CO₂ Mineralization: Production of Precipitated Calcium Carbonate as a Method of CO₂ Utilization

N.H. Berahim¹*, H.M. Lahuri², M.G. Mohd Noh³, M.S. Onn⁴, R. Othman⁵

¹²³⁴Petronas Research Sdn. Bhd., Kajang, Selangor
⁵Mineral Research Centre, Ipoh, Perak
*Corresponding author E-mail: hafizah.berahimjusoh@petronas.com.my

Abstract

CO₂ utilization into minerals is one of the most efficient methodologies although much research concerns the utilization of CO₂ to produce chemicals. The production of precipitated calcium carbonate (PCC) from three different starting materials has been reported. The gas-liquid reaction is carried out by bubbling carbon dioxide into a solution of lime products with fixed parameters of 99% CO₂ purity, 4.0 L/min of flow rate and 1500 rpm stirring rate at atmospheric pressure. The PCC was then characterized for X-Ray diffractography (XRD), field emission scanning electron microscopy (FESEM), X-Ray fluorescence (XRF) and particle size. Experimental results indicate that the PCC produced from quick lime showed the highest yield of 17.27 g, however there is no significant difference for both carbide lime and hydrated lime at 12.04 g and 11.57 g respectively. Morphology, phase structure and particle size of PCC produced reveals insignificant influence with different starting materials. Producing PCC from CO₂ and natural minerals can be a potential method of reducing CO₂ emissions by locking-up CO₂ in a stable mineral form, whilst at the same time turning low quality natural minerals into high valuable products.

Keywords: CO₂; mineralization; CO₂ utilization; natural mineral; precipitated calcium carbonate; lime products

1. Introduction

Extensive use of fossil fuels, is a major challenge which contributed to the global climate change. CO₂ concentration in the atmosphere has risen at an exceptional rate since the beginning of industrialization in the eighteen century. Different strategies and tools from various aspects have been proposed and implemented to mitigate rapid global warming and adapt to the climate change. There are lots of strategies for reducing CO₂ emissions which include the following: (1) improving overall energy efficiency, (2) implementing carbon capture and storage and (3) utilizing renewable energy and material recycling [1]. Another potentially important example of reducing CO₂ emission via CCU field is CO₂ mineralization, or mineral sequestration although it can be considered a CCS path. Mineral sequestration is the process of storing CO₂ in the form of a carbonate which involves an exothermic chemical reaction between CO₂ and basic minerals. This mineral sequestration normally happened in sub surface. However, for the surface, the concept is the same but the end product, precipitated calcium carbonate will be used as a filler/additive for many applications.

Precipitated calcium carbonate (PCC) is a synthetic calcium carbonate that has high purity of CaCO₃ content in its compound which is more than 98 wt%. Recent years, precipitated calcium carbonate (PCC) has received significant attention because of its wide application in the areas of papermaking, rubber, plastics, paints, pharmacy etc. Such a variety of applications, only the right PCC can boost the quality of the end products. PCC require to have different physical and chemical properties, among which particle size, specific surface area, morphology and chemical purity are the most important [2]. Many industries used carbonate rocks for the production of PCC. PCC can be synthesize either by carbonation (gas-liquid-solid) or solution (liquid-liquid-solid) process after calcination and hydration reaction of a carbonate rock [3]. However, carbonation is the most often used route in industrial because of its simple procedure, low cost, higher yield and higher purity [4]. Due to the low CO₂ solubility in water, the carbonation process is a slow process compared to solution process [5]. Industrially, carbonation is performed by bubbling CO₂ through a slaked lime slurry (i.e., Ca(OH)₂ aqueous suspension) resulted in PCC formation according to the process route as follows:

\[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{H}^+ + \text{HCO}_3^- \rightarrow 2\text{H}^+ + \text{CO}_3^{2-} \]
(1)

\[\text{Ca(OH)}_2 \rightarrow \text{Ca}^{2+} + 2\text{OH}^- \]
(2)

\[\text{Ca}^{2+} + \text{CO}_3^{2-} \rightarrow \text{CaCO}_3 \]
(3)

The overall chemical reaction is given as:

\[\text{Ca(OH)}_2 + \text{CO}_2 \rightarrow \text{CaCO}_3 + \text{H}_2\text{O} \]
(4)

There are many materials that can be used as a starting material for PCC production. The quality of the starting material is one of the factors that affect the quality of PCC produced. Limestone, quick lime, hydrated lime, carbide lime, calcium silicate, dolomite, etc., are among the starting materials that can be used in producing PCC. Recently, focused by researchers is to improve the PCC production yield, control the polymorph and maintain the stability and size distribution to suite the final product [6]. Calcite, aragonite and vaterite are different crystal structures form by PCC,
each represents different stability [7]. The most thermodynamically stable and the most important polymorph in the industry is calcite structure due to its possibility to form different morphologies [8]. This work investigates the effect of different starting material on the PCC yield, morphology, purity and particle size using gas-liquid-solid route at atmospheric pressure.

2. Experimental

2.1. Preparation of ionic solution

Refined sugar cane was used to prepare the sucrose solution. First, 100 g sugar was dissolved in 1000 ml filtered water in order to get 10° Brix of one litre ionic solution. The sucrose concentration was checked by using portable brix meter. The Brix was adjusted with addition of some sugar or water into the solution in order to achieve 10° Brix ionic solution. Then, 120 g carbide lime was mixed into the sucrose solution and stirred to make sure carbide lime was fully dissolved. The mixtures were then filtered to remove unreacted carbide lime. The clear solution obtained was called ionic solution that contained calcium ions and used in the experiments. Same procedure was repeated for hydrated lime and quick lime as starting materials.

2.2. Carbonation at atmospheric condition

1 litre of ionic solution was stirred using mechanical stirrer at 1500 rpm. Then, carbonation process was carried out, whereby CO₂ gas was introduced at 4.0 L/min into the pregnant solution until the pH reached at 8. The synthesized PCC was filtered and rinsed with warm water to remove sugar and unreacted lime products. The collected PCC was dried at 60 °C and weighed to determine the weight of PCC produced. The dried PCC was further characterized.

3. Results and Discussion

XRF analysis was done to characterize the amount of calcium oxide (CaO) content in different starting material. Table 1 indicates the percentage amount of components in different starting material. Quick lime shows the highest CaO content followed by carbide lime and hydrated lime.

Composition (%)	Raw materials	Carbide lime	Quick lime	Hydrated lime
CaO		67.20	69.68	59.31
Fe₂O₃		0.05	0.13	0.12
MnO		-	0.02	0.03
TiO₂		-	0.02	0.02
SiO₂		2.13	0.04	0.04
Al₂O₃		0.12	0.12	0.12
P₂O₅		0.03	0.31	0.12
MgO		0.43	0.81	0.85
Na₂O		-	0.05	0.04
K₂O		-	0.05	0.02
LOI		30.00	28.75	39.38

PCC production yield from different starting material was shown in Fig. 1. Quick lime shows the highest yield of 17.27 g. There is no significant difference in PCC yield produced by both carbide lime and hydrated lime. This results indicate that there is significant correlation between calcium oxide content reported in Table 1 & PCC yield produced.
XRD analysis in Fig. 3 identified calcite as the CaCO₃ polymorph precipitated for all different starting material. This observation indicates that when solid Ca(OH)₂ is suspended in an aqueous medium, where heterogeneous nucleation induced by foreign particles is favoured, the precipitation of the stable calcite polymorph as the main phase is the common result for carbonation processes [10].

Fig. 3: XRD analysis on PCC produced from different starting materials

Table 2 shows the results of particle size for PCC produced using different starting material. At same parameter (99% CO₂ purity, 4.0 l/min, 1500 rpm), the particle size of PCC produced from different type of starting materials were almost the same which is below 20 µm. The results explain that different type of starting materials did not influence on the PCC particle size.

Table 2: Particle size analysis of PCC produced from different starting materials

Starting Materials	Parameters	d10 (µm)	d50 (µm)	d90 (µm)	Size range (µm)
Quick Lime	99% CO₂, 4L/min, 1500 rpm	1.52	6.02	12.23	<20
Hydrated Lime	99% CO₂, 4L/min, 1500 rpm	1.32	6.42	11.87	<20
Carbide Lime	99% CO₂, 4L/min, 1500 rpm	1.21	4.82	8.117	<20

4. Conclusion

The experimental study of calcium carbonate precipitation using different starting materials had insignificant influence on the morphology, phase structure and particle size with fixed operating experimental conditions of 99% CO₂ purity, 4L/min flow rate and 1500 rpm stirring rate. However, different starting materials used only showed that the PCC yield produced were different because of the CaO composition in each of lime product. Quick lime indicates the highest PCC yield of 17.27 g while no significant difference in PCC yield produced by both carbide lime and hydrated lime at 12.04 g and 11.57 g respectively.

Acknowledgement

Authors express their gratitude to Petronas Research Sdn.Bhd. and Mineral Research Centre for the support provided throughout the project.

References

[1] International Energy Agency (IEA) (2014) Energy Technology Perspectives 2014 – Harnessing Electricity’s Potential. IEA, France.
[2] Marko U, Jasminka K, Vesna BI, Ljerkja B & Damir K (2007), Experimental design approach to calcium carbonate precipitation in a semicontinuous process. Powder Technology, 171, 192-199.
[3] Arui Y & Yasue T (1990), Control of crystal shape and modification in preparation of calcium carbonate. Gypsum Line, 228, 291-301.
[4] Barhoum A, Van Asche G, Makhlouf ASH, Terryn H, Baert K, Delplancke MP, El-Sheikh SM & Rahier H (2015), A green, simple chemical route for the synthesis of pure nanocalcic crystals. Cryst Growth Des., 15, 573-580.
[5] Domingo C, López AM, Fraile J & Hidalgo A (2015), Supercritical CO₂ for the reactive precipitation of calcium carbonate: uses and applications to industrial processing: supercritical fluid nanotechnology. Advances and applications in composites and hybrid nanomaterials, p 233.
[6] Jing Shen ZS, Qian X & Liu W (2009), Modification of precipitated calcium carbonate filler using sodium silicate/zinc chloride based modifiers to improve acid resistance and used of the modified filler in papermaking. Bioresources, 4, 1498-1519.
[7] Vagenas NV, AG & Kontoyannis CG (2003), Quantitative analysis of synthetic calcium carbonate polymorphs using FTIR spectroscopy. Talanta, 59, 831-836.
[8] Jun-Hwan B, YNJ, Wombaek K, Kyan Sung S, Chi Wan J, Soo Chun C, Seung-Woo L, So-Jin P & Myung Gyu L (2012), Specific surface area and particle size of calcium carbonate precipitated by carbon dioxide microbubbles. Chemical Engineering Journal, 198-199, 254-260.
[9] Othman R, Isa N & Othman A (2015). Precipitated calcium carbonate from industrial waste for paper making. Sains Malaysiana, 44, 1561-1565.
[10] Kawano J, Shimohayashi N, Kitamura M, Shinoda K & Aikawa N (2002). Formation process of calcium carbonate from highly supersaturated solution. Journal Crystal Growth, 237-239, 419-423.