Precipitation trends determine future occurrences of compound hot–dry events

Emanuele Bevacqua, Giuseppe Zappa, Flavio Lehner and Jakob Zscheischler

Compound hot–dry events—co-occurring hot and dry extremes—frequently cause damages to human and natural systems, often exceeding separate impacts from heatwaves and droughts. Strong increases in the occurrence of these events are projected with warming, but associated uncertainties remain large and poorly understood. Here, using climate model large ensembles, we show that mean precipitation trends exclusively modulate the future occurrence of compound hot–dry events over land. This occurs because local warming will be large enough that future droughts will always coincide with at least moderately hot extremes, even in a 2 °C warmer world. By contrast, precipitation trends are often weak and equivocal in sign, depending on the model, region and internal climate variability. Therefore, constraining regional precipitation trends will also constrain future compound hot–dry events. These results help to assess future frequencies of other compound extremes characterized by strongly different trends in the drivers.

To estimate the influence of internal climate variability, each of the seven SMILEs is run multiple times from different initial conditions, resulting in multiple ensemble members that span a range of plausible climates and associated future compound hot–dry (HD) uncertainties, which arise due to model-to-model differences in the intermodel range of the ensemble mean of future climate models (see Methods for details).

We focus on land masses and characterize hot–dry events on the basis of temperature and precipitation means over the warm season (the climatologically hottest three consecutive months), which is when the impacts from the compound event are generally most pronounced. We highlight that our main conclusions also apply to the wettest season, which for some regions may be the season where impacts from the compound event are largest. To study the concurrence of hot and dry conditions, we compute f_{HD} as the empirical frequency (%) of concurrent extremes, that is, the count of simultaneous exceedances of temperature over its historical 90th percentile and precipitation below its historical 10th percentile (individual extremes occurring every ten years on average) divided by the total number of considered seasons.

Uncertainty in historical estimates

The global average of f_{HD} over land during the historical period (1950–1980) is about 3% (Fig. 1a; compound events occurring every 33 years on average), which implies compound hot–dry events are three times more likely to occur than expected under independence between temperature and precipitation (1% probability). These estimates are in line with earlier results based on observations and climate model simulations and are controlled by the negative correlations between temperature and precipitation over land (cor = −0.42 on average) caused by a combination of atmospheric processes and land–atmosphere interactions.

Using large-ensemble simulations from multiple models demonstrates that large sample sizes are crucial for robust estimates.
Overall, model differences in \(f_{HD} \) are relatively small (Fig. 1b). By contrast, estimates of \(f_{HD} \) based on a single climate realization are highly uncertain because of internal climate variability (Fig. 1c), indicating a wide range of possible compound-event risk estimates. For example, the compound-event frequency \(f_{HD} \pm U_{IV} \), where the range \(\pm U_{IV} \) is an estimate of the 68% uncertainty range (Methods), is 3.6 ± 3.5% at the grid cell containing Paris, France. At the global scale, the relative uncertainty \(2 \times U_{IV}/f_{HD} \) is 2.3 on average. Notably, the same metric for the frequency of (univariate) hot extremes derived from the same 31 years of data is 1.1, whereas to reach a relative uncertainty of 1.1 in \(f_{HD} \) requires 130 years of data (Extended Data Fig. 1). This highlights that estimates of compound-event frequencies are substantially more uncertain than related univariate estimates.

The uncertainty in local \(f_{HD} \) is reflected in estimates at the regional scale, which are often of interest for defining climate adaptation strategies\(^{31}\). For example, for Central Europe, Central North America and Amazon, which are at a relatively high risk of compound hot–dry events\(^{32,33}\) (Fig. 1a), the bottom 7% regionally averaged \(f_{HD} \) estimates among the ensemble members indicate frequencies in line with independence between temperature and precipitation (stippling in Fig. 1d–f), which are up to 13 times smaller than in the top 7% members (Fig. 1g–i). We conclude that estimates of the occurrence of compound hot–dry events based on relatively short climate data such as observations (<130 years) can be highly misleading as they may, by chance, indicate low compound-event risk in areas that are, instead, at high risk (or vice versa).

Trends in mean precipitation as key modulator

In a warmer climate, the global average frequency of compound hot–dry events is projected to increase to a land average of about 12% (multimodel range: 10–14%), or about four times higher compared with 1950–1980 (Fig. 2a)\(^4\). Compared with the historical period, the uncertainty in the \(f_{HD} \) estimates can be enhanced by model differences in the response to climate change and particularly in the projected regional mean warming and mean precipitation trends\(^{18}\). This would be expected as, for both temperature and precipitation, trends in mean conditions drive changes in extremes\(^{23,24}\), and therefore uncertainty in trends can affect future occurrences of univariate and compound extremes. Accordingly with this expectation, the uncertainty in local temperature trends leads to a large
In particular, models projecting a stronger increase in mean precipitation are associated with a lower frequency of concurrent hot and dry events in the future, and vice versa (mean correlation of −0.8, Fig. 3f). This relationship also holds when considering higher thresholds to define extremes, that is, potentially more impactful compound events, compound hot–dry events during the wettest season (Extended Data Fig. 4a–d) and other warming levels, as long as local warming trends are large compared with local precipitation trends (Extended Data Fig. 5 and Supplementary Information). Furthermore, while the underlying negative correlations between temperature and precipitation may favour the exclusive control of precipitation trends on future f_{HD}, results are similar when assuming zero correlation (Extended Data Figs. 5 and 6 and Supplementary Information). This indicates that a similar mechanism may govern the future dynamics of other compound events that are affected by global warming and for which trends in the drivers differ strongly in magnitude, regardless of the underlying dependencies between the compound-event drivers \cite{2,3}.

For example, the results are similar when considering compound hot–dry events defined on the basis of soil moisture rather than precipitation, that is, on the basis of soil moisture drought rather than meteorological drought (Extended Data Fig. 4e,f). Other events may include, for example, compound high-temperature and low-chlorophyll extremes in the ocean, which threaten marine ecosystems\cite{3}, sequential flood–heatwave events that slow recovery times and amplify damages\cite{4} as well as emerging novel combinations of extreme weather such as tropical cyclone–deadly heat compound events\cite{5}.

Overall, our results imply that improved modelling of precipitation trends is needed\cite{6,7,8}, to reduce uncertainties in the projection of future f_{HD}. However, we also find that about half of the uncertainty in precipitation trends (Extended Data Fig. 7c), and therefore in the future f_{HD} (Fig. 2b), is driven by internal climate variability over the majority of land masses. This means that even if precipitation trends could be constrained for some regions\cite{9,10}, uncertainties would remain high for most land areas due to ‘certain uncertainty’ from unpredictable internal climate variability\cite{11}. Hence, given model and internal variability uncertainties, for practical risk assessment, considering distinct plausible precipitation trends, that is, different climate storylines\cite{12,13}, may be a way to plan for plausible future compound-event risk.

Estimating future compound-event occurrences

Across all large-scale regions commonly used in the Intergovernmental Panel on Climate Change, the regional average of the future f_{HD} associated with different model ensemble members depends on mean precipitation trends (Extended Data Fig. 8). For example, this relationship holds over Central Europe (correlation $\text{cor}(f_{\text{HD}}, \Delta P_{\text{mean}}) = -0.9$, Fig. 4a), where model differences and internal climate variability equally contribute to uncertainties in future f_{HD} (Fig. 2b). If mean precipitation weakly increases according to a ‘wet storyline’, compound hot–dry summers would occur in one out of ten years over Central Europe on average ($f_{\text{HD}} = 10\%$, Fig. 4d). Alternatively, an equally plausible ‘dry storyline’ characterized by decreasing mean precipitation would result in more than twice as many compound hot–dry summers ($f_{\text{HD}} = 26\%$, Fig. 4g). Future f_{HD} is also controlled by mean precipitation trends over Central North America (correlation $\text{cor}(f_{\text{HD}}, \Delta P_{\text{mean}}) = -0.8$, Fig. 4b). According to the wet and dry storylines, regionally averaged compound-event frequencies range from 11% to 18%, respectively (Fig. 4e,h). The Amazon is a notable region where, contrary to most other regions, model differences dominate the uncertainties in precipitation trends (Extended Data Fig. 7c) and f_{HD} (Fig. 2b). As a result, for the Amazon, improving the representation of the processes dominating mean precipitation trends, particularly the plant physiological response to CO_2, and changes in the Atlantic meridional overturning circulation\cite{14},...
is essential for constraining estimates of future compound risk. Here, compound-event frequencies range from 20% to 42% (Fig. 4f), according to a wet and a dry storyline (cor \(f_{\text{HD}}; \Delta P_{\text{mean}}\) = –0.9, Fig. 4c).

We focused on the frequency of concurrent extremes on the basis of historical exceedance thresholds, which is a widely used indicator of the frequency of impactful compound events\[58,101,128\]. The modulation of the future frequency of concurrent extremes from trends in one of the two compound-event drivers, here precipitation, is expected to hold for other compound events as long as the trends in the drivers differ strongly in magnitude (Extended Data Fig. 5). In general, the magnitude of some compound-event-related impacts may still be affected by the magnitude of exceedance in the driver with the strong trend, here temperature. Furthermore, adaptation of human and ecological systems may render historical hazard thresholds obsolete\[65\]. However, given that many impacts are characterized by threshold behaviour in response to climate stressors, for example tree mortality\[5\], crop yields\[61\], heat stress in humans and other species\[57\], landslides\[68\] and floods\[69\], estimating compound-event frequencies on the basis of historical exceedance thresholds can be considered a suitable impact indicator\[6,9,11,13,19,31\]. We thus conclude that the mechanism identified here provides relevant information to scientists and practitioners to reduce uncertainties when dealing with complex compound-event risks in the future.

Our results demonstrate that present estimates of concurrent hot and dry extremes based on relatively short climate records (<130 years) are highly uncertain as a result of internal climate variability and thus sampling uncertainty. For future estimates, given that in a warmer climate the importance of temperature variability in determining \(f_{\text{HD}}\) uncertainties vanishes, the importance of the statistical dependence between temperature and precipitation must vanish as well. That the uncertainty in future compound-event occurrence is merely a function of uncertain precipitation trends is reflected in a strong projected reduction in the relative uncertainties of the \(f_{\text{HD}}\) (that is, \(2\times U_{\text{inf}}(f_{\text{HD}})\)) that occurs despite an increase in the absolute uncertainty (\(2\times U_{\text{inf}}(f_{\text{HD}})\)) (Extended Data Fig. 9a–d). Nevertheless, relative uncertainties in the future \(f_{\text{HD}}\) due to climate model differences (\(2\times U_{\text{MD}}(f_{\text{HD}})\)) increase in a warmer climate over about 75% of land masses (Extended Data Fig. 9e–h), again reflecting the need for a better understanding of forced precipitation trends. Because uncertainty in mean precipitation trends is strongly modulated by large-scale atmospheric circulation\[30\], our results highlight that advancing our understanding of atmospheric circulation and its change is crucial for providing stakeholders with more-robust future \(f_{\text{HD}}\) estimates. This would be especially important in case we do not meet the warming targets from the Paris Agreement because, for instance at 3°C of global warming, model differences dominate the overall uncertainties over most land masses\[77,50\] (Extended Data Fig. 10). In any case, given the difficulties in constraining large-scale atmospheric circulation\[12,13\] and the omnipresent effects of internal climate variability\[55\], exploring potential impacts associated with a range of plausible storylines derived from multimodel large-ensemble simulations will offer new opportunities to develop societal preparedness for plausible worst-case scenarios.
Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41558-022-01309-5.

Received: 4 August 2021; Accepted: 3 February 2022; Published online: 14 March 2022

References

1. Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. & Gowman, L. M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 18, 483–507 (2009).

2. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

3. Zscheischler, J. et al. Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparision based on MsTMIP data. Glob. Biogeochem. Cycles 28, 585–600 (2014).

4. von Buttlar, J. et al. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones. Biogeosciences 15, 1293–1318 (2018).

5. Ribeiro, A. F. S., Russo, A., Gouveia, C. M., Pascoal, P. & Zscheischler, J. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences 17, 4815–4830 (2020).

6. Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci. USA 112, 3931–3936 (2015).

7. Tschumi, E. & Zscheischler, J. Countrywide climate features during recorded climate-related disasters. Climatic Change 158, 593–609 (2020).

8. Hao, Y., Hao, Z., Feng, S., Zhang, X. & Hao, F. Response of vegetation to El Niño–Southern Oscillation (ENSO) via compound dry and hot events estimated with nested copulas. Biogeosciences 17, 4815–4830 (2020).

9. Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

10. Sarhadi, A., Ausin, M. C., Wiper, M. P., Touma, D. & Diffenbaugh, N. S. Multidimensional risk in a nonstationary climate: joint probability of increasingly severe warm and dry conditions. Sci. Adv. 4, eaau3487 (2018).

11. Alizadeh, M. R. et al. A century of observations reveals increasing likelihood of continental-scale compound dry–hot extremes. Sci. Adv. 6, eaaq1571 (2020).
ARTICLES

NATURE CLIMATE CHANGE

12. Manning, C. et al. Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2015). Environ. Res. Lett. 14, 094006 (2019).

13. Mazdiyasni, O. & AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl Acad. Sci. USA 112, 11484–11489 (2015).

14. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

15. Zappa, G., Bevacqua, E. & Shepherd, T. G. Communicating potentially large but non-robust changes in multi-model projections of future climate. Int. J. Climatol. 41, 3657–3669 (2021).

16. Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

17. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

18. Maher, N., Power, S. B. & Marotzke, J. More accurate quantification of model-to-model agreement in externally forced climatic responses over the coming century. Nat. Commun. 12, 788 (2021).

19. Bevacqua, E. et al. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Sci. Adv. 5, eaaw5531 (2019).

20. Berg, A. et al. Interannual coupling between summertime surface temperature and precipitation over land: processes and implications for climate change. J. Clim. 28, 1308–1328 (2015).

21. Oppenheimer, M. et al. in Climate Change 2014: Impacts, Adaptation and Vulnerability (eds Field, C. B. et al.) 1039–1100 (IPCC, Cambridge Univ. Press, 2015).

22. Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, L14703 (2005).

23. Fischer, E. M., Sedláček, J., Hawkins, E. & Knutti, R. Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett. 41, 8554–8562 (2014).

24. Nishant, N. & Sherwood, S. C. How strongly are mean and extreme precipitation coupled? Geophys. Res. Lett. 48, e2020GL092075 (2021).

25. Lehner, F., Deser, C. & Sanderson, B. M. Future risk of record-breaking summer temperatures and its mitigation. Climatic Change 146, 363–375 (2018).

26. Perkins-Kirkpatrick, S. & Lewis, S. Increasing trends in regional heatwaves. Nat. Commun. 11, 3350 (2020).

27. McKinnon, K. A., Poppick, A. & Simpson, I. R. Hot extremes have become drier in the United States Southwest. Nat. Clim. Change 11, 598–604 (2021).

28. Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

29. Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. BioGeosciences 18, 2119–2137 (2021).

30. Chen, Y., Liao, Z., Shi, Y., Tian, Y. & Zhai, P. Detectable increases in sequential flood–heatwave events across China during 1961–2018. Geophys. Res. Lett. 48, e2021GL092549 (2021).

31. Matthews, T., Wilby, R. L. & Murphy, C. An emerging tropical cyclone–deadly heat compound hazard. Nat. Clim. Change 9, 602–606 (2019).

32. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

33. Zappa, G. Regional climate impacts of future changes in the mid-latitude atmospheric circulation: a storyline view. Curr. Clim. Change Rep. 5, 358–371 (2019).

34. Simpson, I. R., Seager, R., Ting, M. & Shaw, T. A. Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Clim. Change 6, 65–70 (2016).

35. Vogel, M. M., Zscheischler, J. & Seneviratne, S. I. Varying soil moisture–atmosphere feedbacks explain divergent temperature extremes and precipitation projections in central Europe. Earths Syst. Dyn. 9, 1107–1123 (2018).

36. Padrón, R. S., Gudmundsson, L. & Seneviratne, S. I. Observational constraints reduce likelihood of extreme changes in multidecadal land water availability. Geophys. Res. Lett. 46, 736–744 (2019).

37. Deser, C. Certain uncertainty: the role of internal climate variability in projections of regional climate change and risk management. Earths Future 8, e2020EF001854 (2020).

38. Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. A 475, 20190013 (2019).

39. Zappa, G. & Shepherd, T. G. Storylines of atmospheric circulation change for European regional climate impact assessment. J. Clim. 30, 6561–6577 (2017).

40. Bevacqua, E., Zappa, G. & Shepherd, T. G. Shorter cyclone clusters modulate changes in European wintertime precipitation extremes. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abdec7 (2020).

41. Mindlin, J. et al. Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing. Clim. Dyn. 54, 4399–4421 (2020).

42. Koopman, G. J. et al. Forest response to rising CO2, drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).

43. Saint-La, M., Chadwick, R., Lambert, F. H. & Collins, M. Surface warming and atmospheric circulation dominate rainfall changes over tropical rainforests under global warming. Geophys. Res. Lett. 46, 13410–13419 (2019).

44. Chen, Y., Langenbrunner, B. & Randerson, J. T. Future drying in Central America and northern South America linked with Atlantic meridional overturning circulation. Geophys. Res. Lett. 45, 9226–9238 (2018).

45. Vogel, M. M., Zscheischler, J., Fischer, E. M. & Seneviratne, S. I. Development of future heatwaves for different hazard thresholds. J. Geophys. Res. Atmos. 125, e2019JD032070 (2020).

46. Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).

47. Asseng, S., Spänkuch, D., Hernandez-Ochoa, I. M. & Laporta, J. The upper temperature thresholds of life. Lancet Planet. Health 5, e378–e385 (2021).

48. Guzzetti, F., Peruccacci, S., Rossi, M. & Stark, C. P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 98, 239–267 (2007).

49. van den Hurk, B., van Meijgaard, E., de Valk, P., van Heeringen, K.-J. & Goaier, J. Analysis of a compounding surge and precipitation event in the Netherlands. Environ. Res. Lett. 10, 035001 (2015).

50. Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn. 11, 491–508 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2022
Methods

Data. We used seven SMILEs: CESM1-CAM551 (including 40 ensemble members), CSIRO-Mk3-6-0 (30), CanESM250 (30), EC-EARTH16 (16), GFDD-CM352 (20), GFDD-ESM2M50 (30) and MPI-ESM100. Monthly temperature and precipitation data were available for all models for the years 1950–2099, based on the representative concentration pathway53. RCP8.5 after 2005. Soil moisture over land masses (multimodel mean value). Similarly, 89% of droughts are hot that most future droughts (precipitation lower than the 5th percentile) are hot given a statistical quantity of interest

\[
X_{s,e} = \frac{1}{N_s} \sum_{e=1}^{N_s} X_{s,e}
\]

where \(N_s\) is the ensemble size of the considered SMILE model \(s\). \(X_{s,e}\) represents an estimate of the quantity \(X\) in the considered SMILE, where averaging across the ensemble members (indicated as \(\tau\)) leads to filtering out variations due to internal climate variability. When the quantity of interest \(X\) is a projected change, for example, \(\Delta P_{\text{mean}}\), it represents the forced response of \(P_{\text{mean}}\) in the considered SMILE.

The multimodel mean of \(X\) based on the \(N_s=7\) SMILEs was computed as the mean across the individual SMILE ensemble members:

\[
\bar{X}_s = \frac{1}{N_s} \sum_{e=1}^{N_s} X_{s,e}
\]

The uncertainty in \(X\) in a single realization due to internal climate variability (that is, in practice, the uncertainty in the quantity \(X\), when \(X\) is estimated from a single ensemble member of a given model) was estimated as an average of the internal climate variability effect on \(X\) in the seven SMILEs:

\[
U_{\text{IV}} = \sqrt{\frac{1}{N_{\text{mod}}-1} \sum_{e=1}^{N_{\text{mod}}} \left(\bar{X}_s - X_{s,e}\right)^2}
\]

where, in the SMILE \(s\), the spread in \(X\) due to internal climate variability was calculated as the sample standard deviation of \(X\) across the ensemble members:

\[
\sigma(X_s) = \sqrt{\frac{1}{N_s-1} \sum_{e=1}^{N_s} \left(X_{s,e} - \bar{X}_s\right)^2}
\]

Note that given that \(U_{\text{IV}}\) is obtained on the basis of the standard deviation, the value \(2 \times U_{\text{IV}}\) employed in Fig. 1c provides an estimate of the 68.2% uncertainty range in \(X\) due to internal climate variability (assuming that \(X\) is normally distributed—note that the actual distribution may deviate from normality; however, we tested a small sample size). Choosing different percentiles leads to similar patterns in the frequency of compound events16.

We compute empirical frequencies of concurrent extremes (\(f_{\text{con}}\)) and univariate extremes. For each model, extreme events of mean temperature and precipitation were defined as values above the 90th percentile and below the 10th percentile, respectively, of the distribution obtained by pooling together data of the period 1950–1980 from all available ensemble members (hence, extreme events in a warmer climate are defined on the basis of historical percentile thresholds). Employing more extreme percentiles to define extreme events would imply the considered compound events are very rare in the historical period; for example, the global average of \(f_{\text{con}}\) over land is 0.14% (corresponding to compound events occurring every 173 years on average) when employing the 99th and 1st percentile thresholds for defining temperature and precipitation extremes, respectively.

We confirm that our main result, that precipitation trends determine future occurrences of compound hot–dry events, generally holds when employing more extreme thresholds than the historical 10th and 90th percentiles (for example, for 5th and 95th percentiles, Extended Data Fig. 4.a,b). This is in line with the fact that most future droughts (precipitation lower than the 5th percentile) are hot (temperature higher than the 95th percentile) for 94% of droughts on average over land mass (multimodel mean value). Similarly, 89% of droughts are hot when employing 1st and 99th percentiles to define precipitation and temperature extremes, respectively, and 83% of droughts are hot when employing the 10th and 99th percentiles to define precipitation and temperature extremes, respectively.

Note that the analysis of compound hot–dry events defined on the basis of soil moisture (Extended Data Fig. 4.e,f) rather than on precipitation, that is, on the basis of dry events associated with soil moisture rather than meteorological drought, was carried out exactly as the analysis based on temperature and precipitation, but swapping precipitation for soil moisture and employing only four climate models.

Calculation of ensemble mean, multimodel mean, \(U_{\text{MD}}\) and \(U_{\text{IV}}\). Following ref. 14, given a statistical quantity of interest \(X\), we quantified the contribution to its uncertainty from uncertainty due to internal climate variability (\(U_{\text{IV}}\)) and model differences (\(U_{\text{MD}}\)). Here, \(X\) can be the \(f_{\text{con}}\) in the historical or future period, the historical frequency of hot events \(f_{\text{con}}\), the projected change in mean precipitation \(\Delta P_{\text{mean}}\) or the projected change in mean temperature \(\Delta T_{\text{mean}}\).

\[
X_{s,e} = \frac{1}{N_s} \sum_{e=1}^{N_s} X_{s,e}
\]

where \(N_s\) is the ensemble size of the considered SMILE model \(s\). \(X_{s,e}\) represents an estimate of the quantity \(X\) in the considered SMILE, where averaging across the ensemble members (indicated as \(\tau\)) leads to filtering out variations due to internal climate variability. When the quantity of interest \(X\) is a projected change, for example, \(\Delta P_{\text{mean}}\), it represents the forced response of \(P_{\text{mean}}\) in the considered SMILE.

The multimodel mean of \(X\) based on the \(N_s=7\) SMILEs was computed as the mean across the individual SMILE ensemble members:

\[
\bar{X}_s = \frac{1}{N_s} \sum_{e=1}^{N_s} X_{s,e}
\]

where, in the SMILE \(s\), the spread in \(X\) due to internal climate variability was calculated as the sample standard deviation of \(X\) across the ensemble members:

\[
\sigma(X_s) = \sqrt{\frac{1}{N_s-1} \sum_{e=1}^{N_s} \left(X_{s,e} - \bar{X}_s\right)^2}
\]

The larger the ensemble size, the smaller this correction term becomes15. In a few locations where model differences are small, it can occur that \(D^2 - E^2 < 0\), resulting in \(U_{\text{MD}}\) not being defined. In these cases, we set \(E=0\). Finally, the uncertainty in \(X\) due to model differences was quantified as:

\[
U_{\text{MD}} = \sqrt{\sigma^2_{MD}}
\]

Dependence of \(U_{\text{MD}}\) on sample size. We estimated how sample size affects the \(U_{\text{IV}}\) of both \(f_{\text{con}}\) and \(f_{\text{dry}}\) in the historical period. To achieve this, we created bootstrapped ensemble members of varying sample sizes (\(N_{\text{mod}}\)) from the 31 yr historical period (1950–1980) of MPI-ESM, the model with the largest number of ensemble members (100). Specifically, for any \(N_{\text{mod}}\) of interest, we constructed 12 ensemble members with sample size of \(N_{\text{mod}}\) years through sampling without replacement from the pool of 31,100 × 3,100 years of data. We consider 12 ensemble members as it allows for exploring uncertainties associated with a large sample size. In fact, using the 3,100 available years, the procedure allows for constructing 12 independent ensemble members having a sample size up to 258 years. On the basis of the 12 ensemble members, we computed the relative uncertainty \(2 \times U_{\text{IV}}/f_{\text{con}}\) where \(f_{\text{con}}\) was obtained via equation (1) and the uncertainty due to internal climate variability via equation (3), which—given that only one model is considered here—corresponds to the sample standard deviation of \(f_{\text{con}}\) across the 12 ensemble members (analogously for the \(f_{\text{dry}}\)). Hereby, \(N_{\text{mod}}\) varies from 15 to 258 years.

Note that results for \(f_{\text{dry}}\) and for the frequency of dry events are virtually identical; therefore, only \(f_{\text{con}}\) is shown in Extended Data Fig. 1b.
We tested that 12 ensemble members are enough for studying relative uncertainties. Results are robust to the random sampling; that is, the results are virtually identical when repeating the analysis multiple times. Combining results from the two randomly sampled ensemble members, the correlations of temperature and precipitation are very low on land areas. Overall, this method based on 12 randomly generated ensemble members from a single model (MPI-ESM) provides a robust estimate of the effect of internal variability, as demonstrated by the nearly identical uncertainty values obtained via the preceding method and that used in the rest of the paper for $N = 31$ years (see coloured dots in Extended Data Fig. 1b).

Area-weighted aggregated statistics

All the statistics, such as mean, quantities and percentage of land masses, were weighted on the basis of the gridpoints surfaces, employing the R packages `wCorr` and `spatial`. We performed two experiments (results shown in Fig. 3) to quantify (1) the uncertainty range in the future f_{Hi} (alike for the f_{Lo}) arising from the uncertainty in the change of local mean temperature, that is, uncertainty in local temperature trends, and (2) the uncertainty range in the future f_{Hi} arising from the uncertainty in the change of local mean precipitation, that is, uncertainty in local precipitation trends.

At a given location, as a first step, we defined a wide range of plausible changes of mean precipitation and temperature. That is, from the pool of ensemble members introduced in the preceding section, we defined the highest, average, and lowest mean precipitation and temperature. That is, from the pool of ensemble members associated with two diverging local mean temperature changes. We first defined the uncertainty in mean temperature change $\sigma_{\text{mean}}(T)$ and $\sigma_{\text{mean}}(P)$, which were defined as in the preceding section to resemble the uncertainty around the expected changes. That is, normally distributed noise $\eta \sim N(0, \sigma_{\text{Lo}})$ and $\eta \sim N(0, \sigma_{\text{Hi}})$ is added to the 1,000 simulated T_{Lat} and P_{Lat}. We then compute f_{Lo} for the i-th 1,000 simulations, which is finally used to compute the correlation of the 1,000 pairs (f_{Lo}, η) and (f_{Hi}, η).

Finally, we tested that 12 ensemble members are enough for studying relative uncertainties. Results are robust to the random sampling; that is, the results are virtually identical when repeating the analysis multiple times. Combining results from the two randomly sampled ensemble members, the correlations of temperature and precipitation are very low on land areas. Overall, this method based on 12 randomly generated ensemble members from a single model (MPI-ESM) provides a robust estimate of the effect of internal variability, as demonstrated by the nearly identical uncertainty values obtained via the preceding method and that used in the rest of the paper for $N = 31$ years (see coloured dots in Extended Data Fig. 1b).

Uncertainty range in local mean warming and precipitation trends

We performed two experiments (results shown in Fig. 3) to quantify (1) the uncertainty range in the future f_{Hi} (alike for the f_{Lo}) arising from the uncertainty in the change of local mean temperature, that is, uncertainty in local temperature trends, and (2) the uncertainty range in the future f_{Hi} arising from the uncertainty in the change of local mean precipitation, that is, uncertainty in local precipitation trends.

At a given location, as a first step, we defined a wide range of plausible changes of mean precipitation and temperature. That is, from the pool of ensemble members introduced in the preceding section, we defined the highest, average, and lowest mean precipitation and temperature. That is, from the pool of ensemble members associated with two diverging local mean temperature changes. We first defined the uncertainty in mean temperature change $\sigma_{\text{mean}}(T)$ and $\sigma_{\text{mean}}(P)$, which were defined as in the preceding section to resemble the uncertainty around the expected changes. That is, normally distributed noise $\eta \sim N(0, \sigma_{\text{Lo}})$ and $\eta \sim N(0, \sigma_{\text{Hi}})$ is added to the 1,000 simulated T_{Lat} and P_{Lat}. We then compute f_{Lo} for the i-th 1,000 simulations, which is finally used to compute the correlation of the 1,000 pairs (f_{Lo}, η) and (f_{Hi}, η).

Finally, we tested that 12 ensemble members are enough for studying relative uncertainties. Results are robust to the random sampling; that is, the results are virtually identical when repeating the analysis multiple times. Combining results from the two randomly sampled ensemble members, the correlations of temperature and precipitation are very low on land areas. Overall, this method based on 12 randomly generated ensemble members from a single model (MPI-ESM) provides a robust estimate of the effect of internal variability, as demonstrated by the nearly identical uncertainty values obtained via the preceding method and that used in the rest of the paper for $N = 31$ years (see coloured dots in Extended Data Fig. 1b).

Pool of randomly sampled ensemble members

To obtain the composite maps in Fig. 1d–f and the plots in Fig. 4a and Extended Data Fig. 8, and to carry out the experiments introduced in the next three sections, we consider a pool of randomly sampled ensemble members from the merged members of all climate models. To give the same weight to all models, each model contributes equally to the pool with 16 randomly sampled members, where 16 is the number of available ensemble members from the climate model with the lowest number of members.

Uncertainty range from uncertainty in local mean warming and precipitation trends

We performed two experiments (results shown in Fig. 3) to quantify (1) the uncertainty range in the future f_{Hi} (alike for the f_{Lo}) arising from the uncertainty in the change of local mean temperature, that is, uncertainty in local temperature trends, and (2) the uncertainty range in the future f_{Hi} arising from the uncertainty in the change of local mean precipitation, that is, uncertainty in local precipitation trends.

At a given location, as a first step, we defined a wide range of plausible changes of mean precipitation and temperature. That is, from the pool of ensemble members introduced in the preceding section, we defined the highest, average, and lowest mean precipitation and temperature. That is, from the pool of ensemble members associated with two diverging local mean temperature changes. We first defined the uncertainty in mean temperature change $\sigma_{\text{mean}}(T)$ and $\sigma_{\text{mean}}(P)$, which were defined as in the preceding section to resemble the uncertainty around the expected changes. That is, normally distributed noise $\eta \sim N(0, \sigma_{\text{Lo}})$ and $\eta \sim N(0, \sigma_{\text{Hi}})$ is added to the 1,000 simulated T_{Lat} and P_{Lat}. We then compute f_{Lo} for the i-th 1,000 simulations, which is finally used to compute the correlation of the 1,000 pairs (f_{Lo}, η) and (f_{Hi}, η).

Correlation between variability in the future f_{Hi} and temperature and precipitation trends

The future f_{Hi} is correlated with precipitation trends; that is, models (or ensemble members) that project a stronger increase in mean precipitation lead to a lower future f_{Hi}, and vice versa (Figs. 3f and 4). To demonstrate that this result stems mainly from expected changes in mean temperature being much larger than expected changes in mean precipitation, and how the spatio-temporal dependence of future precipitation affects the spatio-temporal dependence of future precipitation, we carried out an idealized experiment (results shown in Extended Data Fig. 5).

For a combination of different expected ΔT_{mean} and ΔP_{mean}, we quantified the correlation between the variability around such changes and the future f_{Hi}. Specifically, for a given combination of ΔT_{mean} and ΔP_{mean}, we obtained 1,000 pairs of future f_{Hi} and variability around the expected ΔT_{mean} (analogously for ΔP_{mean}), which are used to compute the correlation. To obtain each of the 1,000 pairs, we simulated 300 pairs of temperature and precipitation from a bivariate Gaussian distribution (with $\sigma(T, P) = -0.5, 0$ and 0.5 and the same standard deviations as in the preceding experiment). We prescribed the mean of the distribution as $(\tilde{T}_{\text{Lat}}, \tilde{P}_{\text{Lat}})$, where $\tilde{T}_{\text{Lat}} = \tilde{T}_{\text{Hist}} + \Delta T_{\text{mean}}$ and $\tilde{P}_{\text{Lat}} = \eta_{\text{Hist}} + \Delta P_{\text{mean}}$, where \tilde{T}_{Hist} and \tilde{P}_{Hist} are the historical data of the SMILE model (data of the period 1950–1980; \tilde{T}_{Hist} and \tilde{P}_{Hist} are obtained by merging data from all ensemble members of the SMILE model such as to get a unique reference dataset and more-robust estimates).

Finally, we defined the uncertainty range as the multimodel mean of the preceding differences.

Regional storylines of future f_{Hi}

In Fig. 4a, we show plausible storylines of future f_{Hi}, resulting from two contrasting precipitation trends. That is, for a given region, we build the dry storyline of future f_{Hi} through averaging f_{Hi} spatial fields associated with the bottom 7% ensemble members of a pool of members in terms of ensemble member’s area-weighted aggregated changes. The same approach is taken to create a wet storyline, which corresponds to the top 7% ensemble members. The pool of ensemble members is introduced in the section ‘Pool of randomly sampled ensemble members.’

Data availability

The model data used in the study are openly available online at https://esgf-data.dkrz.de/projects/mri-ge/ (for the model MPI-GE) and https://esgf-data-explorer.nordenergy.org/dataset/acar.cgd.ccas4.EMMECLIVAR.LE.html (for the other models: CanESM2, CESM-LE, CSIRO-Mk3-6-0, GFDL-ESM2M and GFDL-CM3). The HadCRUT5 dataset is available at https://www.metoffice.gov.uk/hadobs/hadcrut5/.

Code availability

All custom codes are direct implementations of standard methods and techniques, described in detail in Methods.
References
51. Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).
52. Jeffrey, S. et al. Australia’s CMIP6 submission using the CSIRO-MK3.6 model. Asot. Meteorol. Oceanogr. 63, 1–13 (2013).
53. Kirchmeier-Young, M. C., Zwieers, F. W. & Gillett, N. P. Attribution of extreme events in Arctic sea ice extent. J. Clim. 30, 553–571 (2017).
54. Hazeleger, W. et al. EC-Earth: a seamless Earth-system prediction approach in action. Bull. Am. Meteorol. Soc. 91, 1357–1363 (2010).
55. Sun, L., Alexander, M. & Deser, C. Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Clim. 31, 7823–7843 (2018).
56. Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12, 3301–3320 (2015).
57. Maher, N. et al. The Max Planck Institute Grand Ensemble: enabling the exploration of climate system variability. J. Adv. Model. Earth Syst. 11, 2050–2069 (2019).
58. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).
59. Morice, C. P. et al. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 dataset. J. Geophys. Res. Atmos. 126, e2019JD032361 (2020).
60. Orth, R., Zscheischler, J. & Seneviratne, S. I. Variability of summer rainfall over tropical North Africa (1906–92): observations and multi-variable weather generator. Earth Syst. Dyn. 12, 621–634 (2021).
61. Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. J. Adv. Model. Earth Syst. 11, 669–704 (1995).
62. Brunner, M. I., Gillett, E. & Wood, A. W. Space–time dependence of compound hot–dry events in the United States: assessment using a multi-site multisite variable weather generator. Earth Syst. Dyn. 12, 621–634 (2021).
63. Rowell, D. P., Pollard, C. K., Maskell, K. & Ward, M. N. Variability of summer rainfall over tropical North Africa (1906–92): observations and modelling. Q. J. R. Meteorol. Soc. 121, 669–704 (1995).
64. Emad, A. & Bailey, P. wCorr: Weighted Correlations. R package v.1.9.1 https://cran.r-project.org/web/packages/wCorr/index.html (2017).
65. Baddeley, A. J. & Turner, R. Spatialstat: an R package for analyzing spatial point patterns. J. Stat. Softw. https://doi.org/10.18637/jss.v012.i06 (2005).
66. Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M. & Vrac, M. Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy). Hydrol. Earth Syst. Sci. 21, 2701–2723 (2017).

Acknowledgements
We acknowledge the European COST Action DAMOCLES (CA17109). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101003469. G.Z. acknowledges financial support from the ERA4CS-MEDSCOPE project (grant agreement 690462), co-funded by the Horizon 2020 Framework Program of the European Union. F.L. was supported by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the US Department of Energy’s Office of Biological & Environmental Research (BER) Cooperative Agreement DE-FC02-97ER62402. J.Z. acknowledges the Swiss National Science Foundation (Ambizione grant 179876) and the Helmholtz Initiative and Networking Fund (Young Investigator Group COMPOUNDx; grant agreement no. VH-NG-1537). We thank the US CLIVAR Working Group on Large Ensembles and NSF AGS-0856145 Amendment 87 for supporting the Multi-Model Large Ensemble Archive. We also thank the modelling centres for providing the simulations.

Author contributions
E.B. and J.Z. initiated and designed the study. E.B. carried out the analysis. E.B wrote the manuscript with contributions from J.Z. All authors (E.B, G.Z., F.L. and J.Z.) discussed the results and reviewed the manuscript.

Funding
Open access funding provided by Helmholtz-Zentrum für Umweltforschung GmbH - UFZ.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41558-022-01309-5.

Supplementary information
The online version contains supplementary material available at https://doi.org/10.1038/s41558-022-01309-5.

Correspondence and requests for materials should be addressed to Emanuele Bevacqua.

Peer review information Nature Climate Change thanks Vimal Mishra, Ameneh Tavakol and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | Relative uncertainty due to internal climate variability in frequencies of hot events (f_h) and compound hot-dry events (f_{hD}) in the historical period.

a. The same as Fig. 1c, but for f_h, that is the uncertainty in f_h due to internal climate variability ($2 \times U_{IV}$) relative to f_h. The image is obtained using, as in the rest of the paper, samples of 31 years. The same palette as in Fig. 1c is used for comparison.

b. Curves show the dependence of the relative uncertainty due to internal climate variability in f_{hD} (green) and f_h (magenta) on the sample size. To explore the relationship for large sample sizes, the curves are obtained based on a method that employs data from the model with the largest number of ensembles, that is the MPI-ESM model (Methods). The arrows indicate the difference between the sample size required to obtain fixed levels of relative uncertainty for f_{hD} and f_h. The green and magenta dots show the relative uncertainties obtained via the method used in the rest of the paper, hence based on all seven climate models and 31 years of data. The match between the dots and the curve highlights that the estimate of the uncertainty obtained through the MPI-ESM-based method provides accurate information.
Extended Data Fig. 2 | Temperature changes in a world 2 °C warmer than pre-industrial conditions and associated drivers of uncertainties.

a. Multimodel mean projected change in frequency of hot extreme events (relative to 1950–1980). Stippling indicates locations where at least six out of seven models agree on the sign of the change. b. As in panel a, but for changes in mean temperature. c. Uncertainty in the change in mean temperature due to model-to-model differences (U_{MD}) relative to the sum of U_{IV} (uncertainty due to internal climate variability) and U_{MD} (expressed in percentage; see Methods).
Extended Data Fig. 3 | See next page for caption.
Extended Data Fig. 3 | Uncertainty in the frequency of compound hot-dry events (f_{HD}) in idealised experiments. (Note that an in-depth interpretation of the figure is provided in the Supplementary Material.) Given a present-day bivariate Gaussian distribution of temperature T and precipitation P with a correlation $\text{cor}(T, P)$ of -0.5 (first row), 0 (second row), and 0.5 (third row), shading shows the uncertainty in the future f_{HD} associated with uncertainty in the change of mean temperature (left column) and mean precipitation (right column) at given levels of expected changes in mean temperature (shown on the x-axis) and mean precipitation (y-axis). Magenta isolines show the expected f_{HD} resulting from the expected changes in mean temperature and precipitation (they are the same on right and left columns for a given $\text{cor}(T, P)$). The second axes show changes in units of present-day standard deviations. The closed contour shows the kernel density containing 90% of the multimodel mean projected changes in mean temperature and precipitation in units of relative present-day standard deviations over land grid-points (actual changes in °C and mm/day are shown in Extended Data Figure 2b and 7b, respectively). The green line indicates changes of equal magnitude in temperature and precipitation, in units of present-day standard deviations. (Note that the difference in magnitude of uncertainty from temperature (left column) and precipitation (right column) results from the fact that the uncertainty in the change of temperature is relatively large compared to the uncertainty in the change of precipitation).
Extended Data Fig. 4 | Effect of uncertainty in local warming and precipitation or soil moisture trends on future \(f_{HD} \). a-b, The same as Fig. 3c,f, but for extreme events of temperature and precipitation that are defined as values above and below their individual 95th and 5th percentiles, respectively. c-d. The same as Fig. 3c,f, but when considering compound hot-dry events during the wettest, instead than the hottest, season. e-f, The same as Fig. 3c,f, but when considering soil moisture rather than precipitation and based on four rather than seven available climate models.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 | Correlation between the future frequency of compound hot-dry events (f_{HD}) and changes in mean temperature and precipitation in idealised experiments. (Note that an in-depth interpretation of the figure is provided in the Supplementary Material.) Pairs of temperature T and precipitation P are simulated from a bivariate Gaussian distribution with a given $\text{cor}(T, P)$ which considers an expected future change in mean precipitation and temperature and variability around this change. For a given mean temperature change of $+2 \, ^\circ\text{C}$ and no change in mean precipitation, panel a,b show how future f_{HD} depends on the exact change in temperature and precipitation, respectively (given $\text{cor}(T, P) = -0.5$). For different values of $\text{cor}(T, P)$ of -0.5 (c,d), 0 (e,f), and 0.5 (g,h), shading shows the correlation between the future f_{HD} and the change in temperature (left column) and precipitation (right column) at given levels of expected changes in mean temperature (shown on the x-axis) and mean precipitation (y-axis). For example, the correlation coefficient of the pairs in a is reported in panel c. Axes, green lines, and closed contours are the same as in Extended Data Figure 3. Stippling indicates where at least 90% of the f_{HD} values from the Gaussian distribution are equal to 0%.
Extended Data Fig. 6 | Effect of uncertainty in local warming and precipitation trends on future f_{10} under no dependence between temperature and precipitation. The same as Fig. 3c,e,f, but in a scenario within which the warm-season mean temperature T and precipitation P time series are uncorrelated. That is, for each model ensemble member, the thirty-one pairs (T,P) of the period 1950-1980 and in the warmer climate period are randomly shuffled prior to proceeding with the rest of the analysis.
Extended Data Fig. 7 | Precipitation changes in a world 2 °C warmer than pre-industrial conditions and associated drivers of uncertainties. The same as Extended Data Figure 2, but for precipitation.
Extended Data Fig. 8 | Relationship between regional future frequency of compound hot-dry events (f_{HD}) and mean precipitation trends. Similar to Fig. 4, but for all of the regions used in the Intergovernmental Panel on Climate Change (IPCC). That is, in a world 2 °C warmer than pre-industrial conditions, regionally averaged future f_{HD} against changes in mean precipitation (relative to 1950-1980) are shown for all IPCC regions (differentiated by colored symbols), based on a pool of ensemble members from different climate models (Methods). The image highlights that the relationship is non-linear, in line with theoretical expectations (Figure Extended Data Figure 5b). Such a non-linear behaviour is not well evident when considering individual regions given the more limited range of uncertainty of precipitation trends.
Extended Data Fig. 9 | See next page for caption.
Extended Data Fig. 9 | Sources of uncertainty in the frequency of compound hot-dry events (f_{HD}) in the historical period and in the future (a world 2°C warmer than pre-industrial conditions). a,b. Uncertainty due to internal climate variability (2 × U_{IV}) relative to f_{HD} in the historical and future periods, respectively. Panel a is the same as Fig. 1c. c,d. Uncertainty due to internal climate variability (2 × U_{IV}) in historical and future periods, respectively. e,f. Uncertainty in f_{HD} due to model-to-model differences (2 × U_{MD}) relative to f_{HD} in the historical and future periods, respectively. g,h. Uncertainty in f_{HD} due to model-to-model differences (2 × U_{MD}) in the historical and future periods, respectively.
Extended Data Fig. 10 | Drivers of uncertainties in future frequency of compound hot-dry events (f_{HD}) and mean precipitation trends in a world 3 °C warmer than pre-industrial conditions. a,b, As in Fig. 2b and Extended Data Figure 7c, respectively, but in a world 3 °C warmer than pre-industrial conditions. That is, uncertainty due to model-to-model differences (U_{MD}) relative to the sum of U_{IV} (uncertainty due to internal climate variability) and U_{MD} for future f_{HD} in a and mean precipitation trends in b. U_{MD} is larger than U_{IV} over 67% and 77% of landmasses for future f_{HD} and mean precipitation trends, respectively.