Online Supplement:

Manuscript Title:
Prognosis of adults with idiopathic pulmonary fibrosis without anti-fibrotic therapy: a systematic review

Authors:
Yet H Khor, Yvonne Ng, Hayley Barnes, Nicole SL Goh, Christine F McDonald, Anne E Holland
Table of content:

S1. Database search strategy

S2. Risk of bias assessment tool

S3. Reasons of exclusion and references for excluded studies

S4. Additional reports of included studies

S5. Characteristics of included studies

S6. Cohort studies: Documented treatments for IPF at baseline and/or during the study

S7. Randomised controlled trial: Concomitant treatment of IPF which were not allowed during the study

S8. Risk of bias assessment

S9. Figures for results

 • Figure E2: Pooled mean changes in forced vital capacity (in litres) at 1 year to < 2 years

 • Figure E3: Pooled mean changes in diffusing capacity for carbon monoxide (in mL/mmHg/min) at 1 year to < 2 years

 • Figure E4: Pooled mean changes in 6MWD at 1 year to < 2 years

 • Figure E5: Subgroup analysis of pooled proportions of mortality at 1 year to < 2 years: Randomised controlled trials versus cohort studies

 • Figure E6: Sensitivity analyses of pooled proportions of mortality at different time frames

S10. Additional results

 i. Progression-free survival

 ii. Respiratory-related mortality

 iii. Proportion of patients with an absolute decline in FVC of ≥ 10% predicted

 iv. Proportion of patients with an absolute decline in DLCO of ≥ 15% predicted

 v. Change in dyspnoea

 vi. Change in health-related quality of life using the EQ-5D
S1. Database search strategy

MEDLINE (Ovid)

1. Idiopathic Pulmonary Fibrosis/
2. ((pulmonary$ or lung$ or alveoli$) adj2 (fibros$ or fibrot$)).tw.
3. 1 or 2
4. Randomized Controlled Trial.pt.
5. (randomized or randomised).ab,ti.
6. placebo.ab,ti.
7. dt.fs.
8. randomly.ab,ti.
9. trial.ab,ti.
10. groups.ab,ti.
11. or/4-10
12. follow-up studies.sh.
13. cohort.tw.
14. exp mortality/
15. course$.tw.
16. prognos$.tw.
17. predict$.tw.
18. incidence.sh.
19. survival analysis/
20. or/12-19
21. 3 and (11 or 20)
22. Animals/
23. Humans/
24. 22 not (22 and 23)
25. 21 not 24

CINAHL (EBSCO)

S1 (MH "Idiopathic Pulmonary Fibrosis")
S2 idiopathic* AND (pulmonary* OR lung* OR alveoli*) AND (fibros* OR fibrot*)
S3 S1 OR S2
S4 (DE "RANDOMIZED CONTROLLED TRIALS")
S5 randomized or randomised
S6 randomly
S7 placebo*
S8 groups
S9 S4 OR S5 OR S6 OR S7 OR S8
S10 (MH "Prospective Studies+)")
S11 cohort
S12 (MH "Mortality+)")
S13 course*
S14 prognos*
S15 predict*
S16 (MH "incidence")
S17 (MH "Survival Analysis+")
S18 S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17
S19 S3 AND (S9 OR S18)
Embase (Ovid)
1. fibrosing alveolitis/
2. (idiopathic$ adj2 (pulmonary$ or lung$ or alveoli$) adj2 (fibros$ or fibrot$)).tw.
3. 1 or 2
4. Randomized Controlled Trial/
5. randomization/
6. (clinica$ adj3 trial$).tw.
7. exp Placebo/
8. placebo$.ti,ab.
9. random$.ti,ab.
10. groups.ti,ab.
11. or/4-10
12. follow up/
13. cohort.tw.
14. exp mortality rate/
15. course$.tw.
16. prognos$.tw.
17. predict$.tw.
18. incidence/
19. survival analysis/
20. or/12-19
21. 3 and (11 or 20)
22. exp animals/ or exp invertebrate/ or animal experiment/ or animal model/ or animal tissue/ or animal cell/ or nonhuman/
23. human/ or normal human/ or human cell/
24. 22 not (22 and 23)
25. 21 not 24

CENTRAL (Cochrane Register of Studies Online)
#1 MESH DESCRIPTOR Idiopathic Pulmonary Fibrosis EXPLODE ALL TREES
#2 ((pulmonary* or lung* or alveoli*) adj2 (fibros* or fibrot*)):TI,AB,KY
#3 #1 OR #2

PubMed
("idiopathic pulmonary fibrosis"[MeSH Terms] OR "pulmonary fibrosis"[Title/Abstract]) AND
((randomized controlled trial[Publication Type] OR (randomized[Title/Abstract] AND controlled[Title/Abstract] AND trial[Title/Abstract])) OR (incidence[MeSH:noexp] OR mortality[MeSH Terms] OR follow up studies[MeSH:noexp] OR prognos*[Text Word] OR predict*[Text Word] OR course*[Text Word]))
S2. Risk of bias assessment tool

Criteria	High risk of bias	Low risk of bias	Unclear/Other
Sample	Clinical	Population	Unclear
Recruitment	Retrospective	Prospective	Unclear
Selection criteria for participants^a	No	Yes	Unclear
Baseline characteristics of participants[*]	No	Yes	Unclear
Follow-up percentage (if RCT)	< 80%	≥ 80%	Unclear
Follow-up duration	< 1 year	≥ 1 year	Unclear
Reason lost to follow-up	No	Yes	Unclear
Timing of diagnosis	At the conclusion of the study	At baseline or before recruitment to study	Unclear
Blinding (if RCT)	Not blinded	Blinding adequate	Unclear
Outcome described a priori	No	Yes	Unclear
Intention-to-treat analysis (if RCT)	No	Yes	Unclear
Adequate description of statistical analysis	No	Yes	Unclear

^a Scoring was based on the description of the inclusion and exclusion criteria of participants: low risk if adequately described; unclear if inadequately described; high risk if not described

[*] Scoring was based on the description of baseline characteristics of participants: low risk if adequately described; unclear if inadequately described; high risk if not described
S3. Reasons of exclusion and references for excluded studies

Part A: Reason for exclusion

Study	Reason for exclusion
Abe 2012	Follow-up duration < 12 months
Abe 2015	Follow-up duration < 12 months
Abhyankar 2013	Follow-up duration unclear; author can’t be contacted
Abu-Hussein 2010	Follow-up duration unclear; author can’t be contacted
Acar Silva 2013	Follow-up duration unclear; author can’t be contacted
Acosta Fernández 2006	Editorial
Adamali 2012	Follow-up duration unclear; author can’t be contacted
Aggarwal 2016	Not a randomised controlled trial or cohort study
Aggarwal 2017	Follow-up duration unclear; author can’t be contacted
Agostini 2005	Review article
Alghamdi 2015	Follow-up duration unclear; author can’t be contacted
Alhamad 2015a	Follow-up duration unclear; author can’t be contacted
Alhamad 2015	Follow-up duration unclear; author can’t be contacted
Alhamad 2012	Follow-up duration unclear; author can’t be contacted
Alhamad 2012a	Follow-up duration unclear; author can’t be contacted
Alhamad 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Alhamad 2015a	Follow-up duration unclear; author can’t be contacted
Alhamad 2016	Follow-up duration unclear; author can’t be contacted
Alton 1989	Participants overlap with other included study (Agusti 1994)
Ambur 2015	Follow-up duration unclear; author can’t be contacted
Alken 2015	Not idiopathic pulmonary fibrosis
Andersen 2012	Follow-up duration unclear; author can’t be contacted
Ando 2011	Follow-up duration unclear; author can’t be contacted
Ando 2011a	Foreign language (translation not available)
Ando 2013	Follow-up duration variable; author can’t be contacted
Anonymous 1971	Not idiopathic pulmonary fibrosis
Anonymous 1978	Editorial
Anonymous 1995	Foreign language (translation not available)
Anonymous 1999	Review article
Anonymous 2005	Patient education handout
Anonymous 2006	Review article
Anonymous 2017	Not a randomised controlled trial or cohort study
Ansarie 2012	Mixed disease group
Antoniou 2002	No placebo group
Antoniou 2003	No placebo group
Antoniou 2004	No placebo group
Antoniou 2006	No placebo group
Reference	Detailed Description
---------------------------------	--
Antoniou 2012	Follow-up duration unclear; author can’t be contacted
Appel 2007	Follow-up duration unclear; author can’t be contacted
Arai 2012	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Arai 2013	Follow-up duration unclear; author can’t be contacted
Arai 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Arai 2015	Follow-up duration unclear; author can’t be contacted
Arai 2016	Follow-up duration unclear; author can’t be contacted
Arai 2016a	Follow-up duration unclear; author can’t be contacted
Arango Tomas 2015	Follow-up duration < 12 months
Arizono 2015	Not a randomised controlled trial or cohort study
Ash 2017	Follow-up duration unclear; author can’t be contacted
Assayag 2014	Mixed disease group
Assayag 2015	Mixed disease group
Aubry 2002	Follow-up duration unclear; author can’t be contacted
Awano 2017	Not a randomised controlled trial or cohort study
Baba 2010	Follow-up duration unclear; author can’t be contacted
Baba 2012	Follow-up duration unclear; author can’t be contacted
Baba 2013	Follow-up duration unclear; author can’t be contacted
Baddini-Martinez 1993	Follow-up duration variable; author can’t be contacted
Balade Martinez 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Balestro 2012	Follow-up duration unclear; author can’t be contacted
Balestro 2013	Follow-up duration variable; author can’t be contacted
Balestro 2014	Follow-up duration unclear; author can’t be contacted
Balestro 2016	Follow-up duration variable; author can’t be contacted
Balestro 2016a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Bando 2001	Follow-up duration variable; author can’t be contacted
Bando 2010	Possible use of antifibrotic agents (nintedanib or pirfenidone); author can’t be contacted
Bando 2012	Foreign language - translation not available
Bando 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Bando 2014a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Bando 2015a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Bando 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Barber 2014	Not a randomised controlled trial or cohort study
Barber 2015	Not a randomised controlled trial or cohort study
Barber 2016	Not a randomised controlled trial or cohort study
Barbero 2013	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Barlo 2009a	Follow-up duration variable; author can’t be contacted
Barry 2011	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Barry 2012	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Battista 2003	Follow-up duration variable; author can’t be contacted
Baughman 1992	Follow-up duration variable; author can’t be contacted
Behera 1998	Follow-up duration variable; author can’t be contacted
Behr 2002	Mixed disease group
Behr 2006	Review article
Behr 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Behr 2014a	Not a randomised controlled trial or cohort study
Behr 2014b	Not a randomised controlled trial or cohort study
Behr 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Behr 2015a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Reference	Comment
---------------------------	---
Behr 2015b	Not a randomised controlled trial of cohort study
Behr 2015c	Follow-up duration variable; author can’t be contacted
Behr 2015d	Follow-up duration variable; author can’t be contacted
Behr 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Beltramo 2016	Follow-up duration unclear; author can’t be contacted
Bennett 2017	Not idiopathic pulmonary fibrosis
Benson 1972	Not idiopathic pulmonary fibrosis
Berry 2012	Mixed disease group
Best 2008	Follow-up duration variable; author can’t be contacted
Black 2013	Follow-up duration unclear; author can’t be contacted
Blackburn 2015	Follow-up duration unclear; author can’t be contacted
Bodlet 2012	Follow-up duration variable; author can’t be contacted
Bodlet 2013	Follow-up duration variable; author can’t be contacted
Bois 2016	Not a randomised controlled trial or cohort study
Bollinelli 1973	Not a randomised controlled trial or cohort study
Bonella 2013	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Bonella 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Bonella 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Bonella 2015a	Review article
Bonella 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Bonella 2016a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Bonham 2014	Follow-up duration unclear; author can’t be contacted
Boon 2009	Not a randomised controlled trial or cohort study
Borges 2016	No relevant outcomes
Borie 2011	Follow-up duration variable; author can’t be contacted
Borie 2012	Follow-up duration variable; author can’t be contacted
Borie 2013	Follow-up duration variable; author can’t be contacted
Borie 2016	Mixed disease group
Bournazos 2009	Participants overlap with other included study (Bournazos 2011)
Bournazos 2010	Participants overlap with other included study (Bournazos 2011)
Bournazos 2010a	Participants overlap with other included study (Bournazos 2011)
Bradford 2003	Follow-up duration variable; author can’t be contacted
Bradford 2004	Follow-up duration variable; author can’t be contacted
Bradshaw 2012	Diagnosis unclear; author can’t be contacted
Britton 2000	Review article
Broder 2016	Not a randomised controlled trial or cohort study
Brown 1971	Not a randomised controlled trial or cohort study
Brown 2012	Participants overlap with other included study (Fisher 2017)
Brown 2015	Participants overlap with other included study (Fisher 2017)
Brunetti 2013	Follow-up duration unclear; author can’t be contacted
Brunnenemer 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Burgess 2015	Not a randomised controlled trial or cohort study
Burgess 2015a	Not a randomised controlled trial or cohort study
Burrell 2012	Follow-up duration unclear; author can’t be contacted
Callahan 2016	Participants overlap with other included study (Toelle 2014)
Caminati 2009	Follow-up duration variable; author can’t be contacted
Campainha 2011	Follow-up duration unclear; author can’t be contacted
Cao 2016	Follow-up duration variable; author contacted
Capano 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Carbone 2006	Follow-up duration variable; author can’t be contacted
Carbone 2010	Follow-up duration unclear; author can’t be contacted
Carbone 2010a	Follow-up duration unclear; author can’t be contacted
Reference	Description
--------------------	--
Caro 2016	Follow-up duration variable; author can’t be contacted
Casanova 2009	Foreign language (translation not available)
Cegla 1974	Follow-up duration < 12 months
Cegla 1976	Paper not available for review
Cegla 1977	Not a randomised controlled trial or cohort study
Cegla 1980	Not a randomised controlled trial or cohort study
Cerri 2012	Follow-up duration < 12 months
Cerri 2013	Follow-up duration unclear; author can’t be contacted
Chan 1997	Participants overlap with other included study (Jacob 2016)
Chartrand 2015	Participants overlap with other included study (Strand 2014)
Chaudhuri 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Chaudhuri 2014a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Chen 2012	Mixed disease group
Chetta 2005	Editorial
Chien 2012	Follow-up duration unclear; author can’t be contacted
Chien 2013	Follow-up duration variable; author can’t be contacted
Chien 2014	Follow-up duration variable; author can’t be contacted
Chodosowska 1988	Included participants < 18 years old
Choi 2014	Participants overlap with other included study (Richards 2012)
Chuchalin 2000	Review article
Churg 2007	Mixed disease group
Cinel 2010	Not adult population
Cioffi Squitieri 2014	Mixed disease group
Claar 2015	Not a randomised controlled trial or cohort study
Cohen 2013	Follow-up duration < 12 months
Coll 2011	Foreign language (translation not available)
Collard 2003	Participants overlap with other included study (Strand 2014)
Collard 2004	Participants overlap with other included study (Strand 2014)
Collard 2007	Participants overlap with other included study (Strand 2014)
Collard 2010	Editorial
Collard 2012a	Follow-up duration variable
Collard 2014	Participants overlap with other included study (STEP-IPF/ACE-IPF/PANTHER-IPF trials)
Colombi 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Colombi 2015a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Colombi 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Condos 2016	Not a randomised controlled trial or cohort study
Corte 2009	Mixed disease group
Corte 2010	Participants overlap with other included study (Jacob 2016)
Corte 2012	Participants overlap with other included study (Jacob 2016)
Corte 2012a	Mixed disease group
Corte 2013	Comment
Corte 2014	Participants overlap with other included study (Jo 2017)
Corte 2014a	Participants overlap with other included study (Jo 2017)
Corte 2015	Not a randomised controlled trial or cohort study
Corte 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Costa da Silva 2009	Mixed disease group
Costabel 2011	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Costabel 2012	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Costabel 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Costabel 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Costabel 2016a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Reference	Overview
--------------------------	---
Costabel 2016b	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
CoTherix 2005	Follow-up duration < 12 months
Cottin 2012	Mixed disease group
Cottin 2013	Mixed disease group
Cottin 2013a	Mixed disease group
Cottin 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Cottin 2015a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Coultas 1996a	Paper not available for review
Craig 2014	Follow-up duration unclear; author can’t be contacted
Crestani 2012	Follow-up duration < 12 months
Crestani 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Crestani 2015a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Crestani 2015b	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Crestani 2015c	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Crestani 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
D’Andrea 2016	Uncertain exclusion criteria for use of antifibrotic agents; author can’t be contacted
Dabar 2014	Follow-up duration unclear; author can’t be contacted
Dai 2015	Follow-up duration unclear; author can’t be contacted
Dai 2015a	Not a randomised controlled trial or cohort study
Dalleywater 2014	Follow-up duration variable; author can’t be contacted
Dalleywater 2015	Follow-up duration variable; author can’t be contacted
Daniil 1999	Follow-up duration variable; author can’t be contacted
Dawson 2012	Review article
Dayton 1993	Follow-up duration variable; author can’t be contacted
de Andrade 2010	Follow-up duration variable; author can’t be contacted
de Cremoux 1990	Follow-up duration unclear; author can’t be contacted
de Lauretis 2010	Participants overlap with other included study (Jacob 2016)
de Lauretis 2013	Participants overlap with other included study (Jacob 2016)
De Meester 1999	Mixed disease group
De Meester 2001	Mixed disease group
de W Kitcat 1928	Not idiopathic pulmonary fibrosis
de Wall 1991	Diagnosis unclear; author can’t be contacted
DePianto 2015	Follow-up duration unclear
DePianto 2016	Follow-up duration unclear
Devaraj 2009	Follow-up duration unclear
Dierkesmann 1972	Patient age unclear; author can’t be contacted
Dietzsch 1966	Not a randomised controlled trial or cohort study
Dimadi 2003	No placebo group
Dimmock 2013	Follow-up duration unclear; author can’t be contacted
Dimmock 2013a	Not a randomised controlled trial or cohort study
Divihotawela 2016	Follow-up duration unclear
Doherty 1997	Follow-up duration unclear; author can’t be contacted
Donahoe 2015	Follow-up duration variable
Dong 2015	Follow-up duration unclear; author can’t be contacted
Doubkova 2014	Follow-up duration unclear; author can’t be contacted
Doubkova 2016	Follow-up duration unclear; author can’t be contacted
Doubkova 2016a	Follow-up duration unclear; author can’t be contacted
Douglas 1997	Follow-up duration unclear; author can’t be contacted
Douglas 1998	No placebo group
Douglas 2000	Follow-up duration unclear; author can’t be contacted
Downman 2016	Not a randomised controlled trial or cohort study
Study	Description
---------------------	---
du Bois 2011	Follow-up duration < 12 months
du Bois 2013	Follow-up duration unclear; author can’t be contacted
du Bois 2014	Letter
Duong 2015	Follow-up duration unclear; author can’t be contacted
Durheim 2015	Follow-up duration variable
Durheim 2015a	Follow-up duration variable
Dwarkanath 2013	Follow-up duration unclear; author can’t be contacted
Eaden 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Egan 1996	Review article
Ekstrom 2016	Mixed disease group; author contacted
Eldahdouh 2017	Not a randomised controlled trial or cohort study
Elshafi 2012	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Elshafi 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Enomoto 2006	Follow-up duration variable
Enomoto 2012	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Enomoto 2013	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Enomoto 2013a	Participants overlap with other included study (Fujimoto 2012)
Enomoto 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Enomoto 2014a	Participants overlap with other included study (Fujimoto 2012)
Enomoto 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Enomoto 2015a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Fakharian 2010	Follow-up duration unclear; author can’t be contacted
Fasano 1999	Foreign language - translation not available
Fell 2009	Follow-up duration unclear
Fernandez 2010	Follow-up duration unclear; author can’t be contacted
Finn 2015	No relevant outcomes
Fischer 2006	Participants overlap with other included study (Strand 2014)
Fischer 2012	Follow-up duration unclear; author can’t be contacted
Flaherty 2000	Follow-up duration < 12 months
Flaherty 2001	Participants overlap with other included study (Gay 1998)
Flaherty 2004	Follow-up duration < 12 months
Flaherty 2006	Participants overlap with other included study (Gay 1998)
Ford-Sahibzada 2016	Mixed disease group
Franquét 2000	Follow-up duration < 12 months
François 2015	Follow-up duration unclear; author can’t be contacted
Fremer 2006	Follow-up duration unclear; author can’t be contacted
Fujimoto 2003	Follow-up duration unclear; author can’t be contacted
Fujiwara 2006	Foreign language - translation not available
Fukihara 2015	Follow-up duration unclear; author can’t be contacted
Furukawa 2013	Follow-up duration unclear; author can’t be contacted
Furukawa 2015	Follow-up duration unclear; author can’t be contacted
Furukawa 2017	Possible use of antifibrotic agents (nintedanib or pirfenidone); author can’t be contacted
Gainza 2017	Paper not available for review
Gandhi 2014	Follow-up duration variable; author can’t be contacted
George 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Gerke 2010	Mixed disease group
Gerke 2010a	Mixed disease group
Giddings 2012	Insufficient data available
Gilani 2010	Participants overlap with other included study (Richards 2012)
Gille 2016	Follow-up duration unclear; author can’t be contacted
Giaspale 2014	Not a randomised controlled trial or cohort study
Reference	Description
-------------	--
Glaspole 2015	Not a randomised controlled trial or cohort study
Glaspole 2016	Not a randomised controlled trial or cohort study
Glaspole 2016a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Glaspole 2017	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Goh 2011	Participants overlap with other included study (Jacob 2016)
Goh 2016	Not a randomised controlled trial or cohort study
Golec 2008	Mixed disease group
Gomes 2015	Participants overlap with other included study (Soares 2013)
Gonzalez 2016	Follow-up duration unclear; author can’t be contacted
Goobie 2016	Follow-up duration unclear; author can’t be contacted
Gottlieb 2010	Mixed disease group
Gottlieb 2012	Mixed disease group
Goyard 2015	Paper not available for review
Gracey 1970	Not a randomised controlled trial or cohort study
Greene 2001	Follow-up duration variable; author can’t be contacted
Greene 2002	Follow-up duration variable; author can’t be contacted
Gribbin 2006	Follow-up duration variable; author contacted
Grijm 2005	Mixed disease group
Gruden 2016	Follow-up duration variable
Guenther 2014	Not a randomised controlled trial or cohort study
Gurioli 2011	Follow-up duration variable; author can’t be contacted
Guschall 1998	Included participants < 18 years old
Hamai 2016	Follow-up duration variable
Hamdy 2014	Not a randomised controlled trial or cohort study
Hamm 1970	Review article
Han 2002	Follow-up duration < 12 months
Han 2008	Participants overlap with other included study (Gay 1998)
Han 2010	Not a randomised controlled trial or cohort study
Han 2011	Follow-up duration < 12 months
Han 2013	Follow-up duration < 12 months
Han 2014	Follow-up duration < 12 months
Hanak 2008	Follow-up duration variable
Hara 2015	Review article
Hara 2016	Follow-up duration unclear; author can’t be contacted
Hara 2017	Not a randomised controlled trial or cohort study
Harada 2013	Participants overlap with other included study (Akagi 2009)
Harari 1997	Follow-up duration unclear; author can’t be contacted
Harari 2005	Review article
Harari 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Harari 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Harari 2015a	Follow-up duration unclear; author can’t be contacted
Harari 2017	Letter
Harris 1998	Not a randomised controlled trial or cohort study
Hashemi 2013	Follow-up duration variable; author can’t be contacted
Hashimoto 2014	Follow-up duration variable; author can’t be contacted
Hayakawa 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Hayakawa 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Hayes 2016	Follow-up duration variable; author can’t be contacted
He 2005	Follow-up duration < 12 months
He 2016	Follow-up duration unclear; author can’t be contacted
Herazo 2011	Follow-up duration unclear
Study	Comments
-------------------------------	--
Herazo-Maya 2013	Participants overlap with other included study (Richards 2012)
Herazo-Maya 2013a	Follow-up duration unclear
Herazo-Maya 2014	Participants overlap with other included study (Richards 2012)
Herazo-Maya 2015	Participants overlap with other included study (Richards 2012)
Herazo-Maya 2015a	Participants overlap with other included study (Richards 2012)
Herridge 2016	Follow-up duration unclear; author can’t be contacted
Hirano 2017	Follow-up duration unclear; author can’t be contacted
Hiwatari 1991	Participants overlap with other included study (Hiwatari 1997)
Hiwatari 1994	Not a randomised controlled trial or cohort study
Ho 2013	Participants overlap with other included study (Su 2011)
Hogaboam 2012	Review article
Homma 1995	Mixed disease group
Homma 2013	Follow-up duration unclear; author can’t be contacted
Hook 2010	Follow-up duration variable; author can’t be contacted
Hook 2011	Follow-up duration variable; author can’t be contacted
Hook 2012	Follow-up duration variable; author contacted
Hope-Gill 2012	Follow-up duration unclear; author can’t be contacted
Horimasu 2011	Follow-up duration unclear
Horita 2011	Follow-up duration < 12 months
Hosenpud 1998	Mixed disease group
Hosoda 2013	Follow-up duration < 12 months
Hou 2001	No placebo group
Hou 2011	Follow-up duration unclear; author can’t be contacted
Hozumi 2016	Follow-up duration variable
Huang 2011	Follow-up duration unclear
Huang 2015	Participants overlap with other included study (Oldham 2015)
Huang 2015a	Participants overlap with other included study (Oldham 2015)
Hubbard 1996	Follow-up duration unclear; author can’t be contacted
Hubbard 2000	Follow-up duration < 12 months
Hubbard 2002	Follow-up duration unclear; author can’t be contacted
Huie 2010	Mixed disease group
Huie 2011	Follow-up duration unclear; author can’t be contacted
Huppmann 2013	Mixed disease group
Hutchinson 2014	Not a randomised controlled trial or cohort study
Hwang 2011	Mixed disease group
Hyldgaard 2013	Follow-up duration unclear; author can’t be contacted
Hyldgaard 2013a	Follow-up duration unclear; author can’t be contacted
Hyldgaard 2014	Follow-up duration unclear; author can’t be contacted
Hyldgaard 2014a	Follow-up duration unclear; author can’t be contacted
Hyldgaard 2015	Follow-up duration unclear; author can’t be contacted
Ichimura 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Ichimura 2014a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Ichimuray, 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Ihle 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Ikeda 2013	No relevant outcomes
Ikezoe 2013	Follow-up duration unclear; author can’t be contacted
Ikezoe 2014	Follow-up duration variable; author can’t be contacted
Ishii 2013	Follow-up duration variable; author can’t be contacted
Iwamoto 2014	Follow-up duration unclear
Iwasawa 2006	Foreign language (translation not available)
Iwasawa 2008	Paper not available for review
Iwasawa 2009	Participants overlap with other included study (Iwasawa 2014)
Reference	Note
-------------------------	--
Iwasawa 2010	Follow-up duration variable
Iwasawa 2017	Follow-up duration variable
Izdebska-Makosa 1981	Included participants < 18 years old
Jacob 2016a	Follow-up duration unclear; author can’t be contacted
Jagadeesan 2016	No relevant outcomes
Jamal 2013	Follow-up duration unclear; author can’t be contacted
Jankowich 2010	Mixed disease group
Jegal 2005	Follow-up duration variable; author can’t be contacted
Jenkins 2015	Follow-up duration unclear
Jeong 2005	Follow-up duration unclear; author can’t be contacted
Jeze 1984	Review article
Jeze 1988	Not idiopathic pulmonary fibrosis
Jia 2016	Follow-up duration unclear; author can’t be contacted
Jiang 2007	Review article
Jiang 2016	Mixed disease group
Jindal 1979	Mixed disease group
Jo 2013	Mixed disease group
Jo 2013a	Mixed disease group
Jo 2015	Participants overlap with other included study (Jo 2017)
Jo 2015a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Jo 2016	Participants overlap with other included study (Jo 2017)
Jo 2016a	Participants overlap with other included study (Jo 2017)
Jo 2016b	Participants overlap with other included study (Jo 2017)
Jo 2016c	Participants overlap with other included study (Jo 2017)
Johnson 1989	No placebo group
Johnston 1993	Not a randomised controlled trial or cohort study
Johnston 1997	Participants overlap with other included study (Rudd 2007)
Judge 2010	Follow-up duration unclear; author can’t be contacted
Judge 2012	Follow-up duration unclear; author can’t be contacted
Kaarteenaho-Wiik 1996	Follow-up duration variable; author can’t be contacted
Kaddah 2016	Not a randomised controlled trial or cohort study
Kadikar 1997	Follow-up duration unclear; author can’t be contacted
Kagami 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kahloon 2013	Follow-up duration unclear
Kakugawa 2016	Follow-up duration unclear; author can’t be contacted
Kalra 2003	Follow-up duration unclear
Kane 2016	Not a randomised controlled trial or cohort study
Kappos 1977	Not a randomised controlled trial or cohort study
Kass 2013	Participants overlap with other included study (Richards 2012)
Kataoka 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kato 2016	Not a randomised controlled trial or cohort study
Kawabata 2003	Participants overlap with other included study (Hamada 2007)
Kawakami 1980	Not a randomised controlled trial or cohort study
Kawatani 2007	Foreign language (translation not available)
Kaya 2015	Follow-up duration unclear; author can’t be contacted
Keir 2012	Not idiopathic pulmonary fibrosis
Keir 2014	Not idiopathic pulmonary fibrosis
Khadawardi 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kim 1994	Follow-up duration < 12 months
Kim 2011	Mixed disease group
Reference	Details
------------------	---
Kim 2012a	Follow-up duration unclear; author can’t be contacted
Kim 2014a	Participants overlap with other included study (Song 2011)
Kim 2014b	Follow-up duration unclear; author can’t be contacted
Kim 2014c	Follow-up duration unclear; author can’t be contacted
Kim 2014d	Follow-up duration unclear; author can’t be contacted
Kim 2015a	Participants overlap with other included study (Song 2011)
Kim 2015b	Mixed disease group
Kim 2015c	Participants overlap with other included study (Song 2011)
Kim 2015d	Not idiopathic pulmonary fibrosis
Kim 2016	No relevant outcomes
Kimura 2013	Possible use of antifibrotic agents (nintedanib or pirfenidone); author can’t be contacted
Kinder 2008	Participants overlap with other included study (Strand 2014)
Kinder 2009	Participants overlap with other included study (Strand 2014)
Kinder 2010	Follow-up duration < 12 months
King 2001a	Participants overlap with other included study (Strand 2014)
King 2001b	Participants overlap with other included study (Strand 2014)
King 2005	Not a randomised controlled trial or cohort study
King 2013	Not a randomised controlled trial or cohort study
King 2014b	Not a randomised controlled trial or cohort study
King 2014c	Not a randomised controlled trial or cohort study
Kinney 2013	Follow-up duration < 12 months
Kinoshita 2013	Follow-up duration unclear; author can’t be contacted
Kirk 1984a	Participants overlap with other included study (Jacob 2016)
Kishaba 2012	Follow-up duration unclear; author can’t be contacted
Kishaba 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kishaba 2014a	Follow-up duration unclear; author can’t be contacted
Kishaba 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kishaba 2015a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kishaba 2017	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kitamura 2012	Follow-up duration unclear; author can’t be contacted
Kitamura 2012a	Follow-up duration unclear; author can’t be contacted
Kogan 1995	Not a randomised controlled trial or cohort study
Kohashi 2016	Follow-up duration unclear; author can’t be contacted
Kohlhaeufl 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kokuho 2013	Review article
Kolb 1998a	Age of study population unclear
Kolb 2016	Editorial
Kolek 1994	Paper not available for review
Kolek 1995	Paper not available for review
Kolilekas 2010	Not a randomised controlled trial or cohort study
Kolilekas 2013	Follow-up duration variable
Kolilekas 2016	Editorial
Kondoh 2013	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kondoh 2015a	No relevant outcomes
Kondoh 2016	Participants overlap with other included study (Natsuiizaka 2014)
Konishi 2012	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Konishi 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kono 2013	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kono 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kono 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Koo 2017	Follow-up duration unclear; author can’t be contacted
Reference	Description
----------------------------	---
Kopinski 2011	Not a randomised controlled trial or cohort study
Kopinski 2011a	Not a randomised controlled trial or cohort study
Korthagen 2014	Follow-up duration variable
Krakówka 1968	Included participants < 18 years old
Kreuter 2014	Participants overlap with other included study (Kreuter 2016)
Kreuter 2015	Not a randomised controlled trial or cohort study
Kreuter 2015a	Not a randomised controlled trial or cohort study
Kreuter 2016a	Not a randomised controlled trial or cohort study
Kreuter 2016b	Not a randomised controlled trial or cohort study
Kreuter 2016c	Not a randomised controlled trial or cohort study
Kreuter 2016d	Not a randomised controlled trial or cohort study
Kreuter 2017	Not a randomised controlled trial or cohort study
Kreuter 2017a	Not a randomised controlled trial or cohort study
Krowka 2007	Follow-up duration < 12 months
Kubo 2005	Follow-up duration variable; author can’t be contacted
Kulkarni 2015	Follow-up duration unclear; author can’t be contacted
Kulkarni 2016	Follow-up duration unclear; author can’t be contacted
Kundu 2014	Follow-up duration unclear; author can’t be contacted
Kunstling 1976	Review article
Kuse 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Kyung 2005	Foreign language (translation not available)
Kärkkäinen 2015	Follow-up duration unclear; author can’t be contacted
Kärkkäinen 2016	Follow-up duration unclear; author can’t be contacted
Lai 2012a	Follow-up duration unclear; author can’t be contacted
Lama 2003	Follow-up duration variable; author can’t be contacted
Lamas 2011	Follow-up duration variable; author contacted
Lamas 2011a	Follow-up duration variable; author contacted
Lancaster 2005	Follow-up duration variable; author can’t be contacted
Lancaster 2009	Not a randomised controlled trial or cohort study
Lancaster 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Lancaster 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Langacker 1981	Follow-up duration unclear; author can’t be contacted
Lanser 1984	Review article
Lavender 2011	Comment
Layton 2017	Mixed disease group
Leceuvre 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Lederer 2006a	Follow-up duration < 12 months
Lederer 2006b	Follow-up duration variable; author contacted
Lee 2005	Follow-up duration unclear; author can’t be contacted
Lee 2009	Follow-up duration variable
Lee 2011a	Participants overlap with other included study (Ryerson 2014)
Lee 2011b	Follow-up duration unclear
Lee 2012a	Participants overlap with other included study (Ryerson 2014)
Lee 2012b	Follow-up duration unclear
Lee 2012c	Follow-up duration variable
Lee 2012d	No relevant outcomes
Lee 2013	Follow-up duration unclear; author can’t be contacted
Lee 2013a	Participants overlap with other included study (Ryerson 2014)
Lee 2014	Follow-up duration variable
Lee 2015a	Follow-up duration variable; author can’t be contacted
Lee 2015b	Follow-up duration unclear; author can’t be contacted
Lee 2015c	Follow-up duration variable
Reference	Note
------------------	--
Lee 2016	Follow-up duration unclear; author can’t be contacted
Lee 2016a	Follow-up duration unclear; author can’t be contacted
Lee 2016b	Follow-up duration variable
Lee 2017	Follow-up duration unclear; author can’t be contacted
Lei 1983	Included participants < 18 years old
Lettieri 2006	Participants overlap with other included study (Fisher 2017)
Lettieri 2006a	Participants overlap with other included study (Fisher 2017)
Leuchte 2015	Follow-up duration unclear; author can’t be contacted
Leung 2008	Mixed disease group
Ley 2011	Participants overlap with other included studies (Ryerson 2014 and Moua 2016)
Ley 2012	Participants overlap with other included studies (Ryerson 2014 and Moua 2016)
Ley 2012a	Participants overlap with other included studies (Ryerson 2014 and Moua 2016)
Ley 2013	Review article
Ley 2014	Participants overlap with other included studies (INSPIRE and CAPACITY trials)
Ley 2014a	Participants overlap with other included studies (Ryerson 2014 and Moua 2016)
Ley 2015	Participants overlap with other included studies (INSPIRE and CAPACITY trials)
Ley 2015a	Editorial
Ley 2016	Not a randomised controlled trial or cohort study
Li 2010a	Follow-up duration unclear; author can’t be contacted
Li 2015a	Follow-up duration variable; author can’t be contacted
Liang 2014	Not a randomised controlled trial or cohort study
Lichert 2013	Paper not available for review
Lindell 2007	Follow-up duration < 12 months
Lindell 2011	Follow-up duration unclear; author can’t be contacted
Lindell 2014	Follow-up duration unclear; author can’t be contacted
Linden 2006	Follow-up duration unclear; author can’t be contacted
Loeh 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Loeh 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Lok 1999	Follow-up duration unclear; author can’t be contacted
Louw 1984	Follow-up duration variable; author can’t be contacted
Lynch 2004	Follow-up duration unclear
Lynch 2004a	Follow-up duration unclear
Lynch 2005	Follow-up duration unclear
Ma 2012	Follow-up duration unclear
Ma 2013	Follow-up duration unclear; author can’t be contacted
Mackay 2010	Comment
Makela 2016	Not a randomised controlled trial or cohort study
Makiguchi 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Malagari 2003	No placebo group
Maldonado 2014	Follow-up duration unclear
Manali 2008	Follow-up duration variable
Mandi 1974	Not idiopathic pulmonary fibrosis
Mannes 1994	Follow-up duration < 12 months
Margaritopoulos 2016	Comment
Margaritopoulos 2016	Not a randomised controlled trial or cohort study
Year	Study Information
-------	---
2016a	Mart 2012 Follow-up duration unclear; author can’t be contacted
	Martinez 2004 Follow-up duration variable; author can’t be contacted
	Martinez 2005 Follow-up duration variable; author can’t be contacted
	Martinez 2013 Follow-up duration < 12 months
	Martinez-Moreno 2015 Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
	Martinez-Moreno 2016 Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
	Marty 1973 Not a randomised controlled trial or cohort study
	Mascitelli 2010 Letter
	Masjedi 2010 Follow-up duration unclear; author can’t be contacted
	Mathal 2007 Not a randomised controlled trial or cohort study
	Matson 2016 Follow-up duration unclear
	Matsubara 2009 Follow-up duration variable
	Matusiewicz 1993 Follow-up duration variable
	McAllister 2016 Follow-up duration unclear; author can’t be contacted
	McBurney 2012 Data unclear; author can’t be contacted
	McCormack 1991 Participants overlap with other included study (Strand 2014)
	McCormack 1995 Participants overlap with other included study (Strand 2014)
	McCormack 1995a Participants overlap with other included study (Strand 2014)
	Meier-Sydow 1978 Paper not available for review
	Meier-Sydow 1979a Follow-up duration variable
	Meier-Sydow 1986 No relevant outcomes
	Meier-Sydow 1986a No relevant outcomes
	Mejia 2009 Participants overlap with other included study (Richards 2012)
	Meliconi 1990 Follow-up duration unclear; author can’t be contacted
	Meliconi 1990a Follow-up duration unclear; author can’t be contacted
	Meltzer 2011 Not a randomised controlled trial or cohort study
	Meltzer 2011a Not a randomised controlled trial or cohort study
	Meyer 2017 Comment
	Meyers 2000 Follow-up duration unclear
	Micco 2012 Follow-up duration unclear; author can’t be contacted
	Miki 2003 Follow-up duration unclear; author can’t be contacted
	Mills 2014 Follow-up duration unclear; author can’t be contacted
	Milne 2016 Not a randomised controlled trial or cohort study
	Minai 2008 Participants overlap with other included study (Mason 2007)
	Minai 2012 Not a randomised controlled trial or cohort study
	Minegishi 2011 Mixed disease group
	Minegishi 2011a Mixed disease group
	Minegishi 2011b Mixed disease group
	Minegishi 2014 Not idiopathic pulmonary fibrosis
	Minnis 2015 No relevant outcomes
	Mino 1995 Follow-up duration variable; author can’t be contacted
	Mitchell 2011 Not a randomised controlled trial or cohort study
	Mitchell 2013 Not a randomised controlled trial or cohort study
	Miyake 2006 Not a randomised controlled trial or cohort study
	Miyamoto 1992 Foreign language (translation not available)
	Mizushima 2010 Follow-up duration unclear; author can’t be contacted
	Modrykamien 2009 Not a randomised controlled trial or cohort study
	Modrykamien 2010 Not a randomised controlled trial or cohort study
	Mogulkoc 2001a Follow-up duration unclear; author can’t be contacted
Study	Description
-------------------------------	---
Mogulkoc 2015	Follow-up duration unclear; author can’t be contacted
Mogulkoc 2016	Follow-up duration unclear; author can’t be contacted
Mohabir 2011	Participants overlap with other included study (Su 2011)
Mohanasundaram 2015	No relevant outcomes
Molina-Molina 2003	Mixed disease group
Molina-Molina 2008	Follow-up duration variable; author can’t be contacted
Molyneaux 2015	Participants overlap with other included study (Russell 2016)
Monaghan 2004	Participants overlap with other included study (Jacob 2016)
Montani 2007	Comment
Montesi 2016	Follow-up duration unclear; author can’t be contacted
Moolman 1991	Not a randomised controlled trial or cohort study
Moon 2016	No relevant outcomes
Mooney 2012	Participants overlap with other included study (Ryerson 2014)
Mooney 2013	Participants overlap with other included study (Ryerson 2014)
Moore 2009	Editorial
Moore 2015	No relevant outcomes
Mori 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Motomura 2012	Follow-up duration unclear; author can’t be contacted
Moua 2011	Follow-up duration unclear
Moua 2012	Follow-up duration unclear
Moua 2014	Participants overlap with other included study (Moua 2016)
Moua 2014a	Follow-up duration variable; author can’t be contacted
Mudambi 2015	Follow-up duration unclear; author can’t be contacted
Mujakperuo 2013	Editorial
Mukae 2002	Not a randomised controlled trial or cohort study
Munteanu 2011	Follow-up duration unclear; author can’t be contacted
Mura 2004	Follow-up duration unclear; author can’t be contacted
Mura 2005	Follow-up duration variable; author can’t be contacted
Mura 2006	Follow-up duration variable; author can’t be contacted
Mura 2006a	Not a randomised controlled trial or cohort study
Nadrous 2005	Participants overlap with other included study (Nadrous 2004)
Nadrous 2005a	Participants overlap with other included study (Nadrous 2004)
Nadrous 2005b	Participants overlap with other included study (Nadrous 2004)
Nagai 1998a	Paper not available for review
Nagai 1999	Follow-up duration unclear; author can’t be contacted
Nagao 2002	Participants overlap with other included study (Hamada 2007)
Nagata 2011	Participants overlap with other included study (Akagi 2009)
Najafizadeh 2011	Mixed disease group
Nakagawa 2016	Follow-up duration unclear; author can’t be contacted
Nakaya 2011	Follow-up duration unclear; author can’t be contacted
Nakaya 2014	Follow-up duration unclear; author can’t be contacted
Nakayama 2003	Not a randomised controlled trial or cohort study
Nakayama 2011	Follow-up duration unclear; author can’t be contacted
Nakayama 2013	Not idiopathic pulmonary fibrosis
Nannini 2015	Follow-up duration unclear; author can’t be contacted
Natarajan 2015	Follow-up duration unclear; author can’t be contacted
Nathan 2004	Follow-up duration variable
Nathan 2007	Not a randomised controlled trial or cohort study
Nathan 2008	Follow-up duration variable
Nathan 2008a	Not a randomised controlled trial or cohort study
Reference	Note
-------------	--
Nathan 2010	Follow-up duration unclear
Nathan 2011a	Participants overlap with other included study (Fisher 2017a)
Nathan 2012	Follow-up duration unclear
Nathan 2012a	Participants overlap with other included study (Fisher 2017a)
Nathan 2013	Follow-up duration unclear
Nathan 2015	Not a randomised controlled trial or cohort study
Nathan 2015a	Not a randomised controlled trial or cohort study
Nathan 2015b	Not a randomised controlled trial or cohort study
Nathan 2015c	Not a randomised controlled trial or cohort study
Nathan 2015d	Follow-up duration unclear
Nathan 2015e	Follow-up duration variable
Nathan 2016	Not a randomised controlled trial or cohort study
Nathan 2016a	Not a randomised controlled trial or cohort study
Nathan 2016b	Not a randomised controlled trial or cohort study
Nathan 2017a	Not a randomised controlled trial or cohort study
Natsuiaka 2012	Mixed disease group
Navaratnam 2010	Follow-up duration variable; author can’t be contacted
Navaratnam 2011	Follow-up duration variable; author can’t be contacted
Navaratnam 2012	Follow-up duration unclear; author can’t be contacted
Navaratnam 2013	Follow-up duration unclear; author can’t be contacted
Navaratnam 2014	Follow-up duration unclear; author can’t be contacted
Navaratnam 2016	Follow-up duration unclear; author can’t be contacted
Navas 2006	Mixed disease group
Neurohr 2010	Follow-up duration variable
Ng 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Nicholson 2002	Participants overlap with other included study (Jacob 2016)
Nicol 2015a	Participants overlap with other included study (Nicol 2015)
Nicol 2016	Follow-up duration unclear; author can’t be contacted
Nicol 2016a	Follow-up duration unclear; author can’t be contacted
Nikaido 2013	Mixed disease group
Nishiyama 2001	Not a randomised controlled trial or cohort study
Nishiyama 2004	Follow-up duration < 12 months
Nishiyama 2007	Not a randomised controlled trial or cohort study
Nishiyama 2010	Participants overlap with other included study (Kondoh 2010)
Nishiyama 2010a	Participants overlap with other included study (Kondoh 2010)
Nishiyama 2012	Follow-up duration unclear; author can’t be contacted
Nishiyama 2012a	Participants overlap with other included study (Kondoh 2010)
Nishiyama 2016b	Mixed disease group
Noble 2010	Not a randomised controlled trial or cohort study
Noble 2014	Not a randomised controlled trial or cohort study
Noble 2014a	Not a randomised controlled trial or cohort study
Noble 2015	Not a randomised controlled trial or cohort study
Noble 2015a	Not a randomised controlled trial or cohort study
Noble 2016	Not a randomised controlled trial or cohort study
Noble 2016a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Noble 2016b	Not a randomised controlled trial or cohort study
Noble 2016c	Not a randomised controlled trial or cohort study
Noble 2016d	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Noth 2013	Participants overlap with other included study (Oldham 2015)
Noth 2013a	Participants overlap with other included study (Oldham 2015)
Novela 2009	Follow-up duration < 12 months
Nozu 2009	Mixed disease group
Reference	Description
--------------------	---
Nunes 2011	Follow-up duration variable; author can’t be contacted
Nunomura 2016	Follow-up duration variable
O’Dwyer 2013	Participants overlap with other included study (INSPIRE trial)
Obi-Tabot 2012	No relevant outcomes
Oda 2014a	Follow-up duration unclear; author can’t be contacted
Oda 2016	Follow-up duration unclear; author can’t be contacted
Ogawa 2012	Follow-up duration unclear; author can’t be contacted
Oh 2012	Follow-up duration unclear; author can’t be contacted
Ohkubo 2016	Follow-up duration unclear; author can’t be contacted
Ohshimo 2012	No relevant outcomes
Ohshimo 2013	Follow-up duration unclear; author can’t be contacted
Ohshimo 2013a	Follow-up duration unclear; author can’t be contacted
Ohshimo 2014	Follow-up duration unclear; author can’t be contacted
Ohshimo 2014a	Follow-up duration unclear; author can’t be contacted
Ohshimo 2014b	No relevant outcomes
Ohshimo 2015	Follow-up duration unclear; author can’t be contacted
Ohshimo 2015a	Follow-up duration unclear; author can’t be contacted
Ohta 2017	Follow-up duration < 12 months
Oishi 2013	Follow-up duration unclear; author can’t be contacted
Oishi 2016	Possible use of antifibrotic agents (nintedanib or pirfenidone); author can’t be contacted
Oishi 2016a	Possible use of antifibrotic agents (nintedanib or pirfenidone); author can’t be contacted
Okamoto 2006	Foreign language (translation not available)
Okutan 2012	Follow-up duration unclear; author can’t be contacted
Oldham 2015a	Not a randomised controlled trial or cohort study
Olson 2007	Mixed disease group
Olson 2009	Mixed disease group
Oltmanns 2013	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Oltmanns 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Oltmanns 2014a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Omori 2015	Follow-up duration unclear; author can’t be contacted
Otaola 2011	Follow-up duration unclear; author can’t be contacted
Otsuka 2013	Follow-up duration unclear; author can’t be contacted
Otsuka 2016	Follow-up duration unclear; author can’t be contacted
Ozawa 2009	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Paik 2012	Follow-up duration unclear; author can’t be contacted
Palwatwichai 2000	Follow-up duration unclear; author can’t be contacted
Pannu 2015	Follow-up duration unclear; author can’t be contacted
Papali 2010	Follow-up duration unclear
Papiris 1997	Follow-up duration unclear; author can’t be contacted
Papiris 2015	Follow-up duration variable
Parambil 2005	Not a randomised controlled trial or cohort study
Parfrey 2012	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Parfrey 2013	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Parfrey 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Park 1999	Not a randomised controlled trial or cohort study
Park 2004	Foreign language (translation not available)
Park 2007	Participants overlap with other included study (Song 2011)
Park 2012	Follow-up duration unclear
Park 2012a	Follow-up duration variable; author can’t be contacted
Park 2012b	Follow-up duration variable; author can’t be contacted
Author(s)	Notes
----------------	--
Park 2016	Participants overlap with other included study (Song 2011)
Park 2016a	Follow-up duration unclear; author can't be contacted
Parra 2006	Not a randomised controlled trial or cohort study
Parra 2007	Follow-up duration unclear; author can't be contacted
Parra 2007a	Follow-up duration unclear; author can't be contacted
Parra 2008	Follow-up duration unclear; author can’t be contacted
Parra 2010	Follow-up duration variable; author can’t be contacted
Parra 2012	Participants overlap with other included study (Soares 2015)
Parra 2012a	Participants overlap with other included study (Soares 2015)
Parra 2012b	Participants overlap with other included study (Soares 2015)
Parra 2012c	Follow-up duration variable; author can’t be contacted
Parra 2013	Participants overlap with other included study (Soares 2015)
Parra 2013a	Participants overlap with other included study (Soares 2015)
Parra 2014	Participants overlap with other included study (Soares 2015)
Paterniti 2017	Not a randomised controlled trial or cohort study
Patterson 2017	Data unclear; author cant be contacted
Peelen 2010	Follow-up duration unclear; author can’t be contacted
Peljto 2013	Participants overlap with other included study (Oldham 2015)
Peng 2008	Follow-up duration unclear
Pereira 2006	Participants overlap with other included study (Soares 2015)
Perez-Padilla 1993	Participants overlap with other included study (Selman 1998)
Peris 2011	Follow-up duration unclear; author can’t be contacted
Peters 1993	Follow-up duration variable
Pires 2011	Follow-up duration unclear; author can’t be contacted
Pitsiou 2007	Follow-up duration unclear; author can’t be contacted
Pittrow 2014	Not a randomised controlled trial or cohort study
Pohl 1993	Diagnosis unclear; author can’t be contacted
Polonski 1994	Paper not available for review
Polonski 1995	Foreign language (translation not available)
Polonski 1995a	Paper not available for review
Poor 2010	Follow-up duration unclear; author can’t be contacted
Portillo 2016	Mixed disease group
Prasse 2003	Not a randomised controlled trial or cohort study
Prasse 2008	Paper not available for review
Prasse 2012	Follow-up duration unclear
Prasse 2015	Follow-up duration unclear; author can’t be contacted
Pritchett 2012	Not a randomised controlled trial or cohort study
Probst 2011	Participants overlap with other included study (Prasse 2009)
Probst 2012	Participants overlap with other included study (Prasse 2009)
Pujols 2004	Follow-up duration variable; author can’t be contacted
Puthiyaveettil 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Putman 2016	Not idiopathic pulmonary fibrosis
Quadrelli 2010	Follow-up duration unclear; author can’t be contacted
Quinn 2002	Not a randomised controlled trial or cohort study
Rad 2015	Mixed disease group
Raghu 1991	No placebo group
Raghu 1999	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Raghu 2000	Follow-up duration < 12 months
Raghu 2001	Follow-up duration < 12 months
Raghu 2003	Follow-up duration variable; author can’t be contacted
Raghu 2004	Follow-up duration variable; author can’t be contacted
Raghu 2004a	Follow-up duration unclear; author can’t be contacted
Reference	Description
---------------------------	---
Raghu 2006a	Not a randomised controlled trial or cohort study
Raghu 2007	Follow-up duration < 12 months
Raghu 2008	Follow-up duration < 12 months
Raghu 2012a	Follow-up duration < 12 months
Raghu 2012b	Follow-up duration < 12 months
Raghu 2012c	Follow-up duration < 12 months
Raghu 2013b	Participants overlap with other included study (Collins 2015)
Raghu 2014b	Follow-up duration variable; author can’t be contacted
Raghu 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Raghu 2016a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Raghu 2016b	Review article
Raghu 2016c	Participants overlap with other included study (Collins 2015)
Raghu 2016d	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Rajasekaran 2001	Not a randomised controlled trial or cohort study
Rathnapala 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Rathnapala 2016a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Rathnapala 2016b	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Ravaglia 2013	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Rebeck 1982	Mixed disease group
Redfern 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Redondo 2014	Not a randomised controlled trial or cohort study
Redondo 2014a	Participants overlap with other included study (Soares Pires 2013)
Reed 2006	Mixed disease group
Reichner 2004	Paper not available for review
Relf 2015	Follow-up duration unclear; author can’t be contacted
Ren 2014	Follow-up duration unclear; author can’t be contacted
Renzoni 1997	Follow-up duration unclear; author can’t be contacted
Riario Sforza 2008	Editorial
Ribeiro Neto 2013	Letter
Richards 2011	Follow-up duration unclear; author can’t be contacted
Richards 2012a	Participants overlap with other included study (Richards 2012)
Richeldi 2004	Letter
Richeldi 2012	Participants overlap with other included studies (Ryerson 2014 and Moua 2016)
Richeldi 2013	Not a randomised controlled trial or cohort study
Richeldi 2014b	Study protocol
Richeldi 2015	Not a randomised controlled trial or cohort study
Richeldi 2015a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Richeldi 2015b	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Richeldi 2016	Not a randomised controlled trial or cohort study
Richeldi 2016a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Riddell 2013	Follow-up duration unclear; author can’t be contacted
Riddell 2013a	Follow-up duration unclear; author can’t be contacted
Riddell 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Riha 2002	Follow-up duration variable; author can’t be contacted
Rivera-Lebron 2012	Follow-up duration unclear; author can’t be contacted
Rivera-Lebron 2013	Follow-up duration unclear; author can’t be contacted
Roldán 2016	Not a randomised controlled trial or cohort study
Romagnoli 2012	Follow-up duration unclear; author can’t be contacted
Romei 2012	Follow-up duration unclear
Romei 2015	Mixed disease group
Rooney 2016	Follow-up duration < 12 months
Reference	Status
--------------------	---
Rudd 1981	Mixed disease group
Rufino 2011	Follow-up duration unclear; author can’t be contacted
Rusanov 2012	No relevant outcomes
Rush 2016	Follow-up duration unclear; author can’t be contacted
Russell 2013	Not a randomised controlled trial or cohort study
Ryerson 2010	Not a randomised controlled trial or cohort study
Ryerson 2011	Follow-up duration unclear; participants overlap with other included study (Ryerson 2014)
Ryerson 2011a	Follow-up duration unclear; participants overlap with other included study (Ryerson 2014)
Ryerson 2012	Participants overlap with other included studies (Ryerson 2014 and Moua 2016)
Ryerson 2013	Participants overlap with other included studies (Ryerson 2014 and Moua 2016)
Ryerson 2013a	Participants overlap with other included study (Ryerson 2014)
Ryerson 2015	Not idiopathic pulmonary fibrosis
Saini 2013	Not a randomised controlled trial or cohort study
Saini 2015	Diagnosis unclear; author can’t be contacted
Saito 2011	Participants overlap with other included study (Kurashima 2010)
Sakamoto 2011	Follow-up duration unclear
Sakamoto 2012	Follow-up duration unclear
Sakamoto 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Salinas 2012	Foreign language (translation not available)
Salinas 2014	Foreign language (translation not available)
Salisbury 2015	Participants overlap with other included studies (Jacob 2016 and Gay 1998)
Salisbury 2016	Participants overlap with other included study (PANTHER-IPF)
Salisbury 2016a	Participants overlap with other included studies (Jacob 2016 and Gay 1998)
Santana 2008	Letter
Santos 2016	Mixed disease group
Saravanan 2003	Letter
Sarwar 2016	Not a randomised controlled trial or cohort study
Sato 2013	Follow-up duration unclear; author can’t be contacted
Sato 2013a	Follow-up duration unclear; author can’t be contacted
Sato 2016a	Follow-up duration variable; author can’t be contacted
Sato 2006	Mixed disease group
Scadding 1967	Not idiopathic pulmonary fibrosis
Scalori 2014	Study protocol
Schachna 2006	Follow-up duration variable
Schafer 2013	No relevant outcomes
Schafer 2012	Follow-up duration unclear
Schilde 2011	Follow-up duration unclear; author can’t be contacted
Schmidt 1987	No relevant outcomes
Schmidt 2011a	Participants overlap with other included studies (Jacob 2016 and Gay 1998)
Schmidt 2011b	Not a randomised controlled trial or cohort study
Schmidt 2014	Participants overlap with other included studies (Jacob 2016 and Gay 1998)
Schupp 2016	Participants overlap with other included study (Schupp 2015)
Schwartz 1991	Not a randomised controlled trial or cohort study
Schwartz 1994	Follow-up duration variable; author can’t be contacted
Study	Comments
--	--
Schwartz 1994a	Follow-up duration unclear; author can’t be contacted
Scientific Committee 2009	Foreign language - translation not available
Scott 2013	Follow-up duration < 12 months
Sengul 2009	Foreign language (translation not available)
Serban 2013	Not idiopathic pulmonary fibrosis
Sestini 2006	Mixed disease group
Setoguchi 2009	Paper not available for review
Shah 1972	Not idiopathic pulmonary fibrosis
Shah 2014	Follow-up duration variable
Shaker 2013	Follow-up duration unclear; author can’t be contacted
Sharif 2016	Not a randomised controlled trial or cohort study
Sharif 2016a	Follow-up duration unclear; author can’t be contacted
Sharp 2016	Not a randomised controlled trial or cohort study
Sharp 2016a	Follow-up duration unclear
Sharp 2017	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Sheikh 2017	Follow-up duration unclear
Shin 2015	Follow-up duration unclear
Shin 2016	Follow-up duration unclear
Shino 2012	Follow-up duration unclear; author can’t be contacted
Shioya 2013	Follow-up duration unclear; author can’t be contacted
Shiraki 2015	Follow-up duration unclear; author can’t be contacted
Shiratori 2017	Follow-up duration unclear; author can’t be contacted
Sholl 2010	Mixed disease group
Shorr 2002	Follow-up duration unclear
Shulgina 2011	Mixed disease group
Shulgina 2013	Mixed disease group
Silva 2007	Mixed disease group
Silva 2008	Participants overlap with other included study (Jacob 2016)
Simon-Blancal 2012	Follow-up duration unclear; author can’t be contacted
Sköld 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Smadja 2013	Follow-up duration variable; author can’t be contacted
Smadja 2014	Not a randomised controlled trial or cohort study
Smith 1990	Follow-up duration variable; author can’t be contacted
Snell 2016	Not a randomised controlled trial or cohort study
Soares 2013a	Follow-up duration unclear; author can’t be contacted
Sokai 2014	Follow-up duration < 12 months
Sokai 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Sokai 2015a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Sokai 2017	Follow-up duration unclear; author can’t be contacted
Son 2010	Follow-up duration unclear; author can’t be contacted
Son 2015	Follow-up duration unclear; author can’t be contacted
Song 2009	Participants overlap with other included study (Song 2011)
Song 2009a	Follow-up duration variable
Song 2010	Participants overlap with other included study (Song 2011)
Song 2011a	Participants overlap with other included study (Song 2011)
Song 2013	Participants overlap with other included study (Song 2011)
Song 2015	No relevant outcomes
Spencer 2011	Follow-up duration unclear; author can’t be contacted
Speranskaya 2015	Paper not available for review
Stauffer 2016	Participants overlap with other included study (Raghu 2014)
Steffensen 1992	Not a randomised controlled trial or cohort study
Author	Comment
------------------	--
Takenaka 2014	Participants overlap with other included studies (Oldham 2015 and Ryerson 2014)
Sturani 1988	Paper not available for review
Sturani 1990	Foreign language (translation not available)
Subhash 2004	Follow-up duration variable; author can’t be contacted
Sugino 2010	Foreign language (translation not available)
Sugino 2013	Not idiopathic pulmonary fibrosis
Sugino 2014	Not a randomised controlled trial or cohort study
Sugino 2014a	Follow-up duration unclear; author can’t be contacted
Sugino 2015	Follow-up duration unclear; author can’t be contacted
Sugino 2015a	Follow-up duration unclear; author can’t be contacted
Suissa 2015	Comment
Sumikawa 2008	Participants overlap with other included studies (Kondoh 2005, Kondoh 2010 and Fujimoto 2012)
Sumikawa 2014	Participants overlap with other included studies (Kondoh 2005, Kondoh 2010 and Fujimoto 2012)
Sun 2016	Paper not available for review
Suraj 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Sverzellati 2011	Mixed disease group
Sverzellati 2017	Editorial
Swift 2013	Mixed disease group
Swigris 2009	Follow-up duration variable; author contacted
Swigris 2011	Follow-up duration variable; author contacted
Swigris 2012	Not a randomised controlled trial or cohort study
Swigris 2013	Letter
Tabuena 2005	Follow-up duration unclear; author can’t be contacted
Tachibana 2016	Follow-up duration unclear; author can’t be contacted
Tajiri 2003	Not a randomised controlled trial or cohort study
Tajiri 2015	Possible use of antifibrotic agents (nintedanib or pirfenidone); author can’t be contacted
Takada 2013	Mixed disease group
Takada 2014	Mixed disease group
Takahashi 2006	Follow-up duration unclear; author can’t be contacted
Takahashi 2012	Not a randomised controlled trial or cohort study
Takaiwa 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Takei 2016	Mixed disease group
Takenaka 1999	Mixed disease group
Takoi 2012	Mixed disease group
Taniguchi 2011a	Follow-up duration unclear
Taniguchi 2012	Follow-up duration < 12 months
Taniguchi 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Tanizawa 2015	Follow-up duration < 12 months
Tcherkian 2011	Follow-up duration variable; author can’t be contacted
ten Klooster 2011	Follow-up duration unclear; author can’t be contacted
ten Klooster 2012	Follow-up duration unclear; author can’t be contacted
ten Klooster 2013	Follow-up duration unclear; author can’t be contacted
ten Klooster 2015a	Follow-up duration unclear; author can’t be contacted
Teramachi 2017	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Terriff 1992	Follow-up duration variable; author can’t be contacted
Thabut 2003	Follow-up duration unclear; author can’t be contacted
Author Year	Details
-------------	---------
Thomeer 2004	Follow-up duration variable; author can’t be contacted
Titto 2005	Follow-up duration unclear; author can’t be contacted
Titto 2006	Follow-up duration unclear; author can’t be contacted
Todd 2011	Mixed disease group
Tokura 2009	Foreign language (translation not available)
Tomassetti 2010	Follow-up duration variable; author can’t be contacted
Tomassetti 2012	Follow-up duration unclear; author can’t be contacted
Tomassetti 2013	Follow-up duration variable; author can’t be contacted
Tomassetti 2015	Follow-up duration variable; author can’t be contacted
Tomic 2014	Follow-up duration unclear; author can’t be contacted
Tomic 2015	Follow-up duration unclear; author can’t be contacted
Tomioka 2003	Participants overlap with other included study (Tomioka 2007)
Tomioka 2005	Participants overlap with other included study (Tomioka 2007)
Tomioka 2007a	Follow-up duration variable; author can’t be contacted
Tossier 2016	Follow-up duration unclear; author can’t be contacted
Travis 2000	Follow-up duration variable; author can’t be contacted
Triantafillidou 2011	Follow-up duration variable; author can’t be contacted
Triantafillidou 2011a	Follow-up duration unclear; author can’t be contacted
Triantafillidou 2013	Follow-up duration variable; author can’t be contacted
Troy 2014	Not a randomised controlled trial or cohort study
Troy 2014a	Not a randomised controlled trial or cohort study
Trujillo 2010	Follow-up duration unclear; author can’t be contacted
Tsuboi 2006	Not a randomised controlled trial or cohort study
Tsuchida 2011	Follow-up duration unclear; author can’t be contacted
Tsuchiya 2010	Foreign language (translation not available)
Tsuchiya 2015	Not a randomised controlled trial or cohort study
Tsukamoto 2000	Follow-up duration unclear; author can’t be contacted
Tsushima 2010	Not idiopathic pulmonary fibrosis
Tsutsumi 2015	Follow-up duration unclear; author can’t be contacted
Tukiainen 1979	Foreign language (translation not available)
Tukiainen 1983	Mixed disease group
Turner-Warwick 1980	Mixed disease group
Turner-Warwick 1986	Review article
Turner-Warwick 1987	Mixed disease group
Tzortzaki 2007	No placebo group
Tzouvelekis 2011	Participants overlap with other included studies (Tzouvelekis 2013)
Tzouvelekis 2011a	Participants overlap with other included studies (Tzouvelekis 2013)
Tzouvelekis 2011b	Participants overlap with other included studies (Tzouvelekis 2013)
Tzouvelekis 2013a	Comment
Tzouvelekis 2013b	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Tzouvelekis 2014	Follow-up duration unclear
Uehara 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Umeda 2009	Participants overlap with other included study (Umeda 2015)
Umeda 2012	Follow-up duration unclear
Umeda 2013	Follow-up duration unclear; author can’t be contacted
Undurraga 1998	Follow-up duration variable
Usui 2011	Mixed disease group
Usui 2013	Mixed disease group
Vainshelboim 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Vainshelboim 2016a	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Valenzuela 2015	Follow-up duration unclear; author can’t be contacted
Valenzuela 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Author	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
-----------------	--
Valeyre 2014	Mixed disease group
Van Der Aar 2016	Follow-up duration < 12 months
Van der Plas 2011	Follow-up duration variable
Van der Plas 2014	Follow-up duration variable
Van der Velden 2016	No relevant outcomes
van der Vis 2016	Follow-up duration unclear
van Oortegem 1994	Data unclear; author can't be contacted
Varela 2016	Follow-up duration unclear; author can't be contacted
Varney 2001	Follow-up duration < 12 months
Varney 2002	Follow-up duration < 12 months
Varney 2008	Mixed disease group
Vasakova 2007	Follow-up duration unclear
Vasakova 2016	Participants overlap with other included study (Zurkova 2016)
Vasakova 2016a	Participants overlap with other included study (Zurkova 2016)
Vedel-Krogh 2015	Diagnosis unclear; author can't be contacted
Veeraraghavan 2003	Follow-up duration variable
Venuta 1993	Follow-up duration unclear; author can't be contacted
Vercauteren 2014	Follow-up duration unclear; author can't be contacted
Vercauteren 2015	Follow-up duration unclear; author can't be contacted
Vial Dupuy 2012	Mixed disease group
Vial-Dupuy 2011	Mixed disease group
Vial-Dupuy 2011a	Mixed disease group
Vianello 2014	Follow-up duration unclear; author can’t be contacted
Vij 2011	Participants overlap with other included study (Oldham 2015)
Villanueva Bueno 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Vitale 2014	Patient age unclear; author can’t be contacted
Voltolini 2013	Mixed disease group
Vuga 2014	Participants overlap with other included study (Richards 2012)
Wacker 2014	Not a randomised controlled trial or cohort study
Waisberg 2012	Participants overlap with other included study (Soares 2015)
Wakamatsu 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Walsh 2012	Follow-up duration unclear; author can’t be contacted
Walter 2013	Follow-up duration unclear; author can’t be contacted
Wang 2014	Review article
Warrington 2010	Diagnosis and follow-up duration unclear; author can’t be contacted
Watanabe 2008	Follow-up duration unclear; author can’t be contacted
Watanabe 2011	Foreign language (translation not available)
Watanabe 2012	Not idiopathic pulmonary fibrosis
Watanabe 2013	Follow-up duration variable
Watanabe 2014	Follow-up duration variable
Watters 1987	Follow-up duration variable; author can’t be contacted
Wei 2004	Review article
Wei 2013	Review article
Weinstein 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Weiss 2009	Mixed disease group
Wells 1993	Participants overlap with other included study (Jacob 2016)
Wells 1993a	Participants overlap with other included study (Jacob 2016)
Wells 1993b	Mixed disease group
Wells 1994	Follow-up duration variable; author can’t be contacted
Wells 1996	Mixed disease group
Wells 2003	Participants overlap with other included study (Jacob 2016)
Author	Description
-----------------	---
Wells 2005	Follow-up duration variable; author can’t be contacted
Wells 2016	Not a randomised controlled trial or cohort study
Wesolowski 2000	Follow-up duration uncertain; author can’t be contacted
Westhoff 2014	Not idiopathic pulmonary fibrosis
White 2012	Not idiopathic pulmonary fibrosis
White 2015	Not a randomised controlled trial or cohort study
White 2016	Follow-up duration < 12 months
White 2016a	Not a randomised controlled trial or cohort study
Wiertz 2016	Follow-up duration < 12 months
Wijsenbeek 2013	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Wijsenbeek 2015	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Wilkie 2013	Participants overlap with other included study (Wilkie 2012)
Winget 1997	Follow-up duration < 12 months
Winterbauer 2000	No placebo group
Winterbottom 2014	Follow-up duration uncertain; author can’t be contacted
Won 2011	Mixed disease group
Wong 2013	Not a randomised controlled trial or cohort study
Woo 2003	Foreign language (translation not available)
Wu 2005	Follow-up duration < 12 months
Wu 2013	Not a randomised controlled trial or cohort study
Wu 2015a	Not a randomised controlled trial or cohort study
Wu 2016	Data unclear; author can’t be contacted
Wuyts 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Wyeth-Ayerst 2004	Follow-up duration < 12 months
Xaubet 2001	Follow-up duration uncertain; author can’t be contacted
Xaubet 2003	Follow-up duration variable; author can’t be contacted
Xaubet 2010	Follow-up duration uncertain; author can’t be contacted
Xu 2011	Follow-up duration variable; author can’t be contacted
Xue 2011	Follow-up duration uncertain
Yagi 2014	Follow-up duration < 12 months
Yagihashi 2015	Participant overlap with other included studies (IPF Net trials)
Yamada 2003	Paper not available for review
Yamaguchi 1974	Foreign language (translation not available)
Yamaguchi 2017	Follow-up duration unclear
Yamauchi 2011	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Yamauchi 2011a	Follow-up duration < 12 months
Yamauchi 2014	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Yamauchi 2015	Participants overlap with other included studies (Kondoh 2005, Kondoh 2010 and Fujimoto 2012)
Yamauchi 2016	Participants overlap with other included studies (Kondoh 2005, Kondoh 2010 and Fujimoto 2012)
Yamazaki 2016	Follow-up duration < 12 months
Yang 2015	Follow-up duration uncertain; author can’t be contacted
Yano 2011	Mixed disease group
Yasui 2016	Mixed disease group
Yazaki 2016	No relevant outcomes
Ye 2014	Paper not available for review
Yokoo 2013	Follow-up duration uncertain; author can’t be contacted
Yokoo 2013a	Follow-up duration uncertain; author can’t be contacted
Yokoyama 1998	Follow-up duration uncertain; author can’t be contacted
Yokoyama 2010	Follow-up duration < 12 months
Yong 2001	Follow-up duration < 12 months
Reference	Description
-----------	-------------
Yoon 2016	Included patients receiving antifibrotic agents (nintedanib or pirfenidone)
Young 2006	Follow-up duration variable; author contacted
Young 2017	Mixed disease group
Yu 2015	Follow-up duration variable
Yu 2016a	Follow-up duration variable
Yukiko 2013	Mixed disease group
Yukiko 2014	Mixed disease group
Zappala 2010	Participants overlap with other included study (Jacob 2016)
Zhang 2010	Not a randomised controlled trial or cohort study
Zhang 2011	Diagnosis unclear; author can’t be contacted
Zhang 2011a	Follow-up duration unclear; author can’t be contacted
Zhang 2016a	Not idiopathic pulmonary fibrosis
Zhong 2012	Follow-up duration unclear
Ziegenhagen 1998	Not a randomised controlled trial or cohort study
Ziesche 1997	Patient age unclear; author can’t be contacted
Ziesche 1999	No placebo group
Zimmermann 2011	Mixed disease group
Zisman 2000	Data unclear; author can’t be contacted
Zisman 2009	Follow-up duration variable
Zisman 2010	Follow-up duration < 12 months
Zompatori 1996	Foreign language (translation not available)
Zompatori 1997	Foreign language (translation not available)
Zotti 2003	Follow-up duration < 12 months

Part B: References of Excluded Studies

Arai 2014: Arai T, Inoue Y, Sasaki Y, Tachibana K, Nakao K, Sugimoto C, et al. Predictors of the clinical effects of pirfenidone on idiopathic pulmonary fibrosis. Respiratory Investigation. 2014;52(2):136–43.

Arai 2015: Arai T, Tachibana K, Sugimoto C, Kagawa T, Inoue Y, Tokura S, et al. Initial dose of prednisolone can predict survival of acute exacerbation in idiopathic interstitial pneumonias. American Journal of Respiratory and Critical Care Medicine. 2015;191:A4385.

Arai 2016: Arai T, Kagawa T, Sasaki Y, Sugawara R, Sugimoto C, Tachibana K, et al. Heterogeneity of incidence and outcome of acute exacerbation in idiopathic interstitial pneumonia. Respirology. 2016;21(8):1431–7.

Arai 2016a: Arai T, Kagawa T, Sugimoto C, Sasaki Y, Tachibana K, Kitaichi M, et al. Corticosteroids determine clinical course of IIPs with possible UIP HRCT pattern?. European Respiratory Journal. 2016;48:PA799.

Arango Tomas 2015: Arango Tomas E A, Algar Algar F J, Cerezo Madueno F, Salvatierra Velazquez A. Evolution and risk factors for early mortality after lung transplantation for idiopathic pulmonary fibrosis: an experience of 20 years. Transplantation Proceedings. 2015;47(9):2656–8.

Arizono 2015: Arizono S, Taniguchi H, Sakamoto K, Kondoh Y, Kimura T, Kataoka K, et al. Benefits of supplemental oxygen on exercise capacity in IPF patients with exercise-induced hypoxemia. European Respiratory Journal. 2015;46:OA4971.

Ash 2017: Ash SY, Harmouche R, Vallejo DL, Villalba JA, Ostridge K, Gunville R, et al. Densitometric and local histogram based analysis of computed tomography images in patients with idiopathic pulmonary fibrosis. Respiratory Research. 2017;18(1):45.
Assayag 2014: Assayag D, Kim E, Elicker B, Golden J, Jones KD, King TE, et al. Survival in interstitial pneumonia with features of autoimmune disease. American Journal of Respiratory and Critical Care Medicine. 2014;189.

Assayag 2015: Assayag D, Kim EJ, Elicker BM, Jones KD, Golden JA, King TE Jr, et al. Survival in interstitial pneumonia with features of autoimmune disease: a comparison of proposed criteria. Respiratory Medicine. 2015;109(10):1326–31.

Aubry 2002: Aubry MC, Myers JL, Douglas WW, Tazelaar HD, Washington Stephens TL, Hartman TE, et al. Primary pulmonary carcinoma in patients with idiopathic pulmonary fibrosis. Mayo Clinic Proceedings. 2002;77(8):763–70.

Awano 2017: Awano N, Inomata M, Ikushima S, Yamada D, Hotta M, Tsukuda S, et al. Histological analysis of vasculopathy associated with pulmonary hypertension in combined pulmonary fibrosis and emphysema: comparison with idiopathic pulmonary fibrosis or emphysema alone. Histopathology 2017;70(6):896–905.

Baba 2010: Baba T. Relationship between KL-6, SP-D and prognosis in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2010;181:A6022.

Baba 2012: Baba T, Ogura T, Kitamura H, Ikeda S, Yamaguchi O, Yoshida M, et al. Smoking status in surgical proven idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4385.

Baba 2013: Baba T, Enomoto Y, Nakazawa A, Kitamura H, Oda T, Matsuo N, et al. Never-smoking history as a poor prognostic factor in surgically proven idiopathic pulmonary fibrosis. European Respiratory Journal. 2013;42:P3377.

Baddini-Martinez 1993: Baddini-Martinez JA, Mortenson RL, Bucher B, Schwarz MI, King TE Jr. Do bronchoalveolar lavage cellular constituents at initial presentation predict survival in idiopathic pulmonary fibrosis. The American Review of Respiratory Disease. 1993;147:A480.

Balade Martinez 2014: Balade Martinez L, Rueda Perez C, Gonzalez Fernandez MA, Varela Fernandez HA, Herrero Ambrosio A. Pirfenidone in idiopathic pulmonary fibrosis. European Journal of Hospital Pharmacy. 2014;21:A4–5.

Balestro 2012: Balestro E, Rossi E, Floriani A, Rinaldo C, Lunardi F, Loy M, et al. Natural history of idiopathic pulmonary fibrosis: Are slowly progressive and rapidly progressive really steady conditions? European Respiratory Journal. 2012;40:P3638.

Balestro 2013: Balestro E, Calabrese F, Rea F, Rossi E, Lunardi F, Schiavon M, et al. Distinct clinical and pathological phenotypes in IPF. European Respiratory Journal. 2013;42:P465.

Balestro 2014: Balestro E, Turato G, Polverosi R, Barbiero G, Zagallo S, Floriani A, et al. High resolution computed tomography (HRCT) can differentiate rapid from slow progressing idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2014;44:P758.

Balestro 2016: Balestro E, Calabrese F, Turato G, Lunardi F, Bazzan E, Marulli G, et al. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis. PLoS One. 2016;11(5):e0154516.

Balestro 2016a: Balestro E, Turato G, Biondini D, Pavanello S, Fraccaro A, Rigobello C, et al. Predictors of response to pirfenidone treatment in patients with idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2016;48:OA4965.
Bando 2001: Bando M, Ohno S, Oshikawa K, Takahashi M, Okamoto H, Sugiyama Y. Infection of TT virus in patients with idiopathic pulmonary fibrosis. Respiratory Medicine. 2001; 95(12):935–42.

Bando 2010: Bando M, Hosono T, Mato N, Nakaya T, Yamasawa H, Ohno S, et al. Long-term efficacy of inhaled N-acetylcysteine in patients with idiopathic pulmonary fibrosis. Internal Medicine. 2010;49(21):2289–96.

Bando 2012: Bando T, Date H. Surgical treatment of lung cancer in patients with pulmonary fibrosis. Kyobu geka. 2012; The Japanese journal of thoracic surgery. 65(8):714–9.

Bando 2014: Bando M, Sugiyama Y, Azuma A, Ebina M, Taniguchi H, Taguchi Y, et al. A prospective survey by web registration on idiopathic pulmonary fibrosis in Japan. Respirology. 2014;19:149.

Bando 2014a: Bando M, Yamauchi H, Ogura T, Taniguchi H, Watanabe K, Azuma A, et al. Long-term efficacy of pirfenidone for idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2014;189.

Bando 2015a: Bando M, Sugiyama Y, Azuma A, Ebina M, Taniguchi H, Taguchi Y, et al. A prospective survey of idiopathic interstitial pneumonias in a web registry in Japan. Respiratory Investigation. 2015;53(2):51–9.

Bando 2016: Bando M, Yamauchi H, Ogura T, Taniguchi H, Watanabe K, Azuma A, et al. Clinical experience of the long-term use of pirfenidone for idiopathic pulmonary fibrosis. Internal Medicine. 2016;55(5):443–8.

Barber 2014: Barber CM, Wiggans RE, Fishwick D. Relationship between historic UK asbestos imports and annual mortality due to mesothelioma, asbestosis and idiopathic pulmonary fibrosis. Thorax. 2014;69:A5.

Barber 2015: Barber CM, Wiggans RE, Young C, Fishwick D. UK asbestos imports and mortality due to idiopathic pulmonary fibrosis. Occupational Medicine (Lond). 2015;66(2):106–11.

Barber 2016: Barber C, Wiggans R, Fishwick D. Mortality due to IPF and mesothelioma in Europe - A link with historic asbestos use? European Respiratory Journal. 2016;48:OA457.

Barbero 2013: Barbero AN, Valenzuela C, Ortega PR, Frances JZ, Signes-Costa J, Marin M, et al. Pirfenidone in idiopathic pulmonary fibrosis (IPF): early Spanish experience with the European Named patient program (NPP). European Respiratory Journal. 2013;42:P2361.

Barlo 2009a: Barlo NP, van Moorsel CH, Ruven HJ, Zanen P, van den Bosch JM, Grutters JC. Surfactant protein-D predicts survival in patients with idiopathic pulmonary fibrosis. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2009;26(2):155–61.

Barry 2011: Barry P J, Murphy L, Egan J J. Pirfenidone in idiopathic pulmonary fibrosis: Early single centre Irish experience. Irish Journal of Medical Science. 2011;180:S468.

Barry 2012: Barry P, Murphy L, Tuohy M, Judge E, Egan J. Pirfenidone in idiopathic pulmonary fibrosis (IPF): early single centre Irish experience. European Respiratory Journal. 2012;40:P3663.

Battista 2003: Battista G, Zompatori M, Fasano L, Pacilli A, Basile B. Progressive worsening of idiopathic pulmonary fibrosis. High resolution computed tomography (HRCT) study with functional correlations. Radiologia Medica. 2003;105(1-2):2–11.
Baughman 1992: Baughman RP, Lower EE. Use of intermittent, intravenous cyclophosphamide for idiopathic pulmonary fibrosis. Chest. 1992;102(4):1090–4.

Behera 1998: Behera D, Gupta D, Jindal SK. Response to steroid therapy in patients of idiopathic pulmonary fibrosis: a retrospective analysis. Indian Journal of Chest Diseases & Allied Sciences. 1998;40(3):163–9.

Behr 2002: Behr J, Degenkolb B, Krombach F, Vogelmeier C. Intracellular glutathione and bronchoalveolar cells in fibrosing alveolitis: effects of N-acetylcysteine. European Respiratory Journal. 2002;19(5):906–11.

Behr 2006: Behr J, Costabel U, Buhl R. Antioxidative treatment of idiopathic pulmonary fibrosis. Pneumologie. 2006;60(6):373–5.

Behr 2014: Behr J, Bendstrup E, Crestani B, Gunther A, Olschewski H, Skoeld M, et al. A Phase 2, double-blind, placebo-controlled study of N-acetylcysteine in combination with pirfenidone in patients with idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;44(Suppl 58):P3786.

Behr 2014a: Behr J, Kreuter M, HoeperM, Klotsche J, Wirtz H, Koschel D, et al. Late-breaking abstract: Current management of patients with idiopathic pulmonary fibrosis in clinical practice: INSIGHTS-IPF registry. European Respiratory Journal. 2014;44(Suppl 58):1901.

Behr 2014b: Behr J, Kreuter M, Wirtz H, Hoeper M, Klotsche J, Koschel D, et al. Insights on the management of patients with idiopathic pulmonary fibrosis in clinical practice: Insights-IPF. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1434.

Behr 2015: Behr J, Bendstrup E, Crestani B, Gunther A, Olschewski H, Skold M, et al. Safety and tolerability of N-acetylcysteine (NAC) with pirfenidone in idiopathic pulmonary fibrosis (IPF): PANORAMA. European Respiratory Journal. 2015;46(Suppl 59):OA3477.

Behr 2015a: Behr J, Bendstrup E, Crestani B, Gunther A, Olschewski H, Skold M, et al. Pirfenidone and N-acetylcysteine (NAC) for the treatment of Idiopathic Pulmonary Fibrosis (IPF): Exploratory efficacy results from the PANORAMA study. Chest. 2015;148(4 Supplement):641A.

Behr 2015b: Behr J, Kreuter M, Hoeper MM, Wirtz H, Klotsche J, Koschel D, et al. Management of patients with idiopathic pulmonary fibrosis in clinical practice: the INSIGHTS-IPF registry. European Respiratory Journal. 2015;46(1):186–96.

Behr 2015c: Behr J, Wirtz H, Pittrow D, HoeperM, Koschel D, Andreas S, et al. Clinical outcomes of patients with idiopathic pulmonary fibrosis in clinical practice: Follow-up results of the INSIGHTS-IPF registry. European Respiratory Journal. 2015;46(Suppl 59):OA4965.

Behr 2015d: Behr J, Wirtz H, Pittrow D, Klotsche J, Koschel D, Andreas S, et al. Clinical course of patients with idiopathic pulmonary fibrosis under real life conditions: Outcomes data of the insights-IPF register. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2517.

Behr 2016: Behr J, Bendstrup E, Crestani B, Gunther A, Olschewski H, Skold C M, et al. Safety and tolerability of acetylcysteine and pirfenidone combination therapy in idiopathic pulmonary fibrosis: A randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet Respiratory Medicine. 2016;4(6):445–53.

Beltramo 2016: Beltramo G, Peron N, Nicaise P, Danel C, Debray MP, Pradere P, et al. Anti-parietal cell autoimmunity in IPF patients. European Respiratory Journal. 2016;48(Suppl 60):PA779.
Bennett 2017: Bennett D, Mazzei MA, Squitieri NC, Bargagli E, Refini RM, Fossi A, et al. Familial pulmonary fibrosis: clinical and radiological characteristics and progression analysis in different high resolution-CT patterns. Respiratory Medicine. 2017;126:75–83.

Benson 1972: Benson MK, Hughes DT. Serial pulmonary function tests in fibrosing alveolitis. British Journal of Diseases of the Chest. 1972;66(1):33–44.

Berry 2012: Berry CE, Drummond MB, Han MK, Li D, Fuller C, Limper AH, et al. Relationship between lung function impairment and health-related quality of life in COPD and interstitial lung disease. Chest. 2012;142(3):704–11.

Best 2008: Best AC, Meng J, Lynch AM, Bozic CM, Miller D, Grunwald GK, et al. Idiopathic pulmonary fibrosis: physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality. Radiology. 2008;246(3): 935–40.

Black 2013: Black TR, Klesen M, Bissonetter R, Richards T, Gibson KF, Kaminski N, et al. Self-reported dyspnea in IPF patients related to clinical diagnostics and GAP score. American Journal of Respiratory and Critical Care Medicine. 2013;187:A4228.

Blackburn 2015: Blackburn B, Barney J. Relative risk of pulmonary arterial hypertension in patients with idiopathic pulmonary fibrosis given immune suppressive therapies. Chest. 2015;148(4 Supplement):954A.

Bodlet 2012: Bodlet A, Delaunois L, Dahlqvist C, Jamart J, Maury G. Does emphysema influence the application of du Bois score in idiopathic pulmonary fibrosis? European Respiratory Journal. 2012;40(Suppl 56):P701.

Bodlet 2013: Bodlet A, Maury G, Jamart J, Dahlqvist C. Influence of radiological emphysema on lung function test in idiopathic pulmonary fibrosis. Respiratory Medicine. 2013;107(11):1781–8.

Bois 2016: Bois MC, Hu X, Ryu JH, Yi ES. Could prominent airway-centered fibroblast foci in lung biopsies predict underlying chronic microaspiration in idiopathic pulmonary fibrosis patients? Human Pathology. 2016;53:1–7.

Bollinelli 1973: Bollinelli R, Rouch Y, Fabre J. The pulmonary exchanges in diffuse interstitial fibrosis running a slow course. Correlations between functional radiology and functional anatomy. The place of spirography, gasometry and diffusion coefficients in the respiratory balance. Poumon et le Coeur. 1973;29(5):581–95.

Bonella 2013: Bonella F, Wessendorf TE, Costabel U. Clinical experience with pirfenidone for the treatment of idiopathic pulmonary fibrosis. Deutsche Medizinische Wochenschrift. 2013;138(11): 518–23.

Bonella 2014: Bonella F, He X, Ohshima S, Guzman J, Wessendorf T, Costabel U. Serum CCL-18 may predict the short-term response to pirfenidone in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1421.

Bonella 2015: Bonella F, Ohshima S, Boerner E, Guzman J, Wessendorf T, Costabel U. Serum KL-6 levels correlate with response to pirfenidone in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A4398.

Bonella 2015a: Bonella F, Stowasser S, Wollin L. Idiopathic pulmonary fibrosis: current treatment options and critical appraisal of nintedanib. Drug Design, Development & Therapy. 2015;9:6407–19.
Bonella 2016: Bonella F, Kreuter M, Hagmeyer L, Neurohr C, Keller C, Kohlhaeufl MJ, et al. Insights from the German Compassionate Use Program of Nintedanib for the Treatment of Idiopathic Pulmonary Fibrosis. Respiration. 2016;92(2):98–106.

Bonella 2016a: Bonella F, Kreuter M, Hagmeyer L, Neurohr C, Keller C, Kohlhaeufl MJ, et al. Nintedanib for idiopathic pulmonary fibrosis (IPF): Data from the German compassionate use program (CUP). European Respiratory Journal. 2016;48(Suppl 60):PA2090.

Bonham 2014: Bonham CA, Blaine KM, Takahashi SM, Strek ME, Noth I, Sperling Al. Progression of idiopathic pulmonary fibrosis is associated with abnormal T lymphocyte activation and differentiation. American Journal of Respiratory and Critical Care Medicine. 2014;189:A6295.

Boon 2009: Boon K, Bailey NW, Yang J, Steel MP, Groshong S, Kervitsky D, et al. Molecular phenotypes distinguish patients with relatively stable from progressive idiopathic pulmonary fibrosis (IPF). PLoS One. 2009;4(4):e5134.

Borges 2016: Borges LF, Jagadeesan V, Goldberg H, Gavini S, Lo WK, Burakoff R, et al. Increased bolus reflux on multichannel intraluminal impedance is an independent predictor of poor pulmonary outcomes over 1 year in patients with idiopathic pulmonary fibrosis. Gastroenterology. 2016;1;5:112.

Borie 2011: Borie R, Quesnel C, Phin S, Debray MP, Marchal-Somme J, Tiev K, et al. Fibrocytes are detected in bronchoalveolar lavage (BAL) fluid in idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2011;38(Suppl 55):P4763.

Borie 2012: Borie R, Quesnel C, Phin S, Debray MP, Marchal-Somme J, Tiev KP, et al. Alveolar fibrocytes are a markers a lung fibrosis severity. American Journal of Respiratory and Critical Care Medicine 2012;185.

Borie 2013: Borie R, Quesnel C, Phin S, Debray MP, Marchal-Somme J, Tiev K, et al. Detection of alveolar fibrocytes in idiopathic pulmonary fibrosis and systemic sclerosis. PLoS One. 2013;8(1):e53736.

Borie 2016: Borie R, Tabeze L, Thabut G, Nunes H, Cottin V, Marchand-Adam S, et al. Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. European Respiratory Journal. 2016;48(6):1721–31.

Bournazos 2009: Bournazos S,Grinfeld J, Cole E,Maggs SG, Hodgson KWL, Bournazou I, et al. Fcg receptor IIIB (FcgammaRIIIB) polymorphisms represent a genetic risk factor for idiopathic pulmonary fibrosis. European Journal of Immunology. 2009;39:S215.

Bournazos 2010: Bournazos S, Bournazou I, Murchison JT, Wallace WA, McFarlane P, Hirani N, et al. Fcgamma receptor IIIb (CD16b) polymorphisms are associated with susceptibility to idiopathic pulmonary fibrosis. Lung. 2010;188(6):475–81.

Bournazos 2010a: Bournazos S, Grinfeld J, Alexander KM, Murchison JT, Wallace WA, McFarlane P, et al. Association of Fc RIIa R131H polymorphism with idiopathic pulmonary fibrosis severity and progression. BMC Pulmonary Medicine. 2010;10:51.

Bradford 2003: Bradford WZ, Starko K, Noble PW. Hospitalization of Patients With Idiopathic Pulmonary Fibrosis (IPF) in a Phase 3, Randomized, Double-Blind, Placebo-Controlled Trial of Interferon Gamma-1b (IFN- 1B). Chest. 2003;124(4 Supplement):193S.
Bradford 2004: Bradford WZ, Brown KK, Noble PW, Starko KM, Schwartz DA, Raghu G, et al. Chronic Use of Anti-gastroesophageal Reflux (GER) Medications in Patients with Idiopathic Pulmonary Fibrosis (IPF). Chest. 2004;126(4 Supplement):772S.

Bradshaw 2012: Bradshaw T, Roychoudhury A, Bianchi SM. A single centre retrospective survival analysis of patients with interstitial lung disease. Thorax. 2012;67:A119.

Britton 2000: Britton J. Interferon gamma-1b therapy for cryptogenic fibrosing alveolitis. Thorax. 2000;55 Suppl 1:S37–40.

Broder 2016: Broder M, Change E, Papoyan E, Popescu I, Reddy S, Raimundo K, et al. Risk of cardiovascular comorbidities in patients with idiopathic pulmonary fibrosis: Analysis of Medicare data. European Respiratory Journal. 2016;48(Suppl 60):PA4919.

Brown 1971: Brown CH, Turner-Warwick M. The treatment of cryptogenic fibrosing alveolitis with immunosuppressant drugs. Quarterly Journal of Medicine. 1971;40(158):289–302.

Brown 2012: Brown AW, Shlobin OA, Weir N, Albano MC, Ahmad S, Smith M, et al. Dynamic patient counselling: a novel concept in idiopathic pulmonary fibrosis. Chest. 2012;142(4):1005–10.

Brown 2015: Brown AW, Fischer CP, Shlobin OA, Buhr RG, Ahmad S, Weir NA, et al. Outcomes after hospitalization in idiopathic pulmonary fibrosis: a cohort study. Chest. 2015;147(1):173–9.

Brunetti 2013: Brunetti G, Rossi V, Malovini A. The six minute walking test: Clinical predictors of survival in idiopathic pulmonary fibrosis. European Respiratory Journal. 2013;42(Suppl 57):P3693.

Brunnemer 2016: Brunnemer E, Ehlers-Tenenbaum S, Heussel CP, Warth A, Herth F, Kreuter M. Real life experience with nintedanib in patients with idiopathic pulmonary fibrosis. European Respiratory Journal. 2016;48(Suppl 60):PA2093.

Burgess 2015: Burgess J, Munk L, Jaffar J, Black J, Oliver B. BIBF1120 inhibits fibroblasts proliferation and production of the extracellular matrix protein fibulin-1. European Respiratory Journal. 2015;46(Suppl 59):PA933.

Burgess 2015a: Burgess J, Munk L, Jaffar J, Black J, Oliver B. BIBF1120 inhibits proliferation and fibulin-1 production from fibroblasts. Respirology. 2015;20:59.

Burrell 2012: Burrell G, Mooney JJ, Ryu J H, Ryerson C, Elicker B, Jones K, et al. The relationship of body mass index to survival time in interstitial lung disease. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4120.

Callahan 2016: Callahan SJ, Xia M, Murray S, Flaherty KR. Clinical characteristics in patients with asymmetric idiopathic pulmonary fibrosis. Respiratory Medicine. 2016;119:96–101.

Caminati 2009: Caminati A, Bianchi A, Cassandro R, Mirenda MR, Harari S. Walking distance on 6-MWT is a prognostic factor in idiopathic pulmonary fibrosis. Respiratory Medicine. 2009;103(1):117–23.

Campainha 2011: Campainha S, Goncalves I, Sanches A, Costa F, Brito MC, Torres S, et al. Idiopathic pulmonary fibrosis - Characterization of a population and assessment of prognostic markers. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2011;28:23–4.

Cao 2016: Cao M, Swigris JJ, Wang X, Cao M, Qiu Y, Huang M, et al. Plasma leptin Is elevated in acute exacerbation of idiopathic pulmonary fibrosis. Mediators of Inflammation. 2016;2016:6940480.
Capano 2015: Capano F, Lerda C, Bandelli G, Filieri A, Albera C, Ielo D. Evaluation of compliance and tolerability in treatment-naïve patients suffering from idiopathic pulmonary fibrosis (IPF) and treated with pirfenidone. European Journal of Hospital Pharmacy. 2015;22:A50.

Carbone 2006: Carbone R, Montanaro F, Ghio R, Monselise A, Baughman R. Cardiac performance in the prognosis of interstitial lung diseases. Sarcoidosis, Vasculitis, and Diffuse Lung Disease. 2006;23(3):237.

Carbone 2010: Carbone R, Bottino G, Paredi P, Shah P, Meyer KC. Predictors of survival in idiopathic interstitial pneumonia. European Review for Medical and Pharmacological Sciences. 2010;14(8):695–704.

Carbone 2010a: Carbone RG, Balbi M, Paredi P, Veronese M. Prognostic significance of brain natriuretic peptide in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2010;181.

Caro 2016: Caro FM, Fernandez ME, Alberti ML, Paulin F. Idiopathic pulmonary fibrosis: Gender differences in survival and functional decline. A retrospective study. European Respiratory Journal. 2016;48(Suppl 60):PA791.

Casanova 2009: Casanova A, Giron RM, Molina M, Xaubet A, Ancochea J. Predictive factors for survival in patients with idiopathic pulmonary fibrosis. Medicina Clinica. 2009;133(9):333–6.

Cegla 1974: Cegla UH, Meier-Sydow J, Kroidl R, Kronenberger H. High dosages of D-penicillamine in pulmonary fibrosis. Pneumonologie. 1974;150(2–4):261–9.

Cegla 1976: Cegla UH. Some pharmacological facts for the therapy of idiopathic fibrosing alveolitis. Praxis der Pneumologie Vereinigt Mit der Tuberkulosearzt. 1976;30(11):680–3.

Cegla 1977: Cegla UH. Treatment of idiopathic fibrosing alveolitis. Therapeutic experiences with azathioprine-prednisolone and D-penicillamine-prednisolone combination therapy. Schweizerische Medizinische Wochenschrift. Journal Suisse de Medecine. 1977;107(6):184–7.

Cegla 1980: Cegla UH. The effects of two types of treatment on vital capacity, functional residual capacity and blood gases in idiopathic fibrosing alveolitis. Praxis und Klinik der Pneumologie. 1980;34(11):651–6.

Cerri 2012: Cerri S, Soncini F, Sdanganelli A, Aiello M, Chetta AA, Lusuardi M, et al. Home oxygen saturation monitoring and quality of life evaluation in patients with idiopathic pulmonary fibrosis: Preliminary results from a prospective multicenter trial. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4498.

Cerri 2013: Cerri S, Sdanganelli A, Soncini F, Aiello M, Chetta A, Lusuardi M, et al. Home oxygen saturation monitoring and quality of life in patients with idiopathic pulmonary fibrosis: A prospective multicenter trial. European Respiratory Journal. 2013;42(Suppl 57):P2370.

Chan 1997: Chan TY, Hansell DM, Rubens MB, du Bois RM, Wells AU. Cryptogenic fibrosing alveolitis and the fibrosing alveolitis of systemic sclerosis: morphological differences on computed tomographic scans. Thorax. 1997;52(3):265–70.

Chartrand 2015: Chartrand S, Peykova L, Swigris JJ, Fischer A. A comparison of the clinical features and natural history of autoimmune interstitial lung disease vs. Idiopathic pulmonary fibrosis. Arthritis and Rheumatology. 2015;67.
Chaudhuri 2014: Chaudhuri N, Duck A, Frank R, Holme J, Leonard C. Real world experiences: pirfenidone is well tolerated in patients with idiopathic pulmonary fibrosis. Respiratory Medicine. 2014;108(1):224–6.

Chaudhuri 2014a: Chaudhuri N, Leonard C T. Health and economic impact of prescribing pirfenidone. Thorax. 2014;69:A218–9.

Chen 2012: Chen Z, Cao M, Kuwana M, Sun L. The diagnostic and prognostic significance of anti-MDA5 antibody in dermatomyositis complicated interstitial lung disease in chinese. Annals of the Rheumatic Disease. 2012;71.

Chetta 2005: Chetta A, Olivieri D. Induced sputum: A new tool to monitor idiopathic pulmonary fibrosis? Respiration. 2005;72(1):26–7.

Chien 2012: Chien J, Shao L, Lyman S, Adamkewicz J, Smith V, O’Riordan T. Elevated serum LOXL2 levels are associated with rapid disease progression in idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2012;40(Suppl 56):P3153.

Chien 2013: Chien J, Richards T, Gibson KF, Zhang Y, Lindell KO, Shao L, et al. High baseline serum lysyl oxidase like-2 (sLOXL2) levels are associated with higher risk for idiopathic pulmonary fibrosis (IPF) disease progression and mortality. American Journal of Respiratory and Critical Care Medicine. 2013;187:A5716.

Chien 2014: Chien JW, Richards TJ, Gibson KF, Zhang Y, Lindell KO, Shao L, et al. Serum lysyl oxidase-like 2 levels and idiopathic pulmonary fibrosis disease progression. European Respiratory Journal. 2014;43(5):1430–8.

Chodosowska 1988: Chodosowska E, Izdebska-Makosa Z, Zagdanska J. Prognosis in patients with idiopathic pulmonary fibrosis. Pneumonologia Polska. 1988;56(1):12–9.

Choi 2014: Choi J, Anderson SJ, Richards TJ, Thompson WK. Prediction of transplant-free survival in idiopathic pulmonary fibrosis patients using joint models for event times and mixed multivariate longitudinal data. Journal of Applied Statistics. 2014;41(10):2192–205.

Chuchalin 2000: Chuchalin AG. Idiopathic pulmonary fibrosis. Terapevticheski Arkhiv. 2000;72(3):5–12.

Churg 2007: Churg A, Muller NL, Silva C I, Wright JL. Acute exacerbation (acute lung injury of unknown cause) in UIP and other forms of fibrotic interstitial pneumonias. American Journal of Surgical Pathology. 2007;31(2):277–84.

Cinel 2010: Cinel G, Kiper N, Yalcyn E, Ersoz DD, Ozcelik U, Haliloglu M, et al. Idiopathic interstitial pneumonias: Diagnosis, treatment and follow-up. Paediatric Respiratory Reviews. 2010;11:S92.

Cioffi Squitieri 2014: Cioffi Squitieri N, Mazzei MA, Bennett D, Guerrini S, Spina D, Bettini G, et al. Familial pulmonary fibrosis: Imaging and pathologic correlations. Journal of Thoracic Imaging. 2014;29(3):W33.

Claar 2015: Claar D, Larkin EK, Bastarache L, Blackwell TS, Loyd JE, Denny JC, et al. A phenome-wide-association study (PHEWAS) identifies common genetic risk among clinical risk factors for idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2015;191:A2204.
Cohen 2013: Cohen MI, Cahalin LP, Gaunaurd IA, Ramos C, Cardenas D, Gomez-Marin O, et al. Respiratory muscle performance before and after pulmonary rehabilitation in patients with idiopathic pulmonary fibrosis. Cardiopulmonary Physical Therapy Journal. 2013;24(4):44.

Coll 2011: Coll R, Colomer M, Ragull S, Roldan J. Predictive factors for survival in idiopathic pulmonary fibrosis. Medicina Clinica. 2011;136(2):86–7.

Collard 2003: Collard HR, King TE Jr, Bartelson BB, Vourlekis JS, Schwarz MI, Brown KK. Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2003;168(5):538–42.

Collard 2004: Collard HR, Ryu JH, Douglas WW, Schwarz MI, Curran-Everett D, King TE Jr, et al. Combined corticosteroid and cyclophosphamide therapy does not alter survival in idiopathic pulmonary fibrosis. Chest. 2004;125(6):2169–74.

Collard 2007: Collard HR, Cool CD, Leslie KO, Curran-Everett D, Groshong S, Brown KK. Organizing pneumonia and lymphoplasmacytic inflammation predict treatment response in idiopathic pulmonary fibrosis. Histopathology. 2007;50(2):258–65.

Collard 2010: Collard HR. Idiopathic pulmonary fibrosis and pirfenidone. European Respiratory Journal. 2010;35(4):728–9.

Collard 2012a: Collard HR, Ward AJ, Lanes S, Cortney Hayflinger D, Rosenberg DM, Hunsche E. Burden of illness in idiopathic pulmonary fibrosis. Journal of Medical Economics. 2012;15(5):829–35.

Collard 2014: Collard HR, Brown KK, Martinez FJ, Raghu G, Roberts RS, Anstrom KJ, et al. Study design implications of death and hospitalization as end points in idiopathic pulmonary fibrosis. Chest. 2014;146(5):1256–62.

Colombi 2015: Colombi D, Dinkel J, Weinheimer O, Obermayer B, Buzan T, Nabers D, et al. Visual vs fully automatic histogram-based assessment of idiopathic pulmonary fibrosis (IPF) progression using sequential multidetector computed tomography (MDCT). PLoS One. 2015;10(6):e0130653.

Colombi 2015a: Colombi D, Sverzellati N, Silva M, Kauczor HU, Ehlers-Tenembaum S, Baroke E, et al. Spontaneous pneumomediastinum is a predictor of mortality in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A4389.

Colombi 2016: Colombi D, Ehlers-Tenembaum S, Palmowski K, Heussel CP, Sverzellati N, Silva M, et al. Spontaneous pneumomediastinum as a potential predictor of mortality in patients with idiopathic pulmonary fibrosis. Respiration. 2016;92(1):25–33.

Condos 2016: Condos R, Kassapidis V, Huie M, Smaldone G. Pharmacokinetics of inhaled interferon-gamma in IPF. QJM. 2016;109:524.

Corte 2009: Corte TJ, Wort SJ, Gatzoulis MA, Macdonald P, Hansell DM, Wells AU. Pulmonary vascular resistance predicts early mortality in patients with diffuse fibrotic lung disease and suspected pulmonary hypertension. Thorax. 2009;64(10):883–8.

Corte 2010: Corte TJ, Wort SJ, Edey A, Bandula S, Wells A. Six-month decline in KCO and baseline KCO levels independently predict early mortality in patients with idiopathic interstitial pneumonia. American Journal of Respiratory and Critical Care Medicine. 2010;181:A2967.
Corte 2012: Corte TJ, Copley SJ, Desai SR, Zappala CJ, Hansell DM, Nicholson AG, et al. Significance of connective tissue disease features in idiopathic interstitial pneumonia. European Respiratory Journal. 2012;39(3):661–8.

Corte 2012a: Corte TJ, Wort SJ, MacDonald PS, Edey A, Hansell DM, Renzoni E, et al. Pulmonary function vascular index predicts prognosis in idiopathic interstitial pneumonia. Respirology. 2012;17(4):674–80.

Corte 2013: Corte TJ, Goh NS, Glaspole IN, Zappala CJ, Hopkins PM, Wilsher ML. Idiopathic pulmonary fibrosis: Is all-cause mortality a practical and realistic end-point for clinical trials? Thorax 2013;68(5):491–2.

Corte 2014: Corte T, Glaspole I, Goh N, Hopkins P, Moodley Y, Reynolds P, et al. The natural history of idiopathic pulmonary fibrosis (IPF) in Australia: Information from the Australian IPF registry. Respirology. 2014;19:94.

Corte 2014a: Corte T, Macansh S, Glaspole I, Goh N, Hopkins P, Moodley Y, et al. The natural history of idiopathic pulmonary fibrosis (IPF) in Australia: Information from the Australian IPF registry. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1443.

Corte 2015: Corte T, Richeldi L, Kirsten A, Roman J, Le Maulf F, Hallmann C, et al. Pooled analysis of mortality data from the tomorrow and inpulsis trials of nintedanib in idiopathic pulmonary fibrosis (IPF). Respirology. 2015;20:87.

Corte 2016: Corte T, Crestani B, Ogura T, Pelling K, Coeck C, Quaresma M, et al. Interim analysis of nintedanib in an open-label extension of the INPULSIS trials (INPULSISON). Respirology. 2016;21:66.

Costabel 2011: Costabel U, Albera C, Cohen A, Bradford W, King T Jr, Noble P, et al. The long-term safety of pirfenidone in patients with idiopathic pulmonary fibrosis (IPF): Interim data from the RECAP extension study. European Respiratory Journal. 2011; Vol. 38, issue Suppl 55:174.

Costabel 2012: Costabel U, Albera C, Bradford W, Hormel P, King T, Noble P, et al. Analysis of lung function and survival in RECAP: An open-label extension study of pirfenidone (PFD) in patients with idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2012;40(Suppl 56):2820.

Costabel 2014: Costabel U, Albera C, Bradford WZ, Hormel P, King TE Jr, Noble PW, et al. Analysis of lung function and survival in RECAP: An open-label extension study of pirfenidone in patients with idiopathic pulmonary fibrosis. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2014;31(3):198–205.

Costabel 2016: Costabel U, Albera C, Kirchgaessler KU, Gilberg F, Petzinger U, Noble P. Analysis of patients with idiopathic pulmonary fibrosis (IPF) with percent predicted forced vital capacity (FVC)<50% treated with pirfenidone (PFD) in RECAP. European Respiratory Journal. 2016;48(Suppl 60):OA1813.

Costabel 2016a: Costabel U, Albera C, Kirchgaessler K U, Gilberg F, Petzinger U, Ruhrlandklinik P N. Analysis of patients with idiopathic pulmonary fibrosis (IPF) with more severe lung function impairment treated with pirfenidone in recap. Chest. 2016;150(4 Supplement):537A.

Costabel 2016b: Costabel U, Albera C, Lancaster L, Hormel P, Hulter H, Noble P. Final analysis of RECAP, an open-label extension study of pirfenidone in patients with idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2016;48(Suppl 60):OA1812.
Costa da Silva 2009: Costa da Silva F Jr, Afonso JE Jr, Pego-Fernandes PM, Caramori M L, Jatene FB. Sao Paulo Lung Transplantation Waiting List: Patient Characteristics and Predictors of Death. Transplantation Proceedings. 2009;41(3):927–31.

CoTherix 2005: CoTherix. Inhaled iloprost in adults with abnormal pulmonary pressure and associated with idiopathic pulmonary fibrosis. www.clinicaltrials.gov 2005.

Cottin 2012: Cottin V, Reynaud-Gaubert M, Traclet J, Montani D, Nunes H, Wallaert B, et al. Hemodynamics and response to therapy of pulmonary hypertension in patients with interstitial lung disease: preliminary results of the “HYPID” prospective study. European Respiratory Journal. 2012;40(Suppl 56):3273.

Cottin 2013: Cottin V, Montani D, Reynaud-Gaubert M, Kiakouama L, Nunes H, Dromer C, et al. Treatment of severe pulmonary hypertension in patients with interstitial lung disease: results in 72 patients from the “HYPID” prospective study. European Respiratory Journal. 2013;42(Suppl 57):1782.

Cottin 2013a: Cottin V, Reynaud-Gaubert M, Nunes H, Montani D, Wallaert B, Camara B, et al. Baseline characteristics and survival of patients with pulmonary hypertension in interstitial lung disease in the “HYPID” study. European Respiratory Journal. 2013;42(Suppl 57):4839.

Cottin 2015: Cottin V, Maher T, Azuma A, Groves L, Hormel P, Skold M, et al. Pirfenidone post-authorization safety registry (PASSPORT): update and concomitant use of NAC and/or corticosteroids. Chest. 2015;148(4 Supplement):364A.

Cottin 2015a: Cottin V, Maher T M, Azuma A, Groves L, Hormel P, Skold M, et al. Pirfenidone post-authorization safety registry (PASSPORT) update. European Respiratory Journal. 2015;46(Suppl 59):OA4500.

Coulats 1996a: Coulta DB, Mapel DM, Hunt C, et al. Idiopathic pulmonary fibrosis: survival in a population-based cohort. American Journal of Respiratory and Critical Care Medicine. 1996;153:A149.

Craig 2014: Craig VJ, Polverino F, Laucho-Contreras ME, Shi Y, Liu Y, Osorio JC, et al. Mononuclear phagocytes and airway epithelial cells: novel sources of matrix metalloproteinase-8 (MMP-8) in patients with idiopathic pulmonary fibrosis. PLoS One. 2014;9(5):e97485.

Crestani 2012: Crestani B, Chapron J, Wallaert B, Bergot E, Delaval P, Israel-Biet D, et al. Octreotide treatment of idiopathic pulmonary fibrosis: a proof-of-concept study. European Respiratory Journal. 2012;39(3):772–5.

Crestani 2015: Crestani B, Ogura T, Pelling K, Coeck C, Quaresma M, Kreuter M, et al. Interim analysis of nintedanib in an open-label extension of the INPULSIS trials (INPULSIS-on). Thorax. 2015;70:A77–8.

Crestani 2015a: Crestani B, Ogura T, Pelling K, Coeck C, Quaresma M, Kreuter M, et al. Interim analysis of nintedanib in an open-label extension of the insulins trials (insulins-on). Respirology. 2015;20:82.

Crestani 2015b: Crestani B, Ogura T, Pelling K, Coeck C, Quaresma M, Kreuter M, et al. Interim analysis of nintedanib in an open-label extension of the INPULSIS trials (INPULSISON). European Respiratory Journal. 2015;46(Suppl 59):OA4495.

Crestani 2015c: Crestani B, Ogura T, Pelling K, Quaresma M, Coeck C, Kaye M. Safety and tolerability of nintedanib in patients with IPF: Interim analysis from an open-label extension of the insulins trials (INPULSIS-ON). American Journal of Respiratory and Critical Care Medicine. 2015;191:A1020.
Crestani 2016: Crestani B, Quaresma M, Kaye M, Stansen W, Asser SS, Kreuter M. Long-term treatment with nintedanib in patients with IPF: An update from INPULSIS-ON. European Respiratory Journal. 2016;48(Suppl 60):OA4960.

D’Andrea 2016: D’Andrea A, Stanziola A, D’Alto M, Di Palma E, Martino M, Scarafile R, et al. Right ventricular strain: An independent predictor of survival in idiopathic pulmonary fibrosis. International Journal of Cardiology. 2016;222:908–10.

Dabar 2014: Dabar G, Iskandar M, Habr B, Aoun Z, Riachy M, Khayat G. Morality predictors in acute exacerbation of idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;44(Suppl 58):P3789.

Dai 2015: Dai J, Cai H, Li H, Zhuang Y, Min H, Wen Y, et al. Association between telomere length and survival in patients with idiopathic pulmonary fibrosis. Respirology. 2015;20(6):947–52.

Dai 2015a: Dai J, Cai H, Zhuang Y, Wu Y, Min H, Li J, et al. Telomerase gene mutations and telomere length shortening in patients with idiopathic pulmonary fibrosis in a Chinese population. Respirology. 2015;20(1):122–8.

Dalleywater 2014: Dalleywater W, Powell HA, Fogarty AW, Hubbard RB, Navaratnam V. Venous thromboembolism in people with idiopathic pulmonary fibrosis: a population-based study. European Respiratory Journal. 2014;44(6):1714–5.

Dalleywater 2015: Dalleywater W, Powell HA, Hubbard RB, Navaratnam V. Risk factors for cardiovascular disease in people with idiopathic pulmonary fibrosis: a population-based study. Chest. 2015;147(1):150–6.

Daniil 1999: Daniil ZD, Gilchrist FC, Nicholson AG, Hansell DM, Harris J, Colby T V, et al. A histologic pattern of nonspecific interstitial pneumonia is associated with a better prognosis than usual interstitial pneumonia in patients with cryptogenic fibrosing alveolitis. American Journal of Respiratory and Critical Care Medicine. 1999;160(3):899–905.

Dawson 2012: Dawson AG. Tyrosine kinase inhibitor use in idiopathic pulmonary fibrosis. Thorax. 2012;67(7):631.

Dayton 1993: Dayton CS, Schwartz DA, Helmers RA, Pueringer RJ, Gilbert SR, Merchant RK, et al. Outcome of subjects with idiopathic pulmonary fibrosis who fail corticosteroid therapy. Implications for further studies. Chest. 1993;103(1):69–73.

de Andrade 2010: de Andrade JA, Harrington K, Alexander CB, Singh SP, Sanders C, Nath H. Testing a simplified high resolution CT scan of the chest (HRCT) classification as predictor of outcomes in patients with interstitial lung disease. American Journal of Respiratory and Critical Care Medicine. 2010;181:A2958.

de Cremoux 1990: de Cremoux H, Bernaudin JF, Laurent P, Brochard P, Bignon J. Interactions between cigarette smoking and the natural history of idiopathic pulmonary fibrosis. Chest. 1990;98(1):71–6.

de Lauretis 2010: de Lauretis A, Pantelidis P, Sestini P, Goh N, Hoyles R, Zappala C, et al. Serum markers of disease progression in idiopathic pulmonary fibrosis and in interstitial lung disease associated with systemic sclerosis. American Journal of Respiratory and Critical Care Medicine. 2010;181:A1105.
de Lauretis 2013: de Lauretis A, Sestini P, Pantelidis P, Hoyles R, Hansell DM, Goh NS, et al. Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. Journal of Rheumatology. 2013;40(4):435–46.

De Meester 1999: De Meester J, Smits JM, Persijn GG, Haverich A. Lung transplant waiting list: differential outcome of type of end-stage lung disease, one year after registration. The Journal of Heart and Lung Transplantation. 1999;18(6):563–71.

De Meester 2001: De Meester J, Smits JM, Persijn GG, Haverich A. Listing for lung transplantation: life expectancy and transplant effect, stratified by type of end-stage lung disease, the Eurotransplant experience. The Journal of Heart and Lung Transplantation. 2001;20(5):518–24.

DePianto 2015: DePianto DJ, Chandriani S, Abbas AR, Jia G, N’Diaye EN, Caplazi P, et al. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax. 2015;70(1):48–56.

DePianto 2016: DePianto D, Jia G, Abbas A, Lewin-Koh N, Holweg C, Kervitsky D, et al. A tale of three cohorts: Variability in the prognostic value of IPF biomarkers. QJM. 2016;109:S35.

Devaraj 2009: Devaraj A, Wells AU, Meister MG, Corte T, Wort J, Hansell DM. The prognostic significance of CT signs of pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Journal of Thoracic Imaging. 2009;24(3):w8.

de Wall 1991: de Wall N, Endres P. Bronchoalveolar lavage in fibrosing alveolitis—a parameter for evaluating activity and prognosis? Pneumologie. 1991;45(10):785–9.

de W Kitcat 1928: de W Kitcat C, Sellors TH. Pulmonary fibrosis: an investigation into the origin and course. British Medical Journal. 1928;1(3519):1018–9.

Dierkesmann 1972: Dierkesmann R, Meier-Sydow J, Geiss E, Tacke E. Immunosuppressive therapy in 25 patients with idiopathic lung fibrosis. Verhandlungen der Deutschen Gesellschaft fur Innere Medizin. 1972;78:857–9.

Dietzsch 1966: Dietzsch HJ. Spirographic control of prednisone action in diffuse pulmonary fibrosis and other lung parenchymal diseases. Archiv fur Kinderheilkunde. 1966;174(1):7–18.

Dimadi 2003: Dimadi MA, Rapti A, Latsi P, Antoniou KM, Birba G, Trigidou R, et al. Preliminary results of a prospective, multicentre randomised study comparing interferon Gamma-1b (IFN-γ) and Colchicane in the treatment of idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2003;22(Suppl 45).

Dimmock 2013: Dimmock AEF, Chinchilli VM, Criner GJ, Simonelli PF, Tino G, Black TR, et al. The GAP index predicts mortality in a statewide cohort of patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2013;187:A6086.

Dimmock 2013a: Dimmock AEF, Lindell KO, Criner GJ, Simonelli PF, Tino G, Black TR, et al. The GAP index is symmetrically distributed in a statewide idiopathic pulmonary fibrosis cohort. American Journal of Respiratory and Critical Care Medicine. 2013;187:A1091.

Divihotawela 2016: Divihotawela C, Chambers D, Hopkins P. Idiopathic pulmonary fibrosis outcome audit. Respirology. 2016;21:146.

Doherty 1997: Doherty MJ, Pearson MG, O’Grady EA, Pellegrini V, Calverley PM. Cryptogenic fibrosing alveolitis with preserved lung volumes. Thorax. 1997;52(11):998–1002.
Donahoe 2015: Donahoe M, Valentine VG, Chien N, Gibson KF, Raval JS, Saul M, et al. Autoantibody-Targeted Treatments for Acute Exacerbations of Idiopathic Pulmonary Fibrosis. PLoS One. 2015;10(6):e0127771.

Dong 2015: Dong F, Zhang Y, Chi F, Song Q, Zhang L, Wang Y, et al. Clinical efficacy and safety of ICS/LABA in patients with combined idiopathic pulmonary fibrosis and emphysema. International Journal of Clinical and Experimental Medicine. 2015;8(6):8617–25.

Doubkova 2014: Doubkova M, Karpisek M, Mazoch J, Skrickova J, Doubek M. Prognostic significance of selected biomarkers in idiopathic pulmonary fibrosis, sarcoidosis, and chronic pulmonary obstructive disease. European Respiratory Journal. 2014;44(Suppl 58):P471.

Doubkova 2016: Doubkova M, Karpisek M, Mazoch J, Skrickova J, Doubek M. Prognostic significance of surfactant protein A, surfactant protein D, Clara cell protein 16, S100 protein, trefoil factor 3, and prostatic secretory protein 94 in idiopathic pulmonary fibrosis, sarcoidosis, and chronic pulmonary obstructive disease. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2016;33(3):224–34.

Doubkova 2016a: Doubkova M, Uher M, Bartos V, Sterclova M, Lacina L, Lostakova V, et al. Idiopathic pulmonary fibrosis prognostic factors - analysis of the Czech registry. Cas Lek Cesk. 2016;155(4):22–8.

Douglas 1997: Douglas WW, Ryu JH, Bjoraker JA, Schroeder DR, Myers JL, Tazelaar HD, et al. Colchicine versus prednisone as treatment of usual interstitial pneumonia. Mayo Clin Proceedings. 1997;72(3):201–9.

Douglas 1998: Douglas WW, Ryu JH, Swensen SJ, Offord KP, Schroeder DR, Caron GM, et al. Colchicine versus prednisone in the treatment of idiopathic pulmonary fibrosis: A randomized prospective study. American Journal of Respiratory and Critical Care Medicine. 1998;158(1):220–5.

Douglas 2000: Douglas WW, Ryu JH, Schroeder DR. Idiopathic pulmonary fibrosis: Impact of oxygen and colchicine, prednisone, or no therapy on survival. American Journal of Respiratory and Critical Care Medicine. 2000;161(4 Pt 1):1172–8.

Dowman 2016: Dowman L, McDonald CF, Pouniotis D, Hill CJ, Goh N, Vlahos R, et al. Effect of supplemental oxygen on exercise response in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2016;193:A4521.

du Bois 2011: du Bois RM, Weycker D, Albera C, Bradford WZ, Costabel U, Kartashov A, et al. Six-minute-walk test in idiopathic pulmonary fibrosis: test validation and minimal clinically important difference. American Journal of Respiratory and Critical Care Medicine. 2011;183(9):1231–7.

du Bois 2013: Du Bois RM, Albera C, Bradford WZ, Costabel U, Noble PW, Sahn SA, et al. A novel clinical prediction model for near-term mortality in patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2013;187:A2357.

du Bois 2014: du Bois RM. 6-minute walk distance as a predictor of outcome in idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;43(6):1823–4.

Duong 2015: Duong HT, Ley B, Elicker B, Jones KD, Wolters PJ, Lee JS, et al. Pulmonary artery diameter to aortic diameter ratio predicts mortality in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2518.
Durheim 2015: Durheim MT, Collard HR, Roberts RS, Brown KK, Flaherty KR, King TE, et al. Associations between hospitalization and forced vital capacity endpoints and survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2520.

Durheim 2015a: Durheim MT, Collard HR, Roberts RS, Brown KK, Flaherty KR, King TE Jr, et al. Association of hospital admission and forced vital capacity endpoints with survival in patients with idiopathic pulmonary fibrosis: analysis of a pooled cohort from three clinical trials. The Lancet Respiratory Medicine. 2015;3(5):388–96.

Dwarakanath 2013: Dwarakanath A, Win SS, Elliott M, Darby M, Beirne P. Predicting survival in interstitial lung disease (ILD): Multidisciplinary team (MDT) diagnosis versus technetium-99m diethylene triamine pentacetic acid (DTPA) clearance scans. European Respiratory Journal. 2013;42(Suppl 57):P467.

Eaden 2015: Eaden JA, Barber C, Bianchi SM. Does rate of decline in lung function predict response to pirfenidone therapy in patients with idiopathic pulmonary fibrosis? Thorax. 2015;70:A64.

Egan 1996: Egan JJ, Woodcock AA. Does the treatment of cryptogenic fibrosing alveolitis influence prognosis?. Respiratory Medicine. 1996;90(3):127–30.

Ekstrom 2016: Ekstrom M, Bornefalk-Hermansson A. Cardiovascular and antacid treatment and mortality in oxygen-dependent pulmonary fibrosis: A population-based longitudinal study. Respirology. 2016;21(4):705–11.

Eldahdouh 2017: Eldahdouh S, El Mahallawy, Abd Elaaty HS, El-Leheh AM, Mohammed LI. Study of IPF among patients with gastro-esophageal reflux disease. Egyptian Journal of Chest Diseases and Tuberculosis. 2017;66(1):87–91.

Elshafi 2012: Elshafi M, Murphy L, O’Connell O, Riddel P, Barry PJ, Egan JJ. Single center experience with pirfenidone in management of idiopathic pulmonary fibrosis: Retrospective observational study of pirfenidone therapeutic effect and side effect profile. Irish Journal of Medical Science. 2012;181:S434–5.

Elshafi 2015: Elshafi M, Subramaniam A, Thong L, O’Halloran K, Bowen B, Khan K, Murphy D, et al. Real life patient experience of pirfenidone in a regional interstitial lung disease clinic. European Respiratory Journal. 2015;46(Suppl 59):PA3042.

Enomoto 2006: Enomoto N, Suda T, Kato M, Kaida Y, Nakamura Y, Imokawa S, et al. Quantitative analysis of fibroblastic foci in usual interstitial pneumonia. Chest. 2006;130(1):22–9.

Enomoto 2012: Enomoto N, Suda T, Kono M, Kaida Y, Hashimoto D, Fujisawa T, et al. Amounts of elastic fibers predict prognosis of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4377.

Enomoto 2013: Enomoto N, Suda T, Kono M, Kaida Y, Hashimoto D, Fujisawa T, et al. Amount of elastic fibers predicts prognosis of idiopathic pulmonary fibrosis. Respiratory Medicine. 2013;107(10):1608–16.

Enomoto 2013a: Enomoto Y, Takemura T, Baba T, Ogura T. Usual interstitial pneumonia in primary sjogren’s syndrome in comparison with idiopathic pulmonary fibrosis. Respirology. 2013;18:34.

Enomoto 2014: Enomoto N, Oyama Y, Kono M, Hashimoto D, Fujisawa T, Inui N, et al. Analysis of an indication for direct hemoperfusion with a polymyxin b immobilized fiber column (PMX-DHP)
therapy for acute exacerbation of idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2014;189:A1419.

Enomoto 2014a: Enomoto Y, Takemura T, Hagiwara E, Iwasawa T, Okudela K, Yanagawa N, et al. Features of usual interstitial pneumonia in patients with primary Sjogren’s syndrome compared with idiopathic pulmonary fibrosis. Respiratory Investigation. 2014;52(4):227–35.

Enomoto 2015: Enomoto N, Mikamo M, Oyama Y, Kono M, Hashimoto D, Fujisawa T, et al. Treatment of acute exacerbation of idiopathic pulmonary fibrosis with direct hemoperfusion using a polymyxin B-immobilized fiber column improves survival. BMC Pulmonary Medicine. 2015;15:15.

Enomoto 2015a: Enomoto N, Uehara M, Oyama Y, Kono M, Hashimoto D, Fujisawa T, et al. Serum angiopoietin levels are related to a clinical course and the onset time of acute exacerbation in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A4387.

Fakharian 2010: Fakharian A, Masjedi MR, Hashemi N, Marashian SM. Clinical pattern of idiopathic pulmonary fibrosis in Iran: A retrospective study. Respirology. 2010;15:29.

Fasano 1999: Fasano L, Zompatori M, Monetti N, Battista G, Pacilli AMG, Di Scioscio VD, et al. Usual interstitial pneumonitis (UIP) presenting with Wells grade III. Can imaging methods help predict further progression of disease? Radiologia Medica. 1999;98(4):268–74.

Fell 2009: Fell CD, Liu LX, Motika C, Kazerooni EA, Gross BH, Travis WD, et al. The prognostic value of cardiopulmonary exercise testing in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2009;179(5):402–7.

Fernandez 2010: Fernandez Perez ER, Daniels CE, Schroeder DR, St Sauver J, Hartman TE, Bartholmai BJ, et al. Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis: a population-based study. Chest. 2010;137(1):129–37.

Finn 2015: Finn RT, Gavini S, Lo WK, Burakoff R, Feldman N, Chan WW. Increased reflux severity on impedance predicts one-year pulmonary function decline in pre-lung transplant patients with idiopathic pulmonary fibrosis. Gastroenterology. 2015;1:S54.

Fischer 2006: Fischer A, Pfalzgraf FJ, Feghali-Bostwick CA, Wright TM, Curran-Everett D, West SG, et al. Anti-th/fo-to-positivity in a cohort of patients with idiopathic pulmonary fibrosis. Journal of Rheumatology. 2006;33(8):1600–5.

Fischer 2012: Fischer A, Krishnamoorthi M, Olson AL, Solomon JJ, Fernandez-Perez ER, Huie TJ, et al. Mycophenolate mofetil (MMF) in various interstitial lung diseases (ILD). American Journal of Respiratory and Critical Care Medicine. 2012;185:A3638.

Flaherty 2000: Flaherty K, Toews G, Peters Golden M, Lynch J P, Hariharan K, Kazerooni E, et al. Randomized controlled trial of novel therapy for idiopathic pulmonary fibrosis: zileuton versus azathioprine. American Journal of Respiratory and Critical Care Medicine. 2000;161(3 Suppl):A374.

Flaherty 2001: Flaherty KR, Toews GB, Lynch JP 3rd, Kazerooni EA, Gross BH, Strawderman RL, et al. Steroids in idiopathic pulmonary fibrosis: a prospective assessment of adverse reactions, response to therapy, and survival. American Journal of Medicine. 2001;110(4):278–82.

Flaherty 2004: Flaherty KR, Pertsers-Golden M, Travis W, Colby T, Gross B, Kazerooni E, et al. Zileuton versus azathioprine/prednisone in idiopathic pulmonary fibrosis. European Respiratory Journal. 2004;24(Suppl 48):254s.
Flaherty 2006: Flaherty KR, Andrei AC, Murray S, Fraley C, Colby TV, Travis WD, et al. Idiopathic pulmonary fibrosis: prognostic value of changes in physiology and six-minute-walk test. American Journal of Respiratory and Critical Care Medicine. 2006;174(7):803–9.

Ford-Sahibzada 2016: Ford-Sahibzada C, Johannson K, Goobie G, Fell C. Clinical characteristics of interstitial lung disease patients: Report from a single center longitudinal database. QJM. 2016;109:S27.

François 2015: François C, Borie R, Bardou O, Menou A, Crestani B, Borensztajn K. Pulmonary expression of alternatively spliced tissue factor as a potential prognostic marker in idiopathic pulmonary fibrosis. European Respiratory Journal. 2015;46(Suppl 59):PA928.

Franquet 2000: Franquet T, Gimenez A, Torrubia S, Sabate JM, Rodriguez-Arias JM. Spontaneous pneumothorax and pneumomediastinum in IPF. European Radiology. 2000;10(1):108–13.

Freemer 2006: Freemer MM, Hormel P, Raghu G, Brown KK, Noble PW, King TE. Smoking status is not associated with survival in idiopathic pulmonary fibrosis. Proceedings of the American Thoracic Society. 2006:A524.

Fujimoto 2003: Fujimoto T, Okazaki T, Matsukura T, Hanawa T, Yamashita N, Nishimura K, et al. Operation for lung cancer in patients with idiopathic pulmonary fibrosis: surgical contraindication? Annals of Thoracic Surgery. 2003;76(5):1674-8; discussion 1679.

Fujiwara 2006: Fujiwara K, Egawa K. Clinical course in idiopathic pulmonary fibrosis 14 cases and examination about connection with serum KL-6. IRYO - Japanese Journal of National Medical Services. 2006;60(5):318–23.

Fukihara 2015: Fukihara J, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Matsuda T, et al. Hemosiderin-laden macrophage is an independent predictor of pulmonary vascular resistance in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A1571.

Furukawa 2013: Furukawa T, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Matsuda T, et al. Health-related quality of life impacts on survival in idiopathic pulmonary fibrosis. Respirology. 2013;18:32.

Furukawa 2015: Furukawa T, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Matsuda T, et al. Scoring system predicting for elevation of MPAP in IPF. European Respiratory Journal. 2015;46(Suppl 59):OA4961.

Furukawa 2017: Furukawa T, Taniguchi H, Ando M, Kondoh Y, Kataoka K, Nishiyama O, et al. The St. George’s Respiratory Questionnaire as a prognostic factor in IPF. Respiratory Research. 2017;18(1):18.

Gainza 2017: Gainza Miranda D, Sanz Peces EM, Alonso Babarro A, Varela Cerdeira M. End of life care in pulmonary fibrosis. Medicina Paliativa. 2017;24(1):21–5.

Gandhi 2014: Gandhi SA, Jiang J, Benson-Quarm N, Mian SA, Best S, Kulasekararaj A, et al. Telomere gene complex mutations are frequently found with shortened telomeres in bone marrow failure syndromes and idiopathic pulmonary fibrosis; correlation with haematological and clinical features. Blood. 2014;124(21).

George 2015: George PM, Richardson L, Renzoni EA, Kokosi M, Maher TM, Wells AU, et al. Effect of pirfenidone on gas transfer in patients with idiopathic pulmonary fibrosis. Thorax. 2015;70:A79.
Gerke 2010: Gerke AK, Cram P, Vaughan Sarrazin MS, Hunninghake GW. Survival with pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2010;181:A1119.

Gerke 2010a: Gerke AK, Hunninghake GW. The epidemiology of pulmonary fibrosis in the veterans population. Journal of Investigative Medicine. 2010;58(4):683–4.

Giddings 2012: Giddings OK, Collard H, Davidson M, Loyd JE, Mallow B, Mason W, et al. Treatment with continuous positive airway pressure improves survival in patients with idiopathic pulmonary fibrosis and obstructive sleep apnea. American Journal of Respiratory and Critical Care Medicine. 2012;185:A3637.

Gilani 2010: Gilani SR, Vuga LJ, Lindell KO, Gibson KF, Xue J, Kaminski N, et al. CD28 down-regulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis. PLoS One. 2010;5(1): e8959.

Gille 2016: Gille T, Moya L, Boubaya M, Bertrand G, Valeyre D, Brillet PY, et al. Correlation of diffusing capacity of the lung for carbon monoxide (DLCO) components Dm and Vc with high resolution computed tomography (HRCT) and their prognostic impact in idiopathic pulmonary fibrosis (IPF). Acta Physiologica. 2016;217:138.

Glaspole 2014: Glaspole I, Goh N, Hopkins P, Moodley Y, Reynolds PN, Walters H, et al. Quality of life of patients with idiopathic pulmonary fibrosis (IPF)-what can The Australian IPF registry tell us?. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1439.

Glaspole 2015: Glaspole I, Goh N, Hopkins P, Moodley Y, Reynolds PN, Walters EH, et al. Quality of life of patients with idiopathic pulmonary fibrosis (IPF)-What can the Australian IPF registry tell us?. European Respiratory Journal. 2015;46(Suppl 59):OA4964.

Glaspole 2016: Glaspole I, Goh N, Hopkins P, Moodley Y, Reynolds P, Walters E, et al. Quality of life of patients with idiopathic pulmonary fibrosis (IPF)-What can the Australian IPF registry tell us?. Respirology. 2016;21:67.

Glaspole 2016a: Glaspole I, Watson A, Macansh S, Chapman S, Cooper W, Allan H, et al. Anxiety and depression in idiopathic pulmonary fibrosis. Respirology. 2016;21:68.

Glaspole 2017: Glaspole IN, Chapman SA, Cooper WA, Ellis SJ, Goh NS, Hopkins PM, et al. Health-related quality of life in idiopathic pulmonary fibrosis: Data from the Australian IPF Registry. Respirology. 2017;22(5):950–6.

Goh 2011: Goh NS, Desai SR, Anagnostopoulos C, Hansell DM, Hoyles RK, Sato H, et al. Increased epithelial permeability in pulmonary fibrosis in relation to disease progression. European Respiratory Journal. 2011;38(1):184–90.

Goh 2016: Goh N, Richeldi L, Cottin V, Selman M, Kimura T, Stowasser S, et al. Pooled analysis of data from the TOMORROW and INPULSIS trials of nintedanib in idiopathic pulmonary fibrosis. Respirology. 2016;21:148.

Golec 2008: Golec M, Lambers C, Hofbauer E, Geleff S, Bankier A, Czerny M, et al. Assessment of gene transcription demonstrates connection with the clinical course of idiopathic interstitial pneumonia. Respiration. 2008;76(3):261–9.

Gomes 2015: Matos Gomes R, Padrao E, Dabo H, Nascimento L, Vale A, Neves I, et al. Idiopathic pulmonary fibrosis: Relationship between patient survival and distance-saturation product. European Respiratory Journal. 2015;46(Suppl 59):PA2042.
Gonzalez 2016: Gonzalez AT, Maher T. Predicting mortality in idiopathic pulmonary fibrosis. Which parameters should be used to determine eligibility for treatment? Analysis of a UK prospective cohort. European Respiratory Journal. 2016;48(Suppl 60):OA282.

Goobie 2016: Goobie G, Ford-Sahibzada C, Fritzler M, Johansson K, Fell C. Autoantibody status, decline in lung function, and survival in patients with idiopathic pulmonary fibrosis. QJM. 2016;109:S28.

Gottlieb 2010: Gottlieb J, Simon AR, Hadem J, Dierich M, Wiesner O, Strueber M, et al. Outcome of lung transplant candidates on mechanical ventilation or extracorporeal support. Journal of Heart and Lung Transplantation. 2010;1):S16–7.

Gottlieb 2012: Gottlieb J, Warnecke G, Hadem J, Dierich M, Wiesner O, Fuhner T, et al. Outcome of critically ill lung transplant candidates on invasive respiratory support. Intensive Care Medicine. 2012;38(6):968–75.

Goyard 2015: Goyard C, Touil I. Body mass and the prognosis in idiopathic pulmonary fibrosis. Revue des Maladies Respiratoires Actualites. 2015;7(2):161–3.

Gracey 1970: Gracey DR, Divertie MB. Corticosteroid treatment of diffuse interstitial pulmonary fibrosis. JAMA. 1970;211(3):495–7.

Greene 2001: Greene KE, Kuroki Y, Bartelson BB, King TE, Hunninghake GW, Parsons PE, et al. Serum concentrations of surfactant proteins a and d predict mortality in patients with idiopathic pulmonary fibrosis. Chest. 2001;120(SUPPL.):72S.

Greene 2002: Greene KE, King TE Jr, Kuroki Y, Bucher-Bartelson B, Hunninghake GW, Newman LS, et al. Serum surfactant proteins -A and -D as biomarkers in idiopathic pulmonary fibrosis. European Respiratory Journal. 2002;19(3):439–46.

Gribbin 2006: Gribbin J, Hubbard RB, Le Jeune I, Smith CJ, West J, Tata LJ. Incidence and mortality of idiopathic pulmonary fibrosis and sarcoidosis in the UK. Thorax. 2006;61(11):980–5.

Grijm 2005: Grijm K, Verberne HJ, Krouwels FH, Weller FR, Jansen HM, Bresser P. Semiquantitative 67Ga scintigraphy as an indicator of response to and prognosis after corticosteroid treatment in idiopathic interstitial pneumonia. Journal of Nuclear Medicine. 2005;46(9):1421–6.

Gruden 2016: Gruden JF, Panse PM, Gotway MB, Jensen EA, Wellnitz CV, Wesselius L. Diagnosis of Usual Interstitial Pneumonitis in the Absence of Honeycombing: Evaluation of Specific CT Criteria With Clinical Follow-Up in 38 Patients. American Journal of Roentgenology. 2016;206(3):472–80.

Guenther 2014: Guenther A, Drakopanagiotakis F, Vancheri C, Bonniaud P, Wells A, Crestani B. Six-minute walk test desaturation and echocardiographic findings in IPF: Correlational observations made in the European IPF registry (eurIPFreg). European Respiratory Journal. 2014;44(Suppl 58):P761.

Gurioli 2011: Gurioli C, Tomassetti S, Ravaglia C, Romagnoli M, Casoni G, Sverzellati N, et al. Clinical profile of idiopathic pulmonary fibrosis with lung cancer. European Respiratory Journal. 2011;38(Suppl 55):P650.

Guschall 1998: Guschall W R, Liebetrau G, Dittrich I, Schirpke C. Time of disease and causes of death in patients with fibrosing alveolitis/pulmonary fibrosis. Atemwegs- und Lungenkrankheiten. 1998;24(3):110–6.
Hamai 2016: Hamai K, Iwamoto H, Ishikawa N, Horimasu Y, Masuda T, Miyamoto S, et al. Comparative Study of Circulating MMP-7, CCL18, KL-6, SP-A, and SP-D as Disease Markers of Idiopathic Pulmonary Fibrosis. Disease Markers. 2016;2016:4759040.

Hamdy 2014: Hamdy S, Mostafa S. Pulmonary hemodynamics and gasometric parameters associated with exercise induced oxygen desaturation in idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;44(Suppl 58):P789.

Hamm 1970: Hamm J. Prognosis in pulmonary fibrosis. Lebensversicherungs Medizin. 1970;22(6):121–5.

Han 2002: Han KY, Wu DC, Lv FZ, Gao JZ. The effects of glucocorticoid inhalation on pulmonary fibrosis. Heilongjiang Medical Journal. 2002;26(11):825–6.

Han 2008: Han MK, Murray S, Fell CD, Flaherty KR, Toews GB, Myers J, et al. Sex differences in physiological progression of idiopathic pulmonary fibrosis. European Respiratory Journal. 2008;31(6):1183–8.

Han 2010: Han MK, Bach DS, Hagan P, Toews GB, Edwards R, Anstrom K, et al. Gender differences in pulmonary hypertension in IPF: An analysis of the STEP-IPF trial. American Journal of Respiratory and Critical Care Medicine. 2010;181:A1112.

Han 2011: Han MK, Bach D, Hagan P, Schmidt SL, Flaherty KR, Toews GB, et al. Presence of right ventricular dysfunction modifies treatment response to sildenafil in the step-IPF trial. American Journal of Respiratory and Critical Care Medicine. 2011;183:A5301.

Han 2013: Han MK, Bach DS, Hagan PG, Yow E, Flaherty KR, Toews GB, et al. Sildenafil preserves exercise capacity in patients with idiopathic pulmonary fibrosis and right-sided ventricular dysfunction. Chest. 2013;143(6):1699–708.

Han 2014: Han MK, Zhou Y, Murray S, Tayob N, Noth I, Lama VN, et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: An analysis of the COMET study. The Lancet Respiratory Medicine. 2014;2(7):448–56.

Hanak 2008: Hanak V, Ryu JH, de Carvalho E, Limper AH, Hartman TE, Decker PA, et al. Profusion of fibroblast foci in patients with idiopathic pulmonary fibrosis does not predict outcome. Respiratory Medicine. 2008;102(6):852–6.

Hara 2015: Hara Y, Shinkai M, Rubin BK. Biomarkers for Staging and Evaluating the Therapy for Idiopathic Pulmonary Fibrosis. Clinical Pulmonary Medicine. 2015;22(4):165–71.

Hara 2016: Hara M, Hashisako M, Yamano Y, Johkoh T, Kondoh Y, Taniguchi H, et al. Squamous metaplasia: Indicator of acute exacerbation and poor prognostic factor in usual interstitial pneumonia. Laboratory Investigation. 2016;96:471A.

Hara 2017: Hara Y, Shinkai M, Kanoh S, Fujikura Y, B K Rubin, Kawana A, et al. Arterial Carboxyhemoglobin Measurement Is Useful for Evaluating Pulmonary Inflammation in Subjects with Interstitial Lung Disease. Internal Medicine. 2017;56(6):621–6.

Harada 2013: Harada T, Watanabe K, Nabeshima K, Hamasaki M, Iwasaki H. Prognostic significance of fibroblastic foci in usual interstitial pneumonia and non-specific interstitial pneumonia. Respirology. 2013;18(2):278–83.
Harari 1997: Harari S, Simonneau G, De Juli E, Brenot F, Cerrina J, Colombo P, et al. Prognostic value of pulmonary hypertension in patients with chronic interstitial lung disease referred for lung or heart-lung transplantation. The Journal of Heart and Lung Transplantation. 1997;16(4):460–3.

Harari 2005: Harari S, Caminati A. Idiopathic pulmonary fibrosis. Allergy. 2005;60(4):421–35.

Harari 2014: Harari S, Giunta V, Albera C, Vancheri C, Poletti V, Pesci A, et al. Efficacy of pirfenidone for idiopathic pulmonary fibrosis (IPF): An Italian real life study. European Respiratory Journal. 2014;44(Suppl 58):4626.

Harari 2015: Harari S, Caminati A, Albera C, Vancheri C, Poletti V, Pesci A, et al. Efficacy of pirfenidone for idiopathic pulmonary fibrosis: An Italian real life study. Respiratory Medicine. 2015;109(7):904–13.

Harari 2015a: Harari S, Caminati A, Cassandro R, Conti S, Madotto F, Luisi F, et al. Pulmonary hypertension in idiopathic pulmonary fibrosis does not influence six-minute walk distance: results from a retrospective study. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2015;31(4):297–305.

Harari 2017: Harari S, Caminati A, Madotto F, Conti S, Cesana G. Epidemiology, survival, incidence and prevalence of idiopathic pulmonary fibrosis in the USA and Canada. European Respiratory Journal. 2017;49(1):1601504.

Harris 1998: Harris JM, Cullinan P, McDonald JC. Does cryptogenic fibrosing alveolitis carry an increased risk of death from lung cancer?. Journal of Epidemiology and Community Health. 1998;52(9):602–3.

Hashemi 2013: Hashemi Sadraei N, Riahi T, Masjedi MR. Idiopathic pulmonary fibrosis in a referral center in Iran: are patients developing the disease at a younger age?. Archives of Iranian Medicine. 2013;16(3):177–81.

Hashimoto 2014: Hashimoto S, Taguchi Y, Hajiro T, Yasuda I, Ishii Y, Ebina M, et al. A large cohort study of clinical outcomes and prognostic predictors in patients with acute exacerbation of idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;44(Suppl 58):4627.

Hayai 2013: Hayai S, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Matsuda T, et al. With idiopathic pulmonary fibrosis less than 60 years of age. Respirology. 2013;18:33.

Hayakawa 2015: Hayakawa S, Matsuzawa Y, Wakabayashi T. Efficacy of recombinant thrombomodulin for treatment of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A4406.

Hayakawa 2016: Hayakawa S, Matsuzawa Y, Irie T, Rikitake H, Okada N, Suzuki Y. Efficacy of recombinant human soluble thrombomodulin for the treatment of acute exacerbation of idiopathic pulmonary fibrosis: a single arm, nonrandomized prospective clinical trial. Multidisciplinary Respiratory Medicine. 2016;11(1):1–8.

Hayes 2016: Hayes D Jr, Black SM, Tobias JD, Kirkby S, Mansour HM, Whitson BA. Influence of Pulmonary Hypertension on Patients With Idiopathic Pulmonary Fibrosis Awaiting Lung Transplantation. Annals of Thoracic Surgery. 2016;101(1):246–52.

He 2005: He M, Zhang XM, Yuan HQ. Clinical study on treatment of pulmonary interstitial fibrosis with ginkgo extract. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2005;25(3):222–4.
He 2016: He WX, Yang YL, Xia Y, Song N, Liu M, Zhang P, et al. Outcomes of Chinese Patients with End-stage Pulmonary Disease while Awaiting Lung Transplantation: A Singlecenter Study. Chinese Medical Journal/ 2016;129(1):3–7.

Herazo 2011: Herazo JD, Gibson K, Juan-Guardela B, Ma SF, Richards T, Lussier YA, et al. Peripheral blood mononuclear cells gene expression patterns predict mortality in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A5306.

Herazo-Maya 2013: Herazo-Maya JD, Juan Guardela B, Lindell KO, Richards T, Gibson KF, Kaminski N. Gene expression pathway analyses of peripheral blood mononuclear cells in idiopathic pulmonary fibrosis individuals with suspected pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine. 2013;187:A3389.

Herazo-Maya 2013a: Herazo-Maya JD, Noth I, Duncan SR, Kim S, Ma SF, Tseng GC, et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Science Translational Medicine. 2013;5 (205):205ra136.

Herazo-Maya 2014: Herazo-Maya JD, Yan X, Noth I, Ma SF, Juan Guardela B, Lynn H, et al. The peripheral blood 52 gene survival signature is also indicative of disease progression in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2014;189:A6289.

Herazo-Maya 2015: Herazo-Maya J, Lynn H, Tzouvelekis A, Ryu C, Wyllie A, Deiuliis J, et al. MicroRNA expression profiles in plasma of patients are informative of idiopathic pulmonary fibrosis presence and outcome. American Journal of Respiratory and Critical Care Medicine. 2015;191:A3479.

Herazo-Maya 2015a: Herazo-Maya J, Noth I, Juan-Guardela BM, Tzouvelekis A, Lynn H, Deiuliis J, et al. Limb bud and heart, a novel developmental gene is a biomarker of idiopathic pulmonary fibrosis severity, progression and outcome. American Journal of Respiratory and Critical Care Medicine 2015;191:A4383.

Herridge 2016: Herridge J, Yuill K, Kendrick AH. Does the six-minute walk test predict survival at one year and in the longer term in patients idiopathic pulmonary fibrosis (IPF)? Thorax. 2016;71:A239–40.

Hirano 2017: Hirano C, Ohshima S, Horimasu Y, Iwamoto H, Fujitaka K, Hamada H, et al. FAM13A polymorphism as a prognostic factor in patients with idiopathic pulmonary fibrosis. Respiratory Medicine. 2017;123:105–9.

Hiwatari 1991: Hiwatari N, Shimura S, Sasaki T, Aikawa T, Ando Y, Ishihara H, et al. Prognosis of idiopathic pulmonary fibrosis in patients with mucous hypersecretion. The American Review of Respiratory Disease. 1991;143(1):182–5.

Hiwatari 1994: Hiwatari N, Shimura S, Takishima T, Shirato K. Bronchoalveolar lavage as a possible cause of acute exacerbation in idiopathic pulmonary fibrosis patients. Tohoku Journal of Experimental Medicine. 1994;174(4):379–86.

Ho 2013: Ho L, Ghebremariam Y, Cooke J, Rosen G. Proton pump inhibitors inhibit DDAH and improve survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2013;187:A5710.

Hogaboam 2012: Hogaboam CM, Murray L, Martinez FJ. Epigenetic mechanisms through which Toll-like receptor-9 drives idiopathic pulmonary fibrosis progression. Proceedings of the American Thoracic Society. 2012;9(3):172–6.
Homma 1995: Homma Y, Ohtsuka Y, Tanimura K, Kusaka H, Munakata M, Kawakami Y, et al. Can interstitial pneumonia as the sole presentation of collagen vascular diseases be differentiated from idiopathic interstitial pneumonia? Respiration. 1995;62(5):248–51.

Homma 2013: Homma SA, Sugino K, Ishida F, Kikuchi N, Hirota N, Sano G, et al. Clinical characteristics of combined pulmonary fibrosis and emphysema. American Journal of Respiratory and Critical Care Medicine. 2013;187.

Hook 2010: Hook J, Zemmel D, Philip N, Rybak D, Koeckert M, Shah L, et al. A novel point-of-care oxygen titration study to predict outcome in interstitial lung disease. American Journal of Respiratory and Critical Care Medicine. 2010;181:A2969.

Hook 2011: Hook J, Arcasoy SM, Zemmel D, Bartels M, Kawut SM, Lederer DJ. Gas exchange and outcome prediction in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A1516.

Hook 2012: Hook JL, Arcasoy SM, Zemmel D, Bartels MN, Kawut SM, Lederer DJ. Titrated oxygen requirement and prognostication in idiopathic pulmonary fibrosis. European Respiratory Journal. 2012;39(2):359–65.

Hope-Gill 2012: Hope-Gill B, Kilduff C, Harrison NK. Longitudinal studies of cough in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4463.

Horimasu 2011: Horimasu Y, Ohshima S, Ishikawa N, Tanaka S, Yoshioka K, Bonella F, et al. Serum KL-6 is a useful diagnostic and prognostic biomarker in idiopathic interstitial pneumonia in German patients. American Journal of Respiratory and Critical Care Medicine. 2011;183:A2336.

Horita 2011: Horita N, Akahane M, Okada Y, Kobayashi Y, Arai T, Amano I, et al. Tacrolimus and steroid treatment for acute exacerbation of idiopathic pulmonary fibrosis. Internal Medicine. 2011;50(3):189–95.

Hosenpud 1998: Hosenpud JD, Bennett LE, Keck BM, Edwards EB, Novick RJ. Effect of diagnosis on survival benefit of lung transplantation for end-stage lung disease. Lancet. 1998;351(9095):24–7.

Hosoda 2013: Hosoda C, Yoshida M, Baba T, Kitamura H, Hagiwara E, Iwasawa T, et al. Is emphysema a prognostic factor in acute exacerbation of idiopathic pulmonary fibrosis? Respirology.2013;18:49.

Hou 2001: Hou J, Cai HR, Dai LJ. Efficacy of salvia miltiorrhiza and ligustrazin combined with prednisone in the treatment of idiopathic pulmonary fibrosis. Practical Geriatrics. 2001;15(2):99–101.

Hou 2011: Hou G, Zhou L, Li J, Li Z, Wang Q, Kang J. Prognostic significance of the enlargement of mediastinal lymph node in idiopathic pulmonary fibrosis. Respirology. 2011;16:321.

Hozumi 2016: Hozumi H, Enomoto N, Oyama Y, Kono M, Fujisawa T, Inui N, et al. Clinical implication of proteinase-3-antineutrophil cytoplasmic antibody in patients with idiopathic interstitial pneumonias. Lung. 2016;194(2):235–42.

Huang 2011: Huang Y, Vij R, Ma SF, Broderick S, Strek M, White SR, et al. Gene co-expression modules in peripheral blood mononuclear cells predict clinical outcome of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A5304.

Huang 2015: Huang Y, Ma SF, Vij R, Oldham JM, Herazo-Maya J, Broderick SM, et al. A functional genomic model for predicting prognosis in idiopathic pulmonary fibrosis. BMC Pulmonary Medicine. 2015;15:147.
Huang 2015a: Huang Y, Ma SF, Vij R, Zhou Y, Murray S, Huffnagle GB, et al. Intergrated analysis of host transcriptome with microbial community structure in idiopathic pulmonary fibrosis patients. American Journal of Respiratory and Critical Care Medicine. 2015;191:A3963.

Hubbard 1996: Hubbard R, Johnston I, Coults DB, Britton J. Mortality rates from cryptogenic fibrosing alveolitis in seven countries. Thorax. 1996;51(7):711–6.

Hubbard 2000: Hubbard R, Venn A, Lewis S, Britton J. Lung cancer and cryptogenic fibrosing alveolitis. A population-based cohort study. American Journal of Respiratory and Critical Care Medicine. 2000;161(1):5–8.

Hubbard 2002: Hubbard R, Venn A. The impact of coexisting connective tissue disease on survival in patients with fibrosing alveolitis. Rheumatology. 2002;41(6):676–9.

Huie 2010: Huie TJ, Olson AL, Cosgrove GP, Janssen WJ, Lara AR, Lynch DA, et al. A detailed evaluation of acute respiratory decline in patients with fibrotic lung disease: aetiology and outcomes. Respirology. 2010;15(6):909–17.

Huie 2011: Huie T, Collard H, Solomon J, Sahin H, Woods A, Kinder B, et al. Serologies and chest CT findings predict prognosis in interstitial lung disease. Chest. 2011;140(4 Supplement):992A.

Huppmann 2013: Huppmann P, Szczepanski B, Boensc M, Winterkamp S, Schonheit-Kenn U, Neurohr C, et al. Effects of inpatient pulmonary rehabilitation in patients with interstitial lung disease. European Respiratory Journal. 2013;42(2):444–53.

Hutchinson 2014: Hutchinson JP, McKeever TM, Fogarty AW, Navaratnam V, Hubbard RB. Increasing global mortality from idiopathic pulmonary fibrosis in the twenty-first century. Annals of the American Thoracic Society. 2014;11(8):1176–85.

Hwang 2011: Hwang JH, Misumi S, Curran-Everett D, Brown KK, Sahin H, Lynch DA. Longitudinal follow-up of fibrosing interstitial pneumonia: relationship between physiologic testing, computed tomography changes, and survival rate. Journal of Thoracic Imaging. 2011;26(3):209–17.

Hyldgaard 2013: Hyldgaard C, Bendstrup E, Leth S, Andersen CU, Hilberg O. Simple HRCT staging system in idiopathic fibrotic interstitial lung disease. American Journal of Respiratory and Critical Care Medicine. 2013;187:A4330.

Hyldgaard 2013a: Hyldgaard C, Hilberg O, Bendstrup E. Validation of GAP score in Danish patients diagnosed with idiopathic pulmonary fibrosis. European Respiratory Journal. 2013;42(Suppl S57):P2367.

Hyldgaard 2014: Hyldgaard C, Hilberg O, Bendstrup E. How does comorbidity influence survival in idiopathic pulmonary fibrosis? Respiratory Medicine. 2014;108(4):647–53.

Hyldgaard 2014a: Hyldgaard C, Hilberg O, Muller A, Bendstrup E. A cohort study of interstitial lung diseases in central Denmark. Respiratory Medicine. 2014;108(5):793–9.

Hyldgaard 2015: Hyldgaard C. A cohort study of Danish patients with interstitial lung diseases: burden, severity, treatment and survival. Danish Medical Journal. 2015;62(4):B5069.

Ichimura 2014: Ichimura Y, Tsushima K, Matsumura T, Yokota A, Terada J, Iesato K, et al. The effect of pirfenidone with patients with idiopathic pulmonary fibrosis in one university hospital. European Respiratory Journal. 2014;44(Suppl S58):P3755.
Ichimura 2014a: Ichimura Y, Tsushima K, Matsumura T, Yokota A, Terada J, Iesato K, et al. Predictive factors for the effect of pirfenidone in idiopathic pulmonary fibrosis. Respirology. 2014;19:30.

Ichimuray 2014: Ichimuray, Tsushima K, Matsumura T, Yokota A, Terada J, Iesato K, et al. The predictive factors for the effect of pirfenidone in idiopathic pulmonary fibrosis. Respirology. 2014;19:148.

Ihle 2014: Ihle F, Veith T, Gregor Z, Gabriela W, Juergen B, Claus N. Pirfenidone therapy for patients with progressive idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;44(Suppl 58):P776.

Ikeda 2013: Ikeda K, Shiratori M, Yokoo K, Ohtsuka M, Chiba H, Takahashi H. Serum surfactant protein D may predict the effect of pirfenidone in idiopathic pulmonary fibrosis. European Respiratory Journal. 2013;42(Suppl 57):P475.

Ikezoe 2013: Ikezoe K, Handa T, Mori K, Watanabe K, Aihara K, Tanizawa K, et al. The role of neutrophil gelatinase-associated lipocalin in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2013;187:A1073.

Ikezoe 2014: Ikezoe K, Handa T, Mori K, Watanabe K, Tanizawa K, Aihara K, et al. Neutrophil gelatinase-associated lipocalin in idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;43(6):1807–9.

Ishii 2013: Ishii H, Kushima H, Komiya K, Mizunoe S, Kadota J. Pharmacological therapy does not contribute to survival in idiopathic pulmonary fibrosis. Respiration. 2013;86(1):86–7.

Iwamoto 2014: Iwamoto H, Horimasu Y, Nakashima T, Ohshima S, Ishikawa N, Fujitaka K, et al. Decreased circulatory receptor for advanced glycation end-products is associated with poorer survival in patients with idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;44(Suppl 58):P741.

Iwasawa 2006: Iwasawa T, Nishimura J. Serial quantitative CT evaluation for patients with idiopathic pulmonary fibrosis (IPF) using Gaussian Histogram Normalized Correlation (GHNC). Japanese Journal of Clinical Radiology. 2006;51(1):78–84.

Iwasawa 2008: Iwasawa T, Nishimura J, Ogura T, Asakura A, Goto T, Yazawa T, et al. Quantitative analysis of thin-section CT; correlation with prognosis of patients with idiopathic pulmonary fibrosis. Japanese Journal of Clinical Radiology. 2008;53(1):194–202.

Iwasawa 2009: Iwasawa T, Asakura A, Sakai F, Kanauchi T, Gotoh T, Ogura T, et al. Assessment of prognosis of patients with idiopathic pulmonary fibrosis by computer-aided analysis of CT images. Journal of Thoracic Imaging. 2009;24(3):216–22.

Iwasawa 2010: Iwasawa T, Ogura T, Takahashi H, Asakura A, Gotoh T, Yazawa T, et al. Pneumothorax and idiopathic pulmonary fibrosis. Japanese Journal of Radiology. 2010;28(9):672–9.

Iwasawa 2017: Iwasawa T, Takemura T, Okudera K, Gotoh T, Iwao Y, Kitamura H, et al. The importance of subpleural fibrosis in the prognosis of patients with idiopathic interstitial pneumonias. European Journal of Radiology. 2017;90:106–113.

Izdebska-Makosa 1981: Izdebska-Makosa Z, Radwan L, Grebska E, Lesiak B, Krakowka P. Long-term observation of patients with pulmonary fibrosis with good treatment results. Pneumonologia Polska. 1981;49(2):139–44.
Jacob 2016a: Jacob J, Bartholmai B, Rajagopalan S, Kokosi M, Nair A, Karwoski R, et al. Evaluation of the association of emphysema with pulmonary hypertension and effects on mortality in idiopathic pulmonary fibrosis. QJM. 2016;109:S49–S50.

Jagadeesan 2016: Jagadeesan V, Borges LF, Goldberg H, Gavini S, Lo WK, Burakoff R, et al. Abnormal gastroesophageal reflux on multichannel intraluminal impedance independently predicts increased oxygen requirement over 12 months in patients with idiopathic pulmonary fibrosis. Gastroenterology. 2016;1):S34.

Jamal 2013: Jamal W, Wottons C, Mirani G, Foley N. Median survival in unselected patients with idiopathic pulmonary fibrosis in the United Kingdom. European Respiratory Journal. 2013;42(Suppl 57):P3819.

Jankowich 2010: Jankowich MD, Rounds S. Combined pulmonary fibrosis and emphysema alters physiology but has similar mortality to pulmonary fibrosis without emphysema. Lung. 2010;188 (5):365–73.

Jegal 2005: Jegal Y, Kim DS, Shim TS, Lim CM, Do Lee S, Koh Y, et al. Physiology is a stronger predictor of survival than pathology in fibrotic interstitial pneumonia. American Journal of Respiratory and Critical Care Medicine. 2005;171(6):639–44.

Jenkins 2015: Jenkins RG, Simpson JK, Saini G, Bentley JH, Russell AM, Braybrooke R, et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. The Lancet Respiratory Medicine. 2015;3(6):462–72.

Jeong 2005: Jeong YJ, Lee KS, Muller NL, Chung MP, Chung MJ, Han J, et al. Usual interstitial pneumonia and non-specific interstitial pneumonia: serial thin-section CT findings correlated with pulmonary function. Korean Journal of Radiology. 2005;6(3):143–52.

Jezek 1984: Jezek V. The prognosis and development of pulmonary hypertension in idiopathic diffuse interstitial lung fibrosis. Giornale Italiano di Cardiologia. 1984;14(Suppl 1):39–45.

Jezek 1988: Jezek V, Jezkova J, Michaljanic A, Fucik J. Long-term reduction of pulmonary hypertension in interstitial lung fibrosis by isosorbide dinitrate. European Heart Journal. 1988;9(Suppl A):213–7.

Jia 2016: Jia J, Depianto D, Abbas AR, Holweg C, Ramalingam T, Kondoh Y, et al. Assessing the prognostic performance of CCL18, MMP7, YKL40 and periostin in bronchoalveolar lavage and peripheral blood in idiopathic pulmonary fibrosis. QJM. 2016;109:S29.

Jiang 2007: Jiang HD, Liu B. Glucocorticoids in the treatment of idiopathic pulmonary fibrosis. Chung-Hua Chieh Ho Hsi Tsa Chih. 2007;30(4):249–50.

Jiang 2016: Jiang G. Overlooks the treatment efficacy analysis of pirfenidone to pulmonary fibrosis. International Journal of Rheumatic Diseases. 2016;19:285.

Jindal 1979: Jindal SK, Malik SK, Deodhar SD, Sharma BK. Fibrosing alveolitis: a report of 61 cases seen over the past five years. The Indian Journal of Chest Diseases & Allied Sciences. 1979; 21(4):174–9.

Jo 2013: Jo H, Russo R, Pearson M, Veitch E, Peters M. Prediction of survival in interstitial lung disease (ILD); role of DTPA lung clearance scans and lung function variables. European Respiratory Journal. 2013;42(Suppl 57):P3372.
Jo 2013a: Jo H, Russo R, Pearson M, Veitch E, Peters MJ. Predicting survival in interstitial lung disease: The role of dtpa lung clearance scans. Respirology. 2013;18:72.

Jo 2015: Jo H, Glaspole I, Goh N, Hopkins P, Moodley Y, Reynolds P, et al. Is idiopathic pulmonary fibrosis more indolent in the elderly population?. Respirology. 2015;20:87.

Jo 2015a: Jo H, Troy L, Corte P, Torzillo P, Webster S, Taylor N, et al. New treatments in idiopathic pulmonary fibrosis: real world experience. Respirology. 2015;20:85.

Jo 2016: Jo H, Corte TJ, Glaspole I, Hopkins P, Moodley Y, Reynolds P, et al. Higher gastroesophageal reflux symptoms are associated with better survival: analysis from the Australian IPF registry. QJM. 2016;109:S65–S66.

Jo 2016a: Jo H, Glaspole I, Goh N, Hopkins P, Moodley Y, Reynolds P, et al. Baseline pulmonary function test predicts survival: analysis from the Australian IPF registry. Respirology. 2016;21:67.

Jo 2016b: Jo H, Glaspole I, Goh NSL, Hopkins P, Moodley Y, Reynolds, P, et al. Diagnostic confidence of idiopathic pulmonary fibrosis using current ATS/ERS/JTS/ALAT guidelines does not predict survival: analysis from the Australian IPF registry. QJM. 2016;109:S47–S48.

Jo 2016c: Jo H, Glaspole I, Moodley Y, Chapman S, Cooper W, Ellis S, et al. Disease progression in early idiopathic pulmonary fibrosis: insights from the Australian IPF registry. European Respiratory Journal. 2016;48(Suppl 60):PA2100.

Johnson 1989: Johnson MA, Kwan S, Snell NJ, Nunn AJ, Darbyshire JH, Turner-Warwick M. Randomised controlled trial comparing prednisolone alone with cyclophosphamide and low dose prednisolone in combination in cryptogenic fibrosing alveolitis. Thorax. 1989;44(4):280–8.

Johnston 1993: Johnston ID, Gomm SA, Kalra S, Woodcock AA, Evans CC, Hind CR. The management of cryptogenic fibrosing alveolitis in three regions of the United Kingdom. European Respiratory Journal. 1993;6(6):891–3.

Johnston 1997: Johnston ID, Prescott RJ, Chalmers JC, Rudd RM. British Thoracic Society study of cryptogenic fibrosing alveolitis: current presentation and initial management. Fibrosing Alveolitis Subcommittee of the Research Committee of the British Thoracic Society. Thorax. 1997;52(1):38–44.

Judge 2010: Judge EP, Fabre A, McCarthy J, Wood AE, Egan JJ. Acute exacerbations in idiopathic pulmonary fibrosis are associated with pulmonary hypertension and histological acute lung injury in explanted IPF tissue. American Journal of Respiratory and Critical Care Medicine. 2010;181:A2498.

Judge 2012: Judge EP, Fabre A, Adamali HI, Egan JJ. Acute exacerbations and pulmonary hypertension in advanced idiopathic pulmonary fibrosis. European Respiratory Journal. 2012;40(1):93–100.

Kaarteenaho-Wilik 1996: Kaarteenaho-Wilik R, Tani T, Sormunen R, Soini Y, Virtanen I, Paakko P. Tenascin immunoreactivity as a prognostic marker in usual interstitial pneumonia. American Journal of Respiratory and Critical Care Medicine. 1996;154(2 Pt 1):511–8.

Kaddah 2016: Kaddah S, Ahmed S. Lifestyle associated diseases and risk of pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Egyptian Journal of Chest Diseases and Tuberculosis. 2016;65(1):127–33.

Kadikar 1997: Kadikar A, Maurer J, Kesten S. The six-minute walk test: a guide to assessment for lung transplantation. The Journal of Heart and Lung Transplantation. 1997;16(3):313–9.
Kagami 2014: Kagami R, Kawamura T, Mochizuki Y, Nakahara Y, Sasaki S, Morimoto A, et al. Efficacy and safety of pirfenidone in patients with idiopathic pulmonary fibrosis: comparison of mild/moderate cases and severe cases. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1415.

Kahloon 2013: Kahloon RA, Xue J, Bhargava A, Csizmadia E, Otterbein L, Kass DJ, et al. Patients with idiopathic pulmonary fibrosis with antibodies to heat shock protein 70 have poor prognoses. American Journal of Respiratory and Critical Care Medicine. 2013;187(7):768–75.

Kakugawa 2016: Kakugawa T, Sakamoto N, Sato S, Yura H, Harada T, Nakashima S, et al. Risk factors for an acute exacerbation of idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):79.

Kalra 2003: Kalra S, Utz JP, Ryu JH, Mayo Clinic Interstitial Lung Diseases Group. Interferon gamma-1b therapy for advanced idiopathic pulmonary fibrosis. Mayo Clinic Proceedings. 2003;78(9):1082–7.

Kane 2016: Kane R, Minnis P, Lumsden R, Cooke G, Whitty S, Nadarajan P, et al. Serum exosomes from IPF patients contain miR-125b, which is correlated to severity of disease progression. QJM. 2016;109:S1.

Kappos 1977: Kappos AD, Meier-Sydow J. Standard value of diffusing capacity measurements for the assessment of the course of idiopathic pulmonary fibrosis. Verhandlungen der Deutschen Gesellschaft fur Innere Medizin. 1977;83:1461–4.

Kärkkäinen 2015: Kärkkäinen M, Kettunen HP, Nurmi H, Purokivi M, Kaarteenaho R. Course of disease and cause of death in patients with idiopathic pulmonary fibrosis in Eastern Finland. European Respiratory Journal. 2015;46(Suppl 59):PA2044.

Kärkkäinen 2016: Kärkkäinen M, Kettunen HP, Nurmi H, Purokivi M, Kaarteenaho R. Prognostic assessment of idiopathic pulmonary fibrosis in Kuopio cohort. QJM. 2016;109:S25.

Kass 2013: Kass DJ, Xue J, Bon JM, Gibson KF, Kaminski N, Pilewski JM, et al. B-cell differentiation and plasma B-lymphocyte stimulator (BLyS) in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2013;187:A6121.

Kataoka 2014: Kataoka K, Taniguchi H, Kondoh Y, Kimura T, Matsuda T, Yokoyama T, et al. Predictors of efficacy of pirfenidone in idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;44(Suppl 58):P3747.

Kato 2016: Kato M, Sasaki S, Nakamura K, Sakimoto Y, Hayakawa D, Aditya W, et al. Diagnostic significance of biomarkers for chronic fibrosing idiopathic interstitial pneumonias (usual interstitial pneumonia vs non-specific interstitial pneumonia). Respirology. 2016;21:199.

Kawabata 2003: Kawabata H, Nagai S, Hayashi M, Nakamura H, Nagao T, Shigematsu M, et al. Significance of lung shrinkage on CXR as a prognostic factor in patients with idiopathic pulmonary fibrosis. Respirology. 2003;8(3):351–8.

Kawakami 1980: Kawakami M, Kijima S, Konno K, Takizawa T. Computed tomography of cryptogenic fibrosing alveolitis --a new trial of histographical presentation of frequency distribution of attenuation numbers. Nihon Kyobu Shikkan Gakkai Zasshi. 1980;18(9):627–33.

Kawatani 2007: Kawatani K, Kondo M, Tamaoki J, Tagaya E, Nagai A. The clinical significance of mast cell tryptase in bronchial alveolar lavage fluid in interstitial lung diseases. Nihon Kokyuki Gakkai Zasshi. 2007;45(11):848–55.
Kaya 2015: Kaya H, Brown A, Nathan SD, Amdur R. Distance supplemental oxygen (DSO) index: an index to predict the survival in IPF. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2508.

Keir 2012: Keir G, Maher T, Wells A, Renzoni E. Rituximab rescue therapy in severe, progressive interstitial lung disease. Pneumologie. 2012;66(11):P3006.

Keir 2014: Keir GJ, Maher TM, Ming D, Abdullah R, de Lauretis A, Wickremasinghe M, et al. Rituximab in severe, treatment-refractory interstitial lung disease. Respirology. 2014;19(3):353–9.

Khadawardi 2016: Khadawardi H, Mura M. A simple dyspnoea scale as part of the assessment to predict outcome across chronic interstitial lung disease. Respirology. 2016;22(3):501–7.

Kim 1994: Kim HK, Kwak SM, Song KS, Lim CM, Koh Y, Kim WS, et al. The role of HRCT in the follow-up evaluation of diffuse interstitial pulmonary fibrosis. Tuberculosis and Respiratory Diseases. 1994;41(6):597–603.

Kim 2011: Kim YH, Kwon SS, Kim CH, Kim JW, Kim JS, Park KH. The characteristics of combined pulmonary fibrosis and emphysema syndrome. American Journal of Respiratory and Critical Care Medicine. 2011;183:A3044.

Kim 2012a: Kim YJ, Park JW, Kyung SY, Lee SP, Chung MP, Kim YH, et al. Clinical characteristics of idiopathic pulmonary fibrosis patients with diabetes mellitus: the national survey in Korea from 2003 to 2007. Journal of Korean Medical Science. 2012;27(7):756–60.

Kim 2014a: Kim H, Ji W, Kim M, Colby TV, Jang S, Lee C, et al. Characteristics of undifferentiated connective tissue disease lung involvement. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1483.

Kim 2014b: Kim HJG, Brown MS, Gjertson D, Lu P, Coy H, Goldin JG. Association between changes in quantitative CT lung fibrosis score and pulmonary function tests in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1512.

Kim 2014c: Kim Y, Shin S, Kyung S, Kang S, Lee S, Park J, et al. Differences of pulmonary function test between of combined pulmonary fibrosis and emphysema(CPFE) and idiopathic pulmonary fibrosis(IPF). American Journal of Respiratory and Critical Care Medicine. 2014;189:A6401.

Kim 2014d: Kim YJ, Shin SH, Park JW, Kyung SY, Kang SM, Lee SP, et al. Annual change in pulmonary function and clinical characteristics of combined pulmonary fibrosis and emphysema and idiopathic pulmonary fibrosis: over a 3-year follow-up. Tuberculosis and Respiratory Diseases. 2014;77(1):18–23.

Kim 2015a: Kim HC, Ji W, Kim MY, Colby TV, Jang SJ, Lee CK, et al. Interstitial pneumonia related to undifferentiated connective tissue disease: pathologic pattern and prognosis. Chest. 2015;147(1):165–72.

Kim 2015b: Kim HJ, Kiel S, Wang Q, Tomic R, Perlman D, Thenappan T. Outcomes of treatment of pulmonary arterial hypertension in patients with interstitial lung disease. American Journal of Respiratory and Critical Care Medicine. 2015;191:A4404.

Kim 2015c: Kim WY, Mok Y, Kim GW, Baek SJ, Yun YD, Jee SH, et al. Association between idiopathic pulmonary fibrosis and coronary artery disease: a case-control study and cohort analysis. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2015;31(4):289–96.
Kim 2015d: Kim YS, Jin GY, Chae KJ, Han YM, Chon SB, Lee YS, et al. Visually stratified CT honeycombing as a survival predictor in combined pulmonary fibrosis and emphysema. British Journal of Radiology. 2015;88(1055):20150545.

Kim 2016: Kim GH, Brown M, Weigt S, Balpiero J, Lai J, Lee G, et al. Prediction of IPF with the early changes in quantitative imaging patterns using high resolution computed tomography. QJM. 2016;109:517.

Kimura 2013: Kimura M, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Nishiyama O, et al. Pulmonary hypertension as a prognostic indicator at the initial evaluation in idiopathic pulmonary fibrosis. Respiration. 2013;85(6):456–63.

Kinder 2008: Kinder BW, Brown KK, Schwarz MI, Ix JH, Kervitsky A, King TE Jr. Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis. Chest. 2008;133(1):226–32.

Kinder 2009: Kinder BW, Brown KK, McCormack FX, Ix JH, Kervitsky A, Schwarz MI, et al. Serum surfactant protein-A is a strong predictor of early mortality in idiopathic pulmonary fibrosis. Chest. 2009;135(6):1557–63.

Kinder 2010: Kinder BW, Shariat C, Collard HR, Koth LL, Wolters PJ, Golden JA, et al. Undifferentiated connective tissue disease-associated interstitial lung disease: changes in lung function. Lung. 2010;188(2):143–9.

King 2001a: King TE Jr, Schwarz MI, Brown K, Tooze JA, Colby TV, Waldron JA Jr, et al. Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. American Journal of Respiratory and Critical Care Medicine. 2001;164(6):1025–32.

King 2001b: King TE Jr, Tooze JA, Schwarz MI, Brown KR, Cherniack RM. Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model. American Journal of Respiratory and Critical Care Medicine. 2001;164(7):1171–81.

King 2005: King TE Jr, Safrin S, Starko KM, Brown KK, Noble PW, Raghu G, et al. Analyses of efficacy end points in a controlled trial of interferon-gamma1b for idiopathic pulmonary fibrosis. Chest. 2005;127(1):171–7.

King 2013: King TE, Albera C, Bradford WZ, Costabel U, du Bois RM, Nathan SD, et al. All-cause mortality (ACM) rate in patients with idiopathic pulmonary fibrosis (IPF): Implications for the design and execution of mortality trials. American Journal of Respiratory and Critical Care Medicine. 2013;187:A2356.

King 2014b: King T, BradfordW, Castro-Bernardini S, Fagan E, Glaspole I, Glassberg M, et al. Effect of design modifications on trial outcomes in idiopathic pulmonary fibrosis (IPF): Analysis of data from ASCEND and CAPACITY (CAP). European Respiratory Journal. 2014;44(Suppl 58):4629.

King 2014c: King TE Jr, Albera C, Bradford WZ, Costabel U, du Bois RM, Leff JA, et al. All-cause mortality rate in patients with idiopathic pulmonary fibrosis. Implications for the design and execution of clinical trials. American Journal of Respiratory and Critical Care Medicine. 2014;189(7):825–31.

Kinney 2013: Kinney A, Tayob N, Murray S, Bach D, Hagan P, Yow E, et al. Gender differences in the STEP-IPF trial. American Journal of Respiratory and Critical Care Medicine. 2013;187:A1092.
Kinoshita 2013: Kinoshita A, Sakamoto S, KikuchiN, Ishida F, Satoh K, Sano G, et al. Recombinant human soluble thrombomodulin in the treatment of acute exacerbations of idiopathic pulmonary fibrosis. Respirology. 2013;18:135.

Kirk 1984a: Kirk JM, Bateman ED, Haslam PL, Laurent GJ, Turner-Warwick M. Serum type III procollagen peptide concentration in cryptogenic fibrosing alveolitis and its clinical relevance. Thorax. 1984;39(10):726–32.

Kishaba 2012: Kishaba T, Shimaoka Y, Fukuyama H, Yamashiro S, Tamaki H. Staging of acute exacerbation in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A5818.

Kishaba 2014: Kishaba T, Shimaoka Y, Nagano H, Fukuyama H, Nei Y, Yamashiro S. Clinical characteristics of IPF patients according to the GAP staging at our hospital. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1444.

Kishaba 2014a: Kishaba T, Tamaki H, Shimaoka Y, Fukuyama H, Yamashiro S. Staging of acute exacerbation in patients with idiopathic pulmonary fibrosis. Lung. 2014;192(1):141–9.

Kishaba 2015: Kishaba T, Nagano H, Nei Y, Yamashiro S. Clinical characteristics of idiopathic pulmonary fibrosis patients with never smokers. American Journal of Respiratory and Critical Care Medicine. 2015;191:A1573.

Kishaba 2015a: Kishaba T, Shimaoka Y, Fukuyama H, Nagano H, Nei Y, Yamashiro S, et al. Clinical characteristics of idiopathic pulmonary fibrosis patients with gender, age, and physiology staging at Okinawa Chubu Hospital. Journal of Thoracic Disease. 2015;7(5):843–9.

Kishaba 2017: Kishaba T, Nagano H, Nei Y, Yamashiro S. Body mass index percent forced vital capacity-respiratory hospitalization: new staging for idiopathic pulmonary fibrosis patients. Journal of Thoracic Disease. 2017;8(12):3596–604.

Kitamura 2012: Kitamura H, Ogata R, Yamaguchi O, Baba T, Okudera K, Takemura T, et al. The impact of cigarette smoking in idiopathic nonspecific interstitial pneumonia and idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A1594.

Kitamura 2012a: Kitamura Y, Otsuka M, Umeda Y, Shiratori M, Takahashi H. Relationship between serum SP-A and pulmonary hypertension in interstitial lung diseases. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4467.

Kogan 1995: Kogan EA, Kornev BM, Salov IA, Sekamova SM, Shukurova RA, Popova EN, et al. Variants and stages in the course of idiopathic fibrosing alveolitis. Terapeuticheskii Arkhiv. 1995;67(5):71–5.

Kohashi 2016: Kohashi Y, Arai T, Sugimoto C, Tachibana K, Akira M, Kitaichi M, et al. Clinical impact of emphysema evaluated by high-resolution computed tomography on idiopathic pulmonary fibrosis diagnosed by surgical lung biopsy. Respiration. 2016;92(4):220–228.

Kohlhaseufl 2014: Kohlhaseufl MJ, Ingerl H, Bachnik M. Pirfenidone in idiopathic pulmonary fibrosis—description of a German cohort. European Respiratory Journal. 2014;44(Suppl 58):P3749.

Kokuho 2013: Kokuho N, Azuma A. Clinical trials in idiopathic pulmonary fibrosis (IPF). Respiration and Circulation. 2013;61(2):112–7.

Kolb 1998a: Kolb M, Kirschner J, Wirtz H, Schmidt M. Immunosuppressive therapy of idiopathic pulmonary fibrosis with cyclophosphamide. Atemwegs- und Lungenkrankheiten. 1998;24(12):554–9.
Kolb 2016: Kolb M, Jenkins G, Richeldi L. Study the past to divine the future. Confucius’ wisdom doesn’t work for idiopathic pulmonary fibrosis. Thorax. 2016;71(5):399–400.

Kolek 1994: Kolek V. Epidemiology of cryptogenic fibrosing alveolitis in Moravia and Silesia. Acta Universitatis Palackianae Olomucensis Facultatis Medicae. 1994;137:49–50.

Kolek 1995: Kolek V. Epidemiology of cryptogenic fibrosing alveolitis in Moravia and Silesia, in the period 1981-1990. Internista. 1995;3(2):105–8.

Kolilekas 2010: Kolilekas L, Vlami K, Manali E, Triantafillidou C, Markoulaki D, Lyberopoulos P, et al. Sleep disorders and quality of life questionnaires in idiopathic pulmonary fibrosis patients with obstructive sleep apnoea syndrome. Journal of Sleep Research. 2010;19:167–8.

Kolilekas 2013: Kolilekas L, Manali E, Vlami KA, Lyberopoulos P, Triantafillidou C, Kagouridis K, et al. Sleep oxygen desaturation predicts survival in idiopathic pulmonary fibrosis. Journal of Clinical Sleep Medicine. 2013;9(6):593–601.

Kolilekas 2016: Kolilekas L, Manali ED, Papiris SA, Bouros D. Anti-acid therapy in idiopathic pulmonary fibrosis: to treat or not to treat?. Pneumon. 2016;29(3):196–9.

Kondoh 2013: Kondoh Y, Taniguchi H, Ogura T, Johkoh T, Fujimoto K, Sumikawa H, et al. Disease progression in idiopathic pulmonary fibrosis without pulmonary function impairment. Respirology. 2013;18(S):820–6.

Kondoh 2015a: Kondoh Y, Taniguchi H, Johkoh T, Sumikawa H, Tabata K, Kataoka K, et al. Clinical features and outcomes of atypical idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2523.

Kondoh 2016: Kondoh S, Chiba H, Nishikiori H, Umeda Y, Kuronuma K, Otsuka M, et al. Validation of the Japanese disease severity classification and the GAP model in Japanese patients with idiopathic pulmonary fibrosis. Respiratory Investigation. 2016;54(5):327–33.

Konishi 2012: Konishi S, Arita M, Ishida T. %FVC, %DLCO, and, composite physiologic index at baseline could be the predictors of the efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:4503.

Konishi 2015: Konishi S, Arita M, Ito I, Tachibana H, Takaiwa T, Fukuda Y, et al. Composite physiologic index, percent forced vital capacity and percent diffusing capacity for carbon monoxide could be predictors of pirfenidone tolerability in patients with idiopathic pulmonary fibrosis. Internal Medicine. 2015;54(22):2835–41.

Kono 2013: Kono M, Nakamura Y, Enomoto N, Hashimoto D, Fujisawa T, Inui N, et al. Cumulative incidence of collagen vascular disease (CVD) in the patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2013;187:A2930.

Kono 2014: Kono M, Nakamura Y, Enomoto N, Hashimoto D, Fujisawa T, Inui N, et al. Usual interstitial pneumonia preceding collagen vascular disease: a retrospective case control study of patients initially diagnosed with idiopathic pulmonary fibrosis. PLoS One. 2014;9(4):e94775.

Kono 2016: Kono M, Nakamura Y, Oyama Y, Mori K, Hozumi H, Karayama M, et al. Increased levels of serum Wisteria floribunda agglutinin-positive Mac-2 binding protein in idiopathic pulmonary fibrosis. Respiratory Medicine. 2016;115:46–52.
Koo 2017: Koo SM, Uh ST, Kim DS, Kim YW, Chung MP, Park CS, et al. Relationship between survival and age in patients with idiopathic pulmonary fibrosis. Journal of Thoracic Disease. 2017;8(11):3255–64.

Kopinski 2011: Kopinski P, Balicka-Slusarczyk B, Dyczek A, Szpechcinski A, Przybylski G, Jarzemska A, et al. Enhanced expression of Fas Ligand (FasL) in the lower airways of patients with fibrotic interstitial lung diseases (ILDs). Folia Histochemica et Cytobiologica. 2011;49(4):636–45.

Kopinski 2011a: Kopinski P, Dyczek A, Balicka-Slusarczyk B, Przybylski G, Chorostowska-Wynimko J, Szpechcinski A, et al. Enhanced expression of Fas ligand (FasL) in fibrotic interstitial lung diseases (ILDs). The possible role of membrane-bound FasL form. European Respiratory Journal. 2011;38(Suppl 55):P2002.

Korthagen 2014: Korthagen NM, van Moorsel CH, Zanen P, Ruven HJ, Grutters JC. Evaluation of circulating YKL-40 levels in idiopathic interstitial pneumonias. Lung. 2014;192(6):975–80.

Krakówka 1968: Krakówka P, Izdebska-Makosa Z. Course and prognosis of idiopathic diffuse pulmonary fibrosis in the light of our studies. Gruzlica i Choroby Pluc; Tuberculosis et Pneumonologia. 1968;36(4):335–48.

Kreuter 2014: Kreuter M, Ehlers-Tenenbaum S, Schaaf M, Oltmanns U, Palmowski K, Hoffmann H, et al. Treatment and outcome of lung cancer in idiopathic interstitial pneumonias. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2014;31(4):266–74.

Kreuter 2015: Kreuter M, Wijsenbeek MS, Vasakova M, Spagnolo P, Kolb M, Costabel U, et al. Detrimental effects of medically indicated oral anticoagulation on survival in idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2015;46(Suppl 59):OA3479.

Kreuter 2015a: Kreuter M, Wuyts W, Renzoni E, Koschel D, Maher TM, Kolb M, et al. Antacid therapy and progression free survival in idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2015;46(Suppl 59):OA3478.

Kreuter 2016a: Kreuter M, Spagnolo P, Wuyts W, Renzoni E, Koschel D, Bonella F, et al. Antacid therapy and disease progression in patients with idiopathic pulmonary fibrosis (IPF) under pirfenidone treatment. Thorax. 2016;71:A58.

Kreuter 2016b: Kreuter M, Wijsenbeek MS, Vasakova M, Spagnolo P, Kolb M, Costabel U, et al. Unfavourable effects of medically indicated oral anticoagulants on survival in idiopathic pulmonary fibrosis. European Respiratory Journal. 2016;47(6):1776–84.

Kreuter 2016c: Kreuter M, Wirtz H, Prasse A, Pittrow D, Koschel D, Klotsche J, et al. Symptoms and quality of life in relation to lung function and comorbidities in patients with idiopathic pulmonary fibrosis: INSIGHTS-IPF registry. European Respiratory Journal. 2016;48(Suppl 60):OA4570.

Kreuter 2016d: Kreuter M, Wuyts W, Renzoni E, Koschel D, Maher TM, Kolb M, et al. Antacid therapy and disease outcomes in idiopathic pulmonary fibrosis: a pooled analysis. The Lancet Respiratory Medicine. 2016;4(5):381–9.

Kreuter 2017: Kreuter M, Bonella F, Maher TM, Costabel U, Spagnolo P, Weycker D, et al. Effect of statins on disease-related outcomes in patients with idiopathic pulmonary fibrosis. Thorax. 2017;72(2):148–53.
Kreuter 2017a: Kreuter M, Spagnolo P, Wuyts W, Renzoni E, Koschel D, Bonella F, et al. Antacid therapy and disease progression in patients with idiopathic pulmonary fibrosis who received pirfenidone. Respiration. 2017;93(6):415–23.

Krowka 2007: Krowka MJ, Ahmad S, de Andrade JA, Frost A, Glassberg MK, Lancaster LH, et al. A randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of iloprost inhalation in adults with abnormal pulmonary arterial pressure and exercise limitation associated with idiopathic pulmonary fibrosis. Chest. 2007;132(4 Supplement):633A.

Kubo 2005: Kubo H, Nakayama K, Yanai M, Suzuki T, Yamaya M, Watanabe M, et al. Anticoagulant therapy for idiopathic pulmonary fibrosis. Chest. 2005;128(3):1475–82.

Kulkarni 2015: Kulkarni T, Willoughby J, Kim Y, Ramachandran R, Luckhardt TR, De Andrade JM. Establishing a standard of care for patients with idiopathic pulmonary fibrosis concept of “bundle of care”. American Journal of Respiratory and Critical Care Medicine. 2015;191:A4401.

Kulkarni 2016: Kulkarni T, Willoughby J, Acosta Lara Mdel P, Kim YI, Ramachandran R, Alexander CB, et al. A bundled care approach to patients with idiopathic pulmonary fibrosis improves transplant-free survival. Respiratory Medicine. 2016;115:33–8.

Kundu 2014: Kundu S, Mitra S, Ganguly J, Mukherjee S, Ray S, Mitra R. Spectrum of diffuse parenchymal lung diseases with special reference to idiopathic pulmonary fibrosis and connective tissue disease: an eastern India experience. Lung India. 2014;31(4):354–60.

Kunstling 1976: Kunstling TR, Goodwin RA Jr, Des Prez RM. Diffuse interstitial pulmonary fibrosis (cryptogenic fibrosing alveolitis). Southern Medical Journal 1976;69(4):479-84, 487.

Kuse 2016: Kuse N, Abe S, Hayashi H, Kamio K, Saito Y, Usuki J, et al. Long-term efficacy of macrolide treatment in idiopathic pulmonary fibrosis: a retrospective analysis. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2016;33(3):242–6.

Kyung 2005: Kyung SY, Park CH, Lim YH, An CH, Lee SP, Park JW, et al. Clinical course of probable idiopathic pulmonary fibrosis. Tuberculosis and Respiratory Diseases. 2005;59(1):77–85.

Lai 2012a: Lai CC, Wang CY, Lu HM, Chen L, Teng NC, Yan YH, et al. Idiopathic pulmonary fibrosis in Taiwan - a population-based study. Respiratory Medicine. 2012;106(11):1566–74.

Lama 2003: Lama VN, Flaherty KR, Toews GB, Colby TV, Travis WD, Long Q, et al. Prognostic value of desaturation during a 6-minute walk test in idiopathic interstitial pneumonia. American Journal of Respiratory and Critical Care Medicine. 2003;168(9):1084–90.

Lamas 2011: Lamas DJ, Kawut SM, Bagiella E, Philip N, Arcasoy SM, Lederer DJ. Delayed access and survival in idiopathic pulmonary fibrosis: a cohort study. American Journal of Respiratory and Critical Care Medicine. 2011;184(7):842–7.

Lamas 2011a: Lamas DJ, Kawut SM, Philip N, Arcasoy SM, Lederer DJ. Delayed referral to a tertiary care center is associated with higher mortality in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A5298.

Lancaster 2005: Lancaster L, Safrin S, Loutit J, Bradford WZ. Long-term use of interferon gamma-1b (IFN-γ 1b) in patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2005.
Lancaster 2009: Lancaster LH, Mason WR, Parnell JA, Rice TW, Loyd JE, Milstone AP, et al. Obstructive sleep apnea is common in idiopathic pulmonary fibrosis. Chest. 2009;136(3):772–8.

Lancaster 2015: Lancaster L, Albera C, Bradford WZ, Costabel U, Du Bois RM, Fagan EA, et al. Safety of pirfenidone in patients with idiopathic pulmonary fibrosis (IPF): Integrated analysis of data from 5 clinical trials. American Journal of Respiratory and Critical Care Medicine. 2015;191:A1017.

Lancaster 2016: Lancaster L, Albera C, Bradford WZ, Costabel U, Du Bois RM, Fagan EA, et al. Safety of pirfenidone in patients with idiopathic pulmonary fibrosis: Integrated analysis of cumulative data from 5 clinical trials. BMJ Open Respiratory Research. 2016;3(1):e000105.

Langaker 1981: Langaker O. Fibrosing alveolitis. Tidsskrift for den Norske Laegeforening. 1981;101(17-18):1058-60, 74.

Lanser 1984: Lanser K, von Wichert P. What is safe in the therapy of alveolitis and lung fibrosis? Internist. 1984;25(12):735–40.

Lavender 2011: Lavender M. Sildenafil does not improve 6 min walk distance in advanced idiopathic pulmonary fibrosis. Thorax. 2011;66(3):239.

Layton 2017: Layton AM, Armstrong HF, Kim HP, Meza KS, D'Ovidio F, Arcasoy SM. Cardiopulmonary exercise factors predict survival in patients with advanced interstitial lung disease referred for lung transplantation. Respiratory Medicine. 2017;26:59–67.

Leceuvre 2016: Leceuvre K, De Dycker E, Moerman T, Yserbyt J, Wuyts W. Efficacy of pirfenidone in idiopathic pulmonary fibrosis: A single center experience. European Respiratory Journal. 2016;48(Suppl 60):PA2088.

Lederer 2006a: Lederer DJ, Arcasoy SM, Wilt JS, D'Ovidio F, Sonett JR, Kawut SM. Six-minute-walk distance predicts waiting list survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2006;174(6):659–64.

Lederer 2006b: Lederer DJ Arcasoy SM, Barr RG, Wilt JS, Bagiella E, D'Ovidio F, et al. Racial and ethnic disparities in idiopathic pulmonary fibrosis: a UNOS/OPTN database analysis. American Journal of Transplantation. 2006;6(10):2436–42.

Lee 2005: Lee HL, Ryu JH, Wittmer MH, Hartman TE, Lymp JF, Tazelaar HD, et al. Familial idiopathic pulmonary fibrosis: clinical features and outcome. Chest. 2005;127(6):2034–41.

Lee 2009: Lee KJ, Kang YA, Moon JW, Kim SK, Chang J, Park MS. The incidence and risk factors of idiopathic pulmonary fibrosis related to lung cancer. Respirology. 2009;14:A167.

Lee 2011a: Lee JS, Ryu JH, Elicker BM, Lydell CP, Jones KD, Wolters PJ, et al. Gastroesophageal reflux therapy is associated with longer survival in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;184(12):1390–4.

Lee 2011b: Lee JS, Song JW, Wolters PJ, Elicker BM, King TE, Kim D, et al. Bronchoalveolar lavage pepsin levels in acute exacerbation of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A3804.

Lee 2012a: Lee JS, Kim EJ, Lynch KL, Elicker B, Ryerson CJ, Katsumoto TR, et al. Circulating autoantibodies are associated with longer survival time in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4372.
Lee 2012b: Lee JS, Song JW, Wolters PJ, Elicker BM, King TE Jr, Kim DS, et al. Bronchoalveolar lavage pepsin in acute exacerbation of idiopathic pulmonary fibrosis. European Respiratory Journal. 2012;39(2):352–8.

Lee 2012c: Lee KJ, Chung MP, Kim YW, Lee JH, Kim KS, Ryu JS, et al. Prevalence, risk factors and survival of lung cancer in the idiopathic pulmonary fibrosis. Thoracic Cancer. 2012;3(2):150–5.

Lee 2012d: Lee R, Murphy D, Dodd J, McNicholas WT, Keane MP. High-resolution computed tomography (HRCT) in idiopathic pulmonary fibrosis (IPF)-correlation with physiologic measurements. Irish Journal of Medical Science. 2012;181:S436.

Lee 2013: Lee JS, Collard HR, Elicker B, Jones KD, King TE, Wolters PJ. Telomere length and survival in idiopathic pulmonary fibrosis. The American Review of Respiratory Disease. 2013;187:A5715.

Lee 2013a: Lee JS, Kim EJ, Lynch KL, Elicker B, Ryerson CJ, Katsumoto TR, et al. Prevalence and clinical significance of circulating autoantibodies in idiopathic pulmonary fibrosis. Respiratory Medicine. 2013;107(2):249–55.

Lee 2014: Lee T, Park JY, Lee HY, Cho YJ, Yoon HI, Lee JH, et al. Lung cancer in patients with idiopathic pulmonary fibrosis: clinical characteristics and impact on survival. Respiratory Medicine. 2014;108(10):1549–55.

Lee 2015a: Lee CM, Lee DH, Hwang JJ, Yoon H, Shin CM, Park YS, et al. The prevalence of gastroesophageal reflux disease in patients with idiopathic pulmonary fibrosis in Korea. United European Gastroenterology Journal. 2015;1:A479.

Lee 2015b: Lee JS, Wolters PJ, Cello JP, Golden J, Aziz S, Jones KD, et al. Bronchoalveolar lavage pepsin levels are significantly elevated in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2516.

Lee 2015c: Lee SH, Kim SY, Kim DS, Kim YW, Chung MP, Uh ST, Park CS, et al. Association between occupational dust exposure and prognosis of idiopathic pulmonary fibrosis: a Korean national survey. Chest. 2015;147(2):465–74.

Lee 2016: Lee CM, Lee DH, Ahn BK, Hwang JJ, Yoon H, Shin CM, et al. Protective effect of proton pump inhibitor for survival in patients with gastroesophageal reflux disease and idiopathic pulmonary fibrosis. Journal of Neurogastroenterology and Motility. 2016;22(3):444–51.

Lee 2016a: Lee SH, Kim SY, Kim DS, Kim YW, Chung MP, Uh ST, et al. Comparisons of prognosis between surgically and clinically diagnosed idiopathic pulmonary fibrosis using GAP model: a Korean national cohort study. Medicine. 2016;95(11):e3105.

Lee 2016b: Lee SH, Kim SY, Kim DS, Kim YW, Chung MP, Uh ST, et al. Predicting survival of patients with idiopathic pulmonary fibrosis using GAP score: a nationwide cohort study. Respiratory Research. 2016;17(1):131.

Lee 2017: Lee JU, Cheong HS, Shim EY, Bae DJ, Chang HS, Uh ST, et al. Gene profile of fibroblasts identify relation of CCL8 with idiopathic pulmonary fibrosis. Respiratory Research. 2017;18(1):3.

Lei 1983: Lei ZZ. Idiopathic diffuse interstitial pulmonary fibrosis: report of 26 cases. Chung-Hua Chieh Ho Ho Hu Hsi Hsi Chi Ping Tsa Chih. 1983;6(2):81–4.
Lettieri 2006: Lettieri CJ, Nathan SD, Barnett SD, Ahmad S, Shorr AF. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest. 2006;129(3):746–52.

Lettieri 2006a: Lettieri CJ, Nathan SD, Browning RF, Barnett SD, Ahmad S, Shorr AF. The distance-saturation product predicts mortality in idiopathic pulmonary fibrosis. Respiratory Medicine. 2006;100(10):1734–41.

Leuchte 2015: Leuchte HH, Mernitz P, Baezner C, Baumgartner RA, von Wulffen W, Neurohr C, et al. Self-report daily life activity as a prognostic marker of idiopathic pulmonary fibrosis. Respiration. 2015;90(6):460–7.

Leung 2008: Leung SK, Lam FM, Yew WW, Wong PC. Predicting impairment of diffusing capacity for Chinese patients with lung fibrosis. Respirology. 2008;13(6):929–30.

Ley 2011: Ley B, Ryerson CJ, Vittinghoff E, Elicker BM, Jones KD, King TE, et al. A simple, clinically useful staging system for idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A5300.

Ley 2012: Ley B, Ryerson CJ, Vittinghoff E, Ryu JH, Tomassetti S, Lee JS, et al. A multidimensional index and staging system for idiopathic pulmonary fibrosis. Annals of Internal Medicine 2012;156(10):684–91.

Ley 2012a: Ley B, Vittinghoff E, Elicker BM, Hartmann TE, Ryerson CJ, Ryu JH, et al. Extent of fibrosis by high-resolution computed tomography does not improve prediction of mortality in idiopathic pulmonary fibrosis when added to a simple clinical prediction model. European Respiratory Journal. 2012;40(Suppl 56):2822.

Ley 2013: Ley B, Collard HR. Epidemiology of idiopathic pulmonary fibrosis. Clinical Epidemiology 2013;5:483–92.

Ley 2014: Ley B, Bradford WZ, Weycker D, Vittinghoff E, Du Bois RM, Collard HR. Integrated baseline and longitudinal mortality risk prediction in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1446.

Ley 2014a: Ley B, Elicker BM, Hartman TE, Ryerson CJ, Vittinghoff E, Ryu JH, et al. Idiopathic pulmonary fibrosis: CT and risk of death. Radiology. 2014;273(2):570–9.

Ley 2015: Ley B, Bradford WZ, Weycker D, Vittinghoff E, Du Bois RM, Collard HR. Unified baseline and longitudinal mortality prediction in idiopathic pulmonary fibrosis. European Respiratory Journal. 2015;45(5):1374–81.

Ley 2015a: Ley B, Collard HR. House of cards? Testing fundamental assumptions in idiopathic pulmonary fibrosis epidemiology. American Journal of Respiratory and Critical Care Medicine 2015;192(10):1147–8.

Ley 2016: Ley B, Swigris JJ, Day B, Stauffer J, Chou W, Raimundo K, et al. Reduction in non-elective respiratory-related hospitalizations in patients treated with pirfenidone: Pooled analyses from three phase 3 trials of pirfenidone in idiopathic pulmonary fibrosis. Thorax. 2016;71:A177–A178.

Li 2010a: Li ZH, Peng SC, Kang J, Hou XM, Yu RJ. Effect of corticosteroids upon the prognosis of idiopathic pulmonary fibrosis. National Medical Journal of China. 2010;90(12):804–7.
Li 2015a: Li H, Liu S, Li G, Zhang X, Li L, Liu Z, et al. An observational study of Chinese medicine on IPF. American Journal of Respiratory and Critical Care Medicine. 2015;191:A4408.

Liang 2014: Liang Z, Lindell KO, Hoffman LA, Saul M, Kaminski N, Gibson KF. Characteristics associated with ICU admission in a cohort of patients with IPF. American Journal of Respiratory and Critical Care Medicine. 2014;189:A5248.

Lichert 2013: Lichert F. Fibrotic idiopathic interstitial pneumonia – the extent of pulmonary fibrosis predicts survival. Rofo. 2013;185(3):206.

Lindell 2007: Lindell KO, Hoffman LH, Zullo TJ, Olshansky E, Gibson KF, Kaminski N. Palliative care in patients with idiopathic pulmonary fibrosis and their care partners. American Journal of Respiratory and Critical Care Medicine. 2007;175:A92.

Lindell 2011: Lindell KO. Gene expression and outcome profile of idiopathic pulmonary fibrosis patient subgroups based on dyspnea score. American Journal of Respiratory and Critical Care Medicine 2011;183:A2268.

Lindell 2014: Lindell KO, Gibson KF, Klesen MS, Meyers M, Lynn H, Juan-Guardela BM, et al. Dyspnea is a strong predictor of survival and correlates with genomic markers of poor idiopathic pulmonary fibrosis outcomes. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1530.

Linden 2006: Linden PA, Gilbert RJ, Yeap BY, Boyle K, Deykin A, Jaklitsch MT, et al. Laparoscopic fundoplication in patients with end-stage lung disease awaiting transplantation. The Journal ofThoracic and Cardiovascular Surgery. 2006;131(2):438–46.

Loeh 2014: Loeh B, Drakopanagiotakis F, Bandelli GP, Cordani E, Tello S, von der Beck D, et al. Intraindividual response to treatment with pirfenidone in two independent European IPF cohorts. European Respiratory Journal. 2014;44(Suppl 58):P762.

Loeh 2015: Loeh B, Drakopanagiotakis F, Bandelli GP, von der Beck D, Tello S, Cordani E, et al. Intraindividual response to treatment with pirfenidone in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191(1):110–3.

Lok 1999: Lok SS. Interstitial lung disease clinics for the management of idiopathic pulmonary fibrosis: a potential advantage to patients. The Journal of Heart and Lung Transplantation. 1999;18(9):884–90.

Louw 1984: Louw SJ, Bateman ED, Benatar SR. Cryptogenic fibrosing alveolitis. Clinical spectrum and treatment. South African Medical Journal. 1984;65(6):195–200.

Lynch 2004: Lynch D, Godwin JD, Webb WR, Bradford WZ, Starko K, IPF Study Group. HRCT findings at baseline and follow-up in patients with idiopathic pulmonary fibrosis (IPF) in a phase 3, randomized, double-blind, placebo-controlled trial of interferon gamma-1b (IFN-γ 1b). American Journal of Respiratory and Critical Care Medicine. 2004.

Lynch 2004a: Lynch D, Godwin JD, Webb WR, Brown KK, Bradford WZ, Noble PW, et al. HRCT diagnosis of IPF and relationship between HRCT characteristics and histology and clinical findings in patients in a phase 3, randomized, double-blind, placebo-controlled trial of interferon gamma-1b (IFN-gamma 1b). Chest. 2004;126(4 Supplement):773S.

Lynch 2005: Lynch DA, Godwin JD, Safrin S, Starko KM, Hormel P, Brown KK, et al. High-resolution computed tomography in idiopathic pulmonary fibrosis: diagnosis and prognosis. American Journal of Respiratory and Critical Care Medicine. 2005;172(4):488–93.
Ma 2012: Ma SF, Huang Y, Vij R, Broderick SM, Barber M, Garcia JGN. Identification of idiopathic pulmonary fibrosis miRNA signature from peripheral blood mononuclear cells. American Journal of Respiratory and Critical Care Medicine. 2012;185:A2654.

Ma 2013: Ma J, Li Z, Xu H, Wang H, Kang J, Yu R. A comparison of clinical features between patients with idiopathic pulmonary fibrosis combined with emphysema and without emphysema. Zhonghua Jie He Hu Xi Za Zhi. 2013;36(3):173–6.

Mackay 2010: Mackay A. Interferon gamma-1b does not improve survival for patients with idiopathic pulmonary fibrosis. Thorax. 2010;65(2):186.

Makela 2016: Makela K, Hodgson U, Kelloniemi K, Sutinen E, Salmenkivi K, Ronty M, et al. Analysis of lung tissue samples from the finnish IPF cohort study. QJM. 2016;109:S54–5.

Makiguchi 2016: Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):110.

Makiguchi 2016a: Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):110.

Makiguchi 2016b: Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):110.

Makiguchi 2016c: Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):110.

Makiguchi 2016d: Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):110.

Makiguchi 2016e: Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):110.

Makiguchi 2016f: Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):110.

Makiguchi 2016g: Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):110.

Makiguchi 2016h: Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):110.

Manali 2008: Manali ED, Stathopoulos GT, Kollintza A, Kalomenidis I, Emili JM, Sotiropoulou C, et al. The Medical Research Council chronic dyspnea score predicts the survival of patients with idiopathic pulmonary fibrosis. Respiratory Medicine. 2008;102(4):586–92.

Mandi 1974: Mandi L, Kelemen JT, Vezendi S, Kasza L, Kormos M. Scadding’s diffuse fibrosing alveolitis. Scandinavian Journal of Respiratory Diseases – Supplementum. 1974;89:213–9.

Mannes 1994: Mannes GP, de Boer WJ, van der Bij W, Grevink RG, Koeter GH. Patients on the waiting list for lung transplantation in Groningen: selection and outcome. Ned Tijdschr Geneeskd. 1994;138(16):808–12.

Margaritopoulos 2016: Margaritopoulos GA, Antoniou KM. Can warfarin be used in the treatment of pulmonary embolism in idiopathic pulmonary fibrosis?. American Journal of Respiratory and Critical Care Medicine. 2016;193(7):810–1.

Margaritopoulos 2016a: Margaritopoulos GA, Proklou A, Badenes Bonet D, Kokosi M, Maher TM, Renzoni EA, et al. Baseline characteristics of patients with idiopathic pulmonary fibrosis aged over 80 years old. Thorax. 2016;71:A236–7.

Mart 2012: Mart D, Hinojosa M, Loviscek M, Raghu G, Oeschler B. Nissen fundoplication limits disease progression in patients with concurrent idiopathic pulmonary fibrosis and gastroesophageal reflux. Journal of Investigative Medicine. 2012;60(1):244.

Martinez 2004: Martinez FJ, Starko KM, Safrin S, Bradford WZ, Weycker D, Brown KK, et al. Predictors of respiratory hospitalization in patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2004.
Martinez 2005: Martinez FJ, Safrin S, Weycker D, Starko KM, Bradford WZ, King TE Jr, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Annals of Internal Medicine. 2005;142(12):963–7.

Martinez 2013: Martinez FJ, Brown KK, Collard HR, Flaherty KR, King TE, Raghu G, et al. Discrepancy between changes in FVC and disease progression in two prospective idiopathic pulmonary fibrosis (IPF) therapeutic trials. American Journal of Respiratory and Critical Care Medicine. 2013;187:A2354.

Martinez-Moreno 2015: Martinez-Moreno J, Ventura-Cerda JM, Navarro AAL, Lleti ACC, Lara SH, Marti MC. Pirfenidone experience in mild-to-moderate idiopathic pulmonary fibrosis in a general hospital. Anales de la Real Academia Nacional de Farmacia. 2015;81(4):334–7.

Martinez-Moreno 2016: Martinez-Moreno J, Lopez-Navarro AA, Ventura-Cerda JM, Gomez-Alvarez S, Climente-Martí M. Effectiveness and safety of pirfenidone in idiopathic Pulmonary fibrosis. European Journal of Hospital Pharmacy. 2016;23:A71–2.

Marty 1973: Marty JC, M'Rabet H, Michel FB. Clinical and radiologic symptomatology of diffuse interstitial pulmonary fibrosis running a slow course. Poumon et le Coeur. 1973;29(5):543–51.

Mascitelli 2010: Mascitelli L, Pezzetta F, Goldstein MR. Vitamin D and mortality from pulmonary fibrosis. Chest. 2010;137(2):495–6.

Masjedi 2010: Masjedi MR, Hashemi N, Fakhranian A, Marashian M. Idiopathic pulmonary fibrosis in Iran. Annals of Thoracic Medicine. 2010;5(2):184.

Mathal 2007: Mathal SC, McCormack MC, Merriman MB, Polito AJ, Danoff SK, Horton M. The minimal clinically important difference for the six minute walk test in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2007.

Matson 2016: Matson S, Solomon JJ, Swigris JJ, Chung J, Mahler M, Deane KD, et al. Anti-CCP3.1 and anti-CCP3-IgA are elevated in RA-free subjects with idiopathic pulmonary fibrosis. Arthritis and Rheumatology. 2016;68:746–50.

Matsubara 2009: Matsubara O, Ohba T, Ninomiya H, Ishikawa Y, Mark EJ. Histological characteristics in the prediction of acute exacerbation of Idiopathic pulmonary fibrosis (IPF) following surgery for primary lung cancer. Laboratory Investigation. 2009;89:358A.

Matusiewicz 1993: Matusiewicz SP, Williamson IJ, Sime PJ, Brown PH, Wenham PR, Crompton GK, et al. Plasma lactate dehydrogenase: a marker of disease activity in cryptogenic fibrosing alveolitis and extrinsic allergic alveolitis?. European Respiratory Journal. 1993;6(9):1282–6.

McAllister 2016: McAllister D, Mathur A, Wright P, Nicol L, McFarlane P, Stewart G, et al. The natural history of asbestosis and idiopathic pulmonary fibrosis according to HRCT phenotype. QJM. 2016;109:S5.

McBurney 2012: McBurney C, Aggarwal R, Gibson K, Lindell K, Fuhrman C, Koontz D, et al. Myositis-associated usual interstitial pneumonia has better survival than idiopathic pulmonary fibrosis. Arthritis and Rheumatism. 2012;64:593.

McCormack 1991: McCormack FX, King TE Jr, Voelker DR, Robinson PC, Mason RJ. Idiopathic pulmonary fibrosis: Abnormalities in the bronchoalveolar lavage content of surfactant protein A. The American Review of Respiratory Disease. 1991;144(1):160–6.
McCormack 1995: McCormack FX, King TE Jr, Bucher BL, Nielsen L, Mason RJ. Surfactant protein A predicts survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 1995;152(2):751–9.

McCormack 1995a: McCormack FX, King TE Jr, Bucher BL, Nielsen L, Mason RJ. Erratum: Surfactant protein A predicts survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 1995;152(4):1425.

Meier-Sydow 1978: Meier-Sydow J, Kronenberger H, Rust M, Thiel Cl. Longterm prognosis and follow-up of patients with idiopathic pulmonary fibrosis (IPF) under combined therapy with corticosteroids and azathioprine. The American Review of Respiratory Disease. 1978;117(4 II):73.

Meier-Sydow 1979a: Meier-Sydow J, Connette B, Hubel E, Kroidl RF, Kronenberger H, Muller U, et al. Long term development of idiopathic pulmonary fibrosis. Combined therapy with immunodepressors, D-penicillamine and corticosteroids. Broncho-Pneumologie. 1979;29(3):249–54.

Meier-Sydow 1986: Meier-Sydow J, Rust M, Kappos A. The long term course of airflow obstruction in obstructive variants of the fibrotic stage of sarcoidosis and of idiopathic pulmonary fibrosis. Praxis und Klinik der Pneumologie. 1986;40(Suppl 1):257–60.

Meier-Sydow 1986a: Meier-Sydow J, Rust MG, Kappos A, Kronenberger H, Nerger K, Schultz-Werninghaus G. The long-term course of airflow obstruction in obstructive variants of the fibrotic stage of sarcoidosis and of idiopathic pulmonary fibrosis. Annals of the New York Academy of Sciences. 1986;465:515–22.

Mejia 2009: Mejia M, Carrillo G, Rojas-Serrano J, Estrada A, Suarez T, Alonso D, et al. Idiopathic pulmonary fibrosis and emphysema: decreased survival associated with severe pulmonary arterial hypertension. Chest. 2009;136(1):10–5.

Meliconi 1990: Meliconi R, Lalli E, Borzi RM, Sturani C, Galavotti V, Gunella G, et al. Idiopathic pulmonary fibrosis: can cell mediated immunity markers predict clinical outcome? Thorax. 1990;45(7):536–40.

Meliconi 1990a: Meliconi R, Senaldi G, Sturani C, Galavotti V, Facchini A, Gasbarrini G, et al. Complement activation products in idiopathic pulmonary fibrosis: relevance of fragment Ba to disease severity. Clinical Immunology and Immunopathology. 1990;57(1):64–73.

Meltzer 2011: Meltzer EB, Barry WT, D’Amico TA, Davis RD, Lin SS, Onaitis MW, et al. Bayesian probit regression model for the diagnosis of pulmonary fibrosis: proof-of-principle. BMC Medical Genomics. 2011;4:70.

Meltzer 2011a: Meltzer EB, Barry WT, Noble PW. Validated gene signatures of idiopathic pulmonary fibrosis. Proceedings of the American Thoracic Society. 2011;8 (2):206.

Meyer 2017: Meyer KC. Great expectations for simtuzumab in IPF fall short. The Lancet. Respiratory Medicine. 2017;5(1):2–3.

Meyers 2000: Meyers BF, Lynch JP, Trulock EP, Guthrie T, Cooper JD, Patterson GA. Single versus bilateral lung transplantation for idiopathic pulmonary fibrosis: a ten-year institutional experience. The Journal of Thoracic and Cardiovascular Surgery. 2000;120(1):99–107.

Micco 2012: Micco A, Carpentieri E, Del Giudice G, Russo A, Romano A, Beatrice G, et al. Effects of oral dual ERA therapy on pulmonary function testing and 6MWT in patients with idiopathic
pulmonary fibrosis and pulmonary hypertension. European Respiratory Journal. 2012;40(Suppl 56):P926.

Miki 2003: Miki K, Maekura R, Hiraga T, Okuda Y, Okamoto T, Hirotani A, et al. Impairments and prognostic factors for survival in patients with idiopathic pulmonary fibrosis. Respiratory Medicine. 2003;97(5):482–90.

Mills 2014: Mills R, Mathur A, Nicol L, Dransfield I, Wallace W, Howie S, et al. Detection of anti-Hsp72 autoantibodies in idiopathic pulmonary fibrosis. Immunology. 2014;143:170.

Milne 2016: Milne KM, Kwan JM, Guler S, Winstone TA, Le A, Khalil N, et al. Frailty is common and strongly associated with dyspnoea severity in fibrotic interstitial lung disease. Respirology. 2016;22(4):728–34.

Minai 2008: Minai OA, Sahoo D, Chapman JT, Mehta AC. Vasoactive therapy can improve 6-min walk distance in patients with pulmonary hypertension and fibrotic interstitial lung disease. Respiratory Medicine. 2008;102(7):1015–20.

Minai 2012: Minai OA, Santacruz JF, Alster JM, Budev MM, McCarthy K. Impact of pulmonary hemodynamics on 6-min walk test in idiopathic pulmonary fibrosis. Respiratory Medicine. 2012;106(11):1613–21.

Minegishi 2011: Minegishi Y, Gemma A. The feasibility of platinum-based combination chemotherapy for advanced lung cancer with idiopathic interstitial pneumonias. European Journal of Cancer. 2011;47:5624.

Minegishi 2011a: Minegishi Y, Kuribayashi H, Kitamura K, Mizutani H, Kosaihira S, Okano T, et al. The feasibility study of Carboplatin plus Etoposide for advanced small cell lung cancer with idiopathic interstitial pneumonias. Journal of Thoracic Oncology. 2011;6(4):801–7.

Minegishi 2011b: Minegishi Y, Sudoh J, Kuribayasi H, Mizutani H, Seike M, Azuma A, et al. The safety and efficacy of weekly paclitaxel in combination with carboplatin for advanced non-small cell lung cancer with idiopathic interstitial pneumonias. Lung Cancer. 2011;71(1):70–4.

Minegishi 2014: Minegishi Y, Kokuho N, Miura Y, Matsumoto M, Miyanaega A, Noro R, et al. Clinical features, anti-cancer treatments and outcomes of lung cancer patients with combined pulmonary fibrosis and emphysema. Lung Cancer. 2014;85(2):258–63.

Minnis 2015: Minnis P, Kane R, Lumsden R, Whitty S, Donnelly SC, Keane MP. Serum microRNA profiles in IPF patients biomarkers or potential therapeutic targets?. Thorax. 2015;70:A68–9.

Mino 1995: Mino M, Noma S, Kobashi Y, Iwata T. Serial changes of cystic air spaces in fibrosing alveolitis: a CT-pathological study. Clinical Radiology. 1995;50(6):357–63.

Mitchell 2011: Mitchell P, Murphy D, Kean MP, Donnelly SC, Dodd JD, Butler MW. In smokers with usual interstitial pneumonia, idiopathic pulmonary fibrosis shows more radiologic fibrosis/emphysema than in other cases of UIP. Irish Journal of Medical Science. 2011;180:S467.

Mitchell 2013: Mitchell P, Das J, Murphy D, Keane MP, Donnelly SC, Dodd JD, et al. Idiopathic pulmonary fibrosis with emphysema has a more severe response to smoke than other forms of usual interstitial pneumonia with emphysema. American Journal of Respiratory and Critical Care Medicine. 2013;187:A3732.
Miyake 2006: Miyake Y, Sasaki S, Yokoyama T, Chida K, Azuma A, Suda T, et al. Dietary fat and meat intake and idiopathic pulmonary fibrosis: a case-control study in Japan. The International Journal of Tuberculosis and Lung Disease. 2006;10(3):333–9.

Miyamoto 1992: Miyamoto K, Aoi K, Kawakami Y. Effect of home oxygen therapy on prognosis of patients with chronic pulmonary disease associated with pulmonary hypertension. Nihon Kyobu Gakkai Zasshi. 1992;30(Suppl):175–9.

Mizushima 2010: Mizushima T, Tanaka K, Azuma A. Therapeutic effect of lecithinized superoxide dismutase (PC-SOD) on idiopathic pulmonary fibrosis in humans and bleomycin-induced pulmonary fibrosis in mice. American Journal of Respiratory and Critical Care Medicine. 2010;181:A1052.

Modrykamien 2009: Modrykamien AM, Gudavalli R, McCarthy K, Parambil J. Echocardiography and 6-minute walk distance and distance-saturation product as predictors of pulmonary arterial hypertension in idiopathic pulmonary fibrosis. Chest. 2009;136(4 Supplement):S45-S.

Modrykamien 2010: Modrykamien AM, Gudavalli R, McCarthy K, Parambil J. Echocardiography, 6-minute walk distance, and distance saturation product as predictors of pulmonary arterial hypertension in idiopathic pulmonary fibrosis. Respiratory Care. 2010;55(5):584–8.

Mogulkoc 2001a: Mogulkoc N, Brutsche MH, Bishop PW, Murby B, Greaves MS, Horrocks AW, et al. Pulmonary (99m)Tc-DTPA aerosol clearance and survival in usual interstitial pneumonia (UIP). Thorax. 2001;56(12):916–23.

Mogulkoc 2015: Mogulkoc N, Simsek T, Nesil I, Kabasakal Y, Bayraktaroglu S, Veral A, et al. Variation in mortality from interstitial lung disease by diagnosis. European Respiratory Journal. 2015;46(Suppl 59):PA3826.

Mogulkoc 2016: Mogulkoc N, Koc AS, Nesil I, Ekren PK, Veral A, Kabasakal Y, et al. Neoplasia in patients with ILD; shortened survival. European Respiratory Journal. 2016;48(Suppl 60):PA807.

Mohabir 2011: Mohabir P, Gutsche M, Bailey C M, Jacobs SS, Rosen G. Relationship between early radiographic honeycombing and progression of disease in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A1532.

Mohanasundaram 2015: Mohanasundaram K, Madeshwaran MANI, Saranya C, Saravanan M, Therese Mary D, Rajeswari S. Long-term outcome of interstitial lung disease associated with autoimmune connective tissue disorders: A single centre experience. International Journal of Rheumatic Diseases. 2015;18:113.

Molina-Molina 2003: Molina-Molina M, Badia Jobal JR, Marin-Arguedas A, Xaubet A, Santos MJ, Nicolas JM, et al. Outcomes and clinical characteristics of patients with pulmonary fibrosis and respiratory failure admitted to an intensive care unit. A study of 20 cases. Medicina Clinica. 2003;121(2):63–7.

Molina-Molina 2008: Molina-Molina M, Xaubet A, Li X, Abdul-Hafez A, Friderici K, Jernigan, K, et al. Angiotensinogen gene G-6A polymorphism influences idiopathic pulmonary fibrosis disease progression. European Respiratory Journal. 2008;32(4):1004–8.

Molyneaux 2015: Molyneaux PL, Willis-Owen SA, Blanchard A, Lukey P, Simpson J, Marshall R, et al. The longitudinal peripheral whole blood transcriptome in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2163.
Monaghan 2004: Monaghan H, Wells AU, Colby TV, du Bois RM, Hansell DM, Nicholson AG. Prognostic implications of histologic patterns in multiple surgical lung biopsies from patients with idiopathic interstitial pneumonias. Chest. 2004;125(2):522–6.

Montani 2007: Montani D. High-resolution chest CT findings do not predict the presence of pulmonary hypertension in advanced idiopathic pulmonary fibrosis. Revue de Pneumologie Clinique. 2007;63(6):392–3.

Montesi 2016: Montesi S, Namunde M, Pardo A, Selman M, Tager A, Lagares D. Soluble Ephrin-B2 is a prognostic biomarker of pulmonary fibrosis. QJM. 2016;109:S40.

Moolman 1991: Moolman JA, Bardin PG, Rossouw DJ, Joubert JR. Cyclosporin as a treatment for interstitial lung disease of unknown aetiology. Thorax. 1991;46(8):592–5.

Moon 2016: Moon JW, Bae JP, Lee HY, Kim N, Chung MP, Park HY, et al. Perfusion- and pattern-based quantitative CT indexes using contrast-enhanced dual-energy computed tomography in diffuse interstitial lung disease: relationships with physiologic impairment and prediction of prognosis. European Radiology. 2016;26(5):1368–77.

Mooney 2012: Mooney JJ, Elicker BM, Urbania TH, Rajaram M, Ryerson CJ, Nguyen ML, et al. Survival in hypersensitivity pneumonitis: the clinical and radiographic factors associated with survival. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4365.

Mooney 2013: Mooney JJ, Elicker BM, Urbania TH, Agarwal MR, Ryerson CJ, Nguyen ML, et al. Radiographic fibrosis score predicts survival in hypersensitivity pneumonitis. Chest. 2013;144(2):586–92.

Moore 2009: Moore BB. Fibrocytes as potential biomarkers in idiopathic pulmonary fibrosis. American Journal of Respiratory Critical Care Medicine 2009;179(7):524–5.

Moore 2015: Moore BB, Fry C, Zhou Y, Murray S, Han MK, Martinez FJ, et al. Inflammatory leukocyte phenotypes correlate with disease progression in idiopathic pulmonary fibrosis. Frontiers of Medicine. 2015;1(56).

Moreno 2016: Moreno Q, Garcia V, Miarons M, Marin S, Camps M, Sanchez A, et al. Evaluation of the effectiveness and safety of pirfenidone and nintedanib in idiopathic pulmonary fibrosis. European Journal of Hospital Pharmacy. 2016;23:A151.

Mori 2014: Mori K, Nakamura Y, Hozumi H, Kono M, Hashimoto D, Fujisawa T, et al. Emphysema in fibrotic interstitial pneumonia: Idiopathic versus collagen vascular disease-related histologic subtypes. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1486.

Motomura 2012: Motomura T, Seethamraju H, Scheinin S, La Francesca S, Loebe M, Bunge RR, et al. Age and type of lung transplant influence survival in pulmonary fibrosis patients. Journal of Heart and Lung Transplantation. 2012;1:S240.

Moua 2011: Moua T, Raghunath S, Rajagopalan S, Karwoski R, Bartholmai B, Ryu J, et al. Can progression of fibrosis as assessed by computer-aided lung informatics for pathology evaluation and rating (CALIPER) predict outcomes in patients with idiopathic pulmonary fibrosis?. Chest. 2011;140(4 Supplement):1041A.

Moua 2012: Moua T, Maldonado F, Yi J, Ryu JH. Mortality of patients with IPF vs non-IPF usual interstitial pneumonia. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4374.
Moua 2014: Moua T, Maldonado F, Decker PA, Daniels CE, Ryu JH. Frequency and implication of autoimmune serologies in idiopathic pulmonary fibrosis. Mayo Clinic Proceedings. 2014;89(3):319–26.

Moua 2014a: Moua T, Zamora Martinez AC, Baqir M, Vassallo R, Limper AH, Ryu JH. Predictors of diagnosis and survival in idiopathic pulmonary fibrosis and connective tissue disease-related usual interstitial pneumonia. Respiratory Research. 2014;15:154.

Mudambi 2015: Mudambi L, Pendurthi M, Mankidy B, Sinha N, Jyothula S, Scheinin S, et al. Lung transplantation in patients with acute exacerbations of idiopathic pulmonary fibrosis: A single center experience. The Journal of Heart and Lung Transplantation. 2015;1:S257.

Mujakperuo 2013: Mujakperuo H, McGrath EE, Thickett DR. Co-trimoxazole for idiopathic pulmonary fibrosis: time for TIPAC-2? Thorax. 2013;68(2):123–4.

Mukae 2002: Mukae H, Iiboshi H, Nakazato M, Hiratsuka T, Tokojima M, Abe K, et al. Raised plasma concentrations of alpha defensins in patients with idiopathic pulmonary fibrosis. Thorax. 2002;57(7):623–8.

Munteanu 2011: Munteanu O, Botnaru V, Chesov D. Prognostic evaluation in idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2011;38(Suppl 55):P658.

Mura 2004: Mura M, Belmonte G, Fanti S, Pacilli AM, Fasano L, Zompatori M, et al. Does technetium-99m diethylene triaminepenta acetate clearance predict the clinical course of idiopathic pulmonary fibrosis?. Canadian Respiratory Journal. 2004;11(7):477–9.

Mura 2005: Mura M, Belmonte G, Fanti S, Contini P, Pacilli AM, Fasano L, et al. Inflammatory activity is still present in the advanced stages of idiopathic pulmonary fibrosis. Respirology. 2005;10(5):609–14.

Mura 2006: Mura M, Ferretti A, Ferro O, Zompatori M, Cavalli A, Schiavina M, et al. Functional predictors of exertional dyspnea, 6-min walking distance and HRCT fibrosis score in idiopathic pulmonary fibrosis. Respiration. 2006;73(4):495–502.

Mura 2006a: Mura M, Zompatori M, Pacilli A M, Fasano L, Schiavina M, Fabbri M. The presence of emphysema further impairs physiologic function in patients with idiopathic pulmonary fibrosis. Respiratory Care. 2006;51(3):257–65.

Nadrous 2005: Nadrous HF, Myers JL, Decker PA, Ryu JH. Idiopathic pulmonary fibrosis in patients younger than 50 years. Mayo Clinic Proceedings. 2005;80(1):37–40.

Nadrous 2005a: Nadrous HF, Pellikka PA, Krowka MJ, Swanson KL, Chaowalit N, Decker PA, et al. The impact of pulmonary hypertension on survival in patients with idiopathic pulmonary fibrosis. Chest. 2005;128(6 Suppl):616S–75.

Nadrous 2005b: Nadrous HF, Pellikka PA, Krowka MJ, Swanson KL, Chaowalit N, Decker PA, et al. Pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Chest. 2005;128(4):2393–9.

Nagai 1998a: Nagai S, Nagao T, Kitachi M, Izumi T. Clinical courses of asymptomatic cases with idiopathic pulmonary fibrosis and a histology of usual interstitial pneumonia. European Respiratory Journal. 1998;11:13S.
Nagai 1999: Nagai S, Kitaichi M, Hamada K, Nagao T, Hoshino Y, Miki H, et al. Hospital-based historical cohort study of 234 histologically proven Japanese patients with IPF. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 1999;16(2):209–14.

Nagao 2002: Nagao T, Nagai S, Hiramoto Y, Hamada K, Shigematsu M, Hayashi M, et al. Serial evaluation of high-resolution computed tomography findings in patients with idiopathic pulmonary fibrosis in usual interstitial pneumonia. Respiration. 2002;69(5):413–9.

Nagata 2011: Nagata N, Kitasato Y, Wakamatsu K, Kawabata M, Fukushima K, Kajiki A, et al. Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias. Diagnostic Pathology. 2011;6:25.

Najafizadeh 2011: Najafizadeh K, Shafaghi S, Khoddami-Vishteh HR, Yadollahzadeh M, Abbasi-Dezfuli A, Shadmehr MB, et al. Survival of Iranian patients on lung transplant waiting list: is there any difference?. Transplantation Proceedings. 2011;43(2):629–32.

Nakagawa 2016: Nakagawa H, Higami Y, Fukunaga K, Uchida Y, Yukimura R, Shigemori W, et al. The effect of emphysema in patients with idiopathic pulmonary fibrosis; evaluation using quantitative CT analysis. European Respiratory Journal. 2016;48(Suppl 60):PA789.

Nakaya 2011: Nakaya T, Bando M, Mato N, Hosono T, Yamasawa H, Sugiyama Y. Clinical differences between patients with idiopathic pulmonary fibrosis and patients with pulmonary involvement of the usual interstitial pneumonia pattern that preceded the onset of rheumatoid arthritis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A2328.

Nakaya 2014: Nakaya T, Bando M, Nakayama M, Mato N, Yamasawa H, Sugiyama Y. Comparison between patients with idiopathic pulmonary fibrosis and patients with pulmonary involvement of the usual interstitial pneumonia pattern that preceded the onset of rheumatoid arthritis. European Respiratory Journal. 2014;44(Suppl 58):P724.

Nakayama 2003: Nakayama M, Satoh H, Ishikawa H, Fujiwara M, Kamma H, Ohtsuka M, et al. Cytokeratin 19 fragment in patients with non-malignant respiratory diseases. Chest. 2003;123(6):2001–6.

Nakayama 2011: Nakayama I, Palevsky HI. Pulmonary function tests do not predict the presence of pulmonary hypertension in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A5754.

Nakayama 2013: Nakayama M, Bando M, Takigami A, Sawahata M, Mizushina Y, Mato N, et al. Clinical significance of serum marker of interstitial pneumonia in combined pulmonary fibrosis and emphysema. Respirology. 2013;18:49.

Nannini 2015: Nannini N, Lunardi F, Balestro E, Vuljan S, Schiavon M, Turato G, et al. Morphological characterization of clinical phenotypes in idiopathic pulmonary fibrosis patients. Virchows Archiv. 2015;1:S260.

Natarajan 2015: Natarajan Subramanian, Subramanian Poonam. Idiopathic pulmonary fibrosis: a study of 46 patients from western India: clinical presentations and survival. Turk Toraks Dergisi. 2015;16(3):114–20.
Nathan 2004: Nathan SD, Barnett SD, Moran B, Helman DL, Nicholson K, Ahmad S, et al. Interferon gamma-1b as therapy for idiopathic pulmonary fibrosis. An intra-patient analysis. Respiration. 2004;71(1):77–82.

Nathan 2007: Nathan SD, Shlobin OA, Ahmad S, Urbanek S, Barnett SD. Pulmonary hypertension and pulmonary function testing in idiopathic pulmonary fibrosis. Chest. 2007;131(3):657–63.

Nathan 2008: Nathan SD, Shlobin OA, Ahmad S, Koch J, Barnett SD, Ad N, et al. Serial development of pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Respiration. 2008;76(3):288–94.

Nathan 2008a: Nathan SD, Shlobin OA, Barnett SD, Saggar R, Belperio JA, Ross DJ, et al. Right ventricular systolic pressure by echocardiography as a predictor of pulmonary hypertension in idiopathic pulmonary fibrosis. Respiratory Medicine. 2008;102(9):1305–10.

Nathan 2010: Nathan SD, Basavaraj A, Reichner C, Shlobin OA, Ahmad S, Kiernan J, et al. Prevalence and impact of coronary artery disease in idiopathic pulmonary fibrosis. Respiratory Medicine. 2010;104(7):1035–41.

Nathan 2011a: Nathan SD, Shlobin OA, Weir N, Ahmad S, Kaldjob JM, Battle E, et al. Long-term course and prognosis of idiopathic pulmonary fibrosis in the new millennium. Chest. 2011;140(1):221–9.

Nathan 2012: Nathan SD, Brown A, Reffett TR, Shlobin OA, Ahmad S, Weir N, et al. The red cell distribution width as a prognostic indicator in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4370.

Nathan 2012a: Nathan SD, Brown AW, Albano MC, Shlobin OA, Ahmad S, Smith MA, et al. The temporal attenuation of idiopathic pulmonary fibrosis (IPF) mortality: An analysis of five year survivors. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4369.

Nathan 2013: Nathan SD, Reffett T, Brown AW, Fischer CP, Shlobin OA, Ahmad S, et al. The red cell distribution width as a prognostic indicator in idiopathic pulmonary fibrosis. Chest. 2013;143(6):1692–8.

Nathan 2015: Nathan S, Albera C, Bradford W, Costabel U, Daigl M, Kirchgaessler KU, et al. Effect of pirfenidone on all-cause mortality in patients with idiopathic pulmonary fibrosis (IPF): comparison of pooled analysis with meta-analysis from the ASCEND and CAPACITY trials. Chest. 2015;148(4 Supplement):363A.

Nathan 2015a: Nathan S, Albera C, Bradford W, Costabel U, du Bois R, Fagan E, et al. Benefit of continued pirfenidone treatment following hospitalisation within the first 6 months of therapy- Ad hoc analysis from three phase 3 trials in patients with idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2015;46(Suppl 59):OA4491.

Nathan 2015b: Nathan S, Albera C, Bradford W, Kardatzke D, Costabel U, du Bois R, et al. Effect of pirfenidone on IPF-related mortality outcome measures in patients with idiopathic pulmonary fibrosis (IPF): pooled data analysis from the ASCEND and CAPACITY trials. Chest. 2015;148(4 Supplement):391A.

Nathan 2015c: Nathan SD, Albera C, Bradford WZ, Costabel U, du Bois RM, Fagan EA, et al. Effect of pirfenidone on treatment-emergent (TE) all-cause mortality (ACM) in patients with idiopathic...
pulmonary fibrosis (IPF): pooled data analysis from ASCEND and CAPACITY. European Respiratory Journal. 2015;46(Suppl 59):OA4490.

Nathan 2015d: Nathan SD, Reichmann WM, Macaulay D, Yu YF. Impact of suspected idiopathic pulmonary fibrosis acute exacerbations on clinical and healthcare resource utilization outcomes. American Journal of Respiratory and Critical Care Medicine. 2015;191:A6440.

Nathan 2015e: Nathan SD, Reichmann WM, Macaulay D, Yu YF. Change in forced vital capacity and clinical outcomes in newly diagnosed idiopathic pulmonary fibrosis patients. American Journal of Respiratory and Critical Care Medicine. 2015;191(A6366).

Nathan 2016: Nathan S, Albera C, Costabel U, Glasspole I, Glassberg M, Lancaster L, et al. Effect of continued pirfenidone treatment following a > 15% decline in 6-minute walk distance (6MWD) in patients with idiopathic pulmonary fibrosis (IPF): pooled analysis from 3 pivotal studies. European Respiratory Journal. 2016;48(Suppl 60):OA1765.

Nathan 2016a: Nathan S, Lancaster L, Albera C, Glassberg M, Swigris J, Gilberg F, et al. Dose modifications and dose intensity during treatment with pirfenidone. European Respiratory Journal. 2016;48(Suppl 60):OA1764.

Nathan 2016b: Nathan SD, Albera C, Bradford WZ, Costabel U, du Bois RM, Fagan EA, et al. Effect of continued treatment with pirfenidone following clinically meaningful declines in forced vital capacity: analysis of data from three phase 3 trials in patients with idiopathic pulmonary fibrosis. Thorax. 2016;71(5):429–35.

Nathan 2017a: Nathan SD, Albera C, Bradford WZ, Costabel U, Glasspole I, Glassberg MK, et al. Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. The Lancet Respiratory Medicine. 2017;5(1):33–41.

Natsuizaka 2012: Natsuizaka M, Chiba H, Shiratori M, Mori M, Sugiyama Y, Takahashi H. Epidemiological survey of patients with idiopathic interstitial pneumonias using clinical personal records in Hokkaido, Japan. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4587.

Navaratnam 2010: Navaratnam V, Ali N, Smit CJP, Fogarty A, Hubbard RB. Pulmonary fibrosis with and without co-existing connective tissue disease: does it affect survival? Thorax. 2010;65:A27.

Navaratnam 2011: Navaratnam V, Ali N, Smith CJ, McKeever T, Fogarty A, Hubbard RB. Does the presence of connective tissue disease modify survival in patients with pulmonary fibrosis? Respiratory Medicine. 2011;105(12):1925–30.

Navaratnam 2012: Navaratnam V, Fogarty A, McKeever T, Thompson N, Jenkins RG, Johnson SR, et al. Is an increased tendency to clot a risk factor for developing idiopathic pulmonary fibrosis? Thorax. 2012;67:A48.

Navaratnam 2013a: Navaratnam V, Fogarty A, McKeever T, Thompson N, Jenkins G, Johnson S, et al. A prothrombotic state is associated with increased mortality in idiopathic pulmonary fibrosis. European Respiratory Journal. 2013;42(Suppl 57):P476.

Navaratnam 2014: Navaratnam V, Fogarty AW, McKeever T, Thompson N, Jenkins G, Johnson SR, et al. Presence of a prothrombotic state in people with idiopathic pulmonary fibrosis: a population-based case-control study. Thorax. 2014;69(3):207–15.
Navaratnam 2016: Navaratnam V, Fogarty AW, McKeever T, Thompson N, Jenkins G, Johnson SR, et al. The impact of clotting abnormalities on the natural history of idiopathic pulmonary fibrosis: An extended follow up of a population based cohort. Thorax. 2016;71:A13.

Navas 2006: Navas B, Santos F, Vaquero JM, Fernandez MC, Redel J, Lama R. Evaluation of patients referred for lung transplantation: fourteen years experience. Transplantation Proceedings. 2006;38(8):2519–21.

Neurohr 2010: Neurohr C, Huppmann P, Thum D, Leuschner W, von Wulffen W, Meis T, et al. Potential functional and survival benefit of double over single lung transplantation for selected patients with idiopathic pulmonary fibrosis. Transplant International. 2010;23(9):887–96.

Ng 2016: Ng C, Hornsby J, Anderson D. Does antifibrotic treatment outcomes differ in usual interstitial pneumonia based on HRCT criteria established by ATS/ERS/JRS/ALAT in 2011? Thorax. 2016;71:A174–A175.

Nicholson 2002: Nicholson AG, Fulford LG, Colby TV, du Bois RM, Hansell DM, Wells AU. The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2002;166(2):173–7.

Nicol 2015a: Nicol LM, Muralidharan V, Mills R, Brittan M, Marwick JA, MacKinnon AC, et al. The diagnostic and prognostic value of bronchoalveolar lavage differential cell count in definite and possible idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A1560.

Nicol 2016: Nicol L, Brittan M, Marwick J, Mills R, McFarlane P, Wallace W, et al. Identification of alveolar macrophage phenotypes predictive of disease progression in idiopathic pulmonary fibrosis. QJM. 2016;109:S2.

Nicol 2016a: Nicol L, Mills R, Seth S, MacKinnon A, McFarlane P, Wallace W, et al. Prognostically predictive biomarkers for IPF; a longitudinal cohort study of treatment naive patients. QJM. 2016;109:S38.

Nikaido 2013: Nikaido T, Tanino Y, Fukuhara N, Misa K, Uematsu M, Fukuhara A, et al. Dose routine evaluation of autoantibodies have clinical impacts in patients with idiopathic interstitial pneumonia? American Journal of Respiratory and Critical Care Medicine. 2013;187:A2929.

Nishiyama 2001: Nishiyama O, Shimizu M, Ito Y, Kume H, Suzuki R, Yokoi T, et al. Effect of prolonged low-dose methylprednisolone therapy in acute exacerbation of idiopathic pulmonary fibrosis. Respiratory Care. 2001;46(7):698–701.

Nishiyama 2004: Nishiyama O, Taniguchi H, Kondoh Y, Kimura T, Ogawa T, Watanabe F, et al. Pulmonary rehabilitation in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2004.

Nishiyama 2007: Nishiyama O, Taniguchi H, Kondoh Y, Kimura T, Kato K, Ogawa T, et al. Dyspnoea at 6-min walk test in idiopathic pulmonary fibrosis: comparison with COPD. Respiratory Medicine. 2007;101(4):833–8.

Nishiyama 2010: Nishiyama O, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Nishimura K, et al. Health-related quality of life does not predict survival in idiopathic pulmonary fibrosis. Chest. 2010;138(4 Supplement):528A.
Nishiyama 2010a: Nishiyama O, Taniguchi H, Kondoh Y, Kimura T, Kato K, Kataoka K, et al. A simple assessment of dyspnoea as a prognostic indicator in idiopathic pulmonary fibrosis. European Respiratory Journal. 2010;36(5):1067–72.

Nishiyama 2012: Nishiyama O, Miyajima H, Watatani N, Sato R, Yamagata T, Sano H, et al. Combined pulmonary fibrosis and emphysema has better survival than idiopathic pulmonary fibrosis without emphysema. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4368.

Nishiyama 2012a: Nishiyama O, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Nishimura K, et al. Health-related quality of life does not predict mortality in idiopathic pulmonary fibrosis. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2012;29(2):113–8.

Nishiyama 2016b: Nishiyama O, Yamazaki R, Sano H, Iwanaga T, Higashimoto Y, Kume H, et al. Pulmonary Hemodynamics and Six-Minute Walk Test Outcomes in Patients with Interstitial Lung Disease. Canadian Respiratory Journal. 2016;2016:3837182.

Noble 2010: Noble PW, Albera C, Bradford WZ, Costabel U, Kardatzke D, King TE, et al. Effect of pirfenidone on lung function and progression-free survival (PFS) in patients with idiopathic pulmonary fibrosis (IPF): A meta-analysis of three phase 3 studies. American Journal of Respiratory and Critical Care Medicine. 2010;181:A1257.

Noble 2014: Noble PW, Albera C, Bradford WZ, Costabel U, Du Bois RM, Fagan EA, et al. Analysis of pooled data from 3 phase 3, multinational, randomized, double-blind, placebo controlled trials evaluating pirfenidone in patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2014;189:A1423.

Noble 2014a: Noble PW, Albera C, Bradford WZ, Costabel U, du Bois RM, Fishman RS, et al. Pirfenidone (PFD) effect on morbidity and mortality in patients with idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2014;44(Suppl 58):P4501.

Noble 2015: Noble PW, Albera C, Bradford WZ, Costabel U, Glaspole I, Glassberg MK, et al. Effect of continued treatment with pirfenidone following a clinically meaningful decline in percent predicted forced vital capacity in patients with idiopathic pulmonary fibrosis (IPF). Thorax. 2015;70:A62–A63.

Noble 2015a: Noble PW, Bradford WZ, Costabel U, Glaspole I, Glassberg MK, Gorina E, et al. Pirfenidone is efficacious in patients with idiopathic pulmonary fibrosis (IPF) with more preserved lung function. Thorax. 2015;70:A81.

Noble 2016: Noble P, Albera C, ChouW, Costabel U, Day BM, Glaspole I, et al. Annual rate of FVC decline in patients with IPF treated with pirfenidone: Pooled analysis from 3 pivotal studies. European Respiratory Journal. 2016;48(Suppl 60):OA1810.

Noble 2016a: Noble P, Albera C, Kirchgaessler KU, Gilberg F, Petzinger U, Costabel U. Long-term effectiveness of pirfenidone in patients with idiopathic pulmonary fibrosis is independent of baseline forced vital capacity. Chest. 2016;150 (4 Supplement):S38A.

Noble 2016b: Noble PW, Albera C, Bradford WZ, Costabel U, du Bois RM, Fagan EA, et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. European Respiratory Journal. 2016;47(1):243–53.

Noble 2016c: Noble PW, Albera C, ChouW, Costabel U, Day B, Glaspole I, et al. Annual rate of FVC decline in various patient subgroups with idiopathic pulmonary fibrosis treated with pirfenidone: pooled analysis from 3 pivotal studies. Thorax. 2016;71:A57.
Noble 2016d: Noble PW, Albera C, Lancaster L, Hormel P, Hulter H, Costabel U. Long-term safety of pirfenidone in patients with idiopathic pulmonary fibrosis: Pooled analysis of 4 clinical trials. Thorax. 2016;71:A175–6.

Noth 2013: Noth I, Zhang Y, Ma S F, Flores C, Barber M, Huang Y, et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. The Lancet Respiratory Medicine. 2013;1(4):309–17.

Noth 2013a: Noth I, Zhang Y, Ma SF, Flores C, Barber M, Huang Y, et al. Genome-wide association study identified tollip and SPPL2C genes contributing to idiopathic pulmonary fibrosis susceptibility and mortality. American Journal of Respiratory and Critical Care Medicine. 2013;187:A3819.

Novela 2009: Novela I, Jackson RM, Ramos CF, Gomez-Marín O. Baseline variables predicting change over six months in 6-minute walk test distance of IPF patients. American Journal of Respiratory and Critical Care Medicine. 2009;179:A2989.

Nozu 2009: Nozu T, Kondo M, Suzuki K, Tamaoki J, Nagai A. A comparison of the clinical features of ANCA-positive and ANCA-negative idiopathic pulmonary fibrosis patients. Respiration. 2009;77(4):407–15.

Nunes 2011: Nunes H, Carton Z, Cottin V, Israel-Biet D, Brauner M, Kambouchner M, et al. Preliminary results of the French national prospective cohort on IPF. European Respiratory Journal. 2011;38(Suppl 55):646.

Nunomura 2016: Nunomura S, Tanaka T, Nakayama T, Otani K, Ishii H, Tabata K, et al. Pulmonary alveolar proteinosis-like change: A fairly common reaction associated with the severity of idiopathic pulmonary fibrosis. Respiratory Investigation. 2016;54(4):272–9.

O’Dwyer 2013: O’Dwyer DN, Armstrong ME, Trujillo G, Cooke G, Keane MP, Fallon PG, et al. The Toll-like receptor 3 L412F polymorphism and disease progression in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2013;188(12):1442–50.

Obi-Tabot 2012: Obi-Tabot E, Wang Y, Hopkins B, Wang H, Muszka J. The economic burden of idiopathic pulmonary fibrosis from diagnosis to lung transplant. American Journal of Respiratory and Critical Care Medicine. 2012;185:A1497.

Oda 2014a: Oda T, Ogura T, Kitamura H, Hagiwara E, Baba T, Enomoto Y, et al. Distinct characteristics of pleuroparenchymal fibroelastosis with usual interstitial pneumonia compared with idiopathic pulmonary fibrosis. Chest. 2014;146(5):1248–55.

Oda 2016: Oda K, Yatera K, Izumi H, Ishimoto H, Yamada S, Nakao H, et al. Profibrotic role of WNT10A via TGF-s signaling in idiopathic pulmonary fibrosis. Respiratory Research. 2016;17(1):1–14.

Ogawa 2012: Ogawa K, Hanada S, Ishibashi M, Uruga H, Miyamoto A, Takaya H, et al. Clinical validation of a diagnostic algorithm for idiopathic pulmonary fibrosis using the official ATS/ERS/JRS/ALAT statement. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4576.

Oh 2012: Oh DK, Song JW, Do KH, Lee SM, Kim DS. Combined pulmonary fibrosis and emphysema: a distinct entity? European Respiratory Journal. 2012;40(Suppl 56):2821.

Ohkubo 2016: Ohkubo H, Yagi M, Kondoh Y, Joukoh T, Arakawa H, Niimi A, et al. Volumetric CT analysis of normal lung as a predictor of mortality in idiopathic pulmonary fibrosis. European Respiratory Journal. 2016;48(Suppl 60):PA2098.
Ohshimo 2012: Ohshimo S, Horimasu Y, Bonella F, Ishikawa N, Hattori N, Tanigawa K, et al. KL-6 and CCL18 as predictors for acute exacerbation in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A5814.

Ohshimo 2013: Ohshimo S, Ishikawa N, Horimasu Y, Fujitaka K, Haruta Y, Murai H, et al. Ethnic differences in the incidence of acute exacerbation in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2013;187:A4345.

Ohshimo 2013a: Ohshimo S, Ishikawa N, Horimasu Y, Hattori N, Kohno N, Bonella F, et al. Ethnic differences and serum KL-6 as predictors for acute exacerbation of idiopathic pulmonary fibrosis. Respirology. 2013;18:58.

Ohshimo 2014: Ohshimo S, Horimasu Y, Bonella F, Iwamoto H, Ishikawa N, Fujitaka K, et al. Angiopoietin-2 gene polymorphism as prognostic factor in caucasians with idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;44(Suppl 58):P735.

Ohshimo 2014a: Ohshimo S, Ishikawa N, Horimasu Y, Fujitaka K, Haruta Y, Murai H, et al. Impact of ethnic difference and TERT gene polymorphisms in the acute exacerbation of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1416.

Ohshimo 2014b: Ohshimo S, Ishikawa N, Horimasu Y, Hattori N, Hirohashi N, Tanigawa K, et al. Baseline KL-6 predicts increased risk for acute exacerbation of idiopathic pulmonary fibrosis. Respiratory Medicine. 2014;108(7):1031–9.

Ohshimo 2015: Ohshimo S, Hamai K, Bonella F, Yamaoka C, Horimasu Y, Iwamoto H, et al. Growth differentiation factor-15 (GDF-15) as prognostic factor for idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2509.

Ohshimo 2015a: Ohshimo S, Yamaoka C, Horimasu Y, Iwamoto H, Fujitaka K, Hamada H, et al. Comparative analysis of multiple gene polymorphisms for acute exacerbation of idiopathic pulmonary fibrosis. European Respiratory Journal. 2015;46(Suppl 59):OA3510.

Ohta 2017: Ohta S, Okamoto M, Fujimoto K, Sakamoto N, Takahashi K, Yamamoto H, et al. The usefulness of monomeric periostin as a biomarker for idiopathic pulmonary fibrosis. PLoS One. 2017;12(3):e0174547.

Oishi 2013: Oishi K, Aoe K, Murata Y, Sakamoto K, Ohfuji T, Kotoku W, et al. Prognostic factors analysis of patients with acute exacerbation of idiopathic interstitial pneumonias treated by polymyxin B hemoperfusion. European Respiratory Journal. 2013;42(Suppl 57):P462.

Oishi 2016: Oishi K, Aoe K, Mimura Y, Murata Y, Sakamoto K, Koutoku W, et al. Survival from acute exacerbation of idiopathic pulmonary fibrosis with or without direct hemoperfusion with polymyxin B-immobilized fiber column: a retrospective analysis. European Respiratory Journal. 2016;48(Suppl 60):PA2101.

Oishi 2016a: Oishi K, Aoe K, Mimura Y, Murata Y, Sakamoto K, Koutoku W, et al. Survival from an acute exacerbation of idiopathic pulmonary fibrosis with or without direct hemoperfusion with a polymyxin B-immobilized fiber column: a retrospective analysis. Internal Medicine. 2016;55(24):3551–9.

Okamoto 2006: Okamoto T, Ichiyasu H, Ichikado K, Muranaka H, Sato K, Okamoto S, et al. Clinical analysis of the acute exacerbation in patients with idiopathic pulmonary fibrosis. Nihon Kokyuki Gakkai Zasshi. 2006;44(5):359–67.
Okutan 2012: Okutan O, Demirer E, Tas D, Kartaloglu Z, Ursavas TN, Thomas D, et al. Turkish patients with idiopathic pulmonary fibrosis: Serial pulmonary function testing under the new 2011 guidelines. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4468.

Oldham 2015a: Oldham JM, Ma SF, Martinez FJ, Anstrom KJ, Raghu G, Schwartz DA, et al. TOLLIP, MUC5B, and the Response to N-Acetylcysteine among Individuals with Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;192(12):1475–82.

Olson 2007: Olson AL, Swigris JJ, Lezotte DC, Norris JM, Wilson CG, Brown KK. Mortality from pulmonary fibrosis increased in the United States from 1992 to 2003. American Journal of Respiratory and Critical Care Medicine. 2007;176(3):277–84.

Olson 2009: Olson AL, Swigris JJ, Raghu G, Brown KK. Seasonal variation: mortality from pulmonary fibrosis is greatest in the winter. Chest. 2009;136(1):16–22.

Oltmanns 2013: Oltmanns U, Kahn N, Wenz H, Heussel CP, Puderbach M, Ehlers-Tenenbaum S, et al. Pirfenidone in idiopathic pulmonary fibrosis-real life experience from a German tertiary referral centre for interstitial lung diseases. European Respiratory Journal. 2013;42(Suppl 57):P2335.

Oltmanns 2014: Oltmanns U, Kahn N, Palmowski K, Trager A, Wenz H, Heussel C P, et al. Pirfenidone in idiopathic pulmonary fibrosis: real-life experience from a German tertiary referral center for interstitial lung diseases. Respiration. 2014;88(3):199–207.

Oltmanns 2014a: Oltmanns U, Kahn N, Palmowski K, Wenz H, Heussel C P, Schnabel P, et al. Pirfenidone in idiopathic pulmonary fibrosis - experience from a german tertiary referral centre for interstitial lung diseases. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1425.

Omori 2015: Omori T, Tajiri M, Baba T, Ogura T, Iwasawa T, Okudela K, et al. Pulmonary resection for lung cancer in patients with idiopathic interstitial pneumonia. Annals of Thoracic Surgery. 2015;100(3):954–60.

Otaola 2011: Otaola M, Quadrelli S, Tabaj G, Molinari L, Di Boscio V. Survival in patients with usual interstitial pneumonia (UIP) secondary to idiopathic pulmonary fibrosis (IPF) and connective tissue diseases. Chest. 2011;140(4 Supplement):995A.

Otsuka 2013: Otsuka M, Kitamura Y, Yokoo K, Ikeda K, Shioya M, Nishikiori H, et al. Diffusing capacity for carbon monoxide (DLco) may predict appearance of pulmonary hypertension in idiopathic pulmonary fibrosis. European Respiratory Journal. 2013;42(Suppl 57):P2336.

Otsuka 2016: Otsuka H, Sugino K, Hata Y, Makino T, Koetzuka S, Isobe K, et al. Clinical features and outcomes of patients with lung cancer as well as combined pulmonary fibrosis and emphysema. Molecular and Clinical Oncology. 2016;5(3):273–8.

Ozawa 2009: Ozawa Y, Suda T, Naito T, Enomoto N, Hashimoto D, Fujisawa T, et al. Cumulative incidence of and predictive factors for lung cancer in IPF. Respirrology. 2009;14(5):723–8.

Paik 2012: Paik HC, Haam SJ, Lee DY, Yi GJ, Song SW, Kim YT, et al. The fate of patients on the waiting list for lung transplantation in Korea. Transplantation Proceedings. 2012;44(4):865–9.

Palwatwichai 2000: Palwatwichai A, Tiyanon W, Chaoprasong C, Vattanathum A, Tantamacharik D. Idiopathic pulmonary fibrosis, clinical features in Thai patients. Journal of the Medical Association of Thailand. 2000;83(10):1248–52.
Pannu 2015: Pannu JK, Karwoski RA, Raghunath S, Rajagopalan S, Bartholmai B, Moua T. Atypical radiological findings in usual interstitial pneumonia of unknown etiology vs. Idiopathic pulmonary fibrosis: a retrospective cohort study. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2511.

Papali 2010: Papali A, Lemme M, Shlobin OA, Weir N, Brown K, Huber C, et al. Effect of N-acetylcysteine on mortality and functional status in patients with IPF. American Journal of Respiratory and Critical Care Medicine. 2010;181:A6027.

Papiris 1997: Papiris SA, Viachoyiannopoulos PG, Maniati MA, Karakostas KX, Constantopoulos SH, Moutsopoulos HH. Idiopathic pulmonary fibrosis and pulmonary fibrosis in diffuse systemic sclerosis: two fibroses with different prognoses. Respiration. 1997;64(1):81–5.

Papiris 2015: Papiris SA, Kagouridis K, Kolilekas L, Papaioannou AI, Roussou A, Triantafillidou C, et al. Survival in idiopathic pulmonary fibrosis acute exacerbations: the non-steroid approach. BMC Pulmonary Medicine. 2015;15:162.

Parambil 2005: Parambil JG, Myers J L, Ryu J H. Histopathologic features and outcome of patients with acute exacerbation of idiopathic pulmonary fibrosis undergoing surgical lung biopsy. Chest. 2005;128(5):3310–5.

Parfrey 2012: Parfrey H, Leonard C, Gibbons MA, Harris E, Frank R, Sharp C, et al. Early clinical experience with pirfenidone for idiopathic pulmonary fibrosis (IPF) in the UK: Interim results from a UK cohort. Thorax. 2012;67:A48–9.

Parfrey 2013: Parfrey H, Leonard C, Gibbons MA, Armstrong E, Harris E, Frank R, et al. Healthcare utilisation by patients with idiopathic pulmonary fibrosis; observations from the UK pirfenidone named patient programme. Thorax. 2013;68:A164–5.

Parfrey 2014: Parfrey H, Chaudhuri N, Gibbons MA, Anning L, Balkin M, Cooper S, et al. Extended clinical experience with pirfenidone during a named patient programme for idiopathic pulmonary fibrosis (IPF): Interim results. Thorax. 2014;69:A196.

Park 1999: Park J, Jin Seong Lee, Song KS, Tae Sun Shim, Lim CM, Koh Y, et al. The clinical characteristics of lung cancer in patients with idiopathic pulmonary fibrosis. Tuberculosis and Respiratory Diseases. 1999;46(5):674–84.

Park 2004: Park JH, Oh YM, Shim TS, Lim CM, Koh Y, Lee SD, et al. The efficacy of interferon (IFN)-gamma in idiopathic pulmonary fibrosis. Tuberculosis and Respiratory Diseases. 2004;56(6):611–8.

Park 2007: Park JH, Kim DS, Park IN, Jang SJ, Kitaichi M, Nicholson AG, et al. Prognosis of fibrotic interstitial pneumonia: idiopathic versus collagen vascular disease-related subtypes. American Journal of Respiratory and Critical Care Medicine. 2007;175(7):705–11.

Park 2012: Park SW, Song JW, Shim TS, Park MS, Lee HL, Uh ST, et al. Mycobacterial pulmonary infections in patients with idiopathic pulmonary fibrosis. Journal of Korean Medical Science. 2012;27(8):896–900.

Park 2012a: Park YS, Park CM, Lee HJ, Goo JM, Chung DH, Lee SM, et al. Clinical implication of protease-activated receptor-2 in idiopathic pulmonary fibrosis. Respiratory Medicine. 2012;107(2):256–62.

Park 2012b: Park YS, Park CM, Lee HJ, Goo JM, Chung DH, Lee SM, et al. Clinical implication of protease-activated receptor-2 in idiopathic pulmonary fibrosis. Respiriology. 2012;17:76.
Park 2016: Park HJ, Lee SM, Song JW, Lee S M, Oh SY, Kim N, et al. Texture-based automated quantitative assessment of regional patterns on initial CT in patients with idiopathic pulmonary fibrosis: relationship to decline in forced vital capacity. AJR. American Journal of Roentgenology 2016;207(5):976–83.

Park 2016a: Park S, Lee J, Kim DS, Song JW. Efficacy and safety of nintedanib in advanced idiopathic pulmonary fibrosis. European Respiratory Journal. 2016;48(Suppl 60):PA2092.

Parra 2006: Parra ER, Teodoro WR, Velosa AP, de Oliveira CC, Yoshinari NH, Capelozzi VL. Interstitial and vascular type V collagen morphologic disorganization in usual interstitial pneumonia. The Journal of Histochemistry and Cytochemistry. 2006;54(12):1315–25.

Parra 2007: Parra ER, Kairalla RA, de Carvalho CR, Capelozzi VL. Abnormal deposition of collagen/elastic vascular fibres and prognostic significance in idiopathic interstitial pneumonias. Thorax. 2007;62(5):428–37.

Parra 2007a: Parra ER, Kairalla RA, Ribeiro de Carvalho CR, Eher E, Capelozzi, VL. Inflammatory cell phenotyping of the pulmonary interstitium in idiopathic interstitial pneumonia. Respiration. 2007;74(2):159–69.

Parra 2008: Parra ER, Noleto GS, Tinoco LJ, Capelozzi VL. Immunophenotyping and remodeling process in small airways of idiopathic interstitial pneumonias: functional and prognostic significance. The Clinical Respiratory Journal. 2008;2(4):227–38.

Parra 2010: Parra ER, Souza HSP, Silva LO, Pincelli MS, Cuentas DP, Capelozzi VL. Myofibroblasts vascular activity are correlated with different prognostic in patients with idiopathic pulmonary fibrosis. Histopathology. 2010;57:226.

Parra 2012: Parra E, Capelozzi V. Over expression of hyaluronan syntehase-2 activity has impact in the remodeling process and survival evolution in patients with idiopathic pulmonary fibrosis. Virchows Archiv. 2012;1):S67.

Parra 2012a: Parra ER, Capelozzi V. Hyaluroman syntehase-2 over expression has impact in the evolution and on the prognosis of idiopathic pulmonary fibrosis patients. European Respiratory Journal. 2012;40(Suppl 56):P3154.

Parra 2012b: Parra ER, Capelozzi VL. Increased hyaluroman syntehase-2 expression has impact in the idiopathic pulmonary fibrosis progression. Histopathology. 2012;61:207–8.

Parra 2012c: Parra ER, Falzoni R, Capelozzi VL. Vascular dysfunction by myofibroblast activation in patients with idiopathic pulmonary fibrosis and prognostic significance. Brazilian Journal of Medical and Biological Research. 2012;45(7):665–75.

Parra 2013: Parra ER, Lin F, Martins V, Rangel MP, Capelozzi VL. Immunohistochemical and morphometric evaluation of COX 1 and COX-2 in the remodeled lung in idiopathic pulmonary fibrosis and systemic sclerosis. Jornal Brasileiro De Pneumologia. 2013;39(6):692–700.

Parra 2013a: Parra ER, Ruppert ADP, Rangel MP, Capelozzi VL. Down regulation of angiotensin II receptor type 1 (AGTR1) contrast with up regulation of type 2 (AGTR2) in idiopathic pulmonary fibrosis. Laboratory Investigation. 2013;93:462A–3A.

Parra 2014: Parra ER, Ruppert AD, Capelozzi VL. Angiotensin II type 1 and 2 receptors and lymphatic vessels modulate lung remodeling and fibrosis in systemic sclerosis and idiopathic pulmonary fibrosis. Clinics (Sao Paulo, Brazil). 2014;69(1):47–54.
Paterniti 2017: Paterniti MO, Bi Y, Rekic D, Wang Y, Karimi-Shah BA, Chowdhury BA. Acute exacerbation and decline in forced vital capacity are associated with increased mortality in idiopathic pulmonary fibrosis. Annals of the American Thoracic Society. 2017;14(9):1395–402.

Patterson 2017: Patterson KC, Shah RJ, Porteous MK, Christie JD, D’Errico CA, Chadwick M, et al. Interstitial lung disease in the elderly. Chest. 2017;151(4):838–44.

Peelen 2010: Peelen L, Wells AU, Prijs M, Blumenthal JP, van Steenwijk JP, Jonkers RE, et al. Fibrotic idiopathic interstitial pneumonias: mortality is linked to a decline in gas transfer. Respirology. 2010;15(8):1233–43.

Peljto 2013: Peljto AL, Zhang Y, Fingerlin TE, Ma SF, Garcia JG, Richards TJ, et al. Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA. 2013;309(21):2232–9.

Peng 2008: Peng SC, Li ZH, Kang J, Hou XM, Yu RJ. Cell profiles of bronchoalveolar lavage fluid as prognostic indicators of idiopathic pulmonary fibrosis. Zhonghua Jie He He Hu Xi Za Zhi. 2008;31(4):260–3.

Pereira 2006: Pereira CA, Malheiros T, Coletta EM, Ferreira RG, Rubin AS, Otta JS, et al. Survival in idiopathic pulmonary fibrosis cytotoxic agents compared to corticosteroids. Respiratory Medicine. 2006;100(2):340–7.

Perez-Padilla 1993: Perez-Padilla R, Salas J, Chapela R, Sanchez M, Carrillo G, Perez R, et al. Mortality in Mexican patients with chronic pigeon breeder’s lung compared with those with usual interstitial pneumonia. The American Review of Respiratory Disease. 1993;148(1):49–53.

Peris 2011: Peris R, Fernandez-Fabrellas E, Inchaurreaga I, Domingo ML, Palop J, Blanquer R. HRCT score to control and evaluate the prognosis in idiopathic pulmonary fibrosis. European Respiratory Journal. 2011;38(Suppl 55):P654.

Peters 1993: Peters SG, McDougall JC, Douglas WW, Coles DT, DeRemee RA. Colchicine in the treatment of pulmonary fibrosis. Chest. 1993;103(1):101–4.

Pires 2011: Pires FS, Damas C, Mota P, Melo N, Costa D, Jesus JM, et al. Slow versus rapid progressors in idiopathic pulmonary fibrosis. European Respiratory Journal. 2011;38(Suppl 55):P656.

Pitsiou 2007: Pitsiou G, Papadopoulos CE, Karvounis Hl, Karamitsos TD, Giannakoulas G, Efthimiadis G, et al. Utility of tissue Doppler imaging in predicting outcome in patients with idiopathic pulmonary fibrosis. Hellenic Journal of Cardiology. 2007;48(3):143–51.

Pittrow 2014: Pittrow D, Klotsche J, Kreuter M, Hoepner MM, Wirtz H, Koschel D, et al. Symptom burden and health related quality of life in patients with idiopathic pulmonary fibrosis in clinical practice: Insights-IPF registry. Value in Health. 2014;17(7):A600.

Pohl 1993: Pohl WR, Schenk E, Umek H, Micksche M, Kummer F, Kohn H. Diagnostic value of secretory products of eosinophils and neutrophils in bronchoalveolar lavage in patients with idiopathic lung fibrosis. Wiener Klinische Wochenschrift. 1993;105(14):387–92.

Polonski 1994: Polonski L, Kusnierz B, Tendera N, Krzywiecki A, Polonska A, Oklek K. Long term oxygen therapy attenuates progression of pathologic changes in pulmonary circulation and the heart in patients with idiopathic interstitial lung fibrosis. European Respiratory Journal. 1994;7(Suppl 18):80s.
Polonski 1995: Polonski L, Krzywiecki A, Polonska A, TenderaM, Cwiertka P, Oklek K, et al. Effects of long term oxygen therapy in patients with idiopathic pulmonary fibrosis. I. Effect on the course of the primary disease and on pulmonary circulation. Polskie Archiwum Medycyny Wewntrznej. 1995;94(4):331–6.

Polonski 1995a: Polonski L, Kusnierz B, Krzywiecki A, Polonska A, Tendera M, Oklek K, et al. Effects of long term oxygen therapy in patients with idiopathic pulmonary fibrosis. II. Effect of oxygen therapy on function of heart ventricles. Polskie Archiwum Medycyny Wewntrznej. 1995;94(4):337–41.

Poor 2010: Poor H, Arcasoy SM, Kawut SM, Philip N, Rybak D, Huang M, et al. Elevated plasma TGF-beta1 levels are associated with poor outcomes in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2010;181.

Portillo 2016: Portillo K, Perez-Rodas N, Garcia-Olive I, Guasch-Arriaga I, Centeno C, Serra P, et al. Archivos de Bronconeumologia. 2016;13.

Prasse 2003: Prasse A, Muller KM, Kurz C, Hamm H, Virchow JC Jr. Does interferon-gamma improve pulmonary function in idiopathic pulmonary fibrosis? European Respiratory Journal. 2003;22(6):906–11.

Prasse 2008: Prasse A, Probst C, Bargagli E, Toews GB, Zissel G, Rottoli P, et al. Serum cc-chemokine ligand 18 (CCL18) concentration predicts outcome in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2008;177:A1658.

Prasse 2012: Prasse A, Vuga LJ, Richards T, Kaminski N. Gene expression of BAL cells and PBMCs predicts survival via different pathways in IPF. American Journal of Respiratory and Critical Care Medicine. 2012;185:A2660.

Prasse 2015: Prasse A, Binder H, Vuga L, Jager B, Schupp J, Herazo-Mayo JD, et al. BAL gene expression profiling unmask an unexpected role of airway epithelial progenitor cells in IPF. American Journal of Respiratory and Critical Care Medicine. 2015;191:A6358.

Pritchett 2012: Pritchett JM, Avula S, Solus JF, Zoz DF, Crossno PF, Markin CR, et al. A MUC5B promoter polymorphism is associated with increased risk of IPF but not ALI or lung cancer. American Journal of Respiratory and Critical Care Medicine. 2012;185:A5164.

Probst 2011: Probst C, Bargagli E, Rottoli P, Kollert F, Hohne K, Zissel G, et al. Clinical course of idiopathic pulmonary fibrosis (IPF): prediction and outcome. European Respiratory Journal. 2011;38(Suppl 55):P648.

Probst 2012: Probst C, Schupp J, Kollert F, Jager B, Muller-Quernheim J, Prasse A. CCL18 predicts clinical course and outcome of idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2012;185:A4383.

Pujols 2004: Pujols L, Xaubet A, Ramirez J, Mullol J, Roca-Ferrer J, Torrego A, et al. Expression of glucocorticoid receptors alpha and beta in steroid sensitive and steroid insensitive interstitial lung diseases. Thorax. 2004;59(8):687–93.

Puthiyaveettil 2014: Puthiyaveettil SK, Edakalavan J, Kumar NK. Proportion of idiopathic pulmonary fibrosis among interstitial lung disease in a tertiary care center and its response to treatment. European Respiratory Journal. 2014;44(Suppl 58):P3774.

Putman 2016: Putman RK, Hatabu H, Araki T, Gudmundsson G, Gao W, Nishino M, et al. Association between interstitial lung abnormalities and all-cause mortality. JAMA. 2016;315(7):672–81.
Quadrelli 2010: Quadrelli S, Molinari L, Ciallella L, Spina J C, Sobrino E, Chertcoff J. Radiological versus histopathological diagnosis of usual interstitial pneumonia in the clinical practice: does it have any survival difference?. Respiration. 2010;79(1):32–7.

Qunn 2002: Qunn L, Takemura T, Ikushima S, Ando T, Yanagawa T, Akiyama O, et al. Hyperplastic epithelial foci in honeycomb lesions in idiopathic pulmonary fibrosis. Virchows Archiv. 2002;441(3):271–8.

Rad 2015: Rad P, Karlsson C A, Janson C. Idiopathic fibrotic lung disease at a university hospital setting: management and prognostic factors. European Clinical Respiratory Journal. 2015;2.

Raghu 1991: Raghu G, Depaso WJ, Cain K, Hammar SP, Wetzel CE, Dreis DF, et al. Azathioprine combined with prednisone in the treatment of idiopathic pulmonary fibrosis: a prospective double-blind, randomized, placebo-controlled clinical trial. The American Review of Respiratory Disease. 1991;144(2):291–6.

Raghu 1999: Raghu G, Johnson WC, Lockhart D, Mageto Y. Treatment of idiopathic pulmonary fibrosis with a new antifibrotic agent, pirfenidone: results of a prospective, open-label Phase II study. American Journal of Respiratory and Critical Care Medicine. 1999;159(4 Pt 1):1061–9.

Raghu 2000: Raghu G, Bozie C, Brown K, Lynch D, Center D, Aguayo S, et al. Trial of interferon beta-1A (IFNb-1a) in idiopathic pulmonary fibrosis (IPF): characteristics of patients with and without surgical lung biopsy. American Journal of Respiratory and Critical Care Medicine. 2000;161(3 Suppl):A527.

Raghu 2001: Raghu G, Bozic C, Brown K, Lynch D, Center D, Aguayo S, et al. Feasibility of a trial of interferon beta-1A (IFN ß-1a) in the treatment of idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2001;163(5 Suppl):A707.

Raghu 2003: Raghu G, Brown K, Bradford W, Starko K, Noble P, Schwartz D, et al. Phase 3, randomized, double-blind, placebo-controlled trial of interferon gamma-1b (IFN g1b) in patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2003;A091.

Raghu 2004: Raghu G, Brown KK, Bradford WZ, Starko K, Noble PW, Schwartz DA, et al. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. The New England Journal of Medicine. 2004;350(2):125–33.

Raghu 2004a: Raghu G, Safrin S, Weycker D, Starko K, Bradford WZ, IPF Study Group. Association of statins and angiotensin-converting enzyme inhaler use with survival and disease progression in patients with idiopathic pulmonary fibrosis (IPF). American Thoracic Society 100th International Conference. 2004.

Raghu 2006a: Raghu G, Yang ST, Spada C, Hayes J, Pellegrini CA. Sole treatment of acid gastroesophageal reflux in idiopathic pulmonary fibrosis: a case series. Chest. 2006;129(3):794–800.

Raghu 2007: Raghu G, McDermott L, Khandker R. St George’s Respiratory Questionnaire (SGRQ) for assessing quality of life (QOL) in patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2007.

Raghu 2008: Raghu G, Brown KK, Cottin V, du Bois RM, Lasky JA, et al. Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. American Journal of Respiratory and Critical Care Medicine. 2008;178(9):948–55.
Raghu 2012a: Raghu G, Anstrom KJ, King TE Jr, Lasky JA, Martinez FJ. Idiopathic Pulmonary Fibrosis Clinical Research Network. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. The New England Journal of Medicine. 2012;366(21):1968–77.

Raghu 2012b: Raghu G, Anstrom KJ, King TE Jr, Lasky JA, Martinez FJ. A double-blind, placebo-controlled, randomized trial of combined prednisone, azathioprine and N-acetylcysteine in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A6859.

Raghu 2012c: Raghu G, Scholand MB, De Andrade J, Lancaster L, Goldin J, Porter S, et al. Phase 2 trial of FG3019, anti-CTGF monoclonal antibody, in idiopathic pulmonary fibrosis (IPF): Preliminary safety and efficacy results. European Respiratory Journal. 2012;40(Suppl 56):2819.

Raghu 2013b: Raghu G, Mart D, Anstrom K J, Hinojosa M, Hayes J, Spada C, et al. Treatment of idiopathic pulmonary fibrosis (IPF) with laparoscopic anti-reflux surgery (LARS) is associated with improvement in forced vital capacity (FVC). American Journal of Respiratory and Critical Care Medicine. 2013;187:A5711.

Raghu 2014b: Raghu G, Scholand M, De Andrade J, Lancaster L, Mageto YN, Goldin JG, et al. Safety and efficacy of anti-CTGF monoclonal antibody FG-3019 for treatment of idiopathic pulmonary fibrosis (IPF): Results of phase 2 clinical trial two years after initiation. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1426.

Raghu 2016: Raghu G, Brown K, Collard H, Lederer D, Martinez F, Noble P, et al. Simtuzumab in idiopathic pulmonary fibrosis: Results of a randomized clinical trial. European Respiratory Journal. 2016;48(Suppl 60):OA1807.

Raghu 2016a: Raghu G, Brown KK, Collard HR, Cottin V, Gibson KF, Kaner RJ, et al. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. The Lancet Respiratory Medicine. 2016;5(1):22–32.

Raghu 2016b: Raghu G, Mehta S. Interstitial lung disease (ILD) in India: insights and lessons from the prospective, landmark ILD India registry. Lung India. 2016;33(6):589–91.

Raghu 2016c: Raghu G, Morrow E, Collins BF, Ho LA, Hinojosa MW, Hayes JM, et al. Laparoscopic anti-reflux surgery for idiopathic pulmonary fibrosis at a single centre. European Respiratory Journal. 2016;48(3):826–32.

Raghu 2016d: Raghu G, Brown KK, Collard HR, Lederer DJ, Martinez FJ, Noble PW, et al. Simtuzumab in idiopathic pulmonary fibrosis (IPF): baseline demographic and lung function data from a clinical trial. American Journal of Respiratory and Critical Care Medicine. 2016;193:A4945.

Rajasekaran 2001: Rajasekaran BA, Shovlin D, Lord P, Kelly CA. Interstitial lung disease in patients with rheumatoid arthritis: a comparison with cryptogenic fibrosing alveolitis. Rheumatology. 2001;40(9):1022–5.

Rathnapala 2016: Rathnapala A, Fries A, Ruggiero C, Ho LP, Hoyles RK. Single centre experience of switching patients with idiopathic pulmonary fibrosis from pirfenidone to nintedanib. Thorax. 2016;71:A60.

Rathnapala 2016a: Rathnapala A, Fries A, West Y, Ho LP, Hoyles RK. Single centre experience of the real-life impact of pirfenidone on lung function in patients with idiopathic pulmonary fibrosis. Thorax. 2016;71:A179.
Rathnapala 2016b: Rathnapala A, Ruggiero C, Fries A, Ho LP, Hoyles RK. Single centre experience on idiopathic pulmonary fibrosis patient tolerance of pirfenidone; impact on nurse-led ILD helpline usage. Thorax. 2016;71:A176.

Ravaglia 2013: Ravaglia C, Romagnoli M, Casoni G, Tomassetti S, Gurioli C, Poletti V. Pirfenidone treatment in idiopathic pulmonary fibrosis: an Italian case series. European Respiratory Journal. 2013;42(Suppl 57):P3370.

Rebuck 1982: Rebuck AS, Braude AC, Chamberlain DW. Arterial PCO$_2$ as an index of activity in fibrosing alveolitis. Chest. 1982;82(6):757–60.

Redfern 2016: Redfern AD, Turner N, Murphy AC, Woodhead FA. Demographic factors and temporal patterns affecting treatment success with pirfenidone for patients with idiopathic pulmonary fibrosis-a large retrospective review. Thorax. 2016;71:A177.

Redondo 2014: Redondo M, Costa D, Melo N, Mota P, Morais A. Pulmonary hypertension in idiopathic pulmonary fibrosis: a new phenotype? Chest. 2014;145(3 Supplement):240A.

Redondo 2014a: Redondo M, Melo N, Costa D, Mota P, Morais A. GAP index for idiopathic pulmonary fibrosis in a Portuguese cohort. Chest. 2014;145(3 Supplement):255A.

Reed 2006: Reed A, Snell GI, McLean C, Williams TJ. Outcomes of patients with interstitial lung disease referred for lung transplant assessment. Internal Medicine Journal. 2006;36(7):423–30.

Reichner 2004: Reichner CA, Nathan SD, Barnett SD, Keller A, Ahmad S, Burton NA. Prevalence and impact on outcomes of coronary artery disease in patients with IPF. American Journal of Respiratory and Critical Care Medicine. 2004;169:A108.

Reif 2015: Reif K, Sylvester K, Toshner M, Parfrey H. Prognostic scoring systems for idiopathic pulmonary fibrosis: comparison of the composite physiologic index (CPI) and the gap score. Thorax. 2015;70:A28–9.

Ren 2014: Ren D, Blau L, Kaleekal T, Jyothula S, Suarez E, Loebe M, et al. Outcomes of single versus double lung transplant including high risk donors in pulmonary fibrosis. Transplantation. 2014;98:802–803.

Renzoni 1997: Renzoni E, Rottoli P, Coviello G, Perari MG, Galeazzi M, Vagliasindi M. Clinical, laboratory and radiological findings in pulmonary fibrosis with and without connective tissue disease. Clinical Rheumatology. 1997;16(6):570–7.

Riario Sforza 2008: Riario Sforza GG, Incorvaia C. Mortality predictive capacity of the 6-min walk distance. European Respiratory Journal. 2008;32(4):1132.

Ribeiro Neto 2013: Ribeiro Neto ML, Swigris JJ, Culver DA. Idiopathic pulmonary fibrosis or not: antibiotic prophylaxis for all patients on immunosuppressants. Thorax. 2013;68(9):883–4.

Richards 2011: Richards TJ, Kuhlengel TK, Choi J, Kaminski N, Bascom R. Does ambient air pollution exposure modify longitudinal disease outcomes in a cohort of patients with idiopathic pulmonary fibrosis? American Journal of Respiratory and Critical Care Medicine. 2011;183:A5433.

Richards 2012a: Richards T, Kass D, Lindell KO, Kaminski N, Gibson K. Gender effects on pre-and post-transplant survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A3766.
Richeldi 2004: Richeldi L. Interferon gamma-1b for pulmonary fibrosis. The New England Journal of Medicine. 2004;350(17):1794-7; author reply 1794-7.

Richeldi 2012: Richeldi L, Ryerson CJ, Lee JS, Wolters PJ, Koth LL, Ley B, et al. Relative versus absolute change in forced vital capacity in idiopathic pulmonary fibrosis. Thorax. 2012;67(5):407–11.

Richeldi 2013: Richeldi L, Sgalla G, Cerri S. Long-term management of IPF with pirfenidone - a clinical case study with 5 years follow-up. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2013;30(Suppl 1):52–62.

Richeldi 2014b: Richeldi L, Cottin V, Flaherty KR, Kolb M, Inoue Y, Raghu G, et al. Design of the INPULSISTM trials: two phase 3 trials of nintedanib in patients with idiopathic pulmonary fibrosis. Respiratory Medicine. 2014;108(7):1023–30.

Richeldi 2015: Richeldi L, Brown KK, Cottin V, Selman M, Kimura T, Stowasser S. Pooled analysis of data from the tomorrow and INPULSIS trials of nintedanib in IPF. Thorax. 2015;70:A78.

Richeldi 2015a: Richeldi L, Costabel U, Selman M, Xu Z, Kimura T, Stowasser S, et al. Efficacy and safety of nintedanib in patients with IPF beyond week 52: data from the phase II tomorrow trial. Thorax. 2015;70:A63–4.

Richeldi 2015b: Richeldi L, Costabel U, Selman M, Xu Z, Kimura T, Stowasser S, et al. Efficacy and safety of nintedanib in patients with IPF beyond week 52: data from the phase II TOMORROW trial. American Journal of Respiratory and Critical Care Medicine. 2015;191:A1019.

Richeldi 2016: Richeldi L, Cottin V, du Bois RM, Selman M, Kimura T, Bailes Z, et al. Nintedanib in patients with idiopathic pulmonary fibrosis: Combined evidence from the TOMORROW and INPULSIS trials. Respiratory Medicine. 2016;113:74–9.

Richeldi 2016a: Richeldi L, Selman M, Kirsten AM, Wuyts W, Bernois K, Stowasser S, et al. Long-term efficacy and safety of nintedanib in patients with idiopathic pulmonary fibrosis (IPF): results from the tomorrow trial and its open-label extension. QJM. 2016;109:S45–6.

Riddell 2013: Riddell P, Lawrie I, Winward S, Healy D, Javadpour H, McCarthy J, et al. The survival benefit of lung transplantation in idiopathic pulmonary fibrosis. Irish Journal of Medical Science. 2013;182:S476.

Riddell 2013a: Riddell P, Lawrie I, Winward S, Redmond K, Egan JJ. Lung transplantation and survival in idiopathic pulmonary fibrosis-an Irish perspective. Thorax. 2013;68:A168.

Riddell 2014: Riddell P, Minnis P, Egan J. The use of pirfenidone in combination with sildenafil for advanced idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1432.

Riha 2002: Riha RL, Duhig EE, Clarke BE, Steele RH, Slaughter RE, Zimmerman PV. Survival of patients with biopsy-proven usual interstitial pneumonia and nonspecific interstitial pneumonia. European Respiratory Journal. 2002;19(6):1114–8.

Rivera-Lebron 2012: Rivera-Lebron BN, Forfia PR, Holmes J, Kreider M, Lee J, Kawut SM. Echocardiographic mortality predictors in idiopathic pulmonary fibrosis. The Journal of Heart and Lung Transplantation. 2012;1:580–1.
Rivera-Lebron 2013: Rivera-Lebron BN, Forfia PR, Kreider M, Lee JC, Holmes JH, Kawut SM. Echocardiographic and hemodynamic predictors of mortality in idiopathic pulmonary fibrosis. Chest. 2013;144(2):564–70.

Roldán 2016: Roldán IB, Sierra P, Montes E, Ruiz V, Vargas-Becerra MH, Mejia M, et al. Club cell secretory protein-CC16 is increased in idiopathic pulmonary fibrosis. European Respiratory Journal. 2016;48(Suppl 60):PA3098.

Romagnoli 2012: Romagnoli M, Ravaglia C, Tomassetti S, Gurioli C, Casoni GL, Poletti V. BAL findings in idiopathic NSIP and IPF. European Respiratory Journal. 2012;40(Suppl 56):P3621.

Romei 2012: Romei C, Falaschi F, Tavanti L, Sbragia P, De Liperi A, Aquilini F, et al. Idiopathic pulmonary fibrosis: HRCT prognostic evaluation following the ATS/ERS/JRS/ALAT guidelines 2011. Journal of Thoracic Imaging. 2012;27(5):W115–W116.

Romei 2015: Romei C, Tavanti L, Sbragia P, De Liperi A, Carrozzi L, Aquilini F, et al. Idiopathic interstitial pneumonias: do HRCT criteria established by ATS/ERS/JRS/ALAT in 2011 predict disease progression and prognosis?. La Radiologia Medica. 2015;120(10):930–40.

Rooney 2016: Rooney Kt, Goldberg HJ, Humminghake GM, Nakahira K, Siempos II, Flaherty KR, et al. The effect of inhaled low dose carbon monoxide on cytokine/chemokine production in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2016;193:A4542.

Rudd 1981: Rudd RM, Haslam PL, Turner-Warwick M. Cryptogenic fibrosing alveolitis. Relationships of pulmonary physiology and bronchoalveolar lavage to response to treatment and prognosis. The American Review of Respiratory Disease. 1981;124(1):1–8.

Rufino 2011: Rufino RL, Lemos Da Silva V, Bartholo TP, Pugliese JG, Costa CHD. Clinical phenotypes and survival of idiopathic pulmonary fibrosis in one group of patients in Brazil. American Journal of Respiratory and Critical Care Medicine. 2011;183:A1542.

Rusanov 2012: Rusanov V, Kramer MR, Raviv Y, Medalion B, Guber A, Shitrit D. The significance of elevated tumor markers among patients with idiopathic pulmonary fibrosis before and after lung transplantation. Chest. 2012;141(4):1047–54.

Rush 2016: Rush B, Wiskar K, Berger L, Griesdale D. The use of mechanical ventilation in patients with idiopathic pulmonary fibrosis in the United States: a nationwide retrospective cohort analysis. Respiratory Medicine. 2016;111:72–6.

Russell 2013: Russell AM, Molyneaux PL, Wells AU, Renzoni E, Luley P, Maher TM. Symptom measures in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2013;187:A4386.

Ryerson 2010: Ryerson CJ, Berkeley J, Carrieri-Kohlman V, Pantilat SZ, Landefeld CS, Collard HR. Depression and functional status are strong correlates of dyspnea in interstitial lung disease. American Journal of Respiratory and Critical Care Medicine. 2010;181:A2960.

Ryerson 2011: Ryerson CJ, Abbritti M, Ley B, Elicker BM, Jones KD, Collard HR. Cough predicts prognosis in idiopathic pulmonary fibrosis. Respirology. 2011;16(6):969–75.

Ryerson 2011a: Ryerson CJ, Abbritti M, Ley B, Elicker BM, Jones KD, Collard HR. Cough predicts prognosis in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183.
Ryerson 2012: Ryerson CJ, Elicker BM, Hartman TE, Abbritti M, Ley B, Jones KD, et al. Clinical features and outcomes in combined pulmonary fibrosis and emphysema. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4366.

Ryerson 2013: Ryerson CJ, Hartman T, Elicker BM, Ley B, Lee JS, Abbritti M, et al. Clinical features and outcomes in combined pulmonary fibrosis and emphysema in idiopathic pulmonary fibrosis. Chest. 2013;144(1):234–40.

Ryerson 2013a: Ryerson CJ, Urbania TH, Richeldi L, Mooney JJ, Lee JS, Jones KD, et al. Prevalence and prognosis of unclassifiable interstitial lung disease. European Respiratory Journal. 2013;42(3):750–7.

Ryerson 2015: Ryerson CJ, O’Connor D, Dunne JV, Schooley F, Hague CJ, Murphy D, et al. Predicting mortality in systemic sclerosis-associated interstitial lung disease using risk prediction models derived from idiopathic pulmonary fibrosis. Chest. 2015;148(5):1268–75.

Saini 2013: Saini G, McKeever T, Braybrooke R, Hubbard R, Jenkins G. FVC or TLCO? Impact on treatment following NICE (National Institute for Health and Care Excellence) approval of pirfenidone. Thorax. 2013;68:A11.

Saini 2015: Saini G, Porte J, Weinreb PH, Violette SM, Wallace WA, McKeever TM, et al. alphavbeta6 integrin may be a potential prognostic biomarker in interstitial lung disease. European Respiratory Journal. 2015;46(2):486–94.

Saito 2011: Saito Y, Kawai Y, Takahashi N, Ikeya T, Murai K, Kawabata Y, et al. Survival after surgery for pathologic stage IA non-small cell lung cancer associated with idiopathic pulmonary fibrosis. Annals of Thoracic Surgery. 2011;92(5):1812–7.

Sakamoto 2011: Sakamoto K, Taniguchi H, Kondoh Y, Wakai K, Kimura T, Kataoka K, et al. Acute exacerbation of IPF following bronchoalveolar lavage procedures. Chest. 2011;140(4 Supplement):929A.

Sakamoto 2012: Sakamoto K, Taniguchi H, Kondoh Y, Wakai K, Kimura T, Kataoka K, et al. Acute exacerbation of IPF following diagnostic bronchoalveolar lavage procedures. Respiratory Medicine. 2012;106(3):436–42.

Sakamoto 2015: Sakamoto S, Muramatsu Y, Satoh K, Ishida F, Kikuchi N, Sano G, et al. Effectiveness of combined therapy with pirfenidone and inhaled N-acetylcysteine for advanced idiopathic pulmonary fibrosis: a case-control study. Respirology. 2015;20(3):445–52.

Salinas 2012: Salinas M, Florenzano M, Cavada G, Undurraga A. Survival predictors in a cohort of patients with idiopathic pulmonary fibrosis biopsy-proven. European Respiratory Journal. 2012;40(Suppl 56):P3676.

Salinas 2014: Salinas M, Florenzano M, Sabbagh E, Meneses M, Fernandez C, Jallilie A, et al. Survival of patients with biopsy-proven idiopathic pulmonary fibrosis: Chilean National Thorax Institute experience. Revista Medica de Chile. 2014;142(1):9–15.

Salisbury 2015: Salisbury M, Zhou Y, Murray S, Tayob N, Brown KK, Wells AU, et al. Ability of gender-age-physiology index stage to predict future rate of pulmonary function decline in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2519.

Salisbury 2016: Salisbury M, Xia M, Murray S, Lynch D, VanBeek E, Kazerooni E, et al. Association of adaptive multiple features method measures of fibrosis with outcomes in idiopathic pulmonary fibrosis. QJM. 2016;109.
Salisbury 2016a: Salisbury ML, Xia M, Zhou Y, Murray S, Tayob N, Brown KK, et al. Idiopathic pulmonary fibrosis: Gender-Age-Physiology index stage for predicting future lung function decline. Chest. 2016;149(2):491–8.

Santana 2008: Santana AN, Kairalla RA, Carvalho CR. Potential role of statin use in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2008;177(9):1048.

Santos 2016: Santos MA, Clemente S, Felizardo M, Matos C, Furtado ST. Interstitial lung diseases and lung cancer. European Respiratory Journal. 2016;48(Suppl 60):PA813.

Saravanan 2003: Saravanan V, Kelly CA. Survival in fibrosing alveolitis associated with rheumatoid arthritis is better than cryptogenic fibrosing alveolitis. Rheumatology. 2003;42(4):603-4; author reply 604-5.

Sarwar 2016: Sarwar MS, Zubairi ABS, Irfan M, Shahzad T, Abbas A. Clinical characteristics of patients with idiopathic pulmonary fibrosis in a tertiary care center of a developing country. European Respiratory Journal. 2016;48(Suppl 60):PA3900.

Sato 2013: Sato M, Ohmori-Matsuda K, Kondo T, Chida M, Date H, Okumura M, et al. Survival benefit of lung transplantation in Japan: extreme donor shortage and the potential role of living transplantation. The Journal of Heart and Lung Transplantation. 2013;1:5172.

Sato 2013a: Sato S, Tanino Y, Fukuhara N, Nikaido T, Misa K, Uematsu M, et al. Complication of emphysema has a significant impact on prognosis of the patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2013;187:A4343.

Sato 2016a: Sato S, Koike T, Hashimoto T, Ishikawa H, Okada A, Watanabe T, et al. Surgical outcomes of lung cancer patients with combined pulmonary fibrosis and emphysema and those with idiopathic pulmonary fibrosis without emphysema. Annals of Thoracic and Cardiovascular Surgery. 2016;22(4):216–33.

Satoh 2006: Satoh H, Kurishima K, Ishikawa H, Ohtsuka M. Increased levels of KL-6 and subsequent mortality in patients with interstitial lung diseases. Journal of Internal Medicine 2006;260(5):429–34.

Scadding 1967: Scadding JG,Hinson KF. Diffuse fibrosing alveolitis (diffuse interstitial fibrosis of the lungs). Correlation of histology at biopsy with prognosis. Thorax. 1967;22(4):291–304.

Scalori 2014: Scalori A, Belloni P, Ackrill A, Kapugampola L, Doyle R, Kaminski J. Lebrikizumab idiopathic pulmonary fibrosis trial: A phase II randomized, double-blind, placebo controlled study to assess efficacy and safety (RIFF). Respirology. 2014;19:145.

Schachna 2006: Schachna L, Medsger TA Jr, Dauber JH, Wigley FM, Braunstein NA, White B, et al. Lung transplantation in scleroderma compared with idiopathic pulmonary fibrosis and idiopathic pulmonary arterial hypertension. Arthritis and Rheumatism. 2006;54(12):3954–61.

Schafer 2013: Schafer PH, Ye Y, Chen P, Liu Y, Bennett B, Sutherland D, et al. Pharmacodynamic and pharmacokinetic assessment of the C-Jun N-terminal kinase (JNK) inhibitor CC-93 in a phase 2 sequential ascending dose study in idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2013;187:A5708.

Schafer 2012: Schaffer JM, Singh SK, Reitz BA, Sista RR, Robbins RC, Mallidi HR. Double lung transplant improves survival compared with single lung transplant in patients with idiopathic pulmonary fibrosis and pulmonary hypertension. American Journal of Transplantation. 2012;12:49.
Schildge 2011: Schildge J. Nitric oxide in exhaled breath of patients with interstitial lung diseases. Pneumologie. 2011;65(3):143–8.

Schmidt 1987: Schmidt M, Brugger E, Heinrich J. Proteolytic activities in bronchoalveolar lavage fluid of interstitial lung diseases: correlation to stage and prognosis. Respiration. 1987;52(2):115–21.

Schmidt 2011a: Schmidt S L, Han M K, Tayob N, Zappala C, Kervitsky D, Murray S, et al. Idiopathic pulmonary fibrosis: Predicting future disease course from past trends in pulmonary function. American Journal of Respiratory and Critical Care Medicine. 2011;183:A5299.

Schmidt 2011b: Schmidt SL, Kleaveland K, Han MK, Toews GB, Martinez FJ, Flaherty KR. Prospectively collected antigen exposures do not differ between patients with hypersensitivity pneumonitis and idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A4828.

Schmidt 2014: Schmidt SL, Tayob N, Han MK, Zappala C, Kervitsky D, Murray S, et al. Predicting pulmonary fibrosis disease course from past trends in pulmonary function. Chest. 2014;145(3):579–85.

Schupp 2016: Schupp JC, Köhler T, Müller-Quernheim J. Usefulness of cyclophosphamide pulse therapy in interstitial lung diseases. Respiration. 2016;91(4):296–301.

Schwartz 1991: Schwartz DA, Merchant RK, Helmers RA, Gilbert SR, Dayton CS, Hunninghake GW. The influence of cigarette smoking on lung function in patients with idiopathic pulmonary fibrosis. The American Review of Respiratory Disease. 1991;144(3 Pt 1):504–6.

Schwartz 1994: Schwartz DA, Helmers RA, Galvin JR, Van Fossen DS, Frees KL, Dayton CS, et al. Determinants of survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 1994;149(2 Pt 1):450–4.

Schwartz 1994a: Schwartz DA, Van Fossen DS, Davis CS, Helmers RA, Dayton CS, Burmeister LF, et al. Determinants of progression in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 1994;149(2 Pt 1):444–9.

Scientific Committee 2009: Scientific Committee of the Korean Academy of Tuberculosis and Respiratory Diseases. 2008 National Survey of Idiopathic Interstitial Pneumonia in Korea. Tuberculosis & Respiratory Diseases. 2009;66:141–51.

Scott 2013: Scott JP, Tayob N, Han MK, Martinez FJ, Murray S, White ES, et al. Clinical outcomes in patients with idiopathic pulmonary fibrosis: data from COMET. American Journal of Respiratory and Critical Care Medicine. 2013;187:A4332.

Sengul 2009: Sengul B, Uzun O, Fındık S, Atıcı AG, Erkan L. The evaluation of 92 interstitial lung disease patients. Tuberkuloz ve Toraks. 2009;57(3):314–26.

Serban 2013: Serban KA, Winer-Muram HT, Serban RE, Lahm T. Characteristics of pulmonary hypertension (PH) in a cohort of VA patients with combined pulmonary fibrosis and emphysema (CPFE) syndrome. American Journal of Respiratory and Critical Care Medicine. 2013;187:A2271.

Sestini 2006: Sestini P, Maccari U, Pierobi MG, Archontogeorgis K, GC Viarleglio, Nikifordakis N, et al. Effect of ambulatory on walking distance in normoxic pulmonary fibrosis. European Respiratory Journal. 2006;28(Suppl 50):767s.
Setoguchi 2009: Setoguchi Y, Kume S. Idiopathic interstitial pneumonias as possible outcome in relation to smoking status. Respiration and Circulation. 2009;57(10):1003–7.

Shah 1972: Shah JR. Diffuse interstitial pulmonary fibrosis: course and prognosis. Indian Journal of Chest Diseases. 1972;14(3):142–50.

Shah 2014: Shah P, Snyder LD, Silhan LL, Riise G, Arcasoy M, Wagner C, et al. International experience of lung transplant in telomerase mutation carriers with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2014;189:A6665.

Shaker 2013: Shaker SB, Seersholm N, Hestad M, Andersen S, Dirksen A. High-dose N-acetylcysteine (NAC) in fibrotic interstitial lung diseases, a retrospective analysis. European Respiratory Journal. 2013;42(Suppl 57):P2359.

Sharif 2016: Sharif R, Zouk A, Kulkarni T, Acosta P, Duncan S, Luckhardt T, et al. Cost of hospitalization among patients with idiopathic pulmonary fibrosis: patterns and predictors. Chest. 2016;150(4 Supplement):469A.

Sharif 2016a: Sharif R, Zouk A, Kulkarni T, Acosta P, Luckhardt T, Thannickal V, et al. The impact of comorbidities on idiopathic pulmonary fibrosis outcomes. Chest. 2016;150(4 Supplement):471A.

Sharp 2016: Sharp C, Adamali HI, Millar AB, Dodd JW. Cognitive function in idiopathic pulmonary fibrosis. Thorax. 2016;71:A237.

Sharp 2016a: Sharp C, Edwards A, Lamb H, Alam S, Jordan N, Gunary R, et al. A supportive care decision aid tool for idiopathic pulmonary fibrosis. European Respiratory Journal. 2016;48(Suppl 60):PA2102.

Sharp 2017: Sharp C, Adamali HI, Millar AB. A comparison of published multidimensional indices to predict outcome in idiopathic pulmonary fibrosis. ERJ Open Research 2017;3(1).

Sheikh 2017: Sheikh SI, Hayes D Jr, Kirkby SE, Tobias JD, Tumin D. Age-dependent gender disparities in post lung transplant survival among patients with idiopathic pulmonary fibrosis. Annals of Thoracic Surgery. 2017;103(2):441–6.

Shin 2015: Shin S, King CS, Puri N, Shlobin OA, Brown A, Nathan SD. Utilization of pulmonary arterial size and coronary artery calcification on HRCT imaging for prognostic stratification in patients with IPF. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2513.

Shin 2016: Shin S, King CS, Puri N, Shlobin OA, Brown AW, Ahmad S, et al. Pulmonary artery size as a predictor of outcomes in idiopathic pulmonary fibrosis. European Respiratory Journal. 2016;47(5):1445–51.

Shino 2012: Shino MY, Weigt SS, Elashoff D, Elashoff R, Lynch JP III, Belperio JA. Alteration in plasma levels of lymphotactin (XCL1) predicts outcomes in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4378.

Shioya 2013: Shioya M, Otsuka M, Kitamura Y, Yokoo K, Ikeda K, Nishikiori H, et al. Idiopathic pulmonary upper lobe fibrosis shows distinct features and poor prognosis compared to idiopathic pulmonary fibrosis. European Respiratory Journal. 2013;42(Suppl 57):P477.

Shiraki 2015: Shiraki A, Ando M, Abe T, Nakashima H, Hibi M, Kano H, et al. The analysis of prognostic factors in patients with interstitial lung diseases. European Respiratory Journal. 2015;46(Suppl 59):PA4863.
Shiratori 2017: Shiratori M, Yokoo K, Ikeda K, Natsuizaka M, Umeda Y, Kitamura Y, et al. Subtypes of pulmonary emphysema on HRCT affect prognosis on combined pulmonary fibrosis and emphysema in idiopathic pulmonary fibrosis. European Respiratory Journal. 2017:3377.

Sholl 2010: Sholl LM, Fernandez IE, Rosas IO, Padera RF. Identification of early pathologic markers of interstitial lung diseases. Laboratory Investigation. 2010;90:413A–4A.

Shorr 2002: Shorr AF, Davies DB, Nathan SD. Outcomes for patients with sarcoidosis awaiting lung transplantation. Chest. 2002;122(1):233–8.

Shulgina 2011: Shulgina L, Cahn A, Chilvers E, Parfrey H, Clark A, Wilson E, et al. Treating idiopathic pulmonary fibrosis with the addition of co-trimoxazole. Thorax. 2011;66:A63–4.

Shulgina 2013: Shulgina L, Cahn AP, Chilvers ER, Parfrey H, Clark AB, Wilson EC, et al. Treating idiopathic pulmonary fibrosis with the addition of co-trimoxazole: a randomised controlled trial. Thorax. 2013;68(2):155–62.

Silva 2007: Silva CI, Muller NL, Fujimoto K, Kato S, Ichikado K, Taniguchi H, et al. Acute exacerbation of chronic interstitial pneumonia: high-resolution computed tomography and pathologic findings. Journal of Thoracic Imaging. 2007;22(3):221–9.

Silva 2008: Silva CI, Muller NL, Hansell DM, Lee KS, Nicholson AG, Wells AU. Nonspecific interstitial pneumonia and idiopathic pulmonary fibrosis: changes in pattern and distribution of disease over time. Radiology. 2008;247(1):251–9.

Simon-Blancal 2012: Simon-Blancal V, Freynet O, Nunes H, Bouvry D, Nagara N, Brillet PY, et al. Acute exacerbation of idiopathic pulmonary fibrosis: outcome and prognostic factors. Respiration. 2012;83(1):28–35.

Sköld 2016: Sköld CM, Janson C, Elf AK, Fiaschi M, Wiklund K, Persson HL. A retrospective chart review of pirfenidone-treated patients in Sweden: the REPRIS study. European Clinical Respiratory Journal. 2016;3:32035.

Smadja 2013: Smadja DM, Mauge L, Nunes H, D’Audigier C, Juvin K, Borie R, et al. Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis. 2013;16(1):147–157.

Smadja 2014: Smadja DM, Nunes H, Juvin K, Bertil S, Valeyre D, GaussemP, et al. Increase in both angiogenic and angiostatic mediators in patients with idiopathic pulmonary fibrosis. Pathologie Biologie. 2014;62(6):391–4.

Smith 1990: Smith C, Feldman C, Levy H, Kallenbach JM, Zwi S. Cryptogenic fibrosing alveolitis: A study of an indigenous African population. Respiration. 1990;57(6):364–71.

Snell 2016: Snell N, Strachan D, Hubbard R, Gibson J, Maher T, Jarrold I. Epidemiology of idiopathic pulmonary fibrosis in the UK: findings from the british lung foundation’s ‘respiratory health of the nation’ project. Thorax. 2016;71:A236.

Soares 2013a: Soares M, Gimenez A, Oliveira RKF, Storrer KM, Ferreira RG, Kuranishi LT, et al. The value of oxygen saturation in monitoring the idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2013;187:A1087.
Sokai 2014: Sokai A, Tanizawa K, Handa T, Kubo T, Ikezoe K, Nakatsuka Y, et al. Prognostic significance of asymmetrical distribution of opacities on high-resolution computed tomography in acute exacerbation of interstitial pneumonia. European Respiratory Journal. 2014;44(Suppl 58):4628.

Sokai 2015: Sokai A, Handa T, Tanizawa K, Oga T, Uno K, Tsuruyama T, et al. Matrix metalloproteinase-10: a novel biomarker for idiopathic pulmonary fibrosis. Respiratory Research. 2015;16:120.

Sokai 2015a: Sokai A, Handa T, Tanizawa K, Uno K, Oga T, Ikezoe K, et al. A comprehensive evaluation of serum matrix metalloproteinases in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A4375.

Sokai 2017: Sokai A, Tanizawa K, Handa T, Kubo T, Hashimoto S, Ikezoe K, et al. Asymmetry in acute exacerbation of idiopathic pulmonary fibrosis. ERJ Open Research. 2017;3(2):00036–2016.

Son 2010: Son JY, Jung JY, Kim EY, Lim JE, Lee KJ, Park BH, et al. Codon 10 polymorphisms in the transforming growth factor-beta 1 gene may be associated with the predisposition to idiopathic pulmonary fibrosis in Koreans. Chest. 2010;138(4 Supplement):527A.

Son 2015: Son C, Um S, Roh MS. Idiopathic pulmonary fibrosis as a poor prognostic factor in lung cancer patients. Annals of Oncology. 2015;26:i9.

Song 2009: Song JW, Do KH, Kim MY, Jang SJ, Colby TV, Kim DS. Pathologic and radiologic differences between idiopathic and collagen vascular disease-related usual interstitial pneumonia. Chest. 2009;136(1):23–30.

Song 2009a: Song JW, Song JK, Kim DS. Echocardiography and brain natriuretic peptide as prognostic indicators in idiopathic pulmonary fibrosis. Respiratory Medicine. 2009;103(2):180–6.

Song 2010: Song JW, Kim WS, Chae EJ, Kim MY, Jang SJ, Zhang Y, et al. The natural course of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2010;181:A2959.

Song 2011a: Song J, Kim M, Jang S, Colby T V, Kim D. Prognostic value of peripheral blood biomarkers in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183.

Song 2013: Song JW, Do KH, Jang SJ, Colby TV, Han S, Kim DS. Blood biomarkers MMP-7 and SP-A: predictors of outcome in idiopathic pulmonary fibrosis. Chest. 2013;143(5):1422–9.

Song 2015: Song JW, Song JS, Chae EJ. Significance of histopathologic features suggesting connective tissue disease in idiopathic pulmonary fibrosis. European Respiratory Journal. 2015;46(Suppl 59):PA3793.

Spencer 2011: Spencer L, Grundy S, GreavesM, Bishop P, Duck A, Leonard C. Demonstration of diagnostic and prognostic benefits of an interstitial lung disease (ILD) multidisciplinary team meeting. European Respiratory Journal.2011;38(Suppl 55):4864.

Speranskaya 2015: Speranskaya AA, Novikova LN, Baranova OP, Dvorakovskaya IV, Kameneva MY, Amosova NA. Computed tomography in evaluating the development of different types of pulmonary fibrosis in patients with interstitial lung diseases. Vestnik Rentgenologii i Radiologii. 2015;(4):5–11.
Stauffer 2016: Stauffer J, BroderM, Chang E, Papayan E, Popescu I, Reddy S, Raimundo K. Longitudinal changes in comorbidity rates in patients with idiopathic pulmonary fibrosis: Analysis of medicare data. Chest. 2016;150(4 Supplement):470A.

Steffensen 1992: Steffensen IE, Rasmussen FV, Norgaard T. Idiopathic interstitial pulmonary fibrosis. Clinical picture, diagnosis, treatment and prognosis. Ugeskrift for Laeger. 1992;154(2):83–7.

Stephan 2007: Stephan S, de Castro Pereira CA, Coletta EM, Ferreira RG, Otta JS, Nery LE. Oxygen desaturation during a 4-minute step test: predicting survival in idiopathic pulmonary fibrosis. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2007;24(1):70–6.

Stock 2013: Stock CJ, Sato H, Fonseca C, Banya WA, Molyneaux PL, Adamali H, et al. Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. Thorax. 2013;68(5):436–41.

Stuart 2014: Stuart BD, Lee JS, Kozlitina J, Noth I, Devine MS, Glazer CS, et al. Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. The Lancet Respiratory Medicine. 2014;2(7):557–65.

Sturani 1988: Sturani C, Galavotti V, Fabbri M, del Bufalo C, Galleri C, Ravaglia C, et al. Preliminary results of a single-blind, randomized trial of cyclosporine and corticosteroids in idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 1988;1(Suppl 2):247s.

Sturani 1990: Sturani C, Meliconi R, Galavotti V, Borzi MR, Ciarrocchi G, Negri C, et al. An unfavourable prognostic index for idiopathic pulmonary fibrosis? Antitopoisomerase II autoantibodies in idiopathic pulmonary fibrosis, sarcoidosis and connective tissue disease. Rivista di Patologia e Clinica della Tuberculosis e di Pneumologia. 1990;61(1):33–53.

Subhash 2004: Subhash HS, Ashwin I, Solomon SK, David T, Cherian AM, Thomas K. A comparative study on idiopathic pulmonary fibrosis and secondary diffuse parenchymal lung disease. Indian Journal of Medical Sciences. 2004;58(5):185–90.

Sugino 2010: Sugino K, Ito T, Muramatsu Y, Sato K, Sakamoto S, Homma S. Comparison of the clinical features of idiopathic pulmonary fibrosis in Japan and the U.S.A., based on disease severity. Nihon Kokyuki Gakkai Zasshi. 2010;48(12):892–7.

Sugino 2013: Sugino K, Ishida F, Kikuchi N, Hirota N, Sano G, Sato K, et al. Comparison of clinical characteristics and prognostic factors between combined pulmonary fibrosis and emphysema/UIP versus non/UIP. European Respiratory Journal. 2013;42(Suppl 57):P3378.

Sugino 2014: Sugino K, Gocho K, Nakamura Y, Isshiki T, Isobe K, Hata Y, et al. Clinicopathological characteristics of carcinogenesis of lung cancer and postoperative acute exacerbation in patients with CPFE/UIP and IPF/UIP. American Journal of Respiratory and Critical Care Medicine. 2014;189:A4428.

Sugino 2014a: Sugino K, Ishida F, Kikuchi N, Hirota N, Sano G, Sato K, et al. Comparison of clinical characteristics and prognostic factors of combined pulmonary fibrosis and emphysema versus idiopathic pulmonary fibrosis alone. Respirology. 2014;19(2):239–45.

Sugino 2015: Sugino K, Furuya K, Nakamura Y, Isshiki T, Gocho K, Homma SA. Clinico-radiological features and prognostic factors of atypical IPF: a comparison between typical IPF and atypical IPF. American Journal of Respiratory and Critical Care Medicine. 2015;191:A2525.
Sugino 2015a: Sugino K, Nakamura Y, Ito T, Isshiki T, Sakamoto S, Homma S. Comparison of clinical characteristics and outcomes between combined pulmonary fibrosis and emphysema associated with usual interstitial pneumonia pattern and non-usual interstitial pneumonia. Sarcoïdosis, Vasculitis, and Diffuse Lung Diseases. 2015;32(2):129–37.

Suissa 2015: Suissa S, Ernst P. The INPULSIS enigma: exacerbations in idiopathic pulmonary fibrosis. Thorax. 2015;70(5):508–10.

Sumikawa 2008: Sumikawa H, Johkoh T, Colby T V, Ichikado K, Suga M, Taniguchi H, et al. Computed tomography findings in pathological usual interstitial pneumonia: relationship to survival. American Journal of Respiratory and Critical Care Medicine. 2008;177(4):433–9.

Sumikawa 2014: Sumikawa H, Johkoh T, Fujimoto K, Arakawa H, Colby TV, Fukuoka J, et al. Pathologically proved nonspecific interstitial pneumonia: CT pattern analysis as compared with usual interstitial pneumonia CT pattern. Radiology. 2014;272(2):549–56.

Sun 2016: Sun M, Li HX, Xie YF, Xu H, Liu F, Chen JY. Outcomes after single versus bilateral lung transplantation for idiopathic pulmonary fibrosis. Zhonghua Jie He He Hu Xi Za Zhi. 2016;39(6):444–9.

Suraj 2016: Suraj KP, Kumar NK, Jyothi E, Narayan KV, Biju G. Role of pirfenidone in idiopathic pulmonary fibrosis – a longitudinal cohort study. The Journal of the Association of Physicians of India. 2016;64(5):36–41.

Sverzellati 2011: Sverzellati N, Guerci L, Randi G, Calabro E, La Vecchia C, Marchiano A, et al. Interstitial lung diseases in a lung cancer screening trial. European Respiratory Journal. 2011;38(2):392–400.

Sverzellati 2017: Sverzellati N, Brillet PY. When Deep Blue first defeated Kasparov: is a machine stronger than a radiologist at predicting prognosis in idiopathic pulmonary fibrosis? European Respiratory Journal. 2017;49(1).

Swift 2013: Swift A, Rajaram S, Capener D, Hill C, Davies C, Hurdman J, et al. Prognostic value of right ventricular function in patients with severe pulmonary hypertension associated with respiratory disease. European Respiratory Journal. 2013;42(Suppl 57):P2617.

Swigris 2009: Swigris JJ, Swick J, Wamboldt FS, Sprunger D, du Bois R, Fischer A, et al. Heart rate recovery after 6-min walk test predicts survival in patients with idiopathic pulmonary fibrosis. Chest. 2009;136(3):841–8.

Swigris 2011: Swigris JJ, Olson AL, Shlobin OA, Ahmad S, Brown KK, Nathan SD. Heart rate recovery after six-minute walk test predicts pulmonary hypertension in patients with idiopathic pulmonary fibrosis. Respirology. 2011;16(3):439–45.

Swigris 2012: Swigris JJ, Olson AL, Huie TJ, Fernandez-Perez ER, Solomon J, Sprunger D, et al. Ethnic and racial differences in the presence of idiopathic pulmonary fibrosis at death. Respiratory Medicine. 2012;106(4):588–93.

Swigris 2013: Swigris JJ, Brown KK, Belkin A. Thalidomide for the treatment of cough in idiopathic pulmonary fibrosis. Annals of Internal Medicine. 2013;158(6):498.

Tabuena 2005: Tabuena RP, Nagai S, Tsutsumi T, Handa T, Minoru T, Mikuniya T, et al. Cell profiles of bronchoalveolar lavage fluid as prognosticators of idiopathic pulmonary fibrosis/usual interstitial pneumonia among Japanese Patients. Respiration. 2005;72(5):490–8.
Tachibana 2016: Tachibana Y, Tsujino S, Hashisako M, Kondoh Y, Kataoka K, Hamada N, et al. Pulmonary interstitial emphysema causes air leaks in the cases of interstitial pneumonia. Respirology. 2016;21:29.

Tajima 2003: Tajima S, Oshikawa K, Tominaga S, Sugiyama Y. The increase in serum soluble ST2 protein upon acute exacerbation of idiopathic pulmonary fibrosis. Chest. 2003;124(4):1206–14.

Tajiri 2015: Tajiri M, Okamoto M, Fujimoto K, Johkoh T, Ono J, Tominaga M, et al. Serum level of periostin can predict long-term outcome of idiopathic pulmonary fibrosis. Respiratory Investigation. 2015;53(2):73–81.

Takada 2013: Takada T, Asakawa K, Sakagami T, Moriyama H, Kazama J, Suzuki E, et al. Effects of direct hemoperfusion with polymyxin B-immobilized fiber for rapidly progressive interstitial lung diseases. American Journal of Respiratory and Critical Care Medicine. 2013;187:A4337.

Takada 2014: Takada T, Asakawa K, Sakagami T, Moriyama H, Kazama J, Suzuki E, et al. Effects of direct hemoperfusion with polymyxin B-immobilized fiber on rapidly progressive interstitial lung diseases. Internal Medicine. 2014;53(17):1921–6.

Takahashi 2006: Takahashi H, Shiratori M, Kanai A, Chiba H, Kuroki Y, Abe S. Monitoring markers of disease activity for interstitial lung diseases with serum surfactant proteins A and D. Respirology. 2006;11 Suppl:S51–4.

Takahashi 2012: Takahashi SM, Blaine KM, Ma SF, Huang Y, Vij R, Sperling Al, et al. Btla, a t cell co-inhibitory receptor, is a potential biomarker for progressive idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2012;185:A5179.

Takaiwa 2014: Takaiwa T, Tachibana H, Arita M, Ishida T. Long term efficacy of pirfenidone therapy in patients with idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2014;44(Suppl 58):P785.

Takei 2016: Takei R, Kumagai S, Arita M, Ishida T. Impact of lymphocyte differential count in BALF on the mortality of patients with acute exacerbation of idiopathic chronic fibrosing interstitial pneumonia. European Respiratory Journal. 2016;48(Suppl 60):PA804.

Takenaka 1999: Takenaka K, Yoshimura A, Okano T, Seike M, Kamio K, Uematsu K, et al. Acute exacerbation of idiopathic interstitial pneumonia complicated by lung cancer, caused by treatment for lung cancer. Japanese Journal of Lung Cancer. 1999;39(7):955–62.

Takoi 2012: Takoi H, Miura Y, Tsunoda Y, Sumazaki Y, Tanaka T, Lin SY, et al. Effect of pirfenidone on chronic interstitial pneumonia. European Respiratory Journal. 2012;40(Suppl 56):P3653.

Taniguchi 2011a: Taniguchi H, Kataoka K, Kondoh Y, Homma S, Mishima M, Inoue Y, et al. Proposal for revised classification of disease severity of idiopathic pulmonary fibrosis in Japan. European Respiratory Journal. 2011;38(Suppl 55):P660.

Taniguchi 2012: Taniguchi H, Kondoh Y, Kimura T, Kataoka K. Recombinant thrombomodulin improves survival in acute exacerbation of idiopathic pulmonary fibrosis. European Respiratory Journal. 2012;40(Suppl 56):2823.

Taniguchi 2014: Taniguchi H, Azuma A, Ogura T, Inoue Y, Chida K, Bando M, et al. Acute exacerbation of idiopathic pulmonary fibrosis: Analysis in a post-marketing surveillance of pirfenidone. European Respiratory Journal. 2014;44(Suppl 58):1902.
Tanizawa 2015: Tanizawa K, Handa T, Nagai S, Hirai T, Kubo T, Oguma T, et al. Clinical impact of high-attenuation and cystic areas on computed tomography in fibrotic idiopathic interstitial pneumonias. BMC Pulmonary Medicine. 2015;15:74.

Tcherakian 2011: Tcherakian C, Cottin V, Brillet PY, Freynet O, Nagara N, Carton Z, et al. Progression of idiopathic pulmonary fibrosis: lessons from asymmetrical disease. Thorax. 2011;66(3):226–31.

ten Klooster 2011: ten Klooster L, Van Moorsel C, Van Kessel D, Van De Graaf E, Kwakkel-van Erp J, Luijk B, et al. Mortality in idiopathic pulmonary fibrosis (IPF) on the waiting list for lung transplantation in the Netherlands. European Respiratory Journal. 2011;38(Suppl 55):P2439.

ten Klooster 2012: ten Klooster L, vanMoorsel CH, van Hal PT, van den Blink B, Nossent GD, Verschueren EA, et al. High mortality in patients with idiopathic pulmonary fibrosis on Dutch lung transplant waiting list. Nederlands Tijdschrift voor Geneeskunde. 2012;156(2):A3752.

ten Klooster 2013: ten Klooster L, Van Moorsel C, Van Kessel D, Jan Oudijk E, Van De Graaf E, Kwakkel-Van Erp J, et al. Better survival outcomes after bilateral lung transplantation compared to single lung transplantation in patients with idiopathic pulmonary fibrosis. European Respiratory Journal. 2013;42(Suppl 57):P2686.

ten Klooster 2015a: ten Klooster L, Nossent GD, Kwakkel-van Erp JM, van Kessel DA, Oudijk EJ, van de Graaf EA, et al. Ten-year survival in patients with idiopathic pulmonary fibrosis after lung transplantation. Lung. 2015;193(6):919–26.

Teramachi 2017: Teramachi R, Taniguchi H, Kondoh Y, Ando M, Kimura T, Kataoka K, et al. Progression of mean pulmonary arterial pressure in idiopathic pulmonary fibrosis with mild to moderate restriction. Respirology. 2017;22(5):986–90.

Terriff 1992: Terriff BA, Kwan SY, Chan-Yeung MM, Muller NL. Fibrosing alveolitis: chest radiography and CT as predictors of clinical and functional impairment at follow-up in 26 patients. Radiology. 1992;184(2):445–9.

Thabut 2003: Thabut G, Mal H, Castier Y, Grousard O, Brugiere O, Marrash-Chahla R, et al. Survival benefit of lung transplantation for patients with idiopathic pulmonary fibrosis. The Journal of Thoracic and Cardiovascular Surgery. 2003;126(2):469–75.

Thomeer 2004: Thomeer MJ, Vansteenkiste J, Verbeken EK, Demedts M. Interstitial lung diseases: characteristics at diagnosis and mortality risk assessment. Respiratory Medicine. 2004;98(6):567–73.

Tiitto 2005: Tiitto L, Heiskanen U, Bloigu R, Paakko P, Kinnula V, Kaarteenaho-Wiik R. Thoracoscopic lung biopsy is a safe procedure in diagnosing usual interstitial pneumonia. Chest. 2005;128(4):2375–80.

Tiitto 2006: Tiitto L, Bloigu R, Heiskanen U, Paakko P, Kinnula V L, Kaarteenaho-Wiik R. Relationship between histopathological features and the course of idiopathic pulmonary fibrosis/usual interstitial pneumonia. Thorax. 2006;61(12):1091–5.

Todd 2011: Todd NW, Atamas SP. Survival in patients with combined emphysema and fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A3806.

Tokura 2009: Tokura T, Oku H, Tsukamoto Y. Pharmacological properties and clinical effects of the antifibrotic agent pirfenidone (Pirespa) for treatment of idiopathic pulmonary fibrosis. Nippon Yakurigaku Zasshi. 2009;134(2):97–104.
Tomassetti 2010: Tomassetti S, Ryu JH, Ravaglia C, Buccioli M, Chilosi M, Carloni A, et al. The effect of anticoagulant therapy on survival of patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2010;181:A6028.

Tomassetti 2012: Tomassetti S, Ravaglia C, Picicucci S, Casoni GL, Romagnoli M, Gurioli C, et al. The clinical relevance of autoimmunity in idiopathic pulmonary fibrosis. European Respiratory Journal. 2012;40(Suppl 56):P3639.

Tomassetti 2013: Tomassetti S, Ryu JH, Gurioli C, Ravaglia C, Buccioli M, Tantalocco P, et al. The effect of anticoagulant therapy for idiopathic pulmonary fibrosis in real life practice. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2013;30(2):121–7.

Tomassetti 2015: Tomassetti S, Gurioli C, Ryu JH, Decker P A, Ravaglia C, Tantalocco P, et al. The impact of lung cancer on survival of idiopathic pulmonary fibrosis. Chest. 2015;147(1):157–64.

Tomic 2014: Tomic R, Perlman D, Bors M, Gaillard P, Bhargava M, Wey A, et al. Early predictors of worse outcome in patients with idiopathic pulmonary fibrosis. American Journal and Critical Care Medicine. 2014;189:A1447.

Tomic 2015: Tomic R, Loor G, Rudser K, Kim HJG, Perlman D, Dincer HE, et al. Bilateral versus single lung transplantation in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A6322.

Tomoka 2003: Tomoka H, Kuwata Y, Imanaka K, Hashimoto K, Ohnishi H, Tada K, et al. Randomized, open-label pilot study of aerosolized administration of N-acetylcysteine for idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2003.

Tomoka 2005: Tomoka H, Kuwata Y, Imanaka K, Hashimoto K, Ohnishi H, Tada K, et al. A pilot study of aerosolized N-acetylcysteine for idiopathic pulmonary fibrosis. Respirology. 2005;10(4):449–55.

Tomoka 2007a: Tomoka H, Sakurai T, Hashimoto K, Iwasaki H. Acute exacerbation of idiopathic pulmonary fibrosis: role of Chlamydia pneumoniae infection. Respirology. 2007;12(5):700–6.

Tossier 2016: Tossier C, Dupin C, Plantier L, Leger J, Flament T, Favelle O, et al. Hiatal hernia on thoracic computed tomography in pulmonary fibrosis. European Respiratory Journal. 2016;48(3):833–42.

Travis 2000: Travis WD, Matsui K, Moss J, Ferrans VJ. Idiopathic nonspecific interstitial pneumonia: prognostic significance of cellular and fibrosing patterns: survival comparison with usual interstitial pneumonia and desquamative interstitial pneumonia. The American Journal of Surgical Pathology. 2000;24(1):19–33.

Triantafillidou 2011: Triantafillidou C, Lyberopoulos P, Kolilekas L, Kagouridis K, Gytopoulos S, Sotiropoulos C, et al. The prognostic significance of cardiopulmonary exercise in IPF. European Respiratory Journal. 2011;38(Suppl 55):P659.

Triantafillidou 2011a: Triantafillidou C, Manali ED, Magkou C, Sotiropoulos C, Kolilekas LF, Kagouridis K, et al. Medical Research Council dyspnea scale does not relate to fibroblast foci profusion in IPF. Diagnostic Pathology. 2011;6:28.

Triantafillidou 2013: Triantafillidou C, Manali E, Lyberopoulos P, Kolilekas L, Kagouridis K, Gytopoulos S, et al. The role of cardiopulmonary exercise test in IPF prognosis. Pulmonary Medicine. 2013;2013:514817.
Troy 2014: Troy L, Glaspole I, Goh N, Zappala C, Hopkins P, Wilsher M, et al. Prevalence and prognosis of unclassifiable interstitial lung disease. European Respiratory Journal. 2014;43(5):1529–30.

Troy 2014a: Troy L, Young I, Munoz P, Taylor N, Webster S, Lau E, et al. Does supplemental oxygen increase exercise endurance in patients with idiopathic pulmonary fibrosis? Respirology. 2014;19(Suppl 2):95.

Trujillo 2010: Trujillo G, Meneghin A, Flaherty KR, Sholl LM, Myers JL, Kazerooni EA, et al. Idiopathic pulmonary fibrosis: TLR9 differentiates rapidly from slowly progressing forms of idiopathic pulmonary fibrosis. Science Translational Medicine 2010;2(57):57ra82.

Tsuboi 2006: Tsuboi E, Kato M, Normura H, Azuma A, Kudo S, Nakata K, et al. Application and validation of constant speed treadmill walking test in patients with idiopathic pulmonary fibrosis. Proceedings of the American Thoracic Society. 2006;A103.

Tsuchida 2011: T Koike, Tsuchida M, Hashimoto T, Shinohara H, Shirato T, Koike T, et al. Surgical procedures for non-small cell lung cancer patients with idiopathic pulmonary fibrosis. Chest. 2011;140(4 Supplement):1001A.

Tsuchiya 2010: Tsuchiya T, Fujii M, Tsukamoto K, Sato M, Yagi T, Suda T, et al. The influence of pathological diagnosis on outcome in patients with idiopathic pulmonary fibrosis. Nihon Kokyuki Gakkai Zasshi. 2010;48(7):469–74.

Tsuchiya 2015: Tsuchiya Y, Lynch D A, Groshong S D, Colby TV, Fukuoka J, Johkoh T, et al. Usual interstitial pneumonia preceding rheumatoid arthritis: Clinical and histologic features. American Journal of Respiratory and Critical Care Medicine. 2015;191:A1171.

Tsukamoto 2000: Tsukamoto K, Hayakawa H, Sato A, Chida K Nakamura H, Miura K. Involvement of Epstein-Barr virus latent membrane protein 1 in disease progression in patients with idiopathic pulmonary fibrosis. Thorax. 2000;55(11):958–61.

Tsushima 2010: Tsushima K, Sone S, Yoshikawa S, Yokoyama T, Suzuki T, Kubo K. The radiological patterns of interstitial change at an early phase: over a 4-year follow-up. Respiratory Medicine. 2010;104(11):1712–21.

Tsutsumi 2015: Tsutsumi T, Morio Y, Nagaoka T, Kuriyama S, Takahashi K. Examination of clinical features in hospitalized patients with interstitial lung diseases. American Journal of Respiratory and Critical Care Medicine. 2015;191:A4386.

Tukiainen 1979: Tukiainen P, Taskinen E, Valle M, Korhola O, Varpela E. Fibrosing alveolitis and its prognosis in 100 patients. Duodecim. 1979;95(19):1190–200.

Tukiainen 1983: Tukiainen P, Taskinen E, Holsti P, Korhola O, Valle M. Prognosis of cryptogenic fibrosing alveolitis. Thorax. 1983;38(5):349–55.

Turner-Warwick 1980: Turner-Warwick M, Burrows B, Johnson A. Cryptogenic fibrosing alveolitis: response to corticosteroid treatment and its effect on survival. Thorax. 1980;35(8):593–9.

Turner-Warwick 1986: Turner-Warwick M. Staging and therapy of cryptogenic fibrosing alveolitis. Chest. 1986;89(3 Suppl):148S–50S.
Turner-Warwick 1987: Turner-Warwick M, Haslam PL. The value of serial bronchoalveolar lavages in assessing the clinical progress of patients with cryptogenic fibrosing alveolitis. American Review of Respiratory Disease. 1987;135(1):26–34.

Tzortzaki 2007: Tzortzaki EG, Antoniou KM, Zervou MI, Lambiri I, Koutsopoulos A, Tzanakis N, et al. Effects of antifibrotic agents on TGF-beta1, CTGF and IFN-gamma expression in patients with idiopathic pulmonary fibrosis. Respiratory Medicine. 2007;101(8):1821–9.

Tzouvelekis 2011: Tzouvelekis A, Bouros E, Oikonomou A, Kolios G, Zacharis G, Bouros D. Effect and safety of mycophenolate mofetil in idiopathic pulmonary fibrosis. A retrospective study. American Journal of Respiratory and Critical Care Medicine. 2011;183:A1537.

Tzouvelekis 2011a: Tzouvelekis A, Bouros E, Ekonomou A, Ntolios P, Zacharis G, Kolios G, Bouros D. Effect and safety of mycophenolate mofetil in idiopathic pulmonary fibrosis. A retrospective study. European Respiratory Journal. 2011;38(Suppl 55):178.

Tzouvelekis 2011b: Tzouvelekis A, Bouros E, Oikonomou A, Ntolios P, Zacharis G, Kolios G, et al. Effect and safety of mycophenolate mofetil in idiopathic pulmonary fibrosis. Pulmonary Medicine. 2011;2011:849035.

Tzouvelekis 2013a: Tzouvelekis A, Bouros D. Anti-acid treatment for idiopathic pulmonary fibrosis. The Lancet Respiratory Medicine. 2013;1(5):348–9.

Tzouvelekis 2013b: Tzouvelekis A, Zacharis G, Oikonomou A, Mikroulis D, Margaritopoulos G, Koutsopoulos A, et al. Increased incidence of autoimmune markers in patients with combined pulmonary fibrosis and emphysema. BMC Pulmonary Medicine. 2013;13:31.

Tzouvelekis 2014: Tzouvelekis A, Herazo-Maya JD, Yang X, Noth I, Ma SF, Juan-Guardela BM, et al. Discovery and validation of peripheral blood gene expression profiles predictive of poor outcome and disease progression in idiopathic pulmonary fibrosis. European Respiratory Journal. 2014;44(Suppl 58):1730.

Uehara 2016: Uehara M, Enomoto N, Mikamo M, Oyama Y, Kono M, Fujisawa T, et al. Impact of angiopoietin-1 and -2 on clinical course of idiopathic pulmonary fibrosis. Respiratory Medicine. 2016;114:18–26.

Umeda 2009: Umeda Y, Demura Y, Ishizaki T, Ameshima S, Miyamori I, Saito Y, et al. Dual-time-point 18F-FDG PET imaging for diagnosis of disease type and disease activity in patients with idiopathic interstitial pneumonia. European Journal of Nuclear Medicine and Molecular Imaging. 2009;36(7):1121–30.

Umeda 2012: Umeda Y, Otsuka M, Kitamura Y, Shiratori M, Takahashi H. Clinical characteristics of combined pulmonary fibrosis and emphysema. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4465.

Umeda 2013: Umeda Y, Demura Y, Honjo C, Sumida Y, Morikwa M, Anzai M, et al. Prognostic value of dual-time-point 18F-FDG PET in fibrotic idiopathic interstitial pneumonia. European Respiratory Journal. 2013;42(Suppl 57):P2320.

Undurraga 1998: Undurraga A, Meneses M, Sabbagh E, Oyarzun M. Treatment of idiopathic pulmonary fibrosis with colchicine. Revista Medica de Chile. 1998;126(11):1345–53.

Usui 2011: Usui K, Tanai C, Tanaka Y, Noda H, Ishihara T. The prevalence of pulmonary fibrosis combined with emphysema in patients with lung cancer. Respirology. 2011;16(2):326–31.
Usui 2013: Usui Y, Kaga A, Sakai F, Shiono A, Komiyama K, Hagiwara K, et al. A cohort study of mortality predictors in patients with acute exacerbation of chronic fibrosing interstitial pneumonia. BMJ Open. 2013;3(7).

Vainshelboim 2016: Vainshelboim B, Kramer MR, Izhakian S, Lima RM, Oliveira J. Physical activity and exertional desaturation are associated with mortality in idiopathic pulmonary fibrosis. Journal of Clinical Medicine. 2016;5(8).

Vainshelboim 2016a: Vainshelboim B, Oliveira J, Fox BD, Kramer MR. The prognostic role of ventilatory inefficiency and exercise capacity in idiopathic pulmonary fibrosis. Respiratory Care. 2016;61(8):1100–9.

Valenzi 2015: Valenzi E, Oldham JM, Lee C, Chen L, Witt LJ, Noth I, et al. Predictors of mortality in patients with connective tissue disease-associated interstitial lung disease. American Journal of Respiratory and Critical Care Medicine. 2015;191:A1162.

Valenzuela 2015: Valenzuela C, Molina M, Diaz Chantar F, Alonso T, Portal JAR, Nieto MJR, et al. Initial clinical experience with nintedanib for treatment of idiopathic pulmonary fibrosis (IPF): about 20 cases. European Respiratory Journal. 2015;46(Suppl 59):PA3044.

Valeyre 2014: Valeyre D, Albera C, Bradford WZ, Costabel U, King TE Jr, Leff JA, et al. Comprehensive assessment of the long-term safety of pirfenidone in patients with idiopathic pulmonary fibrosis. Respirology. 2014;19(5):740–7.

Van Der Aar 2016: Van Der Aar E M, Fagard L, Desrivot J, Dupont Sonia Heckmann B, Blanque R, et al. Favorable human safety, pharmacokinetics and pharmacodynamics of the autotaxin inhibitor GLPG1690, a potential new treatment in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2016;193:A2701.

Van der Plas 2011: Van Der Plas MN, Wells A, Blumenthal J, Jansen HM, Bresser P. Exercise testing, pulmonary hypertension and survival in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183:A1526.

Van der Plas 2014: van der Plas MN, van Kan C, Blumenthal J, Jansen HM, Wells AU, Bresser P. Pulmonary vascular limitation to exercise and survival in idiopathic pulmonary fibrosis. Respirology. 2014;19(2):269–75.

Van der Velden 2016: van der Velden JL, Ye Y, Nolin JD, Hoffman SM, Chapman DG, Lahue KG, et al. JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clinical and Translational Medicine. 2016;5(1):36.

van der Vis 2016: van der Vis JJ, Snetselaar R, Kazemier KM, ten Klooster L, Grutters JC, van Moorsel CH. Effect of Muc5b promoter polymorphism on disease predisposition and survival in idiopathic interstitial pneumonias. Respirology. 2016;21(4):712–7.

van Oortegem 1994: van Oortegem K, Wallaert B, Marquette CH, Ramon P, Perez T, Lafitte JJ, et al. Determinants of response to immunosuppressive therapy in idiopathic pulmonary fibrosis. European Respiratory Journal. 1994;7(11):1950–7.

Varela 2016: Varela B, Tabaj G, Gallardo MV, Salomon M, Ginestet CG, Gramblicka G, et al. Clinical and functional behavior in interstitial lung diseases associated to connective tissue diseases. Chest. 2016;150(4 Supplement):477A.
Varney 2001: Varney V, Parnell H, Salisbury D. A double blind randomised placebo controlled pilot study of septrin in the treatment of cryptogenic pulmonary fibrosis (interstitial pneumonitis). American Journal of Respiratory and Critical Care Medicine. 2001;163(5 Suppl):A41.

Varney 2002: Varney V, Parnell H, Salisbury D, Ratnepan S, Tayat R. A double blind randomised placebo controlled pilot study of septrin in the treatment of cryptogenic fibrosing alveolitis. Thorax. 2002;57(Suppl III):iii16.

Varney 2008: Varney VA, Parnell HM, Salisbury DT, Ratnatheepan S, Tayar RB. A double blind randomised placebo controlled pilot study of oral co-trimoxazole in advanced fibrotic lung disease. Pulmonary Pharmacology & Therapeutics 2008;21(1):178–87.

Vasakova 2007: Vasakova M, Striz I, Dutka J, Slavcev A, Jandova S, Kolesar L, et al. Cytokine gene polymorphisms and high-resolution computed tomography score in idiopathic pulmonary fibrosis. Respiratory Medicine. 2007;101(5):944–50.

Vasakova 2016: Vasakova M, Sterclova M, Bartos V, Doubkova M, Plackova M, Zurkova M, et al. Do typical and atypical HRCT patterns make difference in prognosis of patients with IPF? European Respiratory Journal. 2016;48(Suppl 60):PA795.

Vasakova 2016a: Vasakova M, Sterclova M, Kus J, Bartos V, Hajkova M, Doubkova M, et al. Does early diagnosis of idiopathic pulmonary fibrosis matter? Real-world’s data from the EMPIRE registry. European Respiratory Journal. 2016;48(Suppl 60):PA794.

Vedel-Krogh 2015: Vedel-Krogh S, Nielsen SF, Nordestgaard BG. Statin use is associated with reduced mortality in patients with interstitial lung disease. PLoS One. 2015;10(10):e0140571.

Veeraraghavan 2003: Veeraraghavan S, Latsi PI, Wells AU, Pantelidis P, Nicholson AG, Colby TV, et al. BAL findings in idiopathic nonspecific interstitial pneumonia and usual interstitial pneumonia. European Respiratory Journal. 2003;22(2):239–44.

Venuta 1993: Venuta F, Rendina EA, Ciriaco P, De Giacomo T, Pompeo E, Bachetoni A, et al. Efficacy of cyclosporine to reduce steroids in patients with idiopathic pulmonary fibrosis before lung transplantation. The Journal of Heart and Lung Transplantation. 1993;12(6 Pt 1):909–14.

Vercauteren 2014: Vercauteren IM, Verleden SE, Vanaudenaerde BM, Vandermeulen E, Ruttens D, Bellon H, et al. Screening potential biomarkers for idiopathic pulmonary fibrosis in bronchoalveolar lavage fluid. European Respiratory Journal. 2014;44(Suppl 58):P750.

Vercauteren 2015: Vercauteren IM, Verleden SE, McDonough JE, Vandermeulen E, Ruttens D, Lammertyn EJ, et al. CYFRA 21.1 in bronchoalveolar lavage of idiopathic pulmonary fibrosis patients. Experimental Lung Research. 2015;41(8):459–65.

Vial-Dupuy 2011: Vial-Dupuy A, Sanchez O, Guetta L, Douvry B, Juvin K, Wermer D, et al. Outcome of patients with interstitial lung disease admitted into ICU. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2011;28:23.

Vial-Dupuy 2011a: Vial-Dupuy A, Sanchez O, Guetta L, Douvry B, Juvin K, Wermert D, et al. Outcome of patients with interstitial lung disease admitted to an intensive care unit. American Journal of Respiratory and Critical Care Medicine. 2012;185:A4367.
Vianello 2014: Vianello A, Arcaro G, Battistella L, Pipitone E, Vio S, Concas A, et al. Noninvasive ventilation in the event of acute respiratory failure in patients with idiopathic pulmonary fibrosis. Journal of Critical Care. 2014;29(4):562–7.

Vij 2011: Vij R, Noth I, Strek ME. Autoimmune-featured interstitial lung disease: a distinct entity. Chest 2011;140(5):1292–9.

Villanueva Bueno 2016: Villanueva Bueno C, Toscano Guzman MD, Desongles Corrales T, Montecatine Alonso E, Poyatos Ruiz LL, Sierra Torres MI, et al. Effectiveness and safety of pirfenidone in the treatment of idiopathic pulmonary fibrosis. European Journal of Hospital Pharmacy. 2016;23:A154.

Vitale 2014: Vitale C, Lanza M, Calabrese G, Caccavo G, D’Amato M, Stanziola AA. Idiopathic pulmonary fibrosis treatment: combined pirfenidone + acetylcysteine vs N-acetylcysteine in monotherapy. European Respiratory Journal. 2014;44(Suppl 58):P4502.

Voltolini 2013: Voltolini L, Bongiolatti S, Luzzi L, Bargagli E, Fossi A, Ghiribelli C, et al. Impact of interstitial lung disease on short-term and long-term survival of patients undergoing surgery for non-small-cell lung cancer: analysis of risk factors. European Journal of Cardio-Thoracic Surgery. 2013;43(1):e17–23.

Vuga 2014: Vuga LJ, Lindell KO, Yabes J, Zhang Y, Kaminski N, Gibson KF, et al. Longitudinal peripheral blood protein profiles are predictors of outcomes in IPF. American Journal of Respiratory and Critical Care Medicine. 2014;189:A3925.

Wacker 2014: Wacker M, Witt S, Bonniaud P, Crestani B, Vancheri C, Wells A, et al. Health-related quality of life in idiopathic pulmonary fibrosis (IPF): first results based on the European IPF registry. European Respiratory Journal. 2014;44(Suppl 58):P739.

Waisberg 2012: Waisberg DR, Parra ER, Barbas-Filho JV, Fernezlian S, Capelozzi VL. Increased fibroblast telomerase expression precedes myofibroblast alpha-smooth muscle actin expression in idiopathic pulmonary fibrosis. Clinics (Sao Paulo, Brazil). 2012;67(9):1039–46.

Wakamatsu 2016: Wakamatsu K, Nagata N, Kumazoe H, Oda K, Ishimoto H, Yoshimi M, et al. Prognostic value of serial serum KL-6 measurements in patients with idiopathic pulmonary fibrosis. Respiratory Investigation. 2016;55(1):16–23.

Walsh 2012: Walsh JR, Chambers DC, Yerkovich ST, Morris NR, Hopkins PMA. Rapid decline in six minute walk distance is associated with lower survival to transplant in the idiopathic pulmonary fibrosis patient. Journal of Heart and Lung Transplantation. 2012;1:S241.

Walter 2013: Walter R, Holley A, Nathan S. Predictive value of lung physiology in idiopathic pulmonary fibrosis. Chest. 2013;144(4 Supplement):473A.

Wang 2014: Wang XF, Zhang YW, Cai HR. Current progression in the biomarkers of idiopathic pulmonary fibrosis. Zhonghua Jie He He Hu Xi Za Zhi. 2014;36(11):841–3.

Warrington 2010: Warrington VL, Scullion J, Sewell L, Williams J, Singh S. Outcomes following pulmonary rehabilitation for patients with restrictive lung diseases with or without oxygen therapy. Thorax. 2010;65:A96.

Watanabe 2008: Watanabe A, Higami T, Ohori S, Koyanagi T, Nakashima S, Mawatari T. Is lung cancer resection indicated in patients with idiopathic pulmonary fibrosis? Journal of Thoracic and Cardiovascular Surgery. 2008;136(5):1357–63.
Watanabe 2011: Watanabe K, Tajima S, Tanaka J, Moriyama H, Nakayama H, Terada M, et al. Effects of anticoagulant therapy for rapidly progressive interstitial pneumonias. Nihon Kokyuki Gakkai Zasshi. 2011;49(6):407–12.

Watanabe 2012: Watanabe K, Nagata N, Kitasato Y, Wakamatsu K, Nabeshima K, Harada T, et al. Rapid decrease in forced vital capacity in patients with idiopathic pulmonary upper lobe fibrosis. Respiratory Investigation. 2012;50(3):88–97.

Watanabe 2013: Watanabe N, Taniguchi H, Konoh Y, Kimura T, Kataoka K, Nishiyama O, et al. Efficacy of chemotherapy for advanced non-small cell lung cancer with idiopathic pulmonary fibrosis. Respiration. 2013;85(4):326–31.

Watanabe 2014: Watanabe N, Taniguchi H, Konoh Y, Kimura T, Kataoka K, Nishiyama O, et al. Chemotherapy for extensive-stage small-cell lung cancer with idiopathic pulmonary fibrosis. International Journal of Clinical Oncology. 2014;19(2):260–5.

Watters 1987: Watters LC, Schwarz MI, Cherniack RM, Waldron JA, Dunn TL, Stanford RE, et al. Idiopathic pulmonary fibrosis. Pretreatment bronchoalveolar lavage cellular constituents and their relationships with lung histopathology and clinical response to therapy. The American Review of Respiratory Disease. 1987;135(3):696–704.

Wei 2004: Wei ZM. Idiopathic pulmonary fibrosis/usual interstitial pneumonia. Zhonghua Bing Li Xue Za Zhi. 2004;33(2):165–8.

Wei 2013: Wei XQ, Li SY. Progress of treating idiopathic pulmonary interstitial fibrosis by single Chinese drugs and their derivatives. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2013;33(3):420–4.

Weinstein 2014: Weinstein DJ, Ondrasik NR, Forbes DA, Morris MJ. Post-pharmacologic treatment outcomes for patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1515.

Weiss 2009: Weiss ES, Allen JG, Merlo CA, Conte JV, Shah AS. Lung allocation score predicts survival in lung transplantation patients with pulmonary fibrosis. Annals of Thoracic Surgery. 2009;88(6):1757–64.

Wells 1993: Wells AU, Hansell DM, Harrison NK, Lawrence R, Black CM, du Bois RM. Clearance of inhaled 99mTc-DTPA predicts the clinical course of fibrosing alveolitis. European Respiratory Journal. 1993;6(6):797–802.

Wells 1993a: Wells AU, Hansell DM, Rubens MB, Cullinan P, Black CM, du Bois RM. The predictive value of appearances on thin-section computed tomography in fibrosing alveolitis. The American Review of Respiratory Disease. 1993;148(4 Pt 1):1076–82.

Wells 1993b: Wells AU, Rubens MB, du Bois RM, Hansell DM. Serial CT in fibrosing alveolitis: prognostic significance of the initial pattern. AJR. American Journal of Roentgenology. 1993;161(6):1159–65.

Wells 1994: Wells AU, Cullinan P, Hansell DM, Rubens MB, Black CM, Newman-Taylor AJ, et al. Fibrosing alveolitis associated with systemic sclerosis has a better prognosis than lone cryptogenic fibrosing alveolitis. American Journal of Respiratory and Critical Care Medicine. 1994;149(6):1583–90.

Wells 1996: Wells C, Mannino DM. Pulmonary fibrosis and lung cancer in the United States: analysis of the multiple cause of death mortality data, 1979 through 1991. Southern Medical Journal. 1996;89(5):505–10.
Wells 2003: Wells AU, Desai SR, Rubens MB, Goh NS, Cramer D, Nicholson AG, et al. Idiopathic pulmonary fibrosis: a composite physiologic index derived from disease extent observed by computed tomography. American Journal of Respiratory and Critical Care Medicine. 2003;167(7):962–9.

Wells 2005: Wells AU, du Bois R, Safrin S, Bradford WZ. Association of the composite pulmonary index (CPI) with mortality in a phase 3 trial of patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. 2005.

Wells 2016: Wells AU, Albera C, Costabel U, Glaspole I, Glassberg MK, Lancaster L, et al. Effect of continued treatment with pirfenidone following a >10% relative decline in percent predicted forced vital capacity (%FVC) in patients with idiopathic pulmonary fibrosis (IPF). Thorax. 2016;71:A178.

Wesolowski 2000: Wesolowski S, Oniszh K, Kus J. Clinical significance of pattern types in high resolution computed tomography images of patients with idiopathic pulmonary fibrosis. Pneumonologia i Alergologia Polska. 2000;68(9-10):434–40.

Westhoff 2014: Westhoff M, Litterst P. Clinical data, lung function and cardiopulmonary exercise testing in CPFE (combined pulmonary fibrosis with emphysema). Results of a cohort of 20 patients. European Respiratory Journal. 2014;44(Suppl 58):P3796.

White 2012: White ES, Tayob N, Murray S, Flaherty KR, Kurtis J, Martinez FJ. A peripheral blood extracellular matrix biomarker signature predicts disease progression in IPF. American Journal of Respiratory and Critical Care Medicine. 2012;185:A6844.

White 2015: White ES, Xia M, Murray SK, Dyal R, Wang M, Martinez FJ, et al. Plasma osteopontin, surfactant protein-D, and MMP-7 distinguish IPF from non-IPF interstitial lung disease. American Journal of Respiratory and Critical Care Medicine. 2015;191:A6326.

White 2016: White E, Xia M, Murray S, Moore B, O’Dwyer D, Kurtis J, et al. A 5-analyte biomarker panel is associated with 48-week progression-free survival in IPF. QJM. 2016;109:521.

White 2016a: White ES, Xia M, Murray S, Dyal R, Flaherty CM, Flaherty KR, et al. Plasma surfactant protein-D, matrix metalloprotease-7, and osteopontin index distinguishes idiopathic pulmonary fibrosis from other idiopathic interstitial pneumonias. American Journal of Respiratory and Critical Care Medicine. 2016;194(10):1242–51.

Wiertz 2016: Wiertz I, Wuyts W, Van Moorsel C, Vorselaars R, Hoedt-Zijp MT, Van Es W, et al. Negative outcome of prednisone in possible idiopathic pulmonary fibrosis. European Respiratory Journal. 2016;48(Suppl 60):OA4571.

Wijsenbeek 2013: Wijsenbeek MS, Van Beek FT, Geel AL, Van Den Toorn L, Boomars KA, Van Den Blink B, et al. Pirfenidone in daily clinical use in patients with idiopathic pulmonary fibrosis in the Netherlands. American Journal of Respiratory and Critical Care Medicine. 2013;187:A4340.

Wijsenbeek 2015: Wijsenbeek MS, Grutters JC, Wuyts WA. Early experience of pirfenidone in daily clinical practice in Belgium and the Netherlands: a retrospective cohort analysis. Advances in Therapy. 2015;32(7):691–704.

Wilkie 2013: Wilkie MEM, Chalmers JD, Smith RP, Schembri S. Clinical significance of autoantibody screening in patients with idiopathic pulmonary fibrosis. European Respiratory Journal. 2013;42(Suppl 57):P2339.
Winget 1997: Winget BD, Lower EE, Baughman RP. Identification of factors associated with improved survival in IPF treated with cyclophosphamide. American Journal of Respiratory and Critical Care Medicine. 1997;155:A318.

Winterbauer 2000: Winterbauer RH, Su H, Springmeyer SC, Kirtland SH, Hampson NB, Dreis DF. A randomized clinical trial comparing prednisone/azathioprine to prednisone/cyclophosphamide in the treatment of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2000;161(3 Suppl):A528.

Winterbottom 2014: Winterbottom C, Shah RJ, Patterson KC, Kreider M, Miller WT, Litsky LA, et al. Ambient particulate matter is associated with functional decline in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1501.

Won 2011: Won CHJ, Purvis TE, Bennett A, Chun HJ. An overlap phenomenon exists with interstitial lung disease and obstructive sleep apnea. American Journal of Respiratory and Critical Care Medicine. 2011;183:A5272.

Wong 2013: Wong HS. Is there a difference between idiopathic pulmonary fibrosis and autoimmune/connective tissue disorder related pulmonary fibrosis? Respirology. 2013;18:42.

Woo 2003: Woo DS, Seol WJ, Kyung SY, Lim YH, An CH, Park JW, et al. The therapeutic effect of angiotensin II receptor antagonist in idiopathic pulmonary fibrosis. Tuberculosis and Respiratory Diseases. 2003;55(5):478–87.

Wu 2005: Wu XM, Bai L, Zhou D. The effects of air compressor pump atomizing inhalation with Pulmicort respules in treating idiopathic pulmonary fibrosis. Respirology. 2005;10(Suppl 3):A144.

Wu 2013: Wu N, Yu Y, Chuang C C, Wang R, Benjamin N, Coultas D. Retrospective cohort study to assess patterns of healthcare resource use in US patients with idiopathic pulmonary fibrosis versus matched controls. Chest. 2013;144(4 Supplement):472A.

Wu 2015a: Wu N, Yu YF, Chuang CC, Wang R, Benjamin NN, Coultas DB. Healthcare resource utilization among patients diagnosed with idiopathic pulmonary fibrosis in the United States. Journal of Medical Economics. 2015;18(4):249–57.

Wu 2016: Wu X, Burivong W, Ma D, Edelman JD, Richardson ML, Chen H, et al. CT findings of native lung after single lung transplantation in patients with idiopathic pulmonary fibrosis: Long-term outcomes. International Journal of Clinical and Experimental Medicine. 2016;9(6):9087–93.

Wuyts 2016: Wuyts WA, Kolb M, Stowasser S, Stansen W, Huggins JT, Raghu G. First data on efficacy and safety of nintedanib in patients with idiopathic pulmonary fibrosis and forced vital capacity of <50 % of predicted value. Lung. 2016;194(5):739–43.

Wyeth-Ayerst 2004: Wyeth-Ayerst Research. A double-blind, parallel, placebo-controlled, randomized study of the efficacy and safety of etanercept in patients with idiopathic pulmonary fibrosis. ClinicalTrials.gov [http://clinicaltrials.gov] 2004.

Xaubet 2001: Xaubet A, Agusti C, Luburich P, Roca J, Ayuso MC, Marrades RM, et al. Is it necessary to treat all patients with idiopathic pulmonary fibrosis?. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases. 2001;18(3):289–95.

Xaubet 2003: Xaubet A, Marin-Arguedas A, Lario S, Ancochea J, Morell F, Ruiz-Manzano J, et al. Transforming growth factor-beta1 gene polymorphisms are associated with disease progression in
idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2003;168(4):431–5.

Xaubet 2010: Xaubet A, Fu WJ, Li M, Serrano-Mollar A, Ancochea J, Molina-Molina M, et al. A haplotype of cyclooxygenase-2 gene is associated with idiopathic pulmonary fibrosis. Sarcoïdosis, Vasculitis, and Diffuse Lung Diseases. 2010;27(2):121–30.

Xu 2011: Xu Y, ZhongW, Zhang L, Zhao J, Li LY, Wang MZ. Clinical characteristics of lung cancer patients with idiopathic pulmonary fibrosis: An analysis of 24 cases. Respirology. 2011;16:145.

Xue 2011: Xue J, Kahloon RA, Bhargava A, Banga G, Gochuico BR, Dacic S, et al. Decreased survival of idiopathic pulmonary fibrosis patients with heat shock protein 70 autoreactivity. American Journal of Respiratory and Critical Care Medicine. 2011;183:A4275.

Yagi 2014: Yagi M, Taniguchi H, Kondoh Y, Kimura T, Kataoka K, Matsuda T, et al. Elevated percentages of lymphocytes in bronchoalveolar lavage fluid is associated with good prognosis in acute exacerbation of interstitial pneumonia. American Journal of Respiratory and Critical Care Medicine. 2014;189:A1525.

Yagihashi 2015: Yagihashi K, Lynch DA, Huckleberry J, Zach J, Humphries S, Yow E, et al. Quantitative CT analysis and survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2015;191:A6064.

Yamada 2003: Yamada G, Igarashi T, Shijubo N, Suzuki K, Harada K, Nagata M, et al. Clinical course and prognosis of elderly patients with idiopathic pulmonary fibrosis. Japanese Journal of Chest Diseases. 2003;62(9):861–7.

Yamaguchi 1974: Yamaguchi Y, Hanzawa S, Matsumura K, Katsuki H. Evaluation of surgical treatment of localized nonspecific pulmonary fibrosis. Kyobu Geka. 1974;27(6):406–12.

Yamaguchi 2017: Yamaguchi K, Iwamoto H, Horimasu Y, Ohshima S, Fujitaka K, Hamada H, et al. AGER gene polymorphisms and soluble receptor for advanced glycation end product in patients with idiopathic pulmonary fibrosis. Respirology. 2017;22(5):965–71.

Yamauchi 2011: Yamauchi H, Bando M, Sata M, Nakasone E, Mizushima Y, Suzuki E, et al. Clinical efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis. Respirology. 2011;16:318–9.

Yamauchi 2011a: Yamauchi Y, Izumi Y, Inoue M, Sugiura H, Goto T, Anraku M, et al. Safety of postoperative administration of human urinary trypsin inhibitor in lung cancer patients with idiopathic pulmonary fibrosis. PLoS One. 2011;6(12):e29053.

Yamauchi 2014: Yamauchi H, Bando M, Ogura T, Suda T, Taniguchi H, Mukae H, et al. A new method to evaluate the clinical efficacy of pirfenidone for patients with idiopathic pulmonary fibrosis by using personal forced vital capacity change. Respirology. 2014;19:151.

Yamauchi 2015: Yamauchi H, Bando M, Baba T, Kataoka K, Inoue Y, Yamada Y, et al. Clinical course and changes in high-resolution computed tomography findings in patients with idiopathic pulmonary fibrosis without honeycombing. European Respiratory Journal. 2015;46(Suppl 59):PA4848.

Yamauchi 2016: Yamauchi H, Bando M, Baba T, Kataoka K, Yamada Y, Yamamoto H, et al. Clinical course and changes in high-resolution computed tomography findings in patients with idiopathic pulmonary fibrosis without honeycombing. PLoS One. 2016;11(11):e0166168.
Yamazaki 2016: Yamazaki R, Nishiyama O, Sano H, Iwanaga T, Higashimoto Y, Kume H, et al. Clinical features and outcomes of IPF patients hospitalized for pulmonary infection: a Japanese cohort study. PLoS One. 2016;11(12):e0168164.

Yang 2015: Yang G, Yang L, Wang W, Wang J, Xu Z. Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosis disease progression. Gene. 2015;562(1):138–44.

Yano 2011: Yano M, Sasaki H, Moriyama S, Hikosaka Y, Okuda K, Yokota K. Postoperative acute exacerbation of pulmonary fibrosis in lung cancer patients and preoperative CT findings. Journal of Thoracic Oncology. 2011;2:5863.

Yasui 2016: Yasui K, Yuda S, Abe K, Muranaka A, Otsuka M, Ohnishi H, et al. Pulmonary vascular resistance estimated by Doppler echocardiography predicts mortality in patients with interstitial lung disease. Journal of Cardiology. 2016;127(3):469–74.

Yazaki 2016: Yazaki K, Miura Y, Taguchi M, Nishima S, Hida N, Yoshida K, et al. The efficacy of pirfenidone in the treatment of idiopathic pulmonary fibrosis: a single-institution retrospective study in Japan. Chest. 2016;150(4 Supplement):483A.

Ye 2014: Ye Q, Huang K, Ding Y, Lou B, Hou Z, Dai H, et al. Cigarette smoking contributes to idiopathic pulmonary fibrosis associated with emphysema. Chinese Medical Journal. 2014;127(3):469–74.

Yokoo 2013: Yokoo K, Shiratori M, Ikeda K, Natsuizaka M, Otsuka M, Koba H, et al. Serum surfactant protein D (SP-D) and annual decline of diffusion capacity are prognostic factors for combined pulmonary fibrosis with emphysema (CPFE) in idiopathic pulmonary fibrosis (IPF). European Respiratory Journal. 2013;42(Suppl 57):P2516.

Yokoo 2013a: Yokoo K, Shiratori M, Natsuizaka M, Ikeda K, Otsuka M, Chiba H, et al. Significance of serum surfactant protein d for combined pulmonary fibrosis with emphysema in idiopathic pulmonary fibrosis. Respirology. 2013;18:198.

Yokoyama 1998: Yokoyama A, Kohno N, Hamada H, Sakatani M, Ueda E, Kondo K, et al. Circulating KL-6 predicts the outcome of rapidly progressive idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 1998;158(5 Pt 1):1680–4.

Yokoyama 2010: Yokoyama T, Kondoh Y, Taniguchi H, Kataoka K, Kato K, Nishiyama O, et al. Noninvasive ventilation in acute exacerbation of idiopathic pulmonary fibrosis. Internal Medicine. 2010;49(15):1509–14.

Yong 2001: Yong SJ, Adlakha A, Limper AH. Circulating transforming growth factor-beta(1): a potential marker of disease activity during idiopathic pulmonary fibrosis. Chest. 2001;120(1 Suppl):68S–70S.

Yoon 2016: Yoon H, Song J. Efficacy and safety of pirfenidone in advanced idiopathic pulmonary fibrosis. QJM. 2016;109:561–2.

Young 2006: Young LM, Hopkins R, Wilsher ML. Lower occurrence of idiopathic pulmonary fibrosis in Maori and Pacific Islanders. Respirology. 2006;11(4):467–70.

Young 2017: Young MT, Mourot JM, Jackson HT, Rodriguez A, Wright AS, Hinojosa M, et al. Laparoscopic gastric bypass improves pulmonary function in patients with interstitial lung disease. Surgical Endoscopy and Other Interventional Techniques. 2017;31:5267.
Yu 2015: Yu YF, Macaulay DS, Reichmann WM, Wu EQ, Nathan SD. Association of early suspected acute exacerbations of idiopathic pulmonary fibrosis with subsequent clinical outcomes and healthcare resource utilization. Respiratory Medicine. 2015;109(12):1582–8.

Yu 2016a: Yu YF, Wu N, Chuang CC, Wang R, Pan X, Benjamin NN, et al. Patterns and Economic Burden of Hospitalizations and Exacerbations Among Patients Diagnosed with Idiopathic Pulmonary Fibrosis. Journal of Managed Care and Specialty Pharmacy. 2016;22(4):414–23.

Yukiko 2013: Yukiko M, Tsunoda Y, Tanaka T, Takoi H, Yatagai Y, Lin SY, et al. Impact of pirfenidone on change of vital capacity in chronic interstitial pneumonia. How to evaluate them? American Journal of Respiratory and Critical Care Medicine. 2013;187:C48.

Yukiko 2014: Yukiko M, Saito T, Tsunoda Y, Takoi H, Tanaka T, Yatagai Y, et al. Clinical effect on incidence of acute exacerbation and lung carcinoma of pirfenidone in chronic interstitial pneumonia. American Journal of Respiratory and Critical Care Medicine. 2014;189:A6581.

Zappala 2010: Zappala CJ, Latsi PI, Nicholson AG, Colby TV, Cramer D, Renzoni EA, et al. Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis. European Respiratory Journal. 2010;35(4):830–6.

Zhang 2010: Zhang Y, Song JW, Richards TJ, Porter ME, Kaminski N, Hagerty SE, et al. Peripheral blood biomarkers of acute exacerbation in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2010;181:A023.

Zhang 2011: Zhang M, Ma Y, An J. Effects of BCG-PSN combined with glucocorticoid on patients with idiopathic pulmonary fibrosis. Respirology. 2011;16:325.

Zhang 2011a: Zhang J, Huang H, Lu ZW, Xu ZJ. Retrospective analysis of the prognosis factors in patients with idiopathic pulmonary fibrosis. Zhonghua Jie He Hu Xi Za Zhi. 2011;34(3):174–8.

Zhang 2016a: Zhang M, Yoshizawa A, Kawakami S, Asaka S, Yamamoto H, Yasuo M, et al. The histological characteristics and clinical outcomes of lung cancer in patients with combined pulmonary fibrosis and emphysema. Cancer Medicine. 2016;5(10):2721–30.

Zhong 2012: Zhong YX, Zhang L, Zhao J, Li L, Wang M. Clinical characteristics of patients with lung cancer and idiopathic pulmonary fibrosis in China. Thoracic Cancer. 2012;3(2):156–161.

Ziegenhagen 1998: Ziegenhagen MW, Schrum S, Zissel G, Zipfel PF, Schlaak M, Muller-Quernheim J. Increased expression of proinflammatory chemokines in bronchoalveolar lavage cells of patients with progressing idiopathic pulmonary fibrosis and sarcoidosis. Journal of Investigative Medicine. 1998;46(5):223–31.

Ziesche 1997: Ziesche R, Kink E, Matthys H, Purwin C, Herold C, Podolsky A, et al. Interferon-Gamma in pulmonary fibroses? Pneumologie. 1997;51(SH1):236.

Ziesche 1999: Ziesche R, Hofbauer E, Wittmann K, Petkov V, Block LH. A preliminary study of long-term treatment with interferon gamma-1b and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. The New England Journal of Medicine. 1999;341(17):1264–9.

Zimmermann 2011: Zimmermann GS, Jakob K, Von Wulffen W, Huppmann P, Meis T, Herrera VA, et al. Effect of PDE-5 inhibitor treatment in patients with interstitial lung disease and pulmonary hypertension. European Respiratory Journal. 2011;38(Suppl 55):P3753.
Zisman 2000: Zisman DA, Lynch JP 3rd, Toews GB, Kazerooni EA, Flint A, Martinez FJ. Cyclophosphamide in the treatment of idiopathic pulmonary fibrosis: a prospective study in patients who failed to respond to corticosteroids. Chest. 2000;117(6):1619–26.

Zisman 2009: Zisman DA, Kawut SM, Lederer DJ, Belperio JA, Lynch JP 3rd, Schwarz MI, et al. Serum albumin concentration and waiting list mortality in idiopathic interstitial pneumonia. Chest. 2009;135(4):929–35.

Zisman 2010: Zisman DA, Schwarz M, Anstrom KJ, Collard HR, Flaherty KR, Hunninghake GW, Idiopathic Pulmonary Fibrosis Clinical Research Network. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. The New England Journal of Medicine. 2010;363(7):620–8.

Zompatori 1996: Zompatori M, Fasano L, Rimondi MR, Poletti V, Pacilli AM, Battaglia M, et al. The assessment of the activity of idiopathic pulmonary fibrosis by high-resolution computed tomography. La Radiologia medica. 1996;91(3):238–46.

Zompatori 1997: Zompatori M, Fasano L, Battista G, Cavina M, Bertaccini P. Course of idiopathic pulmonary fibrosis of the Wells grade III at presentation. Study using high-resolution computerized tomography. La Radiologia medica. 1997;94(6):611–7.

Zotti 2003: Zotti M, Vitto M, D'Angeli A, Crescini R, Paone G, Fiorucci F, et al. Comparison between three therapeutical regimens in idiopathic pulmonary fibrosis treatment. American Journal of Respiratory and Critical Care Medicine. 2003.
S4. Additional reports of included studies

37. Castria D, Refini RM, Bargagli E, Mezzasalma F, Pierli C, Rottoli P. Pulmonary hypertension in idiopathic pulmonary fibrosis: prevalence and clinical progress. International Journal of Immunopathology and Pharmacology. 2012;25(3):681–9.

Additional report:
- Castria D, Refini RM, Mezzasalma F, Di Sipio P, Bargagli E, Filippi R, et al. Precocious detection of pulmonary hypertension in idiopathic pulmonary fibrosis. European Respiratory Journal. 2012;40(Suppl 56):P3636.

41. Cottin V, Schmidt A, Catella L, Porte F, Fernandez-Montoya C, Le Lay K, et al. Burden of idiopathic pulmonary fibrosis progression: a 5-year longitudinal follow-up study. PLoS One. 2017;12(1):e0166462.

Additional report:
- Cottin V, Schmidt A, Catella L, Porte F, Fernandez-Montoya C, Le Lay K, et al. Idiopathic pulmonary fibrosis: hospital disease management and associated costs. Value in Health. 2015;18:A665

177. Demedts M, Behr J, Buhl R, Costabel U, Dekhuijzen R, Jansen HM, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. New England Journal of Medicine 2005;353(21):2229–42.

Additional reports:
- Behr J, Demedts M, Buhl R, Costabel U, Dekhuijzen RP, Jansen HM, et al. Lung function in idiopathic pulmonary fibrosis—extended analyses of the IFIGENIA trial. Respiratory Research 2009;10:101.
- Subrata G. High dose N-acetylcysteine for interstitial pulmonary fibrosis. Respiratory Research 2008;13(Suppl 5):A125.
- Subrata G. The role and benefits of antioxidant in the treatment of idiopathic pulmonary fibrosis. Respiratory Research 2009;14:A211

43. Diaz KT, Skaria S, Harris K, Solomita M, Lau S, Bauer K, et al. Delivery and safety of inhaled interferon in idiopathic pulmonary fibrosis. Journal of Aerosol Medicine and Pulmonary Drug Delivery 2012;25(2):79–87.

Additional reports:
- Bauer K, Diaz K, Morra L, Smaldone G, Condos R. Safety and tolerability of long-term treatment with aerosolized interferon gamma in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine 2010;181:A3990.
- Skaria S, Yang J, Condos R, Smaldone GC. Clinical endpoints following inhaled interferon in idiopathic pulmonary fibrosis (IPF). Journal of Aerosol Medicine and Pulmonary Drug Delivery 2013;26(2):49–50.
- Skaria SD, Yang J, Condos R, Smaldone GC. Inhaled interferon and diffusion capacity in idiopathic pulmonary fibrosis (IPF). Sarcoidosis, Vasculitis, and Diffuse Lung Diseases 2015;32(1):37–42.

48. Fisher JH, Al-Hejaili F, Kandel S, Hirji A, Shapera S, Mura M. Multi-dimensional scores to predict mortality in patients with idiopathic pulmonary fibrosis undergoing lung transplantation assessment. Respiratory Medicine 2017;125:65–71.

Additional report:
- Fisher J, Al-Hejaili F, Shapera S, Mura M. Multidimensional scores to predict mortality in patients with idiopathic pulmonary fibrosis undergoing lung transplantation assessment. American Journal of Respiratory and Critical Care Medicine 2015;191.
49. Fisher M, Nathan SD, Hill C, Marshall J, Dejonckheere F, Thuresson PO, Maher TM. Predicting Life Expectancy for Pirfenidone in Idiopathic Pulmonary Fibrosis. *Journal of managed care & specialty pharmacy* 2017; 23(3-b Suppl): S17-s24.

Additional reports:
- Fisher M, Maher T, Hill C, Marshall J. Disease progression modelling in idiopathic pulmonary fibrosis: a prediction of time to disease progression and life expectancy with pirfenidone. *Thorax* 2015;70:A61.
- Fisher M, Maher TM, Dolan P, Hill C, Marshall J. Disease progression modeling in idiopathic pulmonary fibrosis: a prediction of time to disease progression and life expectancy with pirfenidone. *American Journal of Respiratory and Critical Care Medicine* 2015;191:A4413.
- Fisher M, Maher TM, Nathan SD, Hill C, Marshall J, Dejonckheere F, et al. Predicting life expectancy for pirfenidone and best supportive care (BSC) in idiopathic pulmonary fibrosis (IPF). *European Respiratory Journal* 2016;48(Suppl 60):OA4964.

58. Holland AE, Hill CJ, Glaspole I, Goh N, Dowman L, McDonald CF. Impaired chronotropic response to 6-min walk test and reduced survival in interstitial lung disease. *Respiratory Medicine* 2013;107(7):1066–72.

Additional reports:
- Holland AE, Hill CJ, Glaspole I, Goh N, McDonald CF. Impaired chronotropic response to exercise is associated with reduced survival in interstitial lung disease. *American Journal of Respiratory and Critical Care Medicine* 2012;185:A4371.
- Holland AE, Hill CJ, Glaspole I, Goh N, McDonald CF. Impaired chronotropic response to exercise predicts shorter survival in interstitial lung disease. *Respirology* 2012;17:20.

59. Hopkins RB, Burke N, Fell C, Dion G, Kolb M. Epidemiology and survival of idiopathic pulmonary fibrosis from national data in Canada. *European Respiratory Journal* 2016;48(1):187–95.

Additional reports:
- Fell CD, Hopkins RB, Kolb M, Dion G, Burke N, Goeree R. Prevalence and incidence of idiopathic pulmonary fibrosis in Canada. *American Journal of Respiratory and Critical Care Medicine* 2015;191:A2522.
- Hopkins RB, Burke N, Kolb M, Fell C, Goeree R. Prevalence and incidence of interstitial pulmonary diseases with fibrosis. *Value in Health* 2014;17(3):A171.

67. Jaffar J, Unger S, Corte TJ, Keller M, Wolters PJ, Richeldi L, et al. Fibulin-1 predicts disease progression in patients with idiopathic pulmonary fibrosis. *Chest* 2014;146(4): 1055-63.

Additional reports:
- Burgess J, Jaffar J, Unger S, Keller M, Corte T, Wolters P, et al. Fibulin-1 is a novel biomarker of disease severity in pulmonary fibrosis. *European Respiratory Journal* 2013;42 (Suppl 57):P469.
- Jaffar J, Oliver BG, Black JL, Burgess JK. The matricellular protein fibulin-1 is increased in primary parenchymal fibroblasts derived from patients with idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2014;189:A6647.

73. Justet A, Laurent-Bellue A, Thabut G, Dieudonne A, Debray MP, Borie R, et al. [18F]FDG PET/CT predicts progression-free survival in patients with idiopathic pulmonary fibrosis. *Respiratory Research* 2017;18(1):74.

Additional report:
- Justet A, Laurent-Bellue A, Debray MP, Borie R, Lebtahi R, Crestani B, et al. Lung 18F-FDG uptake correlates with lung function alteration in patients with IPF. *European Respiratory Journal. Conference* 2014;44(Suppl 58):P3510.
76. Kim JH, Lee JH, Ryu YJ, Chang JH. Clinical predictors of survival in idiopathic pulmonary fibrosis. *Tuberculosis and Respiratory Diseases* 2012;73(3):162–8.

Additional report:
- Kim JH, Lee JH, Ryu YJ, Chun EM, Chang JH. Clinical predictors of survival in idiopathic pulmonary fibrosis. *Chest* 2010;138.

78. Kim ES, Choi SM, Lee J, Park YS, Lee CH, Yim JJ, et al. Validation of the GAP score in Korean patients with idiopathic pulmonary fibrosis. *Chest* 2015;147(2):430–7.

Additional report:
- Kim E, Choi S, Lee J, Park Y, Lee CH, Yim JJ, et al. Validation of gap score in Korean patients with idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2014;189:A1489.

178. King TE Jr, Behr J, Brown KK, du Bois RM, Lancaster L, de Andrade JA, et al. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2008;177(1):75–81.

Additional reports:
- King TE, Behr J, Brown KK, du Bois RM, Raghu G. Bosentan use in idiopathic pulmonary fibrosis (IPF): results of the placebo-controlled BUILD-1 study. *Proceedings of the American Thoracic Society* 2006:A524.
- Nicholson AG, Behr J, Brown KK, du Bois RM, King TE Jr, Raghu G, et al. Effect of bosentan in patients with confirmed usual interstitial pneumonia (UIP) on surgical lung biopsy (SLB): subset analysis of the randomised controlled BUILD 1 trial in IPF. *European Respiratory Journal* 2007;30(Suppl 51):P783.
- Raghu G, Brown KK, Behr J, du Bois RM, King TE. Bosentan in idiopathic pulmonary fibrosis (IPF) quality of life (QOL) results of the BUILD 1 study. *European Respiratory Journal* 2006;28(Suppl 50):3359.
- Raghu G, King TE Jr, Behr J, Brown KK, du Bois RM, Leconte I, et al. Quality of life and dyspnoea in patients treated with bosentan for idiopathic pulmonary fibrosis (BUILD-1). *European Respiratory Journal* 2010;35(1):118–23.
- Swigris J, Behr J, Brown K, duBois R, King T Jr, Raghu G. Longitudinal trends in dyspnea in patients with idiopathic pulmonary fibrosis (IPF) the build 1 study. *Chest* 2006;130 (4 Suppl):282s.
- Swigris JJ, Wamboldt FS, Behr J, du Bois RM, King TE, Raghu G, et al. The 6 minute walk in idiopathic pulmonary fibrosis: longitudinal changes and minimum important difference. *Thorax* 2010;65(2):173–7.
- du Bois RM, Behr J, Brown KK, Raghu G, King TE. Bosentan in idiopathic pulmonary fibrosis (IPF) patients the BUILD 1 study. *European Respiratory Journal* 2006;28(Suppl 50):383s.

179. King TE Jr, Albera C, Bradford WZ, Costabel U, Hormel P, Lancaster L, et al. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. *Lancet* 2009;374(9685):222–8.

Additional reports:
- Ruhrmund DW, Lim SR, Qin X, Arfsten AE, Hooi L, Kartashov A, et al. Matrix metalloproteinase (MMP)-7 predicts mortality in idiopathic pulmonary fibrosis (IPF). *American Journal of Respiratory and Critical Care Medicine* 2014;189:A3924.
- Schwarz MI, Silveira LJ, Seibold MA, Kummer N, Fingerlin TE, Murphy E, et al. Non synonymous polymorphism in MUC5AC (Ala497Val) is associated with improved survival in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2010;181:A2494.
- Zhang Y, Noth I, Gibson KF, Ma SF, Richards TJ, Bon JM, et al. A variant in the promoter of MUC5B is associated with idiopathic pulmonary fibrosis and not chronic obstructive pulmonary disease. *American Journal of Respiratory and Critical Care Medicine* 2011;183:A6395.
• du Bois RM. 6-minute walk distance as a predictor of outcome in idiopathic pulmonary fibrosis. *European Respiratory Journal* 2014;43(6):1823–4.

• du Bois RM, Albera C, Bradford WZ, Costabel U, Kartashov A, Noble PW, et al. Ascertainment of individual risk of mortality for patients with idiopathic pulmonary fibrosis (IPF). *American Journal of Respiratory and Critical Care Medicine* 2010;181:A2499.

• du Bois RM, Weycker D, Albera C, Bradford WZ, Costabel U, Kartashov A, et al. Ascertainment of individual risk of mortality for patients with idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2011;184(4):459–66.

180. King TE Jr, Brown KK, Raghu G, du Bois RM, Lynch DA, Martinez F, et al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2011;184(1):92–9.

Additional reports:

• Bauer Y, White ES, De Bernard S, Cornelisse P, Leconte I, Morganti A, et al. MMP-7 is a predictive biomarker of disease progression in patients with early diagnosis of idiopathic pulmonary fibrosis. *QJM* 2016;109(Issue suppl.1,1):S63.

• Bauer Y, White ES, de Bernard S, Cornelisse P, Leconte I, Morganti A, et al. MMP-7 is a predictive biomarker of disease progression in patients with idiopathic pulmonary fibrosis. *ERJ Open Research* 2017;3(1):00074–2016. DOI: 10.1183/23120541.00074–2016

• King TE, Brown KK, Raghu G, Du Bois RM, Lynch DA, Martinez FJ, et al. The BUILD-3 trial: a prospective, randomized, double-blind, placebo-controlled study of bosentan in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2010;181:A6838.

14. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. *New England Journal of Medicine* 2014;370(22):2083–92.

Additional reports:

• Anonymous. Erratum: A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. *New England Journal of Medicine* 2014;371(12):1172. DOI: 10.1056/NEJMx140048

• King TE, Bradford WZ, Castro-Bernadini S, Fagan EA, Glaspole I, Glassberg MK, et al. The ASCEND study: A randomized, double-blind, placebo controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis (IPF). *American Journal of Respiratory and Critical Care Medicine Conference* 2014;189:A6602.

• Lederer DJ, Bradford WZ, Fagan EA, Glaspole I, Glassberg MK, Glasscock KF, et al. Sensitivity analyses of the change in FVC in a phase 3 trial of pirfenidone for idiopathic pulmonary fibrosis. *Chest* 2015;148(1):196–201.

81. Kondoh Y, Taniguchi H, Katsuta T, Kataoka K, Kimura T, Nishiyama O, et al. Risk factors of acute exacerbation of idiopathic pulmonary fibrosis. *Sarcoidosis, Vasculitis, and Diffuse Lung Diseases* 2010;27(2):103–10.

Additional report:

• Kondoh Y, Taniguchi H, Katsuta T, Kimura T, Kataoka K, Taga S, et al. Risk factors for acute exacerbation of idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2010;181:A1107.

84. Kreuter M, Ehlers-Tenenbaum S, Palmowski K, Bruhwiler J, Oltmanns U, Muley T, et al. Impact of comorbidities on mortality in patients with idiopathic pulmonary fibrosis. *PLoS One* 2016;11(3):e0151425.

Additional report:
• Ehlers-Tenenbaum S, Oltmanns U, Palmowski K, Muley T, Schaaf M, Warth A, et al. Prognostic influence of comorbidities in idiopathic pulmonary fibrosis (IPF). *European Respiratory Journal* 2014;44(Suppl 58):P759.

94. Lindell KO, Liang Z, Hoffman LA, Rosenzweig MQ, Saul MI, Pilewski JM, et al. Palliative care and location of death in decedents with idiopathic pulmonary fibrosis. *Chest* 2015;147(2):423–9.
Additional report:
• Lindell KO, Liang Z, Hoffman L, Rosenzweig MQ, SaulM, Pilewski JM, et al. Time and location of death in patients with idiopathic pulmonary fibrosis-experience of a specialty referral center. *American Journal of Respiratory and Critical Care Medicine* 2014;189:A1453.

182. Martinez FJ, de Andrade JA, Anstrom KJ, King TE Jr, Raghu G. Idiopathic Pulmonary Fibrosis Clinical Research Network. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. *New England Journal of Medicine* 2014;370(22):2093–101.
Additional reports:
• Martinez FJ, Raghu G, DeAndrade J, Anstrom KJ, King TE. A double blind, placebo-controlled, randomized trial of N-acetylcysteine in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2014;189:A6601.
• Raghu G, DeAndrade J, Anstrom KJ, King TE, Martinez FJ. A double blind, placebo-controlled, randomized trial of N-acetylcysteine in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2014;189: A6601.

103. Mermigkis C, Bouloukaki I, Antoniou K, Papadogiannis G, Giannarakis I, Varouchakis G, et al. Obstructive sleep apnea should be treated in patients with idiopathic pulmonary fibrosis. *Sleep and Breathing* 2015;19(1):385–91.
Additional report:
• Mermigkis C, Bouloukaki I, Papadogiannnis G, Antoniou K, Mermigkis D, Giannarakis I, et al. The role of effective CPAP therapy in patients with idiopathic pulmonary fibrosis and obstructive sleep apnoea. *Journal of Sleep Research* 2014;23:147–8.

113. Nambar AM, Anzueto AR, Peters JI. Effectiveness and safety of mycophenolate mofetil in idiopathic pulmonary fibrosis. *PLoS One* 2017;12(4):e0176312.
Additional report:
• Nambar A, Ketchum N, Anzueto A, Peters J. Effectiveness and safety of mycophenolate mofetil in idiopathic pulmonary fibrosis. *QJM* 2016;109(Issue suppl 1):S32.

114. Natsuizaka M, Chiba H, Kuronuma K, Otsuka M, Kudo K, Mori M, et al. Epidemiologic survey of Japanese patients with idiopathic pulmonary fibrosis and investigation of ethnic differences. *American Journal of Respiratory and Critical Care Medicine* 2014;190(7):773–9.
Additional report:
• Chiba H, Natsuizaka M, Otsuka M, Kuronuma K, Sugiyama Y, Takahashi H. Prognostic factors and cause of death in Japanese patients with idiopathic pulmonary fibrosis. *Respirology* 2013;18:198.

183. Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. *Lancet* 2011;377(9779):1760–9.
Additional reports:
• Albera C, Du Bois RM, Bradford WZ, Costabel U, King TE, Noble PW, et al. Prognostic significance of surgical lung biopsy (SLB) in a well-characterized cohort of patients with idiopathic pulmonary fibrosis (IPF). *American Journal of Respiratory and Critical Care Medicine* 2010;181:A2971.
• Costabel U, Albera C, Bradford W, King T, Noble P, Sahn S, et al. Pirfenidone dose-response in patients with idiopathic pulmonary fibrosis (IPF): a comprehensive analysis of outcomes in CAPACITY 2. European Respiratory Journal 2010;11:388.

• Costabel U, Albera C, Du Bois RM, Bradford WZ, King TE Jr, Noble PW, et al. Global assessment of pirfenidone treatment outcomes over time in the CAPACITY studies of patients with IPF. American Journal of Respiratory and Critical Care Medicine 2010;181:A6023.

• Nathan SD, Du Bois RM, Albera C, Bradford WZ, Costabel U, Kartashov A, et al. 6-Minute walk test (6MWT) in patients with idiopathic pulmonary fibrosis (IPF): confirmation of test performance characteristics. American Journal of Respiratory and Critical Care Medicine 2013;187:A2360.

• Nathan SD, du Bois RM, Albera C, Bradford WZ, Costabel U, Kartashov A, et al. Validation of test performance characteristics and minimal clinically important difference of the 6-minute walk test in patients with idiopathic pulmonary fibrosis. Respiratory Medicine 2015;109(7): 914–22.

• Noble P, Albera C, Bradford W, Costabel U, Kardatzke D, King T, et al. The CAPACITY (CAP) trials: randomized, double-blind, placebo-controlled, phase III trials of pirfenidone (PFD) in patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine 2009;A1129.

• Noble P, Albera C, Kirchgaessler KU, Gilberg F, Petzinger U, Costabel U. Benefit of treatment with pirfenidone (PFD) persists over time in patients with idiopathic pulmonary fibrosis (IPF) with limited lung function impairment. European Respiratory Journal 2016;48(Suppl 60):OA1809.

• Noble PW. Pirfenidone in the treatment of idiopathic pulmonary fibrosis : results of two randomized, double-blind, placebo-controlled, phase III trials (The CAPACITY trials). American Journal of Respiratory and Critical Care Medicine 2009;179:C98.

• Qin X, Lim SR, Ruhrmund DW, Bradford WZ, Deterding RR, Seiwert SD, et al. Plasma protein signature of idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine 2014;189:A3923.

• Sahn SA, Albera C, Du Bois RM, Bradford W, Costabel U, King TE, et al. The effect of treatment with pirfenidone on progression-free survival in patients with idiopathic pulmonary fibrosis (IPF): exploratory analysis of outcomes using novel criteria for disease progression. American Journal of Respiratory and Critical Care Medicine 2011;183:A3810.

• Sahn SA, Albera C, Du Bois RM, Bradford WZ, Costabel U, King TE, et al. Clinical outcomes with pirfenidone therapy in treatment-adherent (TA) patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine 2010;181:A6025.

• Valeyre D, Albera C, Du Bois RM, Bradford WZ, Costabel U, King TE Jr, et al. 6 minute walk distance (6MWD) and forced vital capacity (FVC) In patients with idiopathic pulmonary fibrosis (IPF): Similar pattern of pirfenidone response. American Journal of Respiratory and Critical Care Medicine 2010;181:A6026.

120. Oldham JM, Kumar D, Lee C, Patel SB, Takahashi-Manns S, Demchuk C, et al. Thyroid disease is prevalent and predicts survival in patients with idiopathic pulmonary fibrosis. Chest 2015;148(3):692–700.

Additional report:

• Kumar D, Oldham J, Demchuk C, Ma SF, Huang Y, Strek ME, et al. Hypothyroidism in patients with idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine 2014;189:A1497.

184. Parker J, Glaspole I, Lancaster L, She D, Roseti SL, Fiening JP, et al. A phase 2 randomised placebo-controlled study of tralokinumab in subjects with idiopathic pulmonary fibrosis (IPF). QJM 2016;109:S46.

Additional report:
• Parker JM, Glaspole IN, Lancaster LH, Haddad TJ, She D, Roseti SL, et al. A phase 2 randomized controlled study of tralokinumab in subjects with idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2018; 197 (1): 94-103

185. Raghu G, Behr J, Brown KK, Egan JJ, Kawut SM, Flaherty KR, et al. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. *Annals of Internal Medicine* 2013;158(9):641–9.

Additional report:
• Raghu G, Behr J, Brown KK, Egan J, Kawut SM, Flaherty KR. ARTEMIS-IPF: a placebo-controlled trial of ambrisentan in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2012;185:A3632.

186. Raghu G, Million-Rousseau R, Morganti A, Perchenet L, Behr J, MUSIC Study Group. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. *European Respiratory Journal* 2013;42(6):1622–32.

Additional reports:
• Behr J, Million-Rousseau R, Morganti A, Perchenet L, Raghu G. MUSIC: efficacy and safety of macitentan in idiopathic pulmonary fibrosis (IPF). *European Respiratory Journal* 2012;40(Suppl 56):P1778.
• Raghu G, Million-Rousseau R, Morganti A, Perchenet L, Behr J. Efficacy and safety of macitentan in idiopathic pulmonary fibrosis: results of a prospective, randomized, double-blind, placebo-controlled trial. *American Journal of Respiratory and Critical Care Medicine* 2012;185:A3631.

122. Raghu G, Chen SY, Yeh WS, Maroni B, Li Q, Lee YC, et al. Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001-11. *Lancet* 2014;2(7):566–72.

Additional report:
• Raghu G, Chen SY, Yeh WS, Maroni B, Li Q, Lee YC, et al. Idiopathic pulmonary fibrosis in medicare beneficiaries: Incidence, prevalence and survival. *American Journal of Respiratory and Critical Care Medicine* 2014;189:A1514.

188. Raghu G, Martinez FJ, Brown KK, Costabel U, Cottin V, Wells AU, et al. CC-chemokine ligand 2 inhibition in idiopathic pulmonary fibrosis: a phase 2 trial of carlumab. *European Respiratory Journal* 2015;46(6):1740–50.

Additional reports:
• Raghu G, Agarwal P, Mack M, Martinez F, Brown K, Costabel U, et al. Predictors of mortality in idiopathic pulmonary fibrosis: results from 72 week phase II study of CNTO888 (carlumab). *American Journal of Respiratory and Critical Care Medicine* 2013;187:A3377.
• Raghu G, Martinez FJ, Brown KK, Costabel U, Cottin V, Wells AU, et al. A phase II, randomized, double-blind, placebo-controlled, parallel-group, dose-ranging study of the safety and efficacy of cnto 888 (carlumab) in patients with idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2013;187:A3376.

127. Richards TJ, Kaminski N, Baribaud F, Flavin S, Brodmerkel C, Horowitz D, et al. Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2012;185(1):67–76.

Additional reports:
• Richards TJ, Kaminski N, Gibson KF. Plasma proteins for risk prediction in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2012;185(12):1329–30.
• Richards TJ, Lindell KO, Klesen M, Kaminski N, Zhang Y, Gibson KF. Peripheral blood biomarkers predict disease progression and mortality in IPF. *American Journal of Respiratory and Critical Care Medicine* 2010;181:A1120.

188. Richeldi L, Costabel U, Selman M, Kim DS, Hansell DM, Nicholson AG, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. *New England Journal of Medicine* 2011;365(12):1079–87.

Additional reports:

• Brown KK, Richeldi L, Costabel U, Flaherty KR, Kim DS, Noble PW. Treatment of IPF with the tyrosine kinase inhibitor BIBF 1120: patient-reported outcomes in the TOMORROW trial. *American Journal of Respiratory and Critical Care Medicine* 2012;185:A3634.

• Costabel U, Richeldi L, Selman M, Kim DS, Brown KK, Flaherty KR, et al. Efficacy of BIBF 1120 in patients with IPF is dose dependent: results from the TOMORROW trial. *European Respiratory Journal* 2011;38(Suppl 55):172.

• Richeldi L, Brown KK, Costabel U, Flaherty KR, Kim D, Noble PW, et al. The oral triple kinase inhibitor BIBF 1120 reduces decline in lung function in patients with idiopathic pulmonary fibrosis (IPF): Results from the TOMORROW study. *American Journal of Respiratory and Critical Care Medicine* 2011;183:A5303.

• Richeldi L, Brown KK, Costabel U, Flaherty KR, Kim D, Noble PW, et al. Treatment with BIBF 1120 reduces acute exacerbations and improves quality of life in patients with IPF: results from the TOMORROW study. *American Journal of Respiratory and Critical Care Medicine* 2011;183:A3809.

• Richeldi L, Brown KK, Costabel U, Flaherty KR, Kim DS, Noble PW. Efficacy of the tyrosine kinase inhibitor BIBF 1120 in patients with IPF: consistent pattern of primary endpoint results in sensitivity analyses of the TOMORROW trial. *American Journal of Respiratory and Critical Care Medicine* 2012;185:A3633.

• Richeldi L, Costabel U, Selman M, Kim DS, Flaherty KR, Noble PW, et al. Effect of baseline FVC on preservation of lung function with BIBF 1120: results from the TOMORROW trial. *European Respiratory Journal. Conference* 2011;38(Suppl 55):173.

• Swigris JJ, Esser D, Wilson H, Conoscenti CS, Schmidt H, Stansen W, et al. Psychometric properties of the St George’s Respiratory Questionnaire in patients with idiopathic pulmonary fibrosis. *European Respiratory Journal* 2017;49(1):1601788. DOI: 10.1183/13993003.01788-2016

15. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. *New England Journal of Medicine* 2014;370(22):2071–82.

Additional reports:

• Azuma A, Taniguchi H, Inoue Y, Kondoh Y, Ogura T, Homma S, et al. Nintedanib in Japanese patients with idiopathic pulmonary fibrosis: a subgroup analysis of the INPULSIS randomized trials. *Respirology* 2017;22(4):750–7.

• Belperio J, Ryerson C, Kolb M, Richeldi L, Lee J, Stansen W, et al. Nintedanib reduces disease progression in patients with idiopathic pulmonary fibrosis irrespective of gap stage at baseline in the insulis trials. *Chest* 2016;150(4 Supplement):540A.

• Case A, Capapey J, Kimura T, Raghu G. Consistent effect of nintedanib on reducing FVC decline in patients with or without honeycombing in the INPULSIS trials of idiopathic pulmonary fibrosis. *Chest* 2015;148(4 Supplement):361A.

• Corte T, Bonella F, Crestani B, Demedts MG, Richeldi L, Coeck C, et al. Safety, tolerability and appropriate use of nintedanib in idiopathic pulmonary fibrosis. *Respiratory Research* 2015;16:116.

• Costabel U, Flaherty KR, Brown KK, StansenW, Schlenker-Herceg R, Raghu G. Cumulative distribution of patients by change in FVC% predicted in the insulis trials of nintedanib in patients with idiopathic pulmonary fibrosis. *Thorax* 2016;71:A59.
• Raghu G, Crestani B, Bailes Z, Schlenker-Herceg R, Costabel U. Effect of anti-acid medication on reduction in FVC decline with nintedanib. *Respirology* 2015;20:84.

• Raghu G, Wells AU, Nicholson AG, Richeldi L, Flaherty KR, Mauff FL, et al. Effect of nintedanib in subgroups of idiopathic pulmonary fibrosis by diagnostic criteria. *American Journal of Respiratory and Critical Care Medicine* 2017;195(1):78–85.

• Richeldi L, Azuma A, Selman M, Tang W, Capapey J, Asser SS, et al. Twenty-four week decline in forced vital capacity predicts mortality at week 52 in the INPULSIS trials. *European Respiratory Journal* 2016;48(Suppl 60):OA1814.

• Richeldi L, Du Bois R, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in patients with idiopathic pulmonary fibrosis: results of two 52-week, phase III, randomized, placebo-controlled trials (INPULSIS). *American Journal of Respiratory and Critical Care Medicine* 2014;189(Suppl 3):A6603.

• Richeldi L, Du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in patients with idiopathic pulmonary fibrosis: results of two 52-week, phase III, randomized, placebo-controlled trials (INPULSIS). *Respirology* 2014;19(Suppl 3):28.

• Richeldi L, Koegler H, Trampisch M, Geier S, Kreuter M. Efficacy of nintedanib on acute exacerbations reported as serious adverse events in the inpulsis trials in idiopathic pulmonary fibrosis (IPF). *Thorax* 2016;71:A58–9.

• Ryerson C, Kolb M, Richeldi L, Lee J, Kimura T, Stowasser S, et al. Effect of baseline gap index stage on decline in lung function with nintedanib in patients with idiopathic pulmonary fibrosis (IPF). *QJM* 2016;109:S52.

• Swigris J, Wilson H, Esser D, Conoscenti C, Stansen W, Leidy N, et al. Psychometric properties of the St. George’s respiratory questionnaire in the INPULSIS trials of idiopathic pulmonary fibrosis (IPF). *Chest* 2015;148(4 Supplement):E393A.

• Taniguchi H, Xu Z, Azuma A, Inoue Y, Li H, Fujimoto T, et al. Subgroup analysis of Asian patients in the INPULSIS® trials of nintedanib in idiopathic pulmonary fibrosis. *Respirology* 2016;21(8):1425–30.

• Taniguchi H, Xu Z, Azuma A, Inoue Y, Li H, Fujimoto T, et al. Subgroup analysis of asian patients in the INPULSISTM trials of nintedanib in idiopathic pulmonary fibrosis. *Respirology* 2014;19:30.

• Wells A, Behr J, Stansen W, Asser SS, Maher T. Effect of baseline composite physiologic index on benefit of nintedanib in IPF. *European Respiratory Journal* 2016;48(Suppl 60):OA1811.

• Wells A, Behr J, Stansen W, Stowasser S, Maher T. Nintedanib reduces disease progression in patients with idiopathic pulmonary fibrosis irrespective of composite physiologic index at baseline in the inclusion trials. *Chest* 2016;150(4 Supplement):539A

133. Russell AM, Adamali H, Molyneaux PL, Lukey PT, Marshall RP, Renzoni EA, et al. Daily home spirometry: an effective tool for detecting progression in idiopathic pulmonary fibrosis. *American Journal of Respiratory Critical Care Medicine* 2016;194(8):989–97.

Additional reports:

• Russell AM, Lukey P, Fraser U, Renzoni E, Wells A, Maher T. Daily hand-held spirometry for the monitoring of patients with idiopathic pulmonary fibrosis. *European Respiratory Journal* 2011;38(Suppl 55):P655.

• Russell AM, Molyneaux PL, Lukey PT, Fraser UH, Renzoni EA, Wells A, et al. Daily hand-held spirometry for the monitoring of patients with idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2012;185:A4579.

138. Schmidt SL, Nambiar AM, Tayob N, Sundaram B, Han MK, Gross BH, et al. Pulmonary function measures predict mortality differently in IPF versus combined pulmonary fibrosis and emphysema. *European Respiratory Journal* 2011; 38(1):176–83.

Additional report:
• Schmidt SL, Sundaram B, Tayob N, Han MK, Nambiar A, Kazerooni EA, et al. Longitudinal changes in the composite physiologic index and pulmonary function in patients with idiopathic pulmonary fibrosis and emphysema. *American Journal of Respiratory and Critical Care Medicine* 2010;181:A1122.

144. Sherbini N, Feteih MN, Wali SO, Alamoudi OS, Al-Faifi SM, Khalid I. Idiopathic pulmonary fibrosis in Saudi Arabia: demographic, clinical, and survival data from two tertiary care hospitals. *Annals of Thoracic Medicine* 2014;9 (3):168–72.

Additional report:
• Sherbini NA, Feteih MN, Amoudi O, Al Faifi S, Wali SO, Khalid I. Idiopathic pulmonary fibrosis: demographics, patient characteristics, clinical and survival data from Saudi Arabia. *American Journal of Respiratory and Critical Care Medicine* 2014;189:A1445.

146. Shinoda H, Tasaka S, Fujishima S, Yamasawa W, Miyamoto K, Nakano Y, et al. Elevated CC chemokine level in bronchoalveolar lavage fluid is predictive of a poor outcome of idiopathic pulmonary fibrosis. *Respiration* 2009;78(3):285–92.

Additional report:
• Tasaka S, Shinoda H, Kamata H, Hasegawa N, Fujishima S, Asano K. Prognostic value of CT scores in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2011;183:A1534.

151. Soares MR, Pereira C, Ferreira R, Nei Aparecida Martins Coletta E, Silva Lima M, Muller Storrer K. A score for estimating survival in idiopathic pulmonary fibrosis with rest SpO2>88. *Sarcoidosis, Vasculitis, and Diffuse Lung Diseases* 2015;32(2):121–8.

Additional report:
Soares MR, Storrer KM, Kuranishi LT, Ferreira RG, Coletta E, Rodrigues SCS, et al. Simple functional scores for estimating survival in idiopathic pulmonary fibrosis. *American Journal of Respiratory and Critical Care Medicine* 2012;185:A4379.

153. Song JW, Hong SB, Lim CM, Koh Y, Kim DS. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. *European Respiratory Journal* 2011;37(2):356–63.

Additional report:
• Song JW, Hong SB, Lim CM, Koh Y, Kim DS. Acute deterioration in idiopathic pulmonary fibrosis: causes, risk factors, and outcomes. *Respirology* 2009;14:A167.

157. Strongman H, Kausar I, Maher TM. Incidence, prevalence, and survival of patients with idiopathic pulmonary fibrosis in the UK. *Advances in Therapy* 2018;35 (5):724–36.

Additional report:
• Maher TM, Strongman H, Boggon R, Kausar I. Idiopathic pulmonary fibrosis survival has not improved in the 21st century; analysis of CPRD gold primary care data. *Thorax* 2013;68:A82–3.

189. Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, et al. Pirfenidone in idiopathic pulmonary fibrosis. *European Respiratory Journal* 2010;35(4):821–9.

Additional reports:
• Azuma A, Taguchi Y, Ogura T, Ebina M, Taniguchi H, Kondoh Y, et al. Exploratory analysis of a phase III trial of pirfenidone identifies a subpopulation of patients with idiopathic pulmonary fibrosis as benefiting from treatment. *Respiratory Research* 2011;12:143.
• Ebina M, Kimura Y, Ohta H, Hisata S, Tamada T, Nukiwa T. Pirfenidone, a novel anti-fibrotic agent, provides higher benefit for idiopathic pulmonary fibrosis (IPF) patients with better pulmonary function. *American Journal of Respiratory and Critical Care Medicine* 2010;181:A3988.
• Kondoh Y, Taniguchi H, Ebina M, Azuma A, Ogura T, Taguchi Y, et al. Risk factors for acute exacerbation of idiopathic pulmonary fibrosis—extended analysis of pirfenidone trial in Japan. *Respiratory Investigation* 2015;53(6):271–8.
• Ogura T, Ebina M, Taniguchi H, Azuma A, Suga M, Taguchi Y, et al. A phase III double blind placebo controlled clinical trial of pirfenidone in patients with idiopathic pulmonary fibrosis in Japan. *American Journal of Respiratory and Critical Care Medicine* 2008:A768.
• Taguchi Y, Ebina M, Hashimoto S, Ogura T, Azuma A, Taniguchi H, et al. Efficacy of pirfenidone and disease severity of idiopathic pulmonary fibrosis: Extended analysis of phase III trial in Japan. *Respiratory Investigation* 2015;53(6):279–87.
• Taniguchi H, Kondoh Y, Ebina M, Azuma A, Ogura T, Suga M, et al. Risk factors of acute exacerbation of idiopathic pulmonary fibrosis-extended analysis of the pirfenidone trial in Japan. *European Respiratory Journal* 2011;38(Suppl 55):P649.
• Taniguchi H, Kondoh Y, Ebina M, Azuma A, Ogura T, Taguchi Y, et al. The clinical significance of 5% change in vital capacity in patients with idiopathic pulmonary fibrosis: extended analysis of the pirfenidone trial. *Respiratory Research* 2011;12:93.

170. Wilkie MEM, Chalmers JD, Smith RP, Schembri S. Comparison of two prognostic tools for identifying high risk patients with idiopathic pulmonary fibrosis. *Thorax* 2012;67:A120.

Additional report:

• Wilkie MEM, Chalmers JD, Stretton RJ, Schembri S, Smith RP. Validation of a novel prognostic tool for idiopathic pulmonary fibrosis. *European Respiratory Journal* 2012;40(Suppl 56):P3612.
S5. Characteristics of included studies

Agustí 1993 [22]

| Study Design | Type of Study: prospective cohort
Trial Design: single centre
Country/ies: Spain |
|--------------|--|
| Study Duration | 1 year |
| Participants | Number: 10
Definition of diagnosis: open lung biopsy in two participants and by the Turner-Warwick criteria (clinical criteria: 1) widespread, persistent bilateral radiographic shadowing; 2) widespread, persisting crackles; and 3) exclusion of those patients in whom an external fibrogenic agent could be implicated, and those with positive plasma precipitins) in the rest
Age: mean 66 years (standard deviation: 10)
Gender: 20% male
Ethnicity: not stated
Smoking status: not stated
Use of home oxygen therapy: not stated
Time since diagnosis: not stated
Percentage of patients with surgical lung biopsy: 20%
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
Lung function results (% predicted): mean baseline FVC 47% (standard deviation: 11); mean baseline DLCO 41% (standard deviation: 12)
Resting oxyhaemoglobin saturation: not stated
6-minute walk distance: not stated
Symptom assessment: not stated
Use of systemic corticosteroid therapy: 90%
Use of other therapy: aerosolised ribavirin 100% |
| Outcomes | Proportion of mortality |
| Notes | Funding source: Hubber laboratory |

Agustí 1994 [23]

| Study Design | Type of Study: prospective cohort
Trial Design: single centre
Country/ies: Spain |
|--------------|--|
| Study Duration | 3 years |
| Participants | Number: 27
Definition of diagnosis: open lung biopsy and clinical criteria of IPF described by Turner-Warwick et al: 1) widespread, persistent bilateral radiographic shadowing; 2) widespread, persisting crackles; and 3) exclusion of those patients in whom an external fibrogenic agent could be implicated, and those with positive plasma precipitins
Age: mean 55 years (standard deviation: 14)
Gender: 63% male
Ethnicity: not stated
Smoking status: 52% ever smokers
Use of home oxygen therapy: not stated
Time since diagnosis: not stated
Percentage of patients with surgical lung biopsy: 52%
Percentage of patients with definite usual interstitial pneumonia |
| Notes | Funding source: Hubber laboratory |
patterns on HRCT: not stated

- Lung function results (% predicted): mean FVC 62% (standard deviation: 14); mean DLCO 55% (standard deviation: 14)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not assessed
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality
- Change in forced vital capacity

Notes
- Funding source: not stated

Akagi 2009 [24]

| Study Design | Type of Study: retrospective cohort
| | Trial Design: single centre
| | Country/ies: Japan

| Study Duration | 1 year

| Participants | Number: 59 (33 IPF)
| | Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
| | Age: mean 66.5 years (standard deviation: 9.2)
| | Gender: 66% male
| | Ethnicity: not stated
| | Smoking status: 76% ever smoker
| | Use of home oxygen therapy: not stated
| | Time since diagnosis: not stated
| | Percentage of patients with surgical lung biopsy: 26%
| | Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | Lung function results (% predicted): mean FVC 72.8% (standard deviation: 19.4); mean DLCO 60.7% (standard deviation: 19.8)
| | Resting oxyhaemoglobin saturation: Not stated
| | 6-minute walk distance: not stated
| | Symptom assessment: not assessed
| | Use of systemic corticosteroid therapy: 45%
| | Use of other therapy: not stated

| Outcomes | Proportion of mortality

| Notes | Funding source: not stated

Author provided additional data for clarification of study duration and survival/mortality.

Alhamad 2008 [25]

| Study Design | Type of Study: retrospective cohort
| | Trial Design: single centre
| | Country/ies: Saudi Arabia

| Study Duration | At least 1 year, mean 4.2 years

| Participants | Number: 61
| | Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
| | Age: mean 54.7 years (standard deviation: 15.2)
- Gender: 49% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: 21%
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 73%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 61.5% (standard deviation: 25.2) in surgical biopsy group, 68.7% (standard deviation: 16.4) in HRCT group
- Resting oxyhaemoglobin saturation: 93.2% (standard deviation: 7.8) in the surgical biopsy group, 96.6% (standard deviation: 2.5) in the HRCT group
- 6-minute walk distance: not stated
- Symptom assessment: not assessed
- Use of systemic corticosteroid therapy: 89%
- Use of other therapy: azathioprine 27%, cyclophosphamide 20%, colchicine 20%

Outcomes
- Duration of survival

Notes
- Funding source: not stated

Antoniou 2008 [26]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United Kingdom

Study Duration
- 3 years

Participants
- Number: 249
- Definition of diagnosis: surgical biopsy, clinical and HRCT criteria: (1) bilateral basal or widespread crackles; (2) restrictive ventilatory defect or isolated depression of DLCO; (3) computed tomography (CT) appearances indicative of IPF with predominantly basal and subpleural microcystic or macrocystic honeycombing, with variably extensive ground-glass and reticular abnormalities but no consolidation, nodular abnormalities, or other parenchymal abnormalities (apart from centrilobular emphysema); and (4) no environmental exposure to a fibrogenic agent or connective tissue disease
- Age: mean 62.5 years (standard deviation: 10.3)
- Gender: 74%
- Ethnicity: not stated
- Smoking status: 75% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 16%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV₁ 70.4 (standard deviation: 20.1); mean FVC 68.2 (standard deviation: 22.6); mean DLCO 36.1 (standard deviation: 15.5)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not assessed
| Study Design | Participants | Study Duration | Outcomes | Notes |
|--------------|--------------|----------------|----------|-------|
| Type of Study: retrospective cohort | Number: 99 (86 included) | 1 year | Proportion of mortality | Funding source: not stated |
| Trial Design: single centre | Definition of diagnosis: histological diagnosis, clinical history, and chest X-Ray or computed tomography | | | |
| Country/ies: Japan | Age: mean 79.9 years (standard deviation: 6.1) for male, 81.5 years (standard deviation: 7.2) for female | | | |
| | Gender: 60% male | | | |
| | Ethnicity: not stated | | | |
| | Smoking status: 66% ever smoker | | | |
| | Use of home oxygen therapy: 12% | | | |
| | Time since diagnosis: not stated | | | |
| | Percentage of patients with surgical lung biopsy: not stated | | | |
| | Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated | | | |
| | Lung function results: mean FEV\textsubscript{1} 68.8% predicted (standard deviation: 24.2) for male, 74.8 (27.8) for female; mean FVC 2.0L (standard deviation: 0.72) for male, 1.34 L (0.58) for female; mean DLCO 67% predicted (standard deviation: 31.8) for male, 51 (24.2) for female | | | |
| | Resting oxyhaemoglobin saturation: not stated | | | |
| | 6-minute walk distance: not stated | | | |
| | Symptom assessment: not stated | | | |
| | Use of systemic corticosteroid therapy: not stated | | | |
| | Use of other therapy: not stated | | | |
| Ashley 2016 [28] | Type of Study: prospective cohort | 80 weeks | Duration of survival | Funding source: Not stated |
| Trial Design: national multicentre (n = 9) | | | | |
| Country/ies: United States | | | | |
| | Number: 60 | | | |
| | Definition of diagnosis: characteristic computed tomography findings or usual interstitial pneumonia pathology on biopsy | | | |
| | Age: mean 64.6 years (standard deviation: 7.7) | | | |
| | Gender: 68% male | | | |
| | Ethnicity: not stated | | | |
| | Smoking status: 68% ever smoker | | | |
| | Use of home oxygen therapy: not stated | | | |
| | Time since diagnosis: not stated | | | |
| | Percentage of patients with surgical lung biopsy: not stated | | | |
| | Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated | | | |
| Study Design | Participants | Outcomes | Notes |
|--------------|--------------|----------|-------|
| • Lung function results (% predicted): mean FVC 70 (standard deviation: 16.2); mean DLCO 46.1 (standard deviation: 13.1)
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not assessed
• Use of systemic corticosteroid therapy: 10%
• Use of other therapy: mycophenolate mofetil: 2%, azathioprine 5% | • Number: 113
• Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
• Age: mean 61.9 years (standard deviation: 12.7)
• Gender: 80% male
• Ethnicity: not stated
• Smoking status: 66% ever smoker
• Use of home oxygen therapy: not stated
• Time since diagnosis: not stated
• Percentage of patients with surgical lung biopsy: 72%
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results (% predicted): mean FEV1 74.8 (standard deviation: 23.1); FVC 60.9 (standard deviation: 19.6); DLCO 43.6 (standard deviation: 16.5)
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not assessed
• Use of systemic corticosteroid therapy: 84%
• Use of other therapy: azathioprine/cyclophosphamide 42%, acetylcysteine 50% | | • Funding source: public
• Author provided additional data for clarification of study duration and survival/mortality. |

Barlo 2009 [29]

Study Design
- Type of Study: retrospective cohort
- Trial Design: national multicentre (n = 2)
- Country/ies: Netherlands

Study Duration
- At least 1 year

Participants
- Number: 113
- Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
- Age: mean 61.9 years (standard deviation: 12.7)
- Gender: 80% male
- Ethnicity: not stated
- Smoking status: 66% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 72%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV1 74.8 (standard deviation: 23.1); FVC 60.9 (standard deviation: 19.6); DLCO 43.6 (standard deviation: 16.5)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not assessed
- Use of systemic corticosteroid therapy: 84%
- Use of other therapy: azathioprine/cyclophosphamide 42%, acetylcysteine 50%

Outcomes
- Proportion of mortality

Notes
- Funding source: unclear

Bennett 2015 [30]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Italy

Study Duration
- At least 1 year

Participants
- Number: 90
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: not stated
• Gender: not stated
• Ethnicity: not stated
• Smoking status: not stated
• Use of home oxygen therapy: not stated
• Time since diagnosis: not stated
• Percentage of patients with surgical lung biopsy: not stated
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results: not stated
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: not stated
• Use of other therapy: not stated

Outcomes

Proportion of mortality

Notes

• Funding source: unclear
• Author provided additional data for clarification of study duration and survival/mortality.

Bhattacharyya 2009 [31]

Study Design

• Type of Study: prospective cohort
• Trial Design: single centre
• Country/ies: India

Study Duration

1 year

Participants

• Number: 7
• Definition of diagnosis: clinical and radiological diagnosis
• Age: mean 72.4 +/- 7 years
• Gender: 71% male
• Ethnicity: not stated
• Smoking status: not stated
• Use of home oxygen therapy: not stated
• Time since diagnosis: not stated
• Percentage of patients with surgical lung biopsy: not stated
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results: median 2.04L (range: 0.96-2.89)
• Resting oxyhaemoglobin saturation: median 97% (range: 94-99)
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: not stated
• Use of other therapy: not stated

Outcomes

Proportion of mortality

Notes

Bjoraker 1998 [32]

Study Design

• Type of Study: retrospective cohort
• Trial Design: single centre
• Country/ies: United States

Study Duration

1 year

Participants

• Number: 104 included
• Definition of diagnosis: Turner-Warwick criteria

Notes

Funding source: not stated
- Age: mean 61.7 years (standard deviation: 10.6)
- Gender: 52% male
- Ethnicity: not stated
- Smoking status: 55% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 100%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV$_1$ 89 (standard deviation: 21) for UIP group, 86 (22) for others group; mean FVC 79 (standard deviation: 19) for UIP group, 80 (27) for others group; mean DLCO 48 (standard deviation: 13) for UIP group, 50 (16) for others group
- Resting oxyhaemoglobin saturation: mean 91% (standard deviation: 7)
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 89%
- Use of other therapy: not stated

Outcomes
Proportion of mortality

Notes
Funding source: not stated

Bjurstrom 2013 [33]

Study Design	
Type of Study:	retrospective cohort
Trial Design:	single centre
Country/ies:	Denmark
Study Duration	5 years

Participants	
Number:	90
Age:	53 +/- 10.2 years
Gender:	68% male
Ethnicity:	not stated
Smoking status:	not stated
Use of home oxygen therapy:	not stated
Time since diagnosis:	not stated
Percentage of patients with surgical lung biopsy:	not stated
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:	not stated
Lung function results (% predicted): mean FEV$_1$, 46+/-18, mean FVC 45+/-17%; mean DLCO 24+/-14	
Resting oxyhaemoglobin saturation:	not stated
6-minute walk distance:	not stated
Symptom assessment:	not stated
Use of systemic corticosteroid therapy:	not stated
Use of other therapy:	not stated

Outcomes
Proportion of mortality

Notes
Funding source: not stated

Boomars 1995 [34]

Study Design	
Type of Study:	retrospective cohort
Trial Design:	single centre
Country/ies:	Netherlands

134
Study Duration
At least 2 years

Participants
- **Number:** 49
- **Definition of diagnosis:** compatible clinical info, evidence of diffuse parenchymal infiltrates on CXR; most patients with restrictive lung function; excluded significant environmental/occupational exposure, extrinsic allergic alveolitis, left ventricular failure, collagen vascular disease
- **Age:** mean 56 years (range: 30-73)
- **Gender:** not stated
- **Ethnicity:** not stated
- **Smoking status:** not stated
- **Use of home oxygen therapy:** not stated
- **Time since diagnosis:** not stated
- **Percentage of patients with surgical lung biopsy:** 100%
- **Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:** not stated
- **Lung function results:** not stated
- **Resting oxyhaemoglobin saturation:** not stated
- **6-minute walk distance:** not stated
- **Symptom assessment:** not stated
- **Use of systemic corticosteroid therapy:** 45%
- **Use of other therapy:** not stated

Outcomes
- **Proportion of mortality**

Notes
- **Funding source:** industry

Bournazos 2011 [35]

Study Design
- **Type of Study:** prospective cohort
- **Trial Design:** single centre
- **Country/ies:** UK

Study Duration
1 year

Participants
- **Number:** 142
- **Definition of diagnosis:** the 2008 Interstitial lung disease guideline: the British Thoracic Society in collaboration with the Thoracic Society of Australia and New Zealand and the Irish Thoracic Society
- **Age:** mean 70 years (standard deviation: 8.8)
- **Gender:** 66.9% male
- **Ethnicity:** not stated
- **Smoking status:** not stated
- **Use of home oxygen therapy:** not stated
- **Time since diagnosis:** not stated
- **Percentage of patients with surgical lung biopsy:** not stated
- **Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:** not stated
- **Lung function results (% predicted):** mean FEV1 87.52 (standard deviation: 20); mean FVC 87.65 (standard deviation: 19.6); mean DLCO 52.75 (standard deviation: 15.9)
- **Resting oxyhaemoglobin saturation:** not stated
- **6-minute walk distance:** not stated
- **Symptom assessment:** not assessed
- **Use of systemic corticosteroid therapy:** not stated
- **Use of other therapy:** not stated

Outcomes
- **Proportion of patients with disease progression**
Cai 2014 [36]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: China

Study Duration
- At least 1 year

Participants
- Number: 210
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 64 years (standard deviation: 10)
- Gender: 73% male
- Ethnicity: Han Chinese 95%
- Smoking status: 69% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 5%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results:
 - Resting oxyhaemoglobin saturation: not stated
 - 6-minute walk distance: not stated
 - Symptom assessment: not assessed
 - Use of systemic corticosteroid therapy: not stated
 - Use of other therapy: immunosuppressants 48%, N-acetylcysteine 5%, interferon-gamma 0.5%

Castria 2012 [37]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Italy

Study Duration
- 1 year

Participants
- Number: 126
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 66.5 years (standard deviation: 2.8)
- Gender: 74% male
- Ethnicity: not stated
- Smoking status: 46.8% ex-smoker
- Use of home oxygen therapy: 52% at rest
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV$_1$ 62.6 (standard deviation: 22.4); mean FVC 57.6 (standard deviation: 19.6); mean DLCO 33 (standard deviation: 16)
- Resting oxyhaemoglobin saturation: not stated
Outcomes
- Proportion of mortality

Notes
- Funding source: not stated

Cayon 2010 [38]

Study Design
- Type of Study: prospective cohort
- Trial Design: national multicentre (n = 2)
- Country/ies: Cuba

Study Duration
- 1 year

Participants
- Number: 12
- Definition of diagnosis: histologically verified
- Age: median 56 years (interquartile range: 39-66)
- Gender: 50% male
- Ethnicity: Caucasian 58.3%
- Smoking status: 25% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 8.3%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 59.3 (standard deviation: 8.4)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: modified Medical Research Council Dyspnoea score: mean 2.0 (standard deviation 1.0)
- Use of systemic corticosteroid therapy: 58.3%
- Use of other therapy: azathioprine: 16.7%

Outcomes
- Proportion of mortality

Notes
- Funding source: unclear

Civic 2012 [39]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United States

Study Duration
- At least 2 years

Participants
- Number: 43
- Definition of diagnosis: not stated
- Age: mean 65 years (standard deviation: 10)
- Gender: 63% male
- Ethnicity: not stated
- Smoking status: 63% ever smokers
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 70 (standard deviation:
| Study Design | Type of Study: retrospective cohort |
| Study Duration | 1 year |
| Participants | Number: 52 |
| E; | Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management Age: mean 63.2 years (standard deviation 7.9) |
| Gender: 62% male |
| Ethnicity: not stated |
| Smoking status: 63% ever smoker |
| Use of home oxygen therapy: not stated |
| Time since diagnosis: not stated |
| Percentage of patients with surgical lung biopsy: not stated |
| Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated |
| Lung function results (% predicted): mean FVC 72.5 (standard deviation: 16.6); mean DLCO 45.8 (standard deviation: 12) |
| Resting oxyhaemoglobin saturation: not stated |
| 6-minute walk distance: not stated |
| Symptom assessment: not stated |
| Use of systemic corticosteroid therapy: not stated |
| Use of other therapy: not stated |
| Outcomes | Change in forced vital capacity |
| Notes | Funding source: not stated |
| Study Design | • Type of Study: prospective cohort
| | • Trial Design: single centre
| | • Country/ies: United States |
| Study Duration | 1 year |
| Participants | • Number: 17
| | • Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
| | • Age: mean 67 years (range: 58-81)
| | • Gender: 76% male
| | • Ethnicity: not stated
| | • Smoking status: not stated
| | • Use of home oxygen therapy: 9 (53%)
| | • Time since diagnosis: not stated
| | • Percentage of patients with surgical lung biopsy: not stated
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | • Lung function results (% predicted): mean FEV$_1$ 85.44 (standard deviation: 3.79); mean FVC 73.96 (standard deviation: 3.76); mean DLCO 43.65 (standard deviation: 16.91)
| | • Resting oxyhaemoglobin saturation: not stated
| | • 6-minute walk distance: mean 464.89m (standard deviation: 249.54)
| | • Symptom assessment: not assessed
| | • Use of systemic corticosteroid therapy: not stated
| | • Use of other therapy: not stated |
| Outcomes | • Proportion of mortality
| Notes | • Change in forced vital capacity

Funding source: public
Treatment International Consensus Statement

- **Age**: mean 66 years (range: 47-79)
- **Gender**: 78% male
- **Ethnicity**: not stated
- **Smoking status**: 72% ever smoker
- **Use of home oxygen therapy**: not stated
- **Time since diagnosis**: not stated
- **Percentage of patients with surgical lung biopsy**: 42%
- **Percentage of patients with definite usual interstitial pneumonia patterns on HRCT**: not stated
- **Lung function results (% predicted)**: mean FVC 64.4; mean DLCO 39.8
- **Resting oxyhaemoglobin saturation**: not stated
- **6-minute walk distance**: mean 415m
- **Symptom assessment**: not stated
- **Use of systemic corticosteroid therapy**: not allowed
- **Use of other therapy**: not allowed

Outcomes
- Proportion of mortality
- Respiratory-specific mortality
- Change in forced vital capacity
- Change in diffusing capacity for carbon monoxide

Notes
- Funding source: mixed

Demedics 2005 [177]

Study Design
- **Type of Study**: randomised controlled trial
- **Trial Design**: phase 3, parallel-group, international multicentre (number of centres not stated)
- **Country/ies**: Belgium, France, Germany, Italy, Netherlands, Spain, United Kingdom

Study Duration
- 1 year

Participants
- **Number**: 75 (placebo group)
- **Definition of diagnosis**: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- **Age**: mean 64 years (standard deviation: 9)
- **Gender**: 75% male
- **Ethnicity**: not stated
- **Smoking status**: 69.4% ever smoker
- **Use of home oxygen therapy**: not stated
- **Time since diagnosis**: 56% within 6 months
- **Percentage of patients with surgical lung biopsy**: 47%
- **Percentage of patients with definite usual interstitial pneumonia patterns on HRCT**: not stated
- **Lung function results (% predicted)**: mean FVC 66.57 (standard deviation: 14.42); mean DLCO 44.79 (standard deviation: 15.15)
- **Resting oxyhaemoglobin saturation**: not stated
- **6-minute walk distance**: not stated
- **Symptom assessment**: total St George’s Respiratory Questionnaire score: mean 52 (standard deviation: 16); dyspnoea score: mean 7.92 (standard deviation: 3.99)
- **Use of systemic corticosteroid therapy**: 100%
- **Use of other therapy**: azathioprine 100%

Outcomes
- Proportion of mortality
| Notes | Proportion of patients with disease progression |
|-------|--|
| Notes | Funding source: industry |

Diaz 2012 [43]

Study Design	Type of Study: prospective cohort
	Trial Design: single centre
	Country/ies: United States

Study Duration	80-130 weeks

Participants	Number: 10
	Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
	Age: mean 68.4 years (standard error: 1.82)
	Gender: 80% male
	Ethnicity: not stated
	Smoking status: 50% ever smoker
	Use of home oxygen therapy: none
	Time since diagnosis: not stated
	Percentage of patients with surgical lung biopsy: 40%
	Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
	Lung function results (% predicted): mean FVC 79.2 (standard error: 4.27); mean DLCO 46.6 (standard error: 3.24)
	Resting oxyhaemoglobin saturation: not stated
	6-minute walk distance: mean 386m (standard error: 41.35)
	Symptom assessment: not assessed
	Use of systemic corticosteroid therapy: none
	Use of other therapy: none

Outcomes	Proportion of mortality
Notes	Funding source: mixed

Erbes 1997 [44]

Study Design	Type of Study: retrospective cohort
	Trial Design: single centre
	Country/ies: Germany

Study Duration	At least 1 year

Participants	Number: 99
	Definition of diagnosis: histologically confirmed
	Age: mean 53.2 years (standard deviation: 15.4)
	Gender: 52% male
	Ethnicity: not stated
	Smoking status: 56% current smoker
	Use of home oxygen therapy: not stated
	Time since diagnosis: not stated
	Percentage of patients with surgical lung biopsy: 96%
	Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
	Lung function results (% predicted): mean FEV\textsubscript{1} 69.16 (95% CI: 64.9-73.5); mean FVC 89.19 (95% CI: 83.5-95.1); mean DLCO 46.3 (95% CI: 41.6-51)
	Resting oxyhaemoglobin saturation: not stated
Faverio 2015 [45]	
---	---
Study Design	Type of Study: retrospective cohort
Trial Design: single centre	
Country/ies: Italy	
Study Duration	2 years
Participants	Number: 11
Definition of diagnosis: unclear	
Age: median 68 years	
Gender: 6% male	
Ethnicity: not stated	
Smoking status: not stated	
Use of home oxygen therapy: not stated	
Time since diagnosis: not stated	
Percentage of patients with surgical lung biopsy: not stated	
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
Lung function results: not stated	
Resting oxyhaemoglobin saturation: not stated	
6-minute walk distance: not stated	
Symptom assessment: not assessed	
Use of systemic corticosteroid therapy: 100%	
Use of other therapy: cyclophosphamide 100%	
Outcomes	Proportion of mortality
Notes	Funding source: unclear

Fiorucci 2008 [46]	
Study Design	Type of Study: prospective cohort
Trial Design: single centre	
Country/ies: Italy	
Study Duration	3 years
Participants	Number: 30
Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement	
Age: mean 65 years (standard deviation: 2.3) for group 1, 65.1 (2.7) for group 2, 65.2 (3.2) for group 3	
Gender: 57% male	
Ethnicity: not stated	
Smoking status: not stated	
Use of home oxygen therapy: not stated	
Time since diagnosis: not stated	
Percentage of patients with surgical lung biopsy: not stated	
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
Outcomes	
Notes	Funding source: unclear
Lung Function Results

- Mean FEV1 (% predicted): 77.6 (standard deviation 19.2) for group 1 (higher lymphocyte count), 71.8 (18.7) for group 2 (lower lymphocyte count); mean FVC 77 (standard deviation 19.2) for group 1, 71 (18.7) for group 2; mean DLCO 59.5 (standard deviation 22.5) for group 1, 51.6 (21.7) for group 2
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: Dyspnoea score: mean 5.7 (standard deviation: 1.3) for group 1, 5.3 (1.3) for group 2, 8.4 (2.5) for group 3
- Use of systemic corticosteroid therapy: 100%
- Use of other therapy: cyclophosphamide 30%, colchicine 33%

Outcomes

Study Design	Notes
Type of Study: prospective cohort	Proportion of mortality
Trial Design: single centre	
Country/ies: Israel	

Study Duration

1 year

Participants

- Number: 46
- Definition of diagnosis: either evidence of diffuse parenchymal infiltrates (peripheral and reticular nodular with lower lobe predominance) on chest radiography or restrictive lung function with a lung biopsy demonstrating varying degrees of interstitial fibrosis and intra-alveolar inflammatory cells
- Age: 64 years +/- 12.8 years
- Gender: 50% male
- Ethnicity: not stated
- Smoking status: 28% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 7%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV1 77.6 (standard deviation 19.2) for group 1 (higher lymphocyte count), 71.8 (18.7) for group 2 (lower lymphocyte count); mean FVC 77 (standard deviation 19.2) for group 1, 71 (18.7) for group 2; mean DLCO 59.5 (standard deviation 22.5) for group 1, 51.6 (21.7) for group 2
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 77%
- Use of other therapy: not stated

Outcomes

Study Design	Notes
Type of Study: retrospective cohort	Proportion of mortality
Trial Design: single centre	
Country/ies: Canada	

Study Duration

1 year

Participants

- Number: 302
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis

Fireman 1998 [47]

Study Design	Notes
Type of Study: prospective cohort	Proportion of mortality
Trial Design: single centre	
Country/ies: Israel	

Fisher 2017a [48]

Study Design	Notes
Type of Study: retrospective cohort	Proportion of mortality
Trial Design: single centre	
Country/ies: Canada	

Funding source: unclear
Fisher 2017b [49]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United States

Study Duration
- At least 1 year

Participants
- Number: 286
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: median 67 years (range 43-80)
- Gender: 81.8% male
- Ethnicity: Caucasian 94.6%
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): median FVC 68.0 (range 50-114); median DLCO 46.0 (range 30-102)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality

Notes
- Funding source: public

Fujimoto 2012 [50]

Study Design
- Type of Study: retrospective cohort
Trial Design: single centre
Country/ies: Japan

Study Duration
1 year

Participants
- Number: 60
- Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
- Age: median 71 years (range 37-87)
- Gender: 82% male
- Ethnicity: not stated
- Smoking status: 80% ever smokers
- Use of home oxygen therapy: not stated
- Time since diagnosis: median 17 months (range 1-120)
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
Proportion of mortality

Notes
- Funding source: public
- Author provided additional data for clarification of study duration and survival/mortality.

Gay 1998 [51]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: United States

Study Duration
1 year

Participants
- Number: 38
- Definition of diagnosis: symptoms, physiologic abnormalities, or radiographic findings with open lung biopsy confirmation
- Age: mean 54.6 +/- 2.2 years
- Gender: 45% male
- Ethnicity: not stated
- Smoking status: 71% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV1 78.3 (standard deviation 2.9); mean FVC 69.7 (standard deviation 2.5); mean DLCO 49.9 (standard deviation: 2.4)
- Resting oxyhaemoglobin saturation: note stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 100%
- Use of other therapy: not stated
| **Outcomes** | Proportion of mortality |
|-------------|-------------------------|
| **Notes** | Funding source: public |

Gu 2014 [52]

Study Design
- Type of Study: retrospective cohort
- Trial Design: national multicentre (n = 2)
- Country/ies: China

Study Duration
- At least 1 year

Participants
- Number: 25
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
 - Age: mean 57.3 years (standard deviation 10.7)
 - Gender: 68% male
 - Ethnicity: not stated
 - Smoking status: 40% ever smokers
 - Use of home oxygen therapy: not stated
 - Time since diagnosis: 87 months (standard deviation 40)
 - Percentage of patients with surgical lung biopsy: 100%
 - Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
 - Lung function results: not stated
 - Resting oxyhaemoglobin saturation: not stated
 - 6-minute walk distance: not stated
 - Symptom assessment: not stated
 - Use of systemic corticosteroid therapy: not stated
 - Use of other therapy: not stated

Outcomes

Notes

Outcomes	Proportion of mortality
Notes	Funding source: unclear

Hallstrand 2005 [53]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: United States

Study Duration
- At least 1 year

Participants
- Number: 28
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
 - Age: mean 62.7 years (interquartile range 57-69)
 - Gender: 67.9% male
 - Ethnicity: Caucasian 96.4%, other 3.6%
 - Smoking status: 67.9% ever smoker
 - Use of home oxygen therapy: not stated
 - Time since diagnosis: mean 3.1 years (interquartile range 0.8-4.0)
 - Percentage of patients with surgical lung biopsy: 50%
 - Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
 - Lung function results (% predicted): mean FEV₁ 61.1 (interquartile range 45.3-70.8); mean FVC 59.9 (interquartile range 42.4-71.5); mean DLCO 33.0 (interquartile range 23-43.3)
 - Resting oxyhaemoglobin saturation: not stated
Hamada 2007 [54]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: Japan

Study Duration
- 5 years

Participants
- Number: 61
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 62 years (standard deviation 8)
- Gender: 86% male
- Ethnicity: not stated
- Smoking status: 79% ever smoker
- Use of home oxygen therapy: 27.9%
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 77%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 76 (standard deviation 22); mean DLCO 45 (standard deviation 15)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 42.6%
- Use of other therapy: not stated

Outcomes
- Proportion of mortality
- Duration of survival

Notes
- Funding source: unclear

Hanson 1995 [55]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United States

Study Duration
- At least 1 year

Participants
- Number: 58
- Definition of diagnosis: Three criteria: CXR with diffuse reticulation, lung biopsy with interstitial fibrosis, and no other known causes of pulmonary fibrosis
- Age: mean 59.9 years (range 27-84)
- Gender: 47% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
Outcomes
- Proportion of mortality
- Proportion of patients with disease progression
- Duration of survival

Notes
- Funding source: unclear

Harris 2010 [56]

Study Design
- Type of Study: prospective cohort
- Trial Design: national (the British Thoracic Society cryptogenic fibrosing alveolitis study)
- Country/ies: United Kingdom

Study Duration
- 1 year

Participants
- Number: 588
- Definition of diagnosis: codes using the International Classification of Diseases, ninth revision (ICD-9)
- Age: not stated
- Gender: not stated
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: mean FVC 2.27L (range 0.98 to 4.04); mean DLCO 9.22 (range 2.53-23.5)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality

Notes
- Funding source: public

Hiwatari 1997 [57]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Japan

Study Duration
- At least 1 year

Participants
- Number: 48
- Definition of diagnosis: a combination of medical records, clinical and
| Study Design | Holland 2013 [58] |
|--------------|-------------------|
| **Type of Study:** | prospective cohort |
| **Trial Design:** | national multicentre (n = 2) |
| **Country/ies:** | Australia |
| **Study Duration** | 4 years |
| **Participants** | |
| Number: | 40 |
| Definition of diagnosis: | the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement |
| Age: | mean 73 years (standard deviation 7) |
| Gender: | not stated |
| Ethnicity: | not stated |
| Smoking status: | not stated |
| Use of home oxygen therapy: | not stated |
| Time since diagnosis: | not stated |
| Percentage of patients with surgical lung biopsy: | not stated |
| Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: | not stated |
| Lung function results (% predicted): | mean FVC 74 (standard deviation 20); mean DLCO 46 (standard deviation 17) |
| Resting oxyhaemoglobin saturation: | not stated |
| 6-minute walk distance: | mean 350m (standard deviation 124) |
| Symptom assessment: | not stated |
| Use of systemic corticosteroid therapy: | not stated |
| Use of other therapy: | not stated |
| **Outcomes** | Proportion of mortality |
| **Notes** | Funding source: public |

Holland 2013 [58]
| Study Design | • Type of Study: retrospective cohort
| | • Trial Design: national using the Discharge Abstract Database and the National Ambulatory Care Reporting System from the Canadian Institute for Health Information
| | • Country/ies: Canada
| Study Duration | At least 1 year
| Participants | • Number: unclear
| | • Definition of diagnosis: codes using the International Classification of Diseases, Version 10, Canadian (ICD-10 CA)
| | • Age: not stated
| | • Gender: not stated
| | • Ethnicity: not stated
| | • Smoking status: not stated
| | • Use of home oxygen therapy: not stated
| | • Time since diagnosis: not stated
| | • Percentage of patients with surgical lung biopsy: not stated
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | • Lung function results: not stated
| | • Resting oxyhaemoglobin saturation: not stated
| | • 6-minute walk distance: not stated
| | • Symptom assessment: not stated
| | • Use of systemic corticosteroid therapy: not stated
| | • Use of other therapy: not stated
| Outcomes | Proportion of mortality
| Notes | Funding source: industry

Hosein 2016 [60]

| Study Design | • Type of Study: retrospective cohort
| | • Trial Design: single centre
| | • Country/ies: Canada
| Study Duration | 1 year
| Participants | • Number: 42 (22 untreated)
| | • Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
| | • Age: mean 68 years (standard deviation 9)
| | • Gender: 68% male
| | • Ethnicity: not stated
| | • Smoking status: not stated
| | • Use of home oxygen therapy: not stated
| | • Time since diagnosis: not stated
| | • Percentage of patients with surgical lung biopsy: 32%
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | • Lung function results (% predicted): mean FEV$_1$ 77 (standard deviation 17); mean FVC 76 (standard deviation 18); mean DLCO 40 (standard deviation 12)
| | • Resting oxyhaemoglobin saturation: not stated
| | • 6-minute walk distance: mean 396m (standard deviation 123)
| | • Symptom assessment: modified Medical Research Council Dyspnoea score: mean 2.4 (standard deviation 0.8)

150
Study Design	Hubbard 1998 [61]
Type of Study:	prospective cohort
Trial Design:	national multicentre (n = 9)
Country/ies:	United Kingdom
Study Duration:	At least 18 months
Participants	
Number:	244 (76 incident cases)
Definition of diagnosis:	histological confirmation or basal inspiratory crackles plus no documented history of exposure to asbestos
Age:	69.7 years (standard deviation 9.6)
Gender:	Male:Female ratio 2.8:1
Ethnicity:	not stated
Smoking status:	not stated
Use of home oxygen therapy:	not stated
Time since diagnosis:	not stated
Percentage of patients with surgical lung biopsy:	not stated
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:	not stated
Lung function results (% predicted):	mean FVC 78.5 (standard error 2.8), mean DLCO 49.2 (standard error 2.2)
Resting oxyhaemoglobin saturation:	not stated
6-minute walk distance:	not stated
Symptom assessment:	not stated
Use of systemic corticosteroid therapy:	47%
Use of other therapy:	cyclophosphamide 6.8%, azathioprine 2.6%
Outcomes	Proportion of mortality
Notes	Funding source: unclear

Study Design	Huynh 2015 [62]
Type of Study:	retrospective cohort
Trial Design:	single centre
Country/ies:	United States
Study Duration:	1 year
Participants	
Number:	70
Definition of diagnosis:	not stated
Age:	not stated
Gender:	not stated
Ethnicity:	not stated
Smoking status:	not stated
Use of home oxygen therapy:	not stated
Time since diagnosis:	not stated
Percentage of patients with surgical lung biopsy:	not stated
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:	not stated
Lung function results:	not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
Proportion of patients with disease progression

Notes
Funding source: unclear

Inase 2003 [63]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Japan

Study Duration
1 year

Participants
- Number: 13
- Definition of diagnosis: surgical lung biopsy or clinical diagnosis with characteristic findings on computed tomography, clubbed fingers, and restrictive lung pattern
- Age: mean 67.1 years (standard deviation 9)
- Gender: 77% male
- Ethnicity: not stated
- Smoking status: 46% ever smoker, 23% unknown
- Use of home oxygen therapy: not stated
- Time since diagnosis: median 0 year (range 0-7)
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 100%
- Use of other therapy: not stated

Outcomes
Proportion of mortality

Notes
Funding source: unclear

Iwasawa 2014 [64]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Japan

Study Duration
1 year

Participants
- Number: 40
- Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
- Age: mean 68.2 years (standard deviation 8.3)
- Gender: 73% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: 15%
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
Study Design
- **Type of Study:** retrospective cohort
- **Trial Design:** national multicentre (n = 48)
- **Country/ies:** Japan

Study Duration
- 10 years

Participants
- **Number:** 222
- **Definition of diagnosis:** Open lung biopsy/autopsy
- **Age:** not stated
- **Gender:** 73% male
- **Ethnicity:** not stated
- **Smoking status:** not stated
- **Use of home oxygen therapy:** not stated
- **Time since diagnosis:** not stated
- **Percentage of patients with surgical lung biopsy:** not stated
- **Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:** not stated
- **Lung function results:** not stated
- **Resting oxyhaemoglobin saturation:** not stated
- **6-minute walk distance:** not stated
- **Symptom assessment:** not stated
- **Use of systemic corticosteroid therapy:** not stated
- **Use of other therapy:** not stated

Outcomes
- Proportion of mortality
- Change in forced vital capacity
- Proportion of patients with disease progression

Notes
- Funding source: public

Izumi 1992 [65]

Study Design	Details
Type of Study:	retrospective cohort
Trial Design:	national multicentre (n = 48)
Country/ies:	Japan

| Study Duration | 10 years |

Participants	Details
Number:	222
Definition of diagnosis:	Open lung biopsy/autopsy
Age:	not stated
Gender:	73% male
Ethnicity:	not stated
Smoking status:	not stated
Use of home oxygen therapy:	not stated
Time since diagnosis:	not stated
Percentage of patients with surgical lung biopsy:	not stated
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:	not stated
Lung function results:	not stated
Resting oxyhaemoglobin saturation:	not stated
6-minute walk distance:	not stated
Symptom assessment:	not stated
Use of systemic corticosteroid therapy:	not stated
Use of other therapy:	not stated

Outcomes	Details
Proportion of mortality	

Notes	Details
Funding source: public	

Jacob 2016 [67]

Study Design	Details
Type of Study:	retrospective cohort
Trial Design:	single centre
Country/ies:	United Kingdom

| Study Duration | 1 year |

Participants	Details
Number:	283
Definition of diagnosis:	the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
Age:	median 67 years
Gender:	77% male
Ethnicity:	not stated

Outcomes	Details
Proportion of mortality	

Notes	Details
Funding source: unclear	

153
| Study Design | • Smoking status: 66% ever smoker
• Use of home oxygen therapy: not stated
• Time since diagnosis: not stated
• Percentage of patients with surgical lung biopsy: 21%
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results (% predicted): mean FEV$_1$ 70.8 (standard deviation 19.1); mean FVC 68.8 (standard deviation 20.5); mean DLCO 36.1 (standard deviation 12.9)
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: not stated
• Use of other therapy: not stated

| Outcomes | Duration of survival (Kaplan-Meier Curve – data not extractable)

| Notes | • Funding source: unclear
• Author provided additional data for clarification of study duration and survival/mortality.

Jaffar 2014 [67]

Study Design
- Type of Study: prospective cohort
- Trial Design: international multicentre (n = 3)
- Country/ies: Australia, USA, Italy

Study Duration
- 1 year

Participants
- Number: 72
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 68 years (standard deviation 9)
- Gender: 57% male
- Ethnicity: not stated
- Smoking status: 63% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV$_1$ 79 (standard deviation 20); mean FVC 74 (standard deviation 20); mean DLCO 41 (standard deviation 16)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality

Notes
- Funding source: public
- Author provided additional data for clarification of study duration and survival/mortality.

Jeon 2006 [68]

Study Design
- Type of Study: retrospective cohort
| Study Design | Type of Study: prospective cohort |
|--------------|----------------------------------|
| | Trial Design: single centre |
| | Country/ies: Czech Republic |
| Study Duration | At least 1 year, mean 5 years |
| Participants | Number: 50 |
| | Definition of diagnosis: histologic assessment of lung biopsy or autopsy |
| | Age: not stated |
| | Gender: 44% male |
| | Ethnicity: not stated |
| | Smoking status: not stated |
| | Use of home oxygen therapy: not stated |
| | Time since diagnosis: not stated |
| | Percentage of patients with surgical lung biopsy: not stated |
| | Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated |
| | Lung function results: not stated |
| | Resting oxyhaemoglobin saturation: not stated |
| | 6-minute walk distance: not stated |
| | Symptom assessment: not stated |
| | Use of systemic corticosteroid therapy: not stated |
| | Use of other therapy: not stated |
| Outcomes | Proportion of mortality |
| Notes | Funding source: unclear |

Jezek 1979 [69]
Jezek 1980 [70]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: Chechoslovakia

Study Duration
6 years

Participants
- Number: 56
- Definition of diagnosis: Clinical examination, confirmed by lung biopsy/autopsy/both
- Age: mean 38.6 years (standard deviation 11.6)
- Gender: 43% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 63.1 (standard deviation 23.4); mean DLCO 35.2 (standard deviation 11.8)
- Resting oxyhaemoglobin saturation: mean 91.5% (standard deviation 5.6)
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 100%
- Use of other therapy: not stated

Outcomes
Proportion of mortality

Notes
Funding source: unclear

Jezkova 1981 [71]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Czech Republic

Study Duration
At least 1 year, mean 5.6 years (standard deviation 3.3)

Participants
- Number: 77
- Definition of diagnosis: not stated
- Age: average not stated
- Gender: not stated
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Notes
Funding source: unclear
Outcomes	Duration of survival
Notes	Funding source: unclear

Jo 2017 [72]

Study Design	
Type of Study: prospective cohort	
Trial Design: national using the Australian Idiopathic Pulmonary Fibrosis Registry	
Country/ies: Australia	

Study Duration	At least 1 year
Participants	
Number: 647 (460 not on antifibrotic therapies)	
Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management	
Age: mean 70.9 years (standard deviation 8.5)	
Gender: 67.7% male	
Ethnicity: not stated	
Smoking status: 71.7% ever smoker	
Use of home oxygen therapy: not stated	
Time since diagnosis: not stated	
Percentage of patients with surgical lung biopsy: not stated	
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
Lung function results (% predicted): mean FVC 81 (standard deviation 21.7); mean 48.4 (standard deviation 16.7)	
Resting oxyhaemoglobin saturation: not stated	
6-minute walk distance: mean 420m (standard deviation 129)	
Symptom assessment: not stated	
Use of systemic corticosteroid therapy: not stated	
Use of other therapy: not stated	

Outcomes	Duration of survival
Notes	Funding source: public
Author provided additional data for clarification of study duration and survival/mortality.	

Justet 2017 [73]

Study Design	
Type of Study: prospective cohort	
Trial Design: single centre	
Country/ies: France	

Study Duration	1 year
Participants	
Number: 27	
Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management	
Age: mean 65.3 years (standard deviation 12.4)	
Gender: 81% male	
Ethnicity: not stated	
Smoking status: 59% ever smoker	
Use of home oxygen therapy: not stated	
Time since diagnosis: mean 2.9 years (standard deviation 2.7)	
Percentage of patients with surgical lung biopsy: not stated	
Percentage of patients with definite usual interstitial pneumonia	
Study Design	
------------------------------	---
Outcomes	• Duration of survival
	• Change in forced vital capacity
Notes	Funding source: unclear

Kanematsu 1994 [74]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: Japan

Study Duration
- 2 years

Participants
- Number: 52
- Definition of diagnosis: clinical findings of IPF with pathological findings of usual interstitial pneumonia on open lung biopsy
- Age: mean 58.4 years (standard deviation 6.8) for those without clubbing, 57.3 years (7.9) for those with clubbing
- Gender: 81% male
- Ethnicity: not stated
- Smoking status: 79% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 100%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): FVC 78 +/- 21.6 for those without clubbing, 86.9 +/- 24 for those with clubbing; DLCO 51.8 +/- 16 for those without clubbing, 52 +/- 18 for those with clubbing
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality

Notes
- Funding source: public

Khadadah 2003 [75]

Study Design
- Type of Study: prospective cohort
- Trial Design: national multicentre (n =2)
- Country/ies: Kuwait

Study Duration
- 1 year

Participants
- Number: 52
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 55.4 years (standard deviation11.77)
- Gender: 62% male
- Ethnicity: not stated
- Smoking status: 42% ever smokers
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 56%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 57.6 (standard deviation 16.78); mean DLCO 55
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 90%
- Use of other therapy: azathioprine 17%

Outcomes	Proportion of mortality
Notes	Funding source: unclear

Kim 2012 [76]

Study Design	Type of Study: retrospective cohort
	Trial Design: single centre
	Country/ies: Korea

Study Duration	At least 16 months

Participants	Number: 67 IPF
	Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
	Age: mean 69.9 years (standard deviation 9.9)
	Gender: 64% male
	Ethnicity: not stated
	Smoking status: not stated
	Use of home oxygen therapy: not stated
	Time since diagnosis: not stated
	Percentage of patients with surgical lung biopsy: not stated
	Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
	Lung function results (% predicted): mean FVC 71.2 (standard deviation 20.2); mean DLCO 67.5 (standard deviation 27)
	Resting oxyhaemoglobin saturation: not stated
	6-minute walk distance: not stated
	Symptom assessment: not stated
	Use of systemic corticosteroid therapy: 23%
	Use of other therapy: not stated

Outcomes	Duration of survival
Notes	Funding source: unclear

Kim 2013 [77]

Study Design	Type of Study: retrospective cohort
	Trial Design: single centre
	Country/ies: United States

Study Duration	More than 5 years

Participants	Number: 93

Notes: Funding source: unclear
- Definition of diagnosis: unclear
- Age: mean 64.7 years for rapid group, 62.5 for usual group, 61.7 for long-term group
- Gender: 69% male
- Ethnicity: not stated
- Smoking status: 69.2% ever smoker for rapid group, 78.9% for usual group, 55.6% long-term group
- Use of home oxygen therapy: 83.3% for rapid group, 75.7% for usual group, 73% long-term group
- Time since diagnosis: mean 1.63 years for rapid group, 1.72 for usual group, < 1 for long-term group
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: 45.8% for rapid group, 51.4% for usual group, 78.3% for long-term group
- Lung function results (% predicted): mean FVC 62.6 for rapid group, 66.5 for usual group, and 75.3 for long-term group; mean DLCO 40.58 for rapid group, 49.15 for usual group, 51.96 for long-term group
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: mean 296.88m for rapid group, 374.60m for usual group, 426.72m for long-term group
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 26.9% for rapid group, 27% for usual group, 33.3% for long-term group
- Use of other therapy: N-acetylcysteine: 42.3% for rapid group, 74.4% for usual group, 29.6% for long term group

Outcomes
- Proportion of mortality

Notes
- Funding source: unclear

Kim 2015 [78]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Korea

Study Duration
- 1 year

Participants
- Number: 268
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 65.9 years (standard deviation 9.6)
- Gender: 67.5% male
- Ethnicity: not stated
- Smoking status: 56.3% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 20.1%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV₁ 77.8% (standard deviation 18.8); mean FVC: 89.8 (standard deviation 21.5); mean DLCO 65.9 (standard deviation 21.7)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
| Study Design | Outcomes | Notes |
|--------------|----------|-------|
| • Type of Study: randomised controlled trial | • Proportion of mortality | Funding source: unclear |
| • Trial Design: phase 2, parallel group, international multicentre (n = 29) | • Duration of survival | |
| • Country/ies: Canada, France, Germany, Israel, Italy, Switzerland, United Kingdom, United States | | |
| **Study Duration** | **Participants** | |
| 1 year | • Number: 83 (placebo group) | |
| | • Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement | |
| | • Age: mean 65.1 years (standard deviation 9.1) | |
| | • Gender: 76% male | |
| | • Smoking status: current smoker 1.2% | |
| | • Use of home oxygen therapy: 15.5% | |
| | • Time since diagnosis: mean 1.1 years ± SD 1.0 | |
| | • Percentage of patients with surgical lung biopsy: 60.2% | |
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated | |
| | • Lung function results (% predicted): mean FEV₁ 81.8 (standard deviation 13.8); mean FVC 69.5 (standard deviation 12.6); mean DLCO: 41.4 (standard deviation 9.5) | |
| | • Resting oxyhaemoglobin saturation: mean 96.8% (standard deviation 2.5) | |
| | • 6-minute walk distance: mean 372m (standard deviation 74) | |
| | • Symptom assessment: not stated | |
| | • Use of systemic corticosteroid therapy: 13.1% | |
| | • Use of other therapy: not stated | |
| | **Outcomes** | |
| | • Proportion of mortality | |
| | • Change in 6-minute walk distance | |
| **Notes** | Funding source: industry | |

King 2009 [179]

Study Design	Outcomes	Notes
• Type of Study: randomised controlled trial	• Proportion of mortality	
• Trial Design: phase 3, parallel-group, international multicentre (n = 81)	• Duration of survival	
• Country/ies: Belgium, Canada, France, Germany, Ireland, Italy, Spain, United Kingdom, United States		
Study Duration	**Participants**	
Greater than 52 weeks, median 64 weeks	• Number: 275 (placebo group)	
	• Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement	
	• Age: mean 65.9 years (standard deviation 7.9)	
	• Gender: 32% male	
- Ethnicity: Caucasian 95%
- Smoking status: 69% ever smoker
- Use of home oxygen therapy: 15%
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 55%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: 85%
- Lung function results (% predicted): mean FVC 73.1 (standard deviation 13.4); mean DLCO 47.3 (standard deviation 9.3)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: mean 392.8m (standard deviation 112.9)
- Symptom assessment: total St George’s Respiratory Questionnaire score: mean 42.4 (standard deviation 18.2); University of California San Diego Shortness of Breath Questionnaire score: mean 35 (standard deviation 22.7)
- Use of systemic corticosteroid therapy: 17%
- Use of other therapy: not stated

Outcomes
- Proportion of mortality
- Respiratory-specific mortality
- Change in forced vital capacity
- Change in dyspnoea (University of California, San Diego Shortness of Breath Questionnaire)
- Change in health-related quality of life (St George’s Respiratory Questionnaire)
- Change in 6-minute walk distance

Notes
- Funding source: industry

King 2011 [180]

Study Design
- Type of Study: randomised controlled trial
- Trial Design: phase 3, parallel-group, international multicentre (n = 119)
- Country/ies: Australia, Austria, Belgium, Canada, Croatia, Czech Republic, France, Germany, Ireland, Israel, Italy, Japan, Korea, Netherlands, Serbia, Spain, Switzerland, United Kingdom, United States

Study Duration
- 1 year

Participants
- Number: 209 (placebo group)
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 63.2 years (standard deviation 9.1)
- Gender: 63.6% male
- Ethnicity: not stated
- Smoking status: 68% ever smoker
- Use of home oxygen therapy: 11%
- Time since diagnosis: median 0.5 years (range 0.05-4.72)
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: 46.9%
- Lung function results (% predicted): mean FVC 73.1(standard deviation 15.3); mean DLCO 47.9 (standard deviation 12.7)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: Dyspnoea Index: mean 7.6 (standard deviation
| Study Design | Participants | Outcomes | Notes |
|--------------|--------------|----------|-------|
| • Type of Study: randomised controlled trial | • Number: 277 (placebo group) | • Proportion of mortality | Funding source: industry |
| • Trial Design: phase 3, parallel-group, international multicentre (n = 129) | • Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management | • Change in forced vital capacity | |
| • Country/ies: Australia, Brazil, Croatia, Israel, Mexico, New Zealand, Peru, Singapore, United States | • Age: mean 67.8 years (standard deviation 7.3) | • Change in diffusing capacity for carbon monoxide | |
| Study Duration | Participants | Outcomes | Notes |
| 1 year | • Ethnicity: Caucasian 90.6% | • Change in dyspnoea (Transition Dyspnoea Index) | |
| • Smoking status: 61% ex-smoker | | | |
| | • Use of home oxygen therapy: 27.4% | | |
| | • Time since diagnosis: mean 1.7 years (standard deviation 1.1) | | |
| | • Percentage of patients with surgical lung biopsy: 28.5% | | |
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: 94.6% | | |
| | • Lung function results (% predicted): mean FVC 68.6 (standard deviation 10.9); mean DLCO 44.2 (standard deviation 12.5) | | |
| | • Resting oxyhaemoglobin saturation: not stated | | |
| | • 6-minute walk distance: mean 420.7m (standard deviation 98.1) | | |
| | • Symptom assessment: University of California San Diego Shortness of Breath Questionnaire score: mean 36.6 (standard deviation 21.7) | | |
| | • Use of systemic corticosteroid therapy: not allowed | | |
| | • Use of other therapy: not allowed | | |
| Kolb 1998 [79] | | • Proportion of patients with disease progression | |
| Study Design | Participants | Outcomes | Notes |
| • Type of Study: retrospective cohort | • Number: 18 | • Proportion of mortality | |
| • Trial Design: single centre | • Definition of diagnosis: clinical and radiological criteria: breathlessness, presence of fine crackles, especially in the bases, diffuse interstitial shadowing on chest radiography | • Idiopathic pulmonary fibrosis-related mortality | |
| • Country/ies: Germany | | • Proportion of patients with disease progression | |
| Study Duration | Participants | Outcomes | Notes |
| At least 1 year | • | | |
| | | • | |
| 163 |
• Age: median 58.5 years (range 36-75)
• Gender: 44% male
• Ethnicity: not stated
• Smoking status: 28% ever smoker
• Use of home oxygen therapy: not stated
• Time since diagnosis: median 19.5 months (range 6-90)
• Percentage of patients with surgical lung biopsy: not stated
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results (% predicted): mean FVC 52.39 (standard deviation 14.48)
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: 100%
• Use of other therapy: cyclophosphamide 100%

Outcomes
Proportion of mortality
Duration of survival

Notes
Funding source: unclear

Kondoh 2005 [80]

Study Design
• Type of Study: retrospective cohort
• Trial Design: national multicentre (n = 6)
• Country/ies: Japan

Study Duration
4 years

Participants
• Number: 27
• Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement; the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
• Age: mean 56 years (standard deviation 10.9)
• Gender: 74% male
• Smoking status: 74% ever smoker
• Use of home oxygen therapy: not stated
• Time since diagnosis: not stated
• Percentage of patients with surgical lung biopsy: 100%
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results (% predicted): mean FVC 66.2 (standard deviation 18.2); mean DLCO 60.8 (standard deviation 18.2)
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: 100%
• Use of other therapy: not stated

Outcomes
• Proportion of mortality
• Proportion of patients with disease progression

Notes
Funding source: unclear

Kondoh 2005

Study Design
Retrospective cohort study

Participants
27 patients

Definition of diagnosis
2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement; 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement

Age
Mean 56 years (SD 10.9)

Gender
74% male

Smoking status
74% ever smoker

Use of home oxygen therapy
Not stated

Time since diagnosis
Not stated

Percentage of patients with surgical lung biopsy
100%

Percentage of patients with definite usual interstitial pneumonia patterns on HRCT
Not stated

Lung function results (% predicted)
Mean FVC 66.2 (SD 18.2); mean DLCO 60.8 (SD 18.2)

Resting oxyhaemoglobin saturation
Not stated

6-minute walk distance
Not stated

Symptom assessment
Not stated

Use of systemic corticosteroid therapy
100%

Use of other therapy
Not stated

Outcomes
Proportion of mortality
Duration of survival

Notes
Funding source: unclear
Kondoh 2010 [81]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Japan

Study Duration
- 3 years

Participants
- Number: 74
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 64.1 years (standard deviation 7.4)
- Gender: 82% male
- Ethnicity: not stated
- Smoking status: 73% ever smokers
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 41%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 77.0 (standard deviation 19.2); mean DLCO 59.3 (standard deviation 18.7)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Duration of survival

Notes
- Funding source: public

Korthagen 2011 [82]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: Netherlands

Study Duration
- At least 1 year

Participants
- Number: 85
- Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
- Age: mean 65 years (standard deviation 10)
- Gender: 84% male
- Ethnicity: not stated
- Smoking status: 68% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV1 82 (standard deviation 23); FVC 78 (standard deviation 23); mean DLCO 48 (standard deviation 18)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
| Study Design | Study Duration | Participants | Outcomes | Notes |
|--------------|----------------|--------------|----------|-------|
| **Kotecha 2016 [83]** | At least 1 year | Number: 27 | Proportion of mortality, Progression-free survival | Funding source: unclear |
| **Study Design** | | Type of Study: prospective cohort | | |
| | | Trial Design: single centre | | |
| | | Country/ies: United Kingdom | | |
| **Participants** | | Number: 27 | | |
| | | Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management | | |
| | | Age: mean 72.8 years (standard deviation 9.5) | | |
| | | Gender: 85% male | | |
| | | Ethnicity: not stated | | |
| | | Smoking status: 70% ex-smokers | | |
| | | Use of home oxygen therapy: 7% | | |
| | | Time since diagnosis: mean 35 months (standard deviation 27 months) | | |
| | | Percentage of patients with surgical lung biopsy: not stated | | |
| | | Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated | | |
| | | Lung function results (% predicted): mean FVC 71.8 (standard deviation 18.1); mean DLCO 43.3 (standard deviation 16.0) | | |
| | | Resting oxyhaemoglobin saturation: not stated | | |
| | | 6-minute walk distance: not stated | | |
| | | Symptom assessment: not stated | | |
| | | Use of systemic corticosteroid therapy: not stated | | |
| | | Use of other therapy: not stated | | |
| **Outcomes** | | Proportion of mortality | | |
| | | Progression-free survival | | |
| **Notes** | | Funding source: unclear | | |

Study Design	Study Duration	Participants	Outcomes	Notes
Kreuter 2016 [84]	At least 1 year	Number: 272		
Study Design		Type of Study: retrospective cohort		
		Trial Design: single centre		
		Country/ies: Germany		
Study Duration		At least 1 year		
Participants		Number: 272		
		Definition of diagnosis: multidisciplinary diagnosis		
		Age: mean 68.5 years (standard deviation 9)		
		Gender: 76.5% male		
		Ethnicity: not stated		
		Smoking status: 62%		
		Use of home oxygen therapy: not stated		
		Time since diagnosis: not stated		
		Percentage of patients with surgical lung biopsy: not stated		
		Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated		
		Lung function results (% predicted): mean FEV1 80.3 (standard deviation 18.0)		

| Notes | | Funding source: unclear | | |
| Study Design |
| --- | --- |
| Kurashima 2010 [85] |
| Type of Study: retrospective cohort
| Trial Design: single centre
| Country/ies: Japan |
| Study Duration | At least 1 year |
| Participants |
| Number: 660
| Definition of diagnosis: Usual interstitial pneumonia pattern on HRCT and exclusion of all other diagnoses
| Age: mean 72.9 years (standard deviation 8.1) for UIP group, 71.1 (7.7) for UIP/emphysema group
| Gender: 83% male
| Ethnicity: not stated
| Smoking status: 83% ever smoker
| Use of home oxygen therapy: not stated
| Time since diagnosis: not stated
| Percentage of patients with surgical lung biopsy: not stated
| Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| Lung function results (% predicted): mean FEV\(_1\) 86.7 (standard deviation 21.3) for UIP group, 87.9 (19.9) for UIP/emphysema group; mean FVC 71.8 (standard deviation 19.4) for UIP group, 87.1 (17.0) for UIP/emphysema group; mean DLCO 74.3 (standard deviation 20.1) for UIP group, 65.2 (20.9) for UIP/emphysema group
| Resting oxyhaemoglobin saturation: not stated
| 6-minute walk distance: not stated
| Symptom assessment: not stated
| Use of systemic corticosteroid therapy: 1.5%
| Use of other therapy: not stated |
| Outcomes | Duration of survival |
| Notes | Funding source: unclear |

| Study Design |
| --- | --- |
| Le Rouzic 2015 [90] |
| Type of Study: Retrospective cohort
| Trial Design: Single centre
| Country/ies: France |
| Study Duration | At least 4 years |
| Participants |
| Number: 66 (26 definite usual interstitial pneumonia)
| Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis |
Participants
- **Number:** 2635
- **Definition of diagnosis:** determined by transplant physicians
- **Age:** 36-54 years
- **Gender:** 62% male
- **Ethnicity:** 86% Caucasians 86%, African Americans 11%, Hispanic 6.56%
- **Smoking status:** not stated
- **Use of home oxygen therapy:** not stated
- **Time since diagnosis:** not stated
- **Percentage of patients with surgical lung biopsy:** not stated
- **Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:** not stated
- **Lung function results (% predicted):** mean FEV₁ 53 (standard deviation 17) in Caucasians, 45 (17) in African Americans, 47 (17) in Hispanics; mean FVC 51 (standard deviation 17) in Caucasians, 44 (15) in African Americans, 45 (16) in Hispanics
- **Resting oxyhaemoglobin saturation:** not stated
- **6-minute walk distance:** not stated
- **Symptom assessment:** not stated

Outcomes
- **Duration of survival**
- **Change in 6-minute walk distance**

Notes
- **Funding source:** unclear

Study Design
- **Type of Study:** retrospective cohort
- **Trial Design:** national multicentre (n = 94)
- **Country/ies:** USA

Study Duration
- **At least 1 year**
| Study Design | Participants |
|--------------|--------------|
| Type of Study: retrospective cohort | Number: 86 |
| Trial Design: single centre | Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement |
| Country/ies: Korea | Age: mean 61.3 years (standard deviation 8.9) |
| | Gender: 64% male |
| | Ethnicity: not stated |
| | Smoking status: not stated |
| | Use of home oxygen therapy: not stated |
| | Time since diagnosis: not stated |
| | Percentage of patients with surgical lung biopsy: not stated |
| | Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated |
| | Lung function results: not stated |
| | Resting oxyhaemoglobin saturation: not stated |
| | 6-minute walk distance: not stated |
| | Symptom assessment: not stated |
| | Use of systemic corticosteroid therapy: 83% |
| | Use of other therapy: not stated |

| Outcomes | Proportion of mortality |
| Notes | Funding source: unclear |
| Author provided additional data for clarification of study duration and survival/mortality. |

Lee 2012 [88]

Study Design	Participants
Type of Study: Retrospective cohort	Number: 101
Trial Design: Single centre	Definition of diagnosis: biopsy confirmed
Country/ies: Korea	Age: mean 59 years (standard deviation 7)
	Gender: 51% male
	Ethnicity: not stated
	Smoking status: not stated
	Use of home oxygen therapy: not stated
	Time since diagnosis: not stated
	Percentage of patients with surgical lung biopsy: not stated
	Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
	Lung function results (% predicted): mean FEVC 82 (standard deviation
Study Design	• Type of Study: Retrospective cohort
• Trial Design: Single centre	
• Country/ies: Korea	
-------------	---
Study Duration	3 years
Participants	• Number: 606
• Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement:	
Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management	
• Age: mean 69.5 years (standard deviation 8.6) for usual interstitial pneumonia group, 69.5 (10.3) for possible usual interstitial pneumonia group	
• Gender: 75% male for usual interstitial pneumonia group, 64.5% for possible usual interstitial pneumonia group	
• Ethnicity: not stated	
• Smoking status: 54% ever smokers for usual interstitial pneumonia group, 58% for possible usual interstitial pneumonia group	
• Use of home oxygen therapy: not stated	
• Time since diagnosis: not stated	
• Percentage of patients with surgical lung biopsy: not stated	
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
• Lung function results (% predicted): mean FEV1 90.8 (standard deviation 23.0) for usual interstitial pneumonia group, 94.9 (23.2) for possible usual interstitial pneumonia group; mean FVC 80.8 (standard deviation 20.4) for usual interstitial pneumonia group, 86.3 (17.6) for possible usual interstitial pneumonia group; mean DLCO 72.1 (standard deviation 23.7) for usual interstitial pneumonia group, 85.8 (26.5) for possible usual interstitial pneumonia group	
• Resting oxyhaemoglobin saturation: mean 98.0 % (standard deviation 4.0) for usual interstitial pneumonia group, 94.0% (2.5) for possible usual interstitial pneumonia group	
• 6-minute walk distance: not stated	
• Symptom assessment: mean MMRC scale 1.3 (standard deviation 1.2) for usual interstitial pneumonia group, 1.0 (1.0) for possible usual interstitial pneumonia group	
• Use of systemic corticosteroid therapy: not stated	
• Use of other therapy: not stated	
Outcomes	Proportion of mortality
Notes	Funding source: unclear

Lee 2015 [89]

Study Design	• Type of Study: Retrospective cohort
Study Duration	3 years
Participants	• Number: 606
• Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement:	
Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management	
• Age: mean 69.5 years (standard deviation 8.6) for usual interstitial pneumonia group, 69.5 (10.3) for possible usual interstitial pneumonia group	
• Gender: 75% male for usual interstitial pneumonia group, 64.5% for possible usual interstitial pneumonia group	
• Ethnicity: not stated	
• Smoking status: 54% ever smokers for usual interstitial pneumonia group, 58% for possible usual interstitial pneumonia group	
• Use of home oxygen therapy: not stated	
• Time since diagnosis: not stated	
• Percentage of patients with surgical lung biopsy: not stated	
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
• Lung function results (% predicted): mean FEV1 90.8 (standard deviation 23.0) for usual interstitial pneumonia group, 94.9 (23.2) for possible usual interstitial pneumonia group; mean FVC 80.8 (standard deviation 20.4) for usual interstitial pneumonia group, 86.3 (17.6) for possible usual interstitial pneumonia group; mean DLCO 72.1 (standard deviation 23.7) for usual interstitial pneumonia group, 85.8 (26.5) for possible usual interstitial pneumonia group	
• Resting oxyhaemoglobin saturation: mean 98.0 % (standard deviation 4.0) for usual interstitial pneumonia group, 94.0% (2.5) for possible usual interstitial pneumonia group	
• 6-minute walk distance: not stated	
• Symptom assessment: mean MMRC scale 1.3 (standard deviation 1.2) for usual interstitial pneumonia group, 1.0 (1.0) for possible usual interstitial pneumonia group	
• Use of systemic corticosteroid therapy: not stated	
• Use of other therapy: not stated	
Outcomes	Proportion of mortality
Notes	Funding source: unclear

Li 2010 [91]

Study Design	• Type of Study: Retrospective cohort
Study Design
- **Type of Study**: prospective cohort
- **Trial Design**: single centre
- **Country/ies**: China

Study Duration
- **At least 1 year**

Participants
- **Number**: 126
- **Definition of diagnosis**: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- **Age**: not stated
- **Gender**: not stated
- **Ethnicity**: not stated
- **Smoking status**: 60% ever smokers
- **Use of home oxygen therapy**: not stated
- **Time since diagnosis**: not stated
- **Percentage of patients with surgical lung biopsy**: not stated
- **Percentage of patients with definite usual interstitial pneumonia patterns on HRCT**: 30%
- **Lung function results**: mean DLCO 55% predicted
- **Resting oxyhaemoglobin saturation**: not stated
- **6-minute walk distance**: not stated
- **Symptom assessment**: not stated
- **Use of systemic corticosteroid therapy**: 75%
- **Use of other therapy**: not stated

Outcomes
- **Duration of survival**

Notes
- **Funding source**: unclear

Li 2012 [92]

Study Design	Type of Study: prospective cohort
	Trial Design: single centre
	Country/ies: China
Study Duration	1 year

Participants	Number: 30
Definition of diagnosis: ATS/ERS guideline (specific guideline not stated)	
Age: mean 65 +/- 10 years	
Gender: 53% male	
Ethnicity: not stated	
Smoking status: 33% ever smoker	
Use of home oxygen therapy: not stated	
Time since diagnosis: not stated	
Percentage of patients with surgical lung biopsy: not stated	
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
Lung function results: not stated	
Resting oxyhaemoglobin saturation: not stated	
6-minute walk distance: not stated	
Symptom assessment: St George’s Respiratory Questionnaire score: mean 61.7 +/- 17.72	
Use of systemic corticosteroid therapy: not stated	
Use of other therapy: not stated	

Outcomes	Proportion of mortality
	Duration of survival

Notes	Funding source: unclear
Li 2015 [93]

| **Study Design** | • Type of Study: retrospective cohort
| | • Trial Design: single centre
| | • Country/ies: China
| **Study Duration** | mean 46 months (range 13 to 84)
| **Participants** | • Number: 55
| | • Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
| | • Age: mean 60 years
| | • Gender: 71% male
| | • Ethnicity: not stated
| | • Smoking status: 42% ever smoker
| | • Use of home oxygen therapy: not stated
| | • Time since diagnosis: not stated
| | • Percentage of patients with surgical lung biopsy: not stated
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | • Lung function results: not stated
| | • Resting oxyhaemoglobin saturation: not stated
| | • 6-minute walk distance: not stated
| | • Symptom assessment: not stated
| | • Use of systemic corticosteroid therapy: not stated
| | • Use of other therapy: not stated
| **Outcomes** | Duration of survival
| **Notes** | Funding source: unclear

Lindell 2015 [94]

| **Study Design** | • Type of Study: retrospective cohort
| | • Trial Design: single centre
| | • Country/ies: United States
| **Study Duration** | At least 1 year
| **Participants** | • Number: 404
| | • Definition of diagnosis: diagnosis at interstitial lung disease centres
| | • Age: mean 71.5 years (standard deviation 9.2 years)
| | • Gender: 65% male
| | • Ethnicity: Caucasian 97.3%
| | • Smoking status: not stated
| | • Use of home oxygen therapy: not stated
| | • Time since diagnosis: not stated
| | • Percentage of patients with surgical lung biopsy: not stated
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | • Lung function results (% predicted): mean FVC 60.5 (standard deviation 18.1); mean DLCO 41.2 (standard deviation 16.7)
| | • Resting oxyhaemoglobin saturation: not stated
| | • 6-minute walk distance: not stated
| | • Symptom assessment: not stated
| | • Use of systemic corticosteroid therapy: not stated
| | • Use of other therapy: not stated
| **Outcomes** | • Proportion of mortality

172
Liu 2017 [95]

| Study Design | Type of Study: retrospective cohort
| | Trial Design: single centre
| | Country/ies: China
| Study Duration | 1 year
| Participants | Number: 69
| | Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
| | Age: mean 68 years (standard deviation 6)
| | Gender: 67% male
| | Ethnicity: not stated
| | Smoking status: 72% ever smokers
| | Use of home oxygen therapy: not stated
| | Time since diagnosis: not stated
| | Percentage of patients with surgical lung biopsy: not stated
| | Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | Lung function results (% predicted): mean FVC 71 (standard deviation 15), mean DLCO 52 (standard deviation 15)
| | Resting oxyhaemoglobin saturation: not stated
| | 6-minute walk distance: not stated
| | Symptom assessment: not stated
| | Use of systemic corticosteroid therapy: not stated
| | Use of other therapy: not stated
| Outcomes | Duration of survival (Kaplan-Meier Curve – data not extractable)
| Notes | Duration of survival

Lutherer 2011 [96]

| Study Design | Type of Study: prospective cohort
| | Trial Design: single centre
| | Country/ies: United States
| Study Duration | 1 year
| Participants | Number: 12
| | Definition of diagnosis: ATS criteria (no further details specified)
| | Age: mean 67 years (range 50-82)
| | Gender: not stated
| | Ethnicity: not stated
| | Smoking status: not stated
| | Use of home oxygen therapy: not stated
| | Time since diagnosis: not stated
| | Percentage of patients with surgical lung biopsy: 25%
| | Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | Lung function results (% predicted): mean FVC 57 (range 36.7-73.4)
| | Resting oxyhaemoglobin saturation: not stated
| | 6-minute walk distance: not stated
| | Symptom assessment: not stated
| Notes | Funding source: unclear
Malouf 2011 [181]

Study Design
- Type of Study: randomised controlled trial
- Trial Design: parallel-group, national multicentre (n = 6)
- Country/ies: Australia

Study Duration
- 3 years

Participants
- Number: 45 (placebo group)
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 60 years (standard deviation 9)
- Gender: 71% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 100%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 69 (standard deviation 20); mean DLCO%: 42 (standard deviation 14)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: placebo: mean 451m (standard deviation 118)
- Symptom assessment: Medical Outcomes Study Short-Form Health Survey (SF-36) – physical component: mean 48.60 (standard deviation 12.64); Medical Outcomes Study Short-Form Health Survey (SF-36) – mental component: mean 28.35 (standard deviation 9.91)
- Use of systemic corticosteroid therapy: 26.7%
- Use of other therapy: not stated

Outcomes
- Proportion of mortality

Notes
- Funding source: unclear

Mapel 1998 [97]

Study Design
- Type of Study: prospective cohort
- Trial Design: national using the New Mexico Interstitial Lung Disease Registry
- Country/ies: USA

Study Duration
- At least 1 year

Participants
- Number: 209
- Definition of diagnosis: International Classification of Diseases, 9th revision
- Age: mean 71.7 years (standard deviation 12.3)
- Gender: 55% male
- Ethnicity: Non-Hispanic White 61.2%, Hispanic 23.0%, Native American 1.9%, African American 1.4%, Other 12.4%
- Smoking status: 61% ever smoker, 10.5% unknown
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
Martinez 2014 [182]

Study Design	Study Duration	Participants	Outcomes
Type of Study: randomised controlled trial	60 weeks	Number: 131 (placebo group)	Proportion of mortality
Trial Design: phase 3, parallel-group, multicentre (n = 25)		Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management	Respiratory-specific mortality
Country/ies: United States		Age: mean 67.2 years (standard deviation 8.2)	Change in forced vital capacity
		Gender: 74.8% male	Change in diffusing capacity for carbon monoxide
		Ethnicity: Caucasian 96.2%	Change in dyspnoea (University of California San Diego Shortness of Breath Questionnaire)
		Smoking status: 74.8% ever smoker	Change in health-related quality of life (St George’s Respiratory Questionnaire, EuroQoL visual analogue score)
		Use of home oxygen therapy: not stated	Change in 6-minute walk distance
		Time since diagnosis: mean 1.1 years (standard deviation 1.0)	
		Percentage of patients with surgical lung biopsy: not stated	
		Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
		Lung function results (% predicted): mean FVC 73.4 (standard deviation 14.3); mean DLCO 46.0 (standard deviation 12.2)	
		Resting oxyhaemoglobin saturation: not stated	
		6-minute walk distance: mean 375m (standard deviation 105)	
		Symptom assessment: University of California San Diego Shortness of Breath Questionnaire: mean 27.1 (standard deviation 18.7); total St George’s Respiratory Questionnaire: mean 38.0 (standard deviation 17.2); Short Form- physical score: mean 40.7 (standard deviation 9.3); Short Form-36 mental score: 55.3 (standard deviation 7.5); EuroQoL Visual Analogue Scale: mean 77.7 (standard deviation 14.3)	
		Use of systemic corticosteroid therapy: 0%	
		Use of other therapy: not stated	

Notes:
- Funding source: public

Outcomes:
- Proportion of mortality
- Respiratory-specific mortality
- Change in forced vital capacity
- Change in diffusing capacity for carbon monoxide
- Change in dyspnoea (University of California San Diego Shortness of Breath Questionnaire)
- Change in health-related quality of life (St George’s Respiratory Questionnaire, EuroQoL visual analogue score)
- Change in 6-minute walk distance
Marulli 2010 [98]

| **Study Design** | • Type of Study: Retrospective cohort
| | • Trial Design: single centre
| | • Country/ies: Italy
| **Study Duration** | 1 year
| **Participants** | • Number: 56
| | • Definition of diagnosis: unclear
| | • Age: not stated
| | • Gender: not stated
| | • Ethnicity: not stated
| | • Smoking status: not stated
| | • Use of home oxygen therapy: not stated
| | • Time since diagnosis: not stated
| | • Percentage of patients with surgical lung biopsy: not stated
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | • Lung function results: median DLCO 14.9 +/- 7.4 for non-survivors, 25.3 +/- 12.3 for survivors
| | • Resting oxyhaemoglobin saturation: not stated
| | • 6-minute walk distance: not stated
| | • Symptom assessment: not stated
| | • Use of systemic corticosteroid therapy: not stated
| | • Use of other therapy: not stated
| **Outcomes** | Proportion of mortality
| **Notes** | Funding source: mixed

Mason 2007 [99]

| **Study Design** | • Type of Study: retrospective cohort
| | • Trial Design: single centre
| | • Country/ies: United States
| **Study Duration** | 1 year
| **Participants** | • Number: 82
| | • Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
| | • Age: mean 52 years (standard deviation 11)
| | • Gender: 63% male
| | • Ethnicity: Caucasian 84%
| | • Smoking status: 59% ever smoker
| | • Use of home oxygen therapy: not stated
| | • Time since diagnosis: not stated
| | • Percentage of patients with surgical lung biopsy: not stated
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | • Lung function results (% predicted): mean FEV1 44 (standard deviation 15); mean FVC 44 (standard deviation 15)
| | • Resting oxyhaemoglobin saturation: not stated
| | • 6-minute walk distance: not stated
| | • Symptom assessment: not stated
| | • Use of systemic corticosteroid therapy: not stated
| **Notes** | Funding source: unclear
McKeown 2009 [100]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre trial
- Country/ies: United Kingdom

Study Duration
- 3 years

Participants
- Number: 20
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 70 years (range 52-86)
- Gender: 80% male
- Ethnicity: not stated
- Smoking status: 85% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 25%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 73 (standard deviation 19.7); mean DLCO 49 (standard deviation 14.4)
- Resting oxyhaemoglobin saturation: mean 94% (standard deviation 3)
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality
- Duration of survival

Notes
- Funding source: unclear

Meier-Sydow 1979 [101]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Germany

Study Duration
- At least 1 year

Participants
- Number: 21
- Definition of diagnosis: histologic pattern of UIP or based on history, clinical findings on physical examination, physiologic data and radiographic findings
- Age: not stated
- Gender: not stated
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: mean FVC 1.73 (standard deviation 0.52) for
| | azathioprine group, 2.32 (0.88) for D-penicillamine group |
|----------------------|--|
| | • Resting oxyhaemoglobin saturation: not stated |
| | • 6-minute walk distance: not stated |
| | • Symptom assessment: not stated |
| | • Use of systemic corticosteroid therapy: 100% |
| | • Use of other therapy: azathioprine 52%, D-penicillamine 48% |

Outcomes
Proportion of mortality

Notes
Funding source: unclear

Meier-Sydow 1990 [102]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: Germany

Study Duration
10 years

Participants
- Number: 37
- Definition of diagnosis: lung biopsy
- Age: mean 52 +/- 11 years for prednisolone group, 58 +/- 9 for azathioprine group, 53 +/- 11 for D-penicillamine group
- Gender: not stated
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: mean FVC 2.7 +/- 1.0 L for prednisolone group, 2.2 +/- 0.7 for azathioprine group, 2.0 +/- 0.5 for D-penicillamine group; mean DLCO 9.6 +/- 5.2 for prednisolone group, 9.3 +/- 2.8 for azathioprine group, 7.4 +/- 3.9 for D-penicillamine group
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 30%
- Use of other therapy: azathioprine 41%, D-penicillamine 30%

Outcomes
Duration of survival

Notes
Funding source: unclear

Mermigkis 2015 [103]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: Greece

Study Duration
2 years

Participants
- Number: 55
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: not stated
- Gender: not stated
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
| Outcomes | Proportion of mortality |
|----------|-------------------------|
| Notes | Funding source: unclear |

Mirrani 2012 [104]

Study Design
Type of Study: retrospective cohort
Trial Design: single centre
Country/ies: United Kingdom

Study Duration
10 years

Participants
Number: 72
Definition of diagnosis: unclear
Age: not stated
Gender: not stated
Ethnicity: not stated
Smoking status: not stated
Use of home oxygen therapy: not stated
Time since diagnosis: not stated
Percentage of patients with surgical lung biopsy: 2.7%
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
Lung function results (% predicted): mean FVC 84 (standard deviation 20.9); mean DLCO 52 (standard deviation 20)
Resting oxyhaemoglobin saturation: not stated
6-minute walk distance: not stated
Symptom assessment: not stated
Use of systemic corticosteroid therapy: not stated
Use of other therapy: not stated

Outcomes
Proportion of mortality
Duration of survival

Notes
Funding source: unclear

Moeller 2009 [105]

Study Design
Type of Study: prospective cohort
Trial Design: single centre
Country/ies: Canada

Study Duration
2 years

Participants
Number: 58
Definition of diagnosis: the 2002 American Thoracic Society/European
Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement

- Age: mean 68 years (standard error 9.8) for stable patients, 72.4 years (6) for acute patients
- Gender: 33% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 29%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 65.3 (standard error 18.1) for stable patients, 56.3 (17.6) for acute patients
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality
- Duration of survival

Notes
- Funding source: public

Mogulkoc 2001 [106]

Study Design	Type of Study: prospective cohort
	Trial Design: single centre
	Country/ies: UK

| Study Duration | 2 years |

Participants	Number: 95
	Definition of diagnosis: exclusion of other diagnosis of interstitial lung disease including collagen vascular disease, allergic extrinsic alveolitis
	Age: mean 55.5 years (standard deviation 8.4)
	Gender: 71% male
	Ethnicity: not stated
	Smoking status: 61% ever smoker
	Use of home oxygen therapy: not stated
	Time since diagnosis: not stated
	Percentage of patients with surgical lung biopsy: 44%
	Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
	Lung function results (% predicted): mean FEV1 70 (standard deviation 22); mean FVC 72 (standard deviation 25); mean DLCO 49 (standard deviation 17)
	Resting oxyhaemoglobin saturation: not stated
	6-minute walk distance: not stated
	Symptom assessment: not stated
	Use of systemic corticosteroid therapy: not stated
	Use of other therapy: not stated

Outcomes	Proportion of mortality
Notes	Funding source: unclear

Moore 2013 [107]
Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United Kingdom

Study Duration
1 year

Participants
- Number: 58
- Definition of diagnosis: unclear
- Age: mean 80.2 years for fast progressors, 71.8 for slow progressors
- Gender: 69% male
- Ethnicity: not stated
- Smoking status: 40% ever smokers for fast progressors, 60% for slow progressors
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Duration of survival

Notes
- Funding source: unclear

Morawiec 2011 [108]

Study Design	Type of Study: prospective cohort
	Trial Design: single centre
	Country/ies: France

Study Duration
1 year

Participants
- Number: 18
- Definition of diagnosis: unclear
- Age: median 67 years (interquartile range 65-72)
- Gender: 88.9% male
- Ethnicity: 94.4% Caucasian
- Smoking status: 50% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 70 (interquartile range 62-78); mean DLCO 42 (interquartile range 39-47)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: mean 145m (interquartile range 350-425)
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality

Notes
- Funding source: unclear

Moua 2016 [109]
| Study Design | • Type of Study: retrospective cohort
| | • Trial Design: single centre
| | • Country/ies: United States

| Study Duration | At least 1 year

| Participants | • Number: 100
| | • Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
| | • Age: mean 73.1 years (standard deviation 8.7)
| | • Gender: not stated
| | • Smoking status: not stated
| | • Use of home oxygen therapy: not stated
| | • Time since diagnosis: not stated
| | • Percentage of patients with surgical lung biopsy: not stated
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | • Lung function results: not stated
| | • Resting oxyhaemoglobin saturation: not stated
| | • 6-minute walk distance: not stated
| | • Symptom assessment: not stated
| | • Use of systemic corticosteroid therapy: not stated
| | • Use of other therapy: not stated

| Outcomes | Duration of survival

| Notes | Funding source: public

Mura 2012 [110]

| Study Design | • Type of Study: prospective and retrospective cohort
| | • Trial Design: single centre
| | • Country/ies: Italy

| Study Duration | At least 1 year

| Participants | • Number: 70 for prospective study, 68 for retrospective study
| | • Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
| | • Age: mean 67 years (standard deviation 8) for prospective study, 62 (9) for retrospective study
| | • Gender: 81% male for prospective study, 74% for retrospective study
| | • Smoking status: 63% ever smokers for prospective study, 62% for retrospective study
| | • Use of home oxygen therapy: not stated
| | • Time since diagnosis: not stated
| | • Percentage of patients with surgical lung biopsy: 33% for prospective study, 32% for retrospective study
| | • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| | • Lung function results (% predicted): mean FVC 75 (standard deviation 22) for prospective study, 75 (21) for retrospective study; mean DLCO 46 (standard deviation 19) for prospective study, 55 (17) for retrospective study
| | • Resting oxyhaemoglobin saturation: not stated
Nadrous 2004 [111]
Study Design
Type of Study: retrospective cohort
Trial Design: single centre
Country/ies: United States
Study Duration 2 years
Participants
Number: 478
Definition of diagnosis: compatible clinical characteristics plus either consistent high-resolution chest CT findings or histopathologic evidence
Age: not stated
Gender: 70% male
Ethnicity: not stated
Smoking status: 66% ever smokers, 1% unknown
Use of home oxygen therapy: 16%
Time since diagnosis: not stated
Percentage of patients with surgical lung biopsy: not stated
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
Lung function results (% predicted): mean FEV1 70.6 (standard deviation 17.4); mean FVC 67.7 (standard deviation 18.8); mean DLCO 51.7 (standard deviation 16.4)
Resting oxyhaemoglobin saturation: mean 93.1% (standard deviation 2.4)
6-minute walk distance: not stated
Symptom assessment: not stated
Use of systemic corticosteroid therapy: 26%
Use of other therapy: colchicine 38%
Outcomes Duration of survival
Notes Funding source: public

Nagai 1998 [112]
Study Design
Type of Study: retrospective cohort
Trial Design: national
Country/ies: Japan
Study Duration 7 years
Participants
Number: 64
Definition of diagnosis: unclear
Age: mean 59.5 years (standard deviation 10)
Gender: 86% male
Ethnicity: not stated
Smoking status: 83% ever smoker
Use of home oxygen therapy: not stated
Time since diagnosis: not stated
Nambiar 2017 [113]

Study Design
• Type of Study: retrospective cohort
• Trial Design: national multicentre (n = 3)
• Country/ies: USA
Study Duration
Participants
• Number: 41
• Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
• Age: mean 66.1 years (standard deviation 8.9)
• Gender: 63.4% male
• Ethnicity: Caucasian 58%, Hispanic 39%
• Smoking status: 78% ex-smoker
• Use of home oxygen therapy: 85.4%
• Time since diagnosis: mean 15.5 years (standard deviation 9.5)
• Percentage of patients with surgical lung biopsy: 29.3%
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: 90.2%
• Lung function results (% predicted): mean FVC 63.3 (standard deviation 17.3); mean DLCO 44.1 (standard deviation 17.5)
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: 39%
• Use of other therapy: mycophenolate mofetil 27%, N-acetylcysteine 59%, azathioprine 15%
Outcomes
• Duration of survival
• Proportion of patients with disease progression
Notes

Natsuizaka 2014 [114]	
Study Design	
• Type of Study: retrospective cohort	
• Trial Design: national based on the application of the Certificate of Medical Benefit in Hokkaido prefecture	
• Country/ies: Japan	
Study Duration	At least 1 year
Participants	
• Number: 553	
• Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Management | |
Treatment International Consensus Statement

- Age: mean 70 years (standard deviation 9)
- Gender: 73% male
- Ethnicity: not stated
- Smoking status: 68% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: 61.1% FVC < 80% predicted, 84.3% DLCO < % predicted
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Duration of survival

Notes
- Funding source: unclear

Nicholson 2000 [115]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United Kingdom

Study Duration
- 10 years

Participants
- Number: 37
- Definition of diagnosis: bibasal/widespread crackles (most prominent at bases); abnormalities consistent with bilateral lung fibrosis on chest radiography; restrictive functional defect or isolated reduction DLCO; absence of occupational/environmental cause for pulmonary fibrosis
- Age: mean 57.2 years (standard deviation 7.1)
- Gender: 89% male
- Ethnicity: not stated
- Smoking status: 86% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 71.5 (standard deviation 16.1); mean DLCO 43.5 (standard deviation 11.6)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality
- Duration of survival

Notes
- Funding source: unclear

Nicol 2015 [116]

Study Design
- Type of Study: retrospective cohort
| Study Design | Type of Study: retrospective cohort
| Country/ies: Japan |
| Study Duration | 1 year |
| Participants | Number: 114
| Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
| Age: mean 73.8 years (standard deviation 6.8)
| Gender: 82% male
| Ethnicity: not stated
| Smoking status: 75% ever smokers, 13% unknown
| Use of home oxygen therapy: not stated
| Time since diagnosis: not stated
| Percentage of patients with surgical lung biopsy: not stated
| Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
| Lung function results (% predicted): mean FEV1 77.2 (standard deviation 19.6); mean FVC 75.2 (standard deviation 23.3); mean DLCO 69.5 (standard deviation 22.7)
| Resting oxyhaemoglobin saturation: not stated
| 6-minute walk distance: not stated
| Outcomes | Proportion of mortality |
|---|---|
| Notes | • Funding source: no funding
• Author provided additional data for clarification of study duration and survival/mortality. |

Nishiyama 2016b [118]

| Study Design | • Type of Study: prospective cohort
• Trial Design: single centre
• Country/ies: Japan |
|---|---|
| Study Duration | At least 1 year |
| Participants | • Number: 44
• Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
• Age: mean 72.3 years (standard deviation 7.2)
• Gender: 80% male
• Ethnicity: not stated
• Smoking status: not stated
• Use of home oxygen therapy: not stated
• Time since diagnosis: not stated
• Percentage of patients with surgical lung biopsy: not stated
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results (% predicted): mean FEV1 84.4% (standard deviation 17.4); mean FVC 82.6 (standard deviation 20.8); mean DLCO 69.3 (standard deviation 19.3)
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: mean 412m (standard deviation 90)
• Symptom assessment: St George’s Respiratory Questionnaire-Symptoms score: mean 44.7 (standard deviation 22.8); St George’s Respiratory Questionnaire-Activity score: mean 45.9 (standard deviation 24.6); St George’s Respiratory Questionnaire-Impacts score: mean 26.6 (standard deviation 20.4); total St George’s Respiratory Questionnaire score: mean 35.7 (standard deviation 20.0); Hospital Anxiety and Depression Scale (Anxiety): mean 5.1 (standard deviation 3.8); Hospital Anxiety and Depression Scale (Depression): mean 6.0 (standard deviation 2.9)
• Use of systemic corticosteroid therapy: not stated
• Use of other therapy: not stated |
| Outcomes | Duration of survival |
| Notes | • Funding source: unclear
• Author provided additional data for clarification of study duration and survival/mortality. |

Noble 2011 [183]

| Study Design | • Type of Study: randomised controlled trial
• Trial Design: phase 3, parallel-group, international multicentre (n = 110)
• Country/ies: Australia, Belgium, Canada, France, Germany, Ireland, Italy, Mexico, Poland, Spain, Switzerland, United Kingdom, United States |
|---|---|
| Study Duration | 72 weeks |
Participants
- Number: 347
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 66.3 years (standard deviation 7.5) for Study 004, 67 (standard deviation 7.8) for Study 006
- Gender: 73% male
- Ethnicity: Caucasian 98%
- Smoking status: 67% ever smokers
- Use of home oxygen therapy: 21%
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 52%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: 93%
- Lung function results (% predicted): mean FVC 76.2 (standard deviation 15.5) for Study 004, 73.1 (14.2) for Study 006; mean DLCO 46.1 (standard deviation 10.2) for Study 004, 47.4 (9.2) for Study 006
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: mean 410 m (standard deviation 90.9) for Study 004, 399.1m (89.7) for Study 006
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality
- Idiopathic pulmonary fibrosis-related mortality
- Change in forced vital capacity
- Change in dyspnoea (University of California San Diego Shortness of Breath Questionnaire)
- Change in 6-minute walk distance
- Proportion of patients with disease progression

Notes
- Funding source: industry

Oda 2014 [119]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Japan

Study Duration
- 1 year

Participants
- Number: 98
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 76 years (standard deviation 8.0)
- Gender: 56% male
- Ethnicity: not stated
- Smoking status: 70% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV1 85.1 (standard deviation 9.15); mean FVC 71.0 (standard deviation 20.8); mean DLCO 60.0
Oldham 2015 [120]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United States

Study Duration
- At least 1 year

Participants
- Number: 196
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 68.1 years (standard deviation 8.6)
- Gender: 74.5% male
- Ethnicity: Caucasian 80.1%, Hispanic 9.2%, African American 8.2%, Asian 2.5%
- Smoking status: 74% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 79%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 59.5 (standard deviation 12.2) for hypothyroidism group, 65.4 (18.1) for non-hypothyroidism group; mean DLCO 43.3 (standard deviation 16.3) for hypothyroidism group, 50.4 (17.6) for non-hypothyroidism group
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 12.8%
- Use of other therapy: not stated

Outcomes
- Proportion of survival
- Proportion of patients with disease progression

Notes
- Funding source: public
- Author provided additional data for clarification of study duration and survival/mortality.

Parker 2016 [184]

Study Design
- Type of Study: randomised controlled trial
- Trial Design: phase 2, parallel-group, international multicentre (n = 48)
- Country/ies: Australia, Canada, Israel, Peru, South Korea, United States

Study Duration
- 1 year

Participants
- Number: 57 (placebo group)
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
• Age: mean 67.5 years (standard deviation 6.1)
• Gender: 78.9% male
• Ethnicity: White 75.4%, Asian 12.3%, other 12.3%
• Smoking status: not stated
• Use of home oxygen therapy: not stated
• Time since diagnosis: not stated
• Percentage of patients with surgical lung biopsy: not stated
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results (% predicted): mean FVC 70.3 (standard deviation 12.0); mean DLCO 47.0 (standard deviation 13.8)
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: mean 391m (standard deviation 112)
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: not stated
• Use of other therapy: not stated

Outcomes
• Proportion of mortality
• Respiratory-specific mortality
• Change in forced vital capacity
• Change in diffusing capacity for carbon monoxide
• Change in dyspnoea (University of California San Diego Shortness of Breath Questionnaire)
• Change in health-related quality of life (St George’s Respiratory Questionnaire, EuroQol-5D)
• Change in 6-minute walk distance
• Proportion of patients with disease progression

Notes
Funding source: industry

Prasse 2009 [121]

Study Design
• Type of Study: prospective cohort
• Trial Design: international multicentre, number of centres not stated
• Country/ies: Germany and Italy

Study Duration
2 years

Participants
• Number: 72
• Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
• Age: mean 65.9 years (standard deviation 8.7) for low CCL18 group, 69 (8.3) for high CCL18 group
• Gender: 68% male
• Ethnicity: not stated
• Smoking status: 46% ever smokers
• Use of home oxygen therapy: not stated
• Time since diagnosis: mean 18.9 months (standard deviation 20.9) for low CCL18 group, 19.4 (23.1) for high CCL18 group
• Percentage of patients with surgical lung biopsy: not stated
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results (% predicted): mean FVC 70.7 (standard deviation 23.4) for low CCL18 group, 66 (22.6) for high CCL18 group; mean DLCO 50.5 (standard deviation 20.2) for low CCL18 group, 44.1 (14.0) for high CCL18 group
Study Design	Outcomes	Notes
Type of Study: randomised controlled trial	Proportion of mortality	Funding source: unclear
Trial Design: phase 3, parallel-group, international multicentre (n = 136)	Respiratory-specific mortality	
Country/ies: Asia, Australia, Europe, New Zealand, North America, South America	Change in forced vital capacity	
Study Duration	Change in diffusing capacity for carbon monoxide	
1 year	Change in 6-minute walk distance	
Participants	Notes	
Number: 163 (placebo group)		
Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement		
Age: mean 65.8 years (standard deviation 7.4)	Proportion of mortality	
Gender: 74.2% male	Respiratory-specific mortality	
Ethnicity: Caucasian 89.1%	Change in forced vital capacity	
Smoking status: 68% ever smoker	Change in diffusing capacity for carbon monoxide	
Use of home oxygen therapy: not stated	Change in 6-minute walk distance	
Time since diagnosis: mean 1.1 years (standard deviation 1.4)	Notes	
Percentage of patients with surgical lung biopsy: 46.8%		
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated		
Lung function results (% predicted): mean FVC 68.7 (standard deviation 13.1); mean DLCO 42.0 (standard deviation 13.8)		
Resting oxyhaemoglobin saturation: not stated		
6-minute walk distance: mean 410.4m (standard deviation 118.7)		
Symptom assessment: St George’s Respiratory Questionnaire score: mean 44.5 (standard deviation 21.6); Transition Dyspnoea Index: mean 7.3 (standard deviation 2.4)		
Use of systemic corticosteroid therapy: not stated		
Use of other therapy: not stated		

Raghu 2013b [186]

Study Design	Outcomes	Notes
Type of Study: randomised controlled trial	Proportion of mortality	Funding source: industry
Trial Design: phase 3, parallel-group, international multicentre (n = 48)	Respiratory-specific mortality	
Country/ies: Australia, Canada, France, Germany, Israel, Italy, Slovenia, South Africa, Spain, Sweden, Turkey, United States	Change in forced vital capacity	
Study Duration	1 year	
--------------------	--------	
Participants		
Number: 59 (placebo group)		
Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement		
Age: median 64 years (range 49-81)		
Gender: 62.7% male		
Ethnicity: not stated		
Smoking status: 63% ever smokers		
Use of home oxygen therapy: not stated		
Time since diagnosis: not stated		
Percentage of patients with surgical lung biopsy: 100%		
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated		
Lung function results (% predicted): mean FVC 74.8 (standard deviation 14.6); mean DLCO 45.6 (standard deviation 11.2)		
Resting oxyhaemoglobin saturation: not stated		
6-minute walk distance: not stated		
Symptom assessment: not stated		
Use of systemic corticosteroid therapy: 25.4%		
Use of other therapy: N-acetylcysteine 22%		
Outcomes		
Proportion of mortality		
Change in forced vital capacity		
Change in diffusing capacity for carbon monoxide		
Notes	Funding source: industry	

Raghu 2014 [122]

| **Study Design** | |
| Type of Study: retrospective cohort |
| Trial Design: national trial using administrative database (Medicare beneficiaries) |
| Country/ies: United States |
| **Study Duration** | At least 1 year |
| **Participants** | |
| Number: 12066 |
| Definition of diagnosis: codes using International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) |
| Age: mean 79.4 years (standard deviation 7.2) |
| Gender: 46% male |
| Ethnicity: Caucasian 91%, African American 4%, Hispanic 2%, Other 3% |
| Smoking status: not stated |
| Use of home oxygen therapy: not stated |
| Time since diagnosis: not stated |
| Percentage of patients with surgical lung biopsy: not stated |
| Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated |
| Lung function results: not stated |
| Resting oxyhaemoglobin saturation: not stated |
| 6-minute walk distance: not stated |
| Symptom assessment: not stated |
| Use of systemic corticosteroid therapy: not stated |
| Use of other therapy: not stated |
| **Outcomes** | Duration of survival |
| **Notes** | Funding source: industry |
Raghu 2015 [187]

Study Design
- Type of Study: randomised controlled trial
- Trial Design: phase 2, parallel-group international multicentre (number of centres not stated)
- Country/ies: Belgium, Canada, Germany, Netherlands, United States

Study Duration
- 72 weeks

Participants
- Number: 29 (placebo group)
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 64.5 years (standard deviation 7.26)
- Gender: 79.3% male
- Ethnicity: Caucasian 96.6%, African American 3.4%
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: 51.7%
- Lung function results (% predicted): median FEV\(_1\) 70.0 (range 53-89); median FVC 69.0 (range 51-96); median DLCO 38.82 (range 18.0-72.5)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: median 421.20m (range 157.6-567.0)
- Symptom assessment: total St George’s Respiratory Questionnaire score: median 41.81 (range 12.7-76.2)
- Use of systemic corticosteroid therapy: 13.8%
- Use of other therapy: azathioprine 13.7%, acetylcysteine 31%

Outcomes
- Proportion of mortality
- Change in forced vital capacity
- Change in diffusing capacity for carbon monoxide
- Change in health-related quality of life (St George’s Respiratory Questionnaire)

Notes
- Funding source: industry

Raimundo 2016 [123]

Study Design
- Type of Study: retrospective cohort
- Trial Design: national using Medicare database
- Country/ies: United States

Study Duration
- 1 year

Participants
- Number: 13615
- Definition of diagnosis: codes using the International Classification of Diseases, Ninth Revision
- Age: mean age 78.9 years (standard deviation 7.1)
- Gender: 50.3% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results: not stated
 • Resting oxyhaemoglobin saturation: not stated
 • 6-minute walk distance: not stated
 • Symptom assessment: not stated
 • Use of systemic corticosteroid therapy: not stated
 • Use of other therapy: not stated

Outcomes
• Proportion of mortality
• Duration of survival

Notes
Funding source: unclear

Rajasekaran 2006 [124]

Study Design
• Type of Study: prospective cohort
 • Trial Design: single centre
 • Country/ies: United Kingdom

Study Duration
5 years

Participants
• Number: 18
 • Definition of diagnosis: unclear
 • Age: median 77 years (range 44-88)
 • Gender: 56% male
 • Ethnicity: not stated
 • Smoking status: not stated
 • Use of home oxygen therapy: not stated
 • Time since diagnosis: not stated
 • Percentage of patients with surgical lung biopsy: not stated
 • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
 • Lung function results (% predicted): median FEV₁ 75 (range 33-109); median FVC 67 (range 47-99); median DLCO 53 (range 17-78)
 • Resting oxyhaemoglobin saturation: not stated
 • 6-minute walk distance: not stated
 • Symptom assessment: not stated
 • Use of systemic corticosteroid therapy: not stated
 • Use of other therapy: not stated

Outcomes
• Proportion of mortality
• Duration of survival

Notes
Funding source: unclear

Rangappa 2009 [125]

Study Design
• Type of Study: retrospective cohort
 • Trial Design: single centre
 • Country/ies: Australia

Study Duration
At least 1 year

Participants
• Number: 24
 • Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
 • Age: mean 66 years (standard deviation 16)
 • Gender: 58% male
 • Ethnicity: not stated
 • Smoking status: not stated
 • Use of home oxygen therapy: 38%
| Study Design | • Type of Study: prospective cohort
• Trial Design: single centre
• Country/ies: Scotland |
| Study Duration | 5 years |
| Participants | • Number: 27
• Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
• Age: mean 68 years (standard deviation 13) for male, 75 (7) for female
• Gender: 70% male
• Ethnicity: not stated
• Smoking status: 63% ever smokers
• Use of home oxygen therapy: 41%
• Time since diagnosis: not stated
• Percentage of patients with surgical lung biopsy: not stated
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results (% predicted): mean DLCO 66 (standard deviation 16) for male, 74 (16) for female
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: 44%
• Use of other therapy: not stated |
| Outcomes | • Proportion of mortality
• Duration of survival |
| Notes | Funding source: unclear |

Richards 2012 [127]

| Study Design | • Type of Study: prospective cohort
• Trial Design: single centre
• Country/ies: United States |
| Study Duration | At least 1 year |
| Participants | • Number: 140 for derivation group, 101 for validation group
• Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Statement |
Classification of the Idiopathic Interstitial Pneumonias Statement

- **Age:** mean 67.2 years (standard deviation 8.3) for derivation group, 68.2 (9.4) for validation group
- **Gender:** 69% male
- **Ethnicity:** Caucasian 97.5%, African American 1%, Native American 0.4%, Oriental 0.4%, unknown 0.4%
- **Smoking status:** 70% ever smoker
- **Use of home oxygen therapy:** not stated
- **Time since diagnosis:** not stated
- **Percentage of patients with surgical lung biopsy:** 52%
- **Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:** not stated
- **Lung function results (% predicted):** mean FVC 62 (standard deviation 19.6) for derivation cohort, 61.4 (18) for validation cohort; mean DLCO 44.8 (standard deviation 17.1) for derivation cohort, 45.4 (19) for validation cohort
- **Resting oxyhaemoglobin saturation:** not stated
- **6-minute walk distance:** not stated
- **Use of systemic corticosteroid therapy:** 23%
- **Use of other therapy:** azathioprine 3%, cyclophosphamide 3%, mycophenolate 0.8%, tacrolimus 0.4%, N-acetylcysteine 0.8%, colchicine 0.4%, interferon-gamma 0.4%

Outcomes

- **Duration of survival**
- **Progression-free survival**

Notes

Funding source: unclear

Richeldi 2011 [188]

Study Design

- **Type of Study:** randomised controlled trial
- **Trial Design:** phase 2, parallel-group, international multicentre (n = 92)
- **Country/ies:** 25 countries

Study Duration

1 year

Participants

- **Number:** 85 (placebo group)
- **Definition of diagnosis:** the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- **Age:** mean 64.8 years (standard deviation 8.6)
- **Gender:** 74.1% male
- **Ethnicity:** Caucasian 76.5%, Asian 23.5%
- **Smoking status:** not stated
- **Use of home oxygen therapy:** not stated
- **Time since diagnosis:** mean 1.4 years (standard deviation 1.5)
- **Percentage of patients with surgical lung biopsy:** 22.4%
- **Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:** 28.2%
- **Lung function results:** mean FVC 81.7% predicted (standard deviation 17.6); mean DLCO 3.8 mmol/min/kPa (standard deviation 1.1)
- **Resting oxyhaemoglobin saturation:** mean 95.3% (standard deviation 2.2)
- **6-minute walk distance:** not stated
- **Symptom assessment:** total St George’s Respiratory Questionnaire: mean 41.2 (standard deviation 17.9); St George’s Respiratory
Questionnaire-Symptoms score: mean 42.2 (standard deviation 21.6); St George’s Respiratory Questionnaire-Activity score: mean 54.2 (standard deviation 22.2); St George’s Respiratory Questionnaire-Impacts score: mean 33.1 (standard deviation 19.7)

- Use of systemic corticosteroid therapy: 50.6%
- Use of other therapy: not stated

Outcomes

- Proportion of mortality
- Respiratory-specific mortality
- Change in forced vital capacity
- Change in health-related quality of life (St George’s Respiratory Questionnaire)

Notes

Funding source: industry

Richeldi 2014 [15]

Study Design

- Type of Study: randomised controlled trial
- Trial Design: phase 3, parallel-group, international multicentre (n = 205)
- Country/ies: Asia, Australia, Europe, United States

Study Duration

1 year

Participants

- Number: 423 (placebo group)
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 66.9 years (standard deviation 8.2) for INPULSIS-1, 67.1 (7.5) for INPULSIS-2
- Gender: 79% male
- Ethnicity: Caucasian 59%, Asian 30%, unknown 11%
- Smoking status: 71% ever smokers
- Use of home oxygen therapy: not stated
- Time since diagnosis: mean 1.6 years (standard deviation 1.4) for INPULSIS-1, 1.6 (1.3) for INPULSIS-2
- Percentage of patients with surgical lung biopsy: 20%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 80.5 (standard deviation 17.3) for INPULSIS-1, 78.1 (19) for INPULSIS-2; mean DLCO 47.5 (standard deviation 11.7) for INPULSIS-1, 46.4 (14.8) for INPULSIS-2
- Resting oxyhaemoglobin saturation: mean 95.9% (standard deviation 1.9) for INPULSIS-1, 95.7 (2.1) for INPULSIS-2
- 6-minute walk distance: not stated
- Symptom assessment: Total St George’s Respiratory Questionnaire score: mean 39.8 (standard deviation 18.5) for INPULSIS-1, 39.4 (18.7) for INPULSIS-2
- Use of systemic corticosteroid therapy: 21%
- Use of other therapy: not stated

Outcomes

- Proportion of mortality
- Respiratory-specific mortality
- Change in health-related quality of life (St George’s Respiratory Questionnaire)
- Proportion of patients with disease progression

Notes

Funding source: industry

Rogers 2016 [128]
Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United Kingdom

Study Duration
At least 1 year

Participants
- Number: 253
- Definition of diagnosis: ATS/ERS criteria (specific criteria unclear)
- Age: mean 71.4 years (standard deviation 8.3)
- Gender: 74% male
- Ethnicity: not stated
- Smoking status: 70% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV₁ 79 (standard deviation 22); mean FVC 82 (standard deviation 19); mean DLCO 45 (standard deviation 15)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
Duration of survival

Notes
Funding source: unclear

Roig 2010 [129]

Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: Spain

Study Duration
3 years

Participants
- Number: 46
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 65 years (range 40-73) for azathioprine group, 63 (40-73) for cyclophosphamide group
- Gender: 63% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 56.5%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 76 (standard deviation 15) for azathioprine group, 76 (10) for cyclophosphamide group; mean DLCO 68 (standard deviation 15) for azathioprine group, 67 (16) for cyclophosphamide group
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
| Use of systemic corticosteroid therapy: 100% | Use of other therapy: azathioprine 54%, cyclophosphamide 46% |
|---|---|
| **Outcomes** | Proportion of mortality |
| | Respiratory-specific mortality |
| **Notes** | Funding source: unclear |

Roskell 2014 [130]

Study Design
- Type of Study: prospective cohort for placebo group
- Trial Design: prospective cohort using CPRD-GOLD database
- Country/ies: United Kingdom

Study Duration
- At least 1 year

Participants
- Number: 193
- Definition of diagnosis: unclear
- Age: not stated
- Gender: not stated
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Duration of survival

Notes
- Funding source: unclear

Rubin 2015 [131]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Brazil

Study Duration
- 1 year

Participants
- Number: 44
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 57 years (range 32-69)
- Gender: 66% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV1 52 (standard deviation 17); mean FVC 50 (standard deviation 18)
| Rudd 2007 [132] | Study Design | Type of Study: prospective cohort
Trial Design: national
Country/ies: England, Scotland, Wales |
|---|---|---|
| Study Duration | At least 1 year |
| Participants | Number: 588
Definition of diagnosis: histological diagnosis of CFA or bilateral interstitial chest radiographic shadowing with bilateral basal inspiratory crackles, and lung function test results compatible with diffuse interstitial fibrosis—that is, a restrictive and/or gas transfer defect.
Age: mean 67.4 years (standard deviation 10)
Gender: not stated
Ethnicity: not stated
Smoking status: 76% ever smoker
Use of home oxygen therapy: not stated
Time since diagnosis: not stated
Percentage of patients with surgical lung biopsy: 12.4%
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
Lung function results (% predicted): mean FEV\(_1\) 78.7 (standard deviation 23.7); mean FVC 78.4 (standard deviation 24.8); mean DLCO 49.7 (standard deviation 20.4)
Resting oxyhaemoglobin saturation: not stated
6-minute walk distance: not stated
Symptom assessment: not stated
Use of systemic corticosteroid therapy: 67%
Use of other therapy: other drugs (including azathioprine and cyclophosphamide) 14% |
| Outcomes | Proportion of mortality
Duration of survival |
| Notes | Funding source: unclear |

| Russell 2016 [133] | Study Design | Type of Study: prospective cohort
Trial Design: single centre study
Country/ies: United Kingdom |
|---|---|---|
| Study Duration | 3 years |
| Participants | Number: 50
Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
Age: mean 67 years (standard deviation 7.9)
Gender: 90% male
Ethnicity: not stated |
| Outcomes | Proportion of mortality
Duration of survival |
| Notes | Funding source: unclear |
Smoking status: not stated
Use of home oxygen therapy: not stated
Time since diagnosis: not stated
Percentage of patients with surgical lung biopsy: not stated
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
Lung function results (% predicted): mean FEV$_1$ 74.8 (standard deviation 17.0); mean FVC 71.6 (standard deviation 18.3); mean DLCO 39.2 (standard deviation 12.7)
Resting oxyhaemoglobin saturation: not stated
6-minute walk distance: not stated
Symptom assessment: modified Medical Research Council Dyspnoea score: mean 2.9 (standard deviation 0.9)
Use of systemic corticosteroid therapy: not stated
Use of other therapy: not stated

Outcomes

- Proportion of mortality
- Duration of survival

Notes

- Funding source: public

Study Design

- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United States

Study Duration

At least 1 year

Participants

- Number: 307
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 68.5 years (standard deviation 8.8)
- Gender: 73% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: 18%
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 41%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 69.2 (standard deviation 17.9); mean DLCO 45.8 (standard deviation 16.6)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes

- Duration of survival

Notes

- Funding source: public
- Author provided additional data for clarification of study duration and survival/mortality.

Sakamoto 2010 [135]

Study Design

- Type of Study: retrospective cohort
Sato 2016 [136]

Study Design	Participants	Outcomes
Type of Study: retrospective cohort	Number: 17	Duration of survival
Trial Design: single centre	Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management	Notes
Country/ies: Japan	Age: not stated	Funding source: public
	Gender: not stated	
	Ethnicity: not stated	
	Smoking status: not stated	
	Use of home oxygen therapy: not stated	
	Time since diagnosis: not stated	
	Percentage of patients with surgical lung biopsy: not stated	
	Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
	Lung function results: not stated	
	Resting oxyhaemoglobin saturation: not stated	
	6-minute walk distance: not stated	
	Symptom assessment: not stated	
	Use of systemic corticosteroid therapy: not stated	
	Use of other therapy: not stated	

Notes

Duration of survival

Funding source: public
Saydain 2002 [137]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United States

Study Duration 1 year

Participants
- Number: 38
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: not stated
- Gender: 66% male
- Ethnicity: Caucasian 92%, Asian 2.6%, Hispanic 2.6%, Native American Indian 2.6%
- Smoking status: not stated
- Use of home oxygen therapy: 63%
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 56.5 (standard deviation 19.4) for survivors, 59.6 (17.3) for non-survivors; mean DLCO 30.0 (standard deviation 13.1) for survivors, 38.6 (20.3) for non-survivors
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 53%
- Use of other therapy: not stated

Outcomes Proportion of mortality

Notes Funding source: public

Schmidt 2011 [138]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United States

Study Duration 1 year

Participants
- Number: 321
- Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
- Age: mean 63.9 years (standard deviation 9.7)
- Gender: 68% male
- Ethnicity: not stated
- Smoking status: 74% ever smokers
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV\(_1\) 79.2 (standard deviation 19.0); mean FVC 67.6 (SD 16.8); mean DLCO 44.5 (SD 16.2)
- Resting oxyhaemoglobin saturation: not stated
| Schupp 2015 [139] | | |
|---|---|---|
| **Study Design** | • Type of Study: prospective cohort
• Trial Design: single centre
• Country/ies: Germany |
| **Study Duration** | 2 years |
| **Participants** | • Number: 71
• Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
• Age: mean 68.2 years (standard deviation 8.9) for those with exacerbations, 62.9 (8.0) for those without exacerbations
• Gender: 83% male
• Ethnicity: not stated
• Smoking status: 69% ex-smoker
• Use of home oxygen therapy: not stated
• Time since diagnosis (months): mean 18.2 (standard deviation 28.7) for those with exacerbations, 23.4 (19.2) for those without exacerbations
• Percentage of patients with surgical lung biopsy: not stated
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results (% predicted): mean FEV₁ 66.2 (standard deviation 18.1) for those with exacerbations, 54.7 (18.4) for those without exacerbations; mean FVC 67.2 (standard deviation 18.8) for those with exacerbations, 52.3 (20.6) for those without exacerbations; mean DLCO 50.2 (17.9) for those with exacerbations, 28.3 (2.4) for those without exacerbations
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: not stated
• Use of other therapy: not stated |
| **Outcomes** | • Proportion of mortality |
| **Notes** | Funding source: public |

Selman 1998 [140]		
Study Design	• Type of Study: prospective cohort	
• Trial Design: single centre		
• Country/ies: Mexico		
Study Duration	At least 1 year	
Participants	• Number: 56	
• Definition of diagnosis: progressive dyspnoea, diffuse reticulonodular infiltrates on CXR, bibasilar crackles, digital clubbing, decreased FVC and PaO2 and no evidence of systemic disease or environmental exposure		
• Age: mean 55 years (standard deviation 10) for prednisolone group, 55		
Outcomes		
Notes	Proportion of mortality	
Funding source: public		
Outcomes	Proportion of mortality	
--	--	
Notes	Funding source: unclear	

Selman 2007 [141]

Study Design	Type of Study: retrospective cohort
	Trial Design: single centre
	Country/ies: Mexico

Study Duration	1 year

Participants	Number: 114
	Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
	Age: mean 64.1 years (standard deviation 12.1) for rapid progressors, 63.6 (8.8) for slow progressors
	Gender: 71% male
	Ethnicity: not stated
	Smoking status: 58% ever smokers
	Use of home oxygen therapy: not stated
	Time since diagnosis: not stated
	Percentage of patients with surgical lung biopsy: 31%
	Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
	Lung function results (% predicted): mean FVC 58.4 (standard deviation 21.6) for rapid progressors, 61.5 (18.1) for slow progressors
	Resting oxyhaemoglobin saturation: mean 85.6% (standard deviation 7.6) for rapid progressors, 82.0% (standard deviation 10.4) for slow progressors
	6-minute walk distance: not stated
	Symptom assessment: not stated
Use of systemic corticosteroid therapy: not stated
Use of other therapy: not stated

Outcomes

Duration of survival

Notes

Funding source: public

Serrano-Mollar 2016 [142]

Study Design
- Type of Study: prospective cohort
- Trial Design: national (number of centres not specified)
- Country/ies: Spain

Study Duration
1 year

Participants
- Number: 16
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 61.3 years (range 51-73)
- Gender: 81% male
- Ethnicity: not stated
- Smoking status: 88% ever smokers
- Use of home oxygen therapy: not stated
- Time since diagnosis: median 21 months (range 6-36)
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): median FVC 67 (range 50-105); median DLCO 48.5 (range 35-59)
- Resting oxyhaemoglobin saturation: median 95.5% (range 92-98)
- 6-minute walk distance: median 552.5m (range 342-690)
- Symptom assessment: Basal Dyspnoea Index: median 9 (range 4-12); Leicester Cough Questionnaire: median 18.9 (range 5.5-21)
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes

Duration of survival

Notes

Funding source: public

Shafiq 2010 [143]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United States

Study Duration
1 year

Participants
- Number: 27
- Definition of diagnosis: unclear
- Age: not stated
- Gender: not stated
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: FVC 2.7 +/- 0.2 L; DLCO 2.4 +/- 0.8 ml/min/mmHg
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: not stated
• Use of other therapy: not stated

Outcomes
Change in diffusing capacity for carbon monoxide

Notes
Funding source: unclear

Sherbini 2014 [144]

Study Design
- Type of Study: retrospective cohort
- Trial Design: national multicentre (n = 2)
- Country/ies: Saudi Arabia

Study Duration
Greater than 1 year

Participants
- Number: 134
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 64 years (standard deviation 13)
- Gender: 44% male
- Ethnicity: not stated
- Smoking status: 36% ever smokers
- Use of home oxygen therapy: 53%
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: mean FEV₁ 56 (standard deviation 15); mean FVC 53 (standard deviation 13); mean DLCO 57 (standard deviation 15)
- Resting oxyhaemoglobin saturation: mean 92% (standard deviation 7)
- 6-minute walk distance: mean 338m (standard deviation 64)
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 84%
- Use of other therapy: azathioprine 69%, colchicine 20%, N-acetylcysteine 11%, omeprozole 67%

Outcomes
Proportion of mortality

Notes
Funding source: unclear

Shin 2008 [145]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Korea

Study Duration
At least 1 year (mean 45 months)

Participants
- Number: 79
- Definition of diagnosis: histological usual interstitial pneumonia, excluded connective tissue disease related-ILD and hypersensitivity pneumonitis; or the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement with ≥ 10% honeycombing
- Age: mean 63 years (standard deviation 7.4)
- Gender: 76% male
- Ethnicity: not stated
| Study Design | Participants |
|--------------|--------------|
| • Smoking status: 66% ever smokers
• Use of home oxygen therapy: not stated
• Time since diagnosis: not stated
• Percentage of patients with surgical lung biopsy: 68%
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: 32%
• Lung function results (% predicted): mean FVC 74 (standard deviation 15); mean DLCO 66 (standard deviation 28)
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: not stated
• Use of other therapy: immunosuppressive therapies 70% (specific therapy not stated) | • Number: 39
• Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
• Age: median 58 years (interquartile range 56-66) for survivors, 66 (interquartile range: 60-73) for non-survivors
• Gender: 74% male
• Ethnicity: not stated
• Smoking status: 64% ever smoker
• Use of home oxygen therapy: not stated
• Time since diagnosis: not stated
• Percentage of patients with surgical lung biopsy: not stated
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
• Lung function results (% predicted): median FEV₁ 79.3 (interquartile range 76.1-87.6) for survivors, 82.5 (74.0-94.0) for non-survivors; median FVC 70 (interquartile range 63-79) for survivors, 72 (interquartile range 57-89) for non-survivors; median DLCO 51.5 (interquartile range 42.6-68.3) for survivors, 34.0 (interquartile range 26.3-38.8) for non-survivors
• Resting oxyhaemoglobin saturation: not stated
• 6-minute walk distance: not stated
• Symptom assessment: not stated
• Use of systemic corticosteroid therapy: not stated
• Use of other therapy: not stated |

Outcomes

Proportion of mortality

Notes

Funding source: public

Shinoda 2009 [146]

Study Design

- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Japan

Study Duration

5 years

Participants

- Number: 39
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: median 58 years (interquartile range 56-66) for survivors, 66 (interquartile range: 60-73) for non-survivors
- Gender: 74% male
- Ethnicity: not stated
- Smoking status: 64% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): median FEV₁ 79.3 (interquartile range 76.1-87.6) for survivors, 82.5 (74.0-94.0) for non-survivors; median FVC 70 (interquartile range 63-79) for survivors, 72 (interquartile range 57-89) for non-survivors; median DLCO 51.5 (interquartile range 42.6-68.3) for survivors, 34.0 (interquartile range 26.3-38.8) for non-survivors
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes

Proportion of mortality

Notes

Funding source: Unclear

Shitrit 2009 [147]

Study Design

- Type of Study: prospective cohort
Study Design
- Type of Study: retrospective cohort
- Trial Design: national using the Organ Procurement and Transplantation Network (OPTN) database
- Country/ies: United States

Study Duration
- 1 year

Participants
- Number: 1339
- Definition of diagnosis: unclear
- Age: not stated
- Gender: 67% male
- Ethnicity: Caucasian 79%, Hispanic 11%, African American 7%, other 3%
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: 765 - 960 feet
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality

Notes
- Funding source: unclear
Siemienowicz 2015 [149]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Australia

Study Duration
- 5 years

Participants
- Number: 20
- Definition of diagnosis: based on medical records
- Age: mean 75.3 years (standard deviation 8.8)
- Gender: 65% male
- Ethnicity: not stated
- Smoking status: 65% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 15%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality

Notes
- Funding source: unclear
- Author provided additional data for clarification of study duration and survival/mortality.

Soares Pires 2013 [150]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Portugal

Study Duration
- 4 years

Participants
- Number: 81
- Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
- Age: mean 63.8 years (standard deviation 10.2)
- Gender: 69.1% male
- Ethnicity: not stated
- Smoking status: 51.9% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 30.9%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: mean FEV$_1$ 80.8 (standard deviation 19.2); mean FVC 74.8 (standard deviation 20.2); mean DLCO 45.8 (standard deviation 16.4)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: mean 369.6m (standard deviation 149.4)
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 86.4%
Soares 2015 [151]

Study Design
- Type of Study: retrospective cohort
- Trial Design: multicentre national (n =3)
- Country/ies: Brazil

Study Duration
At least 1 year

Participants
- Number: 120
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 68.6 years (standard deviation 7.9)
- Gender: 70% male
- Ethnicity: not stated
- Smoking status: 61.2% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 30.8%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FEV1 79.1 (standard deviation 15.1); mean FVC 75.2 (standard deviation 15.3); mean DLCO 47.1 (standard deviation 13.5)
- Resting oxyhaemoglobin saturation: mean 94.4% (standard deviation 2.2)
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality
- Duration of survival

Notes
- Funding source: unclear
- Same cohort as above but different outcomes have been measured in this study

Sobiecka 2013 [152]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Poland

Study Duration
At least 1 year

Participants
- Number: 56
- Definition of diagnosis: unclear
- Age: mean 62 +/- 10 years
- Gender: 57% male
- Ethnicity: not stated
- Smoking status: 55% ever smoker
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Duration of survival

Notes
- Funding source: unclear

Song 2011 [153]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Korea |

Study Duration
At least 1 year

Participants
- Number: 461
- Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
- Age: mean 63.4 years
- Gender: 77.7% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: mean FEV₁ 88.5 (standard deviation 18) for non-rapid deterioration group, 86 (18) for acute exacerbation group, 89 (17.5) for infection group; mean FVC 77.6 (standard deviation 17) for non-rapid deterioration group, 72 (15.7) for acute exacerbation group, 75.5 (18.5) for infection group; mean DLCO 66.4 (standard deviation 19) for non-rapid deterioration group, 62.2 (19.3) for acute exacerbation group, 61.2 (18) for infection group
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 56%
- Use of other therapy: not stated |

Outcomes
Proportion of mortality

Notes
Funding source: unclear

Song 2014 [154]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: Korea |

Study Duration
1 year

Participants
- Number: 43
- Definition of diagnosis: histologically usual interstitial pneumonia, |
| Study Design | Stack 1972 [155] |
|--------------|------------------|
| Type of Study: | retrospective cohort |
| Trial Design: | single centre |
| Country/ies: | United Kingdom |

Study Duration

- 1 year

Participants

- Number: 96
- Definition of diagnosis: progressive non-episodic dyspnoea without wheeze, bilateral crepitations on auscultation of the chest, and diffuse bilateral pulmonary opacities on chest radiograph
- Age: 51% male
- Gender: not stated
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 50%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes

- Proportion of mortality

Notes

- Funding source: unclear

Study Design	Strand 2014 [156]
Type of Study:	prospective cohort
Trial Design:	single centre
Country/ies:	United States

Study Duration

- 1 year

Participants

- Number: 96
- Definition of diagnosis: progressive non-episodic dyspnoea without wheeze, bilateral crepitations on auscultation of the chest, and diffuse bilateral pulmonary opacities on chest radiograph
- Age: 51% male
- Gender: not stated
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 50%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes

- Duration of survival

Notes

- Funding source: unclear
| Study Duration | At least 1 year |
|----------------|----------------|
| **Participants** | |
| • Number: 321 | |
| • Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management | |
| • Age: mean 66.1 years (standard deviation 9.1) | |
| • Gender: 75% male | |
| • Ethnicity: Caucasian 97.8%, Asian 1.3%, African American 0.3%, Other 0.6% | |
| • Smoking status: not stated | |
| • Use of home oxygen therapy: not stated | |
| • Time since diagnosis: not stated | |
| • Percentage of patients with surgical lung biopsy: 321 (100%) | |
| • Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated | |
| • Lung function results (% predicted): mean FVC 71.4 (standard deviation 17.4), mean DLCO 52.3 (SD 18.7) | |
| • Resting oxyhaemoglobin saturation: not stated | |
| • 6-minute walk distance: not stated | |
| • Symptom assessment: not stated | |
| • Use of systemic corticosteroid therapy: not stated | |
| • Use of other therapy: not stated | |
| **Outcomes** | Duration of survival |
| **Notes** | Funding source: public |

Strongman 2018 [157]

Study Design	
• Type of Study: retrospective cohort	
• Trial Design: national using the Clinical Practice Research Datalink GOLD dataset	
• Country/ies: UK	
Study Duration	1 year or greater
Participants	
• Number: 1389	
• Definition of diagnosis: using specific disease Read codes	
• Age: not stated	
• Gender: not stated	
• Ethnicity: not stated	
• Smoking status: not stated	
• Use of home oxygen therapy: not stated	
• Time since diagnosis: not stated	
• Percentage of patients with surgical lung biopsy: not stated	
• Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
• Lung function results: not stated	
• Resting oxyhaemoglobin saturation: not stated	
• 6-minute walk distance: not stated	
• Symptom assessment: not stated	
• Use of systemic corticosteroid therapy: not stated	
• Use of other therapy: not stated	
Outcomes	Proportion of mortality
Notes	Funding source: industry
• Author provided additional data for clarification of study duration and survival/mortality.	

214
Su 2011 [158]

Study Design	
Type of Study: retrospective cohort	
Trial Design: single centre	
Country/ies: United States	

Study Duration	At least 1 year

Participants	
Number: 148	
Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement	
Age: mean 68.6 years (standard deviation 12.1)	
Gender: 58% male	
Ethnicity: Caucasian 69%	
Smoking status: 68% ever smokers	
Use of home oxygen therapy: not stated	
Time since diagnosis: mean 1.7 years (standard deviation 4)	
Percentage of patients with surgical lung biopsy: 68%	
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
Lung function results (% predicted): mean FEV$$_1$$ 75.9 (standard deviation 23.3); mean FVC 67.3 (standard deviation 20.2); mean DLCO 44.9 (standard deviation 18.7)	
Resting oxyhaemoglobin saturation: not stated	
6-minute walk distance: not stated	
Symptom assessment: not stated	
Use of systemic corticosteroid therapy: 48.7%	
Use of other therapy: cyclophosphamide 8.1%, azathioprine 37.8%, methotrexate 1.4%, mycophenolate 14.9%, hydroxychloroquine 6.1%	

Outcomes	Proportion of mortality

Notes	
Funding source: unclear	
Author provided additional data for clarification of study duration and survival/mortality.	

Takahashi 2000 [159]

Study Design	
Type of Study: retrospective cohort	
Trial Design: single centre	
Country/ies: Japan	

Study Duration	At least 1 year

Participants	
Number: 52	
Definition of diagnosis: either evidence of varying degrees of interstitial fibrosis and alveolitis or evidence of diffuse parenchymal infiltrates on chest radiography	
Age: mean 62.5 years (standard deviation 7.5)	
Gender: 83% male	
Ethnicity: not stated	
Smoking status: 87% ever smoker	
Use of home oxygen therapy: not stated	
Time since diagnosis: not stated	
Percentage of patients with surgical lung biopsy: not stated	
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
Study Design	Taniguchi 2010 [189]
--------------	----------------------
Type of Study: randomised controlled trial	
Trial Design: phase 3, parallel-group, national multicentre (n = 73)	
Country/ies: Japan	

Study Duration	1 year

Participants	Taniguchi 2010 [189]
Number: 104 (placebo group)	
Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement	
Age: mean 64.7 years (standard deviation 7.3)	
Gender: 77.9% male	
Ethnicity: not stated	
Smoking status: 80% ever smokers	
Use of home oxygen therapy: not stated	
Time since diagnosis: not stated	
Percentage of patients with surgical lung biopsy: 26.9%	
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated	
Lung function results (% predicted): mean FVC 79.1 (standard deviation 17.4); mean 55.2 (SD 18.2)	
Resting oxyhaemoglobin saturation: not stated	
6-minute walk distance: not stated	
Symptom assessment: not stated	
Use of systemic corticosteroid therapy: 4.8%	
Use of other therapy: not stated	

Outcomes	Proportion of mortality
Notes	Funding source: public

Study Design	ten Klooster 2015 [160]
Type of Study: prospective cohort	
Trial Design: unclear	
Country/ies: Netherlands	

Study Duration	4 years

Participants	ten Klooster 2015 [160]
Number: 169	
Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management	
Age: mean 59.4 years (standard deviation 12.9) for initial group, 62.9 (8.7) for duplication group	
Gender: 83% male	
Ethnicity: not stated	
Smoking status: 66% ever smokers, 0.08% unknown	

Outcomes	Proportion of patients with disease progression
Notes	Funding source: public
Use of home oxygen therapy: not stated
Time since diagnosis: not stated
Percentage of patients with surgical lung biopsy: not stated
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
Lung function results (% predicted): mean FVC 72.6 (standard deviation 23.5) for initial group, 82.8 (24.3) for duplication group; mean DLCO 45.1 (standard deviation 16.3) for initial group, 46.6 (15.1) for duplication group
Resting oxyhaemoglobin saturation: not stated
6-minute walk distance: not stated
Symptom assessment: not stated
Use of systemic corticosteroid therapy: not stated
Use of other therapy: not stated

Outcomes
- Proportion of mortality
- Duration of survival

Notes
- Funding source: unclear

Toello 2014 [162]

| Study Design | Type of Study: retrospective cohort
| | Trial Design: single centre
| | Country/ies: United States

| Study Duration | At least 1 year

| Participants | Number: 133
| | Definition of diagnosis: multidisciplinary diagnosis of IPF, with surgical
biopsy showing usual interstitial pneumonia pattern
- Age: mean 63.6 years (standard deviation 8.1)
- Gender: 63.2% male
- Ethnicity: not stated
- Smoking status: 62.1% ever smokers
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 100%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: 30.8%
- Lung function results (% predicted): mean FVC 67.3 (standard deviation 15.8); mean DLCO 48.9 (standard deviation 15.9)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
Duration of survival

Notes
Funding source: public

Tomioka 2007 [163]
Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
- Country/ies: Japan
Study Duration
1 year
Participants
- Number: 46
- Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
- Age: mean 69.9 years (standard deviation 5.8)
- Gender: 70% male
- Ethnicity: not stated
- Smoking status: 70% ever smokers
- Use of home oxygen therapy: 15%
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 71.0 (standard deviation 17.5); mean DLCO 58.3 (standard deviation 18.2)
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: 395m (standard deviation 105)
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 4%
- Use of other therapy: not stated
Outcomes
Proportion of mortality
Notes
Funding source: unclear

Tryfon 2009 [164]
Study Design
- Type of Study: prospective cohort
- Trial Design: single centre
Tzouvelekis 2013 [165]

Study Design	
Type of Study:	prospective cohort
Trial Design:	single centre
Country/ies:	Greece

| **Study Duration** | 1 year |

Participants	
Number:	14
Definition of diagnosis:	the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
Age:	mean 64.4 years (standard deviation 7)
Gender:	86% male
Ethnicity:	not stated
Smoking status:	100% ever smokers
Use of home oxygen therapy:	not stated
Time since diagnosis:	not stated
Percentage of patients with surgical lung biopsy:	43%
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:	100%
Lung function results (% predicted):	mean FVC 71.2 (standard deviation 15.2); mean DLCO 48.4 (standard deviation 11.1)
Resting oxyhaemoglobin saturation:	not stated
6-minute walk distance:	mean 472.1m (standard deviation 55.2)
Symptom assessment:	modified Medical Research Council Dyspnoea score: mean 2.1 (standard deviation 0.6); St George’s Respiratory Questionnaire score: mean 35.1 (standard deviation 6.8)
Use of systemic corticosteroid therapy:	36%
Use of other therapy:	N-acetylcysteine 36%

| **Outcomes** | Proportion of mortality |

| **Notes** | Funding source: industry |
Tzouvelekis 2016 [166]

Study Design	
Type of Study:	prospective cohort
Trial Design:	single centre
Country/ies:	United States

| **Study Duration** | At least 1 year |

Participants	
Number:	97
Definition of diagnosis:	the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
Age:	mean age 70 years (standard deviation 8)
Gender:	78.4% male
Ethnicity:	Caucasian 87.6%
Smoking status:	72% ever smokers
Use of home oxygen therapy:	50.5%
Time since diagnosis:	not stated
Percentage of patients with surgical lung biopsy:	23.7%
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:	not stated
Lung function results:	not stated
Resting oxyhaemoglobin saturation:	not stated
6-minute walk distance:	not stated
Symptom assessment:	not stated
Use of systemic corticosteroid therapy:	not stated
Use of other therapy:	not stated

| **Outcomes** | Proportion of mortality |

Notes	
Funding source:	public
Author provided additional data for clarification of study duration and survival/mortality.	

Umeda 2015 [167]

Study Design	
Type of Study:	prospective cohort
Trial Design:	single centre
Country/ies:	Japan

| **Study Duration** | At least 1 year |

Participants	
Number:	50
Definition of diagnosis:	the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
Age:	mean 70.4 years (standard deviation 9.0)
Gender:	84% male
Ethnicity:	not stated
Smoking status:	74% ever smokers
Use of home oxygen therapy:	not stated
Time since diagnosis:	not stated
Percentage of patients with surgical lung biopsy:	not stated
Percentage of patients with definite usual interstitial pneumonia patterns on HRCT:	not stated
Lung function results (% predicted):	mean FVC 84.1 (standard deviation 24.3); mean DLCO 56.6 (standard deviation 18)
Resting oxyhaemoglobin saturation:	not stated
6-minute walk distance:	mean 370m (standard deviation 123)
	Symptom assessment: not stated
------------------	----------------------------------
	Use of systemic corticosteroid therapy: not stated
	Use of other therapy: not stated

Outcomes
- Proportion of mortality
- Progression-free survival

Notes
- Funding source: public

Vysehradsky 2002 [168]

Study Design	
	Type of Study: retrospective cohort
	Trial Design: single centre
	Country/ies: Slovakia

| **Study Duration** | 1 to 10 years |

Participants	
	Number: 34
	Definition of diagnosis: lung biopsy or the British Thoracic Society algorithm based on clinical assessment and investigations
	Age: mean 43.5 years (standard deviation 13.7)
	Gender: 44% male
	Ethnicity: not stated
	Smoking status: not stated
	Use of home oxygen therapy: not stated
	Time since diagnosis: mean 32 months (standard deviation 33.6)
	Percentage of patients with surgical lung biopsy: 47%
	Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
	Lung function results: (% predicted): mean FVC 80.9% (standard deviation 19.6); mean DLCO 48.8 (standard deviation 13.1)
	Resting oxyhaemoglobin saturation: not stated
	6-minute walk distance: not stated
	Symptom assessment: not stated
	Use of systemic corticosteroid therapy: 94%
	Use of other therapy: azathioprine 19%, cyclophosphamide 38%, colchicine 41%, D-penicilliamine 6%

Outcomes	
	Change in forced vital capacity: (data available in proportion of patients who deteriorated)
	Change in diffusing capacity for carbon monoxide: (data available in proportion of patients who deteriorated)

| **Notes** | Funding source: unclear |

Wallaert 2011 [169]

Study Design	
	Type of Study: retrospective cohort
	Trial Design: national multicentre (n = 2)
	Country/ies: France

| **Study Duration** | 3 years |

Participants	
	Number: 63
	Definition of diagnosis: the 2002 American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias Statement
	Age: mean 65 +/- 8 years for group 1, 63 +/- 6.7 for group 2
	Gender: 81% male
	Ethnicity: not stated
	Smoking status: not stated
	Use of home oxygen therapy: not stated
Wilkie 2012 [170]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: United Kingdom

Study Duration
- 3 years

Participants
- Number: 88
- Definition of diagnosis: unclear
- Age: median 69 years (interquartile range 63-76)
- Gender: 57.5% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality

Notes
- Funding source: unclear

Wright 1981 [171]

Study Design
- Type of Study: retrospective cohort
- Trial Design: national multicentre (n =2)
- Country/ies: United Kingdom

Study Duration
- At least 2 years

Participants
- Number: 62
- Definition of diagnosis: trephine lung biopsy with changes of cryptogenic fibrosing alveolitis; patients with history of exposure to industrial or other dusts likely to produce parenchymal lung disease, or a history of taking drugs known to causes such disease, or clinical evidence of
rheumatoid arthritis or collagen vascular disorder were excluded

- Age: mean 57+/-11 years
- Gender: 76% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: 100%
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results (% predicted): mean FVC 77 +/- 25; mean DLCO 44 +/- 15
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: 65%
- Use of other therapy: not stated

Outcomes
Proportion of mortality

Notes
Funding source: unclear

Yokoyama 2006 [172]

Study Design	Type of Study: retrospective cohort
	Trial Design: national multicentre (n = 7)
	Country/ies: Japan

Study Duration	3 years

Participants	Number: 27
	Definition of diagnosis: the 2000 American Thoracic Society/European Respiratory Society Idiopathic Pulmonary Fibrosis: Diagnosis and Treatment International Consensus Statement
	Age: mean 59 +/- 10 years
	Gender: 70% male
	Ethnicity: not stated
	Smoking status: not stated
	Use of home oxygen therapy: not stated
	Time since diagnosis: not stated
	Percentage of patients with surgical lung biopsy: 59%
	Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: 41%
	Lung function results: not stated
	Resting oxyhaemoglobin saturation: not stated
	6-minute walk distance: not stated
	Symptom assessment: not stated
	Use of systemic corticosteroid therapy: not stated
	Use of other therapy: not stated

Outcomes	Proportion of mortality

Notes
Funding source: Public

Yu 2014 [173]

Study Design	Type of Study: retrospective cohort
	Trial Design: national using the Department of Defense Military Health System database
	Country/ies: United States

223
Study Duration
At least 1 year

Participants
- Number: 67
- Definition of diagnosis: International Classification of Diseases, Ninth Revision
- Age: mean 66 years
- Gender: 57% male
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
Proportion of mortality

Notes
Funding source: unclear

Zhang 2016 [174]

Study Design
- Type of Study: retrospective cohort
- Trial Design: single centre
- Country/ies: China

Study Duration
5 years

Participants
- Number: 105
- Definition of diagnosis: the 2011 Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management
- Age: mean 60 years (standard deviation 4.3)
- Gender: 63% male
- Ethnicity: not stated
- Smoking status: 42% ever smokers
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Proportion of mortality

Notes
- Idiopathic pulmonary fibrosis-related mortality
- Funding source: none

Zurkova 2016 [175]
Study Design
- Type of Study: retrospective cohort
- Trial Design: national using the Czech Idiopathic Pulmonary Fibrosis Registry
- Country/ies: Czech Republic

Study Duration
1 year

Participants
- Number: 124
- Definition of diagnosis: unclear
- Age: not stated
- Gender: not stated
- Ethnicity: not stated
- Smoking status: not stated
- Use of home oxygen therapy: not stated
- Time since diagnosis: not stated
- Percentage of patients with surgical lung biopsy: not stated
- Percentage of patients with definite usual interstitial pneumonia patterns on HRCT: not stated
- Lung function results: not stated
- Resting oxyhaemoglobin saturation: not stated
- 6-minute walk distance: not stated
- Symptom assessment: not stated
- Use of systemic corticosteroid therapy: not stated
- Use of other therapy: not stated

Outcomes
- Change in forced vital capacity
- Change in diffusing capacity for carbon monoxide

Notes
Funding source: unclear
S6. Cohort studies: Documented treatments for IPF at baseline and/or during the study

Study	Corticosteroids	Other Immunosuppressive agents	Colchicine	NAC	Investigational agents	Unclear	Other
Agusti 1993	X	X					Inhaled bronchodilators
Agusti 1994	X	X					
Akagi 2009	X	X					
Alhamad 2008	X	X	X				Oxygen therapy
Antoniou 2009	X	X					
Araki 2003	X	X					Oxygen therapy
Ashley 2016	X	X					
Barlo 2009	X	X					
Bennett 2015	X	X					Doxycycline
Bhattacharyya 2009	X	X					
Bjoraker 1998	X	X					
Bjurstrom 2013	X	X					
Boomars 1995	X	X					
Bournazos 2011	X	X					
Cai 2014	X	X	X				Oxygen therapy, interferon-gamma
Castria 2012	X	X					
Cayon 2010	X	X					
Civic 2012	X	X					
Collins 2015	X	X					
Cottin 2017	X	X					
Couluris 2012	X	X					Losartan, oxygen therapy
Diaz 2012	X	X					
Erbes 1997	X	X					
Faverio 2015	X	X					
Fiorucci 2008	X	X	X				
Fireman 1998	X	X					
Fisher 2017a	X	X					
Fisher 2017b	X	X					Oxygen therapy
Fujimoto 2012	X	X					
Gay 1998	X	X					
Study	Corticosteroids	Other Immunosuppressive agents	Colchicine	NAC	Investigational agents	Unclear	Other
---------------------------	-----------------	--------------------------------	------------	-----	------------------------	---------	---------------------------
Gu 2014	X						
Hallstrand 2005	X						
Hamada 2007							
Hanson 1995	X						
Harris 2010							
Hiwatari 1997							
Holland 2013							
Hopkins 2016							
Hosein 2016							Oxygen therapy
Hubbard 1998	X						
Huynh 2015							
Inase 2003	X						
Iwasawa 2014	X						
Izumi 1992	X						
Jacob 2016							
Jaffar 2014							
Jeon 2006	X						Interferon-gamma
Jezek 1979							
Jezek 1980	X						
Jezkova 1981							
Jo 2017	X						
Justet 2017							None at baseline
Kanematsu 1994							
Khadadah 2003	X						
Kim 2012	X						
Kim 2013							
Kolb 1998	X						
Kondoh 2005	X						
Kondoh 2010							
Korthagen 2011	X						
Kotecha 2016	X						Oxygen therapy
Kreuter 2016	X						
Study	Corticosteroids	Other Immunosuppressive agents	Colchicine	NAC	Investigational agents	Unclear	Other
---------------------	-----------------	--------------------------------	------------	-----	------------------------	---------	------------------------------
Kurashima 2010	X						Inhaled bronchodilators
Le Rouzic 2015							X
Lederer 2006							X
Lee 2011	X						X
Lee 2012	X						X
Lee 2015	X						X
Li 2010	X						X
Li 2012							X
Li 2015							X
Lindell 2015							X
Liu 2017							Oxygen therapy
Lutherer 2011							Interferon-gamma
Mapel 1998							X
Marulli 2010							X
Mason 2007							X
McKeown 2009	X						X
Meier-Sydow 1979	X						X
Meier-Sydow 1990	X						X
Mermigkis 2015	X						X
Mirrani 2012							None at baseline
Moeller 2009	X						X
Mogulkoc 2001	X						X
Moore 2013							X
Morawiec 2011							X
Moua 2016	X						X
Mura 2012							X
Nadrous 2004	X						X
Nagai 1998	X						X
Nambiar 2017	X						Oxygen therapy
Natsuzaka 2014							X
Nicholson 2000	X						X
Nicol 2015							X
Nishiyama 2016							Oxygen therapy
Study	Corticosteroids	Other Immunosuppressive agents	Colchicine	NAC	Investigational agents	Unclear	Other
-----------------------	-----------------	---------------------------------	------------	-----	------------------------	---------	----------------------------
Nishiyama 2016b						None at baseline	
Oda 2014		X				X	
Oldham 2015		X	X			X	
Prasse 2009	X	X					
Raghu 2014		X				X	Interferon-gamma
Raimundo 2016						X	
Rajasekaran 2006	X	X					
Rangappa 2009	X	X					
Reid 2015		X	X				Everolimus
Richards 2012	X	X	X				Interferon-gamma, tacrolimus
Rogers 2016						X	
Roig 2010	X	X					
Roskell 2014						X	
Rubin 2015						X	
Rudd 2007		X					
Russell 2016						X	Oxygen therapy
Ryerson 2014						X	
Sakamoto 2010	X	X					
Sato 2016						X	
Saydain 2002		X					
Schmidt 2011							
Schupp 2015						X	
Selman 1998	X	X					
Selman 2007	X	X					
Serrano-Mollan 2016						X	Prednisolone, azathioprine, NAC bosentan at baseline; none during study
Shafiq 2010						X	
Sherbini 2014		X	X				Oxygen therapy
Shin 2008	X	X				X	Interferon-gamma
Shinoda 2009						X	
Shitrit 2009		X				X	Oxygen therapy
Shlobin 2009						X	
Study	Corticosteroids	Other Immunosuppressive agents	Colchicine	NAC	Investigational agents	Unclear	Other
-----------------------	-----------------	---------------------------------	------------	-----	------------------------	---------	-------
Siemienowicz 2015						X	
Soares Pires 2013	X		X	X			
Soares 2015							
Sobiecka 2013	X			X			
Song 2011						X	
Song 2014						X	
Stack 1972						X	
Strand 2014						X	
Strongman 2018						X	
Su 2011	X					X	
Takahashi 2000						X	
ten Klooster 2015						X	
Tokgoz Akyil 2016						X	
Tolle 2014						X	
Tomioka 2007	X						Oxygen therapy
Tryfon 2009						X	
Tzouvelekis 2013	X					X	
Tzouvelekis 2016							Oxygen therapy
Umeda 2015							None at baseline
Vysehradsky 2002	X		X			X	
Wallaert 2011						X	
Wilkie 2012						X	
Wright 1981						X	
Yokoyama 2006						X	
Yu 2014							Oxygen therapy
Zhang 2016						X	
Zurkova 2016	X		X			X	

Abbreviations: NAC, N-acetylcysteine
S7. Randomised controlled trial: Concomitant treatment of IPF which were not allowed during the study

Study	Corticosteroids	Other Immunosuppressive agents	Antifibrotic drugs	NAC	Investigational agents	Additional notes
Daniels 2010	X*					A 4-week washout period was required if participants were taking any prohibited concomitant treatment
Demedts 2005	≥ 0.5 mg/kg/day of prednisone^	≥ 2 mg/kg/day of azathioprine^	> 600mg/day for > 3 months in previous 3 years			Treatment at study entry or in the past with drugs that interfere with the diagnosis, severity, therapy, or prognosis of IPF
King 2008	Unstable dose or > 15 mg of prednisone or equivalent					
King 2009	0.125 mg/kg /day or 0.25 mg/kg of prednisone every other day at randomisation				X^	Previous treatment with interferon gamma-1b was prohibited
King 2011	> 20 mg per day prednisone or equivalent^				X^	
King 2014	X^				X^	• Any cytotoxic, cytokine modulating, or receptor antagonist agents were prohibited
• Medications that are specifically used for the treatment of IPF were prohibited*						
Malouf 2011	> 10mg/day of prednisolone					Bosentan
Martinez 2014	As part of triple therapy	As part of triple therapy	As part of triple therapy			• History of triple therapy for > 12 weeks’ duration in the past 4 years.
• Triple therapy of ≤ 12 weeks duration in the past 4 years required a 30-day washout period before randomization.						
• Any therapy directed at pulmonary fibrosis (excepting triple therapy) required a 30-day washout period before randomized.						
Study	Corticosteroids	Other Immunosuppressive agents	Antifibrotic drugs	NAC	Investigational agents	Additional notes
---------------	-----------------	--------------------------------	--------------------	-----	------------------------	--
Noble 2011	X	X	X	X	X	Exceptions for short courses of azathioprine, cyclophosphamide, corticosteroids, or acetylcysteine for protocol-defined acute exacerbation of IPF, acute respiratory decompensation, or progression of disease.
Parker 2016	> 15mg/day of prednisone or equivalent^	X^	X^	X^	X	Long-term use of phosphodiesterase-5 inhibitors for pulmonary hypertension was prohibited.
Raghu 2013a		X^				
Raghu 2013b		X^	Calcineurin or mammalian target of rapamycin inhibitors^	X^		
Raghu 2015		X				• Stable doses must have been established for all concomitant medications before and maintained throughout the treatment period. The initiation of new concomitant medications 6 for IPF was strongly discouraged through week 52.
Richeldi 2011		X				• Continuous oxygen therapy (> 15 hours/day) were ineligible. Concomitant anticoagulation medication was prohibited
Richeldi 2014	> 15 mg/day of prednisone or equivalent^	X^	X^	X^	X	
Taniguchi 2010	> 10 mg/day of prednisone or equivalent	X			X	
S8. Risk of bias assessment

Table E5: Risk of bias assessment for included studies
(a) Cohort studies (n = 155; Mura et al.67 consisted of a retrospective and a prospective studies)

Criteria	High risk of bias	Low risk of bias	Unclear			
	Number of studies	%	Number of studies	%	Number of studies	%
Clinical vs population sampling	150	97	4	2.5	1	0.5
Prospective vs retrospective recruitment	99	64	55	35.5	1	0.5
Selection criteria for participants described	6	4	135	87	14	9
Baseline characteristics of participants described	12	8	136	87	8	5
Follow-up duration adequate	0	0	155	100	0	0
Reason lost to follow-up described	16	10.5	16	10.5	123	79
Timing of diagnosis at baseline	0	0	154	99.5	1	0.5
Outcome described a priori	1	0.5	142	91.5	12	8
Adequate description of statistical analysis	18	11.5	136	88	1	0.5

(b) RCTs (16 studies)

Criteria	High risk of bias	Low risk of bias	Unclear			
	Number of studies	%	Number of studies	%	Number of studies	%
Clinical vs population sampling	16	100	0	0	0	0
Selection criteria for participants described	0	0	16	100	0	0
Baseline characteristics of participants described	0	0	16	100	0	0
Follow-up percentage adequate	1	6	13	81	2	13
Follow-up duration adequate	0	0	16	100	0	0
Reason lost to follow-up described	1	6	14	88	1	6
Timing of diagnosis at baseline	0	0	16	100	0	0
Blinding described	0	0	13	81	3	19
Outcome described a priori	0	0	16	100	0	0
Use of intention-to-treat analysis	0	0	13	81	3	19
Adequate description of statistical analysis	0	0	16	100	0	0
Figure E1. Summary of risk of bias (as percentages across all included studies)
S9. Figures for results

Figure E2: Pooled mean changes in forced vital capacity (in litres) at 1 year to < 2 years

Figure E3: Pooled mean changes in diffusing capacity for carbon monoxide (in mL/mmHg/min) at 1 year to < 2 years
Figure E4: Pooled mean changes in 6MWD at 1 year to < 2 years
Figure E5: Subgroup analysis of pooled proportions of mortality at 1 year to < 2 years: Randomised controlled trials versus cohort studies

Study	ES (95% CI)	% Weight
Cohort study		
Agadi 1993	0.00 (0.00, 0.31)	0.05
Paonon 1995	0.36 (0.16, 0.46)	1.78
Fienne 1998	0.10 (0.03, 0.23)	1.53
Koub 1998	0.33 (0.13, 0.35)	1.4
Mapel 1998	0.22 (0.16, 0.28)	1.93
Kharah 2003	0.07 (0.01, 0.24)	1.36
Kontoh 2003	0.11 (0.02, 0.29)	1.34
Tomicka 2007	0.27 (0.15, 0.43)	1.55
Akiaki 2009	0.07 (0.02, 0.15)	1.73
Barlo 2009	0.00 (0.00, 0.03)	0.83
Bhelacharanya 2009	0.29 (0.04, 0.71)	0.69
Shirl 2009	0.06 (0.01, 0.16)	1.60
Shitom 2009	0.20 (0.10, 0.22)	2.05
Caym 2013	0.17 (0.02, 0.49)	0.94
March 2010	0.21 (0.12, 0.34)	1.64
Lee 2011	0.17 (0.10, 0.27)	1.75
Lutha 2011	0.00 (0.00, 0.03)	0.94
Linhji 2011	0.25 (0.19, 0.32)	1.92
Su 2011	0.16 (0.10, 0.23)	1.44
Cic 2012	0.09 (0.03, 0.17)	1.54
Diaz 2012	0.00 (0.00, 0.03)	0.84
Li 2012	0.47 (0.28, 0.66)	1.39
Mura 2012	0.26 (0.16, 0.38)	1.71
Wikos 2012	0.10 (0.05, 0.19)	1.77
Tzouvelie 2013	0.00 (0.00, 0.03)	1.02
Cai 2014	0.39 (0.30, 0.46)	1.93
Gu 2014	0.04 (0.00, 0.20)	1.30
Iwasawa 2014	0.00 (0.00, 0.09)	1.51
Jaffar 2014	0.29 (0.04, 0.71)	0.69
Shetani 2014	0.30 (0.22, 0.39)	1.86
Song 2014	0.40 (0.25, 0.56)	1.54
Yu 2014	0.15 (0.07, 0.26)	1.69
Rennell 2015	0.00 (0.00, 0.05)	1.73
Kim 2015	0.10 (0.07, 0.15)	1.96
Lendell 2015	0.08 (0.06, 0.12)	1.99
Ohtan 2015	0.12 (0.08, 0.18)	1.91
Svirnenowicz 2015	0.35 (0.15, 0.59)	1.20
Ashley 2016	0.00 (0.00, 0.05)	1.66
Knir 2016	0.21 (0.16, 0.27)	1.94
Nalayama 2016	0.12 (0.02, 0.30)	1.32
Raimundo 2016	0.27 (0.20, 0.33)	2.07
Russell 2016	0.26 (0.20, 0.42)	1.60
Serrano-Moller 2016	0.00 (0.00, 0.02)	1.09
Tzouvelie 2016	0.11 (0.06, 0.17)	1.79
Fisher 2017	0.10 (0.07, 0.14)	1.97
Strongman 2018	0.28 (0.27, 0.30)	2.06
Overall (I² = 93.40%, p = 0.00)	0.14 (0.12, 0.17)	71.90

RCT		
Darwood 2005	0.11 (0.05, 0.20)	1.73
King 2008	0.10 (0.04, 0.18)	1.75
King 2009	0.14 (0.10, 0.19)	1.96
Daniel 2010	0.17 (0.08, 0.29)	1.65
Taniguchi 2010	0.01 (0.00, 0.05)	0.81
King 2011	0.03 (0.01, 0.06)	1.93
Malan 2011	0.13 (0.05, 0.27)	1.56
Rulsee 2011	0.08 (0.06, 0.12)	1.58
Ruchal 2011	0.11 (0.05, 0.19)	1.76
Ruphi 2013a	0.04 (0.01, 0.08)	1.90
Ruphi 2013b	0.02 (0.00, 0.09)	1.65
King 2014	0.07 (0.04, 0.11)	1.96
Martinez 2014	0.02 (0.00, 0.07)	1.86
Ruchal 2014	0.08 (0.05, 0.11)	2.00
Ruphi 2015	0.11 (0.02, 0.29)	1.96
Overall (I² = 75.01%, p = 0.00)	0.07 (0.05, 0.09)	28.50

Proportion of mortality

Overall (I² = 95.12%, p = 0.00): 0.12 (0.09, 0.14) 100.00
Figure E6: Sensitivity analyses of pooled proportions of mortality at different time frames

a) At one year to less than two years

b) Between two and five years
c) Five years or greater

Study	ES (95% CI)	Weight
Jeon 2006	0.59 (0.48, 0.69)	11.04
Hamada 2007	0.33 (0.21, 0.46)	10.77
Shin 2008	0.54 (0.43, 0.66)	10.97
Akagi 2009	0.76 (0.65, 0.85)	10.95
Barfo 2009	0.96 (0.90, 0.99)	11.18
Su 2011	0.48 (0.38, 0.57)	11.22
Cai 2014	0.61 (0.54, 0.68)	11.42
Oldham 2015	0.44 (0.37, 0.52)	11.38
Zhang 2016	0.34 (0.25, 0.45)	11.06
Overall	0.56 (0.43, 0.71)	100.00
S10. Additional results

i. Progression-free survival
It was not possible to perform pooled analysis of progression-free survival due to variations in the definition of disease progression for each study. Two studies defined disease progression as death or a decline in lung function.\(^8,16^7\) Kotecha et al reported a median progression-free survival of 13 months in 27 patients with a median follow-up duration of 33 months,\(^8\) while Umeda et al reported a median progression-free survival of 27.9 months in 23 patients after five years of follow-up.\(^16^7\) After two years of follow-up, Prasse et al reported median times to decline in lung function of 6 to 15 months in 72 patients.\(^12^1\) Richards et al reported median times to decline in lung function of 1.01 to 1.05 years in 241 patients with a median follow-up duration of 1.4 to 1.8 years.\(^12^7\)

ii. Respiratory-related mortality
Data were available for pooling from seven studies with a total of 1,094 participants.\(^15,17^5,17^9,1^7^6,1^7^8,1^8^3,1^8^4\) The pooled proportion of respiratory-related mortality at one year to less than two years was 0.06 (95% CI: 0.03 to 0.09) (Figure S1). There was moderately significant heterogeneity among pooled studies. Over three years of follow-up in the study by Roig et al with 46 participants, 18 (39%) died from respiratory-related causes.\(^12^9\)

![Figure E7. Pooled proportion of respiratory-related mortality at 1 year to < 2 years](image)

IPF-related mortality was reported as an outcome measure in three studies.\(^1^4^3,1^7^4,1^8^3\) King et al provided pooled data of two RCTs for IPF-related mortality of 3.5% at 12 months,\(^1^4^3,1^8^3\) with a total of 624 participants. Zhang et al reported IPF-related mortality of 23.3% at five years, in a study of 90 participants.\(^1^7^4\)
iii. **Proportion of patients with an absolute decline in FVC of ≥ 10% predicted**

At one year, the pooled proportion of patients with an absolute decline in FVC at 10% predicted or more was 0.35 (95% CI: 0.28 to 0.43; 8 studies, 1076 participants) (Figure S4). There was moderately significant heterogeneity among pooled studies ($I^2 = 81\%$, $p < 0.0001$).

Study	ES (95% CI)	Weight
Hanson 1995	0.24 (0.14, 0.37)	11.68
Kondoh 2005	0.33 (0.17, 0.54)	8.56
Taniguchi 2010	0.52 (0.42, 0.62)	13.61
King 2014	0.32 (0.26, 0.38)	15.66
Oda 2014	0.19 (0.12, 0.29)	13.43
Richeldi 2014	0.39 (0.35, 0.44)	16.17
Parker 2016	0.49 (0.36, 0.63)	11.91
Nambiar 2017	0.38 (0.21, 0.56)	9.28
Overall ($I^2 = 80.72\%$, $p = 0.00$)	0.35 (0.28, 0.43)	100.00

Figure E8. Pooled proportion of patients with an absolute decline in FVC of 10% predicted or more at 1 year to < 2 years

iv. **Proportion of patients with an absolute decline in DLCO of ≥ 15% predicted**

Although no study reported the proportion of patients with an absolute decline of 15% predicted or more in DLCO, there were three studies which classified the decline in DLCO at one year using different parameters. Demedts et al found 51% of 63 participants experienced a decline in DLCO of > 15% predicted or 1 mmol/min/kPa. Hanson et al reported 10 (23%) participants had a reduction in DLCO of at least 20%. In a study of 144 participants by Schmidt et al, there were 57 participants (39.6%) with a relative decline in DLCO of at least 15%.

v. **Change in dyspnoea**

King et al similarly found a worsening of symptoms over 12 months with a mean change of -1.7 (standard deviation = 3.6) in the Transition Dyspnoea Index.

vi. **Change in health-related quality of life using the EQ-5D**

Due to differences in reported methods, a pooled analysis could not be performed for the two studies which measured changes in health-related quality of life using the EQ-5D. In a study of 131 patients, Martinez et al reported a decline in health-related quality of life with a mean change of -3.3 for the EQ-5D visual analogue score at 60 weeks. Parker et al found a mean change of -0.815 for the EQ-5D utility index in 57 patients at 72 weeks.