SAFETY AND EFFICACY OF RECOVERY-PROMOTING DRUGS FOR MOTOR FUNCTION AFTER STROKE: A SYSTEMATIC REVIEW OF RANDOMIZED CONTROLLED TRIALS

Nerida FIRTH, BPharm (Hons)¹, Ruth N. BARKER, PhD², Kathryn S. HAYWARD, PhD³,⁴,⁵, Julie BERNHARDT, PhD³,⁴, Michelle BELLINGAN, PhD¹ and Ronny GUNNARSSON, PhD⁶

From the ¹College of Medicine and Dentistry, James Cook University, Townsville, ²College of Healthcare Sciences, James Cook University, Cairns, ³AVERT Early Rehabilitation Research Group, Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia, ⁴NHMRC CRE in Stroke Rehabilitation and Brain Recovery, ⁵Department of Physical Therapy, University of Melbourne, Heidelberg, Australia, ⁶Department of Physical Therapy, University of British Columbia, Vancouver, Canada and ⁷Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden

Objectives: To investigate the efficacy and safety of drug interventions to promote motor recovery post-stroke.

Data sources: CENTRAL, CINAHL, Embase, MEDLINE, SCOPUS and Web of Science.

Study selection: Published human randomized controlled trials in which the primary intervention was a drug administered to promote motor recovery post-stroke, vs placebo.

Data extraction: Standardized pro forma used to extract safety and efficacy data; Cochrane Collaboration risk of bias assessment tool performed to assess risk of bias.

Data synthesis: Fifty randomized controlled trials from 4,779 citations were included. An overall trend of high risk of attrition (n = 27) and reporting bias (n = 36) was observed. Twenty-eight different drug interventions were investigated, 18 of which demonstrated statistically significant results favouring increased motor recovery compared with control intervention. Forty-four studies measured safety; no major safety concerns were reported.

Conclusion: Candidate drug interventions promoting motor recovery post-stroke were identified, specifically selective serotonin reuptake inhibitors and levodopa; however, the high risk of bias in many trials is concerning. Drugs to improve motor function remain an important area of enquiry. Future research must focus on establishing the right drug intervention to be administered at an optimal dose and time, combined with the most effective adjuvant physical therapy to drive stroke recovery.

Key words: pharmaceutical preparations; stroke; rehabilitation.

Accepted Feb 5, 2019; Epub ahead of print Feb 25, 2019

J Rehabil Med 2019; 51: 319–330

Correspondence address: Nerida Firth, College of Medicine & Dentistry, James Cook University, 1 James Cook Drive, Townsville QLD 4811, Australia. E-mail: nerida.firth@my.jcu.edu.au

Drug interventions are known to be effective for primary and secondary stroke prevention, and to promote reperfusion of penumbra within hours of stroke onset (1, 2). Neuroprotective drugs seem promising, but outcomes have failed to translate in human trials (2). As many people lack access to time-sensitive stroke interventions targeting prevention and reperfusion, drug interventions that mediate recovery beyond the window for effective reperfusion are important research targets. The treatment window for recovery-promoting drugs (RPD) ranges from days to years post-stroke, increasing the potential for survivors to be eligible, and benefit from treatment (3–5). Whilst rehabilitation has been proven to be of great benefit, RPDs may have a place in enhancing recovery in instances where stroke survivors receive little therapy and have low levels of physical activity (6).

Recovery-promoting drug interventions have been investigated for many years; however, there has been little consistency in clinical trials to allow for rigorous comparison or meta-analysis of outcomes across different drug classes. To date, systematic reviews of RPDs have been limited to specific classes of drugs. A Cochrane Review investigating the effect of amphetamine treatment (compared with placebo) in 10 trials (n = 287 patients) found no evidence to support routine use in stroke survivors to reduce death or
disability when taking risk of harm into account (7). The number of patients included in the studies was too small to be able to draw firm conclusions regarding the effect of amphetamines on recovery from stroke (7). Conversely, another Cochrane Review \((n = 52\) trials, \(4,059\) patients) provided “tantalizing evidence” that selective serotonin reuptake inhibitors \((SSRIs)\) appear to improve dependence, disability, neurological impairment, and anxiety and depression after stroke (8). Both reviews recommended larger, well-designed trials be undertaken to clarify efficacy, and to overcome issues with heterogeneity and methodology seen in studies across both drug classes.

As both reviews targeted singular drug classes, neither could provide judgement comparing the outcomes of the drugs with each other. To address this gap, the aim of this systematic review was to investigate the efficacy and safety of drug interventions trialled to enhance motor recovery post-stroke (3, 4).

METHODS

Protocol and registration

This systematic review was registered on PROSPERO (reference number: CRD42016048035). Preferred Reporting Items for Systematic Reviews and Meta-Analysis \((PRISMA)\) statement provided the framework for the article (9).

Data sources and searches

Six electronic databases \((Cochrane CENTRAL, CINAHL, Embase, MEDLINE, SCOPUS and Web of Science)\) were searched from database inception to 2 May 2017. Reference lists of included studies were entered into the Web of Science to identify relevant studies from forward citations.

The search term “recovery-promoting drug” was not widely recognized. Relevant drug studies identified through a scoping search were mined for terminology describing the concept of “promoting neurorecovery”. The resulting search strategy was curated carefully, containing key words and MeSH terms associated with target pathways, anatomy and processes \(e.g.\) “afferent pathways”, “motor cortex” and “neurogenesis”), and molecules involved in neural plasticity and neural repair \(e.g.\) more broadly: “nerve growth factors”, “psychotropic drugs”; specifically “biogenic amines” and “dopamine”) with the intention of selecting motor recovery-specific studies from the broader pool of neurorecovery trials \((Figs\ S1–S7)\).

Study selection

Study inclusion criteria were: \(i)\) randomized placebo-controlled trial design; \(ii)\) commencement of 1 or more RPD intervention/s > 24 h post-stroke \((10)\); and \(iii)\) a measure of motor outcome of components of the motor system within the domains of body functions and structures and activity, as defined by the Inter- national Classification of Functioning, Disability and Health \((ICF)\) (11). Non-English publications and aphasia trials were excluded, the latter being a language disorder, not attributable to motor function.

Titles and abstracts were reviewed and shortlisted by author NF, and by author JB if inclusion was unclear. Eligibility was determined through independent assessments of full-text versions of shortlisted articles by authors NF and KH, while author JB confirmed eligibility when necessary.

Data extraction and analysis, and risk of bias assessment

Study details \(\text{(sample size, time post-stroke, age, sex, stroke severity)}\), experimental design descriptors \(\text{(drug and control intervention details, adjuvant physical therapy, treatment/ follow-up endpoints)}\), outcome measures and corresponding measures of central tendency were extracted by author NF and corroborated by author KH utilizing standardized pro forma \((12)\). Authors of included studies were emailed for missing data.

Physical rehabilitation interventions within each trial were recorded as “adjuvant therapies”. The endpoint was defined as final assessment of outcome; whether occurring at final dose of drug intervention or end of follow-up was noted, along with whether primary outcome measures were designated. The extent of safety monitoring and adverse events were recorded, and whether they were pre-specified outcomes or general observations. Safety assessment was based on mortality and severe adverse events \((SAEs)\) associated with drug intervention, \(e.g.\) haemorrhage, neurological deterioration. Risk of bias was assessed by NF and KH using the Cochrane risk of bias assessment tool \((13)\). Between-group endpoint estimates and change scores were extracted for motor outcomes. When statistically significant \(p\)-values were noted, effect sizes were calculated \((NF)\) from raw data using Cohen’s \(d\) method, where possible \((14)\).

Database searching yielded 1,548 results, with 29 studies eligible for inclusion. These studies contained 3,231 references, used to identify further studies, which led to the inclusion of a further 21 studies \((Fig. 1)\). Therefore, a total of 50 studies \(\text{\((n = 5,643\) participants)}\) were included. Duplicate citation \((25\%)\) or not RCT \((40\%)\) were the most common reasons for exclusion.

Included studies were published between 1973 and 2017 \((Table\ SI)\). Methodologies varied, including crossover trials \((n = 10)\) \((15–24)\) and short-term studies with outcomes measured ≤ 24 h post-RPD administration \((n = 11)\) \((16–26)\). Sample sizes ranged from 8 to 1,099 participants \(\text{\((median: 40, IQR: 18.5–83)}\)\), mean age spanned 53 \((25)\) to 78 years \((27)\). Participants were predominantly male \((range 32–100\%);\) only 12 \((24\%)\) studies had ≥ 50% females.

Twenty-eight different RPDs were investigated \((Table I)\). Four studies compared 2 drug intervention arms with placebo \((28–31)\). Four studies evaluated MLC 601 \((NeuroAid^\text{™})\) and involved the largest proportion of participants \(\text{\((n = 2,099, 37.2\%)}\) \((32–36)\). The most frequently studied pharmacological interventions were

1http://www.medicaljournals.se/jrm/content/?doi=10.2340/16501977-2536

www.medicaljournals.se/jrm
dexamphetamine (6 trials) (37–42) and levodopa (6 trials) (15, 16, 19, 20, 29, 43).

Bias scores were mixed across studies (Table SII). Only 4 studies had a low risk of bias across all 6 criteria, each study focused on a different RPD intervention (36, 44–46). High risk of bias was observed most commonly in attrition bias (27 studies, 54%) (15, 21, 27–30, 32, 33, 37–41, 43, 47–59) and reporting bias (36 studies, 72%) (15–19, 21–33, 37–43, 47, 49–52, 56, 59–63) domains.

Study endpoints ranged between 60 min (16, 22) and 2 years (57) after the final RPD dose. Trial endpoints were split evenly between day of final RPD dose (15–26, 28, 44, 45, 47–49, 52–54, 56, 59, 60, 63) and beyond dosing completion (27, 29–43, 46, 50, 51, 55, 57, 58, 61, 62, 64).

Fifty-six different efficacy outcome measures were used, with primary efficacy outcome measures designated in 23 studies (16, 20, 32, 35–40, 42–46, 48, 50, 51, 53–56, 61, 62). Fourteen studies were described as safety and efficacy studies (31, 34–36, 40, 44, 46, 50, 51, 58, 59, 61, 62, 64), but only 4 had designated primary safety outcome measures (31, 61, 62, 64). In 22 studies safety was measured using outcome(s) specified in methods and reported in results (21, 29, 31, 33–36, 40, 44, 46, 49–52, 56–59, 61–64), while mortality and adverse events were observed and reported in another 22 studies (15, 17, 20, 22–28, 30, 37–39, 41, 43, 45, 47, 48, 53, 55, 60). In 6 studies, no safety considerations were reported (16, 18, 19, 32, 42, 54). No authors reported higher mortality or adverse events in drug intervention groups compared with placebo (Table SIII).

Of the 28 RPDs identified, 18 (from 25 trials) showed recovery-promoting potential (Table I) (15–18, 20, 22–24, 26, 29, 30, 32, 36, 42, 43, 45, 48, 52–54, 56, 59, 60, 62, 63). Seventeen RPDs were single-drug interventions, and the final RPD was a combination of methylphenidate and levodopa (29). For 13 RPDs, favourable results were reported from a single trial only (17, 23, 26, 29, 30, 42, 48, 52–54, 56, 59, 62). Neutral or unfavourable results were reported in ≥ 1 other trial for 4 (of these 13) drug interventions (amphetamine, dexamphetamine, MLC 601 and selegiline) (27, 37–41, 44, 47, 51, 57). Favourable effects on motor function were reported in ≥ 2 trials for Cerebrolysin®, citalopram, fluoxetine, levodopa (+carbidopa) and methylphenidate (15, 16, 18, 20, 22, 24, 30, 32, 36, 43, 45, 48, 60, 63). However, a beneficial effect on the same outcome was not replicated for any given drug intervention. For example, in 6 studies investigating levodopa, 19 different efficacy outcome measures were used (15, 16, 19, 20, 29, 43), with only 2 (9-Hold Peg Test; 9HPT (15, 19), Rivermead Motor Assessment scale (RMA) (15, 43)) utilized in >1 study. Use of multiple outcome measures in any 1 trial, and variation between trials is shown in Table I (and Table S1).
Table 1. Summary of pharmacological interventions and outcomes investigated in the studies, clustered by drug class

Pharmacological intervention	Sample size: Analysed (recruited)	Author	Efficacy outcome measures (Primary OM – specified)	Safety outcome measures (SOM): Serious adverse events, death
CNS stimulant (75)				
amphetamine	47 (48)	Crisostomo et al (1988) (26)	Fugl-Meyer Assessment (UL+LL) -	Fugl-Meyer Assessment (primary) -
		Sonde et al (2001) (27)		
dexamphetamine	173 (185)	Gladstone et al (2006) (37)		
		Platz et al (2005) (38)		
		Schuster et al (2011) (39)		
		Sprigg et al (2007) (40)		
		Treig et al (2006) (41)		
		Walker-Batson et al (1995) (42)	Fugl-Meyer Assessment	Fugl-Meyer Assessment
		Grade et al (1998) (63)	modified Functional Independence Measure	
	106 (129)	Lokk et al (2011) (29)		
		Tardy et al (2006) (22)	Finger tapping test	
			Handgrip force	
			Target pursuit task	
Dopamine agonist (25)	33 (33)	Cramer et al (2009) (46)		
Table I. Cont.

Pharmacological intervention	Sample size: Analysed (recruited)	Author	Efficacy outcome measures (Primary OM – specified)	Safety outcome measures (SOM): Serious adverse events, death	
Erythropoietin agonists (75)	erythropoietin 40 (40)	Ehrenreich et al (2002) (62)	Barthel Index	National Institute of Health Stroke Scale	✔*
			Δ Scandinavian Stroke Scale	Scandinavian Stroke Scale modified Rankin Scale	✔*
			S100β (serum marker of brain injury)		
Gonadotrophin (67, 75)/erythropoietin agonist	human chorionadotropin alfa/ erythropoietin 89 (96)	Cramer et al (2014) (61)	-	Δ National Institute of Health Stroke Scale	✔*
			National Institute of Health Stroke Scale	National Institute of Health Stroke Scale	✔*
			% modified Rankin Scale ≤2	Barthel Index	
Granulocyte colony-stimulating factor (75)	Filgrastim (G-CSF) 290 (372)	Ringelstein et al (2013) (55)	-	modified Rankin Scale	✔
			National Institute of Health Stroke Scale		
			% modified Rankin Scale	modified Rankin Scale	✔*
			infarct evolution		
Humanized monoclonal antibody (50)	GSK249320 64 (133)	Cramer et al (2017) (50)	-	Δ 10-metre Walk Test	✔
			Δ 10-metre Walk Test (day 180)	modified Rankin Scale	✔
			National Institute of Health Stroke Scale		
			%TMS-evoked thumb movement in Training Target Zone		
Hydrogenated Ergot Alkaloid (67)	hydergine 21 (39)	Bochner et al (1973) (49)	-	Limb strength	✔
			Handgrip strength		
			# handgrip in 30sec		
			12-foot Walk Test		
			Timed sit-to-stand		
			Feeding ability assessment		
Levodopa + Carbidopa (75)	levodopa + carbidopa 172 (202)	Acler et al (2009a) (15)	Nine-Hole Peg Test (affected hand)	Rivermead Assessment Scale	✔
			10-metre Walk Test	Transcranial magnetic stimulation	✔
			%TMS-evoked thumb movement in Target Zone		✔
			Motor Threshold (agonist)	Motor Threshold (antagonist)	✔
			Motor Evoked Potential (agonist)	Motor Evoked Potential (antagonist)	✔
			Nine-Hole Peg Test	Action Research Arm Test	✔
			Reaction time to random elements	Transcranial magnetic stimulation	✔
					✔
			Fugl-Meyer Assessment	Barthel Index	✔
			National Institute of Health Stroke Scale		✔
					✔
					✔
					✔
					✔

Recovery-promoting drugs after stroke: a systematic review
Pharmacological intervention	Sample size: Analysed (recruited)	Author	Efficacy outcome measures (Primary OM - specified)	Safety outcome measures (SOM): Serious adverse events, death	
irreversible MAO-B inhibitor (75)					
selegiline	59 (71)	Bartolo et al (2015) (47)	-	National Institute of Health Stroke Scale ✔	
				Functional Independence Measure ❌	
Irreversible MAO-B inhibitor (75)		Sivenius et al (2001) (56)	Scandinavian Stroke Scale		
			Functional Independence Measure ✔		
methylxanthine drug (21)					
theophylline	18 (20)	Schambra et al (2016) (21)	-	Pinch force dynamometry ✔	
				- both hands	
				Nine-Hole Peg Test (time) - both hands ✔	
				Nine-Hole Peg Test (# errors) - both hands ❌	
				Resting motor threshold - both hemispheres ❌	
				Short-interval intracortical inhibition (ISI: 1ms) - both hemispheres ❌	
				Short-interval intracortical inhibition (ISI: 2ms) - both hemispheres ❌	
				Long-interval intracortical inhibition - both hemispheres ❌	
				Interhemispheric inhibition - both hemispheres ✔	
Mood-stabiliser/antimanic (76)					
lithium carbonate	66 (80)	Mohammadianejad et al (2014) (53)	≥25% Fugl-Meyer Assessment	△ modified National Institute of Health Stroke Scale ✔	
				△ Fugl-Meyer Assessment - hand assessment ✔	
neuropeptide, porcine brain extract (67)					
Cerebrolysin®	1,308 (1,513)	Amiri-Nikpour et al (2014) (32)	National Institute of Health Stroke Scale	△ Mean flow velocity - right middle cerebral artery ✔	
			Pulsatility index - right middle cerebral artery		
				△ Mean flow velocity - left middle cerebral artery ✔	
				△ Mean flow velocity - basilar artery ✔	
				Pulsatllity index - left middle cerebral artery ✔	
				Pulsatllity index - basilar artery ✔	
Chang et al (2016) (33)	-		Fugl-Meyer Assessment (total, UL, LL) ✔		
			Diffusion tensor imaging - axial diffusivity - affected hemisphere ✔		
			Diffusion tensor imaging - radial diffusivity - affected hemisphere ✔		
			Diffusion tensor imaging - fractional anisotropy - affected hemisphere ✔		
			rsfMRI		
Heiss et al (2012) (34)	-		Global directional test: (△ Barthel Index + modified Rankin Scale + △ National Institute of Health Stroke Scale) ✔		
Pharmacological intervention	Sample size: Analysed (recruited)	Author	Efficacy outcome measures (Primary OM - specified)	Safety outcome measures (SOM): Serious adverse events, death	
-----------------------------	----------------------------------	--------	---	--	
Noradrenaline reuptake inhibitor (75)	reboxetine 10 (10)	Zittel et al (2007) (23)	Handgrip force	Nine-Hole Peg Test	
Peripheral chemoreceptor agonist + alkaloid/ vasodilator (67)	almitrine bismesylate + raubasine 74 (83)	Li et al (2004) (52)	Barthel Index	Neurological Functional Deficit Score	
Selective norepinephrine reuptake inhibitor (75)	atomoxetine 9 (12)	Ward et al (2017) (58)	-	Fugl-Meyer Assessment, Action Research Arm Test, Wolf Motor Function Test	
Selective serotonin reuptake inhibitor (75)	citalopram 28 (28)	Acier et al (2009b) (60)	National Institute of Health Stroke Scale Motor threshold - unaffected hemisphere (TMS) Intracortical Inhibition - unaffected hemisphere (TMS)	Barthel Index Lindmark Scale Motor threshold - affected hemisphere (TMS) Intracortical Inhibition - affected hemisphere (TMS) Motor Evoked Potential - affected hemisphere (TMS) Motor Evoked Potential - unaffected hemisphere (TMS)	
escitalopram	10 (11)	Zittel et al (2008) (24)	Nine-Hole Peg Test	Handgrip strength	
		Gourab et al (2015) (17)	Velocity-dependent plantarflexion stretch reflexes - under passive conditions, at 90°/sec	Maximal ankle isometric strength Velocity-dependent plantarflexion stretch reflexes: - under passive conditions, at: 30°/sec, 60°/sec; 120°/sec - during superimposed maximal volitional drive, at: 30°/sec, 60°/sec; 90°/sec; 120°/sec - after after superimposed maximal volitional drive, at: 30°/sec, 60°/sec; 90°/sec; 120°/sec	Fugl-Meyer Assessment – LL 6-minute Walk Test 10-metre Walk Test
Pharmacological intervention	Sample size: Analysed (recruited)	Author	Efficacy outcome measures (Primary OM - specified)	Safety outcome measures (SOM): Serious adverse events, death	
-----------------------------	------------------------------------	--------	--	---	
fluoxetine	228 (261)	Chollet et al (2011) (45)	Fugl-Meyer Assessment (FMA) - total FMA – UL FMA – LL National Institute of Health Stroke Scale (motor scores) modified Rankin Scale	National Institute of Health Stroke Scale (score 0-5)	
		Dam et al (1996) (28)^b	Hemispheric. Stroke Scale Barthel Index		
		Mikami et al (2013) (30)^b	modified Rankin Scale	Functional Independence Measure	
		Pariente et al (2001) (18)	Handgrip strength Finger tapping Motor activation – active task (fMRI)	Nine-Hole Peg Test Motor activation – passive task (fMRI)	
Sigma-1 Receptor Agonist (31)	57 (60)	Ufer et al (2014) (31)^b	Δ National Institute of Health Stroke Scale modified Rankin Scale Barthel Index 10-metre Walk Test		
cutamines		d-cycloserine 20 (20) Cherry et al (2014) (25)	Stability platform task Simulated feeding trial Untrained balance task		
Traditional Chinese medicine (44, 48, 59)		Di-Huang-Yin-Zi (DHYZ) 87 (100) Yu et al (2015) (59)	Fugl-Meyer Assessment Barthel Index	Δ National Institute of Health Stroke Scale	
Ginkgo biloba	57 (102)	Oskouei et al (2013) (54)	A National Institute of Health Stroke Scale ≥ 50%	Δ National Institute of Health Stroke Scale	
MLC 601 (NeuroAid™)	1803 (2288)	Bavarsad et al (2011) (48)	A Mean flow velocity Barthel Index	modified Rankin Scale	
		Chen et al (2013) (44)		Δ modified Rankin Scale (mRS) mRS 0-1 mRS 0-2 Δ National Institute of Health Stroke Scale (NIHSS) ≥5 points Δ NIHSS (total score –motor score) Barthel Index	
		Kong et al (2009) (51)		Fugl-Meyer Assessment Functional Independence Measure National Institute of Health Stroke Scale	
		Venkatesubramanian et al (2015) (57)	modified Rankin Scale	modified Rankin Scale ≤ 1 Barthel Index ≥ 95	
Tetracyclic antidepressant (67)		maprotiline 46 (52) Dam et al (1996) (28)^p	-	Hemiplegic Stroke Scale Barthel Index	
		Tricyclic antidepressant (67)	Mikami et al (2013) (30)^b	modified Rankin Scale Functional Independence Measure	

^aBold font: statistically significant finding in favour of RPD.
^bThis study contained more than 1 intervention arm, as well as a placebo arm.Δ: change; ADL: activities of daily living; fMRI: functional magnetic resonance imaging; ISI: interstimulus interval; LL: lower limb; mMRI: resting-state functional magnetic resonance imaging; TEMPA: Upper Extremity Performance Test for the Elderly; UL: upper limb.
Adjuvant physical therapy was inconsistently reported and insufficient to allow for replication. There was extreme variation between therapy amount, type (i.e. Bobath vs Arm Ability training; physiotherapy vs occupational therapy, etc.) and duration. In 15 studies, no adjuvant therapy was reported (15, 17, 18, 21, 34, 35, 48, 49, 51, 52, 54, 55, 61, 62, 64), while in another 13 studies dose of adjuvant therapy was not reported (25, 30–32, 40, 42, 44, 45, 50, 53, 56, 57, 63). In 3 studies, a total of ≤ 60 min of adjuvant therapy was provided over the duration of the trial (16, 22, 26).

It was deemed impossible to perform data syntheses (meta-analyses) to compare RPDs regardless of drug class, due to the large variability in design, duration and outcome measures.

DISCUSSION

Eighteen of 28 drug interventions identified in this review demonstrated recovery-promoting potential without associated increased rates of mortality or SAEs. Yet, there were high attrition rates and bias, and variable outcomes used, which prevented meta-analysis. These issues are not isolated to RPD; the Stroke Recovery and Rehabilitation Roundtable group highlighted this as common in stroke rehabilitation trials (10, 65, 66). Nevertheless, several classes of RPDs should be discussed in more detail.

Three SSRIs were found to have some evidence of efficacy and safety: citalopram, escitalopram and fluoxetine (17, 18, 24, 30, 45, 60). Typically used as antidepressants, SSRIs inhibit serotonin reuptake into presynaptic neurones thereby enhancing nerve transmission. Motor excitability over the unaffected hemisphere is thought to be decreased, whilst neuroprotective capacity and hippocampal neurogenesis is promoted (67). Of all SSRIs reviewed, fluoxetine was most extensively studied (4/7 SSRI trials with largest cohorts n = 8–118) (18, 28, 30, 45). It is therefore unsurprising that fluoxetine is involved in 3 current international trials (FOCUS, AFFINITY, EFFECTS, combined n = 5,045 at May 2018), the results of which may aid the development of a more ordered classification system for RPDs based on their biological targets.

Levodopa (as single-drug intervention) was the subject of 5 studies in this review, 4 of which were favourable (15, 16, 19, 20, 43). Replenishing depleted striatal dopamine, levodopa stimulates dopamine pathways to increase motor activity (67). Trials administered immediate-release levodopa preparations just prior to motor retraining, in order to favourably exploit levodopa’s short duration of action, theoretically priming the brain and maximizing remodulation of neural pathways with minimal side-effects or potential dose tolerance (67). Timing of dose administration relative to physical rehabilitation is an important consideration. Current trials provide insufficient evidence to guide these decisions. Nevertheless, further exploration of levodopa as an RPD appears worthwhile.

Safety measurement was inconsistent. When assessed, mortality and AE were predominantly not different to placebo. Assessment of safety may have been overlooked, in part, due to dosages tested being consistent with dosages used for other indications, with previously established safety profiles. Implementation of standardized guidelines for measurement of safety e.g. International Council for Harmonisation Harmonised Tripartite Guideline S7a – Safety Pharmacology Studies For Human Pharmaceuticals, would improve trial rigour and increase potential for meta-analyses in future (70).

This review demonstrates the challenge of comprehensively and easily identifying all RPD studies, even with a robust systematic approach. While 1,548 articles were identified for screening from the comprehensive database search, yielding 29 studies for inclusion in this review, a further 3,231 citations were identified from the references and forward citations of these included studies. This probably highlights the inconsistent categorization of RPD studies within research databases, which relies on several variables, including limitations of current non-specific MeSH and key terms to adequately tag publications, and the personal preferences and perspectives of the submitting authors when ascribing MeSH and key terms to their submissions (71). If RPD research is to continue to gain momentum as an important field of study, developing a dedicated MeSH term, such as “recovery-promoting drug”, is worth consideration.

Personalization of RPD intervention for stroke survivors based on individual recovery needs, medical profile, personal preferences and character traits is an exciting prospect. With several RPDs demonstrating potential efficacy, how and for whom they are prescribed requires careful consideration. Coupling a more detailed understanding of RPD pharmacology and biological processes responsible for motor recovery may aid the development of a more ordered classification system for RPDs based on their biological targets.

Differing mechanisms of action and varied indications for use of the drugs in this review offer future possibilities of combining RPDs to exploit synergistic effects. Pilot testing of combination therapy would be necessary to establish safety. Based on this review, combined daily dosing of an SSRI, i.e. fluoxetine, and levodopa, administered 60–90 min prior to a clinician-led rehabilitation regimen of evidence-based adjuvant physical therapy, has potential to maximize therapeutic value by capitalizing on different mechanisms of action. The results of the fluoxetine mega-trials are awaited with interest.
In conclusion, RPDs are an important area for future study. Greater collaboration between pre-clinical and clinical recovery scientists would increase the rate of translation in this field (72). Development of reporting standards for current trials and adherence to recommendations from the stroke recovery research community would significantly improve trial quality (65). Increased methodological rigor is imperative to allow comparison between recovery promoting drugs in future, and will be achieved through stricter adherence to the Template for Intervention Description and Replication (TIDieR) checklist and Consolidated Standards of Reporting Trials (CONSORT) statement, to adequately describe adjuvant rehabilitation interventions and parallel group randomized trials, respectively (73, 74). Considered attention to the limitations of past RPD research may ultimately lead to discoveries with the potential to impact the global disability burden of stroke.

ACKNOWLEDGEMENTS

KSH is supported by a National Health and Medical Research Council Early Career Fellowship (GNT1088449). The Florey Institute of Neuroscience and Mental Health acknowledges support from the Victorian Government and funding from the Operational Infrastructure Support Grant.

The authors have no conflicts of interest to declare.

REFERENCES

1. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008; 359: 1317–1329.
2. Lutsep HL, Clark WM. Neuroprotective agents in stroke: overview of neuroprotective agents, prevention of early ischemic injury, prevention of reperfusion injury. 2017 [cited 2017 Aug 24]. Available from: http://emedicine.medscape.com/article/1161422-overview.
3. Cramer SC. An overview of therapies to promote repair of the brain after stroke. Head Neck 2011; 33: 55–57.
4. Hermann DM, Chopp M. Promoting neurological recovery in the post-acute stroke phase: benefits and challenges. Eur Neurol 2014; 72: 317–325.
5. Kalra L, Langhorne P. Facilitating recovery: evidence for organized stroke care. J Rehabil Med 2007; 39: 97–102.
6. Bernhardt J, Chan J, Nicola I, Collier JM. Little therapy, little physical activity: rehabilitation within the first 14 days of organized stroke unit care. J Rehabil Med 2007; 39: 43–48.
7. Martinsson L, Hardemark H, Eksborg S. Amphetamines for improving recovery after stroke. Cochrane Database Syst Rev 2007; Cd002090.
8. Mead GE, Hsieh CF, Lee R, Kutlubaev MA, Claxton A, Hankey GJ, et al. Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. Cochrane Database Syst Rev 2012; 11: Cd009286.
9. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6: e1000100.
10. Bernhardt J, Hayward KS, Kwakkel G, Ward NS, Wolf SL, Borschmann K, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. Int J Stroke 2017; 12: 444–450.
11. World Health Organization. Towards a common language for functioning, disability and health ICF. Geneva: World Health Organization; 2002.
12. Higgins J, Green S, (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated 2011 Mar]: The Cochrane Collaboration 2011. Available from: www.cochrane-handbook.org.
13. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928.
14. Centre for Evaluation and Monitoring. Effect size calculator – CEM; Durham University. 2017 [cited 2017 May]. Available from: http://www.cem.org/effect-size-calculator.
15. Acier M, Fiaschi A, Manganotti P. Long-term levodopa administration in chronic stroke patients. A clinical and neurophysiologic single-blind placebo-controlled cross-over pilot study. Restor Neurol Neurosci 2009; 27: 277–283.
16. Floel A, Hummel F, Breitenstein C, Knecht S, Cohen LG. Dopaminergic effects on encoding of a motor memory in chronic stroke. Neurology 2005; 65: 472–474.
17. Gourab K, Schmit BD, Hornby TG. Increased lower limb spasticity but not strength or function following a single-dose serotonin reuptake inhibitor in chronic stroke. Arch Phys Med Rehabil 2015; 96: 2112–2119.
18. Pariente J, Loubinoux I, Carel C, Albucher JF, A, Manelfe C, et al. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol 2001; 50: 718–729.
19. Restemeyer C, Weiller C, Liepert J. No effect of a levodopa single dose on motor performance and motor excitability in chronic stroke. A double-blind placebo-controlled cross-over pilot study. Restor Neurol Neurosci 2007; 25: 143–150.
20. Rosser N, Heuschmann P, Wersching H, Breitenstein C, Knecht S, Floel A. Levodopa improves procedural motor learning in chronic stroke patients. Arch Phys Med Rehabil 2008; 89: 1633–1641.
21. Schambra HM, Martinez-Hernandez JE, Slane KJ, Boehme AK, Marshall RS, Lazar RM. The neurophysiologic effects of single-dose theophylline in patients with chronic stroke: a double-blind, placebo-controlled, randomized cross-over study. Restor Neurol Neurosci 2016; 34: 799–813.
22. Tardy J, Pariente J, Leger A, Dechaumont-Palacin S, Gerdelat A, Guiraud V, et al. Methylphenidate modulates cerebral post-stroke reorganization. NeuroImage 2006; 33: 913–922.
23. Zittel S, Weiller C, Liepert J. Reboxetine improves motor function in chronic stroke. J Neurool 2007; 254: 197–201.
24. Zittel S, Weiller C, Liepert J. Citalopram improves dexterity in chronic stroke patients. Neurorehabil Neural Repair 2008; 22: 311–314.
25. Cherry KM, Lenze EJ, Lang CE. Combining d-cycloserine with motor training does not result in improved general motor learning in neurologically intact people or in people with stroke. J Neurophysiol 2014; 111: 2516–2524.
26. Ciriosoto E, Tardy J, Zittel S, Leger A, Guiraud V, et al. Methylphenidate modulates motor memory in chronic stroke patients. J Neurol Sci 2010; 293: 132–137.
27. Sonde L, Nordström M, Nilsson CG, Lökk J, Viitanen M. Effects of fluoxetine and maprotiline on functional outcome for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. Int J Stroke 2017; 12: 444–450.
28. Dam M, Tonin P, De Boni A, Pizzolato G, Casson S, Ermanni M, et al. Effects of fluoxetine and maprotiline on functional outcome for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. Int J Stroke 2017; 12: 444–450.
29. Lokk J, Roghani RS, Delbari A. Effect of methylphenidate...
and/or levodopa coupled with physiotherapy on functional and motor recovery after stroke – a randomized, double-blind, placebo-controlled trial. Acta Neurologica Scandinavica 2011; 123: 266–273.

30. Mikami K, Jorg DE, Adams HP, Davis PH, Leira EC, Jang MJ, et al. Effect of antidepressants on the course of disability following stroke. Am J Geriatr Psychiatry 2011; 19: 1007–1015.

31. Urfer R, Moebius HJ, Skoloudik D, Santamarina E, Sato W, Mita S, et al. Phase II Trial of the sigma-1 receptor antagonist eCGP41309 (SA4503) for recovery enhancement after acute ischemic stroke. Stroke 2014; 45: 3304–3310.

32. Amiri-Nikpour MR, Nazarbaghi S, Ahmadi-Salmasi B, Mokari T, Tahamant U, Rezaei Y. Cerebrolysin effects on neurological outcomes and cerebral blood flow in acute ischemic stroke. Neuropsychiatr Dis Treat 2014; 10: 2299–2306.

33. Chang WH, Park CH, Kim DY, Shin YL, Ko MH, Lee A, et al. Cerebrolysin combined with rehabilitation promotes motor recovery in patients with severe motor impairment after stroke. BMC Neurool 2016; 16: 31.

34. Heiss W-D, Brainin M, Bornstein NM, Tuomilehto J, Hong Z. Cerebrolysin in patients with acute ischemic stroke in asia results of a double-blind, placebo-controlled randomized trial. Stroke 2012; 43: 630–636.

35. Lang W, Stadler CH, Poljakovic Z, Fleet D, Lyse Study Group. A prospective, randomized, placebo-controlled, double-blind trial about safety and efficacy of combined treatment with alteplase (rt-PA) and cerebrolysin in acute ischemic hemispheric stroke. Int J Stroke 2013; 8: 95–104.

36. Muresanu DF, Heiss WD, Hoemberg V, Bajenaru O, Pescu CD, Vester JC, et al. Cerebrolysin and Recovery After Stroke (CARS): a randomized, placebo-controlled, double-blind, multicenter trial. Stroke 2016; 47: 151–159.

37. Gladstone DJ, Danelis CJ, Armesto A, McLroy WE, Staines WR, Graham SJ, et al. Physiotherapy coupled with dextro-amphetamine for rehabilitation after hemiparetic stroke: a randomized, double-blind, placebo-controlled trial. Stroke 2006; 37: 179–185.

38. Platz T, Kim IH, Engel U, Pinkowski C, Eickhof C, Kutzner M. Amphetamine fails to facilitate motor performance and to enhance motor recovery among stroke patients with mild arm paresis: interim analysis and termination of a double blind, randomised, placebo-controlled trial. Restor Neurol Neurosci 2005; 23: 271–280.

39. Schuster C, Maunz G, Lutz K, Kischka U, Sturzenegger R, Ettlin T. Dexamphetamine improves upper extremity outcome in 4th ischemic stroke trial: a pilot randomised controlled trial. Neurorehabil Neural Repair 2011; 25: 749–755.

40. Sprigg N, Willmot MR, Gray LJ, Sunderland A, Pomeroy V, Walker M, et al. Amphetamine increases blood pressure and heart rate but has no effect on motor recovery or cerebrovascular haemodynamics in ischaemic stroke: a randomized controlled trial (ISRCTN 36285333). J Hum Hypertens 2007; 21: 616–624.

41. Treig T, Werner C, Sachse M, Hesse S. No benefit from D-amphetamine when added to physiotherapy after stroke: a randomized, placebo-controlled study. Clin Rehabil 2003; 17: 590–599.

42. Walker-Batson D, Smith P, Curtis S, Unwin H, Greenlee R. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 1995; 26: 2254–2259.

43. Scheidtmann K, Fries W, Muller F, Koenig E. Effect of levodopa and dexamphetamine on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet 2001; 358: 787–790.

44. Chen CLH, Young SHY, Gan HH, Singh R, Loo AS, Baroque AC, et al. Chinese medicine neuroaid efficacy on stroke recovery a double-blind, placebo-controlled, randomized study. Stroke 2013; 44: 2093–2100.

45. Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 2011; 10: 123–130. Erratum in: Lancet Neurol 2011; 10: 1230.

46. Cramer SC, Dobkin BH, Noser EA, Rodrigoiz RW, Enney LA. Randomized, placebo-controlled, double-blind study of ropinirole in chronic stroke. Stroke 2009; 40: 3034–3038.

47. Bartolo M, Zucchella C, Capone A, Sandrini G, Pierelli F. An exploratory study regarding the effect of L-deprenyl on cognitive and functional recovery in patients after stroke. J Neurol Sci 2015; 349: 117–123.

48. Bavarsad Shahripour R, Shamsaei G, Pakdaman H, Majdinasab N, Nejad EM, Sajedi SA, et al. The effect of Neuro-Aid? (MLC601) on cerebral blood flow velocity in subjects’ post brain infarct in the middle cerebral artery territory. Eur J Intern Med 2011; 22: 509–513.

49. Bochner F, Eadie MJ, Tyrer JH. Use of an ergot preparation (hydergine) in the convalescent phase of stroke. J Am Geriatr Soc 1973; 21: 10–17.

50. Cramer SC, Enney LA, Russell CK, Simeoni M, Thompson TR. Proof-of-concept randomized trial of the monoclonal antibody GSK249320 versus placebo in stroke patients. Stroke 2017; 48: 602–608.

51. Kong KH, Wee SK, Ng CY, Chua K, Chan KH, Venketasubramanian N, et al. A double-blind, placebo-controlled, randomized phase II pilot study to investigate the potential efficacy of the traditional chinese medicine Neuroaid (MLC 601) in enhancing recovery after stroke (TIERS). Cerebrovasc Dis 2009; 28: 514–521.

52. Li S, Long J, Ma Z, Xu Z, Li J, Zhang Z. Assessment of the therapeutic activity of a combination of almitrine and rausbaine on functional rehabilitation following ischaemic stroke. Curr Med Res Opin 2004; 20: 409–415.

53. Mohammadinejad SE, Majdinasab N, Sajedi SA, Abdollahi F, Moqaddam MM, Sadr F. The effect of lithium in post-stroke motor recovery: a double-blind, placebo-controlled, randomized clinical trial. Clin Neuropharmacol 2014; 37: 73–78.

54. Oskouei DS, Rikhtegar R, Hashemlali M, Sadeghi-Bazargani H, Shariﬁ-Bonab M, Sadeghi-Hokmabadi E, et al. The effect of Ginkgo biloba on functional outcome of patients with acute ischemic stroke: a double-blind, placebo-controlled, randomized clinical trial. J Stroke Cerebrovasc Dis 2013; 22: e557–e565.

55. Ringelstein EB, Thijss V, Norrving B, Chamorro A, Aicnzer F, Grond M, et al. Granulocyte colony-stimulating factor in patients with acute ischaemic stroke results of the AX200 for 1st Stroke Recovery – Extension Study (CHIMES-E): a Multicenter Study of Long-Term Efficacy. Cerebrovasc Dis 2015; 39: 309–318.

56. Ward A, Carriro C, Powell E, Westgate PM, Nicholas L, Fleischer A, et al. Safety and improvement of movement function after stroke with atomoxetine: a pilot randomized trial. Restor Neurol Neurosci 2017; 35: 1–10.

57. Yu M, Sun ZJ, Li LT, Ge HY, Song CQ, Wang AJ. The beneficial effects of the herbal medicine Di-huang-yin-zì (DHYZ) on patients with ischemic stroke: a randomized, placebo controlled clinical study. Complement Ther Med 2015; 23: 591–597.

58. Dierer M, Robol E, Fiaschi A, Manganotti P. A double blind placebo RCT to investigate the effects of serotonergic modulation on brain excitability and motor recovery in stroke patients. J Neurol 2009; 256: 1152–1158.

59. Cramer SC, Hill MD, Regenesis-Led Investigators. Human chorionicadotropin and epoetin alfa in acute ischemic stroke patients (REGENESIS- LED trial). Int J Stroke 2013; 8: 329.
62. Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 2002; 8: 495–505.

63. Grade C, Redford B, Chrostowski J, Toussaint L, Blackwell B. Methylenidate in early poststroke recovery: a double-blind, placebo-controlled study. Arch Phys Med Rehabil 1998; 79: 1047–1050.

64. Schaebitz WR, Laage R, Vogt G, Koch W, Kollmar R, Schwab S, et al. AXIS A Trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke. Stroke 2010; 41: 2545–2551.

65. Kwakkel G, Lannin NA, Borschmann K, English C, Ali M, Churlilov L, et al. Standardized measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke 2017; 12: 451–461.

66. Walker MF, Hoffmann TC, Brady MC, Dean CM, Eng JJ, Farrin AJ, et al. Improving the development, monitoring and reporting of stroke rehabilitation research: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke 2017; 12: 472–479.

67. Micromedex® 2.0. Truven Health Analytics. 2017 [cited 2017 Mar 30]. Available from: http://www.micromedexsolutions.com.elibrary.jcu.edu.au/.

68. Mead G, Hackett ML, Lundström E, Murray V, Hankey GJ, Dennis M. The FOCUS, AFFINITY and EFFECTS trials studying the effect(s) of fluoxetine in patients with a recent stroke: a study protocol for three multicentre randomised controlled trials. Trials 2015; 16: 369.

69. Dennis M, Mead G, Forbes J, Graham C, Hackett M, Hankey GJ, et al. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial. Lancet 2019; 393: 265–274.

70. Anon C. ICH S7A: safety pharmacology studies for human pharmaceuticals. London: The European Agency for the Evaluation of Medicinal Products Evaluation of Medicines for Human Use CPMP/ICH/539/00; 2000, p. 1–9.

71. Névéol A, Doğan RI, Lu Z. Author keywords in biomedical journal articles. AMIA Annual Symposium proceedings AMIA Symposium 2010; 2010: 537–541.

72. Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, et al. Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable translational working group. Int J Stroke 2017; 12: 462–471.

73. van Vliet P, Hunter SM, Donaldson C, Pomeroy V. Using the TIDieR Checklist to standardize the description of a functional strength training intervention for the upper limb after stroke. J Neurol Phys Ther 2016; 40: 203–208.

74. Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ 2010; 340: c332.

75. Australian Medicines Handbook 2017. Australian Medicines Handbook Pty Ltd; 2017. Available from: https://amhone line.amh.net.au/.

76. eTG complete 2018. West Melbourne, VIC, Australia: Therapeutic Guidelines Ltd; 2018.
