Comparative analysis of the application of virtual and mechanical articulators in functional diagnostics

T.V. Chkhikvadze, E.M. Roschin, V.V. Bekreev

RUDN University, Medical Institute, Moscow, Russian Federation

Abstract. The paper presents the results of examination of patients with articulation disorders of the lower jaw caused by internal pathology of the TMJ. The purpose of the presented work: to study the effectiveness of the use of mechanical and virtual articulators in the functional diagnosis of patients with internal TMJ disorders. All patients underwent comprehensive clinical and instrumental examination including cone-beam computed tomography (CT) and axiographic examination (optical axiograph Dentograf Prosystom, Russia). CBCT was used to assess the state of the TMJ and determine the individual ratio of jaw and joint models. When axiography was recorded and analyzed articular trajectories of the lower jaw. In the first group of patients dynamic occlusion was evaluated using a mechanical articulator, in the second group a virtual articulator was used. It was revealed that the use of mechanical articulators in functional diagnostics to assess dynamic occlusion is limited and does not allow to obtain individualized patient data, their efficiency was 75%. The use of virtual articulators allows to evaluate the dynamic occlusion during opening and closing of the mouth, protrusion and laterotrusion, as well as the continuous movement of the lower jaw with the registration of all possible dental contacts. Due to the combination of CT data of the patient’s head and virtual models, the highest accuracy of placing models in the virtual articulator in accordance with the individual characteristics of patients was achieved.

Key words: the violation of articulation, temporomandibular joint, mechanical articulator, virtual articulator, dynamic occlusion, individual jaw relationship

Author Contributions. Chkhikvadze T.V: participation in the development of the concept and structure of the study, analysis and interpretation of data, writing the text of the article; Roschin E.M.: development of the concept and structure of the study, analysis and interpretation of data; Bekreev V.V.: development of the concept and structure of the study, approval of the final version of the article submitted to the press.

Funding information. The work was carried out without sponsorship.

Conflict of interest information. The authors declare no conflict of interest.

Received 12.12.2019. Accepted 30.01.2020

For citation: Chkhikvadze T.V., Roschin E.M., Bekreev V.V. Comparative analysis of the application of virtual and mechanical articulators in functional diagnostics. RUDN Journal of Medicine. 2020 Mar; 24 (1): 38—51. DOI: 10.22363/2313–0245–2020–24–1–38–51

© Chkhikvadze T.V., Roschin E.M., Bekreev V.V. 2020

This work is licensed under a Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by/4.0/
Сравнительный анализ применения виртуальных и механических артикуляторов в функциональной диагностике

Т.В. Чхиквадзе, Е.М. Рощин, В.В. Бекреев
Российский университет дружбы народов,
Медицинский институт, Москва, Российская Федерация

Аннотация. В работе представлены результаты обследования пациентов с нарушениями артикуляции нижней челюсти, вызванных внутренней патологией ВНЧС. Цель представленной работы – изучить эффективность применения механических и виртуальных артикуляторов в функциональной диагностике пациентов с внутренними нарушениями ВНЧС. Всем пациентам проводилось комплексное клиническое и инструментальное обследование, включавшее конусно-лучевую компьютерную томографию (КЛКТ) и аксиографическое исследование (оптический аксиограф Dentograf Prosystom, Россия). КЛКТ использовалось для оценки состояния ВНЧС и определения индивидуального соотношения моделей челюстей и суставов. При аксиографии регистрировали и анализировали суставные траектории движения нижней челюсти. В I группе пациентов динамическая окклюзия оценивалась с использованием механического артикулятора, во II группе применяли виртуальный артикулятор. Выявлено, что применение механических артикуляторов в функциональной диагностике для оценки динамической окклюзии ограничено и не позволяет получить индивидуализированные данные пациента, их эффективность составила 75%. Использование виртуальных артикуляторов позволяет оценить динамическую окклюзию при открывании-закрывании рта, протрузии и латеротрузии, а также непрерывном движении нижней челюсти с регистрацией всех возможных зубных контактов. Благодаря совмещению данных КТ головы пациента и виртуальных моделей была достигнута максимально высокая точность размещения моделей в виртуальном артикуляторе в соответствии с индивидуальными особенностями пациентов.

Ключевые слова: нарушении артикуляции, ВНЧС, механический артикулятор, виртуальный артикулятор, динамическая окклюзия, индивидуальное соотношение челюстей

Вклад авторов. Чхиквадзе Тина Владимировна: участие в разработке концепции и структуры исследования, анализ и интерпретация данных, написание текста статьи; Рощин Евгений Михайлович: разработка концепции и структуры исследования, анализ и интерпретация данных; Бекреев Валерий Валентинович: разработка концепции и структуры исследования, одобрение окончательной версии статьи, сдаваемой в печать.

Финансирование. Работа проведена без спонсорской поддержки.
Конфликт интересов отсутствует.
Поступила 12.12.2019. Принята 30.01.2020.

Для цитирования: Чхиквадзе Т.В., Рощин Е.М., Бекреев В.В. Сравнительный анализ применения виртуальных и механических артикуляторов в функциональной диагностике // Вестник Российского университета дружбы народов. Серия: Медицина. 2020. Т. 24. № 1. С. 38—51. DOI: 10.22363/2313–0245–2020–24–1–38–51

Introduction
With the introduction of modern technologies into dental practice, the role of functional diagnostics at various diseases of the dental system has increased significantly [1; 2]. The development of high-precision instrumental research methods allows to identify pathological changes at early stages of their formation [3; 4]. Currently, the diagnosis of oral cavity diseases involves a complex, comprehensive, specialized examination involving the use of high-tech equipment [5; 6; 7]. Part of the research was carried out with the direct participation of a group of patients, another part—
on models of the dental system with the utilization of articulators and computer technology [8; 9].

The role of functional diagnostics in dental practice increases significantly in the presence of a combined lesion of teeth, temporomandibular joint (TMJ) with mandible dysarthrias and involvement of masticatory muscles in the process [10; 11]. Timely functional diagnostics in such cases make it possible not only to identify the causes and nature of the disease, but also to develop an optimal treatment plan and assess its effectiveness.

Currently, when conducting a functional study of the dental system, the following methods are used: panoramic shot; orthopantomogram; computed tomography [12; 13; 14], which enables to get 3D images of the jaws; magnetic resonance imaging (MRI), which makes it possible to assess the state of soft tissues and TMJ [15, 16]; electronic axiography, providing the means of registration of articular trajectories and mandible movement trajectories [17; 18]; creation of dentition models of both jaws using articulators [19; 20]; electromyography, in which the analysis of bioelectric activity and symmetry of the masticatory muscles is carried out [21; 22]; ultrasound examination of the TMJ, visualizing its anatomical state [23].

When conducting functional diagnostics, the assessment of patient occlusion [11; 24] is of particular interest. It is conventionally accepted to differentiate dynamic and static occlusion. Dynamic occlusion is the interaction between the teeth when both jaws move [24]. It is generally accepted that with an optimal, “physiological” state of the dental system, an immediate opening or loss of contact between the teeth occurs at the mandible movement out of the usual occlusion. The occurrence of any changes, undesirable occlusal contacts, especially located close to the TMJ, leads to discoordination of the masticatory muscles, the position of the joint and its structures, the teeth, as well as their increased abrasion [24—26]. Studying of occlusion using articulatory foil or paper provides limited information [27]. Dynamic occlusion can be most effectively assessed using individually adjusted articulators [20].

The assessment of dynamic occlusion is of particular importance during: orthopedic treatment, as with prosthetics it is usually necessary to fully restore the masticatory function; orthodontic correction, given that its goal is to normalize occlusal relationships; during maxillofacial operations — for assessment of the TMJ functional state and to draw up a treatment plan; in implantology, it is imperative to take into account the distribution of masticatory load when planning the number, location, size and shape of dental implants; in periodontics, as excessive load on the teeth leads to periodontal disease; restoration therapy, due to the fact that it is necessary to control static and dynamic occlusal relationships [26; 28].

The purpose of this work
To assess the effectiveness of using mechanical and virtual articulators during functional diagnostics in patients with TMJ disorders.

Materials and methods
We examined 47 patients with mandible dysarthria due to internal pathology of the TMJ, of which 40 were women and 7 were men. The age of patients ranged from 23 to 39 years. Patients complained of pain in the TMJ (34 out of 47 examined; 72.3%), headaches (19 patients; 40.4%), difficulty in opening the mouth (38 patients; 80.9%). In a clinical examination, articular noises during palpation and mandible movements were found in all patients, an increased limitation in opening the mouth was noted in 45 of 47 patients (95.7%).

All patients underwent cone beam computed tomography (CBCT) for the diagnosis of TMJ. CBCT was also used to individually correlate jaw and joint models.

All patients underwent an axiographic study using an optical axiograph (Dentograf Prosystom, Russia) with registration and analysis of mandible articular trajectories.

In group I, in all 23 patients (48.9%), dynamic occlusion was assessed using a mechanical articulator (Fig. 1).
After the two-layer silicone impressions were removed, the models were gypsum plated using a mechanical facial arc, the movement of the mandible in the mechanical articulator was reproduced using its articular mechanisms. The articulator (articular mechanisms and programmable table) was adjusted according to individual data obtained during optical axiography.

In 24 patients (51.1%) of group II, dynamic occlusion was studied using a virtual articulator with virtual models (Fig. 2).
After removing two-layer silicone impressions and casting the gypsum models, optical scanning of the jaws gypsum models was carried out in the ZIRKONZAHN software. With the help of the electronic front arc and the results of CBCT, the models were placed in the space of the virtual articulator, which made it possible to reproduce in the three-dimensional space of software environment the position of the virtual dentition relative to the hinge axis and the incisal stop. To take into account all the individual parameters during gypsum casting, an additional CT module (Prosystom) was applicable in the virtual articulator, which allowed measuring the individual distance from the maxillary incisors to the TMJ joint heads for subsequent transfer to the articulator. In this case, three main reference points were used: an interdental point in the area of the cutting edge of the maxillary central teeth and a point in the area of the articular heads of the right and left TMJ. With account of the data obtained, CT models were exported to a virtual articulator.

After that, individual trajectories that had been previously recorded using the axiograph were loaded into the program.

Results

In the 47 patients examined by us, the distribution by gender was as follows: women — 40 (85.1%), men — 7 (14.9%), the sex ratio was 5.7: 1. The age of patients ranged from 23 to 39 years. During the survey, 34 patients (72.3%) complained of pain in the TMJ area, 19 (40.4%) had frequent headaches, 38 patients (80.9%) noted difficulty and discomfort when opening their mouths. Of all the patients examined, 44 (93.6%) drew attention to a click or extraneous noise in the form of crepitus at mandible movements; 3 patients (6.4%) did not feel pathological noises detected during clinical examination (palpation of the TMJ area).

All patients underwent a comparative analysis of dynamic occlusion, in which the mandible movement on the teeth (closing-opening; lateral movements; moving forward with returning to the initial position) was studied. In a mechanical articulator, gypsum models of the jaws of 23 patients (48.9%) were studied, in a virtual articulator — those of 24 patients (51.1%).

In group I patients the Artex FaceBow facial arch (Girrbach) and the Artex CR (Girrbach) mechanical articulator were used. All patients of group I underwent a clinical examination of the mandible articulation using Bausch 20 micron carbon paper and occlusal wax plates OKKLUSAL INDIKATOR WACHS SAM.

In all patients of group I there was analyzed jaw closing in the usual bite and the protrusive and laterotrusive mandible movement.

When conducting clinical and laboratory studies using a mechanical articulator in patients of group I, their effectiveness in protrusive and laterotrusive mandible movements was of 75%.

With the mandible moving forward, there is no contact with the masticating teeth. Normally, the entire load is distributed between the temporomandibular joints and the front teeth: the main load falls on the structures of the joint, and a small load falls on the incisors.

With lateral mandible movements (laterotrusion), there is no correspondence in movements in the oral cavity and on gypsum models, since there are differences in the structure of the joint mechanisms of the patient and the mechanical articulator.

The mechanical articulator has a fixed structure of articular mechanisms that does not allow individualization of functional diagnostic data for each clinical case.

In group II patients, the electronic facial arc of the Dentograf axiograph (Prosystom) and the Artex virtual articulator in the EXOCAD program were used. A specific feature of the virtual articulator is the utilization of any patients TMJ articular trajectories, registered earlier during axiographic examinations, to accurately reproduce the TMJ function of the patient.

In group II patients, mandible protrusive and laterotrusive movements were reproduced in a virtual articulator. In clinical and laboratory studies using a virtual articulator for protrusive and laterotrusive movements, the employment of a virtual articulator was effective in 90% of cases, where the virtual model of the mandible repeated all the movements as in a patient.

Discussion

It is a general knowledge that the analysis of occlusion is carried out, either directly in the patient’s oral cavity, or on its models made of super gypsum.
To simulate the movement of the jaws, special devices called articulators are used. The articulator hinge is a mechanical model of a joint. It approximately repeats the spatial orientation of the patient’s TMJ, which makes it possible to reproduce the physiological movements of the joint in almost full volume, both in amplitude and in the direction of displacement [29].

Mechanical articulators are employed to reproduce the individual features of dynamic occlusion, in particular, the mandible trajectory along the contact surface of the maxillary dentition. However, the mandible movements do not coincide with the physiological movements as in the patient in every clinical case, which is due to the fixed (unchanged) structure of the articular mechanisms, i.e. they cannot be individualized for each clinical case. This increases the error in the diagnosis of patients with articulation disorders associated with TMJ dysfunctions.

According to V. Khvatova, the incorrect setting of the mechanical articulator in 95% of cases is the cause of all errors in its application [24].

When using a mechanical front arc, errors in the manufacture of models for the articulator occur quite often. Such errors are due to the fact that when casting gypsum models in a mechanical articulator, the reference is its upper frame. However, the distance from the articular mechanisms to the models does not always coincide with the individual patient data. The shift of the models upwards or downwards from the upper edge of the frame leads to the inaccuracy of these functional test data, since the distance between the model and the articular mechanism of the articulator changes [4]. This is of particular importance both for the diagnosis of internal TMJ disorders and the manufacture of therapeutic occlusal splits in these patients, as well as for prosthetics. Of great importance is the fact that mechanical facial arches are usually fixed on the patient, with account of the skin reference points of the Camper or Frankfort planes. Skin and bone reference points have divergences, which also increases the measurement error.

Technological features of work with mechanical articulators significantly affect the accuracy of reproducing the mandible movements at dynamic occlusion [25]. The main reasons for their occurrence include: the presence of gaps at fixing registration prints on a working gypsum model; gypsum expansion; deformation of casts.

The importance of anatomical features of the dentition should be taken into consideration: individual deviations in the structure of chewing muscles; resilience and elasticity of TMJ certain structures; the state of periodontal tissues, individual tooth mobility; the mandible deflection amplitude at functional loads, specific for each patient [20]. The full set of all these factors cannot be taken into account when using mechanical articulators in functional diagnostics.

The use of virtual articulators minimizes errors caused by the anatomical features of the dental system and technological reasons [30].

A special CT module (Prosysom) allows combining virtual models of the jaws and the trajectories of their movements obtained in the axiographic study with visualization in a virtual articulator for functional assessment of articulation disorders.

The utilization of a virtual articulator in the functional diagnosis of dynamic occlusion enables to perform movements that accurately simulate the real movements of the mandible. When using virtual articulator, movements of the mandible can be carried out using articular mechanisms or reproduced along the trajectories previously recorded during axiography. In this case, the upper jaw is fixed in accordance with the anatomical features of the skull, and the mandible can move relative to the maxilla. Fixation of the upper jaw in a virtual articulator makes it possible to stimulate a mandible movement in the real time mode.

The employment of mechanical articulators in functional diagnostics for assessing dynamic occlusion is limited. The effectiveness of their use in the study was 75%. The application of mechanical articulators in assessing the dynamic occlusion because of the peculiarities of the articulator technical structure does not allow obtaining individualized patient data.

Dynamic occlusion in a virtual articulator in functional diagnostics can be assessed in several aspects: mouth opening — closing, protrusion, retrusion, laterotrusion to the right and left.

In a virtual articulator, it is possible to reproduce the continuous movement of the mandible with registration of all possible dental contacts of both jaws.
By combining the patient’s head CT data and virtual models, the highest accuracy of placing the models in the virtual articulator in accordance with the individual characteristics of the patients was achieved.

Введение

С внедрением современных технологий в стоматологическую практику роль функциональной диагностики при различных заболеваниях зубо-челюстной системы значительно возросла [1; 2]. Развитие высококонтрастных инструментальных методов исследования позволяет выявлять патологические изменения на ранних стадиях их формирования [3; 4]. В настоящее время диагностика заболеваний полости рта предполагает проведение сложного, комплексного специализированного обследования с использованием высокотехнологичного оборудования [5–7]. Часть исследований проводится с непосредственным участием больного, часть — на моделях зубочелюстной системы с использованием артикуляторов и компьютерных технологий [8; 9].

Роль функциональной диагностики в стоматологической практике значительно возрастает при наличии сочетанного поражения зубов, височно-нижнечелюстного сустава (ВНЧС) с нарушениями артикуляции нижней челюсти [10; 11]. Своевременно проведенная функциональная диагностика в таких случаях позволяет не только выявить причины и характер заболевания, но и выработать оптимальный план лечения и оценить его эффективность.

В настоящее время при проведении функционального исследования зубочелюстной системы используются такие методы, как панорамный снимок; ортопантомограмма; компьютерная томография, позволяющая получить 3D-изображения челюстей [12–14]; магнитно-резонансная томография (МРТ), дающая возможность оценить состояние мягких тканей и ВНЧС [15, 16]; электронная аксиография, применение которой позволяет зарегистрировать суставные траектории и движения нижней челюсти [17; 18]; создание моделей зубного ряда обеих челюстей с помощью артикуляторов [19; 20]; электромиография, при которой проводится анализ биоэлектрической активности и симметричности работы жевательных мышц [21; 22]; ультразвуковое исследование ВНЧС, визуализирующее его анатомическое состояние [23]. При проведении функциональной диагностики особый интерес представляет оценка окклюзии пациента [11; 24]. Условно принято разделять динамическую и статическую окклюзию. Динамическая окклюзия — это взаимодействие между зубами при движении челюстей [24]. Принято считать, что при оптимальном, «физиологическом» состоянии зубочелюстной системы происходит немедленное размыкание или потеря контактов между зубами при движении нижней челюсти из «привычной» окклюзии. Появление любых изменений, нежелательных окклюзионных контактов, особенно расположенных вблизи ВНЧС, приводят к нарушению согласованной работы жевательных мышц, положения сустава и его структур, зубов, а также к их повышенной стираемости [24—26]. Изучение окклюзии с использованием артикуляционной фольги или бумаги позволяет получить ограниченную информацию [27]. Наиболее эффективно оценить динамическую окклюзию удается при применении индивидуально настроенных артикуляторов [20]. Особое значение оценка динамической окклюзии приобретает при проведении: ортопедического лечения, так как при протезировании обычно необходимо восстановить полноценную жевательную функцию; ортодонтической коррекции, учитывая, что ее целью является нормализация окклюзионных взаимоотношений; при проведении челюстно-лицевых операций — для оценки функционального состояния ВНЧС и составления плана лечения; в имплантологии обязательно учитывать распределение жевательной нагрузки при планировании количества, локализации, размера и формы зубных имплантатов; пародонтологии, так как чрезмерная нагрузка на зубы приводит к заболеваниям пародонта; реставрационной терапии, в связи с тем, что обязательно необходим контроль статических и динамических окклюзионных взаимоотношений [26; 28].
Цель работы
Оценить эффективность использования механического и виртуального артикуляторов при проведении функциональной диагностики у пациентов с заболеваниями ВНЧС.

Материалы и методы
Нами было обследовано 47 пациентов с нарушениями артикуляции нижней челюсти, обусловленными внутренней патологией ВНЧС, из них 40 женщин и 7 мужчин. Возраст больных варьировал от 23 до 39 лет. Пациенты предъявляли жалобы на боли в области ВНЧС (34 из 47 обследованных; 72,3%), головные боли (19 пациентов; 40,4%), затруднение при открывании рта (38 больных; 80,9%). При клиническом обследовании суставные шумы при пальпации или движениях нижней челюсти определялись у всех пациентов, снижение степени открывания рта отмечено у 45 из 47 больных (95,7%).

Всем пациентам проводили конусно-лучевую компьютерную томографию (КЛКТ) для диагностики патологии ВНЧС. Также КЛКТ использовалось для определения индивидуального соотношения моделей челюстей и суставов.

Всем пациентам проводилось аксиографическое исследование с использованием оптического аксиографа (Dentograf Prosystom, Россия) с регистрацией и анализом суставных траекторий движений нижней челюсти.

В I группе у всех 23 пациентов (48,9%) динамическая окклюзия оценивалась с использованием механического артикулятора (рис. 1).

После снятия двухслойных силиконовых оттисков проводилась гипсовка моделей с применением механической лицевой дуги, движения нижней челюсти в механическом артикуляторе воспроизводились с помощью его суставных механизмов. Артикулятор (суставные механизмы и программируемый столик) настраивался по индивидуальным данным, полученным при проведении оптической аксиографии.

У 24 пациентов (51,1%) II группы динамическую окклюзию изучали с использованием виртуального артикулятора с виртуальными моделями (рис. 2).
После снятия двухслойных силиконовых оттисков и отливки гипсовых моделей проводилось оптическое сканирование гипсовых моделей челюстей в программном обеспечении ZIRKONZAHN. С помощью электронной лицевой дуги и использованием результатов КЛКТ модели размещались в пространстве виртуального артикулятора, что позволяло воспроизвести в программной среде в трехмерном пространстве положение виртуального зубного ряда относительно шарнирной оси и резцового упора. Для учета всех индивидуальных параметров при гипсовке в виртуальном артикуляторе был использован дополнительный модуль КТ (Prosystom), позволяющий измерить индивидуальное расстояние от резцов верхней челюсти до суставных головок ВНЧС для последующего переноса в артикулятор. При этом использовались три основных ориентира: межрезцовая точка в области режущего края центральных зубов верхней челюсти и точки в области суставных головок правого и левого суставов. С учетом полученных данных КТ виртуальные модели экспортировали в виртуальный артикулятор.

После этого в программу подгружались индивидуальные траектории, которые ранее были зарегистрированы с использованием аксиографа.

Результаты исследования
У 47 обследованных нами пациентов распределение по полу было следующим: женщин — 40 (85,1%), мужчин — 7 (14,9%), соотношение по полу составило 5,7:1. Возраст больных варьировал от 23 до 39 лет. При опросе 34 пациента (72,3%) жаловались на боли в области ВНЧС, 19 (40,4%) имели частые головные боли, 38 больных (80,9%) отмечали затруднение и дискомфорт при открывании рта. Из 47 обследованных пациентов 44 (93,6%) жаловались на щелчок или посторонний шум в виде криптации при движениях нижней челюсти; 3 больных (6,4%) не ощущали патологических шумов, выявленных при клиническом обследовании (при пальпации и аускультации области ВНЧС).

У всех больных проводился сравнительный анализ динамической окклюзии, при этом изучали как, нижняя челюсть двигается по зубам (смыкание-размыкание; боковые движения; выдвижение вперед с возвратом в исходное положение). В механическом артикуляторе были исследованы гипсовые модели челюстей 23 пациентов (48,9%), в виртуальном артикуляторе — 24 больных (51,1%).

В I группе пациентов использовалась лицевая дуга Artex FaceBow (Girrbach) и механический артикулятор Artex CR (Girrbach). Всем пациентам
I группа проводилось клиническое исследование артикуляции нижней челюсти с помощью копировальной бумаги Bausch 20 мкр и пластинки окклюзионного воска OKKLUSAL INDIKATOR WACHS SAM. Всем пациентам I группы проводился анализ смыкания челюстей в привычном прикусе и анализ движения нижней челюсти при протрузии и латеротрузии.

При проведении клинических и лабораторных исследований с применением механического артикулятора у пациентов I группы эффективность его использования при протрузионных и латеротрузионных движениях нижней челюсти составила 75%. При протрузии нижней челюсти осуществляется ее выдвижение вперед, в таком случае не происходит контакта с жевательными зубами. В норме вся нагрузка распределяется между височно-нижнечелюстными суставами и фронтальными зубами: основная нагрузка падает на структуры сустава, и относительно небольшая нагрузка приходится на резцы.

При боковых движениях нижней челюсти (латеротрузии) не происходит соответствия в ее движениях в полости рта на гипсовых моделях, так как есть различия в строении суставных механизмов пациента и механического артикулятора.

Механический артикулятор имеет фиксируемое строение суставных механизмов, не позволяющее индивидуализировать данные функциональной диагностики для каждого клинического случая.

Во II группе пациентов была использована электронная лицевая дуга аксиографа Dentograf (Prosymtom) и виртуальный артикулятор Artex в программе Exocad. Особенностью виртуального артикулятора является использование любых ранее зарегистрированных при аксиографическом исследовании суставных траекторий ВНЧС пациентов для того, чтобы точно воспроизвести функцию сустава данного больного. Во II группе пациентов воспроизводили протрузионные и латеротрузионные движения нижней челюсти в виртуальном артикуляторе. При клинических и лабораторных исследованиях с использованием виртуального артикулятора при протрузионных и латеротрузионных движениях эффективность его применения виртуального артикулятора составила 90%. В данном случае виртуальная модель нижней челюсти точно воспроизводила все индивидуальные движения пациента.

Обсуждение

Анализ окклюзии проводится, как известно, либо непосредственно в полости рта, либо на ее моделях, изготавливаемых из супергипса. Для имитации движения на моделях челюстей используются специальные приборы — артикуляторы. Шарнир артикулятора является механической моделью сустава. Он приближительно повторяет пространственную ориентацию ВНЧС пациента, что дает возможность воспроизвести физиологические движения сустава практически в полном объеме, как по амплитуде, так и по направлению смещения [29].

Механические артикуляторы используются для воспроизведения индивидуальных особенностей динамической окклюзии, в частности, траекторий движения нижней челюсти по поверхности контактов зубного ряда верхней челюсти. Однако воспроизводимые движения нижней челюсти не во всех клинических случаях совпадают с физиологическими индивидуальными движениями пациента, что обусловлено фиксированным (неизменяемым) строением суставных механизмов артикулятора, т.е. их невозможно индивидуализировать для каждого клинического случая. Это повышает погрешность при проведении диагностики у пациентов с нарушениями артикуляции, связанными с дисфункциями ВНЧС.

По данным В. Хватовой, неправильная настройка механического артикулятора в 95% случаев является причиной всех ошибок при их применении [24].

При использовании механической лицевой дуги ошибки при изготовлении моделей для артикулятора возникают достаточно часто. Подобные погрешности связаны с тем, что при гипсования моделей в механическом артикуляторе ориентиром является его верхняя рама. Однако расстояние от суставных механизмов до моделей не всегда совпадает с индивидуальными данными пациентов. Смещение моделей вверх или вниз от верхнего края рамы приводит к недостоверности данных функциональных проб, так как изменяется расстояние между моделью и суставным механизмом.
артикулятора [4]. Это имеет особое значение как для диагностики внутренних нарушений ВНЧС, так и изготовления лечебных окклюзионных капп у этих пациентов, а также при протезировании. Большое значение имеет тот факт, что механические лицевые дуги обычно фиксируются на пациенте с учетом накожных ориентиров камперовской или франкфуртской плоскостей. Накожные и kostные ориентиры имеют расхождения, что также повышает погрешность в измерениях.

Технологические особенности работы с механическими артикуляторами существенно влияют на точность воспроизведения движений нижней челюсти при динамической окклюзии [25]. К основным причинам их возникновения относится: наличие зазоров при фиксации регистрационных оттисков на рабочей гипсовой модели; расширение гипса; деформация слепков.

Нельзя недооценивать и анатомические особенности зубочелюстной системы: индивидуальные отклонения в строении жевательной мускулатуры; упругость и эластичность некоторых структур ВНЧС; состояние тканей парадонта, индивидуальная подвижность зубов; амплитуда прогиба нижней челюсти при функциональных нагрузках, характерная для каждого пациента [20]. Совокупность всех этих факторов невозможно учитывать при использовании механических артикуляторов в функциональной диагностике.

Использование виртуальных артикуляторов позволяет свести к минимуму погрешности, обусловленные анатомическими особенностями зубо-челюстной системы и причинами технологического характера [30].

Специальный модуль КТ (Prosystom) позволяет совместить виртуальные модели челюстей и траектории их движения, полученные при аксиографическом исследовании, с визуализацией в виртуальном артикуляторе для функциональной оценки нарушений артикуляции.

Применение виртуального артикулятора при функциональной диагностике динамической окклюзии позволяет выполнять движения, точно имитирующие реальные движения нижней челюсти. При использовании виртуального артикулятора есть возможность выбора: движения нижней челюсти можно осуществлять с помощью суставных механизмов или воспроизводить их по ранее зарегистрированным при аксиографии траекториям. При этом верхняя челюсть зафиксирована в соответствии с анатомическими особенностями черепа, выявленными при КЛКТ, а нижняя челюсть может двигаться относительно верхней челюсти. Фиксация верхней челюсти в виртуальном артикуляторе позволяет осуществлять имитационное моделирование движений нижней челюсти в режиме реального времени.

Применение механических артикуляторов в функциональной диагностике для оценки динамической окклюзии ограничено. Эффективность их использования в проведенном исследовании составила 75%. Применение механических артикуляторов при оценке динамической окклюзии в силу особенностей технического устройства артикулятора не позволяет получить индивидуализированные данные пациентов.

Динамическую окклюзию в виртуальном артикуляторе при функциональной диагностике возможно оценить в нескольких направлениях: открывание–закрывание рта, протрузия, ретрузия, латеротрузия вправо и влево.

В виртуальном артикуляторе возможно воспроизвести непрерывное движение нижней челюсти в зависимости всех возможных зубных контактов обеих челюстей.

Благодаря совмещению данных КТ головы пациента и виртуальных моделей была достигнута максимально высокая точность размещения моделей в виртуальном артикуляторе в соответствии с индивидуальными особенностями пациентов.

References
1. Ohrbach R., Dworkin S.F. The evolution of TMD diagnosis past, present, future. Journal of Dental Research. 2016;5(10):1093—1101.
2. Guluyev A.V. Methods for diagnosing TMJ diseases. Medical Sciences. 2017; 2:14—18.
3. Gazhva S.I., Zyzov D.M., Bolotnova T.V., Senina-Volzhskaya I.V., Demin Y.D., Astvatsatryan L.E., Kotunova N.A., Timofeeva E.I. Comparison of additional methods for diagnosing dysfunction of
the temporomandibular joint. Medical Sciences. 2017;55(1):98—101.
4. Becker Villamil M., Garcia E. Virtual articulator—
aid simulator at diagnosis, pre-Surgical planning and
monitoring of bucomaxillofacial treatment. 50th Hawaii
International Conference on System Sciences 2017.
P. 3506—3515.
5. Prafulla Tumati. Diagnostic tests for temporomandibular
disorders. Journal of Advanced Clinical & Research
Insights. 2016;3:81—6.
6. Silin A.V., Itskovich I.E., Butova A.V. Magnetic resonance
imaging in a comprehensive examination of the masticatory
muscles and monitoring the results of treatment of
muscular-articular dysfunction of the temporomandibular
joints. Orthodontics. 2018;3:18—24.
7. Dorogin V.E. An interdisciplinary approach to the
diagnosis, treatment, and rehabilitation of patients with
temporomandibular joint dysfunction. Modern problems
of science and education. 2017;4:5—11.
8. Antonnik M.M. Possibilities and prospects of modern
computerized systems for the diagnosis and treatment of
occlusal disorders. Digital Dentistry. 2014;9:2—8.
9. Luthra R.P., Gupta R., Kumar N., Mehta S.,
Sirohi R. Virtual articulators in prosthetic dentistry. Journal of
Advanced Medical and Dental Sciences Research.
2015;3(4):117—121.
10. Khorev O. Yu., Mayboroda Yu.N. Occlusive interference
and neuromuscular dysfunction. Kuban Scientific Medical
Bulletin. 2017;4(6):161—7.
11. De Kanter R.J. A. M., Battistuzzi P.G. F. C. M., Truin G.-J.
Temporomandibular disorders: “occlusion” matters! Pain
Research and Management. 2018, Article ID 69746588. 13 P.
12. Ferreira L.A., Grossmanne E., Januzzih E., Quiroz
de Paula M.V, Pires Carvalho A.C. Diagnosis of
temporomandibular joint disorders: indication of imaging
exams. Braz J Otorhinolaryngol. 2016;82(3):341—52.
13. Butova A.V., Itskovich, Silin A.V., Sinitsina T.M.,
Maletsy E. Yu., Kakheli M.A. Magnetic resonance
imaging in the diagnosis of masticatory muscle pathology
in muscular-articular dysfunction of the temporomandibular
joints. Bulletin of the North-West State Medical University.
II. Mechnikov. 2016;8(3):13—8.
14. Suenaga S., Nagayama K., Nagasawa T., Indo H.,
Majim H.J. The usefulness of diagnostic imaging for
the assessment of pain symptoms in temporomandibular
disorders. Japanese Dental Science Review. 2016;52:93—
106.
15. Costantinides F., Parisi S., Tonni I., Bodin Ch.,
Vettori E., Perinetti Giuseppe, Di Lenarda R. Reliability
of kinesiography vs magnetic resonance in internal
derangement of TMJ diagnosis. The Journal of
Craniomandibular & Sleep Practice. http://www.
tandfonline.com/loi/yycr20.
16. Schnabla D., Rottler A.-K., Schuppw B., Boisser W.,
Grunert I. CBCT and MRT imaging inpatients clinically
diagnosed with temporomandibular joint arthralgia. Helyon
4 (2018) e00641. doi: 10.1016/j.helyon.2018.e0064. http://
creativecommons.org/licenses/by-nc-nd/4.0/.
17. Sójka A., Hubek J., Kaczmarek E.,
Hędzelek W. Ascertaining of temporomandibular disorders
(TMD) with clinical and instrumental methods in the group
of young adults. Journal of Medical Science. 2015;84:20—
6.
18. Arutyunov S.D., Brutyan L.A., Antonik M.M.,
Lobanova E.E. Features of correlation of electromyographic
and axiographic studies in patients with increased
erasure of hard tissues of teeth. Russian Dental Journal.
2017;21(5):244—7.
19. Kumar Korakunte P.R., Aljanakh M. The role of virtual
articulator in prosthetic and restorative dentistry. Journal of
Clinical and Diagnostic Research. 2014;8(7):25—8.
20. Valencia Jairo L.R., Tamayo-Muñoz M. C., Ruiz-Rubiano
C., Ramos C., Ayala R., Solaberrieta E. Evaluación de un
articulador virtual para la identificación de interferencias
en movimientos mandibulares excéntricos. XXX Congreso
Anual de la Sociedad Española de Ingeniería Biomédica.
Bilbao. 2017. P. 327—330.
21. Nishi S.E., Basri R., Khursheed Alam M. Uses of
 electromyography in dentistry: An overview with meta-
analysis. J Dent. 2016;10(3):419—25.
22. Kwang-Ho Choia, O Sang Kwona, Ui Min Jernga, So
Min Lee, Lak-Hyung Kimb, Jeeyoun Jun. Development
of electromyographic indicators for thediagnosis o
 temporomandibular disorders: a protocol for an assessor-
blindedcross-sectional study. Jun. Integr Med. Res.
2017;6:97—104.
23. Klatkiewicz T., Gawriolek K., Radzikowska M.P., Czajka-
Jakubowska A. Ultrasonography in the diagnosis of
temporomandibular disorders: a meta-analysis. Med Sci
Monit. 2018;24:812—7.
24. Khvatova V.A. Clinical gnatology. M.: Medicine. 2005.
296 P.
25. Haralur S.B. Digital evaluation of functional occlusion
parameters and their association with temporomandibular
disorder. Journal of Clinical and Diagnostic Research.
2013;7(8):1772—5.
26. Gözüler S. JVA, mastication and digital occlusal analysis in
diagnosis and treatment of temporomandibular disorders.
http://dx.doi.org/10.5772/intechopen.72528. P. 128—159.
27. Mitin N.E., Nabatchikova L.P., Vasilyeva T.A. Analysis
of modern methods for evaluating and recording
tooth occlusion at the stage of dental treatment
Библиографический список

1. Ohrbach R., Dworkin S.F. The evolution of TMD diagnosis past, present, future // Journal of Dental Research. 2016. v. 95. № 10. P. 1093—1101.

2. Гулев А.В. Методы диагностики заболеваний ВНЧС // Medical Sciences. 2017. № 2. С. 14—18.

3. Гаврилова Э.Ю., Кахели И.Э., Бутова М.А. Магнитно-резонансная томография в диагностике патологии жевательных мышц при мышечно-суставной дисфункции височно-нижнечелюстных суставов // Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2016. Т. 8. № 3. С. 13—18.

4. Бутова А.В., Ицкович, Силин А.В., Синицина Т.М., Малецкий Э.Ю., Кахели М.А. Магнитно-резонансная томография в диагностике патологии жевательных мышц при мышечно-суставной дисфункции височно-нижнечелюстных суставах // Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2016. Т. 8. № 3. С. 13—18.

5. Прафулла Тумати. Diagnostic tests for temporomandibular disorders // Journal of Advanced Clinical & Research Insights. 2016. № 3. С. 81—86.

6. Силин А.В., Ицкович И.Э., Бутова А.В. Магнитно-резонансная томография в комплексном обследовании жевательных мышц и мониторинге результатов лечения мышечно-суставной дисфункции височно-нижнечелюстных суставов // Ортодонтия. 2018. № 3. С. 18—24.

7. Дорогин В.Е. Междисциплинарный подход к диагностике, лечению, и реабилитации пациентов с дисфункцией височно-нижнечелюстного сустава // Современные проблемы науки и образования. 2017. № 4.

8. Антонник М.М. Возможности и перспективы современных компьютеризированных систем для диагностики и терапии окклюзионных нарушений // Цифровая стоматология. 2014. № 9. С. 2—8.

9. Луэра Р.П., Гупта Р., Кумар Н., Мехта С., Сирохи Р. Виртуальные артикуляторы в протетической стоматологии // Journal of Advanced Medical and Dental Sciences Research. 2015. V. 3. № 4. P. 117—121.

10. Хорев О.Ю., Майборода Ю.Н. Окклюзионные технологии и нейромышечная дисфункция // Кубанский научный медицинский вестник. 2017. Т. 24. № 6. С. 161—167.

11. De Kanter R.J.A.M., Battistuzzi P.G.F.C.M., Truin G.-J. Temporomandibular disorders: “occlusion” matters! // Pain Research and Management. 2018. Article ID8746858, 13 P.

12. Ferreira L.A., Grossmann E., Januzzi E., Quiroz de Paula M.V., Pires Carvalho A.C. Diagnosis of temporomandibular joint disorders: indication of imaging exams // Braz J Otorhinolaryngol. 2016. V. 82. № 3. P. 341—352.

13. Стоянов С.Д., Брутов А.И., Абдуллаев А.В., Силин А.В., Синицина Т.М., Малецкий Э.Ю., Кахели М.А. Магнитно-резонансная томография в диагностике патологии жевательных мышц при мышечно-суставной дисфункции височно-нижнечелюстных суставах // Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2016. Т. 8. № 3. С. 13—18.

14. Costantinides F., Parisi S., Tonni I., Bodin Ch., Vettori E., Perinetti Giuseppe, Di Lenarda R. Reliability of kinesiography vs magnetic resonance in internal derangement of TMJ diagnosis // The Journal of Craniomandibular & Sleep Practice. http://www.tandfonline.com/loi/ycra20

15. Schnabla D., Rottlerb A.K., Schuppb W., Boisser W., Grunert I. CBCT and MRT imaging inpatients clinically diagnosed with temporomandibular joint arthralgia // Heliyon 4 (2018) e00641.doi: 10.1016/j.heliyon.2018.e00641. http://creativecommons.org/licenses/by-nc-nd/4.0/.

16. SOJKA A., HUBEK J., KACZMAREK E., HEDZLEK W. Ascertainment of temporomandibular disorders (TMD) with clinical and instrumental methods in the group of young adults // Journal of Medical Science. 2015. V. 84. P. 20—26.

17. ARUTYUNOV S.D., BRUTYAN L.A., ANTONNIK M.M., LOBANOVA E.E. Особенности корреляции показателей электрофизиографического и аксиографического исследований у пациентов с повышенным стиранием твердых тканей зубов // Российский стоматологический журнал. 2017. Т. 21. № 5. С. 244—247.

18. Kumar Korallakunte P.R., Aljanakah M. The role of virtual articulator in prosthetic and restorative dentistry // Journal of Clinical and Diagnostic Research. 2014. V. 8. № 7. P. 25—28.

19. Valencia Jairo L.R., Tamayo-Munoz M.C., Ruiz-Rubiano C., Ramos L., Ayala R., Solaberrieta E. Evaluación de un...
articulador virtual para la identificación de interferencias en movimientos mandibulares excéntricos // XXXV Congreso Anual de la Sociedad Española de Ingenieria Biomedicala. Bilbao. 2017. P. 327—330.
21. Nishi S.E., Basri R., Khursheed Alam M. Uses of electromyography in dentistry: An overview with meta-analysis // J Dent. 2016. V.10. № 3. P. 419—425.
22. Kwang-Ho Choia, O Sang Kwona, Ui Min Jernga, So Min Lee, Lak-Hyung Kimb, Jeeyoun Jun. Development of electromyographic indicators for the diagnosis of temporomandibular disorders: a protocol for an assessor-blinded cross-sectional study // Jun. Integr Med. Res. 2017. № 6. P. 97—104.
23. Klatkiewicz T., Gawriołek K., Radzikowska M.P., Czajka-Jakubowska A. Ultrasonography in the diagnosis of temporomandibular disorders: a meta-analysis // Med Sci Monit. 2018. V. 24. P. 812—817.
24. Хватова В.А. Клиническая гнатология. М: Медицина, 2005. 296 с.
25. Haralur S.B. Digital evaluation of functional occlusion parameters and their association with temporomandibular disorder // Journal of Clinical and Diagnostic Research. 2013. V. 7. № 8. P. 1772—1775.
26. Gözler S. JVA, mastication and digital occlusal analysis in diagnosis and treatment of temporomandibular disorders // http://dx.doi.org/10.5772/intechopen.72528. P. 128—159.
27. Митин Н.Е., Набатчикова Л.П., Васильева Т.А. Анализ современных методов оценки и регистрации окклюзии зубов на этап стоматологического лечения // Российский медико-биологический вестник имени академика И.П. Павлова. 2015. № 3. С. 134—139.
28. Pateln M., Alanii A. Clinical issues in occlusion—Part II // Singapore Dental Journal. 2015. V. 36. P. 2—11.
29. Padmaja B.I., Madan B, Himabindu G, Manasa C. Virtual articulators in dentistry // International Journal of Medical and Applied Sciences. 2015. V. 4. 2. P. 109—114.
30. Úry E., Fornai C., Weber G.W. Accuracy of transferring analog dental casts to a virtual articulator. // The Journal of Prosthetic Dentistry. https://doi.org/10.1016/j.prosdent.2018.12.019

Corresponding Author: T.V. Chkhikvadze, Medical Institute of the Peoples’ Friendship University of Russia, Miklukho-Maklaya str., 10, 117198, Moscow, Russia.
E-mail: mayach@mail.ru, tchkhik@hotmail.com

ORCID: 0000—0003—4642—1989

Ответственный за переписку: Чхиквадзе Тина Владимировна, кафедра челюстно-лицевой хирургии и хирургической стоматологии, Медицинский институт РУДН, Москва, ул. Миклухо-Маклая, 10, Россия.
E-mail: mayach@mail.ru, tchkhik@hotmail.com

ORCID: 0000—0003—4642—1989, SPIN-код 5712—2067