New observations in the fragile X-associated tremor/ataxia syndrome (FXTAS) phenotype

Avram Fraint1*, Padmaja Vittal1, Aimee Szewka1, Bryan Bernard1, Elizabeth Berry-Kravis2 and Deborah A. Hall1

1 Department of Neurological Sciences, Rush University, Chicago, IL, USA
2 Department of Pediatrics, Neurological Sciences and Biochemistry, Rush University, Chicago, IL, USA

INTRODUCTION

Fragile X-associated tremor/ataxia syndrome (FXTAS) is caused by expansion in the trinucleotide CGG repeat in the promoter region of the fragile X mental retardation 1 (FMR1) gene. Classical clinical manifestations include kinetic tremor, cerebellar ataxia, cognitive decline, psychiatric problems, and parkinsonism (Jacquemont et al., 2003, 2004; Berry-Kravis et al., 2007a). Other features include peripheral neuropathy (Berry-Kravis et al., 2007b), impotence and autonomic dysfunction (including bowel and/or bladder dysfunction and erectile dysfunction) (Louis et al., 2006; Leehey, 2009). Cognitive decline manifests as a frontal subcortical dementia, with memory loss and executive function deficits and often lack of insight into these deficits (Grigsby et al., 2007). Psychiatric effects of FXTAS include anxiety, mood lability, apathy, and social phobias (Bourgeois et al., 2006). It is most frequently seen in individuals over the age of fifty who carry between 55 and 200 CGG repeats, also known as the “premutation.” Fragile X syndrome (FXS), the most common inherited form of intellectual disability, results from the presence of more than 200 CGG repeats and is characterized by intellectual disability, autism, attention deficit disorder, and often seizures.

FXTAS has distinct features on magnetic resonance imaging (MRI), including severe generalized atrophy, cerebellar atrophy, and sub-cortical and/or ponto-cerebellar white matter lesions (Greco et al., 2006). About 60% of males with FXTAS have what is known as the “MCP sign,” or T2 hyperintensity in the middle cerebellar peduncle (Adams et al., 2007). Hyperintensities in the splenium of the corpus callosum on MRI may also be seen (Aparits et al., 2012).

Purpose: Fragile X-associated tremor/ataxia syndrome (FXTAS) was originally defined as tremor, ataxia, cognitive decline, and parkinsonism in individuals who carry between 55 and 200 CGG repeats in the promoter region of the fragile X mental retardation 1 (FMR1) gene. This paper describes a series of patients who meet the definition of FXTAS who presented for care between 2009 and 2014.

Methods/Results: Retrospective chart review of patients seen in the FXTAS clinic at Rush University in Chicago.

Conclusions: Patients with FXTAS may present with a progressive supranuclear palsy-like phenotype and other eye movement abnormalities are common in these patients as well. Rapid worsening of gait abnormalities in FXTAS may be due to a secondary spinal issue and should be aggressively treated to regain function. Finally, the FXTAS Rating Scale score does not reliably inform the certainty of diagnosis or CGG repeat size in these patients.

Keywords: FXTAS, FMR1, FXS, CGG, premutation

The estimated prevalence of the FMR1 premutation is between 1/151 and 1/209 in women and 1/430—1/468 in men (Seltzer et al., 2012; Tassone et al., 2012b). Since its initial description, more women with FXTAS are being identified. Some medical comorbidities may be more common in premutation carrier women, including thyroid disease, hypertension, seizures, and fibromyalgia (Coffey et al., 2008; Leehey et al., 2011). The purpose of this project is to demonstrate the heterogeneity in patients presenting for clinical care of FXTAS.

BACKGROUND

Thirty patients with FXTAS were seen between 2009 and 2014 for clinical care in the FXTAS Clinic. Nineteen cases with complete clinical information were summarized for this study. Their clinical characteristics are described in Table 1. FXTAS Motor Rating Scale scores are listed in the table and encompass the major movement disorder signs seen in FXTAS: tremor, ataxia, and parkinsonism. This rating scale was developed in 2008. It is a combination of the Clinical Rating Scale for Tremor (CRST), the International Cooperative Ataxia Rating Scale (ICARS) and the Unified Parkinson’s Disease Rating Scale (UPDRS). It also includes a tandem test for cerebellar gait ataxia (Leehey et al., 2008). Four cases illustrative of the series have been included.

CASE 7

A 70 year-old man with history of myeloproliferative disorder presented with 3 years of balance problems and falls. He felt he was veering to one side when he was walking. He denied...
Case	Age	Sex	FMR1 premutation size	Diagnosis of FXTAS	Tremor	Ataxia	Nystagmus or other eye movement abnormality	Neuropathy symptoms or signs	Cognition	Neuropsychiatric rating scale score	MRI	Family history of fragile X disorders	Other features			
1	56	M	150	Definite	Mild	Severe	Saccadic pursuits	Diminished vibration and proprioception in feet	MMSE 11/30, moderate severe dementia	Aggressive behavior	87	White matter hyperintensities, moderate diffuse volume loss, left frontal mass	Grandson and grandnephew with FXS	Metastatic brain cancer		
2	75	M	124	Definite	Severe	Mild	No vertical OKN, lateral endgaze nystagmus, decreased lateral OKN	Decreased vibration in feet	18/30 MMSE, Depression	Apathy, withdrawn socially	73	Two nieces with FXS	Monoclonal Gammopathy of Unknown Significance			
3	62	F	23, 120	Possible	No	Mild	Horizontal endgaze nystagmus	No	23/30 MMSE, deficit in encoding new information	Depression	7	Mild cerebral volume loss, scattered white matter changes	Daughter FXS	Severe fibromyalgia		
4	69	F	26, 91	Definite	Mild	Moderate	Saccadic pursuits	No	MMSE 30/30, Irritability, auditory hallucinations, anxiety, depression	Poor insight	75	Mild cerebellar vermal volume loss, MCP sign	Grandson with FXS	Alcoholism, transient global amnesia		
5	72	M	105	Probable	Mild	Mild	No	23/30 MOCA, deficits in executive function and recent memory	47	Depression, anger, apathy	Cerebral and cerebellar volume loss	Non-epileptic spells				
6	46	F	20, 102	Possible	Mild	Mild	Lateral endgaze nystagmus, saccadic saccades	Decreased vibration in feet	MMSE 30/30	Mild depression	Cerebral volume loss, hyperintensity in cerebral peduncles, MCP sign	Sister, grandson, granddaughter with FXS, Mother with FXPOI	Myelodysplastic disorder, spinal cord mass			
7	71	M	99	Definite	Moderate	Moderate	Dysmetric saccades	Vibratory loss in feet and temperature loss in limbs	24/30 MMSE, deficits in attention, executive function, recent memory	Agitation	51	Brother with intellectual disability, autism	Impotence, urinary issues			
8	70	M	99	Definite	Moderate	Moderate	Saccadic pursuits	Decreased vibration in feet	MMSE 24/30, mild, generalized dementia	Depression, anger, apathy	64	Vitiligo, diabetes, IgA deficiency, end stage renal disease				
9	79	F	29, 90	Definite	Mild	Mild	Saccadic pursuit, transient endgaze nystagmus	Decreased temperature, no reflexes	27/30 MMSE, deficit in recent memory, executive function, and language	Psychosis, delusions and visual hallucinations, agitation	47	Cerebral and cerebellar volume loss				

(Continued)
Case	Age	Sex	FMR1 premutation size	Diagnosis of FXTAS	Tremor	Ataxia	Nystagmus or other eye movement abnormality	Neuropathy symptoms or signs	Cognition	Neuropsychiatric FXTAS rating scale score	MRI	Family history of fragile X disorders	Other features	
10	68	M	95	Possible	Mild	Mild	Normal	Length dependent sensory neuropathy	Cognition reported to be normal	No	38	Cerebral and cerebellar volume loss, lesion in cerebral peduncle (CT)	Sister with premature menopause	
11	70	M	91	Definite	Moderate	Mild	Dysmetric saccades	Decreased in stocking distribution	25/30 MMSE, deficits in executive function and recent memory	Disinhibition	72	MCP sign, scattered white matter ds	Niece and nephew with FXS	
12**	75	F	88	Definite	Moderate	Moderate	No vertical OKN, slowed vertical saccades, + square wave jerks	Dec all modalities in feet	MMSE 25/30, deficits in executive function, recent memory, verbal fluency	Depression, apathy	69	Extensive white matter lesions in the pons and periventricular area	Sister with FXPOI, father and cousin with FXTAS	
13	72	M	85	Possible	Mild	Mild	Saccadic smooth pursuit vertically, hypometric vertical saccades, decreased convergence	Distal sensory loss feet, normal EMG/NCV	30/30 MMSE	Anxiety, irritability, subjective memory loss	41	Greater than age appropriate atrophy	Daughter and nephew with FXS, Father with possible FXTAS	
14	76	M	80	Probable	Moderate	Severe	Apraxia of eye movements, saccadic pursuits	Diminished reflexes at patella and ankle	27/30 MMSE, deficit in short-term memory	No	81	Not available	Grandson with FXS	
15	64	F	79	Probable	Mild	Mild	Normal	No	29/30 MMSE, deficit in executive function	Anxiety	27	Moderate volume loss, white matter hyperintensities	Two sons with FXS	Autonomic symptoms, brady-cardiac/tachycardia
16	80	M	75	Definite	Mild	Moderate	Saccadic pursuits	Decreased vibration in feet, absent reflexes at ankle	24/28 MMSE, deficits in attention and recent memory	Irritability	31	MCP sign	Grandnephew has FXS	
17	75	F	74	Definite	Mild	Mild	Overshoot, dysmetria of saccades, slowed vertical saccades with OKN, saccadic pursuits	Decreased reflexes in legs	29/30 MMSE	Irritability, impulsiveness	20	Scattered white matter hyperintensities	Two sons with FXS	
												Stage IV squamous cell lung cancer		

(Continued)
tremors and memory problems. On examination, he scored a 24/30 on the Folstein Mini Mental Status Exam (MMSE) (Folstein et al., 1975) with deficits in attention, recent memory, and executive function. He had dysmetric saccades. Sensory exam was notable for inconsistent vibratory loss in the feet and temperature loss in all extremities. He had mildly increased tone in both arms and mild kinetic tremor when drawing spirals. He had mild bradykinesia bilaterally. He had no evidence of dysmetria. His gait was wide based and ataxic. He was profoundly unstable when standing or walking, with almost immediate falling. He refused to use a walking aid. Brain MRI showed cerebral volume loss, hyperintensity in the cerebral peduncles, and the MCP sign. He was admitted due to a lack of safety with his balance and had a three-week rehabilitation stay. There he developed a sudden onset bilateral leg weakness. Workup revealed a large soft tissue mass in his spinal cord extending from T1 to T9 causing significant cord compression. It was resected and pathology was consistent with extramedullary hematopoiesis. He then underwent successful radiation therapy. After continued rehabilitation, he was able to regain prior function and is currently walking with a walker. His family history was remarkable for a sister and multiple grandchildren with FXS. His mother had fragile X-associated primary ovarian insufficiency (FXPOI). His FMR1 CGG repeat size was 99. He met criteria for definite FXTAS, with tremor, ataxia, and the MCP sign on MRI.

CASE 9

A 75 year-old woman presented with a one-year history of balance problems, which she described as wobbling when she walked. She had fallen once. She denied tremors, but had decreased hearing in both ears, urinary frequency, and fatigue. Her past history was remarkable for diabetes, end stage renal disease, and vitiligo. On examination, she had normal cognition, saccadic pursuits, and transient endgaze nystagmus. She had increased tone in the right arm without cogwheel rigidity, anterocollis, and mild kinetic tremor with handwriting. Reflexes were absent in the extremities and sensation was decreased to temperature. Dysdiadochokinesia was present in the left hand and bradykinesia in the left leg. She was unable to stand or walk in tandem and got off balance when she turned quickly. There was no retropulsion on the pull test. Brain MRI showed cerebral and cerebellar volume loss with white matter hyperintensities in the periventricular region.

The following year, she had a fall and had surgery for a “pinched nerve” in the neck. She began to have visual hallucinations in the hospital and was started on haloperidol. Her examination had dramatically worsened: she was wheelchair bound and was no longer able to walk unless she had assistance. Her MMSE was 18/30. She then developed delusions and depression. Quetiapine and venlafaxine were added and haloperidol discontinued. She received aggressive inpatient and outpatient rehabilitation over the next 3 months and regained the ability to walk using a walker. Her FMR1 CGG repeat sizes were 90 and 29. She had a daughter, two nephews, and one niece with FXS. She met criteria for definite FXTAS, with tremor, ataxia, and white matter disease on MRI.
CASE 12
A 72 year-old woman presented with progressive difficulty walking since 1998. She initially attributed this difficulty to pain in her feet, and was subsequently diagnosed with plantar fasciitis. By 2000–2001, she developed postural dizziness and soon developed a slow, festinating gait with decreased arm swing as well as fatigue, cognitive slowing, and trouble sleeping. By 2009 she was wheelchair bound. MRI of her brain revealed white matter lesions in the pons and periventricular regions. Testing for autoimmune disorders and spinocerebellar ataxias (SCA) was negative. She failed treatment with amantadine and was started on carbidopa/levodopa 25–100 mg twice daily and her walking improved.

On examination at age 75, her MMSE was 25/30, with deficits in executive function, recent memory and verbal fluency. She had apraxia in her left hand and foot, a positive glabellary reflex, and trouble mimicking on the left side. She had absent vertical optokinetic nystagmus, slowed vertical saccades, and square wave jerks. She was bradykinetic and had resting tremor in both arms. Her gait was remarkable for short stride length, frequent freezing, difficulty with tandem gait and impaired postural reflexes. Her carbidopa-levodopa was weaned due to persistent nausea. Donepezil 10 mg daily was started given her cognitive decline. She continued frequent physical therapy at home, but her symptoms continued to progress. She is a FMR1 premutation carrier with 88 FMR1 CGG repeats. Her son has intellectual disability but has not been tested for FXS. Her father had severe tremor and ataxia. Her sister has fragile X-associated premature ovarian insufficiency (FXPOI). She has a male cousin with FXTAS and three female cousins who are also premutation carriers. Based on her MRI as well as ataxia and tremor, she met criteria for definite FXTAS.

CASE 18
An 80 year-old man presented with a three-year history of worsening falls. He had developed shuffling gait, a soft voice, was choking on food, and had a masked facial expression. He denied tremor. He had been diagnosed by a prior neurologist with Parkinson disease and started on 3.5 tablets of 25–100 mg carbidopa/levodopa. By report, his symptoms did not improve. On examination at the age of 80, his MMSE was 28/30. He had a positive glabellar reflex and negative applause sign. He had impaired vertical gaze, impaired vertical optokinetic nystagmus, and slowed saccades. He had symmetrically increased tone in both upper extremities and bradykinesia in all four extremities. He had left sided shoulder elevation with a mild rightward head turn. He had mild rest tremor in the left hand and mild kinetic tremor when drawing spirals. There was no evidence of dysmetria. He had a positive pull test, was unable to perform tandem gait, and took multiple steps to turn. His steps were slow and short. He was unable to have a MRI, but brain CT showed ventriculomegaly. He was started on 5 mg twice daily of memantine given complaints of poor memory, however this was subsequently discontinued as it proved ineffective. His falls initially decreased in frequency after physical therapy. Within 8 months of presentation, he was unable to walk on his own, even with a walker. He had a retrait of carbidopa/levodopa 25–100 mg three pills daily. His bradykinesia improved mildly, but he began experiencing delusions and hallucinations. The psychosis improved and entacapone 200 mg three times daily was added. The patients’ family felt the entacapone helped the speech problems, but not the other motor features. He was a FMR1 premutation carrier with 68 FMR1 CGG repeats. His grandson had FXS. He met criteria for probable FXTAS given his tremor and ataxia, but lack of a MRI.

DISCUSSION
These cases have some similarities and differences to previously reported FXTAS phenotypes. The majority of the patients have a mixed movement disorder, with signs of tremor, ataxia, and parkinsonism. In addition, neuropathic findings and neuropsychiatric issues are common, with many having cognitive deficits on presentation. Our cases were found primarily in families with known fragile X-associated disorders. All of these features have been previously described.

Case 12 describes a woman with a strong family history of FMR1 mutation associated diseases. Her course began with gait difficulty and evolved to include eye movement abnormalities consistent with progressive supranuclear palsy (PSP). In Case 18, the patient’s history of falls at symptom onset, absence of response to carbidopa/levodopa, and upgaze palsy is most consistent diagnostically with PSP. This is a neurodegenerative movement disorder characterized by early falls, supranuclear ophthalmoplegia (particularly of vertical eye movements), parkinsonism, and later cognitive decline. In addition, several of the other cases in Table 1 had eye findings often seen in PSP, including decreased optokinetic nystagmus, especially in the vertical direction, slowed vertical saccades, and the presence of square wave jerks (Litvan et al., 1996). Case 2 demonstrated lack of vertical optokinetic nystagmus. Cases 13 and 17 demonstrated saccades which were hypometric and slow, respectively. A PSP phenotype has not been reported in FXTAS in the past. Schrag et al. (2006) estimated the prevalence of PSP in the general population at about 6 per 100,000. The prevalence of FXTAS has been reported at 1/4000 in men over 55 (Hall and Jacquemont, 2010). Given the rarity of these two disorders, it may be more than coincidence that five individuals in our series had a PSP-like phenotype.

It is unclear in our patients whether the PSP-like phenotype is a variation of FXTAS, whether this represents the presence of PSP in FMR1 premutation carriers, or whether these patients have two neurodegenerative disorders. Most likely, the pathways involved with the classic eye findings and falls in PSP located in the brainstem are also involved in FXTAS, resulting in similar phenotypic presentations. However, previous case series have shown that FMR1 premutation carriers may have dual pathology on autopsy, specifically in cases of FXTAS and Alzheimer disease, and suggest that they may be synergistic in creating a worse neurological phenotype (Tassone et al., 2012a). Autopsy on our cases will help to clarify this issue. The typical neuropathology associated with FXTAS is enlarged, inclusion-bearing astrocytes in the cerebral white matter and intra-nuclear inclusions in both the brain and spinal cord (Greco et al., 2006). This differs from the neuropathological findings seen in PSP, in particular neurofibrillary tangles and/or neurophil threads in the striatum, substantia nigra, occulomotor complex, peri-aqueductal gray, superior colliculi, basis pontis, dentate nucleus, and prefrontal cortex (Litvan,
ACKNOWLEDGMENTS

We would like to thank Drs. Emily Dunn, and Melanie Danely who assisted in evaluating these patients and collection of data.

REFERENCES

Adams, J. S., Adams, P. E., Nguyen, D., Brunberg, J. A., Tassone, F., Zhang, W., et al. (2007). Volumetric brain changes in females with fragile X-associated tremor/ataxia syndrome (FXTAS). Neurology 69, 851–859. doi: 10.1212/01.wnl.0000269781.10417.7b

Aparits, E., Blancher, A., Wassilios, G. M., Guyant-Marechal, L., Mallete, D., De Bouрюer, T., et al. (2012). FXTAS: new insights and the need for revised diagnostic criteria. Neurology 79, 1989–1907. doi: 10.1212/WNL.0b013e3182717ff

Berry-Kravis, E., Abrams, L., Coffey, S. M., Hall, D. A., Greco, C., Gane, L. W., et al. (2007a). Fragile X-associated tremor/ataxia syndrome: clinical features, genetics and testing guidelines. Mov. Disord. 22, 2018–2030. doi: 10.1002/mds.21493

Berry-Kravis, E., Goetz, C. G., Leehey, M. A., Hagerman, R. J., Zhang, L., Li, L., et al. (2007b). Neuropathic features in fragile X premutation carriers. Am. J. Med. Genet. 143A, 19–26. doi: 10.1002/ajmg.a.31559

Beaufort, J. A., Farzin, F., Brunberg, J. A., Tassone, F., Hagerman, P., Zhang, L., et al. (2006). Dementia with mood symptoms in a fragile X premutation carrier with the fragile X-associated tremor/ataxia syndrome: clinical intervention with donepezil and venlafaxine. J. Neuropsychiatry Clin. Neurosci. 18, 171–177. doi: 10.1176/jnp.18.2.171

Coffey, S. M., Cook, K., Tartaglia, N., Tassone, F., Nguyen, D., Pan, R., et al. (2008). Expanded clinical phenotype of women with the FMR1 premutation. Am. J. Med. Genet. 146A, 1009–1016. doi: 10.1002/ajmg.a.32060

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). “Mini-mental state”: a practice method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. doi: 10.1016/0295-6982(75)90026-6

Greco, C. M., Berman, R. F., Martin, R. M., Tassone, F., Schwartz, P. H., Chang, A., et al. (2006). Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 129, 243–255. doi: 10.1093/brain/awi683

Grigbys, J., Bregia, A. G., Leehey, M. A., Goorich, G. K., Jacquemont, S., Loesch, D. Z., et al. (2007). Impairment of executive cognitive functioning in males with fragile X-associated tremor/ataxia syndrome. Mov. Disord. 15, 645–650. doi: 10.1002/mds.21539

Hall, D., and Jacquemont, S. (2010). The Epidemiology of FXTAS. The Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). New York, NY: Springer, 17–30.

Jacquemont, S., Hagerman, R. J., Leehey, M. A., Grigbys, J., Zhang, L., Brunberg, J., et al. (2003). Fragile X premutation tremor/ataxia syndrome: molecular, clinical and neuroimaging correlates. Am. J. Hum. Genet. 72, 869–878. doi: 10.1086/374321

Jacquemont, S., Hagerman, R. J., Leehey, M., Hall, D. A., Levine, R. A., Brunberg, J. A., et al. (2004). Penetration of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. JAMA 291, 460–469. doi: 10.1001/jama.291.4.460

Leehey, M. (2009). Fragile X-associated tremor/ataxia syndrome: clinical phenotype, diagnosis and treatment. J. Investig. Med. 57, 830–836. doi: 10.231/jim.0b013e3181fa9c4

Leehey, M. A., Berry-Kravis, E., Goetz, C. G., Zhang, L., Hall, D. A., Li, L., et al. (2008). FMR1 CGG repeat length predicts motor dysfunction in premutation carriers. Neurology 70(16 Pt 2), 1397–1402. doi: 10.1212/01.wnl.0000281692.98200.5

Leehey, M. A., Legg, W., Tassone, F., and Hagerman, R. J. (2011). Fibromyalgia in fragile X mental retardation 1 gene premutation carriers. Rheumatology (Oxford). 50, 2233–2236. doi: 10.1093/rheumatology/ker273

Litvan, I. (2005). Atypical Parkinsonian Disorders. Totowa, NJ: Humana. doi: 10.1385/159298834X

Litvan, I., Agid, Y., Caine, D., Campbell, G., Dubois, B., Duvoisin, R. C., et al. (1996). Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47, 1–9. doi: 10.1212/WNL.47.1.1

Louis, E., Moskowitz, C., Frier, M., Amaya, M., and Vonsattel, J. P. G. (2006). Parkinsonism, dysautonomia, and intranuclear inclusions in a fragile X carrier: a clinical-pathological study. Mov. Disord. 21, 420–425. doi: 10.1002/mds.20753

Schrag, A., Sela, C., Quinn, N., Lees, A., Litvan, I., Lang, A., et al. (2006). Measuring quality of life in PSP. Neurology 67, 39–44. doi: 10.1212/01.wnl.0000223826.84080.97
Seltzer, M. M., Baker, M. W., Hong, J., Maenner, M., Greenberg, J., and Mandel, D. (2012). Prevalence of CGG expansions of the FMR1 gene in a US population-based sample. Am. J. Med. Genet. 159B, 589–597. doi: 10.1002/ajmg.b.32065

Tassone, F., Greco, C. M., Hunsaker, M. R., Seritan, A. L., Berman, R. F., Gane, L. W., et al. (2012a). Neuropathological, clinical and molecular pathology in female fragile X premutation carriers with and without FXTAS. Genes Brain Behav. 11, 577–585. doi: 10.1111/j.1601-183X.2012.00779.x

Tassone, F., Iong, K. P., Tong, T. H., Lo, J., Gane, L. W., Berry-Kravis, E., et al. (2012b). FMR1 CGG allele size and prevalence ascertained through newborn screening in the United States. Genome Med. 4, 100. doi: 10.1186/gm401

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 30 May 2014; accepted: 29 September 2014; published online: 17 October 2014.

Citation: Fraint A, Vittal P, Szewka A, Bernard B, Berry-Kravis E and Hall DA (2014) New observations in the fragile X-associated tremor/ataxia syndrome (FXTAS) phenotype. Front. Genet. 5:365. doi: 10.3389/fgene.2014.00365

This article was submitted to Genetic Disorders, a section of the journal Frontiers in Genetics.

Copyright © 2014 Fraint, Vittal, Szewka, Bernard, Berry-Kravis and Hall. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.