MicroRNA-30c attenuates fibrosis progression and vascular dysfunction in systemic sclerosis model mice

Yosuke Kanno1,2 · En Shu2 · Hirofumi Niwa2 · Mariko Seishima2 · Kei-ichi Ozaki1

Received: 8 February 2021 / Accepted: 21 April 2021 / Published online: 28 April 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Systemic sclerosis (SSc) is characterized by peripheral circulatory disturbance and fibrosis in skin and visceral organs. We recently demonstrated that α2-antiplasmin (α2AP) is elevated in SSc dermal fibroblasts and SSc model mice, and is associated with fibrosis progression and vascular dysfunction. In the present study, we predicted that α2AP could be a target of microRNA-30c (miR-30c) using TargetScan online database, and investigated the effect of miR-30c on the pathogenesis of SSc using a bleomycin-induced SSc model mice. miR-30c attenuated α2AP expression, and prevented the pro-fibrotic changes (increased dermal thickness, collagen deposition, myofibroblast accumulation) and the vascular dysfunction (the reduction of vascular endothelial cells (ECs) and blood flow) in the skin of SSc model mice. Furthermore, miR-30c suppressed pulmonary fibrosis progression in the SSc model mice. miR-30c exerts the anti-fibrotic and anti-angiopathy effects on SSc model mice, and might provide a basis for clinical strategies for SSc.

Keywords Alpha2-antiplasmin · Systemic sclerosis · MiR-30c · Fibrosis · Vascular dysfunction

Introduction
Systemic sclerosis (SSc) is characterized by peripheral circulatory disturbance and fibrosis in skin and visceral organs [1]. Vascular damage, such as the reduction of blood vessels and blood flow, occurs in the early stages of the disease [2]. However, the detailed mechanism of SSc pathogenesis remains unclear.

Alpha2-antiplasmin (α2AP; SERPINF2) is the principal inhibitor of plasmin and inhibits the fibrinolysis [3, 4]. α2AP rapidly inactivates plasmin, resulting in the formation of a stable inactive complex, plasmin-α2AP. On the other hand, α2AP can bind and activate adipose triglyceride lipase (ATGL) [5], and is known to have various functions, such as inflammation responses, cytokine production, cell growth, differentiation and recruitment [6–8]. It has been reported that the level of PAP in plasma is elevated in SSc patients [9] and the expression of α2AP is elevated in the serum and skin of SSc model mice and SSc dermal fibroblasts [10–12], and the blockade of α2AP prevents pro-fibrotic changes and vascular damage in SSc model mice, and reversed a pro-fibrotic phenotype of SSc dermal fibroblasts [11, 13, 14]. Furthermore, α2AP regulates myofibroblast differentiation and collagen production, and is associated with the development of fibrosis [15–17]. The changes in α2AP expression may contribute to fibrosis progression in SSc.

MicroRNAs (miRNAs) are endogenous non-coding RNAs of 18–24 nucleotides in length, and can induce mRNA degradation or the translational repression of target genes through complementary pairing with the 3′ untranslated region (UTR) of target mRNA [18]. miRNA expression is known to be associated with the progression of autoimmune diseases including SSc [19]. As a member of miR-30 family, miR-30c is generally recognized as a multifunctional regulator of cell growth, differentiation, apoptosis [20], and regulates inflammation, epithelial-to-mesenchymal transition (EMT) and cytokine production, and suppresses the development of renal and cardiac fibrosis [21–24].

In the present study, we predicted that α2AP could be a target of microRNA-30c (miR-30c) using TargetScan
online database, and investigated the effect of miR-30c on the pathogenesis of SSC.

Materials and methods

microRNA target prediction

TargetScan online database (http://www.targetscan.org/index.html) were used to identify potential miRNA targets.

Mice experiment

The mice experiments in this study were approved by the Animal Research Committee of Doshisha Women’s College of Liberal Arts (Approval ID: Y19-025), and were carried out in accordance with the rules and regulations of the institutions and the government.

The saline or bleomycin were subcutaneously injected into the back of male 8 weeks old C57BL/6 J mice daily for up to 2 weeks as previously described [16]. The miRNA negative control [miRNA mimic negative control (SMC-2003) (Bioneer, CA, USA)] or miR-30c [sequence: UGU AAAA CAU CCU ACA CUC UCAGC (Bioneer, CA, USA)] (10 µg/body) was subcutaneously injected once every week for up to 2 weeks, using JetPEI transfection reagent (Polyplus transfection, Illkirch, France) according to the manufacturer’s instructions.

Western blot analysis

We performed a Western blot analysis as previously described [25]. The skin samples from mice were homogenized in the lysis buffer (10 mM Tris-HCl buffer (pH 7.5), 1% SDS, 1% Triton X-100). The protein concentration in each lysate was measured using a BCA protein assay kit (Pierce, IL, USA). Proteins were separated by electrophoresis on 10% SDS-polyacrylamide gels and transferred to a PVDF membrane. We detected α2AP, type I collagen and GAPDH by incubation with anti-α2AP antibodies (Santa Cruz Biotechnology, CA, USA), anti-type I collagen antibodies (Bioss antibodies, MA, USA), anti-α-SMA antibody (Genetex, CA, USA), anti-VE-cadherin antibody (Santa Cruz Biotechnology, CA, USA) and anti-GAPDH antibodies (Sigma-Aldrich, MO, USA) followed by incubation with horseradish peroxidase-conjugated antibodies to rabbit IgG (Amersham Pharmacia Biotech, Uppsala, Sweden).

Measurement of dermal thickness

The dermal thickness (distance from the epidermal-dermal junction to dermal-subcutaneous junction) was determined by calculating the average of three-point measurement in each skin section. The dermal thickness was measured in the skin sections from each group of mice (n = 3).

Collagen content in skin and lung (the Sircol biochemical assay)

The collagen content was assessed using sirius red staining as previously described [26]. The stained images were analyzed by using ImageJ. The collagen content was determined as the percent ratio of the sirius red-positive area in saline plus control miRNA-injected mice.

Immunohistochemical staining of α-SMA and VE-cadherin

The immunohistochemical staining was performed as previously described [27]. Paraffin sections were labeled with anti-α-SMA antibody (GeneTex, CA, USA) or anti-VE-cadherin (Santa Cruz Biotechnology, CA, USA), then secondarily labeled with Cy3-conjugated anti-rabbit IgG (Thermo Scientific, CA, USA). The signals were then detected by using a laser-scanning microscope.

Blood flow in the skin

Blood flow in the skin was measured for 10 s using a laser Doppler flow meter (BRL-100; Bio Research Center, Tokyo, Japan), and determined by calculating the average of three-time measurements in each skin.

Assessment of lung fibrosis score

The lung fibrosis score was assessed as described by Ashcroft et al. [28]. The lung fibrosis was graded on a scale of 0–8 by examining randomly chosen fields (0; normal lung, grade 1; minimal fibrous thickening of alveolar or bronchiolar walls, grade 3; moderate thickening of walls without obvious damage to lung architecture, grade 5; increased fibrosis with definite damage to lung structure and formation of fibrous bands or small fibrous masses, grade 7; severe distortion of structure and large fibrous area, 8; total fibrous obliteration of the field). Grade 2, 4, and 6 were used as intermediate pictures between the aforementioned criteria.

Statistical analysis

All data were expressed as mean ± SEM. The statistical analysis was conducted with one-way ANOVA followed by Tukey test for multiple comparison. Statistical significance was defined as a P value of < 0.05.
Results

Identification of miRNA for targeting α2AP using online database

TargetScan online database predicted that microRNA-30c (miR-30c) can target α2AP mRNA (Fig. 1).

The effect of miR-30c on the development of dermal fibrosis in SSc model mice

The injection of miR-30c in the bleomycin-induced SSc model mice attenuated the increased dermal thickness (Fig. 2a, b), collagen production (Fig. 2a, c). In addition, we showed the histological findings of α-smooth muscle actin (α-SMA) (a hallmark of the myofibroblast phenotype) and VE-cadherin (a hallmark of the vascular endothelial cell (EC) phenotype), and miR-30c reversed the bleomycin-induced α-SMA expression and VE-cadherin expression reduction in the dermis (Fig. 2d, e). Furthermore, we investigated the effect of miR-30c on the change of α2AP, type I collagen, α-SMA and VE-cadherin expression in the skin of SSc model mice (Fig. 3). miR-30c reversed the bleomycin-induced α2AP, type I collagen, α-SMA expression and VE-cadherin expression reduction in the skin of SSc model mice (Fig. 3).

The effect of miR-30c on vascular dysfunction in SSc model mice

We investigated the effects of miR-30c on blood flow in the bleomycin-induced SSc model mice. miR-30c reversed the bleomycin-induced blood flow reduction in the back skin of SSc model mice (Fig. 4).

The effect of miR-30c on the development of pulmonary fibrosis in SSc model mice

The treatment of bleomycin is known to induce pulmonary fibrosis, which shares central features of human SSc. We investigated the effect of miR-30c on pulmonary fibrosis progression in SSc model mice. miR-30c reversed the bleomycin-induced the increased lung fibrosis score (Fig. 5a, b) and collagen production (Fig. 5a, c) in the lung of SSc model mice.

Discussion

SSc results in progressive fibrosis in skin and internal organs, and vascular damage [1]. Recently, we showed the expression of α2AP is elevated in the serum and skin of SSc model mice and SSc dermal fibroblasts [10–12], and the increased in α2AP expression affects vascular dysfunction and fibrosis progression in SSc model mice and SSc dermal fibroblasts [11, 13, 16]. In the present study, we focused on α2AP, and predicted that α2AP could be a target of miR-30c according to TargetScan online database (Fig. 1).

miR-30c suppressed α2AP expression, and prevented pro-fibrotic changes (increased dermal thickness, collagen and myofibroblast deposition) and vascular dysfunction (blood vessels and blood flow reduction) in the skin of SSc model mice (Figs. 2–4). In addition, miR-30c suppressed pulmonary fibrosis progression in the SSc model mice (Fig. 5). Vascular damage is an early and initiating event in SSc, and is caused by EC apoptosis, defective angiogenesis, defective vascuogenesis, endothelial-to-mesenchymal transition (EndoMT), and coagulation abnormalities [14]. Vascular damage is also known to cause the development of interstitial lung disease, pulmonary arterial hypertension, and fibrosis [14, 29]. α2AP is associated with EC apoptosis, angiogenesis, and vascular remodeling [7], and the treatment of α2AP causes vascular dysfunction in mice [13]. α2AP is also associated with EMT progression [15]. EndoMT exhibits features similar to those of EMT, α2AP may also affect EndoMT progression. Furthermore, plasmin regulates fibrinolysis, coagulation, ECM degradation and myofibroblast apoptosis, and contributes to various cardiovascular diseases and fibrosis [30–32]. The α2AP-induced plasmin inhibition may be associated with vascular dysfunction and fibrosis progression. The regulation of α2AP expression by miR-30c may prevent the SSc-associated various events through multiple mechanisms, and alleviate the disease severity.

In conclusion, miR-30c suppresses α2AP expression, and exerts the anti-fibrotic and anti-angiopathy effects on SSc model mice. These findings provide a basis for therapeutic strategies for SSc.
Fig. 2 The effect of miR-30c on the development of dermal fibrosis in SSc model mice. a Representative skin sections from each group of mice (Hematoxylin and Sirius red stain). Double head arrows indicate the dermal thickness. b The dermal thickness in the skin sections from each group of mice (n = 3). c The collagen content in the skin from each group of mice (n = 3). d Paraffin sections were stained with α-SMA antibodies. e Paraffin sections were stained with VE-cadherin antibodies. The data represent the mean ± SEM. *P < 0.001; **P < 0.01; ***P < 0.05. NS not significant. Scale bar = 200 µm
Fig. 3 The effect of miR-30c on the change of α2AP and fibrotic-associated protein expression in the skin of SSc model mice. The expression of each protein in the skin from mice was examined by a Western blot analysis. The histogram shows quantitative representations of each protein (n = 3). The data represent the mean ± SEM. *P < 0.001; **P < 0.01; ***P < 0.05. NS not significant.

Fig. 4 The effect of miR-30c on blood flow in SSc model mice. Blood flow in the back skin of each group of mice (n = 3). The data represent the mean ± SEM. *P < 0.001; ***P < 0.05.
Acknowledgements We appreciate the support by Takeda Science Foundation.

Author contributions YK conceived and designed the experiment. YK, ES and HN were involved in the experiments. YK, ES, MS and KO were involved in data interpretation and writing of the manuscript.

Funding This work was partially supported by Takeda Science Foundation.

Declarations

Conflict of interest There are no competing interests.

References

1. Gilbane A, Denton C, Holmes A (2013) Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res Ther 15:215
2. Liakouli V, Cipriani P, Marrelli A, Alvaro S, Ruscitti P, Giacomelli R (2011) Angiogenic cytokines and growth factors in systemic sclerosis. Autoimmun Rev 10:590-594
3. Abdul S, Leebeek F, Rijken D, Uitte de Willige S (2016) Natural heterogeneity of α2-antiplasmin: functional and clinical consequences. Blood 127:538-545
4. Kanno Y, Ishisaki A, Kawashita E, Kuretake H, Ikeda K, Matsuo O (2016) uPA attenuated LPS-induced inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Int J Biol Sci 12:63-71
5. Kanno Y, Kawashita E, Kokado A, Okada K, Ueshima S, Matsuo O, Matsuno H (2013) Alpha2-antiplasmin regulates the development of dermal fibrosis in mice by prostaglandin F2α synthesis through adipose triglyceride lipase/calcium-independent phospholipase A2. Arthritis Rheum 65:492–502
6. Kanno Y, Miyashita M, Seishima M, Matsuo O (2020) α2AP is associated with the development of lupus nephritis through the regulation of plasmin inhibition and inflammatory responses. Immun Inflamm Dis 8:267–278
7. Hou Y, Okada K, Okamoto C, Ueshima S, Matsuo O (2008) Alpha2-antiplasmin is a critical regulator of angiotensin II-mediated vascular remodeling. Arterioscler Thromb Vasc Biol 28:1257–1262
8. Kager LM, Weehuizen TA, Wieringa WI, Roelofs JJ, Meijers JC, Donord AM, van’t Veer C, van der Poll T (2013) Endogenous α2-antiplasmin is protective during severe gram-negative sepsis (meliodosis). Am J Respir Crit Care Med. 188:967–975
9. Jinnin M, Ihn H, Yamane K, Asano Y, Yazawa N, Tamaki K (2003) Plasma plasmin-alpha2-plasmin inhibitor complex levels

Fig. 5 The effect of miR-30c on the development of pulmonary fibrosis in SSc model mice.

A
Hematoxylin

S Sirius red

B
Saline Control miRNA Bleomycin Control miRNA Saline miR-30c Bleomycin miR-30c

C
Collagen Content (% of control miRNA saline)

0 50 100 150 200 250

Saline Control miRNA Bleomycin Control miRNA Saline miR-30c Bleomycin miR-30c

* P < 0.001; ** P < 0.01; *** P < 0.05. NS not significant.

Scale bar = 200 µm
are increased in systemic sclerosis patients with pulmonary hypertension. Rheumatology (Oxford) 42:240–243

10. Kanno Y, Kawashita E, Minamida M, Kaneiwa A, Okada K, Ueshima S, Matsu o O, Matsuno H (2010) alpha2-antiplasmin is associated with the progression of fibrosis. Am J Pathol 176:238–245

11. Kanno Y, Shu E, Kanoh H, Seishima M (2016) The Antifibrotic Effect of α2AP Neutralization in Systemic Sclerosis Dermal Fibroblasts and Mouse Models of Systemic Sclerosis. J Invest Dermatol 136:762–769

12. Niwa H, Kanno Y, Shu E, Seishima M (2020) Decrease in matrix metalloproteinase-3 activity in systemic sclerosis fibroblasts causes alpha2-antiplasmin and extracellular matrix deposition, and contributes to fibrosis development. Mol Med Rep 22:3001–3007

13. Kanno Y, Shu E, Kanoh H, Matsuda A, Seishima M (2017) α2AP regulates vascular alteration by inhibiting VEGF signaling in systemic sclerosis: the roles of α2AP in vascular dysfunction in systemic sclerosis. Arthritis Res Ther 19:22

14. Kanno Y (2019) The role of fibrinolytic regulators in vascular dysfunction of systemic sclerosis. Int J Mol Sci 20:E619

15. Kanno Y, Kawashita E, Kokado A, Kuretake H, Ikeda K, Okada K, Seishima M, Ueshima S, Matsu o O, Matsuno H (2014) α2AP mediated myofibroblast formation and the development of renal fibrosis in unilateral ureteral obstruction. Sci Rep 4:5967

16. Kanno Y, Kuroki A, Okada K, Tomogane K, Ueshima S, Matsuo O, Matsuno H (2007) alpha2-Antiplasmin is involved in the production of transforming growth factor beta1 and fibrosis. J Thromb Haemost 5:2266–2273

17. Kanno Y, Shu E, Niwa H, Kanoh H, Seishima M (2020) Alternatively activated macrophages are associated with the α2AP production that occurs with the development of dermal fibrosis: the role of alternatively activated macrophages on the development of fibrosis. Arthritis Res Ther 22:76

18. Pasquinelli A (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

19. Chen J, Papp G, Szodoray P, Zeher M (2016) The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun Rev 15:1171–1180

20. Han W, Cui H, Liang J, Su X (2020) Role of MicroRNA-30c in cancer progression. J Cancer 11:2593–2601

21. Ceolotto G, Giannella A, Albiero M, Kuppusamy M, Radu C, Simioni P, Garlaschelli K, Baragetti A, Catapano A, Iori E, Fadini G, Avogaro A, Vigili de Kreuzenberg S (2017) miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovasc Res 113:1627–1638

22. Zhao Y, Yin Z, Li H, Fan J, Yang S, Chen C, Wang D (2017) MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice. Aging Cell 16:387–400

23. Wang J, Duan L, Guo T, Gao Y, Tian L, Liu J, Wang S, Yang J (2016) Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy. J Diabetes Complicat 30:406–414

24. Xu J, Wu H, Chen S, Qi B, Zhou G, Cai L, Zhao L, Wei Y, Liu S (2018) MicroRNA-30c suppresses the pro-fibrogenic effects of cardiac fibroblasts induced by TGF-β1 and prevents atrial fibrosis by targeting TGFβRII. J Cell Mol Med 22:3045–3057

25. Kanno Y, Into T, Lowenstein C, Matsushita K (2008) Nitric oxide regulates vascular calcification by interfering with TGF-β signaling. Cardiovasc Res 77:221–230

26. Kanno Y, Kaneiwa A, Minamida M, Kanno M, Tomogane K, Takeuchi K, Okada K, Ueshima S, Matsuo O, Matsuno H (2008) The absence of uPAR is associated with the progression of dermal fibrosis. J Invest Dermatol 128:2792–2797

27. Kanno Y, Sakai A, Miyashita M, Tsuchida K, Matsuo O (2016) Plasminogen deficiency is associated with improved glucose tolerance, and lower DPP-4 activity. Diabetes Res Clin Pract 120:190–193

28. Ashcroft T, Simpson J, Timbrell V (1988) Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol 41:652–657

29. Jimenez S, Piera-Velazquez S (2016) Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of systemic sclerosis-associated pulmonary fibrosis and pulmonary arterial hypertension. myth or reality? Matrix Biol 51:26–36

30. Eddy A (2009) Serine proteases, inhibitors and receptors in renal fibrosis. Thromb Haemost 101:656–664

31. Plow E, Hoover-Plow J (2004) The functions of plasminogen in cardiovascular disease. Trends Cardiovasc Med 14:180–186

32. Kochtebane N, Choqueux C, Passefort S, Nataf P, Messika-Zeitoun D, Bartagi A, Michel J, Anglès-Cano E, Jacob M (2010) Plasmin induces apoptosis of aortic valvular myofibroblasts. J Pathol 221:37–48

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.