Multi-factor analysis of technological operations of extinguishing exterior walls with a heat-insulating layer from concrete of low heat conductivity

Y O Kustikova
Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, 129337, Russia

Email: yulia.kustikowa@yandex.ru

Abstract. Improving the manufacturability of the construction of external walls in monolithic housing construction is achieved due to new structural and technological solutions. The main advantages of the technology of erecting monolithic external walls using concrete with low thermal conductivity in the heat-insulating layer are the reduction of the organizational and technological stages of erecting the external walls with the elimination of the technological gap between the stages, the absence of the need to attract specialized performers to erect the heat-insulating and enclosing layers of the wall, eliminating additional installation work and dismantling scaffolding during the construction of the facade, as well as reducing the number of manual processes and the nomenclature of building materials and products, the use of which is limited by the seasonality of work or requires additional costs to ensure their design physical and technical characteristics. To assess the significance of factors, a multivariate analysis technique was used.

1. Introduction

For prevention emergency and dilapidated condition during the operation of buildings and structures associated with the laws of the physical and moral deterioration processes, planned measures are taken to overhaul the common property of multi-unit residential buildings, aimed at high improving the state of the housing stock.

Repair and construction production has a variety of the specific features, which significantly distinguished it from construction. Repair and construction work, as a rule, is carried out in extremely cramped conditions, which determines the specific technology and organization of their implementation, the use of special equipment, mechanisms, tools, devices.

One of the important directions for improving the forms and methods of organizing the overhaul of residential buildings is the creation of an integrated production preparation system based on the wide practical use of modern methods for solving organizational and technological problems.
2. Materials and Methods

The selection of factors for constructing the model was carried out on the basis of a comprehensive analysis of the complex technological process of erecting exterior walls with a heat-insulating layer of concrete with low thermal conductivity, which established that specific factors can influence the resulting indicator of the duration of building exterior walls with a heat-insulating layer of concrete of low thermal conductivity (Z). These include:

- x_1 - the duration of the process for installing a reinforcing cage;
- x_2 - the duration of the process for installing a fixed formwork slab;
- x_3 - the duration of the technological process for the installation of panels of inventory formwork;
- x_4 - the duration of the process for installing struts and scaffolds;
- x_5 - the duration of the technological process for fixing and alignment of the formwork;
- x_6 - the duration of the process for laying polystyrene concrete;
- x_7 - the duration of the process for compaction of polystyrene concrete;
- x_8 - the duration of the process for laying structural concrete;
- x_9 - the duration of the process of compaction of structural concrete;
- x_{10} - the duration of the process to remove scaffolds, slopes;
- x_{11} - the duration of the technological process for the exposure of concrete and the dismantling of panels of inventory formwork.

The combination of these factors was used to build the model and multivariate analysis, which allows to assess the significance of factors. To assess the significance of factors in the general equation, a multivariate analysis technique was used.

The main goal of multiple regression is to build a model with a large number of factors, while determining the influence of each of them individually, as well as their combined effect on the modeled indicator. The methods developed by well-known scientists make it possible to certify of the initial information [1-9]. Many similar technical solutions in the construction also developed by scientists [10-21].

The solution of the tasks posed covers two circles of questions: the selection of factors and the choice of the type of regression equation. The initial data for the correlation analysis are presented in table 1.

Experiment number	Duration of process	Installation of reinforcing cage	Installation of fixed formwork slab	Installation of formwork shields	Installation of struts and scaffolds	Fixing and alignment of formwork	Polystyrene concrete laying	Polystyrene concrete pacKorol	Laying of structural concrete	pacKorol of structural concrete	Removing concrete scaffolds	Concrete bearing support	Concrete demounting and dismantling
№1	8,70	1,28	0,54	0,35	0,30	0,33	0,21	0,20	2,35	0,19	0,41	2,54	
№2	8,92	1,28	0,59	0,37	0,38	0,35	0,18	0,22	2,38	0,20	0,42	2,55	
№3	8,93	1,29	0,57	0,39	0,39	0,34	0,22	0,19	2,36	0,19	0,45	2,54	
№4	8,96	1,30	0,59	0,4	0,38	0,36	0,19	0,21	2,35	0,19	0,40	2,59	
№5	8,82	1,29	0,58	0,36	0,31	0,37	0,22	0,18	2,34	0,22	0,42	2,53	
№6	8,92	1,27	0,57	0,37	0,38	0,33	0,2	0,19	2,39	0,19	0,45	2,58	

Table 1. The initial data for the correlation analysis.
The above factors correspond to the conditions of inclusion in the general model, since all of them are quantitatively measurable. During the study, factors were checked for intercorrelation and the presence of a functional measure. [16-18] To analyze the correlation coefficients between the factors, the tool of the Data Analysis package CORRELATION (Microsoft Excel) was used. The calculation results are summarized in table 2.

Table 2. The analysis of data correlation.

Z	X1	X2	X3	X4	X5	X6	X7	X8	X9	X10	X11	
Z	1											
X1	0.49	1.00										
X2	0.42	-0.23	1.00									
X3	0.17	0.35	-0.28	1.00								
X4	0.89	0.55	0.19	0.28	1.00							
X5	0.43	0.29	0.25	-0.42	0.23	1.00						
X6	-0.15	0.01	-0.32	0.01	-0.32	-0.01	1.00					
X7	-0.01	0.09	-0.06	0.11	0.14	0.09	-0.37	1.00				
X8	0.57	0.11	-0.02	0.07	0.46	0.07	0.01	-0.07	1.00			
X9	-0.10	-0.47	0.66	-0.54	-0.40	0.06	0.12	-0.47	-0.12	1.00		
X10	0.43	0.02	0.13	-0.14	0.52	0.14	-0.08	-0.45	0.25	0.06	1.00	
X11	0.64	0.10	0.42	-0.10	0.50	0.20	-0.32	-0.03	0.42	0.02	0.05	1.00

Analysis of the data in table 2 shows that the closest correlation z with factors such as X1, X2, X4, X5, X8, X10, X11 while weak with X3, X6, X7, X9. Accordingly, these factors are excluded from the general model. Consider four possible combinations of factors:

- 1st option: factors X1, X2, X4, X5, X8, X10, X11 (Table 3).
- 2nd option: factors X2, X4, X5, X8, X10, X11 (Table 4).
- 3rd option: factors X1, X2, X5, X8, X10, X11 (Table 5).
Table 3. The analysis of data correlation, 1st option.

№	Experiment number (capture of process)	Duration of process	Installation of reinforcing cage	Installation of fixed formwork slab	Installation of struts and scaffolds	Fixing and alignment of formwork	Laying of structural concrete	Removing concrete scaffolds	Concrete bearing support	Concrete demounting and dismantling
1	№1	8,70	1,28	0,54	0,3	0,33	2,35	0,41	2,54	
2	№2	8,92	1,28	0,59	0,38	0,35	2,38	0,42	2,55	
3	№3	8,93	1,29	0,57	0,39	0,34	2,36	0,45	2,54	
4	№4	8,96	1,30	0,59	0,38	0,36	2,35	0,4	2,59	
5	№5	8,82	1,29	0,58	0,31	0,37	2,34	0,42	2,53	
6	№6	8,92	1,27	0,57	0,38	0,33	2,39	0,45	2,58	
7	№7	8,86	1,31	0,56	0,39	0,35	2,34	0,43	2,56	
8	№8	8,98	1,30	0,57	0,4	0,38	2,37	0,43	2,57	
9	№9	8,98	1,30	0,58	0,39	0,37	2,39	0,44	2,60	
10	№10	8,93	1,31	0,53	0,4	0,34	2,38	0,43	2,54	
11	№11	8,95	1,28	0,57	0,38	0,38	2,37	0,42	2,60	
12	№12	9,06	1,31	0,57	0,41	0,39	2,40	0,45	2,58	
13	№13	8,99	1,32	0,56	0,4	0,35	2,38	0,41	2,59	
14	№14	9,00	1,30	0,58	0,42	0,38	2,35	0,47	2,57	
15	№15	8,99	1,29	0,59	0,4	0,32	2,37	0,44	2,60	
			0,3424	0,175783	1,27554	0,56487	1,29669	1,55691	1,16925	1,851539
			0,41889	0,533017	0,46346	0,37340	0,45007	0,53412	0,72974	1,871119
	Coefficient of determination		0,9552	0,026517	-	-	-	-	-	-
	Fisher's coefficient		21,3561	7	-	-	-	-	-	-
			0,10511	0,004922	-	-	-	-	-	-
Table 4. The analysis of data correlation, 2nd option.

№	Experiment number (capture of process)	2nd option						
№1		z	X₂	X₄	X₅	X₈		
1	№1	8,70	0,54	0,3	0,33	2,35	0,41	2,54
2	№2	8,92	0,59	0,38	0,35	2,38	0,42	2,55
3	№3	8,93	0,57	0,39	0,34	2,36	0,45	2,54
4	№4	8,96	0,59	0,38	0,36	2,35	0,4	2,59
5	№5	8,82	0,58	0,31	0,37	2,34	0,42	2,53
6	№6	8,92	0,57	0,38	0,33	2,39	0,45	2,58
7	№7	8,86	0,56	0,39	0,35	2,34	0,43	2,56
8	№8	8,98	0,57	0,4	0,38	2,37	0,43	2,57
9	№9	8,98	0,58	0,39	0,37	2,39	0,44	2,60
10	№10	8,93	0,53	0,4	0,34	2,38	0,43	2,54
11	№11	8,95	0,57	0,38	0,38	2,37	0,42	2,60
12	№12	9,06	0,57	0,41	0,39	2,40	0,45	2,58
13	№13	8,99	0,56	0,4	0,35	2,38	0,41	2,59
14	№14	9,00	0,58	0,42	0,38	2,35	0,47	2,57
15	№15	8,99	0,59	0,4	0,32	2,37	0,44	2,60
		0,195782	-0,22491	1,115212	0,795318	1,820343	1,18871	
		0,447035	0,514762	0,494884	0,37684	0,338418	0,527283	
		Coefficient of	determination	-	-	-	-	
		Fisher's	coefficient	0,938864	0,028999	-	-	-
		20,47604	8	-	-	-	-	
		0,103313	0,006727					
Table 5. The analysis of data correlation, 3rd option.

№	Experiment number (capture of process)	Z	X₁	X₂	X₃	X₄	X₅	X₆	X₇	X₈	X₉	X₁₀	X₁₁
1	№1	8.70	1.28	0.54	0.33	2.35	0.41	2.54					
2	№2	8.92	1.28	0.59	0.35	2.38	0.42	2.55					
3	№3	8.93	1.29	0.57	0.34	2.36	0.45	2.54					
4	№4	8.96	1.30	0.59	0.36	2.35	0.4	2.59					
5	№5	8.82	1.29	0.58	0.37	2.34	0.42	2.53					
6	№6	8.92	1.27	0.57	0.33	2.39	0.45	2.58					
7	№7	8.86	1.31	0.56	0.35	2.34	0.43	2.56					
8	№8	8.98	1.30	0.57	0.38	2.37	0.43	2.57					
9	№9	8.98	1.30	0.58	0.37	2.39	0.44	2.60					
10	№10	8.93	1.31	0.53	0.34	2.38	0.43	2.54					
11	№11	8.95	1.28	0.57	0.38	2.37	0.42	2.60					
12	№12	9.06	1.31	0.57	0.39	2.40	0.45	2.58					
13	№13	8.99	1.32	0.56	0.35	2.38	0.41	2.59					
14	№14	9.00	1.30	0.58	0.38	2.35	0.47	2.57					
15	№15	8.99	1.29	0.59	0.32	2.37	0.44	2.60					

Coeficient of determination: 0.90223, Fisher's coefficient: 12.30407, 0.099281

3. Results and discussion

As a result, 3 combinations with one or another set of factors were considered in accordance with table 6.

The quality of the model [16] is checked using three formal criteria: the coefficient of determination, the Fisher criterion, and the student criterion. In Microsoft Excel, these coefficients are calculated using the built-in LINE function. The calculation results for 3 options are shown in table 6.
As a result of the regression analysis (Table 6) in combination 1, we obtain the corresponding values of the coefficient estimates: $\beta_{2x1} = 1.17$, $\beta_{3x2} = 1.56$, $\beta_{4x4} = 1.30$, $\beta_{5x5} = 0.56$, $\beta_{6x8} = 1.28$, $\beta_{7x10} = 0.18$, $\beta_{8x11} = 0.34$.

Thus, the model can be represented by an equation of the form:

$$z' = 1.85 + 1.17 \cdot x_1 + 1.56 \cdot x_2 + 1.3 \cdot x_4 + 0.56 \cdot x_5 + 1.28 \cdot x_8 + 0.18 \cdot x_{10} + 0.34 \cdot x_{11}.$$

Similarly, in combination 2, we obtain the corresponding values of the coefficient estimates:

$$\beta_{3x4} = 1.82, \quad \beta_{4x5} = 0.80, \quad \beta_{5x8} = 1.12, \quad \beta_{6x10} = 0.22, \quad \beta_{7x11} = 0.20 \text{(Table 6)}.$$

In this combination, the model can be represented by an equation of the form:

$$z' = 4.21 + 1.19 \cdot x_2 + 1.82 \cdot x_4 + 0.80 \cdot x_5 + 1.13 \cdot x_8 - 0.22 \cdot x_{10} + 0.20 \cdot x_{11}.$$
In the same way, in combination 3 in the model, the coefficients are used: $\beta_{2x2} = 2.69$, $\beta_{3x4} = 1.94$, $\beta_{4x5} = 0.34$, $\beta_{5x8} = 1.65$, $\beta_{6x10} = 1.19$, $\beta_{7x11} = 0.89$ (Table 4), and the model itself has the following form:

$$z' = 2.4 + 2.6 \cdot x_2 + 1.9 \cdot x_4 + 0.34 \cdot x_5 + 1.65 \cdot x_8 - 1.19 \cdot x_{10} + 0.89 \cdot x_{11}.$$

Thus, an analysis of the data in Table 6 (determination coefficient, Fisher’s coefficient, and Student’s criterion) shows that according to the 1st option, the most high-quality model can be constructed. It is also important to evaluate the significance of multiple regression.

4. Conclusion

Based on a meaningful analysis, a selection was made of factors affecting the resulting indicator of the duration of the technological process of building the aerial parts of transformable low-rise residential buildings, the factors were checked for inter-correlation with the establishment of functional relationships between them, and the significance of factors was estimated using the multivariate analysis technique. The quality of the constructed model was verified using three formal criteria: the coefficient of determination, the Fisher’s coefficient, and the Student criterion, respectively 0.955; 21.356; 0.977 for the selected option.

References

[1] Korol E A, Pugach E M, Nikolaev A E 2009 Technological and economic efficiency of three-layer building envelopes for energy-efficient buildings. Academia. Architecture and construction. 2009. No. 5. pp. 415-418. (In Russian)

[2] Korol E A, Kharkin Yu.A 2011 Improving the technology for the construction of energy-efficient building envelopes in monolithic construction. Collection of reports of the XX Russian-Polish-Slovak seminar “Theoretical foundations of construction.” Zhilin. 2011. pp. 401–406. (In Russian)

[3] Bazhenov Yu.M., Korol E.A., Erofeev V.T., Mitina E.A 2008 Building envelope using low heat conductive concrete. Fundamentals of theory, methods of calculation and technological design. M: DIA. 2008. 320 p. (In Russian)

[4] Korol E A, Pugach E M, Nikolaev A.E. 2009 Technological and economic efficiency of three-layer building envelopes for energy-efficient buildings. Academia. Architecture and construction. 2009. No. 5. pp. 415-418. (In Russian)

[5] Korol E A 2011 Solving the problems of organizational and technological modeling of building processes / E.A. Korol S.V. Komissarov, P.B. Kagan, S.G. Harutyunov. - Industrial and civil construction. 2011. - No. 3. - pp. 43-45. (In Russian)

[6] Korol E A, Kharkin Yu.A 2013 Technological and organizational effectiveness of the construction of multilayer external walls in monolithic construction. Construction and reconstruction. 2013. No.6. pp. 3–8. (In Russian)

[7] Oleinik P.P., Votyakova O.N. 2013 Assessment of the influence of factors on the construction and installation work of energy facilities. Technology and organization of construction production. 2013. - №3 (4). pp. 45-46. (In Russian)

[8] Korol E A, Kharkin Yu.A. 2014 Technology for the construction of multilayer external walls with a heat-insulating layer of concrete with low thermal conductivity. Moscow, 2014, Publisher: NTO PMU. p.126. (In Russian)

[9] Korol E A, Kharkin Yu.A. 2014 Technology for the construction of multilayer monolithic exterior walls with a heat-insulating layer of concrete with low thermal conductivity. Housing construction. 2014. No. 7. pp. 32-35. (In Russian)

[10] Votyakova O.N. 2014 Analysis of the influence of factors on the organizational and technological parameters of work during the reconstruction of power lines // Scientific Review. - 2014. - No. 11-1. pp.112-116. (In Russian)

[11] Korol E.A., Pugach E.M., Kharkin Yu.A. 2014 The influence of technological factors on the
formation of the connection of layers of a multilayer building envelope. *Bulletin of MGSU*. 2014. No. 3. pp. 67-75. (In Russian)

[12] Kharkin Y., Korol E., Davidyuk A. 2015 Technology for erecting sandwich external walls with heat insulation layer made of low conductivity concrete. *Procedia Engineering*. 2015. Vol. 117. pp. 172-178.

[13] Korol E.A. 2017 Analysis of structural solutions of external walls to improve thermal protection during the construction and reconstruction of the infrastructure of industrial enterprises. News of higher educational institutions. *Technology of the textile industry*. 2017. No. 2 (368). pp. 124-130.

[14] Korol E.A., Mostovoy D.A., Pleshivcev A.A. 2018 Technological parameter optimization of multilayer enclosure structures with the multiple-criteria decision analysis. *MATEC Web of Conferences*. 2018. T. 170. p. 03031.

[15] Korol E., Pleshivcev A. 2018 Multiple-criteria decision analysis of the transformable low-rise building technological construction process B сборнике: *MATEC Web of Conferences* 2018. p. 03042.

[16] Borkovskaya V.G. Complex models of active control systems at the modern developing enterprises. *Advanced Materials Research*. V. 945-949. Chapter 22: Manufacturing Management and Engineering Management. June 2014. P. 3012-3015. DOI: 10.4028/www.scientific.net/AMR.945-949.3012

[17] Borkovskaya V.G. Environmental and economic model life cycle of buildings based on the concept of "Green Building". *Applied Mechanics and Materials*. V. 467. Materials Science and Mechanical Engineering. Chapter 2: Building Materials and Construction Technologies. P. 287-290. 2013. DOI: 10.4028/www.scientific.net/AMM.467.287

[18] Borkovskaya V.G. Post bifurcations of the concept of the sustainable development in construction business and education. *Advanced Materials Research*. V. 860-863. Chapter 26: Engineering Education. P. 3009-3012. 2013. DOI: 10.4028/www.scientific.net/AMR.860-863.3009

[19] Borkovskaya V.G. The concept of innovation for sustainable development in the construction business and education. *Applied Mechanics and Materials*. V. 475-476. Chapter 15: Engineering Management. 2013. P. 1703-1706. DOI: 10.4028/www.scientific.net/AMM.475-476.1703

[20] Borkovskaya V.G. Project Management Risks in the Sphere of Housing and Communal Services. *MATEC Web of Conferences*, Volume 251, 06025 (2018). DOI: https://doi.org/10.1051/matecconf/201825106025

[21] Borkovskaya V.G., Lyapuntsova E.V., Nogovitsyn M. Risks and safety in construction by increasing efficiency of investments. *E3S Web of Conferences*. V. 97 .2019. 06036. DOI: https://doi.org/10.1051/e3sconf/20199706036.