R_b Constraints on Littlest Higgs Model with T-parity

Xiao-Fang Han

Key Laboratory of Frontiers in Theoretical Physics,
Institute of Theoretical Physics, Academia Sinica, Beijing 100190, China

Abstract

In the framework of the littlest Higgs model with T-parity (LHT), we study the contributions of the T-even and T-odd particles to the branching ratio R_b. We find that the precision data of R_b can give strong constraints on the masses of T-odd fermions.

PACS numbers: 14.80.Cp,12.60.Fr,11.30.Qc
I. INTRODUCTION

The little Higgs theory was proposed [1] as a possible solution to the hierarchy problem and so far remains a popular candidate for new physics beyond the SM. The littlest Higgs model [2] is a cute economical implementation of little Higgs, but is found to be subject to strong constraints from electroweak precision tests [3], which would require raising the mass scale of the new particles to far above TeV scale and thus reintroduce the fine-tuning in the Higgs potential [4]. To tackle this problem, a discrete symmetry called T-parity is proposed [5], which forbids the tree-level contributions from the heavy gauge bosons to the observables involving only SM particles as external states. With the running of the LHC, these little Higgs models will soon be put to the test. Since these little Higgs models mainly alter the properties of the Higgs boson and the top quark, hints of these models may be unraveled from various Higgs boson and top quark processes [6].

The branching ratio R_b is defined as

$$R_b \equiv \frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to \text{hadrons})},$$

which can provide a precision test of the SM and a sensitive probe of new physics [7]. In the SM most of the electroweak oblique and QCD corrections cancel between numerator and denominator, and the non-decoupling top quark loop effects in the $Zb\bar{b}$ vertex offer a possibility of bounding the top quark mass. In the LHT there are new heavy mirror quarks interacting with gauge bosons, which can contribute to the R_b. Therefore, it is possible to give some constraints on the mirror quark masses via their radiative corrections to R_b.

The contributions of the LHT to R_b was firstly discussed in [8], which, however, only considered the contributions from the diagrams involving the exchange of the SM Goldstone boson π^\pm and neglected the mirror quark contributions under the assumption of flavor-diagonal and flavor-independent mirror quark Yukawa couplings. In this paper, we consider the general situation and examine the contributions of both T-even and T-odd particles to the R_b.

The work is organized as follows. In Sec. II we recapitulate the LHT model and discuss the new flavor interactions which will contribute to the decay $Z \to b\bar{b}$. In Sec. III we calculate the one-loop contributions of the LHT to the branching ratio R_b and present constraint of R_b on the mirror quark masses. Finally, we give our conclusions in Sec. IV.
II. THE LITTLEST HIGGS MODEL WITH T-PARITY

The LHT model is based on a non-linear sigma model describing the spontaneous breaking of a global $SU(5)$ down to a global $SO(5)$ by a 5×5 symmetric tensor at the scale $f \sim \mathcal{O}(\text{TeV})$. From the $SU(5)/SO(5)$ breaking, there arise 14 Goldstone bosons which are described by the "pion" matrix Π, given explicitly by

$$
\Pi = \begin{pmatrix}
-\omega^0 \sqrt{2} & -\eta \sqrt{20} & -i \omega^+ \sqrt{2} & -i \phi^+ \sqrt{2} & -i \phi^0 \sqrt{2} \\
\omega^- \sqrt{2} & \omega^0 \sqrt{2} & \omega^+ \sqrt{2} & \phi^+ \sqrt{2} & \phi^0 \sqrt{2} \\
-i \pi^- \sqrt{2} & \frac{v+h+\pi^0}{\sqrt{2}} & \sqrt{4/5}\eta & -i \pi^0 \sqrt{2} & \frac{v+h+\pi^0}{\sqrt{2}} \\
i \phi^- \sqrt{2} & \frac{i \pi^- + \phi^0}{\sqrt{2}} & \frac{i \pi^0}{\sqrt{2}} & \frac{\omega^- \sqrt{2}}{\sqrt{2}} & \frac{\omega^0 \sqrt{2}}{\sqrt{2}} \\
i \phi^- \sqrt{2} & \frac{i \omega^0 + \phi^0}{\sqrt{2}} & \frac{v+h+\pi^0}{\sqrt{2}} & \frac{\omega^+ \sqrt{2}}{\sqrt{2}} & \frac{\omega^0 \sqrt{2}}{\sqrt{2}}
\end{pmatrix}.
$$

Under T-parity the SM Higgs doublet $H = (-i\pi^+/\sqrt{2}, (v+h+i\pi^0)/2)^T$ is T-even while other fields are T-odd. A subgroup $[SU(2) \times U(1)]_1 \times [SU(2) \times U(1)]_2$ of the $SU(5)$ is gauged and at the scale f it is broken into the SM electroweak symmetry $SU(2)_L \times U(1)_Y$. The Goldstone bosons ω^0, ω^\pm and η are respectively eaten by the new T-odd gauge bosons Z_H, W_H and A_H, which obtain masses at $\mathcal{O}(v^2/f^2)$

$$M_{W_H} = M_{Z_H} = fg \left(1 - \frac{v^2}{8f^2}\right), \quad M_{A_H} = \frac{fg'}{\sqrt{5}} \left(1 - \frac{5v^2}{8f^2}\right),$$

with g and g' being the SM $SU(2)$ and $U(1)$ gauge couplings, respectively.

The Goldstone bosons π^0 and π^\pm are eaten by the T-even Z and W bosons of the SM, which obtain masses at $\mathcal{O}(v^2/f^2)$

$$M_{W_L} = \frac{gv}{2} \left(1 - \frac{v^2}{12f^2}\right), \quad M_{Z_L} = \frac{gv}{2 \cos \theta_W} \left(1 - \frac{v^2}{12f^2}\right).$$

The photon A_L is also T-even and remains massless.

For each SM quark, a copy of mirror quark with T-odd quantum number is added in order to preserve the T-parity. We denote them by u^i_H and d^i_H, where $i = 1, 2, 3$ are the generation index. In $\mathcal{O}(v^2/f^2)$ their masses are given by

$$m_{d^i_H} = \sqrt{2}\kappa_{q^i} f, \quad m_{u^i_H} = m_{d^i_H} \left(1 - \frac{v^2}{8f^2}\right),$$

where κ_{q^i} are the diagonalized Yukawa couplings of the mirror quarks.
Note that new flavor interactions arise between the mirror fermions and the SM fermions, mediated by the T-odd gauge bosons or T-odd Goldstone bosons. In general, besides the charged-current flavor-changing interactions, the FCNC interactions between the mirror fermions and the SM fermions can also arise from the mismatch of rotation matrices. For example, there exist FCNC interactions between the mirror up-type (down-type) quarks and the SM up-type (down-type) quarks, where the mismatched mixing matrix is denoted by $V_{H_u} (V_{H_d})$ with $V_{H_u}^\dagger V_{H_d} = V_{CKM}$. We follow [9] to parameterize V_{H_d} with three angles $\theta_{12}^d, \theta_{23}^d, \theta_{13}^d$ and three phases $\delta_{12}^d, \delta_{23}^d, \delta_{13}^d$

\[
\begin{pmatrix}
 c_{12}^d c_{13}^d & s_{12}^d c_{13}^d e^{-i\delta_{12}^d} & s_{13}^d e^{-i\delta_{13}^d} \\
 -s_{12}^d c_{13}^d e^{i\delta_{12}^d} - c_{12}^d s_{13}^d e^{i(\delta_{13}^d - \delta_{23}^d)} & c_{12}^d s_{23}^d - s_{12}^d s_{23}^d e^{i(\delta_{13}^d - \delta_{23}^d)} & s_{13}^d e^{-i\delta_{13}^d} \\
 s_{12}^d s_{23}^d e^{i(\delta_{13}^d + \delta_{23}^d)} - c_{12}^d s_{13}^d e^{i\delta_{13}^d} & -c_{12}^d s_{23}^d e^{i\delta_{23}^d} - s_{12}^d s_{23}^d e^{i(\delta_{13}^d - \delta_{12}^d)} & c_{13}^d.
\end{pmatrix}
\]

(6)

III. R_b in the LHT Model

Fig. [1] shows the Feynman diagrams via which LHT gives the corrections to $\Gamma(Z \to b\bar{b})$. The corrections are from both T-even and T-odd particles. The contributions of T-even particles are from the modified coupling $Z t \bar{t}$, $W t \bar{b}$ and $\pi^+ t \bar{b}$, and loops involving the top quark T-even partner (T-quark). The diagrams of T-odd particles are induced by the interactions between the SM quarks and the mirror quarks mediated by the heavy T-odd gauge bosons or Goldstone bosons. The corrections of LHT to the $\Gamma(Z \to d\bar{d})$ and $\Gamma(Z \to s\bar{s})$ are similar to $\Gamma(Z \to b\bar{b})$. For the $\Gamma(Z \to u\bar{u})$ and $\Gamma(Z \to c\bar{c})$, the corrections are only from the T-odd particles, and corrections from the T-even particle can be neglected safely due to the small coupling of $Z T \bar{u}$ and $Z T \bar{c}$. In this work, our purpose is to examine the R_b dependence on the mirror quarks mass, and adopt the method of Bernabeu, Pich, and Santamaria (BPS) to calculate various hadronic decay widths of Z boson [10, 11, 12]. In Appendix, we present the calculation in detail.

In LHT, the branching ratio of $Z \to b\bar{b}$ can be expressed as

\[
R_b \simeq R_b^{SM} (1 + \frac{\delta \Gamma_b}{\Gamma_b^{SM}} - R_b^{SM} \frac{\delta \Gamma_{had}}{\Gamma_b^{SM}}),
\]

(7)

where R_b^{SM} and Γ_b^{SM} are the SM predictions for the branching ratio of $Z \to b\bar{b}$ and the width $\Gamma(Z \to b\bar{b})$, $\delta \Gamma_b$ and $\delta \Gamma_{had}$ are the correction of LHT to the Γ_b^{SM} and $\Gamma^{SM}(Z \to hadrons)$, respectively.
In the numerical calculations we take the Fermi constant \(G_F \), the fine-structure constant \(\alpha_{M_Z} \), \(Z \)-boson mass \(M_{Z_L} \), fermion masses \(m_f \), and the electroweak mixing angle \(s_W = \sin \theta_W \) as input parameters. The LHT parameters relevant to our calculation are the scale \(f \), the ratio between top quark Yukawa couplings \(r = \frac{\lambda_t}{\lambda_2} \), the mirror quark masses and parameters in the matrices \(V_{H_u} \) and \(V_{H_d} \). \(f \) may be as low as 500 GeV, and \(r \) is taken typical value as 1. For the mirror quark masses, from Eq. (5) we get \(m_{u_H} = m_{d_H} \) at \(\mathcal{O}(v/f) \) and further we assume

\[
m_{u_H} = m_{u_H}^2 = m_{d_H} = m_{d_H}^2 \equiv M_{12}, \quad m_{u_H}^3 = m_{d_H}^3 \equiv M_3. \tag{8}
\]

For the matrices \(V_{H_u} \) and \(V_{H_d} \), considering the constraints in [14], we follow them to consider the following four scenarios:

(I) \(V_{H_u} = 1, V_{H_d} = V_{CKM} \).

(II) \(V_{H_d} = 1, V_{H_u} = V_{CKM}^T \).

(III) \(s_{13}^d = 0.5, s_{12}^d = s_{23}^d = 0, \delta_{13}^d = \delta_{13}^{SM}, s_{ij} = s_{ij}^{SM} \) otherwise.

(IV) \(s_{13}^d = 0.5, s_{12}^d = 0.7, s_{23}^d = 0.4, \delta_{12}^d = \delta_{23}^d = 0, \delta_{13}^d = \delta_{13}^{SM} \).

In Figs. 2-5, we plot the branching ratio \(R_b \) versus the first two mirror quark mass \(M_{12} \) for the scenario I, II, III and IV, respectively. The Figs. 2-5 show \(R_b \) can give strict lower bound and upper bound of the first two mirror quark mass for the \(f \) and \(M_3 \) taken. The
FIG. 2: The branching ratio R_b versus the mass of first two family mirror quarks in scenario-I with $f = 500$ GeV, 1000 GeV and 2000 GeV, respectively.

FIG. 3: Same as Fig. 2, but for scenario-II.

constraints are sensitive to the scale f, and the allowed regions of M_{12} become larger with the increasing f. Further, the R_b favors a large value of M_{12} for a large value of f.

In scenario I and scenario II, the up-type Yukawa interactions and the down-type quark Yukawa interactions are diagonal, respectively. However, scenario III and scenario IV are two large mixing scenarios, and the angle s_{13}^d is set large so that the third generation mass dependence can be more sensitive. For example, when $f = 1$ TeV (2 TeV), the four lines in Fig. 2 and Fig. 3 are almost overlapped for scenario I and scenario II, and this situation can be relaxed for scenario III and scenario IV. Besides, for $f = 500$ GeV, $M_3 = 3000$ GeV can be allowed in scenario I and scenario II, but be ruled out in scenario III and scenario IV by the 2σ R_b constraints.
IV. CONCLUSION

In the framework of littlest Higgs model with T-parity, we studied the loop contributions of the T-even and T-odd particles to the branching ratio R_b for four different scenarios. We found that the precision measurement data of R_b can give strong constraints on the mirror quark masses. For the values of f and M_3 in various scenarios of V_{Hd}, R_b can give strict lower bound and upper bound for the mass M_{12} of the first two generations of mirror quarks, and the allowed regions of M_{12} become larger as f gets large. Further, the R_b data favors a large value of M_{12} in case of a large f. Besides, the R_b constraints on the masses of three generation mirror quarks depend on the texture of V_{Hd}, and are more sensitive to the mass M_3 of the third generation of mirror quarks in scenarios III and IV than in scenarios I and II. For example, when $f = 500$ GeV, $M_3 = 3000$ GeV is allowed in scenarios I and II, but ruled out in scenarios III and IV by the 2σ R_b constraints.
Acknowledgement

We thank L. Wang, J. M. Yang and C. P. Yuan for discussions. This work was supported by the National Natural Science Foundation of China (NNSFC) under Nos. 10821504, 10725526 and 10635030.

APPENDIX A: THE HEAVY QUARK LOOP CONTRIBUTIONS TO $Z \to b\bar{b}$

According to the BPS method [10, 11, 12], we give the expressions of hadronic decay widths of Z-boson:

$$\Gamma_q = \frac{3m_Z}{12\pi} (v_q^2 + a_q^2) \left[1 + \frac{\alpha}{\pi} \left(\frac{Z^q_L}{(Z^q_L)^2 + (Z^q_R)^2} \right) F_q \right] \quad (q = b, d, s, u, c),$$ \hfill (A1)

where $v_q = \frac{Z^q_L + Z^q_R}{2}$ and $a_q = \frac{Z^q_L - Z^q_R}{2}$ with Z^q_L and Z^q_R being the left- and right-handed couplings of $Zq\bar{q}$, respectively.

$$F_{b,d,s} = V_{cha}(t, W, \pi) + V_{cha}(T, W, \pi) + V_{cha}(u_H^i, W_H, \omega) + V_{neu}(d_H^i, Z_H, \omega^0) + V_{neu}(d_H^i, A_H, \eta) + V_{mix}(t, T, W, \pi),$$

$$F_{u,c} = V_{cha}(d_H^i, W_H, \omega) + V_{neu}(u_H^i, Z_H, \omega^0) + V_{neu}(u_H^i, A_H, \eta),$$ \hfill (A2)

where

$$V_{cha}(f, V, S) = F^{(a)} + F^{(b)} + F^{(c)+(d)} + F^{(e)+(f)} + F^{(g)} + F^{(i)+(j)},$$

$$V_{neu}(f, V, S) = F^{(a)} + F^{(c)+(d)} + F^{(g)} + F^{(i)+(j)},$$

$$V_{mix}(f, f', V, S) = F^{(k)+(l)} + F^{(m)+(n)}. \hfill (A3)$$
The above equations are the corresponding explicit expressions of the Feynman diagrams in Fig. 11, which are given by

\[
F^{(a)} = -\frac{1}{g^2 s_w^2} \left| c_3 \right|^2 \left\{ \frac{r}{2} \left[\frac{r(r - 2)}{(r - 1)^2} \ln r + \frac{r}{r - 1} \right] + \frac{r}{2} \left[\frac{r(r - 2)}{(r - 1)^2} \ln r - \frac{r}{r - 1} \right] \right\},
\]

\[
F^{(b)} = -\frac{3}{2g^2 s_w^2} \left| c_3 \right|^2 g_{ZV} \left(\frac{r^2}{(r - 1)^2} \ln r - \frac{r}{r - 1} \right),
\]

\[
F^{(c)+(d)} = \frac{1}{g^2 s_w^2} \left| c_3 \right|^2 g_{ZL} \left[\frac{r^2}{(r - 1)^2} \ln r - \frac{r}{r - 1} \right],
\]

\[
F^{(e)+(f)} = \frac{1}{g^2 s_w^2} \left| c_3 \right|^2 g_{ZS} \left[\frac{r}{(r - 1)^2} \ln r - \frac{1}{r - 1} \right],
\]

\[
F^{(g)} = -\frac{1}{2g^2 s_w^2} \left| a_3 \right|^2 \left\{ \frac{r^2}{2} \left[\frac{r(r - 2)}{(r - 1)^2} \ln r + \frac{2r - 1}{r - 1} \right] + \frac{r^2}{2} \left[\frac{r(r - 2)}{(r - 1)^2} \ln r - \frac{r}{r - 1} \right] \right\},
\]

\[
F^{(h)} = \frac{1}{4g^2 s_w^2} \left| a_3 \right|^2 g_{ZSV} \left[\frac{r^2}{(r - 1)^2} \ln r - \frac{r}{r - 1} \right],
\]

\[
F^{(i)+(j)} = -\frac{2}{g^2 s_w^2} \left| t^c \right|^2 g_{ZL} \left[\frac{r^2}{2} \left[\frac{r}{r - 1} \ln r - \frac{r}{r - 1} \right] \right] - \frac{Z_L^{TT}}{\sqrt{r r'}} \frac{1}{r - 1} \left[\frac{r'}{r' - 1} \ln r' - \frac{r}{r - 1} \ln r \right],
\]

\[
F^{(m)+(n)} = \frac{1}{2g^2 s_w^2} \left| a_3 \right|^2 \left\{ \frac{2Z_L^{TT}}{r'} \left[\frac{r'}{r' - 1} \ln r' - \frac{r}{r - 1} \ln r \right] - \frac{Z_R^{TT}}{\sqrt{r r'}} \right\} \left(\Delta + 1 + \frac{1}{r - 1} \left[\frac{r^2}{r - 1} \ln r' - \frac{r^2}{r - 1} \ln r \right] \right),
\]

with

\[
\Delta \equiv \frac{2}{n - 4} + \gamma + \ln (m_V^2 / 4\pi \mu^2) - \frac{3}{2},
\]

\[
r = m_f^2 / m_V^2, \quad r' = m_{f'}^2 / m_V^2.
\]

The coupling constant appearing above are from

\[
V \tilde{f} q : i \gamma^\mu (c_3^T P_L + d_3^T P_R), \quad Z \tilde{f} f : i \gamma^\mu (Z_L^T P_L + Z_R^T P_R), \quad Z \tilde{f} \bar{f} : i \gamma^\mu (Z_L^T P_L + Z_R^T P_R),
\]

\[
Z S^+ S^- : i g_{VSS} (p_{S+}^\mu - p_{S-}^\mu), \quad \bar{Z} V^+ V^- : g_{ZV} g_{SS}^{\mu \nu}, \quad Z^\rho V^{\mu} V^{-\nu} : i g_{ZV V} \left[g^{\mu \nu} (p_+ - p_-) + g^{\nu \rho} (p_- - p_Z) + g^{\rho \mu} (p_Z - p_+) \right],
\]

where \(f, V \) and \(S \) represent fermion, gauge bosons and scalar particles involved in the loops, respectively. The explicit expressions of these parameters are complicated at \(O(v^2 / f^2) \) and
can be found in [15, 16].

[1] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Lett. B 513, 232 (2001); N. Arkani-Hamed, et al., JHEP 0208, 020 (2002); JHEP 0208, 021 (2002); I. Low, W. Skiba, and D. Smith, Phys. Rev. D 66, 072001 (2002); D. E. Kaplan and M. Schmaltz, JHEP 0310, 039 (2003).

[2] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson, JHEP 0207, 034 (2002); S. Chang, JHEP 0312, 057 (2003); T. Han, H. E. Logan, B. McElrath, and L. T. Wang, Phys. Rev. D 67, 095004 (2003); M. Schmaltz and D. Tucker-smith, Ann. Rev. Nucl. Part. Sci. 55, 229 (2005).

[3] C. Csaki, et al., Phys. Rev. D 67, 115002 (2003); Phys. Rev. D 68, 035009 (2003); J. L. Hewett, F. J. Petriello, and T. G. Rizzo, JHEP 0310, 062 (2003); M. C. Chen and S. Dawson, Phys. Rev. D 70, 015003 (2004); M. C. Chen, et al., Mod. Phys. Lett. A 21, 621 (2006); W. Kilian and J. Reuter, Phys. Rev. D 70, 015004 (2004).

[4] G. Marandella, C. Schappacher and A. Strumia, Phys. Rev. D 72, 035041 (2005).

[5] H. C. Cheng and I. Low, JHEP 0309, 051 (2003); JHEP 0408, 061 (2004); I. Low, JHEP 0410, 067 (2004); J. Hubisz and P. Meade, Phys. Rev. D 71, 035016 (2005).

[6] See, e.g., C. R. Chen, K. Tobe, and C. P. Yuan, Phys. Lett. B 640, 263 (2006); K. Hsieh and C. P. Yuan, Phys. Rev. D 78,053006 (2008); C. O. Dib, R. Rosenfeld, and A. Zerwekh, JHEP 0605, 074 (2006); L. Wang, et al., Phys. Rev. D 75, 074006 (2007); Phys. Rev. D 79, 055013 (2009); Phys. Rev. D 76, 017702 (2007); Phys. Rev. D 77, 015020 (2008); X. F. Han, L. Wang, and J. M. Yang, [arXiv:0903.5491 [hep-ph]]; [arXiv:0908.1827 [hep-ph]]; R. S. Hundt, B. Mukhopadhyaya, and A. Nyffeler, Phys. Lett. B 649, 280 (2007); X. Wang, Y. Zhang, H. Jin and Y. Xi, Nucl. Phys. B 810, 226 (2009); Nucl. Phys. B 807, 210 (2009); C.-X. Yue, H.-D. Yang, and W. Ma, Nucl. Phys. B 818, 1 (2009); H. S. Hou, Phys. Rev. D 75, 094010 (2007); P. Kai, et al., Phys. Rev. D 76, 015012 (2007); S. Yang, [arXiv:0904.1646].

[7] see, e.g., C. S. Li, et al., Commun. Theor. Phys. 20, 213 (1993); J. Phys. G 19, L13 (1993); X. Wang, J. L. Lopez and D. V. Nanopoulos, Phys. Rev. D 52, 4116 (1995); J. Cao, Z. H. Xiong and J. M. Yang, Phys. Rev. Lett. 88, 111802 (2002); J. Cao and J. M. Yang, JHEP 0812, 006 (2008); J. M. Yang, Eur. Phys. Jour. C 20, 553 (2000); S. K. Kang, Phys. Rev. D
63, 056004 (2001); G. Burdman and D. Kominis, Phys. Lett. B 403, 101 (1997); C. Yue, et al., Phys. Rev. D 62, 055005 (2002); C. Yue and W. Wang, Nucl. Phys. B 683, 48 (2004).

[8] J. Hubisz, P. Meade, A. Noble, and M. Perelstein, JHEP 0601, 135 (2006).

[9] M. Blanke, et al., Phys. Lett. B 646, 253 (2007).

[10] J. Bernabeu, A. Pich, and A. Santamaria, Phys. Lett. B 200, 569 (1988).

[11] J. Bernabeu, A. Pich, and A. Santamaria, Nucl. Phys. B 363, 326 (1991).

[12] P. Bamert, C. P. Burgess, J. M. Cline, D. London, and E. Nardi, Phys. Rev. D 54, 4275 (1996).

[13] C. Amsler, et al., Phys. Lett. B 667, 1 (2008).

[14] J. Hubisz, S. J. Lee, and G. Paz, JHEP 0606, 041 (2006).

[15] M. Blanke, et al., JHEP 0701, 066 (2007).

[16] X. F. Han, L. Wang, and J. M. Yang, Phys. Rev. D 78, 075017 (2008).