ON THE RATIONALITY OF ALGEBRAIC MONODROMY GROUPS OF COMPATIBLE SYSTEMS

CHUN YIN HUI

Abstract. Let E be a number field and X a smooth geometrically connected variety defined over a characteristic p finite field. Given an n-dimensional pure E-compatible system of semisimple λ-adic representations of the étale fundamental group of X with connected algebraic monodromy groups G_λ, we construct a common E-form G of all the groups G_λ and in the absolutely irreducible case, a common E-form $G \hookrightarrow \text{GL}_n,E$ of all the tautological representations $G_\lambda \hookrightarrow \text{GL}_n,E_\lambda$ (Theorem 1.1). Analogous rationality results in characteristic p assuming the existence of crystalline companions in $\text{F-Iso}^c(X) \otimes E_v$ for all $v \mid p$ (Theorem 1.5) and in characteristic zero assuming ordinarity (Theorem 1.6) are also obtained. Applications include a construction of G-compatible system from some GL_n-compatible system and some results predicted by the Mumford-Tate conjecture.

CONTENTS

1. Introduction 2
 1.1. The Mumford-Tate conjecture 2
 1.2. The results of the paper 3
 1.3. The structure of the paper 8

2. Main theorems 8
 2.1. Statements 8
 2.2. The rigidity condition 9
 2.3. Forms of reductive chains 12
 2.4. Twisting 17
 2.5. Local-global aspects 19
 2.6. Proofs of main theorems 20

3. Rationality of algebraic monodromy groups 22
 3.1. Profinite group Π and Frobenius elements Fr 22
 3.2. E-compatible systems 23
 3.3. Frobenius torus 24
 3.4. Proofs of characteristic p results 26
 3.5. Proofs of characteristic zero results 29
 3.6. Final remarks 34

Acknowledgments 34
References 34
1. Introduction

1.1. The Mumford-Tate conjecture. Let A be an abelian variety defined over a number field $K \subset \mathbb{C}$, $V_\ell := H^1(A_{\overline{K}}, \mathbb{Q}_\ell)$ the étale cohomology groups for all primes ℓ, and $V_\infty = H^1(A(\mathbb{C}), \mathbb{Q})$ the singular cohomology group. The famous Mumford-Tate conjecture [Se81] asserts that the ℓ-adic Galois representations $\rho_\ell : \text{Gal}(\overline{K}/K) \rightarrow \text{GL}(V_\ell)$ are independent of ℓ, in the sense that if G_ℓ denotes the algebraic monodromy group of ρ_ℓ (the Zariski closure of the image of ρ_ℓ in $\text{GL}(V_\ell)$) and G_{MT} denotes the Mumford-Tate group of the pure Hodge structure of V_∞, then via the comparison isomorphisms $V_\ell \cong V_\infty \otimes \mathbb{Q}_\ell$ one has
\begin{equation} \label{eq:MT_conjecture}
(G_{MT} \hookrightarrow \text{GL}(V_\infty)) \otimes \mathbb{Q}_\ell \cong G_\ell^p \hookrightarrow \text{GL}(V_\ell) \quad \text{for all } \ell.
\end{equation}
In particular, the representations ρ_ℓ are semisimple and the identity components G_ℓ^p are reductive with the same absolute root datum. This conjectural ℓ-independence of different algebraic monodromy representations can be formulated almost identically for projective smooth varieties Y defined over K, and more generally, for pure motives over K by the universal cohomology theory envisaged by Grothendieck and some deep conjectures in algebraic and arithmetic geometry (see [Se94, §1.1.]).

The same Mumford-Tate-type question can also be asked for projective smooth varieties Y defined over a global field K of characteristic $p > 0$. Since $V_\ell = H^w(Y_{\overline{K}}, \mathbb{Q}_\ell)$ are Weil cohomology theories for $Y_{\overline{K}}$ only when $\ell \neq p$, one may ask if the algebraic monodromy representations $G_\ell^p \hookrightarrow \text{GL}(V_\ell)$ of the Galois representations V_ℓ are independent of ℓ for all $\ell \neq p$. This expectation is supported by the philosophy of motives (see [De18 §E]).

Let us define some notation first. If L is a subfield of $\overline{\mathbb{Q}}$, then denote by P_L the set of places of L. Denote by $P_{L,f}$ (resp. $P_{L,\infty}$) the set of finite (resp. infinite) places of L. Then $P_L = P_{L,f} \cup P_{L,\infty}$. Denote by $P^{(p)}_{L,f}$ the set of elements of $P_{L,f}$ not extending p. The residue characteristic of the finite place $v \in P_{L,f}$ is denoted by p_v. Let V and W be free modules of finite rank over a ring R. Let $G_m \subset \cdots \subset G_1 \subset \text{GL}_V$ and $H_m \subset \cdots \subset H_1 \subset \text{GL}_W$ be two chains of closed algebraic subgroups over R. We say that the two chain representations (or simply representations if it is clear that they are chains of subgroups of some GL_n) are isomorphic if there is an R-modules isomorphism $V \cong W$ such that the induced isomorphism $\text{GL}_V \cong \text{GL}_W$ maps G_i isomorphically onto H_i for $1 \leq i \leq m$.

Theorem A. ([Serre] [Se81] (see also [LP92])

(i) (The component groups) The quotient groups G_i/G_i^p for all ℓ are isomorphic.
(ii) (Common \mathbb{Q}-form of formal characters) For all v in a positive Dirichlet density subset of $P_{K,f}$, there exist a subtorus $T_v := T_v$ of $\text{GL}_{n,\mathbb{Q}}$ such that for all $\ell \neq p_v$, the representation $(T \hookrightarrow \text{GL}_{n,\mathbb{Q}}) \otimes \mathbb{Q}_\ell$ is isomorphic to the representation $T_\ell \hookrightarrow \text{GL}_V$ for some maximal torus T_ℓ of G_ℓ.

It follows immediately that the connectedness and the absolute rank of G_ℓ are both independent of ℓ. Later, Larsen-Pink obtained some ℓ-independence results for abstract semisimple compatible system on a Dirichlet density one set of primes ℓ [LP92] and for the geometric monodromy of $\{V_\ell\}_\ell$ if $\text{Char}(K) > 0$ [LP95]. When $\text{Char}(K) = 0$, the author proved that the formal bi-character (Definition 2.2(ii)) of $G_\ell^p \hookrightarrow \text{GL}_V$ is independent of ℓ and obtained ℓ-independence of G_ℓ^p under some type A hypothesis [Hu13, Hu18]. The next result is by far the best result in positive characteristic, in a setting more general than the above étale cohomology case.

Let X be a smooth geometrically connected variety defined over a finite field \mathbb{F}_q of characteristic p. Let E be a number field. For any $\lambda \in P_E$, denote by E_λ the λ-adic completion of E. Let
\begin{equation} \label{eq:rho_def}
\rho_\lambda := \{\rho_\lambda : \pi_{1,\text{et}}(X, \overline{x}) \rightarrow \text{GL}(V_\lambda)\}_{\lambda \in P_E^{(p)}}
\end{equation}

When $\ell = p$, one has to consider crystalline cohomology group of Y.\footnote{1When $\ell = p$, one has to consider crystalline cohomology group of Y.}
be an E-compatible system of n-dimensional semisimple λ-adic representations of the étale fundamental group $\pi_1^\text{ ét}(X, \overline{x})$ of X (with base point \overline{x}) that is pure of integral weight w. Denote by $G_\lambda \subset \GL_{V_\lambda}$ the algebraic monodromy group of the representation V_λ. For simplicity, set $\pi_1(X) = \pi_1^\text{ ét}(X, \overline{x})$ and for all $\lambda \in P_{E,f}^{(p)}$, choose coordinates for V_λ so that G_λ is identified as a subgroup of $\GL_{n,E}$. The following theorem was obtained by Chin when X is a curve \cite{Ch04} and is true in general by reducing to the curve case by finding a suitable curve S in some covering X' of X \cite{BCP19} §3.3, see also \cite{Da18} §4.3.

Theorem B. Let ρ_\bullet be an E-compatible system of n-dimensional λ-adic semisimple representations of $\pi_1(X)$ that is pure of integer weight w. The following assertions hold in some coordinates of V_λ.

(i) (Common E-form of formal characters): There exists a subtorus T of $\GL_{n,E}$ such that for all $\lambda \in P_{E,f}^{(p)}$, $T_\lambda := T \times_E E_\lambda$ is a maximal torus of G_λ.

(ii) (λ-independence over an extension): There exist a finite extension F of E and a chain of subgroups $T^p \subset G^p \subset \GL_{n,F}$ such that G^p is connected split reductive, T^p is a split maximal torus of G^p, and for all $\lambda \in P_{E,f}^{(p)}$, if F_λ is a completion of F extending λ on E, then there exists an isomorphism of chain representations:

$$f_{F_\lambda} : (T^p \subset G^p) \times_F F_\lambda \cong (T_\lambda \subset G_\lambda^p \subset \GL_{n,E_\lambda}) \times_{E_\lambda} F_\lambda.$$

(iii) (Rigidity) The isomorphisms f_{F_λ} in (ii) can be chosen such that the restriction isomorphisms $f_{F_\lambda} : T^p \times_F F_\lambda \to T_\lambda \times_{E_\lambda} F_\lambda$ admit a common F-form $f_F : T^p \to T \times_E F$ for all $\lambda \in P_{E,f}^{(p)}$ and F_λ.

1.2. The results of the paper.

1.2.1. Characteristic p.

1.2.1.1. **Theorem B** (ii) asserts that the algebraic monodromy representations $G_\lambda^p \hookrightarrow \GL_{V_\lambda}$ have a common (split) F-model after finite extensions F_λ of E_λ. The main theme of this article is to remove these extensions. Base on Theorem B (i)–(iii) and some ideas seeded in \cite{Hu18}, we prove the following E-rationality result (Theorem 1.1). In case the representations V_λ are absolutely irreducible, it answers the Mumford-Tate type question in positive characteristic.

Theorem 1.1. Let $\rho_\bullet := \{\rho_\lambda : \pi_1(X) \to \GL(V_\lambda)\}_{\lambda \in P_{E,f}^{(p)}}$ be an E-compatible system of n-dimensional λ-adic semisimple representations of $\pi_1(X)$ that is pure of integer weight w. Then the following assertions hold.

(i) There exists a connected reductive group G defined over E such that $G \times_E E_\lambda \cong G_\lambda^p$ for all $\lambda \in P_{E,f}^{(p)}$.

(ii) If moreover $G_\lambda^p \hookrightarrow \GL_{V_\lambda}$ is absolutely irreducible for some λ, then there exists a connected reductive subgroup G of $\GL_{n,E}$ such that for all $\lambda \in P_{E,f}^{(p)}$, the representations are isomorphic:

$$(G \hookrightarrow \GL_{n,E}) \times_E E_\lambda \cong (G_\lambda^p \hookrightarrow \GL_{V_\lambda}).$$

1.2.1.2. Let O_λ be the ring of integers of E_λ, O_E be the ring of integers of E, $O_{E,S}$ be the localization for some finite subset $S \subset P_{E,f}$, and $A^{(p)}_E$ be the adele ring of E without factors above p. We construct an adelic representation ρ_G in Corollary 1.2 and in the absolutely irreducible case, a common model $G \subset \GL_{n,O_{E,S}}$ of the group schemes $G_\lambda \hookrightarrow \GL_{n,O_\lambda}$ (with respect to some O_λ-lattice in V_λ) for all but finitely many λ in Corollary 1.3.

Corollary 1.2. Let ρ_\bullet be a λ-adic compatible system of $\pi_1(X)$ as above. Suppose G_λ is connected for all λ. Then the following assertions hold.

(i) There exist a connected reductive group G defined over E and an isomorphism $G \times_E E_\lambda \cong G_\lambda$ for each $\lambda \in P_{E,f}^{(p)}$ such that the direct product representation

$$\prod_{\lambda \in P_{E,f}^{(p)}} \rho_\lambda : \pi_1(X) \to \prod_{\lambda \in P_{E,f}^{(p)}} G_\lambda(E_\lambda)$$

used pivotally Serre’s Frobenius tori and Lafforgue’s work \cite{La02} on the Langlands’ conjectures. In case X is a curve, Theorem B (i),(ii),(iii) follow, respectively, from Lemma 6.4, Thm. 1.4, Thm. 6.8 and Cor. 6.9 of the paper.

3In general, we expect a common E-form of the faithful representations $G_\lambda \hookrightarrow \GL_{V_\lambda}$ for all $\lambda \in P_{E,f}^{(p)}$ exists.
Hence, for any \mathbf{G}-valued adelic representation via ϕ_{λ}:

$$\rho^G_{\lambda} : \pi_1(X) \rightarrow \mathbf{G}(\mathbb{A}_E^{(p)}).$$

(ii) If the representations V_{λ} are absolutely irreducible, then there exist a connected reductive subgroup \mathbf{G} of $\text{GL}_{n,E}$ and an isomorphism of representations $(\mathbf{G} \hookrightarrow \text{GL}_{n,E}) \times_E E_{\lambda} \overset{\sim}{\rightarrow} (\mathbf{G}_{\lambda} \hookrightarrow \text{GL}_{V_{\lambda}})$ for each $\lambda \in \mathcal{P}^{(p)}_{E,F}$ such that the direct product representation

$$\prod_{\lambda \in \mathcal{P}^{(p)}_{E,F}} \rho_{\lambda} : \pi_1(X) \rightarrow \prod_{\lambda \in \mathcal{P}^{(p)}_{E,F}} \mathbf{G}_{\lambda}(E_{\lambda}) \subset \prod_{\lambda \in \mathcal{P}^{(p)}_{E,F}} \text{GL}_{n}(E_{\lambda})$$

factors through a \mathbf{G}-valued adelic representation via ϕ_{λ}:

$$\rho^G_{\lambda} : \pi_1(X) \rightarrow \mathbf{G}(\mathbb{A}_E^{(p)}) \subset \text{GL}_{n,E}(\mathbb{A}_E^{(p)}).$$

Corollary 1.3. Let ρ_\bullet be a λ-adic compatible system of $\pi_1(X)$ as above. Suppose V_{λ} is absolutely irreducible and \mathbf{G}_{λ} is connected for all λ. Then there exists a smooth reductive group scheme $\mathcal{G} \subset \text{GL}_{n,\mathcal{O}_{E,S}}$ defined over $\mathcal{O}_{E,S}$ (for some finite S) whose generic fiber is $\mathbf{G} \subset \text{GL}_{n,E}$ such that for all $\lambda \in \mathcal{P}^{(p)}_{E,F}$, the representations $(\mathcal{G} \hookrightarrow \text{GL}_{n,\mathcal{O}_{E,S}}) \times \mathcal{O}_{\lambda}$ and $\mathcal{G}_{\lambda} \hookrightarrow \text{GL}_{n,\mathcal{O}_{\lambda}}$ are isomorphic, where \mathcal{G}_{λ} is the Zariski closure of $\rho_{\lambda}(\pi_1(X))$ in $\text{GL}_{n,\mathcal{O}_{\lambda}}$ after some choice of \mathcal{O}_{λ}-lattice in V_{λ}.

For almost all λ, $\mathbf{G}(\mathcal{O}_{\lambda})$ is a hyperspecial maximal compact subgroup of $\mathbf{G}(E_{\lambda})$ [Ig79, §3.9.1]. Hence, Corollary 1.2(i) implies that for almost all λ, the image $\rho_{\lambda}(\pi_1(X))$ is contained in hyperspecial maximal compact subgroup of $\mathbf{G}_{\lambda}(E_{\lambda})$ (see Proposition 3.6). Next corollary is about the \mathbf{G}-valued compatibility of the system, motivated by the papers [BHKT19, Dr18] on Langlands conjectures. As obtained in [BHKT19] [§6], the results in [Dr18] [§4] ([Ch04] [§6] when X is a curve) imply that the E-compatible system ρ_\bullet (assume connectedness of \mathbf{G}_{λ}), after some finite extension F/E, factors through an F-compatible system ρ^G_{\bullet} of \mathbf{G}^{sp}-representations for some connected split reductive group \mathbf{G}^{sp} defined over F. In some situation, we prove that the extension F/E can be omitted. This shows evidence to the motivic hope in [Dr18] [§6] that the Tannakian categories $\mathcal{T}_\lambda(X)$ of semisimple (weight 0) E_{λ}-representations of $\pi_1(X)$, at least for all λ not extending p, should come from a canonical category $\mathcal{T}(X)$ over E

$$\mathcal{T}(X) \otimes_E E_{\lambda} \overset{\sim}{\rightarrow} \mathcal{T}_\lambda(X)$$

in a compatible way (see [Dr18] Thm. 1.4.1). The definition of an E-compatible system of \mathbf{G}-representations will be recalled in §3.2. Let $\pi_\lambda : \mathbb{A}_E^{(p)} \rightarrow E_{\lambda}$ be the natural surjection to the λ-component.

Corollary 1.4. Let ρ_\bullet be a λ-adic compatible system of $\pi_1(X)$ as above. Suppose V_{λ} is absolutely irreducible and \mathbf{G}_{λ} is connected for all λ. Let $\mathcal{G} \hookrightarrow \text{GL}_{n,E}$ be the E-form and ρ^G_{λ} be the adelic representation in Corollary 1.2(ii). Let $N_{\text{GL}_{m,E}} \mathbf{G}$ the normalizer of \mathbf{G} in $\text{GL}_{n,E}$. Then for each $\lambda \in \mathcal{P}^{(p)}_{E,F}$, there exists (a change of coordinates) $\beta_{\lambda} \in (N_{\text{GL}_{m,E}} \mathbf{G})(E_{\lambda})$ such that the system

$$\rho^G_{\lambda} := \{ \rho^G_{\lambda} : \pi_1(X) \overset{\rho^G_{\lambda}}{\rightarrow} \mathbf{G}(\mathbb{A}_E^{(p)}) \rightarrow (\mathbf{G}(E_{\lambda}) \overset{\beta_{\lambda}}{\rightarrow} \mathbf{G}(E_{\lambda})) \}_{\lambda \in \mathcal{P}^{(p)}_{E,F}}$$

is an E-compatible system of \mathbf{G}-representations when one of the following holds.

(i) The group \mathbf{G}_{λ} is split for all λ.

(ii) The outer automorphism group of the derived group $\mathbf{G}^{\text{der}} \times_E E$ is trivial ($\beta_{\lambda} = \text{id}$).

Hence, for any E-representation $\alpha : \mathbf{G} \rightarrow \text{GL}_{m,E}$, the system of m-dimensional λ-adic semisimple representations $\{ \alpha \circ \rho^G_{\lambda} \}_{\lambda \in \mathcal{P}^{(p)}_{E,F}}$ is also E-compatible.
1.2.1.3. Denote by \(P_{E,p} \) the set of finite places of \(E \) extending \(p \). Let \(\mathbb{Q}_p^k \) be a degree \(k \) unramified extension of \(\mathbb{Q}_p, v \in P_{E,p}, \) and \(E_{v,q} \) the composed fields \(E_v \cdot \mathbb{Q}_p^k \). Let \(\rho_* \) be in Theorem \ref{thm:main}. The semisimple crystalline companion object of \(\rho_* \) at \(v \) (whose existence is conjectured by Deligne [De80, Conjecture 1.2.10]) is an object \(M_v \) in the Tannakian category \(\text{F-Isoc}^1(X) \otimes E_{v,q} \) of overconvergent F-isocrystals of \(X \) with coefficients in \(E_{v,q} \) (see [Ke22a, §2] for definition). Any \(t \in X(\mathbb{F}_p^\ell) \) induces a fiber functor to the category of vector spaces over \(E_{v,q} \), given by the composition

\[
\rho_t : \text{F-Isoc}^1(X) \otimes E_{v,q} \to \text{F-Isoc}^1(x) \otimes E_{v,q} \to \text{Vec}_{E_{v,q}}
\]

where the first one is via the pull-back of \(\rho \) and the second one is the forgetful functor. The image \(V_{t,v} := \rho_t(M_v) \) is an \(n \)-dimensional vector space. The Tannakian group of the subcategory generated by \(M_v \), with respect to \(\rho_t \), can be identified as a reductive subgroup \(G_{t,v} \subset \text{GL}_{V_{t,v}} \cong \text{GL}_{m,E_{v,q}} \) and is called the algebraic monodromy group of \((M_v, \rho_t)\). For different closed points \(t \) and \(t' \) in \(X(\mathbb{F}_p^\ell) \), \(G_{t,v} \) and \(G_{t',v} \) differ by an inner twist [DS82, Theorem 3.2]. Let \(\lambda \) be a finite place of \(E \) not extending \(p \). The absolute root data of \(G_{t,v}^\lambda \) (resp. the component groups of \(G_{t,v} \) and \(G_\lambda \)) are proven to be isomorphic independently by Pal [Pa15] and D’Addezio [D’Ad20] (relying on [La02] and [Ab18]). Moreover, given the closed point \(t \) one can define the Frobenius tori \(T_{t,v} \) in \(G_{t,v} \) (see [D’Ad20 §4.2] and \(T_{t,\lambda} \) in \(G_\lambda \) (up to conjugation, see §3.3). Assume the crystalline companions of \(\rho_* \) exist for all \(v \in P_{E,\ell} \) and certain conditions, we prove an \(E \)-rationality result (existence + uniqueness) for the above algebraic monodromy groups at all finite places of \(E \).

Theorem 1.5. Let \(\rho_* := \{ \rho_\lambda : \pi_1(X) \to \text{GL}(V_\lambda) \}_{\lambda \in P_{E,\ell}} \) be an \(E \)-compatible system of \(n \)-dimensional \(\lambda \)-adic semisimple representations of \(\pi_1(X) \) that are pure of integer weight \(w \) and \(t \in X(\mathbb{F}_p^\ell) \) a closed point of \(X \). Suppose the semisimple crystalline companion object \(M_v \) of \(\rho_* \) exists in \(\text{F-Isoc}^1(X) \otimes E_{v,q} \) for each \(v \in P_{E,\ell} \) and the following conditions hold.

(a) The Frobenius torus \(T_{t,\lambda} \) is a maximal torus of \(G_\lambda \) for some \(\lambda \).
(b) For all \(v \in P_{E,\ell} \), the field \(\mathbb{Q}_p^k \) is contained in \(E_v \).
(c) The number field \(E \) has at least one real place.

Then the following assertions hold.

(i) There exists a chain (of a connected reductive group together with a maximal torus) \(T \subset G \) defined over \(E \) that is the unique common \(E \)-form of the chains \(T_{t,\lambda} \subset G_\lambda^\lambda \) for all \(\lambda \in P_{E,\ell} \) and the chains \(T_{t,v} \subset G_{t,v}^\lambda \) for all \(v \in P_{E,\ell} \).

(ii) If moreover \(G_\lambda^\lambda \to \text{GL}_{V_\lambda} \) is absolutely irreducible for some \(\lambda \), then there exist an inner form \(\text{GL}_{m,D} \) (for some division algebra \(D \) over \(E \)) of \(\text{GL}_{m,E} \) over \(E \) containing a chain of subgroups \(T \subset G \) such that \(T \subset G \to \text{GL}_{m,D} \) is the unique common \(E \)-form of the chain representations \(T_{t,\lambda} \subset G_\lambda \to \text{GL}_{V_\lambda} \) for all \(\lambda \in P_{E,\ell} \) and the chain representations \(T_{t,v} \subset G_{t,v} \to \text{GL}_{V_{t,v}} \) for all \(v \in P_{E,\ell} \). When \(E \) has exactly one real place, we have \(\text{GL}_{m,D} \cong \text{GL}_{n,E} \).

1.2.2. Characteristic zero.

1.2.2.1. It turns out that the strategy for proving Theorem \ref{thm:main} retains in characteristic zero if ordinary representations enter the picture. This part is influenced by the work of Pink [Pi98]. To keep things simple, we only consider the \(\mathbb{Q} \)-compatible system (with exceptional set \(S \)) of \(n \)-dimensional \(\ell \)-adic Galois representations \(V_\ell := H^w(Y_{\overline{K}}, \mathbb{Q}_\ell) \):

\[
\rho_* := \{ \rho_\ell : \text{Gal}(\overline{K}/K) \to \text{GL}(V_\ell) \}_{\ell \in P_{\mathbb{Q}_\ell}}
\]

arising from a smooth projective variety \(Y \) defined over a number field \(K \). The set \(S \) consists of the finite places of \(K \) such that \(Y \) does not have good reduction. Let \(G_f \) be the algebraic monodromy group at \(\ell \). The Grothendieck-Serre semisimplicity conjecture asserts that the representation \(\rho_\ell \) is semisimple (see [La65]),

\[\text{Recent works of Kedlaya [Ke22a, Ke22b] establish the existence of crystalline companion when } X \text{ is smooth.}\]

\[\text{This condition is needed to ensure that the } E \text{-torus in Main Theorem II(d) is anisotropic at some place } v \text{ of } E.\]
which is equivalent to the algebraic group G_ℓ^p being reductive. Choose coordinates for V_ℓ and identify G_ℓ as a subgroup of $\text{GL}_{n,\mathbb{Q}_\ell}$ for all ℓ. Embed \mathbb{Q}_ℓ into \mathbb{C} for all ℓ.

Let $v \in \mathcal{P}_K \setminus S$ with $p := p_v$. Let K_v be the completion of K at v, \mathcal{O}_v the ring of integers, and Y_v the special fiber of a smooth model of Y over \mathcal{O}_v. The local representation $V_p = H^w(Y_{K_v}/\mathbb{Q}_p)$ of $\text{Gal}(K_v/K_v)$ is crystalline and corresponds, via a mysterious functor of Fontaine [Fo79, Fo82, Fo83], to the crystalline cohomology $M_v := H^w(Y_v/\mathcal{O}_v) \otimes_{\mathcal{O}_v} K_v$ [FM87, Fa89]. The local representation V_p is said to be ordinary if the Newton and Hodge polygons of M_v coincide [Ma72]. This notion originates from ordinary abelian varieties defined over finite fields. It is conjectured by Serre that if K is large enough, then the set of places v in \mathcal{P}_K for which the local representations V_p are ordinary is of Dirichlet density one, for abelian varieties of low dimensions, see Serre [Se98], Ogus [O82], Noot [No95, No00], Tankeev [Ta99]; for abelian varieties in general, see Pink [Pi98]; and for K3 surfaces, see Bogomolov-Zarhin [BZ09].

Theorem 1.6. Let ρ_\bullet be the \mathbb{Q}-compatible system $[3]$ arising from the ℓ-adic cohomology (of degree w) of a smooth projective variety Y defined over a number field K. Suppose G_ℓ is connected for all ℓ and the following conditions hold.

(a) (Ordinariness): The set of places v in \mathcal{P}_K for which the local representations V_p of $\text{Gal}(K_v/K_v)$ are ordinary is of positive Dirichlet density.

(b) (ℓ-independence absolutely): There exists a connected reductive subgroup G_C of $\text{GL}_{n,\mathbb{C}}$ such that the representations $G_C \hookrightarrow \text{GL}_{n,\mathbb{C}}$ and $(G_\ell \hookrightarrow \text{GL}_{n,\mathbb{Q}_\ell}) \times_{\mathbb{Q}_\ell} \mathbb{C}$ are isomorphic for all ℓ.

(c) (Invariance of roots): Let T^\ssn_C be a maximal torus of the derived group G^\ssn_C. Then the normalizer $N_{G^\ssn_C}(T^\ssn_C)$ is invariant on the roots of G^\ssn_C with respect to T^\ssn_C.

Then the following assertions hold.

(i) There exists a connected reductive group G defined over \mathbb{Q} such that $G \times_{\mathbb{Q}} \mathbb{Q}_\ell \cong G_\ell$ for all ℓ. In particular, G_ℓ is unramified for $\ell > 0$.

(ii) If moreover G_C is irreducible on \mathbb{C}^n, then there exists a connected reductive subgroup G of $\text{GL}_{n,\mathbb{Q}}$ such that $G \hookrightarrow \text{GL}_{n,\mathbb{Q}}$ is a common \mathbb{Q}-form of the representations $G_\ell \hookrightarrow \text{GL}_{n,\mathbb{Q}_\ell}$ for all ℓ.

Remark 1.7. The conditions (a), (b), (c) are to be compared with Theorem [B](i), (ii), (iii). Since Theorem [A](i) only gives a common \mathbb{Q}-form of formal characters for all but one ℓ, the condition (a) is needed if one aims at a \mathbb{Q}-common form for all ℓ. Given [A](a) and [B](i), then [A](b) and [B](ii) are easily seen to be equivalent ($E = \mathbb{Q}$). The rigidity assertion [B](iii) is not known to hold in characteristic zero, and is now replaced with the invariance of roots condition [A](c), which holds if G^\ssn_C is of certain root system [Hu20 Thm. A1, A2].

Remark 1.8. If ρ_ℓ is abelian at one ℓ, then the rationality of $G_\ell \hookrightarrow \text{GL}_{n,\mathbb{Q}_\ell}$ for all ℓ is obtained by Serre via Serre group S_m [Se98].

1.2.2. Suppose G_ℓ is connected reductive for all $\ell \in \mathcal{P}_Q \setminus S$.

Hypothesis H. For $\ell > 0$, the image of ρ_ℓ is contained in a hyperspecial maximal compact subgroup of $G_\ell(\mathbb{Q}_\ell)$.

This hypothesis follows from a Galois maximality conjecture of Larsen [Lar95] (see Theorem [3.9]), which has been established for type A representations [HL16], abelian varieties and hyper-Kähler varieties (degree $w = 2$) [HL20]. Further assuming the hypothesis, we obtain the following corollaries which are analogous to Corollaries [1.2] and [1.3].

Corollary 1.9. Let ρ_\bullet be an ℓ-adic compatible system of $\text{Gal}(\overline{K}/K)$ as above. Suppose G_ℓ is connected for all ℓ and Hypothesis H holds. Then the following assertions hold.

(i) There exist a connected reductive group G defined over \mathbb{Q} and an isomorphism $G \times_{\mathbb{Q}} \mathbb{Q}_\ell \overset{\phi_\ell}{\rightarrow} G_\ell$ for each $\ell \in \mathcal{P}_Q \setminus S$ such that the direct product representation

$$\prod_{\ell \in \mathcal{P}_Q \setminus S} \rho_\ell : \text{Gal}(\overline{K}/K) \rightarrow \prod_{\ell \in \mathcal{P}_Q \setminus S} G_\ell(\mathbb{Q}_\ell)$$

is contained in a hyperspecial maximal compact subgroup of $G_\ell(\mathbb{Q}_\ell)$ for all ℓ. Embed \mathbb{Q}_ℓ into \mathbb{C} for all ℓ.
facors through a \(G \)-valued adelic representation via \(\phi \):
\[
\rho^G_h : \text{Gal}(\overline{K}/K) \to G(\mathbb{A}_\mathbb{Q}).
\]

(ii) If the representations \(V_\ell \) are absolutely irreducible, then there exist a connected reductive subgroup \(G \subset \text{GL}_{n,\mathbb{Q}} \) and an isomorphism of representations \((G \hookrightarrow \text{GL}_{n,\mathbb{Q}}) \times \mathbb{Q}_\ell \cong (G_\ell \hookrightarrow \text{GL}_{V_\ell})\) for each \(\ell \in \mathcal{P}_{\mathbb{Q},f} \) such that the direct product representation
\[
\prod_{\ell \in \mathcal{P}_{\mathbb{Q},f}} \rho_\ell : \text{Gal}(\overline{K}/K) \to \prod_{\ell \in \mathcal{P}_{\mathbb{Q},f}} G_\ell(\mathbb{Q}_\ell) \subset \prod_{\ell \in \mathcal{P}_{\mathbb{Q},f}} \text{GL}_n(\mathbb{Q}_\ell)
\]

factors through a \(G \)-valued adelic representation via \(\phi_\ell \):
\[
\rho^G_h : \text{Gal}(\overline{K}/K) \to G(\mathbb{A}_\mathbb{Q}) \subset \text{GL}_{n,\mathbb{Q}}(\mathbb{A}_\mathbb{Q}).
\]

Corollary 1.10. Let \(\rho_* \) be an \(\ell \)-adic compatible system of \(\text{Gal}(\overline{K}/K) \) as above. Suppose \(V_\ell \) is absolutely irreducible, \(G_\ell \) is connected for all \(\ell \), and Hypothesis \(H \) holds. Then there exists a smooth reductive group scheme \(G \subset \text{GL}_{n,\mathbb{Z}_\ell} \) defined over \(\mathbb{Z}_\ell \) (for some finite \(S \subset \mathcal{P}_{\mathbb{Q},f} \)) whose generic fiber is \(G \subset \text{GL}_{n,\mathbb{Q}} \) such that for all \(\ell \in \mathcal{P}_{\mathbb{Q},f}, S \), the representations \((G \hookrightarrow \text{GL}_{n,\mathbb{Z}_\ell}) \times \mathbb{Z}_\ell \) and \(G_\ell \hookrightarrow \text{GL}_{n,\mathbb{Z}_\ell} \) are isomorphic, where \(G_\ell \) is the Zariski closure of \(\rho_\ell(\text{Gal}(\overline{K}/K)) \) in \(\text{GL}_{n,\mathbb{Z}_\ell} \) after some choice of \(\mathbb{Z}_\ell \)-lattice in \(V_\ell \).

1.2.2.3. Suppose \(Y = A \) is an abelian variety defined over \(K \) of dimension \(g \) and \(w = 1 \). We say that \(A \) has ordinary reduction at \(v \) if the local representation \(V_p \) of \(\text{Gal}(\overline{K}_v/K_v) \) is ordinary. The following results are due to Pink.

Theorem C. [Pi08 Thm. 5.13(a),(c),(d), Thm. 7.1] Let \(A \) be an abelian variety defined over a number field \(K \) with \(\text{End}(A_K) = \mathbb{Z} \) and suppose \(G_\ell \) is connected for all \(\ell \). There exists a connected reductive subgroup \(G \) of \(\text{GL}_{2g,\mathbb{Q}} \) such that the following assertions hold.

(i) \((G \hookrightarrow \text{GL}_{2g,\mathbb{Q}}) \times \mathbb{Q}_\ell \) is isomorphic to \(G_\ell \hookrightarrow \text{GL}_{V_\ell} \) for all \(\ell \) in set \(\mathcal{L} \) of primes of Dirichlet density one.

(ii) The derived group \(\text{G}^{\text{der}} \) is \(\mathbb{Q} \)-simple.

(iii) If the root system of \(G \) is determined uniquely by its formal character, \(\text{i.e.}, \) if \(G \) does not have an ambiguous factor (in Theorem \(\mathbb{C} \)), then we can take \(\mathcal{L} \) in (i) to contain all but finitely many primes.

(iv) If \(G \times \mathbb{Q} \) does not have any type \(C_r \) simple factors with \(r \geq 3 \), then the abelian variety \(A \) has ordinary reduction at a Dirichlet density one set of places \(v \) of \(K \).

By the Tate conjecture of abelian varieties proven by Faltings [Fa83] and \(\text{End}(A_K) = \mathbb{Z} \), the representations \(V_\ell \) are absolutely irreducible. The \(\mathbb{Q}_\ell \)-representation \(V_\ell = H^1(A_K, \mathbb{Q}_\ell) \) has a natural \(\mathbb{Z}_\ell \)-model \(H^1(A_K, \mathbb{Z}_\ell) \). Consider the representation \(\text{Gal}(\overline{K}/K) \to \text{GL}(H^1(A_K, \mathbb{Z}_\ell)) \) and let \(G_\ell \) be the Zariski closure of the image in \(\text{GL}(H^1(A_K, \mathbb{Z}_\ell)) \). Combining the previous results, we obtain Theorem 1.11 below which extends Theorem \(\mathbb{C} \)(iii) to all \(\ell \) assuming ordinairiness.

Theorem 1.11. Let \(A \) be an abelian variety defined over a number field \(K \) with \(\text{End}(A_K) = \mathbb{Z} \) and suppose \(G_\ell \) is connected for all \(\ell \) and the following conditions hold.

(a) The set of places \(v \) in \(\mathcal{P}_{K,f} \) for which the local representations \(V_p \) of \(\text{Gal}(\overline{K}_v/K_v) \) are ordinary is of positive Dirichlet density.

(b) The root system of \(G_\ell \) is determined uniquely by its formal character.

Then there exists a smooth group subscheme \(G \subset \text{GL}_{2g,\mathbb{Z}_\ell} \) over \(\mathbb{Z}_\ell \) (for some finite \(S \subset \mathcal{P}_{\mathbb{Q},f} \)) with generic fiber \(G \subset \text{GL}_{2g,\mathbb{Q}} \) and an isomorphism of representations \((G \hookrightarrow \text{GL}_{2g,\mathbb{Q}}) \times \mathbb{Q}_\ell \cong (G_\ell \hookrightarrow \text{GL}_{V_\ell}) \) for each \(\ell \in \mathcal{P}_{\mathbb{Q},f} \) such that the direct product representation
\[
\prod_{\ell \in \mathcal{P}_{\mathbb{Q},f}} \rho_\ell : \text{Gal}(\overline{K}/K) \to \prod_{\ell \in \mathcal{P}_{\mathbb{Q},f}} G_\ell(\mathbb{Q}_\ell) \subset \prod_{\ell \in \mathcal{P}_{\mathbb{Q},f}} \text{GL}_{2g}(\mathbb{Q}_\ell)
\]

factors through a \(G \)-valued adelic representation via \(\phi_\ell \):
\[
\rho^G_h : \text{Gal}(\overline{K}/K) \to G(\mathbb{A}_\mathbb{Q}) \subset \text{GL}_{2g,\mathbb{Q}}(\mathbb{A}_\mathbb{Q}).
\]

Moreover, for \(\ell \gg 0 \), the representations \((G \hookrightarrow \text{GL}_{2g,\mathbb{Z}_\ell}) \times \mathbb{Q}_\ell \) and \(G_\ell \hookrightarrow \text{GL}_{H^1(A_K, \mathbb{Z}_\ell)} \) are isomorphic.
Remark 1.12. By Theorem [G iv], Theorem [E] and the fact that for every \(\ell \), every simple factor of \(G_\ell \times \mathbb{Q}_\ell \) is of type \(A, B, C, \) or \(D \) [P, Cor. 5.11], the conditions \([1.11(a),(b)]\) hold if for some prime \(\ell' \), every simple factor of \(G_{\ell'} \times \mathbb{Q}_{\ell'} \) is of type \(A_r \) with \(r > 1 \).

1.3. The structure of the paper. The paper is structured on the purely algebraic main theorems \([I]\) and \([II]\) in next section. Roughly speaking, it states that if a family of connected reductive algebraic subgroups \(G_\lambda \hookrightarrow \text{GL}_{n,E_\lambda} \) indexed by \(\lambda \in P_{E,f}^{(p)} \) (resp. \(P_{E,f} \)) satisfies some conditions, then there exist a common \(E \)-form of the family of the subgroups (resp. the representations). The results in \(\S 1.2 \) are established in two big steps. Firstly, we state and prove the main theorems in \(\S 2 \) which require different techniques from representation theory and Galois cohomology. The notation and diagrams we developed in \(\S 2 \) are very much influenced by the work [In18]. A crucial step to the existence of a common \(E \)-form in the main theorem is based on the local-global aspects of Galois cohomology \(\S 2.5 \). Secondly, we prove Theorems \([I]\) \([I.3]\) and \([I.6]\) in \(\S 3 \) by checking that the conditions of the main theorems are satisfied for the corresponding family of algebraic monodromy groups of the \(E \)-compatible systems and applying the main theorems. For the characteristic \(p \) case, to prove Theorem \([I]\) (resp. Theorem \([I.5]\)) by main theorem \([I]\) (resp. \([II]\)), the required conditions are ensured by Theorem \([E]\) (resp. recent work [D’Ad20], see Theorem \([B]\)). The characteristic zero case is more involved. It requires the results of formal bi-character (\(\S 2.2c' \)-bi) and invariance of roots to compensate for the lack of the rigidity condition \([B] \) \(iii \)). The information at the real place (Proposition \([3.3]\)) and a finite place (ordinary representation \(V_p \)) are also needed. The other results in \(\S 1.2 \) will also be established in \(\S 3 \). The statements that we quote are named using alphabets (e.g., Theorem \([A]\)) and the statements that we prove are named using numbers (e.g., Theorem \([I]\)).

2. Main theorems

2.1. Statements.

Main theorem I. Suppose a connected reductive subgroup \(G_\lambda \subset \text{GL}_{n,E_\lambda} \) is given for each \(\lambda \in P_{E,f}^{(p)} \) such that the following conditions hold.

(a) (Common \(E \)-form of formal characters): There exists a subtorus \(T \) of \(\text{GL}_{n,E} \) such that for all \(\lambda \in P_{E,f}^{(p)} \), \(T_\lambda := T \times_E E_\lambda \) is a maximal torus of \(G_\lambda \).

(b) (\(\lambda \)-independence absolutely): There exists a chain of subgroups \(T^{sp} \subset G^{sp} \subset \text{GL}_{n,E} \) such that \(G^{sp} \) is a connected split reductive, \(T^{sp} \) is a split maximal torus of \(G^{sp} \), and for all \(\lambda \in P_{E,f}^{(p)} \), if \(\overline{E}_\lambda \) is a completion of \(E \) extending \(\lambda \) on \(E \), then there exists an isomorphism of chain representations:

\[f^{sp}_{\lambda} : (T^{sp} \subset G^{sp} \hookrightarrow \text{GL}_{n,E^{sp}} \times_E \overline{E}_\lambda) \cong (T_\lambda \subset G_\lambda \hookrightarrow \text{GL}_{n,E_\lambda} \times_E \overline{E}_\lambda). \]

(c) (Rigidity): The isomorphisms \(f^{sp}_{\lambda} \) in (b) can be chosen such that the restriction isomorphisms \(f^{sp}_{\lambda} \) :

\[T^{sp} \times_E \overline{E}_\lambda \rightarrow T_\lambda \times_E \overline{E}_\lambda \] admit a common \(E \)-form \(f_{\overline{E}} : T^{sp} \times_E \overline{E} \rightarrow T \times_E \overline{E} \) for all \(\lambda \in P_{E,f}^{(p)} \) and \(\overline{E}_\lambda \).

(d) (Quasi-split): The groups \(G_\lambda \) are quasi-split for all but finitely many \(\lambda \in P_{E,f}^{(p)} \).

Then the following assertions hold:

(i) There exists a connected reductive group \(G \) defined over \(E \) such that \(G \times_E \overline{E}_\lambda \cong G_\lambda \) for all \(\lambda \in P_{E,f}^{(p)} \). In particular, \(G_\lambda \) is unramified for all but finitely many \(\lambda \).

(ii) If moreover \(G^{sp} \hookrightarrow \text{GL}_{n,E} \) is irreducible, then there exists a connected reductive subgroup \(G \) of \(\text{GL}_{n,E} \) such that \(G \hookrightarrow \text{GL}_{n,E_\lambda} \) is a common \(E \)-form of the representations \(G_\lambda \hookrightarrow \text{GL}_{n,E_\lambda} \) for all \(\lambda \in P_{E,f}^{(p)} \).

For any \(E \)-algebra \(B \), define \(GL_{m,B} \) to be the affine algebraic group over \(E \) such that for any \(E \)-algebra \(C \) the group of \(C \)-points is \(GL_{m,B} \).

Main theorem II. Suppose a connected reductive subgroup \(G_\lambda \subset \text{GL}_{n,E_\lambda} \) is given for each \(\lambda \in P_{E,f} \) such that the following conditions hold.

(a) (Common \(E \)-form of formal characters): There exists a subtorus \(T \) of \(\text{GL}_{n,E} \) such that for all \(\lambda \in P_{E,f} \), \(T_\lambda := T \times_E G_\lambda \) is a maximal torus of \(G_\lambda \).
(b) (λ-independence absolutely): There exists a chain of subgroups $T^p \subset G^p \subset GL_{n,E}$ such that G^p is connected split reductive, T^p is a split maximal torus of G^p, and for all $\lambda \in \mathcal{P}_{E,f}$, if \mathcal{F}_λ is a completion of E extending λ on E, then there exists an isomorphism of chain representations:

$$f_{\mathcal{F}_\lambda} : (T^p \subset G^p \rightarrow GL_{n,E}) \times_E \mathcal{F}_\lambda \rightarrow (T_\lambda \subset G_\lambda \rightarrow GL_{n,E_\lambda}) \times_{E_\lambda} \mathcal{F}_\lambda.$$

(c) (Rigidity): The isomorphisms $f_{\mathcal{F}_\lambda}$ in (b) can be chosen such that the restriction isomorphisms $f_{\mathcal{F}_\lambda} : T^p \times_E \mathcal{F}_\lambda \rightarrow T_\lambda \times_{E_\lambda} \mathcal{F}_\lambda$ admit a common E-form $f_{\mathcal{F}} : T^p \times_E \mathcal{F} \rightarrow T \times_E \mathcal{F}$ for all $\lambda \in \mathcal{P}_{E,f}$ and \mathcal{F}_λ.

(d) (Anisotropic torus): The twisted E-torus $\mu(T^p/C)$ is anisotropic at some place of E and all real places of E, where C is the center of G^p and $\mu \in Z^1(E, Aut_E(T^p))$ the cocycle defined by $f_{\mathcal{F}}$ in (c).

Then the following assertions hold.

(i) There exists a unique connected reductive group G defined over E containing T such that $(T \subset G) \times_E E_\lambda \cong (T_\lambda \subset G_\lambda)$ for all $\lambda \in \mathcal{P}_{E,f}$. In particular, G_λ is unramified for all but finitely many λ.

(ii) If moreover $G^p \rightarrow GL_{n,E}$ is irreducible, then there exist an inner form $GL_{n,D}$ (for some division algebra D over E) of $GL_{n,E}$ over E containing a chain of subgroups $T \subset G$ such that $T \subset G \rightarrow GL_{n,D}$ is a common E-form of the chain representations $T_\lambda \subset G_\lambda \rightarrow GL_{n,E_\lambda}$ for all $\lambda \in \mathcal{P}_{E,f}$. Such a chain of E-groups is unique.

Remark 2.1. There are similarities and differences between the two main theorems.

(1) The index set for main theorem I is $\mathcal{P}_{E,f}$ and for main theorem II is $\mathcal{P}_{E,f}$.

(2) Conditions (a), (b), (c) of the two main theorems are identical except for the index sets.

(3) If we embed \mathcal{F}_λ into C for all λ, then condition (b) is equivalent to asking that the C-representation $(G_\lambda \rightarrow GL_{n,E_\lambda}) \times_{E_\lambda} C$ is independent of λ.

(4) The rigidity condition (c) rigidifies the isomorphisms $f_{\mathcal{F}_\lambda}$ in (b) by requiring them to be extensions of an E-isomorphism $T^p \times_E \mathcal{F} \rightarrow T \times_E \mathcal{F}$ where T^p (resp. T) is the torus in (b) (resp. (a)).

(5) An F-torus T is said to be anisotropic if it does not have non-trivial F-character. If F is a number field, T is said to be anisotropic at a place λ of F if it is anisotropic over F_λ. The twisted E-torus $\mu(T^p/C)$ in main theorem II will be defined in 2.6.1

(6) The conclusion of main theorem II is stronger than that of main theorem I as the E-torus T in condition (a) can be found in the common E-form G in main theorem I. Moreover, if E has only one real place, then the inner form $GL_{n,D}$ in main theorem II is equal to $GL_{n,E}$ by class field theory.

2.2. The rigidity condition. The rigidity condition (c) is important for the construction of the E-form G in the main theorems. It does not come for free. In this section, we would like to prove that the rigidity condition follows from conditions (a), (b) and (c') below.

(c') Both the following hold.

(c'-bi)= (Common E-form of formal bi-characters): There exists a subtorus T^{ss} of T such that $T^{ss} \times_E E_\lambda$ is a maximal torus of the derived group G^{der}_λ of G_λ for all $\lambda \in \mathcal{P}_{E,f}$.

(c'-inv)= (Invariance of roots): The normalizer $N_{GL_{n,E}}(T^{sp})$ is invariant on the roots of the derived group $(G^{sp})^{der}$ with respect to the maximal torus $T^{sp} := T^{sp} \cap (G^{sp})^{der}$.

2.2.1. Formal character and bi-character. Let F be a field and G a connected reductive subgroup of $GL_{n,F}$. If T is a maximal torus of G, then $T^{ss} := T \cap G^{der}$ is a maximal torus of the derived group G^{der} of G.

Definition 2.2. [Hurl Def. 2.2, 2.3]

(i) The inclusion $T \subset GL_{n,F}$ is said to be a formal character of $G \subset GL_{n,F}$.

(ii) The chain $T^{ss} \subset T \subset GL_{n,F}$ is said to be a formal bi-character of $G \subset GL_{n,F}$.

Remark 2.3. Given a chain of subtori $T^{ss} \subset T \subset GL_{n,F}$, it is a formal bi-character of $G \subset GL_{n,F}$ if and only if $T \subset GL_{n,F}$ is a formal character of $G \subset GL_{n,F}$ and $T^{ss} \subset GL_{n,F}$ is a formal character of $G^{der} \subset GL_{n,F}$. It is clear that (c'-bi) together with (a) in the main theorems mean that there exist a chain of subtori, denoted $T^{ss} \subset T \subset GL_{n,F}$, such that

$$(T^{ss} \subset T \subset GL_{n,F}) \times_E E_\lambda$$
Proposition 2.4. If conditions (a) and (b) in the main theorems hold and \(G^{sp} \) is irreducible on \(E^n \), then (c'-bi) holds.

Proof. Let \(T \subset GL_n,E \) be in (a) and let \(T^{ss} \) be the identity component of the kernel of the determinant map \(T \rightarrow GL_n,E \rightarrow GL_m \). Since \(G_\lambda \) is connected and the representation \(G_\lambda \subset GL_n,E \) is absolutely irreducible for all \(\lambda \) by the assumptions, \(G_\lambda \) is either \(G^{der}_\lambda \) or \(G^{der}_\lambda \cdot G \) by Schur’s lemma. Hence by counting dimension, \(T^{ss} \times F \cdot E \lambda \) is a maximal torus of \(G^{der}_\lambda \) for all \(\lambda \). \(\square \)

2.2.2. Invariance of roots. Let \(F \) be a field of characteristic zero and \(G \) a connected split semisimple subgroup of \(GL_n,F \). Fix a split maximal torus \(T \) of \(G \) and denote by \(\chi \) the character group of \(T \). Let \(R \subset X \) be the set of roots of \(G \) with respect to \(T \). Let \(N := N_{GL_n,F}(T) \) be the normalizer of \(T \) in \(GL_n,F \). Since \(N \) acts on \(T \), it also acts on \(X \). We would like to know when \(R \) is invariant under \(N \). It is easy to see that this invariance of roots condition (i.e., \(N \cdot R = R \)) is independent of the choice of the maximal torus \(T \) and is invariant under field extension. So, we take \(F = \mathbb{C} \) for simplicity. If \(H \) is an almost simple factor of \(G \), then by the Cartan-Killing classification the root system of \(H \) is one of the following: \(A_r \), \(B_r \), \(C_r \), \(D_r \), \(E_r \), \(F_r \), \(G_r \). We also use the convention that \(C_2 = B_2, D_2 = A_1^2 \), and \(D_3 = A_4 \).

2.2.2.1. Here are some examples for the invariance of roots condition.

Theorem D. [Hu18] Thm. 3.10, [Hu20] Thm. A2 The following \(\mathbb{C} \)-connected semisimple groups \(G \) satisfy the invariance of roots condition for all representations \(G \subset GL_n,\mathbb{C} \).

(a) (Hypothesis A): \(G \) has at most one \(A_1 \) almost simple factor and if \(H \) is an almost simple factor of \(G \), then \(H \) is of type \(A_r \) for some \(r \in \mathbb{N} \setminus \{1, 2, 3, 5, 7, 8\} \).

(b) (Almost simple): \(G \) is almost simple of type different from \(\{A_7, A_8, B_4, D_8\} \).

Suppose \(G \) is irreducible on the ambient space \(\mathbb{C}^n \). If \(G_1 \) is a connected normal subgroup of \(G \), then there exists an unique complementary connected normal subgroup \(G_2 \) of \(G \) such that the natural map \(G_1 \times G_2 \rightarrow G \) is an isogeny of semisimple groups. Moreover, there exist unique irreducible representations \(V_1 \) and \(V_2 \) of respectively \(G_1 \) and \(G_2 \) such that the composition representation \(G_1 \times G_2 \rightarrow G \rightarrow GL_n,\mathbb{C} \) is equal to the tensor product representation \((G_1 \times G_2, V_1 \otimes V_2) \) (see [FH91]). We say that the representation \((G_1, V_1) \) is a factor of the representation \((G, \mathbb{C}^n) \).

Theorem E. (by LP90, Thm. 4) If \(G, G' \subset GL_n,\mathbb{C} \) are two connected semisimple subgroups with the same formal character \(T \subset GL_n,\mathbb{C} \) and are both irreducible on the ambient space \(\mathbb{C}^n \). Then the roots \(R \) and \(R' \) of respectively \(G \) and \(G' \) (with respect to \(T \)) are identical in \(X \) and the two representations are isomorphic unless one of the following conditions holds.

(a) For \(r_1, r_2, r_3 \in \mathbb{N} \) such that \(r_1 + r_2 = r_3 \), the spin representation of \(B_r \) is a factor of \((G, \mathbb{C}^n) \) and the tensor product of the spin representations of \(B_{r_j} \) for all \(1 \leq j \leq m \) is a factor of \((G', \mathbb{C}^n) \).

(b) For \(1 \leq k \leq r-1 \) and \(r \geq 2 \), the representation of \(C_r \) (resp. \(D_r \)) with highest weight \((k, k-1, \ldots, 2, 1, 0) \) is a factor of \((G, \mathbb{C}^n) \) (resp. \((G', \mathbb{C}^n) \)).

(c) The unique dimension 27 irreducible representation of \(A_2 \) (resp. \(G_2 \)) is a factor of \((G, \mathbb{C}^n) \) (resp. \((G', \mathbb{C}^n) \)).

(d) Pick two out of the three unique dimension 4096 = 2^{12} irreducible representations of \(C_4, D_4, \) and \(F_4 \). Then one is a factor of \((G, \mathbb{C}^n) \) and the other one is a factor of \((G', \mathbb{C}^n) \).

The following corollary follows directly by taking \(G' = gGg^{-1} \), where \(g \in N \).

Corollary 2.5. If \(G \subset GL_n,\mathbb{C} \) is a connected semisimple subgroup that is irreducible on the ambient space \(\mathbb{C}^n \), then the invariance of roots condition holds if the following conditions are satisfied.

(a) For \(r_1, r_2, r_3 \in \mathbb{N} \) such that \(r_1 + r_2 = r_3 \), the spin representation of \(B_r \) and the tensor product of the spin representations of \(B_{r_j} \) for all \(1 \leq j \leq m \) are not factors of \((G, \mathbb{C}^n) \).

(b) For \(1 \leq k \leq r-1 \) and \(r \geq 2 \), the representations of \(C_r \) and \(D_r \) with highest weight \((k, k-1, \ldots, 2, 1, 0) \) are not factors of \((G, \mathbb{C}^n) \).

(c) The unique dimension 27 irreducible representations of \(A_2 \) and \(G_2 \) are not factors of \((G, \mathbb{C}^n) \).
Any two of the unique dimension 4096 irreducible representations of C_4, D_4, and F_4 are not both factors of (G, C^n).

2.2.2.2. Inspired by Theorem 2.6, we give more examples for the invariance of roots condition.

Theorem 2.6. Suppose $G \subset \text{GL}_{n,\mathbb{C}}$ is a connected adjoint semisimple subgroup that satisfies the following Lie type assumptions:

(a) G does not have a factor of type B_r ($r \geq 2$).
(b) If G has a factor of type C_3, then it cannot have a factor of type A_3.
(c) If G has a factor of type C_r, then it cannot have a factor of type D_r ($r \geq 4$).
(d) If G has a factor of type G_2, then it cannot have a factor of type A_2.

Then the invariance of roots condition holds.

Proof. Let G_1, \ldots, G_k be the almost simple factors of G. Then $T_i = G_i \cap T$ is a maximal torus of G_i for all i. Let X_i be the character group of T_i and R_i the roots of G_i with respect to T_i. Let $\Phi \subset X$ (resp. $\Phi_i \subset X_i$) be the subgroup (root lattice) generated by R (resp. R_i). One can impose a metric on the real vector space $X_R := X \otimes \mathbb{R}$ such that (R, X_R) is a root system, the normalizer N is isometric on X_R, and the decomposition

$$R = \bigoplus_{i=1}^{k} R_i \subset \bigoplus_{i=1}^{k} \Phi_i \otimes \mathbb{R} = \bigoplus_{i=1}^{k} X_i \otimes \mathbb{R} = X_R$$

is orthogonal (see e.g., [Hu20 Appendix A]). The root subsystem $(R_i, X_i, R := X_i \otimes \mathbb{R})$ is irreducible for all i. The lemma below is needed.

Lemma 2.7. Suppose $G \subset \text{GL}_{n,\mathbb{C}}$ is a connected semisimple subgroup that satisfies the assumptions of Theorem 2.6. The following assertions are equivalent.

(i) R is invariant under N.
(ii) If $g \in N$, then $g \cdot R \subset \Phi$.
(iii) If $g \in N$, then g induces an automorphism of Φ.

Proof. (i) \Rightarrow (ii): trivial.
(ii) \Rightarrow (iii): (ii) is equivalent to $N \cdot \Phi \subset \Phi$. Since g induces an automorphism of X and X/Φ is finite, $g \cdot \Phi \subset \Phi$ implies that $g \cdot \Phi = \Phi$.
(iii) \Rightarrow (i): The set of non-zero elements of Φ_i with the shortest length is equal to the set of short roots R_i^0 of R_i [LP90 §4 Lemma], which also spans $X_i \otimes \mathbb{R}$. The decomposition in (4) is orthogonal and $\Phi = \oplus_{i=1}^{k} \Phi_i$ in X_R. Since g is isometric on X_R and induces an automorphism of Φ by (iii), g permutes the union $R_i^0 \cup R_2^0 \cup \cdots \cup R_m^0$. Note that $R_i^0 = R_i$ if R_i is of type A, D, E and the following [LP90 p.396]:

$$B_r^0 = A_1^r \ (r \geq 2), \ C_3^0 = A_3, \ C_r^0 = D_r \ (r \geq 4), \ F_4^0 = D_4, \ G_2 = A_2.$$

These facts and assumption (a) imply that R_i^0 remains irreducible for all i. Then the orthogonality of the decomposition (4) and the fact that g is isometric on X_R imply that g permutes the set $\{R_1^0, R_2^0, \ldots, R_m^0\}$. Since g is isometric on X_R, the Lie type assumptions (a)–(e) and the above facts about short roots imply that R_i and R_j ($1 \leq i, j \leq m$) are of the same type if $g \cdot R_i^0 = R_j^0$. By observing how the R_i^0 generate R_i [GOV94 Table 1], we obtain $g \cdot R_i = R_j$. Hence, g actually permutes the union of roots $R_1 \cup R_2 \cup \cdots \cup R_m$. By the orthogonality of the decomposition (4), the fact that g is isometric on X_R, and induction, we conclude that g permutes R.

Back to the theorem, we have $\Phi = X$ because G is adjoint. Since X is invariant under N by definition, Φ is invariant under N. Therefore, R is invariant under N by the lemma.
2.2.3. Conditions for rigidity.

Proposition 2.8. If conditions (a), (b) in the main theorem(s) and (c') hold, then condition (c) in the main theorem(s) also holds.

Proof. By (a) and (c'-bi), we have a chain of subtori $T^{ss} \subset T \subset \text{GL}_{n,E}$ such that for all λ,

$$T^\lambda \subset T \subset \text{GL}_{n,E} := (T^{ss} \subset T \subset \text{GL}_{n,E}) \cong E \subset \text{GL}_{n,E}$$

is a formal bi-character of $G_\lambda \subset \text{GL}_{n,E}$. By (b), we have the field extensions diagram

$$\begin{array}{c}
\mathbb{E} \\
\downarrow \quad \downarrow \\
\mathbb{F} & \quad \mathbb{E}
\end{array}$$

and a chain $T^{sp} \subset G^{sp}$ (over E) such that for all λ, there exists an \mathbb{E}_λ-isomorphism of representations $f_{\mathbb{E}_\lambda}$ taking $T^{sp} \subset G^{sp}$ to $T_\lambda \subset G_\lambda$ (omitting the extension field for simplicity). This implies that $f_{\mathbb{E}_\lambda}$ maps $T^{ss} := T^{sp} \cap (G^{sp})^{\text{der}}$ to $T^{\lambda} = T_\lambda \cap G_\lambda^{\text{der}}$ for all λ. Hence, we conclude that for all λ, the two chains

$$(5) \quad T^{ss} \subset T^{sp} \subset G^{sp} \quad \text{and} \quad T^{sp} \subset T^{ss} \subset T$$

are conjugate in $\text{GL}_n(\mathbb{E}_\lambda)$. In particular, the two E-chains

$$(6) \quad T^{sp} \subset T^{sp} \quad \text{and} \quad T^{ss} \subset T$$

are conjugate in $\text{GL}_n(\mathbb{E})$. So we choose $M \in \text{GL}_n(\mathbb{E})$ such that

$$(7) \quad T^{sp} \subset T^{sp} = M(T^{ss} \subset T)M^{-1}.$$

To finish the proof, it suffices to find for all λ, a matrix $B_\lambda \in \text{GL}_n(\mathbb{E}_\lambda)$, such that the conjugation map by B_λ takes $M G_\lambda M^{-1}$ to G^{sp} and is identity on $T^{sp} = M T M^{-1}$. Such B_λ exists. Indeed, there exists $A_\lambda \in \text{GL}_n(\mathbb{E}_\lambda)$ such that

$$(8) \quad T^{sp} \subset T^{sp} \subset G^{sp} = A_\lambda M(T^{sp} \subset T_\lambda \subset G_\lambda) M^{-1} A_\lambda^{-1}$$

because the chains in (5) are conjugate in $\text{GL}_n(\mathbb{E}_\lambda)$. Then (7) and (8) imply that $A_\lambda \in N_{\text{GL}_n}(T^{sp})$ and conjugation by A_λ takes the roots of $MG_\lambda M^{-1}$ to the roots of $(G^{sp})^{\text{der}}$. By (c'-inv), the roots of the two semisimple (derived) groups are identical (in the character group of T^{sp}). Hence, $[\text{Hu18}]$ Thm. 3.8 implies that the absolute root data of $MG_\lambda M^{-1}$ and G^{sp} are identical with respect to the common maximal torus $MT_\lambda M^{-1} = T^{sp}$. By $[\text{Sp08}]$ Thm. 16.3.2], there exists an \mathbb{E}_λ-isomorphism b_λ taking the pair $(MG_\lambda M^{-1}, MT_\lambda M^{-1})$ to the pair (G^{sp}, T^{sp}) inducing the identity map between their root data. Let i_1 and i_2 be the tautological representation of $MG_\lambda M^{-1}$ and G^{sp} into G_λ. Then the two representations i_1 and $i_2 \circ b_\lambda$ are isomorphic. Therefore, b_λ is just a conjugation by a matrix $B_\lambda \in \text{GL}_n(\mathbb{E}_\lambda)$ that is identity on $MT_\lambda M^{-1} = T^{sp}$. \qed

2.3. Forms of reductive chains. This section is foundational to the proofs of the main theorems and is developed from $[\text{Hu18} \ S4]$.

2.3.1. Galois cohomology. Let F be a field of characteristic zero, G_1 and G'_1 be linear algebraic groups defined over F. The Galois group Gal(\overline{F}/F) acts (on the left) on the set of \overline{F}-homomorphisms $\phi : G_1 \times_F \overline{F} \to G'_1 \times_F \overline{F}$ as follows: if $\sigma \in \text{Gal}(\overline{F}/F)$, then $\sigma \phi$ is the homomorphism such that

$$\sigma \phi(x) = \phi(\sigma^{-1} x) \quad \forall x \in G_1(\overline{F}).$$

Let $G_k \subset \cdots \subset G_2 \subset G_1$ be a chain of linear algebraic groups defined over F. An F-form of the chain $G_k \subset \cdots \subset G_2 \subset G_1$ is a chain of reductive groups $G'_k \subset \cdots \subset G'_2 \subset G'_1$ defined over F that is isomorphic to $G_k \subset \cdots \subset G_2 \subset G_1$ over \overline{F}, i.e., there exists a \overline{F}-homomorphism $\phi : G_1 \times_F \overline{F} \to G'_1 \times_F \overline{F}$
such that $\phi(G_i \times_F T) \subset G'_i \times_F T$ and the restriction $\phi|_{G_i \times_F T}$ is an isomorphism for all $1 \leq i \leq k$.

Since the groups are defined over F, the T-homomorphism σ^ϕ is also a T-isomorphism between the two chains. In particular, the automorphism group $\text{Aut}_T(G_1, G_2, ..., G_k)$ of the chain (i.e., the subgroup of the automorphism group $\text{Aut}_T(G_1 \times F F)$ preserving the chain $G_k \subset \cdots \subset G_2 \subset G_1$) is a $\text{Gal}(T/F)$-group.

Let $\phi : G_1 \times_F F \to G'_1 \times_F F$ be a T-isomorphism from $G_k \subset \cdots \subset G_2 \subset G_1$ to $G'_k \subset \cdots \subset G'_2 \subset G'_1$. Then the association

$$\sigma \mapsto a_\sigma := \phi^{-1} \circ \sigma \phi \in \text{Aut}_T(G_1, G_2, ..., G_k)$$

for all $\sigma \in \text{Gal}(T/F)$ satisfies the 1-cocycle condition:

$$a_{\sigma \sigma'} = a_\sigma a_{\sigma'},$$

producing a bijective correspondence (see [Se97] Ch. 3.1, Prop. 5 and its proof) between the set of isomorphism classes of T-forms of the chain $G_k \subset \cdots \subset G_2 \subset G_1$ and the Brauer cohomology pointed set $H^1(F, \text{Aut}_T(G_1, G_2, ..., G_k))$ in which the neutral element is the trivial class $[\sigma = id]$ corresponding to the T-isomorphism class of $G_k \subset \cdots \subset G_2 \subset G_1$.

Let $\text{Im}_T G_1$ be the inner automorphism group of $G_1 \times_F F$. It is a $(\text{Gal}(T/F))$-normal subgroup of $\text{Aut}_T G_1$. Denote the inner automorphism group of the chain by

$$\text{Inn}_T(G_1, G_2, ..., G_k) := \text{Aut}_T(G_1, G_2, ..., G_k) \cap \text{Im}_T G_1.$$

and the outer automorphism group of the chain by

$$\text{Out}_T(G_1, G_2, ..., G_k) := \text{Out}_T(G_1, G_2, ..., G_k)/\text{Inn}_T(G_1, G_2, ..., G_k).$$

Then we obtain a short exact sequence of $\text{Gal}(T/F)$-groups

$$1 \to \text{Inn}_T(G_1, G_2, ..., G_k) \to \text{Out}_T(G_1, G_2, ..., G_k) \to \text{Out}_T G_1 \to 1.$$

and an exact sequence of pointed set [Se97] Ch. 1.5.5, Prop. 38]

$$H^1(F, \text{Inn}_T(G_1, G_2, ..., G_k)) \to H^1(F, \text{Out}_T(G_1, G_2, ..., G_k)) \to H^1(F, \text{Out}_T G_1).$$

The exactness means that the preimage $\pi^{-1}([id])$ is equal to the image $\text{Im}(i)$.

An F-form $G'_k \subset \cdots \subset G'_2 \subset G'_1$ of $G_k \subset \cdots \subset G_2 \subset G_1$ is called an inner F-form (or inner form) if there exists an T-isomorphism ϕ such that in $[\sigma]$, the element a_σ belongs to $\text{Inn}_T(G_1, G_2, ..., G_k)$ for all σ. In general, the isomorphism classes of inner F-forms do not form a subset of the isomorphism classes of T-forms since the map i in $[11]$ is not injective. However, the sequence $[11]$ is a short exact sequence of pointed sets (and thus i is injective) if $[10]$ splits. We will see in later sections that the splitting of $[10]$ holds for some chains (e.g., $T^{\text{sp}} \subset G^{\text{sp}}$). The following simple lemma is useful to study the conjugacy class of a subgroup in $\text{Gal}_{n,F}$.

Lemma 2.9. Let D be a central division algebra over F. Let $U = \text{GL}_{m,D}$ be an F-inner form of $\text{GL}_{m,F}$, $T \subset G \subset \text{GL}_{n,F}$ and $T' \subset G' \subset U$ be two chains. If the two chains of T-representations $(T \subset G \hookrightarrow \text{GL}_{m,F}) \times_F F$ and $(T' \subset G' \hookrightarrow U) \times_F F$ are isomorphic, then the following hold.

(i) The chain $T' \subset G' \subset U$ is an inner form of $T \subset G \subset \text{GL}_{n,F}$.

(ii) If the cohomology class $[T' \subset G' \subset U] \in H^1(F, \text{Inn}_{\text{GL}_{n,F}}(G, T))$ is the neutral class, then $D = F$ and the two T-representations $T \subset G \hookrightarrow \text{GL}_{n,F}$ and $T' \subset G' \hookrightarrow U = \text{GL}_{n,F}$ are isomorphic.

Proof. Identify $U \times_F F$ with $\text{GL}_{n,F}$. The condition implies that there exists an F-inner automorphism ψ of $\text{GL}_{n,F}$ such that $\psi(G \times_F F) = G' \times_F F$ and $\psi(T \times_F F) = T' \times_F F$. This defines a 1-cocycle

$$\sigma \mapsto a_\sigma := \psi^{-1} \circ \sigma \psi \in \text{Inn}_{\text{GL}_{n,F}}(G, T),$$

which proves (i). If the cocycle is neutral, then there exists $\gamma \in \text{Inn}_{\text{GL}_{n,F}}(G, T) \subset \text{PGL}_{n}(F)$ such that $a_\sigma = \gamma^{-1} \circ \sigma \gamma$ for all $\sigma \in \text{Gal}(F/F)$. This is equivalent to

$$\psi \circ \gamma^{-1} = \sigma \psi \circ \gamma^{-1} \quad \forall \sigma \in \text{Gal}(F/F).$$

Hence, $\psi \circ \gamma^{-1} \in \text{PGL}_{n}(F)$ and $\text{GL}_{n,F}$ and $\text{GL}_{n,D}$ are F-isomorphic. Therefore, $D = F$, $U = \text{GL}_{n,F}$, and $\psi \circ \gamma^{-1}$ is an F-inner automorphism of $\text{GL}_{n,F}$ taking G to G' as well as T to T', which prove (ii).
2.3.2. Some diagrams. In this section, some diagrams of groups and Galois cohomology will be presented. Let F be a field. Denote by

- G^{sp} a connected split reductive group defined over F,
- T^{sp} a split maximal torus of G^{sp},
- N the normalizer of T^{sp} in G^{sp},
- $W := N/T^{sp}$ the Weyl group,
- B a Borel subgroup of G^{sp} containing T^{sp},
- C the center of G^{sp},
- $(G^{sp})_{ad} := G^{sp}/C$ the adjoint quotient of G^{sp},
- $\Theta_{F} := \text{Out}_{F} G^{sp}$ the outer automorphism group of G^{sp},
- $Z^{k}(F,M) := \text{Z}_{k}(F,M(F))$ the cocycles if M is a linear algebraic group defined over F,
- $H^{k}(F,M) := \text{H}_{k}(F,M(F))$ the cohomology if M is a linear algebraic group defined over F.

2.3.2.1. Consider the following diagram of $\text{Gal}(\overline{F}/F)$-groups:

\[
\begin{array}{ccccccccc}
1 & \longrightarrow & N/C(\overline{F}) & \longrightarrow & \text{Aut}_{\overline{F}}(G^{sp}, T^{sp}) & \longrightarrow & \Theta_{\overline{F}} & \longrightarrow & 1 \\
\end{array}
\]

(12)

where the top (resp. bottom) row is (10) for $T^{sp} \subset G^{sp}$ by [Hu18, Prop. 4.3] (resp. G^{sp}) and the vertical arrows are all natural inclusions induced by restricting automorphisms to G^{sp}:

\[
\begin{array}{ccccccccc}
1 & \longrightarrow & (G^{sp})_{ad}(\overline{F}) & \longrightarrow & \text{Aut}_{\overline{F}} G^{sp} & \longrightarrow & \Theta_{\overline{F}} & \longrightarrow & 1 \\
\end{array}
\]

(13)

Since G^{sp} is split, the Galois group $\text{Gal}(\overline{F}/F)$ acts trivially on the outer automorphism group $\Theta_{\overline{F}}$. The proposition below is well-known.

Proposition F. (see e.g. [Hu18, Prop. 4.1]) The automorphism group $\text{Aut}_{\overline{F}} G^{sp}$ contains a $\text{Gal}(\overline{F}/F)$-invariant subgroup that preserves T^{sp} and B and is mapped isomorphically onto $\text{Out}_{\overline{F}} G^{sp}$. Hence, the top (resp. bottom) row in (12) is a split short exact sequence of $\text{Gal}(\overline{F}/F)$-groups:

\[
\begin{array}{ccccccccc}
1 & \longrightarrow & N/C(\overline{F}) & \longrightarrow & \text{Aut}_{\overline{F}}(G^{sp}, T^{sp}) & \longrightarrow & \Theta_{\overline{F}} & \longrightarrow & 1 \\
\end{array}
\]

(14)

Denote by

- $\Omega_{\overline{F}} := \text{Im}(\text{Res}_{T^{sp}})$, where $\text{Res}_{T^{sp}}$ restricts automorphisms to T^{sp}:

\[
\begin{array}{ccccccccc}
1 & \longrightarrow & N/C(\overline{F}) & \longrightarrow & \text{Aut}_{\overline{F}}(G^{sp}, T^{sp}) & \longrightarrow & \Theta_{\overline{F}} & \longrightarrow & 1 \\
\end{array}
\]

(15)

Then the first row in (12) also fits into the following diagram of $\text{Gal}(\overline{F}/F)$-groups with exact rows and columns by [Hu18, Prop. 4.3] and j denotes a splitting induced by (14).
2.3.2.2. Suppose given a faithful (absolutely) irreducible representation \(G^\text{sp} \hookrightarrow \text{GL}_{n,F} \). Then we have the chain \(T^\text{sp} \subset G^\text{sp} \subset \text{GL}_{n,F} \). The irreducibility condition implies that \(C \) is contained in the subgroup of scalars in \(\text{GL}_{n,F} \) and the following hold:

\[
\begin{align*}
1 & \to T^\text{sp}/C(F) \to T^\text{sp}/C(F) \to 1 \\
1 & \to N/C(F) \overset{i}{\to} \text{Aut}_F(G^\text{sp}, T^\text{sp}) \overset{\pi}{\to} \Theta_F \to 1
\end{align*}
\]

In diagram (16), denote by

- \(\theta_F := \pi(\text{Inn}_F(\text{GL}_{n,F}, G^\text{sp}, T^\text{sp})) \in \Theta_F \),
- \(\omega_F := \text{Res}_{T^\text{sp}}(\text{Inn}_F(\text{GL}_{n,F}, G^\text{sp}, T^\text{sp})) \in \Omega_F \).

By diagrams (12), (16), (17) and the fact that the squares in (17) are Cartesian, we obtain the following two diagrams with exact rows and columns. Moreover, (18) injects naturally into (12), (19) injects naturally into (16), and \(j \) denotes the splitting induced by (14).

\[
\begin{align*}
N/C(F) & \overset{\pi}{\to} \text{Inn}_F(\text{GL}_{n,F}, G^\text{sp}, T^\text{sp}) \overset{j}{\to} \text{Aut}_F(G^\text{sp}, T^\text{sp}) \\
(G^\text{sp})^{\text{ad}}(F) & \overset{i}{\to} \text{Inn}_F(\text{GL}_{n,F}, G^\text{sp}) \overset{\pi}{\to} \Theta_F
\end{align*}
\]
2.3.2.3. By taking Galois cohomology on diagrams (12), (16), (18), (19), the splitting j, and Hilbert’s Theorem 90: $H^1(F, T^p/C) = H^1(F, \mathbb{G}_m)^{\oplus k} = 0$, we obtain the following diagrams of pointed sets such that the rows and columns are all exact. Moreover, there are natural maps from (22) to (20), (23) to (21), and j denotes again the splitting.

\[
\begin{array}{c}
1 \\ 1 \\ 1
\end{array}
\begin{array}{c}
\text{T}^{sp}/C(F) \\ \text{T}^{sp}/C(F) \\ 1
\end{array}
\begin{array}{c}
1 \\ 1 \\ 1
\end{array}
\]

\[
\begin{array}{c}
1 \\ 1 \\ 1
\end{array}
\begin{array}{c}
\text{N}/C(F) \\ \text{Inn}_F(\text{GL}_{n,F}, \mathbb{G}^{sp}, T^{sp}) \\ \text{W}
\end{array}
\begin{array}{c}
1 \\ 1 \\ 1
\end{array}
\]

\[
\begin{array}{c}
\pi \\ \pi \\ \pi
\end{array}
\begin{array}{c}
\text{Res}_{T^{sp}} \\ \text{Res}_{T^{sp}}
\end{array}
\begin{array}{c}
\theta_T \\ \theta_T
\end{array}
\]

\[
\begin{array}{c}
0 \\ 0 \\ 0
\end{array}
\begin{array}{c}
H^1(F, N/C) \\ H^1(F, \text{Aut}_F(\text{G}^{sp}, T^{sp})) \\ H^1(F, W)
\end{array}
\begin{array}{c}
0 \\ 0 \\ 0
\end{array}
\]

\[
\begin{array}{c}
\pi \\ \pi \\ \pi
\end{array}
\begin{array}{c}
\text{Res}_{\text{G}^{sp}} \\ \text{Res}_{\text{G}^{sp}}
\end{array}
\begin{array}{c}
\theta_T \\ \theta_T
\end{array}
\]

\[
\begin{array}{c}
0 \\ 0 \\ 0
\end{array}
\begin{array}{c}
H^1(F, \text{N}/C) \\ H^1(F, \text{Aut}_F(\text{G}^{sp}, T^{sp})) \\ H^1(F, \text{W})
\end{array}
\begin{array}{c}
0 \\ 0 \\ 0
\end{array}
\]

\[
\begin{array}{c}
\pi \\ \pi \\ \pi
\end{array}
\begin{array}{c}
\text{Res}_{\text{G}^{sp}} \\ \text{Res}_{\text{G}^{sp}}
\end{array}
\begin{array}{c}
\theta_T \\ \theta_T
\end{array}
\]

\[
\begin{array}{c}
0 \\ 0 \\ 0
\end{array}
\begin{array}{c}
H^1(F, \text{N}/C) \\ H^1(F, \text{Inn}_F(\text{GL}_{n,F}, \text{G}^{sp}, T^{sp})) \\ H^1(F, \text{W})
\end{array}
\begin{array}{c}
0 \\ 0 \\ 0
\end{array}
\]
2.4. **Twisting.** Let G be a profinite group and A be a G-group (a discrete group on which G acts continuously). The Galois cohomology $H^1(G, A)$ is a pointed set with neutral element given by the trivial class $[id_A]$. Let $1 \to A \to B \to C \to 1$ be a short exact sequence of G-groups. Then one obtains an exact sequence of pointed sets

\[H^1(G, A) \to H^1(G, B) \to H^1(G, C), \]

meaning that the image of i is equal to $\pi^{-1}([id_C]) = \pi^{-1}([id_B])$, the fiber of $\pi([id_B])$. Let $[\beta] \in H^1(G, B)$ be a cohomology class. To study the image of π as well as the fiber of $\pi([\beta])$, that is, the set $\pi^{-1}(\pi([\beta]))$, one uses the method of twisting in [Se97] Ch. 1.5.3–1.5.7. This technique will be applied to some short exact sequences in §2.4.2.

2.4.1. **Definition.** Let G be a group, M a (left) G-group, and A (resp. B) be a M-group on which G acts compatibly on the left, i.e., $g(m(a)) = g(m)(g(a))$ for $g \in G$, $m \in M$, and $a \in A$. Suppose $\mu := (m_\beta) \in Z^1(G, M)$ is a 1-cocycle. Then one can define a G-group μA twisted by μ, which can be viewed as A with a new G-action: as a group $\mu A = A$ and the G-action is defined by

\[(g, a) \mapsto m_\beta(g(a)). \]

As M acts on itself by inner automorphism (conjugation): $(-) \mapsto m(-)m^{-1}$, denote by μM the twisted G-group. Then μA is a μM-group under the identification

\[\mu M \times \mu A \to \mu A \]

on which G acts compatibly on the left. If $\mu, \mu' \in Z^1(G, M)$ are cohomologous, then μA and $\mu' A$ are isomorphic. The association $A \mapsto \mu A$ is functorial: if $f : A \to B$ is a G-, M-group homomorphism, then $\mu f : \mu A \to \mu B$ is a G-, μM-group homomorphism [Se97] Ch. 1.5.3. Since A acts on itself by inner automorphism: $A \to \text{Inn}(A)$, it acts on B via the map $A \to B \to \text{Inn}(B)$ such that $A \to B$ is an A-group homomorphism. The following correspondences are crucial.

Proposition G. [Se97] Ch. 1.5.3 Prop. 35 bis] Let $f : A \to B$ be a G-group homomorphism, $\alpha = (a_g) \in Z^1(G, A)$ be a cocycle, and $\beta = (b_g) \in Z^1(G, B)$ the image of α. Write $A' = \alpha A$, $B' = \beta B$, and $f' : A' \to B'$ the map. To each cocycle $(a_g') \in Z^1(G, A')$ (resp. $(b_g') \in Z^1(G, B')$), associate the cocycle $(a_g'a_g) \in Z^1(G, A)$ (resp. $(b_g'b_g) \in Z^1(G, B)$). This induces the following commutative diagrams such that the vertical arrows are bijective correspondence taking neutral cocycles (resp. classes) to α, β (resp. $[\alpha], [\beta]$).

\[
\begin{array}{ccc}
Z^1(G, A) & \xrightarrow{f} & Z^1(G, B) \\
\downarrow t_\alpha & & \downarrow t_\beta \\
Z^1(G, A') & \xrightarrow{f'} & Z^1(G, B')
\end{array}
\]

\[
\begin{array}{ccc}
H^1(G, A') & \xrightarrow{f'} & H^1(G, B') \\
\downarrow \tau_\alpha & & \downarrow \tau_\beta \\
H^1(G, A) & \xrightarrow{f} & H^1(G, B)
\end{array}
\]

Therefore, $\tau_\alpha : (f')^{-1}(f([id_{A'}])) \to f^{-1}(f([\alpha]))$ is a bijective correspondence between the fibers of classes.
2.4.2. Fibers of π. Given a split short exact sequence of G-groups:

\[
\begin{array}{ccc}
1 & \longrightarrow & A \overset{i}{\longrightarrow} B \overset{\pi}{\longrightarrow} C \longrightarrow 1.
\end{array}
\]

Then we obtain a split short exact sequence of pointed sets:

\[
\begin{array}{ccc}
0 & \longrightarrow & H^1(G, A) \overset{i}{\longrightarrow} H^1(G, B) \overset{\pi}{\longrightarrow} H^1(G, C) \longrightarrow 0.
\end{array}
\]

Since C acts on itself by inner automorphism, it also acts on B and A by the splitting j. Let $\chi \in Z^1(G, C)$ be a cocycle. It can also be seen as a cocycle in B via j. Hence, we let

\[
\begin{array}{ccc}
1 & \longrightarrow & A' \overset{i'}{\longrightarrow} B' \overset{\pi'}{\longrightarrow} C' \longrightarrow 1
\end{array}
\]

be the split short exact sequence of G-groups constructed by twisting \(27\) by χ. We obtain the corollary below by Proposition [3].

Corollary 2.10. In the diagram below, the rows are split short exact sequence of pointed sets and the vertical arrows are bijective with $\tau_{j(x)}([id_B]) = [j(x)]$, $\tau_{\chi}([id_{C'}]) = [\chi]$, and $\tau_{\chi} \circ \pi' = \pi \circ \tau_{j(x)}$:

\[
\begin{array}{ccc}
0 & \longrightarrow & H^1(G, A') \overset{i'}{\longrightarrow} H^1(G, B') \overset{\pi'}{\longrightarrow} H^1(G, C') \longrightarrow 0 \\
& & \tau_{j(x)} \downarrow \\
0 & \longrightarrow & H^1(G, A) \overset{i}{\longrightarrow} H^1(G, B) \overset{\pi}{\longrightarrow} H^1(G, C) \longrightarrow 0
\end{array}
\]

2.4.2.1. Let G^{sp} be a connected split reductive group defined over F. By Proposition [4] there is a split short exact sequence of Gal(\bar{F}/F)-groups

\[
\begin{array}{ccc}
0 & \longrightarrow & (G^{sp})^{ad}(\bar{F}) \overset{i}{\longrightarrow} \text{Aut}_{\bar{F}} G^{sp} \overset{\pi}{\longrightarrow} \Theta_{\bar{F}} \longrightarrow 0,
\end{array}
\]

inducing a split short exact sequence of pointed sets

\[
\begin{array}{ccc}
0 & \longrightarrow & H^1(F, (G^{sp})^{ad}) \overset{i}{\longrightarrow} H^1(F, \text{Aut}_{\bar{F}} G^{sp}) \overset{\pi}{\longrightarrow} H^1(F, \Theta_{\bar{F}}) \longrightarrow 0.
\end{array}
\]

A reductive group G/F is said to be quasi-split if G has a Borel subgroup defined over F. The group $\Theta_{\bar{F}}$ via j is a group of F-automorphisms of G^{sp}/F. The image of j in \(31\) can be characterized.

Theorem I. (see e.g. [Hu18] Thm. 4.2 and its proof) The set $j(H^1(F, \Theta_{\bar{F}}))$ in \(31\) is equal to the set of isomorphism classes of quasi-split F-forms of G^{sp}. Moreover, if $\chi \in Z^1(F, \Theta_{\bar{F}})$, then the $\text{Gal}(\bar{F}/F)$-group $\chi G^{sp}(\bar{F})$ is the \bar{F}-points of a quasi-split connected reductive group G' over F corresponding to the \bar{F}-isomorphism class $[G'] = j([\chi])$.

Since the twisted automorphism group $\chi \text{Aut}_{\bar{F}} G^{sp}$ acts on $\chi G^{sp}(\bar{F}) = G'(\bar{F})$ by Theorem I, the twisted group $\chi \text{Aut}_{\bar{F}} G^{sp}$ is naturally isomorphic to $\text{Aut}_{\bar{F}} G'$. Denote by G' the adjoint quotient of G'. By Corollary 2.10 the following diagram has split short exact rows of pointed sets and the vertical arrows are bijective with $\tau_{j(x)}([id]) = [G']$ and $\tau_{\chi} \circ \pi' = \pi \circ \tau_{j(x)}$.

\[
\begin{array}{ccc}
\end{array}
\]
such that the following diagram has split short exact rows of pointed sets and the vertical arrows are bijective

\[\begin{array}{ccccccccc}
0 & \longrightarrow & H^1(F, G^{\text{ad}}) & \longrightarrow & H^1(F, \text{Aut}_F G') & \longrightarrow & H^1(F, \Theta'_{\mathcal{F}}) & \longrightarrow & 0 \\
& & \downarrow{\tau_{j(x)}} & & \downarrow{\tau_{\chi}} & & & & \\
0 & \longrightarrow & H^1(F, (G^{\text{sp}})^{\text{ad}}) & \longrightarrow & H^1(F, \text{Aut}_F G^{\text{sp}}) & \longrightarrow & H^1(F, \Theta'_{\mathcal{F}}) & \longrightarrow & 0
\end{array}\]

Remark 2.11.

1. The middle vertical correspondence \(\tau_{j(x)}\) in (32) is the identity map if we identify the set of isomorphism classes of F-forms of \(G'\) with that of \(G^{\text{sp}}\) in a natural way.
2. The twisted group \(\Theta'_{\mathcal{F}}\) is naturally isomorphic to \(\text{Out}_{\mathcal{F}} G'\) and corresponds via \(j'\) to the set of isomorphism classes of quasi-split F-forms of \(G'\).
3. Let \(G_1\) and \(G_2\) be two F-forms of \(G^{\text{sp}}\). The form \(G_1\) is said to be an inner form of \(G_2\) if \(\pi([G_1]) = \pi([G_2])\). By Theorem 10 any F-form \(G_1\) is an inner form of a unique quasi-split F-form \(G'\).

\[\begin{array}{ccccccccc}
0 & \longrightarrow & H^1(F, G^{\text{ad}}) & \longrightarrow & H^1(F, \text{Inn}_F(G_{n,F}, G')) & \longrightarrow & H^1(F, \theta'_{\mathcal{F}}) & \longrightarrow & 0 \\
& & \downarrow{\tau_{j(x)}} & & \downarrow{\tau_{\chi}} & & & & \\
0 & \longrightarrow & H^1(F, (G^{\text{sp}})^{\text{ad}}) & \longrightarrow & H^1(F, \text{Inn}_F(G_{n,F}, G^{\text{sp}})) & \longrightarrow & H^1(F, \theta'_{\mathcal{F}}) & \longrightarrow & 0
\end{array}\]

Corollary 2.12. The fiber \(\pi^{-1}([\chi])\) in (32) (resp. (34)) can be identified with \(H^1(F, G^{\text{ad}})\).

2.4.3. **Image of \(\pi\).** Given a short exact sequence of \(G\)-groups with \(A\) abelian:

\[\begin{array}{cccc}
1 & \longrightarrow & A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & 1
\end{array}\]

Then \(C\) acts on \(A\) naturally and there is the twisted group \(\chi A\) for every \(\chi \in Z^1(G, C)\). One associates to \(\chi\) a cohomology class \(\Delta(\chi) \in H^2(G, \chi A)\) as follows. Lift \(\chi\) to a continuous map \(g \mapsto b_g\) of \(G\) into \(B\) and define

\[a_{g,g'} = b_g b_{g'}^{-1} b_{g'}^{-1},\]

which is a 2-cocycle with values in \(\chi A\) [Se97] Ch. 1.5.6.

Proposition J. [Se97] Ch. 1.5.6 Prop. 41] The cohomology class \([\chi]\) belongs to the image of \(\pi : H^1(G, B) \rightarrow H^1(G, C)\) if and only if \(\Delta(\chi)\) vanishes in \(H^2(G, \chi A)\).

Since the middle columns of (16) and (19) are short exact sequence of \(\text{Gal}(\mathcal{F}/F)\)-groups with \(T^{\text{sp}}/C\) abelian, we obtain the following.

Corollary 2.13. Let \(\mu \in Z^1(F, \Omega_{\mathcal{F}})\) (resp. \(Z^1(F, \omega_{\mathcal{F}})\)). The cohomology class \([\mu]\) belongs to the image of \(\text{Res}_{\mathcal{F}^{\text{sp}}}\) in (21) (resp. (23)) if and only if \(\Delta(\mu)\) vanishes in \(H^2(F, \mu(T^{\text{sp}}/C))\).

2.5. **Local-global aspects.**
2.5.1. The localization map. Let E be a number field and \mathcal{P}_E be the set of places of E. Let G be a linear algebraic group (or more generally an automorphism group of a reductive chain in $\mathbf{2.3}$) defined over E. For any $\lambda \in \mathcal{P}_E$, denote by E_λ the completion of E with respect to λ and by $i_\lambda : E \to E_\lambda$ the embedding. Let $i_\lambda^* : \overline{\mathcal{E}} \to \overline{E_\lambda}$ be an embedding extending i_λ. Then it induces homomorphisms $\text{Gal}(\overline{\mathcal{E}}_\lambda/E_\lambda) \to \text{Gal}(\overline{\mathcal{E}}/E)$ and $G(\overline{\mathcal{E}}) \to G(\overline{E_\lambda})$ for which the $\text{Gal}(\overline{\mathcal{E}}_\lambda/E_\lambda)$-module $G(\overline{E_\lambda})$ and $\text{Gal}(\overline{\mathcal{E}}/E)$-module $G(\overline{\mathcal{E}})$ are compatible. We obtain a map of cocycles ($k = 0, 1$ if G non-abelian)

$$\text{loc}_\lambda : Z^k(E, G) \to Z^k(E_\lambda, G).$$

The associated map of Galois cohomology

$$\text{loc}_\lambda : H^k(E, G) \to H^k(E_\lambda, G)$$

is called the localization map at λ. It is functorial and does not depend on i_λ [Se97, Ch. 2.1.1].

2.5.2. Some results. We would like to present some results for the map

$$\prod_{\lambda \in \mathcal{P}_E} \text{loc}_\lambda : H^k(E, G) \to \prod_{\lambda \in \mathcal{P}_E} H^k(E_\lambda, G)$$

when G is connected reductive and $k = 1$ and when G is a torus and $k = 2$. For simplicity, we use the notation and formulation of [Bo98], although the results were obtained earlier by Harder [Ha66], Kneser [Kn69], Sansuc [Sa81], Kottwitz [Ko86]. Let $\text{III}^1(E, G)$ be the kernel of the map (39). The reductive group G is said to satisfy the Hasse principle if the Shafarevich-Tate group $\text{III}^1(E, G)$ of G vanishes.

Denote by \overline{G} the group $G \times_E \overline{\mathcal{E}}$, by \overline{G}^der the derived group of \overline{G}, by \overline{G}^sc the simply-connected cover of \overline{G}^der, by $\rho : \overline{G}^\text{sc} \to \overline{G}$ the natural map, by T a maximal torus of \overline{G}, and by X_* the cocharacter functor for a torus. The algebraic fundamental group of \overline{G} [Bo98, Def. 1.3] is a $\text{Gal}(\overline{\mathcal{E}}/E)$-module defined as

$$M := X_*(T)/\rho_*(X_*(\rho^{-1}(T))).$$

For each $\lambda \in \mathcal{P}_E$, one has a map [Bo98, 5.15]

$$\mu_\lambda : H^1(E_\lambda, G) \xrightarrow{\text{ab}^1} H^1_\text{ab}(E_\lambda, G) = T_\lambda^{-1}(M) \xrightarrow{\text{cor}^{-1}_\lambda} T^{-1}(M) = (M_{\text{Gal}(\overline{\mathcal{E}}/E)})_{\text{tor}},$$

where $H^1_\text{ab}(E_\lambda, G)$ is the first abelian Galois cohomology group of G [Bo98, Definition 2.2] and $(M_{\text{Gal}(\overline{\mathcal{E}}/E)})_{\text{tor}}$ denotes the torsion subgroup of the Galois cohomologies of M. The surjectivity of abelianization map ab^1 is by [Bo98, Thm. 5.4]. If E_λ is non-Archimedean, then $T_\lambda^{-1}(M) = (M_{\text{Gal}(\overline{\mathcal{E}}_\lambda/E_\lambda)})_{\text{tor}}$ [Bo98, Propositions 2.8 and 4.1(i)] and cor^{-1}_λ is the natural map [Bo98, 4.7].

Theorem K. [Bo98, Thm. 5.16] When $k = 1$, the map in (39) factors through $\bigoplus_{\lambda \in \mathcal{P}_E} H^1(E_\lambda, G)$ and

$$0 \to \text{III}^1(E, G) \to H^1(E, G) \to \bigoplus_{\lambda} H^1(E_\lambda, G) \xrightarrow{\otimes \mu_\lambda} (M_{\text{Gal}(\overline{\mathcal{E}}/E)})_{\text{tor}}$$

is exact.

As M is finite for semisimple G, we obtain the following.

Proposition 2.14. If G is semisimple and E_λ is non-Archimedean, then μ_λ in (40) is surjective.

We have the following result for torus $G = T$ by class field theory and [Bo98, Lemma 5.6.2].

Proposition L. Suppose T is a direct product of a split torus T^{sp} and a torus T' such that T' is anisotropic over E_λ for some place λ of E. Then $\text{III}^2(E, T) = \text{III}^2(E, T^{\text{sp}}) \oplus \text{III}^2(E, T') = 0$.

2.6. Proofs of main theorems.
2.6.1. The 1-cocycles μ and χ. According to conditions (a),(b),(c) of the main theorem(s), we have a chain $T^{sp} \subset G^{sp} \subset GL_{n,E}$, a chain $T \subset GL_{n,E}$, and an E-isomorphism of representations

$$f_T : (T^{sp} \times_E E) \hookrightarrow \text{GL}_{n,E}$$

This produces a 1-cocycle (as well as a Galois representation since $\text{Gal}(\bar{E}/E)$ acts trivially on $\text{Aut}_E T^{sp}$):

$$\mu = (\mu_T) := (f_T^{-1} \circ \sigma_T) \in Z^1(E, Aut_E T^{sp}) = \text{Hom}(\text{Gal}(\bar{E}/E), \text{Aut}_E T^{sp})$$

As Ω_T (resp. ω_T) is a subgroup of $\text{Aut}_E T^{sp}$ (2.3.2), we first show the following.

Proposition 2.15. The image of the Galois representation $\mu : \text{Gal}(\bar{E}/E) \rightarrow \text{Aut}_E T^{sp}$ is contained in Ω_T (resp. ω_T if G^{sp} is irreducible on E^n). Thus, it defines a class $\mu \in Z^1(E, \Omega_T)$ (resp. $Z^1(E, \omega_T)$).

Proof. For every $i_E : \bar{E} \rightarrow \bar{E}_\lambda$ with $\lambda \in P_{E,f}$,

$$\text{loc}_\lambda(\mu) = \text{Res}_{T^{sp}} \circ \text{loc}_\lambda((f_T^{-1} \circ \sigma_T)) \in \text{Hom}(\text{Gal}(\bar{E}_\lambda/E_\lambda), \Omega_{E_\lambda}) = \text{Hom}(\text{Gal}(\bar{E}_\lambda/E_\lambda), \Omega_{E_\lambda})$$

(resp. $\text{Hom}(\text{Gal}(\bar{E}_\lambda/E_\lambda), \omega_{E_\lambda})$) by (37), condition (b), and diagram (16) (resp. diagrams (17) and (19)) for $F = E_\lambda$. Hence, all the local representations land on Ω_T (resp. ω_T). Since $\text{Aut}_E T^{sp}$ is discrete, the image of μ is finite. We are done by the Chebotarev density theorem. \square

So it makes sense to define by diagram (16) (resp. (19)) for $F = E$ the twisted torus

$$\mu(T^{sp}/C)$$

for main theorem (11) and the Θ_T-valued (resp. θ_T-valued) 1-cocycle

$$\chi := \pi(\mu).$$

2.6.2. Proof of main theorem (11(i)). By condition (b) and diagram (21) for $F = E_\lambda$, in $H^1(E_{\lambda}, \Theta_{E_\lambda})$ the cohomology class $\pi([T_\lambda \subset G_\lambda])$ is equal to $\text{loc}_\lambda(\chi)$. Then by applying $\text{Res}_{G^{sp}}$ in diagram (20), the class $\pi([G_{\lambda}]) = \text{loc}_\lambda(\chi)$ for all $\lambda \in P_{E,f}$. By Theorem 1 for $F = E$, we obtain a quasi-split connected reductive group G' over E such that $[G'] = j(\chi)$ in (31). On the one hand, for all $\lambda \in P^{(p)}_{E,f}$, $[G' \times_E E_\lambda]$ and $[G_\lambda]$ belong to same fiber of π in (31) for $F = E_\lambda$. On the other hand, for almost all $\lambda \in P^{(p)}_{E,f}$

$$[G' \times_E E_\lambda] = j(\text{loc}_\lambda(\chi)) = [G_\lambda]$$

by Theorem 1 for $F = E_\lambda$ and condition (d). Hence, by Corollary 2.12 for $F = E_\lambda$ for all $\lambda \in P^{(p)}_{E,f}$ to identify $[G_\lambda]$ as an element in $H^1(E_\lambda, G'^{sp} \times_E E_\lambda)$, we obtain that $[G_\lambda] = 0$ for almost all $\lambda \in P^{(p)}_{E,f}$. Let λ' be a place of E extending p. Then $\lambda' \notin P^{(p)}_{E,f}$. Since G'^{sp} is semisimple, there exists an element $[G'] \in H^1(E, G'^{sp})$ such that $\text{loc}_\lambda(G) = [G_\lambda]$ for all $\lambda \in P^{(p)}_{E,f}$ by Theorem 1 and Proposition 2.14. Here G is an inner form of G'^{sp} (Remark 2.11(3)). Therefore, we conclude that $G \times_E E_\lambda \cong G_\lambda$ for all $\lambda \in P^{(p)}_{E,f}$ and G_λ is unramified for all but finitely many λ.

Remark 2.16. Besides $\text{loc}_\lambda(G) = [G_\lambda]$ for all $\lambda \in P^{(p)}_{E,f}$, we can impose conditions at other places of E except λ'. For example, we can require that $\text{loc}_\lambda(G) = [G_\lambda]$ for all $\lambda \in P_{E,f}\backslash(P^{(p)}_{E,f} \cup \{\lambda'\})$.

2.6.3. Proof of main theorem (11(ii)). By condition (b) and diagram (23) for $F = E_\lambda$, the cohomology class $\pi([T_\lambda \subset G_\lambda \subset GL_{n,E_\lambda}])$ is equal to $\text{loc}_\lambda(\chi)$ in $H^1(E, \theta_{E_\lambda})$. Then by $\text{Res}_{(GL_{n,E_\lambda}, G^{sp})}$ in diagram (22), the class $\pi([G_\lambda \subset GL_{n,E_\lambda}]) = \text{loc}_\lambda(\chi)$ for all $\lambda \in P^{(p)}_{E,f}$. By (33) for $F = E$, we obtain an E-form $G' \subset GL_{n,E}$ of G^{sp} and $G'_\lambda \subset GL_{n,E}$ where G' is quasi-split such that $[G'_\lambda \subset GL_{n,E}] = j(\chi)$ in (31). On the one hand, for all $\lambda \in P^{(p)}_{E,f}$, $[G'_\lambda \subset GL_{n,E}]$ and $[G_\lambda \subset GL_{n,E}]$ belong to same fiber of π in (34) for $F = E_\lambda$. On the other hand, for almost all $\lambda \in P^{(p)}_{E,f}$

$$[[G' \subset GL_{n,E}] \times_E E_\lambda] = j(\text{loc}_\lambda(\chi)) = [G_\lambda \subset GL_{n,E}]$$

by Theorem 1 for $F = E_\lambda$, condition (d), and the proposition below.
Proposition 2.17. [TIT] Lemma 3.2, Thm. 3.3] Let F be a field of characteristic zero and D_i $(i = 1, 2)$ be central simple algebras over F. Let H be a connected reductive group over F and $p_i : H \to GL_{m_i,D_i}$ $(i = 1, 2)$ be two F-representations that are absolutely irreducible. If $p_1 \times_F F \cong p_2 \times_F F$, then $p_1 \cong p_2$.

Hence, by Corollary 2.12 for $F = E_\lambda$ for all $\lambda \in \mathcal{P}_{E,f}$ to identify $[G_\lambda \subset GL_{m,E}]$ as an element in $H^1(E, G'^{ad} \times \rho_{f})$, we obtain that $[G_\lambda \subset GL_{m,E}] = 0$ for almost all $\lambda \in \mathcal{P}_{E,f}$. Let λ' be a place of E extending p. Then $\lambda' \notin \mathcal{P}_{E,f}$, since G' is semisimple and there exists an element $[G \subset GL_{m,D}] \in H^1(E, G^{ad})$ such that

$$
\text{loc}_\lambda[G \subset GL_{m,D}] = [G_\lambda \subset GL_{m,E}], \quad \forall \lambda \in \mathcal{P}_{E,f}
$$

$$
\text{loc}_\lambda[G \subset GL_{m,D}] = [(G' \subset GL_{n,E}) \times E_\lambda], \quad \forall \lambda \in \mathcal{P}_{E,f} \setminus (\mathcal{P}_{E,f} \cup \{\lambda'\})
$$

by Theorem [K] and Proposition 2.14. Here G (resp. $GL_{m,D}$) is an inner form of G^{ad} (resp. $GL_{n,E}$) and $GL_{m,D} = GL_{m,E}$ by (46) and class field theory. By Lemma 2.9, we conclude that $(G \hookrightarrow GL_{m,E}) \times E_\lambda \cong (G_\lambda \hookrightarrow GL_{m,E})$ as representations for all $\lambda \in \mathcal{P}_{E,f}$ and G_λ is unramified for all but finitely many λ.

2.6.4. Proof of main theorem [H] Consider the cocycle $\mu \in Z^1(E, \Omega^1_{F, E})$ (resp. $Z^1(E, \omega_{\infty})$). By condition (b), $\text{loc}_\lambda[\mu] = \text{Res}^E_{E_\lambda} \{T_\lambda \subset G_\lambda\}$ (resp. $\text{Res}^E_{E_\lambda} \{T_\lambda \subset G_\lambda \subset GL_{m,E}\}$) for all $\lambda \in \mathcal{P}_{E,f}$. It suffices to show that $[\mu]$ belongs to the image of the injection $\text{Res}^E_{E_\lambda}$ (ensuring uniqueness) in diagram (21) (resp. (23)) for $F = E$. By Corollary 2.13, this is equivalent to $\Delta(\mu) = 0$ in $H^2(E, \rho(T^{an}(C)))$. By condition (d) and Proposition 1, it remains to prove that $\text{loc}_\lambda(\Delta(\mu)) = 0$ for all places λ of E. For a finite place λ, this is true by the fact that the image of $\text{Res}^E_{E_\lambda}$ in (21) (resp. (23)) contains $\text{loc}_\lambda[\mu]$ and Corollary 2.13 for $F = E_\lambda$. For a real place, this is true by (d) and $H^2(\mathbb{R}, \mathbb{R}) = 0$ if $S_\mathbb{R}$ is an \mathbb{R}-anisotropic torus (see [K]. Lemma 10.4). Therefore, we obtain a common E-form $T \subset G$ (resp. $T \subset G \hookrightarrow GL_{m,E}$) by Lemma 2.9 of the chain $T_\lambda \subset G_\lambda$ (resp. the chain representation $T_\lambda \subset G_\lambda \hookrightarrow GL_{m,E}$) for all finite places λ of E.

3. Rationality of algebraic monodromy groups

This section is devoted to the proofs of the statements in §1.2. Fix a number field E and denote by p_λ the residue characteristic of the finite place $\lambda \in \mathcal{P}_{E,f}$.

3.1. Profinite group Π and Frobenius elements Fr. Consider two cases.

3.1.1. (Characteristic zero). In this case, Π denotes the absolute Galois group $\text{Gal}(\overline{K}/K)$ of a number field K and $\mathcal{P} := \mathcal{P}_{E,f}$. Equip Π with a subset $Fr \subset \Pi$ of Frobenius elements as follows.

For all $v \in \mathcal{P}_{K,f}$, let q_v be the size of the residue field \overline{F}_{q_v} of K_v and consider the natural surjection

$$
\pi_v : \text{Gal}(\overline{K}_v/K_v) \to \text{Gal}(\overline{F}_{q_v}/\mathbb{F}_{q_v}).
$$

For each v, fix a lift $\phi_v \in \pi_v^{-1}(Fr_{q_v}^{-1})$, where $Fr_{q_v}^{-1} \subset \text{Gal}(\overline{F}_{q_v}/\mathbb{F}_{q_v})$ is the geometric Frobenius. Each $\overline{\pi} \in \mathcal{P}_{K,f}$ determines an embedding $\iota_{\overline{\pi}} : \text{Gal}(\overline{K}_v/K_v) \to \text{Gal}(\overline{K}/K)$. For $\overline{\pi} \in \mathcal{P}_{K,f}$, define $Fr_{\overline{\pi}}$ to be $\iota_{\overline{\pi}}(\phi_v)$ where v is the restriction of $\overline{\pi}$ to K. Define

$$
Fr_v := \bigcup_{\overline{\pi} \mid v} \{\text{Fr}_{\overline{\pi}}\} \quad \text{and} \quad Fr := \bigcup_{v \in \mathcal{P}_{K,f}} Fr_v.
$$

For any Galois extension L/K that is unramified except finitely many $v \in \mathcal{P}_{K,f}$ and any finite subset $S \subset \mathcal{P}_{K,f}$, the image of $\bigcup_{v \in \mathcal{P}_{K,f} \setminus S} Fr_v$ in $\text{Gal}(L/K)$ is dense [Se98, Chap. I, §2.2 Cor. 2]. Assign the number q_v to the elements in Fr_v.
3.1.2. (Characteristic p). In this case, Π denotes the étale fundamental group $\pi_1^{et}(X, \bar{x})$ (with some base point \bar{x}) of a smooth geometrically connected variety X/\mathbb{F}_q in characteristic p and $\mathcal{P} := \mathcal{P}_{E,f}^{(p)}$. Equip Π with a subset $\text{Fr} \subset \Pi$ of Frobenius elements as follows.

Let X^{cl} be the set of closed points of X. For any geometric point \bar{x}' over $x' \in X^{cl}$, let $\text{Fr}_{x'}$ be the image of the geometric Frobenius $\text{Fr}_{q_{x'}} \in \text{Gal}(\overline{\mathbb{F}}_{q_{x'}/\mathbb{F}_{q_{x}'}}) = \pi_1(x', \bar{x}')$ under the natural map

$$\pi_1(x', \bar{x}') \rightarrow \pi_1(\overline{X}, \bar{x}') \rightarrow \pi_1(X, \bar{x}) \cdot \pi_1(x, \bar{x}),$$

where $q_{x'}$ is the size of the residue field of x'. Note that the change of base point isomorphism $\sigma_{x,x'}$ is unique up to an inner automorphism of $\pi_1(X, \bar{x})$. Since the conjugacy class $[\text{Fr}_{x'}]$ depends only on x', write $\text{Fr}_{x'} := [\text{Fr}_{x'}]$ and define

$$\text{Fr} := \bigcup_{x' \in X^{cl}} \text{Fr}_{x'}.$$

The subset Fr is dense in Π [Se65]. Assign the number $q_{x'}$ to the elements in $\text{Fr}_{x'}$.

3.2. E-compatible systems. Let $(\Pi, \text{Fr}, \mathcal{P})$ be one of the two cases in §3.1. In the characteristic zero case, denote by S a finite subset of $\mathcal{P}_{K,f}$. Otherwise, S is the empty set.

3.2.1. GL$_n$-valued compatible systems. A system of n-dimensional λ-adic (continuous) representations

$$\rho_* := \{\rho_\lambda : \Pi \rightarrow \text{GL}_n(E_\lambda)\}_{\lambda \in \mathcal{P}}$$

of Π is said to be semisimple (resp. irreducible, absolutely irreducible) if for all $\lambda \in \mathcal{P}$, ρ_λ is semisimple (resp. irreducible, absolutely irreducible). The system ρ_* is said to be E-compatible (with exceptional set S) if

- in the characteristic zero case, ρ_λ is unramified outside $S \cup \{t \in \mathcal{P}_{K,f} : p_\lambda | q_t \}$ for each $\lambda \in \mathcal{P}$;
- for each Frobenius element $\text{Fr}_t \in \text{Fr}$ satisfying $t \notin S$ and for each λ satisfying $p_\lambda | q_t$, the characteristic polynomial

$$(47) \quad P_\lambda(t) := \det(\rho_\lambda(\text{Fr}_t) - t \cdot I_n) \in E_\lambda[t]$$

has coefficients in E and depends only on t (independent of $\lambda \in \mathcal{P}$).

The compatible system ρ_* is said to be pure of weight $w \in \mathbb{R}$ (resp. mixed of weights) if for each $\text{Fr}_t \in \text{Fr}$ with $t \notin S$ and each root $\alpha \in \overline{E}$ of $P_\lambda(t)$, the absolute value $||\alpha||$ is equal to $q_t^{w/2}$ for all complex embedding $i : \overline{E} \rightarrow \mathbb{C}$ (resp. is independent of the complex embedding $i : \overline{E} \rightarrow \mathbb{C}$).

3.2.2. Coefficient extension and the Weil restriction. Let ρ_* be an n-dimensional (semisimple) E-compatible system of Π that is pure of weight w (resp. mixed of weights). For a number field E', denote by $\mathcal{P}' = \mathcal{P}_{E',f}$ in characteristic zero case and by $\mathcal{P}' = \mathcal{P}_{E'}^{(p)}$ in characteristic p case.

If E' is an extension of E, then we obtain by coefficient extension a (semisimple) system $\rho_* \otimes_E E'$ of n-dimensional λ'-adic representations:

$$(48) \quad (\rho_* \otimes_E E')_{\lambda'} := (\Pi \xrightarrow{\lambda' \rightarrow} \text{GL}_n(E_{\lambda'}) \subset \text{GL}_n(E'_{\lambda'})),$$

where λ is the restriction of λ' to E. The system is E'-compatible (with exceptional set S), pure of weight w (resp. mixed of weights), and called the coefficient extension of ρ_* to E' (see [BGP19, Definition 3.2]).

If E' is a subfield of E, then we obtain by the Weil restriction of scalars a (semisimple) system $\text{Res}_{E/E'}\rho_*$ of $n[E : E']$-dimensional λ'-adic representations:

$$(49) \quad (\text{Res}_{E/E'}\rho_*)_\lambda := \bigoplus_{\lambda \mid \lambda'} \rho_\lambda : \Pi \rightarrow \prod_{\lambda | \lambda'} \text{GL}_n(E_\lambda) = (\text{Res}_{E/E'} \text{GL}_n,E)(E'_{\lambda'}) \subset \text{GL}_n[E:E'](E'_{\lambda'}).$$

The system is E'-compatible (with exceptional set S), pure of weight w (resp. mixed of weights), and called the Weil restriction of ρ_* (see [BGP19, Definition 3.4]).
3.2.3. G-valued compatible systems. Let G be a linear algebraic group defined over E with affine coordinate ring \(R \). Since G acts on itself by conjugation, G acts on \(R \). The subring of invariant functions is denoted by \(R^G \). For all \(g \in G \), let \(g_\lambda \) be the semisimple part of \(g \). If \(g \) is defined over a field extension \(F/E \), then \(g_\lambda \) is also defined over \(F \). A system of \(\lambda \)-adic G-representations \(\{ \rho_\lambda : \Pi \to G(E_\lambda) \}_{\lambda \in \cal{P}} \) of \(\Pi \) is said to be \(E \)-compatible (with exceptional set \(S \)) if

- in the characteristic zero case, \(\rho_\lambda \) is unramified outside \(S \cup \{ t \in \cal{P}_K,f : p_\lambda | q_t \} \) for each \(\lambda \in \cal{P} \);
- for each Frobenius element \(Fr_T \in Fr \) satisfying \(t \notin S \), each \(\lambda \) satisfying \(p_\lambda \notdivides q_t \), and each \(f \in R^G \) the number

\[
\frac{f(\rho_\lambda(Fr_T)_s)}{E_\lambda}
\]

belongs to \(E \) and depends only on \(t \) and \(f \) \cite{Se94} Chap. I, §2.4] (independent of \(\lambda \in \cal{P} \)).

It follows that an \(n \)-dimensional \(E \)-compatible system is the same as an \(E \)-compatible system of \(GL_{n,E} \)-representations.

3.2.4. Algebraic monodromy groups and connectedness. For all \(\lambda \in \cal{P} \), the algebraic monodromy group of \(\rho_\lambda \), i.e., the Zariski closure of the image of \(\rho_\lambda \) in \(GL_{n,E_\lambda} \), is denoted by \(G_\lambda \). It is a closed subgroup of \(GL_{n,E_\lambda} \). The image \(\rho_\lambda(\Pi) \) is a compact subgroup of the \(\lambda \)-adic Lie group \(G_\lambda(E_\lambda) \). The following result is well-known by using the compatibility condition, see \cite{LP92} Prop. 6.14.

Proposition M. The component groups \(G_\lambda/G_\lambda^\lambda \) are isomorphic for all \(\lambda \in \cal{P} \). In particular, the connectedness of \(G_\lambda \) is independent of \(\lambda \).

3.2.5. Group schemes. Suppose the algebraic monodromy group \(G_\lambda \) is connected reductive for all \(\lambda \). Let \(O_\lambda \) be the ring of integers of \(E_\lambda \) with residue field \(k_\lambda \) of characteristic \(p_\lambda \). Let \(\Lambda_\lambda \) be an \(O_\lambda \)-lattice of \(E_\lambda^n \) that is invariant under the image \(\rho_\lambda(\Pi) \). Let \(G_\lambda \) be the Zariski closure of \(\rho_\lambda(\Pi) \) in \(GL_{n,O_\lambda} \cong GL_{n,O_\lambda} \), endowed with the unique structure of reduce closed subscheme. The generic fiber of \(G_\lambda \) is \(G_\lambda \). The special fiber, denoted by \(G_{k_\lambda} \), is identified as a subgroup of \(GL_{n,k_\lambda} \). When \(p_\lambda \geq n \), the subgroup \(G_{k_\lambda} \subset GL_{n,k_\lambda} \) is said to be saturated if for any unipotent element \(u \in G_{k_\lambda}(\bar{k}_\lambda) \), the one parameter subgroup \(\{ u^a : a \in \bar{k}_\lambda \} \subset GL_{n}(\bar{k}_\lambda) \) belongs to \(G_{k_\lambda}(\bar{k}_\lambda) \) \cite{Se94} §4.2].

Proposition N. \cite{BGP19} Prop. 1.3], \cite{BGP19} Prop. 5.51, Thm. 5.52] For all but finitely many \(\lambda \in \cal{P} \), the following assertions hold.

(i) The group scheme \(G_\lambda \) is smooth with constant absolute rank over \(O_\lambda \).

(ii) The identity component of the special fiber \(G_{k_\lambda} \subset GL_{n,k_\lambda} \) is saturated.

3.3. Frobenius torus.

3.3.1. Frobenius torus and maximal torus. For all \(\lambda \in \cal{P} \), let \(G_\lambda \) be the algebraic monodromy group of \(\rho_\lambda \). The identity component of \(G_\lambda \) is reductive since \(\rho_\lambda \) is semisimple. Let \(\rho_\lambda \) be a member of the system and \(Fr_T \in Fr \) be a Frobenius element with \(t \notin S \). If \(p_\lambda \notdivides q_t \), then the Frobenius torus \(T_{\rho_\lambda} \) of \(Fr_T \) is defined to be the identity component of the smallest (diagonalizable) algebraic subgroup \(S_{\rho_\lambda} \) in \(GL_{n,E_\lambda} \) containing the semisimple part of \(\rho_\lambda(Fr_T) \). It follows that \(T_{\rho_\lambda} \subset S_{\rho_\lambda} \subset G_\lambda \). The following theorem is due to Serre.

Theorem O. (see \cite{LP97} Thm. 1.2 and its proof], \cite{Ch09} Thm. 5.7], \cite{Hu18} Thm. 2.6]) Suppose the algebraic monodromy group \(G_\lambda \) is connected for some \(\lambda \in \cal{P} \). Suppose there exists a finite subset \(Q \subset \mathbb{Q} \) such that for all \(Fr_T \in Fr \) with \(t \notin S \), the following conditions are satisfied for every root \(\alpha \) of the characteristic polynomial \(P_t(T) \) in \(\mathbb{Q} \):

(a) the absolute values of \(\alpha \) in all complex embeddings are equal;
(b) \(\alpha \) is a unit at any finite place not extending \(p_\lambda \);
(c) for any finite place \(w \) of \(\mathbb{Q} \) such that \(w(p_\lambda) > 0 \), the ratio \(w(\alpha)/w(q_t) \) belongs to \(Q \).

Then there exists a proper closed subvariety \(Y_\lambda \) of \(G_\lambda \) such that \(T_{\rho_\lambda,Y_\lambda} \) is a maximal torus of \(G_\lambda \), whenever \(\rho_\lambda(Fr_T) \in G_\lambda \setminus Y_\lambda \).

\footnote{This is equivalent to the conjugacy class of \(\rho_\lambda(Fr_T)_s \) in \(G \) being defined over \(E \) and depends only on \(t \notin S \) (independent of \(\lambda \)).}
Corollary 3.2. \nonumber
| non-zero integral power of the absolute value

3.3.2. Anisotropic subtorus. □

obvious by (i) in the characteristic \(p\).

Assertion (i) is straightforward by Theorem O and the above construction of \(t,\lambda\).

Let \(\text{Fr}_\tau\) be a Frobenius element. There is a semisimple matrix \(M_t\) of \(\text{GL}_n(E)\) with \(P_1(T)\) as characteristic polynomial. For all \(\lambda \in P\) with \(p_\lambda \nmid q_t\), \(M_t\) is conjugate to the semisimple part \(\rho_\lambda(\text{Fr}_\tau)_s\) in \(\text{GL}_n(E_\lambda)\) by \(E\)-compatibility. Hence, if we let \(S_t\) be the smallest algebraic subgroup of \(\text{GL}_n, E\), containing \(M_t\) and \(T_t\) be the identity component of \(S_t\), then the chain representations \((T_t \hookrightarrow \text{GL}_n, E) \times E_\lambda\) and \(T_{\lambda, \lambda} \hookrightarrow S_{\lambda, \lambda}\) are isomorphic for all \(\lambda \in P\) with \(p_\lambda \nmid q_t\).

\[
\text{Corollary 3.2.} \quad \begin{aligned}
(i) \text{(Common E-form of formal characters)} & \quad \text{If the Frobenius torus } T_{\lambda, \lambda} \text{ is a maximal torus of } G_\lambda, \text{ then the Frobenius torus } T_{\lambda, \lambda}\text{ is also a maximal torus of } G_\lambda \text{ for all } \lambda \in P \text{ with } p_\lambda \nmid q_t. \quad \text{Moreover, the representation } (T_t \hookrightarrow \text{GL}_n, E) \times E_\lambda \text{ is isomorphic to } T_{\lambda, \lambda} \hookrightarrow \text{GL}_n, E_\lambda \text{ for all } \lambda \in P \text{ with } p_\lambda \nmid q_t. \\
(ii) \text{(Absolute rank)} & \quad \text{The absolute rank of } G_\lambda \text{ is independent of } \lambda.
\end{aligned}
\]

\text{Proof.} Assertion (i) is straightforward by Theorem \(O\) and the above construction of \(T_t\). Assertion (ii) is obvious by (i) in the characteristic \(p\) case and follows from (i) and Remark 3.1(6) in the characteristic zero case. \(\square\)

3.3.2. Anisotropic subtorus. In this subsection, \(G_\lambda\) is connected for all \(\lambda \in P\). The subtorus \(T_t \hookrightarrow \text{GL}_n, E\) in Corollary 3.2(i) is studied under the following hypothesis. Let \(k\) be the order of \(S_t/T_t\). Then the Zariski closure of \(M_t^{k\tau}\) in \(\text{GL}_n, E\) is \(T_t\).

\text{Hypothesis \(R\):} Assume for each real embedding \(E \rightarrow \mathbb{R}\), the set of powers \(\det(M_t)^2 \subset \mathbb{R}\) contains some non-zero integral power of the absolute value \(|i(\alpha)|\) for every root \(\alpha\) of \(P_1(T)\) and every complex embedding \(i : E \rightarrow \mathbb{C}\) extending \(E \rightarrow \mathbb{R}\).

\text{Proposition 3.3.} \quad \text{If Hypothesis \(R\) holds, then the subtorus } (T_t \cap \text{SL}_n, E)^0 \text{ of } T_t \text{ is anisotropic at all real places of } E.

\text{Proof.} Embed \(E\) into \(\mathbb{R}\) and let \(T_{t, \mathbb{R}} \subset S_{t, \mathbb{R}} \subset \text{GL}_n, \mathbb{R}\) be the base change to \(\mathbb{R}\). If \(\chi : T_{t, \mathbb{R}} \rightarrow G_{m, \mathbb{R}}\) is an \(\mathbb{R}\)-character, then \(\chi(M_t^{k}) \in G_{m}(\mathbb{R}) = \mathbb{R}^*\). Let \(i : E \rightarrow \mathbb{C}\) be an embedding extending \(E \rightarrow \mathbb{R}\). Then \(\chi(M_t^{k})\) is the product of some integral powers of the roots \(i(\alpha)\) of the polynomial \(i(P_1(T)) \in \mathbb{R}[T]\). Hence, there exist integers \(h \neq 0\) and \(m\) such that

\[
\chi^{2h}(M_t^{k}) = \det(M_t)^{2m} \in \mathbb{R}^*_{>0}
\]

by Hypothesis \(R\). This implies \(\chi^{2hk} = \det^{2m}\) on \(T_{t, \mathbb{R}}\) since \((M_t^{k})^{2}\) is Zariski dense in \(T_{t, \mathbb{R}}\). Hence, \(\chi^{2hk}\) is trivial on the subtorus \((T_{t, \mathbb{R}} \cap \text{SL}_n, \mathbb{R})^0\) for some \(2hk \neq 0\). We conclude that the torus \((T_{t, \mathbb{R}} \cap \text{SL}_n, \mathbb{R})^0\) is anisotropic. \(\square\)

\text{Corollary 3.4.} \quad \text{If Hypothesis \(R\) holds and } E \text{ has a real place, then the subtorus } (T_t \cap \text{SL}_n, E)^0 \text{ of } T_t \text{ is anisotropic at a positive Dirichlet density subset } \mathcal{P}' \text{ of } \mathcal{P}_{E, f}.

\text{Proof.} Let \(r\) be the absolute rank of the \(E\)-torus \((T_t \cap \text{SL}_n, E)^0\). Then it is an \(E\)-form of the split torus \(G_{m, E}^r\) with automorphism group \(\text{GL}_r(Z)\). The isomorphism class of \((T_t \cap \text{SL}_n, E)^0\) is represented by an element of \(H^1(E, \text{GL}_r(Z))\), which is a continuous group homomorphism \(\phi : \text{Gal}(E/E) \rightarrow \text{GL}_r(Z)\) up to conjugation. Let \(c \in \text{Gal}(E/E)\) be a complex conjugation corresponding to a real place of \(E\). Since \((T_t \cap \text{SL}_n, E)^0\) is
anisotropic over \mathbb{R} by Proposition \ref{3.3} and c is of order two, it follows that $\phi(c) = -I_c$. Since the image of ϕ is finite, there is a positive Dirichlet density set P' of finite places λ of E such that $\phi(Fr_{\lambda}) = -I_{\lambda}$ by the Chebotarev density theorem. Therefore, $(T_{\lambda} \cap SL_{n,E})^0$ is anisotropic over E_λ for all $\lambda \in P'$. \hfill \Box

Remark 3.5.

(1) Hypothesis R holds for every $P_t(T)$ if the E-compatible system is pure.

(2) If $\lambda \in P'$ in Corollary \ref{3.4}, then the E_λ-subtorus $(T_{\lambda} \cap G^{\text{der}})^0$ of $(T_{\lambda} \cap SL_{n,E})^0 \cong (T_{\lambda} \cap SL_{n,E})^0 \times E_{\lambda}$ is also anisotropic. If $T_{\lambda} \subseteq G_\lambda$ is a maximal torus, then $T_{\lambda} \cap G^{\text{der}} \subset G_\lambda^{\text{der}}$ is also a maximal torus.

(3) Corollary \ref{3.4} is not true for general T. A Frobenius torus $v, \lambda \subseteq T$ is a maximal torus with minimal E-rank. In the characteristic zero case, let S be the subset of elements $v \in P_{K,f}$ such that for some $\lambda \in P_{E,f}$, the Frobenius torus $T_{\lambda} \cong T_{\lambda} \times E_{\lambda}$ is a fundamental torus of G_λ. A Frobenius torus $T_{\lambda} \subseteq G_\lambda$ being fundamental is equivalent to T_{λ} is a maximal torus and $T_{\lambda} \cap G_\lambda^{\text{der}}$ is anisotropic \cite[Prop. 5.3.2]{Bo98}. When Hypothesis R holds and E has a real place, Remark \ref{3.1}(6), Corollary \ref{3.4} and Remark \ref{3.5} imply that S is of Dirichlet density one.

Question Q: Suppose Hypothesis R holds, what is the Dirichlet density of S in $P_{K,f}$ when E is totally imaginary?

We do not know the answer; we even do not know if S is non-empty. If we want to apply main theorem \ref{H} to the algebraic monodromy representations $\{G_\lambda \hookrightarrow GL_{n,E_\lambda}\}_{\lambda \in P_{E,f}}$ when E is totally imaginary, then a positive Dirichlet density of S is necessary.

3.4. Proofs of characteristic p results. Let P be $P^{(p)}_{E,f}$.

3.4.1. Proof of Theorem \ref{I}. By Proposition \ref{3.3} and taking a finite Galois covering of X, we assume that G_λ is connected for all $\lambda \in P$. It suffices to check conditions (a),(b),(c),(d) of main theorem \ref{H} for the system of algebraic monodromy representations $\{G_\lambda \hookrightarrow GL_{n,E_\lambda}\}_{\lambda \in P}$. Conditions (a),(b),(c) follow directly from assertions (i),(ii),(iii) of Theorem \ref{H}. Condition (d) holds by \cite[Cor. 7.9]{BGP19}, or by Proposition \ref{3.6} below, for almost all λ, the existence of a hyperspecial maximal compact subgroup of $G_\lambda(E_\lambda)$ implies that G_λ is unramified \cite[§1]{Mi92}. We are done by main theorem \ref{H} \hfill \Box

Proposition 3.6. If G_λ is connected for all $\lambda \in P$, then the image of ρ_λ is contained in a hyperspecial maximal compact subgroup H_λ of $G_\lambda(E_\lambda)$ for almost all λ.

Proof. Since $\pi_1(X)$ is compact, we may assume $\rho_\lambda(\pi_1(X)) \subset GL_{n}(O_\lambda)$ after some change of coordinates $V_\lambda \cong E_\lambda^\vee$ for all λ. The geometric étale fundamental group $\pi_1^{\text{geo}}(X)$ of X satisfies the short exact sequence

$$1 \rightarrow \pi_1^{\text{geo}}(X) \rightarrow \pi_1(X) \rightarrow \text{Gal}(\overline{F}_q/F_q) \rightarrow 1.$$

Denote the Zariski closure of $\rho_\lambda(\pi_1^{\text{geo}}(X))$ in GL_{n,E_λ} by G_λ^{geo}. Let G_λ (resp. G_λ^{geo}) be the Zariski closure of G_λ (resp. the identity component of G_λ^{geo}) in GL_{n,O_λ} with special fiber $G_{k_{\lambda}}$ (resp. $G_{k_{\lambda}}^{\text{geo}}$). It suffices to prove that for almost all λ, $H_\lambda := G_\lambda(O_\lambda)$ is a hyperspecial maximal compact subgroup of $G_\lambda(E_\lambda)$. By Bruhat-Tits theory, this condition follows if we show that the O_λ-group scheme $G_{k_{\lambda}}$ is reductive \cite[§3.8.1]{BGP19}.

By \cite[Thm. 7.3]{BGP19}, the O_λ-group scheme $G_{k_{\lambda}}^{\text{geo}}$ is semisimple for almost all λ. Let k_{λ} be the residue field of E_{λ}. Since the O_{λ}-group scheme $G_{k_{\lambda}}$ is smooth with constant absolute rank for almost all λ by Proposition \ref{V} and contains $G_{k_{\lambda}}^{\text{geo}}$ as a closed normal subgroup scheme, the inequalities

$$\dim G_\lambda = \dim(G_{k_{\lambda}}) = \dim(G_{k_{\lambda}}^{\text{geo}}) + \dim(G_{k_{\lambda}}/G_{k_{\lambda}}^{\text{geo}})$$

$$\geq \dim(G_{k_{\lambda}}^{\text{geo}}) + \rk(G_{k_{\lambda}}/G_{k_{\lambda}}^{\text{geo}}) = \dim G_{\lambda}^{\text{geo}} + \rk(G_\lambda/G_{\lambda}^{\text{geo}}) = \dim G_{\lambda}.$$
implies that the special fiber $G_{E\lambda}$ has trivial unipotent radical for almost all λ. Therefore, the smooth group scheme G_λ is reductive over O_λ for almost all λ.

3.4.2. Proof of Corollary 1.2. By Theorem 1.1(1), there is a connected reductive group G defined over E and an isomorphism $\phi_\lambda : G \times_E E_\lambda \to G_\lambda$ for each $\lambda \in \mathcal{P}$. For almost all λ, the O_λ-points $G(O_\lambda)$ is well-defined (by finding some integral model G of G) and is a hyperspecial maximal compact subgroup of the E_λ-points $G(E_\lambda)$ \cite{Ti79} §3.8.1. Let G_{λ}^{ad} be the adjoint group of G_λ. The subgroup $G_{\lambda}^{\text{ad}}(E_\lambda)$ is transitive on the set of hyperspecial maximal compact subgroups of $G_\lambda(E_\lambda)$ \cite{Ti79} §2.5]. Hence, by Proposition 3.6 and adjusting ϕ_λ for almost all λ, we assume $\phi_\lambda(G(O_\lambda)) = H_\lambda \subset G_\lambda(E_\lambda)$ for almost all λ. Then the image of the map $\prod_{\lambda \in \mathcal{P}} \phi_\lambda^{-1} \circ \rho_\lambda$ is contained in theadelic points $G(A_E^{\text{ad}})$, which defines the desired G-valued adelic representation ρ_k^G. This proves assertion (i).

The proof of (ii) is exactly the same except we want to adjust the isomorphism of representation

$$\phi_\lambda : (G \hookrightarrow GL_{n,E}) \times_E E_\lambda \to (G_\lambda \hookrightarrow GL_{n,E_\lambda})$$

in order to have

$$\phi_\lambda^{-1}(H_\lambda) = G(O_\lambda) \subset GL_{n,E}(O_\lambda)$$

for almost λ (the inclusion is defined by finding some integral model $G \subset GL_{n,O_{E,S}}$ of $G \subset GL_{n,E}$). This can be achieved since $G_{\lambda}^{\text{ad}}(E_\lambda)$ is a subgroup of $\text{Im}_{E_\lambda} \left(GL_{n,E_\lambda} \times G_\lambda(E_\lambda)\right)$ (see §2.3.1) as the representation ρ_λ is absolutely irreducible.

3.4.3. Proof of Corollary 1.3. Find a smooth $O_{E,S}$-model $G \subset GL_{n,O_{E,S}}$ of $G \subset GL_{n,E}$ for some finite $S \subset \mathcal{P}_{E,f}$. Then by enlarging S we obtain that the group scheme $GL_{n,O_{E,S}} \times O_\lambda$ (resp. $G \times O_\lambda$ is the group scheme associated to the hyperspecial maximal compact subgroup $GL_{n,O_{E,S}}(O_\lambda)$ of $GL_{n,O_{E,S}}(E_\lambda) = GL_n(E_\lambda)$ (resp. $G(O_\lambda)$ of $G(E_\lambda)$) for all $\lambda \in \mathcal{P} \setminus S$ \cite{Ti79} §3.9.1]. We may assume that for all $\lambda \in \mathcal{P} \setminus S$, the inclusion

$$G(O_\lambda) \subset GL_{n,O_{E,S}}(O_\lambda) = GL_{n}(O_\lambda)$$

gives the construction $G(O_\lambda) \subset GL_{n,E}(O_\lambda)$ in (51). Since the λ-component

$$(\rho_k^G)_\lambda : \pi_1(X) \to G(O_\lambda) \subset GL_{n,O_{E,S}}(O_\lambda) = GL_n(O_\lambda) \subset GL_n(E_\lambda)$$

of the adelic representation ρ_k^G is isomorphic to ρ_λ by Corollary 1.2(ii), the representation $(G \hookrightarrow GL_{n,O_{E,S}}) \times O_\lambda$ is isomorphic to $G_\lambda \hookrightarrow GL_{n,O_{E,S}}$, where G_λ is the Zariski closure of $\rho_\lambda(\pi_1(X))$ in $GL_{n,O_{E,S}}$ after some choice of O_λ-lattice in V_λ.

Remark 3.7. The proofs of Corollaries 1.2 and 1.3 are standard in the sense that they only require the common E-forms G and $G \subset GL_{n,E}$ in Theorem 1.1, Proposition 3.6, and Bruhat-Tits theory \cite{Ti79}.

3.4.4. Proof of Corollary 1.4. By Corollary 1.2(ii), there is a common E-form $\iota : G \subseteq GL_{n,E}$. For each $\lambda \in \mathcal{P}$, choose an embedding $E \to E_\lambda$. We claim that the conjugacy class of the semisimple part $\rho_k^G(F_{\text{Fr}})_\lambda$ in $G(E_\lambda)$ is defined over E for all Frobenius element F_{Fr} and all $\lambda \in \mathcal{P}$. Indeed, by field extension, we obtain

$$\rho_k^G(F_{\text{Fr}})_\lambda \subset (G \times E)(E_\lambda) \overset{\text{Fr}}{\to} GL_{n,E}(E_\lambda).$$

It suffices to show that for any irreducible representation ψ of $G \times E$, the trace of $\psi(\rho_k^G(F_{\text{Fr}})_s) \in E$. This is true because the roots α of the characteristic polynomial $P_{\text{Fr}}(T)$ of $\rho_k^G(F_{\text{Fr}}) \in GL_{n,E}(E_\lambda)$ belong to E by E-compatibility and ψ is a subrepresentation of $\otimes_{\mathbb{Z},r,s \geq 0} \otimes \otimes_{\mathbb{Z},r,s \geq 0}$ for some $r, s \in \mathbb{Z}_{\geq 0}$. The next step is to show that for a fixed Frobenius element F_{Fr}, the conjugacy class of $\rho_k^G(F_{\text{Fr}})_\lambda$ in G is independent of λ. By \cite[Thm. 4.3.2]{Da20} [Ch04 Thm. 6.8, Cor. 6.9] when X is a curve], there is a finite extension F of E and a connected reductive subgroup $G_{\text{sp}} \subseteq GL_{n,F}$ such that for all $\lambda \in \mathcal{P}$, if F_λ is a completion of F extending λ on E, then there exists an isomorphism of representations:

$$f_{F_\lambda} : (G_{\text{sp}} \hookrightarrow GL_{n,F}) \times_F F_\lambda \overset{\cong}{\to} (G_\lambda \hookrightarrow GL_{n,E_\lambda}) \times_{E_\lambda} F_\lambda.$$
Moreover by [D’Ad20] Proof of Thm. 4.3.2] ([Ch04] Thm. 6.12] when X is a curve), the representations

$$\rho^G_{\lambda} : \pi_1(X) \xrightarrow{\beta_{\lambda}} (G_{\lambda} \times F_{\lambda})(F_{\lambda}) \xrightarrow{f_{F_{\lambda}}^{-1}} G^p(F_{\lambda})$$

for all λ form an F-compatible system of G^p-representations. Hence, the conjugacy class $[\rho^G_{\lambda} (Fr_{\lambda})_{s}]$ in G^p is independent of λ. If $\beta_{\lambda} \in N_{GL_{n,E}}(G)(E_{\lambda})$, we obtain the isomorphisms below

$$(G \times_E E_{\lambda} \hookrightarrow GL_{n,E_{\lambda}}) \times_E F_{\lambda} \xrightarrow{\beta_{\lambda}^{-1} \times F_{\lambda}} (G \times_E E_{\lambda} \hookrightarrow GL_{n,E_{\lambda}}) \times_E F_{\lambda}$$

by Corollary [12(ii)] and [52]. Fix $\lambda' \in \mathcal{P}$, define $\beta_{\lambda'} = id$, and embed F_{λ} into C for all $\lambda \in \mathcal{P}$. It suffices to find β_{λ} for all $\lambda \in \mathcal{P} \setminus \{\lambda'\}$ such that

$$\Phi_{\lambda} := [(\beta_{\lambda} \times F_{\lambda})] \circ (\phi_{\lambda} \times F_{\lambda})^{-1} \circ f_{F_{\lambda}} \circ f_{F_{\lambda}}^{-1} \circ (\phi_{\lambda'} \times F_{\lambda'})] \times C \in \text{Inn}_C(G \times C).$$

Then $\Phi_{\lambda}([\rho^G_{\lambda} (Fr_{\lambda})_{s}]) = [\rho^G_{\lambda} (Fr_{\lambda})_{s}]$ is an equality of conjugacy class in G for all $Fr_{\lambda} \in Fr$. For (i), since G_{λ} is split and irreducible on the ambient space, $N_{GL_{n,E}}(G)(E_{\lambda})$ surjects onto $\theta_{G_{\lambda}}$ in [18]. Thus, there is $\beta_{\lambda} \in N_{GL_{n,E}}(G)(E_{\lambda})$ such that $\Phi_{\lambda} \in \text{Inn}_C(G \times C) = G^\text{ad}(C)$. For (ii), take $\beta_{\lambda} = id$ for all λ. Since the outer automorphism group Out$(G_{\lambda}^\text{der} \times C)$ is trivial and $G \times C \hookrightarrow GL_{n,C}$ is irreducible, the image of Φ_{λ} in Out$(G \times C)$ is also trivial. Hence, we conclude that in both cases (i) and (ii), Φ_{λ} is inner and $[\rho_{\lambda} (Fr_{\lambda})_{s}] = [\rho_{\lambda} (Fr_{\lambda})_{s}]$ for all Fr_{λ}. For $Fr_{\lambda} \in Fr$, it follows that the G^p-conjugacy class $[\rho_{\lambda} (Fr_{\lambda})_{s}]$ is independent of $\lambda \in \mathcal{P}$.

Let R be the affine coordinate ring of G. For any $f \in R^G$, $f_t := f([\rho^G_{\lambda} (Fr_{\lambda})_{s}]) \in \overline{E}$ is independent of λ and also belongs to E_{λ} for all $\lambda \in \mathcal{P}$. Therefore, $f_t \in E$ and we conclude that $\{\rho^G_{\lambda}\}_{\lambda \in \mathcal{P}}$ is an E-compatible system of G-representations. The last claim of the Corollary is immediate.

Remark 3.8. In general, if we can find for each λ an element $\beta_{\lambda} \in \text{Inn}_E(G_{\lambda} \times E_{\lambda}, G_{\lambda})(E_{\lambda})$ such that Φ_{λ} (defined in [55]) belongs to $\text{Inn}_C(G \times C)$, then the conclusion of the corollary also follows.

3.4.5. Proof of Theorem 1.5. For each $\lambda \in \mathcal{P}^{(p)}$, we have the chain $T_{t,\lambda} \subset G_{\lambda}^o \subset GL_{V_{\lambda}} \cong GL_{n,E_{\lambda}}$. For each $v \in \mathcal{P}^{(p)}$, we have the chain $T_{t,v} \subset G_{t,v}^o \subset GL_{V_{t,v}} \cong GL_{n,E_{\lambda}}$ by condition (b) of Theorem 1.5. By identifying the algebraic monodromy groups as subgroups of GL_n, we obtain a chain $T_{\lambda} \subset G_{\lambda}^o \subset GL_{n,E_{\lambda}}$ for each finite place λ of E. Here we simplify our notation by representing places of E extending p also as λ. To prove the theorem, it suffices to find a torus $T \subset GL_{n,E}$ and a chain $G^p \subset G^p \subset GL_{n,E}$ such that conditions (a), (b), (c), (d) of main theorem [1] for the system

$$\{T_{\lambda} \subset G_{\lambda}^o \subset GL_{n,E_{\lambda}}\}_{\lambda \in \mathcal{P}_{E,f}}$$

hold. Note that the last sentence of Theorem 1.5(ii) follows from Remark 2.1.6. The verifications rely on the following result of D’Addezo (enhancing Theorem 1.5) and the fact that T_{λ} is a maximal torus of G_{λ} for all $\lambda \in \mathcal{P}_{E,f}$ by condition (a) of Theorem 1.5.

Theorem B’. [D’Ad20] Construction 4.2.1 (Frobenius tori), Theorem 4.3.2 and its proof] Let ρ_* be the E-compatible system in Theorem 1.5 and $T_{\lambda} \subset G_{\lambda}^o \subset GL_{n,E_{\lambda}}$ be the chain defined above for each $\lambda \in \mathcal{P}_{E,f}$. Then the following assertions hold.

(i) (Common E-form of formal characters): There exists a subtorus $T := T_{t,\lambda}$ of $GL_{n,E}$ such that for all $\lambda \in \mathcal{P}_{E,f}$, $T_{\lambda} := T \times_E E_{\lambda}$ is a maximal torus of G_{λ}^o.

(ii) (Independence over an extension): There exist a finite extension F of E and a chain of subgroups $T^p \subset G^p \subset GL_{n,F}$ such that G^p is connected split reductive, T^p is a split maximal torus of G^p, and for all $\lambda \in \mathcal{P}_{E,f}$, if F_{λ} is a completion of F extending λ on E, then there exists an isomorphism of chain representations:

$$f_{F_{\lambda}} : (T^p \subset G^p \hookrightarrow GL_{n,F_{\lambda}}) \times_F F_{\lambda} \xrightarrow{\cong} (T_{\lambda} \subset G_{\lambda}^o \hookrightarrow GL_{n,E_{\lambda}}) \times_E F_{\lambda}.$$

(iii) (Rigidity) The isomorphisms $f_{F_{\lambda}}$ in (ii) can be chosen such that the restriction isomorphisms $f_{F_{\lambda}} : T^p \times_F F_{\lambda} \rightarrow T_{\lambda} \times_E F_{\lambda}$ admit a common F-form $f_F : T^p \rightarrow T \times_E F$ for all $\lambda \in \mathcal{P}_{E,f}$ and F_{λ}.
Then conditions (a),(b),(c) are just Theorem B (i),(ii),(iii). For condition (d), let $T_r \subset GL_{n,E}$ be the E-form in Theorem B (i). By §2.6.1 and conditions (a),(b),(c), there exists an isomorphism of representations

$$f_E : (T_r \mapsto GL_{n,E}) \times_E \overline{E} \overset{\cong}{\rightarrow} (T_r \mapsto GL_{n,E}) \times_E \overline{E}$$

which produces the cocycle μ as in (41). Consider the short exact sequence of E-groups

$$1 \rightarrow C \rightarrow T^{sp} \rightarrow T^{sp}/C \rightarrow 1.$$

By Proposition 2.15 μ as Galois representation acts on C and hence (56) in an equivariant way, inducing the short exact sequence of E-groups by twisting (§2.4.1)

$$\begin{align*}
T_r & \quad \quad \quad \quad 1 \quad \quad \quad \quad \mu C \quad \quad \quad \quad \mu(T^{sp}) \quad \quad \quad \quad \mu(T^{sp}/C) \quad \quad \quad \quad 1 \\
\end{align*}$$

Since μ is constructed from f_E, it has values in $\text{Im} f_E(GL_{n,E}, T^{sp})$. It follows that μ as Galois representations acts on the surjection of E-groups

$$(T^{sp} \cap SL_{n,E})^\circ \rightarrow T^{sp}/C$$

in an equivariant way. Hence, we obtain the short exact sequence of E-groups

$$(T_r \cap SL_{n,E})^\circ = \mu(T^{sp} \cap SL_{n,E})^\circ \rightarrow \mu(T^{sp}/C).$$

By condition (c) of Theorem 1.5 E has a real place. Since $(T_r \cap SL_{n,E})^\circ$ is anisotropic over each real place of E by Proposition 3.3 (Remark 3.5.1), and the fact that ρ_\ast is pure of weight w, it follows that the twisted torus $\mu(T^{sp}/C)$ is also anisotropic over each real place of E by the surjection (59). □

3.5. **Proofs of characteristic zero results.** Let P be $P_{Q,f}$.

3.5.1. **Proof of Theorem 1.6** It suffices to check conditions (a),(b),(c),(d) of main theorem 11 for the system of algebraic monodromy representations

$$\{G_\ell \mapsto GL_{n,Q_\ell}\}_{\ell \in P}$$

and note Remark 2.1(6). Since the conditions remain the same after taking any finite extension F of K, it is free to do so.

Condition II(a): By condition 1.6(a) and Remark 3.1(6), there is a place $v \in P_{K,\ell}\setminus S$ such that the Frobenius torus $T_{r,\ell}$ is a maximal torus of G_ℓ for all ℓ not equal to $p := p_v$ and the local representation V_p of $\text{Gal}(K_v/K_v)$ is ordinary. It remains to check the condition for the places over p.

Let Y_v be the special fiber of a smooth model of Y over O_v and $M_v := H^w(Y_v/O_v) \otimes_{O_v} K_v$ be the crystalline cohomology group, which belongs to the category $\text{MF}_{K_v}^{\text{ad}}$ of weakly admissible filtered modules over K_v. There are algebraic subgroups $(H_{V_p} \subset GL_{V_p}) \times_{Q_p} K_v$ and $H_{M_v} \subset GL_{M_v}$ such that their tautological representations (via the mysterious functor of Fontaine) are inner forms of each other, in particular isomorphic over \overline{Q}_p,

$$(H_{V_p} \mapsto GL_{V_p}) \times_{Q_p} \overline{Q}_p \overset{\cong}{\rightarrow} (H_{M_v} \mapsto GL_{M_v}) \times_{K_v} \overline{Q}_p,$$

where H_{V_p} is the algebraic monodromy group of the local crystalline representation $\rho_p : \text{Gal}(K_v/K_v) \rightarrow GL(V_p)$ and H_{M_v} is the automorphism group of the fiber functor on the full Tannakian subcategory of $\text{MF}_{K_v}^{\text{ad}}$ generated by M_v that assigns a filtered K-module the underlying K-vector space (see [P98] §2)). Let m_v be the degree $[K_v : Q_p]$ and f_{M_v} the crystalline Frobenius. By Katz-Messing [KM73] (see [P98] Thm. 3.10), $f_{M_v}^{m_v}$ is an element of $H_{M_v}(K_v) \subset GL(M_v)$ with characteristic polynomial equal to $P_v(T)$, the characteristic polynomial of $\rho_\ell(\text{Fr}_v)$ ($\ell \neq p$).

Let Φ_{V_p} be the element in $H_{V_p}(\overline{Q}_p)$ corresponding to $f_{M_v}^{m_v} \in H_{M_v}(\overline{Q}_p)$ via ι. The group H_{V_p} is generated by cocharacters (connected) and the smallest algebraic subgroup containing Φ_{V_p} [P98 Prop. 2.6]. It is connected because the characteristic polynomial of $\Phi_{V_p} \in GL_{V_p}$ is $P_v(T)$ and the (maximal) Frobenius torus $T_{r,\ell}$ is equal to $S_{m,v}$ by Remark 3.1(1). Let $V_{P_{Q,f}}$ be the semisimplification of the representation $H_{V_p} \mapsto GL_{V_p}$.
Since the local representation V_p is ordinary, H_{V_p} is solvable \([P98, \text{Prop. 2.9}]\) and its image $H_{V_p}^{\text{red}}$ in GL_{V_p} is a torus. Since the conjugacy class of Φ_{V_p} in H_{V_p} is defined over \mathbb{Q}_p \([P98, \text{Prop. 2.2}]\) and $H_{V_p}^{\text{red}}$ is abelian, the image of Φ_{V_p} in $H_{V_p}^{\text{red}}$, denoted by $\Phi_{V_p}^{\text{red}}$, belongs to $H_{V_p}^{\text{red}}(\mathbb{Q}_p)$. By the splitting of the surjection $H_{V_p} \to H_{V_p}^{\text{red}}$, there is a semisimple element $\Phi_{\tau} \in H_{V_p}(\mathbb{Q}_p) \subset GL(V_p)$ with characteristic polynomial $P_{\tau}(T)$. The smallest algebraic subgroup of $H_{V_p} \subset G_p$ containing Φ_{τ} is a \mathbb{Q}_p-maximal torus $T_{\tau,p}$ of G_p because the absolute rank of G_ℓ is independent of ℓ by Corollary [3.2] and $T_{\tau,\ell}$ is a maximal Frobenius torus. Since the characteristic polynomials of Φ_{τ} and $\rho_\ell(Fr_{\tau})$ for all $\ell \neq p$ are equal to $P_{\tau}(T)$, the tori representations $T_{\tau,\ell} \hookrightarrow GL_{V_\ell}$ for all ℓ admit a common \mathbb{Q}-form $T_\ell \hookrightarrow GL_{n,\mathbb{Q}}$.

\[\tag{62} \ker(P_{\tau}) \]

Condition [10(b)]: This is just condition [10(b)].

Condition [10(c)]: By Proposition 2.8 and condition [10(c)], it suffices to check condition (c’-bi) in §2.2. Identify GL_{V_ℓ} as GL_{n,\mathbb{Q}_ℓ} for all ℓ. We employ the technique in [Hu13, Prop. 3.18, Thm. 3.19]. Let \(\{\psi_\ell\}_{\ell \in P} \) be an r-dimensional semisimple \mathbb{Q}-compatible system of abelian ℓ-adic representations of $Gal(\mathbb{K}/K)$. Let $S_\ell \subset GL_{r,\mathbb{Q}_\ell}$ be the algebraic monodromy group of ψ_ℓ and assume S_ℓ is torus and with the largest possible dimension d_K [Hu13, Thm. 3.8] for all ℓ. Consider the semisimple \mathbb{Q}-compatible system \(\{\rho_\ell \oplus \psi_\ell\}_{\ell \in P} \) and let $G'_\ell \subset GL_{n,\mathbb{Q}_\ell} \times GL_{r,\mathbb{Q}_\ell}$ be the algebraic monodromy group at ℓ. Let

\[p'_{i,\ell} : G'_\ell \to GL_{n,\mathbb{Q}_\ell} \times GL_{r,\mathbb{Q}_\ell} \]

be the projection to the ith factor, $i = 1, 2$. By considering $p'_{1,\ell}$, there is a diagonalizable subgroup D_ℓ of S_ℓ with a short exact sequence

\[1 \to D_\ell \to G'_\ell \to G_\ell \to 1. \]

Let k be the number of components of D_ℓ for some prime ℓ'. By replacing \(\{\rho_\ell \oplus \psi_\ell\}_{\ell \in P} \) with \(\{\rho_\ell' \oplus \psi_\ell'\}_{\ell \in P} \), we assume that D_ℓ is connected. Since G'_ℓ is connected, G'_ℓ is connected by (61). Hence, G'_ℓ is connected for all ℓ by Proposition [M]. Since the dimension of the center of G'_ℓ is $d_K = dim(S_\ell)$ for all ℓ [Hu13, Prop. 3.8, Thm. 3.19], it follows that for all ℓ

\[\ker(p'_{2,\ell})^o = (G'_\ell)^{\text{der}} = G^{\text{der}}_{\ell}. \]

Proposition P. \([P98, S_c08]\) Chap. II, [S_c88] Chap. 1, Thm. 4.1] Fix a prime ℓ'', there exist a finite extension F of K and an abelian variety A over F that is a direct product of CM abelian varieties with the following properties. Let

\[\{\epsilon_\ell : Gal(F/F) \to GL(W_\ell)\}_{\ell \in P} \]

be the semisimple compatible system of Galois representations with $W_\ell := H^1(A, \mathbb{Q}_\ell)$. Let M_ℓ and G'_ℓ be respectively the algebraic monodromy group of the Galois representation ϵ_ℓ and $\rho_\ell \oplus \epsilon_\ell$ of $Gal(F/F)$. Then the following assertions hold.

(i) For all ℓ, G''_ℓ is connected and M_ℓ is a torus with dimension independent of ℓ.

(ii) The restriction map $\psi_{\ell''} : Gal(F/F) \to GL_{r}(\mathbb{Q}_{\ell''})$ factors through a morphism $M_{\ell''} \times \mathbb{Q}_{\ell''} \to GL_{r,\mathbb{Q}_{\ell''}}$.

Since G'_ℓ is connected for all ℓ, it is again the algebraic monodromy group of the restriction of $\rho_\ell \oplus \psi_\ell$ to $Gal(F/F)$. Again, let $p''_{i,\ell} : G''_{\ell} \to GL_{n,\mathbb{Q}_\ell} \times M_\ell$ be the projection to the ith factor, $i = 1, 2$. Since there exists a surjective map $G''_{\ell} \to G''_{\ell''}$ by Proposition [P](ii), it follows from (62) and the connectedness of G''_{ℓ}, (Proposition [P](i)) that

\[\ker(p''_{2,\ell})^o = (G''_{\ell})^{\text{der}} = (G''_{\ell''})^{\text{der}}. \]

is the semisimple part of $G''_{\ell''}$. Since $\{\rho_\ell \oplus \epsilon_\ell\}_{\ell \in P}$ is a compatible system of representations of $Gal(F/F)$, the semisimple rank and the dimension of the center of G''_{ℓ} is independent of ℓ [Hu13, Thm. 3.19]. This, together with (63) and the ℓ-independence of $\dim M_\ell$ (Proposition [P](i)), imply that

\[\ker(p''_{2,\ell})^o = (G''_{\ell})^{\text{der}} \]

for all ℓ. Hence, if T''_{ℓ} is a maximal torus of G''_{ℓ}, then

\[\ker(p''_{2,\ell} : T''_{\ell} \to M_\ell)^o \subset p''_{2,\ell}(T''_{\ell})^o \hookrightarrow GL_{n,\mathbb{Q}_\ell} \]
is a formal bi-character of G_t.

Finally, we follow the strategy in condition (I.a). If v is a finite place of F such that $Y \times_K F$ and A have good reduction, then write $p := p_v$ and the Frobenius element F_v have characteristic polynomials $P_v(T) \in \mathbb{Q}[T]$ on V_l and $Q_v(T) \in \mathbb{Q}[T]$ on W_p for all $l \neq p$. By condition (I.a), there exists $v \in \mathcal{P}_{F,l}$ such that the Frobenius torus $T^\nu_{v,p} \subset G^\nu_v$ is maximal for all $l \neq p$ and the local representation V_p of $\text{Gal}(\overline{F}_v/F_v)$ is ordinary. Then we let $H_{V_p \otimes W_p} \subset GL_{V_p} \times GL_{W_p}$ be the algebraic monodromy group of the local crystalline representation

$$\rho_p \oplus \epsilon_p : \text{Gal}(\overline{F}_v/F_v) \to GL(V_p) \times GL(W_p)$$

and $H^\text{red}_{V_p \otimes W_p}$ its image (semisimplification) in the (abelian) diagonalizable subgroup $H^\text{red}_{V_p} \times M_p \subset GL_{V_p} \times GL_{W_p}$, where $H^\text{red}_{V_p}$ is defined in condition (I.a). Since the local representation $V_p \oplus W_p$ is crystalline, we conclude by repeating the arguments in the second and third paragraphs of condition (I.a) that there exists an element in $H^\text{red}_{V_p \otimes W_p}(\mathbb{Q}_p)$ lifting to a semisimple element $\Phi^\nu_v \in H^\text{red}_{V_p}(\mathbb{Q}_p) \subset G^\nu_v(\mathbb{Q}_p)$ with characteristic polynomials $P_v(T)$ on V_p and $Q_v(T)$ on W_p. The smallest algebraic subgroup $T^\nu_{v,p}$ of G^ν_v containing Φ^ν_v is also a maximal torus as the absolute rank of G^ν_v is independent of l. By using the polynomials $P_v(T), Q_v(T) \in \mathbb{Q}[T]$, we construct a common \mathbb{Q}-form $T^\nu_v \hookrightarrow GL_{n,Q} \times GL_{2 \cdot \dim A,Q}$ of the formal characters $T^\nu_{v,l} \hookrightarrow GL_{n,Q} \times GL_{W_l}$ of $G^\nu_v \subset GL_{n,Q} \times GL_{W}$ for all l such that

$$(65) \quad \text{ker}(p_2: T^\nu_v \to GL_{2 \cdot \dim A,Q}^0) \subset p_1(T^\nu_{v,l}) \hookrightarrow GL_{n,Q}$$

is a common \mathbb{Q}-form of formal bi-characters of $G_v \subset GL_{n,Q}$, for all l, where p_1, p_2 are the obvious projections. We may replace $T_v \hookrightarrow GL_{n,Q}$ constructed in condition (I.a) with $p_1(T^\nu_{v,l}) \hookrightarrow GL_{n,Q}$ in (65). □

Condition (I.d): Let $T_v \subset GL_{n,Q}$ be the \mathbb{Q}-form we found in condition (I.a). This part is exactly the same as the verification of condition (I.d) for Theorem 1.5 once we replace the field E by \mathbb{Q} and the E-torus T by the \mathbb{Q}-torus T_v. □

3.5.2. Proofs of Corollaries 1.9 and 1.10. Since Corollaries 1.9 and 1.10 (of Theorem 1.4) assume Hypothesis H, they follow along the same lines in the proofs of Corollaries 1.2 and 1.3 by Remark 3.7. □

3.5.3. Galois maximality and Hypothesis H. Let K be a number field and $\{\rho_l : \text{Gal}(\overline{K}/K) \to GL_n(\mathbb{Q}_l)\}_{l \in P}$ be a \mathbb{Q}-compatible system of l-adic representations. Let T_l be the image of ρ_l and G_l be the algebraic monodromy group of ρ_l. Then Γ_l is a compact subgroup of $G_l(\mathbb{Q}_l)$. Suppose for simplicity that G_l is connected for all l. Denote by G^ss_l the quotient of G_l by its radical and by G^ss_l the simply-connected covering of G^ss_l. Denote by Γ^ss_l the image of Γ_l in $G^\text{ss}_l(\mathbb{Q}_l)$ and by Γ^ss_l the inverse image of Γ^ss_l in $G^\text{ss}_l(\mathbb{Q}_l)$. When $l \gg 0$ compared to the absolute rank of G^ss_l, a compact subgroup H_l of $G^\text{ss}_l(\mathbb{Q}_l)$ is hyperspecial maximal compact if the “mod l reduction” of H_l is “of the same Lie type” as the semisimple group G^ss_l (see [HL16]). In [Lar95], Larsen proved that the set of primes l for which $\Gamma^\text{ss}_l \subset G^\text{ss}_l(\mathbb{Q}_l)$ is hyperspecial maximal compact is of Dirichlet density one and conjectured the following.

Conjecture S. For all $l \gg 0$, Γ^ss_l is a hyperspecial maximal compact subgroup of $G^\text{ss}_l(\mathbb{Q}_l)$.

This conjecture is also related to the conjectures of Serre on maximal motives [Ser94, 11.4, 11.8]. Suppose the l-adic compatible system is $\{H^w(Y_{\mathbb{R},W}(\mathbb{Q}_l))\}_{l \in P}$, where Y is a smooth projective variety defined over a number field K. When Y is an elliptic curve without complex multiplication and $w = 1$, a well-known theorem of Serre states that for $l \gg 0$, $\Gamma^\text{ss}_l \cong GL_2(\mathbb{Z}_l)$ is maximal compact in $GL(V_l)$ [Ser72]. In general, by studying the mod l compatible system $\{H^w(Y_{\mathbb{R},W}(\overline{F}_l))\}_{l \gg 0}$, we proved that $\Gamma_l \subset G_l(\mathbb{Q}_l)$ is large in the sense that its mod l reduction has “the same semisimple rank” as the algebraic group G_l for $l \gg 0$ [Hu15, Thm. A]. This result is crucial to the following.

Theorem T. [HL16, HL20] Let ρ_l be the \mathbb{Q}-compatible system arising from a smooth projective variety Y defined over K. Conjecture S holds in the following cases.

(i) For $l \gg 0$, G^ss_l is of type A, i.e., isomorphic to $\prod_i \text{SL}_{n_i}$ over \mathbb{Q}_l.

(ii) Y is an abelian variety.

(iii) Y is a hyper-Kähler variety and degree $w = 2$.
Let Λ_ℓ be a \mathbb{Z}_ℓ-lattice of \mathbb{Q}_ℓ^n that is invariant under Γ_ℓ and \mathcal{G}_ℓ (resp. $\mathcal{G}_\ell^{\text{der}}$) the Zariski closure of Γ_ℓ (resp. the derived group $[\Gamma_\ell, \Gamma_\ell]$) in $\text{GL}_{n, \mathbb{Z}_\ell}$, endowed with the unique reduced closed subscheme structure. Write $\mathcal{G}_\ell^{\text{der}}$ (resp. $\mathcal{G}_\ell^{\text{der}}$) as the special fiber.

Theorem 3.9. Suppose \mathcal{G}_ℓ is connected reductive for all ℓ. Then Conjecture \mathcal{S} implies that \mathcal{G}_ℓ is a reductive group scheme over \mathbb{Z}_ℓ for $\ell \gg 0$ and Hypothesis H.

Proof. Let $\pi_\ell: \mathcal{G}_\ell^{\text{f}}(\mathbb{Q}_\ell) \to \mathcal{G}_\ell^{\text{der}}(\mathbb{Q}_\ell) \to \mathcal{G}_\ell(\mathbb{Q}_\ell)$ be the natural morphism. Consider the natural commutative diagram where each vertical map is the commutator map

\[
\begin{array}{ccccccc}
\mathcal{G}_\ell^{\text{f}} \times \mathcal{G}_\ell^{\text{f}} & \longrightarrow & \mathcal{G}_\ell \times \mathcal{G}_\ell & \longrightarrow & \mathcal{G}_\ell^{\text{f}} \times \mathcal{G}_\ell^{\text{f}} \\
\downarrow \pi_\ell & & \downarrow \pi_\ell & & \downarrow \pi_\ell \\
\mathcal{G}_\ell^{\text{f}} & \longrightarrow & \mathcal{G}_\ell & \longrightarrow & \mathcal{G}_\ell^{\text{f}} \\
\end{array}
\]

Then by the definition of Γ_ℓ^{f}, the inclusion $\pi_\ell([\Gamma_\ell^{\text{f}}, \Gamma_\ell^{\text{f}}]) \subset [\Gamma_\ell, \Gamma_\ell]$ holds. Suppose Conjecture \mathcal{S} holds, then the hyperspecial maximal compact Γ_ℓ^{f} is perfect for $\ell \gg 0$ (see e.g., [HL16] Proof of Cor. 11). Thus, for $\ell \gg 0$, it follows that $\pi_\ell(\Gamma_\ell^{\text{f}}) \subset [\Gamma_\ell, \Gamma_\ell]$. The closed subscheme $\mathcal{G}_\ell \subset \text{GL}_{n, \mathbb{Z}_\ell}$ is smooth by Proposition \mathcal{N} for $\ell \gg 0$. Also, the subscheme $\mathcal{G}_\ell^{\text{der}}$ is smooth for $\ell \gg 0$ (see e.g., [CTT17] Thm. 9.1.1, §9.2.1), note that $\mathcal{G}_\ell^{\text{der}}$ is connected). Then for $\ell \gg 0$,

$$\pi_\ell(\Gamma_\ell^{\text{f}}) \subset [\Gamma_\ell, \Gamma_\ell] \subset \mathcal{G}_\ell^{\text{f}} \subset \mathcal{G}_\ell(\mathbb{Z}_\ell) \subset \mathcal{G}_\ell(\mathbb{Q}_\ell) \subset \text{GL}_{n, \mathbb{Z}_\ell}.$$ (66)

If we can prove that \mathcal{G}_ℓ is a reductive group scheme over \mathbb{Z}_ℓ, then $\mathcal{G}_\ell(\mathbb{Z}_\ell) \subset \mathcal{G}_\ell(\mathbb{Q}_\ell)$ is hyperspecial maximal compact by Bruhat-Tits theory. So it remains to prove that the special fiber $\mathcal{G}_\ell^{\text{der}}$ is reductive.

By taking mod ℓ reduction of (66), we obtain by Hensel’s lemma that for $\ell \gg 0$,

$$\pi_\ell(\Gamma_\ell^{\text{f}}) \subset \mathcal{G}_\ell^{\text{der}}(\mathbb{Z}_\ell) \subset \mathcal{G}_\ell^{\text{der}}(\mathbb{F}_\ell) \subset \text{GL}_{n, \mathbb{F}_\ell}.$$

(67)

For $\ell \gg n$, let $S_\ell \subset \text{GL}_{n, \mathbb{F}_\ell}$ be the Nori envelope [Nor87] of the finite subgroup $\pi_\ell(\Gamma_\ell^{\text{f}}) \subset \text{GL}_{n, \mathbb{F}_\ell}$. It is the connected algebraic subgroup of $\text{GL}_{n, \mathbb{F}_\ell}$ generated by the one parameter unipotent subgroups $\{u^t : t \in \mathbb{F}_\ell\}$ for all order ℓ elements of $\pi_\ell(\Gamma_\ell^{\text{f}})$.

It is semisimple by unipotent. Let $\overline{\pi_\ell(\Gamma_\ell^{\text{f}})}$ be the normal subgroup of $\overline{\pi_\ell(\Gamma_\ell^{\text{f}})}$ generated by the order ℓ elements. Then $\overline{\pi_\ell(\Gamma_\ell^{\text{f}})}$ is a subgroup of $S_\ell(\mathbb{F}_\ell)$ and $[\overline{\pi_\ell(\Gamma_\ell^{\text{f}})} : \overline{\pi_\ell(\Gamma_\ell^{\text{f}})}]$ is prime to ℓ. The Nori envelope S_ℓ approximates the finite subgroup $\overline{\pi_\ell(\Gamma_\ell^{\text{f}})} \subset \text{GL}_{n, \mathbb{F}_\ell}$ in the sense that the index $[S_\ell(\mathbb{F}_\ell) : \overline{\pi_\ell(\Gamma_\ell^{\text{f}})}]$ is bounded by a constant depending only on n for all prime ℓ large enough compared to n [Nor87] Thm. B(1), 3.6(v)].

Proposition 3.10. For $\ell \gg 0$, the smooth group scheme $\mathcal{G}_\ell^{\text{der}}$ is reductive.

Proof. Suppose $\ell \geq n$. Since Γ_ℓ^{f} is maximal compact in $\mathcal{G}_\ell^{\text{f}}(\mathbb{Q}_\ell)$ for $\ell \gg 0$, the equality $\pi_\ell^{-1}(\mathcal{G}_\ell^{\text{der}}(\mathbb{Z}_\ell)) = \Gamma_\ell^{\text{f}}$ holds for $\ell \gg 0$. Thus, there is a constant c such that

$$[\mathcal{G}_\ell^{\text{der}}(\mathbb{Z}_\ell) : \pi_\ell(\Gamma_\ell^{\text{f}})] \leq c$$

for all $\ell \gg 0$ [HL20 Cor. 2.5]. Hence, after reduction we also have

$$[\mathcal{G}_\ell^{\text{der}}(\mathbb{F}_\ell) : \pi_\ell(\Gamma_\ell^{\text{f}})] \leq c$$

If the proposition is false, then the unipotent radical of the special fiber $\mathcal{G}_\ell^{\text{der}}$ is non-trivial for infinitely many primes ℓ. Thus, (69) implies that $\pi_\ell(\Gamma_\ell^{\text{f}})$ contains a non-trivial normal unipotent subgroup U_ℓ (consisting of order ℓ elements) for infinitely many primes ℓ. Let S_ℓ' be the Nori envelope of the semisimplification of $\overline{\pi_\ell(\Gamma_\ell^{\text{f}})} \to \text{GL}_{n, \mathbb{F}_\ell}$ (with image $\overline{\pi_\ell(\Gamma_\ell^{\text{f}})}^{\text{red}}$) for $\ell \gg 0$. By the definition of Nori envelope [Nor87] §§1, 3, for all $\ell \gg 0$ we have a short exact sequence

$$1 \to U_\ell \to S_\ell' \overset{\pi}{\to} S_\ell' \to 1$$

(70)

where π is induced by semisimplification. For infinitely many primes ℓ, we have $\dim U_\ell \geq 1$ since U_ℓ contains a one parameter subgroup $t \mapsto u^t := \exp(\log(u))$, [Nor87] for some non-identity element $u \in U_\ell$.

CHUN YIN HUI
Since S'_i is semisimple, \cite[Prop. 4(iii)]{HL16} asserts that $\dim S'_i = \dim_\ell S'_i(\mathbb{F}_\ell)$ (the ℓ-dimension \cite[\S 2]{HL16}). Since Γ_ℓ^c is hyperspecial maximal compact in $G_\ell^c(\mathbb{Q}_\ell)$, there is a reductive group scheme \mathcal{H}_ℓ over \mathbb{Z}_ℓ such that the generic fiber is G_ℓ^c and $\mathcal{H}_\ell(Z_\ell) = \Gamma_\ell^c$. By the definition of ℓ-dimension and \cite[Prop. 4(iii)]{HL16} again, we obtain

$$\dim_\ell S'_i(\mathbb{F}_\ell) = \dim_\ell S'_i(\mathbb{F}_\ell)^+ = \dim_\ell \pi_\ell(\Gamma_\ell^c)^{\text{red}} = \dim_\ell \Gamma_\ell^c = \dim_\ell \mathcal{H}_\ell(\mathbb{F}_\ell) = \dim G_\ell^c.$$

It follows from (70) that $\dim S_i > \dim G_\ell^\text{der}$ for infinitely many ℓ, but this contradicts \cite[Thm. 7]{Lar10}. \qed

Let G_ℓ^{red} be the quotient of G_ℓ^c by its unipotent radical. For $\ell \gg 0$, the special fiber G_ℓ^{red} (of G_ℓ^der) is a normal connected semisimple subgroup of G_ℓ^c (Proposition \ref{3.10}), which injects into G_ℓ^{red}. It follows that

$$\dim G_\ell^{\text{red}} \geq \dim G_\ell^{\text{der}} \geq \dim G_\ell^{\text{der}} + \text{rk } G_\ell^{\text{red}} - \text{rk } G_\ell^{\text{der}}$$

(72)

$$= \dim G_\ell^{\text{der}} + \text{rk } G_\ell^{\text{red}} - \text{rk } G_\ell^{\text{der}} = \dim G_\ell.$$

Therefore, (72) is an equality and the special fiber G_ℓ, is reductive for $\ell \gg 0$. \qed

Remark 3.11. Let F be a finitely generated field of characteristic p and Y be a smooth projective variety defined over F. Conjecture \mathcal{S} holds for the Q-compatible system $\{H^u(Y_{\mathcal{F}}, Q_\ell)\}_{\ell \neq p}$ \cite[Thm. 1.2]{CTT17}.

3.5.4. **Proof of Theorem 1.11**. Embed \mathbb{Q} into \mathbb{C} for all ℓ. Since $\text{End}_{\mathbb{F}_\ell}(A) = \mathbb{Z}$, the representations ρ_ℓ are all absolutely irreducible by the Tate conjecture proven by Faltings \cite{Faltings83}. Since the formal bi-character of $(G_\ell \hookrightarrow \text{GL}(V_\ell)) \times \mathbb{C}$ is independent of ℓ \cite[Thm. 3.19]{HN13}, condition (1.11(b) and Theorem 3(b) imply that the tautological representation $(G_\ell \rightarrow \text{GL}(V_\ell)) \times \mathbb{C}$ is independent of ℓ. Since condition (1.11(b) and Theorem (ii) of \cite{Pi16} hold, the simple factors of $G_\ell \times Q_\ell$, $\overline{Q_\ell}$ are of the same type and the invariance of roots condition holds by Corollary 2.5. We conclude that condition (1.6(a),(b),(c) hold. Hence, Theorem (i), Theorem (ii), 3.9 and Corollaries 1.9, 1.10 give Theorem 1.11 except the last assertion. It suffices to show that for $\ell \gg 0$, the two \mathbb{Z}_ℓ-representations

$$V_{\mathbb{Z}_\ell} : \text{Gal} (\overline{K}/K) \rightarrow G(\mathbb{Z}_\ell) = G(\mathbb{Z}_\ell) \rightarrow GL_{2g}(\mathbb{Z}_\ell),$$

$$H^1(A_{\overline{K}}, \mathbb{Z}_\ell) : \text{Gal} (\overline{K}/K) \rightarrow G(\mathbb{Z}_\ell) \rightarrow GL(H^1(A_{\overline{K}}, \mathbb{Z}_\ell))$$

are isomorphic.

Since $V_{\mathbb{Z}_\ell} \otimes Q_\ell \cong H^1(A_{\overline{K}}, Q_\ell) \cong H^1(A_{\overline{K}}, \mathbb{Z}_\ell) \otimes Q_\ell$, there is an element Φ_ℓ in the free \mathbb{Z}_ℓ-module $\text{Hom}_{\text{Gal}(\overline{K}/K)}(V_{\mathbb{Z}_\ell}, H^1(A_{\overline{K}}, \mathbb{Z}_\ell))$ that is non-zero after mod ℓ reduction. Since $\text{End}_{\mathbb{F}_\ell}(A) = \mathbb{Z}$, the representation $H^1(A_{\overline{F}}, \mathbb{F}_\ell)$ is absolutely irreducible for $\ell \gg 0$ \cite[Theorem 4.2]{FWS}. Thus, the non-zero $\text{Gal}(\overline{K}/K)$-equivariant map

$$\Phi_\ell : \mathbb{F}_\ell \times \mathbb{F}_\ell : V_{\mathbb{Z}_\ell} \otimes \mathbb{F}_\ell \rightarrow H^1(A_{\overline{K}}, \mathbb{F}_\ell)$$

is surjective for $\ell \gg 0$. By Nakayama's lemma, Φ_ℓ is surjective for $\ell \gg 0$. Therefore, Φ_ℓ is bijective and induces an isomorphism of the Galois representations $V_{\mathbb{Z}_\ell}$ and $H^1(A_{\overline{K}}, \mathbb{Z}_\ell)$ for $\ell \gg 0$. \qed

Remark 3.12. Embed \mathbb{Q} into \mathbb{C}. Let $\{(H_i, V_i) : 1 \leq i \leq k\}$ be the irreducible factors of the irreducible representation $(G_\ell^\text{der} \rightarrow \text{GL}(V_i)) \times \mathbb{C}$, i.e., H_i is almost simple and V_i is irreducible \cite[\S 2.2.2.1]{P198}. By \cite[Thm. 3.18]{P198}, the irreducible representation $(G_\ell \rightarrow \text{GL}(V_i)) \times \mathbb{C}$ is a strong Mumford-Tate pair of weight $\{0, 1\}$. Then \cite[Prop. 4.5]{P198} and \cite[Table 4.6]{P198} imply that k is odd and the representations (H_i, V_i) have the following possibilities:

- A_r: \mathbb{F}^n (standard), $r \equiv 1 \mod 4$, $r \geq 1$.
- B_r: Spin, $r \equiv 1, 2 \mod 4$, $r \geq 2$.
- C_r: Standard, $r \geq 3$.
- D_r: Spin*, $r \equiv 2 \mod 4$, $r \geq 6$.

One observes that each simple Lie algebra has at most one possible representation.
3.6. Final remarks.

(1) We construct a common E-form $G \hookrightarrow \text{GL}_{n,E}$ of the algebraic monodromy representations $G_\lambda \hookrightarrow \text{GL}_{m,E_\lambda}$ of the system \mathcal{F} in case it is absolutely irreducible and G_λ is connected (for all λ) in Theorem 1.1(ii).

The non-absolutely irreducible case and the non-connected case remain open.

(2) Let P_\bullet' be the system in Theorem 1.6 and assume Conjecture 3. Then Corollary 1.9(i) produces an adelic representation $\rho^G_\ell : \text{Gal}(\overline{K}/K) \rightarrow G(\mathbb{A}_\mathbb{Q})$. Let ρ^G_ℓ be the mod ℓ reduction of the ℓ-component ρ^G_ℓ of ρ^G_ℓ for $\ell \gg 0$. One can deduce by [H15] Thm. A, Cor. B that there is a constant $C > 0$ such that the index satisfies

$$[G(\mathbb{F}_\ell) : \rho^G_\ell(\text{Gal}(\overline{K}/K))] \leq C, \quad \forall \ell \gg 0.$$

Thus, the composition factors of Lie type in characteristic ℓ of $\rho^G_\ell(\text{Gal}(\overline{K}/K))$ can be described when $\ell > 0$, see a similar result [H15] Cor. 1.5 for certain type A compatible system.

(3) The smooth subgroup scheme $G_\lambda \subset \text{GL}_{n,O_\lambda}$ in Corollary 1.3 depends on the choice of an O_λ-lattice of V_λ. It is shown in [Ca17] that for almost all λ, the subscheme $G_\lambda \subset \text{GL}_{n,O_\lambda}$ is unique up to isomorphism.

(4) The E-forms G and $\mathcal{G} \subset \text{GL}_{n,E}$ we constructed in Theorem 1.1 are not unique for the simple reason that $\text{III}^1(E,G^{\text{ad}})$ in Theorem [K] may not be trivial, where G^{ad} denotes the adjoint quotient of G.

(5) Let S' be a non-empty finite subset of $P_{E,f}$. Actually, by examining the proof, main theorem [K] holds if we replace $P_{E,f}$ with $P_{E,f} \setminus S'$.

(6) In the characteristic zero case, Question Q in §3.3.2 should be addressed if one wants to apply main theorem [K] to an E-compatible system when E is totally imaginary. However, one can always use main theorem [K] by omitting a finite place of E if one knows that G_λ is quasi-split for almost all λ, or, one can take the Weil restriction $\text{Res}_{E/Q}$ (§3.2.2) to obtain a Q-compatible system and see if main theorem [K] can be applied.

Acknowledgments

I would like to thank Akio Tamagawa, Anna Cadoret, Gebhard Böckle for their interests and comments, Marco D’Adzezio and Ambrus Pál for their interests and introducing their works [D’Ad20] and [Pa15] to me, and the referee for his/her comments and suggestions.

References

[Ab18] Abe, T: Langlands correspondence for isocrystals and the existence of crystalline companions for curves, J. Amer. Math. Soc. 31 (2018), 921–1057.

[BGP19] Böckle, G.; Gajda, W.; Petersen, S.: On the semisimplicity of reductions and adelic openness for ℓ-adic systems over global function fields, Mem. AMS 2014, 000–376.

[Bo98] Borovoi, Mikhail: Abelian Galois cohomology of reductive groups, Mem. AMS 132, Number 623 (1998).

[Ca17] Cadoret, A.: The fundamental theorem of Weil II for curves with ultraproduct coefficients, preprint.

[CHT17] Cadoret, A.; Hui, C. Y.; Tamagawa, A.: Geometric monodromy – semisimplicity and maximality, Annals of Math. 186, p. 205–236, 2017.

[Ch04] Chin, Chee Whye: Independence of ℓ of monodromy groups, J.A.M.S., Volume 17, Number 3, 723-747.

[CW14] Conrad, Brian: Reductive group schemes, online notes, 2014.

[D’Ad20] D’Adzezio, Marco: The monodromy groups of lisse sheaves and overconvergent \mathcal{F}-isocrystals, Selecta Math. New Ser. 26 (2020), 1–41.

[De74] Deligne, Pierre: La conjecture de Weil I, Publ. Math. I.H.E.S., 43 (1974), 273-307.

[De80] Deligne, Pierre: La conjecture de Weil II, Publ. Math. I.H.E.S., 52 (1980), 138-252.

[De82] P. Deligne and J. S. Milne: Tannakian Categories, in: Hodge Cycles, Motives, and Shimura Varieties, P. Deligne et al. (Eds.), ch. VI, LNM 900, Berlin etc.: Springer 1982, 101–228.

[DF17] Drinfeld, V. and K. Kedlaya: Slopes of indecomposable \mathcal{F}-isocrystals, Pure App. Math. Quart., Volume 13, Number 1, 131–192, 2017.

[Dr18] Drinfeld, V.: On the pro-semisimple completion of the fundamental group of a smooth variety over a finite field, Adv. Math., 327 708–788, 2018.

[Fa83] Faltings, Gerd: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), no. 3, 349–366.
[Fa89] Faltings, Gerd: Crystalline cohomology and p-adic Galois representations, Algebraic Analysis, Geometry and Number Theory, The Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25–80.

[FW84] Faltings, Gerd; Wüstholz, Gisbert (eds.): Rational Points, Seminar Bonn/Wuppertal 1983-1984, Vieweg 1984.

[Fo79] Fontaine, Jean-Marc: Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, Journées de Géométrie Algébrique de Rennes III, Astérisque, 65, Soc. Math. France, Paris, (1979), 3–80.

[Fo82] Fontaine, Jean-Marc: Sur certains types de représentations p-adiques du group de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Annals of Math. 115 (1982), 529–577.

[Fo83] Fontaine, Jean-Marc: Cohomologie de de Rham, cohomologie cristalline et représentations p-adiques, Algebraic Geometry Tokyo-Kyoto, LNM 1016, New York etc.: Springer (1983), 86–108.

[FM87] Fontaine, Jean-Marc; Messing, William: p-adic periods and p-adic étale cohomology, Contemp. Math., no. 67, Amer. Math. Soc., Providence, RI, 1987, 179–207.

[FH91] Fulton, William; Harris, Joe: Representation Theory, Graduate Texts in Mathematics 129 (1st ed.), Springer-Verlag 1991.

[GOV94] Gorbatevich, V.V.; Onishchik, A.L.; Vinberg, E.B.: Lie Groups and Lie Algebras III, English transl. in Encycl. Math Sc. 41, Springer-Verlag, Berlin, Heidelberg, 1994.

[Ha66] Harder, G.: Über die Galoiscohomoologie halbeinfacher Matrizengruppen II, Math. Zeit. 92 (1966), 396–415.

[Hu13] Hui, Chun Yin: Monodromy of Galois representations and equal-rank subalgebra equivalence, Math. Res. Lett. 20 (2013), no. 4, 705-728.

[Hu15] Hui, Chun Yin: ℓ-independence for compatible systems of (mod ℓ) Galois representations, Compos. Math., Vol. 151, No. 7 (2015), 1215-1241.

[Hu18] Hui, Chun Yin: On the rationality of certain type A Galois representations, Transactions of the American Mathematical Society, Volume 370, Number 9, September 2018, p. 6771–6794.

[Hu20] Hui, Chun Yin: The abelian part of a compatible system and ℓ-independence of the Tate conjecture, Manuscripta Mathematica, Vol. 161, Issue 1-2, Jan 2020, pp 223–246.

[HL16] Hui, Chun Yin; Larsen, Michael: Type A images of Galois representations and maximality, Math. Z. 284 (2016), no.3–4, 989–1003.

[HL20] Hui, Chun Yin; Larsen, Michael: Maximality of Galois actions for abelian and hyper-Kähler varieties, Duke Math. J. 169 (2020), no. 6, 1163–1207.

[KM74] Katz, N.; Messing W.: Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23 (1974), 73–77.

[Ke22a] Kedlaya, Kiran S.: Notes on isocrystals, Journal of Number Theory 237 (2022), 353–394.

[Ke22b] Kedlaya, Kiran S.: Étale and crystalline companions I, arXiv:1811.00204v5, to appear in Épijournal de Géométrie Algébrique.

[Ke22c] Kedlaya, Kiran S.: Étale and crystalline companions II, arXiv:2008.13053v3 (2022).

[Kn69] Kneser, M.: Lectures on Galois Cohomology of Classical Groups, Tata Institute of Fundamental Research Lectures on Mathematics 47, Bombay 1969.

[Ko86] Kottwitz, Robert E.: Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), 365–399.

[La02] Lafforgue, Laurent: Chitsoucs de Drinfeld et correspondance de Langlands, Chtoucas de Drinfeld et correspondance de Langlands, LNM 1977, Springer-Verlag, Berlin, Heidelberg, 2002.

[Lar95] Larsen, Michael: Maximality of Galois actions for compatible systems. Duke Math. J. 80 (1995), no. 3, 601–630.

[Lar10] Larsen, Michael: Exponential generation and largeness for compact p-adic Lie groups, Algebra Number Theory 4 (2010), 1029–1038.

[LP90] Larsen, Michael; Pink, Richard: Determining representations from invariant dimensions, Invent. Math. 102, 377-398 (1990).

[LP92] Larsen, Michael; Pink, Richard: On ℓ-independence of algebraic monodromy groups in compatible systems of representations, Invent. Math. 107 (1992), 603-636.

[LP95] Larsen, Michael; Pink, Richard: Abelian varieties, ℓ-adic representations, and ℓ-independence, Math. Ann. 302 (1995), no. 3, 561-579.

[LP97] Larsen, Michael; Pink, Richard: A connectedness criterion for ℓ-adic Galois representations, Israel J. Math. 97 (1997), 1-10.

[Ma72] Mazur, Barry: Frobenius and the Hodge filtration, Bulletin of the American Mathematical Society, Volume 78, Number 5, September 1972.

[Mi92] Milne, James: The points on a Shimura variety modulo a prime of good reduction. The zeta functions of Picard modular surfaces, Publications du CRM, 1992, pp. 151–253.

[Mu65] Mumford, David: Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups (Boulder, CO, 1965), pp. 347-351, Proc. Sympos. Pure Math., Vol. 9, Amer. Math. Soc., Providence, RI, 1966.

[No95] Noot, R.: Abelian varieties–Galois representation and properties of ordinary reduction, Compositio Math., 97, 1995, 161–171.

[No00] Noot, R.: Abelian varieties with ℓ-adic Galois representation of Mumford’s type, J. Reine Angew. Math., 519, 2000, 155–169.

[Nor87] Nori, Madhav V.: On subgroups of $GL_n(F_p)$, Invent. Math. 88 (1987), no. 2, 257–275.
[O82] Arthur Ogus: Hodge cycles and crystalline cohomology, in: Hodge Cycles, Motives, and Shimura Varieties, P. Deligne et al. (Eds.), ch. VI, LNM 900, Berlin etc.: Springer 1982, 357–412.

[Pa15] Pal, Ambrus: The p-adic monodromy group of abelian varieties over global function fields of characteristic p, arXiv:1512.03587, preprint 2015.

[P98] Pink, Richard: ℓ-adic algebraic monodromy groups, cocharacters, and the Mumford-Tate conjecture, J. Reine Angew. Math. 495 (1998), 187-237.

[Sa81] Sansuc, J.-J.: Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. für die reine und angew. Math. 327 (1981), 12–80.

[Sc88] Schappacher, N.: Periods of Hecke characters, Lecture Notes in Math., vol 1301, Springer-Verlag, Berlin and New York, 1988.

[Se65] Serre, Jean-Pierre: Zeta and L functions, Arithmetical Algebraic Geometry, Proc. Conf. Purdue Univ., Harper & Row, New York (1965), 82-92.

[Se72] Serre, Jean-Pierre: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331.

[Se81] Serre, Jean-Pierre: Letter to K. A. Ribet, Jan. 1, 1981, reproduced in Coll. Papers, vol. IV, no. 133.

[Se94] Serre, Jean-Pierre: Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques. Motives (Seattle, WA, 1991), 377–400, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.

[Se97] Serre, Jean-Pierre: Galois cohomology. Translated from the French by Patrick Ion and revised by the author. Springer-Verlag, Berlin, 1997.

[Se98] Serre, Jean-Pierre: Abelian l-adic representation and elliptic curves, Research Notes in Mathematics Vol. 7 (2nd ed.), A K Peters (1998).

[Sp98] Springer, Tonny Albert: Linear algebraic groups, reprint of the 1998 2nd ed., Birkhäuser (2008).

[St68] Steinberg, Robert: Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80 American Mathematical Society, Providence, R.I., 1968.

[Ta99] Tankeev, S.G.: On the weights of the ℓ-adic representation and arithmetic of Frobenius eigenvalues, Izv. Ross. Akad. Nauk Ser. Mat., 63, 1999, 185–224 (in Russian), Izv. Math., 63, 1999, 181–218.

[Tat65] Tate, John: Algebraic cycles and poles of zeta functions, in Arithmetical Algebraic Geometry, Harper and Row, New York (1965) 93-110.

[Ti71] Tits, J.: Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196-200.

[Ti79] Tits, J.: Reductive groups over local fields. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 29-69, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979.

Email address: chhui@maths.hku.hk, pslnfq@gmail.com

Department of Mathematics, The University of Hong Kong, Pokfulam, Hong Kong