Lack of an Association between Angiotensin Receptor Blocker Based Therapy and Increased Risk of Cancer: Evidence from Large Observational Studies

Yuan Yang1, Fan Zhang2, Laura Skrip3, Han Lei1, Suxin Luo1, Kai Lu1, Dayi Hu1

1 Department of Cardiovascular Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 2 School of Public Health and Health Management, Chongqing Medical University, Chongqing, China, 3 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America

* ebm_cq@126.com

Abstract

Background

A previous meta-analysis of randomized controlled studies that were not designed to investigate cancer as a primary outcome suggested that ARB-based therapy is associated with increased risk of cancer; however, results of recent observational studies considering the association have been contradictory. This study sought to evaluate the association between angiotensin receptor blocker (ARB)-based therapy and risk of cancer by conducting a meta-analysis of observational studies.

Methods

Relevant articles published before February 2014 were identified by searching PubMed and the Cochrane Library. Pooled relative risks (RRs) were determined using a random effects model and were used to assess the strength of association between use of ARB-based therapy and risk of cancer.

Results

Six retrospective cohort studies involving a total of 3,827,109 participants and four case-control studies involving a total of 193,029 cases were included. The present study found that ARB-based therapy was not significantly associated with an increased risk of cancer (RR = 0.87, 95%CI: [0.75, 1.01]). However, an analysis including only cohort studies suggested a significantly decreased risk of cancer among individuals with any history of ARB use as compared to those with no history of ARB use (RR = 0.80, 95%CI: [0.55, 0.95]); no significant association was found between ARB use and risk of cancer when the case-control studies were separately considered (RR = 1.03, 95%CI: [0.93, 1.13]). Subgroup analyses showed that use of ARB-based therapy was associated with decreased risk of lung
cancer (RR = 0.81, 95%CI: [0.69, 0.94]); however, no significant associations were found with the other cancer sites investigated. Furthermore, no association was observed upon adjustment by type of ARB drug. No publication bias was detected.

Conclusion

Overall, ARB-based therapy was not associated with increased risk of cancer. However, its use may be related to decreased incidence of lung cancer; this finding should be considered carefully and confirmed with further studies.

Introduction

Angiotensin receptor blockers (ARBs) serve as first-line treatment for patients with hypertension. The potential relationship between ARB use and risk of cancer has been studied widely, although associations between increased risk and administration of ARBs as monotherapy have been modest or non-significant [1, 2]. A 2010 meta-analysis of eight randomized controlled trials (RCTs) provided evidence that ARB-based therapy was associated with slightly, yet significantly increased incidence of cancer (relative risk (RR): 1.08; 95% confidence interval (CI): [1.01, 1.15]) [1]. However, a subsequent meta-analysis of 70 RCTs found no association between ARBs as monotherapy and increased risk of cancer [2].

ARBs act on the renin-angiotensin-aldosterone system. Angiotensin II is the main mediator in the renin-angiotensin system (RAS), which is generated by the activation of angiotensin I through the angiotensin converting enzyme. However, angiotensin II is not only an effective hypertensive agent, but also is related to cell growth [3–9]. Expression of RAS mediators has therefore been demonstrated in cancer tissues [10]. There are several potential mechanisms for the involvement of ARBs in carcinogenesis at specific sites. For instance, in vitro, telmisartan has been shown to inhibit human urological cancer cell growth through early apoptosis by peroxisome proliferator-activated receptor (PPAR)-γ [11], which provides a strong link between lipid metabolism and the regulation of gene transcription [12]. In hormone-refractory prostate cancer cells, ARBs have been observed to inhibit angiogenesis by transcriptional factor Ets-1 which regulates angiotensin II-mediated vascular pathophysiology [3] and genes involved in endothelial function and angiogenesis [4]; ARBs have likewise been shown to inhibit angiogenesis by hypoxia inducible factor-1 alpha (HIF-1α) which plays a role in vascular endothelial growth factor (VEGF) induction by angiotensin II in vascular smooth muscle cells (VSMC) [5, 6]. Furthermore, local angiotensin II generation has been demonstrated in human gastric cancer, with tumor progression facilitated through the activation of ERK1/2 and NF-kappa B [7]. For lung cancer, Batra et al [13] found that angiotensin II elevated cytosolic free calcium in human lung adenocarcinoma cells via activation of AT1 receptors. Lastly, Gallagher [14] suggested that Ang-(1–7) inhibited the lung cancer cell growth through the activation of an angiotensin peptide receptor and may represent a novel chemotherapeutic and chemopreventive treatment for lung cancer.

Since the publication of both meta-analyses and laboratory researches results, large observational studies investigating the potential association between ARB use and risk of cancer have been widely conducted [15–24]. Many of these studies have methodologically extended beyond the RCTs included in the 2010 meta-analyses in that they use cancer as the primary outcome and they considered risk for specific cancer sites [16, 17, 20, 24]. In response to this recent
accumulation of evidence, we sought to evaluate the association between ARB-based therapy and risk of cancer by conducting a meta-analysis of large cohort and case-control studies.

Methods

Search strategy

Relevant studies were identified through PubMed and the Cochrane Library databases by using the following search terms: 1) Cancer: “cancer” OR “carcinoma” OR “malignancy” OR “neoplasm” OR “tumor”; 2) ARB drugs: “angiotensin-receptor blocker” OR “ARB” OR “losartan” OR “valsartan” OR “candesartan” OR “irbesartan” OR “eprosartan” OR “telmisartan” OR “olmesartan”; and 3) Study design: “cohort studies” OR “follow-up studies” OR “prospective studies” OR “cross-sectional studies” OR “longitudinal studies” OR “retrospective studies” OR “case control studies”. Additionally, the reference lists of articles retrieved from databases, conference abstracts, and the publication lists of experts on ARB therapy were reviewed for other possible studies. This search strategy was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement [25] and all studies ultimately included in the analysis had been published on or before Feb 25, 2014.

Selection criteria

Based on a review of the retrieved articles’ titles/abstracts and full texts, studies were chosen if they met all of the following criteria: (i) the study was designed as a prospective or retrospective cohort study or as a case control study; (ii) the primary exposure investigated was patients’ use of ARB-based therapy, and the primary outcome was the incidence of cancer; (iii) the articles provided hazard rate (HR) or relative risk (RR) estimates and the corresponding 95% confidence intervals (CIs), the size of the baseline samples, the total number of cases, the total number of years of follow up, and confounders for adjustment; (iv) when multiple publications reported on the same study, the most recent article was selected; (v) the publication language was limited to English and Chinese; (iv) the randomized controlled trials were excluded.

Data extraction

The following information was extracted independently by two authors (Yang Y and Zhang F) from each article: first author, year of publication, study location, subject ethnicity, study period, duration of follow-up, source population, mean sample age at baseline, number of cases, assessment of ARB-based therapy use, ascertainment of cases, adjustment for covariates, hazard ratio (HR) or relative risk (RR), and the corresponding 95% confidence interval.

Assessment of Study Quality

Study quality was scored using the Newcastle-Ottawa-Scale (NOS). The NOS was developed for quality assessment of non-randomized observational studies such as those included in the current meta-analysis. Details on the NOS “star system” can be found elsewhere [26]. Scoring for quality assessment was independently conducted by two authors (Yang Y, Zhang F); their results were compared and a third party (Hu D) intervened if consensus could not be reached.

Statistical analyses

Relative risk (RR) estimates were used to measure the association between ARB-based therapy and risk of cancer. The hazard ratio was considered as a RR for the present analysis. One study [18] reported hazard ratios separately for colon and rectal cancers; using the method reported
by Hamling [27], we combined the results for these two sites for subgroup analysis of colorectal cancer.

Inter-study heterogeneity was assessed using the Cochran’s \(\chi^2\)-based Q test and the I-squared test [28]. If no significant heterogeneity (defined as \(P > 0.10\) or \(I^2 < 50\%\)) was found, the pooled RR estimate was determined with the fixed effects model (Mantel-Haenszel); the random effects model (DerSimonian and Laird) was used in the case of significant heterogeneity [29]. Stratification analyses by study design, ethnicity, cancer site, and type of ARB drug were conducted as a way of addressing inter-study heterogeneity. Further more, meta-regression was also conducted when necessary.

To consider particular study elements that could impact the overall findings, the sensitivity analyses were conducted by excluding studies with the following characteristics. Accordingly, we considered the change of results upon removal of (i) studies that had follow up of less than four years; (ii) studies with less than 2000 cases; (iii) studies with NOS scores less than 7; (iv) studies adjusted with insufficient confounders (less than 3 confounders) [24], or no adjustments [20]; and (v) studies that had users of angiotensin converting enzyme inhibitors (ACEIs) [15, 22], diuretics, and/or beta-blockers [19] as their comparison group. Furthermore, to determine whether any study had particularly strong influence over the findings, such as due to assessed study quality, a leave-one-out approach was also engaged.

Furthermore, possible publication bias was considered using Egger’s linear regression test [30] and the Begg’s rank correlation test [31]. All statistical tests were conducted using STATA software (Version 11). A P-value less than 0.05 for any test or model was considered to be statistically significant unless otherwise indicated.

Results

Literature search

Initially, 118 citations were identified. Ninety five publications were excluded after review of titles and abstracts, mainly because they did not treat cancer as the primary outcome. Full-text review was conducted for 23 studies, of which four [32–35] were excluded from the analysis because they did not refer to the association between ARB-based therapy and cancer diagnosis. Six more articles [36–41] were excluded since they did not provide all information to be extracted. Two more articles [42, 43] were excluded because they did not refer to the incidence of cancer. Moreover, one randomized controlled trial [44] and one animal study [11] were excluded. After review of the references of the remaining studies, one additional study [15] was found to meet the inclusion criteria and was added. A total of 10 studies [15–24], all published in English, were ultimately included. (Fig. 1)

Eligible studies

The included 10 studies were published between 2009 and 2013. Three studies took place in Taiwan of China, two in the United States, two in the United Kingdom, two in Denmark, and one in the Netherlands. Seven studies enrolled only Caucasian participants and participants of the remaining three studies were of Asian background. Six studies were designed as retrospective cohort studies and four were case-control studies. At baseline, in the cohort studies, a total of 3,827,109 participants were included and 59,530 cases were detected during the follow-up period. In the case-control studies, 193,029 cases and 1,019,459 controls participated. The length of follow-up ranged from 2.9 to 7.8 years (one study [17] did not provide data on follow-up period). The ARB drugs used by participants included losartan, irbesartan, valsartan, eprosartan, candesartan, olmesartan, and telmisartan. Most of the studies confirmed disease status according to ICD-9, medical record review, or pathology reports. The exposure was
status as an ever or current user of ARB treatment, and the comparison group was made up of non-ARB users [16–18, 20, 21, 23, 24], angiotensin converting enzyme inhibitor (ACEI) users [12, 22], or users of diuretics and/or beta-blockers [19]. All 10 studies included adjustment for more than three variables, such as age, sex, body mass index (BMI), socioeconomic status, diagnosis of diabetes, concomitant use of medications including ACEIs, beta blockers (BB), calcium channel blockers (CCB), diuretics, or statins. The details are shown in Table 1.

After quality assessment using the NOS, two studies [20, 24] received six stars; three studies [16–18] received seven stars; three studies [19, 22, 23] received eight stars; and two studies [15, 21] received nine stars (Table 2).

ARB-based therapy and risk of cancer

Overall analysis. Based on the combined results of the 10 cohort studies, compared with non-ARB users or ACEI users, the patients reporting ever or current use of ARB-based therapy did not experience significantly increased risk of cancer (RR = 0.87, 95%CI: [0.75, 1.01], P = 0.07) under the random effects model (Heterogeneity: I² = 98.6%). (Fig. 2)

Using the results of the six cohort studies, it was shown that ARB-based therapy was associated with decreased risk of cancer (RR = 0.80, 95%CI: [0.55, 0.95], P = 0.03, I² = 99.1%). However, upon analysis of the results from the four case-control studies, no significant association was found (RR = 1.03, 95%CI: [0.93, 1.13], P = 0.60, I² = 79.1%). (Table 3)

Subgroup analysis. A subgroup analysis was conducted according to participant race. For studies conducted with Asian samples, the meta-analysis revealed a significantly decreased risk of cancer among ever or current ARB users as compared to non-ARB users or ACEI users (RR = 0.69, 95%CI: [0.57, 0.83], P<0.001, I² = 95.3%). In contrast, no significant associations were found in Caucasian populations (RR = 0.97, 95%CI: [0.91, 1.04], P = 0.36, I² = 89.2%).

Subgroup analyses according to cancer site suggested a significant association between ARB-based therapy and decreased risk of lung cancer (RR = 0.81, 95%CI: [0.69, 0.94], P = 0.01, I² = 90.2%). However, no significant association was found in the analyses with other sites of cancer (breast: RR = 0.88, 95%CI: [0.76, 1.02], P = 0.09, I² = 85.3%; prostate: RR = 1.01, 95%CI: [0.89,
Table 1. Characteristics of ten included studies of ARB and risk of cancer.

Study	Location/Period	Follow-up (years)	Comparison Type of ARB	Number of sample	Sites of cancer*	Adjustments	Study conclusion
Cohort studies							
Rao GA, 2013 [16]	USA/1999–2010	4.5	Never using ARB Losartan, irbesartan, valsartan, candesartan, olmesartan, telmisartan	1228960	6923	Lung Age, race, smoking, BMI, DM	HR: 0.74, 95% CI: [0.67, 0.83]
Rao GA, 2013 [17]	USA/2003–2009	NA	Never using ARB Losartan, irbesartan, valsartan, candesartan, olmesartan, telmisartan	543824	8775	Prostate Age, race, smoking, BMI, DM	HR: 0.91, 95% CI: [0.84, 0.99]
Wang KL, 2013 [18]	Taiwan of China/1997–2009	4.8	Never using ARB Valsartan, losartan, irbesartan, telmisartan, candesartan, olmesartan	85842	4394	All Concomitant medication including ACEI, BB, CCB, diuretics, statin, and tumor markers.	The cumulative incidence of cancer was 4% (ARB users) and 6% (ARB nonusers) (HR: 0.58, 95% CI [0.55, 0.62])
Pasternak B, 2011 [22]	Denmark/1998–2006	2.9	ACEI user Losartan, eprosartan, valsartan, irbesartan, telmisartan, olmesartan	317158	10168	All Calendar year, age in 5-year intervals, sex, socioeconomic class, degree of urbanization, number of hospitalizations in the previous 3 years, Charlson comorbidity index, and use of other antihypertensives (BB, thiazides, CCB)	RR: 0.99, 95% CI: [0.95, 1.03]
Huang CC, 2011 [23]	Taiwan of China/1995–2002	5.7	Never using ARB Losartan, valsartan, irbesartan, candesartan, telmisartan, olmesartan	109002	9067	All Age, gender, DM, coronary artery disease, hyperlipidemia, heart failure, valvular heart disease, ischemic stroke, chronic renal disease, and concomitant antihypertensive agents	HR: 0.66, 95% CI: [0.63, 0.68]
Bhaskaran K, 2012 [15]	UK/1995–2010	4.6	ACEI user Losartan, eprosartan, valsartan, irbesartan, candesartan, telmisartan, olmesartan	1542323	20203	All Age, sex, BMI, smoking, alcohol, DM, hypertension, heart failure, statin use, index of multiple deprivation score, calendar year	HR: 1.03, 95% CI: [0.99, 1.06]
Case-control studies							

(Continued)
Table 1. (Continued)

Study	Location/Period	Follow-up (years)	Comparison Type of ARB	Number of sample	Sites of cancer*	Adjustments	RR: 95% CI:
Azoulay L, 2012 [19]	UK/1995–2008	6.4	Diuretics and/or beta-blockers	410167	41059	Excessive alcohol use, BMI, smoking, diabetes, previous cancer, and ever of aspirin, statins, and NSAIDs	1.00, [0.96, 1.03]
Hallas J, 2012 [20]	Denmark/2000–2005	7.8	Never using ARB	597668	149417	NA	1.12, [1.06, 1.18]
Chang CH, 2011 [21]	Taiwan of China/2000	7.4	Never using ARB	5104	1281	Antihypertensive agents, fast-acting human insulins, chronic liver disease, biguanides, nephropathy, glinides, retinopathy, cardiovascular disease, statins, and socioeconomic status	0.94, [0.80, 1.10]
Koomen ER, 2009 [24]	Netherlands/1991–2004	3.0	Never using ARB	6520	1272	Melanoma	1.00, [0.70, 1.50]

AR: angiotensin receptor blocker; ACEI: angiotensin-converting enzyme inhibitor; BB: beta-blocker; BMI: body mass index; CCB: calcium channel blocker; HR: hazard ratio; RR: rate ratio; NA: not available; NSAIDs: Non-steroidal anti-inflammatory drugs; UK: United Kingdom; USA: United States of America; DM: diabetes mellitus.

*All includes breast, colon, liver, lung, rectum, stomach, prostate and haematological.

doi:10.1371/journal.pone.0119775.t001

Table 2. Newcastle-Ottawa-Scale scores for the quality assessment of including studies.

Studies	Selection	Comparability	Outcome	Total stars
Cohort studies				
Rao GA, 2013 [16]	★★★★	★★	★★	7
Rao GA, 2013 [17]	★★★★	★★	★★	7
Wang KL, 2013 [18]	★★★★★	★	★★	7
Pasternak B, 2011 [22]	★★★★★	★★	★★	8
Huang CC, 2011 [23]	★★★★★	★★	★★	8
Bhaskaran K, 2012 [15]	★★★★★	★★	★★★★	9
Case-control studies				
Azoulay L, 2012 [19]	★★★★★	★★	★★	8
Hallas J, 2012 [20]	★★★★★	★★	★★	6
Chang CH, 2011 [21]	★★★★★	★★	★★★★	9
Koomen ER, 2009 [24]	★★★★	★★	★★	6

doi:10.1371/journal.pone.0119775.t002
Fig 2. Forest plot of ARB-based therapy and risk of cancer. Forest plot shows association between ARB-based therapy and risk of cancer. CI = confidence interval; ES = estimates.

Table 3. Subgroup analyses of the included studies.

Studies design	No. of studies	OR(95% CI)	P	I²	Publication bias	Effect model			
					Z value	P Begg	t value	P Egger	
Studies design									
Cohort	6	0.80 [0.55, 0.95]	0.03	99.1%	0.38	0.71	−0.67	0.54	Random
Case-control	4	1.03 [0.93, 1.13]	0.60	79.1%	0.34	0.73	−0.08	0.94	Random
Ethnicity									
Asian	3	0.69 [0.57, 0.83]	< 0.001	95.3%	0.00	1.00	0.41	0.75	Random
Caucasian	7	0.97 [0.91, 1.04]	0.36	89.2%	0.75	0.45	−1.10	0.32	Random
Site of cancer									
Breast cancer	7	0.88 [0.76, 1.02]	0.09	85.3%	1.80	0.07	−2.45	0.06	Random
Lung cancer	8	0.81 [0.69, 0.94]	0.01	90.2%	0.87	0.39	−0.81	0.45	Random
Prostate cancer	6	1.01 [0.89, 1.12]	0.68	82.2%	0.38	0.71	0.11	0.91	Random
Colorectal cancer	5	0.94 [0.81, 1.09]	0.41	74.0%	−0.24	1.00	−0.85	0.46	Random
Type of ARB									
Losartan	4	0.90 [0.74, 1.09]	0.90	86.7%	0.34	0.73	1.43	0.29	Random
Candesartan	4	0.83 [0.68, 1.01]	0.06	80.1%	−0.34	1.00	7.42	0.02	Random
Irbesartan	4	0.89 [0.65, 1.12]	0.40	89.8%	0.34	0.73	7.58	0.02	Random
Valsartan	4	0.83 [0.58, 1.18]	0.30	86.2%	1.02	0.31	1.23	0.34	Random
Telmisartan	4	0.91 [0.59, 1.41]	0.78	86.0%	0.34	0.73	2.42	0.14	Random

AR: angiotensin receptor blocker; OR: odds ratios

doi:10.1371/journal.pone.0119775.t003

doi:10.1371/journal.pone.0119775.g002
1.12], P = 0.68, I² = 82.2%; colorectal: RR = 0.94, 95%CI: [0.81, 1.09], P = 0.41, I² = 74.0%). Similarly, no association between risk of cancer and ARB use was observed upon evaluating the results of studies grouped according to ARB drug type (losartan: RR = 0.90, 95%CI: [0.74, 1.09], P = 0.29, I² = 86.7%; valsartan: RR = 0.83, 95%CI: [0.68, 1.01], P = 0.06, I² = 80.1%; irbesartan: RR = 0.89, 95%CI: [0.65, 1.12], P = 0.40, I² = 89.8%; candesartan: RR = 0.83, 95%CI: [0.58, 1.18], P = 0.30, I² = 86.2%; telmisartan: RR = 0.91, 95%CI: [0.59, 1.41], P = 0.78, I² = 86.0%). Furthermore, when we separately evaluated the studies with follow-up of at least five years, no statistically significant relationship was observed between ARB-based therapy and incidence of cancer (RR = 1.01, 95%CI: [0.95, 1.07], P = 0.80, I² = 99.1%).

Meta-regression analysis

We performed meta-regression analysis to assess whether the incidence of cancer was related to ethnicity. The result showed that the incidence of cancer in ARBs users was associated with ethnicity (r = 0.37, P = 0.006, 95%CI: [−0.60, −0.14], with adjusted R-squared = 46.52%).

Sensitivity analysis

Sensitivity analyses were performed to consider the influence of various exclusion criteria and to identify potential sources of heterogeneity in the association between use of ARB-based therapy and risk of cancer. Exclusion of studies with less than four years of follow up produced a pooled RR of 0.84 (95%CI: [0.69, 1.02], P = 0.08, I² = 99.0%). A sensitivity analysis excluding studies with NOS scores of six stars or less led to a pooled RR of 0.83 (95%CI: [0.71, 0.99], P = 0.03, I² = 98.8%). Removing studies with under 2000 cases produced a pooled RR of 0.85 (95% CI: [0.72, 1.01], P = 0.06, I² = 98.9%), and restricting the analysis to studies including non-ARB users as the comparison group yielded a pooled RR of 0.82 (95%CI: [0.66, 1.02], P = 0.08, I² = 98.4%). Finally, the pooled RR was 0.83 (95%CI: [0.71, 0.99], P = 0.03, I² = 98.8%) when we removed the studies with insufficient confounders [20, 24].

Furthermore, the leave one out procedure did not alter our conclusions with overall combined RR subsequently ranging from 0.85 (95% CI: [0.72, 0.99], P = 0.04, I² = 98.6%) to 0.91 (95% CI: [0.80, 1.05], P = 0.21, I² = 98.1%).

Publication bias

A funnel plot (Fig. 3) was produced to determine whether significant publication bias was present. The relatively symmetrical shape of the plot was interpreted as a lack of significant publication bias. The results of the Begg’s rank correlation test and Egger’s linear regression test further indicated that there was no obvious publication bias among the included studies (P_Begg = 0.53, P_Egger = 0.74).

Discussion

The overall results of the present study suggested that patients with a history of using ARB-based therapy were not at increased risk of cancer as compared to both patients with no history of ARB use and those who used ACEIs. However, when a subgroup analysis was conducted according to cancer site, it was observed that reduced incidence of lung cancer may be associated with ARB use. Furthermore, the combined results of included cohort studies suggested an association between ARB-based therapy and decreased risk of cancer. When the different types of ARB drugs were considered individually, no significant associations with risk of cancer were found, which was consistent with the results of analysis of 15 trials by the ARB Trialists Collaboration [12].
The relationship between ARB-based therapy and risk of cancer has drawn significant attention since 2010, when a meta-analysis of RCTs demonstrated slightly increased incidence of cancer among patients using ARBs. However, a major limitation of the study was that cancer was not the primary outcome of the included trials. Several large observational studies have since investigated the potential relationship, yet the results of individual studies have been inconsistent. Recently, Azoulay L et al [19] showed that ARB use was not associated with increased risk of cancer relative to use of other therapies for hypertension (RR: 1.00; 95% CI: 0.96–1.03). However, ARBs were found to be associated with a small reduction in risk of colorectal cancer (adjusted RR: 0.88; 95% CI: 0.81–0.96). Rao et al showed that ARB-based therapy could decrease lung cancer incidence (HR: 0.74, 95% CI: 0.67–0.83) [16] and prostate cancer incidence (HR: 0.91, 95% CI: 0.84–0.99) [17]. Wang et al [18] likewise found a protective effect with incidence of cancer being 4% among patients using ARBs and 6% among ARB nonusers (HR: 0.58, 95% CI: 0.55–0.62).

The present analysis investigated whether increased risk of cancer was found to be associated with ARB use based on the combined results of such observational studies. Our results suggest that patients with a history of using ARBs did not experience significantly higher incidence of breast, prostate, or colorectal cancers. In fact, a marginally reduced risk of breast cancer was observed. Furthermore, a subgroup analysis considering lung cancer cases revealed that patients reporting any ARB use had a significantly lower risk of cancer at this site. Azoulay L et al [19] found that the use of ACEI and calcium channel blockers was associated with 13% and 19% increasing of lung cancer, respectively; however, compared to diuretics and/or beta-blockers, use of ARBs did not increase the incidence of lung cancer. In the other included studies [15, 16, 18, 21], the similar conclusion was revealed. Recent laboratory studies indicated
that the overexpression of angiotensin II type 2 receptor gene induced cell death in lung adenocarcinoma cells [45] and angiotensin-converting enzyme 2 attenuated the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition [46], which indirectly supported our results of subgroup analysis focusing on lung cancer.

Besides the popular reported sites (breast, prostate, lung or colorectal), Wang KL et al [18] found that ARB users may be with the lower incidence of liver (RR: 0.51, 95%CI: [0.43, 0.60]) and stomach cancer (RR: 0.61, 95%CI: [0.48, 0.78]). However, another study performed by Chang CH [21] suggested that the use of ARBs was not significantly associated with the decreased incidence of liver (RR: 0.96, 95%CI: [0.64, 1.44]) and gastric cancer (RR: 0.65, 95%CI: [0.32, 1.34]) in diabetic patients. For other cancers, several studies revealed no significant association between the use of ARBs and haematological (RR: 0.94, 95%CI: [0.74, 1.20]) [20], tobacco related malignancies (RR: 1.08, 95%CI: [0.97, 1.20]) [20], or pancreatic cancer (RR: 0.68, 95%CI: [0.14, 3.21]) [21]. Those sites of cancer should be also paid attention, which need more data to get stronger evidence.

Sources of heterogeneity
Between-study heterogeneity was assessed using the criteria of $P \leq 0.10$ and $I^2 \geq 50\%$ for Cochran’s χ^2-based Q test and the I-squared test, respectively. Due to the heterogeneity observed among included studies, pooled estimates were calculated by the random effects model for both the overall analysis and for several of the subgroup analyses. This model assumes that underlying true effects differ between studies. Sources of heterogeneity could include differences in participant characteristics across studies, study design factors, and variations in the metrics (RR versus HR) used to measure the outcome. For the present study, the use of the random effects model was expected to adequately address heterogeneity due to the lack of observable publication bias in our study. Additionally, through the sensitivity analysis, no study was found to significantly contribute to the heterogeneity; we also found no significant potential publication bias.

Study strength and limitations
To the best of the author’s knowledge, this is the first meta-analysis of observational studies exploring the relationship between use of ARBs and risk of cancer. The results of the present analysis are intended to provide more robust evidence than any individual study; however, several limitations may still influence the findings. First, considerable heterogeneity was observed among the included studies. As indicated above, we used the random effects model to address the heterogeneity and conducted a sensitivity analysis to identify studies that contributed to it. Next, subgroup analyses by cancer site were only conducted for breast, prostate, colorectal, and lung cancers due to the limited evidence available for other sites. Lastly, our analysis was restricted to studies published in English or Chinese.

Suggestion for further studies
Future studies should consider the association between ARB use and other cancer sites, including gastric cancer, and additional focus should be given to the rates of lung and breast cancers among ARB users.
Conclusions
This meta-analysis suggested that ARB-based therapy was not associated with increased risk of cancer. In contrast, use of ARBs may be related to decreased incidence of lung cancer. This conclusion should be considered carefully and confirmed with further studies.

Supporting Information
S1 Table. PRISMA 2009 Checklist.

Author Contributions
Conceived and designed the experiments: DH YY. Performed the experiments: YY FZ LS. Analyzed the data: YY FZ LS HL. Contributed reagents/materials/analysis tools: HL SL KL. Wrote the paper: YY FZ LS DH SL KL.

References
1. Sipahi I, Debanne SM, Rowland DY, Simon DI, Fang JC (2010) Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol 11: 627–36. doi:10.1016/S1470-2045(10)70106-6 PMID: 20542468
2. Bangalore S, Kumar S, Kjeldsen SE, Makani H, Grossman E, Wettergren J, et al (2011) Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses of 324,168 participants from randomised trials. Lancet Oncol 12: 65–82. doi:10.1016/S1470-2045(10)70260-6 PMID: 21123111
3. Matsuyama M, Funao K, Kuratsukuri K, Tanaka T, Kawabito Y, Sano H, et al (2010) Telmisartan inhibits human urological cancer cell growth through early apoptosis. Exp Ther Med 1(2): 301–6. PMID: 22993542
4. Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47: 507–14. PMID: 9568680
5. Zhan Y, Brown C, Maynard E, Anshelevich A, Ni W, Ho IC, et al (2005) Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. J Clin Invest 115(9): 2508–16. PMID: 16138193
6. Wasylyk B, Hahn SL, Giovane A (1993) The Ets families of transcription factors. Eur J Biochem 211(1–2): 7–18.
7. Page EL, Robitaille GA, Pouyssegur J, Richard DE (2002) Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem 277(50): 48403–09. PMID: 12379645
8. Kosaka T, Miyajima A, Shirotake S, Kikuchi E, Hasegawa M, Mikami S, et al (2010) Ets-1 and hypoxia inducible factor-1alpha inhibition by angiotensin II type-1 receptor blockade in hormone-refractory prostate cancer. Prostate 70(2): 162–9. doi: 10.1002/pros.21049 PMID: 19760626
9. Kinoshita J, Fushida S, Harada S, Yagi Y, Fujita H, Kinami S, et al (2009) Local angiotensin II-generation in human gastric cancer: correlation with tumor progression through the activation of ERK1/2, NF-kappaB and survivin. Int J Oncol 34(6): 1573–82. PMID: 19424573
10. Deshayes F, Nahmias C (2005) Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab 16: 293–9. PMID: 16061390
11. Fujita M, Hayashi I, Yamashina S, Fukamizu A, Itoman M, Majima M (2005) Angiotensin type 1a receptor signaling-dependent induction of vascular endothelial growth factor in stroma is relevant to tumor-associated angiogenesis and tumor growth. Carcinogenesis 26(2): 271–9. PMID: 15637093
12. ARB Trialists Collaboration (2011) Effects of telmisartan, irbesartan, valsartan, candesartan, and losartan on cancers in 15 trials enrolling 138,769 individuals. J Hypertens 29(4): 623–35. doi: 10.1097/HJH.0b013e32834a7de PMID: 21358417
13. Batra VK, Gopalakrishnan V, McNeill JR, Hickie RA (1994) Angiotensin II elevates cytosolic free calcium in human lung adenocarcinoma cells via activation of AT1 receptors. Cancer Lett 76(1): 19–24. PMID: 8124662
14. Gallagher PE, Tallant EA (2004) Inhibition of human lung cancer cell growth by angiotensin-(1–7). Carcinogenesis 25(11): 2045–52 PMID: 15284177
15. Bhaskaran K, Douglas I, Evans S, van Staa T, Smeeth L (2012) Angiotensin receptor blockers and risk of cancer: cohort study among people receiving antihypertensive drugs in UK General Practice Research Database. BMJ 344: e2697. doi: 10.1136/bmj.e2697 PMID: 22531797

16. Rao GA, Mann JR, Shoaiib AI, Pai SG, Bottai M, Sutton SS, et al (2013) Angiotensin receptor blockers: are they related to lung cancer? J Hypertens 31(8):1669–75. doi: 10.1097/HJH.0b013e3283621ea3 PMID: 23822929

17. Rao GA, Mann JR, Bottai M, Uemura H, Burch JB, Bennett CL, et al (2013) Angiotensin receptor blockers and risk of prostate cancer among United States veterans. J Clin Pharmacol 53(7): 773–8. doi: 10.1002/jcph.98 PMID: 23686462

18. Wang KL, Liu CJ, Chao TF, Huang CM, Wu CH, Chen TJ, et al (2013) Long-term use of angiotensin II receptor blockers and risk of cancer: A population-based cohort analysis. Int J Cardiol 167(5): 2162–6. doi: 10.1016/j.ijcard.2012.05.096 PMID: 22709730

19. Azoulay L, Assimes TL, Yin H, Bartels DB, Schiffrin EL, Suissa S (2012) Long-term use of angiotensin receptor blockers and the risk of cancer. PLoS One 7(12): e50893. doi:10.1371/journal.pone.0050893 PMID: 23251399

20. Hallas J, Christensen R, Andersen M, Friis S, Bjerrum L (2012) Long term use of drugs affecting the renin-angiotensin system and the risk of cancer: a population-based case-control study. Br J Clin Pharmacol 74(1): 180–8. doi: 10.1111/j.1365-2125.2012.04170.x PMID: 22243442

21. Pasternak B, SVanstrøm H, Callérius T, Melbye M, Hvid A (2011) Use of angiotensin receptor blockers and the risk of cancer. Circulation 123(16): 1729–36. doi: 10.1161/CIRCULATIONAHA.110.007336 PMID: 21690476

22. Huang CC, Chan WL, Chen YC, Chen TJ, Lin SJ, Chen JW, et al (2011) Angiotensin receptor blockade and risk of cancer in type 2 diabetes mellitus: a nationwide case-control study. J Clin Oncol 29(22): 3001–7. doi: 10.1200/JCO.2011.35.1908 PMID: 22709730

23. Nakai Y, Isayama H, Ijichi H, Sasaki T, Takahara N, Ito Y, et al (2013) A multicenter phase II trial of gemcitabine and candesartan combination therapy in patients with advanced pancreatic cancer: GECA2. Invest New Drugs 31(5): 1294–9. doi: 10.1007/s10637-013-9972-5 PMID: 23690239

24. Nakai Y, Isayama H, Ijichi H, Sasaki T, Kogure H, Yagioka H, et al (2012) Phase I trial of gemcitabine and candesartan combination therapy in normotensive patients with advanced pancreatic cancer: GECA1. Cancer Sci 103(8): 1899–902. doi: 10.1111/j.1349-7006.2012.02311.x PMID: 22515232

25. Nakai Y, Isayama H, Ijichi H, Sasaki T, Sasahira N, Hirano K, et al (2010) Inhibition of renin-angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br J Cancer 103(11):1644–8. doi: 10.1038/bjc.6605955 PMID: 20978506

26. Wilop S, von Hohe S, Crysandt M, Esser A, Osieka R, Jost E (2009) Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced pancreatic cancer. PLOS ONE 4(1): e4374. doi:10.1371/journal.pone.004374 PMID: 19424793

27. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed.1000097 PMID: 19621072
non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J Cancer Res Clin Oncol 135(10): 1429–35. doi:10.1007/s00432-009-0587-3 PMID: 19399518

36. Sørensen GV, Ganz PA, Cole SW, Pedersen LA, Sørensen HT, Cronin-Fenton DP, et al (2013) Use of β-blockers, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and risk of breast cancer recurrence: a Danish nationwide prospective cohort study. J Clin Oncol 31(18): 2265–72. doi:10.1200/JCO.2012.43.9190 PMID: 23650417

37. Chin HJ, Oh SW, Goo HS, Oh J, Noh JW, Cho JT, et al (2011) Effect of RAAS inhibition on the incidence of cancer and cancer mortality in patients with glomerulonephritis. J Korean Med Sci 26(1): 59–66. doi:10.3346/jkms.2011.26.1.59 PMID: 21218031

38. Kim ST, Park KH, Oh SC, Seo JH, Kim JS, Shin SW, et al (2012) How does inhibition of the renin-angiotensin system affect the prognosis of advanced gastric cancer patients receiving platinum-based chemotherapy?. Oncology 83(6): 354–60. doi:10.1159/000337979 PMID: 23052034

39. Yuge K, Miyajima A, Tanaka N, Shirotake S, Kosaka T, Kikuchi E, et al (2012) Prognostic value of renin-angiotensin system blockade in non-muscle-invasive bladder cancer. Ann Surg Oncol 19(12): 3987–93. doi:10.1245/s10434-012-2568-z PMID: 22872290

40. Makar GA, Holmes JH, Yang YX (2014) Angiotensin-converting enzyme inhibitor therapy and colorectal cancer risk. J Natl Cancer Inst 106(2): djt374.

41. Chiang YY, Chen KB, Tsai TH, Tsai WC (2014) Lowered cancer risk with ace inhibitors/ARBs: a population-based cohort study. J Clin Hypertens (Greenwich) 16(1): 27–33. doi:10.1111/jch.12228 PMID: 24304931

42. Yoon GJ, Telli ML, Kao DP, Matsuda KY, Carlson RW, Witteles RM (2010) Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally? J Am Coll Cardiol 56(20): 1644–50. doi:10.1016/j.jacc.2010.07.023 PMID: 21050974

43. Yilmaz MI, Carrero JJ, Martín-Ventura JL, Sonmez A, Saglam M, Celik T, et al (2010) Combined therapy with renin-angiotensin system and calcium channel blockers in type 2 diabetic hypertensive patients with proteinuria: effects on soluble TWEAK, PTX3, and flow-mediated dilation. Clin J Am Soc Nephrol 5(7): 1174–81. doi:10.2215/CJN.01110210 PMID: 20430947

44. Sugiura R, Ogawa H, Oka T, Koyanagi R, Hagiwara N; HIJ-CREATE Investigators (2012) Candesartan-based therapy and risk of cancer in patients with systemic hypertension (Heart Institute of Japan Candesartan Randomized Trial for Evaluation in Coronary Artery Disease [HIJ-CREATE] substudy). Am J Cardiol 109(4): 576–80. doi:10.1016/j.amjcard.2011.09.050 PMID: 22100194

45. Pickel L, Matsuzuka T, Doi C, Ayuzawa R, Maurya DK, Xie SX, et al (2010) Overexpression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells. Cancer Biol Ther 9(4): 277–85. doi:10.4161/cbt.9.4.10643 PMID: 20026904

46. Qian YR, Guo Y, Wan HY, Fan L, Feng Y, Ni L, et al (2013) Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. Oncol Rep 29(6): 2408–14. doi:10.3892/or.2013.2370 PMID: 23545945