Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Note

Does the timing of saliva collection affect the diagnosis of SARS-CoV-2 infection?

Yuki Katayama a, Ryosei Murai a, Mikako Moriai a, Shinya Nirasawa a, Masachika Saeki a, Yuki Yakuwa a, Yuki Sato a, Koichi Asanuma a, Yoshihiro Fujiya b, c, Koji Kuronuma b, d, Satoshi Takahashi a, b, c, *

a Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
b Division of Infection Control, Sapporo Medical University Hospital, Sapporo, Japan
c Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
d Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan

ARTICLE INFO

Keywords:
SARS-CoV-2
Saliva
Collection timing

ABSTRACT

We evaluated the optimal timing of saliva sample collection to diagnose the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We obtained 150 saliva samples at four specific time points from 13 patients with confirmed SARS-CoV-2 infection. The time points were (1) early morning (immediately after waking), (2) immediately after breakfast before tooth brushing, (3) 2 h after breakfast, and (4) before lunch. On the 2nd hospital day, patients collected saliva at the four time points by themselves. We collected samples at two time points, (1) and (3), from the 3rd hospital day to day 9 following symptom onset. In 52 samples collected at the four time points, there was no significant difference. Meanwhile, there was no significant difference in the positive proportion or the viral load between the two time points in both analyses by the day from symptom onset and by all samples. In this study, there was no difference in the positive proportions in saliva collected at various time points within 9 days after symptom onset. The timing of saliva collection was not affected by the diagnosis of SARS-CoV-2 infection.

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), and it occurred in December 2019 in Wuhan, China [1]. SARS-CoV-2 is highly contagious and continues to spread worldwide. Nasopharyngeal swabs are the primary sampling methods used to detect SARS-CoV-2. However, swab sampling is invasive and can pose a risk of infection for healthcare workers. Researchers suggest that saliva collected within 9 days after symptom onset is a useful sample for the molecular diagnosis of COVID-19 [2]. The Ministry of Health, Labor and Welfare in Japan has allowed “PCR assay by saliva collected within 9 days after symptom onset [3].” Several studies have reported that the detection sensitivity of the test using saliva is comparable to that of nasopharyngeal swab specimen [2, 4]. The saliva collection procedure is non-invasive, easy to collect, and can reduce the risk of virus transmission to healthcare workers. Recently, some studies reported that the SARS-CoV-2 molecular test using the posterior oropharynx samples collected in the early morning showed high sensitivity [5]. Moreover, in SARS-CoV-2 molecular tests, one case report stated that saliva collected in the early morning is desirable in terms of detection capability [6]. Therefore, the timing of saliva collection may also affect the results of the SARS-CoV-2 molecular test. In this study, we evaluated the optimal timing of saliva collection for SARS-CoV-2 molecular tests.

We conducted an observational study of patients with COVID-19 admitted to Sapporo Medical University Hospital between August 2020 and March 2021. On admission, nasopharyngeal swabs were collected and tested using the SARS-CoV-2 molecular test to confirm the infection. The specific time points were defined as the time point 1: early morning (immediately after waking, before teeth brushing, mouth rinsing, and eating breakfast), time point 2: right after breakfast before tooth brushing, time point 3: 2 h after breakfast, and time point 4: just before lunch. On the 2nd hospital day, patients collected saliva at four specific time points by themselves. From the 3rd hospital day to day 9

* Corresponding author. Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan.
E-mail address: stakahas@sapmed.ac.jp (S. Takahashi).

https://doi.org/10.1016/j.jiac.2022.03.009
Received 30 December 2021; Received in revised form 11 March 2022; Accepted 14 March 2022
Available online 25 March 2022
1341-321X/© 2022 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Saliva specimens were collected at four specific time points. Positive proportions of the SARS-CoV-2 molecular test on the 2nd hospital day. Time point 1: early morning (immediately after waking, before tooth brushing, mouth rinsing, and eating breakfast), time point 2: immediately after breakfast (before teeth brushing), time point 3: 2 h after breakfast, and time point 4: before lunch.
that saliva could be obtained at any time in the morning for a diagnosis of the SARS-CoV-2 infection. Our study has several limitations. Firstly, we compared four specific time points including early morning, before breakfast, 2 h after breakfast, and before lunch as the timing of saliva collection. In this study, we could not compare saliva samples collected at the time points of the afternoon. Secondly, we did not consider sample properties. One study reported that a high viscosity could make nucleic acid extraction difficult. Under these circumstances, this could lead to a reduction in the diagnostic accuracy of the SARS-CoV-2 molecular test [14]. In our study, there were differences in viscosity according to collection time in the same patients. We acknowledge that saliva may be collected by patients who are dehydrated and symptomatic. This occurs in about 10% of asymptomatic volunteers [15]. Therefore, the viscosity of saliva may affect the results of the SARS-CoV-2 molecular test. Therefore, appropriate sample collection for SARS-CoV-2 testing is needed to detect the virus and prevent its spread.

To conclude, there was no difference in the positive readings of the SARS-CoV-2 molecular test with reference to the timing of saliva collection, that is within 9 days after symptom onset.

References

[1] Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb Infect 2020;9:221–36. https://doi.org/10.1098/s22241751.2020.1719902.

[2] Uwamino Y, Nagata M, Aoki Y, Fujimoto Y, Nakagawa T, Yokota H, et al. Accuracy and stability of saliva as a sample for reverse transcription PCR detection of SARS-CoV-2. J Clin Pathol 2021;74:67–8. https://doi.org/10.1136/jclinpath-2020-206975.

[3] Ministry of Health labor and Welfare. COVID-19 tests. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000121431_00182.html. [Accessed 13 December 2021].

[4] Yokota I, Shene PY, Okada K, Uoski Y, Yang Y, Inao T, et al. Mass screening of asymptomatic persons for severe acute respiratory syndrome coronavirus 2 using saliva. Clin Infect Dis 2021;72:e559–65. https://doi.org/10.1093/cid/ciaa1388.

[5] Hung DL, Li X, Chiu KH, Yip CC, To KK, Chan JF, et al. Early-morning vs spot posterior oropharyngeal saliva for diagnosis of SARS-CoV-2 infection: implication of timing of specimen collection for community-wide screening. Open Forum Infect Dis 2020;7. https://doi.org/10.1093/ofid/ofaa210. ofaa210.

[6] Tájima Y, Suda Y, Yano K. A case report of SARS-CoV-2 confirmed in saliva specimens up to 37 days after onset: proposal of saliva specimens for COVID-19 diagnosis and virus monitoring. J Infect Chemother 2020;26:1086–9. https://doi.org/10.1016/j.jiac.2020.06.011.

[7] Corporation Shimadzu. manufacturer’s protocol of AmpRightTM 2019-nCoV Detection Kit. https://www.shimadzu.co.jp/reagents/covid-19/pdf/ampcov4.pdf. [Accessed 28 January 2022].

[8] Wölfel R, Corman VM, Guggemos W, Seilmeier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-19. Nature 2020; 581:465–9. https://doi.org/10.1038/s41586-020-2196-x.

[9] Kaufman E, Lamster IB. The diagnostic applications of saliva—a review. Crit Rev Oral Biol Med 2002;13:197–212. https://doi.org/10.1177/154411130201300209.

[10] Steengooba W, Katerepe DP, Wajja A, Bugumirwa E, Mboowa G, Namaganda C, et al. An early morning sputum sample is necessary for the diagnosis of pulmonary tuberculosis, even with more sensitive techniques: a prospective cohort study among adolescent TB-suspects in Uganda. Tuberc Res Treat 2012;2012:970203. https://doi.org/10.1155/2012/970203.

[11] Van Vlijh Chan N, Lam VT, Dung NT, Yen LM, Minh NNQ, Hung LM, et al. The natural history and transmission potential of asymptomatic severe acute respiratory syndrome coronavirus 2 infection. Clin Infect Dis 2020;71:2679–87. https://doi.org/10.1093/cid/ciaa1388.

[12] Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med 2020;173:362–7. https://doi.org/10.7326/M20-3012.

[13] Moghadas SM, Fitzpatrick MC, Sah P, Pandey A, Shoukat A, Singer BH, et al. The implications of silent transmission for the control of COVID-19 outbreaks. Proc Natl Acad Sci U S A 2020;117:17513. https://doi.org/10.1073/pnas.200873117. 5.

[14] Jeong JH, Kim KH, Jeong SH, Park JW, Lee SM, Seo YH. Comparison of sputum and nasopharyngeal swabs for detection of respiratory viruses. J Med Virol 2014;86: 2122–7. https://doi.org/10.1002/jmv.23977.

[15] Landry ML, Criscuolo J, Pepper DR. Challenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients. J Clin Virol 2020;130:104567. https://doi.org/10.1016/j.jcv.2020.104567.