Primary pharyngeal synovial sarcoma in a pediatric patient: A case report

Yun Jung Bae
Seoul National University Bundang Hospital

Hyojin Kim
Seoul National University Bundang Hospital

Wonjae Cha (chawonjae@gmail.com)
Seoul National University Bundang Hospital
https://orcid.org/0000-0001-7292-9474

Byung Se Choi
Seoul National University Bundang Hospital

Case report

Keywords: case report, synovial sarcoma, oropharynx, magnetic resonance imaging, diagnosis, radio-pathologic correlation

DOI: https://doi.org/10.21203/rs.3.rs-847262/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Synovial sarcoma is a rare malignant tumor that typically originates from the soft tissue of the extremities. The occurrence of primary pharyngeal synovial sarcoma (PPSS) is even rarer, and few studies have reported its radiological features. Here, we report a case of pediatric PPSS and describe the conventional and advanced magnetic resonance imaging (MRI) findings with pathologic correlation.

Case presentation

An 11-year-old girl presented to the otolaryngologic clinic with dysphagia. Laryngoscopy revealed a large mass in the oropharynx. MRI revealed a well-defined soft tissue mass with a maximal diameter of approximately 5 cm originating from the submucosal space of the oropharynx. The mass was primarily solid and showed homogeneous contrast-enhancement. The mass was hypointense on T1-weighted images and hyperintense on T2-weighted images. The mass showed a homogeneously low apparent diffusion coefficient value on diffusion-weighted imaging, which indicated high tumor cellularity. Dynamic contrast-enhanced MRI revealed a hypovascular tumor with low values of the volume transfer constant between the extracellular extravascular space and blood plasma and blood plasma volume per unit tissue volume. Amide proton transfer-weighted MRI revealed a relatively high amide proton transfer signal in the tumor, indicating a high protein/peptide component. The patient underwent surgical resection of the tumor, and the diagnosis of biphasic synovial sarcoma was confirmed on postoperative pathological examination. The patient was started on chemotherapy with vincristine, ifosfamide, doxorubicin, and etoposide, and the patient is still under follow-up.

Conclusion

Synovial sarcoma should be considered in the differential diagnosis of pediatric oropharyngeal submucosal tumors. Multimodal MRI may aid diagnosis, although the final diagnosis should be based on the postoperative pathological examination findings.

Background

Synovial sarcoma is a rare malignant tumor of soft tissue origin that has a prevalence of approximately 10% [1]. The most common sites of affection are the extremities, followed by the head and neck region [1, 2]. In the head and neck region, it most commonly occurs in the paravertebral connective tissue and manifests as a retropharyngeal or parapharyngeal mass [2]. Primary pharyngeal synovial sarcomas (PPSS) are rare, and only a few cases, including one case series, have been reported. Moreover, the characteristic imaging features of PPSS have not yet been determined. In this study, we report a case of pediatric PPSS and describe the findings of both conventional and advanced magnetic resonance imaging (MRI).
Case Presentation

An 11-year-old girl presented to the department of head and neck surgery at our institution with a one-month history of dysphagia. Laryngoscopy revealed a bulge and a huge yellowish mass at the right lateral pharyngeal wall. The mass seemed to cross the midline. The patient experienced snoring when lying down, but there was no sign of dyspnea.

Contrast-enhanced computed tomography (CT) and MRI were performed to identify the tumor. They revealed a 4.8 × 5.4 × 4.2 cm3, circumscribed, solid mass with homogeneous contrast-enhancement in the oropharynx. The mass originated from the submucosal space, and the overlying mucosa was intact (Figs. 1A and 1B). On conventional MRI, the mass showed low signal intensity on T1-weighted images and high signal intensity on T2-weighted images (Figs. 1C and 1D). There was no evidence of cystic changes, necrosis, or hemorrhage in the mass. These imaging findings could not identify if this tumor was benign or malignant, and many differential diagnoses were considered, from benign submucosal schwannoma to malignant lymphoma or sarcoma. Thus, for further evaluation, the patient underwent advanced MRI, including diffusion-weighted imaging (DWI), dynamic contrast-enhanced MRI (DCE-MRI), and amide proton transfer-weighted MRI (APTw-MRI). On DWI, the mass showed a relatively low apparent diffusion coefficient (ADC) value of 0.76×10$^{-3}$ mm2/s on the post-processed ADC map, which was suggestive of high intratumoral cellularity (Fig. 2A). DCE-MRI revealed a contrast-enhancement pattern with initial enhancement and a late plateau. Evaluation of quantitative DCE-MRI parameters revealed relatively low values of the volume transfer constant between the extracellular extravascular space and blood plasma (Ktrans, 0.04/minute) and blood plasma volume per unit tissue volume (Vp, 0.004), which are characteristics of hypovascular tumors (Figs. 2B and 2C). APTw-MRI revealed a high APTw signal of approximately 2.6%, which was suggestive of a high protein/peptide component (Fig. 2D).

To determine the pathologic diagnosis and relieve the airway obstruction, the patient underwent mass excision with a transoral approach. Intraoperatively, a yellowish firm mass was found attached to the right pharyngeal wall and resected into two pieces. Grossly, the two masses were smooth and firm and measured 4.1 × 2.4 × 1.3 cm3 and 3.9 × 3.3 × 2.4 cm3. Postoperative pathological examination revealed a circumscribed hypercellular lesion in the subepithelial tissue (Fig. 3A). The tumor consisted of epithelial and spindle cell components (Fig. 3B). The epithelial component was composed of columnar or cuboidal cells arranged in solid cords, nests, or gland-like formations, as seen in adenocarcinomas. The spindle cell component was present in the background and consisted of uniform fibroblast-like spindle cells with plump nuclei, as seen in fibrosarcomas. The epithelial and sarcomatous areas were intimately admixed. Immunohistochemical staining revealed that cytokeratin and transducin-like enhancer of split-1 were expressed more strongly in the epithelial component than in the spindle cell component (Figs. 3C and 3D). A low microvascular density (MVD) was observed on CD34 immunostaining (Fig. 3E). Fluorescence in situ hybridization revealed SYT gene rearrangement (Fig. 3F). The final diagnosis was biphasic synovial sarcoma.
Systemic chemotherapy with vincristine, ifosfamide, doxorubicin, and etoposide was initiated on postoperative day 14, and the patient remains under follow-up.

Discussion And Conclusions

Synovial sarcoma is a primitive mesenchymal malignant tumor with a poor prognosis that frequently occurs in adolescents and young adults [3]. It generally arises near joints, but it can develop in unexpected locations such as the head and neck, heart, kidney, lung, and abdomen, which can result in a preoperative misdiagnosis [4–7]. In the head and neck region, it most commonly occurs in the hypopharynx, but it can also occur in the prevertebral, parapharyngeal, laryngeal, and maxillofacial areas [8, 9]. In addition, patients with synovial sarcoma involving the head and neck tend to be younger than those with synovial sarcoma of the extremities [8, 9]. In such cases, various differential diagnoses should be considered, such as lymphoma, Ewing's sarcoma, fibrosarcoma, hemangiopericytoma, and malignant peripheral nerve sheath tumor [10, 11].

Although preoperative CT and MRI are necessary to ascertain tumor location, extent, and metastasis [11, 12], the imaging characteristics of PPSS have not been determined, presumably due to its rarity. In particular, MRI is superior to CT in assessing head and neck pathology because it provides a higher spatial resolution and contrast for soft tissue, and determining the MRI characteristics of PPSS will aid preoperative diagnosis.

Here, we report the detailed conventional and advanced MRI characteristics of PPSS. Our patient’s tumor showed low T1- and high T2-weighted signal intensities with homogeneous contrast-enhancement. These findings are consistent with those of a previous report [10]. Notably, the T2-weighted signal intensity, which reflects intratumoral cellularity and water content, appeared hyperintense when compared with the adjacent muscles, thus ruling out lymphoma or Ewing sarcoma, which have low to intermediate signal intensity [13, 14]. Although PPSS, lymphoma, and Ewing sarcoma are all hypercellular tumors, biphasic synovial sarcoma has distinct epithelial and spindle cell components with prominent stromal matrices [2], while lymphoma and Ewing sarcoma have compact cellularity with less stromal prominence [13, 14]. Consequently, lymphomas and Ewing sarcomas can have lower T2-weighted signal intensities than PPSS. Therefore, the T2-weighted signal intensity of the tumor can be used to differentiate PPSS from lymphoma or Ewing sarcoma.

We verified this assumption regarding tumor cellularity using quantitative DWI. DWI can be used to measure the differences in the random displacement of water molecules in tissues [15]. This difference in water mobility is quantified by the ADC value, which is inversely correlated with tissue cellularity [15]. ADC values have been known to be lower in malignant head and neck cancers than in benign tumors, with cutoff values of approximately 1.25×10^{-3} mm2/sec. Furthermore, due to the compact cellularity of lymphomas, ADC values are lower in lymphomas than in squamous cell carcinomas, with a range of $0.64–0.66 \times 10^{-3}$ mm2/sec [16]. Therefore, the ADC value of 0.76×10^{-3} mm2/s seen in our patient
confirmed that the tumor had higher cellularity than a benign tumor, but lower cellularity than a
lymphoma, which was a significant diagnostic clue.

Previous studies that have used DCE-MRI to assess head and neck tumors, adopted different vendors,
scan protocols, and software, thus, the generalizability of the results could not be confirmed [17].
However, we observed low values of Ktrans and Vp, both of which have been found to correlate with
intratumoral MVD and vascular endothelial growth factor expression in pathologic studies [18].
Interestingly, we observed low MVD on CD34 immunostaining and low intratumoral vascular parameters
on DCE-MRI, indicating that DCE-MRI parameters can be used to demonstrate the hypovascularity of
PPSS. This is consistent with the findings of a study of synovial sarcoma arising from the kidney [19].
This might aid the differentiation of PPSS from other hypervascular tumors such as
hemangiopericytoma. However, further research on the DCE-MRI parameters and their pathologic
correlations is warranted.

Ours is the first study to report a high APTw-signal in a patient with PPSS. APTw-MRI is a recently
developed molecular imaging technique that detects amide proton constituents in tumors based on
chemical exchange saturation transfer between free water and mobile proteins/peptides [20]. A few
studies have used APTw-MRI to differentiate between benign and malignant head and neck tumors, and
they found that a cutoff APTw-signal of approximately 2% showed a good performance in differentiating
benign and malignant tumors [21]. We observed a high APTw-signal (2.6%), which may be a
characteristic finding of malignant tumors. However, no studies have compared APTw-signal values
between lymphomatous and non-lymphomatous tumors. Further studies evaluating the importance of
APTw-MRI for this differentiation are necessary.

In conclusion, PPSS is a rare tumor that is often challenging to diagnose and treat and requires
multidisciplinary management. Our patient demonstrated the characteristic findings of PPSS, including a
homogeneously enhancing mass with a high signal intensity on T2-weighted conventional MRI, low ADC
value on DWI, low Ktrans and Vp on DCE-MRI, and high APTw-signal on APTw-MRI. Considering these
imaging findings in addition to the clinical features of PPSS could improve preoperative diagnosis and
enable appropriate surgical planning and early treatment.

Abbreviations

ADC: apparent diffusion coefficient

APTw-MRI: amide proton transfer-weighted magnetic resonance imaging

CT: computed tomography

DCE-MRI: dynamic contrast-enhanced magnetic resonance imaging

DWI: diffusion-weighted imaging
Ktrans: volume transfer constant between the extracellular extravascular space and blood plasma

MRI: magnetic resonance imaging

MVD: microvascular density

PPSS: primary pharyngeal synovial sarcomas

Vp: blood plasma volume per unit tissue volume

Declarations

Ethics approval and consent to participate

The case report was approved by the Institutional Review Board of Seoul National University Bundang Hospital (No. B-2106-690-701). The patient and her parents provided consent for participation.

Consent for publication

Consent for the publication of this case report was obtained from the patient and her parents.

Availability of data and materials

As per the regulation of the Institutional Review Board of Seoul National University Bundang Hospital, the data from this study cannot be publicly shared. Data are only available upon request from the corresponding author.

Competing interests

The authors declare that they have no competing interests.

Funding

The authors received no funding for this case report.

Authors' contributions

HK, YJB, WC, and BSC analyzed and interpreted the patient data regarding the clinical, radiological, and pathological diagnoses. HK performed the histological examination. WC performed the clinical examination and surgery. YJB and BSC performed the radiological examination. HK, YJB, and WC were the major contributors in writing the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank Editage (www.editage.co.kr) for English language editing.
References

1. Cadman NL, Soule EH, Kelly PJ. Synovial sarcoma; An analysis of 34 Tumors. Cancer. 1965;18:613–27.

2. Fatima SS, Din NU, Ahmad Z. Primary synovial sarcoma of the pharynx: A series of five cases and literature review. Head Neck Pathol. 2015;9:458–62.

3. Agarwal M, Singh A, Abrari A, Singh N. Monophasic synovial sarcoma of posterior pharyngeal wall: A rare case report with unique reconstruction using lateral trapezius flap. Eur Arch Otorhinolaryngol. 2017;274:2059–64.

4. Jiang AG, Yu H, Gao XY, Lu HY. Primary pulmonary synovial sarcoma presenting with a large lump mass in the left upper mediastinum: A case report. Exp Ther Med. 2016;11:2395–8.

5. Kamhieh Y, Fox H, Holland P, Passant C. Synovial sarcoma of the hypopharynx - a case report and literature review. Braz J Otorhinolaryngol. 2019;85:664–6.

6. Kang Z, Min XD, Feng ZY, Wang L. Monophasic synovial sarcoma of the liver: A case report. Zhonghua Zhong Liu Za Zhi. 2016;38:949–50.

7. Xu PC, Zhou XY, Shu C. Synovial sarcoma of the nasal cavity: A case report. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2016;51:137–8.

8. Doval DC, Kannan V, Mukherjee G, Shenoy AM, Shariff MH, Bapsy PP. Synovial sarcoma of the neck. Eur Arch Otorhinolaryngol. 1997;254:246–50.

9. Saydam L, Kizilay A, Kalkioglu MT, Mizrak B, Bulut F. Synovial sarcoma of the pharynx: A case report. Ear Nose Throat J. 2002;81:36–9.

10. Daveau C, Buiret G, Poupart M, Barnoud R, Pignat JC. Synovial sarcoma of the lateral pharyngeal wall. Eur Ann Otorhinolaryngol Head Neck Dis. 2012;129:327–30.

11. Kadapa NPB, Reddy LS, Swamy R, Kumdha, Reddy MVV, Rao LMCS. Synovial sarcoma oropharynx - a case report and review of literature. Indian J Surg Oncol. 2014;5:75–7.

12. Balakrishnan V, Flatman S, Dixon BJ, Lyons B. Synovial sarcoma of the pharynx causing airway obstruction. Med J Aust. 2012;196:72–3.

13. Thomas AG, Vaidhyanath R, Kirke R, Rajesh A. Extranodal lymphoma from head to toe: part 1, the head and spine. AJR Am J Roentgenol. 2011;197:350–6.

14. Murphey MD, Senchak LT, Mambalam PK, Logie CI, Klassen-Fischer MK, Kransdorf MJ. From the radiologic pathology archives: ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics. 2013;33:803–31.

15. Bae YJ, Choi BS, Jeong HK, Sunwoo L, Jung C, Kim JH. Diffusion-weighted imaging of the head and neck: Influence of fat-suppression technique and multishot 2D navigated interleaved acquisitions. AJNR Am J Neuroradiol. 2018;39:145–50.

16. Thoeny HC, De Keyzer F, King AD. Diffusion-weighted MR imaging in the head and neck. Radiology. 2012;263:19–32.
17. Joint Head and Neck Radiotherapy-MRI Development Cooperative. Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers. Sci Data. 2018;5:180008.

18. Surov A, Meyer HJ, Gawlitza M, Hohn AK, Boehm A, Kahn T, et al. Correlations between DCE MRI and histopathological parameters in head and neck squamous cell carcinoma. Transl Oncol. 2017;10:17–21.

19. Zhang B, An C, Zhang Y, Tian J, Wang Z, Wang J. Primary renal synovial sarcoma: A case report. Medicine. 2020;99:e22706.

20. Bae YJ, Choi BS, Jeong WJ, Jung YH, Park JH, Sunwoo L, et al. Amide proton transfer-weighted MRI in the diagnosis of major salivary gland tumors. Sci Rep. 2019;9:8349.

21. Law BKH, King AD, Ai QY, Poon DMC, Chen W, Bhatia KS, et al. Head and neck tumors: Amide proton transfer MRI. Radiology. 2018;288:782–90.

Figures
Computed tomography (CT) and conventional magnetic resonance imaging (MRI) findings. CT (A) and post-contrast T1-weighted MRI (B) images show a circumscribed solid mass with homogeneous contrast-enhancement in the oropharynx. (C) The mass shows low signal intensity on T1-weighted imaging. (D) The mass is hyperintense on fat-suppressed T2-weighted imaging. The white arrows indicate the mass.

Figure 1
Advanced magnetic resonance imaging (MRI) findings. (A) The apparent diffusion coefficient (ADC) map derived from diffusion-weighted images shows a relatively low ADC value (0.76×10⁻³ mm²/s), indicating hypercellularity. (B, C) Maps derived from dynamic contrast-enhanced magnetic resonance images (MRI) show relatively low values of the volume transfer constant between the extracellular extravascular space and blood plasma (Ktrans, 0.04/minute) and blood plasma volume per unit tissue volume (Vp, 0.004),
which are characteristic of hypovascular tumors. (D) Amide proton transfer-weighted-MRI show a high amide proton transfer-weighted-signal of approximately 2.6%, suggesting a high protein/peptide content. The black arrow (A) and white arrows (B, C, D) indicate the mass.

Figure 3

Microscopic and immunohistochemical findings. (A) The tumor is located in the subepithelial tissue and has a relatively well-demarcated margin. (B) It consists of epithelial and spindle cell components. (C)
Cytokeratin and (D) transducin-like enhancer of split-1 show stronger expression in the epithelial component than in the spindle cell component. (E) CD34 expression and lower intratumoral microvascular density are seen. (F) Fluorescence in situ hybridization with a break-apart probe for SYT gene rearrangement reveals one fused signal and one separate red and green signal per nucleus, indicating the presence of a t(X;18) translocation. Magnification: 25×, 100×, 100×, 100×, 100×, and 1000× for (A), (B), (C), (D), (E), and (F), respectively.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- CAREchecklistEnglishchecked.docx