Research On Exercise Fatigue Estimation Method of Pilates Rehabilitation Based On ECG and sEMG Feature Fusion

Dujuan Li
North Sichuan Medical College

Caixia Chen (caixiachen0578@163.com)
China West Normal University

Research Article

Keywords: Exercise fatigue, Surface EMG signal, Electrocardiogram signal, Feature fusion, Particle swarm optimization algorithm

Posted Date: November 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1093183/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at BMC Medical Informatics and Decision Making on March 18th, 2022. See the published version at https://doi.org/10.1186/s12911-022-01808-7.
Research on exercise fatigue estimation method of Pilates rehabilitation based on ECG and sEMG feature fusion

Dujuan Li¹, Caixia Chen²

¹ North Sichuan Medical College, Nanchong 631000, China
² China West Normal University, Nanchong 631000, China

* Correspondence: caixiachen0578@163.com; Tel.: +86 15797677791

ABSTRACT: Purpose. Fatigue estimation is of great significance to improve the accuracy of intention recognition and avoid secondary injury in Pilates rehabilitation. Surface electromyography (sEMG) is used to estimate fatigue with low and unstable recognition rates. To improve the rate, this paper fused electrocardiogram (ECG) signal and sEMG signal under three different states, and the classification model of the improved proved particle swarm optimization support vector machine (IPSO-SVM) algorithm was established. Methods. Twenty subjects performed 150 minutes of Pilates rehabilitation exercise. ECG and sEMG signals were collected at the same time. After necessary preprocessing, the IPSO-SVM classification model based on feature fusion was established to identify three different fatigue states (relaxed, transition, and tired). The model effects of different classification algorithms and different fused data types were compared. Results. Compared with common physiological signal classification methods such as BP neural network algorithm (BPNN), K-nearest neighbor (KNN), and Linear discriminant analysis (LDA), IPSO-SVM had obvious advantages in the classification effect of sEMG and ECG signals, the average recognition rate was 87.83%. The recognition rates of sEMG and ECG fusion feature classification models were 94.25%, 92.25%, 94.25%. The recognition accuracy and model performance was significantly improved. Conclusion. The sEMG and ECG signal after feature fusion form a complementary mechanism. At the same time, IPOS-SVM can accurately detect the fatigue state in the process of Pilates rehabilitation. This study establishes technical
1 support for establishing relevant man-machine devices and improving the safety of
Pilates rehabilitation.

2 KEYWORDS: Exercise fatigue; Surface EMG signal; Electrocardiogram signal;
Feature fusion; Particle swarm optimization algorithm

3 Highlight:
1. The surface electromyography signal and electrocardiogram signal were fused.
2. ECG features are helpful to identify interference variables and correct them.
3. The IPSO-SVM and ECG/sEMG can establish a more accurate evaluation method of
Pilates rehabilitation exercise fatigue.

4 1 Introduction

Pilates is a combination of strength, flexibility, and balance exercises. It focuses
on lumbopelvic stabilization, with the activation of the deep muscles of the trunk, and
seeks a complete connection of body and mind. The core muscles provide balance and
strength for Pilates, so exercise plays an important role in women’s postpartum
recovery, prevention of low back pain and rehabilitation, spinal health correction. In
the process of Pilates exercise, program-controlled human-computer interaction
equipment, such as medical rehabilitation robot and exoskeleton robot, is to help
patients complete the set movement. However, the muscle fatigue information is rarely
used as an influencing factor to adjust the rehabilitation process. that not only has a
great impact on the recognition rate of patients’ motor intention but also tends to cause
secondary injuries and reduce the rehabilitation effect.

Surface electromyography (sEMG) has many achievements in the field of online
monitoring and processing of muscle fatigue. Choi Chang et al. developed a computer
interface base on sEMG and virtual reality, which can be applied to spinal cord injury
patients. They can control the cursor movement by adjusting the level of muscle
contraction. Shahmoradi et al. collected the sEMG and Maximum voluntary
contraction (MVC) data in the rehabilitation process as inputs of the fatigue state recognition model. The hidden Markov model and artificial neural network were studied for fatigue classification of sEMG. The results show the HMM has a better recognition effect with an accuracy of 95.3%. Because fatigue is a complex phenomenon, the sEMG classification method alone is not stable. To solve the problem of sEMG classification model instability, many scholars combine sEMG with other monitoring methods, electroencephalogram is one of the commonly used techniques. Therefore, the research of the combined monitoring method is worthy of further development.

Electrocardiogram (ECG) is one of the most commonly used non-invasive diagnostic tools for recording the physiological activities of the heart over some time. The ECG data contains much information about the human motor function and is widely used in muscle state research and emotion estimation and so on. Considering the muscle fatigue characteristics of the sEMG and ECG, it is of great significance to establish the fatigue state recognition model of the Pilates rehabilitation process by the fusion sEMG and ECG.

In response to the above questions, the fatigue degree of the subjects after the Pilates rehabilitation was divided into 6~20 score ranges by the scale for Rating of Perceived Exertion (RPE scale). The segments from 6~10, 13~14, 17~18 scores in the table were identified as easy, excessive, and fatigue. The ECG and sEMG signal at the tibialis anterior muscle and semitendinosus muscle of the lower limbs were collected while doing the established actions of Pilates. A series of preprocessing was performed to extract the feature variables, which were used as the improved particle swarm optimization support-vector. The input volume of the machine classifier, which achieves iterative optimization of the fusion of complex signals, high-dimensional features, and accurate identification of the three motion states. The advantages and disadvantages of this method were analyzed by the recognition effect.
2 methods

2.1 data collection

In this section, the data collection will be described, and analysis methods will be explained in detail. The data has been obtained from 20 physical health subjects (22~26 years old; 8 males, 12 females)

The experiments were conducted using Trigno Wireless Systems and Smart Sensors. The Trigno Wireless EMG system is a very popular device with simple and reliable performance. Each EMG sensor has a built-in triaxial accelerometer. Its signal can be transmitted in 40 meters and can be detected continuously for 8 hours. The system can transmit the data stream to EMGworks 4. Acquisition and analysis software for generating 16 EMG sensors (37 mm×26 mm×15 mm) and 48 accelerometer analog channels for integration with motion capture and other third-party data acquisition systems. The complete trigger function further expands the possibility of integration with other measurement technologies. The sensor used can respond immediately to the interference detected on the skin surface.

Figure 1 Sensor placement

The North Sichuan Medical College conducted this research project by the ethical code of the World Medical Association. It was also approved by the Ethics Committee of the North Sichuan Medical College(No. 2020ER(R)017). This paper took 20
physical examiners as the research object. Selection criteria: full-time students majoring in Physical Education; aerobics as the main special sport; the subjects were in good physical condition, had no obvious disease, and had no damage to the lower limb muscles and knees. The subjects had an average height of 162.3±1.2 cm, an average body weight of 63.5±2.3 kg, and an age of 21.2±1.1 years. Before the experiment, the experimental process was explained to the subjects. All subjects voluntarily participated in the experiment and signed written informed consent. The test time was September 11~25, 2021.

According to the physiological structure of the human body, the ECG signal and the sEMG signal at the anterior tibialis muscle and semitendinosus muscle were collected synchronously. The sampling frequency was 2 kHz. The sensor position is shown in Figure 1. Ch-1 is the ECG sensor, ch-2 and ch-3 are the sEMG sensors at the semitendinosus muscle of the right leg and the anterior tibialis muscle of the left leg, respectively.

![Figure 1](image1.png)

Figure 1: Position of the sensors

According to the physiological structure of the human body, the ECG signal and the sEMG signal at the anterior tibialis muscle and semitendinosus muscle were collected synchronously. The sampling frequency was 2 kHz. The sensor position is shown in Figure 1. Ch-1 is the ECG sensor, ch-2 and ch-3 are the sEMG sensors at the semitendinosus muscle of the right leg and the anterior tibialis muscle of the left leg, respectively.

![Figure 2](image2.png)

Figure 2: A set of the experimental processes and the feature data obtained

The subjects were divided into two groups of 10. According to the plan, the prescribed Pilates movement training was carried out. It was stipulated that 15 min was a training cycle. Ten subjects completed one cycle of training in turn as a group of
experiments. The duration of each experiment was 150 min, and a total of 40 groups of experiments were carried out. The first group finished the test, the second group continued the test, and the first group rested. In each training cycle, the subjects return a calm standing state every 30 s according to the RPE scale10, report their feelings of fatigue state, and mark the fatigue state value at this time (relaxed:-1, transition:0, tired:1)

The sEMG and ECG data in three states were marked and saved, and the corresponding training time was recorded. 30 groups of sEMG and ECG data were obtained in each group experiment. According to the corresponding fatigue value, each data was divided into three states, with a total of 90 sEMG and ECG data. After the experiment, 3600 sEMG and ECG data were collected respectively. One set of experimental processes and obtained characteristic data are shown in Figure 2. The signal acquisition and analysis process of all subjects were the same. Here, take one of them as an example.

2.2 Signal preprocessing and fatigue feature extraction

The original sEMG and ECG signal contains noise interference, which needs to be preprocessed. Firstly, the original ECG and sEMG signals were filtered by 0~100 Hz and 0~500 Hz low-pass filters to remove high-frequency interference. Secondly, 49.5~50 Hz adaptive notch filters were used to filter the power frequency and harmonic interference in the signal. Finally, empirical mode decomposition(EMD) and discrete wavelet transform(DWT) domains were used to reduce the noise11. which reduce the noise from the initial IMFs instead of discarding them completely thus yielding a relatively cleaner ECG signal12. MATLAB 2021a was used to analyze and process the collected data. The time-domain and frequency-domain data processing of ECG and sEMG are shown in Figure 3-6.
Figure 3 Example of signal preprocessing process about ECG (a) raw signal; (b) low pass filtered signal; (c) EMD; (d) DWT
Figure 4 Example of signal preprocessing process about sEMG (a) raw signal; (b) low-pass filtered signal; (c) EMD; (d) DWT.

Figure 5 Example of signal preprocessing process about frequency-domain signal of ECG (a) raw signal; (b) low pass filtered signal; (c) EMD; (d) DWT.
Figure 6 Example of signal preprocessing process about frequency-domain signal of sEMG (a) raw signal; (b) low pass filtered signal; (c) EMD; (d) DWT

Table 1 Fatigue-related physiological features of ECG and sEMG

Features	Features description
ECG_{mean}	*Mean of the ECG interval sequence
ECG_{LF}	Interphase sequence low-frequency band power (0.04–0.15 Hz)
ECG_{LF/HF}	ECG interphase sequence with low/high band power ratio
sEMG_{R-IEMG}	sEMG of the musculus semitendinosus in the right leg
sEMG_{R-RMS}	*The mean square root of sEMG_{R-IEMG}
sEMG_{R-MPF}	*The mean power frequency of sEMG_{R-IEMG}
sEMG_{R-MF}	*The median frequency of sEMG_{R-IEMG}
sEMG_{L-IEMG}	EMG of tibialis anterior in the left leg
sEMG_{L-RMS}	The mean square root of sEMG_{L-IEMG}
sEMG_{L-MPF}	The mean power frequency of sEMG_{L-IEMG}
The calculation method of specific parameters with an asterisk in the Table 1 is as follows:

\[ECG_{\text{mean}} = \frac{1}{M} \sum_{i=1}^{M} (RR_i) \]

(1)

In the above relations, \(RR_i \) is the duration of ECG interval; \(M \) is the total number of periods.

\[sEMG_{R-IEMG} = \int_{t_1}^{t_2} |x(t)| \, dt = \sum_{k=1}^{N_2} |x(k)| \times \frac{1}{F_s} \]

(2)

\[sEMG_{R-RMS} = \sqrt{\frac{1}{N} \int_{t_1}^{t_2} |x(t)| \, dt} = \frac{1}{N} \sum_{k=1}^{N_2} x(k) \times \frac{1}{F_s} \]

(3)

\[sEMG_{R-MF} = \int_{f_{\text{mid}}}^{\infty} f \, P(f) \, df / \int_{0}^{\infty} P(f) \, df \]

(4)

\[sEMG_{R-MF} = \frac{1}{2} \int_{0}^{\infty} P(f) \, df \]

(5)

where \(x(t) \) is the amplitude of the sEMG signal, \(x(k) \) is the amplitude of sEMG signal after discretization, \(F_s \) is sampling frequency. \(N, N_1, \) and \(N_2 \) are the length of sEMG signal.

2.3 Improved particle swarm optimization-support vector machine (IPSO-SVM) classifier

Traditional feature fusion with constant weights attempts to merge multiple feature vectors into a vector, which performs poorly in muscle fatigue recognition since feature weights cannot change with the testing object. In this study, the multi-class support vector machines (SVMs) are constructed by feature fusion coefficients of particle swarm optimization (PSO) and one-vs-one (OVO) methods to improve the state classifier. The fusion coefficient based on PSO can well represent weight coefficients and trust degrees of weight coefficients, and learn the fusion features via multi-class SVM to achieve state classification; accordingly, the fitness function can be established...
based on state recognition rate to perform adaptive iterative optimization on the fusion coefficient, finally achieving effective fusion of fatigue characteristics and accurate state classification. The detailed process of fatigue estimation based on improved PSO-SVM (IPSO-SVM) classifier is as follows:

2.3.1 Constructing the fused feature vectors

\[f_i = [f_{i1}, f_{i2}, \ldots, f_{in}], \quad e_i = [e_{i1}, e_{i2}, \ldots, e_{in}], \quad i = 1, 2, \ldots, n \]

are defined as the feature vectors of ECG and sEMG, where \(a, b \) are the vector dimension and \(n \) is the number of samples. \(d = [d_1, d_2, \ldots, d_{an}] \) is defined as the fusion coefficient vector, the fused feature vector of ECG and sEMG can be denoted as \(x_i = [d_1 f_{i1}, d_2 f_{i2}, \ldots, d_{an} e_{in}], \quad i = 1, 2, \ldots, n \). Using the fused feature matrix \(X = [x_1, x_2, \ldots, x_n]^T \) composed of fused coefficient vector \(d \), \(X \) can be divided into the training set \(X_p \) and the test set \(X_T \). \(X_p \) is used for training the classifier and \(X_T \) is used for validating the classification performance.

2.3.2 Constructing multi-class SVM fatigue state classifier

SVM, as a kind of machine learning method based on statistics and the principle of structural risk minimization, performs excellently in addressing nonlinear recognition problems with a small set of samples\(^{14}\). Fatigue estimation based on ECG and sEMG can be regarded as a type of linear inseparable multi-class problem, which is exactly the field of expertise of the one-to-one method(OVO)\(^{15}\). On the classification of class 3 or more, 2 classes are selected and then merged for classification. In this study, OVO was used for constructing 3 binary SVMs to achieve the effective classification of 3 states.

It is assumed that the training set \(X_p \) contains \(m \) samples, \(X_p = [x_1, x_2, \ldots, x_m]^T \), \(Y_p = [y_1, y_2, \ldots, y_m]^T \), \(y_i \in \{-1, 0, 1\} \). \(y_i \) can be classified into the following 3 states—relaxed state, transition state, and tired state, with the values of -1, 0, and 1, respectively.
SVM attempts to seek an optimal classification function so that the distance of the function on the hyperplane and the support vector reaches the maximum. The kernel function $\phi(x)$ is used for mapping the sample set to high-dimensional space while satisfying the Mercer condition. The selection of $\phi(x)$ can directly determine the classification performance. Owing to favorable performance and application range, radial basis function is selected as the kernel function of SVM in this study,

$$\phi(x, x_i) = \exp\left(-\frac{\|x - x_i\|^2}{\sigma^2}\right)$$ (6)

In the case of positive definite $\phi(x, x_i)$, the problem of seeking optimal hyperplane can be converted into the following convex quadratic programming problem:

$$\begin{align*}
\min_{\alpha, b, \xi} & \quad \frac{1}{2} \|\eta\|^2 + C \sum_{i=1}^{N} \xi_i \\
\text{s.t.} & \quad \begin{cases}
\sum_{i=1}^{N} y_i (\alpha_i \cdot \phi(x_i) + b) \geq 1 - \xi_i \\
\xi_i \geq 0, i = 1, 2, \ldots, N
\end{cases}
\end{align*}$$ (7)

where C and ξ_i are penalty factor and slack variable, respectively. By introducing the Language coefficient a, the convex quadratic programming problem can be converted into the dual problem according to Eq.(7), and the optimal solution α^*, η^*, b^* can thus be obtained by solving the dual problem:

$$b^* = y_i - \sum_{i=1}^{l} y_i \alpha^* \phi(x_i, x_j)$$ (8)

Finally, the SVM classification function based on radial basis function can be expressed as:

$$f(x) = \text{sgn}\left(\sum_{i=1}^{N} \alpha_i^* y_i \phi(x, x_i) + b^*\right)$$ (9)

The classifier can thus be constructed.

2.3.3 ECG-sEMG feature fusion based on IPSO-SVM

The detailed fusion process of ECG and sEMG signals was described as below.

a. Initialization of particle swarms. In this study, the random fusion coefficient matrix $D = [d_1, d_2, \ldots, d_q]^T$ is defined as the initial particle swarm, in which
$d_j = [d_{j1}, d_{j2}, \ldots, d_{j\alpha}]$ denotes the fusion coefficient vector, $\sum_{k=1}^{a+b} d_{jk} = a + b$.

$j=1,2,\ldots,q$. The maximum number of initialization iterations, q denotes the size of particle swarm, c_1 and c_2 learning factors, and ω denotes the inertia weight.

b. Training of SVM network and calculation of the particle fitness degree. The characteristic samples are fused with the corresponding fusion coefficients of particles to obtain the feature fusion matrix $X = [X_p, X_T]$, in which is used for network training to obtain the classification function *. The particle fitness degree can thus be obtained by testing X_T with $f(x)$.

c. Update of particle swarm (optimization of fusion coefficient matrix D). For the fitness degree $h(d)$ of each group of particles after the above step b, the optimal fitness degrees of both individual particle and population are calculated according to Eq. (10), while both velocity v_{i+1} and position x_{i+1} of each particle to generate a new population, in which rand() denotes the random number within a range of [0, 1].

$$h_p = \max(h(d)), \quad h_g = \max(h_p)$$

$$v_{i+1} = \omega \times v_i + c_1 \times \text{rand()} \times (h_p(i) - x_i) + c_2 \times \text{rand()} \times (h_g(i) - x_i)$$

$$x_{i+1} = x_i + v_{i+1}$$

d. Step b and Step c are repeated until reaching the optimal fitness degree ($h_g \geq h_e$, also referred to as the expected fitness), where D denotes the optimal fusion coefficient matrix.

2.3.4 Fatigue estimation based on optimal fusion coefficient feature fusion

Using the optimal fusion coefficients, the feature vectors of unknown states are constructed and input to the well-trained SVM network for recognition to achieve accurate classification of fatigue states.

3 results
3.1 Analysis of ECG and EMG physiological features under different fatigue states

Figure 7 shows the ECG signal characteristics of different subjects under different fatigue states. Relaxed and tired states can be easily separated based on ECG signal, but the signal characteristics under transition state overlap with those of the other two states. The characteristics in frequency-domain were particularly intensive than those in the time-domain. Figure 8 shows the sEMG features of the tibialis anterior muscle and semitendinosus of the subjects under different fatigue states. Figure 9 shows sEMG signal features of the left anterior tibialis muscle under different fatigue states. The sEMG values of muscle integration in the time-domain and root-mean-square (RMS) values show an obvious difference, mean characteristic power frequency and median frequency in frequency-domain overall show obvious tendency; however, the transition state shows a certain overlapping error with the other two states. Both time-frequency characteristics of ECG and sEMG signals in the tired states show obvious fluctuations than those in the other states. Accordingly, the characteristics of ECG and sEMG signals are complementary to some degree. The combination of two types of signals can strengthen the recognition performance of the classifier; however, interference also exists. The characteristic confidence degree, i.e., the fusion coefficient, should be judged and optimized.
Figure 7 ECG signal features in different fatigue states (a) ECG\text{mean}, (b) ECG\text{LF},

(c) ECG\text{LF/HF}
3.2 Analysis of fusion coefficient optimization process

The fusion coefficient is the key to establishing the optimal feature vector and enhancing the fatigue recognition rate. To prevent from falling into local optimum of particle fitness degree, the related parameters in PSO including the population size $q=2$ 000, the learning factor $c_1=0.5$ $c_2=0.5$, the inertial weight $\omega=0.8$ and the expected fitness degree can be set as 95%, respectively. 1 200 groups of data sets (400 groups for each state) are selected from the collected data for pre-processing and feature extraction; next, the established IPSO-SVM classifier is trained and tested via Monte Carlo cross-validation (MCCV). Fig.10 shows the convergence process of the fitness degree of
particle swarm. It can be found that the convergence rate is great for the population with a size of 2000 after 120 iterations.

![Convergence process of particle swarm optimal fitness](image)

Figure 10 Convergence process of particle swarm optimal fitness

3.3 Analysis of fatigue recognition results of using different methods

Some commonly-used classification methods for physiological signals including IPOS-SVM, BP neural network (BPNN), K-nearest neighbor (KNN), and linear discriminant analysis (LDA) were performed on sEMG and ECG signals for training and testing, as the results are shown in Fig.11. It can be found that the IPOS-SVM algorithm showed obvious advantages in the classification of sEMG and ECG signals, with a mean recognition rate of 87.83%; BPNN, as a hotspot in current classification algorithms, was lower than IPOS-SVEM in mean recognition, with a mean recognition rate of 85.80%; KNN was close to LDA in classification performance, with a mean recognition rate of 80.55% and 79.01%. Overall, sEMG showed a favorable fatigue classification performance than ECG, since sEMG data contained more fatigue state characteristics. ECG was poor in the recognition of transition state, which was consistent with previous research results. Through comparison, IPOS-SVM performed well in fatigue state classification; however, the state recognition rate was still quite
low (only 87.83%).

Figure 11 Comparison of recognition results of different classification methods

Aiming at exploring the enhancement of classification performance via data fusion, the classification models are constructed on sEMG signal, ECG signal and the combination of two signals based on IPOS-SVM, as the results are shown in Table 2, Table 3, Table 4.

Table 2 Identification accuracy results based on sEMG feature (%)

Tester number	Relax	Transition	Tired
1	95	90	90
2	95	85	90
3	95	90	90
4	90	90	90
5	90	85	85
6	95	85	95
7	95	95	90
8	95	85	95
9	90	85	85
10	95	85	85

Table 3 Identification accuracy results based on ECG feature fusion (%)

Tester number	Relax	Transition	Tired				
11	95	85	90				
12	95	90	90				
13	95	90	90				
14	95	95	95				
15	95	90	95				
16	95	85	85				
17	95	85	85				
18	95	90	85				
19	95	85	90				
20	90	85	90				
Tester number	Relax	Transition	Tired	Tester number	Relax	Transition	Tired
---------------	-------	------------	-------	---------------	-------	------------	-------
1	90	85	90	11	90	80	85
2	90	80	85	12	85	85	85
3	90	85	90	13	90	80	95
4	85	75	85	14	90	85	95
5	85	80	85	15	90	80	85
6	95	80	90	16	90	80	85
7	85	80	85	17	90	75	95
8	85	75	90	18	90	80	80
9	85	80	80	19	90	80	90
10	90	80	80	20	85	75	90

Table 4 Identification accuracy results based on ECG and sEMG feature fusion(%)
were 94.00%, 87.75% and 89.5%, respectively, while the recognition rates of relaxed, transition and tired states only with ECG signal were 88.5%, 80.00% and 87.25%, respectively. By contrast, sEMG was more sensitive to fatigue state and rich in fatigue state information. ECG showed a poorly recognition rate of the transition state (only 80%). After feature fusion of sEMG and ECG, the recognition rates of the relaxed state, the transition state and the tired state could be remarkably enhanced to 94.25%, 92.25% and 94.25%, respectively. The recognition rate of transition rate exceeded 90%, which can be explained by the following two reasons. Firstly, ECG features can contribute to recognizing interference variables and play the role of correction. Secondly, IPOS-SVM can perform distribution based on the trust degrees of high-dimensional characteristics after multiple iterative computations, which can assign appropriate weights in different cases.

4 discussion

The fatigue produced in Pilates is a complex phenomenon in rehabilitation exercises. How to enhance the accuracy of fatigue estimation based on feature fusion of multi-source physiological signals appears as an effective mean. However, due to the lack of uniform research paradigm and standards, many studies have been stuck on laboratory or special application scenarios. Both sEMG and ECG are nondestructive body monitoring signals abundant in physical information. Establishing the classification model or quantitative model based on the combination of sEMG and ECG shows huge potential. This study starts from the perspective of fatigue in Pilates and proposes a lower limb fatigue estimation method based on sEMG and ECG to achieve the classification of 3 states (relaxed, transition, and tired states) in the lower limb rehabilitation process. The classification model by integrating ECG and sEMG fatigue features into fatigue states is established with IPOS-SVM. Results also confirm better classification performances of IPSO-SVM than BPNN, KNN and LDA, i.e., the
proposed IPSO-SWM is appropriate for the classification of fatigue states based on sEMG and ECG signals. IPSO-SVM classification model based on surface electromyography and ECG fusion features had good processing ability for high-dimensional feature information, and can well identify 3 fatigue states with the recognition rates of 94.25%, 92.25% and 94.25%, respectively. The mean recognition rate was 93.58%. By comparison with the results based on pure sEMG and pure ECG signals, the model based on feature fusion shows better recognition precision and performance. Conclusively, sEMG and ECG signals can be combined for feature fusion to achieve accurate fatigue detection during the Pilates rehabilitation process, which can lay a solid foundation for further constructing the related man-machine device and enhancing the safety of Pilates rehabilitation.

It must be admitted that there are deficiencies in this study. The designed algorithm pays more attention to enhancing the recognition rates of different fatigue states. Compared with single detection means, the operability of operators and the complexity should be further optimized. Meanwhile, this study focused on the recognition of 3 discrete states during the rehabilitation process. In future studies, our team will attempt to explore the mapping relations between continuous fatigue states and ECG/sEMG signals to establish a more accurate quantitative model.

Declarations

Ethics approval and consent to participate The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was conducted after the authorization of the Ethical Committee of North Sichuan Medical College (No. 2020ER(R)017). All patients included in the study had signed the approved informed consent to participate.

Consent for publication All patients included in the study had signed the approved informed consent to allow publication of anonymous data.
Availability of data and material The datasets used or analysed during the current study are available from the first author on reasonable request.

Competing interests The authors declare no competing interests.

Authors’ contributions Dujuan Li leaded the method application, experiment conduction and the result analysis. Dujuan Li participated in the data extraction and preprocessing. Caixia Chen participated in the manuscript revision, and provided theoretical guidance and the revision of this paper. All authors read and approved the final manuscript.

References

1. Aladro-Gonzalvo AR, Machado-Díaz M, Moncada-Jiménez J, Hernández-Elizondo J, Araya-Vargas G. The effect of Pilates exercises on body composition: A systematic review. *Journal of Bodywork and Movement Therapies*. 2012;16(1):109-114. doi:10.1016/j.jbmt.2011.06.001

2. Ashrafinia F, Mirmohammadali M, Rajabi H, Kazemnejad A, Sadeghniiat Haghighi K, Amelvalizadeh M. Effect of Pilates exercises on postpartum maternal fatigue. *smedj*. 2015;56(3):169-173. doi:10.11622/smedj.2015042

3. Mazloum V, Sahebozamani M, Barati A, Nakhaee N, Rabiei P. The effects of selective Pilates versus extension-based exercises on rehabilitation of low back pain. *Journal of Bodywork and Movement Therapies*. 2018;22(4):999-1003. doi:10.1016/j.jbmt.2017.09.012

4. Shahmoradi S, Zare A, Behzadipour S. Fatigue Status Recognition in a Post-Stroke Rehabilitation Exercise with sEMG Signal. In: *2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME)*. IEEE; 2017:1-5. doi:10.1109/ICBME.2017.8430264
5. Song Y, Du Y, Wu X, Chen X, Xie P. A synchronous and multi-domain feature extraction method of EEG and sEMG in power-assist rehabilitation robot. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2014:4940-4945. doi:10.1109/ICRA.2014.6907583

6. Arjunan SP, Kumar DK. Fractal features based technique to identify subtle forearm movements and to measure alertness using physiological signals (sEMG, EEG). In: TENCON 2008 - 2008 IEEE Region 10 Conference. IEEE; 2008:1-4. doi:10.1109/TENCON.2008.4766797

7. Wei P, Zhang J, Wei P, Wang B, Hong J. Different sEMG and EEG Features Analysis for Gait phase Recognition. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2020:1002-1006. doi:10.1109/EMBC44109.2020.9175655

8. Li X, Samuel OW, Zhang X, Wang H, Fang P, Li G. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. J NeuroEngineering Rehabil. 2017;14(1):2. doi:10.1186/s12984-016-0212-z

9. Hong S, Zhou Y, Shang J, Xiao C, Sun J. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Computers in Biology and Medicine. 2020;122:103801. doi:10.1016/j.compbiomed.2020.103801

10. Williams N. The Borg Rating of Perceived Exertion (RPE) scale. Occupational Medicine. 2017;67(5):404-405. doi:10.1093/occmed/kqx063

11. Alickovic E, Kevric J, Subasi A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packet decomposition for automated epileptic seizure detection and prediction. Biomedical Signal Processing and Control. 2018;39:94-102. doi:10.1016/j.bspc.2017.07.022
12. Karthick PA, Ghosh DM, Ramakrishnan S. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. *Computer Methods and Programs in Biomedicine*. 2018;154:45-56. doi:10.1016/j.cmpb.2017.10.024

13. Putra DS, Weru YUW, Fitriady. Pattern recognition of electromyography (EMG) signal for wrist movement using learning vector quantization (LVQ). *IOP Conf Ser: Mater Sci Eng*. 2019;506:012020. doi:10.1088/1757-899X/506/1/012020

14. Yu D, Xu Z, Wang X. Bibliometric analysis of support vector machines research trend: a case study in China. *Int J Mach Learn & Cyber*. 2020;11(3):715-728. doi:10.1007/s13042-019-01028-y

15. Liu Y, Bi JW, Fan ZP. A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. *Information Sciences*. 2017;394-395:38-52. doi:10.1016/j.ins.2017.02.016