Sirt3 suppresses calcium oxalate-induced renal tubular epithelial cell injury via modification of FoxO3a-mediated autophagy

Yonghan Peng1, Cheng Yang2, Xiaolei Shi1, Ling Li1, Hao Dong1, Changcheng Liu3, Ziyu Fang1, Zeyu Wang1, Shaoxiong Ming3, Min Liu1, Bin Xie4, Xiaofeng Gao1 and Yinghao Sun1

Abstract

High oxalic acid and calcium oxalate (CaOx)-induced renal tubular epithelial cell (TEC) injury plays a key role in nephrolithiasis. However, the mechanism remains unknown. Gene array analysis of the mice nephrolithiasis model indicated significant downregulation of sirtuin 3 (Sirt3) and activation of mitogen-activated protein kinase (MAPK) pathway. Kidney biopsy tissues of renal calculi patients also showed decreased Sirt3 expression. Silencing Sirt3 exacerbated oxidative stress and TEC death under CaOx stimulation. Restoring Sirt3 expression by overexpression or enhancing its activity protected renal function and reduced TEC death both in vitro and in vivo. Inhibiting the MAPK pathway resulted in upregulation of Sirt3 expression, preservation of renal function and decreased cell death both in vitro and in vivo. Furthermore, Sirt3 could upregulate FoxO3α activity post-translationally via deacetylation, dephosphorylation and deubiquitination. FoxO3α was found to interact with the promoter region of LC3B and to increase its expression, enhancing TEC autophagy and suppressing cell apoptosis and necrosis. Taken together, our results indicate that the MAPK/Sirt3/FoxO3α pathway modulates renal TEC death and autophagy in TEC injury.

Introduction

Nephrolithiasis is a common urological disease affecting 1–13% of the general population1. In the United States, approximately 12% of men and 5% of women are affected by nephrolithiasis during their lifetimes2. Kidney stones left untreated may lead to haematuria, renal colitis, urinary infection and urinary obstruction, which would result in hydronephrosis, renal function impairment and finally renal function insufficiency. Besides, after the first occurrence of nephrolithiasis, the risk of recurrence is 40% within 5 years, 60% within 10 years and 75% within 20 years3. The causes of nephrolithiasis are likely to involve multiple factors, including climate, diet and genetic background. It is reported that 75% of stones are composed of calcium; of these, calcium oxalate (CaOx) stone is the most common type4. However, the mechanism of CaOx stone formation has not been completely clarified, and there are no ideal clinical methods for preventing kidney stones.

Based on clinical and experimental data, it is becoming obvious that stone formation is not a simple physico-chemical disorder. The formation of a CaOx stone starts with supersaturation and crystallization of CaOx in the renal tubular lumen5. It has been reported that CaOx crystals trigger tissue inflammation via NLRP3
inflammasome- and caspase-1-mediated secretion of IL-1β and IL-18. However, these crystals also exert direct cytotoxic effects by promoting apoptotic cell death. Crystal deposits adhere to injured and dead renal tubular epithelial cells (TECs), which leads to further crystal retention and aggregation. Therefore, necrosis and apoptosis of renal TEC, especially renal proximal TEC, play a key role in CaOx kidney stone formation.

Seven subtypes of sirtuins have been identified in mammals, and sirtuins play major roles in protecting against cellular stress and in controlling metabolic pathways. Sirtuin 3 (sirt3), which is a NAD+-dependent protein deacetylase, regulates acetylated substrate peptides, maintains energy homeostasis and suppresses palmitate-induced ROS production and inflammation in proximal TEC. However, the role of Sirt3 in the pathophysiology of nephrolithiasis remains to be illustrated. We hypothesized that Sirt3 could inhibit CaOx-induced cell death in renal TEC during kidney stone formation. Therefore, in this study, we investigated the function and mechanism of Sirt3 in CaOx-induced TEC injury in vivo and in vitro, and the upstream signalling pathway for Sirt3 gene regulation.

Materials and Methods

Animal experiment
All animal experiments were performed according to the Guidelines for the Care and Use of Laboratory Animals of the Laboratory Animal Ethics Committee of the Second Military Medical University with good animal surgical research practices and were approved by the Laboratory Animal Ethics Committee of the Second Military Medical University (20180906057).

Clinical specimens
All samples were collected from patients in the Department of Urology, Shanghai Changhai hospital (Shanghai, China) with informed consent, and ethical approval was granted from the Shanghai Changhai Hospital Ethics Committee (CHEC2017-217). Normal control specimens were obtained from radical resection of the kidney, and kidney needle biopsy tissues were taken from renal calculi patients.

Assessment of renal injury
Creatinine and urea nitrogen levels were detected in blood and urine samples. Paraffin sections were used for in situ end labelling (ISEL) of fragmented DNAs with digoxigenin deoxyuridine by terminal deoxynucleotidyl transferase using an Apoptosis Detection Kit (Millipore, Billerica, MA, USA). Apoptotic cells were examined at 400 × magnification over 20 fields of tubulointerstitial areas and semi-quantitatively scored. The expression of neutrophil gelatinase-associated lipocalin (NGAL) was measured in both serum and urine using the NGAL ELISA kit (R&D Systems, Minneapolis, MN, USA).

Assessment of oxidation
The intracellular ROS level was measured using an ROS detection kit (#E004, Nanjing Jiancheng Bioengineering Institute, Nanjing, China). In brief, the single-cell suspension was obtained from murine kidneys, and added with 10 μM 2,7-dichlorofluorescin diacetate (DCFH-DA). The cells were incubated for 30 min at 37 °C, and then centrifuged at 1000 × g for 5 min. After washing for two times with PBS, the fluorescence units (RFU) was detected at excitation/emission wavelengths of 485/525 nm.

Immunohistochemistry
Immunohistochemical staining for Sirt3 (Cell Signaling Technology, 1:1000) was performed on kidney sections using a DAKO ChemMate EnVision Detection Kit (DAKO, Carpinteria, CA, USA) as previously described.

Western blot analysis
Membrane proteins were separated on sodium dodecyl sulphate–polyacrylamide gels and transferred to polyvinylidene difluoride membranes. The membranes were blocked with 5% milk and incubated overnight with indicated antibodies. The results were analyzed as previously described.

Cell culture and in vitro model
Murine renal tubular epithelial cells (TCMK-1) were purchased from the American Type Culture Collection (ATCC) and cultured in DMEM/F12 medium containing 10% FBS. TCMK-1 cells were seeded on six-well plates (1 × 10^5 cells/well) and cultured for 24 h. Under CaOx stimulation at different concentrations (0, 10, 100 or 1000 μg/ml), cells were cultured for 24, 48 or 72 h and then harvested and processed for western blot and flow cytometry analyses.

Flow cytometry for detection of apoptosis and necrosis
Cell apoptosis was detected with an Annexin V-FITC Apoptosis Detection Kit (Merck, Darmstadt, Germany) as noted previously. The experiment was repeated at least three times.

Statistical analysis
Data are presented as the means ± standard deviation (SD). Statistical analysis (SPSS18.0 software, SPSS Inc., Armonk, NY, USA) was performed with two-tailed...
Results
Sirt3 expression was suppressed in nephrolithiasis in vivo and in vitro

As a verification of glyoxylate-induced nephrolithiasis model establishment, von Kossa staining showed calcium deposits in the kidney (Figure S1A). The serum creatinine and urine nitrogen levels were significantly increased after glyoxylate acid treatment (Fig. 1a). NGAL is a sensitive marker of TEC injury24, and the level of NGAL in urine was significantly increased in the glyoxylate acid group compared to the control group (Fig. 1b). In addition, ROS activity in the kidney was upregulated (Fig. 1c). The number of ISEL+ cells was dramatically increased in the glyoxylate acid-induced nephrolithiasis group compared to the control group (Fig. 1d).

We compared the gene expression profile between control and glyoxylate acid-treated mice kidney samples. Mitochondrial dysfunction and abnormal ROS generation have been demonstrated to promote the kidney stone formation and epithelial cell injury25–27. The MAPK signalling pathway is the top regulated pathway in our gene expression profiling data. These three important pathways lead us to identify the potential key candidate, Sirt3, participating in kidney stone formation, development and pathology (Fig. 1e).

To confirm the gene array results, we performed immunohistochemical staining for Sirt3 in the kidney. Sirt3 expression was significantly reduced in both the cortex and the medulla of the kidney samples from the glyoxylate acid-treated group (Fig. 1f). Additionally, western blot analysis showed an increased level of Bax and a decreased level of Bcl-2 in the kidney following glyoxylate acid treatment (Fig. 1f), suggesting that glyoxylate acid induced apoptosis in the kidney. Decreased Sirt3 protein expression was further confirmed by western blot (Fig. 1g). The downregulation of Sirt3 is not only observed in mice kidney injury model, but also in the kidney biopsy samples from renal calculi patients (Fig. 1h).

To investigate the induction of TEC death in the nephrolithiasis model, we performed in vitro experiments using CaOx stimulation. We found that CaOx induced TEC apoptosis and necrosis in a dose- and time-dependent manner (Figure S1B, C). The level of Sirt3 was reduced as the CaOx concentration increased (Figure S1D). Following stimulation with 1000 μg/ml CaOx, Sirt3 was significantly downregulated (Figure S1E). ROS activity was upregulated with increasing CaOx concentration and stimulation time (Figure S1F).

Suppressing Sirt3 expression exacerbated CaOx-induced cell death in vitro

It was suggested that downregulation of Sirt3 was highly associated with kidney injury. We were wondering whether suppressing Sirt3 could deteriorate renal tubular epithelial cell apoptosis and necrosis. To verify this hypothesis, we silenced sirt3 expression in TEC with Sirt3 siRNA. Flow cytometry analysis showed that CaOx treatment increased TEC apoptosis and necrosis under the condition of Sirt3 silencing compared to the control siRNA (Fig. 2a). In addition, ROS activity was significantly upregulated following CaOx treatment in the Sirt3 siRNA-transfected group compared to the control siRNA-transfected group (Fig. 2b). At the protein level, sirt3 silencing was confirmed by the decrease in Sirt3 expression. Next, we examined the levels of the pro-apoptotic protein cleaved caspase-3 and the anti-apoptotic protein Bcl-2 with or without Sirt3 siRNA treatment. The results demonstrated that TEC apoptosis significantly increased, following CaOx application in the Sirt3 siRNA-transfected group compared with the control siRNA-transfected group (Fig. 2c). These results indicated that suppressing Sirt3 expression exacerbated CaOx-induced cell death.

Overexpression of Sirt3 or enhancing its activity rescued the kidney from CaOx-induced cell death in vitro and in vivo

In addition to silencing sirt3, we also generated sirt3-overexpressing TEC (Figure S2A). Overexpression of sirt3 rescued CaOx-induced apoptosis and necrosis of TEC in vitro (Fig. 3a). Moreover, ROS activity was decreased in the sirt3-overexpressing group (Fig. 3b). Sirt3 protein expression was rescued in the sirt3-overexpressing group under CaOx stimulation (Figure S2A). The cleaved caspase-3 and Bax levels were significantly decreased, and the Bcl-2 level was increased in the sirt3-overexpressing group compared to the control group (Fig. 3c). These results revealed that Sirt3 reduced TEC apoptosis and necrosis.

Next, we investigated whether activation of Sirt3 in vivo could ameliorate nephrolithiasis. Resveratrol, which has been used as a Sirt3 agonist28–30, could upregulate Sirt3 expression at both mRNA and protein levels in TEC in vitro (Figure S2B, C). Resveratrol was then injected into mice to increase Sirt3 expression. Resveratrol reduced calcium deposits in the medulla based on von Kossa staining (Fig. 3d) in vivo and decreased TEC apoptosis and necrosis in vitro (Figure S2D). Sirt3 expression also
Fig. 1 (See legend on next page.)
increased in the renal cortex and medulla following resveratrol injection (Fig. 3e). All the results above confirmed that high expression and activation of Sirt3 are required for maintaining kidney homeostasis and protecting from CaOx-induced cell death.

Inhibition of the MAPK pathway restored Sirt3 expression and ameliorated tubular and renal injury in vitro and in vivo

Next, we investigated the mechanism of CaOx-mediated Sirt3 inhibition. We screened several common pathways using different inhibitors. PDTC (NF-kB inhibitor), SRP1/2 (mTOR inhibitor), Ly294002 (PI3K inhibitor), rapamycin (mTOR inhibitor), AZD1480 (JAKStat inhibitor) and GO6976 (PKCβ1 inhibitor) treatment did not change the expression level of Sirt3 compared with the control group (Fig. 4a). However, SB203580 (P38 inhibitor), PD98059 (JNK inhibitor) and SP600125 (ERK inhibitor) treatment significantly increased Sirt3 expression (Fig. 4a). These results suggested that the MAPK pathway probably mediated the CaOx-induced inhibition of Sirt3 expression. Then, we performed cell apoptosis and necrosis analyses (Fig. 4b). SB203580, PD98059 and SP600125 reduced TEC apoptosis and necrosis under CaOx stimulation, indicating that inhibiting the MAPK pathway blocked CaOx-mediated cytotoxicity (Fig. 4c). Next, we verified the activation of MAPK signalling in CaOx-mediated TEC injury. The phosphorylation levels of ERK, JNK and P38 were increased in a time-dependent manner under CaOx stimulation (Fig. 4d). Finally, to further check whether the renal protective effects of MAPK inhibitors are dependent on Sirt3, we compared the TEC apoptosis and necrosis level by those inhibitors treatment after sirt3 knockdown. Inhibition of MAPK signalling by SB203580, PD98059 and SP600125 restored Sirt3 expression but reversed by sirt3 siRNA treatment (Figure S3A, B). The TEC apoptosis and necrosis were increased with sirt3 knockdown; however, MAPK inhibitors could not rescue the TEC from death once sirt3 is silent (Fig. 4e). These results confirmed that MAPK inhibitors could directly or indirectly target sirt3 transcription to regulate kidney inflammation and cell death.

To verify the above-described mechanism in vivo, we treated mice with SB203580, PD98059 and SP600125 to inhibit the MAPK pathway in an in vivo nephrolithiasis model. SB203580, PD98059 or SP600125 treatment significantly decreased serum creatinine, blood urea nitrogen and serum NGAL (Fig. 5a–c) levels, suggesting that inhibiting MAPK signalling protected renal function in this nephrolithiasis model. Additionally, von Kossa staining revealed that SB203580, PD98059 or SP600125 treatment reduced calcium deposits in the kidney (Fig. 5d), and recovered Sirt3 expression in vivo (Fig. 5e). These data demonstrated that CaOx-mediated nephrolithiasis is dependent on activation of the MAPK pathway.

Sirt3 directly deacetylates FoxO3a to protect TEC from apoptosis

Functional FoxO3a facilitated the transcription of anti-apoptotic and antioxidant genes. FoxO3a localization to the cytoplasm not only deactivates FoxO3a but also represents a crucial step leading to FoxO3a degradation. The acetylation status of FoxO3a affects its DNA-binding ability and transcriptional activity but not its intracellular localization. Sirt3 upregulation with resveratrol decreased acetylated FoxO3a expression in the kidney in vivo (Fig. 6a). Moreover, acetylation of FoxO3a in the murine kidney was reduced by SB203580, PD98059 or SP600125 treatment (Figure S4A). Similarly, overexpression of Sirt3 in TEC in vitro significantly decreased the FoxO3a acetylation level under CaOx stimulation (Fig. 6b). Immunofluorescence indicated that Sirt3 interacted with FoxO3a most abundantly around the nucleus (Fig. 6c), suggesting that Sirt3 directly deacetylates FoxO3a. Co-immunoprecipitation (co-IP) assays
confirmed the interaction between Sirt3 and FoxO3a (Fig. 6d). In addition, phosphorylation of FoxO3a at Ser253 was found to affect its intracellular localization and inhibit its transcriptional activity. We found that CaOx upregulated the phosphorylation levels of FoxO3a at Ser253 and Ser318/321, while Sirt3 overexpression reversed this effect (Figure S4B). In addition, ubiquitination reduces FoxO3a activity and function. Using co-IP assays, we also found that overexpression of Sirt3 blocked CaOx-induced FoxO3a ubiquitination in TEC (Figure S4C).

Sirt3 is a NAD+–dependent protein deacetylase that regulates global protein acetylation. Therefore, to test whether the deacetylase activity of Sirt3 is required for its functions of FoxO3a activity regulation and TEC protection, we generated a catalytic mutant of Sirt3 (Sirt3^{H248Y}) lacking deacetylase activity. Mutation of Sirt3 did not influence its overexpression in TEC (Figure S4C). The levels of acetylation, phosphorylation and ubiquitination of FoxO3a were detected by western blot and immunoprecipitation. As expected, overexpression of Sirt3^{H248Y} did not decrease the levels of FoxO3a acetylation, phosphorylation and ubiquitination under CaOx stimulation (Fig. 6e, Figure S5B). Moreover, overexpression of Sirt3^{H248Y} increased ROS activity (Fig. 6f) and necrosis (Fig. 6g) under CaOx stimulation. Additionally, the catalytic mutant of Sirt3 promoted cleaved caspase-3 and Bax expression and reduced Bcl-2 expression (Fig. 6h). These results indicated that a deficiency in the deacetylase activity of Sirt3 completely reversed Sirt3-mediated cytoprotection.

The Sirt3/FoxO3a pathway promotes autophagy in TEC

Autophagy, which has been proposed as a third mode of cell death, is a process in which cells generate energy and metabolites by digesting their own organelles and macromolecules. Autophagy allows a starving cell, or a cell that is deprived of growth factors, to survive. We previously found that induction of autophagy protected renal TEC against injury. In the current study, we found that Sirt3 overexpression significantly induced autophagy, as demonstrated by an increased LC3 II/I ratio, as well as upregulated the expression of Beclin-1, Atg5 and Atg7 under CaOx stimulation (Fig. 7a, b). The LC3B immunofluorescence assay confirmed that the level of autophagy was increased (Fig. 7c). Next, we hypothesized that
Fig. 3 Overexpression Sirt3 or enhancing its activity rescued the kidney from CaOx-induced cell death in vitro and in vivo.

a Flow cytometry showed that overexpression of sirt3 blocked CaOx-induced apoptosis and necrosis of TEC. Overexpression of sirt3 significantly reduced ROS levels under CaOx stimulation.

b Sirt3 protein expression was rescued in the sirt3-overexpressing group under CaOx stimulation. The cleaved caspase-3 and Bax levels were significantly decreased, and the Bcl-2 level was increased in the sirt3-overexpressing group compared to the non-transfected control group.

c The von Kossa staining results revealed that resveratrol reduced calcium deposits in the medulla of the murine nephrolithiasis model. Scale bar: 100 μm (left), 50 μm (right).

d Sirt3 expression in both the renal cortex and medulla was increased by resveratrol treatment. Data are shown as the means ± SD, n = 6 mice per group. Scale bar: 100 μm (left), 50 μm (right).
Fig. 4 (See legend on next page.)
FoxO3a transcriptionally activates LC3B expression. To verify this hypothesis, chromatin immunoprecipitation (ChIP) and qPCR assays were performed. We designed and synthesized ten pairs of primers of Ic3b (Table S1) for qPCR. After ChIP PCR, we selected two regions for further validation (Fig. 7d). Then, the LC3B promoter region in renal TEC DNA was inserted into the pGL3-enhancer luciferase reporter vector (Fig. 7e), and a luciferase assay was conducted. The luciferase activity was significantly increased when LC3B was co-transfected with FoxO3a. To identify the region in which FoxO3a interacts with LC3B, we constructed five pGL3LC3B expression plasmids with different mutation regions (Fig. 7f). The luciferase activity assay showed that all five mutated regions regulated the transcription of Ic3b and that the first region played the most important role in the regulation of Ic3b transcription (Fig. 7g).

Inducing autophagy ameliorated TEC injury.

We further investigated whether increasing autophagy would ameliorate or exacerbate TEC injury. The autophagy inducer rapamycin and the autophagy inhibitor 3-MA were used. Flow cytometry analysis demonstrated that both apoptosis and necrosis of TEC were significantly decreased when autophagy was induced but were increased when autophagy was inhibited (Fig. 8a). TUNEL assays confirmed the differences in TEC apoptosis among these groups (Fig. 8b). In the rapamycin-treated group, the protein levels of cleaved caspase-3 and Bax were reduced, and the anti-apoptotic protein Bcl-2 was upregulated. In addition, the effects of rapamycin and 3-MA were verified by measurements of Beclin-1, Atg5 and Atg7 expression (Fig. 8c).

Discussion

Sirt3 is highly expressed in metabolically active tissues, such as kidney tissue, but only a few studies of Sirt3 in kidney diseases have been reported to date. In acute kidney injury (AKI), oxidative stress and mitochondrial damage are drivers of AKI-associated pathology. In a recent study, Morigi et al. found that promoting Sirt3 expression and activity with the AMPK agonist acadesine (AICAR) or the antioxidant agent acetyl-l-carnitine (ALCAR) improved renal function and decreased TEC injury in WT animals but had no effect on Sirt3−/− mice. Moreover, Sirt3−/− mice administered cisplatin and exhibited more severe AKI and more frequent death than WT animals, and neither AICAR nor ALCAR treatment prevented the death of Sirt3−/− AKI mice. In renal clear cell carcinoma, increased Sirt3 expression was observed. Sirt3 deletion, as well as stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumour growth. In the current study, reduced Sirt3 expression was observed in both in vivo and in vitro models. Restoring the Sirt3 levels via lentivirus transfection in vitro and resveratrol administration in vivo significantly decreased TEC death. In addition, CaOx-induced Sirt3 downregulation was reversed by MAPK signalling inhibition in TEC. MAPK pathway inhibitor treatment ameliorated nephrolithiasis in mice. Therefore, for the first time, our results demonstrate that down-regulation of Sirt3 expression is a key factor in nephrolithiasis.

Apart from SB203580, PD98059 and SP600125, other inhibitors seem to reduce necrotic and apoptotic cells as well. TEC injury could suffer from either oxidative stress or other signal pathways dysregulation at the same time, so those inhibitors may have a Sirt3-independent kidney protection. Based on the data we have, MAPK/Sirt3 is one important pathway to participate in the CaOx-induced TEC injury, apoptosis and necrosis. Although resveratrol is not a specific activator of Sirt3, which can also activate Sirt1, Sirt2 and Sirt5, resveratrol has been reported to be used as a Sirt3 agonist both in vitro and in vivo. Sirt3 protein level was rescued by resveratrol treatment, accompanied by lower TEC apoptosis and necrosis. This suggests that the kidney protection effect of resveratrol could potentially be dependent on the activation and function of Sirt3.

Sirt3 also regulates the activity of FoxO3a, and Sirt3 was implicated to form a physical interaction with FoxO3a in mitochondria via deacetylation. Non-acetylated FoxO3a has a higher affinity for DNA than the acetylated form, and mitochondrial Sirt3 could affect FoxO3a activity via...
deacetylation. FoxO3a can be activated by ROS, and gene silencing of FoxO3a enhanced ROS-induced apoptosis. Although Sirt3 is mainly localized to mitochondria, a recent study revealed that Sirt3 promoted nuclear translocation of the FoxO3a protein. Overexpression of Sirt3 enhanced the DNA-binding affinity of FoxO3a to the manganese superoxide dismutase (MnSOD) gene promoters and increased FoxO3a-dependent gene expression, and deacetylated FoxO3a was trapped inside the nucleus in microglia. Reducing the overwhelming oxidative stress is efficient in ameliorating renal TEC injury. In our study, CaOx induced upregulated FoxO3a

Fig. 5 Inhibition of the MAPK pathway ameliorated glyoxylic acid-induced nephrolithiasis and kidney injury in vivo. Mice were treated with SB203580, PD98059 and SP600125 in vivo to inhibit the MAPK pathway in a nephrolithiasis model. a–c Inhibition of the MAPK pathway decreased serum creatinine, blood urea nitrogen and serum NGAL levels. d The von Kossa staining revealed that SB203580, PD98059 or SP600125 treatment reduced calcium deposits in the kidney. e The expression levels of Sirt3 were significantly increased by SB203580, PD98059 or SP600125 treatment (*n* = 3). Scale bar: 250 μm. Data are shown as the means ± S.D.; *n* = 6 mice per group.
Fig. 6 (See legend on next page.)
Autophagy and cell death often occur in the same cell, mostly in a sequence in which autophagy precedes cell death. This sequence of events is observed because stress often stimulates an autophagic response, especially if the level of stress is not lethal. Apoptotic and non-apoptotic cell death processes are activated when stress exceeds a critical duration or intensity. For instance, apoptosis and autophagy-associated cell death are two fundamental types of programmed cell death. An imbalance between apoptosis/necrosis and autophagy might facilitate CaOx-induced TEC injury. Here, we proved that CaOx induces TEC death via both apoptosis and necrosis. Induction of autophagy reduced TEC apoptosis and necrosis, while inhibition of autophagy promoted TEC apoptosis and necrosis. Therefore, restoring or even regulating the balance between apoptosis/necrosis and autophagy might be a therapeutic strategy for CaOx kidney stone formation.

The scheme presented in Fig. 9 shows how Sirt3 protects TEC against cell death by modulating FoxO3a at the post-translational level and how active FoxO3a promotes autophagy. The figure also illustrates how CaOx inhibits Sirt3 expression via the MAPK pathway. Our data do not rule out other mechanisms, such as Sirt3-mediated activation of proteins or transcription factors aside from FoxO3a. However, the current study provides proof-of-principle evidence that the MAPK/Sirt3/FoxO3a pathway plays an important role in nephrolithiasis. Our data presented here show that Sirt3 is capable of ameliorating TEC injury by reducing apoptosis and necrosis and by inducing autophagy. These findings have profound implications for the management of not only nephrolithiasis but also many other kidney diseases that are associated with increased ROS production or TEC injury.

In conclusion, Sirt3 impairment through MAPK pathway activation leads TEC to apoptosis and necrosis via inhibition of FoxO3a acetylation, phosphorylation and ubiquitination. In contrast, activation of FoxO3a by wild-type Sirt3 overexpression or inhibition of the MAPK pathway restores and sustains autophagy to protect TEC from cell death by regulating LC3B transcription. Our study for the first time proves that the Sirt3FoxO3a
Fig. 7 The Sirt3/FoxO3a pathway promoted autophagy by transcriptionally regulating LC3B in TEC.

(a) The expression of the autophagy-associated proteins Beclin-1, Atg5 and Atg7 and the LC3 II/I ratio were detected by western blot.

(b) The expression of Beclin-1, Atg5 and Atg7 and the LC3 II/I ratio were significantly upregulated by Sirt3 overexpression compared to the non-transfected control.

(c) Immunofluorescence assays indicated LC3B upregulation with Sirt3 overexpression (DAPI: blue, LC3B: red). Scale bar: 60 μm.

(d) Two pairs of lc3b primers were selected.

(e) The LC3B promoter region in renal TEC DNA was inserted into the pGL3-enhancer luciferase reporter vector.

(f) Five pGL3LC3B plasmids with different mutation regions were constructed.

(g) The luciferase activity assay showed that all five mutated regions regulated the transcription of lc3b and that the first region played the most important role in the regulation of lc3b transcription. Data are shown as the means ± S.D.; n = 3 per group.
interaction is protective against CaOx kidney stone formation and suggests that upregulating Sirt3 to moderate autophagy and cell death has potential for avoiding nephrolithiasis.
In nephrolithiasis, CaOx activates the MAPK pathway members P38, ERK and JNK. Then, SirT3 expression is inhibited. As a result, acetylation, ubiquitination and phosphorylation of FoxO3a are enhanced, leading to FoxO3a inactivation and dysfunction. Because functional FoxO3a binds to the promoter of p27 and promotes autophagy, TEC autophagy is inhibited in nephrolithiasis.

Fig. 9 Schematic diagram demonstrating the mechanism of CaOx-mediated TEC injury. In nephrolithiasis, CaOx activates the MAPK pathway members P38, ERK and JNK. Then, SirT3 expression is inhibited. As a result, acetylation, ubiquitination and phosphorylation of FoxO3a are enhanced, leading to FoxO3a inactivation and dysfunction. Because functional FoxO3a binds to the promoter of p27 and promotes autophagy, TEC autophagy is inhibited in nephrolithiasis.

Acknowledgements
This study was supported by National Key R&D Program of China (2017YFB1302800 to X.F.G., 2018YFA010702 to C.Y.), National Natural Science Foundation of China (81500531 to Y.H.P., 81770746 to C.Y. and 81670642 to X.F.G.) and Medical and Health Talents Training Plan for the Excellent Youth of Shanghai Municipal (2018YQ50 to C.Y.).

Author contributions
X.F.G., Y.H.P., C.Y., B.X. and X.L.S. designed the work. Y.H.P., C.Y. and X.L.S. performed the experiments and analyzed the data. X.F.G., C.Y., X.L.S. and B.X. wrote the paper. H.D. and C.C.L. helped with animal studies and analyzed the data. L.L., M.L., Z.Y.W., S.X.M. and Z.Y.F. helped with clinical samples and analyzed the data. B.X., X.F.G. and Y.H.S. conceived the research and supervised the project. All authors read and approved the final manuscript.

Author details
1Department of Urology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China. 2Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China. Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200092, China. 3Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200092, China. 4Kennedy Institute of Rheumatology, Hammersmith Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford OX3 7LD, UK

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/10.1038/s41419-018-1169-6).

Received: 9 July 2018 Revised: 18 September 2018 Accepted: 11 October 2018
Published online: 15 January 2019

References
1. Sapkota, I. et al. Epidemiology of stone disease across the world. World J. Urol. 35, 1301–1320 (2017).
2. Peele, M. S., Calhoun, E. A., Cutchin, G. C. & Urologic Diseases of America Project. Urologic diseases in America project: urolithiasis. J. Urol. 173, 848–857 (2005).
3. Worcester, E. M. & Coe, F. L. Clinical practice: Calcium kidney stones. N. Engl. J. Med. 363, 954–963 (2010).
4. Evan, A. P. et al. Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int. 78, 310–317 (2010).
5. Evan, A. P. et al. Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest. 111, 607–616 (2003).
6. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J. Clin. Invest. 123, 236–246 (2013).
7. Khan, S. R. et al. Crystal-cell interaction and apoptosis in oxalate-associated injury of renal epithelial cells. J. Am. Soc. Nephrol.: JASN 10(Suppl 1), 5457–5465 (1999).
8. Verkoeien, C. F. & Verhulst, A. Proposed mechanisms in renal tubular crystal retention. Kidney Int. 72, 13–18 (2007).
9. Schepers, M. S., van Ballegemoen, E. S., Bangma, C. H. & Verkoeien, C. F. Crystals cause acute necrotic cell death in renal proximal tubule cells, but not in collecting tubule cells. Kidney Int. 68, 1543–1553 (2005).
10. Lu, X. et al. Renal tubular epithelial cell injury, apoptosis and inflammation are involved in melanoma-related kidney stone formation. Urol. Res. 40, 717–723 (2012).
11. Khan, S. R. & Canales, B. K. Unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis 43(Suppl 1), 109–123 (2015).
12. Taguchi, K. et al. Genome-wide gene expression profiling of Randall’s plaques in calcium oxalate stone formers. J. Am. Soc. Nephrol.: JASN 28, 333–347 (2017).
13. Huang, J. Y., Hirschey, M. D., Shimazu, T., Ho, L. & Verdin, E. Mitochondrial autophagy. Biochim. Biophys. Acta 1804, 1645–1651 (2010).
14. Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).
15. Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA 105, 14447–14452 (2008).
16. Dittenhafer-Reed, K. E. et al. SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab. 21, 637–646 (2015).
17. Koyama, T. et al. SIRT3 attenuates palmitate-induced ROS production and inflammation in proximal tubular cells. Free Radic. Biol. & Med. 51, 1258–1267 (2011).

18. Yang, C. et al. Naked caspase 3 small interfering RNA is effective in cold preservation but not in autotranplantation of porcine kidneys. J. Surg. Res. 181, 342–354 (2013).

19. Yang, C. et al. Cyclic helix B peptide inhibits ischemia reperfusion-induced renal fibrosis via the PIK3/Akt/FoxO3a pathway. J. Transl. Med. 13, 355 (2015).

20. Yang, C. et al. Cyclic helix B peptide in preservation solution and autologous blood perfusate ameliorates ischemia-reperfusion injury in isolated porcine kidneys. Transplant. Direct. 1, 1–9 (2015).

21. Yang, C. et al. A novel cyclic helix B peptide inhibits dendritic cell maturation during amelioration of acute kidney graft rejection through Jak-2/STAT5/ SOCS1. Cell death & Dis. 6, e1993 (2015).

22. Yang, C. et al. Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model. Mol. Ther.: J. Am. Soc. Gene Ther. 22, 1817–1828 (2014).

23. Yang, C. et al. A novel proteolysis-resistant cyclic helix B peptide ameliorates kidney ischemia reperfusion injury. Biochim. Biophys. Acta 1842, 2306–2317 (2014).

24. Paragas, N. et al. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 17, 216–222 (2011).

25. Cao, L. C. et al. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int. 66, 1890–1900 (2004).

26. Khan, S. R. Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J. Urol. 189, 803–811 (2013).

27. Khan, S. R. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl. Androl. Urol. 3, 256–276 (2014).

28. Zhou, X. et al. Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell death & Dis. 5, e1576 (2014).

29. Mathieu, L. et al. Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency. Involvement of SIRT3. Free Radic. Biol. & Med. 96, 190–198 (2016).

30. Chen, T. et al. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-beta/Smad3 pathway. Am. J. Physiol. Heart Circ. Physiol. 308, H424–H434 (2015).

31. Tseng, A. H., Wu, L. H., Shtein, S. S. & Wang, D. L. SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem. J. 464, 157–168 (2014).

32. Shiora, M. et al. Foxo3a expression and acetylation regulate cancer cell growth and senescence to cisplatin. Cancer Sci. 101, 117–1215 (2010).

33. Brunet, A. et al. Protein kinase SGK mediates OS response in cells by phosphorylating the forkhead transcription factor FOXO1 (FOXO3a). Mol. Cell. Biol. 21, 952–965 (2001).

34. Nho, R. S. & Herget, P. FoxO3a and disease progression. World J. Biol. Chem. 5, 346–354 (2014).

35. Hotchkins, R. S., Strasser, A., McDonell, J. E. & Swanson, P. E. Cell death. N. Engl. J. Med. 361, 1570–1580 (2009).

36. Shi, T., Wang, F., Stroyn, E. & Tong, Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280, 13560–13567 (2005).

37. Sureshbabu, A. et al. RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction. JCI Insight 3, pi: 98411 (2018). https://doi.org/10.1172/jci.insight.98411. [Epub ahead of print].

38. Mongi, M. et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Invest. 125, 715–726 (2015).

39. Chou, J. et al. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma. Biochim. Biophys. Res. Commun. 474, 547–553 (2016).

40. Chao, S. C. et al. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci. Rep. 7, 3180 (2017).

41. Pan, Y. et al. Resveratrol exerts antioxidant effects by activating SIRT2 To deacetylate Pten. Biochemistry 56, 6325–6328 (2017).

42. Gertz, M. et al. A molecular mechanism for direct sirtuin activation by resveratrol. PLoS ONE 7, e49761 (2012).

43. Jacobs, K. M. et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a-dependent gene expression. Int. J. Biol. Sci. 4, 291–298 (2008).

44. Hasagawa, K. et al. Sirt3 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochim. Biophys. Res. Commun. 372, 51–56 (2008).

45. Rangarajan, P., Karthikyan, A., Liu, L., Ding, E. A. & Dheen, S. T. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience 311, 398–414 (2015).

46. Li, M., Chiu, J. E., Messman, B. T. & Fukagawa, N. K. Down-regulation of manganese-superoxide dismutase through phosphorylation of FOXO3a by Akt in rat reconstituted vascular smooth muscle cells from old rats. J. Biol. Chem. 281, 40429–40439 (2006).

47. Obui, T. & Uehara, Y. Structure/ function relationships underlying regulation of FOXO transcription factors. Oncogene 27, 2266–2275 (2008).

48. Salhain, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

49. Dai, J., Sakamaki, J. & Fukumizu, A. Regulation of Foxo3a transcription factors by acetylation and protein-protein interactions. Biochim. Biophys. Acta 1813, 1954–1960 (2011).

50. Havasi, A. & Dong, Z. Autophagy and tubular cell death in the kidney. Semin. Nephrol. 36, 174–188 (2016).

51. Vizza, D. et al. Rapamycin-induced autophagy protects proximal tubular renal cells against proteasome damage through the transcriptional activation of the nerve growth factor receptor NGFR. Autophagy 14, 1028–1042 (2018).

52. Hamzawy, M. et al. 22-oxacalcolin prevents acute kidney injury via inhibition of apoptosis and enhancement of autophagy. Clin. Exp. Nephrol. (2018). https://doi.org/10.1007/s10157-018-1614-y. [Epub ahead of print].

53. Ward, M. R. et al. FOXO3A directs a protective autophagy program in hematopoietic stem cells. Nature 494, 323–327 (2013).

54. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell. Biol. 36, 2082–2093 (2010).

55. Filomeni, G., De Zio, D. & Cecconi, F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 22, 377–388 (2015).

56. Marino, G., Nico-Santano, M., Barbedde, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).