LETTER

A self-bound matter-wave boson–fermion quantum ball

To cite this article: S K Adhikari 2018 Laser Phys. Lett. 15 095501

View the article online for updates and enhancements.
Letter

A self-bound matter-wave boson–fermion quantum ball

S K Adhikari

Instituto de Física Teórica, UNESP–Universidade Estadual Paulista, 01.140-070 São Paulo, São Paulo, Brazil

E-mail: adhikari44@yahoo.com

Received 23 May 2018
Accepted for publication 6 June 2018
Published 6 July 2018

Abstract

We demonstrate the possibility of creating a self-bound stable three-dimensional matter-wave spherical boson–fermion quantum ball in the presence of an attractive boson–fermion interaction and a small repulsive three-boson interaction. The two-boson interaction could be attractive or repulsive whereas the fermions are taken to be in a fully-paired super-fluid state in the Bardeen–Cooper–Schreifer (quasi-noninteracting weak-coupling) limit. We also include the Lee–Huang–Yang (LHY) correction to a repulsive bosonic interaction term. The repulsive three-boson interaction and the LHY correction can stop a global collapse while acting jointly or separately. The present study is based on a mean-field model, where the bosons are subject to a Gross–Pitaevskii (GP) Lagrangian functional and the fully-paired fermions are described by a Galilean-invariant density functional Lagrangian. The boson–fermion interaction is taken to be the mean-field Hartree interaction, quite similar to the interaction term in the GP equation. The study is illustrated by a variational and a numerical solution of the mean-field model for the boson–fermion $^7\text{Li}–^6\text{Li}$ system.

Keywords: Bose–Einstein condensate, superfluid fermion, soliton

(Some figures may appear in colour only in the online journal)

1. Introduction

A self-bound matter-wave bright soliton can travel with a constant velocity in one-dimension (1D) [1], while maintaining its shape, due to a balance between defocusing forces and nonlinear attraction. Solitons have been observed in diverse systems obeying classical and quantum dynamics, such as, in water wave, nonlinear optics [2] and Bose–Einstein condensate (BEC) [3] among others. The 1D soliton could be analytic with energy and momentum conservation necessary to maintain its shape during propagation. However, such a soliton cannot be realized in three dimensions in the mean-field weak-coupling Gross–Pitaevskii (GP) limit due to a collapse instability for attractive interaction [1, 2].

On the theoretical front Petrov [4] demonstrated the possibility of a three-dimensional (3D) binary BEC droplet in the presence of an inter-species attraction and an intra-species repulsion with a Lee–Huang–Yang (LHY) correction [5]. The possibility of forming a binary 1D BEC soliton with intra-species repulsion and inter-species attraction was suggested before [6]. In the presence of a repulsive three-body interaction the statics and dynamics of a BEC quantum ball were studied in details recently [7] employing the numerical and variational solutions of a mean-field model. A droplet can also be realized in a spin–orbit- [8] or Rabi-coupled [9] multi-component spinor BEC. On the experimental front, a BEC droplet has been observed [10] in a dipolar dysprosium and erbium BEC with a repulsive short-range contact interaction. Later, the formation of the dipolar droplet has been explained [11] by a LHY correction to the short-range contact interaction. More recently, a binary BEC droplet has been observed in the presence of a repulsive intra-species interaction and an
attractive inter-species interaction [12, 13] and its formation was explained by including a LHY-type correction term to the intra-species repulsion.

We demonstrate that it is possible to bind a large number of spin-1/2 fermions in a self-bound 3D boson–fermion super-fluid quantum ball at zero temperature in the presence of an attractive boson–fermion interaction and a repulsive three-boson interaction together with the LHY correction for a repulsive boson–boson interaction. We name the quantum ball and droplet for the localized boson–fermion state after establishing the robustness of such a bosonic state to maintain the spherical ball-like structure after collision [7], in contrast to easily deformable liquid droplets. Due to Pauli repulsion it is difficult to bind the fermions: the bosons with an attractive inter-species interaction act like a glue to bind the fermions. The possibility of binding fermions in a 1D boson–fermion mixture without a trap in the presence of inter-species attraction was suggested theoretically [14], and later realized experimentally [15]. In this study, we take the fermions to be fully paired in a quasi-noninteracting weak-coupling super-fluid Bardeen–Cooper–Schrieffer (BCS) state, although this condition is not required for binding; all fermions in a spin-polarized state can also be bound in a boson–fermion quantum ball. The repulsive three-boson interaction and its LHY correction lead to terms with a higher order nonlinearity in the dynamical ‘mean-field’ boson–fermion equation, compared to the nonlinearity resulting from the boson–boson interaction, and create a strong repulsive core at the origin and hence stop a global collapse of the boson–fermion mixture and stabilize the quantum ball.

We consider a numerical and a variational solution of a mean-field model for the formation of the boson–fermion quantum ball. The Lagrangian functional of the bosons is taken as in the GP Lagrangian functional including a three-boson quantum ball. The Lagrangian functional of the bosons is

\[\mathcal{L} = \left[\sum_i \frac{i\hbar N_i}{2} (\psi_i^* \dot{\psi}_i - \psi_i \dot{\psi}_i^*) + \frac{N_i}{2m_i} |\nabla \psi_i|^2 + \frac{N_i}{2m_i} |\nabla \psi_i|^2 + \frac{1}{2} \frac{\hbar^2}{m_i} |\phi_i|^4 + \frac{1}{2} \frac{\hbar^2}{m_i} |\phi_i|^4 + \frac{1}{2} m_i |\phi_i|^4 \right] \]

where \(a_1 \) is the scattering length of bosons (component 1), \(a_{12} \) is the boson–fermion scattering length, \(m_R = m_1 m_2/(m_1 + m_2) \) is the boson–fermion reduced mass and the overhead dot denotes time derivative. In (1) the first term on the right is the usual time-dependent term [16, 18], the second and the third terms represent the kinetic energies of bosons and fermions, respectively [16], the term containing \(K_3 \) is the three-boson interaction term. The prefactor \(N_2 \hbar^2/8m_2 \) in the fermion kinetic energy guarantees Galilean invariance of the Lagrangian [16]. The next term proportional to \(a_1 \) is the interaction energy of bosons and that proportional to \(a_{12} \) is the boson–fermion interaction energy. The term containing \(\alpha \equiv 64/3\sqrt{\pi} \) represents the beyond-mean-field LHY correction to the repulsive bosonic intra-atomic interaction (\(a_1 > 0 \)). The fermions are assumed to be quasi-noninteracting in a completely full Fermi sea and contribute the term proportional to \(|\phi_i|^2/10^3 \) in (1), which is just the static kinetic energy of all the fermions [16]. Both the three-body and the LHY terms have higher-order nonlinearity compared to the two-body interaction term, viz. the term containing \(a_1 \) in (1). These terms with a positive real part of \(K_3 \) guarantee a large positive energy near the origin of\(r = 0 \) and stop the collapse of the system.

It is convenient to write a dimensionless form of expression (1) as

\[\mathcal{L} = \left[\sum_i \frac{N_i}{2} (\phi_i^* \dot{\phi}_i - \phi_i \dot{\phi}_i) + \frac{N_i}{2m_i} |\nabla \phi_i|^2 + \frac{m_i}{8m_2} N_2 |\nabla \phi_i|^2 + 2 \pi a_1 N_2^2 |\phi_i|^4 + \frac{4}{5} \pi a_1 N_2^2 |\phi_i|^5 + \frac{N_i K_3}{6} |\phi_i|^6 \right] \]

where length is expressed in units of a fixed length \(l \), density \(|\phi_i|^2 \) in units of \(l^{-3} \), time in units of \(t_0 = m_1 l^2/\hbar \), energy in units of \(\hbar^2/m_1 l^2 \) and \(K_3 \) in units of \(\hbar^2/m_1 \). The wave functions are normalized as \(\int |\phi_i|^2 \, dt = 1 \).

With Lagrangian density (2) the dynamics for the binary boson–fermion mixture is governed by the Euler–Lagrange equations

2. Analytic model for a boson–fermion quantum ball

We consider a binary boson–fermion super-fluid mixture at zero temperature interacting via inter- and intra-species interactions with the mass and number of the two species \(i = 1, 2 \), denoted by \(m_i, N_i \), respectively. The first species \((^6\text{Li}) \) is taken to be bosons while the second species \((^{12}\text{Li}) \) fermions. The spin-half fermions are assumed to be fully paired with an equal number of spin-up and -down atoms. We start by writing the Lagrangian density of the system

\[\mathcal{L} = \left[\sum_i \frac{N_i}{2} (\phi_i^* \dot{\phi}_i - \phi_i \dot{\phi}_i) + \frac{N_i}{2m_i} |\nabla \phi_i|^2 + \frac{m_i}{8m_2} N_2 |\nabla \phi_i|^2 + 2 \pi a_1 N_2^2 |\phi_i|^4 + \frac{4}{5} \pi a_1 N_2^2 |\phi_i|^5 + \frac{N_i K_3}{6} |\phi_i|^6 \right] \]

where \(a_1 \) is the scattering length of bosons (component 1), \(a_{12} \) is the boson–fermion scattering length, \(m_R = m_1 m_2/(m_1 + m_2) \) is the boson–fermion reduced mass and the overhead dot denotes time derivative. In (1) the first term on the right is the usual time-dependent term [16, 18], the second and the third terms represent the kinetic energies of bosons and fermions, respectively [16], the term containing \(K_3 \) is the three-boson interaction term. The prefactor \(N_2 \hbar^2/8m_2 \) in the fermion kinetic energy guarantees Galilean invariance of the Lagrangian [16]. The next term proportional to \(a_1 \) is the interaction energy of bosons and that proportional to \(a_{12} \) is the boson–fermion interaction energy. The term containing \(\alpha \equiv 64/3\sqrt{\pi} \) represents the beyond-mean-field LHY correction to the repulsive bosonic intra-atomic interaction (\(a_1 > 0 \)). The fermions are assumed to be quasi-noninteracting in a completely full Fermi sea and contribute the term proportional to \(|\phi_i|^2/10^3 \) in (1), which is just the static kinetic energy of all the fermions [16]. Both the three-body and the LHY terms have higher-order nonlinearity compared to the two-body interaction term, viz. the term containing \(a_1 \) in (1). These terms with a positive real part of \(K_3 \) guarantee a large positive energy near the origin of\(r = 0 \) and stop the collapse of the system.

It is convenient to write a dimensionless form of expression (1) as

\[\mathcal{L} = \left[\sum_i \frac{N_i}{2} (\phi_i^* \dot{\phi}_i - \phi_i \dot{\phi}_i) + \frac{N_i}{2m_i} |\nabla \phi_i|^2 + \frac{m_i}{8m_2} N_2 |\nabla \phi_i|^2 + 2 \pi a_1 N_2^2 |\phi_i|^4 + \frac{4}{5} \pi a_1 N_2^2 |\phi_i|^5 + \frac{N_i K_3}{6} |\phi_i|^6 \right] \]

where length is expressed in units of a fixed length \(l \), density \(|\phi_i|^2 \) in units of \(l^{-3} \), time in units of \(t_0 = m_1 l^2/\hbar \), energy in units of \(\hbar^2/m_1 l^2 \) and \(K_3 \) in units of \(\hbar^2/m_1 \). The wave functions are normalized as \(\int |\phi_i|^2 \, dt = 1 \).

With Lagrangian density (2) the dynamics for the binary boson–fermion mixture is governed by the Euler–Lagrange equations
\[
\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\phi}_i} = \frac{\partial \mathcal{L}}{\partial \phi_i},
\]

In explicit notation (3) become [18]

\[
\frac{1}{i} \frac{\partial \phi_i(\mathbf{r}, t)}{\partial t} = -\frac{\nabla^2}{2} + 4\pi a_1 N_1 |\phi_1|^2 + \frac{K_3 N_1^2}{2} |\phi_1|^4 + 2 \pi a_1 \alpha N_2 \frac{m}{m_r} |\phi_2|^2 \phi_1(\mathbf{r}, t),
\]

(4)

\[
\frac{1}{i} \frac{\partial \phi_2(\mathbf{r}, t)}{\partial t} = -\frac{m_1 \nabla^2}{8 m_2} + \frac{m_1}{2m_2} (3 \pi^2 N_2)^{2/3} |\phi_2|^4/3 + 2 \pi a_1 \alpha N_1 \frac{m}{m_r} |\phi_1|^2 \phi_2(\mathbf{r}, t),
\]

(5)

Convenient analytic variational approximation to (4) and (5) can be obtained with the following Gaussian ansatz for the wave functions [18, 19]

\[
\phi_i(\mathbf{r}, t) = \frac{\pi^{-3/4}}{w_i(t) \sqrt{\pi N_i}} \exp \left[-\frac{\mathbf{r}^2}{2 w_i^2(t)} + i \beta_i(t) \mathbf{r}^2 \right],
\]

(6)

where \(w_i \) are the widths and \(\beta_i \) are additional variational parameters, called chirps. The effective Lagrangian for the binary system \(\mathcal{L} = \int d\mathbf{r} \mathcal{L} \) is

\[
\mathcal{L} = \sum_{i=1}^{2} N_i \left[\frac{3}{2 w_i^2} + 6w_i \beta_i^2 \right] + N_2 m_1 \left[\frac{3}{2 w_2^2} + 6w_2 \beta_2^2 \right] + \frac{N_1^2 K_3}{\sqrt{\pi} w_1} + \frac{8 \sqrt{5} \alpha a_1^{5/2} N_1^{5/2}}{25 \sqrt{3} \pi^{5/4} w_1^{9/2}} + \frac{N_1^2 K_3}{18 \sqrt{3} \pi^3 w_1^2} + \frac{9 \sqrt{3} m_1 (3 \pi^2 N_2)^{2/3} N_2}{50 \sqrt{3} \pi^{3/4} w_2^5} + \frac{2 a_1 \sqrt{3} m_1 N_2}{\sqrt{\pi} m_r (w_1^2 + w_2^2)^{3/2}},
\]

(7)

The repulsive three-boson \(K_3 \)-dependent term with a \(1/w_i^6 \) divergence and the LHY two-boson \(\alpha \)-dependent term with a \(1/w_i^{9/2} \) divergence at the origin \((w_1 = w_2 = 0) \) create a repulsive core in the Lagrangian \(\mathcal{L}(w_1, w_2) \) which stops the global collapse.

The four Euler–Lagrange variational equations of the effective Lagrangian \(\mathcal{L} \) for the four variational parameters \(\alpha \equiv w_1, w_2, \beta_1, \beta_2 \)

\[
\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{\alpha}} = \frac{\partial \mathcal{L}}{\partial \alpha},
\]

(8)

can be simplified to yield the following coupled ordinary differential equations for the widths, \(w_i \) in usual fashion [19]

\[
\dot{w}_1 = \frac{1}{w_1} + \frac{2 N_1 a_1}{\sqrt{2} \pi w_1^4} + \frac{2 N_1^2 K_3}{9 \sqrt{3} \pi^3 w_1^2} + \frac{4 a_1 \sqrt{3} m_1 N_2 w_1}{\sqrt{\pi} m_r (w_1^2 + w_2^2)^{3/2}} + \frac{24 \sqrt{2} \alpha a_1^{5/2} N_1^{5/2}}{25 \sqrt{3} \pi^{3/4} w_1^{9/2}},
\]

\[
\dot{w}_2 = \frac{m_1}{4 m_2 w_2^2} + \frac{6 \sqrt{3} m_1 (3 \pi^2 N_2)^{2/3}}{25 \sqrt{3} \pi^2 m_2 \pi w_2^2} + \frac{4 a_1 \sqrt{3} m_1 N_2 w_2}{\sqrt{\pi} m_r (w_1^2 + w_2^2)^{3/2}}.
\]

(9)

The solution of the time-dependent equations (9)–(10) gives the dynamics of the variational approximation. For static properties of the boson–fermion quantum ball, the time derivatives in these equations should be set equal to zero.

The energy of the system is given by

\[
E = \frac{3 N_1}{4 w_1^2} + \frac{3 N_2 m_1}{16 m_2 w_2^2} + \frac{N_1^2 a_1}{\sqrt{\pi} w_1} + \frac{N_1^2 K_3}{18 \sqrt{3} \pi^3 w_1^2} + \frac{8 \sqrt{5} \alpha a_1^{5/2} N_1^{5/2}}{25 \sqrt{3} \pi^{5/4} w_1^{9/2}} + \frac{9 \sqrt{3} m_1 (3 \pi^2 N_2)^{2/3} N_2}{50 \sqrt{3} \pi^{3/4} w_2^5} + \frac{2 a_1 \sqrt{3} m_1 N_2}{\sqrt{\pi} m_r (w_1^2 + w_2^2)^{3/2}},
\]

(11)

The widths of the stationary state can be obtained from the solution of equations (9) and (10) setting the time derivatives of the widths equal to zero. This procedure is equivalent to a minimization of the energy (11), provided the stationary state corresponds to a energy minimum.

3. Numerical results

The 3D binary mean-field equations (4) and (5) do not have analytic solution and different numerical methods, such as split-step Crank–Nicolson [20] and Fourier spectral [21] methods, are used for its solution. We solve these equations numerically by the split-step Crank–Nicolson method using both real- and imaginary-time propagation. Imaginary-time simulation is employed to get the lowest-energy bound state of the boson–fermion quantum ball, while the real-time simulation is to be used to study the dynamics using the initial profile obtained in the imaginary-time propagation [22]. There are different C and FORTRAN programs for solving the GP equation [20, 22] and one should use the appropriate one.

In the imaginary-time propagation the initial state was taken as \(\psi(\mathbf{r}, 0) = \phi_1(\mathbf{r}, 0) + i \phi_2(\mathbf{r}, 0) \) and one should use the appropriate one.

In the imaginary-time propagation the initial state was taken as \(\psi(\mathbf{r}, 0) = \phi_1(\mathbf{r}, 0) + i \phi_2(\mathbf{r}, 0) \) and one should use the appropriate one.

We consider the boson–fermion \(^{6}\text{Li} - ^{6}\text{Li} \) mixture in this study with the experimental scattering length \(a_1 = a(^{6}\text{Li}) = -27.4 a_0 \). This negative scattering length imply intra-species attraction in \(^{6}\text{Li} \). We also consider \(a_1 = 100 a_0 \); it is also possible to have a boson–fermion quantum ball for for a repulsive boson–boson interaction and an attractive boson–fermion interaction. In the latter case the LHY correction is also effective. The fermions are considered to be in the weak-coupling BCS limit without any inter-species interaction between spin-up and -down fermions. The yet unknown inter-species scattering length \(a_{12} \) is taken as a variable. The variation of \(a_{12} \) and \(a_1 \) can be achieved experimentally by the optical [23] and magnetic [24] Feshbach resonance techniques.
We consider the length scale $l_0 = 1\, \mu m$ and consequently, the time scale $t_0 = 0.11\, ms$.

We find that a boson–fermion $^7\text{Li}–^6\text{Li}$ quantum ball is achievable for a moderately attractive inter-species attraction (negative a_{12}) and for appropriate values of the number of atoms, for both attractive and repulsive boson–boson interaction. We illustrate in figure 1 the $N_2 − |a_{12}|$ variational stability plots for a boson–fermion quantum ball for boson–boson scattering lengths (a) $a = -27.4 a_0$, and (b) $a = 100 a_0$, for $N_1 = 1000$ and $K_3 = 0, 10^{-37} \text{m}^6 \text{s}^{-1}, 10^{-38} \text{m}^6 \text{s}^{-1}, 10^{-39} \text{m}^6 \text{s}^{-1}, 10^{-40} \text{m}^6 \text{s}^{-1}$, and for boson–boson scattering length (a) $a_1 = -27.4 a_0$ and (b) $100 a_0$. In (b) results are shown with (w) and without (o) the LHY correction term. The formation of the boson–fermion quantum ball is possible in the region to the right of each line marked ‘bound’. No bound quantum ball is possible on the left side of the lines marked ‘unbound’.

![Figure 1](image1.png)

Figure 1. Variational $N_2 − |a_{12}|$ stability plot for the formation of boson–fermion $^7\text{Li}–^6\text{Li}$ quantum ball of $N_1 = 1000$ bosons for $K_3 = 0, 10^{-37} \text{m}^6 \text{s}^{-1}, 10^{-38} \text{m}^6 \text{s}^{-1}, 10^{-39} \text{m}^6 \text{s}^{-1}, 10^{-40} \text{m}^6 \text{s}^{-1}$, and for boson–boson scattering length (a) $a = -27.4 a_0$ and (b) $100 a_0$. In (b) results are shown with (w) and without (o) the LHY correction. The formation of the boson–fermion quantum ball is possible in the region to the right of each line marked ‘bound’. No bound quantum ball is possible on the left side of the lines marked ‘unbound’.

In figure 2 we display similar variational and numerical $N_2 − |a_{12}|$ stability plots for $N_1 = 10\, 000$ bosons for (a) $a_1 = -27.4 a_0$, (b) $a_1 = 100 a_0$ (without LHY correction), and (c) $a_1 = 100 a_0$ (with LHY correction) for different K_3 values. The numerical results for the stationary quantum balls in figures 2–5 are obtained by imaginary-time simulation. The formation of the boson–fermion quantum ball is possible on the right of the plotted lines in figures 1 and 2. There is not enough attraction on the left side of these lines to bind such a quantum ball. The numerical lines lie on the left of the variational lines showing a larger domain for the formation of the quantum balls. This is a consequence of the fact that the variational energies set an upper bound on the actual energy. Also the stability lines with the LHY correction correspond to an increased repulsion and the stability lines move towards right, viz. figures 2(b) and (c) implying a reduced domain in the parameter space for the formation of boson–fermion quantum ball.

From figures 1 and 2 we find that if the value of the parameter K_3 is suitably tuned, the effect of the three-body and LHY corrections on the formation of the binary ball could be quite similar. For example, compare the line $K_3 = 10^{-39} \text{m}^6 \text{s}^{-1}$—without the LHY correction in figure 2(b)—with the line $K_3 = 0$—with LHY correction in figure 2(c)—and compare the same lines in figure 1(b). We also compared the corresponding shapes of the binary balls, which were also found to be similar. Hence, for a proper description of the binary boson–fermion balls, both the LHY and three-body corrections should be considered.

We used a Gaussian ansatz for the variational approximation, which is the eigenfunction of a harmonic oscillator. This ansatz should work well in the presence of a harmonic
trap with small values of nonlinear interaction. In the present
case, there is no harmonic trap and the nonlinearities could be
quite large. Hence the variational approximation is not
expected to be good in general. We have seen that the vari-
atal approximation has yielded qualitatively correct result
for the stability plots, viz. figures 1 and 2. To test how well the
variational approximation can yield the density profiles, we
have compared in figure 3 the variational and numerical den-
sities of the boson–fermion quantum ball for different cases for
We have seen that these boson–fermion quantum balls are
very tightly bound, viz. the large energy/boson in figure 4.

Figure 3. Variational (v) and numerical (n) densities \(\rho_i = |\psi_i|^2 \) of the bosons and fermions for different sets of parameters and for (a) \(N_1 = N_2 = 1000, a_1 = 100a_0, a_{12} = -50a_0, K_3 = 10^{-37} \text{ m}^6 \text{ s}^{-1} \) with LHY correction, (b) \(N_1 = N_2 = 1000, a_1 = 100a_0, a_{12} = -350a_0, K_3 = 10^{-37} \text{ m}^6 \text{ s}^{-1} \) without LHY correction, (c) \(N_1 = N_2 = 1000, a_1 = 100a_0, a_{12} = -200a_0, K_3 = 10^{-36} \text{ m}^6 \text{ s}^{-1} \) with LHY correction, (d) \(N_1 = N_2 = 1000, a_1 = 100a_0, a_{12} = -200a_0, K_3 = 10^{-36} \text{ m}^6 \text{ s}^{-1} \) without LHY correction, (e) \(N_1 = 10000, N_2 = 2000, a_1 = -27.4a_0, a_{12} = -30a_0, K_3 = 10^{-38} \text{ m}^6 \text{ s}^{-1} \), (f) \(N_1 = 10000, N_2 = 2000, a_1 = 0, a_{12} = -45a_0, K_3 = 10^{-39} \text{ m}^6 \text{ s}^{-1} \). The plotted quantities in this and following figures are dimensionless. The unit of length in all figures is \(\lambda = 1 \mu \text{m} \).

Considering that there is no harmonic trap in the model, the
agreement between the variational and numerical results is
quite satisfactory.

Now we compare the variational and numerical ener-
dies of the boson–fermion quantum ball versus num-er of fermions in figure 4 for \(N_1 = 10000 \) and for (a) \(a_1 = -27.4a_0, a_{12} = -70a_0, K = 10^{-39} \text{ m}^6 \text{ s}^{-1} \) and (b) \(a_1 = 100a_0, a_{12} = -350a_0, K = 10^{-36} \text{ m}^6 \text{ s}^{-1} \). The variational energies are are always larger than the numerical energies. In figure 5 we plot the root-mean-square (rms) sizes (\(r_1 \)) and (\(r_2 \)) of bosons and fermions versus \(N_2 \) for \(N_1 = 10000, a_1 = -27.4a_0 \) and for (a) \(a_{12} = -70a_0, K = 10^{-39} \text{ m}^6 \text{ s}^{-1} \) and (b) \(a_{12} = -150a_0, K = 10^{-38} \text{ m}^6 \text{ s}^{-1} \). The agreement between the variational and numerical results is reasonable in both cases.
We have included an imaginary part to the three-body term K_3 to take into account the three-boson loss. There is hence should be easy to observe in a laboratory like the boson fermion quantum ball [12]. We demonstrate a possible practical estimate of three-body loss for 7Li atoms [25] for different values of scattering length a_1, although its value for $a_1 = 0$ is not given there. We take the three-body loss $K_3 = -i10^{-39} m^6 s^{-1}$, which is the average value away from the nearby Feshbach resonance where $a_1 \to \pm \infty$. In the present real-time simulation we use $K_3 = (1 - i)10^{-39} m^6 s^{-1}$, which takes into account a realistic three-body loss. Due to the presence of the absorptive term in K_3, the number of bosons decay with time. Nevertheless, a smaller number of bosons is enough to keep the fermions bound due to the attractive boson–fermion interaction. In figure 6 we plot the rms sizes of the bosons and fermions versus time. A practically constant rms size of the fermions guarantee the stability of the quantum ball. Due to a sudden introduction of the three-body loss term at $t = 0$ some disturbance is created in the quantum ball, as the initial state obtained by imaginary-time simulation is not an eigenstate of the absorptive Hamiltonian with three-body loss. The large values of the rms radius r_2 of fermions result due to some small noise at large values of r, although the quantum ball remain localized near the center.

4. Summary and discussion

We demonstrated the possibility of the creation of a stable, stationary, self-bound super-fluid boson–fermion quantum ball under attractive inter-species interaction using a variational and a numerical solution of a mean-field model. The boson–boson interaction could be attractive or repulsive. The collapse is avoided by a three-boson interaction and/or a LHY correction to the two-boson interaction. The static properties of the boson–fermion quantum ball are studied by the variational approximation and a numerical imaginary-time solution of the mean-field model. The dynamics is studied by a real-time solution of the same using the imaginary-time solution as input. The numerical and variational results for the rms radii, densities, and energies of the boson–fermion quantum ball are in agreement with each other.

The binary quantum ball is very tightly bound even for a small three-boson interaction and/or a small LHY correction, hence should be easy to observe in a laboratory like the boson–boson quantum ball [12]. We demonstrate a possible practical
mean for its formation. A boson–fermion mixture should be kept in a harmonic trap of harmonic oscillator length of few microns with parameters appropriate for the formation of a quantum ball. Actually, one of the easiest way of achieving a degenerate fermion gas is by sympathetic cooling in a boson–fermion mixture, such as in $^7\text{Li}–^3\text{Li}$ [26]. Such a mixture should be used to create the boson–fermion quantum ball. Usually the size of the quantum ball will be much smaller than the harmonic oscillator length, indicating that the harmonic trap has no effect on the formation of the quantum ball. Consequently, the removal of the harmonic trap will have marginal effect on the quantum ball. To demonstrate this in numerical simulation, we form a quantum ball by imaginary-time propagation in a harmonic trap. Then we use the state so formed in a real-time propagation illustrates the stability of the quantum ball as well as the feasibility of its creation in a laboratory.

Acknowledgments

The study was partially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo FAPESP (Brazil) under Projects No. 2012/00451-0 and No. 2016/01343-7 and also by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil) under Project No. 303280/2014-0.

References

[1] Abdullaev F K, Gammal A, Kamchatnov A M and Tomio L 2005 Int. J. Mod. Phys. B 19 3415
Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763
[2] Kivshar Y S and Agrawal G 2003 Optical Solitons: from Fibers to Photonic Crystals (San Diego, CA: Academic)
[3] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 256 1290
Cornish S L, Thompson S T and Wieman C E 2006 Phys. Rev. Lett. 97 170401
[4] Petrov D S 2015 Phys. Rev. Lett. 115 155302
[5] Lee T D, Huang K and Yang C N 1957 Phys. Rev. 106 1135
[6] Adhikari S K 2005 Phys. Lett. A 346 179
Pérez-García V M and Beita J B 2005 Phys. Rev. A 72 033620
[7] Adhikari S K 2017 Phys. Rev. A 95 023606
Adhikari S K 2017 Laser Phys. Lett. 14 025501
[8] Zhang Y-C, Zhou Z-W, Malomed B A and Pu H 2015 Phys. Rev. Lett. 115 253902
Salasnich L and Malomed B A 2006 Phys. Rev. A 74 053610
Salasnich L and Malomed B A 2013 Phys. Rev. A 87 063625
Sakaguchi H, Li B and Malomed B A 2014 Phys. Rev. E 89 032920
Gautam S and Adhikari S K 2018 Phys. Rev. A 97 013629
Gautam S and Adhikari S K 2017 Phys. Rev. A 95 013608
Gautam S and Adhikari S K 2015 Laser Phys. Lett. 12 045501
Li Y, Luo Z, Liu Y, Chen Z, Huang C, Fu S, Tan H and Malomed B A 2017 New J. Phys. 19 113043
Sakaguchi H and Malomed B A 2010 Phys. Rev. A 81 013624
[9] Cappellaro A, Macri T, Bertacco G F and Salasnich L 2017 Sci. Rep. 7 13358
[10] Kadaj H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I and Pfau T 2016 Nature 530 194
Ferrier-Barbut I, Kadaj H, Schmitt M, Wenzel M and Pfau T 2016 Phys. Rev. Lett. 116 215301
Chomaz L, Baier S, Petter D, Mark M J, Wächter F, Santos L and Ferlaino F 2016 Phys. Rev. X 6 041039
[11] Baillie D, Wilson R M, Bisset R N and Blakie P B 2016 Phys. Rev. A 94 021602
Wächter F and Santos L 2016 Phys. Rev. A 93 060163
Xi Kui-Tian and Saito H 2016 Phys. Rev. A 93 010104
[12] Cabrera C R, Tanzi L, Sanz J, Naylor B, Thomas F, Cheiney P and Tarruell L 2018 Science 359 301
Cheiney P, Cabrera C R, Sanz J, Naylor B, Tanzi L and Tarruell L 2018 Phys. Rev. Lett. 120 135301
[13] Semeghini G, Ferioli G, Masi L, Mazzinghi C, Wolsiwik L, Minardi F, Modugno M, Modugno G, Inguscio M and Fattori M 2018 Phys. Rev. Lett. 120 235301
[14] Adhikari S K 2005 Phys. Rev. A 72 053608
Karpiuk T, Breveczky K, Öspelkaus-Schwarzer S, Bongs K, Gajda M and Rzazewski K 2004 Phys. Rev. Lett. 93 100401
[15] deSalvo B J, Patel K, Johansen J and Chin C 2017 Phys. Rev. Lett. 119 233401
Adhikari S K and Salasnich L 2008 Phys. Rev. A 78 043616
Adhikari S K 2004 Phys. Rev. A 70 043617
[16] Young-S L E and Adhikari S K 2012 Phys. Rev. A 86 063611
[17] Pérez-García V M, Michinel H, Cirac J I, Lewenstein M and Zoller P 1997 Phys. Rev. A 56 1424
Muruganandam P and Adhikari S K 2012 Laser Phys. 22 813
Muruganandam P and Adhikari S K 2009 Comput. Phys. Commun. 180 1888
Vudragovic D, Vidanovic I, Balaz A, Muruganandam P and Adhikari S K 2012 Comput. Phys. Commun. 183 2021
[18] Young-S L E and Adhikari S K 2012 Comput. Phys. Commun. 183 2021
[19] Salasnich L and Malomed B A 2003 Phys. Rev. A 70 043617
[20] Saratić B, Slavnić V, Belić A, Balaz A, Muruganandam P and Adhikari S K 2016 Comput. Phys. Commun. 200 411
[21] Lončar V, Balaz A, Bogujević A, Škrbić S, Muruganandam P and Adhikari S K 2016 Comput. Phys. Commun. 200 406
Kishor Kumar R, Young-S L E, Vudragovic D, Balaz A, Muruganandam P and Adhikari S K 2015 Comput. Phys. Commun. 195 117
[22] Lončar V, Young-S L E, Škrbić S, Muruganandam P, Adhikari S K and Balaz A 2016 Comput. Phys. Commun. 209 190
[23] Enomoto K, Kasa K, Kitagawa M and Takahashi Y 2008 Phys. Rev. Lett. 101 203201
[24] Inouye S, Andrews M R, Stenger J, Miesner H-J, Stamper-Kurn D M and Ketterle W 1999 Nature 392 151
[25] Gross N, Shotan Z, Kokkelmans S and Khaykovich L 2009 Phys. Rev. Lett. 103 163602
[26] Ferrier-Barbut I, Deléhaye M, Laurent S, Grier A T, Pierce M, Rem B S, Checy F and Salomon C 2014 Science 345 1035