EDITORIAL

238 Maintaining the metabolic homeostasis of Helicobacter pylori through chronic hyperglycemia in diabetes mellitus: A hypothesis

Reshetnyak VI, Maev IV

SYSTEMATIC REVIEWS

244 Disordered eating behaviour and eating disorder among adolescents with type 1 diabetes: An integrative review

Oliveira Cunha MCS, Dutra FCS, Cavaleiro Brito LMM, Costa RF, Gaspar MWG, Sousa DF, Moura de Araújo MF, Queiroz MVO
ABOUT COVER
Editorial Board Member of World Journal of Meta-Analysis, Yun-Xian Yu, MD, PhD, Associate Professor, Department of Epidemiology and Health Statistics, Medicine School, Zhejiang University, Hangzhou 310016, Zhejiang Province, China. 13735875136@163.com

AIMS AND SCOPE
The primary aim of World Journal of Meta-Analysis (WJMA, World J Meta-Anal) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality meta-analysis and systematic review articles and communicate their research findings online.

WJMA mainly publishes articles reporting research results and findings obtained through meta-analysis and systematic review in a wide range of areas, including medicine, pharmacy, preventive medicine, stomatology, nursing, medical imaging, and laboratory medicine.

INDEXING/ABSTRACTING
The WJMA is now abstracted and indexed in Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Hua-Ge Yu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.
Maintaining the metabolic homeostasis of *Helicobacter pylori* through chronic hyperglycemia in diabetes mellitus: A hypothesis

Vasily Ivanovich Reshetnyak, Igor Veniaminovich Maev

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
- Grade A (Excellent): 0
- Grade B (Very good): 0
- Grade C (Good): C
- Grade D (Fair): D, D
- Grade E (Poor): 0

P-Reviewer: Lauro D, Italy; Rwegerera GM, Botswana

Received: August 4, 2022
Peer-review started: August 4, 2022
First decision: August 19, 2022
Revised: August 23, 2022
Accepted: September 21, 2022
Article in press: September 21, 2022
Published online: October 28, 2022

Helicobacter pylori (*H. pylori*) infection occurs in almost half of the world’s population, most of whom are merely carriers of this microorganism. *H. pylori* is shown to be detected more frequently in patients with diabetes mellitus (DM) than in the general population, which is accompanied by a significantly increased risk of developing *H. pylori*-associated diseases. In addition, eradication therapy shows a low efficiency for *H. pylori* infection in patients with DM. There is a relationship between the level of chronic hyperglycemia and a higher detection rate of *H. pylori* as well as a lower efficiency of eradication therapy in patients with DM. The exact mechanisms of these phenomena are unknown. The authors make a hypothesis that explains the relationship between chronic hyperglycemia and the increased detection rate of *H. pylori*, as well as the mechanisms contributing to the improved survival of this bacterium in patients with DM during eradication therapy.

Key Words: Helicobacter pylori; Diabetes mellitus; Glycated hemoglobin A; *H. pylori* eradication; Amino acids and glucose as nutrients for *H. pylori*

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The authors hypothesize that in patients with diabetes mellitus (DM), *Helicobacter pylori* (*H. pylori*) are most likely to rely on both amino acids and glucose for its vital activity. The hypothesis makes it possible to explain the high detection rate of *H. pylori* in patients with DM, as well as the lower efficiency of eradication therapy in them.
INTRODUCTION

Forty years have passed since the description of Helicobacter pylori (H. pylori) as a pathogen in the development of atrophic gastritis and peptic ulcer disease[1-3]. It has been shown that H. pylori infection occurs in almost half of the population in the world, most of whom are merely carriers of this microorganism[4,5]. In addition, many researchers have indicated that H. pylori are detected more frequently in patients with diabetes mellitus (DM) than in the general population[6-11]. This is accompanied by a substantial increase in the risk of developing H. pylori-associated diseases[6,11,12]. At the same time, there are studies which report reverse results about the incidence of type 2 DM (T2DM) in H. pylori-positive patients[13-15]. However, the relationship between H. pylori infection and the risk of developing T2DM remains controversial and ambiguous. Hence, a prospective cohort study by Jeon et al.[16] has shown that H. pylori infection correlates with a high risk of T2DM. Similarly, a meta-analysis carried out by Mansori et al.[11] suggests that H. pylori may be one of the risk factors for T2DM. On the contrary, other studies report that H. pylori is not associated with either insulin resistance or the prevalence of T2DM[17-20]. Data from Tamura et al.[21] suggest that East Asian CagA-positive H. pylori infection is not a risk factor for T2DM. The successful H. pylori eradication rates in patients with type 1 and type 2 DM are 62% and 50%, respectively, which are much lower than those in people without these two forms of the disease[22-25]. The low efficiency of eradication therapy for H. pylori infection in diabetic patients is uniquely presented in many studies[26-29].

There is a clear correlation between the higher detection rate of H. pylori in diabetic patients and lower efficacy of eradication therapy, depending on the level of hyperglycemia[10,13,29]. Uncontrolled diabetes with the development of chronic hyperglycemia causes a number of metabolic changes[30]. Chronic hyperglycemia in turn leads to increased susceptibility to infective agents in diabetic patients[9,10,30,31]. The exact mechanisms underlying the link of chronic hyperglycemia and the higher detection rate of H. pylori, as well as the mechanisms that improve the survival of this bacterium in diabetic patients during eradication therapy remain unknown. An understanding of how chronic hyperglycemia is related to the maintenance of the metabolic homeostasis of H. pylori for its vital activity and reproduction in diabetic patients is of great scientific and practical importance.

It is hypothesized that chronic hyperglycemia is associated with: (1) The increased detection rate of H. pylori; (2) possible metabolic changes in the bacterial cells; and (3) the results of eradication therapy.

It is well known that H. pylori colonizes the gastric mucosa. To establish long-term colonization, the bacterium must sense and adapt to the nutritional conditions that exist in its habitat. Surprisingly, little attention has been paid to the preferred sources of nutrients and energy for the life, growth, and reproduction of H. pylori, as well as changes in the source of food ingredients and energy for H. pylori in diabetic patients. The available data suggest that for its life, growth, and reproduction, H. pylori utilizes amino acids and carboxylic acids, which are produced in sufficient quantities in the stomach as a result of hydrolysis of food proteins[32-34]. H. pylori catabolizes a large amount of amino acids with the most substantial being alanine, arginine, asparagine, aspartate, glutamate, glutamine, proline, and serine[32,35-37]. H. pylori can also catabolize fumaric acid[38], malic acid[35], and lactic acid[39]. Thus, amino acids and carboxylic acids are sources of carbon, nitrogen, and energy.

In a healthy individual, H. pylori are almost independent of sugars, such as glucose[32-34]. However, glucose is known to be one of the most important carbohydrates, which is used for life by many microorganisms, including inhabitants in the digestive system. Moreover, Wang et al.[40] believe that glucose plays a key role in the outcome of bacterial infection in humans. A question is raised as to whether H. pylori can utilize glucose as a plastic and energy material. Studies conducted in the 1990s and later indicate that H. pylori has enzyme systems capable of utilizing carbohydrates, D-glucose in particular[41-43]. These data suggest that in its evolutionary phylogenetic development and adaptation to life and reproduction in the stomach, H. pylori not only acquire the ability to restructure its metabolism for the use of amino acids as a plastic and energy material, but most probably retain the ability to utilize carbohydrates for their life activity. There are experimental data showing that adding glucose to the nutrient medium when growing H. pylori, enhances its growth[29,44].

Chronic hyperglycemia in diabetic patients involves compensatory mechanisms aimed at normalizing the blood level of glucose[5]. To remove excess glucose in patients with DM and chronic hyperglycemia, it is most likely that the extradigestive (excretory) function of the gastric mucosa is switched on. This leads to the fact that in patients with DM and chronic hyperglycemia, H. pylori gain advantages for its growth, reproduction, and survival as it can use not only amino acids for its life, but also glucose available in excess in patients with DM. This hypothesis may explain the more frequent detection of H. pylori in patients with DM than in the general population.
Based on this hypothesis, it is possible to explain also the lower efficiency of eradication therapy in patients with DM. H. pylori eradication regimens contain antibacterial drugs (clarithromycin, metronidazole, bismuths, etc.) and agents that reduce hydrochloric acid production. The use of antacids aimed at creating optimal conditions for acid-dependent antibacterial agents[45-48]. The data presented in recent studies suggest that it is extremely important to determine gastric pH for H. pylori eradication[45,46]. In addition, the antacids have a double effect on H. pylori with an opposite effect. Increased gastric pH is a favorable factor for the vital activity of H. pylori. But at the same time, the antacids deprive H. pylori of nutrients. Exposure to hydrochloric acid in the stomach causes denaturation of food proteins and initiates their hydrolysis by the gastric juice enzymes pepsin and gastrin. This gives rise to oligopeptides with different lengths and to a certain amount of amino acids, which are utilized by H. pylori for its life activity. Taking antacids practically does not lead to denaturation of food proteins. Consequently, the rate of protein hydrolysis is considerably reduced. As a result, the stomach practically does not produce amino acids that are essential for maintaining the vital activity of H. pylori. The lack of nutrients and the intake of antibacterial drugs result in the death of the microorganism or in its transition to a dormant form[49]. The latter is rare during powerful antibiotic therapy.

There is an opportunity for H. pylori to utilize glucose as an energy and plastic material in diabetic patients receiving eradication therapy against the underlying chronic hyperglycemia and amino acid deficiency. It is likely that this mechanism enables this microorganism to successfully survive the extreme conditions of eradication. But this can happen only in the presence of chronic hyperglycemia. That is to say, the survival of H. pylori under extreme conditions of eradication should depend on the level of hyperglycemia. And the longer period of hyperglycemia is, the more likely H. pylori survive the extreme conditions of eradication.

Chronic hyperglycemia can be assessed by the blood level of glycated hemoglobin A (HbA1c) (Figure 1). The HbA1c level is the result of nonenzymatic glycosylation of hemoglobin, with the formation of a bond between glucose and the free N-terminal proline amino group in the hemoglobin β-chain[50]. The indicator plays an important role in monitoring the time course of changes in blood glucose levels in diabetic patients and for evaluation of the efficacy of hypoglycemic drugs[51]. In 2011, the World Health Organization officially recommended an HbA1c level of ≥ 6.5% as a diagnostic cut-off value for DM[52]. This indicator reflects the integrated blood glucose level for the last 3-4 mo[53-55].

The association between H. pylori infection and HbA1c in diabetic patients has been confirmed in many studies[51,56,57]. Glycated hemoglobin A levels were significantly higher in patients with DM and H. pylori infection than in those with DM and without H. pylori infection (WMD = 0.50, 95% CI: 0.28-0.72, P < 0.001)[51]. Subgroup analysis by the subtype of DM has revealed a correlation between H. pylori infection and an elevated glycated hemoglobin A level in type 1 DM (F2 = 74%, P < 0.001, WMD = 0.46, 95% CI: 0.12-0.80) and in T2DM (F2 = 90%, P < 0.001, WMD = 0.59, 95% CI: 0.28-0.90, P < 0.001)[51].

Bektemirova et al[58] used the HbA1c level to evaluate the efficacy of hypoglycemic drugs taken by 83 patients with T2DM and H. pylori-associated diseases during eradication therapy. Glycated hemoglobin A was shown to reach a target level of < 6.5% in 62 of the 83 examinees, while it remained elevated (> 7.0%) in 21 patients. This means that despite the use of hypoglycemic drugs, the level of hyperglycemia persisted in these patients for at least 2-3 mo. And it was in these patients who did not reach the target HbA1c level had a significantly (P < 0.017) lower efficiency of eradication therapy than those who achieved the target level of HbA1c < 6.5%. The data obtained by Bektemirova et al[58] indirectly suggest that H. pylori most likely take advantage of chronic hyperglycemia to survive under the extreme conditions of eradication.

According to Tseng, the use of insulin to normalize blood glucose levels in patients with T2DM substantially increases the rate of H. pylori eradication compared to those with DM without insulin administration[25]. The higher efficiency of H. pylori eradication in T2DM patients taking insulin suggests that these patients are more likely to normalize their blood glucose levels during insulin therapy. And this is most likely to cause an increase in the efficiency of H. pylori eradication.

CONCLUSION

The data available in the literature advance the following hypothesis that in diabetic patients, H. pylori are most likely to utilize both amino acids and glucose for its vital activity. The hypothesis makes it possible to explain the high detection rate of H. pylori in diabetic patients, as well as their lower eradication therapy efficiency. Undoubtedly, this hypothesis requires further conformations by biochemical, microbiological, molecular genetics, and other studies. Further multicenter studies are needed to confirm this hypothesis. But if this hypothesis is correct, then before H. pylori are eradicated in DM patients, there is a need for mandatory monitoring and targeted correction of blood glucose and HbA1c levels according to the algorithm given in Figure 1. The algorithm can be used for the management of patients with DM and concomitant H. pylori-associated diseases, which is of great practical importance for their successful eradication therapy.
Reshetnyak VI et al. Metabolic homeostasis of \textit{H. pylori} in diabetes mellitus

Figure 1 Algorithm for monitoring and targeted correction of glycated hemoglobin A levels in patients with diabetes mellitus and \textit{Helicobacter pylori}-associated diseases. \textit{H. pylori}: Helicobacter pylori.

ACKNOWLEDGEMENTS
The authors express their gratitude to Alexandr Igorevich Burmistrov for technical assistance in preparing this article.

FOOTNOTES

Author contributions: All the authors have equally contributed to the study conception and design, literature review and analysis, manuscript drafting, critical revision and editing, and approval of the final version.

Conflict-of-interest statement: All authors declare that they have no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Russia

ORCID number: Vasiliy Ivanovich Reshetnyak 0000-0003-3614-5052; Igor Veniaminovich Maev 0000-0001-6114-564X.

REFERENCES

1 Malnick SD, Melzer E, Attali M, Duek G, Yahav J. Helicobacter pylori: friend or foe? \textit{World J Gastroenterol} 2014; 20: 8979-8985 [PMID: 25083071 DOI: 10.3748/wjg.v20.i27.8979]
2 Li J, Perez-Perez GI. \textit{Helicobacter pylori} the Latent Human Pathogen or an Ancestral Commensal Organism. \textit{Front Microbiol} 2018; 9: 609 [PMID: 29666614 DOI: 10.3389/fmicb.2018.00609]
3 Reshetnyak VI, Burmistrov AI, Maev IV. Helicobacter pylori: Commensal, symbiont or pathogen? \textit{World J Gastroenterol} 2021; 27: 545-560 [PMID: 33642828 DOI: 10.3748/wjg.v27.i17.545]
4 Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, Malfertheiner P, Graham DY, Wong VWS, Wu JCY, Chan FKL, Sung JYY, Kaplan GG, Ng SC. Global Prevalence of Helicobacter pylori Infection: Systematic Review
Reshetnyak VI et al. Metabolic homeostasis of H. pylori in diabetes mellitus

and Meta-Analysis. *Gastroenterology* 2017; 153: 420-429 [PMID: 28456631 DOI: 10.1053/j.gastro.2017.04.022]

5 Keilberg D, Steele N, Fan S, Yang Ch, Zavras Y, Oetterman KM. Gastric metabolomics analysis supports H. pylori’s catabolism of organic and amino acids in both the corpus and antrum. *bioRxiv* 2020; 183533 [DOI: 10.1101/2020.07.01.183533]

6 Mkrtumyan AM, Kazyulin AN, Bairova KI. Incidence and severity of Helicobacter infection in patients with type 2 diabetes mellitus. *Diabetes mellitus* 2010; 13: 77-79 (In Russ.) [DOI: 10.14341/2072-0351-6020]

7 Devrajani RR, Shah ZZ, Soonra AA, Devrajani T. Type 2 diabetes mellitus: A risk factor for Helicobacter pylori infection: A hospital based case-control study. *Int J Diabetes Dev Ctries* 2010; 30: 22-26 [DOI: 10.4103/0973-3930.60008]

8 Talebi-Taher M, Mashayekhi M, Hashemi MH, Bahrami V. Helicobacter pylori in diabetic and non-diabetic patients with dyspepsia. *Acta Med Iran* 2012; 50: 315-318 [PMID: 22837084]

9 Vafaeeinamesh J, Parham M, Bagherzadeh M. Helicobacter pylori infection prevalence: Is it different in diabetics and nondiabetics? *Indian J Endocrinol Metab* 2015; 19: 364-368 [PMID: 25932391 DOI: 10.4103/2230-8210.152773]

10 Abd-El-Kareem Younus H, Alkaeber AM M, Nuser MM, Mohammed AS, Saleh MW. Study of the relation between glycemic control in Egyptian patients with type-2 diabetes mellitus and Helicobacter pylori infection. *Int J Multidiscip Res As* 2018; 5: 249-256

11 Mansori K, Moradi Y, Naderpour S, Rashiti R, Moghaddam AB, Saed L, Mohammadi H. Helicobacter pylori infection as a risk factor for diabetes: a meta-analysis of case-control studies. *BMC Gastroenterology* 2020; 20: 77 [PMID: 32209055 DOI: 10.1186/s12867-020-01223-0]

12 Koulicheu Mabeko LB, Noundjeu Nganga ML, Leundji H. Helicobacter pylori infection, a risk factor for Type 2 diabetes mellitus: a hospital-based cross-sectional study among dyspeptic patients in Douala-Cameroon. *Sci Rep* 2020; 10: 12141 [PMID: 32699242 DOI: 10.1038/s41598-020-69206-3]

13 Chen Y, Blaser MJ. Association between gastric Helicobacter pylori colonization and glycated hemoglobin levels. *J Infect Dis* 2012; 205: 1195-1202 [PMID: 22427670 DOI: 10.1093/infdis/jjs106]

14 Hsieh MC, Wang SS, Hsieh YT, Kuo FC, Soon MS, Wu DC. Helicobacter pylori infection associated with high HbA1c and type 2 diabetes. *Eur J Clin Invest* 2013; 43: 949-956 [PMID: 23978970 DOI: 10.1111/eji.12124]

15 Han X, Li Y, Wang J, Liu B, Hu H, Li X, Yang K, Yuan J, Yao P, Wei S, Wang Y, Liang Y, Miao X, Zhang X, Guo H, Yang H, Wu T, He M. Helicobacter pylori infection is associated with type 2 diabetes among a middle- and old-age Chinese population. *Diabetes Metab* 2016; 32: 95-101 [PMID: 26172433 DOI: 10.1002/dm.2677]

16 Jeon CY, Haan MN, Cheng C, Clayton ER, Mayeda ER, Miller JW, Aiello AE. Helicobacter pylori infection is associated with an increased rate of diabetes. *Diabetes Care* 2012; 35: 520-525 [PMID: 22279028 DOI: 10.2337/dci11-1043]

17 Ko GT, Chan FK, Chan WB, Sung JJ, Tsai CL, To KF, Lat CW, Cockram CS. Helicobacter pylori infection in subjects with type 2 diabetes. *Endocr Res* 2001; 27: 171-177 [PMID: 11428708 DOI: 10.1007/978-1-0107178]

18 Anastasios R, Gorissas C, Papamihail C, Trigidou R, Garzonis F, Ferti A. Helicobacter pylori infection in diabetic patients: prevalence and endoscopic findings. *Eur J Intern Med* 2002; 13: 376 [PMID: 12225782 DOI: 10.1016/j.ejim.2002.09.004-8]

19 Howard BV, Best L, Comuzie A, Ebbeson SO, Epstein SE, Fabris RR, Howard WJ, Silverman A, Wang H, Zhu J, Umans J. C-Reactive protein, insulin resistance, and metabolic syndrome in a population with a high burden of subclinical infection: insights from the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study. *Diabetes Care* 2008; 31: 2312-2314 [PMID: 18796618 DOI: 10.2337/dc08-0815]

20 Lutsey PL, Pankow JS, Bertoni AG, Szolk M, Folsom AR. Serological evidence of infections and Type 2 diabetes: the Multi-Ethnic Study of Atherosclerosis. *Diabet Med* 2009; 26: 149-152 [PMID: 19263617 DOI: 10.1111/j.1464-5491.2008.02632.x]

21 Tamura T, Morita E, Kawai S, Sasaki T, Sugimoto Y, Fukuda N, Sama S, Nakagawa H, Okada R, Hishida A, Naito M, Hamajima N, Wakai K. No association between Helicobacter pylori infection and diabetes mellitus among a general Japanese population: a cross-sectional study. *Springerplus* 2015; 4: 602 [PMID: 26543737 DOI: 10.1186/s40064-015-1371-2]

22 Sargyn M, Uygur-Bayramici O, Sargyn H, Orbay E, Yavuzer D, Yayla A. Type 2 diabetes mellitus affects eradication rate of Helicobacter pylori. *World J Gastroenterology* 2003; 9: 1126-1128 [PMID: 12717872 DOI: 10.3748/wj.v9.i9.1126]

23 Demir M, Gokturk HS, Ozturk NA, Serin E, Yilmaz U. Efficacy of two different Helicobacter pylori eradication regimens in patients with type 2 diabetes and the effect of Helicobacter pylori eradication on dyspeptic symptoms in patients with diabetes: a randomized controlled study. *Am J Med Sci* 2009; 338: 459-464 [PMID: 19884816 DOI: 10.1097/MAJ.0b013e31818165de]

24 Seilinger C, Robinson A. Helicobacter pylori eradication in diabetic patients: still far off the treatment targets. *South Med J* 2010; 103: 975-976 [PMID: 20813306 DOI: 10.1097/SMJ.0b013e31813f4c4c]

25 Tseng CH. Diabetes, insulin use and Helicobacter pylori eradication: a retrospective cohort study. *BMC Gastroenterology* 2012; 12: 46 [PMID: 22571603 DOI: 10.1186/1471-230X-12-46]

26 Mav JY, Mkrtumyan AM, Bektemirova LG, Andreev DN, Dicheva DT. The effectiveness of first-line eradication therapy for Helicobacter pylori infection in patients with type 2 diabetes mellitus. *Ter Arkh (in Rus.)* 2022; 94: 209-215 [DOI: 10.26442/00403660.2022.2.201372]

27 Ataseven H, Demir M, Gen R. Effect of sequential treatment as a first-line therapy for Helicobacter pylori eradication in patients with diabetes mellitus. *South Med J* 2010; 103: 988-992 [PMID: 20818305 DOI: 10.1097/SMJ.0b013e3181f6eece]

28 Zhou X, Zhang C, Wu J, Zhang G. Association between Helicobacter pylori infection and diabetes mellitus: a meta-analysis of observational studies. *Diabetes Res Clin Pract* 2013; 99: 200-208 [PMID: 23395214 DOI: 10.1016/j.diabres.2012.11.012]

29 Shu EM, Cheng H, Kao CY, Yang YJ, Wu JJ, Shu BS. Higher glucose level can enhance the H. pylori adhesion and virulence related with type IV secretion system in AGS cells. *J Biomed Sci* 2014; 21: 96 [PMID: 25296847 DOI: 10.1186/s12292-014-0096-9]

30 Chávez-Reyes J, Escárciga-González CE, Chavira-Suárez E, León-Buitíame A, Vázquez-León P, Morones-Ramírez JR,
Villalón CM, Quintanar-Stephano A and Marichal-Cancino BA. Susceptibility for Some Infectious Diseases in Patients With Diabetes: The Key Role of Glycemia. Front Public Health 2021; 9: 559595 [DOI: 10.3389/fpubh.2021.559595]

31 Narayan KMV. Diabetes mellitus in Native Americans: the problem and its implications. Popul Res Policy Rev 1997; 116: 169-192 [DOI: 10.1023/A:1005751215330]

32 Mendz GL, Hazell SL. Aminoacid utilization by Helicobacter pylori. Int J Biochem Cell Biol 1995; 27: 1085-1093 [PMID: 7496998 DOI: 10.1016/1357-2722(95)00069-2]

33 Kelly DJ. The physiology and metabolism of the human gastric pathogen Helicobacter pylori. Adv Microb Physiol 1998; 40: 137-189 [PMID: 9889978 DOI: 10.1016/s0065-2911(00)6133-9]

34 Marais A, Mendz GL, Hazell SL. Megraf F. Metabolism and genetics of Helicobacter pylori: the genome era. Microbiol Mol Biol Rev 1999; 63: 642-674 [PMID: 10477111 DOI: 10.1128/MMBR.63.3.642-674.1999]

35 Lee WC, Goh KL, Loke MF, Vadivelu J. Elucidation of the Metabolic Network of Helicobacter pylori 399 and Malaysian Clinical Strains by Phenotype Microarray. Helicobacter 2017; 22 [PMID: 27285384 DOI: 10.1111/hel.12321]

36 Stark RM, Suleiman MS, Hassan JJ, Greenman J, Millar MR. Amino acid utilisation and deamination of glutamine and asparagine by Helicobacter pylori. J Med Microbiol 1997; 46: 793-800 [PMID: 9291892 DOI: 10.1099/00222615-46-9-793]

37 Nagata K, Nagata Y, Sato T, Fujino MA, Nakajima K, Tamura T. L-Serine, D- and L-proline and alanine as respiratory substrates of Helicobacter pylori: correlation between in vitro and in vivo amino acid levels. Microbiology (Reading) 2003; 149: 2023-2030 [PMID: 12904542 DOI: 10.1099/micro.0.26203-0]

38 Mendz GL, Hazell SL. Fumurate catabolism in Helicobacter pylori. Biochem Mol Biol Int 1993; 31: 325-332 [PMID: 8275020]

39 Iwatani S, Nagashima H, Reddy R, Shiota S, Graham DY, Yamaoka Y. Identification of the genes that contribute to lactate utilization in Helicobacter pylori. PLoS One 2014; 9: e103056 [PMID: 25078572 DOI: 10.1371/journal.pone.0103056]

40 Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot JD, Booth CJ, Medzhitov R. Opposing Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral Inflammation. Cell 2016; 166: 1512-1525.e12 [PMID: 27610573 DOI: 10.1016/j.cell.2016.07.026]

41 Mendz GL, Hazell SL. Glucose phosphorylation in Helicobacter pylori. Arch Biochem Biophys 1993; 300: 522-525 [PMID: 8424689 DOI: 10.1016/0003-9864(93)90446-X]

42 Mendz GL, Hazell SL. Burns BP. Glucose utilization and lactate production by Helicobacter pylori. J Gen Microbiol 1993; 139: 3023-3028 [PMID: 8126428 DOI: 10.1099/00222878-139-12-3023]

43 Som S, De A, Banik GD, Maity A, Ghosh C, Pal M, Daschakraborty SB, Chaudhuri S, Jana S, Pradhan M. Mechanisms linking metabolism of Helicobacter pylori to (18)O and (13)C-isotopes of human breath CO2. Sci Rep 2015; 5: 10936 [PMID: 26039789 DOI: 10.1038/srep10936]

44 Reynolds DJ, Penn CW. Characteristics of Helicobacter pylori growth in a defined medium and determination of its amino acid requirements. Microbiology (Reading) 1994; 140 (Pt 10): 2649-2656 [PMID: 8000535 DOI: 10.1099/00222127-140-10-2649]

45 Ho CY, Liu TW, Lin YS, Chen YP, Chen MJ, Wang HY, Liou TC. Factors Affecting the Intraluminal Therapy for Helicobacter pylori Infection. Microorganisms 2022; 10 [PMID: 35200870 DOI: 10.3390/microorganisms10020415]

46 Wang YC, Chen YP, Ho CY, Liu TW, Chu CH, Wang HY, Liou TC. The Impact of Gastric Juice pH on the Intraluminal Therapy for Helicobacter pylori Infection. J Clin Med 2020; 9 [PMID: 32548586 DOI: 10.3390/jcm9061852]

47 Sugimoto M, Furuta T, Shirai N, Kodaira C, Nishino M, Ikuma M, Ishizaki T, Hishida A. Evidence that the degree and duration of acid suppression are related to Helicobacter pylori eradication by triple therapy. Helicobacter 2007; 12: 317-323 [PMID: 17669104 DOI: 10.1111/j.1523-5378.2007.00508.x]

48 Marcus EA, Inatomi N, Nagami GT, Sachs G, Scott DR. The effects of varying acidity on Helicobacter pylori growth and the bactericidal efficacy of ampicillin. Aliment Pharmacol Ther 2012; 36: 972-979 [PMID: 23092227 DOI: 10.1111/j.1365-2036.2012.12059]

49 Reshetnyak VI, Reshetnyak TM. Significance of dormant forms of Helicobacter pylori in ulcerogenesis. World J Gastroenterol 2017; 23: 4867-4878 [PMID: 28785141 DOI: 10.3748/wjg.v23.i27.4867]

50 Weykamp C, John WG, Mosca A. A review of the challenge in measuring hemoglobin A1c. J Diabetes Sci Technol 2009; 3: 439-445 [PMID: 20144280 DOI: 10.1177/193229680900303036]

51 Chen J, Xing Y, Zhao L, Ma H. The Association between Helicobacter pylori infection and Glycated Hemoglobin A in Diabetes: A Meta-Analysis. J Diabetes Res 2019; 2019: 3705264 [PMID: 31583248 DOI: 10.1155/2019/3705264]

52 Mbanya JC, Henry RR, Smith U. Presidents' statement on WHO recommendation on Hba1c for diabetes diagnosis. Diabetes Res Clin Pract 2011; 93: 310-311 [PMID: 21802162 DOI: 10.1016/j.diabres.2011.06.026]

53 Buell C, Kermah D, Davidson MB. Utility of A1c for diabetes screening in the 1999 2004 NHANES population. Diabetes Care 2007; 30: 2233-2235 [PMID: 17563338 DOI: 10.2337/dc07-0585]

54 Herman WH, Engelgau MM, Zhang Y, Brown MB. Use of GHB (Hba1c) to screen for undiagnosed diabetes in the U.S. population. Diabetes Care 2000; 23: 1207-1208 [PMID: 10937532 DOI: 10.2337/diacare.23.8.1207]

55 Rolfing CL, Little RR, Wiedmayer HM, England JD, Madsen R, Harris MI, Flegal KM, Eberhardt MS, Goldstein DE. Use of GHB (Hba1c) in screening for undiagnosed diabetes in the U.S. population. Diabetes Care 2000; 23: 187-191 [PMID: 10868829 DOI: 10.2337/diacare.23.2.187]

56 Begue RE, Mirza A, Compton T, Gomez R, Vargas A. Helicobacter pylori infection and insulin requirement among children with type 1 diabetes mellitus. Pediatrics 1999; 103: e83 [PMID: 10359980 DOI: 10.1542/peds.103.6.e83]

57 Akun S, Erdem ME, Kazan S, Ailoustalghi M. The relationship between Helicobacter pylori infection and glycemic regulation in type 2 diabetic patients. Nobel Med 2014; 10: 32-35

58 Bektremirova L, Mkrtyanyan A, Rymareva E, Dicheva D, Chernavsky S. Efficacy of first-line eradication therapy in patients with Helicobacter pylori associated pathology of the upper gastrointestinal tract and type 2 diabetes depending on a level of glycated hemoglobin. Medical Bulletin of the Ministry of Internal Affairs. (in Rus.) 2022; 119: 27-31 [DOI: 10.52341/20738080_2022_119_4_27-EDNTDXAMS]
