ON THE ESSENTIAL SPECTRUM OF NADIRASHVILI-MARTIN-MORALES MINIMAL SURFACES

G. PACELLI BESSA, LUQUESIO P. JORGE, AND J. FABIO MONTENEGRO

ABSTRACT. We show that the spectrum of a complete submanifold properly immersed into a ball of a Riemannian manifold is discrete, provided the norm of the mean curvature vector is sufficiently small. In particular, the spectrum of a complete minimal surface properly immersed into a ball of \mathbb{R}^3 is discrete. This gives a positive answer to a question of Yau [22].

1. Introduction

An interesting problem in the Geometry of the Laplacian is to understand the relations of the geometry of a Riemannian manifold and its spectrum. For instance, to understand the restrictions on the geometry of a Riemannian manifold implying that its spectrum is purely continuous or discrete. There are several important work along these lines. See [5], [6], [8], [11], [19], [21] for geometric conditions implying that the spectrum is purely continuous and [2], [7], [9], [12], [13] for geometric conditions implying that the spectrum is discrete.

Since every complete Riemannian m-manifold can be realized as a complete submanifold embedded into a ball of radius r of an n-dimensional Euclidean space, with n depending only on m, see [18], it would be important to understand the relations between the spectrum and the extrinsic geometry of bounded embeddings of complete Riemannian manifolds in Euclidean spaces. A particularly interesting aspect of this problem is the spectrum related part of the so called Calabi-Yau conjectures on minimal surfaces.

Yau in his 2000 millennium lectures [22], [23], revisiting these conjectures, wrote: It is known [17] that there are complete minimal surfaces properly immersed into a [open] ball. . . . Are their spectrum discrete? It is worthwhile to point out that it is not clear that the Nadirashvili’s complete bounded minimal surface [17] is properly immersed. However, in [15], [16], F. Martin and S. Morales constructed, for any open convex subset B of \mathbb{R}^3, a complete proper minimal immersions $\varphi : \mathbb{D} \hookrightarrow B$, where \mathbb{D} is the standard disk on \mathbb{R}^2. The Martin-Morales’ method is a highly non-trivial refinement of Nadirashvili’s method, thus we name, (as we should), these complete properly immersed minimal surfaces into convex subsets B of \mathbb{R}^3 as Nadirashvili-Martin-Morales minimal surfaces.

The purpose of this paper is to answer positively Yau’s question. In fact, we show as a particular case of our main result that the spectrum of any Nadirashvili-Martin-Morales minimal surface is discrete if the convex set B is a ball $B_{\mathbb{R}^3}(r)$ of \mathbb{R}^3. We prove the following.

Theorem 1.1. Let $\varphi : M \hookrightarrow B_{\mathbb{R}^3}(r) \subset \mathbb{R}^3$ be a complete surface, properly immersed into a ball. If the norm of the mean curvature vector H of M satisfies

$$\sup_M |H| < 2/r$$

then M has discrete spectrum.
Our main result Theorem 1.2 is a natural generalization of Theorem 1.1. It shows that the spectrum of a complete properly immersed submanifold $\varphi: M \hookrightarrow B_N(r)$ is discrete provided the norm of the mean curvature vector $H = \text{Tr}\alpha$ is sufficiently small. Here $B_N(r) \subset N$ is a normal geodesic ball of radius r of a Riemannian manifold N and α is the second fundamental form. In the following we denote
\begin{align}
C_b(t) = \begin{cases}
\sqrt{b}\cot(\sqrt{b}t) & \text{if } b > 0, \\
1/t & \text{if } b = 0, \\
\sqrt{-b}\coth(\sqrt{-b}t) & \text{if } b < 0.
\end{cases}
\end{align}

Theorem 1.2. Let $\varphi: M \hookrightarrow B_N(r)$ be a complete m-submanifold properly immersed into a geodesic ball, centered at p with radius r, of a Riemannian n-manifold N. Let $b = \sup K^\text{rad}_N$ where K^rad_N are the radial sectional curvatures along the geodesics issuing from p. Assume that $r < \min\{\text{inj}_N(p), \pi/2\sqrt{b}\}$, where $\pi/2\sqrt{b} = +\infty$ if $b \leq 0$. If the norm of the mean curvature vector H satisfies,
\[
\sup_M |H| < m \cdot C_b(r),
\]
then M has discrete spectrum.

The properness condition is a marginal technical hypothesis in Theorem 1.2. It is used only to choose a natural sequence of compact subsets of M so that we can construct a sequence of positive smooth functions on their complements. The result should hold without it.

Isabel Salavessa in a beautiful paper [20], generalized Theorem 1.2 in the minimal case proving discreteness of the spectrum of X-bounded minimal submanifolds of Riemannian manifolds carrying strongly convex vector field X.

A Riemannian manifold M is said to be **stochastically complete** if for some (and therefore, for any) $(x, t) \in M \times (0, +\infty)$ it holds that
\[
\int_M p(x, y, t) dy = 1,
\]
where $p(x, y, t)$ is the heat kernel of the Laplacian operator. Otherwise, the manifold M is said to be **stochastically incomplete** (for further details about this see, for instance, [21]). It seems to have a close relation between discreteness of the spectrum of a complete noncompact Riemannian manifold and stochastic incompleteness. For instance, it was proved in [19] that submanifolds satisfying the hypotheses of Theorem 1.2, (without the properness condition) are stochastically incomplete. M. Harmer [9], shows that stochastic incompleteness implies discreteness of the spectrum in a certain class of Riemannian manifolds. Based on these evidences, we believe that the following conjecture should be true.

Conjecture 1.3. A complete noncompact Riemannian manifold has discrete spectrum if and only if it is stochastically incomplete.

2. Preliminaries.

Let M be a complete noncompact Riemannian manifold. The Laplacian Δ acting on $C^\infty_0(M)$ has a unique self-adjoint extension to an unbounded operator acting on $L^2(M)$, also denoted by Δ, whose domain are those functions $f \in L^2(M)$ such that $\Delta f \in L^2(M)$ and whose spectrum $\Sigma(M) \subset [0, \infty)$ decomposes as $\Sigma(M) = \Sigma_p(M) \cup \Sigma_{ess}(M)$ where $\Sigma_p(M)$ is formed by eigenvalues with finite multiplicity and $\Sigma_{ess}(M)$ is formed by accumulation points of the spectrum and by the eigenvalues with infinite multiplicity. It is said that M has discrete spectrum if $\Sigma_{ess}(M) = \emptyset$ and that M has purely continuous spectrum if $\Sigma_p(M) = \emptyset$.

If $K \subset M$ is a compact manifold with boundary, of the same dimension as M then there is a self-adjoint extension Δ' of the Laplacian Δ of $M \setminus K$ by imposing Dirichlet conditions.
The *Decomposition Principle* \[7\] says that \(\triangle\) and \(\triangle'\) have the same essential spectrum \(\Sigma_{ess}(M) = \Sigma_{ess}(M \setminus K)\). On the other hand, the bottom of the spectrum of \(M \setminus K\) is equal to the fundamental tone of \(M \setminus K\), i.e. \(\inf \Sigma(M \setminus K) = \lambda^*(M \setminus K)\), where

\[
\lambda^*(M \setminus K) = \inf \left\{ \frac{\int_{M \setminus K} |\nabla f|^2}{\int_{M \setminus K} f^2}, f \in C_0^\infty(M \setminus K) \setminus \{0\} \right\}.
\]

To give lower estimates for \(\lambda^*(M \setminus K)\) we need of the following version of Barta’s Theorem.

Theorem 2.1 (Barta, \[3\]). Let \(\Omega \subset M\) be an open subset of a Riemannian manifold \(M\) and let \(f \in C^2(\Omega), f|\Omega > 0.\) Then

\[
\lambda^*(\Omega) \geq \inf_{\Omega} (-\Delta f/f).
\]

Proof: Let \(X = -\nabla \log f\) be a \(C^1\) vector field in \(\Omega\). It was proved in \[4\] that

\[
\lambda^*(\Omega) \geq \inf_{\Omega} (\text{div } X - |X|^2) = \inf_{\Omega} (-\frac{\Delta f}{f}).
\]

The second main ingredient of our proof is the Hessian comparison theorem.

Theorem 2.2. Let \(M^m\) be a Riemannian manifold and \(x_0, x_1 \in M\) be such that there is a minimizing unit speed geodesic \(\gamma\) joining \(x_0\) and \(x_1\) and let \(p(x) = \text{dist}(x_0, x)\) be the distance function to \(x_0\). Let \(a \leq K, b \leq b\) be the radial sectional curvatures of \(M\) along \(\gamma\). If \(b > 0\) assume \(p(x_1) < \pi/2\sqrt{b}\). Then, we have \(\text{Hess}(\gamma') = 0\) and

\[
C_b(\rho(x))\|X\|^2 \geq \text{Hess}(\gamma)(X, X) \geq C_b(\rho(x))\|X\|^2,
\]

where \(X \in T_x M\) is perpendicular to \(\gamma'(\rho(x))\).

Let \(\varphi : M \hookrightarrow W\) be an isometric immersion of a complete Riemannian \(m\)-manifold \(M\) into a Riemannian \(n\)-manifold \(W\) with second fundamental form \(\alpha\). Consider a \(C^2\)-function \(g : W \to \mathbb{R}\) and the composition \(f = g \circ \varphi : M \to \mathbb{R}\). Identifying \(X\) with \(d\varphi(X)\) we have at \(q \in M\) that the Hessian of \(f\) is given by

\[
\text{Hess}(\varphi(q))(X,Y) = \text{Hess}(g(q))(X,Y) + \langle \nabla g, \alpha(X,Y) \rangle_{\varphi(q)}.
\]

Taking the trace in \(\text{(2.3)}\), with respect to an orthonormal basis \(\{e_1, \ldots, e_m\}\) for \(T_q M\), we have the Laplacian of \(f\),

\[
\Delta f(q) = \sum_{i=1}^m \text{Hess}(\varphi(q))(e_i, e_i) + \langle \nabla g, \sum_{i=1}^m \alpha(e_i, e_i) \rangle.
\]

The formulas \(\text{(2.3)}\) and \(\text{(2.4)}\) are well known in the literature, see \[10\].

3. **Proof of Theorem 1.2**

Let \(K_1 \subset K_2 \subset \cdots\) be an exhaustion sequence of \(M\) by compact sets. The *Decomposition Principle* states that \(M\) and \(M \setminus K_i\) have the same essential spectrum, \(\Sigma_{ess}(M) = \Sigma_{ess}(M \setminus K_i)\). Therefore, the **Theorem 1.2** is proved if we show that \(\lim_{i \to \infty} \lambda^*(M \setminus K_i) = \infty\) since \(\lambda^*(M \setminus K_i) \leq \inf \Sigma_{ess}(M \setminus K_i)\).

By hypothesis we have a complete \(m\)-submanifold \(\varphi : M \hookrightarrow B_N(r)\) properly immersed into a ball \(B_N(r) = B_N(p, r)\) with center at \(p\) and radius \(r\) in a Riemannian \(n\)-manifold \(N\) with radial sectional curvatures \(K_r\) along the radial geodesics issuing from \(p\) bounded as \(a = \inf K_r \leq K_r = b = \sup K_r\) in \(B_N(r)\), where \(r < \min\{\text{inf}_N(p), \pi/2\sqrt{b}\}\). Here we replace \(\pi/2\sqrt{b}\) by \(+\infty\) if \(b \leq 0\).

Define a function \(v : B_N(p, r) \to \mathbb{R}\) by \(v(y) = \phi_a(\rho(y))\), where \(\phi_a : [0, r] \to \mathbb{R}\) given by

\[
\phi_a(t) = \begin{cases}
\cos(\sqrt{a} t) - \cos(\sqrt{a} r) & \text{if } a > 0, t < \pi/2\sqrt{a}, \\
\frac{1}{2}t^2 - \frac{1}{2}a^2r & \text{if } a = 0, \\
\cosh(\sqrt{-a} r) - \cosh(\sqrt{-a} r) & \text{if } a < 0.
\end{cases}
\]
Observe that \(\phi(t) > 0 \) in \([0, r], \phi_a(r) = 0, \phi_a'(r) < 0 \) and \(\phi_a''(t) - C_a(t)\phi_a'(t) = 0 \) in \([0, r] \).

This function \(\phi_a \) we learned from Markvorsen \([14]\). Let \(f: M \to \mathbb{R} \) defined by \(f = v \circ \varphi \) and consider an exhaustion sequence of \(M \) by compact sets \(K_i = \varphi^{-1}(B_N(p, r_i)) \), where \(r_i < r, r_i \to r \). By Barta’s Theorem we have that \(\lambda^*(M \setminus K_i) \geq \inf_{M \setminus K_i} (-\frac{\Delta f}{f}) \).

Now by \((2.4)\) we have

\[
\Delta f(x) = \sum_{i=1}^{m} \text{Hess}_N v(\varphi(x))(e_i, e_i) + \langle \text{grad} v, \sum_{i=1}^{m} a(e_i, e_i) \rangle.
\]

The metric of \(N \) inside the normal geodesic ball \(B_N(p, r) \) can be written in polar coordinates as \(ds^2 = dt^2 + |A(t, \xi)|^2 d\xi^2 \), \(A(t, \xi) \) satisfies the Jacobi equation \(A'' + RA = 0 \) with initial conditions \(A(0, \xi) = 0, A'(0, \xi) = 1 \). We have at the point \(\varphi(x) \) an orthonormal basis \(\{\partial/\partial t, \partial/\partial \xi_1, \ldots, \partial/\partial \xi_{n-1}\} \) for \(T_{\varphi(x)}N \). We may choose an orthonormal basis for \(T_{\varphi(x)}N \) as \(e_1 = \langle e_1, \partial/\partial t \rangle \cdot \partial/\partial t + e_1^\perp \), where \(e_1^\perp \perp \partial/\partial t \) and \(\{e_2, \ldots, e_m\} \subset \{\partial/\partial \xi_1, \ldots, \partial/\partial \xi_{n-1}\} \).

Computing \(\text{Hess}_N v(\varphi(x))(e_i, e_i) \) we have

\[
\text{Hess}_N v(\varphi(x))(e_1, e_1) = [\phi''(t) - \phi'(t) \cdot \text{Hess}_N \rho(e_1^\perp/|e_1^\perp|, e_1^\perp/|e_1^\perp|)] \langle e_1, \text{grad} \rho \rangle^2
+ \phi'(t) \cdot \text{Hess}_N \rho(e_1^\perp/|e_1^\perp|, e_1^\perp/|e_1^\perp|)
\]

(3.2)

and for \(i \geq 2 \)

\[
\text{Hess}_N v(\varphi(x))(e_i, e_i) = \phi'(t) \cdot \text{Hess}_N \rho(e_i, e_i)
\]

where \(t = \rho(\varphi(x)) \). Now,

\[
- \Delta f = -\phi'(t) \cdot [C_a(t) - \text{Hess}_N \rho(e_1^\perp/|e_1^\perp|, e_1^\perp/|e_1^\perp|)] \langle e_1, \text{grad} \rho \rangle^2
- \phi'(t) \cdot \left[\text{Hess}_N \rho(e_1^\perp/|e_1^\perp|, e_1^\perp/|e_1^\perp|) + \sum_{i=2}^{m} \text{Hess}_N \rho(e_i, e_i) \right]
- \phi'(t) \langle \text{grad} \rho, H \rangle
\]

\[
\geq -\phi'(t) \cdot [m \cdot C_b(t) - \sup |H|]
\]

We used that \(C_a(t) \geq \text{Hess}_N \rho(e_1^\perp/|e_1^\perp|, e_1^\perp/|e_1^\perp|) \geq C_b(t), \text{Hess}_N \rho(e_i, e_i) \geq C_b(t) \) by the Hessian Comparison Theorem and that \(-\phi'(t) > 0 \).

Hence

\[
\lambda^*(M \setminus K_i) \geq \inf_{M \setminus K_i} \left(-\frac{\Delta f}{f}\right) \geq \inf_{M \setminus K_i} \frac{\phi'(t)}{\phi_a(t)} [m \cdot C_b(t) - \sup |H|]
\]

(3.4)

Thus \(\lambda^*(M \setminus K_i) \to \infty \) as \(r_i \to r \). This proves Theorem \([12]\).

4. CYLINDRICALLY BOUNDED SUBMANIFOLDS.

Let \(\varphi: M^m \to B_N(r) \times \mathbb{R}^\ell \subset N^{n-\ell} \times \mathbb{R}^\ell \), \(m \geq \ell + 1 \), be an isometric immersion of a complete Riemannian \(m \)-manifold \(M^m \) into the \(B_N(r) \times \mathbb{R}^\ell \), where \(B_N(r) \) is a geodesic ball in a Riemannian \((n-\ell)\)-manifold \(N^{n-\ell} \), centered at a point \(p \) with radius \(r \). Let \(b = \sup K_N^a \)
where K_N^rad are the radial sectional curvatures along the geodesics issuing from p. Assume that $r < \min\{\text{inj}_N(p), \pi/2\sqrt{b}\}$, where $\pi/2\sqrt{b} = +\infty$ if $b \leq 0$.

Theorem 4.1. Suppose that $\varphi : M^m \to B_N(r) \times \mathbb{R}^\ell$ as above satisfies the following.

1. For every $s < r$, the set $\varphi^{-1}(B_N(s) \times \mathbb{R}^\ell)$ is compact in M.
2. $\sup_M |H| < (m - \ell)C_b(r)$ where $|H|(x)$ is norm of the mean curvature vector of $\varphi(M)$ at $\varphi(x)$.

Then M has discrete spectrum.

Observe that the condition 1. is a stronger property than being a proper immersion except when $\ell = 0$.

Proof: As before, let $r_i \to r$ be a sequence of positive real numbers $r_i < r$ and the compacts sets $K_i = \varphi^{-1}(B_N(r_i) \times \mathbb{R}^\ell)$. We need only to show that $\lambda^*(M \setminus K_i) \to \infty$ as $r_i \to r$. Define v on $B_N(r) \times \mathbb{R}^\ell$ by $v(x, y) = \rho_0(\rho(x))$, where $\rho(x) = \text{dist}_N(p, x)$, ρ_0 given in \textbf{3.1} and $a = \inf K_N^\text{rad}$. Let $f = v \circ \varphi : M \to \mathbb{R}$. We have by \textbf{2.4}

\[
\triangle f(x) = \sum_{i=1}^m \text{Hess}_{N \times \mathbb{R}^\ell} v(\varphi(x))(e_i, e_i) + \langle \text{grad} v, H \rangle.
\]

(4.1)

\[
= \sum_{i=1}^m \text{Hess}_N(\rho_0 \circ \rho)(\varphi(x))(e_i, e_i) + \langle \text{grad} (\rho_0 \circ \rho), H \rangle.
\]

At $\varphi(x) = (y_1, y_2)$, consider the orthonormal basis

\[
\text{Polar basis} \quad \{\partial/\partial t, \partial/\partial \xi_1, \ldots, \partial/\partial \xi_{n-\ell-1}, \partial/\partial s_1, \ldots, \partial/\partial s_\ell\}
\]

\[
\text{Cartesian basis} \quad \{e_1, e_2, \ldots, e_m\}
\]

for $T_{(y_1, y_2)}N^{n-\ell} \times \mathbb{R}^\ell = T_{y_1}N^{n-\ell} \oplus T_{y_2}\mathbb{R}^\ell$. Choose an orthonormal basis $\{e_1, e_2, \ldots, e_m\}$ as follows

\[
e_i = a_1 \frac{\partial}{\partial t} + \sum_{j=1}^{n-\ell-1} b_{ij} \frac{\partial}{\partial \xi_j} + \sum_{j=1}^{\ell} c_{ij} \frac{\partial}{\partial s_j}.
\]

Using that $\phi''_a(t) < 0$, $\phi'''_a = C_a(t)\phi''_a(t)$ and $\text{Hess}_N(\rho_0)(\partial/\partial \xi_j, \partial/\partial \xi_j) \geq C_b(t)$ for all $j = 1, \ldots, n - \ell - 1$, we have that

\[
\text{Hess}_N(\rho_0 \circ \rho(y_1))(e_i, e_i) = \phi''_a(t)a^2_1 + \phi''_a(t) \sum_{j=2}^{n-\ell-1} b^2_{ij} \text{Hess}_N(\rho_1)(\partial/\partial \xi_j, \partial/\partial \xi_j)
\]

\[
\leq \phi''_a(t) a^2_1 + \phi''_a(t) \sum_{j=2}^{n-\ell-1} b^2_{ij} C_b(t)
\]

\[
= C_a(t) \phi''_a(t) a^2_1 + \phi''_a(t) \sum_{j=2}^{n-\ell-1} b^2_{ij} C_b(t)
\]

\[
= \phi''_a(t) a^2_1 (C_a(t) - C_b(t)) + \phi''_a(t) \sum_{k=1}^{\ell} c^2_{ik} C_b(t)
\]

\[
\leq \phi''_a(t) (1 - \sum_{k=1}^{\ell} c^2_{ik}) C_b(t)
\]
since $C_a(t) \geq C_b(t)$ and where $t = \rho(y_1)$. Therefore

$$- \sum_{i=1}^{n} \text{Hess} \phi_a \circ \rho(y_1)(e_i, e_i) \geq -\phi'_a(t)(m - \sum_{i=1}^{m} \sum_{k=1}^{\ell} C_{ik}^2)C_b(t) \geq -\phi'_a(t)(m - \ell)C_b(t)$$

From this we have that

$$\frac{\Delta f}{f}(x) \geq \frac{\phi'_a(t)}{\phi_a(t)} \left[(m - \ell)C_b(t) - \sup_{M} |H| \right]$$

so that

$$\inf_{M \setminus K_i} \left(-\frac{\Delta f}{f} \right) \geq \frac{\phi'_a(r_i)}{\phi_a(r_i)} \left[(m - \ell)C_b(r) - \sup_{M} |H| \right] .$$

Therefore $\inf_{M \setminus K_i} \left(-\frac{\Delta f}{f} \right) \to +\infty$ as $r_i \to r$ proving Theorem (4.1).

REFERENCES

1. L. Alias, G. P. Bessa, M. Dajczer, Countercexamples to Calabi conjectures on minimal hypersurfaces cannot be proper. arXiv:math/0812.623v1.
2. A. Baider, Noncompact Riemannian manifolds with discrete spectra. J. Diff. Geom. 14, (1979), 41–57.
3. J. Barta, Sur la vibration fundamentale d’une membrane. C. R. Acad. Sci. 204, (1937), 472–473.
4. G. P. Bessa and J. F. Montenegro, An extension of Barta’s Theorem and geometric applications. Global Anal. and Geom. 31, (2007), 345–362.
5. H. Donnelly, Negative curvature and embedded eigenvalues. Math. Z. 203, (1990), 301–308.
6. H. Donnelly and N. Garofalo, Riemannian manifolds whose Laplacian have purely continuous spectrum. Math. Ann. 293, (1992), 143–161.
7. H. Donnelly and P. Li, Pure point spectrum and negative curvature for noncompact manifolds. Duke Math. J. 46, (1979), 497–503.
8. E. Escobar, On the spectrum of the Laplacian on complete Riemannian manifolds. Comm. Partial Differ. Equations 11, (1985), 63–85.
9. M. Harmer, Discreteness of the spectrum of the Laplace-Beltrami operator. arXiv:math/0701564v1.
10. L. Jorge and D. Koutrofiotis, An estimate for the curvature of bounded submanifolds.
11. R. Kleine, Discreteness conditions for the Laplacian on complete noncompact Riemannian manifolds.
12. R. Kleine, Warped products with discrete spectra. Results Math. 15, (1989), 81–103.
13. S. Markvorsen, On the mean exit time from a minimal submanifold. J. Differential Geom. 29, (1989), 1–8.
14. F. Martín and S. Morales, Complete proper minimal surfaces in convex bodies of \mathbb{R}^3. Duke Math. J. 128, (2005), 559–593.
15. F. Martín and S. Morales, Complete proper minimal surfaces in convex bodies of \mathbb{R}^3. II. The behavior of the limit set. Comment. Math. Helv. 81, (2006), 699-725.
16. N. Nadirashvili, Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math., 126, (1996), 457-465.
17. J. Nash, The imbedding problem for Riemannian manifolds. Ann. of Math. (2) 63,(1956) 20–63.
18. F. Rellich, Über das asymptotische Verhalten der Lösungen von $\Delta u + \lambda u = 0$ in unendlichen Gebieten. Jahresber. Dtsch. Math.-Ver. 53, (1943), 57–65.
19. I. Salavessa, On the spectrum of X-bounded minimal submanifolds. Arxiv0901-1246v1.
20. T. Tayoshi, On the spectrum of the Laplace-Beltrami operator on noncompact surface. Proc. Japan Acad. 47. (1971), 579-585.
21. S. T. Yau, Review of Geometry and Analysis. Asian J. Math. 4, 235–278, (2000).
22. S. T. Yau, Review of Geometry and Analysis. Mathematics: frontier and perspectives. Amer. Math.
23. Soc. Providence. RI. (2000) 353-401.
Current address: Department of Mathematics, Universidade Federal do Ceara-UFC, Campus do Pici, 60455-760 Fortaleza-CE Brazil
E-mail address: bessa@mat.ufc.br
E-mail address: ljorge@mat.ufc.br
E-mail address: fabio@mat.ufc.br