Gene-gene interaction network analysis of ovarian cancer using TCGA data

Huanchun Ying1*, Jing Lv2, Tianshu Ying1, Shanshan Jin1, Jingru Shao1, Lili Wang1, Hongying Xu3, Bin Yuan2 and Qing Yang1

Abstract

Background: The Cancer Genome Atlas (TCGA) Data portal provides a platform for researchers to search, download, and analysis data generated by TCGA. The objective of this study was to explore the molecular mechanism of ovarian cancer pathogenesis.

Methods: Microarray data of ovarian cancer were downloaded from TCGA database, and Limma package in R language was used to identify the differentially expressed genes (DEGs) between ovarian cancer and normal samples, followed by the function and pathway annotations of the DEGs. Next, NetBox software was used to for the gene-gene interaction (GGI) network construction and the corresponding modules identification, and functions of genes in the modules were screened using DAVID.

Results: Our studies identified 332 DEGs, including 146 up-regulated genes which mainly involved in the cell cycle related functions and cell cycle pathway, and 186 down-regulated genes which were enriched in extracellular region par function, and Ether lipid metabolism pathway. GGI network was constructed by 127 DEGs and their significantly interacted 209 genes (LINKERs). In the top 10 nodes ranked by degrees in the network, 5 were LINKERs. Totally, 7 functional modules in the network were selected, and they were enriched in different functions and pathways, such as mitosis process, DNA replication and DNA double-strand synthesis, lipid synthesis processes and metabolic pathways. AR, BRCA1, TFDP1, FOXM1, CDK2, and DBF4 were identified as the transcript factors of the 7 modules.

Conclusion: our data provides a comprehensive bioinformatics analysis of genes, functions, and pathways which may be involved in the pathogenesis of ovarian cancer.

Keywords: Differentially expressed genes, Function and pathway annotation, Gene-gene interaction network, Functional modules

Introduction

Ovarian cancer remains a significant public health burden, with the highest mortality rate of all the gynecological cancer, accounting for about three percent of all cancers in women [1]. Despite advances in surgery and chemotherapy, ovarian cancer in the majority of women will return and become resistant to further treatments [2]. Thus, identifying variations of differentially expressed genes (DEGs) will allow for the possibility of administering alternate therapies that may improve outcomes.

Bioinformatics analysis provides a first large scale integrative view of the aberrations in high grade serous ovarian cancer, with surprisingly simple mutational spectrum [3]. Previous studies have examined the role of genetic variation associated with the susceptibility, progression, treatment response, and survival of ovarian cancer [4,5]. It has been shown that high grade ovarian cancer is characterized by TP53 mutations in almost all tumors [6]. KRAS-variant is found to be a genetic marker for increased risk of developing ovarian cancer [7]. Genes related with cell cycle, lipid metabolism and cytoskeletal structure are screened as the treatment targets for ovarian cancer [8].
TCGA (The Cancer Genome Atlas) is a national collaborative program where different tumor types are being collected, and each tumor is being characterized using a variety of genome-wide platforms [9]. TCGA has recently complemented its first formal analysis of the genomic and clinical data from the ovarian carcinoma project.

In this study, we downloaded the microarray data of ovarian cancer form TCGA database for the identification of DEGs, and the annotation of abnormal functions and pathways in ovarian cancer. A gene-gene interaction (GGI) network was constructed using NetBox software, comprised by DEGs and their significant interacted genes. The network was further studied for its functional modules.

Methods
Gene expression profiles
We downloaded gene expression data batch8_9 from TCGA project webpage (https://tcga-data.nci.nih.gov/tcga/), including 38 ovarian cancer samples and 8 matched normal samples. Data levels are assigned for data type, platform and center in TCGA. The data we downloaded consisted of level 1–4, and we chose level 3 (for Segmented or Interpreted Data) for further study. Median method was used for the standardizations of the original data.

Screening of DEGs
We applied the Limma package in R language, a linear regression model, to select the DEGs in ovarian cancer samples compared with the normal samples [10]. Only the genes with p-value < 0.05 and \(|\log \text{Fold Chance (FC)}| > 1.5\) were screened out as DEGs.

Functions and pathways enrichment of DEGs
The significant functions and pathways of DEGs was assessed based on the GO (Gene Ontology) [11] and KEGG (Kyoto Encyclopedia of Genes and Genomes) [12] annotations using Gestalt (Gene Set Analysis Toolkit) software. False discovery rate (FDR) less than 0.05 was set as the cut-off criteria.

GGI network construction
The interactions between DEGs were searched using NetBox software. NetBox is a toolkit used in the establishment of interaction network based on public database of HPRD (Human Protein Reference Database) [13], Reactome [14], NCI-Nature Pathway Interaction database (PID) [15], as well as the MSKCC Cancer Cell Map [16]. Firstly, we obtained a global network. Then, DEGs were mapped onto the network, as well as the genes significantly interacted with these DEGs. Finally, we established the GGI network using the DEGs and their significant interaction nodes according to the assigned criteria (p < 0.05 and shortest path threshold was 2). We also calculate the degrees of the nodes by igraph package in R language, and identified the key nodes with high degrees.

Functional modules analysis
Beside the GGI network under the assigned criteria, NetBox also divided the network into modules. Next, DAVID (Database for Annotation, Visualization and Integration Discovery) was used to identify the over-represented GO categories and KEGG pathways of the modules with FDR less than 0.05. DAVID could provide a high-throughput and integrated data-mining environment, and analysis gene lists derived from high-throughput genomic experiments.

Results
DEGs screening
The expressions profiles of the whole 46 samples included 12042 genes. By limma package, a total of 332 genes were selected as the DEGs between ovarian and normal samples, of which 146 were up-regulated.

Significant functions and pathways of DEGs
The enriched functions and pathways of up-regulated DEGs are listed in Table 1. Functions that related to cell cycle, nucleotide binding, and mitosis of up-regulated DEGs were enriched, while cell cycle pathway was enriched. GO: 0044421 (extracellular region part) and hsa00565: Ether lipid metabolism pathway was the only enriched function and pathway of down-regulated DEGs, respectively.

GGI network
A global network including 9264 genes and 68111 lines were obtained after the searching by NetBox. After screening, the GGI network was established (Figure 1), comprising of the selected DEGs and their interaction nodes (named as LINKER). There were 946 nodes in the network, including 209 LINKERs, 127 DEGs and 4105 lines. We calculated the degrees of the nodes in the network, and the top 10 nodes are listed in Table 2. LINKERs such as AHCTF1, B9D2, CASC5, and CCDC99 were found to be closely related with DEGs in the databases (p < 0.05).

Functional modules mining and analysis
Totally, 32 functional modules in the PPI network were given by the NetBox software, 7 of which having more than 10 genes (Figure 2). The results of functions and pathways clustering of the 7 modules are displayed in Table 3. Genes in module 1 were mainly participated in the mitosis process occurred in nucleus. Module 2 genes were mainly involved in DNA replication and DNA
double-strand synthesis, affecting the enzymatic activity participated. Functions that are related with lipid synthesis processes and formation of intracellular membranes were enriched in module 3. Four cancer related pathways were enriched in module 4, and genes in this module can affect cell cycle by influencing the transcriptional function. Genes in module 6 were associated with wound healing process outside the cells. In addition, genes in module 7 were associated with some metabolic pathways, influencing the activities of proteolytic enzyme and ligase. No functions and pathways were found to be related with genes in module 5.

Besides module 7, the other 6 modules all had the down-regulated genes, such as CETN2 and CDKN1A. These genes might be suppressed in the tumorigenesis of ovarian cancer, and the biological functions and processes of them might be alternated by other promoted genes.

In all, 6 TFs were identified in the 7 modules using TRANSFAC: FOXM1 in module 1; CDK2 and DBF4 in module 2; AR, BRCA1, and TFDP1 in module 4. We got another 36 adjusted cancer-related TFs by searching TRED database.

Discussion

Ovarian is the most lethal of all reproductive system cancers and presents a real challenge. In order to explore the molecular mechanism of ovarian cancer pathogenesis, we downloaded the gene expression profiles of ovarian cancer in the TCGA database. In the selected 332 DEGs, 146 were up-regulated genes and 186 were down-regulated genes. Cell cycle related functions, such as mitotic cell cycle and M phase; nucleotide binding related functions, such as adenyl ribonucleotide binding and purine nucleoside binding; mitosis related functions, included spindle and chromosome, and cell cycle pathway was enriched of up-regulated DEGs. In accordance with the study of Wan et al. that the up-regulated genes of ovarian carcinogenesis are related to cell cycling.
Figure 1 Gene-gene interaction network constructed by NetBox software. The purple rhombuses are the LINKERs having the significant interactions ($p < 0.05$) with differentially expressed genes (DEGs), green circle are the down-regulated DEGs, and red circles are the up-regulated DEGs.
functions [17]. GO: 0044421 (extracellular region part) and hsa00565: Ether lipid metabolism pathway was the only enriched function pathway of down-regulated DEGs, respectively. Thus, we could infer that it is the changes of the related functions and pathways that caused the tumorgenesis of the ovarian cancer.

There were 209 LINKERs out of 336 nodes in the GGI network, as well as 5 LINKER genes in the top10 genes with high degrees in the network. LINKERs are the genes which were not identified to be abnormally expressed in ovarian cancer, but significantly interacted with the DEGs. LINKERs, such as AHCTF1, B9D2, CASC5, and CCDC99 were screened based on the literatures recorded in HPRD, Reactome, PID Interaction and MSKCC Cancer Cell Map, and they were genes in module 1. These LINKERs participated indirectly in the tumorgenesis and development of ovarian cancer by the interaction with DEGs. The abundance of LINKERs in the GGI network proved the complications of interactions between genes in ovarian cancer. AHCTF1, also known as Elys/AKNA, is originally identified as a putative transcription factor involved in mouse haematopoiesis [18]. AHCTF1 is up-regulated in ductal breast carcinomas [19], and is reported to be a risk factor for cervical cancer [20]. Mutations in B9D2 (B9 protein domain 2) has been linked to human genetic diseases [21]. CASC5 (cancer sensitibity candidate 5) has been shown to be expressed in many human cancer cell lines and in several primary human tumors [22], and CASC5 Note MLL gene and D40 gene are reported to be translocated each other in three cases of leukemia [23]. CCDC99 (coiled-coil domain containing 99) is predicted to be a mitotic spindle protein, and is over-expressed in lung cancer tumor tissues [24].

Genes such as CETN2 and CDKN1A were the down-regulated genes screened in the functional modules of the

Rank	Node	Degree	Mark
1	CDK2	93	ALTERED
2	AHCTF1	91	LINKER
3	APITD1	90	ALTERED
4	B9D2	90	LINKER
5	CASC5	89	LINKER
6	CCDC99	89	LINKER
7	CENPC1	85	ALTERED
8	CENPE	83	ALTERED
9	CENPH	80	ALTERED
10	CENPI	80	LINKER

Note: nodes marked as LINKER are the genes having significant interactions (p<0.05) with differentially expressed genes (DEGs), and nodes marked with ALTERED are the DEGs.

Figure 2 Functional modules mined in the gene-gene interaction network. The purple rhombuses are the LINKERs having the significant interactions (p < 0.05) with differentially expressed genes (DEGs), green circle are the down-regulated DEGs, and red circles are the up-regulate DEGs.
Category	Terms	Count	FDR	
Module 1	GOTERM_BP_FAT GO:0000280~nuclear division	47	1.32E-63	
	GOTERM_BP_FAT GO:0007067~mitosis	47	1.32E-63	
	GOTERM_BP_FAT GO:0000087~M phase of mitotic cell cycle	47	3.30E-63	
	GOTERM_BP_FAT GO:0048285~organelle fission	47	1.02E-62	
	GOTERM_BP_FAT GO:0000279~M phase	48	7.59E-57	
	GOTERM_CC_FAT GO:0000775~chromosome, centromeric region	62	8.67E-113	
	GOTERM_CC_FAT GO:0000776~kinetochore	50	9.99E-95	
	GOTERM_CC_FAT GO:0000779~condensed chromosome, centromeric region	47	4.45E-91	
	Module 2	GOTERM_BP_FAT GO:0005250~DNA replication	33	1.90E-52
	GOTERM_BP_FAT GO:0006259~DNA metabolic process	34	2.23E-40	
	GOTERM_BP_FAT GO:0006261~DNA-dependent DNA replication	17	2.18E-26	
	GOTERM_BP_FAT GO:0006270~DNA replication initiation	12	7.20E-23	
	GOTERM_BP_FAT GO:0007049~cell cycle	17	6.59E-08	
	GOTERM_CC_FAT GO:0006564~nucleoplasm	32	3.08E-30	
	GOTERM_CC_FAT GO:00031981~nuclear lumen	32	1.62E-23	
	GOTERM_CC_FAT GO:0007013~intracellular organelle lumen	32	8.91E-21	
	Module 3	GOTERM_BP_FAT GO:0008610~lipid biosynthetic process	16	1.55E-13
	GOTERM_BP_FAT GO:0008202~steroid metabolic process	16	1.63E-10	
	GOTERM_BP_FAT GO:0006694~steroid biosynthetic process	10	1.46E-09	
	GOTERM_BP_FAT GO:00055114~oxidation reduction	16	5.40E-08	

Ying et al. Journal of Ovarian Research 2013, 6:88
http://www.ovarianresearch.com/content/6/1/88
Table 3 Significant GO terms and KEGG pathways of the 7 functional modules (Continued)

Module 4	GO TERM_CC_FAT GO:0005792~microsome	9	1.12E-04
Module 4	GO TERM_MF_FAT GO:0008395~steroid hydroxylase activity	8	7.37E-12
Module 4	GO TERM_MF_FAT GO:0005506~iron ion binding	13	4.58E-08
Module 4	GO TERM_MF_FAT GO:0046027~phospholipid:diacylglycerol acyltransferase activity	5	3.56E-07
Module 4	GO TERM_MF_FAT GO:0016411~acylglycerol O-acyltransferase activity	6	5.50E-07
Module 4	GO TERM_MF_FAT GO:0020037~heme binding	9	2.00E-06
Module 4	KEGG_PATHWAY hsa00561:Glycerolipid metabolism	9	5.32E-07
Module 4	KEGG_PATHWAY hsa00120:Primary bile acid biosynthesis	7	6.29E-07
Module 4	KEGG_PATHWAY hsa00565:Ether lipid metabolism	8	2.94E-06
Module 4	KEGG_PATHWAY hsa00564:Glycerophospholipid metabolism	8	3.56E-04
Module 4	GO TERM_BP_FAT GO:0007049~cell cycle	14	8.67E-12
Module 4	GO TERM_BP_FAT GO:0051329~interphase of mitotic cell cycle	9	7.36E-11
Module 4	GO TERM_BP_FAT GO:0051325~interphase	9	9.31E-11
Module 4	GO TERM_BP_FAT GO:0000278~mitotic cell cycle	11	7.71E-10
Module 4	GO TERM_BP_FAT GO:0022402~cell cycle process	12	1.00E-09
Module 4	GO TERM_CC_FAT GO:0000654~nucleoplasm	10	4.75E-05
Module 4	GO TERM_CC_FAT GO:0031981~nuclear lumen	10	0.00340642
Module 4	GO TERM_CC_FAT GO:0007013~intracellular organelle lumen	10	0.01893931
Module 4	GO TERM_CC_FAT GO:0004323~organelle lumen	10	0.02288144
Module 4	GO TERM_CC_FAT GO:00031974~membrane-enclosed lumen	10	0.02691056
Module 4	GO TERM_MF_FAT GO:0016563~transcription activator activity	7	3.96E-04
Module 4	KEGG_PATHWAY hsa04110:Cell cycle	13	2.04E-15
Module 4	KEGG_PATHWAY hsa05222:Small cell lung cancer	9	8.99E-09
Module 4	KEGG_PATHWAY hsa05200:Pathways in cancer	11	7.11E-07
Module 4	KEGG_PATHWAY hsa05220:Chronic myeloid leukemia	7	1.89E-05
Module 4	KEGG_PATHWAY hsa05215:Prostate cancer	7	5.34E-05
Module 4	GO TERM_BP_FAT GO:0000511~response to wounding	9	7.88E-06
Module 4	GO TERM_BP_FAT GO:0042060~wound healing	5	0.03445470
Module 4	GO TERM_CC_FAT GO:00005576~extracellular region	13	2.43E-06
Module 4	GO TERM_CC_FAT GO:00005615~extracellular space	8	0.00156456
Module 4	GO TERM_CC_FAT GO:0004421~extracellular region part	8	0.01486285
Module 4	GO TERM_MF_FAT GO:0000520~insulin-like growth factor binding	4	0.00203848
Module 4	GO TERM_MF_FAT GO:0000425~serine-type endopeptidase activity	5	0.01598712
Module 4	GO TERM_MF_FAT GO:00008236~serine-type peptidase activity	5	0.02826126
Module 4	GO TERM_MF_FAT GO:0017171~serine hydrolase activity	5	0.02952737
Module 4	KEGG_PATHWAY hsa04610:Complement and coagulation cascades	4	0.03363616
Module 4	GO TERM_BP_FAT GO:0031145~anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process	15	1.37E-29
Module 4	GO TERM_BP_FAT GO:0005143~positive regulation of ubiquitin-protein ligase activity during mitotic cell cycle	15	2.77E-29
Module 4	GO TERM_BP_FAT GO:00051443~positive regulation of ubiquitin-protein ligase activity	15	4.34E-29
Module 4	GO TERM_BP_FAT GO:00051439~regulation of ubiquitin-protein ligase activity during mitotic cell cycle	15	5.41E-29
Module 4	GO TERM_BP_FAT GO:00051351~positive regulation of ligase activity	15	8.31E-29
Module 4	GO TERM_CC_FAT GO:00005654~nucleoplasm	15	5.11E-13
Module 4	GO TERM_CC_FAT GO:00005829~cytosol	16	1.27E-12
Module 4	GO TERM_CC_FAT GO:00031981~nuclear lumen	15	5.65E-10
GGI network. CETN2 is an X-linked gene, it is reported that the down-regulated gene of CETN2 may have tumor suppressive functions in bladder cancer [25]. Somatic alterations of CDKN1A involved in the G1 phase of the cell cycle, are the common events in neoplastic development for multiple tumor types [26]. Thus, the biological processes and pathways of these genes might be alternated by other genes in the development of ovarian cancers.

FOXM1, CDK2, DBF4, AR, BRCA1, and TFDP1 were the TFs identified in the functional modules in GGI network. FOXM1 (Forkhead box M1) is overexpressed in a majority of human tumors, and represents an attractive therapeutic target in the fight against cancer [27]. Forkhead TFs are intimately involved in the regulation of organismal development, cell differentiation and proliferation, and the interference with FoxM1 activity is believed to contribute to the increase in mitotic errors seen in human diseases such as cancer [28]. CDK2 (cyclin-dependent kinase 2) is found to be overexpressed in ovarian tumors, and is concur with cyclin E to ovarian tumor development [29,30]. DBF4 was a TF in module 2, and DNA replication was a significant function of module 2, which is consistent with the discovery that DBF4 is involved in the initiation of DNA replication and overexpressed in human cancer cell lines and in many primary tumors compared with the matched normal tissues [31]. The relationship between the TFs AR, BRCA1 and cancer have already been confirmed in the previous studies [32-34]. TFDP1 suppresses the colorectal cancer development by reducing telomerase activity and inhibiting the apoptosis of cells [35].

In conclusion, our data provides a comprehensive bioinformatics analysis of genes and pathways which may be involved in the pathogenesis of ovarian cancer. We have found a total of 332 DEGs, and constructed the GGI interaction networks by these DEGs and their significantly interacted genes. Furthermore, we conducted functional modules analysis in the network. However, further analyses are still required to unravel their mechanism in the process of tumor genesis and development in ovarian cancer.

Abbreviations
DEGs: Differentially expressed genes; TCGA: The cancer genome atlas; GGI: Gene-gene interaction; GO: Gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; FDR: False discovery rate; BP: biological process; MF: molecular function; CC: cellular component.

Table 3 Significant GO terms and KEGG pathways of the 7 functional modules (Continued)

GO TERM_CC_FAT	GO:00005680-anaphase-promoting complex	6	1,60E-09
GO TERM_CC_FAT	GO:0000151~ubiquitin ligase complex	8	3,17E-09
GO TERM_MF_FAT	GO:0004842~ubiquitin-protein ligase activity	9	1,70E-12
GO TERM_MF_FAT	GO:0019787~small conjugating protein ligase activity	9	4,54E-12
GO TERM_MF_FAT	GO:0016881~acid-amino acid ligase activity	9	2,17E-11
GO TERM_MF_FAT	GO:0016879~ligase activity, forming carbon-nitrogen bonds	9	6,71E-11
KEGG_PATHWAY	hsa04120:Ubiquitin mediated proteolysis	14	9,66E-17
KEGG_PATHWAY	hsa04114:Oocyte meiosis	13	1,07E-15
KEGG_PATHWAY	hsa04110:Cell cycle	13	5,29E-15
KEGG_PATHWAY	hsa04914:Progesterone-mediated oocyte maturation	12	9,39E-15

GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate; BP: biological process; MF: molecular function; CC: cellular component.
3. Bell D, Berchuck A, Birrer M, Chien J, Cramer D, Dao F, Dhir R, DiSaia P, Gabra H, Glenn P. Integrated genomics of ovarian carcinoma. 2011.

4. Bolton KL, Ganda C, Berchuck A, Pharaoh PD, Gayther SA. Role of common genetic variants in ovarian cancer susceptibility and outcome: progress to date from the ovarian cancer association consortium (OCAC). J Int Med 2012, 272:166–178.

5. Liang D, Meyer L, Zhang DW, Lin J, Pu X, Ye Y, Gu L, Wu X, Lu K. Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res 2010, 70:9765–9776.

6. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474:606–615.

7. Ratner E, Lu L, Boeke M, Barnett R, Nallur S, Chin LJ, Pelletier C, Blitzblau R, Tassi R, Parajape T. A KRAS-variant in ovarian cancer acts as a genetic marker of cancer risk. Cancer Res 2010, 70:6509–6515.

8. Ying H, Lv J, Ying T, Li J, Yang Q. Screening of feature genes of the ovarian cancer epithelia with DNA microarray. J Ovar Res 2013, 6:1–8.

9. Chang H, Fontenay GV, Han J, Cong G, Baehner FL, Gray JW, Spellman PT, Parvin B. Morphometric analysis of TCGA glioblastoma multiforme. BMC Bioinformatics 2011, 12:684.

10. Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S. Bioinformatics and computational biology solutions using R and bioconductor. In: Statistics for Biology and Health. Springer New York; 2005.

11. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill D, Issel-Tarver L, Kasarskis E, Kent JS, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. Nat Genet 2000, 25:25–29.

12. Kanehisa M. The KEGG database. Novartis found symp. 2002.

13. Prasad TK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Morris DJ, Ding YS, Xin X, Zhu G, Zheng Y, Li Y, Overbeek S, Luthra R, Sturrock S, Kandasamy KE, Mohamadzadeh M, Rocher K, Weirauch MT, Akhtar S, Verma S, Coons JB, Natarajan N, Sentman CL, Zhang Y, planar cell polarity and Vangl2 trafficking by Tmem14a.

14. Joshi-Tope G, Gillespie M, Vastrik I, D"{o}ring A, Stein A, Shokouhifar P, Bork P, Jassal B, Gopinath G, Wu G, Matthews L. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 2009, 37:D676–D679.

15. Schaefer CF, Anthony K, Krupa S, Buchhof J, Day M, Hanney T, Buettow KH. PID: the pathway interaction database. Nucleic Acids Res 2009, 37:D674–D679.

16. Somwar R, Erdjument-Bromage H, Larson E, Shum D, Lockwood WW, Yang G, Sander C, Oberfeld O, Tempst P, Djallali H. Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines. Proc Natl Acad Sci USA 2011, 108:15675–15680.

17. Wan S-M, Lv F, Guan T. Identification of genes and microRNAs involved in ovarian carcinogenesis. Asian Pac J Cancer Prev 2012, 13:3997–4000.

18. Kimura N, Takahashi M, Ikuta K, Natori O, Igarashi K, Ueno M, Nakashima K, Kobukai I, Taka T. Identification of a novel transcription factor, ELYS, expressed predominantly in mouse foetal haematopoietic tissues. Genes Cells 2002, 7:435–446.

19. Dorfmueller G, Buchholz J, Baumbackt D, Wei W, Dzieciatkowa M, Epplen J, Klein J, Frieden E, Skarda E, Grolik A. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 2007, 7:55.

20. Perales G, Burguete-Garcia AI, Dimas J, Bahena-Román M, Bermúdez-Morales VH, Moreno J, Madrid-Marina V. A polymorphism in the AT-hook motif of the transcriptional regulator AKNA is a risk factor for cervical cancer. Biomarkers 2010, 15:470–474.

21. Chea E. Regulation of planar cell polarity and Vang2 trafficking by Tmem14a. 2012.

22. Ghafoor-Fard S, Modarresi M-H. Expression of cancer-testis genes in brain tumors: implications for cancer immunotherapy. Future Oncol 2012, 8:961–987.

23. Takimoto M. Gene section. 2013. 15:1. http://AtlasGeneticsOncology.org.

24. Oluwajubade AG, Oluwadara AO, Adeyinka AA, Adebisi OA, Akinwande OA. A polymorphism in the 3'UTR of RNF13 involves a potential novel function in breast cancer. Biol Res 2013, 46:185.

25. Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H, Yamazaki T, Kawaihara K, Nishiyama K, Seki N, miR-218 on the genomic loss of chromosome 4p15. 31. Functions as a tumor suppressor in bladder cancer. Inter J Oncol 2011, 39:13–21.

26. Gayther SA, Song H, Ramus SJ, Kjaer SK, Whitmore AS, Quaye L, Tyrer J, Shadforth D, Hogdall E, Hogdall C. Tagging single nucleotide polymorphisms in cell cycle control genes and susceptibility to invasive epithelial ovarian cancer. Cancer Res 2007, 67:3027–3035.

27. Bhat UK, Halasi M, Gartel AL. Thiazole antibiotics target FoxM1 and induce apoptosis in human cancer cells. PLoS One 2009, 4:e5592.

28. Larukul I, Shihi M, Medema RH. FoxM1: at the crossroads of ageing and cancer: biochimica et biophysica acta (BBA) -reviews on. Cancer 2007, 1775:92–102.

29. Marone M, Scambia G, Giannitelli C, Ferrandina G, Masciullo V, Bellacosa A, Benedetti-Panici P, Mancuso S. Analysis of cyclin E and CDK2 in ovarian cancer: gene amplification and RNA overexpression. Int J Cancer 1998, 75:34–39.

30. Ernst BC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 2009, 9:415–428.

31. Montagnoli A, Moll J, Colotta F. Targeting cell division cycle 7 kinase: a new approach for cancer therapy. Clin Cancer Res 2010, 16:4503–4508.

32. Eltatt A, Warburton KG, Mukhopadhyay A, Ferre RM, Shaheen F, Cross P, Plummer ER, Robson CN, Edmonson RD. Androgen receptor expression is a biological marker for androgen sensitivity in high grade serous epithelial ovarian cancer. Gynecol Oncol 2012, 124:142–147.

33. Audeh MW, Carmichael J, Benson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oarkin A, Loman N. Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010, 376:245–251.

34. Zang S, Royer R, Li S, McLaughlin JR, Rosen R, Risch HA, Fan J, Bradley L, Shaw PA, Nard SA. Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. Gynecol Oncol 2011, 121:353–357.

35. Shin SM, Chung YJ, Oh ST, Jeon HM, Hwang LJ, Namkoong H, Kim HK, Cho GW, Hur SY, Kim TE. HCR1–interacting molecule “deleted in polyposis 1” plays a tumor-suppressor role in colon carcinogenesis. Gastroenterology 2006, 130:2074–2086.

8. Ying et al. Journal of Ovarian Research 2013, 6:88
http://www.ovarianresearch.com/content/6/1/88

Cite this article as: Ying et al.: Gene-gene interaction network analysis of ovarian cancer using TCGA data. Journal of Ovarian Research 2013 6:88

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar

Submit your manuscript at www.biomedcentral.com/submit