AN OPERATOR MODEL IN THE ANNULUS

GLENIER BELLO AND DMITRY YAKUBOVICH

Abstract. For an invertible linear operator T on a Hilbert space H, put
\[\alpha(T^*, T) := -T^* T^2 + (1 + r^2)T^* T - r^2 I, \]
where I stands for the identity operator on H and $r \in (0, 1)$; this expression comes from applying Agler’s hereditary functional calculus to the polynomial $\alpha(t) = (1 - t)(t - r^2)$. We give a concrete unitarily equivalent functional model for operators satisfying $\alpha(T^*, T) \geq 0$. In particular, we prove that the closed annulus $r \leq |z| \leq 1$ is a complete K-spectral set for T. We explain the relation of the model with the Sz.-Nagy–Foias one and with the observability gramian and discuss the relationship of this class with other operator classes related to the annulus.

1. Introduction

Given a bounded subset Ω of the complex plane, and a Hilbert space operator T with spectrum in Ω, the closure Ω^{cl} of Ω is said to be a K-spectral set for T, for some constant $K \geq 1$, if
\[\|f(T)\| \leq K \max_{z \in \Omega^{cl}} \|f(z)\| \]
for any rational function f with poles outside Ω^{cl}. The notion of spectral sets (i.e., K-spectral for $K = 1$) was introduced by von Neumann in [18]. If the same inequality holds for any rational $n \times n$ matrix-valued function f with poles outside Ω^{cl}, for any size n, then Ω^{cl} is said to be completely K-spectral for T. Arveson [3] proved that Ω^{cl} is a complete K-spectral set for T for some $K \geq 1$ if and only if T is similar to an operator which has a normal dilation with spectrum contained in the boundary of Ω. The case when Ω is the unit disc D is deeply related with the Sz.-Nagy–Foias theory of Hilbert space contractions. An excellent reference for this theory is the book [15]. In the landmark paper [2], Agler studied the case when Ω is an annulus
\[\mathbb{A} := \{ r < |z| < 1 \}, \]
for some $0 < r < 1$. He proved that \mathbb{A}^{cl} is 1-spectral for T if and only if \mathbb{A}^{cl} is completely 1-spectral for T. Moreover, it is well-known that operators for which \mathbb{A}^{cl} is a 1-spectral set, that we will denote by $\text{Sp} \mathbb{A}$, admit the following model:

Theorem A (cf. [4, Theorem 2.1]). The set \mathbb{A}^{cl} is 1-spectral for T if and only if there exist unitary operators U_1, U_2 and a weight ω on a Hilbert space...
Let E be such that T is unitarily equivalent to a compression of the operator

$$(M_z \text{ on } H^2(\mathbb{A}, E, \omega)) \oplus U_1 \oplus rU_2$$

to its coinvariant subspace.

Recall that, given a Hilbert space E, the vector valued Hardy space $H^2(\mathbb{A}, E)$ consists of all analytic functions $f : \mathbb{A} \to E$ such that

$$\sup_{r < \rho < 1} \int_{\mathbb{T}} \|f(\rho z)\|^2 |dz| < \infty.$$

There is no unique canonical way of choosing a Hilbert space on this space. For any bounded, positive and invertible operator ω on E, $H^2(\mathbb{A}, E, \omega)$ is defined as the vector space $H^2(\mathbb{A}, E)$ equipped with the Hilbert space norm

$$\|f\|_{H^2(\mathbb{A}, E, \omega)}^2 := \int_{\mathbb{T}} \|f(z)\|^2_E |dz| + \int_{\mathbb{T}} \|\omega f(z)\|^2_E |dz| \quad (1.1)$$

All these norms are equivalent. The operator M_z acts on $H^2(\mathbb{A}, E, \omega)$ by $M_z f(z) := z f(z)$. These operators are purely subnormal and mutually similar, but, in general, not unitarily equivalent to each other.

For a general finitely connected domain Ω, Abrahamse and Douglas [1] showed the importance of what they called bundle shifts; they form a subclass of pure subnormal operators with spectrum in Ω^c. In the case of an annulus, the set of bundle shifts coincides with the family of operators M_z on spaces $H^2(\mathbb{A}, E, \omega)$.

Consider the polynomial $\alpha(t) := (1 - t)(t - r^2)$. For any Hilbert space operator T, we define

$$\alpha(T^*, T) := -T^* T^2 + (1 + r^2) T^* T - r^2 I, \quad (1.2)$$

where I stands for the identity operator on the space where T acts. Here we put all expressions T^* on the left, because we are applying the so-called Agler’s hereditary functional calculus, whose relevance in constructing operator models is well-known. We denote by C_α the class of all invertible bounded linear operators T such that the operator $\alpha(T^*, T)$ is non-negative. Let $C_{1, r}$ stand for the family of all bounded invertible operators T such that $\|T\| \leq 1$ and $\|T^{-1}\| \leq 1/r$. We have the following strict inclusions of classes of operators.

Theorem 1.1. $\text{Sp } \mathbb{A} \subset C_\alpha \subset C_{1, r}$.

In this paper we focus on the study of the class C_α. It is natural to try an approach in the spirit of Sz.-Nagy–Foias theory. Suppose we are given an operator T in C_α. Denote by D the non-negative square root of $\alpha(T^*, T)$ and by D the closure of the range of D; these will be called the defect operator and the defect space of T, respectively. We will construct an explicit model where D plays the role of the abstract defect operator. More precisely, the lifting of the model will involve the output transform

$$O_{T, D} : H \to H^2_r(B, D), \quad O_{T, D} x(z) = D(z - T)^{-1} x, \quad x \in H, z \in B.$$
Here \mathcal{B} denotes the complementary of \mathcal{A}. For any Hilbert space E, the space $H^2_r(\mathcal{B}, E)$ consists of all functions $f : \mathcal{B} \to E$ representable as
\[
\sum_{n=0}^{\infty} f_n z^n \quad \text{for } |z| < r, \quad \sum_{n=-\infty}^{-1} f_n z^n \quad \text{for } |z| > 1,
\]
where $\{f_n\}_{n \in \mathbb{Z}}$ is a sequence in E, with finite norm
\[
\|f\|_{H^2_r(\mathcal{B}, E)}^2 := \frac{1}{1-r^2} \sum_{n=0}^{\infty} r^{2n} \|f_n\|^2 + \frac{1}{1-r^2} \sum_{n=-\infty}^{-1} \|f_n\|^2.
\]
On these spaces the operator M_z acting by
\[
M_z f(z) = z f(z) - (zf(z))|_{z=\infty}
\]
is well-defined. If we identify a function f in $H^2_r(\mathcal{B}, E)$ with the two-sided vector sequence $(\ldots, f_{-3}, f_{-2}, f_{-1}, f_0, f_1, f_2, \ldots)$, then M_z takes the form of the bilateral shift. Our model theorem for operators in \mathcal{C}_α is the following.

Theorem 1.2 (Model theorem). Suppose that T is invertible. The following statements are equivalent.

(i) $\alpha(T^*, T) \geq 0$.

(ii) T is unitarily equivalent to a part of an operator of the form
\[
(M_z^* \text{ on } H^2_r(\mathcal{B}, E)) \oplus S,
\]
where E is a Hilbert space and S is a subnormal operator whose minimal unitary extension has spectrum contained in the union of the circles $\{ |z| = r \}$ and $\{ |z| = 1 \}$.

If (i) holds, one can take $E = \mathcal{D}$ in (ii).

Using a certain duality between models, in Theorem 3.2 we obtain a model for T^* with the structure of Theorem A. The explicit model permits to obtain a concrete value of K such that \mathcal{A}^{cl} is completely K-spectral for operators in \mathcal{C}_α (see Theorem 4.2).

Let us give a few comments on the literature concerning the annulus. Apart from Agler’s paper cited above, another classic work is that by Sarason [13]. He obtained for $H^p(\mathcal{A})$ analogous results to the well-established theory for $H^p(\mathbb{D})$. The transition is not always smooth: for example, Blaschke products cannot be implemented in the annulus. Sarason overcame this obstacle by introducing what he called *modulus automorphic functions*. In the second part of the paper, he studied invariant and doubly invariant subspaces for the multiplication operator on $L^2(\partial \mathcal{A})$. Recent papers dealing with the annulus are for example [10, 12, 11] (see also the references therein). In [10], McCullough and Sultanic proved a kind of commutant lifting theorem for the annulus. Earlier, in a different context, a result on commutant lifting for finitely connected domains has been obtained by Ball in [4]. In [12], Pietrzycki obtained an analytic model on an annulus for left-invertible operators. This model allowed him to extend in [11] the notion of generalized multipliers for left-invertible analytic operators, introduced in [8], to left-invertible operators. These works were motivated by weighted shifts on directed trees.
AN OPERATOR MODEL IN THE ANNULUS

Our forthcoming work [5] is devoted to operator theory corresponding to
general multiply connected domains, in a somewhat different context. Some
consequences of the results of the present paper will be derived there.

The paper is organized as follows. In Section 2 we obtain basic properties
of operators in \(C_\alpha \) and prove our model theorem. In Section 3 we study
the duality inherent to this work and prove Theorem 1.1. Finally, in Section 4
we derive consequences from the explicit model obtained.

2. AN EXPLICIT FUNCTIONAL MODEL FOR OPERATORS IN \(C_\alpha \)

This section is devoted to proving Theorem 1.2.

Fix a bounded linear operator \(T \) acting on a Hilbert space \(H \).

Notice that

\[
\alpha(T^*, T) \geq 0 \text{ if and only if } (1 + r^2)\|Tx\|^2 - \|T^2x\|^2 - r^2\|x\|^2 \geq 0 \tag{2.1}
\]

for all \(x \) in \(H \). Observe that the left hand side of (2.1) is precisely \(\|Dx\|^2 \).

In fact, for all \(x \in H \) and all \(n \in \mathbb{Z} \) we have

\[
\|DT^n x\|^2 = (1 + r^2)\|T^{n+1}x\|^2 - \|T^{n+2}x\|^2 - r^2\|T^nx\|^2 \geq 0. \tag{2.2}
\]

Simple computations using (2.1) reveal that the membership of operators
\(T \) and \(rT - 1 \) in the class \(C_\alpha \) are closely related. More precisely:

Proposition 2.1. Suppose that \(T \) is invertible. Then \(T \) is in \(C_\alpha \) if and
only if \(rT - 1 \) is in \(C_\alpha \).

We next obtain the inclusion \(C_\alpha \subset C_{1,r} \), stated in Theorem 1.1. The
complete proof of that theorem will be given at the end of Section 3.

Proposition 2.2. If \(T \) is in \(C_\alpha \), then \(\|T\| \leq 1 \) and \(\|T^{-1}\| \leq 1/r \).

Proof. Note that the inequality in (2.2) can be written as

\[
\frac{\|T^{n+1}x\|^2 - \|T^nx\|^2}{r^{2n+2} - r^{2n}} \leq \frac{\|T^{n+2}x\|^2 - \|T^{n+1}x\|^2}{r^{2n+4} - r^{2n+2}}.
\]

If we consider \(x \in H \) fixed, this means that the broken line with vertices in
\((r^{2n}, \|T^nx\|^2)_{n \in \mathbb{Z}} \) is concave. Then, for any its edge, the straight line
containing it is above the whole broken line. Since \(x \)-coordinates \(r^{2n} \) of the
vertices go to \(\infty \) as \(n \to -\infty \) and the broken line is above the \(x \)-axis, all edges
have non-negative slope. In particular, \(\|Tx\|^2 \leq \|x\|^2 \), so \(T \) is a contraction.
The second part of the statement follows using Proposition 2.1. \(\square \)

As usual, let \(\sigma(T) \) denote the spectrum of \(T \). The following result is an
immediate consequence of Proposition 2.2

Corollary 2.3. If \(T \) is in \(C_\alpha \), then \(\sigma(T) \subset \mathbb{H}^1 \), and the limits

\[
L^+(T, x) := \lim_{n \to \infty} \|T^nx\|^2, \quad L^-(T, x) := \lim_{n \to \infty} \|r^nT^{-n}x\|^2
\]

exist for all \(x \) in \(H \).

Notice that \(L^+(T, Tx) = L^+(T, x) \) and \(L^-(T, Tx) = r^2L^-(T, x) \) for all \(x \in H \). This obvious fact will be implicitly used below.
Lemma 2.4. If T is in C_α, then
\[
\sum_{n=0}^{\infty} \|DT^n x\|^2 = \|Tx\|^2 - r^2\|x\|^2 + (r^2 - 1)L^+(T, x)
\] (2.3)
for all x in H. In particular, the series on the left hand side converges.

Proof. Note that
\[
\|DT^n x\|^2 = -\|T^{n+2}x\|^2 + (1 + r^2)\|T^{n+1}x\|^2 - r^2\|Tx\|^2.
\]
for all $x \in H$ and all $n \in \mathbb{Z}$. Therefore
\[
\sum_{n=0}^{N} \|DT^n x\|^2 = -\sum_{n=2}^{N+2} \|T^n x\|^2 + (1 + r^2)\sum_{n=1}^{N+1} \|T^n x\|^2 - r^2\sum_{n=0}^{N} \|T^n x\|^2
\]
for all $N \in \mathbb{N}$. The statement follows letting $N \to \infty$. \hfill \Box

Lemma 2.5. If T is in C_α, then
\[
-\sum_{n=-\infty}^{-1} r^{-2n-2}\|DT^n x\|^2 = -\|Tx\|^2 + \|x\|^2 + (r^2 - 1)L^-(T, x)
\] (2.4)
for all x in H. In particular, the series on the left hand side converges.

Proof. By Proposition (2.1) $rT^{-1} \in C_\alpha$. Let \tilde{D} denote the defect operator of rT^{-1}. A straightforward computation gives that
\[
r^{-2}\||\tilde{D}T^2 x\|^2 = \|Dx\|^2
\] (2.5)
for all $x \in H$. Using Lemma (2.4) for rT^{-1}, we obtain
\[
\sum_{n=0}^{\infty} \|\tilde{D}r^n T^{-n} y\|^2 = \|rT^{-1} y\|^2 - r^2\|y\|^2 + (r^2 - 1)L^+(rT^{-1}, y)
\] (2.6)
for all $y \in H$. Set $y = r^{-1}Tx$. Then
\[
L^+(rT^{-1}, y) = \lim_{n \to \infty} \|r^n T^{-n} y\|^2 = \lim_{n \to \infty} \|r^{-n-1} T^{-n+1} x\|^2 = L^-(T, x).
\]
Hence the right hand side of (2.6) is equal to the right hand side of (2.4). Using (2.4) we get
\[
\sum_{n=0}^{\infty} \|\tilde{D}r^n T^{-n} y\|^2 = \sum_{n=-\infty}^{-1} r^{-2n-2}\|DT^n x\|^2.
\]
Therefore (2.4) follows. \hfill \Box

Theorem 2.6. If T is in C_α, then
\[
\|x\|^2 = \frac{1}{1 - r^2} \sum_{n=0}^{\infty} \|DT^n x\|^2 + \frac{1}{1 - r^2} \sum_{n=-\infty}^{-1} r^{-2n-2}\|DT^n x\|^2
\]
\[+ L^+(T, x) + L^-(T, x)
\]
for all x in H. In particular, both series on the right hand side converge.

Proof. Add up equations (2.3) and (2.4), and rearrange the terms. \hfill \Box
The function O foreshadows its structure. Let $T \in C$. Consider the operator
$$O_{T}: H \to H^2_{\mathfrak{D}} \oplus \tilde{H}, \quad O_{T}x(z) = D(z-T)^{-1}x, \quad x \in H, z \in \mathfrak{D}.$$ The function $O_{T,D}x(z)$ can be defined as
$$- \sum_{n=0}^{\infty} (DT^{-n-1}x)z^n \quad \text{for } |z| < r, \quad \sum_{n=-\infty}^{-1} (DT^{-n-1}x)z^n \quad \text{for } |z| > 1.$$ Hence
$$\|O_{T,D}x\|_{H^2_{\mathfrak{D}}}^2 = \frac{1}{1-r^2} \sum_{n=0}^{\infty} r^{2n}\|DT^{-n-1}x\|^2 + \frac{1}{1-r^2} \sum_{n=-\infty}^{-1} r^{-2n-2}\|DT^{-n}x\|^2$$
for all $x \in H$. Therefore, by Theorem 2.6 $O_{T,D}$ is a contraction.

We construct the second component of the lifting using a well-known argument (cf. [9, 14]), that we also employed in [6, Section 4]. By Proposition 2.2 and the polarization identity, one can define on H the sesquilinear form
$$\langle x, y \rangle_+ := \lim_{n \to \infty} \langle T^nx, T^ny \rangle.$$
Let H_0 be the subspace of vectors x in H such that $L^+(T,x) = \langle x, x \rangle_+ = 0$. Denote by \tilde{H}_+ the Hilbert space obtained as the completion of the quotient space H/H_0 in the pre-Hilbert norm $x \mapsto \langle x, x \rangle^{1/2}_+$. Let $W_+: H \to \tilde{H}_+$ be the operator that maps each vector x to its class $[x]_+$. In the same way, thanks to Proposition 2.2 starting from the sesquilinear form
$$\langle x, y \rangle_- := \lim_{n \to \infty} \langle r^nT^{-n}x, r^nT^{-n}y \rangle$$
on H, we define the Hilbert space \tilde{H}_- and the operator $W_- : H \to \tilde{H}_-$ mapping each vector x to its class $[x]_-$. Denote by W the operator (W_+, W_-), and let \tilde{H} be the closure of its range. That is, \tilde{H} is a closed subspace of $\tilde{H}_+ \oplus \tilde{H}_-$, and
$$W : H \to \tilde{H}, \quad Wx = W_+x \oplus W_-x.$$ Notice that
$$\|Wx\|^2 = \|W_+x\|^2 + \|W_-x\|^2 = L^+(T,x) + L^-(T,x)$$for all $x \in H$. Therefore, as a consequence of Theorem 2.6 we obtain our lifting theorem.

Theorem 2.7 (Lifting of the model). If T is in C, the transformation
$$(O_{T,D}, W) : H \to H^2_{\mathfrak{D}} \oplus \tilde{H}, \quad (O_{T,D}, W)(x) = O_{T,D}x \oplus Wx$$is an isometry.

In order to obtain the model theorem for operators in C, we first need to analyze the particular case of operators T such that $\alpha(T^*, T) = 0$.

Theorem 2.8. Suppose that T is invertible. The following statements are equivalent.
Proposition 2.9. For any Hilbert space E, the operator

$$\mathcal{M}_f^T : H_\mathcal{B}^2(\mathbb{B}, E) \to H_\mathcal{B}^2(\mathbb{B}, E)$$

given by (1.3) belongs to \mathcal{C}_α.

Proof. Identifying $f \in H_\mathcal{B}^2(\mathbb{B}, E)$ with the sequence $\{f_n\}_{n \in \mathbb{Z}}$ of its coefficients, a straightforward computation gives that

$$(1 + r^2) \| \mathcal{M}_f \|^2 - \| \mathcal{M}_f^T \|^2 - r^2 \| f \|^2 r^2 \| f \|^2 = \| f_0 \|^2 \geq 0.$$

Hence $\alpha(\mathcal{M}_f^T)$, $\mathcal{M}_f^T \geq 0$. If we view \mathcal{M}_f^T as a bilateral shift, we get that it is invertible. \hfill \square

Proof of Theorem 1.2. Assume that $\alpha(T^*, T) \geq 0$, that is, $T \in \mathcal{C}_\alpha$. Then we can obtain a normal operator $U = U_+ \oplus U_-$ as at the beginning of the proof of Theorem 2.8. Let S be the restriction of U to \tilde{H}. Note that S has the desired properties of (ii). Moreover, $SW = WT$. Since \mathcal{M}_f^T, acting on $H_\mathcal{B}^2(\mathbb{B}, \mathcal{D})$, satisfies $M_f^T \mathcal{O}_T \mathcal{D} = \mathcal{O}_T \mathcal{D} T$, using Theorem 2.7 we obtain that T is unitarily equivalent to a part of $\mathcal{M}_f^T \oplus S$.

Now assume (ii). Let U be the normal minimal extension of S. Since $\sigma(U)$ is contained in the union of the circles $\{ |z| = r \}$ and $\{ |z| = 1 \}$, U can be written as an orthogonal sum $U_+ \oplus U_-$, where U_+ and $r^{-1}U_-$ are unitaries. By Theorem 2.8 $\alpha(U^*, U) = 0$, so we also have $\alpha(S^*, S) = 0$.

(i) $\alpha(T^*, T) = 0$.
(ii) T is a subnormal operator whose minimal normal extension can be written as a sum $U_+ \oplus U_-$, where U_+ and $r^{-1}U_-$ are unitary operators.

In this case, either T is normal or $\sigma(T) = \mathbb{A}^d$.

Proof. Assume that $\alpha(T^*, T) = 0$. In particular $T \in \mathcal{C}_\alpha$. Note that $W_+ : H \to \tilde{H}_+$ is onto. Since $W_+ x = W_+ T x$ for all $x \in H$, the formula $U_+ W_+ x = W_+ T x$ defines an isometric operator U_+ on \tilde{H}_+. Since the range of U_+ is \tilde{H}_+, U_+ is unitary. Analogously, the operator U_- on \tilde{H}_- given by $U_- W_- x = W_- T x$ satisfies that $r^{-1} U_-$ is a unitary operator. Set $U := U_+ \oplus U_-$, which acts on $\tilde{H}_+ \oplus \tilde{H}_-$. Then U is a normal operator with

$$\sigma(U) \subset \{|z| = r \} \cup \{|z| = 1 \}.$$

Since $\mathcal{D} = 0$, Theorem 2.7 gives that $W : H \to \tilde{H}$ is a unitary operator. Therefore T is unitarily equivalent to the restriction of U to \tilde{H}, which has the desirable properties of (ii).

Now suppose that T satisfies (ii). Let $U = U_+ \oplus U_-$ be its minimal unitary extension. Then U is bounded and $\sigma(U)$ is contained in the union of the circles $\{|z| = r \}$ and $\{|z| = 1 \}$. Write each vector x in the space where U acts as a pair (x_+, x_-), so that $U x = U_+ x_+ + U_- x_-$. Then

$$\| U x \|^2 = \| U_+ x_+ \|^2 + \| U_- x_- \|^2 = \| x_+ \|^2 + r^2 \| x_- \|^2.$$

Hence, a straightforward computation shows that

$$\alpha(U^*, U) = 0.$$

The last statement follows from [7, Theorem II.2.11 (c)]. \hfill \square

The last result we need to prove Theorem 1.2 is the following.

Proposition 2.9. For any Hilbert space E, the operator

$$\mathcal{M}_f^T : H_\mathcal{B}^2(\mathbb{B}, E) \to H_\mathcal{B}^2(\mathbb{B}, E)$$

given by (1.3) belongs to \mathcal{C}_α.

Proof. Identifying $f \in H_\mathcal{B}^2(\mathbb{B}, E)$ with the sequence $\{f_n\}_{n \in \mathbb{Z}}$ of its coefficients, a straightforward computation gives that

$$\| \mathcal{M}_f \|^2 - \| \mathcal{M}_f^T \|^2 - r^2 \| f \|^2 r^2 \| f \|^2 = \| f_0 \|^2 \geq 0.$$

Hence $\alpha(\mathcal{M}_f^T)$, $\mathcal{M}_f^T \geq 0$. If we view \mathcal{M}_f^T as a bilateral shift, we get that it is invertible. \hfill \square
Since \(M^t_z \) is in \(C_\alpha \) (see Proposition 2.9) and \(T \) is a part of \(M^t_z \oplus S \), we obtain (i).

Notice that Theorem 2.8 can be seen as a particular case of Theorem 1.2 when the structure involving the defect operator disappears.

3. Dual models

In this section we discuss the duality behind the models involving operators \(M_z \) acting on spaces of functions on \(\mathbb{A} \), on one hand, and the models in terms of operators \(M^t_z \), acting on spaces of functions on \(\mathbb{B} \), on the other hand. In \[3\], we exploit this duality in the context of multiply connected domains.

Proposition 3.1. The operator \(M^t_z \) acting on \(H^2(\mathbb{B}, E) \) is dual to the operator \(M_z \) acting on \(H^2(\mathbb{A}, E) \) via the duality

\[
(f, g) = \int_{\mathbb{T}} \langle f(z), g(\bar{z}) \rangle_E \, dz + \int_{\mathbb{T}} \langle f(z), g(z) \rangle_E \, dz,
\]

where \(f \) is in \(H^2(\mathbb{B}, E) \) and \(g \) is in \(H^2(\mathbb{A}, E) \).

Proof. It is easy to see that \(M^t_z \) acting on \(H^2(\mathbb{B}, E) \) is unitarily equivalent to the backward shift

\[
B : \ell^2_t(\mathbb{B}, E) \rightarrow \ell^2_t(\mathbb{B}, E), \quad B(\{f_n\}_{n \in \mathbb{Z}}) = \{f_{n+1}\}_{n \in \mathbb{Z}},
\]

where \(\ell^2_t(\mathbb{B}, E) \) is the space of sequences \(\{f_n\}_{n \in \mathbb{Z}} \) in \(E \) with finite norm

\[
\| \{f_n\}_{n \in \mathbb{Z}} \|_{\ell^2_t(\mathbb{B}, E)} := \frac{1}{1 - r^2} \left(\sum_{n=0}^{\infty} \| f_n \|^2 + \sum_{n=-\infty}^{-1} r^{-2n-2} \| f_n \|^2 \right).
\]

In the same way, \(M_z \) acting on \(H^2(\mathbb{A}, E) \) is unitarily equivalent to the forward shift

\[
F : \ell^2_{r,-}(\mathbb{A}, E) \rightarrow \ell^2_{r,-}(\mathbb{A}, E), \quad F(\{g_n\}_{n \in \mathbb{Z}}) = \{g_{n-1}\}_{n \in \mathbb{Z}},
\]

where \(\ell^2_{r,-}(\mathbb{A}, E) \) is the space of sequences \(\{g_n\}_{n \in \mathbb{Z}} \) in \(E \) with finite norm

\[
\| \{g_n\}_{n \in \mathbb{Z}} \|_{\ell^2_{r,-}(\mathbb{A}, E)} := (1 - r^2) \left(\sum_{n=0}^{\infty} \frac{1}{r^{2n}} \| g_n \|^2 + \sum_{n=-\infty}^{-1} \| g_n \|^2 \right).
\]

Finally, the duality can be written as

\[
\langle \{f_n\}, \{g_n\} \rangle = \sum_{n \in \mathbb{Z}} \langle f_n, g_{n-1} \rangle_E,
\]

where \(\{f_n\}_{n \in \mathbb{Z}} \in \ell^2_t(\mathbb{B}, E) \) and \(\{g_n\}_{n \in \mathbb{Z}} \in \ell^2_{r,-}(\mathbb{A}, E) \). Now an easy computation shows that the statement holds.

Therefore, as an immediate consequence of Theorem 1.2 and Proposition 3.1, we obtain a dual model for operators in the class \(C_\alpha \).

Theorem 3.2 (Dual model theorem). Suppose that \(T \) is invertible. Then \(T \) is in \(C_\alpha \) if and only if \(T^* \) is a compression of an operator of the form

\[
(M_z \text{ on } H^2(\mathbb{A}, E)) \oplus U_0 \oplus rU_1,
\]

where \(E \) is a Hilbert space, and \(U_0 \) and \(U_1 \) are unitary operators.
In what follows, we will use the Hilbert spaces $H^2(\mathbb{A}, E, \omega)$, defined in (1.1), in the scalar-valued case when $E = \mathbb{C}$. Putting $\omega = a > 0$, we get the Hilbert norms
\[\|f\|_{H^2(\mathbb{A}, \mathbb{C}, a)}^2 = \int_T |f(z)|^2 |dz| + a \int_{rT} |f(z)|^2 |dz|. \]
Notice that $\{z^n\}_{n \in \mathbb{Z}}$ is an orthogonal basis in $H^2(\mathbb{A}, \mathbb{C}, a)$ with
\[\|z^n\|_{H^2(\mathbb{A}, \mathbb{C}, a)}^2 = 1 + a^2 r^{2n} \]
for all $n \in \mathbb{Z}$. Therefore, in terms of the coefficients $\{f_n\}_{n \in \mathbb{Z}}$ of the Laurent series of f in \mathbb{A} (that is, $f(z) = \sum_{n \in \mathbb{Z}} f_n z^n$), we have
\[\|f\|_{H^2(\mathbb{A}, \mathbb{C}, a)}^2 = \sum_{n=-\infty}^{\infty} (1 + a^2 r^{2n}) |f_n|^2. \]

Now consider the space $H^2(\mathbb{B}, \mathbb{C}, a)$ of all functions $f: \mathbb{B} \to \mathbb{C}$ given by
\[\sum_{n=0}^{\infty} f_n z^n \text{ for } |z| < r, \quad \sum_{n=-\infty}^{-1} f_n z^n \text{ for } |z| > 1, \]
equipped with the Hilbert space norm
\[\|f\|_{H^2(\mathbb{B}, \mathbb{C}, a)}^2 := \sum_{n=-\infty}^{\infty} \frac{1}{1 + a^2 r^{-2n-2}} |f_n|^2. \]
For any Hilbert space E, set
\[H^2(\mathbb{B}, E, a) := H^2(\mathbb{B}, \mathbb{C}, a) \otimes E, \quad H^2(\mathbb{A}, E, a) := H^2(\mathbb{A}, \mathbb{C}, a) \otimes E. \]

Proposition 3.3. The operator M_z^t acting on $H^2(\mathbb{B}, E, a)$ is dual to the operator M_z acting on $H^2(\mathbb{A}, E, a)$.

Proof. The argument is essentially the same as in the proof of Proposition 3.1. Indeed, the same duality works. Hence we omit it. \(\square \)

Lemma 3.4. The operator M_z^t acting on $H^2(\mathbb{B}, E, a)$ is in C_α.

Proof. Identifying functions f in $H^2(\mathbb{B}, E, a)$ with the sequence $\{f_n\}_{n \in \mathbb{Z}}$ of its coefficients, it is immediate that M_z^t can be identified with the forward shift F acting on the weighted space $\ell_\omega^2(\mathbb{Z})$ of bilateral sequences with
\[\omega_n = \frac{1}{1 + a^2 r^{-2n-2}}. \]
Note that F satisfies (2.1) if
\[\frac{1 + r^2}{1 + ar^{-2n-4}} = \frac{1}{1 + ar^{-2n-6}} - \frac{r^2}{1 + ar^{-2n-2}} \geq 0 \]
for all $n \in \mathbb{Z}$. Setting $r^2 = \rho$ and $ar^{-2n-6} = x$, this follows from
\[\frac{1 + \rho}{1 + x\rho} - \frac{1}{1 + x} - \frac{\rho}{1 + x\rho^2} = \frac{(\rho - 1)^2(\rho + 1)}{(1 + x)(1 + x\rho)(1 + x\rho^2)} \geq 0. \]
Hence F is in C_α, as we wanted to prove. \(\square \)
We remark that a special role of spaces $H^2(B, E, a)$ for the values $a = i^{2m}, \ m \in Z$, was observed in [10] (see Proposition 2.2 of that work). Namely, for these (and only these) values, the corresponding reproducing kernel $k(z, w)$ does not vanish on $\mathbb{A} \times \mathbb{A}$. The commutant lifting theorem given in [10] involves the operator class, defined in terms of the operator M_z on $H^2(B, E, a)$, where a takes one of these special values.

Proof of Theorem 4.7 First, notice that the inclusion $C_{\alpha} \subset C_{1,r}$ has already been proved in Proposition 2.2. Now take $T \in \text{Sp}(\mathbb{A})$ and let us see that $T \in C_{\alpha}$. Since \mathbb{A}^{cl} is also 1-spectral for T^*, by Theorem A we know that T^* is unitarily equivalent to a compression of the operator

$$(M_z \text{ on } H^2(\mathbb{A}, E, \omega)) \oplus U_1 \oplus rU_2$$

to its coinvariant subspace, where $\omega \in L(E)$ is a weight and U_1, U_2 are unitaries. Therefore T is unitarily equivalent to a part of the operator

$$(M_z \text{ on } H^2(\mathbb{A}, E, \omega))^* \oplus U_1^* \oplus rU_2^*.$$

Hence, it suffices to check that any operator of this form is in C_{α}. It is clear that the operator $N = U_1^* \oplus rU_2^*$ is in C_{α} (indeed $\alpha(N^*, N) = 0$). Let us see now that the operator M_z on $H^2(\mathbb{A}, E, \omega)$ is also in C_{α}. By the spectral theorem, $\omega \in L(E)$ is unitarily equivalent to the multiplication operator $M_\alpha f(a) = af(a)$, acting on a direct integral of Hilbert spaces

$$\int\int H(a) d\mu(a),$$

where μ is a finite Borel measure, concentrated on $\sigma(\omega)$. In this representation, the operator M_z on $H^2(\mathbb{A}, E, \omega)$ rewrites as

$$\int H(a) d\mu(a).$$

Therefore, it is enough to check only the scalar case. That is, we need to prove that the adjoint to M_z on the scalar space $H^2(\mathbb{A}, C, a)$ is in C_{α} for all $a > 0$, which follows from Proposition 3.3 and Lemma 3.3. Hence, we have proved the inclusion $\text{Sp} \mathbb{A} \subset C_{\alpha}$.

Next, we show that the inclusion $C_{\alpha} \subset C_{1,r}$ is strict for all $0 < r < 1$. Consider the matrices

$$T_1 := \begin{pmatrix} 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 1 \end{pmatrix}, \quad T_2 := \begin{pmatrix} \sqrt{r} & 0 \\ 1 - r & \sqrt{r} \end{pmatrix}.$$

It is easy to check that $\frac{1}{2} \|x\| \leq \|T_1 x\| \leq \|x\|$ and $r \|x\| \leq \|T_2 x\| \leq \|x\|$ for all $x \in H$. Now we test the left hand side of (2.1) with $x = (1,0)$ for both T_1 and T_2. For T_1 we obtain the result $-r^2/4$. For T_2 we get $(r - 1)^2(r^2 - 3r + 1)$. Therefore, if $0 < r \leq 1/2$ then T_1 is in $C_{1,r}$ but not in C_{α}, while if $1/2 < r < 1$ then T_2 is in $C_{1,r}$ but not in C_{α}.

Finally, let us see that the inclusion $\text{Sp} \mathbb{A} \subset C_{\alpha}$ is strict. Consider the shifts B and F given in the proof of Proposition 3.1. There we established the duality between these two operators. Testing the left hand side of (2.1) for the operator F and the vector $f = \{f_n\}_{n \in Z}$, with $f_0 = 1$ and $f_n = 0$ if
\(n \neq 0 \), we have
\[
(1 + r^2)\|Ff\|^2 - \|F^2f\|^2 - r^2\|f\|^2 = (1 - r^2)\left(\frac{1 + r^2}{r^2} - \frac{1}{r^4} - r^2\right)
= \frac{(1 - r^2)^2}{r^4}(r^4 - 1),
\]
which is negative for all \(0 < r < 1 \). Hence, \(B \in \mathcal{C}_\alpha \) (see Proposition 2.9) but \(F \notin \mathcal{C}_\alpha \). Since the class \(\mathcal{S}_{\alpha} \) is invariant by passing to the adjoint operator (i.e., \(T \in \mathcal{S}_{\alpha} \) if and only if \(T^* \in \mathcal{S}_{\alpha} \)), we obtain that \(B \in \mathcal{C}_\alpha \setminus \mathcal{S}_{\alpha} \). □

Remark 3.5. In an earlier version of this paper (published in arxiv), we asked whether it is true that \(\mathcal{S}_{\alpha} = \{ T \in \mathcal{C}_\alpha : T^* \in \mathcal{C}_\alpha \} \). Recently G. Tsikalas gave a concrete example, showing that \(\mathcal{S}_{\alpha} \) is strictly smaller than the set \(\{ T \in \mathcal{C}_\alpha : T^* \in \mathcal{C}_\alpha \} \).

4. **Consequences of the model**

In this section we present some results derived from the explicit model obtained in Theorem 1.2 for operators in \(\mathcal{C}_\alpha \). For instance, we give a concrete value \(K \) such that \(A_{\text{cl}} \) is completely \(K \)-spectral for all operators in \(\mathcal{C}_\alpha \), and we establish a characterization of the inclusion of classes \(\mathcal{C}_\alpha \subset \mathcal{C}_\beta \).

Proposition 4.1. The inclusion map
\[
J_a : H^2(\mathbb{B}, E) \hookrightarrow H^2(\mathbb{B}, E, a), \quad J_a f = f
\]
is well-defined. Moreover, it is a bijection and
\[
\|J_a\|^2 = \frac{1 - r^2}{\min\{a^2r^2 - 2, 1\}}, \quad \|J_a^{-1}\|^2 = \frac{1 + a^2r^2}{1 - r^2}.
\]

Proof. For the orthogonal basis \(\{z^n\}_{n \in \mathbb{Z}} \) we have
\[
\|z^n\|^2_{H^2(\mathbb{B}, E, a)} = \frac{1}{1 + a^2r^2n^2}
\]
and
\[
\|z^n\|^2_{H^2(\mathbb{B}, E)} = \begin{cases}
 1/(1 - r^2) & \text{if } n \geq 0 \\
 1/(1 - r^2) & \text{if } n \leq -1
\end{cases}
\]
Therefore
\[
\|J_a\|^2 = \max \left\{ \sup_{n \geq 0} \frac{1 - r^2}{(1 + a^2r^2n^2)}, \sup_{n \leq -1} \frac{1 - r^2}{1 + a^2r^2n^2} \right\}, \quad (4.1)
\]
and
\[
\|J_a^{-1}\|^2 = \max \left\{ \sup_{n \geq 0} \frac{1 + a^2r^2n^2}{1 - r^2}, \sup_{n \leq -1} \frac{1 + a^2r^2n^2}{1 - r^2} \right\}. \quad (4.2)
\]
Recall that \(0 < r < 1 \). Hence, in (4.1) we need to compare the cases \(n \to \infty \) and \(n \to -\infty \), while in (4.2) the maximum is reached for \(n = 0 \). □

Theorem 4.2. \(\mathcal{A}^{\text{cl}} \) is completely \(\sqrt{2} \)-spectral for all operators in \(\mathcal{C}_\alpha \).
Proof. Let $T \in \mathbb{C}_\alpha$. Given $a > 0$, the operator M_z acting on $H^2(\mathbb{B}, \mathcal{D}, a)$ has K_a as a complete 1-spectral set (see Theorem A). Therefore, its adjoint operator, M_tz acting on $H^2(\mathbb{B}, \mathcal{D}, a)$, also has K_a as a complete 1-spectral set. By Theorem 1.2 and Proposition 4.1 it follows that K_a is a complete K_a-spectral set for T, where $K_a := \|J_a\| \cdot \|J_a^{-1}\|$. Using Proposition 4.1 again, we have $\inf_{a>0} K_a = \sqrt{2}$. This infimum is indeed attained when $a = r$. Now the statement follows. □

In the recent preprint [17], Tsikalas also obtained the constant $\sqrt{2}$ of Theorem 4.2, and proved that, in fact, this constant is the best possible. That work contains an alternative proof of Proposition 2.2 (see [17, Lemma 4.1]). In his other recent preprint [16], he showed that the corresponding constant for the class $C_{1,r}$ is at least 2, which, in particular, provides an alternative proof of the fact that C_{α} is strictly smaller than $C_{1,r}$.

Theorem 4.3. Let $\beta(t) = (1-t)(t-s^2)$ for some $0 < s < 1$. Then $C_{\alpha} \subset C_{\beta}$ if and only if $s \leq r$.

Proof. Let U be a unitary operator. Using (2.1), note that rU is in C_β if and only if

\[(1-r^2)(r^2-s^2) = (1+s^2)r^2 - r^4 - s^2 \geq 0.\]

Hence, $C_{\alpha} \subset C_{\beta}$ implies $s \leq r$. Now suppose that $s \leq r$. Using the model theorem for operators in C_α, it remains to prove that M_z^t acting on the space $H^2_\mathbb{B}(E)$ is in C_β, for any Hilbert space E. Equivalently, we want to prove that the backward shift B acting on $\ell^2_\mathbb{B}(E)$ is in C_β. For any sequence $f = \{f_n\}_{n \in \mathbb{Z}}$ we have

\[(1+s^2)\|Bf\|^2 - \|B^2f\|^2 - s^2\|f\|^2 = \|f_0\|^2 + (r^2 - s^2) \sum_{n=-\infty}^{-1} r^{-2n-2}\|f_n\|^2,

which clearly is non-negative. Therefore the statement follows using (2.1) again. □

Acknowledgments

The first author was supported by National Science Centre, Poland grant UMO-2016/21/B/ST1/00241. The second author acknowledges partial support by Spanish Ministry of Science, Innovation and Universities (grant no. PGC2018-099124-B-I00) and the ICMAT Severo Ochoa project SEV-2015-0554 of the Spanish Ministry of Economy and Competitiveness of Spain and the European Regional Development Fund, through the “Severo Ochoa Programme for Centres of Excellence in R&D”. The second author also acknowledges financial support from the Spanish Ministry of Science and Innovation, through the “Severo Ochoa Programme for Centres of Excellence in R&D” (SEV-2015-0554) and from the Spanish National Research Council, through the “Ayuda extraordinaria a Centros de Excelencia Severo Ochoa” (20205CEX001).

References

[1] M. B. Abrahamse and R. G. Douglas, *A class of subnormal operators related to multiply-connected domains*, Advances in Math., 19 (1976), pp. 106–148.
AN OPERATOR MODEL IN THE ANNULUS

[2] J. Agler, *Rational dilation on an annulus*, Ann. of Math. (2), 121 (1985), pp. 537–563.

[3] W. B. Arveson, *Subalgebras of C*-algebras*, Acta Math., 123 (1969), pp. 141–224.

[4] J. A. Ball, *A lifting theorem for operator models of finite rank on multiply-connected domains*, J. Operator Theory, 1 (1979), pp. 3–25.

[5] G. Bello and D. Yakubovich, *Operator models in multiply connected domains*, to appear.

[6] G. Bello-Burguet and D. Yakubovich, *Operator inequalities implying similarity to a contraction*, Complex Anal. Oper. Theory, 13 (2019), pp. 1325–1360.

[7] J. B. Conway, *The theory of subnormal operators*, vol. 36 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1991.

[8] P. Dymek, A. Pl aneta, and M. Ptak, *Generalized multipliers for left-invertible analytic operators and their applications to commutant and reflexivity*, J. Funct. Anal., 276 (2019), pp. 1244–1275.

[9] L. Kérchy, *Isometric asymptotes of power bounded operators*, Indiana Univ. Math. J., 38 (1989), pp. 173–188.

[10] S. McCullough and S. Sultanic, *Agler-commutant lifting on an annulus*, Integral Equations Operator Theory, 72 (2012), pp. 449–482.

[11] P. Pietrzycki, *Generalized multipliers for left-invertible operators and applications*, Integral Equations Operator Theory, 92 (2020), Paper No. 41, 31 pp.

[12] ———, *A Shimorn-type analytic model on an annulus for left-invertible operators and applications*, J. Math. Anal. Appl., 477 (2019), pp. 885–911.

[13] D. Sarason, *The H² spaces of an annulus*, Mem. Amer. Math. Soc., 56 (1965), p. 78.

[14] B. Sz. Nagy, *On uniformly bounded linear transformations in Hilbert space*, Acta Univ. Szeged. Sect. Sci. Math., 11 (1947), pp. 152–157.

[15] B. Sz.-Nagy, C. Foias, H. Bercovici, and L. Kérchy, *Harmonic analysis of operators on Hilbert space*, Universitext, Springer, New York, second ed., 2010.

[16] G. Tsikalas, *A note on a spectral constant associated with an annulus*, arXiv e-prints, (2021).

[17] ———, *A von Neumann type inequality for an annulus*, arXiv e-prints, (2021).

[18] J. von Neumann, *Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes*, Math. Nachr., 4 (1951), pp. 258–281.

G. Bello
Institute of Mathematics of the Polish Academy of Sciences, 00-656 Warszawa, ul. Śniadeckich 8, Poland
Email address: gbello@impan.pl

D. V. Yakubovich
Departamento de Matemáticas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain, and Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)
Email address: dmitry.yakubovich@uam.es