Crystal structure of Pseudomonas aeruginosa lipase in the open conformation - The prototype for family I.1 of bacterial lipases
Nardini, M; Lang, DA; Liebeton, K; Jaeger, KE; Dijkstra, BM

Published in:
The Journal of Biological Chemistry

DOI:
10.1074/jbc.M003903200

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Nardini, M., Lang, DA., Liebeton, K., Jaeger, KE., & Dijkstra, BM. (2000). Crystal structure of Pseudomonas aeruginosa lipase in the open conformation - The prototype for family I.1 of bacterial lipases. The Journal of Biological Chemistry, 275(40), 31219-31225. https://doi.org/10.1074/jbc.M003903200

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Crystal Structure of *Pseudomonas aeruginosa* Lipase in the Open Conformation

THE PROTOTYPE FOR FAMILY I.1 OF BACTERIAL LIPASES*

Received for publication, May 8, 2000, and in revised form, June 30, 2000
Published, JBC Papers in Press, July 12, 2000, DOI 10.1074/jbc.M003903200

Marco Nardini, **Dietmar A. Lang**, **Klaus Liebeton**, **Karl-Erich Jaeger**, and **Bauke W. Dijkstra**

From the Laboratory of Biophysical Chemistry and BIOSON Research Institute, Department of Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, EMBL, Hamburg Outstation, DESY, Notkestraße 85, 22603 Hamburg, Germany, and Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany

The x-ray structure of the lipase from *Pseudomonas aeruginosa* PAO1 has been determined at 2.54 Å resolution. It is the first structure of a member of homology family I.1 of bacterial lipases. The structure shows a variant of the α/β hydrolase fold, with Ser82, Asp229, and His251 as the catalytic triad residues. Compared with the “canonical” α/β hydrolase fold, the first two β-strands and one α-helix (αE) are not present. The absence of helix αE allows the formation of a stabilizing intramolecular disulphide bridge. The loop containing His251 is stabilized by an octahedrally coordinated calcium ion. On top of the active site a lid subdomain is in an open conformation, making the catalytic cleft accessible from the solvent. A triacylglycerol analogue is covalently bound to Ser82 in the active site, demonstrating the position of the oxyanion hole and of the three pockets that accommodate the sn-1, sn-2, and sn-3 fatty acid chains. The inhibited enzyme can be thought to mimic the structure of the tetrahedral intermediate that occurs during the acylation step of the reaction. Analysis of the binding mode of the inhibitor suggests that the size of the acyl pocket and the size and interactions of the sn-2 binding pocket are the predominant determinants of the regio- and enantio-preference of the enzyme.

Lipases are triacylglycerol ester hydrolases (EC 3.1.1.3) that catalyze the hydrolysis of long chain acylglycerols. Since the beginning of the 1990s, the three-dimensional structures of an impressive number of lipases from mammalian, yeast, and microbial origin have been determined (1–3). In particular, structures of fungal and bacterial lipases have attracted interest because these enzymes are applied on a large scale in detergents and for stereoselective biotransformations. Their widespread biotechnological application is related to their cofactor independence, their broad substrate specificity, their high enantio-selectivity, and their stability in organic solvents (4).

Bacterial lipases have recently been classified into eight different families, with family I being the largest and consisting of six subfamilies (5). Families I.1 and I.2 contain lipases from the genus *Pseudomonas*. These lipases usually show pronounced differences in regio- and enantio-selectivity despite a high degree of amino acid sequence homology (more than 40%) (6, 7). They are widely used in industry, especially for the production of chiral chemicals that serve as basic building blocks in the synthesis of pharmaceuticals, pesticides, and insecticides (8).

The prototype enzyme of family I.1 is the 29-kDa extracellular lipase from *Pseudomonas aeruginosa*, which was the first *Pseudomonas* lipase to be purified to electrophoretic homogeneity (9). This enzyme has since been studied in great detail mainly because of the two following reasons. (i) It plays an important role as a virulence factor of *P. aeruginosa*, which is an opportunistic pathogen, causing a variety of infectious diseases in immuno-compromised patients. This lipase can act synergistically with other lipolytic enzymes, leading to damage of host cellular membrane lipids including lung surfactants (10). (ii) *P. aeruginosa* lipase is widely used for biotechnological applications because it is a versatile enzyme that can catalyze the hydrolysis and synthesis of a wide variety of industrially important substrates with broad specificity (4, 11–19).

Among *Pseudomonas* lipases only those belonging to family I.2 are known in atomic detail (5). These include the lipases from *Chromobacterium viscosum*, *Pseudomonas glumae*, and *Pseudomonas cepacia* (the latter two renamed *Burkholderia glumae* and *Burkholderia cepacia*) (14–17). The *C. viscosum* and *B. glumae* lipases are 100% identical in sequence, and their x-ray structures show the enzymes in a closed conformation, with an α-helical lid covering the active site and protecting it from the solvent phase (14, 15). In contrast, the *B. cepacia* lipase was crystallized in an open conformation, both in the absence and in the presence of a bound substrate-like inhibitor (16–19).

Here we report the x-ray structure of *P. aeruginosa* PAO1 lipase (PAL)1 at 2.54 Å resolution, in the open conformation. The enzyme has beenocrystallized with the substrate ana-
logue 1,2-dioctylcarbamoyl-glycero-3-O-p-nitrophenyl octylphosphonate, which binds covalently to the enzyme. The structure provides a structural description of the enzyme in its activated state and allows a detailed explanation of the region- and stereoselectivity of the enzyme toward triglyceride substrates. These results can be generalized to other members of the bacterial lipase family I.1.

EXPERIMENTAL PROCEDURES

Crystallization and Data Collection—The lipase from *P. aeruginosa* was cloned, overexpressed, and purified as described previously (20). Crystallization of the inhibited enzyme was achieved by the sitting drop vapor diffusion method at room temperature. The protein solution, containing 5 mg/ml lipase, 10 mM Tris/HCl (pH 8.0), and 1% β-octylpyranoside, was incubated for 90 h at 12 °C in a 1:1 ratio with *R*. *P*-2,1,2-dioctylcarbamoyl-glycero-3-O-p-nitrophenyl octylphosphonate (*R*. *P*-trioctyl) (21). After incubation, the lipase-inhibitor complex was equilibrated against a precipitant solution containing 25% 2-methanol, 15% 2-mercaptoethanol, 50 mM CaCl₂ in 100 mM citrate buffer (pH 5.6). The crystals diffracted up to 2.5 Å resolution using synchrotron radiation. They belong to space group *P*2₁2₁2₁, with unit cell parameters of *a* = 45.47 Å, *b* = 50.96 Å, *c* = 110.02 Å. This unit cell gives a *V* = 2.2 Å³ Da⁻¹ assuming one molecule of 29 KDa per asymmetric unit. A native data set was collected with a MAR Research image plate system at beamline BW7B of the EMBL Outstation at DESY, Hamburg. Data were integrated and merged using the DENZO/SCALEPACK package (22) and CCP4 software (23). Data processing statistics are given in Table I.

Structure Determination and Refinement—The structure was determined by molecular replacement using the program AMoRe (24) as implemented in the CCP4 program package (23). A homology model of *F. aeruginosa* lipase (12), built on the basis of its 42% sequence identity to *B. cepacia* lipase, of which a structure in the open conformation is known (Ref. 17; Protein Data Bank code 3LIP), was successfully used to model the loops visible that in the initial maps were not visible at all. The best refinement results were obtained using a flat bulk solvent correction. Water molecules and a calcium ion were placed according to strict density and distance criteria.

Model Quality and Accuracy—The final model consists of 285 amino acid residues, one calcium ion, 112 water molecules, and one molecule of *R*. *P*-trioctyl (with the phosphorus atom in the *S*₄ configuration) covalently bound to the catalytic Ser²⁵⁴. All protein residues are visible in the electron density map as well as the sn-3 moiety of the inhibitor. For the sn-1 and sn-2 moieties, only discontinuous density is present, probably due to high mobility of these triglyceride chains, as reflected by their B-factors (55–68 Å²). The crystallographic *R*ₐ and *R*ᵣ of the final model are 0.193 and 0.237, respectively. The stereochemical quality of the structure was assessed with the programs PROCHECK (27) and WHATCHECK (28). Only Ser²⁵⁴ is in a disallowed region of the Ramachandran plot (29), as expected for the nucleophile of a member of the α/β hydrolase fold family. Val²⁸⁵ is in a cis-peptide conformation. The structure was further analyzed using the program DALI (30). Refinement statistics are given in Table II. The atomic coordinates and the structure factors have been deposited to the Protein Data Bank with the entry code 1EX9.

RESULTS AND DISCUSSION

Overall Structure—*P. aeruginosa* lipase has a nearly globular shape with approximate dimensions of 35 × 40 × 50 Å³. Its structure consists of a “core” domain (residues 1–108 and 164–285), showing the typical features of the α/β hydrolase fold topology (31–33), and a “cap” domain (residues 109–163), with four α-helices (α4, α5, α6, and α8) that shape the active site cleft (Fig. 1). Helix α5 and its neighboring loops can be considered as a “lid” in the open conformation, making the active site cavity accessible to solvent and substrate (Fig. 1A). Compared with the canonical α/β hydrolase fold (Fig. 1B), the first two β-strands are absent, and therefore, to be consistent with the numbering of the consensus α/β hydrolase fold, the first strand in the PAL structure is named β3. The helix corresponding to the canonical helix αE is absent too. Furthermore, an additional small antiparallel β-sheet (β-strands b1 and b2) is inserted between strand β3 and helix α1, and an additional β-strand (β’ b) lines up with the sixth strand (β8) of the central β-sheet, but in the opposite direction (Fig. 1B).

Table I

Data collection and molecular replacement statistics	
Space group	*P*2₁2₁2₁
Cell dimensions	*a* = 146.62 Å, *b* = 100.20 Å, *c* = 96.88 Å
Resolution limit	2.54 Å
Observations	34,304
Unique reflections	8,772
Completeness (%) overall	98.3 (98.2)
Molecular replacement	11.9 (33.6)
Rotation (°)	7.4 (4.2)
**Correlation Coefficient/	0.394/0.501

Table II

Refinement statistics	
Resolution range (Å)	25.0–2.54
R*ₐ/R*ᵣ (%)	19.3/23.7
Number of residues	285
Number of water molecules	112
Number of calcium ions	1
Number of inhibitor molecules	1
Root mean square deviation from ideality	0.012/0.530

Table III

Ramachandran plot	
Residues in most favored regions (%)	90.0
Residues in additional allowed regions (%)	9.6
Residues in disallowed regions (%)	0.4

* Rₐ is calculated with 5% of the diffraction data, which were not used during the refinement.
The catalytic triad residues (Ser82, Asp229, and His251) and the position of the disulfide bridge are indicated, and a comparison with the canonical α/β hydrolase fold is given. α-Helices and β-strands are represented by rectangles and arrows, respectively. G1 and G2 are 3₁₀ helices and are represented by squares. Locations where insertions in the canonical fold may occur are indicated by dashed lines.

It is interesting to notice that PAL Cys183 and Cys235 are highly but not absolutely conserved among the members of bacterial lipase family I.1 (Fig. 3). A disulfide bond interaction similar to PAL is likely to be present in Vibrio cholerae, Acinetobacter calcoaceticus, Pseudomonas wisconsinensis, and Pseudomonas luteola lipases. In contrast, the Pseudomonas fragi, Phaseolus vulgaris, and Pseudomonas fluorescens lipases lack this interaction. The first two enzymes have only one cysteine residue in their sequence, Cys75 and Cys88, respectively, whereas P. fluorescens has two cysteines, Cys219 and Cys233, but none of them matches the positions of the cysteine residues in PAL (Fig. 3).

Since the PAL structure is in the open conformation similar to BCL, whereas BGL and CVL are in a closed conformation (Fig. 2), a direct comparison of PAL and BCL can show the structural analogies and differences of the activated form of lipases from bacterial homology families I.1 and I.2. Fig. 2 shows that the three-dimensional similarity of PAL and BCL extends to the cap region. The two open structures superimpose with an root mean square difference of 1.12 Å for 264 structural equivalent Ca atoms out of 285 common Ca atoms. However, the α-helices α4, α5, and α6 of the cap subdomain do not superimpose perfectly in the two enzymes. Helix α5 is one turn longer in PAL than in BCL because of a three-residue insertion in PAL at the C terminus of the helix. The loop connecting α4 and α5 in PAL is three residues shorter than in BCL. Furthermore, helix α4 in PAL is shorter and ends in a 3₁₀ helical conformation (Fig. 3). Differences are also present in the location of helix α6, which in PAL immediately precedes helix α7, so much that helices α6 and α7 can be considered as one single α-helix with a bend of about 90° at the first residue of α7 (Ser264).

Catalytic Triad—The catalytic triad residues Ser82 (nucleophile), Asp229 (acid), and His251 are located at their canonical positions in the α/β hydrolase fold (31). Their positions and orientations are similar to the catalytic triad residues in the family I.2 lipases. Ser82 is situated at the very sharp “nucleophile elbow” between strand β5 and helix α3, identified by the consensus sequence Gly-X-Ser-X-Gly (in PAL, X = His at both positions). As in all other α/β hydrolase-fold enzymes of which...
the three-dimensional structure has been elucidated (33), the nucleophile adopts unfavorable torsion angles ($\phi = 57^\circ$, $\psi = -111^\circ$) and imposes steric restrictions on the residues located in its proximity. An intricate hydrogen-bonding pattern similar to that found in family I.2 lipases stabilizes the active site residues. The main chain nitrogen atom of Ser22 is hydrogen-bonded to the carboxyl oxygen atom of Val105. The Ser22 side chain Oγ atom, covalently bound to the triptyc inhibitor, is 3.0 Å from the catalytic histidine Nε2 atom, but the geometry is not suitable for a hydrogen bond between these two atoms. Instead, the His251 Nε1 atom is 3.1 Å from the Oε2 of the Asp229 side chain that is responsible for stabilizing the positively charged His251 side chain during catalysis. The Asp229 Oε2 atom is not only at hydrogen-bonding distance from the catalytic histidine but is also very close (2.7 Å) to the Glu254 Oε2 atom. The Glu254 Oε1 atom is 3.6 Å away from the His251 Nε1 atom and, therefore, does not interact directly with the triad histidine. However, it has been suggested for B. glumae lipase (15) that an acid residue at that position may assist the catalytic histidine during hydrolysis, either directly or via a water molecule, if the triad acid (Asp/Glu) is mutated. This could also be the case for the P. aeruginosa lipase.

Ca$^{2+}$-binding Site—Approximately 15 Å from the nucleophile Ser22, at the same side of the enzyme where the catalytic His251 is located, a calcium binding pocket is present. The calcium ion is octahedrally coordinated, and its ligands are the two carboxylate groups of Asp209 and Asp250 (both absolutely conserved in all family I.1 and I.2 lipases), the two carbonyl oxygen atoms of Glu257 and Leu261, and two water molecules (Fig. 5). All the distances to calcium are within 2.2–2.4 Å, and the low B-factor values of the ion and its ligands (17–30 Å2) reflect a relatively rigid conformation of the calcium binding region. Despite the medium resolution (2.54 Å) of the PAL crystal structure, Val258 is unambiguously in a cis-peptide conformation. The cis-peptide bond between Glu257 and Val258 is stabilized by a conserved hydrogen-bonding network that extends to the catalytic His251. The Ca$^{2+}$ ion bridges helix α8, which forms part of the wall of the active site cleft, to the loop containing the catalytic histidine and, therefore, contributes to keep His251 at the correct position in the active site. The binding mode of the Ca$^{2+}$ ion is conserved in BCL, BGL, and CVL, including the presence of a cis-peptide bond corresponding to Val258 in PAL. Furthermore, a structure-based sequence alignment of the bacterial lipases from families I.1 and I.2 shows the conservation of an Asn/Asp residue at the position preceding the catalytic histidine (Fig. 3). This Asn/Asp residue hydrogen bonds one of the two water molecules that coordinate the calcium ion. The other residues in PAL that interact with these water molecules (Thr205, Ser211, and Asp212) are also highly conserved, with some variation that is not likely to influence the calcium binding. This can be deduced, for instance, from the fact that in the BCL, BGL, and CVL structures an alanine replaces PAL Thr205, with the calcium-coordinating water molecule hydrogen bonded to another solvent molecule located at a position equivalent to the Thr205 Oε1 atom in PAL.

Active Site Cleft and Inhibitor Binding

The PAL structure provides a rare example of a lipase complexed with a triglyceride-like inhibitor. The only other example is that of the family I.2 lipase from B. cepacia. Structural analysis of the open conformation of PAL and BCL in complex with the same R$_{1}$-trioclyl inhibitor (Fig. 4A) (21) offers the opportunity of a direct comparison of the binding mode of the substrate analogue in lipases from families I.1 and I.2.

In both PAL- and BCL-inhibited structures the R$_{1}$-trioclyl molecule is covalently linked at its phosphorus atom to the nucleophilic Oε1 atom of the catalytic serine residue and perfectly fits into similar hydrophobic active site clefts. In PAL this cleft is 15 Å deep and has an ovoid shape with approximate dimensions of 10 × 25 Å. It is bordered by helices 4, 5, 8 and by the loops of residues 16 to 29 and 255 to 259. Its walls are lined mostly with hydrophobic side chains, making it perfectly suited for lipid binding. At the base of the cleft the Met16 side chain divides it in two parts, thus giving a characteristic boomerang-like shape to the active site, with four binding pockets, an oxyanion hole and three pockets for the different branches of the triglycerylcerol substrate (Fig. 4B).

In PAL the Met16 and His88 main chain amide groups are 2.8 Å and 2.9 Å from one of the phosphorus oxygen atoms (O4) (Fig. 4B). A similar interaction is present in BCL involving Leu17 and Glu68 residues. Since the R$_{1}$-trioclyl-complexed structure represents the putative tetrahedral intermediate conformation during the acylation step of the reaction, the Met16 and His88 backbone nitrogen atoms localize the oxyanion binding pocket in a position very well conserved within the α/β hydrolase-fold enzymes (31, 33, 34). Met16 is the second residue of the tetrapeptide motif Gly-Hyd-X-Gly (Hyd = Met, Leu, Val) located between strand β3 and helix 4, and highly conserved in families I.1 and I.2 of bacterial lipases (Fig. 3). In PAL this
tetrapeptide motif is stabilized by a hydrogen bond between the His14 carbonyl oxygen atom and the Arg56 NH\textsubscript{2} atom. Arg56 is a totally buried residue that lies at the beginning of helix \(\alpha \text{2} \), close to the nucleophile elbow. It connects the oxyanion hole tetrapeptide motif to the loop between strand \(\beta \text{3} \) and helix \(\alpha \text{2} \) via the hydrogen bond Arg56 NH\textsubscript{1}-Ser48 O. Interestingly, Arg56 is totally conserved in homology family I.1 as well as in homology family I.2 lipases (Fig. 3). In the open conformation of BCL the interaction pattern of this Arg (Arg61) strongly resembles that of PAL Arg56, with the Arg61 side chain hydrogen-bonded to the carbonyl oxygen atom of His15 and Ser50. In contrast, in the closed conformations of CVL and BGL, the Arg61 side chain is hydrogen-bonded to the carbonyl oxygen atoms of Leu17 and Gly51 and of Gly16 and Phe52, respectively. Since the movements of the loop between strand \(\beta \text{4} \) and helix \(\alpha \text{2} \) (PAL residues 45–52), of the oxyanion loop (PAL residues 14–20), and of the lid region are correlated (17), the variation of the hydrogen-bonding pattern of this conserved Arg residue might play an important stabilizing role during the opening of the lid of these lipases.

In PAL the \(\text{sn}-3 \) octyl chain of the inhibitor (atoms C\textsubscript{4}-C\textsubscript{11}) is accommodated in a large groove (about 8.5 Å × 9.0 Å) formed by the side chains of Met16, Pro108, Ser112, Thr114, Ala115, Leu118, Leu131, Val135, Leu159, Leu162, Leu231, and Val232 (acyl chain pocket HA). The octyl group of the inhibitor fits snugly in this cleft and is bound via van der Waals interactions. Because of its size, the acyl binding pocket may easily accommodate up to about 12 fatty acid carbon atoms. The binding of the \(\text{sn}-3 \)
The alcohol binding pocket is separated from the acyl pocket by the side chain of Met16 and contains the bound lipid analogue in a bent “tuning fork” conformation (Fig. 4B). The sn-2 moiety (atoms N2-C30) fits in a hydrophobic pocket lined by Leu17, Phe19, Ile22, Val25, Tyr27, Leu252, Val255, Gln257, Val258, and Phe259 (HH pocket). The latter residues are part of the calcium binding loop (residues 252 to 261). The HH pocket is slightly larger in PAL compared with that of BCL, and consequently, the enzyme-inhibitor interactions are less tight than in BCL. There is space for about 8–10 fatty acid carbon atoms to be accommodated in this pocket. Longer chains would partly stick into the solvent or micelle. In the HH pocket all the enzyme-inhibitor interactions are hydrophobic, and the NH group of the carbamoyl function of this chain does not have any specific hydrogen-bonding interactions with the protein. In particular, the hydrogen bond which in BCL connects the Thr18 Oγ atom to the carbonyl oxygen of the carbamoyl function of the sn-2 chain is absent in PAL due to the presence of a hydrophobic residue, Leu17, instead of the polar Thr18 in BCL.

The sn-1 inhibitor moiety (atoms N1-C20) interacts less tightly with the enzyme than the sn-2 chain. It is located in a pocket more exposed to the solvent (HB pocket). The only specific interactions with the protein are van der Waals contacts with the side chains of Leu17, Leu138, and Phe214. The location of the sn-1 chain is mainly determined by a hydrophobic clamp formed by Phe214 and Leu138. The sn-1 chain diverges considerably with respect to the position found in the BCL complex since in the latter lipase the bulky side chain of Phe214 is substituted for an Ala247 (Fig. 3). As for the sn-2 moiety, the sn-1 NH group of the carbamoyl function does not specifically interact with the protein. Pro210 and Ser211 are located between the two sn-1 and sn-2 moieties but too far away to make any direct interaction. Since the HH pocket hosting the sn-2 chain provides a more intimate interaction with the substrate analogue than the HB pocket occupied by the sn-1 chain, the HH pocket is most likely the one that determines the regio-preference of the enzyme toward the primary position of triglyceride substrates together with the size of the acyl chain pocket HA.

In view of the differences in the inhibitor binding modes in the alcohol binding pocket, it is not surprising that PAL and BCL differ somewhat in their stereospecificity. BCL prefers the Rc-trioctyl inhibitor over the Sc-trioctyl compound by a factor of 7. It has been suggested that Leu257 and Ile259 play an important role in conferring this preference by providing unfavorable interactions with the carbonyl oxygen (O7) of the Sc-trioctyl compound (18). Furthermore, the hydrophilic interaction of the sn-2 carbonyl oxygen (O6) with the Oγ atom of Thr18 favors this preference (18). In contrast, in PAL the residue corresponding to BCL Ile259 is Val255, a less bulky residue, and BCL Thr18 corresponds to Leu17 in PAL, a non-polar residue (Fig. 3). These differences explain why PAL prefers the Rc-trioctyl inhibitor only by a factor of 1.5 over the Sc-trioctyl compound.3

Conclusions—The x-ray structure of P. aeruginosa lipase provides the first three-dimensional structure of a member of homology family I.1 of bacterial lipases. The molecule is in the open conformation and the active site contains a triacylglycerol analogue covalently bound to the catalytic nucleophile, Ser253. The other catalytic residues are Asp229 and His251. An octahedrally coordinated calcium ion stabilizes the loop containing the catalytic histidine. Sequence alignment with other lipases of homology family I.1 shows that the residues important for catalysis and fold stabilization are conserved.

The bound inhibitor unambiguously identifies the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2, and sn-3 fatty acid chains, thus providing a picture of the tetrahedral intermediate that occurs during the acylation step of the triacylglycerol hydrolysis reaction. At the base of the active site cleft the Met16 side chain divides the cleft into two branches, thus creating the acyl pocket for the binding of the sn-3 moiety of the inhibitor on one side and the alcohol pocket for the binding

3 K. Liebeton and K.-E. Jaeger, manuscript in preparation.
of the sn-1 and sn-2 chains on the other side. The interactions between inhibitor and enzyme are mostly of a hydrophobic nature. Since the pocket hosting the sn-2 chain provides a more intimate interaction with the substrate analogue than the one occupied by the sn-1 chain, the sn-2 binding pocket and the acyl chain pocket are the ones that predominantly determine the regio-preference of the enzyme. Furthermore, comparison of PAL and B. cepacia lipase, both in complex with \(R_2 \)-trioctyl, suggests Val\(^{255} \) and Leu\(^{17} \) to play a role in the differences in enantio-specificity of the enzymes toward the triacylglycerol analogue.

These results pave the way for site-directed mutagenesis experiments to improve the enzyme for application in bioconversion reactions.

Acknowledgments—We thank Birgit Forth and Susanne Tettling for purification of PAL and M. Mannesse for supplying the phosphonate inhibitor.

REFERENCES

1. Borgström B., and Brockman, H. L. (1984) Lipases, Elsevier Science Publishers B.V., Amsterdam
2. Schrag, J. D., and Cygler, M. (1997) Methods Enzymol. 284, 85–107
3. Jaeger, K.-E., Ransac, S., Dijkstra, B. W., Colson, C., van Heuvel, M., and Misset, O. (1994) FEBS Microbiol. Rev. 15, 29–63
4. Jaeger, K.-E., and Reetz, M. T. (1996) Trends Biotechnol. 14, 2203–2227
5. Arpigny J. L., and Jaeger K.-E. (1999) Biochem. J. 343, 177–183
6. Gilbert, E. J. (1993) J. Appl. Crystallogr. 26, 3–12
7. Svendsen A., Borch, K., Barfoed, M., Nielsen, T. B., Gormsen, E., and Patkar, S. A. (1995) Biochem. Biophys. Acta 1259, 9–17
8. Theil, F. (1995) Chem. Rev. 95, 2203–2227
9. Stuer, W., Jaeger, K.-E., and Winkler, U. K. (1986) J. Bacteriol. 166, 1070–1074
10. Jaeger, K.-E. (1994) Immun. Infekt. 22, 177–180
11. Kazlauskas, R. J., and Weber, H. K. (1998) Curr. Opin. Chem. Biol. 2, 121–126
12. Jaeger, K.-E., Schneidinger, B., Rosenau, F., Werner, M., Lang, D., Dijkstra, B. W., Schimosek, K., Zonta, A., and Reetz, M. T. (1997) J. Mol. Catal. B 3, 3–12
13. Jaeger, K.-E., Dijkstra, B. W., and Reetz, M. T. (1999) Annu. Rev. Microbiol. 53, 315–351
14. Lang, D., Hofmann, B., Haalck, L., Hecht, H.-J., Spener, F., Schmid, R. D., and Schomburg, D. (1996) J. Mol. Biol. 259, 704–717
15. Noble, M. E. M., Cheesby, A., Johnson, L. N., Egmond, M. R., and Frenken, L. G. J. (1993) FEBS Lett. 331, 123–128
16. Kim, K. K., Song, H. K., Shin, D. H., Hwang, K. Y., and Suh, S. W. (1997) Structure (Lond.) 5, 173–185
17. Schrag, J. D., Li, Y., Cygler, M., Lang, D., Burgdorf, T., Hecht, H.-J., Schmid, R., Schomburg, D., Rydel, T. J., Oliver, J. D., Strickland, L. C., Danaway, C. M., Larson, S. B., Day, J., and McPherson, A. (1997) Structure (Lond.) 5, 187–202
18. Lang, D. A., Mannesse, M. L. M., De Haas, G. H., Verheij, H. M., and Dijkstra, B. W. (1998) Eur. J. Biochem. 254, 333–340
19. Lang, D. A., and Dijkstra, B. W. (1998) Chem. Phys. Lipids 93, 115–122
20. Jaeger, K.-E., Adrain, F.-J., Meyer, H. E., Hancock, R. E. W., and Winkler, U. K. (1992) Biochem. Biophys. Acta 1120, 315–321
21. Mannesse, M. L. M., Boots, J. W. F., Dijkman, R., Slotboom, A. J., Vanderhijden, H. T. W. V., Egmond, M. R., Verheij, H. M., and de Haas, G. H. (1995) Biochem. Biophys. Acta 1259, 56–64
22. Otwinowski, Z., and Minor, W. (1997) Methods Enzymol. 276, 307–326
23. Collaborative Computational Project Number 4 (1994) Acta Crystallogr. Sect. D 50, 760–763
24. Navaza, J. (1994) Acta Crystallogr. Sect. D 50, 157–163
25. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Acta Crystallogr. Sect. A 47, 110–119
26. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta Crystallogr. Sect. D 54, 905–921
27. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) J. Appl. Crystallogr. 26, 283–291
28. Hoodf, R. W. W., Vriend, G., Sander, C., and Abola, E. E. (1996) Nature 381, 272
29. Ramakrishnan, C., and Ramachandran, G. N. (1965) J. Mol. Biol. 7, 95–99
30. Holm, L., and Sander, C. (1994) Proteins 3, 165–173
31. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag, J., Sussman, J. L., Verschueren, K. H. G., and Goldman, A. (1992) Protein Eng. 5, 197–211
32. Hekinheimo, P., Goldman, A., Jeffries, C., and Ollis, D. L. (1999) Structure (Lond.) 7, 141–146
33. Nardini, M., and Dijkstra, B. W. (1999) Curr. Opin. Struct. Biol. 9, 732–737
34. Cygler, M., and Schrag, J. D. (1997) Methods Enzymol. 284, 3–27
35. Kraulis, P. (1991) Protein Eng. 4, 946–950
36. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673–4680
37. Barton, G. J. (1993) Protein Eng. 6, 37–40