Quantum gravitational states of ultracold neutrons as a tool for probing of beyond-Riemann gravity

A. N. Ivanov, M. Wellenzohn, and H. Abele

Atominstitut, Technische Universität Wien, Stadionallee 2, A-1020 Wien, Austria
FH Campus Wien, University of Applied Sciences, Favoritenstraße 226, 1100 Wien, Austria

(Dated: September 22, 2021)

We analyze a possibility to probe beyond-Riemann gravity (BRG) contributions, introduced by Kostelecký and Li (see Phys. Rev. D 103, 024059 (2021) and Phys. Rev. D 104, 044054 (2021)) on the basis of the Effective Field Theory (EFT) by Kostelecký Phys. Rev. D 69, 105009 (2004). We carry out such an analysis by calculating the BRG contributions to the transition frequencies of the quantum gravitational states of ultracold neutrons (UCNs). These states are being used for a test of interactions beyond the Standard Model (SM) and General Relativity (GR) in the qBOUNCE experiments. We improve by order of magnitude some constraints obtained by Kostelecký and Li (2106.11293 [gr-qc]).

PACS numbers: 11.10.Ef, 11.30.Cp, 12.60.-i, 14.20.Dh

I. INTRODUCTION

Nowadays the effective field theories (EFT) are a powerful tool for the analysis of the Nature. The general EFT by Kostelecký, based on the General Gravity (GR) coupled to the Standard Model (SM), has been extended by Kostelecký and Li by the contributions of interactions, caused by beyond-Riemann gravity (BRG). These contributions are closely overlapped with the contributions of interactions violating Lorentz-invariance. In Kostelecký and Li have proposed to investigate the BRG as well as Lorentz-invariance violation (LV) contributions to the energy spectrum and transition frequencies of the quantum gravitational states of ultracold neutrons (UCNs). This paper is addressed to the analysis of the BRG and LV contributions to the energy spectrum and transition frequencies of the quantum gravitational states of ultracold neutrons (UCNs). For the analysis of these problems we follow [14]. In [14] we have calculated the LV contributions to the energy spectrum and transition frequencies of the quantum gravitational states of UCNs, caused by the effective low-energy potential, derived by Kostelecký and Lane in the framework of the Standard Model Extension (SME) by using the Foldy-Wouthuysen transformations.

The paper is organized as follows. In section II we discuss the effective low-energy potential, derived by Kostelecký and Li for the analysis of BRG interactions in the terrestrial laboratories. We define such a potential in the standard coordinate frame related to the laboratory at the Institut Laue Langevin (ILL) in Grenoble. We specify the BRG and LV contributions to the phenomenological coupling constants of this potential. We adduce the wave functions of the quantum gravitational states of polarized and unpolarized UCNs. In section III we calculate the BRG and LV contributions to the energy spectrum and transition frequencies of the quantum gravitational states of polarized and unpolarized UCNs. Using the current experimental sensitivity of the qBOUNCE experiments we give some estimates of the phenomenological constants of the BRG and LV interactions. In section IV we discuss the obtained results and perspectives of further investigations of the BRG and LV interactions by using the quantum gravitational states of UCNs.
II. EFFECTIVE NON–RELATIVISTIC POTENTIAL OF BEYOND-RIEMANN GRAVITY INTERACTIONS

For the experimental analysis of the BRG and LV interactions in the terrestrial laboratories by using the quantum gravitational states of UCNs Kostelecký and Li propose to use the following Hamilton operator \(\mathcal{H} \):

\[
\mathcal{H} = \mathcal{H}_0 + \Phi_{\text{RG}} + \Phi_{\text{BRG}} = \frac{\vec{p}^2}{2m} - m\vec{g} \cdot \vec{z} + \Phi_{\text{nRG}} + \Phi_{\text{nBRG}},
\]

where the first two terms are the operators of the UCN energy and the Newtonian gravitational potential of the gravitational field of the Earth, respectively, with the gravitational acceleration \(\vec{g} \) such as \(\vec{g} \cdot \vec{z} = - gz \). Then, \(\Phi_{\text{nRG}} \) is the effective low-energy potential of the neutron-gravity interaction, calculated to next-to-leading order in the large neutron mass \(m \) expansion and related to the contribution of Riemann gravity. It is equal to \(\Phi_{\text{nRG}} = \frac{3}{4m} (\sigma \cdot \vec{p}) \cdot \vec{g} - \frac{3}{4m} (\vec{p}^2 \vec{g} \cdot \vec{z} + \vec{g} \cdot \vec{z} \vec{p}^2) \).

In turn, the potential \(\Phi_{\text{nBRG}} \) describes the BRG and LV contributions to neutron-gravity interactions:

\[
\Phi_{\text{nBRG}} = H_{\phi} + H_{\sigma \phi} + H_{g} + H_{\sigma g},
\]

where the operators \(H_j \) for \(j = \phi, \sigma \phi, g, \) and \(\sigma g \) are equal to \(\Phi_{\text{nBRG}} \)

\[
H_{\phi} = (k^{(\text{NR})}_{\text{n}} \sigma \cdot \vec{g} + (k^{(\text{NR})}_{\text{o}} \cdot p) \vec{z}) + (k^{(\text{NR})}_{\text{opp}})^{\vec{k}} \vec{p} \cdot (p \vec{g} \cdot \vec{z} + \vec{g} \cdot \vec{z} \vec{p}^2),
\]

\[
H_{\sigma \phi} = (k^{(\text{NR})}_{\text{n}} \sigma \cdot \vec{g} + (k^{(\text{NR})}_{\text{opp}})^{\vec{k}} \vec{p} \cdot (p \vec{g} \cdot \vec{z} + \vec{g} \cdot \vec{z} \vec{p}^2)),
\]

\[
H_{g} = (k^{(\text{NR})}_{\text{n}} \sigma \cdot \vec{g} + (k^{(\text{NR})}_{\text{opp}})^{\vec{k}} \vec{p} \cdot (p \vec{g} \cdot \vec{z} + \vec{g} \cdot \vec{z} \vec{p}^2)),
\]

\[
H_{\sigma g} = (k^{(\text{NR})}_{\text{n}} \sigma \cdot \vec{g} + (k^{(\text{NR})}_{\text{opp}})^{\vec{k}} \vec{p} \cdot (p \vec{g} \cdot \vec{z} + \vec{g} \cdot \vec{z} \vec{p}^2)).
\]
The analysis of contributions to the effective low-energy potential $\Phi_{a\text{BRG}}$ in Eq. (3) violating of Lorentz-invariance

Before we proceed to calculating the contributions of the effective potential Eq. (3) to the energy spectrum and transition frequencies of the quantum gravitational states of UCNs, we would like to compare the potential $\Phi_{a\text{BRG}}$ with the effective low-energy potential Φ_{LV} of the LV interactions (see Eq. (4) in [14]), calculated in [15]. The effective low-energy potential Φ_{LV} is equal to

$$\Phi_{\text{LV}} = -b_L^0 + md^0_L - \frac{1}{2} m \varepsilon_{\ell kj} g^0_L + \frac{1}{2} \varepsilon_{\ell kj} H_{\ell kj}^0 \sigma_{\ell k} + \frac{1}{m} \left(-a_j^0 + m (c_{0j}^n + c_{j0}^n) + m e_j^0 \right) p_j + \frac{1}{m} \left(b_0^0 \delta_{jL} - m (d^0_L + a^0_0 \delta_{jL}) - \frac{1}{2} m \varepsilon_{\ell km} \left(g^n_{\ell kj} + 2 g^n_{m00} \delta_{jk} \right) - \varepsilon_{\ell kj} H_{\ell k0}^0 \right) p_j \sigma_{\ell k} - \frac{1}{2m} \left(2 c_{0j}^n + c_{j0}^n \delta_{jk} \right) p_j p_k + \frac{1}{4m^2} \left(- b_j - \frac{1}{2} \varepsilon_{jm0} H_{mn} \right) \delta_{kL} + b_j \delta_{jk} \right) p_j p_k \sigma_{\ell k}. \tag{5}$$

The LV contributions to the energy spectrum and transition frequencies of the quantum gravitational states of UCNs, induced by the effective low-energy potential Φ_{LV}, have been calculated in [14].

From Eq. (4) one may see that the effective low-energy interactions H_ϕ, H_σ and $(k_{\text{BRG}}^{(NR)})_{ij} g^{ij}$ in H_g are new in comparison with Eq. (3). So this means that the coefficients or the phenomenological coupling constants in these interactions are induced by the BRG interactions. Of course, these terms are able to contain the LV contributions (see Table III of Ref. [6]) but such contributions should not dominate in them.

In turn, the effective low-energy neutron-gravity interactions, defined by H_g and $H_{\sigma g}$, have the structure of the effective low-energy potential Φ_{LV} in Eq. (4). From the comparison we may write the following relations

\begin{align*}
(k_{\text{SR}}^{(NR)})_{ij} g^{ij} &= -b_j^0 + md_j^0 - \frac{1}{2} \varepsilon_{ij0} g^0_{i0} + \frac{1}{2} \varepsilon_{ij} H_k^0 + \ldots, \\
(k_{\text{SP}}^{(NR)})_{ij} g^{ij} &= \frac{1}{m} \left(-a_j^0 + m (c_{0j}^n + c_{j0}^n) + m e_j^0 \right) + \ldots, \\
(k_{\text{SRSP}}^{(NR)})_{ij} g^{ij} &= \frac{1}{m} \left(b_0^0 \delta_{jL} - m (d^0_L + a^0_0 \delta_{jL}) - \frac{1}{2} m \varepsilon_{\ell km} \left(g^n_{\ell kj} + 2 g^n_{m00} \delta_{jk} \right) - \varepsilon_{\ell kj} H_{\ell k0}^0 \right) + \ldots, \\
(k_{\text{SRPSP}}^{(NR)})_{ij} g^{ij} &= - \frac{1}{2m} \left(2 c_{0j}^n + c_{j0}^n \delta_{jk} \right) + \ldots, \\
(k_{\text{SPS}}^{(NR)})_{ij} g^{ij} &= \frac{1}{4m} \left(4 d_j^0 + 2 a_j^0 - \varepsilon_{jm0} g^n_{mn0} \right) \delta_{kL} + \varepsilon_{jm0} g^n_{mn0} \delta_{jk} - 2 \varepsilon_{jm0} \left(g^n_{m0k} + g^n_{mk0} \right) + \ldots, \\
+k_{\text{SPS}}^{(NR)} g^{ij} &= \frac{1}{2m^2} \left(- b_j - \frac{1}{2} \varepsilon_{jm0} H_{mn} \right) \delta_{kL} + b_j \delta_{jk} \right) + \ldots, \tag{6}
\end{align*}

where ellipses denote the BRG contributions of neutron-gravity interactions (see Table III in Ref. [6]).

FIG. 1: The position of the ILL laboratory of the qBOUNCE experiments on the surface of the Earth.
The rotation-invariant effective low-energy potential $\Phi^{(RI)}_{\text{BRG}}$ for the qBOUNCE experiments

For the experimental analysis of the BRG as well as LV interactions by the quantum gravitational states of UCNs Kostelecký and Li proposed to use the following rotation-invariant (RI) effective low-energy potential $\Phi^{(RI)}_{\text{BRG}}$

$$\Phi^{(RI)}_{\text{BRG}} = (k^{(NR)}_\phi)_{n} \vec{g} \cdot \vec{z} + (k^{(NR)}_{\sigma g})'_{n} \vec{\sigma} \cdot \vec{g} + (k^{(NR)}_{\sigma g})''_{n} \vec{\sigma} \times \vec{p} \cdot \vec{g} + \frac{1}{2} (k^{(NR)}_{\sigma g})_{n} (\vec{\sigma} \cdot \vec{p}) (\vec{g} \cdot \vec{z}) + (\vec{g} \cdot \vec{z}) (\vec{\sigma} \cdot \vec{p}).$$

In this expression the coefficients with primes denote suitably normalized irreducible representations of the rotation group obtained from the nonrelativistic coefficients in Eq. (4) (see [6]). Then, according to Kostelecký and Li [6], the effective low-energy potential Eq. (4) is of interest for certain experimental applications, in part because the rotation invariance ensures that all terms take the same form at leading order when expressed either in the laboratory frame or the Sun-centered frame. The latter implies, for example, no leading-order dependence on the local sidereal time or laboratory colatitude in experimental signals for these terms [6].

Since the effective neutron-gravity interactions, proportional to $(k^{(NR)}_{\sigma g})'$ and $(k^{(NR)}_{\sigma g})''$, do not contribute to the energy spectrum of the quantum gravitational states of UCNs, the possible contributions should be proportional to the coefficients $(k^{(NR)}_\phi)_{n}$, $(k^{(NR)}_{\sigma g})'_n$, $(k^{(NR)}_{\sigma gpp})'_n$, and $(k^{(NR)}_{\sigma gpp})''_n$, respectively. According to our discussion above, the coefficient $(k^{(NR)}_\phi)_{n}$ is caused by the BRG interactions, whereas the coefficients $(k^{(NR)}_{\sigma g})'_n$, $(k^{(NR)}_{\sigma gpp})'_n$, and $(k^{(NR)}_{\sigma gpp})''_n$ should be saturated by the LV ones [14].

Wave functions and energy spectrum of quantum gravitational states of UCNs

The non-perturbed quantum gravitational states of UCNs obey the Schrödinger-Pauli equation $\Psi^{(0)}_{\vec{p},k\sigma}(t,\vec{r})$

$$\frac{\partial \Psi^{(0)}_{\vec{p},k\sigma}(t,\vec{r})}{\partial t} = \left(\frac{\vec{p}^2}{2m} + mgz\right) \Psi^{(0)}_{\vec{p},k\sigma}(t,\vec{r})$$

(8)

where $\vec{r} = \vec{z} + \vec{r}_\perp$ is a radius-vector of a position of an UCN with $\vec{r}_\perp = (x, y)$, the wave function $\Psi_{\vec{p},k\sigma}(t,\vec{r})$ is equal to $\Psi_{\vec{p},k\sigma}(t,\vec{r}) = \Psi^{(0)}_{k\sigma}(z) e^{i\vec{p} \cdot \vec{r}_\perp - it(E_k + E^{(0)}_{\sigma})/2} = |\vec{p}, k, \sigma\rangle$, \vec{p} and $E_k = \vec{p}^2/2m \sim 10^{-7}$ eV (for $|\vec{p}_\perp| \sim 24\text{ eV}$ or $v_\perp \sim 7\text{ m/s}$) are the momentum and kinetic energy of UCNs. Below all BRG and LV contributions will be calculated at $\vec{p}_\perp = 0$ [14], and $k = 1, 2, \ldots$ is the principal quantum number [19]. The wave function $\Psi_{\vec{p},k\sigma}(t,\vec{r})$ is normalized by $(\sigma'k'\vec{p}'_\perp|\vec{p}, k\sigma\rangle) = \delta^{(2)}(\vec{p}_\perp - \vec{p}'_\perp) \delta_{\sigma,\sigma'} \delta_{k,k'}$ [23, 24]. Then, $\Psi^{(0)}_{k\sigma}(z) = \psi^{(0)}_{k\sigma}(z) \chi_\sigma = |k\sigma\rangle$ is a two-component spinorial wave function of UCNs in the k-gravitational state with the binding energy $E_k^{(0)}$, and in a spin eigenstate χ_σ with $\sigma = \uparrow$ or \downarrow. They are normalized by $(\sigma'k'|k\sigma\rangle) = \delta_{k,k'}\delta_{\sigma,\sigma'}$. The wave functions $\psi^{(0)}_{k\sigma}(z)$ are given by

$$\psi^{(0)}_{k\sigma}(z) = \frac{\text{Ai}(\xi - \xi_k)}{\sqrt{\ell} \text{Ai}'(-\xi_k)} e^{i\alpha}, \quad \int_0^\infty dz \psi^{(0)*}_{k\sigma}(z) \psi^{(0)}_{k\sigma}(z) = \delta_{k,k},$$

(9)

where $\xi = z/\ell$, $\text{Ai}(\xi - \xi_k)$ is the Airy-function and $\text{Ai}'(-\xi)$ its derivative at $z = 0$ [19, 22, 27]. $e^{i\alpha}$ is a constant complex factor, $\ell = (2m^2g)^{-1/3} = 5.88\text{ pm}$ is the scale of the quantum gravitational states of UCNs and ξ_k is the root of the equation $\text{Ai}(-\xi_k) = 0$, cased by the boundary condition $\psi^{(0)}_{k\sigma}(0) = 0$ [14]. The latter defines the energy spectrum of the quantum gravitational states of UCNs $E_k^{(0)} = E_0 \xi_k$ for $k = 1, 2, \ldots$ with $E_0 = mg\ell \sqrt{m g^2/2} = 0.6016\text{ peV}$ [14]. Experimentally the quantum gravitational states of UCNs have been investigated in [23, 33].

The wave functions $\Psi^{(0)}_{k\sigma}(z) = \psi^{(0)}_{k\sigma}(z) \chi_\sigma$ describe the quantum gravitational states of polarized UCNs, whereas for the quantum gravitational states of unpolarized UCNs the wave functions are given by [14]

$$\Psi^{(0)}_{k\sigma}(z) = \psi^{(0)}_{k\sigma}(z) c_\uparrow \chi_\uparrow + \psi^{(0)}_{k\sigma}(z) c_\downarrow \chi_\downarrow,$$

(10)

where the coefficients c_\uparrow and c_\downarrow are normalized by $|c_\uparrow|^2 + |c_\downarrow|^2 = 1$ and determine the probabilities to find an UCN in the k-quantum gravitational state with spin \uparrow and \downarrow, respectively. The quantum gravitational states of UCNs with the wave function Eq. (9) are 2-fold degenerate [23, 24].
III. THE BRG AND LV CONTRIBUTIONS TO THE ENERGY SPECTRUM AND TRANSITION FREQUENCIES OF QUANTUM GRAVITATIONAL STATES OF UCNs

The energy spectrum of the quantum gravitational states of polarized UCNs with the RG, BRG and LV corrections are defined by the integrals

$$E_{k\sigma} = \langle \sigma k | H | k\sigma \rangle = \int_0^\infty dz \, \psi_{k\sigma}(z) \psi_{k\sigma}(z) = E_k^{(0)} + \langle \sigma k | \Phi_{nRG} | k\sigma \rangle + \langle \sigma k | \Phi_{nBRG}^{(RI)} | k\sigma \rangle. \quad (11)$$

Using the table of integrals in $[24, 27]$ we obtain the RG, BRG and LV contributions to the energy spectrum of the quantum gravitation states of unpolarized UCNs. We get

$$\langle \sigma k | \Phi_{nRG} | k\sigma \rangle = \int_0^\infty dz \, \psi_{k\sigma}^{(0)}(z) \Phi_{nRG} \psi_{k\sigma}^{(0)}(z) = \frac{2}{3} \frac{(E_k^{(0)})}{m},$$

$$\langle \uparrow k | \Phi_{nBRG}^{(RI)} | k \uparrow \rangle = \int_0^\infty dz \, \psi_{k\uparrow}^{(0)}(z) \Phi_{nBRG} \psi_{k\uparrow}^{(0)}(z) = -\frac{2}{3} \frac{m g E_k^{(0)}}{m} \left(k_{\sigma gpp}^{(NR)} \right) \delta \nu \delta \nu \delta \nu,$$

$$\langle \downarrow k | \Phi_{nBRG}^{(RI)} | k \downarrow \rangle = \int_0^\infty dz \, \psi_{k\downarrow}^{(0)}(z) \Phi_{nBRG} \psi_{k\downarrow}^{(0)}(z) = \frac{2}{3} \frac{m g E_k^{(0)}}{m} \left(k_{\sigma gpp}^{(NR)} \right) \delta \nu \delta \nu \delta \nu.$$

Since the binding energies of the quantum gravitational states of UCNs are of a few parts of 10^{-12} eV, the RG contribution is of order of a few parts of 10^{-18} eV and can be neglected. This concerns also the contributions proportional to $\frac{2}{3} m g E_k^{(0)} \leq 10^{-25}$ eV2 for $k \leq 10$ $[33, 34]$.

As a result, the energy spectrum of the quantum gravitational states of UCNs together with the BRG and LV contributions is equal to

$$E_{k\sigma} = E_k^{(0)} - \frac{2}{3} \frac{m g E_k^{(0)}}{m} \left(k_{\sigma gpp}^{(NR)} \right) \delta \nu \delta \nu \delta \nu \delta \nu,$$

where $g = 2.15 \times 10^{-23}$ eV $[14]$. The LV contribution, proportional to $\left(k_{\sigma gpp}^{(NR)} \right)$, is the same for all energy level. It depends only on the neutron spin-polarization.

According to the energy spectrum Eq. (13), for the non-spin-flip $|k\sigma\rangle \rightarrow |k'\sigma\rangle$ and spin-flip $|k\sigma\rangle \rightarrow |k'\sigma'\rangle$ transitions we get $[14]$:

$$\delta \nu_{\sigma\sigma'k\sigma} = - \left(k_{\sigma g}^{(NR)} \right) \frac{E_k^{(0)} - E_k^{(0)}}{3\pi m},$$

$$\delta \nu_{\sigma\sigma'k\sigma} = \pm \frac{g}{3} \left(k_{\sigma g}^{(NR)} \right) \frac{E_k^{(0)} - E_k^{(0)}}{3\pi m}.$$

(14) for $\sigma = \uparrow, \sigma' = \downarrow$ or $\sigma = \downarrow, \sigma' = \uparrow$, respectively.

For current sensitivity $\Delta \epsilon = 2 \times 10^{-15}$ eV $[33]$ (see also $[14]$) and for the $|1\rangle \rightarrow |4\rangle$ transition $[14]$ we are able to obtain the upper bound on the BRG contribution $| \left(k_{\sigma g}^{(NR)} \right) |$ and an estimate for $\left(k_{\sigma g}^{(NR)} \right)$, i.e.,

$$| \left(k_{\sigma g}^{(NR)} \right) | < 10^{-3} \text{ GeV}, \quad \left(k_{\sigma g}^{(NR)} \right) = 0.$$

(15) The upper bound $| \left(k_{\sigma g}^{(NR)} \right) | < 10^{-3}$ eV is one order of magnitude better in comparison with the result $| \left(k_{\sigma g}^{(NR)} \right) | < 1.3 \times 10^{-2}$ eV, obtained in $[3]$. Then, our result $\left(k_{\sigma g}^{(NR)} \right) = 0$ agrees well with that by Kostelecký and Li $[3]$. The spin-flip transitions may also admit an upper bound $| \left(k_{\sigma g}^{(NR)} \right) | < 10^8$. However, it seems unrealistic, since the main contribution to $\left(k_{\sigma g}^{(NR)} \right)$ is caused by LV interactions $[32]$.

It is important to emphasize that in the coefficient $\left(k_{\sigma g}^{(NR)} \right)$ the dominate role belongs to the BRG interactions. According to $[3]$, the coefficient $\left(k_{\sigma g}^{(NR)} \right)$ has the following structure (see Table III in Ref. $[3]$):

$$\left(k_{\sigma g}^{(NR)} \right) = 2 \left(m^L_{\pi g} \right) - 2 \left(m^L_{\pi g} \right) + 2 m \left(a^L_{\pi g} \right) - 2 m \left(a^L_{\pi g} \right) + 2 m^2 \left(a^L_{\pi g} \right) - 2 m^2 \left(a^L_{\pi g} \right).$$

(16)
where the phenomenological coupling constants in the right-hand-side of Eq. (19) are fully induced by the BRG interactions (see Table I in Ref. [6]).

The energy spectrum of the quantum gravitational states of unpolarized UCNs, calculated by taking into account the 2-fold degeneracy of the energy levels [14] (see also [23, 24]), is equal to

\[
E_k^{(\pm)} = E_k^{(0)} - \frac{2}{3} \left(k_\phi^{(NR)} \right)_n \frac{E_k^{(0)}}{m} \pm \frac{g}{\pi} \left(k_{sg}^{(NR)} \right)_n'.
\]

(17)

Using Eq. (15) in Ref. [14] we define the contributions to the transition frequencies of the quantum gravitational states of UCNs

\[
\delta\nu_{k'k}^{(\pm \pm)} = -\left(k_\phi^{(NR)} \right)_n \frac{E_k^{(0)} - E_{k'}^{(0)}}{3\pi m},
\]

(18)

and

\[
\delta\nu_{k'k}^{(\pm \mp)} = -\left(k_\phi^{(NR)} \right)_n \frac{E_k^{(0)} - E_{k'}^{(0)}}{3\pi m} \pm \frac{g}{\pi} \left(k_{sg}^{(NR)} \right)_n'.
\]

(19)

One may see that the experimental analysis of the transition frequencies between the quantum gravitational states of unpolarized UCNs should lead to the estimates Eq. (15).

IV. DISCUSSION

We have analyzed a possibility to test contributions of interactions, induced by non-Riemann geometry beyond the standard Riemann General Relativity and the Lorentz-invariance violation (LV), by Kostelecký and Li [6]. Using the effective low-energy potential, derived in [6], we have calculated the contributions of beyond-Riemann gravity or the LV contributions to the energy spectrum and transition frequencies of the quantum gravitational states of polarized and unpolarized UCNs. Such UCNs are used as test-particles for probes of contributions of interactions beyond the Standard Model (SM) and Einstein’s gravity [33, 34, 36–51]. We have got the following constraints \[|(k_\phi^{(NR)})_n| < 10^{-3} \text{ GeV} \] and \[|(k_{sg}^{(NR)})_n'| = 0 \]. The upper bound \[|(k_\phi^{(NR)})_n| < 10^{-3} \text{ GeV} \] is one order of magnitude better in comparison with the constraint obtained in [6]. Then, from our analysis of the transition frequencies of the quantum gravitational states of UCNs follows that \[(k_{sg}^{(NR)})_n' = 0 \], whereas in [6] such a value \[(k_{sg}^{(NR)})_n' = 0 \] has been imposed by assumption. It is important to emphasize that for the experimental sensitivity \[\Delta E = 2 \times 10^{-17} \text{ eV} \], which should be reached in the qBOUNCE experiments in a nearest future [40], we should expect the upper bound \[|(k_\phi^{(NR)})_n| < 10^{-5} \text{ GeV} \].

As has been pointed out by Kostelecký and Li [6], the coefficient \[(k_\phi^{(NR)})_n \] should appear in the nonrelativistic Hamilton operator in Minkowski spacetime [52] but it produces no measurable effects in that context because it amounts to an unobservable redefinition of the zero of energy or, equivalently, because it can be removed from the theory via field redefinitions [53, 54]. The observability of \[(k_\phi^{(NR)})_n \] is thus confirmed to be a consequence of the coupling to the gravitational potential, the presence of which restricts the applicability of field redefinitions [55].

In the perspective of the further analysis of BRG and LV interactions by the quantum gravitation states of UCNs we see in the use of i) the total effective low-energy potential Eq. (6) for the calculation of the BRG and LV contributions to the energy spectrum and the transition frequencies of the quantum gravitational states of UCNs, and of ii) the quantum bouncing ball experiments with a free fall of UCNs in the gravitational field of the Earth [12, 43].

V. ACKNOWLEDGEMENTS

We are grateful to Alan Kostelecký for fruitful discussions and comments. The work of A. N. Ivanov was supported by the Austrian “Fonds zur Förderung der Wissenschaftlichen Forschung” (FWF) under the contracts P31702-N27, P26636-N20 and P33279-N and “Deutsche Forschungsgemeinschaft” (DFG) AB 128/5-2. The work of M. Wellenzohn was supported by the MA 23.

[1] S. Weinberg, On the development of effective field theory, EPJH 46, 6 (2021); DOI: https://doi.org/10.1140/epjh/s13129-021-00004-x; arXiv: 2101.04241 [hep-th].
Eur. Phys. J. C 40, 479 (2005); DOI: 10.1140/epjc/s2005-02135-y.

A. Westphal, H. Abele, S. Bäßler, V. V. Nesvizhevsky, K. V. Protasov, and A. Y. Voronin, A quantum mechanical description of the experiment on the observation of gravitationally bound states, Eur. Phys. J. C51, 367(2007); DOI: 10.1140/epjc/s10052-007-0283-x.

V. A. Kostelecký and N. Russell, Data Tables for Lorentz and CPT Violation, Rev. Mod. Phys. 83, 11 (2011); DOI: 10.1103/RevModPhys.83.11; 2019 edition, arXiv: 0801.0287v14 [hep-ph].

T. Jenke et al., Testing gravity at short distances: Gravity Resonance Spectroscopy with qBounce, EPJ Web Conf. 219, 05003 (2019). Contribution to International Workshop on Particle Physics at Neutron Sources (PPNS 2018); DOI: https://doi.org/10.1051/epjconf/201921905003.

RENÉ I. P. SEDMIK ET AL., Proof of Principle for Ramsey-type Gravity Resonance Spectroscopy with qBounce, EPJ Web Conf. 219, 05004 (2019); DOI: https://doi.org/10.1051/epjconf/201921905004.

T. Jenke, J. Bosina, J. Mieco, M. Pitschmann, R. Sedmik, and H. Abele, Gravity resonance spectroscopy and dark energy symmetron fields, Eur. Phys. J. Spec. Top. 230, 1131 (2021); DOI: https://doi.org/10.1140/epjs/s11734-021-00088-y.

S. Sponar, R. I. P. Sedmik, M. Pitschmann, H. Abele, and Yu. Hasegawa, Tests of fundamental quantum mechanics and dark interactions with low-energy neutrons, Nature Rev. Phys. 3, 309 (2021); DOI: https://doi.org/10.1038/s42254-021-00298-2.

H. Abele, S. Bäßler, and A. Westphal, Quantum states of neutrons in the gravitational field and limits for non-Newtonian interaction in the range between 1 micron and 10 microns, Lect. Notes Phys. 631, 355 (2003); DOI: 10.1007/978-3-540-45230-0.10.

H. Abele, T. Jenke, D. Stadler, and P. Geltenbort, qBounce: the dynamics of ultra-cold neutrons falling in the gravity potential of the Earth, Nucl. Phys. A 827, 593c (2009); DOI: 10.1016/j.nuclphysa.2009.05.131.

T. Jenke, D. Stadler, H. Abele, and P. Geltenbort, Q-BOUNCE—Experiments with quantum bouncing ultracold neutrons, Nucl. Instr. and Meth. in Physics Res. A 611, 318 (2009); DOI: 10.1016/j.nima.2009.07.073.

H. Abele, T. Jenke, H. Leeb, and J. Schmiedmayer, Ramsey’s method of separated oscillating fields and its application to gravitationally induced quantum phase shifts, Phys. Rev. D 81, 065019 (2010); DOI: 10.1103/PhysRevD.81.065019.

T. Jenke, P. Geltenbort, H. Lemmel, and H. Abele, Realization of a gravity-resonance-spectroscopy technique, Nature Physics 7, 468 (2011); DOI: 10.1038/nphys1970.

H. Abele, G. Cronenberg, P. Geltenbort, T. Jenke, T. Lins, and H. Saul, qBounce, the quantum bouncing ball experiment, Physics Procedia 17, 4 (2011); DOI: 10.1016/j.phpro.2011.06.011.

H. Abele and H. Leeb, Gravitation and quantum interference experiments with neutrons, New J. Phys. 14, 055010 (2012); DOI: 10.1088/1367-2630/14/5/055010.

T. Jenke, G. Cronenberg, J. Bürgdorfer, L. A. Chizhova, P. Geltenbort, A. N. Ivanov, T. Lauer, T. Lins, S. Rotter, H. Saul, U. Schmidt, and H. Abele, Gravity Resonance Spectroscopy constrains dark energy and dark matter scenarios, Phys. Rev. Lett. 112, 151105 (2014); DOI: 10.1103/PhysRevLett.112.151105.

T. Jenke and H. Abele, Experiments with gravitationally-bound ultracold neutrons at the European Spallation Source ESS, Phys. Procedia 51, 67 (2014); DOI: 10.1016/j.phpro.2013.12.016.

J. Schmiedmayer and H. Abele, Probing the dark side, Science 349, 786 (2015); DOI: 10.1126/science.aac9828.

G. Cronenberg, H. Filter, M. Thalhammer, T. Jenke, H. Abele, and P. Geltenbort, A gravity of Earth measurement with a qBOUNCE experiment, PoS EPS-HEP2015 408, (2015); DOI: 10.22323/1.234.0408.

H. Abele, Precision experiments with cold and ultracold neutrons, Hyperfine Interact. 237, 155 (2016); DOI: 10.1007/s10751-016-1352-z.

G. Konrad and H. Abele, Cold and ultracold neutrons as probes of new physics, PoS INPC2016, 359 (2017); DOI: 10.22323/1.281.0359.

G. Cronenberg, Ph. Brax, H. Filter, P. Geltenbort, T. Jenke, G. Pignol, M. Pitschmann, M. Thalhammer, and H. Abele, Acoustic Rabi oscillations between gravitationally bound states and impact on symmetron dark energy, Nature Phys. 14, 1022 (2018); DOI: 10.1038/s41567-018-0205-x.

A. N. Ivanov and M. Wellenzohn, Can a chameleon field be identified with quintessence?, Universe 6, 221 (2020); DOI: https://doi.org/10.3390/universe6120221; arXiv:1607.00883 [gr-qc], where we discuss also a possibility to measure the contributions of effective low-energy torsion-neutron interactions in the qBounce experiments.

V. A. Kostelecký and C. D. Lane, Constraints on Lorentz violation from clock-comparison experiments, Phys. Rev. D 60, 116010 (1999); DOI: https://doi.org/10.1103/PhysRevD.60.116010.