Efficiency of high-purity germanium detector at characteristic gamma energies of 198Au and 58Co and covariance analysis

Imran Pasha, B. Rudraswamy, E. Radha, V. Sathiamoorthy
Department of Physics, Bangalore University, Bengaluru, Karnataka, 1Indira Gandhi Center for Atomic Research, Kalpakkam, Tamil Nadu, India

Abstract

Naturally occurring 197Au and 58Ni foils were subjected to the neutron irradiation by placing them in a dry tube-I of Kalpakkam Mini reactor to produce gamma emitting 198Au and 58Co nuclear reaction products. The efficiency study of high-purity germanium detector corresponding to characteristic gamma energies 0.4118 and 0.8107 MeV of 198Au and 58Co was carried out by the methods of calibration of 152Eu and covariance.

Keywords: Covariance, efficiency, high-purity germanium, Kalpakkam mini reactor

INTRODUCTION

The calibration source 152Eu consists of many characteristic gamma lines. It can be used for the efficiency calibration of high-purity germanium (HPGe) detector as its activity is known. It is not possible to measure directly the efficiency of HPGe detector for known energies of characteristic gamma lines of nuclear reaction products as their activities are unknown. However, it can be known using the methods of calibration of 152Eu and covariance. This finds an application in knowing the nuclear reaction cross section of 198Au and 58Co.

Geraldo and Smith$^{[1]}$ carried out work on least square methods and covariance matrix applied to the relative efficiency calibration of a Ge (Li) detector. Geraldo and Smith$^{[2]}$, carried out work on covariance analysis and fitting of germanium gamma-ray detector efficiency calibration data. Vidmar$^{[3]}$ carried out work on EFFTRAN-A monte carlo efficiency transfer code for gamma-ray spectrometry. Jose et al.$^{[4]}$ carried out work on the estimation of radioactive noble gas activity in Fast Breeder Test Reactor (FBTR)-A simple method of calibration of HPGe detector. Shivashankar$^{[5]}$, et al. carried out work on measurement and covariance analysis or reaction cross section for 58Ni(n, p)58Co relative to cross section for the formation of 97Zr fission product in neutron-induced fission of 232Th and 238U at effective neutron energies $E_n = 5.89$, 10.11 and 15.87 MeV. Sheela$^{[6]}$, et al., carried out work on the efficiency of HPGe detector at characteristic gamma energies of 58Co and 115mln in the reactions 59Co(n, 2n)58Co and 115mIn(n, n')115In respectively. Further, they carried out the covariance analysis.

In the present study, the efficiency study of HPGe detector corresponding to characteristic gamma energies 0.4118
and 0.8107 MeV of ^{198}Au and ^{58}Co was carried out by the methods of calibration of ^{152}Eu and covariance.

Experimental details

Naturally occurring foils ^{197}Au and ^{58}Ni with 99.85% purity procured from Alfa Aesar, USA, have been irradiated with neutrons consisting of a spectrum of energies each with 3 h time by placing in dry Tube-I location of Kalpakkam Mini reactor to obtain nuclear reactions $^{197}\text{Au}(n, \gamma)^{198}\text{Au}$ and $^{58}\text{Ni}(n, p)^{58}\text{Co}$. The obtained products ^{198}Au and ^{58}Co are capable to emit gamma with characteristic energies 0.4118 and 0.8107 MeV respectively. Their gamma spectra have been measured using p-type co-axial vertical HPGe detector of Dounreay Stakeholder Group make available at FBTR laboratory, IGCAR. The resolution of the detector is 1.8 keV at 1332.5 keV. The measured spectra are shown in Figures 1 and 2. The measured spectrum of calibration source ^{152}Eu is shown in Figure 3. The point source ^{152}Eu capsulated in a thin disc of araldite. The analysis of the spectral data has been done both with softwares of APTEC Engineering Ltd., Canada and GENIE-2000 Canberra Industries Inc., Meriden, USA.

RESULTS AND DISCUSSION

Efficiency calibration of high-purity germanium for ^{152}Eu

The full energy peak efficiency of HPGe detector was measured by considering nine gamma-ray energies ($E_i, 1 \leq i \leq 9$) of ^{152}Eu source. The source in our experiment was placed 8 cm from the detector. Hence, the correction factor k_c due to coincidence summing effect was estimated using Monte Carlo simulation code EFFTRAN. The source was procured on March 1, 1999 with initial activity A_0 was 45500 Bq. The efficiency $\varepsilon(E_\gamma)$ of detector is given by

$$\varepsilon(E_\gamma) = \frac{CK\varepsilon_k}{I_\gamma A_0 e^{-0.693/T_{1/2}}}$$

(1)

Where E_γ is γ energy, C is counts obtained from the measured ^{152}Eu gamma spectrum, I_γ is γ abundance, $T_{1/2}$ is half-life (13.517 ± 0.014), t is time elapsed between source and detector calibrations (17.92y). The decay data I_γ at each of the mentioned energies and $T_{1/2}$ are retrieved from ENSDF data sets maintained by National Nuclear Data Center. The input data and the obtained detector efficiency $\varepsilon(E_\gamma)$ at each of the gamma ray energy of ^{152}Eu are listed in Table 1. The comparison of the detector efficiencies with and without correction factor due to coincidence summing effect is shown in Figure 4.

Covariance analysis for ^{152}Eu

The uncertainty\(^{[4]}\) $(\Delta \varepsilon_i)$ in efficiency ε_i ranging from $\varepsilon_1 (E_{\gamma1})$ to $\varepsilon_9 (E_{\gamma9})$ is obtained using the following relation.

$$\left(\Delta \varepsilon_i \right)^2 = \left(\frac{\Delta C_i}{C_i} \varepsilon_i \right)^2 + \left(\frac{\Delta I_\gamma}{I_\gamma} \varepsilon_i \right)^2 + \left(\frac{\Delta A_0}{A_0} / e_{\text{C}} \right)^2 + \left(\frac{\Delta \lambda_i}{\lambda_i} / e_{\lambda_i} \right)^2$$

(2)

where ΔC_i, ΔI_γ, ΔA_0 and $\Delta \lambda_i$ are partial uncertainties $(e_{\text{C}}, e_{\lambda_i})$ in C_i, I_γ, A_0 and λ_i, respectively. e_{C} is obtained with the following relation.
The obtained values of $\Delta \varepsilon_i$ and ε_r are shown in Table 2.

The microcorrelation matrix S_{ij} is shown in Table 3.

The covariance matrix is obtained with the following relation and the obtained values are shown in Table 4.

$$V_{\varepsilon \gamma} = \sum_{r=1}^{4} S_{ij} (r) \varepsilon_{r}, \quad i, j = 1, 2, \ldots, 9, 1 \leq r \leq 4$$

Where $\delta \varepsilon_i$ and $\Delta \varepsilon_j$ are partial uncertainties in efficiency ε_i and partial uncertainty in γ, respectively.

The macro-correlation matrix $C_{\varepsilon \gamma}$ is obtained with the following relation and its values are shown in Table 5.

$$C_{\varepsilon \gamma} = \frac{V_{\varepsilon \gamma}}{\Delta \varepsilon_i \Delta \varepsilon_j}$$

Efficiency of high-purity germanium for 198Au and 88Co

The covariance matrix $V_{\varepsilon \gamma}$ is obtained with the following relation and its values are shown in Table 6.
The linear parametric matrix \(Z \), design matrix \(A \) and fitting parameter matrix \(P \) are related by

\[
Z = P A \tag{7}
\]

Matrices \(Z \), \(A \) and \(P \) can be obtained with the following relations.

\[
Z = Z_i = \ln(E_i) = \sum_{k=1}^{m} \rho_k (\ln[E_{\gamma_k}])^{k-1} \tag{8}
\]

\[
P = \rho_k \tag{9}
\]

\[
A = A_k = (\ln[E_{\gamma_k}])^{k-1} \tag{10}
\]

Where \(1 \leq i \leq 9 \), \(1 \leq k \leq m \), \(m = 2, 3.8 \).

The covariance matrix \(V_\gamma \) can be obtained with the following relation.

\[
V_\gamma = [A^T \times V^{-1}_{\gamma} \times A]^{-1} \tag{11}
\]

\(A \) and \(V_\gamma \) matrices can be generated for various \(m \) values lying between 2 and 8. In the present case, \(m = 5 \) is considered. Their values are shown in Tables 7 and 8, respectively.

Fitting parameter matrix \(P \) is obtained with the following relation and its values are shown in Table 9.

\[
P = \left(V_\gamma A^T V^{-1}_{\gamma} \right) Z_j \tag{12}
\]

The least square condition states that the best estimate for parameter vector in the model is the one which minimizes the Chi-square statistics given by

\[
\chi^2 = (Z - AP)^T V^{-1}_{\gamma} [Z - AP] \tag{13}
\]

The obtained \(\chi^2 \) values for \(m = 2, 3, 4, 5, 6, 7 \) are 63.4, 18.6, 3.8, 1.45, 0.29, and 0.568, respectively. The two values for \(m = 5 \) and 6 are closer to one. \(m = 5 \) was considered for further calculation as this was less than the other.

The design \(A \), linear parametric \(Z \), efficiency covariance \(V_{\gamma} \), and correlation \(C_{\gamma} \) matrices,\(^8\)

For \(^{198}\)Au (0.411802 MeV) and \(^{58}\)Co (0.810759 MeV) were obtained with the following relations.

\[
A_i = (\ln \left[E_{\gamma_i} \right])^{k-1}, \quad Z_i = A P, \quad \epsilon_i = e^\epsilon_i = 1, 2 \quad \text{and} \quad 1 \leq k \leq 2 \tag{14}
\]

\[
V_{\gamma i} = A_i^T V_{\gamma} A_i, \quad V_{\gamma i} = (\epsilon_i). (\epsilon_{\gamma_j}) \quad \text{for} \quad i = 1, 2, \text{and} \quad j = 1, 2, \tag{15}
\]

\[
C_{\gamma i} = \frac{V_{\gamma i}}{(\Delta \epsilon_i)(\Delta \epsilon_{\gamma j})} \tag{16}
\]

The obtained values of \(\epsilon_i \), \(V_{\gamma i} \) and \(C_{\gamma i} \) are shown in the Table 10.

CONCLUSIONS

The energy depended efficiency calibration of HPGe detector corresponding to characteristic gamma energies of \(^{152}\)Eu has been carried out. The fitting parameters have been estimated by Chi-square test. The efficiency corresponding to characteristic gamma energies 0.4118 and 0.8107 MeV.
Table 6: Covariance matrix

	V_{ij}
5.84E-05	7.26E-05
2.28E-05	2.82E-05
2.28E-05	2.28E-05
2.28E-05	2.28E-05
2.28E-05	7.78E-05
2.28E-05	2.28E-05
86.00	0.00540
2.28E-05	0.756
2.28E-05	2.28E-05
2.28E-05	2.28E-05
2.28E-05	2.28E-05
2.28E-05	7.01E-05
2.28E-05	4.39E-05
2.28E-05	8.73E-05
0.00301	9.0E-10
2.28E-05	1.00
2.28E-05	8.45E-05
2.28E-05	2.98E-09

Table 7: Design matrix A

\[
\begin{bmatrix}
1 & -2.10 & 4.43 & -9.33 & 19.65 \\
1 & -1.40 & 1.98 & -2.78 & 3.95 \\
1 & -1.06 & 1.13 & -1.21 & 1.29 \\
1 & -0.24 & 0.062 & -0.01 & 0.0038 \\
1 & -0.03 & 0.001 & -4.9E-5 & 1.8E-6 \\
1 & 0.082 & 0.006 & 0.0005 & 4.6E-5 \\
1 & 0.106 & 0.011 & 0.0011 & 0.00012 \\
1 & 0.261 & 0.068 & 0.068 & 0.0046 \\
1 & 0.342 & 0.177 & 0.177 & 0.013 \\
\end{bmatrix}
\]

Table 8: Covariance matrix V_p

\[
\begin{bmatrix}
3.9E-5 & -6.4E-6 & -7.7E-5 & 7.9E-5 & 1.7E-5 \\
-6.4E-6 & 3.0E-4 & -1.6E-4 & -5.7E-4 & -2.0E-3 \\
-7.7E-5 & -1.6E-4 & 1.2E-3 & 1.6E-3 & 4.7E-4 \\
7.9E-5 & -5.7E-4 & 1.6E-3 & 2.6E-3 & 8.3E-4 \\
1.7E-5 & -2.0E-3 & 4.7E-4 & 8.3E-4 & 2.6E-4 \\
\end{bmatrix}
\]

Table 9: Fitting parameters P

\[
\begin{bmatrix}
-5.973 \\
-0.809 \\
-0.017 \\
-0.120 \\
-0.059 \\
\end{bmatrix}
\]

Table 10: Estimated parameters at two gamma energies of the activated foils

Gamma energy (MeV)	Efficiency	Covariance matrix	Correlation matrix
0.4118E02	0.00450	2.98E-9	1.00
0.8107E59	0.00301	9.0E-10	0.756

This paper was presented as oral/poster at the national conference entitled “National conference on Radiation Physics and its application in Material Science and Medicine” during April 8-9, 2018 (NSRP-2018, Bengaluru). The paper has undergone normal review process of this journal.

References

1. Geraldo LP, Smith DL. Least square methods and covariance matrix applied to the relative efficiency calibration of a Ge (Li) detector. Instir Pesqui Energeticas Nucl 1989;243:1-16.
2. Geraldo LP, Smith DL. Covariance analysis and fitting of germanium gamma-ray detector efficiency calibration data. Nucl Instrum Methods Phys Res A 1990;290:499-508.
3. Vidmar T. EFFTRAN-A Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instrum Methods Phys Res A 2005;550:603-8.
4. Jose MT, Baskar S, Meenakshisundaram V. Estimation of radioactive noble gas activity in FBTR-A simple method of calibration of HPGe detector. Conference IRPA12, 3; 2008.
5. Shivashankar BS, Ganesan S, Naik H, Suryanarayana SV, Nair NS, Prasad KM. Measurement and covariance analysis or reaction cross section for 60Ni (n, p) 60Co relative to cross section for formation of 97Zr fission product in neutron-induced fission of 249Th and 234U at effective neutron energies E_n=5.89, 10.11 and 15.87 MeV. Nucl Sci Eng 2014;179:423-33.
6. Sheela YS, Naik H, Prasad KM, Ganesan S, Nair NS, Suryanarayana SV. The efficiency and error covariance matrix of HPGe detector at characteristic gamma energies of reaction products 60Co and 115In in the Measurement of 238U Co Reaction Cross Section Relative to 58In. Nucl Sci Eng 2017/2; 12 March, 2017.
7. NuDat 2.7, Nudat 2.7 National Nuclear Data Center, Brookhaven National Laboratory; 2016. Available from: http://www.nndc.bnl.gov/nudat2/. [Last accessed on 2018 May 04].