Novel S-adenosyl-l-methionine decarboxylase inhibitors as potent antiproliferative agents against intraerythrocytic *Plasmodium falciparum* parasites

Dina le Roux^a, Pieter B. Burger^b, Jandeli Niemand^a, Anne Grobler^b, Patricia Urbán^c,d,e, Xavier Fernández-Busquets^c,d,e, Robert H. Barker^1, Adelfa E. Serrano^g, Abraham I. Louw^a, Lyn-Marie Birkholtz^a,⇑

^a Department of Biochemistry, Centre for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
^b DST/NRF Preclinical Drug Development Platform, North-West University, Potchefstroom 2531, South Africa
^c Nanobiotechnology Group, Institute for Bioengineering of Catalonia, Barcelona 08028, Spain
^d Biomedical Interactions Team, Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, Barcelona E08028, Spain
^e Genzyme Corporation, 153 Second Avenue, Waltham, MA 02451, USA
^f University of Puerto Rico-School of Medicine, Department of Microbiology and Medical Zoology, P.O. Box 365067, San Juan PR 00936-5067, Puerto Rico
^g University of the Witwatersrand, DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom 2531, South Africa

Abstract

S-adenosyl-l-methionine decarboxylase (AdoMetDC) in the polyamine biosynthesis pathway has been identified as a suitable drug target in *Plasmodium falciparum* parasites, which causes the most lethal form of malaria. Derivatives of an irreversible inhibitor of this enzyme, 5-[([Z]-4-amino-2-butenyl)methylamino]-5'-deoxyadenosine (MDL73811), have been developed with improved pharmacokinetic profiles and activity against related parasites, *Trypanosoma brucei*. Here, these derivatives were assayed for inhibition of AdoMetDC from *P. falciparum* parasites and the methylated derivative, 8-methyl-5-[([Z]-4-amino-2-butenyl-2-enyl)methylamino]-5'-deoxyadenosine (Genz-644131) was shown to be the most active. The in vitro efficacy of Genz-644131 was markedly increased by nanoencapsulation in immunoliposomes, which specifically targeted intraerythrocytic *P. falciparum* parasites.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Polyamines (putrescine, spermidine and spermine) are critical components of cell growth and division, particularly in rapidly proliferating cells that include cancerous cells and numerous parasites (Casero and Marton, 2007; Heby et al., 2007). A number of enzymes in the biosynthesis of polyamines have been validated as suitable drug targets including ornithine decarboxylase (ODC) (Pegg, 2006) and S-adenosyl-l-methionine decarboxylase (AdoMetDC) (Pegg, 2009) as the two major enzymatic activities. Protozoan infections resulting in human parasitic diseases such as African sleeping sickness (caused by subspecies of *Trypanosoma brucei*), Chagas disease (*Trypanosoma cruzi*), leishmaniasis (*Leishmania* spp) and malaria (*Plasmodium* spp) are highly reliant on substantial amounts of polyamines for development and proliferation (Heby et al., 2003; Birkholtz et al., 2011). Of these diseases, malaria has a high disease incidence in most tropical regions of the world, with *Plasmodium falciparum* parasites being the most lethal.

AdoMetDC catalyses a checkpoint reaction to produce decarboxylated S-adenosyl-l-methionine (dcAdoMet) that is exclusively used for polyamine biosynthesis. The irreversible AdoMetDC inhibitor, 5'-[([Z]-4-amino-2-butenyl)methylamino]-5'-deoxyadenosine (MDL73811), is 100-fold more effective than the ODC inhibitor, DL-α-difluoromethylornithine (DFMO), in curing murine *T. b. brucei* and *T. b. rhodesiense* infections. Treatment of *T. brucei* parasites...
with MDL73811 causes an intracellular hypermethylated state due to accumulation of S-adenosyl-\(\text{L}\)-methionine (Byers et al., 1991) in addition to the detrimental depletion of trypanothione (the principal polyamine-dependent thiol in trypanosomes) (Yarlett et al., 1991; Willert and Phillips, 2008). AdoMetDC is considered an attractive drug target in \(P.\ falciparum\) parasites due to its unique association with ODC in a heterotetrameric bifunctional protein complex, PfAdoMetDC/ODC (van Brummelen et al., 2008; Birkholtz et al., 2011; Williams et al., 2011). MDL73811 inhibits \textit{in vitro} intraerythrocytic \(P.\ falciparum\) parasite proliferation (Wright et al., 1991; Das Gupta et al., 2005), however, this does not result in a hypermethylated state but only depletes intracellular polyamine levels, leading to cellular cytostasis (Wallace et al., 2003; van Brummelen et al., 2008; Birkholtz et al., 2011).

MDL73811, however, is not clinically useful against parasitic infectious due to poor blood brain barrier penetration, a short plasma half-life, poor oral bioavailability and limited metabolic activity (Wright et al., 1991; Das Gupta et al., 2005; Barker et al., 2009). Structure-guided design of MDL73811 derivatives, modified on the ribose and purine moieties through addition of halogens and methyl groups, resulted in a series of compounds with improved ADME toxicity profiles. These included improved aqueous solubility, decreased rates of hepatocyte and microsome clearance, minimal CYP inhibition and half the plasma protein binding capacity compared to MDL73811 (Bacchi et al., 2009; Barker et al., 2009; Hirth et al., 2009). Methylation of position 8 of the adenine group resulting in \(8\)-methyl-\(5\)-\(\text{[(Z)}\)-4-amino-2-butenyl\]-methylaminol-\(5\)-deoxyadenosine (Genz-644131) displayed an increased inhibitory potency against heterologous \(Tb\)AdoMetDC. This compound showed improved cellular toxicity against different \(T.\ brucei\) parasite strains, with a longer plasma half-life and improved blood brain barrier penetration in vivo mice (Bacchi et al., 2009; Barker et al., 2009). Here, the MDL73811 derivatives were assessed for inhibitory activity against heterologous PfAdoMetDC as well as for inhibition of intraerythrocytic \(P.\ falciparum\) parasite proliferation \textit{in vitro}.

2. Methods and materials

2.1. MDL73811 and derivatives

MDL73811 (\(5\)-\(\text{[(Z)}\)-4-amino-2-butenyl\]-methylaminol-\(5\)-deoxyadenosine), Genz-644131 (\(8\)-methyl-\(5\)-\(\text{[(Z)}\)-4-amino-2-butenyl\]-methylaminol-\(5\)-deoxyadenosine), Genz-644043 (2-\(\text{fluoro-}5\)-\(\text{[(Z)}\)-4-amino-2-butenyl\]-methylaminol-\(5\)-deoxyadenosine), and Genz-644053 (2-\(\text{chloro-}5\)-\(\text{[(Z)}\)-4-amino-2-butenyl\]-methylaminol-\(5\)-deoxyadenosine) (Table 1) were synthesised by the Genzyme Corporation (www.genzyme.com, 2013; Hirth et al., 2009).

2.2. Recombinant PfAdoMetDC enzyme inhibition assays

The monofunctional form of PfAdoMetDC (harmonised gene construct) as well as bifunctional PfAdoMetDC/ODC were heterologously expressed in \textit{Escherichia coli} BL21 StarTM (DE3) cells and purified via Strep-tag affinity chromatography as previously described (Birkholtz et al., 2004; Williams et al., 2011). To determine the enzyme inhibition activity of the MDL73811 derivatives, an isotope-based bioassay that measures the release of radiolabeled \(\text{CO}_2\) (Birkholtz et al., 2004; Williams et al., 2011) was performed with \(5\) \(\mu\)M of either monofunctional PfAdoMetDC or bifunctional PfAdoMetDC/ODC in the presence of \(1\) \(\mu\)M of each derivative. Results were normalised to the specific activity (nmol/min/mg) of an uninhibited control to determine \% inhibition.

2.3. Determination of the inhibition constant of Genz-644131 against PfAdoMetDC

The apparent inhibition constant (\(K_{\text{app}}\)) of Genz-644131 was determined with Kitz and Wilson time dependent enzyme kinetics for irreversible inhibitors as described (Kitz and Wilson, 1962). Using the isotope-based bioassay described above, residual enzyme activity was measured following pre-incubation (37 \(\degree\)C) at fixed time intervals (2, 4 and 6 min) with varying inhibitor concentrations (0.02, 0.05 and 0.1 \(\mu\)M) and 1 \(\mu\)g of either monofunctional PfAdoMetDC or bifunctional PfAdoMetDC/ODC, each in duplicate. The reciprocal of the slope in the primary graph (\(K_{\text{app}}\)) was plotted against the reciprocal of the inhibitor concentrations to yield the secondary plot, from which the \(K_{\text{inact}}\) and the \(K_{\text{app}}\) values were derived.

2.4. Homology modelling and conformational analysis

\(P.\ falciparum\) and \(T.\ brucei\) homology models were generated using the human AdoMetDC crystal structure (PDBid 3DZ2) as template similar to a previously described model (Wells et al., 2006). Molecular shape-based alignment between MDL73811 derivatives and the homology model was performed with vROCS (v3.1.0 OpenEyeScientific Software, Inc., Santa Fe, NM, USA, www.eyesopen.com, 2010) (Supplemental data; Fig. S1 and Table S1). Conformational analysis was performed using Conformation Search and the Minimisation module of Discovery Studio 3.0 suite (Accelrys, Inc.). Detailed methods for homology modelling, molecular shape based alignment and conformational analysis are provided in Supplemental data, S1.

2.5. In vitro cultivation of intraerythrocytic \(P.\ falciparum\) parasites and IC\textsubscript{50} determination of MDL73811 derivatives

Intraerythrocytic \(P.\ falciparum\) parasites (strain 3D7; chloroquine sensitive) were maintained in \(P.\ falciparum\) culture media as described (Verlinden et al., 2011). Intraerythrocytic parasites were synchronised to a 95\% ring stage population with a 5\% sorbitol solution. The effect of MDL73811 derivatives on the proliferation of intraerythrocytic \(P.\ falciparum\) parasites at 37 \(\degree\)C for 96 h was determined using a SYBR Green I-based fluorescence assay as described (Verlinden et al., 2011). MDL73811 and Genz-644131 were dissolved in 1xPBS and Genz-644043 and Genz-644053 in DMSO and incubated with ring stage intraerythrocytic \(P.\ falciparum\) parasites (1\% parasitaemia, 1\% haematocrit) at specific concentrations, serially diluted 2-fold in culture medium (final 0.1\% \((v/v)\) non-lethal DMSO concentration (Grobusch et al., 1998). Sigmaoidal dose–response curves were fitted to the data using SigmaPlot 11.0 with non-linear regression yielding the IC\textsubscript{50} values (concentration at which 50\% inhibition of parasite proliferation was observed).

2.6. Determining parasite recovery following Genz-644131 inhibition

The ability of the products of polyamine metabolism to rescue parasites from the inhibitory effect of Genz-644131 was determined. Ring stage intraerythrocytic \(P.\ falciparum\) parasites (1\% parasitaemia, 1\% haematocrit) were treated with Genz-644131 (2xIC\textsubscript{50} in the presence of exogenous spermidine trichloride (non-toxic concentration, 250 \(\mu\)M, results not shown) and 500 \(\mu\)M of the polyamine oxidase inhibitor, aminoguanidine (Niemand et al., 2013), for 96 h at 37 \(\degree\)C and parasite proliferation determined with a SYBR Green I-based assay (Stjernborg and Persson, 1993; Lee and Sayre, 1998). Subsequently, to determine the ability of ring stage intraerythrocytic \(P.\ falciparum\) parasites (1\% parasitaemia, 1\% haematocrit) to recover after Genz-644131 treatment, the latter was withdrawn...
Conformational search analysis of MDL73811 and its derivatives.

Conformation	Lowest overall energy conformation	Lowest syn energy conformation	Number of conformations generated	Bioactive syn conformational number
MDL73811	-131.6	-124.0	200	22
Genz-6441318-methyl-5’-(((Z)-4-amino-2-butenyl)methylamino)-5’-deoxyadenosine	-132.9	-130.7	207	7
Genz-644032-fluoro-5’-(((Z)-4-amino-2-butenyl)methylamino)-5’-deoxyadenosine	-131.0	-117.8	193	106
Genz-6440532-chloro-5’-(((Z)-4-amino-2-butenyl)methylamino)-5’-deoxyadenosine	-136.0	-127.8	209	64

* All energies are given in kcal/mol.

† Generated conformations were ranked from the lowest to highest energy i.e. the bioactive syn conformation of Genz-644131 was ranked the 7th lowest energy conformation from 207 conformations generated.

2.7. Spermidine uptake in intraerythrocytic P. falciparum parasites

Intraerythrocytic P. falciparum parasites were purified to ≥ 95% parasitaemia with magnetic separation (Trang et al., 2004; Teng et al., 2009). [3H]Spermidine uptake was initiated by combining equal volumes of cell suspension and radiolabelled solution (1 μCi/ml [3H]Spermidine at 5 nm extracellular concentration, PerkinElmer, in 125 mM NaCl, 5 mM KCl, 20 mM glucose, 25 mM HEPES and 1 mM MgCl₂, pH 7.1). At predetermined time intervals following incubation at 37 °C, the reactions were terminated by dibutyl phthalate sedimentation. A 10 μl sample of the aqueous phase was transferred to a scintillation vial to determine the extracellular concentration of [3H]Spermidine. The remaining cell pellet was lysed with 0.1% (v/v) Triton X-100, the proteins precipitated with 5% w/v trichloroacetic acid and cell debris (including membrane fractions) removed with centrifugation before measuring the radioactivity present in the aqueous supernatant. The rapid initial association of radiolabel with the cells, due to polyanines trapped in the extracellular space as well as adhering to the cell surface was determined and subtracted from the total measured radioactivity (cpm’s) to determine the intracellular concentration of polyanines. The data are given as a distribution ratio of intracellular to extracellular spermidine (Saliba et al., 1998).

2.8. Comparative IC₅₀ determination of Genz-644131 incorporated with Pheroïd® technology

A micellular formulation of a nanoparticle structure, Pheroïd®, consisting mainly of 43.8% plant and essential ethylated and PEGylated polyunsaturated fatty acids, was prepared in incomplete RPMI 1640 medium as described (Grobler et al., 2008; Steyn et al., 2011). The suspension was subsequently filtered (0.22 μm), diluted 50 x with sterile water and homogenised with Genz-644131 powder to yield an encapsulated suspension with a final compound concentration of 23.75 mM. The encapsulation efficiency of Pheroïd® was analysed with confocal laser scanning microscopy (Grobler et al., 2007). Subsequently, ring stage intraerythrocytic P. falciparum parasites (1% parasitaemia, 1% haematocrit) were treated with Genz-644131 encapsulated Pheroïd® at a 20-fold dilution (24 μM initial starting concentration) and incubated for 96 h at 37 °C. Parasite proliferation of cell suspensions treated with Genz-644131 encapsulated into Pheroïd® was determined, and normalised against non Genz-644131 encapsulating Pheroïd® in order to derive the IC₅₀ value using a SYBR Green I-based assay.

2.9. Comparative IC₅₀ determination of Genz-644131 with immunoliposomes

Immunoliposomes were prepared by the lipid film hydration method (MacDonald et al., 1991) and covalently functionalised with IgG antibody fragments prepared specifically for intraerythrocytic P. falciparum parasites (Urbán et al., 2011a). For encapsulation of Genz-644131, 1.74 mg of the compound was incorporated into a 1.5 ml immunoliposome suspension to give a final concentration of encapsulated Genz-644131 at 30 μM (10% encapsulation efficiency). Ring stage intraerythrocytic P. falciparum parasites (1% parasitaemia, 1% haematocrit) were treated with Genz-644131 encapsulated immunoliposomes at a 50-fold dilution (0.6 μM starting concentration) and incubated for 96 h at 37 °C. Parasite proliferation of cell suspensions treated with Genz-644131 encapsulated into immunoliposomes was determined as described above.

2.10. Statistical analyses

All data are representative of at least three independent biological experiments (n ≥ 3), each performed in triplicate. Statistical analysis was performed using either paired or unpaired Student’s
3. Results

3.1. Inhibitory effect of MDL73811 derivatives on heterologous monofunctional PfAdoMetDC and bifunctional PfAdoMetDC/ODC

MDL73811 and Genz-644131 showed the highest percentage inhibition of monofunctional PfAdoMetDC at 98% and 100%, respectively \((n = 3, P < 0.01, \text{paired Student's } t\text{-test})\) (Fig. 1). The inhibition of the PfAdoMetDC domain of heterologous bifunctional PfAdoMetDC/ODC was similar at 96% and 98%, respectively \((n = 3, P < 0.01, \text{paired Student's } t\text{-test})\) (Fig. 1). By contrast, Genz-644053 only inhibited monofunctional PfAdoMetDC by 57% \((n = 3, P = 0.14, \text{paired Student's } t\text{-test})\) whereas Genz-644053 had no inhibitory effect (Fig. 1).

The activity of PfAdoMetDC decreased in a concentration dependent manner following pre-incubation with Genz-644131 for both monofunctional and bifunctional forms of the protein (Fig. 2A and C). A non-significant increase in the \(K_{\text{app}}\) value of 0.36 ± 0.10 \(\mu\)M \((n = 3, P > 0.05, \text{unpaired Student's } t\text{-test})\) was determined for Genz-644131 on monofunctional PfAdoMetDC (Fig. 2B) compared to 0.22 ± 0.09 \(\mu\)M for MDL73811 (results not shown). However, there was a significant difference in the inhibition of bifunctional PfAdoMetDC/ODC by Genz-644131 (\(K_{\text{app}}\) at 0.18 ± 0.02 \(\mu\)M (Fig. 2D) compared to MDL73811 (0.53 ± 0.09 \(\mu\)M, results not shown) \((n = 3, P = 0.02, \text{unpaired Student's } t\text{-test})\).

The efficiency of inactivation (depicted by the \(k_{\text{inact}}/K_{\text{app}}\) ratio) of MDL73811 compared to Genz-644131 against monofunctional PfAdoMetDC was not significantly different at 1.91 and 1.17 \(\mu\)M \(^{-1}\) \(\cdot\) min\(^{-1}\), respectively. However, the inactivation efficiency for Genz-644131 against the PfAdoMetDC domain of bifunctional PfAdoMetDC/ODC is 1.6-fold higher \((k_{\text{inact}}/K_{\text{app}} = 3.50 \mu\text{M}^{-1}\text{min}^{-1})\) compared to MDL73811 \((k_{\text{inact}}/K_{\text{app}} = 2.19 \mu\text{M}^{-1}\text{min}^{-1})\). Moreover, there was a 3-fold increase in the inactivation efficiency of Genz-644131 against bifunctional PfAdoMetDC/ODC compared to monofunctional PfAdoMetDC \((k_{\text{inact}}/K_{\text{app}}\text{ ratios of } 3.50\text{ vs. } 1.17 \mu\text{M}^{-1}\text{min}^{-1})\), respectively. Genz-644131 seems to therefore be a more effective inhibitor of PfAdoMetDC compared to MDL73811, with marked preference for the protein when found in its native conformation in bifunctional PfAdoMetDC/ODC.

Due to the observed differences in the inhibition of MDL73811 and its derivatives against PfAdoMetDC, the binding capacity of these compounds to PfAdoMetDC was analysed in silico. Previously, it was shown that purine nucleoside AdoMetDC inhibitors adopt
unusual syn conformations and that modification of these inhibitors does not only affect protein ligand interactions but also alter conformational preferences (Tolbert et al., 2001) (Supplemental data S1). MDL73811 has an energy difference of 7.6 kcal/mol between the lowest energy conformation and its bioactive syn conformation (Table 1). However, the 8-methyl substitution on the purine rings of MDL73811, yielding Genz-644131, increases the conformational preference for the bioactive syn conformation of the latter (energy difference equal to 2.2 kcal/mol, Table 1). By contrast, the energy differences for both the halogen substituted Genz-644043 and Genz-644053 derivatives were higher, with the latter also showing a distorted N-(Z)-4-aminobutenyl-N-methyl tail conformation due to interference of the chlorine substitution at position 2 of the purine ring (Supplemental data S1).

The selected binding pose of Genz-644131 (Fig. 3A) shows similar interactions to other AdoMetDC substrate analogues (Fig. 3B) (McCloskey et al., 2009). Moreover, conformational search analysis of the N-(Z)-4-aminobutenyl-N-methyl tail of Genz-644131 showed that the lowest absolute energy of the Genz-644131 syn conformation is reached when the tail assumes the predicted binding conformation (-126.9 kcal/mol) (Fig. 3C). Notably, the 8-methyl substitution on the purine ring does not show any steric hindrance within the protein active site and therefore would not negatively affect ligand binding.

3.2. Genz-644131 is active against in vitro intraerythrocytic P. falciparum parasites

The IC$_{50}$ of the MDL73811 derivatives was determined on intraerythrocytic P. falciparum parasites (96 h incubation at $37 ^\circ C$). Treatment of intraerythrocytic P. falciparum parasites with Genz-644131 resulted in a significant, 2-fold decrease in the IC$_{50}$ compared to MDL73811 (IC$_{50} = 0.97 \pm 0.06 \mu M$ vs. $2.21 \pm 0.07 \mu M$, $n = 5$, $P < 0.01$, unpaired Student’s t-test). The IC$_{50}$ values of Genz-644043 and Genz-644053 against intraerythrocytic P. falciparum parasites were significantly higher (25.6 ± 8.4 and $22.4 \pm 7.5 \mu M$; $n = 4$, $P > 0.05$, unpaired Student’s t-test) than that of the parent compound, MDL73811.

The ability of exogenous polyamines to rescue the inhibitory effect of Genz-644131 on intraerythrocytic P. falciparum parasites was established by determining the IC$_{50}$ of Genz-644131 in the presence and absence of exogenous spermidine ($250 \mu M$). No significant change in the IC$_{50}$ value of Genz-644131 in the presence ($IC_{50} = 0.94 \pm 0.03 \mu M$) or absence ($IC_{50} = 0.97 \pm 0.06 \mu M$) of spermidine ($n = 3$, $P = 0.89$, paired Student’s t-test) was observed (Fig. 4A), indicating that spermidine could not antagonise the inhibitory effect of Genz-644131. However, P. falciparum infected erythrocytes are capable of taking up exogenous spermidine, with $[^3H]$spermidine reaching a distribution ratio of 1.4 ± 0.4 ($n = 6$) following 60 min incubation (Fig. 4B).

The recovery of intraerythrocytic P. falciparum parasites (1% parasitaemia, 1% haematocrit) after limited exposure to Genz-644131 ($2 \times IC_{50}$) for 24 h was determined after washing out the compound, followed by additional incubation of parasite cultures for a further 96 h before measuring DNA content as an indicator of parasite proliferation. There was a significant increase in DNA levels observed for untreated parasites over the two life-cycles analysed (Fig. 4C). Genz-644131 treated ring-stage intraerythrocytic P. falciparum parasites ($2 \times IC_{50}$) were able to recover after 24 h of drug pressure and continue to proliferate following drug removal (Fig. 4C). However, continuous exposure of intraerythrocytic P. falciparum parasites to Genz-644131 ($2 \times IC_{50}$) for 96 h resulted in a stage-specific inhibition of parasite proliferation, with parasites arrested in the trophozoite stage (~ 24 h post-invasion) within the first life-cycle (Fig. 4D).

3.3. Effect of Genz-644131 encapsulated in nanovecors on in vitro antiplasmodial activity

To improve membrane translocation of Genz-644131 and possibly the in vitro activity against intraerythrocytic P. falciparum parasites, Genz-644131 was encapsulated into two types of nanovecors, a submicron micellar emulsion formulation, Pherooid™ (Grobler et al., 2008), and a parasite targeting immunoliposome system (Urbán et al., 2011a). The compound encapsulated into Pherooid™ did not show a significant decrease in the in vitro IC$_{50}$ ($0.97 \pm 0.06 \mu M$ compared to $0.67 \pm 0.29 \mu M$; $n = 4$, $P > 0.05$, unpaired Student’s t-test).
Polyamine biosynthesis enzymes have been the target of various parasitic disease intervention strategies (Birkholtz et al., 2011) as highlighted by the clinical treatment of T. brucei infections through DFMO inhibition of ODC activity (Van Nieuwenhove et al., 1985). Of the other enzymatic activities associated with polyamine biosynthesis, inhibition of AdoMetDC shows promise as a therapeutic target in P. falciparum, with MDL73811 a 1000-fold more potent against intraerythrocytic P. falciparum parasites compared to DFMO (Wright et al., 1991). Although MDL73811 is an irreversible inhibitor of AdoMetDC activity, it has poor drug-like characteristics for Plasmodium (Wright et al., 1991) and Trypanosoma parasites (Barker et al., 2009), which led to the synthesis of pharmacokinetically amenable derivatives. These derivatives of MDL73811 were used here to determine (1) their efficacy in inhibiting the PfAdoMetDC protein and (2) their antiproliferative activity against intraerythrocytic P. falciparum parasites in vitro.

Several comparisons can be drawn between the treatment of P. falciparum and T. brucei parasites with the lead derivative, Genz-644131. Firstly, the AdoMetDC protein from both these parasites responds similarly to Genz-644131 treatment. PfAdoMetDC has a near conserved active site compared to AdoMetDC homologues from human and T. brucei parasites, despite an overall low sequence identity (21% and 23%, respectively (Wells et al., 2006)). As a result, MDL73811 inhibits AdoMetDC from both P. falciparum and T. brucei parasites at comparable levels and in a similar manner as indicated by their respective micromolar \(K_a \) values (Bitonti et al., 1990; Das Gupta et al., 2005; Williams et al., 2011). However, Genz-644131 potently inhibits monofunctional and bifunctional PfAdoMetDC similarly to TbAdoMetDC (Barker et al., 2009) with \(K_a \) values in the nanomolar range (Barker et al., 2009).

The 1.6-fold decrease in \(K_a \) between MDL73811 and Genz-644131 observed for the bifunctional PfAdoMetDC/ODC is explained by the 8-methyl substitution on the purine ring of Genz-644131, which promotes the preferred bioactive syn conformation (Pegg, 2009). However, Genz-644131 is \(\sim \)7-fold less effective in inhibiting monofunctional PfAdoMetDC compared to the T. brucei enzyme \((K_{inact}/K_a \text{ ratios of } 1.17 \text{ } \mu \text{M}^{-1} \text{min}^{-1} \text{ for PfAdoMetDC compared to } 7.78 \text{ } \mu \text{M}^{-1} \text{min}^{-1} \text{ for TbAdoMetDC (Barker et al., 2009)).} \text{ The association of PfAdoMetDC with ODC in the biologically relevant bifunctional protein PfAdoMetDC/ODC has been shown to result in the modulation of plasmoidal AdoMetDC activity (Birkholtz et al., 2011; Williams et al., 2011). Rate-limiting and equimolar synthesis of putrescine and dcAdoMet by the ODC and AdoMetDC enzymes is enabled by a decrease in AdoMetDC activity when associated in the bifunctional complex with ODC in comparison to its monofunctional PfAdoMetDC form, respectively (Williams et al., 2011). Here, although comparative inactivation efficiencies are seen for Genz-644131 for the monofunctional and bifunctional proteins, this inhibitor shows a \(\sim \)3-fold increase in specificity and rate of inhibition of the AdoMetDC domain of the bifunctional protein. This can be attributed to the lower substrate \(K_m \) of PfAdoMetDC in the bifunctional protein compared to the monofunctional protein, which probably reflects differences between active site conformations of these two proteins and consequently, their binding affinities for Genz-644131 (Williams et al., 2011). Interestingly, the simultaneous inhibition of both activities of the bifunctional PfAdoMetDC/ODC with Genz-644131 and DFMO is additive as was also shown for MDL73811 and DFMO on in vitro P. falciparum parasites (Wright et al., 1991; van Brummelen et al., 2008) (Supplemental data S2).

4. Discussion

compared to non-encapsulated encapulated immunoliposomes showed a significant 32-fold decrease in the in vitro IC\(_{50} \) compared to non-encapsulated unpaired Student’s t-test; Fig. 5A). By contrast, Genz-644131
In contrast to the marked improvement (>10-fold) in the \textit{in vitro} antiprofelerative efficacy of \textit{T. brucei} parasites treated with Genz-644131 compared to MDL73811 (Barker et al., 2009), Genz-644131 only shows marginal (2-fold) improvement in the \textit{in vitro} \textit{IC}_{50} against intraerythrocytic \textit{P. falciparum} parasites. The antiproflelative effect observed with Genz-644131 was not plasmoladiol to the parasite, similar to treatment with MDL73811 and DFMO, with parasite proliferation recovering after limited Genz-644131 exposure (24 h at 2 \times \textit{IC}_{50}). Both MDL73811 and DFMO treatment result in a cytostatic effect since inhibition is negated by the uptake of exogenous polyamines (Assaraf et al., 1987; Das Gupta et al., 2005). Co-treatment of parasites with MDL73811 and exogenous spermidine did not abolish the inhibitory effect of MDL73811 on parasite proliferation, and it was previously suggested that intraerythrocytic \textit{P. falciparum} parasites are incapable of spermidine uptake, since exogenously supplied putrescine, but not spermidine, was capable of overcoming biosynthesis inhibition caused by a variety of inhibitors (Assaraf et al., 1987; Das Gupta et al., 2005). Likewise, co-treatment of parasites with Genz-644131 and exogenous spermine also did not abolish the inhibitory effect of Genz-644131 on parasite proliferation. However, recent work clearly indicates that exogenous spermine is taken up by isolated \textit{P. falciparum} trophozoite-stage parasites (Niemand et al., 2012). Once inside the infected erythrocyte unit, the parasite is able to efficiently take up spermine across the plasma membrane in a concentration dependent manner, mediated by an electrogenic process energised by the parasite’s membrane potential (Niemand et al., 2012). In addition, here we report that exogenous spermine is taken up by \textit{P. falciparum} infected erythrocytes. Therefore, the inability of spermidine to abolish Genz-644131 inhibition does not appear to be due to the inability of the parasite to take up spermidine. Genz-644131 shows improved \textit{in vivo} cellular toxicity against different \textit{T. brucei} parasite strains (Bacchi et al., 2009; Barker et al., 2009). When this compound was tested in a murine malaria model for \textit{in vivo} antimalarial activity, Genz-644131 significantly (\textit{P} < 0.001) reduced \textit{P. berghei} parasitaemia by 89% when dosed in the Peters model for 4 days at 100 mg/kg/day. Animals dosed with 20 mg/kg/day showed a 37% (\textit{P} = 0.002) reduction. However, in no case was there sterile cure, as all animals had detectable parasitaemia levels on day 4 (Supplemental data S3). This may be due to the cytostatic effect described above.

The evidence provided does however not exclude the possibility of off target effects of Genz-644131 on \textit{P. falciparum} parasites including its binding to purine deaminases and polyamine oxidases as observed for MDL73811 (Hirth et al., 2009), particularly to \textit{P. falciparum} adenosine deaminases (Reyes et al., 1982) and erythrocytic polyamine oxidases (Byers et al., 1992). However, Genz-644131 (at 2 \times \textit{IC}_{50}) arrested parasite development in a stage-specific manner during the trophozoite stages (18–26 h post invasion), as previously described for MDL73811 (Wright et al., 1991). This corresponds to the requirement of polyamines due to the stage-specific expression of \textit{Pf}AdoMetDC/ODC (18–30 h post-invasion) during the trophozoite stage of the asexual cycle (van Brummelen et al., 2008). The parasite arrested temporal phenotype induced by Genz-644131 therefore corresponds to the expression profile of \textit{Pf}AdoMetDC in the parasite as the target for this compound.

Another explanation for the relatively poor activity of Genz-644131 against intraerythrocytic \textit{P. falciparum} parasites may be due to the poor membrane permeability of the compound itself, as low membrane permeability was previously shown to be the only inferior \textit{in vitro} ADME characteristic of the MDL73811 derivatives (Barker et al., 2009). Additionally, for any compound to access the intraerythrocytic \textit{P. falciparum} parasites, they would need to cross the parasite plasma membrane (PPM), parasitophorous vacuolar membrane (PVM) and erythrocyte membrane (Lingelbach and Joiner, 1998). Extracellular \textit{T. brucei} parasites are surrounded by only a single plasma membrane (Vennerstrom et al., 2004; Orhan et al., 2006) and cannot synthesise purines \textit{de novo}, and therefore have to acquire host purines (Hassan and Coombs, 1988). Adenosine, of which MDL73811 is a structural analogue, is actively transported into \textit{T. brucei} parasites by the \textit{T. brucei} nucleotide transporter 1 (\textit{TbNMT1}) (de Koning et al., 2005) and the \textit{T. brucei} amidopurine transporter (\textit{TbAT1} or \textit{Pz}). The latter transporter has been confirmed to actively transport MDL73811 (Goldberg et al., 1997; Maser et al., 1999), which could explain the low nanomolar \textit{in vitro} \textit{IC}_{50} values of MDL73811 in these parasites. As in \textit{T. brucei}, \textit{Plasmodium} parasites also do not synthesise purines \textit{de novo} and has to recruit exogenous purines from the host (Downie et al., 2008). In contrast to \textit{T. brucei}, multiple transport mechanisms enable the uptake of purines into intraerythrocytic \textit{P. falciparum} parasites including host purine transporters (Quashie et al., 2008) as well as parasite derived transporters, \textit{PfNMT1} and \textit{PfNT4} localised in the PPM (Carter et al., 2000; Barker et al., 2000). Although the latter are low-affinity transporters (Downie et al., 2008), their ability to transport MDL73811 and derivatives needs further investigation.

![Fig. 5. The effect of encapsulation of Genz-644131 in different nanovectors on its intracellular anti-plasmodial activity. Parasite proliferation of ring stage intraerythrocytic parasites was monitored with a SYBR Green I-based assay over 96 h at 37 °C and \textit{IC}_{50} determined from dilution series. Data are representative in each instance of three independent experiments performed in triplicate or quadruplicate. ±SEM. Not shown, the error bars fall within the symbols.](https://example.com/fig5)
The development of novel lipid based nanovectors provides a solution for the challenges facing malaria chemotherapeutics, since it has the potential to mediate sustained, targeted drug release thereby increasing the drug plasma half-life, lowering dosage requirements and reducing drug toxicity (Maurer et al., 2011). Additionally, lipid-based nanovectors has been shown to eliminate off-target effects by delivery to specific targeted cells, thereby improving the therapeutic efficacy of the compound (Forrest and Kwon, 2008). This makes lipid based nanovector drug delivery systems ideal for treatment of intracellular pathogens (Alving, 1986; Armstead and Bingyun, 2011; Maurer et al., 2011). Previous encapsulations of chloroquine (Urbán et al., 2011a) and fomysimidycin (Urbán et al., 2011b) resulted in a 10- and 7.5-fold decrease in the in vitro IC_{50} values of these compounds.

To investigate possible enhancement of the uptake of Genz-644131 into intraerythrocytic Plasmodium falciparum parasites, the compound was incorporated into two nanovector drug delivery systems: Pheroïd™ and immunoliposomes (Steyn et al., 2011; Urbán et al., 2011a). The Pheroïd™ system is a nanovector carrier developed from a submicron micellar emulsion formulation, typically ranging in size from 80 to 300 nm (Steyn et al., 2011). These micellar structures can be manipulated in terms of structure, size and morphology to enhance the solubility properties of intended compounds, by entrapment and delivery of compounds across cellular membranes (Steyn et al., 2011). Liposomes are synthetic lipid bilayers of up to 200 nm that have the ability to increase drug bioavailability by encapsulating compounds into the hydrophobic core of the lipid bilayer system. Moreover, the liposomal preparations were orientated with half anti-glycoprotein A antibodies, specific for intraerythrocytic P. falciparum parasites, enhancing the selectivity of Genz-644131 to the parasite (Urbán et al., 2011a). Here, the 32-fold decrease observed in the in vitro IC_{50} of immunoliposome encapsulated Genz-644131 against intraerythrocytic P. falciparum parasites suggests that the uptake of Genz-644131 by itself into intracellular P. falciparum parasites is restricted. However, the activity of compounds can be improved by either enhancing the chemical pharmacokinetic properties through medicinal chemistry, or encapsulating the compound into drug delivery systems. Although the Genz-644131 immunoliposome combination has not been seen in vivo, other immunoliposomal drug suspensions tested against murine mices infections improved the pharmacokinetic profiles of the drugs tested (Owais et al., 1995; Agrawal and Gupta, 2000). Encapsulation of Genz-644131 with immunoliposomes may also reduce non-specific off-target effects and in an sustainable release of the drug to prolong its plasma half-life.

The combination of Genz-644131 with a novel nanovector drug delivery system therefore provides the most promising result obtained thus far with this nanovector delivery system against intraerythrocytic P. falciparum parasites in vitro, and could be evaluated in novel antimalarial drug development.

Acknowledgements

We would like to thank Liezl-Marie Scholtz at the DST/NWU Preclinical Drug Development Platform. This work was supported by the Department of Science and Technology through the South African Malaria Initiative, the University of Pretoria, the South African National Research Foundation and by grant BIO2011-25039 from the Ministerio de Economía y Competitividad, Spain, which included FEDER funds, and 2009SGR-760 from the Generalitat de Catalunya, Spain. All studies were conducted under protocols approved by the IACUC of the Medical Sciences campus, University of Puerto Rico and in accordance with the Guide for the Care and Use of Laboratory Animals (National-Research-Council. 1996. Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, DC).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ijpddr.2013.11.003.

References

Agrawal, A.K., Gupta, C.M., 2000. Tuftsin-bearing liposomes in treatment of macrophage-biased infections. Adv. Drug Deliv. Rev. 41, 135–146.
Alving, C.R., 1986. Liposomes as drug carriers in leishmaniasis and malaria. Parasitol. Today 2, 101–107.
Armstead, A.L., Bingyun, L., 2011. Nanomedicine as an emerging approach against intracellular pathogens. Int. J. Nanomed. 6, 3281–3293.
Assafar, Y.G., Golenser, J., Spira, D.T., Messer, G., Bachrah, U., 1987. Cytostatic effect of 1-\text{de}-diofluoromethylorosine against Plasmodium falciparum and its reversal by diarnines and spermidine. Parasitol. Res. 73, 313–318.

Bircholtz, L., Wrenger, C., Joubert, F., Wells, G.A., Walter, R.D., Louw, A.L., 2004. Parasite-specific inserts in the bifunctional S-adenosylmethionine decarboxylase/orotidine decarboxylase of Plasmidium falciparum modulate catalytic activities and domain interactions. Biochem. J. 35, 439–448.
Bircholtz, L., Williams, M., Niemand, J., Louw, A.L., Persson, L., Heby, O., 2011. Polyamine homoeostasis as a drug target in pathogenesis protocols: possibilities and possibilities. Biochem. J. 438, 229–244.

Bitonito, A.L., Byers, T.L., Burchmore, R.J., Petti, C.J., Clarkson Jr., A.B., McCann, P.P., Spierdsma, A., 1990. Cure of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense infections in mice with an irreversible inhibitor of S-adenosylmethionine decarboxylase. Antimicrob. Agents Chemother. 34, 1485–1490.
Byers, T.L., Bush, T.L., McCann, P.P., Bitonito, A.J., 1991. Antitrypanosomal effects of polyamine biosynthesis inhibitors correlate with increases in Trypanosoma brucei brucei S-adenosyl-l-methionine. Biochem. J. 274, 527–533.
Byers, T.L., Canem, B., Pegg, A.E., 1992. Cytostasis induced in L1210 murine leukaemia cells by the S-adenosyl-l-methionine decarboxylase inhibitor 5’-(1[(Z)-4-amino-2-butyl]methylamino)-5’-deoxyadenosine may be due to hypoxia depletion. Biochem. J. 287, 717–724.
Carrer, N.S., Mamoun, C.B., Liu, W., Silva, E.O., Landfear, S.M., Goldberg, D.E., Ullman, B., 2000. Isolation and functional characterization of the PNT1 nucleoside transporter from Plasmodium falciparum. J. Biol. Chem. 275, 28153–28157.
Casero, R.A., Marton, L.J., 2007. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 6, 373–390.
Casetti, R., Marton, L.J., 2007. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 6, 373–390.
D. le Roux et al. / International Journal for Parasitology: Drugs and Drug Resistance 4 (2014) 28–36 35
de Konings, H.P., Bridges, D.J., Burchmore, R.J., 2005. Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol. Rev. 29, 987–1020.
Downie, M.J., Kirk, K., Mamoun, C.B., 2008. Purine salvage pathways in the intraerythrocytic malaria parasite Plasmodium falciparum. Eukaryot. Cell 7, 1231–1237.
Forrest, M.L., Kwon, G.S., 2008. Clinical developments in drug delivery nanotechnology. Adv. Drug Deliv. Rev. 60, 861–862.
Goldberg, B., Varletten, N., Sufin, J., Lloyd, D., Bachi, C.Y., 1997. A unique transporter of S-adenosylmethionine in African trypanosomes. FEBS J. 11, 256–260.
Grohler, A., Kotzé, A., and Du Plessis, J., 2007. The design of a skin-friendly carrier for cosmetic compounds using Pherior™ Technology. Delivery systems technology.
Grohler, A., Kotzé, A., and Du Plessis, J., 2008. The design of a skin-friendly carrier for cosmetic compounds using Pherior™ Technology. Science and Applications of Skin Delivery System Technologies Allured. Ed. Johann Wiechers, 283–311.
Grubusch, M.P., Hanschedt, T., Cobels, K., Sleevogt, H., Zoller, T., Bogler, G., Teichmann, D., 1998. Comparison of three antigen detection tests for diagnosis and follow-up of Plasmodium malaria in travellers returning to Berlin, Germany. Parasitol. Res. 89, 354–357.
Hassan, H.F., Coombs, G.H., 1988. Purine and pyrimidine metabolism in parasitic protozoa. FEMS Microbiol. Rev. 54, 7–87.
Heby, O., Roberts, S.C., Ullman, B., 2003. Polyamine biosynthetic enzymes as drug targets in parasitic protozoa. Biochem. Soc. Trans. 31, 415–419.
Heby, O., Persson, L., Rentala, M., 2007. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease and leishmaniasis. Amino Acids 33, 359–366.
Hirth, B., Barker, R.H., Celatka, C.A., Klinger, J.D., Liu, H., Nare, B., Nijjar, A., Phillips, M.A., Sybertz, E., Willert, E.K. et al., 2009. Discovery of new S-
Steyn, J.D., Wiesner, L., du Plessis, L.H., Grobler, A.F., Smith, P.J., Chan, W.-C., Haynes, R.K., Kotzé, A.F., 2011. Absorption of the novel artemisinin derivatives arteismonio and arteismon: potential application of Pheroid™ Technology. Int. J. Pharm. 414, 260–266.

Steenbergen, L., Persson, L., 1993. Stabilization of S-adenosylmethionine decarboxylase by amineaginamide. Biochem. Pharmacol. 45, 1174–1176.

Teng, R.W., Junankar, P.R., Bubb, W.A., Rae, C., Mercier, P., Kirk, K., 2009. Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by H-1 NMR spectroscopy. NMR Biomed. 22, 292–302.

Tolbert, W.D., Elekstrom, J.L., Mathews, L.I., Secrist, J.A., Kapoor, P., Pegg, A.E., Ellick, S.E., 2001. The structural basis for substrate specificity and inhibition of human S-adenosylmethionine decarboxylase. Biochemistry 40, 9484–9494.

Trang, D.T.X., Huy, N.T., Karis, T., Tajima, K., Kamei, K., 2004. One-step concentration of malarial parasite-infected red blood cells and removal of contaminating white blood cells. Malar. J. 3, http://dx.doi.org/10.1186/1475-2875-3-7.

Urbán, P., Estelrich, J., Cortes, A., Fernandez-Busquets, X., 2011a. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. J. Control Release 151, 202–211.

Urbán, P., Estelrich, J., Adeva, A., Cortés, A., Fernández-Busquets, X., 2011b. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Res. Lett. 6, 1–9.

van Brummen, A.C., Olszewski, K.L., Wilinski, D., Llinas, M.L., Louw, A.I., Birkholtz, L., 2008. Co-inhibition of Plasmodium falciparum S-adenosylmethionine decarboxylase/orotidine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome and metabolome analysis. J. Biol. Chem. 284, 4635–4646.

van Nieunweihove, S., Schechter, P.J., Declercq, J., Bone, G., Burke, J., Sjoerdsm, A., 1985. Treatment of gambiense sleeping sickness in the Sudan with oral DPMO (α-δ-difluoromethylornithine), an inhibitor of ornithine decarboxylase: first field trial. Trans. R. Soc. Trop. Med. Hyg. 79, 692–698.

Veryenstrom, J.L., Arbe-Barnes, S., Brun, R., Charman, S.A., Chiu, F.C.K., Chollet, J., Dong, Y., Dorn, A., Hunziker, D., Matile, H., et al., 2004. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430, 900–904.

Verlinden, B.K., Niemand, J., Sneyman, J., Sharma, S.K., Beattie, R.J., Woster, P.M., Birkholtz, L., 2011. Discovery of novel αβ-ylated [bis]urea and [bis]thiourea polyamine analogues with potent antimalarial activities. J. Med. Chem. 54, 6624–6633.

Wallace, H.M., Fraser, A.V., Hughes, A., 2003. A perspective of polyamine metabolism. Biochem. J. 376, 1–14.

Wells, G., Birkholtz, L., Joubert, A.M., Louw, A.I., 2006. Novel properties of malarial S-adenosylmethionine decarboxylase as revealed by structural modelling. J. Mol. Graph Mod. 24, 307–318.

Willert, E.K., Phillips, M.A., 2008. Regulated expression of an essential allosteric activator of polyamine biosynthesis in African trypanosomes. PLoS Pathog. 4, http://dx.doi.org/10.1371/journal.ppat.1000183.

Williams, M., Sprenger, L., Human, E., Al-Karadaghi, S., Persson, L., Louw, A.I., Birkholtz, L., 2011. Biochemical characterization and novel classification of monofunctional S-adenosylmethionine decarboxylase of Plasmodium falciparum. Mol. Biol. Parasitol. 180, 17–26.

Wright, P.S., Byers, T.L., Cross-Doersen, D.E., McCann, P.P., Bitonti, A.J., 1991. Irreversible inhibition of S-adenosylmethionine decarboxylase in Plasmodium falciparum-infected erythrocytes: growth inhibition in vitro. Biochem. Pharmacol. 41, 1713–1718.

Yalest, N., Quamina, A., Bacchi, C., 1991. Protein methylys in Trypanosoma brucei: activities and response to α-δ-difluoromethylornithine. J. Microbiol. 137, 717–724.