Choice of unmanned aerial vehicles for identification of mosquito breeding sites

Franciely Velozo Aragão,1 Fernanda Cavicchioli Zola,1 Luis Henrique Nogueira Marinho,2 Daiane Maria de Genaro Chiroli,1 Aldo Braghini Junior,1 João Carlos Colmenero1

1Department of Industrial Engineering, Federal University of Technology (UTFPR), Paraná; 2Department of Exact Sciences, Universidade Estadual de Londrina (UEL), Brazil

Abstract

The disordered urban growth that may favour the emergence of the Aedes aegypti mosquito in cities is a problem of increasing magnitude in middle- and high-income countries in the tropical part of the world. Currently, the World Health Organization (WHO) considers the control and elimination of Ae. aegypti a world-wide high priority as it is the main vector of many rapidly spreading viral diseases, dengue in particular. A major difficulty in controlling the proliferation of this vector is associated with identification of the breeding sites. The use of Unmanned Aerial Vehicles (UAVs) can be an efficient alternative to manual search because of high mobility and the ability to overcome physical obstacles, particularly in urban areas where it can offer close-up images of potential breeding sites that are difficult to reach. The objective of this study was to find a way to select the most suitable UAV for the identification of Ae. aegypti habitats by providing images of potential mosquito breeding sites. This can be accomplished by a Multiple-Criteria Decision Method (MCDM) based on an Analytical Hierarchy Process (AHP) for the evaluation of weights of the criteria used for characterizing UAVs. The alternatives were analyzed and ranked using the Fuzzy Set Theory (FST) merged with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The methodology is explained and discussed with respect to identification and selection of the most appropriate UAV for aerial mapping of Aedes breeding sites.

Introduction

The proliferation of the mosquito Aedes (Stegomyia) aegypti is a major public health problem, mainly because of its potential as the vector of dengue (Espinosa et al., 2016). This disease is considered the fastest growing endemic disease of the 21st century by the World Health Organization (WHO), which estimates that 390 million people worldwide are infected with this virus (Bhatt et al., 2013; Liu-Helmerson et al., 2019, WHO, 2020). Southeast Asia and the Western Pacific are currently reporting the highest incidence of the disease, while Latin America also has seen the number of dengue cases increase considerably in recent years (WHO, 2017; Ferreira et al., 2018). However, Ae. aegypti is not only the main vector of dengue but also of other arboviruses of growing importance, such as chikungunya dengue, yellow fever and zika (Khormi and Kumar, 2012; Brown et al., 2014; Gloria-Soria et al., 2016). The threat is increasing due to the current signs of climate change which favour the basic conditions of Ae. aegypti breeding sites. This association is further strengthened by the mosquito’s potential for dispersion and ability to adapt to new environments, and the deficiency in basic sanitation installations for humans. Taken together, these facts indicate that the environmental conditions in the tropical areas of the world are gradually becoming more suitable for mosquito proliferation (Khormi and Kumar, 2014; Donalismo et al., 2017; Sarfraz et al., 2014; Liu et al., 2019). Indeed, large epidemics caused by arboviruses have been recorded in the last few years (Madariaga et al., 2016; Carvalho et al., 2017; Maitra et al., 2019). Thus, control and elimination of Ae. aegypti, constitute a looming problem calling for immediate implementation of effective entomological surveillance combined with development of new vector control measures. The authorities responsible for urban health attempt to identify mosquito breeding sites, spray insecticides and raise awareness of the epidemiological scenario caused by the Ae. aegypti vector (Chiroli et al., 2017). The use of Unmanned Aerial Vehicles (UAVs), a technology that can aid the work of public health officers, has been used to identify possible mosquito breeding sites that are otherwise difficult to reach. Because they can be manoeuvred to overcome physical obstacles that prevent human access, UAVs are effective alternatives to manual exploration. Applied as a platform for imagery, mapping and data collection by remote control, The UAV can assist various types of studies, such as precision agriculture, urban mapping, study of risky areas and control of endemic vectors (Machault et al., 2011; Hay et al., 2013; Turner et al., 2015). Studies to identify Ae. aegypti breeding sites by means of
UAVs have been promoted, e.g., by Amarasinghe et al. (2017), while UAVs can also be used for insecticide spraying (Amenyo et al., 2014). In Brazil, the International Atomic Energy Agency (IAEA) is planning to use the Sterile Insect Technique (SIT) to assist controlling this vector by the release of sterile male mosquitoes to counteract the production of offspring leading to a reduction of mosquito populations (IAEA, 2018). This approach is still in the experimental phase but the first sterile mosquito release test, for which they used UAVs, has recently been completed.

Considering that UAVs come in different sizes and with various specifications, numerous criteria need to be considered to identify the solution that best suits the search for Ae. aegypti breeding habitats. Different decision-support approaches, such as Multiple-Criteria Decision Methods (MCDM), can assist decision-makers in solving problems where several objectives need to be satisfied simultaneously. Two MCDMs, focused on standardizing the decision-making process through mathematical modelling, have been used to solve the issue at hand: the Analytical Hierarchy Process (AHP) that allows the hierarchization of the set of decisions to apply (Forman and Gass, 2001; Mahdi and AlRESHAID, 2005), and the approach called Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), originally developed by Hwang and Yoon (1981) and later updated by Yoon (1987) and Hwang et al. (1993). Another methodology of interest in this context is the Fuzzy Set Theory (FST). While classical set theory has binary outcomes, i.e., either an element belongs to a specific set or it does not, FST permits gradual assessment of membership. For example, some sets are clearly delineated, e.g., the set of ‘all people’ or the set of ‘all men’, while others, e.g., ‘all beautiful people’, are less well defined. Thinking about this, Zadeh (1965) came to the conclusion that such imprecisely defined sets play a role in information technology and abstract mental activities, such as pattern recognition and recognisance. For such classes of elements, he introduced the concept ‘fuzzy sets’ and showed that their numbers are larger than those of the ordinary binary sets and have a wide scope of applicability in real life as they can be used in domains for which information is incomplete or imprecise.

The first hybrid concept involving both TOPSIS and FST was offered by Chen (2000) as a tool for decision-making in uncertainty scenery. This ‘Fuzzy TOPSIS’ approach was used by Tzeng and Huang (2011) as a way to select the best of multiple alternatives in problems with a finite number of criteria. Of importance for this study is that the Fuzzy TOPSIS method can evaluate UAV ranking by recognizing that the optimal one is the alternative nearest to the Fuzzy Positive Ideal Solution (FPIS) and farthest from the Fuzzy Negative Ideal Solution (FNIS). To identify the best score, the methodology handles the uncertainty in comparing a set of alternatives by selecting weights for each criterion. We chose AHP over an assortment of MCDMs to decide the values of these weights since this strategy permits the decision-maker to analyse, in a pairwise way, which criteria are the most critical based on the reality experienced in each case. It should be emphasised that Fuzzy TOPSIS also allows trade-offs between criteria, where a poor result in one criterion can be negated by a good result in another, an approach which is more realistic than non-compensatory methods that include or exclude alternative solutions based on non-negotiable cut-off decisions. Although none of the methods developed for decision-making are new, their combination for choosing an UAV for the identification of Ae. aegypti breeding sites represents a novel approach. This study proposes a hybrid methodology to rank criteria and alternatives at the different levels that must be considered when selecting the best possible craft for this kind of investigation.

Materials and Methods

Study area and dispositions

The study site was Maringá, which is situated in a region of high climatological risk for the infestation of Ae. aegypti in the Northwest of the Brazilian State Paraná. The latest available census data from the Instituto Brasileiro de Geografia Estatística (IBGE) are from 2010 and give an estimated population of 357,117,000 inhabitants with a population density of 733.14 per km² (IBGE, 2010). The territorial area of Maringá amounts to 487.5 km², 83% of which is currently connected to a sewage system, (IBGE, 2010). Maringá has a health development index (HDI) of 0.808.

Brazil uses a Fast Index Survey (LIRAa) to estimate the level of Ae. aegypti infestation in the municipalities. According to the LIRAa for 2019, the Maringá region presents a general index of 4.2%, which is considered a high risk, characterizing one of the four municipalities in Paraná as the highest with respect to suspected cases of dengue, i.e. 839 confirmed cases in the first two months of 2019 (Secretary of Health-Paraná, 2019). The Dengue Climatic Alert Service of the Climatology Laboratory (Laboclima, 2019) of the Federal University of Paraná (UFPR) provides information about the climatic conditions favourable for the development of Ae. aegypti (Figure 1).

The Predestination Infestation Index (PII) is the relation expressed as a percentage of the number of properties positive with mosquito infestations and the number of real estate sites surveyed. This index classified the risk for epidemic development in Maringá as 3% in the first months of 2019, which again is considered a high risk for dengue infestation. Household trash and small water collections constitute the main breeding grounds for the dengue vector mosquitoes in the city (Secretary of Health-Paraná, 2019).

Figure 1. Climatic risk with respect to development of Ae. aegypti breeding sites by meteorological stations in Paraná 2019. Source: Climatology Laboratory of the Federal University of Paraná.
General approach

Due to the conditions mentioned above, Maringá was felt to be ideal for testing of UAV technology as an aid in the identification of Aedes aegypti breeding sites. This paper does not participate in an investigation of the actual use of AUVs for this specific application, but deals with the systematic evaluation of all the elements needed as a way to find the best UAV to fit this specification. The methodological procedure was done in four steps as schematically presented in Figure 2: i) definition of alternatives and criteria; ii) evaluation of criteria and sub-criteria; followed by iii) examination of the alternatives; and finally, iv) sensibility analysis.

Definitions

A team, specialized in evaluating technologies for the collection and treatment of spatial data identified the most suitable UAVs based on technical data and geo-processing capability to recognize mosquito breeding sites in urban areas. The alternatives included three different mini class models (A1, A2 and A3) selected from a collection of UAVs usually used for the aerial mapping of urban environments. Their commercial names are not disclosed as we focus on the decision process and not on a specific UAV.

Two technical specialists (D-1, D-2) were asked to jointly create the selection criteria (Table 1) and a set of pair-wise comparisons (Table 2) for the 9-degree scale introduced by Saaty (1980) to determine the weight of each criterion in the model. This step is important because to reach a useful decision, the UAVs must be analyzed according to a particular set of criteria applied in a standardized way based on the consistency ratio (CR) represented by the following formula:

$$CR = \frac{\lambda - n}{(n-1) \cdot RI}$$

Eq. 1

where λ represents the maximum eigenvalue; n the order of the comparison matrix; and RI an index of random consistency defined by Saaty (1994) that depends on the number of criteria (n) evaluated. The evaluations were considered coherent if they do not exceed the limit of 0.1 (Saaty, 1980). After certifying the judgment consistency, using a comparison matrix between the criteria, the geometric mean was conducted to obtain the weight vectors $w_i (w_1, w_2, w_m)$ through calculating the eigenvalue of Matrix A. By finding the eigenvector w of the matrix A, i.e., $w = A \cdot w$, the criteria priority can be estimated. Hence, once the vector W is normalized, it becomes the priority vector that represents the weight of each criterion in the problem.

The six criteria in Table 1 represent the technical UAV specifications that have to be taken into account. The sensor was not used as a criterion because all the UAVs analyzed were equipped with the Advanced Photo System type-C (APS-C) sensors. However, all other criteria and sub-criteria proposed were used by the two experts to evaluate the performance of the three UAVs under study. Each criterion was subdivided into sub-criteria according to Table 2.

Table 1. Selection criteria

Technical specification	Performance specification
C1 Weight	C11 Maximum takeoff weight (Kg)
	C12 Maximum payload weight (Kg)
C2 Dimension	C21 Wingspan (m)
C3 Technique	C31 Takeoff
	C32 Landing
C4 Performance	C41 Maximum range (min*)
	C42 Maximum mapped area (ha*)
	C43 Wind resistance (Ktas*)
	C44 Maximum altitude (ft*)
C5 Speed	C51 Cruise speed (Ktas)
	C52 Stall speed (Ktas)
	C53 Maximum level speed (Ktas)
C6 Investment	C61 Initial investment (USD/year)
	C62 Maintenance cost (USD/year)

where *minutes; hectar (1 ha = 10,000 m²); Ktas = true airspeed measured in knots (nautical miles per hour, i.e. 1.852 km/h); ft = 0.3048 m.

Figure 2. Methodological steps for decision-making.
1 with the CR used to verify whether the technical review is complica-
ted with the specific comparisons of each criterion. In other words, if criterion C1 is more preferable than C2, and C2 more preferable than C3, it would be inconsistent to say that C3 is more preferable than C1. When such inconsistencies are identified, the specialists must be consulted again to check that the responses attributed to each pair of evaluated criteria. The characterization of the criteria is described in Figure 3.

Figure 3. Requirements and criteria to be considered. For abbreviation see Table 1.
Evaluation

After characterizing the criteria shown in Table 1, the next step was to use Table 2 determining the weights which allows identification of the level of performance within the analytical context. The pair-wise comparison was carried out by employing a judgment scale that returned the significance based on elective assessment of the weight of each measure. According to the AHP method, the decision-maker would compare each match based on comparison employing Saaty’s 9-degree scale that ranges choices from ‘equal importance’ to ‘vital importance’.

For example, when the outcome of the pair-wise comparison of C1 and C2, is that the former is more important than the latter, then the outcome for C1 will give it number 9. However, if the decision would be the opposite, then the number has to be given as 1/9=0.11. In this way, the pair-wise comparison information will generate a matrix filled out with the numerical judgments and its elements that satisfy the reciprocal property (Table 3).

Analysis of alternatives

The FST handles the uncertainty presented in the evaluated elements. Some decision problems face one or more subjective criteria that needs to be considered. To avoid the subjectivity of human judgment, we implemented FST, in which the subject criteria are expressed by linguistic variables related to fuzzy numbers. The fuzzy numbers might be represented in several distinct ways (Klir and Yuan, 1995). Here, we used the so-called trapezoidal fuzzy number, represented by $N = (N_1, N_2, N_3, N_4)$ carrying out the analysis as done by Xiao et al. (2012). In this description, the height of the trapezium that represents the membership function in terms of an ordered parameter is the largest membership grade in the set. By definition, the fuzzy subset in Universe X must be both normal and convex (Dubois, 1980). In other words, the fuzzy trapezoidal number consists of converting the qualitative parameter into quantitative numbers that can be represented by the shape as a trapezium composed of these four numbers. The ordered parameter here define the trapezoidal fuzzy numbers (PTFN) as a_1, a_2, a_3, a_4 (Figure 4). In fact, fuzzy numbers can be divided into three categories: positive fuzzy numbers, zero fuzzy numbers and negative fuzzy numbers. Usually, the negative fuzzy numbers originate from multiplication, division or subtraction in the formulas used, which is not the case in most MCDM methods, including fuzzy TOPSIS, where only positive fuzzy numbers are used (Terano et al., 2014).

Linguistic evaluation allows judgments regarding alternatives and criteria (Sousa et al. 2006; Chaves et al. 2017). As shown in Table 4, those variables can be represented by trapezoidal fuzzy numbers. To solve the fuzzy problem, the decision-maker needs, first of all, to rate the alternatives with reference to the qualitative criteria, based on the linguist variables. As an example, the linguistic variable “Poor (P)” can be defined as the mathematical figures (1, 2, 2, 3) using Table 4 as a reference (Dubois, 1980).

With the construction of the decision-diffused matrix bundled with the weight criteria W_j, the hybrid combination of Fuzzy TOPSIS and the rating of alternatives related to the decision-maker criteria x_j can be initialized. When solving a problem using decision-making methods, it is recommended to use fuzzy logic for qualitative criteria. For example, when buying a car, you may want to evaluate the criteria of beauty and comfort. However, what is beautiful and comfortable for one person can be totally different for another, so you might wish to use diffuse parameters allowing you to reach an average evaluation. This can be done by using the fuzzy

| Table 2. Table for pair-wise comparison Linguistic term. |
|----------------|----------------|
| **Linguistic term** | **Number** |
| Equal importance | 1 |
| Between equal and moderate importance | 2 |
| Moderately important | 3 |
| Between moderate and high importance | 4 |
| Highly important | 5 |
| Between high and extreme importance | 6 |
| Extremely important | 7 |
| Between extreme and vital importance | 8 |
| Vital for the project | 9 |

| Table 3. Numerical judgments |
|----------------|----------------|
| **Criterion** | **C1** | **C2** | **C3** | **C4** | **C5** | **C6** | **V. Prior** |
| C1 | - | 0,33 | 7 | 7 | 7 | 3 | 0,29570 |
| C2 | 3 | - | 7 | 8,00 | 8 | 3 | 0,44440 |
| C3 | 0,14 | 0,14 | - | 5 | 2 | 1 | 0,05888 |
| C4 | 0,14 | 0,125 | 0,2 | - | 0,333 | 1 | 0,03762 |
| C5 | 0,14 | 0,125 | 0,5 | 3 | - | 1 | 0,05885 |
| C6 | 0,33 | 0,33 | 1 | 1 | 1 | - | 0,07655 |

| Table 4. Translation of linguistic variables into trapezoidal numbers. |
|----------------|----------------|
| **Linguistic variable** | **Code** | **a1** | **a2** | **a3** | **a4** |
| Very Poor | VP | 0 | 0 | 1 | 2 |
| Poor | P | 1 | 2 | 3 | 3 |
| Medium poor | MP | 2 | 3 | 4 | 5 |
| Fair | F | 4 | 5 | 5 | 6 |
| Medium good | MG | 5 | 6 | 7 | 8 |
| Good | G | 7 | 8 | 8 | 9 |
| Very good | VG | 8 | 9 | 10 | 10 |
trapezoidal number. After the development of a decision-diffused matrix, the same is normalized where \tilde{r}_{ij} for maximization criteria and minimization criteria can be calculated by equations 2 and 3:

$$\tilde{r}_{ij} = \left(\frac{a_{ij}}{d_{ij}}, \frac{b_{ij} - c_{ij}}{d_{ij}}, \frac{c_{ij}}{d_{ij}}, \frac{d_{ij}}{d_{ij}}, \right), \quad j \in B,$$

Eq. 2

$$\tilde{r}_{ij} = \left(\frac{a_{ij}'}{d_{ij}'}, \frac{a_{ij} - b_{ij}'}{c_{ij}'}, \frac{b_{ij}'}{a_{ij}'} \right), \quad j \in C,$$

Eq. 3

where the normalized weighted matrix \tilde{V} appears as the product of the multiplication of the criteria weights \tilde{w} with the fuzzy decision-normalized \tilde{r}_{ij} as stated in equation 4:

$$\tilde{u}_{ij} = \tilde{r}_{ij}(\tilde{w})$$

Eq. 4

Then the fuzzy positive ideal solution (FPIS=A^\ast) and the fuzzy negative ideal solution (FNIS=A^-) can be calculated using equations 5 and 6:

$$A^\ast = (\tilde{v}_{1}, \tilde{v}_{2}, ..., \tilde{v}_{n})$$

Eq. 5

$$A^- = (\tilde{v}_{1}, \tilde{v}_{2}, ..., \tilde{v}_{n})$$

Eq. 6

It is also necessary to calculate the distances between each alternative (A1, A2, A3) to the fuzzy positive and negative ideal solutions (A^\ast and A^-). This distance is called d_i^+ (distance from the positive ideal solution) and d_i^- (distance from the negative ideal solution) and can be calculated by equations 7 and 8:

$$d_i^+ = \sum_{j=1}^{n} d_{ij}(\tilde{v}_{ij}, \tilde{v}_{ij}^+), \quad i = 1, 2, ..., m,$$

Eq. 7

$$d_i^- = \sum_{j=1}^{n} d_{ij}(\tilde{v}_{ij}, \tilde{v}_{ij}^-), \quad i = 1, 2, ..., m,$$

Eq. 8

Finally, the proximity coefficient CC_i, that estimates how far away the alternative is from the ideal (FPIS) and anti-ideal solution (FNIS), can be calculated by the use of equation 9 establishing the outcome of the distances between A^\ast and A^-.

$$CC_i = \frac{d_i^-}{d_i^+ + d_i^-}, \quad i = 1, 2, ..., m$$

Eq. 9

The proximity coefficient CC_i classifies the alternatives in an order allowing us to pinpoint the alternative whose performance places it closest to the FPIS and furthest from the FNIS. Calculation of the CC_i for all alternatives, establishes a rank based on the preference quality of the alternatives.

Sensitivity analysis

A sensitivity analysis was conducted with the aim of observing the alternative behaviour in relation to the criteria of weight variables. This step is needed to analyze the alternatives with regard to

Results

The way to find the UAV model of choice for the identification of Ae. aegypti breeding sites for the city of Maringá is presented below. The hierarchical structure of the problem studied here is presented in Figure 5.

In MCDM there are two types of criteria. The criteria that strengthens the preferred choice are called maximizing (or benefitting) criteria, while criteria that downgrade the preferred choice are called minimizing (or cost) criteria. Here, C21, C31, C32, C41, C42, C43, C44, C51, C52, C53 were classified as maximizing criteria, and C21, C61 and C62 minimizing ones. By means of the Fuzzy TOPSIS method the calculation to identify the best alternative starts from this knowledge base. Table 5 shows the decision matrix which contains information about each alternative in relation to each criterion evaluated. The two experts (D-1 and D-2) were invited to evaluate the C31 and C32 criteria by using the lin-

Table 5. Decision matrix.

Criteria	Weight	UAV-A1	UAV-A2	UAV-A3	
C1	+	0.13	7.6	3.3	25
C12	+	0.06	0.9	0.35	11.5
C2	-	0.34	2.13	1.2	1.2
C3	+	0.04	Catapult	Catapult	Hand launch
C32	+	0.08	Parachute	Parachute	Parachute
C4	+	0.02	60	87	600
C42	+	0.01	1100	1100	49000
C43	+	0.02	45	45	45
C44	+	0.02	3000	3000	3000
C5	+	0.03	57.6	57.6	108
C51	+	0.03	43	43	58
C52	+	0.06	72	72	122
C6	-	0.05	180000	75000	200000
C61	-	0.10	3812	3812	3812

![Figure 5. Hierarchical structure of the problem.](image)

![Table 5. Decision matrix.](image)
guistic variables shown in Table 6, which in turn are based on Table 4.

The decision matrix was ‘fuzzified’, that is, the linguistic variables were translated into trapezoidal fuzzy numbers. Now, we undertook an evaluation of the importance of the criteria and sub-criteria. The two technical experts were now invited to compare the technical specifications and their performance in order to decide the importance of the weights which was done by pair-wise comparison using the Saaty scale (1980). The weights are presented in Table 7.

In the next stage, the matrix normalization and the fuzzification decision were realized by means of equations 2 and 3. Owing to this, the normalized decision was considered as a matrix built using equation 4. Later the FPIS and FNIS, can be calculated by equations 5 and 6 (Table 8). Following this, it is necessary to calculate the distance between the alternatives of FPIS and FNIS for each aspect according to equations 7 and 8, which determine the distance between the alternatives d^* and d^-, which simplifies the coefficient calculation of proximity (CC_i) of each alternative. This was done by equation 9 as Table 9 shows. The result of this assessment, based on proximity coefficients ranking A1, A2 and A3 as $A_1 > A_3 > A_2$ due to the weights assigned. However, it should be emphasized that if modifications with regard to the weights and/or the matrix composition of the decision, the ranking may be changed.

Sensitivity Analysis

For the analysis of the impact of the criteria concerning UAV selection, a sensitivity analysis was realized, to evaluate how sensitive the methodology is for the different scenarios. Therefore, six scenarios were created, one of each criterion, where the weight of the criterion was varied being 0.25, 0.5, 0.75 and 1. All the other weights were recalculated maintaining the proportion generated by Table 6. The combinations of standards values enabled us to this, the normalized decision was considered as a matrix built using equation 4. Later the FPIS and FNIS, can be calculated by equations 5 and 6 (Table 8). Following this, it is necessary to calculate the distance between the alternatives of FPIS and FNIS for each aspect according to equations 7 and 8, which determine the distance between the alternatives d^* and d^-, which simplifies the coefficient calculation of proximity (CC_i) of each alternative. This was done by equation 9 as Table 9 shows. The result of this assessment, based on proximity coefficients ranking A1, A2 and A3 as $A_1 > A_3 > A_2$ due to the weights assigned. However, it should be emphasized that if modifications with regard to the weights and/or the matrix composition of the decision, the ranking may be changed.

Sensitivity Analysis

For the analysis of the impact of the criteria concerning UAV selection, a sensitivity analysis was realized, to evaluate how sensitive the methodology is for the different scenarios. Therefore, six scenarios were created, one of each criterion, where the weight of the criterion was varied being 0.25, 0.5, 0.75 and 1. All the other weights were recalculated maintaining the proportion generated by Table 6. The combinations of standards values enabled us to this, the normalized decision was considered as a matrix built using equation 4. Later the FPIS and FNIS, can be calculated by equations 5 and 6 (Table 8). Following this, it is necessary to calculate the distance between the alternatives of FPIS and FNIS for each aspect according to equations 7 and 8, which determine the distance between the alternatives d^* and d^-, which simplifies the coefficient calculation of proximity (CC_i) of each alternative. This was done by equation 9 as Table 9 shows. The result of this assessment, based on proximity coefficients ranking A1, A2 and A3 as $A_1 > A_3 > A_2$ due to the weights assigned. However, it should be emphasized that if modifications with regard to the weights and/or the matrix composition of the decision, the ranking may be changed.

Sensitivity Analysis

For the analysis of the impact of the criteria concerning UAV selection, a sensitivity analysis was realized, to evaluate how sensitive the methodology is for the different scenarios. Therefore, six scenarios were created, one of each criterion, where the weight of the criterion was varied being 0.25, 0.5, 0.75 and 1. All the other weights were recalculated maintaining the proportion generated by Table 6. The combinations of standards values enabled us to this, the normalized decision was considered as a matrix built using equation 4. Later the FPIS and FNIS, can be calculated by equations 5 and 6 (Table 8). Following this, it is necessary to calculate the distance between the alternatives of FPIS and FNIS for each aspect according to equations 7 and 8, which determine the distance between the alternatives d^* and d^-, which simplifies the coefficient calculation of proximity (CC_i) of each alternative. This was done by equation 9 as Table 9 shows. The result of this assessment, based on proximity coefficients ranking A1, A2 and A3 as $A_1 > A_3 > A_2$ due to the weights assigned. However, it should be emphasized that if modifications with regard to the weights and/or the matrix composition of the decision, the ranking may be changed.

Sensitivity Analysis

For the analysis of the impact of the criteria concerning UAV selection, a sensitivity analysis was realized, to evaluate how sensitive the methodology is for the different scenarios. Therefore, six scenarios were created, one of each criterion, where the weight of the criterion was varied being 0.25, 0.5, 0.75 and 1. All the other weights were recalculated maintaining the proportion generated by Table 6. The combinations of standards values enabled us to this, the normalized decision was considered as a matrix built using equation 4. Later the FPIS and FNIS, can be calculated by equations 5 and 6 (Table 8). Following this, it is necessary to calculate the distance between the alternatives of FPIS and FNIS for each aspect according to equations 7 and 8, which determine the distance between the alternatives d^* and d^-, which simplifies the coefficient calculation of proximity (CC_i) of each alternative. This was done by equation 9 as Table 9 shows. The result of this assessment, based on proximity coefficients ranking A1, A2 and A3 as $A_1 > A_3 > A_2$ due to the weights assigned. However, it should be emphasized that if modifications with regard to the weights and/or the matrix composition of the decision, the ranking may be changed.
to calculate the proximity coefficient (CCI) of the Fuzzy TOPSIS method for each alternative in each scenario. The sensitivity analysis allowed testing the performance of alternatives in different criteria composition studied, to check how sensitive the methodology is for each criterion. In figure 6, we see that alternative A1 has an utmost classification in all scenarios, so the order A1>A3>A2 is observed in four out of the six scenarios (Figure 6). As a result, for this scenarios composition, the performance of the alternatives kept themselves at the current 66% of the analysis, showing the ranking method Fuzzy TOPSIS is relatively insensitive to variation of weights of criteria.

Discussion

The search presented here proposes a model to identify the most appropriated UAV to help identify breeding foci of the main arbovirus vector *Ae. aegypti*, whose proliferation is considered a major problem to public health, particularly as the vector has the capacity of adaptation to new environments. To find the breeding sites we used MCDM for deciding which UAV to choose, investigating alternatives and criteria with respect to weight, dimension, technique, performance, velocity and investment. The AHP approach together with Fuzzy TOPSIS allowed direct analysis and support the UAV evaluation rating which equipment presents the best performance based on the used criteria in the process of decision-making.

The sensitivity analysis allowed testing of the performance of evaluated alternatives in different scenarios, and the application of such analysis showed Fuzzy TOPSIS to be stable in rating the scale of alternatives, as the variation in rating scale was low. The results of this study should be useful with respect to guidance of public agents to which options to choose the equipment which allow a more efficient work of public health agents with difficult accessibility in the urban area, being the utilization of UAV an inexpensive and productive technology, compared to traditional methods for the acquisition of geospatial information.

To finish, the utilization of mathematical methods to make decision showed efficient for the problem solution of this search, as the process of evaluation of UAV to problems related with vector *Ae. aegypti* can become more robust and trustworthy. For that, it can be affirmed that all defined criteria are important and should be considered; however, it will depend on the characteristics to be analysed in problems of decision.

Considering the Development of Sustainable Objectives (DSO), whose actions intend to change the world, our search has an important contribution since it shows that it is possible to reduce problems of public health and contribute to achieving the goal of becoming an inclusive, safe, resilient, and sustainable city with low-cost actions.

References

Amarasinghe A, Suduwella C, Niroshan L, Elvitigala C, De Zoysa K, Keppetiyagama C, 2017. Suppressing dengue via a drone system. In Seventeenth International Conference on Advances in Information and communications technology (ICT) for Emerging Regions (ICTer). Institute of Electrical and Electronics Engineers (IEEE) pp. 1-7.

Amenyo JT, Phelps D, Oladipo O, Sewovoe-Ekuoe F, Jadoonanan S, Jadoonanan S et al., 2014. MedizDroids Project: Ultra-low cost, low-altitude, affordable and sustainable UAV multicopter drones for mosquito vector control in malaria disease management. In Institute of Electrical and Electronics Engineers (IEEE) Global Humanitarian Technology Conference (GHTC 2014). pp. 590-596. IEEE. 10.1109/GHTC.2014.6970343.

Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, et al., 2013. The global distribution and burden of dengue. Nature 496: 504-7. doi: 10.1038/nature12060.

Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A et al., 2014. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 68:514-25. doi: 10.1111/evo.12281.

Carvalho S, Magalhães MDAFM, Medronho RDA, 2017. [Análise da distribuição espacial de casos da dengue no município do Rio de Janeiro, 2011 e 2012.] Rev Saúde Pública 51:79. doi: 10.11606/s1518-8787.2017051006239. [Article in Portuguese].

Chaves, L. E., Nascimento, L. F. C., & Rizol, P. M. S. R, 2017. [Modelo fuzzy para estimar o número de internações por asma e pneumonia sob os efeitos da poluição do ar.] Rev Saúde Pública 51:1-8. doi: 10.1590/s1518-8787.2017051006501 1. [Article in Portuguese].

Chen CT, 2000. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems 114:1-9. doi: 10.1016/S0165-0114(97)00377-1.

Chirolí DMG, Montilha MM, Samed MMA, 2017. Feasibility analysis of UAV in dengue control. Independent Journal of Management & Production 8:319-34. doi: 10.14807/ijmp.v8i2.539.

Donaliso MR, Freitas ARR, Zuben APBV, 2017. Arboviruses emerging in Brazil: challenges for clinic and implications for public health. Revista de Saúde Pública 51:30. doi.org/10.1590/s1518-8787.2017051006889.

Dubois DJ, 1980. Fuzzy sets and systems: theory and applications (Vol. 144). Academic Press.

Espinosa MO, Polop F, Rotela CH, Abril M, Scavuzzo CM, 2016. Spatial pattern evolution of Aedes aegypti breeding sites in an Argentinian city without a dengue vector control programme. Geospatial Health 11:471. doi:10.4081/gh.2016.2014.8787.2018052000414.

Gloria□Soria A, Bheecarry A, Calderon□Arguedas O, Chadee DD, Chiappero M, et al., 2016. Global genetic diversity of Aedes aegypti. Molecular Ecology 25:5377-95. doi: 10.1111/mec.12281.

Hay SL, George DB, Moyes CL, Brownstein JS, 2013. Big data opportunities for global infectious disease surveillance. PLoS Medicine 10:e1001413. doi: 10.1371/journal.pmed.1001413.

Hwang CL, Yoon K, 1981. In Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag.

IBGE, 2010. [IBGE – Instituto Brasileiro de Geografia Estatística (2010). Panorama.] Available from: https://cidades.ibge.gov.br/brasil/pr/maringa/panorama. Accessed March 2019. [Website in Portuguese].

International Atomic Energy Agency (IAEA), 2018. IAEA
Conducts Successful Test of Unmanned Aerial Vehicles in Fight Against Disease-Transmitting Mosquitos. Available from: https://www.iaea.org/newscenter/pressreleases/iaea-conducts-successful-test-of-drones-in-fight-against-disease-transmitting-mosquitoes#:~:text=The%20International%20Atomic%20Energy%20Agency.spreads%20Zika%20and%20other%20diseases.&text=As%20these%20do%20not%20produce,insect%20population%20declines%20over%20time. Accessed: May 2018.

Khormi HM, Kumar L, 2012. Assessing the risk for dengue fever based on socioeconomic and environmental variables in a geographical information system environment. Geospat Health 6:171-6. doi: 10.4081/gh.2012.135.

Khormi HM, Kumar L, 2014. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using geographical information system and CLIMEX. Geospat Health 8:405-15. doi: 10.4081/gh.2014.29

Klir G, Yuan B, 1995. Fuzzy sets and fuzzy logic (Vol. 4). New Jersey, USA. Prentice Hall.

Laboclima/UFPR, 2019. Climatic risk to development of breeding ground by Meteorological Stations. Available from: http://www.terra.ufpr.br/portal/laboclima/sacdengue/ Accessed: Mach 2019.

Liu B, Gao X, Ma J, Jiao Z, Xiao J, Hayat MA, Wang H, 2019. Modeling the present and future distribution of arbovirus vectors Aedes aegypti and Aedes albopictus under climate change scenarios in Mainland China. Science of The Total Environment 664:203-14. doi: 10.1016/j.scitotenv.2019.01.301.

Liu-Helmersson J, Rocklöv J, Sewe M, Brännström Å, 2019. Climate change may enable Aedes aegypti infestation in major European cities by 2100. Environ Res 172:693-9. doi: 10.1016/j.envres.2019.02.026.

Machault V, Vignolles C, Borchi F, Vounatsou P, Pages F, Briolant S et al., 2011. The use of remotely sensed environmental data in the study of malaria. Geospat Health 5:151-68. doi: 10.4081/gh.2011.167.

Madariga M, Ticona E, Resurrecion C, 2016. Chikungunya: bending over the Americas and the rest of the world. Braz J Inf Dis 20:91-8. doi: 10.1016/j.bjid.2015.10.004.

Mahdi IM, Alreshaid K, 2005. Decision support system for selecting the proper project delivery method using analytical hierarchy process (AHP). Int J Proj Manage 564-72.

Maitra A, Cunha-Machado AS, de Souza Leandro A, da Costa FM, Scarpassa VM, 2019. Exploring deeper genetic structures: Aedes aegypti in Brazil. Acta Tropica 195:68-77. doi: 10.1016/j.actatropica.2019.04.027.

Saaty TL, 1980. The Analytic Network Process. 1 ed. McGraw Hill: New York, NY, USA.

Saaty TL, 1994. Fundamentals of Decision Making. RWS Publications, Pittsburgh, PA, USA.

Sarrazin MS, Tripathi NK, Faruque FS, Baywa UI, Kitamoto A et al., 2014. Mapping urban and peri-urban breeding habitats of Aedes mosquitoes using a fuzzy analytical hierarchical process based on climatic and physical parameters. Geospat Health 665-97. doi: 10.4081/gh.2014.297.

Secretary of Health-Paraná, 2019. Boletim da dengue (2019). Available at http://www.dengue.pr.gov.br/modules/contenido/contenido.php?contenido=28. Accessed March 2019.

Sousa CAD, Duarte PS, Pereira JCR, 2006. [Lógica fuzzy e regressão logística na decisão para prática de cintilografia das paratiróides.] Rev Saúde Pública. 40:898-906. [Article in Portuguese].

Terano T, Asai K, Sugeno M, eds, 2014 Applied fuzzy systems. Academic Press, 2014.

Turner D, Lucieer A, de Jong S, 2015. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sensing 7:1736-57. doi: 10.3390/rs70201736.

Tzeng GH, Huang JJ, 2011. Multiple attribute decision making: methods and applications. Chapman and Hall/CRC.

WHO, 2017. What is dengue and how is it treated? Available from: http://www.who.int/features/qa/54/en/. Accessed: May 2018.

WHO, 2020. Available from: https://www.who.int/westernpacific/emergencies/surveillance/dengue

Wolters WTM, Mareschal B, 1955. Novel types of sensitivity analysis for additive MCDM methods. European J Oper Res 81:281-90. doi.org/10.1016/0377-2217(93)E0343-V.

Xiao Z, Xia S, Gong K, Li D, 2012. The trapezoidal fuzzy soft set and its application in MCDM. Applied Mathematical Modelling 36:5844-55. doi: 10.1016/j.apm.2012.01.036.

Yoon K, 1987. A reconciliation among discrete compromise situations. J Oper Res Soc 38:277-86. doi: 10.1057/jors.1987.44.

Zadeh LA, 1965. Fuzzy sets. Inf Control 8:338-53.

Zola FC, Colmenero JC, Aragão FV, Rodrigues T, Junior AB, 2020. Multicriterial model for selecting a charcoal kiln. Energy 190:116377. doi: org/10.1016/j.energy.2019.116377.