This is the accepted manuscript made available via CHORUS. The article has been published as:

Impurity-Induced Anomalous Thermal Hall Effect in Chiral Superconductors
Vudtiwat Ngampruetikorn and J. A. Sauls
Phys. Rev. Lett. 124, 157002 — Published 13 April 2020
DOI: 10.1103/PhysRevLett.124.157002
Chiral superconductors exhibit novel transport properties that depend on the topology of the order parameter, topology of the Fermi surface, the spectrum of bulk and edge Fermionic excitations, and the structure of the impurity potential. In the case of electronic heat transport, impurities induce an anomalous (zero-field) thermal Hall conductivity that is easily orders of magnitude larger than the quantized edge contribution. The effect originates from branch-conversion scattering of Bogoliubov quasiparticles by the chiral order parameter, induced by potential scattering. The former transfers angular momentum between the condensate and the excitations that transport heat. The anomalous thermal Hall conductivity is shown to depend on the structure of the electron-impurity potential, as well as the winding number, ν, of the chiral order parameter, $\Delta(p) = |\Delta(p)| e^{i\nu\phi}$. The results provide quantitative formulae for interpreting heat transport experiments seeking to identify broken T and P symmetries, as well as the topology of the order parameter for chiral superconductors.

ν-parame
The effects of impurity scattering on the chiral ground state, the appearance of a sub-gap quasiparticle spectrum, and the non-equilibrium response to a temperature gradient, are encoded in our theory via the impurity averaging technique, and the resulting quasiparticle-impurity t-matrix. The latter is a functional of the quasi-classical propagator and self-energies, all of which are calculated self-consistently, including the impurity-scattering vertex corrections. To highlight the effects of chirality on heat transport, we focus on fully gapped 2D chiral superconducting ground states defined on a cylinderically symmetric Fermi surface, $\Delta_{\mathbf{p}} = \Delta \epsilon \gamma_{\mathbf{p}}$, where $\epsilon_\mathbf{p}$ is the azimuthal angle of relative momentum, \mathbf{p}, of the Cooper pair and γ is the winding number of the order parameter around the Fermi surface. The mean-field Hamiltonian for excitations in a chiral ground state takes the form

$$\hat{H} = \xi_{\mathbf{p}} \tau_3 + \Delta (\tau_1 \cos \epsilon_\mathbf{p} + \tau_2 \sin \epsilon_\mathbf{p}),$$

where $\xi_{\mathbf{p}}$ is the normal-state dispersion and τ_1, τ_2, τ_3 denote the Pauli matrices in particle-hole space. The spectra of quasiparticles and Cooper pairs are also encoded in the equilibrium retarded (R) and advanced (A) propagators,

$$\Sigma_{\mathbf{eq}}^{RA}(\mathbf{p}; \epsilon) = -\pi \frac{g^{RA}(\epsilon_\mathbf{p}) \gamma_{\mathbf{p}} + i \gamma_{\mathbf{p}}(\epsilon_\mathbf{p})}{(\Delta^{RA})^2 - (\epsilon^{RA})^2},$$

which define the corresponding quasiparticle and Cooper pair propagators, g^{RA} and γ^{RA}, as $g^{RA} = -\pi (\epsilon^{RA}(\epsilon_\mathbf{p}) \tau_3 + \gamma^{RA}(\epsilon_\mathbf{p}) \gamma_{\mathbf{p}}(\epsilon_\mathbf{p})) / (\Delta^{RA})^2 - (\epsilon^{RA})^2$.

The structure of the impurity self energy in Nambu space takes the form

$$\Sigma_{imp}^{RA}(\mathbf{p}; \epsilon) \propto \gamma^{RA}(\epsilon_\mathbf{p}) \tau_3 + \Delta^{RA}(\epsilon_\mathbf{p}) \gamma_{\mathbf{p}}(\epsilon_\mathbf{p}),$$

where the integration is over the pairing bandwidth, $(-\epsilon_\mathbf{p} + \epsilon_\mathbf{p})$, and γ is the strength of the pairing interaction, $V(\mathbf{p}, \mathbf{p'}) = 2V \cos[\sqrt{2} \epsilon_{\mathbf{p'}} - \phi_\mathbf{p}]$ for the v^h irreducible representation of $SO(2)$ symmetry of the Fermi surface.

For a homogeneous, random distribution of impurities the self-energy, $\tilde{\Sigma}_{imp}(\mathbf{p}; \epsilon) = n_{imp} \gamma^{RA}(\mathbf{p}; \epsilon)$, is proportional to the mean impurity density, n_{imp}, and the forward-scattering limit of the the single-impurity t-matrix, the latter of which satisfies,

$$\tilde{t}(\mathbf{p}', \mathbf{p}) = \tilde{t}_N(\mathbf{p}', \mathbf{p}) + N_f \int_0^{2\pi} d\phi \int_{-\infty}^{+\infty} \frac{d\epsilon}{2\pi} \left[g^{RA}(\epsilon) - g_N^{RA} \right] \tilde{t}(\mathbf{p}', \mathbf{p}).$$

We omit the superscripts unless needed, N_f denotes the single-spin normal-state density of states at the Fermi energy and $g_N^{RA} = \pm \pi \tau_3$ is the normal-state propagator. The normal-state t-matrix is parametrized in terms of quasiparticle-impurity scattering phase shifts, δ_{im}, for each angular momentum channel, m,

$$\tilde{t}_N(\mathbf{p}', \mathbf{p}) = -\frac{1}{\pi N_f} \sum_{m=0}^{+\infty} \epsilon^{im}(\epsilon_\mathbf{p'} - \epsilon_\mathbf{p}) \cos \delta_{im} + g_N^{RA} / \pi.$$

For the equilibrium propagator (Eq. 2), we obtain the t-matrix from (4) and the corresponding impurity self-energy terms,

$$\Sigma(\epsilon) = \sum_m \delta_{im} g(\epsilon) \sin^2 \delta_{im},$$

$$\Lambda(\epsilon) = \sum_m \delta_{im} f(\epsilon) \sin \delta_{im} \cos(\delta_{im} - \delta_{im+m}) \sin \delta_{im+m},$$

$$D(\epsilon) = \sum_m \delta_{im} f(\epsilon) \sin \delta_{im} \sin(\delta_{im} - \delta_{im+m}) \cos \delta_{im+m},$$

$$\delta_{im} = -\frac{n_{imp}}{\pi N_f} A^2 \cos^2(\delta_{im} - \delta_{im+m}) - \epsilon^2.$$

For a single impurity, multiple scattering results in sub-gap quasiparticle bound states, $\epsilon_{m,\nu} = \pm |\Delta| \cos(\delta_{im} - \delta_{im+m})$, which appear as isolated poles of the t-matrix amplitude $\delta_{im}(\epsilon)$. These states broaden into sub-gap bands for finite impurity density. The off-diagonal self-energy, Λ, is generated by Andreev scattering, a branch-conversion scattering process in which a particle turns into a hole, or vice versa.

The angular momentum associated with each partial wave of the incoming and outgoing states must differ by an integer equal to the Cooper pair angular momentum quantum number ν, i.e., both δ_{im} and δ_{im+m} must be finite for a given value of m. Thus, point-like impurities, which scatter only in the s-wave channel, do not generate branch-conversion processes in chiral superconductors, and so do not couple to Cooper pair angular momentum.

Heat current in response to an imposed temperature gradient is obtained from the non-equilibrium response of the Keldysh propagator, δg^{RA},

$$j(\epsilon) = N_f \int_0^{2\pi} d\phi \int_{-\infty}^{+\infty} \frac{d\epsilon}{4\pi} \epsilon f(\epsilon) \text{Tr} \left\{ \delta g^{RA}(\mathbf{p}; \epsilon) \right\},$$

where the integration is over the pairing bandwidth, $(-\epsilon_\mathbf{p} + \epsilon_\mathbf{p})$, and V is the strength of the pairing interaction, $V(\mathbf{p}, \mathbf{p'}) = 2V \cos[\sqrt{2} \epsilon_{\mathbf{p'}} - \phi_\mathbf{p}]$ for the v^h irreducible representation of $SO(2)$ symmetry of the Fermi surface.
where $v_{\text{F}} = v_{\text{F}} \hat{p}$ is the Fermi velocity. It is convenient to introduce the anomalous propagator, \tilde{g}^a, and anomalous self-energy, $\delta \tilde{g}^a$, defined in terms of the corresponding Keldysh (K), retarded (R) and advanced (A) functions, $\tilde{g}_{\alpha} = \tilde{g}^{\alpha K} - \tanh \frac{\pi}{2} (\tilde{g}^{\alpha R} - \tilde{g}^{\alpha A})$, where $\tilde{c} \in \{\hat{c}, \hat{\sigma}\}$. The first-order corrections to the retarded and advanced propagators and self-energies vanish to linear order in $v_{\text{F}} \cdot \nabla \phi$ (cf. Ref. 33). Thus, the linear response contribution to the anomalous propagator reduces to Keldysh propagator,

$$\delta \tilde{g}^a = \frac{C^a_{\text{eq}}}{\left(C^a_{\text{eq}} \right)^2 + (D^a)^2} \left[\left(g_{\text{eq}}^{\alpha} - g_{\text{eq}}^{\beta} \right) i \hbar v_{\text{F}} \cdot \nabla \phi \right] + \left(g_{\text{eq}}^{\alpha} \tilde{\Omega}^a - g_{\text{eq}}^{\beta} \tilde{\Omega}^a \right),$$

where $\nabla \phi = \nabla \tanh[\pi/2T(r)]$ is the gradient of the local equilibrium distribution function, $C_{\text{eq}} = 2 \Re \sqrt{\Delta^2 - E^2}$ and

$$D^a = 2 \Im D(\pi + i0^+).$$

The non-equilibrium response of the self-energy is obtained from the anomalous t-matrix, which in linear response reduces to

$$\delta \tilde{\Sigma}^a(\hat{p}) = -n_{\text{imp}} N_{f} \int_0^{2\pi} \frac{2\pi d\theta}{2\pi} \left(\tilde{g}_{\text{eq}}^{\alpha}(\hat{p}) \delta \tilde{g}^a(\hat{p}') \tilde{\Sigma}^a(\hat{p}', \hat{p}) \right).$$

These are the “vertex corrections” in diagrammatic quantum field theories. They describe the dynamical screening of perturbations by long-wavelength collective excitations. This self energy correction is central to anomalous Hall transport. In its absence the diagonal terms of the Keldysh propagator have the same angular dependence as the perturbation (cf. Eq. 11), and thus generate a heat current along the temperature gradient and no Hall response.

Impurity Scattering Model — To quantify the effects of finite-size impurities, we consider hard-disc scattering characterized by the scattering phase shifts, $\delta_{\text{imp}} = J_{\text{imp}}(k_f R)/N_{\text{imp}}(k_f R)$, where R is the hard-disc radius, and $J_{\text{imp}}(z)$ and $N_{\text{imp}}(z)$ are Bessel functions of the first (second) kind. Non-magnetic impurities in chiral superconductors are pair-breaking. The critical temperature, T_c, is suppressed, $\ln T_c = T_c / \Psi \left(\frac{1}{2} \right)$, where $\Psi(x)$ is the digamma function and T_{c0} and $\zeta_{\text{imp}} = h v_f / 2 \pi T_{\text{c0}}$ are the critical temperature and coherence length in the clean limit. The pair-breaking cross section is given by $\sigma_{\text{pb}} = (2 / k_f) \sum_{m_{\text{imp}}} \sin^2(\delta_{m_{\text{imp}}} - \delta_{m_{\text{imp}}} + \Delta)$, for a chiral order parameter with a winding number v. The pair-breaking cross-section vanishes for s-wave superconductors (v = 0), yielding $T_c = T_{\text{c0}}$ as expected. In Fig. 1(a) the pair-breaking cross section is shown to differ substantially from the total cross section, $\sigma_{\text{tot}} = (4 / k_f) \sum_{m_{\text{imp}}} \sin^2 \delta_m$, except in the limit $k_f R \ll 1$. In Fig. 1(b) the dependence of T_c on both the impurity radius and the winding number are highlighted for several impurity densities.

Density of States — The quasiparticle density of states, $N(\varepsilon) = N_{\text{imp}} \text{Im} \text{K}(\varepsilon + i0^+)$, also depends on the chiral winding number. Figure 2 shows sub-gap bound states, broadened into bands by the finite impurity density. These states are formed via multiple Andreev scattering by the chiral order parameter, induced by potential scattering. The number of the sub-gap bands, and their bandwidths, depend not only on the structure of the impurity potential, e.g. the hard-disc radius, but also on the chiral winding number. This fact has important implications for thermal transport in the limit $T \ll \Delta$. Impurities enhance the thermal conductivity of the superconducting state at low temperatures through the formation of sub-gap states that transport heat. A sub-gap “metallic” density of states at the Fermi energy, $N(0) \neq 0$, results in $\kappa_{\text{xx}} \approx T$. Figure 3 shows the temperature dependence of κ_{xx}. The low-temperature metallic behavior is always present for $v = 2$, whereas for $v = 1$ it occurs only at sufficiently high impurity densities.

The normal-state thermal conductivity, $\kappa_N = (\pi^2 / 3) N_f (v_f T) L_{\text{N}}$, is limited by the transport mean free path, $L_{\text{N}} = 1/(\sigma_{\text{N}} n_{\text{imp}})$, where the transport cross
section is defined by $\sigma_m = (2/k_f) \sum_{\nu} \sin^2(\delta_{m\nu} - \delta_{m\nu + 1})$. In the superconducting state, axial symmetry is broken by the chiral order parameter. The corresponding thermal conductivity tensor, κ_{ij}, acquires off-diagonal terms. $\kappa_{xx} = -\kappa_{yy}$, in addition to the diagonal components $\kappa_{xx} = \kappa_{yy}$. Thus, there is a transverse (Hall) component of heat current. The longitudinal and transverse conductivities, κ_{xx} and κ_{yy}, are obtained by computing the heat current induced by a temperature gradient using Eqs. 10-12.

Figure 4 shows the effects of finite-size impurities on heat transport. While the longitudinal conductivity, κ_{xx}, is only weakly affected by impurity size or winding number (except at ultra-low temperatures), the thermal Hall conductivity, κ_{xy}, depends strongly on both $k_f R$ and ν. For impurities that are smaller than the inverse Fermi wavelength, $k_f R < 1$, quasiparticle scattering is predominantly in the s-wave channel. The resulting thermal Hall conductivity is strongly suppressed for winding number $\nu = 2$, but remains finite in the limit $k_f R \rightarrow 0$ for $\nu = 1$. The numerical results agree with our previous observation that the ATHE vanishes in the limit of point-like impurities for chiral superconductors with $|\nu| \geq 2$. For impurities with $k_f R > 1$, the Hall conductivity is substantially larger for chiral superconductors with $\nu = 2$, compared to $\nu = 1$. Also note that the Hall conductivity is sensitive to the impurity potential, in this case exhibiting nonmonotonic dependence on the impurity size.

3D Chiral Superconductors – The results for 2D chiral states easily generalize to chiral states defined on closed 3D Fermi surfaces with line and point nodes. This includes the ATHEs in 3D candidates for chiral superconductors, including Sr$_2$RuO$_4$ and UPt$_3$. Figure 5 shows the thermal Hall conductivity for chiral superconductors belonging to the spin-triplet, odd-parity E_{1u} and E_{2u} representations, and the spin-singlet, even-parity E_{1g} and E_{2g} representations of the hexagonal D_{6h} point group, and E_0 and E_1 representations of D_{4h}. These representations cover nearly all of the proposed candidates for chiral superconductors. Note that the impurity-induced thermal Hall conductivity (solid lines) typically dominates the edge contribution (dashed lines) in all chiral pairing states with finite-size impurities. Also, note the sensitivity of κ_{xy} to $k_f R$ particularly for winding number $|\nu| = 1$, as well as the order of magnitude difference in κ_{xy} for chiral E_{1u} versus E_{1g}.

Bulk vs. Edge – The impurity-induced ATHE typically dominates the edge contribution for a 2D chiral p-wave superconductor by an order of magnitude or more depending on the impurity density and material parameters. For $k_f \xi_0 = 100$, $L_x/\xi_0 = 7.5$ and $k_f R = 0.5$, we have $\kappa_{xy}^{\text{edge}} \approx 100\kappa_{xy}^{\text{imp}}$ at $T = 0.8T_c$ (maximum in κ_{xy}, see Fig. 4). Here $\kappa_{xy}^{\text{edge}}$ is computed from Eq. (25) in Ref. 39. However for sufficiently clean 2D chiral p-wave superconductors the edge contribution, given by the quantized value, $\kappa_{xy}^{\text{imp}}/T = \pi k_B^2 / (6h)$, can dominate the impurity contribution at very low temperatures. In the case of the latter, $\kappa_{xy}^{\text{imp}}/T$ vanishes due to the absence of sub-gap states at $\nu = 0$. Thus, below a threshold impurity density, the dominant contribution to the ATHE for the fully gapped chiral p-wave case at $T \ll \Delta$ comes from the response of the chiral edge Fermions.

Conclusions – Branch-conversion (Andreev) scattering by the chiral order parameter is the key mechanism responsible for skew scattering, and thus the thermal Hall conductivity, in chiral superconductors. For finite size impurities Andreev scattering is activated for any winding number, e.g. $\nu = 1$ (p-wave) or $\nu = 2$ (d-wave). The impurity-induced thermal Hall conductivity is easily orders of magnitude larger than that due to edge states. In summary, our work provides quantitative formulae for interpreting heat transport experiments seeking to identify broken T and P symmetries, as well as the topology of the order parameter for chiral superconductors.

Acknowledgements – The research of JAS was sup-
The research of VN was supported through the Center for Applied Physics and Superconducting Technologies. We thank Pallab Goswami for discussions.

From semi-metal to topological insulator, JETP Lett. 91, 55 (2010)

T. Mizushima, Y. Tsutsumi, T. Kawakami, M. Sato, M. Ichioka, and K. Machida, Symmetry Protected Topological Superfluids and Superconductors - From the Basics to 3He, J. Phys. Soc. Jpn. 85, 022001 (2016)

N. Read and D. Green, Paired states of Fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61, 10267 (2000)

K. Nomura, S. Ryu, A. Furusaki, and N. Nagaosa, Cross-Correlated Responses of Topological Superconductors and Superfluids, Phys. Rev. Lett. 108, 026802 (2012)

H. Sumiyoshi and S. Fujimoto, Quantum Thermal Hall Effect in a Time-Reversal-Symmetry-Broken Topological Superconductor in Two Dimensions: Approach from Bulk Calculations, J. Phys. Soc. Japan 82, 023602 (2013)

P. Goswami and A. H. Nevidomskyy, Double Berry monopoles and topological surface states in the superconducting B-phase of UPt3, arXiv: 1403.0924, 1 (2014)

B. Arfi, H. Bahlouli, C. J. Petrick, and D. Pines, Unusual Transport Effects in Anisotropic Superconductors, Phys. Rev. Lett. 60, 2206 (1988)

Li, Songci and Andreiev, A. V. and Spiwak, B. Z., Anomalous transport phenomena in p_x + i p_y superconductors, Phys. Rev. B 92, 100506 (2015)

S. Yip, Low temperature thermal hall conductivity of a nodal chiral superconductor, Superconductor Science and Technology 29, 085006 (2016)

G. Eilenberger, Transformation of Gorkov’s Equation for Type II Superconductors into Transport-Like Equations, Zeit. f. Physik 214, 195 (1968)

A. Larkin and Y. Ovchinnikov, Nonlinear conductivity of superconductors in the mixed state, Sov. Phys. JETP 41, 960 (1976)

V. N gapruetkom and J. A. Sauls, Anomalous Thermal Hall Effects in Chiral Superconductors, arXiv:1911.06299, 1 (2019)

We assume the normal state has P and T symmetry, and consider spin-singlet states, \[\hat{\Delta}(\hat{p}) = (i\mathbf{\sigma}_x, \hat{\Delta}(\hat{p})) \] and “unitary” spin-triplet states of the form, \[\hat{\Delta}(\hat{p}) = (i\mathbf{\sigma}_x, \hat{\Delta}(\hat{p})) \] where \(\hat{\Delta}(\hat{p}) \) has even (odd) parity for singlet (triplet) pairing.

We removed the spin matrices by a unitary transformation. See Ref. [28]

The unit Nambu matrix self-energy \(\hat{P}^{A}(\epsilon) \) drops out of the equilibrium propagator but contributes to the a.c. linear response of the superconductor.

M. J. Graf, S.-K. Yip, J. A. Sauls, and D. Rainer, Electronic Thermal Conductivity and the Wiedemann-Franz Law for Unconventional Superconductors, Phys. Rev. B 53, 15147 (1996)

D. Rainer and J. A. Sauls, Strong-Coupling Theory of Superconductivity, in Superconductivity: From Basic Physics to New Developments (World Scientific, Singapore, 1994) Chap. 2, pp. 45–78, arXiv:https://arxiv.org/abs/1809.05264.

I. R. Lapidus, Scattering by twodimensional circular barrier, hard circle, and delta function ring potentials, Am. J. Phys. 54, 459 (1986)

A. I. Larkin and Y. N. Ovchinnikov, Vector Paring in Superconductors in Small Dimensions, Sov. Phys. JETP 2, 130
(1965).

E. V. Thuneberg, S.-K. Yip, M. Fogelström, and J. A. Sauls, "Scattering Models for Superfluid 3He in Aerogel," Phys. Rev. Lett. 80, 2861 (1998) [Original Version: cond-mat/9601148v2].

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).

P. W. Anderson, "Theory of Dirty Superconductors," J. Phys. Chem. Sol. 11, 26 (1959).

T. Qin, Q. Niu, and J. Shi, "Energy Magnetization and the Thermal Hall Effect," Phys. Rev. Lett. 107, 236601 (2011).

P. Goswami and A. H. Nevidomskyy, "Topological Weyl superconductor to diffusive thermal Hall metal crossover in the B phase of UPt_3," Phys. Rev. B 92, 214504 (2015).

M. Hirschberger, R. Chisnell, Y. S. Lee, and N. P. Ong, "Thermal Hall Effect of Spin Excitations in a Kagome Magnet," Phys. Rev. Lett. 115, 106603 (2015).

T. Senthil, J. B. Marston, and M. P. A. Fisher, "Spin quantum Hall effect in unconventional superconductors," Phys. Rev. B 60, 4245 (1999).