Remarks on the possible importance of jet v_3 and multiple jet production for the interpretation of recent jet quenching measurements at the LHC

C. Loizides
Lawrence Berkeley National Laboratory, Berkeley, California, United States

J. Putschke
Wayne State University, Detroit, Michigan, United States

(Dated: August 6, 2012, v0.65)

Recent jet quenching measurements in Pb+Pb collisions at the LHC report a significant energy imbalance of di-jets. The imbalance is found to be compensated by a large amount of soft particles produced at large angles with respect to the di-jet axis. This observation questions the conventional picture of parton energy loss models, established at RHIC, which typically expect that the radiated gluons are emitted at moderate angles close to the outgoing parton. In this letter, we qualitatively discuss two possible contributions of the underlying heavy-ion background that may have to be taken into account when interpreting the recent data. We show that a large jet v_3, potentially caused by a pathlength dependent energy loss in the presence of fluctuating initial conditions, could contribute to the observed excess of soft particles apparently originating from large angle in-medium radiation. In addition, the observed excess could also be induced by multiple jets produced in the vicinity of the leading jet, caused by a potential selection bias imposed on the di-jet momentum imbalance.

I. INTRODUCTION

One of the most important discoveries in the collision of heavy nuclei at the Relativistic Heavy Ion Collider (RHIC) is the observation that the inclusive yield of high transverse momentum (p_T) hadrons $^{[1,2]}$ and the semi-inclusive rate of azimuthally back-to-back high-p_T hadron pairs are strongly suppressed relative to the expected yields in p+p and d+Au collisions $^{[3,5]}$. Since high-p_T particles are dominantly produced in the fragmentation of QCD jets, the effect has been called "jet quenching", expressing the expectation that the parton loses energy in the interaction with soft gluons of the medium created in the heavy-ion collisions.

Two different mechanisms have been proposed to describe parton production and evolution in the case of a medium: (a) collisional energy loss due to elastic scatterings $^{[6,7]}$, and (b) energy loss due medium-induced gluon radiation $^{[8–10]}$. Most quantitative attempts to model the jet quenching data from RHIC rely on the radiative energy loss scenario as the main dynamical mechanism responsible for the energy loss $^{[11]}$.

However, as the measurements at RHIC mainly address medium effects concerning the most energetic (leading) particle in the jet, the predictions of these models have not really been tested until recently, when the first measurements of fully reconstructed di-jets in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV at the Large Hadron Collider (LHC) have been reported $^{[12,13]}$. These measurements show a strong increase in the fraction of highly momentum-imbalanced di-jets in central as compared to peripheral collisions. Furthermore, a large fraction of the momentum imbalance is found to be carried by a large amount of low-p_T ($\lesssim 4$ GeV/c) particles at large angles ($> 45^\circ$) with respect the jet axis $^{[13]}$. Whereas the hard component of the momentum distribution of jet constituents reconstructed in Pb+Pb collisions is found to be remarkably similar to jets of the same reconstructed energy fragmenting in the absence of a medium $^{[13]}$.

These observations are difficult to reconcile with most radiative energy loss models, established at RHIC, in which the radiated gluons are typically emitted at only moderate angles close to the outgoing parton, leading to a characteristic modification of the jet internal structure $^{[14,15]}$. The new data from the LHC, qualitatively predicted by $^{[17,18]}$, have prompted the development of more sophisticated models $^{[19–29]}$ to quantitatively describe the di-jet energy imbalance. It also has been pointed out $^{[30]}$ that, depending on the applied correction scheme, residual contributions of the underlying, soft heavy-ion background and its fluctuations can artificially enhance the observed energy imbalance.

In this letter, we discuss the reported excess of soft particles outside of the leading jet cone of $R = \sqrt{\Delta \eta^2 + \Delta \phi^2} > 0.8$. On the qualitative level we address two possible contributions of the heavy-ion background that may affect the current interpretation of the out-of-cone radiation. The first contribution arises from a potential jet v_3, which could be caused by a pathlength dependent energy loss in the presence of fluctuating initial conditions $^{[31]}$. In Section $^{[31]}$ we show that under the assumption of a large jet v_3 the observed excess of soft particles at large angles can be artificially enhanced. The second contribution arises from multiple, independent, partially overlapping di-jets in the heavy-ion event. In Section $^{[32]}$ for simplicity, we discuss the probability for a second independent lower-momentum di-jet pair produced such that one jet is close to the leading jet, while its partner lies outside of the cone. Finally, in Section $^{[33]}$ and Section $^{[34]}$ we briefly discuss the interplay between the mentioned effects, and the observed di-jet energy imbalance A_1.

Remarks on the possible importance of jet v_3 and multiple jet production for the interpretation of recent jet quenching measurements at the LHC

C. Loizides
Lawrence Berkeley National Laboratory, Berkeley, California, United States

J. Putschke
Wayne State University, Detroit, Michigan, United States

(Dated: August 6, 2012, v0.65)
II. JET v_3

In this section, we qualitatively study the effect of a finite jet v_3, on the missing momentum (p_T^\parallel) observable introduced in Ref. [13]

$$p_T^\parallel = -\sum p_{T,i} \cos(\phi_i - \phi_J),$$

with ϕ_i the azimuthal angle of all charged tracks within a certain p_T range and ϕ_J the azimuthal angle of the leading jet. For details concerning jet reconstruction, detector acceptance and kinematical cuts we refer to Ref. [13].

In Fig. 1a), we illustrate the composition of the particle momentum distribution relative to the jet axis of particles originating from the di-jet and from the expected jet. For soft particles in- or outside of the jet cone of radius R. In Fig. 1b) we illustrate the phase space region we use in our simplified, but analytical approach to mimic the exclusion of particles in a jet cone of R ($\Delta\phi_{min} = R$ and $\Delta\phi_{max} = \pi - R$). Since for the p_T^\parallel studies the jet selection in Ref. [13] has been tightened requiring the di-jet partner to be at $\Delta\phi > 5/6\pi$ on the away-side, and since we assume no η dependence of $V_n\Delta$, we can choose the di-jets to be located at $(\eta = 0, \phi = 0)$ and $(\eta = 0, \phi = \pi)$. Using Eq. 2 to estimate a lower limit on the out-of-cone contribution $p_T^\parallel_{out}$, we find that odd harmonics do not cancel in $p_T^\parallel_{out}$, while the even harmonics do.

In the following, we consider only v_3 as the expected dominant contribution to $p_T^\parallel_{out}$

$$p_T^\parallel_{out} = -4R \int_{p_T_{min}}^{p_T_{max}} dP_T dN/dP_T \int_{\Delta\phi_{min}}^{\Delta\phi_{max}} d\Delta\phi \int_{\pi-R}^{-R} d\Delta\phi (1 + 2V_3\Delta(p_T) \cos(3\Delta\phi)) \cos(\Delta\phi).$$

The missing momentum for particles out-of-cone has to be balanced by the missing momentum for particles in the cone. Thus, the fact that the 3rd harmonic is not symmetric around zero and π, leads to an increase of soft background particles in the direction of the leading and consequently to a decrease of soft background particles in the direction of the di-jet partner (see Fig. 1). This asymmetry results in a decrease of $p_T^\parallel_{out}$ for soft particles in the direction of the leading jet even if the soft quenched particles are fully contained inside the jet cone. As a consequence this will then result in an enhanced low-p_T contribution in $p_T^\parallel_{out}$ in the direction of the di-jet partner.

In Fig. 2 (top panel) we show $p_T^\parallel_{out}$ as function of $V_3\Delta$ for three different selections of p_T for charged particles.
with event multiplicities and transverse momentum spectral shapes for 0–30% central Pb+Pb collisions. The jet v_3^{jet} is unknown, but could be substantial in a path-length dependent energy loss picture, and so a finite contribution to $p_T^{\parallel,\text{out}}$ is expected. Since $V_{3\Delta} = v_3 v_3^{\text{jet}}$ one can use the measured bulk v_3 values from [33] and with assumptions concerning jet v_3^{jet}, one can estimate the possible contributions to $p_T^{\parallel,\text{out}}$ as illustrated in Fig. 3 (bottom panel). For example, assuming a $v_3^{\text{jet}} = 0.2$ the p_T integrated (0.5–4 GeV/c) contribution to $p_T^{\parallel,\text{out}}$ can be up to 2 GeV/c.

III. MULTIPLE JET PRODUCTION

In this section, we qualitatively discuss the effects of multiple jet production. The effect of 3-jet events on A_1 and p_T^{\parallel}, where the third jet is outside of the cone, is already taken into account in the p+p reference in Ref. [13], estimated using the Pythia Monte Carlo generator. We further compute the 3-jet event probability using NLOJet++ [36]. For similar kinematic requirements as in [13], we find the fraction to be less than 10%. (Estimates kindly provided by the authors of [25] suggest an even smaller contribution.) Since 3-jet events are already present in p+p collisions and since we discuss modifications with respect to the p+p reference, 3-jet events can therefore not be the only explanation of the observed increased di-jet imbalance, nor of the p_T^{\parallel} measurements.

In heavy-ion collisions, however, one expects the cross section for hard processes to scale with the number of independent nucleon–nucleon collisions. Therefore, with respect to a selected di-jet there potentially are up to N_{bin} independent additional hard-scatterings above a certain p_T per event, which all should be treated as background. Thus, one can imagine cases where one of the nth hard scatter overlaps with the selected leading jet, see Fig. 1(b), but its di-jet partner lies outside of the cone of the selected di-jet system.

Since no background subtraction was performed in the p_T^{\parallel} in- and out-of-cone distributions and from the 2π integrated distribution we know that on average, given the kinematic selection and acceptance, the nth hard scattering balance, one has to estimate the fraction of events where an additional jet overlaps in $R < 0.8$ with the leading jet, but not on the recoil side. For simplicity, we estimate the fraction of 2nd hard scatterings, F_{17} above a certain p_T threshold using Pythia8 [37] at $\sqrt{s} = 2.76$ TeV with a matching/overlap criteria of $R/2$. In Fig. 4 the fraction for several p_T selections as a function of N_{bin} is shown. According to our simplistic estimate, the probability of a 2nd hard scattering is about 8% for $p_T > 18$ GeV/c at $(N_{\text{bin}}) \approx 1000$ (corresponding to 0–30% central collisions) to be in the vicinity of the leading jet and outside the recoil cone. By symmetry, the probability of having the second hard scattering close to the di-jet partner is equally probable and hence, on average, the two cases should cancel. However, for larger A_1, as discussed in the next section, one can imagine a stronger,
centrality dependent, bias towards events, in which a 2nd hard jet is in the vicinity of the selected leading jet. In addition, due to the hard cutoff imposed on the leading jet energy (> 120 GeV/c in [13]) the fraction of these events should be enhanced due to a feed-up of lower energetic jets in the measured di-jet selection.

In case the 2nd hard jets are quenched, but not fully thermalized, they would contribute to the apparent imbalance of the \(p_T^\parallel \) in-cone, especially at lower \(p_T \) and consequently to an enhancement in the \(p_T^\parallel \) out-of-cone at lower \(p_T \). The effect would cancel if integrated over \(2\pi \) in \(p_T^\parallel \). One has to note that only the charged fraction of \(p_T \) in our estimate would contribute to the missing \(p_T^\parallel \) measurement. On a qualitative level, the effect of multiple independent jet production will contribute to the \(p_T^\parallel \) in- and out-of-cone measurements and should be taken properly into account when interpreting the experimental results. More quantitative estimates would involve more realistic simulations, addressing the \(A_2 \) bias, and ultimately require assumptions about the underlying partonic energy loss mechanism.

IV. EFFECT ON \(A_J \)

Taking contributions of jet \(v_3 \) and multiple jet production on the di-jet balance \(A_J \) into account, the observed, leading jet energy can be expressed as

\[
E_1 = \tilde{E}_1 + E_{v_3} + E_{nth}, \tag{4}
\]

with \(\tilde{E}_1 \) the leading jet energy, \(E_{v_3} \) the contribution from jet \(v_3 \) and \(E_{nth} \) the energy of \(n^{th} \) hard scatterings overlapping with the leading jet. Similarly the sub-leading, di-jet partner jet energy can be expressed as

\[
E_2 = \tilde{E}_2 - E_{v_3}. \tag{5}
\]

Therefore, the di-jet imbalance \(A_J \) can be written as

\[
A_J = \frac{E_1 - E_2}{E_1 + E_2} = \frac{2E_{v_3} + E_{nth}}{E_1 + E_2}, \tag{6}
\]

where \(A_J \) is the imbalance of the true di-jet pair (\(\tilde{A}_J \)) with a positive contribution of twice the energy caused by jet \(v_3 \) and the contribution from multiple hard scatterings. For a recent calculation of \(A_J \) including NLO effects, we refer to [25]. We would like to point out that estimating the additional effects on \(A_J \) without a realistic simulation is complicated by the experimentally used background subtraction scheme. If the \(n^{th} \) hard scatterings in a certain kinematical region, as expected from binary scaling, are abundantly produced in the experimental phase space, then part of their effect should be accounted for in the background correction.

Overall, the discussed effects will lead to an increase in \(A_J \), but further, more detailed, studies would be needed to quantitatively estimate their contribution on the measured \(A_J \) distribution.

V. SUMMARY

Recent jet quenching measurements in Pb+Pb collisions at the LHC report a significant energy imbalance of di-jets [12, 13]. The imbalance is found to be compensated by a large amount of soft particles produced at large angles with respect to the di-jet axis [13]. We qualitatively discuss two effects of the underlying heavy-ion background, jet \(v_3 \) and multiple jet production.

The effect of jet \(v_3 \) on \(p_T^\parallel \) out-of-cone in our simplistic approach suggests a moderate, but finite contribution of a few GeV/c for realistic bulk \(v_3 \) values and large jet \(v_3 \).

The influence of multiple di-jet production per event, for \(\hat{p}_T \) values of the order of the effect (10 GeV/c), can contribute significantly in the \(p_T^\parallel \) in- and out-of-cone measurements provided it is caused by a centrality dependent, bias towards events, in which the 2nd hard jet is in the vicinity of the selected leading jet. In addition, due to the hard cutoff imposed on the leading jet energy, the fraction of these events should be enhanced due to a feed-up of lower energetic jets in the measured di-jet selection.

We want to emphasize that the \(p_T^\parallel \) measurement over \(2\pi \) [13], independent on the details of the composition of the leading jet selection and bulk-like correlation effects, is a clear indication of partonic energy loss in heavy-ion collisions at the LHC, in which high-\(p_T \) suppression is balanced by an enhanced production of low-\(p_T \) particles. However, we think that the discussed effects should be taken into account, and further quantified, in order to unambiguously conclude whether the quenched energy appears at large angles with respect to the jet axis.

Acknowledgments

We would like to thank Helen Caines for fruitful discussions and critical comments regarding the manuscript.

1. K. Adcox et al. (PHENIX), Phys.Rev.Lett. 88, 022301 (2002), nucl-ex/0109003
2. C. Adler et al. (STAR), Phys. Rev. Lett. 89, 202301 (2002), nucl-ex/0206011
3. J. Adams et al. (STAR), Phys. Rev. Lett. 91, 072304 (2003), nucl-ex/0306024
4. J. Adams et al. (STAR), Phys. Rev. Lett. 97, 162301 (2006), nucl-ex/0604018
[5] A. Adare et al. (PHENIX), Phys. Rev. Lett. 104, 252301 (2010), 1002.1077
[6] M.H. Thoma, Phys. Lett. B273, 128 (1991)
[7] M.G. Mustafa, M.H. Thoma, Acta Phys. Hung. A22, 93 (2005), hep-ph/0311168
[8] M. Gyulassy, X.n. Wang, Nucl. Phys. B420, 583 (1994), nucl-th/9306003
[9] R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B483, 291 (1997), hep-ph/9607355
[10] R. Baier, D. Schiff, B. Zakharov, Ann.Rev.Nucl.Part.Sci. 50, 37 (2000), hep-ph/0002198
[11] A. Majumder, M. Van Leeuwen, Prog. Part. Nucl. Phys. 66, 41 (2011), 1002.2206
[12] G. Aad et al. (ATLAS), Phys.Rev.Lett. 105, 252303 (2010), 1011.6182
[13] S. Chatrchyan et al. (CMS), Phys. Rev. C84, 024906 (2011), 1102.1957
[14] C. Roland (for the CMS collaboration) (2011), QM11 proceedings, 1107.1468
[15] C.A. Salgado, U.A. Wiedemann, Phys.Rev.Lett. 93, 042301 (2004), hep-ph/0310079
[16] N. Borghini, U.A. Wiedemann (2005), hep-ph/0506218
[17] I. Vitev, Phys.Lett. B630, 78 (2005), hep-ph/0501255
[18] I. Vitev, S. Wicks, B.W. Zhang, JHEP 0811, 093 (2008), 0810.2867
[19] Y. Mehtar-Tani, C.A. Salgado, K. Tywoniuk, Phys.Rev.Lett. 106, 122002 (2011), 1009.2965
[20] G.Y. Qin, B. Muller, Phys. Rev. Lett. 106, 162302 (2011), 1012.5280
[21] J. Casalderrey-Solana, J.G. Milhano, U.A. Wiedemann, J. Phys. G38, 035006 (2011), 1012.0745
[22] C. Young, B. Schenke, S. Jeon, C. Gale (2011), 1103.5769
[23] J. Casalderrey-Solana, E. Iancu, JHEP 1108, 015 (2011), 1105.1760
[24] R.B. Neufeld, I. Vitev (2011), 1105.2067
[25] Y. He, I. Vitev, B.W. Zhang (2011), 1105.2566
[26] R. Neufeld (2011), 1108.6297
[27] A. Beraudo, J.G. Milhano, U.A. Wiedemann (2011), 1109.5025
[28] P.M. Chesler, Y.Y. Ho, K. Rajagopal (2011), 1111.1691
[29] J. Casalderrey-Solana, J.G. Milhano, P.Q. Arias (2011), 1111.0310
[30] M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C71, 1692 (2011), 1101.2878
[31] B. Alver, G. Roland, Phys.Rev. C81, 054905 (2010), 1003.0194
[32] J. Jia (for the ATLAS collaboration) (2011), 1107.1468
[33] K. Aamodt et al. (ALICE), Phys.Rev.Lett. 107, 032301 (2011), 1105.3865
[34] K. Aamodt et al. (ALICE), Phys. Lett. B696, 30 (2011), 1012.1004
[35] K. Aamodt et al. (ALICE), Phys.Rev.Lett. 106, 032301 (2011), 1012.1657
[36] Z. Nagy, Phys. Rev. D65, 094002 (2003), hep-ph/0307268
[37] T. Sjostrand, S. Mrenna, P.Z. Skands, Comput.Phys.Commun. 178, 852 (2008), 0710.3820