Discovery of Three Novel Cytospora Species in Thailand and Their Antagonistic Potential

Jutamart Monkai 1,2, Saowaluck Tibpromma 3,4, Areerat Manowong 1, Ausana Mapook 1, Chada Norphanphoun 1, Kevin D. Hyde 1,2 and Itthayakorn Promputtha 2,6,*

1 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; mjutamart@gmail.com (J.M.); areerat.man@mfu.ac.th (A.M.); phung.ausana@gmail.com (A.M.); oomchn@gmail.com (C.N.); kdhyde3@gmail.com (K.D.H.)
2 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
3 Center for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China; saowaluckfai@gmail.com
4 CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, China
5 Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China
6 Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
* Correspondence: itthayakorn.p@cmu.ac.th

Abstract: During an ongoing research survey of saprobic fungi in Thailand, four coelomycetous strains were isolated from decaying leaves in Chiang Mai and Phitsanulok Provinces. Morphological characteristics demonstrated that these taxa are typical of *Cytospora* in forming multi-loculate, entostromatic conidiomata, branched or unbranched conidiophores, with enteroblastic, phialidic conidiogenous cells and hyaline, allantoid, aseptate conidia. Multiloci phylogeny of ITS, LSU, ACT, RPB2, TEF1-α and TUB2 confirmed these taxa are distinct new species in *Cytospora* in Cytosporaceae (Diaporthales, Sordariomycetes), viz., *Cytospora chiangmaiensis*, *C. phitsanulokensis* and *C. shoreae*. *Cytospora chiangmaiensis* has a close phylogenetic relationship with *C. shoreae*, while *C. phitsanulokensis* is sister to *C. acaciae*. These three novel species were also preliminary screened for their antagonistic activity against five plant pathogenic fungi: *Colletotrichum fructicola*, *Co. siamense*, *Co. artocarpica*, *Co. viniferum* and *Fusarium sambucinum*. *Cytospora shoreae* and *C. phitsanulokensis* showed >60% inhibition against *Co. viniferum* and *F. sambucinum*, while *C. chiangmaiensis* had moderate inhibition activity against all pathogens.

Keywords: antifungal activity; coelomycetous fungi; Cytosporaceae; multiloci phylogeny; saprobes; taxonomy

1. Introduction

Cytospora Ehrenb. is mainly characterized by the coelomycetous asexual morph producing single or labyrinthine, loculate stromata, filamentous conidiophores, with enteroblastic, phialidic conidiogenous cells and hyaline, allantoid, aseptate conidia [1-3]. The sexual morph of *Cytospora* is characterized as solitary, immersed or erumpent ascostroma, composed of prosenchymatous or pseudoparenchymatous cells of valsolid or diatrypelloid configurations, embedded in ectostromatic disc, present or absent paraphyses, J-, ellipsoid to clavate asci with refractive apical ring, and hyaline, ellipsoid to allantoid, aseptate ascospores [1,4,5]. Ehrenberg [6] initially introduced the genus *Cytospora* to accommodate four species, *C. betulina*, *C. epiphyces*, *C. resinæ* and *C. ribis*. The type species, *C. chrysosperma*, was introduced by Donk [7] as the asexual morph of *Valsa sordida* [8]. *Cytospora* was previously treated as the asexual morph of *Valsa* and other related genera, *Leucocytospora*, *Leucostoma*, *Valsella* and *Valseutypella* [4,8,9]. Based on the International Code of Nomenclature for Algae, Fungi, and Plants (ICN) [10], Rossman et al. [8] recommended to use *Cytospora* instead of *Valsa* as *Cytospora* was prior introduced and thus *Valsa* was treated as...
a synonym of *Cytospora*, together with the genera *Leucocytospora*, *Leucostoma*, *Valsella* and *Valseutypella* [4,8].

Species identification in *Cytospora* was problematic in the past due to overlapping morphological characteristics and wide host ranges [11–15]. A polyphasic approach including host association, geographical distribution, morphological characteristics and multiloci phylogeny has been widely accepted for identifying *Cytospora* species [1–3,5,9,16–18]. To date, 671 species epithets are listed in Index Fungorum [19], but less than a quarter of taxa in this genus are clarified with phylogenetic placement. In recent years, about 117 species have been accepted based on morpho-molecular approaches [20], and these species have primarily been described from China, Italy, Russia and Thailand [1–3,5,9,16–18,21].

Cytospora is a cosmopolitan genus with diverse ecological niches, including plant pathogens, endophytes and saprobes, colonizing decaying wood substrates [1,2,17,18]. *Cytospora* species are important causal agents of diebacks and stem cankers in numerous woody plants such as *Betulaceae*, *Pinophyta*, *Fabaceae*, *Juglandaceae*, *Rosaceae*, *Salicaceae*, *Tiliaceae* and *Ulmaceae* [1,3,16–18,22,23]. Furthermore, *Cytospora* has also been reported to produce potential secondary metabolites with various biological activities, such as antibacterial, antifungal and antiviral activities [24–26]. Investigation of the endophytic fungus *Cytospora* sp. from Costa Rica yielded novel antibiotic compounds: cytoskyrins and cytosporones [24,25]. Upon screening novel secondary metabolites produced by the endophytic fungus *Cytospora* sp. from Chinese mangrove, new bicyclic sesquiterpene and seiricardine D were isolated and they showed effective inhibition of human and plant pathogens [27].

During a survey of saprobic fungi in Thailand, three *Cytospora* species were collected and isolated. Based on morphological characteristics and phylogenetic analyses, our strains were identified as new species of *Cytospora*. In addition, these fungi were tested in vitro as the first step for screening new biocontrol agents against pathogenic fungi.

2. Materials and Methods

2.1. Collection and Isolation of Fungi

Decaying leaves were collected from disturbed forests in Chiang Mai and Phitsanulok Provinces in Thailand. The forests were disturbed due to the utilization of bioresources by the local communities. Samples were kept in plastic bags with labels of location, date, host and collector details before being taken to laboratory for morphological observation. We followed Senanayake et al. [28] for single spore isolation by using potato dextrose agar (PDA) and incubating at room temperature (28 °C). Pure cultures were deposited in Mae Fah Luang University Culture Collection (MFLUCC) and type specimens were deposited in the Herbarium of Mae Fah Luang University (MFLU). New taxa were registered in Faces of Fungi [29] and Index Fungorum databases [19].

2.2. Morphological Observation

Conidiomata on host surface were examined using a Motic SMZ 168 Series stereo microscope (Motic Incorporation Ltd., Hong Kong). Hand-sectioning of conidiomata was carried out and the sections were mounted on a slide with a drop of distilled water. Morphological characteristics including structure and size of stromata, ectostromatic disc, ostioles as well as shape and size of conidiogenous cells, conidiophores and conidia were observed and photographed using a Nikon ECLIPSE 80i compound microscope equipped with a Canon EOS 600D digital camera. Microscopic elements were measured using the Tarosoft (R) Image Frame Work program. The measurements of each structure were represented as minimum value-maximum value (\bar{x} = sum of all measurements/n, n = number of measurements). The figures were processed using Adobe Photoshop CS6 Extended version 10.0 software (Adobe Systems, San Jose, CA, USA).
2.3. DNA Extraction, PCR Amplification and Sequencing

Genomic DNA was extracted from fresh mycelium which was grown on PDA for 1–2 weeks using the Biospin Fungus Genomic DNA Extraction Kit (Bioflux®, Hangzhou, China) following the manufacturer’s protocol. The amplification of specific ribosomal DNA regions was carried out using two gene regions, including the internal transcribed spacers region of ribosomal DNA (ITS) [30] and the partial 28S large subunit nuclear ribosomal DNA (LSU) [31], and four protein coding gene regions: the RNA polymerase II second largest subunit (RPB2) [32], \(\alpha \)-actin (ACT) [33], the translation elongation factor 1-\(\alpha \) (TEF1-\(\alpha \)) [33] and beta-tubulin (TUB2) [34]. The final volume of PCR mixtures was 25 \(\mu \)L, including 8.5 \(\mu \)L ddH\(_2\)O, 12.5 \(\mu \)L 2 \(\times \) PCR MasterMix (TIANGEN Co., Beijing, China), 2 \(\mu \)L DNA template and 1 \(\mu \)L of each forward and reverse primer. The PCR primers and conditions for each gene regions are described in Table 1. The purification and sequencing of PCR products were conducted by TsingKe Company (Kunming, China).

Genes (Primer Pair)	References	PCR Condition
ITS (ITS5/ITS4)	[30]	An initial denaturation step of 3 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 50 s at 55 °C and 90 s at 72 °C, and a final extension step of 10 min at 72 °C
LSU (LROR/LR5)	[31]	
TEF1-\(\alpha \) (728F/986R)	[33]	
TUB2 (Bt2a/Bt2b)	[34]	
ACT (512F/783R)	[33]	An initial denaturation step of 5 min at 95 °C, followed by 40 cycles of 1 min at 95 °C, 1 min at 52 °C and 90 s at 72 °C, and a final extension step of 10 min at 72 °C
RPB2 (fRPB2-5F/fRPB2-7cR)	[32]	

2.4. Phylogenetic Analyses

Sequences generated in this study were analyzed with other sequences retrieved from the GenBank (www.ncbi.nlm.nih.gov/blast/, accessed on 1 August 2021) and recent publications [1,2,17] (Table 2). Alignments of the individual locus were aligned with MAFFT v.7 (http://mafft.cbrc.jp/alignment/server/index.html, accessed on 3 August 2021; [35]) and automatically trimmed using TrimAl (http://trimal.cgenomics.org accessed on 1 August 2021; [36]). The single-locus datasets of ITS, LSU, ACT, RPB2, TEF1-\(\alpha \) and TUB2 regions were initially analyzed by maximum likelihood (ML) criterion with 120, 72, 69, 50, 55 and 41 sequences, respectively. The tree topologies obtained from single-locus analyses were checked for incongruence and the results did not show any topological conflicts. Phylogenetic analyses of the final concatenated ITS, LSU, ACT, RPB2, TEF1-\(\alpha \) and TUB2 sequence datasets were performed via maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI).

Table 1. Partial marker regions, primers and PCR conditions used in this study.

Species Name	Culture Accession No.	Genbank Accession No.				
	ITS	LSU	ACT	RPB2	TEF1-\(\alpha \)	TUB2
Cytospora abyssinica	CMW 10181	AY347353	N/A	N/A	N/A	N/A
C. abyssinica	CMW 10178	AY347354	N/A	N/A	N/A	N/A
C. abyssinica	CMW 10179	AY347352	N/A	N/A	N/A	N/A
C. abyssinica	CBS 117004	KY051833	KX965299	KX964737	KX965495	KX965098
C. acaciae	CBS 468.69	DQ243804	N/A	N/A	N/A	N/A
Table 2. Cont.

Species Name	Culture Accession No.	Genbank Accession No.						
	ITS	LSU	ACT	RPB2	TEF1-α	TUB2		
C. acaciae	Fi2427	MG253918	N/A	N/A	N/A	N/A		
C. acaciae	CPC 28392	KY051980	KY965438	KY964858	KY965579	KY965220	KY965027	
C. acaciae	CBS 468.69	KY051937	KY965394	KY964817	N/A	N/A	KY965181	KY964990
C. acaciae	CBS 362.93	KY051929	KY965386	KY964811	KY965547	KY965173	KY964983	
C. acaciae	CBS 112156	KY051776	KY965241	KY964688	N/A	N/A	KY964888	
C. amygdali	CBS 144233	MG971853	N/A	MG972002	N/A	MG971659		
C. amygdali	LH356	MG971852	N/A	MG972001	N/A	MG971658		
C. brevispora	CBS 116829	AF192321	N/A	N/A	N/A	N/A		
C. brevispora	CBS 116829	KY051803	KY965267	KY964709	KY965477	KY965073	KY964909	
C. brevispora	CBS 116813	KY051788	KY965252	KY964698	KY965470	KY965061	KY964898	
C. californica	CBS 144224	MG971935	N/A	MG972083	N/A	MG971645		
C. californica	KARE1106	MG971948	N/A	MG972094	N/A	MG971647		
C. californica	KARE93	MG971930	N/A	MG972079	N/A	MG971640		
C. cedri	CBS 196.50	AF192311	N/A	N/A	N/A	N/A		
C. cedri	CBS 196.50	KY051905	KY965264	KY964790	KY965534	KY965153		
C. ceratosperma	CBS 116.21	AY347335	N/A	N/A	N/A	N/A		
C. ceratosperma	CFCC 89625	KR045646	N/A	KU710977	PK310861	KY965687		
C. cinnamomei	CFCC 89626	KR045647	KU711011	KU710978	KU710934	KY965688		
C. chiangmaiensis	MFLUCC 21-0049	MZ356514	MZ356518	MZ451157	MZ451165	MZ451161	MZ451169	
C. curcata	MFLUCC 15-0865	KY417728	N/A	KY417694	N/A	N/A		
C. davidiana	CXY 1350	KM034870	N/A	N/A	N/A	N/A	KM034902	
C. davidiana	CXY 1374	KM034869	N/A	N/A	N/A	N/A	KM034901	
C. diopuiensis	MFLUCC 18-1419	MK912137	MK571765	MN685819	N/A	N/A		
C. diopuiensis	MFLUCC 18-0598	MT215491	MT215540	N/A	MT212203	N/A		
C. erumpens	MFLUCC 16-0580	KY417733	KY417767	KY417699	KY417801	N/A		
C. erumpens	CFCC 53163	MK673059	MK673089	MK673029	MK673000	MK672948	MK672975	
C. eucalypti	LSEQ	AY347340	N/A	N/A	N/A	N/A		
C. eucalypti	CBS 144241	KY051907	N/A	N/A	N/A	N/A		
C. eucalypti	7G-62	KY051910	N/A	N/A	N/A	N/A		
C. eucalypti	CBS 116814	KY051789	KY965253	KY964699	KY965062	KY964899		
C. eucalyptina	CMW 5882	AY347375	N/A	N/A	N/A	N/A		
C. eucalyptina	CBS 118085	KY051848	KY965315	KY964737	KY964898			
C. eucalyptina	CBS 116853	KY051822	KY965288	KY964727	KY964918			
C. fraxinigena	MFLUCC 17-0880	MFI90134	MFI90079	N/A	N/A	N/A		
C. fraxinigena	MFLUCC 14-0868	MFI90133	MFI90078	N/A	N/A	N/A		
C. gigaspora	CFCC 50014	KRO45630	KRO45710	KU710999	KU710959	KU710922	KRO45671	
C. gigaspora	CFCC 89634	KF765671	KF765687	KU711000	KU710960	KU710923	KRO45672	
C. italica	14-0440	KU900329	KU900301	N/A	N/A	N/A		
C. junipericola	BBH 42444	MFI90126	MFI90071	N/A	N/A	MF377579		
C. junipericola	MFLUCC 17-0882	MFI90125	MFI90072	N/A	N/A	MF377580		
C. kunzei	CBS 118556	DQ243791	N/A	N/A	N/A	N/A		
C. kunzei	CBS 118093	KY051855	KY965322	KY964754	KY965116	KY964941		
C. kunzei	CBS 114651	KY051780	KY965243	KY964691	KY965055	KY964890		
C. leucostoma	CFCC 50023	KRO45635	KRO45715	KU711003	KU710964	KU710926	KRO45676	
C. leucostoma	CFCC 53156	MNI854447	MNI854658	MNI850762	MNI850748	MNI850755	MNI861117	
C. leucostoma	MFLUCC 16-0574	KY417731	KY417764	KY417696	KY417798	N/A	N/A	
Species Name	Culture Accession No.	Genbank Accession No.						
----------------------------	-----------------------------	--						
		ITS	LSU	ACT	RPB2	TEF1-α	TUB2	
C. lumnitzericola	MFLUCC 17-0508	MG975778	MH253453	MH253457	MH253461	N/A	N/A	
C. magnoliae	IMI259790	JX438623	N/A	N/A	N/A	JX438565	N/A	
C. mali-spectabilis	CFCC 53181	MK673066	MK673096	MK673036	MK673006	MK672953	MK672982	
C. multicollis	CBS 105.89	DQ243803	N/A	N/A	N/A	N/A	N/A	
C. nitschkii	CMW 10180	AY347356	N/A	N/A	N/A	N/A	N/A	
C. nitschkii	CBS 130.95	KY051879	KY965344	N/A	N/A	N/A	N/A	
C. nitschkii	CBS 116854	MH1863003	MH187459	KX964728	KX965487	KX965090	N/A	
C. nivea	MFLUCC 15-0860	KY417737	KY417771	KY417703	KY417805	N/A	N/A	
C. nivea	CFCC 89641	KF765683	KF765699	KU711006	KU710967	KU710929	KR045679	
C. notastroma	K3	JX438631	N/A	N/A	N/A	JX438539	N/A	
C. notastroma	K20	JX438629	N/A	N/A	N/A	JX438541	N/A	
C. olivacea	CFCC 53175	MK673062	MK673092	MK673032	MK673003	N/A	N/A	
C. olivacea	CFCC 53176	MK673086	MK673098	MK673038	MK673008	MK672955	MK672984	
C. palm	CXY 1276	JX410290	N/A	N/A	N/A	KJ781296	N/A	
C. palm	CXY 1280	JN411193	N/A	N/A	N/A	KJ781297	N/A	
C. parapersoonii	T28.1	AF191181	N/A	N/A	N/A	N/A	N/A	
C. paratranslucens	MFLUCC 15-0506	KY417741	KY417775	KY417707	KY417809	N/A	N/A	
C. paratranslucens	MFLUCC 16-0627	KY417742	KY417776	KY417708	KY417810	N/A	N/A	
C. pavettae	CBS 145562	MK876386	MK876427	MK876457	MK876483	MK876497	MK876503	
C. phitsanulokensis	MFLUCC 21-0046	MG974309	MG974310	MG974311	MG974312	MG974313	MG974314	
C. pingbianensis	MFLUCC 18-1204	MK912135	MK571763	MN685817	MN685826	N/A	N/A	
C. pini	CBS 197.42	AY347332	N/A	N/A	N/A	N/A	N/A	
C. pini	CBS 224.52	AY347316	N/A	N/A	N/A	N/A	N/A	
C. pini	CPC 28408	KY051994	KY965452	KX964872	KX965591	N/A	N/A	
C. platycladi	CFCC 50504	MIH933645	MIH933679	MIH933552	MIH933610	MH933516	MH933581	
C. platycladi	CFCC 50506	MIH933647	MIH933681	MIH933554	MIH933612	MH933518	MH933583	
C. plurivora	CBS 144239	MG971861	N/A	N/A	MG972010	N/A	MG971572	
C. predappioensis	MFLUCC 17-0327	MH123541	MH123542	MH123543	MH123544	N/A	N/A	
C. predappioensis	MFLUCC 17-2458	MG873488	MG873480	N/A	N/A	N/A	N/A	
C. pruinosa	CBS 201.42	DQ243801	N/A	N/A	N/A	N/A	N/A	
C. pruinosa	CBS 199.42	KY051911	KY965369	KX964795	N/A	KX965159	KX964968	
C. pubescens	MFLUCC 18-1201	MK912130	MK571758	MN685812	MN685821	N/A	N/A	
C. punicae	CBS 144244	MG971943	N/A	MG972091	N/A	MG971654	N/A	
C. punicae	7C-11	MG971942	N/A	N/A	N/A	MG971653	N/A	
C. quercicola	MFLUCC 17-0881	MF190128	MF190074	N/A	N/A	N/A	N/A	
C. quercicola	MFLUCC 14-0867	MF190129	MF190073	N/A	N/A	N/A	N/A	
C. rhizophorae	MUCC302	EU301057	N/A	N/A	N/A	N/A	N/A	
C. rhizophorae	M225	KR056292	N/A	N/A	N/A	N/A	N/A	
C. rhizophorae	ATCC 38475	DQ296040	N/A	N/A	N/A	N/A	N/A	
C. rhizophorae	CBS 116861	N/A	KX965296	KX964735	N/A	N/A	N/A	
C. rosae	MFLUCC 17-0885	MF190131	MF190076	N/A	N/A	N/A	N/A	
C. rusanovii	MFLUCC 15-0853	KY417743	KY417777	KY417709	KY417811	N/A	N/A	
C. rusanovii	MFLUCC 15-0854	KY417744	KY417778	KY417710	KY417812	N/A	N/A	
Table 2. Cont.

Species Name	Culture Accession No.	Genbank Accession No.					
		ITS	LSU	ACT	RPB2	TEF-α	TUB2
C. shoreae	MFLUCC 21-0047	MZ356515	MZ356519	MZ451158	MZ451166	MZ451162	MZ451170
C. shoreae	MFLUCC 21-0048	MZ356516	MZ356520	MZ451159	MZ451167	MZ451163	MZ451171
C. sorbi	MFLUCC 16-0631	KY417752	KY417786	KY417718	KY417820	N/A	N/A
C. sorbicola	MFLUCC 16-0584	KY417755	KY417789	KY417721	KY417823	N/A	N/A
C. sorbicola	MFLUCC 16-0633	KY417758	KY417792	KY417724	KY417826	N/A	N/A
C. tamaricola	CFCC 50507	MH933651	MH933686	MH933559	MH933616	MH933525	MH933587
C. tamaricola	CFCC 50508	MH933652	MH933687	MH933560	MH933617	MH933523	MH933588
C. thailandica	MFLUCC 17-0262	MG975776	MH253455	MH253459	MH253463	N/A	N/A
C. thailandica	MFLUCC 17-0263	MG975777	MH253456	MH253460	MH253464	N/A	N/A
C. translucens	CXY 1351	KM034874	N/A	N/A	N/A	N/A	KM034895
C. valseoida	CBS 117003	KY051832	KX965298	N/A	KX965494	KX965097	N/A
C. variostomatica	CMW 6766	AY347366	N/A	N/A	N/A	N/A	N/A
C. variostomatica	PPRI5297	AF260264	N/A	N/A	N/A	N/A	N/A
C. variostomatica	CBS 116858	KY051828	KX965293	KX964732	N/A	N/A	KX964921
C. vinacea	CBS 141585	KX256256	N/A	N/A	N/A	N/A	KX256277
C. viridistroma	CBS 202.36	MN172408	MN172388	N/A	N/A	N/A	MN271853
C. viridistroma	CRY 1534	AF452120	N/A	N/A	N/A	N/A	N/A
C. xinglongensis	CFCC 52458	MK432622	MK429892	MK442946	MK578082	N/A	N/A
C. xinglongensis	CFCC 52459	MK432623	MK429893	MK442947	MK578083	N/A	N/A
C. xylocarpi	MFLUCC 17-0251	MG975775	MH253454	MH253458	MH253462	N/A	N/A
C. xylocarpi	111_03_01	MT507847	N/A	N/A	N/A	N/A	N/A
Diaporthe eres	CBS 138594	KJ210529	N/A	KJ420760	N/A	KJ210550	KJ420799
D. vaccinii	CBS 160.32	KC343228	N/A	JQ807297	N/A	KC343954	KC344196

Maximum likelihood (ML) analysis was performed by RAxML-HPC2 (v.8.2.12) on XSEDE implemented in the CIPRES Science Gateway web server (http://www.phylo.org accessed on 1 August 2021; [37] using 1000 rapid bootstrap replicates and the GTR + GAMMA + I substitution model. Maximum parsimony (MP) analysis was generated by PAUP (Phylogenetic Analysis Using Parsimony) v.4.0b10 [38] using the heuristic search option and 1000 random sequence additions. The branch-swapping was analysed using tree-bisection reconnection (TBR) algorithm. Maxtrees was set up at 1000 and all characters were unordered and of equal weight. The branches of zero length were collapsed and gaps were treated as missing data. All multiple and equally parsimonious trees were saved. The stability of the most parsimonious tree was evaluated by a bootstrap analysis with 1000 replicates, each with 100 replicates of random stepwise addition of taxa. The descriptive parsimonious tree, Tree Length [TL], Consistency Index [CI], Retention Index [RI], Relative Consistency Index [RC] and Homoplasy Index [HI] were calculated.

The evolutionary models for Bayesian inference (BI) analysis were determined for each locus using MrModeltest v.2.3 [39]. GTR + I + G was selected as the best-fitting model for LSU, RPB2, TEF-α and TUB2 datasets, SYM + I + G for the ITS dataset and HKY + I + G for the ACT dataset. BI analysis was conducted by Markov chain Monte Carlo sampling (BMCPC) to assess posterior probabilities (PP) [40,41] using MrBayes v3.1.2 [42]. Six simultaneous Markov chains were run for random trees for 10,000,000 generations, and trees were sampled every 1000th generation. The effective sampling sites (ESS) of initial trees were checked using the Tracer v. 1.6 [43]. The first 10% of generated trees were discarded, and the remaining trees were used to calculate posterior probabilities (PP).
in the majority rule consensus tree (the standard deviation of split frequency lower than 0.01). Bootstrap support values for ML and MP equal to or greater than 60% and Bayesian posterior probabilities (PP) equal to or greater than 0.95 were given above the nodes in the phylogenetic tree (Figure 1).

Figure 1. Cont.
Figure 1. Phylogenetic tree obtained from RAxML analyses of a combined ITS, LSU, ACT, RPB2, TEF1-α and TUB2 sequence dataset. Bootstrap support values for ML, MP equal to or greater than 60% and PP equal to greater than 0.95 are indicated at the nodes as ML/MP/PP. The ex-type strains are in bold and the new isolates of this study are in red. The tree is rooted to *Diaporthe eres* (CBS138594) and *D. vaccinii* (CBS16032).
Phylograms were visualized by FigTree v1.4.0 program [44] and reorganized by Microsoft PowerPoint 2013 (Microsoft Inc., Redmond, WA, USA) and Adobe Photoshop CS6 software (Adobe Systems, San Jose, CA, USA). The generated sequences of the new taxa were registered for the GenBank accession numbers. The final alignment and phylogram were submitted in TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S28804 accessed on 1 August 2021).

2.5. Genealogical Concordance Phylogenetic Species Recognition Analysis

New species and phylogenetically related species were analyzed using the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) model by conducting a pairwise homoplasy index (PHI) test as described by Bruen et al. [45] and Quaedvlieg et al. [46]. The PHI test was conducted in SplitsTree4 [47,48] to examine the recombination level within phylogenetically closely related species using a six-locus concatenated dataset (ITS, LSU, ACT, RPB2, TEF1-α and TUB2). The significant recombination in the dataset was indicated by PHI value below 0.05 (Φw < 0.05). The results were visualized by generating a split graph, using both the LogDet transformation and split decomposition options.

2.6. Preliminary Screening of Antagonistic Activity against Fungal Pathogens

The fungal pathogens, Colletotrichum artocarpicola (MFLUCC 18-1167), Co. fructicola (MFLUCC 18-1160), Co. siamense (MFLUCC 18-1162), Co. viniferum (MFLUCC 18-1179) and Fusarium sambucinum (MFLUCC 17-1056) were obtained from MFLUCC and used for the antagonistic activity test. Fungal isolates were screened using in vitro dual culture assays for their ability to suppress the mycelial growth of fungal pathogens. An antagonism test was performed with 10-day-old cultures of pathogens and new strains. Fresh cultures (pathogens and our strains) 10 days after incubation were used for the antagonism test. A fungal pathogen disc (5 mm) was placed 3 cm from the margin of the PDA plate (9 cm in diam.). An antagonist fungus disc (5 mm) was also placed in a similar manner but on the direct opposite of the pathogen disc. The plate was incubated at room temperature (28 °C) for 10 days. Plates inoculated with a fungal pathogen in the absence of an antagonistic fungus were used as negative controls. The assay was replicated three times. Observations were carried out for the 3rd, 5th, 7th and 10th days. Clear inhibition zone was recorded and the percentage inhibition in mycelial growth was calculated using the following formula [49]: I% = [(R1–R2)/R1] × 100, where I% = the percentage inhibition, R1 = the radial growth of test pathogen in a control plate and R2 = the radial growth of test pathogen in the direction of antagonistic fungus. Data were statistically analyzed with ANOVA using SPSS version 22 (SPSS, Inc., Chicago, IL, USA). Tukey’s HSD test was used to determine the significant differences between treatments at p ≤ 0.05.

3. Results

3.1. Phylogenetic Analyses

The concatenated sequence dataset of ITS, LSU, ACT, RPB2, TEF1-α and TUB2 gene regions comprised 120 strains of Cytospora and two outgroup taxa, Diaporthe eres (CBS 138594) and D. vaccinia (CBS 160.32). The dataset contained 3339 characters according to the order of ITS: 1–416, LSU: 417–1199, ACT: 1200–1429, RPB2: 1430–2027, TEF1-α: 2028–2624, β-TUB: 2625–3339. The tree topologies of combined sequence data obtained from ML, MP and BI analyses were not significantly different.

The RAxML analysis of the combined dataset yielded a best scoring tree with a final ML optimization likelihood value of −24983.102448 (Figure 1). The aligned sequence matrix comprises 1399 distinct alignment patterns, with 55.00% of undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.239305, C = 0.269679, G = 0.260287, T = 0.230728; substitution rates AC = 1.822160, AG = 4.370331, AT = 1.771054, CG = 1.304544, CT = 8.574513, GT = 1.000000; gamma distribution shape parameter α = 0.219288. The maximum parsimonious dataset consisted of 3354 characters, of which 2127 were constant, 1052 were parsimony-informative and 175 were parsimony-uninformative. The descriptive
In the phylogenetic analyses (Figure 1), two new species, *Cytospora chiangmaiensis* (MFLUCC 21-0049) and *Cytospora shoreae* (MFLUCC 21-0047, MFLUCC 21-0048), clustered in a monophyletic lineage but well separated branch with strong bootstrap support (94% ML/99% MP/1.00 PP). Another new species, *Cytospora phitsanulokensis* (MFLUCC 21-0046), formed an independent branch adjacent to *C. acaciae*, *C. magnoliae* and *C. italica* with high bootstrap support (100% ML, 100% MP, 1.00 PP; Figure 1).

A pairwise homoplasy index (PHI) test revealed no significant recombination event between *Cytospora phitsanulokensis* and the closely related taxa, *C. acaciae*, *C. italica* and *C. magnoliae* (Figure 2). There was also no significant recombination among *Cytospora chiangmaiensis*, *C. shoreae*, *C. thailandica*, *C. diopuiensis* and *C. xinglongensis* (Figure 2). This evidence supports that they are different species. The significant recombination between two strains of *Cytospora shoreae* (MFLUCC 21-0047 and MFLUCC 21-0048) indicate that they are conspecific (Figure 3).

Figure 2. Results of the pairwise homoplasy index (PHI) test of *Cytospora phitsanulokensis* and closely related species using both LogDet transformation and splits decomposition. PHI test results (Φw) < 0.05 indicate significant recombination within the dataset. New species described in this study are indicated in red.

Figure 3. Results of the pairwise homoplasy index (PHI) test of *Cytospora chiangmaiensis* and *C. shoreae* and closely related species using both LogDet transformation and splits decomposition. PHI test results (Φw) < 0.05 indicate significant recombination within the dataset. New species described in this study are indicated in red.

3.2. **Taxonomy**

3.2.1. *Cytospora chiangmaiensis* Monkai and K.D. Hyde, sp. nov.

Index Fungorum number: IF558524; Facesoffungi number: FoF 09935; Figure 4.
Figure 4. *Cytospora chiangmaiensis* (MFLU 21-0048, holotype). (A) Conidiomata on host substrate. (B–D) Longitudinal sections through conidioma. (E) Conidiomata with ostiole and the arrangement of locules. (F,G) Peridium. (H) Conidiophore and conidiogenous cells with attached conidia. (I) Germinating conidia. (J) Conidia. (K,L) Colony on PDA plate (9 cm diam.) (K) from above, (L) from reverse). Scale bars: (A–C) = 500 μm, (D,E) = 100 μm, (G) = 50 μm, (F,H–J) = 10 μm.

Etymology: Name reflects the locality, Chiang Mai Province, Thailand, where the holotype was collected.

Holotype: MFLU 21-0048

* Saprobic on decaying leaves (vein and petioles) of *Shorea* sp. Sexual morph: Undetermined. Asexual morph: *Conidiomata* 650–800 μm diam., pycnidial, solitary, semi-immersed to erumpent, circular to ovoid, multi-loculate. *Conceptacle* black. *Ectostromatic disc* 170–230 μm diam., brown to dark brown, circular to ovoid, one ostiole per disc. *Ostioles* 55–65 μm diam., conspicuous, circular, dark brown, at the same level as the disc surface. *Peridium* comprising few layers of cells, *textura globosa*, dark brown to black. *Locules*
numerous, regularly arranged with a column, independent wall. Conidiophores hyaline, unbranched or occasionally branched at the bases, formed from the innermost layer of pycnidial wall, embedded in a gelatinous layer. Conidiogenous cells 8.5–12.2 × 1–1.7 μm (x = 10.4 × 1.3 μm, n = 20), enteroblastic, phialidic, sub-cylindrical to cylindrical, tapering towards apices. Conidia 5–7 × 0.9–1.7 μm (x = 6 × 1.2 μm, n = 30), hyaline, unicellular, elongate-allantoid, guttulate, smooth, thin-walled.

Culture characteristics: Conidia germinating on PDA within 24 h germ tubes produced from one pole. Colonies on PDA reached at 5 cm diam. after 7 days at 28 °C, irregular in shape, surface slightly rough, effuse, slightly raised, with undulate margin, medium dense, white to cream, in reverse pale yellowish to white.

Material examined: THAILAND, Chiang Mai, Doi Lor district, Yang Kram, on decaying leaves of Shorea sp. (Dipterocarpaceae), 15 October 2019, J. Monkai, CH1-2 (MFLU 21-0048, holotype), ex-type living culture, MFLUCC 21-0049.

Notes: Cytospora chiangmaiensis formed an independent lineage sister to Cytospora shoreae with 94% ML/99% MP/1.00 PP bootstrap support (Figure 1). Based on phylogenetic analyses, Cytospora chiangmaiensis grouped in the same clade with C. diopuiensis, C. lumnitzericola, C. pingbianensis, C. platycladi C. shoreae, C. thailandica and C. xinglongensis (Figure 1). Cytospora diopuiensis and C. pingbianensis are only known from their sexual morph [2], and our strain was found as an asexual morph. Thus, we are unable to compare the morphological characters of those species. However, Cytospora lumnitzericola can be distinguished from C. chiangmaiensis by its shorter conidia [5] (Table 4). Cytospora platycladi is similar to C. chiangmaiensis in having multi-loculate conidiomata with central ostiole but it has smaller conidiomata and shorter conidia [1] (Table 4). Cytospora thailandica differs from C. chiangmaiensis in having larger conidiomata with an ostiolar neck, shorter conidiogenous cell and shorter conidia [1] (Table 4). Cytospora xinglongensis differs from C. chiangmaiensis in having undivided locules, inconspicuous ostioles and shorter conidiogenous cells and longer conidia [16] (Table 4).

3.2.2. Cytospora shoreae Monkai and K.D. Hyde, sp. nov.

Index Fungorum number: IF558525; Facesoffungi number: FoF 09936; Figure 5.

Etymology: The specific epithet shoreae refers to host plant genus Shorea, on which the fungus was first collected.

Holotype: MFLU 21-0049

Saprobic on decaying leaves (vein and petioles) of Shorea sp. Sexual morph: Undetermined. Asexual morph: Conidiomata 400–1000 μm diam., pycnidial, semi-immersed in host tissue, solitary, erumpent, flask shaped to ovoid, multi-loculate. Conceptacle black. Ectostromatic disc 120–580 μm diam., brown to dark brown, circular to ovoid, one ostiole per disc. Ostioles 19–52 μm diam., conspicuous, circular, dark brown, at the same level as the disc surface. Peridium comprising few layers of cells, textura globosa, dark brown to black. Locules numerous, regularly arranged with a column, independent wall. Conidiophores hyaline, unbranched or occasionally branched at the bases, formed from the innermost layer of pycnidial wall, embedded in a gelatinous layer. Conidiogenous cells 6.7–11.8 × 1–1.9 μm (x = 10 × 1.4 μm, n = 10), enteroblastic, phialidic, subcylindrical to cylindrical, tapering towards apices. Conidia 5–7 × 1–1.6 μm (x = 6 × 1.3 μm, n = 30), hyaline, unicellular, elongate-allantoid, guttulate, smooth, thin-walled.

Culture characteristics: Conidia germinating on PDA within 24 h germ tubes produced from both poles. Colonies on PDA reached at 6 cm diam. after 7 days at 28 °C, irregular in shape, surface slightly rough, effuse, slightly raised, with undulate margin, medium dense, pale brown to white, in reverse pale yellowish to white.
Figure 5. Cytospora shoreae (MFLU 21-0049, holotype (C–E,G,H,J,L,N,O) and MFLU 21-0050, paratype (A,B,F,I,K,M,P,G)). (A,D) Conidiomata on host substrate. (B,C,E,F) Longitudinal sections through conidioma. (G) Peridium. (H,I) Conidiophores and conidiogenous cells with attached conidia. (J,K) Conidia. (L,M) Germinating conidia. (N–Q) Colonies on PDA plate (9 cm diam.) ((N,P) from above, (O,Q) from reverse). Scale bars: (A–E) = 500 µm, (F) = 50 µm, (G–M) = 10 µm.

Material examined: THAILAND, Chiang Mai, Omkoi district, Yang Piang, on decaying leaves of Shorea sp. (Dipterocarpaceae), 16 October 2019, J. Monkai, CH2-2 (MFLU 21-0049, holotype), ex-type living culture, MFLUCC 21-0047; THAILAND, Chiang Mai, Omkoi district, Yang Piang, on unidentified decaying leaves, 16 October 2019, J. Monkai, CH2-3 (MFLU 21-0050, paratype), ex-paratype living culture MFLUCC 21-0048.
Notes: Cytospora shoreae formed a sister clade to C. chiangmaiensis with 94% ML, 99% MP and 1.00 PP statistical support (Figure 1). Cytospora chiangmaiensis and C. shoreae share similar morphology in the size and characteristics of conidiogenous cells and conidia. However, C. chiangmaiensis has circular shaped conidiomata. Cytospora shoreae has larger, flask-shaped conidiomata. The single gene comparison of ACT, RPB2, TEF1-α and TUB2 showed that there are significant nucleotide differences (more than 1.5%) between Cytospora chiangmaiensis and two strains of C. shoreae (MFLUCC 21-0047 and MFLUCC 21-0048; Table 3) and this provides evidence that they are different species [50]. Cytospora shoreae differs from C. lumnitzericola and C. platycladi by its longer conidia [1,5] (Table 4). Cytospora shoreae is distinguished from C. thailandica by having longer conidiogenous cell and conidia [5] (Table 4). Table 3 shows the nucleotide differences of Cytospora species discussed in this study.

New Taxa/Strains Compared with	Number of Different Nucleotides/Number of All Nucleotides (% Base Pairs Difference)					
	ITS	LSU	ACT	RPB2	TEF1-α	TUB2
Cytospora shoreae (MFLUCC 21-0047)	0/494 (0%)	0/510 (0%)	0/180 (0%)	4/726 (0.6%)	0/291 (0%)	3/375
C. chiangmaiensis (MFLUCC 21-0049)	0/494 (0%)	0/510 (0%)	5/180 (2.8%)	13/726 (1.8%)	16/291 (5.5%)	13/375
C. chiangmaiensis (MFLUCC 21-0048)	0/494 (0%)	0/510 (0%)	5/180 (2.8%)	11/726 (1.5%)	16/291 (5.5%)	12/375

Table 4. Synopsis of asexual morph of Cytospora species discussed in this study.

Species	Conidiomata (µm)	Conidiogenous Cell (µm)	Conidia (µm)	References
Cytospora chiangmaiensis	650–800	8.5–12.2 × 1–1.7	5–7 × 0.9–1.7	This study
C. italica	580–730	10–32 × 0.7–2.4	3.7–5.2 × 1–1.3	[51]
C. lumnitzericola	Undetermined	8–14 × 0.6–1.6	3.7–4.5 × 1–1.5	[5]
C. platycladi	210–330	5–12 × 1–1.5	4–5.5 × 1–1.5	[1]
C. shoreae	400–1000	6.7–11.8 × 1–1.9	5–7 × 1–1.6	This study
C. thailandica	400–1200	3.3–9.1 × 1–1.7	3.3–4 × 1–1.5	[5]
C. xinglongensis	Undetermined	4.5–12 × 1–1.5	7.5–10.5 × 1–1.5	[16]

3.2.3. Cytospora phitsanulokensis Monkai and K.D. Hyde, sp. nov.

Index Fungorum number: IF558526; Facesoffungi number: FoF 09937; Figure 6.
Figure 6. Cytospora phitsanulokensis (MFLU 21-0051, holotype). (A) Conidiomata on host substrate. (B,C) Longitudinal sections through conidioma. (D,E) Longitudinal sections of locules. (F,G) Conidiophores and conidiogenous cells with attached conidia. (H) Germinating conidia. (I) Conidia. (J,K) Colonies on PDA plate (9 cm diam.) (J) from above, (K) from reverse. Scale bars: (A–C) = 500 µm, (D) = 30 µm, (E) = 50 µm, (F–I) = 10 µm.

Etymology: Name reflects the locality, Phitsanulok Province, Thailand, where the holotype was collected.

Holotype: MFLU 21-0051

Saprobic on unidentified decaying leaves (vein and petioles). Sexual morph: Undetermined. Asexual morph: Conidiomata 900–1100 µm diam., pycnidial, semi-immersed in host tissue, solitary, erumpent, nearly flat, multi-loculate. Conceptacle black. Ectostromatic disc
500–640 µm diam., brown to dark brown, circular to ovoid, one ostiole per disc. Ostioles inconspicuous, black. Peridium comprising few layers of cells of textura angularis, brown to dark brown. Locules numerous, irregular, subdivided frequently by invaginations with independent walls. Conidiophores hyaline, unbranched or occasionally branched at the bases, formed from the innermost layer of pycnidial wall, embedded in a gelatinous layer. Conidiogenous cells 6.7–14.1 × 1.1–2.5 µm (x = 9.8 × 1.9 µm, n = 30), enteroblastic, phialidic, sub-cylindrical to cylindrical. Conidia 5.2–6.9 × 1.2–1.7 µm (x = 6 × 1.5 µm, n = 30), hyaline, unicellular, allantoid, guttulate, smooth, thin-walled.

Culture characteristics: Conidia germinating on PDA within 24 h germ tubes produced from both poles. Colonies on PDA reached at 8 cm diam. after 7 days at 28 °C, circular in shape, effuse, slightly raised, with entire margin, medium dense, floccose, white, in reverse pale yellowish to white.

Material examined: THAILAND, Phitsanulok, Wang Thong, on unidentified decaying leaves, 25 July 2019, E. Yasanthika, E5-2 (MFLU 21-0051, holotype), ex-type living culture, MFLUCC 21-0046.

Notes: Phylogenetically, Cytospora phitsanulokensis forms a distinct lineage and is closely related to C. acaciae, C. magnoliae and C. italica with 100% ML, 100% MP and 1.00 PP statistical support (Figure 1). Cytospora phitsanulokensis differs from C. italica by its larger conidiomata, shorter conidiogenous cell and longer conidia [51] (Table 4).

Table 5. In vitro antagonistic activity of Cytospora spp. against five plant pathogenic fungi after 10 days incubation at 28 °C.

Fungal Name	% Growth Inhibition			
Cytospora chiangmaiensis (MFLUCC 21-0049)	C. shoreae (MFLUCC 21-0047)	C. shoreae b (MFLUCC 21-0048)	C. phitsanulokensis (MFLUCC 21-0046)	
Colletotrichum fructicola (MFLUCC 18-1160)	44.2 ± 2.5 a	49.6 ± 0.0 a	50.5 ± 5.7 a	37.4 ± 1.5 a
Co. siamense (MFLUCC 18-1162)	18.1 ± 4.4 a	31.9 ± 0.4 b	53.5 ± 1.8 c	39.5 ± 2.2 b
Co. artocarpicola (MFLUCC 18-1167)	11.7 ± 3.9 a	14.9 ± 5.5 a	32.3 ± 3.6 b	58.0 ± 1.0 c
Co. viniferum (MFLUCC 18-1179)	30.0 ± 3.9 a	64.0 ± 1.5 b	61.8 ± 1.4 b	75.1 ± 4.0 b
Fusarium sambucinum (MFLUCC 17-1056)	17.4 ± 3.2 a	39.1 ± 4.2 b	33.1 ± 4.4 b	67.5 ± 1.3 c

The values represent % ± S.E. Different letters indicate significant differences between tested pathogens (p ≤ 0.05) according to Tukey’s HSD test. The values greater than 60% with clear inhibition zone are bold.
Figure 7. The antagonistic activity of *Cytospora* species (left colonies) against fungal pathogens (right colonies). (A) *Cytospora shoreae* (MFLUCC 21-0047) vs. *Colletotrichum viniferum* (MFLUCC 18-1179). (B) *C. shoreae* (MFLUCC 21-0048) vs. *Co. viniferum* (MFLUCC 18-1179). (C) *C. phitsanulokensis* (MFLUCC 21-0046) vs. *Co. viniferum* (MFLUCC 18-1179). (D) *C. phitsanulokensis* (MFLUCC 21-0046) vs. *Fusarium sambucinum* (MFLUCC 17-1056).

4. Discussion

This study provides taxonomic novelties of *Cytospora* species discovered from Thailand and their antagonistic activities against fungal pathogens. We show that six-locus phylogeny (ITS, LSU, ACT, RPB2, TEF1-α and TUB2) facilitates species delineation in *Cytospora* which is consistent with previous studies [1,3,17,18]. In addition, *Cytospora chiangmaiensis* and *C. shoreae* are phylogenetically closely related to *C. diopuiensis*, which was also collected from Chiang Mai, Thailand [2], indicating the close geographical relationship of these taxa. Based on the Fungus-Host USDA database [53], two new species, *Cytospora chiangmaiensis* and *C. shoreae*, are recorded for the first time on *Shorea* sp. (Dipterocarpaceae). *Cytospora phitsanulokensis* collected from Phitsanulok, Thailand, is phylogenetically closely related to *C. acaciae*, *C. italica* and *C. magnoliae*. The GCPSR analyses provided evidence for *Cytospora phitsanulokensis* as a separate species. However, the presence of recombination among strains of *C. acaciae*, *C. italica* and *C. magnoliae* shown in the spilt graph (Figure 2) may be caused by the lack of some gene regions in the dataset. Thus, more strains and new sequence data of *C. italica* and *C. magnoliae* should be obtained to better confirm their taxonomic placements in the *C. acaciae* clade.

Cytospora species are discovered in woody substrates such as bark, branches and twigs [1]. It should be noted that the stromata of *Cytospora* were only detected on vein and petioles, but not on leaf lamina for all our samples. Adams et al. [11] mentioned that the formation of stroma of *Cytospora* could possibly decrease in leaves compared to bark. *Cytospora* species are known as saprobes on dead plants and are one of the important plant pathogens causing dieback and canker diseases on a wide range of hosts [1–3,5,9,16–18,23]. Considering that the species number of *Cytospora* is ever-increasing and related taxonomic knowledge continues to expand [1], more extensive sampling of both fresh and dead plant samples in selected hosts and locations should be implemented to improve and stabilize
the identification and classification of *Cytospora* species. In addition, *Cytospora* are interesting fungal taxa for screening potential biological activities [24,25,27]. Previous studies reported novel bioactive compounds produced by *Cytospora* spp. [24,25,27,54]; however, species identification of these potential strains was not established. The taxonomic classification and phylogenetic relationships can be used as important tools for the screening of biologically active strains and their biological activities for further applications [55,56].

In this study, we identified new *Cytospora* species and demonstrated that different strains and/or species can inhibit fungal pathogens. However, our study only conducted a preliminary screening of *Cytospora* that can inhibit fungal pathogens, using the dual culture method. Although our new species were identified as saprobes based on their occurrence on decaying leaf substrates, their pathogenicity should be clarified, as this genus is well known for pathogens. Therefore, to confirm whether our *Cytospora* strains are true saprobes, further research is needed. Further studies will be carried out in the near future to check the pathogenicity of the new *Cytospora* species, elucidate the biology of these fungi and screen secondary metabolites.

Author Contributions: Conceptualization, J.M., A.M. (Ausana Mapook) and C.N.; Methodology, J.M., S.T., A.M. (Areerat Manowong), A.M. (Ausana Mapook) and C.N.; Formal analysis, J.M. and C.N.; Data curation, J.M.; Resources, J.M., S.T., K.D.H. and I.P.; Supervision, K.D.H. and I.P.; Writing—original draft, J.M., S.T., A.M. (Areerat Manowong), A.M. (Ausana Mapook), C.N., K.D.H. and I.P.; Writing—review and editing, J.M., S.T., A.M. (Ausana Mapook), C.N., K.D.H. and I.P. All authors have read and agreed to the published version of the manuscript.

Funding: Kevin D. Hyde thanks the Thailand Research Fund “Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion” (project no. RDG6130001) for supporting this research. Saowaluck Tibpromma would like to thank the Inter-national Postdoctoral Exchange Fellowship Program (number Y9180822S1), CAS President’s International Fellowship Initiative (PIFI) (number 2020PC0009), China Postdoctoral Science Foundation and Yunnan Human Resources, and the Social Security Department Foundation for fund-ing her postdoctoral research.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be found within the manuscript.

Acknowledgments: Jutamart Monkai would like to thank the Postdoctoral Fellowship from Mae Fah Luang University. Jutamart Monkai is grateful to Rungtiwa Phookamsak, Ruvishika Jayawardena, Naruemon Huanraluek, Erandi Yasanthika, Guang-Cong Ren, Gao Ying and Mark S. Calabon for their assistance during this research. Shaun Pennycook from Landcare Research, Auckland, New Zealand, is thanked for advising on the taxon name. Austin Smith at World Agroforestry (ICRAF), Kunming Institute of Botany, China, is thanked for English editing. We also acknowledge the Biology Experimental Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences for providing the molecular laboratory facilities. Itthayakorn Promputtha is grateful to Chiang Mai University for partial support this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fan, X.; Bezerra, J.D.P.; Tian, C.; Crous, P. *Cytospora* (Diaporthales) in China. *Persoonia-Mol. Phylogeny Evol. Fungi* 2020, 45, 1–45. [CrossRef] [PubMed]
2. Shang, Q.J.; Hyde, K.D.; Camporesi, E.; Maharachchikumbura, S.S.N.; Norphanphoun, C.; Brooks, S.; Liu, J.K. Additions to the genus *Cytospora* with sexual morph in Cytosporaceae. *Mycosphere* 2020, 11, 189–224. [CrossRef]
3. Zhu, H.; Fan, M.; Bezerra, J.D.P.; Tian, C.; Fan. Discovery of *Cytospora* species associated with canker disease of tree hosts from Mount Dongling of China. *MycoseKeys* 2020, 62, 97–121. [CrossRef]
4. Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Bhat, J.D.; Dayaratne, M.C.; Huang, S.-K.; Norphanphoun, C.; Senanayake, I.C.; Perera, R.H.; et al. Families of Sordariomycetes. *Fungal Divers*. 2016, 79, 1–317. [CrossRef]
5. Norphanphoun, C.; Raspé, O.; Jeewon, R.; Wen, T.-C.; Hyde, K.D. Morphological and phylogenetic characterisation of novel *Cytospora* species associated with mangoes. *MycoKeys* 2018, 38, 93–120. [CrossRef]
6. Ehrenberg, C.G. *Syloca Mycolegiae Berolinenses*; Formis Teophili Bruschcke: Berlin, Germany, 1818; pp. 1–32.
7. Donk, M.A. Nomina conservanda proposita I. *Propos. Fungi. Deuteromycetes Regnum Veg.* 1964, 34, 7–15.
Diversity 2021, 13, 488

8. Rossman, A.Y.; Crous, P.W.; Hyde, K.D.; Hawksworth, D.L.; Aptroot, A.; Bezerra, J.L.; Bhat, J.D.; Boehm, E.; Braun, U.; Boonmee, S.; et al. Recommended names for pleomorphic genera in Dothideomycetes. *IMA Fungus* 2015, 6, 507–523. [CrossRef]

9. Norphanphoun, C.; Doilom, M.; Daranagama, D.A.; Phookamsk, R.; Wen, T.C.; Bulgakov, T.S.; Hyde, K.D. Revisiting the genus *Cytospora* and allied species. *Mycosphere* 2017, 8, 51–97. [CrossRef]

10. McNeill, J.; Barrie, F.R.; Buck, W.R.; Demoulin, V.; Greuter, W.; Hawksworths, D.L.; Herendeen, P.S.; Knapp, S.; Marhold, K.; Prado, J.; et al. International code of nomenclature for algae, fungi and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. *Regnum Veg.* 2012, 154, 1–140.

11. Adams, G.C.; Wingfield, M.J.; Common, R.; Roux, J. Phylogenetic relationships and morphology of *Cytospora* species and related telemorphs (*Ascomycota, Diaporthales, Valsaceae*) from *Eucalyptus*. *Stud. Mycol.* 2005, 52, 1–144.

12. Wang, X.; Wei, J.; Huang, L.; Kang, Z. Re-evaluation of pathogens causing *Valsa* canker on apple in China. *Mycologia* 2011, 103, 317–324. [CrossRef]

13. Fan, X.; Hyde, K.D.; Liu, M.; Liang, Y.; Tian, C. *Cytospora* species associated with walnut canker disease in China, with description of a new species *C. gigalocus*. *Fungal Biol.* 2015, 119, 310–319. [CrossRef] [PubMed]

14. Hyde, K.D.; Hongsanan, S.; Jeewon, R.; Bhat, J.D.; McKenzie, E.H.C.; Jones, E.B.G.; Phookamsk, R.; Ariyawansa, H.; Boonmee, S.; Zhao, Q.; et al. Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers. 2016, 80, 1–270. [CrossRef]

15. Lawrence, D.P.; Holland, L.A.; Nouri, M.T.; Travadon, R.; Abramians, A.; Michailides, T.J.; Trouillas, F.P. Molecular phylogeny of *Cytospora* species associated with canker diseases of fruit and nut crops in California, with the descriptions of ten new species and one new combination. *IMA Fungus* 2018, 9, 333–369. [CrossRef] [PubMed]

16. Jiang, N.; Yang, Q.; Fan, X.-L.; Tian, C.-M. Identification of six *Cytospora* species on Chinese chestnut in China. *MycoKeys* 2020, 62, 1–25. [CrossRef]

17. Pan, M.; Zhu, H.; Bonthond, G.; Tian, C.; Fan, X. High diversity of *Cytospora* associated with canker and dieback of Rosaceae in China, with 10 new species described. *Front. Plant. Sci. 2020, 11, 690. [CrossRef]

18. Pan, M.; Zhu, H.; Tian, C.; Huang, M.; Fan, X. Assessment of *Cytospora* isolates from conifer cankers in china, with the descriptions of four new *Cytospora* species. *Front. Plant. Sci. 2021, 12. [CrossRef]

19. Index Fungorum. Available online: http://www.indexfungorum.org (accessed on 1 August 2021).

20. Hyde, K.D.; Norphanphoun, C.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Jones, E.B.G.; Bundhun, D.; Chen, Y.J.; Bao, D.F.; Boonmee, S.; Calabon, M.S.; et al. Refined families of Sordariomycetes. *Myccosphere* 2020, 11, 305–1059. [CrossRef]

21. Senanayake, I.; Crous, P.; Groenewald, J.; Maharachchikumbura, S.; Jeewon, R.; Phillips, A.; Bhat, J.; Perera, R.; Li, Q.; Li, W.; et al. Families of Diaporthales based on morphological and phylogenetic evidence. *Stud. Mycol. 2017, 86, 217–296. [CrossRef]

22. Adams, G.C.; Roux, J.; Wingfield, M.J. *Cytospora* species (*Ascomycota, Diaporthales, Valsaceae*): Introduced and native pathogens of trees in South Africa. *Australas. Plant. Pathol.* 2006, 35, 521–548. [CrossRef]

23. Wang, Y.-L.; Lu, Q.; Decock, C.; Li, Y.-X.; Zhang, X.-Y. *Cytospora* species from *Populus* and *Salix* in China with *C. davidiana* sp. nov. *Fungal Biol. 2015, 119, 420–432. [CrossRef] [PubMed]

24. Brady, S.F.; Wagenaar, M.M.; Singh, M.P.; Janso, J.E.; Claridy, J. The *Cytosporones*, new octaketide antibiotics isolated from an endophytic fungus. *Org. Lett.* 2002, 4, 4034–4036. [CrossRef] [PubMed]

25. Singh, M.P.; Janso, J.E.; Brady, S.F. Cytoskyrins and cytosporones produced by *Cytospora* sp. CR200: Taxonomy, fermentation and biological activities. *Mar. Drugs* 2007, 5, 71–84. [CrossRef] [PubMed]

26. Sadorn, K.; Saepua, S.; Boonyuen, N.; Boonruangprapa, T.; Rachtawee, P.; Pittayakhabjorwut, P. Antimicrobial activity and cytotoxicity of xanthoquinolin analogs from the fungus *Cytospora eugeniae* ACCB2696. *Phytochemistry 2018, 151, 99–109. [CrossRef]

27. Deng, Q.; Li, G.; Sun, M.; Yang, X.; Xu, J. A new antimicrobial sesquiterpene isolated from endophytic fungus *Cytospora* sp. from the Chinese mangrove plant *Ceriops tagal*. *Nat. Prod. Res. 2018, 34, 1404–1408. [CrossRef]

28. Senanayake, I.C.; Rathnayaka, A.R.; Marasinghe, D.S.; Calabon, M.S.; Gentekaki, E.; Lee, H.B.; Hurdele, V.G.; Sem, D.; Dissanayake, L.S.; Wijesinghe, S.N.; et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. *Myccosphere* 2020, 11, 2678–2754. [CrossRef]

29. Jayasiri, S.C.; Hyde, K.D.; Ariyawansa, H.; Bhat, J.; Buyck, B.; Cai, L.; Dai, Y.-C.; Abd-Elsalam, K.A.; Ertz, D.; Hidayat, I.; et al. The faces of fungi database: Fungal names linked with morphology, phylogeny and human impacts. *Fungal Divers. 2015, 74, 3–18. [CrossRef]

30. White, T.J.; Bruns, T.S.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR Protoc. A Guid. to Methods Appl.* 1990, 18, 315–322.

31. Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *J. Bacteriol.* 1990, 172, 4238–4246. [CrossRef]

32. Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerase II subunit. *Mol. Biol. Evol. 1999, 16, 1799–1808. [CrossRef]

33. Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia 1999, 91, 553–556. [CrossRef]

34. Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Appl. Environ. Microbiol. 1995, 61, 1323–1330. [CrossRef] [PubMed]
35. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinform. 2017, 20, 1160–1166. [CrossRef]
36. Capella-Gutierrez, S.; Silla-Martinez, J.M.; Gabaldon, T. TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [CrossRef] [PubMed]
37. Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; IEEE: New Orleans, LA, USA, 2010; pp. 1–8.
38. Swofford, D.L. PAUP* Phylogenetic Analysis Using Parsimony * (and Other methods); Version 4.0; Sinauer Associates: Sunderland, UK, 2002.
39. Nylander, J.A. MrModeltest 2. Program Distributed by the Author. Department of Systematic Zoology; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004.
40. Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [CrossRef]
41. Zhaxybayeva, O.; Gogarten, J.P. Bootstrap, Bayesian probability and maximum likelihood mapping: Exploring new tools for comparative genome analyses. BMC Genomic. 2002, 61, 539–542. [CrossRef] [PubMed]
42. Rambaut, A.; Drummond, A. Tracer v1.4. Available online: http://beast.bio.ed.ac.uk/Tracer (accessed on 3 August 2021).
43. Rambaut, A.; Drummond, A. FigTree: Tree Figure Drawing Tool; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, Scotland, 2012.
44. Bruen, T.C.; Philippe, H.; Bryant, D. A simple and robust statistical test for detecting the presence of recombination. Genetics 2006, 172, 2665–2681. [CrossRef]
45. Jeewon, R.; Hyde, K.D. Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere 2016, 7, 1669–1677. [CrossRef]
46. Thambugala, K.M.; Daranagama, D.A.; Phillips, A.; Bulgakov, T.; Bhat, D.J.; Camporesi, E.; Bahkali, A.H.; Eungwanichayapant, P.D.; Liu, Z.-Y.; Hyde, K.D. Microfungi on Tamarix. Fungal Divers 2016, 82, 239–306. [CrossRef]