Recapitulating the Structural Evolution of Redox Regulation in Adenosine 5′-Phosphosulfate Kinase from Cyanobacteria to Plants*

Jonathan Herrmann1, David Nathin, Soon Goo Lee, Tony Sun, and Joseph M. Jez2

From the Department of Biology, Washington University, St. Louis, Missouri 63130

In plants, adenosine 5′-phosphosulfate (APS) kinase (APSK) is required for reproductive viability and the production of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) as a sulfur donor in specialized metabolism. Previous studies of the APSK from Arabidopsis thaliana (AtAPSK) identified a regulatory disulfide bond formed between the N-terminal domain (NTD) and a cysteine on the core scaffold. This thiol switch is unique to mosses, gymnosperms, and angiosperms. To understand the structural evolution of redox control of APSK, we investigated the redox-insensitive APSK from the cyanobacterium Synechocystis sp. PCC 6803 (SynAPSK). Crystallographic analysis of SynAPSK in complex with either APS and a non-hydrolyzable ATP analog or APS and sulfate revealed the overall structure of the enzyme, which lacks the NTD found in homologs from mosses and plants. A series of engineered SynAPSK variants reconstructed the structural evolution of the plant APSK. Biochemical analyses of SynAPSK, SynAPSK H23C mutant, SynAPSK fused to the AtAPSK NTD, and the fusion protein with the H23C mutation showed that the addition of the NTD and cysteines recapitulated thiol-based regulation. These results reveal the molecular basis for structural changes leading to the evolution of redox control of APSK in the green lineage from cyanobacteria to plants.

In plants, adenosine 5′-phosphosulfate (APS) kinase (APSK) is required for reproductive viability and the production of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) as a sulfur donor in specialized metabolism. Previous studies of the APSK from Arabidopsis thaliana (AtAPSK) identified a regulatory disulfide bond formed between the N-terminal domain (NTD) and a cysteine on the core scaffold. This thiol switch is unique to mosses, gymnosperms, and angiosperms. To understand the structural evolution of redox control of APSK, we investigated the redox-insensitive APSK from the cyanobacterium Synechocystis sp. PCC 6803 (SynAPSK). Crystallographic analysis of SynAPSK in complex with either APS and a non-hydrolyzable ATP analog or APS and sulfate revealed the overall structure of the enzyme, which lacks the NTD found in homologs from mosses and plants. A series of engineered SynAPSK variants reconstructed the structural evolution of the plant APSK. Biochemical analyses of SynAPSK, SynAPSK H23C mutant, SynAPSK fused to the AtAPSK NTD, and the fusion protein with the H23C mutation showed that the addition of the NTD and cysteines recapitulated thiol-based regulation. These results reveal the molecular basis for structural changes leading to the evolution of redox control of APSK in the green lineage from cyanobacteria to plants.

In plants, adenosine 5′-phosphosulfate (APS) kinase (APSK) is required for reproductive viability and the production of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) as a sulfur donor in specialized metabolism. Previous studies of the APSK from Arabidopsis thaliana (AtAPSK) identified a regulatory disulfide bond formed between the N-terminal domain (NTD) and a cysteine on the core scaffold. This thiol switch is unique to mosses, gymnosperms, and angiosperms. To understand the structural evolution of redox control of APSK, we investigated the redox-insensitive APSK from the cyanobacterium Synechocystis sp. PCC 6803 (SynAPSK). Crystallographic analysis of SynAPSK in complex with either APS and a non-hydrolyzable ATP analog or APS and sulfate revealed the overall structure of the enzyme, which lacks the NTD found in homologs from mosses and plants. A series of engineered SynAPSK variants reconstructed the structural evolution of the plant APSK. Biochemical analyses of SynAPSK, SynAPSK H23C mutant, SynAPSK fused to the AtAPSK NTD, and the fusion protein with the H23C mutation showed that the addition of the NTD and cysteines recapitulated thiol-based regulation. These results reveal the molecular basis for structural changes leading to the evolution of redox control of APSK in the green lineage from cyanobacteria to plants.

Background: In the plant sulfur assimilation pathway, APS kinase is a redox-regulated branch point enzyme.

Results: Structural and biochemical analysis of the cyanobacterial APSK reveals an unregulated precursor of the plant enzyme.

Conclusion: Protein engineering of cyanobacterial APSK recapitulates the structural development of redox control in the plant enzyme.

Significance: Understanding the evolution of biochemical regulation provides insight for engineering metabolic controls.

In plants, adenosine 5′-phosphosulfate (APS) kinase (APSK) is required for reproductive viability and the production of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) as a sulfur donor in specialized metabolism. Previous studies of the APSK from Arabidopsis thaliana (AtAPSK) identified a regulatory disulfide bond formed between the N-terminal domain (NTD) and a cysteine on the core scaffold. This thiol switch is unique to mosses, gymnosperms, and angiosperms. To understand the structural evolution of redox control of APSK, we investigated the redox-insensitive APSK from the cyanobacterium Synechocystis sp. PCC 6803 (SynAPSK). Crystallographic analysis of SynAPSK in complex with either APS and a non-hydrolyzable ATP analog or APS and sulfate revealed the overall structure of the enzyme, which lacks the NTD found in homologs from mosses and plants. A series of engineered SynAPSK variants reconstructed the structural evolution of the plant APSK. Biochemical analyses of SynAPSK, SynAPSK H23C mutant, SynAPSK fused to the AtAPSK NTD, and the fusion protein with the H23C mutation showed that the addition of the NTD and cysteines recapitulated thiol-based regulation. These results reveal the molecular basis for structural changes leading to the evolution of redox control of APSK in the green lineage from cyanobacteria to plants.

Advances in genomics and sequence analysis now allow the exploration of the evolutionary history of protein structure and function. The use of ancestral protein reconstruction (i.e. paleoenzymology) and the synthesis of genes encoding proteins that are potential precursors to those found in different evolutionary lineages can provide insight into the original properties that were the basis for current specialized proteins (1–4). Evolutionary comparisons to understand enzyme function largely focus on catalysis and substrate recognition; however, three-dimensional structural studies combined with phylogenetic comparisons can also identify core scaffolds and elucidate how the adaptation of new domains leads to the development of regulatory features (5–7). For example, crystallographic and biochemical examination of adenosine 5′-phosphosulfate kinase (APSK)3 from Arabidopsis thaliana has identified a redox control element in the N-terminal domain (NTD) of the enzyme (8–11). Phylogenetic sequence comparisons suggest that evolutionary precursors of the Arabidopsis enzyme (i.e. APSK from cyanobacteria) lack this structural domain and that adoption of a disulfide in the NTD of APSK from the green lineage occurred as the sulfur assimilation pathway evolved for use in plastids of plants and mosses (8). Here we aimed to reconstruct the structural evolution of redox regulation in the APSK from cyanobacteria to plants.

The assimilation of sulfur from the environment and its incorporation into a diverse set of metabolites, including cysteine, methionine, glutathione, iron-sulfur clusters, vitamin cofactors, and multiple sulfur-containing specialized molecules, is common to eukaryotes and prokaryotes (12–19). Interestingly, plants and microbes differ in their approach to converting inorganic sulfate to more usable forms. Once sulfate is transported into the cell, it is incorporated into adenosine 5′-phosphosulfate (APS) by ATP sulfurylase (20–22). The high energy phosphosulfate bond in APS provides an energetic driving force in sulfur assimilation. In plants, the next metabolic transformations form a branch point (Fig. 1A). Reduction of APS to sulfite by APS reductase provides the primary route for incorporation of sulfur into various metabolites (23). APS can also be phosphorylated by APSK into the sulfate donor 3′-phosphoadenosine 5′-phosphosulfate (PAPS) (Fig. 1A). The partitioning of sulfur into PAPS by APSK is essential for plant growth and development, as the enzyme is required for fertility

* This work was supported by Grant MCB-0904215 from the National Science Foundation. The authors declare that they have no conflicts of interest with the contents of this article.

The atomic coordinates and structure factors (codes 5CB6 and 5CB8) have been deposited in the Protein Data Bank (http://wwpdb.org/).

1 Supported by a Summer Undergraduate Research Fellowship from the American Society of Plant Biologists.

2 To whom correspondence should be addressed. E-mail: jiez@biology2.wustl.edu.

3 The abbreviations used are: APSK, adenosine 5′-phosphosulfate kinase; APS, adenosine 5′-phosphosulfate; NTD, N-terminal domain; PAPS, 3′-phosphoadenosine 5′-phosphosulfate; AMP-PNP, adenosine 5′-(β,γ)-imino)triphosphate; AtAPSK, APSK from A. thaliana; SynAPSK, APSK from Synechocystis sp. PCC 6803; PDB, Protein Data Bank; r.m.s.d., root mean square deviation; fus, fusion.
Evolution of Redox Control in APSK

and seed production (24–27). A similar branching of sulfur metabolism has been observed in some pathogenic bacteria such as *Mycobacterium tuberculosis* (28, 29). In contrast, other bacteria, fungi, and humans sequentially use both APSK and APS reductase in the primary sulfur assimilation pathway to convert APS into PAPS, which is then further metabolized into sulfite by PAPS reductase (12, 13, 17).

In plants, the branch point from APS into either sulfite or PAPS may be regulated by redox conditions. Thiol-based redox switches differentially modulate the activity of APS reductase and APSK (8–11, 30). Reduction attenuates APS reductase activity and enhances APSK activity, whereas oxidation accelerates APS reductase and attenuates PAPS production by APSK (8–11, 30). This reciprocal redox regulation provides a means of directing sulfur flux into either primary sulfur metabolism (APS reductase) or specialized metabolism (APSK) depending on the cellular conditions.

APSK from *A. thaliana* (AtAPSK) is biochemically well characterized (8–11, 31). AtAPSK exhibits an ordered kinetic mechanism in which the binding of ATP increases affinity for APS; however, this enzyme also exhibits severe substrate inhibition by APS (8–11, 31). AtAPSK functions as a homodimer and has a 19-amino acid NTD that contains a cysteine residue, which reversibly forms a disulfide with another cysteine on the adjacent monomer (Fig. 1B). The disulfide may alter the flexibility of the NTD, as the reduced form of AtAPSK is nearly 20-fold more efficient than the oxidized form and is 15-fold less susceptible to substrate inhibition by APS (8–11). Structure and sequence comparisons show that the APSK from cyanobacteria are missing the NTD found in the enzyme from algae, mosses, gymnosperms, and angiosperms and lack the disulfide cysteines found in the homologs from mosses, gymnosperms, and angiosperms (8) (Figs. 1C and 2).

To understand the molecular evolution of the redox control feature, we investigated the redox-insensitive APSK (SynAPSK) from the cyanobacterium *Synechocystis* sp. PCC 6803. Crystallographic analysis of SynAPSK in complex with either APS and a non-hydrolyzable ATP analog or APS and sulfate reveals the overall structure of the enzyme, which lacks the NTD found in homologs from mosses and plants. A series of engineered SynAPSK variants reconstructed the structural evolution of the plant APSK. Biochemical analysis of SynAPSK, SynAPSK H23C mutant, SynAPSK fused to the AtAPSK NTD (SynAPSKfus), and SynAPSKfus with the H23C mutation (SynAPSKfus/H23C) showed that the addition of the NTD did not drastically affect the steady-state kinetic behavior of the enzyme and that introduction of the disulfide between the NTD and core altered the redox sensitivity and substrate inhibition by APS. Overall, these studies suggest the molecular basis for structural changes leading to the evolution of redox control in APSK in the green lineage from cyanobacteria to plants.

Experimental Procedures

Materials—Generation of the pET-28a-AtAPSK1Ä77 and pET-28a-SynAPSK bacterial expression vectors was described previously (8, 20). The gene encoding the SynAPSKfus protein was synthesized (Genewiz, Inc.) to place the NTD of AtAPSK1 (STNIKWHECSVEKDRQRL) in-frame with the coding region of SynAPSK and included Ndel and EcoRI restriction sites at the 5’- and 3’-ends of the gene, respectively. The SynAPSKfus coding region was inserted into pET-28a using the Ndel and EcoRI restriction sites. Oligonucleotides for generating the H23C and T61E SynAPSK mutants were from Integrated DNA Technology. APS and AMP-PNP were purchased from Sigma-Aldrich.

Protein Expression and Purification—All proteins were expressed and purified using a common protocol. *Escherichia coli* BL21(DE3) cells were transformed with the appropriate expression vector. Cells were grown in Terrific broth contain-
Evolution of Redox Control in APSK

The final model includes residues 4–176 of each chain, 1 sodium ion, 2 cacycylate molecules, and 88 waters. The structure of the SynAPSK-APS-sulfate complex was solved by molecular replacement using the SynAPSK structure determined above. Two molecules were found in the asymmetric unit with model building and refinement performed as described above (see Table 1). The final model includes residues 3–176 of chain A and residues 2–177 of chain B, 4 sulfates, and 557 waters. Coordinates and structure factors for the SynAPSK-AMP-PNP-Mg\(^{2+}\)-APS and SynAPSK-APS-sulfate complexes were deposited in the Protein Data Bank with accession codes 5CB6 and 5CB8, respectively.

Site-directed Mutagenesis—The H23C and T61E SynAPSK point mutants and SynAPSK\(^{\text{Kiso}}\) with the mutation corresponding to H23C were generated using the QuikChange PCR method (Agilent) and confirmed by sequencing (Washington University DNA Sequencing Facility). Protein expression and purification of the mutants was performed as described above.

Enzyme Assays—Steady-state kinetic assays were performed as described previously with the resulting initial velocity data fit to either the Michaelis-Menten equation, \(v = \frac{V_{\text{max}}}{[S]}(\frac{[K_m]}{[S]} + \frac{[S]}{[S]})\), or the equation for substrate inhibition, \(v = \frac{V_{\text{max}}}{[S]}(\frac{[K_m]}{[S]} + \frac{[S]}{[S]})\), using KaleidaGraph (8, 20). For determination of kinetic parameters with APS, ATP was held constant at 0.1 mM. Determination of kinetic parameters with varied ATP was performed at 5 \(\mu\)M APS. Sulfate inhibition assays were performed at 0.1 mM ATP and 5 \(\mu\)M APS with varied K\(_2\)SO\(_4\) (0–100 mM). Steady-state kinetic parameters for reduced and oxidized protein used the standard conditions with either 5 mM DTT (reduced) or 5 mM trans-4,5-dihydroxy-1,2-dithiane (oxidized DTT) added to the assay.

Results

X-ray Crystal Structure of the SynAPSK-AMP-PNP-Mg\(^{2+}\)-APS Complex—SynAPSK was overexpressed in E. coli as an N-terminal His-tagged protein and purified using Ni\(^{2+}\) affinity and size-exclusion chromatography. Purified SynAPSK eluted from the gel filtration column as a dimer of \(\sim 40\) kDa (monomer molecular weight, \(\sim 20\) kDa). Steady-state kinetic parameters for reduced and oxidized protein used the standard conditions with either 5 mM DTT (reduced) or 5 mM trans-4,5-dihydroxy-1,2-dithiane (oxidized DTT) added to the assay.

The 2.79 \(\AA\) resolution x-ray crystal structure of SynAPSK in complex with AMP-PNP, a non-hydrolyzable ATP analog, Mg\(^{2+}\), and APS was solved by molecular replacement using AtAPSK (8) as a search model (Table 1). Six molecules were found in the asymmetric unit. Chains A/D and B/F form noncrystallographic dimers with chains C and E sharing crystallographic symmetry mates that complete the dimer. The core structure of the SynAPSK monomer is a canonical \(\alpha/\beta\)-purine nucleotide-binding domain with a central parallel \(\beta\)-sheet (\(\beta_1\)-\(\beta_1\)-\(\beta_1\)-\(\beta_1\)-\(\beta_1\)-\(\beta_1\)-\(\beta_1\)) surrounded by \(\alpha_1\) and \(\alpha_7\) on one face of the \(\beta\)-sheet and \(\alpha_2\), \(\alpha_3\), and \(\alpha_4\) on the other side (Fig. 3A). Clear electron density for AMP-PNP, Mg\(^{2+}\), and APS (Fig. 3B) identified the nucleotide binding sites as situated along the top of the core \(\alpha/\beta\)-domain. Two additional \(\alpha\)-helices (\(\alpha_5\) and \(\alpha_6\))
groups of ATP. The Mg$^{2+}$ Arg-117 provides contacts with the ribose and adenosine side chains of Thr-20 and Lys-120. The side-chain group of Lys-18, Thr-19, and Thr-20 in the canonical P-loop and the main-chain carbonyls and amide nitrogens of Gly-15, Gly-133, all of the residues that form interactions with APS are mixed anhydride are contributed by the carbonyl group of the ring forming a hydrogen bond to the carbonyl of Gly-133. Additional hydrogen bonds with the sulfophosphate moiety. Additional hydrogen bonds with the amine group of Phe-54 and Phe-134 with the amine group of the APSK from plants, mosses, algae, and cyanobacteria shows that this backbone carbonyl of Thr-255 in AtAPSK hydrogen bonds to N6, respectively, of the adenosine ring. In contrast, only the side-chain hydroxyl group of Ser-161 hydrogen bond to N1 and N6 of the adenosine ring (9). The 1.88 Å resolution x-ray crystal structure of SynAPSK in complex with APS and sulfate was determined to examine where sulfate binds in the ATP binding site (Table 1 and Fig. 5). The overall structure is nearly structural conservation but also shows differences in the loop region, as well as the C-terminal tail, displays greater variability than other regions of the enzyme.

X-ray Crystal Structure of the SynAPSK-APS-Sulfate Complex

Within the APSK active site, the P-loop is responsible for the discrimination of nucleotides containing a phosphate at the β-position (i.e. ADP and ATP) versus those with a sulfate at this position (i.e. APS) (9). The 1.88 Å resolution x-ray crystal structure of SynAPSK in complex with APS and sulfate was determined to examine where sulfate binds in the ATP binding site (Table 1 and Fig. 5A). The overall structure is nearly identical to the SynAPSK-AMP-PNP-Mg$^{2+}$-APS complex with a 0.3 Å r.m.s.d. for 174 Ca atoms. Unambiguous electron density for APS and sulfate in the active site was observed (Fig. 5B). As reported in other APSK structures (8, 42), the sulfate molecule is bound by multiple amide nitrogen contacts with residues and γ-phosphate groups, the hydroxyl group of Thr-19, the carboxylates of Asp-40 and Asp-42, and a water molecule. As with the APS binding site, the ATP binding site is generally conserved in the APSK from cyanobacteria, mosses, and plants (Fig. 2), but there are conservative substitutions between the P-loop of the cyanobacterial APSK (GAGKTT) and that of the plant, moss, and algal APSK (GSGKST). Moreover, the AMP-PNP binding site displays both sequence and structural variability in the residues surrounding the adenosine moiety of the nucleotide (Figs. 2 and 4). As noted above, a comparison of the SynAPSK and AtAPSK monomers highlights their overall structural conservation but also shows differences in the β1e-α7 loop that caps the adenosine group of bound ATP (Fig. 4A). In SynAPSK, the β1e-α7 loop differs in sequence (RTDLEEL) compared with the corresponding loop of AtAPSK (REGGTSP) (Fig. 4B). These changes shift the position of the loop backbone and alter the interactions with ATP in each protein. In SynAPSK, the backbone carbonyl of Glu-156 and the side-chain hydroxyl group of Ser-161 hydrogen bond to N1 and N6, respectively, of the adenosine ring. In contrast, only the backbone carbonyl of Thr-255 in AtAPSK hydrogen bonds to N5 of the adenosine ring. A sequence comparison of the APSK from plants, mosses, algae, and cyanobacteria shows that this loop region, as well as the C-terminal tail, displays greater variability than other regions of the enzyme.

Evolution of Redox Control in APSK

A comparison of the SynAPSK monomer with other structures in the Protein Data Bank (PDB) using DALI (36) reveals conservation of a three-dimensional fold between the APSK domain of human PAPS synthetase (37) (PDB code: 2PEY; 50% sequence identity; Z = 30.3; 0.8 Å r.m.s.d. for 176 Ca atoms), Penicillium chrysogenum APSK (38) (PDB code: 1M7G; 44% sequence identity; Z = 29.6; 1.0 Å r.m.s.d. for 171 Ca atoms), and AtAPSK (8) (PDB code: 4FXP; 47% sequence identity; Z = 28.4; 1.1 Å r.m.s.d. for 172 Ca atoms), and the APSK domains of the bifunctional ATP sulfurylases from P. chrysogenum (39) (PDB code: 1ID2; 42% sequence identity; Z = 28.3; 1.0 Å r.m.s.d. for 172 Ca atoms), Aquifex aeolicus (40) (PDB code: 2GKS; 51% sequence identity; Z = 26.9; 1.1 Å r.m.s.d. for 166 Ca atoms), and Thiobacillus denitrificans (41) (PDB code: 3CR8; 43% sequence identity; Z = 21.0; 1.6 Å r.m.s.d. for 143 Ca atoms).

SynAPSK binds APS to position the ribose hydroxyl groups for Asp42-mediated phosphoryl group transfer from ATP to the 3′-OH group (Fig. 3C). The adenosine ring of APS is sandwiched between Phe-54 and Phe-134 with the amine group of the ring forming a hydrogen bond to the carbonyl of Gly-133. Arg-45 and Arg-59 provide electrostatic interactions with the sulfophosphate moiety. Additional hydrogen bonds with the mixed anhydride are contributed by the carbonyl group of Ser-86 and the amine group of Ile-85. With the exception of Gly-133, all of the residues that form interactions with APS are invariant in the APSK from plants, mosses, algae, and cyanobacteria (Fig. 2). The ATP binding site is defined through interactions with the AMP-PNP analog through the nucleotide phosphate groups (Fig. 3C). Multiple interactions are mediated through the main-chain carbonyls and amide nitrogens of Gly-15, Gly-17, Lys-18, Thr-19, and Thr-20 in the canonical P-loop and the side chains of Thr-20 and Lys-120. The side-chain group of Arg-117 provides contacts with the ribose and adenosine groups of ATP. The Mg$^{2+}$ ion is bound by contacts with the β-
in the P-loop (Gly-15, Gly-17, Lys-18, and Thr-19) and charge-charge interaction with the side-chain amine of Lys-18.

In addition to the sulfate in the active site of SynAPSK, a second sulfate binding site was identified in the dimer interface (Fig. 5, A and C). This molecule interacts with Thr-61 and Arg-64 of one monomer and Lys-50 from the adjacent monomer. To test whether this binding site was functionally relevant, the SynAPSK T61E mutant was generated, and the resulting mutant was expressed, purified, and kinetically analyzed. Substitution of Thr-61 with a glutamate, which is the preferred amino acid at this position in the plant, moss, algal, and cyanobacterial APSK (Fig. 2), did not significantly alter the steady-state kinetic parameters of the mutant (Table 2). Moreover, the effects of sulfate on the activity of SynAPSK (IC$_{50} = 17.0 \pm 0.4$ mM) and the SynAPSK T61E mutant (IC$_{50} = 15.7 \pm 0.2$ mM) were comparable. Because the residue ancestrally corresponding to Thr-61 of SynAPSK is typically a glutamate, the binding of a sulfate in the dimer interface of SynAPSK appears to be a crystallization artifact related to the sequence of SynAPSK. Overall, these results are consistent with sulfate inhibition occurring through binding at the P-loop in the active site.

Structural Evolution of the N-terminal Domain and Redox Control Element in APSK—Crystallographic and biochemical studies identified the NTD of AtAPSK as a redox control feature that modulates enzymatic activity (8–11). In contrast to plant APSK, the cyanobacterial enzymes lack both the N-terminal domain and the redox control element (Fig. 3).
Evolution of Redox Control in APSK

minal extension (as well as a chloroplast localization sequence) and the cysteine residues that form the regulatory disulfide (Figs. 1C and 2). To test the structural evolution of the thiol-based switch in APSK, a series of engineered variants were constructed for kinetic analysis (Fig. 6A). Using SynAPSK as the structural core, a synthetic gene was used to place the 19-amino acid NTD of AtAPSK (STNIKWHECSVEKVDRQRL) in-frame with the coding region of SynAPSK to yield SynAPSKfus. The fused NTD contains one cysteine of the regulatory disulfide switch. A comparison of the sequence and structure of AtAPSK with SynAPSK identified His-23 as the residue for mutagenesis to cysteine, the second residue in the disulfide linkage. Site-directed mutagenesis of this residue yielded the SynAPSK H23C mutant and the SynAPSKfus/H23C variant.

Steady-state kinetic analysis of SynAPSK, SynAPSK H23C, SynAPSKfus, and SynAPSKfus/H23C demonstrated that engineering of the NTD and disulfide leads to differences in redox sensitivity (Table 2 and Fig. 6B). Analysis of SynAPSK under reducing and oxidizing conditions yielded comparable k_{cat} and K_m values. Likewise, the SynAPSK H23C mutant displayed kinetic parameters similar to the wild type under either reducing or oxidizing conditions. Fusion of the NTD of AtAPSK to SynAPSK resulted in slight (i.e. less than 2-fold) increases in the K_m values for ATP. Under oxidizing conditions, SynAPSKfus/H23C displayed a 4.5-fold lower k_{cat}/K_m for APS and an 8-fold lower K_i for APS substrate inhibition (Fig. 6B). In addition, a less than 2-fold change in K_m for ATP was observed under oxidizing conditions. Formation of the engineered disulfide linkage in the NTD of

![FIGURE 3. Structure of the SynAPSK-AMP-PNP-Mg$^{2+}$-APS complex. A, ribbon diagram of the dimer. Secondary structure features are labeled in the left monomer with α-helices and β-strands colored in yellow and rose, respectively. The positions of AMP-PNP and APS are shown as stick molecules. The lower view shows a 90° rotation of the view in the top panel. B, $2F_o - F_c$ omit map (1.5 σ) for AMP-PNP, Mg$^{2+}$, and APS in the SynAPSK active site. C, stereoview of the SynAPSK active site.](image1)

![FIGURE 4. Structural comparison of SynAPSK and AtAPSK monomers. A, an overlay of SynAPSK (white) and AtAPSK (green) is shown. The difference in position of the β_1-α_7 loop is indicated. B, close-up view of differences in the β_1-α_7 loop of SynAPSK (white) and AtAPSK (green). The adenosine and ribose portions of AMP-PNP bound to SynAPSK are shown in gray.](image2)

![FIGURE 5. Structure of the SynAPSK-APS-sulfate complex. A, ribbon diagram of the dimer. Secondary structure features are colored as described in the legend for Fig. 3A. The positions of APS and sulfates are indicated. B, view of APS and sulfate binding in the SynAPSK active site. Electron density of the $2F_o - F_c$ omit map (1.5 σ) for APS and sulfate is shown. C, the sulfate binding site at the dimer interface of SynAPSK. The $2F_o - F_c$ omit map (1.5 σ) for the sulfate molecule is shown.](image3)
SynAPS was also confirmed by nonreducing SDS-PAGE analysis of SynAPS fus/H23C incubated in changing ratios of reduced DTT: trans-4,5-dihydroxy-1,2-dithiane (oxidized DTT) (Fig. 6C). Under reducing conditions, the unlinked monomer was observed. With increasing oxidation, the formation of the disulfide cross-linked dimer was apparent.

Discussion

The uptake and assimilation of sulfur for a variety of metabolic purposes is a common feature in prokaryotes and eukaryotes alike. In particular, the use of APS (Fig. 1A), a high-energy molecule with twice the energy of the pyrophosphate linkage of ATP (43–45), for incorporation of sulfur into compounds of primary and specialized metabolism places constraints on the protein structure required for recognizing this special metabolite. The enzymes responsible for producing APS (ATP sulfurylase) and its conversion to useable forms (APS kinase) are highly conserved in sequence and core structure across a wide range of organisms (18, 46); however, these enzymes display a remarkable variety in domain organization/architecture and regulatory features.

The structures of SynAPS in complex with either AMP-PNP, Mg2+, and APS (Fig. 3) or APS and sulfate (Fig. 5) reveal a compact homodimeric structure with a monomer fold that is retained in APSK from prokaryotes and eukaryotes. Although there are minor sequence variations in the P-loop and larger differences in the sequence and positioning of the B1-e-a7 loop between cyanobacterial and plant APSK (Fig. 4), the positioning of the conserved catalytic aspartate, a nearly invariant APS binding site, and a well conserved ATP binding site (Fig. 3C) suggests a reaction sequence for SynAPS that is shared with other enzymes of the family (31, 47, 48). For phosphoryl group transfer, ATP-Mg2+ binds first followed by APS. The Mg2+ ion is required for catalysis and organization of the active site with Asp-42 acting as a general base for the abstraction of a proton from the ribose 3′-OH group of APS, which leads to its nucleophilic attack on the γ-phosphate of ATP. Following catalysis, PAPS is released followed by ADP. Presumably, the active site “lid” domain, which includes α5 and α6, moves between the open and closed forms to allow for binding and release of the nucleotides (42).

The x-ray crystal structure of SynAPS and the amino acid sequence comparisons with representative members of different cyanobacterial families (i.e. Anabaena sp. PCC 7108, Nostoc sp. PCC 7107, Calothrix sp. PCC 7103, Trichodesmium erythraeum, Cyanothecae sp. PCC 7822, Pleurocapsa sp. PCC 7319, Synechococcus sp. PCC 7002, and Oscillatoria sp. PCC 10802) indicate that these organisms use highly homologous (61–83% amino acid sequence identity) enzymes for the formation of PAPS (Fig. 2). With the exception of the APSK from Anabaena, which has a short N-terminal extension, the cyanobacterial APSK lack the NTD found in the homologs from algae, mosses, and plants (Fig. 2). This major difference, along with other sequence variations, leads to a clear phylogenetic split between the cyanobacterial APSK and the APSK from organisms along the evolutionary lineage from cyanobacteria to green algae and chlorophytes (Chlorella variabilis and Chlamydomonas reinhardtii), mosses (Physcomitrella patens and Selaginella moellendorfii), gymnosperms (Picea sitchensis), and angiosperms (A. thaliana) (Fig. 1C). Nonetheless, the APSK in the green lineage share 46–57% amino acid sequence identity with SynAPS and likely retain a homodimeric stucture as observed in both SynAPS and AtAPSK (8).

Table 2

Species	kcat/KmPAPS	bcat/KmPAPS	kcat/KmATP	bcat/KmATP
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67
SynAPSK-RED	2.1 ± 0.1	0.30 ± 0.05	14.7 ± 2.4	93.67

Notes

a Values for AtAPSK were reported previously (8) and are included here for comparison.
Evolution of Redox Control in APSK

APSK-like domain functions as a regulatory subunit of ATP sulfurylase activity (39) with a monofunctional APSK providing for PAPS synthesis (38). With the hexameric APSK from T. denitrificans, it is an N-terminal ATP sulfurylase-like domain that lost catalytic function to serve as an oligomerization domain for the catalytic C-terminal APSK domain (41). The evolutionary differences in the organization of APSK and ATP sulfurylase likely reflect the different needs and uses of these organisms for sulfur in their metabolisms. This also appears to be the situation in the evolution of the NTD in APSK from cyanobacteria to plants.

Previous studies demonstrate that AtAPSK is redox-regulated (8–11). The oxidized form of AtAPSK exhibited a 20-fold reduction in catalytic efficiency and was 15-fold more sensitive to substrate inhibition by APS than the reduced protein (Table 2) (8). Structural and functional analyses defined the role of the NTD and a disulfide linkage in modulating these differences (8–11) (Fig. 1B). The redox-sensitive APSK in plants appears to have evolved after bifurcation of the sulfur assimilation pathway in the green plant lineage to provide a control mechanism for partitioning sulfur flow via APS into primary and specialized thiol metabolic routes in plastids (8–11). Earlier biochemical studies on the APSK from Arabidopsis demonstrated similar redox regulation that could be mediated by E. coli thioredoxin (31), which is consistent with a common target recognition mechanism for the reduction of disulfides by thioredoxin (49).

In plants, oxidative stresses increase the demand for cysteine and glutathione and activate two key enzymes (APS reductase and glutamate-cysteine ligase) in the primary pathway leading to these molecules (40, 50–53). Oxidizing conditions attenuate APSK activity to limit APS use in the secondary route. Thus, reciprocal regulation of the APS branch point can be controlled by the cellular redox state.

As cyanobacteria represent the evolutionary origins of the chloroplast in plants (54, 55), structural studies of SynAPSK provide a foundation for investigating the structural development of redox regulation in APSK from the green plant lineage. Using a series of SynAPSK variants, we reconstructed the evolutionary path of a regulatory feature from cyanobacteria to plants (Fig. 6A). As with SynAPSK, both the SynAPSK H23C mutant and SynAPSK with an AtAPSK NTD fusion (i.e. SynAPSKmut/H23C) displayed minimal differences in steady-state kinetic parameters under either reducing or oxidizing conditions (Table 2). Only the version with both an NTD and an H23C substitution recapitulated the effect of oxidation and disulfide formation on APSK activity (Fig. 6, B and C). However, the 4.5-fold reduction in catalytic efficiency and 8-fold stronger effect of substrate inhibition by APS on SynAPSKmut/H23C suggests that other changes are required to complete the evolutionary path and tighter redox control observed with AtAPSK.

Although the monomer structures of SynAPSK and AtAPSK are similar (DALI Z score = 28.4 with a 1.1 Å r.m.s.d. for 172 Ca atoms), superimposition of the dimeric structures of each enzyme (4.2 Å r.m.s.d. for 172 Ca atoms) reveals differences in the positioning of secondary structural features within each monomer (Fig. 7). Along the dimer interface, α2 and α3 are shifted 3.8° and 9.6°, respectively, toward the exterior of the dimer in AtAPSK compared with their positions in SynAPSK. Similarly, α1 and α7, which buttress the ATP binding site, are tilted 10.5 and 15°, respectively, into the dimeric interface of AtAPSK compared with SynAPSK. Although the general position of His-23 of SynAPSK and Cys-119 of AtAPSK are comparable and redox effects can be conferred to SynAPSKmut/H23C, additional structural changes likely contribute to the more effective thiol switch in AtAPSK.

Previous studies done on AtAPSK and the APSK domain of PAPS synthetase from humans also suggest that slight structural variations with SynAPSK may lead to biochemical differences. Deletion of the NTD in AtAPSK and PAPS synthetase abolishes substrate inhibition by APS (9, 56). In contrast, SynAPSK is inhibited by APS even though it lacks the correspond-

![FIGURE 6. Structural evolution of the NTD and redox control element in APSK.](image-url)

A, schematic of SynAPSK variants used for reconstructing the structural evolution of redox control. B, steady-state kinetic comparison of the SynAPSKmut/H23C protein in assays performed under either reducing (5 mM DTT, black) or oxidizing (5 mM trans-4,5-dihydroxy-1,2-dithiane, red) conditions. Data for V versus APS concentration are shown with the fits to substrate inhibition displayed. C, SDS-PAGE analysis of SynAPSKmut/H23C protein incubated with varied ratios of DTT to trans-4,5-dihydroxy-1,2-dithiane. The leftmost lane contains 5 mM DTT, and the rightmost lane contains 5 mM trans-4,5-dihydroxy-1,2-dithiane, with in-between lanes containing increasing ratios of oxidized trans-4,5-dihydroxy-1,2-dithiane to reduced DTT. Arrowheads on the left side of the gel indicate the positions of the molecular weight markers.
Evolution of Redox Control in APSK

The regulation of sulfur metabolism is a critical process in plant biology, and the study of APSK (adenosine-5′-phosphosulfate kinase) is crucial for understanding this regulation. APSK has been observed in multiple crystal structures, and its flexibility in the NTD of APSK has been observed in various studies. The structural comparison of SynAPSK and AtAPSK dimers shows an ordered sulfate bound to residue Thr-61. As this residue appears to be at a potential allosteric site, the T61E point mutant was generated. No difference in sulfate inhibition observed in multiple crystal structures indicates that the NTD and disulfide bond formation alters ligand binding preference to modulate substrate inhibition by APS (9, 11).

Localized structural movements can create active site conformations that favor or disfavor catalysis. Given the mobility of structural features in APSK from all organisms, it is plausible that conformational dynamics contribute to the distinct biochemical properties of various APSK (58, 59).

Another potential regulatory feature was also examined (Fig. 5 and Table 2). The structure of the SynAPSK-APS-SO\textsubscript{4}2− complex shows an ordered sulfate bound to residue Thr-61. As this residue appeared to be at a potential allosteric site, the T61E point mutant was generated. No difference in sulfate inhibition was observed between the wild type and the T61E mutant, indicating that this ordered sulfate is a crystallographic artifact resulting from the sequence of SynAPSK.

As genomes become available for various organisms across the “tree of life,” such information provides fertile ground for the examination and reconstruction of the molecular evolution of protein structure and function, biochemical regulation, and the organization of metabolic pathways (1–7). Evolutionary biochemistry offers the opportunity to explore and compare proteins as they adapt to various systems-level demands. Unraveling how regulatory features, such as thiol-based redox switches, develop promises to have both protein and metabolic engineering applications.

Author Contributions—J. H. and J. M. J. designed the research; J. H., D. N., S. G. L., T. S., and J. M. J. performed the research; J. H., D. N., and J. M. J. analyzed the data; J. H., T. S., and J. M. J. wrote the paper; and all of the authors edited the paper.

Acknowledgments—Portions of this research were carried out at the Argonne National Laboratory Structural Biology Center of the Advanced Photon Source, a national user facility operated by the University of Chicago for the Department of Energy Office of Biological and Environmental Research (DE-AC02-06CH11357).

References

1. Gaucher, E. A., Thomson, J. M., Burgan, M. F., and Benner, S. A. (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425, 285–288
2. Perez-Jimenez, R., Ingles-Prieto, A., Zhao, Z. M., Sanchez-Romero, L., Alegre-Cebollada, J., Kosuri, P., Garcia-Manyes, S., Kappock, T. J., Takakura, M., Holmgren, A., Sanchez-Ruiz, J. M., Gaucher, E. A., and Fernandez, J. M. (2011) Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat. Struct. Mol. Biol. 18, 592–596
3. Harms, M. J., and Thornton, J. W. (2013) Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat. Rev. Genet. 14, 559–571
4. Carter, C. W. (2014) Urzymology: experimental access to a key transition in the appearance of enzymes. J. Biol. Chem. 289, 30213–30220
5. Vogel, C., Bashton, M., Kerrison, N. D., Chothia, C., and Teichmann, S. A. (2004) Structure, function and evolution of multidomain proteins. Curr. Opin. Struct. Biol. 14, 208–216
6. Allen, A., Kwagh, J., Fang, J., Stanley, C. A., and Smith, T. J. (2004) Evolution of glutamate dehydrogenase regulation of insulin homeostasis is an example of molecular exaptation. Biochemistry 43, 14431–14443
7. Ballicora, M. A., Dubay, J. R., Devillers, C. H., and Preis, J. (2005) Resurrecting the ancestral enzymatic role of a modular subunit. J. Biol. Chem. 280, 10189–10195
8. Ravilious, G. E., Nguyen, A., Francois, J. A., and Jez, J. M. (2012) Structural basis and evolution of redox regulation in plant adenosine-5′-phosphosulfate kinase. Proc. Natl. Acad. Sci. U.S.A. 109, 309–314
9. Ravilious, G. E., and Jez, J. M. (2012) Nucleotide binding site communication in Arabidopsis thaliana adenosine 5′-phosphosulfate kinase. J. Biol. Chem. 287, 30385–30394
10. Zhang, M., Ravilious, G. E., Hicks, L. M., Jez, J. M., and McCulla, R. D. (2012) Redox switching of adenosine-5′-phosphosulfate kinase with photoactivatable atomic oxygen precursors. J. Am. Chem. Soc. 134, 16979–16982
11. Ravilious, G. E., Westfall, C. S., and Jez, J. M. (2013) Redox-linked gating of nucleotide binding by the N-terminal domain of adenosine 5′-phosphosulfate kinase. J. Biol. Chem. 288, 6107–6115
12. van der Ploeg, J. R., Eichhorn, E., and Leisinger, T. (2001) Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch. Microbiol. 176, 1–8
13. Mendoza-Cózatl, D., Loza-Tavera, H., Hernández-Navarro, A., and Moreno-Sánchez, R. (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29, 653–671
14. Yi, H., Galant, A., Ravilious, G. E., Preuss, M. L., and Jez, J. M. (2010) Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism. Mol. Plant 3, 269–279
15. Yi, H., Ravilious, G. E., Galant, A., Krishnan, H. B., and Jez, J. M. (2010) From sulfur to homogluthathione: thiol metabolism in soybean. Amino Acids 39, 963–978
16. Takahashi, H., Kopriva, S., Giordano, M., Saito, K., and Hell, R. (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu. Rev. Plant Biol. 62, 157–184
17. Hatzios, S. K., and Bertozzi, C. R. (2011). The regulation of sulfur metabolism in Mycobacterium tuberculosis. PLoS Pathog. 7, e1002036
18. Ravilious, G. E., and Jez, J. M. (2012) Structural biology of plant sulfur metabolism: from assimilation to biosynthesis. Nat. Prod. Rep. 29, 1138–1152
19. Koprivova, A., and Kopriva, S. (2014) Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. Front. Plant Sci. 5, 589
20. Parthiyal, P., Kim, W. S., Cahoon, R. E., Jez, J. M., and Krishnan, H. B. (2006) Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Arch. Biochem. Biophys. 450, 20–29
21. Ravilious, G. E., Herrmann, J., Lee, S. G., Westfall, C. S., and Jez, J. M. (2013) Kinetic mechanism of the dimeric ATP sulfurylase from plants. Biosci. Rep. 33, e00053
Evolution of Redox Control in APSK

22. Herrmann, J., Ravilious, G. E., McKinney, S. E., Westfall, C. S., Lee, S. G., Baranicka, P., Giovannetti, M., Kopriva, S., Krishnan, H. B., and Jez, J. M. (2014) Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation. J. Biol. Chem. 289, 10919–10929

23. Martin, M. N., Tarczynski, M. C., Shen, B., and Leustek, T. (2005) The role of 5'-adenylylsulfate reductase in controlling sulfate reduction in plants. Photosynth. Res. 86, 309–323

24. Mugford, S. G., Yoshimoto, N., Reichelt, M., Wirtz, M., Hill, L., Mugford, S. T., Nakazato, Y., Noji, M., Takahashi, H., Kramell, R., Gigolashvili, T., Flugge, U. I., Westarcnack, C., Gershenson, J., Hell, R., Saito, K., and Kopriva, S. (2009) Disruption of adenosine-5'-phosphosulfate kinase in Arabidopsis reduces levels of saturated secondary metabolites. Plant Cell 21, 910–927

25. Mugford, S. G., Matthewman, C. A., Hill, L., and Kopriva, S. (2010) Adenosine-5'-phosphosulfate kinase is essential for Arabidopsis viability. FEBS Lett. 584, 119–123

26. Yatusevich, R., Mugford, S. G., Matthewman, C., Gigolashvili, T., Frerigman, H., Delaney, S., Kopriva, A., Flugge, U. I., and Kopriva, S. (2010) Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Plant J. 62, 1–11

27. Kopriva, S., Mugford, S. G., Baraniecka, P., Lee, B. R., Matthewman, C. A., and Kopriva, A. (2012) Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis. Front. Plant Sci. 3, 163

28. Hatzios, S. K., and Bertozzi, C. R. (2011) The regulation of sulfur metabolism in Mycobacterium tuberculosi. PLoS Pathog. 7, e002036

29. Schnell, R., and Schneider, G. (2010) Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 396, 33–38

30. Bick, J. A., Setterdahl, A. T., Knaff, D. B., Chen, Y., Pitcher, L. H., Zilinskas, T., Kopriva, S. (2010) Disruption of adenosine-5'-phosphosulfate kinase from Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 112, 7960–7965

31. Ottman, Z., and Minor, W. (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326

32. Otwinowski, Z., and Minor, W. (2000) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501

33. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221

34. Pande, P. B., and Carroll, K. S. (2015) A universal entropy-driven mechanism for thioredoxin-target recognition. Proc. Natl. Acad. Sci. U.S.A. 112, 7960–7965

35. Asahi, T. (1964) Sulfur metabolism in higher plants. IV. Mechanism of sulfate reduction by oxidative stress. J. Biol. Chem. 239, 210–215

36. Aoki, H., and Pande, P. B. (2010) The reaction mechanism of human thioredoxin: insights into the allosteric regulation. J. Biol. Chem. 285, 21513–21517

37. MacRae, I. J., Segel, I. H., and Fisher, A. J. (2000) Crystal structure of adenine 5'-phosphosulfate kinase from Penicillium chrysogenum. Biochemistry 39, 1613–1621

38. MacRae, I. J., Segel, I. H., and Fisher, A. J. (2001) Crystal structure of ATP sulfurylase from Penicillium chrysogenum: insights into the allosteric regulation of sulfate assimilation. Biochemistry 40, 6795–6804

39. Yu, Z., Lansdon, E. B., Segel, I. H., and Fisher, A. J. (2007) Crystal structure of the bifunctional ATP sulfurylase-APS kinase from the chemolithotrophic thermophile Aquifex eutroesc. J. Mol. Biol. 365, 732–743

40. Gay, S. C., Segel, I. H., and Fisher, A. J. (2009) Structure of the two-domain hexameric APS kinase from Thiobacillus denitrificans: structural basis for the absence of ATP sulfurylase activity. Acta Crystallogr. D Biol. Crystallogr. 65, 1021–1031

41. Lansdon, E. B., Segel, I. H., and Fisher, A. J. (2002) Ligand-induced structural changes in adenosine 5'-phosphosulfate kinase from Penicillium chrysogenum. Biochemistry 41, 13672–13680

42. Asahi, T. (1964) Sulfur metabolism in higher plants. IV. Mechanism of sulfate reduction in chloroplasts. Biochim. Biophys. Acta 82, 58–66

43. Hatzios, S. K., and Bertozzi, C. R. (2011) The regulation of sulfur metabolism in Mycobacterium tuberculosis. PLoS Pathog. 7, e002036

44. Schnell, R., and Schneider, G. (2010) Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun. 396, 33–38

45. Bick, J. A., Setterdahl, A. T., Knaff, D. B., Chen, Y., Pitcher, L. H., Zilinskas, T., Kopriva, S. (2010) Disruption of adenosine-5'-phosphosulfate kinase from Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 112, 7960–7965

46. Palde, P., and Carroll, K. S. (2015) A universal entropy-driven mechanism for thioredoxin-target recognition. Proc. Natl. Acad. Sci. U.S.A. 112, 7960–7965

47. Jeff, J. M., Cunnon, R. E., and Chen, S. (2004) Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J. Biol. Chem. 279, 33463–33470

48. Hothorn, M., Wachtler, A., Gromes, R., Stuwe, T., Rausch, T., and Schefzek, K. (2006) Structural basis for the redox control of plant glutamate-cysteine ligase. J. Biol. Chem. 281, 27577–27585

49. Hicks, I. M., Cunnon, R. E., Bonner, E. R., Rivard, R. S., Sheffield, J., and Jez, J. M. (2007) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19, 2653–2661

50. Gromes, R., Hothorn, M., Lenherr, E. D., Rybin, V., Schefzek, K., and Rausch, T. (2008) The redox switch of γ-gluamylocysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants. Plant J. 54, 1063–1075

51. Reyes-Prieto, A., Weber, A. P., and Bhattacharya, D. (2007) The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet. 41, 147–168

52. Scolfield, C., Dietrich, K., Paarmann, I., Ort, S., Konrad, M., and Lavie, A. (2007) Elucidation of the active conformation of the APS kinase domain of human 3'-phosphoadenyl-5'-phosphosulfate synthetase I and its ramifications for enzyme regulation. J. Biol. Chem. 282, 22112–22121

53. Scolfield, C., Dietrich, K., Paarmann, I., Ort, S., Konrad, M., and Lavie, A. (2007) Elucidation of the active conformation of the APS kinase domain of human PAPS synthetase I. J. Mol. Biol. 367, 486–500

54. Haidar, M., and Scolfield, C. (2010) Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838–844

55. Henzler-Wildman, K., and Kern, D. (2007) Dynamic personalities of protein domains. Nature 450, 964–972