Characterization study on recycled coarse aggregate for its utilization in concrete – A review

S Jagan, Neelakantan T R, Lakshmikantha Reddy and Gokul Kannan R
School of Environmental and Construction Technology, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, India – 626126

Abstract: Industrialization and urbanization are two major factors that contribute to the scarcity in construction materials furthermore leading to dependency on alternative materials in construction. Consequently, rehabilitation and retrofitting of structures leads to the generation of Construction and Demolition (C&D) waste which is to be effectively reutilized/disposed. Such C&D wastes can be reutilized as coarse aggregates in concrete termed as recycled aggregate concrete to achieve sustainability in construction. Presence of adhered mortar on the surface of recycled aggregates tends to reduce the quality of recycled aggregate concrete. This paper reviews the statistical data on the generation of C&D wastes around the globe and its percentage of reutilization with a comparison on physical characteristics of C&D wastes with natural coarse aggregate in concrete. Comparative studies on the physical characteristics of recycled aggregates performed by various researchers embark with conclusive remarks to specify its limitation on utilization in structural applications due to the presence of adhered mortar on its surface.

Keywords: Construction and Demolition wastes, Recycled Aggregate Concrete, Adhered mortar, Physical characteristics, Sustainability

1. INTRODUCTION

Industrialization and Urbanization had emerged at its peak due to increased population depleting the natural resources. On the other hand, it leads to the shortage of natural resources and generation of huge amount of solid wastes. Among all, the construction sector plays a major role in procuring the natural resources and generating wastes what we call it as Construction and Demolition (C&D) wastes. Such C&D wastes are generated by the demolition of roads and old buildings which were being dumped in the landfills. Aggregates are inert, granular materials used as a binding medium in the concrete. Such aggregates may be igneous, sedimentary or metamorphic based on its origin. C&D wastes generated can be used as aggregates in concrete to overcome the scarcity of aggregates. In urban areas, development in construction due to technology advancement necessitated the higher quantities of raw materials compared to rural areas. Under such circumstances, one among the 3R approach (Recycle, Reduce and Reuse), recycling will be the best option. Alternatively, the technological advancement necessitated the production of concrete close to tonnes per capita [1, 2]. Among that nearly one-third end up as C&D wastes [3]. According to World Business Council for Sustainable Development (WBCSD), the global demand in aggregates rose to 3.8tonnes per capita which necessitated an alternative eco-friendly material as a substitute for Natural Coarse Aggregates (NCA). Implementing the concept of 3R approach in the field of construction would yield better results over the infrastructural development, connectivity of roads etc. C&D wastes may comprise of steel rods, broken bricks, woods, concrete, etc. or a combination of the above. Among them, concrete as Recycled Coarse Aggregates (RCA) are prevalently used either in the form of coarser or finer as...
filler medium. Utilization of such finer or coarser RCA as a partial or complete replacement to Natural Coarse Aggregates (NCA) developed a new era in concrete termed as “Recycled Aggregate Concrete (RAC)”. RCA is an inert material with adhered cement mortar smeared on it as on from parent concrete. Numerous research works have been carried out to study the characteristics of RCA, its mechanical properties and durability properties of raw RAC [4-9]. Various properties of RCA to be tested before its utilization in concrete include adhered mortar content, density, and method of recycling, water absorption, gradation, crushing and abrasion resistance and specific gravity [10-17]. This paper reviews various factors that contribute to the destitute physical characteristics of RCA in comparison with NCA to evaluate its level of utilization in concrete.

2. GENERATION OF C&D WASTES

Research on RAC began in early 1940s due to the high generation of C&D wastes. The first patent of RAC was Jason Buesing from USA. The first pioneer to work Recycled aggregate concrete was Nixon in 1977 who prepared a review report on work carried out on Recycled aggregate concrete from 1945 to 1977. Generation of C&D waste around the globe every year is shown in figure 1. Typical composition of C&D wastes in India is shown in figure 2 [18].

![Figure 1. Generation of C&D wastes](image1.png)

![Figure 2. Composition of C&D wastes in India](image2.png)

3. GUIDELINES ON THE UTILIZATION OF RCA IN CONCRETE

Despite the reutilization of RCA in concrete as a suitable option, limitation on the percentage of utilization was obligated by various countries due to its poor quality. RCA collected through crushing technique from various retrofitted and rehabilitated structures do not possess the same characteristics
of NCA. Consequently, guidelines on the percentage of utilization of RCA were outlined by various countries as shown in figure 3.

![Figure 3](image-url)
Figure 3. Utilization of RCA in concrete

4. PHYSICAL CHARACTERISTICS OF RECYCLED COARSE AGGREGATE (RCA)

Various physical characteristics of RCA to be tested before its utilization in concrete include adhered mortar content, density, and method of recycling, water absorption, gradation, crushing and abrasion resistance and specific gravity [14-17, 19, 20]. It was found that the quantity of adhered mortar depends on the size of coarse aggregate. Adhered mortar on the surface of RCA will be more if the size of Coarse Aggregate (CA) is less [21]. Concerning to the shape or texture of RCA, it is highly influenced by the type of crusher and method of production of RCA [22]. Also, the strength of the RCA produced mainly depends on the strength of the parent concrete, as high strength concrete resulted in the RCA with better properties [15]. Crushed RCA used as an aggregate in concrete contains ample adhered mortar on the surface which prevents the interlock with the matrix for efficient load transfer. Physical characteristics study on RCA and NCA performed by various researchers is given in table 1.

References	G	WA	D	CV	AV	G	WA	D	CV	AV
[23]	2.58	5	-	27.3	23.8	2.64	0.8	-	-	-
[24]	2.46	6.6	14.18	31.52	36.56	2.72	4.74	16.54	15.11	19.72
[25]	9.15	-	14.9	-	-	0.45	14.66	4.12	-	-
[26]	2.65	1.65	-	27.3	-	2.76	0.3	-	16.8	-
[27]	2.65	3.16	12.7	-	-	2.72	0.05	14.35	-	-
[28]	2.26	5.6	-	21	32	2.63	0.3	-	6	15
[29]	2.5	2.76	13.4	28.87	29.24	2.67	0.42	16.30	27.12	26
[30]	2.41	6.2	12.41	27.7	30	2.63	1.1	15.91	18	21
[31]	2.59	5.67	-	-	-	2.68	0.24	-	-	-
[32]	2.81	7.16	-	8.8	-	2.89	0.57	-	3.1	-
[33]	2.53	8.49	13	-	37.96	2.59	2.29	15.30	-	28.52
[34]	2.46	5.4	-	-	40	2.61	0.5	-	-	34
[35]	2.63	5.2	13.96	-	-	2.73	1.2	16.22	-	-
[36]	2.74	3.58	-	-	-	2.66	0.69	-	-	-
[37]	2.22	6.12	-	-	-	2.71	2.01	-	-	-
[38]	2.33	4.44	-	29.15	-	2.6	0.6	-	24.32	-
Effective particle packing of aggregates performed by sieve analysis will tend to reduce the binder content in concrete. For RCA, optimization of particle packing yielded a well-packed structure resulting in the improved strength of RCA confirming to Fuller Thompson equation and gradation curves [23]. Particle packing of RCA as shown in figure 5 was inferior to NCA due to the presence of adhered mortar, quality of parent concrete, loosening effect and wedge effect as the amount of RCA increases [24-29]. Perhaps [30], quality of parent concrete had direct impact over the better packing of RCA, as the RCA obtained from high strength concrete had better particle packing to those obtained from low strength concrete. Researchers conclude that RCA with better packing technology can be achieved by subjecting the RCA to successive crushing and screening stages with oversized material returned to respective crusher followed by better optimization, quality of parent concrete, shape, and surface texture, quantity of adhered mortar and use of large-sized aggregates [1, 31, 32, 25-30, 33]. All these physical characteristics tend to affect the interfacial transition zone of RAC. Interfacial transition zone (ITZ) is the zone of efficient load transfer between the cement matrix and the aggregate. During gradual application of load in Normal Strength Concrete (NSC), the zone of crack occurs along the ITZ,

References	G	WA	D	CV	AV	G	WA	D	CV	AV
[39]	2.622	5.91	24.45	-	-	2.79	0.3	15.08	27	29
[40]	2.38	1.57	12.39	36	45	2.86	1.15	-	24.67	14.68
[41]	2.41	9.7	32.95	24.92	-	2.67	1.56	16.35	-	-
[42]	2.38	1.56	12.39	36	45	2.79	0.3	15.08	27	29
[43]	2.47	6.48	13.92	-	-	2.89	0.5	-	9.25	7.6
[44]	2.15	4.5	16.5	17	2.89	0.5	-	-	-	-
[45]	-	5.5	-	-	-	-	-	-	-	-
[46]	2.48	4.469	14.09	26.51	-	2.83	1.1	19.70	23.16	-
[47]	-	4.35	-	18	-	-	-	-	-	-
[48]	-	6.1	22.49	27.8	-	0.8	25.74	18	-	-
[49]	-	-	7.52	26.36	-	-	-	-	-	-
[50]	2.53	8.06	-	18.6	-	-	-	-	-	-
[51]	2.33	4.44	-	29.15	-	2.6	0.6	-	24.32	-
[52]	-	11.82	23.26	-	-	0.93	26.20	-	-	-
[53] w/b ratio 0.255	-	4.07	-	10.28	-	1.12	-	6.82	-	
[53] w/b ratio 0.586	-	7.89	-	15.54	-	1.12	-	6.82	-	
[54]	-	6.4	25.7	10.4	-	1.5	27.63	6.5	-	
[55]	2.34	7.96	-	-	-	2.57	0.8	-	-	-
[56]	2.38	4.75	-	-	-	2.75	0.73	-	-	-
[57]	-	4.1	26.5	14.2	-	0.7	27.30	10.1	-	-
[58]	-	7.4	-	35	37	0.5	-	21	18	-

G – specific Gravity, WA – Water Absorption, D – Density, CV – Crushing Value, AV – Abrasion Value

5. DISCUSSIONS

Percentage variation in the various physical characteristics of RCA in comparison with NCA is shown in Figure 4. All the physical properties of RCA tend to fall within the BIS limit specification except the water absorption. Water absorption of RCA tends to increase nearly 96% compared to NCA after 24 hours. This attribute is due to the presence of adhered mortar, quality of parent concrete, and method of crushing, mixing approach, surface texture, Interfacial Transition Zone, and size of RCA. Among them, presence of adhered mortar plays a vital role as it posse’s micro-cracks on its surface that tend to absorb more affecting the strength and durability of RCA. Quantity of adhered mortar mainly depends on the size of the aggregates as the adhered mortar on the surface of RA will be more if the size of coarse aggregate is less [16]. Concerning to the shape or texture of RA, it is highly influenced by the type of crusher and method of production of RA [17]. Effective particle packing of aggregates performed by sieve analysis will tend to reduce the binder content in concrete. For RCA, optimization of particle packing yielded a well-packed structure resulting in the improved strength of the RAC confirming to Fuller Thompson equation and gradation curves [23].
where the zone of crack occurs through the aggregate in High Strength Concrete (HSC). In case of RAC, the condition is different, as the RAC has two interfacial transition zones i.e. first between the normal coarse aggregate and old mortar and second between the recycled aggregate and new adhesion mortar [34]. Strength of ITZ mainly depends on the water binder ratio, as water binder ratio increases, older ITZ gets strengthened thereby increasing the strength of RAC [9]. This instance goes in accordance with w/c ratio also, as lower w/c ratio increases the strength of ITZ [30] which was evident from the study of denser ITZ formation in high-performance concrete [35]. Furthermore, condensed micro cracks were observed in the zone of ITZ with concrete having lower w/c ratio [36]. This is due to the crushing of old concrete to produce RAC, where excessive cracking was observed on the surface of adhered mortar [3].

Figure 4. Variation in physical characteristics of RCA
6. MICRO-STRUCTURAL ANALYSIS ON NCA AND RCA

A SEM investigation on the microstructure of NCA and RCA is shown in the Figure 6. ITZ forms the efficient zone of transfer for a concrete with regard to its structural properties. In comparison of RCA with NCA, it could be observed that adhered mortar (loose cement paste) was present on its surface that tends to affect the quality of RCA. Furthermore, the ITZ of RCA(c) is much wakened compared with ITZ of NCA (a). This attribute is due to the excessive water absorption by the adhered mortar on the surface of RCA. This in turn affects the strength and durability properties of RAC thereby limiting its utilization in concrete for the structural applications.

Figure 5. Particle Size distributions of Normal Coarse Aggregates and Recycled Coarse Aggregates

Figure 6. SEM images of NCA and RCA
7. RECOMMENDATIONS

This paper presents a review on various physical properties of RCA and its level of utilization in concrete. On a whole C&D waste generation increases rapidly over the years among which only 15-20% were re-utilized. So a necessary step of reutilizing the C&D wastes with standard norms has to be incorporated. Physical properties of RCA is zone dependent, quality of parent concrete, presence of adhered mortar and its operational technologies. The major drawback in the utilization of RCA in concrete is the presence of adhered mortar on its surface. Adhered mortar on the surface of RCA possesses micro-cracks which absorb more water thereby affecting its strength and durability properties. Summing up, the property of RAC was greatly influenced by the quality of RCA, presence of adhered mortar, weaker ITZ zone, and nature of the parent concrete, w/b ratio, w/c ratio, and the mixing approaches. Proper surface saturation of RCA in concrete would be an optimal solution to reduce the water absorption during concrete mixing that is available during the hydration process of cement. This in turn may improve the quality of RAC to certain extent.

REFERENCES

[1]. Neville, A.M. 2003 Properties of Concrete, ACI International, Farmington Hills, MI.
[2]. Tu, T. Y., Chen, Y. Y., Hwang, C. L. 2006 Properties of HPC with recycled aggregates Cement and Concrete Research 36 943-950.
[3]. Katz, A. 2004 Treatments for the improvement of recycled aggregate Journal of Materials in Civil Engineering 16 597-603.
[4]. Cui, H. Z., Xian, Shi., Shazim, Ali, M., Feng, Xing., Waiching, Tang. 2015 Experimental Study on the Influence of Water Absorption of Recycled coarse Aggregates on Properties of the Resulting Concretes Journal of Materials in Civil Engineering 27 2015
[5]. Ho, N.Y., Yang, P.K.L., Wee, F.L., Tarek, Z., Keat, C.C., Giau, L.L., Seng, K.T. 2013 Efficient Utilization of Recycled Concrete Aggregate in Structural Concrete Journal of Materials in Civil Engineering 25 2013.
[6]. Matias, D., Brito, J., Rosa, A., Pedro, D. 2013 Mechanical Properties of concrete produced with recycled coarse aggregates– Influence of the use of super plasticizers Construction and Building Materials 44 101–109.
[7]. Wu, J.Y., Zhu, P.H. 2013 Review on frost resistance property of recycled aggregates concrete Concrete 282 15–19.
[8]. Qin, H., Yang, Y. 2016 Influence of the interfacial transition zone on anti-chloride ion permeability of recycled concrete Highway Engineering 41 70–74.
[9]. Otsuki, N., Miyazato, S.I., Yodsudjai, W. 2003 Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete Journal of Materials in Civil Engineering, 15 443–451.
[10]. Xu, Y.Z., Shi, J.Q. 2006 Analyses and evaluation of the behavior of recycled aggregate and recycled concrete Concrete 7 41-46.
[11]. Hansen, T.C., Boegh, E. 1985 Elasticity and drying shrinkage concrete of recycled-aggregate In: Journal Proceedings 82 648-652.
[12]. Katz, A. 2003 Properties of concrete made with recycled aggregate from partially hydrated old concrete Cement and Concrete research 33 703-711.
[13]. Shayan, A., Xu, A. 2003 Performance and properties of structural concrete made with recycled concrete aggregate ACI Materials Journal 100 371–380.
[14]. Tavakoli, M., Soroushian, P. 1996 Strengths of aggregate concrete made using field-demolished concrete as aggregate ACI Materials Journal 93 182–190.
[15]. Prasad, M.L.V., Rathish Kumar, P. 2007 Strength studies on glass fiber reinforced recycled aggregate concrete Asian Journal of Civil Engineering (building and housing) 8 677-690.
[16]. Juan De, M.S., Gutiérrez, P.A. 2009 Study on the Influence of Attached Mortar Content on the Properties of Recycled Concrete Aggregate Construction and Building Materials 23
[17]. Exteberria, M., Vasquez, E., Mari, A.R. 2007 Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete *Cement and Concrete Research* 37 735–742.

[18]. Guidelines on environmental management of C&D wastes, *Pollution control board*, 2017.

[19]. Lagerblad, B. 1999 Normal and High strength concrete with conventional aggregate Engineering and transport properties of the interfacial transition zone in cementitious composites, *RILEM Rep.* 20, Alexander et al., eds., RILEM, France, 53–70.

[20]. Goldman, A., Bentur, A. 1993 Influence of micro fillers on enhancement of concrete strength *Cement and Concrete Research* 23 962–972.

[21]. Bentur, A., and Kjellsen, K. O. 1999 Normal and high strength concrete with lightweight aggregates, Engineering and transport properties of the interfacial transition zone in cementitious composites *RILEM Rep.* 20 Alexander et al., eds., RILEM, France pp. 71–88.

[22]. Kong, De., Ting, Lei., Zheng, J., Chengchang, M., Jiang, Jun., Jing, J. 2010. Effect and mechanism of surface-coating pozzolanic materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete *Construction and building materials* 24 701- 708.

[23]. Joseph Puthussery., Rakesh Kumar., Anurag Garg. 2017. Evaluation of recycled concrete aggregates for their suitability in construction activities: An experimental study *Waste Management* 60 270-276.

[24]. Bibhuti Bhusan Mukharjee., Sudhirkumar V. Barai. 2015. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste *Waste Management Research* 33 515-523.

[25]. Hai-long Wang., Jun-jie Wang., Xiao-yan Sun., Wei-liang Jin. 2013. Improving performance of recycled aggregate concrete with superfine pozzolanic powders *Journal of Central South University* 20 3715-3722.

[26]. Major Rakshvir., Sudhirkumar V. Barai. 2006. Studies on recycled aggregates-based Concrete *Waste Management & Research* 24 225-233.

[27]. Chunheng Zhou., Zongping Chen. 2017. Mechanical properties of recycled concrete made with different types of coarse aggregate *Construction and Building Materials* 134 497-506.

[28]. Jozef Junaka, Alena Sicakova. 2017. Concrete containing recycled concrete aggregate with modified surface *Procedia Engineering* 180 1284-1291.

[29]. Surya Maruthupandian., Kanta Rao Vvl., Lakshmy Parameswaran. 2013. Recycled Aggregate Concrete for Transportation Infrastructure *Procedia - Social and Behavioral Sciences* 104 1158-1167.

[30]. Abdulla NA. 2014. Effect of Recycled Coarse Aggregate Type on Concrete, *Journal of Materials in Civil Engineering* 27 1-9.

[31]. Cui, H.Z., Shi, X., Memon, S.A., Xing, F., Tang, W. 2015. Experimental study on the influence of water absorption of recycled coarse aggregates on properties of the resulting concretes *Journal of Materials in Civil Engineering* 27 04014138.

[32]. Yue Geng., Yuyin Wang., Jie Chen. 2015. Time-Dependent Behavior of Recycled Aggregate Concrete–Filled Steel Tubular Columns *Journal of Structural Engineering* 141 04015011.

[33]. Gomes, M., de Brito, J., Bravo, M. 2014. Mechanical performance of structural concrete with the incorporation of coarse recycled concrete and ceramic aggregates. *Journal of Materials in Civil Engineering* 26 04014076.

[34]. Nyok Yong Ho., Yang Pin Kelvin Lee., Wee Fong Lim., Tarek Zayed., Keat Chuan Chew., Giau Leong Low., Seng Kiong Ting. 2013. Efficient Utilization of Recycled Concrete Aggregate in Structural Concrete *Journal of Materials in Civil Engineering* 25 318-327.

[35]. Huda, S. B., Alam, M. S. 2014. Mechanical behavior of three generations of 100% repeated recycled coarse aggregate concrete *Construction and Building Materials* 65 574-582.

[36]. Otsuki, N., Miyazato, S., Yodsudjai, W. 2003. Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete *Journal of*
Materials in Civil Engineering 15 443-451.

[37]. Ozbakkaloglu T, Gholampour A, Xie T. 2018. Mechanical and Durability Properties of Recycled Aggregate Concrete: Effect of Recycled Aggregate Properties and Content Journal of Materials in Civil Engineering 30 04017275.

[38]. Ismail, S., Ramli, M. 2013. Engineering properties of treated recycled concrete aggregate (RCA) for structural applications Construction and Building Materials 44 464-476

[39]. Al-Bayati, H. K. A., Das, P. K., Tighe, S. L., Baaj, H. 2016. Evaluation of various treatment methods for enhancing the physical and morphological properties of coarse recycled concrete aggregate Construction and Building Materials 112 284-298

[40]. Kothari B. R., Abhay Shelar. 2016. Experimental Investigation of Recycle Concrete Aggregate International Journal for Innovative Research in Science & Technology 3 511-515.

[41]. Kukadia, V. P., Parekh, D. N., Gajjar, R. K. 2017. Influence of Aggregate’s Treatment on Properties of Recycled Aggregate Concrete International Journal of Civil Engineering and Technology 8 351-361

[42]. Revathi, P., Amirthavalli, R. R, Lavanya Karan. 2015. Influence of Treatment Methods on the Strength and Performance Characteristics of Recycled Aggregate Concrete Journal of Materials in Civil Engineering 27 04014168.

[43]. Manoj, B., Saravanakumar, P. 2015. Effect of Sulfuric Acid Treated Recycled Aggregates on Properties of Concrete International Journal of ChemTech Research 8 476-482.

[44]. Shrinath, H., Bharat Kumar, Avinash, Sumit, Vinod kumar L. Influence of Treatment Methods on Recycled Aggregate Concrete made with Recycled Coarse Aggregate, International Journal of Science and Engineering Development Research, 2016, 1(5): 836-842.

[45]. Grabiec Anna, M., Justyna, Klama., Daniel, Zawa.l, Daria, Krupa. 2012. Modifications of recycled concrete aggregate by calcium carbonate deposition Construction and Building Materials 34: 145-150.

[46]. Kirtikanta Sahoo., Manoranjan Arakha., Pradip Sarkar., Robin Davis, P., Suman Jha. 2016. Enhancement of properties of recycled coarse aggregate concrete using bacteria International Journal of Smart and Nano Materials 7 22-38.

[47]. Mimi Zhan., Ganghua Pan., Yaping Wang., Minghua Fu., Xiaojun Lu. 2019. Recycled aggregate mortar enhanced by microbial calcite precipitation Magazine of Concrete Research 72 622-633.

[48]. Dongxing Xuan., Baojian Zhan., Chi Sun Poon. 2016. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates Cement and Concrete Composites 65: 67-74.

[49]. Bao Jian Zhan., Dong Xing Xuna., Weilai Zenga., Chi Sun Poon. 2019. Carbonation treatment of recycled concrete aggregate: Effect on transport properties and steel corrosion of recycled aggregate concrete, Cement and Concrete Composites 104 1-8.

[50]. Zhang, J., Shi, C., Li, Y., Pan, Xi. 2015. Performance Enhancement of Recycled Concrete Aggregates through Carbonation Journal of Materials in Civil Engineering 27 1-7.

[51]. Ismail, S., Ramli, M. 2014. Mechanical strength and drying shrinkage properties of concrete containing treated coarse recycled concrete aggregates Construction and Building Materials 68 726-739

[52]. Kou, S.C., Bao-jian, Z., Chi-Sun, P. 2014. Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates Cement & Concrete Composites 45 22-28

[53]. Gai-Fei Peng., Yan-Zhu Huang., Hai-Sheng Wang., Jiu-Feng Zhang., Qi-Bing Liu. 2013 Mechanical Properties of Recycled Aggregate Concrete at Low and High Water/Binder Ratios Advances in Materials Science and Engineering 1 1-6

[54]. Hongru, Zhang., Yuxi, Zhao., Tao, Meng., Surendra, P Shah. 2016. Surface Treatment on Recycled Coarse Aggregates with Nanomaterial, Journal of Materials in Civil Engineering, 28
[55]. Anggun Tri Atmajayanti., Chrisyanto Daniel Saragih G., Yanuar Haryanto. 2018. The effect of recycled coarse aggregate (RCA) with surface treatment on concrete mechanical properties MACTEC web of conferences 195 04015094.

[56]. Kim, J. J., Youn, S. H., Cho, M. J., Shin, H. T, Yoon, J. B., Hwang, K. H., Lee, D. S. 2005. The Recycled Aggregates with Surface Treatment by Pozzolanic Key Engineering Materials, 287 63-68.

[57]. Zhao, Zhihui., Wang, Shoude., Lingchao, Lu., Gong, Chenchen. 2013. Evaluation of pre-coated recycled aggregate for concrete and mortar Construction and Building Materials 43 191-196

[58]. Wafaa, Mohamed Shaban., Jian, Yang., Haolin, Su., Qing-feng, Liu., Daniel, CW Tsang., Lei, Wang., Jianhe, Xie., Lijuan, Li. 2019. Properties of recycled concrete aggregates strengthened by different types of pozzolan slurry Construction and Building Materials 216 632-647