Accurate and fast matrix factorization for low-rank learning

Reza Godaz, Reza Monsefi, Faezeh Toutounian, Reshad Hosseini

Abstract—In this paper, we tackle two important problems in low-rank learning, which are partial singular value decomposition and numerical rank estimation of huge matrices. By using the concepts of Krylov subspaces such as Golub-Kahan bidiagonalization (GK-bidiagonalization) as well as Ritz vectors, we propose two methods for solving these problems in a fast and accurate way. Our experiments show the advantages of the proposed methods compared to the traditional and randomized singular value decomposition methods. The proposed methods are appropriate for applications involving huge matrices where the accuracy of the desired singular values and also all of their corresponding singular vectors are essential. As a real application, we evaluate the performance of our methods on the problem of Riemannian similarity learning between two various image datasets of MNIST and USPS.

Index Terms—Krylov subspace, Ritz vectors, Golub-Kahan bidiagonalization, Riemannian optimization, Low-rank learning.

1 INTRODUCTION

Singular value decomposition (SVD) [1], [2] is an important matrix factorization method with a wide variety of applications in various sciences such as mathematics, artificial intelligence and physics. Common methods for solving SVD can be used when the input matrix is small or at-most medium sized, but they can not be used (or require excessive execution time) for problems that involve huge matrices (matrices with more than $1e8$ entries). There are some methods that use randomization and sampling to tackle this problem [3], [4]. For example, fast SVD algorithms of [4] are based on randomization and sampling, and have strong theoretical guarantees. These methods are currently used in various fields like social network data analysis [6]. In sampling and randomization methods, the large input matrix is converted into a smaller matrix considering a predefined error, and then one of the standard SVD methods can be applied. As a result, due to the use of the standard SVD, these methods are obliged to find a trade-off between determining the column sampling rate (that is related to the accuracy), and the execution time. Our experiments show that the eigenvalues and corresponding eigenvectors obtained by these algorithms are not accurate, although the predefined errors are maintained (see Section 5).

A fundamental problem in machine learning related to SVD is modeling vast amounts of data in a low-dimensional representation. Processing raw data in typical ways is time-consuming and not always feasible, especially when the data are high dimensional. Representing data in a suitable lower-dimensional form can alleviate challenges of computational complexity, high memory usage, model compression, and noisy environments [7]. The reduced dimensional form of the data can be used in a wide variety of applications such as neural language processing [8], video and image processing [9], recommender systems [10], multidimensional scaling [11], [12], collaborative filtering and genomics data in bioinformatics [13], [14]. It has been shown that in huge matrices the numerical rank of the matrix grows logarithmically with its dimensions [15]. The rank on the data matrix has different interpretations in different applications. For example in latent semantic analysis, the rank can be interpreted as the number of concepts related to a document. In recommender systems, the rank of a user-rating matrix corresponds to a small set of typical users [16].

For problems involving factorization of huge matrices, there is currently a significant gap between being fast, and having high level of accuracy. In the current work, the aim is to bridge this gap by using the well-known Krylov subspace methods and Ritz vectors [1]. In what follows, our aim is to pursue the following two goals: (i) to find a fixed number of singular values and corresponding singular vectors of a huge matrix in order to transform the matrix into a low-rank form accurately with moderate time and memory usage, (ii) to approximate the rank of a huge matrix in a fast and accurate way.

The remainder of this article is organized as follows. Section 2 contains a brief review of the SVD problem, and basic concepts such as Ritz vectors and Golub-Kahan bidiagonalization (GK-bidiagonalization). Our algorithm for accurate and fast SVD is the focus of Section 3. In this section, an algorithm to determine an accurate numerical rank of a matrix is also presented. Section 4 introduces an application of the proposed method in Riemannian similarity learning (RSL). In Section 5 we evaluate the efficiency of the proposed algorithms on several numerical examples. Finally, we make some concluding remarks in Section 6.

2 BACKGROUND

In this section, we give an overview of SVD and randomized methods to solve SVD. Then, we introduce Ritz vectors and GK-bidiagonalization. In the next section, we should that truncated GK-bidiagonalization can be used for approximate computation of the largest singular values and the rank of a matrix.
2.1 Singular value decomposition

SVD is a well-known mathematical method that has a wide variety of real world applications in machine learning and mathematical problems. SVD of matrix A with size $m \times n$ and rank r is given by [1, 2]:

$$A = U\Sigma V^T, \quad \sum = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix},$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are matrices with orthogonal columns, and $D = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_r)$ is a diagonal matrix. Here, $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ denote $r \leq \min(m, n)$ nonzero singular values of A. The computational complexity of traditional SVD methods for matrix $A \in \mathbb{R}^{m \times n}$ is $O(mn \min(m, n))$. An important use of this algorithm in learning problems is related to finding a low-rank form of the data matrix or a parameter matrix, where we are looking for k singular vectors associated with the k largest singular values of the matrix.

2.1.1 Randomization-based methods

Randomized methods [3, 4] can make it possible to compute singular values and corresponding singular vectors of huge matrices in a reasonable amount of time. These methods usually use Eckart-Young theorem [18] to find the rank of the input matrix, and thereby determine the required number of sampled columns (see Section 4 in [5] and also Section 10.2 in [4]). In [4], the authors added this a fixed number (called oversampling parameter) to this theoretically-driven number to get the final sampling rate.

Experiments of Section 5 demonstrate that when the input matrix is huge, setting a small value for oversampling parameter (for example 10 as suggested by authors in [4]) results in a fast execution time but inaccurate results; whereas fixing a larger value for it implies finding more accurate results, but the execution time will inevitably be longer. Based on the results given in [4] (and also our experiments), certain factors affect this oversampling parameter, such as the dimension, the singular values, and the numerical rank of the input matrix. Since both the numerical rank and the singular values of the matrix are unknown before setting the oversampling parameter (since they are costly to be computed), the resulting decomposition is not very accurate in huge matrices having a large numerical rank.

2.2 Golub-Kahan bidiagonalization for computing Ritz Vectors

We first recall the definition of a Ritz pair [17]. Then, we describe the GK-bidiagonalization process for computing the l largest Ritz values and the corresponding Ritz vectors of $A^T A$ and AA^T [19, 1, 17].

Definition 1. Consider a k-dimensional subspace \mathcal{W} of \mathbb{C}^n. Given a matrix $B \in \mathbb{C}^{n \times n}, \tilde{\theta} \in \mathbb{C}$, and $\tilde{y} \in \mathcal{W}$, $(\tilde{\theta}, \tilde{y})$ is a Ritz pair of B with respect to \mathcal{W} if and only if

$$B\tilde{y} - \tilde{\theta}\tilde{y} \perp \mathcal{W}$$

or equivalently, for the canonical scalar product,

$$\forall w \in \mathcal{W}, \quad w^H (B\tilde{y} - \tilde{\theta}\tilde{y}) = 0.$$

We call \tilde{y} a Ritz vector associated with the Ritz value $\tilde{\theta}$.

Let $W_k = [w_1, w_2, \ldots, w_k] \in \mathbb{R}^{n \times k}$ be an orthogonal basis of subspace \mathcal{W}. Using Definition 1, the Ritz pairs $(\tilde{\theta}_i, \tilde{y}_i), i = 1, 2, \ldots, k$, of $A^T A$ and AA^T can be obtained by solving the following small eigenvalue problems

$$W_k^T A^T A W_k g_i = \tilde{\theta}_i g_i, \quad \tilde{y}_i = W_k g_i, \quad i = 1, 2, \ldots, k$$

and

$$W_k^T A A^T W_k g_i = \tilde{\theta}_i g_i, \quad \tilde{y}_i = W_k g_i, \quad i = 1, 2, \ldots, k,$$

respectively. As it is known [2, Pages 215-217], this procedure is optimal in a global sense and is optimal for exterior eigenvalues.

We begin by recalling some necessary properties of the GK-bidiagonalization process [1] which is one of the well known algorithms for computing the orthonormal bases for Krylov subspaces

$$\mathcal{K}_m(AA^T, q_1) = \text{span}\{q_1, (AA^T)^1 q_1, \ldots, (AA^T)^k q_1\},$$

$$\mathcal{K}_m(A^T A, p_1) = \text{span}\{p_1, (A^T A)^1 p_1, \ldots, (A^T A)^k p_1\},$$

with $q_1 = q_1/\|q_1\|$ and $p_1 = A^T q_1/\|A^T q_1\|$, where $q_1 \in \mathbb{R}^m$ is a nonzero arbitrary vector and $\|\cdot\|$ denotes the Euclidean vector norm or associated matrix norm.

Assuming that A has full column rank and $k \ll \min(m, n)$, the GK-bidiagonalization process [1] which is called the procedure Bidiag 1 in [20], reduces A to its lower bidiagonal form. Procedure Bidiag 1 with starting vector q_1 can be described as follows:

$$\beta_1 q_1 = q_1, \quad \alpha_1 p_1 = A^T q_1,$$

$$\beta_{i+1} q_{i+1} = A p_i - \alpha_i q_i, \quad \alpha_{i+1} p_{i+1} = A^T q_{i+1} - \beta_i p_i, \quad i = 1, 2, \ldots, k,$$

The scalars $\alpha_i \geq 0$ and $\beta_i \geq 0$ are chosen such that $\|q_i\|_2 = \|p_i\|_2 = 1$. Together with the definitions

$$Q_k = [q_1, q_2, \ldots, q_k], \quad P_k = [p_1, p_2, \ldots, p_k],$$

and

$$B_{k+1,k} = \begin{bmatrix} \alpha_1 & \beta_2 & \alpha_2 & \ldots & \alpha_k \\ \beta_2 & \alpha_1 & \beta_2 & \ldots & \beta_k \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \alpha_k & \beta_k & \alpha_k & \ddots & \alpha_k \\ \beta_k & \alpha_k & \beta_k & \ldots & \beta_k \end{bmatrix},$$

the recurrence relations [5] and [6] can be rewritten as the following equations:

$$Q_{k+1} (\beta_1 e_1) = q_1, \quad A P_{k+1} = Q_{k+1} B_{k+1,k},$$

$$A^T Q_{k+1} = P_{k+1} B_{k+1,k}^T + \alpha_{k+1} p_{k+1} e_{k+1}^T,$$

where e_1 and e_{k+1} denote the first and the $(k + 1)$st columns of an identity matrix of order $k + 1$, respectively. In exact arithmetic, we have

$$Q_{k+1}^T Q_{k+1} = I, \quad A^T P_{k+1} = I,$$

where I is the identity matrix. The columns of Q_k and P_k are orthonormal bases for the Krylov subspaces defined in [4].
We wish to find approximate eigenvectors of a matrix A. The vectors v of an input matrix. The GK-bidiagonalization process is used to find approximate eigenvectors. Additional details containing the GK-bidiagonalization process are provided in (8) by β. The largest Ritz values and the corresponding Ritz vectors of A are accurate and fast. The resulting algorithm is summarized as Algorithm 2.

Algorithm 1 GK-bidiagonalization and numerical rank estimation

Inputs:
- $A \in \mathbb{R}^{m \times n}$,
- k: number of iterations ($k \leq \min(m, n)$),
- $\epsilon \in \mathbb{R}$.

Outputs:
- $k': \min(k; \text{the approximate numerical rank of } A)$,
- $B_{k'+1,k'} \in \mathbb{R}^{(k'+1) \times (k')}$,
- $P_{k'} \in \mathbb{R}^n \times (k')$,
- $Q_{k'+1} \in \mathbb{R}^m \times (k'+1)$.

1: $q_1 \sim \mathcal{N}(2,1)^{m \times 1}$, $\beta_1 = ||q_1||$, $q_1 = q_1/\beta_1$, $Q_1 = q_1$
2: $p_1 = A^T q_1$, $\alpha_1 = ||p_1||$, $p_1 = p_1/\alpha_1$, $P_1 = p_1$
3: $k' = 0$
4: while $k' < k$ do
5: $q_{k'+1} = Ap_{k'} - q_k^T \alpha_k$
6: $q_{k'+1} = q_{k'+1} - \sigma_k Q_k (Q_k^T q_{k'+1})$
7: $\beta_{k'+1} = ||q_{k'+1}||$
8: $q_{k'+1} = q_{k'+1}/\beta_{k'+1}$, $Q_{k'+1} = [Q_k, q_{k'+1}]$
9: if $||q_{k'+1}|| < \epsilon$ do
10: break
11: end if
12: $p_{k'+1} = A^T q_{k'+1} - p_k \beta_{k'+1}$
13: $p_{k'+1} = p_{k'+1} - P_{k'} (P_{k'}^T p_{k'+1})$
14: $\alpha_{k'+1} = ||p_{k'+1}||$, $p_{k'+1} = p_{k'+1}/\alpha_{k'+1}$
15: $P_{k'+1} = [P_k, p_{k'+1}]$
16: $k' = k' + 1$
17: end while

Algorithm 2 Accurate and fast SVD (F-SVD)

Inputs:
- $A \in \mathbb{R}^{m \times n}$,
- q is arbitrary,
- k: number of the iterations in Algorithm 1,
- r: number of desired larger eigen triplets $\{\sigma_i, u_i, v_i\}$.

Output:
- r desired larger eigen triplets $\{\sigma_i, u_i, v_i\}$ of A.

1: Set k as number of iterations and run Algorithm 1 to find $B_{k'+1,k'}, P_{k'}, Q_{k'+1}$
2: Find eigen decomposition of $(B_{k'+1,k'}^T B_{k'+1,k'})$ for V_1 (eigenvalues) and S_1 (eigenvalues)
3: $V_2 = P_{k'} V_1$
4: Select r larger eigenvalues of S_1 and corresponding eigenvectors from V_2 as S_2 and V_r, respectively
5: $\Sigma_r = \sqrt{\Sigma_1}$
6: for $i = 1$ to r do
7: $U_r[i,i] = 1/\sigma_i A V_r[i,i]$
8: end for
9: Return U_r, Σ_r, and V_r.

3.1 Complexity analysis and comparison with randomized SVD

The maximal computational complexity of the first three lines of Algorithm 1 is related to computing $A^T g_1$ that is $O(mn)$ flops. Computing $A g_k$ in line 5, and also $A^T q_{k'+1}$ in line 12, both takes $O(mnk')$ flops (concerning the loop), and it is $O(mn k')$ and $O(nk^2)$ flops for lines 6 and 13 respectively. Therefore the overall computational complexity involves $O(mnk' + (m + n)k^2)$ flops.

With respect to the memory requirements of Algorithm 1, in addition to the input matrix that can be sparse or dense, we consider the P and Q matrices inside the algorithm each require memory of order $O((m + n)k')$. Because matrix B is a bidiagonal matrix, two vectors of length k' can be used for it. As a result the overall memory usage of Algorithm 1 is $O((m + n + 2)k')$ which is gain is order $O((m + n)k')$.

The first part of Algorithm 2 involves computing $B_{k'+1,k'}^T B_{k'+1,k'}$ in the second step. The computational complexity of this computation, in general requires at most $O(k'^3)$ flops. In our algorithms, because the matrix $B_{k'+1,k'}^T B_{k'+1,k'}$ is a small tridiagonal matrix, the computational complexity of this part of the algorithm is close to $O(k'^2)$. We also have a matrix multiplication in step 3 that involves $O(mk'^2)$ flops. In steps 6 and 7, there is a loop which requires $O(mnr)$ flops. As a result, the overall complexity of this algorithm amounts to $O(mn(k' + r) + (m + n)k^2)$ flops. Using the assumption $k', r \ll \min(m, n)$ (that is correct when the numerical rank of the input matrix is small) the computational complexity of Algorithm 2 is $O(mnk')$.

Suppose that $X \in \mathbb{R}^{m \times n}$ and we are looking for a low-rank form for X with the numerical rank k. Using relation (1), the computational complexity of the traditional SVD is $O(mn^2)$, $n < m$ and $O(mn \log(l) + l^2(m + n))$, $l = k + p$ for the randomized SVD (R-SVD) [4]. In [4], the authors assumed that the oversampling parameter p is a small value that can be
ignored. But for the matrices where the decay of the singular values is slow, the oversampling parameter is not a small value and cannot be ignored. In such situations, the second term of the computational complexity of the randomized algorithm becomes dominant. Therefore its computational complexity approaches that of the traditional method of SVD.

As we observe, the standard SVD, R-SVD, and F-SVD methods can be used for determining the k largest singular values of a matrix, but in different qualities. The standard SVD computes a complete singular decomposition and the results are accurate, but it is not reasonable when \(k \ll \min(m, n) \) because of memory and time requirements. The R-SVD method, as explained before, selects a subset of columns of \(A \) and performs a complete SVD on this subset. So its time and memory usage reduce dramatically, but the resulted singular values and corresponding singular vectors are not accurate. For this purpose, by selecting a suitable value for \(k \), the F-SVD method is able to provide the accurate results. In addition, its execution time and memory usage are comparable to those of other methods. The numerical experiments (Section 3.2) demonstrate the efficiency of the F-SVD Algorithm and confirm that this algorithm quickly executes and provides the accurate results for huge matrices.

3.2 Fast numerical rank estimation

To estimate the numerical rank of an input matrix \(A \in \mathbb{R}^{m \times n} \), we use the theory of the Lanczos process in applying the criterion \(\|q_{k+1}\| < \epsilon \) to terminate the Algorithm 1. In this formulation \(\epsilon \) is a very small positive value determined by the user. This criterion prevents the algorithm from performing extra iterations. As a result, if this condition is satisfied after \(k' \) iterations and \(k' < k \), then \(k' \) can be used as a preliminary estimate of the numerical rank of the matrix, but this estimate is not very accurate (see Algorithm 1). Thereafter, one can obtain an accurate numerical rank using eigen decomposition of the matrix \(B_{k+1}^{T}B_{k+1}B_{k+1}^{T} \) generated in Algorithm 1. See Algorithm 3 for details.

Algorithm 3 Rank determination algorithm

Inputs:
- \(A \in \mathbb{R}^{m \times n} \)
- \(\epsilon \): a small value (default: 1e-8).

Output:
- \(r \): The rank of \(A \).

1. \(k = \min(m, n) \)
2. Set \(k \) as the number of iterations and run Algorithm 1 to find \(B_{k+1} \).
3. Find the eigen decomposition of \((B_{k+1}^{T}B_{k+1}B_{k+1}^{T}) \) to determine \(S \), the matrix that contains the eigenvalues.
4. Count the diagonal elements of \(S \) that exceed \(\epsilon \) as the accurate numerical rank \(r \).

4 An application: Riemannian similarity learning

There are a wide variety of learning problems in which the parameters of interest lie on a Riemannian manifold, such as principal components analysis (PCA) [23], robust PCA [23], [24], independent component analysis (ICA) [25], subspace learning, low-rank matrix completion [10], dictionary learning [26] and Gaussian mixture model [27]. One of the important assumptions in some of these learning problems is that the data are localized around low-dimensional structures, that is we have Riemannian manifold of low-rank matrices. When the optimization constraint is having low-rank matrices, we can use Riemannian optimization algorithm [10]. In-depth discussions of different Riemannian optimization methods with their theoretical analysis can be found in [28], [29].

One of the instances of low-rank learning that Riemannian optimization can be used to solve is Riemannian similarity learning (RSL) that we explain here. Suppose we have pairs of data from following two domains:

\[
D_X = \{x_1, x_2, \ldots, x_i \in \mathbb{R}^{d_X}\},
\]

\[
D_V = \{v_1, v_2, \ldots, v_j \in \mathbb{R}^{d_V}\},
\]

and the task is estimating a function \(\hat{y} : D_X \times D_V \rightarrow \mathbb{R} \) that measures the similarity of these pair of data, where \(\times \) represents the Cartesian product of two sets. The training data consists of \(n \) tuples \((x_i, v_i, y_i) \), \(i \in \{1, 2, \ldots, n\} \), where \(x_i \in D_X \), \(v_i \in D_V \) and \(y_i \) is a value measuring the similarity of the data pair \((x_i, v_i) \). In [31], [32], the following parametric function was introduced for measuring the similarity:

\[
f_W : (x, v) \rightarrow x^T W v.
\]

In [33], similar cost as that of (14) was used for similarity learning but they induces low-rank constraint on \(W \) to regularize their model. In some problems, \(y_i \in \{-1, 1\} \) depending on whether the two samples are similar or not. Therefore, similarity learning can be cast as the following problem:

\[
\min_{W \in \mathcal{M}_r} f(W) = 1/n \sum_{i=1}^{n} l(f_W(x_i, v_i), y_i),
\]

where \(l \) is a loss function such as hinge or cross-entropy loss function, and \(\mathcal{M}_r = \{W \in \mathbb{R}^{d_X \times d_V} : rank(W) = r\} \). Since the low-rank constraint can be seen as a Riemannian manifold, this similarity learning problem can be called Riemannian similarity learning. To solve (15), one of the different types of Riemannian gradient descent methods presented in [30], [34], [24] can be used. We assume that the rank is significantly smaller than the matrix dimensions, i.e. \(r \ll \min(d_X, d_V) \). In addition, to improve the performance, we use Algorithm 2 inside a Riemannian gradient descent algorithm instead of standard SVD to solve (15).

4.1 Riemannian stochastic gradient descent

Consider the following minimization problem:

\[
\min_{W \in \mathcal{M}_r} f(W),
\]

where \(\mathcal{M}_r \) is the Riemannian manifold of matrices with rank equal to \(r \), and we use a noisy version of the Riemannian gradient \(\nabla f_t \) at step \(t \) in the update rule. Riemannian stochastic gradient descent (RSGD) [30] uses the following update rule:

\[
W_{t+1} = R_{W_t}(-\eta_t \nabla f_t),
\]

where \(\eta_t \) is the step size at step \(t \), and \(R_{W_t} \) is a retraction at \(W_t \). A retraction is a mapping from tangent space at a point to the manifold satisfying certain properties. Indeed for any tangent
vector $\xi \in T_{W}M$, a retraction can be found by solving the following equation \[10 \]

$$R_W(\xi) = \arg\min_{X \in M} \|W + \xi - X\|_F. \tag{18}$$

This equation has a closed form solution as

$$R_W(\xi) = \sum_{i=1}^{r} \sigma_i u_i v_i^T, \tag{19}$$

where $\{\sigma_i, u_i, v_i\}_{i=1}^{r}$ are the first r singular triplets of SVD in the point $W + \xi$.

4.1.0.1 Geometric meaning of SVD: Suppose $M_W := \{W \in \mathbb{R}^{d_1 \times d_2} : W = U\Sigma V^T\}$, where U, Σ, V are matrices defined the same as \([1]\). It was demonstrated in \([28]\) Chapter 3] and \([10]\) that M_W is a Riemannian manifold, and the tangent space at point W is defined by

$$T_WM := \{UMV^T + UrV^T + UVr^T\}, \tag{20}$$

where $U^T r = 0$ and $V^T r = 0$, and M is an arbitrary r by r matrix. The Riemannian metric is defined as $\langle \eta, \zeta \rangle = \text{tr}(\eta^T \zeta)$, where $\text{tr}(\cdot)$ is the matrix trace.

4.1.0.2 Riemannian gradient: Assume $Gr_{W} \in \mathbb{R}^{m \times n}$ represents the Euclidean gradient of the objective function \([16]\) w.r.t to W. The Riemannian gradient, that is computed by the projection of the Euclidean gradient onto the tangent space of M_W, has the following form

$$\text{Grad}_W f = P^H_{U}Gr_{W}P^H_{V} + P^H_{U}Gr_{V}P^H_{U} + P^H_{U}Gr_{W}P^H_{V}, \tag{21}$$

where the shorthand notations $P^H_{X} := XX^T$ and $P^T_{X} := I - XX^T$.

4.1.0.3 RSGD algorithm for RSL: The complete process of the RSGD method that is customized for the Riemannian similarity learning problem is represented in Algorithm 4.

Algorithm 4 Fast Riemannian mini-batch gradient descent algorithm

Inputs:

- $X \in \mathbb{R}^{m \times d_1}$, $V \in \mathbb{R}^{n \times d_2}$
- K : number of iterations, b: mini batch size
- η: RSGD training rate
- r: rank of low-rank manifold M

Outputs:

- $W \in \mathbb{R}^{d_1 \times d_2}$ as the optimized parameter matrix,

1. $W \sim N(0,1)^{d_1 \times d_2}$
2. For each step $i < K$ do
3. $Gr \in \mathbb{R}^{d_1 \times d_2} = 0$
4. Draw a batch of data tuple $B = \{(x_i, v_i, y_i)\}_{i=1}^{b}$
5. Compute $Gr = \frac{1}{|B|} \sum_{(x_i, v_i, y_i) \in B} (\nabla f_W(x_i, v_i))y_i$
6. $Gr = Gr - \lambda \cdot W$
7. Compute the SVD of $Gr = U_r\Sigma_rV_r^T$ using Algorithm 2
8. $Z = U_r U_r^T Gr_{W} V_r V_r^T + (I - U_r U_r^T)Gr_{V} V_r V_r^T + U_r U_r^T Gr_{W} (I - V_r V_r^T)$
9. Compute the SVD of $(W - \eta Z) = U_r\Sigma_r V_r$ using Algorithm 2
10. $W_{new} = U_r\Sigma_r V_r$
11. end For

Figure 1: Investigating the quality of the singular triplets of our proposed F-SVD (c and d), oversampled R-SVD (e and f) and default R-SVD (e and f) compared to the singular triplets found by traditional SVD. The input matrix is $A \in \mathbb{R}^{1 \times 1 \times 4}$ with the numerical rank equal to 1000 and the goal is to determine 100 dominant singular triplets, and their singular values by an SVD algorithm: $A \approx U_{alg}\Sigma_{alg}V_{alg}^T$. In the plots of the first row, we are showing the values of the error vector computed by $\text{diag}(U_{alg} U_{alg}^T)\text{diag}(V_{alg}^T V_{alg})$, where alg denotes one of the three SVD methods, svd is the standard SVD method used by the Numpy Python library, $\text{diag}(\cdot)$ returns diagonal elements of a matrix as a vector, and dot represents element-wise multiplication of two vectors. In the plots of the second row, the values of the absolute difference between dominant singular values $|\sigma_{svd}^{i} - \sigma_{alg}^{i}|_{i=1}^{100}$ are shown. The red curves in the plots is the smoothed version of the original curves.

5 EXPERIMENTAL RESULTS

In this section we investigate the effectiveness of Algorithms 1, 2 and 3 which we developed in Python 3.7.6. Our experiments were performed on the google cloud with 16 vCPUs @ 2.2 GHz (8 real cores) and 128GB RAM. To measure execution times and errors, we calculate an average value for the results of five repetitions of each algorithm. Our Python code is available via https://github.com/rezagodaz/accurate-partial-svd.
Table 1: Comparison of various SVD algorithms with respect to execution time (a), estimated numerical rank of the input matrix (b), and the observed residual and relative errors (c). The results are obtained using synthetic matrices of different sizes, all of which have a numerical rank equal to 100. For the randomized SVD algorithm (R-SVD) of [4], we investigate two possible scenarios: (i) knowing the required value of oversampling parameter \(p \) (see section 2.1.1), and (ii) using the default value of \(p \) by [4]). For (b) and (c), the underlying goal is to determine the 20 dominant triplets of the input matrix using the various possible SVD algorithms and to compare them with respect to execution time and accuracy.

5.1 Comparing accuracy and speed of SVD algorithms

We select two algorithms, traditional SVD and R-SVD [4] for our comparisons because traditional SVD is one of the most accurate methods and R-SVD is one of the fastest choices among the randomized methods. In addition the performance of R-SVD with respect to errors makes it a suitable representative for the various randomized methods.

The experimental results are shown in Table 1. In this experiment to build a synthetic matrix \(A \in \mathbb{R}^{m \times n} \), with fixed rank \(l \), we multiplied two matrices \(M \in \mathbb{R}^{m \times l} \) and \(N \in \mathbb{R}^{l \times n} \). Each instance of \(M \) and \(N \) was randomly and independently using a Gaussian distribution. The values of \(m \) and \(n \) vary as included in the first columns of Tables 1a, 1b, and 1c. To determine the error of each algorithm we define two kinds of errors. The errors reported in Table 1c are defined as the relative error, \(err_{rel} = \frac{\| A \Sigma V - U \Sigma V^T \|_F}{\| \Sigma \|_F} \), and the residual error, \(err_{res} = \| A - U \Sigma V^T \|_F \), where the matrices \(U \), \(\Sigma \), and \(V \) are generated using the specified algorithms given in the tables.

Table 1a is related to approximate the numerical rank of a huge matrix that is a secondary result of Algorithm 1. The proposed Algorithm 3 is a fast algorithm to determine the numerical rank of the input matrix that provides a distinct time advantage over the current practical method used by Python, which executes traditional partial SVD, for the situations that input matrix is huge. When the true numerical rank of a huge original matrix is small, Algorithms 1 and Algorithm 3 perform the best. The last column of Table 1a records the number of iterations of Algorithm 3 after terminating based on the condition \(\| g_k \| < \epsilon \) in iteration \(k' \), without any predefined parameter or user intervention. This value is our first approximation of the numerical rank of the input matrix (In Table 1a Alg 1 and Alg 3 denote the algorithms [1] and [3] respectively).

Considering the complexity analysis of the F-SVD method (mentioned in Section 5.1) and also the experimental results summarized in Table 1b, F-SVD has a computational complexity comparable to that of R-SVD when the decay of matrix singular values is slow. In addition, it can be seen that the execution time of the F-SVD methods is less than that of R-SVD (oversampled) method.

Table 1c shows that Algorithm 2 exhibits the smallest relative error among all executions. It also gives low residual error and fast computation of the singular values and the corresponding singular vectors, especially the smaller singular triplets, which represents the relative superiority of F-SVD over R-SVD (oversampled). Therefore, this algorithm is a suitable choice for use in almost all problem settings.

In Figure 1 we are comparing the quality of SVD triplet obtained by different methods. In this experiment, Algorithm 2 terminates after 550 iterations. For the algorithm R-SVD, the oversampling parameter was set to 800 (p=800 thus l=900). For the plots in the first row of this figure, a value close to 1.0 means that the corresponding vectors computed were satisfactorily accurate. It can be seen that Algorithm 2 outperforms its R-SVD competitor with respect to the accuracy for both the singular values as well as the singular vectors.
5.2 RSL application

In this section, we evaluate Algorithm 4 in the task of similarity learning for classification. We use two famous datasets MNIST (used as the source domain D_X) and USPS (used as the target domain D_Y). Both of these datasets include handwritten digits, but with a different number of pixels. Algorithm 4 is used for the task of RSL with the input parameter rank equal to five, and the number of iterations varying from 5000 to 20000. Figure 2 compares the running-time and accuracy results obtained by using the standard SVD and FSVD in the inner loop of Algorithm 4. As it is clear, using FSVD significantly leads to less computation time than the standard SVD, while the same accuracy is obtained. The results in this figure is the median result for three executions of Algorithm 4. It should be mentioned that Riemannian optimization algorithms such as that of Algorithm 4 need a high level of accuracy for the retraction and the RSVD method can not be used in these types of algorithms.

6 Conclusion

Traditional method for solving SVD are accurate for matrix decomposition that has many applications in different sciences. This algorithm is not a suitable choice for huge matrices because of its computational complexity. Randomized algorithms are a group of methods that tackle this problem by decomposing a smaller matrix made from the main matrix. They successfully reduced the computational complexity of the traditional SVD algorithm and hence can be used with huge input matrices. However, such randomized algorithms may be inaccurate, or may require unknown values for their key parameters. Using key concepts from Krylov subspaces, we have devised SVD algorithms that execute quickly and provide accurate, reliable singular values and their corresponding singular vectors for huge input matrices. As a by-product, we obtained a fast and accurate rank estimation for huge matrices.

Acknowledgment

The authors thank Prof David Matthews, a faculty of statistics and actual science at the University of Waterloo, Canada for carefully proofreading the manuscript.

References

[1] G. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse of a matrix,” Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, vol. 2, no. 2, pp. 205–224, 1965.

[2] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” in Linear Algebra. Springer, 1971, pp. 134–151.

[3] P.-G. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm for the decomposition of matrices,” Applied and Computational Harmonic Analysis, vol. 30, no. 1, pp. 47–68, 2011.

[4] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions,” SIAM review, vol. 53, no. 2, pp. 217–288, 2011.

[5] P.-G. Martinsson, “Randomized methods for matrix computations,” The Mathematics of Data, vol. 25, pp. 187–231, 2019.

[6] Inc.Facebook. (2014, Sep.) Fast randomized svd ONLINE. [Online]. Available: https://research.fb.com/blog/2014/09/fast-randomized-svd/

[7] L. Cambier and P.-A. Abis, “Robust low-rank matrix completion by riemannian optimization,” SIAM Journal on Scientific Computing, vol. 38, no. 5, pp. S440–S460, 2016.

[8] P. S. Dhillon, D. P. Foster, and L. H. Ungar, “Eigenwords: Spectral word embeddings,” The Journal of Machine Learning Research, vol. 16, no. 1, pp. 3035–3078, 2015.

[9] X. Zhou, C. Yang, H. Zhao, and W. Yu, “Low-rank modeling and its applications in image analysis,” ACM Computing Surveys (CSUR), vol. 47, no. 2, pp. 1–33, 2014.

[10] B. Vandereycken, “Low-rank matrix completion by riemannian optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp. 1214–1236, 2013.

[11] B. T. Bartell, G. W. Cottrell, and R. K. Belew, “Latent semantic indexing is an optimal special case of multidimensional scaling,” in Proceedings of the 15th annual international ACM SIGIR conference on Research and development in information retrieval, 1992, pp. 161–167.

[12] Y. Qiu, H. Jiang, and W.-K. Ching, “Unsupervised learning framework with multidimensional scaling in predicting epithelial-mesenchymal transitions,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020.

[13] J. Bennett and S. Lanning, “The Netflix prize,” in Proceedings of KDD Cup and Workshop, 2007.

[14] J. D. Rennie and N. Srebro, “Fast maximum margin matrix factorization for collaborative prediction,” in Proceedings of the 22nd international conference on Machine learning, 2005, pp. 713–719.
[15] M. Udell and A. Townsend, “Why are big data matrices approximately low rank?” SIAM Journal on Mathematics of Data Science, vol. 1, no. 1, pp. 144–160, 2019.

[16] I. Markovsky, Introduction. Cham: Springer International Publishing, 2019, pp. 1–34. [Online]. Available: https://doi.org/10.1007/978-3-319-89620-5_1

[17] D. C. Sorensen, “Numerical methods for large eigenvalue problems.” Acta Numerica, vol. 11, pp. 519–584, 2002.

[18] G. W. Stewart, “On the early history of the singular value decomposition,” SIAM review, vol. 35, no. 4, pp. 551–566, 1993.

[19] J. Baglama, L. Reichel, and D. Richmond, “An augmented lsqr method,” Numerical Algorithms, vol. 64, no. 2, pp. 263–293, 2013.

[20] C. C. Paige and M. A. Saunders, “Lsqr: An algorithm for sparse linear equations and sparse least squares,” ACM Transactions on Mathematical Software (TOMS), vol. 8, no. 1, pp. 43–71, 1982.

[21] C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators.” Journal of Research of the National Bureau of Standards, 1950.

[22] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis.” Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[23] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” Journal of the ACM (JACM), vol. 58, no. 3, pp. 1–37, 2011.

[24] T. Zhang and Y. Yang, “Robust pca by manifold optimization,” The Journal of Machine Learning Research, vol. 19, no. 1, pp. 3101–3139, 2018.

[25] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[26] A. Cherian and S. Sra, “Riemannian dictionary learning and sparse coding for positive definite matrices,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, pp. 2859–2871, 2015.

[27] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

[28] P. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds. Princeton University Press, 2009.

[29] N. Boumal, “An introduction to optimization on smooth manifolds.” Available online, Aug 2020. [Online]. Available: http://www.nicolasboumal.net/book

[30] S. Bonnabel, “Stochastic gradient descent on riemannian manifolds.” IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2217–2229, 2013.

[31] G. Chechik, U. Shalit, V. Sharma, and S. Bengio, “An online algorithm for large scale image similarity learning,” in Advances in Neural Information Processing Systems, 2009, pp. 306–314.

[32] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “Large scale online learning of image similarity through ranking.” Journal of Machine Learning Research, vol. 11, no. 3, 2010.

[33] B. Mishra and R. Sepulchre, “R3mc: A riemannian three-factor algorithm for low-rank matrix completion,” in 53rd IEEE Conference on Decision and Control. IEEE, 2014, pp. 1137–1142.

[34] H. Kasai, H. Sato, and B. Mishra, “Riemannian stochastic recursive gradient algorithm with retraction and vector transport and its convergence analysis,” in International Conference on Machine Learning, 2018, pp. 2521–2529.