

Yuki Tanaka,1 Shinji Kume,1 Munehiro Kitada,2 Keizo Kanasaki,2 Takashi Uzu,1 Hiroshi Maegawa,1 and Daisuke Koya2

1 Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
2 Division of Diabetes & Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa 920-0293, Japan

Correspondence should be addressed to Daisuke Koya, koya0516@kanazawa-med.ac.jp

Received 14 May 2011; Revised 1 August 2011; Accepted 17 August 2011

Copyright © 2012 Yuki Tanaka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Diabetic nephropathy is a serious complication of diabetes mellitus, and its prevalence has been increasing worldwide. Therefore, there is an urgent need to identify a new therapeutic target to prevent diabetic nephropathy. Autophagy is a major catabolic pathway involved in degrading and recycling macromolecules and damaged organelles to maintain intracellular homeostasis. The study of autophagy in mammalian systems is advancing rapidly and has revealed that it is involved in the pathogenesis of various metabolic or age-related diseases. The functional role of autophagy in the kidneys is also currently under intense investigation although, until recently, evidence showing the involvement of autophagy in the pathogenesis of diabetic nephropathy has been limited. We provide a systematic review of autophagy and discuss the therapeutic potential of autophagy in diabetic nephropathy to help future investigations in this field.

1. Introduction

The prevalence of diabetes mellitus has been increasing worldwide during recent years, and this is estimated to continue in the future [1, 2]. Diabetic nephropathy is a serious complication of diabetes mellitus and is the most common cause of end-stage renal disease [3, 4]. The increasing prevalence of diabetes mellitus and its complications, including diabetic nephropathy, has therefore become a major health problem worldwide. There is now an urgent need to identify new therapeutic target molecules or cellular processes that underlie the pathogenesis of diabetic nephropathy to establish an additional therapeutic option.

Hyperglycemia-mediated alteration of extra- and intracellular metabolism, such as advanced glycation end products [5], increased protein kinase C activity [6], and abnormal polyol metabolism [7], has been recognized as classical pathogenesis of diabetic nephropathy. In addition, intracellular stress associated with renal hypoxia [8, 9], mitochondrial reactive oxygen species (ROS) [10–13], and endoplasmic reticulum (ER) stress [14–16] has recently been proposed and focused as new pathogenesis of diabetic nephropathy. Thus, to maintain the cellular homeostasis against stress condition derived from organelle dysfunction or hypoxia may be a new therapeutic target of diabetic nephropathy.

Autophagy, a lysosomal protein degradation pathway in cells, plays a crucial role in removing protein aggregates as well as damaged or excess organelles to maintain intracellular homeostasis and cell integrity [17]. It has recently been highlighted because it can be stimulated by multiple types of cellular stressors including starvation, hypoxia, or ER stress. The study of autophagy in mammalian systems and in disease states is advancing rapidly, and many investigators are entering this new and exciting field (Figure 1). It has been revealed that autophagy plays a crucial role in several organs, especially in metabolic organs, and that its alteration is involved in the pathogenesis of metabolic [18–21] and age-related diseases [22–27]. The functional role of autophagy in the kidneys is currently under intense investigation (Figure 1), and it has been revealed that autophagy has a renoprotective role in several animal models including those used for aging and acute kidney injury [26–31]. However, the role of autophagy in diabetic nephropathy remains unclear.

Alteration of several nutrient-sensing pathways is related to the development of metabolic diseases, such as type 2 diabetes and its vascular complications. Major nutrient-sensing
autophagy, macroautophagy is most prevalent and hereafter mechanisms and functions [45, 46]. Of these three types and chaperone-mediated autophagy; these di been recognized in cells: macroautophagy, microautophagy, and various stressful conditions. Several types of autophagy have been recognized in cells: macroautophagy, microautophagy, and chaperone-mediated autophagy; these differ in their mechanisms and functions [45, 46]. Of these three types of autophagy, macroautophagy is most prevalent and hereafter is referred to as autophagy. In this paper, we focus on the mechanisms and functions of autophagy.

3. Molecular Mechanisms of Autophagy

During macroautophagy, de novo isolation membranes (phagophores) elongate and fuse while engulfing a portion of the cytoplasm within double-membraned vesicles (autophagosomes) (Figure 2). Several origins of autophagosomes have been reported, including the ER [47–49], mitochondria [50], and plasma membrane [51]. Four major steps are involved in the formation of autophagosomes: initiation, nucleation, elongation, and closure. During these steps, autophagy-related proteins are involved (Figure 2). Autophagy is initiated by the unc-51-like kinase (ULK) 1 (mammalian ortholog of the yeast autophagy-related genes (Atg)1) complex, which is composed of ULK1 Ser/Thr protein kinase, Atg13, and FIP200 (mammalian homolog of the yeast Atg17) [52–54]. The phosphorylation of Atg13 and FIP200 by ULK1 is essential for triggering autophagy. Phagophore nucleation is dependent on Beclin 1 (Atg6 in yeast)—an hVps34 or class III phosphatidylinositol 3-kinase (PI3K) complex, which consists of hVps34, hVps15, Beclin 1, and Atg14 [55, 56].

During autophagosome elongation/closure, two dependent ubiquitin-like conjugation systems are involved: Atg12 and LC3 (the mammalian ortholog of the yeast Atg8) [57]. The Atg12-Atg5 conjugate, which forms the Atg12-Atg5-Atg16 complex, contributes to the stimulation and localization of the LC3 conjugation reaction. The cytosolic isoform of LC3 (LC3-I) is conjugated to phosphatidylethanolamine through two consecutive ubiquitination-like reactions that are catalyzed by E1-like enzyme Atg7 and the E2-like enzyme Atg3 to form LC3-II [58]. Thus, LC3-II formation is recognized as a marker of existence of autophagosomes in cell or animal experiments [59–61]. After formation, the autophagosomes merge with the lysosomal compartment to form autolysosomes. The protein p62, also known as sequestosome 1 (SQSTM1), is known to localize to autophagosomes via LC3 interaction and to be constantly degraded by the autophagy-lysosome system [62, 63]. The accumulation of p62 is observed in autophagy-deficient cells [62, 63].

4. Methods Available for Monitoring Autophagy

It is necessary to keep in mind several important points as we monitor and assess the autophagy activity to prevent misconceptions. Some reviews about the methods for autophagy research have been published [59–61]. As briefly below summarized, some methods including electron microscopy (EM), detection of endogenous LC3 or green fluorescent protein (GFP)-LC3 by fluorescence microscopy, and detection of LC3-II by Western blotting are useful in monitoring the number of autophagosomes. However, these methods have some limitations. An accumulation of autophagosomes does not always mean increased formation of autophagosomes and may represent inhibited maturation of autolysosomes (or amphisomes). Simply counting...
Figure 2: Scheme of autophagic pathways. Autophagic pathways consist of four steps: initiation, nucleation, elongation, and closure. Autophagy is initiated by the nucleation of an isolation membrane (phagophore). The phagophore elongates and closes on itself to form an autophagosome. Fusion of an autophagosome with a lysosome forms an autolysosome and, where the acid hydrolases in the lysosome, breaks down the inner membrane and cytoplasmic contents.

5. Role of Nutrient Stress in Autophagy and Diabetic Nephropathy

The kidney is a structurally complex organ and is essential in several functions including excretion of the waste products of metabolism, regulation of body fluid volume, maintenance of appropriate acid balance, and secretion of a variety of hormones. The basic unit of the kidney is the nephron, which consists of a glomerulus and a series of tubules lined by a continuous layer of epithelial cells (Figure 3). The glomerulus consists of mesangial cells and a capillary wall with endothelial cells, glomerular basement membrane, and visceral epithelial cells (podocytes) (Figure 3). Among them, since podocytes play essential role to maintain glomerular filtration barrier, podocyte injury leads to proteinuria and glomerulosclerosis, which are major features of diabetic nephropathy. Podocytes are terminally differentiated cells with a limited proliferative capacity. Therefore, the fate of podocyte depends on its ability to cope with stress. Excess fluid filtered through glomerulus enters urinary space and is reabsorbed by the proximal tubular cells (Figure 3). The proximal tubular cells serve as a system to degrade several molecules reabsorbed from urinary space. Thus, autophagy may be essential to maintain their homeostasis and functions in both podocytes and proximal tubular cells, which might be altered in diabetic condition. If autophagy system is altered in diabetic condition, this alteration of autophagy may be involved in the pathogenesis of diabetic nephropathy.

As expected, autophagy has been identified in both podocytes and proximal tubular cells and is regulated by a variety of stimuli including nutrient stress. Nutrient depletion is the most potent physiological inducer of autophagy, among several that have been reported to regulate autophagy. Here, we show the roles of mTOR, AMPK, and Sirt1, in the regulation of autophagy. The alteration of these pathways is involved in the pathogenesis of several kidney diseases including diabetic nephropathy.

5.1. mTOR. Several studies have shown that hyperactivation of the mTOR pathway in diabetic nephropathy plays a pivotal role in the hypertrophy of existing glomerular and tubular cells [64, 65] and is associated with podocyte injury and the progressive decline of glomerular filtration rates. Other studies have suggested that inhibition of the mTORC1 pathway with rapamycin has renoprotective effects on the progression of diabetic nephropathy in models of type 1 [33] and type 2 diabetes [32, 66–69]. Some reports have shown the additive renoprotective effects of rapamycin treatment including prevention of mesangial expansion and glomerular membrane thickness in type 1 diabetic rats [33] and attenuation of increased glomerular expression of laminin-β1 protein in type 2 diabetic mice [32, 67]. It has been reported that activation of the mTOR pathway is involved in the increased expression of profibrotic cytokines, such as TGF-β1 and connective tissue growth factor, and subsequent interstitial fibrosis in diabetic nephropathy [32–34]. Furthermore, more
recent reports have shown that mTORC1 activity is essential to maintain podocyte homeostasis, but its hyperactivation is a cause of glomerular lesion of both type 1 and type 2 diabetic nephropathy [68, 69]. Complete deletion of podocyte mTORC1 activity in podocyte-specific Raptor-deficient mice causes podocyte injury [68]. In contrast, podocyte-specific mTORC1 hyperactivation by podocyte-specific tuberous sclerosis complex (TSC) 1-knockout mice show podocyte injury and glomerular lesion similar to diabetic nephropathy [69]. Finally, podocyte-specific Raptor-heterozygous mice show partial deletion of mTORC1 activity in podocyte and resistance to the development of diabetic nephropathy in both STZ-induced type 1 diabetic mice [68] and type 2 diabetic db/db mice [69].

In addition to the above-mentioned function, inhibition of autophagy is a main role of mTOR pathway [44, 58, 70]. Among the several signaling pathways that regulate autophagy in mammalian cells, the classical pathway of serine/threonine kinase, mTOR, plays a major role in the negative regulation of autophagy because it integrates signals that are emitted by growth factors, amino acids, glucose, and energy status [71]. Autophagy is inhibited by the activation of TOR under hypernutrient conditions [44, 58]. The mTOR pathway involves two functional complexes: mTOR complex 1 (mTORC1) and mTORC2. mTORC1, which consists of the mTOR catalytic subunit, regulatory associated protein of mTOR (Raptor), G protein β-subunit-like protein (GβL), proline-rich Akt substrate of 40 kDa (PRAS40), and DEP domain-containing mTOR-interacting protein (Depitor) [72], is sensitive to the immunosuppressant rapamycin [73, 74]. This complex regulates cell growth, metabolism (by integrating amino acid and growth factor signals), energy, and oxygen status [75]. The mTORC1 complex suppresses autophagy via phosphorylation and inactivation of Ulk1, an initiator of autophagosome formation [76]. Although no direct evidences have been provided, hyperactivation of mTOR pathway may suppress autophagy in podocyte and tubular cells in diabetic condition. Furthermore, enhanced activity of autophagy may be involved in the renoprotective effects of rapamycin treatment in diabetic nephropathy. The mTORC2 complex is less sensitive to rapamycin and includes mTOR, rapamycin-insensitive companion of mTOR (Rictor), GβL, stress-activated protein kinase-interacting protein 1 (Sin1), protein observed with Rictor (PROTOR), and Depitor [75, 77]. The mTORC2 complex regulates cytoskeletal organization, metabolism, and cell survival [75, 78, 79]. However, until now, the role of mTORC2 in regulation of autophagy has remained unclear.

5.2. AMPK. AMPK is activated under energy-depleted conditions and is likely to be suppressed in diabetic nephropathy. It has been reported that AMPK is inactivated (decreased phosphorylation of AMPK) in glomeruli and tubules in both type 1 and type 2 diabetic animal models [40, 81–84], which are reversed by agents such as metformin and resveratrol along with attenuation of diabetic glomerular and tubular injury [40, 85, 86]. This introduces the question of how decreases in AMPK activity can be involved in the pathogenesis of diabetic nephropathy. In type 1 and 2 diabetic kidneys, intrarenal lipid metabolism is altered, which is
characterized by enhanced renal lipogenesis and suppressed lipolysis [87–90]. AMPK-mediated phosphorylation inactivates a lipogenic enzyme, acetyl-CoA carboxylase, which results in decreased lipogenesis and enhanced lipolysis [91]. Decreases in renal AMPK activity in these mouse models may be a mechanism of altered renal lipid metabolism and subsequent lipotoxicity-associated renal damage. Since AMPK can affect various cellular metabolism as well as lipid metabolism [92, 93], the other molecular mechanism should be involved in AMPK-mediated renoprotection.

AMPK plays a central role in the integration of several stress stimuli and is a positive regulator of autophagy in response to nutrient-depleted conditions. AMPK monitors the energy status of the cell by sensing its AMP/ATP ratio [93]. Several upstream kinases, including liver kinase B1 (LKB1), calcium/calmodulin kinase kinase (CaMKII) β, and TGF-β-activated kinase-1 (TAK1), can activate AMPK by phosphorylating a threonine residue on its catalytic α subunit [93]. AMPK can crosstalk with the mTORC1 signal during multiple steps of autophagy regulation. AMPK induces autophagy by inhibiting mTORC1 activity via phosphorylation of its regulatory-associated proteins [44, 58, 94]. Recent studies have shown that AMPK-dependent phosphorylation of Ulk1 induces autophagy [94, 95]. A balance between mTORC1 and AMPK likely directly regulates Ulk1 activity and subsequent autophagy initiation [44]. Thus, in addition to the above-mentioned mechanism, AMPK-mediated induction of autophagy may be involved in its renoprotection. AMPK activation may be linked to autophagy for the maintenance of renal homeostasis in diabetic kidney.

5.3. Sirt1. Sirtuins, the silent information regulator 2 family, were originally identified as NAD⁺-dependent deacetylases in experiments in lower species and consist of seven members, Sirt1–Sirt7, in mammals [96, 97]. Sirtuins have been identified as antiaging molecules under calorie-restricted conditions and environmental stress. Some mammalian sirtuins, especially Sirt1, have been shown to play important roles in the regulation of aging, or in the pathogenesis of age-related metabolic diseases such as type 2 diabetes [41, 42, 96]. An increase in the intracellular concentration of NAD⁺ by caloric restriction can activate Sirt1. Results that demonstrate the role of Sirt1 in autophagy are still lacking compared with those for mTOR and AMPK, but they have recently been increasing. Sirt1 can deacetylate essential autophagic factors such as Atg5, Atg7, and LC3 [98] and has been shown to induce autophagy. Furthermore, Sirt1 deacetylates the transcription factor Forkhead box O3a (Foxo3a), which leads to enhanced expression of proautophagic BCL2/adenovirus E1V 19-kDa interacting protein 3 (Bnip3) [26].

Renal expression of Sirt1 decreases in type 1 diabetic animal models [99, 100]. Also, reduced forms of nicotinamide adenine dinucleotide (NADH) are metabolites of glucose and fatty acids. Thus, NAD⁺/NADH ratios are decreased in cells under conditions where nutrients are in excess, such as diabetes. Sirt1-deacetylation activity should decrease in diabetic nephropathy. Although direct renoprotective effects of Sirt1 in diabetic nephropathy have yet to be elucidated, Sirt1 has shown renoprotective activity in aging kidneys and fibrotic kidney diseases. The previously mentioned findings lead us to speculate that activation of Sirt1 should also have therapeutic efficacy in diabetic nephropathy. Furthermore, Sirt1-induced autophagy activation may contribute to Sirt1-mediated renoprotective effect in diabetic nephropathy.

6. Regulation of Autophagy by Intracellular Stress

6.1. Oxidative Stress. Under conditions where nutrients are in excess, such as diabetes and obesity, the production of ROS in the kidneys is enhanced by high glucose concentrations [101, 102]. Furthermore, high levels of free fatty acids, especially polysaturated fatty acids, also induce ROS production in the kidneys [88, 103]. Oxidative stress is a by-product of mitochondrial respiration and is associated with cell dysfunction. Actually, a recent report has shown abnormal mitochondrial morphology in diabetic kidney [95, 104], suggesting that diabetic kidney fails to remove damaged mitochondria. Thus, restoring the ability to control mitochondria homeostasis should be a therapeutic target of diabetic nephropathy.

Mitochondrial quality control is mediated by mitochondrial autophagy (mitophagy) [105]. Similarly, oxidative stress can induce autophagy to remove damaged mitochondria to protect cells. Thus, autophagy-mediated quality control of mitochondria and subsequent reduction of ROS should be essential to protect kidney in diabetic condition. It has been reported that exogenous hydrogen peroxide activates protein kinase RNA-like ER kinase (PERK), which subsequently phosphorylates eukaryotic initiation factor-2α, activates Atg4, and inhibits mTOR [106]. In response to cellular stress or damage, mitochondrial membranes can be permeabilized. The autophagic recognition of depolarized mitochondria is mediated by a refined voltage sensor, which involves the mitochondrial kinase, phosphatase, and tensin homolog-induced putative kinase 1.

6.2. Hypoxia. In early-stage diabetic nephropathy, hypoxia is aggravated by manifestations of chronic hyperglycemic abnormalities of red blood cells [107, 108], oxidative stress [109], and diabetes mellitus-induced tubular apoptosis; as such, tubulointerstitial hypoxia in diabetes mellitus might be an important early event. Hypoxia is also a stimulatory factor of autophagy. Hypoxia-induced autophagy largely depends on hypoxia-inducible factor-1α (HIF-1α), which is a transcription factor that is activated and stabilized under hypoxic conditions.
Table 1: Autophagy-related kidney diseases.

Species and methods to monitor autophagy	Disease model	Effects of autophagy	Reference
Sprague-Dawley rats, immunohistochemistry of LC3 and Western blotting of LC3-II	Cyclosporine A-induced nephrotoxicity	Protection against tubular cell death	[80]
C57BL/6 mice, EM, and Western blotting of LC3-II	Cisplatin injury	Protection against tubular cell death	[30]
C57BL/6 mice, EM, immunofluorescence of LC3, and Western blotting of LC3-II	Aging	Protection against aging and hypoxia-related tubular damage	[26]
GFP-LC3 mice	Cisplatin injury	Protection against tubular cell death	[31]
C57BL/6 mice, EM, and Western blotting of LC3-II with 3-MA and chloroquine	Ischemia reperfusion	Protection against tubular cell death	[28]
Proximal tubular epithelial cell-specific Atg5-deficient mice	Ischemia reperfusion	Protection against tubular cell death	[29]
Podocyte-specific Atg5-deficient mice	Aging, protein overload-, LPS-, PAN-, and Adriamycin-induced glomerular injury	Protection against podocyte injury	[27]

EM: electron microscopy; GFP: green fluorescent protein; 3-MA: 3-methladenine; Atg: autophagy-related genes; LPS: lipopolysaccharide; PAN: puromycin aminonucleoside.

[110, 111]. HIF-1α activates transcription of Bnip3 and Bnip3L and subsequently induces autophagy. Normally, Beclin 1 interacts with Bcl-2 proteins. Bnip3 can disrupt this interaction, liberating Beclin 1 from Bcl-2 in cells and leading to autophagy. Thus, HIF1α-induced Bnip3 overexpression promotes autophagy [112]. The transcription of Bnip3 is also upregulated by the transcription factor FOXO3, which is deacetylated and positively regulated by Sirt1 [26]. Hypoxia causes damage to the mitochondria and intracellular accumulation of ROS [113]. Removing the damaged mitochondria under hypoxic conditions is also an important role of Bnip3-mediated autophagy. Thus, to investigate whether hypoxia-induced and Sirt1-mediated autophagy is altered in diabetic kidney is interesting. If it is altered, to restore autophagy activity even under diabetic condition should be important to protect kidney form hypoxia.

6.3. ER Stress. ER stress has recently been focused as a pathogenesis of diabetic nephropathy. The induction of ER stress and subsequent apoptosis by hyperglycemia and high levels of free fatty acids (polysaturated fatty acids) are observed in podocytes [114]. Additionally, in proteinuric kidney diseases, including diabetic nephropathy, massive proteinuria filtered from glomeruli causes ER stress responses and subsequent apoptosis in renal tubular cells [14, 115]. Thus, to suppress inadequate ER stress is thought as a therapeutic strategy of diabetic nephropathy.

It is known that ER stress as well as hypoxia and ROS also cause autophagy. The ER is not only involved in protein synthesis and maturation but may also constitute a major source/scaffold for the autophagic isolation membrane [47]. When misfolded proteins are not exported efficiently to the cytoplasm and accumulate in the ER, the unfolded protein response (UPR) is often induced [116–118]. The UPR consists of three main branches that are controlled by the ER membrane proteins: PERK; activating transcription factor-6 (ATF6); inositol requiring enzyme 1 (IRE1) [116–118]. Among these UPR-related proteins, PERK and ATF6 have been reported to induce autophagy [44]. PERK induces the transcriptional activation of LC3 and Atg5 through the action of the transcription factors ATF4 and CCAAT-enhancer-binding protein homologous protein, respectively [119]. It has been suggested that IRE1 is also involved in the induction of autophagy by phosphorylation of Beclin 1 via c-Jun NH2-terminal kinase-1 [44]. Enhanced and prolonged ER stress causes several pathogenic features such as apoptosis and inflammation [117, 118]. Thus, autophagy-mediated ER degradation (ERphagy) may be required for cell protection from prolonged cytotoxic ER stress shown in diabetic kidney.

7. Autophagy in the Kidneys

The study of autophagy has previously been undertaken in lower species. The study of autophagy in mammalian systems is advancing rapidly and has revealed that mammalian autophagy is involved in the pathogenesis of various metabolic or age-related diseases [18–27].

Recently, nephrologists have also entered this exciting field of study. In this section, we review recent studies on the pathophysiology of autophagy in the kidneys. Autophagy has been observed in various parts of the kidneys, including proximal tubules, and thick ascending limbs. In particular, in podocytes, higher levels of constitutive autophagy have been
Figure 4: Regulation of autophagy by nutrient and intracellular stresses and the relationship between autophagy and the progression of diabetic nephropathy. Under normal conditions, intracellular stresses such as hypoxia, mitochondrial ROS, and ER stress induce autophagy. Nutrient depletion enhances autophagy by inhibiting mTORC1 and by activating AMPK and Sirt1. This activation of autophagy helps to maintain intracellular homeostasis and may have renoprotective effects. In contrast, under diabetic conditions, high glucose or FFA levels increase intracellular stresses, leading to the progression of diabetic nephropathy. Furthermore, nutrient excess and high glucose levels under diabetic conditions inhibit autophagy by inhibiting AMPK and Sirt1, and by activating mTORC1. This inactivation of autophagy may reinforce the progression of diabetic nephropathy. ROS: reactive oxygen species; ER: endoplasmic reticulum; mTORC1: mammalian target of rapamycin (mTOR) complex 1 (mTORC1); AMPK: AMP-activated protein kinase; FFA: free fatty acid.

observed using GFP-LC3 transgenic mice even under normal conditions [27]. As for the role of autophagy in renal pathophysiology, several researchers have reported the significance of autophagy in experimental renal injury models. In several experimental animal models of glomerulonephritis, including puromycin aminonucleoside and adriamycin-induced proteinuria, autophagy has been identified and shown to play renoprotective and antiproteinuric roles in podocytes through the use of podocyte-specific Atg5 knockout mice [27]. It has been recently reported that the normal aging process suppresses autophagy in podocytes, and that podocyte-specific deletion of Atg5 leads to glomerulopathy in aging
Autophagy is regulated by nutrient conditions, and its alteration associates with various metabolic and age-associated diseases. Although studies on autophagy have methodological limitations, as outlined above, it is evident that autophagy deficiency is associated with podocyte and tubular cell injuries from the studies using Atg5-knockout mice [27, 29]. These findings lead us to hypothesize that autophagy is altered in diabetic kidneys, and autophagy deficiency should contribute to the pathogenesis of diabetic nephropathy. Altered nutrient-sensing signals in diabetic kidneys may contribute to accumulation of mitochondrial ROS via suppression of autophagy, which may be associated with initiation of the early stages of diabetic nephropathy. Both hypoxia and proteinuria-induced ER stress contribute to proximal tubular cell damage in the progressive and overt stages of diabetic nephropathy. Why do diabetic kidneys show a weakness against these stresses? How can we protect the kidneys from these stresses even under diabetic conditions? One answer may be derived from autophagy studies. Autophagy deficiency in diabetic kidneys may make tubular cells fragile under hypoxic and ER stress and possibly lead to progression of diabetic nephropathy (Figure 4). Activation of autophagy may be a therapeutic option for the advanced stages of diabetic nephropathy.

9. Concluding Comments

In recent decades, numerous investigators have been making efforts to identify the molecular mechanisms involved in the initiation and progression of diabetic nephropathy to develop new therapeutic strategies. However, end-stage renal disease due to diabetic nephropathy continues to increase worldwide. There is an urgent need to identify additional new therapeutic targets for prevention of diabetic nephropathy. We have provided a perspective on whether autophagy is involved in the pathogenesis of diabetic nephropathy and whether it is an acceptable new therapeutic target. Unfortunately, there have still not been many studies that have focused on autophagy in diabetic nephropathy. In the next few years, studies using Atg-gene knockout/knockdown mice combined with different methodologies will elucidate this possibility. Finally, these studies will ultimately give us a clearer perspective as to whether autophagy should be considered as a novel therapeutic target to halt the progression of diabetic nephropathy.

Acknowledgment

This study was supported in part by a Grant-in-Aid For Diabetic Nephropathy Research, from the Ministry of Health, Labour and Welfare of Japan.

References

[1] A. F. Amos, D. J. McCarty, and P. Zimet, “The rising global burden of diabetes and its complications: estimates and projections to the year 2010,” Diabetic Medicine, vol. 14, supplement 5, pp. S1–S85, 1997.
[2] A. H. Mokdad, E. S. Ford, B. A. Bowman et al., “Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001,” *Journal of the American Medical Association*, vol. 289, no. 1, pp. 76–79, 2003.

[3] A. N. Lasaridis and P. A. Sarafidis, “Diabetic nephropathy and anti hypertensive treatment: what are the lessons from clinical trials?”, *American Journal of Hypertension*, vol. 16, no. 8, pp. 689–697, 2003.

[4] M. E. Mollitch, R. A. DeFronzo, M. J. Franz et al., “Nephropathy in diabetes,” *Diabetes Care*, vol. 27, supplement 1, pp. S79–S83, 2004.

[5] J. M. Forbes, V. Thallas, M. C. Thomas et al., “The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes,” *FASEB Journal*, vol. 17, no. 12, pp. 1762–1764, 2003.

[6] D. Koya, M. R. Jirousek, Y. W. Lin, H. Ishii, K. Kuboki, and G. L. King, “Characterization of protein kinase Cβ isoform activation on the gene expression of transforming growth factor-β, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats,” *Journal of Clinical Investigation*, vol. 100, no. 1, pp. 115–126, 1997.

[7] M. Dunlop, “Aldose reductase and the role of the polyol pathway in diabetic nephropathy,” *Kidney International, Supplement*, vol. 58, no. 77, pp. S3–S12, 2000.

[8] T. Miyata and C. V. Y. de Strihou, “Diabetic nephropathy: a disorder of oxygen metabolism?” *Nature Reviews Nephrology*, vol. 6, no. 2, pp. 83–95, 2010.

[9] D. K. Singh, P. Winocour, and K. Farrington, “Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy,” *Nature Clinical Practice Nephrology*, vol. 4, no. 4, pp. 216–226, 2008.

[10] H. Ha, I. A. Hwang, J. H. Park, and H. B. Lee, “Role of reactive oxygen species in the pathogenesis of diabetic nephropathy,” *Diabetes Research and Clinical Practice*, vol. 82, supplement 1, pp. S42–S45, 2008.

[11] F. A. Hakim and A. Pfleuger, “Role of oxidative stress in diabetic kidney disease,” *Medical Science Monitor*, vol. 16, no. 2, pp. RA37–RA48, 2010.

[12] N. Kashiwara, Y. Haruna, V. K. Kondeti, and Y. S. Kanwar, “Oxidative stress in diabetic nephropathy,” *Current Medicinal Chemistry*, vol. 17, no. 34, pp. 4256–4269, 2010.

[13] F. Giacco and M. Brownlee, “Oxidative stress and diabetic nephropathy,” *American Journal of Pathology*, vol. 176, no. 3, pp. 1181–1192, 2010.

[14] S. Periyasamy-Thandavan, M. Jiang, Q. Wei, R. Smith, X. Yin, and Z. Dong, “Autophagy is cytoprotective during in vitro hypoxia and in vivo ischemia-reperfusion injury,” *American Journal of Pathology*, vol. 176, no. 3, pp. 1181–1192, 2010.

[15] K. Inoki, “Role of TSC-mTOR pathway in diabetic nephropathy,” *Kidney International*, vol. 74, no. 5, pp. 631–640, 2008.

[16] K. Ioune, H. Kuwana, Y. Shimamura et al., “Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo,” *Clinical and Experimental Nephrology*, vol. 14, no. 2, pp. 112–122, 2010.

[17] M. Sakaguchi, M. Isono, K. Isshiki, T. Sugimoto, D. Koya, and A. Kashiwagi, “Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice,” *Biochemical and Biophysical Research Communications*, vol. 340, no. 1, pp. 296–301, 2006.

[18] Y. Yang, J. Wang, L. Qin et al., “Rapamycin prevents early steps of the development of diabetic nephropathy in rats,” *American Journal of Nephrology*, vol. 27, no. 5, pp. 495–502, 2007.

[19] N. Lloberas, J. M. Cruzado, M. Franquesa et al., “Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats,” *Journal of the American Society of Nephrology*, vol. 17, no. 5, pp. 1395–1404, 2006.

[20] K. Inoki, “Role of TSC-mTOR pathway in diabetic nephropathy,” *Diabetes Research and Clinical Practice*, vol. 82, supplement 1, pp. S59–S62, 2008.
nephropathy in mice,” *Journal of Clinical Investigation*, vol. 121, no. 6, pp. 2181–2196, 2011.

[70] M. Mehrpour, A. Eslatine, I. Beau, and P. Codogno, “Overview of macroautophagy regulation in mammalian cells,” *Cell Research*, vol. 20, no. 7, pp. 748–762, 2010.

[71] D. D. Sarbassov, S. M. Ali, and D. M. Sabatini, “Growing roles for the mTOR pathway,” *Current Opinion in Cell Biology*, vol. 17, no. 6, pp. 596–603, 2005.

[72] A. Efeyan and D. M. Sabatini, “mTOR and cancer: many loops in one pathway,” *Current Opinion in Cell Biology*, vol. 22, no. 2, pp. 169–176, 2010.

[73] Q. Yang and K. L. Guan, “Expanding mTOR signaling,” *Cell Research*, vol. 17, no. 8, pp. 666–681, 2007.

[74] D. A. Guertin, D. M. Stevens, M. Saitoh et al., “mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice,” *Cancer Cell*, vol. 15, no. 2, pp. 148–159, 2009.

[75] D. S. Dos, S. M. Ali, D. H. Kim et al., “Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton,” *Current Biology*, vol. 14, no. 14, pp. 1296–1302, 2004.

[76] N. Mizushima, “The role of the Atg1/ULK1 complex in autophagy regulation,” *Current Opinion in Cell Biology*, vol. 22, no. 2, pp. 132–139, 2010.

[77] E. Jacinto, R. Loewith, A. Schmidt et al., “Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive,” *Nature Cell Biology*, vol. 6, no. 11, pp. 1122–1128, 2004.

[78] J. E. Kim and J. Chen, “Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 97, no. 26, pp. 14340–14345, 2000.

[79] S. Wullschleger, R. Loewith, and M. N. Hall, “TOR signaling in growth and metabolism,” *Cell*, vol. 124, no. 3, pp. 471–484, 2006.

[80] N. Pallet, N. Bouvier, C. Legendre et al., “Autophagy protects renal tubular cells against cyclosporine toxicity,” *Autophagy*, vol. 4, no. 6, pp. 783–791, 2008.

[81] P. G. Cammisotto, I. Londono, D. Gingras, and M. Bendayan, “Control of glycosyn synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats,” *American Journal of Physiology—Renal Physiology*, vol. 294, no. 4, pp. F881–F889, 2008.

[82] M. Kitada, S. Kume, N. Imaizumi, and D. Koya, “Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway,” *Diabetes*, vol. 60, no. 2, pp. 634–643, 2011.

[83] I. Sokolovska, S. Isjevs, O. Sugoka et al., “Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model,” *Archives of Physiology and Biochemistry*, vol. 116, no. 3, pp. 137–145, 2010.

[84] T. Yamazaki, M. Tanimoto, T. Gohda et al., “Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KK-Ay/Ta mice,” *Nephron—Experimental Nephrology*, vol. 113, no. 2, pp. e66–e76, 2009.

[85] C. C. Chang, C. Y. Chang, Y. T. Wu, J. P. Huang, T. H. Yen, and L. M. Hung, “Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase,” *Journal of Biomedical Science*, vol. 18, no. 1, p. 47, 2011.

[86] M. J. Lee, D. Feliers, M. M. Mariappan et al., “A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy,” *American Journal of Physiology—Renal Physiology*, vol. 292, no. 2, pp. F617–F627, 2007.

[87] S. Kume, T. Uzu, S. I. Araki et al., “Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet,” *Journal of the American Society of Nephrology*, vol. 18, no. 10, pp. 2715–2723, 2007.

[88] Y. Tanaka, S. Kume, S. I. Araki et al., “Fenofibrate, a PPARα agonist, has renoprotective effects in mice by enhancing renal lipolysis,” *Kidney International*, vol. 79, no. 8, pp. 871–882, 2011.

[89] T. Jiang, Z. Wang, G. Proctor et al., “Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway,” *Journal of Biological Chemistry*, vol. 280, no. 37, pp. 32317–32325, 2005.

[90] Z. Wang, T. Jiang, J. Li et al., “Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes,” *Diabetes*, vol. 54, no. 8, pp. 2328–2335, 2005.

[91] A. K. Saha and N. B. Ruderman, “Malonyl-CoA and AMP-activated protein kinase: an expanding partnership,” *Molecular and Cellular Biochemistry*, vol. 253, no. 1-2, pp. 65–70, 2003.

[92] C. Cantó and J. Auwerx, “AMP-activated protein kinase and its downstream transcriptional pathways,” *Cellular and Molecular Life Sciences*, vol. 67, no. 20, pp. 3407–3423, 2010.

[93] G. R. Steinberg and B. E. Kemp, “AMPK in health and disease,” *Physiological Reviews*, vol. 89, no. 3, pp. 1025–1078, 2009.

[94] J. W. Lee, S. Park, Y. Takahashi, and H. G. Wang, “The association of AMPK with ULK1 regulates autophagy,” *PLoS ONE*, vol. 5, no. 11, Article ID e15394, 2010.

[95] C. Behrends, M. E. Sowa, S. P. Gygi, and J. W. Harper, “Network organization of the human autophagy system,” *Nature*, vol. 466, no. 7302, pp. 68–76, 2010.

[96] S. I. Imai and L. Guarente, “Ten years of NAD-dependent SIRT2 family deacetylases: implications for metabolic diseases,” *Trends in Pharmacological Sciences*, vol. 31, no. 5, pp. 212–220, 2010.

[97] M. C. Haigis and D. A. Sinclair, “Mammalian sirtuins: biological insights and disease relevance,” *Annual Review of Pathology*, vol. 5, pp. 233–295, 2010.

[98] H. L. In, L. Cao, R. Mostoslavsky et al., “A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 105, no. 9, pp. 3374–3379, 2008.

[99] K. Tikoo, D. N. Tripathi, D. G. Kabra, V. Sharma, and A. B. Gaikwad, “Intermittent fasting prevents the progression of type 1 diabetic nephropathy in rats and changes the expression of Sir2 and p53 evrevetin preventing diabetic nephropathy, “Change in histone H3 phosphorylation, MAP kinase p38, and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway,” *Diabetes*, vol. 60, no. 2, pp. 634–643, 2011.

[100] K. Tikoo, K. Singh, D. Kabra, V. Sharma, and A. Gaikwad, “Change in histone H3 phosphorylation, MAP kinase p38 and Sir2 and p53 expression by resveratrol in preventing streptozotocin induced type 1 diabetic nephropathy,” *Free Radical Research*, vol. 42, no. 4, pp. 397–404, 2008.

[101] D. Koya, K. Hayashi, M. Kitada, A. Kashiwagi, R. Kikkawa, and M. Haneda, “Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats,” *Journal of the American Society of Nephrology*, vol. 14, no. 8, supplement 3, pp. S250–S253, 2003.
M. L. Brezniceanu, F. Liu, C. C. Wei et al., “Catalase over-expression attenuates angiotensinogen expression and apoptosis in diabetic mice,” *Kidney International*, vol. 71, no. 9, pp. 912–923, 2007.

E. Morse, J. Schroth, N. H. You et al., “TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1,” *American Journal of Physiology—Renal Physiology*, vol. 299, no. 5, pp. F965–F972, 2010.

M. Kitada, A. Takeda, T. Nagai et al., “Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in Diabetic Wistar fatty (fa/fa) rats, a model of type 2 diabetes,” *Experimental Diabetes Research*, vol. 2011, Article ID 908185, 11 pages, 2011.

I. Kim, S. Rodriguez-Enriquez, and J. J. Lemasters, “Selective degradation of mitochondria by mitophagy,” *Archives of Biochemistry and Biophysics*, vol. 462, no. 2, pp. 245–253, 2007.

L. Liu, D. R. Wise, J. A. Diehl, and M. C. Simon, “Hypoxic reactive oxygen species regulate the integrated stress response in cells and cell survival,” *Journal of Biological Chemistry*, vol. 283, no. 45, pp. 31153–31162, 2008.

C. M. Peterson, R. L. Jones, and R. I. Koenig, “Hematologic alterations in diabetes mellitus,” *American Journal of Medicine*, vol. 70, no. 2, pp. 339–352, 1981.

P. Katavetin, T. Miyata, R. Inagi et al., “High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsive element pathway,” *Journal of the American Society of Nephrology*, vol. 17, no. 5, pp. 1405–1413, 2006.

A. I. Majimundar, W. J. Wong, and M. C. Simon, “Hypoxia-inducible factors and the response to hypoxic stress,” *Molecular Cell*, vol. 40, no. 2, pp. 294–309, 2010.

N. M. Mazure and J. Pouysségur, “Hypoxia-induced autophagy: cell death or cell survival?” *Current Opinion in Cell Biology*, vol. 22, no. 2, pp. 177–180, 2010.

G. Bellot, R. Garcia-Medina, P. Gounon et al., “Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains,” *Molecular and Cellular Biology*, vol. 29, no. 10, pp. 2570–2581, 2009.

S. L. Archer, M. Gomberg-Maitland, M. L. Maitland, S. Rich, J. G. N. Garcia, and E. K. Weir, “Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer,” *American Journal of Physiology—Heart and Circulatory Physiology*, vol. 294, no. 2, pp. H570–H578, 2008.

J. Sieber, M. T. Lindenmeyer, K. Kampe et al., “Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids,” *American Journal of Physiology—Renal Physiology*, vol. 299, no. 4, pp. F821–F829, 2010.

M. T. Lindenmeyer, M. P. Rastaldi, M. Ikehata et al., “Proteinuria and hyperglycemia induce endoplasmic reticulum stress,” *Journal of the American Society of Nephrology*, vol. 19, no. 11, pp. 2225–2236, 2008.

S. Hummasti and G. S. Hotamisligil, “Endoplasmic reticulum stress and inflammation in obesity and diabetes,” *Circulation Research*, vol. 107, no. 5, pp. 579–591, 2010.