Ensemble inequivalence in a mean-field XY model with ferromagnetic and nematic couplings

Arkady Pikovsky1,2, Shamik Gupta3, Tarcisio N. Teles4, Fernanda P. C. Benetti2, Renato Pakter4, Yan Levin4, Stefano Ruffo5

1Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str 24, D-14476, Potsdam, Germany
2Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod, Russia
3Laboratoire de Physique Théorique et Modèles Statistiques (CNRS UMR 8626), Université Paris-Sud, Orsay, France
4Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil
5Dipartimento di Fisica e Astronomia e CSDC, Università di Firenze, INFN and CNISM, I 50019 Sesto Fiorentino, Italy

(Dated: October 9, 2014)

PACS numbers: 05.70.Fh, 05.20.-y, 05.20.Gg

We explore ensemble inequivalence in long-range interacting systems by studying an XY model of classical spins with ferromagnetic and nematic coupling. We demonstrate the inequivalence by mapping the microcanonical phase diagram onto the canonical one, and also by doing the inverse mapping. We show that the equilibrium phase diagrams within the two ensembles strongly disagree within the regions of first-order transitions, exhibiting interesting features like temperature jumps. In particular, we discuss the coexistence and forbidden regions of different macroscopic states in both the phase diagrams.

Recent years have seen extensive studies of systems with long-range interactions that have the two-body potential in d dimensions decaying at large separation r as $1/r^d; 0 \leq \alpha \leq d$ [1][4]. Examples span a wide variety, from bacterial population [5], plasmas [6], dipolar ferroelectrics and ferromagnets [7], to two-dimensional geophysical vortices [8], self-gravitating systems [9], etc. A striking feature of long-range systems distinct from short-range ones is that of non-additivity, whereby thermodynamic quantities scale superlinearly with the system size. Non-additivity manifests in static properties like negative eigenvalue, microcanonical specific heat [10][11], inequivalence of statistical ensembles [12][19], and other rich possibilities [20]. As for the dynamics, long-range systems often exhibit broken ergodicity [16][21], and slow relaxation towards equilibrium [8][18][22][25].

Here, we demonstrate ensemble inequivalence in a model of long-range systems that has mean-field interaction (i.e., $\alpha = 0$) and two coupling modes. This so-called Generalized Hamiltonian Mean-Field (GHMF) model, a mean-field version with added kinetic energy of the model of Ref. [26], has N interacting particles with angular coordinates $\theta_i \in [0, 2\pi]$ and momenta p_i, $i = 1, 2, \ldots, N$, which are moving on a unit circle [27]. The GHMF Hamiltonian is

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2} + \frac{1}{2N} \sum_{i,j=1}^{N} \left[1 - \Delta \cos \theta_{ij} - (1 - \Delta) \cos 2\theta_{ij} \right],$$

where $\theta_{ij} \equiv \theta_i - \theta_j$. Here, $\cos \theta_{ij}$ is an attractive interaction minimized by the particles forming a cluster, so that $\theta_{ij} = 0 \pmod{2\pi}$, while $\cos 2\theta_{ij}$ with two minima at $\theta_{ij} = 0, \pi \pmod{2\pi}$ promotes a two-cluster state. The parameter $\Delta \in [0, 1]$ sets the relative strength of the two coupling modes. The potential energy in (1) is scaled by N to make the energy extensive, following the Kac prescription [28], but the system remains non-additive. In terms of the XY-spin vectors $S_i \equiv (\cos \theta_i, \sin \theta_i)$, the interactions have the form of a mean-field ferromagnetic interaction $\sim -\Delta S_i \cdot S_j$, and a mean-field coupling $\sim -(1 - \Delta)(S_i \cdot S_j)^2$ promoting nematic ordering. For XY lattice models with this type of ferro-nematic coupling, see [26][29][31]. The system (1) has Hamilton dynamics: $d\theta_i/dt = p_i, dp_i/dt = -\partial H/\partial \theta_i$. For $\Delta = 1$, when no nematic ordering exists, the GHMF model becomes the Hamiltonian mean-field (HMF) model [22], a paradigmatic model of long-range systems [11].

In this work, we report on striking and strong inequivalence of statistical ensembles for the GHMF model. The system has three equilibrium phases: ferromagnetic, paramagnetic, and nematic, with first and second-order transitions. By comparing the phase diagrams in the canonical and microcanonical ensembles (the latter is derived in [27]), we show in the regions of first-order transitions that the phase diagrams differ significantly. We analyze the inequivalence in two ways, by mapping the microcanonical phase diagram onto the canonical one, and vice versa. By doing the inverse mapping of the canonical onto the microcanonical one, in particular, we discuss the coexistence and forbidden regions of different macroscopic states. This study demonstrates the subtleties and intricacies of the presence of different stability regions of macroscopic states in long-range systems in microcanonical and canonical equilibrium.

We now turn to derive our results. Rotational symmetry of the Hamiltonian (1) allows to choose, without loss of generality, the ordering direction to be along x, and to define as order parameters the equilibrium averages

$$R_m \equiv \langle \cos m\theta \rangle; \quad m = 1, 2,$$

where $m = 1$ (respectively, 2) stands for the ferromagnetic (respectively, nematic) order. The canonical partition function is $Z = \int dp_i d\theta_i \exp(-\beta H)$, with $\beta = 1/T$ being the inverse of the temperature T measured in units of the Boltzmann constant. Since Eq. (1) is a mean-field system, in the thermodynamic limit $N \to \infty$, one follows the standard Hubbard-Stratonovich transformation and a saddle-point approximation to evaluate Z.

[cond-mat.stat-mech] 8 Oct 2014
One then obtains expressions for R_m’s, and the average energy per particle, given by $\langle \varepsilon \rangle = \partial (\beta f) / \partial \beta$, where f is the free energy per particle. One has, with $m = 1, 2$,

$$\begin{align*}
R_m &= \frac{\int d\theta \cos m\theta \, e^{\beta(\Delta R_1 \cos \theta + (1 - \Delta) R_2 \cos 2\theta)}}{\int d\theta \, e^{\beta(\Delta R_1 \cos \theta + (1 - \Delta) R_2 \cos 2\theta)}}, \\
\langle \varepsilon \rangle &= 1/(2\beta) + 1/2 - (1/2) (\Delta R_1^2 + (1 - \Delta) R_2^2), \quad \text{and} \\
f &= -\frac{1}{2\beta} \ln \left(\frac{2\pi}{\beta}\right) + \frac{1}{2} \left(\Delta R_1^2 + (1 - \Delta) R_2^2\right) \left(-\frac{1}{\beta} \ln \left(\int d\theta \, e^{\beta(\Delta R_1 \cos \theta + (1 - \Delta) R_2 \cos 2\theta)}\right)\right). \tag{4}
\end{align*}$$

The canonical phase diagram in the $\Delta - T$ plane is obtained by plotting the equilibrium values of R_1 and R_2 that solve Eq. (3) and minimize the free energy (4).

We now describe a practical way to obtain the canonical phase diagram, by implementing a single-particle model that involves the following Langevin dynamics of a single particle with angular coordinate θ:

$$\frac{d\theta}{dt} = -\frac{dU}{d\theta} + \sqrt{T} \xi(t), \tag{5}$$

where $U = -\Delta R_2(t) \cos \theta - (1 - \Delta) R_2(t) \cos 2\theta$ is the potential, and $R_2(t) \equiv \int d\theta \, \rho(\theta, t) \cos m\theta$; $m = 1, 2$. Here, $\rho(\theta, t)$ is the probability distribution of θ at time t, with the normalization $\int_0^{2\pi} d\theta \, \rho(\theta, t) = 1$. The noise $\xi(t)$ is white and Gaussian, $\xi(t) = 0$, $\langle \xi(t) \xi(t') \rangle = 2\delta(t - t')$, with the overbar denoting noise averaging. The justification behind introducing the model (5) is the observation that the stationary state distribution of this model, which is exactly that in the canonical equilibrium: $\rho(\theta) \equiv \rho(\theta, t \to \infty) \propto \exp [\beta(\Delta R_1 \cos \theta + (1 - \Delta) R_2 \cos 2\theta)]$, leads to the same equation for the stationary state $R_m \equiv R_m(t \to \infty); m = 1, 2$, as Eq. (3).

We now describe how the single-particle model is usefully employed to compute R_m’s. Redefining time as tT, and introducing auxiliary variables $R(t), \alpha(t)$, as

$$\begin{align*}
\left\{ R(t) &= \sqrt{\beta(\Delta R_1(t))^2 + (2\beta(1 - \Delta) R_2(t))^2}, \\
\cos \alpha &= \beta \Delta R_1(t)/R(t), \sin \alpha = 2\beta(1 - \Delta) R_2(t)/R(t), \right. \tag{6}
\end{align*}$$

Eq. (5) becomes $d\theta/dt = R(t)(-\cos \alpha \sin \theta - \sin \alpha \sin 2\theta) + \eta(t)$, with white, Gaussian $\eta(t)$: $\langle \eta(t) \eta(t') \rangle = \delta(t - t')$. The Fokker-Planck equation for $\rho(\theta, t)$ reads

$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial \theta}[R(t)(-\cos \alpha \sin \theta - \sin \alpha \sin 2\theta)\rho] + \frac{\partial^2 \rho}{\partial \theta^2}. \tag{7}$$

In the stationary state, we expand the corresponding distribution as $\rho(\theta) = 1/(2\pi) \sum_n C_n e^{i n \theta}$, $C_n = \int_0^{2\pi} d\theta \, \rho(\theta) e^{-i n \theta}$, where $C_0 = 1$ follows from the normalization of ρ. Also, the fact that $\rho(\theta)$ is real together with the symmetry $\rho(\theta) = \rho(-\theta)$ following from the invariance of Eq. (7) under $\theta \to -\theta$ yield $C_n = C_{-n}$. Using the Fourier expansion in Eq. (7) in the stationary state yields a set of algebraic equations

$$2kC_k + \cos \alpha R(C_{k+1} - C_{k-1}) + \sin \alpha R(C_{k+2} - C_{k-2}) = 0, \tag{8}$$

with $k = 0, \pm 1, \pm 2, \ldots$, a time-independent α, and $R \equiv R(t \to \infty)$. Equation (8) can be solved numerically (with a proper truncation; in our numerics, we used $|k| \leq 50$), and in fact, being a linear system of equations, has a unique solution. The solution depends on R and α. After finding $R_1 = C_1(R, \alpha)$ and $R_2 = C_2(R, \alpha)$, we get, by virtue of Eq. (9), all the parameters in a parametric form in terms of the introduced auxiliary variables:

$$\beta = \frac{R \cos \alpha}{R_1} + \frac{R \sin \alpha}{2R_2}, \quad \Delta = 1 - \frac{T R \sin \alpha}{2R_2}. \tag{9}$$

Once $R_{1,2}, \beta, \Delta$ are determined, one can use Eq. (4) to find the free energy of the solution. Varying $R \geq 0$ and $\alpha \in [0, \pi/2)$ gives all solutions of Eq. (3), while Eq. (4) yields the stable branches. For the pure nematic phase (that has $R_1 = 0$), one sets $\alpha = \pi/2$, so that the only auxiliary parameter is R; one finds $R_2 = C_2(R)$ from Eq. (8), and the temperature from $\beta = R/(2R_2(1 - \Delta))$.

In contrast to Eq. (3), the order parameters within a microcanonical ensemble, derived in [27], satisfy

$$R_m = \frac{\int d\theta \cos m\theta \, \exp \left[\frac{\Delta R_1 \cos \theta + (1 - \Delta) R_2 \cos 2\theta}{q(\varepsilon)}\right]}{\int d\theta \exp \left[\frac{\Delta R_1 \cos \theta + (1 - \Delta) R_2 \cos 2\theta}{q(\varepsilon)}\right]}. \tag{10}$$

Here, ε is the energy per particle, and $q(\varepsilon) \equiv 2\varepsilon - 1 + \Delta R_1^2 + (1 - \Delta) R_2^2$. For given values of ε and Δ, the equilibrium values of R_1 and R_2 are obtained as a particular solution of Eq. (10) that maximizes the entropy [27]:

$$s(\varepsilon) = \frac{1}{2} \ln 2\pi - 1 + \frac{1}{2} \ln q(\varepsilon) - \frac{1}{2} \left(\frac{\Delta R_1^2 + (1 - \Delta) R_2^2}{q(\varepsilon)}\right) + \ln \left(\int d\theta \, \exp \left[\frac{\Delta R_1 \cos \theta + (1 - \Delta) R_2 \cos 2\theta}{q(\varepsilon)}\right]\right). \tag{11}$$

The averages (10) are the same as (3) on making the identification of the microcanonical energy ε in the canonical ensemble, so that the inverse temperature β in (3) is

$$\beta^{-1} = q(\varepsilon) = 2\varepsilon - 1 + \Delta R_1^2 + (1 - \Delta) R_2^2. \tag{12}$$

This constitutes a link between the phase diagrams in the two ensembles. Using then the single-particle model (5), we get the following parametric representation in the $\Delta - \varepsilon$ plane for the microcanonical ensemble: After finding $R_1 = C_1(R, \alpha)$ and $R_2 = C_2(R, \alpha)$, we get $R \cos \alpha = \Delta R_1 / q(\varepsilon)$, $R \sin \alpha = 2(1 - \Delta) R_2 / q(\varepsilon)$, or, explicitly,

$$\begin{align*}
\Delta &= \frac{2R_2 \cos \alpha}{R \sin \alpha + \Delta R_1}, \\
\varepsilon &= \frac{1}{2} \left(\frac{1}{R \sin \alpha + \Delta R_1} - \Delta R_1^2 + (1 - \Delta) R_2^2 + 1\right). \tag{13}
\end{align*}$$

Once $R_{1,2}, \varepsilon, \Delta$ have been determined, one can use Eq. (11) to find the entropy of the solution. For the pure nematic phase, $\alpha = \pi/2$, and $R_2^2 = 1 + (1 - 2\varepsilon)/(1 - \Delta)$.

\[\]
Summarizing, expressions (39) and (10) provide self-consistent stationary state solutions for the order parameters in the canonical and the microcanonical ensemble, respectively. Stable branches of these solutions correspond respectively to the minimum of the free energy \(f \) and to the maximum of the entropy \(S \).

We now present results of the phase diagrams for the two ensembles in Fig. 1. Both diagrams are qualitatively similar, with three phases: paramagnetic, ferromagnetic, and nematic. For large values of the parameter \(\Delta \), on decreasing the energy/temperature, one observes a second-order transition from the paramagnetic to the ferromagnetic phase; only at lower values of \(\Delta \) this phase transition becomes of first order. For low values of \(\Delta \), decreasing the energy/temperature results in a second-order transition from the paramagnetic to the purely nematic phase for which \(R_1 \) is zero; a further decrease results in either a second-order transition (for very small values of \(\Delta \)), or, a first-order transition (for \(\Delta \approx 1/2 \)), to the ferromagnetic phase that has non-zero \(R_1 \).

While the phase diagrams in Fig. 1 look simple, their mappings onto each other (Fig. 2), reveal nontrivial inequivalence between the canonical and microcanonical descriptions. This inequivalence is because while the self-consistent solutions (39) and (10) are the same for both the ensembles and transform onto one another by using Eq. (12), they are nevertheless stable in different parameter regimes. Thus, using the mapping, Eq. (12), two situations can arise: either a gap, i.e., a region of inaccessible states, or an overlap, i.e., a region of multiple stable solutions. Note that the second-order transition to the nematic phase is the same in both the descriptions.

FIG. 1. (Color online) Comparison of the canonical and the microcanonical phase diagram. Here, pf1 means first-order para-ferro transition, etc. (a) Phase diagram in the \(\Delta - \varepsilon \) plane in the microcanonical ensemble, Eqs. (10) and (11). The two tricritical points are at \(\Delta \approx 0.545, \varepsilon \approx 0.636 \), and at \(\Delta \approx 0.477, \varepsilon \approx 0.628 \), while there is a critical end point at \(\Delta \approx 0.487, \varepsilon \approx 0.628 \). The inset shows a zoom into the central part. (b) Phase diagram in the \(\Delta - T \) plane in the canonical ensemble, Eqs. (3) and (4). There are two tricritical points at \(\Delta \approx 0.667, T \approx 0.333 \), and at \(\Delta \approx 0.34, T \approx 0.267 \). The critical end point is at \(\Delta \approx 0.441, T \approx 0.279 \).

FIG. 2. (Color online) Inequivalence of phase diagrams in the two ensembles. (a) Canonical phase diagram Fig. 1(b) mapped onto the \(\Delta - \varepsilon \) plane (the microcanonical diagram is in background in gray). Between the bold black and the thin red lines, there is no canonical equilibrium state possible. (b) Microcanonical phase diagram Fig 1(a) mapped onto the \(\Delta - T \) plane (the canonical diagram is in the background in gray). \(T^{(2)}_{\min} \) (red) is the minimal temperature at which the paramagnetic phase exists. \(T^{(1)}_{\max} \) (green) is the maximum temperature at which the ferromagnetic phase exists. \(T^{(2)}_{\max} \) (cyan) (respectively, \(T^{(2)}_{\min} \) (brown)) is the maximum (respectively, minimum) temperature at which the nematic phase exists. The blue line for \(T^{(1ord)}_{\min} \) shows the splitting of the first-order microcanonical transition in the region \(0.477 < \Delta < 0.545 \) (another line that belongs to this splitting is masked by \(T^{(1)}_{\min} \) and \(T^{(2)}_{\min} \)). The inset shows a zoom into this middle region, where black dashed and blue dotted lines correspond to the two values of the temperature at the microcanonical jump.
As Fig. 2(a) shows, mapping of the canonical phase diagram onto the $\Delta - \epsilon$ plane yields a gap. In the domain of Δ where a first-order canonical transition occurs, the canonical transition line splits into two lines when mapped onto the $\Delta - \epsilon$ plane. Between these lines, there is no stable canonical state for a given ϵ (cf. Fig. 3).

A more nontrivial situation arises due to the mapping of the microcanonical phase diagram onto the $\Delta - T$ plane, as shown in Fig. 2(b). Here, two features are evident. First, in regions where the microcanonical transition is of second order but the canonical transition is of first order, there are three microcanonically stable values of $R_{1,2}$ at temperatures between the lines $T_{\max}^{(1)}$ (green line) and $T_{\min}^{(1)}$ (red line), and those between the lines $T_{\max}^{(1)}$ and $T_{\max}^{(2)}$ (brown line). Second, in regions of a first-order microcanonical transition, the transition line splits into two lines, denoted $T_{\max}^{(\text{ord})}$ (blue line) and $T_{\min}^{(\text{ord})}$ (black dashed line), with the latter coinciding with either $T_{\min}^{(1)}$ or $T_{\max}^{(2)}$, such that for temperatures in between, there are two microcanonically stable values of $R_{1,2}$, see the inset of Fig. 2(b) and cuts of the $\Delta - T$ phase diagram at fixed values of Δ in Fig. 3. Thus, in the whole domain of Δ where the canonical transition is of first-order, one observes a multiplicity of microcanonically stable states in the $\Delta - T$ plane. Remarkably, the tricritical points are different in the two ensembles.

In Fig. 4, we employ relation (12) to draw the temperature-energy relation $T(\epsilon)$ for $\Delta = 0.5$. Both for the microcanonical and the canonical ensemble, this curve has two branches: a high-energy branch, and a low-energy branch. At the point where the two branches intersect, the two entropies in the microcanonical ensemble and the two free energies in the canonical ensemble become equal. In the region where the canonical curve shows a jump in the energy at a given temperature, characteristic of a first-order transition that here occurs between the paramagnetic and the ferromagnetic phase (see Fig. 1(b)), the microcanonical curve shows a region of negative specific heat ($\partial T/\partial \epsilon < 0$). Since the canonical specific heat is always positive, being given by the fluctuations in the energy of the system, the negative microcanonical specific heat is a further indication of ensemble inequivalence for the model under study.

To conclude, we addressed the issue of ensemble inequivalence in long-range interacting systems, by studying an XY model of classical spins with linear and quadratic coupling, and evolving under Hamilton dynamics. In this so-called Generalized Hamiltonian mean-field model, we compared exact equilibrium phase diagrams in the microcanonical and canonical ensembles. We showed that within the region of first-order transitions, the two ensembles show very different behaviors. Nevertheless, let us remark that when plotted using appropriate variables, the arrangement of critical points and transition lines is similar in the phase diagrams of the two ensembles. One may study how the relaxation to equilibrium differs in the two ensembles, a behavior investigated earlier in the microcanonical ensemble in Ref. [27]. It was shown that the microcanonical phase diagram does not agree with molecular dynamics simulations because of broken ergodicity that in the thermodynamic limit leads to dynamically stable quasi-stationary states; this underlines the crucial role of dynamics in dictating the long-time behavior of systems with long-range interactions. It will be of interest to explore such dynamical behavior in the canonical ensemble.

Finally, we mention that an overdamped analog of the GHMF is a Kuramoto-type model of synchronization of globally coupled oscillators (just as an overdamped analog of the HMF model is the standard Kuramoto model [32, 33]), where transitions to synchronization are of major interest. In the context of synchronization, nematic and ferromagnetic phases correspond respectively to two-cluster and one-cluster synchronization patterns (see [34]), but their stability is obtained from dynamical and not from free energy/entropy considerations.
AP is supported by the grant from the agreement of August 27, 2013, number 02.49.21.0003 between the Ministry of Education and Science of the Russian Federation and the Lobachevsky State University of Nizhni Novgorod. SG is supported by the CEFIPRA Project 4604-3. The authors thank the Galileo Galilei Institute for Theoretical Physics, Florence, Italy for the hospitality and the INFN for partial support during the completion of this work. SG and AP acknowledge useful discussions with M. Komarov. This work was partially supported by the CNPq, FAPERGS, INCT-FCx, and by the US- AFOSR under the grant FA9550-12-1-0438.

[1] A. Campa, T. Dauxois and S. Ruffo, Phys. Rep. 480, 57 (2009).
[2] F. Bouchet, S. Gupta and D. Mukamel, Physica A 389, 4389 (2010).
[3] Y. Levin, R. Pakter, F. B. Rizzato, T. N. Teles and F. P. C. Benetti, Phys. Rep. 535, 1 (2014).
[4] A. Campa, T. Dauxois, D. Fanelli and S. Ruffo, Physics of Long-Range Interacting Systems (Oxford University Press, Oxford, 2014).
[5] J. Sopik, C. Sire and P. H. Chavanis, Phys. Rev. E 72, 026105 (2005).
[6] D. R. Nicholson, Introduction to Plasma Physics (Krieger Publishing Company, Florida, 1992).
[7] L. D. Landau and E. M. Lifshitz Electrodynamics of Continuous Media (Pergamon, London, 1960).
[8] P. H. Chavanis Dynamics and Thermodynamics of Systems with Long-range Interactions (Lecture Notes in Physics vol. 602) edited by T. Dauxois, S. Ruffo, E. Arimondo and M. Wilkens (Springer-Verlag, Berlin, 2002).
[9] T. Padmanabhan, Phys. Rep. 188, 285 (1990).
[10] D. Lynden-Bell and R. Wood, Mon. Not. R. Astron. Soc. 138, 495 (1968).
[11] W. Thirring, Z. Phys. 235, 339 (1970).
[12] M. K. H. Kiessling and J. L. Lebowitz, Lett. Math. Phys. 42, 43 (1997).
[13] J. Barré, D. Mukamel and S. Ruffo, Phys. Rev. Lett. 87, 030601 (2001).
[14] I. Ispolatov and E. G. D. Cohen, Physica A 295, 475 (2001).
[15] J. Barré and B. Gonçalves, Physica A 386, 212 (2007).
[16] D. Mukamel, S. Ruffo and N. Schreiber, Phys. Rev. Lett. 95, 240604 (2005).
[17] A. Venaille and F. Bouchet, Phys. Rev. Lett. 102, 104501 (2009).
[18] A. Venaille and F. Bouchet, J. Stat. Phys. 143, 346 (2011).
[19] T. N. Teles, D. Fanelli and Stefano Ruffo, Phys. Rev. E 89, 050101(R) (2014).
[20] F. Bouchet and J. Barré, J. Stat. Phys. 118, 1073 (2005).
[21] F. Bouchet, T. Dauxois, D. Mukamel and S. Ruffo, Phys. Rev. E 77, 011125 (2008).
[22] M. Antoni and S. Ruffo, Phys. Rev. E 52, 2361 (1995).
[23] Y. Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois and S. Ruffo, Physica A 337, 36 (2004).
[24] A. Campa, A. Giansanti and G. Morelli, Phys. Rev. E 76, 041117 (2007).
[25] M. Joyce and T. Worrakitpoonpon, J. Stat. Mech.: Theory Exp. P10012 (2010).
[26] D. H. Lee and G. Grinstein, Phys. Rev. Lett. 55, 541 (1985).
[27] T. N. Teles, F. P. C Benetti, R. Pakter R and Y. Levin, Phys. Rev. Lett. 109, 230601 (2012).
[28] M. Kac, G. E. Uhlenbeck and P. C. Hemmer, J. Math. Phys. 4, 216 (1963).
[29] K. Qi, M. H. Qin, X. T. Jia and J.-M. Liu, J. Magn. Magn. Mater., 343, 127 (2013).
[30] D. B. Carpenter and J. T. Chalker, J. Phys.: Condens. Matter, 1, 4907 (1989).
[31] J.-H. Park, S. Onoda, N. Nagaosa and J. H. Han, Phys. Rev. Lett., 101, 167202 (2008).
[32] S. Gupta, A. Campa and S. Ruffo, Phys. Rev. E 89, 022123 (2014).
[33] S. Gupta, A. Campa and S. Ruffo, J. Stat. Mech.: Theory Exp. R08001 (2014).
[34] M. Komarov and A. Pikovsky, Phys. Rev. Lett. 111, 204101 (2013); Physica D (in press); V. Vlasov, M. Komarov and A. Pikovsky (to be published).