On K-eccentric and K-hyper eccentric indices of Benzenoid H_k system

M. Bhanumathi1, R. Rohini2 and G. Srividhya3

Abstract
Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. Bhanumathi and Easu Julia Rani introduced the first K-Eccentric index $B_1E(G)$ and the second K-Eccentric index $B_2E(G)$ of a graph G as $B_1E(G) = \sum_{ue} [e_G(u) + e_{L(G)}(e)]$, $B_2E(G) = \sum_{ue} [e_G(u)e_{L(G)}(e)]$. They also defined the first K-Hyper eccentric index $HB_1E(G)$ and the second K-Hyper eccentric index $HB_2E(G)$ of a graph G as $HB_1E(G) = \sum_{ue} [e_G(u) + e_{L(G)}(e)]^2$, $HB_2E(G) = \sum_{ue} [e_G(u)e_{L(G)}(e)]^2$ where in all the cases ue means that the vertex u and edge e are incident in G and $e_{L(G)}(e)$ is the eccentricity of e in the line graph $L(G)$ of G. They have defined the multiplicative version of these indices also. In this paper, we calculate the first and second K-eccentric, the first and second K-hyper eccentric indices and their multiplicative versions of benzenoid H_k system.

Keywords
K-eccentric index, K-hyper eccentric index, Multiplicative K-eccentric index, Multiplicative K-hyper eccentric index, Circo.

1Department of Mathematics, Government Arts College for Women, Sivagangai-630562, Tamil Nadu, India.
2Department of Mathematics, Government Arts College for Women (Autonomous), Pudukkottai-622001, Tamil Nadu, India.
3Department of Mathematics, Government Arts College, Tiruchirappalli-620022, Tamil Nadu, India.
*Corresponding author: 1bhanu_ksp@yahoo.com; 2rohiniabazhagan7@gmail.com; 3vkms292011@hotmail.com

Article History: Received 19 September 2020; Accepted 19 November 2020

©2020 MJM.

Contents

1 Introduction ... 2097
2 First and second K-Eccentric indices, First and Second K-Hyper Eccentric indices of Benzenoid H_k system: ... 2098
3 Multiplicative First and Second K-Eccentric indices, Multiplicative First and Second K Hyper Eccentric indices of Benzenoid H_k system:................... 2100
4 Conclusion .. 2102
References .. 2102

1. Introduction

A topological index is a real number associated with chemical constitution. It correlates the chemical structure with various physical and chemical properties and biological activity.

All graphs in this paper are simple, finite and undirected. A graph G is a finite nonempty set $V(G)$ together with a prescribed set $E(G)$ of unordered pair of distinct elements of V. The cardinality of $V(G)$ and $E(G)$ are represented by $|V(G)|$ and $|E(G)|$, respectively. Let, $d_G(v)$ be the degree of a vertex v of G and $N_G(v)$ be the neighborhood of a vertex v of G. The distance between the vertices u and v of a connected graph G is represented by $d_G(u,v)$. It is defined as the number of edges in a shortest path connects the vertices u and v. The eccentricity $e_G(v)$ of a vertex v in G is the largest distance between v and any other vertices u of G.

To take an account on contributions of pairs of incident elements, Kulli [5] introduced the first and second K Banhatti indices. In [4], Bhanumathi and Easu Julia Rani introduced the first K-Eccentric index $B_1E(G)$ and the second K-Eccentric index $B_2E(G)$ of a graph G as

$$B_1E(G) = \sum_{ue} [e_G(u) + e_{L(G)}(e)], B_2E(G) = \sum_{ue} [e_G(u)e_{L(G)}(e)]$$

and also defined the first K-Hyper eccentric index $HB_1E(G)$ and the second K-Hyper eccentric index $HB_2E(G)$ of a graph G as $HB_1E(G) = \sum_{ue} [e_G(u) + e_{L(G)}(e)]^2$, $HB_2E(G) = \sum_{ue} [e_G(u)e_{L(G)}(e)]^2$ where in all the cases ue means that the vertex u and edge e are incident in G and $e_{L(G)}(e)$ is the eccentricity of e in the line graph $L(G)$ of G [4].
2. First and second K-Eccentric indices, First and Second K-Hyper Eccentric indices of Benzenoid H_k system:

The circumcoronene homologous series of benzenoid also belongs to the family of molecular graphs that has several copy of benzene C_6 on its circumference. The terms of this series are represented as, H_1-benzene, H_2-coronene, H_3-circumcoronene and H_4 circumcircumcoronene etc. A benzenoid system is a connected geometric figure. It is obtained by arranging congruent regular hexagons in a plane. Consequently two hexagons are either disjoint or have a common edge.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The eccentricities of $u, v \in V(G)$ are denoted by $e(u), e(v)$ respectively and for $e = uv \in E(G)$, denote the eccentricities of the end vertices of the edge e by $(e(u), e(v))$.

Let V be the vertex set of H_k and E be the edge set in H_k, then $|V| = 6k^2$ and $|E| = 9k^2 - 3k$ for the structure of H_k. First, we shall determine the number of edges $e = uv \in E(G)$ with the eccentricity of the end vertices $e(u), e(v)$ and eccentricity of the edge e in $L(G)$. We give these values in the following Table 1.

Theorem 2.1. For any positive integer number k, let H_k be the general form of circumcoronene series of benzenoid system, then

(i) $B_1E(H_k) = 6 \sum_{i=1}^{k-1} \left[8k + 4(2i - 1)\right] + \sum_{i=1}^{k-1} [8k + 4(2i - 1)] + 1 + 12 \sum_{i=1}^{k-1} i [8k + 4(2i)]$

(ii) $B_2E(H_k) = 6 \sum_{i=1}^{k-1} \left[2(2k + 2i - 1)\right]^2$

(iii) $HB_2E(H_k) = 6 \sum_{i=1}^{k-1} \left[(2(2k + 2i - 1))^2 + (2(2k + 2i - 1))\right]$

(iv) $HEB_2E(H_k) = 6 \sum_{i=1}^{k-1} [2(2k + 2i - 1)]^2 + \left((2k + 2i) + (2k + 2i - 1)\right)^2$

The eccentric indices, H-coronene, H-circumcoronene etc. A benzenoid system is a connected geometric figure. It is obtained by arranging congruent regular hexagons in a plane. Consequently two hexagons are either disjoint or have a common edge.
(iv) \(HB_2E (H_k) = 6 \sum_{i=1}^{k} \left((2k + 2i - 1)^2 + (2k + 2i - 1)^2 \right) \)
+ \(6 \sum_{i=1}^{k-1} \left((2k + 2i - 1)^2 + (2k + 2i)(2k + 2i - 1) \right) \)
+ \(12 \sum_{i=1}^{k-1} \left((2k + 2i)^2 + ((2k + 2i)(2k + 2i)) \right) \)

Proof. Consider the General form of \(H_k \)-Circumcoronene graph.

(i) \(B_1E (H_k) = \sum_{uv \in E(G)} \left[e_{H_k}(u) + e_{L(H_k)}(e) \right] \)

\(= \sum_{uv \in E(G)} \left[e_G(u) + e_G(v) + e_{L(G)}(e) \right] + \ldots \)

\(+ \sum_{uv \in E_{E_{(k-1)}(G)}} \left[e_G(u) + e_G(v) + e_{L(G)}(e) \right] \)

\(= 6 \sum_{i=1}^{k} \left(2(2k + 2i - 1) \right) \)
+ \(6 \sum_{i=1}^{k-1} \left(2k + 2i - 1 \right)^2 \)
+ \(12 \sum_{i=1}^{k-1} \left((2k + 2i)^2 + ((2k + 2i)(2k + 2i)) \right) \)

(ii) \(B_2E (H_k) = \sum_{uv \in E(G)} \left[e_{H_k}(u) \times e_{L(H_k)}(e) \right] \)

\(= \sum_{uv \in E(G)} \left[e_G(u) + e_G(v) + e_{L(G)}(e) \right] + \ldots \)

\(+ \sum_{uv \in E_{E_{(k-1)}(G)}} \left[e_G(u) + e_G(v) + e_{L(G)}(e) \right] \)

\(= 6 \sum_{i=1}^{k} \left((2k + 2i - 1)^2 \right) \)
+ \(6 \sum_{i=1}^{k-1} \left((2k + 2i - 1)^2 + (2k + 2i)(2k + 2i - 1) \right) \)
+ \(12 \sum_{i=1}^{k-1} \left((2k + 2i)^2 + ((2k + 2i)(2k + 2i)) \right) \)

(iii) \(HB_1E (H_k) = \sum_{uv \in E(G)} \left[e_{H_k}(u) + e_{L(H_k)}(e) \right]^2 \)

\(= \sum_{uv \in E(G)} \left[e_G(u) + e_G(v) + e_{L(G)}(e) \right]^2 + \ldots \)

\(+ \sum_{uv \in E_{E_{(k-1)}(G)}} \left[e_G(u) + e_G(v) + e_{L(G)}(e) \right]^2 \)

\(= 6 \sum_{i=1}^{k} \left((2k + 2i - 1)^2 + (2k + 2i - 1)^2 \right) \)
+ \(6 \sum_{i=1}^{k-1} \left((2k + 2i - 1)^2 + (2k + 2i)(2k + 2i - 1)^2 \right) \)
+ \(12 \sum_{i=1}^{k-1} \left((2k + 2i)^2 + ((2k + 2i)(2k + 2i)) \right) \)

(iv) \(HB_2E (H_k) = \sum_{uv \in E(G)} \left[e_{H_k}(u) \times e_{L(H_k)}(e) \right]^2 \)

\(= \sum_{uv \in E(G)} \left[e_G(u) \times e_G(v) + e_{L(G)}(e) \right]^2 + \ldots \)

\(+ \sum_{uv \in E_{E_{(k-1)}(G)}} \left[e_G(u) \times e_G(v) + e_{L(G)}(e) \right]^2 \)

\(= 6 \sum_{i=1}^{k} \left((2k + 2i - 1)^2 + (2k + 2i)(2k + 2i - 1)^2 \right) \)
+ \(6 \sum_{i=1}^{k-1} \left((2k + 2i - 1)^2 + (2k + 2i)(2k + 2i - 1) \right) \)
+ \(12 \sum_{i=1}^{k-1} \left((2k + 2i)^2 + ((2k + 2i)(2k + 2i)) \right) \)

For example, let us evaluate the indices for \(H_4 \). Consider the \(H_4 \)-Circumcircumcoronene graph.

![Figure 2]

Let \(V \) be the vertex set and \(E \) be the edge set in \(H_4 \) = Circumcircumcoronene, then \(|V| = 96 \) and \(|E| = 132 \). Also, the number of edges with eccentricities of end vertices \(e = uv \in E(G) \) and \(e \in L(G) \) are given as follows:

| Table 2 |
|---|---|---|---|
| Edge set | No. of edges | Eccentricity of end vertices \((e(u), e(v))\) | Eccentricity of \(e\) in \(L(G)e_{L(G)}(e)\) |
| \(E_1\) | 6 | (9,9) | 9 |
| \(E_2\) | 6 | (9,10) | 9 |
| \(E_3\) | 12 | (10,11) | 10 |
| \(E_4\) | 6 | (11,11) | 11 |
| \(E_5\) | 12 | (11,12) | 11 |
| \(E_6\) | 24 | (12,13) | 12 |
| \(E_7\) | 6 | (13,13) | 13 |
| \(E_8\) | 18 | (13,14) | 13 |
| \(E_9\) | 36 | (14,15) | 14 |
| \(E_{10}\) | 6 | (15,15) | 15 |
Corollary 2.2. \(H_1 \) be the first terms of this Circumcoronene series of Benzene \(H_k \). Then

(i) \(B_1 E (H_1) = 72 \)

(ii) \(B_2 E (H_1) = 108 \)

(iii) \(HB_1 E (H_1) = 432 \)

(iv) \(HB_2 E (H_1) = 972 \).

Corollary 2.3. \(H_2 \) be the second terms of this Circumcoronene series of Benzene \(H_k \). Then

(i) \(B_1 E (H_2) = 714 \)

(ii) \(B_2 E (H_2) = 2154 \)

(iii) \(HB_1 E (H_2) = 8634 \)

(iv) \(HB_2 E (H_2) = 82182 \)

Corollary 2.4. \(H_3 \) be the third terms of this Circumcoronene series of Benzene \(H_k \). Then

(i) \(B_1 E (H_3) = 2646 \)

(ii) \(B_2 E (H_3) = 12366 \)

(iii) \(HB_1 E (H_3) = 49770 \)

(iv) \(HB_2 E (H_3) = 1134150 \)

3. Multiplicative First and Second \(\kappa \)-Eccentric indices, Multiplicative First and Second \(\kappa \) Hyper Eccentric indices of Benzenoid \(H_k \) system:

Theorem 3.1. For any positive integer number \(k \), let \(H_k \) be the general form of circumcoronene series of benzenoid system, then

(i) \(\text{BPI}_1 (H_k) = 6 \prod_{i=1}^{k} [4(2k + 2i - 1)^2] \)

\(\times 6 \prod_{i=1}^{k-1} i [(2k + 2i - 1)(4k + 4i - 1)] \)

\(\times 12 \prod_{i=1}^{k-1} i [(2k + 2i)(4k + 4i + 1)] \)

(ii) \(\text{BPI}_2 (H_k) = 6 \prod_{i=1}^{k} [(2k + 2i - 1)^4] \)

\(\times 6 \prod_{i=1}^{k-1} i [(2k + 2i - 1)^3(2k + 2i)] \)

\(\times 12 \prod_{i=1}^{k-1} i [(2k + 2i)^3(2k + 2i + 1)] \)

(iii) \(HB\text{PI}_1 (H_k) = 6 \prod_{i=1}^{k} [16(2k + 2i - 1)^4] \)

\(\times 6 \prod_{i=1}^{k-1} i [(4(2k + 2i - 1))^2] \)

\(\times [(2k + 2i) + (2k + 2i - 1)^2] \)

\(\times 12 \prod_{i=1}^{k-1} i [(4(2k + 2i)^2) + ((2k + 2i + 1) + (2k + 2i))^2] \)

(iv) \(\text{HBPI}_2 (H_k) = 6 \prod_{i=1}^{k} [(2k + 2i - 1)^8] \)

\(\times 6 \prod_{i=1}^{k-1} i [(2k + 2i - 1)^6] \times [(2k + 2i)] \)

\(\times 12 \prod_{i=1}^{k-1} i [(2k + 2i)^6] [(2k + 2i + 1)] \)

Proof. Consider the General form of \(H_k \) - Circumcoronene
graph. Using Table 1, we obtain the following:

(i) \(B_{	ext{E}}(H_k) = \prod_{u \in E(G)} \left(e_G(u) + e_G(v) \right) \times \ldots \times \prod_{u \in E(G)} \left(e_G(u) + e_G(v) \right) \)

\[= \prod_{u \in E(G)} \left[e_G(u) + e_G(v) \right] \times \prod_{u \in E(G)} \left[e_G(u) + e_G(v) \right] \times \ldots \times \prod_{u \in E(G)} \left[e_G(u) + e_G(v) \right] \]

\[= 6 \sum_{k=1}^{k-1} \left(4(2k+2i-1)^2 \right) \times 6 \sum_{i=1}^{k-1} (4(2k+2i-1)^2) \times \ldots \times \prod_{u \in E(G)} \left[e_G(u) + e_G(v) \right] \]

(ii) \(B_{\text{E}}(H_k) = \prod_{u \in E(G)} \left(e_G(u) \times e_G(v) \right) \times \ldots \times \prod_{u \in E(G)} \left(e_G(u) \times e_G(v) \right) \)

\[= \prod_{u \in E(G)} \left[e_G(u) \times e_G(v) \right] \times \prod_{u \in E(G)} \left[e_G(u) \times e_G(v) \right] \times \ldots \times \prod_{u \in E(G)} \left[e_G(u) \times e_G(v) \right] \]

\[= 6 \sum_{k=1}^{k-1} \left(4(2k+2i-1)^2 \right) \times 6 \sum_{i=1}^{k-1} (4(2k+2i-1)^2) \times \ldots \times \prod_{u \in E(G)} \left[e_G(u) \times e_G(v) \right] \]

(iii) \(H_{\text{E}}(H_k) = \Pi_{u \in E(G)} \left[e_G(u) + e_G(v) \right] \times \ldots \times \Pi_{u \in E(G)} \left[e_G(u) + e_G(v) \right] \)

\[= \prod_{u \in E(G)} \left[e_G(u) + e_G(v) \right] \times \prod_{u \in E(G)} \left[e_G(u) + e_G(v) \right] \times \ldots \times \prod_{u \in E(G)} \left[e_G(u) + e_G(v) \right] \]

\[= 6 \sum_{k=1}^{k-1} \left(4(2k+2i-1)^2 \right) \times 6 \sum_{i=1}^{k-1} (4(2k+2i-1)^2) \times \ldots \times \prod_{u \in E(G)} \left[e_G(u) + e_G(v) \right] \]

(iv) \(H_{\text{E}}(H_k) = \prod_{u \in E(G)} \left[e_G(u) \times e_G(v) \right] \times \ldots \times \prod_{u \in E(G)} \left[e_G(u) \times e_G(v) \right] \)

\[= \prod_{u \in E(G)} \left[e_G(u) \times e_G(v) \right] \times \prod_{u \in E(G)} \left[e_G(u) \times e_G(v) \right] \times \ldots \times \prod_{u \in E(G)} \left[e_G(u) \times e_G(v) \right] \]

\[= 6 \sum_{k=1}^{k-1} \left(4(2k+2i-1)^2 \right) \times 6 \sum_{i=1}^{k-1} (4(2k+2i-1)^2) \times \ldots \times \prod_{u \in E(G)} \left[e_G(u) \times e_G(v) \right] \]

Using MATLAB programme, we have calculated these indices for \(H_1, H_2 \) and \(H_3 \). Those values are given below corollaries.

\[\square \]

4. Conclusion

In chemical graph theory a topological index of a molecular graph characterizes its topology. Here, we have computed the first, second \(K \)-eccentric indices, \(K \)-hyper eccentric indices and multiplicative first, second \(K \)-eccentric and \(K \)-hyper eccentric indices of benzenoid \(H_k \) system.

References

[1] M. Bhanumathi, K. Easu Julia Rani, S. Balachandran, The edge version of inverse sum index of Connected graph, International Journal of Mathematical Archive, 7(1)(2016), 8–12.

[2] M. Bhanumathi, K. Easu Julia Rani, On \(K \)-eccentric indices and \(K \)-hyper-eccentric indices of graphs, Aryabhatta Journal of Mathematics and Informatics, 9(1)(2017), 509–520.

[3] M. Bhanumathi, K. Easu Julia Rani, On Some Multiplicative Topological Indices, International Journal on Recent Trends in Life Science and Mathematics, 4(2017), 09–18.

[4] M. Bhanumathi. K. Easu Julia Rani, Harmonic Eccentric Index of Hexagonal Chain, International Journal of Elixir Appl. Math. Appl. Math, 104C(2017), 45871–45880.

[5] V. R. Kulli, On \(K \) Banhatti Indices of Graphs, Journal of Computer and Mathematical Sciences, 7(4)(2016), 213–218.
On K-eccentric and K-hyper eccentric indices of Benzenoid H_k system — 2102/2102

[6] V. R. Kulli, Second Multiplicative K Banhatti Index and Coindex of Graphs, *Journal of Computer and Mathematical Sciences*, 7(5)(2016), 254–258.

[7] V. R. Kulli, Multiplicative K hyper-Banhatti indices and coindices of graphs, *International Journal of Mathematical Archive*, (2016), 1–6.

[8] V. R. Kulli, On K hyper-Banhatti indices and coindices of graphs Research gate, (2016), 1–6.

[9] V. R. Kulli, First Multiplicative K Banhatti Index and Coindex of Graphs, *Annals of Pure and Applied Mathematics*, 11(2)(2016), 79–82.

[10] M. Bhanumathi, R. Rohini, G. Srividhya, On K-Eccentric and K-Hyper Eccentric indices of Benzenoid H_k system, *National Conference on Recent Trends in Pure and Applied Mathematics*, Government Arts College for Women, Sivagangai, Tamilnadu on 13th Feb.2019.

[11] V. R. Kulli, Multiplicative hyper-zagreb indices and coindices of graphs: computing these indices of some nanostructures, *International Research Journal of Pure Algebra*, 6(7)(2016), 342–347.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
