Global, regional, and national prevalence of diabetes mellitus in patients with pulmonary tuberculosis: a systematic review and meta-analysis

CURRENT STATUS: UNDER REVIEW

BMC Infectious Diseases ▪ BMC Series

Minmin Li immel123@stu.xjtu.edu.cn
Shanghai Jiao Tong University School of Medicine
Corresponding Author

Tao Chen
University of Liverpool

Zhongqiu Hua
Xi'an Jiaotong University

Ni Zhu
Shaanxi Provincial Center for Disease Control and Prevention

Duolao Wang
University of Liverpool

Jiamin Li
Xi'an Technological University

Zhaoqing Li
Xi'an Jiaotong University

yijun Kang
Xi'an Jiaotong University

Chao Li
Xi'an Jiaotong University School of Medicine

Hong Yan
Xi'an Jiaotong University

DOI: 10.21203/rs.2.13500/v1

SUBJECT AREAS
Infectious Diseases
KEYWORDS

diabetes mellitus; pulmonary tuberculosis; prevalence
Abstract

Background. The concept that people with pulmonary tuberculosis are at risk of developing diabetes mellitus has been raised. However, the prevalence of diabetes mellitus in patients with pulmonary tuberculosis have not been well established. We aim to estimate the global, regional, and national prevalence of diabetes mellitus in population with pulmonary tuberculosis.

Methods. In this systematic review and meta-analysis, we assessed observational studies of diabetes mellitus in people with pulmonary tuberculosis, using PubMed and Embase electronic bibliographic databases in English language, to identify articles published until August 31, 2018. We included original research studies published in a peer-reviewed journal and reported the prevalence of diabetes mellitus or had enough data to compute these estimates. Studies were excluded if they did not provide primary data or were case studies and reviews. Independent extraction of articles and collected detailed information by 2 authors using predefined questionnaire, including study quality indicators. The country-specific random-effects meta-analyses for countries with two or more available studies and a fractional response regression model to predict individual studies prevalence of diabetes mellitus in patients with pulmonary tuberculosis for countries with one or no study. The study is registered with PROSPERO, registration number CRD42018101989.

Results. We identified 18042 studies, and 127 were retained for data extraction across 46 countries. The global prevalence of diabetes mellitus in patients with pulmonary tuberculosis were estimated to be 12.07% (95%CI: 10.43-14.85). The prevalence of diabetes mellitus in patients with pulmonary tuberculosis was 13.38% (95%CI: 11.16-16.05) in region of Americas, 13.34% (95%CI: 12.82-14.61) in European region, 12.68% (95%CI: 9.15-16.37) in South-East Asia, 12.56% (95%CI: 11.79-22.70) in Western Pacific region, 10.95% (95%CI: 9.04-17.83) in Eastern Mediterranean region and 7.54% (95%CI: 6.51-8.77)in African region. The country
with the highest estimated prevalence of pulmonary tuberculosis combined diabetes mellitus were Mauritius (39.65%, 95%CI: 4.22-90.74). Conclusion. Our findings suggest that pulmonary tuberculosis combined diabetes mellitus is still prevalent. As such, diabetes mellitus deserves more attention from PTB health-care providers, researchers, policy makers, and stakeholders for improved detection, overall proper management, and efficient control of diabetes mellitus in people with pulmonary tuberculosis.

Background

Both TB and DM are major global public health problem. Despite the laudable progress policies and medical cares in control of TB, it remains a huge global health threat [1]. Approximately 10 million people develop TB disease in 2017, and TB caused an estimated 1.3 million deaths [2]. Meanwhile, DM, a non-communicable disease, has been an increasing epidemic in recent decades [3]. As of 2015, more than 415 million adults have DM, and this number is estimated to increase to 642 million by 2040 [4].

Since the early part of the 20th century, clinicians have observed an association between DM and TB [5-7]. The association between TB and DM has been described as co-epidemic [8]. Data shows that the risk of developing DM in people with TB was three times as in those without, suggesting that the TB epidemic is fueling the DM epidemic [9]. According to another systematic review, DM also have a major effect on TB treatment outcomes [10]. It showed that TB patients with DM had higher risk of failure, relapse, and death combined than those without. Considering the dual burden of those two diseases, World Health Organization (WHO) and the International Union Against Tuberculosis and Lung Disease (The Union) launched a collaborative framework, which emphasizes the need to establish collaborative mechanism between national tuberculosis programs (NTPs) and diabetes organizations and the bi-directional screening of TB and DM [11].

More and more studies had screening patients with TB or PTB for DM in some countries
[12-21], and the global burden of DM among patients with TB have been estimated [22]. However, the global prevalence of DM in patients with PTB, the most common form of TB, has not been fully understood. Therefore, we did the comprehensive epidemiological study to estimate the global, regional, and national prevalence of DM (any type) in patients with PTB, which would help researchers to better understand the global epidemiology condition and estimate the global burden of PTB combined DM for the data are spares and incomplete in many countries. We expected the results to provide the most update information on the rate of DM among PTB patients in nation, region and global.

Methods
We conducted our systematic review according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines [23]. The full review protocol is available in International prospective register of systematic reviews (PROSPERO), registration number CRD42018101989.

Search strategy and selection criteria
We developed a comprehensive systematic literature search to standardize all screening and identify all studies that have reported the prevalence or the number of DM in patients with PTB in any country. We searched PubMed and Embase to identify all relevant cohort, cross-sectional, and case-control studies published up to August 31, 2018 on the prevalence of DM in patients with PTB, with English language. We included original research studies published in a peer-viewed journal with English. Detailed description of the main keywords for the search strategy is available in Appendix.

Articles were retained if they were primary studies had to be observational studies of people with PTB and reported the prevalence of DM, or have enough data (e.g., number of DM cases and sample size) to compute these estimates. We included case-control studies for PTB as the case group and reported the prevalence or number of DM in the case group.
In our inclusion criteria, we did not considerate the definition of PTB assessment (medical records, microbiologically confirmed or other) and the definition of DM assessment (self-report, medical records or laboratory tests).

We excluded studies in subgroups of participants selected on the basis of the presence of DM; studies that were case series, letters, reviews, commentaries, editorials, or animal reports; and studies without primary data or explicit description of methods. If multiple reports originated from the same dataset, we considered the most comprehensive study that reported the largest sample size. We appraised the quality of each included study using a modified version of a critical appraisal tool for use in systematic reviews addressing questions of prevalence [24].

Data collection and management

We designed a customized questionnaire (Appendix, P5) and Epidata database for data extraction. Extracted data included: number of the article which assured by the published chronology, title, Published time, study design, number of PTB, number or prevalence of DM in PTB patients and so on (concrete items in appendix p4). Two authors (MML and ZQH) independently extracted relevant information entering EpiData 3.1 software. Disagreement were resolved by team discussions in articles retained and data extracted. Meanwhile we collected the information of TB incidence, Gross Domestic Product (GDP), Human Development Index (HDI) and Human Capital Index (HCI) from the website of World Bank Open Data [25].

Data analysis

Country-specific random-effects meta-analysis method was used to estimate the pooled prevalence of DM in PTB patients for countries with two or more empirical studies. Before doing the meta-analysis, the prevalence of DM in PTB patients reported in each studies were transformed using a double arcsine transformation.
For countries with one or no empirical studies, we predicted the country’s prevalence of DM in PTB patients by using a multilevel fractional response regression modelling. In detail, we generalized a linear model with a binomial family and a logit link to restrict final predictions ranged from zero to one. The following predictor variables were added in the fractional response regression model: no predictor variables (Model 1) study years and Gross Domestic Product (GDP) in the study year or nearest year if GDP was unavailable in the study year (Model 2), and the other model including the variables study years, GDP, Human Development Index (HDI) in the study year or nearest year if GDP was unavailable in the study year and Human Capital Index (HCI) in the year of 2017 (Model 3) to predict the prevalence of PTB combined DM. Data of GDP, HDI and HCI come from the World Bank Open Data website. The standard error for each country estimate was based on the variation between studies included in the meta-analysis.

To estimate prevalence of DM in PTB by the six WHO regions and globally. We calculated a weighted average of the prevalence of DM in PTB weighted by the predicted number of TB patients in each country for the latest available year (2016). To estimate the confidence interval (CI) of these point estimates, we used Monte Carlo method (drew 1000,000 samples per country) to generate the corresponding 1000,000 weighted averages of regions and globally. The normal distribution assumption of averages were used to estimate the CI.

Heterogeneity between studies estimates of the prevalence of DM in PTB patients was assessed using the I^2 statistic [26]. We considered an I^2 of 25% to 49% as low, 50% to 74% as moderate, and 75% or greater as high heterogeneity [27]. We used Egger’s test to detect publication bias [14]. A P value less than 0.10 on Egger's test was considered indicative of statistically significant publication bias. It was decided a priori that if publication bias were present it would not be adjusted for, since it was assumed that the
prevalence estimates of interest would likely be published even if substantially different from previously reported estimates. All analyses were performed using Stata 15.0 (Stata Corporation, College Station, TX) [28].

Results

Search Results

We initially identified 18042 records in the literature search. After elimination of duplicates, 14993 records remained. We screened the titles and abstracts and excluded 14542 irrelevant records. We conducted full text review of 451 papers, excluding 324 papers for 295 studies lacked relevant data, 24 studies did not meet inclusion criteria (3 case reports, 17 insufficient information, 4 case control studies which considered the TB-DM or PTB-DM as the case, and 39 studies) and 6 duplicate studies. Finally, 127 studies contained 132 estimates from 46 countries were included in the meta-analysis to estimate the prevalence of DM in PTB patients (figure1). The critical appraisal of included studies and a complete reference list of all included studies is available in the appendix (appendix p11 table 3).

Study Characteristics

Data were available for 11 of 15 countries in the African Region; 6 of 12 countries in the Eastern Mediterranean Region; 8 of 9 countries in the European Region; 7 of 30 countries in the Region of Americans; 7 of 30 countries in the South-east Asian Region; and 7 of 36 countries in the Western Pacific Region. There were 17 countries with two or more studies, and the three countries with most studies were China (22), India (20), and Mexico (9). All included articles and it reported the prevalence of DM in PTB patients are shown in the appendix (appendix p6 table2).

Pooled Estimates

The prevalence of DM in PTB patients was estimated for 185 countries (via meta-analysis
for 17 countries [with two or more available empirical studies] and via statistical modelling [prediction] for 168 countries). The prevalence of DM in people with PTB could not be estimated for 8 countries because of missing data for one or more predictor variables. The final model included the following predictor variables: GDP ($\beta=0.001$ [referring to an increase of 100 000 international dollars], 95%CI -0.009 to 0.012), HDI ($\beta=0.235$ [referring to an 10% increase], 95%CI -0.959, 1.428), TB incidence ($\beta=-0.002$ [referring to an 1% increase], 95%CI -0.008 to 0.007) and DM prevalence ($\beta=0.089$ [referring to an 1% increase], 95%CI -0.135, 0.313).

National Prevalence of DM in patients with PTB

The five countries with the highest estimated prevalence of DM in patients with PTB were Mauritius (39.65%, 95%CI 4.22-90.74), United Arab Emirates (32.83%, 95%CI 6.17-78.41), Qatar (31.71%, 95%CI 6.33-76.14), Bahrain (31.55%, 95%CI 6.21-76.23), and Mexico (31.32%, 95%CI 26.35-36.53; $I^2=98.5\%$, based on meta-analysis of 9 studies). The five countries with the lowest prevalence of DM in patients with PTB were Niger (3.90%, 95%CI 0.05-78.30), Sierra Leone (4.33%, 95%CI 0.17-54.28), Liberia (4.51%, 95%CI 0.21-51.59), Burkina Faso (4.58%, 95%CI 0.10-72.07) and Mali (4.59%, 95%CI 0.10-71.50). The prevalence of DM in PTB patients, by country, is shown in figure 2 and in the appendix (table 4). The results of the tests of heterogeneity and publication bias for the meta-analysis of prevalence of diabetes mellitus with pulmonary tuberculosis, by country, are shown in the appendix (appendix p18 table 5).

Global and Regional prevalence of DM in patients with PTB

The global prevalence of DM in patients with PTB was estimated to be 12.07% (95%CI 17.3-19.8). The highest prevalence of DM in patients with PTB was in Region of Americans (13.38%, 95%CI 11.16-16.05), and the lowest prevalence of DM in patients with PTB was in the African Region (7.54%, 95%CI 6.51-8.77). The prevalence of DM in patients with PTB
were 13.34% (95%CI 12.82-14.61) in the European Region; 12.68% (95%CI 9.15-16.37) in the South-east Asian Region; 12.56% (95%CI 11.79-22.70) in the Western Pacific Region; 10.95% (95%CI 9.04-17.83) in the Eastern Mediterranean Region, The prevalence of DM in patients with PTB by WHO region and global are shown in the table 1.

Discussion

Summary of Findings

Present study was estimated the global, regional, and national prevalence of DM in patients with PTB for the first time. Although the prevalence of PTB appears to be decreasing overall, PTB combined DM is still prevalent in several countries. We found that the global predicted prevalence of DM in patients with PTB was 12.07% (95%CI 10.43-14.85). The distribution of prevalence among the regions was ranged from 7.54% (95%CI: 6.51-8.77, African region) to 13.38% (95%CI: 11.16-16.05, region of the Americas) and the prevalence among the countries was ranged from 3.90% (95%CI: 0.05-78.30) in Niger to 39.65% (95%CI: 4.22-90.74) in Mauritius.

Difference of prevalence

The prevalence of DM in people with PTB was higher in Region of the Americas, European Region, South-East Asia region, Western Pacific Region, than global prevalence, and the African region has the lowest prevalence of PTB combined DM. Some factors may explain why the different regions have different prevalence in our meta-analysis. In Mexico border, communities are burdened by poverty, crowding, low-economic status and illegal immigration, and have higher PTB incidence rate and DM has a growing trend, which caused the highest prevalence of PTB combined DM in Mexico [29], and caused higher prevalence of PTB combined DM in region of American indirectly [30]. The European region has the high prevalence of DM in PTB patients, which can attributed that sound infection disease prevention and system better-resourced health systems made PTB well controlled,
while the rich dietary and multiple lifestyle results in DM prevalent in European [31]. India, has the highest number of TB cases (27%) in the world and very high burden of DM, which bring about the higher prevalence of PTB combined DM in the India even in the South-East Asian region [32]. As we know, TB remains a major public health problem in many middle-income countries such as the Western Pacific Region of China [33,34], at the same time, the prevalence of DM is on the rise in middle-income countries for the changes of dietary patterns and lifestyles with the development of technological and economic [35-37]. These all may be contribute to the higher prevalence of PTB combined DM in Western Pacific Region. The African region has the lowest prevalence could be explained by the lack of some risk factors recognized for the onset of DM, including overweight, aging of population, and hypertension [18]. Meanwhile most of PTB and DM cases were not registered at the local department and majority facilities were still not screening DM in PTB patients partly due to cost, perceived complexities, and lack of the treatment infrastructure for those who screen positive can lead to under-diagnosed the prevalence of DM among patients with PTB in African [38-41].

Biological Plausibility

Numerous studies have presented convincing biological evidence in support of the causal relationship between DM and impaired host immunity to TB. In several recent animal models of Mycobacterium tuberculosis (Mtb) have demonstrated that unexpected development of DM, particularly those treated with anti-glycaemic therapy as host-directed therapy for TB [42]. Thus, PTB disease may identify individuals at higher risk of progression to DM. Another possible mechanism by which PTB may increase DM risk is through changes in body composition during and following the illness. Patients with PTB frequently lose a substantial amount of weight before and in early stages of treatment; limited evidence from cohort studies suggests that weight regain during treatment could
increase the proportion of body fat in recovered patients with tuberculosis, hence increasing their future risk of DM [43,44].

Public Health Suggestion

Given the high prevalence of PTB combined DM and its adverse outcome, we strongly believed that greater investments are needed to improve. There are some suggestions: for the department of public health, early bi-directional screening DM for PTB patients especially in African region as well as improving collection and monitoring of data for PTB and DM are necessary; for the organization of clinical medicine, developing and implementing clinical guidelines and tools to improve the management of PTB at risk of DM and care of PTB combined DM are also crucial; for the institution of medical research, more researches are needed to understand whether DM caused PTB or whether PTB led to the clinical manifestations of DM on the mechanism, so it can be better predicted and prevented.

Limitation

There are several potential limitations to this study. First, we have not included studies published in all language, which could have resulted in a reduction in the number of studies we researched. As we known, high quality studies tend to be published in English and our team does not have anyone who knows other language except for English and Chinese. So we only searched English articles. Second, the inclusion of studies which did not consistently define the diagnosis of PTB and DM because of the different criterions in different countries. However, the diagnosis of PTB and DM in most of countries reference to WHO standards. Third, the predicted prevalence estimates for the 168 countries with either one or no available study might diverge from the actual prevalence because the data from which the values were predicted carry some measurement error, and other relevant explanatory variables might affect the prevalence of DM with PTB and not be
possible to account for. However, taking into consideration the study and that we were limited to the information reported in the included studies, we consider the present model to yield the best estimates. Fourth, as would be expected when pooling estimates across locations, we observed high heterogeneity ($I^2=97.5\%$) in the meta-analysis. However, heterogeneity can be overestimated when summarizing studies with large sample sizes [45]. Finally, it should also be noted that this study was limited to WHO Member States.

Conclusions

In conclusion, PTB combined DM is a crucial global health issue, which must be addressed to reduce adverse treatment outcomes and mortality globally and improve quality of patients life. Better recognition, prevention, and management of PTB combined DM to early reach the Sustainable Development Goals. Our findings suggest that early standardized bi-directional screening DM in TB patients and TB in DM patients should implementation as soon as possible. DM controls programs also should consider target patients with PTB for interventions such as active case finding and the treatment of hyperglycemia and, conversely, that efforts to diagnose, detect, and treat PTB may have a beneficial impact on DM control. To better understand the global epidemiology of DM in patients with PTB, the quality and volume of data needs to be strengthened, including standardization in definitions, measurement, monitoring, and reporting. Further research on cause of PTB combined DM and new interventions to prevent and manage the consequence of PTB combined DM (particularly in low and middle-income region) are also need.

Abbreviations

PTB, pulmonary tuberculosis; DM, diabetes mellitus; TB, tuberculosis; WHO, World Health Organization; NTPs, National Tuberculosis Programs; PROSPERO, International prospective
register of systematic reviews, GDP, Gross Domestic Product; HDI, Human Development Index; HCl, Human Capital Index; IDF, International Diabetes Federation; CI, confidence interval; Mtb, Mycobacterium tuberculosis

References

[1] Stephen S Lim KA, Zulfiqar A Bhutta, Lalit Dandona, Mohammad H Forouzanfar, Nancy Fullman, Peter W Gething, Ellen M Goldberg. Measuring the health-related Sustainable Development Goals in 188 countries: a baseline analysis from the Global Burden of Disease Study 2015. Lancet 2016,388:1813-1850. doi: 10.1016/S0140-6736(16)31467-2.

[2] WHO. Global tuberculosis report. World Health Organization, Geneva;2018 https://www.who.int/tb/publications/global report/en/Date accessed:December 14, 2018

[3] Gninafon M, Tawo L, Kassa F, Monteiro GP, Zellweger JP, Shang Het al. Outcome of tuberculosis retreatment in routine conditions in Cotonou, Benin. Int J Tuberc Lung Dis 2004,8:1242-1247.

[4] International Diabetes Federation. IDF Diabetes Atlas, seventh edition 2015.

[5] Boucot KR, Dillon ES, Cooper DA, Meier P, Richardson R. Tuberculosis among diabetics: the Philadelphia survey. Am Rev Tuberc 1952,65:1-50.

[6] Nichols GP. Diabetes among young tuberculous patients; a review of the association of the two diseases. Am Rev Tuberc 1957,76:1016-1030.

[7] Silwer H, Oscarsson PN. Incidence and coincidence of diabetes mellitus and pulmonary tuberculosis in a Swedish county. Acta Med Scand Suppl 1958,335:1-48.

[8] Alkabab YM, Enani MA, Indarkiri NY, Heysell SK. Performance of computed tomography versus chest radiography in patients with pulmonary tuberculosis with and without diabetes at a tertiary hospital in Riyadh, Saudi Arabia. Infect Drug Resist 2018,11:37-43.

[9] Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a
systematic review of 13 observational studies. *PLoS Med* 2008,5:e152.

[10] Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lonnroth K, et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. *BMC Med* 2011,9:81.

[11] Stop TB Department, World Health Organization, International Union Against Tuberculosis and Lung Disease. Collaborative framework for care and control of tuberculosis and diabetes. Geneva, Switzerland: WHO, The Union; 2011. WHO/HTM/TB/2011.15.

[12] Harries AD, Murray MB, Jeon CY, Ottmani SE, Lonnroth K, Barreto M, et al. Defining the research agenda to reduce the joint burden of disease from diabetes mellitus and tuberculosis. *Trop Med Int Health* 2010,15:659-663.

[13] Dixon B. Diabetes and tuberculosis: an unhealthy partnership. *Lancet Infect Dis* 2007,7:444.

[14] Stevenson CR, Critchley JA, Forouhi NG, Roglic G, Williams BG, Dye C, et al. Diabetes and the risk of tuberculosis: a neglected threat to public health? *Chronic Illn* 2007,3:228-245.

[15] Faurholt-Jepsen D, Range N, Praygod G, Kidola J, Faurholt-Jepsen M, Aabye MG, et al. The role of diabetes co-morbidity for tuberculosis treatment outcomes: a prospective cohort study from Mwanza, Tanzania. *BMC Infect Dis* 2012,12:165.

[16] Faurholt-Jepsen D, Range N, PrayGod G, Jeremiah K, Faurholt-Jepsen M, Aabye MG, et al. Diabetes is a strong predictor of mortality during tuberculosis treatment: a prospective cohort study among tuberculosis patients from Mwanza, Tanzania. *Trop Med Int Health* 2013,18:822-829.

[17] Jimenez-Corona ME, Cruz-Hervert LP, Garcia-Garcia L, Ferreyra-Reyes L, Delgado-Sanchez G, Bobadilla-Del-Valle M, et al. Association of diabetes and
tuberculosis: impact on treatment and post-treatment outcomes. *Thorax* 2013,68:214-220.

[18] Pizzol D, Di Gennaro F, Chhaganlal KD, Fabrizio C, Monno L, Putoto \textit{et al.} Tuberculosis and diabetes: current state and future perspectives. *Trop Med Int Health* 2016,21:694-702.

[19] Pavlovic JM, Pavlovic AD, Bulajic MV, Pesut DP. Prevalence of diabetes mellitus (DM) in tuberculosis (TB) patients: clinical and radiologic features in the TB-DM association based on a five-year hospital study. *Infez Med* 2018,26:22-27.

[20] Pizzol D, Di Gennaro F, Chhaganlal KD, Fabrizio C, Monno L, Putoto \textit{et al.} Prevalence of diabetes mellitus in newly diagnosed pulmonary tuberculosis in Beira, Mozambique. *Afr Health Sci* 2017,17:773-779.

[21] Haraldsdottir TL, Rudolf F, Bjerregaard-Andersen M, Joaquim LC, Stochholm K,Gomes VF, \textit{et al.} Diabetes mellitus prevalence in tuberculosis patients and the background population in Guinea-Bissau: a disease burden study from the capital Bissau. *Trans R Soc Trop Med Hyg* 2015,109:400-407.

[22] Noubiap JJ, Nansseu JR, Nyaga UF, Nkeck JR, Endomba FT, Kaze AD, et al. Global prevalence of diabetes in active tuberculosis: a systematic review and meta-analysis of data from 2.3 million patients with tuberculosis. *Lancet Global Health* 2019,7:E448-E460.

[23] Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, \textit{et al.} The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *Bmj* 2009,339:b2700.

[24] Munn Z, Moola S, Riitano D, Lisy K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. *Int J Health Policy Manag* 2014,3:123-128.
[25] World Bank Open Data. https://data.worldbank.org/

[26] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. *Biometrics* 1994,50:1088-1101.

[27] Etminan N, Chang HS, Hackenberg K, de Rooij NK, Vergouwen MDI, Rinkel GJE, *et al.* Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population: A Systematic Review and Meta-analysis. *JAMA Neurol* 2019.

[28] StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.

[29] Ponce-De-Leon A, Garcia-Garcia Md Mde L, Garcia-Sancho MC, Gomez-Perez FJ, Valdespino-Gomez JL, Olaiz-Fernandez G, *et al.* Tuberculosis and diabetes in southern Mexico. *Diabetes Care* 2004,27:1584-1590.

[30] Abdelbary BE, Garcia-Viveros M, Ramirez-Oropesa H, Rahbar MH, Restrepo BI. Tuberculosis-diabetes epidemiology in the border and non-border regions of Tamaulipas, Mexico. *Tuberculosis (Edinb)* 2016,101s:S124-s134.

[31] Li XX, Wang LX, Zhang J, Liu YX, Zhang H, Jiang SW, *et al.* Exploration of ecological factors related to the spatial heterogeneity of tuberculosis prevalence in P. R. China. *Glob Health Action* 2014,7:23620.

[32] World Health Organization. Global tuberculosis report, 2012. WHO/HTM/TB/2012.6. Geneva, Switzerland: WHO; 2012.

[33] Aftab H, Ambreen A, Jamil M, Garred P, Petersen JH, Nielsen SD, *et al.* High prevalence of diabetes and anthropometric heterogeneity among tuberculosis patients in Pakistan. *Trop Med Int Health* 2017,22:465-473.

[34] Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. *Lancet Infect Dis* 2009,9:737-746.
[35] Rathmann W, Giani G. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. *Diabetes Care* 2004,27:2568-2569; author reply 2569.

[36] Gil-Santana L, Almeida-Junior JL, Oliveira CA, Hickson LS, Daltro C, Castro S, et al. Diabetes Is Associated with Worse Clinical Presentation in Tuberculosis Patients from Brazil: A Retrospective Cohort Study. *PLoS One* 2016,11:e0146876.

[37] Imamura F, Micha R, Khatibzadeh S, Fahimi S, Shi P, Powles J, et al. Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. *Lancet Glob Health* 2015,3:e132-142.

[38] Peer N, Kengne AP, Motala AA, Mbanya JC. Diabetes in the Africa Region: an update. *Diabetes Res Clin Pract* 2014,103:197-205.

[39] Adepoyibi T, Weigl B, Greb H, Neogi T, McGuire H. New screening technologies for type 2 diabetes mellitus appropriate for use in tuberculosis patients. *Public Health Action* 2013,3:S10-17.

[40] Harries AD, Kumar AM, Satyanarayana S, Lin Y, Zachariah R, Lonnroth K, et al. Diabetes mellitus and tuberculosis: programmatic management issues. *Int J Tuberc Lung Dis* 2015,19:879-886.

[41] Owiti P, Keter A, Harries AD, Pastakia S, Wambugu C, Kirui N, et al. Diabetes and pre-diabetes in tuberculosis patients in western Kenya using point-of-care glycated haemoglobin. *Public Health Action* 2017,7:147-154.

[42] Ronacher K, van Crevel R, Critchley JA, Bremer AA, Schlesinger LS, Kapur A, et al. Defining a Research Agenda to Address the Converging Epidemics of Tuberculosis and Diabetes: Part 2: Underlying Biologic Mechanisms. *Chest* 2017,152:174-180.

[43] Grint D, Alisjahbana B, Ugarte-Gil C, Riza AL, Walzl G, Pearson F, et al. Accuracy of diabetes screening methods used for people with tuberculosis, Indonesia, Peru, Romania, South Africa. *Bull World Health Organ* 2018,96:738-749.
[44] Mupere E, Malone L, Zalwango S, Okwera A, Nsereko M, Tisch DJ, et al. Wasting among Uganda men with pulmonary tuberculosis is associated with linear regain in lean tissue mass during and after treatment in contrast to women with wasting who regain fat tissue mass: prospective cohort study. *BMC Infect Dis* 2014;14:24.

[45] Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. *BMC Med Res Methodol* 2008; 8: 79.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable

Availability of data and materials

The dataset supporting the conclusions of this article is included within the article’s appendix file (Appendix file 1).

Competing interests

The authors declare that they have no competing interests.

Funding

The collection and analysis data were funded by the National Key R&D Program of China (No: 2017YFC0907200 and 2017YFC0907201) and China Postdoctoral Science Foundation (No: 2016M592804).

Author contributions

CL, TC, and MML conceived the study and developed the protocol. MML and ZQH did the literature search, selected the studies, extracted the relevant information, and synthesized the data. CL did the statistical analysis. MML, CL, and TC wrote the first draft of the paper. MML, CL, TC, ZQH, ZQL, YJK, HY, and DLW critically revised successive drafts
of the paper and approved its final version. LC is the guarantor of the study.

Acknowledgement

The authors are particularly grateful to the website of World Bank Open Data for providing the social information in the study and the professionals who supported the study.

Tables

Table 1. Global prevalence (%) of DM in patients with PTB, by country and WHO region

WHO Region	Prevalence (%)	95% confidence interval	
		Lower	Upper
African Region	7.54	6.51	8.77
Eastern Mediterranean Region	10.95	9.04	17.83
European Region	13.34	12.82	14.61
Region of the Americas	13.38	11.16	16.05
South-East Asia region	12.68	9.15	16.37
Western Pacific Region	12.56	11.79	22.70
Globally	12.07	10.43	14.85

WHO: world health organization

Figures
Figure 1

Flow chart of literature search for studies on the prevalence of DM in patients with PTB
Figure 2

Global prevalence of PTB combined DM

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Appendix.doc