w-DIVISORIAL DOMAINS

SAID EL BAGHDADI AND STEFANIA GABELLI

Abstract. We study the class of domains in which each **w**-ideal is divisorial, extending several properties of divisorial and totally divisorial domains to a much wider class of domains. In particular we consider **PvMDs** and Mori domains.

Introduction

The class of domains in which each nonzero ideal is divisorial has been studied, independently and with different methods, by H. Bass [2], E. Matlis [25] and W. Heinzer [17] in the sixties. Following S. Bazzoni and L. Salce [3, 4], these domains are now called divisorial domains. Among other results, Heinzer proved that an integrally closed domain is divisorial if and only if it is a Prüfer domain with certain finiteness properties [17, Theorem 5.1].

Twenty years later E. Houston and M. Zafrullah introduced in [20] the class of domains in which each **t**-ideal is divisorial, which they called TV-domains, and characterized **PvMDs** with this property [20, Theorem 3.1]. However they observed that an integrally closed TV-domain need not be a **PvMD** [20, Remark 3.2]; thus in some sense the class of TV-domains is not the right setting for extending to **PvMDs** the properties of divisorial Prüfer domains.

The purpose of this paper is to investigate **w**-divisorial domains, that is domains in which each **w**-ideal is divisorial. This class of domains proves to be the most suitable **t**-analogue of divisorial domains. In fact, by using this concept we are able to improve and generalize several results proved for Noetherian and Prüfer divisorial domains in [3, 17, 28, 31].

The main result of Section 1 is Theorem 1.5. It states that **R** is a **w**-divisorial domain if and only if **R** is a weakly Matlis domain (that is a domain with **t**-finite character such that each **t**-prime ideal is contained in a unique **t**-maximal ideal) and **R**

M is a divisorial domain, for each **t**-maximal ideal **M**. In this way we recover the characterization of divisorial domains given in [3, Proposition 5.4].

In Section 2, we study the transfer of the properties of **w**-divisoriality and divisoriality to certain (generalized) rings of fractions, such as localizations at (**t**-)prime ideals, (**t**-)flat overrings and (**t**-)subintersections.

In Section 3 we consider **w**-divisorial **PvMDs**. We prove that **R** is an integrally closed **w**-divisorial domain if and only if **R** is a weakly Matlis **PvMD** and each **t**-maximal ideal is **t**-invertible (Theorem 3.3). This is the **t**-analogue of [17, Theorem 5.1]. We also prove that when **R** is integrally closed, each **t**-linked overring of **R** is **w**-divisorial if and only if **R** is a generalized Krull domain and each **t**-prime ideal is contained in a unique **t**-maximal ideal (Theorem 3.5). Since in the Prüfer case generalized Krull domains coincide with generalized Dedekind domains [4], we obtain that an integrally closed domain is totally divisorial if and only if it is a divisorial generalized Dedekind domain [28, Section 4].

1991 Mathematics Subject Classification. Primary: 13A15; Secondary: 13F05.

Key words and phrases. Divisorial domains, Prüfer v-multiplication domains, Mori domains.
The last section is devoted to Mori \(w \)-divisorial domains. A Mori \(w \)-divisorial domain is necessarily of \(t \)-dimension one and each of its localizations at a height-one prime is Noetherian (Corollary \[4.3\]). Noetherian divisorial and totally divisorial domains were intensely studied in \[3\] \[2\] \[23\] \[31\]. It turns out that several of the results proved there can be extended to the Mori case by using different technical tools. In Theorem \[4.2\] we characterize \(w \)-divisorial Mori domains and in Theorems \[4.5\] and \[4.11\] we study \(w \)-divisoriality of their overrings. In particular, we show that generalized rings of fractions of \(w \)-divisorial Mori domains are \(w \)-divisorial and we prove that a domain whose \(t \)-linked overrings are all \(w \)-divisorial is Mori if and only if it has \(t \)-dimension one.

We thank the referee for his/her careful reading and relevant observations.

Throughout this paper \(R \) will denote an integral domain with quotient field \(K \) and we will assume that \(R \neq K \).

We shall use the language of star-operations. A \textit{star operation} is a map \(I \to I^* \) from the set \(F(R) \) of nonzero fractional ideals of \(R \) to itself such that:

1. \(R^* = R \) and \((aI)^* = aI^*\), for all \(a \in K \setminus \{0\} \);
2. \(I \subseteq I^* \) and \(I \subseteq J \Rightarrow I^* \subseteq J^* \);
3. \(I^{**} = I^* \).

General references for systems of ideals and star operations are \[13\] \[15\] \[16\] \[21\].

A star operation \(* \) is of \textit{finite type} if \(I^* = \bigcup \{J^*: J \subseteq I \text{ and } J \text{ is finitely generated}\} \), for each \(I \in F(R) \). To any star operation \(* \), we can associate a star operation \(f \) of finite type by defining \(I^{*f} = \bigcup J^* \), with the union taken over all finitely generated ideals \(J \) contained in \(I \). Clearly \(I^{*f} \subseteq I^* \). A nonzero ideal \(I \) is \(* \)-\textit{finite} if \(I^* = J^* \) for some finitely generated ideal \(J \).

The identity is a star operation, called the \textit{d-operation}. The \(v \)- and the \(t \)-operations are the best known nontrivial star operations and are defined in the following way. For a pair of nonzero ideals \(I \) and \(J \) of a domain \(R \) we let \((J: I) \) denote the set \(\{x \in K : xI \subseteq J\} \). We set \(I_v = (R: (R: I)) \) and \(I_t = \bigcup J_v \) with the union taken over all finitely generated ideals \(J \) contained in \(I \). Thus the \(t \)-operation is the finite type star operation associated to the \(v \)-operation.

A nonzero fractional ideal \(I \) is called a \(* \)-\textit{ideal} if \(I = I^* \). If \(I = I_v \), we say that \(I \) is \textit{divisorial}. For each star operation \(* \), we have \(I^* \subseteq I_v \), thus each divisorial ideal is a \(* \)-ideal.

The set \(F_*(R) \) of \(* \)-ideals of \(R \) is a semigroup with respect to the \(* \)-\textit{multiplication}, defined by \((I, J) \to (IJ)^* \), with unity \(R \). We say that an ideal \(I \in F(R) \) is \(* \)-\textit{invertible} if \(I^* \) is a unit in the semigroup \(F_*(R) \). In this case the \(* \)-\textit{inverse} of \(I \) is \((R : I) \). Thus \(I \) is \(* \)-invertible if and only if \((I(R : I))^* = R \). Invertible ideals are \((\ast \text{-invertible}) \) \(* \)-ideals.

A prime \(* \)-ideal is also called a \(* \)-\textit{prime}. A \(* \)-\textit{maximal} ideal is an ideal that is maximal in the set of the proper \(* \)-ideals. A \(* \)-maximal ideal (if it exists) is a prime ideal. If \(* \) is a star operation of finite type, an easy application of Zorn’s Lemma shows that the set \(\ast\text{-Max}(R) \) of the \(* \)-maximal ideals of \(R \) is not empty. Moreover, for each \(I \in F(R) \), \(I^* = \cap_{M \in \ast\text{-Max}(R)} I^*R_M \); in particular \(R = \cap_{M \in \ast\text{-Max}(R)} R_M \) \[15\].

The \(w \)-operation is the star operation defined by setting \(I_w = \cap_{M \in \ast\text{-Max}(R)} IR_M \). An equivalent definition is obtained by setting \(I_w = \cup \{I : J \subseteq J \text{ is finitely generated} \} \). By using the latter definition, one can see that the notion of \(w \)-ideal coincides with the notion of \textit{semi-divisorial} ideal introduced by S. Glaz and W. Vasconcelos in 1977 \[13\]. As a star-operation, the \(w \)-operation was first considered by E. Hedstrom and E. Houston in 1980 under the name of \(F_{\infty} \)-operation \[18\]. Since 1997 this star operation was intensely studied by Wang Fanggui and R.
McCasland in a more general context. In particular they showed that the notion of w-closure is a very useful tool in the study of Strong Mori domains [32, 33].

The w-operation is of finite type. We have w-$\text{Max}(R) = t$-$\text{Max}(R)$ and $IR_M = I_w R_M \subseteq I_t R_M$, for each $I \in F(R)$ and $M \in t$-$\text{Max}(R)$. Thus $I_w \subseteq I_t \subseteq I_v$.

We denote by t-$\text{Spec}(R)$ the set of t-prime ideals of R. Each height one prime is a t-prime and each prime minimal over a t-ideal is a t-prime. We say that R has t-dimension one if each t-prime ideal has height one.

1. w-Divisorial Domains

A divisorial domain is a domain such that each ideal is divisorial [8] and we say that a domain R is w-divisorial if each w-ideal is divisorial, that is $w = v$. Since $I_w \subseteq I_t \subseteq I_v$, for each nonzero fractional ideal I, then R is w-divisorial if and only if $w = t = v$. A domain with the property that $t = v$ is called in [20] a TV-domain. Mori domains (i.e., domains satisfying the ascending chain condition on proper divisorial ideals) are TV-domains. A domain such that $w = t$ is called a TW-domain [27]. An important class of TW-domains is the class of $PrvMD$s; in fact a $PrvMD$ is precisely an integrally closed TW-domain [22, Theorem 3.1].

(Recall that a domain R is a Prüfer v-multiplication domain, for short a $PrvMD$, if R_{max} is a valuation domain for each t-maximal ideal M of R.) Since a Krull domain is a Mori $PrvMD$, a Krull domain is a w-divisorial domain. An example due to M. Zafrullah shows that in general $w \neq t \neq v$ [27, Proposition 1.2]. Also there exist TV-domains and TW-domains that are not w-divisorial [27, Example 2.7].

If R is a Prüfer domain, in particular a valuation domain, then w-divisoriality coincides with divisoriality, because each ideal of a Prüfer domain is a t-ideal.

Proposition 1.1. A w-divisorial domain R is divisorial if and only if each maximal ideal of R is a t-ideal. Hence a one-dimensional w-divisorial domain is divisorial.

Proof. If each maximal ideal of R is a t-ideal, then each ideal of R is a w-ideal by [27, Proposition 1.3]. Hence, if R is w-divisorial it is also divisorial. The converse is clear.

Following [11], we say that a nonempty family Λ of nonzero prime ideals of R is of finite character if each nonzero element of R belongs to at most finitely many members of Λ and we say that Λ is independent if no two members of Λ contain a common nonzero prime ideal. We observe that a family of primes is independent if and only if no two members of Λ contain a common t-prime ideal. In fact a minimal prime of a nonzero principal ideal is a t-ideal.

The domain R has finite character (resp., t-finite character) if $\text{Max}(R)$ (resp., t-$\text{Max}(R)$) is of finite character. If the set $\text{Max}(R)$ is independent of finite character, the domain R is called by E. Matlis an h-local domain [28]; thus R is h-local if it has finite character and each nonzero prime ideal is contained in a unique maximal ideal. A domain R such that t-$\text{Max}(R)$ is independent of finite character is called in [11] a weakly Matlis domain; hence R is a weakly Matlis domain if it has t-finite character and each t-prime ideal is contained in a unique t-maximal ideal.

Clearly, a domain of t-dimension one is a weakly Matlis domain if and only if it has t-finite character. A one-dimensional domain is a weakly Matlis domain if and only if it is h-local; if and only if it has finite character.

We recall that any TV-domain, hence any w-divisorial domain, has t-finite character by [20, Theorem 1.3]. The main result of this section shows that w-divisorial domains form a distinguished class of weakly Matlis domains.

We start by proving some technical properties of weakly Matlis domains.

Lemma 1.2. Let R be an integral domain. The following conditions are equivalent:
(1) \(R \) is a weakly Matlis domain;

(2) For each \(t \)-maximal ideal \(M \) of \(R \) and a collection \(\{I_\alpha\} \) of \(w \)-ideals of \(R \) such that \(\cap_\alpha I_\alpha \neq 0 \), if \(\cap_\alpha I_\alpha \subseteq M \), then \(I_\alpha \subseteq M \) for some \(\alpha \).

Proof. (1) \(\Rightarrow \) (2). First, we show that each \(t \)-prime ideal is contained in a unique \(t \)-maximal ideal. We adapt the proof of [17 Theorem 2.4]. Let \(P \) be a \(t \)-prime which is contained in two distinct \(t \)-maximal ideals \(M_1 \) and \(M_2 \). Let \(\{I_\alpha\} \) be the set of all \(w \)-ideals of \(R \) which contain \(P \) but are not contained in \(M_1 \). Such a collection is nonempty since \(M_2 \) is in it. Let \(I = \cap I_\alpha \). Then \(I \nsubseteq M_1 \) and \(I \subseteq M_2 \). Take \(x \in I \setminus M_1 \). Since \(x^2 \notin M_1 \), then \((P + x^2R)_w \in \{I_\alpha\} \) and so \(x \in (P + x^2R)_w \). Thus \(x \in (P + x^2R)R_{M_2} \notin R_{M_2} \), and \(sx = p + x^2r \) for some \(s \in R \setminus M_2 \), \(p \in P \) and \(r \in R \). Whence \((s - rx)x = p \in P \subseteq M_1 \cap M_2 \). Now \(s - rx \notin P \) because \(s \notin M_2 \) and \(rx \in I \subseteq M_2 \). But also \(x \notin P \), since \(x \notin M_1 \); a contradiction because \(P \) is prime.

Next we show that \(R \) has \(t \)-finite character. Let \(0 \neq x \in R \) and \(\{M_\beta\} \) be the set of all \(t \)-maximal ideals of \(R \) which contain \(x \). For a fixed \(\beta \), let \(A_\beta \) be the intersection of all \(w \)-ideals of \(R \) which contain \(x \) but are not contained in \(M_\beta \). By assumption \(A_\beta \nsubseteq M_\beta \). Set \(A = \sum_\beta A_\beta \). Then \(x \in A \) and \(A \) is contained in no \(M_\beta \). Hence \(A_\beta = R \). Let \(F = (a_{\beta_1}, a_{\beta_2}, \ldots, a_{\beta_k}) \), where \(a_{\beta_i} \in A_\beta \), be a finitely generated ideal of \(R \) such that \(F_1 = R \). Now, if \(M_\beta \notin \{M_{\beta_1}, M_{\beta_2}, \ldots, M_{\beta_k}\} \), necessarily \(M_\beta \subseteq F \), which is impossible because \(M_\beta \) is a proper \(t \)-ideal and \(F_1 = R \). We conclude that \(\{M_\beta\} = \{M_{\beta_1}, M_{\beta_2}, \ldots, M_{\beta_k}\} \) is finite. \(\square \)

Lemma 1.3. Let \(R \) be a \(w \)-divisorial domain, \(M \) a \(t \)-maximal ideal of \(R \) and \(\{I_\alpha\} \) a collection of \(w \)-ideals of \(R \) such that \(\cap_\alpha I_\alpha \neq 0 \). If \(\cap_\alpha I_\alpha \subseteq M \), then \(I_\alpha \subseteq M \) for some \(\alpha \).

Proof. Set \(A = \cap_\alpha I_\alpha \). Since \(R \) is a \(TW \)-domain, then the \(I_\alpha \)'s and \(A \) are \(t \)-ideals. Since \(R \) is also a \(TV \)-domain, by [20 Lemma 1.2], if \(I_\alpha \nsubseteq M \), for each \(\alpha \), then \(A \nsubseteq M \). \(\square \)

Lemma 1.4. If \(R \) is a weakly Matlis domain, then \(I_vR_M = (IR_M)_v \), for each nonzero fractional ideal \(I \) and each \(t \)-maximal ideal \(M \).

Proof. Apply [11 Corollary 5.3] for \(F = t\text{-Max}(R) \). \(\square \)

We are now ready to prove the \(t \)-analogue of [3 Proposition 5.4], which states that a domain \(R \) is divisorial if and only if it is \(h \)-local and \(R_M \) is a divisorial domain, for each maximal ideal \(M \). Local divisorial domains have been studied in [3 Section 5] and completely characterized in [11 Section 2].

Theorem 1.5. Let \(R \) be an integral domain. The following conditions are equivalent:

1. \(R \) is a \(w \)-divisorial domain;
2. \(R \) is a weakly Matlis domain and \(R_M \) is a divisorial domain, for each \(t \)-maximal ideal \(M \);
3. \(R \) is a \(TV \)-domain and \(R_M \) is a divisorial domain, for each \(t \)-maximal ideal \(M \);
4. \(IR_M = (IR_M)_v = I_vR_M \), for each nonzero fractional ideal \(I \) and each \(t \)-maximal ideal \(M \).

Proof. (1) \(\Rightarrow \) (2). That \(R \) is a weakly Matlis domain follows from Lemmas [13] and [12]. Now let \(M \) be a \(t \)-maximal ideal of \(R \) and \(I = JR_M \) a nonzero ideal of \(R_M \), where \(J \) is an ideal of \(R \). By Lemma [14] we have \(I_v = (JR_M)_v = J_vR_M \). Since \(J_v = J_w \), then \(I_v = J_wR_M = JR_M = I \). Hence \(R_M \) is a divisorial domain.
(2) \implies (4) follows from Lemma \[14\].

(4) \implies (1). Let \(t \) be a nonzero fractional ideal of \(R \). Then \(I_w = \cap_{M \in \text{t-Max}(R)} IR_M = \cap_{M \in \text{t-Max}(R)} I_tR_M = I_v \). Whence \(R \) is a \(w \)-divisorial domain.

(1) \implies (3) via (2).

(3) \implies (4). Since \(t = v \) in \(R \) and \(d = t = v \) in \(R_M \), for each nonzero fractional ideal \(I \) and each \(t \)-maximal ideal \(M \) of \(R \), we have
\[
IR_M = (IR_M)_v = (IR_M)_t = (I_tR_M)_t = I_tR_M = I_tR_M.
\]

Any almost Dedekind domain that is not Dedekind provides an example of a locally divisorial domain that is not \(w \)-divisorial, because it is not of finite character \[13\] Theorem 37.2).

Corollary 1.6. Let \(R \) be a domain of \(t \)-dimension one. Then \(R \) is \(w \)-divisorial if and only if \(R \) has \(t \)-finite character and \(R_P \) is divisorial, for each height one prime \(P \).

2. **Localizations of \(w \)-divisorial domains**

A domain whose overrings are all divisorial is called totally divisorial \[3\]. Not all divisorial domains are totally divisorial \[17\] Remark 5.4]; in fact a valuation domain \(R \) is divisorial if and only if its maximal ideal is principal \[17\] Lemma 5.2], but it is totally divisorial if and only if it is strongly discrete \[3\] Proposition 7.6], equivalently \(PR_P \) is a principal ideal for each prime ideal \(P \) of \(R \) \[3\] Proposition 5.3.8]. Since for valuation domains divisoriality coincides with \(w \)-divisoriality and each overring of a valuation domain is a localization at a certain \((t-)\)prime, we see that \(w \)-divisoriality is not stable under localization at \((t-)\)primes.

We say that an integral domain \(R \) is a strongly \(w \)-divisorial domain (resp., a strongly divisorial domain) if \(R \) is \(w \)-divisorial (resp., divisorial) and \(R_P \) is a divisorial domain for each \(P \in t-\text{Spec}(R) \) (resp., \(P \in \text{Spec}(R) \)). Note that if \(R \) is strongly \(w \)-divisorial (resp., strongly divisorial), then \(R_P \) is strongly divisorial for each \(P \in t-\text{Spec}(R) \) (resp., for each \(P \in \text{Spec}(R) \)).

By Theorem \[15\] (resp., \[3\] Proposition 5.4]), \(R \) is a strongly \(w \)-divisorial domain (resp., a strongly divisorial domain) if and only if \(R \) is a weakly Matlis domain (resp., an \(h \)-local domain) and \(R_P \) is a divisorial domain for each \(P \in t-\text{Spec}(R) \) (resp., \(P \in \text{Spec}(R) \)).

If \(R \) has \(t \)-dimension one, then \(R \) is \(w \)-divisorial if and only if it is strongly \(w \)-divisorial.

In this section we shall study the extension of \(w \)-divisoriality and divisoriality to distinguished classes of generalized rings of fractions such as localizations at \((t-)\)prime ideals, \((t-)\)flat overrings and \((t-)\)subintersections.

We recall the requisite definitions. A nonempty family \(F \) of nonzero ideals of a domain \(R \) is said to be a multiplicative system of ideals if \(IJ \in F \), for each \(I, J \in F \). If \(F \) is a multiplicative system, the set of ideals of \(R \) containing some ideal of \(F \) is still a multiplicative system, which is called the saturation of \(F \) and is denoted by \(\text{Sat}(F) \). A multiplicative system \(F \) is said to be saturated if \(F = \text{Sat}(F) \).

If \(F \) is a multiplicative system of ideals, the overring \(R_F := \cup \{ (R : J); J \in F \} \) of \(R \) is called the generalized ring of fractions of \(R \) with respect to \(F \). For any fractional ideal \(I \) of \(R \), \(I_F := \cup \{ (I : J); J \in F \} \) is a fractional ideal of \(R_F \) and \(IR_F \subseteq I_F \). Clearly \(I_F = I_{\text{Sat}(F)} \).

The map \(P \mapsto P_F \) is an order-preserving bijection between the set of prime ideals \(P \) of \(R \) such that \(P \notin \text{Sat}(F) \) and the set of prime ideals \(Q \) of \(R_F \) such that \(JR_F \nsubseteq Q \) for any \(J \in F \), with inverse map \(Q \mapsto Q \cap R \). In addition, \(R_P = (R_F)_{P_F} \) for each prime ideal \(P \notin \text{Sat}(F) \). If \(Q \) is a \(t \)-prime ideal of \(R_F \), then \(Q \cap R \) is a \(t \)-prime ideal of \(R \) \[10\] Proposition 1.3].
If Λ is a nonempty family of nonzero prime ideals of R, the set \(\mathcal{F}(\Lambda) = \{ J : J \subseteq R \text{ is an ideal and } J \not\subseteq P \text{ for each } P \in \Lambda \} \) is a saturated multiplicative system of ideals and \(I_{\mathcal{F}(\Lambda)} = \cap \{ IR_P : P \in \Lambda \} \), for each fractional ideal I of R; in particular \(R_{\mathcal{F}(\Lambda)} = \cap \{ R_P : P \in \Lambda \} \). A generalized ring of fractions of type \(R_{\mathcal{F}(\Lambda)} \) is called a subintersection of R; when \(\Lambda \subseteq t\text{-Spec}(R) \), we say that \(R_{\mathcal{F}(\Lambda)} \) is a \(t \)-subintersection of R.

A multiplicative system of ideals \(\mathcal{F} \) of R is finitely generated if each ideal \(I \in \mathcal{F} \) contains a finitely generated ideal \(J \) which is still in \(\mathcal{F} \). As in \([10]\), we say that \(\mathcal{F} \) is a \(v \)-finite multiplicative system if each \(t \)-ideal \(I \in \text{Sat}(\mathcal{F}) \) contains a finitely generated ideal \(J_v \in \text{Sat}(\mathcal{F}) \). A finitely generated multiplicative system is \(v \)-finite. If \(\mathcal{F} \) is \(v \)-finite, the set \(\Lambda \) of \(t \)-ideals which are maximal with respect to the property of not being in \(\text{Sat}(\mathcal{F}) \) is not empty, \(\Lambda \subseteq t\text{-Spec}(R) \), \(\mathcal{F}(\Lambda) \) is \(v \)-finite and \(T = R_{\mathcal{F}(\Lambda)} \) \([10]\) Proposition 1.9 (a) and (b)].

An overring \(T \) of R is said to be \(t \)-flat over R if \(T_M = R_{M \cap R} \), for each \(t \)-maximal ideal \(M \) of \(T \) \([23]\), equivalently \(T_Q = R_{Q \cap R} \), for each \(t \)-prime ideal \(Q \) of \(T \) \([7]\) Proposition 2.6]. Flatness implies \(t \)-flatness, but the converse is not true \([23]\) Rem. 2.12]. By \([7]\) Thm. 2.6], \(T \) is \(t \)-flat over R if and only if there exists a \(t \)-finite multiplicative system \(\mathcal{F} \) of R such that \(T = R_{\mathcal{F}} \). Thus \(T \) is \(t \)-flat if and only if \(T = R_{\mathcal{F}(\Lambda)} \), where \(\Lambda \) is a family of pairwise incomparable \(t \)-primes of \(R \) and \(\mathcal{F}(\Lambda) \) is \(v \)-finite. It follows that a \(t \)-flat overring of R is a \(t \)-subintersection of R.

In turn, any generalized ring of fractions is a \(t \)-linked overring; but the converse does not hold in general \([5]\) Proposition 2.2]. We recall that an overring \(T \) of an integral domain \(R \) is \(t \)-linked over \(R \) if, for each nonzero finitely generated ideal \(J \) of \(R \) such that \((R : J) = R \), we have \((T : JT) = T \) \([5]\). This is equivalent to say that \(T = \cap T_{R/P} \), where \(P \) ranges over the \(t \)-primes of \(R \) \([5]\) Proposition 2.13(a)].

It is well known that if \(P \) is a \(t \)-prime ideal of R, then \(PR_P \) need not be a \(t \)-ideal of \(R_P \). When \(PR_P \) is a \(t \)-prime ideal, \(P \) is called by M. Zafrullah a \textit{well behaved} \(t \)-prime \([23]\) page 436]. We prefer to say that \(P \) \textit{t-localizes} or that it is a \textit{\(t \)-localizing prime}. Height-one prime ideals and divisorial \(t \)-maximal primes, e. g. \(t \)-invertible \(t \)-primes, are examples of \(t \)-localizing primes.

A large class of domains with the property that each \(t \)-prime ideal \(t \)-localizes is the class of \(v \)-coherent domains. We recall that a domain R is called \(v \)-\textit{coherent} if the ideal \((R : J) \) is \(v \)-finite whenever \(J \) is finitely generated. This class of domains properly includes PrMD’s, Mori domains and coherent domains \([24]\) [11].

If \(R \) is a \(w \)-divisorial (resp., strongly \(w \)-divisorial) domain, then each \(t \)-maximal (resp., \(t \)-prime) ideal \(t \)-localizes.

Lemma 2.1. Let \(\Lambda \) be a set of \(t \)-localizing \(t \)-primes of R. Then:

1. \(P_{\mathcal{F}(\Lambda)} \in t\text{-Spec}(R_{\mathcal{F}(\Lambda)}) \), for each \(P \in \Lambda \).
2. \(\mathcal{F}(\Lambda) \) is \(v \)-finite, \(t\text{-Max}(R_{\mathcal{F}(\Lambda)}) = \{ P_{\mathcal{F}(\Lambda)} : P \text{ maximal in } \Lambda \} \).

Proof. Set \(\mathcal{F} = \mathcal{F}(\Lambda) \) and \(T = R_{\mathcal{F}} \).

1. Let \(P \in \Lambda \). Since \(R_P = P_{\mathcal{F}} \) and by hypothesis \(PR_P = P_{\mathcal{F}} T_{\mathcal{F}} \) is a \(t \)-ideal, then \(P_{\mathcal{F}} = P_{\mathcal{F}} T_{\mathcal{F}} \cap T \) is a \(t \)-ideal of \(T \).
2. Since \(P_{\mathcal{F}} \) is a \(t \)-ideal by part (1), we can apply \([10]\) Proposition 1.9 (c)]. \(\square\)

Proposition 2.2. Let \(\Lambda \) be a set of pairwise incomparable \(t \)-localizing \(t \)-primes of R. Then:

1. \(\Lambda \) is independent of finite character if and only if \(\mathcal{F}(\Lambda) \) is \(v \)-finite and \(R_{\mathcal{F}(\Lambda)} \) is a weakly Mal'tis domain.
2. If \(R_{\mathcal{F}(\Lambda)} \) is \(u \)-divisorial, then \(\Lambda \) is independent of finite character.

Proof. Set \(\mathcal{F} = \mathcal{F}(\Lambda) \) and \(T = R_{\mathcal{F}} \).
(1). If \(\mathcal{F} \) is \(v \)-finite, by Lemma 2.4(2) we have \(t\text{-Max}(T) = \{ P_T \mid P \in \Lambda \} \). It follows that \(\Lambda \) is independent of finite character if and only if \(t\text{-Max}(T) = \{ P_T \mid P \in \Lambda \} \) is independent of finite character, that is \(T \) is a weakly Matlis domain. On the other hand, if \(\Lambda \) is of finite character, then \(\mathcal{F} \) is \(v \)-finite by [10, Lemma 1.16].

(2). Since \(T \) is a weakly Matlis domain, by part (1) it suffices to show that \(\Lambda \) is of finite character.

By Lemma 2.4(1), \(P_T \) is a \(t \)-prime of \(T \), for each \(P \in \Lambda \). We show that each proper divisorial ideal of \(T \) is contained in some \(P_T \). We have \(T = \cap_{P \in \Lambda} R_P = \cap_{P \in \Lambda} T_{P_T} \). If \(I \) is a proper divisorial ideal of \(T \), there is \(x \in K \setminus T \) (where \(K \) is the quotient field of \(R \)) such that \(I \subseteq x^{-1} T \cap T \). Since \(x \notin T \), there exists \(P \in \Lambda \) such that \(x \notin T_P \), equivalently \(x^{-1} T \cap T \subseteq P_T \).

Since \(t = v \) on \(T \), we conclude that \(t\text{-Max}(T) = \{ P_T \mid P \in \Lambda \} \). Since \(T \) has \(t \)-finite character, it follows that \(\Lambda \) is of finite character.

Theorem 2.3. Let \(R \) be a \(w \)-divisorial domain. If \(\Lambda \subseteq t\text{-Max}(R) \), then \(R_{\mathcal{F}(\Lambda)} \) is a \(t \)-flat \(w \)-divisorial overring of \(R \).

Proof. Since \(R \) is a weakly Matlis domain (Theorem 1.5), \(t\text{-Max}(R) \) is independent of finite character; thus \(\Lambda \) has the same properties. In addition, each \(t \)-maximal ideal is a \(t \)-localizing prime ideal. It follows that \(\mathcal{F}(\Lambda) \) is \(v \)-finite and \(T := R_{\mathcal{F}(\Lambda)} \) is a \(t \)-flat weakly Matlis domain (Proposition 2.2(1)). By Lemma 2.4(2), for each \(N \in t\text{-Max}(T) \), there exists \(M \in \Lambda \) such that \(N = M_{\mathcal{F}(\Lambda)} \). It follows that \(T_N = R_M \) is divisorial and so \(T \) is \(w \)-divisorial by Theorem 1.5. \(\square \)

As we have mentioned above, the localization of a \(w \)-divisorial domain at a \(t \)-prime need not be a \((w) \)-divisorial domain. Thus Theorem 2.4 does not hold for an arbitrary \(\Lambda \subseteq t\text{-Spec}(R) \). However, under the hypothesis that \(R \) is strongly \(w \)-divisorial, we have a satisfying result.

Theorem 2.4. Let \(R \) be a strongly \(w \)-divisorial domain and \(\Lambda \) a set of pairwise incomparable \(t \)-primes of \(R \). The following conditions are equivalent:

1. \(R_{\mathcal{F}(\Lambda)} \) is \(w \)-divisorial;
2. \(R_{\mathcal{F}(\Lambda)} \) is strongly \(w \)-divisorial;
3. \(R_{\mathcal{F}(\Lambda)} \) is a \(t \)-flat weakly Matlis domain;
4. \(R_{\mathcal{F}(\Lambda)} \) is a \(t \)-flat TV-domain;
5. \(\Lambda \) is independent of finite character.

Proof. Set \(\mathcal{F} = \mathcal{F}(\Lambda) \) and \(T = R_{\mathcal{F}} \). Since \(R \) is strongly \(w \)-divisorial, each \(P \in \Lambda \) \(t \)-localizes.

\((1) \Rightarrow (5) \) by Proposition 2.2(2).

\((5) \Rightarrow (3) \). By Proposition 2.2(1).

\((3) \Rightarrow (2) \). If \(Q \) is a \(t \)-prime of \(T \), then \(P = Q \cap R \in t\text{-Spec}(R) \) and \(T_Q = R_P \) is divisorial. Whence \(T \) is strongly \(w \)-divisorial.

\((3) \Leftrightarrow (4) \) By \(t \)-flatness, \(T_M \) is divisorial for each \(t \)-maximal ideal \(M \). Thus we can apply Theorem 1.5.

\((2) \Rightarrow (1) \) is obvious. \(\square \)

Divisorial flat overrings of a strongly divisorial domain have a similar characterization. Recall that an overring \(T \) of \(R \) is flat if \(T_M = R_M \cap R \), for each maximal ideal \(M \) of \(T \); in this case \(T = R_{\mathcal{F}(\Lambda)} \), where \(\Lambda \) is a set of pairwise incomparable prime ideals of \(R \).

Corollary 2.5. Let \(R \) be a strongly divisorial domain and \(T = R_{\mathcal{F}(\Lambda)} \) a flat overring, where \(\Lambda \) is a set of pairwise incomparable prime ideals of \(R \). The following conditions are equivalent:

1. \(T \) is divisorial;
(2) T is strongly divisorial;
(3) T is h-local;
(4) Λ is independent of finite character.

Proof. (1) \Leftrightarrow (3). By [3, Proposition 5.4], T is divisorial if and only if it is h-local and locally divisorial. But, since T is flat and R is strongly divisorial, for each maximal ideal M of T, $T_M = R_{M\cap R}$ is divisorial, for each prime ideal Q of T.

(1) \Rightarrow (2). Since T is flat and R is strongly divisorial, then $T_Q = R_{Q\cap R}$ is divisorial, for each prime ideal Q of T.

(2) \Rightarrow (4). Since R and T are divisorial, then $d = w = t = v$ in R and T. Thus we can apply Theorem 2.4 ((2) \Rightarrow (5)).

(4) \Rightarrow (1). Since $d = w = t = v$ in R, by Theorem 2.4 ((5) \Rightarrow (1)), T is w-divisorial. To prove that T is divisorial, we show that each maximal ideal of T is a t-ideal (Proposition 1.1). If M is a maximal ideal of T, by flatness we have $T_M = R_{M\cap R}$. Since R is strongly divisorial, MT_M is a t-ideal and so $M = MT_M \cap T$ is a t-ideal.

Corollary 2.6. Let R be an integral domain. The following conditions are equivalent:

(1) Each t-flat overring of R is strongly w-divisorial;
(2) R is strongly w-divisorial and each t-flat overring is a weakly Matlis domain;
(3) R is strongly w-divisorial and each t-flat overring is a TV-domain;
(4) R is strongly w-divisorial and each family Λ of pairwise incomparable t-primes of R such that $F(\Lambda)$ is v-finite is independent of finite character.

Proof. By Theorem 2.4 recalling that an overring T is t-flat over R if and only if $T = R_{F(\Lambda)}$, where Λ is a family of pairwise incomparable t-primes of R and $F(\Lambda)$ is v-finite.

In order to study t-subintersections, we need the following technical lemma.

Lemma 2.7. Let R be an integral domain and \mathcal{C} an ascending chain of t-localizing t-primes of R. If $R_{F(\mathcal{C})}$ is a TV-domain, then \mathcal{C} is stationary.

Proof. Let $\mathcal{C} = \{P_\alpha\}$ and set $\mathcal{F} = F(\mathcal{C})$ and $T = R_\mathcal{F}$. By Lemma 2.1(1), $(P_\alpha)_T$ is a t-prime ideal of T, for each α. It follows that $M = \cup_\alpha (P_\alpha)_T$ is a proper t-prime ideal of T (since it is an ascending union of t-primes) and so M is divisorial (because T is a TV-domain). We have $T = \cap_\alpha T_{R\setminus P_\alpha}$; thus the map $I \mapsto I^* = \cap_\alpha JT_{R\setminus P_\alpha}$ defines a star operation on T. Since M is divisorial, we have $M^* \subseteq M$; so that M^* is a proper ideal. It follows that there exists α such that $M \cap R \subseteq P_\alpha$. Hence $M \cap R = P_\alpha$ and so $P_\beta = P_\alpha$ for $\beta \geq \alpha$.

Theorem 2.8. Let R be an integral domain. The following conditions are equivalent:

(1) Each t-subintersection of R is strongly w-divisorial;
(2) R is a strongly w-divisorial domain which satisfies the ascending chain condition on t-prime ideals and each family Λ of pairwise incomparable t-primes of R is independent of finite character.

Proof. (1) \Rightarrow (2). Clearly R is a strongly w-divisorial domain. If Λ is a set of pairwise incomparable t-prime ideals, then by assumption $R_{F(\Lambda)}$ is strongly w-divisorial. Hence Λ is independent of finite character, by Theorem 2.4. It remains to show that R has the ascending chain condition on t-prime ideals. This follows from Lemma 2.7. In fact, if \mathcal{C} is an ascending chain of t-prime ideals of R, $R_{F(\mathcal{C})}$ is strongly w-divisorial. Hence each t-prime in \mathcal{C} t-localizes and it follows that \mathcal{C} is stationary.
(2) ⇒ (1). Let $R_{F(\Lambda)}$ be a t-subintersection of R. By the ascending chain condition on t-prime ideals, Λ has maximal elements; thus we can assume that Λ is a set of pairwise incomparable t-primes. The conclusion follows from Theorem 2.4. □

Corollary 2.9. Let R be a domain. If each t-subintersection of R is strongly w-divisorial, then each t-subintersection of R is t-flat.

Proof. If each t-subintersection of R is strongly w-divisorial, then R satisfies the ascending chain condition on t-primes (Theorem 2.8). Thus each t-subintersection is of type $R_{F(\Lambda)}$, where Λ is a family of pairwise incomparable t-primes. By Theorem 2.4, $R_{F(\Lambda)}$ is t-flat. □

Remark 2.10. If each subintersection of the domain R is strongly divisorial, then clearly R is strongly divisorial. In addition, since $d = w = t = v$ on R, then R satisfies the ascending chain condition on prime ideals and each family Λ of pairwise incomparable prime ideals of R is independent of finite character (Theorem 2.8).

Conversely, assume that R is a strongly divisorial domain satisfying the ascending chain condition on prime ideals and each family Λ of pairwise incomparable prime ideals of R is independent of finite character.

Then each subintersection T of R is of type $R_{F(\Lambda)}$, where Λ is a family of pairwise incomparable prime ideals independent of finite character. Thus $F(\Lambda)$ is finitely generated $[10$, Lemma 1.16$]$ and T is strongly w-divisorial and t-flat by Theorem 2.4. We conclude that T is (strongly) divisorial if and only if each maximal ideal of T is a t-ideal (Proposition 1.1) if and only if T is flat.

We observe that in general, if F is a finitely generated multiplicative system of ideals, then R_F need not be a flat extension of R $[11$, pag. 32$]$. On the other hand, we do not know any example of a strongly divisorial domain R with a finitely generated multiplicative system F such that R_F is not flat.

If R is any domain, we say that $\text{Spec}(R)$ (resp., $t\text{-Spec}(R)$) is treed (under inclusion) if any maximal (resp., t-maximal) ideal of R cannot contain two incomparable primes (resp., t-primes). The Spectrum of a Prüfer domain and the t-Spectrum of a $PvMD$ are treed. If $\text{Spec}(R)$ is treed, then $\text{Spec}(R) = t\text{-Spec}(R)$ $[23$, Proposition 2.6$]$; in particular each maximal ideal is a t-ideal and so w-divisoriality coincides with divisoriality by Proposition 1.1.

If $t\text{-Spec}(R)$ is treed and $t\text{-Max}(R)$ is independent of finite character, then each family Λ of pairwise incomparable t-prime ideals of R is independent of finite character. Hence the next results are easy consequences of Theorem 2.4 and Theorem 2.8, respectively.

Corollary 2.11. Let R be an integral domain such that $t\text{-Spec}(R)$ is treed. The following conditions are equivalent:

1. R is strongly w-divisorial;
2. $R_{F(\Lambda)}$ is a t-flat w-divisorial domain, for each set Λ of pairwise incomparable t-primes;
3. $R_{F(\Lambda)}$ is a t-flat strongly w-divisorial domain, for each set Λ of pairwise incomparable t-primes.

If R has t-dimension one, then clearly $t\text{-Spec}(R)$ is treed. In this case, The conditions stated in Corollary 2.11 are all satisfied if R is w-divisorial (cf. Theorem 2.8).

Corollary 2.12. Let R be an integral domain such that $t\text{-Spec}(R)$ is treed. The following conditions are equivalent:
(1) R is a strongly w-divisorial domain which satisfies the ascending chain conditions on t-prime ideals;
(2) Each t-subintersection of R is t-flat and strongly w-divisorial.

3. INTEGRLY CLOSED w-DIVISORIAL DOMAINS

W. Heinzer proved in [17] that an integrally closed domain is divisorial if and only if it is an h-local Prüfer domain with invertible maximal ideals. We start this section by showing that integrally closed w-divisorial domains have a similar characterization among $PvMD$s. Note that a divisorial $PvMD$ is a Prüfer domain.

Lemma 3.1. Let R be a w-divisorial domain and $M \in t\text{-Max}(R)$. The following conditions are equivalent:

(1) M is t-invertible;
(2) MR_M is a principal ideal;
(3) R_M is a valuation domain.

Proof. (1) \iff (2). Since $t\text{-Max}(R)$ has t-finite character (Theorem 1.5), we can apply [34, Theorem 2.2 and Proposition 3.1].

(2) \implies (3) follows from [31, Lemme 1, Section 4], because R_M is a divisorial domain (Theorem 1.5), and (3) \implies (2) follows from [17, Lemma 5.2].

Proposition 3.2. Let R be a w-divisorial domain. Then R is a $PvMD$ if and only if each t-maximal ideal of R is t-invertible.

Theorem 3.3. Let R be an integral domain. The following conditions are equivalent:

(1) R is an integrally closed w-divisorial domain;
(2) R is a weakly Matlis $PvMD$ and each t-maximal ideal of R is t-invertible.

Proof. (1) \implies (2). A domain R is a $PvMD$ if and only if R is an integrally closed TW-domain [22, Theorem 3.5]. Hence an integrally closed w-divisorial domain is a $PvMD$. By Theorem 1.5, R is a weakly Matlis domain and by Proposition 3.2 each t-maximal ideal is t-invertible.

(2) \implies (1). A t-maximal ideal M of a $PvMD$ is t-invertible if and only if MR_M is a principal ideal [19]. Since R_M is a valuation domain, this means that R_M is divisorial [17, Lemma 5.2]. Now we can apply Theorem 1.5.

The previous theorem can be proved also by using the fact that a domain R is a $PvMD$ if and only if R is an integrally closed TW-domain [22, Theorem 3.5] and the characterization of $PvMD$s which are TV-domains given in [20, Theorem 3.1].

Recall that a Prüfer domain R is strongly discrete if $P^2 \neq P$ for each nonzero prime ideal P of R [8, Section 5.3] and that a generalized Dedekind domain is a strongly discrete Prüfer domain with the property that each ideal has finitely many minimal primes [30]. We say that a $PvMD$ R is strongly discrete if $(P^2)_t \neq P$, for each $P \in t\text{-Spec}(R)$ [7, Remark 3.10]. If R is a strongly discrete $PvMD$ and each t-ideal of R has only finitely many minimal primes, then R is called a generalized Krull domain [7].

The next theorem shows that the class of strongly w-divisorial domains and the class of strongly discrete $PvMD$s are strictly related to each other.

Lemma 3.4. Let R be a domain. The following conditions are equivalent:

(1) R is a strongly discrete $PvMD$;
(2) R_M is a strongly discrete valuation domain, for each $M \in t\text{-Max}(R)$;
(3) R_P is a strongly discrete valuation domain, for each $P \in t\text{-Spec}(R)$;
(4) R_P is a valuation domain and PR_P is a principal ideal, for each $P \in t\text{-Spec}(R)$;
Proof. (1) ⇔ (4). For each t-prime ideal \(P\) of \(R\), we have \((P^2)_t = P^2R_P \cap R\) [19 Proposition 1.3]. Hence \((P^2)_t \neq P\) if and only if \(P^2R_P \neq PR_P\). Now recall that a maximal ideal of a valuation domain is not idempotent if and only if it is principal.

(2) ⇔ (3) because each overring of a strongly discrete valuation domain is a strongly discrete valuation domain [8 Proposition 5.3.1(3)].

(3) ⇔ (4) by [17 Lemma 5.2].

□

Theorem 3.5. Let \(R\) be an integral domain. The following conditions are equivalent:

1. \(R\) is a strongly discrete \(P\) vMD and a weakly Matlis domain;
2. \(R\) is an integrally closed strongly \(w\)-divisorial domain;
3. \(R\) is integrally closed and each \(t\)-flat overring of \(R\) is \(w\)-divisorial;
4. \(R\) is integrally closed and each \(t\)-linked overring of \(R\) is \(w\)-divisorial;
5. \(R\) is a \(w\)-divisorial generalized Krull domain;
6. \(R\) is a generalized Krull domain and each \(t\)-prime ideal of \(R\) is contained in a unique \(t\)-maximal ideal.

Proof. (1) ⇒ (2). Clearly \(R\) is integrally closed. In addition, by Lemma 3.4, \(R_P\) is a divisorial domain, for each \(P \in t\)-Spec\((R)\). Hence \(R\) is a strongly \(w\)-divisorial domain.

(2) ⇒ (3) By Theorem 3.3, \(R\) is a \(P\) vMD; in particular \(t\)-Spec\((R)\) is treed. Thus we can apply Corollary 2.11.

(3) ⇒ (1). By Theorem 3.3, \(R\) is a weakly Matlis \(P\) vMD. Now, given \(P \in t\)-Spec\((R)\), \(R_P\) is a divisorial valuation domain. Hence \(R\) is a strongly discrete \(P\) vMD by Lemma 3.4.

(3) ⇔ (4). By Theorem 3.3 statements (3) and (4) imply that \(R\) is a \(P\) vMD. The conclusion now follows from the fact that each \(t\)-linked overring of a \(P\) vMD \(R\) is \(t\)-flat [23 Proposition 2.10].

(1) ⇒ (5). By (1)⇒(2), \(R\) is a \(w\)-divisorial domain. To show that \(R\) is a generalized Krull domain, let \(I\) be a \(t\)-ideal of \(R\). Since \(R\) has \(t\)-finite character, then \(I\) is contained in only finitely many \(t\)-maximal ideals. Furthermore, each \(t\)-prime ideal is contained in a unique \(t\)-maximal ideal. Thus \(I\) has just finitely many minimal \((t)\)-prime ideals. We conclude by using [7 Theorem 3.9].

(5) ⇒ (6) is clear.

(6) ⇒ (1). It is enough to show that \(R\) has \(t\)-finite character. This follows from the fact that each nonzero principal ideal has finitely many minimal \((t)\)-primes. □

As a consequence of Theorem 3.5, we obtain the following characterization of integrally closed totally divisorial domains (see also [25]).

Corollary 3.6. Let \(R\) be an integral domain. The following conditions are equivalent:

1. \(R\) is an integrally closed totally divisorial domain;
2. \(R\) is integrally closed and each flat overring of \(R\) is divisorial;
3. \(R\) is an integrally closed strongly divisorial domain;
4. \(R\) is an \(h\)-local strongly discrete Prüfer domain;
5. \(R\) is a divisorial generalized Dedekind domain;
6. \(R\) is a generalized Dedekind domain and each nonzero prime ideal is contained in a unique maximal ideal.

Proof. This follows from the fact that in a Prüfer domain the \(d\)- and \(t\)-operation coincide, that each overring of a Prüfer domain is a flat Prüfer domain, and that
a Prüfer domain is a generalized Krull domain if and only if it is a generalized Dedekind domain \[7\]. □

Recall that the complete integral closure of \(R \) is the overring \(\tilde{R} := \cup\{(I: I) ; I \text{ nonzero ideal of } R\} \). If \(R = \tilde{R} \), we say that \(R \) is completely integrally closed.

Proposition 3.7. Let \(R \) be an integral domain. The following conditions are equivalent:

1. \(R \) is an integrally closed \(w \)-divisorial domain of \(t \)-dimension one;
2. \(R \) is an integrally closed domain of \(t \)-dimension one and each \(t \)-linked overring of \(R \) is \(w \)-divisorial;
3. \(R \) is a completely integrally closed \(w \)-divisorial domain;
4. \(R \) is a Krull domain.

Proof. (1) \(\Leftrightarrow \) (2) \(\Leftrightarrow \) (4). Clearly a \(w \)-divisorial domain of \(t \)-dimension one is strongly \(w \)-divisorial. Since a generalized Krull domain of \(t \)-dimension one is a Krull domain [7, Theorem 3.11], we can conclude by applying Theorem 3.5.

(3) \(\Leftrightarrow \) (4) because a completely integrally closed \(TV \)-domain is Krull [20, Theorem 2.3]. □

It is well-known that a divisorial Krull domain is a Dedekind domain; hence by the previous proposition we recover that a completely integrally closed divisorial domain is a Dedekind domain [17, Proposition 5.5].

Remark 3.8. Recall that, for any domain \(R \), \(\tilde{R} \) is integrally closed and \(t \)-linked over \(R \) [5, Corollary 2.3]. Since each localization of a \(t \)-linked overring of \(R \) is still \(t \)-linked over \(R \), if each \(t \)-linked overring of \(R \) is \(w \)-divisorial, we have that \(\tilde{R} \) is an integrally closed strongly \(w \)-divisorial domain. In this case, by Theorem 3.5 \(\tilde{R} \) is a weakly Matlis strongly discrete \(P vMD \). If in addition \(\tilde{R} \) is completely integrally closed, for example if \((R: \tilde{R}) \neq 0\), by Proposition 3.7 \(\tilde{R} \) is a Krull domain.

In a similar way, by using Corollary 3.6 we see that if \(R \) is totally divisorial, the integral closure of \(R \) is an \(h \)-local strongly divisorial Prüfer domain.

4. Mori \(w \)-divisorial domains

We start by recalling some properties of Noetherian divisorial domains proved in [17, 31].

Proposition 4.1. Let \(R \) be a domain. The following conditions are equivalent:

1. \(R \) is a one-dimensional \(w \)-divisorial Mori domain;
2. \(R \) is a divisorial Mori domain;
3. \(R \) is a divisorial Noetherian domain;
4. \(R \) is a Mori domain and each two generated ideal of \(R \) is divisorial;
5. \(R \) is a one-dimensional Mori domain and \((R: M)\) is a two generated ideal, for each \(M \in \text{Max}(R)\);
6. \(R \) is a one-dimensional Noetherian domain and \((R: M)\) is a two generated ideal, for each \(M \in \text{Max}(R)\).

Proof. (1) \(\Rightarrow \) (2) by Proposition 1.1.

(2) \(\Rightarrow \) (3) because each \(v \)-ideal of a Mori domain is \(v \)-finite.

(3) \(\Rightarrow \) (1) because Noetherian divisorial domains are one-dimensional [17, Corollary 4.3].

(3) \(\Leftrightarrow \) (6) and (2) \(\Leftrightarrow \) (4) \(\Leftrightarrow \) (5) by [31, Theorem 3, Section 2]. □

An integrally closed \(w \)-divisorial Mori domain is a Krull domain. In fact it has to be a \(P vMD \) (Theorem 4.1). By Proposition 4.1 any Noetherian integrally closed
domain of dimension greater than one is a \(w \)-divisorial Noetherian domain that is not divisorial.

We say that a nonzero fractional ideal \(I \) of \(R \) is a \(w \)-divisorial ideal if \(I_w = I_w \).

With this notation, a \(w \)-divisorial domain is a domain in which each nonzero ideal is \(w \)-divisorial. We also say that, for \(n \geq 1 \), \(I \) is \(n \) \(w \)-generated if \(I_w = (a_1 R + \cdots + a_n R)_w \), for some \(a_1, \ldots, a_n \) in the quotient field of \(R \).

Theorem 4.2. Let \(R \) be a Mori domain. The following conditions are equivalent:

1. \(R \) is a \(w \)-divisorial domain;
2. Each two generated nonzero ideal is \(w \)-divisorial;
3. \(R \) has \(t \)-dimension one and \((R: M)\) is a two \(w \)-generated ideal, for each \(M \in t \- \text{Max}(R) \).

Proof. (1) \(\Rightarrow \) (2) is clear.

(2) \(\Rightarrow \) (3). Let \(M \in t \- \text{Max}(R) \). Since \(R \) is a Mori domain, then \(M \) is a divisorial ideal. Let \(x \in (R: M) \setminus R \), then \((R: M) = (R + Rx)_w \). So that by assumption \((R: M) = (R + Rx)_w \). To conclude, we show that \(R_M \) is one-dimensional. Let \(I \) be a nonzero two generated ideal of \(R_M \). Then, we can assume that \(I = (a, b) R_M \) for some \(a, b \in I \cap R \). Since \(R \) is a Mori domain, then \(I_v = ((a, b) R_M)_v = (a, b)_v R_M \). Hence \(I_v = (a, b)_w R_M = (a, b) R_M = I \). Thus each two generated ideal of \(R_M \) is divisorial. It follows from Proposition 1.1 that \(R_M \) is one-dimensional.

(3) \(\Rightarrow \) (1). Since \(R \) is a TV-domain, by Theorem 1.5, it is enough to show that \(R_M \) is a divisorial domain for each \(M \in t \- \text{Max}(R) \). This follows again from Proposition 1.1. In fact, by assumption \(R_M \) is a Mori domain of dimension one. Let \((R: M) = (a, b)_w \) for some \(a, b \in (R: M) \). Then \((R_M:MR_M) = (R: M)R_M = (a, b)_w R_M = (a, b) R_M \) is two generated (the first equality holds because \(M \) is \(v \)-finite). \(\square \)

Recall that a Strong Mori domain is a domain satisfying the ascending chain condition on \(w \)-ideals. A domain \(R \) is a Strong Mori domain if and only if it has \(t \)-finite character and \(R_M \) is Noetherian, for each \(t \) maximal ideal \(M \) [33, Theorem 1.9]. Thus a Mori domain is Strong Mori if and only if \(R_M \) is Noetherian, for each \(t \)-maximal ideal \(M \).

Corollary 4.3. [27, Corollary 2.5] A \(w \)-divisorial Mori domain is a Strong Mori domain of \(t \)-dimension one.

Proof. A \(w \)-divisorial Mori domain is Strong Mori (because \(w = v \)) and has \(t \)-dimension one by Theorem 4.2. \(\square \)

We next investigate \(w \)-divisoriality of overrings of Mori domains. Our first result in this direction shows that, if \(R \) is Mori, \(w \)-divisoriality is inherited by generalized ring of fractions. This improves [27, Theorem 2.4].

We observe that a Mori domain is a \(v \)-coherent TV-domain, because each \(t \)-ideal of a Mori domain is \(v \)-finite. We also recall that if \(R \) is \(v \)-coherent, we have \(I_t R_S = (IR_S)_t \), for each nonzero fractional ideal \(I \) and each multiplicative set \(S \).

Proposition 4.4. Let \(R \) be a \(v \)-coherent domain. The following conditions are equivalent:

1. \(R \) is a \(TV \)-domain;
2. All the nonzero ideals of \(R_M \) are \(t \)-ideals, for each \(M \in t \- \text{Max}(R) \);
3. All the nonzero ideals of \(R_P \) are \(t \)-ideals, for each \(P \in t \- \text{Spec}(R) \);
4. Each \(t \)-flat overring of \(R \) is a \(TV \)-domain.

Proof. (1) \(\Leftrightarrow \) (2). Let \(I \) be a nonzero ideal and \(M \) a \(t \)-maximal ideal of \(R \). If \(t = w \) on \(R \), then \(IR_M = I_w R_M = I_t R_M = (IR_M)_t \).
Conversely, we have $IR_M = (IR_M)_t = I_IR_M$. Thus

$$I_t = \cap_{M \in t\text{-Max}(R)} IR_M = \cap_{M \in t\text{-Max}(R)} I_IR_M = I_t.$$

(2) \Rightarrow (3). Let I be a nonzero ideal of R, P a t-prime of R and M a t-maximal ideal containing P. Then

$$IR_P = (IR_M)R_P = (IR_M)_tR_P = (I_IR_M)_tR_P = I_tR_P = (IR_P)_t.$$

(3) \Rightarrow (4). Let T be a t-flat overring of R. Then T is a v-coherent domain [10, Proposition 3.1]. If N is a t-maximal ideal of T, then $P = N \cap R$ is a t-prime of R and $T_N = R_P$. Hence, if (3) holds, each nonzero ideal of T_N is a t-ideal and T is a TW-domain by (2) \Rightarrow (1).

(4) \Rightarrow (1) is clear.

\[\Box\]

Theorem 4.5. Let R be a Mori domain. The following conditions are equivalent:

1. R is w-divisorial;
2. R is strongly w-divisorial;
3. Each t-flat overring of R is w-divisorial;
4. Each generalized ring of fractions of R is w-divisorial;
5. R_M is a divisorial domain, for each $M \in t\text{-Max}(R)$.

Proof. Each generalized ring of fractions of a Mori domain is Mori [31, Corollaire 1, Section 3]; thus it is a TV-domain. In addition, each generalized ring of fractions of a Mori domain is t-flat, because each t-ideal is v-finite and so each multiplicative system of ideals is v-finite. Hence we can apply Proposition 4.4.

t-linked overrings of Mori domains do not behave as well as generalized rings of fractions. In fact a Mori non-Krull domain has t-linked overrings which are not t-flat [6, Corollary 2.10]. Also, if each t-linked overring of a Mori domain R is Mori, then R has t-dimension one [5, Proposition 2.20]. The converse holds if R is a Strong Mori domain; precisely, we have the following result.

Proposition 4.6. Each t-linked overring of a Strong Mori domain of t-dimension one is either a field or a Strong Mori domain of t-dimension one.

Proof. It follows from [31, Theorem 3.4] recalling that an overring of a domain is a w-module if and only if it is t-linked [5, Proposition 2.13 (a)].

\[\Box\]

Corollary 4.7. If R is a w-divisorial Mori domain, then each t-linked overring of R is either a field or a Strong Mori domain of t-dimension one.

Proof. It follows from Corollary 4.3 and Proposition 4.6.

Our next purpose is to improve and generalize to Mori domains some results proved in [3] for Noetherian totally divisorial domains.

Proposition 4.8. Let R be a domain. The following conditions are equivalent:

1. R is a one-dimensional domain and each t-linked overring of R is w-divisorial;
2. R is a one-dimensional totally divisorial domain;
3. R is a Noetherian totally divisorial domain;
4. Each ideal of R is two generated.

Proof. (1) \Rightarrow (2). Since $\dim(R) = 1$, each overring of R is t-linked over R [5, Corollary 2.7 (b)]. Hence each overring T of R is w-divisorial. Assume that T is not a field. To prove that T is divisorial it suffices to check that $\dim(T) = 1$ (Proposition 4.3). Let R' be the integral closure of R and T' that of T. Since R' is one-dimensional and w-divisorial, then R' is divisorial. Thus R', being integrally closed, is a Prüfer domain [17, Theorem 5.1]. It follows that the extension $R' \subseteq T'$
Lemma 4.10. Let there exists \(S \) nonzero ideal of \(R \) Then is divisorial if and only if it is totally reflexive, because in the Noetherian case a domain is totally divisorial if and only if it is reflexive. □

Lemma 4.9. Let be an integral domain, \(I \) an ideal of \(R \), \(P_1, \ldots, P_n \) a set of pairwise incomparable prime ideals and \(S = R \setminus (P_1 \cup \cdots \cup P_n) \). If \(x_1, \ldots, x_n \in I \), there exists \(x \in IR_S \) such that \(x \equiv x_i \pmod{IP_iR_{P_i}} \), for each \(i = 1, \ldots, n \).

Lemma 4.10. Let be an integral domain which has \(t \)-finite character and \(I \) a nonzero ideal of \(R \). Let \(n \) be a positive integer and assume that, for each \(M \in t\text{-Max}(R) \), a minimal set of generators of \(IR_M \) has at most \(n \) elements. Then \(I \) is \(w \)-generated by a number of generators \(m \leq \max(2, n) \).

Proof. If \(I \) is not contained in any \(t \)-maximal ideal, then \(I_w = R \). Otherwise, let \(M_1, \ldots, M_r \) be the \(t \)-maximal ideals of \(R \) which contain \(I \). For \(i = 1, \ldots, r \), let \(a_{i1}, \ldots, a_{in} \in I \) be such that \(IR_{M_i} = (a_{i1}, \ldots, a_{in})R_{M_i} \). By Lemma 4.10 if \(S = R \setminus (M_1 \cup \cdots \cup M_r) \), for each \(j = 1, \ldots, n \), there exists \(a_j \in IR_S \subseteq IR_{M_i} \) such that \(a_j = a_{ij} \pmod{IM_jR_{M_j}} \), for each \(i = 1, \ldots, r \). By going modulo \(IM_jR_{M_j} \) and using Nakayama’s Lemma, we get \(IR_{M_j} = (a_{1j}, \ldots, a_{nj})R_{M_j} \) for each \(i = 1, \ldots, r \). We can assume that the \(a_i \)'s are in \(I \) and \(a_1 \neq 0 \). Let \(N_1, \ldots, N_s \) be the set of \(t \)-maximal ideals which contain \(a_1 \), with \(N_1 = M_1, \ldots, N_r = M_r \). Let \(b_1 = a_1, b_2, \ldots, b_n \in I \) such that \(IR_{N_j} = (b_{1j}, \ldots, b_{nj})R_{N_j} \) for each \(j = 1, \ldots, s \). We claim that \(I_w = (b_{1j}, \ldots, b_{nj}) \). Let \(M \) be a \(t \)-maximal ideal of \(R \). If \(M = N_j \) for some \(j \), then \(IR_M = (b_{1j}, \ldots, b_{nj})R_{M_j} \). If \(M \neq N_j \) for \(j = 1, \ldots, s \), then \(IR_M = R_M = (b_{1j}, \ldots, b_{nj})R_{M_j} \), since \(b_1 = a_1 \notin M \).

Theorem 4.11. Let be a domain. The following conditions are equivalent:

(1) \(R \) has \(t \)-dimension one and each \(t \)-linked overring of \(R \) is \(w \)-divisorial;
(2) \(R \) is a Mori domain and each \(t \)-linked overring of \(R \) is \(w \)-divisorial;
(3) \(R \) is a Mori domain and \(R_M \) is totally divisorial, for each \(M \in t\text{-Max}(R) \);
(4) Each nonzero ideal of \(R \) is a \(w \)-generated \(w \)-divisorial ideal;
(5) Each nonzero ideal of \(R \) is \(w \)-generated.

Proof. (1) ⇒ (2). \(R \) has \(t \)-finite character, because it is \(w \)-divisorial. We now show that, for each \(M \in t\text{-Max}(R) \), \(R_M \) is Noetherian. Since \(R_M \) is a one-dimensional \(t \)-linked overring of \(R \), then \(R_M \) is divisorial. In addition, each overring \(T \) of \(R_M \) is \(t \)-linked over \(R_M \) and so it is \(t \)-linked over \(R \). Thus \(T \) is a \(w \)-divisorial domain. By Proposition 4.8, \(R_M \) is Noetherian. We conclude that \(R \) is a (Strong) Mori domain.

(2) ⇒ (3). \(R \) is clearly \(w \)-divisorial. Hence \(R_M \) is a one-dimensional Noetherian domain. Let \(T \) be a \(t \)-linked overring of \(R_M \). Hence \(T \) is \(t \)-linked over \(R \) and so by assumption it is \(w \)-divisorial. By Proposition 4.8, \(R_M \) is totally divisorial.

(3) ⇒ (4). \(R \) is \(w \)-divisorial by Theorem 4.5. Hence \(R_M \) is one-dimensional and Noetherian by Corollary 1.3. Let \(T \) be a \(t \)-linked overring of \(R_M \). Hence \(T \) is \(t \)-linked over \(R \) and so by assumption it is \(w \)-divisorial. By Proposition 4.8, \(R_M \) is totally divisorial.

(4) ⇒ (5). \(R \) is \(w \)-divisorial by Theorem 4.5. Hence \(R_M \) is one-dimensional and Noetherian by Corollary 1.3. Thus, for each \(M \in t\text{-Max}(R) \), each ideal of \(R_M \) is two generated by Proposition 4.8. By using Lemma 4.10, we conclude that every nonzero ideal of \(R \) is a \(w \)-generated \(w \)-divisorial ideal.
(4) ⇒ (5) is clear.
(5) ⇒ (3). If (5) holds, R is a Strong Mori domain and so R_M is a Noetherian domain, for each $M \in \text{t-Max}(R)$. Let IR_M be a nonzero ideal of R_M, where I is an ideal of R. By assumption, $I_w = (a,b)_w$ for some $a,b \in R$. Thus $IR_M = (a,b)_wR_M = (a,b)R_M$ is a two generated ideal. It follows from Proposition 4.8 that R_M is a totally divisorial domain.

(3) ⇒ (2). R is w-divisorial by Theorem 4.8. Let T be a t-linked overring of R, $T \neq K$. By Corollary 4.7, T is a Mori domain. To show that T is w-divisorial, by Theorem 4.8 we have to prove that T_N is a divisorial domain, for each $N \in t$-$\text{Max}(T)$. Since $R \subseteq T$ is t-linked, then $Q = (N \cap R)_t \neq R$ [25 Proposition 2.1]; but as R has t-dimension one (Corollary 4.8), then Q is a t-maximal ideal of R. Since R_Q is totally divisorial and $R_Q \subseteq T_N$, then T_N is a divisorial domain.

(2) ⇒ (1) by Corollary 4.8.

Corollary 4.12. Let R be a domain and assume that each t-linked overring of R is w-divisorial. Then R is a Mori domain if and only if it has t-dimension one.

Example 4.13. Mori non-Krull and non-Noetherian domains satisfying the equivalent conditions of Theorem 4.11 can be constructed by using pullbacks, as the following example shows.

Let T be a Krull domain having a maximal ideal M of height one and assume that the residue field $K = T/M$ has a subfield k such that $|K : k| = 2$. Let $R = \varphi^{-1}(k)$ be the pullback of k with respect to the canonical projection $\varphi : T \rightarrow K$.

The domain R is Mori and it is Noetherian if and only if T is Noetherian [11, Theorems 4.12 and 4.18]. M is a maximal ideal of R that is divisorial; thus $M \in \text{t-Max}(R)$. Since R_M is the pullback of k with respect to the natural projection $T_M \rightarrow K$, R_M is divisorial by [27 Corollary 3.5]. In addition T_M is the only overring of R_M. In fact each overring of R_M is comparable with T_M under inclusion; but T_M is a DVR and $[K : k] = 2$. Thus R_M is totally divisorial.

If N is a t-maximal ideal of R and $N \neq M$, there is a unique t-maximal ideal $N' \in T$ such that $N' \cap R = N$ [12 Theorem 2.6(1)] and for this prime $T_N = R_N$. Thus R_N is a DVR. It follows that R_N is totally divisorial, for each $N \in \text{t-Max}(R)$.

References

[1] D. D. Anderson and M. Zafrullah, Independent Locally-Finite Intersections of Localizations, Houston J. Math. 25 (1999), 433-452.
[2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
[3] S. Bazzoni and L. Salce, Warfield Domains, J. Algebra 185 (1996), 836-868.
[4] S. Bazzoni, Divisorial Domains, Forum Math. 12 (2000), 397-419.
[5] D.E. Dobbs, E.G. Houston, T.G. Lucas, and M. Zafrullah, t-linked overrings and Pr"ufer v-multiplication domains, Comm. Algebra, 17 (1989), 2835-2852.
[6] D.E. Dobbs, E.G. Houston, T.G. Lucas, and M. Zafrullah, t-linked overrings as intersections of localizations, Proc. AMS, 109 (1990), 637-646.
[7] S. El Baghdadi, On a class of Pr"ufer v-multiplication domains, Comm. Algebra 30 (2002), 3723-3742.
[8] M. Fontana, J. Huckaba, and I. Papick, Pr"ufer domains, Monographs and Textbooks in Pure and Applied Mathematics, 203, M. Dekker, New York, 1997.
[9] R. M. Fossum, The divisor class group of a Krull domain, Springer-Verlag, 1973.
[10] S. Gabelli, On Nagata’s Theorem for the class group, II, Lecture notes in Pure and Appl. Math., vol. 206, Marcel Dekker, New York, 1999, pp. 117-142.
[11] S. Gabelli and E.G. Houston, Coherent-like conditions in pullbacks, Michigan Math. J. 44 (1997), 99-123.
[12] S. Gabelli and E.G. Houston, Ideal theory in pullbacks, Non-Noetherian Commutative Ring Theory, 199-227, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
[13] R. Gilmer, Multiplicative ideal theory, Dekker, New York, 1972.
[14] S. Glaz and W. Vasconcelos, Flat ideals, II, Manuscripta Math. 22 (1977), 325-341.
[15] M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710-722.
[16] F. Halter-Koch, Ideal systems. An introduction to multiplicative ideal theory. Monographs and Textbooks in Pure and Applied Mathematics, 211, M. Dekker, New York, 1998.

[17] W. J. Heinzer, Integral domains in which each non-zero ideal is divisorial, Matematika 15 (1968), 164-170.

[18] J. R. Hedstrom and E. G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), 37-44.

[19] E. G. Houston, On divisorial prime ideals in Prüfer v-multiplication domains, J. Pure Appl. Algebra 42 (1986), 55-62.

[20] E. G. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial, Michigan Math. J. 35 (1988), 291-300.

[21] P. Jaffard, Les Systèmes d’Idéaux, Dunod, Paris, 1970.

[22] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), 151-170.

[23] D.J. Kwak and Y.S. Park, On t-flat overrings, Chinese J. Math. 23 (1995), 17-24.

[24] D. Nour el Abidine, Groupe des classes de certains anneaux intègres et idéaux transformés, Thèse de Doctorat, Lyon, 1992.

[25] E. Matlis, Reflexive domains, J. Algebra 8 (1968), 1-33.

[26] E. Matlis, Torsion-free Modules, The University of Chicago Press, Chicago-London, 1972.

[27] A. Mimouni, TW-domains and Strong Mori domains, J. Pure Appl. Algebra, 177 (2003), 79-93.

[28] B. Olberding, Globalizing Local Properties of Prüfer Domains, J. Algebra 205 (1998), 480-504.

[29] B. Olberding, Stability, Duality, 2-Generated Ideals and a Canonical Decomposition of Modules, Rend. Sem. Mat. Univ. Padova, 106 (2001), 261-290.

[30] N. Popescu, On a class of Prüfer domains, Rev. Roumaine Math. Pure Appl. 29 (1984), 777-786.

[31] J. Querré, Sur les anneaux reflexifs, Can. J. Math., vol. XXVII, n. 6 (1975), 1222-1228.

[32] Wang Fanggui and R.L. McCasland, On w-modules over Strong Mori domains, Comm. Algebra 25 (1997), 1285-1306.

[33] Wang Fanggui and R.L. McCasland, On Strong Mori domains, J. Pure Appl. Algebra 135 (1999), 155-165.

[34] M. Zafrullah, Putting t-invertibility to use, Non-Noetherian Commutative Ring Theory, 429-458, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.

Department of Mathematics, Faculté des Sciences et Techniques, P.O. Box 523, Beni Mellal, Morocco
E-mail address: baghdadi@fstbm.ac.ma

Dipartimento di Matematica, Università degli Studi Roma Tre, Largo S. L. Murialdo, 1, 00146 Roma, Italy
E-mail address: gabelli@mat.uniroma3.it