Supporting Information:

Identification of tetrapeptides from a mixture based positional scanning library that can restore nM full agonist function of the L106P, I69T, I102S, A219V, C271Y, and C271R human melanocortin-4 polymorphic receptors (hMC4Rs)

Erica M. Haslacha, Huisuo Huanga,b, Marvin Diraina, Ginamarie Debevecc, Phaedra Geerc, Radleigh G. Santosc, Marc A. Giulianottic, Clemencia Pinillad, Jon R. Appeld, Skye R. Doeringb, Michael A. Waltersbe, Richard A. Houghtened, and Carrie Haskell-Luevanoa,b1

Table S1 Pipeline Pilot Biophysical Properties.

Table S2. Analytical Information for the single tetrapeptides synthesized and characterized in this study. Purity for these compounds is >95%.
Table S1. Summary of the Pipeline Pilot biophysical properties for the tetrapeptides examined in this study.

Cmpd	ALOGP	Num_H_Acceptors	Num_Aromatic_Rings	Num_Rotatable_Bonds	Num_Arom_Rings	LogD	Molecular_Surface_Area	Energy	Molecular 3D SASA
NDP-MSH	-5.886	22	118	51	6	5	-5.4220	168.54	153.66
JRH887-9	-0.576	8	50	19	4	4	-0.1130	685.11	81.06
EMH4-105	0.002	8	51	19	4	4	0.4650	726.09	80.94
1981-2	4.642	5	52	10	6	4	4.6420	725.56	12.99
1981-3	4.023	5	52	7	7	4	4.0230	688.44	13.4
1981-4	1.67	9	53	17	4	3	1.6700	747.21	44.24
1981-5	2.354	7	51	16	4	3	2.3540	748.65	44.94
1981-6	1.735	7	51	13	5	3	1.7350	711.53	45.93
1981-7	1.891	8	52	14	5	4	2.3550	711.72	26.72
1981-8	2.575	6	50	13	5	4	3.0380	713.16	29.91
1981-9	1.956	6	50	10	6	4	2.4200	676.04	32
1981-10	-0.397	10	51	20	3	3	0.066000	734.81	56.24
1981-11	0.287	8	49	19	3	3	0.750000	736.25	56.41
1981-12	-0.332	8	49	16	4	3	0.131000	699.13	70.34
1981-13	1.67	9	53	17	4	3	1.6700	747.21	25.89
1981-14	2.354	7	51	16	4	3	2.3540	748.65	26.81
1981-15	1.735	7	51	13	5	3	1.7350	711.53	32.11
1981-16	-0.618	11	52	23	2	2	-0.618000	760.31	53.51
1981-17	0.066	9	50	22	2	2	0.066000	771.74	50.98
1981-18	-0.553	9	50	19	3	2	-0.553000	734.62	57.03
2073-1	-5.886	22	118	51	6	5	-5.4220	168.54	153.66
2073-2	0.066	9	50	22	2	2	0.066000	771.74	55.65
2073-3	4.045	7	54	11	6	4	4.0450	706.21	11.06
2073-4	4.728	5	52	10	6	4	4.7280	707.64	7.52
2073-5	4.11	5	52	7	7	4	4.1100	670.52	11.42
2073-6	1.756	9	53	17	4	3	1.7560	729.3	42.9
2073-7	2.44	7	51	16	4	3	2.4400	730.73	42.41
2073-8	1.821	7	51	13	5	3	1.8210	693.62	48.24
2073-9	1.977	8	52	14	5	4	2.4410	693.81	26.79
2073-10	2.661	6	50	13	5	4	3.1250	695.24	25.97
2073-11	2.042	6	50	10	6	4	2.5060	658.12	31.78
2073-12	-0.311	10	51	20	3	3	0.152000	716.9	58.71
2073-13	0.373	8	49	19	3	3	0.836000	718.33	56.71
2073-14	-0.246	8	49	16	4	3	0.217000	681.22	69.33
2073-15	1.756	9	53	17	4	3	1.7560	729.3	27.46
2073-16	2.44	7	51	16	4	3	2.4400	730.73	25.89
2073-17	1.821	7	51	13	5	3	1.8210	693.62	29.14
2073-18	-0.532	11	52	23	2	2	-0.532000	752.39	51.92
2073-19	0.152	9	50	22	2	2	0.152000	753.83	51.82
Table S2. Analytical data of synthesized peptides. All peptides were determined to be >95% pure by analytical RP-HPLC at 214nM.

Compound Reference	Calculated Molecular Weight	MS+1 Observed Molecular Weight	Analytical RP-HPLC k’ in Solvent 1*	Analytical RP-HPLC k’ in Solvent 2*
EMH4-90	685.78	686.61	3.6	6.2
EMH4-91	704.82	705.22	3.7	6.6
EMH4-92	734.85	735.38	6.4	10.5
EMH4-93	711.81	712.42	5.2	9.0
EMH4-94	704.82	705.53	3.8	6.5
EMH4-99	707.82	708.47	6.6	10.4
EMH4-100	707.82	708.42	6.6	10.4
EMH4-101	730.26	731.44	6.9	11.0
EMH4-102	821.71	822.43	7.3	11.4
EMH4-103	837.71	838.47	7.2	11.2
EMH4-95	694.79	695.73	2.2	5.0
EMH4-104	720.22	720.52	4.3	7.4
EMH4-105	811.67	812.49	4.7	8.1
EMH4-96	657.76	658.67	3.6	5.0
EMH4-106	688.31	711.46 (+23.15)	6.8	10.6
EMH4-107	658.75	659.44	3.8	6.7
EMH4-97	681.18	681.46	4.3	7.6
EMH4-98	681.18	681.45	6.2	7.2
EMH4-108	772.64	773.20	4.6	8.3
EMH4-109	691.74	692.14	3.5	11.5
EMH4-110	696.80	697.33	4.5	8.1
1981-2	923.58	946.68 (+23)	11.8	14.4
1981-3	809.69	809.69	9.4	12.2
1981-4	839.68	840.23	7.7	10.0
1981-5	920.58	920.89	7.7	11.9
1981-6	806.69	807.24	7.7	11.0
1981-7	820.63	821.30	7.1	11.0
1981-8	903.55	924.25	8.1	12.3
1981-9	787.65	810.51 (+23)	6.7	10.6
1981-10	817.63	818.55	4.3	7.3
1981-11	898.53	899.48	5.1	8.8
1981-12	784.65	785.49	4.4	7.6
1981-13	839.68	840.41	7.1	10.9
1981-14	920.58	921.16	8.2	12.2
1981-15	806.69	807	6.7	10.4
1981-16	836.68	837.26	4.4	7.4
1981-17	917.58	918.38	5.2	9.2
1981-18	803.69	804.51	4.6	8.2
2073-1	842.68	864.95 (+22)	4.9	
2073-6	751.23	751.05	4.8	
2073-7	832.13	831.95	5.3	
2073-8	718.24	739.90 (+22)	4.8	
2073-9	748.23	748.00	2.8	
2073-10	829.13	830.40	2.8	
2073-11	715.24	715.00	2.7	
-------	-------	-------	---	
2073-12	729.18	729.40	2.7	
2073-13	812.1	809.90	3.0	
2073-14	696.19	695.95	2.7	
2073-15	726.18	726.05	1.8	
2073-16	807.08	807.00	2.0	
2073-17	693.2	693.05	1.9	
2073-18	748.23	748.05	2.8	
2073-19	829.13	829.00	3.0	
2073-20	715.24	715.10	2.7	
2073-21	745.23	745.15	1.9	
2073-22	826.13	826.10	2.1	
2073-23	712.24	712.10	1.9	

*For the EMH and TPI1981 compounds, the HPLC k’ value equals [(peptide retention time – solvent retention time)/ solvent retention time]. Two different solvent systems were used. Solvent system 1 equals (10% acetonitrile in 0.1% trifluoroacetic acid/H$_2$O and a gradient to 90% acetonitrile over 35 min). Solvent system 2 equals (10% methanol in 0.1% trifluoroacetic acid/ H$_2$O and a gradient to 90% methanol over 35 min). The analytical Vydac C18 column (Vydac 218TP104) in combination with a flow rate of 1.5 ml/min was used for analytical characterization. The peptide purity was determined by HPLC at a wavelength of 214 nm. The TPI2073 compounds were characterized in only Solvent system 1, consisting of 5% acetonitrile in 0.1% formic acid/H$_2$O and a gradient to 95% acetonitrile over 6 min using a Phenomenex C18-100a 50x4.6µM 5 micron analytical column. The peptide purity was determined by HPLC at a wavelength of 214 nm.