Microsatellite markers for the yam bean Pachyrhizus (Fabaceae)

Delètre, Marc; Soengas, Beatriz; Utge, José; Lambourdière, Josie; Sørensen, Marten

Published in: Applications in Plant Sciences

DOI: 10.3732/apps.1200551

Publication date: 2013

Document version Publisher’s PDF, also known as Version of record

Citation for published version (APA): Delètre, M., Soengas, B., Utge, J., Lambourdière, J., & Sørensen, M. (2013). Microsatellite markers for the yam bean Pachyrhizus (Fabaceae). Applications in Plant Sciences, 1(7). https://doi.org/10.3732/apps.1200551
Microsatellite Markers for the Yam Bean *Pachyrhizus* (Fabaceae)

Author(s): Marc Delêtre, Beatriz Soengas, José Utge, Josie Lambourdière, and Marten Sørensen

Source: Applications in Plant Sciences, 1(7) 2013.

Published By: Botanical Society of America

DOI: http://dx.doi.org/10.3732/apps.1200551

URL: http://www.bioone.org/doi/full/10.3732/apps.1200551
MICROSATELLITE MARKERS FOR THE YAM BEAN _PACHYRHIZUS_ (FABACEAE)\(^1\)

MARC DELÈTRE\(^2,5\), BEATRIZ SOENGAS\(^2\), JOSÉ UTGE\(^3\), JOSIE LAMBOURDIÈRE\(^3\),
AND MARTEN SØRENSEN\(^4\)

\(^2\)UMR 7206 Eco-anthropologie et ethnobiologie, Muséum National d’Histoire Naturelle, Département Hommes Natu-
res Sociétés, CP 135, 57 rue Cuvier, 75231 Paris CEDEX 05, France; \(^3\)SSM-UMS 2700 MNHN-CNRS, Muséum National
d’Histoire Naturelle, Département Systématique et Evolution, CP 26, 57 rue Cuvier, 75231 Paris CEDEX 05, France; and \(^4\)Plant
Systematic Group, Department of Plant and Environmental Sciences, Faculty of Life Sciences, University of Copenhagen,
Rolighedsvej 21, DK-1958 Frederiksberg C, Denmark

- **Premise of the study:** Microsatellite loci were developed for the understudied root crop yam bean (_Pachyrhizus_ spp.) to inves-
tigate intraspecific diversity and interspecific relationships within the genus _Pachyrhizus_.
- **Methods and Results:** Seventeen nuclear simple sequence repeat (SSR) markers with perfect di- and trinucleotide repeats were
developed from 454 pyrosequencing of SSR-enriched genomic libraries. Loci were characterized in _P. ahipa_ and wild and
 cultivated populations of four closely related species. All loci successfully cross-amplified and showed high levels of poly-
morphism, with number of alleles ranging from three to 12 and expected heterozygosity ranging from 0.095 to 0.831 across
the genus.
- **Conclusions:** By enabling rapid assessment of genetic diversity in three native neotropical crops, _P. ahipa_, _P. erosus_, and _P.
tuberosus_, and two wild relatives, _P. ferrugineus_ and _P. panamensis_, these markers will allow exploration of the genetic diver-
sity and evolutionary history of the genus _Pachyrhizus_.

Key words: cross-species amplification; Fabaceae; microsatellites; _Pachyrhizus_; pyrosequencing; yam bean.

Yam beans (_Pachyrhizus_ Rich. ex DC., Fabaceae) are little-
studied plants with edible tuberous roots native to South and Central America. The genus comprises five species, two
wild (_P. panamensis_ R. T. Clausen and _P. ferrugineus_ (Piper) M. Sørensen) and three cultivated (_P. ahipa_ (Wedd.) Parodi,
P. erosus (L.) Urb., and _P. tuberosus_ (Lam.) Spreng.). Yam beans are grown for their starchy root but are propagated exclusively
through seeds. To stimulate root growth, farmers prune flower
buds but leave either one pod on each plant or select a few
plants dedicated to seed production. To set conservation strate-
gies, it is necessary to understand how these different methods in-
fluence the crop’s dynamics of genetic diversity, but this requires
molecular tools that yield information on important parameters
such as heterozygosity and allelic frequencies needed for the
computation of most population genetic statistics. There are to date
no available genetic markers for _Pachyrhizus_ species. Socially
and culturally important but economically marginalized, yam
beans are “orphans” to crop science, and few resources have been
invested in evaluating the current status of genetic diversity in
these minor yet promising crops. The lack of molecular tools
has probably stymied efforts to document these largely untapped
 genetic resources.

In this paper, we report the isolation and characterization of
17 polymorphic simple sequence repeat nuclear markers for _P.
 ahipa_ and their successful cross-amplification in other _Pachyrhizus_
 species. Phylogenetic relationships among _Pachyrhizus_ species remain largely unresolved. This new set of molecular
 markers will permit investigation of the phylogeography of the
Pachyrhizus complex.

METHODS AND RESULTS

Total genomic DNA was extracted from herbarium specimens from 20 mg
of lyophilized leaf tissue using NucleoSpin 96 Plant kits (Macherey-Nagel,
Hoerdt, France) following the manufacturer’s instructions. Purified DNA was
eluted in a final volume of 200 μL, and final concentration was checked using a
Nanodrop ND-1000 spectrophotometer (Labtech, Palaiseau, France). A sample of
3 μg total DNA at 60 ng/μL, final concentration, representing a pool of 12 _P.
 ahipa_ accessions spanning the whole distribution range of the species in Bolivia,
was sent to Genoscreen (Lille, France) for production of enriched DNA libraries
454 GS-FLX Titanium (Roche Applied Science, Meylan, France) pyrosequenc-
ing (Malausa et al., 2011). A total of 3454 sequences containing potential micro-
satellite motifs were produced. Following sequence cleaning and removal of
duplicates, 252 primer pairs (only perfect repeats with at least five repeats) were
designed using the QDD bioinformatics pipeline (Meglécz et al., 2010).

We selected a set of markers that would cover a wide range of amplification
product sizes and could be used in multiplex reactions (i.e., that minimized dif-
fences in annealing temperatures and complementarity among primer pairs),
targeting in priority loci with the longest di- and trinucleotide repeats (six repeats
or more). A cost-efficient approach to selecting markers is to prescreen micro-
satellites for polymorphism using in silico DNA sequences (Hoffman and Nichols,
but very little sequence information is available for the understudied genus *Pachyrhizus*. Blasting primer sequences against sequences available at GenBank for the closest Fabaceae species, we obtained the best results with the model crop *Glycine max* (L.) Merr. (subtribe Glycininae), with a mean query coverage (±SE) of 88% (±23) and 93% (±8) identity between *G. max* and *P. ahipa* homologous sequences. Targeting conserved flanking regions among distantly related species can also be a potent way to enhance cross-species utility of microsatellite markers (Dawson et al., 2010). Using microsatellite variability in *G. max* as a proxy to infer variability among putative microsatellites in *Pachyrhizus* spp., we targeted loci most likely to be polymorphic. Thirty-six primer pairs were tested in separate PCRs. Nine pairs failed to produce clear amplicons. A second test was carried out on the 27 primer pairs that amplified using a sample of 144 accessions (wild and cultivated) from herbarium specimens representing vari-
etal, morphological, and potential genetic variation across the natural distribution area of the genus (Appendix 1). Multiplex PCR were carried out on an Eppe-
dorf Mastercycler ep gradient thermocycler (Eppendorf, Hamburg, Germany) using phosphoramidite-labeled oligonucleotides (Applied Biosystems, Warrington, United Kingdom) in a final volume of 12.5 μL. Along with 1 μL of nondiluted DNA template, each well contained 6.25 μL of QIAGEN Type-it Master Mix (QIAGEN, Hilden, Germany), 1.25 μL of 10× primer mix (with primers at 2 μM), and 4 μL of RNase-free water. An initial activation step at 95°C for 30 s pre-
ceded 20 cycles of amplification, each starting with an annealing step of 90 s at 56°C and continuing with an extension at 72°C for 30 s. Amplification ended
with a final extension at 60°C for 30 min. To ensure unambiguous peak assign-
ment, primer pairs were pooled in two different sets (M1 and M2) as indicated in Table 1. Multiplex Manager 1.2 software (Holleley and Geerts, 2009) was used to optimize primer combinations.

Genotyping was performed on an ABI PRISM 3130 Genetic Analyzer (Perkin Elmer/Applied Biosystems, Foster City, California, USA). Each sample was prepared from 1 μL of PCR template to which 8.8 μL formamide and 0.2 μL GeneScan 500 LIZ Size Standard (Applied Biosystems) were added. Genotypes were extracted and analyzed using GeneMapper 4.0 software (Applied Biosystems). To reduce the risk of typing errors, allele peaks were checked by eye. Cross-
species amplification tests succeeded for all loci across the genus. Six loci were
strictly monomorphic across all species and were discarded. At the species
testing level, 15 out of the 17 remaining loci were monomorphic in *P. ahipa*, six in the cultivated *P. tuberosus*, and four in the cultivated *P. erosus* (Table 2). Only two and three loci were monomorphic in the wild *P. tuberosus* and wild *P. erosus*, respectively. Number of alleles, observed and expected heterozygosities, and tests for deviation from Hardy–Weinberg equilibrium (HWE) were estimated using GenAIEx version 6.61 (Peakall and Smouse, 2006). Results for each lo-
cus and species are summarized in Table 2. The number of alleles ranged from three to 12, with a mean value of (±SE) 6.4 ± 3.0 alleles across loci and species. Expected heterozygosity ranged from 0.095 (AIP9) to 0.831 (AIP30). All loci showed significant deviation from HWE in the three cultivated species (*P < 0.001*). Linkage disequilibrium was checked using GENEPOP 4.1.4 (Rousset, 2008).

Two pairs of loci showed significant linkage disequilibrium in the cultivated *P. erosus* after Bonferroni correction for multiple comparisons (*P < 0.0004*).

Yam beans are predominantly self-pollinating species with outcrossing rates typically ranging between 2% and 4% (Sørensen, 1996), and physical linkage of loci cannot be distinguished from disequilibrium due to nonrandom mating.

CONCLUSIONS

Conservation of crop genetic resources hinges on the avail-
ability of efficient molecular tools to characterize population genetic structure and decipher the dynamics of crop genetic di-
versity. The case of *Pachyrhizus* illustrates the spillover benefits

Locus	Primer sequences (5’–3’)	Repeat motif	Allele size range (bp)	T\textsubscript{a} (°C)	Primer set	5’ dye	GenBank accession no.
AIP1	F: CATGAGCCCTCCACCGGTTT	(CT)\textsubscript{6}	86–92	56	M1	6-FAM	JX846809
R: GTAGGAAGCTTCCGCTGCAG							
AIP5	F: GTGCGTGTTGCTCCACTCTTC	(GAA)\textsubscript{3}	97–109	56	M1	NED	JX846810
R: CAAAGTACCTGTTCTTACAC							
AIP9	F: GTATCTGTTGCTTCTCCAGG	(AC)\textsubscript{10}	121–127	56	M2	PET	JX846811
R: TGCAATACACCTCTTTCAC							
AIP10	F: TAAACAAAGGGCTTGGGA	(GAA)\textsubscript{3}	122–148	56	M1	6-FAM	JX846812
R: GAGAACATTACGTGCTTCTTC							
AIP15	F: ATGCCCTGCTTCCACC	(CAA)\textsubscript{14}	146–167	56	M2	6-FAM	JX846813
R: TTGGAGGCGTATGTACG							
AIP16	F: TGTTAAAGGCCTGTAATGGC	(TC)\textsubscript{2}	172–186	62	M1	6-FAM	JX846814
R: AGTCAGCCAAAGCTCTCAGT							
AIP17	F: TCACGTGCTAAAGTTAGAATC	(TTT)\textsubscript{15}	157–211	60	M2	NED	JX846815
R: TGCAAGGTGACTCTGACACTC							
AIP19	F: AGTGAACATGACACCCCTTAT	(AG)\textsubscript{9}	201–205	56	M1	PET	JX846816
R: TCCGGACTGCAAGATTTATGAGT							
AIP21	F: ATGGAAGGCTGCTTGGGC	(TC)\textsubscript{8}	227–237	56	M1	NED	JX846817
R: GAGGGCTGTTATCACTACAAATC							
AIP22	F: CCGTCTGTGCTCTCTTCCTTCCA	(TTT)\textsubscript{10}	227–263	56	M2	VIC	JX846818
R: CTCTGGATTTTCCTTTGCA							
AIP23	F: CAAATGCTGGCCTTTAGGGGC	(TCT)\textsubscript{9}	231–252	56	M2	PET	JX846819
R: AAGCAAGTTAACCCCTTGTTGA							
AIP27	F: AGCAATCTTCTCTTCCACCTCACCA	(AAT)\textsubscript{6}	295–301	62	M1	VIC	JX846820
R: CAAAGGGAGATGGTAAAGCGC							
AIP28	F: GTCAAGCTTGGCTGCTGATT	(TC)\textsubscript{9}	85–107	56	M1	PET	JX846821
R: CGACTCCGTGATAGACTCTCTG							
AIP30	F: TCACGTGCTTCTCAACACC	(CTT)\textsubscript{17}	281–329	56	M2	6-FAM	JX846822
R: TGAGGAGGGAGAAAGTACGCTTG							
AIP31	F: CCACTAACCTCTGCTCTTGCC	(CT)\textsubscript{10}	162–198	56	M1	PET	JX846823
R: CCAAAGGATATGGTAAAGCAG							
AIP34	F: AGATGGAATACCTGTGCTGACTG	(CT)\textsubscript{9}	86–90	56	M2	6-FAM	JX846824
R: AATAGGGGAGAGATTGTTTGG							
AIP36	F: CACCAACAATGTAATTGAAGCTTAGA	(AG)\textsubscript{11}	188–198	56	M2	6-FAM	JX846825
R: TGGTCCCTCCTGATAATGGTCTGCTCATT							

Note: F = forward primer sequence; R = reverse primer sequence; \(T_a \) = optimal annealing temperature.
Pachyrhizus ahipa, *P. erosus*, and *P. tuberosus* (wild and cultivated) for the 17 polymorphic loci. Cross-amplification tests were also carried in two wild species, *P. ferrugineus* and *P. panamensis* (cultivated) *P. erosus* (cultivated) *P. erosus* (wild) *P. ferrugineus* *P. panamensis* *P. tuberosus* (cultivated) *P. tuberosus* (wild)

Locus	n	A	H_o	H_e	HE 46	n	A	H_o	H_e	HE 46	n	A	H_o	H_e	HE 46	n	A	H_o	H_e	HE 46
AIP5	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP9	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP10	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP15	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP16	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP17	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP19	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP21	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP22	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP23	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP27	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP28	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP30	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP31	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP34	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0
AIP36	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0	46	1	0.000	0.000	0

Note: = He and Ho could not be calculated because the locus is monomorphic in this species; n = number of alleles detected; He = expected heterozygosity; Ho = observed heterozygosity.

LITERATURE CITED

Dawson, D. A., G. J. Horsburgh, C. Kupper, I. R. K. Stewart, A. D. Ball, K. L. Durrant, B. Hansson, et al. 2010. New methods to identify conserved microsatellite loci and develop primer sets of high cross-species utility—As demonstrated for birds. *Molecular Ecology Resources* 10: 475–494.

Hofmann, J. I., and H. J. Nichols. 2011. A novel approach for mining polymorphic microsatellite markers in *silico*. *PLoS ONE* 6: e23283.

Holley, C., and P. Gerhts. 2009. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. *Biotechniques* 46: 511–517.

Malausa, T., A. Gilles, E. Meglécz, H. Blanquart, S. Duthoy, C. Costeodat, V. Dubet, et al. 2011. High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. *Molecular Ecology Resources* 11: 638–644.

Meglécz, E., C. Costeodat, V. Dubet, A. Gilles, T. Malausa, N. Pech, and J. F. Martin. 2010. QDD: A user-friendly program to select microsatellite markers and design primers from large sequencing projects. *Bioinformatics* (Oxford, England) 26: 403–404.

Peakall, R., and P. E. Smouse. 2006. GenAIEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6: 288–295.

Rousset, F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. *Molecular Ecology Resources* 8: 103–106.

Sørensen, M. 1996. *Yam bean (Pachyrhizus DC.).* Promoting the conservation and use of underutilized and neglected crops, vol. 2. Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany, and International Plant Genetic Resources Institute, Rome, Italy.

Varshney, R. K., J.-C. Glaszmann, H. Liung, and J.-M. Ribaut. 2010. More genomic resources for less-studied crops. *Trends in Biotechnology* 28: 452–460.
APPENDIX 1. List of exsiccatae used in cross-species amplification tests. Wild and cultivated specimens are indicated as well as varietal types (when available).

Species	Voucher specimen	Herbarium	Status	Varietal type	Geographic origin	Geographic coordinates	n
P. ahipa	AC102	CP	Cult.	Bolivia	−21.516667	−64.75	7
	AC201	CP	Cult.	Bolivia	−16.991785	−67.56567	3
	AC202	CP	Cult.	Bolivia	−16.991785	−67.56567	3
	AC203	CP	Cult.	Bolivia	−17.003605	−67.632637	3
	AC204	CP	Cult.	Bolivia	−16.991785	−67.56567	4
	AC205	CP	Cult.	Bolivia	−17.578248	−65.908356	3
	AC206	CP	Cult.	Bolivia	−17.578248	−65.908356	2
	AC207	CP	Cult.	Bolivia	−17.578248	−65.908356	2
	AC208	CP	Cult.	Bolivia	−17.115358	−66.866082	2
	AC209	CP	Cult.	Bolivia	−16.702337	−67.928724	2
	AC213	CP	Cult.	Bolivia	−16.565948	−67.450075	5
	AC214	CP	Cult.	Bolivia	−16.816619	−67.58327	5
	AC521	CP	Cult.	Bolivia	−17.386354	−66.166935	2
	AC526	CP	Cult.	Bolivia	−22.191736	−64.679739	3
P. erosus	EC004	CP	Cult.	Mexico	21.036201	−104.371755	1
	EC006	CP	Cult.	Mexico	17.084025	−96.750269	1
	EC033	CP	Cult.	Guatemala	14.183014	−90.02237	1
	EC040	CP	Cult.	Guatemala	14.198991	−90.051012	1
	EC043	CP	Cult.	Jícamá	13.850747	−90.107489	1
	EC104	CP	Cult.	Mexico	20.172634	−89.018154	1
	EC116	CP	Cult.	Guatemala	14.272535	−90.038137	1
	EC204	CP	Cult.	Mexico	19.453644	−96.950075	1
	EC205	CP	Cult.	Agua Dulce	20.574095	−100.748026	1
	EC214	CP	Cult.	Guatemala	16.968801	−89.912224	1
	EC216	CP	Cult.	Guatemala	16.792709	−89.9353	1
	EC219	CP	Cult.	Guatemala	16.514523	−89.415679	1
	EC250	CP	Cult.	Guatemala	16.968801	−89.912224	1
	EC352	CP	Cult.	Honduras	14.89834	−88.721695	1
	EC353	CP	Cult.	Honduras	14.398769	−89.197369	1
	EC502	CP	Cult.	Cristalina	17.224758	−93.603516	1
	EC510	CP	Cult.	Mexico	19.848102	−90.52079	1
	EC559	CP	Cult.	Tipo Nayarit	21.813775	−105.207667	1
	EC560	CP	Cult.	Agua Dulce	21.054305	−104.484372	1
	EW048	CP	Wild	Costa Rica	10.495914	−85.358734	1
	EW049	CP	Wild	Costa Rica	10.495914	−85.358734	1
	EW050	CP	Wild	Costa Rica	10.495914	−85.358734	1
	EW051	CP	Wild	Costa Rica	10.495914	−85.358734	1
	EW053	CP	Wild	Costa Rica	10.51883	−85.25425	1
	EW054	CP	Wild	Costa Rica	10.522919	−85.254135	1
	EW115	CP	Wild	Costa Rica	15.801297	−91.755159	1
	EW203	CP	Wild	Mexico	19.489088	−96.950075	1
	EW212	CP	Wild	Guatemala	15.078426	−89.436391	1
	EW222	CP	Wild	Costa Rica	10.578947	−85.403936	1
	EW223	CP	Wild	Costa Rica	10.547559	−85.681744	1
	EW229	CP	Wild	Costa Rica	18.457018	−70.121276	1
	EW230	CP	Wild	Dominican Republic	18.755268	−70.017257	1
	EW522	CP	Wild	Mauritius	−20.233892	47.970852	1
P. ferrugineus	FW044	CP	Wild	Guatemala	15.2835	−89.0653	1
	FW220	CP	Wild	Costa Rica	10.041001	−83.545998	1
	FW237	CP	Wild	Martinique	14.74463	−61.172655	1
	1713	FHO	Wild	Honduras	15.283333	−87.65	1
P. panamensis	PW055	CP	Wild	Panama	9.211261	−79.616092	1
	PW056	CP	Wild	Panama	−2.235923	−80.0773	1
P. tuberosus	TC063	CP	Cult.	Ashiya	−17.402899	−63.765938	1
	TC210	CP	Cult.	Ashiya	−16.313055	−67.048989	1
	TC239	CP	Cult.	Jíquima	−0.78052	−80.259619	1
	TC303	CP	Cult.	Iwa	−1.516623	−77.98546	1
	TC306	CP	Cult.	Iwa	−1.034976	−77.665193	1
	TC307	CP	Cult.	Capamu	−1.197423	−77.394104	1
	TC308	CP	Cult.	Capamu	−1.197423	−77.394104	1
	TC309	CP	Cult.	Namaou	−1.931854	−77.867203	1
	TC311	CP	Cult.	Jíquima	−1.350635	−80.579531	1
	TC313	CP	Cult.	Jíquima	−1.04433	−80.65846	1
	TC314	CP	Cult.	Jíquima	−1.049994	−80.516936	1
	TC350	CP	Cult.	Chuin morado	−4.913096	−73.60314	1
	TC351	CP	Cult.	Chuin morado	−3.784781	−73.343725	1
	TC352	CP	Cult.	Chuin morado	−5.816514	−74.399128	1

http://www.bioone.org/loi/apps
APPENDIX 1. Continued.

Species	Voucher specimen	Herbarium	Status	Varietal type	Geographic origin	Geographic coordinates	n
TC353	CP	Cult.	Chuin amarillo	Peru	−4.995186	−73.982391	1
TC354	CP	Cult.	Chuin blanco	Peru	−9.462608	−74.191132	1
TC355	CP	Cult.	Chuin morado	Peru	−9.462608	−74.191132	1
TC356	CP	Cult.	Ashipa	Peru	−4.981505	−73.820343	1
TC357	CP	Cult.	Ashipa maron	Peru	−3.783925	−73.344755	1
TC358	CP	Cult.	Ashipa maron	Peru	−3.783925	−73.344755	1
TC359	CP	Cult.	Ashipa	Peru	−6.914839	−75.171905	1
TC361	CP	Cult.	Chuin morado	Peru	−9.462608	−74.191132	1
TC362	CP	Cult.	Chuin morado	Peru	−9.462608	−74.191132	1
TC374	CP	Cult.	Ashipa	Peru	−8.538923	−74.876347	1
TC375	CP	Cult.	Ashipa	Peru	−8.393583	−74.42399	1
TC376	CP	Cult.	Yushpe	Peru	−8.688282	−74.432602	1
TC352	CP	Cult.	Ajipa	Bolivia	−15.166667	−67.066667	1
TC353	CP	Cult.	Ajipa	Bolivia	−14.349548	−67.950125	1
TC354	CP	Cult.	Ashipa	Peru	−6.027214	−76.966839	1
TC357	CP	Cult.	Ashipa	Peru	−12.982437	−71.284111	1
TC338	CP	Cult.	Ashipa	Peru	−13.896077	−71.501198	1
TC344	CP	Cult.	Chuin morado	Peru	−4.554522	−73.620987	1
TC347	CP	Cult.	Chuin morado	Peru	−4.570265	−73.685417	1
TC348	CP	Cult.	Chuin morado	Peru	−4.570265	−73.685417	1
TC349	CP	Cult.	Chuin morado	Peru	−4.625704	−73.752708	1
TC550	CP	Cult.	Jíquima	Ecuador	−0.78052	−80.259619	1
TC551	CP	Cult.	Jíquima	Ecuador	−0.78052	−80.259619	1
TC552	CP	Cult.	Jíquima	Ecuador	−0.922554	−80.446064	1
TC553	CP	Cult.	Jíquima	Ecuador	−1.206948	−80.369039	1
TC554	CP	Cult.	Jíquima	Ecuador	−0.92267	−80.445679	1
TC555	CP	Cult.	Jíquima	Ecuador	−0.92267	−80.445679	1
TC556	CP	Cult.	Iwa	Ecuador	−1.516623	−77.983546	1
TC557	CP	Cult.	Iwa	Ecuador	−1.482921	−78.002413	1
TC564	CP	Cult.	Cocotichuin	Peru	−3.708167	−73.200167	1
TC565	CP	Cult.	Cocotichuin	Peru	−8.735792	−74.540977	1
TC566	CP	Cult.	Chuin blanco	Peru	−8.764296	−74.529991	1
TC568	CP	Cult.	Ashipa	Peru	−8.692863	−74.414377	1
TC575	CP	Cult.	Chuin morado	Peru	−3.708041	−73.200045	1
TC577	CP	Cult.	Cocotichuin	Peru	−9.354223	−74.306488	1
TC578	CP	Cult.	Chuin blanco	Peru	−8.764296	−74.529991	1
TW378	CP	Wild			−0.91659	−77.750037	1
TW379	CP	Wild			−2.299945	−78.100054	1
TW380	CP	Wild			−3.406414	−78.572431	1
TW381	CP	Wild			−3.883318	−78.783488	1
TW558	CP	Wild			−1.066685	−79.466693	1
TW559	CP	Wild			−1.066642	−79.466693	1
TW560	CP	Wild			−1.066642	−79.466693	1
TW561	CP	Wild			−0.016136	−79.383488	1

Note: CP = Royal Veterinary and Agricultural University Herbarium, Copenhagen, Denmark; cult. = cultivated; FHO = University of Oxford, Daubeny Herbarium, Oxford, United Kingdom; n = number of individuals per accession.

http://www.bioone.org/loi/apps