Review Article

One Health Perspective of *Salmonella* Serovars in South Africa Using Pooled Prevalence: Systematic Review and Meta-Analysis

Tsepo Ramatla, Mpho Tawana, ThankGod E. Onyiche, Kgaugelo E. Lekota, and Oriel Thekisoe

1Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
2Department of Veterinary Parasitology and Entomology, University of Maiduguri, P.M.B 1069, Maiduguri 600230, Nigeria

Correspondence should be addressed to Tsepo Ramatla; ra21205450@gmail.com

Received 6 December 2021; Revised 12 March 2022; Accepted 1 April 2022; Published 20 April 2022

Copyright © 2022 Tsepo Ramatla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Salmonella is a bacterium that is commonly associated with food-borne infections and is regarded as one of the most important pathogens in public health. *Salmonella* serovars, particularly Typhimurium and Enteritidis, which are widely distributed globally, mainly result in outbreaks commonly linked to the consumption of animal products. This study is a systematic review and meta-analysis of studies reporting the prevalence of *Salmonella* serovars from one health perspective that included human, environmental, and animal samples in South Africa. PubMed, ScienceDirect, African Journals Online, and Scopus databases were used to conduct extensive searches of articles which were ultimately included or excluded following the Systematic Reviews and Meta-Analysis (PRISMA) guidelines. According to the data obtained in this review, the overall pooled prevalence estimates (PPE) of *Salmonella* detection were 79.6%, 61.6%, 56.5%, and 43.2% for human, environmental, animal, and environmental/animal samples in South Africa, respectively. The majority of the studies (50%) used the polymerase chain reaction (PCR) technique for the detection of *Salmonella* serovars, followed by culture methods (26.7%), while 20% used serotyping. The PPE for nontyphoidal *Salmonella* (NTS) was 65.6% and 34.4% for *Salmonella* Typhimurium and *Salmonella* Enteritidis, respectively. Our data further shows that 3 serovars, namely, *Salmonella* Typhimurium, *Salmonella* Enteritidis, and *Salmonella* Hadar, have been isolated from animals, humans, and the environment in South Africa. Our results highlight the ongoing spread of *Salmonella* spp. especially on animals which might end up infecting humans via direct contact with infected animals or eating infected animal products. This calls for deliberate “One Health” epidemiological studies in order to document information on the transmission between humans, animals, and the environment. This will ultimately result in the formulation of a consolidated salmonellosis control policy by the environmental, human, and veterinary health sectors.

1. Introduction

Salmonella is a serious public health issue that affects both humans and animals [1]. *Salmonella* strains are grouped as typhoidal and nontyphoidal organisms based on their disease distribution dynamics [2]. Nontyphoidal *Salmonella* (NTS) is responsible for the most important public health problem worldwide including South Africa, and accounts for food-borne illnesses with an estimated 94 million cases globally [3, 4]. According to Backhans and Fellström [5], the majority of *Salmonella* cases are caused by *Salmonella* serovar Enteritidis globally, and the major sources are eggs and poultry meat. Salmonellosis is one of the most serious zoonotic illnesses, affecting both humans and animals around the world [6]. In South Africa, *Salmonella* Typhimurium and Enteritidis are the commonly reported serotypes [7].

Many African countries rely on meat production for their livelihoods, with meat from cattle and poultry serving as a major source of protein in subsistence groups [8]. Various *Salmonella* serovars have been isolated from the gastrointestinal tracts of animals such as chickens, horses, ducks, cattle, pigs, goats, and sheep [9–12]. The published literature on human salmonellosis in South Africa is growing.
Humans, on the other hand, can become infected by coming into contact with live animals or being in an environment contaminated with animal feces and then accidentally ingesting pathogens [8,19]. The systematic reviews and meta-analyses: a step-by-step guide will be used to quantify and summarize the findings of these studies [20]. Few systematic reviews and meta-analyses studies have been performed in sub-Saharan Africa and Africa in the last ten years on invasive nontyphoidal Salmonella (iNTS) disease and the prevalence of Salmonella [8,21–23]. Such reviews focused on surveillance of iNTS infections in humans, in food animals and meat, and antibiotic resistance. All this evidence has pointed out the existence, perpetuation, and dominance of three Salmonella enterica serovars Enteritidis, Heidelberg, and Typhimurium in different vertebrate hosts (human and animal) and in environmental samples in South Africa. A better understanding of the existing prevalence of Salmonella is required to inform the development and implementation of effective preventative methods. Therefore, the current study was carried out to identify the prevalence gap, analyse and summarize the pooled prevalence of Salmonella serovars isolated from humans, animals (chickens, ducks, cattle, pigs, goats, horses, and sheep), and the environment from published data in South Africa by carrying out a systematic review and meta-analysis through a review of published articles.

2. Materials and Methods

2.1. Study Design. This study was conducted to estimate the prevalence of Salmonella species in South Africa using published articles. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA 2020) revised guidelines [24], to report the study (Table S1). The article search approach is presented on a flow chart in Figure 1.

2.2. Search Strategy for Relevant Studies. The search was conducted on four databases: PubMed, ScienceDirect, African Journals Online, and Scopus, as described by Ramatla et al. [21]. We searched for all studies published in English from 1980 until June 2021. The keywords that were used in all databases are shown in Table 1. We completed our search on the 24th of June 2021. Titles and abstracts were scanned, and full-text papers were downloaded and accessed from library resources and online platforms. The studies were chosen based on the inclusion and exclusion criteria, which are further listed in the study.

2.3. Study and Inclusion Criteria. All available studies and data were included based on the following predefined eligibility criteria. (a) All articles published primarily on quantitative prevalence of Salmonella in humans, animals, and environment in South Africa. (b) Articles must clearly state type of samples and methods of diagnosis used, (c) exact numbers of positive samples were clearly stated and, lastly, and (d) all published articles were in English language.

2.4. Study Exclusion Criteria. Studies were excluded if they were (a) not undertaken in South Africa, (b) book chapters were also excluded, (c) review articles, (d) a smaller sample size (less than 20), (e) articles not reported in English were also discarded, and (f) articles not published between January 1980 and August 2021.

2.5. Data Extraction and Data Collection. The titles and abstracts of possible journal articles were scanned and downloaded. To determine eligibility, full versions of possibly relevant articles were obtained. Each article’s data, including author names, publication year, location, total number of isolates, and total samples collected, was assembled separately, and entered into a spreadsheet (Microsoft Excel® 2013) and tables were constructed on an MS-word document. The meta-analysis included only journal papers specific to Salmonella species or serotype or isolate. If the number of positive Salmonella isolates reported exceeds the sample size due to numbers harvested from cultures, the number was recorded at 100% prevalence.

2.6. Meta-Analysis. Meta-analysis was performed using Comprehensive Meta-Analysis Version 3.0 (CMA) program (https://www.meta-analysis.com/). The pooled prevalence was calculated using the random-effects model with a 95% confidence interval (CI). Cochran’s q statistic
The prevalence amongst the overall studies ranges between 43.2% and 95.8%.

Based on the provinces, the Eastern Cape (n = 2749) accounted for most of the samples, followed by KwaZulu-Natal (n = 2492), Gauteng (n = 1623), the North West (n = 691), and lastly by the Western Cape (n = 470). However, two studies collected a total of 180320 from all provinces, of which 180298 were from the animals and environment [30], and 22 pediatric wards (humans) [14]. The procedures used to isolate and identify bacterial species from the eligible studies were serotyping, microbiological culture, polymerase chain reaction (PCR), and MALDI-TOF-MS. A total of 10/30 (31.2%) studies used both culture and isolation and serotyping of Salmonella spp. for identification, 5/30 (16.6%) used the culture method only, while 1/30 (3.3%) studies used a combination of culture isolation, PCR, and MALDI-TOF-MS for Salmonella identification, and lastly, 15/30 (50%) studies utilized only PCR for Salmonella identification. Fifty-six different Salmonella serotypes were identified in this review. We observed that in 13 studies, some Salmonella isolates were not identified to the species or serotype level. A total of 999 nontyphoidal Salmonella isolates were detected from 14/30 (46.6%) studies, whereas 833/999 (83.4%) were identified as Salmonella Typhimurium and 166/999 (16.6%) as Salmonella Enteritidis.

3.3. Pooling and Heterogeneity of Overall Prevalence of Salmonella Serovars in Animals, Humans, and the Environment

3.3.1. Prevalence Based on Provinces, Study Years, Diagnostic Techniques, Provinces, and Nontyphoidal Salmonellae

An overall forest plot showing individual point estimates for the combined prevalence estimates of Salmonella serovars in animals, humans, and the environment is presented in Figures 2–4. Table 3 contains a summary of the subgroup analysis. Significant heterogeneity was seen in humans, animals, the environment, and animal/environment analysis. With regards to the environment/animals, a high degree of heterogeneity was observed [43.2% (95% CI: 11.2–82.1), \(Q = 1003.044, I^2 = 99.701, Q-P = 0.766 \)], followed by the environment with [56.5% (95% CI: 24.9–83.6), \(Q = 565.624, I^2 = 99.116, Q-P = 0.707 \)], then animals with [61.6% (95% CI: 39.3–79.8), \(Q = 624.205, I^2 = 97.917, Q-P = 0.307 \)], while the least observed was in humans with [79.6% (95% 9CI: 47.3–94.4), \(Q = 31.767, I^2 = 90.556, Q-P = 0.070 \) (Table 3).
Study (citation)	Province	Diagnosis method	Sample size	Isolates: (prevalence %)	Study population	Salmonella serovar
[15]	KwaZulu-Natal	Culture	37	Human	S. Enteritidis	
[25]	Western Cape	Culture	172	Animal/Environment	S. Hadar, S. Dublin, S. Enteritidis, S. Mbandaka, S. Saintpaul, S. Thompson, S. infantis, and S. Agona	
[12]	Gauteng	PCR	151	Animal	S. Heidelberg, S. Kibusi, S. Kottbus, S. Orion, S. Typhimurium, and S. Virchow, S. Muenchen, S. Typhimurium, S. Heidelberg, S. Billa, S. Typhimurium, S. Enteritidis, S. Newport, S. Heidelberg, S. Borgori, S. enterica serovar Paratyphi B, S. Tennessee, and S. Pullorum, S. Seftenberg, S. Montevideo, S. Ohio, S. Muenchen, S. Schwarzengrund, S. Anatum, S. Mbandaka, S. Hadar, S. Infantis, and S. Orion	
[26]	Gauteng	Culture	147	Environment	S. Muenchen, S. Typhimurium, S. Heidelberg, S. Billa	
[27]	Gauteng	MALDI-TOF-MS	491	Environmental	S. Typhimurium, S. Enteritidis, S. Newport, S. Heidelberg, S. Borgori, S. enterica serovar Paratyphi B, S. Tennessee, and S. Pullorum, S. Seftenberg, S. Montevideo, S. Ohio, S. Muenchen, S. Schwarzengrund, S. Anatum, S. Mbandaka, S. Hadar, S. Infantis, and S. Orion	
[28]	North West	PCR	274	Animal	S. Panama, S. typhi, S. Typhimurium, and untyped Salmonella	
[29]	Gauteng	Culture	39	Animal	S. Enterica	
[30]	South Africa	Culture	180298	Animals/Environment	S. Choleraesuis, S. Enteritidis, S. Eppendorf, S. Hadar, S. Isangi	
[18]	Mpumalanga	Culture	264	Environment	S. Panam, S. typhi, S. Typhimurium, and untyped Salmonella	
[13]	Eastern Cape	PCR	315	Human	S. Enterica	
[31]	Eastern Cape	PCR	384	Animal	S. Enterica	
[16]	Eastern Cape and KwaZulu-Natal	PCR	361	Environment	S. Typhimurium, S. Schwarzengrund, S. A. Arhus, S. Pomona, S. Senftenberg, and S. Techimani	
[32]	North West	PCR	32	Animal	S. Enterica	
[33]	Eastern Cape	PCR	500	Animal	S. Enterica	
* [14]	South Africa	Serotyping	22	Human	S. enterica, S. enteritidis	
[11]	North West	PCR	55	Animal	S. Enterica	
[34]	Limpopo, Eastern Cape, Northern Cape, North West and KwaZulu-Natal	Serotyping	1069	30 (3%)	Animal	
[35]	Eastern Cape	PCR	120	Animal	S. Enterica	
[36]	KwaZulu-Natal	PCR	48	Environment	S. Enterica	
[37]	KwaZulu-Natal	PCR	200	Animal	S. Enterica	
[38]	Limpopo	PCR	604	Animal/Environment	S. Enterica	
[39]	Western Cape	Culture	229	Animal	S. Enterica	
[17]	Gauteng	PCR	416	Environment	S. Enterica	
[40]	KwaZulu-Natal	PCR	777	Environment	S. Enterica	
[9]	Gauteng	Serotyping	50	Animal	S. Enterica	
[41]	Western Cape	Serotyping	69	Human/Environment	S. Typhimurium	
[42]	North West	Serotyping	150	Animal	S. Typhimurium	
[43]	North West	PCR	180	Animal	S. Typhimurium, S. Enteritidis, and S. Newport	
3.4. Dominant Serotypes and One Health Perspective.

Isolates from all nine provinces by Smith et al. [14] reported 46 NTS isolates. The study conducted by Smith et al. [14] from all nine provinces showed the presence of S. Typhimurium, S. Enteritidis, and S. Hadar in both animals, humans, and environment. In addition, S. Heidelberg, S. Newport, and S. Agona were also detected from both the animals and environmental samples. All the isolates from human, animals, and environment are listed in Table 2.

3.5. Publication Bias. The Begg and Mazumdar rank correlation test demonstrated no significant publishing bias for practically all parameters except for the studies conducted in Eastern Cape province, where both the asymmetry of the funnel plots and the P value of 0.045 indicated considerable bias (Table 3 and Figure 6).

4. Discussions

The data obtained from 30 published studies showed an overall prevalence of 66.3% for Salmonella serovars in South Africa which is higher than the findings of the studies conducted in Africa, the Middle East, North Africa, and Africa which reported the prevalence of Salmonella serovars at 5.7%, 8.8%, and 44.8%, respectively [20, 45, 46]. The PPE of Salmonella serovars was high in humans with 79.6%, animals with 61.6%, the environment with 56.5%, and the environment/animal with 43.2%. This is higher compared to a similar systematic review and meta-analysis conducted in Iran with 6.89% in animals [47], (6.6%) in humans in the Middle East and North Africa (MENA) [20], and human (8.4%) in sub-Saharan Africa [48]. The difference could be explained by microbiological diagnostic procedures employed, antibiotic resistance prevention and control practices, and differences in Salmonella serovars isolated. Contamination of food products and close contact with livestock animals could be a source of Salmonella transmission to humans [49].

Nontyphoidal Salmonella (NTS) infections induce gastroenteritis in people because the bacteria cause an invasive, extra-intestinal condition that leads to bacteraemia and localized systemic infections known as invasive NTS [50]. In this study, nine hundred and forty-one (941) serovars of S. Enteritidis and S. Typhimurium were identified as NTS. They were also identified as the most prevalent serotypes with Gauteng province having the highest number of NTS isolates. There were about 4.9% of NTS identified from the study conducted by Smith et al. [14] from all nine provinces. According to the systematic review conducted in the Middle

Table 2: Continued.

Study (citation)	Province	Diagnosis method	Sample size	Isolates: (prevalence %)	Study population	Salmonella serovar
[44]	Gauteng	Culture	99	9: (9%) Animal		S. Hadar, S. Heidelberg, S. Derby, S. Typhimurium, S. Westhampton, S. Schwarzengrund, S. Virchow, S. Reading, S. Anatum, S. Irumu, and S. Blockley

* Article does not specify sampled provinces. PCR = polymerase chain reaction; MALDI-TOF-MS = matrix assisted laser desorption ionization-time of flight mass spectrometry.
Meta Analysis

Study name	Event rate	Lower limit	Upper limit	Z-Value	p-Value
Adesiyun et al 2020	0.077	0.025	0.213	−4.135	0.000
Akinola et al 2019	0.991	0.873	0.999	3.315	0.001
Dlamini et al 2018	0.997	0.949	1.000	4.029	0.000
Igbinosa 2015	0.996	0.937	1.000	3.870	0.000
Iwu et al 2016	0.516	0.472	0.560	0.715	0.474
Jaja et al 2019	0.125	0.095	0.162	−12.611	0.000
Mathole et al 2017	0.028	0.020	0.040	−19.141	0.000
Mokgophi et al 2021	0.997	0.950	1.000	4.034	0.000
More et al 2017	0.998	0.966	1.000	4.329	0.000
Olobatoke, and Mulugeta, 2015	0.778	0.711	0.833	6.988	0.000
Ramatla et al 2019	0.442	0.365	0.521	−1.447	0.148
Ramatla et al 2020	0.383	0.301	0.473	−2.532	0.011
Van Nierop et al 2005	0.091	0.048	0.166	−6.586	0.000
Van Rensburg et al 1995	0.340	0.223	0.480	−2.222	0.026

[61.6% (95% CI: 39.3 – 79.8), Q=624.205, I²=97.917, Q-P=0.307]

Figure 2: Forest plot showing the pooled estimates of Salmonella serovars from animals. The squares demonstrate the individual point estimate. The diamond at the base indicates the pooled estimates from the overall studies.

Meta Analysis

Study name	Event rate	Lower limit	Upper limit	Z-Value	p-Value
Bisi-Johnson et al 2011	0.378	0.326	0.433	−4.294	0.000
Keddy et al 2009	0.998	0.966	1.000	4.332	0.000
Niehaus et al 2011	0.486	0.332	0.644	−0.164	0.869
Smith et al 2014	0.977	0.732	0.999	2.662	0.008

[79.6% (95% CI: 47.3 – 94.4), Q=31.767, I²=90.556, Q-P=0.070]

Figure 3: Forest plot showing the pooled estimates of Salmonella serovars from human. The squares demonstrate the individual point estimate. The diamond at the base indicates the pooled estimates from the overall studies.

Meta Analysis

Study name	Event rate	Lower limit	Upper limit	Z-Value	p-Value
Raseala et al 2020	0.940	0.913	0.959	13.330	0.000
Lyle et al 2015	0.497	0.417	0.577	−0.082	0.934
Odjadjare and Olaniran 2015	0.990	0.857	0.999	3.218	0.001
Kennedy et al 2020	0.121	0.100	0.146	−18.027	0.000
Loots et al 2021	0.114	0.081	0.158	−10.592	0.000
Gomba et al 2016	0.536	0.491	0.579	1.578	0.115

[56.5% (95% CI: 24.9 – 83.6), Q=565.624, I²=99.116, Q-P=0.707]

Figure 4: Forest plot showing the pooled estimates of Salmonella serovars from environment. The squares demonstrate the individual point estimate. The diamond at the base indicates the pooled estimates from the overall studies.
East and North Africa, *Salmonella* Typhimurium and Enteritidis were the most prevalent serotypes [20]. The *S. Typhimurium* and *S. Enteritidis* are among the top five most common serotypes reported in the United States [51], and they are associated with salmonellosis [52–54]. The current study recorded NTS *Salmonella* from both humans and the environment, and animals dominated by 86.8% of *S. Typhimurium*, followed by 13.2% of *S. Enteritidis*. Our study showed that the prevalence of NTS was higher in animal samples. By contrast with the findings in America [55], reported a high prevalence of NTS from the environmental samples. These findings quantify the existing NTS status in animal production while also emphasizing the main public health hazard associated with the presence of NTS in the animal production chain, which may eventually affect humans.

Table 3: Proportion of *Salmonella* serovars isolated from humans, the environment and animals, screening methods, study year, and sampling sites.

Risk factors	Number of studies	Sample size	Pooled estimates	Measure of heterogeneity	Publication bias			
			Number of positive	I² (95% CI)	Cochran’s Q	Heterogeneity I² (%)	Q-P	Begg and Mazumdar rank P value
Overall study				79.6 (47.3–94.4)	31.767	90.556	0.070	0.08712
Human	4	604	399	56.5 (24.9–83.6)	565.624	99.116	0.707	0.28651
Environment	6	1652	636	61.6 (39.3–79.8)	624.205	97.917	0.307	0.39215
Animal	14	4111	1733	11.2 (8–21.1)	1003.044	99.701	0.766	0.50000
Animal/human	1	200	146	—	—	—	—	—
Environment/animal	4	181435	9489	43.2 (11.2–82.1)	3641.54	99.607	0.328	0.00335
Environment/human	1	69	57	—	—	—	—	—
Study year								
1980–1990	1	69	57	—	—	—	—	—
1990–2000	1	50	17	—	—	—	—	—
2000–2010	3	501	681	95.8 (3.1–10)	61.139	96.729	0.351	0.30075
2010–2021	26	187549	11461	59.7 (40.3–76.4)	3641.54	99.607	0.328	0.00335
Diagnostic technique								
PCR	15	4219	2245	65.7 (51.1–77.8)	729.466	98.081	0.036	0.09075
Culture	8	181285	9841	41.5 (16.7–71.5)	493.370	98.581	0.596	0.50000
Serotyping	6	2367	1182	72.1 (34.9–92.5)	292.016	97.945	0.237	0.22634
MALDI-TOF-MS	1	491	39	—	—	—	—	—

Nontyphoidal *Salmonella*

	Number of	Sample size	Pooled estimates	Measure of heterogeneity	Publication bias			
	studies		Number of positive	I² (95% CI)	Cochran’s Q	Heterogeneity I² (%)	Q-P	Begg and Mazumdar rank P value
S. Typhimurium	13	817	885	65.6 (34.6–87.3)	75.133	96.007	0.322	0.50000
S. Enteritidis	7	124	166	12.7 (6.5–5.4)	75.133	96.007	0.322	0.50000

Provinces

	Number of	Sample size	Pooled estimates	Measure of heterogeneity	Publication bias			
	studies		Number of positive	I² (95% CI)	Cochran’s Q	Heterogeneity I² (%)	Q-P	Begg and Mazumdar rank P value
KwaZulu-Natal	6	2492	683	42.7 (14.7–76.3)	564.052	99.114	0.695	0.42549
Gauteng	8	1623	1452	65.6 (39.0–85.1)	273.845	97.444	0.247	0.50000
Eastern Cape	6	2749	800	35.6 (15.8–62.1)	454.089	98.899	0.285	0.04544
North-West	5	691	714	76.6 (52.1–90.8)	79.750	94.984	0.035	0.50000
Northern Cape	1	1069	30	—	—	—	—	—
Mpumalanga	1	264	36	—	—	—	—	—
Limpopo	2	1333	122	—	—	—	—	—
Western Cape	3	470	158	98.7 (68.3–100)	17.791	88.759	0.017	0.30075

PCR = polymerase chain reaction; MALDI-TOF-MS = matrix assisted laser desorption ionization-time of flight mass spectrometry.
Traditional microbiological methods such as culture isolation using the spread plate technique are still considered the gold standard for diagnostic tests since they efficiently allow the identification of different bacterial species [56]. Generally, the International Organization for Standardization (ISO-6579, 2002) recommends classical microbiological culture isolation for the identification of *Salmonella* spp. (ISO, 2002). About 41.5% of the studies included in this review used culture-based methods. The culturing method is time-consuming, labour-intensive, and sometimes has low sensitivity which makes it unsuitable for regular examination of large numbers of samples as opined by different researchers [11, 12, 17, 26, 37, 57]. Due to its low sensitivity, some studies combine the culturing method with other sensitive molecular techniques such as PCR [58]. The combination of traditional culture isolation and molecular methods accurately identify bacterial pathogens [58]. Moreover, research has also shown that using molecular methods (PCR) reveals more identification of bacterial pathogens than traditional culture-based methods [56, 58]. In this study, we observed that PCR appears to be the most utilized diagnostic method in the detection of *Salmonella* serovars/isolates with a prevalence of 72.1%, as employed in about 15 studies with over 4219 samples screened. However, research should also not exclude one or the other technique, as a polyphasic approach has proven ideal to investigate bacterial pathogens in microbiological practice [59]. All the studies included in this study were carried out in diverse ways, with some examining a high number of samples and others using various diagnostic approaches. The data on publication bias analysis leads us to conclude that numerous factors, including sample size and different diagnostic approaches could be responsible for the substantial heterogeneity between the findings.

This systematic review and meta-analysis comprised studies from different provinces, of which most of the studies (n = 26, 86.7%) were conducted between 2010 and 2021. Then followed by the period of the year 2000 to 2010 with 10% of the studies which screened 187547. From year period 1980–1990 and 1990–2000, PPE were not calculated because there was only one eligible study for each period with 501 samples screened [9, 41]. This low number of studies might be due to lack of facilities and funds for conducting research at that time or salmonellosis was a neglected disease in that period in South Africa. In terms of diagnostic methods, these two studies employed serotyping for detecting *Salmonella* serovars/isolates. The Free State province was not represented in the datasets due to unavailable published data on the prevalence of *Salmonella* spp. Gauteng appeared to be a province with high number of published articles which may be connected with the availability of resources to conduct research.

Our analysis indicates an increase in the number of samples tested from 1980 to 2021. These findings could be attributed to higher consciousness by researchers and the health sector about zoonotic diseases which included *Salmonella* serovars as well as available advanced equipment to

Table 4: Published articles of occurrence of nontyphoidal *Salmonella* from human, environment, and animals.

Province	NTS isolates	S. Typhimurium	S. Enteritidis	Studies
KwaZulu-Natal	19	1: (5%)	18: (95%)	[15, 34]
Gauteng	796	710: (89%)	86: (11%)	[9, 12, 17, 26, 42, 44]
Eastern Cape	1	1: (100%)		[34]
North West	72	53: (74%)	19: (26%)	[11, 28, 34, 43]
Northern Cape	6	5: (83%)	1: (17%)	[13, 34]
Mpumalanga	—			
Limpopo	1	1: (100%)		[34]
Western Cape	—			

NTS = nontyphoidal *Salmonella*.

Figure 5: Venn diagram showing the shared isolates between (a) animals, (b) humans, and (c) the environment.

Figure 6: Funnel plot with 95% confidence limits of the pooled prevalence of the studies conducted in Eastern Cape province.
conducted research as the majority of recent studies (2010–2021) used molecular methods such as PCR, as compared to the studies of the period 1980 to 2000. Therefore, health officials/authorities should be concerned about the rising incidence of these bacteria.

According to the World Health Organization (WHO), food safety, zoonotic disease control, laboratory services, neglected tropical diseases, environmental health, and antimicrobial resistance are among the areas of work where a “One Health” approach is particularly pertinent (https://www.euro.who.int/en/home). Therefore, the presence of zoonotic isolates, namely, S. Typhimurium, S. Enteritidis, and S. Hadar in both animals and humans, and the environment should be taken into consideration in South Africa. The two most commonly reported serotypes of non-typhoidal Salmonella are S. Typhimurium and S. Enteritidis. NTS is a common cause of invasive bacterial disease and is linked to death. Transmission of Salmonella isolates includes animals, animal products, water, and infected humans [14]. Furthermore, S. Heidelberg, S. Newport, and S. Agona were also detected from both the animals and the environmental samples. This indicates that there is the possibility of ongoing circulation of the serovars.

4.1. Significance/Strengths of the Study. This study has a considerable number of strengths including: (1) the present meta-analysis provides the estimates for the prevalence of Salmonella on animals, human, and the environment in South Africa and revealed that there are some provinces with few/no studies conducted. (2) This study selected high-quality peer-reviewed studies to give an overview of unbiased data on the prevalence of Salmonella species isolated from humans, the environment, and animals in South Africa. (3) There are no human studies published in the North West, Limpopo, Gauteng, Mpumalanga, and Northern Cape provinces. (4) Additionally, this study demonstrated that Salmonella serovars infect both humans and animals and have been detected in the environmental samples. This observation suggests the need for a consolidated “One Health” approach from the ecological, human, and animal health sectors.

5. Limitations of the Study

Several limitations have been identified which include the following: (1) the majority of the studies included samples between 1980 and 2021; (2) the number of articles from some provinces (Western Cape, Eastern Cape, Northern Cape, North West, KwaZulu-Natal, Gauteng, Limpopo, and Mpumalanga) was unusually high, which may have influenced the overall estimate, whilst provinces such as Free State, Limpopo, Mpumalanga, and Northern Cape were underrepresented; (3) some studies reported the total number of isolates from cultures without showing the number of individual serotypes; (4) the studies included in our analyses showed a high level of heterogeneity, hence readers should exercise caution when interpreting the pooled analysis and subgroup; (5) our bias assessment revealed the overall risk of bias from sample size and different diagnostic methods used and sample selection; (6) few reports from humans were observed whereby only four studies were undertaken in Gauteng, Eastern Cape, KwaZulu-Natal, and from all the provinces; and (7) PPE of Salmonella in animal/human, and environment/human were not calculated because there are single reports on each.

6. Conclusion

Our systematic review and meta-analysis showed the prevalence of Salmonella serovars from animals, humans, and the environment in South Africa. This study highlights the huge knowledge gap on salmonellosis in this country. There are significant gaps in surveillance and a lack of published studies on the prevalence of Salmonella spp. in some provinces like Free State province. The results demonstrated that a high prevalence of Salmonella serovars is noticeable in animals rather than in humans and the environment. These emphasize the main public health hazard associated with the presence of Salmonella serovars, especially NTS in the animal production chain, which may eventually affect humans. Several studies had methodological data gaps, which cast doubt on their validity and made comparisons difficult. The fact that Salmonella serovars infect both humans and animals and have been detected in environmental samples means there is a need for a consolidated “One Health” approach from the ecological, human, and animal health sectors in terms of epidemiological, therapeutic, and policy formulation research.

Data Availability

The datasets generated and analysed will be available on request to the corresponding author.

Conflicts of Interest

The authors state that there are no conflicts of interest.

Authors’ Contributions

All authors made substantial contributions to the conception and design of the study, acquisition of data, or analysis and interpretation of data, and took part in drafting the manuscript or revising it. All authors had read and approved the final version of the manuscript and agreed to submit it to the current journal.

Acknowledgments

This review received no external funding.

Supplementary Materials

Table S1. Checklist of items to include when reporting a systematic review or meta-analysis. (Supplementary Materials)
References

[1] G. Mengistu, G. Dejenu, C. Tesema et al., “Epidemiology of streptomycin resistant Salmonella from humans and animals in Ethiopia: a systematic review and meta-analysis,” PLoS One, vol. 15, no. 12, Article ID e0244557, 2020.

[2] O. Gal-Mor, “Persistent infection and long-term carriage of typhoidal and nontyphoidal Salmonellae,” Clinical Microbiology Reviews, vol. 32, no. 1, 2019.

[3] A. H. Havelaar, M. D. Kirk, P. R. Torgerson et al., “World health organization global estimates and regional comparisons of the burden of foodborne disease in 2010,” PLoS Medicine, vol. 12, no. 12, Article ID e1001923, 2015.

[4] A. Chlebicz and K. ´Sli˙zewska, “Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: a review,” International Journal of Environmental Research and Public Health, vol. 15, no. 5, p. 863, 2018.

[5] A. Bakhans and C. Fellstr ¨om, “Rodents on pig and chicken farms—a potential threat to human and animal health,” Infection Ecology & Epidemiology, vol. 2, no. 1, p. 17093, 2019.

[6] T. Z. Salehi, M. A. Badouei, O. Madagar, S. R. Ghiasi, and I. A. Tamai, “Shepherd dogs as a common source for Salmonella enterica serovar reading in garmsar, Iran,” Turkish Journal of Veterinary and Animal Sciences, vol. 37, no. 1, pp. 102–105, 2013.

[7] A. R. Jambalang, E. M. Buys, and F. S. Botha, “Bacterial species from retailed poultry eggs in Tshwane, South Africa: implication for consumers,” South African Journal of Science, vol. 113, no. 11-12, pp. 1–7, 2017.

[8] K. M. Thomas, W. A. de Ganville, G. C. Barker et al., “Prevalence of Campylobacter and Salmonella in African food animals and meat: a systematic review and meta-analysis,” International Journal of Food Microbiology, vol. 315, Article ID 108382, 2020.

[9] I. B. J. Van Rensburg, J. E. Jardine, J. H. Carstens, and M. L. Van der Walt, “The prevalence of intestinal Salmonella infection in horses submitted for necropsy,” Onderstepoort Journal of Veterinary Research, vol. 62, no. 1, pp. 65–67, 1995.

[10] B. S. Dlamini, P. K. Montso, A. Kumar, and C. N. Ateba, “Distribution of virulence factors, determinants of antibiotic resistance and molecular fingerprinting of Salmonella species isolated from cattle and beef samples: suggestive evidence of animal-to-meat contamination,” Environmental Science and Pollution Research, vol. 25, no. 32, pp. 32694–32708, 2018.

[11] S. A. Akinola, M. Mwanza, and C. N. Ateba, “Occurrence, genetic diversities and antibiotic resistance profiles of Salmonella serovars isolated from chickens,” Infection and Drug Resistance, vol. 12, pp. 3327–3342, 2019.

[12] T. M. Mokgophi, N. Gcebe, F. Fasina, and A. A. Adesiyan, “Antimicrobial resistance profiles of Salmonella isolates on chickens processed and retailed at outlets of the informal market in Gauteng Province, South Africa,” Pathogens, vol. 10, no. 3, p. 273, 2021.

[13] M. A. Bisi-Johnson, C. L. Obi, S. D. Vasaikar, K. A. Baba, and T. Hattori, “Molecular basis of virulence in clinical isolates of Escherichia coli and Salmonella species from a tertiary hospital in the Eastern Cape, South Africa,” Gut Pathogens, vol. 3, no. 1, pp. 1–8, 2011.

[14] A. M. Smith, M. A. Mthanti, C. Haumann et al., “Nosocomial outbreak of Salmonella enterica serovar Typhimurium primarily affecting a pediatric ward in South Africa in 2012,” Journal of Clinical Microbiology, vol. 52, no. 2, pp. 627–631, 2014.

[15] A. J. Niehaus, T. Apalata, Y. M. Coovadia, A. M. Smith, and P. Moodley, “An outbreak of foodborne salmonellosis in rural KwaZulu-Natal, South Africa,” Foodborne Pathogens and Disease, vol. 8, no. 6, pp. 693–697, 2011.

[16] T. P. Mthembu, O. T. Zishiri, and M. E. El Zowalaty, “Detection and molecular identification of Salmonella virulence genes in livestock production systems in South Africa,” Pathogens, vol. 8, no. 3, 2019.

[17] C. M. Rasela, M. D. M. Ekwanzala, and M. N. B. Momba, “Shared extended-spectrum β-Lactamase-producing Salmonella serovars between agricultural and aquatic environments revealed through invA amplicon sequencing,” Microorganisms, vol. 8, no. 12, p. 1898, 2020.

[18] M. Loots, L. Chidamba, and L. Korsten, “Microbial load and prevalence of escherichia coli and Salmonella spp. in macadamia nut production systems,” Journal of Food Protection, vol. 84, no. 6, pp. 1088–1096, 2021.

[19] K. J. Cummings, L. D. Warnick, M. A. Davis et al., “Farm animal contact as risk factor for transmission of bovine-associated SalmonellaSubtypes,” Emerging Infectious Diseases, vol. 18, no. 12, pp. 1929–1936, 2012.

[20] R. H. Al-Rifai, K. Chaabna, T. Denagamage, and W. Q. Alali, “Prevalence of enteric non-typhoidal Salmonella in humans in the Middle East and North Africa: a systematic review and meta-analysis,” Zoonoses and Public Health, vol. 66, no. 7, pp. 701–728, 2017.

[21] T. Ramatla, M. Tawana, T. E. Onyiche, K. E. Lekota, and O. Thekiso, “Prevalence of antibiotic resistance in Salmonella serotypes concurrently isolated from the environment, animals, and humans in South Africa: a systematic review and meta-analysis,” Antibiotics, vol. 10, no. 12, p. 1435, 2021.

[22] B. Tack, J. Vanaenrode, J. V. Verbakel, J. Toelen, and J. Jacobs, “Invasive non-typhoidal Salmonella infections in sub-Saharan Africa: a systematic review on antimicrobial resistance and treatment,” BMC Medicine, vol. 18, no. 1, pp. 212–222, 2020.

[23] I. V. Uche, C. A. MacLennan, and A. Saul, “A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014),” PLoS Neglected Tropical Diseases, vol. 11, no. 1, Article ID e000518, 2017.

[24] M. J. Page, D. Moher, P. M. Bossuyt et al., “PRISMA 2020 Explanation and elaboration: updated guidance and examples for reporting systematic reviews,” BMJ, vol. 372, 2021.

[25] P. A. Gouws and V. Brozel, “Antimicrobial resistance of Salmonella isolates associated with retail chicken and a poultry abattoir,” South African Journal of Science, vol. 96, no. 5, pp. 254–256, 2000.

[26] C. H. Lyle, C. H. Annandale, J. Gouws, and P. S. Morley, “Comparison of two culture techniques used to detect environmental contamination with Salmonella enterica in a large-animal hospital,” Journal of the South African Veterinary Association, vol. 86, no. 1, pp. E1–E5, 2015.

[27] A. Gomba, L. Chidamba, and L. Korsten, “Prevalence and serovar diversity of Salmonella spp. in primary horticultural fruit production environments,” Food Control, vol. 69, pp. 13–19, 2016.

[28] T. Ramatla, M. O. Taioe, O. M. M. JQ_hekisoe, and K. Malepe, and L. Simanda, “Food safety risk posed to...
consumers of table eggs from layer farms in Gauteng Province, South Africa: prevalence of Salmonella species and Escherichia coli, antimicrobial residues, and antimicrobial resistant bacteria.” Journal of Food Safety, vol. 40, no. 3, Article ID e12783, 2020.

[30] K. Magwedere, D. Rauff, G. De Klerk, K. H. Keddy, and F. Dziva, “Incidence of nontyphoidal Salmonella in food-producing animals, animal feed, and the associated environment in South Africa 2012–2014,” Clinical Infectious Diseases, vol. 61, no. 4, pp. S283–S289, 2015.

[31] I. F. Jaja, N. L. Bhembe, E. Green, J. Ogotu, and V. Muchenje, “Molecular characterisation of antibiotic-resistant Salmonella enterica isolates recovered from meat in South Africa,” Acta Tropica, vol. 190, pp. 129–136, 2019.

[32] C. Njie Ateba and B. Mochaiwa, “Use of invA Gene specific PCR analysis for the detection of virulent Salmonella species in beef products in the North West province, South Africa,” Journal of Food and Nutrition Research and Nutrition Research, vol. 2, no. 6, pp. 294–300, 2014.

[33] C. J. Iwu, B. C. Iweriebor, L. C. Obi, A. K. Basson, and A. I. Okoh, “Multidrug-resistant Salmonella isolates from swine in the Eastern Cape province, South Africa,” Journal of Food Protection, vol. 79, no. 7, pp. 1234–1239, 2016.

[34] M. A. Mattheo, F. C. Muchadeyi, K. Mladla, D. P. Malatji, E. F. Dzomba, and E. Madoroba, “Presence, distribution, serotypes and antimicrobial resistance profiles of Salmonella among pigs, chickens and goats in South Africa,” Food Control, vol. 72, pp. 219–224, 2017.

[35] I. H. Igbinoso, “Prevalence and detection of antibiotic-resistant determinant in Salmonella isolated from food-producing animals,” Tropical Animal Health and Production, vol. 47, no. 1, pp. 37–43, 2015.

[36] E. Odjadjare and A. Olaniran, “Prevalence of antimicrobial resistant and virulent Salmonella spp. in treated effluent and receiving aquatic milieu of wastewater treatment plants in Durban, South Africa,” International Journal of Environmental Research and Public Health, vol. 12, no. 8, pp. 9692–9713, 2015.

[37] O. T. Zishiri, N. Mkhize, and S. Mukaratirwa, “Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil,” Onderstepoort Journal of Veterinary Research, vol. 83, no. 1, pp. a1067–11, 2016.

[38] E. Madoroba, D. Kapeta, and A. K. Gelaw, “Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa,” Onderstepoort Journal of Veterinary Research, vol. 83, no. 1, pp. a1109–8, 2016.

[39] E. Moré, T. Ayats, P. G. Ryan et al., “Seabirds (Laridae) as a source of Campylobacter spp., Salmonella spp. and antimicrobial resistance in South Africa,” Environmental Microbiology, vol. 19, no. 10, pp. 4164–4176, 2017.

[40] B. Kennedy, C. O. Shobo, O. T. Zishiri, and L. A. Bester, “Surveillance of Salmonella spp. in the environment of public hospitals in KwaZulu-Natal, South Africa,” Journal of Hospital Infection, vol. 105, no. 2, pp. 205–212, 2020.

[41] M. E. Popkiss, “Typhoid fever: a report on a point-source outbreak of 69 cases in cape town,” South African Medical Journal = Suid-Afrikaanse Tydskrif vir Geneeskunde, vol. 57, no. 9, pp. 325–329, 1980.
identified from houseflies in different human and animal settings: a systematic review and meta-analysis,” Veterinary Medicine and Science, vol. 8, pp. 1–18, 2021.

[57] X.-J. Tang, Z. Yang, X.-B. Chen, W.-F. Tian, C.-N. Tu, and H.-B. Wang, “Verification and large scale clinical evaluation of a national standard protocol for Salmonella spp./Shigella spp. screening using real-time PCR combined with guided culture,” Journal of Microbiological Methods, vol. 145, pp. 14–19, 2018.

[58] F. Adzitey, N. Huda, and G. R. R. Ali, “Molecular techniques for detecting and typing of bacteria, advantages and application to foodborne pathogens isolated from ducks,” 3 Biotech, vol. 3, no. 2, pp. 97–107, 2013.

[59] K. E. Lekota, A. Hassim, J. Mafofo et al., “Polyphasic characterization of Bacillus species from anthrax outbreaks in animals from South Africa and Lesotho,” The Journal of Infection in Developing Countries, vol. 10, no. 08, pp. 814–823, 2016.