Mesenchymal stromal cells in cancer: a review of their immunomodulatory functions and dual effects on tumor progression

Sabine Galland and Ivan Stamenkovic*

Laboratory of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland

*Correspondence to: I Stamenkovic, Laboratory of Experimental Pathology, Institute of Pathology, CHUV, Rue du Bugnon 25, 1011 Lausanne, Switzerland. E-mail: ivan.stamenkovic@chuv.ch

Abstract

Mesenchymal stem or stromal cells (MSCs) are pluripotent cells implicated in a broad range of physiological events, including organogenesis and maintenance of tissue homeostasis as well as tissue regeneration and repair. Because their current definition is somewhat loose – based primarily on their ability to differentiate into a variety of mesenchymal tissues, adhere to plastic, and express, or lack, a handful of cell surface markers – MSCs likely encompass several subpopulations, which may have diverse properties. Their diversity may explain, at least in part, the pleiotropic functions that they display in different physiological and pathological settings. In the context of tissue injury, MSCs can respectively promote and attenuate inflammation during the early and late phases of tissue repair. They may thereby act as sensors of the inflammatory response and secrete mediators that boost or temper the response as required by the stage of the reparatory and regenerative process. MSCs are also implicated in regulating tumor development, in which they are increasingly recognized to play a complex role. Thus, MSCs can both promote and constrain tumor progression by directly affecting tumor cells via secreted mediators and cell–cell interactions and by modulating the innate and adaptive immune response. This review summarizes our current understanding of MSC involvement in tumor development and highlights the mechanistic underpinnings of their implication in tumor growth and progression.

© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

Keywords: mesenchymal stem/stromal cells; immune system; inflammation; cancer; Toll-like receptors; exosomes; anti-tumor therapy; interleukin-6

Introduction

Few cells have attracted as much interest in the past 20 years as have mesenchymal stem or stromal cells (MSCs). The fascination with MSCs is due in part to their implication in a wide range of physiological and pathological processes, including development, tissue repair, organ transplantation, autoimmunity, and cancer, and in part to their elusive identity. There have been several excellent recent reviews on MSCs [1–9] and rather than discuss all of their known biological and functional properties, we will focus on their role in cancer, particularly their immunomodulatory ability.

Current experimental models suggest that MSCs may both promote and constrain tumor growth, although their net effect appears to be predominantly pro-tumorigenic (Table 1, with references). Tumor growth, which triggers and maintains chronic inflammation, tissue remodeling, and dampened immunity, has been heralded as ‘a wound that never heals’ [44], in which MSCs actively participate. The immunomodulatory effects of MSCs on innate and adaptive immunity through secreted factors, exosomes, and cell–cell contacts constitute a major mechanism by which MSCs affect tumor initiation and progression. As MSCs may exert opposing effects on immune cells, promoting inflammation on the one hand and exhibiting immunosuppressive features, which favor tumor progression, on the other, harnessing their plasticity toward the expression of anti-tumorigenic, anti-inflammatory, and pro-immunogenic properties may provide an attractive therapeutic option. However, such an endeavor requires in-depth understanding of the functional relationship between tumor cells, MSCs, and immune cells – particularly how tumor cells subvert MSCs to function in their favor and the underpinnings of MSC plasticity that allow such subversion to occur.

MSCs: heterogeneous cells in search of better definition

Precise definition of stromal cell populations is still lacking. Unlike hematopoietic cell subpopulations,
Table 1. Pro- and anti-tumor effects of MSCs in the TME

References	Origin of MSCs	Species	Tumor relevance	Tumor function	Mechanisms
[10]	Bone marrow	Human	Breast cancer	Promoting	CCL5 (RANTES) p-EGFR
[11]	Bone marrow	Human	Breast cancer	Promoting	TGF-β
[12]	Bone marrow	Human	Prostate cancer	Promoting	TGF-β and periostin
[13]	Umbilical cord and adipose tissue	Human	Breast cancer	Suppressive	Apoptosis induction (PARP cleavage)
[14]	Bone marrow	Mouse	Hepatoma	Suppressive	Apoptosis induction
[15]	Bone marrow	Rat and mouse	Melanoma	Suppressive when administered at a 3:1 ratio with ECs	Cytotoxic for endothelial cells (ROS) and anti-angiogenic effects
[16]	Bone marrow	Human	Ovarian cancer ('SKOV-3' cell line)	Promoting	IL-6; transition to CAF
[17]	Umbilical cord blood (UCB) and adipose tissue (AT)	Human	Glioblastoma multiforme	UCB-MSCs: suppressive; AT-MSCs: promoting	UCB-MSCs: TRAIL (apoptosis) AT-MSCs: VEGF, ANG1, POGF, IGF, SDF-1/CXCL12
[18]	Tumor tissue, bone marrow	Human	Gastric cancer	Promoting	IL-8
[19]	Tumor tissue, bone marrow	Human	Glioma	Promoting	IL-6/STAT3
[20]	Bone marrow	Human	Breast cancer 'MDA-MB-231' cells	Promoting	TGF-β/Smad pathway; TGF-β-dependent transition to CAF
[21]	Bone marrow	Human	Breast cancer 'MDA-MB-231' cells	Promoting	
[22]	Bone marrow	Human	Kaposi’s sarcoma	Suppressive	MSCs target Akt activity within tumor cells
[23]	Dermal tissues of a human fetus	Human	Hepatoma	Suppressive	Wnt signaling pathway
[24]	Tumor tissue, bone marrow	Human	Gastric cancer	Promoting	SDF-1 and VEGF IL-6, IL-8, SDF-1α, and expression of CD54
[25]	Bone marrow	Human	Inflammatory breast cancer	Promoting	IL-6
[26]	Bone marrow	Human	Pancreatic cancer	Suppressive	Unknown
[27]	Bone marrow	Human	Glioma	Suppressive	Downregulation of PDGF/PDGFRA axis
[28]	Tumor tissue, bone marrow	Human	Ovarian cancer	Promoting	Promotion of Akt and XIAP phosphorylation
[29]	Tumor tissue, bone marrow	Human	Ovarian cancer	Promoting	
[30]	Tumor tissue, bone marrow	Human	Ovarian cancer	Promoting	
[31]	Tumor tissue, bone marrow	Human	Colon cancer	Promoting	IL-6/Notch-1/CD44 signaling axis
[32]	Bone marrow	Mouse	Melanoma	Promoting	Immunosuppression after priming by IFN-γ and TNF-α
[33]	Tumor tissue, bone marrow	Human	Hepatocellular carcinoma	Promoting	Trophic factor secretion
[34]	Bone marrow	Human	Colton cancer	Suppressive	Immunomodulation and decrease in inflammation; increase of miR-150 and miR-7
[35]	Bone marrow	Human	Gastric cancer	Promoting	Platelet activation: TGF-β Increase stiffness (proasposin) of the ECM induces differentiation of MSCs to CAFs, enhanced proliferation, and survival of tumor cells
[36]	Bone marrow	Mouse	Breast cancer	Promoting	
[37]	Adipose tissue	Human, rat	Gastric cancer	Promoting	MAPK activation, decrease apoptosis
[38]	Adipose tissue	Human	Leukemia	Suppressive	DKK1-mediated inhibition
[39]	Bone marrow	Human	Colorectal cancer	Promoting	CCR5
[40]	Tumor tissue, bone marrow	Human	Colorectal cancer	Promoting	Tumor cells escape from senescence via PS3/P21 pathway
[41]	Adipose tissue	Human	Lung cancer	Promoting	IL-6/STAT3
[42]	Bone marrow	Human, mouse	Breast cancer	Promoting	Chemoresistance via a CDDP-dependent mechanism
[43]	Bone marrow, tumor tissue	Human, mouse	Prostate cancer	Promoting	Asporin (ASPN) secreted by MSCs drives metastasis

Within the tumor, MSCs can exert both stimulatory and inhibitory effects on cancer cell growth, invasion, and metastasis through direct or indirect interactions with tumor cells. However, despite the seemingly opposing potential effects of MSCs on tumor growth, their net effect seems to be predominantly pro-tumorigenic. This reflects the imbalance between pro- and anti-tumorigenic activities that may vary depending on tumor type (and regionally within the tumor), the ecology of the host milieu, the stage of the evolution of a particular tumor, and possibly the composition of the MSC population itself. The predominantly pro-tumorigenic effect of MSCs in vivo and the opposing effects reported may be due to differences in experimental design, models used, and MSC heterogeneity that may reflect variable responses to a given set of stimuli.

For a complete list of abbreviations see supplementary material, Table S1.
whose identity, developmental stage, and plasticity can be predicted based on a combination of cell surface marker and transcription factor expression [45–47], stromal cells lack comparable functional and differentiation state markers. As a result, stromal cell populations are defined based on relatively loose phenotypic and functional criteria, which may be common to cells with distinct identities. Fibroblasts illustrate this notion well. Although a few cell surface receptors, including FAP (fibroblast activation protein α) and FSP (fibroblast surface protein), are commonly used to identify fibroblasts [48–50], their expression allows only approximate categorization of a subset of stromal cells. Moreover, fibroblasts are primarily defined based on their functional properties upon activation, during which they express alpha smooth muscle actin (α-SMA) and secrete a wide range of extracellular matrix (ECM) components. These secretory products are more or less comparable in the context of wound healing (where the cells are labeled myofibroblasts) [51,52] and cancer growth [where they are commonly referred to as cancer-associated fibroblasts (CAFs)] [49,50]. Resting fibroblasts, which are identified largely based on morphology, remain poorly defined in terms of biological properties. Arguments have been put forth that they are multipotent cells, capable of differentiating into a spectrum of mesenchymal tissues [49], which is akin to tissue MSCs. However, adult skin fibroblasts tend not to differentiate into various mesenchymal tissues in culture and neither their origin nor their potential heterogeneity has been clearly elucidated [49,53]. Similar issues face the definition of MSCs (Figure 1).

Mesenchymal stem or stromal cells are multipotent stromal cells, believed to be an important constituent of the connective tissue that forms the supportive structure in which functional cells of tissues reside. In 2006, the International Society for Cellular Therapy (ISCT) published a position paper to define MSCs and recommended renaming the cells ‘multipotent mesenchymal stromal cells’ [54,55]. However, the most commonly used terms are ‘mesenchymal stromal cells’ and ‘mesenchymal stem cells’.

Although they were initially described in the bone marrow (BM), MSCs display a broad tissue distribution, including adipose, synovial, and lung tissue as well as umbilical cord and peripheral blood [56]. Their defining properties include adhesiveness, a cell surface receptor repertoire, and plasticity. Adhesiveness is determined by MSC attachment to plastic under standard culture conditions; the cell surface phenotype is defined by expression of CD105, CD73, and CD90, and lack of expression of CD45, CD34, CD14 or CD11b, CD79α, CD19, and HLA-DR. This includes low expression levels of MHC class I molecules, and minimal or no expression of MHC class II molecules or co-stimulatory receptors, including CD40, CD80, and CD86, precluding antigen-presenting activity [57]. Plasticity is measured by the ability of the cells to differentiate into osteocytes, adipocytes, and chondrocytes in vitro in response to appropriate growth factors [54]. However, MSCs have the capacity to differentiate into both mesodermal and non-mesodermal tissues, such that in addition to osteocytes, adipocytes, and chondrocytes, they can differentiate toward endodermal and neuroectodermal lineages (multi-lineage plasticity [56]). Furthermore, a population of MSCs that displays homogeneous expression of CD105, CD90, and CD73 may display heterogeneous differentiation properties. Exposure to differentiation factors may result in only a fraction of the cells differentiating into adipocytes, chondrocytes or osteocytes, suggesting functional heterogeneity despite common cell surface marker expression. Whether such functional heterogeneity reflects differences in adaptation to in vitro culture or the outgrowth of stromal cell subpopulations from progenitor cells bearing distinct identities remains to be resolved. It must also be noted that the above criteria have been defined using bone marrow-derived MSCs but that there are substantial phenotypic and functional differences among MSCs from different tissues [58].

Refinement of MSC definition along with the identification of their putative subpopulations requires additional phenotypic and/or functional criteria. Candidate markers that are associated with MSCs from various tissues include Stro-1 (BM-MSCs) [59], CD271/NGFR (nerve growth factor receptor) [60], CD200 [61], CD106/VCAM-1 (vascular cell adhesion molecule 1) [62], CD146/MCAM-1 (melanoma cell adhesion molecule 1) [63,64], MSCA-1/TNAP (mesenchymal stromal cell antigen 1/tissue-nonspecific alkaline phosphatase) [65], and SSEA-4 (stage-specific embryonic antigen 4) [66]. The reliability and limitations of the most commonly used markers have recently been reviewed [67]. Several newly identified promising candidate markers include Meffin [68], PDGFP (podoplanin) [69], and gremlin-1 [70–72].

Physiological role: tissue regeneration and wound repair

MSCs are widely believed to play a central role in tissue repair. Injury-initiated inflammation, whose effectors include innate immune cells and their mediators, and the ensuing tissue remodeling provide signals that mobilize MSCs and drive their differentiation toward diverse stromal components, some of which replace damaged cells. Mesenchymal stromal cells may be injured-tissue-resident or recruited from the bone marrow. However, the mechanisms by which they are mobilized and recruited to damaged sites are not fully understood. One study, using a murine model of acute renal tubular necrosis, suggested that bone marrow-derived MSC recruitment to sites of injury relies on the interaction between CD44 expressed on the MSC surface and hyaluronic acid produced by a variety of cells in areas of tissue remodeling [73]. However, additional factors are likely implicated and the mechanisms that promote MSC survival and differentiation toward distinct cell types in vivo are still unclear [74].
Minimal criteria to define human MSCs (Ref. [54]):
1. MSCs must be plastic-adherent when maintained in standard culture conditions.
2. MSCs must express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD311b, CD79α or CD19 and HLA-DR surface molecules.
3. MSCs must differentiate to osteocytes, adipocytes and chondrocytes in vitro.

Other proposed MSC markers: Stro-1, CD271/NGFR, CD200, CD106/MCAM-1, CD146/MCAM-1, MSCA-1/TNAP, SSEA-4, Melfin, PDPN, Gremlin 1

Mesenchymal Stromal Cells

Figure 1. MSC definition and differentiation and comparison with fibroblasts. MSCs have been suggested to be a probable source of fibroblasts, implying that fibroblasts are one type of mesenchymal cell into which MSCs differentiate. However, as MSCs and fibroblasts share numerous functional features, it is possible that maturation or aging (although not in the sense of cell senescence) rather differentiation distinguish the two cell types. Fibroblasts may thus be a more 'mature' form of MSCs that have lost pluripotency and altered part of their cell surface receptor repertoire but that can respond to environmental stimuli such as injury and tumor growth in a manner akin to that of MSCs, many of whose properties they retain. MSC (left) and fibroblast (right) activation are illustrated under reversible, wound healing-associated, and chronic tumor-related inflammation. Some of the markers associated with each cell type in the context of wound healing and the tumor microenvironment are highlighted. (1) MSCs are a diverse and heterogeneous subset of multipotent precursors present in the stromal fraction of many adult tissues, especially bone marrow but also adipose tissue, synovial membranes, tooth pulp, and the connective tissue of most organs. Several studies show that MSCs lie adjacent to blood vessels and are localized in almost every perivascular space of the body. MSCs are the common predecessors of cells of the mesenchymal lineage, such as bone, cartilage, and fat cells. They can also differentiate into cells from unrelated germline lineages (endodermic and neuroectodermic differentiation potential), a process known as transdifferentiation. Quiescent or resting MSCs are spindle-shaped cells (fibroblast-like cells), but contrary to fibroblasts, which can be identified primarily based on morphology, MSCs are more heterogeneous. (2) In response to tissue injury and the associated stimuli, quiescent MSCs are activated to facilitate repair and regeneration. These MSCs may be tissue-resident or recruited from the bone marrow or adjacent tissues and adopt a stellate morphology. The acquired synthetic properties are associated with secretory and migratory functions that amplify their activation, recruitment, and proliferation. Such activation may be reversed by reprogramming; alternatively, activated MSCs may undergo apoptosis upon completion of the repair process. (3) Chronic inflammation and/or the presence of a tumor induces prolonged activation of MSCs (tumor-associated MSCs, T-MSCs), which may gain further secretory properties (e.g. high secretion of IL-6), specialized ECM remodeling ability, and robust autocrine activation and dynamic immunomodulatory signaling functions. Epigenetic regulation may help to maintain such activated states. T-MSCs gain enhanced proliferative properties and their functional diversity adds to the dynamic complexity of the evolving tumor microenvironment. For a complete list of abbreviations see supplementary material, Table S1.

The secretome and proteome of MSCs reflect their pleiotropic functions and plasticity [75]. In response to soluble mediators derived from the microenvironment of injured tissues, including tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interferon-gamma (IFN-γ), and toxins from infectious agents, MSCs can release a wide repertoire of soluble mediators that includes epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-β), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin-like growth factor-1 (IGF-1), angiopoietin-1 (Ang-1), keratinocyte growth factor (KGF), TNF-stimulated G6 protein (TSG-6), interleukin-1 receptor antagonist (IL-1RA), prostaglandin E2 (PGE2), indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), and stromal-derived factor 1 (SDF-1). These mediators promote the activation of...
fibroblasts, endothelial cells, and tissue progenitor cells, leading to angiogenesis, inhibition of apoptosis, ECM deposition, and damaged cell replacement [6,76–79], which in turn ensure tissue regeneration and repair [80–82]. In addition to helping orchestrate regeneration and repair, MSCs can actively participate in bactericidal activity (through LL-37) [83].

Several in vivo studies have shown the beneficial effect of allogeneic or xenogenic MSCs in a variety of disorders that require tissue regeneration and repair, including acute graft-versus-host disease, sepsis, acute asthma, acute renal failure, multiple sclerosis, and myocardial infarction [76,84–86]. Currently, more than 785 studies are underway or have been submitted to ClinicalTrials.gov (https://clinicaltrials.gov) under the terms ‘mesenchymal stem cells’ or ‘mesenchymal stromal cells’.

MSCs and cancer cell crosstalk

Accumulating evidence suggests that MSCs have the ability to migrate toward tumor sites [87] and MSC mobilization has been observed in response to a wide range of solid cancer-derived cell types. Within the tumor microenvironment (TME), MSCs can exert both stimulatory and inhibitory effects on cancer cell growth, invasion, and metastasis through direct or indirect interactions with tumor cells (Table 1 and Figure 2). However, their net effect seems to be predominantly pro-tumorigenic, which may reflect an imbalance between pro- and anti-tumorigenic activity dictated by the tumor type, intratumoral heterogeneity, the ecology of the host milieu, and possibly the composition of the MSC population itself.

MSCs interact with and may affect the function of cancer cells at multiple stages of cancer progression. Within the primary tumor, MSCs have been observed to drive tumor cells toward acquiring invasive and metastatic properties. MSCs induce expression of epithelial–mesenchymal transition (EMT)- and hypoxia-related genes in primary tumor cells and promote tumor cell dissemination [70]. They also deposit ECM [88]; participate in the remodeling of the TME; secrete IL-6 and TGF-β, which induces EMT; and help to create a niche that promotes angiogenesis and tumor invasion [5,89]. These observations are consistent with the predominantly pro-tumorigenic effect of MSCs in vivo. The tumor inhibitory effects that have been reported may be due to differences in experimental design, models used, and MSC heterogeneity, which may reflect variable responses to a given set of stimuli (explored more extensively in a review by Klopp et al) [6,90].

Effect of the tumor microenvironment on the MSC phenotype

Tumor-derived signals have the capacity to modulate the phenotype of tissue-resident and tumor-recruited MSCs (T-MSCs), which become constituents of the tumor mass and harbor features distinct from those of normal tissue MSCs (N-MSCs) or bone marrow MSCs (BM-MSCs) [91]. Differences between non-tumor-associated MSCs and T-MSCs may arise in large part in response to cytokines and exosomes produced by the tumor microenvironment. This notion is supported by observations that MSCs treated with IFN-γ and TNF-α upregulate TGF-β and VEGF expression [92,93]. TGF-β can then promote EMT, which may facilitate invasion and metastasis [92]. In addition, IFN-γ and TNF-α can enhance the immunosuppressive effects of MSCs [94], further helping tumor cell dissemination. Exosomes derived from breast and ovarian cancer cells can cause adipose tissue MSCs to adopt a CAF phenotype, characterized, in part, by upregulated α-SMA expression, and can also promote MSC expression of SDF-1, VEGF, CCL5 (RANTES), and TGF-β [95,96]. Recently, Raz et al [97] have shown in breast tumors that resident and BM-derived MSCs differentiate toward a subpopulation of CAF-like cells that express distinct immune-response-related genes. Analysis of gene expression in these resident and BM-derived CAF-like cells from mammary tumors or their lung metastases revealed tissue-specific transcriptional changes, implicating a microenvironmental influence on the reprogramming of stromal cells. Interestingly, BM-derived CAF-like cells were shown to be functionally important for tumor growth and were more efficient than their resident counterparts in promoting angiogenesis. Thus, MSCs recruited to neoplastic tissues can be reprogrammed in a local, tissue-specific manner to induce tumor-promoting inflammation and to facilitate angiogenesis and tumor growth [97].

Characteristics of tumor-associated MSCs (T-MSCs)

Tumor-associated MSCs do not undergo transformation and are euploid [98,99]. Moreover, MSCs are more prevalent in tumor tissues than in adjacent normal tissues [33,70] and exhibit a significantly greater proliferative capacity than their normal tissue-associated counterparts [99–102]. In addition, T-MSCs exhibit a stronger migratory capability than N-MSCs and more potent immunosuppressive activity than BM-MSCs [99, 101–107]. Finally, T-MSCs have been shown to promote tumor cell proliferation [99] and to increase the proportion of cancer stem cells [99,108], suggesting a possible role in tumor cell reprogramming.

Pro-inflammatory and immunosuppressive effects of MSCs in the TME: Dr Jekyll and Mr Hyde behavior?

As discussed above, MSCs affect the immune response by secreting immunomodulatory molecules as well as by cell–cell contact. Several studies have also highlighted the role of exosomes and other extracellular
MSCs have multiple effects on tumor cells, mainly promoting tumor growth due, at least in part, to their role in regulating inflammation and tissue repair (1). They affect tumor cell survival and stemness (2 and 3) and contribute to tissue vasculature by producing angiogenic factors and by differentiating into pericytes (4). MSCs promote tumor cell motility, EMT, and metastasis, and secrete chemokines, including CXCL1, CXCL2, and CXCL12, and cytokines, including IL-6 and several matrix metalloproteinases (MMPs), which degrade the ECM and facilitate tumor cell migration (5). They exert an important immunomodulatory function, which is primarily immunosuppressive (6) and can enhance tumor cell resistance to drugs, at least in part by releasing exosomes, which harbor numerous mediators, including miRNAs that may alter tumor cell properties (7). Although MSCs are primarily pro-tumorigenic, several studies have shown that they may display anti-tumor effects (8) as well. For a complete list of abbreviations see supplementary material, Table S1.

The immunosuppressive effects of MSCs require proximity to their target cells, which include T and B lymphocytes as well as NK cells (Figure 3). Activated/primed MSCs upregulate MHC-I molecules, ICAM-1 and VCAM-1 adhesion receptors, and the immunosuppressive molecule PD-L1 (programmed death-ligand 1). The latter three molecules recognize ligands on immune cells, promote cell–cell adhesion, and facilitate immune cell exposure to secreted immunosuppressive mediators (139). Following activation, the MSC-derived secreted immunosuppressive arsenal includes HLA-G, TGF-β, PGE2, TSG-6 (tumor necrosis factor-inducible gene 6 protein), HO-1 (heme oxygenase 1), TGF-β, IL-10, IL-6, IDO1 (indoleamine-pyrrole 2,3-dioxygenase), ARG1/2 (arginase), NOS2 (nitric oxide synthase 2A), adenosine, and LIF (leukemia inhibitory factor), as well as PD-L1/2 and Fas ligand (FasL) (140). TGF-β and PGE2 are two key mediators of immunosuppression. TGF-β directly inhibits the function of anti-tumor effector cells (NK, CD8+ T cells, and γδ T cells) by downregulating the activating receptor NKG2D and generating and recruiting regulatory T cells and γδ T cells [4,112,143–150].

MSCs and innate immunity

MSCs exert their pro- and anti-inflammatory effects by a variety of mechanisms. They have a functional relationship with the complement system, as BM-MSCs express the anaphylatoxin receptors C3aR and C5aR, suggesting that C3a and C5a may be chemotactic for MSCs...
Mesenchymal stromal cells in cancer

Figure 3. MSC and immune cell interactions. (1) MSCs can inhibit the proliferation, cytotoxicity, and cytokine production by NK cells by secreting several mediators, including PGE2, IDO, and sHLA-G. In turn, MSCs can be killed by cytokine-activated NK cells through the engagement of NKG2D by its ligand ULBP3 or MICA expressed by MSCs, and of DNAM-1 by MSC-associated PVR or nectin-2. (2) MSCs inhibit differentiation of monocytes to DCs, skew mature DCs toward an immature DC state, and inhibit TNF-α and IL-12 production by DCs through PGE2 secretion. (3) MSCs dampen the respiratory burst and delay spontaneous apoptosis of neutrophils by constitutively releasing IL-6. (4) MSCs affect CD4+ T cells through PGE2, IDO, TGF-β, HGF, iNOS, and HO1 release. MSCs increase the production of IL-4 and IL-10 by Th2 cells and reduce the release of IFN-γ by Th1 and NK cells. IDO can reduce tryptophan levels and inhibit the growth of B cells, T cells, and NK cells. Defective CD4+ T-cell activation impairs helper function for B-cell proliferation and antibody production. CD8+ T-cell cytotoxicity is inhibited mainly by sHLA-G, as well as by the increase of the regulatory T-cell population, also induced by IL-10. Adapted from Refs. [9,112,116]. For a complete list of abbreviations see supplementary material, Table S1.

MSCs play an active role in neutrophil recruitment by secreting chemotactic cytokines and chemokines, including IL-6, IL-8, IFN-β, GM-CSF, and macrophage inhibitory factor (MIF). They also promote neutrophil survival, which helps to eliminate pathogens [114] and to respond to histamine released by mast cells by inducing IL-6 production [117].

MSCs directly and indirectly interfere with the proliferation, cytokine production, and, in some cases, cytotoxicity of NK cells. MSC–NK cell interactions are complex and largely dependent on the microenvironment and activation status of the NK cells. Bone marrow-derived MSCs can inhibit NK cell proliferation, cytotoxicity, and cytokine production by secreting IDO1, TGF-β, HLA-G, and PGE2 [103,116–120]. However, they are also vulnerable to lysis by activated NK cells, depending on their expression of activating NK receptor ligands, including the MHC class I polypeptide-related sequence (MICA, B), UL16 binding proteins (ULBPs), CD112, and CD155 [120–122]. In human lung cancers, T-MSCs have been shown to be more immunosuppressive than N-MSCs, mainly through PGE2 and, to a lesser extent, IL-6 secretion. They decrease IFN-γ production and downregulate expression of the activating NK cell receptors NKP44, NKP30, NKG2D, DNAM-I, and NKG2A. T-MSCs also induce an inversion in the CD56bright/dim NK cell ratio in favor of the CD56stimulatory phenotype, which is associated with degranulation rather than elevated cytokine production, in a contact-dependent manner [103].

Dendritic cell (DC) function is affected by MSCs, which can directly inhibit both the maturation of monocytes and CD34+ precursor cells toward DCs as well as activation of DCs via PGE2, IL-6, TSG-6, and M-CSF (macrophage colony-stimulating factor) secretion, and Jagged-2 mediated signaling [136–138]. Both immature and mature DCs (iDCs and mDCs) are affected
by MSCs. In the presence of MSCs, iDCs display diminished capacity to present antigen and stimulate T-cell proliferation and naïve T-cell differentiation, resulting in ineffective T-cell activation. MSCs can also revert mDCs to an immature phenotype associated with downregulation of their cell surface expression of antigen-presenting and co-stimulatory molecules, suppression of IL-12 secretion, and the inability to stimulate lymphocyte proliferation in vitro [138].

MSCs seem to favor the emergence of the myeloid suppressor cell (MDCS) phenotype by secreting IL-6, HGF, and CXCL3 (C-X-C motif chemokine ligand 3), which stimulate MDSC production of COX2 (cyclooxygenase-II enzyme, PTGS2), IDO, PD-L1, and PD-L2, and MMP9 (matrix metalloproteinase 9) [156,157].

Mesenchymal stromal cells direct monocyte mobilization from the BM and macrophage recruitment to sites of inflammation to promote wound repair through secretion of the chemokine (C-C motif) ligands CCL2, CCL3, and CCL12. They also participate in the differentiation of monocytes to M2 (tissue repair-associated) macrophages via direct cell contact and secretion of PGE2, IL-6, and IDO [124,125]. The capacity of MSCs to regulate the macrophage phenotype (M1 or M2) and to promote immunosuppression strongly depends on macrophage IL-6 signaling [126]. Finally, as discussed above, MSCs impair the maturation and differentiation of antigen-presenting cells (APCs) [123].

Current research is exploring the effect of MSCs on γδ T cells. γδ T cells have the ability to produce the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-17, as well as the anti-inflammatory cytokines TGF-β, IL-4, and IL-10, depending on the types of signals that predominate in the tissue microenvironment, and exert both anti- and pro-tumoral effects [158]. TGF-β acts as a key player in the MSC-mediated regulatory response by inducing CD4+ regulatory T cells (Treg) and γδ regulatory T cells. On the other hand, MSCs are potent suppressors of γδ-cell proliferation, cytokine production, and cytolytic responses (anti-tumor effect) in vitro through COX2-dependent production of PGE2 [134].

MSCs and adaptive immunity

MSCs can regulate the activation and function of T and B lymphocytes [9,113]. Many factors have been reported to be critical in MSC-mediated suppression of T-cell proliferation, including INOS (inducible NO synthase), IDO, semaphorin-3A, B7-H4, HLA-G, LIF, galectin(s), HO-1, IL-6, IL-10, PD-L1/2, FasL, and PGE2 [127–129]. MSCs exert inhibitory effects toward Th1 and Th17 (pro-inflammatory) cells through PD-1, PGE2, and IL-10, and promotion of Th2 secretion of IL-4 [130]. However, stimulatory effects on Th17 cells have also been observed. MSCs can promote Treg differentiation by secreting TGF-β, IL-6, and IL-10, and expressing IDO [135].

The immunosuppressive function of MSCs is elicited by IFN-γ, which induces the production of chemokines, IDO, PGE2, HGF, and TGF-β in humans to attract and to suppress T cells [131,159]. Although soluble factors are critical to mediate the immunosuppressive functions of MSCs, cell–cell contact is involved in MSC-based immunosuppression of T cells, including ICAM-1–LFA-1 and PD-1/PD-L1 interactions. Additional mechanisms of suppression occur through microRNA and exosome release [159–161].

B-cell–MSC interactions are less well studied, although observations suggest an inhibitory effect on B-cell activation, proliferation, differentiation, and chemotactic responses [132,133].

Priming: Toll-like receptors and the level of inflammation

MSC immunomodulatory activity is reported to be primed by cytokines from a pro-inflammatory microenvironment (for example, inflammation, cancer or infection), particularly IFN-γ, TNF-α, and IL-1β, and by Toll-like receptor (TLR) stimulation [162–168]. MSCs express TLR1–6 transcripts and TLR2–4, 7, and 9 proteins, and can be polarized toward a pro-inflammatory or an immunosuppressive phenotype following specific TLR stimulation [169–172]. Thus, TLR4-primed MSCs are polarized toward a pro-inflammatory MSC1 phenotype (tumor-growth inhibition), whereas TLR3-primed MSCs are polarized toward the more classical immunosuppressive MSC2 phenotype (Figure 4) [173,175]. The degree of inflammation, as assessed by the cytokine repertoire and production level within the microenvironment, appears to be critical in MSC polarization. MSCs become immunosuppressive only when exposed to high levels of pro-inflammatory cytokines (TNF-α, IFN-γ), which corresponds to late stages of inflammation [139,176], but the MSC2 phenotype is also influenced by TLR3 stimulation [176]. In the presence of low levels of TNF-α and IFN-γ, at the early phase of inflammation, MSCs may adopt a pro-inflammatory phenotype (MSC1) and enhance immune responses, in part through TLR4 expressed on their surface [175]. TLR4 stimulation promotes IL-6, IL-8, and TGF-β secretion, whereas TLR3 stimulation increases IL-4, IL-1RA (interleukin-1 receptor antagonist), IDO, and PGE2 [164,175,177,178]. However, results are discordant among research groups and MSC activation through TLR3 and 4 is also reported to lead to the secretion of IL-1, IL-6, IL-8, TRAIL (TNF-related apoptosis-inducing ligand), and CCL5 [174,175,179]. Some studies have shown that both TLR3 and 4 enhance immunosuppression through IDO [141], whereas others have reported an increase in pro-inflammatory cytokines in both [142,151,154,179,180]. Thus, MSC licensing to become activated depends on stimulation by pro-inflammatory cytokines, priming signals delivered by TLRs, and the timing of MSC engagement in immune effector cell activation (Figure 5) [164].

Experimentally, the duration of TLR stimulation of MSCs seems to play a role in their subsequent activation profile. Brief stimulation of MSCs with poly(I:C)
Figure 4. The MSC polarization paradigm. The level of inflammation and/or TLR agonists polarizes MSCs toward a pro-inflammatory/anti-tumor (MSC1) or an anti-inflammatory/immunosuppressive/pro-tumor (MSC2) phenotype. Low levels of TNF-α, IFN-γ (low level of inflammation), and/or TLR4 agonists (LPS) polarize MSCs toward a pro-inflammatory phenotype, whereas the downstream consequences of high TNF-α/IFN-γ/TLR3 [poly(I:C)] stimulation skew MSCs toward an anti-inflammatory MSC2 phenotype. MSC1 and MSC2 have divergent cytokine and chemokine secretion repertoires, differences in differentiation capability, extracellular matrix deposition, TGF-β signaling pathways, and Jagged, IDO, and PGE2 expression. The most compelling outcome is the opposite effect of the two cell types on immunomodulation. As shown in the figure, existing data are conflicting regarding the repertoire of cytokines and chemokines secreted in response to the numerous stimuli from the microenvironment. MSCs are a heterogeneous cell population, and the range of the observed responses may be explained, at least in part, by their diversity itself. For a complete list of abbreviations see supplementary material, Table S1.

Several mediators, including COX1, COX2, LIF, HGF, Gal-1, HO-1, IL-11, IL-8, IL-6, and TGF-β, were observed to display variable constitutive expression in BM-MSCs. Inflammatory priming of the cells differentially modulated expression of these mediators, strongly increasing expression of COX2, LIF, HGF, IL-11, IL-8, and IL-6, while decreasing that of COX1, Gal-1, and TGF-β expression. The most compelling outcome is the opposite effect of the two cell types on immunomodulation. As shown in the figure, existing data are conflicting regarding the repertoire of cytokines and chemokines secreted in response to the numerous stimuli from the microenvironment. MSCs are a heterogeneous cell population, and the range of the observed responses may be explained, at least in part, by their diversity itself. For a complete list of abbreviations see supplementary material, Table S1.

© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org

www.thejournalofpathology.com
imunosuppressive effect of MSCs induced by IFN-γ and TNF-α [186].

MSC-derived exosomes

Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) play a significant role in the TME [188,189]. Release of EVs is a mechanism of intercellular communication used by tumor cells and stromal cells within the TME. EVs include exosomes, the smallest EV fraction arising from intracellular endosomes, and microvesicles generated by budding from the plasma membrane. EVs can directly activate target cell surface receptors through protein and bioactive lipid ligands, and by delivering different effectors, including transcription factors, oncogenes, proteins, growth factors, and non-coding regulatory RNAs, thus inducing functional changes in recipient cells. MSC-EVs are regulators of tumor cell survival and growth. Similar to their effects on immunity and the inflammatory response, MSCs have shown divergent effects on tumor cells, some of which are anti-, whereas others are pro-tumorigenic. Similar to MSCs, MSC-EVs have a dual effect on tumor progression. Exosomes derived from MSCs in non-small cell lung cancer have been shown to promote chemoresistance [190]. Tumor-EVs can also mediate drug resistance through mechanisms that include drug sequestration; delivery of specific mRNAs, miRNAs, and proteins; and crosstalk between cancer cells and MSCs [191,192]. MSC-EVs have been found to modulate the tumor microenvironment, creating favorable conditions for cancer cell metastasis, and have been shown to mimic the effects of MSCs on tumor growth promotion [193]. Kalluri [194] described tumor-associated and circulating exosomes as heterogeneous populations that generate a unique tumor nanoenvironment (TNE).
Immunomodulation

By fulfilling the role of vehicles that deliver immunomodulatory mediators, MSC-EVs display functions similar to those of their parent cells [195]. Cytokines (including IL-6, IDO, PGE2, IL-10) and chemokines (including CXCL2, CCL2, CXCL8) may be packaged into EVs together with nucleic acids and post-transcriptional modulators which can influence the inflammatory response when released [195,196]. Exosomes can inhibit B-cell proliferation [197] and increase Treg activity [198]. In physiological conditions, MSC-EVs have been reported to modulate the immune cell response to facilitate tissue repair, through promotion of anti-inflammatory and pro-regenerative (M2) macrophages over pro-inflammatory M1 macrophages and concomitant enhancement of the expression of the anti-inflammatory cytokines IL-10 and TGF-β [199]. In tumors, chronic inflammation promotes immunosuppression, at least in part through EV release, which contributes to tumor progression [200,201].

Interleukin-6

Aside from TGF-β and PGE2, IL-6 appears to play a major role in MSC communication with their microenvironment. IL-6 is a pleiotropic cytokine, highly secreted by tumor stromal cells, including MSCs. The IL-6 signaling pathway consists of IL-6Rα (CD126) and gp130 (CD130), JAK/STAT signaling, and negative regulation by SOCS molecules. IL-6 supports cancer cell proliferation, survival, and metastatic dissemination. Moreover, IL-6 can act on numerous cell types within the tumor microenvironment to sustain a pro-tumoral milieu by supporting angiogenesis and tumor evasion of immune surveillance. However, IL-6 may also promote anti-tumor adaptive immunity [202,203].

MSCs, especially MSCs isolated from the tumor stroma, secrete higher levels of IL-6 [70,103] than other non-tumor cells, which together with PGE2 can participate in suppression of NK cell activity and facilitate tumor cell dissemination and metastasis [70]. IL-6 secretion by MSCs has been shown to be part of the late regulatory response [184], which includes TGF-β, to induce senescent-like NK cells. TGF-β secreted by MSCs in osteosarcoma can increase the migratory capacity of tumor cells, which, in turn, stimulate the secretion of IL-6 that fosters cancer cell stemness and aggressiveness [204,205]. In a model of arthritis, IL-6-dependent PGE2 secretion by MSCs inhibits local inflammation [206]. Indeed, IL-6 modifies the soluble mediator secretion profile of MSCs, increasing PGE2 and VEGF, among others. MSC-derived IL-6 and PGE2 skew monocyte differentiation toward the formation of IL-10-expressing macrophages [207]. IL-6 clearly plays an important role in the crosstalk between MSCs and the tumor microenvironment, and additional work is needed to elucidate the full spectrum of its effects. In different tumor models, targeted inhibition of IL-6 may enhance the efficacy of anti-PD-L1 [208–210].

MSCs and anti-tumor therapy

The potential therapeutic benefit of exogenous MSCs has been under preclinical investigation since the late 1990s. Tissue regeneration-related candidate MSC applications include bone marrow transplantation, graft-versus-host disease (GVHD), acute myocardial infarction, heart failure, stroke, lung diseases, acute kidney failure, liver fibrosis, juvenile diabetes, osteoarthritis and rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, Parkinson’s disease, and sepsis [211,212], some of which are approved (GVHD being one example) [213–215]. There are currently also ongoing clinical trials that use MSCs to treat tumors [7]. In the context of such cell therapeutic approaches, MSCs are used as gene delivery vehicles for tumor-targeted therapies [216–218]. MSCs have been engineered to deliver interleukins to improve anti-cancer immune surveillance, as delivery agents of interferons (IFN-α and -β) [159], and as carriers of prodrugs or oncolytic viruses [219,220]. MSCs have also been tested as deliverers of anti-angiogenic agents, pro-apoptotic proteins (TRAIL, for example) [221], and growth factor antagonists. Moreover, after exposure to high doses of chemotherapeutic drugs such as paclitaxel or gemcitabine, MSCs have been shown to accumulate and deliver the anti-neoplastic agent without undergoing genetic modifications and to decrease tumor growth [222,223]. Their ability to preferentially migrate toward tumor sites (primary and metastatic neoplasms) in addition to their availability, non-immunogenic nature, and relative ease of manipulation in vitro renders them attractive candidates for cell-based therapies. However, as discussed above, increasing evidence regarding the tumor-promoting activity of MSCs, especially when subverted by the TME, raises issues as to their safety and cautions their use in clinical trials. In addition, using engineered MSCs may be a problem after eradication of the tumor they are designed to target [224]. A recent systematic review by Christodoulou et al addresses these issues in the settings of preclinical cancer cytotherapy [225].

MSC-EVs for anti-tumor therapy

Several studies suggest that the cell source may condition EV homing to specific sites and that their membrane can be engineered to increase tissue-specific targeting [226,227]. These observations open new possibilities for potential future applications of MSC-EVs as cell-free therapeutic agents [228]. MSC-derived exosomes may thus be used as delivery vehicles to transfer genetic materials, including mRNA and non-coding RNAs to recipient cells [160,229–232].

Targeting the pro-tumor effects of MSCs

Approaches that could be used to target MSCs in the TME and counteract their immunosuppressive effects include direct blockade of their immunosuppressive
function and reprogramming to render their immunostimulatory properties dominant over their immunosuppressive ones [5]. MSC activity could be modulated in a variety of ways using, among others, drugs that inhibit one or, preferably, several of the MSC-derived immunosuppressive molecules (e.g. IDO, TGF-β); inhibitory antibodies (e.g. anti-PDGFR, anti-EGFR antibodies) that block the effect of growth factors involved in MSC–tumor cell crosstalk [233–235] and elicit ADCC (antibody-dependent cellular cytotoxicity); inhibitors of sheddases/ADAMs (a disintegrin and metalloproteinases); and tyrosine kinase inhibitors. Some of these approaches have the advantage of targeting both MSCs and tumor cells. HMG-CoA reductase inhibitors (statins) decrease mevalonate, its metabolic product that is essential for MSC and tumor cell metabolism. However, mevalonate is also required to develop an immune response and kill tumor cells. Thus, it is important to design inhibitors that can be directly and specifically delivered to MSCs [236].

PD-L1 expression is upregulated in MSCs by IFN-γ [237], and PD-L1/PD1 is involved in MSC regulation of T- and B-cell proliferation [238,239]. ADAM proteins release MSC ligands for NK cells and decrease NK-cell recognition of tumor cells. ADAMs can be released in exosomes and microvesicles.

Reprogramming MSCs from an immunosuppressive to an immunostimulatory phenotype may constitute another potentially promising approach. The effects of bisphosphonates [240,241], as well as immunomodulatory drugs such as thalidomide and lenalidomide, that target the TME and decrease IL-6 by regulating SOCS1 [242] are being assessed by several groups.

Preclinical models
Studies on the effect of MSCs on cancer growth and their immunomodulatory properties have been based mainly on in vitro 2D co-culture systems and on in vivo cancer models using primarily BM-MSCs and adipose tissue-isolated MSCs. New approaches using more complex in vitro 3D models are under development and are gaining interest, as they are more prone to mimic the in vivo features of the tumor microenvironment [204]. For a more detailed review, the recent publication of Avnet et al [204] summarizes the different 3D preclinical models available, as well as their limitations.

Concluding remarks
Mesenchymal stem cells may be heralded as key preservers of tissue homeostasis. Their pleiotropic nature provides them with the unique ability to act as sensors of tissue state and as both coordinators of and participants in the effector functions required to repair and regenerate injured tissues. By sensing the degree of an inflammatory response to injury, MSCs may adapt their own regulatory and effector functions to temper or boost the response as required. Thus, they can become immunosuppressive upon exposure to elevated levels of pro-inflammatory cytokines while providing support to tissue repair by secreting ECM components and stimulating regeneration by resident stem cells. By contrast, in the presence of low levels of IFN-γ and TNF-α, MSCs may adopt a pro-inflammatory phenotype and enhance T-cell responses as well as tissue remodeling.

Despite its highly beneficial effects in the maintenance of homeostasis, MSC plasticity is a double-edged sword as it can be readily exploited by tumors to serve tumor cell needs. In response to tumor-derived cytokines and signals generated by direct physical contact with tumor cells, MSCs can adopt a potent immunosuppressive phenotype that acts on both innate and adaptive immunity. As a result, they may facilitate tumor progression, which entails acquisition by tumor cells of additional genetic and epigenetic changes that may shield them from cytotoxic cells and drugs and support their formation of metastases.

Although a plethora of studies have been conducted on MSCs in recent years, several key issues remain to be resolved. Perhaps the most pressing one is the heterogeneity of MSCs, which requires the identification and definition of their putative subpopulations and the determination of their mutual relationships. For example, are the different subpopulations stable or are they transient and can one subpopulation transform itself into another in response to microenvironmental stimuli? Several other questions need to be addressed as well. What is the relationship between MSCs and ‘resting’ fibroblasts – are they distinct entities or one and the same, perhaps at different stages of differentiation? What proportion of the stromal response to injury is directed by MSCs versus other more differentiated stromal cells? These and other issues will need to be resolved if we hope to effectively disrupt the functional support that MSCs provide to tumor growth.

Acknowledgements
We thank Professor Christophe Galland for helpful suggestions. SG was supported by a Clinician–MD–PhD scientist research grant from the Faculty of Biology and Medicine Research Commission Fund, University of Lausanne, and by a Junior Clinical Scientist Leenaards Foundation research grant, Lausanne. This work was supported by Swiss National Science Foundation grant 310030_169563.

Author contributions statement
Both authors contributed to this review and reviewed the final manuscript.

References
1. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008; 2: 313–319.
Mesenchymal stromal cells in cancer

2. Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell 2012; 10: 709–716.
3. Lazenec C, Lam PY. Recent discoveries concerning the tumor–mesenchymal stem cell interactions. Biochim Biophys Acta 2016; 1866: 290–299.
4. Papaccio F, Paino F, Regad T, et al. Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence on cancer development. Stem Cells Transl Med 2017; 6: 2115–2125.
5. Poggi A, Varesano S, Zocchi MR. How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant rather than immunosuppressive. Front Immunol 2018; 9: 262.
6. Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer 2017; 16: 31.
7. Timaner M, Tsai KK, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 2020; 60: 225–237.
8. Tolar J, Le Blanc K, Keating A, et al. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 2010; 28: 1446–1455.
9. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8: 726–736.
10. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Cancer Invest 2012; 30: 513–518.
11. Lacerda L, Debeb BG, Smith D, et al. Mesenchymal stem cells mediate the clinical phenotype of inflammatory breast cancer in a preclinical model. Breast Cancer Res 2015; 17: 42.
12. Ye H, Cheng J, Tang Y, et al. Human bone marrow-derived mesenchymal stem cells produced TGFbeta contributes to progression and metastasis of prostate cancer. Stem Cells 2012; 30: 499–508.
13. Lee MJ, Heo SC, Shin SH, et al. Oncostatin M promotes mesenchymal stem cell-stimulated tumor growth through a paracrine mechanism involving peroxisome and TGFBI. Int J Biochem Cell Biol 2013; 45: 1869–1877.
14. Sun B, Roh K-H, Park J-R, et al. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 2009; 11: 289–298.
15. Abd-Allah SH, Shalaby SM, El-Shal AS, et al. Effect of bone marrow-derived mesenchymal stem cells on hepatoma. Cytotherapy 2014; 16: 1197–1206.
16. Otsu K, Das S, Houser SD, et al. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009; 113: 4197–4205.
17. Spaeth EL, Dembinski JL, Sasser AK, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009; 4: e4992.
18. Akimoto K, Kimura K, Nagano M, et al. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev 2012; 22: 1370–1386.
19. Li W, Zhou Y, Yang J, et al. Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8. J Exp Clin Cancer Res 2015; 34: 52.
20. Hossain A, Gumji J, Gao F, et al. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells 2015; 33: 2400–2415.
21. Mishra PJ, Mishra PJ, Hamenuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008; 68: 4331–4339.
22. Shangguan L, Ti X, Krause U, et al. Inhibition of TGF-β/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells 2012; 30: 2810–2819.
promotes malignancy and EMT of lung cancer. *Stem Cell Res Ther* 2019; 10: 168.

42. Ullah M, Akbar A, Ng NN, et al. Mesenchymal stem cells confer chemoresistance in breast cancer via a CD9-dependent mechanism. *Oncotarget* 2019; 10: 3435–3450.

43. Hughes RM, Simons BW, Khan H, et al. Asporin restricts mesenchymal stromal cell differentiation, alters the tumor microenvironment, and drives metastatic progression. *Cancer Res* 2019; 79: 3636–3650.

44. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumors stroma generation and wound healing. *N Engl J Med* 1986; 315: 1650–1659.

45. Wood B. Multicolor immunophenotyping: human immune system hematopoiesis. *Methods Cell Biol* 2004; 75: 559–576.

46. Watt SM, Gilmore DJ, Davis JM, et al. Surface markers on haematopoietic precursors. Reagents for the isolation and analysis of progenitor cell subpopulations. *Mol Cell Probes* 1987; 1: 297–326.

47. Ng AP, Alexander WS. Haematopoietic stem cells: past, present and future. *Cell Death Discov* 2017; 3: 17002.

48. Kahounová Z, Kurfürstová D, Bouchal J, et al. Identification of CD106 identifies a subpopulation of mesenchymal stromal cells from fibroblasts are downregulated with epithelial origin and may be altered during epithelial-to-mesenchymal transition. *Cytometry A* 2018; 93: 941–951.

49. Kalluri R. The biology and function of fibroblasts in cancer. *Nat Rev Cancer* 2016; 16: 582–598.

50. Kalluri R, Zeisberg M. Fibroblast in cancer. *Nat Rev Cancer* 2006; 6: 392.

51. Hinz B. Formation and function of the myofibroblast during tissue repair. *J Invest Dermatol* 2007; 127: 526–537.

52. Vong S, Kalluri R. The role of stromal myofibroblast and extracellular matrix in tumor angiogenesis. *Genes Cancer* 2011; 2: 1139–1145.

53. Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the future. *Nat Rev Cancer* 2013; 13: 913–919.

54. Dominič M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. *Cytotherapy* 2006; 8: 315–317.

55. Horwitz EM, Le Blanc K, Dominič M, et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. *Cytotherapy* 2005; 7: 393–395.

56. Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiovascular disease. *Circ Res* 2011; 109: 923–940.

57. Fibbe WE, Noort WA. Mesenchymal stem cells and hematopoietic stem cell transplantation. *Ann N Y Acad Sci* 2003; 996: 235–244.

58. Phinney DG, Sensebé L. Mesenchymal stromal cells: misconceptions and evolving concepts. *Cytotherapy* 2013; 15: 140–145.

59. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stromal cells: regulation of niche, self-renewal and differentiation. *Arthritis Res Ther* 2007; 9: 204.

60. Quiriç N, Soligo D, Bossoaslaco P, et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. *Exp Hematol* 2002; 30: 783–791.

61. Delorme B, Ringe J, Gallay N, et al. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. *Blood* 2006; 111: 2631–2635.

62. Yang ZX, Han Z-B, Ji YR, et al. CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. *PLoS One* 2013; 8: e59354.

63. Halson S, Abramov N, Grinblat B, et al. Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passing. *Stem Cells Dev* 2011; 20: 53–66.

64. Sacchetti B, Funari A, Michienzi S, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. *Cell* 2007; 131: 324–336.

65. Wirths S, Maleńki E, Kuha T, et al. Shared cell surface marker expression in mesenchymal stem cells and adult sarcomas. *Stem Cells Transl Med* 2013; 2: 53–60.

66. Gang EI, Bosnakovski D, Figueredo CA, et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. *Blood* 2007; 109: 1743–1751.

67. Lv F-J, Tuan RS, Cheung KMC, et al. Concise review: the surface markers and identity of human mesenchymal stem cells. *Stem Cells* 2014; 32: 1408–1419.

68. Maeda K, Enomoto A, Hara A, et al. Identification of Meffin as a potential marker for mesenchymal stromal cells. *Sci Rep* 2016; 6: 22288.

69. Aggouné D, Sorel N, Bonnet M-L, et al. Bone marrow mesenchymal stromal cell (MSC) gene profiling in chronic myeloid leukemia (CML) patients at diagnosis and in deep molecular response induced by tyrosine kinase inhibitors (TKIs). *Leuk Res* 2017; 60: 94–102.

70. Fregni G, Quinodoz M, Möller E, et al. Reciprocal modulation of mesenchymal stem cells and tumor cells promotes lung cancer metastasis. *ElBioMedicine* 2018; 29: 128–145.

71. Sneddon JB, Zhen HH, Montgomery K, et al. Bone morphogenetic protein antagonist gremolin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. *Proc Natl Acad Sci U S A* 2006; 103: 14842–14847.

72. Worthley DL, Churchill M, Compton JT, et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. *Cell* 2015; 160: 269–284.

73. Herrera MB, Bussolati B, Bruno S, et al. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. *Kidney Int* 2007; 72: 430–441.

74. Shi M, Zhang Z, Xu R, et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. *Stem Cells Transl Med* 2012; 1: 725–731.

75. Ranganath SH, Levy O, Inamdar MS, et al. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. *Cell Stem Cell* 2012; 10: 244–258.

76. DiMarino AM, Clarap AI, Bonfield TL. Mesenchymal stem cells in tissue repair. *Front Immunol* 2013; 4: 201.

77. Hill BS, Pelagalli A, Passaro N, et al. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. *Oncotarget* 2017; 8: 73296.

78. Lee H, Hong I. Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. *Cancer Sci* 2017; 108: 1939–1946.

79. Qi K, Li N, Zhang Z, et al. Tissue regeneration: the crosstalk between mesenchymal stem cells and immune response. *Cell Immunol* 2018; 326: 86–93.

80. Ma S, Xie N, Li W, et al. Immunobiology of mesenchymal stem cells. *Cell Death Differ* 2014; 21: 216–225.

81. Shi Y, Su J, Robertes AI, et al. How mesenchymal stem cells interact with tissue immune responses. *Trends Immunol* 2012; 33: 136–143.

82. Lee JW, Fang X, Krasnodembyska A, et al. Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. *Stem Cells* 2011; 29: 913–919.

83. Krasnodembyska A, Song Y, Fang X, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. *Stem Cells* 2010; 28: 2229–2238.

84. Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. *Gene Ther* 2008; 15: 109–116.

85. Bader P, Kuçi Z, Bakhtiari S, et al. Effective treatment of steroid and therapy-refractory acute graft-versus-host disease with a novel
Mesenchymal stromal cells in cancer

mesenchymal stromal cell product (MSC-FFM). Bone Marrow Transplant 2018; 53: 852–862.

86. Caplan AI. Why are MSCs therapeutic? New data: new insight. J Pathol 2009; 217: 318–324.

87. Kidd S, Spaeth E, Dembinski JL, et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 2009; 27: 2614–2623.

88. Puré E, Loa C. Can targeting stroma pave the way to enhanced anti-tumor immunity and immunotherapy of solid tumors? Cancer Immunol Res 2016; 4: 269–278.

89. Hong I-S, Lee H-Y, Kang K-S. Mesenchymal stem cells and cancer: friends or enemies? Mutat Res 2014; 768: 98–106.

90. Klop AH, Gupta A, Spaeth E, et al. Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 2011; 29: 11–19.

91. Sun Z, Wang S, Zhao RC. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J Hematol Oncol 2014; 7: 14.

92. Jing Y, Han Z, Liu Y, et al. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial–mesenchymal transition. PLoS One 2012; 7: e43272.

93. Liu Y, Han Z, Zhang S, et al. Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem 2011; 286: 25007–25015.

94. Ren G, Zhao X, Wang Y, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFα. Cell Stem Cell 2012; 11: 812–824.

95. Cho JA, Park H, Lim EH, et al. Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts. Gynecol Oncol 2011; 123: 379–386.

96. Dostert G, Mesure B, Menu P, et al. How do mesenchymal stem cells influence or are influenced by microenvironment through extracellular vesicles communication? Front Cell Dev Biol 2017; 5: 6.

97. Raz Y, Cohen N, Shani O, et al. Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J Exp Med 2018; 215: 3075–3093.

98. Brune JC, Tormin A, Johansson MC, et al. Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts. Int J Cancer 2011; 129: 319–330.

99. McLean K, Gong Y, Choi Y, et al. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 2011; 121: 3206–3219.

100. Gottschling S, Granzow M, Kuner R, et al. Mesenchymal stem cells in non-small cell lung cancer – different from others? Insights from comparative molecular and functional analyses. Lung Cancer 2013; 80: 19–29.

101. Johann P-D, Vaegler M, Gieseke F, et al. Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity. BMC Cancer 2010; 10: 501.

102. Xu X, Zhang X, Wang S, et al. Isolation and comparison of mesenchymal stem-like cells from human gastric cancer and adjacent non-cancerous tissues. J Cancer Res Clin Oncol 2011; 137: 495–504.

103. Galland S, Vuelle J, Martin P, et al. Tumor-derived mesenchymal stem cells use distinct mechanisms to block the activity of natural killer cell subsets. Cell Rep 2017; 20: 2891–2905.

104. Razmkhah M, Jaberipour M, Erfani N, et al. Adipose derived stem cells (ASCs) isolated from breast cancer tissue express IL-4, IL-10 and TGF-β1 and upregulate expression of regulatory molecules on T cells: do they protect breast cancer cells from the immune response? Cell Immunol 2011; 266: 116–122.

105. Razmkhah M, Mansourabadi Z, Mohtasebi MS, et al. Cancer and normal adipose-derived mesenchymal stem cells (ASCs): do they have differential effects on tumor and immune cells? Cell Biol Int 2018; 42: 334–343.

106. Razmkhah M, Abtahi S, Ghaderi A. Mesenchymal stem cells, immune cells and tumor cells crosstalk: a sinister triangle in the tumor microenvironment. Curr Stem Cell Res Ther 2019; 14: 43–51.

107. Ren G, Chen X, Dong F, et al. Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med 2012; 1: 51–58.

108. Luo J, Ok Lee S, Liang L, et al. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene 2014; 33: 2768–2778.

109. Burrello J, Monticone S, Gai C, et al. Stem cell-derived extracellular vesicles and immune-modulation. Front Cell Dev Biol 2016; 4: 83.

110. Di Trapani M, Bassi G, Midolo M, et al. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep 2016; 6: 24120.

111. Hass R, Kasper C, Böhm S, et al. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Stem Cells 2011; 9: 12.

112. Turley S, Cremasco V, Astaria JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 2015; 15: 669–682.

113. Tabera S, Pérez-Simón JA, Díez-Campello M, et al. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 2008; 93: 1301–1309.

114. Raffaghello L, Bianchi G, Bertolotto M, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 2008; 26: 151–162.

115. Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosomes. Immunol Res 2016; 64: 831–840.

116. Casado JG, Tarazona R, Sanchez-Margallo FM, NK and MSCs crosstalk: the sense of immunomodulation and their sensitivity. Stem Cell Rev 2013; 9: 184–189.

117. Hu C-HD, Kosaka Y, Marcus P, et al. Differential immunomodulatory effects of human bone marrow-derived mesenchymal stromal cells on natural killer cells. Stem Cells Dev 2019; 28: 933–943.

118. Krampera M, Cosmi L, Angeli R, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006; 24: 386–398.

119. Rasmusson I, Ringdén O, Sundberg B, et al. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76: 1208–1213.

120. Spaggiari GM, Capobianco A, Abdellakr H, et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111: 1327–1333.

121. Pugli A, Prevosto C, Massaro A-M, et al. Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J Immunol 2005; 175: 6352–6360.

122. Spaggiari GM, Capobianco A, Becchetti S, et al. Mesenchymal stem cell–natural killer cell interactions: evidence that activated
NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. *Blood* 2006; 107: 1484–1490.

123. Pereira RC, Martinelli D, Cancruda R, et al. Human articular chondrocytes regulate immune response by affecting directly T cell proliferation and indirectly inhibiting monocyte differentiation to professional antigen-presenting cells. *Front Immunol* 2016; 7: 415.

124. Françoise M, Romieu-Moreau R, Li M, et al. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. *Mol Ther* 2012; 20: 187–195.

125. Németh K, Leelahavanichkul A, Yuen PST, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. *Nat Med* 2009; 15: 42–49.

126. Philipp D, Suhr L, Wahlers T, et al. Professional antigen-presenting cells. *Drocytes regulate immune response by affecting directly T cell programming of host macrophages to increase their interleukin-10 production.* *Nat Med* 2009; 15: 42–49.

127. Chabannes D, Hill M, Merieau E, et al. A regulatory role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. *Blood* 2007; 110: 3691–3694.

128. De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. *Carr Mol Med* 2012; 12: 574–591.

129. Nafse A, Chapel A, Mazurier C, et al. Identification of IL-10 and TGF-β transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. *Gene Expr* 2007; 13: 217–226.

130. Najar M, Fayyad-Kazan H, Faour WH, et al. Immunological modulation following bone marrow-derived mesenchymal stromal cells and Th17 lymphocyte co-cultures. *Inflamm Res* 2019; 68: 203–213.

131. Zimmermann JA, Hettiaratchi MH, McDevitt TC. Enhanced immunosuppression of T cells by sustained presentation of bioactive interferon-γ within three-dimensional mesenchymal stem cell constructs. *Stem Cells Transl Med* 2017; 6: 223–237.

132. Asari S, Ikura S, Ferretti K, et al. Mesenchymal stem cells suppress B-cell terminal differentiation. *Exp Hematol* 2009; 37: 604–615.

133. Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. *Blood* 2006; 107: 367–372.

134. Martinet L, Fleury-Cappellesso S, Gadelorge M, et al. A regulatory cross-talk between VγVδ2 T lymphocytes and mesenchymal stem cells. *Eur J Immunol* 2009; 39: 752–762.

135. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. *Blood* 2005; 105: 1815–1822.

136. Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. *Blood* 2005; 105: 2214–2219.

137. Nauta AJ, Kruiswinkel AB, Lurvink E, et al. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. *J Immunol* 2007; 177: 2080–2087.

138. Zhang B, Liu R, Shi D, et al. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. *Blood* 2009; 113: 46–57.

139. Ren G, Zhao X, Zhang L, et al. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. *J Immunol* 2010; 184: 2321–2328.

140. Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. *Cell Mol Life Sci* 2017; 74: 2345–2360.

141. Opitz CA, Litzenburger UM, Lutz C, et al. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. *Stem Cells* 2009; 27: 909–919.

142. Liotta F, Angeli R, Cosmi L, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. *Stem Cells* 2008; 26: 279–289.

143. Krampera M, Galipeau J, Shi Y, et al. Immunological characterization of multipotent mesenchymal stromal cells – The International Society for Cellular Therapy (ISCT) working proposal. *Cytotherapy* 2013; 15: 1054–1061.

144. Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response. *Immunol Lett* 2015; 168: 140–146.

145. Poggi A, Musso A, Dapino I, et al. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells. *Immunol Lett* 2014; 159: 55–72.

146. Spaggiari GM, Moretta L. Cellular and molecular interactions of mesenchymal stem cells in innate immunity. *Immunol Cell Biol* 2013; 91: 27–31.

147. Spaggiari GM, Moretta L. Interactions between mesenchymal stem cells and dendritic cells. *Adv Biochem Eng Biotechnol* 2013; 130: 199–208.

148. Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. *Curr Mol Med* 2013; 13: 856–867.

149. Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. *Eur J Immunol* 2006; 36: 2566–2573.

150. Wang Y, Chen X, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. *Nat Immunol* 2014; 15: 1009–1016.

151. Cho HH, Bae YC, Jung JS. Role of Toll-like receptors on human adipose-derived stromal cells. *Stem Cells* 2006; 24: 2744–2752.

152. Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. *Nat Rev Immunol* 2012; 12: 383–396.

153. Tu Z, Li Q, Bu H, et al. Mesenchymal stem cells inhibit complement activation by secreting factor H. *Stem Cells Dev* 2010; 19: 1803–1809.

154. Tomchuck SL, Zwedzarky JK, Coffelt SB, et al. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. *Stem Cells* 2008; 26: 99–107.

155. Nemeth K, Wilson T, Rada B, et al. Interactions between VγVδ2 T lymphocytes and mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. *Nat Immunol* 2014; 15: 1009–1016.

156. Chen H-W, Chen H-Y, Wang L-T, et al. Mesenchymal stem cells tune the development of monocyte-derived dendritic cells toward a myeloid-derived suppressive phenotype through growth-regulated oncoprotein chemokines. *J Immunol* 2013; 190: 5065–5077.

157. Yen BL, Yen M-L, Hsu P-J, et al. Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatic route growth factor-Met and STAT3. *Stem Cell Reports* 2013; 1: 139–151.

158. Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. *Int J Cancer* 2016; 139: 976–985.

159. Ren C, Kumar S, Chanda D, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. *Gene Ther* 2008; 15: 1446–1453.

160. Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. *Stem Cells* 2017; 35: 851–858.

161. Zhang B, Shen L, Shi H, et al. Exosomes from human umbilical cord mesenchymal stem cells: identification, purification, and biological characteristics. *Stem Cells Int* 2016; 2016: 1929536.

162. Bernardo ME, Fibe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. *Cell Stem Cell* 2013; 13: 392–402.
Mesenchymal stromal cells in cancer

163. Dumitrau CA, Hemedia H, Jakob M, et al. Stimulation of mesenchymal stromal cells (MSCs) via TLR3 reveals a novel mechanism of autocrine priming. *FASEB J* 2014; 28: 3856–3866.

164. Krampera M. Mesenchymal stromal cell ‘licensing’: a multistep process. *Leukemia* 2011; 25: 1408–1414.

165. Glenn ID, Whartenby KA. Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. *World J Stem Cells* 2014; 6: 526–539.

166. Ayala-Cuellar AP, Kang J-H, Jeung E-B, et al. Mesenchymal stem cells in the presence of mesenchymal stem cells. *J Immunol* 2014; 192: 103–109.

167. Lu Y, Liu J, Liu Y, et al. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function. *Biochem Biophys Res Commun* 2015; 464: 541–547.

168. Raicevic G, Rouas R, Najar M, et al. Mesenchymal stem cell-derived extracellular vesicles in tumour microenvironment. *Biochim Biophys Acta Rev Cancer* 2019; 1871: 192–198.

169. Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. *Semin Immunol* 2018; 35: 69–79.

170. LobRJ, van Amerongen R, Wiegmans A, et al. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. *Int J Cancer* 2017; 141: 614–620.

171. Krampera M. Mesenchymal stromal cell ‘licensing’: a multistep process. *Leukemia* 2011; 25: 1408–1414.

172. Shi et al. Toll-like receptors as a key regulator of mesenchymal stem cell function: an up-to-date review. *Cell Immunol* 2017; 315: 1–10.

173. He et al. Toll-like receptors in mesenchymal stromal cells. *Hum Immunol* 2010; 71: 235–244.

174. Gentile P, Garciaovich S. Concise review: adipose-derived stem cells and immune cells by distinct protein content. *Stem Cells Dev* 2018; 27: 290–300.

175. Liu W, Ren G, Huang Y, et al. Mesenchymal stem cells: a double-edged sword in regulating immune responses. *Cell Death Differ* 2012; 19: 1505–1513.

176. Liu W, Ren G, Huang Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth and metastasis. *PLoS One* 2012; 7: e45590.

177. Mardpour S, Hamidieh AA, Taleahmad S, et al. Mesenchymal stromal cells promote tumor growth and metastasis. *PLoS One* 2012; 7: e45590.

178. Zhu W, Huang L, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. *Cancer Lett* 2012; 315: 28–37.

179. Adamo A, D’Allocco G, Bazzoni R, et al. Role of mesenchymal stromal cell-derived extracellular vesicles in tumour microenvironment. *Biochim Biophys Acta Rev Cancer* 2019; 1871: 192–198.

180. Whiteside TL. Exosomes and mesenchymal stem cell cross-talk in the tumor microenvironment. *Semin Immunol* 2018; 35: 69–79.

181. Whiteside TL. Exosomes and tumor-mediated immune suppression. *J Clin Invest* 2016; 126: 1208–1215.

182. Whiteside TL. Exosomes and tumor-mediated immune suppression. *J Clin Invest* 2016; 126: 1216–1223.

183. Whiteside TL. Exosomes and tumor-mediated immune suppression. *Adv Clin Chem* 2016; 74: 103–141.

184. Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in cancer progression. *Adv Clin Chem* 2016; 74: 38–47.

185. Zhang B, Yin Y, Lai RC, et al. Mesenchymal stem cell-derived extracellular vesicles affect mRNA expression and function of B-lymphocytes. *Stem Cells Dev* 2014; 23: 8249–8258.

186. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. *Nat Rev Immunol* 2014; 14: 195–208.

187. Khare D, Or R, Resnick I, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. *Cancer Lett* 2012; 315: 28–37.

188. Kalluri R. The biology and function of exosomes in cancer. *J Cell Physiol* 2019; 234: 8249–8258.
