Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease

Magda O Seixas¹,², Larissa C Rocha¹,³, Mauricio B Carvalho², Joelma F Menezes¹,², Isa M Lyra³,⁴, Valma ML Nascimento³, Ricardo D Couto², Ajax M Atta², Mitermayer G Reis¹, Marilda S Goncalves¹,²*

Abstract

Background: The search for sickle cell disease (SCD) prognosis biomarkers is a challenge. These markers identification can help to establish further therapy, later severe clinical complications and with patients follow-up. We attempted to study a possible involvement of levels of high-density lipoprotein cholesterol (HDL-C) in steady-state children with SCD, once that this lipid marker has been correlated with anti-inflammatory, anti-oxidative, anti-aggregation, anti-coagulant and pro-fibrinolytic activities, important aspects to be considered in sickle cell disease pathogenesis.

Methods: We prospectively analyzed biochemical, inflammatory and hematological biomarkers of 152 steady-state infants with SCD and 132 healthy subjects using immunochemistry, immunoassay and electronic cell counter respectively. Clinical data were collected from patient medical records.

Results: Of the 152 infants investigated had a significant positive association of high-density lipoprotein cholesterol with hemoglobin (P < 0.001), hematocrit (P < 0.001) and total cholesterol (P < 0.001) and a negative significant association with reticulocytes (P = 0.046), leukocytes (P = 0.015), monocytes (P = 0.004) and platelets (P = 0.005), bilirubins [total bilirubin (P < 0.001), direct bilirubin (P < 0.001) and indirect bilirubin (P < 0.001], iron (P < 0.001), aminotransferases [aspartate aminotransferase (P = 0.004), alanine aminotransferase (P = 0.035)], lactate dehydrogenase (P < 0.001), urea (P = 0.030), alpha 1-antitrypsin (P < 0.001), very low-density lipoprotein cholesterol (P = 0.003), triglycerides (P = 0.005) and hemoglobin S (P = 0.002). Low high-density lipoprotein cholesterol concentration was associated with the history of cardiac abnormalities (P = 0.025), pneumonia (P = 0.033) and blood transfusion use (P = 0.025). Lipids and inflammatory markers were associated with the presence of cholelithiasis.

Conclusions: We hypothesize that some SCD patients can have a specific dyslipidemic subphenotype characterized by low HDL-C with hypertriglyceridermia and high VLDL-C in association with other biomarkers, including those related to inflammation. This represents an important step toward a more reliable clinical prognosis. Additional studies are warranted to test this hypothesis and the probably mechanisms involved in this complex network of markers and their role in SCD pathogenesis.

* Correspondence: mari@bahia.fiocruz.br
¹Laboratório de Patologia e Biologia Molecular, Centro de Pesquisa Gonçalo Moniz, Fundação de Pesquisa Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brasil
Full list of author information is available at the end of the article

© 2010 Seixas et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background
Sickle cell disease (SCD) clinical outcomes vary widely from mild to severe and the disease has been associated with multi-organ damage and risk of early mortality [1,2]. Acute and chronic clinical manifestations of SCD include vaso-occlusive pain episodes (VOE), impaired blood flow as a result of intravascular sickling in capillaries and small vessels, inflammation processes and high susceptibility to infection. Researchers have found a complex network of associations among laboratory analyses and clinical events predicting a probably risk of death [1,3,4].

The sickle cell disease vaso-occlusive phenomenon has been described as a complex event with the participation of stressed reticulocytes, sickled erythrocytes, leukocytes, platelets and endothelium activation [2,5-8]. Reactive oxygen species (ROS), scavenger molecules and nitric oxide (NO) play important roles as regulators of vascular homeostasis in SCD pathogenesis [9].

Several biomarkers have been associated with SCD clinical prognosis; some, such as fetal hemoglobin (HbF) concentration, leukocytes count and reticulocyte count are considered to be classic [2,5]. Recently, serum lactate dehydrogenase (LDH), a well-known marker of intravascular hemolysis, was described as a biomarker of prognosis in SCD [10]. It has been associated with nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in SCD patients [11].

We conducted a prospective study to investigate high-density lipoprotein cholesterol (HDL-C) levels, including also determination of total cholesterol, low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C) and triglycerides to test the hypothesis that they can be used as a marker of prognosis among steady-state sickle cell disease children. This potential biomarker and their association with others laboratory determination and medical history were investigated in order to identify sub-phenotypes associated with the disease.

Subjects and Methods

Subjects and Controls
Of 152 steady-state SCD children from Salvador city, state of Bahia, in Brazil were prospectively analyzed for laboratory (biochemical and hematological) markers. Brazil is the largest country in South America, with one of the most heterogeneous populations due to several waves of immigration that have resulted in cultural, socioeconomic, and ethnic diversity in different geographic regions. Salvador is the largest city in Bahia, a Northeastern Brazilian state. Among the local population, 86% is of African origin, and Salvador has the highest incidence of SCD in Brazil [12].

The study was conducted from March 2007 to November 2008 and included patients from the Fundação de Hematologia e Hemoterapia do estado da Bahia (HEMOBA), a reference center attending to sickle cell disease patients who are seen for routine visits at the outpatient clinic. The study also included 132 healthy children randomly selected from the Clinical Laboratory of the Faculdade de Farmácia da Universidade Federal da Bahia (UFBA); these were matched to cases by age, gender and African ethnic origin as a control group. The study was approved by the Fundação de Pesquisas Oswaldo Cruz human subject research board, and all officials responsible provided written informed consent, in accordance with the Declaration of Helsinki of 1975, as revised in 2000.

Laboratory Methods
Clinical laboratory analyses were performed in the Clinical Analyses Laboratory of the PHAR-UFBA and the Pathology and Molecular Biology Laboratory of the Centro de Pesquisas Goncalo Moniz da Fundação de Pesquisa Oswaldo Cruz. Biochemical markers analyses were measured in serum by immunochemistry assay (A25 system, BIOSYSTEMS SA, Barcelona, Spain). Serum ferritin was measured by immunoassay using an Access® 2 Immunoassay system X2 (Beckman Coulter, Fullerton, CA). C-reactive protein (CRP), alpha 1-antitripsin (A1AT) and antistreptolysin-O (ASO) were measured by immunochemistry (Immage® 800 system, Beckman Coulter, Fullerton, CA). Hematological analyses were carried out using an electronic cell counter, Coulter Count T-890 (Coulter Corporation, FL, USA). The hemoglobin (Hb) profile and Hbf levels were investigated by high performance liquid chromatography (HPLC/VARIANT I; BIO-RAD, CA, USA).

Definition of Clinical Events
Clinical data were collected from patient medical records. Demographic data were provided by interviews with patients and parents or guardians. Eligibility criteria included only SCD patients of pediatric age. All patients were in the steady-state of the disease when samples were collected; steady-state was characterized as a period without any acute events and no blood transfusion for 120 days prior to blood sampling. Exclusion criteria included infection or inflammatory episodes and previous blood transfusion (within four months prior to the study). To identify possible associations between HDL-C levels and clinical characteristics in SCD we assessed medical history from patients’ records, including prevalence of stroke, number of hospitalizations, painful episodes, VOE, infection, pneumonia, priapism, splenomegaly, splenic sequestration, leg ulcers, cardiac...
abnormalities, respiratory insufficiency and cholelithiasis. Pneumonia was defined as an acute infection of the lung by virus, bacteria or atypical organisms with a clinical outcome that did not meet the criteria for ACS [8].

Statistical analysis

Baseline characteristics were summarized as means and proportions of selected variables. Distribution of quantitative variables was determined using the Kolmogorov-Smirnov test. Mean values of quantitative variables between groups were compared using the unpaired t-test for normal data distribution and Mann-Whitney for non-normal data. Bivariate correlation analyses were carried out to determine correlations between pairs of variables using Pearson’s and Spearman’s rank correlation (R). The nonparametric Kruskal-Wallis test was used to compare means among two or more groups as measured by interval variables. The level of 40 mg/dl was considered as a reference range and interactions between low HDL-C (less than 40 mg/dl) and high HDL-C (at least 40 mg/dl) and baseline characteristics were evaluated using independent t-test and Mann-Whitney tests. The interactions between low HDL-C (less than 40 mg/dl) and high HDL-C (at least 40 mg/dl) and specific categorical clinical variables were tested for significance using a χ² test or Fisher’s exact test, taking into account the expected frequency in the cell tables. All tests were considered significant if p values were less than .05. Data analyses were performed using Prism 5.01 (Graphpad Software, San Diego, CA), EPIinfo 6.04 (CDC, Atlanta, Georgia) and STATA SE 10 software (StataCorp, Texas, USA).

Results

First of all we compared the analyses of markers of intravascular hemolysis, hemolysis and hepatic involvement, leukocyte and platelet counts, renal involvement, lipid metabolism, inflammation and Hb profile in order to establish how much are the difference between those markers between control and patients groups (Table 1).

HDL-C association with markers of hemolysis, inflammation and vascular dysfunction

The high-density lipoprotein cholesterol was positively correlated with red blood cells (RBC), Hb, hematocrit and total cholesterol and urea concentrations and negatively correlated with hematomteric indexes of mean cell volume (MCV), mean cell hemoglobin (MCH) and mean cell hemoglobin concentration (MCHC); reticulocytes, hemoglobin S (HbS), hemolysis and hepatic markers, total leukocytes, monocytes and platelets, alanine aminotransferase (ALT), iron and A1AT. However, it was not correlated with LDL-C. Steady state triglycerides were negatively correlated with RBC, Hb, hematocrit and HDL-C, and positively correlated with HbS, LDH, AST, total bilirubin, platelet, total protein, total cholesterol, and VLDL-C (Table 2).

We next determined whether the levels of HDL-C in SCD group (HDL-C less than 40 mg/dl vs. 40 mg/dl or more) showed difference among the laboratorial markers. In the first group, there were 80 HBSS and 23 HBSC patients, and in the second group, there were 23 HBSS and 25 HBSC patients. Sickle cell patients with low HDL-C presented lower RBC counts as well as Hb and hematocrit concentrations than patients from the group with normal HDL-C levels. The low concentration HDL-C group had higher erythroblast, leukocyte, platelet, neutrophil, monocyte and reticulocyte counts and higher iron, AST, total bilirubin, direct bilirubin, indirect bilirubin, LDH and A1AT concentrations. There was no difference in LDL-C concentration between the two HDL-C subgroups, but the VLDL-C and triglycerides concentrations were higher in the low HDL-C group (Table 3).

Association of HDL-C with sickle cell disease clinical history

We assessed possible associations between HDL-C levels and a series of clinical characteristics in SCD medical history, including prevalence of stroke, number of hospitalizations, painful episodes, VOE, infection, pneumonia, priapism, splenomegaly, splenic sequestration, leg ulcers, cardiac abnormalities, respiratory insufficiency and cholelithiasis. To compare these categorical variables with HDL-C concentration, we divided patients into two groups. The low HDL-C group (less than 40 mg/dl) comprised 103 sickle cell disease patients (80 HBSS and 23 HBSC), with an HDL-C range of 16-39 mg/dl and mean of 28.95 mg/dl. The high HDL-C group (at least 40 mg/dl) comprised 48 SCD patients (23 HBSS and 25 HBSC), with an HDL-C range of 41-85 mg/dl and mean of 51.2 mg/dl.

The prevalence of pneumonia (OR = 2.42, 95%CI: 1.06-5.53; P = 0.033) and the prevalence of cardiac abnormalities (OR = 2.88, 95%CI: 1.12-7.59, P = 0.025) were significantly different between the HDL-C groups. Forty-one children in the low HDL-C group had cardiac abnormalities typical of hemolytic anemia on auscultation. However, among these, 24 had electrocardiograph arrhythmia, and 3 had tricuspid regurgitant jet velocity of at least 2.6 m/sec, indicating a possible presence of pulmonary hypertension. These results were obtained from previously performed echocardiograms that were not preformed at the same time of the present study. The low HDL-C concentration group underwent more blood transfusions (OR = 2.52, 95%CI: 1.11-5.77, P = 0.025).
Table 1 Patient and control group characteristics

Characteristics	Patients	N	Mean ± SD	Controls	N	Mean ± SD	p
Age (Years)	152	9.2 ± 4.0	132	8.7 ± 3.2			
Gender							
Male	82	53.9*	68	51.5*			
Female	70	46.1*	64	48.5*			
Hemoglobins							
AA	–	–	132	100.0			
SS	103	67.8	–	–			
SC	48	31.5	–	–			
SD	01	0.7	–	–			
Hemoglobin Fetal (%)	142	7.51 ± 6.20	130	0.47 ± 0.46	<0.001		
Hemolysis							
RBC (x 10^6/cu mm)	152	3.24 ± 0.97	131	4.74 ± 0.39	<0.001		
Hemoglobin (g/dL)	152	8.93 ± 2.01	131	12.83 ± 1.03	<0.001		
Hematocrit (%)	152	27.65 ± 6.20	131	38.47 ± 2.78	<0.001		
Mean Cell Volume (fL)	152	87.44 ± 10.85	131	81.37 ± 5.16	<0.001		
Mean Cell Hemoglobin (pg)	152	28.29 ± 3.73	131	27.14 ± 1.95	0.007		
Reticulocyte Count (%)	140	7.61 ± 4.88	122	0.846 ± 0.256	<0.001		
Leukocytes							
Leukocyte Count (x 10^9/L)	152	13.1 ± 5.8	131	7.0 ± 2.2	<0.001		
Neutrophil Count (x 10^9/L)	152	6161.72 ± 3779.49	131	3240.32 ± 1686.15	<0.001		
Monocyte Count (x 10^9/L)	152	817.15 ± 481.83	131	488.67 ± 204.90	<0.001		
Platelets							
Platelet Count (x 10^9/L)	152	403.93 ± 158.66	131	308.21 ± 67.35	<0.001		
Lipid metabolism							
Total Cholesterol (mg/dL)	151	121.12 ± 26.16	124	164.08 ± 34.55	<0.001		
HDL Cholesterol (mg/dL)	151	35.65 ± 12.34	123	48.90 ± 13.67	<0.001		
LDL Cholesterol (mg/dL)	151	64.95 ± 22.19	123	97.41 ± 33.54	<0.001		
VLDL Cholesterol (mg/dL)	151	20.44 ± 9.38	123	17.75 ± 10.37	<0.001		
Triglycerides (mg/dL)	150	102.07 ± 46.86	123	88.31 ± 51.73	0.002		
Hemolysis plus Hepatic							
Aspartate aminotransferase (U/L)	152	48.05 ± 24.92	122	30.28 ± 11.13	<0.001		
Total bilirubin (mg/dL)	151	2.73 ± 1.76	118	0.49 ± 0.21	<0.001		
Direct bilirubin (mg/dL)	151	0.66 ± 0.46	118	0.250 ± 0.082	<0.001		
Indirect bilirubin (mg/dL)	151	2.08 ± 1.59	118	0.244 ± 0.182	<0.001		
Iron serum (mcg/dL)	126	123.40 ± 119.94	119	71.14 ± 40.31	<0.001		
Lactate dehydrogenase(U/L)	151	858.22 ± 503.81	119	406.27 ± 132.03	<0.001		
Hepatic							
Alanine aminotransferase (U/L)	152	28.25 ± 21.34	121	17.36 ± 7.10	<0.001		
Total protein (g/dL)	151	7.33 ± 0.848	119	7.31 ± 0.62	0.695		
Albumin (g/dL)	151	4.07 ± 0.675	119	4.24 ± 0.49	0.249		
Globulin (g/dL)	151	3.26 ± 0.781	119	3.06 ± 0.63	0.109		
Albumin/Globulin ratio	151	1.35 ± 0.54	112	1.44 ± 0.42	0.289		
Renal							
Urea nitrogen (mg/dL)	150	17.73 ± 6.41	120	21.65 ± 5.92	<0.001		
Creatinine (mg/dL)	151	0.51 ± 0.50	120	0.523 ± 0.185	0.708		
Inflammation							
C-reactive protein (mg/L)	148	7.08 ± 11.97	102	2.01 ± 2.29	<0.001		
Alpha 1-antitrypsin (mg/dL)	151	152.50 ± 46.18	129	137.48 ± 43.36	0.013		
Ferritin (ng/mL)	152	313.32 ± 361.44	117	37.29 ± 28.28	<0.001		
Antistreptolysin-O(UI/mL)	148	192.70 ± 285.42	101	132.75 ± 131.19	0.181		

* percentage Mann-Whitney test
Table 2 Laboratory value associations with HDL-C and Triglycerides in sickle cell disease

	HDL Cholesterol (mg/dL)	Triglycerides (mg/dL)		
	r	p	r	p
Hemoglobin				
S hemoglobin (%)	-0.311	0.002	0.286	0.005
Fetal hemoglobin (%)	-0.048	0.644	-0.685	0.685
Homolysis				
RBC (×10^6/cu mm)	0.328	<0.001	-0.190	0.019
Hemoglobin (g/dL)	0.292	<0.001	-0.202	0.013
Hematocrit (%)	0.309	<0.001	-0.189	0.020
Mean Cell Volume (fL)	-0.273	<0.001	0.006	0.126
Mean Cell Hemoglobin (pg)	-0.284	0.002	0.111	0.175
Reticulocyte Count (%)	-0.170	0.046	0.082	0.339
Leukocyte				
Leukocyte count (×10^9/L)	-0.198	0.015	0.081	0.325
Neutrophil count (×10^9/L)	0.017	0.838	-0.154	0.061
Monocyte count (×10^9/L)	-0.234	0.004	0.139	0.089
Platelets				
Platelet count (×10^9/L)	-0.228	0.005	0.233	0.004
Hemolysis plus Hepatic				
Aspartate aminotransferase (U/L)	-0.235	0.004	0.207	0.011
Total bilirubin (mg/dL)	-0.298	<0.001	0.165	0.044
Direct bilirubin (mg/dL)	-0.471	<0.001	0.035	0.669
Indirect bilirubin (mg/dL)	-0.287	<0.001	0.140	0.088
Iron Serum (mcg/dL)	-0.186	0.038	0.159	0.076
Lactate dehydrogenase (U/L)	-0.375	<0.001	0.167	0.041
Renal				
Urea nitrogen (mg/dL)	0.178	0.030	0.020	0.806
Creatinine (mg/dL)	0.118	0.152	0.105	0.201
Lipid metabolism				
Total Cholesterol (mg/dL)	0.299	<0.001	0.268	0.001
HDL Cholesterol (mg/dL)	-----	-----	-0.228	0.005
LDL Cholesterol (mg/dL)	-0.083	0.312	0.068	0.409
VLDL Cholesterol (mg/dL)	-0.242	0.003	0.998	<0.001
Triglycerides (mg/dL)	-0.228	0.005	-----	-----
Inflammation				
C-reactive protein (mg/L)	0.048	0.563	-0.031	0.714
Alpha 1 antitrypsin (mg/mL)	-0.327	<0.001	-0.074	0.378
Ferritin (ng/mL)	-0.032	0.699	0.102	0.220
Antistreptolysin O (U/mL)	-0.079	0.339	0.157	0.058

Spearman or Pearson correlation coefficients (r) and p values (p) * r =
Pearson correlation coefficient

Discussion

The present study analyzed levels of HDL-C in steady-state children with SCD. Children with SCD, even in steady-state, have differences in several biomarkers as compared to healthy age-matched children [13]. Those differences are related to numerous mechanisms associated with infection, inflammation and VOE in the disease [1,2]. Several biomarkers associated with hemolysis, inflammation, renal metabolism, hepatic metabolism, and lipid metabolism in children with SCD and healthy subjects were studied, and the findings of normal concentrations of protein and globulin as well as the albumin/globulin ratio among the SCD patients suggest an absence of early severe liver cell damage in the studied group [13]. Normal levels of creatinine in the patient group confirm previous observations that an increased rate of creatinine secretion by dysfunctional renal tubules may lead to a falsely normal plasma creatinine and creatinine clearance. A more accurate evaluation of different aspects of SCD nephropathy, emphasizing proteinuria and hyperfiltration, needs to be developed in children in order to detect early renal alteration [14-16].

Hypcholesterolemia has been described in SCD patients with significantly decreased LDL-C and HDL-C [17-22] and has been also described for our group as a potential biomarker for SCD clinical severity [23]. A negative association was found for HDL-C and VLDL-C, which was directly associated with triglycerides. Triglyceride-rich VLDL-C particles availability may play an important role in lipid oxidation in SCD patients. It has been suggested that VLDL-C is an important factor for atherosclerosis development. VLDL-C particles assemble by a complex process that includes an apolipoprotein B (apoB)-containing VLDL precursor and a VLDL-sized lipid droplet lacking apoB. Both particles fuse to produce a mature VLDL particle [24]. The increase of triglycerides probably contributes to an increase in the hepatic production of VLDL-C, increasing the number of receptors for LDL-C that is extensively metabolized, decreasing its serum levels. However, the role of cholesterol and triglycerides and the regulation of assembly and production of VLDL-C are poorly understood.

A negative association was observed between LDH and HDL-C, showing that HDL-C, as measured by its
Table 3 Laboratory values for sickle cell disease patients with different steady-state levels of HDL-C

	HDL less than 40 mg/dL	***HDL at least 40 mg/dL**	**p**		
	N	Mean ± SD	N	Mean ± SD	
Hemolysis					
RBC (× 10^6/cu mm L)	103	3.01 ± 0.85	48	3.75 ± 1.0	<0.001
Hemoglobin (g/dL)	103	8.57 ± 2.02	48	9.76 ± 1.75	0.001
Hematocrit (%)	103	26.42 ± 6.17	48	30.43 ± 5.37	<0.001
Mean Cell Volume (fL)	103	89.17 ± 10.34	48	83.52 ± 11.01	0.003
Mean Cell Hemoglobin (pg)	103	28.94 ± 3.52	48	26.82 ± 3.79	0.001
Mean Cell Hemoglobin Concentration (%)	103	32.44 ± 0.96	48	32.07 ± 0.86	0.025
Erythroblast (%)	103	1.90 ± 2.31	48	1.02 ± 2.48	0.034
Reticulocyte count (%)	97	8.34 ± 4.55	42	5.90 ± 5.25	0.006
Hemoglobin					
S hemoglobin (%)	97	79.22 ± 16.16	44	60.75 ± 18.22	<0.001
Fetal hemoglobin (%)	97	7.55 ± 5.99	44	7.41 ± 6.78	0.899
Leukocyte					
Leukocyte Count (× 10^9/L)	103	14105.83 ± 6085.37	48	10668.75 ± 4416.13	0.001
Neutrophil Count (× 10^9/L)	103	6723.36 ± 4167.75	48	4971.83 ± 2459.10	0.002
Monocyte Count (× 10^9/L)	103	910.35 ± 499.84	48	604.69 ± 361.83	0.004
Platelets					
Platelet Count (× 10^9/L)	103	424.90 ± 160.26	48	357.69 ± 148.02	0.015
Hemolysis plus Hepatic					
Aspartate aminotransferase (U/L)	103	51.45 ± 26.29	48	40.65 ± 20.32	0.013
Total bilirubin (mg/dL)	103	3.13 ± 1.82	48	1.88 ± 1.25	<0.001
Direct bilirubin (mg/dL)	103	0.79 ± 0.47	48	0.38 ± 0.25	<0.001
Indirect bilirubin (mg/dL)	103	2.34 ± 1.68	48	1.50 ± 1.20	0.002
Iron serum (mcg/dL)	95	136.65 ± 133.77	31	82.77 ± 40.17	0.029
Lactate dehydrogenase (U/L)	103	977.19 ± 524.50	48	602.92 ± 339.59	<0.001
Lipid metabolism					
Total Cholesterol (mg/dL)	103	116.49 ± 25.17	48	131.06 ± 25.73	0.001
LDL Cholesterol (mg/dL)	103	65.78 ± 21.47	48	63.19 ± 23.81	0.506
VLDL Cholesterol (mg/dL)	103	21.62 ± 10.31	48	17.90 ± 6.38	0.023
Triglycerides (mg/dL)	102	107.74 ± 51.64	48	90.02 ± 31.86	0.030
Hepatic					
Alanine aminotransferase (U/L)	103	29.90 ± 22.10	48	24.58 ± 19.56	0.156
Total protein (g/dL)	103	7.40 ± 8.9	48	7.46 ± 8.2	0.684
Albumin (g/dL)	103	4.01 ± 7.5	48	4.23 ± 5.9	0.054
Globulin (g/dL)	103	3.36 ± 8.5	48	3.23 ± 7.2	0.333
Albumin/Globulin ratio	103	1.34 ± 5.5	48	1.38 ± 5.3	0.709
Renal					
Urea nitrogen (mg/dL)	102	17.25 ± 6.70	47	18.77 ± 5.73	0.181
Creatinine (mg/dL)	103	0.49 ± 0.50	47	0.57 ± 0.50	0.315
Inflammation					
C-reactive protein (mg/L)	101	7.79 ± 14.02	46	5.39 ± 5.18	0.133
Alpha 1 antitrypsin (mg/dL)	102	163.13 ± 44.06	48	128.92 ± 42.13	<0.001
Ferritin (ng/mL)	103	300.76 ± 399.59	46	323.46 ± 348.87	0.740
Antistreptolysin O (UI/mL)	101	198.62 ± 288.98	46	183 ± 282.56	0.759

* unpaired t-test ** 80 HBSS and 23 HBSC *** 23 HBSS and 25 HBSC

Seixas et al. Lipids in Health and Disease 2010, 9:91
http://www.lipidworld.com/content/9/1/91
Page 6 of 9
concentration, may function as a prognostic marker of intravascular hemolysis and endothelial dysfunction given its anti-inflammatory, anti-oxidative, anti-aggregation, anti-coagulant and pro-fibrinolytic activities [25,26].

Sickle cell disease patients with higher HDL-C levels presented a low risk of hemolysis and endothelial dysfunction, including lower reticulocyte and erythroblast counts as well as a lower HbS concentration and it may be related to the high consumption of cholesterol due to acceleration of blood marrow cell production during hemolysis crisis. Sickle cell disease patients with higher HDL-C levels had lower leukocyte, monocyte and platelet counts as well as a lower concentration of hepatic and hemolytic markers and significantly lower VLDL-C, triglycerides and A1AT concentrations; this may reflect the action of the anti-inflammatory and anti-oxidative properties of this biomarker [25,26]. The high-density lipoprotein cholesterol removes excess cholesterol from peripheral tissues and transports it to the liver for excretion via bile by reverse cholesterol transport. The high-density lipoprotein is made up of several particles with different composition and function [24,27,28].

Further confirmation of these associations came from comparing HDL-C concentrations and patients’ clinical records, which revealed a higher occurrence of pneumonia and cardiac abnormalities among those with lower HDL-C levels. The results related to pneumonia risk can be explained by the production of auto-antibodies specific to oxidized phospholipids; these auto-antibodies have been shown to inhibit macrophage uptake of oxidized LDL and to provide protection against virulent pneumococcal infection [29]. Low levels of HDL-C are an important cardiovascular risk factor, and HDL-C and apoA-1 have been shown to decrease lesions and improve vascular reactivity in animal models of atherosclerosis and in humans; these changes may be due to the reduction of oxidized lipids and the enhancement of reverse cholesterol transport [30]. The presence of pulmonary hypertension was shown to be associated with several laboratory test alterations [31]. Recent study has also demonstrated the important role of the apolipoprotein pathway and its association with endothelial dysfunction in SCD patients with pulmonary hypertension [31].

Patients with lower HDL-C levels were also likely to have had more blood transfusions; this can be linked with a more severe clinical course of disease, once that it is a therapeutic strategy used to prevent several clinical symptoms, such as stroke [1].

It is well known that gallstones in patients with hemolytic anemia are said to be calcium bilirubinate stones. In view our results of correlation of cholesterol and triglycerides with hemolysis, we propose that the stones in SCD patients could be related directly to hemolysis and bilirubin generation, and indirectly to cholesterol and lipids and it could be a novel observation and needs to be confirmed by further studies. The association of acute-phase proteins and cholelithiasis may be explained by the response to stress due to traumatic injury or infection-related mechanisms including hypermetabolism and protein catabolism associated with a cytokine-driven inflammatory response.

Conclusions
In conclusion, we hypothesize that some SCD patients can have a specific dyslipidemic subphenotype characterized by low HDL-C with hypertriglyceridemia and high VLDL-C in association with other biomarkers, including those related to inflammation. This represents an important step toward a more reliable clinical...
prognosis. Additional studies are warranted to test this hypothesis and the probably mechanisms involved in this complex network of markers and their role in SCD pathogenesis.

Acknowledgements
The authors would like to thank the subjects from HEMOBA and PHAR-UFBH who participated in the study. They are also grateful for the expertise provided by the staff of FIOCRUZ, HEMOBA and PHAR-UFBH. This work was supported by grants from the Brazilian National Council of Research (CNPq) (306542/2007-5 and 484457/2007-1) (M.S.G.); the Foundation of Research and Extension of Bahia (FAPESB) (1431040053063 and 9073/2007) (M.S.G.); the Foundation of Research and Extension of Bahia (FAPESB) (3065427/2006-6) (M.S.G.); and Coordination of Improvement of Higher Education Personnel (CAPES) (139800/2006-8) (M.S.G.). The sponsors of this study are public or nonprofit organizations that support science in general. They had no role in gathering analyzing, or interpreting the data.

Author details
1Laboratório de Patologia e Biologia Molecular, Centro de Pesquisa Gonçalo Moniz, Fundação de Pesquisa Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil. 2Departamento de Análises Clínicas e Toxcológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Bahia, Brazil. 3Fundação de Hematologia e Hemoterapia do Estado da Bahia (HEMOBA), Salvador, Bahia, Brazil. 4Hospital Pediátrico Professor Hoisannah de Oliveira, Universidade Federal da Bahia, Salvador, Bahia, Brazil.

Authors’ contributions
MOS performed experiments and analyzed the results; LR, MBC, JM, ROC, and AMA performed experiments; IML, VMLN and LR performed clinical evaluation of patients; MGR analyzed the results; and MSG was the principal investigator and takes primary responsibility for the paper, designed the research, analyzed the results and wrote the paper. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 12 July 2010 Accepted: 27 August 2010
Published: 27 August 2010

References
1. Ohene-Frempong K, Steinberg MH: Clinical Aspects of sickle cell anemia in adults and children. In Disorders of Hemoglobin: Genetics, In Pathophysiology, and Clinical Management. Edited by: Steinberg MH, Forget BG, Higgs DR, Nagel RL. New York: Cambridge University Press; 2001:161-70.
2. Stuart MJ, Nagel RL: Sickle cell disease. Lancet 2004, 364:1543-60.
3. Nagel RL, Platt OS: General pathophysiology of sickle cell anemia. In Disorders of Hemoglobin: Genetics, In Pathophysiology, and Clinical Management. Edited by: Steinberg MH, Forget BG, Higgs DR, Nagel RL. New York: Cambridge University Press; 2001:494-526.
4. Sebastiani P, Nolan VG, Baldwin CT, Abad-Grau MM, Wang L, Adewoye AH, McMahon LC, Farrer LA, Taylor JG, Kato GJ, Gladwin MT, Steinberg MH: A network model to predict the risk of death in sickle cell disease. Blood 2007, 110:2727-2733.
5. Okpala I: The intriguing contribution of white blood cells to sickle cell disease- a red cell disorder. Blood Reviews 2004, 18:65-73.
6. Telen MJ: Role of adhesion molecules and vascular endothelium in the pathogenesis of sickle cell disease. Hematology Am Soc of Hematol Educ Program 2007, 2007:54-90.
7. Villagia J, Shiwa S, Hunter LA, Machado RF, Gladwin MT, Kato GJ: Platelet activation in patients with sickle cell disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood 2007, 110:2166-2172.
8. Johnson C, Telen MJ: Adhesion molecule and hydroxyurea in the pathophysiology of sickle cell disease. Hematology 2008, 93:481-486.
9. Gladwin MT, Crawford JH, Patel RP. Serial review: Biomedical implications for hemoglobin interactions with nitric oxide. Free Radical Biology & Medicine 2003, 36:707-717.
10. Kato GJ, McGowan V, Machado RF, Little JA, Taylor J, Morris CR, Nichols JS, Wang X, Poljakovic M, Morris SM Jr, Gladwin MT: Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood 2006, 107:2279-2285.
11. O’Discoll S, Height SE, Dick MC, Rees DC: Serum lactate dehydrogenase activity as a biomarker in children with sickle cell disease. Br J Haematol 2007, 140:306-309.
12. Azevedo ES: Subgroup studies of black admixture within a mixed population of Bahia, Brazil. Ann Hum Genet 1980, 44:55-60.
13. Ischei UP: Liver function and the diagnosis significance of biochemical changes in the blood of African children with sickle cell disease. J Clin Pathol 1980, 33:626-630.
14. Skalar AH, Campbell H, Caruana LRJ, Lightfoot BO, Gaier JG, Milner P: A population study of renal function in sickle cell anemia. Int J Antf Organs 1990, 13:231-236.
15. Skalar AH, Perez JC, Haap RJ, Caruana LRJ: Acute renal failure in sickle cell anemia. Int J Antf Organs 1990, 13:347-351.
16. Marouf R, Mosimjini O, Abdella N, Kortom M, Al Wazzan H: Comparison of renal function markers in Kuwaiti patients with sickle cell disease. J Clin Pathol 2006, 59:345-351.
17. Sasaki J, Waterman MR, Buchanan GR, Cottam GL: Plasma and erythrocyte lipids in sickle cell anemia. Clin Lab Haematol 1983, 5:35-44.
18. Vanderlaet DJ, Huang YS, Chuang LT: Phase angle and n-3 polyunsaturated fatty acids in sickle cell disease. Arch Dis Child 2002, 87:253-254.
19. Vanderlaet DJ, Shores J, Okoroduodu A, Okolo SN, Giek RH: Hypocholesterololemia in Nigerian children with sickle cell disease. J Trop Pediatr 2002, 48:156-161.
20. Shores J, Peter son J, Vanderlaet D, Gless RH: Reduced cholesterol levels in African-American adults with sickle cell disease. J Natl Med Assoc 2003, 95:813-817.
21. Dpumpsess S, Zekegin L, Lando G, Zekegm D: Serum lipids and atherogenic risk in sickle- cell trait carriers. Afr J Biomed 1994, 52:663-665.
22. Zorca S, Freeman L, Hildesheim M, Allen D, Remaley AT, Taylor JG, Kato GJ: Lipid levels in sickle-cell disease associated with haemolytic severity, vascular dysfunction and pulmonary hypertension. Br J Haematol 2010, 149:436-45.
23. Magda Oliveira Seixas, Larissa Rocha, Mauricio Carvalho, Joelma Menezes, Isa Lyra, Valma Nascimento, Ricardo Couto, Ajax Atta, Mitermayer Galvão Reis, Marilda Souza Goncalves: Lipoprotein Cholesterol and Triglycerides in Children with steady-state sickle cell anemia (Abstract). Blood 2009, 114:1547.
24. Prinsen BHCMT, Romijy JA, Bischop PH: Endogenous cholesterol synthesis is associated with VLDL-2 apo-a1000 production in healthy humans. J Lipid Res 2003, 44:1341-1348.
25. Nofer JR, Kehehl B, Fokker M, Levka 1. B, Assmann G, von Eckardstein A: HDL artherosclerosis: beyond reverse cholesterol transport. Atherosclerosis 2002, 161:1-16.
26. Fredrichs A, Bayer P: Reverse cholesterol transport, high density lipoproteins and HDL cholesterol: recent data. Diabetes Metab 2003, 29:201-205.
27. Miyazaki O, Fukamavhi I, Moro A: Formation of preβ1-HDL during lipolysis of triglyceride-rich lipoprotein. Biochem Biophys Res Commun 2009, 379:55-59.
28. Pearson T, Watsis JA, O’Malley B: Mathematical modeling of competitive LDL/VLDL binding and update by hepatocytes. J Math Biol 2009, 58:845-880.
29. Navab M, Berliner JA, Subbanagounder G, Hama S, Luis AJ, Castellani LW, Reddy S, Shih D, Shi W, Watson AD, Van Lenten BJ, Vora D, Fogelman AM: HDL and inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol 2001, 21:481-488.
30. Navab M, Ananthramaiah GM, Reddy ST. The oxidation hypothesis hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 2004, 45:9932-1007.
31. Minniti CP, Sable C, Campbell A, Rana S, Ensing G, Dham N, Onyekwere O, Nouriaie M, Kato GJ, Gladwin MT, Castro OL, Gordeuk VR. Elevated tricuspid regurgitant jet velocity in children and adolescents with sickle cell disease: association with hemolysis and hemoglobin oxygen desaturation. Haematologica 2009, 94:340-347.

doi:10.1186/1476-511X-9-91
Cite this article as: Seixas et al. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease. Lipids in Health and Disease 2010 9:91.