Title: Sensitivity of different RT-qPCR solutions for SARS-CoV-2 detection.

Authors: Julia Alcoba-Florez¹, Helena Gil-Campesino¹, Diego García-Martínez de Artola¹, Raquel González-Montelongo², Agustín Valenzuela-Fernández³⁴, Laura Ciuffreda⁵, Carlos Flores⁵⁶⁷.*

Affiliations:
¹ Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, 38010 Santa Cruz de Tenerife, Spain; juliaalcoba@gmail.com, diegogarciamartinezdeartola@gmail.com, helegc@hotmail.com
² Genomics Division, Instituto Tecnológico y de Energías Renovables, 38600 Santa Cruz de Tenerife, Spain; rgonzalezmontelongo@iter.es, cflores@ull.edu.es
³ Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Facultad de Medicina & IUETSPC, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; avalenzu@ull.edu.es
⁴ Red española de Investigación en VIH/SIDA (RIS)-RETIC, Instituto de Salud Carlos III, 28029 Madrid, Spain; avalenzu@ull.edu.es
⁵ Research Unit, Hospital Universitario N. S. de Candelaria, 38010 Santa Cruz de Tenerife, Spain; l.ciuffreda.bio@gmail.com, cflores@ull.edu.es
⁶ CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain; cflores@ull.edu.es
⁷ Instituto de Tecnologías Biomédicas (ITB) Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; cflores@ull.edu.es

*Correspondence:

Carlos Flores, PhD.
Unidad de Investigación
Hospital Universitario N.S. de Candelaria, Carretera del Rosario s/n
38010 Santa Cruz de Tenerife
Phone: (+34) 922-602938
Fax: (+34) 922-600562
e-mail: cflores@ull.edu.es

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objectives: The ongoing COVID-19 pandemic continues imposing a demand for diagnostic screening. In anticipation that the recurrence of outbreaks and the measures for lifting the lockdown worldwide may cause supply chain issues over the coming months, we assessed the sensitivity of a number of one-step retrotranscription and quantitative PCR (RT-qPCR) solutions to detect SARS-CoV-2.

Methods: We evaluated six different RT-qPCR alternatives for SARS-CoV-2/COVID-19 diagnosis based on standard RNA extractions. That of best sensitivity was also assessed with direct nasopharyngeal swab viral transmission medium (VTM) heating, overcoming the RNA extraction step.

Results: We found a wide variability in the sensitivity of RT-qPCR solutions that associated with a range of false negatives from as low as 2% (0.3-7.9%) to as much as 39.8% (30.2-50.2). Direct preheating of VTM combined with the best solution provided a sensitivity of 72.5% (62.5-81.0), in the range of some of the solutions based on standard RNA extractions.

Conclusions: We evidenced sensitivity limitations of currently used RT-qPCR solutions. Our results will help to calibrate the impact of false negative diagnoses of COVID-19, and to detect and control new SARS-CoV-2 outbreaks and community transmissions.

Keywords: COVID-19; SARS-CoV-2; diagnosis; false negatives; solution comparisons; sensitivity
Introduction

The ongoing pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causing the coronavirus disease 2019 (COVID-19) has imposed an increasing demand for daily diagnostic screening. This is expected to perpetuate over the coming months due to the recurrence of outbreaks and the lifting of lockdown measures worldwide (Patel et al. 2020). Given the high sensitivity compared to serological testing (Cassaniti et al. 2020), standard diagnosis continues to rely on RNA extractions from respiratory or oral samples followed by one-step reverse transcription and real-time quantitative PCR (RT-qPCR) that entail one or several primer-probe sets for targeting SARS-CoV-2 sequences (Corman et al. 2020). While it has been shown that protocol modifications aiming to overcome supply chain issues and accelerate diagnosis affect assay sensitivity (Alcoba-Florez et al. 2020; Esbin et al. 2020), differences in target priming efficiencies and RT-qPCR kit components are also expected to account for dissimilarities in false negative results (Nalla et al. 2020).

Here we aimed to evaluate the sensitivity of six different RT-qPCR solutions, including five marketed kits and one based on the World Health Organization diagnostic assays with the best sensitivity (Corman et al. 2020; Vogels et al. 2020), using RNA extractions from nasopharyngeal swab viral transmission medium (VTM). The alternative with the best sensitivity was also assessed by a direct preheating of VTM samples to skip the RNA extraction step that was described elsewhere (Alcoba-Florez et al. 2020).

Materials and Methods

The study was conducted at the University Hospital Nuestra Señora de Candelaria (Santa Cruz de Tenerife, Spain) from March to June 2020. We evaluated six different
RT-qPCR solutions (Table 1), four based on three viral targets and two based on one viral target. Given the high specificity of the RT-qPCR (Alcoba-Florez et al. 2020), we focused on evaluating the rate of false negatives (FN) and assay sensitivity using the same 98 COVID-19 patient samples. The alternative with the best sensitivity was also assessed under an alternative procedure that skips the RNA extraction step described elsewhere (Alcoba-Florez et al. 2020).

Samples were collected in 2 mL of VTM (Biomérieux). RNA extractions were conducted from 200 μL of VTM using the MagNA Pure Compact Nucleic Acid Isolation Kit I (Roche) or the STARMag Viral DNA/RNA 200C kit (Seegene). The RT-qPCR was performed in 10 μL final volume reactions (5 μL of sample) using a CFX96 Touch Real-Time PCR Detection System (Bio-Rad) following the thermal cycling specifications of each solution. Positive and negative controls were included in all experiments as described elsewhere (Alcoba-Florez et al. 2020). Sensitivity and 95% confidence intervals (95% CI) were calculated from the FN counts using MedCalc (MedCalc Software Ltd.).

Results

Since all samples were COVID-19 positive for at least one solution/viral target, results with threshold cycle (Ct) values above 40 or those that remained undetected during the 45 cycles of the experiments were considered FN observations (Figure 1, Table 1). Attending to individual targets, we found that the most sensitive solution was the LightMix® Modular SARS-CoV (COVID19) (TIB MOLBIOL) used in combination with a primer-probe set for the E-gene (97.9% [92.8-99.7]) (Table 1). It was followed closely by the TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher Scientific) kit combined with validated primer-probes for diagnosis (Corman et al. 2020) for the same viral gene (95.9% [89.9-98.9]). When combining at least two viral gene targets, we
found that the TaqMan Fast Virus 1-Step Master Mix kit with validated primer-probe sets targeting both E and RdRp genes (Corman et al. 2020) attained an equivalent sensitivity. The kit with the poorest performance for all the three viral primer-probe sets was SARS-COV-2 R-GENE (Biomérieux) (range of 60.2% [49.8-70.0] to 66.3% [56.1-75.6]). Its levels of sensitivity improved to those of all other kits when the E-gene primer-probe set was combined with those for N or the RdRp genes (71.4% [61.4-80.1] and 69.4% [59.3-78.3], respectively). The sensitivity of all other solutions did not benefit from combining the result of more than one primer-probe set.

Finally, because the LightMix® Modular SARS-CoV (COVID19) kit with primer-probes for the E-gene showed the highest sensitivity, we tested it on samples that were preheated at 70°C for 10 min in substitution of the RNA extraction (Alcoba-Florez et al. 2020). Although this alternative decreased the kit sensitivity (72.5% [62.5-81.0]), the results were still comparable to other evaluated solutions (Table 1).

Discussion

RT-qPCR for selected target genes of SARS-CoV-2 has been key in the global response to the pandemic. Given the rapid spread of the virus at this time, it is likely that the RT-qPCR assays will continue to be a central tool for controlling COVID-19. However, as happened in the past due to supply chain issues, policy decisions and laboratory testing capacities (Alcoba-Florez et al. 2020), it is predictable that the diagnosis of COVID-19 will continue relying on a variety of solutions among laboratories and countries (Vogels et al. 2020).

Our results evidenced a wide variability in the sensitivity of RT-qPCR solutions for SARS-CoV-2 detection which associated with a proportion of FN ranging from as low as 2% (0.3-7.9%) to as much as 39.8% (30.2-50.2). These findings will help to assess the impact of the selected solution on FN diagnoses of COVID-19 (Ramdas et al.)
2020) and to choose a solution that minimize misdiagnoses of an active SARS-CoV-2 infection.

Authors’ contributions

JAF and CF designed the study. JAF, HGC, and DGM participated in data acquisition. JAF, LC and CF performed the analyses and data interpretation. LC, AVF, RGM and CF wrote the draft of the manuscript. All authors contributed in the critical revision and final approval of the manuscript.

Acknowledgments

We deeply acknowledge the University Hospital Nuestra Señora de Candelaria board of directors and the executive team for their strong support and assistance in accessing diverse resources used in the study.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This research was funded by Cabildo Insular de Tenerife [grant number CGIEU0000219140]; the agreement with Instituto Tecnológico y de Energías Renovables (ITER) to strengthen scientific and technological education, training research, development and innovation in Genomics, Personalized Medicine and Biotechnology [grant number OA17/008]; Ministerio de Innovación y Ciencia [grant number RTI2018-093747-B-100 and RTC-2017-6471-1], co-funded by the European Regional Development Fund (ERDF); Lab P2+ facility [grant number UNLL10-3E-783], co-funded by the ERDF and “Fundación CajaCanarias”; and the Spanish
HIV/AIDS Research Network [grant number RIS-RETIC, RD16/0025/0011], co-funded by Instituto de Salud Carlos III and by the ERDF.

Ethical Approval

The University Hospital Nuestra Señora de Candelaria (Santa Cruz de Tenerife, Spain) review board approved the study (ethics approval number: CHUNSC_2020_24).

References

Alcoba-Florez J, González-Montelongo R, Íñigo-Campos A, Garcia-Martínez de Artola D, Gil-Campesino H, The Microbiology Technical Support Team, Ciuffreda L, Valenzuela-Fernández A, Flores C. Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples. Int J Infect Dis. 2020 May 31;97:66-68.

Cassaniti I, Novazzi F, Giardina F, Salinaro F, Sachs M, Perlini S, Bruno R, Mojoli F, Baldanti F; Members of the San Matteo Pavia COVID-19 Task Force. Performance of VivaDiag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J Med Virol. 2020 Mar 30; doi: 10.1002/jmv.25800.

Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, Bleicker T, Brünink S, Schneider J, Schmidt ML, Mulders DGJC, Haagmans BL, van der Veer B, van den Brink S, Wijsman L, Goderski G, Romette JL, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans MPG, Drosten C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020 Jan 22;25:2000045.

Esbin M N, Whitney O N, Chong S, Maurer A, Darzacq X, Tjian R. Overcoming the bottleneck to widespread testing: A rapid review of nucleic acid testing approaches.
for COVID-19 detection. RNA. 2020 May 1;20:771-783.

Nalla AK, Casto AM, Huang MW, Perchetti GA, Sampoleo R, Shrestha L, Wei Y, Zhu H, Jerome KR, Greninger AL. Comparative Performance of SARS-CoV-2 Detection Assays Using Seven Different Primer-Probe Sets and One Assay Kit. J Clin Microbiol. 2020 Apr 8;58:e00557-20.

Patel R, Babady E, Theel ES, Storch GA, Pinsky BA, St George K, Smith TC, Bertuzzi S. Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS-CoV-2/COVID-19. mBio. 2020 Mar 26;11:e00722-20.

Ramdas K, Darzi A, Jain S. ‘Test, re-test, re-test’: using inaccurate tests to greatly increase the accuracy of COVID-19 testing. Nat Med. 2020 12 May;26: 810-811.

Vogels CBF, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, Petrone ME, Casanovas-Massana A, Muenker MC, Moore AJ, Klein J, Lu P, Lu-Culligan A, Jiang X, Kim DJ, Kudo E, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takehashi T, Taura M, Tokuyama M, Venkataraman A, Weizman OE, Wong P, Yang Y, Cheemarla NR, White E, Lapidus S, Earnest R, Geng B, Vijayakumar P, Odio C, Fournier J, Bermejo S, Farhadian S, Dela Cruz C, Iwasaki A, Ko AI, Landry ML, Foxman EF, Grubaugh ND. Analytical sensitivity and efficiency comparisons of SARS-COV-2 qRT-PCR primer-probe sets. MedRxiv. 2020 Apr 26; doi: 10.1101/2020.03.30.20048108.
Solution	#Targets^a	Target gene	Sensitivity, % (95%CI)^b	FN^c
TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher Scientific) combined with validated primer-probe sets^d	3	E	95.9 (89.9-98.9)	4
		N	75.5 (65.8-83.6)	24
		RdRp	77.6 (68.0-85.4)	22
LightMix® Modular SARS-CoV (COVID19) (TIB MOLBIOL)	3	E	97.9 (92.8-99.7)	2
		N	78.6 (69.1-86.2)	21
		RdRp	89.8 (82.0-95.0)	10
SARS-COV-2 R-GENE (Biomérieux)	3	E	65.3 (55.0-74.6)	34
		N	66.3 (56.1-75.6)	33
		RdRp	60.2 (49.8-70.0)	39
TaqPath COVID-19 CE-IVD RT-PCR Kit (Thermo Fisher Scientific)	3	ORF1ab	65.3 (55.0-74.6)	34
		S	70.4 (60.3-79.2)	29
		N	76.5 (66.9-84.5)	23
Genesig Real-Time PCR COVID-19 kit (Primedesign Ltd.)	1	RdRp	81.6 (72.5-88.7)	18
Real Accurate Quadruplex corona-plus PCR Kit (PathoFinder)	1	N	83.7 (74.8-90.4)	16

^a Specific primer-probes for SARS-CoV-2.

^b 95% Confidence Interval.

^c False negative counts out of 98 patients.

^d Corman et al. (2020).
Figure 1. Raincloud plot of the distribution of cycle threshold (Ct) values for the RT-qPCR solutions evaluated for the detection of SARS-CoV-2 in COVID-19 positive samples. Raw Ct data with the median and the interquartile range are also represented overlaid on each distribution.