Prevalence, Risk Factors, and Pathophysiology of Dysglycemia among People Living with HIV in Sub-Saharan Africa

Benson Njuguna,1 Jepchirchir Kiplagat,2 Gerald S. Bloomfield,3 Sonak D. Pastakia,4 Rajesh Vedanthan,5 and John R. Koethe6

1Moi Teaching and Referral Hospital, P.O. Box 4606-30100, Eldoret, Kenya
2Academic Model Providing Access to Healthcare (AMPATH), P.O. Box 4606-30100, Eldoret, Kenya
3Duke Clinical Research Institute, Duke Global Health Institute, Duke University, 2400 Pratt Street, Durham, NC 27710, USA
4Purdue University College of Pharmacy, P.O. Box 5760 Eldoret 30100, Kenya
5Zena and Michael A. Wiener Cardiovascular Institute, Department of Medicine and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, P.O. Box 1030, New York, NY 10029, USA
6Division of Infectious Diseases, Vanderbilt University Medical Center, A2200-MCN 1161 21st Avenue South, Nashville, TN 37232, USA

Correspondence should be addressed to John R. Koethe; john.r.koethe@vanderbilt.edu

Received 14 September 2017; Revised 3 April 2018; Accepted 15 April 2018; Published 23 May 2018

1. Introduction

Sub-Saharan Africa (SSA) accounts for 80% of the global HIV burden and 60% of new HIV infections [1]. Wide-scale adoption of combination antiretroviral therapy (ART) has decreased infection-related mortality among people living with HIV (PLHIV) and increased life expectancy, but this success is tempered by an increasing burden of noncommunicable diseases (NCDs) [2, 3]. Studies of US patient cohorts found PLHIV had as high as a fourfold elevated risk of diabetes mellitus (DM) as compared to HIV-negative persons after adjusting for other risk factors [4, 5]. Current evidence, predominantly from US and European cohorts, indicates this elevated risk of dysglycemia, encompassing both DM and prediabetes (pre-DM; defined as impaired fasting glucose (IFG) or impaired glucose tolerance
(IGT)), in PLHIV likely reflects a mix of the effects of HIV per se, chronic inflammation, and some ART agents on glucose metabolism, as well as potentially disproportionate contributions of obesity and older age to DM risk among PLHIV compared to the general population [6, 7].

The majority of studies on dysglycemia in PLHIV come from high-income country settings (HIC), and as a result, the extent to which identified risk factors associated with dysglycemia burden, morbidity, and mortality can be extrapolated to SSA populations is unclear. PLHIV in SSA have several characteristics that may lead to differences in dysglycemia risk compared to PLHIV in HIC. These include (i) higher levels of inflammation biomarkers such as high sensitivity C-reactive protein (hsCRP) and fibrinogen in HIV-negative SSA populations compared to HIC populations potentially reflecting a higher background inflammatory state [8], (ii) ongoing or recent use of older generation ART agents in SSA associated with the development of lipodystrophy and dysglycemia (e.g., thymidine analogues), (iii) limited access to DM screening, prevention, and treatment services in SSA [9], and (iv) a lower prevalence of traditional risk factors for DM such as advanced age, obesity, dyslipidemia, and sedentary lifestyles [10–13].

HIV and dysglycemia are independent risk factors for cardiovascular disease (CVD) and CVD events, such as stroke and myocardial infarction, chronic kidney disease (CKD), neurocognitive decline, and other comorbidities [14–20]. Pre-DM not only predicts future development of DM, with 4–20% of pre-DM progressing to DM annually in the general population if no pharmacological or nonpharmacological interventions are made, but it is also an independent risk factor for CVD [21]. Consequently, knowledge of the risk factors and burden of dysglycemia among SSA PLHIV is crucial in identifying gaps in care and future research priorities. We undertook this review to describe the relatively limited literature on the prevalence, risk factors, pathophysiology, and clinical outcomes of dysglycemia among SSA PLHIV and highlight the research gaps and high-priority areas for future research.

2. Methods

We searched PUBMED using the keywords “diabetes,” “insulin resistance,” “glucose intolerance,” “dysglycemia,” “sub-Saharan Africa,” “HIV,” “prevalence,” “pathophysiology,” “risk factors,” “mortality,” “morbidity,” and their related terms. Studies were considered for inclusion if they were original research articles and described any of the following: the prevalence, risk factors, pathophysiology, or clinical outcomes of dysglycemia (CVD-related morbidity and mortality, and microvascular or macrovascular complications) in PLHIV in SSA. Additionally, we screened the reference lists of retrieved articles for other sources. Articles published through August 2017 were considered, with no restriction on the start date. We excluded conference abstracts, narrative or systematic reviews, and articles not in English. Results were summarized descriptively in narrative and tabular form. No additional statistical methods were deployed as we did not pool data.

3. Results

3.1. Prevalence of Dysglycemia among PLHIV in SSA. Prevalence data came from 15 studies across 8 countries (Figure 1), highlighting both the dearth of data and variability in the study population. The prevalence of DM among PLHIV ranged from 1% to 26%, while that of pre-DM (IFG or/and IGT) was 19% to 47%, in our reviewed studies [22–36]. There was, however, wide variability in the definition of the population studied, methodology employed, definition of pre-DM, and diagnostic criteria used for DM or pre-DM (Table 1).

Ngatchou et al. reported the highest DM (26%) and pre-DM (47%) prevalence in a cohort of 108 ART-naïve PLHIV in Cameroon that was predominantly (74%) female, had a mean age of 39 years, and had a mean BMI of 25.1 kg/m² [34]. Additional characteristics of this population were a mean waist circumference of 81 cm and waist-hip ratio of 0.8, both of which were lower than in HIV-negative controls, who had a much lower prevalence (1%) of DM.

Four studies compared dysglycemia (DM and pre-DM) prevalence between PLHIV on ART versus ART-naïve and reported differing results [24, 26–28]. Levitt et al. [27] found progressively higher prevalence of dysglycemia in South African ART-naïve PLHIV (22%), PLHIV on 1st line ART (26%), and PLHIV on 2nd line ART (37%). Maganga et al. [28] also reported higher dysglycemia among Tanzanian PLHIV on ART for at least 2 years (33%) compared to ART-naïve PLHIV (8%). In contrast, Dave et al. [24] found a nonsignificant difference in dysglycemia prevalence between South African PLHIV on ART for at least 6 months (26%) compared to ART-naïve PLHIV (22%) while Kagaruki et al. [26] noted a slightly higher DM prevalence in ART-naïve PLHIV (5%) compared to PLHIV on ART (4%). The difference in these findings may partially be explained by the different median durations on ART, for example, 56 versus 16 months in the study by Maganga et al. and Dave et al., respectively, while the duration on ART was not specified in the study by Kagaruki et al.

Five studies compared the prevalence of dysglycemia between PLHIV and HIV-negative controls [22, 28, 32–34]. A trend toward a higher prevalence of dysglycemia among PLHIV was noted compared to HIV-negative individuals although statistically significant differences were found in only two of the studies [28, 34]. A major limitation of the above comparisons was the lack of matching in the control group which led to subsequent between-group differences in potential risk factors for dysglycemia. For instance, in the study by Maganga et al., lower mean age and less central obesity among HIV-negative controls compared to PLHIV at baseline was noted but not adjusted for in the prevalence comparison [28].

3.2. Risk Factors for Dysglycemia in PLHIV. Commonly identified risk factors for dysglycemia in our reviewed studies included older age in six studies [23–25, 27, 28, 31] and elevated BMI in three studies [23, 25, 28]. Both age and elevated BMI are considered traditional risk factors for dysglycemia in the general population, and they remain relevant in the PLHIV population [6]. Male gender [23, 24], long-term
ART use [28, 31], efavirenz versus nevirapine use [24, 37], and higher CD4 count [24, 28] were identified as risk factors in two studies each. Individual studies found associations between dysglycemia in PLHIV and protease inhibitor use [23], stavudine use [37], zidovudine use [37], and female sex [27]. Of note, we did not find studies in SSA PLHIV that identified an association between inflammation and dysglycemia, yet, from HIC studies, it is evident that markers of inflammation are chronically elevated in both ART-naive and ART-treated PLHIV [38–41] and are potentially related to dysglycemia incidence [42, 43].

3.3. Pathophysiology of Dysglycemia in PLHIV in SSA. Obesity prevalence is rising in the general population and among PLHIV in SSA [13, 44, 45], and several studies have demonstrated the steep rise in DM risk accompanying higher BMI values as also reported in US and European cohorts [6, 23, 46–49]. However, there is a clear subset of PLHIV in SSA who develop IFG and DM in the absence of high BMI, though the etiology and the underlying bioenergetics pathway changes of this nonobese DM phenotype are unclear.

In South Africa, IFG prevalence was 21% among PLHIV and did not correlate with central obesity [27]. Similarly, BMI did not correlate with insulin sensitivity in a Rwandan PLHIV cohort with a high prevalence of IFG [32]. In a Tanzanian study, the prevalence of DM was over threefold higher in PLHIV compared to HIV-negative individuals, and this difference could not be accounted for by differences in age, gender, BMI, or socioeconomic status [28]. Lastly, in a comparative study in Israel, DM prevalence was higher in Ethiopian immigrant PLHIV (31%) than in native-Israeli PLHIV (4%), with Ethiopians more likely to develop DM at low BMI values [50].

The handful of studies of IFG and DM risk factors among PLHIV in SSA highlights potential pathophysiologic features which may contribute to the development of glucose intolerance in the absence of more widely recognized risk factors, such as obesity or advanced age. Circulating inflammatory cytokine levels are elevated in many PLHIV on ART in SSA, due in part to impaired mucosal defenses, chronic gastrointestinal enteropathy, and opportunistic infections, which may have a role in the development of dysglycemia [51–53]. Prior studies in PLHIV in the US and Europe have linked soluble inflammatory mediators (e.g., C-reactive protein (CRP) and interleukin-6 (IL-6)) to insulin resistance or incident DM [42, 43]. In two large PLHIV cohorts, enrollment CRP and IL-6 levels predicted incident DM several years prior to onset, and each doubling of enrollment IL-6 was associated with an approximately 30% increased risk of developing DM [42]. While prior studies in SSA have found

Figure 1: Prevalence of diabetes mellitus (DM) and prediabetes (pre-DM) in HIV-infected patients.

- **Ethiopia**
 - DM: 6.4%
 - Pre-DM: 19.6%

- **Kenya**
 - DM: 1.5%
 - Pre-DM: 20.4%

- **Tanzania**
 - DM: 0.7%–18%
 - Pre-DM: 7.3%–14.7%

- **Zimbabwe**
 - DM: 0.8%–2.1%
 - Pre-DM: NR

- **South Africa**
 - DM: 2.2%–17%
 - Pre-DM: 18.5%–31.4%

- **Rwanda**
 - DM: 0.5%
 - Pre-DM: NR

- **Cameroon**
 - DM: 2.0%–26%
 - Pre-DM: 47%

- **Nigeria**
 - DM: 2.3%
 - Pre-DM: NR
| Author(s) and country (reference number) | Study design and population | Dysglycemia definition | Prevalence | Identified independent risk factors* | Comments |
|--|-----------------------------|------------------------|------------|-------------------------------------|----------|
| Noumegni et al., Cameroon [35] | Cross-sectional: 452 adults age 30–74 years of whom 400 were on ART | DM: FPG ≥ 7.0 mmol/l on two separate occasions at least 48 hours apart or self-report of taking antidiabetic medicine | DM: 2.0% | BMI ≥ 30 kg/m² associated with insulin resistance: OR 2.28 | Patients on ART had significantly higher BMI, waist circumference, waist-hip ratio, obesity, and abdominal obesity compared to those not on ART |
| Chimbetete et al., Zimbabwe [23] | Retrospective: 4110 PLHIV aged ≥ 16 years starting ART | DM: at baseline, an RBS > 11.1 mmol/l in the presence of DM symptoms or FPG > 7.0 mmol/l or known diagnosis of DM prior to ART initiation | DM: 0.77% | Male gender: aHR 2.31 Age > 40 years: aHR 2.32 BMI > 30 kg/m²: aHR 3.1 (all associated with incident dysglycemia) | While this was an incidence study of 4110 PLHIV starting ART, 42 of the 5467 PLHIV in the initial cohort were excluded due to prevalent DM defined as a known diagnosis of DM or DM diagnosed at the baseline visit |
| Magodoro et al., Zimbabwe [29] | Retrospective: 1033 PLHIV aged ≥ 18 years on ART | Known diagnosis of DM as per patient records | DM: 2.1% | Associations with dysglycemia not reported | Median duration on ART was 5.3 years Case ascertainment was not possible as details on how DM diagnosis had been made was not available |
| Levitt et al., South Africa [27] | Cross-sectional: PLHIV aged ≥ 18 years in three groups: 393 ART-naive PLHIV, 439 PLHIV on 1st line ART, and 108 PLHIV on 2nd line ART | DM: FPG ≥ 7.0 mmol/l or 2 hr glucose ≥ 11.1 mmol/l IFG: FPG 6.1 mmol/l and <7.0 mmol/l with normal 2 hr glucose IGT: 2 hr glucose ≥ 7.8–11 mmol/l with FBS < 7.0 mmol/l | DM: | Age (years): 35–44 (OR 1.82), 45–54 (3.27), and 55–64 (OR 4.75) BMI > 30 kg/m²: OR 1.92 Female gender: OR 2.17 1st line ART use: OR 2.47 2nd line ART use: OR 4.1 (all associated with prevalent dysglycemia) | 1st line ART regimens comprised dual NRTI plus one NNRTI while 2nd line ART regimens comprised dual NRTI plus a boosted PI A community-based sample group was also included of 880 participants who were not on ART. Dysglycemia prevalence was lower in this group compared to PLHIV groups; however, their HIV status was not known |
| Isa et al., Nigeria [25] | Retrospective: 2632 ART-naive PLHIV aged ≥ 18 years | DM: RBS ≥ 11.1 mmol/l or FPG ≥ 7.0 mmol/l or self-reported use of antidiabetic drugs | DM: 2.3% | Age > 40 years associated with prevalent dysglycemia: aOR 3.5 BMI ≥ 25 kg/m² associated with incident dysglycemia: aOR 7.5 | At one year follow-up after initiating ART, an additional 5.3% of the cohort developed diabetes driving up prevalence to 7.6% |
| Author(s) and country (reference number) | Study design and population | Dysglycemia definition | Prevalence | Identified independent risk factors* | Comments |
|--|----------------------------|-----------------------|------------|--------------------------------------|----------|
| Mohammed et al., Ethiopia [31] | Cross-sectional: 393 PLHIV aged ≥ 21 years of whom 285 were on ART and 109 were ART-naive | DM: FPG ≥ 7.0 mmol/l IFG: FPG ≥ 6.2 mmol/l and <7.0 mmol/l | DM: 6.4% IFG: 19.6% | Age ≥ 40 years: aOR 4.8 ART use ≥ 5 years: aOR 26.93 Hypertension: aOR 4.78 LDL-C ≥ 130 mg/dL: aOR 5.67 (all associated with prevalent dysglycemia) | Lack of OGTT may have underestimated the prevalence of DM and pre-DM |
| Maganga et al., Tanzania [28] | Cross-sectional: Adults aged ≥ 18 years in three groups: 150 PLHIV on ART for ≥ 2 years, 151 recently diagnosed ART-naive PLHIV, and 153 HIV-negative | DM: FPG ≥ 7.0 mmol/l or 2 hr glucose ≥ 11.1 mmol/l IFG: FPG 6.1–6.9 mmol/l with normal 2 hr glucose IGT: 2 hr glucose ≥ 7.8–11 mmol/l with FBS <7.0 mmol/l | DM: On ART: 18% ART-naive: 0.7% HIV (−): 5.2% Pre-DM*: On ART: 14.7% ART-naive: 7.3% HIV (−): 2% | ART use ≥ 2 years: aOR 5.72 associated with prevalent dysglycemia | HIV-negative participants were not aged- or sex-matched |
| Oni et al., South Africa [36] | Retrospective: electronic prescription refill records for 32,474 receiving ≥ 1 prescription for HIV, TB, DM, or/and HTN medications | DM: prescription refill for either metformin, glibenclamide, or insulin DM: 17% | Associations with dysglycemia not reported | Case ascertainment was not possible as details on how DM diagnosis had been made was not available |
| Kagaruki et al., Tanzania [26] | Cross-sectional: 671 PLHIV aged ≥ 18 years of whom 354 were on ART and 317 were ART-naive | DM: FPG ≥ 6.1 mmol/l or prior known diagnosis | DM: On ART: 3.7% ART-naive: 4.7% | Associations with dysglycemia not reported | Overall cases of DM were too low to assess between-group difference or associated risk factor relationships Lack of OGTT may have underestimated DM prevalence |
| Ngatchou et al., Cameroon [34] | Cross-sectional: 108 ART-naive PLHIV and 96 HIV-negative aged-matched controls | IFG: FPG ≥ 5.6–6.9 mmol/l/IDM: FPG > 6.9 mmol/l | DM: ART-naive: 26% HIV (−): 1% IFG: ART-naive: 47% HIV (−): 27% | Associations with dysglycemia not reported | Dysglycemia prevalence may have been underestimated due to lack of OGTT and exclusion of patients with known, or on treatment for, DM, hypertension or dyslipidemia, cigarette smokers or alcohol users, and patients with a first-degree familial history of DM |
| Negin et al., South Africa [33] | Survey: 194 PLHIV and 2864 HIV (−) adults aged ≥ 18 years | Self-report of known DM | DM: PLHIV: 4.1% HIV (−): 9.7% | Associations with dysglycemia not reported | Case ascertainment was not possible as DM diagnosis based on self-report Information unavailable for ART use |
| Author(s) and country (reference number) | Study design and population | Dysglycemia definition | Prevalence | Identified independent risk factors* | Comments |
|--|-----------------------------|------------------------|------------|--------------------------------------|----------|
| Dave et al., South Africa [24] | Cross-sectional: 443 PLHIV on ART for ≥6 months and 406 ART-naive PLHIV | DM: FPG ≥ 7.0 mmol/L or 2 hr glucose ≥ 11.0 mmol/l
Pre-DM: FPG ≥ 5.6-7.0 mmol/l or 2 hr glucose ≥ 7.8 mmol/l-11.1 mmol/l | DM:
On ART: 2.2%
ART-naive: 3.4%
Pre-DM:
On ART: 23.5%
ART-naive: 18.5% | Male gender: OR 1.96
Efavirenz use: OR 1.7 All associated with prevalent dysglycemia | Dysglycemia prevalence difference was not statistically significant between on ART and ART-naive group and may be underestimated by the exclusion of known history of DM or IGT
ART regimen in use was stavudine or zidovudine with lamivudine and nevirapine or efavirenz
Older age (OR 1.04) and CD4 count (OR 1.001) also associated with prevalent dysglycemia but cutoffs not specified |
| Anastos et al., Rwanda [22] | Cross-sectional: women aged ≥ 25 years divided into two groups: 606 ART-naive PLHIV and 218 HIV-negative | DM: FPG > 6.9 mmol/l or self-reported history of DM
DM: ART-naive PLHIV: 0.5%
HIV (−): 0.5% | Associations with dysglycemia not reported | This analysis was based on the Rwanda Women’s Interset and Assessment and inclusion was based on the availability of fasting lipoprotein levels and not glucose levels |
| Manuthu et al., Kenya [30] | Cross-sectional: 134 PLHIV on ART for ≥4 weeks and 161 ART-naive PLHIV | DM: FPG ≥ 7.0 mmol/l or 2 hr glucose ≥ 11.0 mmol/l
IFG: FPG ≥ 6.1 to 6.9 mmol/l
IGT: 2 hr glucose ≥ 7.8 mmol/l-11.1 mmol/l | DM:
ART-naive PLHIV: 0.5%
HIV (−): 0.5%
Pre-DM*: 20.4% | No significant associations with dysglycemia reported | Excluded patients with known DM status thus may underestimate prevalence |
| Mutimura et al., Rwanda [32] | Cross-sectional: 150 PLHIV on ART for ≥6 months and 50 HIV (−) controls | Dysglycemia:
IFG > 5.6 mmol/l
PLHIV:
With LDS: 18%
Without LDS: 16%
HIV (−): 2% | Associations with dysglycemia not reported | Distinction was not made between DM and prediabetes |

*Only statistically significant risk factors are reported. aPrediabetes definition: impaired fasting glucose or impaired glucose tolerance.
elevated CRP, IL-6, and other markers of systemic inflammation which were associated with increased mortality and cardiovascular disease [54–58], there is a clear need for data on the relationship of inflammation with metabolic comorbidities. Furthermore, caution is warranted in extrapolating findings from US or European cohorts; a recent study of low BMI Zambian and Tanzanian PLHIV found pre-ART and on-ART serum CRP levels did not predict the risk of IFG and DM, though IL-6 and other cytokines were not measured [59].

A study from Ethiopia found elevated low-density lipoprotein (LDL) was independently associated with the development of DM in predominantly non-overweight/obese PLHIV [31]. In contrast, a second study from Ethiopia found total cholesterol (a measurement that incorporates LDL, high-density lipoprotein (HDL), and triglycerides), but not HDL alone, was associated with metabolic syndrome as defined by the National Cholesterol Education Program: Adult Treatment Panel III (ATP) criteria [60]. An association between LDL and ATP-defined metabolic syndrome was also not observed in a large multicenter study of PLHIV at 32 worldwide sites (though no sites in SSA were included) [61]. These conflicting results highlight the need for further investigation of the relationship between hyperlipidemia and glucose tolerance among PLHIV SSA, particularly given the lower BMI often present in this population. Studies early in the HIV epidemic found de novo hepatic lipogenesis was increased over threefold among PLHIV with recent weight loss compared to HIV-negative controls, suggesting lipodystrophy represents a continuum and most PLHIV remain susceptible to some degree [80]. Several longitudinal studies from SSA demonstrate central fat accumulation and peripheral fat loss among PLHIV on ART [81–83]. The persistence of these changes in body habitus may have been exacerbated by older-generation nucleoside reverse transcriptase inhibitor (NRTI) use in some treatment programs after these agents had been largely replaced in US and European settings. Loss of limb fat, attributed to mitochondrial DNA polymerase γ inhibition and impaired respiratory chain efficiency in adipocytes, is more prevalent with older thymidine analogues (e.g., stavudine and zidovudine) compared to newer agents (e.g., lamivudine, abacavir, and tenofovir) [84–86]. Adipose tissue samples from lipoatrophic individuals treated with zidovudine or stavudine demonstrate higher macrophage infiltration and proinflammatory cytokine production; two features thought to contribute to adipocyte insulin resistance and altered lipid handling [87–92].

In a recent, large longitudinal study in Zambia and Tanzania of PLHIV who started ART at a low BMI, the risk of developing IFG or DM after treatment initiation was paradoxically highest among those with the lowest pre-ART hip circumference and body fat mass index [59]. Furthermore, the risk of diabetes was also inversely related to the change in BMI after 2-3 years of ART; patients who started ART with a low BMI and failed to gain weight were at a higher risk of dysglycemia after adjusting for multiple other risk factors [59]. These findings suggest that the presence of advanced nutritional wasting at ART start and a lack of nutritional recovery on treatment may predispose to the development of glucose intolerance. Notably, these results are similar to US studies showing lower limb fat in PLHIV is correlated with higher insulin resistance [93, 94]. Further studies are needed to understand whether a combination of poor nutritional status at the time of ART initiation, the demonstrated deleterious effects of some ART agents on adipose tissue function, and potentially other factors could predispose PLHIV in SSA to IFG or DM in the absence of obesity and other common risk factors (Figure 2). The prevalence of IFG and DM is high among PLHIV in SSA, but the marked variability in risk factors observed in prior studies underscores the need to further investigate the range of clinical phenotypes and the accompanying perturbations in bioenergetics pathways in a systematic manner.

3.4. Clinical Outcomes among SSA PLHIV with Comorbid Dysglycemia. Data on morbidity and mortality attributable to cardiovascular, microvascular, and macrovascular complications associated with comorbid dysglycemia in SSA PLHIV are scarce. In a study in Malawi of 281 patients with DM, 14% of whom were PLHIV, vision-threatening
diabetic retinopathy was not associated with HIV status [95]. In South Africa, Pillay et al. [96] reported significantly higher nephropathy based on proteinuria (26% in PLHIV compared to 16% in HIV-negative) and neuropathy (50% in PLHIV compared to 44% in HIV-negative) in a cohort of diabetic persons. This finding may have been related to poorer glucose control among PLHIV on either insulin or oral hypoglycemic agents. In contrast, they found higher prevalence of stage 2 or greater CKD based on KDOQI definitions in the HIV-negative cohort (42%) compared to PLHIV (31%), a finding that the authors partly attributed to the higher age range of the HIV-negative cohort (51–70 years) compared to PLHIV (41–60 years). A major limitation of this study was that HIV status was determined by self-report and was not directly confirmed.

3.5. Research Gaps and Priorities. While our review noted numerous gaps in the literature on dysglycemia in SSA PLHIV, we chose to highlight three specific areas that may form research priorities for future investigations. These are (i) the establishment of longitudinal PLHIV cohorts to improve our understanding of the causative associations between various risk factors and dysglycemia incidence, (ii) research into the interruption of progression from pre-DM to DM in SSA PLHIV, and (iii) studies on the clinical outcomes associated with comorbid HIV/DM.

While current studies show overlap between various risk factors that are associated with dysglycemia in SSA PLHIV, such associations remain correlative due to the use of cross-sectional and retrospective study designs in most analyses. An enhanced understanding of the causative risk factors may inform strategies to prevent dysglycemia in PLHIV. There is therefore a need for more longitudinal studies evaluating dysglycemia in SSA PLHIV cohorts. These may take the form of prospective observational studies that begin with a normoglycemic PLHIV cohort and follow them for a long period of time as has been done in some HIC settings [42, 43]. Understudied risk factors such as inflammation need to be evaluated, while the true effect of past and current ART agents, the duration of ART use, and the effect of known traditional risk factors (BMI, anthropometrics, fat distribution and nutrition) requires more investigation in this population.

The range of pre-DM prevalence (19% to 47%) was consistently high across our reviewed studies, representing an opportune area for research into interruption of disease progression in this cohort. Studies from the general population in HIC indicate that rates of pre-DM progression to overt DM may be decreased by 58% through the use of pharmacological interventions and lifestyle modification [97–99]. The extent to which these findings can be extrapolated to PLHIV populations, particularly in SSA, remains unknown. Nevertheless, these studies suggest a potential role for lifestyle interventions, anti-inflammatory therapy, and early use of antidiabetic agents (e.g., metformin) that could be investigated in SSA PLHIV populations.

There is a paucity of data on clinical outcomes among SSA PLHIV with DM, particularly with respect to CVD mortality and morbidity, and microvascular/macrovascular complications of DM and/or HIV. DM and HIV are both CVD risk factors, portending an elevated risk in patients with comorbid HIV/DM. Furthermore, studies suggest that control of DM, and other NCD comorbidities such as dyslipidemia and hypertension, is poorer compared to HIV-negative individuals [96], representing potentially worse outcomes in this cohort.

4. Conclusion

The prevalence of DM and pre-DM among PLHIV in SSA ranges from 1% to 26% and 19%–47%, respectively, reflecting an overall high burden of dysglycemia. However, variations in the study population assessed and diagnostic criteria limit firm conclusions. Older age, male gender, and an elevated BMI in the overweight/obese range are commonly associated risk factors for dysglycemia in SSA PLHIV. The interplay between HIV disease, ART, inflammation, and traditional risk factors in the pathophysiology of dysglycemia in SSA PLHIV is yet to be fully understood. There is a need for long-term longitudinal studies to elucidate the role of various risk factors in incident dysglycemia, future research in evaluating interventions to disrupt the progression of pre-DM to overt DM, and clinical outcome studies in comorbid DM/ HIV patients in SSA.

Conflicts of Interest

There are no conflicts of interests or any funding sources to declare.

References

[1] UNAIDS, Joint United Nations Programme on HIV/AIDS (UNAIDS): Global AIDS Update, Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland, 2016.
[2] C. L. McDonald and J. R. Kaltman, “Cardiovascular disease in adult and pediatric HIV/AIDS,” Journal of the American College of Cardiology, vol. 54, no. 13, pp. 1185–1188, 2009.
[3] R. Martin-Iguacel, J. M. Libbre, and N. Friis-Moller, “Risk of cardiovascular disease in an aging HIV population: where are we now?,” Current HIV/AIDS Reports, vol. 12, no. 4, pp. 375–387, 2015.
[4] T. T. Brown, S. R. Cole, X. Li et al., “Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study,” Archives of Internal Medicine, vol. 165, no. 10, pp. 1179–1184, 2005.
[5] A. C. Hernandez-Romieu, S. Garg, E. S. Rosenberg, A. M. Thompson-Paul, and J. Skarbinski, “Is diabetes prevalence higher among HIV-infected individuals compared with the general population? Evidence from MMP and NHANES 2009–2010,” BMJ Open Diabetes Research & Care, vol. 5, no. 1, p. e000304, 2017.
[6] A. A. Butt, K. McGinnis, M. C. Rodriguez-Barradas et al., “HIV infection and the risk of diabetes mellitus,” AIDS, vol. 23, no. 10, pp. 1227–1234, 2009.
[7] K. Samaras, “Prevalence and pathogenesis of diabetes mellitus in HIV-1 infection treated with combined antiretroviral therapy,” JAIDS Journal of Acquired Immune Deficiency Syndromes, vol. 50, no. 5, pp. 499–505, 2009.
[8] A. E. Schutte, D. van Vuuren, J. M. van Rooyen et al., “Inflammation, obesity and cardiovascular function in African and Caucasian women from South Africa: the POWIRS study,” Journal of Human Hypertension, vol. 20, no. 11, pp. 850–859, 2006.

[9] R. Atun, J. I. Davies, E. A. M. Gale et al., “Diabetes in sub-Saharan Africa: from clinical care to health policy,” The Lancet Diabetes & Endocrinology, vol. 5, no. 8, pp. 622–667, 2017.

[10] WHO, UNAIDS, and UNICEF, UNAIDS Report on the Global AIDS Epidemic 2013, UNAIDS, Geneva, 2013.

[11] A. G. Tabák, C. Herder, W. Rathmann, E. J. Brunner, and F. Farzadfar, M. M. Finucane, G. Danaei et al., “WHO, UNAIDS, and UNICEF, UNAIDS Report on the Global AIDS Epidemic 2013, UNAIDS, Geneva, 2013.

[12] M. M. Finucane, G. A. Stevens, M. J. Cowan et al., “National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants,” The Lancet, vol. 377, no. 9765, pp. 578–586, 2011.

[13] M. Ng, T. Fleming, M. Robinson et al., “Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013,” The Lancet, vol. 384, no. 9945, pp. 766–781, 2014.

[14] G. S. Bloomfield, F. Alenezi, F. A. Barasa, R. Lumsden, B. M. Mayosi, and E. J. Velazquez, “Human immunodeficiency virus and heart failure in low- and middle-income countries,” JACC: Heart Failure, vol. 3, no. 8, pp. 579–590, 2015.

[15] F. C. Chow, S. Regan, S. Feske, J. B. Meigs, S. K. Grin-...
[36] T. Oni, E. Youngblood, A. Boulle, N. McGrath, R. J. Wilkinson, and N. S. Levitt, “Patterns of HIV, TB, and non-communicable disease multi-morbidity in peri-urban South Africa: a cross-sectional study,” *BMC Infectious Diseases*, vol. 15, no. 1, p. 20, 2015.

[37] S. Karamchand, R. Leisegang, M. Schomaker et al., “Increased prevalence of diabetes mellitus in a non-obese adult population: HIV-infected Ethiopians,” *The Israel Medical Association Journal*, vol. 17, no. 10, pp. 620–623, 2015.

[38] J. Neuhaus, D. R. Jacobs Jr., J. V. Baker et al., “Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection,” *The Journal of Infectious Diseases*, vol. 201, no. 12, pp. 1788–1795, 2010.

[39] N. I. Wada, L. P. Jacobson, J. B. Margolick et al., “The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation,” *AIDS*, vol. 29, no. 4, pp. 463–471, 2015.

[40] A. Balagopal, D. M. Ashmut, W. T. Yang et al., “Pre-cART elevation of CRP and CD4+ T-cell immune activation associated with HIV clinical progression in a multinational case–cohort study,” *JAIDS Journal of Acquired Immune Deficiency Syndromes*, vol. 56, no. 1, pp. 36–43, 2011.

[41] J. Neuhaus, D. R. Jacobs Jr., J. V. Baker et al., “Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection,” *The Journal of Infectious Diseases*, vol. 201, no. 12, pp. 1788–1795, 2010.

[42] N. I. Wada, L. P. Jacobson, J. B. Margolick et al., “The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation,” *AIDS*, vol. 29, no. 4, pp. 463–471, 2015.

[43] A. Balagopal, D. M. Ashmut, W. T. Yang et al., “Pre-cART elevation of CRP and CD4+ T-cell immune activation associated with HIV clinical progression in a multinational case–cohort study,” *JAIDS Journal of Acquired Immune Deficiency Syndromes*, vol. 56, no. 1, pp. 36–43, 2011.

[44] C. Bébére A Dooko, S. de Wit, C. A. Sabin, R. Weber et al., “CD14+ macrophages that accumulate in the colon of African AIDS patients express pro-inflammatory cytokines and are responsive to lipopolysaccharide,” *BMC Infectious Diseases*, vol. 15, no. 1, p. 430, 2015.

[45] A. Canipe, T. Chidumayo, M. Blevins et al., “A 12 week longitudinal study of microbial translocation and systemic inflammation in undernourished HIV-infected Zambians initiating antiretroviral therapy,” *BMC Infectious Diseases*, vol. 14, no. 1, p. 521, 2014.

[46] C. L. Monaco, D. B. Gootenberg, G. Zhao et al., “Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome,” *Cell Host & Microbe*, vol. 19, no. 3, pp. 311–322, 2016.

[47] J. Capeau, V. Bouteloup, C. Katlama et al., “Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy,” *JAIDS Journal of Acquired Immune Deficiency Syndromes*, vol. 67, no. 5, pp. 538–546, 2014.

[48] T. T. Brown, K. Tassiopoulos, R. J. Bosch, C. Shikuma, and G. A. McComsey, “Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy,” *JAIDS Journal of Acquired Immune Deficiency Syndromes*, vol. 67, no. 5, pp. 538–546, 2014.

[49] C. Guehi, A. Badié, D. Gabillard et al., “High prevalence of being overweight and obese HIV-infected persons, before and after 24 months on early ART in the ANRS 12136 Temprano trial,” *AIDS Research and Therapy*, vol. 13, no. 1, p. 12, 2016.

[50] J. Capeau, V. Bouteloup, C. Katlama et al., “Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment,” *AIDS*, vol. 26, no. 3, pp. 303–314, 2012.

[51] S. De Wit, C. A. Sabin, R. Weber et al., “Incidence and risk factors for new-onset diabetes in HIV-infected patients: the data collection on adverse events of anti-HIV drugs (D:A:D) study,” *Diabetes Care*, vol. 31, no. 6, pp. 1224–1229, 2008.

[52] P. Shankalala, C. Jacobs, S. Bosomprah, M. Vinikoor, P. Katayamoyo, and C. Michel, “Risk factors for impaired fasting glucose or diabetes among HIV infected patients on ART in the Copperbelt Province of Zambia,” *Journal of Diabetes & Metabolic Disorders*, vol. 16, no. 1, p. 29, 2017.

[53] C. A. Dimala, J. Atashili, J. C. Mbuagbaw, A. Wilfred, and G. L. Monekosso, “A Comparison of the diabetes risk score in HIV/AIDS patients on highly active antiretroviral therapy (HAART) and HAART-naïve patients at the Limbe Regional Hospital, Cameroon,” *PLoS One*, vol. 11, no. 5, article e0155560, 2016.

[54] F. Tzur, M. Chowers, N. Agmon-Levin, Y. A. Mekori, and A. Y. Hershko, “Increased prevalence of diabetes mellitus in a non-obese adult population: HIV-infected Ethiopians,” *The Israel Medical Association Journal*, vol. 17, no. 10, pp. 620–623, 2015.

[55] E. Cassol, T. Rossouw, S. Malfeld et al., “The e ciency Syn- drome among HIV-infected patients in Southern Ethiopia,” *AIDS Research and Therapy*, vol. 9, no. 7, pp. 993–999, 2013.

[56] M. J. Siedner, J. H. Kim, R. S. Nakku et al., “Persistent immune activation and carotid atherosclerosis in HIV-infected Ugandans receiving antiretroviral therapy,” *The Journal of Infectious Diseases*, vol. 213, no. 3, pp. 370–378, 2016.

[57] M. Bestawros, T. Chidumayo, M. Blevins et al., “Increased systemic inflammation is associated with cardiac and vascular dysfunction over the first 12 weeks of antiretroviral therapy among undernourished, HIV-infected adults in Southern Africa,” *Journal of AIDS & Clinical Research*, vol. 06, no. 3, 2015.

[58] I. Ssinabulya, J. Kayima, C. Longenecker et al., “Subclinical atherosclerosis among HIV-infected adults attending HIV/AIDS care at two large ambulatory HIV clinics in Uganda,” *PLoS One*, vol. 9, no. 2, article e89537, 2014.

[59] G. PrayGod, J. Changalucha, S. Kapiga, R. Peck, J. Todd, and S. Filteau, “Dysglycemia associations with adipose tissue among HIV-infected patients after 2 years of antiretroviral therapy in Mwanza: a follow-up cross-sectional study,” *BMC Infectious Diseases*, vol. 17, no. 1, p. 103, 2017.

[60] D. Y. Tesfaye, S. Kinde, G. Medhin et al., “Burden of metabolic syndrome among HIV-infected patients in Southern Ethiopia,” *Diabetes & Metabolic Syndrome: Clinical Research & Reviews*, vol. 8, no. 2, pp. 102–107, 2014.

[61] K. Samaras, H. Wand, M. Law, S. Emery, D. Cooper, and A. Carr, “Prevalence of metabolic syndrome in HIV-infected patients receiving highly active antiretroviral therapy using international diabetes foundation and adult treatment panel III criteria: associations with insulin resistance, disturbed body fat compartmentalization, elevated C-reactive protein, and hypoadiponeciniemia,” *Diabetes Care*, vol. 30, no. 1, pp. 113–119, 2007.
D. Gao, M. Madi, C. Ding et al., “Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes,” *American Journal of Physiology-Endocrinology and Metabolism*, vol. 307, no. 3, pp. E289–E304, 2014.

C. N. Lumeng, S. M. Deyoung, and A. R. Saltiel, “Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins,” *American Journal of Physiology-Endocrinology and Metabolism*, vol. 292, no. 1, pp. E166–E174, 2007.

H. M. Lawler, C. M. Underkoffler, P. A. Kern, C. Erickson, B. Bredbeck, and N. Rasouli, “Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects,” *The Journal of Clinical Endocrinology & Metabolism*, vol. 101, no. 4, pp. 1422–1428, 2016.

D. C. Mynarcik, M. A. McNurlan, R. T. Steigbigel, J. Fuhrer, and M. C. Gelato, “Association of severe insulin resistance with both loss of limb fat and elevated serum tumor necrosis factor receptor levels in HIV lipodystrophy,” *JAIDS Journal of Acquired Immune Deficiency Syndromes*, vol. 25, no. 4, pp. 312–321, 2000.

G. Meininger, C. Hadigan, M. Laposata et al., “Elevated concentrations of free fatty acids are associated with increased insulin response to standard glucose challenge in human immunodeficiency virus-infected subjects with fat redistribution,” *Metabolism*, vol. 51, no. 2, pp. 260–266, 2002.

S. J. Glover, P. I. Burgess, D. B. Cohen et al., “Prevalence of diabetic retinopathy, cataract and visual impairment in patients with diabetes in sub-Saharan Africa,” *British Journal of Ophthalmology*, vol. 96, no. 2, pp. 156–161, 2012.

S. Pillay, C. Aldous, and F. Mahomed, “A deadly combination - HIV and diabetes mellitus: where are we now?,” *The South African Medical Journal*, vol. 106, no. 4, p. 54, 2016.

W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” *The New England Journal of Medicine*, vol. 346, no. 6, pp. 393–403, 2002.

J. Lindström, A. Louheranta, M. Mannelin et al., “The Finnish diabetes prevention study (DPS): lifestyle intervention and 3-year results on diet and physical activity,” *Diabetes Care*, vol. 26, no. 12, pp. 3230–3236, 2003.

A. Ramachandran, C. Snehalatha, S. Mary et al., “The Indian diabetes prevention programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1),” *Diabetologia*, vol. 49, no. 2, pp. 289–297, 2006.