Humoral and Cell-mediated Autoimmunity in Allergy to Aspergillus fumigatus

By Reto Crameri,* Alexander Faith,* Stefanie Hemmann,* Rolf Jaussi,† Chaim Ismail,‡ Günter Menz,§ and Kurt Blaser*

From the *Swiss Institute of Allergy and Asthma Research (SIAF), CH-7270 Davos, Switzerland; †Institut für Radiobiologie, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland; and §Hochgebirgsklinik, CH-7275 Davos-Wolfegg, Switzerland

Summary

A cDNA encoding an allergenic protein was isolated from an Aspergillus fumigatus (A. fumigatus) cDNA library displayed on the surface of filamentous phage. Serum immunoglobulin E (IgE) from A. fumigatus–sensitized individuals was used to enrich phage-expressing gene products binding to IgE. One of the cDNAs encoded a 26.7-kD protein that was identified as a manganese superoxide dismutase (MnSOD) sharing 51.5% identity and 67.2% homology to the corresponding human enzyme. Both human and A. fumigatus MnSOD coding sequences were expressed in Escherichia coli as [His]_{6}-tagged fusion proteins and purified by Ni^{2+}-chelate affinity chromatography. The two recombinant MnSODs were both recognized by IgE antibodies from subjects allergic to the A. fumigatus MnSOD and elicited specific immediate type allergic skin reactions in these individuals. Moreover, both human and A. fumigatus MnSOD induced proliferation in peripheral blood mononuclear cells of A. fumigatus–allergic subjects who showed specific IgE responses and reacted in skin tests to MnSOD. These observations provide evidence for autoreactivity to the human MnSOD in allergic persons sensitized to an environmental allergen from A. fumigatus who share a high degree of sequence homology to the corresponding human enzyme.

Materials and Methods

Construction of a cDNA Library Displayed on Phage Surface and Biopanning. An A. fumigatus cDNA library was constructed in phagemide pJuFo (10) and displayed on the surface of filamentous phage M13 as described (11). The library was selectively enriched for phage displaying IgE–binding proteins by biopanning in microtiter plates coated with serum IgE from individuals allergic to A. fumigatus. Serum donors were selected according to case history, specific IgE to A. fumigatus determined by radioallergosor-
formed into bent test (R_AST), and skin reactivity to commercial using the following primers: 5'-primer 5'-GGAAGATCTCAATACACGCTCCCA-

Figure 1. Amino acid sequences of human (21) and yeast (25) MnSOD aligned with the A. fumigatus MnSOD sequence. Identical amino acid residues are marked by vertical lines. Gaps are indicated by dots. Sequence identity between A. fumigatus and yeast MnSOD is 50.75%, whereas sequence identity with the MnSOD from other species varied between 30 and 49%. Numbers above the sequence indicate the residue number, including gaps, starting at the NH2-terminal lysine of the mature human enzyme.

Figure 2. Autoradiography of IgE immunoblot: molecular mass standards (in kilodaltons) are indicated at the left side. Each recombinant protein (1 µg) was separated on an SDS-polyacrylamide gradient gel (12.5–20%) and blotted onto a nitrocellulose membrane. The membrane was incubated with serum from A. fumigatus-allergic patients diluted 1:10 in 50 mM sodium phosphate, pH 7.4, 5% Tween 20, 2% BSA. Bound IgE was identified by enhanced chemiluminescence detection (8). Lane 1, marker proteins as negative control; lane 2, recombinant A. fumigatus MnSOD; lane 3, recombinant human MnSOD.
garded positive if the wheal was at least half the size of the skin reaction induced by the positive histamine control (8). An ethical approval for skin testing human subjects with recombinant proteins was provided via the local ethics committee. A full explanation of the procedure was given to all participants, and their written consent was obtained before testing.

Results and Discussion

Isolation of cDNA Clones and Sequence of the A. fumigatus MnSOD. Cloning of cDNA libraries on phagemid pJuFo (10) and display of the expression products on the surface of filamentous phage (11, 20) allow efficient isolation of cDNAs that encode proteins for which a ligand is available. The procedure circumvents immobilization of the libraries on solid-phase supports that hamper selective enrichment of clones expressing the desired protein. We have generated a cDNA library from *A. fumigatus* displayed on the surface of the filamentous phage M13, which was screened for displayed gene products binding to human serum IgE from patients allergic to the fungus (11). The large phage population obtained after selective enrichment by ligand–product interaction contained phage encoding different allergenic proteins as demonstrated by sequence determinations.

![Figure 3](image-url)
Figure 3. Competitive inhibition of IgE binding to solid-phase-coated *A. fumigatus* recombinant MnSOD. Serum from *A. fumigatus*-sensitized patients was preincubated with different amounts of recombinant *A. fumigatus* MnSOD, human (O) MnSOD, or Asp f1 protein as negative control (V). Preincubated serum samples were transferred to wells coated with *A. fumigatus* MnSOD, and IgE bound was analyzed by antigen-specific ELISA (8).

![Figure 4](image-url)
Figure 4. Proliferative responses of PBMC from patients sensitized to *A. fumigatus* to recombinant *A. fumigatus* MnSOD (O), recombinant human MnSOD (Δ), and *A. fumigatus* extract (■). Representative dose responses to each of the antigens in PBMC from patients sensitized to the fungal MnSOD are shown in A–C. Stimulation indices to optimal concentration of the antigens for seven patients responding to both recombinant *A. fumigatus* and human MnSOD (○ △ ■ ● Δ + X), one patient without detectable IgE against *A. fumigatus* MnSOD responding to the *A. fumigatus* extract alone (○), and three control subjects (● ■ +) are given in D.
Primary Proliferative Responses of PBMC from *A. fumigatus* Sensitized Individuals. As allergen-specific IgE production is dependent on T cell help, we measured the proliferative responses of mononuclear cells from individuals sensitized to *A. fumigatus* to fungal extract, recombinant *A. fumigatus* MnSOD, and recombinant human MnSOD. Individuals sensitized to the fungal MnSOD had positive responses to both recombinant enzymes, whereas an *A. fumigatus*-sensitized person lacking IgE antibodies against the fungal MnSOD responded to the fungal extract only. This also indicates that the recombinant antigens did not induce nonspecific effects. Three individuals with high level background proliferation did not respond to any of the antigen preparations (Fig. 4). In additional experiments, the mean proliferative responses of six control individuals to *A. fumigatus* extract, fungal MnSOD, and human MnSOD were 968, 1,388, and 1,336 cpm, respectively. The mean proliferative responses of six individuals sensitized to the fungal MnSOD to the same antigens were 6,981, 7,282, and 12,300.

Allergic Properties of the MnSODs. The *A. fumigatus* MnSOD was isolated as an IgE binding protein displayed on phage surface and thus expected to be an allergen. However, both *A. fumigatus* and human recombinant MnSODs were identified as relevant allergens by IgE-immunoblots (Fig. 2) and by ELISA assays with sera from 60 individuals suffering from *A. fumigatus*-related complications (data not shown). The binding of serum IgE from patients allergic to *A. fumigatus* MnSOD was inhibited by increasing amounts of recombinant human MnSOD added to the fluid phase (Fig. 3), demonstrating that the proteins share common IgE-binding epitopes. Although both proteins are able to fully inhibit the binding of IgE to *A. fumigatus* MnSOD, ~10 times more of human MnSOD was required to achieve the same inhibitory effect, indicating that serum IgE antibodies bind to human MnSOD with lower affinity.

Figure 5. Skin test reactivity to human recombinant MnSOD. For intradermal skin tests, 100 µl of the solutions were injected with a syringe starting from a concentration of 10⁻¹ µg ml⁻¹. 0.01% histamine dihydrochloride and 0.9% saline were used as positive and negative controls, respectively. The reactions show that 0.01 µg human MnSOD are able to elicit a wheal that is comparable with the size of the skin reaction induced by the positive histamine control.
In Vivo Relevance of the Recombinant MnSODs. The final demonstration that a protein acts as an allergen is its ability to elicit type I skin reactions in allergic individuals. Therefore, we investigated whether the cross-reactivity of the anti-MnSOD IgE antibodies is sufficient to provoke allergic reactions in vivo by skin tests (8). Four individuals allergic to A. fumigatus MnSOD, two individuals allergic to A. fumigatus proteins other than MnSOD, and two nonallergic control persons were tested for their ability to respond to intradermal challenge with recombinant A. fumigatus and human MnSOD. A positive skin reaction to A. fumigatus MnSOD was observed only in individuals who had detectable IgE antibodies to A. fumigatus MnSOD. These individuals also showed strong skin reaction to human MnSOD challenge (Fig. 5). The immediate skin reaction depends on mast cells that are rapidly degranulated and release mediators, particularly histamine, which is triggered through antigen-dependent IgE cross-linking to specific receptors on the mast cell membrane (32). These results show that human MnSOD is able to elicit IgE cross-linking on mast cells in vivo, and they suggest a humoral autoimmune response in some of the patients suffering from A. fumigatus allergy.

In summary, these data provide strong evidence for in vitro and in vivo humoral and cell-mediated autoimmune reactivity to human MnSOD in patients allergic to A. fumigatus. Whether the cause of these autoimmune reactions is caused by molecular mimicry between conserved T and B cell epitopes present on the fungal and on the structurally related human enzyme or by sensitization to human MnSOD due to an inflammatory process remains to be elucidated.

We thank Dr. D. Stüber (Hoffmann-La-Roche, Basel) and Dr. R.A. Lerner (The Scripps Research Institute, La Jolla, CA) for providing expression vectors and pComb3, respectively; Dr. T. Curran (Roche Research Center, Nutley, NJ) for the Jun and Fos cDNAs; and Dr. C. Heusser (Ciba Geigy, Basel) for the TN-142 mAb.

This study was supported in part by the Swiss National Science Foundation (grants 31-39429.93 and 31-39177.93).

Address correspondence to Reto Crameri, Ph.D., Swiss Institute of Allergy and Asthma Research, Obere Strasse 22, CH-7270 Davos Platz, Switzerland.

Received for publication 26 February 1996 and in revised form 24 April 1996.
linked to the genetic information responsible for their production. *Gene* (Amst.), 137:69–75.

11. Crameri, R., R. Jaussi, G. Menz, and K. Blaser. 1994. Display of expression products of cDNA libraries on phage surfaces. A versatile screening system for selective isolation of genes by specific gene-product/ligand interaction. *Eur. J. Biochem.* 226:53–58.

12. Bannister, J.V., W.H. Bannister, and G. Rotilio. 1987. Aspects of the structure, function and applications of superoxide dismutase. *CRC Crit. Rev. Biochem.* 22:111–180.

13. Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. *Proc. Natl. Acad. Sci. USA.* 74:5463–5467.

14. Altschul, S.F., W. Gish, W. Miller, W. Myers, and D.J. Lipman. 1990. Basic local alignment tool. *J. Mol. Biol.* 215:403–410.

15. Pearson, W.R. 1991. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. *Genomics.* 11:635–650.

16. McPherson, J.M., P. Quirke, and G.R. Taylor. 1991. PCR: A Practical Approach. Oxford University Press, New York. 253 pp.

17. Hochuli, E., W. Bannwarth, H. Döbli, R. Gentz, and D. Stüber. 1988. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. *Bio/Technol.* 6:1321–1325.

18. Dower, W.J., J.F. Miller, and C.W. Ragsdale. 1988. High efficiency transformation of *E. coli* by high voltage electroporation. *Nucleic Acids Res.* 16:6127–6145.

19. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. *Molecular Cloning: A Laboratory Manual.* Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

20. Flöttinger, M., K. Gramatikoff, O. Gregoriev, C. Chaponnier, W. Schaffner, and U. Hübscher. 1995. The large subunit of HIV-1 reverse transcriptase interacts with β-actin. *Nucleic Acids Res.* 23:736–741.

21. Wispé, J.R., J.C. Clark, M.S. Burhans, K.E. Kropp, T.R. Korthagen, and J.A. Whitsett. 1989. Synthesis and processing of the precursor for human manganese-superoxide dismutase. *Biochim. Biophys. Acta.* 944:30–36.