GGPS1 Mutations Cause Muscular Dystrophy/Hearing Loss/Ovarian Insufficiency Syndrome

Running head: Muscular Dystrophy / Hearing Loss / Ovarian Insufficiency

A. Reghan Foley, MD¹, Yaqun Zou, MD¹, James E. Dunford, PhD², Jachinta Rooney, PhD¹
Goutam Chandra, PhD³, Hui Xiong, MD⁴, Volker Straub, MD⁵, Thomas Voit, MD⁶, Norma Romero, MD, PhD⁷, Sandra Donkervoort, MS, CGC¹, Ying Hu, MS³, Thomas Markello, MD, PhD⁸, Adam Horn, PhD³, Leila Qebibo, MD⁰, Jahannaz Dastgir, DO¹,¹⁰, Katherine Meilleur, PhD¹,¹¹, Richard S. Finkel, MD¹²,¹³, Yanbin Fan, MD⁴, Kamel Mamchaoui, PhD⁷, Stephanie Duguez, PhD⁷,¹⁴, Isabelle Nelson, PhD⁷, Jocelyn Laporte, PhD¹⁵, Mariara Santi, MD,¹⁶, Edoardo Malfatti, MD, PhD⁷,¹⁷,¹⁸, Thierry Maisonobe, MD,⁷ Philippe Touraine, MD, PhD¹⁹, Michio Hirano, MD²⁰, Imelda Hughes, MD²¹, Kate Bushby, MD⁵, Udo Oppermann, PhD²,²²,²³, Johann Böhm, PhD¹⁵, Jyoti K. Jaiswal, PhD³,²⁴, Tanya Stojkovic, MD²⁵, and Carsten G. Bönne mann, MD¹

¹Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA;
²Botnar Research Centre, NIHR Biomedical Research Centre Oxford, University of Oxford, Oxford, UK;
³Children's National Health System, Center for Genetic Medicine Research, Washington, DC, USA;
⁴Department of Pediatrics, Peking University First Hospital, Beijing, China;
⁵Institute of Genetic Medicine, International Centre for Life, Newcastle upon Tyne, UK;
⁶Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, UK;
⁷Sorbonne Université, Institut de Myologie and AP-HP, Groupe Hospitalier La Pitié-Salpêtrière, Centre de référence des maladies neuromusculaires, Paris, France;
⁸NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA;
⁹Unit of Medical Genetics and Oncogenetics, University Hospital, Fes, Morocco;
¹⁰Department of Pediatric Neurology, Goryeb Children's Hospital, Morristown, NJ, USA;
¹¹Biogen, 225 Binney Street, Cambridge, MA, USA;
¹²Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA;
¹³Division of Neurology, Department of Pediatrics, Nemours Children's Hospital, Orlando, Florida, USA;
¹⁴School of Biomedical Sciences, Ulster University, Derry, Northern Ireland;
¹⁵Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR7104, Strasbourg University, Illkirch, France;

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi:10.1002/ana.25772.

This article is protected by copyright. All rights reserved.
Corresponding Author:

Carsten G. Bönnemann, MD
Chief, Neuromuscular and Neurogenetic Disorders of Childhood Section
Senior Investigator, Neurogenetics Branch
National Institute of Neurological Disorders and Stroke/NIH
Porter Neuroscience Research Center
35 Convent Drive, Bldg 35, Room 2A-116
Bethesda, MD 20892-3705
phone: 301-594-5496
fax: 301-480-3365
email: carsten.bonnemann@nih.gov

Characters in Title: 84
Characters in Running Head: 57

Abstract words: 250
Introduction words: 523
Discussion: 1,703
Body words: 2,972

Number of Color Figures: 7
Abstract:

Objective: A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in two siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition.

Methods: We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in **GGPS1** followed by **GGPS1** Sanger sequencing or WES in five additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay and the generation of a Y259C knock-in mouse were done.

Results: A total of 11 patients in six families carrying five different biallelic mutations in specific domains of **GGPS1** were identified. **GGPS1** encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl diphosphate (GGPP), the lipid precursor of geranylgeranylated proteins including small GTPases. All but one patient presented with congenital sensorineural hearing loss and proximal weakness, and all post-pubertal females had primary ovarian insufficiency. Muscle histology was dystrophic with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient derived myogenic cells while a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality.

Interpretation: The identification of specific **GGPS1** mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation.
Introduction

The muscular dystrophies are degenerative disorders of muscle characterized by evidence of degeneration and regeneration on muscle histology and are typically associated with elevated creatine kinase (CK) as a measure of ongoing muscle fiber breakdown. Mechanisms and pathways which underlie muscular dystrophies are diverse and include extracellular, membrane centered, sarcomeric, nuclear, mitochondrial as well as metabolic mechanisms. In the dystrophies that involve membrane stability or repair, serum CK values are typically elevated as a sign of membrane leakage. Congenital sensorineural hearing loss rarely manifests in association with muscular dystrophy but has been reported in early onset facioscapulohumeral muscular dystrophy. Perrault syndrome, caused by mutations in various mitochondrial and peroxisomal genes, clinically manifests with sensorineural hearing loss and primary ovarian insufficiency but without muscle involvement, while a combination of muscular dystrophy with primary ovarian insufficiency has not been recognized yet.

The mevalonate pathway is a central metabolic shuttle for the synthesis of specialized lipids. Mevalonic acid is formed from acetyl-CoA via HMG-CoA and then further metabolized to isopentenyl-5-PP (IPP) which is subsequently converted to farnesyl-PP (FPP), which serves as a precursor for the squalene cholesterol pathway as well as for protein prenylation, which includes farnesylation as well as geranylgeranylation. Prenylation adds a hydrophobic lipid tail to proteins allowing for anchorage to membranes for precise subcellular localization, typically within membranes. Prenylation is of particular relevance for small GTPases, including those of the Rho and Ras/Rab families. For geranylgeranylation, FPP has to be converted to geranylgeranyl-PP (GGPP), by geranylgeranyl diphosphate synthetase (GGPPS, EC:2.5.1.29), encoded by GGPS1. Geranylgeranyl pyrophosphate (GGPP) will then be transferred by two types of geranylgeranyl transferases (GGTase I or GGTase II) onto the recipient proteins. While some of the small GTPases are only farnesylated or can alternatively be farnesylated or geranylgeranylated, some are exclusively dependent on geranylgeranylation for their prenylation. More than 100 human proteins are predicted to be targets for geranylgeranylation, amongst them are prominently small GTPases of the Rab family, many of which are involved in tagging membranes of ER, Golgi, endosome Golgi, lysosome autophagic vesicle, cell membranes, mitochondria and as well of the Rho/Rac family involved in cytoskeletal actin dynamics amongst other roles. Other functions of GGPP include negative feedback regulation of the mevalonate pathway by inducing HMG-CoA reductase misfolding, ubiquitination and degradation. Some GGPP may also enter into ubiquinone, coenzyme Q and squalene synthesis; however, FPP is the major source for this biosynthetic branch. It is also possible that there are additional, not yet explored functions and uses for GGPP in the cell. While thus far there has been no human monogenic disease linked to mutations in GGPS1, it
has been identified as a risk factor for atypical femoral bone fractures in females exposed to bisphosphonates.10,11,12

Here we report specific mutations in the gene $GGPS1$ coding for the enzyme geranylgeranyl pyrophosphate synthetase in 11 patients from 6 families causing a highly distinctive syndrome of early onset muscular dystrophy combined with congenital sensorineural hearing loss and primary ovarian insufficiency in females. The mutations do not abolish enzymatic activity of this essential enzyme but with a highly distinctive genotype/phenotype correlation define the mevalonate pathway as essential for muscle, hearing and endocrine functions.

Subjects/Materials and Methods

Patient Recruitment and Sample Collection Patients P1, P2 and P7 were consented and enrolled in the study approved by the institutional review board (IRB) of the National Institute of Neurological Disorders and Stroke, National Institutes of Health (12-N-0095). Patient 3 was enrolled via the Institute of Genetic Medicine, International Centre for Life’s Biobank [NRES Committee North East - Newcastle & North Tyneside; Research Ethics Committee (REC) reference: 08/H0906/28+5]. Patients P4-P6 and patient P8 were enrolled via the Institut de Myologie and AP-HP, Groupe Hospitalier La Pitié-Salpêtrière (REC reference: AC-2018-3156). Patients P9-11 were consented and enrolled to the MYOGENE project, approved by the Institut de Génétique et de Biologie Moléculaire et Cellulaire IRB (DC-2012-1693). Tissue (DNA and skin fibroblasts) were obtained based on standard procedures. Muscle biopsies were obtained as part of the regular clinical diagnostic testing and were evaluated by standard light and electron microscopy protocols.

Molecular Genetic Analyses of Patients Whole exome sequencing (WES) was performed in the two index patients (P1, P2) at the NIH Intramural Sequencing Center using the Illumina TruSeq Exome Enrichment Kit, and Illumina HiSeq 2500 sequencing instruments and was combined with haplotype analysis in the entire family (as described13). Assuming autosomal recessive inheritance in a non-consanguineous family, the haplotype data was analyzed to identify regions of shared haplotypes between the two affected siblings but not their unaffected siblings or parents. WES was performed in the two affected siblings (P1, P2) and analyzed for biallelic rare variants that were predicted to be damaging and shared between them. Given the highly specific appearing clinical phenotype in the index family, an additional 6 patients (P3-8) in 4 families were identified in neuromuscular centers in Europe and Asia. DNA was analyzed by direct Sanger sequencing of the candidate gene. In one additional family, $GGPS1$ mutations were identified in three affected siblings (P9-11) via WES, which was performed using the
SureSelect Human all Exon 50Mb capture library v5 (Agilent), and the Illumina HiSeq2500 platform. Sequence data were aligned to the GRCh37/hg19 reference genome, variants were annotated and filtered based on their frequency in gnomAD (http://gnomad.broadinstitute.org/) and in-house database containing >1500 exomes, and the impact of the variants was predicted using SnpEff (http://snpeff.sourceforge.net/).

Histology and Immunohistochemical Staining Muscle biopsies and skin biopsies were processed following standard procedures. Dermal fibroblasts derived from skin biopsies were cultured as described previously. Some of the dermal fibroblasts were converted to myoblast with Lenti-MyoD lentiviral system (Clontech Laboratories, Mountain View, USA). Cultured fibroblasts and muscle cryosections were processed with standard immunohistochemical staining method. The following antibodies were used for immunohistochemical staining: GGPS1 (N-term, Abcepta, San Diego, USA), desmin (clone DE-U-10, Sigma Aldrich, Saint Louis, USA), LC3b (D11, Cell Signaling Tech., Beverly, USA) and ATP synthase beta (ThermoFisher Scientific, Waltham, USA). Confocal images were captured with Leica SP5 confocal laser scanning microscope.

GGPPS Enzyme Activity Assay and Conformation Analysis Wild type and mutant GGPPS identified in the patients were expressed in a bacterial expression system, enzyme activity was assayed using substrates, Farnesyl pyrophosphate (FPP) and C14-isopentenyl pyrophosphate (IPP) as described previously. The GGPPS activities in Lenti-MyoD converted myoblasts of normal controls and patients were also assayed as described before. The oligomerization of wild type and mutant GGPPS expressed in bacterial system was measured by gel filtration chromatography using an ÄKTA Explorer as described previously.

Generation of a Ggps1 p.Y259C Knock-In Mouse A knock-in mouse was generated under contract at genOway (genOway, Lyon, France) by insertion of a Y259C point mutation in exon 5a of the Ggps1 gene (located 633 bp downstream of the 5’ end of exon 5a). The mutated Ggps1 gene is expressed under the control of the endogenous Ggps1 promoter. In addition, the Ggps1 exon 4 is flanked by a validated FRT-neomycin-FRT-loxP cassette and by a single loxP site enabling the conditional deletion of the Ggps1 gene. The FRT-neomycin-FRT-loxP cassette and the single loxP site are positioned as illustrated in Figure 7A.

Cell Membrane Repair Assay Dermal fibroblasts derived from normal controls and patient (P6) were MyoD transfected using Lenti-MyoD, converted to myoblasts and further differentiated to myotubes. These cells were tested in separate experiments for their cell membrane repair kinetics following focal pulsed laser injury in the presence of the cell impermanent dye FM1-43 and following the dye intensity as described.
Results

Clinical Phenotype
The index patient (P1) (Fig 1) manifested symptoms prenatally with decreased fetal movements, and neonatally with a weak cry and a poor suck. By 12 months of age she was diagnosed with bilateral sensorineural hearing loss [via brainstem auditory evoked response (BAER) testing]. She had delayed early motor milestones and walked independently at 18 months of age. She had intermittent episodes of diarrhea accompanied by poor feeding, muscle weakness, elevated creatine kinase (CK) (up to 18,025 U/L at 19 months of age). Progressive muscle weakness and contractures resulted in full-time wheelchair use by 11 years of age. She developed respiratory insufficiency, necessitating non-invasive ventilation, progressing to tracheostomy. Progressive scoliosis necessitated spinal fusion at age 11 years. At 14 years of age she had a gastrostomy tube placed for failure to thrive. She had amenorrhea, and following an endocrinologic evaluation was diagnosed with primary ovarian insufficiency. The index patient’s younger brother (P2) presented with a similar phenotype (Table 1) with congenital sensorineural hearing loss, muscular dystrophy with intermittent high elevations in CK (up to 11,250 U/L), respiratory insufficiency and scoliosis. His fertility remains unknown, and he has not undergone a formal, endocrinologic evaluation.

A further nine patients in five families with recessively inherited mutations in GGPS1 were subsequently identified, using direct GGPS1 sequencing based on a suggestive phenotype (patients P3, P4, P5, P6, P7 and P8) or analysis of whole exome sequencing results (patients P9-P11) (Table 1). Patient P3 was born prematurely (29 weeks gestational age) and was diagnosed with congenital sensorineural hearing loss. He carries compound heterozygous mutations in GGPS1 (R261G; P15S) and has a phenotype most similar to P1 and P2, with whom he shares the R261G mutation. Like patients P1 and P2, patient P3 has had variably elevated CK values (up to 6,641 U/L) and has developed respiratory insufficiency, wheelchair dependence, scoliosis and failure to thrive. In Family 3, three of six children are affected and carry homozygous R261H mutations in GGPS1, manifesting with a milder motor phenotype in that they all have muscle weakness but achieved the ability for a slow run and have maintained independent ambulation into adulthood. All have sensorineural hearing loss, and both affected females have been formally diagnosed with primary ovarian insufficiency. The male has not undergone a formal endocrinologic evaluation but has no offspring at 45 years of age. Patient P7 in Family 4 is also homozygous for the R261H mutation in GGPS1 and also manifests a comparatively milder phenotype from a motor perspective. At 14 and ½ years of age she remains independently ambulatory. Patient P8 in Family 5 is homozygous for the F257C mutation in GGPS1 and was diagnosed with congenital sensorineural hearing loss. At the time of his last assessment at 14 years of age, he remained independently ambulatory. In Family 6
three of five children (patients P9, P10 and P11) were identified via WES to carry homozygous F257C mutations in GGPS1, resulting in a moderate-to-severe phenotype with all three siblings manifesting muscle weakness and failure to thrive. The oldest sibling (a 22-year-old male) has been a full-time wheelchair user since 12 years, has respiratory insufficiency and scoliosis. Of the younger (female) siblings, the 11-year-old uses a wheelchair full-time, while the 8-year-old remains independently ambulatory.

Thus, progressive muscle weakness and joint contractures resulting in loss of independent ambulation, respiratory insufficiency necessitating ventilation dependence and severe scoliosis were seen in patients P1, P2, P3 and P9, while the other patients had a less severe progression of weakness. Sensorineural hearing loss was present in all but one patient in this cohort and was the first symptom identified in those patients with milder motor phenotypes. Given that the hearing loss was diagnosed in some patients in the neonatal period and in others during childhood, the onset is likely congenital, since diagnosis relies on a formal audiometric evaluation. Primary ovarian insufficiency (POI) also known as premature ovarian failure has been diagnosed in all post-pubertal females in this cohort, as confirmed by menopausal levels of follicle stimulating hormone (FSH) in the setting of a history of amenorrhea [P1 (FSH: 88.2 IU/L)] or infertility [P4 (FSH: 50.3 IU/L) and P6 (FSH: 53.2 IU/L)]. Eight patients had evidence of failure to thrive and/or short stature, potentially suggestive of further endocrinologic involvement. Of note, no cardiac or cognitive involvement has been noted in this cohort.

Whole-body muscle MRI was performed in patients P4, P5 and P6 and demonstrates variable increase in T1 signal in select muscles, resulting from fatty infiltration and thus consistent with an underlying muscular dystrophy (Fig 1C). It is notable that these 3 patients all demonstrate relative sparing of the rectus femoris, sartorius and gracilis muscles. Clear asymmetry of muscle involvement and heterogeneously distributed abnormal T1 signal in the hamstrings is appreciated in patients P5 and P6.

Muscle biopsies were performed in 9 patients (P1-P9). Histology was dystrophic with evidence of degeneration and regeneration and internalized nuclei. There were occasional rimmed vacuoles while the oxidative stains had peripherally increased oxidative reactivity in some fibers and core-like regions in other fibers. Electron microscopy revealed ultrastructural evidence of enlarged but structurally normal mitochondria (P8) as well as evidence of excess autophagic material (P1 and P8) (Fig 2). The CoQ10 level in muscle was determined to be normal in patient P1. Of note, patient P3 was given an empirical treatment trial of oral CoQ10, which did not result in any noted improvement of symptoms.
In summary, \textit{GGPS1}-related muscular dystrophy/hearing loss is characterized by a remarkably consistent and recognizable phenotype of congenital sensorineural hearing loss, primary ovarian insufficiency in females, proximal muscle weakness with episodes of variably elevated CK, scoliosis and respiratory insufficiency, in which the symptoms are progressive in nature and can be severe. Muscle histological and ultrastructural findings are consistent with a dystrophic process with evidence of abnormal autophagy and mild mitochondrial changes.

\textbf{Gene Identification and Mutations}

In the index family whole exome sequencing in the two index patients (P1 and P2) was combined with haplotype analysis on the entire family which ruled out 97.3\% of the exome, leaving 2.07\% consistent with recessive compound heterozygous inheritance. The compatible region was distributed on three separate regions on chromosome 1, and one region on chromosome 3, covering 55,538,583 bp, and containing 745 genes. Subsequently, WES data in P1 and P2 was analyzed for shared biallelic rare variants that were predicted to be damaging. Two variants (p.Y259C and p.R261G) in the \textit{geranylgeranyl diphosphate synthase 1} or \textit{GGPS1} gene located in one of the compatible regions on chromosome 1 were identified as the only likely candidates to be responsible for the phenotype in this family. Both were extremely rare, p.Y259C was not present in gnomAD (Genome Aggregation Database) (https://www.biorxiv.org/content/10.1101/531210v3), while p.R261G was listed once, and both were predicted to be damaging [Polyphen prediction score of 1.000 and 0.711 for p.Y259C and p.R261G respectively]. Mutation and segregation in the family were confirmed by Sanger sequencing.

Given the highly specific appearing clinical phenotype in the index family, an additional six patients in four families were identified in neuromuscular centers in Europe and Asia and analyzed by direct sequencing of \textit{GGPS1}. One additional family (Family 6) with three affected siblings was identified by WES. In all patients, we identified biallelic pathogenic variants in \textit{GGPS1}; four families were found to be homozygous, and in the remaining family compound heterozygous variants were identified. In all families missense variants were identified: F257C (2 families), R261H (2 families), and R261G in compound heterozygosity with: P15S in Family 2 (P3) and Y259C in Family 1 (P1 and P2). Allele (AF) frequencies as determined in gnomAD were very low: [P15S; AF=0] [F257C; AF=0] [Y259C; AF=0] [R261G; AF=0.00003] [R261H; AF=0.00002]. Rare heterozygous carriers for loss-of-function variants in \textit{GGPS1} are listed in gnomAD and should therefore be asymptomatic. The pathogenic variants fell within a specific five amino acid region towards the C terminus around the start of helix 11 as of yet unclear function (Fig 3A). In animals, geranylgeranyl diphosphate synthase is formed as a hexamer and in certain circumstances as an octamer, while in plants it is a dimer.17 \textit{In silico} modeling of GGPPS hexamer shows that this domain, in which all but one of the pathogenic variants (P15S)
were clustered, is located towards the outside of the hexamer and not in the barrel where the catalytic core of the enzyme is located (Fig 4A). The first α-helix containing the P15S mutation is conserved and involved in the formation of the trimer from the dimers (Fig 3A). While the catalytic domain itself is highly conserved across plants and animals, the mutated five amino acid domain is highly conserved in animals but not in plant *ggps1*, suggesting a function beyond the basic enzymatic activity of the enzyme in animals cells (Fig 3A).

We were unable to generate a crystal structure of mutant GGPPS, while *in silico* modelling of the pathogenic variants did not result in major conformational or charge distribution changes of the 11th alpha helix (Fig 4B-D); only R261G results in the loss of a positive charge (Fig 4E,F).

Immunohistochemical Analysis

In primary human dermal fibroblast GGPPS immunocytochemistry revealed a rather uniform cytoplasmic expression consistent with its known cytosolic localization, along with signals concentrated at some organelles and the perinuclear region (Fig 5A). There was no obvious difference in this pattern in patients, as seen in P1 compared to controls. In longitudinal sections of control human muscle, GGPPS immunohistochemistry showed prominent localization to the Z disc, which was labeled with desmin (Fig 5B). In patients, there was no deficiency of GGPPS immunoreactivity compared to controls; in fact, it appeared brighter and showed some focal, subsarcolemmal accumulation, partially co-localizing with the mitochondrial marker ATP synthase beta (Fig 5C).

Enzymatic Activity

We first measured enzyme activity of wild type and mutant GGPPS expressed on bacteria. Using 10uM FPP/IPP as a substrate on showed that the P15S mutant had the same activity as wild type; however, the other mutants (F257C, Y259C, R261G, and R261H) consistently showed a reduced rate of activity of approximately 70-85% of wild type (Fig 6A). Activity assays performed with 20uM FPP/IPP in the presence of 20uM GGPP (thus a concentration of GGPP just below the concentration required for product inhibition in the wild type enzyme) also had no effect on the enzyme activity in the mutants, suggesting that the mutations were not causing abnormal product release issue or an increase in their sensitivity to product inhibition (data not shown). Next we measured GGPPS enzymatic activity in Lenti-MyoD-converted myoblasts of normal controls and patients (Fig 6B). We found that enzymatic activity in samples pooled from 4 patients (P1, P2, P6 and P8) was decreased to about 50% of the activity in a pooled normal control sample.

GGPPS Conformation
GGPPS has been shown to be hexameric in structure as a trimer of dimers. The size of the enzyme produced in the bacterial expression system in solution was measured using gel filtration chromatography. We found that mutant enzymes eluted essentially at a similar point to the wild type enzyme (Fig 3C). The molecular weight of each mutant enzyme was in the expected range of 240-255KDa, suggesting the complexes are hexameric. There was a small amount of aggregated protein apparent for mutants Y259C, R261H and R261G which eluted with the void volume, but no indication of any smaller enzyme unit such as the dimer.

Membrane Repair Following Focal Injury

Patient fibroblasts were used to generate myoblasts, which were then differentiated into myotubes prior to testing the cell membrane repair kinetics and the ability of these cells to repair from focal laser injury as described. We observed greater dye entry, indicating a poor cell membrane repair, in both the patient myoblasts and myotubes as compared to the healthy controls (Fig 6C,E traces). Consequently, there was about a 2-fold increase in the number of patient myoblasts that failed to repair (Fig 6D). Interestingly, despite the experimental challenge associated with the greater fragility of myotubes grown on a dish, which results in many more myotubes (compared to myoblasts) detaching upon injury, the patient myotubes demonstrated a 2-fold reduction in their ability to survive focal injury as compared to the control myotubes (Fig 6F).

Ggps1 p.Y259C Knock-In Mouse

Given that total enzymatic activity was only moderately decreased in vitro, and the fact that the identified mutations cluster in a very narrow, externally facing domain outside of the catalytic core of the enzyme, we surmised that the human disease-associated mutations would likely only interfere with a highly specific function or subcellular localization of the protein to explain the very specific clinical phenotype. As a total knockout the gene is not viable, we therefore created a knock-in mouse of the mutation p.Y259C (Fig 7A) detected in compound heterozygosity in the index family (Family 1) to study the effects of the mutant GGPS1 on the organismal level. We chose this mutation with the highest Polyphen score in order to maximize our chances of detecting a phenotype in the mouse, as knock-in models of human missense mutations are frequently insufficiently penetrant. We were surprised to find that no litter included homozygous mutant animals. Timed pregnancies (Fig 7B-P) revealed that homozygote Y259C knock-in embryos developed up to ED12.5 with no live embryos observed after this point. No gross developmental abnormalities but a dramatically slowed rate of development was evident at ED10.5 when homozygous Y259C knock-in embryos more closely resembled a wild type embryo at ED9.5, while at ED12.5 they resembled the typical development observed in wild type embryos at ED10. Thus, detailed mechanistic studies relevant to the human phenotype were not possible in this mouse strain.
Discussion

There are three important clinical dimensions to this recognizable syndrome: muscular dystrophy, hearing loss, and infertility. The muscular dystrophy ranged from prenatal/congenital onset with progression to loss of ambulation and respiratory failure in early teenage years, to milder manifestations with preserved ambulation into adulthood (Table 1). In P1, P2 and P7 there was a history of episodic worsening of weakness concomitant with higher CK elevations during episodes of diarrhea. Muscle MR imaging performed in Family 3 (Fig 1C) revealed variable evidence of fatty replacement of muscles consistent with a muscular dystrophy. The relative sparing of the rectus femoris, sartorius and gracilis muscles and asymmetric involvement of muscles in this clinical context may be diagnostically helpful but can also be observed in other muscular dystrophies. Imaging of additional patients will be required to assess whether a consistent pattern will emerge. Muscle histology in six patients confirms degenerative features of muscular dystrophy but with ultrastructural findings of disordered autophagy and larger, but structurally normal-appearing, mitochondria, pointing to potential involvement of these organelles (Fig 2).

To our knowledge, this triad of clinical findings has not been seen in another form of muscular disease. Notably, the sensorineural hearing loss (confirmed in all but one patient in this cohort) was congenital in onset, as it was apparent as a delay in early language acquisition or evident on the first formal audiometric testing performed. Primary ovarian insufficiency was present in all post-pubertal females in this cohort, as confirmed by abnormally high follicle stimulating hormones (FSH) levels when evaluated for amenorrhea (P1) or infertility (P4 and P6). The manifestations of sensorineural hearing loss and primary ovarian insufficiency were not related to the severity of the muscular dystrophy. While we were not able to obtain andrological examinations on the post-pubertal male patients in our series, none of the five male adult patients has had children. Of interest, reduced expression of GGPPS in testis has been linked to infertility in men.19, 20

The sensorineural hearing loss observed in patients with GGPS1-related muscular dystrophy is most likely sensory organ related and localized to the organ of Corti, consistent with cochlear implantation being highly effective in all four patients in our cohort who underwent implantation. Hereditary sensorineural hearing loss is genetically and mechanistically very heterogeneous.21, 22 None of the recognized forms of hereditary sensorineural hearing loss has muscular dystrophy associated as part of the phenotype. Hearing loss may occur in combination with a muscular dystrophy or a myopathy in early onset facioscapulohumeral dystrophy (FSHD) 2, 23 and Vici syndrome, a complex congenital multisystemic disorder caused by recessive mutations in autophagy regulator EPG5 gene, which can also be associated with sensorineural hearing loss,24 25 26 27 as well as a vacuolar myopathy,28 thus implicating abnormal autophagy
regulation in the causation of sensorineural hearing loss and myopathy. Early onset sensorineural hearing loss and primary ovarian insufficiency without muscular dystrophy have been recognized in Perrault syndrome, a syndrome that is genetically heterogeneous and associated thus far with mutations in the genes HSD17B4, HARS2, LARS2, CLPP and C10orf2, implicating mitochondrial and peroxisomal pathogenesis in this constellation. Patients with mutations in the mitochondrial tRNA synthase genes LARS2 or KARS in addition to sensorineural hearing loss and ovarian insufficiency may also have cerebral leukodystrophy.

Possible downstream effects of GGPPS dysfunction and thus GGPP deficiency would be predicted to include impaired geranylgeranylation of small GTPases of the Rab, and Rho/Rac families with consequences on organelles involved in autophagy (such as Rabs23/24/7b), mitochondrial fission and fusion (Rab32), as well as actin filament dynamics (RhoA/Rac/Cdc42). A defect in the geranylgeranyl prenylation would thus be an intuitive way to tie together some of the multisystemic effects seen in the patients, including in muscle. In support of impaired muscle cell membrane healing as contributing to the dystrophic process with its high CK, we were able to demonstrate significant delays in membrane healing in patient fibroblast MyoD-transformed myoblasts and myotubes. The defective membrane healing could point to deficits of membrane shuttling from late endosomal compartment to the membrane (such as Rabs11b/11/4) and/or of mitochondria to the site of injury. Some of the findings clinically (worsening of the weakness associated with diarrhea), histologically (occasional ragged red and COX deficiency fibers) and ultrastructurally (enlarged mitochondria) could also point to mitochondrial dysfunction as one of the involved mechanisms, at least for the muscle aspect of the disease in the more severe patients. In ongoing work, however, we have not yet been able to pinpoint a consistent change in the small GTPases or in the overall prenylome of the cells (not shown). Given the localization of the mutation, however, we would speculate that the effects are more subtle and related to the required precise subcellular spatial and temporal resolution of GGPPS depending on the cellular state and needs.

Organism-wide complete inactivation of GGPPS function is not compatible with multicellular survival. A hypomorphic allele in drosophila causes the quemao brittle hair phenotype. A complete knock-out of Ggps-1 in the mouse is not viable, so that a floxed allele of Ggps1 in the mouse has been generated allowing for several tissue specific models to be created. While not completely inactivating the enzyme, the resulting GGPPS deficiency state caused a plethora of abnormalities by disrupting the protein FPP/GGPP balance resulting in both increased protein farnesylation (Rhe-b in cardiac myocyte, H-Ras in Sertoli cell and Rhe-b in germ cell of testis) and decreased protein geranylgeranylation (K-Ras in lung epithelial cell, RhoA and Rab27 in oocyte, and RhoA in skeletal muscle cell). Interestingly, the MCK-Cre driving muscle specific GGPPS inactivation did not cause abnormality in muscle fiber morphology, fiber type composition, running ability or rotarod test.
but improved systemic insulin sensitivity by activating Irs-1/Pi3k/Akt pathway through decreasing RhoA geranylgeranylation. Since GGPPS enzyme activities of the mutant GGPPS identified in our patients were only mildly reduced, we speculate the function of these mutants may be different from general GGPPS activity reduction.

Interference with the mevalonate pathway has been linked to human disease (Fig 3B). Pharmacological targeting of the mevalonate pathway includes the use of statins to block HMGCoA reductase, which can lead to the development of myopathy in a subset of patients. Abnormal geranylgeranylation specifically has been reported in muscle biopsies from patients with statin myopathy as well as in cellular models with reduced prenylation of small GTPases including Rab and RhoA, and increased apoptosis. The anti-bone resorptive drug class of bisphosphonates directly inhibit farnesyl diphosphate synthase (FPPS) or geranylgeranyl diphosphate synthase (GGPPS). Loss of bone-resorptive activity and osteoclast apoptosis is due primarily to loss of geranylgeranylated small GTPases. In this context it is of interest that a rare genetic variant in GGPS1 (Asp188Tyr) has been linked to an increased fracture risk. When expressed in cells, the Asp188Tyr variant leads to reduced enzyme activity. In our patients there was no apparent bone phenotype; however, none of the patients has been treated with bisphosphonates, so that it remains unclear whether our patient cohort would react to the drug with higher sensitivity.

The specific biallelic mutations identified in this patient cohort were all extremely rare, recessively acting missense mutations, three of which (R261H, R261G, and F257C) were recurrent in different ethnic populations. All mutations except for one allele (P15S in patient 3) define a stretch of five amino acids in the 11th alpha helix as a functionally important microdomain that is specific to animal GGPPS and not seen in the plant enzyme. The changes induced by the mutations are not structurally dramatic, but they likely change the hydrogen bonding network within the helix. The domain is clearly outside the catalytic site which is located within the barrel formed by the ten helices, but it is facing outward where it could potentially interact with as yet to be defined binding partners involved in the localization or shuttling enzyme (Fig 4A). Only the P15S mutation is outside of the narrow five amino acid domain, but it occurs in compound heterozygosity with the with R261G mutation in the original domain. It is possible that P15S represents a hypomorphic allele acting in conjunction with the R261G missense in the commonly mutated micro-domain. Enzymatic activity of GGPPS in patient derived fibroblasts was only moderately impaired to about 50%, a degree of enzymatic dysfunction that in metabolic disease in general should not lead to a phenotype. In fact, heterozygous loss-of-function alleles in GGPS1 are listed in gnomAD in presumably normal individuals. It is thus likely that the effects of the mutations on GGPPS function are more subtle, for instance by impairing the dynamic subcellular localization...
of the enzyme for cell type specific processes. It is notable that our effort to generate a knock-in mouse of one of the missense mutations was unexpectedly severe in that it caused embryonic lethality, the cause of which is not entirely clear, but strong evidence for a clear underdevelopment of the placental/embryonic vascular unit was evident. Small GTPases, including Rap1, Rho GTPases, and Rab GTPases, have previously been reported to regulate cell–cell junctions in various cell types and developmental stages45, 46 including for vascular and heart morphogenesis.45, 47, 48 While not providing a suitable model for the human disease, the severity of the phenotype seen in the resulting Y259C knock-in mouse confirms the sensitivity of organisms to GGPPS dysfunction as well as the general pathogenicity of the missense mutation. To address this, we are generating a new mouse line which is heterozygous for the knock-in allele and a floxed allele for tissue specific “unmasking” of the missense, as well as a knock-in line for a milder missense seen in homozygosity in some of the patients.

Biallelic, highly specific missense mutations in GGPS1 in 11 patients from six independent families define a unique new syndrome of muscular dystrophy with associated congenital sensorineural hearing loss and primary ovarian insufficiency in females, while also highlighting the mevalonate/isoprenoid pathway as a novel, albeit still incompletely explored, pathway for muscular dystrophy, hearing loss, and infertility. Because of the fundamental role GGPPS plays in cellular processes at all levels, it is likely that the effects of the mutations described here will be highly specific as to their cellular mechanisms in muscle, inner ear and ovary. Shedding light on these new mechanisms and pathways might also open avenues for therapeutic intervention.

Acknowledgment

This study was supported by intramural funds from the NIH National Institute of Neurological Disorders and Stroke (grant to C.G.B). JED is supported by NIHR Oxford Biomedical Research Centre, Oxford UK. JL and JB are supported by France Génomique (ANR-10-INBS-09) and Fondation Maladies Rares within the frame of the “Myocapture” sequencing project. We thank the patients and their families for their generous participation in this study. We thank Dr. Payam Mohassel for his help in evaluating the patients.

Author Contributions

ARF, YZ, JR and CGB contributed to the conception and design of the study; ARF, YZ, JED, JR, GC, HX, VS, TV, NR, S Donkervoort, YH, T Markello, AH, LQ, JD, KM, RSF, YF, VM, S Duguez, IN, JL, MS, EM, T Maisonobe, PT, MH, IH, KB, UO, JB, JKJ, TS and CGB contributed to the acquisition and analysis of data; ARF, YZ, JED, JR, NR, S Donkervoort, MS, EM, T Maisonobe, JKJ, TS, CGB contributed to drafting the text and preparing the figures.
Potential Conflicts of Interest

TV reports personal fees from DZHK, Antisense Therapeutics, Biophytis, Capricor, Italfarmaco, Santhera, Servier, Sarepta, Solid Biosciences, Dynacure, DiNAQOR and Catabasis outside the submitted work.

References

1. Mercuri E, Bonnemann CG, Muntoni F. Muscular dystrophies. Lancet. 2019 Nov 30;394(10213):2025-38.
2. Tawil R. Facioscapulohumeral muscular dystrophy. Handb Clin Neurol. 2018;148:541-8.
3. Demain LA, Urquhart JE, O'Sullivan J, et al. Expanding the genotypic spectrum of Perrault syndrome. Clin Genet. 2017 Feb;91(2):302-12.
4. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425-30.
5. Xu N, Shen N, Wang X, Jiang S, Xue B, Li C. Protein prenylation and human diseases: a balance of protein farnesylation and geranylgeranylation. Sci China Life Sci. 2015 Apr;58(4):328-35.
6. McTaggart SJ. Isoprenylated proteins. Cell Mol Life Sci. 2006 Feb;63(3):255-67.
7. Taylor JS, Reid TS, Terry KL, Casey PJ, Beese LS. Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J. 2003 Nov 17;22(22):5963-74.
8. Schumacher MM, Elsabrouty R, Seemann J, Jo Y, DeBose-Boyd RA. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase. Elife. 2015 Mar 5;4.

9. Shidoji Y, Tabata Y. Unequivocal evidence for endogenous geranylgeranoic acid biosynthesized from mevalonate in mammalian cells. J Lipid Res. 2019 Mar;60(3):579-93.

10. Roca-Ayats N, Balcells S, Garcia-Giralt N, et al. GGPS1 Mutation and Atypical Femoral Fractures with Bisphosphonates. N Engl J Med. 2017 May 4;376(18):1794-5.

11. Nguyen HH, van de Laarschot DM, Verkerk A, Milat F, Zillikens MC, Ebeling PR. Genetic Risk Factors for Atypical Femoral Fractures (AFFs): A Systematic Review. JBMR Plus. 2018 Jan;2(1):1-11.

12. Roca-Ayats N, Ng PY, Garcia-Giralt N, et al. Functional Characterization of a GGPPS Variant Identified in Atypical Femoral Fracture Patients and Delineation of the Role of GGPPS in Bone-Relevant Cell Types. J Bone Miner Res. 2018 Dec;33(12):2091-8.

13. Gu F, Wu A, Gordon MG, et al. A suite of automated sequence analyses reduces the number of candidate deleterious variants and reveals a difference between probands and unaffected siblings. Genet Med. 2019 Aug;21(8):1772-80.

14. Mohassel P, Liewluck T, Hu Y, et al. Dominant collagen XII mutations cause a distal myopathy. Ann Clin Transl Neurol. 2019 Oct;6(10):1980-8.

15. Kavanagh KL, Dunford JE, Bunkoczi G, Russell RG, Oppermann U. The crystal structure of human geranylgeranyl pyrophosphate synthase reveals a novel hexameric arrangement and inhibitory product binding. J Biol Chem. 2006 Aug 4;281(31):22004-12.

16. Horn A, Van der Meulen JH, Defour A, et al. Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci Signal. 2017 Sep 5;10(495).

17. Matsumura Y, Kidokoro T, Miyagi Y, Marilingaiah NR, Sagami H. The carboxyl-terminal region of the geranylgeranyl diphosphate synthase is indispensable for the stabilization of the region involved in substrate binding and catalysis. J Biochem. 2007 Oct;142(4):533-7.

18. Ericsson J, Runquist M, Thelin A, Andersson M, Chojnacki T, Dallner G. Distribution of prenyltransferases in rat tissues. Evidence for a cytosolic all-trans-geranylgeranyl diphosphate synthase. J Biol Chem. 1993 Jan 15;268(2):832-8.

19. Wang XX, Ying P, Diao F, et al. Altered protein prenylation in Sertoli cells is associated with adult infertility resulting from childhood mumps infection. J Exp Med. 2013 Jul 29;210(8):1559-74.

20. Bae JW, Kim SH, Kim DH, et al. Ras-related proteins (Rab) are key proteins related to male fertility following a unique activation mechanism. Reprod Biol. 2019 Dec;19(4):356-62.

21. Egilmez OK, Kalcioğlu MT. Genetics of Nonsyndromic Congenital Hearing Loss. Scientifica (Cairo). 2016;2016:7576064.

22. Duman D, Tekin M. Autosomal recessive nonsyndromic deafness genes: a review. Front Biosci (Landmark Ed). 2012 Jun 1;17:2213-36.
23. Lutz KL, Holte L, Kliethermes SA, Stephan C, Mathews KD. Clinical and genetic features of hearing loss in facioscapulohumeral muscular dystrophy. Neurology. 2013 Oct 15;81(16):1374-7.
24. McClelland V, Cullup T, Bodi I, et al. Vici syndrome associated with sensorineural hearing loss and evidence of neuromuscular involvement on muscle biopsy. Am J Med Genet A. 2010 Mar;152A(3):741-7.
25. Finocchi A, Angelino G, Cantarutti N, et al. Immunodeficiency in Vici syndrome: a heterogeneous phenotype. Am J Med Genet A. 2012 Feb;158A(2):434-9.
26. Ozkale M, Erol I, Gümüş A, Ozkale Y, Alehan F. Vici syndrome associated with sensorineural hearing loss and laryngomalacia. Pediatr Neurol. 2012 Nov;47(5):375-8.
27. Byrne S, Dionisi-Vici C, Smith L, Gautel M, Jungbluth H. Vici syndrome: a review. Orphanet J Rare Dis. 2016 Feb 29;11:21.
28. Hedberg-Oldfors C, Darin N, Oldfors A. Muscle pathology in Vici syndrome-A case study with a novel mutation in EPG5 and a summary of the literature. Neuromuscul Disord. 2017 Aug;27(8):771-6.
29. van der Knaap MS, Bugiani M, Mendes MI, et al. Biallelic variants in LARS2 and KARS cause deafness and (ovario)leukodystrophy. Neurology. 2019 Mar 12;92(11):e1225-e37.
30. Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A. Rab GTPases at a glance. J Cell Sci. 2007 Nov 15;120(Pt 22):3905-10.
31. Horn A, Jaiswal JK. Cellular mechanisms and signals that coordinate plasma membrane repair. Cell Mol Life Sci. 2018 Oct;75(20):3751-70.
32. Lai C, McMahon R, Young C, Mackay TF, Langley CH. quemao, a Drosophila bristle locus, encodes geranylgeranyl pyrophosphate synthase. Genetics. 1998 Jun;149(2):1051-61.
33. Yu X, Shen N, Zhang ML, et al. Egr-1 decreases adipocyte insulin sensitivity by tilting PI3K/Akt and MAPK signal balance in mice. EMBO J. 2011 Aug 9;30(18):3754-65.
34. Xu N, Guan S, Chen Z, et al. The alteration of protein prenylation induces cardiomyocyte hypertrophy through Rheb-mTORC1 signalling and leads to chronic heart failure. J Pathol. 2015 Apr;235(5):672-85.
35. Diao F, Jiang C, Wang XX, et al. Alteration of protein prenylation promotes spermatogonial differentiation and exhausts spermatogonial stem cells in newborn mice. Sci Rep. 2016 Jul 4;6:28917.
36. Jiang C, Diao F, Sang YJ, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017 Jan;13(1):e1006535.
37. Tao W, Wu J, Xie BX, et al. Lipid-induced Muscle Insulin Resistance Is Mediated by GGPPS via Modulation of the RhoA/Rho Kinase Signaling Pathway. J Biol Chem. 2015 Aug 14;290(33):20086-97.
38. Jia WJ, Jiang S, Tang QL, et al. Geranylgeranyl Diphosphate Synthase Modulates Fetal Lung Branching Morphogenesis Possibly through Controlling K-Ras Prenylation. Am J Pathol. 2016 Jun;186(6):1454-65.
39. Mammen AL. Statin-Associated Autoimmune Myopathy. N Engl J Med. 2016 Feb 18;374(7):664-9.
40. Beltowski J, Wojcicka G, Jamroz-Wisniewska A. Adverse effects of statins - mechanisms and consequences. Curr Drug Saf. 2009 Sep;4(3):209-28.
41. Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J Clin Med. 2019 Dec 20;9(1).
42. Rogers MJ. New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des. 2003;9(32):2643-58.
43. Peris P, Gonzalez-Roca E, Rodriguez-Garcia SC, Del Mar Lopez-Cobo M, Monegal A, Guanabens N. Incidence of Mutations in the ALPL, GGPS1, and CYP1A1 Genes in Patients With Atypical Femoral Fractures. JBMR Plus. 2019 Jan;3(1):29-36.
44. Chang TH, Guo RT, Ko TP, Wang AH, Liang PH. Crystal structure of type-III geranylgeranyl pyrophosphate synthase from Saccharomyces cerevisiae and the mechanism of product chain length determination. J Biol Chem. 2006 May 26;281(21):14991-5000.
45. Kooistra MR, Dube N, Bos JL. Rap1: a key regulator in cell-cell junction formation. J Cell Sci. 2007 Jan 1;120(Pt 1):17-22.
46. Fukata M, Kaibuchi K. Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol. 2001 Dec;2(12):887-97.
47. Leung C, Lu X, Liu M, Feng Q. Rac1 signaling is critical to cardiomyocyte polarity and embryonic heart development. J Am Heart Assoc. 2014 Oct 14;3(5):e001271.
48. Abu-Issa R. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development. Biochem Biophys Res Commun. 2015 Jan 24;456(4):847-52.
| Patient Identifier | Family 1 | Family 2 | Family 3 | Family 4 | Family 5 | Family 6 | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 |
| **GGPS1 mutations** | | | | | | | | | | |
| | p.[Tyr259Cys; Arg261Gly] c.[860A>G; 865C>G] | p.[Pro155Ser; Arg261Gly] c.[127C>T; 865C>G] | | | | | | | | |
| | Homozygous p.Arg261His c.866G>A | Homozygous p.Arg261His c.866G>A | Homozygous p.Phe257Cys c.854T>G | | | Homozygous p.Phe257Cys c.854T>G |
| **Sex** | F | M | M | F | M | F | F | M | M | F | F |
| **Ethnicity** | Irish, German and Polish | Irish, German and Polish | English | Moroccan | Chinese (Han) | Algerian | Moroccan |
| **Current age (years)** | 31 | 29 | 22 | 46 | 45 | 44 | 14 | 21 | 22 | 11 | 8 |
| **Age at last evaluation (years)** | 28 | 26 | 21 | 44 | 42 | 43 | 14 | 14 | 18 | 7 | 4 |
| **Sensorineural hearing loss** | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y |
| **Wheelchair dependence (age)** | Y (10 yrs) | Y (13 yrs) | Y (15 yrs) | N | N | N | N | NA | Y (12 yrs) | Y (11 yrs) | N |
| **Respiratory insufficiency** | Y | Y | Y | Y | Y | Y | NA | Y | N | N | N |
| **FVC (% predicted)** | NA | NA | NA | 74% | 67% | 79% | 47% | NA | NA | NA | NA |
| **Scoliosis** | Y | Y | Y | N | N | N | N | NA | Y | N | N |
| **Maximal recorded CK (U/L)** | 18,025 | 11,250 | 6,641 | 336 | 4,900 | 281 | 14,143 | 1,600 | 3,633 | NA | NA |
| **Primary ovarian failure** | Y | - | - | Y | - | Y | Uncertain due to age | - | - | Uncertain due to age | Uncertain due to age |
| **Failure to thrive** | Y | Y | Y | N | Y | N | Y | NA | Y | Y | Y |
Figure 1: Autosomal recessive inheritance of GGPS1 mutations and phenotypic characteristics of GGPS1-related muscular dystrophy (A) Patient pedigrees demonstrating biallelic GGPS1 mutations in six separate families. (B) Prominent lordosis (following spinal fixation surgery) and hip flexion, knee flexion and elbow flexion contractures seen in patients P1 and P2 who both demonstrate diaphragm compressing maneuvers including rocking back and forth or increasing intra-abdominal pressure on expiration by hand (a-d). P1 has a tracheostomy for ventilation (a and b), while P2 uses non-invasive ventilation in the form of bi-level positive airway pressure. Severe neck extension contracture evident in P2 (c) necessitating support of neck with hand to promote upright head posture (d). (C) Muscle MRI Findings in GGPS1-related muscular dystrophy. Muscle MRI performed in Family 3 [patients P6 (a and d), P4 (b and e) and P5 (c and f)] showing variably increased T1 signal in muscles, indicative of fatty infiltration. There is evidence of relative sparing of the rectus femoris, sartorius and gracilis muscles (a, b and c) and relative involvement of the soleus muscle (d, e and f). There is evidence of considerably asymmetric involvement with abnormal T1 signal in the lateral aspect of the vastus lateralis in patient P4 on the right only (arrow) (b) and abnormal T1 signal of the adductor longus on the left only (arrowhead). Patient 5 (c) has asymmetric involvement of the hamstrings with notable involvement of the hamstrings in the right leg and relative sparing of the hamstrings in the left leg.
Figure 2: Histological, Ultrastructural and Immunostaining Characteristics of muscle in GGPS1-related muscular dystrophy. Muscle from a deltoid biopsy performed in patient P1 at 21 years (A-C) demonstrates nuclear internalization and a rimmed vacuole (arrow) on Gömöri Trichrome staining (A). NADH (B) and COX (C) stains reveal focally irregular staining including core-like regions (C). Muscle from a deltoid biopsy performed in patient P4 at 39 years (D-F) demonstrates a ragged red fiber (asterisk) and myophagocytosis (arrow) on Gömöri Trichrome staining (D). NADH (E) and COX (F) staining demonstrate mildly irregular staining and a COX negative fiber (asterisk) (F). EM performed on P1’s muscle biopsy (G) reveals autophagic material including myeloid bodies. EM of P2’s deltoid biopsy at 19 years (H and I) shows findings suggestive of mitophagy (H) and accumulation of subsarcolemmal mitochondria (I). P8’s quadriceps biopsy at 14 years (J-L) reveals ultrastructural evidence of elongated mitochondria (J) and an accumulation of autophagic debris (K). Further evidence of disordered autophagy is seen by positive staining for the autophagy marker LC3B (L).
Figure 3: GGPPS mutations localization, conformation and the mevalonate pathway (A) Alignment of human GGPPS with GGPPS from other species (adapted from Kavanagh et al JBC 2006 with modifications). Red shaded boxes indicate the position of the mutations. Blue boxes show residues involved in protein/protein interactions; orange boxes show conserved catalytic residues. Red cylinders show alpha helices of hGGPPS. While the catalytic domain is conserved across animals and plants, the mutated residues are conserved in all animals including drosophila, but not in plant species, suggesting a specific role for this domain in animal cells. (B) The molecular weight of GGPPS produced in bacterial expression system in solution was measured using gel filtration. The GGPPS mutants eluted essentially at a similar point to the wild type enzyme, with estimated molecular size about 240-255 KD, suggesting they are presented as a hexamer. There was no indication of any smaller enzyme unit such as the dimer, but a small amount of aggregated protein apparent for mutants Y259C, R261H and R261G (arrow). Blue= WT, Red=P15S, Brown= F257C, Green= Y259C, Pink= R261H, Cyan= R261G. (C) The mevalonate pathway. Mevalonate is the precursor of FPP and GGPP, which are the substrates for prenylation enzymes. Various inhibitors in the pathway are indicated [DGBP: digeranyl bisphosphonate; FTI: Farnesyl protein transferase inhibitor; GGTI: GGPTase inhibitor].
Figure 4: GGPPS modeling (A) GGPPS hexamer overview showing the position of the mutations. Each dimer is composed of a blue and a yellow monomer, the whole molecule is made up of three dimers. F257, Y259 and R261 are shown on monomer A (blue); P15 is shown on monomer D (yellow). The C-terminus and active site of monomer A are arrowed. The N-terminus of monomer D is also annotated. Mutated residues at C-terminus (F257, Y259 and R261) are located at an externally facing orientation of the 11th alpha helix and outside of the barrel of the hexamer where the catalytic activity of GGPPS is located. The P15S mutation on the other hand maps to the first helical domain which is in close interaction with residues 226-254 (region C in Fig 2A) of monomer A on the adjacent dimer, consistent with its purported role in assembly of the hexameric structure. (B-F) GGPPS mutant sites molecular model: Structural data was analyzed and figures were drawn using Molsoft Browser Pro, and PyMOL 2. (B) P15 is inducing a kink in the helix. The side chain of the amino acid is in a relatively large pocket, which contains a water molecule (not shown). This area forms the interaction zone between monomers A (dark blue) and D (yellow) of dimers A/B and C/D. The mutant protein has a serine in this location. The side chain volume of serine is smaller than that of proline, and so modeling a serine residue here using PyMOL 2 shows no steric clashes. (C) F257 (grey balls) sits just buried below the surface of GGPPS. It is surrounded by mainly hydrophobic residues – Y180, H194, V248 and L251 (transparent blue balls). R261 (not shown) fills the gap above it. The van de Waals volume of phenylalanine is 135Å, so it is possible to substitute with the 86Å volume of cysteine resulting in no steric hinderances. (D) Y259 sits on the surface with several interactions (F215, H219). The hydroxyl of Y259 sits closely with the oxygen (red) atoms of glutamic acid E141 and possibly forms an interaction. Replacing Y259 for C259 presents no steric clashes but probably abolishes any interaction with E141. (E) R261 sits on the outer surface of the GGPPS dimer facing the solvent. The side chain is shown as grey spheres for carbon atoms, blue for nitrogen and the main chain is in green. (F) Modeling the replacement of this residue with a histidine highlights steric clashes with K265 and F294, however K265 can rotate to minimize this clash. Replacing R261 with a glycine does not appear to cause a structural clash.
Figure 5: GGPPS in human dermal fibroblast and skeletal muscle (A) In human dermal fibroblasts, GGPPS showed a rather uniform cytoplasmic expression, along with signals concentrated in some organelles and in the perinuclear region. No significant difference was observed between patient derived fibroblasts (P1, with GGPS1 compound heterozygous mutations: p.Y259C; R261G) and normal control fibroblasts. (B) GGPPS showed a prominent Z disc localization (Z disc labeled with desmin antibody) in the longitudinal section of normal human muscle biopsy. (Scale bar = 2 µm) (C) As shown in the human muscle cross section, an increased GGPPS immunoreactive signal was observed in the muscle of patients (P1 and P8) compared with normal control, with some focal, subsarcolemmal accumulation which partially co-localizes with the mitochondrial marker ATP synthase beta. (Scale bar = 15 µm)
Figure 6: GGPPS enzyme activity and kinetics of human myoblasts/myotubes membrane repair following laser injury (A-B) GGPPS catalytic enzyme activity (A) in wild type and mutant GGPPS expressed in bacterial expression system, using 10 µM FPP/IPP as a substrate showed the P15S mutant had similar activity as wild type; however, the other mutants (F259C, Y259C, R261G and R261H) consistently showed a reduced activity (range about 70~85% of wild type activity) (n=3, technical repeats). (B) In human MyoD-converted myoblasts, the GGPPS enzymatic activity in pool patients’ cells (P1, P2, P6 and P8) decreased to about 50% of the activity in pooled control cells (P=0.1127). (C-F) Patient myoblasts and myotubes have poor membrane repair ability. Patient myoblasts (C) and myotubes (E) were focally injured by laser, and the traces show the kinetics of the FM1-43 dye fluorescence in patient myoblasts (n=93) and control myoblasts (n=105), indicating a delay in membrane repair in patient myoblasts (t-test, P=1.9E-24). Bar graph shows a greater fraction of the injured patient myoblasts failed to repair (30%) compared with control myoblasts (15%) (t-test, P=0.026) (D). Similarly, differentiated myotubes (E) showed significantly greater FM1-43 dye entry in patient myotubes (n=23) compared with control myotubes (n=31) (t-test, P=3.1E-15). Again, a higher proportion of the injured patient myotubes failed to repair (60%) compared with normal control.
(30%) (t-test, P=0.038). Note that myotubes have less efficient repair at baseline compared to myoblasts, hence the difference to the mutant line, while still significant, is less obvious (F).
Figure 7: Generation of homozygous knock-in of Y259C mice results in delayed embryonic growth and embryonic lethality. (A) Schematic representation of the targeting strategy for creation of a knock-in Y259C mutant mouse. Hatched rectangles represent Ggps1 coding sequences, grey rectangles indicate non-coding exon portions. The neomycin positive selection cassette is driven by a Phosphoglycerine kinase promoter (pGK) as indicated, and the loxP sites are represented by blue triangles and FRT sites by double red triangles. The initiation (ATG) and the Stop (Stop) codon used for isoform 3 where the Y259C mutation is present are indicated. In vivo Flp-mediated excision of the neomycin cassette is depicted. The diagram is not depicted to scale. (B) Photograph of a representative uterus from a heterozygous female at ED10.5 following mating to a heterozygous male. Arrows indicate the embryos in C-E while in the uterus. (C-E) Photographs of embryos for each genotype enveloped by their yolk sac with placentas following dissection from the uterus. (F-H) Embryos and placentas isolated at ED 10.5. Delayed growth in the homozygous knock-in embryos is shown in H. The knock-in embryo reflects the development typically observed at ED9.5 in wild type mice. (I-K) Recovery of all genotypes at E12.5 from heterozygous. Delayed embryonic growth in the homozygous embryo at ED12.5 (K) is reflective of the development of a wild type embryo at ED10.5. (L-N)
Placentas from the ED 12.5. embryos above. The placenta from the homozygous knock-in embryo is reduced in size and is developmentally delayed compared to litter controls. (O) Photograph of a uterus from a heterozygous female at ED13.5 showing obvious differences in conceptus size. (P) Representative photograph of embryos in their yolk sac with placentas following dissection from the uterus for each genotype. A homozygote knock-in embryo in an advanced state of reabsorption is indicated with an asterisk (*). A wild type and a heterozygous embryo are also observed to be undergoing reabsorption in this pregnancy. An embryo that we were unable to extract DNA from for genotyping is indicated by (♢).