Chiral condensate in

\[n_f = 2 \quad \text{QCD from the} \]

Banks–Casher relation

Georg P. Engel

Università Milano-Bicocca, Italy
and INFN, Sezione di Milano-Bicocca, Italy

32nd International Symposium on Lattice Field Theory,
Columbia University, New York, United States
25th of June, 2014

Collaborators:
Leonardo Giusti, Stefano Lottini, Rainer Sommer

Based on: GPE, L. Giusti, S. Lottini, R. Sommer: “Chiral symmetry breaking in QCD Lite”, arXiv:1406.4987
Banks-Casher relate condensate Σ to spectral density ρ of Dirac operator

$$\Sigma \equiv -\frac{1}{2}\langle \bar{\psi}\psi \rangle = \pi \lim_{\lambda \to 0} \lim_{m \to 0} \lim_{V \to \infty} \rho(\lambda, m), \quad \rho(\lambda, m) = \frac{1}{V} \sum_{k=1}^{\infty} \langle \delta(\lambda - \lambda_k) \rangle$$ (1)

Calculated on the lattice: mode number $\nu \equiv$ integrated density

The number of modes of the massive hermitian Dirac operator $D^\dagger D + m^2$, with eigenvalues $\alpha \leq \Lambda^2 + m^2$, is renormalization-group invariant

$$\nu_R(\Lambda_R, m_R) = \nu(\Lambda, m) = V \int_{-\Lambda}^{\Lambda} d\lambda \rho(\lambda, m)$$ (2)

To extract Σ: Define effective spectral density (removing threshold effects)

$$\tilde{\rho}_R = \frac{\pi}{2V} \frac{\nu_{2,R} - \nu_{1,R}}{\Lambda_{2,R} - \Lambda_{1,R}} \frac{V \to \infty; a, m_R, \Lambda_R \to 0}{\rightarrow} \Sigma$$ (3)

¹ L. Giusti and M. Lüscher, JHEP903(2009)13
Chiral Perturbation Theory

NLO (W)ChPT ($n_f = 2$) in the continuum1,2 and GSM3 regime2

\[
\tilde{\rho}^\text{NLO}_R = \sum \left\{ 1 + \frac{m_R \Sigma}{(4\pi)^2 F^4} \left[3 \bar{t}_6 + 1 - \ln(2) - 3 \ln \left(\frac{\Sigma m_R}{F^2 M^2} \right) + \tilde{g}_\nu \left(\frac{\Lambda_{1,R}}{m_R}, \frac{\Lambda_{2,R}}{m_R} \right) \right] \right\}
- 32(W_0 a)^2 \frac{W'_8 m_R}{\Lambda_{1,R} \Lambda_{2,R}}
\]

with \(\tilde{g}_\nu(x_1, x_2) = \frac{f_\nu(x_1) + f_\nu(x_2)}{2} + \frac{1}{2} \frac{x_1 + x_2}{x_2 - x_1} \left[f_\nu(x_2) - f_\nu(x_1) \right] \)

\(f_\nu(x) = \left(x - \frac{1}{x} \right) \arctan(x) - \frac{\pi}{2} x - \ln(x + x^3) \)

- No chiral logs for fixed \(\Lambda_R \); \(\tilde{g}_\nu(.) \) mild function
- 1+2 NLO LECs; \(W'_8 \) expected negative4

1. L. Giusti and M. Lüscher, JHEP903(2009)13
2. S. Necco and A. Shindler, JHEP1104(2010)31
3. “Generally small quark mass”
4. M.T. Hansen and S.R. Sharpe, PRD85(2012)14593; K. Splittorff and J. Verbaarschot, PRD85(2012)105008
Details of the simulation

Parameters of the simulation: \(n_f = 2 \) CLS-lattices\(^5\)

id	\(L/a \)	\(m_\pi \)	\(m_\pi L \)	\(a \)	\(R_{\tau_{\text{exp}}} \)	\(R_{\tau_{\text{int}}(m_\pi)} \)	\(R_{\tau_{\text{int}}(\nu)} \)	\(R_{n_{\text{it}}(\nu)} \)	\(N_{\text{cnfg}} \)
A3	32	490	6.0	0.075	40	7	3	48	55
A4	380	4.7			5			53	55
A5	330	4.0			5			36	55
B6	48	280	5.2	6	24			50	
E5	32	440	4.7	0.065	56	9	6	36	92
F6	48	310	5.0	8	30			50	
F7	270	4.3			7			27	50
G8	64	190	4.1	8	24-48			50	
N5	48	440	5.2	0.048	200	30	23	281	60
N6	340	4.0		100	10			128	60
O7	64	270	4.2	100	15			76	50

- **Autocorrelation under control**, \(\tau_{\text{int}}(\nu) < n_{\text{it}}(\nu) \)
- **Finite volume effects under control**, found tiny for \(\Lambda_R \geq 20 \) MeV
- **9 values of cutoff \(\Lambda_R \) for each ensemble**, \(20 \leq \Lambda_R \leq 120 \) MeV

\(^5\) P. Fritzsch et al., NPB865(2012)397; M. Marinkovic et al., PoS Lat(2011)232
Details of the simulation II

Stochastic evaluation of ν through VEV of projector to low modes

$$\nu = \langle \text{tr}[P_M] \rangle, \quad M = \sqrt{\Lambda^2 + m^2}$$

$$= \frac{1}{N} \sum_{k=1}^{N} (\eta_k, P_M \eta_k), \quad \eta_k \ldots \text{pseudo-fermion fields}$$

First look at numerical data

ν roughly linear in all ensembles.
Details of the simulation II

Stochastic evaluation of ν through VEV of projector to low modes

\[\nu = \langle \text{tr}[\mathbb{P}M] \rangle, \quad M = \sqrt{\Lambda^2 + m^2} \]
\[= \frac{1}{N} \sum_{k=1}^{N} (\eta_k, \mathbb{P}M\eta_k), \quad \eta_k \ldots \text{pseudo-fermion fields} \]

First look on numerical data

- ν roughly linear in all ensembles.
- $\tilde{\rho}$ non-zero and flat in Λ_R toward small m_R and a.

\[\tilde{\rho}_R \text{ [GeV}^3] \]
\[m_R = 12.9 \text{ MeV} \]
\[a = 0.048 \text{ fm} \]
Fitting strategy A: Concept

First studies\(^6\) indicated:
- Higher order effects in \(\tilde{\rho}_R\) observed.
- Functional form not well known at finite lattice spacing.

Suggest Strategy A:
- First perform continuum limit at each \((\Lambda_R, m_R)\) following Symanzik.
- Finite spectral density near the origin will suggest chiral SSB.
- Use (continuum) ChPT to remove remaining corrections.

\[
\Sigma = \lim_{\Lambda_R \to 0} \lim_{m_R \to 0} \lim_{a \to 0} \tilde{\rho}_R(\Lambda_R, m_R, a) \tag{7}
\]

A posteriori self-consistency check:
Agreement with \(M^2_\pi F^2_\pi/2\) vs. \(m\) (GMOR)?

\(^6\) GPE et al., PoS Lat(2013)119
At each pair \((\Lambda_R, m_R)\), extrapolate \(a \to 0\).

Data agree well with linear \(a^2\)-dependence (\(\mathcal{O}(a)\)-improved theory).

Discretization effects show non-trivial \((\Lambda_R, m_R)\)-dependence:

\(\tilde{\rho}_R^{1/3}\): mild (<5%) at lightest \((\Lambda_R, m_R)\); i.g. up to \(\mathcal{O}(20\%)\)
Non-zero density at small (Λ_R, m_R) points to chiral SSB.

Use generalized NLO ChPT to extrapolate to chiral limit\(^7\):

\[
\tilde{\rho}_R = c_0(\Lambda_R) + c_1 m_R + c_2 g(\Lambda_R, m_R)
\]

\(\Sigma = c_0(\Lambda_R) = \text{const.} \quad \text{at NLO}\) \(\quad (8)\)

\(^7\) Here and later we use the short-hand notation: \(g(\Lambda, m) = m(\bar{g}_\nu(\Lambda_1/m, \Lambda_2/m) - 3 \ln(m/\mu))\)
Fitting strategy A IV: Chiral limit

$\tilde{\rho}_R$ vs. Λ_R in the continuum and chiral limit

- $\tilde{\rho}_R \big|_{m_R=0} = c_0(\Lambda_R)$ shows plateau at NLO ChPT.
- Identify valid range of NLO: $\Lambda_R < 80$ MeV.
- $\Sigma^{1/3} = 261(6)$ MeV in $\overline{\text{MS}}$ at 2 GeV.

$m_R = 0$ MeV
$a = 0$ fm
Fitting strategy B: Concept

Combined 3-dim fit in (Λ_R, m_R, a)

- Include all data; no interpolation required.
- Fewer fit parameters compared to Strategy A.
- Model the discretization effects:
 - Linear in a^2 and m_R.
 - Still allow for arbitrary Λ_R-dependence.

\[
\tilde{\rho}_R = c_{0,0}(\Lambda_R) + c_{0,1}(\Lambda_R) a^2 + c_{1,0} m_R + c_{1,1}(\Lambda_R) m_R a^2 + c_2 g(\Lambda_R, m_R)
\]

\[
\Sigma = c_{0,0}(\Lambda_R) = \text{const. at NLO}
\]

- Inspired by Symanzik and chiral power expansion.
- Model complies with results of Strategy A.
- Includes NLO WChPT GSM3 as special case.

3 "Generally small quark mass"
Fitting strategy B II: Continuum and chiral limit

$\tilde{\rho}_R$ vs. m_R and vs. Λ_R

- NLO plateau in $c_{0,0}(\Lambda_R)$ for $\Lambda_R < 80$ MeV.
- $\Sigma^{1/3} = 260(6)$ MeV in $\overline{\text{MS}}$ at 2 GeV.
- Systematic error:
 - Neglect data at coarse lattices ($a=0.075$ fm): +8 MeV.
 - Include $O(\Lambda_R^2, m_R^2)$-terms: -7 MeV.
Conclusion and check with GMOR

Ab-initio determination of the chiral condensate from Banks-Casher.

Extensive study of the spectral density:

- 3 lattice spacings: $0.048 \leq a \leq 0.076$ fm
- 4 pion masses: $190 \leq m_\pi \leq 490$ MeV
- 9 cutoffs: $20 \leq \Lambda_R \leq 120$ MeV

Separate treatment of various effects, all systematics discussed.

$\Sigma^{1/3} = 261(6)(8)$ MeV in $\overline{\text{MS}}$ at 2 GeV.

Final results agrees with GMOR-relation\(^8\).

\(^8\) GPE, L. Giusti, S. Lottini, R. Sommer: “Chiral symmetry breaking in QCD Lite”, arXiv:1406.4987

Georg P. Engel

Chiral condensate in $n_f = 2$ QCD from the Banks–Casher relation
Data well described by linear fit passing through origin.
Strongly suggests to be actually within chiral regime.
\[\Sigma^{1/3} = 271(8) \text{ MeV}. \]
\(\nu \neq 0.12 \)

\(\Lambda \)

\(\nu \neq 0.12 \)

\(\Lambda \neq 0.048 \text{ fm} \)

\(\Lambda \neq 0.065 \text{ fm} \)

\(\Lambda \neq 0.075 \text{ fm} \)

\(\nu \neq \nu_{\text{ref}} \)

\(m_R = 32.0 \text{ MeV} \)

\(\nu_{\text{ref}} = \nu|_{\Lambda_R=40\text{ MeV}} \)

shows flat \(a \)-dependence in dimensionful analysis.

\(\tilde{\rho}_R(\Lambda_R, m_R, a) = \tilde{\rho}_R(\Lambda_R, m_R, 0) + a^2 \Delta(\Lambda_R, m_R) \quad (11) \)

\(\Delta(\Lambda_R, m_R) = \bar{c}_{0,1}(\Lambda_R) + \bar{c}_{1,1}(\Lambda_R)m_R \quad (12) \)
|Δ\overset{\text{FV}}{\Sigma}|/\Sigma \text{ vs. } \Lambda_R \text{ for } \beta = 5.2
\[|\Delta \tilde{\Sigma}^{FV}|/\Sigma \text{ vs. } \Lambda_R \text{ for } \beta = 5.3 \]