Supplementary Material for

Relationship between developmental modes, flight styles and wing morphology in birds
Authors: Oksana V. Shatkovska*1, Maria Ghazali*2

Addresses: * – Schmalhausen Institute of Zoology of NAS of Ukraine, Vul. B. Khmelnytskogo, 15, Kyiv, 01030, Ukraine
Emails:
1 – shatkovskayaoksana@gmail.com
2 – ghazali.maria@gmail.com

Content
Table S1: Wings measurements and body mass of bird species..2
Table S2: Body measurements of bird species..18
Table S3: Scores of the phylogenetic discriminant function analyses..25
Table S4: Canonical and structure coefficients of the phylohenetic discriminant function analyses...35
Table S5: Standard pairwise t-test for differences between flight styles and developmental modes..37
Table S6: Phylogenetic pairwise t-test for differences between flight styles and developmental modes..40
Table S1: Wings measurements and body mass of bird species

NULES - Museum of Animal Anatomy (National University of Life and Environmental Sciences of Ukraine)

Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	$fprim$ (mm)	ta (mm)	Source
Upupiformes	Upupidae	*Upupa epops*	altricial	CF	61.40	33.44	44.06	29.06	132	106.56	Wang et al. (2011)
Strigiformes	Strigidae	*Asio flammeus*	intermediate	CF	330.00	91.30	104.00	92.00	287.30	243.30	№ 216 NULES*
Strigiformes	Strigidae	*Asio flammeus*	intermediate	CF	346.50	83.57	100.73	59.00	246		Wang et al. (2011)
Strigiformes	Strigidae	*Asio otus*	intermediate	CF	262.00	80.40	92.14	48.88	250	221.42	Wang et al. (2011)
Strigiformes	Strigidae	*Athene noctua*	intermediate	CF	164.00	54.08	69.80	41.96	123	165.84	Wang et al. (2011)
Strigiformes	Strigidae	*Bubo bubo*	intermediate	CF	2686.00	157.79	183.77	112.13	358	453.69	Wang et al. (2011)
Strigiformes	Strigidae	*Bubo scandiaca*	intermediate	CF	2042.50	156.00	169.00	84.00	340	409.00	Wang et al. (2011)
Strigiformes	Strigidae	*Otus scops*	intermediate	CF	92.00	67.07	86.41	57.75	124	211.23	Wang et al. (2011)
Strigiformes	Strigidae	*Strix aluco*	intermediate	CF	830.00	105.00	115.00	75.00	295.00		№ 379 NULES*
Strigiformes	Strigidae	*Strix aluco*	intermediate	CF	475.00	84.01	95.03	55.80	185	234.84	Wang et al. (2011)
Strigiformes	Strigidae	*Surnia ulula*	intermediate	CF	325.00	70.20	80.20	66.00	216.40		№ 322 NULES*
Strigiformes	Strigidae	*Tyto alba*	intermediate	CF	447.00	82.52	91.41	51.75	230	225.68	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	fprim (mm)	ta (mm)	Source
---------------	------------------	--------------------------------	--------------------	--------------	-------	--------	--------	--------	-----------	--------	--------------
Psittaciformes	Cacatuidae	Nymphicus hollandicus	altricial		90.00	30.00	35.00	41.00	106.00		№ 396
											NULES*
Psittaciformes	Psittacidae	Agapornis roseicollis	altricial		47.00	17.00	23.00	27.00	67.00		№ 585
											NULES*
Psittaciformes	Psittacidae	Melopsittacus undulatus	altricial		42.00	14.00	19.00	25.00	58.00		NULES*
Psittaciformes	Psittacidae	Poicephalus senegalus	altricial		130.00	40.00	41.00	44.00	125.00		№ 333
											NULES*
Psittaciformes	Psittacidae	Psittacus erithacus	altricial		400.00	60.00	70.00	78.00	208.00		№ 323
											NULES*
Podicipediformes	Podicipedidae	Podiceps auritus	precocial	CF	453.00	77.65	67.93	33.85	124	179.43	Wang et al. (2011)
Podicipediformes	Podicipedidae	Podiceps cristatus	precocial	CF	673.50	108.05	102.20	62.28	162	272.53	Wang et al. (2011)
Podicipediformes	Podicipedidae	Podiceps grisegena	precocial	CF	1023.00	107.14	98.82	45.22	161	251.18	Wang et al. (2011)
Podicipediformes	Podicipedidae	Podiceps nigricollis	precocial	CF	292.00	69.68	63.88	31.00	116	164.56	Wang et al. (2011)
Piciformes	Picidae	Dendrocopos major	altricial	PT	81.60	32.02	36.79	29.58	118	98.39	Wang et al. (2011)
Piciformes	Picidae	Dendrocopos major	altricial	PT	80.00	30.00	40.00	25.00	95.00		№ 466
Piciformes	Picidae	Dendrocopos minor	altricial	PT	19.80	21.20	24.09	15.65	68	60.94	Wang et al. (2011)
Piciformes	Picidae	Dryocopus martius	altricial	PT	321.00	54.00	60.00	50.00	156	164.00	Wang et al. (2011)
Piciformes	Picidae	Picus viridis	altricial	PT	176.00	41.55	48.08	35.03	105	124.66	Wang et al. (2011)
Pelecaniformes	Pelecanidae	Pelecanus crispus	intermediate		10000.00	385.00	410.00	290.00	1085.00		№ 126
											NULES*
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	fprim (mm)	ta (mm)	Source
---------------	-----------------	--------------------	--------------------	--------------	-------	---------	---------	---------	------------	---------	----------------
Pelecaniformes	Pelecanidae	*Pelecanus onocrotalus*	intermediate	FS	9600.00	325.00	371.00	139.20	430	835.20	Wang et al. (2011)
Pelecaniformes	Phalacrocoracidae	*Phalacrocorax aristotelis*	intermediate	CF	1769.00	122.30	133.50	56.50	193	312.30	Wang et al. (2011)
Pelecaniformes	Phalacrocoracidae	*Phalacrocorax carbo*	intermediate	CF	2109.50	161.11	174.07	105.57	269	440.75	Wang et al. (2011)
Pelecaniformes	Phalacrocoracidae	*Phalacrocorax carbo*	intermediate	CF	2750.00	155.00	170.00	131.00	456	456.00	NULES*
Passeriformes	Acrocephalidae	*Acrocephalus schoenobaenus*	altricial	PT	11.20	12.69	15.17	12.38	63	40.24	Wang et al. (2011)
Passeriformes	Acrocephalidae	*Acrocephalus scirpaceus*	altricial	PT	12.30	11.93	16.84	14.97	57	43.74	Wang et al. (2011)
Passeriformes	Aegithalidae	*Aegithalos caudatus*	altricial	PT	8.20	11.00	13.85	11.00	45	35.85	Wang et al. (2011)
Passeriformes	Alaudidae	*Alauda arvensis*	altricial	PT	39.95	25.16	30.63	24.01	85	79.80	Wang et al. (2011)
Passeriformes	Bombycillidae	*Bombycilla garrulus*	altricial	PT	56.40	22.20	27.40	15.50	101	65.10	Wang et al. (2011)
Passeriformes	Calcariidae	*Plectrophenax nivalis*	altricial	PT	42.20	20.20	23.65	18.85	103	62.70	Wang et al. (2011)
Passeriformes	Certhiidae	*Certhia familiaris*	altricial	PT	9.00	12.80	15.80	8.37	53	36.97	Wang et al. (2011)
Passeriformes	Cinclidae	*Cinclus cinclus*	altricial	PT	59.80	22.00	24.90	19.20	82	66.10	Wang et al. (2011)
Passeriformes	Corvidae	*Corvus corone*	altricial	CF	570.00	66.26	79.50	69.63	228	215.39	Wang et al. (2011)
Passeriformes	Corvidae	*Corvus frugilegus*	altricial	CF	488.00	66.98	81.93	67.68	270	216.59	Wang et al. (2011)
Passeriformes	Corvidae	*Corvus frugilegus*	altricial	CF	426.00	63.00	78.00	76.00	217	217.00	№ 242 NULES*
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	fprim (mm)	ta (mm)	Source
---------------	----------------	--------------------------	--------------------	--------------	-------	--------	--------	--------	------------	--------	----------------------
Passeriformes	Corvidae	*Corvus monedula*	altricial	CF	275.00	47.36	60.46	49.92	204	157.74	Wang et al. (2011)
Passeriformes	Corvidae	*Garrulus glandarius*	altricial	CF	161.00	41.68	49.06	36.06	125	126.80	Wang et al. (2011)
Passeriformes	Corvidae	*Garrulus glandarius*	altricial	CF	170.00	40.00	49.00	35.00	124		№ 586 NULES*
Passeriformes	Corvidae	*Pica pica*	altricial	CF	177.50	43.09	51.31	35.40	127	129.80	Wang et al. (2011)
Passeriformes	Emberizidae	*Emberiza cirtus*	altricial	PT	23.10	17.70	19.65	19.37	67	56.72	Wang et al. (2011)
Passeriformes	Emberizidae	*Emberiza citrinella*	altricial	PT	26.50	20.52	24.04	20.25	68	64.81	Wang et al. (2011)
Passeriformes	Emberizidae	*Emberiza schoeniclus*	altricial	PT	18.30	17.96	20.59	18.77	62	57.32	Wang et al. (2011)
Passeriformes	Estrildidae	*Taeniopygia guttata*	altricial		18.00	12.00	16.00	15.00	43	43.00	№ 396 NULES*
Passeriformes	Fringillidae	*Carduelis cannabina*	altricial	PT	15.30	17.03	20.99	13.93	43	51.95	Wang et al. (2011)
Passeriformes	Fringillidae	*Carduelis carduelis*	altricial	PT	20.00	16.85	22.98	21.19	63	61.02	Wang et al. (2011)
Passeriformes	Fringillidae	*Carduelis chloris*	altricial	PT	27.80	19.03	23.37	15.28	74	57.68	Wang et al. (2011)
Passeriformes	Fringillidae	*Carduelis spinus*	altricial	PT	14.50	12.98	15.94	15.71	68	44.63	Wang et al. (2011)
Passeriformes	Fringillidae	*Coccothraustes coccothraustes*	altricial		55.00	23.50	25.00	26.50	75.00		№ 328 NULES*
Passeriformes	Fringillidae	*Coccothraustes coccothraustes*	altricial	PT	54.00	23.64	26.77	23.64	98	74.05	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	fprim (mm)	ta (mm)	Source
------------	-------------	-----------------------	-------------------	--------------	--------	---------	---------	---------	------------	---------	--------------
Passeriformes	Fringillidae	*Fringilla coelebs*	altricial	PT	21.40	18.16	22.43	20.01	65	60.60	Wang et al. (2011)
Passeriformes	Fringillidae	*Fringilla montifringilla*	altricial	PT	24.00	18.87	22.86	20.83	83	62.56	Wang et al. (2011)
Passeriformes	Fringillidae	*Loxia curvirostra*	altricial	PT	36.50	20.50	25.24	20.77	81	66.51	Wang et al. (2011)
Passeriformes	Fringillidae	*Pyrrhula pyrrhula*	altricial	PT	21.80	18.94	23.27	16.39	62	58.60	Wang et al. (2011)
Passeriformes	Hirundinidae	*Delichon urbicum*	altricial	FG	14.50	13.98	21.30	16.57	95	51.85	Wang et al. (2011)
Passeriformes	Hirundinidae	*Hirundo rustica*	altricial	FG	16.00	14.98	23.41	20.56	105	58.95	Wang et al. (2011)
Passeriformes	Hirundinidae	*Riparia riparia*	altricial	FG	14.60	14.50	21.12	17.89	102	53.51	Wang et al. (2011)
Passeriformes	Laniidae	*Lanius collurio*	altricial	PT	29.90	20.18	23.85	19.60	80	63.63	Wang et al. (2011)
Passeriformes	Laniidae	*Lanius excubitor*	altricial	PT	65.60	26.86	33.02	20.77	92	80.65	Wang et al. (2011)
Passeriformes	Laniidae	*Lanius senator*	altricial	PT	29.10	21.65	29.66	21.65	73	72.96	Wang et al. (2011)
Passeriformes	Motacillidae	*Anthus pratensis*	altricial	PT	18.40	19.52	23.85	16.65	78	60.02	Wang et al. (2011)
Passeriformes	Motacillidae	*Motacilla alba*	altricial	PT	22.70	19.21	23.90	16.28	74	59.39	Wang et al. (2011)
Passeriformes	Motacillidae	*Motacilla cinerea*	altricial	PT	17.60	18.07	23.77	15.08	78	56.92	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	$fprim$ (mm)	ta (mm)	Source
------------	-------------	--------------------------------	--------------------	--------------	--------	----------	----------	----------	-------------	----------	------------------
Passeriformes	Muscicapidae	*Erithacus rubecula*	altricial	PT	18.20	16.39	19.52	15.01	51	50.92	Wang et al. (2011)
Passeriformes	Muscicapidae	*Ficedula hypoleuca*	altricial	PT	11.60	14.85	21.82	18.10	62	54.77	Wang et al. (2011)
Passeriformes	Muscicapidae	*Luscinia megarhynchos*	altricial	PT	19.63	17.00	22.93	18.81	81	58.74	Wang et al. (2011)
Passeriformes	Muscicapidae	*Luscinia svecica*	altricial	PT	16.63	16.02	20.87	17.72	63	54.61	Wang et al. (2011)
Passeriformes	Muscicapidae	*Monticola solitarius*	altricial	PT	53.75	25.84	35.77	33.79	97	95.40	Wang et al. (2011)
Passeriformes	Muscicapidae	*Muscicapa striata*	altricial	PT	14.60	15.40	21.70	14.55	70	51.65	Wang et al. (2011)
Passeriformes	Muscicapidae	*Phoenicurus phoenicurus*	altricial	PT	14.60	15.99	20.34	14.81	75	51.14	Wang et al. (2011)
Passeriformes	Muscicapidae	*Saxicola rubetra*	altricial	PT	16.60	16.18	22.06	16.05	67	54.29	Wang et al. (2011)
Passeriformes	Muscicapidae	*Saxicola torquatus*	altricial	PT	13.25	15.75	19.88	12.84	53	48.47	Wang et al. (2011)
Passeriformes	Oriolidae	*Oriolus oriolus*	altricial	PT	79.00	31.95	40.84	31.45	119	104.24	Wang et al. (2011)
Passeriformes	Paridae	*Parus ater*	altricial	PT	9.10	12.70	15.10	8.70	46	36.50	Wang et al. (2011)
Passeriformes	Paridae	*Parus caeruleus*	altricial	PT	13.30	13.95	17.01	14.45	45	45.41	Wang et al. (2011)
Passeriformes	Paridae	*Parus major*	altricial	PT	20.00	19.00	20.00	17.20	56.20	56.20	№ 312 NULES*
Passeriformes	Paridae	*Parus major*	altricial	PT	19.00	16.42	20.00	14.86	49	51.28	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	$fprim$ (mm)	ta (mm)	Source
------------------	-----------------	--------------------------	--------------------	--------------	---------	-----------	-----------	-----------	-------------	-----------	----------------
Passeriformes	Paridae	*Parus montanus*	altricial	PT	10.20	13.60	16.30	9.00	40	38.90	Wang et al. (2011)
Passeriformes	Passeridae	*Passer domesticus*	altricial	PT	27.70	19.09	22.45	20.29	63	61.83	Wang et al. (2011)
Passeriformes	Passeridae	*Passer montanus*	altricial	PT	22.00	17.00	19.00	17.00	53.00		№ 304 NULES*
Passeriformes	Passeridae	*Passer montanus*	altricial	PT	22.00	16.79	18.92	15.71	64	51.42	Wang et al. (2011)
Passeriformes	Prunellidae	*Prunella modularis*	altricial	PT	20.25	16.44	17.99	15.55	54	49.98	Wang et al. (2011)
Passeriformes	Regulidae	*Regulus regulus*	altricial	PT	5.70	8.82	12.72	8.22	39	29.76	Wang et al. (2011)
Passeriformes	Sittidae	*Sitta europaea*	altricial	PT	22.00	18.53	22.32	18.08	68	58.93	Wang et al. (2011)
Passeriformes	Sturnidae	*Sturnus vulgaris*	altricial	PT	82.30	27.77	33.73	30.97	107	92.47	Wang et al. (2011)
Passeriformes	Sylviidae	*Sylvia atricapilla*	altricial	PT	15.50	16.97	20.01	19.00	63	55.98	Wang et al. (2011)
Passeriformes	Sylviidae	*Sylvia curruca*	altricial	PT	10.10	13.10	15.80	8.80	60	37.70	Wang et al. (2011)
Passeriformes	Tichodromadidae	*Tichodroma muraria*	altricial	PT	17.20	19.98	25.90	21.95	70	67.83	Wang et al. (2011)
Passeriformes	Trogloidyidae	*Troglocytes aedon*	altricial	PT	10.90	13.18	14.42	11.30	34	38.90	Wang et al. (2011)
Passeriformes	Turdidae	*Turdus iliacus*	altricial	PT	61.20	26.51	31.88	21.25	93	79.64	Wang et al. (2011)
Passeriformes	Turdidae	*Turdus merula*	altricial	PT	93.77	29.67	35.43	28.82	98	93.92	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	$fprim$ (mm)	ta (mm)	Source
--------------	----------	---------------------	--------------------	--------------	---------	----------	----------	-----------	--------------	----------	-----------------------
Passeriformes	Turdidae	*Turdus philomelos*	altricial	PT	67.75	26.83	30.95	29.72	92	87.50	Wang et al. (2011)
Passeriformes	Turdidae	*Turdus philomelos*	altricial		77.00	30.00	35.00	35.00	100.00		Ne 177 NULES*
Passeriformes	Turdidae	*Turdus pilaris*	altricial	PT	106.00	29.97	34.58	31.81	116	96.36	Wang et al. (2011)
Passeriformes	Turdidae	*Turdus torquatus*	altricial	PT	109.00	30.73	40.82	37.61	100	109.16	Wang et al. (2011)
Passeriformes	Turdidae	*Turdus viscivorus*	altricial	PT	115.00	31.24	35.02	35.02	114	101.28	Wang et al. (2011)
Gruiformes	Gruidae	*Grus grus*	precocial	CF	5500.00	227.16	247.46	192.50	384	667.12	Wang et al. (2011)
Gruiformes	Otididae	*Otis tarda*	precocial	CF	8100.00	196.46	215.42	177.16	582	589.04	Wang et al. (2011)
Gruiformes	Rallidae	*Crex crex*	precocial	CF	155.50	48.88	43.51	46.73	126	139.12	Wang et al. (2011)
Gruiformes	Rallidae	*Fulica atra*	precocial	CF	892.50	77.33	66.98	62.42	135	206.73	Wang et al. (2011)
Gruiformes	Rallidae	*Gallinula chloropus*	precocial	CF	302.50	50.68	41.64	36.85	116	129.17	Wang et al. (2011)
Gruiformes	Rallidae	*Rallus aquaticus*	precocial	CF	120.00	40.24	32.12	32.37	94	104.73	Wang et al. (2011)
Gaviiformes	Gaviidae	*Gavia immer*	precocial	CF	4134.00	191.68	153.05	99.74	250	444.47	Wang et al. (2011)
Gaviiformes	Gaviidae	*Gavia stellata*	precocial	CF	1551.00	139.63	112.89	91.33	174	343.85	Wang et al. (2011)
Galliformes	Phasianidae	*Alectoris rufa*	precocial	CF	483.00	53.43	49.80	41.15	121	144.38	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	fprim (mm)	ta (mm)	Source
--------------	------------	----------------------	--------------------	--------------	-------	--------	--------	--------	-----------	--------	------------------------
Galliformes	Phasianidae	Coturnix coturnix	precocial	CF	96.50	35.76	29.94	23.63	80	89.33	Wang et al. (2011)
Galliformes	Phasianidae	Lagopus lagopus	precocial	CF	558.50	67.13	59.94	57.13	154	184.20	Wang et al. (2011)
Galliformes	Phasianidae	Lagopus muta	precocial	CF	422.00	60.83	54.10	38.03	181	152.96	Wang et al. (2011)
Galliformes	Phasianidae	Meleagris gallopavo	precocial		3000.00	165.00	150.00	120.00	435.00		NULES*
Galliformes	Phasianidae	Pavo cristatus	precocial	CF	4187.50	128.07	107.97	61.60	326	297.64	Wang et al. (2011)
Galliformes	Phasianidae	Pavo cristatus	precocial		4000.00	134.00	120.00	100.00	354.00		NULES*
Galliformes	Phasianidae	Perdix perdix	precocial	CF	389.50	51.92	45.78	48.37	127	146.07	Wang et al. (2011)
Galliformes	Phasianidae	Tetrao tetrix	precocial	CF	1082.50	82.86	78.86	63.89	208	225.61	Wang et al. (2011)
Galliformes	Phasianidae	Tetrao urogallus	precocial	CF	2950.00	118.24	113.12	85.95	263	317.31	Wang et al. (2011)
Falconiformes	Accipitridae	Accipiter gentilis	intermediate	FS	1024.50	94.21	105.05	78.86	273	278.12	Wang et al. (2011)
Falconiformes	Accipitridae	Accipiter nisus	intermediate		227.00	60.00	68.50	61.00	189.50		№ 180 NULES*
Falconiformes	Accipitridae	Accipiter nisus	intermediate	FS	237.50	51.77	62.29	49.74	146	163.80	Wang et al. (2011)
Falconiformes	Accipitridae	Aegypius monachus	intermediate		7000.00	275.00	345.00	235.00	855.00		№ 627 NULES*
Falconiformes	Accipitridae	Aquila chrysaetos	intermediate		4600.00	180.00	198.00	149.00	527.00		NULES*
Falconiformes	Accipitridae	Aquila chrysaetos	intermediate	FS	4197.00	184.56	214.78	95.47	405	494.81	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	fprim (mm)	ta (mm)	Source
-----------	----------------	--------------------	--------------------	--------------	-------	---------	---------	---------	-------------	---------	-------------------------
Falconiformes	Accipitridae	Buteo buteo	intermediate	FS	875.00	106.88	127.15	94.35	253	328.38	Wang et al. (2011)
Falconiformes	Accipitridae	Buteo lagopus	intermediate	FS	956.00	112.92	131.31	97.73	247	341.96	Wang et al. (2011)
Falconiformes	Accipitridae	Circus aeruginosus	intermediate	FS	627.50	104.11	126.34	100.43	253	330.88	Wang et al. (2011)
Falconiformes	Accipitridae	Circus cyaneus	intermediate	FS	435.50	92.34	104.42	79.37	230	276.13	Wang et al. (2011)
Falconiformes	Accipitridae	Circus pygargus	intermediate	FS	315.50	86.58	116.88	92.76	303	296.22	Wang et al. (2011)
Falconiformes	Accipitridae	Gypaetus barbatus	intermediate	FS	5680.00	225.81	266.36	135.88	670	628.05	Wang et al. (2011)
Falconiformes	Accipitridae	Gyps fulvus	intermediate	FS	7436.00	237.85	292.02	161.55	576	691.42	Wang et al. (2011)
Falconiformes	Accipitridae	Haliaeetus albicilla	intermediate	FS	5500.00	240.00	250.00	177.00	667.00	Ne 243 NULES*	
Falconiformes	Accipitridae	Haliaeetus albicilla	intermediate	FS	4793.00	220.24	248.99	186.20	381	655.43	Wang et al. (2011)
Falconiformes	Accipitridae	Milvus migrans	intermediate	FS	950.00	117.24	133.85	90.43	340	341.52	Wang et al. (2011)
Falconiformes	Accipitridae	Milvus milvus	intermediate	FS	1080.00	123.58	141.42	112.82	268	377.82	Wang et al. (2011)
Falconiformes	Accipitridae	Neophron percnopterus	intermediate	FS	2120.00	143.45	161.65	75.95	401	381.05	Wang et al. (2011)
Falconiformes	Falconidae	Falco columbarius	intermediate	FG	190.50	47.58	53.82	50.95	158	152.35	Wang et al. (2011)
Falconiformes	Falconidae	Falco peregrinus	intermediate	FG	781.50	87.26	102.32	92.39	280	281.97	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	fprim (mm)	ta (mm)	Source
-----------	------------	-----------------------	--------------------	--------------	-------	---------	---------	---------	------------	---------	----------------------
Falconiformes Falconidae	Falco subbuteo	intermediate	FG	240.00	55.32	63.03	60.50	236	178.85		Wang et al. (2011)
Falconiformes Falconidae	Falco tinnunculus	intermediate	FG	201.50	53.85	63.41	55.37	170	172.63		Wang et al. (2011)
Falconiformes Falconidae	Falco tinnunculus	intermediate	FG	170.00	50.00	60.00	57.00	167	167.00		№ 331 NULES*
Falconiformes Pandionidae	Pandion haliaetus	intermediate	FS	1600.00	146.40	184.99	124.70	319	456.09		Wang et al. (2011)
Cuculiformes Cuculidae	Cuculus canorus	altricial	PT	113.00	39.74	44.04	45.81	201	129.59		Wang et al. (2011)
Coraciiformes Alcedinidae	Alcedo atthis	altricial	PT	35.00	25.16	29.45	14.74	62	69.35		Wang et al. (2011)
Coraciiformes Coraciidae	Coracias garrulus	altricial	PT	146.00	45.40	57.44	54.93	179	157.77		Wang et al. (2011)
Columbiformes Columbidae	Columba livia	intermediate	CF	354.50	44.62	51.34	47.00	193	142.96		Wang et al. (2011)
Columbiformes Columbidae	Columba livia	intermediate	CF	322.00	46.00	54.00	60.00	160	160.00		NULES*
Columbiformes Columbidae	Columba livia	intermediate	CF	322.50	44.00	54.00	66.50	164	164.50		NULES*
Columbiformes Columbidae	Columba oenas	intermediate	CF	291.00	46.80	51.03	48.40	193	146.23		Wang et al. (2011)
Columbiformes Columbidae	Columba palumbus	intermediate	CF	490.00	54.90	59.02	26.21	208	140.13		Wang et al. (2011)
Columbiformes Columbidae	Streptopelia turtur	intermediate	CF	132.00	36.92	41.14	37.78	149	115.84		Wang et al. (2011)
Ciconiiformes Ardeidae	Ardea cinerea	intermediate	CF	1550.00	180.00	205.00	159.00	544	492.28		№ 334 NULES*
Ciconiiformes Ardeidae	Ardea cinerea	intermediate	CF	1443.00	170.73	200.77	120.78	284	492.28		Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	fprim (mm)	ta (mm)	Source
-----------	-------------	------------------------	--------------------	--------------	-------	---------	---------	---------	------------	---------	-------------------------
Ciconiiformes	Ardeidae	*Ardea purpurea*	intermediate	CF	935.00	138.42	159.15	76.59	258	374.16	Wang et al. (2011)
Ciconiiformes	Ardeidae	*Botaurus stellaris*	intermediate	FS	916.50	134.29	143.18	81.91	258	359.38	Wang et al. (2011)
Ciconiiformes	Ardeidae	*Bubulcus ibis*	intermediate	FS	338.00	94.00	106.88	50.15	190	251.03	Wang et al. (2011)
Ciconiiformes	Ardeidae	*Egretta garzetta*	intermediate	CF	1100.00	152.40	177.53	91.23	320	421.16	Wang et al. (2011)
Ciconiiformes	Ardeidae	*Nycticorax nycticorax*	intermediate	CF	883.00	107.31	119.48	70.37	216	297.16	Wang et al. (2011)
Ciconiiformes	Ciconiidae	*Ciconia ciconia*	intermediate	FS	3473.00	199.33	229.92	169.04	350	598.29	Wang et al. (2011)
Ciconiiformes	Ciconiidae	*Ciconia ciconia*	intermediate	FS	3000.00	197.00	230.00	167.00	594.00		Nr 236 NULES*
Ciconiiformes	Ciconiidae	*Ciconia nigra*	intermediate	FS	3000.00	196.00	217.00	107.33	359	520.33	Wang et al. (2011)
Ciconiiformes	Threskiornithidae	*Plegadis falcinellus*	intermediate	FS	532.50	93.30	101.30	54.50	205	249.10	Wang et al. (2011)
Charadriiformes	Alcidae	*Alca torda*	intermediate	CF	710.00	76.91	59.00	48.87	131	184.78	Wang et al. (2011)
Charadriiformes	Alcidae	*Alle alle*	intermediate	CF	163.00	43.56	35.17	28.54	92	107.27	Wang et al. (2011)
Charadriiformes	Alcidae	*Cepphus grylle*	intermediate	CF	405.00	60.18	50.46	34.20	150	144.84	Wang et al. (2011)
Charadriiformes	Alcidae	*Fratercula arctica*	intermediate	CF	381.00	63.26	50.77	42.78	114	156.81	Wang et al. (2011)
Charadriiformes	Alcidae	*Uria aalge*	intermediate	CF	992.50	87.25	63.13	58.89	130	209.27	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	fprim (mm)	ta (mm)	Source
------------------	--------------	----------------------	--------------------	--------------	-------	--------	--------	--------	-----------	--------	----------------
Charadriiformes	Burhinidae	Burhinus oedicnemus	precocial	CF	459.00	80.26	90.34	74.88	230	245.48	Wang et al. (2011)
Charadriiformes	Charadriidae	Charadrius hiaticula	precocial	CF	64.00	32.66	36.07	31.84	115	100.57	Wang et al. (2011)
Charadriiformes	Charadriidae	Pluvialis apricaria	precocial	CF	214.00	48.66	54.41	54.56	169	157.63	Wang et al. (2011)
Charadriiformes	Charadriidae	Pluvialis squatarola	precocial	CF	220.00	52.50	54.78	54.60	156	161.88	Wang et al. (2011)
Charadriiformes	Charadriidae	Vanellus vanellus	precocial	CF	218.50	61.91	68.55	54.72	181	185.18	Wang et al. (2011)
Charadriiformes	Haematopodidae	Haematopus ostralegus	precocial	CF	526.00	73.47	77.75	72.91	190	224.13	Wang et al. (2011)
Charadriiformes	Laridae	Larus argentatus	intermediate	CF	1135.00	128.77	144.26	103.82	305	376.85	Wang et al. (2011)
Charadriiformes	Laridae	Larus canus	intermediate	CF	403.50	83.05	91.64	84.48	282	259.17	Wang et al. (2011)
Charadriiformes	Laridae	Larus marinus	intermediate	CF	1658.50	153.27	170.55	120.16	442	443.98	Wang et al. (2011)
Charadriiformes	Laridae	Larus ridibundus	intermediate	CF	284.00	76.81	88.81	73.77	237	239.39	Wang et al. (2011)
Charadriiformes	Laridae	Rissa tridactyla	intermediate	CF	407.00	85.60	94.60	64.48	238	244.68	Wang et al. (2011)
Charadriiformes	Recurvirostridae	Recurvirostra avosetta	precocial	CF	306.00	73.48	77.27	76.55	190	227.30	Wang et al. (2011)
Charadriiformes	Scolopacidae	Arenaria interpres	precocial	CF	115.00	39.91	43.12	44.74	136	127.77	Wang et al. (2011)
Charadriiformes	Scolopacidae	Calidris alpina	precocial	CF	47.75	28.07	29.36	36.39	105	93.82	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	$fprim$ (mm)	ta (mm)	Source
---------------	-------------------	-----------------------	--------------------	--------------	---------	-----------	-----------	-----------	---------------	-----------	-------------------------
Charadriiformes	Scolopacidae	Calidris canutus	precocial	CF	137.00	43.02	47.36	52.04	123	142.42	Wang et al. (2011)
Charadriiformes	Scolopacidae	Gallinago gallinago	precocial	CF	122.00	37.50	39.77	39.38	105	116.65	Wang et al. (2011)
Charadriiformes	Scolopacidae	Limosa lapponica	precocial	CF	342.50	60.59	64.53	65.17	163	190.29	Wang et al. (2011)
Charadriiformes	Scolopacidae	Limosa limosa	precocial	CF	291.00	62.46	67.19	38.21	180	167.86	Wang et al. (2011)
Charadriiformes	Scolopacidae	Lymnocryptes minimus	precocial	CF	50.20	31.75	33.98	40.79	105	106.52	Wang et al. (2011)
Charadriiformes	Scolopacidae	Numenius arquata	precocial	CF	805.50	96.01	104.00	61.04	240	261.05	Wang et al. (2011)
Charadriiformes	Scolopacidae	Scolopax rusticola	precocial	CF	309.50	52.90	57.42	69.91	156	180.23	Wang et al. (2011)
Charadriiformes	Scolopacidae	Tringa totanus	precocial	CF	129.00	44.60	49.41	52.07	125	146.08	Wang et al. (2011)
Charadriiformes	Stercorariidae	Stercorarius parasiticus	intermediate	CF	464.50	94.00	97.80	49.65	258	241.45	Wang et al. (2011)
Charadriiformes	Sternidae	Sterna hirundo	intermediate	CF	135.00	56.00	68.50	71.20	195.70	Nr11-55	NULES*
Charadriiformes	Sternidae	Sterna sandvicensis	intermediate	CF	208.00	69.00	82.50	41.20	278	192.70	Wang et al. (2011)
Caprimulgiformes	Caprimulgidae	Caprimulgus europaeus	intermediate	CF	67.00	37.74	48.51	53.31	167	139.56	Wang et al. (2011)
Apodiformes	Apodidae	Apus apus	altricial	FG	22.75	11.83	18.11	27.93	146	57.87	Wang et al. (2011)
Anseriformes	Anatidae	Aix galericulata	precocial	CF	570.00	70.10	58.00	45.60	191	173.70	Wang et al. (2011)
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	fprim (mm)	ta (mm)	Source
--------------	-------------	-----------------	--------------------	--------------	-------	--------	--------	--------	-----------	--------	-------------------------
Anseriformes	Anatidae	Anas acuta	precocial	CF	1010.50	90.60	78.78	95.52	234	264.90	Wang et al. (2011)
Anseriformes	Anatidae	Anas clypeata	precocial	CF	613.00	75.04	64.53	51.63	208	191.20	Wang et al. (2011)
Anseriformes	Anatidae	Anas crecca	precocial	CF	341.00	59.63	47.90	50.91	156	158.44	Wang et al. (2011)
Anseriformes	Anatidae	Anas penelope	precocial	CF	771.50	86.22	72.51	72.87	197	231.60	Wang et al. (2011)
Anseriformes	Anatidae	Anas platyrhynchos	precocial	CF	1082.00	89.75	74.25	63.84	204	227.84	Wang et al. (2011)
Anseriformes	Anatidae	Anser anser	precocial	CF	3308.50	179.74	171.11	181.19	410	532.04	Wang et al. (2011)
Anseriformes	Anatidae	Aythya ferina	precocial	CF	823.00	86.46	72.37	71.44	153	230.27	Wang et al. (2011)
Anseriformes	Anatidae	Aythya fuligula	precocial	CF	694.00	74.55	67.33	57.05	148	198.93	Wang et al. (2011)
Anseriformes	Anatidae	Branta bernica	precocial	CF	1300.00	123.57	113.08	122.47	410	359.12	Wang et al. (2011)
Anseriformes	Anatidae	Branta canadensis	precocial	CF	2943.07	180.77	161.33	99.50	438	441.60	Wang et al. (2011)
Anseriformes	Anatidae	Branta leucopsis	precocial	CF	1687.00	132.53	120.55	99.72	358	352.80	Wang et al. (2011)
Anseriformes	Anatidae	Bucephala clangula	precocial	CF	900.00	69.80	59.08	55.70	205	184.58	Wang et al. (2011)
Anseriformes	Anatidae	Cygnus cygnus	precocial	CF	9750.00	263.00	260.00	218.00	741.00		№ 969 NULES*
Anseriformes	Anatidae	Cygnus olor	precocial	CF	9250.00	285.00	250.00	235.00	770.00		№ 345 NULES*
Order	Family	Species	Developmental mode	Flight style	M (g)	hu (mm)	ul (mm)	mn (mm)	$fprim$ (mm)	ta (mm)	Source
------------	------------	--------------------	--------------------	--------------	---------	-----------	-----------	-----------	---------------	-----------	-------------------------
Anseriformes	Anatidae	*Cygnus olor*	precocial	CF	10735.00	279.68	254.68	231.93	423	766.29	Wang et al. (2011)
Anseriformes	Anatidae	*Mergus serrator*	precocial	CF	1021.50	89.03	72.07	55.30	176	216.40	Wang et al. (2011)
Anseriformes	Anatidae	*Somateria mollissima*	precocial	CF	2066.50	111.80	97.13	69.23	190	278.16	Wang et al. (2011)
Table S2: Body measurements of bird species

Data on body mass, wing-span, wing-area was taken from Bruderer et al. (2010)

Order	Family	Species	Developmental mode	Flight style	M (g)	Wing-span (m)	Wing-area (m²)
Anseriformes	Anatidae	Anas acuta	precocial	CF	911	0.930	0.0918
Anseriformes	Anatidae	Anas clypeata	precocial	CF	598	0.780	0.0750
Anseriformes	Anatidae	Anas platyrhynchos	precocial	CF	1094	0.890	0.1054
Anseriformes	Anatidae	Anas strepera	precocial	CF	740	0.900	0.1000
Anseriformes	Anatidae	Aythya ferina	precocial	CF	1005	0.780	0.0660
Anseriformes	Anatidae	Aythya fuligula	precocial	CF	806	0.750	0.0630
Anseriformes	Anatidae	Cygnus olor	precocial	CF	8760	2.300	0.6504
Anseriformes	Anatidae	Mergus merganser	precocial	CF	1479	0.960	0.0680
Apodiformes	Apodidae	Apus affinis	altricial	FG	18	0.330	0.0100
Apodiformes	Apodidae	Apus apus	altricial	FG	40	0.400	0.0150
Apodiformes	Apodidae	Apus melba	altricial	FG	81	0.500	0.0271
Apodiformes	Apodidae	Apus pallidus	altricial	FG	40	0.400	0.0150
Caprimulgiformes	Caprimulgidae	Caprimulgus ruficollis	intermediate	CF	69	0.670	0.0567
Charadriiformes	Scolopacidae	Calidris alba	precocial	CF	50	0.350	0.0160
Charadriiformes	Scolopacidae	Calidris alpina	precocial	CF	44	0.360	0.0160
Charadriiformes	Charadriidae	Charadrius hiaticula	precocial	CF	53	0.400	0.0179
Charadriiformes	Laridae	Chlidonias leucopterus	intermediate	CF	68	0.570	0.0545
Charadriiformes	Laridae	Chlidonias niger	intermediate	CF	65	0.600	0.0521
Charadriiformes	Glareolidae	Cursorius cursor	precocial	CF	115	0.540	0.0407
Order	Family	Species	Developmental mode	Flight style	M (g)	Wing-span (m)	Wing-area (m²)
-----------------	---------------	-----------------------	--------------------	--------------	-------	---------------	----------------
Charadriiformes	Scolopacidae	Gallinago gallinago	precocial	CF	122	0.460	0.0309
Charadriiformes	Glareolidae	Glareola nordmanni	precocial	CF	100	0.640	0.0540
Charadriiformes	Glareolidae	Glareola pratincola	precocial	CF	80	0.630	0.0503
Charadriiformes	Haematopodidae	Haematopus ostralegus	precocial	CF	403	0.850	0.0891
Charadriiformes	Recurvirostridae	Himantopus himantopus	precocial	CF	160	0.750	0.0600
Charadriiformes	Charadriidae	Hoplopterus spinosus	precocial	CF	150	0.700	0.0700
Charadriiformes	Laridae	Larus argentatus	intermediate	CF	705	1.350	0.2001
Charadriiformes	Laridae	Larus cachinnans	intermediate	CF	1000	1.430	0.2496
Charadriiformes	Laridae	Larus canus	intermediate	CF	276	1.100	0.1380
Charadriiformes	Laridae	Larus fuscus	intermediate	CF	797	1.340	0.1895
Charadriiformes	Laridae	Larus minutus	intermediate	CF	120	0.650	0.0800
Charadriiformes	Laridae	Larus ridibundus	intermediate	CF	275	0.960	0.0983
Charadriiformes	Scolopacidae	Limosa lapponica	precocial	CF	271	0.720	0.0550
Charadriiformes	Scolopacidae	Numenius arquata	precocial	CF	726	1.040	0.1189
Charadriiformes	Scolopacidae	Numenius phaeopus	precocial	CF	373	0.820	0.0730
Charadriiformes	Scolopacidae	Philomachus pugnax F	precocial	CF	120	0.450	0.0300
Charadriiformes	Scolopacidae	Philomachus pugnax M	precocial	CF	190	0.570	0.0450
Charadriiformes	Charadriidae	Pluvialis apricaria	precocial	CF	190	0.560	0.0500
Charadriiformes	Charadriidae	Pluvialis squatarola	precocial	CF	210	0.600	0.0550
Charadriiformes	Scolopacidae	Tringa nebularia	precocial	CF	171	0.600	0.0369
Charadriiformes	Scolopacidae	Tringa ochropus	precocial	CF	87	0.450	0.0289
Charadriiformes	Charadriidae	Vanellus vanellus	precocial	CF	236	0.730	0.0820
Ciconiiformes	Ardeidae	Ardea cinerea	intermediate	CF	1210	1.600	0.3580
Ciconiiformes	Ardeidae	Ardea purpurea	intermediate	CF	1109	1.370	0.2488
Order	Family	Species	Developmental mode	Flight style	M (g)	Wing-span (m)	Wing-area (m²)
---------------	-----------	--------------------------	--------------------	--------------	-------	---------------	----------------
Ciconiiformes	Ciconiidae	*Ciconia ciconia*	intermediate	FS	3600	2.160	0.6508
Ciconiiformes	Ciconiidae	*Ciconia nigra*	intermediate	FS	3000	1.850	0.5000
Ciconiiformes	Ardeidae	*Egretta garzetta*	intermediate	CF	500	0.920	0.1150
Ciconiiformes	Ardeidae	*Nycticorax nycticorax*	intermediate	CF	656	1.100	0.1600
Ciconiiformes	Threskiornithidae	*Platalea leucorodia*	intermediate	FS	1501	1.260	0.2341
Columbiformes	Columbidae	*Columba livia*	intermediate	CF	350	0.670	0.0649
Columbiformes	Columbidae	*Columba palumbus*	intermediate	CF	500	0.750	0.0904
Columbiformes	Pteroclididae	*Pterocles coronatus*	precocial	CF	410	0.720	0.0721
Columbiformes	Columbidae	*Streptopelia turtur*	intermediate	CF	132	0.520	0.0400
Coraciiformes	Meropidae	*Merops apiaster*	altricial	CF	58	0.470	0.0273
Falconiformes	Accipitridae	*Accipiter brevipes*	intermediate	FS	220	0.700	0.0739
Falconiformes	Accipitridae	*Accipiter gentilis F*	intermediate	FS	1200	1.200	0.2400
Falconiformes	Accipitridae	*Accipiter gentilis M*	intermediate	FS	717	1.030	0.1643
Falconiformes	Accipitridae	*Accipiter nisus F*	intermediate	FS	295	0.760	0.0912
Falconiformes	Accipitridae	*Accipiter nisus M*	intermediate	FS	115	0.620	0.0638
Falconiformes	Accipitridae	*Aquila pomarina*	intermediate	FS	2015	1.800	0.5133
Falconiformes	Accipitridae	*Buteo buteo buteo*	intermediate	FS	964	1.290	0.2540
Falconiformes	Accipitridae	*Buteo buteo vulpinus*	intermediate	FS	580	1.190	0.2070
Falconiformes	Accipitridae	*Circus aeruginosus*	intermediate	FS	651	1.330	0.2248
Falconiformes	Accipitridae	*Circus cyaneus*	intermediate	FS	430	1.100	0.1539
Falconiformes	Accipitridae	*Circus macrourus*	intermediate	FS	358	1.060	0.1553
Falconiformes	Accipitridae	*Circus pygargus*	intermediate	FS	250	1.040	0.1290
Falconiformes	Falconidae	*Falco biarmicus*	intermediate	FG	595	1.056	0.1410
Order	Family	Species	Developmental mode	Flight style	M (g)	Wing-span (m)	Wing-area (m²)
---------------	--------------	----------------------------------	--------------------	--------------	-------	---------------	----------------
Falconiformes	Falconidae	*Falco columbarius* M	intermediate	FG	159	0.590	0.0493
Falconiformes	Falconidae	*Falco concolor*	intermediate	FG	250	0.900	0.1196
Falconiformes	Falconidae	*Falco eleonora*	intermediate	FG	360	1.000	0.1500
Falconiformes	Falconidae	*Falco naumanni*	intermediate	FG	148	0.650	0.0611
Falconiformes	Falconidae	*Falco pelegrinoides* M	intermediate	FG	411	0.770	0.0723
Falconiformes	Falconidae	*Falco peregrinus* F	intermediate	FG	998	1.100	0.1478
Falconiformes	Falconidae	*Falco peregrinus* M	intermediate	FG	570	0.960	0.1098
Falconiformes	Falconidae	*Falco subbuteo*	intermediate	FG	184	0.750	0.0653
Falconiformes	Falconidae	*Falco tinnunculus*	intermediate	FG	206	0.750	0.0777
Falconiformes	Falconidae	*Falco vespertinus*	intermediate	FG	165	0.720	0.0728
Falconiformes	Accipitridae	*Haliaeetus vocifer*	intermediate	FS	3000	1.900	0.5000
Falconiformes	Accipitridae	*Hieraaetus fasciatus*	intermediate	FS	2049	1.740	0.3792
Falconiformes	Accipitridae	*Hieraaetus pennatus*	intermediate	FS	595	1.160	0.2004
Falconiformes	Accipitridae	*Micronisus gaber*	intermediate	FS	150	0.650	0.0650
Falconiformes	Accipitridae	*Milvus migrans*	intermediate	FS	858	1.400	0.2744
Falconiformes	Accipitridae	*Milvus milvus*	intermediate	FS	851	1.500	0.3040
Falconiformes	Accipitridae	*Neophron percnopterus*	intermediate	FS	1849	1.650	0.3500
Falconiformes	Pandionidae	*Pandion haliaetus*	intermediate	FS	2000	1.700	0.3196
Falconiformes	Accipitridae	*Pernis apivorus*	intermediate	FS	800	1.270	0.2600
Galliformes	Phasianidae	*Coturnix coturnix*	precocial	CF	96	0.370	0.0200
Gruiformes	Rallidae	*Fulica atra*	precocial	CF	744	0.750	0.0700
Passeriformes	Acrocephalidae	*Acrocephalus arundinaceus*	altricial	PT	31	0.270	0.0117
Passeriformes	Acrocephalidae	*Acrocephalus palustris*	altricial	PT	13	0.200	0.0072
Passeriformes	Acrocephalidae	*Acrocephalus scirpaceus*	altricial	PT	10	0.200	0.0074
Order	Family	Species	Developmental mode	Flight style	M (g)	Wing-span (m)	Wing-area (m²)
--------------	-------------	--------------------------	--------------------	--------------	-------	---------------	----------------
Passeriformes	Alaudidae	*Alauda arvensis*	altricial	PT	31	0.360	0.0233
Passeriformes	Motacillidae	*Anthus pratensis*	altricial	PT	20	0.270	0.0143
Passeriformes	Motacillidae	*Anthus spinolleta*	altricial	PT	26	0.280	0.0151
Passeriformes	Motacillidae	*Anthus trivialis*	altricial	PT	22	0.280	0.0126
Passeriformes	Fringillidae	*Carduelis cannabina*	altricial	PT	18	0.240	0.0093
Passeriformes	Fringillidae	*Carduelis carduelis*	altricial	PT	18	0.240	0.0099
Passeriformes	Fringillidae	*Carduelis chloris*	altricial	PT	29	0.270	0.0112
Passeriformes	Fringillidae	*Carduelis spinus*	altricial	PT	11	0.210	0.0079
Passeriformes	Corvidae	*Corvus corax*	altricial	CF	945	1.140	0.2472
Passeriformes	Corvidae	*Corvus corone*	altricial	CF	552	0.930	0.1470
Passeriformes	Corvidae	*Corvus frugilegus*	altricial	CF	454	0.930	0.1373
Passeriformes	Corvidae	*Corvus monedula*	altricial	CF	181	0.600	0.0618
Passeriformes	Corvidae	*Corvus ruficolis*	altricial	CF	720	1.100	0.1944
Passeriformes	Hirundinidae	*Delichon urbica*	altricial	FG	18	0.280	0.0107
Passeriformes	Emberizidae	*Emberiza hortulana*	altricial	PT	22	0.260	0.0138
Passeriformes	Muscicapidae	*Erithacus rubecula*	altricial	PT	15	0.220	0.0101
Passeriformes	Muscicapidae	*Ficedula hypoleuca*	altricial	PT	13	0.240	0.0091
Passeriformes	Fringillidae	*Fringilla coelebs*	altricial	PT	23	0.260	0.0130
Passeriformes	Fringillidae	*Fringilla montifringilla*	altricial	PT	23	0.270	0.0125
Passeriformes	Alaudidae	*Galerida cristata*	altricial	PT	45	0.340	0.0200
Passeriformes	Corvidae	*Garrulus glandarius*	altricial	CF	150	0.550	0.0662
Passeriformes	Acrocephalidae	*Hippolais icterina*	altricial	PT	14	0.220	0.0081
Passeriformes	Sylviidae	*Hippolais pallida*	altricial	PT	12	0.200	0.0083
Passeriformes	Sylviidae	*Hippolais polyglotta*	altricial	PT	11	0.200	0.0083
Order	Family	Species	Developmental mode	Flight style	M (g)	Wing-span (m)	Wing-area (m²)
------------	-----------------	---------------------	--------------------	--------------	-------	---------------	----------------
Passeriformes	Hirundinidae	Hirundo daurica	altricial	FG	22	0.330	0.0154
Passeriformes	Hirundinidae	Hirundo rustica	altricial	FG	17	0.320	0.0140
Passeriformes	Laniidae	Lanius collurio	altricial	PT	30	0.300	0.0145
Passeriformes	Sylviidae	Locustella naevia	altricial	PT	13	0.190	0.0070
Passeriformes	Alaudidae	Lullula arborea	altricial	PT	27	0.290	0.0164
Passeriformes	Muscicapidae	Luscinia megarhynchos	altricial	PT	20	0.250	0.0116
Passeriformes	Motacillidae	Motacilla alba	altricial	PT	20	0.270	0.0129
Passeriformes	Motacillidae	Motacilla cinerea	altricial	PT	17	0.260	0.0110
Passeriformes	Motacillidae	Motacilla flava	altricial	PT	17	0.260	0.0103
Passeriformes	Muscicapidae	Muscicapa striata	altricial	PT	15	0.240	0.0110
Passeriformes	Corvidae	Nucifraga caryocatactes	altricial	CF	192	0.650	0.0790
Passeriformes	Turdidae	Oenanthe oenanthe	altricial	PT	25	0.310	0.0157
Passeriformes	Paridae	Parus ater	altricial	PT	9	0.190	0.0061
Passeriformes	Muscicapidae	Phoenicurus ochruros	altricial	PT	15	0.250	0.0106
Passeriformes	Muscicapidae	Phoenicurus phoenicurus	altricial	PT	15	0.230	0.0106
Passeriformes	Phylloscopidae	Phylloscopus trochilus	altricial	PT	8	0.190	0.0071
Passeriformes	Corvidae	Pica pica	altricial	CF	227	0.610	0.0595
Passeriformes	Prunellidae	Prunella modularis	altricial	PT	17	0.210	0.0090
Passeriformes	Hirundinidae	Ptoxoprogne rupestris	altricial	FG	24	0.330	0.0113
Passeriformes	Regulidae	Regulus ignicapillus	altricial	PT	6	0.150	0.0050
Passeriformes	Regulidae	Regulus regulus	altricial	PT	5	0.160	0.0053
Passeriformes	Hirundinidae	Riparia riparia	altricial	FG	14	0.280	0.0096
Passeriformes	Muscicapidae	Saxicola rubetra	altricial	PT	16	0.240	0.0095
Passeriformes	Fringillidae	Serinus serinus	altricial	PT	11	0.220	0.0076
Order	Family	Species	Developmental mode	Fflight style	M (g)	Wing-span (m)	Wing-area (m²)
----------------------	-------------	------------------------	--------------------	--------------	--------	---------------	----------------
Passeriformes	Sturnidae	Sturnus vulgaris	altricial	PT	85	0.380	0.0230
Passeriformes	Sylviidae	Sylvia atricapilla	altricial	PT	21	0.230	0.0098
Passeriformes	Sylviidae	Sylvia borin	altricial	PT	17	0.230	0.0095
Passeriformes	Sylviidae	Sylvia communis	altricial	PT	15	0.210	0.0087
Passeriformes	Sylviidae	Sylvia curruca	altricial	PT	12	0.200	0.0073
Passeriformes	Sylviidae	Sylvia hortensis	altricial	PT	21	0.240	0.0112
Passeriformes	Turdidae	Turdus merula	altricial	PT	98	0.390	0.0297
Passeriformes	Turdidae	Turdus phylomelos	altricial	PT	72	0.360	0.0226
Passeriformes	Turdidae	Turdus pilaris	altricial	PT	93	0.430	0.0335
Passeriformes	Turdidae	Turdus torquatus	altricial	PT	105	0.440	0.0330
Passeriformes	Turdidae	Turdus viscivorus	altricial	PT	135	0.470	0.0358
Pelecaniformes	Pelecanidae	Pelecanus onocrotalus	intermediate	FS	7300	2.860	0.9340
Pelecaniformes	Phalacrocoracidae	Phalacrocorax carbo	intermediate	CF	2556	1.350	0.2243
Phoenicopteriformes	Phoenicopteridae	Phoenicopterus ruber	intermediate	CF	3000	1.530	0.2715
Piciformes	Picidae	Jynx torquilla	altricial	PT	30	0.290	0.0150
Podicipediformes	Podicipedidae	Podiceps cristatus	precocial	CF	1000	0.810	0.0855
Strigiformes	Strigidae	Asio flammeus	intermediate	CF	350	1.030	0.1343
Strigiformes	Strigidae	Asio otus	intermediate	CF	280	0.940	0.1300
Upupiformes	Upupidae	Upupa epops	altricial	CF	70	0.440	0.0422
Table S3: Scores of the phylogenetic discriminant function analyses

NA – missing values.
Wing-span dataset includes body mass (M), wing-span length, and wing-area.
Wing Elements dataset includes body mass (M), length of humerus, ulna, manus, and primary feather.

Species	Developmental mode	Discrimination by developmental mode	Flight style	Discrimination by flight style											
		Wingspan Dataset analysis		Wingspan Dataset analysis											
		pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2								
Accipiter brevipes	intermediate	-1.203	-0.016	NA	NA	FS	0.910	0.117	-1.103	NA	NA				
Accipiter gentilis	intermediate	-0.671	1.241	-.095	1.261	FS	0.580	-2.045	-0.850	0.684	0.590	0.809			
Accipiter nisus	intermediate	-0.927	-0.210	-0.927	1.140	FS	1.117	-0.273	-0.863	0.273	-1.000	-0.357			
Acrocephalus arundinaceus	altricial	-1.158	0.974	NA	NA	PT	-0.025	-0.025	-1.148	NA	NA	NA			
Acrocephalus palustris	altricial	-1.171	-0.137	NA	NA	PT	0.890	0.240	-0.924	NA	NA	NA			
Acrocephalus schoenobaenus	altricial	NA	NA	0.044	1.140	PT	NA	NA	NA	0.724	-0.671	-0.905			
Acrocephalus scirpaceus	altricial	-0.318	-0.557	-1.675	-0.333	PT	0.506	0.512	-0.432	1.533	-0.900	0.809			
Aegithalos caudatus	altricial	NA	NA	-0.857	0.920	PT	NA	NA	NA	0.391	-1.611	0.029			
Aix galericulata	precocial	NA	NA	0.365	0.875	CF	NA	NA	NA	0.001	0.067	-1.312			
Alauda arvensis	altricial	1.410	-0.041	1.234	-0.394	PT	-0.953	0.011	0.317	-0.713	0.221	-0.094			
Alca torda	intermediate	NA	NA	1.423	2.474	CF	NA	NA	NA	-1.538	-0.316	-2.461			
Alcedo atthis	altricial	NA	NA	-0.340	0.294	PT	NA	NA	NA	-0.820	-1.838	1.086			
Aleatoris rufa	precocial	NA	NA	-0.243	1.301	CF	NA	NA	NA	0.232	-0.354	-0.593			
Alle alle	intermediate	NA	NA	-0.434	2.191	CF	NA	NA	NA	-0.937	-1.480	-2.103			
Anas acuta	precocial	-0.420	1.409	0.895	0.584	CF	-1.054	0.301	-1.620	0.562	0.950	-1.789			
Anas clypeata	precocial	-0.429	0.758	0.242	-0.071	CF	-0.036	-0.359	-1.389	0.124	0.325	-0.836			
Anas crecca	precocial	NA	NA	0.251	2.155	CF	NA	NA	NA	-0.048	-0.387	-2.302			
Anas penelope	precocial	NA	NA	1.253	0.642	CF	NA	NA	NA	-0.368	0.394	-1.460			
Anas platyrhynchos	precocial	-0.644	1.384	0.815	0.851	CF	0.390	-1.850	-1.428	-0.308	0.389	-1.134			
Species	Developmental mode	Discrimination by developmental mode	Flight style	Discrimination by flight style											
------------------	--------------------	--------------------------------------	--------------	--------------------------------											
		Wingspan Dataset analysis		Wing Elements Dataset analysis											
		pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3	
Anas strepera	precocial	0.499	0.851	NA	NA	CF	-0.724	-0.512	-0.925	NA	NA	NA			
Anser anser	precocial	NA	NA	1.394	-0.224	CF	NA	NA	NA	0.078	2.086	-0.651			
Anthus pratensis	altricial	0.333	-0.254	0.329	-0.394	PT	0.310	-0.456	-0.071	-0.070	-0.085	0.137			
Anthus spinolleta	altricial	-0.208	0.162	NA	NA	PT	0.491	-0.764	-0.398	NA	NA	NA			
Anthus trivialis	altricial	-0.307	0.176	NA	NA	PT	-0.321	0.732	-0.655	NA	NA	NA			
Apus affinis	altricial	-0.690	-0.355	NA	NA	FG	-0.611	2.688	-1.419	NA	NA	NA			
Apus apus	altricial	-1.055	0.594	-3.950	1.929	FG	-0.483	1.370	-1.653	7.056	-0.330	-0.729			
Apus pallidus	altricial	-1.067	0.564	NA	NA	FG	-0.496	1.461	-1.676	NA	NA	NA			
Aquila chrysaetos	intermediate	NA	NA	0.986	0.101	NA									
Aquila pomarina	intermediate	1.625	1.540	NA	NA	FS	-1.342	-2.112	0.168	NA	NA	NA			
Ardea cinerea	intermediate	2.070	0.946	1.931	-0.700	CF	-1.846	-0.793	0.207	-1.167	1.364	0.266			
Ardea purpurea	intermediate	0.513	1.138	0.312	-0.391	CF	-1.043	-0.515	-0.638	-0.661	0.763	1.039			
Arenaria interpres	precocial	NA	NA	-0.090	0.533	CF	NA	NA	NA	0.757	-0.014	-0.791			
Asio flammeus	intermediate	0.974	1.132	0.866	-0.045	CF	-1.758	0.173	-0.677	0.027	1.029	-0.453			
Asio otus	intermediate	1.238	0.692	0.792	-0.653	CF	-1.087	-0.592	-0.335	-0.273	0.863	0.068			
Athene noctua	intermediate	NA	NA	-0.495	-0.247	CF	NA	NA	NA	-0.131	-0.613	1.435			
Aythya ferina	precocial	-2.326	1.761	1.287	1.702	CF	0.469	-0.477	-2.552	-0.807	-0.220	-1.135			
Aythya fuligula	precocial	-1.886	1.381	-0.947	0.354	CF	0.434	-0.349	-2.259	-0.120	-0.491	0.058			
Bombus terra	altricial	NA	NA	-0.448	0.061	PT	NA	NA	NA	0.963	0.218	0.503			
Botaurus stellaris	intermediate	NA	NA	1.221	-0.105	FS	NA	NA	NA	-1.009	0.924	-0.062			
Branta bernicla	precocial	NA	NA	0.583	0.610	CF	NA	NA	NA	0.979	1.865	-1.752			
Branta canadensis	precocial	NA	NA	2.483	-1.647	CF	NA	NA	NA	-1.029	1.947	0.082			
Branta leucopsis	precocial	NA	NA	0.317	0.469	CF	NA	NA	NA	0.076	1.383	-0.702			
Bubo bubo	intermediate	NA	NA	0.761	-0.016	CF	NA	NA	NA	0.147	1.912	0.253			
Bubo scandiaca	intermediate	NA	NA	1.803	-0.248	CF	NA	NA	NA	-0.954	1.710	0.076			
Bubulcus ibis	intermediate	NA	NA	0.184	-0.489	FS	NA	NA	NA	-0.968	-0.098	0.897			
Species	Development mode	Discrimination by developmental mode	Flight style	Discrimination by flight style											
------------------------------	------------------	---------------------------------------	--------------	---------------------------------											
	pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3					
Bucephala clangula	precocial	-1.004	2.117	CF	NA	NA	NA	1.284	0.267	-1.661					
Burhinus oedicnemus	precocial	0.869	-0.219	CF	NA	NA	NA	0.134	1.136	-0.072					
Buteo buteo	intermediate	0.553	0.770	FS	-0.565	-0.836	-0.319	-0.158	0.475	0.181					
Buteo lagopus	intermediate	NA	0.516	FS	NA	NA	NA	-0.390	0.436	0.029					
Calidris alba	precocial	-1.560	-0.187	NA	0.968	0.727	-1.338	NA	NA	NA					
Calidris alpina	precocial	-1.086	-0.331	-0.335	1.204	CF	NA	NA	NA	NA					
Calidris canutus	precocial	NA	NA	NA	0.071	0.410	CF	NA	NA	NA					
Caprimulgus europaeus	intermediate	1.643	0.142	NA	NA	NA	CF	-1.856	1.159	-0.470					
Carduelis cannabina	altricial	-0.865	0.173	0.251	-0.222	PT	0.253	0.443	-0.875	-1.395					
Carduelis carduelis	altricial	-0.620	0.044	-0.889	-0.673	PT	0.452	0.004	-0.664	0.821					
Carduelis chloris	altricial	-1.267	0.758	-0.176	-0.189	PT	0.148	0.173	-1.182	0.273					
Carduelis spinus	altricial	-0.349	-0.592	-1.049	1.170	PT	0.847	0.370	-0.423	1.638					
Cephus grylle	intermediate	NA	NA	-0.050	1.564	CF	NA	NA	NA	-0.303					
Charadrius hiaticula	precocial	-1.678	-0.002	-0.397	0.450	CF	0.243	1.857	-1.725	0.464					
Charadrius leucopaterus	intermediate	0.740	-0.709	NA	NA	NA	CF	-0.520	0.105	NA					
Charadrius niger	intermediate	0.902	-0.601	NA	NA	NA	CF	-0.499	0.827	-0.027					
Ciconia ciconia	intermediate	1.779	1.770	0.993	-0.261	FS	-1.999	-1.466	-0.144	-0.251					
Ciconia nigra	intermediate	0.955	1.671	1.478	-0.890	FS	-1.173	-1.684	-0.490	-1.083					
Cincus cinclus	altricial	NA	NA	-0.027	1.377	PT	NA	NA	NA	0.438					
Circus aeruginosus	intermediate	1.086	0.930	0.547	0.158	FS	-1.605	-0.006	-0.180	-0.178					
Circus cyaneus	intermediate	0.427	0.545	1.062	0.399	FS	-1.054	0.516	-0.482	-0.688					
Circus macrourus	intermediate	0.811	0.180	NA	NA	NA	FS	-0.756	0.120	-0.145					
Circus pygargus	intermediate	1.208	-0.100	0.082	-2.427	FS	-1.759	1.798	-0.112	0.698					
Coccothraustes coccothrautes	altricial	NA	NA	0.675	1.506	NA	NA	NA	NA	NA					
Species	Developmental mode	Wingspan Dataset analysis	Wing Elements Dataset analysis	Flight style	Discernment by flight style										
---------------------	--------------------	----------------------------	--------------------------------	--------------	----------------------------										
		pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3				
Columba livia	intermediate	-0.945	1.056	-1.272	1.221	0.078	-0.480	-1.409	2.485	0.502	-0.818				
Columba oenas	intermediate	NA	NA	0.342	1.099	NA	NA	NA	1.370	0.493	-1.313				
Columba palumbus	intermediate	-0.456	1.256	0.306	-0.457	0.216	-1.662	-1.058	0.228	0.364	0.741				
Coracias garrulus	altricial	NA	NA	0.034	0.154	PT	NA	NA	1.524	0.738	-0.333				
Corvus corax	altricial	1.691	1.632	NA	NA	CF	-1.137	-2.735	0.403	NA	NA				
Corvus corone	altricial	0.691	1.266	1.126	0.445	CF	-0.916	-1.239	-0.200	0.487	1.832	-0.609			
Corvus frugilegus	altricial	1.084	1.084	1.127	-0.339	CF	-1.546	-0.358	-0.084	1.014	2.273	-0.696			
Corvus monedula	altricial	-0.332	0.331	0.349	-0.883	CF	0.080	-0.129	-0.623	0.900	1.433	-0.079			
Corvus ruficollis	altricial	1.521	1.528	NA	NA	CF	-1.901	-1.035	0.114	NA	NA				
Coturnix coturnix	precocial	-2.490	1.803	0.816	1.470	CF	0.693	-0.453	-3.888	-1.311	-1.469	-1.594			
Crex crex	precocial	NA	NA	0.551	0.761	CF	NA	NA	NA	-0.083	-0.150	-2.036			
Cuculus canorus	altricial	NA	NA	-0.549	0.812	PT	NA	NA	NA	2.201	0.395	-1.583			
Cursorius cursor	precocial	-1.503	0.343	NA	NA	CF	0.991	-0.234	-1.312	NA	NA				
Cygnus olor	precocial	2.051	3.350	3.428	-0.487	CF	-2.726	-3.033	-0.745	-1.740	2.420	-0.376			
Delichon urbicum	altricial	-0.494	0.179	-1.829	-0.564	FG	-0.435	1.163	-0.812	2.697	0.057	1.256			
Dendrocopos major	altricial	NA	NA	-0.973	-0.034	NA	NA	NA	NA	NA	NA				
Dendrocopos minor	altricial	NA	NA	-0.139	0.247	PT	NA	NA	-0.262	-1.681	0.024				
Dryocopus martius	altricial	NA	NA	1.043	0.955	PT	NA	NA	0.609	0.813	-0.845				
Egretta garzetta	intermediate	-0.555	0.649	2.077	-2.115	CF	-0.040	-0.100	-1.115	-1.569	1.488	0.826			
Emberiza citrinella	altricial	NA	NA	0.027	1.641	PT	NA	NA	NA	0.311	-0.332	-1.511			
Emberiza hortulana	altricial	-0.089	-0.106	NA	NA	PT	0.716	-0.865	-0.272	NA	NA				
Emberiza schoeniclus	altricial	NA	NA	0.393	0.439	PT	NA	NA	NA	-0.305	-0.515	-0.765			
Enithrhus rubecula	altricial	-0.619	-0.505	0.646	0.875	PT	1.335	-0.609	-0.448	-0.963	-1.154	-0.302			
Falco biarmicus	intermediate	0.603	1.349	NA	NA	FG	-1.296	-0.608	-0.482	NA	NA				
Falco columbarius	intermediate	-1.244	0.255	0.153	0.840	FG	0.789	-0.048	-1.225	0.284	-0.001	-0.751			
Species	Developmental mode	Wingspan Dataset analysis	Wing Elements Dataset analysis	Flight style	Wingspan Dataset analysis	Wing Elements Dataset analysis									
-------------------------------	--------------------	---------------------------	-------------------------------	-------------	---------------------------	-------------------------------									
Falco concolor	intermediate	1.817	-0.132	FG	-1.105	0.390									
Falco eleonorae	intermediate	1.878	0.020	NA	NA	NA									
Falco naumanni	intermediate	0.020	-0.185	FG	0.075	0.455									
Falco pelegrinoides	intermediate	-1.951	1.268	NA	NA	NA									
Falco peregrinus	intermediate	-0.695	0.800	FG	-0.070	-1.212									
Falco subbuteo	intermediate	-0.289	-0.003	FG	-1.017	0.095									
Falco tinnunculus	intermediate	0.368	0.264	FG	0.060	0.455									
Falco vespertinus	intermediate	0.624	0.020	NA	NA	NA									
Ficedula hypoleuca	altricial	-0.288	-1.398	PT	-0.251	1.522									
Fratercula arctica	intermediate	0.931	2.649	CF	NA	NA									
Fringilla coelebs	altricial	-0.360	-0.334	NA	-0.668	-0.655									
Fringilla montifringilla	altricial	-0.380	0.148	PT	0.037	0.229									
Fulica atra	precocial	-2.316	1.011	CF	0.513	-0.708									
Galerida cristata	altricial	-0.547	0.710	NA	0.063	-0.484									
Gallinago gallinago	precocial	-1.246	-0.367	PT	1.081	-0.753									
Gallinula chloropus	precocial	NA	2.064	CF	-0.817	-0.873									
Garrulus glandarius	altricial	0.465	0.020	0.728	0.728	-1.753									
Gavia immer	precocial	NA	2.427	CF	-0.415	-0.391									
Gavia stellata	precocial	NA	2.186	CF	0.411	-0.278									
Glareola nordmanni	precocial	0.253	0.079	NA	-0.721	2.440									
Glareola pratincola	precocial	0.686	-0.213	NA	0.213	2.780									
Grus grus	precocial	NA	1.896	CF	0.083	1.278									
Gypaetus barbatus	intermediate	NA	1.401	FS	-0.718	-0.637									
Gyps fulvus	intermediate	NA	1.100	FS	NA	0.145									
Haematopus ostralegus	precocial	-0.132	0.100	FS	NA	0.213									
Haliaeetus albicilla	intermediate	NA	2.264	FS	NA	NA									
Species	Developmental mode	Discrimination by developmental mode	Flight style	Discrimination by flight style											
------------------------	--------------------	--------------------------------------	--------------	-------------------------------											
		Wingspan Dataset analysis		Wingspan Dataset analysis											
		pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2	Flight style	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3			
Haliaeetus vocifer	intermediate	0.545	2.136	NA	NA	FS	-1.253	-1.877	-0.514	NA	NA	NA			
Hieraaetus pennatus	intermediate	0.475	0.448	NA	NA	FS	-0.548	-0.224	-0.381	NA	NA	NA			
Himantopus himantopus	precocial	0.705	0.515	NA	NA	CF	-1.723	1.399	-0.624	NA	NA	NA			
Hippolais icterina	altricial	-0.760	0.054	NA	NA	PT	0.068	0.821	-0.842	NA	NA	NA			
Hippolais pallida	altricial	-0.471	-0.451	NA	NA	PT	1.160	-0.593	-0.382	NA	NA	NA			
Hippolais polyglotta	altricial	-0.180	-0.584	NA	NA	PT	1.030	-0.519	-0.215	NA	NA	NA			
Hirundo daurica	altricial	0.695	0.173	NA	NA	FG	-1.112	0.834	-0.186	NA	NA	NA			
Hirundo rustica	altricial	1.026	-0.108	-0.559	-0.078	FG	-1.440	1.440	-0.039	2.389	0.506	-0.126			
Jynx torquilla	altricial	-1.578	-0.267	NA	NA	PT	1.548	-0.027	-1.627	NA	NA	NA			
Lagopus lagopus	precocial	NA	NA	1.032	1.509	CF	NA	NA	NA	-0.271	0.248	-1.466			
Lagopus muta	precocial	NA	NA	0.677	0.160	CF	NA	NA	NA	0.004	0.450	-1.066			
Lanioturdus torquatus	altricial	-0.732	0.772	NA	NA	PT	0.265	-0.679	-0.932	NA	NA	NA			
Larus cachinnans	intermediate	0.876	1.567	2.356	-2.105	CF	-1.998	-0.104	-0.414	-0.965	1.509	0.857			
Larus argentatus	intermediate	0.787	1.877	NA	NA	CF	-1.384	-1.555	-0.337	NA	NA	NA			
Larus canus	intermediate	1.858	0.237	0.254	0.078	CF	-2.154	1.108	0.233	0.590	1.179	-0.596			
Larus fuscus	intermediate	0.179	1.869	NA	NA	CF	-1.804	-0.047	-0.840	NA	NA	NA			
Larus marinus	intermediate	NA	NA	1.467	-1.132	CF	NA	NA	NA	0.324	2.484	0.516			
Larus minutus	intermediate	0.654	-0.917	NA	NA	CF	1.650	-2.005	0.344	NA	NA	NA			
Larus ridibundus	intermediate	0.055	0.743	-0.593	-0.625	CF	-1.428	1.313	-0.813	0.597	0.679	0.462			
Limosa lapponica	precocial	-0.417	1.189	0.700	0.635	CF	-1.010	0.460	-1.130	0.034	0.515	-0.727			
Limosa limosa	precocial	NA	NA	0.625	-0.925	CF	NA	NA	NA	-0.542	0.490	0.813			
Locustella naevia	altricial	-1.424	-0.178	NA	NA	PT	1.436	-0.312	-0.961	NA	NA	NA			
Loxia curvirostra	altricial	NA	NA	0.065	0.455	PT	NA	NA	NA	0.722	0.209	-0.227			
Species	Developmental mode	Discrimination by developmental mode	Flight style	Discrimination by flight style											
-------------------------	--------------------	-------------------------------------	--------------	---------------------------------											
		Wingspan Dataset analysis													
		pFDA Axis 1	pFDA Axis 2	pFDA Axis 3	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3								
Lullula arborea	altricial	-0.188	-0.037	NA	NA	PT	0.610	-0.655	-0.373	NA	NA	NA			
Luscinia megarhynchos	altricial	-0.584	-0.085	-0.668	-0.153	PT	0.643	-0.153	-0.597	1.263	-0.035	0.249			
Luscinia svecia	altricial	NA	NA	-0.372	0.417	PT	NA	NA	NA	NA	0.479	-0.647	0.088		
Lymnocryptes minimus	precocial	NA	NA	-0.165	0.897	CF	NA	NA	NA	0.489	-0.649	-1.296			
Mergus merganser	precocial	-2.853	2.718	NA	NA	CF	-1.408	1.856	-3.402	NA	NA	NA			
Mergus serrator	precocial	NA	NA	1.418	0.878	CF	NA	NA	NA	-1.081	-0.015	-0.973			
Merops apiaster	altricial	-0.430	0.299	NA	NA	CF	-0.617	1.337	-1.400	NA	NA	NA			
Micronisus gabar	intermediate	-0.812	-0.470	NA	NA	FS	0.819	0.526	-0.872	NA	NA	NA			
Milvus migrans	intermediate	0.913	0.772	0.395	-0.446	FS	-1.059	-0.439	-0.185	0.065	1.121	-0.280			
Milvus milvus	intermediate	1.628	0.702	1.217	0.028	FS	-1.769	-0.016	0.126	-0.805	0.652	-0.255			
Monticola solitarius	altricial	NA	NA	0.168	-0.360	PT	NA	NA	NA	0.956	0.696	0.473			
Motacilla alba	altricial	0.022	-0.039	0.365	-0.020	PT	0.182	-0.202	-0.308	-0.121	-0.229	0.339			
Motacilla cinerea	altricial	-0.205	-0.097	-0.544	-1.183	PT	-0.114	0.692	-0.528	0.386	-0.163	1.048			
Motacilla flava	altricial	-0.473	0.023	NA	NA	PT	-0.322	1.192	-0.757	NA	NA	NA			
Muscicapa striata	altricial	-0.059	-0.515	-1.134	-0.941	PT	0.505	0.126	-0.276	0.940	-0.539	1.353			
Neophron percnopterus	intermediate	0.565	1.801	0.889	-0.345	FS	-1.500	-0.689	-0.665	-0.402	1.361	0.415			
Nucifraga caryocatacetes	altricial	0.763	0.262	NA	NA	CF	-0.280	-0.791	0.015	NA	NA	NA			
Numenius arquata	precocial	0.255	1.743	1.384	-0.981	CF	-1.385	-0.638	-0.785	-0.822	1.295	0.822			
Numenius phaeopus	precocial	-0.242	1.133	NA	NA	CF	-0.931	0.209	-0.992	NA	NA	NA			
Nycticorax nycticorax	intermediate	0.244	0.800	0.243	0.350	CF	-0.761	-0.112	-0.764	-0.394	0.371	0.164			
Oenanthe oenanthe	altricial	0.505	0.148	NA	NA	PT	-0.807	0.576	-0.222	NA	NA	NA			
Oriolus oriolus	altricial	NA	NA	0.057	-0.250	PT	NA	NA	NA	0.500	0.331	0.318			
Otis tarda	precocial	NA	NA	1.015	0.238	CF	NA	NA	NA	1.374	2.954	-0.640			
Otus scops	intermediate	NA	NA	1.039	-1.513	CF	NA	NA	NA	-1.807	-0.434	1.395			
Pandion haliaetus	intermediate	0.620	2.217	1.020	-0.651	FS	-2.115	-0.541	-0.973	-0.188	1.588	1.024			
Parus ater	altricial	-1.252	-0.615	-0.478	0.005	PT	0.918	1.090	-1.029	-0.279	-1.306	0.417			
Species	Developmental mode	Discrimination by developmental mode	Wingspan Dataset analysis	Wing Elements Dataset analysis	Flight style	Discrimination by flight style	Wingspan Dataset analysis	Wing Elements Dataset analysis							
-------------------------	--------------------	--	---------------------------	-------------------------------	--------------	-------------------------------	---------------------------	-------------------------------							
			pFDA Axis 1	pFDA Axis 2		pFDA Axis 1	pFDA Axis 2	pFDA Axis 3	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3	
Parus caeruleus	altricial		-0.626	0.879	PT	NA	NA	NA	0.227	-1.180	-0.156				
Parus major	altricial		0.788	0.999	PT	NA	NA	NA	-0.820	-0.834	-0.652				
Parus montanus	altricial		-0.255	-0.168	PT	NA	NA	NA	-0.979	-1.617	0.932				
Passer domesticus	altricial		0.057	0.495	PT	NA	NA	NA	0.022	-0.470	-0.450				
Passer montanus	altricial		-0.040	1.163	PT	NA	NA	NA	0.228	-0.532	-1.067				
Pavo cristatus	precocial		1.956	0.628	CF	NA	NA	NA	0.188	2.266	-1.178				
Pelecanus onocrotalus	intermediate		2.601	2.349	FS	-2.977	-1.357	-0.324	-2.290	2.271	2.105				
Perdix perdix	precocial		0.208	2.125	CF	NA	NA	NA	0.333	-0.216	-1.938				
Pernis apivorus	intermediate		0.797	NA	FS	-0.692	-1.286	-0.119	NA	NA	NA				
Phalacrocorax aristotelis	intermediate		0.068	-0.147	CF	NA	NA	NA	-1.039	0.093	1.408				
Phalacrocorax carbo	intermediate		-1.011	2.239	1.306	0.203	CF	-0.514	-1.270	-1.695	-0.420	1.304	-0.127		
Philomachus pugnax	precocial		-0.779	0.702	NA	NA	NA	CF	0.630	-1.131	-0.928	NA	NA	NA	
Phoenicopterus ruber	intermediate		-0.053	2.530	NA	NA	NA	CF	-1.499	-1.241	-1.382	NA	NA	NA	
Phoenicurus ochrurus	altricial		-0.048	-0.308	NA	PT	-0.171	0.929	-0.426	NA	NA	NA	NA	NA	
Phoenicurus phoenicus	altricial		-0.342	-0.463	0.049	PT	0.989	-0.435	-0.344	0.568	-0.287	-0.091	NA	NA	NA
Phylloscopus trochilus	altricial		-0.474	-0.879	NA	NA	PT	1.150	0.137	-0.410	NA	NA	NA	NA	NA
Pica pica	altricial		-0.843	0.931	0.107	0.632	CF	-0.072	-0.218	-1.016	-0.202	0.203	0.248	NA	NA
Picus viridis	altricial		0.003	0.673	PT	NA	NA	NA	0.150	-0.354	0.237				
Platalea leucorodia	intermediate		-0.018	1.521	NA	NA	FS	-0.414	-1.526	-0.978	NA	NA	NA	NA	NA
Electrophenax nivalis	altricial		-0.397	0.673	PT	NA	NA	NA	1.461	0.550	-0.861				
Plegadis falcinellus	intermediate		0.568	-0.155	FS	NA	NA	NA	-0.596	0.382	0.331				
Pluvialis apricaria	precocial		-0.830	0.595	-0.395	0.310	CF	0.760	-1.074	-1.033	1.074	0.340	-0.551	NA	NA
Pluvialis squatarola	precocial		-0.555	0.715	0.689	0.945	CF	0.307	-0.842	-0.960	0.148	0.189	-1.083	NA	NA
Podiceps auritus	precocial		1.045	0.993	CF	NA	NA	NA	-1.763	-0.308	-0.794				
Podiceps cristatus	precocial		-2.142	1.900	1.260	0.353	CF	0.568	-1.147	-2.249	-1.244	0.608	-0.436	NA	NA
Podiceps grisegeana	precocial		1.311	0.058	CF	NA	NA	NA	-1.705	0.435	0.077				
Species	Developmental mode	Discrimination by developmental mode	Flight style	Discrimination by flight style											
-------------------------	--------------------	---------------------------------------	--	--------------------------------											
		Wingspan Dataset analysis	Wing Elements Dataset analysis	Wingspan Dataset analysis	Wing Elements Dataset analysis										
		pFDA Axis 1	pFDA Axis 2												
Podiceps nigricollis	precocial	NA	NA	0.933	0.324	CF	NA	NA	NA	-1.792	-0.480	-0.286			
Prunella modularis	altricial	-1.359	-0.193	0.366	1.202	PT	1.597	-0.633	-0.923	-0.518	-0.942	-1.174			
Pterocles coronatus	precocial	-2.022	1.119	NA	NA	CF	0.691	-0.255	-2.081	NA	NA	NA			
Pterocles orientalis	precocial	-0.651	1.151	NA	NA	CF	-0.111	-0.654	-1.370	NA	NA	NA			
Pyrrhula pyrrhula	altricial	NA	NA	0.170	-0.391	PT	NA	NA	NA	-0.474	-0.559	0.533			
Rallus aquaticus	precocial	NA	NA	0.604	2.261	CF	NA	NA	NA	-0.739	-0.994	-2.885			
Recurvirostra avosetta	precocial	NA	NA	1.255	0.161	CF	NA	NA	NA	-0.460	0.787	-0.879			
Regulus ignicpilla	altricial	-1.430	-1.045	NA	NA	PT	2.120	-0.056	-0.847	NA	NA	NA			
Regulus regulus	altricial	-0.596	-1.269	-2.286	-0.224	PT	1.288	0.689	-0.490	1.242	-2.110	1.817			
Riparia riparia	altricial	-0.090	-0.013	-0.889	-0.659	FG	-1.213	2.303	-0.725	2.324	0.335	0.495			
Rissa tridactyla	intermediate	NA	NA	0.054	-0.578	CF	NA	NA	NA	-0.021	0.668	0.704			
Saxicola rubetra	altricial	-0.781	-0.151	-0.755	-0.520	PT	0.249	0.881	-0.817	0.597	-0.529	0.902			
Saxicola torquatus	altricial	NA	NA	0.230	0.024	PT	NA	NA	NA	-0.771	-1.162	0.664			
Scolopax rusticola	precocial	NA	NA	-0.038	1.056	CF	NA	NA	NA	1.056	0.444	-0.987			
Serinus serinus	altricial	-0.356	-0.435	NA	NA	PT	-0.101	1.406	-0.608	NA	NA	NA			
Sitta europaea	altricial	NA	NA	0.116	0.351	PT	NA	NA	NA	0.127	-0.377	-0.329			
Somateria mollissima	precocial	NA	NA	0.900	0.099	CF	NA	NA	NA	-1.016	0.237	0.275			
Stercorarius parasitic	intermediate	NA	NA	1.092	-2.259	CF	NA	NA	NA	-0.708	1.132	1.078			
Sterna sandvicensis	intermediate	NA	NA	-0.445	-3.005	CF	NA	NA	NA	0.798	1.056	1.938			
Streptopelia turtur	intermediate	-0.581	0.032	-0.219	0.769	CF	0.215	0.506	-1.131	1.110	-0.205	-0.935			
Strix aluco	intermediate	NA	NA	0.659	0.661	CF	NA	NA	NA	-0.849	0.264	-0.010			
Sturnus vulgaris	altricial	-1.048	1.247	0.276	0.629	PT	-0.002	-0.624	-1.113	0.840	0.695	-0.682			
Sylvia atricapilla	altricial	-1.057	0.298	0.524	1.214	PT	0.797	-0.455	-0.872	0.089	-0.457	-1.026			
Sylvia borin	altricial	-0.519	0.024	NA	NA	PT	0.315	0.142	-0.623	NA	NA	NA			
Sylvia communis	altricial	-0.754	-0.158	NA	NA	PT	0.988	-0.418	-0.616	NA	NA	NA			
Sylvia curruca	altricial	-0.872	-0.309	-0.537	-0.038	PT	0.699	0.477	-0.757	0.122	-0.977	0.422			
Species	Development mode	Discrimination by developmental mode	Flight style	Discrimination by flight style											
------------------	------------------	--------------------------------------	--------------	--------------------------------											
		Wingspan Dataset analysis	Wing Elements Dataset analysis		Wingspan Dataset analysis	Wing Elements Dataset analysis									
	pFDA Axis 1	pFDA Axis 2	pFDA Axis 1	pFDA Axis 2		pFDA Axis 1	pFDA Axis 2	pFDA Axis 3	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3				
Sylvia hortensis	altricial	-0.403	0.199	NA	NA	PT	0.565	-0.725	-0.490	NA	NA	NA			
Tetrao tetrix	precocial	NA	NA	0.467	0.169	CF	NA	NA	NA	0.353	0.980	-0.440			
Tetrao urogallus	precocial	NA	NA	1.250	-0.197	CF	NA	NA	NA	0.195	1.717	-0.034			
Tichodroma muraria	altricial	NA	NA	0.496	-0.739	PT	NA	NA	NA	-0.133	-0.138	0.314			
Tringa nebularia	precocial	-0.823	0.980	NA	NA	CF	-0.902	1.113	-1.338	NA	NA	NA			
Tringa ochropus	precocial	-0.604	-0.060	NA	NA	CF	0.741	-0.283	-0.783	NA	NA	NA			
Tringa totanus	precocial	NA	NA	0.144	0.244	CF	NA	NA	NA	0.204	-0.143	-0.343			
Troglogytes aedon	altricial	NA	NA	0.014	1.695	PT	NA	NA	NA	-1.230	-2.071	-0.693			
Turdus iliacus	altricial	NA	NA	0.258	-0.556	PT	NA	NA	NA	-0.245	0.049	0.372			
Turdus merula	altricial	-0.588	0.897	0.258	0.470	PT	0.669	-1.779	-0.622	0.125	0.312	-0.212			
Turdus philomelos	altricial	-0.870	0.738	0.841	0.707	PT	0.365	-0.640	-0.876	-0.109	0.281	-1.015			
Turdus pilaris	altricial	0.351	0.786	0.902	0.991	PT	-0.368	-1.006	-0.242	0.501	0.788	-1.231			
Turdus torquatus	altricial	NA	NA	-0.759	-0.543	PT	NA	NA	NA	0.782	0.426	0.713			
Turdus viscivorus	altricial	-0.250	1.407	0.523	1.744	PT	-0.626	-0.821	-0.715	0.700	0.797	-1.647			
Tyto alba	intermediate	NA	NA	1.195	-0.128	CF	NA	NA	NA	-0.461	1.017	-0.048			
Uria aalge	intermediate	0.073	-0.061	-0.554	-0.287	CF	0.966	-1.425	-0.696	1.180	-0.181	0.904			
Vanellus vanellus	precocial	0.666	0.657	0.664	-0.209	CF	-0.325	-1.187	-0.336	-0.080	0.558	-0.030			
Table S4: Canonical and structure coefficients of the phylohenetic discriminant function analyses

1. Wing-span Dataset

Explained variance, %	Developmental mode	pFDA Axis 1	pFDA Axis 2	Flight style	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3
		73.66	26.34		53.98	36.96	9.06
Canonical coefficients	Intercept	21.135	-5.862	Intercept	-7.233	-3.751	8.444
	Mass	-16.747	8.361	Mass	9.859	-9.483	-8.893
	Wing-span	13.267	-5.985	Wing-span	10.308	-24.642	11.292
	Wing-area	5.959	3.150	Wing-area	-23.362	27.465	-1.648
Structure coefficients	Mass	0.336	0.839	Mass	-0.604	-0.507	-0.101
	Wing-span	0.538	0.718	Wing-span	-0.669	-0.495	0.131
	Wing-area	0.497	0.744	Wing-area	-0.709	-0.406	0.056

2. Wing Elements Dataset

Explained variance, %	Developmental mode	pFDA Axis 1	pFDA Axis 2	Flight style	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3
		64.28	35.72		61.97	26.97	11.06
Canonical coefficients	Intercept	-8.400	13.282	Intercept	1.554	-11.294	-0.610
	Mass	-9.585	9.774	Mass	8.102	-0.838	0.274
	hu	25.369	8.178	hu	-21.238	1.640	-19.509
	ul	-13.671	-20.779	ul	6.411	-0.884	27.636
	mn	0.260	4.019	mn	2.796	0.964	-5.432
	fprim	-0.408	-1.254	fprim	6.015	4.714	-3.177
Discrimination by ...	Developmental mode	pFDA Axis 1	pFDA Axis 2	Flight style	pFDA Axis 1	pFDA Axis 2	pFDA Axis 3
-----------------------	-------------------	------------	------------	-------------	------------	------------	------------
Explained variance, %		64.28	35.72		61.97	26.97	11.06
Structure coefficients	Mass	0.667	-0.076	Mass	-0.347	0.767	-0.129
	hu	0.708	-0.189	hu	-0.427	0.764	-0.049
	ul	0.667	-0.302	ul	-0.365	0.808	0.080
	mn	0.627	-0.153	mn	-0.223	0.812	-0.116
	fprim	0.554	-0.287	fprim	-0.105	0.884	-0.001
Table S5: Standard pairwise t-test for differences between flight styles and developmental modes.

Not corrected for multiple comparisons values of significance are reported.

Pairwise t-test for flight styles	Pairwise t-test for developmental modes
hu/ta	
CF	1<0.001
FG	<0.001<0.001
FS	0.113<0.001
PT	<0.0010.005<0.001
ul/ta	
CF	10.541<0.001
FG	0.5411<0.001
FS	<0.0010.0081<0.001
PT	<0.0010.0790.0771
mn/ta	
CF	1<0.0010.0160.031
FG	<0.0011<0.0010.0029<0.001
FS	0.016<0.0011<0.001
PT	0.0310.002<0.0011
fprim/ta	
CF	1<0.0010.045<0.001
FG	<0.0011<0.001<0.001
FS	0.045<0.0011<0.001
PT	<0.001<0.0011
Pairwise t-test for developmental modes – flight style groups:

	altricial-CF	altricial-FG	altricial-PT	precocial-CF	intermediate-CF	intermediate-FG	intermediate-FS
huta							
altricial-CF	1	0.002	0.941	<0.001	0.002	0.841	0.028
altricial-FG	0.002	1	<0.001	<0.001	<0.001	0.008	<0.001
altricial-PT	0.941	<0.001	1	<0.001	<0.001	0.755	<0.001
precocial-CF	<0.001	<0.001	<0.001	1	0.311	0.001	0.023
intermediate-CF	0.002	<0.001	<0.001	0.311	1	0.004	0.196
intermediate-FG	0.841	0.008	0.755	0.001	0.004	0.023	0.036
intermediate-FS	0.028	<0.001	<0.001	0.023	0.196	0.036	1
ul/ta							
altricial-CF	0.384	0.862	0.345	<0.001	0.693	0.088	0.335
altricial-FG	0.384	1	0.345	0.023	0.468	0.442	0.066
altricial-PT	0.862	0.345	1	<0.001	0.645	0.047	0.043
precocial-CF	<0.001	0.023	<0.001	1	<0.001	0.214	<0.001
intermediate-CF	0.693	0.468	0.645	<0.001	1	0.082	0.03
intermediate-FG	0.088	0.442	0.047	0.214	0.082	1	0.005
intermediate-FS	0.335	0.066	0.043	<0.001	0.03	0.005	1
mn/ta							
altricial-CF	1	0.008	0.959	0.829	0.055	0.254	0.038
altricial-FG	0.008	1	0.001	0.001	<0.001	0.161	<0.001
altricial-PT	0.959	0.001	1	0.541	<0.001	0.167	<0.001
precocial-CF	0.829	0.001	0.541	1	0.001	0.111	0.001
intermediate-CF	0.055	<0.001	<0.001	0.001	1	0.003	0.698
intermediate-FG	0.254	0.161	0.167	0.111	0.003	1	0.002
intermediate-FS	0.038	<0.001	<0.001	0.001	0.698	0.002	1
fprim/ta	altricial-CF	altricial-FG	altricial-PT	precocial-CF	intermediate-CF	intermediate-FG	intermediate-FS
----------	--------------	--------------	--------------	--------------	----------------	----------------	----------------
altricial-CF	1	<0.001	0.639	0.003	0.016	0.712	<0.001
altricial-FG	<0.001	1	<0.001	<0.001	<0.001	<0.001	<0.001
altricial-PT	0.639	<0.001	1	<0.001	<0.001	0.396	<0.001
precocial-CF	0.003	<0.001	<0.001	1	0.362	0.044	0.122
intermediate-CF	0.016	<0.001	<0.001	0.362	1	0.114	0.033
intermediate-FG	0.712	<0.001	0.396	0.044	0.114	1	0.008
intermediate-FS	<0.001	<0.001	<0.001	0.122	0.033	0.008	1
Table S6: Phylogenetic pairwise t-test for differences between flight styles and developmental modes.

Not corrected for multiple comparisons values of significance are reported.

Pairwise t-test for flight styles	Pairwise t-test for developmental modes
hu/ta CF FG FS PT **hu/ta**	**altricial** precocial intermediate
CF 1 0.003 0.595 0.077 altricial 1	0.062 1 0.148
FG 0.003 1 0.037 0.160 precocial 0.062	1 0.460
FS 0.595 0.037 1 0.331 intermediate 0.148	0.460 1
PT 0.077 0.160 0.331 1	
ul/ta CF FG FS PT **ul/ta**	**altricial** precocial intermediate
CF 1 0.743 0.073 0.264 altricial 1	0.075 0.890
FG 0.743 1 0.224 0.346 precocial 0.075	1 0.008
FS 0.073 0.224 1 0.604 intermediate 0.890	0.008 1
PT 0.264 0.346 0.604 1	
mn/ta CF FG FS PT **mn/ta**	**altricial** precocial intermediate
CF 1 0.156 0.536 0.667 altricial 1	0.828 0.265
FG 0.156 1 0.156 0.196 precocial 0.828	1 0.286
FS 0.536 0.156 1 0.436 intermediate 0.265	0.286 1
PT 0.667 0.196 0.436 1	
fprim/ta CF FG FS PT **fprim/ta**	**altricial** precocial intermediate
CF 1 0.006 0.508 0.154 altricial 1	0.092 0.068
FG 0.006 1 0.006 0.044 precocial 0.092	1 0.969
FS 0.508 0.006 1 0.122 intermediate 0.068	0.969 1
PT 0.154 0.044 0.122 1	
Pairwise t-test for developmental modes – flight style groups:

	altricial-CF	altricial-FG	altricial-PT	precocial-CF	intermediate-CF	intermediate-FG	intermediate-FS
hu/ta							
altricial-CF	1	0.032	0.976	0.135	0.188	0.929	0.352
altricial-FG	0.032	1	0.004	0.001	0.001	0.174	0.003
altricial-PT	0.976	0.004	1	0.097	0.151	0.901	0.312
precocial-CF	0.135	0.001	0.097	1	0.753	0.193	0.510
intermediate-CF	0.188	0.001	0.151	0.753	1	0.221	0.664
intermediate-FG	0.929	0.174	0.901	0.193	0.221	1	0.380
intermediate-FS	0.352	0.003	0.312	0.510	0.664	0.380	1
ul/ta							
altricial-CF	1	0.564	0.920	0.101	0.867	0.413	0.686
altricial-FG	0.564	1	0.499	0.258	0.696	0.692	0.358
altricial-PT	0.920	0.499	1	0.079	0.923	0.398	0.597
precocial-CF	0.101	0.258	0.079	1	0.016	0.612	0.006
intermediate-CF	0.867	0.696	0.923	0.016	1	0.437	0.429
intermediate-FG	0.413	0.692	0.398	0.612	0.437	1	0.208
intermediate-FS	0.686	0.358	0.597	0.006	0.429	0.208	1
mn/ta							
altricial-CF	1	0.091	0.979	0.937	0.449	0.602	0.384
altricial-FG	0.091	1	0.017	0.079	0.016	0.477	0.008
altricial-PT	0.979	0.017	1	0.900	0.349	0.569	0.336
precocial-CF	0.937	0.079	0.900	1	0.286	0.503	0.306
intermediate-CF	0.449	0.016	0.349	0.286	1	0.197	0.898
intermediate-FG	0.602	0.477	0.569	0.503	0.197	1	0.203
intermediate-FS	0.384	0.008	0.336	0.306	0.898	0.203	1
fprim/ta	altricial-CF	altricial-FG	altricial-PT	precocial-CF	intermediate-CF	intermediate-FG	intermediate-FS
--------------	--------------	--------------	--------------	--------------	----------------	----------------	----------------
altricial-CF	1	0.001	0.809	0.235	0.288	0.850	0.155
altricial-FG	0.001	1	0.001	0.001	0.001	0.004	0.001
altricial-PT	0.809	0.001	1	0.098	0.164	0.741	0.063
precocial-CF	0.235	0.001	0.098	1	0.789	0.393	0.658
intermediate-CF	0.288	0.001	0.164	0.789	1	0.491	0.453
intermediate-FG	0.850	0.004	0.741	0.393	0.491	1	0.287
intermediate-FS	0.155	0.001	0.063	0.658	0.453	0.287	1