High phase-lag order trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems

Ali Shokri · Hosein Saadat

Received: date / Accepted: date

Abstract In this paper, we present the two-step trigonometrically fitted symmetric Obrechkoff methods with algebraic order of twelve. The method is based on the symmetric two-step Obrechkoff method, with 12 algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numerical results obtained by the new method for some problems show its superiority in efficiency, accuracy and stability.

Keywords Obrechkoff methods, Trigonometrically-fitting, Initial value problems, Symmetric multistep methods, oscillating solution.

Mathematics Subject Classification (2000) MSC 65L05 · MSC 65L07 · 65L20

1 Introduction

In this paper, the symmetric Obrechkoff methods for solving special class of initial value problems associated with second order ordinary differential equations of the type

\[y'' = f(x, y), \quad y(x_0) = y_0, \quad y'(x_0) = y'_0, \quad (1.1) \]

in which the first order derivatives do not occur explicitly, are discussed. The numerical integration methods for (1.1) can be divided into two distinct classes:

1. Problems for which the solution period is known (even approximately) in advance.
Problems for which the period is not known.

For several decades, there has been strong interest in searching for better numerical methods to integrate first-order and second-order initial value problems, because these problems are usually encountered in celestial mechanics, quantum mechanical scattering theory, theoretical physics and chemistry, and electronics. Generally, the solution of (1) is periodic, so it is expected that the result produced by some numerical methods preserves the analogical periodicity of the analytic solution [9-22]. Computational methods involving a parameter proposed by Gautschi [8], Jain et al. [10], Sommeijer and et al [30] and Steifel and Bettis [31] yield numerical solution of problems of class (1). Chawla and et al [3,4,5], Ananthakrishnaiah [2], Shokri and et al. [23,24,25,26], Dahlquist [6], Franco [7], Lambert and Watson [9], Tsitouras and Simos [32], Simos and et al. [27,28,29], Hairer [9], Wang et al. [34,35,36], Saldanha and Achar [22], and Daele and Vanden Berghe [33] have developed methods to solve problems of class (2). Consider Obrechkoff method of the form

$$
\sum_{i=0}^{k} \alpha_i y_{n-j+1} = \sum_{j=0}^{k} h^{2j} \sum_{i=1}^{k} \beta_{ij} y_{n-j+1}^{(2)}, \tag{1.2}
$$

for the numerical integration of the problem (1.1). The method (1.2) is symmetric when $\alpha_j = \alpha_{k-j}$, $\beta_j = \beta_{k-j}$, $j = 0, 1, 2, \ldots, k$, and it is of order q if the truncation error associated with the linear difference operator is given as

$$
TE = C_{q+2} h^{q+2} y^{(q+2)}, \quad x_{n-k+1} < \eta < x_{n+1},
$$

where C_{q+2} is a constant dependent on h. When the method (1.2) is applied to the test problem, we get the characteristic equation as

$$
\rho(\xi) - \sum_{i=1}^{l} (-1)^i v^{2i} \sigma_i(\xi) = 0, \tag{1.3}
$$

where $v = \lambda h$ and

$$
\rho(\xi) = \sum_{j=0}^{k} \alpha_j \xi^{k-j}, \quad \sigma_i(\xi) = \sum_{j=0}^{k} \beta_{ij} \xi^{k-j}, \quad i = 1, 2, \ldots, l. \tag{1.4}
$$

Definition 1.1 The method (1.2) is said to have interval of periodicity $(0, v_2^0)$ if for all $v_2 \in (0, v_2^0)$ the roots of Eq. (1.3) are complex and at least two of them lie on the unit circle and the others lie inside the unit circle.

Definition 1.2 The method (1.2) is said to be P-stable if its interval of periodicity is $(0, \infty)$.

Definition 1.3 For any symmetric multistep methods, the phase-lag (frequency distortion) of order q is given by

$$
t(v) = v - \theta(v) = C v^{q+1} + O(v^{q+2}), \tag{1.5}
$$

where C is the phase lag constant and q is the phase-lag order.
The characteristic equation of the method (1.2) is given by
\[
\Omega(s : v^2) = A(v)s^2 - 2B(v)s + A(v) = 0, \tag{1.6}
\]
where
\[
A(v) = 1 + \sum_{i=1}^{m} (-1)^i \beta_{0i} v^{2i}, \quad B(v) = 1 + \sum_{i=1}^{m} (-1)^i \beta_{1i} v^{2i}, \tag{1.7}
\]
\(\Psi\) contains polynomial functions together with trigonometric polynomials
\[
\Psi_{\text{trig}} = \{1, t, \cdots, t^K, \cos(r\omega t), \sin(r\omega t), r = 1, 2, \cdots, P\}. \tag{1.8}
\]
The resulting methods are then based on a hybrid set of polynomials and trigonometric functions. If \(P\) is limited to \(P = M - 2\), we called method with zero phase-lag.

Remark 1.1 We present here the trigonometric versions of the set. In case \(\omega\) is purely imaginary one obtains the hyperbolic description of this set. This set is characterized by two integer parameters \(K\) and \(P\). The set in which there is no polynomial part is identified by \(K = -1\) while the set in which there is no trigonometric polynomial component is identified by \(K = -1\). For each problem one has \(K + 2P = M - 3\), where \(M - 1\) is the maximum exponent present in the full polynomial basis for the same problem.

2 Construction of the new method

From the form (1.2) and without loss of generality we assume \(\alpha_j = \alpha_{m-j}, \beta_{i,j} = \beta_{i,m-j}, j = 0(1)\lfloor \frac{m}{2} \rfloor\) and we can write
\[
y_{n+1} - 2y_n + y_{n-1} = \sum_{i=1}^{m} h^{2i} \left[\beta_{0i} y_{n+1}^{(2i)} + \beta_{1i} y_n^{(2i)} + \beta_{0i} y_{n-1}^{(2i)} \right], \tag{2.1}
\]
when \(m = 3\) we get
\[
y_{n+1} - 2y_n + y_{n-1} = h^2 \left[\beta_{10} (y_{n+1}^{(2)} + y_n^{(2)} + \beta_{11} y_n^{(2)}) \right] + h^4 \left[\beta_{20} (y_{n+1}^{(4)} + y_n^{(4)} + \beta_{21} y_n^{(4)}) \right] + h^6 \left[\beta_{30} (y_{n+1}^{(6)} + y_n^{(6)} + \beta_{31} y_n^{(6)}) \right]. \tag{2.2}
\]

\(M - 3\) for method (2.2) is 11 so that if \(P = -1, K = 13\) we obtain classic method and the coefficients of this method are
\[
\beta_{1.0} = \frac{229}{7788}, \quad \beta_{1.1} = \frac{3665}{3894}, \quad \beta_{2.0} = -\frac{1}{2360}, \quad \beta_{2.1} = \frac{2923}{3925152}, \quad \beta_{3.0} = \frac{127}{9251520}, \quad \beta_{3.1} = \frac{2923}{3925152}. \tag{2.3}
\]
where its phase-lag is given by
\[p_{\text{clas}} = -\frac{45469}{339472265932800} v^{12} + O(v^{14}), \]
and its local truncation error is given by
\[\text{LTE}_{\text{clas}} = -\frac{45469}{169736132966400} h^{14} v^{(14)} + O(h^{16}). \]
If \(P = 6, K = -1 \) we obtain the method with zero phase-lag (PL), and the coefficients of this case are given in [22].

2.1 The first formula
If \(P = 0, K = 11, \) so we called PL’, we have
\[
\begin{align*}
\beta_{1,0} &= \frac{1}{6v^2} \beta_{1,0}^{\text{num}} A, & \beta_{1,1} &= \frac{1}{3v^2} \beta_{1,1}^{\text{num}} A, & \beta_{2,0} &= \frac{-1}{5040v^2} \beta_{2,0}^{\text{num}} A, \\
\beta_{2,1} &= \frac{1}{2520v^2} \beta_{2,1}^{\text{num}} A, & \beta_{3,0} &= \frac{-1}{10080v^2} \beta_{3,0}^{\text{num}} A, & \beta_{3,1} &= \frac{1}{5040v^2} \beta_{3,1}^{\text{num}},
\end{align*}
\]
where
\[
A = 15120 \cos v - 15120 + 6900v^2 - 313v^4 + 660v^2 \cos v + 13v^4 \cos v,
\]
and
\[
\begin{align*}
\beta_{1,0}^{\text{num}} &= -45360v^2 + 3702v^4 - 89v^6 + 78v^4 \cos v + 2v^6 \cos v + 90720 - 90720 \cos v, \\
\beta_{1,1}^{\text{num}} &= 45360v^2 \cos v + 16998v^4 - 850v^6 + 37v^4 \cos v - 90720 + 90720 \cos v + 1902v^4 \cos v, \\
\beta_{2,0}^{\text{num}} &= -65520v^2 \cos v - 1597680v^2 + 105840v^4 - 1907v^6 + 17v^6 \cos v + 3326400 - 3326400 \cos v, \\
\beta_{2,1}^{\text{num}} &= 3109680v^2 \cos v + 14278320v^2 - 30257v^6 + 1907v^6 \cos v - 34776000 \cos v + 105840v^4 \cos v, \\
\beta_{3,0}^{\text{num}} &= 3360v^2 \cos v + 62160v^2 - 3814v^4 + 59v^6 + 34v^4 \cos v - 131040 + 131040 \cos v, \\
\beta_{3,1}^{\text{num}} &= 149520v^2 \cos v + 1428000v^2 - 60514v^4 + 59v^6 \cos v - 3155040 + 3155040 \cos v + 3814v^4 \cos v,
\end{align*}
\]
for small values of \(v \) the above formulae are subject to heavy cancelations. In this case the following Taylor series expansion must be used:
\[
\begin{align*}
\beta_{1,0} &= \frac{229}{7788} + \frac{45469}{1314147120} v^2 + \frac{85771}{341152592352} v^4 + \frac{42739761203}{2935870510173004800} v^6 \\
&+ \frac{60819728357236453277184}{168279971604233} v^8 + \frac{13575027728788584540475136000}{26634822900207221} v^{10} \ldots
\end{align*}
\]
The phase-lag and the local truncation error for the PL’ method are given by

\[\text{LTE}_{PL'} = (1 - \beta_{1,1} - 2\beta_{1,0}) h^2 y_n^{(2)} + \left(\frac{1}{12} - \beta_{1,0} - 2\beta_{2,0} - \beta_{2,1} \right) h^4 y_n^{(4)} + \left(\frac{1}{360} - \beta_{1,0} - \frac{1}{12} - 2\beta_{2,0} - \frac{1}{6} - \beta_{2,1} \right) h^6 y_n^{(6)} + \left(\frac{1}{14!} - \frac{1}{12!} - \frac{2\beta_{1,0}}{8!} - \frac{2\beta_{2,0}}{6!} - \frac{2\beta_{3,0}}{4!} + \frac{2\beta_{3,1}}{8!} \right) h^8 y_n^{(8)} + \left(\frac{2}{10!} - \frac{2\beta_{1,0}}{8!} - \frac{2\beta_{2,0}}{6!} - \frac{2\beta_{3,0}}{4!} - \frac{2\beta_{3,1}}{8!} \right) h^{10} y_n^{(10)} + \left(\frac{2}{14!} - \frac{2\beta_{1,0}}{8!} - \frac{2\beta_{2,0}}{6!} - \frac{2\beta_{3,0}}{4!} - \frac{2\beta_{3,1}}{8!} \right) h^{12} y_n^{(12)} + O(h^{16}) \]
Fig. 2.1 Behavior of the coefficient $\beta_{1,0}$ in the method of PL'.

hence

$$pl_{PL'} = \frac{731602960042513638469539403}{1287287007659726361217210431335975522416459776000000} v^{24},$$

and

$$LTE_{PL'} = -\frac{45469}{169736132966400} \left(y^{(14)} + \omega^2 y^{(12)}\right) h^{14},$$

where $v = \omega h$, ω is the frequency and h is the step length. As $v \to 0$, the LTE of the method (2.2) with derived coefficients (2.4) tends to $\frac{45469}{169736132966400} h^{14} y^{(14)} + O(h^{16})$, which agrees with the LTE of the three methods due to Wang [36], Simos [27] and Daele [33], Achar [1], as $H \to 0$. The behavior of the coefficients of the PL' method are shown in Figures 2.1, to 2.6.

2.2 The second formula

If $P = 2, K = 7$, so we called PL'', we have

$$\beta_{1,0} = \frac{89}{1878} - \frac{7560}{313} \beta_{3,1}, \quad \beta_{1,1} = \frac{850}{939} + \frac{15120}{313} \beta_{3,1}, \quad \beta_{2,0} = -\frac{1907}{1577520} + \frac{330}{313} \beta_{3,1},$$

$$\beta_{2,1} = \frac{30257}{788760} + \frac{6900}{313} \beta_{3,1}, \quad \beta_{3,0} = \frac{59}{3155040} - \frac{13}{626} \beta_{3,1}, \quad \beta_{3,1} = \frac{1}{1080} A.$$
Fig. 2.2 Behavior of the coefficient $\beta_{1,1}$ in the method of PL$'$.

Fig. 2.3 Behavior of the coefficient $\beta_{2,0}$ in the method of PL$'$.

$log_{10}(\beta_{1,1})$

$log_{10}(\beta_{2,0})$
Fig. 2.4 Behavior of the coefficient $\beta_{2,1}$ in the method of PL'.

Fig. 2.5 Behavior of the coefficient $\beta_{3,0}$ in the method of PL'.

case the following Taylor series expansion must be used:

For small values of B the above formulae are subject to heavy cancelations. In this case the following Taylor series expansion must be used:

where

$$A = -14400 + 213800 \cos(3v) v^4 \cos(v) - 36000 \cos(2v) \cos(v) v^2 + 14400 \cos(3v) \cos(v) \cos(2v) - 72000 \cos(3v) \cos(v) v^2 + 20275 \cos(3v) v^4 \cos(2v) - 93600 \cos(3v) v^2 \cos(2v) + 9660 \cos(3v) v^6 \cos(v) + 20832 \cos(3v) v^6 \cos(v) - 10332 \cos(v) v^6 \cos(2v) + 14400 \cos(v) - 14400 \cos(3v) \cos(2v) - 14400 \cos(2v) \cos(v) + 14400 \cos(2v) + 14400 \cos(3v) - 116475 \cos(2v) v^4 \cos(v) + 100800 \cos(3v) \cos(v) \cos(2v) v^2 + 29400 \cos(3v) \cos(v) \cos(2v) v^4 + 720 \cos(3v) \cos(v) \cos(2v) v^6 + 7200 \cos(v) v^2 + 2875 \cos(v) v^4 + 1830 \cos(v) v^6 + 28800 \cos(2v) v^2 + 99200 \cos(2v) v^4 - 46848 \cos(2v) v^6 + 64800 \cos(3v) v^2 - 249075 \cos(3v) v^4 + 88938 \cos(3v) v^6 - 14400 \cos(3v) \cos(v) - 810 \cos(3v) v^6 \cos(2v) + 1296 \cos(3v) v^8 \cos(v) - 486 \cos(v) v^8 \cos(2v),$$

and

$$B = 240 \cos(v) - 81 \cos(2v) v^4 \cos(v) - 240 \cos(3v) \cos(v) - 240 \cos(2v) \cos(v) + 96 \cos(3v) v^4 \cos(v) + 75 \cos(v) v^4 - 1107 \cos(2v) \cos(v) v^2 + 240 \cos(3v) \cos(v) \cos(2v) + 115 \cos(v) v^2 + 992 \cos(3v) \cos(v) v^2 - 240 - 15 \cos(3v) v^4 \cos(2v) + 115 \cos(3v) v^2 \cos(2v) - 240 \cos(3v) \cos(2v) - 480 \cos(2v) v^4 + 992 \cos(2v) v^2 + 405 \cos(3v) v^4 - 1107 \cos(3v) v^2 + 240 \cos(3v) + 240 \cos(2v) v^6.$$
\[\beta_{1,0} = \frac{229}{7788} + \frac{318283}{657073560} v^2 + \frac{1512119}{118091281968} v^4 + \frac{22946405723893}{44038057651609507200} v^6 + \frac{651639946682396199939840}{805046071997980764991137} v^8 + \frac{1649365869047813021667729024000}{68936236116374773928415735195494400} v^{10} + \cdots, \]

\[\beta_{1,1} = \frac{3665}{3894} - \frac{318283}{328536780} v^2 - \frac{1512119}{59045640984} v^4 - \frac{22946405723893}{22019028825804753600} v^6 - \frac{32581997341198099969920}{805046071997980764991137} v^8 - \frac{824682934523906510833864512000}{34468118058187386964207867597747200} v^{10} + \cdots, \]

\[\beta_{2,0} = -\frac{1}{2360} - \frac{45469}{6021183168} v^2 - \frac{99714443}{586162181404800} v^4 - \frac{4808531881}{1130388645602810880} v^6 - \frac{1741655857496586207111936000}{76862259930526632407} v^8 - \frac{35264441127276874790568169676800}{1089463503416967799081153} v^{10} + \cdots, \]

\[\beta_{2,1} = \frac{711}{12980} + \frac{1045787}{2365464816} v^2 + \frac{10184496007}{92111999350400} v^4 + \frac{162691107254479}{582588392135442371849} v^6 + \frac{195491984004718859981952000}{24460810516637919477841851381} v^8 + \frac{395847808571475125020054965760}{25176712320762960912986616632267520000} v^{10} + \cdots, \]

\[\beta_{3,0} = \frac{127}{39251520} + \frac{45469}{109175299200} v^2 + \frac{274576771}{7368895994803200} v^4 + \frac{115636672827803}{39837504460225215744000} v^6 + \frac{360908278162557895351296000}{13101812396019182508073199} v^8 + \frac{131285852101792282007800655206318080000}{131285852101792282007800655206318080000} v^{10} + \cdots, \]

\[\beta_{3,1} = \frac{127}{39251520} + \frac{45469}{109175299200} v^2 + \frac{274576771}{7368895994803200} v^4 + \frac{115636672827803}{39837504460225215744000} v^6 + \frac{360908278162557895351296000}{13101812396019182508073199} v^8 + \frac{131285852101792282007800655206318080000}{131285852101792282007800655206318080000} v^{10} + \cdots, \]
The phase-lag and the local truncation error for the PL'' method are given by

\[P_{PL''} = -\frac{141797497314423651101}{7514399077966985427530263756800000}v^{20}, \]

and

\[LTE_{PL''} = -\frac{45469h^{14}}{1697361329664000} \left(49\omega^4y^{(10)} + y^{(14)} + 36\omega^8y^{(8)} + 14\omega^2y^{(12)} \right), \]

where \(v = \omega h \), \(\omega \) is the frequency and \(h \) is the step length. The behavior of the coefficients of the PL'' method are shown in Figures 4, 5, 6. The characteristic equation \(\Omega(s : v^2) = A(v)s^2 - 2B(v)s + A(v) = 0 \) has complex roots of unit magnitude when \(|\cos(\theta(v))| = \frac{|B(v)|}{|A(v)|} < 1 \), i.e. when \(A(v)^2 B(v)^2 > 0 \). Substituting for \(A(v) \) and \(B(v) \) for these the two-step methods, the interval of periodicity of the classical Obrechkoff method, PL' and PL'' methods when \(v \to 0 \) are obtained [0, 25.2004], [0,408.04] and [0,1428.84] respectively.

3 Numerical example

In this section, we present some numerical results obtained by our new two-step trigonometrically-fitted Obrechkoff methods and compare them with those from other multistep methods as Achar: The 12th order Obrechkoff method of Achar [1].
Fig. 2.8 Behavior of the coefficient $\beta_{1,1}$ in the method of PL$''$.

Fig. 2.9 Behavior of the coefficient $\beta_{2,0}$ in the method of PL$''$.
Fig. 2.10 Behavior of the coefficient $\beta_{2,1}$ in the method of PL$''$.

Fig. 2.11 Behavior of the coefficient $\beta_{3,0}$ in the method of PL$''$.
Fig. 2.12 Behavior of the coefficient $\beta_{3,1}$ in the method of PL$''$.

Daele: The 12th order Obrechkoff method of Van Daele [33].
Neta: The P-stable 8th-order super-implicit method of Neta [16].
Simos: The 12th order Obrechkoff method of Simos [27].
Wang: The 12th order Obrechkoff method of Wang [36].

Example 3.1 We consider the nonlinear undamped Duffing equation

$y'' = -y - y^3 + B \cos(\omega x)$, \hspace{1em} $y(0) = 0.200426728067$, \hspace{1em} $y'(0) = 0$, \hspace{1em} (3.1)

where $B = 0.002$, $\omega = 1.01$ and $x \in [0, 40.5 \pi / 101]$. We use the following exact solution for (3.1) from [13],

$$g(x) = \sum_{i=0}^{3} K_{2i+1} \cos((2i+1)\omega x),$$

where

$$\{K_1, K_3, K_5, K_7\} = \{0.200179477536, 0.26946143 \times 10^{-3}, 0.304016 \times 10^{-6}, 0.374 \times 10^{-9}\}.$$

In order to integrate this equation by a Obrechkoff method, one needs the values of y', which occur in calculating $y^{(4)}$. These higher order derivatives can all be expressed in terms of $y(x)$ and $y'(x)$ through (3.1), i.e.

$y^{(3)}(x) = -(1 + 3y^2(x))y'(x) - B\omega \sin(\omega x)$,

$y^{(4)}(x) = -(1 + 3y^2(x))y''(x) - 6y(x)y'(x)^2 - B\omega^2 \cos(\omega x)$,
High phase-lag order trigonometrically fitted two-step Obrechkoff methods

h	PL$'$ Simos	Daele	Achar	Wang	
5/500	6.0893e-12	3.1464e-4	4.0560e-5	4.0919e-5	4.0831e-5
5/1000	7.9885e-12	1.8069e-5	1.8733e-6	1.2708e-6	1.2678e-6
5/2000	5.2149e-12	1.0752e-6	3.8355e-8	3.9420e-8	3.9327e-8
5/3000	7.2782e-12	2.0873e-7	5.1344e-9	5.1801e-9	5.1678e-9
5/4000	6.9211e-12	6.5463e-8	3.1876e-9	1.2324e-9	1.2308e-9
5/5000	6.6454e-12	2.6673e-8	9.8900e-10	4.0911e-10	4.0741e-10

Table 3.1 Comparison of the end-point absolute error in the approximations obtained by using Methods: methods of Simos, Daele, Achar, Wang and the new method for Example 3.1.

h	PL$'$ Simos	Daele	Achar	Wang	
5/500	1.455	1.437	1.484	1.188	1.406
5/1000	2.874	2.892	2.938	2.312	2.891
5/2000	6.267	6.233	6.36	4.812	6.236
5/3000	9.859	9.859	9.719	7.548	9.546
5/4000	13.424	13.548	13.39	9.986	13.063
5/5000	16.857	16.922	16.969	12.86	16.499

Table 3.2 CPU time for the example 3.1, are calculated for comparison among four methods: methods of Simos, Daele, Achar, Wang and our new method PL$'$.

x	CPU Time for PL$'$	PL$''$	Neta
2π	0.03120020	6.0843e-14	2.53e-7
4π	0.07800050	1.8124e-13	1.01e-6
6π	0.13480050	3.4571e-13	2.25e-6
8π	0.23400150	5.9098e-13	3.95e-6
10π	0.28080180	6.2409e-13	6.05e-6

Table 3.3 Comparison of the end-point absolute error in the approximations obtained by using Methods: Neta and the new method for Example 3.1.

The absolute errors at $x = \frac{40.5π}{10}$, for the new method, in comparison with methods of Simos, Daele, Achar, Wang and the new method are given in table 3.1 and the CPU times are listed in Table 3.2. Also the absolute errors at $x = \frac{4π}{8}$, with $h = \frac{π}{5}$, for the new method PL$''$, in comparison with methods Neta and the new method are given in table 3.3.

Example 3.2 Consider the initial value problem

$$y'' = -100y + 99\sin(x), \quad y(0) = 1, \quad y'(0) = 11,$$

with the exact solution $y(t) = \sin(t) + \sin(10t) + \cos(10t)$. This equation has been solved numerically for $0 \leq x \leq 10π$ using exact starting values. In the numerical experiment, we take the step lengths $h = \frac{π}{50}, \frac{π}{100}, \frac{π}{200}, \frac{π}{300}, \frac{π}{400}$ and $\frac{π}{500}$. In Table 3.4, we present the absolute errors at the end-point and the CPU times are listed in Table 3.5.
Table 3.4 Comparison of the end-point absolute error in the approximations obtained by using Methods: methods of Simos, Daele, Achar and the new method for Example 3.2.

h	PL ′′	Simos	Daele	Achar
50	1.7633e-26	3.0541e-11	1.2018e-11	5.7910e-13
100	4.50405e-30	2.2890e-13	7.3450e-13	5.7910e-13
200	1.90628e-34	4.3960e-13	8.6240e-13	1.3172e-12
300	6.28113e-39	1.3768e-12	2.9310e-12	4.7813e-12
400	2.23002e-40	6.4658e-12	2.8868e-12	7.018e-12

Table 3.5 CPU time for the example 3.2, are calculated for comparison among four methods: methods of Simos, Daele, Achar and the new method PL ′′.

h	PL ′′	Simos	Daele	Achar	Wang
50	0.2652017	0.1716011	0.2496016	0.187201	
100	0.5772037	0.5148033	0.5304034	0.452403	
200	1.1388073	0.8580055	0.8268053	0.748805	
300	2.496016	1.3888073	1.1544074	0.951606	
400	2.9484189	1.7004109	1.7784114	1.46641	

Table 3.6 Comparison of the end-point absolute error in the approximations obtained by using five methods of Simos, Daele, Achar, Wang and the new method PL ′′.

h	PL ′′	Simos	Daele	Achar	Wang
50	2.74277e-21	1.2411e-7	1.2578e-7	1.2633e-7	1.2411e-7
100	1.54818e-24	3.8166e-9	3.9035e-9	3.8481e-9	3.8166e-9
200	5.84727e-28	1.1931e-10	1.2288e-10	1.2002e-10	1.1931e-10
300	5.22638e-30	1.9194e-11	2.0168e-11	1.4047e-11	1.9194e-11
400	1.78375e-31	7.8511e-12	7.8511e-12	7.8511e-12	7.8511e-12
500	1.28211e-32	1.6285e-12	1.6285e-12	7.4700e-14	1.6285e-12

Example 3.3 Consider the initial value problem

\[y'' = \frac{8y^2}{1 + 2x}, \quad y(0) = 1, \quad y'(0) = -2, \quad x \in [0, 4.5], \]

with the exact solution The theoretical solution of this problem is

\[y(x) = \frac{1}{1 + 2x}. \]

The absolute errors at \(x = 4.5 \) for the new method, in comparison with methods of Wang, Simos, Daele and Achar are given in the Table 3.6. The relative CPU times of computation of the new method in comparison with the other four referred methods are given in Table 3.7.
Conclusions

In this paper, we have presented the new trigonometrically-fitted two-step symmetric Obrechkoff methods of order 12. The details of the procedure adapted for the applications have been given in Section 2. With trigonometric fitting, we have improved the local truncation error, phase-lag error, interval of periodicity and CPU time for the classes of two-step Obrechkoff methods. The numerical results obtained by the new method for some problems show its superiority in efficiency, accuracy and stability.

Acknowledgements

The authors wish to thank the Professor Theodore E. Simos and the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions.

References

1. Achar, S. D., Symmetric multistep Obrechkoff methods with zero phase-lag for periodic initial value problems of second order differential equations, J. Appl. Math. Comput., 218 (2011), 2237-2248.
2. Ananthakrishnaiah, U. A., P-stable Obrechkoffs methods with minimal phase-lag for periodic initial value problems, Math. Comput. 49 (1987), 553-559.
3. Chawla, M. M., Neta, B., Families of two-step fourth order P-stable methods for second order differential equations, J. Comput. Appl. Math., 15, (1986), 233-237.
4. Chawla, M. M., Rao, P. S., A Numerov-type method with minimal phase-lag for the integration of second order periodic initial value problems. ii: Explicit method, J. Comput. Appl. Math. 15 (1986), 233-237.
5. Chawla, M. M., Rao, P. S., and Neta, B., Two-step fourth order P-stable methods with phase-lag of order six for y'' = f(t, y), J. Comput. Appl. Math., 16, (1986), 233-236.
6. Dahlquist, G., On accuracy and unconditional stability of linear multistep methods for second order differential equations, BIT 18 (2) (1978), 133-136.
7. Franco, J. M., An explicit hybrid method of Numerov type for second-order periodic initial-value problems, I. Comput. Appl. Math. 59 (1995), 79-90.
8. Gautschi, W., Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3 (1961), 381-397.
9. Hairer, I. E., Unconditionally stable methods for second order differential equations, Numer. Math. 32 (1979), 373-379.
10. Jain, M. K., Jain, R. K. and Krishnaiah, U. A., Obrechkoff methods for periodic initial value problems of second order differential equations, J. Math. Phys. 15 (1981), 239-250.
11. Lambert, J. D., Watson, I. A., Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl. 18 (1976), 189-202.
12. Neta, B., P-stable high order super-implicit and Obrechkoff methods for periodic initial value problems, J. Comput. Math. Applic., 54,(2007), 117-126.
13. Neta, B., P-stable symmetric super-implicit methods for periodic initial value problems, Comput. Math. Appl. 50 (2005) 701-705.
14. Neta, B., Trajectory propagation using information on periodicity, Proc. AIAA/AAS Astrodynamics Specialist Conference, Boston, MA, August 10-12, 1998, Paper Number AIAA 98-4577.
15. Neta, B., and Fukushima, T., Obrechkoff versus super-implicit methods for the integration of keplerian orbits, Proc. AIAA/AAS Astrodynamics Specialist Conference, Denver, CO, August 14-17, 2000, Paper Number AIAA 2000-4029.
16. Neta, B., and Fukushima, T., Obrechkoff versus super-implicit methods for the solution of first and second order initial value problems, J. Comput. Math. Applic., special issue on numerical methods in Physics, Chemistry and Engineering, T. E. Simos and G. Abdelas (guest editors), 45, (2003), 383-390.
17. Psichoyios, G., Simos, T. E., Effective numerical approximation of Schrodinger type equations through multiderivative exponentially-fitted schemes, Appl. Numer. Anal. Comput. Math. 1 (1) (2004), 205-215.
18. Quinlan, G. D., Tremaine, S., Symmetric multistep methods for the numerical integration of planetary orbits, The Astronomical Journal 100 (5) (1990) 1694-1700.
19. Sakas, D. P., Simos, T. E., A family of multiderivative methods for the numerical solution of the Schrodinger equation, J. Math. Chem. 37 (2005), 317-331.
20. Sakas, D. P., Simos, T. E., Multiderivative methods of eighth algebraic order with minimal phase-lag for the numerical solution of the radial Schrodinger equation, J. Comput Appl. Math. 175 (2005), 161-172.
21. Sakas, D. P., Simos, T. E., Trigonometrically-fitted multiderivative methods for the numerical solution of the radial Schrodinger equation, Commun. Math. Comput. Chem. 53 (2005), 299-320.
22. Saldanha, G., Achar, S. D., Symmetric multistep Obrechkoff methods with zero phase-lag for periodic initial value problems of second order differential equations, Appl. Math. Comput. 218 (2011), 2237-2248.
23. Shokri, A., The symmetric two-step P-stable nonlinear predictor-corrector methods for the numerical solution of second order initial value problems, B. Iran. Math. Soc., In Press.
24. Shokri, A., Rahimi Ardabili, M. Y., Shahmorad, S., and Hojjati, G., A new two-step P-stable hybrid Obrechkoff method for the numerical integration of second-order IVPs., J. Comput. Appl. Math., 235 (2011), 1706-1712.
25. Shokri, A., Shokri, A. A., Implicit one-step L-stable generalized hybrid methods for the numerical solution of first order initial value problems, Iranian J. Math. Chem., 4 (2), (2013), 201-212.
26. Shokri, A., Shokri, A. A., The new class of implicit L-stable hybrid Obrechkoff method for the numerical solution of first order initial value problems, J. Comput. Phys. Commun. 184 (2013), 529-531.
27. Simos, T. E., A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial value problems, Proc. R. Soc. 441 (1993), 283-289.
28. Simos, T. E., Exponentially fitted multiderivative methods for the numerical solution of the Schrodinger equation, J. Math. Chem. 36 (2004), 13-27.
29. Simos, T. E., Multiderivative methods for the numerical solution of the Schrodinger equation, Commun. Math. Comput. Chem. 50 (2004), 299-320.
30. Sommeijer, B. P., Van der Houwen, P. J., and Neta, B., Symmetric linear multistep methods for second order differential equations with periodic solutions, J. Appl. Numer. Math., 2 (1996), 69-77.
31. Steifel, E., Bettis, D. G., Stabilization of Cowells methods, Numer. Math. 13 (1969) 154-175.
32. Tsitouras, Ch., Simos, T. E., Explicit high order methods for the numerical integration of periodic initial-value problems, Appl. Math. Comput. 95 (1998), 15-26.
33. van Daele, M., Vandendriessche, G., P-stable exponentially fitted Obrechkoff methods of arbitrary order for second order differential equations, Numer. Algor. 46 (2007), 333-350.
34. Wang, Z., Wang, Y., A new kind of high efficient and high accurate p-stable Obrechkoff three-step method for periodic initial value problems, Comput. Phys. Commun. 171 (2) (2005), 15-26.
35. Wang, Z., Zhao, D., Dai, Y. and Song, X., A new high efficient and high accurate Obrechkoff four-step method for the periodic non-linear undamped duffings equation, Comput. Phys. Commun. 165 (2005), 110-126.
36. Wang, Z., Zhao, D., Dai, Y. and Wu, D., An improved trigonometrically fitted p-stable Obrechkoff method for periodic initial value problems, Proc. R. Soc. 461 (2005), 1639-1658.