Solving a sparse systems using linear algebra.

César Massri

*Department of Mathematics, FCEN, University of Buenos Aires, Argentina

Abstract

We generalize a method to compute the solutions of a system of polynomial equations with finitely many solutions. We solve this problem without the need of Gröbner bases.

Keywords: Multiplication matrix, Eigenvector, Sparse system, Toric varieties

2010 MSC: 14M25, 13P15

Introduction.

In this paper we adapt a method, presented in [4, Ch. 3, §6], that solves a system with \(n \) polynomial equations and \(n \) variables with finitely many solutions, to a method that solves a general sparse system with finitely many solutions.

In Section 1 we present the general method to solve a system of trilinear equations and a system of polynomial equations respectively.

The method is based on the following theorems. Consider a system of polynomial equations with finitely many solutions in \(\mathbb{C}^n \),

\[
\begin{align*}
 f_1(x_1, \ldots, x_n) &= 0 \\
 \vdots & \\
 f_k(x_1, \ldots, x_n) &= 0
\end{align*}
\]

where \(f_1, \ldots, f_k \) are polynomials in \(\mathbb{C}[x_1, \ldots, x_n] \). The quotient ring,

\[
\mathcal{R} = \mathbb{C}[x_1, \ldots, x_n]/\langle f_1, \ldots, f_k \rangle,
\]

is a finite-dimensional vector space, [6, Theorem 2.1.2]. The dimension of \(\mathcal{R} \) is the number of solutions of the system counted with multiplicities.

Every polynomial \(f \in \mathbb{C}[x_1, \ldots, x_n] \), determines a linear map \(M : \mathcal{R} \rightarrow \mathcal{R} \),

\[
M(f) = \overline{fg}, \quad g \in \mathbb{C}[x_1, \ldots, x_n],
\]

where \(\overline{g} \) denotes the class of the polynomial \(g \) in the quotient ring \(\mathcal{R} \). The matrix of \(M \) is called the multiplication matrix assigned to the polynomial \(f \).
Theorem (Eigenvalue Theorem). The eigenvalues of M are $\{f(\xi_1), \ldots, f(\xi_r)\}$, where $\{\xi_1, \ldots, \xi_r\}$ are the solutions of the system of polynomial equations. See [6, Theorem 2.1.4] for a proof.

Theorem (Eigenvector Theorem). Let $f = \alpha_1x_1 + \ldots + \alpha_nx_n$ be a generic linear form and let M be its multiplication matrix. Assume that $B = \{1, x_1, \ldots, x_n, \ldots\}$ is a finite basis of \mathcal{R} formed by monomials. Then the eigenvectors of M determine all the solutions of the system of polynomial equations. Specifically, if $v = (v_0, \ldots, v_n)$ is an eigenvector of M such that $v_0 = 1$, then (v_1, \ldots, v_n) is a solution of the system of polynomial equations. Even more, every solution is of this form. See [6, §2.1.3] for a proof.

Note that the previous theorem requires that the variables $\{x_1, \ldots, x_n\}$ are elements of the basis B. It could be the case that some variables are missing from B. For example, if $x_1, \ldots, x_i \in B$, and $x_{i+1}, \ldots, x_n \notin B$, then every missing variable, say x_j, is a linear combination of $\{x_1, \ldots, x_i\}$,

$$x_j = a_1x_1 + \ldots + a_ix_i, \quad i + 1 \leq j \leq n.$$

If $v = (1, v_1, v_2, \ldots)$ is an eigenvector of M, the j-coordinate of the solution corresponding to v, is $a_{j+1}v_1 + \ldots + a_{j+1}v_j$. See [6, §2.1.3].

The computation of the multiplication matrix is a very difficult task to do. In general, we need Gröbner bases. When the system of polynomial equations has the same number of variables and equations, $n = k$, there exists a method to compute the multiplication matrix, see [2] and [6, §2.3.1].

In [4, §7.6.21], the authors adapted the method to solve a sparse system with the same number of variables and equations. Here, we adapt their method to solve a general sparse system with finitely many solutions. We needed to prove Theorem 1 in order to generalize it. The proof is based on standard algebro-geometric tools and Toric varieties theory.

1. **Solving a sparse system.**

A sparse system is a collection of Laurent polynomials,

$$f_i = \sum_{v \in \mathcal{Q}_i} c_{i,v}x_1^{v_1} \ldots x_n^{v_n}, \quad 1 \leq i \leq k,$$

where \mathcal{Q}_i are fixed finite subsets of \mathbb{Z}^n. We say that the system is generic if $k = n$ and the coefficients $c_{i,v}$ are chosen arbitrarily. The set \mathcal{Q}_i is called the support of f_i.

Bernstein proved in [3] that the number of solutions in $(\mathbb{C} \setminus \{0\})^n$ of a generic sparse system equals the mixed volume of the corresponding Newton polytopes. The convex hull \mathcal{A}_i of \mathcal{Q}_i,

$$\mathcal{A}_i = \text{conv}(\mathcal{Q}_i) \subseteq \mathbb{R}^n,$$

is called the Newton polytope of f_i, denoted $N(f_i)$.

Consider the function

$$V(\lambda_1, \ldots, \lambda_n) := \text{vol}(\lambda_1\mathcal{A}_1 + \ldots + \lambda_n\mathcal{A}_n), \quad \lambda_i \geq 0, \ 1 \leq i \leq n.$$

where vol is the usual Euclidean volume in \mathbb{R}^n and $\mathcal{A} + \mathcal{A}$ denotes the Minkowski sum of polytopes. It is a fact that V is a homogeneous polynomial and the coefficient of the monomial $\lambda_1^{\lambda_1} \ldots \lambda_n^{\lambda_n}$ in $V(\lambda_1, \ldots, \lambda_n)$ is the mixed volume of $\mathcal{A}_1, \ldots, \mathcal{A}_n$. Note that the support of f_i is a finite subset of \mathbb{Z}^n that determines the Newton polytope \mathcal{A}_i.
\(\lambda_1 \ldots \lambda_n \) is called the mixed volume of \(A_1, \ldots, A_n \). The mixed volume (i.e. the number of solutions of a generic sparse system) is a very difficult number to compute, see [4, p. 363]. In some situations, this is possible and in the general case, there are a lot of algorithms to compute it. When the polynomials \(f_i \) are multihomogeneous, in the paper [11], the author gave a recursive formula to compute this number. When the system is homogeneous, we recover Bézout theorem.

Consider a sparse system with finitely many solutions,

\[
\begin{align*}
 f_1 &= \sum_{v \in Q_1} c_{1,v} x_1^{v_1} \ldots x_n^{v_n} = 0 \\
 f_k &= \sum_{v \in Q_k} c_{k,v} x_1^{v_1} \ldots x_n^{v_n} = 0
\end{align*}
\]

If the system is generic, the number of equations coincide with the number of variables, \(k = n \), and the number of solutions is given by the mixed volume of the Newton polytopes of \(f_1, \ldots, f_k \).

For example, the following sparse system is generic with only one solution, \(\xi = (1, 1) \),

\[
\begin{align*}
 1 - x_1 x_2 &= 0 \\
 1 - x_2 &= 0
\end{align*}
\]

The supports, in \(\mathbb{Z}^2 \), of the equations are

\(Q_1 = \{(0, 0), (1, 1)\}, \quad Q_2 = \{(0, 0), (0, 1)\} \).

Note that the Bézout number of this system is 2 and its mixed volume is 1.

Given a sparse system, it is easy to give a bound for the number of solutions. Multiply each equation by a positive power of a variable, and consider the corresponding Bézout number of the resulting system. It is always a bound for the number of solutions. If the system is a generic system of homogeneous polynomials, we can use Bézout’s theorem to know the number of solutions, \(r = \deg(f_1) \ldots \deg(f_k) \).

Let \(S = \mathbb{C}[x_1 \pm 1, \ldots, x_n \pm 1] \) be the algebra of Laurent polynomials. Given a Newton polytope, \(\mathcal{A} \), let \(S_{\mathcal{A}} \) be the vector space of polynomials with Newton polytope in \(\mathcal{A} \),

\[
S_{\mathcal{A}} = \{ g \in S : N(g) \subseteq \mathcal{A} \}.
\]

The dimension of \(S_{\mathcal{A}} \) is equal to the cardinal of \(\mathcal{A} \cap \mathbb{Z}^n \),

\[
\dim(S_{\mathcal{A}}) = \#(\mathcal{A} \cap \mathbb{Z}^n).
\]

The finite set \(\mathcal{A} \cap \mathbb{Z}^n \) determines a monomial basis for \(S_{\mathcal{A}} \).

Let \(\mathcal{A}' \) be an arbitrary Newton polytope. Using the equality,

\[
N(g_1 g_2) = N(g_1) + N(g_2), \quad g_1, g_2 \in S,
\]

we obtain that the multiplication map is surjective,

\[
\mu : S_{\mathcal{A}} \otimes S_{\mathcal{A}} \to S_{\mathcal{A} \cap \mathcal{A}'},
\]

\[
\mu(x_1^{v_1} \ldots x_n^{v_n} \otimes x_1^{v'_1} \ldots x_n^{v'_n}) = x_1^{v_1 + v'_1} \ldots x_n^{v_n + v'_n}, \quad \forall v, v' \in \mathcal{A}, \mathcal{A}' \in \mathcal{A}'.
\]

In other words, its image, \(S_{\mathcal{A}} \cdot S_{\mathcal{A}} \), is equal to \(S_{\mathcal{A} \cap \mathcal{A}'} \),

\[
S_{\mathcal{A} \cap \mathcal{A}'} = S_{\mathcal{A} \cdot \mathcal{A}}.
\]
Definition. [5, Definition 2.2.9]. A Newton polytope \(\mathcal{A} \) is called normal if
\[
(k \cdot \mathcal{A}) \cap \mathbb{Z}^n = (\mathcal{A} \cap \mathbb{Z}^n) + \ldots + (\mathcal{A} \cap \mathbb{Z}^n), \quad \forall k \in \mathbb{N}.
\]
The expression in the right has \(k \) terms.

Recall from [5, Theorem 2.2.12] that given a full dimensional Newton polytope \(\mathcal{A} \), the Newton polytope \((n-1) \cdot \mathcal{A}\) is normal. In particular, given \(\mathcal{A} \), an arbitrary Newton polytope, \((n-1) \cdot \mathcal{A}\) is always normal.

Notation. The following notations and assumptions will be used in the rest of the section.

Let \(\mathcal{J} \subseteq \mathcal{S} \) be the ideal generated by a sparse system \(f_1, \ldots, f_r \), where the Newton polytope of \(f_i \) is \(\mathcal{A}_i \), \(1 \leq i \leq k \).
\[
\mathcal{J} = (f_1, \ldots, f_r) \subseteq \mathcal{S}.
\]
Assume that the sparse system has finitely many solutions, say \(r \), and that the dimension of \(\mathcal{S}/\mathcal{J} \) is also \(r \). In other words, all the solutions has multiplicity one.

Let \(f_0 \) be a non-constant generic Laurent polynomial and consider the ideal \(I \),
\[
I = (f_0, f_1, \ldots, f_r), \quad f_0 = \sum_{v \in \mathcal{A}_0 \cap \mathbb{Z}^n} c_{0,v} x_1^{v_1} \cdots x_n^{v_n}, \quad N(f_0) = \mathcal{A}_0.
\]

Without loss of generality, we may suppose that \(0 \in \mathcal{A}_i \) for every \(i \), \(0 \leq i \leq k \). Divide each equation by a monomial to guarantee \(0 \in \mathcal{A}_i, 0 \leq i \leq k \). This operation does not change the solutions. Recall that the solutions are in \((\mathbb{C} \setminus 0)^r\).

Assume also, that the Newton polytopes \(\mathcal{A}_0, \ldots, \mathcal{A}_k \) are normal.

Theorem 1. Let \(\mathcal{E} = \mathcal{A}_0 + \ldots + \mathcal{A}_k \) and let \(\mathcal{B}_i = \mathcal{A}_0 + \ldots + \hat{\mathcal{A}_i} + \ldots + \mathcal{A}_k \), \(0 \leq i \leq k \). Then the cokernel of the following linear map is isomorphic to \(\mathcal{S}/\mathcal{J} \),
\[
\Phi : S_{\mathcal{B}_1} \times \ldots \times S_{\mathcal{B}_k} \to S_{\mathcal{E}}, \quad \Phi(g_1, \ldots, g_k) = \sum_{i=1}^k f_i \cdot g_i,
\]
The Newton polytope \(\mathcal{B}_0 \subseteq \mathcal{E} \) satisfies
\[
S_{\mathcal{B}_0}/(im\Phi \cap S_{\mathcal{B}_0}) \cong S_{\mathcal{E}}/im\Phi.
\]
Even more, the following linear map is surjective,
\[
\Psi : S_{\mathcal{B}_0} \times S_{\mathcal{B}_1} \times \ldots \times S_{\mathcal{B}_k} \to S_{\mathcal{E}}, \quad \Psi(g_0, g_1, \ldots, g_k) = f_0 \cdot g_0 + \sum_{i=1}^k f_i \cdot g_i.
\]
Proof. The basic references are [5] and [9].

Given a very ample Newton polytope \(\mathcal{A} \), [5, Definition 2.2.17], we can construct a projective toric variety \(X \) and an invertible sheaf \(O_X(1) \), see [5, §8 1A]. Let \(X \) be the closure of the image of the following map,
\[
(\mathbb{C} \setminus 0)^r \to \mathbb{P}(S_{\mathcal{B}_0}^+), \quad (t_1, \ldots, t_r) \mapsto (t_1^{v_1} \cdots t_r^{v_n}),
\]
where \(t_i = t_i^{v_1} \cdots t_i^{v_n} \) and \(\mathcal{A} \cap \mathbb{Z}^n = \{v_1, \ldots, v_N\} \). The invertible sheaf \(O_X(1) \) is the restriction of \(O_{\mathbb{P}(S_{\mathcal{B}_0}^+)}(1) \) to \(X \). Recall from [5, Proposition 2.2.18] that a normal Newton polytope is very ample.
Let $X_i \subseteq \mathbb{P}(S^\vee_{A_i})$ be the projective toric variety assigned to the polytope A_i, $0 \leq i \leq k$. Consider the following invertible sheaves in $X = X_0 \times \ldots \times X_k$,

$$O_X(d_0, \ldots, d_k) = \pi_0^*O_{X_0}(d_0) \otimes \ldots \otimes \pi_k^*O_{X_k}(d_k), \quad d_0, \ldots, d_k \in \mathbb{Z},$$

where the map $\pi_i : X \to X_i$ is the i-projection, $0 \leq i \leq k$.

By [1, Theorem 5.4.8], the coordinate ring of X_i is

$$\mathbb{C}[X_i] = \bigoplus_{d \geq 0} S_d^\vee_{A_i}, \quad 0 \leq i \leq k.$$

This implies that the space of global sections of $O_X(d_0, \ldots, d_k)$ is,

$$H^0(X, O_X(d_0, \ldots, d_k)) = S_{d_0}^\vee_{A_0} \otimes \ldots \otimes S_{d_k}^\vee_{A_k}, \quad d_0, \ldots, d_k \geq 0.$$

Let us work with the projective toric variety Y inside X given by,

$$\begin{array}{cc}
(t, \ldots, t) & (\mathbb{C} \setminus 0)^n \times \ldots \times (\mathbb{C} \setminus 0)^n \\
\downarrow & \downarrow \\
(t) & (\mathbb{C} \setminus 0)^n
\end{array} \quad X = X_0 \times \ldots \times X_k \quad Y$$

where the bottom map is the one induced by the Newton polytope $E = A_0 + \ldots + A_k$ and the diagram in commutative, [2, §8, 1A, Proposition 1.4]. Let $O_Y(d_0, \ldots, d_k)$ be the restriction of $O_X(d_0, \ldots, d_k)$ to Y,

$$O_Y(d_0, \ldots, d_k) = O_X(d_0, \ldots, d_k)|_Y.$$

A local affine section of $O_X(d_0, \ldots, d_k)$ is generated by sections of the form $t_0^{v_0} \cdot \ldots \cdot t_k^{v_k}$, where $v_i \in d_i \cdot A_i$ and $t_i = (t_{i1}, \ldots, t_{in}), 0 \leq i \leq k$. Restricting to Y, we get sections $t_0^{v_0} \cdot \ldots \cdot t_k^{v_k}$. Then

$$H^0(Y, O_Y(d_0, \ldots, d_k)) = S_{d_0}^\vee_{A_0} \otimes \ldots \otimes S_{d_k}^\vee_{A_k}, \quad d_0, \ldots, d_k \geq 0.$$

Let $e_i \in \mathbb{Z}^{k+1}$ be the vector with 1 in the $(i + 1)$-coordinate and 0 in the rest, $0 \leq i \leq k$. For example, $e_0 = (1, 0, \ldots, 0)$ and $e_k = (0, \ldots, 0, 1)$. The Laurent polynomials $\{f_1, \ldots, f_k\}$ determine a O_Y-linear map

$$O_Y \to \mathcal{F}, \quad \mathcal{F} = O_Y(e_1) \otimes \ldots \otimes O_Y(e_k),$$

and then, we can construct the dual Koszul complex assigned to \mathcal{F},

$$0 \to \bigwedge^k \mathcal{F}^\vee \to \ldots \to \bigwedge^i \mathcal{F}^\vee \to \ldots \to \mathcal{F}^\vee \to O_Y,$$

where

$$\bigwedge^i \mathcal{F}^\vee = \bigoplus_{1 \leq i_1 \leq \ldots \leq i_k \leq k} O_Y(-e_{i_1} - \ldots - e_{i_k}).$$

Let $Z \subseteq (\mathbb{C} \setminus 0)^n$ be the zero locus of $\{f_1, \ldots, f_k\}$. Given that $(\mathbb{C} \setminus 0)^n$ is embedded in Y, the variety Z may also be embedded in Y,

$$Z \hookrightarrow Y, \quad \xi \mapsto (\xi^{v_1} : \ldots : \xi^{v_N}), \quad [v_1, \ldots, v_N] = E \cap \mathbb{Z}^n.$$
The dual Koszul complex assigned to \mathcal{F}, is supported in Z, [5, §B, Proposition 1.4 (a)]. Then the augmented complex is exact,

$$0 \to \bigwedge^{k} \mathcal{F}^\vee \to \ldots \to \bigwedge^{i} \mathcal{F}^\vee \to \ldots \to \bigwedge^{1} \mathcal{F}^\vee \to \mathcal{O}_Y \to \mathcal{O}_Z \to 0.$$

The exactness is preserved by twisting with the invertible sheaf $\mathcal{O}_Y(1, \ldots, 1)$, and taking global sections. In particular, the following complex of vector spaces is exact,

$$S_{\mathcal{E}_1} \times \ldots \times S_{\mathcal{E}_k} \xrightarrow{\Phi} S_{\mathcal{E}} \to S/\mathcal{I} \to 0.$$

Twisting the dual Koszul complex assigned to \mathcal{F} with the invertible sheaf $\mathcal{O}_Y(0, 1, \ldots, 1)$, we obtain, in a similar way, that the following map is surjective,

$$S_{\mathcal{E}_0} \to S/\mathcal{I} \to 0.$$

Note that the kernel of $S_{\mathcal{E}_0} \to S/\mathcal{I}$ is equal to $S_{\mathcal{E}_0} \cap \mathcal{I}$, but given that $0 \in \mathcal{A}_0 \cap \ldots \cap \mathcal{A}_k$, we get $\mathcal{E}_0 \subseteq \mathcal{E}$, and then

$$S_{\mathcal{E}_0} \cap \mathcal{I} = S_{\mathcal{E}_0} \cap S_{\mathcal{E}} \cap \mathcal{I} = S_{\mathcal{E}_0} \cap \text{im} \Phi \implies S_{\mathcal{E}_0}/(S_{\mathcal{E}_0} \cap \text{im} \Phi) \cong S/\mathcal{I} \cong S_{\mathcal{E}}/\text{im} \Phi.$$

Finally, if the Laurent polynomial f_0 is non-zero over Z, that is, if the ideal \mathcal{I} is equal to S, then similar arguments, using the sheaf $\mathcal{F}' = \mathcal{O}_Y(e_0) \oplus \ldots \oplus \mathcal{O}_Y(e_k)$, show that the following map is surjective,

$$S_{\mathcal{E}_0} \times \ldots \times S_{\mathcal{E}_k} \xrightarrow{\Psi} S_{\mathcal{E}} \to 0.$$

Consider $\mathcal{E} \cap \mathbb{Z}^n$ and $\mathcal{B}_i \cap \mathbb{Z}^n, 0 \leq i \leq k$, as monomial ordered bases of $S_{\mathcal{E}}$ and $S_{\mathcal{E}_i}, 0 \leq i \leq k$, respectively. Let p be the cardinal of $\mathcal{B}_0 \cap \mathbb{Z}^n$, p_i, the cardinal of $\mathcal{B}_i \cap \mathbb{Z}^n, 1 \leq i \leq k$ and $p + q$ be the cardinal of $\mathcal{E} \cap \mathbb{Z}^n$. Given that f_0 is non-constant, the inclusion, $\mathcal{B}_0 \subseteq \mathcal{E}$, is proper, thus $q > 0$.

$$\mathcal{B}_0 \cap \mathbb{Z}^n = \{m_1, \ldots, m_p\}, \quad \mathcal{E} \cap \mathbb{Z}^n = \{m_1, \ldots, m_p, m_{p+1}, \ldots, m_{p+q}\},$$

where m_i is a monomial, $1 \leq i \leq p + q$. Here we are abusing the notation. The monomial $m = x_1^{m_1} \ldots x_n^{m_n}$ corresponds to the point $(v_1, \ldots, v_n) \in \mathbb{Z}^n$.

Let $M \in \mathbb{C}^{p+q \times p+q}$ be the rectangular matrix assigned to Ψ in these bases,

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}, \quad M_{11} \in \mathbb{C}^{p \times p}, \quad M_{22} \in \mathbb{C}^{q \times q}.$$

From,

$$(m_1 \ldots m_p \ m_{p+1} \ldots m_{p+q}) \begin{pmatrix} M_{11} \\ M_{21} \end{pmatrix} = \begin{pmatrix} f_0 m_1 \ldots f_0 m_p \\ f_1 \mathcal{B}_1 \ldots f_k \mathcal{B}_k \end{pmatrix},$$

where $f_i \mathcal{B}_i$ is the row vector obtained by multiplying f_i with the monomials in $\mathcal{B}_i \cap \mathbb{Z}^n, 1 \leq i \leq k$.

Theorem 2. There exists a matrix $F \in \mathbb{C}^{n+\ldots+p \times p}$ such that every solution ξ of the sparse system determine a left eigenvector of $M_{11} + M_{12} F$. Even more, $f_0(\xi)$ is the eigenvalue of that left eigenvector.

The matrix F satisfies the linear condition $M_{21} + M_{22} F = 0$.

\[6 \]
Proof. First, let us see that the rank of M_{22} is q. The matrix M_{22} is the matrix of the composition of the following maps,

$$S_{b_1} \times \cdots \times S_{b_n} \xrightarrow{\Phi} S_E \xrightarrow{\pi} S_E/\text{im} F,$$

where π is the quotient map. The rank of M_{22} is equal to $\text{rk}(\pi \Phi)$,

$$\text{im}(\pi \Phi) = \pi(\text{im} \Phi) = \text{im} \Phi / \text{im}(\Phi)_{b_0}, \quad \text{im}(\Phi)_{b_0} = \text{im}(\Phi) \cap S_{b_0}.$$

Let t be the rank of M_{22}, and let q be the dimension of $S_E/\text{im} F$,

$$t = \dim(\text{im} \Phi / \text{im}(\Phi)_{b_0}), \quad q = \dim(S_E/\text{im} F) = \dim(S_E) - \dim(S_{b_0}) = (p + q) - p.$$

Using Theorem 1, we obtain

$$\dim(S_E/\text{im} \Phi) = \dim(S_{b_0}/\text{im}(\Phi)_{b_0}) \implies q = t.$$

Now that we know that $\text{rk}(M_{22}) = q$, it is easy to prove that there exists a matrix $F \in \mathbb{C}^{p_1 + \cdots + p_k \times p}$ such that

$$M_{22}F = -M_{21}.$$

Each column of F, c_1, \ldots, c_p, is a solution of the linear system $M_{22} c_i = b_i$, where $b_i \in \mathbb{C}^q$ is the i-column vector of $-M_{21}$, $1 \leq i \leq p$.

Let $\xi \in \mathbb{C}^n$ be a solution of the sparse system, $f_1(\xi) = \ldots = f_k(\xi) = 0$. Then

$$\begin{pmatrix} \xi^{m_1} & \xi^{m_2} & \ldots & \xi^{m_p} \end{pmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} = f_0(\xi) \cdot \begin{pmatrix} \xi^{m_1} & \xi^{m_2} & \ldots & \xi^{m_p} & 0 \end{pmatrix} \implies$$

$$\begin{pmatrix} \xi^{m_1} & \xi^{m_2} & \ldots & \xi^{m_p} \end{pmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} I \\ F \end{pmatrix} = f_0(\xi) \cdot \begin{pmatrix} \xi^{m_1} & \xi^{m_2} & \ldots & \xi^{m_p} & 0 \end{pmatrix} \begin{pmatrix} I \\ F \end{pmatrix} \implies$$

$$(\xi^{m_1} \ldots \xi^{m_p}) (M_{11} + M_{12} F) = f_0(\xi) \cdot (\xi^{m_1} \ldots \xi^{m_p}).$$

Then, ξ determines a left eigenvector of $M_{11} + M_{12} F$ with eigenvalue $f_0(\xi)$. \hfill \Box

The following is an algorithm to compute all the solutions of a sparse system,

$$\begin{cases} f_1 = \sum_{v \in \mathcal{A}_1 \cap \mathbb{Z}^n} c_{1,v} x_1^{v_1} \cdots x_n^{v_n} = 0 \\
\vdots \\
 f_k = \sum_{v \in \mathcal{A}_k \cap \mathbb{Z}^n} c_{k,v} x_1^{v_1} \cdots x_n^{v_n} = 0 \end{cases}$$

Let f_0 be a non-constant general Laurent polynomial with $N(f_0) = \mathcal{A}_0$. Assume that the Newton polytopes $\mathcal{A}_0, \ldots, \mathcal{A}_k$ are normal. In other case, take $a_i \cdot \mathcal{A}_i$ for some natural number $a_i \leq n - 1$,
0 ≤ i ≤ k. Assume also that 0 ∈ \mathcal{R}_1 ∩ \ldots ∩ \mathcal{R}_k.

Input: A sparse system with finitely many solutions and a non-constant Laurent polynomial.

Output: The solutions of the system.

1. Let \mathcal{E} = \mathcal{R}_0 + \ldots + \mathcal{R}_p and let \mathcal{B}_i = \mathcal{R}_i + \ldots + \mathcal{R}_p.
2. Get ordered monomial bases, where \mathcal{B}_i \cap \mathcal{Z}^n = \{m_1, \ldots, m_p\}
and \mathcal{E} \cap \mathcal{Z}^n = \{m_{1p}, \ldots, m_{pp}\}. Assume \mathcal{m}_i = 0.
3. Compute the matrix \mathcal{M} and decompose it as \{M_{11}, M_{12}, M_{21}, M_{22}\}.
4. Solve the linear system \mathcal{M}_{22} \mathcal{F} = -\mathcal{M}_{21}.
5. Compute left eigenvectors of \mathcal{M}_{11} + \mathcal{M}_{12} \mathcal{F}.
6. For each left eigenvector \mathcal{v} such that \mathcal{v}_1 \neq 0 do:
 6.1 Normalize \mathcal{v} as \mathcal{v} = (1, y_2, \ldots).
 6.2 Let \mathcal{r} be such that \mathcal{a}^{\mathcal{r}_i} = \mathcal{v}_i for all monomial \mathcal{m}_i ∈ \mathcal{B}_i \cap \mathcal{Z}^n, 1 ≤ i ≤ p.
 6.3 Save \mathcal{r} if it is a solution.
7. Return the solutions.

Remark. The formalism of Newton polytopes in our method to solve a sparse system is necessary. For example, consider the system in \mathcal{S} = \mathbb{C}[x_1, x_2],

\[
\begin{align*}
1 - x_1 x_2 &= 0 \\
1 - x_2 &= 0
\end{align*}
\]

Let \mathcal{S}_d be the space of polynomial of degree \mathcal{d}. The support of a generic polynomial in \mathcal{S}_d is \{(a_1, a_2) ∈ (\mathbb{Z}_{≥0})^2 : a_1 + a_2 ≤ \mathcal{d}\}.

Fix a natural number \mathcal{e} and consider the map \Phi,

\[
\Phi : \mathcal{S}_{\mathcal{e}-2} × \mathcal{S}_{\mathcal{e}-1} \to \mathcal{S}_\mathcal{e}, \quad \Phi(\mathcal{g}_1, \mathcal{g}_2) = \mathcal{g}_1 \cdot (1 - x_1 x_2) + \mathcal{g}_2 \cdot (1 - x_2).
\]

Given that dim(\mathcal{S} / (1 - x_1 x_2, 1 - x_2)) = 1, we need that the codimension of im(\Phi) be 1. But this never happens because the monomials 1 and \mathcal{x}_1^2 are linearly independent from im(\Phi).

2. Adaptation I: affine system of trilinear equations.

Let S = \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_m, z_1, \ldots, z_\ell] be the polynomial algebra. Given three non-negatives integers, (d_1, d_2, d_3) consider the Newton polytope

\[
\mathcal{A}_{d_1, d_2, d_3} = (d_1 \cdot \Delta_n) × (d_2 \cdot \Delta_m) × (d_3 \cdot \Delta_\ell),
\]

\[
\Delta_k = \{ t ∈ (\mathbb{R}_{≥0})^k : t_1 + \ldots + t_k ≤ 1 \}, \quad k ∈ \{n, m, s\}.
\]

Let us denote \mathcal{S}_{d_1, d_2, d_3} instead of \mathcal{S}_{\mathcal{A}_{d_1, d_2, d_3}}.

\[
\mathcal{S}_{d_1, d_2, d_3} = \{ f ∈ \mathcal{S} : N(f) ⊆ \mathcal{A}_{d_1, d_2, d_3} \}.
\]

We say that a polynomial in \mathcal{S}_{d_1, d_2, d_3} has multidegree less than or equal to (d_1, d_2, d_3). For example, the multidegree of \mathcal{x}_1 x_2 y_1 + z_1^2 z_2 is less than or equal to (2, 1, 3). We say that a polynomial \mathcal{\ell} is trilinear, if the multidegree of \mathcal{\ell} is less than or equal to (1, 1, 1).
Consider the following affine system of trilinear equations,
\[
\begin{align*}
\ell_1(x, y, z) &= 0 \\
\vdots \\
\ell_k(x, y, z) &= 0
\end{align*}
\] where \(x \in \mathbb{C}^n, y \in \mathbb{C}^m, z \in \mathbb{C}^s. \)

Assume that the system has finitely many solutions, say \(r. \) Let \(f \) be a polynomial such that, \(N(f) \subseteq S_{1,1,1}. \) For simplicity, take \(f \) a generic linear form. Note that \(f, \ell_1, \ldots, \ell_k \in S_{1,1,1}. \)

By [Theorem 1], the following linear map is surjective,
\[
\Psi : (S_{k,k,k})^{k+1} \rightarrow S_{k+1,k+1,k+1}, \quad \Psi(g, g_1, \ldots, g_k) = g \cdot f + \sum_{i=1}^k g_i \cdot \ell_i.
\]

Take \(B \) a monomial ordered basis of \(S_{k,k,k} \) and extend it to a monomial ordered basis, \(E, \) of \(S_{k+1,k+1,k+1}. \)

\[
B = \mathcal{A}_{k,k,k} \cap \mathbb{Z}_{n+m+s}^{m_1, \ldots, m_p}, \quad E = \mathcal{A}_{k+1,k+1,k+1} \cap \mathbb{Z}_{n+m+s}^{m_1, \ldots, m_p, m_{p+1}, \ldots, m_{p+q}},
\]

where \(m_i \) is a monomial, \(1 \leq i \leq p + q. \) Note that \(1, x_1, \ldots, x_n, y_1, \ldots, y_m, z_1, \ldots, z_k \in B. \) Assume \(m_1 = 1. \)

Let \(M \in \mathbb{C}^{p+q(k+1)p} \) be the rectangular matrix in bases \(B \) and \(E \) of the linear map \(\Psi, \)
\[
M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}, \quad M_{11} \in \mathbb{C}^{p \times p}, M_{22} \in \mathbb{C}^{q \times q}.
\]

By [Theorem 2], there exists a matrix \(F \in \mathbb{C}^{k \times p} \) such that the left eigenvectors of \(M_{11} + M_{12}F \) determine possible solutions of the system of trilinear equations. Even more, its eigenvalues are the possible values of \(f \) at the solutions of the system.

As a corollary, we get an algorithm to compute solutions of a system of trilinear equations using linear algebra tools.

\begin{itemize}
 \item Input: A system of trilinear equations with finitely many solutions and a generic linear form.
 \item Output: The solutions of the system.
\end{itemize}

1. Construct the bases \(B \) and \(E. \)
2. Compute the matrix \(M \) and decompose it as \([M_{11}, M_{12}; M_{21}, M_{22}].\)
3. Solve the linear system \(M_{21}F = -M_{11}. \)
4. Find left eigenvectors of \(M_{11} + M_{12}F. \)
5. For each left eigenvector \(v \) such that \(v_1 \neq 0 \) do:
 5.1 Normalize \(v \) as \(v = (1, v_2, \ldots). \)
 5.2 Let \(x = (x_1, \ldots, x_n) \) be such that \(x_i = v_{n+i} \) where \(n+i \) is the coordinate of \(x_i \) in \(B, 1 \leq i \leq n. \)
 5.3 Same for \(y \) and \(z. \)
 5.4 Save \((x, y, z)\) if it is a solution.
6. Return the solutions.

3. Adaptation II: affine system of polynomial equations.

Consider the following affine system of polynomial equations in \(S = \mathbb{C}[x_1, \ldots, x_n], \)
\[
\begin{align*}
f_1(x_1, \ldots, x_n) &= 0 \\
& \vdots \\
f_k(x_1, \ldots, x_n) &= 0
\end{align*}
\]
where the support of \(f_i \) is \(\{(a_1, \ldots, a_n) \in (\mathbb{Z}_{\geq 0})^n : a_1 + \ldots + a_n \leq d_i\} \), 1 \(\leq i \leq k \). In particular, \(f_i \) is a polynomial of degree \(d_i \), \(\deg(f_i) = d_i \), 1 \(\leq i \leq k \). Assume that the system has finitely many solutions, say \(r \). Let \(f \) be a generic polynomial of degree \(d \).

By [Theorem 1] there exist a degree \(e = d + d_1 + \ldots + d_k \) such that the following linear map is surjective,

\[
\Psi : S_{e-d} \times S_{e-d_1} \times \ldots \times S_{e-d_k} \rightarrow S_e, \quad \Psi(g, g_1, \ldots, g_k) = g \cdot f + \sum_{i=1}^{k} g_i \cdot f_i.
\]

Choose monomial ordered bases of \(S_{e-d}, S_{e-d_1}, \ldots, S_{e-d_k} \), and extend them to a basis of \(S_e \). Let us denote \(B_0 \) the basis of \(S_{e-d} \), \(B_i \) the basis of \(S_{e-d_i} \), 1 \(\leq i \leq k \), and \(E \) the basis of \(S_e \). Let \(p \) be the cardinal of \(B_0 \), \(p_i \) the cardinal of \(B_i \), 1 \(\leq i \leq k \) and \(p + q \) be the cardinal of \(E \),

\[
B_0 = \{m_1, \ldots, m_p\}, \quad E = \{m_1, \ldots, m_p, m_{p+1}, \ldots, m_{p+q}\},
\]

where \(m_i \) is a monomial, 1 \(\leq i \leq p + q \). Note that 1, \(x_1, \ldots, x_n \in B_0 \). Assume \(m_1 = 1 \).

Let \(M \in \mathbb{C}^{p+q \times p+q+\ldots+p_k} \) be the matrix assigned to \(\Psi \),

\[
M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}, \quad M_{11} \in \mathbb{C}^{p \times p}, \quad M_{22} \in \mathbb{C}^{(p+q) \times (p+q)}.
\]

By [Theorem 2] there exists a matrix \(F \in \mathbb{C}^{p+q \times p+q+\ldots+p_k} \) such that the left eigenvectors of \(M_{11} + M_{12}F \) determine possible solutions of the system of polynomial equations. Even more, its eigenvalues are the possible values of \(f \) at the solutions of the system.

| Input: | A system of polynomial equations with \(r \) solutions and a generic polynomial of degree \(d \). |
| Output: | The solutions of the system. |

1. Construct the bases \(B_0, \ldots, B_k, E \).
2. Compute the matrix \(M \) and decompose it as \([M_{11}, M_{12}; M_{21}, M_{22}] \).
3. Solve the linear system \(M_{22}F = -M_{21} \).
4. Find left eigenvectors of \(M_{11} + M_{12}F \).
5. For each left eigenvector \(v \) such that \(v_i \neq 0 \) do:
 5.1 Normalize \(v \) as \(v = (1, v_1, \ldots) \).
 5.2 Let \(x = (x_1, \ldots, x_n) \) be such that \(x_i = v_{ri} \), where \(v_{ri} \) is the coordinate of \(x_i \) in \(B_0 \), 1 \(\leq i \leq n \).
 5.3 Save \(x \) if it is a solution.
6. Return the solutions.

Note that Step 1 of the algorithm has exponential complexity, \(O(n^r) \). The other steps have polynomial complexity.

4. Identifying the solutions.

Let \(M \in \mathbb{C}^{N \times N} \) be a diagonalizable matrix, let \(\lambda \in \mathbb{C} \) be an eigenvalue and let \(v \in \mathbb{C}^N \) be an eigenvector such that \(Mv = \lambda v \). In practice, there exists a positive real number \(\varepsilon \) such that

\[
||v - \tilde{v}|| < \varepsilon, \quad ||\lambda - \tilde{\lambda}|| < \varepsilon,
\]

where \(\tilde{v} \) is the computed eigenvector corresponding to \(v \) and \(\tilde{\lambda} \) is the computed eigenvalue corresponding to \(\lambda \).
Let $\tilde{x} \in \mathbb{C}^n$ be an estimated solution of the sparse system, $f_1 = \ldots = f_k = 0$, obtained with our algorithm using the Laurent polynomial f_0. Let $x \in \mathbb{C}^n$ be the exact solution corresponding to \tilde{x}. Then, there exists a constant K depending on the coefficients of f_0, \ldots, f_k such that,

$$|f_i(\tilde{x})| = |f_i(\tilde{x}) - f_i(x)| \leq K\|\tilde{x} - x\| \leq K\|\tilde{v} - v\| \leq K\epsilon \leq (K + 1)\epsilon, \quad 1 \leq i \leq k.$$

$$|f_i(\tilde{x}) - \tilde{v}| \leq |f_i(\tilde{x}) - \tilde{v} + |\tilde{v} - v| \leq (K + 1)\epsilon.$$

Finally, we will identify \tilde{x} as a solution of the sparse system if $|f_i(\tilde{x})| < (K + 1)\epsilon, \; 1 \leq i \leq k$ and $|f_i(\tilde{x}) - \tilde{v}| < (K + 1)\epsilon$. The constant K may be taken as the sum of the magnitudes of the coefficients of the polynomials. In other words, $K = \|M\|_1$, where M is the matrix assigned to Ψ.

5. Application.

To conclude this article, let us give an application to compute the maximum of a generic trilinear form over a product of spheres,

$$\ell : \mathbb{R}^{n+1} \times \mathbb{R}^{m+1} \times \mathbb{R}^{p+1} \to \mathbb{R}, \quad \ell(x, y, z) = \max_{\|x\| = \|y\| = \|z\| = 1} |\ell(x, y, z)|,$$

where the norm is the usual 2-norm. In the literature, this maximum is called the first singular value of ℓ, $[10]$.

Using Lagrange method of multipliers, $[1]$, §13.7, the extreme points of ℓ over a product of spheres, $S^n \times S^m \times S^p$, satisfy

$$\begin{align*}
\partial \ell/\partial x_i(x_0, \ldots, x_m, y_0, \ldots, y_m, z_0, \ldots, z_k) &= 2\alpha x_i, \quad 0 \leq i \leq n, \\
\partial \ell/\partial y_j(x_0, \ldots, x_m, y_0, \ldots, y_m, z_0, \ldots, z_k) &= 2\beta y_j, \quad 0 \leq j \leq m, \\
\partial \ell/\partial z_k(x_0, \ldots, x_m, y_0, \ldots, y_m, z_0, \ldots, z_k) &= 2\lambda z_k, \quad 0 \leq k \leq s,
\end{align*}$$

$$\alpha, \beta, \lambda \in \mathbb{R}, \quad \|x\| = \|y\| = \|z\| = 1.$$

These equations imply that the vector $\partial \ell/\partial x(x, y, z)$ is a multiple of x. Same for y and z. In other words, considering the system in $\mathbb{P}^n \times \mathbb{P}^m \times \mathbb{P}^p$, we can hide the variables α, β, λ and x, y, z.

$$\begin{align*}
x_j\partial \ell/\partial x_i(x, y, z) &= x_j\partial \ell/\partial x_i(x, y, z), \quad 0 \leq i < j \leq n, \\
y_j\partial \ell/\partial y_i(x, y, z) &= y_j\partial \ell/\partial y_i(x, y, z), \quad 0 \leq i < j \leq m, \\
z_j\partial \ell/\partial z_i(x, y, z) &= z_j\partial \ell/\partial z_i(x, y, z), \quad 0 \leq i < j \leq s.
\end{align*}$$

Given that ℓ is trilinear, the expression $x_j\partial \ell/\partial x_i(x, y, z)$ is equal to $\ell(x, e_i, y, z)$, where $e_i \in \mathbb{R}^{n+1}$ is the vector with 1 in the i-coordinate and 0 in the rest. Same for y and z. Summing up, the extreme points of ℓ satisfy the following system of equations in $\mathbb{R}^{n+1} \times \mathbb{R}^{m+1} \times \mathbb{R}^{r+1}$.

$$\begin{align*}
\ell(x, e_i - x, e_j, y, z) &= 0, \quad 0 \leq i < j \leq n, \\
\ell(x, y, e_i - y, e_j, z) &= 0, \quad 0 \leq i < j \leq m, \\
\ell(x, y, z, e_i - z, e_j) &= 0, \quad 0 \leq i < j \leq s, \\
x^2_0 + \ldots + x^2_n &= 1, \\
y^2_0 + \ldots + y^2_m &= 1, \\
z^2_0 + \ldots + z^2_s &= 1.
\end{align*}$$

11
If \(\ell \) is generic, we may assume that the extreme points are finite. Note that we have more equations than variables. Enumerate the equations, \(f_1, \ldots, f_k \), and let \(r \) be the number of solutions. We are going to apply our method to the system of polynomial equations \(f_1, \ldots, f_k \), and to \(\ell \). Let \(\lambda_1, \ldots, \lambda_r \) be eigenvalues of \(M_1 + M_2 F \) assigned to the solutions of the system \(f_1 = \ldots = f_k = 0 \) and to the generic trilinear form \(\ell \). If \(|\lambda_i| \geq |\lambda_i|, 2 \leq i \leq r \), then \(|\lambda_i| \) is the maximum value of \(\ell \) over \(\bar{S}^n \times \bar{S}^m \times \bar{S}^r \).

The following examples were computed using the algorithm programmed in Octave, see Appendix A for a similar code.

Example. Let \(\ell : \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \) be the following trilinear form

\[
\ell(x, y, z) = 4x_1y_1z_1 + x_2y_1z_1 - 5x_1y_2z_1 - 5z_1x_2y_2 + 2x_1y_1z_2 - 7y_1x_2z_2 - 9x_1y_2z_2 - 6x_2y_2z_2.
\]

Then the maximum is,

\[
\max_{\|x\|=\|y\|=\|z\|=1} |\ell(x, y, z)| = 12.87128226.
\]

Example. Let \(\ell : \mathbb{R}^3 \times \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \) be the following trilinear form

\[
\ell(x, y, z) = 4x_1y_1z_1 + x_2y_1z_1 + 6x_3y_1z_1 - 5x_1y_2z_1 - 5z_1y_2x_2 - 6z_1y_2x_3 + 2x_1y_1z_2 - 7y_2x_2z_2 - 3x_3y_1z_2 - 9y_2z_2x_1 - 6y_2z_2x_2 - 9y_2z_2x_3.
\]

Then the maximum is,

\[
\max_{\|x\|=\|y\|=\|z\|=1} |\ell(x, y, z)| = 16.81951586.
\]

Example. Let \(\ell : \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R} \) be the following trilinear form

\[
\ell(x, y, z) = -x_3y_1z_3 + 4x_1y_1z_1 + 3x_3y_2z_1 - 6x_1y_3z_2 - 3y_1z_1x_2 + 4x_3y_1z_1 - 9x_1z_1y_2 + 7z_1x_2y_2 - 5x_1y_3z_1 + 8x_2y_3z_1 + 2x_3y_2z_1 + 2x_1y_1z_2 - 6y_1z_2x_2 - 3x_3y_1z_2 + 9z_2x_2y_2 + 3x_2y_3z_2 + 5x_3y_3z_2 - 5x_1y_1z_2 - 9y_1z_1x_2 - 7x_1z_1y_2 - 2x_3y_2z_1 + 6x_1y_3z_1 + 7x_2y_3z_1 - 10x_3y_1z_1 + x_1z_2y_2 + x_3y_2z_2.
\]

Then the maximum is,

\[
\max_{\|x\|=\|y\|=\|z\|=1} |\ell(x, y, z)| = 19.57534001.
\]

Acknowledgments.

This work was supported by CONICET, Argentina. The author would like to thank Federico Quallbrunn and Ariel Molinuevo for helping him understanding this topic. Thanks are also due to Manuel Dubinsky for his help in Section 5 and Appendix A.
A. Octave code.

Let us write a Octave code to solve a system of two polynomials in two variables. First of all we will identify a polynomial \(f \) with the following data structure,

\[
f(x_1, \ldots, x_n) = \sum_{w \in \mathcal{A} \cap \mathbb{Z}^n} c_w x_1^{w_1} \cdots x_n^{w_n}, \quad \mathcal{A} \cap \mathbb{Z}^n = \{v_1, \ldots, v_p\},
\]

\[
f_{\text{mon}}[i] = v_i, \quad f_{\text{coef}}[i] = c_v, \quad 1 \leq i \leq p, \quad f_{\text{terms}} = p.
\]

It is easy to write a program that prints a polynomial,

```octave
function s=printPoly(f)
    s="";
    for i=1:f.terms
        v=f.mon{i};
        n=size(v,2);
        l=f.coef{i};
        if(i==1||l<0)
            s=strcat(s,num2str(l));
        else
            s=strcat(s,"+",num2str(l));
        end
        for j=1:n
            s=strcat(s,"*x[",num2str(j),"]^",num2str(v(j)));
        end
    end;
end
```

Another useful program is the evaluation of \(f \) at a point \((x_1, \ldots, x_n)\),

```octave
function y=evalPoly(f,x)
    y=0;
    for i=1:f.terms
        v=f.mon{i};
        l=f.coef{i};
        y+=l*prod(x.^v);
    end;
end
```

Finally, here is the Octave code that solves a system of two polynomials in two variables using \(f_0 \) a linear form, \(f_1 \) a polynomial of degree 5 and \(f_2 \) of degree 7. The reader may change the values.

```octave
d=[1,5,7];
e=sum(d);
%d\%Generate random polynomials of degree d_k
for k=1:size(d,2)
    cont=1;
    for i=0:d(k)
        for j=0:d(k)
            if i+j<d(k)
                f{k}.mon(cont)=[i,j];
                f{k}.coef(cont)=round(rand*20-10);
                cont++;
            end
        end
    end
    f{k}.terms=cont-1;
end
```
%Generate monomial bases of S_{e-d_k}
for $k=1:\text{size}(d,2)$
 cont=1;
 for $i=0:e-d(k)$
 for $j=0:e-d(k)$
 if $i+j=e-d(k)$
 mons(k).pos{cont}=[i,j];
 cont++;
 end
 end
 end
 mons(k).siz=cont-1;
end;
%Generate monomial basis of S_e appending the monomials from S_{e-d_1}.
%For technical reasons, the monomials are shifted by one.
monE=zeros(e+1,e+1);
for $i=1:\text{mons(1).siz}$
 v=mons(1).pos{i};
 monE(v(1)+1,v(2)+1)=i;
end;
cont=mons(1).siz+1;
for $i=0:e$
 for $j=0:e$
 if $(i+j\leq e \text{ and } monE(i+1,j+1)==0)$
 monE(i+1,j+1)=cont;
 cont++;
 end
 end
end
monE_siz=cont-1;
%Generate Matrix M
M=[];
%Generate Matrix decomposition,
M11=M(1:mons(1).siz,1:mons(1).siz);
M12=M(1:mons(1).siz,mons(1).siz+1:size(M,2));
M21=M(mons(1).siz+1:size(M,1),1:mons(1).siz);
M22=M(mons(1).siz+1:size(M,1),mons(1).siz+1:size(M,2));
%Compute left eigenvectors
F=M22\(-M21);
res=M11+M12*F;
[v,l]=eig(res');
%Find solutions
for $k=1:\text{size}(v,2)$
 if abs(v(1,k))>0
 posx1=monE(2,1);
 posx2=monE(1,2);
 x=[v(posx1,1),v(posx2,1)]/v(1,k);
 if norm([evalPoly(f(1),x),evalPoly(f(2),x),evalPoly(f(3),x)])<1
The following table shows the time in seconds used to solve Step 1 through 4 of the algorithm. In the first column appears the degree of the polynomials, in the second the time of our method and in the third, the time used with a Gröbner Basis algorithm. All the computations were made on a 2.1GHz CPU, with 2GB of memory. We used part of the previous code to generate the second column and we used the following Maple 11 code to generate the third column,

\[
G := \text{Basis}([f[2], f[3]], \text{tord}) ;
\]
\[
\text{ns, rv} := \text{NormalSet}(G, \text{tord}) ;
\]
\[
\text{mulMat} := \text{MultiplicationMatrix}(f[1], \text{ns, rv}, G, \text{tord}) ;
\]
\[
\text{evalf}(\text{eigenvectors}((\text{evalf}((\text{mulMat})))));
\]

The resulting table is the following,

degrees	Steps 1-4	Gröbner
(1, 5, 7)	0.24	2.56
(1, 5, 9)	0.37	4.91
(1, 5, 11)	0.56	9.77
(1, 7, 9)	0.62	14.46
(1, 7, 11)	0.89	25.19
(1, 9, 11)	1.34	57.67
(1, 11, 11)	2.04	114.24

References.

[1] T. M. Apostol, *Mathematical analysis*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., second ed., 1974.
[2] W. Auzinger and H. J. Stetter, *An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations*, in Numerical mathematics, Singapore 1988, vol. 86 of Internat. Schriftenreihe Numer. Math., Birkhäuser, Basel, 1988, pp. 11–30.
[3] D. N. Bernstein, *The number of roots of a system of equations*, Funkcional. Anal. i Priložen., 9 (1975), pp. 1–4.
[4] D. A. Cox, J. Little, and D. O’Shea, *Using algebraic geometry*, vol. 185 of Graduate Texts in Mathematics, Springer, New York, second ed., 2005.
[5] D. A. Cox, J. B. Little, and H. K. Schenck, *Toric varieties*, vol. 124 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2011.
[6] A. Dickson and I. Z. Emiris, eds., *Solving polynomial equations*, vol. 14 of Algorithms and Computation in Mathematics, Springer-Verlag, Berlin, 2005. Foundations, algorithms, and applications.
[7] I. Z. Emiris, *On the complexity of sparse elimination*, J. Complexity, 12 (1996), pp. 134–166.
[8] W. Fulton, *Introduction to toric varieties*, vol. 131 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.
[9] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, *Discriminants, resultants, and multidimensional determinants*, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994.
[10] L.-H. Lim, *Singular values and eigenvalues of tensors: a variational approach*, in Computational Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on, dec. 2005, pp. 129 –132.
[11] A. McLennan, *The maximum number of real roots of a multihomogeneous system of polynomial equations*, Beiträge Algebra Geom., 40 (1999), pp. 343–350.