A previously uncharacterized gene in SARS-CoV-2 and the origins of the COVID-19 pandemic

Chase W. Nelson1,2,a,*, Zachary Ardern3,a,*, Tony L. Goldberg4,5, Chen Meng6, Chen-Hao Kuo1, Christina Ludwig6, Sergios-Orestis Kolokotronis2,7,8, Xinzhu Wei9,*

1Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
2Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
3Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
4Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
5Global Health Institute, University of Wisconsin-Madison, Madison, WI, USA
6Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
7Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
8Institute for Genomic Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
9Departments of Integrative Biology and Statistics, University of California, Berkeley, CA, USA

aThese authors contributed equally.
*Corresponding authors: cnelson@gate.sinica.edu.tw, zachary.ardern@tum.de, aprilwei@berkeley.edu
Abstract

Understanding the emergence of novel viruses requires an accurate and comprehensive annotation of their genomes. Overlapping genes (OLGs) are common in viruses and have been associated with the origins of pandemics, but are still widely overlooked. We identify ORF3c, a novel OLG in SARS-CoV-2 that is also present in Guangxi pangolin-CoVs but not more closely related pangolin-CoVs (Guangdong) or bat-CoVs (RaTG13 and RmYN02). We then document evidence of translation from ribosome profiling and conduct an evolutionary analysis at three levels: between-species (n=21 betacoronavirus genomes), between-host (n=3,978 SARS-CoV-2 consensus sequences), and within-host (401 deeply sequenced SARS-CoV-2 samples). ORF3c has been independently identified and shown to elicit a strong antibody response in COVID-19 patients. However, it has been misclassified as ORF3b, an unrelated gene in other SARS-related betacoronaviruses, leading to confusion and unfounded functional inferences. Our results liken ORF3c to other viral accessory genes and stress the importance of studying OLGs.
Introduction

The COVID-19 pandemic raises urgent questions about the properties that allow animal viruses to cross species boundaries and spread within humans. Addressing these questions requires an accurate and comprehensive understanding of viral genomes. One frequently overlooked source of novelty is the evolution of new overlapping genes (OLGs), wherein a single stretch of nucleotides encodes two distinct proteins in different reading frames. Such “genes within genes” improve genomic information compression and may offer a major source of genetic novelty via overprinting (Keese and Gibbs 1992), particularly as frameshifted sequences preserve certain physicochemical properties of proteins (Bartonek et al. 2020).

However, OLGs also entail the cost that a single mutation may alter two proteins, constraining evolution and complicating sequence analyses. Moreover, genome annotation methods typically miss OLGs, favoring one open reading frame per genomic region (Warren et al. 2010).

In SARS-related betacoronaviruses (subgenus Sarbecovirus; sarbecoviruses), OLGs are known but remain inconsistently reported. For example, annotations of ORF3b, ORF9b, and ORF9c are absent or conflicting in SARS-CoV-2 reference genome Wuhan-Hu-1 (NCBI: NC_045512.2) and genomic studies (e.g., Chan et al. 2020; F. Wu et al. 2020), and no overlapping genes within ORF3a are displayed at the UCSC SARS-CoV-2 genome browser (Fernandes et al. 2016). Further, an OLG in SARS-CoV-1, ORF3b within ORF3a, has sometimes been annotated in SARS-CoV-2 even though it contains four early STOP codons in this virus. Such inconsistencies stymie research, as OLGs may play a key role in the emergence of new viruses. For example, in human immunodeficiency virus-1 (HIV-1), the novel OLG asp (within env) is actively expressed in human cells (Affram et al. 2019) and is associated with the pandemic M group lineage (Cassan et al. 2016).

Novel overlapping gene candidates

To identify OLGs within the SARS-CoV-2 genome, we first generated a complete list of candidate ORFs in the Wuhan-Hu-1 reference genome (NCBI: NC_045512.2). Specifically,
we used the Schlub et al. codon permutation method (Schlub et al. 2018) to detect unexpectedly long ORFs while controlling for codon usage. One unannotated gene candidate, here named ORF3c, scored highly ($P=0.0104$), exceeding the significance of two known OLGs annotated in Uniprot (ORF9b and ORF9c [ORF14] within N; https://viralzone.expasy.org/8996) (Figure 1; Supplementary Table 1).

ORF3c comprises 58 codons (including STOP) near the beginning of ORF3a (Table 1; Figure 2), making it longer than the known genes ORF7b (44 codons) and ORF10 (39 codons) (Supplementary Tables 2 and 3). ORF3c was discovered independently by Chan et al (2020) as ‘ORF3b’ and Pavesi (2020) as, simply, ‘hypothetical protein’. Due to its naming ambiguity and location within ORF3a, ORF3c has subsequently been conflated with ORF3b in multiple studies (Fung et al. 2020; Ge et al. 2020; Gordon et al. 2020; Hachim et al. 2020; Helmy et al. 2020; Yi et al. 2020), an extensively characterized OLG in SARS-CoV-1 and other sarbecoviruses which also overlaps ORF3a (McBride and Fielding 2012). In fact, ORF3c is unrelated to ORF3b as the two genes occupy different reading frames and genomic positions within ORF3a. Specifically, ORF3c ends 39 codons upstream of the SARS-CoV-2 genome region homologous to ORF3b, where the same start site encodes only 23 codons (A. Wu et al. 2020) (Table 1; Figures 1 and 2; Supplementary Table 4). It is also distinct from other OLGs hypothesized within ORF3a (Table 1), and an independent sequence composition analysis predicts ORF3c over the alternative candidate ORF3a*/ORF3h (Pavesi 2020). Thus, ORF3c putatively encodes a novel protein not present in other sarbecoviruses, and the absence of full-length ORF3b in SARS-CoV-2 distinguishes it from SARS-CoV-1 (Figure 1). In contrast, ORF3b plays a central role in SARS-CoV-1 immune interactions and its absence or truncation in SARS-CoV-2 may be immunologically important (Konno et al. 2020; Yuen et al. 2020).

ORF3c molecular biology and expression

To assess expression of ORF3c, we re-analyzed the ribosome profiling (Ribo-seq) data of Finkel et al. (2020), focusing on four high-coverage samples with ribosomes stalled by
Figure 1. Sarbecovirus gene repertoire and evolutionary relationships. Four types of genes and their relative positions in the SARS-CoV-2 genome are shown on top: hypothesized overlapping (yellow); overlapping (burgundy); accessory (green); and structural (blue). Only genes downstream of ORF1ab are shown, beginning with S (Spike-encoding). Genes with intact ORFs in each of 21 sarbecovirus genomes are shown on bottom. Positions are relative to each genome, i.e., homologous genes are not precisely aligned. Note that ORF8 is not novel in SARS-CoV-2 as has been claimed (Chan et al. 2020), and ORF9b and 9c are found throughout sarbecoviruses, though rarely annotated in genomes at NCBI. ORF3b is full-length in only 3 sequences (SARS-CoV TW11, SARS-CoV Tor2, and bat-CoV Rs7327), while the remainder fall into two distinct classes having an early or late premature STOP codon (Supplementary Table 12). ORF8 is intact in all but 5 sequences: SARS-CoVs TW11 and Tor2, where it has split into ORF8a and ORF8b; and bat-CoVs BtKY72, BM48-31, and JTM15, where it is deleted (i.e., only three contiguous green boxes). The full-length version of ORF3c is shown in SARS-CoV-2 Wuhan-Hu-1 and pangolin-CoV GX/P5L; however, note that a shorter version of the gene beginning later has been hypothesized (ORF3a-iORF2; Finkel et al. 2020) (Table 1).
Table 1. Nomenclature and reading frames for overlapping gene candidates in SARS-CoV-2 ORF3a.

Gene	Reading frame	Genome positions, Wuhan-Hu-1	Description	References
ORF3a	ss11 (reference)	25393-26220 (276 codons)	Ion channel formation and virus release in SARS-CoV-1 infection; host cell apoptosis; triggers inflammation; antagonizes interferon	Lu et al. (2010); Cui et al. (2019)
ORF3h / ORF3a* / ORF3a.iORF1	ss13	25457-25582 (42 codons)	Predicted similarity to viroporin; overlaps codons 22-64 of ORF3a	Cagliani et al. (2020); Firth (2020); Finkel (2020); Pavesi (2020) conflates it with ORF3b
ORF3c	ss12	25524-25697 (58 codons)	Aligned to and named ORF3b by Chan et al. (2020) but is not homologous; interferon antagonism has not been demonstrated; binds STOML2 mitochondrial protein (referred to as ORF3b in Gordon et al. 2020); short form contains a predicted signal peptide (referred to as ORF3a-iORF2 in Finkel et al. 2020); may contribute to differences between SARS-CoV-1 and SARS-CoV-2 in immune response as a unique antigenic target (referred to as ORF3b in Hachim et al. 2020; Niloufar Kavian, pers. comm.); overlaps codons 44-102 of ORF3a	Present study; Chan et al. (2020) and citing studies refer to it as ORF3b; Pavesi (2020) refers to it as 'hypothetical protein'
ORF3a-iORF2 / ORF3c-short	ss12	25596-25697 (34 codons)	ORF3c, but excluding the 24-codon upstream region harboring the majority of premature STOP codons in SARS-CoV-2; contains a predicted signal peptide (Finkel et al. 2020); overlaps codons 68-102 of ORF3a	Finkel et al. (2020)
ORF3a-short	ss11 (reference)	25765-26220 (152 codons)	Evidence of separate expression from 3a; has also been conflated with ORF3b; equivalent to codons 124-276 of ORF3a	Davidson et al. (2020) and pers. comm.
ORF3b	ss13	25814-26281 (ORFs at 25814-82, 25910-84, 26072-170, and 26183-281; i.e., 23, 25, 33, and 33 codons)	Truncated and no ribosome profiling evidence for expression in SARS-CoV-2 (Finkel et al. 2020); functions as interferon antagonist in SARS-related viruses; may contribute to differences between SARS-CoV-1 and SARS-CoV-2 in immune response; although aligned to ORF3c by Chan et al., is not homologous; overlaps codons 141-276 of ORF3a	Konno et al. (2020) claim functionality of first (23-codon) ORF in SARS-CoV-2

aGenes are listed by start site from 5’ (top) to 3’ (bottom).
Nomenclature as described in Wei and Zhang (2015) and Nelson et al. (2020): ss=sense-sense (same strand); ss12=codon position 1 of the reference frame overlaps codon position 2 of the overlapping frame on the same strand; ss13=codon position 1 of the reference frame overlaps codon position 3 of the overlapping frame on the same strand.
Positions and counts include STOP codons. Positions or sequences were indicated by the original publications and verified by personal communication if ambiguous.
The SARS-CoV-2 region homologous to ORF3b of SARS-CoV-1 contains 4 premature STOP codons and four distinct ORFs (AUG-to-STOP); see Supplementary Table 4.
Figure 2. Codon permutation analysis to identify candidate overlapping genes in all three forward-sense reading frames. Known genes and the hypothesized ORF3c are indicated with horizontal red lines. Reading frames 1, 2, and 3 refer to start sites of frames beginning at position 1, 2, or 3 of the Wuhan-Hu-1 reference genome, respectively, with genome coordinates shown at the bottom (Supplementary Table 2). Yellow indicates low \(P \)-values (natural logarithm scale), while gray indicates absence of an ORF longer than 30 codons (not tested). ORF3b is not shown, as it contains four early STOP codons (Figure 5; Supplementary Table 4) and is of dubious functionality in SARS-CoV-2.

Lactimidomycin and harringtonine, which allow mapping of translation start sites. Results reveal a clear, consistent peak at the start site of the full-length ORF3c (Table 1), similar to the start site read distribution observed for annotated genes (Figure 3). This suggests ORF3c is actively translated. Referring to ORF3c as ORF3b, Gordon et al. (2020) demonstrate that stable protein expression can occur and that 3c interacts with the mitochondrial protein STOML2. However, as the resolution of mass spectrometry can be low for detecting short proteins, we were unable to detect ORF3c, ORF9c, ORF10, or other OLG candidates (Table 1) when employing a 1% false-discovery threshold to four publicly available SARS-CoV-2 mass spectrometry datasets (Bezstarosti et al. 2020; Bojkova et al. 2020; Davidson et al. 2020; PRIDE Project PXD018581; Methods). Despite that, structural prediction of the ORF3c protein suggests \(\alpha \)-helices connected with coils and an overall fold model that matches known protein structures (e.g., Protein Data Bank IDs 2WB7 and 6A93) with borderline confidence (TM-score<0.514) (Supplementary Figure 1). Finally, the proteins encoded by ORF3c (referred to as ORF3b; see Table 1), ORF8, and \(N \) elicit the strongest antibody responses
Figure 3. Ribosome profiling re-analysis of ORF3c expression in four public ribosome-stalled datasets from Finkel et al. (2020). Ribosome accumulation at the start site is a key signature of translation, emphasized in ribosome-stalled samples. ORF start sites are denoted with a grey dashed vertical line, and the surrounding ±5 nt is denoted with a light grey box. ORF3c (yellow background) shows a clear signature of ribosome accumulation at its hypothesized start site, measured in reads per million mapped reads in the sample (Supplementary Table 5), exceeding start site accumulation for the two other long hypothesized ORFs overlapping ORF3a, namely ORF3h (upstream, different reading frame; Cagliani et al. 2020) and ORF3a-iORF2 (downstream, same open reading frame but shorter; Finkel et al. 2020) (Table 1).
observed in COVID-19 patient sera, with ORF3c sufficient to accurately diagnose in the majority of COVID-19 cases (Hachim et al. 2020), providing further strong evidence of expression.

To further investigate the immunological properties of ORF3c, we predicted linear T-cell epitope candidates for each 9-mer of the SARS-CoV-2 proteome using NetMHCPan (Jurtz et al. 2017) to estimate MHC class I binding affinity for representative HLA alleles (Sidney et al. 2008). The lowest predicted epitope density occurs in ORF3c, the only gene significantly depleted compared to both short unannotated ORFs (P=0.019; two-sided percentile) and randomized peptides (P=0.044; permutation tests), followed by ORF8 and N (Figure 4; Supplementary Tables 6 and 7). Thus, the three peptides eliciting the strongest antibody (B-cell epitope) responses in SARS-CoV-2 are also predicted to contain the lowest T-cell epitope density, ORF3c among them. This suggests the action of selective pressures on ORF3c that would only be possible if its protein is produced in situ. Taken together, these results provide strong evidence for expression of ORF3c.

ORF3c taxonomic range

To assess the origin of ORF3c and its conservation within and among host taxa, we aligned 21 sarbecovirus genomes from Lam et al. (2020) (Supplementary Table 8), limiting to those with an annotated ORF1ab and no frameshift mutations in the core genes ORF1ab, S, ORF3a, E, M, ORF7a, ORF7b, or N (Supplementary Table 9; sarbecovirus_aln.fasta, supplementary data). Among the sarbecoviruses, all core genes are intact (i.e., no mid-sequence STOP) in all sequences (Supplementary Tables 10 and 11), with the exception of ORF3c, ORF3b, and ORF8. ORF3c is intact in only 2 sequences: SARS-CoV-2 Wuhan-Hu-1 and pangolin-CoVs from Guangxi (GX/P5L) (Figure 5). ORF3b is intact in only 3 SARS-CoV-1 sequences: SARS-CoV TW11, SARS-CoV Tor2, and bat-CoV Rs7327, with the remainder falling into two distinct
Figure 4. Predicted T-cell epitope density per gene. Mean number of predicted 9-amino acid epitopes per residue for each SARS-CoV-2 protein (green bars), calculated as the number of epitopes overlapping each amino acid position divided by protein length. Two sets of negative controls were used: (1) \(n = 1000 \) randomized peptides generated from each protein by randomly sampling its amino acids with replacement (orange bars), representing the result expected for ORFs encoding the same amino acid content whose precise sequence has not been subjected to an evolutionary history (Supplementary Table 6); and (2) products of \(n = 103 \) short unannotated (putatively nonfunctional) ORFs present in the SARS-CoV-2 genome, representing the result expected for real ORFs that have been evolving in the genome without functional constraint (Supplementary Table 7). Error bars show 95% confidence intervals. For nonfunctional ORFs, the horizontal gray dotted line shows the mean number of epitopes per residue, and the gray shaded region shows a 95% confidence interval. * \(P = 0.019 \), two-sided percentile for short unannotated ORFs; \(P = 0.044 \), permutation test for randomized peptides.

groups sharing an early or late STOP codon, respectively (Supplementary Table 12). Finally, ORF8 is intact in all but 5 sequences, where it contains premature STOPs or large-scale deletions (Figure 1).

The presence of intact ORF3c homologs among host species suggests possible functional conservation. However, the taxonomic distribution of this intact ORF is incongruent with whole-genome phylogenies in that ORF3c is present in Guangxi pangolin-CoVs (GX/P5L; more distantly related to SARS-CoV-2) but absent from Guangdong pangolin-CoVs (GD/1; more closely related to SARS-CoV-2) (Figure 5), confirmed by the alignment of Boni et al. (2020). Further, phylogenies built on ORF3a are also incongruent with whole-genome phylogenies, and ORF3c contains STOP codons in the closely related bat-CoV RmYN02 (GISAID: EPI_ISL_412977; data not shown). These observations are likely due to the
Figure 5. Amino acid variation in proteins encoded by **ORF3c** and **ORF3b** across sarbecoviruses.

Amino acid alignments of 3c and 3b show their sequence conservation. Black lines indicate STOP codons in **ORF3c** and **ORF3b**, showing their restricted taxonomic ranges. Intact **ORF3c** is restricted to SARS-CoV-2 and pangolin-CoV GX/P5L, whereas **ORF3b** is found throughout the sarbecoviruses, but truncated early in most genomes outside of SARS-CoV-1 (Supplementary Tables 4 and 12). Sequences show the 3c residues of SARS-CoV-2 Wuhan-Hu-1 (57aa, bottom left; NCBI: NC_045512.2) and the 3b residues of SARS-CoV Tor2 (154aa, bottom right; NCBI: NC_004718.3).

Presence of recombination breakpoints in **ORF3a** near **ORF3c** (Boni et al. 2020; Rehman et al. 2020). Thus, recombination, convergence, or recurrent loss played a role in the origin or taxonomic distribution of **ORF3c**.

Between-species divergence

To examine natural selection on **ORF3c**, we measured diversity at three evolutionary levels: between-species (**Sarbecovirus**), between-host (human SARS-CoV-2), and within-host (human SARS-CoV-2). At each level, we inferred selection by estimating mean pairwise nonsynonymous (amino acid changing) and synonymous (not amino acid changing)
nucleotide divergence (d; between sarbecoviruses) or diversity (π; within SARS-CoV-2) among all sequenced genomes at each level. Importantly, we combined standard (non-OLG) methods (Nei and Gojobori 1986; Nelson et al. 2015) with a new method tailored for OLGs, which we previously used to detect purifying selection on the asp OLG in HIV-1 (Nelson et al. 2020).

For between-species analyses, we utilized the aforementioned alignment of 21 sarbecovirus genomes unless otherwise noted. At this and all hierarchical evolutionary levels, the strongest signals of purifying selection are consistently observed in the non-OLG regions of N (nucleocapsid-encoding gene) (Figure 6; Supplementary Table 13), which is also the most highly expressed gene, constituting ~80% of the total viral protein content (Methods, Supplementary Figure 2, Supplementary Table 14). Thus, the non-OLG regions of N experience disproportionately low rates of nonsynonymous change, evidencing strict functional constraint. Note that this signal can be missed if non-OLG methods are applied to N without accounting for its internal OLGs, $ORF9b$ and $ORF9c$ (e.g., $P=0.0268$ vs. 0.411, excluding vs. including OLG regions at the between-host level; Supplementary Table 15). On the other hand, significant purifying selection is not observed at the between-species level for any gene not detected by our proteomic analysis ($ORF3c$, $ORF9c$, and $ORF10$) (Figure 3), showing that highly expressed genes tend to exhibit the greatest functional constraint.

Comparing Wuhan-Hu-1 to pangolin-CoV GX/P5L (NCBI: MT040335.1), $ORF3c$ shows $d_{nv}/d_{S}=0.14$ ($P=0.264$), whereas inclusion of a third allele found in pangolin-CoV GX/P4L (NCBI: MT040333.1) results in $d_{nv}/d_{S}=0.43$ ($P=0.488$) (Figure 6; Supplementary Table 16). As this evidence is suggestive of constraint, we performed sliding windows of d_{nv}/d_{S} across the length of $ORF3a$ to check whether potential purifying selection is specific to the expected host species and genome positions. Indeed, pairwise comparisons of each sequence to SARS-CoV-2 reveal purifying selection that is highly specific to the reading frame, genome positions, and between-species comparison where $ORF3c$ is intact (SARS-CoV-2 vs. pangolin-CoV GX/P5L) (Figure 7, left). This signal is independent of whether STOP codons are present, so
Figure 6. Natural selection analysis of nucleotide differences at three evolutionary levels.

Nucleotide differences were analyzed at three levels: between-species divergence (d), between-host diversity (π; consensus-level), and within-host diversity (π; deep sequencing). Each gene/level is shaded according to the ratio of mean nonsynonymous to synonymous differences per site to indicate purifying selection (dN/dS<1 or πN/πS<1; blue) or positive selection (dN/dS>1 or πN/πS>1; red). Mean pairwise values are shown for sequenced genomes only, i.e., no ancestral sequences were reconstructed or inferred. For each gene, sequences were only included in the between-species analysis if a complete, intact ORF (no STOPs) was present. Genes containing a second overlapping gene (OLG) in a different frame were analyzed separately for non-OLG and OLG regions using SNPGenie and OLGenie, respectively. The short overlap between ORF1a and ORF1b (nsp11 and nsp12) was excluded from analysis. Error bars represent the standard error of mean pairwise differences, estimated using 10,000 bootstrap replicates (codon unit). Significance (Q) refers to a Benjamini-Hochberg false-discovery rate correction after Z-tests of the hypothesis that dN−dS=0 or πN−πS=0, evaluated using 10,000 bootstrap replicates (codon unit). See Methods for further details.

its consilience with the only open ORF in this region across sarbecoviruses is remarkable. The contrastive signal is also similar to that observed for known OLGs ORF3b in comparisons to SARS-CoV-1 (Figure 7, right) and ORF9b and ORF9c in both viruses (Supplementary Figure 3).
Between-host evolution and pandemic spread

We obtained \(n=3,978 \) human SARS-CoV-2 consensus sequences from GISAID, limiting to whole-genome high-coverage sequences lacking indels in coding regions (accessed April 10, 2020; Supplementary Table 17; GISAID Acknowledgments Table, supplementary data).

Between-host diversity was sufficient to detect marginally significant purifying selection across all genes (\(\pi_N/\pi_S=0.50, P=0.0613, Z\)-test; Supplementary Figure 4A-C) but not individual genes (Figure 6). Thus, we instead investigated single mutations over time, limiting to 27 common variants (minor allele frequency ≥2%; Supplementary Table 18). One high-frequency mutation denoted ORF3c-LOF (ORF3c-loss-of-function) causes a STOP codon in ORF3c (3c-Glu14*) but a nonsynonymous change in ORF3a (3a-Gln57His). This mutation (G25563U) increases in frequency over time (Supplementary Table 19) in multiple locations (Supplementary Figure 4D; Supplementary Table 20), raising the possibility that it experiences natural selection on...
ORF3a, ORF3c, or both. G25563U is not observed in any other sarbecovirus included in our analysis (Figure 5; sarbecovirus_aln.fasta, supplementary data), where the most common variant causing an ORF3c STOP is instead synonymous in ORF3a (C25614U).

With respect to ORF3a, ORF3c-LOF (G25563U) has been identified as a strong candidate for positive selection for its effect as ORF3a-Gln57His (Kosakovsky-Pond 2020). However, temporal allele frequency trajectories (Supplementary Figure 4D) and similar signals from phylogenetic branch tests are susceptible to ascertainment bias (e.g., preferential sequencing of imported infections and uneven geographic sampling) and stochastic error (e.g., small sample sizes). Thus, we performed an independent assessment to partially account for these confounding factors. We first constructed the mutational path leading from the SARS-CoV-2 haplotype collected in December 2019 to the haplotype carrying ORF3c-LOF (G25563U). This path involves five mutations (C241U, C3037U, C14408U, A23403G, G25563U), constituting five observed haplotypes (EP⁻³ → EP⁻² → EP → EP+1 → EP+1+LOF, shown in Table 2). Here, EP is suggested to have driven the European Pandemic (detected in German patient #4, footnote 3 of Table 2; Forster et al. 2020; Rothe et al. 2020); EP⁻³ is the Wuhan founder haplotype; EP⁻¹ is never observed in our dataset; and +LOF refers to ORF3c-LOF. We then documented the frequencies and earliest collection date of each haplotype (Table 2) to determine whether ORF3c-LOF occurred early on the EP background.

Surprisingly, despite its expected predominance in Europe due to founder effects, the EP haplotype is extremely rare. By contrast, haplotypes with one additional mutation (C14408U) on the EP background are common in Europe, with ORF3c-LOF occurring very early on this background to create EP+1+LOF from EP+1. Neither of these two haplotypes is observed in China (Table 2), suggesting that they arose in Europe subsequent to the arrival of the EP haplotype in February. Thus, we further partitioned the samples into two groups, corresponding to countries with or without early (January) samples (“early founder” and “late founder”, respectively) (Figure 8). In the early founder group, EP⁻³ is the first haplotype
Table 2. The mutational path to European pandemic founder haplotypes

Variant	EP–3	EP–2	EP^b	EP+1^b	EP+1+LOF
C241U	0	0	1	1	1
C3037U	0	0	1	1	1
C14408U	0	0	0	1	1
A23403G^c	0	1	1	1	1
G25563U	0	0	0	0	1

Earliest collection^d	24-Dec	7-Feb	28-Jan	20-Feb	21-Feb
Earliest location^d	Wuhan	Wuhan	Munich (Shanghai)^b	Lombardy	Hauts de France
Occurrence in China	233	1	1 (2)^b	0	0
Occurrence in Europe	458	0	21	1153	310
Occurrence in Italy	1	0	0	27	0
Occurrence in Germany	15	0	1	11	21
Occurrence in Belgium	27	1	20	187	27
Occurrence in UK	210	0	0	338	38
Occurrence in Iceland	56	0	0	212	54
Occurrence in France	14	0	0	72	102
Occurrence in US	467	0	0	88^e	326^e
Occurrence in GISAID^f	1610	2	22	1455	752

^aHaplotypes are here defined by five variants (rows 1-5), and other variants with lower frequency on these backgrounds are ignored. EP-1 is not observed in the dataset.

^bThis EP haplotype is first detected in German patient #4 and is a documented founder for coronavirus spread in Germany. Neither the EP nor EP+1 haplotypes were detectable between January 28 and February 20, although they immediately became a major haplotype once EP+1 was detectable. Failure to detect these two haplotypes during these three weeks could potentially be explained by ascertainment bias, e.g., lack of testing for travel-independent cases.

^cThis Shanghai sample (GISAID: EPI_ISL_416327) comprises 1.32% poly-Ns and failed our quality control process, but is added here since it is potentially relevant to the origin of EP haplotype. Including this sample, the EP haplotype is observed in Shanghai twice.

^dThe earliest collection location and time are highly subject to collection and submission bias and do not necessarily reflect where the mutation/haplotype first occurred.

^eThere is likely a testing bias in the US, as EP+1+LOF haplotype was often detected in Washington, and EP+1 haplotype was not.

^fThese numbers are based on 3853 samples from December 24 to April 1 at the time of GISAID accession that passed both our quality control procedure for alignment and for this particular analysis (no ambiguous genotype calls among the five SNPs in this table) unless otherwise stated.
Figure 8. Pandemic spread of the EP+1 haplotype and the hitchhiking of ORF3c-LOF. The mutational path leading to EP+1+LOF is shown in the upper panel. Cumulative frequencies of haplotypes in samples from Germany and five other countries with the most abundant sequence data are shown in the lower panel. Countries are grouped into early founder (left) and late founder (right) based on the presence of absence of SARS-CoV-2 samples from January, respectively. In the early founder group, EP–3 (gray) is observed earlier than other haplotypes in France and the US, and EP (red) is observed early in Germany, giving them the advantage of a founder effect. However, neither EP nor EP–3 dominate later spread; instead, EP+1 (yellow) and EP+1+LOF (blue) increase much faster despite their later appearance in these countries. In the late founder group, multiple haplotypes appear at approximately the same time, but EP-3 and EP spread more slowly. The green dashed line shows the combined frequencies of EP+1 and EP+1+LOF (yellow and blue, respectively). Note that EP–1 is never observed in our dataset.
detected in all countries but Germany, consistent with most early COVID-19 cases being related to travel from Wuhan. As this implies that genotypes EP–3 and EP had longer to spread in the early founder group, it is surprising that their spread is dwarfed by the increase of EP+1 and EP+1+LOF starting in late February. This turnover is most obvious in the late founder group, where multiple haplotypes are detected in a narrow time window, and the number of cumulative samples is always dominated by EP+1 and EP+1+LOF. Thus, the quick spread of \textit{ORF3c-LOF} seems to be caused by its linkage with another driver, either C14408U (+1 variant) or a subsequent variant(s) occurring on the EP+1+LOF background (Discussion). These observations highlight the necessity of empirically evaluating the effects of \textit{ORF3c-LOF}, linked variants, and their interactions.

Within-host diversity and mutational bias
Examination of within-host variation across multiple samples allows detection of within-host selection and mutation bias. To address these possibilities, we obtained \(n=401\) high-depth (>50-fold coverage) human SARS-CoV-2 samples from the Sequence Read Archive (Supplementary Table 21). Within human hosts, 42% of SNPs passed our false-discovery rate criterion (Methods), with a median minor allele frequency of 2% (21 reads; 1,344 depth). The non-OLG regions of \(N\) again show significant purifying selection (\(\pi_N/\pi_S=0.39; Q=0.0477\)), but \textit{ORF3c} remains non-significant (\(\pi_N/\pi_S=1.73; Q=0.701\)) (Figure 6, middle; Supplementary Table 13). We also examined 6 high-depth samples of pangolin-CoVs from Guangxi, but no conclusions could be drawn (e.g., due to low quality; Methods; Supplementary Table 22).

Mutations recurring in multiple samples might indicate mutational bias or selective advantage. Precluding coinfection by multiple genotypes (coinfection rate \(x^2\) is negligible when infection rate \(x\) is small), derived mutations occurring in more than one sample must be identical by state but not descent (i.e., recurrent). Limiting to 220 samples where the major allele was also ancestral (Wuhan-Hu-1 genotype) at site 25563, \textit{ORF3c-LOF} is observed as a minor allele in two samples (SRR11410536 and SRR11479046 at frequencies of 1.9% and 4.6%, respectively). This proportion of samples with a recurrent mutation (2 of 220) is high but
not unusual, as 1.76% of possible genomic changes have an equal or higher proportion of recurrence. Additionally, no mutations in ORF3c recur in >2.5% of samples (Figure 9). However, a small number of genomic loci exhibit high rates of recurrent mutation, with five mutations observed in >10% of samples (Methods; Figure 9). Surprisingly, another STOP mutation (A404U; nsp1-L47*) is observed in the majority of samples (Figure 9, Supplementary Figure 5), unexplainable by mutational bias. As NSP1 promotes host mRNA degradation and suppresses host protein synthesis in SARS-CoV-1 (Kamitani et al. 2006), its full-length form likely plays a similar role in SARS-CoV-2, and deactivated nsp1 (A404U) may be under frequency dependent selection within-host.

Figure 9. High-frequency within-host mutations. For each site, mutations occurring in more than 2.5% of samples are shown, limiting to samples where the major allele matches Wuhan-Hu-1 (differs by site). The y axis shows the proportion of such samples having the indicated minor (derived) allele. Each locus has up to three possible single-nucleotide derived alleles compared to the reference background. Open circles (black outlines) show the proportion of samples having any of the three possible derived alleles (“All”), while solid circles (color fill) show the proportion of samples having a specific derived allele (equivalent if only one variant is observed). For most sites, only one derived mutation type (e.g., C→U) was observed across all samples. Precluding co-infection by multiple genotypes and sequencing errors, derived mutations occurring in more than one sample (y axis) must be identical by state but not descent (i.e., recurrent). Genome positions are plotted on the x-axis, with distinct genes shown in different colors and overlapping genes shown as a black blocks within reference genes. Nonsynonymous and nonsense mutations (“NS”) are indicated with a red dot.
Discussion

Our analyses provide strong evidence that SARS-CoV-2 contains a third overlapping gene (OLG), ORF3c, that has not been consistently identified or fully analyzed before this study. The annotation of a newly emerged virus is difficult, and OLGs tend to be less carefully documented than non-OLGs, for example, ORF9b and ORF9c are still not annotated in the most used reference genome, Wuhan-Hu-1 (NCBI: NC_045512.2). This difficulty is exacerbated for SARS-CoV-2 by the highly dynamic process of frequent gains and losses of accessory genes across the Sarbecovirus subgenus. Therefore, de novo and homology-based annotation are both essential, followed by careful expression analyses using multi-omic data and evolutionary analyses within and between species. In particular, we emphasize the importance of using whole-gene or genome alignments when inferring homology for both OLGs and non-OLGs, taking into account genome positions and all reading frames.

Unfortunately, in the case of SARS-CoV-2, the lack of such inspections has led to misannotation and a domino effect. For example, homology between ORF3b (Sarbecovirus) and ORF3c (SARS-CoV-2) has been implied, leading to unwarranted inferences of shared functionality and subsequent claims of homology between ORF3b and other putative OLGs within ORF3a of SARS-CoV-2, e.g., ORF3h/3a* (Table 1). Given the speed of growth of SARS-CoV-2 literature, it is likely this mistake will be further propagated. We therefore provide a detailed annotation of Wuhan-Hu-1 protein-coding genes and codons in Supplementary Tables 2 and 3, respectively, as a resource for future studies.

Our study highlights the highly dynamic process of frequent gains and losses of accessory genes across the Sarbecovirus subgenus, with the greatest functional constraint observed for the most highly expressed genes (Supplementary Figure 2). Indeed, while many or all accessory genes may be dispensable for viruses in cell culture, they often play an important role in natural hosts (Forni et al. 2017), and their loss may represent a key step in adaptation to new hosts after crossing a species barrier (Gorbalenya et al. 2006). For example, the absence of full-length ORF3b in SARS-CoV-2 has received attention from few authors (e.g., Lokugamage et al. 2020), even though it plays a central role in SARS-CoV-1 infection...
and early immune interactions as an interferon antagonist (Kopecky-Bromberg et al. 2007), with effects modulated by ORF length (Zhou et al. 2012). Thus, the absence or truncation of ORF3b in SARS-CoV-2 may be immunologically important (Yuen et al. 2020), e.g., in the suppression of type I interferon induction (Konno et al. 2020). Furthermore, the apparent presence of the ORF3c coincident with the inferred entry of SARS-CoV-2 into humans from a hitherto undetermined reservoir host suggests that this gene is functionally relevant for the emergent properties of SARS-CoV-2, analogous to asp for HIV-1-M (Cassan et al. 2016).

Failure to account for OLGs can lead to erroneous detection of natural selection (or lack thereof). For example, a synonymous variant in one reading frame is very likely to be nonsynonymous in a second overlapping frame. As a result, purifying selection against the nonsynonymous effect in the second frame will lower d_S (raise d_N/d_S) in the first frame, increasing the likelihood of positive selection misinformation (Holmes et al. 2006; Sabath et al. 2008; Nelson et al. 2020). Such errors could, in turn, lead to mischaracterization of the genetic contributions of OLG loci to important viral properties such as incidence and persistence. One potential consequence is misguided countermeasure efforts, e.g., failure to detect functionally conserved or immunologically important regions. Finally, although this study focuses on ORF3c, other OLG candidates were also assessed at the between-host level, of which one shows evidence of translation in ribosome profiling and purifying selection ($\pi_N/\pi_S=0.22$, $P=0.0278$; S-iORF2 in Finkel et al. 2020) (Table 1).

Our comprehensive evolutionary analysis of the SARS-CoV-2 genome demonstrates that many genes are under relaxed purifying selection, consistent with the exponential growth of the virus and consequent relaxation of selection (Gazave et al. 2013). At the between-host level, nucleotide diversity increases somewhat over the period 2019/12/24-2020/03/31 of the COVID-19 pandemic, tracking the number of locations sampled, while the π_N/π_S ratio remains relatively constant at 0.46 (± 0.030 SEM) (Supplementary Figure 4). Other genes differ in the strength and direction of selection at the between- and within-host levels, suggesting a shift in function or importance over time. ORF3c and ORF8 are both among the youngest genes in SARS-CoV-2, taxonomically restricted to a subset of betacoronaviruses (Cui et al. 2019), and
ORF8 exhibits relatively high levels of nonsynonymous change between isolates (between-host π_N/π_S ratios) (Figure 6) and frequent insertions and deletions among sarbecoviruses (Figure 1; sarbecovirus_aln.fasta, supplementary data). High between-host π_N/π_S was also observed in SARS-CoV-1 ORF8, perhaps due to a relaxation of purifying selection upon entry into civet cats or humans (Forni et al. 2017). However, ORF3c and ORF8 both exhibit strong antibody (B-cell epitope) responses (Finkel et al. 2020) and predicted T-cell epitope depletion (Figure 4) in SARS-CoV-2. This highlights the important connection between evolutionary and immunologic processes (Daugherty and Malik 2012), as antigenic peptides allow immune detection and may impose a fitness cost for the virus. The loss or truncation of these genes may share an immunological basis and deserves further attention.

Although mutational bias marginally favors the recurrence of ORF3c-LOF (within-host analysis), the quick expansion of this mutation and its haplotype during this pandemic is puzzelsome (between-host analysis). One potential explanation for the slower spread of EP–3 is a sampling policy bias in case isolation; in most countries, testing and quarantine enforcement were preferentially applied to travellers who recently visited Wuhan, which may have led to selective detection, isolation, quarantining, and tracing of EP–3 and EP haplotypes. Because mutations occurring within Europe (e.g., candidates: C14408U, G25563U) are unlikely from intercontinental travelers, one might expect them to contribute more to community-acquired infections, particularly as testing biases might have provided an opportunity for them to spread in Europe. However, the EP+1 and EP+1+LOF haplotypes also grow faster in the late founder group, where it is unclear which haplotype was more travel related. Because G25563U simultaneously creates a nonsynonymous change (ORF3a-Q57H) and a loss of function (ORF3c-LOF), it could influence the spread of SARS-CoV-2 through selection on either change. Despite that, the quick spread of G25563U seems to be caused by its early occurrence in linkage with the +1 variant (C14408U causes RdRp-P323L), suggesting that this mutation could be the real driver and the increase in ORF3c-LOF is due to hitchhiking. The spread of EP+1 and EP+1+LOF but not EP is unexpected, as EP was the earliest haplotype and carried Spike-D614G (A23403G), a variant with predicted functional
relevance (Bhattacharyya et al. 2020). Thus one may speculate that the +1 mutation
(C14408U) acts synergistically with D614G or other mutations (5'UTR-C241U, nsp3-C3037U)
unique to the EP background, causing differences among the haplotypes in infection rate,
disease rate, hospitalization rate, latent period, transmission rate, or other symptoms. The
faster spread of EP+1+LOF than EP+1 in the early founder countries but not late founder
countries (p=0.0312) also requires explanation. These observations highlight the necessity of
empirically evaluating the effects of 3c-LOF (G25563U), 3a-Q57H (G25563U), RdRp-P323L
(C14408U), and their interactions with Spike-D614G (A23403G). Lastly, because only five
major polymorphisms are considered in this analysis (Supplementary Table 18), it is possible
that the spread ORF3c-LOF or other haplotypes is further assisted or hindered by subsequent
mutations.

Our study has several limitations. Short peptides can be difficult to detect using mass
spectrometry, and the second half of 3c does not contain any potential targets. Thus, we were
unable to discriminate 3c, 9c, or 10 from noise even in two high-quality datasets, a limitation
likely to be true of any proteomics dataset for SARS-CoV-2. With respect to between-host
diversity, we focused on relatively abundant consensus-level sequence data; however, this
approach can miss important variation (Holmes 2009), stressing the importance of deeply
sequenced within-host samples, sequenced with technology appropriate for calling within-host
variants. As we use Wuhan-Hu-1 for read mapping and remove duplicate reads, reference
bias could potentially affect our within-host results (Degner et al. 2009). We detected natural
selection using counting methods that examine all pairwise comparisons between or within
specific groups of sequences, which may have less power than methods that trace changes
over a phylogeny. However, this approach is robust to errors in phylogenetic and ancestral
sequence reconstruction, and to artifacts due to linkage or recombination (Hughes et al. 2006;
Nelson and Hughes 2015). Additionally, although our method for measuring selection in OLGs
does not explicitly account for mutation bias, benchmarking with other viruses suggests
detection of purifying selection is conservative (Nelson et al. 2020). Finally, given multiple
recombination breakpoints in ORF3a (Boni et al. 2020) and the relative paucity of sequence
data for viruses closely related to SARS-CoV-2, our analysis could not differentiate between
convergence, recombination, or recurrent loss in the origin of ORF3c.

In conclusion, OLGs are an important part of viral biology and deserve more attention.

We document several lines of evidence for the expression and functionality of a novel OLG in
SARS-CoV-2, here named ORF3c, and compare it to other hypothesized OLG candidates in
ORF3a. Finally, we provide a detailed annotation of the SARS-CoV-2 genome and highlight
mutations of potential relevance to the within- and between-host evolution of SARS-CoV-2 as
a resource for future studies.
Methods

Genomic features and coordinates
All genome coordinates are given with respect to reference sequence Wuhan-Hu-1 (NCBI: NC_045512.2; GISAID: EPI_ISL_402125) unless otherwise noted. SARS-CoV-1 genome coordinates are given with respect to reference sequence Tor2 (NC_004718.3). SARS-CoV-2 Uniprot peptides were obtained from https://viralzone.expasy.org/8996, where ORF9c is referred to as ORF14. Nucleotide sequences were translated using R::Biostrings (Lawrence et al. 2013), Biopython (Cock et al. 2009), or SNPGenie (Nelson et al. 2015). Alignments were viewed and edited in AliView v1.20 (Larsson 2014).

To identify OLGs using the Schlub et al. codon permutation method (Schlub et al. 2018), all 12 ORFs annotated in the Wuhan-Hu-1 reference genome were used as a reference (NCBI=NC_045512.2; ORF1a, ORF1b, S, ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, and ORF10) (Figure 1; Supplementary Tables 1-3). Only forward-sense (same-strand) OLGs were considered in this analysis.

SARS-CoV-2 genome data, alignments, and between-host analyses
SARS-CoV-2 genome sequences were obtained from GISAID on April 10, 2020 (GISAID Acknowledgments Table, supplementary data). Whole genomes were aligned using MAFFT v7.455 (Katoh and Standley 2013), and subsequently discarded if they contained internal gaps (-) >900 nt from either terminus, a length sufficient to exclude sequences with insertions or deletions (indels) in coding regions. A total of 3,978 sequences passed these filtering criteria, listed in Supplementary Table 17. Coding regions were identified using exact or partial homology to SARS-CoV-2 or SARS-CoV-1 annotations. To quantify the diversity and evenness of sample locations, we quantified their entropy as $-\sum p^*\ln(p)$, where p is the number of distinct (unique) locations or countries reported for a given window (Ewens and Grant 2001) (Supplementary Table 23).

Sarbecovirus genome data and alignments
SARS-CoV-related genome IDs were obtained from Lam et al. (2020) and downloaded from GenBank or GISAID. Genotype Wuhan-Hu-1 (NCBI: NC_045512.2; GISAID: EPI_ISL_402125) was used to represent SARS-CoV-2. Except for pangolin-specific analyses, genotypes GX/P5L (NCBI: MT040335.1; GISAID: EPI_ISL_410540) and GD/1 (GISAID: EPI_ISL_410721) were used to represent pangolin-COVs; GD/1 was chosen as a representative because the other Guangdong (GD) sequence lacks the S gene and contains 27.76% Ns, while GX/P5L was chosen because it is one of two high-
coverage Guangxi (GX) sequences derived from lung tissue that also contains no Ns. Other sequences were excluded if they lacked an annotated ORF1ab with a ribosomal slippage, or contained a frameshift indel in any gene (Supplementary Table 9), leaving 21 sequences for analysis (Supplementary Table 8). To produce whole-genome alignments, we first aligned all sequences using MAFFT. Then, coding regions were identified using exact or partial sequence identity to SARS-CoV-2 or SARS-CoV-1 annotations, translated, and aligned at the amino acid level using ProbCons v1.12 (Do et al. 2005). The longest gene was used in the case of OLGs. Amino acid alignments were then imposed on the coding sequence of each gene using PAL2NAL v14 (Suyama et al. 2006: 2) to maintain intact codons. Finally, whole genomes were manually shifted to match the individual codon alignments in AliView. Codon breaks were preferentially resolved to align S/Q/T at 3337-3339 and L with T/I at 3343-3345. This preserved all nucleotides of each genome while concurrently incorporating codon-aware alignments. The alignment is available in the supplementary data as sarbecovirus_aln.fasta, where pangolin-CoV GD/1 has been removed because it is only available from GISAID.

Phylogenetic analysis and ancestral sequence reconstruction
Phylogenetic relationships among isolates were explored using maximum likelihood phylogenetic inference, as implemented in IQ-tree (Nguyen et al. 2015). Ancestral sequence reconstruction was carried out conditioning on the best-known ML tree by using the empirical Bayes method. The generalized time-reversible (GTR; Tavaré 1986) and non-reversible (asymmetric substitution matrix; Boussau and Gouy 2006) were contrasted based on their logLik value, while accounting for among-site rate heterogeneity using discrete rate categories modeled by the Γ distribution (Yang 1995) and the FreeRate model (Soubrier et al. 2012).

Proteomics analysis
To determine whether ORF3c is expressed, we re-analyzed four publicly available SARS-CoV-2 mass spectrometry datasets suitable for quantitative analysis (Bezstarosti et al. 2020; Bojkova et al. 2020; Davidson et al. 2020; PRIDE Project PXD018581). However, peptide spectrum matches for products of ORF3c did not pass our 1% false-discovery threshold, and shorter variants of ORF3c hypothesized elsewhere (Table 1) did not encode any peptides detectable by this method. Products of ORF9c and ORF10 could also not be reliably detected. We subsequently computed intensity-based absolute quantification (iBAQ) values (Schwanhäusser et al. 2011) for all detected SARS-CoV-2 proteins. iBAQ
values are proportional estimates of the molar protein quantity of a protein in a given sample, and therefore allow relative quantitative comparisons of different proteins to each other. iBAQ values were computed using the Max-Quant software (Cox and Mann 2008) as the sum of all peptide intensities per protein divided by the number of theoretical peptides per protein. Our iBAQ analysis revealed that the nucleocapsid protein (N) makes up roughly 80% of the total viral protein content, while the second most abundant protein is the small membrane glycoprotein (M). Overall, the investigated studies reveal consistent proportional composition of the SARS-CoV-2 proteome (Supplementary Figure 2).

Ribo-seq analysis

Ribo-seq datasets with accession numbers SRR11713366, SRR11713367, SRR11713368, and SRR11713369 (Finkel et al. 2020) were downloaded from the Sequence Read Archive. These samples comprised data for ribosomes stalled with either lactimidomycin or harringtonine, with the Vero E6 cells harvested at 24 hours post infection, and had higher sequence coverage depth than other samples, allowing for reliable start determination. They were mapped to the Wuhan-Hu-1 reference genome with the sequenced isolate’s mutations, as listed in Finkel et al. (2020). Mapping used Bowtie2 (Langmead et al. 2019) local alignment, with a seed length of 20 and up to one mismatch allowed. Mapped reads within 15 nucleotides of each putative start site were then counted and plotted using the 5’-most mapped position of each read.

NetMHCPan T-cell epitope analysis

Viral protein sequences were analyzed using 9-mer substrings in NetMHCpan4.0 (Jurtz et al. 2017). Twelve (12) HLA supertype representative were used in the analysis: HLA-A*01:01 (A1), HLA-A*02:01 (A2), HLA-A*03:01 (A3), HLA-A*24:02 (A24), HLA-A*26:01 (A26), HLA-B*07:02 (B7), HLA-B*08:01 (B8), HLA-B*27:05 (B27), HLA-B*39:01 (B39), HLA-B*40:01 (B44), HLA-B*58:01 (B58), and HLA-B*15:01 (B62). NetMHCpan4.0 returns percentile ranks that characterize a peptide’s likelihood of antigen presentation compared to a set of random natural peptides. We employed the suggested threshold of 2% to determine potential presented peptides, and 0.5% to identify strong MHC binder. Both strong and weak binders were considered predicted epitopes.

Statistical tests on synonymous and nonsynonymous rate

Statistical and data analyses and visualization were carried out in R v3.5.2 (R Core Team 2018) (libraries: boot, RColorBrewer, scales, tidyverse), Python (BioPython, pandas) (McKinney 2010), Excel,
Google Sheets, and PowerPoint. Colors were explored using Coolors (https://coolors.co). Copyright-free images of a bat, human, and pangolin were obtained from Pixabay (https://pixabay.com). Only two-sided P-values are reported for statistical tests. The d_{H}/d_{S} or m_{N}/m_{S} ratios were estimated using SNPGenie (Nelson et al. 2015; snpgenie.pl or snpgenie_within_group.pl, https://github.com/chasewnelson/SNPGenie) for non-OLG regions and OLGenie (Nelson et al. 2020; OLGenie.pl, https://github.com/chasewnelson/OLGenie) for OLG regions. For OLGenie analyses, the d_{H}/d_{S} (m_{N}/m_{S}) ratio was estimated using d_{HN}/d_{SN} (m_{NN}/m_{SN}) for the reference frame and d_{HN}/d_{NS} (m_{NN}/m_{NS}) for the alternate frame (ss12 or ss13), because the number of SS (synonymous/synonymous) sites was insufficient to estimate d_{SS} (m_{SS}). The null hypothesis that $d_{H}-d_{S}=0$ ($m_{N}-m_{S}=0$) was evaluated using both Z and achieved significance level (ASL) tests (Nei and Kumar 2000) with 10,000 and 1,000 bootstrap replicates for genes and sliding windows, respectively, using individual codons (alignment columns) as the resampling unit (Nei and Kumar 2000). The main text reports only Z-test results, as this test was used to benchmark OLGenie (Nelson et al. 2020). For ASL, P-values of 0 were reported as the lowest non-zero value possible given the number of bootstrap replicates. Benjamini-Hochberg (Benjamini and Hochberg 1995) or Benjamini-Yekutieli (Benjamini and Yekutieli 2001) false-discovery rate corrections (Q-values) were used for genes (independent regions) and sliding windows (contiguous overlapping regions), respectively.

Between-species analyses

Because uncorrected d values >0.1 were observed in between-species comparisons, a Jukes-Cantor correction (Jukes and Cantor 1969) was applied to d_{H} and d_{S} estimates. For each ORF, sequences were only used to estimate d_{H}/d_{S} if a complete, intact ORF (no STOPs) was present. Additionally, the following codons were excluded from analysis: codons 1-13 of E, which overlap ORF3b in SARS-CoV-related genomes; codons 62-64 of ORF6, which follow a premature STOP in some genomes; and codons 72-74 of ORF9c, which follow a premature STOP in some genomes.

Cumulative haplotype frequency

We defined haplotypes along the mutational path to EP+1+LOF using all five high-derived allele frequency (DAF) mutations from Wuhan-Hu-1 to ORF3c-LOF, and subsequent mutations after ORF3c-LOF were ignored in the haplotype analysis. Samples with missing data at any of the five loci were removed from the haplotype analysis. We calculated the cumulative haplotype frequency of each
haplotype in Germany (where the EP haplotype is a documented founder) and five other countries with
the most abundant samples by the time of data accession. Cumulative frequencies were calculated as
the total number of occurrences of each haplotype collected by each day divided by the total number of
samples from the same country. Countries were subsequently divided into early founders and late
founders to investigate founder effects, where early founder countries tend to have several samples
from January, and late founder countries tend to have samples collected only after mid-February.

Within-host diversity
For within-host analyses, we obtained $n=401$ high-depth (at least 50-fold mean coverage) human
SARS-CoV-2 samples from the Sequence Read Archive (Supplementary Table 21). Only Illumina
samples were used as some Nanopore samples exhibit apparent systematic bias in calling putative
intrahost SNPs, and this technology has also been shown to be unsuitable for intra-host analysis
(Grubaugh et al. 2019). Reads were trimmed with BBduk (Bushnell B. 2017. BBTools.
https://jgi.doe.gov/data-and-tools/bbtools/), and mapped against the Wuhan-Hu-1 reference sequence
using Bowtie2 (Langmead and Salzberg 2012) with local alignment, seed length 20, and up to 1
mismatch. SNPs were called using the LoFreq (Wilm et al. 2012) variant caller from mapped reads with
sequencing quality and MAPQ both at least 30. Only single-end or the first of paired-end reads were
used. Variants were dynamically filtered based on each site’s coverage using a binomial cutoff to ensure
a false-discovery rate of ≤ 1 within-host variant in our study (401 samples), assuming a mean
sequencing error rate of 0.2% (Schirmer et al. 2016).

To estimate π, numbers of nonsynonymous and synonymous differences and sites were first
calculated individually for all genes in each of the 401 samples using SNPGenie (Nelson et al. 2015;
 SNPgenie.pl, https://github.com/chasewnelson/SNPGenie). OLG regions were then analyzed separately
using OLGenie (Nelson et al. 2020; OLGenie.pl, https://github.com/chasewnelson/OLGenie). Because
OLGenie requires a multiple sequence alignment as input, a pseudo-alignment of 1,000 sequences was
constructed for each OLG region in each sample by randomly substituting single nucleotide variants
according to their within-host frequencies into the Wuhan-Hu-1 reference genome. For non-OLG and
OLG regions alike, average within-host numbers of differences and sites were calculated for each codon
by taking the mean across all samples. For example, if a particular codon contained nonsynonymous
differences in two of 401 samples, with the two samples exhibiting mean numbers of 0.01 and 0.002
pairwise differences per site, this codon was considered to exhibit a mean of
(0.01+0.002)/401=0.0000299 pairwise differences per site across all samples. These codon means were then treated as independent units of observation during bootstrapping.

Pangolin samples refer to Sequence Read Archive records SRR11093266, SRR11093267, SRR11093268, SRR11093269, SRR11093270, SRR11093271. Only 179 single nucleotide variants could be called prior to our FDR filtering, and samples SRR11093271 and SRR11093270 were discarded entirely due to low mapping quality. We also note that after our quality filtering, four samples contain consensus alleles that do not match their reference sequence (available from GISAID): P1E, P4L, P5E, and P5L (Supplementary Table 22).

Within-host recurrent mutations analyses

We assume that each host was infected by a single genotype. Under this assumption, the minor allele of each segregating site within-host is either due to genotyping and sequencing artifacts or new mutations. Because there are very few loci with high-frequency derived alleles between hosts, and because the Wuhan-Hu-1 genome is used as the reference in read mapping, we here only consider within-host mutations that differ from this reference background. There are four possible bases at each locus, A, C, G, and U, and three possible mutational directions against the Wuhan-Hu-1 reference genome. For each locus, we calculate the number of samples matching the reference allele as $N=N_1+N_2$, where N_1 is the number of samples in which the Wuhan reference allele is the only observed allele, and N_2 is the number of samples in which the Wuhan reference allele is major allele. Given N_2, we further determined the number of samples carrying each of the three possible non-reference alleles as N_A, N_C, N_G, and N_U. For example, if the reference allele was U, we calculated p_A, p_C, and p_G, where $p_A=p_A+p_C+p_G$. If A was an observed non-reference allele, we calculated the frequency of A as $p_A=N_A/N$. Thus, a larger frequency indicates the derived allele is observed in a high proportion of samples. The within-host derived allele frequency (DAF) was calculated as the total number of reads mapped to the observed minor allele divided by the total number of reads mapped to the locus. If all reads were mapped to the Wuhan-Hu-1 reference allele, then DAF=0. Five mutations occur in more than 10% of samples, four of which are nonsynonymous, with DAF plotted in Supplementary Figure 5. For this analysis, we did not apply the per-site FDR cutoff, thus a DAF=0 is equivalent to the absence of reads mapped to the mutation, after reads are filtered by sequence quality, mapping quality, and LoFreq’s default significance threshold ($P=0.01$).
Author Contributions

X.W. conceived the study. C.W.N., Z.A., and X.W. designed the study. T.G., S.-O.K., and X.W., advised on the study. C.W.N. and Z.A. obtained and processed data. C.W.N., Z.A., C.-H.K., M.C., C.L., S.-O.K., and X.W., analyzed data. C.W.N., Z.A., S.-O.K., and X.W. conceived, discussed, and illustrated figures. All authors discussed and interpreted results. C.W.N., Z.A., T.G., S.-O.K., and X.W. wrote the first draft. All authors read, discussed, and revised the manuscript.

Acknowledgements

This work was supported by a Postdoctoral Research Fellowship from Academia Sinica (to C.W.N.; P.I. Wen-Hsiung Li); funding from the Bavarian State Government and National Philanthropic Trust (to Z.A.; P.I. Siegfried Scherer); NSF IOS grants #1755370 and #1758800 (to S.-O.K.); and the University of Wisconsin-Madison John D. MacArthur Professorship Chair (to T.L.G). The authors thank the originating and submitting laboratories who kindly uploaded SARS-CoV-2 sequences to the GISAID EpiFlu™ Database for public access (Supplement), and the GISAID platform. The authors thank Maciej F. Boni, Reed A. Cartwright, John Flynn, Kyle Friend, Dan Graur, Robert S. Harbert, Cheryl Hayashi, David G. Karlin, Niloufar Kavian, Kin-Hang (Raven) Kok, Wen-Hsiung Li, Ming-Hsueh Lin, Meiyeh Lu, David A. Matthews, Lisa Mirabello, Apurva Narechania, Felix Li Jin, and attendees of the UC Berkeley popgen journal club for useful information and discussion; and special thanks to Priya Moorjani, Jacob Tennessen, Montgomery Slatkin, Yun S. Song, Jianzhi George Zhang, Xueying Li, Hongxiang Zheng, Qinqin Yu, Meredith Yeager, and Michael Dean for commenting on earlier versions of this draft.

References

Affram Y, Zapata JC, Gholizadeh Z, Tolbert WD, Zhou W, Iglesias-Ussel MD, Pazgier M, Ray K, Latinovic OS, Romerio F. 2019. The HIV-1 Antisense Protein ASP Is a Transmembrane Protein of the Cell Surface and an Integral Protein of the Viral Envelope. J Virol 93:e00574-19.
Bartonek L, Braun D, Zagrovic B. 2020. Frameshifting preserves key physicochemical properties of proteins. *Proc Natl Acad Sci USA* 117:5907–5912.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society B* 57:289–300.

Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. *The Annals of Statistics* 29:1165–1188.

Bezstarosti K, Lamers MM, Haagmans BL, Demmers JAA. 2020. Targeted Proteomics for the Detection of SARS-CoV-2 Proteins. Biochemistry Available from: http://biorxiv.org/lookup/doi/10.1101/2020.04.23.057810

Bhattacharyya C, Das C, Ghosh A, Singh AK, Mukherjee S, Majumder PP, Basu A, Biswas NK. 2020. Global Spread of SARS-CoV-2 Subtype with Spike Protein Mutation D614G is Shaped by Human Genomic Variations that Regulate Expression of TMPRSS2 and MX1 Genes. Genomics Available from: http://biorxiv.org/lookup/doi/10.1101/2020.04.075911

Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, Cinatl J, Münch C. 2020. SARS-CoV-2 infected host cell proteomics reveal potential therapy targets. In Review Available from: https://www.researchsquare.com/article/rs-17218/v1

Boni MF, Lemey P, Jiang X, Lam TT-Y, Perry B, Castoe T, Rambaut A, Robertson DL. 2020. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Evolutionary Biology Available from: http://biorxiv.org/lookup/doi/10.1101/2020.03.30.015008

Boussau B, Gouy M. 2006. Efficient likelihood computations with non-reversible models of evolution. *Syst Biol* 55:756–768.

Cagliani R, Forni D, Clerici M, Sironi M. 2020. Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses. *Infection, Genetics and Evolution* 83:104353.

Cassan E, Arigon-Chifolleau A-M, Mesnard J-M, Gross A, Gascuel O. 2016. Concomitant emergence of the antisense protein gene of HIV-1 and of the pandemic. *Proc Natl Acad Sci USA* 113:11537–11542.

Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W, Yuan S, Yuen K-Y. 2020. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. *Emerging Microbes & Infections* 9:221–236.

Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, et al. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. *Bioinformatics* 25:1153–1154.

Cui J, Li F, Shi Z-L. 2019. Origin and evolution of pathogenic coronaviruses. *Nature Reviews Microbiology* 17:181–192.

Daugherty MD, Malik HS. 2012. Rules of Engagement: Molecular Insights from Host-Virus Arms Races. *Annual Review of Genetics* 46:677–700.

Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom K, Zambon M, Ellis J, Lewis PA, Hiscox JA, et al. 2020. Characterisation of the transcriptome and proteome of SARS-CoV-2 using direct RNA sequencing and tandem mass spectrometry reveals evidence for a cell passage induced in-frame deletion in the spike glycoprotein that removes the furin-like cleavage site. *Microbiology* Available from: http://biorxiv.org/lookup/doi/10.1101/2020.03.22.002204

Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, Pritchard JK. 2009. Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. *Bioinformatics* 25:3207–3212.

Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S. 2005. ProbCons: Probabilistic consistency-based multiple sequence alignment. *Genome Research* 15:330–340.

Ewens WJ, Grant GR. 2001. Statistical Methods in Bioinformatics. New York: Springer-Verlag

Fernandes JD, Faust TB, Strauli NB, Smith C, Crosby DC, Nakamura RL, Hernandez RD, Frankel AD. 2016. Functional Segregation of Overlapping Genes in HIV. *Cell*
Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Yahalom-Ronen Y, Tamir H, Achdout H, Melamed S, Weiss S, Israely T, et al. 2020. The coding capacity of SARS-CoV-2. Microbiology Available from: http://biorxiv.org/lookup/doi/10.1101/2020.05.07.082909

Forni D, Cagliani R, Clerici M, Sironi M. 2017. Molecular Evolution of Human Coronavirus Genomes. Trends in Microbiology 25:35–48.

Forster P, Forster L, Renfrew C, Forster M. 2020. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci USA:202004999.

Fung S-Y, Yuen K-S, Ye Z-W, Chan C-P, Jin D-Y. 2020. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerging Microbes & Infections 9:558–570.

Gazave E, Chang D, Clark AG, Keinan A. 2013. Population Growth Inflate s the Per-Individual Number of Deleterious Mutations and Reduces Their Mean Effect. Genetics 195:969–978.

Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, Yuan Q, Xiao X. 2020. The epidemiology and clinical information about COVID-19. European Journal of Clinical Microbiology & Infectious Diseases 39:1011–1019.

Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. 2006. Nidovirales: Evolving the largest RNA virus genome. Virus Research 117:17–37.

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al. 2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature [Internet]. Available from:

Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, Tan AL, Paul LM, Brackney DE, Grewal S, et al. 2019. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol 20:8.

Hachim A, Kavian N, Cohen CA, Chin AW, Chu DK, Mok CK, Tsang OT, Yeung YC, Perera RA, Poon LL, et al. 2020. Beyond the Spike: identification of viral targets of the antibody responses to SARS-CoV-2 in COVID-19 patients. medRxiv Available from:

Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. 2020. The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control. JCM 9:1225.

Holmes EC. 2009. The Evolution and Emergence of RNA Viruses. New York: Oxford University Press

Holmes EC, Lipman DJ, Zamarin D, Yewdell JW. 2006. Comment on “Large-Scale Sequence Analysis of Avian Influenza Isolates.” Science 313:1573b–1573b.

Hughes AL, Friedman R, Glenn NL. 2006. The Future of Data Analysis in Evolutionary Genomics. Current Genomics 7:227–234.

Jukes TH, Cantor CR. 1969. Evolution of Protein Molecules. In: MunroHN, editor. Mammalian Protein Metabolism. New York: Academic Press. p. 21–132. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781483232119500097

Jurtz V, Paul S, Andreattia M, Marcatili P, Peters B, Nielsen M. 2017. NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J. J. 199:3360–3368.

Kamitani W, Narayanan K, Huang C, Lokugamage K, Ikegami T, Ito N, Kubo H, Makino S. 2006. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proceedings of the National Academy of Sciences 103:12885–12890.

Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30:772–780.

Keese PK, Gibbs A. 1992. Origins of genes: “big bang” or continuous creation? Proceedings
of the National Academy of Sciences 89:9489–9493.

1 Konno Y, Kimura I, Uru K, Fukushima M, Irie T, Koyanagi Y, Nakagawa S, Sato K. 2020.
2 SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is further
3 increased by a naturally occurring elongation variant. Microbiology Available from:
4 http://biorxiv.org/lookup/doi/10.1101/2020.05.11.088179
5 Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. Severe
6 Acute Respiratory Syndrome Coronavirus Open Reading Frame (ORF) 3b, ORF 6,
7 and Nucleocapsid Proteins Function as Interferon Antagonists. JVI 81:548–557.
8 Kosakovsky-Pond SL. 2020. Natural selection analysis of SARS-CoV-2/COVID-19.
9 usegalaxy [Internet]. Available from: https://covid19.galaxyproject.org/evolution/
10 Lam TT-Y, Shum MH-H, Zhu H-C, Tong Y-G, Ni X-B, Liao Y-S, Wei W, Cheung WY-M, Li
11 W-J, Li L-F, et al. 2020. Identifying SARS-CoV-2 related coronaviruses in Malayan
12 pangolins. Nature [Internet] in press. Available from:
13 http://www.nature.com/articles/s41586-020-2169-0
14 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods
15 9:357–359.
16 Langmead B, Wilks C, Antonescu V, Charles R. 2019. Scaling read aligners to hundreds of
17 threads on general-purpose processors. Hancock J, editor. Bioinformatics 35:421–
18 432.
19 Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large
20 datasets. Bioinformatics 30:3276–3278.
21 Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey
22 VJ. 2013. Software for Computing and Annotating Genomic Ranges. Prlic A, editor.
23 PLoS Comput Biol 9:e1003118.
24 Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R, Menachery VD. 2020. SARS-CoV-2
25 is sensitive to type I interferon pretreatment. Microbiology Available from:
26 http://biorxiv.org/lookup/doi/10.1101/2020.03.07.982264
27 McBride R, Fielding B. 2012. The Role of Severe Acute Respiratory Syndrome (SARS)-
28 Coronavirus Accessory Proteins in Virus Pathogenesis. Viruses 4:2902–2923.
29 McKinney W. 2010. Data structures for statistical computing in python. In: Proceedings of
30 the 9th Python in Science Conference. Vol. 445. p. 51–56.
31 Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and
32 nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3:418–
33 426.
34 Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. New York, NY: Oxford
35 University Press
36 Nelson CW, Ardern Z, Wei X. 2020. OLGenie: Estimating Natural Selection to Predict
37 Functional Overlapping Genes. Molecular Biology and Evolution in press:msaa087.
38 Nelson CW, Hughes AL. 2015. Within-host nucleotide diversity of virus populations: Insights
39 from next-generation sequencing. Infection, Genetics and Evolution 30:1–7.
40 Nelson CW, Moncla LH, Hughes AL. 2015. SNPGenie: estimating evolutionary parameters
41 to detect natural selection using pooled next-generation sequencing data.
42 Bioinformatics 31:3709–3711.
43 Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A Fast and Effective
44 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular
45 Biology and Evolution 32:268–274.
46 R Core Team. 2018. R: A language and environment for statistical computing. Vienna,
47 Austria: R Foundation for Statistical Computing Available from: https://www.R-
48 project.org/
49 Rehman S ur, Shafique L, Ihsan A, Liu Q. 2020. Evolutionary Trajectory for the Emergence
50 of Novel Coronavirus SARS-CoV-2. Pathogens 9:240.
51 Rothe C, Schunk M, Sothmann P, Bretzel G, Froschel G, Wallrauch C, Zimmer T, Thiel V,
52 Janke C, Guggemos W, et al. 2020. Transmission of 2019-nCoV Infection from an
53 Asymptomatic Contact in Germany. N Engl J Med 382:970–971.
54 Sabath N, Landan G, Graur D. 2008. A Method for the Simultaneous Estimation of Selection
Intensities in Overlapping Genes. PLoS ONE 3:e3996.
Schirmer M, D’Amore R, Ijaz UZ, Hall N, Quince C. 2016. Illumina error profiles: resolving fine-scale variation in metagenomic sequencing data. BMC Bioinformatics 17:125.
Schlub TE, Buchmann JP, Holmes EC. 2018. A simple method to detect candidate overlapping genes in viruses using single genome sequences. Molecular Biology and Evolution 35:2572–2581.
Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. 2011. Global quantification of mammalian gene expression control. Nature 473:337–342.
Sidney J, Peters B, Frahm N, Brander C, Sette A. 2008. HLA class I supertypes: a revised and updated classification. BMC Immunology 9:1.
Soubrier J, Steel M, Lee MSY, Der Sarkissian C, Guindon S, Ho SYW, Cooper A. 2012. The Influence of Rate Heterogeneity among Sites on the Time Dependence of Molecular Rates. Molecular Biology and Evolution 29:3345–3358.
Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34:W609–W612.
Tavaré S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17:57–86.
Warren AS, Archuleta J, Feng W, Setubal JC. 2010. Missing genes in the annotation of prokaryotic genomes. BMC Bioinformatics 11:131.
Wei X, Zhang J. 2015. A Simple Method for Estimating the Strength of Natural Selection on Overlapping Genes. Genome Biology and Evolution 7:381–390.
Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, Khor CC, Petric R, Hibberd ML, Nagarajan N. 2012. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Research 40:11189–11201.
Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei Y-Y, et al. 2020. A new coronavirus associated with human respiratory disease in China. Nature 579:265–269.
Yang Z. 1995. A Space-Time Process Model for the Evolution of DNA Sequences. Genetics 139:993–1005.
Yi Y, Lagniton PNP, Ye S, Li E, Xu R-H. 2020. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int. J. Biol. Sci. 16:1753–1766.
Yuen K-S, Ye Z-W, Fung S-Y, Chan C-P, Jin D-Y. 2020. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci 10:40.
Zhou P, Li H, Wang H, Wang L-F, Shi Z. 2012. Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities. Journal of General Virology 93:275–281.