Exploring Excited Hadrons in Lattice QCD

Colin Morningstar
(Carnegie Mellon University)

Excited QCD: Zakopane, Poland
February 11, 2009
The frontier awaits

- experiments show many excited-state hadrons exist
- significant experimental efforts to map out QCD resonance spectrum → JLab Hall B, Hall D, ELSA, etc.
- great need for *ab initio* calculations → lattice QCD
The challenge of exploration!

- most excited hadrons are unstable (resonances)
- excited states more difficult to extract in Monte Carlo calculations
 - correlation matrices needed
 - operators with very good overlaps onto states of interest
- must extract all states lying below a state of interest
 - as pion get lighter, more and more multi-hadron states
- best multi-hadron operators made from constituent hadron operators with well-defined relative momenta
 - need for all-to-all quark propagators
- disconnected diagrams
Hadron Spectrum Collaboration (HSC)

- J. Bulava, C. Morningstar, J. Foley, Ricky Wong (Carnegie Mellon U.)
- R. Edwards, B. Joo, H.W. Lin, D. Richards (Jefferson Lab.)
- E. Engelson, S. Wallace (U. Maryland)
- J. Dudek (Old Dominion)
- K.J. Juge (U. of Pacific)
- N. Mathur (Tata Institute)
- M. Peardon, S. Ryan (Trinity Coll. Dublin)
Overview of our spectrum project

- obtain stationary state energies of QCD in various boxes
 - 1st milestone: quenched excited states with heavy pion \(\rightarrow \) done
 - 2nd milestone: \(N_f=2 \) excited states with heavy pion \(\rightarrow \) done
 - 3rd milestone: \(N_f=2+1 \) excited states with light pion
 - unexplored territory in lattice QCD
 - multi-hadron operators needed \(\rightarrow \) many-to-many quark propagators
 - recent technology breakthrough \(\rightarrow \) new quark smearing
 - results during next year will tell the tale
- interpretation of finite-volume energies
 - spectrum matching to construct effective hadron theory?
 - Monte Carlo simulations using effective theory
 - infinite-volume, realistic pions in effective theory
Monte Carlo method

- hadron operators \(\phi = \phi[\bar{\psi}, \psi, U] \) \(\psi = \) quark \(U = \) gluon field
- temporal correlations from path integrals
 \[
 \langle \phi(t)\phi(0) \rangle = \frac{\int D[\bar{\psi}, \psi, U] \phi(t)\phi(0) e^{-\bar{\psi}M[U]\psi - S[U]}}{\int D[\bar{\psi}, \psi, U] e^{-\bar{\psi}M[U]\psi - S[U]}}
 \]
- integrate exactly over quark Grassmann fields
 \[
 \langle \phi(t)\phi(0) \rangle = \frac{\int DU \det M[U]\left(M^{-1}[U]\cdots\right) e^{-S[U]}}{\int DU \det M[U] e^{-S[U]}}
 \]
- resort to Monte Carlo method to integrate over gluon fields
- generate sequence of field configurations \(U_1, U_2, U_3, \ldots, U_N \) using Markov chain procedure
 - use of parallel computations on supercomputers
 - especially intensive as quark mass (pion mass) gets small
Lattice regularization

- hypercubic space-time lattice regulator needed for Monte Carlo
- quarks reside on sites, gluons reside on links between sites
- lattice excludes short wavelengths from theory (regulator)
- regulator removed using standard renormalization procedures (continuum limit)
- systematic errors
 - discretization
 - finite volume
Excited-state energies from Monte Carlo

- Extracting excited-state energies requires matrix of correlators.
- For a given $N \times N$ correlator matrix $C_{\alpha\beta}(t) = \langle 0 | O_\alpha(t) O_\beta^+(0) | 0 \rangle$, one defines the N principal correlators $\lambda_\alpha(t, t_0)$ as the eigenvalues of
 \[C(t_0)^{-1/2} C(t) C(t_0)^{-1/2} \]
 where t_0 (the time defining the “metric”) is small.
- Can show that $\lim_{t \to \infty} \lambda_\alpha(t, t_0) = e^{-(t-t_0)E_\alpha}(1 + e^{-t\Delta E_\alpha})$.
- N principal effective masses defined by $m_\alpha^{\text{eff}}(t) = \ln \left(\frac{\lambda_\alpha(t, t_0)}{\lambda_\alpha(t+1, t_0)} \right)$ now tend (plateau) to the N lowest-lying stationary-state energies.
- Analysis:
 - Fit each principal correlator to single exponential.
 - Optimize on earlier time slice, matrix fit to optimized matrix.
 - Both methods as consistency check.

February 11, 2009 C. Morningstar
Operator design issues

- statistical noise increases with temporal separation t
- use of very good operators is crucial or noise swamps signal
- recipe for making better operators
 - crucial to construct operators using *smeared* fields
 - link variable smearing
 - quark field smearing
 - spatially extended operators
 - use large set of operators (variational coefficients)
Three stage approach (PRD72:094506, 2005)

- concentrate on baryons at rest (zero momentum)
- operators classified according to the irreps of O_h

 $$G_{1g}, G_{1u}, G_{2g}, G_{2u}, H_g, H_u$$
- (1) basic building blocks: smeared, covariant-displaced quark fields

 $$(\tilde{D}_j^{(p)}\tilde{\psi}(x))_{A\alpha} \quad p \text{- link displacement (} j = 0, \pm 1, \pm 2, \pm 3)$$
- (2) construct elemental operators (translationally invariant)

 $$B^F(x) = \phi_{ABC}^F \epsilon_{abc} (\tilde{D}_i^{(p)}\tilde{\psi}(x))_{A\alpha} (\tilde{D}_j^{(p)}\tilde{\psi}(x))_{B\beta} (\tilde{D}_k^{(p)}\tilde{\psi}(x))_{C\gamma}$$

 - flavor structure from isospin
 - color structure from gauge invariance

- (3) group-theoretical projections onto irreps of O_h

 $$B_i^{A\Lambda F}(t) = \sum_{R \in O_h} \frac{1}{g_{O_h}^{DP}} D_{\Lambda\Lambda}^{(\Lambda)}(R)^* \{ U_R B_i^{F}(t) \} U_R^+$$
Incorporating orbital and radial structure

- displacements of different lengths build up radial structure
- displacements in different directions build up orbital structure

- operator design minimizes number of sources for quark propagators
- useful for mesons, tetraquarks, pentaquarks even!
- can even incorporate **hybrid meson** operators
Spin identification and other remarks

- spin identification possible by pattern matching

J	$n^J_{G_1}$	$n^J_{G_2}$	n^J_H
$\frac{1}{2}$	1	0	0
$\frac{3}{2}$	0	0	1
$\frac{5}{2}$	0	1	1
$\frac{7}{2}$	1	1	1
$\frac{9}{2}$	1	0	2
$\frac{11}{2}$	1	1	2
$\frac{13}{2}$	1	2	2
$\frac{15}{2}$	1	1	3
$\frac{17}{2}$	2	1	3

- total numbers of operators is huge \Rightarrow uncharted territory

- ultimately must face two-hadron scattering states

Irrep	Δ, Ω	N	Σ, Ξ	Λ
G_{1g}	221	443	664	656
G_{1u}	221	443	664	656
G_{2g}	188	376	564	556
G_{2u}	188	376	564	556
H_g	418	809	1227	1209
H_u	418	809	1227	1209
Quark- and gauge-field smearing

- smeared quark and gluon fields fields → dramatically reduced coupling with short wavelength modes
- **link-variable** smearing (stout links PRD69, 054501 (2004))
 - define $C_{\mu}(x) = \sum_{\pm(\nu \neq \mu)} \rho_{\mu\nu} U_\nu(x) U_\mu(x + \mathbf{v}) U^+_\nu(x + \mathbf{\mu})$
 - spatially isotropic $\rho_{jk} = \rho$, $\rho_{4k} = \rho_{k4} = 0$
 - exponentiate traceless Hermitian matrix
 $$\Omega_\mu = C_{\mu} U^+_\mu$$
 $$Q_\mu = \frac{i}{2} \left(\Omega^+_\mu - \Omega_\mu \right) - \frac{i}{2N} \text{Tr} \left(\Omega^+_\mu - \Omega_\mu \right)$$
 - iterate
 $$U^{(n+1)}_\mu = \exp \left(i Q^{(n)}_\mu \right) U^{(n)}_\mu$$
 - quark-field smearing (covariant Laplacian uses smeared gauge field)
 $$\tilde{\psi}(x) = \left(1 + \frac{\sigma_s}{4n_\sigma} \tilde{\Delta} \right)^{n_\sigma} \psi(x)$$
Importance of smearing

- Nucleon G_{1g} channel
- Effective masses of 3 selected operators
- Noise reduction from link variable smearing, especially for displaced operators
- Quark-field smearing reduces couplings to high-lying states
 \[\sigma_s = 4.0, \quad n_\sigma = 32 \]
 \[n_\rho = 2.5, \quad n_\rho = 16 \]
- Less noise in excited states using \(\sigma_s = 3.0 \)
Operator selection

- rules of thumb for “pruning” operator sets
 - noise is the enemy!
 - prune first using intrinsic noise (diagonal correlators)
 - prune next within operator types (single-site, singly-displaced, etc.) based on condition number of
 - prune across all operators based on condition number
- best to keep a variety of different types of operators, as long as condition numbers maintained
 \[
 \hat{C}_{ij}(t) = \frac{C_{ij}(t)}{\sqrt{C_{ii}(t)C_{jj}(t)}}, \quad t = 1
 \]
- typically use 16 operators to get 8 lowest lying levels
Nucleon G_{1g} effective masses

- 200 quenched configs, 12^3 48 anisotropic Wilson lattice, $a_s \sim 0.1 \text{ fm}$, $a_s/a_t \sim 3$, $m_\pi \sim 700 \text{ MeV}$
- nucleon G_{1g} channel
- green=fixed coefficients, red=principal
Nucleon H_u effective masses

- 200 quenched configs, 12^3 48 anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_\pi \sim 700$ MeV
- nucleon H_u channel
- green=fixed coefficients, red=principal
MILESTONE 1

Single-hadron excitations in quenched approximation
Nucleon spectrum: first results

- 200 quenched configs, 12^3 48 anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_\pi \sim 700$ MeV (A. Lichtl thesis)
Delta spectrum: first results

- 200 quenched configs, 12^3 48 anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_\pi \sim 700$ MeV (J. Bulava)
MILESTONE 2

Single-hadron excitations for $N_f=2$
Inclusion of quark loops

- \(N_f=2 \) on \(24^3 \) 64 anisotropic clover lattice, \(a_s \sim 0.11 \text{ fm}, a_s/a_c \sim 3 \)
- Left: \(m_\pi = 578 \text{ MeV} \) Right: \(m_\pi = 416 \text{ MeV} \) (PRD 2009, to appear)
Mesons

- $N_f=2+1$ on $16^3 \times 128$ anisotropic clover lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3.5$
- $m_\pi = 578$ MeV (preliminary… operators not optimized)
MILESTONE 3

Multi-hadron states for $N_f=2+1$
(in progress)
Spatial summations

- Baryon at rest is operator of form

\[B(\vec{p} = 0, t) = \frac{1}{V} \sum_{\vec{x}} \phi_B(\vec{x}, t) \]

- Baryon correlator has a double spatial sum

\[\langle 0 | \bar{B}(\vec{p} = 0, t) B(\vec{p} = 0, 0) | 0 \rangle = \frac{1}{V^2} \sum_{\vec{x}, \vec{y}} \langle 0 | \bar{\phi}_B(\vec{x}, t) \phi_B(\vec{y}, 0) | 0 \rangle \]

- Computing all elements of propagators exactly not feasible

- Translational invariance can limit summation over source site to a single site for local operators

\[\langle 0 | \bar{B}(\vec{p} = 0, t) B(\vec{p} = 0, 0) | 0 \rangle = \frac{1}{V} \sum_{\vec{x}} \langle 0 | \bar{\phi}_B(\vec{x}, t) \phi_B(0, 0) | 0 \rangle \]
Slice-to-slice quark propagators

- **good** baryon-meson operator of total zero momentum has form

\[
B(\vec{p}, t)M(−\vec{p}, t) = \frac{1}{V^2} \sum_{\vec{x}, \vec{y}} \phi_B(\vec{x}, t)\phi_M(\vec{y}, t)e^{i\vec{p} \cdot (\vec{x}−\vec{y})}
\]

- **cannot** limit source to single site for multi-hadron operators
- disconnected diagrams (scalar mesons) will also need many-to-many quark propagators
- quark propagator elements from all spatial sites to all spatial sites are needed!
 - new territory → exploration
Initial stochastic estimation

- quark propagator is just inverse of Dirac matrix \(M \)
- noise vectors \(\eta \) satisfying \(E(\eta_i) = 0 \) and \(E(\eta_i\eta_j^*) = \delta_{ij} \) are useful for stochastic estimates of inverse of a matrix \(M \)
- \(Z_4 \) noise is used \{1, i, -1, -i\}
- define \(X(\eta) = M^{-1}\eta \) then
 \[
 E(X_i\eta_j^*) = E\left(\sum_k M^{-1}_{ik}\eta_k\eta_j^*\right) = \sum_k M^{-1}_{ik}E(\eta_k\eta_j^*) = \sum_k M^{-1}_{ik}\delta_{kj} = M^{-1}_{ij}
 \]
- if can solve \(M X^{(r)} = \eta^{(r)} \) for each of \(N_R \) noise vectors \(\eta^{(r)} \) then we have a Monte Carlo estimate of all elements of \(M^{-1} \):
 \[
 M^{-1}_{ij} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)}\eta_j^{(r)*}
 \]
- variances in above estimates usually unacceptably large
- introduce variance reduction using source *dilution*
Source dilution for single matrix inverse

- dilution introduces a complete set of projections:
 \[P^{(a)} P^{(b)} = \delta^{ab} P^{(a)}, \quad \sum_a P^{(a)} = 1, \quad P^{(a)\dagger} = P^{(a)} \]

- observe that
 \[
 M_{ij}^{-1} = M_{ik}^{-1} \delta_{kj} = \sum_a M_{ik}^{-1} P^{(a)} = \sum_a M_{ik}^{-1} P^{(a)} \delta_{k'j'} P^{(a)}
 \]
 \[= \sum_a M_{ik}^{-1} P^{(a)} E(\eta_k \eta_j^*) P^{(a)} = \sum_a M_{ik}^{-1} E\left(P^{(a)} \eta_k \eta_j^* P^{(a)}\right)\]

- define
 \[
 \eta_{[a]}^k = P_{kk'}^{(a)} \eta_{k'}, \quad \eta_{[a]}^j = \eta_j^* P_{jj}^{(a)}, \quad X_{[a]}^k = M_{kj}^{-1} \eta_{[a]}^j
 \]
 so that
 \[
 M_{ij}^{-1} = \sum_a E\left(X_{[a]}^i \eta_{[a]}^j \right)
 \]

- Monte Carlo estimate is now
 \[
 M_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_a X_{[a]}^{(r)[a]} \eta_{[a]}^{(r)[a]*}
 \]

- \[\sum_a \eta_{[a]}^i \eta_{[a]}^j \] has same expected value as \[\eta_i \eta_j^*\], but reduced variance
 (statistical zeros \(\rightarrow\) exact)
Dilution schemes for spectroscopy

- **Time dilution (particularly effective)**
 \[P^{(B)}_{ab;\alpha\beta}(\bar{x},t;\bar{y},t') = \delta_{ab}\delta_{\alpha\beta}\delta(\bar{x},\bar{y})\delta_{Bt}\delta_{B't'}, \quad B = 0,1,\ldots, N_t - 1 \]

- **Spin dilution**
 \[P^{(B)}_{ab;\alpha\beta}(\bar{x},t;\bar{y},t') = \delta_{ab}\delta_{B\alpha}\delta_{B\beta}\delta(\bar{x},\bar{y})\delta_{tt'}, \quad B = 0,1,2,3 \]

- **Color dilution**
 \[P^{(B)}_{\alpha\alpha;\beta\beta}(\bar{x},t;\bar{y},t') = \delta_{Ba}\delta_{Bb}\delta_{\alpha\beta}\delta(\bar{x},\bar{y})\delta_{tt'}, \quad B = 0,1,2 \]

- **Spatial dilutions?**
 - even-odd
Dilution tests

- 100 quenched configs, 12^3, 48 anisotropic Wilson lattice, $a_s \sim 0.1$ fm, $a_s/a_t \sim 3$, $m_\pi \sim 700$ MeV
- three representative operators: SS, SD, TDT nucleon operators
Dilution tests (continued)

- 100 quenched configs, 12^3 48 anisotropic Wilson lattice
Source-sink factorization

- baryon correlator has form
 \[C_{ij} = c_{ijk}^{(l)} c_{ijk}^{(T)*} Q_{ii}^A Q_{jj}^B Q_{kk}^C \]

- stochastic estimates with dilution
 \[C_{ij} \approx \frac{1}{N_R} \sum_r \sum_d A d_B d_C c_{ijk}^{(l)} c_{ijk}^{(T)*} \left(\phi_i^{(Ar)[d_A]} \eta_i^{(Ar)[d_A]*} \right) \]
 \[\times \left(\phi_j^{(Br)[d_B]} \eta_j^{(Br)[d_B]*} \right) \left(\phi_k^{(Cr)[d_C]} \eta_k^{(Cr)[d_C]*} \right) \]

- define
 \[\Gamma_{ij}^{(r)[d_A d_B d_C]} = c_{ijk}^{(l)} \phi_i^{(Ar)[d_A]} \phi_j^{(Br)[d_B]} \phi_k^{(Cr)[d_C]} \]
 \[\Omega_{ij}^{(r)[d_A d_B d_C]} = c_{ijk}^{(l)} \eta_i^{(Ar)[d_A]} \eta_j^{(Br)[d_B]} \eta_k^{(Cr)[d_C]} \]

- correlator becomes dot product of source vector with sink vector
 \[C_{ij} \approx \frac{1}{N_R} \sum_r \sum_d A d_B d_C \Gamma_{ij}^{(r)[d_A d_B d_C]} \Omega_{ij}^{(r)[d_A d_B d_C]*} \]

- store ABC permutations to handle Wick orderings
Laplacian Heaviside quark-field smearing

- new quark-field smearing method (summer 2008)
- clever choice of quark-field smearing makes exact computations with all-to-all quark propagators possible!!
 - will work for disconnected diagrams
 - preserves source-sink factorization
- to date, quark field smeared using covariant Laplacian

\[\psi(x) = \left(1 + \frac{\sigma_s}{4n_\sigma} \tilde{\Delta} \right)^{n_\sigma} \psi(x) \]

- express in term of eigenvectors/eigenvalues of Laplacian

\[\psi(x) = \left(1 + \frac{\sigma_s}{4n_\sigma} \tilde{\Delta} \right)^{n_\sigma} \sum_k \langle \phi_k | \phi_k \rangle \psi(x) \]

\[= \sum_k \left(1 + \frac{\sigma_s \lambda_k}{4n_\sigma} \right)^{n_\sigma} \langle \phi_k | \phi_k \rangle \psi(x) \]

- truncate sum and set weights to unity \(\Rightarrow \) Laplacian Heaviside
Getting to know the Laplacian

- spectrum of the covariant Laplacian
- left: dependence on lattice size; right: dependence on link smearing
Choosing the smearing cut-off

- Laplacian Heaviside (LAPH) quark smearing

\[\tilde{\psi}(x) = \Theta(Q_{\text{max}}^2 + \tilde{\Delta}) \psi(x) \]

\[\approx \sum_{k=1}^{N_{\text{max}}} |\varphi_k\rangle \langle \varphi_k | \psi(x) \]

- choose smearing cut-off based on minimizing excited-state contamination, keep noise small
 - behavior of nucleon \(t=1 \) effective masses
Tests of Laplacian Heaviside smearing

- comparison of ρ-meson effective masses using same number of gauge-field configurations

- typically need < 30 modes on 16^3 lattice
- about 100 modes on 24^3 lattice
Advantages of new smearing

- source-sink factorization
- simpler expressions than stochastic method
- improved statistics
- slice-to-slice quark propagators \Rightarrow multi-hadron operators
Configuration generation

- significant time on USQCD (DOE) and NSF computing resources
- anisotropic clover fermion action (with stout links) and anisotropic improved gauge action
 - tunings of couplings, aspect ratio, lattice spacing done
- anisotropic Wilson configurations generated during clover tuning
- current goal:
 - three lattice spacings: \(a = 0.125 \text{ fm}, 0.10 \text{ fm}, 0.08 \text{ fm} \)
 - three volumes: \(V = (3.2 \text{ fm})^4, (4.0 \text{ fm})^4, (5.0 \text{ fm})^4 \)
 - 2+1 flavors, \(m_\pi \sim 350 \text{ MeV}, 220 \text{ MeV}, 180 \text{ MeV} \)
- USQCD Chroma software suite
Resonances in a box
Resonances in a box: an example

- Consider simple 1D quantum mechanics example
- Hamiltonian

\[H = \frac{1}{2} p^2 + V(x) \quad \text{where} \quad V(x) = (x^4 - 3) e^{-x^2/2} \]
1D example spectrum

- Spectrum has two bound states, two resonances for $E<4$
Scattering phase shifts

- define even- and odd-parity phase shifts δ_\pm
- phase between transmitted and incident wave
Spectrum in box (periodic b.c.)

- spectrum is discrete in box (momentum quantized)
- narrow resonance is avoided level crossing, broad resonance?

Dotted curves are $V=0$ spectrum
Unstable particles (resonances)

- our computations done in a periodic box
 - momenta quantized
 - discrete energy spectrum of stationary states \(\rightarrow \) single hadron, 2 hadron, …
- how to extract resonance info from box info?
- **approach 1**: crude scan
 - if goal is exploration only \(\rightarrow \) “ferret” out resonances
 - spectrum in a few volumes
 - placement, pattern of multi-particle states known
 - resonances \(\rightarrow \) level distortion near energy with little volume dependence
 - short-cut tricks of McNeile/Michael, Phys Lett B556, 177 (2003)
Unstable particles (resonances)

- **approach 2**: phase-shift method
 - if goal is high precision \Rightarrow work much harder!
 - relate finite-box energy of multi-particle model to infinite-volume phase shifts
 - evaluate energy spectrum in several volumes to compute phase shifts using formula from previous step
 - deduce resonance parameters from phase shifts
 - early references
 - B. DeWitt, PR 103, 1565 (1956) (sphere)
 - M. Luscher, NPB 364, 237 (1991) ($\rho\pi\pi$ in cube)

- **approach 3**: histogram method
 - recent work for pion-nucleon system:
 - V. Bernard et al, arXiv:0806.4495 [hep-lat]

- **new approach**: construct effective theory of hadrons?
Summary

- goal: to wring out hadron spectrum from QCD Lagrangian using Monte Carlo methods on a space-time lattice
 - baryons, mesons (and glueballs, hybrids, tetraquarks, …)
- discussed extraction of excited states in Monte Carlo calculations
 - correlation matrices needed
 - operators with very good overlaps onto states of interest
- must extract all states lying below a state of interest
 - as pion get lighter, more and more multi-hadron states
- multi-hadron operators → relative momenta
 - need for slice-to-slice quark propagators
- nearing final milestone!
- interpretation of finite-box energies