REVIEW ARTICLE

CCCDTD5: Clinical role of neuroimaging and liquid biomarkers in patients with cognitive impairment

Mélanie Brisson1 | Catherine Brodeur2 | Laurent Létourneau-Guillon3 | Mario Masellis4 | Jon Stoessel5 | Alex Tamm6 | Katherine Zukotynski7 | Zahinoor Ismail8 | Serge Gauthier9 | Pedro Rosa-Neto9,10 | Jean-Paul Soucy3,10,11

1 Centre hospitalier de l’université de Québec, Quebec City, Canada
2 Institut universitaire de gériatrie de Montréal, Montreal, Canada
3 Centre hospitalier de l’université de Montréal, Montreal, Canada
4 Sunnybrook Health Sciences Centre, Toronto, Canada
5 Vancouver Coastal Health, University of British-Columbia, Vancouver, Canada
6 University of Alberta, Edmonton, Canada
7 McMaster University, Hamilton, Canada
8 Department of Psychiatry, Hotchkiss Brain Institute and O’Brien Institute for Public Health, University of Calgary, Calgary, Canada
9 McGill Center for Studies in Aging, Canada
10 McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
11 PERFORM Center, Concordia University, Montreal, Canada

Correspondence
Jean-Paul Soucy; Director, PET Unit; Montreal Neurological Institute; 3801 Rue University, Montréal, QC, Canada, H3A 2B4. Email: jean-paul.soucy@mcgill.ca

Pedro Rosa-Neto & Jean-Paul Soucy contributed equally to this article

Funding information
Canadian Consortium on Neurodegeneration in Aging

Abstract
Since 1989, four Canadian Consensus Conferences on the Diagnosis and Treatment of Dementia (CCCDTDs) have provided evidence-based dementia diagnostic and treatment guidelines for Canadian clinicians and researchers. We present the results from the Neuroimaging and Fluid Biomarkers Group of the 5th CCCDTD (CCCDTD5), which addressed topics chosen by the steering committee to reflect advances in the field and build on our previous guidelines.

Recommendations on Imaging and Fluid Biomarker Use from this Conference cover a series of different fields. Prior structural imaging recommendations for both computerized tomography (CT) and magnetic resonance imaging (MRI) remain largely unchanged, but MRI is now more central to the evaluation than before, with suggested sequences described here. The use of visual rating scales for both atrophy and white matter anomalies is now included in our recommendations. Molecular imaging with [18F]-fluorodeoxyglucose ([18F]-FDG) Positron Emission Tomography (PET) or [99mTc]-hexamethylpropyleneamine oxime/ethylene cysteinate dimer ([99mTc]-HMPAO/ECD) Single Photon Emission Tomography (SPECT), should now decidedly favor PET. The value of [18F]-FDG PET in the assessment of neurodegenerative conditions has been established with greater certainty since the previous conference, and it has now been recognized as a useful biomarker to establish the presence of neurodegeneration by a number of professional organizations around the world. Furthermore, the role of amyloid PET has been clarified and our recommendations follow those from other groups in multiple countries. SPECT with [123I]-ioflupane (DaTscan™) is now included as a useful study in differentiating Alzheimer’s disease (AD) from Lewy body disease. Finally, liquid biomarkers are in a rapid phase of development and, could lead to a revolution in the assessment AD and other neurodegenerative conditions at a reasonable cost.

We hope these guidelines will be useful for clinicians, researchers, policy makers, and the lay public, to inform a current and evidence-based approach to the use of neuroimaging and liquid biomarkers in clinical dementia evaluation and management.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2020 The Authors. Alzheimer’s & Dementia: Translational Research & Clinical Interventions published by Wiley Periodicals, Inc. on behalf of Alzheimer’s Association.
1 | INTRODUCTION

Since 1989, four Canadian Consensus Conferences on the Diagnosis and Treatment of Dementia (CCCDTDs) have led to evidence-based recommendations on the diagnosis and treatment of Alzheimer’s disease (AD) and related dementias.1–4 The 5th CCCDTD (CCCDTD5) convened in October 2019 in Quebec City, in conjunction with the Canadian Conference on Dementia in order to re-assess the previous guidelines based on updated information relevant to the field. Topics included: (1) the utility of the National Institute on Aging (NIA) research framework for diagnosing AD; (2) updating diagnostic criteria for vascular cognitive impairment (VCI) and its management; (3) detection of neurodegenerative disease using cognitive, behavioral, and functional rating scales; (4) use of neuroimaging and fluid biomarkers in diagnosis; (5) use of non-cognitive markers of dementia for better dementia detection; (6) risk reduction/prevention; (7) psychosocial and non-pharmacological interventions; and (8) de-prescription of medications used to treat dementia. The general report from the conference is already available.5

This paper presents the results of our work in the field of clinical neuroimaging.

2 | METHODS

The methodology was based on the approach suggested by the Appraisal of Guidelines for REsearch & Evaluation II (AGREE II) collaboration,6 of which 20 of the 23 criteria were met. The steering committee chose the topics for the CCCDTD5 based on a needs assessment and advances in the field. Working groups included representation from neurology, psychiatry, medical imaging, geriatric medicine, and primary care, and scientists with expertise in the field. Literature searches were tailored to working group needs and varied depending on whether the recommendations were an update of existing recommendations or were based on de novo topics. Where possible, the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system was followed in keeping with current recommendations for the conduct of consensus conferences.7 A semi-structured consensus building methodology was used, based on the Delphi process.4,8 Recommendations were posted to a password-protected site, along with all documentation, and were voted on by a panel of more than 50 Canadian experts across the spectrum of background education/expertise. Recommendations were endorsed or rejected, with comment boxes for participant feedback. Consistent with previous conferences, the a priori threshold for acceptance of a recommendation was set at 80% endorsement. Any recommendation that obtained 60% to 80% endorsement was reviewed and revised with re-voting at an in-person meeting. Recommendations that obtained less than 60% endorsement were dropped. Stakeholders in the care of patients with dementia including non-voting representatives from industry, government, the international community, and other organizations involved in dementia guidelines were invited as observers to the CCCDTD5. Online voting closed 3 days before the conference, which was held in Quebec City on October 3rd, 2019. At the conference, each topic was summarized along with the results of the online voting. Recommendations requiring revision were discussed in detail followed by an anonymous vote. The same ≥80% threshold was required to pass the revised recommendations. All endorsed recommendations are listed in the tables of this article, followed by the GRADE of evidence and percentage endorsement attained.

3 | RECOMMENDATIONS FOR THE IMAGING APPROACH TO THE DIAGNOSIS OF DEMENTIA

3.1 | Structural imaging

The previous iteration of the CCCDTD conference, held in Montreal in 2012, made the following recommendations regarding structural imaging for the diagnosis of dementia6,9:

The new recommendations are presented and discussed below. Indications for structural neuroimaging in subjects presenting with cognitive impairment remain controversial, with certain authors suggesting neuroimaging in all subjects while others promote a selective approach.10–12 We propose the above recommendations for routine
initial evaluation of subjects with cognitive decline. These are substan-
tively the same as previously with the caveat that the reference to age
60 has been removed (this was considered arbitrary as no satisfactory
justification was found in the literature).

Similar to the prior recommendation, uncertainty remains per-
taining to the use of computerized tomography (CT) versus magnetic
resonance imaging (MRI) as the first neuroimaging test to obtain. CT
can detect large cortical ischemic lesions, space-occupying lesions,
hydrocephalus, and subdural hematomas. However, the sensitivity
of CT for subcortical ischemic lesions, in particular white matter
disease, as well as for other rarer conditions such as prion diseases
and auto-immune encephalitides, is inferior to MRI. Again, authors
are divided regarding the best first-line modality, but MRI is generally
favored over CT.10,13–17 One cost-effectiveness study found CT to
be a superior first-line approach compared to MRI.18 Local practices
and imaging modality availability is another factor to consider when
ordering studies.

Dementia imaging protocols vary across centers. Proposed baseline
imaging sequences endorsed by the European Society of Neuroradi-
ology (ESNR) and the European Academy of Neurology (EAN) have
been described elsewhere.16 This includes the following sequences:
three-dimensional (3D) T1-weighted, fluid-attenuated inversion
recovery (FLAIR), T2-weighted, susceptibility weighted imaging
(SWI), T2-weighted, and diffusion-weighted imaging. Typically, studies
are performed without intravenous gadolinium contrast injection,
unless there is a specific indication such as the possibility of underlying
neoplastic, infectious, or inflammatory disorder. If available and if
there is no contraindication, 3T imaging is favored over 1.5 T MRI.19
The proton density (PD) sequence, although rarely included in rou-
tine clinical practice, may be helpful for research. More advanced
sequences, such as resting-state functional MRI, arterial spin labeling,
MR spectroscopy, and diffusion tensor imaging, remain research tools
that are not validated for routine clinical use.20

Space-occupying lesions are generally easy to detect, and inter-
pretation of CT and MRI studies should go beyond excluding such
processes.21,22 Atrophy severity and patterns as well as ischemic lesion
burden including white matter changes are important features
to describe. The use of a systematic approach to the interpretation
of such studies is recommended to maximize its yield.16,21,22,23 Although
most radiology reports remain in the traditional narrative style, there
is interest in moving toward structured reporting, incorporating a sys-
tematic approach.24 The use of quantitative scales to report patterns
of atrophy is also encouraged. These include the Scheltens (Medial
Temporal Atrophy [MTA])25,26 and Pasquier (Global Cortical Atro-
phy [GCA]) scales.27–29 In addition, lobar patterns and asymmetry
should be noted.21 Despite the fact that these scales are typically
aimed at MRI scan interpretation, they are transferable to CT scan
interpretation.21,22,23 To better assess the MTA scale on CT, coronal
(or oblique coronal) reformation should be performed.22,30 Training
has an effect on the reliability of how these scales are applied and the
use of reference images is recommended, especially for readers who
are less experienced with these grading schemes.28 For white mat-
ter disease, the Fazekas scale31 is the most widely used grading sys-
tem. The terminology to describe small vessel disease has also been
reported.32

Despite the widespread use of quantification software in research,
the adoption of one or more of many quantification software packages
in clinical practice is rare. This is likely due to limited availability and
the time needed for use of those packages as well as the question-
able external validity of research results.16,33 Moreover, the additional
diagnostic information provided compared to subjective interpretation
needs to be assessed in routine clinical practice. One recent study did
not find a significant difference in medial temporal lobe atrophy grad-
ing accuracy when comparing visual ratings and the use of a com-
mercially available software.34

Overall, there remains a lack of evidence for the use of quantifica-
tion software either for the initial diagnosis of AD or for the purpose of
differential diagnosis.35,36 Artificial intelligence and the rapidly evolv-
ing area of deep learning-assisted quantification is likely to augment
imaging analysis in the future but the need for validation of these tools
in clinical practice remains.37

3.2 Functional and ligand-based imaging

The previous iteration of the CCCDTD conference, held in Montreal
in 2012, made the following recommendations about the use of func-
tional and ligand-based imaging for the diagnosis of dementia.8

This statement is more direct than the previous statement regard-
ing the performance of [18F]-fluorodeoxyglucose ([18F]-FDG) Positron
Emission Tomography (PET), as evidence has accumulated since 2012
about the usefulness of this procedure. That additional evidence is pre-
sented here.

The references reviewed are from 2012 or later, except for a few
important papers not included in the 4th CCCDTD discussion.

First, it should be mentioned that the risk associated with [18F]-
FDG is essentially non-existent. Only one clear case of a reaction to
[18F]-FDG has been documented since 2015; specifically, a skin rash
was noted (a subsequent injection after administration of steroids was
uneventful).38 To put this in perspective, the number of [18F]-FDG PET
scans performed in the United States in 2018 is estimated to have been
above 2,000,000.39

The Alzheimer’s Society of Canada refers to recommendations
from the 4th CCCDTD in the section of its website about the diagnosis
of AD, endorsing their validity. Somewhat unexpectedly, several
other groups including the American Academy of Neurology, American
Geriatrics Society, American Neurological Association, American
Psychiatric Association, Canadian Academy of Geriatric Psychiatry,
Canadian Association on Gerontology, Canadian Geriatrics Society,
Gerontological Society of America, and International Psychogeriatric
Association do not comment on the role of molecular imaging in the
diagnosis of subjects presenting with cognitive impairment.

Recognition of the importance of imaging biomarkers to establish
a diagnosis of AD originated in 2011 with the publication of four
articles jointly written by the National Institute on Aging (NIA) and the
Alzheimer’s Association. The first article describes their introduction
in the diagnostic evaluation of AD.41 Two42,43 of the remaining three articles discuss their usefulness in the assessment of patients with major cognitive impairment (MaCI) and minor cognitive impairment (MiCI) suspected to be AD related. The fourth article suggests a way to identify preclinical AD in a research context.44 In the first three, [(18F)]-FDG PET is presented as a marker of neuronal injury (alongside cerebrospinal fluid [CSF] tau measurements and structural MRI) capable of modulating the probability of AD in the context of a large array of clinical and laboratory results.

Several organizations subsequently confirmed that [(18F)]-FDG PET plays a valuable role in evaluating subjects with cognitive impairment. In 2012, the European Federation of Neurological Societies recommended the use of [(18F)]-FDG PET in the evaluation of subjects with cognitive impairment for whom a diagnosis remained ill-defined, both to decide if a neurodegenerative condition was present and to differentiate specific conditions.45 In 2014, the International Working Group on AD concurred that the addition of biomarkers (citing [(18F)]-FDG among others) was likely to improve diagnosis.46 The same group reinforced this notion, particularly in the preclinical phase and in cases of atypical AD or mixed disease.47 A Cochrane Review48 from the same period concluded that a recommendation on the routine use of [(18F)]-FDG PET in patients with MiCI was difficult to make, one of their reasons being that [(18F)]-FDG PET was expensive, which has changed as the price of [(18F)]-FDG has decreased. In addition, the review noted only a few articles with small patient numbers (14 studies with a total of 421 subjects) evaluating MiCI conversion to MaCI with suspected AD were available.

Recommendations from the Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers49 established five indicators of [(18F)]-FDG PET “clinical maturity” based on a literature review following criteria already used for oncology. The biological validity of [(18F)]-FDG PET to study neurodegeneration (Phase 1 clinical maturity) was considered to have been established. Demonstrating that [(18F)]-FDG PET was capable of distinguishing subjects with AD from normal subjects or subjects with other neurodegenerative conditions was deemed as essentially completed (Phase 2 clinical maturity). That [(18F)]-FDG PET was capable of detecting early clinical phases of the disease (Phase 3 clinical maturity), was considered partially confirmed, whereas the defining value of [(18F)]-FDG PET in prodromal cases (Phase 4 clinical maturity) was declared to be a work in progress. Proof of a favorable cost/benefit ratio (Phase 5 clinical maturity), was unmet due to an absence of studies on actual cost per Quality-Adjusted Life Year (QALY) added, death prevented, or comparison to other diagnostic approaches. This does not mean that there has been no attempt at evaluating the economic impact of [(18F)]-FDG PET early in the course of the disease (vide infra). Furthermore, it would be difficult to assess the usefulness of [(18F)]-FDG PET given no disease course-modifying therapy is available.

In 2018, the Alzheimer’s Association released an online set of guidelines for primary and specialty care physicians50 including that diagnostic accuracy is increased by [(18F)]-FDG PET in subjects where no clear diagnosis has been established after clinical evaluation and structural imaging (preferably MRI). The recommendation states that molecular imaging should be ordered by a dementia specialist, a prescription we have adopted in our own recommendations.

The same year, The National Institute for Health and Care Excellence (NICE) in the UK, which advises the National Health System on a variety of topics, also published recommendations on molecular imaging51 suggesting molecular imaging be requested by a dementia specialist if the diagnosis remains in doubt after clinical assessment, laboratory evaluation and structural imaging, and a diagnosis would change patient management.

Again in 2018, the European Association of Nuclear Medicine and Molecular Imaging and the European Academy of Neurology jointly published recommendations on the use of [(18F)]-FDG PET in the evaluation of subjects with cognitive decline and neurodegenerative conditions.52 Using a Delphi process, the authors reviewed 58 articles (of an initial potential pool of 1435) deemed to contain enough quantitative information for passing a judgment on the effectiveness of the technique. Underscoring the limited quality of the evidence, the two associations agreed that [(18F)]-FDG PET was useful for the early detection of AD, as well as for the differential diagnosis of neurodegenerative disorders leading to cognitive decline. They also suggested the use of pattern recognition software packages could improve performance.

Finally, the NIA (United States) and Alzheimer’s Association published a framework for the diagnosis of AD based on biological (non-clinical) criteria only.53 Initially this was proposed for research purposes, but the potential for generalization to clinical practice is under review. This framework is based on showing the presence or absence of amyloid and tau pathology as well as neurodegeneration using a variety of tests of which [(18F)]-FDG PET is a validated marker, again confirming its usefulness in establishing a diagnosis of AD.

It is important to assess the cost of the technique (in itself and as compared to alternatives) in terms of the information provided and the impact on patient management and outcome. Such studies are challenging to complete due, at least in part, to non-uniformity in cost, access, local expertise, and so on.54 Over the years, several attempts in different countries55–57 have been made to define a useful index representative of a typical cost/benefit ratio. The results of those admittedly imperfect efforts all point at potential savings and improvements in the quality of life of subjects, using a technique with an established safety record. Several additional studies,58–60 although not focussed on PET, have suggested that knowing the diagnosis of AD early in the course of the disease leads to improved patient management in terms of the medications prescribed and the use of specialized care, in addition to higher quality of life. Finally, the risk of harming patients and their caregivers by revealing a diagnosis carrying a poor prognosis has been largely discussed and dismissed: Generally, both groups appreciate being given a clear diagnosis, which allows them to chart a life course better adapted to the situation.61

First it should be noted that subjects and families often have no personal preference for PET versus single-photon emission computerized tomography (SPECT).52
Only recently has supportive data for the above recommendation become available. For instance, Davison and O’Brien63 reviewed 24 studies published between 1997 and 2011, 13 with PET, including 2382 subjects classified as either normal or cognitively impaired (AD, Lewy body dementia [LBD], or frontal temporal dementia [FTD]). None were head-to-head comparisons. Despite the large number of studies and cases, in that article published <10 years ago, the authors stated that the data were insufficient to choose one technique over the other. A review64 of studies from 1989 to 2012 (35 studies with PET including 3199 subjects, and 38 studies with SPECT including 2178 subjects), suggested that PET had higher diagnostic accuracy than SPECT. However, the results from each study, when assessed with positive and negative likelihood ratios, depended on the technique used for classification and showed large variations in performance. This may be an indicator that better trained readers provide interpretations that are more helpful. Another review65 of papers published between 1990 and 2010 (27 studies with PET and 19 with SPECT), suggested that PET had higher performance than SPECT for distinguishing AD cases from non-demented controls (area under the receiver operating characteristic (AUROC) curve—FDG: 0.96, confidence interval [CI] 0.93-0.97; SPECT: 0.90, CI 0.87-0.92) and from demented controls when MCI cases were included (0.91, CI 0.88-0.93 vs 0.86, CI 0.83-0.89), but not if MCI cases were excluded.

Results of head-to-head comparisons for SPECT and PET in the same subjects are rare. A study from Japan66 compared PET to SPECT in 28 subjects with MaCI due to AD and 12 with MiCI linked to AD versus 15 without AD (10 LBD and 5 frontotemporal lobar degeneration [FTLD]). All subjects had [18F]-FDG PET, [11C]-Pittsburg compound B ([11C]-PIB) PET, [99mTc]-ethylene cysteinate dimer ([99mTc]-ECD), and SPECT, and were clinically evaluated using the 2011 NIA-AA (Alzheimer’s Association) criteria for AD, and the 1998 Neary and 2005 McKeith criteria for LBD and FTLD. All imaging interpretation was done visually (three physicians). The authors concluded that SPECT and PET had similar performance for the diagnosis of AD. The three readers had a diagnostic accuracy, with both techniques, ranging from 60% to 70%, that is at the lower limit of results from other studies for both. Distribution of the two agents was found to correlate poorly in the precuneus, posterior cingulate cortex, and occipital lobe, regions that are critical to the diagnosis of AD and LBD. However, the results are not presented for each subject, which makes their comparison difficult. A larger study from the same time67 included 38 subjects with AD, 30 with LBD, and 10 controls. Diagnosis was established based on clinical evaluation only. Average time between scans was 11 days. SPECT was performed with [99mTc]-ECD. Interpretation (three physicians) was done both visually and using a Statistical Parametric Mapping (SPM)-based comparison to a normal database. The metric extracted was the AUROC curve. PET was superior to SPECT for both neurodegenerative versus normal (AUC: 0.93 PET, 0.72 SPECT, P < .001) and AD versus LBD (0.80, 0.58, P = .005). The authors concluded that PET was preferred over SPECT when molecular imaging was necessary for diagnosing neurodegenerative conditions. Another study focused on early diagnosis.68 Nine subjects with AD MaCI, 9 with LBD MaCI, 8 with AD MiCI, and 9 with LBD MiCI were assessed with PET and SPECT ([123I]-IMP). Classification was made using the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for MaCI versus MiCI and the 2011 MIA-AA criteria and 2005 McKeith criteria for AD and LBD, respectively. Analysis was done by comparing subjects to normal databases, limiting measurements to the occipital area. Significance was assessed using an AUROC curve approach. With [18F]-FDG PET, the AUROC curve for AD versus LBD in the MaCI stage was 0.80 and 0.84, respectively, on the left and right hemispheres, as compared to 0.78 and 0.85 with SPECT, confirming that both techniques were capable of differentiating the two diseases at the MaCI stage. For MiCI subjects, FDG had AUROC curves of 0.85 and 0.89 for the left and right hemispheres, whereas SPECT did not reach significance. The authors recommended PET over SPECT for establishing a differential diagnosis of AD versus LBD at the MiCI stage. More recently, a report of a study of 20 subjects with mild MaCI, that is, Clinical Dementia Rating (CDR) score 0.5 or 1 of the Alzheimer’s type, as defined by McKhann’s 1984 criteria, and 18 controls who were studied with PET, SPECT, and MRI (T1) has been published.69 Studies were processed using a support vector machine–based image classification, with measurements of accuracy and AUROC curve, on images generated using different types of reconstruction and normalization schemes for both SPECT and PET. Functional imaging outperformed MRI. Accuracy and AUROC curve were 68% to 71% and 0.77 to 0.81 (depending on the normalization approach) for PET, 68% to 74% and 0.75 to 0.79 for SPECT (depending on the normalization approach and use of partial volume correction), and 58% and 0.67 for MRI. The authors concluded that SPECT and PET were comparable, and the reconstruction of SPECT benefited from partial volume correction, whereas PET did not.

Finally, we include a paper that was published after the CCCDTD5 meeting but before this article was written70 because it is, to date, the largest head-to-head comparison of PET and SPECT in AD. One hundred twenty-six patients with AD (54% MiCI and 44% MaCI) confirmed to be amyloid positive by PET had both [18F]-FDG PET and a SPECT ([99mTc]-ECD or [99mTc]-HMPAO), with a median time of 3 months between the two (median time between amyloid and FDG-PET and SPECT: 185 days). Readers felt more confident reading PET than SPECT (83% vs 67%, P = .001). PET results were superior to SPECT: AUROC curve for PET was 0.71 versus 0.61 for SPECT (P = 0.02). Sensitivity was 76% versus 43% (P < .001), whereas specificity was 74% versus 83% (P = .45), respectively for PET and SPECT.

Thus the literature supports our recommendation that [18F]-FDG PET is preferable to SPECT regional cerebral blood flow for the investigation of cognitive impairment.

Guidelines suggest that amyloid PET may be helpful in patients with objective, clinically confirmed cognitive impairment of uncertain etiology and in whom knowledge of amyloid deposition may alter management.71,72 Appropriate use criteria of amyloid PET suggest the need to be cognizant of the clinical implications of a negative73,74 or a positive test,75,76 and to be capable of defining what constitutes an atypical presentation of cognitive impairment (early onset, slowly progressive MiCI); that is, the ability to recognize patients who will benefit from amyloid PET is important. This has led to the
recommendation that ordering amyloid PET be limited to physicians who dedicate a significant proportion of their practice to subjects with cognitive impairment.

[18F]-FDG-PET provides valuable information in the evaluation of subjects with cognitive impairment. The cost associated with [18F]-FDG-PET is lower and the access is easier than for amyloid PET. As such, it is preferable to obtain [18F]-FDG-PET prior to obtaining amyloid PET. From a scientific perspective, there is little ground for proposing a systematic approach as to the sequence of [18F]-FDG-PET or amyloid PET. The two techniques are complementary. Furthermore, [18F]-FDG-PET can suggest typical or variant-type AD, while amyloid PET cannot.

In 2004, the first study of 16 humans with AD imaged with [11C]-PIB was published, the 20-minute half-life of [11C] limited availability of [11C]-PIB to centers with access to an on-site cyclotron. Today, several PET radiopharmaceuticals are available to detect amyloid deposition in the brain including [18F]-florbetapir (Amyvid), [18F]-flutemetamol (Vizamyl), [18F]-florbetaben (NeuraCeq), [18F]-NAV-4694 (formerly known as AZD4694; not approved for clinical use). Of those, only [18F]-florbetaben has been approved for human use in Canada. The half-life of [18F] is ≈110 minutes, allowing shipping of imaging agents across large distances. These radiopharmaceuticals bind to amyloid plaque and, non-specifically, to white matter. Typically, amyloid PET is interpreted visually in a binary manner, using manufacturer-recommended specific image color scales, as positive (loss of gray-white matter differentiation) or negative. A positive scan implies moderate to frequent amyloid plaques (which is not equivalent to a diagnosis of AD) and a negative scan suggests no or sparse amyloid plaque and essentially eliminates the possibility of AD. Quantification of total amyloid burden and loco-regional accumulation may be insightful.

Arguably the most commonly encountered PET radiopharmaceutical for amyloid imaging is 18F-florbetapir. 18F-florbetapir PET has sensitivity (87%) and specificity (95%) for distinguishing none to sparse from moderate to frequent amyloid plaque as confirmed at autopsy. The performance of [18F]-florbetaben, again when validated by autopsy results (in 74 subjects), is at least as good, with a sensitivity of 98% (95%CI 94%-100%) and specificity of 90% (95% CI 77%-100%).

In 2013, the Amyloid Imaging Task Force, a collaborative group of the Alzheimer’s Association and the Society of Nuclear Medicine and Molecular Imaging (SNMMI), recommended that amyloid PET be considered if the results of imaging could change management. To derive supportive data, the Imaging Dementia-Evidence for Amyloid Scanning (IDEAS) study was launched in 2016. This study was designed to assess if amyloid PET could help clinicians diagnose the cause of cognitive impairment, provide treatment recommendations, and ultimately improve long-term health outcomes. Of 11,409 subjects 65-years of age or older (with MCI or dementia of uncertain etiology) who met the appropriate use criteria (AUC) for amyloid PET and completed the study, a change in management between pre- and post-PET visits was recorded in 60% of subjects with MCI and 63% of subjects with dementia.
The previous iteration of the CCCDTD conference, held in Montreal in 2012, made the following recommendations regarding structural imaging for the diagnosis of dementia:

1. **Subjects with rapidly progressive dementia.** There is evidence to the effect that CSF biomarkers can be of benefit in identifying the underlying pathology.
2. **Young subjects with dementia (early onset disease), specifically those younger than 65 years of age.** The relative prevalence of AD dementia in young individuals is lower than in older individuals.

TABLE 1 Structural imaging: Recommendations from the CCCDTD4 Conference (2012)

1. **We recommend a head MRI when a radiologist/neuroradiologist and/or a cognitive specialist (neurologist, geriatrician, or geriatric psychiatrist) can interpret patterns of atrophy and other features that may provide added diagnostic and predictive value as deemed appropriate by the specialist (Grade 2B).**

2. **Standardization of clinical acquisition of core MRI dementia sequences is recommended in Canadian Centers that have radiologists and cognitive specialists with expertise in assessing cognitive disorders, particularly when repeat MRI images can provide additional diagnostic, prognostic, and safety information (Grade 2B).**

3. **In addition to previously listed indications for structural imaging, a CT or MRI should be undertaken in the assessment of a person with cognitive impairment if the presence of unsuspected cerebrovascular disease would change the clinical management.**

4. **When available in the clinic, we recommend that cognition specialists use the computer images of the brain to educate persons with cognitive impairment about changes in the brain. This knowledge may reinforce adherence to vascular risk factors management and to lifestyle modifications to improve brain health (Grade 3C).**

TABLE 2 Structural imaging: First recommendation from the CCCDTD5 Conference (2019)

1. **Even in older subjects, anatomical neuroimaging is recommended in most situations, using the following list of indications: onset of cognitive signs/symptoms within the past 2 years, regardless of the rate of progression; unexpected and unexplained decline in cognition and/or functional status in a patient already known to have dementia; recent and significant head trauma; unexplained neurological manifestations (new-onset severe headache, seizures, Babinski sign, etc.), at onset or during evolution (this also includes gait disturbances); history of cancer, in particular if “at risk” for brain metastases; subject at risk for intracranial bleeding; symptoms compatible with normal pressure hydrocephalus; significant vascular risk factors. 1C.**

4 | **RECOMMENDATIONS FOR THE USE OF LIQUID BIOMARKERS IN THE DIAGNOSIS OF DEMENTIA**

The price of the $[^{123}I]$-ioflupane and $[^{18}F]$-FDG-PET tracers vary widely across Canada. Generally, however, the price of $[^{123}I]$-ioflupane is significantly higher than that of $[^{18}F]$-FDG-PET. Numerous papers, including most recently 29 have indicated that the performance of $[^{18}F]$-FDG-PET in diagnosing LBD is high. A further study 100 confirmed increased $[^{18}F]$-FDG in the striatum as a useful marker of dopamine loss in the striatum, which is a major differential diagnostic element between AD and LBD.

The lack of standardization for CSF test result interpretation, the absence of a national accredited infrastructure for the analysis of CSF in Canada, and the absence of a disease-modifying intervention supported this recommendation. 4 However, liquid biomarkers, CSF amyloid beta (Aβ1-42), and tau were considered useful in the context of research protocols for observational and therapeutic studies.

The CCCDTD5 recommendations are supported by significant progress in the field. First, our systematic review of the literature shows that a large number of individuals have had a lumbar puncture as part of their assessment for neurodegenerative disease, and that the safety of a lumbar puncture is well-established.

Next, standards for handling and analysis of CSF, lacking at the time of the previous CCCDTD, are now established. Although comparison of results across platforms remains a work in progress, a number of certified commercial platforms and, in Canada, two academic laboratories, are available to conduct these tests and routinely perform these analyses for clinical purposes.

The CCCDTD5 members felt the complexity of obtaining, handling, interpreting, and integrating CSF studies into the patient’s clinical data (age and apolipoprotein E [APOE] genotype) should limit the use of liquid biomarkers to centers specialized in cognitive disorders.

In addition, because multiple brain pathologies are commonly present concomitantly in the aging brain, interpreting a positive CSF amyloid biomarker as diagnostic for AD requires careful expert assessment and is likely more helpful to exclude AD pathophysiology than for including it in the diagnosis.

Three CSF biomarkers are considered clinically relevant at this time, and their usefulness is supported by multiple reports: Aβ1-42 (Aβ1-42) and tau protein phosphorylated at position 181 (p-tau-181) are core AD biomarkers. Total tau (t-tau) is a validated, non-specific indicator of neurodegeneration.

Six key references led to the adoption of the first recommendation, although 11 more formed the basis of the second recommendation. It was recognized that the level of evidence for these recommendations is good (1C), but may be subject to change depending on the evidence obtained in future large scale, randomized clinical trials.

The following clinical presentations are specific examples of circumstances where CSF biomarkers may have impact on the management of subjects with cognitive impairment.

1. **Subjects with rapidly progressive dementia.** There is evidence to the effect that CSF biomarkers can be of benefit in identifying the underlying pathology.
2. **Young subjects with dementia (early onset disease), specifically those younger than 65 years of age.** The relative prevalence of AD dementia in young individuals is lower than in older individuals.
TABLE 3 Structural imaging: Second recommendation from the CCCD TD5 Conference (2019)

2. Magnetic resonance imaging (MRI) is recommended over computerized tomography (CT), especially given its higher sensitivity to vascular lesions as well as for some subtypes of dementia and rarer conditions. (2C). If available, and in the absence of contraindications, 3 Tesla MRI should be favored over 1.5 Tesla. (2C). If MRI is performed, we recommend the use of the following sequences: 3D T1 volumetric sequence (including coronal reformations for the purpose of hippocampal volume assessment), fluid-attenuated inversion recovery (FLAIR), T2* (or if available susceptibility-weighted imaging [SWI]), T2-weighted and diffusion-weighted imaging (DWI). 1C. We recommend against the routine clinical use of advanced MR sequences such as resting-state fMRI, MR spectroscopy, diffusion tensor imaging, and arterial spin labeling. However, these sequences are promising research tools that can be incorporated into a research setting or if access to advanced expertise is present. 2C.

TABLE 4 Structural imaging: Third recommendation from the CCCD TD5 Conference (2019)

3. If CT is performed, we recommend a non-contrast CT and the use of coronal reformations are encouraged to better assess hippocampal atrophy. 1C.

TABLE 5 Structural imaging: Fourth recommendation from the CCCD TD5 Conference (2019)

4. We recommend the use of semi-quantitative scales for routine interpretation of both MRI and CT scans including the medial temporal lobe atrophy (MTA) scale for medial temporal involvement, Fazekas scale for white matter changes, and global cortical atrophy (GCA) to qualify global atrophy. 1C.

TABLE 6 Structural imaging: Fifth recommendation from the CCCD TD5 Conference (2019)

5. We recommend against the routine clinical use of quantification software pending larger studies demonstrating the added diagnostic value of these tools. Of note, this is a rapidly evolving field and this recommendation could change in the future. 2C.

TABLE 7 Functional and ligand-based imaging: Recommendations from the CCCD TD4 Conference (2012)

1. For a patient with a diagnosis of dementia who has undergone the recommended baseline clinical and structural brain imaging evaluation and who has been evaluated by a dementia specialist but whose underlying pathological process is still unclear, preventing adequate clinical management, we recommend that the specialist obtain a $[^{18}F]$-FDG PET scan for differential diagnosis purposes (Grade 1B).

2. If such a patient cannot be practically referred for a $[^{18}F]$-FDG PET scan, we recommend that a SPECT rCBF study be performed for differential diagnosis purposes (Grade 2C).

TABLE 8 Functional and ligand-based imaging: First recommendation from the CCCD TD5 Conference (2019) - a

1a. For a patient with a diagnosis of a cognitive impairment who has undergone the recommended baseline clinical and structural brain imaging evaluation and who has been evaluated by a cognitive disorders specialist but whose underlying pathological process is still unclear, preventing adequate clinical management, a $[^{18}F]$-fluorodeoxyglucose ($[^{18}F]$-FDG) PET scan is an effective and accurate tool for differential diagnosis purposes. 1A.

1b. If such a patient cannot be practically referred for an $[^{18}F]$-FDG-PET scan, we recommend that a SPECT regional cerebral blo flow (rCBF) study be performed for differential diagnosis purposes. 1B.

TABLE 9 Functional and ligand-based imaging: First recommendation from the CCCD TD5 Conference (2019) - b

2a. As recommended by The Amyloid Imaging Task Force of the Alzheimer’s Association and Society for Nuclear Medicine and Molecular Imaging as well as by The Canadian Consensus Conference on the Use of Amyloid Imaging, ordering amyloid PET should be limited to dementia experts. 1A.

2b. Because of cost issues, it is preferable to obtain an $[^{18}F]$-FDG-PET (fluorodeoxyglucose positron emission tomography) scan before proceeding to amyloid PET. 1A.

TABLE 10 Functional and Ligand-Based Imaging: Second Recommendation from the CCCD TD5 Conference (2019) - a

2a. As recommended by The Amyloid Imaging Task Force of the Alzheimer’s Association and Society for Nuclear Medicine and Molecular Imaging as well as by The Canadian Consensus Conference on the Use of Amyloid Imaging, ordering amyloid PET should be limited to dementia experts. 1A.

TABLE 11 Functional and ligand-based imaging: Second recommendation from the CCCD TD5 Conference (2019) - b

2b. Because of cost issues, it is preferable to obtain an $[^{18}F]$-FDG-PET (fluorodeoxyglucose positron emission tomography) scan before proceeding to amyloid PET. 1A.

TABLE 12 Functional and ligand-based imaging: Second recommendation from the CCCD TD5 Conference (2019) - c

2c. Use should follow The Amyloid Imaging Task Force of the Alzheimer’s Association and Society for Nuclear Medicine and Molecular Imaging as well as The Canadian Consensus Conference on the Use of Amyloid Imaging appropriate use criteria. This will result in improved diagnostic classification and management. 1B.
Non-AD dementia in young individuals might be linked to 3R or 4R tauopathies, synucleinopathies, TDP43, and other less-common dementia-inducing neurodegenerative conditions. Furthermore, clinical presentation of AD is frequently atypical in these individuals and might resemble clinical syndromes associated with non-AD pathology. Indeed, a large body of literature, including clinical and autopsy series as well as meta-analyses, support the use of CSF biomarkers in distinguishing AD from frontotemporal lobar degeneration. As such, CSF biomarkers may increase confidence in the diagnosis of AD in younger patients.

3. Subjects with late onset of atypical clinical presentation (defined as those where the clinical presentation is dominated by language, visuospatial, behavioral, or executive deficits). For example, subjects with primary progressive aphasia, particularly its logopenic variant, or posterior cortical atrophy syndrome, often but not always show AD pathology and may benefit from CSF analysis. Dysexecutive or "frontal" variant AD, with its prominent deficits in executive function relative to amnesia has also been shown to be correctly identified using fluid biomarkers.

4. Diagnosis of possible AD, applicable to individuals with atypical disease, questionable progressive decline, clinical findings of concomitant cerebrovascular disease or Lewy body dementia, as well as evidence for other neurologic, medical comorbidities, or receiving medication that could affect cognition. Although CSF biomarkers may help clinicians confirm or exclude AD pathophysiology in these individuals, the role of AD as a determinant of clinical dementia may remain uncertain even after a thorough clinical and biomarker investigation. Still, the presence of a CSF signature of AD may justify use of cholinesterase inhibitors or memantine in these cases. At this time, there is only evidence in the literature to support the use of CSF biomarkers in subjects younger than 65, or older than 65 years if presenting with atypical forms of dementia.

5. Neuropsychiatric symptoms, when these are the earliest and most prominent feature of a neurodegenerative condition. Clinicians may consider neurodegenerative disease as a possible etiology for neuropsychiatric symptoms, especially in elderly subjects with new-onset neuropsychiatric symptoms in the absence of a history of psychiatric illness. Some individuals with atypical and mixed presentations of AD may have depression, hallucinations, compulsions, paranoid delusions, or more complex delusions such as Capgras syndrome early in the course of their disease. Still, although elderly subjects whose dominant symptom is a change in behavior constitute an attractive target for ruling out AD pathology with biomarkers, there is no strong evidence in the literature supporting this indication. Recently, CSF neurofilament light chain (NFL) has emerged as a promising biomarker to differentiate frontotemporal dementia from psychiatric conditions and plasma NFL as a marker of mild behavioral impairment; however, further studies are necessary to support the clinical utility of this biomarker.

4.1 Additional considerations

1. There is no clear evidence in the literature to date that subjects with MiCI, even those who have persistent, progressive, and unexplained symptoms benefit from CSF biomarker measurements. In fact, biomarker studies reveal that ≈50% of MiCI individuals have AD pathophysiology, reaching a 54% diagnostic rate in large autopsy studies. Although the presence of an AD biomarker signature in MiCI may suggest that symptoms are caused by AD pathology, it is important to consider the high prevalence of comorbidities in the aging brain. From a therapeutic perspective there are no interventions specifically designed for MiCI carriers of AD pathophysiology. Furthermore, there is no CSF biomarker signature for rapid progression to MaCI. Nevertheless,
the use of CSF biomarkers in MCI may be reasonable in the context of clinical trials.
2. Subjects with typical late-onset dementia, amnestic presentation (typical cases), have pathological diagnosis discordant with clinical diagnosis in ≈10% to 30% of cases. Currently, the literature fails to indicate that CSF AD biomarkers have a clinical benefit in the management of these subjects.

5 | CONCLUSIONS

In this article we have strived to propose a series of evidence-based guidelines for imaging subjects with neurodegenerative conditions that maintain flexibility, allowing for adaptation to differences in services across Canada.

We recognize that the landscape in this area is rapidly evolving. For instance, $[^{18}\text{F}]$-flortaucipir, a PET radiopharmaceutical that binds tau protein aggregates, has recently been approved for clinical use by the US Food and Drug Administration (FDA), but is currently unavailable in Canada. Several studies suggest that this may have a profound impact on the diagnosis of AD and possibly other neurodegenerative conditions. The CCCDTD group might have to dedicate a specific review of tau imaging before its next general meeting, as has been the case for amyloid imaging in 2016. Radioligand binding to other abnormal protein aggregates is being developed (for instance, for detecting Lewy bodies in vivo). Further, liquid biomarkers are already used in the clinic for measuring molecules linked to neurodegeneration in the cerebrospinal fluid, although the need for a lumbar puncture is a limiting factor for wide dissemination. Additional biomarkers that are more “accessible” (in blood, urine, saliva) are already showing potential and may profoundly change how neurodegenerative conditions are diagnosed. Indeed, the pace of such developments is so rapid that predicting how AD and other degenerative proteinopathies will be diagnosed in 3 to 5 years from now is extremely difficult.

ACKNOWLEDGMENTS

The CCCDTD5 meeting was supported financially by the Canadian Consortium on Neurodegeneration in Aging, the Réseau des cliniques mémoire du Québec, the Réseau Québécois de Recherche sur le Vieillissement.

CONFLICTS OF INTEREST

All authors have completed, or have confirmed having read, the ICMJE form on Conflicts of Interest. There is no conflict of interest to report.

REFERENCES

1. Organizing Committee. Canadian consensus conference on the assessment of dementia. Assessing dementia: the Canadian Consensus. CMAJ. 1991;144:851-853.
2. Patterson C, Gauthier S, Bergman H, et al. The recognition, assessment and management of dementing disorders: conclusions from the Canadian Consensus Conference on Dementia. CMAJ. 1999;160:51.
3. Chertkow H, Diagnosis and treatment of dementia: introduction. Introducing a series based on the Third Canadian Consensus Conference on the Diagnosis and Treatment of Dementia. Diagnosis and treatment of dementia: introduction. Introducing a series based on the Third Canadian Consensus Conference on the Diagnosis and Treatment of Dementia CMAJ. 2008;178:316-321.
4. Gauthier S, Patterson C, Chertkow H, et al. Recommendations of the 4th Canadian Consensus Conference on the Diagnosis and Treatment of Dementia (CCCDTD4). Recommendations of the 4th Canadian Consensus Conference on the Diagnosis and Treatment of Dementia (CCCDTD4) Can Geriatr J. 2012:15:120.
5. Ismail Z, Black SE, Camicioni R, et al. 2020. Recommendations of the 5th Canadian Consensus Conference on the Diagnosis and Treatment of Dementia. Alzheimer’s Dement.
6. Brouwers M, Kho ME, Browman GP, et al. et al on behalf of the AGREE next steps consortium. AGREE II: advancing guideline development, reporting and evaluation in healthcare. Can Med Assoc J. 2010;182:93-999.
7. Jaeschke R, Guyatt GH, D’Elia P, et al. GRADE Working Group. Use of GRADE grid to reach decisions on clinical practice guidelines when consensus is elusive. BMJ. 2008;337:a744.
8. The Delphi Method: Techniques and Applications. Harold A, Linstone TM. Advanced Book Program in Reading, Mass. Addison-Wesley Pub. Co.;1975.
9. Soucy JP, Bartha R, Bocić C, et al. Clinical applications of neuroimaging in patients with Alzheimer’s disease: a review from the Fourth Canadian Consensus on the Diagnosis and Treatment of Dementia 2012. Alzheimer’s Res Ther. 2013;5(Suppl.1):53.
10. Orleans-Folis S, Isaacs J, Cook L. Neuroimaging for dementia diagnosis LondonAugust. 2018. Available from: http://www.londonvhs.nhs.uk/wp-content/uploads/2018/10/dem-imaging-oct18.pdf.
11. Geldmacher DS, Kerwin DR. Practical diagnosis and management of dementia due to Alzheimer’s disease in the primary care setting: an evidence-based approach. Prim Care Companion CNS Disord. 2011;13(5):PCC.11r01474.
12. Ngo J, Holroyd-Leduc JM. Systematic review of recent dementia practice guidelines. Age Ageing. 2015;44(1):25-33.
13. Rayment D, Biju M, Zheng R, Kuruvilla T. Neuroimaging in dementia: an update for the general clinician. Progress Neurol Psychiatr. 2016;20(2):16-20.
14. America RSoN. RSNA Statement on Imaging in the Evaluation of Dementia. 2018.
15. Sorbi S, Hort J, Erkinjunti T, et al. EFNS-ENS Guidelines on the diagnosis and management of disorders associated with dementia. Eur J Neurol. 2012;19(9):1159-1179.
16. Vernooij MW, Pizzini FB, Schmidt R, et al. Dementia imaging in clinical practice: a European-wide survey of 193 centres and conclusions by the ESNR working group. Neurobiology. 2019;61(6):633-642.
17. Beynon R, Sterne JA, Wilcock G, et al. Is MRI better than CT for detecting a vascular component to dementia? A systematic review and meta-analysis. BMJ. 2012;12:33.
18. Bermingham SL. The appropriate use of neuroimaging in the diagnostic work-up of dementia: an economic literature review and cost-effectiveness analysis. Ont Health Technol Assess Ser. 2014;14(2):1-67.
19. Chow N, Hwang KS, Hurst S, et al. Comparing 3T and 1.5T MRI for mapping hippocampal atrophy in the Alzheimer’s Disease Neuroimaging Initiative. AJNR Am J Neuroradiol. 2015;36(4):653-660.
20. Teipel SJ, Wohlsch A, Metzger C, et al. Multicenter stability of resting state fMRI in the detection of Alzheimer’s disease and amnestic MCI. NeuroImage Clin. 2017;14:183-194.
21. Wahlund L-O, Westman E, van Westen D, et al. Imaging biomarkers of dementia: recommended visual rating scales with teaching cases. Insights Imaging. 2017;8(1):79-90.
22. Håkansson C, Torisson G, Londos E, et al. Structural imaging findings on non-enhanced computed tomography are severely underreported in the primary care diagnostic work-up of subjective cognitive decline. Neuroradiology. 2019;61(4):397-404.
23. Harper L, Barkhof F, Scheltens P. An algorithmic approach to structural imaging in dementia. J Neuro Imaging Psychiatry. 2014;85(6):692-698.
24. Mamlouk MD, Chang PC, Saket RR. Contextual radiology reporting: a new approach to neuroradiology structured templates. AJNR Am J Neuroradiol. 2018;39(8):1406-1414.
25. Scheltens P, Launer LJ, Barkhof F, et al. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol. 1995;242(9):557-560.
26. Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on MRI in ’probable’ Alzheimer’s disease and normal aging: diagnostic value and neuropsychological correlates. J Neuro Imaging Psychiatry. 1992;55(10):967-972.
27. Pasquier F, Leys D, Weerts JG, et al. Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts. Eur Neurol. 1996;36(5):268-272.
28. Harper L, Barkhof F, Fox NC, et al. Using visual rating to diagnose dementia: a critical evaluation of MRI atrophy scales. J Neurol Imaging Psychiatry. 2015;86(11):1225-1233.
29. Scheltens P, Pasquier F, Weerts JGE, et al. Qualitative Assessment of cerebral atrophy on MRI: inter- and intra-observer reproducibility in dementia and normal aging. Euro Neurol. 1997;37(2):95-99.
30. Wattjes MP, Henneman WJ, van der Flier WM, et al. Diagnostic imaging of patients in a memory clinic: comparison of MR imaging and 64-detector row CT. Radiology. 2009;253(1):174-183.
31. Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351-356.
32. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822-838.
33. Wippold FJ, Brown DC, Broderick DF, et al. ACR appropriateness criteria dementia and movement disorders. J Am Coll Radiol. 2015;12(1):19-28.
34. Min J, Moon W-J, Jeon JY, et al. Diagnostic Efficacy of Structural MRI in patients with mild-to-moderate Alzheimer’s disease: automated volumetric assessment versus visual assessment. Am J Roentgenol. 2017;208(3):617-623.
35. Teipel S, Killmann I, Thyrian JR, et al. Potential role of neuroimaging markers for early diagnosis of dementia in primary care. Curr Alzheimer Res. 2018;15(1):18-27.
36. Pellegrini E, Ballerini L, Hernandez M, et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. 2018:519-535.
37. McCarthy J, Collins DL, Ducharme S. Morphometric MRI as a diagnostic biomarker of frontotemporal dementia: a systematic review to determine clinical applicability. NeuroImage Clin. 2018;20:685-696.
38. Nyakane N, Lockhat Z, Sathekge MM. Nuclear medicine-induced allergic reactions. Current Allergy Clin Immunol. 2015;28:10-17.
39. https://imvinfo.com/pet-c-t-drives-pet-scan-volume-new-heights/
40. https://alzheimer.ca/en/Home/We-can-help/Resources/For-health-care-professionals/Screening-and-diagnosis, 2019.
41. Jack CR Jr, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:257-262.
42. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263-269.
43. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7(3):270-279.
44. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7(3):280-292.
45. Filippi M, Agosta F, Barkhof F, et al. EFNS task force: the use of neuroimaging in the diagnosis of dementia. Euro Neurol. 2012;19:1487-1511.
46. Morris JC, Blennow K, Froelich L, et al. Harmonized diagnostic criteria for Alzheimer’s disease: recommendations. J Intern Med. 2014;275:204-213.
47. Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614-629.
48. Smallagic N, Vacante M, Hyde C, et al. 18F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2015(1):CD010632.
49. Garibotto V, Herholz K, Boccardi M, et al. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:183-195.
50. Atri A. Alzheimer’s Association Best Clinical Practice Guidelines for the Evaluation of Neurodegenerative Cognitive Behavioral Syndromes, Alzheimer’s Disease and Dementias in the United States. https://www.alz.org/aic/downloads2018/sun-clinical-practice-guidelines.pdf
51. Dementia: assessment, management and support for people living with dementia and their carers. NICE guideline. Published: June 20, 2018. www.nice.org.uk/guidance/ng97
52. Nobilia F, Arbizub J, Bouwman F, et al. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain 18F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: delphi consensus. Euro J Neurol. 2018;25:1201-1217.
53. Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535-562.
54. Handels RLH, Wolfs CAG, Aalten P, et al. Diagnosing Alzheimer’s disease: a systematic review of economic evaluations. Alzheimer’s Dement. 2014;10(2):225-237.
55. Silverman DHS, Gambhir SS, Huang HWC, et al. Evaluating early dementia with and without assessment of regional cerebral metabolism by PET: a comparison of predicted costs and benefits. J Nucl Med. 2002;43:253-266.
56. Moulin-Romsee G, Maes A, Silverman D, et al. Cost-effectiveness of 18F-fluorodeoxyglucose positron emission tomography in the assessment of early dementia from a Belgian and European perspective. Euro J Neurol. 2005;12:254-263.
57. Models of Dementia Assessment and Diagnosis: Indicative Cost Review. Version number: 1. First published: September 2015. Prepared by: NHS England. Classification: OFFICIAL.
96. Sonni I, Ratib O, Boccardi M, et al. Clinical validity of presynaptic dopaminergic imaging with 123I-ioflupane and noradrenergic imaging with 123I-MIBG in the differential diagnosis between Alzheimer’s disease and dementia with Lewy bodies in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:228-242.

97. McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies. Fourth consensus report of the DLB Consortium. Neurology. 2017;89:88-100.

98. Zaccai JI, Brayne C, McKeith I, et al. Patterns and stages of α-synucleinopathy. Relevance in a population-based cohort. Neurology. 2008;70:1042-1048.

99. Caminiti SP, Sala A, Iaccarino L, et al. Brain glucose metabolism in Lewy body dementia: implications for diagnostic criteria. Alzheimer’s Res Therapy. 2019;11:20.

100. Huber M, Beyer L, Prix C, et al. Metabolic correlates of dopamine loss in dementia with Lewy bodies. Movement Disorders. 2020;35:595-605.

101. Rosa-Neto P, Hsiung GY, Masellis M. CCĐTDA participants. Fluid biomarkers for diagnosing dementia: rationale and the Canadian Consensus on Diagnosis and Treatment of Dementia recommendations for Canadian physicians. Alzheimer’s Res Therapy. 2013;5(Suppl 1):e88.

102. Nath S, Koziarz A, Badhiwala JH, et al. Atraumatic versus conventional lumbar puncture needles: a systematic review and meta-analysis. Lancet. 2018;391:1197-1204.

103. Janelidze S, Stomrud E, Brixb, Hansson O. Towards a unified protocol for handling of CSF before β-amyloid measurements. Alzheimer’s Res Therapy. 2019;11(1):270.

104. O’Bryant SE, Gupta V, Henriksen K, et al. Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer’s disease research. Alzheimer’s Dement. 2014;11:549-560.

105. Vanderstichele H, Demeyer L, Janelidze S, et al. Recommendations for cerebrospinal fluid collection for the analysis by ELISA of neurogranin trunc P75, α-synuclein, and total tau in combination with Aβ(1-42)/Aβ(1-40). Alzheimer’s Res Therapy. 2017;9:119.

106. Mattsson N, Andreasson U, Persson S, et al. The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimer’s Dement. 2011;7:386-395.

107. Shaw LM, Hansson O, Manuliova E, et al. Plasma and CSF biomarkers for the diagnosis of Alzheimer’s disease in adults with Down syndrome: a cross-sectional study. The Lancet Neurol. 2018;17:860-869.

108. Frisoni GB, Hansson O. Clinical validity of CSF biomarkers for Alzheimer’s disease: necessary indeed, but sufficient?. Lancet Neurol. 2016;15:650-651.

109. Johnson KA, Minoshima S, Bohnen NI, et al. Appropriate use criteria for amyloid PET: a report of the amyloid imaging task force, the society of nuclear medicine and molecular imaging, and the Alzheimer’s Association. J Nucl Med. 2013:54:476-490.

110. Schoonenboom NSM, Pijnenburg YAL, Mulder C, et al. Amyloid β(1-42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease. Neurology. 2004;62:1580-1584.

111. Tellechea P, Pujol N, Esteve-Belloc P, et al. Early- and late-onset Alzheimer disease: are they the same entity?. Neurology (Engl Ed). 2018;33:244-253.

112. Lacour M, Quenez O, Rovelet-Lecruix A, et al. Causative mutations and genetic risk factors in sporadic early onset Alzheimer’s disease before 51 years. J Alzheimer’s Dis. 2019;71:227-243.

113. Faigas N, Tort MA, Balasa M, et al. Clinical applicability of diagnostic biomarkers in early-onset cognitive impairment. Eur J Neurol. 2019;26:1098-1104.

114. Boulwan FH, Schoonenboom NSM, Verwey NA, et al. CSF biomarker levels in early and late onset Alzheimer’s disease. Neurobiol Aging. 2009:30:1895-1901.
134. Balasa M, Sánchez-Valle R, Antonell A, et al. Usefulness of biomarkers in the diagnosis and prognosis of early-onset cognitive impairment. J Alzheimer’s Dis. 2014;40:919-927.

135. Oboudiyat C, Gefen T, Varelas E, et al. Cerebrospinal fluid markers detect Alzheimer’s disease in nonamnestic dementia. Alzheimer’s Dement. 2017;13:598-601.

136. Paterson RW, Toombs J, Slattery CF, et al. Dissecting IWG-2 typical and atypical Alzheimer’s disease: insights from cerebrospinal fluid analysis. J Neurol. 2015;262:2722-2730.

137. Coppi E, Ferrari L, Santangelo R, et al. Further evidence about the crucial role of CSF biomarkers in diagnosis of posterior cortical atrophy. Neuro Sci 2014;35:785-787.

138. Pillai JA, Bonner-Jackson A, Bekris LM, et al. Highly elevated cerebrospinal fluid total tau level reflects higher likelihood of non-amnestic subtype of Alzheimer’s disease. J Alzheimer’s Dis. 2019;70:1051-1058.

139. Lombardi G, Polito C, Berti V, et al. Biomarkers study in atypical dementia: proof of a diagnostic work-up. Neurol Sci. 2018;39:1203-1210.

140. Bergeron D, Gorno-Tempini ML, Rabinovici GD, et al. Prevalence of amyloid-β pathology in distinct variants of primary progressive aphasia. Ann Neurol. 2018;84:729-740.

141. Irwin DJ, Xie SX, Coughlin D, et al. CSF tau and β-amyloid predict cerebral synucleinopathy in autosomal Lewy body diseases. Neurology. 2018;90:e1038-e1046.

142. Meeter LH, Vrijenborg EG, Del Campo M, et al. Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum. Neurology. 2018;90:e1231-e1239.

143. Hu WT, Watts K, Grossman M, et al. Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology. 2013;81:1945-1952.

144. Borroni B, Benussi A, Archetti S, et al. CSF p-tau 181/tau ratio as biomarker for TDP pathology in frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener. 2014;16:86-91.

145. Kramer CA, Janka M, Mandy P, et al. CSF biomarkers and cerebral atrophy in atypical clinical variants of probable Alzheimer’s disease. Neurobiol Aging. 2015;36:2340-2347.

146. Johnson JK, Head E, Kim R, et al. Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol. 1999;56:1233-1239.

147. Ismail Z, Smith EE, Geda Y, et al. Neuropsychiatric symptoms as early manifestations of emergent dementia: provisional diagnostic criteria for mild behavioral impairment. Alzheimer’s Dement. 2015;12:195-202.