Protection From Clinical Peripheral Sensory Neuropathy in Alström Syndrome in Contrast to Early-Onset Type 2 Diabetes

RICHARD B. PAISEY, MD
ROSAMUND M. PAISEY, RGN
MARY P. THOMSON, PHD
LYNNE BOWER

PIETRO MAFFEI, MD
JULIAN P.H. SHIELD, MD
SUE BARNETT, PHD
JAN D. MARSHALL

OBJECTIVE — Alström syndrome, with type 2 diabetes, and blindness could confer a high risk of foot ulceration. Clinical testing for neuropathy in Alström syndrome and matched young-onset type 2 diabetic subjects was therefore undertaken.

RESEARCH DESIGN AND METHODS — Fifty-eight subjects with Alström syndrome (18 insulin-resistant nondiabetic and 40 diabetic; aged 8–43 years) and 30 young-onset diabetic subjects (aged 13–35 years) were studied. Neuropathy symptom questionnaires were administered. Graded monofilament and 128-MHz tuning fork vibration perception were assessed in both feet.

RESULTS — Neuropathic symptoms, loss of monofilament, and/or vibration perception were reported by 12 of the 30 young-onset type 2 diabetic subjects (6 had neuropathic ulceration) but none of the subjects with Alström syndrome.

CONCLUSIONS — The striking preservation of protective foot sensation in Alström syndrome may provide a clue to the causes of differential susceptibility to neuropathy in the wider diabetic population.

Anton syndrome is a rare autosomal recessive condition characterized by cone-rod dystrophy and childhood blindness, obesity and insulin resistance leading to type 2 diabetes in adolescence, and hyperlipidemia (1,2). Mutations in the ALMS1 gene have been described in the majority of cases (3,4). The accompanying blindness might increase the risk of foot ulceration if peripheral neuropathy were to develop. Therefore, a systematic foot examination of 58 subjects with Alström syndrome and 30 young-onset type 2 diabetic subjects was undertaken.

RESEARCH DESIGN AND METHODS — Ethics committees of Torbay Hospital, Bristol Royal Hospital for Children, and The Jackson Laboratory gave study approval. Subjects with Alström syndrome were studied at Alström Syndrome U.K. and Alström Syndrome International clinics. Fifty-eight subjects with Alström syndrome and 30 young-onset (<25 years of age at diagnosis) type 2 diabetic subjects; 10 of 12 patients from the adolescent type 2 diabetes register at Bristol Royal Hospital for Children; and 20 of 22 patients from the diabetes retinal screening register of South Devon Healthcare, Torbay Hospital were included.

Clinical protocol
A validated questionnaire (available in an online appendix at http://dx.doi.org/10.2337/dc08-1584) seeking symptoms of bilateral neuropathic pain was administered to all subjects by three trained investigators. Research-grade 2-, 4-, 6-, 8-, 10-, and 15-g monofilaments (Bailey Instruments, Manchester, U.K.) and 128-MHz tuning forks were used to test for protective sensation in subjects with eyes closed (5) (see Clinical Protocol available in the online appendix). Briefly, monofilaments were bounced to warm them up and applied firmly to six sites on each foot with a variable pause between tests to exclude false-positive responses. Calloused sites were avoided. Preservation of vibration perception was recorded if the subject sensed vibration at the tip of the hallux for 3 s and correctly identified when damped. Serum lipids and A1C were taken from patient records in the U.S. and from clinical laboratories at Torbay Hospital and Bristol Royal Hospital for Children in the U.K.

Statistics
For statistical testing, parametric ANOVA was used for BMI and A1C and the Kruskal-Wallis test was used for monofilaments. For pulses, 128 V, and reflexes, Fisher’s exact test was used. Statistical computations were performed with Foundation for Statistical Computing software (R2.6.1; http://www.r-project.org). The significance threshold was set at \(P \leq 0.05 \).

RESULTS — The Alström diabetic subjects \((n = 40)\) and young-onset type 2 diabetic patients \((n = 30)\) are well matched (Table A1 of the online appendix) except for duration of diabetes, which is longer in the Alström diabetic group for type 2 diabetes vs. Alström syndrome diabetes, respectively, duration of diabetes 4.6 ± 3.2 vs. 13.8 ± 2.8 years; A1C 8.6 ± 2.5 vs. 9.1 ± 1.5\%, \(P = 0.14 \); serum cholesterol 5.3 ± 0.9 vs. 6.1 ± 1.3 mmol/l, \(P = 0.25 \); and serum triglyceride 3.7 ± 1.9 vs. 0.8 ± 6.0 mmol/l, log-transformed \(P = 0.15 \). Table 1 shows the prevalence of neuropathic symptoms and loss of protective sensation in each group of subjects. No Alström syndrome subjects manifested typical neuropathic pain or absence of vibration perception. All perceived 6-g monofilament stimuli at all
sites, and >80% perceived all 2-g tests. None had present or past foot ulcers.

In contrast, neuropathic symptoms, absent vibration perception, or impairment of 6-g or 10-g monofilament perception was found in 14, 11, 7, and 12 of the control young-onset type 2 diabetic subjects, respectively. Six had neuropathic ulcers, and one had a bilateral ulcer.

Statistical analysis showed highly significant differences between Alström syndrome diabetic and young-onset type 2 diabetic patients with respect to presence of neuropathic symptoms (P < 0.0001), absence of vibration perception (P = 0.0004), and mean lightest perceived monofilament (P = 0.00001).

CONCLUSIONS — Impairment of vibration sense and/or monofilament perception at 10 g is strongly predictive of future ulceration in diabetes (6,7). Our findings with graded monofilaments and vibration perception have confirmed the high prevalence of peripheral sensory loss, neuropathy, and ulceration in a small group of young/adolescent-onset type 2 diabetic individuals.

Alström syndrome diabetic subjects maintained good protective sensation despite comparable hyperglycemia and dyslipidemia (online appendix). This finding is encouraging, as it confirms that Alström syndrome subjects can undertake exercise and domestic activities with low risk of foot ulceration. The freedom from clinical signs of neuropathy suggests the possibility of a protective factor, associated with the syndrome, that may, when identified, increase understanding of the causes of diabetic neuropathy and suggest novel therapeutic interventions. Studies of nerve conduction in these patients are needed to confirm these findings.
Protection from neuropathy in Alström syndrome

8. Sosenko JM, Gadha MT, Fournier AM, O’Connell MT, Aguiar MC, Skyler JS: Body stature as a risk factor for diabetic sensory neuropathy. *Am J Med* 80:1031–1034, 1986
9. Sosenko JM, Boulton AJ, Gadia MT, Ward JD, Skyler JS: The association between symptomatic sensory neuropathy and body stature in diabetic patients. *Diabetes Res Clin Pract* 4:95–98, 1988
10. Maffei P, Boschetti M, Marshall JD, Paisey RB, Beck S, Resmini E, Collin GB, Naggert JK, Milan G, Vettor R, Minuto F, Sicolo N, Barreca A: Characterization of the IGF system in 15 patients with Alström syndrome. *Clin Endocrinol (Oxf)* 66:269–275, 2007
11. Merimee TJ, Hall JD, Rimoin DL, McKusick VA: A metabolic and hormonal basis for classifying ateliotic dwarfs. *Lancet* 1:963–965, 1969
12. Merimee TJ, Siperstein MD, Hall JD, Fineberg SE: Capillary basement membrane structure: a comparative study of diabetics and sexual ateliotic dwarfs. *J Clin Invest* 49:2161–2164, 1970
13. Hearn T, Spalluto C, Phillips VJ, Renforth GL, Copin N, Hanley NA, Wilson DI: Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. *Diabetes* 54:1581–1587, 2005