Serum chemerin levels in women with polycystic ovary syndrome

[Polikistik over sendromlu kadın hastalarda serum chemerin seviyeleri]

Nilgün Güdücü¹, Uzay Görmüş², Zehra Neşe Kavak³, Esra Alp³, İlkkan Dünder¹

¹Istanbul Bilim University, Department of Obstetrics and Gynecology, İstanbul
²Istanbul Bilim University, Department of Biochemistry, İstanbul
³Marmara University, Department of Obstetrics and Gynecology, İstanbul

ABSTRACT

Objective: The aim of this study is to investigate the association of serum chemerin levels with metabolic parameters of women with polycystic ovary syndrome. Chemerin is an adipocytokine associated with adiposity, insulin resistance and metabolic syndrome, all of which are frequently observed in polycystic ovary syndrome.

Methods: This is a prospective case-control study. We compared the metabolic, biochemical and anthropometric parameters of 35 women with polycystic ovary syndrome and 30 body mass index and age matched controls.

Results: Chemerin levels of women with polycystic ovary syndrome were similar to that of the control group. Chemerin levels correlated positively with DHEAS (r=0.427, p=0.011) and LH (r=0.407, p=0.015) levels in women with polycystic ovary syndrome. There was a negative correlation between chemerin and lipoprotein-a levels in normal weight women with polycystic ovary syndrome (r=-0.426, p=0.043) and there was a negative correlation between chemerin and triglyceride levels in overweight women with polycystic ovary syndrome (r=-0.669, p=0.024). In obese control group chemerin correlated positively with C-reactive protein levels (r=0.738, p=0.037).

Conclusion: In this study we could not detect a definitive role of chemerin in the pathophysiology of polycystic ovary syndrome, but its probable role in the development of the syndrome should be investigated with more detailed studies in the future.

Key Words: Chemerin, Polycystic Ovary Syndrome, CRP, body mass index

Conflict of Interest: The authors have no conflict of interest.

ÖZET

Amaç: Bu çalışmanın amacı serum chemerin seviyeleri ile polikistik over sendromlu hastaların metabolik parametreleri arasındaki ilişkiyi araştırmaktır. Chemerin adipozite, insulin rezistansı ve metabolik sendrom ile ilişkilidir ve bulgulara polistik over sendromunda da sık rastlanır.

Metod: Bu çalışma prospektif bir vaka-kontrol çalışması olarak planlandı. Kliniğimize başvuran 35 polistik over sendromlu hastanın metabolik, biyokimyasal ve antropometrik parametreleri, yaşı ve vücut kitle indeksleri eşleştirilmiş 30 kontrol hastasyla karşılaştırıldı.

Bulgar: Polistik over sendromlu hastaların serum chemerin seviyeleri ile kontrol grubunun serum chemerin seviyeleri benzerdi. Polistik over sendromlu hastalarda serum chemerin seviyeleri, DHEAS (r=0.427, p=0.011) ve LH (r=0.407, p=0.015) seviyeleri ile korelasyonu oldu. Normal kilolu polistik over sendromlu kadınların serum chemerin seviyeleri ile lipoprotein-a seviyeleri arasında negatif korelasyon tespit edildi (r=-0.426, p=0.043), kilo fazlası olan polistik over sendromu hastalarında ise chemerin ve trilipoprotein seviyeleri arasında negatif korelasyon tespit edildi (r=-0.669, p=0.024). Obez kontrol grubunda serum chemerin seviyeleri ile C-reactif protein seviyeleri arasında pozitif korelasyon tespit edildi (r=0.738, p=0.037).

Sonuç: Bu çalışmada chemerinin polistik over sendromunun patofizyolojisinde açığa bir rol oynamadığını gösterilemedi, fakat sendromun gelisimine olası katkuları gelecekteki daha ayrıntılı çalışmalarla araştırılmalıdır.

Anahtar Kelimeler: Chemerin, polistik over sendromu, CRP, vücut kitle indeksi

Çıkar Çatışması: Yazarların çıkar çatışması yoktur.
Introduction

The most common endocrinopathy in women of reproductive age is the polycystic ovary syndrome (PCOS) [1,2]. Women with PCOS seem to have an adverse cardiovascular risk profile [3] and this can be attributed to the increased prevalence of metabolic syndrome (MS) in women with PCOS [4]. Although not included in the diagnostic criteria of PCOS, obesity and insulin resistance (IR) affect nearly 2/3 of the women with PCOS [5] and characterize most of the patients with MS. Adipose tissue, especially visceral adipose tissue is an active endocrine organ secreting proinflammatory adipocytokines together with the macrophages infiltrating adipose tissue, these adipocytokines also lead to IR [6]. A recently identified adipocytokine, chemerin is highly expressed in liver and adipose tissue and is associated with adiposity, IR and MS risk factors, all of which are frequently observed in women with PCOS [7,8]. Chemerin also acts as a chemoattractant for macrophages and it leads to adipocyte differentiation [9]. The aim of this study is to investigate the association of chemerin with metabolic parameters of women with PCOS.

Materials and Methods

The study was constructed as a case-control study. Serum samples of patients attending gynecology outpatient clinics of Istanbul Bilim University were used. Serum samples were collected for another study approved by the Institutional Review Board of Istanbul Bilim University, all of the involved patients have given their written informed consent. The study protocol was in agreement with the Declaration of Helsinki, 1975. The diagnosis of PCOS was made according to 2003 Rotterdam ESHRE/ASRM PCOS Consensus Workshop Group criteria [10], when at least two of the following criteria were present: oligomenorrhea-amenorrhea, clinical or biochemical signs of hyperandrogenism and the presence of polycystic ovaries (PCO) on transabdominal, transvaginal or transrectal ultrasonography (presence of an ovary with 12 or more follicles measuring 2-9 mm in diameter). We established a control group from patients without any menstrual irregularities, without any clinical or biochemical signs of hyperandrogenism. We excluded cases and controls with systemic diseases as diabetes mellitus, cardiovascular diseases, hypertension, thyroid diseases, chronic renal failure, malignancy, Cushing syndrome, congenital adrenal hyperplasia, hyperprolactinemia and gastrointestinal malabsorptive diseases. To avoid drug misinterpretations, medications of cases or controls were stopped for at least 3 months before the study including oral contraceptives, glucocorticoids, lipid-lowering, antidiabetes, antianabolic, antihypertensive or ovulation-inducing agents.

Table 1. Clinical, hormonal and metabolic features of women with PCOS and controls

|                     | PCOS (n=35) | Controls (n=30) | p  
|---------------------|------------|----------------|---
| Age (years)         | 26.31±5.26 | 28.40±7 | 0.186
| Weight (kg)         | 64.93±8.18 | 62.70±9.13 | 0.303
| Height (cm)         | 163.69±6.11 | 165.63±6.13 | 0.206
| BMI (kg/m²)         | 24.06±3.09 | 22.94±2.98 | 0.144
| Waist-Hip Ratio     | 0.84±0.05 | 0.82±0.07 | 0.194
| Fasting Blood Glucose (mg/dl) | 93.54±6.77 | 90.76±6.49 | 0.100
| Triglycerides (mg/dl)| 70.34±31.12 (60) | 65.70±25.93 (57) | 0.797
| High density Lipoprotein (mg/dl) | 56.06±14.5 | 58.34±13.26 | 0.516
| Low density Lipoprotein (mg/dl) | 98.40±22.67 | 97.71±26.08 | 0.910
| Dehydroepiandrosterone sulfate (ug/ml) | 257.62±87.66 (266.3) | 229.11±142.07 (212) | 0.047
| Free Testosterone (ng/dl) | 0.66±0.33 (0.5) | 0.47±0.36 (0.3) | 0.013
| Insulin (μU/ml)     | 10.09±5.07 (9.4) | 9.44±4.49 (8.5) | 0.756
| Lipoprotein-a (mg/ml) | 19.70±23.77 (9.8) | 18.87±22.97 (8.9) | 1.000
| C-Reactive Protein (mg/l) | 2.03±3.39 (0.7) | 1.68±3.76 (0.3) | 0.197
| Follicle Stimulating Hormone (mIU/ml) | 6.36±1.61 (6.2) | 7.09±2.7 (6.8) | 0.140
| Luteinising Hormone (mIU/ml) | 8.99±4.55 (7.5) | 5.76±2.46 (4.9) | 0.001
| HOMA-IR             | 2.35±1.26 (2.2) | 2.37±1.65 (1.9) | 0.757
| Sex Hormone Binding Globulin (nmol/ml) | 48.82±32.85 (38.2) | 56.34±33.64 (46.7) | 0.156
| Free Androgen Index | 4.30±2.96 (3.5) | 2.52±1.87 (2.2) | 0.007
| Chemerin (ng/ml)    | 184.30±48.89 (193.7) | 187.50±49.88 (187.9) | 0.762

*Student t test; †Mann-Whitney U test; *p<0.05; **p<0.01. 

Turk J Biochem 2015; 40(2):157-162 158 Güdücü et al.
We made physical examination of all patients and blood for appropriate laboratory tests were drawn in the early follicular phase after an overnight of fasting, during the 3rd-4th days of the cycle. We measured weight, height and waist and hip circumferences. Hip circumference (HC) was obtained as the widest circumference at the level of the buttocks. Waist circumference (WC) was obtained as the smallest circumference at the level of umbilicus. Waist-to-Hip ratio (WHR) was calculated by dividing WC to HC. Body mass index (BMI) was calculated as body weight in kilograms divided by height in metre squared (kg/m²). Levels of fasting plasma glucose, insulin, total cholesterol, high-density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides (TG), luteinizing hormone (LH), follicle stimulating hormone (FSH), prolactin, thyroid stimulating hormone (TSH), dehydroepiandrosterone sulfate (DHEAS), total testosterone, cortisol, free T4, 17-OH progesterone, sex-hormone binding globulin (SHBG), CRP (Cobas integra 400, Roche) and Lp-a (Cobas integra 800, Roche) were measured. Free testosterone was calculated with the formula of Vermulen which includes total testosterone (Cobas E411, 0.025-15, 1.2-4.7), SHBG and albumin [11]. All hormonal parameters were studied with enzymatic chemiluminescence and other parameters were studied with spectrophotometric analysis. Level of chemerin was studied from serum samples stored at -80°C with ELISA (Human Chemerin Imunoassay Aviscera Bioscience, CA, USA) with intraassay and interassay coefficients of variations of 4-6% and 8-10% respectively. Insulin resistance was calculated by homeostasis model assessment (HOMA) index with the formula: HOMA-IR= fasting plasma immunoreactive insulin (μU/mL)x fasting serum glucose (mg/dL)/405. Free androgen index (FAI) was calculated with the formula=100x total testosterone/SHBG.

Statistical analyses were performed using the Number Cruncher Statistical System (NCSS) 2007& Power Analysis and Sample Size (PASS) 2008 Statistical Software (Utah). Data showing normal distribution of parameters were compared with Student’s T-test, data showing non-normal distribution of parameters were compared with Mann Whitney U test, relation of chemerin with other parameters was investigated with Spearman’s and Pearson’s correlation analyses. At a confidence interval of 95% p-values<0.05 were considered statistically significant.

Results

Table 1 showed the clinical, hormonal and metabolic features of the cases and controls, there was no difference in chemerin levels of the two groups. Women with PCOS had statistically significantly higher DHEAS, Free Testosterone, LH and FAI. Cases and controls were seperated into two groups according to their BMI. Eleven patients with PCOS were overweight-obese (BMI≥ 25kg/m²) and

Table 2. Women with PCOS stratified according to body mass index

|                         | Normal (n=24) | Overweight (n=11) | p      |
|-------------------------|---------------|-------------------|--------|
| Age (years)             | 26.42±4.92 (25.5) | 26.09±6.20 (23)   | 0.695  |
| Weight (kg)             | 61.58±6.95 (60)  | 72.23±5.54 (71.5) | 0.001**|
| Height (cm)             | 165.04±6.56 (165) | 160.73±3.77 (160) | 0.074  |
| Body Mass Index (kg/m²) | 22.27±1.14 (21.7) | 27.96±1.87 (27.5) | 0.001**|
| Waist-Hip Ratio         | 0.83±0.04 (0.8)   | 0.87±0.07 (0.8)   | 0.084  |
| Fasting Blood Glucose (mg/dl) | 91.92±5.85 (91) | 97.09±7.53 (96)   | 0.040*  |
| Triglyceride (mg/dl)    | 69±28.77 (60)    | 73.27±37.08 (56)  | 0.957  |
| High density Lipoprotein (mg/dl) | 60.38±13.86 (59) | 46.64±11.42 (46) | 0.010*  |
| Low Density Lipoprotein (mg/dl) | 98.25±24.86 (101) | 98.73±18.08 (98) | 0.972  |
| Dehydroepiandrosterone sulfate (μg/ml) | 249.18±81.81 (275.3) | 276.03±100.93 (258.1) | 0.859  |
| Free Testosterone (ng/dl) | 0.58±0.27 (0.5)  | 0.83±0.39 (0.7)   | 0.080  |
| Insulin (uU/ml)         | 8.41±3.96 (7.3)  | 14.12±5.37 (13.8) | 0.002**|
| Lipoprotein-a (mg/ml)   | 14.91±16.59 (10) | 29.73±33.1 (8.9)  | 0.645  |
| C-Reactive Protein (mg/l) | 1.26±1.7 (0.7)   | 3.71±5.72 (0.6)   | 0.434  |
| Follicle Stimulating Hormone (mIU/ml) | 6.43±1.83 (6.3) | 6.21±1.04 (6.1)   | 0.558  |
| Luteinising Hormone (mIU/ml) | 10.07±4.63 (8.3) | 6.62±3.49 (5.8)   | 0.013*  |
| HOMA-IR                 | 1.91±0.92 (1.6)  | 3.31±1.4 (3.3)    | 0.002**|
| Sex Hormone Binding Globulin (nmol/ml) | 59.01±34.4 (47.1) | 26.6±12.5 (23.7) | 0.001**|
| Free Androgen Index     | 3.41±2.03 (3.1)  | 5.94±3.72 (4.9)   | 0.063  |
| Chemerin (ng/ml)        | 193.76±42.98 (197.4) | 163.66±56.53 (169.4) | 0.145  |

Mann-Whitney U Test; *p<0.05; **p<0.01.
p=0.011) and LH (r=0.407, p=0.015) in women with PCOS. There was a negative correlation between chemerin and Lp-a in normal weight PCOS (r=-0.426, p=0.043) and there was a negative correlation between chemerin and TG in overweight PCOS (r=-0.669, p=0.024). In obese controls chemerin levels correlated positively with CRP (r=0.738, p=0.037).

Discussion

In this study we did not detect any difference in chemerin levels of women with PCOS and the control group. A previous study in overweight PCOS detected increased serum chemerin levels when compared to BMI matched controls [12]. Bearing the results of this study in mind, we compared our overweight PCOS to overweight controls, although not statistically significant, overweight women with PCOS had lower chemerin levels. Some of the previous studies related chemerin to obesity related parameters as IR and BMI and some did not [8,12,13], therefore chemerin is most probably not a mediator of obesity. In the aforementioned study, level of chemerin was reported to decrease after treatment with metformin, and the change in chemerin levels was attributed to decreased IR [12]. Other studies correlated chemerin with IR and showed that chemerin levels changed with improvement in IR parameters after life-style intervention [14,15]. HOMA-IR of our cases and controls were matched and chemerin levels did not differ when HOMA-IR was ≥2.75 or <2.75, both in PCOS and controls. Mean chemerin level of controls with HOMA-IR ≥2.75 and <2.75 were (p=0.570). Chemerin correlated positively with DHEAS (r=0.427, p=0.011) and LH (r=0.407, p=0.015) in women with PCOS. There was a negative correlation between chemerin and Lp-a in normal weight PCOS (r=-0.426, p=0.043) and there was a negative correlation between chemerin and TG in overweight PCOS (r=-0.669, p=0.024). In obese controls chemerin levels correlated positively with CRP (r=0.738, p=0.037).

Table 3. Control group stratified according to body mass index

|                         | Normal (n=22) Mean±SD (Median) | Obese (n=8) Mean±SD (Median) | p       |
|-------------------------|--------------------------------|-------------------------------|---------|
| Age (years)             | 27.27±6.8 (24.5)               | 31.5±7.01 (33.5)              | 0.239   |
| Weight (kg)             | 58.36±5.19 (57)                | 74.62±6.54 (74)               | 0.001** |
| Height (cm)             | 165.41±6.04 (166.5)            | 166.25±6.78 (167)             | 0.671   |
| Body Mass Index (kg/m²) | 21.49±1.45 (21)                | 26.92±2.43 (25.7)             | 0.001** |
| Waist-Hip Ratio         | 0.81±0.07 (0.8)                | 0.86±0.06 (0.8)               | 0.054   |
| Fasting Blood Glucose (mg/dl)| 90.86±7.04 (92)               | 90.5±5.15 (91)                | 0.826   |
| Triglyceride (mg/dl)    | 64.73±24.63 (57)               | 68.38±30.89 (56)              | 0.907   |
| High density Lipoprotein (mg/dl) | 57.57±11.43 (58)         | 60.38±18.01 (59.5)            | 0.751   |
| Low Density Lipoprotein (mg/dl) | 91.65±21.49 (90)            | 113.63±31.65 (112)            | 0.025*  |
| Dehydroepiandosterone sulfate (ug/ml) | 238±67±152.71 (178.3) | 202.81±112.15 (222)         | 0.944   |
| Free Testosterone (ng/ml) | 0.46±0.35 (0.3)                | 0.52±0.4 (0.4)                | 0.799   |
| Insulin (uU/ml)         | 8.96±3.17 (8.5)                | 10.69±7.05 (8.8)              | 0.788   |
| Lipoprotein-a (mg/dl)   | 19.08±25.1 (8.9)               | 18.32±17.62 (8.9)             | 0.961   |
| C-Reactive Protein (mg/l) | 1.95±4.34 (0.3)                | 0.93±1 (0.4)                   | 0.962   |
| Follicle Stimulating Hormone (mlU/ml) | 6.99±3.02 (6.6)         | 7.36±1.57 (7.1)                | 0.573   |
| Luteinising Hormone (mlU/ml) | 5.79±2.51 (4.9)                | 5.68±2.46 (5)                  | 0.851   |
| HOMA-IR                 | 2.35±1.65 (1.9)                | 2.41±1.75 (1.9)                | 0.815   |
| Sex Hormone Binding Globulin (nmol/ml) | 58.36±34.66 (47.7)     | 50.28±32.11 (39.9)             | 0.277   |
| Free Androgen Index     | 2.38±1.66 (2.1)                | 2.93±2.48 (2.6)                | 0.885   |
| Chemerin (ng/ml)        | 183.97±46.42 (183.2)           | 197.18±60.79 (224.2)          | 0.223   |

Mann-Whitney U Test; *p<0.05; **p<0.01.
not differ between the groups with and without IR, and chemerin levels were not associated with IR. Some of the previous studies rejected the association between chemerin and IR parameters [8,13]. Chemerin is secreted from adipocytes, but not from macrophages infiltrating adipose tissue or skeletal muscle cells [16]. Skeletal muscle is the major site of peripheral IR. Skeletal muscle cells were reported to have chemerin receptors and chemerin was reported to decrease insulin stimulated glucose uptake in skeletal muscle cells [16]. As a result the role of chemerin in the pathophysiology of IR and PCOS is still controversial.

Bozaoglu et al found similar chemerin levels in diabetics and healthy controls and chemerin levels were related to BMI, TG levels and blood pressure in healthy controls [8]. In the current study chemerin correlated negatively with TG levels in normal weight PCOS, there was no correlation with TG levels in other groups. Chemerin was associated with TG levels in some other reports [17,18].

In the current investigation chemerin correlated positively with CRP in obese controls, this may indicate an action as a marker of inflammation in obese subjects rather than being a marker of obesity. Chemerin may act as a chemoattractant protein generated in inflammatory conditions to recruit macrophages. Weigert et al found higher chemerin levels in diabetics (increased BMI) and obese patients when compared to normal weight controls, but the effect was attributed to inflammation [19]. Other investigations also proposed a relationship between chemerin and markers of inflammation in obese or diabetic subjects [20,21]. Interestingly chemerin levels of our patients with PCOS were not related to CRP levels. Chemerin was also correlated with CRP in MS patients whom have similarities to PCOS [22]. Chemerin levels were related to markers of inflammation in studies with different designs after exclusion of other contributors [23-25]. Additionally, in our study, we found that chemerin was seemed to be positively correlated with DHEAS and LH. Although, our data showed no definitive role of chemerin in the pathophysiology of PCOS, further clinical and experimental studies has to be done as previously in some studies chemerin was shown to be regulating some steroid hormones in preantral follicles and granulosa cells [26,27]. In conclusion chemerin might be a multipotential adipokine with various actions, but not a direct mediator of obesity.

**Conflict of Interest**

There are no conflicts of interest among the authors.

**References**

[1] Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004; 89(6):2745-9.

[2] Azziz R. Diagnostic criteria for polycystic ovary syndrome: a reappraisal. Fertil Steril 2005; 83(5):1343-6.

[3] Carmina E. Cardiovascular risk and events in polycystic ovary syndrome. Climacteric 2009; 12 Suppl 1:22-5.

[4] Cussons AJ, Watts GF, Burke V, Shaw JE, Zimmet PZ, et al. Cardiometabolic risk in polycystic ovary syndrome: a comparison of different approaches to defining the metabolic syndrome. Hum Reprod 2008; 23(10):2352-8.

[5] Book CB, Dunaif A. Selective insulin resistance in the polycystic ovary syndrome. J Clin Endocrinol Metab 1999; 84(9):3110-6.

[6] Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 2006; 64(4):355-65.

[7] Kutzleb C, Busmann A, Wendland M, Maronde E. Discovery of novel regulatory peptides by reverse pharmacology: spotlight on chemerin and the RF-amide peptides metasin and QRFp. Curr Protein Pept Sci 2005; (6):265-78.

[8] Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 2007; 148(10):4687-94.

[9] Ernst MC, Sinal CJ. Chemerin: at the crossroads of inflammation and obesity. Trends Endocrinol Metab 2010; 21(11):660-7.

[10] Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004; 81(1):19-25.

[11] Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 1999; 84(10):3666-72.

[12] Tan BK, Chen J, Farhatullah S, Adya R, Kaur J, et al. Insulin and metformin regulate circulating and adipose tissue chemerin. Diabetes 2009; 58(9):1971-7.

[13] Stejskal D, Karpisek M, Hanulova Z, Svestak M. Chemerin is an independent marker of the metabolic syndrome in a Caucasian population—a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152(2):217-21.

[14] Lee MK, Chu SH, Lee DC, An KY, Park JH, et al. The association between chemerin and homeostasis assessment of insulin resistance at baseline and after weight reduction via lifestyle modifications in young obese adults. Clin Chim Acta 2013; 421:109-15.

[15] Kim SH, Lee SH, Ahn KY, Lee DH, Sub YJ, et al. Effect of lifestyle modification on serum chemerin concentration and its association with insulin sensitivity in overweight and obese adults with type 2 diabetes. Clin Endocrinol (Oxf) 2014; 80(6):825-33.

[16] Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, et al. Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 2009; 58(12):2731-40.

[17] Chu SH, Lee MK, Ahn KY, Im JA, Park MS, et al. Chemerin and adiponectin contribute reciprocally to metabolic syndrome. PLoS One 2012; 7(4):e34710.

[18] Shin HY, Lee DC, Chu SH, Jeon JY, Lee MK, et al. Chemerin levels are positively correlated with abdominal visceral fat accumulation. Clin Endocrinol (Oxf) 2012; 77(1):47-50.

[19] Weigert J, Neumeier M, Wanninger J, Filarsky M, Bauer S, et al. Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin Endocrinol (Oxf) 2010; 72(3):342-8.

[20] Ress C, Tscherter A, Engl J, Klaus A, Tilg H, et al. Effect of bariatric surgery on circulating chemerin levels. Eur J Clin Invest 2010; 40(3):277-80.

[21] Sledzinski T, Korczynska J, Hallmann A, Proczko-Markuszewska M, et al. The increase of serum chemerin concentration is mainly associated with the increase of body mass index in obese, non-diabetic subjects. J Endocrinol Invest 2013; 36(6):428-34.

[22] Dong B, Ji W, Zhang Y. Elevated serum chemerin levels are associated with the presence of coronary artery disease in patients with metabolic syndrome. Intern Med 2011; 50(10):1093-7.
[23] Catalán V, Gómez-Ambrós J, Rodríguez A, Ramírez B, Rotellar F, et al. Increased levels of chemerin and its receptor, chemokine-like receptor-1, in obesity are related to inflammation: tumor necrosis factor-α stimulates mRNA levels of chemerin in visceral adipocytes from obese patients. Surg Obes Relat Dis 2013; 9(2):306-14.

[24] Lehrke M, Becker A, Greif M, Stark R, Laubender RP, et al. Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis. Eur J Endocrinol 2009; 161(2):339-44.

[25] Gu P, Jiang W, Lu B, Shi Z. Chemerin is associated with inflammatory markers and metabolic syndrome phenotypes in hypertension patients. Clin Exp Hypertens 2014; 36(5):326-32.

[26] Wang Q, Kim JY, Xue K, Liu JY, Leader A, et al. Chemerin, a novel regulator of follicular steroidogenesis and its potential involvement in polycystic ovarian syndrome. Endocrinology 2012; 153(11):5600-11.

[27] Reverchon M, Bertoldo MJ, Ramé C, Froment P, Dupont J. CHEMERIN (RARRES2) decreases in vitro granulosa cell steroidogenesis and blocks oocyte meiotic progression in bovine species. Biol Reprod 2014; 90(5):102.