Analyticity and Integrability
in the
Chiral Potts Model

Barry M. McCoy ¹ and William P. Orrick ²

Institute for Theoretical Physics
State University of New York
Stony Brook, NY 11794-3840

¹ mccoy@max.physics.sunysb.edu
² worrick@insti.physics.sunysb.edu
Abstract

We study the perturbation theory for the general non-integrable chiral Potts model depending on two chiral angles and a strength parameter and show how the analyticity of the ground state energy and correlation functions dramatically increases when the angles and the strength parameter satisfy the integrability condition. We further specialize to the superintegrable case and verify that a sum rule is obeyed.

1. Introduction

The connection between integrability and analyticity has been recognized and exploited for many years in the theory of solvable models in statistical mechanics and in particular in the method of solution based on the inversion relation [1]-[2] where assumptions on analyticity are a vital ingredient of the solution. Conversely, whenever an integrable model can be solved by other means the analyticity demanded by the inversion relation is always found to exist.

On the other hand these analyticity statements have never been made particularly precise and, indeed there are recent computations in certain four dimensional field theories [3]-[4] where results may be obtained because functions also have dramatically expanded analyticity properties over what is generically expected but no analogue of the two dimensional integrability conditions is known. Consequently it is of interest to sharpen our understanding of the connection between integrability and analyticity.

In this note we examine these questions for the N state chiral Potts spin chain defined by

$$H_{CP} = -\sum_{j=1}^{L} \sum_{n=1}^{N-1} \left(\frac{e^{i(2n-N)\phi/N}}{\sin(\pi n/N)} (Z_j Z_{j+1}^\dagger)^n + k \frac{e^{i(2n-N)\phi/N}}{\sin(\pi n/N)} X_j^n \right).$$

1.1

The matrices X_j, Z_j are defined by

$$X_j = I_N \otimes \cdots X_{\text{site } j} \cdots \otimes I_N, \quad Z_j = I_N \otimes \cdots Z_{\text{site } j} \cdots \otimes I_N,$$

1.2

where I_N is the $N \times N$ identity matrix, the elements of the $N \times N$ matrices X and Z are

$$X_{l,m} = \delta_{l,m+1} \pmod{N}, \quad Z_{l,m} = \delta_{l,m} \omega^{l-1}$$

1.3

and $\omega = e^{2\pi i/N}$. When the angles $\phi, \bar{\phi}$, and the strength parameter k satisfy the condition

$$\cos \phi = k \cos \bar{\phi}$$

1.4
this spin chain Hamiltonian is derivable from the \(N\) state chiral Potts model whose transfer matrix \(T_{p,q}\) satisfies the integrability condition of commuting transfer matrices \([5]\)

\[
[T_{p,q}, T_{p,q'}] = 0
\]

(1.5)

where \(p\) and \(q\) specify points on the Riemann surface given by the intersection of two Fermat cylinders \([6]-[7]\)

\[
a^N + kb^N = k^N + d^N, \quad ka^N + b^N = k^N c^N
\]

(1.6)

with \(k^2 + k'^2 = 1\). The Hamiltonian \((1.1)\) is obtained from \(T_{p,q}\) in the limit \(q \to p\) as \([8]\)

\[
T_{p,q} = I + u(H_{CP} + \text{const}) + O(u^2)
\]

(1.7)

where \(u\) measures the deviation of \(q\) from \(p\) and

\[
e^{2i\phi_N} = \omega^{1/2} \frac{a_p c_p}{b_p d_p}, \quad e^{2i\bar{\phi}_N} = \omega^{1/2} \frac{a_p d_p}{b_p c_p}.
\]

(1.8)

The free energy of the statistical mechanical system and the ground state energy of the spin chain have been computed in the general integrable case \([3]\) and in the special superintegrable case of \(\phi = \bar{\phi} = \pi/2\) where there is a dramatic simplification \([8][10]-[11]\). Our study here is to relate the general non-integrable case to the integrable and superintegrable cases.

For the non-integrable case the only analytic tool available is perturbation theory in the variable \(k\). This expansion can be done both for \(k \sim 0\) and \(k \sim \infty\). In this paper we study only the first case and consider the expansion for the \(N\) state spin chain of the ground state energy and correlation functions. We observe that as the order increases, new singularities in the \(e^{i\phi}\) plane continually arise and we expect that the number of singularities will become infinite as the order goes to infinity. The integrability condition \((1.4)\), however, involves \(k\) and causes extensive cancelations among orders. We find that all but a finite number of singularities, which are already present in the lowest orders, vanish resulting in a dramatic increase in analyticity. This increase in analyticity is intimately related to the integrability of the model.

In Section 2 we present the perturbation expansion of the ground state energy for general chiral angles \(\phi\) and \(\bar{\phi}\) for \(N = 3–6\) and then exhibit the increase in analyticity that occurs when the integrability condition \((1.4)\) is imposed. In Section 3 the same procedure is applied to the correlation functions for \(N = 3\). In addition, the perturbation expansion for the superintegrable correlation functions is given for arbitrary \(N\). In Section 4 a sum rule for the nearest neighbor superintegrable correlation functions is derived and used to verify the expansion in Section 3. Also, a Fuchsian equation for the superintegrable ground state energy is derived. In Section 5 we conclude with some questions for further study and some general remarks on the connection between integrability and analyticity.
2. Perturbation Expansion of the Ground State Energy

In this section we consider the expansion for the N state chiral Potts spin chain with general chiral angles, ϕ and $\bar{\phi}$, of the ground state energy

$$e^{(N)} = \lim_{L \to \infty} \frac{E_{GS}^{(N)}}{L} = \sum_{n=0}^{\infty} k^n e_n^{(N)}. \quad (2.1)$$

We have implemented Rayleigh-Schroedinger perturbation theory [12] on the computer using a program written in C, Mathematica, Maple and Form and studied the following cases:

$N=3$ to order 9 $N=4$ to order 8 $N=5$ to order 5 $N=6$ to order 6.

Our results for these 4 cases are given in Tables 1–4 where we use the following notation

$$C_3 = \cos(\phi/3), \quad C_4 = \sqrt{2} \cos(\phi/2)$$

$$C_5 = \frac{\cos(\phi/5)}{\sin(\pi/5)} = \sqrt{2} \sqrt{1 + 5^{-1/2}} \cos(\phi/5), \quad C_6 = \sqrt{3} \cos(\phi/3). \quad (2.2)$$

In the case of $N = 3$ there have been previous perturbation studies both for small [13]-[14] and large [14]-[16] k and Table 1 agrees with the small k results of [14] which were obtained to order 7. Many of the details of the perturbation expansion are discussed in these papers.

These tables demonstrate an important feature of the generic perturbation theory; namely that as the order of perturbation theory increases so do the number of places in the $e^{i\phi}$ plane where the perturbation expansion develops singularities. Thus, for example, we see from Table 1 that $e_2^{(3)}$ and $e_3^{(3)}$ are singular only when $C_3 = 0$ but that $e_4^{(3)}$, $e_5^{(3)}$, $e_6^{(3)}$, and $e_7^{(3)}$ and have additional singularities at $C_3 = \pm 1/2$ and $e_8^{(3)}$ and $e_9^{(3)}$ have further singularities at $28C_3^2 - 3 = 0$. A similar increase in number of singularities is seen in Table 2. Indeed this property of the number of singularities increasing with the order has been explicitly seen in a variety of previous perturbation computations including the Ising model in a magnetic field [1] and the zero field Ising magnetic susceptibility [17]. In the latter case it is well understood that the number of singularities is connected to the number of quasiparticles that contribute to the given order of perturbation theory [18]-[19] and that as the order of perturbation goes to infinity an infinite number of singularities will appear. It is this ever increasing number of singularities in the perturbation theory which in the case of the Ising model in a magnetic field restricts the analyticity to such an extent [1] that a closed form solution has never been found.
However there is a dramatic change in this pattern of singularities when the parameters \(\phi, \bar{\phi}, \) and \(k \) are related by the integrability condition (1.4). This is possible because this integrability condition (1.4) involves the perturbation parameter \(k \) and thus allows different orders of perturbation theory to be combined.

To appreciate the cancelations between the orders of perturbation theory that result we consider \(N = 3 \) in detail. It is easy to see when (1.4) holds that if we use

\[
\frac{\cos \phi}{\cos(\phi/3)} = e^{2i\phi/3} - 1 + e^{-2i\phi/3}
\]

then \(e_2^{(3)} \) and \(e_3^{(3)} \) are combined as

\[
k^2 e_2^{(3)} + k^3 e_3^{(3)} = -k^2 \frac{3 + 4C_3^2}{9\sqrt{3}C_3}
\]

which is the \(k^2 \) term on the integrable manifold as given in Table 5.

A more important cancelation, however, takes place between the terms \(e_4^{(3)}, e_5^{(3)} \) and \(e_6^{(3)} \) to give the \(k^4 \) term in Table 5. Here the terms in \(\cos \bar{\phi} \) in the \(k^5 \) terms and the terms in \(\cos^2 \bar{\phi} \) in the \(k^6 \) term which have the denominators \(\pm 1 + 2C_3 \) combine with the terms in the \(k^4 \) term with the same denominators to cancel the denominators out completely. In addition the terms with \(C_3^{-4} \) in \(e_5^{(3)} \) and with \(C_3^{-5} \) in \(e_6^{(3)} \) are reduced to \(C_3^{-3} \) by use of (2.3) and thus the complete \(k^4 \) term in Table 5 is obtained from three terms in Table 1. Similarly, the terms in \(e_6^{(3)} \) which have no factor of \(\cos \bar{\phi} \) combine with the terms in \(e_7^{(3)} \) with \(\cos \bar{\phi} \), the terms in \(e_8 \) with \(\cos^2 \bar{\phi} \) and the terms in \(e_9^{(3)} \) with \(\cos^3 \bar{\phi} \) to cancel all denominators containing powers of \(\pm 1 + 2C_3 \). Thus we obtain the term of order \(k^6 \) in Table 3.

For \(N = 4 \) we find from Table 2 that the terms of orders 2, 3 and 4 are needed to get the \(k^2 \) term on the integrable manifold and that to get the \(k^4 \) term in the integrable case the terms in the generic case to order 8 are needed. In general to get the order \(k^{2q} \) term in the integrable case the terms to order \(Nq \) of the generic case are needed. To show this we first note that \(e^{(N)} \) is an even function of \(\bar{\phi} \). Secondly, the order \(r \) term in the generic case is a sum of terms of the form

\[
C_{n,j}(\phi)k^r \exp\left(\frac{k\bar{\phi}}{N} \left(2 \sum_{l=1}^{r} n_l - N r \right)\right) \langle 0 \left| \prod_{l=1}^{r} X_{j_l}^{n_l} \right| 0 \rangle_0
\]
where \(|0\rangle_0\) is the ground state when \(k = 0\). The product clearly vanishes if \(\sum_{l=1}^r n_l\) is not an integer multiple of \(N\). Thus the \(k^r\) term can be written

\[
e^{(N)} = \sum_{r=0}^{\infty} k^r \sum_p C_p(\phi) \cos(p\bar{\phi}) = \sum_{r=0}^{\infty} k^r \sum_p C'_p(\phi) \cos^p \bar{\phi}
\]

(2.6)

where the sum over \(p\) is taken over \(p\) even if \(r\) is even and \(p\) odd if \(r\) is odd. When the integrability condition (1.4) is applied we obtain

\[
e^{(N)} = \sum_{r=0}^{\infty} \sum_p k^{r-p} C'_p(\phi) \cos^p \phi
\]

(2.7)

which contains only even powers of \(k\). Since the maximum allowed value for the \(n_l\) in (2.5) is \(N - 1\), the maximum allowed value of \(p\) for a given \(r\) is \(p_{\text{max}}(r) = 2 \left\lfloor \frac{r(N-1)}{N} \right\rfloor - r\). The only terms in the generic case contributing to the \(k^{2q}\) term in the integrable case are those terms for which \(r - p_{\text{max}}(r) \leq 2q\) which is equivalent to the condition \(-\left\lfloor -\frac{r}{N} \right\rfloor \leq q\) or \(r \leq qN\) as desired.

The results of the specialization to the integrable manifold are given in Table 5 for the cases \(N = 3–6\). Thus we see in the cases considered that all singularities have canceled out except certain of the original singularities in \(e^{(N)}_2\). Consequently the analyticity of the ground state energy has increased to the maximum extent possible. This remarkable extension in analyticity is a consequence of the defining commutation relation of integrability (1.4) and the relation (1.8) which the chiral angles have with the Riemann surface (1.6).

These integrable results are now easily specialized to the superintegrable case \(\phi = \pi/2\) and we obtain

\[
e^{(3)} = -2 - \frac{4}{3^2}k^2 - \frac{8}{3^5}k^4 - \frac{20}{3^7}k^6 - O(k^8)
\]

\[
e^{(4)} = -3 - \frac{5}{2^3}k^2 - \frac{25}{2^9}k^4 - O(k^6)
\]

\[
e^{(5)} = -4 - \frac{4}{5}k^2 - O(k^4)
\]

\[
e^{(6)} = -5 - \frac{35}{36}k^2 - O(k^4)
\]

(2.8)

which agrees with the previous computation of [10]. We note that in principle we should compare the integrable results of Table 5 with the exact result of [9] but no systematic expansion of the exact result seems to be in the literature.
3. Perturbation Expansion of the Correlation Functions

The cancelation of singularities and resulting expansion of analyticity seen in the ground state is, of course, expected to occur in all the correlation functions as well. However, the presentation of the results of the perturbation theory in the generic case is more cumbersome and consequently we will restrict ourselves here to illustrating the phenomena for the case $N = 3$.

The perturbation expansion of the correlation function $\langle Z_0 Z_r^{\dagger} \rangle$ for generic values of ϕ and $\bar{\phi}$ was studied in [13]-[14] to fourth order. In order to exhibit the desired cancelations of the poles at $C_3 = \pm 1/2$, which occurred in the ground state energy by combining the fourth, fifth and sixth orders, we must extend the computation of the correlation to sixth order also. This we have done and the results are given in Table 6. The method of perturbation is discussed in some detail in [13]-[14]. The only additional remark we wish to make is that in contrast to more standard perturbation expansions we have been unable to find an efficient way to perform the subtraction of the disconnected diagrams to obtain a general formalism that deals only with order one objects in the $L \to \infty$ limit and are forced to perform an explicit subtraction of L dependent terms. This seems to be a consequence of doing perturbation theory on a lattice with a variable that satisfies a cyclicity condition $X_j^N = 1$ and, because of the connection of the cyclicity condition with the fractional statistics of the model, it deserves further study.

To study the specialization of the generic result of Table 6 to the integrable case (1.4) we consider first the long range order term $M^2 = \lim_{r \to \infty} \langle Z_0 Z_r^{\dagger} \rangle$ which in the perturbation expansion is the coefficient of $1 - \delta_{n,0}$. From the second and third order terms it is easy to see that the cancelation of poles is more complete than in the ground state energy and that to second order on the integrable manifold we have the simplification to $-2k^2/9$ where the dependence on the chiral angle ϕ has completely vanished and thus the order parameter on the integrable manifold is identical with the order parameter on the superintegrable special case. This complete cancelation occurs in all orders and is a well known consequence [20]-[21] of the integrability commutation relation (1.5). These perturbation computations for the long range order have been carried to high order in k for $N = 3$ in [21]-[22] and have been extended to arbitrary N in [10]. These expansions have lead to the remarkably simple conjecture for the general case that

$$M_n^2 = \lim_{r \to \infty} \langle (Z_0 Z_r^{\dagger})^n \rangle = (1 - k^2)^{n(N-n)/N^2}. \quad (3.1)$$
To see the first dependence on the variable ϕ in the correlation function on the integrable manifold we must go to fourth order which is obtained from the fourth, fifth and sixth orders of of the generic result of Table 6. (Note that to obtain the k^{2q} term in the integrable case we need terms up to k^{Nq} in the generic case just as we did for the ground state energy.) In fourth order the only deviation of $\{Z_0 Z_1^\dagger\}$ from M_1^2 occurs for $r = 0, 1$ and since the case $r = 0$ is trivial we consider only $r = 1$ and find that the poles at $C_3 = \pm 1/2$ cancel. Thus the result is obtained on the integrable manifold (1.4) of

$$\langle Z_0 Z_1^\dagger \rangle - M_1^2 = k^4 \left(\frac{7}{162} - \frac{1}{108 \cos^2 \phi/3} + \frac{i \tan \phi/3}{54} \right) + O(k^6). \quad (3.2)$$

This result is to be compared with the fourth order result on the superintegrable manifold which may be obtained for arbitrary N. From a straightforward perturbation expansion we may reduce the correlation to a set of trigonometric sums

$$\langle (Z_0 Z_1^\dagger)^n \rangle = 1 - \frac{n}{N} \left(1 - \frac{n}{N} \right) k^2$$

$$+ \left\{ \frac{1}{16N^4} \sum_{j=1}^{N-1} \sum_{k=1}^{N-1} \frac{2(1 - \omega^{nj}) + 2(1 - \omega^{-nk}) - (1 - \omega^{n(j-k)})}{\sin^2 \pi j/N \sin^2 \pi k/N} \right\}$$

$$- \frac{1}{8N^4} \sum_{p=1}^{N-1} \left(1 - \cos \frac{2\pi np}{N} \right) \left(\sum_{j=1}^{N-1} \sum_{k=1}^{N-1} \left[\sin \frac{\pi j}{N} \sin \frac{\pi k}{N} \sin \frac{\pi (p-j)}{N} \right] \right)^{-1}$$

$$- \frac{1}{4N^4} \sum_{p=1}^{N-1} \left(1 - \cos \frac{2\pi np}{N} \right) \left(\sum_{p=1}^{N-1} \sum_{j=1}^{N-1} \sum_{k=1}^{N-1} \left[\sin \frac{\pi (p-j)}{N} \sin \frac{\pi k}{N} \sin \frac{\pi j}{N} \sin \frac{\pi p}{N} \right] \right)^{-1}$$

$$- \frac{3}{16N^4} \sum_{j=1}^{N-1} \sum_{k=1}^{N-1} \left(1 - \omega^{n(j-k)} + (1 - \omega^{-nj}) + (1 - \omega^{nk}) \right) \frac{1}{\sin^2 \pi j/N \sin^2 \pi k/N} k^4 + O(k^6). \quad (3.3)$$

The trigonometric sums have been evaluated in ref. [23] and thus the final result is

$$\langle (Z_0 Z_1^\dagger)^n \rangle - M_n^2 = \left(\frac{1}{2} \left[\frac{n}{N} \left(1 - \frac{n}{N} \right) \right] \right)^2 + \frac{1}{4N^2} \frac{n}{N} \left(1 - \frac{n}{N} \right)$$

$$- i \frac{3}{4N^4} \sum_{p=1}^{N-1} f(N, n, p) \tan \frac{\pi p}{2N} \right) k^4 + O(k^6). \quad (3.4)$$

where

$$f(N, n, p) = \begin{cases} n^2(N - 2p) & \text{if } 1 \leq n \leq p \leq N/2 \\ f(N, p, n) & \text{in general} \\ -f(N, N - n, p) & \text{in general.} \end{cases} \quad (3.5)$$

Thus if we set $N = 3$ in (3.4) we obtain (3.2) with $\phi = \frac{\pi}{2}$.
4. Sum Rule for Superintegrable Correlation Functions

The superintegrable nearest neighbor correlation functions \(\langle (Z_0Z_1^\dagger)^n \rangle \) obey a sum rule which provides a check of the perturbation expansion (3.4). Here we derive several forms for the sum rule.

We start by applying the Feynman-Hellmann formula \(^{24}\)

\[
\frac{\partial e^{(N)}}{\partial k} = \frac{1}{L} \langle 0 \left| \frac{\partial H}{\partial k} \right| 0 \rangle,
\]

(4.1)

to (1.1) to obtain

\[
\sum_{n=1}^{N-1} \langle 0|\alpha_n (Z_0Z_1^\dagger)^n|0 \rangle = -e^{(N)} + k \frac{\partial e^{(N)}}{\partial k}
\]

(4.2)

where

\[
\alpha_n = e^{i(2n-N)\phi/N} \sin(\pi n/N)
\]

(4.3)

and the ground state energy per site of the \(N \)-state superintegrable chiral Potts chain is \(^8\)

\[
e^{(N)}(k) = -(1 + k) \sum_{l=1}^{N-1} \frac{F \left(-\frac{1}{2}, \frac{l}{N}; 1; \frac{4k}{1 + k^2} \right)}{}.
\]

(4.4)

With the aid of \(^{23}\) (p. 102 (21))

\[
F'(a, b; c; z) = \frac{a}{z} [F(a + 1, b; c; z) - F(a, b; c; z)],
\]

(4.5)

(4.2) and (4.4) yield a sum rule

\[
\sum_{n=1}^{N-1} \langle 0|\alpha_n (Z_0Z_1^\dagger)^n|0 \rangle = \sum_{n=1}^{N-1} \left[\frac{1}{2} (1 - k) F \left(-\frac{1}{2}, \frac{n}{N}; 1; \frac{4k}{1 + k^2} \right) \right. \]

\[
\left. + \frac{1}{2} (1 + k) F \left(-\frac{1}{2}, \frac{n}{N}; 1; \frac{4k}{1 + k^2} \right) \right].
\]

(4.6)

We may reexpress the sum rule in terms of the functions \(F(\frac{n}{N}, \frac{n}{N}; 1, k^2) \) and \(F(-\frac{n}{N}, \frac{n}{N}; 1, k^2) \) by using the two identities

\[
F \left(\frac{1}{2}, b; 1; \frac{4k}{1 + k^2} \right) = (1 + k)^{2b} F(b, b; 1; k^2)
\]

\[
F \left(-\frac{1}{2}, b; 1; \frac{4k}{1 + k^2} \right) = (1 + k)^{2b-2} \left\{ 4(1 - b) F(b, -b; 1; k^2) \right. \]

\[
\left. + [(4b - 3) - k] (1 - k) F(b, b; 1; k^2) \right\}.
\]

(4.7)
The first of these is just eq. (36), p. 113 of [25] with $a = b$. The second can be obtained from

$$F\left(-\frac{1}{2}, b; 1; \frac{4k}{(1+k)^2}\right) = (2b-1) \left(1 - \frac{4k}{(1+k)^2}\right) F\left(\frac{1}{2}, b-1; 1; \frac{4k}{(1+k)^2}\right)$$

(4.8)

(eq. (37), p. 103 of [25] with $a = \frac{1}{2}, c = 1$ and $z = 4k/(1+k)^2$) by using the first identity and eq. (33), p. 103 of [25] with $a = b-1, c = 1$ and $z = k^2$. The sum rule now becomes

$$\sum_{n=1}^{N-1} (0|\alpha_n (Z_0 Z_1^\dagger)^n|0) = \sum_{n=1}^{N-1} \left[\left(2n - \frac{1}{2}\right) \left(1 - \frac{2}{N-1}\right) \left(1 - \frac{4}{k^2}\right) F\left(\frac{n}{N}, \frac{n}{N}; 1; \left(1 + \frac{4}{k^2}\right)\right)
+ 2 \left(1 - \frac{n}{N}\right) \left(1 + \frac{4}{k^2}\right) F\left(\frac{n}{N}, \frac{n}{N}; 1; \left(1 + \frac{4}{k^2}\right)\right)\right].$$

(4.9)

The two sides of the sum rule are even functions of k. This is made manifest by adding (4.9) with $n \rightarrow N - n$ to itself and using eq. (2), p. 105 and eq. (31), p. 103 of [25] to obtain

$$\sum_{n=1}^{N-1} \frac{1}{\sin \frac{\pi n}{N}} e^{i \pi (n-N)} (Z_0 Z_1^\dagger)^n + e^{-i \pi (n-N)} (Z_0 Z_1^\dagger)^{N-n}|0) = \sum_{n=1}^{N-1} \left[2 \left(1 - \frac{n}{N}\right) \left(1 + \frac{4}{k^2}\right) F\left(\frac{n}{N}, \frac{n}{N}; 1; \left(1 + \frac{4}{k^2}\right)\right)
+ \left(2n - \frac{1}{2}\right) \left(1 - \frac{2}{N-1}\right) \left(1 - \frac{4}{k^2}\right) F\left(\frac{n}{N}, \frac{n}{N}; 1; \left(1 + \frac{4}{k^2}\right)\right)\right].$$

(4.10)

Expanding the right hand side of (4.10) to fourth order and using (3.4) in the left hand side the k^4 term in the sum rule gives

$$\sum_{j=1}^{N-1} \sum_{k=1}^{N-1} f(N, j, k) \cot \frac{\pi j}{N} \cot \frac{\pi k}{N} = \frac{N(N^2-1)(N^2-4)}{90}.$$

(4.11)

This identity is a special case of the more general identity, which is independently proven in Appendix A

$$S(N) = \sum_{j=1}^{N-1} \sum_{k=1}^{N-1} f_Q(N, j, k) \cot \frac{\pi j}{N} \cot \frac{\pi k}{N} = \frac{2(N-1)(N-2)}{3} Q(N, 0) - 4 \sum_{j=1}^{[N/2]} (N-2j) Q\left(\frac{N}{2}, \frac{j}{N}\right).$$

(4.12)
where
\[
f_Q(N, j, k) = \begin{cases}
P(N, j, k) & \text{if } 1 \leq j \leq k \leq N/2 \\
f_Q(N, k, j) & \text{in general} \\
-f_Q(N, N-j, k) & \text{in general}
\end{cases} \tag{4.13}
\]

and
\[
P(N, j, k) = Q \left(N, \frac{k+j}{N} \right) + Q \left(N, \frac{k-j}{N} \right) - 2Q \left(N, \frac{k}{N} \right) \tag{4.14}
\]

for any function \(Q(N, x) \) satisfying
\[
Q(N, 1-x) = -Q(N, x). \tag{4.15}
\]

We note that (4.12) is a member of a broader class of identities, described in Appendix B.

We conclude this section by deriving an order 2\(N\)–2 Fuchsian differential equation for the superintegrable ground state energy (1.4) with three singularities located at 0, 1 and \(\infty\). Equation (4.4) is expressed in terms of hypergeometric functions which are solutions to the second order Fuchsian equation with singularities as above
\[
D_{(a,b;c;z)} F(a, b; c; z) = 0 \tag{4.16}
\]

where
\[
D_{(a,b;c;z)} = z(1-z) \frac{d^2}{dz^2} + [c - (a+b+1)z] \frac{d}{dz} - ab. \tag{4.17}
\]

One may readily verify that this differential operator satisfies
\[
D_{(a+1,b;1;1)} D_{(a,b;1;1)} = D_{(a+1,b,1;1)} D_{(a,b,1;1)}, \tag{4.18}
\]

We also define the differential operator
\[
D'_{(a,b;c;k)} = (1+k)D_{(a,b,c;\frac{4k}{(1+k)^2})} (1+k)^{-1} \tag{4.19}
\]

which has solution \((1+k)F \left(a, b; c; \frac{4k}{(1+k)^2} \right)\) and which satisfies an equation precisely analogous to (4.18). Now let
\[
D_N = D'_{\left(\frac{2N-5}{2}, \frac{N-1}{N}; 1; k \right)} D'_{\left(\frac{2N-7}{2}, \frac{N-2}{2N}; 1; k \right)} \cdots D'_{\left(-\frac{1}{2}, \frac{2}{N}; 1; k \right)}. \tag{4.20}
\]

By repeated application of (4.18) we see that
\[
D_N = D'_{\left(\frac{2N-5}{2}, \frac{bN-1}{N}; 1; k \right)} D'_{\left(\frac{2N-7}{2}, \frac{bN-2}{2N}; 1; k \right)} \cdots D'_{\left(-\frac{1}{2}, \frac{b+1}{N}; 1; k \right)} \tag{4.21}
\]
where \((b_1, \ldots, b_{N-1})\) is any permutation of \((1, \ldots, N-1)\). In particular, \(b_1\) may take any value from 1 to \(N-1\) from which it immediately follows that

\[
D_N e^{(N)}(k) = 0.
\]

(4.22)

5. Discussion

No finite order of perturbation theory can ever stand as the final solution of any problem. However, such perturbation studies often suggest many questions for further study and we conclude this note by discussing some questions raised by this present study.

First it must be noted that the powers of the poles at any particular location increase with the power of \(k\). This is an indication that the location of the true singularity depends on \(k\) and it would be most desirable to find a perturbation theory directly for the location of the singularities.

In terms of extending our results we remark that while it may be cumbersome to extend the results for the non-integrable case it is clear that for the integrable and superintegrable cases a great deal more can be computed for the perturbation expansion of the correlation functions. It is to be hoped that further terms in these expansions will produce conjectures such as (3.1) for the full correlation functions.

Finally there is the question of whether or not the increased analyticity which results from the the cancelation of poles can be taken as a sufficient condition for integrability which can be considered as part of problem of the general relation between analyticity and integrability.

The construction of models which satisfy the definition of integrability (1.5) in terms of commuting transfer matrices can be viewed as essentially a problem in algebra. Indeed one of the major developments in algebra in the last 15 years is quantum groups which were invented specifically in order to find classes of solutions to (1.5). Analysis, on the other hand seems to have only a marginal relation to (1.5) and, in the larger scheme of mathematics, algebra and analysis are almost universally treated as separate disciplines.

A corresponding separation of disciplines has been traditional in physics where statistical mechanics has relied heavily on algebra while field theory has relied on analysis. Thus, for example, while Onsager’s solution of the Ising model \([26]\) is totally algebraic the renormalization theory of quantum electrodynamics is almost exclusively concerned with subtractions of infinities in integrals and seems to be totally concerned with analysis.
Thus 50 years ago integrability (algebra) and analyticity (analysis) were seen to be
totally separate. However, in the 50 years that have followed these two totally separate
computations there has been a remarkable merging of field theory and statistical mechanics
which can be viewed as either the introduction of algebra into field theory or the introd-
uction of analysis into statistical mechanics. Thus, as an example, at the present day we have
the isomorphism in two dimensions of solvable statistical mechanical models (solved by al-
gebra) with conformal quantum field theory (where analysis appears in the very statement
of the subject).

If we take this merging of analyticity and integrability seriously, however, then we
are forced to conclude that the recent four dimensional studies on $N = 2$ Yang Mills the-
ory [3]-[4] which have total reliance on analyticity properties should have an isomorphic
counterpart whose solution relies on algebra. The discovery of such an algebraic counter-
part (or the demonstration that it does not exist) to the work of [3]-[4] will constitute an
important advance in our understanding of the relation of integrability and analyticity.

Acknowledgments. The authors wish to thank Prof. Gert Almkvist, Prof. G. von Gehlen,
Prof. A. Guttmann and Dr. A. Honecker for insightful discussions. This work was partially
supported by NSF grant DMR 9404747.

Appendix A. Proof of Trigonometric Identity (4.12)

To prove (4.12) we begin by using the symmetries of $f(N, j, k)$ and the cotangent
function to write

$$S(N) = 4 \left\lfloor \frac{N-1}{2} \right\rfloor \sum_{j=1}^{N-j-1} P(N, j, k) \cot \frac{\pi j}{N} \cot \frac{\pi k}{N} + 4 \sum_{j=1}^{N-j-1} P(N, j, j) \cot^2 \frac{\pi j}{N}. \quad (A.1)$$

We recall that $P(N, j, k)$ was defined by (4.14) in terms of a function $Q(N, x)$ satisfying
the symmetry property (4.13) and then write $Q(N, x)$ so that the symmetry property
automatically holds

$$Q(N, x) = r(x) - r(1-x) \quad (A.2)$$
where \(r(x) \) is an arbitrary function whose \(N \) dependence has been suppressed for brevity. Using this definition we expand (A.1) as

\[
S(N) = 8 \sum_{j=1}^{\lfloor \frac{N-1}{2} \rfloor} \sum_{k=j+1}^{N-j-1} \left[r\left(\frac{k+j}{N} \right) - r\left(\frac{k}{N} \right) \right] \cot \frac{\pi j}{N} \cot \frac{\pi k}{N}
+ 4 \sum_{j=1}^{\lfloor \frac{N-1}{2} \rfloor} \left[r\left(\frac{2j}{N} \right) + r(0) + 2r\left(\frac{N-j}{N} \right) \right] \cot^2 \frac{\pi j}{N}
- 8 \sum_{j=1}^{\lfloor \frac{N-1}{2} \rfloor} \sum_{k=j+1}^{N-j-1} \left[r\left(\frac{N-k-j}{N} \right) - r\left(\frac{N-k}{N} \right) \right] \cot \frac{\pi j}{N} \cot \frac{\pi k}{N}
- 4 \sum_{j=1}^{\lfloor \frac{N-1}{2} \rfloor} \left[r\left(\frac{N-2j}{N} \right) + r(1) + 2r\left(\frac{j}{N} \right) \right] \cot^2 \frac{\pi j}{N}
\]

which may be rewritten as

\[
S(N) = \sum_{a=0}^{N} C(N, a) r\left(\frac{a}{N} \right) = \sum_{a=0}^{\lfloor \frac{N-1}{2} \rfloor} C(N, a) Q\left(N, \frac{a}{N} \right)
\]

where

\[
C(N, a) = \begin{cases}
4 \sum_{j=1}^{\lfloor \frac{N+1}{2} \rfloor} \cot^2 \frac{\pi j}{N} & \text{for } a = 0 \\
4C_1(N, a) + 4C_2(N, a) & \text{for } 1 \leq a \leq \lfloor \frac{N-1}{2} \rfloor \\
-C(N, N-a) & \text{for all } a
\end{cases}
\]

with

\[
C_1(N, a) = 2 \sum_{j=1}^{\lfloor \frac{a-1}{2} \rfloor} \cot \frac{\pi j}{N} \cot \frac{\pi (a-j)}{N} - 2 \sum_{j=1}^{\lfloor \frac{a-1}{2} \rfloor} \cot \frac{\pi j}{N} \cot \frac{\pi a}{N} + \epsilon_a \cot^2 \frac{\pi a}{2N}
\]

and

\[
C_2(N, a) = -2 \sum_{j=1}^{\lfloor \frac{N-a+1}{2} \rfloor} \cot \frac{\pi j}{N} \cot \frac{\pi (N-a-j)}{N} + 2 \sum_{j=1}^{\lfloor \frac{a-1}{2} \rfloor} \cot \frac{\pi j}{N} \cot \frac{\pi (N-a)}{N}
- \epsilon_{N-a} \cot^2 \frac{\pi a}{2N} - 2 \cot^2 \frac{\pi a}{N}.
\]

Here

\[
\epsilon_a = \begin{cases}
1 & \text{if } a \text{ is even} \\
0 & \text{if } a \text{ is odd}
\end{cases}
\]
The sum $C(N,0)$ may be rewritten as

$$C(N,0) = 2 \sum_{j=1}^{N-1} \cot^2 \frac{\pi j}{N}$$

(A.9)

which is recognized as the Dedekind sum \[27\] and hence

$$C(N,0) = \frac{2(N-1)(N-2)}{3}.$$ (A.10)

To evaluate $C_1(N,a)$ we first write

$$C_1(N,a) = \sum_{j=1}^{\left\lfloor \frac{a-1}{2} \right\rfloor} \cot \frac{\pi j}{N} \cot \frac{\pi(a-j)}{N} + \sum_{j=\left\lceil \frac{a+2}{2} \right\rceil}^{a-1} \cot \frac{\pi(a-j)}{N} \cot \frac{\pi j}{N}$$

$$+ \epsilon_a \cot^2 \frac{\pi a}{2N} - 2 \sum_{j=1}^{a-1} \cot \frac{\pi j}{N} \cot \frac{\pi a}{N}$$

(A.11)

$$= \sum_{j=1}^{a-1} \cot \frac{\pi j}{N} \cot \frac{\pi(a-j)}{N} - 2 \sum_{j=1}^{a-1} \cot \frac{\pi j}{N} \cot \frac{\pi a}{N}$$

$$= - \sum_{j=1}^{a-1} \cot \frac{\pi j}{N} \cot \frac{\pi(j+N-a)}{N} - 2 \cot \frac{\pi(N-a)}{N} \sum_{j=1}^{N-a} \cot \frac{\pi j}{N}.$$

Then let $\omega = \exp \left(\frac{2\pi i}{N} \right)$ and write the first summand as

$$- \cot \frac{\pi j}{N} \cot \frac{\pi(j+N-a)}{N} = \frac{\omega^j + 1}{\omega^j - 1} \cdot \frac{\omega^{j+N-a} + 1}{\omega^{j+N-a} - 1}$$

$$= \left[1 + \frac{2}{\omega^j - 1} \right] \left[1 + \frac{2}{\omega^{j+N-a} - 1} \right]$$

$$= \left[1 + \frac{2}{\omega^j - 1} + \frac{2}{\omega^{j+N-a} - 1} + 4 \frac{1}{\omega^j - 1} \cdot \frac{1}{\omega^{j+N-a} - 1} \right]$$

$$= \left[1 + \frac{2}{\omega^j - 1} + \frac{2}{\omega^{j+N-a} - 1} + 4 \left(\frac{1}{\omega^j - 1} - \frac{\omega^{N-a}}{\omega^{j+N-a} - 1} \right) \frac{1}{\omega^{N-a} - 1} \right]$$

(A.12)

$$= \left[1 + \frac{2}{(\omega^j - 1)(\omega^{N-a} - 1)} (\omega^{N-a} - 1 + 2) \right.$$

$$\left. + \frac{2}{(\omega^{j+N-a} - 1)(\omega^{N-a} - 1)} (\omega^{N-a} - 1 - 2\omega^{N-a}) \right]$$

$$= \left[1 + 2 \frac{\omega^{N-a} + 1}{\omega^{N-a} - 1} \left(\frac{1}{\omega^j - 1} - \frac{1}{\omega^{j+N-a} - 1} \right) \right].$$
The sum partially telescopes

\[-\sum_{j=1}^{a-1} \cot \frac{\pi j}{N} \cot \frac{\pi (j + N - a)}{N}\]

\[= (a - 1) + 2 \frac{\omega^{N-a} + 1}{\omega^{N-a} - 1} \left[\frac{1}{\omega^1 - 1} + \frac{1}{\omega^2 - 1} + \cdots + \frac{1}{\omega^{N-a} - 1} \right] - \frac{1}{\omega^{N-1} - 1} - \frac{1}{\omega^{N-2} - 1} - \cdots - \frac{1}{\omega^{a} - 1} \]

\[= (a - 1) + 2 \frac{\omega^{N-a} + 1}{\omega^{N-a} - 1} \left[\frac{\omega^1 + 1}{\omega^1 - 1} + \frac{\omega^2 + 1}{\omega^2 - 1} + \cdots + \frac{\omega^{N-a} + 1}{\omega^{N-a} - 1} \right]

\[= (a - 1) + 2 \cot \frac{\pi (N-a)}{N} \sum_{j=1}^{N-a} \cot \frac{\pi j}{N}.

It follows that

\[C_1(N, a) = a - 1. \quad (A.14)\]

A parallel computation shows that

\[C_2(N, a) = \sum_{j=1}^{N-a-1} \cot \frac{\pi j}{N} \cot \frac{\pi (j + a)}{N} - 2 \cot \frac{\pi a}{N} \sum_{j=1}^{a} \cot \frac{\pi j}{N} \quad (A.15)\]

\[= - C_1(N, N - a) = -(N - a - 1)\]

and therefore for \(a \neq 0\)

\[C(N, a) = -4(N - 2a). \quad (A.16)\]

Appendix B. Additional Identities Related to (4.12)

The cotangents on the left hand side of (4.11) may be expanded in powers of \(\omega = \exp \left(\frac{2\pi i}{N}\right)\) but the roots of unity all cancel in the sum. We expect that similar cancelations will occur when the sum rule for the superintegrable correlation functions is applied to orders higher than four. Thus we have investigated the generalization of (4.11)

\[S(N) = \sum_{j=1}^{N-1} \sum_{k=1}^{N-1} h_P(N, j, k) \cot \frac{\pi j}{N} \cot \frac{\pi k}{N} = \text{polynomial in } N \quad (B.1)\]

where

\[h_P(N, j, k) = \begin{cases}
P(N, j, k) & \text{if } 1 \leq j \leq k \leq N/2 \\
h_P(N, k, j) & \text{in general} \\
-h_P(N, N-j, k) & \text{in general}
\end{cases} \quad (B.2)\]
and where \(P(N, j, k) \) is a polynomial in \(N, j \) and \(k \) of total degree \(d \). In the case where \(N \) is prime, the only way for the roots of unity to vanish is for the coefficients of \(\omega, \omega^2, \ldots, \omega^{N-1} \) all to be equal. This implies a system of equations for \(P(N, j, k) \) which is overdetermined when \(N \) is sufficiently large. Remarkably, there are many solutions to this system and these solutions hold for all values of \(N \) tested. We conjecture that they are true for all \(N \).

Up to the largest degree tested, \(d = 14 \), the number of solutions to the overdetermined system is equal to the number of solutions to

\[
d = 3f + 2n \tag{B.3}
\]

with \(f \) a positive integer and \(n \) a non-negative integer. Thus we make the further conjecture that there are infinitely many solutions which can be organized into families, \(f = 1, 2, 3, \ldots, \), whose members, labeled by the index \(n \), have degree given by (B.3). Although there is immense freedom in combining solutions, it has proven to be possible to write the solutions in such a form that general formulas, given below, can be guessed in the cases \(f = 1, 2 \).

The solutions, \(P_{f,n}(N, j, k) \), that we have found for \(f = 3, 4 \) are shown in Table 8 and the corresponding sums, \(S_{f,n}(N, j, k) \), are shown in Table 9.

The first family, \(f = 1 \), comprises polynomials of the form (4.14). If in equation (4.12) we make the choice, \(Q(N, x) = N^d q_d(x) \) with \(q_d(x) \) a polynomial of degree \(d \), then \(S(N) \) is a polynomial in \(N \) of degree \(d + 2 \). The symmetry property on \(Q(N, x) \), (4.13), requires \(d \) to be odd and \(d = 1 \) implies \(P(N, j, k) = 0 \). Thus these solutions have the degree stated in (B.3).

The second family of solutions is given by

\[
P_{2,n}(N, j, k) = N^{2n+6} \sum_{h=0}^{n} \left[\left(\frac{j}{N} \right)^{2n+3-2h} b_{nh} B_{2h+3} \left(\frac{k}{N} \right) + \left(\frac{j}{N} \right)^{2n+2-2h} e_{nh} E_{2h+3} \left(\frac{k}{N} \right) \right] \tag{B.4}
\]

where, letting \(g(n) = 4^{n+1} - 1 \),

\[
b_{nh} = 2 \left(\frac{2n+3}{2h} \right) \frac{1}{(2h + 1)(2h + 2)(2h + 3)} \frac{g(h)g(n-h)}{g(n)}
\]

\[
e_{nh} = 2 \left(\frac{2n+3}{2h + 1} \right) \frac{1}{(2h + 2)(2h + 3)} \frac{g(h)4^{n-h}}{g(n)} \tag{B.5}
\]

16
and where $B_n(x)$ and $E_n(x)$ are the Bernoulli and Euler polynomials. The sum in (B.4) may be performed using the identities

\begin{equation}
B_n(x + h) = \sum_{k=0}^{n} \binom{n}{k} B_k(x) h^{n-k}
\end{equation}

\begin{equation}
E_n(x + h) = \sum_{k=0}^{n} \binom{n}{k} E_k(x) h^{n-k}
\end{equation}

to obtain

\[
P_{2n} = \frac{N^{2n+6}}{(2n + 6)(2n + 5)(2n + 4)(4^{n+1} - 1)} \left[(2 \cdot 4^{n+1} + 1) B_{2n+6} \left(\frac{k + j}{N} \right) - \\
(6 \cdot 4^{n+1} + 1) B_{2n+6} \left(\frac{k - j}{N} \right) + (4^{n+2} - 1) B_{2n+6} \left(\frac{k}{N} \right) + B_{2n+6} \left(\frac{k - 2j}{N} \right) - \\
2 \cdot 4^{n+2} \left(B_{2n+6} \left(\frac{k + j/2}{N} \right) - B_{2n+6} \left(\frac{k - j/2}{N} \right) \right) + \\
2 \cdot 4^{2n+4} \left(B_{2n+6} \left(\frac{k + j/2}{2N} \right) + B_{2n+6} \left(\frac{k - j/2}{2N} \right) \right) - 4^{n+3} (4^{n+2} - 1) B_{2n+6} \left(\frac{k}{2N} \right) - \\
2 \cdot 4^{n+2} \left(B_{2n+6} \left(\frac{k + 2j}{2N} \right) + B_{2n+6} \left(\frac{k - 2j}{2N} \right) \right) \right].
\]

(B.7)

This expression differs from (4.14) in that the Bernoulli polynomials cannot be replaced by arbitrary polynomials satisfying $q(1 - x) = -q(x)$. A general form has not been found for the corresponding sums, $S_{2,n}(N)$. The first five are shown in Table 7.
Table 1 The first nine orders of perturbation in k for $N = 3$ for the ground state energy in the generic case. We use the variable $C_3 = \cos(\phi/3)$.

\[e_0^{(3)} = -\frac{4C_3}{\sqrt{3}} \quad e_1^{(3)} = 0 \quad e_2^{(3)} = \frac{-2}{3\sqrt{3}C_3} \]

\[e_3^{(3)} = \frac{-\cos \bar{\phi}}{9\sqrt{3}C_3^2} \]

\[e_4^{(3)} = \sqrt{3} \left(\frac{1}{162C_3^3} + \frac{4}{81C_3} - \frac{4}{81(-1 + 2C_3)} - \frac{4}{81(1 + 2C_3)} \right) \]

\[e_5^{(3)} = - \left(\sqrt{3} \left(\frac{-\cos \bar{\phi}}{108C_3^4 - \frac{8C_3^4}{81(-1 + 2C_3)} - \frac{8C_3^4}{81(1 + 2C_3)} \right) \right) \]

\[e_6^{(3)} = \sqrt{3} \left(\frac{-2}{729(-1 + 2C_3)^3} - \frac{1}{729(-1 + 2C_3)^2} + \frac{2}{2187(-1 + 2C_3)} \right) \]

\[- \frac{729(1 + 2C_3)^3}{729(1 + 2C_3)^2} + \frac{1}{2187(1 + 2C_3)} + \frac{2}{2187(1 + 2C_3)} \]

\[+ \frac{11 + 24\cos^2 \bar{\phi}}{11664C_3^5} + \frac{5 + 54\cos^2 \bar{\phi}}{4374C_3^3} + \frac{2}{2187C_3} \left(-1 + 54\cos^2 \bar{\phi} \right) \]

\[e_7^{(3)} = -\sqrt{3} \left(\frac{\cos \bar{\phi}}{972C_3^6} + \frac{263\cos \bar{\phi}}{26244C_3^4} + \frac{1022\cos \bar{\phi}}{19683C_3^2} \right) \]

\[+ \frac{64\cos \bar{\phi}}{2187(-1 + 2C_3)^4} + \frac{6561(-1 + 2C_3)^3}{6561(-1 + 2C_3)^2} - \frac{119\cos \bar{\phi}}{39366(-1 + 2C_3)^2} - \frac{49\cos \bar{\phi}}{486(-1 + 2C_3)} \]

\[+ \frac{64\cos \bar{\phi}}{2187(1 + 2C_3)^4} + \frac{6561(1 + 2C_3)^3}{6561(1 + 2C_3)^2} - \frac{119\cos \bar{\phi}}{39366(1 + 2C_3)^2} + \frac{49\cos \bar{\phi}}{486(1 + 2C_3)} \]

\[e_8^{(3)} = \sqrt{3} \left(\frac{-1}{2187(-1 + 2C_3)^5} + \frac{-1 - 2\cos^2 \bar{\phi}}{2187(-1 + 2C_3)^4} + \frac{55 - 888\cos^2 \bar{\phi}}{78732(-1 + 2C_3)^3} \right) \]

\[+ \frac{-451 + 1384\cos^2 \bar{\phi}}{157464(-1 + 2C_3)^2} + \frac{2759 + 15264\cos^2 \bar{\phi}}{78732(-1 + 2C_3)^2} - \frac{1}{2187(1 + 2C_3)^4} + \frac{1 + 2\cos^2 \phi}{2187(1 + 2C_3)^4} \]

\[+ \frac{55 - 888\cos^2 \bar{\phi}}{78732(1 + 2C_3)^3} + \frac{451 - 1384\cos^2 \bar{\phi}}{157464(1 + 2C_3)^2} + \frac{2759 + 15264\cos^2 \bar{\phi}}{78732(1 + 2C_3)} - \frac{1}{2187(-3 + 28C_3)^2} \]

\[+ \frac{-381 - 1936\cos^2 \bar{\phi}}{1679616C_3^4} + \frac{-801 - 6208\cos^2 \bar{\phi}}{629856C_3^3} + \frac{-709 - 7880\cos^2 \bar{\phi}}{157464C_3^3} + \frac{-277 - 7632\cos^2 \bar{\phi}}{39366C_3} \]
\[
\varepsilon_9^{(3)} = -\sqrt{3} \left(\frac{5 \cos \phi}{26244 \, (-1 + 2 C_3)^6} + \frac{17 \cos \phi}{8748 \, (-1 + 2 C_3)^5} + \frac{61 \cos \phi + 432 \cos^3 \phi}{944784 \, (-1 + 2 C_3)^4} \right.
\]
\[
+ \frac{-11257 \cos \phi + 6048 \cos^3 \phi}{1417176 \, (-1 + 2 C_3)^3} - \frac{105767 \cos \phi - 24912 \cos^3 \phi}{5668704 \, (-1 + 2 C_3)^2} + \frac{-34607 \cos \phi - 59184 \cos^3 \phi}{629856 \, (-1 + 2 C_3)}
\]
\[
+ \frac{5 \cos \phi}{26244 \, (1 + 2 C_3)^6} - \frac{17 \cos \phi}{8748 \, (1 + 2 C_3)^5} + \frac{61 \cos \phi + 432 \cos^3 \phi}{944784 \, (1 + 2 C_3)^4} + \frac{11257 \cos \phi - 6048 \cos^3 \phi}{1417176 \, (1 + 2 C_3)^3}
\]
\[
+ \frac{105767 \cos \phi - 24912 \cos^3 \phi}{5668704 \, (1 + 2 C_3)^2} - \frac{34607 \cos \phi + 59184 \cos^3 \phi}{629856 \, (1 + 2 C_3)} + \frac{24010 \cos \phi}{19683 \, (-3 + 28 C_3^2)}
\]
\[
+ \frac{133 \cos \phi + 192 \cos^3 \phi}{839808 \, C_3^8} + \frac{13 \left(11 \cos \phi + 52 \cos^3 \phi \right)}{314928 \, C_3^6} + \frac{-575 \cos \phi + 3696 \cos^3 \phi}{314928 \, C_3^4}
\]
\[
+ \frac{-9007 \cos \phi + 17424 \cos^3 \phi}{354294 \, C_3^2}
\)
Table 2 The first eight orders of perturbation in k for $N = 4$ for the ground state energy in the generic case. We use the variable $C_4 = \sqrt{2}\cos(\phi/2)$.

e_0^{(4)} = -1 - 2C_4, \quad e_1^{(4)} = 0 \quad e_2^{(4)} = \frac{-1}{8C_4} - \frac{1}{1 + C_4}

e_3^{(4)} = \frac{-\cos \tilde{\phi}}{4C_4} - \frac{\cos \tilde{\phi}}{4(1 + C_4)} + \frac{\cos \tilde{\phi}}{4(1 + C_4)^2}

e_4^{(4)} = \frac{-1}{512C_4^3} + \frac{1}{16C_4^2} + \frac{5 - 2\cos^2 \tilde{\phi}}{16C_4} + \frac{1}{12(1 + C_4)^3} + \frac{8 + 9\cos^2 \tilde{\phi}}{72(1 + C_4)^2} + \frac{20 + 27\cos^2 \tilde{\phi}}{216(1 + C_4)} - \frac{875}{432(-1 + 5C_4)}

e_5^{(4)} = \frac{3\cos \tilde{\phi}}{128C_4^3} + \frac{19\cos \tilde{\phi}}{64C_4^2} + \frac{149\cos \tilde{\phi}}{128C_4} + \frac{61\cos \tilde{\phi}}{576(1 + C_4)^4} + \frac{55\cos \tilde{\phi}}{864(1 + C_4)^3}

\quad + \frac{\cos \tilde{\phi}}{1152(1 + C_4)^2} - \frac{277\cos \tilde{\phi}}{31104(1 + C_4)} - \frac{1225\cos \tilde{\phi}}{648(-1 + 5C_4)^2} - \frac{89825\cos \tilde{\phi}}{15552(-1 + 5C_4)}

e_6^{(4)} = \frac{2025}{8192(-1 - 3C_4)} - \frac{1}{8192C_4^5} + \frac{3}{512C_4^4} + \frac{7 + 52\cos^2 \tilde{\phi}}{1024C_4^3} + \frac{3(-23 + 48\cos^2 \tilde{\phi})}{512C_4^2}

\quad + \frac{-303 + 812\cos^2 \tilde{\phi}}{1024C_4} + \frac{155 - 44\cos^2 \tilde{\phi}}{3456(1 + C_4)^5} + \frac{-33 - 394\cos^2 \tilde{\phi}}{3456(1 + C_4)^4} + \frac{-253 - 3911\cos^2 \tilde{\phi}}{20736(1 + C_4)^3}

\quad + \frac{-15832 - 72176\cos^2 \tilde{\phi}}{373248(1 + C_4)^2} + \frac{75203 - 236166\cos^2 \tilde{\phi}}{1492992(1 + C_4)} - \frac{8575(5 + 4\cos^2 \tilde{\phi})}{15552(-1 + 5C_4)^3}
\quad + \frac{175(8345 - 12704\cos^2 \tilde{\phi})}{746496(-1 + 5C_4)^2} + \frac{25(727595 - 758184\cos^2 \tilde{\phi})}{5971968(-1 + 5C_4)} + \frac{9(1 + C_4)}{16(1 - 2C_4 - 2C_4^2)}

e_7^{(4)} = \frac{5\cos \tilde{\phi}}{4096C_4^5} - \frac{31\cos \tilde{\phi}}{1024C_4^4} - \frac{1301\cos \tilde{\phi} - 96\cos^3 \tilde{\phi}}{4096C_4^3} - \frac{309\cos \tilde{\phi} + 20\cos^3 \tilde{\phi}}{256C_4^2}

\quad - \frac{3855\cos \tilde{\phi} + 2944\cos^3 \tilde{\phi}}{4096C_4} - \frac{101\cos \tilde{\phi} + 960\cos^3 \tilde{\phi}}{41472(1 + C_4)^6} - \frac{13385\cos \tilde{\phi} + 5904\cos^3 \tilde{\phi}}{124416(1 + C_4)^5}

\quad - \frac{124655\cos \tilde{\phi} + 83952\cos^3 \tilde{\phi}}{1492992(1 + C_4)^4} - \frac{96257\cos \tilde{\phi} + 14169\cos^3 \tilde{\phi}}{559872(1 + C_4)^3} - \frac{4392121\cos \tilde{\phi} - 488304\cos^3 \tilde{\phi}}{26873856(1 + C_4)^2}
\quad - \frac{11116697\cos \tilde{\phi} - 1116063\cos^3 \tilde{\phi}}{20155392(1 + C_4)} + \frac{1539\cos \tilde{\phi}}{16384(1 + 3C_4)^2} - \frac{25839\cos \tilde{\phi}}{32768(1 + 3C_4)}
\quad - \frac{1860775\cos \tilde{\phi}}{186624(-1 + 5C_4)^4} - \frac{1225(4103\cos \tilde{\phi} + 2800\cos^3 \tilde{\phi})}{746496(-1 + 5C_4)^3}
\quad - \frac{25(-47222099\cos \tilde{\phi} + 621600\cos^3 \tilde{\phi})}{35831808(-1 + 5C_4)^2} + \frac{25(432042539\cos \tilde{\phi} + 85572000\cos^3 \tilde{\phi})}{644972544(-1 + 5C_4)}

\quad + \frac{51(2\cos \tilde{\phi} + 2\cos \tilde{\phi}C_4)}{16(-1 + 2C_4 + 2C_4^2)}
\[
\epsilon_8^{(4)} = \frac{81 \left(199 + 32 \cos^2 \phi \right) \left(-1 - 3 C_4 \right)^3 + 81 \left(-803 + 7760 \cos^2 \phi \right) \left(-1 - 3 C_4 \right)^2 + 81 \left(-20863 + 102076 \cos^2 \phi \right)}{131072 \left(-1 - 3 C_4 \right)^3} + \frac{25}{2097152 C_4^7} + \frac{9}{16384 C_4^6} - \frac{151 - 158 \cos^2 \phi}{16384 C_4^5} + \frac{-519 - 3008 \cos^2 \phi}{16384 C_4^4} + \frac{359 - 15946 \cos^2 \phi - 32 \cos^4 \phi}{16384 C_4^3} + \frac{7923 - 43936 \cos^2 \phi - 2048 \cos^4 \phi}{16384 C_4^2} + \frac{-53297 + 31488 \cos^2 \phi - 4608 \cos^4 \phi}{1900656 \left(1 + C_4 \right)^7} + \frac{-1933609 + 12161664 \cos^2 \phi + 2257920 \cos^4 \phi}{95551488 \left(1 + C_4 \right)^5} + \frac{85101083 - 62007936 \cos^2 \phi + 197776512 \cos^4 \phi}{3439853568 \left(1 + C_4 \right)^4} + \frac{-2291995019 + 25564353792 \cos^2 \phi + 3332192256 \cos^4 \phi}{41278242816 \left(1 + C_4 \right)^3} + \frac{9085861571 - 47135217152 \cos^2 \phi + 5619560448 \cos^4 \phi}{55037657088 \left(1 + C_4 \right)^2} + \frac{-917428110137 + 7122467770368 \cos^2 \phi + 222666719232 \cos^4 \phi - 420175 \left(2 + 3 \cos^2 \phi \right)}{1981355655168 \left(1 + C_4 \right)} + \frac{-5857 \left(-3751 + 21936 \cos^2 \phi \right) + 175 \left(161445421 + 287088144 \cos^2 \phi - 35280000 \cos^4 \phi \right)}{26873856 \left(-1 + 5 C_4 \right)^3} + \frac{-175 \left(-835186517 + 7197054312 \cos^2 \phi + 37920000 \cos^4 \phi \right)}{10319560704 \left(-1 + 5 C_4 \right)^2} + \frac{125 \left(1145946953233 + 5452562686272 \cos^2 \phi + 282187776000 \cos^4 \phi \right)}{12878811758592 \left(-1 + 5 C_4 \right)} - \frac{29176875 \left(1 + 3 C_4 \right)}{33554432 \left(1 + 5 C_4 \right)} + \frac{9 \left(4 + 3 C_4 \right)}{128 \left(1 - 2 C_4 - 2 C_4^2 \right)^3} - \frac{3 \left(81 + 46 C_4 \right)}{512 \left(1 - 2 C_4 - 2 C_4^2 \right)^2} - \frac{-19777 + 197496 \cos^2 \phi - 22351 C_4 + 197496 \cos^2 \phi C_4}{6656 \left(1 - 2 C_4 - 2 C_4^2 \right)} - \frac{27 \left(48104891 + 84022143 C_4 \right)}{16777216 \left(-1 + 8 C_4 + 17 C_4^2 \right)}
\]
Table 3 The first 5 orders of perturbation in k for $N = 5$ for the ground state energy in the generic case. For the fourth and fifth orders only the terms proportional to $\cos^2 \bar{\phi}$ and $\cos^3 \bar{\phi}$ respectively are given. We use the variable $C_5 = \frac{\cos(\phi/5)}{\sin \pi/5}$.

\begin{align*}
\epsilon_0^{(5)} &= - (5 - \sqrt{5}) C_5^3 + (7 - \sqrt{5}) C_5, \quad \epsilon_1^{(5)} = 0 \\
\epsilon_2^{(5)} &= (5 + \sqrt{5}) \left(- \frac{3 + \sqrt{5}}{50 (-1 + C_5)} + \frac{9 + \sqrt{5}}{50 C_5} - \frac{3 + \sqrt{5}}{50 (1 + C_5)} + \frac{(-3 + \sqrt{5}) C_5}{50 (-2 + C_5^2)} \right) \\
\epsilon_3^{(5)} &= \frac{\sqrt{5} + \sqrt{5}}{-5 + 3 \sqrt{5}} \left(- \frac{(5 + 3 \sqrt{5}) \cos \bar{\phi}}{125 \sqrt{2} (-1 + C_5)^2} + \frac{(35 + 13 \sqrt{5}) \cos \bar{\phi}}{125 \sqrt{2} (-1 + C_5)} - \frac{\sqrt{2} (25 + 6 \sqrt{5}) \cos \bar{\phi}}{125 C_5^2} \\
&\quad \quad \quad - \frac{(5 + 3 \sqrt{5}) \cos \bar{\phi}}{125 \sqrt{2} (1 + C_5)^2} + \frac{(35 + 13 \sqrt{5}) \cos \bar{\phi}}{125 \sqrt{2} (1 + C_5)} + \frac{2 \sqrt{2} (5 + 2 \sqrt{5}) \cos \bar{\phi}}{125 (-2 + C_5^2)^2} - \frac{\sqrt{2} (5 + 4 \sqrt{5}) \cos \bar{\phi}}{125 (-2 + C_5^2)} \right) \\
\epsilon_4^{(5)} &= \cos^2 \bar{\phi} \left(\frac{110 + 50 \sqrt{5}}{3125 (-1 + C_5)^2} - \frac{4 \left(15 + 7 \sqrt{5}\right)}{625 (-1 + C_5)} + \frac{260 + 120 \sqrt{5}}{3125 C_5^3} + \frac{630 + 290 \sqrt{5}}{3125 C_5} \\
&\quad \quad \quad - \frac{110 + 50 \sqrt{5}}{3125 (1 + C_5)^2} - \frac{4 \left(15 + 7 \sqrt{5}\right)}{625 (1 + C_5)} + \frac{\left(-40 - 20 \sqrt{5}\right) C_5}{3125 (-2 + C_5^2)^2} - \frac{(30 + 10 \sqrt{5}) C_5}{3125 (-2 + C_5^2)} \right) + \cdots \\
\epsilon_5^{(5)} &= \left(\frac{-52 \sqrt{10 - 2 \sqrt{5}}}{3125} - \frac{116 \sqrt{10 - 2 \sqrt{5}}}{3125 \sqrt{5}} \right) \cos^3 \bar{\phi} \left(\frac{1}{4 (-1 + C_5)^2} - \frac{1}{4 (-1 + C_5)} \right) \\
&\quad + \frac{1}{4 C_5} + \frac{3}{4 C_5^2} + \frac{1}{4 (1 + C_5)^2} + \frac{1}{4 (1 + C_5)} + \frac{1}{4 (-2 + C_5)^2} - \frac{3}{4 (-2 + C_5^2)} \right)
\end{align*}
Table 4 The first 6 orders of perturbation in k for $N = 6$ for the ground state energy in the generic case. For the sixth order only the term proportional to $\cos^4 \bar{\phi}$ is given. We use the variable $C_6 = \sqrt{3} \cos(\phi/3)$.

\[
e_0^{(6)} = 3 - \frac{4}{3} C_6 - \frac{8}{3} C_6^2, \quad e_1^{(6)} = 0
\]

\[
e_2^{(6)} = -\frac{2}{15 (1 + C_6)} - \frac{64}{15 (3 + 2 C_6)} - \frac{3}{4 (-9 + 8 C_6^2)}
\]

\[
e_3^{(6)} = \frac{1}{75 \sqrt{3} (-1 + C_6)^2} + \frac{94 \cos \bar{\phi}}{375 \sqrt{3} (-1 + C_6)} - \frac{\cos \bar{\phi}}{3 \sqrt{3} C_6^2} + \frac{8 \cos \bar{\phi}}{3 \sqrt{3} C_6}
\]

\[
e_4^{(6)} = \frac{1}{2250 (-1 + C_6)^3} + \frac{667 + 360 \cos^2 \bar{\phi}}{15000 (-1 + C_6)^2} + \frac{216617 + 527040 \cos^2 \bar{\phi}}{450000 (-1 + C_6)}
\]

\[
+ \frac{11}{30 C_6^2} + \frac{2 (-39 + 50 \cos^2 \bar{\phi})}{6750 C_6}
\]

\[
+ \frac{2 \left(-2381 + 3060 \cos^2 \bar{\phi}\right)}{3375 (3 + 2 C_6)^3} + \frac{-1620919 + 579960 \cos^2 \bar{\phi}}{911250 (3 + 2 C_6)^2} - \frac{708766379 + 423636480 \cos^2 \bar{\phi}}{492075000 (3 + 2 C_6)}
\]

\[
- \frac{1294139}{243000 (-15 + 14 C_6)} - \frac{2 (3 + C_6)}{99 (-4 + C_6 + 2 C_6^2)} - \frac{4 (9 + 8 C_6)}{297 (-3 + 4 C_6^2)}
\]

\[
- \frac{27}{64 (-9 + 8 C_6^2)^3} + \frac{4 (-9 + 16 C_6)}{9 (-9 + 8 C_6^2)^2} - \frac{44 (-11 + 36 \cos^2 \bar{\phi} + 8 C_6)}{81 (-9 + 8 C_6^2)}
\]

\[
+ \frac{9878103 - 19929087 C_6 + 7810406 C_6^2}{314928 (27 - 36 C_6 - 33 C_6^2 + 38 C_6^3)}
\]
\[e_5^{(6)} = \frac{\cos \bar{\phi}}{1000 \sqrt{3} (-1 + C_6)^3} + \frac{193 \cos \bar{\phi}}{10000 \sqrt{3} (-1 + C_6)^2} + \frac{\cos \bar{\phi} (-242459 + 194400 \cos^2 \bar{\phi})}{600000 \sqrt{3} (-1 + C_6)} + \]
\[\frac{5427 \sqrt{3} \cos \bar{\phi}}{160 C_6^3} - \frac{126279 \sqrt{3} \cos \bar{\phi}}{800 C_6^2} - \frac{3 \sqrt{3} \cos \bar{\phi} (-185083 + 11250 \cos^2 \bar{\phi})}{2000 C_6} + \]
\[\frac{81 \sqrt{3} \cos \bar{\phi} (-65789 + 5400 \cos^2 \bar{\phi})}{1000 (3 + 2 C_6)^3} + \frac{9 \sqrt{3} \cos \bar{\phi} (-842051 + 361575 \cos^2 \bar{\phi})}{2500 (3 + 2 C_6)^2} + \]
\[\frac{\cos \bar{\phi} (-2735083651 + 191181600 \cos^2 \bar{\phi})}{800000 \sqrt{3} (3 + 2 C_6)} + \frac{8349 \sqrt{3} \cos \bar{\phi}}{32000 (-15 + 14 C_6)} + \]
\[\frac{469 \cos \bar{\phi} (-302 + 255 C_6)}{186 \sqrt{3} (-4 + C_6 + 2 C_6^2)} + \frac{\sqrt{3} \cos \bar{\phi} (-229 + 264 C_6)}{8 (-3 + 4 C_6^2)} + \]
\[\frac{3645 \sqrt{3} \cos \bar{\phi} (-123 + 116 C_6)}{1024 (-9 + 8 C_6^2)^3} - \frac{27 \sqrt{3} \cos \bar{\phi} (-83589 + 79246 C_6)}{512 (-9 + 8 C_6^2)^2} - \]
\[\frac{9 \sqrt{3} \cos \bar{\phi} (8025965 - 2928384 \cos^2 \bar{\phi} - 8380680 C_6 + 2761728 \cos^2 \bar{\phi} C_6)}{31744 (-9 + 8 C_6^2)} + \]
\[\frac{\cos \bar{\phi} (22455 - 53739 C_6 + 29648 C_6^2)}{4 \sqrt{3} (27 - 36 C_6 - 33 C_6^2 + 38 C_6^3)} \]

\[e_6^{(6)} = \cos^4 \bar{\phi} \left(\frac{27}{625 (-1 + C_6)^2} + \frac{1674}{3125 (-1 + C_6)} + \frac{1}{27 C_6^2} - \frac{2}{81 C_6} \right) - \]
\[\frac{16}{75 (3 + 2 C_6)^4} - \frac{64}{125 (3 + 2 C_6)^3} - \frac{13312}{16875 (3 + 2 C_6)^2} - \]
\[\frac{258688}{253125 (3 + 2 C_6)} - \frac{256}{27 (-9 + 8 C_6^2)} \right) + \ldots \]
Table 5

The results of specializing the generic results of the perturbation theory for the ground state energy for $N = 3, 4, 5$ and 6 to the integrable manifold (1.4) where $\cos \phi = k \cos \bar{\phi}$.

$$e^{(3)} = -\frac{4C_3}{\sqrt{3}} - k^2 \frac{3 + 4C_3^2}{9\sqrt{3}C_3} - k^4 \frac{3 + 16C_3^4}{324\sqrt{3}C_3^3}$$

$$e^{(4)} = -1 - 2C_4 - k^2 \left(\frac{1}{4} + \frac{C_4}{8} + \frac{1}{2(1+C_4)} \right)$$

$$e^{(5)} = - (5 - \sqrt{5})C_5^3 + (7 - \sqrt{5})C_5$$

$$e^{(6)} = 3 - \frac{4}{3}C_6 - \frac{8}{3}C_6^2 - k^2 \left(\frac{2}{27}C_6^2 + \frac{4}{27}C_6 + 5/36 + \frac{1}{C_6} - \frac{4}{3(3+2C_6)} \right) + O(k^4)$$
Table 6 The first six orders of perturbation theory in k for $N = 3$ for the correlation function $\langle Z_0 Z_r^\dagger \rangle = \sum_{n=0}^\infty k^n c_n^\delta$ in the generic case. We use the notation $C_3 = \cos \phi/3$ and $S_3 = \sin \phi/3$. For c_5^δ only the coefficient of $\delta_{r,1}$ and for c_6^δ only the coefficient of $\cos^2 \bar{\phi} \delta_{r,1}$ is given.

\[c_0^\delta = 1, \quad c_1^\delta = 0, \quad c_2^\delta = \frac{1}{6C_3^2} (\delta_{r,0} - 1), \quad c_3^\delta = \frac{\cos \bar{\phi}}{18C_3^3} (\delta_{r,0} - 1) \]

\[c_4^\delta = \left(\frac{1}{432C_3^4} + \frac{2}{81C_3^3} - \frac{2}{27(1 - 2C_3)^2} - \frac{2}{81(1 - 2C_3)} - \frac{2}{27(2C_3 + 1)^2} - \frac{2}{81(2C_3 + 1)} \right) (1 - \delta_{r,0}) \]

\[\left(\frac{5}{432C_3^4} + \frac{1}{81C_3^3} + \frac{2iS_3}{27C_3} \right. \]

\[+ \frac{1 - 2iS_3}{54(2C_3 + 1)^2} + \frac{7 - 12iS_3}{162(2C_3 + 1)} + \frac{7 + 12iS_3}{54(2C_3 - 1)^2} + \frac{1 + 2iS_3}{162(2C_3 - 1)} \left. \right) \delta_{r,1} \]

\[c_5^\delta = \cos \bar{\phi} \left(\frac{1}{648C_3^5} - \frac{1}{81C_3^4} + \frac{2}{81C_3^3} + \frac{2iS_3}{27C_3^2} \right. \]

\[+ \frac{1 + 2iS_3}{27(2C_3 - 1)^2} - \frac{2 + 18iS_3}{81(2C_3 - 1)} + \frac{-1 + 2iS_3}{27(2C_3 + 1)^2} + \frac{-2 + 18iS_3}{27C_3 + 1} \left. \right) \delta_{r,1} + \cdots \]

\[c_6^\delta = \cos^2 \bar{\phi} \left(\frac{-1}{1296C_3^6} - \frac{1}{108C_3^4} - \frac{1}{54C_3^2} + \frac{iS_3}{54C_3^3} + \frac{4iS_3}{27C_3} \right. \]

\[+ \frac{1 - 2iS_3}{54(2C_3 + 1)^2} - \frac{1 + 8iS_3}{54(2C_3 + 1)} + \frac{1 + 2iS_3}{54(2C_3 - 1)^2} + \frac{1 - 8iS_3}{54(2C_3 - 1)} \left. \right) \delta_{r,1} + \cdots \]
Table 7 The first five sums, $S_{2,n}(N)$, from (B.1) with $P_{2,n}(N,j,k)$ given by (B.4).

\[
S_{2,0}(N) = -N^2(N^2 - 1)(N^2 - 4)(53N^2 + 13)/(16 \cdot 27 \cdot 5 \cdot 7)
\]

\[
S_{2,1}(N) = N^2(N^2 - 1)(N^2 - 4)(821N^4 + 280N^2 + 69)/(8 \cdot 81 \cdot 25 \cdot 7)
\]

\[
S_{2,2}(N) = -N^2(N^2 - 1)(N^2 - 4)(30874N^6 + 11150N^4 + 3501N^2 + 845)/(32 \cdot 81 \cdot 5 \cdot 7 \cdot 11)
\]

\[
S_{2,3}(N) = N^2(N^2 - 1)(N^2 - 4)(103801414N^8 + 37967420N^6 + 12484059N^4 + 3718690N^2 + 882407)/(8 \cdot 27 \cdot 125 \cdot 7 \cdot 11 \cdot 13 \cdot 17)
\]

\[
S_{2,4}(N) = -N^2(N^2 - 1)(N^2 - 4)(1012869789N^{10} + 371602425N^8 + 123446295N^6 + 38256875N^4 + 11003386N^2 + 2579010)/(32 \cdot 81 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 31)
\]
Table 8 The first three members of the third family and the first two members of the fourth family of solutions to (B.1) expressed in terms of the Bernoulli polynomials and using the notation $J = j/N, K = k/N$.

\[P_{3,0}(N, j, k) = N^9(J^4(K - 2K^3 + K^5) - 2J^5(K - K^3) + J^6(K + 1/3K^3)) \]
\[P_{3,1}(N, j, k) = N^{11}(1/4J^4(K - 6K^3 + 9K^5 - 4K^7) + 3/2J^5(K^3 - K^5) - 1/4J^6(6K - 9K^3 + 7K^5) + 2J^7(K - K^3) - 1/4J^8(3K + K^3)) \]
\[P_{3,2}(N, j, k) = N^{13}(J^5(5/9B_9(K) + B_7(K)) + J^5(1/12B_7(K) - 1/36B_3(K)) + J^6(2B_7(K) + 41/24B_5(K) - 1/8B_3(K)) + J^73/4B_5(K) + J^8(4/3B_5(K) + 41/72B_3(K) - 1/16B_1(K)) + J^95/9B_3(K) + J^{10}(1/9B_3(K) + 1/9B_1(K))) \]
\[P_{3,2}(N, j, k) = N^{12}(J^5(K - 3K^3 + 3K^5 - K^7) - 3J^6(K - 2K^3 + K^5) + J^7(3K - 2K^3 - K^5) - J^8(K + K^3)) \]
\[P_{4,0}(N, j, k) = N^{14}(J^5(5/9B_9(K) + B_7(K)) + J^6(2/3B_7(K) + 1/2B_5(K) - 1/18B_3(K)) + J^7(14/9B_7(K) + 17/9B_5(K)) + J^8(4/3B_5(K) + 1/2B_3(K) - 1/36B_1(K)) + J^9(5/9B_5(K) + 20/27B_3(K)) + J^{10}(2/9B_3(K) + 1/9B_1(K))) \]
Table 9 The sums (B.1) corresponding to the polynomials in Table 8.

\[
S_{3,0}(N) = N(N^2 - 1)(N^2 - 4)(N^6 + 5N^4 + 54N^2 - 80) \cdot 32/(27 \cdot 25 \cdot 7 \cdot 11)
\]

\[
S_{3,1}(N) = N(N^2 - 1)(N^2 - 4)(9N^8 + 45N^6 + 46N^4 + 12920N^2 - 31680) \cdot 8/(27 \cdot 25 \cdot 7 \cdot 11 \cdot 13)
\]

\[
S_{3,2}(N) = -N(N^2 - 1)(N^2 - 4)(198N^{10} + 990N^8 + 7980N^6 + 58105N^4 + 15362N^2 - 786240)/(64 \cdot 243 \cdot 25 \cdot 49 \cdot 11 \cdot 13)
\]

\[
S_{4,0}(N) = N^2(N^2 - 1)(N^2 - 4)(2N^8 + 10N^6 + 42N^4 + 2315N^2 - 9614) \cdot 256/(27 \cdot 25 \cdot 49 \cdot 11 \cdot 13)
\]

\[
S_{4,1}(N) = -N^2(N^2 - 1)(N^2 - 4)(9N^{10} + 45N^8 + 189N^6 + 7915N^4 + 11792N^2 - 240240)/(32 \cdot 243 \cdot 25 \cdot 49 \cdot 11 \cdot 13)
\]
References

[1] R.J. Baxter, in Fundamental Studies in Statistical Mechanics V, E.G.D. Cohen ed., North Holland, (1980) 109.
[2] R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press (1982).
[3] N. Seiberg, Phys. Lett. B 318 (1993) 469 and Phys. Rev. D 49 6857.
[4] N. Seiberg and E. Witten, Nucl. Phys. B 426 (1994) 12 and B 431 (1994) 482.
[5] H. Au-Yang, B.M. McCoy, J.H.H. Perk, S. Tang, and M–L. Yan, Phys. Lett. A123 (1987) 219.
[6] R.J. Baxter, J.H.H. Perk and H. Au-Yang, Phys. Lett. A 128 (1988) 138.
[7] H. Au-Yang and J.H.H. Perk, Advanced Studies in Pure Math. 19 (189) 57.
[8] G. Albertini, B.M. McCoy and J.H.H. Perk, Advanced Studies in Pure Mathematics 19 (1989) 1.
[9] R.J. Baxter, Phys. Lett. A 146 (1990) 110; Free Energy of the Chiral Potts Model in the Scaling Region, Canberra preprint (1995)
[10] G. Albertini, B.M. McCoy, J.H.H. Perk and S. Tang, Nucl. Phys. B314 (1989) 159.
[11] G. Albertini, B.M. McCoy and J.H.H. Perk, Phys. Lett. A135 (1989) 159.
[12] J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley (1985).
[13] N.S. Han and A. Honecker, Jour. Phys. A 27 (1994) 9.
[14] A. Honecker, Quantum Spin Models and Extended Conformal Algebra, HEPTH 9503104.
[15] A. Honecker and G. von Gehlen, Nucl. Phys. B435 (1985) 505.
[16] A. Honecker, A Perturbative Approach to the Chiral Potts Model, HEPTH 9409122.
[17] I.G. Enting and A.J. Guttmann, The Ising model, self avoiding walks and solvability, Lattice ’95 Proceedings, Nucl. Phys. B suppl (submitted).
[18] T.T. Wu, B.M. McCoy, C.A Tracy and E. Barouch, Phys. Rev, B13 (1976) 316.
[19] C.A. Tracy, in Nonlinear Equations in Physics and Mathematics, A.O. Barut (ed.), D. Reidel Publ. Co., Dorttrecht, Holland, (1978) 221.
[20] R.J. Baxter, Phil. Trans. Roy. Soc. Lond. 289 (1978) 315.
[21] R.J. Baxter, J. Stat. Phys. 63 (1991) 433; 70 (1993) 535.
[22] S. Howes, L.P. Kadanoff and M. den Nijs, Nucl. Phys. B215 [FS7] (1983) 169.
[23] A. Gervois and M.L. Mehta, Jour. Math. Phys. (in press).
[24] S. Gasiorowicz, Quantum Physics, Wiley (1974).
[25] A. Erdelyi, Higher Transcendental Functions, vol. 1, McGraw-Hill (1953).
[26] L. Onsager, Phys. Rev. 65 (1944) 117.
[27] H. Rademacher and E. Grosswald, Dedekind Sums, Carus Mathematical Monograph No. 16, Mathematical Association of America (1972).
[28] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U. S. Government Printing Office (1972).