GROUP ACTIONS ON RIEMANN-ROCH SPACE

ANGEL CAROCCA AND DANIELA VÁSQUEZ LATORRE

ABSTRACT. Let G be a group acting on a compact Riemann surface \mathcal{X} and D be a G-invariant divisor on \mathcal{X}. The action of G on \mathcal{X} induces a linear representation $L_G(D)$ of G on the Riemann-Roch space associated to D.

In this paper we give some results on the decomposition of $L_G(D)$ as sum of complex irreducible representations of G, for D an effective non-special G-invariant divisor. In particular, we give explicit formulae for the multiplicity of each complex irreducible factor in $L_G(D)$. We work out some examples on well known families of curves.

1. INTRODUCTION

Let \mathcal{X} be a compact Riemann surface, and let G be a group of automorphisms of \mathcal{X}. If D is a divisor on \mathcal{X} which is stable under the action of G, then G acts on the Riemann-Roch space $L(D)$ associated to D.

The problem of determining the decomposition of the induced linear representation $L_G(D)$ of G on $L(D)$ as sum of irreducible representations of G was originally considered by A. Hurwitz [6] in the case D a canonical divisor and G a cyclic group. C. Chevalley and A. Weil [4], extended this result to any finite group and D a canonical divisor.

Since then, many authors have worked on this problem for certain types of divisors. See for instance Borne [1], Ellingsrud and Lønsted [5], Kani [8], Köch, [9], and Nakajima [10]. In the case where D is a non-special divisor, an equivariant Riemann-Roch formula was given for the character of $L_G(D)$, see for instance [1]. Also in this case, Joyner and Ksir [7] gave explicit formula for the multiplicity of each rational irreducible factor when $L_G(D)$ is a rational representation of G.

In this paper we extend the Joyner-Ksir’s results to the general case: that is, when $L_G(D)$ is a complex representation of G. We give explicit formulae for the multiplicity of each complex irreducible factor in the decomposition of $L_G(D)$ as a sum of complex irreducible representations of G. To illustrate this decomposition we give some examples of group actions on Riemann-Roch spaces for divisors on well known families of curves.

2010 Mathematics Subject Classification. 14H55, 14H51.
Key words and phrases. Riemann surfaces, Divisors, Riemann-Roch Space.
The first author was partially supported by Anillo ACT 1415 PIA-CONICYT.
In order to formulate the results, we use the following notation: Let t_ω satisfying the Riemann-Hurwitz formula

\begin{equation}
X
\end{equation}
on a compact Riemann surface a. Rational and Analytical Representations.

The subgroup G of P analytic representation G, linear representations of G.

\begin{equation}
\omega
\end{equation}

Theorem 2.1.

The group G acts on a compact Riemann surface X of genus g with branching data $(\gamma; m_1, \cdots, m_r)$ if and only if G has a generating vector of type $(\gamma; m_1, \cdots, m_r)$ satisfying the Riemann-Hurwitz formula \((2.1)\).

In order to formulate the results, we use the following notation: Let G be a group acting on a compact Riemann surface X with branching data $(\gamma; m_1, \cdots, m_r)$ and generating vector $(a_1, \cdots, a_\gamma, b_1, \cdots, b_\gamma, c_1, \cdots, c_r)$. For each $P \in X$ let $G_P = \langle c_P \rangle$ be the stabilizer of P in G, of order $m_P \geq 1$.

The subgroup G_P acts on the cotangent space $X(P)$ at P by a \mathbb{C}-character ω_P. This is the ramification character of X at P. Since G_P is cyclic we have that ω_P is a primitive m_Pth-root of the unity. Particularly, for P_j a branch point we will write $G_{P_j} = G_j$ with order $m_{P_j} = m_j$ and $\omega_P = \omega_j$ the corresponding ramification character.

For V a complex irreducible representation of G, let N_{P}^{V} be the number of times that ω_P is an eigenvalue of $V(c_P)$.

2.1. Rational and Analytical Representations. The action of G on X induces two linear representations of G, the rational representation $\rho_r : G \to GL(H^1(X, \mathbb{Z}) \otimes \mathbb{Q})$ and the analytic representation $\rho_a : G \to GL(H^{1,0}(X, \mathbb{C}))$. Both are related by

\begin{equation}
\rho_r \otimes \mathbb{C} \cong \rho_a \oplus \rho_a^*
\end{equation}
where ρ_a^* is the complex conjugate of ρ_a.

The multiplicity of each complex irreducible factor in the decomposition of ρ_a as sum of complex irreducible representations of G was given by Chevalley-Weil in [4], as follows.

Theorem 2.2. Let V be a non-trivial complex irreducible representation of G. Then the multiplicity $a(V)$ of V in the decomposition of ρ_a as sum of complex irreducible representations of G is given by

$$a(V) = \dim_{\mathbb{C}}(V)(\gamma - 1) + \sum_{j=1}^r m_j^{-1} \sum_{k=1}^{N_{j_k}^V} \left\langle -\frac{k}{m_j} \right\rangle$$

where $\langle q \rangle = q - \lfloor q \rfloor$ is the fractional part of the rational number q.

Furthermore, for the trivial representation V_0 we have $a(V_0) = \gamma$.

For the rational representation ρ_r similar formulae was given by Broughton [3] as follows.

Theorem 2.3. Let V be a non-trivial complex irreducible representation of G. Then the multiplicity $r(V)$ of V in the decomposition of $\rho_r \otimes \mathbb{C}$ as sum of complex irreducible representations is given by

$$r(V) = 2(\gamma - 1) \dim_{\mathbb{C}}(V) + \sum_{j=1}^r (\dim_{\mathbb{C}}(V) - \dim_{\mathbb{Q}}(V^{G_j}))$$

where V^{G_j} denotes the fixed subspace of V under the action of G_j.

With these results we obtain the following

Corollary 2.4. If V is a non-trivial absolutely irreducible representation of G, then

$$a(V) = a^*(V) = (\gamma - 1) \dim_{\mathbb{Q}}(V) + \frac{1}{2} \left(\sum_{j=1}^r \dim_{\mathbb{Q}}(V) - \dim_{\mathbb{Q}}(V^{G_j}) \right)$$

where $a^*(V)$ is the multiplicity of V in the decomposition of ρ_a^*.

2.2. The Ramification Module. The following definition was introduced in [8] (also see [1], [7] and [10]). The ramification module for the cover $\Pi : \mathcal{X} \rightarrow \mathcal{X}_G$ with branching data $(\gamma; m_1, \ldots, m_r)$ and generating vector $(a_1, \ldots, a_\gamma, b_1, \ldots, b_\gamma, c_1, \ldots, c_r)$ is defined by

$$\Gamma_G = \sum_{j=1}^r \text{Ind}_{G_j}^{G} \left(\sum_{\alpha=1}^{m_j-1} \alpha \omega_j^\alpha \right).$$

The following result was proved by Kani [8] and Nakajima [10].
Theorem 2.5. Let G be a group acting on X and Γ_G the associated ramification module. Then there is a unique G-module $\tilde{\Gamma}_G$ such that

$$\Gamma_G = \tilde{\Gamma}_G^{[G]}.$$

Considering $\tilde{\Gamma}_G^*$ the dual G-module of $\tilde{\Gamma}_G$, an interesting relationship between the analytical representation (character) and the representation (character) of G on $\tilde{\Gamma}_G^*$ is given by the following result [8, Theorem 2 and Corollary.]

Theorem 2.6. Let G be a group acting on X. If χ_a is the character of the analytical representation and $\chi_{\tilde{\Gamma}_G}^*$ is the character of the representation of G on $\tilde{\Gamma}_G^*$, then

$$\chi_a = \chi_0 + (\gamma - 1)\chi_{\text{reg}} + \chi_{\tilde{\Gamma}_G}^*$$

where χ_{reg} is the regular character and χ_0 is the trivial character of G.

As a simple application of the above result we obtain a generalization of [7, Proposition 5 and Corollary 6].

Corollary 2.7. Let V be a complex irreducible representation of G. Then

$$\langle \chi_{\tilde{\Gamma}_G}, \chi_V \rangle = \begin{cases}
\langle \chi_{\tilde{\Gamma}_G}, \chi_0 \rangle = 0 & \text{if } V = V_0 \text{ is the trivial representation:}
\langle \chi_{\tilde{\Gamma}_G}, \chi_V \rangle = a^*(V) + (1 - \gamma) \dim_{\mathbb{C}}(V) & \text{if } V \text{ is a non-trivial representation.}
\end{cases}$$

where χ_V is the character of V and \langle , \rangle is the usual inner product of characters.

Proof. According to Theorem 2.6 observe that if χ_a^* is the dual character of χ_a then

$$\chi_a^* = \chi_0 + (\gamma - 1)\chi_{\text{reg}} + \chi_{\tilde{\Gamma}_G}.$$

It follows that

1. the multiplicity of the trivial representation V_0 of G in $\tilde{\Gamma}_G$ is

$$\langle \chi_{\tilde{\Gamma}_G}, \chi_0 \rangle = \gamma + (1 - \gamma) - 1 = 0;$$

2. the multiplicity of any non-trivial complex irreducible representation V of G in $\tilde{\Gamma}_G$ is

$$\langle \chi_{\tilde{\Gamma}_G}, \chi_V \rangle = a^*(V) + (1 - \gamma) \dim_{\mathbb{C}}(V).$$

\square
3. Decomposition of $L_G(D)$

Let X be a compact Riemann surface of genus g and D a divisor on X. We recall that the Riemann-Roch space associated to D is defined by

$$L(D) = \{ f \in \mathbb{C}^*(X) \mid \operatorname{div}(f) \geq -D \} \cup \{0\}$$

and the dimension of $L(D)$ is given by the Riemann-Roch Theorem

$$\dim_{\mathbb{C}}(L(D)) = \deg(D) - g + 1 + \dim_{\mathbb{C}}(\Omega(D))$$

where $\Omega(D) = \{ \omega / \omega \text{ is an abelian differential with } \operatorname{div}(\omega) \geq D \} \cup \{0\}$.

A divisor D is called non-special if $\dim_{\mathbb{C}}(\Omega(D)) = 0$, or, equivalently, if $\dim_{\mathbb{C}}(L(K-D)) = 0$ for some canonical divisor K on X.

Remark 3.1. As was mentioned earlier, if D is a divisor on X which is stable under the action of G, then G acts on the Riemann-Roch space $L(D)$ associated to D by the linear representation $L_G(D)$.

For each P in X, consider the (basic) G-invariant divisor given by

$$D_b(P) = \frac{1}{m_P} \sum_{g \in G} g(P) \quad \text{where } m_P = |G_P|.$$

Then the set of the basic divisors generates the group $\operatorname{Div}(X)^G$ of the G-invariant divisors on X.

We recall the definition of the equivariant degree, as can be seen for example in [7].

Definition 3.2. The equivariant degree is a map from $\operatorname{Div}(X)^G$ to the Grothendieck group $R_k(G) = \mathbb{Z}[G^*_k]$,

$$\deg_{eq} : \operatorname{Div}(X)^G \rightarrow R_k(G)$$

defined by the following conditions:

1. \deg_{eq} is additive on the G-invariant divisors of disjoint support;
2. If $D = r_PD_b(P)$, then

$$\deg_{eq}(D) = \begin{cases}
\operatorname{Ind}_{G_P}^G \left(\sum_{k=1}^{r_P} \omega_{P}^{-k} \right) & \text{if } r_P > 0; \\
-\operatorname{Ind}_{G_P}^G \left(\sum_{k=0}^{-(r_P+1)} \omega_{P}^{k} \right) & \text{if } r_P < 0; \\
0 & \text{if } r_P = 0.
\end{cases}$$
where ω_P is the ramification character of X at P.

Now we compute the multiplicity of any complex irreducible representation of G in the decomposition of $\deg_{eq}(D)$, for D a positive multiple of a basic divisor.

Proposition 3.3. Consider $D = r_P D_b(P)$ with $r_P > 0$ and put $r_P = l_P + s_P m_P$, where $0 \leq l_P < m_P$. If V is a complex irreducible representation of G, then the multiplicity $d(V)$ of V in the decomposition of $\deg_{eq}(D)$ as sum of complex irreducible representations of G is given by

$$d(V) = s_p \dim_{\mathbb{C}}(V) + \epsilon_P \left(\dim_{\mathbb{C}}(V) - \sum_{k=0}^{m_P-(l_P+1)} N_{P_k}^V \right)$$

where $\epsilon_P = 0$ if $l_P = 0$ and $\epsilon_P = 1$ if $l_P \neq 0$.

Proof. Since ω_P is a primitive m_Pth-root of the unity, we have

$$\rho_{reg} = \text{Ind}_{\{1\}}^G(\chi_0) = \text{Ind}_{G_P}^G(\text{Ind}_{\{1\}}^{G_P} \chi_0) = \text{Ind}_{G_P}^G \left(\sum_{k=1}^{m_P} w_P^k \right) = \text{Ind}_{G_P}^G \left(\sum_{k=1}^{m_P} w_P^{-k} \right).$$

With this we obtain

$$\text{Ind}_{G_P}^G \left(\sum_{k=1}^{r_P} \omega_P^{-k} \right) = \text{Ind}_{G_P}^G \left(\sum_{k=1}^{l_P+s_P m_P} \omega_P^{-k} \right) = \begin{cases} s_p \rho_{reg} + \text{Ind}_{G_P}^G \left(\sum_{k=1}^{l_P} \omega_P^{-k} \right) & \text{if } l_P \neq 0 \\ s_p \rho_{reg} & \text{if } l_P = 0 \end{cases}$$

Furthermore, if $l_P \neq 0$ we have

$$\text{Ind}_{G_P}^G \left(\sum_{k=1}^{l_P} \omega_P^{-k} \right) + \text{Ind}_{G_P}^G \left(\sum_{k=0}^{m_P-(l_P+1)} \omega_P^k \right) = \rho_{reg}$$

and in this way

$$\left\langle \text{Ind}_{G_P}^G \left(\sum_{k=1}^{l_P} \omega_P^{-k} \right), V \right\rangle = s_p \dim_{\mathbb{C}}(V) - \sum_{k=0}^{m_P-(l_P+1)} N_{P_k}^V.$$

Hence

$$d(V) = \left\langle \text{Ind}_{G_P}^G \left(\sum_{k=1}^{r_P} \omega_P^{-k} \right), V \right\rangle = s_p \dim_{\mathbb{C}}(V) + \epsilon_P \left(\dim_{\mathbb{C}}(V) - \sum_{k=0}^{m_P-(l_P+1)} N_{P_k}^V \right)$$

where $\epsilon_P = 0$ if $l_P = 0$ and $\epsilon_P = 1$ if $l_P \neq 0$. □

The following result can be seen in [7, Lemma 4] (also see [1]).
Lemma 3.4. Let D be a G-invariant non-special divisor on X and χ_L the character of the representation $L_G(G)$ of G. Then

$$\chi_L = (1 - \gamma)\chi_{\text{reg}} + \deg_{\text{eq}}(D) - \chi_{\tilde{\Gamma}_G}$$

Now we are able to prove our main result.

Theorem 3.5. Let G be a group acting on X and $D = \sum_{P \in X} r_P D_b(P)$ be an effective non-special divisor on X.

For each $P \in X$ write $r_P = l_P + s_P m_P$ with $0 \leq l_P < m_P$. If V is a non-trivial complex irreducible representation of G, then the multiplicity $m(V)$ of V in the decomposition of $L_G(D)$ as sum of irreducible complex representations of G is given by

$$m(V) = \sum_{P \in X} s_P \dim_C(V) + \sum_{P \in X} \epsilon_P \left(\dim_C(V) - \sum_{k=0}^{m_P - (l_P + 1)} N_P^V_k \right) - a^*(V)$$

where $\epsilon_P = 0$ if $l_P = 0$ and $\epsilon_P = 1$ if $l_P \neq 0$.

Furthermore, for the trivial representation V_0 we have

$$m(V_0) = 1 - \gamma + \sum_{P \in X} s_P.$$

Proof. According to Lemma 3.4 we have

$$\chi_L = (1 - \gamma)\chi_{\text{reg}} + \deg_{\text{eq}}(D) - \chi_{\tilde{\Gamma}_G}.$$

Hence

$$m(V) = \langle \chi_L, \chi_V \rangle = (1 - \gamma) \dim_C(V) + \langle \deg_{\text{eq}}(D), \chi_V \rangle - \langle \chi_{\tilde{\Gamma}_G}, \chi_V \rangle.$$
and the result follows.

Remark 3.6. Let \(D = \pi^*(D_0) \) be a divisor on \(X \) which is a pullback of an effective divisor \(D_0 = \sum_{Q \in X_G} \alpha_Q Q \) on \(X_G \).

Then
\[
D = \pi^*(D_0) = \sum_{Q \in X_G} \alpha_Q \sum_{P \in \pi^{-1}(Q)} m_P P = \sum_{Q \in X_G} \alpha_Q \sum_{g \in G} g(P) = \sum_{Q \in X_G} \alpha_Q m_P D_b(P),
\]
fixing \(P \in \pi^{-1}(Q) \). Hence, with the notation of the Theorem 3.5, we have \(l_P = 0 \) and \(s_P = \alpha_Q \), for all \(Q \in X_G \).

Our last result of this section is a generalization of [7, Theorems 1 and 2].

Corollary 3.7. Let \(D = \pi^*(D_0) \) be a non-special divisor on \(X \) which is a pullback of an effective divisor \(D_0 \) on \(X_G \). If \(V \) is a non-trivial complex irreducible representation of \(G \), then the multiplicity \(m(V) \) of \(V \) in the decomposition of \(L_G(D) \) as sum of irreducible complex representations of \(G \) is given by
\[
m(V) = \deg(D_0) \dim_{\mathbb{C}}(V) - a^*(V).
\]
Furthermore, for the trivial representation \(V_0 \) we have \(m(V_0) = \deg(D_0) + 1 - \gamma \).
In particular, if \(V \) is a non-trivial absolutely irreducible representation of \(G \), then
\[
m(V) = \dim_{\mathbb{Q}}(V)(\deg(D_0) + 1 - \gamma) - \frac{1}{2} \left(\sum_{j=1}^{r} \dim_{\mathbb{Q}}(V) - \dim_{\mathbb{Q}}(V^{G_j}) \right).
\]

Proof. Let \(D_0 = \sum_{Q \in X_G} \alpha_Q Q \). According to Remark 3.6, we have
\[
D = \pi^*(D_0) = \sum_{Q \in X_G} \alpha_Q \sum_{P \in \pi^{-1}(Q)} m_P P = \sum_{Q \in X_G} \alpha_Q \sum_{g \in G} g(P) = \sum_{Q \in X_G} \alpha_Q m_P D_b(P),
\]
fixing \(P \in \pi^{-1}(Q) \).
Now applying Theorem 3.5 with \(l_P = 0 \) and \(s_P = \alpha_Q \), we have
\[
m(V) = \sum_{P \in X} s_P \dim_{\mathbb{C}}(V) - a^*(V) = \deg(D_0) \dim_{\mathbb{C}}(V) - a^*(V)
\]
and \(m(V_0) = \deg(D_0) + 1 - \gamma \).
Finally, according to Corollary 2.4 for \(V \) a non-trivial absolutely irreducible representation
\[
a^*(V) = (\gamma - 1) \dim_{\mathbb{Q}}(V) + \frac{1}{2} \left(\sum_{j=1}^{r} \dim_{\mathbb{Q}}(V) - \dim_{\mathbb{Q}}(V^{G_j}) \right).
\]
Then in this case
\[
m(V) = \dim_{\mathbb{Q}}(V)(\deg(D_0) + 1 - \gamma) - \frac{1}{2} \left(\sum_{j=1}^{r} \dim_{\mathbb{Q}}(V) - \dim_{\mathbb{Q}}(V^G) \right).
\]

\[\square\]

4. Examples

In this section, to apply our results we give some examples of group actions on Riemann-Roch spaces for divisors on well known families of curves.

We first recall a well known fact:

Remark 4.1. Let \(D \) be a divisor on \(X \). If \(\deg(D) > 2(g - 1) \), then \(D \) is non-special.

Example 4.2. See [7, Example 4]. Let \(X \) be the Klein quartic of genus \(g = 3 \)
\[
\{[X : Y : Z] \in \mathbb{CP}^2 / X^3Y + Y^3Z + Z^3X = 0\}.
\]

Consider the automorphisms of \(X \) given by
\[
\tau[X : Y : Z] = [\eta X : \eta^4 Y : \eta^2 Z] \quad \text{and} \quad \sigma[X : Y : Z] = [Y : Z : X]
\]
where \(\eta \) is a primitive seventh root of the unity. The group \(G = \langle \tau, \sigma \rangle \cong \langle \tau \rangle \rtimes \langle \sigma \rangle \) has order 21 and has characters table given by

degree	\(\tau \)	\(\sigma \)	
\(\chi_0 \)	1	1	1
\(\chi_1 \)	1	1	\(\zeta \)
\(\chi_2 \)	1	1	\(\zeta^2 \)
\(\chi_3 \)	3	\(\eta + \eta^2 + \eta^4 \)	0
\(\chi_4 \)	3	\(\eta^3 + \eta^6 + \eta^8 \)	0

with \(\zeta \) a primitive cube root of the unity. The complex irreducible representations associated to \(\chi_3 \) and \(\chi_4 \) are respectively
\[
V_3(\tau) = \begin{pmatrix}
\eta & 0 & 0 \\
0 & \eta^2 & 0 \\
0 & 0 & \eta^4
\end{pmatrix}; \quad V_3(\sigma) = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} \equiv \begin{pmatrix}
1 & 0 & 0 \\
0 & \zeta & 0 \\
0 & 0 & \zeta^2
\end{pmatrix}
\]
\[
V_4(\tau) = \begin{pmatrix}
\eta^3 & 0 & 0 \\
0 & \eta^5 & 0 \\
0 & 0 & \eta^8
\end{pmatrix}; \quad V_4(\sigma) = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} \equiv \begin{pmatrix}
1 & 0 & 0 \\
0 & \zeta & 0 \\
0 & 0 & \zeta^2
\end{pmatrix}.
\]

The point \(P = [1 : \zeta : \zeta^3] \) is fixed by \(H_P = \langle \sigma \rangle \).

Consider the non-special divisor \(D = D_b(P) = \frac{1}{3} \sum_{g \in G} g(P) \) of degree 7.

Then \(r_P = 1, l_P = 1 \) and \(s_P = 0 \). Also
\[
\dim_{\mathbb{C}}(\mathcal{L}(D)) = \deg(D) - g + 1 = 5.
\]
Since $m_P = 3$ and $l_P = 1$, we have $m_P - (l_P + 1) = 1$. In this way for each V_j we obtain
\[
\sum_{k=0}^{1} N_{P,k}^{V_j} = 1 ; \sum_{k=0}^{1} N_{P,k}^{V_2} = 0 ; \sum_{k=0}^{1} N_{P,k}^{V_3} = 2 ; \sum_{k=0}^{1} N_{P,k}^{V_4} = 2
\]
The analytic representation of G associated to the action on X is $\rho_a = V_3$. With this $a^*(V_1) = 0$, $a^*(V_2) = 0$, $a^*(V_3) = 0$ and $a^*(V_4) = 1$.

Applying Theorem 3.5 we have
\[
m(V_0) = 1, \ m(V_1) = 0, \ m(V_2) = 1, \ m(V_3) = 1 \text{ and } m(V_4) = 0.
\]
Finally we conclude
\[
L_G(D) \cong V_0 \oplus V_2 \oplus V_3.
\]

Example 4.3. Let $p \geq 5$ be a prime number.
Consider the Fermat curve
\[
X = \{[X : Y : Z] \in \mathbb{CP}^2 / X^p + Y^p + Z^p = 0\}
\]
of genus $g = \frac{(p-1)(p-2)}{2}$ and the automorphism of X defined by $\sigma[X : Y : Z] = [\omega X : Y : Z]$ where ω is a primitive p^{th}-root of the unity.

For $G = \langle \sigma \rangle$ the branching data is $(0; p, p, \ldots, p)$ and a generating vector is $(\sigma, \sigma, \ldots, \sigma)$. The non-trivial representations $\{V_1, V_2, \ldots, V_{p-1}\}$ of G are defined by $\sigma \rightarrow w^i$ with $1 \leq i \leq p-1$.

Let η be a primitive $2p^{th}$-root of the unity and $P = [0 : \eta : 1] \in X$. Then P is a fixed point by G. Consider $D = (p(p-3) + 1)D_b(P)$. Then
\[
\dim_{\mathbb{C}}(L(D)) = \deg(D) - g = 1 = \frac{(p-1)(p-2)}{2}.
\]
Is it not difficult to prove that the set
\[
\beta = \left\{ F_{ab} = \frac{X^a Y^b}{(Y - \eta Z)^{a+b}} / 0 \leq a \leq p-3, \ 0 \leq b \leq p-3, \ a + b \leq p-3 \right\}
\]
is a basis of $L(D)$. For $F_{ab} \in \beta$ the action of G is given by $\sigma(F_{ab}) = \frac{\omega^a X^a Y^b}{(Y - \omega Z)^{a+b}}$.

Hence
\[
L_G(D) \cong (p-2)V_0 \oplus (p-3)V_1 \oplus \cdots \oplus 2V_{p-4} \oplus V_{p-3}.
\]

Now applying Theorem 2.2 the analytic representation of G is
\[
\rho_a \cong (p-2)V_1 \oplus (p-3)V_2 \oplus \cdots \oplus 2V_{p-3} \oplus V_{p-2}.
\]
In this way
\[\rho_a^* \cong V_2 \oplus 2V_3 \oplus \cdots \oplus (p - 3)V_{p-2} \oplus (p - 2)V_{p-1} \]

We will apply Theorem 3.5 with \(s_P = p - 3 \) and \(l_P = 1 \). We have
\[m(V_0) = 1 + s_P = p - 2 \]
\[m(V_j) = -a^*(V_j) + s_P + \dim_{\mathbb{C}}(V_j) - \sum_{k=0}^{p-2} N_{P_k}^{V_j} \]

Finally
\[m(V_j) = p - 2 - a^*(V_j) - \sum_{k=0}^{p-2} N_{P_k}^{V_j} = \begin{cases}
 p - 2 - j & \text{for } 1 \leq j \leq p - 3 \\
 0 & \text{for } p - 2 \leq j \leq p - 1
\end{cases} \]

REFERENCES

1. N. Borne, _Une formulaire de Riemann-Roch equivariante pour des courbes_, Can. J. Math. **55**, (2003), 693-710.
2. A. Broughton, _Classifying finite group actions on surfaces of low genus_, J. Pure Appl. Algebra **69** (1991), no. 3, 233–270.
3. A. Broughton: _The homology and higher representations of the automorphism group of a Riemman surface_. Trans. AMS, 300 (1987), 153-158.
4. C. Chevalley, A. Weil: _Über das Verhalten der Integrale erster Gattung bei Automorphismen des Funktionenkörpers_. Hamb. Abh. 10 (1934), 358-361.
5. G. Ellingsrud and K. Lønsted , _An equivariant Lefschetz formula for finite reductive groups_, Math. Ann. **251**, (1980), 253-261.
6. A. Hurwitz, _Über algebraische Gebiende mit eindeutigen Transformationen in sich_, Math. Ann. **41**, (1893), 403-441.
7. D. Joyner and A. Ksir, _Decomposing representations of finite groups on Riemann-Roch spaces_, Proc. AMS, **135**, no. 11, 3465-3476, (2007).
8. E. Kani, _The Galois-module structure of the space of holomorphic differential forms on a curve_, J. reine angew. Math. **367**, (1986), 187-206.
9. B. Köch, _Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves_, Homology Homotopy Appl. **7** (2005), 83-98.
10. S. Nakajima, _Galois module structure of cohomology groups for tamely ramified coverings of algebraic varieties_, J. Number Theory **2**, (1986), 115-123.
11. A. M. Rojas, _Group actions on Jacobian varieties_, Rev. Mat. Iberoam. **23** (2007), no. 2, 397–420.