A generalization of weight polynomials to matroids

Trygve Johnsen, Jan Roksvold, Hugues Verdure

Department of Mathematics, University of Tromsø, N-9037 Tromsø, Norway

November 26, 2013

Abstract

Generalizing polynomials previously studied in the context of linear codes, we define weight polynomials and an enumerator for a matroid M. Our main result is that both of these polynomials are determined by Betti numbers associated to the Stanley-Reisner ideals of M and so-called elongations of M. Also, we show that Betti tables of elongations of M are partly determined by the Betti table of M. Generalizing a known result in coding theory, we show that the enumerator of a matroid is equivalent to its Tutte polynomial, and vice versa.

1 Introduction

For a linear $[n,k]$-code C over \mathbb{F}_q, let $A_{C,j}$ denote the number of words of weight j in C. The weight enumerator

$$W_C(X,Y) = \sum_{j=0}^{n} A_{C,j} X^{n-j} Y^j$$

$*$Corresponding author. E-mail address: jan.n.roksvold@uit.no
has important applications in the theory of error-correcting codes, where it amongst other things determines the probability of having an undetected error (see [6, Proposition 1.12]).

For \(q\) a power of \(q\), the set of all \(F_q\)-linear combinations of words of \(C\) is itself a linear code. This code is commonly referred to as the extension of \(C\) to \(F_q\), and is denoted \(C \otimes F_q \equiv F_Q\). In [6], it is found that the number \(A_{C,j}(Q)\) of words of weight \(j\) in \(C \otimes F_q \equiv F_Q\) can be expressed in terms of the initial code \(C\), as a polynomial in \(Q\). This leads them to the definition of an extended weight enumerator \(W_C(X,Y,Q)\) for \(C\), with the desired property

\[
W_C(X,Y,Q) = W_{C \otimes F_q \equiv F_Q}(X,Y).
\]

Also in [6], it is demonstrated that the extended weight enumerator of \(C\) is in fact equivalent to the Tutte polynomial of \(M(G)\), where \(M(G)\) is the vector matroid associated to a generator matrix \(G\) of \(C\).

In this article, our primary goal is to show that the polynomial \(A_{C,j}(Q)\) is determined by certain Betti numbers associated to \(M(H)\) and its so-called elongations, where \(H\) is a parity-check matrix of \(C\). It seemed natural to first generalize the polynomial \(A_{C,j}(Q)\) to a polynomial \(P_{M,j}(Z)\) defined for all matroids - not only those stemming from a linear code. This immediately leads to the definition of a more general matroidal enumerator

\[
W_M(X,Y,Z) = \sum_{j=0}^{n} P_{M,j}(Z)X^{n-j}Y^j,
\]

as well.

In light of results in [6] already mentioned, we expected \(W_M\) to be equivalent to the Tutte polynomial. This indeed turned out to be the case; after a small leap (Proposition 3), an analogous proof to the one found in [6] for linear codes, went through.

As can be seen in [3, p. 131], the Tutte polynomial of a matroid determines its higher weights. Thus we already know that the polynomials \(P_{M,j}\) must, at least indirectly, determine the higher weights of \(M\), as well. We shall see towards the end of this article that they do so very directly – in a simple and applicable way.

1.1 Structure of this paper

- Section 2 contains definitions and results used later on.
• In Section 3 we look at the number of codewords in the extension of a code C over \mathbb{F}_q – as a polynomial in q^m.

• In Section 4 we generalize the polynomial from Section 3 to matroids, and use these generalized weight polynomials to define a matroidal enumerator. We proceed to demonstrate that this enumerator is equivalent to the Tutte polynomial of M.

• In Section 5 we prove our main result: The generalized weight polynomials are determined by Betti numbers associated to minimal free resolutions of M and elongations of M.

• In Section 6 we shall see a counterexample showing that the converse of our main result is not true; the generalized weight enumerators do not determine the Betti numbers of M.

• In Section 7 we show how the generalized weight polynomials determine the higher weight hierarchy of M.

2 Preliminaries

2.1 Linear codes and weight enumerators

A linear $[n,k]$-code C over \mathbb{F}_q is, by definition, a k-dimensional subspace of \mathbb{F}_q^n. The elements of this subspace are commonly referred to as words, and any $k \times n$ matrix whose rows form a basis for C is referred to as a generator matrix. Thus a code will typically have several generator matrices.

The dual code is the orthogonal complement of C, and is denoted C^\perp. A parity-check matrix of C is a $(n-k) \times n$-matrix with the property

$$Hx^T = 0 \iff x \in C.$$

It is easy to see that H is a parity check matrix for C if and only if H is a generator matrix for C^\perp.

2.2 Puncturing and shortening a linear code

Let C be a linear code of length n, and let $J \subseteq \{1 \ldots n\}$.

Definition 2.1. The puncturing of \(C \) in \(J \) is the code obtained by eliminating the coordinates indexed by \(J \) from the words of \(C \).

Definition 2.2.
\[
C(J) = \{ w \in C : w_j = 0 \text{ for all } j \in J \}.
\]
Clearly, \(C(J) \) is itself a linear code.

Definition 2.3. The shortening of \(C \) in \(J \) is the puncturing of \(C(J) \) in \(J \).

2.3 Matroids

There are numerous equivalent ways of defining a matroid. We choose to give here the definition in terms of independent sets. For an introduction to matroid theory in general, we recommend e.g. [8].

Definition 2.4. A matroid \(M \) consists of a finite set \(E \) and a set \(I(M) \) of subsets of \(E \) such that:

- \(\emptyset \in I(M) \).
- If \(I_1 \in I(M) \) and \(I_2 \subseteq I_1 \), then \(I_2 \in I(M) \).
- If \(I_1, I_2 \in I(M) \) and \(|I_1| > |I_2| \), then there is a \(x \in I_1 \setminus I_2 \) such that \(I_2 \cup x \in I(M) \).

The elements of \(I(M) \) are referred to as the independent sets (of \(M \)). The bases of \(M \) are the independent sets that are not contained in any other independent set. In other words, the maximal independent sets. Conversely, given the bases of a matroid, we find the independent sets to be those sets that are contained in a basis. We denote the bases of \(M \) by \(B(M) \). It is a fundamental result that all bases of a matroid have the same cardinality.

The dual matroid \(M^* \) is the matroid on \(E \) whose bases are the complements of the bases of \(M \). Thus
\[
B(M^*) = \{ E \setminus B : B \in B(M) \}.
\]

Definition 2.5. For \(\sigma \subseteq E \), the rank function \(r_M \) and nullity function \(n_M \) are defined by

\[
r_M(\sigma) = \max \{ |I| : I \in I(M), I \subseteq \sigma \},
\]
and
\[
n_M(\sigma) = |\sigma| - r_M(\sigma).
\]
Whenever the matroid M is clear from the context, we omit the subscript and write simply r and n. Note that a subset σ of E is independent if and only if $n(\sigma) = 0$. The rank $r(M)$ of M itself is defined as $r(M) = r(M,E)$.

We let r^* and n^*, respectively, denote the rank- and nullity function of M^*, and point out that

$$r^*(\sigma) = |\sigma| + r(E \setminus \sigma) - r(E).$$

Definition 2.6. If $\sigma \subseteq E$, then $\{I \subseteq \sigma : I \in I(M)\}$ form the set of independent sets of a matroid $M|_\sigma$ on σ. We refer to $M|_\sigma$ as the restriction of M to σ.

Definition 2.7. The higher weights $\{d_i\}$ of M are defined by

$$d_i = \min\{|\sigma| : \sigma \subseteq E(M) \text{ and } n(\sigma) = i\}.$$

Definition 2.8. The Tutte polynomial of M is defined by

$$t_M(X,Y) = \sum_{\sigma \subseteq E} (X - 1)^r(\sigma)(Y - 1)^{|\sigma| - r(\sigma)}.$$

It carries information on several invariants of M. For example $t_M(1,1)$ counts the number of bases of M, while $t_M(2,1)$ is the number of independent sets.

Definition 2.9. Let f_i denote the number of independent sets of cardinality i. The reduced Euler characteristic $\chi(M)$ of M is defined by

$$\chi(M) = -1 + f_1 - f_2 + \cdots + (-1)^{r(M) - 1}f_{r(M)}.$$

Example 2.1 ($U(r,n)$). Let E be a set with $|E| = n$. The set of all cardinality-r subsets of E form the set of bases for a matroid $U(r,n)$ on E. We refer to $U(r,n)$ as the uniform matroid of rank r on an n-element set. Observe that $I \subseteq E$ is independent in $U(r,n)$ if and only if $|I| \leq r$.

Clearly, we have $d_i(U(r,n)) = r + i$, for $1 \leq i \leq n - r$. And it is equally clear that

$$\chi(U(r,n)) = \sum_{i=0}^{r} (-1)^{i+1} \binom{n}{i}.$$

As for the Tutte polynomial, note that for $\sigma \subseteq E$ with $|\sigma| < r$ we have $|\sigma| - r(\sigma) = 0$. While for those σ with $|\sigma| > r$ we have $r(E) - r(\sigma) = 0$. For the $\binom{n}{r}$ subsets σ with $|\sigma| = r$, both $|\sigma| - r(\sigma)$ and $r(E) - r(\sigma)$ is equal to 0. Thus

$$t_{U(r,n)}(X,Y) = \sum_{i=0}^{r-1} \binom{n}{i} (X - 1)^{r - i} + \binom{n}{r} + \sum_{i=r+1}^{n} \binom{n}{i} (Y - 1)^{i - r}.$$
2.4 From linear code to matroid

Let A be an $m \times n$ matrix over some field \mathbb{k}. Let E be the set of column labels of A. It is easy to verify that if we take as independent sets those subsets of E that correspond to a set of \mathbb{k}-linearly independent columns, this constitutes a matroid on E. We refer to this as the vector matroid of A and denote it $M(A)$.

Thus from a linear code C, with generator matrix G and parity-check matrix H, there naturally corresponds two matroids: $M(G)$ and $M(H)$. Note that if G and G' are two generator matrices for C, then $M(G) = M(G')$. Same goes for parity-check matrices, of course. It therefore makes sense to speak of the matroid corresponding to a generator (or parity-check) matrix of C, and to write $M(G)$ and $M(H)$ without specifying G or H. We shall mostly consider $M(H)$, but this is not very crucial since duality results abound and $M(H) = M(G)^\perp$.

Note that $r(M(G)) = \dim(C)$, while $r(M(H)) = \dim(C^\perp)$, and that $d_1(M(H))$ is equal to the minimum distance of C.

Example 2.2. Let C be the $[7,4]$-code over \mathbb{F}_5 with parity-check matrix

$$H = \begin{pmatrix} 1 & 0 & 0 & 3 & 3 & 3 & 4 \\ 0 & 1 & 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 4 & 4 & 4 & 4 \end{pmatrix}.$$

Then $M(H)$ will be a matroid on $E = \{1, \ldots, 7\}$. Since the columns $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}$ form a maximal linearly independent set of columns – the set $\{1, 3, 6\}$ must be a basis for $M(H)$. Thus $r(M) = 3$ (which could also have been inferred from H being a 7×3 matrix). The full set of bases are

$$B(M(H)) = \{ \{1, 3, 6\}, \{1, 3, 5\}, \{1, 2, 6\}, \{2, 3, 6\}, \{1, 2, 5\}, \{1, 5, 7\}, \{3, 6, 7\}, \{2, 4, 7\}, \{1, 4, 6\}, \{2, 3, 4\}, \{4, 6, 7\}, \{1, 2, 3\}, \{1, 2, 7\}, \{3, 4, 5\}, \{1, 6, 7\}, \{1, 4, 5\}, \{1, 2, 4\}, \{2, 3, 7\}, \{4, 5, 7\}, \{3, 5, 7\}, \{2, 6, 7\}, \{2, 5, 7\}, \{2, 3, 5\}, \{3, 4, 6\}\}.$$

2.5 The elongation of M to rank $r(M) + i$

Let M be a matroid on E, with $|E| = n$.
\textbf{Definition 2.10.} For $0 \leq i \leq n - r(M)$, let M_i be the matroid whose independent sets are $I(M)_i = \{ \sigma \in E : n(\sigma) \leq i \}$.

That M_i is in fact a matroid can be seen in e.g. [8, p.25]. Note that $M_0 = M$, and that $B(M_{n-r(M)}) = \{ E \}$.

The following is straightforward:

\textbf{Proposition 1.} Let r_i and n_i denote, respectively, the rank function and the nullity function of M_i. Then, for $\sigma \subseteq E$, we have

$$r_i(\sigma) = \begin{cases} r(\sigma) + i, & n(\sigma) > i, \\ |\sigma|, & n(\sigma) \leq i. \end{cases} \quad (2)$$

And

$$n_i(\sigma) = \begin{cases} n(\sigma) - i, & n(\sigma) > i, \\ 0, & n(\sigma) \leq i. \end{cases} \quad (3)$$

By definition we have $r_i(M_i) = r_i(E)$. It thus follows from Proposition 1 that

$$r_i(M_i) = r(M) + i. \quad (4)$$

The matroid M_i is commonly referred to as the \textit{elongation} of M to rank $r(M) + i$.

If $\sigma \subseteq E$ then the rank function of $M|_{\sigma}$ is the restriction of r_M to subsets of σ. We point out, for later use, that this implies

$$(M_i)|_{\sigma} = (M|_{\sigma})_i. \quad (5)$$

\subsection{2.6 The Stanley-Reisner ideal, Betti numbers, and the reduced chain complex}

Let M be a matroid on E, with $|E| = n$ and $r(M) = k$. Let \mathbb{k} be a field.

\textbf{Definition 2.11.} A \textit{circuit} of M is a subset C of E with the property that C is not itself independent, but $C \setminus x$ is independent for every $x \in C$.

In other words, the circuits of a matroid are the minimal dependent sets, while the independent sets are precisely those that do not contain a circuit.

For the following we label the elements of E, such that $E = \{ e_1, \ldots, e_n \}$. Let $S = \mathbb{k}[x_1, \ldots, x_n]$.

7
Definition 2.12 (Stanley-Reisner ideal). Let I_M be the ideal in S generated by monomials corresponding to circuits of M. That is, let

$$I_M = \langle x_{j_1}x_{j_2} \cdots x_{j_s} : \{e_{j_1}e_{j_2}, \ldots, e_{j_s}\} \text{ is a circuit of } M \rangle.$$

We refer to I_M as the Stanley-Reisner ideal of M.

A complex

$$\cdots \longleftarrow X_{i-1} \overset{\phi_i}{\longleftarrow} X_i \overset{\phi_i}{\longleftarrow} \cdots$$

over S is said to be minimal whenever $\text{im} \phi_i \subseteq \langle x_1, x_2, \ldots, x_n \rangle X_{i-1}$ for each i.

Definition 2.13. An \mathbb{N}_0-graded minimal free resolution of an \mathbb{N}_0-graded S-module N is a minimal left complex

$$0 \leftarrow F_0 \overset{\phi_1}{\leftarrow} F_1 \overset{\phi_2}{\leftarrow} F_2 \leftarrow \cdots \overset{\phi_l}{\leftarrow} F_l \leftarrow 0 \quad (6)$$

where

$$F_i = \bigoplus_j S(-j)^{\beta_{i,j}},$$

which is exact everywhere except for in F_0, where $F_0 / \text{im} \phi_1 \cong N$. We also require the boundary maps ϕ_i to be degree-preserving.

If N permits an \mathbb{N}_0^n-grading (as e.g. the Stanley-Reisner ideal does) we may form an \mathbb{N}_0^n-graded minimal free resolution. In that case

$$F_i = \bigoplus_{\sigma \in \mathbb{N}_0^n} S(-\sigma)^{\beta_{i,\sigma}},$$

while the definition remains otherwise unchanged. Observe that

$$\beta_{i,j} = \sum_{|\sigma|=j} \beta_{i,\sigma}.$$

Hilbert Syzygy Theorem states that the length l of (6) is less than or equal to n. We shall here only be looking at minimal free resolutions of the Stanley-Reisner ideal I_M; these all have length $n - r(M) - 1$ (see e.g. [4, Corollary 3(b)]).

For an empty ideal, all Betti numbers are zero. This is for example always the case with $I_{M_{n-r(M)}}$ since $M_{n-r(M)}$ has no circuits.

For the following definition, we shall assume, without loss of generality, that $E = \{1, \ldots, n\}$.

8
Definition 2.14. Let \(I_i(M) \) denote the set consisting of those independent sets that have cardinality \(i \), and let \(\mathbb{k} I_i(M) \) be the free \(\mathbb{k} \)-vector space on \(I_i(M) \). The (reduced) chain complex of \(M \) over \(\mathbb{k} \) is the complex

\[
0 \leftarrow \mathbb{k} I_0(M) \leftarrow \mathbb{k} I_1(M) \leftarrow \cdots \leftarrow \mathbb{k} I_{i-1}(M) \leftarrow \mathbb{k} I_i(M) \leftarrow \mathbb{k} I_{i-1}(M) \leftarrow \cdots \leftarrow \mathbb{k} I_1(M) \leftarrow \mathbb{k} I_0(M) \leftarrow 0,
\]

where the boundary maps \(\delta_i \) are defined on bases as follows: With the natural ordering \(e_u < e_v \iff u < v \) on \(E \), set sign \((j, \sigma) = (-1)^{r-1} \) if \(j \) is the \(r \)th element of \(\sigma \subseteq E \), and let

\[
\delta_i(\sigma) = \sum_{j \in \sigma} \text{sign}(j, \sigma) \sigma \setminus j.
\]

Extending \(\delta_i \) \(\mathbb{k} \)-linearly, we obtain a \(\mathbb{k} \)-linear map from \(\mathbb{k} I_i(M) \) to \(\mathbb{k} I_{i-1}(M) \).

Definition 2.15. The \(i \)th reduced homology of \(M \) over \(\mathbb{k} \) is the vector space

\[
H_i(M; \mathbb{k}) = \ker(\delta_i) / \text{im}(\delta_{i+1}).
\]

In proving our main result (Theorem 5.1), we shall draw upon the following two results, the first of which is a concatenation of [1, Proposition 7.4.7 (i) and Proposition 7.8.1].

Theorem 2.1. Let \(H_i(M; \mathbb{k}) \) denote the \(i \)th homology of \(M \) over \(\mathbb{k} \). Then

\[
H_i(M; \mathbb{k}) = \begin{cases} \mathbb{k}(-1)^{r(M)} \chi(M), & i = r(M) - 1 \\ 0, & i \neq r(M) - 1. \end{cases}
\]

Theorem 2.2 (Hochster’s formula).

\[
\beta_{i-1,\sigma}(I_M) = \dim_{\mathbb{k}} H_{|\sigma|-i-1}(M_{|\sigma|}; \mathbb{k}).
\]

First, we would like to point out, for later use, that Theorems 2.1 and 2.2 combined imply

\[
\sum_{i=0}^{n} (-1)^i \beta_{i,\sigma} = (-1)^{n_M(\sigma)-1} \beta_{n_M(\sigma)-1,\sigma}. \tag{7}
\]

Secondly, it is immediate from Hochster’s formula that the Betti numbers associated to a \((\mathbb{N}_0 \text{- or } \mathbb{N}_0^n \text{-graded}) \) minimal free resolution are unique, in that any other minimal free resolution must have the same Betti numbers. Furthermore, it was found in [1] that for a matroid \(M \), the dimension of \(H_i(M; \mathbb{k}) \) is in fact independent of \(\mathbb{k} \). Thus for matroids, the \((\mathbb{N}_0 \text{- or } \mathbb{N}_0^n \text{-graded}) \) Betti numbers are not only unique, but independent of choice of field. We shall therefore largely omit any reference to, or specifying of, a particular field \(\mathbb{k} \) – throughout.
Example 2.3 (Continuation of Ex. 2.2). Since $M(H)$ has set of circuits
\[
\{\{1,2,6,7\}, \{5,6\}, \{2,3,6,7\}, \{1,2,3,5\}, \{1,3,7\}, \{1,4,7\}, \{1,2,3,6\}, \{2,4,6\}, \{2,3,5,7\}, \{3,4,7\}, \{1,2,5,7\}, \{1,3,4\}, \{2,4,5\}\}
\]
its Stanley-Reisner ideal is
\[
I_{M(H)} = \langle x_1x_2x_6x_7, x_5x_6, x_2x_3x_6x_7, x_1x_2x_3x_5, x_1x_4x_7, x_1x_2x_3x_6, \\
x_2x_4x_6, x_2x_3x_5x_7, x_3x_4x_7, x_1x_2x_5x_7, x_1x_3x_4, x_2x_4x_5, \\
x_2x_4x_6, x_2x_3x_5x_7, x_3x_4x_7, x_1x_2x_5x_7, x_1x_3x_4, x_2x_4x_5 \rangle.
\]
Using MAGMA ([2]), we find the \mathbb{N}_0-graded minimal free resolutions of $I_{M(H)}$ to be
\[
0 \leftarrow S(-2) \oplus S(-3)^6 \oplus S(-4)^6 \leftarrow S(-4)^5 \oplus S(-5)^{28} \leftarrow S(-6)^{31} \leftarrow S(-7)^{10} \leftarrow 0.
\]
Similarly, we find the \mathbb{N}_0-graded minimal free resolutions corresponding to elongations of M.

\[
\begin{align*}
I_{M(H)_1} &: \\
0 &\leftarrow S(-4)^2 \oplus S(-5)^{15} \leftarrow S(-6)^{29} \leftarrow S(-7)^{13} \leftarrow 0,
\end{align*}
\]
\[
\begin{align*}
I_{M(H)_2} &: \\
0 &\leftarrow S(-6)^7 \leftarrow S(-7)^6 \leftarrow 0,
\end{align*}
\]
\[
\begin{align*}
I_{M(H)_3} &: \\
0 &\leftarrow S(-7) \leftarrow 0,
\end{align*}
\]

3 Number of codewords of weight j

Let C be a linear $[n,k]$-code over \mathbb{F}_q, with a generator matrix $G = [g_{i,j}]$ for $1 \leq i \leq k$, $1 \leq j \leq n$. Let $Q = q^m$ for some $m \in \mathbb{N}$.

Definition 3.1. For $0 \leq k \leq n$, let $A_{C,k}(Q)$ denote the number of words of weight k in $C \otimes_{\mathbb{F}_q} \mathbb{F}_Q$.

Let c_j denote column j of G. If $a = (a_1, a_2, \ldots, a_k) \in \mathbb{F}_Q^k$, the codeword $a \cdot G$ has weight n if and only if
\[
c_j^T \cdot a \neq 0
\]
for all $1 \leq j \leq n$. In other words, if we let $S_j(Q)$ denote \{$x \in \mathbb{F}_q^k : c_j^T \cdot x = 0$\}, corresponding to column j, we have that $a \cdot G$ has weight n if and only if
\[
a \in \mathbb{F}_q^k \setminus (S_1(Q) \cup S_2(Q) \cup \cdots \cup S_n(Q)).
\] (8)

Definition 3.2. For $U = \{u_1, u_2, \ldots, u_s\} \subseteq \{1, \ldots, n\}$, let
\[
S_U(Q) = S_{u_1}(Q) \cap S_{u_2}(Q) \cap \cdots \cap S_{u_s}(Q).
\]

By the inclusion/exclusion-principle then, we see from (8) that
\[
A_{C,n}(Q) = Q^k - \sum_{|U|=1} |S_U(Q)| + \sum_{|U|=2} |S_U(Q)| + \cdots + (-1)^n \sum_{|U|=n} |S_U(Q)|.
\]

If $B_U = \begin{pmatrix} e_{u_1}^T \\ e_{u_2}^T \\ \vdots \\ e_{u_s}^T \end{pmatrix}$, then $|S_U(Q)| = Q^{\dim(\ker B_U)} = Q^{k - \dim(\col B_U)} = Q^{k - \dim(M(G)(U))}$, which according to (9) is equal to $Q^{n_{M(H)}(E \setminus U)}$. Since $Q^k = \sum_{|U|=0} |S_U(Q)|$, we conclude that
\[
A_{C,n}(Q) = \sum_{U \subseteq E} (-1)^{|U|} Q^{n_{M(H)}(E \setminus U)} = (-1)^n \sum_{\gamma \subseteq E} (-1)^{|\gamma|} Q^{n_{M(H)}(\gamma)}. \] (9)

Definition 3.3.
\[
a_{C,\sigma}(Q) = |\{w \in C \otimes_{\mathbb{F}_q} \mathbb{F}_q : \text{Supp}(w) = \sigma\}|.
\]

Lemma 3.1.
\[
a_{C,\sigma}(Q) = (-1)^{|\sigma|} \sum_{\gamma \subseteq \sigma} (-1)^{|\gamma|} Q^{n_{M(H)}(\gamma)}.
\]

Proof. Let $C_{\sigma}(Q)$ denote the shortening of $C \otimes_{\mathbb{F}_q} \mathbb{F}_q$ in $\{1 \ldots n\} \setminus \sigma$, and let $H|_{\sigma}$ be the restriction of H to columns indexed by σ. Then $H|_{\sigma}$ is a parity-check matrix for $C_{\sigma}(Q)$.

Clearly $a_{C,\sigma}(Q) = a_{C_{\sigma},\sigma}(Q)$, and since $M(H)|_{\sigma} \cong M(H|_{\sigma})$ it follows by an argument similar to the one leading to (9) that
\[
a_{C,\sigma}(Q) = (-1)^{|\sigma|} \sum_{\gamma \subseteq \sigma} (-1)^{|\gamma|} Q^{n_{M(H)}(\gamma)}.
\]
The result follows, since $n_{M(H)}(\gamma) = n_{M(H)}(\gamma)$ for all $\gamma \subseteq \sigma$.

\[\square\]
Proposition 2. For $1 \leq k \leq n$

$$A_{C,k}(Q) = (-1)^k \sum_{|\sigma|=k} \sum_{Y \subseteq \sigma} (-1)^{|Y|} Q^{p_{M(H)}(Y)}$$

Proof. This is clear from Lemma 3.1, since $A_{C,k}(Q) = \sum_{|\sigma|=k} a_{C,\sigma}(Q)$. \qed

In the following sections, we shall see what comes from generalizing the weight polynomials $A_{C,k}(Q)$ to matroids.

4 Generalized weight polynomials and a generalized enumerator

Looking back at Proposition 2 it is clear that the polynomial $A_{C}(Q)$ appearing there may equally well be defined for matroids in general – not only for those derived from a linear code.

For the remainder of this section, let M be a matroid on E, with $|E| = n$.

4.1 GWP and the enumerator

Definition 4.1 (GWP). We define the polynomial $P_{M,j}(Z)$ by letting $P_{M,0}(Z) = 1$ and

$$P_{M,j}(Z) = (-1)^j \sum_{|\sigma|=j} \sum_{Y \subseteq \sigma} (-1)^{|Y|} Z^{m_{M}(Y)} \text{ for } 1 \leq j \leq n.$$

We shall refer to $P_{M,j}$ as the j^{th} generalized weight polynomial, or just GWP, of M.

Analogous to how $A_{C,j}(Q)$ is used to define the extended weight enumerator $W_{C}(X,Y,Q)$ of a code C (see [6]), we use the GWP to define the enumerator of M:

Definition 4.2 (Matroid enumerator). The enumerator W_{M} of M is

$$W_{M}(X,Y,Z) = \sum_{i=0}^{n} P_{M,i}(Z) X^{n-i} Y^{i}.$$
Example 4.1. Let \(\mathcal{V}^8 \) be the matroid on \(E = \{1, \ldots, 8\} \) with bases
\[
\{ \sigma \subseteq E : |\sigma| = 4 \} \setminus \{ \{1, 2, 3, 4\}, \{1, 2, 7, 8\}, \{3, 4, 5, 6\}, \{3, 4, 7, 8\}, \{5, 6, 7, 8\} \}.
\]
This is the well-known Vámos matroid. It is non-representable; that is, it is not the vector matroid of any matrix (and thus does not come from any code). Using MAGMA, we find the enumerator of \(\mathcal{V}^8 \) to be
\[
W_{\mathcal{V}^8}(X, Y, Z) = X^8 + 5X^4Y^4Z - 5X^4Y^4 + 36X^3Y^5Z - 36X^3Y^5 + 28X^2Y^6Z^2 \\
- 138X^2Y^6Z + 110X^2Y^6 + 8XY^7Z^3 - 56XY^7Z^2 + 148XY^7Z \\
- 100XY^7 + Y^8Z^4 - 8Y^8Z^3 + 28Y^8Z^2 - 51Y^8Z + 30Y^8.
\]

Observe that if \(C \) is a linear code with parity-check matrix \(H \) and extended weight enumerator \(W_C(X, Y, Q) \) (see e.g. [6]), then
\[
W_C(X, Y, Q) = W_{M(H)}(X, Y, Q).
\]

4.2 Equivalence to the Tutte polynomial

It was shown in [6] that for vector matroids derived from a code, the extended weight enumerator of the code determines the Tutte polynomial of the matroid – and vice versa. We shall see that this is still true when it comes to matroids and their enumerators, in general. Despite being generalizations of the ones found in [6], the proofs of Lemma 4.1 and Theorems 4.3 and 4.4 are given here as well – for the sake of completeness and readability.

Proposition 3.
\[
P_{M,i}(Z) = \sum_{j=n-i}^{n} (-1)^{i+j+n} \binom{j}{n-i} \sum_{|\gamma| = j} Z^{p_M(E \setminus \gamma)}.
\]
Proof.

\[P_{M,i}(Z) = (-1)^i \sum_{|\sigma|=i, \gamma \subseteq \sigma} (-1)^{|\gamma|} Z^{nM}(\gamma) \]

\[= (-1)^i \sum_{|\sigma|=i, \gamma \subseteq \sigma} \sum_{|E \setminus \gamma| \leq \sigma} (-1)^{|E \setminus \gamma|} Z^{nM}(E \setminus \gamma) \]

\[= (-1)^i \sum_{|\sigma|=i, \gamma \subseteq \sigma} \sum_{|E \setminus \gamma| \leq \sigma} (-1)^{|E \setminus \gamma|} Z^{nM}(E \setminus \gamma) \]

\[= (-1)^i \sum_{|\gamma| \geq n-i} \left(\sum_{E \setminus \gamma \subseteq \sigma, |E \setminus \gamma| \leq \gamma} (-1)^{|E \setminus \gamma|} Z^{nM}(E \setminus \gamma) \right) \]

\[= (-1)^i \sum_{|\gamma| \geq n-i} \left(\sum_{j=0}^{n} \binom{n}{j} (-1)^{n+j} Z^{nM}(E \setminus \gamma) \right). \]

\[\blacksquare \]

Proposition 3 above is what enables us to use basically the same technique as that employed in [6] for the proofs of Theorems 4.3 and 4.4.

Lemma 4.1.

\[W_{M}(X, Y, Z) = \sum_{j=0}^{n} \sum_{|\gamma|=j} Z^{nM}(E \setminus \gamma) (X - Y)^j Y^{n-j}. \]
We shall also need a slight reformulation of the Tutte polynomial. For the remainder of this section, let \(k = r(M) \).

Lemma 4.2.

\[
W_M(X, Y, Z) = \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{|\gamma| = j} (-1)^{i+j+n} \binom{j}{n-i} Z^{n_M(E \setminus \gamma)} X^{n-i} Y^i
\]

\[
= \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{|\gamma| = j} (-1)^{i+j+n} \binom{j}{n-i} Z^{n_M(E \setminus \gamma)} X^{n-i} Y^i
\]

\[
= \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{|\gamma| = j} (-1)^{i+j+n} \binom{j}{n-i} Z^{n_M(E \setminus \gamma)} X^{n-i} Y^i
\]

\[
= \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{|\gamma| = j} (-1)^{i+j+n} \binom{j}{n-i} Z^{n_M(E \setminus \gamma)} X^{n-i} Y^i
\]

\[
= \sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{|\gamma| = j} (-1)^{i+j+n} \binom{j}{n-i} Z^{n_M(E \setminus \gamma)} X^{n-i} Y^i
\]

We shall also need a slight reformulation of the Tutte polynomial. For the remainder of this section, let \(k = r(M) \).

Theorem 4.3.

\[
W_M(X, Y, Z) = (X - Y)^{n-k} Y^k t_M \left(\frac{X}{Y}, X + (Z - 1)Y, X - Y \right).
\]
\begin{proof}
By Lemma 4.2 we have
\[
(X - Y)^{n-k}Y^k t_M \left(\frac{X}{Y}, \frac{X + (Z - 1)Y}{X - Y} \right)
= (X - Y)^{n-k}Y^k \sum_{j=0}^{n} \sum_{|\gamma| = j} \left(\frac{X - Y}{Y} \right)^{n(E \setminus \gamma) - (n-k-j)} \left(\frac{ZY}{X - Y} \right)^{n(E \setminus \gamma)}
= \sum_{j=0}^{n} \sum_{|\gamma| = j} Z^{n(E \setminus \gamma)} Y^{n-k-j} (X - Y)^{-(n-k-j)} (X - Y)^{n-k} \quad \tag{\ref{lem:4.2}}
= \sum_{j=0}^{n} \sum_{|\gamma| = j} Z^{n(E \setminus \gamma)} (X - Y)^{j} Y^{n-j},
\]
which according to Lemma 4.1 is equal to $W_M(X, Y, Z)$. \qed
\end{proof}

\begin{thm}
\[t_M(X, Y) = (X - 1)^{-(n-k)} X^n W_M(1, X^{-1}, (X - 1)(Y - 1)). \]
\end{thm}

\begin{proof}
By Lemma 4.1 we have
\[
(X - 1)^{-(n-k)} X^n W_M(1, X^{-1}, (X - 1)(Y - 1))
= (X - 1)^{-(n-k)} X^n \sum_{j=0}^{n} \sum_{|\gamma| = j} ((X - 1)(Y - 1))^{|\gamma|} \left(1 - X^{-1} \right)^j X^{-(n-j)}
= \sum_{j=0}^{n} \sum_{|\gamma| = j} ((X - 1)(Y - 1))^{|\gamma|} X^{-j} (X - 1)^j X^{-(n-j)} (X - 1)^{-(n-k)} X^n
= \sum_{j=0}^{n} \sum_{|\gamma| = j} (Y - 1)^{|\gamma|} (X - 1)^{|\gamma|} X^{-j} (X - 1)^j X^{-(n-j)} (X - 1)^{-(n-k)} X^n
= \sum_{j=0}^{n} \sum_{|\gamma| = j} (Y - 1)^{|\gamma|} (X - 1)^{|\gamma|} X^{-j} (X - 1)^j X^{-(n-j)} (X - 1)^{-(n-k)} X^n,
\]
which according to Lemma 4.2 is equal to $t_M(X, Y)$. \qed
\end{proof}

\begin{exa}[Continuation of Ex. 4.1]
Having already found the weight enumerator of V^8, we infer from Theorem 4.4 that
\[
t_{V^8}(X, Y) = X^4 + 4X^3 + 10X^2 + 5XY + 15X + Y^4 + 4Y^3 + 10Y^2 + 15Y.
\]
\end{exa}
5 The GWP is determined by Betti numbers

Let M denote a matroid of rank k on an n-element ground set E. Recall from Section 2 that the \mathbb{N}_0- and \mathbb{N}_0^r-graded Betti numbers corresponding I_M are independent of choice of field for our minimal free resolution. The only thing of importance, and thus our only assumption, is that the \mathbb{N}_0-graded (or \mathbb{N}_0^r-graded) minimal free resolution of I_M is constructed with respect to the same field as is the reduced chain complex over M. We may therefore omit specifying a field.

Theorem 5.1 (Main result). Let $\beta^{(l)}$ distinguish the Betti numbers of M_l from those of M, and set $\beta^{(l)}_{i,j} = 0$ whenever $l \not\in [0, n-r(M)]$. For each $1 \leq j \leq n$ the coefficient of Z^j in $P_{M,j}$ is equal to

$$\sum_{i=0}^{n} (-1)^i \left(\beta^{(i-1)}_{i,j} - \beta^{(i)}_{i,j} \right).$$

Proof. Let $s_{\sigma,j}$ denote the coefficient of Z^j in $P_{M[\sigma],|\sigma|}$. Since

$$P_{M,j}(Z) = \sum_{|\sigma|=j} P_{M[\sigma],|\sigma|}(Z),$$

the coefficient of Z^j in $P_{M,j}(Z)$ is $\sum_{|\sigma|=j} s_{\sigma,j}$. On the other hand, we have

$$s_{\sigma,j} = (-1)^{|\sigma|} \sum_{\gamma \subseteq \sigma, n_M(\gamma) = l} (-1)^{|\gamma|} = (-1)^{|\sigma|} \left[\sum_{\gamma \subseteq \sigma, n_{M_l}(\gamma) = 0} (-1)^{|\gamma|} - \sum_{\gamma \subseteq \sigma, n_{M_{l-1}}(\gamma) = 0} (-1)^{|\gamma|} \right].$$

Applying Theorems 2.1 and 2.2 in combination with (5), we see that

$$(-1)^{|\sigma|} \sum_{\gamma \subseteq \sigma, n_{M_l}(\gamma) = 0} (-1)^{|\gamma|} = (-1)^{n_{M_l}(\sigma)} \dim H_{M_l,(\sigma)}(M_l(\sigma))$$

$$= (-1)^{n_{M_l}(\sigma)} \beta_{n_{M_l}(\sigma)-1,\sigma}(I_{M_l(\sigma)}),$$

which is equal to $(-1)^{n_{M_l}(\sigma)} \beta^{(l)}_{n_{M_l}(\sigma)-1,\sigma} - \beta^{(l-1)}_{n_{M_l}(\sigma)-1,\sigma}$ since, in general, $\beta_i(\Delta) = \beta_i(\Delta_{\sigma})$.

Thus

$$s_{\sigma,j} = (-1)^{n_{M_l}(\sigma)} \beta^{(l)}_{n_{M_l}(\sigma)-1,\sigma} - (-1)^{n_{M_{l-1}}(\sigma)} \beta^{(l-1)}_{n_{M_{l-1}}(\sigma)-1,\sigma}$$

$$= (-1)^{n_{M_{l-1}}(\sigma)-1} \beta^{(l-1)}_{n_{M_{l-1}}(\sigma)-1,\sigma} - (-1)^{n_{M_l}(\sigma)-1} \beta^{(l)}_{n_{M_l}(\sigma)-1,\sigma},$$

17
which by (7) is equal to
\[
\sum_{i=0}^{n} (-1)^{i} \beta_{i,\sigma}^{(l-1)} - \sum_{i=0}^{n} (-1)^{i} \beta_{i,\sigma}^{(l)}.
\]

Consequently, the coefficient of \(Z^{l}\) in \(P_{M,j}(Z)\) is
\[
\sum_{|\sigma|=j} \left(\sum_{i=0}^{n} (-1)^{i} \left(\beta_{i,\sigma}^{(l-1)} - \beta_{i,\sigma}^{(l)} \right) \right) = \sum_{i=0}^{n} (-1)^{i} \left(\sum_{|\sigma|=j} \beta_{i,\sigma}^{(l-1)} - \sum_{|\sigma|=j} \beta_{i,\sigma}^{(l)} \right)
= \sum_{i=0}^{n} (-1)^{i} \left(\beta_{i,j}^{(l-1)} - \beta_{i,j}^{(l)} \right).
\]

Example 5.1 (Continuation of Ex. 2.3). Let us calculate \(P_{M(H),5}(Z)\) using Theorem 5.1. Having already found the Betti numbers of \(M(H)\) and its elongations, we easily calculate
\[
P_{M(H),5}(Z) = (\beta_{0,5}^{(1)} - \beta_{0,5}^{(1)})Z^{2} + \left((-\beta_{1,5} + \beta_{2,5} - \beta_{3,5}) - (\beta_{0,5}^{(1)} - \beta_{0,5}^{(1)}) \right)Z
- (-\beta_{1,5} + \beta_{2,5} - \beta_{3,5})
= (15 - 0)Z^{2} + ((-28 + 0 - 0) - (15 - 0))Z
- (-28 + 0 - 0).
\]

Continuing like this, we find the complete set of weight polynomials:
\[
P_{M(H),0}(Z) = 1
P_{M(H),1}(Z) = 0
P_{M(H),2}(Z) = Z - 1
P_{M(H),3}(Z) = 6Z - 6
P_{M(H),4}(Z) = 2Z^{2} - Z - 1
P_{M(H),5}(Z) = 15Z^{2} - 43Z + 28
P_{M(H),6}(Z) = 7Z^{3} - 36Z^{2} + 60Z - 31
P_{M(H),7}(Z) = Z^{4} - 7Z^{3} + 19Z^{2} - 23Z + 10.
\]

Corollary 1. Let \(1 \leq m \leq n\). With the convention \(\beta_{i,j}^{(l)}(M(H)) = 0\) whenever \(l \notin [0, n - r(M(H))]\), we have
\[
A_{C,m}(Q) = \sum_{l=0}^{n} \left(\sum_{i=0}^{n} (-1)^{i} \left(\beta_{i,m}^{(l-1)}(M(H)) - \beta_{i,m}^{(l)}(M(H)) \right) \right) Q^{l}.
\]
Proof. This is immediate from Theorem 5.1 since $A_{C,m}(Q) = P_{M(H),m}(Q)$ by Proposition 2.

In light of Corollary 1, the polynomials found in 5.1 when evaluated in q^m, determine the number of codewords of a given weight in $C \otimes \mathbb{F}_q$. Occasionally, the result of Corollary 1 can greatly simplify the task of calculating weight polynomials $A_{C,j}(Q)$ for a code C. This is for instance the case with MDS-codes:

Example 5.2. Let C be an MDS $[n,k]$-code over \mathbb{F}_q, with parity check matrix H. It is well known that $M(H)$ is the uniform matroid $U(r,n)$, where $r = n - k$; which of course implies that $M(H)(l) = U(r+l,n)$. From e.g. [4, Example 3], we see that

$$\beta_{i,j}^{(l)}(M(H)) = \begin{cases} \binom{j-1}{r+l}, & i = j - l - r - 1, \\ 0, & \text{otherwise}. \end{cases}$$

We conclude from Corollary 1 that for $1 \leq j \leq n$, and $Q = q^m$, we have

$$A_{C,j}(Q) = \sum_{l=1}^{n} (-1)^{i+l+r} \binom{n}{j} \left(\binom{j-1}{r+l-1} + \binom{j-1}{r+l} \right) Q^l + (-1)^{j+r} \binom{n}{j} \binom{j-1}{r}.$$

5.1 Further results

The generalized weight polynomial of M determines the generalized weight polynomial of M_i for all $i \geq 1$.

Proposition 4. Let $k \geq 1$. If

$$P_{M_{k-1},j}(Z) = a_n Z^n + a_{n-1} Z^{n-1} + \cdots + a_1 Z + a_0,$$

then

$$P_{M_k,j}(Z) = a_n Z^{n-1} + a_{n-1} Z^{n-2} + \cdots + a_2 Z + (a_1 + a_0).$$
Proof. Let $s_{\sigma,l}^{(k)}$ denote the coefficient of Z^l in $P_{M_{k,|\sigma|}}$. As noted in the proof of Theorem 5.1 then, the coefficient of Z^l in $P_{M_{j,|\sigma|}}$ is $\sum_{|\sigma|=j} s_{\sigma,l}^{(k)}$, and

$$s_{\sigma,l}^{(k)} = (-1)^{|\sigma|} \sum_{n_{M_k}(\gamma)=l} (-1)^{|\gamma|}.$$

Assume first that $l \geq 1$. By Proposition 1 we have,

$$s_{\sigma,l}^{(k)} = (-1)^{|\sigma|} \sum_{n_{M_k}(\gamma)=l} (-1)^{|\gamma|}$$

$$= (-1)^{|\sigma|} \sum_{n_{M_{k-1}}(\gamma)=l+1} (-1)^{|\gamma|}$$

$$= s_{\sigma,l+1}^{(k-1)}.$$

Finally, by Proposition 1 again, we see that

$$s_{\sigma,0}^{(k)} = (-1)^{|\sigma|} \sum_{n(\gamma) \leq k} (-1)^{|\gamma|}$$

$$= (-1)^{|\sigma|} \sum_{n(\gamma) = k} (-1)^{|\gamma|} + (-1)^{|\sigma|} \sum_{n(\gamma) \leq k-1} (-1)^{|\gamma|}$$

$$= (-1)^{|\sigma|} \sum_{n_{M_{k-1}}(\gamma)=1} (-1)^{|\gamma|} + (-1)^{|\sigma|} \sum_{n_{M_{k}}(\gamma)=0} (-1)^{|\gamma|}$$

$$= s_{\sigma,1}^{(k-1)} + s_{\sigma,0}^{(k-1)},$$

and this concludes our proof. \qed

6 Concerning the converse

Having seen that the Betti numbers associated to the M_is determine the polynomials $P_{M_{j,\sigma}}(Z)$, it is natural to ask whether the opposite is true. The answer to this is negative, as the following counterexample shows:
Example 6.1 (Continuation of Ex. 5.1). Let N be the matroid on $\{1, \ldots, 7\}$ with bases

$$B(N) = \{\{1, 4, 7\}, \{1, 3, 6\}, \{1, 3, 5\}, \{1, 3, 4\}, \{2, 3, 6\}, \{3, 4, 7\}, \{1, 2, 5\}, \{1, 5, 7\},$$
$$\{3, 6, 7\}, \{2, 4, 7\}, \{3, 5, 6\}, \{2, 3, 4\}, \{1, 2, 3\}, \{1, 2, 7\}, \{1, 5, 6\}, \{3, 4, 5\},$$
$$\{1, 6, 7\}, \{1, 4, 5\}, \{2, 3, 7\}, \{2, 5, 6\}, \{2, 4, 5\}, \{3, 5, 7\}, \{2, 6, 7\}, \{2, 5, 7\}\}.$$

The Stanley-Reisner ideal of N has minimal free resolution

$$0 \leftarrow S(-2) \oplus S(-3)^6 \oplus S(-4)^5 \leftarrow S(-4)^4 \oplus S(-5)^28 \leftarrow S(-6)^{31} \leftarrow S(-7)^{10} \leftarrow 0.$$

Comparing to the minimal free resolution of $I_{M(H)}$, we see that the Betti numbers are not the same. However, it is easy to see, using Proposition 5.1, that I_N has the same generalized weight polynomials as $M(H)$.

Note that this is the “smallest” counterexample, in that there are no counterexamples for $n < 7$.

Moreover, knowing the Betti numbers of M is in itself not enough to calculate $P_{M,j}$ – we need the Betti numbers derived from the other M_j's as well:

Example 6.2. The matroids M and N on $\{1, \ldots, 8\}$ with bases

$$B(M) = \{\{1, 3, 4, 6, 7\}, \{1, 2, 3, 6, 8\}, \{1, 2, 3, 4, 8\}, \{1, 2, 3, 5, 8\}, \{1, 2, 5, 6, 8\}, \{1, 2, 3, 4, 7\},$$
$$\{1, 2, 3, 5, 7\}, \{1, 2, 5, 6, 7\}, \{1, 3, 4, 5, 7\}, \{1, 3, 4, 6, 8\}, \{1, 2, 4, 6, 8\}, \{1, 2, 4, 6, 7\},$$
$$\{1, 3, 4, 5, 8\}, \{1, 2, 4, 5, 7\}, \{1, 4, 5, 6, 7\}, \{1, 2, 3, 6, 7\}, \{1, 3, 5, 6, 7\}, \{1, 4, 5, 6, 8\},$$
$$\{1, 3, 5, 6, 8\}, \{1, 2, 4, 5, 8\}\}$$

and

$$B(N) = \{\{1, 3, 4, 6, 7\}, \{1, 2, 3, 4, 8\}, \{1, 2, 3, 5, 8\}, \{1, 2, 5, 6, 8\}, \{1, 2, 3, 4, 7\}, \{1, 2, 3, 5, 7\},$$
$$\{1, 2, 5, 6, 7\}, \{1, 3, 4, 5, 7\}, \{1, 3, 4, 6, 8\}, \{1, 2, 4, 6, 8\}, \{1, 2, 4, 6, 7\}, \{1, 3, 4, 5, 8\},$$
$$\{1, 2, 4, 5, 7\}, \{1, 3, 4, 5, 8\}, \{1, 2, 4, 5, 6\}, \{1, 3, 5, 6, 7\}, \{1, 2, 3, 5, 6\}, \{1, 2, 3, 4, 6\},$$
$$\{1, 3, 5, 6, 8\}, \{1, 2, 4, 5, 8\}\},$$

respectively, both have

$$0 \leftarrow S(-2) \oplus S(-4)^5 \leftarrow S(-5)^4 \oplus S(-6)^5 \leftarrow S(-7)^4 \leftarrow 0$$

as the minimal free resolution of their associated Stanley-Reisner ideal, while

$$P_{M,4}(Z) = Z^2 - 5Z + 4 \neq 2Z^2 - 6Z + 4 = P_{N,4}(Z).$$

Again this is the “smallest” counterexample.
Two non-isomorphic matroids may however have identical Betti numbers in all levels (the smallest example of which are a couple of rank-3 matroids on \(\{1, \ldots, 6\}\)).

7 The GWPs determines the weight hierarchy

As before, we let \(M\) denote a matroid on \(n\) elements. It follows from Theorems 4.3 and 4.4 that the Tutte- and generalized weight polynomials determine each other. Since it is well known that the Tutte polynomial of a matroid in turn determines the weight hierarchy \(\{d_i\}\) (see [3, p. 131]), we conclude that the generalized weight polynomials – at least indirectly – do so as well. In this Section we demonstrate that they do so in a direct, accessible, and easily applicable manner.

Let \(\beta^{(l)}\) distinguish the Betti numbers of \(M_l\) from those of \(M(= M_0)\).

Lemma 7.1. For \(i \geq 1\),

\[
\beta^{(l)}_{i,j} \neq 0 \iff \beta^{(l+1)}_{i-1,j} \neq 0.
\]

Proof. According to [4, Theorem 1], we have that

\[
\beta^{(l)}_{i,j} \neq 0 \iff \sigma \text{ is minimal with the property } n_\sigma = i + 1.
\]

Since \(\beta_{i,j} = \sum_{|\sigma| = j} \beta_{i,\sigma}\), we see that

\[
\beta^{(l)}_{i,j} \neq 0 \iff \exists \sigma \text{ such that } |\sigma| = j \text{ and } \sigma \text{ is minimal with the property } n_{l}(\sigma) = i + 1
\]

\[
\iff \exists \sigma \text{ such that } |\sigma| = j \text{ and } \sigma \text{ is minimal with the property } n_{l+1}(\sigma) = i
\]

\[
\iff \beta^{(l+1)}_{i-1,j} \neq 0. \quad \square
\]

In terms of Betti-tables, this implies that when it comes to zeros and non-zeros the Betti-table of \(M_{l+1}\) is equal to the table you get by deleting the first column from \(M_l\)'s table.

Lemma 7.2.

\[
d_i(M) = \min \{ j : \beta^{(i-1)}_{0,j} \neq 0 \}.
\]

22
Proof. By [4, Theorem 2] we have
\[d_i(M) = \min\{ j : \beta_{i-1,j} \neq 0 \}, \]
and the result thus follows immediately from Lemma 7.1.

Proposition 5.
\[d_i(M) = \min\{ s : \deg P_{M,s} = i \}. \]

Proof. It follows from Lemma 7.2 and from minimality of the free resolutions that
\[\beta_{u,v}^{(i-1)} = 0 \text{ for all } u \geq 0, v \leq u + d_i - 1(M). \]

Recall that the coefficient of \(Z_i \) in \(P_{M,s} \) is equal to
\[\sum_{t=0}^{n} (-1)^{t+1} \left(\beta_{t,s}^{(i)} - \beta_{t,s}^{(i-1)} \right). \] (10)

We conclude both that this is equal to zero whenever \(s < d_i(M) \), and that the coefficient of \(Z_i \) in \(P_{M,d_i(M)} \) is precisely \(\beta_{0,d_i(M)}^{(i-1)} \neq 0 \).

The following is an immediate consequence of Lemmas 7.1 and 7.2.

Proposition 6.
\[d_i(M_{l+1}) = d_{i+1}(M_l). \]

Example 7.1 (The simplex code \(S_2(3) \)). Let \(S_2(3) \) be the simplex code of dimension 3 over \(\mathbb{F}_2 \). This code has length \(n = 7 \). Let \(H \) be a parity-check matrix of \(S_2(3) \).

The higher weights of \(S_2(3) \) are \((d_1,d_2,d_3) = (4,6,7) \), from which it follows by way of [5 Theorem 2] that the non-zero Betti numbers of \(I_{M(H)} \) are
\[(\beta_{0,4},\beta_{1,6},\beta_{2,7}) = (7,14,8). \]

By Proposition 6 the higher weights of \(M_1 \) are \((d_1,d_2) = (6,7) \), which implies that \(M(H)_1 \) must be the uniform matroid \(U(5,7) \). From [4 Example 3] then, we see that the only non-zero Betti numbers of \(I_{M(H)_1} \) are \(\beta_{0,6}(M(H)_1) = 7 \) and \(\beta_{1,7}(M(H)_1) = 6 \). As always, the \((n-r(M(H)) - 1)^{th}\) elongation \(M(H)_2 \) has \(\{1,\ldots,7\} \) as its only circuit, such that the only non-zero Betti-number associated to \(I_{M(H)_2} \) is \(\beta_{0,7}(M(H)_2) = 1 \).
Having found all Betti numbers from all elongations, we easily calculate the weight polynomials using Corollary 1:

\[
\begin{align*}
A_{\gamma_2(3),0}(Q) &= 1 \\
A_{\gamma_2(3),1}(Q) &= 0 \\
A_{\gamma_2(3),2}(Q) &= 0 \\
A_{\gamma_2(3),3}(Q) &= 0 \\
A_{\gamma_2(3),4}(Q) &= 7Q - 7 \\
A_{\gamma_2(3),5}(Q) &= 0 \\
A_{\gamma_2(3),6}(Q) &= 7Q^2 - 21Q + 14 \\
A_{\gamma_2(3),7}(Q) &= Q^3 - 7Q^2 + 14Q - 8
\end{align*}
\]

References

[1] A. Björner, *Homology and shellability*, 1992, pp. 226-283.

[2] W. Bosma, J. Cannon, C. Playoust, *The Magma algebra system. I. The user language*, J. Symbolic Comput. 24 (1997) 235-265.

[3] Iwan M. Duursma, *Combinatorics of the Two-Variable Zeta Function*, Finite Fields and Applications, Lecture Notes in Comput. Sci. 2948 (2004) 109-136.

[4] T. Johnsen, H. Verdure, *Hamming weights and Betti numbers of Stanley-Reisner rings associated to matroids*, AAECC 24 no. 1 (2013) 73-93.

[5] T. Johnsen, H. Verdure, *Stanley-Reisner resolution of constant-weight linear codes*, Des. Codes Cryptogr. (to appear).

[6] R. Jurrius, R. Pellikaan *Codes, arrangements and matroids*, World Scientific Review Volume, 2011.

[7] E. Miller, B. Sturmfels, *Combinatorial Commutative Algebra*, Graduate Texts in Mathematics 227, Springer, 2005.

[8] J.G. Oxley, *Matroid Theory*, 2nd Edition, Oxford University Press Inc., New York, 1992.