K–structure of $\mathcal{U}(\mathfrak{g})$ for $\mathfrak{su}(n, 1)$ and $\mathfrak{so}(n, 1)$

Hrvoje Kraljević, University of Zagreb*

Abstract. Let G be the adjoint group of a real simple Lie algebra \mathfrak{g}_0 equal either $\mathfrak{su}(n, 1)$ or $\mathfrak{so}(n, 1)$, K its maximal compact subgroup, $\mathcal{U}(\mathfrak{g})$ the universal enveloping algebra of the complexification \mathfrak{g} of \mathfrak{g}_0 and $\mathcal{U}(\mathfrak{g})^K$ its subalgebra of K–invariant elements. By a result of F. Knopp [3] $\mathcal{U}(\mathfrak{g})$ is free as a $\mathcal{U}(\mathfrak{g})^K$–module, so there exists a K–submodule E of $\mathcal{U}(\mathfrak{g})$ such that the multiplication defines an isomorphism of K–modules $\mathcal{U}(\mathfrak{g})^K \otimes E \rightarrow \mathcal{U}(\mathfrak{g})$. We prove that E is equivalent to the regular representation of K, i.e. that the multiplicity of every $\delta \in \hat{K}$ in E equals its dimension. As a consequence we get that for any finitedimensional complex K–module V the space $(\mathcal{U}(\mathfrak{g}) \otimes V)^K$ of K–invariants is free $\mathcal{U}(\mathfrak{g})^K$–module of rank $\dim V$.

1 Introduction

Let \mathfrak{g}_0 be a real simple Lie algebra of noncompact type. Denote by G its adjoint group and choose its maximal compact subgroup K. Let $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ be the corresponding Cartan decomposition. Let \mathfrak{g}, \mathfrak{k} and \mathfrak{p} be the complexifications of \mathfrak{g}_0, \mathfrak{k}_0 and \mathfrak{p}_0, respectively. Denote by $\mathcal{U}(\mathfrak{g})$ and $\mathcal{U}(\mathfrak{k}) \subseteq \mathcal{U}(\mathfrak{g})$ the universal enveloping algebras of \mathfrak{g} and \mathfrak{k}. Furthermore, denote by $S(\mathfrak{g})$ and $S(\mathfrak{k})$ the symmetric algebras over \mathfrak{g} and \mathfrak{k} and by $\mathcal{P}(\mathfrak{g})$ and $\mathcal{P}(\mathfrak{k})$ the polynomial algebras over \mathfrak{g} and \mathfrak{k}. Then $\mathcal{P}(\mathfrak{g})$ and $\mathcal{P}(\mathfrak{k})$ can be identified with the symmetric algebras $S(\mathfrak{g}^*)$ and $S(\mathfrak{k}^*)$ over dual spaces \mathfrak{g}^* and \mathfrak{k}^* of \mathfrak{g} and \mathfrak{k}. The Killing form B on \mathfrak{g} allows us to identify \mathfrak{g} with \mathfrak{g}^* and \mathfrak{k} with \mathfrak{k}^*. Thus the algebras $\mathcal{P}(\mathfrak{g})$ and $\mathcal{P}(\mathfrak{k})$ are identified with $S(\mathfrak{g})$ and $S(\mathfrak{k})$. Considering polynomials as complex functions on \mathfrak{g} and \mathfrak{k}, the inclusion $\mathcal{P}(\mathfrak{k}) \subseteq \mathcal{P}(\mathfrak{g})$ is obtained via the projection $pr : \mathfrak{g} \rightarrow \mathfrak{k}$ along \mathfrak{p}.

*The author was supported by grant no. 4176 of the Croatian Science Foundation and by the QuantiXLie Center of Excellence
The adjoint action of the group G on \mathfrak{g} extends uniquely to the action by automorphisms on the algebras $\mathcal{U}(\mathfrak{g})$, $S(\mathfrak{g})$ and $\mathcal{P}(\mathfrak{g})$, and the subgroup K acts also by automorphisms on the algebras $\mathcal{U}(\mathfrak{t})$, $S(\mathfrak{t})$ and $\mathcal{P}(\mathfrak{t})$. Denote by superscript G (resp. K) the subalgebras of G–invariants (resp. K–invariants). Then, of course, $\mathcal{U}(\mathfrak{g})^G$ is the center $Z(\mathfrak{g})$ of $\mathcal{U}(\mathfrak{g})$ and $\mathcal{U}(\mathfrak{t})^K$ is the center $Z(\mathfrak{t})$ of $\mathcal{U}(\mathfrak{t})$. Obviously, the multiplication defines algebra homomorphisms

$$Z(\mathfrak{g}) \otimes Z(\mathfrak{k}) \rightarrow \mathcal{U}(\mathfrak{g})^K, \quad S(\mathfrak{g})^G \otimes S(\mathfrak{t})^K \rightarrow S(\mathfrak{g})^K, \quad \mathcal{P}(\mathfrak{g})^G \otimes \mathcal{P}(\mathfrak{t})^K \rightarrow \mathcal{P}(\mathfrak{g})^K.$$

In [3] F. Knopp has proved the following highly nontrivial results:

Theorem 1.

(a) $Z(\mathfrak{g}) \otimes Z(\mathfrak{t}) \rightarrow \mathcal{U}(\mathfrak{g})^K$ is an isomorphism onto the center of the algebra $\mathcal{U}(\mathfrak{g})^K$.

(b) The algebra $\mathcal{U}(\mathfrak{g})^K$ is commutative (i.e. $\mathcal{U}(\mathfrak{g})^K = Z(\mathfrak{g})Z(\mathfrak{t})$) if and only if \mathfrak{g} is either $\mathfrak{su}(n,1)$ or $\mathfrak{so}(n,1)$. In these cases $\mathcal{U}(\mathfrak{g})$ is free as a $\mathcal{U}(\mathfrak{g})^K$–module.

The symmetrization $\mathcal{U}(\mathfrak{g}) \rightarrow S(\mathfrak{g}) \simeq \mathcal{P}(\mathfrak{g})$ is an isomorphism of vector spaces and of G–modules and (a) implies that the homomorphism

$$\mathcal{P}(\mathfrak{g})^G \otimes \mathcal{P}(\mathfrak{t})^K \rightarrow \mathcal{P}(\mathfrak{g})^K$$

is always injective and by (b) in the cases $\mathfrak{g} = \mathfrak{su}(n,1)$ and $\mathfrak{g} = \mathfrak{so}(n,1)$ this is an isomorphism; furthermore, the last sentence in (b) implies that in these two cases $\mathcal{P}(\mathfrak{g})$ is free as a $\mathcal{P}(\mathfrak{g})^K$–module.

2 \(K\)–harmonic polynomials and the structure of the \(\mathcal{P}(\mathfrak{g})^K\)–module \(\mathcal{P}(\mathfrak{g})\)

Consider for a while a more general situation. Let V be a complex finite-dimensional vector space and let L be a closed subgroup of $\text{GL}(V)$ acting fully reducibly on V. Denote by $S(V)$ and $\mathcal{P}(V)$ the symmetric and the polynomial algebra over V. For $x \in V$, let $\partial(x) : \mathcal{P}(V) \rightarrow \mathcal{P}(V)$ be the derivation in the direction x. The map $\partial : V \rightarrow \text{End}(\mathcal{P}(V))$ extends uniquely to an isomorphism ∂ of the symmetric algebra $S(V)$ onto the algebra $\mathcal{D}(V)$ of
linear differential operators on $\mathcal{P}(V)$ with constant coefficients. Now, one defines the bilinear form $\langle \cdot, \cdot \rangle$ on $S(V) \times \mathcal{P}(V)$ by
\[
\langle u, f \rangle = [\partial(u)f](0), \quad u \in S(V), \ f \in \mathcal{P}(V).
\]
This is a pairing, i.e. nondegenerate in each variable. Now, consider the sub-
algebras of $L-$invariants $S(V)^L$ and $\mathcal{P}(V)^L$ and their maximal ideals (of codimension 1)
\[
S^+(V)^L = \bigoplus_{k>0} S^k(V)^L, \quad \mathcal{P}^+(V)^L = \bigoplus_{k>0} \mathcal{P}^k(V)^L = \{ f \in \mathcal{P}(V)^L; \ f(0) = 0 \}.
\]
Define the (graded) space of so called $L-$harmonic polynomials on V :
\[
\mathcal{H}_L(V) = \{ f \in \mathcal{P}(V); \ \partial(u)f = 0 \ \forall u \in S^+(V)^L \}.
\]
As noticed in [4] and [5] the obvious equality
\[
\langle uv, f \rangle = \langle u, \partial(v)f \rangle, \quad u, v \in S(V), \ f \in \mathcal{P}(V),
\]
implies easily that
\[
\mathcal{H}_L(V) = \{ f \in \mathcal{P}(V); \ \langle u, f \rangle = 0 \ \forall u \in S(V)S^+(V)^L \}.
\]
Part of the Helgason’s results in [2] (see also Propositions 3 and 4 in [4]) can be stated as follows:

Proposition 1. Suppose that the group L is connected and that there exists
an $L-$invariant symmetric bilinear form $B : V \times V \longrightarrow \mathbb{C}$ and a real form V_0 of V such that the restriction of B to $V_0 \times V_0$ is a scalar product and that
the group L is the complexification of its subgroup $L_0 = \{ g \in L; \ gV_0 = V_0 \}$. Then
\[
\mathcal{P}(V) = \mathcal{P}(V)\mathcal{P}^+(V)^L \oplus \mathcal{H}_L(V).
\]

Note that the conditions on the pair (L, V) in Proposition 1 are obviously satisfied for the action of the complexification K^C of the group K on \mathfrak{g}, especially in the cases $\mathfrak{g}_0 = \mathfrak{su}(n, 1)$ and $\mathfrak{g}_0 = \mathfrak{so}(n, 1)$.

Consider any subgroup $L \subseteq \text{GL}(V)$ acting fully reducibly on a finitedime-
ensional complex vector space V. If N is any graded subspace of $\mathcal{P}(V)$ such that
\[
\mathcal{P}(V) = \mathcal{P}(V)\mathcal{P}^+(V)^L \oplus N \quad (1)
\]
then it is easy to see (Proposition 1 in [4]) that the multiplication defines a surjective map

$\mathcal{P}(V)^L \otimes N \longrightarrow \mathcal{P}(V)$.

(2)

Kostant’s Lemma 1 in [4] can be stated as follows:

Proposition 2. The following properties are mutually equivalent:

(a) For every N, such that (1) holds true, the map (2) is also injective, i.e. an isomorphism.

(b) For some N, such that (1) holds true, the map (2) is injective.

(c) $\mathcal{P}(V)$ is free as a $\mathcal{P}(V)^L$–module.

Thus, by the last sentence in (b) of Theorem 1 we get from Propositions 1 and 2:

Theorem 2. For $g = \mathfrak{su}(n, 1)$ and for $g = \mathfrak{so}(n, 1)$ we have:

(a) $\mathcal{P}(g) = \mathcal{P}(g)\mathcal{P}_+(g)^K \oplus \mathcal{H}_K(g)$.

(b) The multiplication defines an isomorphism $\mathcal{P}(g)^K \otimes \mathcal{H}_K(g) \simeq \mathcal{P}(g)$.

3 The K–module of K–harmonic polynomials

Let \mathcal{N} be the zero set in g of the ideal $\mathcal{P}(g)\mathcal{P}_+(g)^K$ generated by $\mathcal{P}_+(g)^K$ in $\mathcal{P}(g)$:

$\mathcal{N} = \{ x \in g; f(x) = 0 \ \forall f \in \mathcal{P}(g)\mathcal{P}_+(g)^K \} = \{ x \in g; f(x) = 0 \ \forall f \in \mathcal{P}_+(g)^K \}$.

By Proposition 16 in [4] the zero set

$\mathcal{N}_G = \{ x \in g; f(x) = 0 \ \forall f \in \mathcal{P}_+(g)^G \}$

is exactly the set of all nilpotent elements in the Lie algebra g. Analogously

$\mathcal{N}_K = \{ x \in \mathfrak{k}; f(x) = 0 \ \forall f \in \mathcal{P}_+(\mathfrak{k})^K \}$

is the set of all nilpotent elements in the reductive Lie algebra \mathfrak{k}. Now, $\mathcal{P}(g)^K = \mathcal{P}(g)^G \otimes \mathcal{P}^K(\mathfrak{k})$ by the Knopp’s theorem, so we get
Proposition 3. N is the set of all nilpotent elements in g whose projection to k along p is nilpotent in the reductive Lie algebra k:

$$N = \{ x \in g; x \in N_G, \text{pr } x \in N_K \}.$$

We call the elements of N K-nilpotent elements in g.

By the Harish-Chandra isomorphism and by the Chevalley’s theorem on Weyl group invariants we know that the algebra $P(g)^G$ is generated by $\ell = \text{rank } g$ homogeneous algebraically independent G-invariant polynomials f_1, \ldots, f_ℓ and the algebra $P(k)^K$ is generated by $k = \text{rank } k$ homogeneous algebraically independent K-invariant polynomials $\varphi_1, \ldots, \varphi_k$. Since in the cases $g_0 = \mathfrak{su}(n,1)$ and $g_0 = \mathfrak{so}(n,1)$

$$P(g)^K = P(g)^G P(k)^K \simeq P(g)^G \otimes P(k)^K,$$

the algebra $P(g)^K$ is generated by $\ell + k$ homogeneous algebraically independent polynomials $f_1, \ldots, f_\ell, \varphi_1, \ldots, \varphi_k$. Thus,

$$N = \{ x \in g; f_1(x) = \cdots = f_\ell(x) = \varphi_1(x) = \cdots = \varphi_k(x) = 0 \},$$

so the set N is a Zariski closed subset of g of dimension

$$\dim N = \dim g - \ell - k.$$

More generally, for any $(\xi, \eta) = (\xi_1, \ldots, \xi_\ell, \eta_1, \ldots, \eta_k) \in \mathbb{C}^{\ell + k}$ we define a K^C-stable Zariski closed subset $N(\xi, \eta)$ of g:

$$N(\xi, \eta) = \{ x \in g; f_j(x) = \xi_j, j = 1, \ldots, \ell, \varphi_i(x) = \eta_i, i = 1, \ldots, k \}.$$

Obviously,

$$\dim N(\xi, \eta) = \dim g - \ell - k, \quad (\xi, \eta) \in \mathbb{C}^{\ell + k}.$$

As in [4] and [5] we conclude from Theorem 2(a):

Proposition 4. The restriction of polynomials in $P(g)$ to the set $N(\xi, \eta)$ induces an isomorphism of K-modules

$$\mathcal{H}_K(g) \simeq P(N(\xi, \eta)) = \mathcal{R}(N(\xi, \eta)), \quad (\xi, \eta) \in \mathbb{C}^{k+\ell}.$$
Here for any subset \(S \subseteq \mathfrak{g} \) we set
\[
\mathcal{P}(S) = \{ f|S; \ f \in \mathcal{P}(\mathfrak{g}) \}
\]
and for any algebraic variety \(S \mathcal{R}(S) \) denotes the algebra of regular functions on \(S \).

The dimensions and the ranks \(\ell = \text{rank} \mathfrak{g} \) and \(k = \text{rank} \mathfrak{k} \) in our cases are the following:

\(\mathfrak{g} \)	\(\text{dim} \mathfrak{g} \)	\(\text{dim} \mathfrak{k} \)	\(\ell \)	\(k \)
\(\mathfrak{su}(n,1) \)	\(n^2 + 2n \)	\(n^2 \)	\(n \)	\(n \)
\(\mathfrak{so}(2n,1) \)	\(2n^2 + n \)	\(2n^2 - n \)	\(n \)	\(n \)
\(\mathfrak{so}(2n+1,1) \)	\(2n^2 + 3n + 1 \)	\(2n^2 + n \)	\(n + 1 \)	\(n \)

So we see that in each case
\[
\dim \mathcal{N}(\xi, \eta) = \dim \mathfrak{k} = \dim K^C, \quad (\xi, \eta) \in \mathbb{C}^{\ell+k}, \quad (3)
\]

Remark: By the exercise 13) in §13 in [1] (p. 268) we can choose the following generators \(f_i, \varphi_j \) of \(\mathcal{P}(\mathfrak{g})^K \):

(a) For \(\mathfrak{g}_0 = \mathfrak{su}(n,1) \)
\[
f_i(x) = \text{Tr} \ x^{i+1}, \quad 1 \leq i \leq n, \quad \varphi_j(x) = \text{Tr} (pr \ x)^j, \quad 1 \leq j \leq n.
\]

(b) For \(\mathfrak{g}_0 = \mathfrak{so}(2n,1) \)
\[
f_i(x) = \text{Tr} \ x^{2i}, \quad 1 \leq i \leq n, \quad \varphi_j(x) = \text{Tr} (pr \ x)^{2j}, \quad 1 \leq j \leq n - 1,
\]
\[
\varphi_n(x)^2 = (-1)^n \det (pr \ x).
\]

(c) For \(\mathfrak{g}_0 = \mathfrak{so}(2n+1,1) \)
\[
f_i(x) = \text{Tr} \ x^{2i}, \quad 1 \leq i \leq n, \quad f_{n+1}(x)^2 = (-1)^{n+1} \det x,
\]
\[
\varphi_j(x) = \text{Tr} (pr \ x)^{2j}, \quad 1 \leq j \leq n.
\]

Consider the action of the complex group \(K^C \) on \(\mathfrak{g} \). For \(x \in \mathfrak{g} \) denote by \(\mathcal{O}_x \) its \(K^C \)-orbit. Then of course
\[
\dim \mathcal{O}_x = \dim K^C / K_x^C = \dim K^C - \dim K_x^C, \quad (4)
\]
where \(K_x^C \) denotes the stabilizer of the point \(x \) in the group \(K^C \). So, if \(K_x^C \) is trivial
\[
\dim \mathcal{O}_x = \dim K^C = \dim \mathcal{N}(\xi, \eta). \quad (5)
\]
Lemma 1. There exists \(x \in \mathfrak{g} \) such that the stabilizer \(K^C_x \) is trivial. In this case let \((\xi, \eta) = (f_1(x), \ldots, f_\ell(x), \varphi_1(x), \ldots, \varphi_k(x)) \). The orbit \(O_x \) is open in \(\mathcal{N}(\xi, \eta) \).

We prove this Lemma in Section 4.

Let \(x \in \mathfrak{g} \) be as in Lemma 1, i.e. such that its stabilizer in \(K^C \) is trivial. Set
\[
(\xi, \eta) = (f_1(x), \ldots, f_\ell(x), \varphi_1(x), \ldots, \varphi_k(x)) \in \mathbb{C}^{\ell+k}.
\]
We know that \(\dim \mathcal{N}(\xi, \eta) \leq \dim \mathcal{N}(\xi, \eta) - 2 \),
\[
(\xi, \eta) = (f_1(x), \ldots, f_\ell(x), \varphi_1(x), \ldots, \varphi_k(x)) \in \mathbb{C}^{\ell+k}.
\]
We know that \(\dim O_x = \dim \mathcal{N}(\xi, \eta) \), so the \(K^C \)-orbit \(O_x \) is open in \(\mathcal{N}(\xi, \eta) \). Thus, the restriction to \(O_x \) is an isomorphism of \(\mathcal{P}(\mathcal{N}(\xi, \eta)) = \mathcal{R}(\mathcal{N}(\xi, \eta)) \) onto \(\mathcal{P}(O_x) \). Now, if the algebraic variety \(\mathcal{N}(\xi, \eta) \) would be irreducible and if we would have
\[
\dim \mathcal{N}(\xi, \eta) \setminus O_x \leq \dim \mathcal{N}(\xi, \eta) - 2,
\]
(this holds true in the settings of [4] and [5] since the dimensions of all the orbits have the same parity) we could conclude by a theorem from algebraic geometry that \(\mathcal{P}(O_x) = \mathcal{R}(O_x) \simeq \mathcal{R}(K^C) \) as \(K^C \)-modules and by the Frobenius reciprocity we could get that the multiplicity \(m(\delta) \) of any irreducible finitedimensional representation \(\delta \) of \(K^C \) in the \(K^C \)-module \(\mathcal{H}_K(\mathfrak{g}) \simeq \mathcal{R}(O_x) \) equals its dimension \(d(\delta) \). Unfortunately, (6) is not true. In fact, in the case \(\mathfrak{g} = \mathfrak{su}(n, 1) \) the algebraic set \(\mathcal{N} = \mathcal{N}(0, 0) \) is even not irreducible -- there exist two open orbits in \(\mathcal{N} \), and in the complement of these two orbits there exist orbits of dimension \(\dim \mathcal{N} - 1 \). In the case \(\mathfrak{g} = \mathfrak{so}(n, 1) \), \(n \geq 3 \), there also exist \(K^C \)-orbits in \(\mathcal{N}(\xi, \eta) \) of dimension \(\dim \mathcal{N}(\xi, \eta) - 1 \).

So, we get only the inclusion of \(K \)-modules \(\mathcal{H}_K(\mathfrak{g}) \hookrightarrow \mathcal{R}(K^C) \) and we may conclude only that
\[
m(\delta) \leq d(\delta)
\]
for every irreducible finitedimensional representation \(\delta \) of \(K \). In fact, the equality holds true although we do not know a priori that \(\mathcal{P}(O_x) = \mathcal{R}(O_x) \); it comes out a posteriori:

Theorem 3. The multiplicity of every irreducible finitedimensional representation \(\delta \) of the compact group \(K \) in the \(K \)-module \(\mathcal{H}_K(\mathfrak{g}) \) of \(K \)-harmonic polynomials on \(\mathfrak{g} \) is equal to its dimension \(d(\delta) \).

To prove Theorem 3 we use the compact form \(K \) of the complex group \(K^C \). Denote by \(\mathcal{P}(Kx) \) the restriction of the polynomial algebra \(\mathcal{P}(\mathfrak{g}) \) to the
K–orbit Kx. Note that the fact that K^C is the complexification of K easily implies that the restriction $O_x \to Kx$ induces an isomorphism of K–modules $\mathcal{P}(O_x)$ onto $\mathcal{P}(Kx)$. Thus, as a K–module we have

$$\mathcal{P}(Kx) = \bigoplus_{\delta \in \hat{K}} m(\delta)\delta.$$ \hfill (8)

The subalgebra $\mathcal{P}(Kx)$ of the algebra $C(Kx)$ of all complex continuous functions on the compact space Kx evidently distinguishes the points of Kx. Furthermore, this subalgebra is closed under complex conjugation. This is implied by the fact that the set Kx is contained in a real form of the complex vector space g. This follows from the fact that the compact group K is contained in a maximal compact subgroup U of the complex group $G^C = \text{Int}(g)$ and the Lie algebra u of U is a real form of g. Finally, the algebra $\mathcal{P}(Kx)$ obviously contains constants. Thus, by the Stone–Weierstrass theorem the subalgebra $\mathcal{P}(Kx)$ is uniformly dense in $C(Kx)$. Now, the Peter–Weyl theorem implies that $m(\delta) = d(\delta)$ for all $\delta \in \hat{K}$. This proves Theorem 3.

The symmetrization $U(g) \to S(g) \simeq \mathcal{P}(g)$ is an K–module isomorphism. Let H_K be the inverse image of $H_K(g)$ in $U(g)$. The immediate consequence of Theorems 2 and 3 is

Theorem 4. The multiplication induces an isomorphism of K–modules $U(g)^K \otimes H_K \simeq U(g)$. The multiplicity of every $\delta \in \hat{K}$ in the K–module H_K is equal to its dimension $d(\delta)$.

Corollary 1. Let V be a finitedimensional K–module. Then the space of K–invariants $(U(g) \otimes V)^K$ is a free $U(g)^K$–module of finite rank $\dim V$.

By Theorem 4 we have

$$(U(g) \otimes V)^K \simeq (U(g)^K \otimes H_K \otimes V)^K = U(g)^K \otimes (H_K \otimes V)^K.$$

Thus, $U(g)$ is a free $U(g)^K$–module of rank $\dim (H_K \otimes V)^K$. Now, let $n(\varepsilon)$ be the multiplicity of $\varepsilon \in \hat{K}$ in V. Then

$$(H_K \otimes V)^K \simeq \left(\left(\bigoplus_{\delta \in \hat{K}} d(\delta)\delta \right) \otimes (\bigoplus_{\varepsilon \in \hat{K}} n(\varepsilon)\varepsilon) \right)^K = \bigoplus_{\delta, \varepsilon \in \hat{K}} d(\delta)n(\varepsilon)(\delta \otimes \varepsilon)^K,$$

so

$$\dim (H_K \otimes V)^K = \sum_{\delta, \varepsilon \in \hat{K}} d(\delta)n(\varepsilon) \dim (\delta \otimes \varepsilon)^K.$$
By the Schur’s lemma \(\dim (\delta \otimes \varepsilon)^K \) is 1 if \(\delta \) and \(\varepsilon \) are contragredient to each other and 0 otherwise. Since the dimensions of contragredient representations are equal, we get

\[
\dim (H_K \otimes V)^K = \sum_{\delta \in \hat{K}} n(\delta) d(\delta) = \dim V.
\]

4 Proof of Lemma 1

(1) \(g_0 = \mathfrak{su}(n, 1) \). We realize this Lie algebra as

\[
g_0 = \{ A \in \mathfrak{sl}(n + 1, \mathbb{C}); \ A^* = -\Gamma A \Gamma \},
\]

where \(\Gamma = \text{diag}(1, \ldots, 1, -1) \). Then \(g = \mathfrak{sl}(n + 1, \mathbb{C}) \) and \(K^C = \tilde{K}^C / Z \), where

\[
Z = \{ \text{diag}(\alpha, \ldots, \alpha); \alpha^{n+1} = 1 \} \text{ is the center of } \text{SL}(n + 1, \mathbb{C}) \text{ and }
\]

\[
\tilde{K}^C = \left\{ \begin{bmatrix} B & 0 \\ 0 & (\text{det } B)^{-1} \end{bmatrix} : B \in \text{GL}(n, \mathbb{C}) \right\}.
\]

Now, we can take for \(x \) the elementary \((n+1) \times (n+1)\) Jordan block:

\[
x = \begin{bmatrix}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0
\end{bmatrix}.
\]

The centralizer \(M_x \) of \(x \) in the algebra of all \((n+1) \times (n+1)\) matrices consists of all polynomials in \(x \), i.e.

\[
M_x = \left\{ \begin{bmatrix}
\alpha_0 & \alpha_1 & \alpha_2 & \cdots & \alpha_{n-1} & \alpha_n \\
0 & \alpha_0 & \alpha_1 & \cdots & \alpha_{n-2} & \alpha_{n-1} \\
0 & 0 & \alpha_0 & \cdots & \alpha_{n-3} & \alpha_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \alpha_0 & \alpha_1 \\
0 & 0 & 0 & \cdots & 0 & \alpha_0
\end{bmatrix} : \alpha_0, \alpha_1, \ldots, \alpha_n \in \mathbb{C} \right\}.
\]

So, we conclude that the centralizer of \(x \) in \(\tilde{K}^C \) is precisely the center \(Z \) of \(\text{SL}(n + 1, \mathbb{C}) \), thus the stabilizer of \(x \) in \(K^C \) is trivial.

(2) \(g_0 = \mathfrak{so}(2n + 1, 1) \). We choose the following realizations:

\[
g = \mathfrak{so}(2n + 2, \mathbb{C}) = \{ A \in \mathfrak{gl}(2n + 2, \mathbb{C}); \ A^t = -\Gamma A \Gamma \},
\]
Here the superscript t denotes the matrix transpose and

$$\Gamma_0 = \begin{bmatrix} 0 & I_n & 0 \\ I_n & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \Gamma = \begin{bmatrix} \Gamma_0 & 0 \\ 0 & 1 \end{bmatrix},$$

I_n being the n by n identity matrix. Denoting as usual the space of all $n \times m$ complex matrices by $M_{n,m}(\mathbb{C})$ and $M_n(\mathbb{C}) = M_{n,n}(\mathbb{C})$, we have

$$k = \begin{cases} \begin{bmatrix} A & B & a & 0 \\ C & -A^t & b & 0 \\ -b^t & -a^t & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}; & A, B, C \in M_n(\mathbb{C}), \quad B^t = -B, \quad C^t = -C, \quad a, b \in M_{n,1}(\mathbb{C}) \end{cases}$$

and

$$g = \begin{cases} \begin{bmatrix} 0 & 0 & 0 & c \\ 0 & 0 & 0 & d \\ 0 & 0 & 0 & \alpha \\ -d^t & -c^t & -\alpha & 0 \end{bmatrix}; & X \in k, \quad c, d \in M_{n,1}(\mathbb{C}), \quad \alpha \in \mathbb{C} \end{cases}.$$
(3) \(\mathfrak{g} = \mathfrak{so}(2n,1) \). We choose the following realizations

\[
\mathfrak{g} = \mathfrak{so}(2n + 1, \mathbb{C}) = \{ A \in \mathfrak{gl}(2n + 1, \mathbb{C}); \ A^t = -\Gamma A \Gamma \} ,
\]

\[
\mathfrak{h} = \left\{ \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix} : B \in \mathfrak{gl}(2n, \mathbb{C}), \ B^t = -\Gamma_0 B \Gamma_0 \right\} ,
\]

\[
\Gamma_0 = \begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix} , \quad \Gamma = \begin{bmatrix} \Gamma_0 & 0 \\ 0 & 1 \end{bmatrix} ,
\]

Then

\[
\mathfrak{h} = \left\{ \begin{bmatrix} A & B & 0 \\ C & -A^t & 0 \\ 0 & 0 & 0 \end{bmatrix} : A, B, C \in M_n(\mathbb{C}), \ B^t = -B, \ C^t = -C \right\}
\]

and

\[
\mathfrak{g} = \left\{ X + \begin{bmatrix} 0 & 0 & a \\ 0 & 0 & b \\ -b^t & -a^t & 0 \end{bmatrix} : X \in \mathfrak{h}, \ a, b \in M_{n,1}(\mathbb{C}) \right\} .
\]

As in (2) let \(J \) denote the elementary \(n \) by \(n \) Jordan block and let

\[
\Delta = \begin{bmatrix} 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \in M_n(\mathbb{C}).
\]

The matrix

\[
x_0 = \begin{bmatrix} J & \Delta & 0 \\ 0 & -J^t & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

is a representative of the \(K^\mathbb{C} \)-orbit of all principal nilpotent elements of \(\mathfrak{h} \). By the Kostant’s results in [3] the stabilizer \(K_{x_0}^\mathbb{C} \) of \(x_0 \) in \(K^\mathbb{C} \) is an \(n \)-dimensional connected simply connected unipotent subgroup whose Lie algebra is the centralizer \(\mathfrak{h}_{x_0} \) of \(x_0 \) in \(\mathfrak{h} \).

(3a) Suppose first that \(n \) is odd, \(n = 2k + 1 \). By solving a system of linear equations one finds that \(\mathfrak{h}_{x_0} \) consists of all matrices of the form

\[
\begin{bmatrix} A & B & 0 \\ 0 & -A^t & 0 \\ 0 & 0 & 0 \end{bmatrix} , \quad (9)
\]
where B is n by n antisymmetric matrix such that for some $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$ its first row is
\[
\begin{bmatrix}
0 & \alpha_1 & 0 & \alpha_2 & 0 & \cdots & 0 & \alpha_k & \alpha_{k+1}
\end{bmatrix},
\]
its last column is
\[
\begin{bmatrix}
\alpha_{k+1} & \alpha_{k+2} & 0 & \alpha_{k+3} & 0 & \cdots & 0 & \alpha_{2k+1} & 0
\end{bmatrix}^t,
\]
the inner entries of B are either 0, or $\pm \alpha_j$, $2 \leq j \leq k$, or $\pm 2\alpha_j$, $k+2 \leq j \leq 2k$, and A is a strictly upper triangular n by n matrix whose first row is
\[
\begin{bmatrix}
0 & \alpha_{2k+1} & 0 & \alpha_{2k} & 0 & \cdots & 0 & \alpha_{k+2} & -\alpha_{k+1}
\end{bmatrix},
\]
and every parallel with the main diagonal is constant (i.e. A is a polynomial in J). E.g. for $n = 7$ ($k = 3$)
\[
A = \begin{bmatrix}
0 & \alpha_7 & 0 & \alpha_6 & 0 & \alpha_5 & -\alpha_4 \\
0 & 0 & \alpha_7 & 0 & \alpha_6 & 0 & \alpha_5 \\
0 & 0 & 0 & \alpha_7 & 0 & \alpha_6 & 0 \\
0 & 0 & 0 & 0 & \alpha_7 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha_7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix},
\]
\[
B = \begin{bmatrix}
0 & \alpha_1 & 0 & \alpha_2 & 0 & \alpha_3 & \alpha_4 \\
-\alpha_1 & 0 & -\alpha_2 & 0 & -\alpha_3 & 0 & \alpha_5 \\
0 & \alpha_2 & 0 & \alpha_3 & 0 & -2\alpha_5 & 0 \\
-\alpha_2 & 0 & -\alpha_3 & 0 & 2\alpha_5 & 0 & \alpha_6 \\
0 & \alpha_3 & 0 & -2\alpha_5 & 0 & -2\alpha_6 & 0 \\
-\alpha_3 & 0 & 2\alpha_5 & 0 & 2\alpha_6 & 0 & \alpha_7 \\
-\alpha_4 & -\alpha_5 & 0 & -\alpha_6 & 0 & -\alpha_7 & 0
\end{bmatrix}.
\]

(3b) Consider now the case of n even, $n = 2k$. As in (3a) one finds that \mathfrak{L}_{x_0} consists of all matrices of the form (9) where B is n by n antisymmetric matrix whose first row is
\[
\begin{bmatrix}
0 & \alpha_1 & 0 & \alpha_2 & 0 & \cdots & 0 & \alpha_k
\end{bmatrix},
\]
its last column is
\[
\begin{bmatrix}
\alpha_k & 0 & \alpha_{k+2} & 0 & \alpha_{k+3} & 0 & \cdots & 0 & \alpha_{2k} & 0
\end{bmatrix}^t,
\]
the inner entries of its antidiagonal are $\pm \alpha_{k+1}$, all the other inner entries are either 0, or $\pm \alpha_j$, $2 \leq j \leq k - 1$, or $\pm 2\alpha_j$, $k + 2 \leq j \leq 2k - 1$, and A is the strictly upper triangular n by n matrix whose first row is

$$
\begin{bmatrix}
0 & \alpha_{2k} & 0 & \alpha_{2k-1} & 0 & \cdots & 0 & \alpha_{k+2} & 0 & \alpha_{k+1} - \alpha_k
\end{bmatrix}
$$

and every parallel with the main diagonal is constant. E.g. for $n = 6$ ($k = 3$)

$$
A =
\begin{bmatrix}
0 & \alpha_6 & 0 & \alpha_5 & 0 & \alpha_4 - \alpha_3 \\
0 & 0 & \alpha_6 & 0 & \alpha_5 & 0 \\
0 & 0 & 0 & \alpha_6 & 0 & \alpha_5 \\
0 & 0 & 0 & 0 & \alpha_6 & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha_6 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix},
$$

$$
B =
\begin{bmatrix}
0 & \alpha_1 & 0 & \alpha_2 & 0 & \alpha_3 \\
-\alpha_1 & 0 & -\alpha_2 & 0 & -\alpha_4 & 0 \\
0 & \alpha_2 & 0 & \alpha_4 & 0 & \alpha_5 \\
-\alpha_2 & 0 & -\alpha_4 & 0 & 2\alpha_5 & 0 \\
0 & \alpha_4 & 0 & 2\alpha_5 & 0 & \alpha_6 \\
-\alpha_3 & 0 & -\alpha_5 & 0 & -\alpha_6 & 0
\end{bmatrix}.
$$

Now, since \mathfrak{p} is K^C-stable, for any $y \in \mathfrak{p}$ the stabilizer (resp. the centralizer) of $x = x_0 + y$ in K^C (resp. \mathfrak{k}) is the stabilizer (resp. the centralizer) of y in $K^C_{x_0}$ (resp. \mathfrak{k}_{x_0}). Let us compute the centralizer of

$$
y = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & e_1 \\
e_1^t & 0 & 0
\end{bmatrix} \in \mathfrak{p}^C
$$

in \mathfrak{k}_{x_0}. An element (9) of \mathfrak{k}_{x_0} centralizes y if and only if

$$
Be_1 = 0 \quad \text{and} \quad A^t e_1 = 0.
$$

Now, in the case (3a) we have

$$
Be_1 = \begin{bmatrix}
0 & -\alpha_1 & 0 & -\alpha_2 & 0 & \cdots & -\alpha_k & -\alpha_{k+1}
\end{bmatrix}^t,
$$

$$
A^t e_1 = \begin{bmatrix}
0 & \alpha_{2k+1} & 0 & \alpha_{2k} & 0 & \cdots & 0 & \alpha_{k+2} & -\alpha_{k+1}
\end{bmatrix}^t.
$$
and in the case (3b)

\[Be_1 = \begin{bmatrix} 0 & -\alpha_1 & 0 & -\alpha_2 & 0 & \cdots & 0 & -\alpha_k \end{bmatrix}^t, \]

\[A^t e_1 = \begin{bmatrix} 0 & \alpha_2 & 0 & \alpha_{2k-1} & 0 & : & 0 & \alpha_{k+2} & 0 & \alpha_{k+1} - \alpha_k \end{bmatrix}^t. \]

In both cases we conclude that (5) is in the centralizer of \(y \) in \(kx_0 \) if and only if \(\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 \), i.e. if and only if \(A = B = 0 \). Thus,

\[x = x_0 + y = \begin{bmatrix} J & \Delta & 0 \\ 0 & -J^t & e_1 \\ -e_1^t & 0 & 0 \end{bmatrix} \]

is an element of \(g \) whose stabilizer in \(K^c \) is trivial. This completes the proof of Lemma 1.

References

[1] N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 7–9*, Springer–Verlag, Berlin–Heidelberg, 2005.

[2] S. Helgason, *Some results in invariant theory*, Bulletin of the American Mathematical Society, vol. 68 (1962), pp 367–371.

[3] F. Knopp, *Der Zentralisator einer Liealgebra in einer einhüllenden Algebra*, Journal für die reine und angewandte Mathematik, vol. 406 (1990), pp 5–9.

[4] B. Kostant, *Lie group representations on polynomial rings*, American Journal of Mathematics, vol. 86 (1963), pp 327–402.

[5] B. Kostant and S. Rallis, *Orbits and representations associated with symmetric spaces*, American Journal of Mathematics, vol. 93 (1971), pp 753–809.