(n, d)-COHERENT RINGS, (n, d)-COSEMIHEREDITARY RINGS
AND (n, d)-V-RINGS

Zhu Zhanmin

Received: 14 April 2020; Revised: 5 June 2020; Accepted: 6 June 2020
Communicated by Burcu Üngör

Abstract. Let \(R \) be a ring, \(n \) be a non-negative integer and \(d \) be a positive integer or \(\infty \). A right \(R \)-module \(M \) is called \((n, d)^*\)-projective if \(\text{Ext}_1^R(M, C) = 0 \) for every \(n \)-copresented right \(R \)-module \(C \) of injective dimension \(\leq d \); a ring \(R \) is called right \((n, d)^\ast\)-cocoherent if every \(n \)-copresented right \(R \)-module \(C \) with \(\text{id}(C) \leq d \) is \((n+1)\)-copresented; a ring \(R \) is called right \((n, d)^\ast\)-cosemihereditary if whenever \(0 \to C \to E \to A \to 0 \) is exact, where \(C \) is \(n \)-copresented with \(\text{id}(C) \leq d \), \(E \) is finitely cogenerated injective, then \(A \) is injective; a ring \(R \) is called right \((n, d)^\ast\)-V-ring if every \(n \)-copresented right \(R \)-module \(C \) with \(\text{id}(C) \leq d \) is injective. Some characterizations of \((n, d)^*\)-projective modules are given, right \((n, d)^\ast\)-cocoherent rings, right \((n, d)^\ast\)-cosemihereditary rings and right \((n, d)^\ast\)-V-rings are characterized by \((n, d)^*\)-projective right \(R \)-modules. \((n, d)^*\)-projective dimensions of modules over right \((n, d)^\ast\)-cocoherent rings are investigated.

Mathematics Subject Classification (2020): 16D40, 16E10, 16E60
Keywords: \((n, d)^\ast\)-cocoherent ring, \((n, d)^\ast\)-cosemihereditary ring, \((n, d)^\ast\)-V-ring, \((n, d)^*\)-projective module

1. Introduction

Throughout this paper, \(R \) is an associative ring with identity and all modules considered are unitary, \(n \) is a non-negative integer, \(d \) is a positive integer or \(\infty \) unless a special note.

In 1982, V. A. Hiremath [4] defined and studied finitely correlated modules. Following [4], a right \(R \)-module \(M \) is said to be finitely correlated if there is a short exact sequence \(0 \to M \to N \to K \to 0 \) of right \(R \)-modules with \(N \) finitely cogenerated, cofree and \(K \) is finitely cogenerated, where a right \(R \)-module \(N \) is said to be cofree if it is isomorphic to a direct product of the injective hulls of some simple right \(R \)-modules. Finitely correlated modules are also called finitely copresented modules.

This research was supported by the Natural Science Foundation of Zhejiang Province, China (LY18A010018).
in some literatures such as [7]. Following [12], a right R-module M is said to be \textit{FCP-projective} if $\text{Ext}^1_R(M, C) = 0$ for every finitely copresented right R-module C. In [12], right V-rings are characterized by FCP-projective right R-modules. We recall also that R is called \textit{right co-semihereditary} [6,8,12] if every finitely cogenerated factor module of a finitely cogenerated injective right R-module is injective, R is called \textit{right co-coherent} [12] if every finitely cogenerated factor module of a finitely cogenerated injective right R-module is finitely copresented. It is easy to see that right V-rings, right co-semihereditary rings and right co-coherent rings are the dual concepts of von Neumann regular rings, right semihereditary rings and right coherent rings. In this paper, right \textit{cocoherent} rings will denote right co-coherent rings in order to facilitate. In [12], right V-rings, right co-semihereditary rings are characterized by FCP-projective right R-modules, FCP-projective dimensions of right R-modules over right cocoherent rings are investigated. For example, we show that a ring R is right co-semihereditary if and only if every submodule of an FCP-projective right R-module is FCP-projective if and only if every submodule of a projective right R-module is FCP-projective [12, Theorem 3], a ring R is a right V-ring if and only if every right R-module is FCP-projective [12, Theorem 4].

In 1999, Xue introduced n-copresented modules and n-cocoherent rings respectively in [9]. According to [9], M is said to be \textit{n-copresented} if there is an exact sequence of right R-modules $0 \to M \to E_0 \to E_1 \to \cdots \to E_n$, where each E_i is a finitely cogenerated injective module. It is easy to see that a module M is finitely cogenerated if and only if it is 0-copresented, a module M is finitely copresented if and only if it is 1-copresented. We call any module $(−1)$-copresented. n-copresented modules have been studied in [2,9,11]; R is called \textit{right n-cocoherent} [9] in case every n-copresented right R-module is $(n + 1)$-copresented. It is easy to see that R is right cocoherent if and only if it is right 1-cocoherent. Following [5], a ring R is called right co-noetherian if every factor module of a finitely cogenerated right R-module is finitely cogenerated. By [4, Proposition 17], a ring R is right co-noetherian if and only if it is right 0-cocoherent. In [11], we extend the concepts of FCP-projective modules, cosemihereditary rings and V-rings to (n,d)-projective modules, n-cosemihereditary rings and n-V-rings respectively, right n-V-rings and right n-cosemihereditary rings are characterized by $(n,0)$-projective right R-modules, $(n,0)$-projective dimensions of right R-modules over right n-cocoherent rings are investigated. Following [11], a right R-module M is called (n,d)-projective if $\text{Ext}^{d+1}_R(M, A) = 0$ for every n-copresented right R-module A; a ring R is called right n-cosemihereditary if every submodule of a projective right
R-module is $(n,0)$-projective, a ring R is called a right n-V-ring if every right R-module is $(n,0)$-projective. Clearly, a right R-module M is FCP-projective if and only if it is $(1,0)$-projective, a ring R is right cosemihereditary if and only if it is right 1-cosemihereditary, a ring R is a right V-ring if and only if it is a right 0-V-ring if and only if it is a right 1-V-ring. Characterizations of n-cosemihereditary rings and n-V-rings can be found in [11, Theorem 3.7] and [11, Theorem 3.9], respectively.

In this paper, we generalize the concepts of $(n,0)$-projective modules, n-cocoherent rings, n-cosemihereditary rings, n-V-rings to $(n,d)^*$-projective modules, $(n,d)^*$-cocoherent rings, $(n,d)^*$-cosemihereditary rings and $(n,d)^*$-V-rings respectively. $(n,d)^*$-cosemihereditary rings, $(n,d)^*$-V-rings will be characterized by $(n,d)^*$-projective modules, $(n,d)^*$-projective dimensions of modules over $(n,d)^*$-cocoherent rings will be investigated. As corollaries, some new characterizations of right V-rings will be given.

2. $(n,d)^*$-Projective modules and $(n,d)^*$-cocoherent rings

We start with the following definition.

Definition 2.1. A right R-module M is said to be $(n,d)^*$-projective if $\text{Ext}_R^1(M,C) = 0$ for every n-copresented right R-module C with $id(C) \leq d$. A right R-module C is said to be $(n,d)^*$-injective if $\text{Ext}_R^1(M,C) = 0$ for every $(n,d)^*$-projective right R-module M.

Remark 2.2. (1) It is easy to see that if a module M is $(n,d)^*$-projective, then it is $(n',d')^*$-projective for any $n' \geq n$ and $d' \leq d$.

(2) A module M is $(n,0)$-projective if and only if it is $(n,\infty)^*$-projective.

Recall that a short exact sequence of right R-modules $0 \to A \to B \to C \to 0$ is said to be n-copure [11] if every n-copresented module is injective with respect to this sequence.

Definition 2.3. A short exact sequence of right R-modules $0 \to A \to B \to C \to 0$ is said to be (n,d)-copure if every n-copresented module with injective dimension $\leq d$ is injective with respect to this sequence.

Remark 2.4. A short exact sequence of right R-modules $0 \to A \to B \to C \to 0$ is n-copure if and only if it is (n,∞)-copure.

Theorem 2.5. Let M be a right R-module. Then the following statements are equivalent:

(1) M is $(n,d)^*$-projective.
(2) M is projective with respect to the exact sequence $0 \to C \to B \to A \to 0$ of right R-modules, where C is n-copresented and $\text{id}(C) \leq d$.

(3) If E' is an $(n-1)$-copresented factor module of a finitely cogenerated injective right R-module E and $\text{id}(E') \leq d-1$, then every right R-homomorphism f from M to E' can be lifted to a homomorphism from M to E.

(4) Every exact sequence $0 \to M'' \to M' \to M \to 0$ is (n,d)-copure.

(5) There exists an (n,d)-copure exact sequence $0 \to K \to P \to M \to 0$ of right R-modules with P projective.

(6) There exists an (n,d)-copure exact sequence $0 \to K \to P \to M \to 0$ of right R-modules with $P (n,d)^*\text{-projective}.

(7) M is projective with respect to every exact sequence $0 \to C \to B \to A \to 0$ of right R-modules with $C (n,d)^*\text{-injective}.

(8) M is projective with respect to every exact sequence $0 \to C \to E \to A \to 0$ of right R-modules with $C (n,d)^*\text{-injective}$ and E injective.

Proof. (1) \Rightarrow (2) By the exact sequence
$$\text{Hom}(M, B) \to \text{Hom}(M, A) \to \text{Ext}^1_R(M, C) = 0.$$ (2) \Rightarrow (3) Since E is finitely cogenerated injective and E' is $(n-1)$-copresented with $\text{id}(E') \leq d-1$, the kernel K of the natural epimorphism $E \to E'$ is n-copresented and $\text{id}(K) \leq d$. So (3) follows immediately from (2).

(3) \Rightarrow (1) For any n-copresented module C with $\text{id}(C) \leq d$, there exists an exact sequence $0 \to C \to E \to E' \to 0$, where E is finitely cogenerated injective, E' is $(n-1)$-copresented, and $\text{id}(E') \leq d-1$. Hence we get an exact sequence $\text{Hom}(M, E) \to \text{Hom}(M, E') \to \text{Ext}^1_R(M, C) \to \text{Ext}^1_R(M, E) = 0$, and thus $\text{Ext}^1_R(M, C) = 0$ by (3).

(1) \Rightarrow (4) Assume (1). Then we have an exact sequence
$$\text{Hom}(M', C) \to \text{Hom}(M'', C) \to \text{Ext}^1_R(M, C) = 0$$
for every n-copresented module C with $\text{id}(C) \leq d$, and so (4) follows.

(4) \Rightarrow (5) \Rightarrow (6) are obvious.

(6) \Rightarrow (1) By (6), we have an (n,d)-copure exact sequence $0 \to K \xrightarrow{f} P \to M \to 0$ of right R-modules with $P (n,d)^*\text{-projective}$, and so, for each n-copresented module C with $\text{id}(C) \leq d$, we have an exact sequence $\text{Hom}(P, C) \xrightarrow{f^*} \text{Hom}(K, C) \to \text{Ext}^1_R(M, C) \to \text{Ext}^1_R(P, C) = 0$ with f^* epic. This implies that $\text{Ext}^1_R(M, C) = 0$, and therefore (1) follows.

(1) \Rightarrow (7) \Rightarrow (8) \Rightarrow (1) are similar to the proofs of (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1). \square
Definition 2.6. (1) The \((n,d)^*\)-projective dimension of a module \(M_R\) is defined by
\[
(n,d)^* - pd(M_R) = \inf \{ m : \text{Ext}_R^{m+1}(M,C) = 0 \text{ for every } n\text{-copresented module } C \text{ with } id(C) \leq d \}
\]
(2) \(r. (n,d)^*\)-PD(R) is defined by
\[
r. (n,d)^*\text{-PD}(R) = \sup \{ (n,d)^*\text{-pd}(M) : M \text{ is a right } R\text{-module} \}.
\]

Definition 2.7. A ring \(R\) is called right \((n,d)\)-cocoherent, if every \(n\)-copresented right \(R\)-module with injective dimension \(\leq d\) is \((n+1)\)-copresented.

Remark 2.8. (1) It is easy to see that if a ring \(R\) is right \((n,d)\)-cocoherent, then it is right \((n',d')\)-cocoherent for any \(n' \geq n\) and \(d' \leq d\).

(2) Every ring \(R\) is right \((n,1)\)-cocoherent.

(3) A ring \(R\) is right \(n\)-cocoherent if and only if it is right \((n,\infty)\)-cocoherent.

Lemma 2.9. Let \(R\) be a right \((n,d)\)-cocoherent ring and \(M\) a right \(R\)-module. Then the following statements are equivalent:

1. \((n,d)^*\text{-pd}(M) \leq k\).
2. \(\text{Ext}_R^{k+1}(M,C) = 0\) for all \(n\)-copresented modules \(C\) with \(id(C) \leq d\).

Proof. (1) \(\Rightarrow\) (2) Use induction on \(k\). Clear if \((n,d)^*\text{-pd}(M) = k\). If \((n,d)^*\text{-pd}(M) \leq k-1\). Since \(C\) is \(n\)-copresented, there exists an exact sequence \(0 \to C \to E \to E' \to 0\), where \(E\) is finitely cogenerated injective, and \(E'\) is \((n-1)\)-copresented. Since \(id(C) \leq d\), we have \(id(E') \leq d\). But \(R\) is right \((n,d)\)-cocoherent, \(C\) is \((n+1)\)-copresented, so \(E'\) is \(n\)-copresented, and thus \(\text{Ext}_R^{k+1}(M,A) \cong \text{Ext}_R^{k}(M,E') = 0\) by induction hypothesis.

(2) \(\Rightarrow\) (1) is clear. \(\square\)

Corollary 2.10. Let \(R\) be a right \((n,d)\)-cocoherent ring and let \(M_R\) be \((n,d)^*\)-projective. Then \(\text{Ext}_R^{k}(M,C) = 0\) for all \(n\)-copresented modules \(C\) with \(id(C) \leq d\) and all positive integers \(k\).

Corollary 2.11. Let \(R\) be a right \((n,d)\)-cocoherent ring and let \(M\) be a right \(R\)-module. If the sequence \(0 \to P_0 \xrightarrow{d_0} P_1 \xrightarrow{d_{k-1}} \cdots \to P_0 \to M \to 0\) is exact with \(P_0, \ldots, P_{k-1}\) \((n,d)^*\)-projective, then \(\text{Ext}_R^{k+1}(M,C) \cong \text{Ext}_R^{1}(P_k,C)\) for any \(n\)-copresented modules \(C\) with \(id(C) \leq d\).

Proof. Since \(R\) is right \((n,d)\)-cocoherent and \(P_0, P_1, \ldots, P_{k-1}\) are \((n,d)\)-projective, by Corollary 2.10, we have
\[
\text{Ext}_R^{k+1}(M,C) \cong \text{Ext}_R^k(\text{Ker}(d_0),C) \cong \text{Ext}_R^{k-1}(\text{Ker}(d_1),C) \cong \cdots \cong
\]
Theorem 2.12. Let R be a right (n, d)-cocoherent ring and M be a right R-module. Then the following statements are equivalent:

1. $(n, d)^*\cdot pd(M_R) \leq k$.
2. $\text{Ext}^{k+1}_R(M, C) = 0$ for all n-copresented modules C with $id(C) \leq d$ and all positive integers l.
3. $\text{Ext}^{k+1}_R(M, C) = 0$ for all n-copresented modules C with $id(C) \leq d$.
4. If the sequence $0 \to P_k \to P_{k-1} \to \cdots \to P_0 \to M \to 0$ is exact with P_0, \ldots, P_{k-1} $(n,d)^*$-projective, then P_k is also $(n,d)^*$-projective.
5. There exists an exact sequence $0 \to P_k \to P_{k-1} \to \cdots \to P_0 \to M \to 0$ of right R-modules with $P_0, \ldots, P_{k-1}, P_k$ $(n,d)^*$-projective.

Proof. (1) \Rightarrow (2) Assume (1). Then $(n, d) - pd(M_R) \leq k + l - 1$, and so (2) follows from Lemma 2.9.

(2) \Rightarrow (3) and (4) \Rightarrow (5) are obvious. (3) \Rightarrow (4) and (5) \Rightarrow (1) by Corollary 2.11. □

3. (n,d)-Cosemihereditary rings and (n,d)-V-rings

As the beginning of this section, we extend the concept of n-cosemihereditary rings as follows.

Definition 3.1. A ring R is called right (n, d)-cosemihereditary, if for every finitely cogenerated injective right R-module E, each $(n-1)$-copresented factor module E' of E with $id(E') \leq d - 1$ is injective. A ring R is called right cohereditary if it is right $(0, \infty)$-cosemihereditary.

Remark 3.2. (1) It is easy to see that if a ring R is right (n, d)-cosemihereditary, then it is right (n', d')-cosemihereditary for any $n' \geq n$ and $d' \leq d$.

(2) Every ring R is right $(n, 1)$-cosemihereditary.

(3) A ring R is right n-cosemihereditary if and only if it is right (n, ∞)-cosemihereditary.

(4) A ring R is right cohereditary if and only if every factor module of a finitely cogenerated injective right R-module is injective.

(5) A ring R is right cosemihereditary if and only if it is right $(1, \infty)$-cosemihereditary.

Theorem 3.3. The following statements are equivalent for a ring R:

1. R is a right (n, d)-cosemihereditary ring.
(2) \(R \) is right \((n,d)\)-cocoherent and \(r.(n,d)^*\)-PD(\(R \)) \(\leq 1 \).

(3) \(\text{Ext}^2_R(M,C) = 0 \) for any right \(R \)-module \(M \) and any \(n \)-copresented right \(R \)-module \(C \) with \(\text{id}(C) \leq d \).

(4) Every submodule of an \((n,d)^*\)-projective right \(R \)-module is \((n,d)^*\)-projective.

(5) Every submodule of a projective right \(R \)-module is \((n,d)^*\)-projective.

Proof. (1) \(\Rightarrow \) (2) Let \(C \) be an \(n \)-copresented right \(R \)-module with injective dimension \(\leq d \). Then there exists an exact sequence \(0 \rightarrow C \rightarrow E \rightarrow E' \rightarrow 0 \), where \(E \) is finitely cogenerated injective, \(E' \) is \((n-1)\)-copresented and \(\text{id}(E') \leq d - 1 \). Since \(R \) is right \((n,d)\)-cosemihereditary, \(E' \) is finitely cogenerated injective, and so \(C \) is \((n+1)\)-copresented, it shows that \(R \) is right \((n,d)\)-cocoherent. Now let \(M \) be a right \(R \)-module. Then for any \(n \)-copresented right \(R \)-module \(C \) with \(\text{id}(C) \leq d \), we have an exact sequence \(0 \rightarrow C \rightarrow E \rightarrow E' \rightarrow 0 \) of right \(R \)-modules, where \(E \) is finitely cogenerated injective, \(E' \) is \((n-1)\)-copresented and \(\text{id}(E') \leq d - 1 \). Since \(R \) is right \((n,d)\)-cosemihereditary, by the above proof, \(E' \) is injective. Thus the exact sequence \(0 = \text{Ext}^1_R(M,E') \rightarrow \text{Ext}^2_R(M,C) \rightarrow \text{Ext}^2_R(M,E) = 0 \) implies that \(\text{Ext}^2_R(M,C) = 0 \). This follows that \(r.(n,d)^*\)-PD(\(R \)) \(\leq 1 \).

(2) \(\Rightarrow \) (3) It follows from Theorem 2.12.

(3) \(\Rightarrow \) (4) Let \(M \) be an \((n,d)^*\)-projective right \(R \)-module and \(K \) be its submodule. Then for any \(n \)-copresented module \(C \) with \(\text{id}(C) \leq d \), we have an exact sequence \(0 = \text{Ext}^1_R(M,C) \rightarrow \text{Ext}^1_R(K,C) \rightarrow \text{Ext}^1_R(M/K,C) = 0 \) by (3), it follows that \(\text{Ext}^1_R(K,C) = 0 \), as required.

(4) \(\Rightarrow \) (5) It is obvious.

(5) \(\Rightarrow \) (1) Let \(E' \) be an \((n-1)\)-copresented factor module of a finitely cogenerated injective right \(R \)-module \(E \) and \(\text{id}(E') \leq d - 1 \). Let \(f \) be an epimorphism from \(E \) to \(E' \). Then for any projective right \(R \)-module \(P \) and any submodule \(K \) of \(P \), \(K \) is \((n,d)^*\)-projective by (4). So for any \(n \)-copresented right \(R \)-module \(C \) with \(\text{id}(C) \leq d \), we have an exact sequence \(0 = \text{Ext}^1_R(K,C) \rightarrow \text{Ext}^1_R(P/K,C) \rightarrow \text{Ext}^1_R(P/C) = 0 \), which implies that \(\text{Ext}^1_R(P/K,C) = 0 \). Note that \(\text{Ker}(f) \) is \(n \)-copresented and \(\text{id}(\text{Ker}(f)) \leq d \), we get an exact sequence \(0 = \text{Ext}^1_R(P/K,E) \rightarrow \text{Ext}^1_R(P/K,E') \rightarrow \text{Ext}^1_R(P/K,\text{Ker}(f)) = 0 \), and then \(\text{Ext}^1_R(P/K,E') = 0 \), which shows that \(E' \) is \(P_R \)-injective from the exact sequence \(\text{Hom}(P,E') \rightarrow \text{Hom}(K,E') \rightarrow \text{Ext}^1_R(P/K,E') \). Therefore, \(E' \) is injective.

Our following Corollary 3.4 improves [11, Theorem 3.7] partly.

Corollary 3.4. The following statements are equivalent for a ring \(R \):

(1) \(R \) is a right \(n \)-cosemihereditary ring.
(2) R is right n-coherent and $r.(n,0)\text{-PD}(R) \leq 1$.
(3) $\text{Ext}^2_R(M, C) = 0$ for any right R-module M and any n-copresented right R-module C.
(4) Every submodule of an $(n,0)$-projective right R-module is $(n,0)$-projective.
(5) Every submodule of a projective right R-module is $(n,0)$-projective.

Corollary 3.5. The following statements are equivalent for a ring R:

(1) R is a right cosemihereditary ring.
(2) R is right cocoherent and $r.\text{FCP-PD}(R) \leq 1$.
(3) $\text{Ext}^2_R(M, C) = 0$ for any right R-module M and any finitely copresented right R-module C.
(4) Every submodule of an FCP-projective right R-module is FCP-projective.
(5) Every submodule of a projective right R-module is FCP-projective.

Corollary 3.6. The following statements are equivalent for a ring R:

(1) R is a right cohereditary ring.
(2) R is right co-noetherian and $r.\text{FCG-PD}(R) \leq 1$.
(3) $\text{Ext}^2_R(M, C) = 0$ for any right R-module M and any finitely cogenerated right R-module C.
(4) Every submodule of an FCG-projective right R-module is FCG-projective.
(5) Every submodule of a projective right R-module is FCG-projective.

Next we extend the concept of right n-V-rings as follows.

Definition 3.7. A ring R is called right (n,d)-V-ring if every right R-module is $(n,d)^*$-projective.

Remark 3.8. (1) It is easy to see that if $n' \geq n$ and $d' \leq d$, then a right (n,d)-V-ring is a right (n',d')-V-ring.
(2) A ring R is a right n-V-ring if and only if it is a right (n,∞)-V-ring.

Now we give some characterizations of right (n,d)-V-rings.

Theorem 3.9. The following conditions are equivalent for a ring R:

(1) R is a right (n,d)-V-ring.
(2) Every $(n-1)$-copresented right R-module with injective dimension $\leq d-1$ is $(n,d)^*$-projective.
(3) R is right (n,d)-cosemihereditary and $E(S)$ is $(n,d)^*$-projective for every simple right R-module S.

(4) R is right (n,d)-cocoherent and for every finitely cogenerated injective right R-module E, every n-copresented factor module E' of E with $id(E') \leq d−1$ is $(n,d)^*$-projective.

(5) For every finitely cogenerated injective right R-module E, every $(n−1)$-copresented factor module E' of E with $id(E') \leq d−1$ is $(n,d)^*$-projective.

(6) Every n-copresented right R-module with injective dimension $\leq d$ is injective.

Proof. (1) \Rightarrow (2) and (6) \Rightarrow (1) are obvious.

(2) \Rightarrow (3) Assume (2). Then it is clear that $E(S)$ is $(n,d)^*$-projective for every simple right R-module S. Let E be a finitely cogenerated injective module and E' an $(n−1)$-copresented factor module of E with $id(E') \leq d−1$. By (2), E' is $(n,d)^*$-projective, so by Theorem 2.5(3), we have that E' is isomorphic to a direct summand of E and hence E' is injective. Therefore, R is right (n,d)-cosemihereditary.

(3) \Rightarrow (4) Assume (3). Since R is right (n,d)-cosemihereditary, it is right (n,d)-cocoherent by Theorem 3.3. Now let E be a finitely cogenerated injective right R-module and E' an $(n−1)$-copresented factor module of E with $id(E') \leq d−1$. Since R is right (n,d)-cocoherent, E' is n-copresented and hence finitely cogenerated. Thus, the injective envelope $E(E')$ of E' is a finitely cogenerated injective module, and so $E(E') \cong \oplus_{i=1}^{k} E(S_i)$ for some simple modules $E_i, i = 1, 2, \ldots, k$. Since each E_i is $(n,d)^*$-projective by (3), $E(E')$ is also $(n,d)^*$-projective. Observing that R is right (n,d)-cosemihereditary, by Theorem 3.3, E' is also $(n,d)^*$-projective.

(4) \Rightarrow (5) Let E be a finitely cogenerated injective module and E' an $(n−1)$-copresented factor module of E with $id(E') \leq d−1$. Since R is right (n,d)-cocoherent, E' is n-copresented. By (4), E' is $(n,d)^*$-projective.

(5) \Rightarrow (6) Let C be an n-copresented right R-module with $id(C) \leq d$. Then there exists an exact sequence $0 \rightarrow C \rightarrow E \rightarrow E' \rightarrow 0$ of right R-modules, where E is finitely cogenerated injective, E' is $(n−1)$-copresented and $id(E') \leq d−1$. By (5), E' is $(n,d)^*$-projective, so E' is projective respect to this exact sequence by Theorem 2.5(3). This follows that C is isomorphic to a direct summand of E, and therefore C is injective.

Recall that a right R-module M is called FCG-projective [11] if $\text{Ext}^1_R(M, A) = 0$ for every finitely cogenerated right R-module A. By Remark 2.2, a right R-module is FCG-projective if and only if it is $(0, \infty)^*$-projective, a right R-module is FCP-projective if and only if it is $(1, \infty)^*$-projective, every FCG-projective module is FCP-projective.
Corollary 3.10. The following conditions are equivalent for a ring R:

1. R is a right V-ring.
2. R is a right $(0, \infty)$-V-ring.
3. R is a right $(1, \infty)$-V-ring.
4. Every right R-module is FCG-projective.
5. R is right cohereditary and $E(S)$ is FCG-projective for every simple right R-module S.
6. R is right co-noetherian and for every finitely cogenerated injective right R-module E, every finitely cogenerated factor module E' of E is FCG-projective.
7. For every finitely cogenerated injective right R-module E, every factor module E' of E is FCG-projective.
8. Every finitely cogenerated right R-module is injective.
9. Every finitely cogenerated right R-module is FCP-projective.
10. R is right cosemihereditary and $E(S)$ is FCP-projective for every simple right R-module S.
11. R is right cocoherent and for every finitely cogenerated injective right R-module E, every finitely copresented factor module E' of E is FCP-projective.
12. For every finitely cogenerated injective right R-module E, every finitely copresented factor module E' of E is FCP-projective.
13. Every finitely copresented right R-module is injective.

Proof. (2) \Rightarrow (3) is obvious. By Theorem 3.9, we have

$(2) \iff (4) \iff (5) \iff (6) \iff (7) \iff (8)$; and $(3) \iff (9) \iff (10) \iff (11) \iff (12) \iff (13)$.

(1) \Rightarrow (8) Let R be a right V-ring. Then every simple right R-module is injective. For any finitely cogenerated right R-module M, we have $E(M) \cong E(S_1) + \cdots + E(S_n)$ for some finite set S_1, \ldots, S_n of simple modules by [1, Proposition 18.18], so $E(M) \cong S_1 + \cdots + S_n$ is semisimple. Thus M is a direct summand of $E(M)$, and therefore M is injective.

(13) \Rightarrow (1) Let S be any simple right R-module. Suppose S is not injective. Let $x \in E(S) \setminus S$ and let A be a submodule of $E(S)$ maximal with respect to $S \subseteq A$ and $x \notin A$, then $0 \neq x + A \in \cap \{K \leq E(S)/A \mid K \neq 0\}$, which implies that $E(S)/A$ is finitely cogenerated and whence A is finitely copresented. By (13), A is injective. It follows that $A = E(S)$, which contradicts the fact that $x \notin A$. Hence S is injective and so R is a right V-ring. \square
Recall that a right R-module M is called n-presented [3] if there is an exact sequence of right R-modules $F_n \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$ where each F_i is a finitely generated free, equivalently projective right R-module; a left R-module M is called $(n, 0)$-flat [10] if $\text{Tor}_1^R(A, M) = 0$ for every n-presented right R-module A. A ring R is called right n-regular [10] if every n-presented right R-module is projective. By [10, Theorem 3.9], a ring R is right n-regular if and only if every left R-module M is $(n, 0)$-flat.

Theorem 3.11. Let R be a commutative ring. Then every $(n, 0)$-projective module is $(n, 0)$-flat.

Proof. Let M be an $(n, 0)$-projective module. To prove M is $(n, 0)$-flat, we need prove $\text{Tor}_1^R(A, M) = 0$ for every n-presented R-module A. Since A is n-presented, $\text{Hom}_R(A, E(S))$ is n-copresented for any simple module S. Let $0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0$ be an exact sequence of R-modules with P projective. Then by Theorem 2.5, this exact sequence is n-copure. And so we get an exact sequence of R-modules

$$0 \rightarrow \text{Hom}_R(M, \text{Hom}_R(A, E(S))) \rightarrow \text{Hom}_R(P, \text{Hom}_R(A, E(S))) \rightarrow \text{Hom}_R(K, \text{Hom}_R(A, E(S))) \rightarrow 0.$$

By [1, Proposition 20.6, Proposition 20.7], this induces an exact sequence

$$0 \rightarrow \text{Hom}_R(M \otimes_R A, E(S)) \rightarrow \text{Hom}_R(P \otimes_R A, E(S)) \rightarrow \text{Hom}_R(K \otimes_R A, E(S)) \rightarrow 0.$$

Let \mathcal{S}_0 denote an irredundant set of representatives of the simple R-modules and let $C = \prod_{S \in \mathcal{S}_0} E(S)$. Then by [1, Corollary 18.16], C is a cogenerator. And we have an exact sequence of R-modules

$$0 \rightarrow \text{Hom}_R(M \otimes_R A, C) \rightarrow \text{Hom}_R(P \otimes_R A, C) \rightarrow \text{Hom}_R(K \otimes_R A, C) \rightarrow 0.$$

So, by [1, Proposition 18.14], the sequence

$$0 \rightarrow K \otimes_R A \rightarrow P \otimes_R A \rightarrow M \otimes_R A \rightarrow 0$$

of R-modules is exact. This shows that $\text{Tor}_1^R(A, M) = 0$, as required. \qed

Corollary 3.12. Let R be a commutative n-V-ring. Then it is an n-regular ring.

The following result is well-known.

Corollary 3.13. Let R be a commutative V-ring. Then it is a regular ring.

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.
References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd ed., Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.
[2] D. Bennis, H. Bouzraa and A.-Q. Kaed, On n-copresented modules and n-coherent rings, Int. Electron. J. Algebra, 12 (2012), 162-174.
[3] D. L. Costa, Parameterizing families of non-noetherian rings, Comm. Algebra, 22(10) (1994), 3997-4011.
[4] V. A. Hiremath, Cofinitely generated and cofinitely related modules, Acta Math. Acad. Sci. Hungar., 39(1-3) (1982), 1-9.
[5] J. P. Jans, On co-noetherian rings, J. London Math. Soc., 1(2) (1969), 588-590.
[6] R. W. Miller and D. R. Turnidge, Factors of cofinitely generated injective modules, Comm. Algebra, 4(3) (1976), 233-243.
[7] R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
[8] W. M. Xue, On co-semihereditary rings, Sci. China Ser. A., 40(7) (1997), 673-679.
[9] W. M. Xue, On n-presented modules and almost excellent extensions, Comm. Algebra, 27(3) (1999), 1091-1102.
[10] Z. M. Zhu, On n-coherent rings, n-hereditary rings and n-regular rings, Bull. Iranian Math. Soc., 37(4) (2011), 251-267.
[11] Z. M. Zhu, n-cocoherent rings, n-cosemihereditary rings and n-V-rings, Bull. Iranian Math. Soc., 40(4) (2014), 809-822.
[12] Z. M. Zhu and J. L. Chen, FCP-projective modules and some rings, J. Zhejiang Univ. Sci. Ed., 37(2) (2010), 126-130.

Zhu Zhanmin
Department of Mathematics
College of Mathematics Physice and Information Engineering
Jiaxing University
Jiaxing, Zhejiang Province, 314001, P.R.China
e-mail: zhuzhanminjxu@hotmail.com