The control of transport properties is a key tool at the basis of many technologically relevant effects in condensed matter. The clean and precisely controlled environment of ultracold atoms in optical lattices allows one to prepare simplified but instructive models, which can help to better understand the underlying physical mechanisms. Here we show that by tuning a structural deformation of the unit cell in a bipartite optical lattice, one can induce a phase transition from a superfluid into various Mott insulating phases forming a shell structure in the superimposed harmonic trap. The Mott shells are identified via characteristic features in the visibility of Bragg maxima in momentum spectra. The experimental findings are explained by Gutzwiller mean-field and quantum Monte Carlo calculations. Our system bears similarities with the loss of coherence in cuprate superconductors, known to be associated with the doping-induced buckling of the oxygen octahedra surrounding the copper sites.
apid and precise control of transport properties are at the heart of many intriguing and technologically relevant effects in condensed matter. Small changes in some external parameters, for example, an electric or a magnetic field, may be used to significantly alter the mobility of electrons. Prominent examples are field effect transistors and systems showing colossal magneto-resistance. Often, the control is achieved via structural changes of the unit cell, leading to an opening of a band gap. In iron-based superconductors, the variation of pressure is a well-known technique to control their transport properties. In certain high-\(T_c\) superconductors, pulses of infrared radiation, which excite a mechanical vibration of the unit cell, can for short periods of time switch these systems into the superconducting state at temperatures at which they are actually insulators. In La-based high-\(T_c\) cuprates, the drastic reduction of \(T_c\) at the doping value of \(x = 1/8\), known as 'the 1/8 mystery', is connected to a structural transition that changes the lattice unit cell.

Ultracold atoms in optical lattices provide a particularly clean and well-controlled experimental platform for exploring many-body lattice physics. Schemes for efficient manipulation of transport properties can be readily implemented and studied with great precision. In conventional optical lattices, tuning between a superfluid and a Mott insulator phase has been achieved by varying the overall lattice depth \(V_0\) with the consequence of changing the height of the tunnelling barriers and the on-site contact interaction energy. The equivalent is not easily possible in condensed-matter systems, since the lattice depth is practically fixed.

In this work, we present an ultracold atom paradigm, where tuning the system between a superfluid and a Mott insulator becomes possible via controlled distortion of the unit cell. This distortion acts to adjust the relative depth \(\Delta V\) between two classes of sites (denoted by A and B) forming the unit cell and allows us to drive a superfluid-to-Mott insulator transition without altering the average lattice depth. We can access a rich variety of Mott insulating states with different integer populations of the A and B sites, which give rise to a shell structure in the finite harmonic trap potential, leading to characteristic features in the visibility of Bragg maxima in momentum spectra.

We compare our observations with quantum Monte Carlo (QMC) and Gutzwiller mean-field calculations, thus obtaining a detailed quantitative understanding of the system. In the following, we first describe our experimental set-up; then, we theoretically investigate the behaviour of the visibility for two different cases: first, for fixed barrier height \(V_0\) by varying \(\Delta V\) (bipartite lattice), and second, for \(\Delta V = 0\) (monopartite lattice), by tuning the lattice depth \(V_0\). Although monopartite lattices have been previously studied in great detail, and QMC calculations have provided a good fitting of the visibility curve measured experimentally, here we show more accurate data and argue that the main features of the curve can be understood in terms of a precise determination of the onset of new Mott lobes in the phase diagram.

Results

Description of the experimental set-up. We prepare an optical lattice of \(^{87}\text{Rb}\) atoms using an interferometric lattice set-up. A two-dimensional (2D) optical potential is produced, comprising deep and shallow wells (A and B in Fig. 1a) arranged as the black and white fields of a chequerboard. In the \(xy\)-plane, the optical potential is given by \(V(x, y) = -V_0 \left[\cos^2(kx) + \cos^2(ky) + 2\cos(\theta) \cos(kx) \cos(ky) \right] \), with the tunable well depth parameter \(V_0\) and the lattice distortion angle \(\theta\). An additional lattice potential \(V_2(z) = -V_{0,2} \cos^2(kz)\) is applied along the \(z\)-direction. To study an effectively 2D scenario, \(V_{0,2}\) is adjusted to \(29E_{\text{rec}}\) such that the motion in the \(z\)-direction is frozen out. Here, \(k = 2\pi/\lambda\), \(E_{\text{rec}} = b^2k^2/2m\), \(m\) denotes the atomic mass and \(\lambda = 1.064\) nm is the wavelength of the lattice.

Figure 1 | Lattice potential. (a) Sketch of the lattice geometry within the \(xy\)-plane. \(\lambda = 1.064\) nm denotes the wavelength of the laser light. (b) The potential along the dashed trajectory in (a) is plotted for \(\theta = 0.51\pi\) and \(V_0 = 6E_{\text{rec}}\) (thick grey line) with the first and second bands represented, respectively, by the red and blue horizontal bars. (c) The first two bands are plotted versus \(\theta\) for \(V_0 = 6E_{\text{rec}}\). (d) The red and blue squares show the relative number of atoms (normalized to the total particle number and plotted versus \(\Delta V/V_0\)) associated with the Bragg peaks enclosed by red and blue circles in (e), respectively. The filled (open) squares are recorded for \(V_0 = 0\) (\(V_{0,2} = 22E_{\text{rec}}\)). The error bars indicate the statistical errors for five measurements. The solid lines are determined by a full-band calculation (neglecting interaction) with no adjustable parameters. (e) Momentum spectra \((V_0 = 6E_{\text{rec}}, V_{0,2} = 0)\) are shown with \(\Delta V = 0\) (left) and \(\Delta V/V_0 = 0.5\) (right) with the respective first Brillouin zones imprinted as dashed rectangles.
beams. Apart from the lattice, the atoms experience a nearly isotropic harmonic trap potential. Adjustment of θ permits controlled tuning of the effective well depths of the deep and shallow wells $V_\pm(1 \pm \cos(\theta))^2$ and their difference $\Delta V = V_+ - V_- = 4V_0 \cos(\theta)$ (see Fig. 1b). The effective mean well depth $\bar{V}_0 = (V_+ + V_-)/2 = V_0(1 + \cos^2(\theta))$ is only weakly dependent on θ. For example, within the interval $0.46 < \theta < \pi - 0.54$ one has $\cos^2(\theta) < 0.015$ and hence $\bar{V}_0 \approx V_0$. Tuning of θ significantly affects the effective bandwidth, as shown in Fig. 1c. At $\theta = \pi/2$, the A- and B wells become equal, which facilitates tunnelling as compared with values $\theta \neq \pi/2$, where the broad lowest band of the $\theta = \pi/2$-lattice splits into two more narrow bands.

We record momentum spectra, which comprise pronounced Bragg maxima with a visibility V (specified in the Methods section) depending on the parameters V_0 and ΔV. The distribution of Bragg peaks reflects the shape of the underlying first Brillouin zone, which changes size and orientation as ΔV is detuned from zero. This is illustrated in Fig. 1d,e. In Fig. 1e two spectra are recorded for $\Delta V = 0$ (left) and $\Delta V/V_0 = 0.5$ (right) are shown. For $\Delta V = 0$ (the special case of a monopartite square lattice), the increased size of the first Brillouin zone gives rise to destructive interference, such that the $\pm (1, \pm 1)\hbar k$-Bragg peaks indicated by the red circle vanish. As ΔV is detuned from zero, a corresponding imbalance of the A- and B populations yields a retrieval of the $\pm (1, \pm 1)\hbar k$-Bragg peaks. This is shown in Fig. 1d for the case of approximately vanishing interaction energy per particle $U \approx 0$ ($V_{0,0} = 0$) by the filled red squares and for $U \approx 0.3E_{\text{rec}}$ ($V_{0,0} = 22E_{\text{rec}}$) by the open red squares. It is seen that the interaction energy significantly suppresses the formation of a population imbalance and corresponding $\pm (1, \pm 1)\hbar k$-Bragg peaks.

Model. For low temperatures and for large lattice depths V_0, the system is described by the inhomogeneous Bose–Hubbard model

$$H = -J \sum_{\langle ij \rangle} (a_i^\dagger a_j + \text{h.c.}) - \sum_i \mu_i n_i + \frac{U}{2} \sum_i n_i (n_i - 1),$$

where J is the coefficient describing hopping between nearest-neighbour sites, U accounts for the on-site repulsion and μ_i is a local chemical potential, which depends on the frequency ω of the trap and on the sublattice: $\mu_i = \mu_{A,B} = m\omega^2r_i^2/2$. The ratio U/J is a monotonically increasing function of V_0/E_{rec}.

Bipartite lattice $\Delta V \neq 0$. The visibility measured for fixed V_0 as a function of ΔV (see Fig. 2) exhibits a region of rapid decrease. When the lattice barrier is large, for example, $V_0 = 12E_{\text{rec}}$, a modest detuning $\Delta V \approx 0.25V_0$ is able to completely destroy phase coherence with the consequence of a vanishing visibility. At smaller barrier heights, for example, $V_0 = 6E_{\text{rec}}$, superfluidity remains robust up to significantly larger values of ΔV. To explain this behaviour, we performed a mean-field calculation using the Gutzwiller technique for the Bose–Hubbard model given by equation (1). The values of J and $\Delta \mu = \mu_A - \mu_B$ have been estimated from the exact band structure and U and $\Delta \mu$ has been calculated within the harmonic approximation. The total number of particles has been fixed to $N = 2 \times 10^3$ and the trap frequency takes into account the waist of the laser beam (see Methods and Supplementary Note 1). We performed large-scale Gutzwiller calculations in presence of a trap, thus going beyond local density approximation (see Methods).

In Fig. 3a, we show the evolution of the fraction of particles in the B sites (which we assumed to be the shallow wells). As ΔV increases, the number of bosons in the B sites decreases because of the excess potential energy required for their population. Within the tight-binding description, this is captured by the increased chemical potential difference between A- and B sites as ΔV grows. Our calculations predict a critical value ΔV_c for which the population of the B sublattice vanishes. As shown in Fig. 3a, ΔV_c becomes smaller as V_0 increases. This corresponds to the observation in the phase diagram shown in Supplementary Fig. 5 and discussed in Supplementary Notes 2 and 3 that the area covered by the Mott insulating regions with vanishing B populations (filling $g_B = 0$) increases as the hopping amplitude is reduced. The critical values ΔV_c for different values of V_0 are also shown in Fig. 2 as a dashed white line on top of the experimental data for the visibility. This line consistently lies on experimental points corresponding to constant visibility ($V \approx 0.5$), where phase coherence is rapidly lost, and suggests the onset of a new regime.

In Fig. 3b it is shown that, in addition to the population of the B sites, also the condensate fraction at the A sites approaches zero beyond the critical value ΔV_c (see the inset in Fig. 3a for the total condensed fraction); in this regime, the density profile displays only sharp concentric Mott shells of the form $(g_A, g_B) = (g, 0)$ where the integer filling g of the Mott regions can reach $g = 4$ (see Supplementary Fig. 6). This can be understood by considering that in the new regime where B sites are empty, the particles populating A sites can only delocalize (and thus establish phase coherence) by hopping through the intermediate B sites. Since these are second-order processes, they are highly suppressed when $\Delta \mu$ is large enough, and the system has to become an imbalanced Mott insulator.
A sublattice only. This ground state leads to the visibility intermediate B sites and describe particle–hole pairs within the term in c
written as (see Supplementary Note 4).

\[\frac{3}{2} \text{arcsin} \left(\sqrt{\frac{J}{2U}} \right) \]

where \(V \) is the interaction strength between particles. The data shown are for \(V_0 = 10.8 E_{\text{rec}} \) (squares) and \(V_0 = 11.44 E_{\text{rec}} \) (circles). The red dashed (dash-dotted) line is obtained by fitting the last four data points with equation (3) using the average filling \(\bar{g} \) as a fitting parameter. We obtain respectively \(\bar{g} = 2.75 \pm 0.23 \) and \(\bar{g} = 3.77 \pm 0.31 \). The data for \(V_0 = 10.8 E_{\text{rec}} \) are shifted along the horizontal axis by 0.1. The error bars represent the statistical variance of typically 4–5 independent measurements.

Monoparticle lattice \(\Delta V = 0 \). Adjustment of \(\Delta V = 0 \) produces the special case of a conventional monopartite square lattice, extensively studied in the literature during the past decade. Experiments in three-dimensional cubic lattices have suggested that the formation of Mott shells within the external trap could be associated with the appearance of kinks in the visibility, whereas experiments in 2D triangular lattices have rather detected an instantaneous decrease. Arguable attempts were made to interpret small irregularities in the observed visibility in this respect. On the theoretical front, a QMC study of the one-dimensional trapped Bose–Hubbard model has shown the appearance of kinks in \(V \) as a function of \(U/J \). Unfortunately, this study, employing a trap curvature proportional to \(J \) rather than \(V_0 \), appears to have limited relevance for experiments. More realistic QMC simulations of 2D and three-dimensional confined systems have been able to quantitatively describe the momentum distribution and the experimental visibility, however, with no indications for distinct features associated with Mott shells. To clarify this long-standing discussion, we have recorded the visibility of \(V_0 \) along the \(\Delta V = 0 \) trajectory versus \(V_0 \) with increased resolution in Fig. 5. Guided by an inhomogeneous mean-field calculation indicating that the local filling \(g \) is lower than 4, we computed the critical \(J/U \) values for the tips of Mott lobes with \(g = 1, 2, 3 \), and making use of the worm algorithm as implemented in the ALPS libraries. Superimposed upon the experimental data, we mark in Fig. 5 with (blue) dashed lines the values of \(V_0/E_{\text{rec}} \) corresponding to the values of \(J/U \) at the tip of the Mott lobes obtained by QMC. As \(V_0 \) is increased in Fig. 5, four different regimes are crossed. For small values of \(V_0 \) (regime I), most of the system is in a superfluid phase. Increasing \(V_0 \) yields only little loss of coherence due to increasing depletion, and hence the visibility remains nearly constant. When the first Mott ring with \(g = 1 \) particle per site is formed, the system enters regime II, where the visibility decreases slowly but notably as the \(g = 1 \)-Mott shell grows. When the second Mott insulating ring with \(g = 2 \) arises (regime III), a sharp drop of the visibility occurs...
Figure 5 | Visibility measurement in the monopartite lattice. (a) Visibility of 87Rb, plotted as a function of the well depth V_0, for $\Delta V = 0$ and $V_{z,0} = 29 E_{\text{rec}}$. Vertical dashed lines: values of V_0/E_{rec} corresponding to the tips of the Mott lobes with different filling g, as computed through QMC (see Supplementary Note 5). Grey solid lines in regions I–III are a guide to the eyes, whereas the red line in region IV displays a fit to the function $A(U(U/2))^n$ with $A = 4.0 \pm 0.7$ and $n = -1.00 \pm 0.06$, showing good agreement with the theoretical prediction 18. The error bars represent the statistical variance of typically 4–5 independent measurements. (b) Numerical derivative of the visibility data; vertical lines as in a. The error bars are derived from the ones in a.

Discussion

Several conclusions can be drawn from our experimental and theoretical investigations: for monoparticite lattices, the visibility comprises characteristic signatures, which can be connected to the position of the tips of the Mott insulator lobes in a μ/U versus J/U phase diagram calculated by QMC. Mean-field calculations are insufficient, even when the inhogeneity due to the trap is taken into account. Deforming the unit cell of a bipartite lattice is a means to efficiently tune a transition from a superfluid to a Mott insulating state. The visibility displays distinct regions with explicitly different slopes, as a function of the detuning between the A and B sublattices. A pronounced loss of coherence occurs at the critical value of the detuning ΔV_c at which the population of the shallow wells vanish. Our work may shed some light also on the behaviour of condensed-matter systems, where loss of phase coherence occurs due to a structural modification of the lattice. In this case, for example, in La_2-x-Ba_xCuO_4, a nearly pure Bose–Einstein condensate of typically 5×10^5 rubidium atoms (87Rb) in the $F = 2$, $m_F = 2$ state confined in a nearly isotropic magnetic trap with about 30 Hz trap frequency. The adjusted values of the lattice depth V_0 are determined with a precision of about 2% by carefully measuring the resonance frequencies with respect to excitations into the third band along the x- and y-directions. The adjustment of θ is achieved with a precision exceeding $\pi/300$ by an active stabilization with about 10 kHz bandwidth. In a typical experimental run, the lattice potentials $V(x, y)$ and $V_z(z)$ are increased to the desired values by an exponential ramp of 160 ms duration. After holding the atoms in the lattice for 20 ms, momentum spectra are obtained by rapidly ($<1 \mu$s) extinguishing the lattice and fact that the ground state cannot have nodes, according to Feynman’s no-node theorem. As shown in Supplementary Note 2, the mean-field Hamiltonian can be written as a sum of site-decoupled local Hamiltonians represented in the local Fock basis.

For example, in La_2-x-Ba_xCuO_4 high-T_c cuprate, superconductivity is weakened at the structural transition from a low-temperature orthorhombic into a low-temperature tetragonal phase 28. The same occurs for La_2-x-$\text{Nd}_x\text{Sr}_x\text{CuO}_4$ (ref. 5). This structural transition corresponds to a buckling of the oxygen octahedra surrounding the copper sites, which changes the nature of the copper–oxygen lattice unit cell 28. The critical buckling angle θ_c is 3.6° for the destruction of superconductivity 29 bears similarities with the critical deformation angle θ_c (or equivalently ΔV_c) found here (see Supplementary Note 6 for a more detailed discussion). Most of the present theoretical studies of high-T_c superconductivity concentrate only on the copper lattice. We hope that our results will inspire further investigations of the specific role played by the oxygen lattice, and its importance in preserving A phase coherence.

Methods

Experimental details. Our experimental procedure begins with the production of a nearly pure Bose–Einstein condensate of typically 5×10^5 rubidium atoms (87Rb) in the $F = 2$, $m_F = 2$ state confined in a nearly isotropic magnetic trap with about 30 Hz trap frequency. The adjusted values of the lattice depth V_0 are determined with a precision of about 2% by carefully measuring the resonance frequencies with respect to excitations into the third band along the x- and y-directions. The adjustment of θ is achieved with a precision exceeding $\pi/300$ by an active stabilization with about 10 kHz bandwidth. In a typical experimental run, the lattice potentials $V(x, y)$ and $V_z(z)$ are increased to the desired values by an exponential ramp of 160 ms duration. After holding the atoms in the lattice for 20 ms, momentum spectra are obtained by rapidly ($<1 \mu$s) extinguishing the lattice and fact that the ground state cannot have nodes, according to Feynman’s no-node theorem. As shown in Supplementary Note 2, the mean-field Hamiltonian can be written as a sum of site-decoupled local Hamiltonians represented in the local Fock basis. Each local Hamiltonian needs, as an input, the order parameters of the neighbour sites ($\psi_{A,B} = \psi_{A,B}^i$ for the local Hamiltonian on sites of type A or B, respectively). One can thus use the following iterative procedure to determine the ground state at a given value of J/U and μ/U: start with a random guess of the order parameters $\psi_{A,B}$, diagonalize the local Hamiltonians H_i, take the eigenvectors of the lowest energy state (that is, the Gutzwiller coefficients $\langle a_i^\dagger \psi \rangle$, calculate the new order parameters $\psi_i = \langle a_i \rangle = \sum_n \langle \psi | a_i^\dagger | n \rangle$, and repeat the procedure until convergence. In this way, we have obtained Fig. 3 and Supplementary Fig. 6 for the density profiles. By collecting the points where the fraction n_p of particles on the B sites vanishes, as a function of $\Delta V/V_0$, for several values of V_0, we find the white line plotted in Fig. 2.

References

1. Bardeen, J. Nobel Lectures, Physics 1942–1962 (Elsevier Publishing Company, Amsterdam, 1963).
2. Jonker, G. H. & van Santen, J. H. Ferromagnetic compounds of manganese with perovskite structure. Physica 16, 337–349 (1950).
3. Sun, L. et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).
4. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).
5. Tranquada, J. M. Spins, stripes, and superconductivity in hole-doped cuprates. AIP Conf. Proc. 1550, 114–187 (2013).
6. Lewenstein, M. et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).
7. Greiner, M. et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).
8. Gerbier, F. et al. Expansion of a quantum gas released from an optical lattice. Phys. Rev. Lett. 101, 155303 (2008).
9. Hemmerich, A., Schropp, D. & Hänsch, T. W. Light forces in two crossed standing waves with controlled time-phase difference. Phys. Rev. A 44, 1910–1921 (1991).
10. Wirth, G., Ölschläger, M. & Hemmerich, A. Evidence for orbital superfluidity in the P-band of a bipartite optical square lattice. Nat. Phys. 7, 147–153 (2011).
11. Ölschläger, M., Wirth, G. & Hemmerich, A. Unconventional superfluid order in the f band of a bipartite optical square lattice. Phys. Rev. Lett. 106, 015302 (2011).
12. Ölschläger, M. et al. Interaction-induced chiral $p_x \pm ip_y$ superfluid order of bosons in an optical lattice. New J. Phys. 15, 083041 (2013).
13. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546 (1989).
14. Jakš, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998).
15. Sheshadri, K., Krishnamurthy, R., Pandit, R. & Ramakrishnan, T. V. Superfluid and insulating phases in an interacting-boson model - mean-field theory and the RPA. Europhys. Lett. 22, 257–263 (1993).
16. Schroll, C., Marquardt, F. & Bruder, C. Perturbative corrections to the Gutzwiller mean-field solution of the Mott-Hubbard model. Phys. Rev. A 70, 053609 (2004).
17. Zakrzewski, J. Mean-field dynamics of the superfluid-insulator phase transition in a gas of ultracold atoms. Phys. Rev. A 71, 043601 (2005).
18. Gerbier, F. et al. Phase coherence of an atomic Mott insulator. Phys. Rev. Lett. 95, 050404 (2005).
19. Gerbier, F. et al. Interference pattern and visibility of a Mott insulator. Phys. Rev. A 72, 053606 (2005).
20. Jiménez-Garcia, K. et al. Phases of a two-dimensional Bose gas in an optical lattice. Phys. Rev. Lett. 105, 110401 (2010).
21. Becker, C. et al. Ultracold quantum gases in triangular optical lattices. New J. Phys. 12, 065025 (2010).
22. Sengupta, P., Rigol, M., Batrouni, G. G., Denteneer, P. I. H. & Scalettar, R. T. Phase coherence, visibility, and the superfluid-Mott-insulator transition on one-dimensional optical lattices. Phys. Rev. Lett. 95, 220402 (2005).
23. Kashurnikov, V. et al. Revealing the superfluid-Mott-insulator transition in an optical lattice. Phys. Rev. A 66, 031601 (2002).
24. Pollet, L., Kollath, C., van Houcke, K. & Troyer, M. Temperature changes when adiabatically ramping up an optical lattice. New J. Phys. 10, 065001 (2008).
25. Capogrosso-Sansone, B., Söyler, S. G., Prokof'ev, N. & Svistunov, B. Monte Carlo study of the two-dimensional Bose-Hubbard model. Phys. Rev. A 77, 015602 (2008).
26. Albuquerque, A. F. et al. ALPS collaboration. The ALPS project release 1.3: open source software for strongly correlated systems. J. Magn. Magn. Mater. 310, 1187 (2007).
27. Bauer, B. et al. ALPS collaboration. The ALPS project release 2.0: open source software for strongly correlated systems. J. Stat. Mech. P05001 (2011).
28. Axe, J. D. et al. Structural phase transformation and superconductivity in La$_2$-$_x$Ba$_x$CuO$_4$. Phys. Rev. Lett. 62, 2751 (1989).
29. Buchner, B. et al. Critical buckling for the disappearance of superconductivity in rare-earth-doped La$_2$-$_x$Sr$_x$CuO$_4$. Phys. Rev. Lett. 73, 1841 (1994).