Associations of Exercise Tolerance and Clinical Parameters in Japanese Patients With Chronic Obstructive Pulmonary Disease: Impact of Skeletal Muscle

Hiroki Tashiro (si3222@cc.saga-u.ac.jp)
Saga University

Koichiro Takahashi
Saga University

Masahide Tanaka
Saga University

Hironori Sadamatsu
Saga University

Yuki Kurihara
Saga University

Ryo Tajiri
Saga University

Ayako Takamori
Saga University

Hiroyuki Naotsuka
Saga University

Hiroki Imaizumi
Saga University

Shinya Kimura
Saga University

Naoko Sueoka-Aragane
Saga University

Research Article

Keywords: exercise tolerance, cardiopulmonary exercise testing, skeletal muscle, COPD

Posted Date: February 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-199971/v1
Title

Associations of exercise tolerance and clinical parameters in Japanese patients with chronic obstructive pulmonary disease: Impact of skeletal muscle

Authors

Hiroki Tashiro¹, Koichiro Takahashi¹, Masahide Tanaka¹, Hironori Sadamatsu¹, Yuki Kurihara¹, Ryo Tajiri², Ayako Takamori², Hiroyuki Naotsuka³, Hiroki Imaizumi³, Shinya Kimura¹, Naoko Sueoka-Aragane¹

Affiliations

¹Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
²Clinical Research Center, Saga University Hospital, Saga, Japan
³Advanced Comprehensive Functional Recovery Center, Saga University Hospital, Saga, Japan

Corresponding author: Hiroki Tashiro MD, PhD

Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University

5-1-1 Nabeshima, Saga, Saga Prefecture, 849-8501, Japan
Phone: +81-952-34-2369; Fax: +81-952-34-2017
E-mail: si3222@cc.saga-u.ac.jp
Abstract

Background

Decreasing exercise tolerance is one of the key features related to a poor prognosis in patients with chronic obstructive pulmonary disease (COPD). Cardiopulmonary exercise testing (CPET) is useful for evaluating exercise tolerance. The present study was performed to clarify the correlation between exercise tolerance and clinical parameters, focusing especially on the cross-sectional area (CSA) of skeletal muscle.

Methods

The present study retrospectively investigated 69 patients with COPD who underwent CPET. The correlations between oxygen uptake ($\dot{V}O_2$) at peak exercise and clinical parameters of COPD, including skeletal muscle area measured using single-section axial computed tomography (CT), were evaluated.

Results

The COPD assessment test score ($\rho = -0.35$, $p = 0.02$) and the CSA of the pectoralis muscles ($\rho = 0.32$, $p = 0.02$) were weakly correlated with $\dot{V}O_2$ at peak exercise. In addition, forced expiratory volume in one second (FEV$_1$) ($\rho = 0.39$, $p = 0.0009$), FEV$_1$/forced vital capacity ($\rho = 0.33$, $p = 0.006$), and the CSA of the erector spinae muscles ($\rho = 0.34$, $p = 0.009$) were correlated with $\dot{V}O_2$ at peak exercise.

Conclusions

Decreased FEV$_1$ and loss of skeletal muscles, especially anti-gravity muscles, are correlated with a low level of exercise tolerance in COPD patients.
Keywords

exercise tolerance, cardiopulmonary exercise testing, skeletal muscle, COPD
Introduction

Chronic pulmonary obstructive disease (COPD) is a common respiratory disease, with a reported global prevalence of 251 million cases, and it is considered a life-threatening disease with decreasing pulmonary function and airflow limitation.

Recently, factors related to a poor prognosis of COPD patients, including mortality and exacerbations, are becoming understood as evidence increases. For example, low-level physical activity, percent predicted forced expiratory volume in one second (%FEV$_1$), 6-minute walk distance, body mass index (BMI), and a high frequency of exacerbations are significantly associated with mortality in COPD patients. We and others have also reported that low-level pulmonary function, exercise tolerance (including 6-minute walk distance and exercise-induced desaturation), and BMI are correlated with a high frequency of exacerbations, indicating that evaluations of exercise tolerance and body composition, in addition to pulmonary function, are important for predicting the clinical course of COPD.

Decreasing exercise tolerance, normally measured by the 6-minute walk test or cardiopulmonary exercise testing (CPET), is one of the important clinical features related to a poor prognosis in COPD patients, and with CPET one can evaluate exercise tolerance with exertional ventilatory parameters precisely and safely. For example, oxygen uptake (V\text{\textsuperscript{\textcircled{O\textsubscript{2}}}}) at peak exercise, which represents exercise tolerance, is significantly correlated with FEV$_1$ and %FEV$_1$ reflecting the severity of COPD. Notably, with CPET, one can detect physical problems including cardiac dysfunction and functional skeletal muscle disorders during the test, which contributes to rapid initiation of treatment.

Weight loss is a common systemic characteristic of patients with COPD, and skeletal muscle loss has greater impact on the severity of COPD than decreased BMI. Radiological analysis of skeletal muscles on computed tomography (CT) is a useful procedure for quantitation without onerous physical intervention, and the cross-sectional area (CSA) of skeletal muscle on single-slice axial CT is significantly correlated with a poor prognosis in COPD patients.
addition, the CSA of the erector spinae muscles (ECMs), which are anti-gravity muscles, but not of the pectoralis muscles (PMs), is significantly associated with mortality in Japanese patients with COPD. Obviously, skeletal muscles are important for exercise tolerance, but the impact of exertional ventilatory parameters on CPET compared to clinical parameters in patients with COPD is not fully understood.

In the present real-world study, correlations between exercise tolerance indicated by $\dot{V}O_2$ at peak exercise and clinical parameters including skeletal muscle area were examined in Japanese patients with COPD. Decreases of FEV$_1$ and FEV$_1$/FVC are significantly correlated with a low level of exercise tolerance, and, importantly, skeletal muscle area, especially of the ECMs as anti-gravity muscles, is more correlated with $\dot{V}O_2$ at peak exercise than PM area on CT imaging. These data suggest that decreased FEV$_1$ and FEV$_1$/FVC are correlated with decreased exercise tolerance and loss of skeletal muscles, especially the anti-gravity muscles, that contribute to a low level of exercise tolerance.
Results

Clinical baseline characteristics of COPD patients

In the present study, 69 COPD patients (66 males, 3 females) who underwent CPET were enrolled; their average age was 71.1 years, BMI was 21.4 kg/m2, and smoking history was 67.6 pack-years. GOLD stages I - IV were 12 (17.4%), 27 (39.1%), 25 (36.2%), and 5 (7.2%), respectively; mMRC dyspnea scale scores (0 - 4) were 5 (7.2%), 18 (26.1%), 27 (39.1%), 16 (23.2%), and 3 (4.3%), respectively. The average COPD assessment test score available for 41 patients was 16.8, and the average 6-minute walk distance for 48 patients was 386.1 m. For medications, long-acting muscarinic antagonist (LAMA) or long acting β$_2$ adrenergic agonist (LABA) monotherapy was given to 5 (7.2%) patients. LABA-LAMA and inhaled corticosteroid (ICS)-LABA combination therapies were given to 19 (27.5%) and 9 (13.0%) patients, respectively. Triple combination therapy was given to 19 (27.5%) patients. Five patients (7.2%) were not given respiratory medications. On pulmonary function testing, %VC and %FVC were 100.4% and 95.2%, respectively. FEV$_1$, FEV$_1$/FVC, and %FEV$_1$ were 1.35 L, 60.2%, and 65.9%, respectively. The average DLco was 65.9%. On CT, PMCSA and ECMCSA were 24.7 cm2 and 27.1 cm2, respectively (Table 1).

Parameters of cardiopulmonary exercise testing

$\dot{V}_\text{O}2$, which is a marker that reflects exercise tolerance22, was 295.6 ml/min at rest and 926.0 ml/min at peak exercise. Body weight-adjusted $\dot{V}_\text{O}2$ was 5.3 ml/min/kg at rest and 16.2 ml/min/kg at peak exercise. V_T and V_E were 773.2 ml and 12.9 L/min at rest and 1245.7 ml and 36.6 L/min at peak exercise, respectively. $\dot{V}_B/\dot{V}_\text{CO}2$, which reflects pulmonary clearance of CO$_2$ was 49.3 at rest and 41.1 at peak exercise. V_D/V_T, which reflects the efficacy of pulmonary gas exchange, was 0.28 at rest and 0.26 at peak exercise. The respiratory rate was 17.7 breaths/min at rest and 30.5 breaths/min at peak exercise (Table 2).
Correlations between \(\dot{V}_\text{O}_2 \) (ml/min/kg) at peak exercise and other parameters on CPET and the 6-minute walk distance

Because \(\dot{V}_\text{O}_2 \) (ml/min) is affected by body weight differences, \(\dot{V}_\text{O}_2 \) adjusted by body weight (ml/min/kg) at peak exercise is considered a precise marker for exercise tolerance \(^{22}\). Therefore, the evaluation focused on that and its correlations with other CPET parameters and the 6-minute walk distance. \(\dot{V}_\text{O}_2 \) at peak exercise was significantly correlated with \(\dot{V}_\text{E} / \dot{V}_\text{CO}_2 \) at rest (\(\rho = -0.46, p < 0.0001 \)) and at peak exercise (\(\rho = -0.45, p < 0.0001 \)), \(\dot{V}_\text{D} / \dot{V}_\text{T} \) at rest (\(\rho = -0.36, p = 0.002 \)) and at peak exercise (\(\rho = -0.53, p < 0.0001 \)), respiratory rate at rest (\(\rho = -0.35, p = 0.003 \)) and at peak exercise (\(\rho = -0.33, p = 0.006 \)), and the 6-minute walk distance (\(\rho = 0.74, p < 0.0001 \)) (Table 3, Supplementary Fig. S1a online). These data showed that \(\dot{V}_\text{O}_2 \) (ml/min/kg) at peak exercise reflected exercise tolerance in COPD patients.

Comparisons of correlations between \(\dot{V}_\text{O}_2 \) (ml/min/kg) at peak exercise and clinical parameters of COPD including skeletal muscle area

To clarify the factors correlated with exercise tolerance as reflected by \(\dot{V}_\text{O}_2 \) (ml/min/kg) at peak exercise, correlation analysis between \(\dot{V}_\text{O}_2 \) (ml/min/kg) at peak exercise and clinical parameters of COPD including skeletal muscle area was performed. Age, BMI, \%VC, \%FVC, \%FEV\(_1\), and DL\text{CO} were not significantly correlated with \(\dot{V}_\text{O}_2 \) at peak exercise. The COPD assessment test score (\(\rho = -0.35, p = 0.02 \), Supplementary Fig. S1b online) and PM_\text{CSA} (\(\rho = 0.32, p = 0.02 \), Fig. 1c) were weakly correlated with \(\dot{V}_\text{O}_2 \) at peak exercise. FEV\(_1\) (\(\rho = 0.39, p = 0.0009 \), Fig. 1a), FEV\(_1\)/FVC (\(\rho = 0.33, p = 0.006 \), Fig. 1b), and ECM_\text{CSA} (\(\rho = 0.34, p = 0.009 \), Fig. 1d) were correlated with \(\dot{V}_\text{O}_2 \) at peak exercise (Table 4). Examining the difference in \(\dot{V}_\text{O}_2 \) at peak exercise by COPD stage, COPD stage III and IV patients had significantly lower levels of \(\dot{V}_\text{O}_2 \) at peak exercise than stage II patients (Fig. 2a). Additionally, examining the difference in \(\dot{V}_\text{O}_2 \) at peak exercise by the mMRC dyspnea scale score, patients with an mMRC scale score of 3 had a significantly lower \(\dot{V}_\text{O}_2 \) at peak exercise than those with an mMRC scale score of 0 (Fig. 2b).
For other parameters on CPET, \dot{V}_E/\dot{V}_CO_2 at peak exercise was significantly correlated with BMI ($\rho = -0.33$, $p = 0.007$), the COPD assessment test score ($\rho = 0.58$, $p < 0.0001$), DLco ($\rho = -0.42$, $p = 0.001$), PM$_{CSA}$ ($\rho = -0.31$, $p = 0.02$), and ECM$_{CSA}$ ($\rho = -0.31$, $p = 0.02$). In addition, V_D/V_T at peak exercise was significantly correlated with age ($\rho = 0.34$, $p = 0.005$), BMI ($\rho = -0.28$, $p = 0.02$), the COPD assessment test score ($\rho = 0.41$, $p = 0.009$), %VC ($\rho = -0.28$, $p = 0.02$), FEV$_1$ ($\rho = -0.42$, $p = 0.004$), FEV$_1$/FVC ($\rho = -0.36$, $p = 0.003$), %FEV$_1$ ($\rho = -0.27$, $p = 0.03$), PM$_{CSA}$ ($\rho = -0.31$, $p = 0.02$), and ECM$_{CSA}$ ($\rho = -0.27$, $p = 0.03$) (Supplementary Table S1 online).
In the present real-world study, the exercise tolerance of COPD patients was evaluated by CPET, and it was confirmed that $\dot{V}O_2$ at peak exercise was significantly correlated with 6-minute walk distance and other CPET parameters, such as $\dot{V}E/\dot{V}CO_2$, $\dot{V}D/\dot{V}T$, and respiratory rate, which suggested that $\dot{V}O_2$ at peak exercise is a useful marker of exercise tolerance for COPD patients. The analysis of correlation coefficients showed that the COPD assessment test, FEV$_1$, FEV$_1$/FVC, PM$_{CSA}$, and ECM$_{CSA}$ were correlated with $\dot{V}O_2$ at peak exercise. Additionally, ECM$_{CSA}$, reflecting anti-gravity muscles, was more correlated with $\dot{V}O_2$ at peak exercise than PM$_{CSA}$, showing that the loss of skeletal muscles, especially anti-gravity muscles, contributed to a low level of exercise tolerance.

Loss of exercise tolerance is an important and widely recognized clinical manifestation of COPD. With respect to the mechanisms, exercise-induced dyspnea with dynamic pulmonary hyperinflation and desaturation of oxygen, which is a representative manifestation of COPD, contributes to a low threshold of exhaustion with the early appearance of anaerobic metabolites in skeletal muscles during exercise. Thus, $\dot{V}O_2$ at peak exercise on CPET, which is determined by cellular O$_2$ demand and the maximal rate of O$_2$ transport, is considered a useful marker of exercise tolerance in COPD patients. Diaz et al analyzed 52 patients with mild to severe COPD, and air-flow limitation, which reflects the presence of dynamic hyperinflation, was found to be significantly associated with $\dot{V}O_2$ at peak exercise. Moreover, Kagawa et al analyzed 294 patients with COPD who underwent CPET, and they found that decreased FEV$_1$ was associated with a low \dot{VO}_2 at peak exercise. These reports showed that limitation of exercise tolerance predicted by decreased $\dot{V}O_2$ at peak exercise is an important phenotype of COPD, as shown in the current study (Table 4, Fig. 1a, Fig. 1b). The severity of COPD predicted by %FEV$_1$ is also related to the decrease of exercise tolerance, and Yamamoto et al reported that $\dot{V}O_2$ at peak exercise was significantly higher in COPD patients in GOLD stages I and II than in those in GOLD stages III and IV. The current results also showed that the level...
of \(\dot{V}_{O_2} \) at peak exercise tended to be decreased depending on the GOLD stage, except for stage I (Fig. 2a), although the correlation between \(\dot{V}_{O_2} \) at peak exercise and %FEV\(_1\) was weak (Table 4).

Loss of skeletal muscles with bodyweight reduction, called sarcopenia, is also an important characteristic of COPD patients. Reduction of fat-free mass containing skeletal muscle is associated with mortality in patients with COPD. In addition, a previous report showed that COPD patients with decreased skeletal muscles, calculated by bioelectrical impedance analysis, walked a significantly shorter distance on the incremental shuttle walk test, which is another index of exercise tolerance, than those with preserved skeletal muscles. With respect to the mechanisms, loss of skeletal muscles causes increased \(O_2 \) demand as exercise intensity increases and earlier reaching of the anaerobic threshold with metabolic acidosis and increased lactate, which limits exercise tolerance in patients with COPD. The present study showed that skeletal muscle area including \(PM_{CSA} \) and \(ECM_{CSA} \) was significantly correlated with \(\dot{V}_{O_2} \) at peak exercise, which is consistent with these data (Table 4, Fig. 1c, Fig. 1d).

Importantly, the present results showed that \(ECM_{CSA} \), representing anti-gravity muscles, was more correlated with \(\dot{V}_{O_2} \) at peak exercise than \(PM_{CSA} \) (Table 4), which suggests that loss of skeletal muscle might be heterogeneous, depending on the anatomical role of the muscle groups. Indeed, a prospective, observational study of 130 COPD patients showed that \(ECM_{CSA} \) is correlated with clinical parameters of COPD and more correlated with all-cause mortality than \(PM_{CSA} \). In addition, a longitudinal, 10-year observational study showed that loss of \(ECM_{CSA} \), but not \(PM_{CSA} \), significantly increased the hazard ratio of mortality, because physical activity is the strongest predictor of the prognosis of COPD patients, and sedentary behavior, which affects the anti-gravity muscles, is particularly important in COPD; thus, anti-gravity muscles might contribute to exercise tolerance in patients with COPD, as seen in the present study.
Notably, other gas exchange parameters on CPET such as \dot{V}_E/\dot{V}_{CO2} and V_D/V_T at peak exercise were associated with the clinical data of COPD, including skeletal muscle area (Supplementary Table S1 online). These parameters were reported to be significantly higher in patients with COPD than in healthy individuals \(^1\), and \dot{V}_E/\dot{V}_{CO2}, which reflects decreased pulmonary clearance of CO\(_2\) during exercise, was correlated with BMI, %FEV\(_1\), and DLco, in addition to skeletal muscle areas. Moreover, V_D/V_T, which reflects worse pulmonary gas exchange efficacy, was correlated with age, BMI, %VC, FEV\(_1\), FEV\(_1\)/FVC, and %FEV\(_1\), in addition to skeletal muscle areas. Interestingly, the COPD assessment test score was strongly correlated with these parameters, suggesting that \dot{V}_E/\dot{V}_{CO2} and V_D/V_T might reflect COPD-related symptoms (Supplementary Table S1 online).

There are several limitations of the present study. First, correlations with physical activity were not evaluated. Second, correlations were evaluated using clinical parameters of COPD and skeletal muscle area, which acted as confounding factors. Partial correlation coefficients were calculated using factors including the COPD assessment test score, FEV\(_1\), FEV\(_1\)/FVC, %FEV\(_1\), DLco, PM\(_{CSA}\), and ECM\(_{CSA}\), and the COPD assessment test score, PM\(_{CSA}\), and ECM\(_{CSA}\) were more correlated with $\dot{V}O_2$ at peak exercise than FEV\(_1\), FEV\(_1\)/FVC, %FEV\(_1\), and DLco after adjustment (data not shown), suggesting that skeletal muscle area might be more important than pulmonary function for exercise tolerance. Finally, the present study involved patients at a single hospital with limited ethnic diversity and a small sample size. To confirm the validity of the present results, multicenter, prospective studies with a larger number of patients should be performed.
Conclusions

The present study showed that decreases in FEV₁ and FEV₁/FVC are significantly correlated with a low level of exercise tolerance and skeletal muscle area, and the area of the ECMs, as anti-gravity muscles, is more correlated with \dot{V}_{O_2} at peak exercise than the area of the PMs. These data suggest that decreased pulmonary function and loss of skeletal muscles, especially anti-gravity muscles, contribute to the low level of exercise tolerance in patients with COPD.
Methods

Patients and setting

The medical records of 69 patients diagnosed with COPD who underwent CPET at the Saga University Hospital between 2009 and 2020 were retrospectively reviewed. All patients satisfied the definition criteria of the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Briefly, patients were confirmed to have \(\frac{FEV_1}{FEV} < 0.7 \) after using a bronchodilator, a smoking index > 10 pack years, and symptoms including chronic cough, sputum, and dyspnea. Patients with either a current or a previous diagnosis of asthma were excluded. For patient information, age at the time CPET was performed was used, and clinical parameters including BMI, modified Medical Research Council (mMRC) dyspnea scale, COPD assessment test, 6-minute walk test, medication record, and pulmonary function at the time closest to when CPET was performed (within ± 3 months) were evaluated. Thus, 41 patients who underwent the COPD assessment test and 48 patients who underwent the 6-minute walk test were analyzed.

Medications were selected at each physician’s discretion. This study was approved by the ethics committee of Saga University Hospital (approval number: 2020-11-R-03, approval date: Jan 27, 2021) and was performed in accordance with the 1964 Declaration of Helsinki. Informed consent was obtained for participants in the form of opt-out on the web-site. Those who rejected were excluded.

Cardiopulmonary Exercise Testing

A symptom-limited cycle ergometer (Strength Ergo 8, Mitsubishi Electric Engineering, Japan) was used for CPET. Each patient wore a mask, and breath was analyzed using a gas analyzer (Cpex-1, Inter Reha; Japan); \(V_{O2} \), expiratory tidal volume \((V_T) \), minute ventilation \((V_E) \), ventilatory equivalent for carbon dioxide \((V_{E}/V_{CO2}) \), dead space to tidal volume ratio \((V_D/V_T) \), and breathing frequency at rest and at peak exercise were evaluated. Oxygen saturation, blood pressure, and the electrocardiogram were measured during the test. In the exercise protocol, pre-
exercise resting measurements were obtained within the steady state period for more than 3 minutes. Incremental testing was then started by increasing the load by 10 W per minute. The examination was continued until exhaustion or above the predicted maximum heart rate or blood pressure, and showing electrocardiographic changes such as ST segment depression of greater than 2 mm and a short run of premature ventricular contractions. Dyspnea intensity was evaluated by a 10-point modified Borg category-ratio scale at rest and every 1 minute after initiation of the incremental load test. The data generated were measured breath-by-breath and as 30-second averages at rest and during exercise.

266 **CT scan acquisition and analysis**

Chest CT for analysis of the pectoralis and erector spinae muscles that was performed most closely to the time of CPET (within ± 3 years) was also selected; the average time between CPET and chest CT was 198 days. Consequently, 57 patients were examined. For quantitative analysis, the CSAs of the pectoralis muscles (PM_{CSA}) and the erector spinae muscles (ESM_{CSA}) were evaluated referring to the previously described method. Briefly, left and right areas of PM_{CSA} identified by the superior aspect of the aortic arch and ESM_{CSA} identified by the superior aspect of the 12th thoracic vertebrae on CT imaging reconstructed using the mediastinal setting were identified and shaded manually. Finally, the sum of the left and right muscle areas was examined. The measurements were performed by two pulmonary physicians independently.

277 **Statistical analysis**

For correlation analysis, Spearman’s rank correlation coefficients between exercise tolerance parameters such as V\textsubscript{O2}, V\textsubscript{E}/V\textsubscript{CO2}, V\textsubscript{D}/V\textsubscript{T}, breathing frequency, and 6-minute walk distance, and clinical parameters including age, BMI, COPD assessment test score, %VC, %FVC, FEV\textsubscript{1}, FEV\textsubscript{1}/FVC, %FEV\textsubscript{1}, diffusing capacity of the lung for carbon monoxide (DLco), PM_{CSA}, and ECM_{CSA} were calculated to determine whether they were zero. Differences of V\textsubscript{O2} at peak
exercise depending on GOLD stages and the mMRC dyspnea scale were analyzed by the Steel-Dwass method. Quantitative data are presented as means ± standard deviation (SD); significance was considered a p value less than 0.05. Statistical analysis was performed with JMP Pro version 14.2.0 software (SAS Institute Inc., Cary, NC, USA).
Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.
1. Halpin DMG, et al. The GOLD Summit on chronic obstructive pulmonary disease in low- and middle-income countries. Int J Tuberc Lung Dis. 23, 1131-41. (2019).
2. Hasegawa W, et al. Factors affecting mortality following emergency admission for chronic obstructive pulmonary disease. BMC Pulm Med. 14, 151. (2014).
3. Waschki B, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest. 140, 331-42. (2011).
4. Prudente R, et al. Predictors of mortality in patients with COPD after 9 years. Int J Chron Obstruct Pulmon Dis. 13, 3389-98. (2018).
5. Tashiro H, et al. Clinical features of Japanese patients with exacerbations of chronic obstructive pulmonary disease. BMC Pulm Med. 20, 318. (2020).
6. Kim EK, et al. Impact of Body Mass Index Change on the Prognosis of Chronic Obstructive Pulmonary Disease. Respiration. 1-11. (2020).
7. Chang CH, et al. Factors Associated with Exercise-Induced Desaturation in Patients with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. 15, 2643-52. (2020).
8. Herer B, Chinet T. Acute exacerbation of COPD during pulmonary rehabilitation: outcomes and risk prediction. Int J Chron Obstruct Pulmon Dis. 13, 1767-74. (2018).
9. Laboratories ATSCoPSfCPF. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 166, 111-7. (2002).
10. Horie J, et al. Validation of Clinical Characteristics and Effectiveness of Pulmonary Rehabilitation in a COPD Population with Discrepancy between Exercise Tolerance and FEV1. Healthcare (Basel). 9. (2021).
11. Puente-Maestu L, et al. Use of exercise testing in the evaluation of interventional efficacy: an official ERS statement. Eur Respir J. 47, 429-60. (2016).
12. Diaz O, et al. Role of inspiratory capacity on exercise tolerance in COPD patients with and without tidal expiratory flow limitation at rest. Eur Respir J. 16, 269-75. (2000).
13. Kagawa H, et al. Dyspnea and the Varying Pathophysiologic Manifestations of Chronic Obstructive Pulmonary Disease Evaluated by Cardiopulmonary Exercise Testing With Arterial Blood Analysis. Front Physiol. 9, 1293. (2018).
14. Yamamoto Y, et al. Evaluation of Exertional Ventilatory Parameters Using Oscillometry in COPD. Int J Chron Obstruct Pulmon Dis. 15, 1697-711. (2020).
15. American Thoracic S, American College of Chest P. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 167, 211-77. (2003).
16. Landbo C, et al. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 160, 1856-61. (1999).
17. Ischaki E, et al. Body mass and fat-free mass indices in COPD: relation with variables expressing disease severity. Chest. 132, 164-9. (2007).
18. Giuliani HK, Gerstner GR, Mota JA, Ryan ED. Influence of Demographic Characteristics and Muscle Strength on the Occupational Fatigue Exhaustion Recovery Scale in Career Firefighters. J Occup Environ Med. 62, 223-6. (2020).
19. Bak SH, Kwon SO, Han SS, Kim WJ. Computed tomography-derived area and density of pectoralis muscle associated disease severity and longitudinal changes in chronic obstructive pulmonary disease: a case control study. Respir Res. 20, 226. (2019).
20. Tanimura K, et al. Quantitative Assessment of Erector Spinae Muscles in Patients with Chronic Obstructive Pulmonary Disease. Novel Chest Computed Tomography-derived Index for Prognosis. Ann Am Thorac Soc. 13, 334-41. (2016).
21. Tanabe N, et al. Associations of CT evaluations of antigravity muscles, emphysema and airway disease with longitudinal outcomes in patients with COPD. Thorax. (2020).
22. Arena R, Sietsema KE. Cardiopulmonary exercise testing in the clinical evaluation of
patients with heart and lung disease. Circulation. **123**, 668-80. (2011).

23. Maltais F, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. **189**, e15-62. (2014).

24. McDonald ML, et al. Quantitative computed tomography measures of pectoralis muscle area and disease severity in chronic obstructive pulmonary disease. A cross-sectional study. Ann Am Thorac Soc. **11**, 326-34. (2014).

25. Vestbo J, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. **173**, 79-83. (2006).

26. Jones SE, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. **70**, 213-8. (2015).

27. Patessio A, et al. Comparison of gas exchange, lactate, and lactic acidosis thresholds in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. **148**, 622-6. (1993).

28. Hughson RL, Weisiger KH, Swanson GD. Blood lactate concentration increases as a continuous function in progressive exercise. J Appl Physiol (1985). **62**, 1975-81. (1987).

29. Tremblay MS, et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. **14**, 75. (2017).

30. Takahashi K, et al. First-Line Treatment with Tiotropium/Olodaterol Improves Physical Activity in Patients with Treatment-Naive Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. **15**, 2115-26. (2020).

31. Elbehairy AF, et al. Pulmonary Gas Exchange Abnormalities in Mild Chronic Obstructive Pulmonary Disease. Implications for Dyspnea and Exercise Intolerance. Am J Respir Crit Care Med. **191**, 1384-94. (2015).

32. Lee CS, et al. Dorsal muscle group area and surgical outcomes in liver transplantation. Clin Transplant. **28**, 1092-8. (2014).
Acknowledgements

Not applicable

Author Contributions

H.T., K.T. and M.T. conceived and designed the project. H.T., Y.K., H.N. and H.I. analyzed and interpreted the data. R.T. and A.T. advised the statistical analysis. H.T., K.T. and H.S. prepared the manuscript with input from all other authors. S.K. and N.A. checked the prepared manuscript. All authors reviewer the manuscript.

Competing interests

The authors declare no competing interests.
Figure 1. Correlations between V_{O2} at peak exercise and clinical parameters of COPD.

Correlations between V_{O2} at peak exercise and (a) FEV$_1$, (b) FEV$_1$/FEV, (c) PM$_{CSA}$, and (d) ECM$_{CSA}$

Abbreviations: V_{O2}: oxygen uptake, COPD: chronic obstructive pulmonary disease, FEV$_1$: forced expiratory volume in 1 second, FVC: forced vital capacity, PM$_{CSA}$: cross-sectional area of the pectoralis muscles, ECM$_{CSA}$: cross-sectional area of the erector spinae muscles.

Figure 2. Results of V_{O2} by (a) GOLD stage and (b) mMRC dyspnea scale score. * p < 0.05

Abbreviations: V_{O2}: oxygen uptake, GOLD: Global Initiative for Chronic Obstructive Lung Disease, mMRC: modified Medical Research Council
Clinical parameters	
age (years)	71.1 ± 9.0
gender (male/female)	66/3
BMI (kg/m²)	21.4 ± 3.8
smoking history (pack-year)	67.6 ± 33.0
GOLD stage (I/II/III/IV, n)	12/27/25/5
mMRC dyspnea scale (0/1/2/3/4, n)	5/18/27/16/3
COPD assessment test (n = 41)	16.8 ± 7.6
6-minute walk distance (n = 48) (m)	386.1 ± 115.8

Medications	
No respiratory medication, n (%)	5 (7.2%)
LAMA or LABA alone, n (%)	17 (24.6%)
LABA-LAMA combo, n (%)	19 (27.5%)
ICS-LABA combo, n (%)	9 (13.0%)
Triple combo, n (%)	19 (27.5%)

Pulmonary function	
%VC (%)	100.4 ± 18.4
%FVC (%)	95.2 ± 17.5
FEV₁ (L)	1.35 ± 0.59
FEV₁/FVC (%)	43.8 ± 13.4
%FEV₁ (%)	60.2 ± 24.2
DLco (%)	65.9 ± 24.3

Evaluation of skeletal muscle on CT (n = 57)	
PM_{CSA} (cm²)	24.7 ± 8.1
ECM_{CSA} (cm²)	27.1 ± 6.7

BMI; body mass index, GOLD; global initiative for chronic obstructive lung disease, mMRC; modified medical research council, COPD; chronic obstructive pulmonary disease, LAMA; long-acting muscarinic antagonist, LABA; long acting β₂ adrenergic agonist, ICS; inhaled corticosteroid, VC; vital capacity, FVC; forced vital capacity, FEV₁; forced expiratory volume in 1 second, DLco; diffusing capacity of lung for carbon monoxide, PM_{CSA}; cross-sectional area of pectoralis muscles, ECM_{CSA}; cross-sectional area of erector spinae muscles. Data are presented as mean ± standard deviation.
Table 2. Results of cardiopulmonary exercise testing at rest and at peak exercise (n = 69)

Incremental load testing	at rest	at peak exercise
\dot{V}_{O_2} (ml/min)	295.6 ± 68.2	926.0 ± 338.4
\dot{V}_{O_2} (ml/min/kg)	5.3 ± 1.2	16.2 ± 4.7
V_T (ml)	773.2 ± 204.5	1245.7 ± 362.6
V_E (L/min)	12.9 ± 2.6	36.6 ± 10.9
$\dot{V}_{E}/\dot{V}_{CO_2}$	49.3 ± 8.9	41.1 ± 8.4
V_D/V_T	0.28 ± 0.07	0.26 ± 0.07
Breathing frequency (times/min)	17.7 ± 4.2	30.5 ± 8.1

\dot{V}_{O_2}; oxygen uptake, V_T; tidal volume, V_E; minute ventilation, $\dot{V}_{E}/\dot{V}_{CO_2}$; ventilatory equivalent for carbon dioxide, V_D/V_T; dead space to tidal volume ratio. Data are presented as mean ± standard deviation.
Table 3. Correlation coefficients between \dot{V}_{O_2} at peak exercise and other CPET parameters and the 6-minute walk distance

	\dot{V}_{O_2} (ml/min/kg) at peak exercise	
	ρ	p value
\dot{V}_E/\dot{V}_{CO_2} at rest	-0.46	<0.0001
\dot{V}_E/\dot{V}_{CO_2} at peak exercise	-0.45	<0.0001
V_D/V_T at rest	-0.36	0.002
V_D/V_T at peak exercise	-0.53	<0.0001
Breathing frequency at rest	-0.35	0.003
Breathing frequency at peak exercise	-0.33	0.006
6-minute walk distance (n = 48)	0.74	<0.0001

\dot{V}_{O_2}; oxygen uptake, V_T; tidal volume, \dot{V}_E; minute ventilation, \dot{V}_E/\dot{V}_{CO_2}; ventilatory equivalent for carbon dioxide, V_D/V_T; dead space to tidal volume ratio.
Table 4. Correlation coefficients between \(\dot{V}_{O2} \) at peak exercise and other CPET parameters and the 6-minute walk distance

	\(\dot{V}_{O2} \) (ml/min/kg) at peak exercise	
	\(\rho \)	p value
age (years)	-0.22	0.08
BMI (kg/m\(^2\))	0.08	0.54
COPD assessment test	-0.35	0.02
%VC (%)	0.19	0.11
%FVC (%)	0.16	0.2
FEV\(_1\) (L)	0.39	0.0009
FEV\(_1\)/FVC (%)	0.33	0.006
%FEV\(_1\) (%)	0.24	0.05
DLco (%)	0.26	0.05
PM\(_{CSA}\) (cm\(^2\))	0.32	0.02
ECM\(_{CSA}\) (cm\(^2\))	0.34	0.009

CPET; Cardiopulmonary exercise testing, \(\dot{V}_{O2} \); oxygen uptake, BMI; body mass index, COPD; chronic obstructive pulmonary disease, VC; vital capacity, FVC; forced vital capacity, FEV\(_1\); forced expiratory volume in 1 second, DLco; diffusing capacity of lung for carbon monoxide, PM\(_{CSA}\); cross-sectional area of pectoralis muscles, ECM\(_{CSA}\); cross-sectional area of erector spinae muscles.
Correlations between \(\dot{V}O_2 \) at peak exercise and clinical parameters of COPD. Correlations between \(\dot{V}O_2 \) at peak exercise and (a) FEV1, (b) FEV1/FEV, (c) PMCSA, and (d) ECMCSA. Abbreviations: \(\dot{V}O_2 \): oxygen uptake, COPD: chronic obstructive pulmonary disease, FEV1: forced expiratory volume in 1 second, FVC: forced vital capacity, PMCSA: cross-sectional area of the pectoralis muscles, ECMCSA: cross-sectional area of the erector spinae muscles.
Figure 2

Results of \(\bar{V}O_2 \) by (a) GOLD stage and (b) mMRC dyspnea scale score. * \(p < 0.05 \) Abbreviations: \(\bar{V}O_2 \): oxygen uptake, GOLD: Global Initiative for Chronic Obstructive Lung Disease, mMRC: modified Medical Research Council

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- supplementaryinformation1.pptx
- supplementaryinformation2.docx