Common infection-related conditions and risk of lymphoid malignancies in older individuals

L A Anderson *,1, A A Atman 1, C M McShane 1, G J Titmarsh 1, E A Engels 2 and J Koshiol 2

1Centre for Public Health, Queen’s University Belfast, Northern Ireland BT12 6BJ, UK and 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, MSC 9776, Bethesda, Maryland 20892, USA

Background: Chronic antigenic stimulation may initiate non-Hodgkin (NHL) and Hodgkin lymphoma (HL) development. Antecedent, infection-related conditions have been associated, but evidence by lymphoproliferative subtype is limited.

Methods: From the US SEER-Medicare database, 44 191 NHL, 1832 HL and 200 000 population-based controls, frequency-matched to all SEER cancer cases, were selected. Logistic regression models, adjusted for potential confounders, compared infection-related conditions in controls with HL and NHL patients and by the NHL subtypes diffuse large B-cell, T-cell, follicular and marginal zone lymphoma (MZL). Stratification by race was undertaken.

Results: Respiratory tract infections were broadly associated with NHL, particularly MZL. Skin infections were associated with a 15–28% increased risk of NHL and with most NHL subtypes, particularly cellulitis with T-cell lymphoma (OR 1.36, 95% CI 1.24–1.49). Only herpes zoster remained associated with HL following Bonferroni correction (OR 1.55, 95% CI 1.28–1.87). Gastrointestinal and urinary tract infections were not strongly associated with NHL or HL. In stratified analyses by race, sinusitis, pharyngitis, bronchitis and cellulitis showed stronger associations with total NHL in blacks than whites (P<0.001).

Conclusions: Infections may contribute to the aetiologic pathway and/or be markers of underlying immune modulation. Precise elucidation of these mechanisms may provide important clues for understanding how immune disturbance contributes to lymphoma.

Chronic infections, including Epstein–Barr virus, human herpesvirus 8, human T lymphotropic virus type I, Plasmodium falciparum, hepatitis B virus, hepatitis C virus (HCV), Helicobacter pylori, Campylobacter jejuni, Chlamydia psittaci, Borrelia burgdorferi and human immunodeficiency virus, have been linked to the pathogenesis of non-Hodgkin lymphoma (NHL) (Hjalgrim and Engels, 2008), a heterogeneous group of disease entities characterised by the malignant transformation of B or T lymphocytes. Hodgkin lymphoma (HL), characterised by the presence of Reed–Sternberg cells, has been associated with Epstein–Barr virus, good hygiene and delayed exposure to infection (Serraino et al, 1991; Tavani et al, 2000).

Our immunological defence against pathogens utilises both the innate and adaptive immune systems. These systems working in synergy enable the host to clear infections. Genetic variation of genes involved in the innate immune response, including tumour necrosis factor receptor-associated factor, receptor-interacting serine-threonine kinase 3, BAT2, Toll-like receptor 6 (Cerhan et al, 2007) and Beta-Defensin 126 (Hu et al, 2013), have been associated with increased risk of NHL and have a role in infection recognition and control. Chronic antigenic stimulation has been postulated as a potential mechanism for lymphomagenesis (Hjalgrim and Engels, 2008), with acute, community-acquired infections potentially playing a role (Cartwright et al, 1988;...
La Vecchia et al, 1992; Tavani et al, 2000; Engels et al, 2004; Chang et al, 2005; Koshiol et al, 2011; Becker et al, 2012; Karunanayake et al, 2012; Liu et al, 2012).

Although one study of male US veterans reported associations with infections to be more profound in individuals aged <50 years and those of black race (Koshiol et al, 2011); these results have not been replicated in other study populations. In addition, few studies have investigated infection-related conditions by NHL subtype (Anderson et al, 2009; Kristinsson et al, 2010). Using data from the Surveillance Epidemiology and End Results (SEER)-Medicare database, we previously reported an increased risk of chronic lymphocytic lymphoma (CLL), an NHL subtype, in patients with claims for respiratory and skin infections (Anderson et al, 2009). Similar associations have also been reported for lymphoplasmacytic lymphoma/Waldenström macroglobulinaemia using the US Veterans Affairs database (Kristinsson et al, 2010). Given the heterogeneous nature of NHLs and their disparate clinical and prognostic characteristics, the objective of the study was to investigate the role of infection-related conditions by additional NHL subtypes and HL in SEER-Medicare.

MATERIALS AND METHODS

Study design. The SEER-Medicare database links SEER and Medicare data (Anderson et al, 2008). Since 1973, the SEER program has collected demographic and clinical information on cancers diagnosed in multiple US sites and currently covers approximately 28% of the US population (SEER*Stat Databases [submitted November 2011]). Medicare provides federally funded health insurance for US citizens aged ≥65 years, entitling them to Part A coverage for hospital inpatient care (Warren et al, 2002). Approximately 95% of beneficiaries subscribe to Part B coverage, including physician and outpatient services (Warren et al, 2002). Individuals may also subscribe to a health maintenance organisation (HMO) scheme providing capitated care; associated claims are not captured by Medicare (Engels et al, 2011).

We conducted a retrospective case–control study using SEER-Medicare data. Cases were defined as individuals with a SEER diagnosis of a primary lymphoid malignancy between 1992 and 2005. In addition to overall NHL, we evaluated the main NHL diagnoses in whites and blacks. Stratified results for NHL subtypes, HL and/or other racial groups are not presented given the small sample sizes.

All analyses were adjusted for gender, age and year of diagnosis/selection. No missing data were observed. As 112 main analyses were conducted to investigate the associations between each infectious disease and each lymphoid malignancy subtype, we used Bonferroni correction (P<0.00045) to highlight associations (underlined) that remained significant after controlling for multiple comparisons.

RESULTS

There were small differences in the distribution of characteristics between the case and control groups due to non-restricted matching (Table 1). Compared with controls, NHL cases overall were less likely to be male and more likely to be older, of white race, selected in more recent calendar years and to have longer Medicare coverage. Conversely, HL cases appeared younger and had shorter Medicare coverage than controls.

As shown in Table 2, NHL patients were 10–17% more likely than controls to have had claims for respiratory tract infections, except common cold, >13 months before diagnosis (ORs 1.10–1.17). Skin infection claims, including those for cellulitis (OR 1.15, 95% CI 1.12–1.18) and herpes zoster (OR 1.28, 95% CI 1.22–1.35), and claims for prostatis (OR 1.12, 95% CI 1.07–1.17) were also more common in NHL cases overall than controls. MZL was most strongly associated with respiratory tract infections, including sinusitis, bronchitis, influenza and pneumonia, Table 2. Following adjustment for multiple comparisons, DLBCL, the most common NHL subtype, remained associated with sinusitis, bronchitis, influenza, cellulitis and herpes zoster. Table 2. FL was associated with claims for sinusitis, laryngitis and herpes zoster while T-cell lymphoma remained associated with pharyngitis and cellulitis only, Table 2. Herpes zoster was the only infection to remain significantly associated with HL following multiple comparison adjustment (OR 1.55; Table 2).
commonly associated with NHL in blacks than in whites, including sinusitis, pharyngitis, bronchitis and cellulitis, were more sinusitis, pharyngitis and cellulitis. However, several infections, reach statistical significance following Bonferroni correction were (Tables 2 and 3). For blacks, the only infection-related conditions to conditions, due to the majority of the cohort being of white race similar to those all subjects combined for most infection-related conditions, including lower airway infections, occurred more frequently in cases > 5 years before diagnosis. This observation was also apparent in the current study and was particularly evident for NHL diagnosis and postulated that this may have been due to infections, including sinusitis and pneumonia, but did not report infections, including sinusitis, pharyngitis, bronchitis and cellulitis, were more commonly associated with NHL in blacks than in whites, P < 0.001. Most infections highly significant in Table 2 remained associated with NHL even when the 6-year period preceding diagnosis was excluded (Table 4). For FL, sinusitis, laryngitis and herpes zoster were significant at later latencies. Sinusitis was associated with MZL across all time periods investigated (Table 4). For FL, sinusitis, laryngitis and herpes zoster were associated with DLBCL while cellulitis associated with HL, an association which remained even when initial claims were made > 6 years before cancer diagnosis. Consistent with the observed association between respiratory infections and NHL, Koshiol et al (2011) reported an increased risk of NHL among male US Veterans with upper and lower airway infections, including sinusitis and pneumonia, but did not report by NHL subtype. They identified stronger associations close to NHL diagnosis and postulated that this may have been due to reverse causality due to an underlying, undetected NHL (Koshiol et al, 2011; Richardson et al, 2011). In the current investigation, most associations occurring close to diagnosis were for MZL, an indolent, slow growing lymphoma, potentially supporting this hypothesis. Koshiol et al (2011) also suggested that undetected lymphoma would not fully explain why several infection-related conditions, including lower airway infections, occurred more frequently in cases > 5 years before diagnosis. This observation was also apparent in the current study and was particularly evident for DLBCL and FL. Most FL cases have t(14;18)-positive B cells, which are thought to be transformed by exogenous antigen stimulation, such as from a viral infection (Roulland et al, 2006). Antigenic
stimulation and/or subclinical immune deficiency, predisposing patients to both infections and lymphoma, may therefore explain the associations identified between infection-related conditions and lymphoma.

Interestingly, in the US Veterans study, associations between infections and NHL were most noticeable in those aged <50 years (Koshiol et al., 2011). Unfortunately, we were unable to assess these associations in a similar age group but have demonstrated, in a longer time frame preceding lymphoma diagnosis, but it has been suggested that lymphoma risk is restricted to the first 10 years since infection onset (Tavani et al., 2000). We observed similar associations between herpes zoster and DLBCL and FL, supporting previous reports in some (Karunanayake et al., 2007; Jia and Sun, 2004; Falagas et al., 2007).

Given the timing of these associations, it is possible that herpes zoster infection is a marker of an immunocompromised state many years before diagnosis or that it instigates a decline in cell-mediated immunity (Liu et al., 2012). However, the long latency period between infection and diagnosis is suggested that misdiagnosis of T-cell lymphoma is unlikely.

Table 2. Associations between common infection-related conditions and non-Hodgkin lymphoma (combined and by main subtypes) and Hodgkin lymphoma

Infection-related conditions by site	Overall NHL (n = 44 191)	Diffuse large B-cell lymphoma (n = 15 883)	T-cell NHL (n = 2813)	Follicular lymphoma (n = 4491)	Marginal zone lymphoma (n = 3223)	Hodgkin lymphoma (n = 1832)							
Respiratory tract													
Common cold	7322	1801	1.06 (1.00–1.12)	624	1.00 (0.92–1.09)	119	1.12 (0.93–1.35)	279	1.02 (0.91–1.16)	171	1.24 (1.06–1.45)	66	0.97 (0.76–1.25)
Sinusitis	36 249	9464	1.17 (1.13–1.20)	3389	1.14 (0.99–1.19)	544	1.04 (0.94–1.14)	1560	1.16 (1.01–1.24)	853	1.32 (1.21–1.43)	380	1.15 (1.02–1.29)
Lingngyitis	6584	1810	1.17 (1.11–1.24)	652	1.15 (1.06–1.25)	119	1.26 (1.04–1.51)	310	1.25 (1.11–1.41)	157	1.23 (1.05–1.45)	75	1.23 (0.97–1.55)
Pharyngitis	22 427	5695	1.11 (1.07–1.15)	1595	1.03 (0.98–1.09)	396	1.25 (1.12–1.39)	915	1.09 (1.01–1.17)	476	1.14 (0.93–1.35)	240	1.17 (1.02–1.34)
Bronchitis	45 215	11 458	1.11 (1.06–1.15)	4123	1.11 (1.06–1.15)	704	1.10 (1.01–1.21)	17 79	1.08 (1.02–1.15)	939	1.15 (1.07–1.25)	446	1.09 (0.98–1.22)
Influenza	14 726	3892	1.11 (1.07–1.15)	1389	1.11 (1.05–1.18)	255	1.21 (1.06–1.38)	628	1.16 (1.06–1.26)	370	1.13 (1.17–1.49)	157	1.17 (0.99–1.38)
Pneumonia	30 201	7556	1.10 (0.97–1.14)	2679	1.05 (0.91–1.10)	448	1.04 (0.94–1.16)	1093	1.03 (0.96–1.10)	633	1.22 (1.11–1.34)	280	1.05 (0.92–1.19)
Skin													
Cellulitis	34 426	8939	1.15 (1.12–1.18)	3176	1.09 (0.95–1.14)	627	1.36 (1.24–1.49)	1352	1.10 (0.94–1.18)	751	1.23 (1.13–1.34)	345	1.13 (1.00–1.28)
Herpes zoster	8557	2553	1.28 (1.22–1.35)	889	1.20 (1.12–1.30)	153	1.25 (1.06–1.48)	386	1.24 (1.11–1.38)	200	1.22 (1.04–1.42)	118	1.55 (1.28–1.87)
Gastrointestinal tract													
Gingivitis	917	209	0.98 (0.84–1.14)	89	1.14 (0.92–1.42)	<11	0.67 (0.35–1.30)	24	0.70 (0.46–1.05)	89	1.14 (0.92–1.42)	<11	0.94 (0.47–1.89)
Gastroenteritis	5312	1299	1.03 (0.96–1.10)	488	1.04 (0.95–1.15)	179	1.03 (0.82–1.30)	175	1.01 (0.75–1.25)	207	1.04 (0.85–1.26)	<11	1.27 (0.99–1.65)
Urinary tract													
Cystitis	35 283	13 876	1.04 (1.02–1.07)	3410	1.01 (0.94–1.06)	494	1.05 (0.93–1.18)	1536	1.02 (0.91–1.09)	794	1.05 (0.94–1.16)	565	1.11 (1.00–1.23)
Prostatitis	16 203	3620	1.12 (1.07–1.17)	1194	1.02 (0.96–1.09)	256	1.05 (0.91–1.20)	555	1.19 (0.98–1.31)	246	1.05 (0.91–1.21)	128	0.96 (0.79–1.16)
Pyelonephritis	2184	799	0.95 (0.88–1.03)	214	1.01 (0.88–1.17)	34	1.14 (0.81–1.61)	74	0.79 (0.62–0.99)	37	0.77 (0.55–1.07)	20	0.91 (0.58–1.42)

Abbreviations: CI = confidence interval; NHL = non-Hodgkin lymphoma; OR = odds ratio. Associations significant following Bonferroni correct (P<0.00045) are underlined. Observations, in which the number of exposed patients is between 1 and 10, are listed as <11” to preserve subjects’ anonymity, in accordance with the SEER-Medicare data use agreement.

*Ors and 95% Cls were adjusted for age (64–69, 70–74, 75–79, 80–84 and 85–99 years), gender and diagnosis/selection year.

**Males only.
Table 3. Main associations for non-Hodgkin lymphoma (combined) stratified by race

Infection-related conditions by site	Whites*		Blacks*	
Respiratory-related conditions				
Common cold	1510	1.09 (1.03–1.16)	67	1.18 (0.90–1.15)
Sinusitis	8699	1.13 (1.10–1.17)	347	1.35 (1.18–1.55)
Laryngitis	1630	1.18 (1.11–1.25)	50	1.28 (0.94–1.75)
Pharyngitis	5004	1.11 (1.08–1.15)	206	1.42 (1.21–1.68)
Bronchitis	10190	1.13 (1.10–1.17)	385	1.22 (1.07–1.38)
Influenza	3460	1.17 (1.13–1.22)	134	1.13 (0.93–1.37)
Pneumonia	6745	1.11 (1.07–1.14)	304	1.17 (1.02–1.35)
Skin				
Cellulitis	8077	1.13 (1.09–1.16)	359	1.27 (1.12–1.45)
Herpes zoster	2346	1.26 (1.20–1.33)	55	1.32 (0.98–1.78)
Gastrointestinal tract				
Gingivitis	159	1.09 (0.91–1.31)	12	0.74 (0.41–1.35)
Gastroenteritis	1152	1.04 (0.97–1.12)	32	0.83 (0.57–1.21)
Urinary tract				
Cystitis	12317	1.03 (1.00–1.06)	618	1.16 (1.03–1.29)
Prostatitis	3244	1.10 (1.05–1.15)	133	1.18 (0.96–1.44)
Pyelonephritis	703	0.96 (0.88–1.05)	37	0.98 (0.69–1.40)

Abbreviations: CI = confidence interval; OR = odds ratio. Associations significant following Bonferroni correct (P<0.00045) are underlined.

*OR and 95% CIs were adjusted for age (66–69, 70–74, 75–79, 80–84 and 85–99 years), gender and diagnosis/selection year.

Males only.

Females only.

Exposure status was not limited by recall bias inherent in case–control studies (Cartwright et al, 1988; La Vecchia et al, 1992; Tavani et al, 2000; Chang et al, 2005; Becker et al, 2012; Karunanayake et al, 2012; Liu et al, 2012), although the use of claims data, instead of diagnostically confirmed infections, means that misclassification of exposure status is possible. This misclassification would be unlikely to be differential in nature, especially for claims many years before lymphoma diagnosis; however, overdiasgnosis of infections, such as cellulitis, is possible. As both inpatient and outpatient claims were incorporated into the study, we were able to investigate a broader range of common infection-related conditions than previous studies (Cartwright et al, 1988; Doody et al, 1992; La Vecchia et al, 1992; Tavani et al, 2000; Chang et al, 2005; Koshiol et al, 2011; Karunanayake et al, 2012; Liu et al, 2012). Despite this strength, infections requiring few physician visits, such as the common cold, are likely to be underestimated. As we observed no associations between these infections and lymphoma risk, it supports the contention that we did not have differential diagnosis between cases and controls due to early prediagnostic symptoms. As diagnosis of infections were based on the attending physician claiming compensation, it was not possible to examine characteristics of infections more closely (e.g., whether herpes zoster and varicella-zoster virus-positive patients had the characteristic rash or were only antibody positive). Additionally, we were not able to differentiate the cause of the infection-related conditions and unable to comment on the severity of the infections encountered. Our models were adjusted for limited confounding variables, and hence residual confounding effects by other factors, such as comorbidities, could not be captured. Comorbidities with immune disturbance, such as autoimmune conditions which have been linked with lymphoma (Brown et al, 2008), could increase the susceptibility to infection.
Similarly, we did not have data on characteristics and behaviours like smoking, drinking and obesity and therefore could not adjust for these factors. Finally, as we investigated numerous associations between infection-related conditions and lymphomas, some of the associations may have occurred by chance. We therefore focussed our discussion on those associations that remained after crude adjustment for multiple comparisons.

It is possible that an infection or other antigen could lead to different clinical manifestations depending on the host’s immune systems. For example, EBV is an extremely common infection that does not lead to cancer in most people. In a small subset, EBV may contribute to DLBCL (Kinch et al., 2013; Ozsan et al., 2013), whereas in most people it does not. Similarly, not all DLBCL cases are EBV-positive, reflecting heterogeneity in the aetiology even of the same NHL subtype. Immune differences resulting in different clinical outcomes could, for example, be driven by differences in HLA polymorphisms, which can affect antigen presentation.

In conclusion, several common infection-related conditions were associated with NHLs but not with HL, where only herpes zoster was more common in cases than in controls after adjustment for multiple comparisons. Herpes zoster showed the strongest associations for both NHL and HL. Most respiratory tract infections were associated with NHL, particularly MZL. Several infection-related conditions were more strongly associated with NHL in blacks than in whites. Precise elucidation of the mechanisms underlying lympho-proliferations may provide important clues for understanding how immune disturbance contributes to the development of both NHL and HL.

ACKNOWLEDGEMENTS

This work was supported by the Intramural Research Program of the National Cancer Institute. GT is a PhD student at the Queen’s University Belfast in receipt of funding from MPD Voice. CMS is a PhD student at the Queen’s University Belfast in receipt of a Department for Employment and Learning (Northern Ireland) funded scholarship. This study used the linked SEER-Medicare database. The interpretation and reporting of these data are the sole responsibility of the authors. We

Table 4. Association between common infection-related conditions and risk of non-Hodgkin lymphoma/Hodgkin lymphoma by the time of claim before diagnosis

Infection-related conditions by site	13–30 months OR (95% CI)*	31–48 months OR (95% CI)*	49–72 months OR (95% CI)*	>72 months OR (95% CI)*
Non-Hodgkin lymphoma				
Sinusitis	1.11 (1.05–1.16)	1.30 (1.23–1.37)	1.18 (1.12–1.23)	1.12 (1.07–1.17)
Laryngitis	1.10 (0.99–1.22)	1.34 (1.20–1.49)	1.16 (1.05–1.29)	1.13 (1.01–1.26)
Pharyngitis	1.04 (0.97–1.10)	1.21 (1.13–1.29)	1.12 (1.06–1.19)	1.09 (1.03–1.16)
Bronchitis	1.05 (1.00–1.10)	1.25 (1.19–1.31)	1.15 (1.10–1.19)	1.12 (1.08–1.17)
Influenza	1.26 (1.20–1.32)	1.08 (0.96–1.20)	1.00 (0.92–1.0)	1.07 (0.99–1.17)
Pneumonia	1.05 (1.00–1.10)	1.18 (1.12–1.25)	1.08 (1.02–1.14)	1.14 (1.08–1.20)
Cellulitis	1.11 (1.06–1.16)	1.14 (1.09–1.20)	1.17 (1.11–1.23)	1.18 (1.12–1.24)
Herpes zoster	1.29 (1.19–1.40)	1.36 (1.24–1.49)	1.24 (1.13–1.36)	1.24 (1.13–1.37)
Prostatitis	1.07 (1.00–1.16)	1.12 (1.03–1.21)	1.11 (1.03–1.20)	1.17 (1.09–1.25)
Diffuse large B-cell lymphoma				
Sinusitis	1.09 (1.01–1.18)	1.28 (1.19–1.39)	1.15 (1.07–1.23)	1.08 (1.00–1.15)
Bronchitis	1.04 (0.97–1.11)	1.15 (1.07–1.24)	1.11 (1.04–1.19)	1.13 (1.06–1.21)
Influenza	1.21 (1.11–1.31)	0.98 (0.84–1.14)	1.04 (0.91–1.18)	1.07 (0.94–1.21)
Cellulitis	1.05 (0.98–1.13)	1.08 (1.00–1.17)	1.13 (1.05–1.22)	1.12 (1.03–1.21)
Herpes zoster	1.13 (0.99–1.29)	1.26 (1.09–1.46)	1.28 (1.11–1.48)	1.16 (1.00–1.35)
T-cell NHL				
Pharyngitis	1.24 (1.01–1.52)	1.26 (1.00–1.57)	1.34 (1.10–1.62)	1.17 (0.96–1.43)
Cellulitis	1.33 (1.14–1.56)	1.42 (1.20–1.67)	1.41 (1.20–1.66)	1.29 (1.08–1.54)
Follicular lymphoma				
Sinusitis	1.10 (0.99–1.22)	1.35 (1.21–1.51)	1.10 (0.99–1.22)	1.16 (1.05–1.29)
Laryngitis	1.14 (0.90–1.43)	1.25 (0.97–1.60)	1.30 (1.04–1.63)	1.33 (1.06–1.67)
Herpes zoster	1.40 (1.18–1.68)	1.24 (1.00–1.53)	1.02 (0.81–1.28)	1.25 (1.00–1.55)
Marginal zone lymphoma				
Sinusitis	1.50 (1.30–1.72)	1.34 (1.14–1.57)	1.32 (1.15–1.51)	1.16 (1.01–1.33)
Bronchitis	1.13 (0.98–1.30)	1.23 (1.06–1.43)	1.21 (1.07–1.38)	1.07 (0.94–1.23)
Influenza	1.37 (1.18–1.60)	1.53 (1.17–2.01)	1.18 (0.91–1.52)	1.25 (0.99–1.59)
Pneumonia	1.25 (1.07–1.46)	1.32 (1.11–1.57)	1.05 (0.88–1.25)	1.27 (1.08–1.49)
Cellulitis	1.29 (1.12–1.50)	1.23 (1.05–1.44)	1.24 (1.07–1.44)	1.16 (0.99–1.35)
Hodgkin lymphoma				
Herpes zoster	1.36 (0.95–1.94)	1.48 (1.00–2.19)	1.93 (1.38–2.70)	1.49 (1.00–2.22)

Abbreviations: CI = confidence interval; NHL = non-Hodgkin lymphoma; OR = odds ratio.

*ORs and 95% CIs were adjusted for age (66–69, 70–74, 75–79, 80–84 and 85–99 years), gender and diagnosis/selection year.
acknowledge the efforts of the Applied Research Program, NCI; the Office of Research, Development and Information, Centers for Medicare and Medicaid Services; Information Management Services, Inc.; and the Surveillance, Epidemiology, and End Results (SEER) Program tumour registries in the creation of the SEER-Medicare database. We also thank Dr Winnie Ricker, Information Management Services, Rockville, MD, USA for constructing and analysing the data set.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Anderson LA, Landgren O, Engels EA (2009) Common community acquired infections and subsequent risk of chronic lymphocytic leukemia. Br J Haematol 147: 444–449.

Anderson LA, Pfeiffer R, Warren JL, Landgren O, Gadalla S, Berndt SI, Doody MM, Linet MS, Glass AG, Friedman GD, Pottern LM, Boice JD, Engels EA, Pfeiffer RM, Ricker W, Wheeler W, Parsons R, Warren JL (2011) Non-Hodgkin lymphoma: an InterLymph pooled analysis. Blood 117: 4455–4463.

Becker N, Falster MO, Vajdic CM, de Sanjose S, Martinez-Maza O, Bracci PM, Melbye M, Smedby KE, Engels EA, Turner J, Vines P, Costantini AS, Holly EA, Spinelli JJ, La Vecchia C, Zheng T, Chia BC-H, Montella M, Cocco P, Maynadie M, Foretova L, Staines A, Brennan P, Davis S, Severson R, Cerhan JR, Breen EC, Birmann B, Conen W, Grudich AE, Newton R (2012) Self-reported history of infections and the risk of non-Hodgkin lymphoma: an InterLymph pooled analysis. Int J Cancer 131: 2342–2348.

Brown LM, Gridley G, Check D, Landgren O (2008) Risk of multiple myeloma and monoclonal gammapathy of undetermined significance among white and black male United States veterans with prior autoimmunity, infectious, inflammatory, and allergic disorders. Blood 111: 3388–3394.

Cartwright RA, McKinney PA, O'Brien C, Richards ID, Roberts B, Lauder I, Darwin CM, Bernard SM, Bird CC (1988) Non-Hodgkin's lymphoma: case control epidemiological study in Yorkshire. Leuk Res 12: 81–88.

Chang ET, Smedby KE, Hjalgrim H, Schöllkopf C, Porwit-MacDonald A, Cartwright RA, McKinney PA, O'Brien C, Richards ID, Roberts B, Lauder I, Darwin CM, Bernard SM, Bird CC (1988) Non-Hodgkin’s lymphoma: a case-control epidemiological study in Yorkshire. Leuk Res 12: 81–88.

Cerhan JR, Ansell SM, Fredericksen ZS, Kay NE, Liebow M, Call TG, Jelinek D, Witzig TE, Habermann TM, Birmann B, Conen W, Grudich AE, Newton R (2012) Self-reported history of infections and the risk of non-Hodgkin lymphoma: an InterLymph pooled analysis. Int J Cancer 131: 2342–2348.

Engels EA, Chatterjee N, Cerhan JR, Davis S, Cozen W, Severson RK, Whitney D, Colt JS, Hartge P (2004) Hepatitis C virus infection and subsequent risk of chronic lymphocytic leukaemia. J Clin Oncol 22: 378–385.

Ford RC, Wingo PA, Thun MJ, Homeland SE, Howlader N, Rosenberg HS, Smulian JC, Corle DK, Mariotto A, Jemal A, Ward EM, Eisner MP, Ghafoor A, Xu J, Ma J, Thun MJ (2011) Cancer statistics, 2011. CA Cancer J Clin 61: 212–236.

Gauduchon P, Lebailly P, Schiff C, Nadel B (2006) Follicular lymphoma: a novel intermediate step in early lymphomagenesis. J Exp Med 203: 2425–2431.

Hjälmröm H, Engels EA (2008) Infectious aetiology of Hodgkin and non-Hodgkin lymphomas: a review of the epidemiological evidence. J Intern Med 264: 537–548.

Hu W, Bassig BA, Xu J, Zheng T, Zhang Y, Berndt SI, Holford TR, Hosgood HD, Leaderer B, Yeager M, Meniashe I, Boyle P, Zou K, Zhu Y, Chanock S, Lan Q, Rothman N (2013) Polymorphisms in pattern-recognition genes in the innate immune system and risk of non-Hodgkin lymphoma. Environ Mol Mutagen 54: 72–77.

Jia H, Sun T (2004) Extranodal NK/T-cell lymphoma mimicking cellulitis. Leuk Lymphoma 45: 1467–1470.

Karnanayake CP, Spinelli JJ, McLaughlin JR, Dosman JA, Pahwa P, McDuffie HH (2012) Hodgkin lymphoma and pesticides exposure in men: a Canadian case-control study. J Agromedicine 17: 30–39.

Kendy PGE (2002) Key issues in variella-zoster virus latency. J Neurovirol 8: 80–84.

Kinch A, Baekclund E, Backlin C, Ekman T, Molin D, Tufveson G, Fernberg P, Sundström C, Pauksens K, Enblad G (2013) A population-based study of 135 lymphomas after solid organ transplantation: The role of Epstein-Barr virus, hepatitis C and diffuse large B-cell lymphoma subtype in clinical presentation and survival. Acta Oncol e-pub ahead of print 28 October 2013.

Koshiol J, Lam TK, Gridley G, Check D, Brown LM, Landgren O (2011) Racial differences in chronic immune stimulatory conditions and risk of non-Hodgkin’s lymphoma in veterans from the United States. J Clin Oncol 29: 378–385.

Kuusela SY, Koskiol J, Björkholm M, Goldin LR, McMaster ML, Turesson I, Landgren O (2010) Immune-related and inflammatory conditions and risk of lymphoplastic lymphoma or Waldenstrom macroglobulinemia. J Natl Cancer Inst 102: 557–567.

Landgren O, Gridley G, Check D, Caporaso NE, Morris Brown L (2007) Acquired immune-related and inflammatory conditions and subsequent chronic lymphocytic leukaemia. Br J Haematol 139: 791–798.

La Vecchia C, Negri E, Franceschi S (1992) Medical history and the risk of non-Hodgkin’s lymphomas. Cancer Epidemiol Biomarkers Prev 1: 533–536.

Liu Y-C, Yang Y-H, Hsiao H-H, Yang W-C, Liu T-C, Chang C-S, Yang M-Y, Lin P-M, Hsu J-F, Chang P-Y, Lin S-F (2012) Herpes zoster is associated with an increased risk of subsequent lymphoid malignancies—a nationwide population-based matched-control study in Taiwan. BMC Cancer 12: 503.

Ozsan N, Cagirgan S, Saydam G, Gunes A, Hekimgil M (2013) Epstein-Barr virus (EBV) positive diffuse large B cell lymphoma of the elderly-experience of a single center from Turkey. Pathol Res Pract 209: 471–478.

Richardson PG, Laubach J, Mitsiades CS, Schlossman RL, Ghobrial IM, Munshi NC, Anderson KC (2011) MGUS and smoldering myeloma: the most prevalent of plasma cell dyscrasias. Oncology (Williston Park) 25: 594–596.

Roulland S, Navarro J-M, Grenot P, Milili M, Agopian J, Montpellier B, Schenk M, Spinelli JJ, Slager SL, Lebailly P, Schiff C, Nadel B (2006) Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis. J Exp Med 203: 2425–2431.

Serra A, Estrach MT, Marti R, Villamor N, Rafel M, Montserrat E (1998) Cutaneous involvement as the first manifestation in a case of T-cell prolymphocytic leukaemia. Acta Derm Venereol 78: 198–200.

Serraino D, Franceschi S, Talamini R, Barra S, Negri E, Carbone A, La Vecchia C (1991) Socio-economic indicators, infectious diseases and Hodgkin’s disease. Int J Cancer 47: 352–357.

Skibola CF, Bracci PM, Nieters A, Brooks-Wilson A, de Sanjose S, Houlberg WA, Feres E, Franceschi S, La Vecchia C (2010) Immune-related and inflammatory conditions and risk of non-Hodgkin lymphoma in veterans from the United States. J Natl Cancer Inst 102: 557–567.

Soom KL, Shustik D, Yusoff LZM, Tan L, Tan SY (2011) An algorithmic approach to the diagnosis of NK and T cell lymphomas. Pathology 43: 673–681.

Tavanai A, La Vecchia C, Franceschi S, Serraino D, Carbone A (2000) Medical history and risk of Hodgkin’s and non-Hodgkin’s lymphomas. Br J Haematol 109: 59–64.
Turner JJ, Morton LM, Linet MS, Clarke CA, Kadin ME, Vajdic CM, Monnereau A, Maynadie M, Chiu BC-H, Marcos-Gragera R, Costantini AS, Cerhan JR, Weisenburger DD (2010) InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood 116: e90–e98.

Warren JL, Klabunde CN, Schrag D, Bach PB, Riley GF (2002) Overview of the SEER-Medicare data: content, research applications, and generalizability to the United States elderly population. Med Care 40: IV–3–18.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.