AUTOIMUNE COMPONENT IN THE DEVELOPMENT OF CELEBROVASCULAR INSUFFICIENCY IN CHILDREN WITH BRONCHIAL ASTHMA

Chernusky Viacheslav, Popov Mykola, Letyago Hanna, Govalenkova Olha, Tolmacheva Svitlana, Ognivenko Olena

Mail for correspondence: annalet@ukr.net

Summary: Bronchial asthma (BA) remains one of the most serious diseases of our time. A number of studies have shown that this disease in a number of cases, especially with the threat of termination of pregnancy, acute and chronic diseases of mothers, accompanied by fetal hypoxia, originates in the ante- and postnatal period. In general, taking into account the peculiarities of the cellular tissue organization of the brain and cerebrovascular blood supply, prolonged hypoxic lesions increase the activity of the hypothalamic-diencephalic structures and the cerebral cortex. The existing respiratory disorders lead to hemodynamic and metabolic disorders of cerebral structures, emotional sphere and autonomic regulation. However, this issue in childhood requires further study. The aim is to study autoimmune processes in the pathogenesis of cerebrovascular insufficiency in children with BA. Materials and methods. We examined 121 patients with asthma aged 5 to 15 years in the period of exacerbation. To study the role of the autoimmune component in the development of cerebrovascular insufficiency and its relationship with the autoimmune process in the bronchopulmonary system in AD in children, we used a method for the quantitative determination of autoantibodies to lipopolysaccharide antigens (LA) of cerebral vessels and topographic structures of the brain, as well as to homologous LA bronchi and lung tissue. The results of the studies have shown that the first signs of cerebral hemodynamic disturbance are recorded already in patients with mild disease and are aggravated depending on the severity of BA. Conclusions. The most characteristic changes are an increase in the tone of small and medium vessels and impaired cerebral venous circulation. It was also found that the levels of autoantibodies to lipopolysaccharide antigens of cerebral vessels and cellular tissue structures of the brain correlate with an increase in the level of autoantibodies to lipopolysaccharide antigens of the trachea, bronchi and lung tissue and reflect the severity of AD in children.

Key words: cerebrovascular insufficiency, children, bronchial asthma, lipopolysaccharide antigens, autoantibodies

Introduction.

In the last decade, many researchers pay attention to the growth and prevalence of bronchial asthma (BA) in children with an increase in the frequency of severe course and a high probability of secondary complications [3]. The multifactorial and multifaceted mechanisms of BA development in children originate in the ante- and postnatal period. Conflict situations during pregnancy, the threat of termination, acute and chronic diseases accompanied by fetal hypoxia are observed in 70-85% of mothers with BA. Hypoxia leads to dysmetabolic processes in the central nervous system (CNS) and dysregulatory disorders of...
the cortical-subcortical and spinal structures of the brain that regulate the respiratory complex, disrupting neurogenic regulation of bronchial smooth muscle tone and damaging the ciliated epithelium [1, 3, 4, 10].

This leads to increasing permeability of bronchi mucous membranes for allergens, development of sensitization, hyperreactivity of the bronchi, transient dysfunction of the immune system, changing the Th1 / Th2 ratio with an increase in the Th2 cytokine profile and development of an immune response for hypersensitivity of the immediate and delayed type [2, 3, 8, 11].

Taking into account peculiarities of the cellular tissue organization of the brain and cerebrovascular blood supply, prolonged hypoxic lesions of the central nervous system, especially in children with moderate and severe BA, increase the activity of hypothalamic-diencephalic structures and cerebral cortex. Respiratory disorders in BA lead to hemodynamic and metabolic disorders of the cerebral structures, emotional sphere and autonomic regulation. Clinically, this is manifested by psychoemotional, neurotic disorders, accompanied by complaints of increased fatigue, irritability, emotional lability, sleep disturbances, memory disorders, low efficiency, headaches. Dependence of the nature and severity of mental disorders on the severity and duration of BA is noted in children [6, 8, 12].

The pathogenetic characteristics of BA are determined by the productive type of recurrent inflammatory response, manifested by activation and unregulated proliferation of the interstitial connective stroma elements of the bronchopulmonary structures. Therefore, the main spectrum of immunological and immunopathological reactions in BA in children has a clear antigenic dependence on the inflammatory activated interstitial stroma of the bronchopulmonary system as well as on the effect of autoantibodies on cerebral vessels and cellular tissue structures of the brain, predetermining the development of cerebrovascular insufficiency in this contingent of children [2, 7].

In this regard, it is necessary to further study the pathogenetic aspects of BA in children as well as the influence of the autoimmune component in the development of cerebrovascular insufficiency with different severity of BA. Lack of information systematization on cerebrovascular insufficiency and mechanisms of its realization in children with BA in the available literature makes these studies the most relevant.

The aim of this work is to study the autoimmune component in the development of cerebrovascular insufficiency in children with BA.

Material and methods of research

An immunological study of blood serum was carried out in 121 children with BA at the age of 5 to 15 years in the period of the disease exacerbation.

At the present stage we have formed groups, depending on the severity of the disease course: with a mild course - 45 children, with moderate - 39 and severe - 37 children, in accordance with the main provisions of the International Consensus and the report of the National Institute of Heart, Lung, Blood (USA) together with the WHO - Global Initiative For Asthma ("GINA-2013"). The comparison group consisted of 25 healthy children. All children under study were randomized by sex, age, severity of the disease. The study used lipopolysaccharide antigens from homologous cells of cerebral vessels, cellular tissue structures of the brain, trachea, bronchi, lung tissue obtained from sectional images from accidentally died children with I (0) blood group 2-4 hours from the moment of death according to V. D. Yakovenko et al. [5]

In accordance with the methodology the tested antigens had a chemical composition, represented by components of mainly lipopolysaccharides. There were no proteins in the antigenic preparations; peptides were detected only in the form of traces.

To elucidate the immunopathological role of the autoimmune component in the development of cerebrovascular insufficiency and its relationship with the autoimmune process in the bronchopulmonary system in BA in children,
we used the method of quantitative determination of autoantibodies to lipopolysaccharide antigens of cerebral vessels and topographic structures of the brain, as well as to homologous lipopolysaccharide bronchi and lung tissue in the Wanier nephelometric reaction modified by V.V. Kvirikadze et al. [5].

The state of the cerebral blood circulation in children with BA was studied and angiocerebral disorders were assessed, using rheoencephalography, which allows to characterize the elastic properties of cerebral vessels, and radiocirculoencephalography, which gives the most complete picture of the state of cerebral blood flow.

Rheoencephalography (REG) was recorded on a 4-channel rheograph connected to a 4-channel VNIMIO electroencephalograph (type 4-M). REG was recorded in the frontomastoidal and occipitomastoidal abductions, characterizing the state of the cerebral blood flow in the carotid and vertebrobasilar vascular basins. [5].

The data of radiocirculoencephalography (RCEG) were recorded on a three-channel radiograph "Gamma" (Hungary) using hippuran J-131 as a radioactive indicator. Cerebral blood flow was investigated and evaluated in all areas of the hemispheres. The quantitative analysis of the RCEG-indicator was based on the data of its first derivative, which allows one to judge the state of the arterial, capillary and venous phases of cerebral blood flow.

The obtained data were processed statistically by the method of variation series according to the Student's t-test at (p<0,05).

Results and its discussion
The results of the studies have shown that the examined children with BA have an autoimmune control of the lipopolysaccharide antigens of the cerebral vessels and the corresponding parts of the brain, increasing dependence on the disease severity (Table 1).

In the group of children with mild asthma, the level of autoantibodies to lipopolysaccharide antigens of the thoracic aorta, common and internal carotid arteries, hemolysate was found at weakly positive values, indicating the "trigger" value of autoimmune reactions of the extracerebral great vessels in the formation of cerebrovascular insufficiency. In the group of children with mild BA, the autoimmune control of lipopolysaccharide antigens of cerebral vessels is observed at weakly positive values of common carotid, internal carotid, basilar and anterior cerebral arteries; veins: basilar, common basilar; cerebral cortex: frontal, temporal, parietal. The rest of the cerebral vessels and veins did not fall under the autoimmune control of the body (Table 1).

There is also autoimmune control for children with mild BA at the level of weakly positive values for the cellular tissue structures of the frontal, parietal cortex, as well as the basal ganglia, pons varoli. Weakly positive values of the level of autoantibodies to lipopolysaccharide antigens of cerebral vessels and cellular tissue structures of the brain in children with mild asthma make it possible to predict these changes as reversible in the cerebrovascular insufficiency development (Table 1). In groups of children with moderate and especially severe BA, there was an increase in the level of autoantibodies to positive values lipopolysaccharide antigens of cerebral vessels and brain regions located in the zone of their vascularization. It should be noted that the pathological changes in the cerebral vessels and the corresponding areas of the brain are not equal. Lipopolysaccharide antigens of the basilar, anterior cerebral, middle and posterior cerebral arteries; veins: basilar and general basilar, as well as to the cellular tissue structures of the temporal, parietal and occipital cortex, as well as to the cellular tissue structures of the basal ganglia and the pons varoli are under autoimmune control most often (Table 1).
Table 1. Quantitative determination of autoantibodies to homologous lipopolysaccharide antigens of cerebral vessels and cellular tissue structures of the brain in children with BA in the period of exacerbation

(M ± m), conv. Units

Vascular and tissue antigens	BA Severity	Healthy children (control group) n = 25
	Light n = 45	Moderate severity n = 39
	Severe n = 37	
Aorta:		
Chest		
abdominal		
Arteries:		
Common carotid	0.124±0.021*	0.146±0.025*
	Eₙ=0.16	Eₙ=0.18
	0.164±0.029*	Eₙ=0.23
External carotid	0.057±0.009	0.085±0.014*
	Eₙ=0.17	Eₙ=0.23
	0.116±0.021*	Eₙ=0.24
Internal carotid	0.123±0.018*	0.133±0.021*
	Eₙ=0.17	Eₙ=0.23
	0.161±0.021*	Eₙ=0.26
Basilar	0.125±0.020*	0.162±0.028*
	Eₙ=0.23	Eₙ=0.28
	0.288±0.045*	Eₙ=0.32
anterior cerebral	0.127±0.024*	0.148±0.029*
	Eₙ=0.25	Eₙ=0.22
	0.269±0.048*	Eₙ=0.21
middle cerebral	0.126±0.017*	0.136±0.023*
	Eₙ=0.16	Eₙ=0.19
	0.273±0.036*	Eₙ=0.23
posterior cerebral	0.125±0.022*	0.162±0.032*
	Eₙ=0.21	Eₙ=0.27
	0.187±0.029*	Eₙ=0.25
Veins:		
basilar	0.124±0.023*	0.169±0.032*
	Eₙ=0.24	Eₙ=0.31
	0.285±0.047*	Eₙ=0.27
common basilar	0.125±0.021*	0.152±0.029*
	Eₙ=0.22	Eₙ=0.31
	0.224±0.038*	Eₙ=0.25
Superior vena cava	0.076±0.013	0.094±0.016*
	Eₙ=0.19	Eₙ=0.21
	0.128±0.022*	Eₙ=0.29
Cortex:		
frontal	0.123±0.021*	0.147±0.027*
	Eₙ=0.24	Eₙ=0.26
	0.169±0.033*	Eₙ=0.27
temporal	0.079±0.015	0.102±0.018*
	Eₙ=0.19	Eₙ=0.21
	0.119±0.021*	Eₙ=0.23
parietal	0.124±0.023*	0.157±0.029*
	Eₙ=0.22	Eₙ=0.18
	0.237±0.045*	Eₙ=0.24
occipital	0.073±0.011	0.096±0.017*
	Eₙ=0.16	Eₙ=0.19
	0.175±0.034*	Eₙ=0.20

1	2	3	4	5
Aorta: Chest	0.125±0.013*	0.142±0.024*	0.189±0.028*	0.023±0.004
abdominal	0.068±0.12	0.097±0.015*	0.118±0.021*	0.026±0.006
Arteries:	0.124±0.021*	0.146±0.025*	0.164±0.029*	0.019±0.003
External carotid	0.057±0.009	0.085±0.014*	0.116±0.021*	0.020±0.004
Internal carotid	0.123±0.018*	0.133±0.021*	0.161±0.021*	0.024±0.003
Basilar	0.125±0.020*	0.162±0.028*	0.288±0.045*	0.033±0.007
anterior cerebral	0.127±0.024*	0.148±0.029*	0.269±0.048*	0.029±0.005
middle cerebral	0.126±0.017*	0.136±0.023*	0.273±0.036*	0.024±0.003
posterior cerebral	0.125±0.022*	0.162±0.032*	0.187±0.029*	0.031±0.006
Veins:	0.124±0.023*	0.169±0.032*	0.285±0.047*	0.036±0.007
common basilar	0.125±0.021*	0.152±0.029*	0.224±0.038*	0.028±0.004
Superior vena cava	0.076±0.013	0.094±0.016*	0.128±0.022*	0.034±0.006
Cortex:	0.123±0.021*	0.147±0.027*	0.169±0.033*	0.023±0.004
temporal	0.079±0.015	0.102±0.018	0.119±0.021*	0.026±0.006
parietal	0.124±0.023*	0.157±0.029*	0.237±0.045*	0.028±0.005
occipital	0.073±0.011	0.096±0.017	0.175±0.034*	0.032±0.006
Actual problems of modern medicine. Issue 7, 2021

Brain tissue structures:	1	2	3	4	5
large hemispheres	0,076±0,013	0,098±0,015*	0,156±0,032*	0,029±0,005	
Basal ganglia	0,123±0,025*	0,148±0,026*	0,184±0,033*	0,025±0,006	
Hypothalamus	0,078±0,014	0,111±0,017*	0,121±0,021*	0,027±0,004	
Pons Varolii	0,124±0,023*	0,135±0,025*	0,169±0,032*	0,031±0,005	
Medulla	0,059±0,007	0,109±0,014*	0,121±0,021*	0,024±0,003	
Cerebellum	0,065±0,012	0,084±0,018*	0,119±0,021*	0,033±0,007	
Hemolysate	0,154±0,023*	0,267±0,043*	0,384±0,056*	0,042±0,008	

Note:
1. Negative reaction in the values of Q =0,0004-0,1236;
 slightly positive reaction in the values of Q = 0,1237-0,1633;
 positive reaction in the values of Q = 0,1634-0,6411;
 sharply positive reaction in the values of Q = 0,6412-1,4248;
2. * - significant differences in indicators from the group of healthy children (p<0,05);
3. ∧ - significant differences in indicators from the group of children with mild BA (p<0,05);
4. Ex – indicator of the sample distribution normality (Ex=0).

Thus, the results of the immunological studies have shown that one of the leading links in the pathogenesis of cerebrovascular insufficiency is the increased autoimmune control of cerebral vessels and tissue structures of the brain, accompanied by a complex of clinical symptoms, aggravating the severity of the course of the disease. The presence of autoaggression against cerebral vessels and brain tissue indicates the development of cerebral vasculitis, which leads to cerebral circulatory disorders and the development of these clinical symptoms [9].

The state of blood circulation and the elastic properties of the cerebral vessels were studied using rheoencephalography (REG). During the REG study, it has been found that changes in cerebral hemodynamics in the vertebrobasilar and carotid basins are unidirectional, therefore, the REG in the frontomastoidal and occipitomastoidal abductions was characterized simultaneously.

Analysis of the REG data shows an increase in the tone of the vascular wall of arterial vessels of small and medium calibers, as evidenced by the lengthening of the anacrotic REG phase, an increase in the REG wave propagation velocity, an increase in the dicrotic index, and a change in the tonic tension of the arterial vessels of the brain. Signs of cerebral venous outflow obstruction of blood were also identified: presystolic waves, two-stage anacrot, appearance of an additional wave at the end of the descending frequency of the REG curve.

When analyzing the data, the RCEG revealed three types of changes in cerebral hemodynamics in the examined patients. The first type is the closest to the norm. Evaluation of the temporal parameters of the curves showed some shifts towards an increase in the duration of all phases of cerebral blood flow. In the second type of cerebrovascular disorders, more pronounced changes in
cerebral blood flow were observed. Against the background of an increase in the total time of cerebral hemodynamics, a differentiated duration lengthening of the capillary phase was noted, indicating predominant changes in the microcirculation system. The third type of cerebral blood flow disorders was characterized by further deterioration in the state of cerebral hemodynamics. A significant increase in the duration of the venous phase was revealed along with the lengthening of the arterial and capillary phases.

Analysis of the study results shows that the severity of cerebrovascular disorders in children with BA depends on the severity of the disease and the increase in the level of autoantibodies to lipopolysaccharide antigens of cerebral vessels and cellular tissue structures of the brain.

In 65% of patients with mild asthma, there was an increase in the tone of arterial vessels, mainly of medium and small caliber. Signs of decreased vascular tone were noted in 10% of cases. Normal REG was registered in 25% of patients in this clinical group. The first and second types of RCEG were the most typical for children with a mild course of the disease.

An increase in the tone of small-caliber arterial vessels and a decrease in the duration of the catacrotic phase of REG were noted in 84.95% of cases in children with moderate bronchial asthma as compared with the group with mild BA. In addition, difficulties in cerebral venous outflow of blood were identified in 15.05% of cases. In this group the second and third types of RCEG dominated.

The REG study of patients with severe BA revealed the highest severity of cerebral hemodynamic disorders. A further increase in the tonic tension of small-caliber arterial vessels, a decrease in the duration of the catacrotic phase of REG were noted in children of this group as compared with the group of patients with a moderate course, and the most pronounced signs of obstruction of venous outflow were revealed. This group was dominated by the third type of RCEH. It should be noted that in most cases, changes in the vertebrobasilar vascular system prevailed. These data correlate with an increase in the level of autoantibodies to lipopolysaccharide antigens of the basilar artery and veins: basilar and common basilar (Table 1).

The results of the studies have shown that the first signs of cerebral hemodynamic disturbance are recorded already in patients with a mild course of the disease and are aggravated depending on the severity of the course of bronchial asthma. The most characteristic rheoencephalographic changes in BA in children are an increase in the tone of small and medium vessels and impaired cerebral venous circulation. Assessment of the RCEG data, which allows to trace individual phases of cerebral blood flow, also revealed predominant changes in the microcirculation system and insufficient vascularization of cerebral structures with obstruction of venous outflow. This also correlates with the level of autoimmune reactions to lipopolysaccharide antigens of the basilar, common basilar and superior vena cava.

The leading role in the BA pathogenesis in children belongs to autoimmune reactions in the cellular tissue structures of the bronchopulmonary system. Tissue antigens, which are lipopolysaccharides of the cytoplasmic membranes of the cellular structures of the trachea, bronchi and lung tissue, by chemical composition, were used in their detection. Their antigenic composition includes collagen II and V types presented in cerebral vessels and cellular tissue structures of the brain.

Autoimmune reactions in the cellular tissue structures of the bronchopulmonary system lead to their cytolysis and the release of lysosomal enzymes, which, affecting the structures of type III and V collagen, open the determinants of collagen Ⅲ-chains, and it acquires greater antigenicity. Autoimmune control of the cellular tissue structures of the bronchopulmonary system in children with BA leads to the development of autoimmune reactions in the cerebrovascular vessels and cellular tissue structures of the brain.

A rank correlation analysis was carried out to prove that there is a direct connection between autoimmune reactions to antigens of lipopolysaccharides of cellular tissue structures of the bronchopulmonary system.
and lipopolysaccharide antigens of cerebral vessels and brain structures.

The first rank sample represented the degree of deviation from the standard (t-test) of the titer of autoantibodies to lipopolysaccharide antigens of the trachea, bronchi and lung tissue in patients of the three study groups. Thus, in children with mild BA, the level of autoantibodies to tracheal lipopolysaccharide antigens ranged from 0.065-0.0116 conventional units; to bronchial antigens from 0.097-0.123 conventional units; lung tissue - 0.226-0.244 conventional units. In children with moderate BA, the level of autoantibodies to tracheal lipopolysaccharide antigens ranged from 0.114-0.133 conventional units; to bronchial antigens from 0.224-0.308 conventional units; lung tissue - 0.264-0.311 conventional units. In children with severe BA, the level of autoantibodies to tracheal lipopolysaccharide antigens ranged from 0.134-0.272 conventional units; to bronchial antigens from 0.258-0.325 conventional units; lung tissue - 0.303-0.339 conventional units. The second sample represented the level of autoantibodies to lipopolysaccharide antigens of cerebral vessels and cellular tissue structures of the brain in children of the studied groups. After ranking the values of the t-criterion in each sample a rank correlation was carried out. As a result, it has been found that there is a direct reliable relationship between the two autoimmune processes. The rank correlation coefficient had the values Ps = 0.67 (p<0.05).

Thus, the results of the studies have shown that in the pathogenesis of cerebrovascular insufficiency in children with BA there is an autoimmune control of cerebral vessels and cellular tissue structures of the brain, the severity of which depends on the severity of the course of the disease.

Conclusions
1. An immune diagnostic has been developed, which includes determination of autoantibodies to homologous lipopolysaccharide antigens of cerebral vessels and cellular tissue structures of the brain. This allows to diagnose the degree of cerebrovascular insufficiency in children with BA with high accuracy.

2. Indicators of autoantibodies level to lipopolysaccharide antigens of arteries, venous vessels and cellular tissue structures of the brain, makes it possible to detect lesions of blood vessels and tissue areas of the brain in cerebrovascular insufficiency in children with BA.

3. Levels of autoantibodies to lipopolysaccharide antigens of cerebral vessels and cellular tissue structures of the brain correlate with an increase in the level of autoantibodies to lipopolysaccharide antigens of the trachea, bronchi and lung tissue and reflect the severity of BA in children.

4. It is necessary to differentially include immunomodulatory drugs and correctors of hemodynamic disorders in the complex protocol of BA therapy in children to correct autoimmune reactions of cerebral vessels and cellular tissue structures of the brain.

Prospects for further research
The research is promising for improving immunological diagnostics, development and production of tissue antigens and their use in diagnostics of secondary complications and developing new approaches to pathogenetic therapy of the disease.

References
1. Maydannik VG, Besh LV, Koloskova OK, Smlyan Ol. Bronhialna astma u dItey: novI klInIchnI rekomendatsIYi. MIzhnar. zhurn. pedIatrIYi, akusherstva ta gInekologIYi. 2018;12 (1):28-42. http://ijpog.org/downloads/30/Oglad1.pdf
2. Feshchenko YuI, Iashyna LO, Boiko DM, Gavrysiuk VK, Krakhmalova LI, Mostovoy YuM, Pertseva TO, Polianska MO, Rekalova OM., Ostrovsky MM, Zaikov SV, Konopkina LI, Konstantinovich TV. Adapted evidence-based clinical guidelines: bronchial asthma (Part 1). Asthma and allergy. 2020; 2:5-26. DOI: 10.31655/2307-3373-2020-2-5-26.
3. Chernuskiy VG. Govalenkova OL. Letyago AV. Evdokimova OL. Konseptsiya razvitiya immunopatologicheskikh mekhanizmov pri bronkhialnoy astme u detey. Meditsina sogodnі і zavtra. 2015;1(66): 56-61. http://nbuv.gov.ua/UJRN/Msiz_2015_1_13
4. Chernuskyi V, Popov M, Hovalenkovа O, Letiaho H, Evodkymova T, Tolmачова S Popova A. Autoimmune reactions in the bronchial asthma in children induced heterophile antigenes of microorganism of bronchopulmants. The Journal of V. N. Karazin Kharkiv
ЗНАЧЕННЯ АВТОІМУННИХ ПОРУШЕНЬ У ФОРУМУВАННІ ЦЕРЕБРОВАСКУЛЯРНОЇ НЕДОСТАТНІСТІ У ДІТЕЙ ПРИ БРОНХІАЛЬНІЙ АСТМІ

Чернуський В. Г., Попов М. М., Летячо А. В., Говалаенкова О. Л., Толмачова С. Р., Огнівенко О. В.

Пошта для листування: annalet@ukr.net

Резюме: Бронхіальна астма (БА) залишається одним з виразних захворювань сучасності. У ряді досліджень показано, що дане захворювання в ряді випадків, особливо в разі зростання вагітних, що супроводжуються гіпоксією плода бере свій початок у перші тижні вагітності. Однак, дане питання в дитячому віці вимагає подальшого вивчення.

Мета: вивчення ролі автоімунного компонента у формуванні цереброваскулярної недостатності у дітей, хворих на бронхіальну астму.

Матеріал та методи. Обстежено 121 пацієнт з БА у віці від 5 до 15 років в період загострення. Для вивчення ролі автоімунного компонента в патогенезі цереброваскулярної недостатності у дітей, хворих на бронхіальну астму, використовувався метод кількісного визначення аутоантитіл до ліпополісахаридних антигенів (ЛА) церебральних судин.

Результати: проведені дослідження показали, що перші ознаки порушення церебральної гемодинаміки реєструються вже у хворих з легким перебігом захворювання та поглиблюються в залежності від ступеня тяжкості перебігу БА.

Ключові слова: цереброваскулярна недостатність, діти, бронхіальна астма, ліпополісахаридні антигени, аутоантитіла
ЗНАЧЕНИЕ АУТОИММУННЫХ НАРУШЕНИЙ В ФОРМИРОВАНИИ ЦЕРЕБРОВАСКУЛЯРНОЙ НЕДОСТАТОЧНОСТИ У ДЕТЕЙ ПРИ БРОНХИАЛЬНОЙ АСТМЕ

Чернуский В. Г., Попов Н. Н., Летяго А. В., Говаленкова О. Л., Толмачева С. Р., Огнивенко Е. В.

Пошла для листування: annalet@ukr.net

Резюме. Бронхиальная астма (БА) остается одним из тяжелых заболеваний современности. В ряде исследований показано, что данное заболевание в ряде случаев, особенно при угрозе прерывания беременности, острых и хронических заболеваниях матерей, сопровождающихся гипоксией плода берет свое начало еще в антентен- и постнатальном периоде. В целом, учитывая особенности клеточно-тканевой организации мозга и цереброплевматового кровоснабжения длительные гипоксические поражения усиливают активность гипоталамо-диэнцефальных структур и коры головного мозга. Имеющиеся дыхательные расстройства приводят к гемодинамическим и метаболическим нарушениям церебральных структур, эмоциональной сфере и вегетативной регуляции. Однако, данный вопрос в детском возрасте требует дальнейшего изучения. Цель — изучение аутоиммунных процессов в патогенезе цереброплевматовой недостаточности у детей, больных БА. Материалы и методы. Обследован 121 пациент с БА в возрасте от 5 до 15 лет в периоде обострения. Для изучения роли аутоиммунного компонента в развитии цереброплевматовой недостаточности и связи его с аутоиммунным процессом в бронхолегочной системе при БА у детей, использовался метод количественного определения аутоантигент к липополисахаридным антителом (ЛА) церебральных сосудов и топографических структур головного мозга, а также к гомологичным ЛА трахеи, бронхов и легочной ткани. Результаты проведенных исследований показали, что первые признаки нарушения церебральной гемодинамики регистрируются уже у больных с легким течением заболевания и усугубляются в зависимости от степени тяжести течения БА. Выводы. Наиболее характерными изменениями являются повышение тонаusa мелких и средних сосудов и нарушение венозного мозгового кровообращения. Также установлено, что уровни аутоантигент к липополисахаридным антителам церебральных сосудов и клеточно-тканевых структур головного мозга коррелируют с нарастанием уровня аутоантигента к липополисахаридным антителам трахеи, бронхов и легочной ткани и отражают тяжесть течения БА у детей.

Ключевые слова: цереброплевматальная недостаточность, дети, бронхиальная астма, липополисахаридные антитела, аутоантиген

Информация об авторах

Чернуский Вячеслав Григорьевич, д. мед. н., проф., Харьковский национальный университет имени В. Н. Каразина, медицинский факультет, пр-т Юбилейный, 52А, Харьков, Украина, 61153 e-mail: pediatrics@karazin.ua https://orcid.org/0000-0001-5657-9486
Летяго Анна Владимировна, к. мед. н., доц., Харьковский национальный университет имени В. Н. Каразина, медицинский факультет, пл. Свободы, 6, Харьков, Ukraine, 61022 e-mail: mykola.m.popov@karazin.ua https://orcid.org/0000-0002-5759-9654
Говаленкова Ольга Львовна, к. мед. н., доц., Харьковский национальный университет имени В. Н. Каразина, медицинский факультет, пр-т Юбилейный, 52А, Харьков, Украина, 61153 e-mail: govalenkova@ukr.net https://orcid.org/0000-0002-6403-7625
Толмачева Светлана Рафильовна, к. мед. н., доц., Харьковский национальный университет имени В. Н. Каразина, медицинский факультет, пр-т Юбилейный, 52А, Харьков, Украина, e-mail: tolmachevast@gmail.com https://orcid.org/0000-0001-6074-4114
Огнивенко Елена Владимировна, к. мед. н., доц., Харьковский национальный университет имени В. Н. Каразина, медицинский факультет, площадь Свободы, 6, Харьков, Украина, 61022 e-mail: oksia@karazin.ua https://orcid.org/0000-0003-3936-0305

Conflicts of interest: author has no conflict of interest to declare.
Конфлікт інтересів: відсутній.
Конфликт интересов: отсутствует.