Ergostane-Type Sterols from King Trumpet Mushroom (Pleurotus eryngii) and Their Inhibitory Effects on Aromatase

Takashi Kikuchi 1, Naoki Motoyashiki 1, Takeshi Yamada 1, Kanae Shibatani 2, Kiyofumi Ninomiya 2,*, Toshio Morikawa 2,* and Reiko Tanaka 1,*

1 Faculty of Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; t.kikuchi@gly.oups.ac.jp (T.K.); mottchan050321@gmail.com (N.M.); yamada@gly.oups.ac.jp (T.Y.)
2 Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan; 1635420001c@kindai.ac.jp (K.S.); ninomiya@phar.kindai.ac.jp (K.N.)
* Correspondence: morikawa@kindai.ac.jp (T.M.); tanakar@gly.oups.ac.jp (R.T.); Tel.: +81-6-4307-4306 (T.M.); Fax: +81-6-6729-3577 (T.M.); +81-72-690-1084 (R.T.)

Received: 18 October 2017; Accepted: 16 November 2017; Published: 21 November 2017

Abstract: Two new ergostane-type sterols; (22E)-5α,6α-epoxyergosta-8,14,22-triene-3β,7β-diol (1) and 5α,6α-epoxyergost-8(14)-ene-3β,7α-diol (2) were isolated from the fruiting bodies of king trumpet mushroom (Pleurotus eryngii), along with eight known compounds (3–10). All isolated compounds were evaluated for their inhibitory effects on aromatase. Among them, 4 and 6 exhibited comparable aromatase inhibitory activities to aminoglutethimide.

Keywords: Pleurotus eryngii; sterol; ergostane; aromatase inhibitor

1. Introduction

Estrogen is responsible for breast cancer growth. The target genes of an estrogen receptor are in control of cancer cell development in estrogen-dependent breast tumors. Binding of estrogen receptor to estrogen triggers transcription of its target genes [1]. Aromatase is the rate-limiting enzyme in estrogen biosynthesis [1]. This enzyme converts androgens (testosterone and androtestosterone) into estrogens (estradiol and estrone, respectively) [2]. Aromatase inhibitors (AIs) are adjuvant in hormone treatments commonly prescribed for breast cancers that are hormone receptor-positive in the early stage [3]. However, the currently used AIs have several side effects of menopausal symptoms such as hot flashes, vaginal dryness, sexual dysfunction, musculoskeletal symptoms, osteoporosis, bone fracture, fatigue, mood disturbance, nausea, and vomiting [3]. Therefore, natural compounds obtained from safe food resources might be useful in the search for promoter-specific AIs with few side effects [4].

Pleurotus eryngii (Japanese name: eringi, English name: oyster mushroom or king trumpet) is an edible mushroom. P. eryngii is native to North Africa, Asia, and Europe [5], and also grown commercially in Japan, China, and the US [6]. Previous studies demonstrated the inhibitory effects on human neutrophil elastase (HNE) [7], antioxidant and antimutagenic activities [8], and inhibitory effects on allergic mediators [9] of P. eryngii extracts. P. eryngii contains amino acids, vitamins, and dietary fiber [10]. It also includes polysaccharides [11,12], pleurone [7], ergostane-type sterols [13], and eryngiolide A [14]. These chemical constituents exhibit biological activities such as the antioxidant [11] and antitumor activities [12] of a polysaccharide, HNE-inhibitory effects of pleurone [7], and cytotoxicity against human cancer cell lines of eryngiolide A [14]. We recently reported eringiacetal A, which is an ergostane-type sterol with a cage-shaped...
were isolated from sample 1, and Compounds 2 (22E)-5α,6α-epoxyergosta-8,14,22-triene-3β,7β-diol (1), and 5α,6α-epoxyergost-8(14)-ene-3β,7α-diol (2). In addition, the isolated constituents were evaluated for inhibitory activities on aromatase.

2. Results

2.1. Isolation and Structure Elucidation

(22E)-Ergosta-7,22-dien-3β-ol (3) [17], (22E)-ergosta-5,7,22-trien-3β-ol (4) [18], (22E)-19-norergosta-5,7,9,22-tetraen-3β-ol (5) [19], ergosterol peroxide (9) [18], and 9,11-dehydroergosterol peroxide (10) [20] were isolated from sample 1, and Compounds 1, 2, (22E)-6β-methoxyergosta-7,22-diene-3β,5α-diol (6) [21], (22E)-3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (7) [21], and (22E)-3β,5α-dihydroxyergosta-7,22-dien-6-one (8) [22] were obtained from sample 2 (Figure 1). Of these, 1 and 2 were new compounds.

Compound 1 was isolated as an amorphous solid, with a molecular formula of C29H42O3 by HREIMS. The infrared (IR) spectrum indicated the presence of hydroxy groups (νmax 3451 cm⁻¹), and the UV spectrum suggested the presence of a conjugated diene (λmax 242.0 nm). The 1H and 13C NMR spectra (δH and δC in ppm) in CDCl3 displayed signals for two tertiary methyls (δH 0.82 (singlet (s)), 1.30 (s)), four secondary methyls (δH 0.83 (doublet (d)), 0.85 (d), 0.93 (d), 1.04 (d)), three oxymethines (δH 3.24 (d), 3.96 (triplet of triplets (tt)), 4.85 (broad singlet (br s)); δC 59.5 (d), 63.8 (d), 68.4 (d)), an sp³ oxygenated quaternary carbon (δC 63.3 (s)), a tetrasubstituted olefin (δC 122.2 (s), 138.8 (s)), a trisubstituted olefin (δH 5.55 (br s); δC 118.7 (d), 147.7 (s)), and a disubstituted olefin (δH 5.20 (doublet of doublets (dd)),
5.28 (dd); δ_C 132.4 (d), 135.1 (d)) (Table 1, Figures S1–S4). In the HMBC spectrum, the correlations were observed as follows; Me-19 (δ_H 0.82 (s))/C-5 (δ_C 63.3 (s)); C-9 (δ_C 138.8 (s)); H-7 (δ_H 4.85 (br s))/C-5 (δ_C 63.3 (s)); C-9 (δ_C 138.8 (s)); C-14 (δ_C 147.7 (s)); H-6 (δ_H 3.24 (d))/C-7 (δ_C 63.8 (d)); C-8 (δ_C 122.2 (s)); Me-18 (δ_H 0.82 (s))/C-14 (δ_C 147.7 (s)); Me-28 (δ_H 0.93 (d))/C-23 and C-25 (Figure 2A and Figure S5). The correlations between H2-1–H2-2–H-3 (δ_H 3.96 (tt))–H2-4; H-6 (δ_H 3.24 (d))–H-7 (δ_H 4.85 (br s)); H-15 (δ_H 5.55 (br s))–H2-16–H-17–H-20–Me-21; H-20–H-22 (δ_H 5.20 (dd))–H-23 (δ_H 5.28 (dd))–H-24–Me-28 (δ_H 0.93 (d)); Me-26 (δ_H 0.85 (d))–H-25–Me-27 (δ_H 0.83 (d)) were observed in the H-1H COSY spectrum (Figure 2A and Figure S6). From the above, the planar structure was determined as shown in Figure 2A. The configuration of the hydroxy groups at the C-3 position was determined as (22R,24S)-5-hydroxy-7-epoxy-ergosta-8,14,22-triene-7β,6α-diol (Figure 1, Table S1). Compound 1 was similar to (22E)-5α,6α-epoxy-ergosta-8,14,22-triene-7β,7α-diol [25], except for the absence of a 7α-hydroxy group and the presence of a 7β-hydroxy group. There are differences in δH value measured with C6D6 such as H-7 (δ_H 4.34 (1H, dd, J = 11.2, 2.6 Hz) [25] vs. 7β-hydroxy-type (1): δ_H 4.74 (br s)), and H-15 (δ_H 6.50 (1H, dd, J = 3.3, 1.8 Hz) [25] vs. 7β-hydroxy-type (1): δ_H 5.33 (br s)).

Figure 2. Structure determination of compound 1. (A) Key HMBC and 1H-1H COSY correlations of compound 1; (B) Key NOE correlations of compound 1. The atoms of C, H, and O were shown in grey, aqua, and red, respectively.
Position	δ$_H$ (1H, multiplet (m))	δ$_C$	δ$_H$ (1H, m)	δ$_C$
1α	2.01	31.0 t	1.46 (1H, m)	32.2 t
1β	1.86	30.9 t	1.49 (1H, m)	31.1 t
2	1.68 (2H, m)	3.92 (1H, tt, J = 11.4, 3.0)	68.7 d	
4α	1.50 (1H, m)	3.90 t	1.42 (1H, m)	39.6 t
4β	2.21 (1H, m)	2.13 (1H, dd, J = 13.2, 11.4)	67.8 s	
5	63.3 s	3.15 (1H, d, J = 3.5)	61.3 d	
6	3.24 (1H, d, J = 2.4)	3.43 (1H, dd, J = 9.6, 3.5)	65.1 d	
7	4.85 (1H, br s)	3.15 (1H, d, J = 2.4)	67.8 s	
8	122.2 s	3.15 (1H, d, J = 2.4)	67.8 s	
9	138.8 s	2.35 (1H, d, J = 2.4)	67.8 s	
10	38.3 s	3.15 (1H, d, J = 2.4)	67.8 s	
11	2.19 (2H, m)	1.49 (1H, m)	19.0 t	
12α	1.47 (1H, m)	1.16 (1H, m)	36.7 t	
12β	1.99 (1H, m)	1.95 (1H, m)	36.7 t	
13	44.6 s	2.65 (1H, m)	53.4 t	
14	147.7 s	25.0 t		
15	5.55 (1H, br s)	118.7 d	2.65 (1H, m)	53.4 t
16α	2.27 (1H, m)	1.89 (1H, m)	26.6 t	
16β	2.08 (1H, m)	1.41 (1H, m)	26.6 t	
17	1.55 (1H, m)	1.21 (1H, m)	26.6 t	
18	0.82 (3H, s)	0.85 (3H, s)	17.9 q	
19	1.30 (3H, s)	0.87 (3H, s)	16.5 q	
20	2.24 (1H, m)	1.46 (1H, m)	34.9 d	
21	1.04 (3H, d, J = 6.5)	0.93 (3H, d, J = 6.8)	19.1 q	
22	5.20 (1H, dd, J = 15.2, 7.6)	1.03 (3H, m)	33.4 t	
23	5.28 (1H, dd, J = 15.2, 7.9)	1.05 (3H, m)	30.4 t	
24	1.88 (1H, m)	1.21 (1H, m)	39.1 d	
25	1.48 (1H, m)	1.58 (1H, m)	31.5 d	
26	0.85 (3H, d, J = 6.8)	0.85 (3H, d, J = 7.1)	20.5 q	
27	0.83 (3H, d, J = 6.8)	0.78 (3H, d, J = 7.0)	17.6 q	
28	0.93 (3H, d, J = 6.8)	0.77 (3H, d, J = 6.9)	15.4 q	

Compound 2 was isolated as an amorphous solid, with a molecular formula of C$_{28}$H$_{46}$O$_3$. The IR spectrum suggested the presence of hydroxy groups (3387 cm$^{-1}$). The 1H, 13C NMR and HSQC spectra indicated the presence of two tertiary methyls (1H 0.85 (s), 0.87 (s)), four secondary methyls (1H 0.77 (d), 0.78 (d), 0.85 (d), 0.93 (d)), two oxymethines (1H 3.92 (tt), 4.43 (dd); 1C 65.1 (d), 68.7 (d)), a trisubstituted epoxy (1H 3.15 (d); 1C 61.3 (d), 67.8 (s)), and a tetrasubstituted olefin (1C 125.1 (s), 152.7 (s)) (Table 1, Figures S8–S11). Based on the correlations at Me-18/C-14 (1C 152.7 (s)), Me-19/C-5 (1C 67.8 (s)), and H-15/C-8 (1C 125.1 (s)) and C-14 (1C 152.7 (s)) in the HMBC spectrum, and H-4β–H-2–H-3 (1H 3.92 (tt))–H-2–4; H-6 (1H 3.15 (d))–H-7 (1H 4.43 (dd)) in the 1H–1H COSY spectrum (Figure 3A, Figures S12 and S13), oxymethines were at C-3 and C-7 positions, a trisubstituted epoxy group at the C-5, 6 positions, and a tetrasubstituted olefin at the C-8, 14 positions (Figure 3A). The NOE correlation between H-7 and Me-19 demonstrated the configuration of the hydroxy group at the C-7 position as α-orientation (Figure 3B and Figure S14). The NOE correlation between H-4β and Me-19 suggested the orientation of the epoxy group at C-5, 6 was α (Figure 3B and Figure S14). The stereochemistry of C-24 was established as S by comparison of the 1H NMR chemical shift at Me-28 (1H 0.77) with those of 24R (1H 0.802) and 24S (1H 0.781) ergostane-type sterols [26,27]. Therefore, the structure of 2 was established as 5α,6α-epoxyergosta-8(14)-ene-3β,7α-diol (Figure 1, Table S2).
2.2. Evaluation for Aromatase Inhibitory Effects

Compounds 1–10 and aminoglutethimide, a positive control, were evaluated for their aromatase inhibitory activities. Compounds 4 and 6 exhibited comparable inhibitory activities (IC$_{50}$ 4: 8.1 µM; 6: 2.8 µM) to aminoglutethimide (IC$_{50}$ 2.0 µM) (Figure 4A). Compounds 1, 3, 5, and 10 showed moderate activities (IC$_{50}$ 1: 17.3 µM; 3: 66.1 µM; 5: 33.8 µM; 10: 32.6 µM) (Figure 4B). Compounds 2, 7, 8, and 9 weakly inhibited aromatase (Figure 4B). Above results suggested that compounds 4 and 6 can be regarded as potential anti-breast cancer agents targeting aromatase. Based on the results in the figures, the following structure-activity relationship of the compounds can be concluded: (i) The double-bond at C-5, 6 intensifies the aromatase inhibitory activity in ergost-7-ene compounds (3 (IC$_{50}$ 66.1 µM) vs. 4 (IC$_{50}$ 8.1 µM)); (ii) 9(11)-double-bond enhances the inhibitory activity in 5α,8α-epidioxyergost-6-ene compounds (9 (IC$_{50}$ > 100 µM) vs. 10 (IC$_{50}$ 32.6 µM)); (iii) 7-ene-6-one compounds did not show this activity (7 and 8 (IC$_{50}$ > 100 µM)).
Figure 4. Inhibitory effects of sterols (1–10) from *P. eryngii* against human recombinant aromatase. (A) Inhibitory effects of sterols (4, 6) and aminoglutethimide at 1, 3, and 10 µM. (B) Inhibitory effects of sterols (1–3, 5, 7–10) at 10, 30, and 100 µM. Each value represents the mean ± the standard error (S.E.) of three determinations. Significant differences from the vehicle control (0 µM) group shown as **: \(p < 0.01 \).

3. Experimental Section

3.1. General Methods

Dibenzylfluorescein (DBF) and Human CYP19 + P450 Reductase SUPERSOMES (human recombinant aromatase) were obtained from BD Biosciences (Heidelberg, Germany). The physical data were obtained by the following instruments: a Yanagimoto micro-melting point apparatus for melting points (uncorrected); a JASCO DIP-1000 digital polarimeter for Optical rotations; a Perkin-Elmer 1720X FTIR spectrophotometer for IR spectra; an Agilent-NMR-vnmrs600 for the \(^1\)H and \(^{13}\)C NMR spectra (\(^1\)H: 600 MHz; \(^{13}\)C: 150 MHz) in CDCl\(_3\) with tetramethylsilane as the internal standard; a Hitachi...
with SiO$_2$ (system IV) of Fr. 8 (1:1)-eluted fraction, provided (5:1, and 0:1). Flow rate, 4.0 mL/min, 35 °C; system III: Cosmosil 5C$_18$-MS-II column (25 cm × 20 mm i.d.) (Nacalai Tesque, Inc.), hexane/EtOAc (5:1), 8.0 mL/min, 35 °C; system IV: Cosmosil 5C$_18$-MS-II column, MeOH/H$_2$O (95:5), flow rate, 4.0 mL/min, 35 °C.

3.2. Materials

The fruiting bodies of *P. eryngii* were purchased from HOKUTO Corp. They were cultivated in Kagawa, Japan (Sample 1 in 2011, and Sample 2 in 2014). A voucher material has been deposited in the Herbarium of the Laboratory of Medicinal Chemistry, Osaka University of Pharmaceutical Sciences.

3.3. Extraction and Isolation

3.3.1. Sample 1

Sample 1 (fruiting bodies of *P. eryngii* (21 kg, fresh weight)) was extracted with MeOH under reflux (1 week, 4 times). The MeOH extract (170 g) was then divided into EtOAc and H$_2$O fractions by liquid-liquid partition. The EtOAc fraction (60 g) was separated into 20 fractions (Fr. S1-A to S1-T) with SiO$_2$ column chromatography (CC) (SiO$_2$ (3.5 kg); CHCl$_3$/EtOAc (1.0 to 0.1), and EtOAc/MeOH (5:1, and 0:1)).

Fr. S1-H (836.5 mg), CHCl$_3$/EtOAc (10:1)-eluted fraction, was separated with SiO$_2$ CC to yield 8 fractions, S1-H1 to S1-H8. Preparative HPLC (system I) of S1-H3 (185.7 mg), hexane/EtOAc (5:1)-eluted fraction, provided 7 fractions, S1-H3-1 to SF3-7. S1-H3-4 was identified as 4 (31.8 mg; retention time (t_R) 19.2 min). Preparative HPLC (system II) of S1-H3-5 (1.9 mg; t_R 37.5 min) provided 3 (1.9 mg; t_R 37.5 min). Preparative HPLC (system IV) of S1-H6 (14.3 mg), hexane/EtOAc (3:1)-eluted fraction, provided 10 (1.3 mg, t_R 95.4 min) and 9 (1.7 mg, t_R 120.2 min).

Fr. S1-I (1072.3 mg), CHCl$_3$/EtOAc (10:1)-eluted fraction, was separated with SiO$_2$ CC to give 8 fractions, S1-I1 to S1-I10. Preparative HPLC (system I) of S1-I5 (45.2 mg), hexane/EtOAc (5:1)-eluted fraction, provided 5 (2.8 mg, t_R 42.7 min).

3.3.2. Sample 2

Sample 2 (fruiting bodies of *P. eryngii* (120 kg, fresh weight)) was extracted with MeOH under reflux (3 days, 4 times). The MeOH extract (2625 g) was divided into EtOAc and H$_2$O fractions by liquid-liquid partition. The EtOAc fraction (240 g) was separated into 37 fractions (Fr. S2-A to S2-Z, and S2-a to S2-k) with SiO$_2$ column chromatography (CC) (SiO$_2$ (2.8 kg); CHCl$_3$/EtOAc (1.0 to 0:1), and MeOH).

Fr. S2-V (3964.9 mg), CHCl$_3$/EtOAc (1:1)-eluted fraction, was separated by SiO$_2$ CC to give 8 fractions, S2-V1 to S2-V21. Preparative HPLC (system III) of Fr. S2-V4 (110.9 mg), hexane/EtOAc (1:1)-eluted fraction, provided 8 (1.5 mg; t_R 36.9 min) and 6 (6.3 mg; t_R 49.5 min). Preparative HPLC (system IV) of Fr. S2-V6 (241.1 mg), hexane/EtOAc (1:1)-eluted fraction, provided 7 (1.1 mg; t_R 59.8 min). Preparative HPLC (system IV) of Fr. S2-V7 (270.5 mg), hexane/EtOAc (1:1)-eluted fraction, provided 2 (3.0 mg; t_R 76.8 min). Preparative HPLC (system III) of Fr. S2-V10 (270.5 mg), hexane/EtOAc (1:1)-eluted fraction, provided 1 (1.9 mg; t_R 36.3 min).

3.3.3. (22E)-5α,6α-Epoxyergosta-8,14,22-triene-3β,7β-diol (1)

\[
[a]_D ^{20} = -23.6 \ (c = 0.13, \text{EtOH}); \ IR \ \nu_{\text{max}} ^{\text{KBr}} \text{ cm}^{-1}: 3451, 2960, 1697, 1557, 1456; \ UV \ \lambda_{\text{max}} ^{\text{EtOH}} \text{ nm (log e)}: 206.0 (3.75), 242.0 (3.62); \ EIMS \ m/z: 426 [M]^+ (71), 315 (27), 300 (57), 172 (83), 69 (100); \ HREIMS \ m/z: 426.3127 [M]^+ \ (\text{calc for 426.3134: C}_{28}H_{42}O_{3}); \ \text{1H NMR} (400 \text{ MHz, C}_{6}D_{6}) \ \delta_{\text{H}} \text{ ppm}: 0.80 (s, H-19),
0.91 (d, 6.8 Hz), 0.93 (d, 6.4 Hz), 1.01 (d, 6.4 Hz), 1.07 (d, 6.4 Hz), 1.12 (s, H-18), 3.11 (d, 2.4 Hz, H-6), 3.83 (tt, 11.6, 4.8 Hz, H-3), 4.74 (br s, H-7), 5.24 (dd, 15.6, 8.4 Hz, H-22), 5.32 (overlapped, H-23), 5.33 (br s, H-15).

3.3.4. 5α,6α-Epoxyergost-8(14)-ene-3β,7α-diol (2)

[\alpha]_{D}^{20} −112.2 (c = 0.13, EtOH); IR \nu_{\max}^{\text{KBr}} \text{ cm}^{-1}: 3387, 2959, 2936, 2871, 1466, 1377; EIMS m/z: 430 [M]+ (5), 412 (100), 394 (57), 379 (58), 267 (23), 213 (21); HREIMS m/z: 430.3450 [M]+ (calcd for 430.3447: C_{28}H_{46}O_{3}).

3.4. Inhibitory Effects against Human Recombinant Aromatase

Inhibitory assay against human recombinant aromatase was performed as described previously [28,29].

3.5. Statistics

Values are described as the mean ± standard error of the mean (S.E.M.). Statistical analysis was performed by one-way analysis of variance, followed by Dunnett’s test. Probability (p) values less than 0.05 were regarded as significant.

4. Conclusions

In this study, we isolated two new sterols (1 and 2) and elucidated their structures. They have 5α,6α-epoxy-7-hydroxy ergostane structure. In aromatase inhibitory assay, compounds 4 and 6 possessed comparable inhibitory effects (IC_{50} 4: 8.1 µM; 6: 2.8 µM) against human recombinant aromatase to aminoglutethimide (IC_{50} 2.0 µM). These results suggested that compounds 4 and 6 have potential as anti-breast cancer agents.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/11/2479/s1.

Acknowledgments: We thank Katsuhiko Minoura and Mihoyo Fujitake (Osaka University of Pharmaceutical Sciences) for the NMR and MS measurements.

Author Contributions: Takashi Kikuchi, Takeshi Yamada, Kiyofumi Ninomiya, Toshio Morikawa and Reiko Tanaka designed the experiments; Takashi Kikuchi, Naoki Motoyashiki, Takeshi Yamada and Reiko Tanaka isolated compounds, and elucidated their structures. Kanae Shibatani, Kiyofumi Ninomiya and Toshio Morikawa evaluated aromatase inhibitory effects of compounds. Takashi Kikuchi, Toshio Morikawa and Reiko Tanaka wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation	Description
NMR	Nuclear magnetic resonance
HREIMS	High resolution electron ionization mass spectrometry
CDCl_3	Duterated chloroform
HMBC	Heteronuclear multiple bond coherence
COSY	Correlation spectroscopy
NOE	Nuclear overhauser effect
HSQC	Hetero nuclear single quantum coherence

References

1. Hong, Y.; Li, H.; Yuan, Y.-C.; Chen, S. Molecular characterization of aromatase. *Ann. N. Y. Acad. Sci.* 2009, 1155, 112–120. [CrossRef] [PubMed]
2. Johnston, S.R.D.; Dowsett, M. Aromatase inhibitors for breast cancer: Lessons from the laboratory. *Nat. Rev. Cancer* 2003, 3, 821–831. [CrossRef] [PubMed]
3. Bae, K.; Yoo, H.-S.; Lamoury, G.; Boyle, F.; Rosenthal, D.S.; Oh, B. Acupuncture for aromatase inhibitor-induced arthralgia: A systematic review. *Integr. Cancer Ther.* 2015, 14, 496–502. [CrossRef] [PubMed]
4. Balunas, M.J.; Kinghorn, A.D. Natural compounds with aromatase inhibitory activity: An update. *Planta Med.* 2010, 76, 1087–1093. [CrossRef] [PubMed]

5. Shimizu, K.; Yamanaka, M.; Gyookusen, M.; Kaneko, S.; Tsutsui, M.; Sato, J.; Sato, I.; Sato, M.; Kondo, R. Estrogen-like activity and prevention effect of bone loss in calcium deficient ovariectomized rats by the extract of *Pleurotus eryngii*. *Phytother. Res.* 2006, 20, 659–664. [CrossRef] [PubMed]

6. Rodriguez Estrada, A.E.; Royse, D.J. Yield, size and bacterial blotch resistance of *Pleurotus eryngii* grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. *Bioresour. Technol.* 2007, 98, 1898–1906. [CrossRef] [PubMed]

7. Lee, I.-S.; Ryoo, I.-J.; Kwon, K.-Y.; Ahn, J.S.; Yoo, I.-D. Pleurone, a novel human neutrophil elastase inhibitor from the fruiting bodies of the mushroom *Pleurotus eryngii* var. *ferulae*. *J. Antibiot.* 2011, 64, 587–589. [CrossRef] [PubMed]

8. Kang, M.Y.; Rico, C.W.; Lee, S.C. In vitro antioxidative and antimutagenic activities of oak mushroom (*Lentinus edodes*) and king oyster mushroom (*Pleurotus eryngii*) byproducts. *Food Sci. Biotechnol.* 2012, 21, 167–173. [CrossRef]

9. Han, E.H.; Hwang, Y.P.; Kim, H.G.; Choi, J.H.; Im, J.H.; Yang, J.H.; Lee, H.-U.; Chun, S.-S.; Chung, Y.C.; Jeong, H.G. Inhibitory effect of *Pleurotus eryngii* extracts on the activities of allergenic mediators in antigen-stimulated mast cells. *Food Chem. Toxicol.* 2011, 49, 1416–1425. [CrossRef] [PubMed]

10. Kawai, J.; Ouchi, K.; Inatomi, S.; Andoh, T. *Pleurotus eryngii* ameliorates lipopolysaccharide-induced lung inflammation in mice. *Evid.-Based Complement. Altern. Med.* 2014, 2014, 532389. [CrossRef] [PubMed]

11. Zhang, A.; Li, X.; Xing, C.; Yang, J.; Sun, P. Antioxidant activity of polysaccharide extracted from *Pleurotus eryngii* using response surface methodology. *Int. J. Biol. Macromol.* 2014, 65, 28–32. [CrossRef] [PubMed]

12. Yang, Z.; Xu, J.; Fu, Q.; Fu, X.; Shu, T.; Bi, Y.; Song, B. Antitumor activity of a polysaccharide from *Pleurotus eryngii* on mice bearing renal cancer. *Carbohydr. Polym.* 2013, 95, 615–620. [CrossRef] [PubMed]

13. Yaoita, Y.; Yoshihara, Y.; Kakuda, R.; Machida, K.; Kikuchi, M. New sterols from king trumpet mushroom (*Pleurotus eryngii*) and *Panellus serotinus*. *Chem. Pharm. Bull.* 2002, 50, 551–553. [CrossRef] [PubMed]

14. Wang, S.-J.; Li, Y.-X.; Bao, L.; Han, J.-J.; Yang, X.-L.; Li, H.-R.; Wang, Y.-Q.; Li, S.-J.; Liu, H.-W. Eryngiolide A, a cytotoxic macrocyclic diterpenoid with an unusual cyclododecane core skeleton produced by the edible mushroom *Pleurotus eryngii*. *Org. Lett.* 2012, 14, 3672–3675. [CrossRef] [PubMed]

15. Kikuchi, T.; Masamoto, Y.; In, Y.; Tomoo, K.; Yamada, T.; Tanaka, R. Eringiacetal A, 5,6-5,7,6,9-triexoxyergosta-8(14),22-diene-3β,7β-diol, an unusual ergostane sterol from the fruiting bodies of *Pleurotus eryngii*. *Eur. J. Org. Chem.* 2015, 2015, 4645–4649. [CrossRef]

16. Kikuchi, T.; Maekawa, Y.; Tomio, A.; Masumoto, Y.; Yamamoto, T.; In, Y.; Yamada, T.; Tanaka, R. Six new ergostane-type steroids from king trumpet mushroom (*Pleurotus eryngii*) and their inhibitory effects on nitric oxide production. *Steroids* 2016, 115, 9–17. [CrossRef] [PubMed]

17. Keller, A.C.; Maillard, M.P.; Hostettmann, K. Antimicrobial steroids from the fungus *Fomitopsis pinicola*. *Phytochemistry* 1996, 41, 1041–1046. [CrossRef]

18. Seo Hyo, W.; Hung Tran, M.; Na, M.; Jung Hyun, J.; Kim Jin, C.; Choi Jae, S.; Kim Jung, H.; Lee, H.-K.; Lee, I.; Bae, K.; et al. Steroids and triterpenes from the fruit bodies of *Pleurotus eryngii* var. *ferulae*. *J. Antibiot.* 2011, 64, 587–589. [CrossRef] [PubMed]

19. Zhang, A.; Li, X.; Xing, C.; Yang, J.; Sun, P. Antioxidant activity of polysaccharide extracted from *Pleurotus eryngii* using response surface methodology. *Int. J. Biol. Macromol.* 2014, 65, 28–32. [CrossRef] [PubMed]

20. Yang, Z.; Xu, J.; Fu, Q.; Fu, X.; Shu, T.; Bi, Y.; Song, B. Antitumor activity of a polysaccharide from *Pleurotus eryngii* on mice bearing renal cancer. *Carbohydr. Polym.* 2013, 95, 615–620. [CrossRef] [PubMed]

21. Yaoita, Y.; Yoshihara, Y.; Kakuda, R.; Machida, K.; Kikuchi, M. New sterols from king trumpet mushroom (*Pleurotus eryngii*) and *Panellus serotinus*. *Chem. Pharm. Bull.* 2002, 50, 551–553. [CrossRef] [PubMed]

22. Wang, S.-J.; Li, Y.-X.; Bao, L.; Han, J.-J.; Yang, X.-L.; Li, H.-R.; Wang, Y.-Q.; Li, S.-J.; Liu, H.-W. Eryngiolide A, a cytotoxic macrocyclic diterpenoid with an unusual cyclododecane core skeleton produced by the edible mushroom *Pleurotus eryngii*. *Org. Lett.* 2012, 14, 3672–3675. [CrossRef] [PubMed]

23. Kikuchi, T.; Masamoto, Y.; In, Y.; Tomoo, K.; Yamada, T.; Tanaka, R. Eringiacetal A, 5,6-5,7,6,9-triexoxyergosta-8(14),22-diene-3β,7β-diol, an unusual ergostane sterol from the fruiting bodies of *Pleurotus eryngii*. *Eur. J. Org. Chem.* 2015, 2015, 4645–4649. [CrossRef]

24. Kikuchi, T.; Maekawa, Y.; Tomio, A.; Masumoto, Y.; Yamamoto, T.; In, Y.; Yamada, T.; Tanaka, R. Six new ergostane-type steroids from king trumpet mushroom (*Pleurotus eryngii*) and their inhibitory effects on nitric oxide production. *Steroids* 2016, 115, 9–17. [CrossRef] [PubMed]
25. Ohnuma, N.; Amemiya, K.; Kakuda, R.; Yaoita, Y.; Machida, K.; Kikuchi, M. Sterol constituents from two edible mushrooms, Lentinula edodes and Tricholoma matsutake. *Chem. Pharm. Bull.* 2000, **48**, 749–751. [CrossRef] [PubMed]

26. Rubinstein, I.; Goad, L.J.; Clague, A.D.H.; Mulheirn, L.J. The 220 MHz NMR spectra of phytosterols. *Phytochemistry* 1976, **15**, 195–200. [CrossRef]

27. Kobayashi, M.; Krishna, M.M.; Haribabu, B.; Anjaneyulu, V. Marine sterols. XXV. Isolation of 23-demethylgorgost-7-ene-3β,5α,6β-triol and (24S)-ergostane-3β,5α,6β,7β,15β-pentol from soft corals of the Andaman and Nicobar coasts. *Chem. Pharm. Bull.* 1993, **41**, 87–89. [CrossRef]

28. Ninomiya, K.; Shibatani, K.; Sueyoshi, M.; Chaipetch, S.; Pongpiriyadacha, Y.; Hayakawa, T.; Muraoka, O.; Morikawa, T. Aromatase Inhibitory Activity of Geranylated Coumarins, Mammeasins C and D, Isolated from the Flowers of Mammeea siamensis. *Chem. Pharm. Bull.* 2016, **64**, 880–885. [CrossRef] [PubMed]

29. Tanabe, G.; Tsutsui, N.; Shibatani, K.; Marumoto, S.; Ishikawa, F.; Ninomiya, K.; Muraoka, O.; Morikawa, T. Total syntheses of the aromatase inhibitors, mammeasins C and D, from Thai medicinal plant *Mammea siamensis*. *Tetrahedron* 2017, **73**, 4481–4486. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).