Research Article

Research on EMC Optimization of Wireless Electric Field Sensor for Rail Vehicle

Xueming Liu,1 Ping Sun,2 Ta Zhao,2 Gang Song,2 Caixin Fu,2 Weiping Liu,2 and Tewabe Chekole Workneh4

1School of Electrical Engineering, Southwest Jiaotong University, Chengdu Sichuan 611756, China
2Technology-oriented R&D Department of National Engineering Research Center for Railway Vehicle, CRRC Changchun Railway Vehicle Co., Ltd., Changchun, Jilin 130113, China
3College of Instrumentation & Electrical Engineering, Jilin University, Changchun, Jilin 130061, China
4Admas University, Addis Ababa, Ethiopia

Correspondence should be addressed to Tewabe Chekole Workneh; tewabe.chekole@amu.edu.et

Received 14 December 2021; Revised 23 March 2022; Accepted 28 March 2022; Published 11 April 2022

Academic Editor: Paulo Jorge Sequeira Gonçalves

Copyright © 2022 Xueming Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to improve the electromagnetic compatibility of railway vehicle wireless electric field sensor, a research on electromagnetic compatibility optimization of railway vehicle wireless electric field sensor is proposed. The results show that the optimized RF radiation energy is greatly reduced from 60 to 20, which is completely lower than the standard limit of radiation disturbance, and meets the requirements of EMC design of electronic products. The feasibility and effectiveness of the optimal design are proved. The experimental results show that the test results meet the requirements of general technical conditions of electromagnetic compatibility of speed sensor, which indicates that the electromagnetic compatibility design proposed can be popularized and applied.

1. Introduction

As an important support of the “sensing layer”, under various test conditions, especially the electromagnetic compatibility and environmental adaptability test, the accuracy of its induced signal and data transmission in the electromagnetic environment with interference and harsh installation and use environment has become an important link in sensor detection [1]. In other words, the input and output technical data and data transmission of various sensors are the important content of truly and effectively evaluating the qualification of sensors [2]. The electromagnetic compatibility of the sensor refers to the adaptability of the sensor in the electromagnetic environment, the ability to maintain its inherent performance and complete the specified functions [3]. At present, many researches on the electromagnetic compatibility performance of traditional railway track have been relatively mature and comprehensive, and the relevant standards are becoming more and more mature. In terms of electromagnetic compatibility of high-speed railway track vehicle system, although some relevant standards and regulations have been issued, they are still in the stage of finding and solving problems in engineering application [4]. Therefore, we should deeply understand the existing electromagnetic environment of high-speed railway rolling stock system, conduct qualitative and quantitative analysis on the electromagnetic interference between subsystems and equipment within subsystems, and consider the electromagnetic compatibility performance of the system at the beginning of system design [5]. Figure 1 shows the electromagnetic environment framework of high-speed railway rolling stock system.

In this paper, a chaotic neural network (CHNN) optimization algorithm is proposed to solve the problem of electromagnetic compatibility of speed sensor, and the test results of electromagnetic compatibility are given. Practice shows
that this algorithm can effectively reduce the peak point of sensor RF energy, weaken its radiation influence, and reduce the radiation range and the effect is satisfactory.

2. Literature Review

Many scholars have done relevant research on the electromagnetic compatibility of sensors. They mainly studied the electromagnetic compatibility of photoelectric sensor and improved the suppression of interference source, the design of circuit board, and the coding mode. Ji et al. studied the electromagnetic compatibility of pressure sensor, which adopts a multilayer shielded circuit board, and high-precision components are also selected in components. In addition, it also processes the high-frequency ground in the circuit [6]. Berka et al. studied the piezoelectric carbon sensor, flexibly applied the transmission line theory, and obtained the relevant processing results of electromagnetic shielding efficiency [7]. Kosarev et al. studied the aircraft engine speed sensor. Through its flexible use of inductive coupling, they came to the conclusion that the high current coil will generate induced voltage on the adjacent road [8]. Davoudabadifarahani et al. studied the electromagnetic compatibility of displacement sensor. They believe that the random switching noise is the product of analog comparison circuit, so the displacement sensor has high requirements for anti-interference signal [9]. Liang and others have studied the wireless sensor. They mainly carry out simulation analysis with the help of simulation software. With the help of their simulation results, we can avoid many problems in the design of wireless sensor. Nowadays, there are few studies on the electromagnetic compatibility of EMU speed sensors. At present, there is also research on CRH2 EMU speed sensor [10]. Ovchinnikov et al. studied the protective grounding mode and installation mode of CRH2 EMU and considered that the change of pantograph catenary relationship will lead to offline pantograph catenary, lifting pantograph, etc., which will lead to the overvoltage of the vehicle body, which can reach kV, which may eventually lead to the breakdown and damage of the capacitance connected in series between the sensor shielding layer and the vehicle body, so the service life of the speed sensor will be reduced [11]. Wang et al. mainly studied the protective grounding mode. They believe that the surge pulse group will be generated during pantograph lifting and lowering. Once the insulation performance of the speed sensor is reduced to a certain extent, the signal line and power line will produce surge pulses. Under the propagation of the conductor, the interior of the monitoring system will also be affected by the surge pulse group [12]. Cai et al. believe that the development of foreign electric vehicles has been decades of history and automobile technology is relatively mature and has made some achievements. The main performance is as follows: There are effective electromagnetic compatibility testing, management, and certification institutions for the whole vehicle and parts; high-precision automotive EMC testing system; and professional electromagnetic simulation design software is being developed. Third-party testing and certification institutions have also established electromagnetic compatibility laboratories to actively carry out electromagnetic compatibility research of electric vehicles, and various technical indicators including electromagnetic compatibility disturbance suppression and anti-interference technology are relatively advanced [13].

3. Research Methods

3.1. Electromagnetic Compatibility Test Standard for Railway Vehicle Speed Radio Field Sensor. The test shall be conducted in two directions of vertical polarization and horizontal polarization of transmitting antenna [14]. The transmitting antenna shall test the four faces of the sensor, respectively. When the sensor can be placed in different directions, the test surface is increased to six. Relevant parameters of

Figure 1: Electromagnetic environment diagram of high-speed railway rolling stock system.
electromagnetic compatibility test items of speed sensor include the following:

1. Test items: RF electromagnetic field radiation immunity test
2. Severity level: level 3, and the corresponding interference source intensity is 10 V/M
3. Frequency range: 80–1000 MHz
4. Qualification judgment basis: During the test, the sensor shall work normally under the rated voltage, and the change of sensor signal output shall not exceed 2%

3.2. RF Emission Theory of Track Speed Sensor. For most systems, RF energy is generated by the current flowing between devices and between the signal source and the 0 V reference voltage [15]. RF radiation can be described by a small loop antenna carrying RF current. The radiation principle belongs to differential mode radiation, as shown in Figure 2.

For most PCBs containing transmission lines, the loop size has radiation energy corresponding to the range up to megahertz [16].

The maximum loop area not exceeding the specific specification level is shown in Formula (1), and the area is represented by A:

$$A = \frac{380rE f^2 I_s}{1}, \quad (1)$$

where r is the distance between the transmitting loop and the receiving antenna, m; E is the radiation limit, μV/m; f is the frequency, MHz; and I_s is the current, mA.

The maximum field strength formula established in a closed-loop boundary region obtained from Formula (1) is shown below:

$$E = Af^2 I_s/380r. \quad (2)$$

Obviously, in free space, the radiation energy is inversely proportional to the distance between the signal source and the receiving antenna; inside the PCB, you should also know the total area of a loop between the signal source and the return path. These equations must be solved for each loop and each specific frequency, with a large amount of calculation, and the optimal solution needs to be sought with the help of intelligent optimization algorithm [17, 18].

3.3. Chaotic Neural Network Optimization Algorithm. The basic idea of chaos optimization method is to apply the characteristics of the universality, randomness, and regularity of chaos to the specific optimization search. It has a series of advantages, such as easy to jump out of the local optimal solution to reach the global optimal solution, high search efficiency, and low requirements for optimization conditions. Therefore, if the neural network and chaos algorithm can be organically combined, a new chaotic neural network can be obtained, which has the ability to deal with complex problems often encountered in the optimization design of electrical appliances, such as local minimum, multi-optimization variables, and energy function [19, 20].

3.3.1. Optimization Idea of Chaotic Neural Network (CHNN). (1) The chaotic neural network based on the solution of the inverse problem of electric field adopts the optimization method of parallel search of multiple variables to be optimized. (2) The chaotic neural network adopts the feedback network mode so that each neuron can affect the optimization process of other neurons according to its own optimization trend. In this way, the weights of the chaotic neural network can be modified in real time, parallel, and in a full range, so as to effectively deal with the problems to be optimized [21, 22].

3.3.2. Iterative Block Diagram. The specific steps of chaos optimization method are shown in Figure 3.

The convergence criterion in Figure 3 is as follows: If the energy value of the energy function does not change in neighborhood P_k and there is always $P_k \leq P_{k+1}$ after M cycles, it is determined that the optimal solution is in this neighborhood, that is, when $(F_{k+1} - F_k) \leq \delta$ and $P_k \leq P_{k+1}$, (F_{k+1}, F_k) are the energy function after $K+1$ and K iterations, respectively, δ is a minimal positive value.

3.3.3. Algorithm Comparison Between Chaotic Neural Network (CHNN) and Traditional Neural Network (HNN). In order to verify the correctness and effectiveness of CHNN algorithm, a multivariable function of Formula (3) is used for test:

$$F(x) = \frac{\pi}{n} \left\{ 10 \sin^2(\pi x_1) + \sum_{i=1}^{n-1} [(x_i - 1)^2 (1 + \sin^2(\pi x_{i+1})) + (x_n - 1)^2] \right\}. \quad (3)$$

Because this test function is a multidimensional space function with many extreme points, the optimization
performance of CHNN can be fully investigated. In Formula (3), when \(n \) takes 5, the number of extreme points of the function is about \(10^5 \), the global optimal value is 0.0, and the corresponding global optimal value is \(x_i = 1 \) (\(i = 1, 2, \ldots, 5 \)). The comparison of CHNN and HNN optimization results is shown in Figure 4.

4. Result Discussion

The speed sensor needs a high-speed device similar to the wheel to collect the speed signal in real time. High-speed rotating motor is an option, but the spindle size of the motor is too small, which requires complex adjustment when loading samples, and positioning is very difficult. According to the observation, the high-speed rotating grinding wheel driven by the motor is very close to the wheel from shape to speed, and it has a large disk surface, which is very simple for the sensor three-axis positioning. Considering the steadiness of motor speed, the difference of sensor, and the speed monitoring magnitude in different application occasions, the inverter is specially installed to adjust the motor speed, in order to meet the test purpose of speed requirements within a certain range [23].

4.1. Establishment of Test Model. The high-speed rotating motor can be an option, but the size of motor spindle is too small, complex adjustment is required during sample clamping, and positioning is very difficult. According to the observation, the high-speed rotating grinding wheel driven by the motor has a large disk surface, which is very simple for the three-axis positioning of the sensor [24]. Considering the fixity of motor speed and the difference of sensor and monitoring speed in different applications, a frequency converter is specially installed to adjust the motor speed in order to meet the speed requirements in a certain range. The test model of radio field sensor for rail vehicle is shown in Figure 5.

4.2. Comparison of Test Results Before and After Optimization. Figures 6 and 7 are the quasi-peak test curves of radiation disturbance of ordinary vehicle speed sensor before structural optimization. Among them, Figure 6 shows the horizontal polarization test results of electromagnetic radiation, and Figure 7 shows the vertical polarization test results of electromagnetic radiation (when alternating voltage generates alternating current through network conductor, electromagnetic wave is generated, and E field and H field are orthogonal to each other and propagate at the same time). In the figure, the abscissa represents the test frequency (MHz), the ordinate represents the electric field intensity E (V · m⁻¹), and the curve represents the actual test value [25].
The results of electromagnetic polarization perpendicular to the vehicle speed sensor are optimized. By comparison, it is not difficult to find that the optimized RF radiation energy is greatly reduced, completely lower than the standard limit of radiation harassment, and meet the requirements of electromagnetic compatibility design of electronic products.

Figure 8 shows the test results of electromagnetic radiation vertical polarization of the optimized vehicle speed sensor. By comparing with Figure 7, it is not difficult to find that the optimized RF radiation energy is greatly weakened from 60 to 20, which is completely lower than the standard limit of radiation disturbance and meets the requirements of EMC design of electronic products [26].

The electromagnetic compatibility of speed sensor is very important because it is a common monitoring and control component in transportation vehicles. The electromagnetic compatibility design scheme of a velocity sensor is

Figure 5: Test model of radio field sensor for rail vehicle.

Figure 6: Horizontal polarization test curve of vehicle speed sensor before optimization.

Figure 7: Vertical polarization test curve of vehicle speed sensor before optimization.

Figure 8: Vertical polarization test curve of optimized vehicle speed sensor.
proposed, and the optimal solution of structure design is sought by simulated annealing algorithm, which provides the theoretical basis for the scheme. The E field and H field distribution of the sensor before and after the improvement are simulated and compared. The improved sensor will be sent to the entry-exit Inspection and Quarantine Bureau for GB/T17626.3 (IEC61000-4-3) standard electromagnetic compatibility test. Experimental results show that the electromagnetic compatibility design can significantly reduce the intensity of radiation disturbance, indicating that the proposed scheme is correct, effective, and satisfactory.

5. Conclusion

With the development of high-speed railway in China, EMC has been paid more and more attention. Aiming at the large number of interference sources and disturbed equipment, different electromagnetic characteristics, and complex coupling ways of high-speed railway vehicle system, a chaotic neural network EMC optimization design algorithm is proposed. As an important branch of sensor, speed sensor is widely used in automobiles, trains, ships, and other vehicles and is one of the important control components to ensure the stable operation of the whole machine. In recent years, with the development of speed sensors towards networking, intelligence, and miniaturization, higher requirements are put forward for their ability to resist electromagnetic disturbance. Therefore, it is of long-term and important practical significance to study the electromagnetic compatibility optimization design of new speed sensors.

Electromagnetic compatibility has become the key problem of electric vehicle technology. In view of this problem, researchers at home and abroad have done a lot of research and obtained a lot of valuable research results, forming a relatively perfect research system of automotive electromagnetic compatibility. In addition, the establishment of electromagnetic compatibility professional testing and certification institutions, as well as the development of professional electromagnetic simulation software, provides convenience for electromagnetic compatibility research, reduces the cost of electric vehicles in the development stage, and can more effectively promote the research and development of electric vehicles.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by the National Key Research and Development Program of China under grant no. 2016YFF0201204.

References

[1] H. Yang, G. Qing, Y. Chen, and H. Zhao, “Optimization of coil width and magnetic field switching speed for non-contacted electromagnetic flowmeter,” IEEE Sensors Journal, vol. 20, no. 10, pp. 5329–5335, 2020.
[2] R. C. Mahajan, V. Vyas, and M. Sutaone, “Performance prediction of electromagnetic band gap structure for microstrip antenna using FDTD-PBC unit cell analysis and Taguchi's multi-objective optimization method,” Microelectronic Engineering, vol. 219, no. Jan., p. 111156, 2020.
[3] W. A. If, J. P. Hugonin, C. Sauvan, M. Besbes, and A. Bosseboeuf, “Electromagnetic analysis for optical coherence tomography based through silicon vias metrology,” Applied Optics, vol. 58, no. 27, pp. 7472–7488, 2019.
[4] Q. Mao, "Improvement on sound transmission loss through a double-plate structure by using electromagnetic shunt damper," Applied Acoustics, vol. 158, p. 107075, 2020.
[5] M. Alian and H. Oraizi, “Electromagnetic scattering from an arbitrarily shaped pec object coated by spherical dielectric material using equivalence principle algorithm,” Engineering Analysis with Boundary Elements, vol. 111, pp. 178–185, 2020.
[6] Z. A. Ji, L. B. Dan, X. A. Yun, and C. Ya, "A novel approach to prepare polyaniline/polypyrrole@cu-btc/nh2-mil-101(fc) MOFs for electromagnetic wave absorption," Ceramics International, vol. 46, no. 12, pp. 19758–19766, 2020.
[7] M. Berka, H. A. Azzeddine, A. Bendaudoi, Z. Mahdjoub, and A. Y. Rouabhi, “Dual-band bandpass filter based on electromagnetic coupling of twin square metamaterial resonators (SRRs) and complementary resonator (CSR) for wireless communications,” Journal of Electronic Materials, vol. 50, no. 8, pp. 4887–4895, 2021.
[8] A. B. Kosarev and B. I. Kosarev, “Electromagnetic effect of an alternating current traction power supply system with a high-voltage power cord on electrical installations and networks of nontraction consumers,” Russian Electrical Engineering, vol. 91, no. 2, pp. 128–134, 2020.
[9] H. Davoudabadifarahan and B. Ghalamkari, "Analytical solution of electromagnetic scattering by PEMC strip embedded in chiral medium," Engineering Analysis with Boundary Elements, vol. 113, no. Apr., pp. 1–8, 2020.
[10] L. Zhou, J. Yu, Z. Wang et al., “Electromagnetic and microwave absorption properties of FeSiAl and flaky graphite filled Al2O3 composites with different FeSiAl particle size,” Ceramics International, vol. 46, no. 4, pp. 4329–4334, 2020.
[11] V. F. Ovchinnikov, M. Y. Nikolaev, V. N. Litvinov, and D. V. Kapitanov, "Identification of the structural deviations impacting the dynamics of a flexible multishpan rotor on full electromagnetic suspension," Applied Computational Electromagnetics Society Journal, vol. 34, no. 4, pp. 528–534, 2019.
[12] Y. Wang, S. Yan, X. Li, X. Liu, and T. D. Visser, "Fraunhofer diffraction and the state of polarization of partially coherent electromagnetic beams,” Optics Letters, vol. 44, no. 13, pp. 3330–3333, 2019.
[13] Y. Cai, N. Wang, L. Cheng, X. Yin, and X. Fan, "Electrical conductivity and electromagnetic shielding properties of Ti/SiC/SiC functionally graded materials prepared by positioning impregnation,” Journal of the European Ceramic Society, vol. 39, no. 13, pp. 3643–3650, 2019.
[14] X. Chen, R. Chen, and T. Deng, "An investigation on lateral and torsional coupled vibrations of high power density PMSM
rotor caused by electromagnetic excitation,” *Nonlinear Dynamics*, vol. 99, no. 3, pp. 1975–1988, 2020.

[15] N. B. Hung and O. Lim, “Improvement of electromagnetic force and dynamic response of a solenoid injector based on the effects of key parameters,” *International Journal of Automotive Technology*, vol. 20, no. 5, pp. 949–960, 2019.

[16] C. Yong, "Neutron diffraction analysis and electromagnetic properties of ultrasonic wet-magnetic separated Ni x Zn 1x Fe 2 o 4 nano-powders,” *Electronic Materials Letters*, vol. 15, no. 1, pp. 80–83, 2019.

[17] A. H. Jabbari and M. Sedighi, “Investigation of electromagnetic and mechanical stirring sequence effects on production of magnesium matrix nanocomposite,” *International Journal of Metalcasting*, vol. 14, no. 2, pp. 489–504, 2019.

[18] C. Liang, H. Xiang, X. Yuan et al., "Determination method of optimal trigger position for induction coil launcher based on the reverse point of electromagnetic force on armature," *IEEE Transactions on Plasma Science*, vol. 47, no. 9, pp. 4415–4421, 2019.

[19] Y. Sun, K. Meng, S. Yuan et al., "Modeling electromagnetic force and axial-stiffness for an electromagnetic negative-stiffness spring toward vibration isolation," *IEEE Transactions on Magnetics*, vol. 55, no. 3, pp. 1–10, 2019.

[20] C. Yu, X. Liang, T. Zhao et al., "Synthesis and electromagnetic shielding performance of nickel nanowires with controllable morphology," *Materials Letters*, vol. 236, no. FEB.1, pp. 112–115, 2019.

[21] D. Xu, N. Wu, K. Le, F. Wang, and J. Liu, "Bimetal oxide-derived flower-like heterogeneous co/mno@c composites with synergistic magnetic–dielectric attenuation for electromagnetic wave absorption," *Journal of Materials Chemistry C*, vol. 8, no. 7, pp. 2451–2459, 2020.

[22] S. Yong, V. Khilkevich, Y. Liu et al., "Dielectric loss tangent extraction using modal measurements and 2-d cross-sectional analysis for multilayer PCBs," *IEEE Transactions on Electromagnetic Compatibility*, vol. 62, no. 4, pp. 1278–1292, 2020.

[23] C. Pouant, F. Torres, A. Reineix, P. Hoffmann, J. Raoult, and L. Chusseau, "Modeling and analysis of large-signal RFI effects in MOS transistors," *IEEE Transactions on Electromagnetic Compatibility*, vol. 61, no. 1, pp. 111–120, 2019.

[24] A. Sharma, G. Rathee, R. Kumar et al., "A secure, energy- and SLA-efficient (SESE) e-healthcare framework for quickest data transmission using cyber-physical system," *Sensors*, vol. 19, no. 9, p. 2119, 2019.

[25] A. Sharma and R. Kumar, "Risk-energy aware service level agreement assessment for computing quickest path in computer networks," *International Journal of Reliability and Safety*, vol. 13, no. 1/2, p. 96, 2019.

[26] A. Sharma and R. Kumar, "A constrained framework for context-aware remote e-healthcare (care) services," *Transactions on Emerging Telecommunications Technologies*, no. article e3649, 2019.