SHIFT OPERATORS AND TORIC MIRROR THEOREM

HIROSHI Iritani

Abstract. We give a new proof of Givental’s mirror theorem for toric manifolds using the shift operator of equivariant parameters. The proof is almost tautological: it gives an A-model construction of the I-function and the mirror map. It also works for non-compact or non-semipositive toric manifolds.

1. Introduction

In 1995, Seidel [Sei97] introduced an invertible element of quantum cohomology associated to a Hamiltonian circle action. This has had many applications in symplectic topology. Seidel himself used it to construct non-trivial elements of π_1 of the group of Hamiltonian diffeomorphisms. McDuff-Tolman [MT06] calculated Seidel’s elements in a more general setting and obtained Batyrev’s ring presentation of quantum cohomology of toric manifolds. Their method, however, does not yield explicit structure constants of quantum cohomology, i.e. genus-zero Gromov-Witten invariants.

Recently, Braverman, Maulik, Okounkov and Pandharipande [OP10, BMO11, MO12] introduced a shift operator of equivariant parameters for equivariant quantum cohomology. Their shift operators reduce to Seidel’s invertible elements under the non-equivariant limit. In this paper, we show that equivariant genus-zero Gromov-Witten invariants of toric manifolds are reconstructed only from formal properties of shift operators; more precisely we recover Givental’s mirror theorem for toric manifolds. In other words, the equivariant quantum topology of toric manifolds is determined by its classical counterpart.

Recall that a Givental-style mirror theorem for toric manifolds is stated as follows:

Theorem 1.1 (Giv98b, LLY99, Iri08, Bro09, see §4.2 for more details). Let X_Σ be a semi-projective toric manifold having a torus fixed point. Let $I(y, z)$ be the cohomology-valued hypergeometric series defined by

$$I(y, z) = z \sum_{i=1}^{m} u_i \log y / z \sum_{d \in \text{Eff}(X_\Sigma)} \left(\prod_{i=1}^{m} \frac{\prod_{c=-\infty}^{0} (u_i + cz)}{\prod_{c=-\infty}^{u_i -d} (u_i + cz)} \right) Q^d y_1^{u_1-d} \cdots y_m^{u_m-d}$$

where u_i, $i = 1, \ldots, m$ is the class of a prime toric divisor. Then $I(y, -z)$ lies in Givental’s Lagrangian cone L_{X_Σ} associated to X_Σ.

We prove this theorem in the following way. The Givental cone L_X [Giv04] for a smooth T-variety X is an infinite dimensional Lagrangian submanifold of the symplectic vector space (the so-called Givental space)

$$\mathcal{H}_X = H_T^*(X) \otimes_{H_T^*(pt)} \text{Frac}(H_T^*(pt)[z])$$
and encodes all genus-zero Gromov-Witten invariants. By general theory, the shift operator associated to a \mathbb{C}^\times-subgroup $k: \mathbb{C}^\times \to T$ defines a vector field on \mathcal{L}_X:

$$L_X \ni f \mapsto z^{-1} S_k f \in T_f L_X$$

where S_k denotes the shift operator acting on the Givental space H_X. The operator S_k is determined only by classical equivariant topology of X (see Definition 3.13). For toric manifolds, we have a shift operator S_i for each torus-invariant prime divisor. Then we identify the I-function $I(y, z)$ with an integral curve of the vector fields $f \mapsto z^{-1} S_i f$.

Theorem 1.2. Givental’s I-function $I(y, z)$ is a unique integral curve which satisfies the differential equation:

$$\frac{\partial I(y, z)}{\partial y_i} = z^{-1} S_i I(y, z) \quad i = 1, \ldots, m$$

and is of the form $I(y, z) = ze^{\sum_{i=1}^m u_i \log y_i / z} (1 + \sum_{d \in \text{Eff}(X, \Sigma) \setminus \{0\}} I_d Q^d y^d)$, where we set $y^d = \prod_{i=1}^m y_i^{u_i \cdot d}$.

The I-function associates a mirror map $y \mapsto \tau(y) \in H_T^2(X)$ via Birkhoff factorization [CG07, Iri08]. As a corollary to our proof, we obtain the following relationship between the equivariant Seidel elements $S_i(\tau)$ and the mirror map. This generalizes a previous result [GI12] in the semipositive case obtained in joint work with Gonzalez.

Theorem 1.3. The mirror map $\tau(y)$ associated to the I-function is a unique integral curve which satisfies the differential equation

$$\frac{\partial \tau(y)}{\partial y_i} = S_i(\tau(y)) \quad i = 1, \ldots, m$$

and is of the form $\tau(y) = \sum_{i=1}^m u_i \log y_i + \sum_{d \in \text{Eff}(X, \Sigma) \setminus \{0\}} \tau_d Q^d y^d$.

The mirror map and the I-function are related by the formula

$$I(y, z) = z M(\tau(y), z) \Upsilon(y, z)$$

where $M(\tau, z)$ is a fundamental solution for the quantum differential equation (Proposition 2.2) and $\Upsilon(y, z)$ is an $H_T^2(X)[z]$-valued function. We can also characterize $\Upsilon(y, z)$ by the shift operator $S_i(\tau)$ acting on quantum cohomology via the differential equation:

$$\frac{\partial \Upsilon(y, z)}{\partial y_i} = [z^{-1} S_i(\tau(y)) \Upsilon(y, z)]_+.$$
This paper is structured as follows. In §2, we review equivariant quantum cohomology and in §3, we study shift operators for big quantum cohomology. In §4, we prove a mirror theorem for toric manifolds.

1.1. Notation. Unless otherwise stated, we consider cohomology groups with complex coefficients. We use the following notation throughout the paper.

- \(T \cong (\mathbb{C}^\times)^m \): an algebraic torus;
- \(X \): a smooth \(T \)-variety; \(X_\Sigma \): a smooth toric variety associated to a fan \(\Sigma \);
- \(\hat{T} = T \times \mathbb{C}^\times \);
- \(\lambda \in \text{Lie}(T) \), \(z \in \text{Lie}(\mathbb{C}^\times) \): equivariant parameters for \(\hat{T} \);
- \(H^*_T(X)_{\text{loc}} := H^*_{\hat{T}}(X) \otimes_{H^*_T(\text{pt})} \text{Frac}(H^*_T(\text{pt})) = H^*_{\hat{T}}(X) \otimes_{H^*_T(\text{pt})} \text{Frac}(H^*_T(\text{pt})[z]) \): the Givental space.

Acknowledgments. The author thanks Tom Coates, Alessio Corti, Eduardo Gonzalez, Hiraku Nakajima and Hsian-Hua Tseng for very helpful discussions on shift operators, Seidel representations and toric mirror symmetry. This work is supported by JSPS Kakenhi Grant Number 25400069.

2. Equivariant Quantum Cohomology

2.1. Hypotheses on a \(T \)-Space. Let \(T \cong (\mathbb{C}^\times)^m \) be an algebraic torus. Let \(X \) be a smooth variety over \(\mathbb{C} \) equipped with an algebraic \(T \)-action. We assume the following conditions:

1. \(X \) is semi-projective, i.e. the natural map \(X \to X_0 := \text{Spec} \, H^0(X, \mathcal{O}) \) is projective;
2. all \(T \)-weights appearing in the \(T \)-representation \(H^0(X, \mathcal{O}) \) are contained in a strictly convex cone in \(\text{Hom}(T, \mathbb{C}^\times) \otimes \mathbb{R} \) and \(H^0(X, \mathcal{O})^T = \mathbb{C} \).

A \(T \)-space \(X \) with these assumptions has nice cohomological properties, see, e.g. [HRV13]. These conditions ensure that the \(T \)-fixed set \(X^T \) is projective. We also note the following:

Proposition 2.1. A smooth \(T \)-variety \(X \) satisfying the conditions \([1], (2)\) is equivariantly formal, i.e. \(H^*_T(X) \) is a free module over \(H^*_T(\text{pt}) \) and there is a non-canonical isomorphism \(H^*_T(X) \cong H^*(X) \otimes H^*_T(\text{pt}) \) as an \(H^*_T(\text{pt}) \)-module.

Proof. We use the argument of Kirwan [Kir84, Proposition 5.8] (see also [Nak99, §5.1]). Choose a one-parameter subgroup \(k : \mathbb{C}^\times \to T \) such that \(k \) is negative on every non-zero weight of \(H^0(X, \mathcal{O}) \). This defines a \(\mathbb{C}^\times \)-action on \(X \). Let \(L \to X \) be a very ample line bundle. The \(\mathbb{C}^\times \)-action on \(X \) lifts to a \(\mathbb{C}^\times \)-linearization on \(L \), possibly after replacing \(L \) with its power \(L \otimes 1 \) [Dol03, Corollary 7.2]. Then \(L \) defines a \(\mathbb{C}^\times \)-equivariant closed embedding \(X \hookrightarrow X_0 \times \mathbb{P}^n \), where \(\mathbb{P}^n \) is equipped with a linear \(\mathbb{C}^\times \)-action. By assumption, we can embed the affine variety \(X_0 = \text{Spec}(H^0(X, \mathcal{O})) \) equivariantly into a \(\mathbb{C}^\times \)-representation \(V \) which has only positive weights. Thus we have a \(\mathbb{C}^\times \)-equivariant closed embedding \(X \hookrightarrow V \times \mathbb{P}^n \). The associated \(S^1 \)-action on \(V \times \mathbb{P}^n \) admits, with respect to the standard Kähler metric, a moment map \(\mu \) which is proper and bounded

\footnote{We use the (usual) convention that \(t \in \mathbb{C}^\times \) acts on functions by \(f(x) \mapsto f(t^{-1}x) \).}
from below. These properties allow us to use Morse theory for the moment map \(\mu|_X \). The argument in [Kir84, Nak99] shows that \(\mu|_X \) is a perfect Bott-Morse function and \(X \) is equivariantly formal. \(\square \)

2.2. Gromov-Witten Invariants. For a second homology class \(d \in H_2(X, \mathbb{Z}) \) and a non-negative integer \(n \geq 0 \), we denote by \(X_{0,n,d} \) the moduli stack of genus-zero stable maps to \(X \) of degree \(d \) with \(n \) marked points. The \(T \)-action on \(X \) induces a \(T \)-action on \(X_{0,n,d} \). It has a virtual fundamental class \([X_{0,n,d}]_{\text{vir}} \in H_* (X_{0,n,d}, \mathbb{Q}) \) of dimension \(D = \dim X + n - 3 + c_1(X) \cdot d \). For equivariant cohomology classes \(\alpha_1, \ldots, \alpha_n \in H^*_T (X, \mathbb{Q}) \) and non-negative integers \(k_1, \ldots, k_n \), the genus-zero \(T \)-equivariant Gromov-Witten invariant is defined by

\[
\langle \alpha_1 \psi^{k_1}, \ldots, \alpha_n \psi^{k_n} \rangle^{X_T}_{0,n,d} = \int_{[X_{0,n,d}]_{\text{vir}}} \prod_{i=1}^n \text{ev}_i^* (\alpha_i) \psi_i^{k_i}.
\]

Here \(\text{ev}_i: X_{0,n,d} \to X \) is the evaluation map at the \(i \)th marked point and \(\psi_i \) denotes the equivariant first Chern class of the universal cotangent line bundle \(L_i \) over \(X_{0,n,d} \). When the moduli space \(X_{0,n,d} \) is not compact, the right-hand side is defined via the Atiyah-Bott localization formula [AB84, GPP99] and belongs to the fraction field \(\text{Frac} (H^*_T (pt)) \).

2.3. Quantum Cohomology. Let \(\text{Eff}(X) \subset H_2(X, \mathbb{Z}) \) denote the semigroup of homology classes of effective curves. We write \(Q \) for the Novikov variable and define \(M[Q] \) to be the space of formal power series:

\[
M[Q] = \left\{ \sum_{d \in \text{Eff}(X)} a_d Q^d : a_d \in M \right\}
\]

with coefficients in a module \(M \). When \(M \) is a ring, \(M[Q] \) is also a ring. Let \((\cdot, \cdot) \) denote the \(T \)-equivariant Poincaré pairing on \(H^*_T (X) \):

\[
(\alpha, \beta) = \int_X \alpha \cup \beta.
\]

If \(X \) is not compact, we define the right-hand side via the localization formula. Therefore \((\cdot, \cdot) \) takes values in \(\text{Frac} (H^*_T (pt)) \) in general. Let \(\{ \phi_i \}_{i=0}^N \) be a basis of \(H^*_T (X) \) over \(H^*_T (pt) \). We write \(\{ \tau^i \}_{i=0}^N \) for the dual co-ordinates on \(H^*_T (X) \) and \(\tau = \sum_{i=0}^N \tau^i \phi_i \) for a general point on \(H^*_T (X) \). The (big) quantum product \(\ast \) is defined by the formula

\[
(\phi_i \ast \phi_j, \phi_k) = \sum_{d \in \text{Eff}(X)} \sum_{n=0}^\infty \frac{Q^d}{n!} \langle \phi_i, \phi_j, \phi_k, \tau, \ldots, \tau \rangle^{X_T}_{0,n+3,d}.
\]

We note that the quantum product \(\phi_i \ast \phi_j \) is defined without localization:

\[
\phi_i \ast \phi_j \in H^*_T (X)[Q][\tau^0, \ldots, \tau^N].
\]

In fact, \(\phi_i \ast \phi_j \) can be written as the push-forward

\[
\sum_{d \in \text{Eff}(X)} \sum_{n=0}^\infty \frac{Q^d}{n!} \text{PD} \text{ev}_3^* \left(\text{ev}_1^*(\phi_i) \text{ev}_2^*(\phi_j) \prod_{l=1}^{n+3} \text{ev}_l^*(\tau) \cap [X_{0,n+3,d}]_{\text{vir}} \right).
\]
along the proper evaluation map ev_3, and hence the localization is not necessary. The properness of ev_3 follows from the assumption that X is semi-projective.

2.4. Quantum Connection and Fundamental Solution. The quantum connection is the operator

$$\nabla_i : H^*_T(X)[z][\tau^0, \ldots, \tau^N] \to z^{-1} H^*_T(X)[z][\tau^0, \ldots, \tau^N]$$

defined by

$$\nabla_i = \frac{\partial}{\partial \tau^i} + \frac{1}{z}(\phi_i \ast).$$

The quantum connection has a parameter z: we identify it with the equivariant parameter for an additional \mathbb{C}^\times-action. Set $\hat{T} = T \times \mathbb{C}^\times$ and consider the \hat{T}-action on X induced by the projection $\hat{T} \to T$. Then we have $H^*_\hat{T}(X) \cong H^*_T(X)[z]$. The quantum connection is known to be flat, and admits a fundamental solution:

$$M(\tau) : H^*_\hat{T}(X)[Q][\tau^0, \ldots, \tau^N] \to H^*_\hat{T}(X)_{loc}[Q][\tau^0, \ldots, \tau^N]$$

satisfying the quantum differential equation:

$$z \frac{\partial}{\partial \tau^i} M(\tau) = M(\tau)(\phi_i \ast)$$

or equivalently $(\partial/\partial \tau^i) \circ M(\tau) = M(\tau) \circ \nabla_i$, where $H^*_\hat{T}(X)_{loc} := H^*_\hat{T}(X) \otimes H^*_\hat{T}(pt)$ is the localized equivariant cohomology. The following proposition is well-known, see [Giv98a, §1], [Pan98, Proposition 2].

Proposition 2.2. A fundamental solution is given by

$$(M(\tau)\phi_i, \phi_j) = (\phi_i, \phi_j) + \sum_{d \in \text{Eff}(X), n \geq 0 \atop (d,n) \neq (0,0)} \frac{Q^d}{n!} \left< \phi_i, \tau, \ldots, \tau, \frac{\phi_j}{z - \psi} \right>_{0,n+2,d}^{X,T}.$$

Remark 2.3. Expanding $1/(z - \psi) = \sum_{n=0}^{\infty} \psi^n/z^{n+1}$, we find that $M(\tau)\phi_i$ takes values in $H^*_\hat{T}(X)[z^{-1}]$. By the localization calculation, it also follows that $M(\tau)\phi_i$ takes values in $H^*_\hat{T}(X)_{loc}$. The localized \hat{T}-equivariant cohomology $H^*_\hat{T}(X)_{loc}$ is also called the Givental space [Giv04].

3. Shift Operator

The shift operator for equivariant quantum cohomology has been introduced by Okounkov-Pandharipande [OP10], Braverman-Maulik-Okounkov [BMO11] and Maulik-Okounkov [MO12]. We discuss its (straightforward) extension to the big quantum cohomology.
3.1. Twisted Homomorphism. We write \(\hat{T} = T \times \mathbb{C}^x \). For a group homomorphism \(k: \mathbb{C}^x \to T \), we consider the \(\hat{T} \)-action \(\rho_k \) on \(X \) defined by
\[
\rho_k(t, u)x = tu^k \cdot x
\]
where \((t, u) \in \hat{T}, x \in X \) and \(u^k \in T \) denotes the image of \(u \in \mathbb{C}^x \) under \(k \). Let \(\lambda \in \text{Lie}(T) \) denote the equivariant parameter for \(T \) and let \(z \in \text{Lie}(\mathbb{C}^x) \) denote the equivariant parameter for \(\mathbb{C}^x \). The identity map \(\text{id}: (X, \rho_0) \to (X, \rho_k) \) is equivariant with respect to the group automorphism
\[
\phi_k: \hat{T} \to \hat{T}, \quad \phi_k(t, u) = (tu^{-k}, u).
\]
Therefore the identity map induces an isomorphism
\[
\Phi_k: H^*_x(T, \rho_0)(X) \cong H^*_x(T, \rho_k)(X)
\]
such that
\[
(3.1) \quad \Phi_k(f(\lambda, z)\alpha) = f(\lambda + kz, z)\Phi_k(\alpha)
\]
where \(\alpha \in H^*_x(T, \rho_0)(X) \) and \(f(\lambda, z) \in H^*_T(\text{pt}) \) is a polynomial function on \(\text{Lie}(\hat{T}) \). Referring to the property (3.1), we say that \(\Phi_k \) is a \(k \)-twisted homomorphism.

Notation 3.1. We write \(H^*_x(T, \rho)(X) \) for the \(\hat{T} \)-equivariant cohomology of \(X \) with respect to the \(\hat{T} \)-action \(\rho \) on \(X \). When \(\rho \) is omitted, \(H^*_x(X) \) means \(H^*_x(T, \rho_0)(X) \).

3.2. Bundle Associated to a \(\mathbb{C}^x \)-Subgroup.

Definition 3.2 (associated bundle). Let \(k: \mathbb{C}^x \to T \) be a group homomorphism. Consider the \(\mathbb{C}^x \)-action on \(X \times (\mathbb{C}^2 \setminus \{0\}) \) given by \(s \cdot (x, (v_1, v_2)) = (s^k \cdot x, (s^{-1}v_1, s^{-1}v_2)) \). Let \(E_k \) denote the quotient space:
\[
E_k := X \times (\mathbb{C}^2 \setminus \{0\})/\mathbb{C}^x.
\]
We have a natural projection \(\pi: E_k \to \mathbb{P}^1 \) given by \(\pi([x, (v_1, v_2)]) = [v_1, v_2] \) and \(E_k \) is a fiber bundle over \(\mathbb{P}^1 \) with fiber \(X \). We consider the \(\hat{T} \)-action on \(E_k \) given by \((t, u) \cdot [x, (v_1, v_2)] = [t \cdot x, (v_1, uv_2)] \). Let \(X_0 \) denote the fiber of \(E_k \to \mathbb{P}^1 \) at \([1, 0] \) and let \(X_\infty \) denote the fiber at \([0, 1]\). Note that we have
\[
X_0 \cong (X, \rho_0) \quad \text{and} \quad X_\infty \cong (X, \rho_k)
\]
as \(\hat{T} \)-spaces.

Definition 3.3. A group homomorphism \(k: \mathbb{C}^x \to T \) is said to be semi-negative if \(k \) is non-positive on each \(T \)-weight of \(H^0(X, \mathcal{O}) \). We say that \(k \) is negative if \(k \) is negative on each non-zero \(T \)-weight of \(H^0(X, \mathcal{O}) \).

Remark 3.4. When \(X \) is complete, every \(\mathbb{C}^x \)-subgroup is negative.

Suppose that \(k: \mathbb{C}^x \to T \) is semi-negative and consider the \(\mathbb{C}^x \)-action on \(X \) induced by \(k \). Let \(L \) be a very ample line bundle on \(X \). As discussed in the proof of Proposition [2.1], we may assume that \(L \) admits a \(\mathbb{C}^x \)-linearization. By tensoring \(L \) with a \(\mathbb{C}^x \)-character, we may assume that all the \(\mathbb{C}^x \)-weights on \(H^0(X, L^{\otimes n}) \) are negative for \(n > 0 \). Let \(p: X \times \mathbb{C}^2 \to X \) be the natural projection. Then \(p^*L \) is a \(\mathbb{C}^x \)-equivariant line bundle.
on $X \times \mathbb{C}^2$, where \mathbb{C}^\times acts on the base by $s \cdot (x, (v_1, v_2)) = (s^k \cdot x, (s^{-1}v_1, s^{-1}v_2))$. We can see that

$$H^0(X \times \mathbb{C}^2, (p^*L)^{\otimes n}) = \bigoplus_{i=0}^{\infty} H^0(X, L^{\otimes n}(-i) \otimes \mathbb{C}[v_1, v_2]^{(i)}$$

where the superscript (l) means the component of \mathbb{C}^\times-weight l. The unstable locus for the \mathbb{C}^\times-action on $(X \times \mathbb{C}^2, p^*L)$, in the sense of Geometric Invariant Theory (GIT), is $X \times \{0\}$ and therefore we find that E_k is the GIT quotient of $X \times \mathbb{C}^2$, i.e. $E_k = \text{Proj}(\bigoplus_{n=0}^{\infty} H^0(X \times \mathbb{C}^2, (p^*L)^{\otimes n}))$. This proves:

Lemma 3.5. If k is semi-negative, E_k is semi-projective.

Let $k: \mathbb{C}^\times \to T$ be a semi-negative subgroup and consider the \mathbb{C}^\times-action on X induced by k. A \mathbb{C}^\times-fixed point $x \in X$ defines a section of $E_k \to \mathbb{P}^1$:

$$\sigma_x = (\{x\} \times \mathbb{P}^1) \subset E_k.$$

We now define a minimal section among all such sections associated to fixed points. Using the argument in the proof of Proposition [21], we obtain a \mathbb{C}^\times-equivariant closed embedding $X \hookrightarrow \mathbb{P}^n \times \mathbb{C}^l$ where \mathbb{C}^l is a \mathbb{C}^\times-representation with only non-negative weights. In particular, for every point $x \in X$, the limit $\lim_{s \to 0} s^k \cdot x$ exists. This implies the existence of the Bialynicki-Birula decomposition [BB73, Theorem 4.1] for X: if $X^{C^\times} = \bigsqcup_i F_i$ is the decomposition of the \mathbb{C}^\times-fixed locus X^{C^\times} into connected components, we have the induced decomposition of X

$$X = \bigsqcup_i U_i, \quad U_i = \{x \in X : \lim_{s \to 0} s^k \cdot x \in F_i\}$$

into locally closed smooth subvarieties U_i. In particular there exists a unique \mathbb{C}^\times-fixed component $F_{\text{min}} \subset X$ such that all the \mathbb{C}^\times-weights on the normal bundle to F_{min} are positive. The moment map μ for the associated S^1-action attains a global minimum on F_{min}. We call the class of a section σ_{min} of E_k associated to a point in F_{min} the minimal section class. We write

$$H^2_{\text{sec}}(E_k, \mathbb{Z}) = \left\{d \in H^2(E_k, \mathbb{Z}) : \pi_*(d) = [\mathbb{P}^1] \right\},$$

$$\text{Eff}(E_k)_{\text{sec}} = \text{Eff}(E_k) \cap H^2_{\text{sec}}(E_k, \mathbb{Z})$$

Lemma 3.6. If k is semi-negative, we have $\text{Eff}(E_k)_{\text{sec}} = \sigma_{\text{min}} + \text{Eff}(X)$.

Proof. The compact case was discussed in [GIT2, Lemma 2.2]. Take a negative one-parameter subgroup $l: \mathbb{C}^\times \to T$ and consider the \mathbb{C}^\times-action on E_k induced by $\mathbb{C}^\times \xrightarrow{l} T \times \{1\} \subset \hat{T}$. Observe that all non-zero \mathbb{C}^\times-weights on $H^0(E_k, \mathcal{O})$ are negative. This means that $E_{k,0} := \text{Spec} H^0(E_k, \mathcal{O})$ has a unique \mathbb{C}^\times-fixed point 0 and $\lim_{s \to 0} s \cdot x = 0$ for all $x \in E_{k,0}$. Therefore every curve can be deformed, via the \mathbb{C}^\times-action, to a stable curve in the fiber K of $E_k \to E_{k,0}$ at $0 \in E_{k,0}$ in the same homology class. Since \hat{T}-action on E_k preserves K and K is compact, we may further deform a curve in K to a \hat{T}-invariant stable curve. A \hat{T}-invariant stable curve in E_k is a union of a section class σ_x associated to a T-fixed point $x \in X$ and effective curves in $X_0 \cup X_\infty$. Suppose that two different fixed points $x, y \in X^T$ are connected by a $k(\mathbb{C}^\times)$-orbit, i.e. $\exists p \in X$, then...
\[
x = \lim_{s \to \infty} s^k \cdot p \quad \text{and} \quad y = \lim_{s \to 0} s^k \cdot p.
\]
The closure \(C = k(\mathbb{C}^\times) \cdot p \) is isomorphic to \(\mathbb{P}^1 \) and \(\sigma_x, \sigma_y \) are contained in a Hirzebruch surface
\[
C \times (\mathbb{C}^2 \setminus \{0\}) / \mathbb{C}^\times \subset E_k.
\]

Then one finds \(\sigma_x = \sigma_y + a[C] \) for some \(a > 0 \). Using the Bialynicki-Birula decomposition for the \(k(\mathbb{C}^\times) \)-action on \(X \), we find that every \(T \)-fixed point is connected to a \(T \)-fixed point on \(F_{\min} \) by a chain of \(k(\mathbb{C}^\times) \)-orbits. The conclusion follows.

Lemma 3.7. We have an isomorphism
\[
H^*_T (E_k) \cong \left\{ (\alpha, \beta) \in H^*_T (X) \oplus H^*_{T, \rho_k} (X) : \alpha - \Phi_k^{-1}(\beta) \equiv 0 \mod z \right\}
\]
which sends \(\tau \) to \(\tau|_{X_0}, \tau|_{X_\infty} \). Recall that \(z \) is the equivariant parameter for \(\mathbb{C}^\times \) and we have a canonical isomorphism \(H^*_T (X) \cong H^*_T (X)[z] \).

Proof. Consider the Mayer-Vietoris exact sequence associated to the covering \(E_k = U_0 \cup U_\infty \) with \(U_0 = \pi^{-1}(\mathbb{C}) \) and \(U_\infty = \pi^{-1}(\mathbb{P}^1 \setminus \{0\}) \). We have \(H^*_T (U_0) \cong H^*_T (X), \) \(H^*_T (U_\infty) \cong H^*_T (X) \) and \(H^*_T (U_0 \cap U_\infty) \cong H^*_T (X). \) The map \(H^*_T (U_0) \oplus H^*_T (U_\infty) \to H^*_T (U_0 \cap U_\infty) \) is surjective and is given by \((\alpha, \beta) \mapsto (\alpha - \Phi_k^{-1}(\beta))|_{z=0} \).

Notation 3.8. By Lemma [3.7], for \(\tau \in H^*_T (X) \), there exists \(\hat{\tau} \in H^*_T (E_k) \) such that \(\hat{\tau}|_{X_0} = \tau \) and \(\hat{\tau}|_{X_\infty} = \Phi_k(\tau) \). This defines a map \(\hat{\cdot} : H^*_T (X) \to H^*_T (E_k) \). This is not \(H^*_T (pt) \)-linear.

3.3. Shift Operator.

Definition 3.9 (shift operator). Let \(k : \mathbb{C}^\times \to T \) be a semi-negative group homomorphism. For \(\tau \in H^*_T (X) \), we define \(S_k(\tau) : H^*_T,\rho_0 (X)[Q] \to H^*_T,\rho_k (X)[Q] \) by
\[
\left(\widetilde{S}_k(\tau) \right) \alpha, \beta = \sum_{d \in \text{Eff}(E_k)^{\text{sec}}} \frac{Q^{d - \sigma_{\min}}}{n!} \langle \iota_0 \alpha, \iota_\infty \beta, \hat{\tau}, \ldots, \hat{\tau} \rangle_{E_k, \hat{T}}^{E_k, \hat{T}}
\]
where \((\cdot, \cdot)\) in the left-hand side is the \(\hat{T} \)-equivariant Poincaré pairing on \(H^*_T,\rho_k (X), \alpha \in H^*_T,\rho_0 (X), \beta \in H^*_T,\rho_k (X), \sigma_{\min} \) is the minimal section class for \(E_k \), and \(\iota_0 : X_0 \to E_k \), \(\iota_\infty : X_\infty \to E_k \) are the natural inclusions. We also define
\[
S_k(\tau) = \Phi_k^{-1} \circ \widetilde{S}_k(\tau) : H^*_T (X)[Q] \to H^*_T (X)[Q].
\]

Note that \(\widetilde{S}_k \) is untwisted but \(S_k \) is \((-k)\)-twisted (see (3.11)).

Remark 3.10. When \(k \) is semi-negative, \(E_k \) is semi-projective by Lemma [3.5] and thus the shift operator \(S_k \) is defined without localization: we may rewrite \(\widetilde{S}_k \) as the push-forward along an evaluation map (see (3.1)). When \(k \) is not semi-negative, we can still define \(S_k \) over \(\text{Frac}(H^*_T (pt)) \) after choosing a suitable section class \(\sigma_{\min} \).

Remark 3.11. Since the map \(\tau \mapsto \hat{\tau} \) is not \(H^*_T (pt) \)-linear, \(S(\tau) \) cannot be written as formal power series in the \(H^*_T (pt) \)-valued variables \(\tau^0, \ldots, \tau^N \). For \(\alpha_1, \ldots, \alpha_l \in H^*_T (X) \) and \(\mathbb{C} \)-valued variables \(t^1, \ldots, t^l \), the shift operator \(S(\tau) \) with \(\tau = \sum_{i=1}^l t^i \alpha_i \) is a formal power series in \(t^1, \ldots, t^l \).
Remark 3.12 (divisor equation). Suppose that \(\tau = h + \tau' \) with \(h \in H^2_T(X) \). Using the divisor equation, we have:

\[
\left(\tilde{S}_k(\tau)\alpha, \beta \right) = e^{-h(k)} \sum_{d \in \text{Eff}(X)} \frac{Q^d e^{h-d}}{n!} (t_{\alpha}, t_{\infty}, \beta, \tau', \ldots \tau')_{0,n+2,\sigma_{\min}+d}
\]

where \(h(k) \) is the pairing between \(k \) and the restriction \(h|_x \in H^2_T(pt) \cong \text{Lie}(T)^* \) of \(h \) to a fixed point \(x \) in the minimal fixed component \(F_{\min} \) (with respect to \(k \)). Note that \(\hat{h} \cdot \sigma_{\min} = -h(k) \).

By the localization theorem of equivariant cohomology \[AB84\], the restriction to the \(T \)-fixed subspace \(X^T \) induces an isomorphism

\[
i^* : H^*_T(X)_{\text{loc}} \xrightarrow{\cong} H^*_T(X^T)_{\text{loc}} = H^*(X^T) \otimes \text{Frac}(H^*_T(pt)).
\]

We use this to define the shift operator on the Givental space \(H^*_T(X)_{\text{loc}} \).

Definition 3.13 (shift operator on the Givental space). Let \(X^T = \bigsqcup_i F_i \) be the decomposition of \(X^T \) into connected components. Let \(N_i \) be the normal bundle to \(F_i \) in \(X \). Let \(N_i = \bigoplus_{\alpha} N_{i,\alpha} \) denote the \(T \)-eigenbundle decomposition, where \(T \) acts on \(N_{i,\alpha} \) by the character \(\alpha \in \text{Hom}(T, \mathbb{C}^\times) \). Let \(\rho_{i,\alpha,j} \), \(j = 1, \ldots, \text{rank}(N_{i,\alpha}) \) denote the Chern roots of \(N_{i,\alpha} \). For a semi-negative \(k \in \text{Hom}(\mathbb{C}^\times, T) \), we define:

\[
\Delta_i(k) = Q^\sigma_{i-\sigma_{\min}} \prod_{\alpha} \prod_{j=1}^{\text{rank}(N_{i,\alpha})} \prod_{c=-\infty}^{0} \frac{Q^c}{(e^{\rho_{i,\alpha,j} + \alpha + cz}) (e^{-\rho_{i,\alpha,j} + \alpha + cz})} \in H^*_T(F_i)_{\text{loc}}[Q]
\]

where \(\alpha \) is regarded as an element of \(H^2_T(pt, \mathbb{Z}) \), \(\sigma_i \) is the section class of \(E_k \) associated to a fixed point in \(F_i \) and \(\sigma_{\min} \) is the minimal section class of \(E_k \). Note that all but finite factors in the infinite product cancel. We define the operator \(S_k : H^*_T(X)_{\text{loc}} \to H^*_T(X)_{\text{loc}} \) by the following commutative diagram:

\[
\begin{array}{ccc}
H^*_T(X)_{\text{loc}} & \xrightarrow{S_k} & H^*_T(X)_{\text{loc}} \\
i^* \downarrow & & \downarrow i^* \\
H^*_T(X^T)_{\text{loc}} & \xrightarrow{\bigoplus \Delta_i(k)e^{-zk\delta_\lambda}} & H^*_T(X^T)_{\text{loc}}
\end{array}
\]

where we use the decomposition \(H^*_T(X^T)_{\text{loc}} \cong \bigoplus_i H^*(F_i) \otimes \text{Frac}(H^*_T(pt)) \) in the bottom arrow and \(e^{-zk\delta_\lambda} \) acts on \(\text{Frac}(H^*_T(pt)) \) by \(f(\lambda, z) \mapsto f(\lambda - k z, z) \). The operator \(S_k \) is a \((-k)\)-twisted homomorphism.

The following is a key property of the shift operator.

Theorem 3.14. We have \(M(\tau) \circ S_k(\tau) = S_k \circ M(\tau) \), where \(M(\tau) \) is the fundamental solution in Proposition 2.3.

Proof. A similar intertwining property has been discussed in \[OP10, BM01, MO12\]. We calculate \(S_k(\tau) \) using \(\hat{T} \)-equivariant localization. We refer the reader to \[GP99, CK99\] for localization arguments in Gromov–Witten theory. Fix a section class \(d \in \text{Eff}(E_k) \). A \(\hat{T} \)-fixed stable map \(f : (C, x_1, \ldots, x_{n+2}) \to E_k \) of degree \(d \) is of the form:
• $C = C_0 \cup C_{\sec} \cup C_{\infty}$ with $C_{\sec} \cong \mathbb{P}^1$;
• $f_0 = f|_{C_0}$ is a T-fixed stable map to X_0;
• $f_{\infty} = f|_{C_{\infty}}$ is a T-fixed stable map to X_{∞};
• $f_{\sec} = f|_{C_{\sec}}$ is a section of E_k associated to a T-fixed point in X (see (3.2)).

Recall that the tangent space T^1 and the obstruction space T^2 at the stable map f fit into the exact sequence

$$
0 \longrightarrow \text{Ext}^0(\Omega^1_C(x), \mathcal{O}_C) \longrightarrow H^0(C, f^*T_{E_k}) \longrightarrow T^1 \\
\longrightarrow \text{Ext}^1(\Omega^1_C(x), \mathcal{O}_C) \longrightarrow H^1(C, f^*T_{E_k}) \longrightarrow T^2 \longrightarrow 0
$$

where $x = x_1 + \cdots + x_{n+2}$. The virtual normal bundle at f is:

$$
\mathcal{N}^\text{vir} = T^1,\text{mov} - T^2,\text{mov} = \chi(f^*T_{E_k})^{\text{mov}} - \chi(\Omega^1_C(x), \mathcal{O}_C)^{\text{mov}}
$$

where "mov" means the moving part with respect to the \hat{T}-action and $\chi(\mathcal{E}) = H^0(C, \mathcal{E}) - H^1(C, \mathcal{E})$, $\chi(\mathcal{E}, \mathcal{F}) = \text{Ext}^0(\mathcal{E}, \mathcal{F}) - \text{Ext}^1(\mathcal{E}, \mathcal{F})$ denotes the Euler characteristics. Let p, q denote the nodal intersection points $C_0 \cap C_{\sec}, C_{\infty} \cap C_{\sec}$ respectively. Using the normalization exact sequence $0 \to \mathcal{O}_C \to \mathcal{O}_{C_0} \oplus \mathcal{O}_{C_{\sec}} \oplus \mathcal{O}_{C_{\infty}} \to \mathcal{O}_p \oplus \mathcal{O}_q \to 0$, we find:

$$
\chi(f^*T_{E_k})^{\text{mov}} = \chi(f^*T_{X_0})^{\text{mov}} + \chi(f^*T_{X_{\infty}})^{\text{mov}} + \chi(f_{\sec}^*T_{E_k}) \\
+ \xi + \xi^{-1} - (T_{f(p)}E)^{\text{mov}} - (T_{f(q)}E)^{\text{mov}}
$$

where ξ is the one-dimensional \mathbb{C}^\times-representation of weight one. We write $x_0 = x_0 + x_\infty$ where x_0, x_{∞} are divisors on C_0, C_{∞} respectively. Then we have

$$
\chi(\Omega^1_C(x), \mathcal{O}_C)^{\text{mov}} = T_pC_0 \otimes T_pC_{\sec} + T_qC_{\infty} \otimes T_qC_{\sec} \\
- \chi(\Omega^1_{C_0}(x_0), \mathcal{O}_{C_0})^{\text{mov}} - \chi(\Omega^1_{C_{\infty}}(x_{\infty} + q), \mathcal{O}_{C_{\infty}})^{\text{mov}}.
$$

The \hat{T}-fixed locus in the moduli space $(E_k)_{0, n+2,d}$ is given by

$$
\bigcup_{1 \leq i \leq \{1, \ldots, n+2\}, \sigma_i = d} \left((X_0)_{0,1_i \cup \mathbb{P}^1, d_0} \times_{F_i} ((X_{\infty})_{0,1_2 \cup d_0, \infty})^T \right)
$$

where F_i, σ_i are as in Definition 3.13. Combining (3.4), (3.5), we find that the virtual normal bundle $\mathcal{N}_{i}^{\text{vir}}$ on the component $((X_0)_{0,1_1 \cup \mathbb{P}^1, d_0})^T \times_{F_i} ((X_{\infty})_{0,1_2 \cup d_0, \infty})^T$ is:

$$
\mathcal{N}_{i}^{\text{vir}} = \mathcal{N}_0^{\text{vir}} + \mathcal{N}_{\sec, i} + N_{F_i/X_0} - N_{F_i/X_{\infty}} + L_{-1}^{-1} \otimes \xi + L_{-1}^{-1} \otimes \xi^{-1}
$$

where $\mathcal{N}_0^{\text{vir}}$ is the virtual normal bundle of $(X_0)_{0,1_1 \cup \mathbb{P}^1, d_0}$ in $(X_0)_{0,1_2 \cup \mathbb{P}^1, d_0}$, $\mathcal{N}_{\sec, i}$ is the vector bundle with fiber $\chi(f_{\sec}^*T_{E_k})^{\text{mov}}$. Let $N_{F_i/X} = N_i = \bigoplus_{\alpha} N_{i, \alpha}$ be decomposition as in Definition 3.13. The normal bundle of $F_i \times \mathbb{P}^1$ in E_k is

$$
\bigoplus_{\alpha} N_{i, \alpha} \otimes \mathcal{O}_{\mathbb{P}^1}(-\alpha \cdot k).
$$

Thus we find:

$$
\mathcal{N}_{\sec, i} = \xi \oplus \xi^{-1} \oplus \bigoplus_{\alpha} N_{i, \alpha} \otimes \left(\bigoplus_{c \leq 0} \xi^c - \bigoplus_{c < 0} \xi^c \right).
$$

(3.6)
The virtual localization formula gives:

\[
\left(\bar{S}_k(\tau) \alpha, \beta \right) = \sum_{i,k,l,a,b} \sum_{d_0+d_\infty+\sigma_i = d} \left\langle z\alpha, \tau, \ldots, \tau, \frac{(t_{0,i} \star \phi_{i,a})}{z - \psi} \right\rangle_{X_0,1} \frac{Q_{d_0}^k}{k!} x_{0,k+2,d_0} \times \left(\int_{F_i} e_{\tilde{\mathcal{T}}}(N_{\text{sec},i}) \phi_i^a \phi_b^b \right) \left\langle \frac{(t_{\infty,i} \star \phi_{i,b})}{-z - \psi}, \tau', \ldots, \tau', \tau', \ldots, \tau', \ldots, -z\beta \right\rangle_{X_\infty,1} \frac{Q_{d_\infty}^l}{l!}
\]

where \(\alpha \in H^*_F(X_0), \beta \in H^*_F(X_\infty), \tau' = \Phi_k(\tau) \), the maps \(\iota_{0,i} : F_i \to X_0, \iota_{\infty,i} : F_i \to X_\infty \) are the natural inclusions, \(\{ \phi_{i,a} \} \subset H^*(F_i) \) is a basis, \(\{ \phi_i^a \} \) is the dual basis such that \(\int_{F_i} \phi_{i,a} \otimes \phi_b^b = \delta_{ab} \). Note that we have by \[3.15\],

\[
\frac{Q_{\sigma_i - \sigma_{\min}}^{\sigma_{\min}}}{e_{\tilde{\mathcal{T}}}(N_{\text{vir},i})} = \frac{1}{z(-z)} e_{\tilde{\mathcal{T}}}(N_{F_i/X_\infty}) \left(e^{kz\partial_k} \Delta_i(k) \right).
\]

Combining these equations, we conclude

\[
\left(\bar{S}_k(\tau) \alpha, \beta \right) = \left(\bar{S}_k M(\tau, z) \alpha, M'(\tau', -z) \beta \right)
\]

where we write the argument \(z \) in the fundamental solution explicitly and

- \(\bar{S}_k : H^*_F(X_0)_{\text{loc}} \to H^*_F(X_\infty)_{\text{loc}} \) is a map defined similarly to \(S_k \) by replacing \(\bigoplus_i \Delta_i(k) e^{-kz\partial_k} \) in the diagram \[3.13\] with \(\bigoplus_i (e^{kz\partial_k} \Delta_i(k)) \);

- \(M'(\tau', z) \) is defined similarly to Proposition \[2.2\] by replacing \(T \)-equivariant Gromov-Witten invariants there with \((\tilde{T}, \rho_k) \)-equivariant invariants.

Note that \(M'(\tau', z) = \Phi_k \circ M(\tau, z) \circ \Phi_k^{-1} \) and \(\bar{S} = \Phi_k \circ S \). The conclusion follows from the so-called “unitarity” \(M(\tau, -z)^* = M(\tau, z)^{-1} \) of the fundamental solution (see [Giv88, 1]).

Theorem \[3.14\] and the differential equation \(\partial_i \circ M(\tau) = M(\tau) \circ \nabla_i \) show:

Corollary 3.15. The shift operator commutes with the quantum connection, i.e. \([\nabla_i, S_k(\tau)] = 0 \) for \(i = 0, \ldots, N \).

This corollary is shown in [MO12, 8.8] in the case where \(\tau = 0 \). We also remark that the shift operators commute each other.

Corollary 3.16. We have \(S_k \circ S_l = Q^{d(k,l)}_{d(k,l)} S_k S_l \) for some \(d(k,l) \in H_2(X, \mathbb{Z}) \) which is symmetric in \(k \) and \(l \). In particular, \(S_k \circ S_l = Q^{d(k,l)}_{d(k,l)} S_k S_l \), \([S_k, S_l] = [S_k, S_l] = 0 \).

Proof. Consider the \(X \)-bundle \(E_{k,l} \) over \(\mathbb{P}^1 \times \mathbb{P}^1 \) given by

\[
E_{k,l} = X \times (\mathbb{C}^2 \setminus \{0\}) \times (\mathbb{C}^2 \setminus \{0\})/\mathbb{C}^\times \times \mathbb{C}^\times
\]

where \((s_1, s_2) \subset \mathbb{C}^\times \times \mathbb{C}^\times \) acts on \(X \times \mathbb{C}^2 \times \mathbb{C}^2 \) by \((s_1, s_2) \cdot (x, (a_1, a_2), (b_1, b_2)) = (s_1^k s_2^l, (s_1^{-1} a_1, s_1^{-1} a_2), (s_2^{-1} b_1, s_2^{-1} b_2)) \). Note that \(E_{k,l}|_{\mathbb{P}^1 \times \{1:0\}} \cong E_k \) and \(E_{k,l}|_{\{1:0\} \times \mathbb{P}^1} \cong E_l \) and \(E_{k,l}|_{\Delta(\mathbb{P}^1)} \cong E_{k+l} \), where \(\Delta(\mathbb{P}^1) \subset \mathbb{P}^1 \times \mathbb{P}^1 \) denotes the diagonal. The addition in \(H_2(E_{k,l}, \mathbb{Z}) \) defines a map \(\# : H^2_{\text{sec}}(E_l, \mathbb{Z}) \times H^2_{\text{sec}}(E_k, \mathbb{Z}) \to H^2_{\text{sec}}(E_{k+l}, \mathbb{Z}) \). For any \(T \)-fixed point \(x \), the section class \(\sigma_x \) (see \[3.2\]) associated to \(x \) satisfies \(\sigma_x \# \sigma_x = \sigma_x \).

A straightforward computation now shows that \(S_k \circ S_l = Q^{\sigma_{\min}(k+l) - \sigma_{\min}(k) \# \sigma_{\min}(l)}_{\sigma_{\min}(k+l) \# \sigma_{\min}(l)} S_{k+l} \).
where $\sigma_{\min}(k)$ denotes the minimal section class of E_k. The conclusion follows by setting $d(k, l) = \sigma_{\min}(k + l) - \sigma_{\min}(k)\#\sigma_{\min}(l)$ and the commutativity of $\#$.

3.4. **Relation to the Seidel Representation.** Taking the $z \to 0$ limit of shift operators, we obtain a big quantum cohomology version of the Seidel representation [Sei97]. The author learned the idea of big Seidel elements from Eduardo Gonzalez during joint work [GI12] with him.

Definition 3.17 (Seidel elements). Let $k \in \text{Hom}(\mathbb{C}^x, T)$ be a semi-negative homomorphism. The element $S_k(\tau) := \lim_{z \to 0} S_k(\tau)1$ of $H^*_T(X)[Q][\tau^0, \ldots, \tau^m]$ is called the **Seidel element**.

By Corollary 3.13, the $z \to 0$ limit of the operator $S_k(\tau)$ commutes with the quantum multiplication, and therefore coincides with the quantum multiplication by $S_k(\tau)$ (see also [MO12, §8]). By Corollary 3.16, we have

$$S_k(\tau) \ast S_l(\tau) = Q^{d(k,l)} S_{k+l}(\tau).$$

This is called the **Seidel representation**.

3.5. **Relation to the $\hat{\Gamma}$-Integral Structure.** We remark a relationship between the shift operator and the $\hat{\Gamma}$-integral structure introduced in [Iri09, KKP08, CIJ14]. For quantum cohomology of the Hilbert scheme of points on \mathbb{C}^2, it has been observed in [OPT10] that certain Γ-factors play an important role in the difference equation associated to the shift operators.

We recall the $\hat{\Gamma}$-class of X. Let $\delta_1, \ldots, \delta_D$ denote the T-equivariant Chern roots of the tangent bundle TX such that $c^T(TX) = (1 + \delta_1) \cdots (1 + \delta_D)$. The T-equivariant $\hat{\Gamma}$-class of X is the class

$$\hat{\Gamma}_X = \hat{\Gamma}(TX) = \prod_{i=1}^D \Gamma(1 + \delta_i)$$

in $H^*_T(X) = \prod_{p=0}^{\infty} H^p_T(X)$. Here $\Gamma(z) = \int_0^{\infty} e^{-t z} t^{-1} dt$ is Euler’s Γ-function. By Taylor expansion, the right-hand side becomes a symmetric formal power series in $\delta_1, \ldots, \delta_n$ and thus can be expressed in terms of the equivariant Chern classes of TX.

The $\hat{\Gamma}$-integral structure assigns the following homogeneous flat section $s(E)$ of the quantum connection to a T-equivariant vector bundle $E \to X$:

$$s(E) = (2\pi)^{-D/2} M(\tau)^{-1} z^{-\mu} e^{c_1(X)}\hat{\Gamma}_X(2\pi i)^{\text{deg}/2} \text{ch}^T(E)$$

where $D = \dim_{\mathbb{C}} X$, $M(\tau)$ is the fundamental solution in Proposition 2.2, $\mu \in \text{End}_{\mathbb{C}}(H^*_T(X))$ is the Hodge grading operator defined by $\mu(\phi_i) = \left(\frac{\deg \phi_i}{2} - \frac{D}{2}\right)\phi_i$, $e^{c_1(X)} = e^{c_1(X) \log z}$ and $(2\pi i)^{\text{deg}/2} \text{ch}^T(E) = \sum_{p=0}(2\pi i)^p \text{ch}^T_p(E)$. The section $s(E)$ is flat, i.e. $\nabla_i s(E) = 0$ and is homogeneous in the sense that

$$\left[z \frac{\partial}{\partial z} + \mu + \sum_{i=0}^N \left(1 - \frac{1}{2} \deg \phi_i\right) \tau^i \frac{\partial}{\partial \tau^i} + \sum_{i=0}^N \rho^i \frac{\partial}{\partial \rho^i} \right] s(E) = 0$$

where we set $c_1(X) = \sum_{i=0}^N \rho^i \phi_i$. A key property of $s(E)$ is that the pairing

$$\langle s(E)(\tau, e^{-\tau_1} z), s(F)(\tau, z) \rangle$$

is flat, i.e. $\nabla_i s(E) = 0$ and is homogeneous in the sense that
equals the T-equivariant Euler pairing $z^{-\deg/2} (2\pi i)^{\deg/2} \chi(E, F)$, where $\chi(E, F) = \sum_{i=0}^D (-1)^i \chi^T(\text{Ext}^i(E, F)) \in H_T^*(pt)$. This follows from an appropriate equivariant Hirzebruch-Riemann-Roch formula. See [CIJ14, §2-3] for more details.

The T-equivariant K-group is a module over $K_T^0(pt) = \mathbb{C}[T]$ and the Chern character $\exp^T: K_T^0(pt) \to H_T^*(pt)$ can be viewed as the pull-back by the universal covering $\exp: \text{Lie}(T) = \mathbb{C}^m \to T = (\mathbb{C}^*)^m$. A deck-transformation of this covering is given by the shift of equivariant parameters $\lambda_j \to \lambda_j + 2\pi i$. This suggests that $s(E)$ should be “invariant” under integral shifts of equivariant parameters.

Proposition 3.18. When the Novikov variable Q is set to be one, the flat section $s(E)$ is invariant under the shift operator:

$$S_k s(E) = s(E)$$

for every semi-negative $k \in \text{Hom}(\mathbb{C}^*, T)$.

Proof. As is discussed in [CIJ14, §3], the divisor equation shows that the specialization $Q = 1$ of the Novikov variable is well-defined for $s(E)$. In view of the intertwining property in Theorem 3.14, it suffices to show that

$$S_k \left(z^{-\mu_e \cdot c_1(X)} \tilde{\chi}_X(2\pi i)^{\deg/2} \, \text{ch}(E) \right) = z^{-\mu_e \cdot c_1(X)} \tilde{\chi}_X(2\pi i)^{\deg/2} \, \text{ch}(E).$$

The restriction to the T-fixed component F_i gives

$$\left[z^{-\mu_e \cdot c_1(X)} \tilde{\chi}_X(2\pi i)^{\deg/2} \, \text{ch}(E) \right]_{F_i} = z^{D/2} \cdot \gamma_{(F_i)}/z \left(z^{-\deg/2} \tilde{\gamma}_{(F_i)} \right) \times \prod_{\alpha} \prod_{j=1}^{\text{rank } N_{\alpha,i}} z^{(\rho_{i,\alpha,j} + \alpha)/z} \Gamma \left(1 + \frac{\rho_{i,\alpha,j}}{z} + \frac{\alpha}{z} \right) \sum_{\epsilon} e^{2\pi i \epsilon/z}$$

where ϵ ranges over T-equivariant Chern roots of E and we use the notation from Definition 3.13. The conclusion easily follows from the identity $\Gamma(1 + z) = z\Gamma(z)$. □

4. Toric Mirror Theorem

In this section we give a new proof of a mirror theorem [Giv98b] for toric manifolds.

4.1. Toric Manifolds. We fix notation for toric manifolds. For background materials on toric manifolds, we refer the reader to [Oda88, Aud04, CLS11]. Let $N \cong \mathbb{Z}^D$ denote a lattice. A toric manifold is given by a rational simplicial fan Σ in the vector space $N_R = N \otimes \mathbb{R}$. We assume that

- each cone σ of Σ is generated by part of a \mathbb{Z}-basis of N;
- the support $|\Sigma| = \bigcup_{\sigma \in \Sigma} \sigma$ of Σ is convex and full-dimensional;
- Σ admits a strictly convex piecewise linear function $\eta: |\Sigma| \to \mathbb{R}$.

These assumptions ensure that the corresponding toric variety X_Σ is smooth and satisfies the hypotheses in §2.1. We do not require that X is compact, or $c_1(X)$ is semipositive. Let $b_1, \ldots, b_m \in N$ be primitive integral generators of one-dimensional cones of Σ. The shift by $2\pi i$ is superseded by the shift by z because of the operators $z^{-\mu}$ and $(2\pi i)^{\deg/2}$.

\[\text{the shift by } 2\pi i \text{ is superseded by the shift by } z \text{ because of the operators } z^{-\mu} \text{ and } (2\pi i)^{\deg/2}.\]
Let $\beta : \mathbb{Z}^m \to \mathbb{N}$ be the homomorphism sending the standard basis vector $e_i \in \mathbb{Z}^m$ to b_i. The fan sequence is the exact sequence

$$0 \longrightarrow \mathbb{L} \longrightarrow \mathbb{Z}^m \overset{\beta}{\longrightarrow} \mathbb{N} \longrightarrow 0$$

with $\mathbb{L} = \text{Ker}(\beta)$. Set $K = \mathbb{L} \otimes \mathbb{C}^\times$. The inclusion $\mathbb{L} \hookrightarrow \mathbb{Z}^m$ induces the inclusion $K \hookrightarrow (\mathbb{C}^\times)^m$ of tori and defines a linear K-action on \mathbb{C}^m. The toric variety associated to Σ is given by the GIT quotient

$$X_{\Sigma} = U/K, \quad U = \mathbb{C}^m \setminus Z$$

where $Z \subset \mathbb{C}^m$ is the common zero set of monomials $z^I = z_{i_1} \cdots z_{i_k}$ with $I = \{i_1, \ldots, i_k\}$ such that $\{b_i : 1 \leq i \leq m, i \notin I\}$ spans a cone in Σ. We consider the T-action on X_{Σ} induced by the $T = (\mathbb{C}^\times)^m$-action on \mathbb{C}^m.

Let $\lambda_i \in H^*_T(pt) \cong \text{Lie}(T)^\ast$ denote the class corresponding to the i-th projection $T \to \mathbb{C}^\times$. We have

$$H^*_T(pt) = \mathbb{C}[\lambda_1, \ldots, \lambda_m].$$

All the T-weights of $H^0(X_{\Sigma}, \mathcal{O})$ are contained in the cone $\sum_{i=1}^m \mathbb{R}_{\geq 0}(\lambda_i)$ and therefore the condition (2) in §2.1 is satisfied. A cocharacter $k : \mathbb{C}^\times \to T$ is semi-negative in the sense of Definition 3.3 if $\lambda_i \cdot k \geq 0$ for all $i = 1, \ldots, m$.

Let $u_i \in H^*_T(X_{\Sigma})$ denote the class of the torus-invariant divisor $\{z_i = 0\}$ defined as the vanishing set of the ith co-ordinate z_i on \mathbb{C}^m. The T-equivariant cohomology ring of X_{Σ} is generated by these classes:

$$H^*_T(X_{\Sigma}) \cong H^*_T(pt)[u_1, \ldots, u_m]/(\mathfrak{I}_1 + \mathfrak{I}_2)$$

where \mathfrak{I}_1 is the ideal generated by $\prod_{i \in I} u_i$ such that $\{b_i : i \in I\}$ does not span a cone in Σ and \mathfrak{I}_2 is the ideal generated by $\sum_{i=1}^m \chi(b_i)(u_i - \lambda_i)$ with $\chi \in \text{Hom}(\mathbb{N}, \mathbb{Z})$.

4.2. Mirror Theorem. Define a cohomology-valued hypergeometric series $I(y, z)$ by the formula:

$$I(y, z) = z e^{\sum_{i=1}^m u_i \log y_i / z} \sum_{d \in \text{Eff}(X_{\Sigma})} \left(\prod_{i=1}^m \int_{c=-\infty}^{0} (u_i + cz) \right)^d y_1^{u_1 - d} \cdots y_m^{u_m - d}.$$

This formula defines an element of $H^*_T(X_{\Sigma})_{\text{loc}}[Q][\log y]$. We may write $I(y, z)$ as a sum over $H_2(X_{\Sigma}, \mathbb{Z})$ since the summand automatically vanishes if $d \notin \text{Eff}(X_{\Sigma})$.

Givental’s mirror theorem [Giv98b] (generalized later in LLY99, Iri08, Bro09) states the following:

Theorem 4.1. The function $I(y, -z)$ lies on the Givental cone associated to genus-zero Gromov-Witten theory of X_{Σ}.

We explain the meaning of the statement. The Givental cone \mathcal{L} [Giv04] is a subset of $H^*_T(X_{\Sigma})_{\text{loc}}[Q]$ consisting of points of the form:

$$(1.1) \quad -z + \mathbf{t}(z) + \sum_{i=0}^N \sum_{n=0}^{\infty} \sum_{d \in \text{Eff}(X_{\Sigma})} \frac{Q^d}{n!} \left(\phi_i^j \bigg|_{-z - \psi} , \mathbf{t}(\psi), \ldots, \mathbf{t}(\psi) \right)_{0, n+1, d} \phi_i$$

with $\mathbf{t}(z) \in H^*_T(X_{\Sigma})[Q] = H^*_T(X_{\Sigma})[z][Q]$. The Givental cone \mathcal{L} can be written as the graph of the differential of the genus-zero descendant Gromov-Witten potential, and
encodes all genus-zero descendant Gromov-Witten invariants. Theorem 4.1 says that $I(y, z)$ is of the form (4.1), for some $t(z) \in H^*_T(X_\Sigma)[z][Q][\log y]$ with $t(z)|_{Q=\log y=0} = 0$. For toric manifolds, the above I-function determines the Givental cone and hence all the genus-zero Gromov-Witten invariants completely.

In this paper, we use an alternative description [Giv04] of the Givental cone \mathcal{L}. We can write \mathcal{L} as the union

$$\mathcal{L} = \bigcup_{\tau \in H^*_T(X_\Sigma)[Q]} zT_{\tau}$$

of the semi-infinite subspaces $T_{\tau} = M(\tau, -z)H_T(X_\Sigma)[z][Q]$, where $M(\tau, -z)$ denotes the fundamental solution from Proposition 2.2 with the sign of z flipped. The subspace T_{τ} is a (common) tangent space to \mathcal{L} along $zT_{\tau} \subset \mathcal{L}$. Therefore, it suffices to show that $I(y, z)$ can be written in the form

$$I(y, z) = zM(\tau(y), z)\Upsilon(y, z)$$

for some $\tau(y) \in H^*_T(X_\Sigma)[Q][\log y]$ and $\Upsilon(y, z) \in H^*_T(X_\Sigma)[z][Q][\log y]$.

4.3. Proof. The idea of the proof is as follows. Let e_i denote the cocharacter $\mathbb{C}^\times \to T = (\mathbb{C}^\times)^m$ given by the inclusion of the ith factor. Let $S_i = S_{e_i}$, $S_i = S_{e_i}$ denote the corresponding shift operators. In view of Theorem 3.14, the shift operator S_i defines a vector field on the Givental cone:

$$(4.2) \quad \mathcal{L} \ni f \mapsto z^{-1} S_i f \in T_f \mathcal{L}.$$

These vector fields define commuting flows by Corollary 3.16. We will identify the I-function with an integral submanifold of these vector fields.

Consider the \mathbb{C}^\times-action on X_Σ induced by the cocharacter $e_i \in \text{Hom}(\mathbb{C}^\times, T)$. The minimal fixed component F_{\min} for this \mathbb{C}^\times-action is the toric divisor $\{z_i = 0\}$. Let $E_i = E_{e_i}$ denote the associated bundle. For a fixed point $x \in X_\Sigma$, we set $d_i(x) = \sigma_x - \sigma_{\min} \in H_2(X_\Sigma, \mathbb{Z})$, where $\sigma_x \in H_2^{\text{ev}}(E_k)$ is the section (1.12) of E_i associated to x and $\sigma_{\min} \in H_2^{\text{ev}}(E_k)$ is the minimal section class of E_i. We write $u_j(x) \in H_2^T(\text{pt})$ for the restriction of u_j to x.

Lemma 4.2. With the notation as above, we have

$$u_j(x) \cdot e_i = \delta_{ij} - u_j \cdot d_i(x).$$

Proof. Consider the \widehat{T}-invariant divisor $\{z_j = 0\} \times \mathbb{P}^1$ in E_i and let \hat{u}_j denote the \widehat{T}-equivariant Poincaré dual of the divisor. Then we have $\hat{u}_j|_{(x,[1,0])} = u_j(x)$ and $\hat{u}_j|_{(x,[0,1])} = u_j(x) + (u_j(x) \cdot e_i)z$. The localization formula gives

$$\hat{u}_j \cdot \sigma_x = u_j|_{(x,[1,0])} + u_j|_{(x,[0,1])} z = -u_j(x) \cdot e_i.$$

Similarly we have $\hat{u}_j \cdot \sigma_{\min} = -u_j(y) \cdot e_i$ for any T-fixed point y in the divisor $F_{\min} = \{z_i = 0\}$. If $i \neq j$, taking y away from $\{z_j = 0\}$, we get $u_j(y) = 0$. If $i = j$, $u_j(y) \cdot e_i = 1$. Therefore $\hat{u}_j \cdot \sigma_{\min} = -\delta_{ij}$. The conclusion follows. \qed
Lemma 4.3. The I-function is an integral curve of the vector field \((\ref{eq:vector_field})\), that is, for $i \in \{1, \ldots, m\}$, we have

$$z \frac{\partial}{\partial y_i} I(y, z) = S_i I(y, z).$$

Proof. Note that all the T-fixed points on X_Σ are isolated. Let $x \in X^T$ be a fixed point. It suffices to show that

$$z \frac{\partial}{\partial y_i} I_x(y, z) = \Delta_x(e_i) e^{-z \partial I} I_x(y, z)$$

where $I_x(y, z)$ is the restriction of the I-function to x and

$$\Delta_x(e_i) = Q_{d_i(x)} \prod_{j=1}^{m} \frac{\prod_{c=-\infty}^{0}(u_j(x) + cz)}{\prod_{c=-\infty}^{0-\sum_{j=1}^{m} (u_j)d_i(x))} (u_j(x) + cz).$$

Using Lemma \((\ref{eq:vector_field})\), we have

$$\Delta_x(e_i) e^{-z \partial I} I_x(y, z) = ze^{\sum_{j=1}^{m} u_j(x) \log y_j / z} e^{-z \log y_i + \sum_{j=1}^{m} (u_j d_i(x)) \log y_j}$$

$$\times Q_{d_i(x)} \sum_{d \in H_2(X_\Sigma, \mathbb{Z})} \left(\prod_{j=1}^{m} \frac{\prod_{c=-\infty}^{0}(u_j(x) + cz)}{\prod_{c=-\infty}^{0-\sum_{j=1}^{m} (u_j)d_i(x))} (u_j(x) + cz) \right) Q^d y^d$$

where $y^d = \prod_{j=1}^{m} y_j^{u_j - d_i}$. Changing variables $d \to d - d_i(x)$ and using again Lemma \((\ref{eq:vector_field})\), we find that this equals $z \frac{\partial}{\partial y_i} I(y, z).$ \qed

We identify the classical shift operators:

Notation 4.4. We set $v_i := u_i - \lambda_i \in H^2_T(X_\Sigma)$ and write $v_i(x) \in H^2_T(pt)$ for the restriction of v_i to a T-fixed point x.

Lemma 4.5. Let $f(v, \lambda)$ be a cohomology class in $H^*_T(X_\Sigma)$ expressed as a polynomial in v_1, \ldots, v_m and $\lambda_1, \ldots, \lambda_m$. When we write $\tau \in H^*_T(X_\Sigma)$ as a polynomial $\tau(v, \lambda)$ in v_1, \ldots, v_m and $\lambda_1, \ldots, \lambda_m$, we have

$$\lim_{Q \to 0} S_i(\tau) f(v, \lambda) = u_i e^{(\tau(v, \lambda - e_i) - \tau(v, \lambda)) / z} f(v, \lambda - z e_i)$$

where $\lambda - ze_i = (\lambda_1, \ldots, \lambda_{i-1}, \lambda_i - z, \lambda_{i+1}, \ldots, \lambda_m)$. In particular the classical Seidel elements are given by:

$$\lim_{Q \to 0} S_i(\tau) = u_i e^{-\frac{\partial\tau(\cdot, \lambda)}{\partial \lambda_i}}.$$

Proof. Recall from Theorem \((\ref{thm:seidel})\) that we have $S_i \circ M(\tau) = M(\tau) \circ S_i(\tau)$. Since $\lim_{Q \to 0} M(\tau) = e^{\tau / z}$, we have

$$\lim_{Q \to 0} S_i(\tau) f(v, \lambda) = e^{-\tau / z} \left(\lim_{Q \to 0} S_i(\tau) \right) e^{\tau / z} f(v, \lambda).$$

By definition of S_i, this vanishes when restricted to a fixed point outside of the minimal fixed component \{$z_i = 0$\} with respect to e_i. On the other hand, for any T-fixed point
\[\lim_{Q \to 0} S_i(t) f(v, \lambda) \bigg|_{x} = e^{-\tau(v(x), \lambda)/z} u_i(x) e^{-z\partial x_i} \left[e^{\tau(v(x), \lambda)/z} f(v(x), \lambda) \right] \\
= u_i(x) e^{(\tau(v(x), \lambda - e_i z) - \tau(v, \lambda))/z} f(v(x), \lambda - e_i z) \]

where we set \(v(x) = (v_1(x), \ldots, v_m(x)) \). The conclusion follows. \(\square \)

Lemma 4.6. Let \(x \) be a \(T \)-fixed point on \(X_{\Sigma} \). The restriction \(u_j(x) \) is a linear combination of \(\lambda_i \) such that \(x \) does not lie on the divisor \(\{ z_i = 0 \} \).

Proof. Note that if \(x \) does not lie on the divisor \(\{ z_i = 0 \} \), we have \(u_i(x) = 0 \) and thus \(v_i(x) = -\lambda_i \). This together with the linear relation \(\sum_{i=1}^m \chi(b_i)v_i = 0, \chi \in \text{Hom}(N, Z) \) determines \(v_1(x), \ldots, v_m(x) \) uniquely. This implies the conclusion. \(\square \)

Let \(\mathcal{Z} = \mathcal{L}|_{z \to -z} \) denote the Givental cone with the sign of \(z \) flipped. By the description in \(\S 4.2 \), we have a parametrization of the Givental cone (with the sign of \(z \) flipped) \(\mathcal{Z} \) by \((\tau, \Upsilon) \in H^*_T(X) \times H^*_T(X) = H^*_T(X) \times H^*_T(X)[z] \) as:

\[(\tau, \Upsilon) \mapsto zM(\tau, z) \Upsilon \in \mathcal{Z}. \]

The vector field \((4.2) \) on \(\mathcal{Z} \) corresponds to the following vector field on \(H^*_T(X) \times H^*_T(X)[z] \):

\[(V_i)_{\tau, \Upsilon} = (S_i(\tau), [z^{-1}S_i(\tau)\Upsilon]_+) \]

where \(S_i(\tau) \) is the Seidel element in Definition 3.17 and \([\cdots]_+ \) denotes the projection to the polynomial part in \(z \) (i.e. removing the \(z^{-1} \)-term). In fact, if we have a curve \(t \mapsto (\tau(t), \Upsilon(t)) \) with \(\tau(0) = S_i(\tau(0)), \Upsilon(0) = [S_i(\tau(0))\Upsilon(0)]_+ \), the corresponding curve \(f(t) = zM(\tau(t), z)\Upsilon(t) \) on \(\mathcal{Z} \) satisfies

\[f'(0) = M(\tau(0), z)(S_i(\tau(0)) \ast_{\tau(0)} \Upsilon(0)) + zM(\tau(0), z)[z^{-1}S_i(\tau(0))\Upsilon(0)]_+ \]

\[= M(\tau(0), z)S_i(\tau(0))\Upsilon(0) = z^{-1}S_i f(0) \]

where we used \(z\partial_z M(\tau, z) = M(\tau, z)(\phi_r \ast \tau) \) in the first line and Theorem 3.14 in the second line. Since the vector fields \((4.2) \) commute each other, the corresponding vector fields \(V_i, i = 1, \ldots, m \) also commute each other. In what follows, we show the existence of an integral curve for the vector field \(V_i \) with prescribed asymptotics.

Proposition 4.7. There exist unique functions

\[\tau(y) \in H^*_T(X_{\Sigma})[Q][\log y] \quad \text{and} \quad \Upsilon(y, z) \in H^*_T(X_{\Sigma})[z][Q][\log y] \]

which are of the form

\[\tau(y) = \sum_{i=1}^m u_i \log y_i + \sum_{d \in \text{Eff}(X_{\Sigma}), d \neq 0} Q^d y^d \tau_d \]

\[\Upsilon(y, z) = 1 + \sum_{d \in \text{Eff}(X_{\Sigma}), d \neq 0} Q^d y^d \Upsilon_d \]
with \(y^d = \prod_{j=1}^{m} y_j^{u_j} \) and give an integral curve for the vector field \(\mathbf{V}_i \):

\[
\frac{\partial \tau(y)}{\partial y_i} = S_i(\tau(y)) \quad \text{and} \quad \frac{\partial \Upsilon(y, z)}{\partial y_i} = [(z^{-1}S_i(\tau(y))\Upsilon(y, z))]_+
\]

for all \(1 \leq i \leq m \).

Proof. Write \(\tau(y) = \sum_{j=1}^{m} u_j \log y_j + \tau' \). The divisor equation in Remark 3.12 gives

\[
S_i(\tau(y)) = y_i^{-1} S_i(\tau'; Qy).
\]

where \(S_i(\sigma; Qy) \) is obtained from \(S_i(\sigma) \) by replacing \(Q^d \) with \(Q^d y^d \). Therefore we need to solve for the differential equations:

\[
\begin{align*}
(4.3) \quad y_i \frac{\partial \tau'}{\partial y_i} = S_i(\tau'; Qy) - u_i & \quad \text{and} \quad y_i \frac{\partial \Upsilon}{\partial y_i} = [(z^{-1}S_i(\tau'; Qy)\Upsilon)]_+.
\end{align*}
\]

We expand

\[
\tau' = \sum_{d \in \text{Eff}(X_\Sigma), d \neq 0} \tilde{\tau}_d(y)Q^d, \quad \Upsilon = \sum_{d \in \text{Eff}(X_\Sigma)} \tilde{\Upsilon}_d(y)Q^d
\]

with \(\tilde{\Upsilon}_0(y) = 1 \) and solve for the coefficients \(\tilde{\tau}_d(y) \), \(\tilde{\Upsilon}_d(y) \) recursively. Note that the equation (4.3) holds true mod \(Q \) by Lemma 1.3.

First we solve for \(\tau' \). Choose a Kähler class \(\omega \) such that \(\omega \cdot d_1 = \omega \cdot d_2 \) for \(d_1, d_2 \in \text{Eff}(X_\Sigma) \) if and only if \(d_1 = d_2 \). This defines a positive real grading on the Novikov ring \(\mathbb{C}[Q] \) such that \(\deg Q^d = \omega \cdot d \). Take \(d_0 \in \text{Eff}(X_\Sigma) \setminus \{0\} \). Suppose by induction that there exist \(\tilde{\tau}_d \) for all \(d \) with \(\omega \cdot d < \omega \cdot d_0 \) such that \(\tilde{\tau}_d = \tau_d y^d \) for some \(\tau_d \in H^*_{\tau}(X) \) and that \(\tau' = \sum_{\omega \cdot d < \omega \cdot d_0} \tilde{\tau}_d Q^d \) satisfies the differential equation (4.3) modulo terms of degree \(\geq \omega \cdot d_0 \). We think of \(\tau_d \) as being expressed as a polynomial in \(v_1, \ldots, v_m \) and \(\lambda_1, \ldots, \lambda_m \). Comparing the coefficients of \(Q^{d_0} \) of the differential equation, we obtain using Lemma 1.3 that:

\[
\frac{\partial \tilde{\tau}_{d_0}}{\partial y_i} + u_i \frac{\partial \tilde{\tau}_{d_0}}{\partial \lambda_i} = \left(\text{an expression in } \tilde{\tau}_d \right) \quad \text{with } \omega \cdot d < \omega \cdot d_0.
\]

Here the right-hand side is of the form \(g_i(v, \lambda) y^{d_0} \) by induction hypothesis, where \(g_i(v, \lambda) \) is a polynomial in \(v_1, \ldots, v_m \) and \(\lambda_1, \ldots, \lambda_m \). Setting \(\tilde{\tau}_{d_0} = \tau_{d_0} y^{d_0} \), we obtain

\[
(u_i \cdot d_0) \tau_{d_0} + (v_i + \lambda_i) \frac{\partial \tau_{d_0}}{\partial \lambda_i} = g_i(v, \lambda).
\]

The Kähler class can be written as a non-negative linear combination of \(u_i \), and thus there exists \(i_0 \) such that \(u_{i_0} \cdot d_0 > 0 \). Then we can solve for the polynomial \(\tau_{d_0} = \tau_{d_0}(v, \lambda) \) from the above equation with \(i = i_0 \) recursively from the highest order term in \(\lambda_{i_0} \). Setting \(\tau(y) = \sum u_i \log y_i + \sum_{\omega \cdot d \leq \omega \cdot d_0} \tau_d y^d Q^d \), we have

\[
\frac{\partial \tau(y)}{\partial y_i} \equiv S_i(\tau(y)).
\]
modulo terms of degree $\geq \omega \cdot d_0$ for $i \neq i_0$ and modulo terms of degree $> \omega \cdot d_0$ for $i = i_0$. The commutativity of the flow implies that we have for $i \neq i_0$,
\[
\frac{\partial}{\partial y_{i_0}} \left(\frac{\partial \tau}{\partial y_i} - S_i(\tau(y)) \right) = \frac{\partial^2 \tau(y)}{\partial y_i \partial y_{i_0}} - (d_{\partial \tau/\partial y_{i_0}}) S_i(\tau(y)) \equiv \frac{\partial S_{i_0}(\tau(y))}{\partial y_i} - (d_{S_{i_0}(\tau(y))} S_i(\tau(y))
\]
\[
= (d_{\partial \tau/\partial y_{i_0}} S_i)(\tau(y)) - (d_{S_{i_0}(\tau(y))} S_i)(\tau(y))
\]
modulo terms of degree $> \omega \cdot d_0$. Using the divisor equation again, we have
\[
y_i \left(\frac{\partial \tau(y)}{\partial y_i} - S_i(\tau(y)) \right) = u_i + y_i \frac{\partial \tau'}{\partial y_i} - S_i(\tau', Qy).
\]
Modulo terms of degree $> \omega \cdot d_0$, this is $\alpha(Qy)^{d_0}$ for some $\alpha = \alpha(v, \lambda) \in H^2_{\Sigma}(X)$. Now the coefficient of Q^{d_0} of equation (4.4) gives (by Lemma 4.5):
\[
(u_{i_0} \cdot d_0) \alpha + u_{i_0} \frac{\partial \alpha}{\partial \lambda_{i_0}} = 0.
\]
We want to show that $\alpha = 0$ as a cohomology class. Consider the restriction $\alpha(x)$ of α to a T-fixed point $x \in X_{\Sigma}$. If x lies in the divisor $\{z_{i_0} = 0\}$, $v_j(x) \in H^2_{\Sigma}(pt)$ is a linear combination of $\lambda_{j'}$ with $j' \neq i_0$ by Lemma 4.6. Thus
\[
\left. \frac{\partial \alpha}{\partial \lambda_{i_0}} \right|_x = \frac{\partial \alpha(x)}{\partial \lambda_{i_0}}.
\]
If x is not in the divisor $\{z_{i_0} = 0\}$, $u_{i_0}(x) = 0$. Therefore, by restricting to x, we have
\[
(u_{i_0} \cdot d) \alpha(x) + u_{i_0}(x) \frac{\partial \alpha(x)}{\partial \lambda_{i_0}} = 0.
\]
This shows that $\alpha(x) = 0$ recursively from the highest order term in λ_{i_0}. Note that the same argument shows the uniqueness of τ_{d_0}. This completes the induction.

Next we solve for Υ assuming that τ' is already solved. Let ω be a Kähler class as above and $d_0 \in \text{Eff}(X_{\Sigma})$ be a non-zero effective class. Suppose by induction that there exist $\tilde{\Upsilon}_d$ for all d with $\omega \cdot d < \omega \cdot d_0$ such that $\tilde{\Upsilon}_d = \Upsilon dy^d$ and that $\Upsilon = \sum_{\omega \cdot d < \omega \cdot d_0} \tilde{\Upsilon}_d Q^d$ satisfies the differential equation (4.3) modulo terms of degree $\geq \omega \cdot d_0$. We regard Υ_d as a polynomial in v_1, \ldots, v_m and $\lambda_1, \ldots, \lambda_m$. Comparing the coefficients of Q^{d_0} of the differential equation using Lemma 4.3, we obtain
\[
y_i \frac{\partial \tilde{\Upsilon}_{d_0}(v, \lambda)}{\partial y_i} - \left[z^{-1}(v_i + \lambda_i) \tilde{\Upsilon}_{d_0}(v, \lambda - e_i z) \right]_+ = \left(\text{an expression in } \tilde{\Upsilon}_d \right)
\]
with $\omega \cdot d < \omega \cdot d_0$.

Here the right-hand side is of the form $g_i(v, \lambda) y^{d_0}$ for some polynomial $g_i(v, \lambda)$ in v_1, \ldots, v_m and $\lambda_1, \ldots, \lambda_m$. Setting $\tilde{\Upsilon}_{d_0} = \Upsilon_{d_0} y^{d_0}$, we have
\[
(u_1 \cdot d_0) \Upsilon_{d_0}(v, \lambda) - \left[z^{-1} v_i \Upsilon_{d_0}(v, \lambda - e_i z) \right]_+ = g_i(v, \lambda).
\]
As before, we can find \(i_0 \) such that \(u_{i_0} \cdot d_0 > 0 \). The Lemma 4.3 below shows that we can solve for \(\Upsilon_{d_0}(\tau, \lambda) \) recursively from the highest order term in \((z, \lambda_{i_0})\) using this equation with \(i = i_0 \). Setting \(\Upsilon = \sum_{\omega \leq \omega_0} \Upsilon_{d_0}Q^{\omega} \), we have

\[
\frac{\partial \Upsilon(y)}{\partial y_i} \equiv \left[z^{-1}S_i(\tau(y))\Upsilon(y) \right]_+
\]

modulo terms of degree \(\geq \omega \cdot d_0 \), modulo terms of degree \(> \omega \cdot d_0 \) for \(i = i_0 \). We have for \(i \neq i_0 \),

\[
\frac{\partial}{\partial y_{i_0}} \left(\frac{\partial \Upsilon}{\partial y_i} - \left[z^{-1}S_i(\tau(y))\Upsilon(y) \right]_+ \right) = \frac{\partial^2 \Upsilon}{\partial y_i \partial y_{i_0}} - \frac{\partial}{\partial y_{i_0}} \left[z^{-1}S_i(\tau(y))\Upsilon(y) \right]_+
\]

\[
\equiv \frac{\partial}{\partial y_i} \left[z^{-1}S_i(\tau(y))\Upsilon(y) \right]_+ - \frac{\partial}{\partial y_{i_0}} \left[z^{-1}S_i(\tau(y))\Upsilon(y) \right]_+
\]

\[
\equiv \left[z^{-1}(d_{S_i(\tau(y))S_{i_0}})(\tau(y))\Upsilon(y) + z^{-1}S_{i_0}(\tau(y))\frac{\partial \Upsilon(y)}{\partial y_i} \right]_+
\]

\[
- \left[z^{-1}(d_{S_{i_0}(\tau(y))S_i})(\tau(y))\Upsilon(y) + z^{-1}S_i(\tau(y))\Upsilon(y) \right]_+.
\]

modulo terms of degree \(> \omega \cdot d_0 \). The commutativity of the flows \(V_i, i = 1, \ldots, m \) implies for \(i \neq j \),

\[
\left[z^{-1}(d_{S_j(\tau)}S_j)(\tau)\Upsilon + \left[z^{-1}S_j(\tau)\Upsilon(y) \right]_+ \right]_+ = \left[z^{-1}(d_{S_i(\tau)}S_i)(\tau)\Upsilon + z^{-1}S_i(\tau)\Upsilon(y) \right]_+.
\]

Therefore we have:

\[
\frac{\partial}{\partial y_{i_0}} \left(\frac{\partial \Upsilon(y)}{\partial y_i} - \left[z^{-1}S_i(\tau(y))\Upsilon(y) \right]_+ \right) \equiv \left[z^{-1}S_{i_0}(\tau(y))\frac{\partial \Upsilon(y)}{\partial y_i} - \left[z^{-1}S_i(\tau(y))\Upsilon(y) \right]_+ \right]_+
\]

modulo terms of degree \(> \omega \cdot d_0 \). By the divisor equation, we have

\[
y_i \left(\frac{\partial \Upsilon(y)}{\partial y_i} - \left[z^{-1}S_i(\tau(y))\Upsilon(y) \right]_+ \right) = y_i \frac{\partial \Upsilon(y)}{\partial y_i} - \left[z^{-1}S_i(\tau'(y))\Upsilon(y) \right]_+.
\]

This is of the form \(\alpha(Qy)^{d_0} \) for some \(\alpha = \alpha(v, \lambda, z) \in H^2_T(X_S) \), modulo terms of degree \(> \omega \cdot d_0 \). Hence the differential equation [4.3] implies via Lemma 4.5 that:

\[
(u_{i_0} \cdot d_0)\alpha - \left[z^{-1}u_{i_0}\alpha(v, \lambda - e_{i_0}z, z) \right]_+ = 0.
\]

We will show that \(\alpha = 0 \) in the cohomology group. By restricting this to a \(T \)-fixed point \(x \) and using a similar argument as before, we obtain

\[
(u_{i_0} \cdot d_0)\alpha(x) - \left[z^{-1}(v_{i_0}(x) + \lambda_{i_0})e^{-z\partial_{\lambda_{i_0}}}\alpha(x) \right]_+ = 0
\]

for the restriction \(\alpha(x) \in H^2_T(pt) \) of \(\alpha \) to \(x \). Using Lemma 4.8, we can show that \(\alpha(x) = 0 \) recursively from the highest order term in \((\lambda_{i_0}, z)\). Therefore \(\alpha = 0 \). This completes the induction and the proof.

In the above proof, we used the following lemma:

Lemma 4.8. Let \(\mathbb{C}[\lambda, z]^{(n)} \) denote the degree \(n \) homogeneous component of the polynomial ring \(\mathbb{C}[\lambda, z] \). The map \(\mathbb{C}[\lambda, z]^{(n)} \to \mathbb{C}[\lambda, z]^{(n)} \) given by

\[
f(\lambda, z) \mapsto cf(\lambda, z) - \left[z^{-1}\lambda f(\lambda - z, z) \right]_+
\]

for any polynomial \(f(\lambda, z) \).
is an isomorphism for $c > 0$, where $[\cdots]_+$ denotes the projection to the polynomial part in z.

Proof. Changing the sign of z, we consider the mapping $\mathbb{C}[\lambda, z]^{(n)} \to \mathbb{C}[\lambda, z]^{(n)}$ given by $f(\lambda, z) \mapsto cf(\lambda, z) + [z^{-1}\lambda f(\lambda + z, z)]_+$. We use the two bases of $\mathbb{C}[\lambda, z]^{(n)}$:

\[
\{z^n, (\lambda - z)z^{n-1}, \ldots, (\lambda - z)^n, (\lambda - z)^n\}, \\
\{z^n, \lambda z^{n-1}, \ldots, \lambda^{-1}z, \lambda^n\}.
\]

In these two bases, the map is represented by the following matrix:

\[
\begin{pmatrix}
c & -c & c & \cdots & (-1)^{n-1}c & (-1)^n c \\
1 & c & -2c & \cdots & (-1)^{n-2}(n-1)c & (-1)^{n-1}nc \\
0 & 1 & c & \cdots & (-1)^{n-2}c & (-1)^{n-2}(\frac{n}{2}) c \\
0 & 0 & 1 & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \cdots & c & -nc \\
0 & 0 & 0 & \cdots & 1 & c
\end{pmatrix}
\]

It is easy to see that the determinant of this matrix is a polynomial in c with non-negative coefficients. In particular the matrix is invertible for $c > 0$. \qed

We now come to the final step of the proof. Let $\tau(y)$, $\Upsilon(y, z)$ be as in Proposition 4.7. Then, as discussed in a paragraph preceding Proposition 4.7, $y \mapsto f(y) := zM(\tau(y), z)\Upsilon(y, z)$ defines an integral manifold for the vector fields in (4.2). We shall show that $f(y) = I(y, z)$. Using the divisor equation for $M(\tau, z)$, we find that $f(y)$ is of the form:

\[(4.6) \quad f(y) = z e^{\sum_{i=1}^m u_i \log y_i/z} \left(1 + \sum_{d \in \mathbb{E}(X_\Sigma) \setminus \{0\}} f_d Q^d y^d\right)\]

with $f_d \in H^2(X_{\Sigma})_{\text{loc}}$. In view of Lemma 4.3, the following lemma shows that $f(y) = I(y, z)$ and completes the proof of Theorem 4.1.

Lemma 4.9. The family of elements $y \mapsto f(y)$ of the form (4.6) satisfying $\partial_y f(y) = z^{-1} S_if(y)$, $i = 1, \ldots, m$ is unique.

Proof. Suppose that we have two families $f_1(y)$, $f_2(y)$ of elements of the form (4.6) satisfying $\partial_y f_j(y) = z^{-1} S_i f_j(y)$, $j = 1, 2$, $i = 1, 2, \ldots, m$. The difference $g(y) = f_1(y) - f_2(y)$ satisfies the same differential equation and is of the form

\[g(y) = z e^{\sum_{i=1}^m u_i \log y_i/z} \sum_{d \in \mathbb{E}(X_\Sigma) \setminus \{0\}} g_d Q^d y^d.\]

Choose a Kähler class ω and suppose by induction that we know $g_d = 0$ for all $d \in \mathbb{E}(X_\Sigma)$ with $\omega \cdot d < \omega \cdot d_0$ for some $d_0 \in \mathbb{E}(X_\Sigma) \setminus \{0\}$. Let x be a T-fixed point. Let δ be the set of indices i such that x does not lie on the toric divisor $\{z_i = 0\}$. The Kähler class ω can be written as a positive linear combination of non-equivariant limits of u_i.
with \(i \in \delta \). Therefore, there exists \(i_0 \in \delta \) such that \(u_{i_0} \cdot d_0 > 0 \). The coefficient in front of \(Q^{d_0} \) of the equation \(\partial_{y_{i_0}} g(y) = z^{-1}S_{i_0} g(y) \) restricted to the fixed point \(x \) gives:
\[
(u_{i_0} \cdot d_0) g_{d_0}(x) = 0
\]
since \(x \) does not lie on the minimal fixed component \(\{ z_{i_0} = 0 \} \) with respect to \(e_{i_0} \). Therefore \(g_{d_0}(x) = 0 \). Since \(x \) is arbitrary, \(g_{d_0} = 0 \). This completes the induction and the proof.

4.4. Example. Consider the toric variety \(X_\Sigma = \mathbb{P}^{m-1} \). In this case we have \(m \) shift operators \(S_1, \ldots, S_m \) corresponding to \(m \) toric divisors. It is well-known that the mirror map \(\tau(y) \) and the function \(\Upsilon(y) \) are trivial:
\[
\tau(y) = \sum_{i=1}^{m} u_i \log y_i, \quad \Upsilon(y) = 1.
\]
Generalizing the differential equation in Lemma 4.3, we can show that
\[
S_1 \cdots S_m I(y, z) = z \partial_{y_1} \cdots z \partial_{y_m} I(y, z)
\]
when \(i_1, \ldots, i_a \) are distinct. This together with the intertwining property \(S_i \circ M(\tau, z) = M(\tau, z) \circ S_i(\tau) \) and the divisor equation \(S_i(\tau(y)) = y_i^{-1} S_i(0; Qy) \) implies:
\[
S_{i_1}(0; Qy) \cdots S_{i_a}(0; Qy) 1 = z \nabla u_{i_1} \cdots z \nabla u_{i_a} 1 \bigg|_{\tau(y)} = \begin{cases} u_{i_1} \cdots u_{i_a} & \text{if } a < m; \\ Qy_1 \cdots y_m & \text{if } a = m, \end{cases}
\]
where \(i_1, \ldots, i_a \) are distinct and \(S_i(0; Qy) \) means \(S_i(0)|_{Q \rightarrow Qy_1 \cdots y_m} \). This determines the action of \(S_i(0) \) completely. Since the one-parameter subgroup \(e_1 + \cdots + e_m \) acts on \(\mathbb{P}^{m-1} \) trivially, we have a relation \(S_1(\tau) \circ \cdots \circ S_m(\tau) = Q \) by Corollary 3.10. Writing \(u_i = v + \lambda_i \) for \(i = 1, \ldots, m \), we recover the relation:
\[
(z \nabla_v + \lambda_1) \cdots (z \nabla_v + \lambda_m) 1 \bigg|_{\tau=0} = Q
\]
in the equivariant small quantum \(D \)-module of \(\mathbb{P}^{m-1} \).

4.5. Remarks. We first remark a relation to the results in [GI12]. Let \(X_\Sigma \) be a compact toric manifold such that \(c_1(X_\Sigma) \) is nef. In this case, the mirror map \(\tau(y) \) takes values in \(H^2_c(X) \). We write
\[
\tau(y) = \sum_{i=1}^{m} (\log y_i - g^i(y)) u_i
\]
for some \(\mathbb{C} \)-valued functions \(g^i(y) \). Using the divisor equation from Remark 3.12, the differential equation in Proposition 4.7 implies:
\[
y_i \frac{\partial \tau(y)}{\partial y_i} = e^{g^i(y)} S_i(0; Q e^{\tau(y)})
\]
where we set \(S_i(0; Q e^{\tau(y)}) = S_i(0)|_{Q \rightarrow Q e^{\tau(y)}} \). The left-hand side is called the Batyrev element in [GI12] and this recover the relationship between the Seidel and the Batyrev elements in [GI12, Theorem 1.1].

We should also recover a mirror theorem for the extended \(I \)-function [CCIT13] by considering the shift operators corresponding to general semi-negative cocharacters \(k \in \mathbb{C} \).
$\mathbb{Z}_{\geq 0}^m \subset \text{Hom}(\mathbb{C}^*, T)$. It would be also interesting to see if our method can be generalized to toric orbifolds [CCIT13, CCFK14], toric fibrations [Bro09], or other T-varieties.

References

[AB84] M. F. Atiyah and R. Bott. The moment map and equivariant cohomology. Topology, 23(1):1–28, 1984.

[Aud04] Michèle Audin. Torus actions on symplectic manifolds, volume 93 of Progress in Mathematics. Birkhäuser Verlag, Basel, revised edition, 2004.

[BB73] A. Bialynicki-Birula. Some theorems on actions of algebraic groups. Ann. of Math. (2), 98:480–497, 1973.

[BMO11] Alexander Braverman, Davesh Maulik, and Andrei Okounkov. Quantum cohomology of the Springer resolution. Adv. Math., 227(1):421–458, 2011.

[Bro09] Jeffrey Steven Brown. Gromov-Witten invariants of toric fibrations. 2009. arXiv:0901.1290 [math.AG], to appear in IMRN.

[CCFK14] Daewoong Cheong, Ionut Ciocan-Fontanine, and Bumsig Kim. Orbifold quasimap theory. arXiv:1405.7160 [math.AG], 2014.

[CCIT13] Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng. A mirror theorem for toric stacks. arXiv:1310.4163 [math.AG], 2013.

[CG07] Tom Coates and Alexander Givental. Quantum Riemann-Roch, Lefschetz and Serre. Ann. of Math. (2), 165(1):15–53, 2007.

[CIJ14] Tom Coates, Hiroshi Iritani, and Yunfeng Jiang. The crepant transformation conjecture for toric complete intersections. 2014. arXiv:1410.0024 [math.AG].

[CK99] David A. Cox and Sheldon Katz. Mirror symmetry and algebraic geometry, volume 68 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.

[Dol03] Igor Dolgachev. Lectures on invariant theory, volume 296 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.

[GI12] Eduardo González and Hiroshi Iritani. Seidel elements and mirror transformations. Selecta Math. (N.S.), 18(3):557–590, 2012.

[Giv98a] Alexander Givental. Elliptic Gromov-Witten invariants and the generalized mirror conjecture. In Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), pages 107–155. World Sci. Publ., River Edge, NJ, 1998.

[Giv98b] Alexander Givental. A mirror theorem for toric complete intersections. In Topological field theory, primitive forms and related topics (Kyoto, 1996), volume 160 of Progr. Math., pages 141–175. Birkhäuser Boston, Boston, MA, 1998.

[Giv04] Alexander Givental. Symplectic geometry of Frobenius structures. In Frobenius manifolds, Aspects Math., E36, pages 91–112. Friedr. Vieweg, Wiesbaden, 2004.

[GP99] Tom Graber and Rahul Pandharipande. Localization of virtual classes. Invent. Math., 135(2):487–518, 1999.

[HRV13] Tamas Hausel and Fernando Rodriguez-Villegas. Cohomology of large semiprojective hyper-Kähler varieties. arXiv:1309.4914 [math.AG], 2013.

[Iri08] Hiroshi Iritani. Quantum D-modules and generalized mirror transformations. Topology, 47(4):225–276, 2008.

[Iri09] Hiroshi Iritani. An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math., 222(3):1016–1079, 2009.

[Kir84] Frances Clare Kirwan. Cohomology of quotients in symplectic and algebraic geometry, volume 31 of Mathematical Notes. Princeton University Press, Princeton, NJ, 1984.
Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev. Hodge theoretic aspects of mirror symmetry. In From Hodge theory to integrability and TQFT tt*-geometry, volume 78 of Proc. Sympos. Pure Math., pages 87–174. Amer. Math. Soc., Providence, RI, 2008.

Bong H. Lian, Kefeng Liu, and Shing-Tung Yau. Mirror principle. III. Asian J. Math., 3(4):771–800, 1999.

Davesh Maulik and Andrei Okounkov. Quantum groups and quantum cohomology. arXiv:1211.1287[math.AG], 2012.

Dusa McDuff and Susan Tolman. Topological properties of Hamiltonian circle actions. IMRP Int. Math. Res. Pap., pages 72826, 1–77, 2006.

Hiraku Nakajima. Lectures on Hilbert schemes of points on surfaces, volume 18 of University Lecture Series. American Mathematical Society, Providence, RI, 1999.

Tadao Oda. Convex bodies and algebraic geometry, volume 15 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties, Translated from the Japanese.

Andrei Okounkov and Rahul Pandharipande. The quantum differential equation of the Hilbert scheme of points in the plane. Transform. Groups, 15(4):965–982, 2010.

Rahul Pandharipande. Rational curves on hypersurfaces (after A. Givental). Astérisque, (252):Exp. No. 848, 5, 307–340, 1998. Séminaire Bourbaki. Vol. 1997/98.

Paul Seidel. π₁ of symplectic automorphism groups and invertibles in quantum homology rings. Geom. Funct. Anal., 7(6):1046–1095, 1997. arXiv:dg-ga/9511011.

E-mail address: iritani@math.kyoto-u.ac.jp

Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan