Towards Detection of Bus Driver Fatigue based on Robust Visual Analysis of Eye State

Md. Ashraf Shubana khan¹, vagdevi², Vasudha³, santoshilaxmi⁴

¹Assistant Professor, Dept. of ECE, Siddhartha Institute of Engineering and Technology, Hyderabad, India
²,³,⁴UG Students, Dept. of ECE, Siddhartha Institute of Engineering and Technology, Hyderabad, India

https://doi.org/10.26782/jmcms.2019.08.00034

Abstract

This venture manages the immediate method for estimating driver weakness is estimating the condition of the driver for example sluggishness. So it is imperative to recognize the laziness of the driver to spare life and property. This undertaking is pointed towards building up a model of tiredness identification framework. This framework is a constant framework which catches picture consistently and measures the condition of the eye as indicated by the predetermined calculation and gives cautioning whenever required. For executing this framework a few OpenCv libraries are utilized including Haar-course. The whole framework is actualized utilizing Raspberry-Pi.

Keywords: Raspberry Pi, Open Cv, Camera, python IDLE

I Introduction

The consideration stage of driver debases in light of less rest, long nonstop driving or some other ailment like mind issue and so forth. A few reviews on street mishaps say that about 30% of mishaps are brought about by exhaustion of the driver. At the point when driver drives for more than typical period for human then over the top exhaustion is caused and furthermore results in tiredness which drives the driver to drowsy condition or loss of awareness. Laziness is a mind boggling wonder which expresses that there is a reduction in alarms and cognizant degrees of the driver. In spite of the fact that there is no immediate measure to identify the sluggishness yet a few backhanded techniques can be utilized for this reason.
I. i Drowsiness Recognition for measuring

Those study states that purpose behind an incident can be sorted concerning illustration a standout amongst the going with grade classes: (1) human, (2) vehicular, What's more (3) encompassing element. The driver's slip spoken to 91% of the mishaps. Alternate two classes from claiming causative components were eluded to Likewise 4% to the kind for vehicle utilized Also 5% for encompassing variables. A few measures need aid accessible for that estimation for sleepiness which incorporates those following

I. ii Vehical based measures
 a. Sudden deviation of vehicle from lane position.
 b. Sudden movement of steering wheels.
 c. Pressure on acceleration paddles.

![Block diagram of system design](image)

Fig. 1 Block diagram of system design

II Principal Component Analysis (PCA)

Those fundamental objective from decreases PCA may be will decline the no for size and additionally hold an ever increasing amount conceivable variety in the provided for information set. However we think that decrease done extent brings about majority of the data misfortune similarly as majority of the data would straightforwardly connected with extent.

II. i Eigen Face Approach

In PC face identification will be completed toward utilization of eigen face which need aid essentially set from claiming eigen vectors. They would vital segments from claiming dispersed countenances which would speak to in the type from claiming covariance grid about set from claiming appearances. In this system a face picture may be speaking to in the type for person dimensional grid. Should build that computational effectiveness utilization of fewer Eigen face is carried out.
II.ii Eigen Values and Eigen Vectors

We define as \(Ax = \lambda x \), the place \(A \) may be spoke to Concerning illustration a vector work. That point transforming the RHS a piece What's more composing it Likewise \((A - \lambda I)x = 0 \), the place \(i \) will be called the personality admin. Those over structure are a homogeneous comparison Furthermore may be basic and only straight polynomial math. Presence from claiming non-trivial result is concluded Toward acknowledging that In What's more just if \(\text{Det}(A - \lambda I) = 0 \), the place \(\text{Det} \) speaks to determinant.

III. Raspberry PI

It will be a low cost, credit-card measured PC which may be utilized for actualizing little ventures. A screen alternately television need will be joined with it remotely to visualize its working framework What's more work it. We could utilization a enter board Furthermore and mouse with provide information to it. A outer memory need should a chance to be used to load its working framework. We might system it for a few dialects in C++, Python and so forth.

The face identification system utilized within OpenCv is formed clinched alongside 2001 Eventually Tom's perusing paul Viola What's more michael Jones, delicately alluded on Likewise those Viola-Jones strategy. In spite of this strategy could make utilized to a few questions in any case the vast majority particularly here it will be utilized to face and more eye identification progressively.

III.i Haar Feature Selection

Haar-like offers need aid advanced picture offers utilized within article identification. Or we can say that these are rectangle melded dim and light ranges Hosting comparable sort of offers like our face. Along these lines essentially we move the individual’s offers for our face on Figure the yield from claiming every characteristic.
III.ii Creating an Integral Image

Fundamentally essential analytics picture will be the window. The essential analytics picture in area \((x, y)\) is those entirety of cash of the pixels over and of the cleared out for \((x, y)\).

![Feature selections](image)

Fig. 3 Feature selections

III.iv Adaboost Training

Adaboost stands to “Adaptive” support. Here we develop a solid classifier concerning illustration straight mix about feeble classifier concerning illustration there need aid in this way numerous characteristics which would absolutely invalid previously, finding those facial offers. It cans a chance to be figured concerning illustration below.

\[
F(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \alpha_3 f_3(x) + ...
\]

![Adaboost calculations](image)

Fig. 4 Image creating

Fig. 5 Adaboost calculations

IV. Cascading Classifiers

Following setting off through Adaboost stage currently let’s say we have 600 no from claiming solid classifiers. Something like that to recognize in a span holds a face
alternately not: As opposed to applying every last one of 600 offers for a window, assembly those features under diverse phases of classifiers and apply one-by-one.

IV.i Face detection Modifications

To identification for face, stacking about course record may be carried out. That point the prerequisite will be on pass off those caught outline on a capacity which can identification of edge.

IV.ii Modification in eye detection:

To eye identification Similarly as the measure from claiming preparing will a chance to be high if we apply the Characteristics on every last one of part of the face. Best upper parts of the face hold the most extreme likelihood of discovering an eye. Those spot about event of eyes are a couple pixels beneath the fore head.

IV.iii Color Changes selection

Presently for sleepiness identification As opposed to utilizing the hued image, that picture is changed over will gray scale to decrease the number of path parameter it aides will expansion the pace for figuring of the classifiers.

V Results

Model of sleepiness identification framework might have been intended utilizing Raspberry Pi difficult ware Furthermore coded previously, python dialect. It might have been tried with different subjects What's more unlike situation like instantly and tilted head and photograph duplicate of the yield might have been indicated beneath.
Fig. 7 Circle about the Eye straight = Eye in unlock state with head spot

Fig. 8 Head Position eye in blocked state

Fig. 9 Head position eye is open = left

Fig. 10 Head position eye is open = left
VI. Conclusion

In this paper, we present another driver exhaustion recognition technique for driving wellbeing. The inter frame contrast approach is used to choose whether the casing exists a face. At that point a blended skin shading model is used to recognize face. In the face district we utilize a novel strategy by recreating the crystallization procedure to section the eyes from the face. By performing projections the eyes can be found decisively. The distinguished two eyes are utilized to create an eye layout. We use eye region, normal stature of the understudy and width to stature proportion to recognize the eye's status.

References

I. Akira Kuramori, Noritaka Koguchi, “Evaluation of Effects of Drivability on Driver Workload by Using Electromyogram,” JSAE Review, vol. 25, pp. 91-98, 2004.
II. Byung-Chan Chang, Jung-Eun Lim, Hae-Jin Kim, et al, “A Study of Classification of the Level of Sleepiness for the Drowsy Driving Prevention,” Proc. SICE Annual Conference, pp. 3084-3089, 2007.
III. Erez Dagan, Ofer Mano, Gideon P. Stein, et al, “Forward Collision Warning with a Single Camera,” *Proc. Intelligent Vehicles Symposium*, pp. 37-42, 2004.

IV. L.M. Bergasa, J. Nuevo, M.A. Sotalo, and M. Vazquez, “Real-time system for monitoring driver vigilance,” *Proc. IEEE Intelligent Vehicle Symposium*, pp. 78-83, 2004.

V. Lal, S. K. L., Craig, et al, “Development of an Algorithm for an EEG-based Driver Fatigue Countermeasure,” *Journal of Safety Research*, vol. 34, pp. 321-328, 2003.

VI. Luis M. Bergasa, Jesús Nuevo, “Real-Time System for Monitoring Driver Vigilance,” *IEEE Trans. Intelligent Transportation Systems*, vol. 7, no. 1, pp. 63-77, 2006.

VII. Nikolaos P, “Vision-based Detection of Driver Fatigue,” *Proc. IEEE International Conference on Intelligent Transportation*, 2000.

VIII. Qiong Wang, Jingyu Yang, Mingwu Ren, and Yujie Zheng, “Driver Fatigue Detection: A Survey,” *Proc. Of the 6th World Congress on Intelligent Control and Automation*, pp. 8587-8591, 2006.

IX. Royal D, “Volume I - Findings report; national survey on distracted and driving attitudes and behaviours, 2002,” *The Gallup Organization, Washington, D.C., Tech. Rep.*, DOT HS 809 566, 2003.

X. Wen-Bing Horng, Chih-Yuan Chen, Yi Chang, et al, “Driver Fatigue Detection Based on Eye Tracking and Dynamic Template Matching,” *Proc. of the 2004 IEEE International Conference on Networking, Sensing & Control*, pp. 7-12, 2004.

XI. Yoshihiro Takei, and Yoshimi Furukawa, “Estimate of driver’s fatigue through steering motion,” *Proc. IEEE International Conference on Systems, Man and Cybernetics*, vol. 2, pp. 1765-1770, 2005.