A NOTE ON THE CRITICAL GROUP OF A LINE GRAPH

DAVID PERKINSON, NICK SALTER, AND TIANYUAN XU

Abstract. This note answers a question posed by Levine in [3]. The main result is Theorem 1 which shows that under certain circumstances a critical group of a directed graph is the quotient of a critical group of its directed line graph.

1. Introduction

Let G be a finite multidigraph with vertices V and edges E. Loops are allowed in G, and we make no connectivity assumptions. Each edge $e \in E$ has a tail e^- and a target e^+. Let $\mathbb{Z}V$ and $\mathbb{Z}E$ be the free abelian groups on V and E, respectively. The Laplacian Δ_G of G is the \mathbb{Z}-linear mapping $\Delta_G : \mathbb{Z}V \to \mathbb{Z}V$ determined by $\Delta_G(v) = \sum_{(v,u) \in E} (u - v)$ for $v \in V$. Given $w_* \in V$, define

$$\phi = \phi_{G,w_*} : \mathbb{Z}V \to \mathbb{Z}V$$

$$v \mapsto \begin{cases}
\Delta_G(v) & \text{if } v \neq w_* \\
w_* & \text{if } v = w_*
\end{cases}.$$

The critical group for G with respect to w_* is the cokernel of ϕ: $K(G,w_*) := \text{cok} \phi$.

The line graph, $\mathcal{L}G$, for G is the multidigraph whose vertices are the edges of G and whose edges are (e,f) with $e^+ = f^-$. As with G, we have the Laplacian $\Delta_{\mathcal{L}G}$ and the critical group $K(\mathcal{L}G,e_*) := \text{cok} \phi_{\mathcal{L}G,e_*}$ for each $e_* \in E$.

If every vertex of G has a directed path to w_* then $K(G,w_*)$ is called the sandpile group for G with sink w_*. A directed spanning tree of G rooted at w_* is a directed subgraph containing all of the vertices of G, having no directed cycles, and for which w_* has out-degree 0 and every other vertex has out-degree 1. Let $\kappa(G,w_*)$ denote the number of directed spanning trees rooted at w_*. It is a well-known consequence

1The mapping $\Lambda : \mathbb{Z}V \to \mathbb{Z}V$ defined by $\Lambda(f)(v) = \sum_{(v,u) \in E} (f(v) - f(u))$ for $v \in V$ is often called the Laplacian of G. It is the negative \mathbb{Z}-dual (i.e., the transpose) of Δ_G.

1
of the matrix-tree theorem that the number of elements of the sandpile group with sink w_* is equal to $\kappa(G, w_*)$. For a basic exposition of the properties of the sandpile group, the reader is referred to [2].

In his paper, [3], Levine shows that if $e_* = (w_*, v_*)$, then $\kappa(G, w_*)$ divides $\kappa(LG, e_*)$ under the hypotheses of our Theorem 1. This leads him to ask the natural question as to whether $K(G, w_*)$ is a subgroup or quotient of $K(LG, e_*)$. In this note, we answer this question affirmatively by demonstrating a surjection $K(LG, e_*) \to K(G, w_*)$. Further, in the case in which the out-degree of each vertex of G is a fixed integer k, we show the kernel of this surjection is the k-torsion subgroup of $K(LG, e_*)$. These results appear as Theorem 1 and may be seen as analogous to Theorem 1.2 of [3]. In [3], partially for convenience, some assumptions are made about the connectivity of G which are not made in this note.

For related work on the critical group of a line graph for an undirected graph, see [1].

2. Results

Fix $e_* = (w_*, v_*) \in E$. Define the modified target mapping

$$\tau: \mathbb{Z}E \to \mathbb{Z}V$$

$$e \mapsto \begin{cases} 0 & \text{if } e = e_*, \\ e^+ & \text{if } e \neq e_*. \end{cases}$$

Also define

$$\rho: \mathbb{Z}E \to \mathbb{Z}V$$

$$e \mapsto \begin{cases} \Delta_G(w_*) - v_* - w_* + e^+ & \text{if } e \neq e_*, \\ 0 & \text{if } e = e_. \end{cases}$$

Let k be a positive integer. The graph G is \textit{k-out-regular} if the out-degree of each of its vertices is k.

\textbf{Theorem 1.} If $\text{indeg}(v) \geq 1$ for all $v \in V$ and $\text{indeg}(v_*) \geq 2$, then $\rho: \mathbb{Z}E \to \mathbb{Z}V$ descends to a surjective homomorphism $\overline{\rho}: K(LG, e_*) \to K(G, w_*)$.

Moreover, if G is k-out-regular, the kernel of $\overline{\rho}$ is the k-torsion subgroup of $K(LG, e_*)$.

\textbf{Proof.} Let $\rho_0: \mathbb{Z}V \to \mathbb{Z}V$ be the homomorphism defined on vertices $v \in V$ by

$$\rho_0(v) := \Delta_G(w_*) - v_* - w_* + v$$
so that \(\rho = \rho_0 \circ \tau \). The mapping \(\rho_0 \) is an isomorphism, its inverse being itself:

\[
\rho_0^2(v) = \rho_0(\Delta_G(w_*) - v_* - w_* + v)
= \sum_{e^- = w_*} (\rho_0(e^+) - \rho_0(w_*)) - \rho_0(v_*) - \rho_0(w_*) + \rho_0(v)
= \Delta_G(w_*) - \rho_0(v_*) - \rho_0(w_*) + \rho_0(v)
= v.
\]

Let \(\psi : \mathbb{Z}V \to \mathbb{Z}V \) be the homomorphism defined on vertices \(v \in V \) by

\[
\psi(v) := \begin{cases}
\Delta_G(v) & \text{if } v \neq w_*, \\
\Delta_G(w_*) - v_* & \text{if } v = w_*.
\end{cases}
\]

Let \(\phi_G \) and \(\phi_{LG} \) denote \(\phi_{G,w_*} \) and \(\phi_{LG,e_*} \), respectively. We claim the following diagram commutes:

\[
\begin{array}{ccc}
\mathbb{Z}E & \xrightarrow{\phi_{LG}} & \mathbb{Z}E \\
\tau \downarrow & & \tau \downarrow \\
\mathbb{Z}V & \xrightarrow{\psi} & \mathbb{Z}V \\
\phi \downarrow & & \rho_0 \downarrow \\
\mathbb{Z}V & \xrightarrow{\phi_G} & \mathbb{Z}V.
\end{array}
\]

To prove commutativity of the top square of the diagram, first suppose \(e \neq e_* \). Then

\[
\tau(\phi_{LG}(e)) = \tau(\Delta_{LG}(e)) = \tau \left(\sum_{f^- = e^+} (f - e) \right).
\]

If \(e \neq e_* \) and \(e^+ \neq w_* \), then

\[
\tau \left(\sum_{f^- = e^+} (f - e) \right) = \sum_{f^- = e^+} (f^+ - e^+) = \Delta_G(e^+) = \psi(\tau(e)).
\]
On the other hand, if \(e \neq e_\ast \) and \(e^+ = w_\ast \), then

\[
\tau \left(\sum_{f^- = e^+} (f - e) \right) = \sum_{f^- = e^+, f \neq e_\ast} (f^+ - e^+) + \tau(e_\ast - e)
\]

\[
= \sum_{f^- = e^+, f \neq e_\ast} (f^+ - e^+) - w_\ast
\]

\[
= \Delta_G(w_\ast) - v_\ast = \psi(\tau(e)).
\]

Therefore, \(\tau(\phi_{\mathcal{L}G}(e)) = \psi(\tau(e)) \) holds if \(e \neq e_\ast \). Moreover, the equality still holds if \(e = e_\ast \) since \(\tau(e_\ast) = 0 \). Hence, the top square of the diagram commutes.

To prove that the bottom square of the diagram commutes, there are two cases. First, if \(v \neq w_\ast \), then

\[
\rho_0(\psi(v)) = \sum_{(v,u) \in E} (\rho_0(u) - \rho_0(v)) = \sum_{(v,u) \in E} (u - v) = \Delta_G(v) = \phi_G(v).
\]

Second, if \(v = w_\ast \), then

\[
\rho_0(\psi(v)) = \rho_0(\Delta_G(w_\ast) - v_\ast) = \Delta_G(w_\ast) - \rho_0(v_\ast) = w_\ast = \phi_G(v).
\]

From the commutativity of the diagram, the cokernel of \(\psi \) is isomorphic to \(K(G,w_\ast) \), and \(\rho = \rho_0 \circ \tau \) descends to a homomorphism \(\overline{\rho}: K(\mathcal{L}G,e_\ast) \to K(G,w_\ast) \) as claimed. The hypothesis on the in-degrees of the vertices assures that \(\tau \), hence \(\overline{\rho} \), is surjective.

Now suppose that \(G \), hence \(\mathcal{L}G \), is \(k \)-out-regular. This part of our proof is an adaptation of that given for Theorem 1.2 in [3]. Since \(\rho_0 \) is an isomorphism, it suffices to show that the kernel of the induced map, \(\overline{\tau}: K(\mathcal{L}G,e_\ast) \to \operatorname{cok} \psi \) has kernel equal to the \(k \)-torsion of \(K(\mathcal{L}G,e_\ast) \).

To this end, define the homomorphism \(\sigma: \mathbb{Z}V \to \mathbb{Z}E \), given on vertices \(v \in V \) by

\[
\sigma(v) := \sum_{e^- = v} e.
\]

We claim that the image of \(\sigma \circ \psi \) lies in the image of \(\phi_{\mathcal{L}G} \), so that \(\sigma \) induces a map, \(\overline{\sigma} \), between \(\operatorname{cok} \psi \) and \(K(\mathcal{L}G,e_\ast) \). To see this, first note
that for \(v \in V \),
\[
\sigma(\Delta G(v)) = \sigma\left(\sum_{e^- = v} e^+ - kv \right) \\
= \sum_{e^- = v} \sum_{f^- = e^+} f - k \sum_{e^- = v} e \\
= \sum_{e^- = v} \Delta_{LG}(e)
\]
Therefore, for \(v \neq w_* \), it follows that \(\sigma(\psi(v)) \) is in the image of \(\phi_{LG} \).
On the other hand, using the calculation just made,
\[
\sigma(\Delta G(w_*) - v_*) = \sum_{e^- = w_*} \Delta_{LG}(e) - \sum_{f^- = v^*} f \\
= \sum_{e^- = w_*} \Delta_{LG}(e) - \left(\sum_{f^- = v^*} f - k e_* + k e_* \right) \\
= \sum_{e^- = w_*} \Delta_{LG}(e) - \Delta_{LG}(e_*) - k e_* \\
= \sum_{e^- = w_*, e \neq e_*} \Delta_{LG}(e) - k e_* ,
\]
which is also in the image of \(\phi_{LG} \).
Now note that for \(e \neq e_* \),
\[
\overline{\sigma}(\overline{\tau}(e)) = \sum_{f^- = e^+} f = \Delta_{LG}(e) + k e = k e \in K(LG, e_*).
\]
Thus, the kernel of \(\overline{\tau} \) is contained in the \(k \)-torsion of \(K(LG, e_*) \), and to show equality it suffices to show that \(\overline{\sigma} \) is injective.

The case where \(k = 1 \) is trivial since there are no \(G \) satisfying the hypotheses: if \(G \) is 1-out-regular and \(\text{indeg}(v) \geq 1 \) for all \(v \in V \), then \(\text{indeg}(v) = 1 \) for all \(v \in V \), including \(v_* \). So suppose that \(k > 1 \) and that \(\eta = \sum_{v \in V} a_v v \) is in the kernel of \(\overline{\sigma} \). We then have
\[
(1) \quad \sigma(\eta) = \sum_{v \in V} \sum_{e^- = v} a_v e = \sum_{e \neq e_*} b_e \Delta_{LG}(e) + c e_*
\]
for some integers \(b_e \) and \(c \). Comparing coefficients in (1) gives
\[
(2) \quad a_{e^-} = \sum_{f^+ = e^-, f \neq e_*} b_f - k b_e \quad \text{for } e \neq e_* .
\]
Define

\[F(v) = \frac{1}{k} \left(\sum_{f^+=v, f \neq e_\ast} b_f - a_v \right). \]

From (2),

\[F(e^-) = b_e \quad \text{for} \quad e \neq e_\ast. \] (3)

Since \(k > 1 \), for each vertex \(v \), we can choose an edge \(e_v \neq e_\ast \) with \(e_v^- = v \). By (2) and (3), for all \(v \in V \),

\[a_v = \sum_{f^+ = v, f \neq e_\ast} b_f - k e_v = \sum_{f^+ = v, f \neq e_\ast} F(f^-) - k F(v). \]

Therefore, as an element of \(\text{cok} \psi \),

\[
\eta = \sum a_v v = \sum_{e \neq e_\ast} F(e^-) e^+ - \sum_{v \in V} k F(v) v \\
= \sum_{v \in V, v \neq w_\ast} F(v) \left(\sum_{e^- = v} e^+ - k v \right) + F(w_\ast) \left(\sum_{e^- = w_\ast, e \neq e_\ast} e^+ - k w_\ast \right) \\
= \sum_{v \in V, v \neq w_\ast} F(v) \Delta_G(v) + F(w_\ast) (\Delta_G(w_\ast) - v_\ast) \\
= 0,
\]

which shows that \(\sigma \) is injective.

References

[1] Andrew Berget, Andrew Manion, Molly Maxwell, Aaron Potechin, and Victor Reiner. The critical group of a line graph. arxiv:math.CO/0904.1246.

[2] Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp, and David B. Wilson. Chip-firing and rotor-routing on directed graphs. In In and out of equilibrium. 2, volume 60 of Progr. Probab., pages 331–364. Birkhäuser, Basel, 2008.

[3] Lionel Levine. Sandpile groups and spanning trees of directed line graphs. Journal of Combinatorial Theory, Series A.

E-mail address: davidp@reed.edu

E-mail address: saltern@reed.edu

E-mail address: xut@reed.edu

Reed College, Portland OR, 97202