High efficiency event-counting thermal neutron imaging using Gd doped micro channel plate *

TIAN Yang(田阳)1,2;1) YANG Yi-Gang(杨祎罡)1,2 PAN Jing-Sheng(潘京生)3 LI Yu-Lan(李玉兰)1,2 LI Yuan-Jing(李元景)1,2
1 (Department of Engineering Physics, Tsinghua University, Beijing 100084, China)
2 (Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China)
3 (Nanjing Branch, North Night Vision Tech. Co., Ltd., Nanjing 211102, China)

Abstract: An event-counting thermal neutron imaging detector based on 3 mol % natGd2O3 doped micro channel plate (MCP) has been developed and tested. Thermal neutron imaging experiment was carried out with a low flux neutron beam. Detection efficiency of 33 % was achieved with only one doped MCP. The spatial resolution of 72 μm RMS is currently limited by the readout anode. A detector with larger area and improved readout method is now being developed.

Key Words: doped MCP, thermal neutron imaging, event-counting

PACS: 28.20.Pr, 29.40.Gx

1 Introduction

The concept of direct conversion and detection of thermal neutrons using doped micro channel plate (MCP) was first proposed by Fraser and Pearson in 1990 [1]. The first experimental imaging result was achieved using boron and gadolinium doped MCP by researchers from University of California at Berkeley and Nova Scientific Inc. in 2007 [2]. High spatial and temporal resolution as well as relatively high detection efficiency is then confirmed by a serial of experiments [3-5]. As a result, event-counting detector based on doped MCP combined with pixel readout chip is successfully applied to various neutron imaging experiments [6, 7].

Similar cooperating research is carried out in China by Tsinghua University and NNVT Co., Ltd. Both doping and coating have been attempted to increase the neutron sensitivity of MCP [8]. Our coated MCPs are still confronted with the problem of electron emitting layer integration. The first thermal neutron imaging result of our doped MCP is presented in this paper.

2 Neutron imaging detector using wedge strip anode

Although boron have several advantages over gadolinium in neutron conversion, such as shorter range of the charged particles (higher spatial resolution achievable), large cross section over the whole thermal region and simple prompt gamma spectrum (easy for coincidence measurement), highly enriched 10B (50000 S/kg) is needed to realize desirable detection efficiency with practical thickness (around 1 mm) of the MCP. Doping with natGd is a cost-effective choice. In our first attempt, 3 mol % natGd2O3 doped MCP is made, which has 50 mm diameter and 0.6 mm thickness. The diameter and pitch of the channel are 10 and 12.5 μm respectively with a porosity ratio of 63 %. Detailed composition and production procedures are included in [9].

Fig. 1. The imaging detector and the electronic system.

The natGd doped MCP (0 bias angle) is coupled to a
normal 0.6 mm MCP (8° bias angle) in the form of a chevron stack. A wedge strip anode (WSA) [10] is employed as a 2-D event-counting readout. These are the essential parts of our neutron imaging detector as illustrated in Fig. 1. The simple electronic system of WSA is comprised of only 3 channels.

3 Imaging with low flux neutron beam

Thermal neutron imaging was carried out at the 49-2 reactor at China Institute of Atomic Energy (CIAE). As the reactor is intended for isotope production and sample irradiation, there is no gamma filter in the neutron beam. The n/γ ratio is still as low as 1.07×10^{10} n/(cm²•Sv) after 10 cm thick lead brick. This value is one order lower than those of some neutron sources optimized for imaging [11,12]. The thermal neutron flux within the imaging plane is just 123 n/(cm²•s) at a L/D of 360:1 according to the measurement by a 3He tube.

Fortunately the dark count rate of our detector is just 0.11 s⁻¹•cm⁻². We managed to obtain a transmission imaging of some high contrast objects (Fig. 2) after irradiating the detector for 2 hours and 39 minutes.

Fig. 2. Imaging objects and results. The imaging objects are fixed in the vacuum chamber. As the neutron flux is very low, in order to get imaging of desirable quality within acceptable acquisition time we select objects of high contrast for thermal neutrons: boron nitride grinding head and 0.5 mm Gd mask in (a). In (b), the pixel size is 100 µm.

4 Discussion and conclusion

In Fig. 2, after removing the part of the boron nitride grinding head one can get a spectrum of the event density as shown in Fig. 3. There are two well separated peaks corresponding to two different regions: the 0.5 mm Gd blocked part and the unblocked part. Although the 0.5 mm Gd cannot effectively absorb epithermal neutrons, the absorption by the Gd doped MCP is also negligible. Thus in the blocked part it can be considered that only gamma signals and dark counts contribute to the event density. The difference between the two peaks is the net thermal neutron events per pixel in the open area. After comparing this value with the thermal neutron flux (123 n/(cm²•s)), we estimated the detection efficiency to be 33 %. The spatial resolution was derived by fitting the edge (Fig. 4). Resolution of 72 µm RMS was achieved in the central area.
Fig. 3. The modified grey scale spectrum. This spectrum stands for the event density distribution after removing the grinding head. μ_A and μ_B are the fitted average events per pixel in the blocked and unblocked parts respectively.

The efficiency is higher than the measured result of the Gd doped MCP by NOVA [13]. Although the value of 33% is still much lower than the model-predicted 50% for ^{10}B doped MCP [14], the efficiency can be further enhanced by increasing the thickness or using smaller channel diameter or both. According to our theoretical model, the efficiency for 25.3 meV neutrons can be increased to 62% (5 μm channel diameter and 1 mm thickness) [15].

The spatial resolution is mainly limited by the WSA. In our previous tests, the spatial resolution for 10 kVp X-ray remained the same level. The intrinsic event centroiding uncertainty is due to the electron transport process in the MCP. According to the Monte Carlo simulation of such process, the uncertainty is 13 μm RMS for 71.9 keV electrons. Large area Gd doped MCP (10 cm diameter) is now being developed. A 2-D delay line system will be used as its readout. Both the spatial resolution and the imaging area can be greatly improved.

Fig. 4. The derived spatial resolution. In (a), the length of each grid is 3 pixels. The edge within the white box was fitted using error function. The number of events in (b) is the sum of 6 adjacent rows within one column. This was done to suppress the statistics fluctuation at the expense of spatial resolution loss. The RMS of the derivative (Gaussian function) is 72 μm.

The imaging result also testifies that the event-counting detector based on doped MCP is able to work with a low flux and high gamma content neutron beam. It is useful for in situ thermal neutron imaging where only mobile sources of relatively low performance are available.

In conclusion the first event-counting imaging test of our Gd doped MCP detector was successful. Detection efficiency as high as 33% for thermal neutrons was achieved using only one single 0.6 mm thick doped MCP. The spatial resolution of 72 μm RMS
is limited by the WSA and can be greatly enhanced.

References

1 G. W. Fraser, J. F. Pearson. Nucl. Instr. and Meth. A, 1990, 293: 569-574
2 O. H. Siegmund, J. V. Vallerga, A. S. Tremsin et al. Nucl. Instr. and Meth. A, 2007, 576: 178-182
3 A. S. Tremsin, J. V. Vallerga, J. B. Mcphate et al. Nucl. Instr. and Meth. A, 2008, 592: 374-384
4 A. S. Tremsin, J. B. Mcphate, J. V. Vallerga et al. Nucl. Instr. and Meth. A, 2009, 604: 140-143
5 A. S. Tremsin, J. B. Mcphate, J. V. Vallerga et al. Nucl. Instr. and Meth. A, 2008, 592: 374-384
6 O. H. Siegmund, J. V. Vallerga, A. S. Tremsin et al. IEEE Trans. Nucl. Sci., 2009, 56: 1203-1209
7 A. S. Tremsin. Neutron News, 2012, 23: 35-38
8 TIAN Yang, LU Nian-Hua, YANG Yi-Gang et al. Realization of Neutron Sensitive MCP with ALD Technique. IEEE Nuclear Science Symposium. 2011. NP1. M-11 196-198
9 PAN Jing-Sheng, YANG Yi-Gang, TIAN Yang et al. J. Instrum., 2013, 8: P01015
10 C. Martin, P. Jelinsky, M. Lampton et al. Rev. Sci. Instrum., 1981, 52: 1067-1074
11 P. Chiro, P. Bach, E. Lehmann. Neutron Radiography Activity in the European Program Cost 524: Neutron Imaging Techniques. Proc. of the 16th Conference on Application of Accelerators in Research and Industry. 2001. CP576 1103
12 M. Balasko, A. Kub, A. Tanacs. Comparison Radiography and Tomography Possibilities of FRM-II (20MW) and Budapest (10MW) Research Reactor. Proc. of the 8 World Conference on Neutron Radiography. 2006. Facilities and Instrumentation
13 O. H. Siegmund, J. V. Vallerga, A. Martin et al. Nucl. Instr. and Meth. A, 2007, 579: 188-191
14 A. S. Tremsin, W. B. Feller, R. G. Downing. Nucl. Instr. and Meth. A, 2005, 539: 278-311
15 TIAN Yang. Event Counting Thermal Neutron Imaging Based on Neutron Sensitive Micro Channel Plate (Ph. D. Thesis). Beijing: Tsinghua University, 2012(in Chinese)