THE GRAM MATRIX OF A TEMPERLEY-LIEB ALGEBRA IS SIMILAR TO THE MATRIX OF CHROMATIC JOINS

QI CHEN AND JOZEF H. PRZYTYCKI

Dedicated to the memory of Xiao-Song Lin (1957-2007)

To appear in Communications in Contemporary Mathematics

1. Introduction

Rodica Simion noticed experimentally that matrices of chromatic joins (introduced by W. Tutte in [Tu2]) and the Gram matrix of the Temperley-Lieb algebra, have the same determinant, up to renormalization. In the type A case, she was able to prove this by comparing the known formulas: by Tutte and R. Dahab [Tu2, Dah], in the case of chromatic joins, and by P. Di Francesco, and B. Webby [DiF, Wei] (based on the work by K. H. Ko and L. Smolinsky [KS]) in the Temperley-Lieb case; see [CSS]. She then asked for a direct proof of this fact [CSS, Sch], Problem 7.

The type B analogue was an open problem central to the work of Simion [Sch]. She demonstrated strong evidence that the type B Gram determinant of the Temperley-Lieb algebra is equal to the determinant of the matrix of type B chromatic joins, after a substitution similar to that in type A, cf. [Sch].

In this paper we show that the matrix J_n of chromatic joins and the Gram matrix G_n of the Temperley-Lieb algebra are similar (after rescaling), with the change of basis given by diagonal matrices. More precisely we prove the following two results:

Theorem A. We have $J_n^A(\delta^2) = PG_n^A(\delta)P$, where $P = (p_{ij})$ is a diagonal matrix with $p_{ii}(\delta) = \delta^{bk(\pi_i) - n/2}$; here $bk(\pi_i)$ denotes the number of blocks in the type A non-crossing n-partition π_i; see 2.1 of Section 2 for precise definitions.

Theorem B. We have $J_n^B(\delta^2) = P^BG_n^B(1, \delta)P^B$ where $P^B = (p_{ij}^B)$ is a diagonal matrix with $p_{ii}^B(\delta) = \delta^{nzbk(\pi_i) - n/2}$; here $nzbk(\pi_i)$ denotes half of the number of non-zero blocks in the type B non-crossing n-partition π_i; see 2.2 of Section 2 for precise definitions.
2. Definitions and notation

2.1. The type A case. An \(n \)-partition of type A is a partition \(\pi \) of the \(n \) element set \(\{1, 2, \ldots, n\} \) into blocks. The number of blocks is denoted by \(bk(\pi) \). To represent \(\pi \) pictorially, we place the numbers 1, 2, \ldots, \(n \) anti-clockwise around the boundary circle of the unit disk and draw a chord, called a connection chord, in the disk between two numbers \(i < j \) if they are in the same block of \(\pi \) and there is no \(k \) in the same block with \(i < k < j \). We say that \(\pi \) is non-crossing if all connection chords can be drawn without crossing each other. Notice that each block is represented by a tree. Denote the set of all non-crossing \(n \)-partitions of type A by \(\Pi_A^n \). On the other hand if \(n = 2m \) is even, we have bipartitions of \(2m \) points of type A, those \(2m \)-partitions of type A with every block containing exactly 2 numbers. Denote the set of all non-crossing \(2m \)-bipartitions of type A by \(\Gamma_A^m \). We have a bijection \(\varphi_A : \Pi_A^n \rightarrow \Gamma_A^n \) realized by considering the boundary arcs of a regular neighborhood of the connection chords (see Fig. 1 and compare Fig. 2, Fig. 3).

2.2. The type B case. An \(n \)-partition of type B is a partition \(\pi \) of the \(2n \) element set \(\{+1, +2, \ldots, +n, -1, -2, \ldots, -n\} \) into blocks with the property that for any block \(K \) of \(\pi \), its opposite \(-K \) is also a block of \(\pi \), and that there is at most one invariant block (called the zero block) for which \(K = -K \). Since all non-zero blocks occur in pairs \(\pm K \) one defines \(\text{nzbk}(\pi) \) as half of the number of all non-zero blocks. To represent \(\pi \) pictorially, we place the numbers \(+1, +2, \ldots, +n, -1, -2, \ldots, -n \) anti-clockwise around the boundary circle of a disk and draw a connection chord in the disk between two numbers \(i < j \) if they are in the same block of \(\pi \) and there is no \(k \) in the same block with \(i < k < j \). Then \(\pi \) is said to be non-crossing if all connection chords can be drawn without crossing each other. Denote the set of all non-crossing \(n \)-partitions of type B by \(\Pi_B^n \). The set \(\Pi_B^n \) is illustrated in Fig. 2.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{The bijection \(\varphi_A : \Pi_A^3 \rightarrow \Gamma_A^3 \).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{The set \(\Pi_B^n \).}
\end{figure}

\footnote{For topologists the term invariant block is more natural than zero block so we use this names interchangeably in the paper.}

\footnote{Here we use the order \(+1 < +2 < \cdots < n < -1 < -2 < \cdots < -n\).}

\footnote{The non-crossing condition forces a partition to have at most one zero block.}
On the other hand if \(n = 2m \) is even, we have bipartitions of \(4m \) points of type \(B \), those \(2m \)-partitions of type \(B \) with every block containing exactly 2 numbers. Denote the set of all non-crossing \(2m \)-bipartitions of type \(B \) by \(\Gamma_B^m \). Similar to the type \(A \) case we have a bijection \(\varphi_B : \Pi_B^n \to \Gamma_B^n \) realized by considering the boundary arcs of a regular neighborhood of the connection chords (see Fig. 3).

2.3. The matrices. For any \(n \)-partitions \(\pi \) and \(\pi' \) of type \(A \) (resp. \(B \)), denote by \(\pi \lor \pi' \) the finest \(n \)-partition (not necessarily non-crossing) of type \(A \) (resp. \(B \)) that is coarser than both \(\pi \) and \(\pi' \). The matrix of chromatic joins of type \(A \) and \(B \) are respectively:

\[
(J_A^n(\delta))_{\pi,\pi' \in \Pi_A^n} = \delta^{\text{bik}(\pi \lor \pi')} \quad \text{and} \quad (J_B^n(\delta))_{\pi,\pi' \in \Pi_B^n} = \delta^{\text{nabk}(\pi \lor \pi')}.
\]

For any \(2n \)-bipartitions \(\pi \) and \(\pi' \) of type \(A \) (resp. \(B \)), one can glue them along the boundary circles respecting the labels. The result, denoted \(\pi \lor \pi' \), is a collection of disjoint circles on a 2-sphere. The Gram matrix of Temperley-Lieb algebra of type \(A \) and \(B \) are respectively:

\[
(G_A^n(\delta))_{\pi,\pi' \in \Gamma_A^n} = \delta^{\text{e}(\pi \lor \pi')} \quad \text{and} \quad (G_B^n(\alpha, \delta))_{\pi,\pi' \in \Gamma_B^n} = \alpha^{c_0(\pi \lor \pi')} \delta^{\text{c}(\pi \lor \pi')}.
\]

where \(c(\pi \lor \pi') \) is the number of circles, \(c_0(\pi \lor \pi') \) is the number of zero (i.e. invariant) circles \(C \) with \(C = -C \), and \(c_d(\pi \lor \pi') \) is the number of pairs of non-zero circles \(C, -C \) with \(C \neq -C \) in \(\pi \lor \pi' \).

\[\footnote{The matrix \(G_A^n(\delta) \) was first used by H. Morton and P. Traczyk to find a basis of the Kauffman bracket skein module of a tangle [MT], and played an important role in Lickorish's approach to Witten-Reshetikhin-Turaev invariants of 3-manifolds [Li]. The matrix \(G_B^n(1, \delta) \) was first considered by Rodica Simion in 1998; compare [Sch].}\]
3. PROOF OF THEOREMS [A] AND [B]

Proof of Theorem [A]. For \(\pi_i \in \Pi^A_n \) let \(b_i := \varphi_A(\pi_i) \in \Gamma^A_n \). Since \(c(b_i \lor b_j) \) is also equal to the number of boundary components of the regular neighborhood of the pictorial representation of \(\pi_i \lor \pi_j \) we have \(2b\pi(\pi_i \lor \pi_j) = c(b_i \lor b_j) + b\pi(\pi_i) + b\pi(\pi_j) - n = b\pi(\pi_i) - \frac{c}{2} + c(b_i \lor b_j) + b\pi(\pi_j) - \frac{c}{2} \). The formula can be obtained from the expression for the Euler characteristic of a plane graph: Let \(G_{\pi} \) be a graph corresponding to the non-crossing partition \(\pi \). \(G_{\pi} \) is a forest of \(n \) vertices and \(n - b\pi(\pi) \) edges. Similarly, let \(G_{\pi_i \lor \pi_j} \) be the graph corresponding to \(\pi_i \lor \pi_j \). We should stress that \(\pi_i \lor \pi_j \) does not have to be a noncrossing partition and that the graph \(G_{\pi_i \lor \pi_j} \) is a plane graph obtained by putting \(G_{\pi_i} \) inside a disk and \(G_{\pi_j} \) outside the disk with \(\partial K_{\pi_i \lor \pi_j} \) composed of the \(n \) points on the unit circle (e.g.: \(\bigcirc \bigcirc \bigcirc - \bigcirc \), or \(\bigcirc \bigcirc \bigcirc - \bigcirc \bigcirc \bigcirc \)).

By construction, \(G_{\pi_i \lor \pi_j} \) is a plane graph of \(n \) vertices and \(b\pi(\pi_i \lor \pi_j) \) components. It has \(E(G_{\pi_i \lor \pi_j}) = E(G_{\pi_i}) + E(G_{\pi_j}) = n - b\pi(\pi_i) + n - b\pi(\pi_j) \) edges. Furthermore, if we embed \(G_{\pi_i \lor \pi_j} \) in a disjoint union of \(b\pi(\pi_i \lor \pi_j) \) 2-spheres (each component of \(G_{\pi_i \lor \pi_j} \) in a different sphere) we can identify \(c(b_i \lor b_j) \) with the number of regions of the embedded graph. The Euler characteristic is on the one hand equal to \(2b\pi(\pi_i \lor \pi_j) \) and on the other hand equal to \(n - E(G_{\pi_i \lor \pi_j}) + c(b_i \lor b_j) = c(b_i \lor b_j) + b\pi(\pi_i) + b\pi(\pi_j) - n \), as needed. Theorem [A] follows directly from the formula.

Proof of Theorem [B]. For \(\pi_i \in \Pi^B_n \) let \(b_i := \varphi_B(\pi_i) \in \Gamma^B_n \) and \(b_0(\pi_i) \) be the number of zero blocks of \(\pi_i \). Recall that \(c_0(b_i \lor b_j) \) is the number of zero (i.e. invariant) components of \(b_i \lor b_j \). As in the type A case we have \(2b\pi(\pi_i \lor \pi_j) = c(b_i \lor b_j) + b\pi(\pi_i) + b\pi(\pi_j) - 2n \). Furthermore, we have (see Lemma 1):

\[
2b\pi(\pi_i \lor \pi_j) = c_0(b_i \lor b_j) + b\pi(\pi_i) + b\pi(\pi_j).
\]

(Notice that \(b\pi(\pi_i \lor \pi_j) \) can be equal to 2, 1, or 0.) From these we conclude that:

\[
2n b\pi(\pi_i \lor \pi_j) = c_d(b_i \lor b_j) + n b\pi(\pi_i) + n b\pi(\pi_j) - n.
\]

Thus Theorem [B] follows.

Lemma 1. The zero blocks and zero components satisfy the following identity:

\[
2b\pi(\pi_i \lor \pi_j) = c_0(b_i \lor b_j) + b\pi(\pi_i) + b\pi(\pi_j),
\]

where \(b_i = \varphi_B(\pi_i) \) and \(b_j = \varphi_B(\pi_j) \).

Proof. The lemma reflects the basic properties of a 2-sphere with an involution fixing two points and its compact invariant submanifolds.

To demonstrate the formula we consider all cases of blocks of \(\pi_i; \pi_j \) and \(\pi_i \lor \pi_j \) divided into four classes:

1. If \(K \) is a non-zero (i.e. non-invariant) block of \(\pi_i \lor \pi_j \), then all its constituent blocks in \(\pi_i \) and \(\pi_j \) are non-zero blocks and the boundary components of a regular neighborhood of the geometric realization of \(K \) (denoted \(\partial K \)), that is circles in \(b_i \lor b_j \) corresponding to \(K \), are non-invariant (non-zero) curves, i.e. not in \(c_0(b_i \lor b_j) \).
(2) If \(K \) is a zero block of \(\pi_i \vee \pi_j \) but all its constituent blocks in \(\pi_i \) and \(\pi_j \) are non-zero blocks, then exactly two components of \(\partial K \) are invariant curves.

(3) If \(K \) is a zero block of \(\pi_i \vee \pi_j \) and exactly one constituent block is a zero block then exactly one component of \(\partial K \) is an invariant curve.

(4) If \(K \) is a zero block of \(\pi_i \vee \pi_j \) and exactly two constituent blocks are zero-blocks (necessarily one in \(\pi_i \) and one in \(\pi_j \)) then no component of \(\partial K \) is an invariant curve.

These conditions taken together prove the formula in Lemma 1. □

4. Corollaries

Theorem B and the results of [MS, CP] allow us to answer Problems 1 and 2 of [Sch] about a formula for the determinant of the type-\(B \) matrix of chromatic joins:

Corollary 2.

\[
\det(J_B^n(\delta^2)) = \prod_{i=1}^{n} \left(T_i(\delta)^2 - 1\right)^\binom{2n}{n-i}
\]

where \(T_i(\delta) \) is the Chebyshev polynomial of the first kind:

\[
T_0 = 2, \quad T_1 = \delta, \quad T_i = \delta T_{i-1} - T_{i-2}.
\]

The matrix \(J_B^n(\delta) \) can be generalized to a matrix of two variables as follows:

\[
(J_B^n(\alpha, \delta))_{\pi, \pi' \in \Pi_B^n} = \alpha^{\text{bk}_0(\pi \vee \pi')} \delta^{\text{nzbk}(\pi \vee \pi')}.
\]

It follows from Lemma 11 that

\[
J_B^n(\alpha^2, \delta^2) = P_B^n(\alpha, \delta)G_B^n(\alpha, \delta)P_B^n(\alpha, \delta),
\]

where \(P_B^n(\alpha, \delta) = (p_{ij}) \) is a diagonal matrix with \(p_{ii}(\alpha, \delta) = \alpha^{\text{bk}_0(\pi_i)} \delta^{\text{nzbk}(\pi_i)} \).

Furthermore, \(\det P_B^n(\alpha, \delta) = \alpha^{\frac{n}{2}} \) and thus we have:

Corollary 3.

\[
\det J_B^n(\alpha^2, \delta^2) = \alpha^{\binom{2n}{n} G_B^n(\alpha, \delta)} = \alpha^{\binom{2n}{n}} \prod_{i=1}^{n} \left(T_i(\delta)^2 - \alpha^2\right)^{\binom{2n}{n-i}}.
\]

Remark 4. Consider the Gram matrix of type \(B \) based on non-crossing connections in an annulus. This matrix is the same as the one considered before in Theorem 12 via the branched cover described in Fig. 4.

*[This follows from Proposition 3 of [Rei], which asserts that there exists a fixed-point free involution \(\gamma \) on \(\Pi_B^n \) such that \(\text{bk}_0(\pi) + \text{bk}_0(\gamma(\pi)) = 1 \) and \(\text{nzbk}(\pi) + \text{nzbk}(\gamma(\pi)) = n \).]

\[††\]This interpretation of the Gram matrix of type B Temperley-Lieb algebra is mentioned in [Sch] as an annular skein matrix and utilized in [MS] and [CP].
Figure 4. The double branch cover $pr : D^2 \rightarrow D^2$ with the “cutting” arc S.

References

[CP] Q. Chen, J. H. Przytycki, The Gram determinant of the type B Temperley-Lieb algebra, e-print: http://arxiv.org/abs/0802.1083

[CSS] A. Copeland, F. Schmidt, R. Simion, Note on two determinants with interesting factorizations, Descrete Mathematics, 256:449–458, 2002.

[Dah] R. Dahab, The Birkhoff-Lewis equation, PhD dissertation, University of Waterloo, 1993.

[DiF] P. Di Francesco, Meander determinants, Comm. Math. Phys., 191:543–583, 1998.

[KS] K. H. Ko, L. Smolinsky, A combinatorial matrix in 3-manifold theory, Pacific Journ. Math., 149(2), 1991, 319-336.

[Li] W. B. R. Lickorish, Invariants for 3-manifolds from the combinatorics of the Jones polynomial, Pacific Journ. Math., 149(2):337–347, 1991.

[MS] P. P. Martin, H. Saleur, On an Algebraic Approach to Higher Dimensional Statistical Mechanics, Commun. Math. Phys. 158, 1993, 155-190; e-print: http://front.math.ucdavis.edu/9208.3061

[MT] H. R. Morton, P. Traczyk, Knots and algebras, Contribuciones Matematicas en homenaje al profesor D.Antonio Plans Sans de Bremond, ed. E.Martin-Peinador and A.Rodez Usan, University of Zaragoza, pp. 201–220, 1990.

[Rei] V. Reiner, Non-crossing partitions for classical reflection groups. Discrete Math., 177:(195–222), 1997.

[Sch] F. Schmidt, Problems related to type-A and type-B matrices of chromatic joins, Advances in Applied Mathematics, 32:(380–390), 2004.

[Sim] R. Simion, Noncrossing partitions, Discrete Math., 217:367–409, 2000.

[Tu2] W. T. Tutte, The matrix of chromatic joins, J. Combin. Theory Ser. B, 57:(269–288), 1993.

[We] B. W. Westbury, The representation theory of the Temperley-Lieb algebras. Math. Z., 219(4):539–565, 1995.