ANCIENT AND ETERNAL SOLUTIONS TO MEAN CURVATURE FLOW FROM MINIMAL SURFACES

ALEXANDER MRAMOR AND ALEC PAYNE

Abstract. We construct embedded ancient solutions to mean curvature flow related to certain classes of unstable minimal hypersurfaces in \mathbb{R}^{n+1} for $n \geq 2$. These provide examples of mean convex yet nonconvex ancient solutions that are not solitons, meaning that they do not evolve by rigid motions or homotheties. Moreover, we construct embedded eternal solutions to mean curvature flow in \mathbb{R}^{n+1} for $n \geq 2$. These eternal solutions are not solitons, are $O(n) \times O(1)$-invariant, and are mean convex yet nonconvex. They flow out of the catenoid and are the rotation of a profile curve which becomes infinitely far from the axis of rotation. As $t \to \infty$, the profile curves converge to a grim reaper for $n \geq 3$ and become flat for $n = 2$. Concerning these eternal solutions, we also show they are asymptotically unique up to scale among the embedded $O(n) \times O(1)$-invariant, eternal solutions with uniformly bounded curvature and a sign on mean curvature.

1. Introduction

Ancient solutions to mean curvature flow, i.e. solutions existing on the time interval $(-\infty, C]$, $-\infty < C \leq \infty$, play an important role in the singularity analysis of the flow as the natural blowup limits after rescaling about a singularity, making their study central in defining and understanding weak notions of the flow. A special type of ancient solution is the eternal solution, which is an ancient solution that exists for all time, i.e. it exists on the time interval $(-\infty, \infty)$. Eternal solutions are a subset of ancient solutions but are much more rigid and less is known about them. There are many known ancient solutions to mean curvature flow in Euclidean space, but only a small number of them are eternal, particularly if one excludes the translating solitons. Eternal solutions arise naturally as the blowup limits of Type II singularities, whereas non-eternal ancient solutions arise as the blowup limits of Type I singularities (see [32] for a description of Type I and Type II singularities). From a more analytic perspective, mean curvature flow is the natural analogue of the heat equation in the setting of submanifold geometry, and ancient solutions are the natural analogues of global solutions to elliptic equations, distinguishing ancient solutions in this sense.

It is useful then to have a wide variety of examples of ancient solutions to the flow to help understand the phenomena that could be realized by solutions to mean...
curvature flow. Ancient solutions can be split up among those which are solitons and those which are not solitons. By “soliton”, we mean a solution to mean curvature flow which evolves by a combination of rigid motions and homotheties. And by “non-soliton,” we mean a solution which is not a soliton. There are far more soliton ancient solutions known than non-soliton ancient solutions. Ancient solutions may also be described as either convex or nonconvex. An ancient solution is called convex if every timeslice of the flow is a convex surface. Convexity is an important characteristic of an ancient solution as the ancient solutions which arise as blowup limits of mean convex mean curvature flow are convex [23, 46].

Some examples of convex ancient solitons include the standard shrinking spheres and cylinders, the Abresch-Langer curves [1], and some of the rotating and shrinking solitons to curve shortening flow [21]. Examples of nonconvex ancient solitons include the Angenent torus [5], desingularizations of the sphere and the Angenent torus [30] and the sphere and the plane [35, 36, 37], the high genus min-max constructions of Ketover [31], and many of the rotating and shrinking solitons to curve shortening flow [21]. Among the convex eternal solitons are the grim reaper, the bowl soliton [1], the strictly convex translating solitons lying in slabs [8, 26], and the non-rotationally symmetric entire translators of Wang [44]. Finally, some examples of nonconvex eternal solitons include any non-flat minimal surface, the winglike translators or translating catenoids [14], the periodic Scherk-like translators [27], translators associated to minimal surfaces like the Costa-Hoffman-Meeks surface [15], the Yin-Yang spiral in one dimension [2], the purely rotating solitons in dimensions two and higher that are analogous to Yin-Yang spirals [29], the nonconvex translating tridents [34, 39], and the multitude of exotic immersed self shrinkers [16, 17]. Despite the richness of the ancient solitons, relatively few examples of non-soliton ancient solutions are known. We will focus on non-soliton ancient solutions throughout this paper.

In Table 1, we give a survey of the known non-soliton ancient solutions according to whether they are eternal or non-eternal and whether they are convex or nonconvex. We restrict ourselves to the codimension one case in Euclidean \mathbb{R}^{n+1}. Note that any ancient solution can be extended to higher dimensions by simply multiplying by isometric factors of \mathbb{R}^k, although we leave out these possibilities. In fact, any weakly convex ancient solution can be taken to be a strictly convex ancient solution multiplied by \mathbb{R}^k [29].

Our first theorem, inspired in part by the interesting work of Choi-Mantoulidis [13], concerns the existence of ancient solutions flowing out of certain unstable minimal surfaces in \mathbb{R}^{n+1} for $n \geq 2$. These provide examples for the bottom right box in Table 1. In the following theorem, we will need a technical assumption, which is satisfied by a large class of minimal surfaces. We say that a surface M satisfies the uniform tubular neighborhood assumption if there exists a tubular neighborhood
of uniform width such that the boundary of this tubular neighborhood is smooth and embedded. That is, there exists some $\delta > 0$ such that $M + \delta \nu$ is smooth and embedded, where ν is a unit normal. In other words, M satisfies the uniform tubular neighborhood assumption if it does not asymptotically approach itself.

Theorem 1.1. For $n \geq 2$, let $M^n \subset \mathbb{R}^{n+1}$ be an unstable 1 2-sided properly embedded minimal surface which has uniformly bounded curvature, satisfies the uniform tubular neighborhood assumption (as defined above), and satisfies one of the following options:

1. it is asymptotically flat, or
2. it is periodic with compact fundamental domain, or
3. it is periodic and asymptotically flat in its fundamental domain.

Then, there exist two distinct ancient solutions M^1_t and M^2_t to mean curvature flow such that M^1_t and M^2_t smoothly and uniformly converge to M from opposite

1In line with [19], we mean than on some bounded domain $D \subset M$, $\lambda_1(D) < 0$ for the Jacobi operator.
sides of M as $t \to -\infty$. These ancient solutions are embedded and have a sign on mean curvature yet are nonconvex and are not solitons.

In the proof of Theorem 1.1, the assumptions of asymptotic flatness or periodicity plays a subtle role in the asymptotics of the ancient solution, but note that these assumptions include a wide class of minimal surfaces. Some nontrivial examples of minimal surfaces satisfying the assumptions of this theorem are catenoids and the Costa-Hoffman-Meeks surfaces. Note also that minimal surfaces with infinitely many ends such as the Riemann examples are covered by item (3).

The ancient solutions constructed in Theorem 1.1 seem to be the first known instances of nonconvex embedded ancient solutions in \mathbb{R}^{n+1} which are not solitons. To the authors’ knowledge the only previously constructed nonconvex non-eternal ancient solutions that are not solitons are the immersed curves in \mathbb{R}^2 of Angenent and You [6]. In fact, to the authors’ knowledge, all previously known mean convex non-eternal non-soliton ancient solutions to mean curvature flow have been convex. Since the ancient solutions of Theorem 1.1 have a sign on mean curvature, i.e. they are mean convex with the correctly chosen normal field, we have the following corollary.

Corollary 1.2. There exist mean convex, yet nonconvex, non-soliton ancient solutions to mean curvature flow in \mathbb{R}^{n+1}, $n \geq 2$.

Our second theorem concerns the existence of an eternal solution flowing out of the catenoid in \mathbb{R}^{n+1} for each $n \geq 2$. This provides an example for the top right box in Table 1. In the following theorem, let M^1 be a catenoid in \mathbb{R}^{n+1} for $n \geq 2$. Center M^1 so that it is rotationally symmetric about an axis passing through the origin. The catenoid splits \mathbb{R}^{n+1} into two connected components, the “inside” and the “outside”. Let ν be the unit normal on the neck of the catenoid such that ν points away from the origin. Then, let the “outside” of the catenoid be the connected component that ν points into.

Theorem 1.3 (The Reapernoid). For each $n \geq 2$, there exists a mean convex\(^2\) $O(n) \times O(1)$-invariant eternal solution M^1_t to mean curvature flow in \mathbb{R}^{n+1} with uniformly bounded curvature such that for each t, M^1_t is a subset of the outside of the catenoid M^1 (as defined above) and M^1_t converges smoothly and uniformly to M^1 as $t \to -\infty$.

As $t \to \infty$, M^1_t becomes infinitely far from its axis of rotation. For $n \geq 3$, the profile curve of M^1_t will converge as $t \to \infty$ to a grim reaper of the same width as M^1. For $n = 2$, the pointed limit of the profile curve of M^1_t is a line and the curvature of M^1_t approaches zero as $t \to \infty$.

\(^2\)This is with respect to the normal on M^1_t compatible, as $t \to -\infty$, with the normal ν to the catenoid M^1 (see the discussion above the theorem).
ANCIENT AND ETERNAL SOLUTIONS TO MEAN CURVATURE FLOW

Figure 1. A sketch of the regimes of the profile curves of the higher-dimensional reapernoid, the eternal solution of Theorem 1.3. For $t \ll 0$, the eternal solution has a profile curve close to that of the catenoid, and for $t \gg 0$, it has a profile curve close to that of a grim reaper.

By a theorem of Richard Hamilton [22], a strictly convex eternal solution which achieves its spacetime maximum of curvature must be a translating soliton. The eternal solution constructed in Theorem 1.3 which will be referred to as the reapernoid as a reminder of its asymptotics, seems to be the first known instance of a non-soliton eternal solutions in \mathbb{R}^{n+1}, $n \geq 2$, which does not split off a line. To the authors' knowledge, the only previously known non-soliton eternal solutions to mean curvature flow are curves in \mathbb{R}^2 or their isometric products with \mathbb{R}^k. Thus, we find the following corollary.

Corollary 1.4. For $n \geq 2$, there exists an eternal solution to mean curvature flow in \mathbb{R}^{n+1} that is not a soliton and does not split off a line.

Our final result concerns a partial uniqueness statement for the reapernoid eternal solution of Theorem 1.3. Its proof is not particularly difficult but naturally leads into a host of further questions which we discuss in the concluding remarks:

Theorem 1.5. Suppose M_t is a connected embedded nonflat eternal solution to mean curvature flow in \mathbb{R}^{n+1} which

1. is $O(n) \times O(1)$-invariant,
2. has a sign on mean curvature, and
3. has uniformly bounded curvature for all time.

Then M_t is either the catenoid itself or it has the asymptotics of the eternal solution of Theorem 1.3 up to scale. That is, M_t converges to the catenoid from the outside as $t \to -\infty$, and as $t \to \infty$, the profile curve of M_t converges to a grim reaper for $n \geq 3$ or becomes flat for $n = 2$.

In other words, this shows that the reaperoid, the eternal solution of Theorem 1.3, is asymptotically unique among $O(n) \times O(1)$-invariant eternal flows with uniformly bounded curvature and a sign on mean curvature. Note that the translating bowl soliton is excluded from the above conditions because it is $O(n)$-invariant but not $O(n) \times O(1)$-invariant. Also, in Theorem 1.5 we do not prove that the grim reapers found in the limit as $t \to \infty$ are necessarily of the same width as the catenoid, as in Theorem 1.3.

Acknowledgements: The authors would like to thank Kyeongsu Choi and Christos Mantoulidis for responding to comments and writing an interesting and inspiring paper [13] where they construct ancient flows out of compact minimal surfaces in non-Euclidean ambient spaces, using different methods than those of this paper. The authors would also like to thank Mat Langford and Shengwen Wang for their comments and suggestions. Finally, the authors thank their advisors, Richard Schoen and Bruce Kleiner, respectively, for their support and advice.

2. Preliminaries, Old and New

In this section we collect some standard and nonstandard facts on mean curvature flow and minimal surfaces, which will be used later to streamline the proofs. Let M be an n-dimensional orientable manifold and let $F : M \to \mathbb{R}^{n+1}$ be an embedding of M realizing it as a smooth closed 2-sided hypersurface of Euclidean space, which by abuse of notation we also refer to as M. Then the mean curvature flow M_t is given by the image of $\hat{F} : M \times [0, T) \to \mathbb{R}^{n+1}$ satisfying

$$\frac{d\hat{F}}{dt} = H\nu, \quad \hat{F}(M, 0) = F(M) \quad (2.1)$$

where ν is a unit normal and H is the mean curvature. It turns out that (2.1) is a nonlinear heat-type equation, since for g the induced metric on M,

$$\Delta_g F = g^{ij}(\frac{\partial^2 F}{\partial x^i \partial x^j} - \Gamma_{ij}^k \frac{\partial F}{\partial x^k}) = g^{ij} h_{ij} \nu = H\nu \quad (2.2)$$

That the left-hand side is the Laplacian motivates the assertion that the mean curvature flow is the natural analogue of the heat equation in submanifold geometry. One can easily see that the mean curvature flow equation (2.1) is degenerate. Despite this, solutions to (2.1) always exist for short time and are unique provided that the initial data has bounded second fundamental form. There are several ways to deduce this by relating (2.1) to a nondegenerate parabolic PDE. Solutions to mean curvature flow satisfy many properties that solutions to heat equations do, such as the maximum principle and smoothing estimates. One important consequence of the maximum principle is the comparison principle (also known as the avoidance principle), which says that two initially disjoint hypersurfaces will remain disjoint over
the flow. More generally, for two noncompact hypersurfaces with uniformly bounded geometry, if the flows M_1^t and M_2^t are initially distance $\delta > 0$ apart they remain so under the flow (see, for instance, Remark 2.2.8 of [32]). In fact, in the cases of interest to us in this paper, such a comparison principle for two noncompact hypersurfaces can be proven independently. We are interested in applying the comparison principle between noncompact hypersurfaces of uniformly bounded geometry that are either asymptotically flat or periodic (or a combination of both). Indeed, between periodic surfaces with compact fundamental domain, the standard comparison principle generalizes immediately. And for asymptotically flat surfaces, pseudolocality (see Chen-Yin [12]) keeps the ends arbitrarily stationary, meaning that the separated flows must have an interior minimum of distance if they approach each other.

Now we give some preliminary facts more specific to the proofs below:

2.1. Preliminaries for the proof of Theorem 1.1.

Singularities along the flow can only occur at points and times where the norm of the second fundamental form A blows up. Hence, to rule out singularities, we need curvature estimates. Our method to find curvature estimates in this section is the Brakke-White regularity theorem [10]. The version of this theorem stated below is due to Brian White [45]:

Theorem 2.1 (Brakke, White). There are numbers $\epsilon_0 = \epsilon_0(n) > 0$ and $C = C(n) < \infty$ with the following property. If M is a smooth mean curvature flow starting from a hypersurface M in an open subset U of the spacetime $\mathbb{R}^n \times \mathbb{R}$ and if the Gaussian density ratios $\Theta(M_t, X, r)$ are bounded above by $1 + \epsilon_0$ for $0 < r < \rho(X, U)$, then each spacetime point $X = (x, t)$ of M is smooth and satisfies:

$$|A|^2 \leq \frac{C}{\rho(X, U)}$$

(2.3)

where $\rho(X, U)$ is the infimum of $||X - Y||$ among all spacetime points $Y \in U^c$.

In the above theorem we recall that the Gaussian density ratio $\Theta(M_t, X, r)$ is given by

$$\Theta(M_t, X, r) = \int_{y \in M_{t-r^2}} \frac{1}{(4\pi r^2)^{n/2}} e^{-\frac{|y-X|^2}{4r^2}} d\mathcal{H}^n(y)$$

(2.4)

By Huisken’s monotonicity formula [28], this quantity is monotone nondecreasing in r. So, to get curvature bounds via the regularity theorem, we only need to sufficiently bound a range $[r_1, r_2] \subset (0, \infty)$ of the densities in an open set U for some time interval $[t_1, t_2]$ with $r_1^2 < t_2 - t_1$.
The curvature estimates in the proof of Theorem \[1.1\] will depend on Proposition \[2.2\] which is proven with the Brakke regularity theorem. Note that the \(C^2\) bounds on \(f\) below are precisely curvature estimates for \(M_t\):

Proposition 2.2. Let \(M_t\) be a flow for \(t \in [0, T)\), \(T > 1\). Let \(N^1\) and \(N^2\) be smooth properly embedded hypersurfaces that are disjoint and have \(|A|^2\) uniformly bounded by \(C < \infty\). Suppose that

1. \(M_0, N^1,\) and \(N^2\) all satisfy one of assumptions (1)-(3) of Theorem \[1.1\] i.e. they are all either asymptotically flat, periodic with compact fundamental domain, or are periodic and asymptotically flat in their domain,
2. \(M_t\) lies between hypersurfaces \(N^1\) and \(N^2\) for \(t \in [0, T)\),
3. \(M_0\) is a graph of a function \(f\) over \(N^1\) with \(\|f\|_{C^2} < \rho\), and
4. the distance between \(N^1\) and \(N^2\) is uniformly bounded by \(\eta > 0\),

Then there is \(\overline{\eta} > 0\) and \(D \gg 0\) depending on \(\rho\) and \(C\) but not \(T\) such that if \(\eta < \overline{\eta}\), the flow of \(M_t\) will be a graph of a function \(f_t\) over \(N^1\) with \(\|f_t\|_{C^2} < D\) for \(t \in [0, T)\). Thus, \(M_t\) will exist with uniformly bounded curvature as long as it lies between \(N^1\) and \(N^2\).

Proof. We first note by continuity of the flow there is some small \(s\) (depending on the bound \(C\)) so if condition (2) above is satisfied it will remain so for \(2\rho\) on \([0, s]\) for some function \(f_t\) defined on \([0, s]\) with \(f_0 = f\).

To deal with later times we will use the Brakke regularity theorem. More precisely, from the \(C^2\) bound \(2\rho\) on \(f_t\) for \(t \in [0, s]\) and the \(C^0\) bounds that come from choosing \(\eta\) small enough, we find that we can obtain \(C^1\) bounds on \(f_t\) which approach 0 as \(\eta \to 0\). Note that the \(C^1\) bounds on \(f_t\) depend only on \(\eta\), the \(C^2\) bound, and \(C\). Then, choosing \(\eta\) small enough, we find that the area of \(M_t\) as a graph over some ball in \(N^1\) is an arbitrarily small multiple of the area of that ball in \(N^1\). We may then apply the Brakke regularity theorem over uniformly small balls to find that at time \(s\), \(\|f_s\|_{C^2} < D\) and, in particular using \([\[15\]\]), one may continue the smooth flow. Replacing \(\rho\) above with \(D\) and replacing \(s\) with the corresponding doubling time \(s'\), we get \(\|f_t\|_{C^2} < 2D\) for times \(t \in [s, s + s']\). Note that the doubling time depends only on \(C\) and \(D\) and not on \(f_t\) itself. This follows from assumption (1) above since \(M_t\) is initially periodic or asymptotically flat and will remain so for as long as it exists. This means that \(M_t\) must attain an interior maximum of curvature and thus its doubling time depends only on \(C\) and \(D\). Then, choose \(\eta\) small enough to find small enough \(C^1\) bounds on \(f_t\) for \(t \in [s, s + s']\) to apply the Brakke regularity theorem over the same uniformly small balls as before. This gives that \(\|f_t\|_{C^2} < D\) for \(t \in [s, s + s']\). Then, we may iterate the argument using \(\|f_{s+s'}\|_{C^2} < D\) while keeping \(\eta\) the same as long as the flow exists between \(N^1\) and \(N^2\). \(\square\)
2.2. Preliminaries for the proof of Theorem 1.3.

The curvature estimates in the proof of Theorem 1.3 need a different approach than those of Theorem 1.1. The following result of Ecker-Huisken [18] (cf. Corollary 3.2 (ii)) will be used in the proof of Theorem 1.3:

Theorem 2.3 (Ecker-Huisken [18]). Let \(\omega \) be a fixed vector in \(\mathbb{R}^{n+1} \) and let \(R > 0 \) and \(0 \leq \theta < 1 \). Let \(B(y_0, R) \) be a ball in a hyperplane orthogonal to \(\omega \). Suppose that a mean curvature flow \(M_t \) may be written as a compact graph over \(B(y_0, R) \) for time \(t \in [0, T] \). Then, for \(t \in [0, T] \),

\[
|A|^2_{B(y_0, \theta R)}(t) \leq C(n)(1 - \theta^2)^{-2} \left(\frac{1}{R^2} + \frac{1}{t} \right) \sup_{B(y_0, R) \times [0, t]} v^4
\]

where \(v = \langle \nu_{M_t}, \omega \rangle^{-1} \) and \(\nu_{M_t} \) is a unit normal to \(M_t \).

In the proof of Theorem 1.3 we will be working directly with the catenoid, so we will list important facts about the geometry of the catenoid and rotationally symmetric flows in general.

Let \(M^1 \) be a catenoid in \(\mathbb{R}^{n+1} \) of fixed radius centered around the origin. Arrange the catenoid so that it may be represented as the rotation of a positive graph \(y = w(x) \) around the \(x \)-axis. Arrange and scale the catenoid so that it is symmetric about the \(y \)-axis and \(w(0) = 1 \). That is, the minimum point of the graph \(u \) is located at \(w(0) = 1 \). The catenoid is the unique nonflat minimal surface, up to scaling, that arises as a surface of rotation in this way. The catenoids of different scales are given by \(R w\left(\frac{x}{R}\right) \) for \(R > 0 \). For \(n \geq 3 \), the catenoid of radius 1 has a finite half-width \(W_n \) given by

\[
W_n = \frac{1}{2} \int_{s=1}^{\infty} \frac{1}{\sqrt{s^{2(n-1)} - 1}} \, ds
\]

For \(n = 2 \), the catenoid has an infinite half-width, so let \(W_2 = \infty \). Note that others have defined \(W_n \) as twice what we have defined it here, but we will have need of this normalization later on.

We define the outward unit normal to \(M^1 \) to be the unit normal that points away from the axis of rotation. Also, \(M^1 \) separates \(\mathbb{R}^{n+1} \) into two connected components: the “inside” and the “outside” of the catenoid. The outside of the catenoid is defined to be the connected component that outward unit normal to \(M^1 \) points into. And the “inside” is the other component.

The mean curvature flow of a surface given by the rotation of a graph is particularly simple; it is equivalent to the flow of the graph satisfying the following equation.

\[
\frac{\partial u}{\partial t} = \frac{u_{xx}}{1 + u_x^2} - \frac{n - 1}{u}
\]
Indeed, if a surface is initially given by the rotation of a graph, then its flow will be given by the rotation of a graph for as long as it exists. Abstractly, this follows from the Sturmian theory of such flows, developed in [3]. For the graph u of the profile curve of M^1, the right hand side of (2.7) vanishes, which is consistent with the fact that M^1 is a minimal surface. An important observation is also that, as u increases, the flow is better and better approximated by the curve shortening flow of the graph of u. Indeed, (2.7) without the second term on the right-hand side is just the curve-shortening flow of a graph.

Finally, for an embedded rotationally-symmetric surface, consider the points p such that the unit normal $\nu(p)$ satisfies $\langle \nu(p), v \rangle > 0$, where v is a unit normal perpendicular to the axis of rotation and pointing away from the axis of rotation. Then, the mean curvature H at p is the following:

$$H = k - \frac{n - 1}{r} \cos \theta$$

where k is the curvature of the profile curve with respect to $\nu(p)$ and θ is the angle the tangent vector to the curve makes with the positively-oriented x-axis. Note that in the case that the curve is a graph with the appropriately chosen normal, every point will satisfy the condition $\langle \nu(p), v \rangle > 0$.

3. Proof of Theorem 1.1

Throughout this section unless otherwise stated, $M \subset \mathbb{R}^n$ will denote a minimal surface as assumed in Theorem 1.1.

To construct our ancient solutions we will proceed as typical: we first construct “old-but-not ancient” solutions $(M_j)_t$ to the flow existing on $[0, j]$, $j \to \infty$, recentering the time coordinate to get flows existing on $[-j, 0]$, and take a limit of flows to obtain an ancient solution. To take the limit we need to have good enough estimates, and to show we get something nontrivial, we need to know that the limit flow is nonempty and not another “known” ancient solution to the flow, like the original minimal surface M.

First we will prove the following general lemma which will help to construct the old-but-not-ancient flows and immediately give Lemma 3.3.

Lemma 3.1. Let N be a hypersurface in \mathbb{R}^{n+1} such that N_t exists with uniformly bounded geometry for $t \in [0, T_0]$. For every $T < T_0$ and $\epsilon \ll 1$, there exists $\delta = \delta(N, \epsilon, T) \ll 1$ such that if N^* is a hypersurface with $||N^* - N||_{C^2} \leq \delta$, then

$$||N_t^* - N_t||_{C^2} \leq \epsilon$$

for all $t \in [0, T]$.

Proof. Suppose not. Then, for some $T < T_0$ and $\epsilon \ll 1$, there is a sequence of N^*_n such that $||N^*_n - N||_{C^2} < \frac{1}{n}$ and there exists $t_n \in (0, T]$ such that $||(N^*_n)_{t_n} - N_{t_n}||_{C^2} > \epsilon$. Note that since N^*_n has uniformly bounded geometry independent of n, we have that the flow of N^*_n will a priori exist on some short time interval independent of n. Then, the sequence N^*_n converges to N in C^2 so by continuity of the flow under perturbations of the initial conditions in C^2, we have that $(N^*_n)_{t_n} = N_t$ for $t \in [0, T]$.

Since N has uniformly bounded geometry, we have that each N^*_n, for large n, has uniformly bounded geometry as well. However, since $[0, T]$ is a compact time interval, we may find a subsequence of $\{t_n\}$ converging to $t^* \in [0, T]$ such that $(N^*_n)_{t_n}$ subconverges to a limit surface $(N^*_\infty)_{t^*}$ such that $||(N^*_\infty)_{t^*} - N_{t^*}||_{C^2} > \epsilon$. However, by the above argument, $(N^*_n)_{t_n}$ must be converging to N_{t^*}. This is a contradiction. \Box

To define one family of the old-but-not ancient solutions, $(M_j)_{t_0}$, we will consider perturbations $M_j = (M_j)_{0}$ of M by small constant variations normal to M, for a given choice of unit normal ν (here we use the two-sided hypothesis). We can similarly define another family by switching the orientation of the normal throughout to obtain the second claimed family.

More precisely, let M_δ be given by $M_\delta = M + \delta\nu$. By the uniform tubular neighborhood assumption and bounded curvature, for all δ small, M_δ will be smooth and embedded. Note that the uniform tubular neighborhood assumption gives that there exists one δ such that M_δ is smooth and embedded, but with our assumptions, this implies that M_δ is smooth and embedded for all small δ. For $j \to \infty$, M_j will be defined to be M_{δ_j} for an appropriate choice of δ_j. Apply Lemma 3.1 to the minimal surface M with some fixed choice of ϵ and the time T_j. This gives some δ_j such that $M_j = M_{\delta_j}$ will exist for time $[0, T_j]$ and M_j will be ϵ-close to M in C^2 for this same time. We will further refine this choice of δ_j after Lemma 3.4.

Note that M_δ is (weakly) mean convex with respect to ν for all δ small enough such that M_δ is smooth and embedded. Indeed, suppose that it is not. Then, if there is a point $p \in M_\delta$ such that $H(p) < 0$, for some small time $0 < t \ll 1$, $||(M_\delta)_t - M||_{C^0} < \delta$. This follows because ν points away from M, so if M_δ has negative mean curvature at p with respect to ν, the flow will force it to become closer to M for some short time. However, by the comparison principle between noncompact hypersurfaces (see Section 2), $||(M_\delta)_t - M||_{C^0} \geq \delta$ for all time t. This is a contradiction, so M_δ is mean convex. By Corollary 4.4 of Ecker-Huisken [18], $(M_\delta)_t$ will remain mean convex for as long as it exists.

In order to take a limit of the approximate solutions $(M_j)_{t_0}$, we need curvature bounds. These will come from Lemma 3.2. We must also know that for large enough j, corresponding to small enough δ, $(M_j)_{t_0}$ will exist for long enough. This is given by Lemma 3.3. In order to extract a limit that is distinct from M, we need to know
that there exists some $\epsilon_1 \ll 1$ such that for all δ small enough, $(M_\delta)_t$ will flow to be distance ϵ_1 away from M, at some point, after some amount of time. This will come from Lemma 3.4.

Now, we find the following immediate consequence of Proposition 2.2.

Lemma 3.2. There is $\epsilon_1 > 0$ and $C, D \gg 0$ so that as long as the flow $(M_\delta)_t$ is a subset of the interior of the region U between the minimal surface M and the smooth embedded surface M_{ϵ_1} for $t \in [0, T]$, $T > 1$, then $|A|^2 < C$ on $(M_\delta)_t$ and $(M_\delta)_t$ is the graph of a function f_t over M_δ with $\|f_t\|_{C^2} < D$ for $t \in [0, T]$.

The above lemma shows that the flows $(M_\delta)_t$ will exist with uniformly bounded curvature as long as the flow is between M and M_{ϵ_1}. Now that we have set ϵ_1, apply Lemma 3.1 to the minimal surface M, setting N to be M, to find the following:

Lemma 3.3. Let ϵ_1 be the constant obtained from Lemma 3.2. Let T_δ be the first time $(M_\delta)_{T_\delta} \cap M_{\epsilon_1} \neq \emptyset$. Then as $\delta \to 0$, $T_\delta \to \infty$.

This lemma tells us that $(M_\delta)_t$, for δ small enough, will exist for as long as it is a subset of the region U between M and M_{ϵ_1}, with curvature bounds in this region independent of j (from Lemma 3.2). This allows us to extract an ancient limit flow from $(M_j)_t$. The only thing remaining is to ensure that the limit flow will be different from M. To do this, it suffices to show that for every sufficiently small δ, $T_\delta \neq \infty$. That is, for all small enough δ, $(M_\delta)_t$ will eventually flow to intersect M_{ϵ_1}, for ϵ_1 chosen sufficiently small. This is the heart of the proof of Theorem 1.1 and where the assumption of instability is used.

Lemma 3.4. Let ϵ_1 be as chosen above. Let T_δ be the first time that $(M_\delta)_{T_\delta} \cap M_{\epsilon_1} \neq \emptyset$. Then after possibly taking ϵ_1 smaller, for all $\delta \ll 1$, $T_\delta \neq \infty$.

Proof. Suppose this is not the case for ϵ_1. Then, there is some $0 < \delta^* \ll 1$ so that $\|\| (M_{\delta^*})_t - M \|_{C^0} < \epsilon_1$ for all time t. By Lemma 3.2, $(M_{\delta^*})_t$ will have uniform curvature bounds for all time. This means that $(M_{\delta^*})_t$ will exist for time $t \in [0, \infty)$ with uniformly bounded curvature and will remain between M and M_{ϵ_1}.

As proven above, $(M_{\delta^*})_t$ is mean convex, so $(M_{\delta^*})_t$ is moving monotonically away from M. If M_{δ^*} is minimal, then relabel it to N and proceed to the next paragraph. Suppose that M_{δ^*} is not minimal. By the uniform curvature bounds on $(M_{\delta^*})_t$, we may pass to a limit along any subsequence of $t_i \to \infty$ to find that $(M_{\delta^*})_t$ smoothly converges to some smooth limit surface which we denote by N. In fact, N is a minimal hypersurface.

Indeed, suppose N is not minimal. Since $(M_{\delta^*})_t$ is mean convex, we know that N must be mean convex as well. Then, there is $p \in N$ such that $H(p) > c > 0$. We may find a smooth curve $p(t) \in (M_{\delta^*})_t$ such that $p(t) \to p$ and $p(t)$ is the spacetime...
track of a point converging to p. For t large enough, $H(p(t)) > \frac{c}{2}$. Since the flow moves monotonically by mean convexity, we have by integration that $d(p, p(t)) = \infty$. This contradicts the fact that $p(t)$ converges to p. Thus, N is a smooth complete minimal hypersurface disjoint from M yet is between M and M_{ϵ_1}.

We then reset ϵ_1 to be $\epsilon_1/2$. If the statement is true for $\epsilon_1/2$ then we are done; otherwise, we iterate the argument. Labeling $\epsilon_{1,k} = \epsilon_1/2^k$, we must have the conclusion either be true for some choice of k, or we obtain a sequence of distinct minimal surfaces approaching M from one side.

In the latter case, denote by N_k each of the N found above using $\epsilon_{1,k}$. By the curvature estimates coming from Lemma 3.2 they are graphical over M for large enough k since $\epsilon_{1,k} \to 0$. Of course, since $\epsilon_{1,k} \to 0$, we have that N_k converges from one side to M. This then gives rise to a positive solution to the Jacobi operator on M as in [13]. By Theorem 1.1 in [19] we must then have $\lambda_1(D) > 0$ on any bounded domain of M, contradicting the instability of M. □

Hence for ϵ_1 small enough, we know for every integer $j > 0$ there will be δ so that $T_\delta = j$. Let δ_j be such that $T_{\delta_j} = j$ and define M_j to be M_{δ_j}. We have that the flow $(M_{\delta_j})_t$ will exist for $[0, j]$ with curvature—and hence by Shi’s estimates, the derivatives of curvature—bounded uniformly, independent of j. Recentering the time parameter by $-j$ for each of the $(M_j)_t$, we have that $(M_j)_t$ is defined for $[-j, 0]$. By definition of T_{δ_j}, $(M_j)_0$ will intersect M_{ϵ_1}. Let $p_j \in (M_j)_0 \cap M_{\epsilon_1} \neq \emptyset$. Recenter each $(M_j)_0$ so that p_j is taken to the origin. Then, take a subsequential limit in the smooth topology to find an ancient solution M_t.

There is a catch though: it is conceivable that M_t does not flow out of M if the p_j diverge to spatial infinity. For example, although this will soon be ruled out, if M were a catenoid and the p_j diverged, the limit of recenterings of M would be a plane.

If M is periodic with compact fundamental domain, the recenterings do not matter so we suppose that M is asymptotically flat (the precise rate does not matter). In this case we will show that all the p_j are contained in a compact set. Indeed, suppose not. Then the limit of the surface M under recenterings will be flat and we will obtain in the limit an ancient solution flowing out of a plane P distance ϵ_1 from the origin but which, at $t = 0$, intersects the origin.

Going far enough back in time, there will be a time T for which M_T is at most distance $\epsilon_1/2$ from P. Considering an appropriate translate of P by distance $3\epsilon_1/4$ though, we see by the comparison principle then that the flow will never be distance more than $3\epsilon_1/4$ from P, giving a contradiction.
We get that the \(p_j \) all lie in a bounded domain, so after recentering them all to the origin, the corresponding recenterings of \(M \) result in \(M \) moved by a finite translation. The ancient solution \(M_t \) is not \(M \), since it must be bounded away from \(M \) at the origin at time 0 by distance \(\epsilon_1 \). It is also certainly not a minimal surface because it flows out of \(M \) but is distance \(\epsilon_1 \) from \(M \) at \(t = 0 \), so is not stationary.

We note that if we took the unit normals with the opposite orientation from \(\nu \), we would obtain a distinct ancient solution. These are distinct because they are approaching \(M \) from opposite sides (since \(M \) is 2-sided). With respect to \(\nu \), this other ancient solution has negative mean curvature.

Finally, we can see that these ancient solutions are not solitons. If the ancient solution approaches the minimal surface \(M \) from one side as \(t \to -\infty \), this means that \(M \) may not be translating as it must be slowing down to approach \(M \). These ancient solutions may not be just rotating, as that would imply they would not be on just one side of \(M \). Neither are these ancient solutions homothetically shrinking, as this would imply that they do not approach any surface as \(t \to -\infty \). Finally, we have that combinations of these rigid motions are also impossible. Homothetic shrinking in combination with any other rigid motion is ruled out for the same reason. And these solutions cannot be translating and rotating at the same time, as both motions occur at some constant rates, which would imply that \(M_t \) cannot be converging to any surface as \(t \to -\infty \). This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.3

In this section, we will construct the eternal solution described in Theorem 1.3 which exists in \(\mathbb{R}^{n+1} \) for all \(n \geq 2 \). This eternal solution will be constructed using a catenoid, similar to what was done in Section 3.

Recall the notation set in Section 2.2. We let \(M^1 \) be a catenoid in \(\mathbb{R}^{n+1} \), \(n \geq 2 \), normalized to have radius 1. The catenoid \(M^1 \) has width \(W_n \) (which is infinite for \(n = 2 \)) and is given by a graph \(y = w(x) \) which is reflection symmetric about \(x = 0 \), as described in the preliminaries. Moreover, we split up \(\mathbb{R}^{n+1} \) into two components: the inside and the outside of the catenoid \(M^1 \). The outside of the catenoid is the component of \(\mathbb{R}^{n+1} \) that the outward unit normal \(\nu \) points into. The outward unit normal \(\nu \) is the normal to \(M^1 \) that points away from the axis of rotation.

By Theorem 1.1 there exists an ancient solution \(M^1_t \) to mean curvature flow, such that \(M^1_t \) uniformly converges to \(M^1 \) as \(t \to -\infty \) and is a subset of the outside of \(M^1 \) for all time. This ancient solution is embedded and is not a soliton. Since \(M^1_t \) smoothly converges to \(M^1 \) as \(t \to -\infty \), we may equip \(M^1_t \) with a unit normal that is compatible with the outward unit normal \(\nu \) to \(M^1 \). This is the outward unit normal to \(M^1_t \), and by Theorem 1.1 \(M^1_t \) is mean convex with respect to its outward unit.
normal. Recall that the approximate solutions used to construct M^1_t are of the form $M^1_\delta = M^1 + \delta \nu$ for $\delta \ll 1$. Since M^1 is $O(n) \times O(1)$-invariant and all M^1_δ have this symmetry as well, we get that M^1_t is $O(n) \times O(1)$-invariant with respect to the same axes of symmetry of M^1. Similarly, M^1_t may be represented as the rotation of a graph u_t, since M^1_δ can be, where u_t is symmetric about $x = 0$. We know that M^1_t will remain a subset of the outside of M^1 for all time since M^1_δ all lie outside M^1 and the mean convexity of M^1_t will force the flow to nest and thus avoid M^1 for as long as it exists. This means that $u_t > w$ for as long as u_t exists. And by (2.8) combined with mean convexity, we have that u_t is convex for all time.

The last useful property of M^1_t is that it will remain asymptotic to M^1 for as long as it exists. The approximate solutions $M^1 + \delta \nu$ are asymptotically flat and so by pseudolocality (see Chen-Yin [12]), they must remain arbitrarily close to $M^1 + \delta \nu$ outside a large enough ball. This means that for as long as the flow $(M^1_\delta)_t$ exists, it will remain asymptotic to $M^1 + \delta \nu$. This means that M^1_t, as the limit of these approximate solutions, will remain asymptotic to M^1 for as long as it exists.

With this in hand, we will show that the ancient solution M^1_t is in fact eternal. We will find its asymptotics later.

Proposition 4.1. For $n \geq 2$, let $M^1_t \subset \mathbb{R}^{n+1}$ be the ancient solution to mean curvature flow as described above. Then M^1_t exists for all time, $t \in [0, \infty)$, and it is spatially asymptotic to M^1 for all time slices.

Proof. In order to prove that M^1_t exists for all time $t \in [0, \infty)$, we will show that for each t, there is a bound on $|A|^2$ for M^1_t.

Let u_t be the profile curve of M^1_t, and let w be the profile curve of M^1, considered as graphs over the same axis with the same axes of symmetry. Since M^1_1 is mean convex and initially satisfies $u_t > w$, we have that $u_t > w$ for as long as it exists.

As mentioned in Section 2.2, note that (2.7) without the last term is merely the curve shortening flow of the graph $y = u(x)$. Since the second term is negative, a solution to (2.7) is a subsolution to graphical curve-shortening flow. This means that a solution to (2.7) starting at $y = u(x)$ will avoid the curve shortening flow of an appropriately chosen graph $y = v(x)$ such that $v(x) > u(x) + c$ for some $c > 0$ independent of x. Indeed, since u_t is a convex curve which converges uniformly to w as $t \to -\infty$, we may place a grim reaper G of some half-width $\ell < W_n$ strictly above u_0 such that G avoids u_0. The grim reaper G will be a graph over $(-\ell, \ell)$ and its curve shortening flow will be given by $G + ct$, where $c > 0$ is a constant. We have that M^1_t will remain asymptotic to M^1 for as long as it exists and $G + ct$ will remain asymptotic to $x \pm \ell$. So, if u_t ever intersects $G + ct$, there will be a point $x_0 \in (-\ell, \ell)$ such that the difference in height between u_t and $G + ct$ will reach a
strict local minimum at \(x_0 \). Applying the avoidance principle using that \(G + ct \) is a subsolution of \([2.7]\), we have that \(u_t \) will avoid \(G + ct \) for as long as it exists.

Suppose that \(G \) is a distance \(C \) from \(u_0 \) at \(x = 0 \). Then, we have that for \(x \in \left[-\frac{t}{2}, \frac{t}{2} \right] \), \(|\partial_x u_t| \leq C(t)\) for some constant \(C(t) \) depending only on \(t \), \(C \), and \(\ell \). Indeed, since \(\partial^2_x u_t \geq 0 \), \(\partial_x u_t \) cannot be too large at \(x = \frac{t}{2} \) since that would imply \(u_t \) would intersect \(G + ct \), which is a contradiction. Here, the dependence on \(C \) and \(\ell \) is irrelevant and such choices can be fixed from the outset.

We may use the time-dependent bound on \(|\partial_x u_t|\) over \([-\frac{t}{2}, \frac{t}{2}]\) in combination with Theorem \([2.3]\) to bound \(|A|^2\) for \(M^1_t \) around the tip, which we identify with \(u_t(0) \). Identify the hyperplane \(\mathcal{H} \) perpendicular to the normal \(\nu(0) = (0,1,0,\ldots,0) \) such that \(\mathcal{H} \) contains \(y = 0 \). The normal \(\nu(0) \) is the outward normal to \(M^1_t \) at the point identified with the tip \(u_t(0) \) in the \(x-y \) plane. Consider a ball \(B(0,\min(t,\frac{1}{2})) \) of radius \(\min(t,\frac{1}{2}) \) in \(\mathcal{H} \) centered around 0. Since \(M^1_t \) is normalized to radius 1, this means \(u_t > 1 \) for all time and so \(M^1_t \) will remain graphical over \(B(0,\min(t,\frac{1}{2})) \) for all time. Here we use the fact that \(u_t > w \) for all time that it exists, so the flow \(M^1_t \) will not collapse onto the axis of rotation.

Now, consider the quantity \(v = \langle \nu M^1_t, \nu(0) \rangle^{-1} \), where \(\nu(0) \) is the unit normal (independent of time) to \(M^1_t \) corresponding to the normal to \(u_t(0) \). By the bound \(|\partial_x u_t| < C(t)\) over \([-\frac{t}{2}, \frac{t}{2}]\), there is a bound on \(v \) depending on \(t \) in \(B(0,\min(t,\frac{1}{2})) \). Using the bound on \(v \), we may apply Theorem \([2.3]\) with \(R = \min(t,\frac{1}{2}) \), the hyperplane \(\mathcal{H} \), and some \(\theta < 1 \). This gives a bound \(|A|^2 < C(t)\) for the part of \(M^1_t \) that is graphical over \(B(0,\theta \min(t,\frac{1}{2})) \).

With this in hand, we move on to finding a bound on \(|A|^2\) for the rest of \(M^1_t \). By the fact that there is a bound on \(|A|^2\) around the tip of \(u_t \), we have that there is a bound depending on \(t \) for the speed of the tip. That is, \(|\partial_t u_t(0)| \leq C(t)\).

By symmetry of \(u_t \) about \(x = 0 \), we can just consider one side, so let us consider \(u_t \) over \(x > 0 \). Consider the unit vector \(\nu_\theta = (-\sin(\theta),\cos(\theta)) \) in the \(x-y \) plane which we identify with \((-\sin(\theta),\cos(\theta),0,\ldots,0) \) \(\in \mathbb{R}^{n+1} \). Consider \(\theta > 0 \) small but fixed. Let \(\mathcal{H}_\theta \) be the hyperplane that is orthogonal to \(\nu_\theta \). Let \(\mathcal{L} \subset \mathcal{H}_\theta \) be the projection of \(u_t \{ x \geq \min(\frac{t}{4},\frac{1}{2}) \} \) onto \(\mathcal{H}_\theta \), where the last \(n-1 \) coordinates of \(\mathcal{L} \) are zero. Then, we may find a fixed small enough \(R > 0 \) such that for each \(x \in \mathcal{L} \), \(M^1_t \) will be a graph\(^3\) over the ball \(B(x,R) \subset \mathcal{H}_\theta \) for a time depending on \(t \). This is possible because \(u_t > 1 \) and the tip \(u_t(0) \) moves at a speed only depending on \(t \), as shown above.

\(^3\)Technically, \(M^1_t \) will be a double-sheeted graph over \(B(x,R) \) by considering the part of \(u_t \{ x < 0 \} \) lying over \(B(x,R) \), but this does not affect the application of Theorem \([2.3]\) which will only be applied to the part of \(M^1_t \) corresponding to \(u_t \{ x > 0 \} \).
Moreover, the quantity $\langle \nu_{M_t^1}, \nu_{\theta} \rangle^{-1}$, which is just v with respect to ν_{θ}, is uniformly bounded over such $B(x,R)$. This is because \mathcal{H}_θ is at an angle $-\theta$ with respect to the unit normal $\nu(0)$ at the tip $u_t(0)$, so $\partial_x u_t$ will grow at a linear rate with respect to \mathcal{H}_θ as u_t approaches its asymptote. Thus, applying Theorem 2.3 to $B(x,L) \subset \mathcal{H}_\theta$ using R, the bound on v, and an appropriate choice of θ (given the choice of θ for the previous application of Theorem 2.3), we get a bound on $|A|^2$ for u_t over \mathcal{L}.

Putting all of this together, there is a bound $|A|^2 < C(t)$ for M_t^1. Since $|A|^2$ is bounded for any $t > 0$, this gives that M_t^1 will exist for $t \in [0, \infty)$ by applying the short time existence theorem at any finite time to extend the flow. So, M_t^1 is an eternal solution as claimed. \qed

To understand the asymptotics of the flow, we will need to relate the motion of the profile curve to the curve shortening flow, which will require the following lemma.

Lemma 4.2. Let M_t^1 be the eternal solution of Proposition 4.1. As $t \to \infty$, M_t^1 becomes infinitely far from its axis of rotation.

Proof. Equivalently, we will prove that u_t will become infinitely far from the $y = 0$ axis. Suppose that this is not the case. Since $u_t(0)$ is the unique minimum of the flow, we have that $\lim_{t \to \infty} u_t(0) = C < \infty$. This implies that $\lim_{t \to \infty} \partial_t u_t(0) = 0$.

If $|A|^2$ is uniformly bounded for M_t^1 as $t \to \infty$, then M_t^1 converges to a smooth minimal surface N as $t \to \infty$. However, N must be given by the rotation of a graph.
symmetric about \(x = 0 \). So, \(N \) is a catenoid symmetric about \(x = 0 \), but this must intersect \(M^1 \), which is a contradiction.

Now, suppose that \(|A|^2\) is not uniformly bounded as \(t \to \infty \). Let \(\mathcal{H}_\theta \) be the tilted plane as above. Let \(\mathcal{L} \) be the projection of \(\{x > 0\} \cap \{y \geq C\} \) onto \(\mathcal{H}_\theta \). Here, we are technically taking the part of \(\mathcal{L} \) with the last \(n - 1 \) coordinates zero. Since the tip of \(u_t \) is stationary as \(t \to \infty \), i.e. \(u_t(0) \to C \), we have that \(M^1_t \) is a graph over small balls centered on \(\mathcal{L} \subset \mathcal{H}_\theta \) with controlled derivative for all time \(t \). We may now apply Theorem 2.3 to \(M^1_t \) over \(\mathcal{L} \). We find that for any distance \(d > 0 \), the set of points on \(M^1_t \) which is distance greater than \(d \) from the tip \(u_t(0) \) has uniformly bounded \(|A|^2\), depending on \(d \), for all \(t \in (0, \infty) \).

Since we are supposing \(|A|^2 \to \infty \) as \(t \to \infty \), this leaves the possibility that the curvature is blowing up as \(t \to \infty \) near the tip \(u_t(0) \). In other words, we may find times \(t_i \) and points \(q_i \in M^1_t \) such that \(|A|^2(q_i) \to \infty \), where \(q_i \) are all within a uniform distance in \(\mathbb{R}^{n+1} \) from the tip point \((0, u_t(0), 0, \ldots, 0) \). By reflection symmetry across \(x = 0 \), these points come in pairs \(q_i, \overline{q}_i \). Note that such points \(q_i \) are uniformly bounded away, by mean convexity of the flow, from the axis of rotation and hence we must have \(H(q_i) \to \infty \). In particular, \(H(q_i) > 2 \) for \(i \) sufficiently large.

Because \(\lim_{t \to \infty} u_t(0) = C < \infty \) this implies that \(H(u_t(0)) \to 0 \). Thus, \(M^1_t \) must achieve an interior minimum of \(H \) at some point \(y_t \) on the graph of \(u_t \) between \(q_i \) and \(\overline{q}_i \) for all \(i \) large enough. It is easy to see something even stronger in fact: one can actually find \(a(t), \overline{a}(t) \), in lieu of the discrete \(q_i \), such that \(\liminf_{t \to \infty} |A|^2(a(t)) > 2 \). Then, since \(H(u_t(0)) \to 0 \), there is \(y_t \) on the graph of \(u_t \) between \(a(t) \) and \(\overline{a}(t) \) such that for all sufficiently large times \(t \), \(M^1_t \) achieves an interior minimum of \(H \) at \(y_t \). To see the existence of such \(a(t) \) for sufficiently large times, if \(a(t), \overline{a}(t) \) did not exist, we would find a sequence of times where \(M^1_t \) has uniformly bounded curvature, which would converge to a minimal catenoid, as before. This is a contradiction as such a catenoid must intersect \(M^1 \) yet must also be distinct from \(M^1 \).

Using that the tip \(u_t(0) \) lies between \(a(t) \) and \(\overline{a}(t) \) on the graph of \(u_t \), we see it has \(H \) lower bounded by \(H(y_t) \). The \(y_t \), by mean convexity and the strict maximum principle, must have \(H(y_t) > 0 \) and \(H(y_t) \) must be increasing for all time, as long as \(H(y_t) < 2 \). This implies that \(H(u_t(0)) \) must be bounded away from zero for all time, contradicting the fact that \(H(u_t(0)) \to 0 \). Thus, \(M^1_t \) must become infinitely far from its axis of rotation. \(\Box \)

Since the profile curve moves infinitely far from the origin, it behaves like the curve shortening flow. To understand the asymptotics, we will need to take a pointed limit of the profile curve \(u_t \) as \(t \to \infty \), but this requires uniform curvature bounds, which we find in the following lemma.
Lemma 4.3. Let M^1_t be the eternal solution of Proposition 4.1. Then, there exists $C < \infty$ such that $|A|^2 < C$ for $t \in (-\infty, \infty)$.

Proof. Suppose not. Then, we may find a sequence of times $t_m \to \infty$ such that $M^1_{t_m}$ achieves the supremum

$$\lambda_m := \sup_{t \leq t_m} \sup_{M^1_t} |A|$$

and $\lambda_m \to \infty$.

We first pick $x_m \geq 0$ such that $u_t(x_m)$ realizes the supremum λ_m. It is possible to pick all x_m positive by the symmetry of u_t about $x = 0$. Then, define

$$u^m_t(x) := \lambda_m \left(u_{t/\lambda_m^2 + t_m} \left(x/\lambda_m + x_m \right) - u_{t_m}(x_m) \right)$$

By (2.7), we have that u^m_t satisfies the following equation:

$$\frac{\partial u^m_t}{\partial t} = \frac{(u^m_t)_xx}{1 + (u^m_t)_x^2} - \frac{n - 1}{\lambda_m u_{t/\lambda_m^2 + t_m}(x/\lambda_m + x_m)}$$

(4.3)

For M^1_t, $|A| > k$, where k is the curvature of the profile curve u_t. Because u_t becomes infinitely far from the axis of rotation and $|A| \to \infty$, $k \not\to |A|$ at x_m as $t_m \to \infty$. Then, by definition of λ_m, we have that $k^m_t \leq 1$ for $t \leq 0$ and $k^m_0(x_m) \not\to 1$ as $m \to \infty$. Moreover, the second term in (4.3) must approach zero uniformly fast on any compact subset of negative times as $m \to \infty$ by the fact that u_t becomes infinitely far from the axis of rotation. This means that we may pass to a limit to find the nonempty embedded flow u^∞_t, defined on $(-\infty, 0]$, which satisfies the equation:

$$\frac{\partial u^\infty_t}{\partial t} = \frac{(u^\infty_t)_xx}{1 + (u^\infty_t)_x^2}$$

(4.4)

The equation (4.4) is the graphical version of curve shortening flow. Since each u^m_t is a convex curve, u^∞_t is also convex. In short, we have found an embedded convex ancient solution to curve shortening flow which is graphical. In fact, u^∞_t is nonflat since there exists a point x_0 on u^∞_t where $k^\infty_0(x_0) = 1$, which follows from the fact that $k^m_0(x_m) \not\to 1$ as $m \to \infty$.

For $n = 2$, u_t is defined over all of $x \in (-\infty, \infty)$, but for $n \geq 3$, u_t will be defined over $x \in (-c, c)$. So, for $n = 2$, u^∞_t is defined for $x \in (-\infty, \infty)$. And for $n \geq 3$, since u^m_t is defined for $x \in (-\lambda_m(c + x_m), \lambda_m(c - x_m))$ and since $x_m \geq 0$, we have that u^∞_t is defined for $x \in (-\infty, C)$ for some $0 \leq C \leq \infty$, using that $\lambda_m \to \infty$. By the recent full classification of embedded convex ancient solutions to curve shortening flow due to Bourni-Langford-Tinaglia [9], there does not exist an embedded convex nonflat ancient solution to curve shortening flow which is graphical over either a half-infinite interval or all of \mathbb{R}. This is a contradiction since we found earlier that u^∞_t is nonflat. Thus, there exists some C such that $|A|^2 < C$ for M^1_t for all t. □
Since M^t_1 has uniformly bounded curvature as $t \to \infty$, we can now extract a pointed limit of u_t as $t \to \infty$. Indeed, for a sequence of times $t_m \to \infty$, define

$$v^m_t(x) := u_{t+t_m}(x) - u_{t_m}(0)$$ \hfill (4.5)

Using that u_t becomes infinitely far from the axis of rotation as $t \to \infty$, we may extract an embedded convex ancient solution v^∞_t which is graphical, just as in (4.3) and (4.4). For $n = 2$, v^∞_t is defined for $x \in (-\infty, \infty)$ and for $n \geq 3$, v^∞_t is defined for $x \in (-c, c)$. Again, by the classification of Bourni-Langford-Tinaglia [9], we have that for $n = 2$, v^∞_t is a line and for $n \geq 3$, v^∞_t is a grim reaper with width c. Since the choice of limit sequence t_m was arbitrary, we know that these must be the unique limits. Thus, for $n \geq 3$, u_t smoothly converges as $t \to \infty$ to a grim reaper with the same width as that of the catenoid M^1_1 (which follows from the fact that M^t_1 must be asymptotic to M^1_1 for all time). And for $n = 2$, u_t converges on all compact subsets to a line, in the sense that the curvature k_t approaches zero uniformly as $t \to \infty$.

5. Proof of Theorem 1.5

In this section, we prove the partial uniqueness result, Theorem 1.5. Our first step is to understand the topology of such M_t, which is simple:

Lemma 5.1. M_t is an embedded cylinder $S^{n-1} \times \mathbb{R}$.

Proof. Since M_t is $O(n) \times O(1)$-invariant, it can be denoted by a profile curve γ_t in the x-y plane, where x is the axis of rotation γ_t is reflection symmetric about y. We first see it suffices to show γ_t stays on one side of the axis of rotation. Indeed, since M_t is connected, γ_t is connected and so must be diffeomorphic to either \mathbb{R} or S^1. It cannot be S^1 because M_t is eternal and hence noncompact. So γ_t must be diffeomorphic to \mathbb{R}. Thus, if γ_t remains on one side of the axis of rotation, M_t is diffeomorphic to an embedded $S^{n-1} \times \mathbb{R}$.

To see that γ_t stays on one side of the axis of rotation, the x-axis, we use the reflection symmetry. Suppose γ_t crosses the x-axis at $x = x_0$. Then since M_t is smooth and embedded, γ_t must cross the x-axis orthogonally at $x = x_0$. By embeddedness and reflection symmetry across $\{x = 0\}$, $x_0 \neq 0$ as M_t may not just be the vertical line $\{x = 0\}$. So, γ_t must be a subset of either $\{x \leq x_0\}$ or $\{x \geq x_0\}$. This implies that by reflection symmetry and connectedness of M_t, we have that $\gamma_t \subset \{x \leq |x_0|\}$. Since γ_t crosses the x-axis at $x = x_0$, it does so at $x = -x_0$ as well, which implies that M_t is compact. This is a contradiction as M_t must be noncompact since it is an eternal solution. Thus, γ_t stays on one side of the axis of rotation. \hfill \square

Since the eternal solution M_t is rotationally symmetric and is an embedded cylinder, M_t can be represented as the rotation of a smooth profile curve γ_t which lies above the axis of rotation. In the notation established in the lemma, the points
above the axis of rotation are the points with $y > 0$, and we may assume without loss of generality that $\gamma_t \subset \{ y > 0 \}$. M_t is also $O(1)$-invariant, so let the y-axis be the axis of reflection for M_t. Since M_t has uniformly bounded curvature for all time, γ_t must remain a uniform distance from the axis of rotation for all time. So, $\gamma_t \subset \{ y \geq c > 0 \}$. In particular, this means that M_t is nonentire, i.e. the flow of M_t does not sweep out all of spacetime.

The flow M_t is an embedded cylinder so it divides \mathbb{R}^{n+1} into two connected components: the inside and the outside. The outside is defined to be the component that does not contain the axis of rotation. Let the outward-pointing normal to M_t be the normal that points into the outside component. M_t is assumed to have a sign on mean curvature, so it must be mean convex with respect to either the inward-pointing or the outward-pointing normal. We will deal with these cases separately, which completes the proof of the theorem.

Lemma 5.2. Suppose M_t is mean convex with respect to the outward-pointing normal. Then, M_t satisfies the conclusions of Theorem 1.5.

Proof. Since M_t has a sign on mean curvature and has uniformly bounded curvature as $t \to -\infty$, it must be smoothly converging to a (a priori empty) union of complete smooth embedded minimal surfaces N as $t \to -\infty$. This follows from the same reasoning as at the beginning of Lemma 3.4.

We first see that N is nonempty. Since M_t is mean convex with respect to the outward normal, it bounds a flow of domains K_t, where K_t are the outside components of M_t, and these nest, meaning that $K_t \subset K_s$ for $t > s$. This means that the closest point in K_t to the axis of rotation will monotonically approach the axis of rotation as $t \to -\infty$. This implies that the limit N must be nonempty, since the K_t nest and monotonically approach the axis as $t \to -\infty$.

The minimal surfaces comprising N must all be disjoint because if they were not, this would contradict the smoothness or the embeddedness of M_t. We also know that each connected component of N must be an $O(n) \times O(1)$-invariant minimal surface since M_t is. In fact, all of the minimal surfaces comprising N must be $O(n) \times O(1)$-invariant about the same axis of rotation and axis of reflection. Thus, N must be given by a union of smooth disjoint profile curves, representing hyperplanes and catenoids, which are rotationally symmetric about the x-axis and reflection symmetric about the y-axis.

Since $\gamma_t \subset \{ y \geq c \}$, we must have that $N \subset \{ y \geq c \}$, where N in this case denotes the profile curves comprising N. We can see that the profile curves of the hyperplanes in N must be given by vertical lines $\{ x = a \}$. However, since each connected component of N must be a complete surface, we cannot have a complete
hyperplane given by \(\{x = a\} \) which is also a subset of \(\{y \geq c\} \). This means that \(N \) consists only of catenoids. Now, none of the catenoids in \(N \) may intersect each other because each smooth complete minimal surface in \(N \) must be disjoint. Since all catenoids which are rotationally symmetric about the same axis and reflection symmetric about the same axis must transversally intersect each other, we have that if \(N \) is nonempty, \(N \) must consist of a single catenoid. Thus, \(M_t \) smoothly converges to a catenoid \(N \) as \(t \to -\infty \).

Since \(M_t \) bounds the nesting domains \(K_t \), \(M_t \) must converge to the catenoid \(N \) from one side. Since \(M_t \) is mean convex with respect to the outward normal, it must converge to the catenoid \(N \) from the outside. That is, \(M_t \) must be a subset of the outside component of the catenoid (as defined above).

Suppose that \(M_t \) does not become infinitely far from the axis of rotation. Then, again using the uniform bound on curvature and mean convexity, \(M_t \) must converge to a nonempty complete smooth minimal surface \(N^* \) as \(t \to \infty \). The surface \(N^* \) must also be rotationally symmetric and reflection symmetric about the same axes as \(N \). This implies that \(N^* \) is a catenoid or a plane which must transversally intersect \(N \). This is a contradiction because \(M_t \) must be a subset of the outside component of \(N \) for all time. Thus, \(M_t \) becomes infinitely far from the axis of rotation.

Using the uniform curvature bound assumption, we may find an ancient curve shortening flow in the limit as \(t \to \infty \), as in the last part of the proof of Theorem 1.3. This works even without assuming graphicalness, as it is akin to rescaling (2.8) with \(r \to \infty \). Since \(M_t \) is mean convex, the limiting ancient curve shortening flow must be convex since all but one of the principal curvatures on \(M_t \) tend to zero as we move away from the axis of rotation by (2.8). Thus, we find a convex noncompact ancient solution to curve shortening flow in the limit which is disjoint from \(\{y < 0\} \) by normalizing the tip to the origin of the \(x\)-\(y \) plane. Using the classification of Bourni-Langford-Tinaglia [7], we find that \(M_t \) must converge as \(t \to \infty \) to a grim reaper for \(n \geq 3 \) (since it is trapped in a slab and bounded away from the lower half-plane) and must become flat for \(n = 2 \) (since the flow cannot be contained in any slab). Here, we note that the grim reaper may potentially have a smaller width than that of the catenoid, unlike in Theorem 1.3 but the uniform curvature bound prevents the grim reaper from having arbitrarily smaller width than that of the catenoid.

Lemma 5.3. There is no such \(M_t \) which is mean convex with respect to the inward-pointing unit normal.

Proof. Using that \(M_t \) has uniformly bounded curvature and is mean convex with respect to the inward-pointing unit normal, we find that \(M_t \) converges to a nonempty complete smooth minimal surface \(N \) as \(t \to \infty \). This follows just as in Lemma 5.2.
except the change in orientation of the normal means we must take $t \to \infty$. Similarly, N must be a catenoid and M_t must be approaching N from one side. In fact, M_t must be a subset of the outside of N. Moreover, M_t must be becoming infinitely far from the axis of rotation as $t \to -\infty$. Now consider a catenoid N^* of larger radius than N which is rotationally symmetric and reflection symmetric about the same axes as N. The catenoid N^* intersects N, but for t negative enough, N^* must be disjoint from M_t as M_t becomes infinitely far from the axis of rotation as $t \to -\infty$. This means that M_t may not flow into N, which is a contradiction. Thus, M_t does not exist. □

6. Concluding Remarks

With the assumption of mean convexity for a closed surface or the assumption of α-noncollapsed [25], all singularities to mean curvature flow must be modeled on convex ancient solutions. Since our examples of ancient solutions from Theorem 1.1 are nonconvex, they would not arise as the blowup limits of such flows. To the authors’ knowledge there is no actual obstruction to the ancient solutions of Theorem 1.1 arising as singularity models of the flow of some surface, although such surfaces would certainly be quite rare. In the case the minimal surface M is a catenoid, such a blowup would seem to violate the multiplicity one conjecture. This is because at the singular point (not rescaling) the flow would appear to be two sheets, coming together, joined with a small neck.

Specific to the reapernoid, the eternal solution of Theorem 1.3 blowup limits obtained via rescaling by the supremum of $|A|$ must attain their maximum of $|A|$ at some point in spacetime. It is likely that the reapernoid does not attain its maximum of $|A|$, meaning that it does not arise as such a blowup limit. We do not prove this, as this would require finer control on the curvature of the flow than we find. It remains an open question if all eternal solutions that arise from this blowup procedure must be translating.

The periodicity/asymptotic flatness assumptions in Theorem 1.1 also seems to be purely technical and we believe the statement without these qualifiers is true. In other words, any unstable minimal surface should give rise to an ancient solution. Since the existence of an ancient solution coming out of a minimal surface would imply it is unstable, this could potentially provide a characterization of instability of minimal surfaces of uniformly bounded curvature in \mathbb{R}^n, if true.

The bounded curvature assumption in Theorem 1.1 seems more necessary. This assumption gives that the flow of each of the perturbations will exist for a long time provided the approximate solutions are chosen sufficiently close. If the minimal surface in question has globally unbounded curvature it seems reasonable to expect that
perturbation will quickly “fly away” from points of higher and higher curvature so there would be no ancient solution flowing from such minimal surfaces. On the other hand, if one could skirt around the applications of bounded curvature mentioned above, perhaps one could find a related ancient solution by using initial approximate flows that are non-constant perturbations of the minimal surface M depending on the curvature, unlike the equidistant perturbations used in the proof of Theorem 1.1.

The construction of the ancient solutions in Theorem 1.1 given in this article could possibly be applied in the case of ambient manifolds of positive scalar curvature, by using the more general results in Fischer-Colbrie and Schoen [19]. That is, in 3-manifolds of positive scalar curvature the stable minimal surfaces are either diffeomorphic to planes or cylinders. It is not directly clear how to adapt some parts of the proofs however, e.g. if the ambient manifold does not admit a group of translations. There could be more specialized classes of ambient spaces where our construction can be carried out by assuming some symmetry. See Choi-Mantoulidis [13] for constructions of ancient solutions out of closed minimal surfaces in non-Euclidean ambient manifolds. Note that their techniques differ significantly from those used in this paper and are of wider interest to more general types of flows.

The uniqueness statement of Theorem 1.5 raises questions about how much this can be generalized. We conjecture that the reapernoid eternal solution obtained in Theorem 1.3 is unique among all $O(n) \times O(1)$-invariant eternal solutions, possibly without a curvature bound and not just in an asymptotic sense. This seems reasonable to expect because the catenoid has index 1 and so we would not expect more than one distinct ancient solution flowing out of it on one side. We also conjecture that one could drop the assumption of the sign on mean curvature in Theorem 1.5 and obtain the same result. Similar uniqueness results for other minimal surfaces could also be possible.

References

[1] Uwe Abresch and Joel Langer, The normalized curve shortening flow and homothetic solutions, J. Diff. Geom. 23 (1986), no. 2, 175–196.

[2] Steven Altschuler. Singularities of the curve shrinking flow for space curves. J. of Differential Geom. 34 (1991), no. 2, 491–514.

[3] Steven Altschuler, Sigurd Angenent, and Giga Yoshikazu. Mean curvature flow through singularities for surfaces of rotation, J. Geom. Anal. 5 (1995), 293–358. MR 1360824. Zbl 0847.58072. http://dx.doi.org/10.1007/BF02921800.

[4] Steven Altschuler and Lang Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. PDE. 2 (1994), no. 1, 101–111.

[5] Sigurd Angenent. Shrinking doughnuts. In: Lloyd N.G., Ni W.M., Peletier L.A., Serrin J. (eds) Nonlinear Diffusion Equations and Their Equilibrium States, 3 (1989), 21–38.

[6] Sigurd Angenent and Qian You. Ancient Solutions to Curve Shortening with Finite Total Curvature, Preprint. arXiv:1803.01399
ANCIENT AND ETERNAL SOLUTIONS TO MEAN CURVATURE FLOW

[7] Theodora Bourni, Mat Langford, and Giuseppe Tinaglia. Collapsing ancient solutions of mean curvature flow. Preprint, arXiv:1705.06981.

[8] Theodora Bourni, Mat Langford, and Giuseppe Tinaglia. On the existence of translating solutions of mean curvature flow in slab regions. Preprint, arXiv:1805.05173.

[9] Theodora Bourni, Mat Langford, and Giuseppe Tinaglia. On the existence of translating solutions of mean curvature flow in slab regions. Preprint, arXiv:1903.02022.

[10] Kenneth Brakke. The Motion of a Surface by its Mean Curvature. Princeton University Press, Math. Notes Princeton, NJ (1978).

[11] Manfredo do Carmo and Chung-Kang Peng. Stable complete minimal surfaces in \mathbb{R}^3 are planes, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 903–906.

[12] Bing-Long Chen and Le Yin. Uniqueness and pseudolocality theorems of the mean curvature flow. Comm. Anal. Geom. 15 (2007), no. 3, 435–490.

[13] Kyeongsu Choi and Christos Mantoulidis. Ancient gradient flows of elliptic functionals and Morse index. Preprint, arXiv:1902.07697.

[14] Julie Clutterbuck, Oliver Schnürer, and Felix Schulze, Stability of translating solutions to mean curvature flow, Calc. Var. PDE. 29 (2007), no. 3, 281–293.

[15] Juan Davila, Manuel del Pino, Xien Hien Nguyen. Finite topology self translating surfaces for the mean curvature flow in \mathbb{R}^3. Preprint, arXiv:1501.03867.

[16] Gregory Drugan and Stephen Kleene. Immersed self-shrinkers. Trans. Amer. Math. Soc. 369 (2017), 7213–7250.

[17] Gregory Drugan, Hojoo Lee, and Xuan Hien Nguyen. A survey of closed self-shrinkers with symmetry. Results Math. 73 (2018), no. 1, Art. 32.

[18] Klaus Ecker and Gerhard Huisken. Interior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105 (1991), no. 1, 547–569.

[19] Doris Fischer-Colbrie and Richard Schoen. The structure of complete stable minimal surfaces of non-negative scalar curvature. Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211.

[20] Charles Frohman and William Meeks III. The topological uniqueness of compete one-sided minimal surfaces and Heegaard surfaces in \mathbb{R}^3. Journal of the AMS, 10 (1997), no. 3, 495–512.

[21] Hoeskulder Halldorsson. Self-similar solutions to the curve shortening flow. Trans. Amer. Math. Soc. 264 (2012), no. 10.

[22] Richard Hamilton. Harnack estimate for the mean curvature flow. J. Differential Geom. 41 (1995), no. 1, 215–226.

[23] Robert Hardt and Leon Simon, Boundary regularity and embedded minimal solutions for the oriented Plateau problem, Annals of Math. 110 (1979), 439–486.

[24] Robert Haslhofer and Or Hershkovits. Ancient solutions of the mean curvature flow. Comm. Anal. Geom. 24 (2016), no. 3, 593–604.

[25] Robert Haslhofer and Bruce Kleiner. Mean curvature flow of mean convex hypersurfaces. Comm. Pure Appl. Math., 70 (2017), no. 3, 511–546.

[26] David Hoffman, Tom Ilmanen, Francisco Martin, and Brian White. Graphical Translators for Mean Curvature Flow. Preprint, arXiv:1805.10860.

[27] David Hoffman, Francisco Martin, and Brian White. Scherk-like Translators for Mean Curvature Flow. Preprint, arXiv:1903.04617.

[28] Gerhard Huisken. Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31 (1990), no. 1, 285–299.

[29] Norbert Hungerbhler and Knut Smoczyk. Soliton Solutions for Mean Curvature Flow. Differential Integral Equations. 13 (2000), no. 10-12, 1321–1345.
[30] Nikolaos Kapouleas, Stephen Kleene, and Niels Møller. Mean curvature self-shrinkers of high genus: Non-compact examples. J. Reine Angew. Math. 739 (2012), 1–39.
[31] Daniel Ketover. Self-shrinking platonic solids. Preprint, arXiv:1602.07271.
[32] Carlo Mantegazza. Lecture Notes on Mean Curvature Flow. Volume 290 of Progress in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2011.
[33] Kazuaki Nakayama, Takeshi Iizuka, and Miki Wadati. Curve lengthening equation and its solutions. J. Phys. Soc. Jpn, 63 (1994), 1311–1321.
[34] Xuan Hien Nguyen. Translating tridents. Comm. Part. Differ. Equat., 34 (2009), no. 3, 257–280.
[35] Xuan Hien Nguyen. Construction of complete embedded self-similar surfaces under mean curvature flow I. Trans. Amer. Math. Soc. 361 (2009), no. 4, 1683–1701.
[36] Xuan Hien Nguyen. Construction of complete embedded self-similar surfaces under mean curvature flow II. Adv. Differential Equations, 15 (2010), no. 5–6, 503–530.
[37] Xuan Hien Nguyen. Construction of complete embedded self-similar surfaces under mean curvature flow III. J. of Geom. Anal., 23 (2014), no. 3, 1379–1426.
[38] Xuan Hien Nguyen. Complete embedded self-translating surfaces under mean curvature flow. Adv. Math., 287 (2015), 77–121.
[39] Xuan Hien Nguyen. Doubly periodic self-translating surfaces under mean curvature flow. Proc. Amer. Math. Soc., 143 (2015), no. 1, 177–185.
[40] Richard Schoen and Leon Simon, Regularity of stable minimal hypersurfaces, Comm. Pure and Appl. Math. 34 (1981), no. 6, 742–797.
[41] Richard Schoen, Leon Simon, and Shing-Tung Yau, Curvature estimates for minimal hypersurfaces, Acta Math. 134 (1975), 275–288.
[42] Yi-Bing Shen and Xiao-Hua Zhu. On stable complete minimal hypersurfaces in \mathbb{R}^{n+1}. Amer. J. Math., 120 (1998), no. 1, 103–116.
[43] Leon Simon. A strict maximum principle for area-minimising hypersurfaces. J. Diff. Geom. 26 (1987), no. 2, 327–335.
[44] Xu-Jia Wang. Convex solutions to the mean curvature flow. Ann. Math. 173 (2011), no. 3, 1185–1239.
[45] Brian White. A local regularity theorem for mean curvature flow. Ann. Math. 161 (2005), no. 2, 1487–1519.
[46] Brian White. The nature of singularities in mean curvature flow of mean-convex sets. J. Amer. Math Soc., 16 (2003), no. 1, 123–138.
[47] Qian You. Some Ancient Solutions of Curve Shortening. PhD Thesis, University of Wisconsin — Madison, 2014.