Complete Sequencing of pNDM-HK Encoding NDM-1 Carbapenemase from a Multidrug-Resistant Escherichia coli Strain Isolated in Hong Kong

Pak Leung Ho1,2, Wai U Lo1, Man Kiu Yeung1, Chi Ho Lin2, Kin Hung Chow1, Irene Ang1, Amy Hin Yan Tong3, Jessie Yun-Juan Bao3, Si Lok3, Janice Yee Chi Lo4

1 Department of Microbiology, The University of Hong Kong, Hong Kong, Special Administrative Region, People’s Republic of China, 2 Carol Yu Center for Infection, The University of Hong Kong, Hong Kong, Special Administrative Region, People’s Republic of China, 3 Genome Research Centre, The University of Hong Kong, Hong Kong, Special Administrative Region, People’s Republic of China, 4 Public Health Laboratory Services Branch and Department of Health, Centre for Health Protection, Hong Kong, Special Administrative Region, People’s Republic of China

Abstract

Background: The emergence of plasmid-mediated carbapenemases, such as NDM-1 in Enterobacteriaceae is a major public health issue. Since they mediate resistance to virtually all β-lactam antibiotics and there is often co-resistance to other antibiotic classes, the therapeutic options for infections caused by these organisms are very limited.

Methodology: We characterized the first NDM-1 producing E. coli isolate recovered in Hong Kong. The plasmid encoding the metallo-β-lactamase gene was sequenced.

Principal Findings: The plasmid, pNDM-HK readily transferred to E. coli J53 at high frequencies. It belongs to the broad host range IncL/M incompatibility group and is 88803 bp in size. Sequence alignment showed that pNDM-HK has a 55 kb backbone which shared 97% homology with pEL60 originating from the plant pathogen, Erwinia amylovora in Lebanon and a 28.9 kb variable region. The plasmid backbone includes the mucAB genes mediating ultraviolet light resistance. The 28.9 kb region has a composite transposon-like structure which includes intact or truncated genes associated with resistance to β-lactams (blaTEM, blaNDM-1, ΔblaOXA-1), aminoglycosides (aacC2, armA), sulphonamides (su1) and macrolides (mel, mph2). It also harbors the following mobile elements: IS26, ISCR1, tnpU, tnpAcP2, tnpD, ΔtnpATn1 and insL. Certain blocks within the 28.9 kb variable region had homology with the corresponding sequences in the widely disseminated plasmids, pCTX-M-3, pMUR050 and pKP048 originating from bacteria in Poland in 1996, in Spain in 2002 and in China in 2006, respectively.

Significance: The genetic support of NDM-1 gene suggests that it has evolved through complex pathways. The association with broad host range plasmid and multiple mobile genetic elements explain its observed horizontal mobility in multiple bacterial taxa.

Introduction

The development of carbapenem resistance among Enterobacteriaceae is a major public health threat because carbapenems are currently the cornerstone therapy for patients with severe and life-threatening infections caused by strains producing extended-spectrum β-lactamases (ESBLs). In the last decade, the ESBL-producing organisms, especially those carrying the CTX-M group of β-lactamases rapidly increased and became endemic in many countries. In Asian countries, high rates of CTX-M positivity have been found among both hospital and community isolates [1]. In Hong Kong, over 80% of the ESBL-producing Enterobacteriaceae clinical and faecal isolates were found to be CTX-M positive [2–4]. CTX-M-14 was the major type although a range of other alleles (CTX-M-1, 3, 13, 15, 24, 27, 38, 55, 57 and 64) have also been reported [2–4]. Sporadic isolates of Enterobacteriaceae have been found to have plasmid-mediate carbapenemases but they remained rare [5]. Consequently, many public health authorities have expressed serious concerns when an international group of researchers reported the findings for patients with infections by carbapenem-resistant Enterobacteriaceae (CRE) carrying the novel resistant gene, NDM-1 (for New Delhi metallo-β-lactamase) with a putative link to the Indian subcontinent, where the burden of CTX-M producing bacteria is substantial [6]. The authors identified 44 isolates with NDM-1 in Chennai, 26 in Haryana, 37 in the UK, and 73 in other sites in India and Pakistan. The 37
isolates from UK were from 29 patients of which 17 (59%) had travelled to India or Pakistan within the past year [6]. In another study of 39 CRE isolates recovered during 2006–2007 in India, 15 strains were found to carry NDM-1 and 10 additional harbored OXA-181 [7]. NDM-1 was first reported in Sweden in a *Klebsiella pneumoniae* strain (05-906) derived from the urine culture of a patient of Indian origin in January 2008 [8]. The same gene was carried by a *E. coli* strain in the gut of the same patient. However, subsequent work showed that NDM-1 probably emerged earlier before its first recognition in Sweden in 2008 [9]. Other countries and areas which have detected NDM-1 included the United States, Canada, Australia, Germany, Japan and Hong Kong [10]. The horizontal mobility of the NDM-1 gene involving different plasmids play a major role in the dissemination of this resistance determinant but clonal spread and involvement of the globally disseminated ST258 *Klebsiella pneumoniae* lineage has also been reported [9,11].

NDM-1 was originally found on a plasmid with size of ca. 180 kb but the incompatibility group (Inc) could not be defined [8]. In the UK and Indian Subcontinent, NDM-1 was found on plasmids of various sizes (ca. 50 to 300 kb) which belonged to at least three different Inc groups including A/C, FI/FTI and an undefined type [6]. In Hong Kong, a NDM-1 positive *E. coli* strain was isolated in October 2009. It was identified by retrospective testing of an *E. coli* isolate (HK-01) with reduced susceptibility to imipenem [5]. Here, we reported the complete sequencing of the plasmid carrying the NDM-1 gene in the isolate.

Results

Conjugation

Conjugation experiments were conducted using different antibiotics in combination with sodium azide for selection of transconjugants. In general, frequencies of transfer for filter and solid mating were similar. The transfer frequencies obtained by using meropenem were variable, ranging from \(10^{-3}\) to \(10^{-1}\) per donor cell. Conjugation was more likely to be successful at lower concentrations (1 and 2 \(\mu\)g/ml) than when higher concentrations (10 \(\mu\)g/ml) was used for transconjugant selection. However, high transfer frequencies were consistently obtained when other antibiotics, ampicillin, gentamicin and amikacin were used. In all the transconjugants, a single plasmid was obtained when other antibiotics, ampicillin, gentamicin, netilmicin, tobramycin and amikacin but susceptible profile was shared by all the transconjugants, being resistant to the following mobile elements: IS \(\mu\), TEM, L/M incompatibility group (IncL/M). PCR further revealed that it encoded several antibiotic resistance genes (TEM, armA and armD) and the mucAB operon (UV resistance). In addition, hybridization experiments were performed by using the DIG-labeled PCR products as a probe. A single positive band was demonstrated in all the transconjugants.

Lethal effect of UV irradiation

The mean (± standard deviation) \(\log_{10}\) reduction at inoculums of 1.7 \(\times\) 10\(^3\) cells and 1.7 \(\times\) 10\(^4\) cells were, respectively, as follows: J53 recipient (3.0±0.2 and 2.1±0.5), pHK01-TC transconjugant (2.9±0.1 and 1.8±0.3) and NDM-TC transconjugant (1.2±0.4 and 1.0±0.3). The results showed that UV irradiation had a greater lethal effect on J53 or pHK01-TC than the NDM-TC at both inoculums \(P=0.002\) and 0.02 for J53 versus NDM-TC; \(P=0.3\) and 0.5 for J53 versus pHK01-TC; and \(P=0.001\) and 0.03 for pHK01-TC vs. NDM-TC. The finding indicated that the transfer plasmid was capable of conferring a UV resistance phenotype.

Analysis of pNDM-HK

The NDM-1 plasmid from the NDM-TC transconjugant was sequenced. It was a 88,003 bp plasmid with an average GC content of 51.5% and 102 open reading frames (ORFs) (Figure 1 and Table S1). Sequence alignment showed that it consisted of a plasmid backbone (approximately 55 kb) which shared extensive identity (97%) with the IncL/M plasmid, pEL60 (60145 bp, described for the plant pathogen, *Erwinia amylovora*, accession no. AY422214) and three DNA insertions (with sizes of 28.9 kb, 3522 bp and 1238 bp). The backbone part included the complete array of genes for replication, plasmid transfer, partition and stabilization, and the order of the genes and the overall organization were almost identical to those in pEL60 [12]. The backbone included the toxin-antitoxin addiction system (pemI/pemK) and the ultraviolet resistance genes (mucAB). The backbone has been found in pCTX-M-3 (AF550415, size 89,468 bp) and pCTX-M360 (EU938349, size 680,18 bp). The largest insertion (variable region, approximately 28.9 kb) was found between the repA and trbC. The 28.9 kb insertion included intact or truncated genes associated with resistance to \(\beta\)-lactams \(\text{bla}_{\text{TEM}}, \text{bla}_{\text{NDM}-1}, \text{bla}_{\text{NDM}-1}, \text{bla}_{\text{NDM}-1}\), aminoglycosides \(\text{aac}(\text{C}2), \text{armA}\), sulphonamides \(\text{sul}(\text{I})\) and macrolides \(\text{mel}, \text{mph}2\). It also harbored the following mobile elements: IS26, ISCR1,

\[\text{orf} 1, \text{orf} 2, \text{orf} 3, \text{orf} 4\]

and \(\text{insL}\). The other two smaller insertions (positions 41437 to 44958 and 46512 to 47749) were found downstream of ORF9 and ORF17, respectively.

The NDM-1 gene was found within the 28.9 kb variable region. Comparing to pkpANDM-1, an additional 24 bp was found in the region between \(\text{bla}_{\text{NDM}-1}\) and \(\text{trbF}\). Blast analysis of the 28.9 kb region showed extensive homology to arrays reported in three previously sequenced plasmids [13–15], including pCTX-M-3 (isolated in a Polish hospital from *Citrobacter freundii* in 1996), pMUR050 (isolated from an *E. coli* isolate originating from a pig in Spain in 2002) and pKP048 (isolated in a Chinese hospital from *K. pneumoniae* in 2006).

As shown in Figure 2, the variable region in pNDM-HK (28.9 kb) and pCTX-M3 (27 kb) were both inserted between the repA and trbC operon. This region is mosaic with areas of high and low GC contents, suggesting that it arose from multiple genetic events. The array of ORFs in pNDM-HK and pCTX-M3 were identical except for: (1) the region between IS26 and \(\Delta\text{pem} \text{F}^{-}\text{bla}_{\text{NDM}-1}\) (97% identity) in pNDM-HK and the other three \(\Delta\text{pem} \text{F}^{-}\text{bla}_{\text{NDM}-1}\) were identical except for: (1) the region between IS26 and \(\Delta\text{pem} \text{F}^{-}\text{bla}_{\text{NDM}-1}\) (97% identity) in pNDM-HK and the other three
IS26 and Δqac was completely different in the four plasmids. In both pNDM-HK and pCTX-M-3, the aacC2-IS26 junction was 169 bp in length and the sequences were 100% identical. In contrast, the junctions at IS26-blaNDM-1 (256 bp) and IS26-intl1 (219 bp) had different length and showed little sequence homology (42% identity). Similarly, the junctions at ampR-Δqac (309 bp in length and included a putative hypA gene) and adaA2-Δqac (163 bp) were of different lengths and the sequences had little homology. The truncated lengths of Δqac were 288 bp and 348 bp in pNDM-HK and pCTX-M-3, respectively. In the regions franking the two copies of the IS26 elements, no 8 bp target site duplication could be found.

Discussion

We reported here the complete sequencing of the pNDM-HK plasmid. The findings highlighted the potential for this resistance determinant to spread extensively. Firstly, the NDM-1 gene was carried on a broad host range IncL/M plasmid. Thus, the plasmid might spread among members of the Enterobacteriaceae and Gram negative non-fermenters. This could partly explained its detection in many members of the Enterobacteriaceae family (E. coli, K. pneumoniae, E. aerogenes, E. cloacae, C. freundii, Morganella morgani and Providencia spp.) and A. baumannii [6,16,17]. The incorporation of the NDM-1 gene into the plasmid, pEL60 backbone means that...
bacterial pathogens in plants might serve as reservoirs in its dissemination. Foster et al showed that pEL60 was present in 46.9% of the E. amylovora strains originating from apple, pear and quince in Lebanon [12]. Plasmids (pCTX-M-3 and pCTX-M36) which were derivatives of pEL60 have been associated with the widespread dissemination of CTX-M-3 in Poland and China [15,18]. Secondly, the NDM-1 gene was surrounded by mobile genetic elements (IS26, ISCR1 and transposases) which are increasingly recognized to be vehicles for dissemination of antibiotic resistance genes [19,20]. The CTX-M type β-lactamate, 16 s rRNA methylases (armA) and quinolone resistance proteins (qnr) are some notable examples [13,19,21]. Thirdly, the UV resistance phenotype which was presumably mediated by the mnuAB genes in the same plasmid might give bacteria carrying the plasmids a survival advantage in the environment [12]. This could potentially undermine effectiveness of new UVC technology for disinfection of hospital equipment and environment [22]. Lastly, as the elevated MICs to carbapenems might still be in the susceptible range, detection of fecal carriage and patient screening would be difficult [23].

Comparison of the regions surrounding NDM-1 gene shows that the mobilization of the NDM-1 gene in the different plasmids involved different genetic events in the past. In pNDM-HK, the linkage with IS26 adds to the expanding list of β-lactamases that have been associated with this genetic element. The IS26 element, a member of the IS6 family, is widespread among Enterobacteriaceae plasmids [24–26]. It has been reported in the neighbor region of the CTX-M, OXA and SHV class of β-lactamases that were part of a transposon-like structure in many plasmids [26–29]. As in pNDM-HK, a second copy of IS26 orientated in the same direction is often found near the mph2 gene at a distance. In pNDM-HK, the arrays of genes between the two copies of IS26 could be considered a putative composite transposon. As indicated by the absence of IS26 target site duplication, it might insert by

Figure 2. Schematic representation of the DNA sequences surrounding the blaNDM-1 genes in E. coli 271 NDM-1 encoding plasmid, pNDM-HK, pkpANDM-1 and comparison with the sequences in pCTX-M-3 and pKP048. (A) Comparison of the regions surrounding blaNDM-1 in the E. coli 271 plasmid encoding this gene, pNDM-HK, and pkpANDM-1. The 2.1 kb DNA sequence between the left inverted repeat (IRL) and the end of phosphoribosyl anthranilate isomerase (trpF) in pkpANDM-1 and pNDM-HK were identical except for a 24 bp deletion. The sequence to the left of trpF up to the −35 promoter in pNDM-1HK is 100% identical to the corresponding region in the NDM-1 encoding plasmid in E. coli 271. The putative −35 and −10 promoter regions were indicated above and underlined. In both plasmids, this region is flanked by IS26 and a truncated β-lactamate (blaDHA1) gene. (B) Comparison of pNDM-HK, pCTX-M-3 and pKP048. The regions flanked by IS26 (green color) and the surrounding sequences are represented. The gaps in the alignment are shown in dotted lines. Arrows showed the direction of transcription. The same color and label are used to represent homologous genes. The lengths of the arrows are drawn to proportion to the length of the genes or open reading frames (ORFs). The homologous genes found in all three plasmids are indicated in light blue; those genes found in pNDM-HK and pCTX-M3 are in yellow; and those found in pNDM-HK and pKP048 are in blue. The genes unique to the three plasmids are labeled in red, black, brown or purple. Other abbreviations and symbols were: Δ, genes that are truncated; Tn, transposon; Idh, lactate dehydrogenase; blakbNDM-1: New Delhi metallo-β-lactamate gene; blatemp-1, class A beta-lactamase gene; blakbPA, class B beta-lactamase gene; ampr, LysR family blakbDHA1 regulator; aacc2, aminoglycoside acetyltransferase gene; armA, 16S rRNA methylase gene; mel, macrolide efflux protein; mph2, macrolide 2'-phosphotransferase gene; intI1, class 1 integrase; dhfr, dihydrofolate reductase gene; adaA2, aminoglycoside adenyltransferase gene; sapB, peptide transport periplasmic protein, cinA, competence damage-inducible protein A; sdr, short-chain dehydrogenase/reductase gene; qnrB4, quinolone resistance protein; psp operon, transcriptional activator and phage shock proteins; purR, Lac family transcription regulator; and linF, lincosamide nucleotidyltransferase gene. The following were putative transposases: ISCR1, tspu, tspAc, tspD, Δ tspATn1 and insL. The accession numbers were: plasmid encoding NDM-1 in E. coli 271 (HQ162469), pNDM-HK (GenBank accession HQ451074), pkpANDM-1 (FN396877), pCTX-M-3 (AF550415), pkp048 (FJ628167) and pMUR050 (AY522431).
homologous recombination rather than a transposition event. The IS26-composite transposon containing bla\textsubscript{OXA-48},\quad\text{aac}^{6\prime}-1b-cr\quad \text{and}\quad\text{carB}4\quad\text{was believed to insert itself into plasmids pEC-LA3 and pEC-LA6 by homologous recombination [25]. Since other mobile genetic elements (\Delta opal,\text{F1AI} and \text{insL}) were found, the possibility of other recombination events cannot be excluded. Among \textit{E. coli} isolates in Germany, integration of the \text{bla}\textsubscript{CTX-M}/IS26 transposon-like structure at the same sites in plasmids of different replicon types has been reported [30]. In addition, chromosomal integration of CTX-M-3 with two distantly located IS26 elements has been demonstrated [31]. However, hybridization experiments showed that there was no chromosomal integration of the NDM-1 gene in the parent and transconjugant strains.

In conclusion, we reported the complete sequence of pNDM-HK encoding NDM-1 originating from an \textit{E. coli} isolate in a patient treated in Hong Kong. The findings highlight the potential for carbapenemases as well as other antibiotics to serve as driving force for the horizontal spread of the NDM-1 encoding plasmid or the IS26 composite transposon to other bacteria. Of concern, NDM-1 is just one of the many emerging carbapenemase genes which are commonly found in multiple combinations with other \beta-lactamases and resistance genes in mobile genetic elements. Together, a single plasmid or composite transposon could mediate resistance to all the \beta-lactams and other antibiotics that are critically important for treatment of human bacterial infections. The challenge posed by NDM-1 is clearly formidable.

In Hong Kong, a territory-wide network has been set up for the coordinated surveillance of the NDM-1 and other carbapenemase genes. Since the international spread of NDM-1 has been strongly associated with medical tourism [6], many hospitals in Hong Kong have introduced a policy for active surveillance of colonization by carbapenem-resistant \textit{Enterobacteriaceae} (CRE) on admission for patients with any history of surgery or inpatient treatment in an overseas hospital. All patients who were found to have CRE colonization would be placed under contact isolation in single rooms. Hopefully, this strategy will prevent or at least slow down the importation of NDM-1 and other transmissible carbapenemase genes into our healthcare system.

Materials and Methods

Microbiology methods

Bacteria were identified by conventional biochemical test and the VITEK GNI system (bioMerieux Vitek Inc., Hazelwood, MO, USA). Susceptibility of the isolates to antibiotics was determined by the disc diffusion method and Etest (AB Biodisk, Solna, Sweden). The results were interpreted according to the 2010 Clinical and Laboratory Standards Institute recommendation [4,32]. Quality control was undertaken in accordance with the CLSI guidelines using standard strains (ATCC 25922 and 35218).

Conjugation, PCR and hybridization

Conjugation experiments were carried out by the filtered and solid surface methods with \textit{E. coli} J53A2 as the recipient [2,33]. In brief, overnight cultures of the bacteria were diluted in Luria Bertani (LB) and grew to late-exponential phase. Cell density was adjusted to 1.5×108 cells/ml. Donor and recipient cells were mixed at 1:2 donor-to-recipient ratio [3]. Transconjugants were selected on LB agar plates containing sodium azide (100 \text{ug/ml}) and another antibiotic (ampicillin 8 \text{ug/ml}, amikacin 16 \text{ug/ml}, gentamicin 4 \text{ug/ml or meropenem 0.12, 0.25, 0.5, 1 and 2 \text{ug/ml}}). The transfer frequencies were expressed as the number of transconjugants per donor cell. Plasmids were sized by the S1 nuclease-PFGE method [2]. The experimental procedure was quality control by using a fully sequenced conjugative plasmid, pHK01 as a control. In each set of experiments, absence of growth of the parent and the recipient strains in the selection plates was confirmed. Previously described primers were used for detection of \text{aac}^{22} and \text{bla}\textsubscript{TEM} and \text{bla}\textsubscript{NDM-1} genes [2,8,34].

The replicon types for \textit{E. coli} transconjugants with NDM-1 encoding plasmids were determined by a previously described scheme [35]. The method allowed recognition of the following plasmid incompatibility groups (Inc): FIA, FIB, FIC, FIA, HII, HII, I1-I7, L/M, N, P, W, T, A/C, K, B/O, X, Y, F. Identification of the plasmid replicons was confirmed by sequencing of the PCR products. In addition, the NDM-1 PCR products were labeled by using the DIG High Prime kit (Roche Diagnostics GmbH, Penzberg, Germany) according to the manufacturer’s recommendation and used as a probe for hybridization experiments to confirm the plasmid location of the NDM-1 gene.

Ultraviolet light resistance

The lethal effects of ultraviolet (UV) light on the transconjugant (NDM-TC) was compared to the J53 recipient strain (control) at two inoculums (102 and 103 cells). In addition, a J53 transconjugant carrying the CTX-M-14 plasmid, pHK01 (about 70 kb, complete sequence in GenBank accession HM555951, J53/ pHK01-TC was included for comparison. In brief, the bacteria were grown overnight on blood agar plate. The cells were suspended to a density of 0.5 McFarland standard and dilutions were made afterwards. Twenty microliters of the cell suspension containing the intended cell numbers was spread onto pairs of MH agar plates. One set of plates were irradiated in a UV crosslinker (CL-1000, Ultra-Violet Products Limited, Cambridge, UK) at a wavelength of 254 nm at energy level of 3300 \text{μW/cm}2. The other set of plates was not irradiated. All the plates were then incubated at 35°C for 24 hours. The number of colonies in the plates was counted and the lethal effect of UV calculated as log\textsubscript{10} reduction. The two isolates were tested in three independent experiments and the average results were used in the calculation

Plasmid sequencing

The Illumina Genome Analyzer IIx was used for plasmid sequencing. Plasmid pNDM-HK was extracted from the NDM-TC transconjugant by using a Qiagen Large Construct kit (Qiagen, Hong Kong). Purified plasmid DNA was fragmented by nebulization. The fragments were amplified and a library constructed as described previously [36]. Based on the qPCR-quantified concentration of the barcoded plasmid library, it was diluted to generate ~500,000 clusters and seeded with other samples in the same Solexa sample lane. Sequencing run of 76-base pair-end reads was performed according to the manufacturer’s recommendations [36].

Bioinformatics analysis

Raw data from the Solexa sequencer was analyzed with the Illumina Off-Line Bascaller Software v1.6. A phi-X 174 control lane was included in the Solexa run for matrix, phasing, and error rate estimations as recommended by the manufacturer. The error rate of the phi-X 174 control was about 0.38% for the sequencing run. Reads containing the barcode (GCTCG) and plasmid sequence were first separated from the other reads in the same lane. We then performed quality assessment on the raw reads and filtered out reads that were of low quality, adaptor sequences and homopolymer sequences. The first 6 bases that corresponded to the barcode and T-overhang were trimmed from the 76-bp reads and duplicated reads removed. The resulting high quality non-
Nucleotide sequence
The GenBank accession number for pNDM-HK plasmid is HQ451074.

Supporting Information
Table S1 ORFs in pNDM-HK and their annotations. (DOC)

Acknowledgments
We thank Dr. Thomas Tsang, Controller of the Centre for Health Protection and the technical staff in the Public Health Laboratory Services Branch for assistance in data collection and laboratory support.

Author Contributions
Conceived and designed the experiments: PLH WUL MKY SL. Performed the experiments: PLH WUL MKY SL. WUL MKY KHC IA AHYT. Analyzed the data: PLH WUL MKY SL. KHC JYJB. Contributed reagents/materials/analysis tools: JYCL. Wrote the manuscript: PLH WUL MKY SL JYCL.

References
1. Hawkey PM (2008) Prevalence and clonality of extended-spectrum beta-lactamases in Asia. Clin Microbiol Infect 14 Suppl 1: 159–165.
2. Ho PL, Shek RH, Chow KH, Duan RS, Mak GC, et al. (2005) Detection and characterization of extended-spectrum beta-lactamases among bloodstream isolates of Escherichia spp. in Hong Kong, 2000–2002. J Antimicrob Chemother 55: 326–332.
3. Ho PL, Poon WW, Loke SL, Leung MS, Chow KH, et al. (2007) Community emergence of CTX-M type extended-spectrum beta-lactamases among urinary Escherichia coli from women. J Antimicrob Chemother 60: 140–144.
4. Lo WU, Ho PL, Chow KH, Lai EL, Yeung F, et al. (2010) Fecal carriage of CTX-M type extended-spectrum beta-lactamase-producing organisms by children and their household contacts. J Infect 60: 286–292.
5. Chu YW, Tung VW, Cheung TK, Chu MY, Cheng N, et al. (2011) Carbapenemases in enterobacteria, Hong Kong, China, 2009. Emerg Infect Dis 17: 130–132.
6. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, et al. (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10: 597–602.
7. Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, et al. (2010) Early dissemination of NDM-1- and OXA-181-producer Enterobacteriaceae in Indian Hospitals: Report from the SENTRY Antimicrobial Surveillance Program (2006–2007). Antimicrob Agents Chemother.
8. Yung D, Toleman MA, Giske CG, Cho HS, Sundman K, et al. (2009) Characterization of a new metallo-beta-lactama gene, blalNDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53: 5046–5054.
9. Poirel L, Revathi G, Bernabeu S, Nordmann P (2010) Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother. 54: 3633–3638.
10. Poirel L, Revathi G, Bernabeu S, Nordmann P (2010) Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother. 54: 3633–3638.
11. Moellerling RC, Jr. (2010) NDM-1—a cause for worldwide concern. N Engl J Med 363: 2573–2579.
12. Samuels O, Thrasher CM, Heggelund L, Vada AN, Kummel A, et al. (2010) Identification of NDM-1-producing Enterobacteriaceae in Norway. J Antimicrob Chemother.
13. Foster GC, McGhee GC, Jones AL, Sundin GW (2004) Nucleotide sequences, assembly of the plasmid. [Image 58x24 to 76x41]
14. Jiang Y, Yu D, Wei Z, Shen P, Zhou Z, et al. (2010) Complete nucleotide sequence of Klebsiella pneumoniae multidrug resistance plasmid pKPM4, carrying blaKPC-2, blaDHA-1, orf94, and armA. Antimicrob Agents Chemother 54: 3967–3969.
15. Golebiowski M, Kern-Zdanowicz I, Zienkiewicz M, Adamczyk M, Zylinska J, et al. (2007) Complete nucleotide sequence of the pCTX-M3 plasmid and in involvement in spread of the extended-spectrum beta-lactama gene blaCTX-M-3 in Acinetobacter baumannii: Antimicrob Agents Chemother 51: 3789–3795.
16. Centers for Disease Control and Prevention (2010) Detection of Enterobacteriaceae isolates carrying metallo-beta-lactama - United States, 2010. MMWR Morb Mortal Wkly Rep 59: 730.
33. Bradley DE, Taylor DE, Cohen DR (1980) Specification of surface mating systems among conjugative drug resistance plasmids in *Escherichia coli* K-12. J Bacteriol 143: 1466–1470.

34. Ho PL, Wong RC, Lo SW, Chow KH, Wong SS, et al. (2010) Genetic identity of aminoglycoside-resistance genes in *Escherichia coli* isolates from human and animal sources. J Med Microbiol 59: 702–707.

35. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, et al. (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63: 219–228.

36. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53–59.

37. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7: 203–214.

38. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.