I. INTRODUCTION

Dewetting is the spontaneous, reverse process of wetting of a liquid spreading on a solid surface [1, 2]. This phenomenon can be observed in everyday life, for example, when pouring oil on a cooking pan, covering a glass surface with a water film, or when a tear film wets our eyes [3, 4]. Controlling the dewetting dynamics is key to several industrial applications, including printable photovoltaics [5–7], or lubrication and coating processes [8–10]. In general, dewetting dynamics takes place when a thin liquid film, in contact with a partially wettable surface, ruptures into droplets. In the language of thermodynamics, the film reaches its equilibrium droplet shape because the latter is energetically favorable with respect to the flat interface [11, 12, 13].

Dewetting can happen because of intrinsic or extrinsic rupture mechanisms. Extrinsic mechanisms include rupture due to surface heterogeneities or the presence of impurities on the surface [14, 15]. These extrinsic mechanisms are opposed to intrinsic, spinodal dewetting ones. Spinodal dewetting occurs in extremely thin liquid films that break up spontaneously due to interface perturbations or thermal fluctuations [16, 17]. Several experimental works studied the evolution of thin films on horizontal partially-wettable surfaces [18–20], chemically structured walls [21], films with toroidal shape [22] or surrounded by a second viscous phase [23]. Pulsed-laser-induced dewetting of metal alloys has also been investigated [24–26]. The most popular model to describe dewetting phenomena is the celebrated TFE [14], which describes the space-time evolution of the film height profile \(h(x, t) \). In its most simplified form for the deterministic case (i.e., excluding thermal fluctuations) and no-slip boundary conditions, the TFE reads [27–30]:

\[
\frac{\partial h(x,t)}{\partial t} = - \frac{1}{3\mu} \nabla \cdot \left[h(x,t)^3 \nabla \left(\Pi(h) + \gamma \nabla^2 h(x,t) \right) \right],
\]

(1)

where \(\mu \) is the dynamic viscosity of the film, \(\gamma \) its surface tension, and \(\Pi(h) \) the disjoining pressure. The disjoining pressure describes the presence of interactions between the fluid and the solid surface, therefore incorporating information on the wetting properties, and is usually expressed in terms of the equilibrium contact angle \(\theta_{eq} \). The lubrication approximation [31], which underpins Eq. (1), assumes the ratio between the characteristic film height \(h \) and length \(L \) to be very small (i.e., \(\epsilon = h/L \ll 1 \)). Furthermore, Eq. (1) is valid under the assumptions of negligible inertial effects (implying a small Reynolds number) and small contact angles due to the inevitable presence, in the theoretical description, of a precursor film. Numerical solutions of the TFE have been obtained using various approaches including contact line solutions [32–34], gradient dynamics models [35–37], as well as LB-based methods [24–26], by allowing to observe the dynamics of \(h(x,t) \) within the TFE limits. Other numerical methods have been employed to go beyond the lubrication approximation, including phase-field approaches [38, 39], single-phase LB models [40–42], and volume-of-fluid methods [43, 44]. These approaches take into account inertial effects and control the wettability condition by selecting an equilibrium contact angle rather than introducing a disjoining pressure.

However, a comprehensive investigation of thin-film rupture in a wide range of film height, surface tension,
and contact angles that can overcome the limitations of the TFE is still missing. Here, we perform multi-component LB simulations of the thin-film rupture and subsequent dewetting process as sketched in Fig. 1. This model distinctly handles the dynamics of the liquid film and the surrounding fluid, allowing us to explore a large number of different physical situations. Indeed, we systematically explore a wide range of parameters, reaching equilibrium contact angles close to 180°. As we will show, the predictions of the TFE in terms of the power spectrum of the film height are in surprisingly good agreement with our simulations for contact angles as high as 130°, and deviations from the TFE prediction are observed from a film thickness \(\epsilon \) larger than 3.5 \times 10^{-3}.

II. METHOD

LB simulations \cite{51, 52} solve the Boltzmann transport equation on a lattice. In the long-wavelength limit, Navier-Stokes equations emerge from it as described by the Chapman-Enskog expansion of the discretized Boltzmann equation. We perform simulations of a binary mixture with components labeled A and B. The mesoscopic dynamics of each fluid component \(\sigma = A, B \) is described in terms of the probability distribution functions \(f^i_\sigma(x, t) \) of finding a fluid particle in a specific discrete lattice node \(x \) and a discrete instant time \(t \). The index \(i \) refers to a set of discrete velocities \(c^i \), which allow the propagation of \(f^i_\sigma \) on the lattice. Here, we employ a D3Q19 lattice, i.e., a set of 19 velocity vectors \(i = 0, \ldots, 18 \) on each node of a three-dimensional lattice. Because of the symmetry of the problem, we simulate a quasi-two dimensional system by restricting one dimension of the problem \(z \) to two lattice units. In the LB method, the dynamics of the \(f^i_\sigma \) follows the discretized Boltzmann transport equation \cite{51, 52}

\[
f^i_\sigma(x + c^i, t + 1) - f^i_\sigma(x, t) = -\frac{1}{\tau} \left[f^i_\sigma(x, t) - f^{i,(eq)}_\sigma(x, t) \right].
\]

(2)

For the sake of simplicity, in Eq. (2) and hereafter, we fix the lattice spacing \(\Delta x \) and the time step \(\Delta t \) to one. The left-hand side of Eq. (2) rules the streaming of \(f^i_\sigma \) on the lattice, while the right-hand side represents the collision term. This operator models the relaxation of \(f^i_\sigma \) towards the discretized local Maxwellian distribution \(f^{i,(eq)}_\sigma(x, t) \) with a relaxation time scale \(\tau \). The explicit shape of \(f^{i,(eq)}_\sigma(x, t) \) is given by \cite{51} (repeated indices are summed up)

\[
f^{i,(eq)}_\sigma(x, t) = \rho_i \rho_\sigma \left[\frac{1}{c_s^2} + \frac{u_{k,\sigma} u_{j,\sigma} (c_k^i c_j^i - c_s^2 \delta_{kj})}{2c_s^2} \right],
\]

(3)

where \(c_s = 1/\sqrt{3} \) is the speed of sound and \(w_i \) are lattice-dependent weights, which, for the D3Q19 lattice, are \(w_i = 1/3 \) for \(i = 0 \), \(w_i = 1/18 \) for \(i = 1 \ldots 6 \), \(w_i = 1/36 \) for \(i = 7 \ldots 18 \), respectively. The fluid component densities \(\rho_\sigma \), the total density \(\rho \) and the momentum \(\rho u \) can be computed from the populations as \(\rho_\sigma = \sum_i f^i_\sigma(x, t) \), \(\rho = \sum_\sigma \rho_\sigma \) and \(\rho u(x, t) = \sum_\sigma \rho_\sigma c^i f^i_\sigma(x, t) \), while the dynamic viscosity \(\mu \) follows the LB relation \(\mu = \rho u c_s^2 (\tau - 1/2) \).

In order to observe phase separation between the two components, it is necessary to include fluid-fluid interactions \cite{53}. We employ the model proposed by Shan and Chen (SC) \cite{54, 55}, where a force \(F_\sigma(x, t) \) acts on component \(\sigma \), entering implicitly in Eq. (3) through a shift in the definition of the momentum:

\[
u_\sigma(x, t) = u(x, t) + \frac{\tau F_\sigma(x, t)}{\rho_\sigma}.
\]

(4)

The term \(F_\sigma(x, t) \) contains both fluid-fluid as well as wall-fluid interactions. In the SC model, the fluid-fluid interaction term \(F^{ff}_\sigma \) takes the form

\[
F^{ff}_\sigma(x, t) = -G_{AB} \psi_\sigma(x, t) \sum_i w_i \psi_{\sigma'}(x + c^i, t) c^i.
\]

(5)

where \(\sigma \) and \(\sigma' \) (with \(\sigma \neq \sigma' \)) denote the two components and \(G_{AB} > 0 \) tunes the (repulsive) interaction strength.

FIG. 1. Sketch of the physical problem: the dewetting process takes place, causing the rupture of the thin liquid film (component A) and the transition to a droplet shape with a final contact angle \(\theta_{eq} \). Periodic boundary conditions are applied along the x-direction.
Here, the so-called pseudopotential $\psi_\sigma(x, t)$ coincides with the fluid-component density $\rho_\sigma(x, t)$. Notice that the implementation of the SC-LB yields a diffuse interface between fluid components with thickness ω_{int}.

We introduce the wall-fluid interaction following the approach of Huang and coworkers [56]. We define the pseudo-potential for the solid wall as

$$s(x) = \begin{cases} 1 & x \in \text{wall} \\ 0 & x \in \text{fluid}, \end{cases} \quad (6)$$

and, as a consequence, we can write the wall-fluid interactions as

$$F_{\sigma f}^w(x, t) = -G_{w\sigma} \psi_\sigma \sum_i w_i s(x + c^i) c^i. \quad (7)$$

Eq. 7 can model either a repulsive ($G_{w\sigma} > 0$) or an attractive ($G_{w\sigma} < 0$) interaction. To prevent spurious forces generated by the presence of a strong gradient of the components A and B, we set the value of ψ_σ in each wall node to that of the opposite fluid node.

The simulation box is periodic in the x- and z-directions, while the fluid is enclosed between two walls along the (vertical) y-direction. A half-node bounce-back rule implements second-order no-slip boundary conditions at the walls [51]. Hereafter we refer to the liquid film as the A component, and we report all quantities in lattice units (lbu).

We choose the following set of parameters and initial conditions to study the film rupture: the initial film profile along y for fluid A is a step function of width h_0 in the range from 6 to 13 lbu, which drops from $\rho_A = 1$ (for $y \leq h_0$) to $\rho_A = 0.027$ (for $y > h_0$). Conversely, the density of fluid B raises from $\rho_B = 0.027$ (for $y \leq h_0$) to $\rho_B = 1$ (for $y > h_0$). This choice of density values sets a viscosity ratio $\mu_A/\mu_B = 1$, with τ being kept fixed to 1 in all simulations. The interaction parameter G_{AB} ranges from 1.4 (the minimum value ensuring phase separation) to 1.7, above which the film is always stable and does not rupture. The range of G_{AB} is directly related to the choice of ρ_A and ρ_B, as highlighted by the corresponding phase-separation diagram (see Supplementary Material, Fig. S1(a)). In the absence of the wall, these values of G_{AB} lead to interfacial widths in the range from 2 to 4 lbu (see Supplementary Material, Fig. S1(b)). To ensure the stability of the simulation, we use wall-fluid interaction parameters G_{WA} and G_{WB} in the range from -0.4 to 0.4. G_{AB} is directly related to the surface tension γ [54], which can be measured via Laplace experiments (see Supplementary Material, Fig. S1(b)). The definition of the wall-fluid interactions in Eq. 7 suggests that G_{WA} and G_{WB} are related to the wall-fluid interfacial tensions γ_{WA} and γ_{WB}, which, however, cannot be measured directly. Instead, for a given value of γ, their difference $\Delta G_W = G_{WB} - G_{WA}$ tunes the value of the equilibrium contact angle θ_{eq}. The latter is expected to be proportional to ΔG_W, as observed by Huang and coworkers [59]. Hereafter, all dimensional quantities will be reported in lattice Boltzmann units (lbu). All simulations are performed on a domain of size $L = 2048$ lbu along the x-direction and $H = 256$ lbu along the vertical y-direction.

To validate our implementation of the pseudopotential lattice Boltzmann model by Shan and Chen, we perform simulations of the wetting/spreading dynamics of a liquid droplet on a flat wall. We measure the contact angle as a function of the wall-fluid interaction parameters G_{WA} and G_{WB}, recovering the estimates reported by Sukop and coworkers [58]. In addition, we study the

![FIG. 3. Stability diagram of thin liquid films as a function of initial nominal height h_0 and fluid-fluid interaction strength G_{AB}. The corresponding values of $\epsilon = h_0/L$ and the surface tension γ, respectively, are also shown. Three main regions are observed: (1) stability region (pentagons), (2) conditional stability region (triangles), and mixing region (circles). All dimensional quantities are reported in lbu. Further details can be found in the text.](image-url)

![FIG. 2. Time evolution of the droplet contact area radius r, rescaled by the droplet initial radius R, as a function of the time, rescaled by the characteristic wetting time $t_c = (\rho R^2/\gamma)^{1/2}$. Different values of R and contact angle θ are represented with different symbols and colors, respectively. The inset shows the agreement with experimental data [57] corresponding to $\theta = 43^\circ$.](image-url)
the characteristic wetting time \(t_c = (\rho R^3/\gamma)^{1/2} \) and \(r(t) \) to the initial value. Here, \(\rho \) is the density of the liquid droplet. This result underlines that the wetting dynamics depends only on the fluid-wall interactions and not on \(R \). Fig. 2 shows our SC-LB results, further confirming the validity of our implementation.

III. RESULTS AND DISCUSSION

We simulate the dewetting dynamics of a thin liquid film placed on a flat wall and the resulting film rupture (see Fig. [1]) in the following way: we start with a uniform film of initial, nominal height \(h_0 \); we perform a dedicated simulation run to relax this initial condition: due to the diffuse nature of the SC-LB interface, the film height quickly reaches the equilibrium initial (i.e., before the perturbation) height \(h_{\text{initial}} \); calculated as the distance from the wall at which the density \(\rho_A(y) \) reaches a threshold density \(\rho_{\text{th}} \) set to half of its maximum value. Notice that in the absence of perturbations, because of the enforced translational invariance, the system is always stable and can reach the equilibrium density distribution along the normal direction without breaking. After this relaxation stage, we perturb the film with a random perturbation of its density in its interfacial region with width \(w_{\text{int}} \). The perturbed density then reads

\[
\rho_A'(x,t) = \rho_A(x,t)[1 + P\beta] \quad x \in w_{\text{int}},
\]

where the perturbation amplitude \(P = 10^{-3} \) and \(\beta \) is a random variable uniformly distributed in \([-1,1]\). In this way, the film height is also perturbed as \(h'(x,t) = h_{\text{initial}} + \delta h(x,t) \). We explicitly check that \(P \) is small enough and that the results do not depend on its actual value.

By considering all these ingredients together, we are ready to study the stability conditions for thin liquid films as a function of \(G_{AB} \) (i.e., the surface tension \(\gamma \)) and \(G_{WA} \) and \(G_{WB} \) (i.e., the fluid-wall interactions). We compute stability diagrams by checking the conditions under which the film is stable or ruptures after the initial perturbation. In Fig. [3] we show the stability diagram as a function of \(h_0 \) (and the corresponding ratio \(\epsilon = h_0/L \)) and \(G_{AB} \) (with the corresponding surface tension \(\gamma \)). We can distinguish three main regions: pentagons refer to a stable film under all fluid-wall interactions, triangles to conditional stability, for which at least one choice of the fluid-wall interactions triggers the film rupture, and circles for cases where the surface tension is not strong enough to preserve the phase separation. In the latter case, the two components (which would demix in the absence of the wall) start mixing.

The cases of conditional stability require to explore further the effect of the fluid-wall interactions. \(G_{WA} \) and \(G_{WB} \) affect the stability in a complex way due to the simultaneous influence of \(h_0 \) and \(G_{AB} \). In Figs. [4] and [5] we show the conditional stability region (and the equilibrium contact angle \(\theta_{eq} \) for the unstable cases) along two cuts. One cut is performed at variable \(h_0 \) and fixed \(G_{AB} = 1.5 \) (i.e., \(\gamma = 0.059 \) lbu) and the other one is performed at variable \(G_{AB} \) and fixed \(h_0 = 6 \) lbu. In all panels of Figs. [4] and [5] the white areas refer to the condition in which the film is stable upon perturbation.

An increase of \(h_0 \) at fixed \(G_{AB} \) and an increase of \(G_{AB} \) at fixed \(h_0 \) both result in overall improved stability of the film. The general trend does not come as unexpected. However, while \(G_{WA} \) and \(G_{WB} \) play a symmetric role in the determination of the contact angle, as already noticed by Sukop and coworkers \([50]\), this is not true anymore for the determination of the stability region. This result highlights the role played by each of the components in the dewetting dynamics: the best conditions to induce the transition are those for which the substrate repels one component (the film) while the other one is attracted by it. The TFE, which is valid for a single fluid only, turns out that the film stability depends only on the equilibrium contact angle \(\theta_{eq} \) (appearing in the definition of the disjoining pressure \([35]\)), that is, on \(\Delta G_W \). \([33, 34, 56]\).

Based on these considerations, SC-LB simulations appear to be useful for simulating dewetting dynamics by providing a much richer phenomenology. The importance of considering two components playing a role in the dewetting dynamics will also be confirmed later with the measurement of rupture times.

After clarifying these points, we are now in the condition to investigate the dewetting process at large contact angles and check the validity of the TFE beyond its original limits. This step has a fundamental importance in stressing the solid foundations as well as the strength of the implemented numerical method. The time-dependent structure factor of the height profile provides an insightful route to this aim. Starting from the perturbation growth \(\delta h(x,t) = h_{\text{initial}} - h(x,t) \) and its Fourier transform

\[
\delta \hat{h}(q,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \delta h(x,t)e^{-iqx} \, dx,
\]

one can define the structure factor (i.e., the power spectrum of the perturbation) as

\[
S(q,t) = |\delta \hat{h}(q,t)|^2,
\]

where \(q \) is the wave number. In Fig. [6] we show \(S(q,t) \) measured for three different heights \(h_0 = 6, 7 \) and 8 lbu and three different equilibrium contact angles \(\theta_{eq} \geq 90^\circ \), normalized to the initial value \(S(q,0) \). The reported values are the result of averages over about 100 independent runs, taken at three different times \(t_1, t_2 \) and \(t_3 \), with \(t_1 \) corresponding to an early time after the perturbation (but with \(t_1 \) large enough for \(S(q,t_1)/S(q,0) \) to
be appreciably different from 1), t_3 to a time near the rupture, and t_2 an intermediate time. These times are
different for each panel, and are reported in the Supplementary Material, Tab. S1. The structure factors $h_0 = 6$
lbu have the qualitative features expected from the TFE
as they show a maximum (defining the fastest growing
mode $q = q_0$) followed by a steep descent towards 1 in
$q = q_c$, the so-called critical growth mode. At values
larger than q_c the structure factor is smaller than one,
implying that the modes with $q > q_c$ decrease in amplit-
tude with time and are thus stable. Modes with $q < q_c$
grow indefinitely and are the unstable ones that lead to
the film rupture. For values of the contact angle smaller
than about 130°, $S(q,t)$ does not only agree qualitatively
with the prediction of the TFE, but also quantitatively.
The solid black lines reported in Fig. 6 show the pre-
diction of the deterministic TFE $S(q,t)/S(q,0) = e^{\omega(q)t}$,
where the dispersion relation $\omega(q)$ is given by [34]

$$
\omega(q) = \frac{\gamma h_0^4 \mu}{3} \left[2 \left(\frac{q}{q_0} \right)^2 - \left(\frac{q}{q_0} \right)^4 \right].
$$

(11)
Here, the fitting parameter h_{eff} is an effective initial film height, which does not precisely coincide with the value of h_{initial}. We remind that h_0 is the width of the initial step-like density distribution used to set up the simulation. This initial distribution relaxes in absence of perturbation to yield a diffuse interface whose half-maximum value is located at h_{initial}. The choice of half-maximum (rather than another value) is somewhat arbitrary. In fact, using an effective width h_{eff} is necessary to compare our diffuse-interface simulation results with the TFE’s sharp-interface ones. The values are reported in Tab. I where one can see that h_{eff} is systematically larger than h_{initial} in a range from 1 to 25%. The only free fitting parameter used here is the fastest-growing mode q_0, which is not directly modeled within the LB approach. In the deterministic TFE, q_0 takes the form

$$q_0 = \left[\frac{\partial \Pi}{\partial h_{\text{eff}}^2} \frac{1}{2\gamma} \right]^{1/2},$$

(12)

TABLE I. Values of the measured initial height h_{initial}, the effective height h_{eff} entering in Eq. (11) and the fastest-growing mode q_0 for data shown in top panels ($h_0 = 6, 7$ lbu) of Fig. 6.

h_0 (lbu)	θ_{eq} (°)	h_{initial} (lbu)	h_{eff} (lbu)	q_0 (lbu)
6	180	5.23	5.25	0.011
6	130	3.79	4.07	0.096
6	90	3.69	4.57	0.073
7	180	7.31	8.81	0.061
7	130	4.91	5.85	0.055
7	90	4.77	5.16	0.050

FIG. 6. Power spectra $S(q, t)$, normalised to the initial one $S(q, 0)$ for three instants of time (different colours/symbols), different h_0 and θ_{eq}. For cases with $h_0 \leq 7$ lbu, a comparison with the TFE predictions is also shown (solid black lines). Vertical dashed lines refer to the fastest (q_0) and critical ($q_c = \sqrt{2q_0}$) growing modes. All panels have the same q-range. The time values t_1, t_2 and t_3 are reported in the Supplementary Material.
showing that increasing the surface tension while keeping the fluid-wall interaction constant should lead to an increased film stability. The vertical dashed lines in Fig. 6 show the values of \(q_c \) and the critical growing mode \(q_e \) following the TFE predictions (\(q_e = q_0 \sqrt{2} \), with unstable modes being present for \(0 < q < q_e \)). The match is superior when both \(h_0 \) and \(\theta_{eq} \) are small (top-right panel of Fig. 6), as the assumptions underlining the TFE are more accurately satisfied. Even in these cases, however, there are low-\(q \) tails that are not well reproduced by the TFE. These tails could be the effect of the LB method’s finite (albeit low) compressibility, as seen from the condition \(S(q, t) > S(q, 0) \) for low values of \(q \), which implies an enlargement of the overall width of the film at time \(t \) > 0. When \(\theta_{eq} = 180^\circ \), the data depart from the TFE prediction that \(q_e = q_0 \sqrt{2} \). The agreement achieved for \(h_0 = 6 \) deteriorates at \(h_0 = 7 \) and it is completely lost at \(h_0 \geq 8 \) (that is, \(\epsilon > 3.5 \times 10^{-3} \)), where a more complex behavior emerges, which includes also a time dependency of \(q_e \) for \(\theta_{eq} = 180^\circ \).

The dewetting dynamics can be strikingly different even if the equilibrium contact angle is the same for two different fluid-wall interactions. In Fig. 7(a) we report the rupture time \(t_r \) as a function of the fluid-wall interactions for the selected case \(h_0 = 6 \) lbu and \(G_{AB} = 1.5 \) (i.e., \(\gamma = 0.059 \) lbu) (see Fig. 5 left panel). We define \(t_r \) as the time when the film density close to the wall becomes lower than the threshold \(\rho_{th} \) (half of the maximum density) at least at one lattice node. By comparing the left panel of Fig. 5 with Fig. 7(a), we note that fluid-wall interactions driving to the same \(\theta_{eq} \) lead to different rupture times. More in detail, we report in Fig. 7(c) \(t_r \) as a function of one of the two wall-fluid interaction strengths \(G_{WA} \) or \(G_{WB} \) for three different cuts of panel (a), namely: a diagonal cut (circles, \(G_{WA} = -G_{WB} \)); a vertical cut (triangles, \(G_{WB} = -0.4 \)); and, a horizontal cut (pentagons, \(G_{WA} = 0.4 \)). For all cases, \(t_r \) follows a behavior as a function of the wetting parameter (dotted lines in Fig. 7(c)) that we fit with an exponential function as a visual aid. The growth can be dramatically different depending on the wetting parameter, even when the equilibrium contact angle is the same, as shown in Fig. 7(b). The plateau observed in Fig. 7(b) for large contact angles is expected because as soon as the condition of super-hydrophobicity is reached, an increase of the fluid-wall interaction strength leaves the system unaltered. Furthermore, the measure of \(\theta_{eq} \) is affected by an error caused by the presence of the diffuse interface that explains the observed jump of \(\theta_{eq} \) next to the plateau. This picture confirms that the dynamics is not simply driven by \(\theta_{eq} \), but by a more complex combination of the two wall-fluid interactions. If the film is subject to a strong repulsion (\(G_{WA} = 0.4 \), the other component has a less prominent effect. On the contrary, if the other component is strongly attracted to the wall (\(G_{WB} = -0.4 \)), a slight variation in the film-wall interaction contributes to a substantial change in the rupture dynamics.

IV. CONCLUSIONS

We performed numerical simulations of the stability and rupture dynamics of liquid films on flat solid surfaces, immersed in a secondary fluid, using Shan-Chen multi-component lattice Boltzmann simulations. We characterized the stability conditions of the films in terms of initial film height, surface tension, and equilibrium contact angle, spanning a wide range of these parameters up
to full dewetting. The functional form of the structure factor provided by the TFE turns out to be valid also for the two-component system up to angles of 130°, as long as the film aspect ratio \(\epsilon = h/L \) is smaller than about \(3.5 \times 10^{-3} \). The latter is the actual value of the aspect ratio that yields consistent results with the lubrication theory limit. Our analysis of the stability and rupture times underlines the richness in the phenomenology brought in by the presence of two liquid components. Another essential factor to consider is the viscosity ratio of the fluids, which we did not vary in the present investigation, but which is likely to influence the breakup dynamics. This variety opens the possibility of tuning the dynamics of dewetting over a wide range of time scales by controlling the fluid-wall interaction of the two fluids separately.

SUPPLEMENTARY MATERIAL

Phase diagram, surface tension \(\gamma \), and interface width \(w_{\text{int}} \) as a function of \(G_{AB} \), and list of \(t_1, t_2, \) and \(t_3 \) used to sample the data presented in Fig. 6.

AUTHOR DECLARATIONS

The authors have no conflicts to disclose.

ACKNOWLEDGMENTS

This work has received financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 431791331 – SFB 1452. Furthermore, the authors acknowledge financial support by the DFG within the priority program SPP2171 “Dynamic Wetting of Flexible, Adaptive, and Switchable Substrates”, projects HA-4382/11-1 and SE-3019/1-1. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer JUWELS [58] at Jülich Supercomputing Centre (JSC).

DATA AVAILABILITY

The data that support the findings of this study are openly available in Zenodo at http://doi.org/10.5281/zenodo.6535952 reference number 6535952.

[1] P.-G. De Gennes, “Wetting: statics and dynamics,” Reviews of modern physics, vol. 57, no. 3, p. 827, 1985.
[2] A. Sharma and G. Reiter, “Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation,” Journal of Colloid and Interface Science, vol. 178, no. 2, pp. 383–399, 1996.
[3] R. V. Craster and O. K. Matar, “Dynamics and stability of thin liquid films,” Reviews of modern physics, vol. 81, no. 3, p. 1131, 2009.
[4] F. Leroy, F. Cheynis, Y. Almadori, S. Curiotto, M. Trautmann, J. Barbé, P. Müller, et al., “How to control solid state dewetting: A short review,” Surface Science Reports, vol. 71, no. 2, pp. 391–409, 2016.
[5] A. Nepomnyashchy, “Droplet on a liquid substrate: wetting, dewetting, dynamics, instabilities,” Current Opinion in Colloid & Interface Science, vol. 51, p. 101398, 2021.
[6] M. S. Bhamla, C. Chai, N. I. Rabiah, J. M. Frostad, and G. G. Fuller, “Instability and breakup of model tear films,” Investigative ophthalmology & visual science, vol. 57, no. 3, pp. 949–956, 2016.
[7] V. C. Suja, A. Verma, E. Mossige, K. Cui, V. Xia, Y. Zhang, D. Sinha, S. Joslin, and G. G. Fuller, “Dewetting characteristics of contact lenses coated with wetting agents,” Journal of Colloid and Interface Science, 2022.
[8] A. P. Robinson, I. Minev, I. M. Graz, and S. P. Lacour, “Microstructured silicone substrate for printable and stretchable metallic films,” Langmuir, vol. 27, no. 8, pp. 4279–4284, 2011.
[9] H. Ishihara, S. Sarang, Y.-C. Chen, O. Lin, P. Phumirat, L. Thung, J. Hernandez, S. Ghosh, and V. Tung, “Nature inspiring processing route toward high throughput production of perovskite photovoltaics,” Journal of Materials Chemistry A, vol. 4, no. 18, pp. 6899–6907, 2016.
[10] I. A. Howard, T. Abzieher, I. M. Hossain, H. Eggers, F. Schackmar, S. Kern, B. S. Richards, U. Lemmer, and U. W. Paetzold, “Coated and printed perovskites for photovoltaic applications,” Advanced Materials, vol. 31, no. 26, p. 1806702, 2019.
[11] M. Ma, Z. He, J. Yang, Q. Wang, F. Chen, K. Wang, Q. Zhang, H. Deng, and Q. Fu, “Vertical phase separation and liquid-liquid dewetting of thin ps/pcl blend films during spin coating,” Langmuir, vol. 27, no. 3, pp. 1056–1063, 2011.
[12] M. Habibi, M. Eslamian, F. Soltani-Kordshuli, and F. Zabihi, “Controlled wetting/dewetting through substrate vibration-assisted spray coating (svasc),” Journal of Coatings Technology and Research, vol. 13, no. 2, pp. 211–225, 2016.
[13] G. Barroso, Q. Li, R. K. Bordia, and G. Motz, “Polymeric and ceramic silicon-based coatings—a review,” Journal of materials chemistry A, vol. 7, no. 5, pp. 1936–1963, 2019.
[14] A. Oron, S. H. Davis, and S. G. Bankoff, “Long-scale evolution of thin liquid films,” Reviews of modern physics, vol. 69, no. 3, p. 931, 1997.
[15] E. Bertrand, T. Blake, and J. De Coninck, “Dynamics of dewetting,” Colloids and Surfaces A: Physicochemical
and Engineering Aspects, vol. 369, no. 1-3, pp. 141–147, 2010.

[16] L. Xue and Y. Han, “Pattern formation by dewetting of polymer thin film,” Progress in Polymer Science, vol. 36, no. 2, pp. 269–293, 2011.

[17] M. Youssef, T. Hucklel, G.-R. Yi, and S. Sacanna, “Shape-shifting colloids via stimulated dewetting,” Nature communications, vol. 7, no. 1, pp. 1–7, 2016.

[18] V. S. Mitlin, “Dewetting of solid surface: Analogy with spinodal decomposition,” Journal of colloid and interface science, vol. 156, no. 2, pp. 491–497, 1993.

[19] R. Fetzer, M. Rauscher, R. Seemann, K. Jacobs, and K. Mecke, “Thermal noise influences fluid flow in thin films during spinodal dewetting,” Physical Review Letters, vol. 99, no. 11, p. 114503, 2007.

[20] S. Zitz, A. Scagliarini, and J. Harting, “Lattice Boltzmann simulations of stochastic thin film dewetting,” Phys. Rev. E, vol. 104, p. 034801, Sep 2021.

[21] R. Seemann, S. Herminghaus, and K. Jacobs, “Gaining control of pattern formation of dewetting liquid films,” Journal of Physics: Condensed Matter, vol. 13, no. 21, p. 4925, 2001.

[22] J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K. R. Mecke, and R. Blossey, “Complex dewetting scenarios captured by thin-film models,” Nature materials, vol. 2, no. 1, pp. 59–63, 2003.

[23] A. González, J. Diez, R. Gratton, and J. Gomba, “Rupture of a fluid strip under partial wetting conditions,” EPL (Europhysics Letters), vol. 77, no. 4, p. 44001, 2007.

[24] A. M. Edwards, R. Ledesma-Aguilar, M. I. Newton, C. V. Brown, and G. McHale, “Not spreading in reverse: The dewetting of a liquid film into a single drop,” Science advances, vol. 2, no. 9, p. e1600183, 2016.

[25] A. Checco, B. Ocko, M. Tasinkevych, and S. Dietrich, “Stability of thin wetting films on chemically nanostructured surfaces,” Physical review letters, vol. 109, no. 16, p. 166101, 2012.

[26] A. M. Edwards, É. Ruiz-Gutiérrez, M. I. Newton, G. McHale, G. G. Wells, R. Ledesma-Aguilar, and C. V. Brown, “Controlling the breakup of toroidal liquid films on solid surfaces,” Scientific reports, vol. 11, no. 1, pp. 1–13, 2021.

[27] A. Edwards, R. Ledesma-Aguilar, M. I. Newton, C. Brown, and G. McHale, “A viscous switch for liquid-liquid dewetting,” Communications Physics, vol. 3, no. 1, pp. 1–6, 2020.

[28] L. Kondic, J. A. Diez, P. D. Rack, Y. Guan, and J. D. Fowlkes, “Nanoparticle assembly via the dewetting of nanoscale copolymer films and other geometries,” Annual Review of Fluid Mechanics, vol. 52, pp. 235–262, 2020.

[29] J. A. Diez, A. G. González, D. A. Garfinkel, P. D. Rack, J. T. McKeown, and L. Kondic, “Simultaneous decomposition and dewetting of nanoscale alloys: A comparison of experiment and theory,” Langmuir, vol. 37, no. 8, pp. 2575–2585, 2021.

[30] A. Münch, B. Wagner, and T. P. Witelski, “Lubrication models with small to large slip lengths,” Journal of Engineering Mathematics, vol. 53, no. 3-4, pp. 359–383, 2005.

[31] M. Rauscher, R. Blossey, A. Münch, and B. Wagner, “Spinodal dewetting of thin films with large interfacial slip: Implications from the dispersion relation,” Langmuir, vol. 24, no. 21, pp. 12290–12294, 2008.

[32] L. W. Schwartz, R. V. Roy, R. Eley, and S. Petrasch, “Dewetting patterns in a drying liquid film,” Journal of colloid and interface science, vol. 234, no. 2, pp. 363–374, 2001.

[33] D. D. Joseph, Stability of fluid motions I, vol. 27. Springer Science & Business Media, 2013.

[34] U. Thiele, L. Brusch, M. Bestehorn, and M. Bär, “Modelling thin-film dewetting on structured substrates and templates: Bifurcation analysis and numerical simulations,” The European Physical Journal E, vol. 11, pp. 255–271, 2003.

[35] J. Eggers, “Hydrodynamic theory of forced dewetting,” Physical review letters, vol. 93, no. 9, p. 094502, 2004.

[36] J. H. Snoeijer, “Free-surface flows with large slopes: Beyond lubrication theory,” Physics of Fluids, vol. 18, no. 2, p. 021701, 2006.

[37] U. Thiele, D. V. Todorova, and H. Lopez, “Gradient dynamics description for films of mixtures and suspensions: Dewetting triggered by coupled film height and concentration fluctuations,” Physical review letters, vol. 111, no. 11, p. 117801, 2013.

[38] U. Thiele, A. J. Archer, and L. M. Pismen, “Gradient dynamics models for liquid films with soluble surfactant,” Physical Review Fluids, vol. 1, no. 8, p. 083903, 2016.

[39] C. Henkel, J. H. Snoeijer, and U. Thiele, “Gradient-dynamics model for liquid drops on elastic substrates,” Soft matter, vol. 17, no. 45, pp. 10359–10375, 2021.

[40] S. Zitz, A. Scagliarini, S. Maddu, A. A. Darhuber, and J. Harting, “Lattice Boltzmann method for thin-liquid-film hydrodynamics,” Phys. Rev. E, vol. 100, p. 033313, Sep 2019.

[41] W. Jiang, W. Bao, C. V. Thompson, and D. J. Srolovitz, “Phase field approach for simulating solid-state dewetting problems,” Acta materialia, vol. 60, no. 15, pp. 5578–5592, 2012.

[42] O. J. Ronsin, D. Jang, H.-J. Egelhaaf, C. J. Brabec, and J. Harting, “Phase-field simulation of liquid–vapor equilibrium and evaporation of fluid mixtures,” ACS Applied Materials & Interfaces, vol. 13, no. 47, pp. 55988–56003, 2021.

[43] L. Biferale, R. Benzi, M. Sbragaglia, S. Succi, and F. Toschi, “Wetting/dewetting transition of two-phase flows in nano-corrugated channels,” Journal of computer-aided materials design, vol. 14, no. 3, pp. 447–456, 2007.

[44] L. Wang and J. Sun, “The application of axisymmetric lattice Boltzmann two-phase model on simulations of liquid film dewetting,” Journal of Applied Physics, vol. 122, no. 8, p. 085305, 2017.

[45] K. Mahady, S. Afkhami, J. Diez, and L. Kondic, “Comparison of Navier-Stokes simulations with long-wave theory: Study of wetting and dewetting,” Physics of Fluids,
[49] K. Mahady, S. Afkhami, and L. Kondic, “A numerical approach for the direct computation of flows including fluid-solid interaction: Modeling contact angle, film rupture, and dewetting,” *Physics of Fluids*, vol. 28, no. 6, p. 062002, 2016.

[50] S. Afkhami, J. Buongiorno, A. Guion, S. Popinet, Y. Saade, R. Scardovelli, and S. Zaleski, “Transition in a numerical model of contact line dynamics and forced dewetting,” *Journal of Computational Physics*, vol. 374, pp. 1061–1093, 2018.

[51] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen, “The lattice Boltzmann method,” *Springer International Publishing*, vol. 10, no. 978-3, pp. 4–15, 2017.

[52] S. Succi, *The lattice Boltzmann Equation*. Oxford University Press, 2018.

[53] H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A. Narváez, B. D. Jones, J. R. Williams, A. J. Valocchi, and J. Harting, “Multiphase lattice Boltzmann simulations for porous media applications,” *Computational Geosciences*, vol. 20, no. 4, pp. 777–805, 2016.

[54] X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” *Physical review E*, vol. 47, no. 3, p. 1815, 1993.

[55] X. Shan and G. Doolen, “Multicomponent lattice-Boltzmann model with interparticle interaction,” *Journal of Statistical Physics*, vol. 81, no. 1-2, pp. 379–393, 1995.

[56] H. Huang, D. T. Thorne Jr, M. G. Schaap, and M. C. Sukop, “Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models,” *Physical Review E*, vol. 76, no. 6, p. 066701, 2007.

[57] J. C. Bird, S. Mandre, and H. A. Stone, “Short-time dynamics of partial wetting,” *Physical review letters*, vol. 100, no. 23, p. 234501, 2008.

[58] Jülich Supercomputing Centre, “JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Supercomputing Centre,” *Journal of large-scale research facilities*, vol. 5, no. A135, 2019.