Characterization of Microsatellite Loci in the Himalayan Lichen Fungus Lobaria pindarensis (Lobariaceae)

Authors: Shiva Devkota, Carolina Cornejo, Silke Werth, Ram Prasad Chaudhary, and Christoph Scheidegger

Source: Applications in Plant Sciences, 2(5)
Published By: Botanical Society of America
URL: https://doi.org/10.3732/apps.1300101
CHARACTERIZATION OF MICROSATELLITE LOCI IN THE HIMALAYAN LICHEN FUNGUS *LOBARIA PINDARENSIS* (LOBARIACEAE)

SHIVA DEVKOTA2,3, CAROLINA CORNEJO2, SILKE WERTH2,4, RAM PRASAD CHAUDHARY3,5, AND CHRISTOPH SCHEIDEGGER2,6

1 Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; 2 Central Department of Botany, Tribhuvan University, Kirtipur, Nepal; 3 Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland; and 4 Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kirtipur, Nepal

- **Premise of the study:** Microsatellite loci were developed for the rare, Himalayan, endemic haploid lichen fungus, *Lobaria pindarensis*, to study its population subdivision and the species’ response to forest disturbance and fragmentation.
- **Methods and Results:** We developed 18 polymorphic microsatellite markers using 454 pyrosequencing data and assessed them in 109 individuals. The number of alleles per locus ranged from three to 11 with an average of 6.9. Nei’s unbiased gene diversity, averaged over loci, ranged from 0.514 to 0.685 in the three populations studied. The cross-amplification success with related species (*L. chinensis*, *L. gyrophorica*, *L. isidiophora*, *L. orientalis*, *L. pulmonaria*, *L. spathulata*, and Lobaria sp.) was generally high and decreased with decreasing relationship to *L. pindarensis*.
- **Conclusions:** The new markers will allow the study of genetic diversity and differentiation within *L. pindarensis* across its distribution. Moreover, they will enable us to study the effects of forest management on the genetic population structure of this tree-colonizing lichen and to carry out population genetic studies of related species in East Asia.

Key words: Ascomycetes; Himalayas; lichen-forming fungi; *Lobaria pindarensis*; microsatellites; population subdivision.

Lobaria pindarensis Räsänen (Lobariaceae, Peltigerales) is a foliose lichen species known from mountain forests and open woodlands in the Himalayas of Bhutan, India, and Nepal. The lichen thallus is haploid and it mainly disperses with vegetative propagules, but sexual reproduction with ascospores can also occur (Scheidegger et al., 2010). The lichen disperses locally, thus sharing ecological traits with *L. pulmonaria* (L.) Hoffm. (Scheidegger and Werth, 2009; Scheidegger et al., 2012). Although microsatellite markers are available for *L. pulmonaria* (Dal Grande et al., 2010; Werth et al., 2013), only three markers (LPu32425, LPu40211, and LPu34888) published by Werth et al. (2013) reveal small, multiple bands when amplified with *L. pindarensis*. All other published markers do not amplify with *L. pindarensis*. Here, we develop microsatellite markers to study the impact of land use and habitat fragmentation on gene flow of this dispersal-limited lichen (Scheidegger et al., 2010).

METHODS AND RESULTS

Ten specimens of *L. pindarensis*, collected in two valleys in Nepal (Table 1; Manaslu Conservation Area [MCA] and Sagarmatha National Park [SNP]), were used for total DNA extraction with the QIAGEN Plant Mini Kit (QIAGEN, Hilden, Germany). Subsequently, whole genome 454 pyrosequencing of pooled DNA samples was performed using a Roche GS FLX sequencer to generate a sufficient number of microsatellite loci. Library preparation and sequencing were performed by Microsynth (Balgach, Switzerland). Shotgun libraries were prepared using the GS FLX Titanium Rapid Library Preparation Kit (Roche Diagnostics, Basel, Switzerland), while Microsynth provided barcode adapters. Out of a 1/4th run, we obtained 233,260 reads of an average length of 314 bases for a total of 73,191,881 bases. The unassembled sequences were screened for all possible sequence motifs of di-, tri-, tetra-, and pentanucleotide microsatellites using Primer3, as implemented in MSATCOMMANDER version 1.0.2 alpha (Rozen and Skaletsky, 2000; Faircloth, 2008). Microsatellites with motifs repeated at least eight times (for dinucleotides) or six (for all others) were chosen. For each locus, primer pairs were developed with MSATCOMMANDER using the default parameters.

Using all reads, MSATCOMMANDER found 1021 primer pairs that fulfilled the default primer parameters. Subsequently, 656 pairs were discarded either because they contained unfavorable secondary structure, primer dimer formation, or mononucleotide repeats in the flanking region, or because they were duplicates, which were detected after alignment using CLC DNA Workbench 5 (CLC bio, Aarhus, Denmark). The remaining 365 sequences were verified one by one using nBlast with the megablast option (http://www.ncbi.nlm.nih.gov/blast) to exclude those that were highly similar to algae, plants, or microorganisms that are often present in environmental samples. To test for cross-amplification with the photobiont of *L. pindarensis*, Dictyochloropsis reticulata (Tschermak-Woess) Tschermak-Woess, PCRs of the remaining 116 primer pairs (including 44 di-, 65 tri-, and 7 tetranucleotides) were run using DNA from an axenic culture of *D. reticulata* (Dal Grande et al., 2010, 2012; Widmer et al., 2010, 2012). The 56 loci that produced positive PCR reactions were excluded from further analyses because they were...
considered alga-specific rather than fungus-specific. For PCR amplification, forward primers were labeled with an M13 tag (5′-CGGCCAGT-3′) and reverse primers, and 1 μL Type-it Multiplex PCR Master Mix (Qiagen). All PCRs were performed on Veriti Thermal Cyclers (Life Technologies). Alleles were sized using GeneMapper version 3.7 (Life Technologies), and the variability of each microsatellite locus was measured by counting the number of alleles and calculating gene diversity using Arlequin version 3.11 (Excoffier et al., 2005). Trinucleotide microsatellites (n = 15) were the most common loci detected among the 18 microsatellite motifs (Table 2). The microsatellite loci produced 3–11 alleles per locus with an average of 6.9, and mean gene diversities over three populations varied from 0.514 to 0.685 (Table 1).

Cross-species amplification of seven closely related species of Lobaria (Schenk.) Hoffm. was tested on one specimen of each species (Appendix 1), applying the same PCR conditions established for L. pindarensis. All fragments were sequenced according to Cornejo and Scheidegger (2010) except Lpi01 and Lpi05, which were verified on an agarose gel but not sequenced. The transferability was high, only one locus (Lpi05) did not amplify in L. chinensis Yoshim. However, several loci contained insertions within the flanking regions, and in others the microsatellite was disrupted (imperfect or interrupted microsatellite). In some loci, the microsatellite sequences were reduced or disappeared completely, as in Lpi10 in L. isidiophora Yoshim. and Lpi16 in L. gyrophorica Yoshim., L. pulmonaria, and L. sathulata (Inum.) Yoshim., and Lobaria sp. (Fig. 1). In general, the cross-amplification success of Lpi markers decreased with decreasing relationship to L. pindarensis, being lowest in L. pulmonaria and Lobaria sp. (with four and six loci not amplifying, respectively).

CONCLUSIONS

Fungi, algae, and/or cyanobacteria live in close contact within the lichen thallus and hence the manual separation of symbionts for later molecular analyses is technically unfeasible. Therefore, symbiont-specific genetic markers have to be used in population genetic studies of lichens (Widmer et al., 2010). The newly developed, highly variable fungus-specific markers reported here will allow detailed studies on regional genetic differentiation, effects of forest disturbance on genetic diversity, and the contributions of clonal and sexual reproduction in this lichen species. Moreover, the flanking regions of the microsatellites will be used for sequence analyses in future phylogenetic studies of related taxa of the genus Lobaria.

TABLE 1. Characteristics of 18 polymorphic microsatellite loci developed for Lobaria pindarensis and screened in 109 individuals.

Locus	Total N	MCA (n = 36)	SNP (n = 43)	KCA (n = 30)				
	A	H_e	A	H_e	A	H_e		
Lpi01	106	4	3	0.643	4	0.615	3	0.587
Lpi02	109	5	4	0.652	4	0.568	4	0.524
Lpi03	109	5	3	0.160	4	0.295	4	0.582
Lpi04	108	8	6	0.635	7	0.762	6	0.800
Lpi05	109	7	4	0.162	5	0.666	6	0.715
Lpi06	109	7	4	0.463	5	0.636	6	0.747
Lpi07	105	9	7	0.567	6	0.681	5	0.690
Lpi08	108	5	3	0.565	5	0.741	5	0.594
Lpi09	109	10	8	0.700	5	0.260	5	0.556
Lpi10	109	11	5	0.754	8	0.856	8	0.779
Lpi11	108	8	5	0.459	3	0.671	6	0.820
Lpi12	109	4	3	0.256	3	0.456	4	0.724
Lpi13	109	7	4	0.752	5	0.617	7	0.726
Lpi14	109	10	6	0.308	7	0.780	7	0.786
Lpi15	109	6	4	0.760	5	0.767	5	0.501
Lpi16	110	10	6	0.816	9	0.791	7	0.788
Lpi17	106	6	4	0.457	5	0.692	6	0.869
Average	6.944	4.667	0.514	5.167	0.685			

Note: A = number of alleles; H_e = Nei’s unbiased gene diversity; n = number of samples per population; N = total number of samples analyzed.

Fig. 1. Alignment of the Lpi16 sequence containing a trinucleotide microsatellite region. The flanking region was excluded from the graphics. This locus was initially developed for Lobaria pindarensis. The first four species contain a microsatellite with n > 9 repeats. The following two species have n = 3 repeats and are not considered microsatellites. Finally, in L. pulmonaria and Lobaria sp. this locus did not evolve a microsatellite sequence.

http://www.bioone.org/loi/apps
Table 2. Overview of the microsatellite loci developed for the lichen fungus Lobaria pindarensis.

Locus	Primer sequences (5’–3’)	T_a (°C)	Repeat motif	Fluorescent dye	Allele size range (bp)	Multiplex	GenBank accession no.
Lpi01	F: TTGGCGTATATAATGCAGGCC						
 R: CACAGCACTGCTGCTGCTGCTG | 57 | (CGT)_10 | FAM | 255–264 | 3 | KF318149 |
| Lpi02 | F: GGATTCGGAGGAGGATTTGCC
 R: CATTCCACCTGCTGCTGCTG | 57 | (GAT)_10 | VIC | 164–182 | 2 | KF318150 |
| Lpi03 | F: CCCATTATCGATCTCTGCTG
 R: AGGGATTAGTATGCTGCTG | 57 | (CTT)_9 | VIC | 346–358 | 2 | KF318151 |
| Lpi04 | F: CAGGACTGAGCCCGAGATTTG
 R: TAGACCGATGTTTCCTCTC | 57 | (GTT)_10 | VIC | 89–122 | 1 | KF318152 |
| Lpi05 | F: GCTGCGGCGCGATGATTTAC
 R: TGAAAGCTGTTGTTGCTGAC | 57 | (CTT)_9 | VIC | 111–154 | 2 | KF318153 |
| Lpi06 | F: GGTATGATGATGATGATGATG
 R: CCTACTGAGTGATGATGATG | 57 | (GAT)_10 | PET | 148–194 | 2 | KF318154 |
| Lpi07 | F: CAAGGAGATGATGATGATGAC
 R: AGGATTGATGATGATGATG | 57 | (CTT)_10 | NED | 250–277 | 1 | KF318155 |
| Lpi08 | F: CCTCCCTGCTGAGATTTAC
 R: GGAGGCTGTTGTTGCTGAC | 57 | (ATC)_9 | FAM | 113–131 | 1 | KF318156 |
| Lpi09 | F: GAATTCTCTCTCTCTCTCTCT
 R: CTATCGCGAATGACTGCTTC | 57 | (CT)_10 | NED | 154–166 | 1 | KF318160 |
| Lpi10 | F: AAGGAGATGATGATGATGAC
 R: AGGATTGATGATGATGATG | 57 | (CTT)_9 | VIC | 236–283 | 1 | KF318158 |
| Lpi11 | F: CGTAATCCTCCGAGATGATGGC
 R: GCAGCTGCGTCTGCTGCTG | 57 | (ATC)_10 | FAM | 142–179 | 1 | KF318159 |
| Lpi12 | F: GGCTGCTCTCTCTCTCTCTCT
 R: TGTTGCTGCTGCTGCTGCTG | 57 | (CTT)_10 | NED | 111–154 | 3 | KF318162 |
| Lpi13 | F: ACAAGGCCGAGCGACGACGAC
 R: GCTGCGGCGCGATGATTTAC
 A: AGGGATTAGTATGCTGCTG | 57 | (AGC)_9 | VIC | 222–242 | 2 | KF318163 |
| Lpi14 | F: CGTCTACCTTCCTCTCTCTCT
 R: ATGTTGCTGCTGCTGCTGCTG | 57 | (CTT)_10 | FAM | 227–291 | 3 | KF318162 |
| Lpi15 | F: GCTGCTGCTGCTGCTGCTGCTG
 R: CTATCGCGAATGACTGCTTC
 A: AGGGATTAGTATGCTGCTG | 57 | (CTT)_10 | FAM | 98–119 | 2 | KF318163 |
| Lpi16 | F: GAATCTGCTGCTGCGGATGATG
 R: GGTAGCTGCTGAGGGCTGCCC
 A: AGGGATTAGTATGCTGCTG | 57 | (AGG)_12 | VIC | 158–194 | 3 | KF318164 |
| Lpi17 | F: CTAGTCTGCTGCTGCTGCTG
 R: GCCACTCTACTACTACTACT
 A: AGGGATTAGTATGCTGCTG | 57 | (ATC)_10 | FAM | 309–351 | 1 | KF318165 |
| Lpi18 | F: CTAGTCTGCTGCTGCTGCTG
 R: GGTAGCTGCTGAGGGCTGCCC
 A: AGGGATTAGTATGCTGCTG | 57 | (ACG)_10 | FAM | 374–380 | 3 | KF318166 |

Note: T_a = annealing temperature.

*Multiplex indicates loci that were mixed in the same capillary electrophoresis run.

LITERATURE CITED

Cornejo, C., and C. Scheidegger. 2010. Lobaria macaronesica sp. nov., and the phylogeny of Lobaria sect. Lobaria (Lobariaceae) in Macaronesia. Bryologia 11: 593–605.

Dal Grande, F., I. Widmer, A. Beck, and C. Scheidegger. 2010. Microsatellite markers for Dictyochloropsis reticulata (Trebouxiophyceae), the symbiotic alga of the lichen Lobaria pulmonaria (L.). Conservation Genetics 11: 1147–1149.

Dal Grande, F., I. Widmer, H. H. Wagner, and C. Scheidegger. 2012. Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Molecular Ecology 21: 3159–3172.

Excoffier, L., G. Laval, and S. Schneider. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.

Faircloth, B. C. 2008. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources 8: 92–94.

Rozen, S., and H. J. Skaltsky. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

Scheidegger, C., and S. Welther. 2009. Conservation strategies for lichens: Insights from population biology. Fungal Biology Reviews 23: 55–66.

Scheidegger, C., M. P. Nobs, and K. K. Shrestha. 2010. Biodiversity and livelihood in land-use gradients in an era of climate change: Outline of a Nepal-Swiss research project. Botanica Orientalis 7: 7–17.

Scheidegger, C., P. O. Bilovitz, S. Welther, I. Widmer, and H. Mayrhofer. 2012. Hitchhiking with forests: Population genetics of the epiphytic lichen Lobaria pulmonaria in primeval and managed forests in southeastern Europe. Ecology and Evolution 2: 2223–2240.

Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233–234.

Welther, S., C. Cornejo, and C. Scheidegger. 2013. Characterization of microsatellite loci in the lichen fungus Lobaria pulmonaria (Lobariaceae). Applications in Plant Sciences 1: 1200290.

Widmer, I., F. Dal Grande, C. Cornejo, and C. Scheidegger. 2010. Highly variable microsatellite markers for the fungal and algal symbionts of the lichen Lobaria pulmonaria and challenges in developing biont-specific molecular markers for fungal associations. Fungal Biology 114: 538–544.

Widmer, I., F. Dal Grande, L. Excoffier, R. Holderegger, C. Keller, V. Mikryukov, and C. Scheidegger. 2012. Phylogeography of a lichen symbiosis. Molecular Ecology 21: 5827–5844.
APPENDIX 1. Cross-amplification of Lobaria pindarensis loci with related species of the genus Lobaria. Specimens are stored in the personal herbarium of Christoph Scheidegger at WSL. All samples are kept frozen at –20°C.

Species	Voucher	Locality	Geographic coordinates	Lpi01	Lpi02	Lpi03	Lpi04	Lpi05	Lpi06	Lpi07	Lpi08	Lpi09	Lpi10	Lpi11	Lpi12	Lpi13	Lpi14	Lpi15	Lpi16	Lpi18
L. chinensis	CT302a	Taiwan	23°28′30.4″N, 120°50′17.0″E	+	+	+	i	0	+	+	+	+	+	in	+	+	+	+	+	
L. gyrophorica	TW2/03_5	Taiwan	24°10′37.1″N, 121°23′38.7″E	+	+	+	i	0	+	+	+	+	+	+	in	+	–	+	+	
L. isidiophora	CT9/03e	Taiwan	24°10′13.2″N, 121°17′05.5″E	0	+	+	i	0	+	+	+	+	+	+	in	–	+	+	+	0
L. orientalis	004/15	Russia, Sakhalin	47°38′26″N, 142°33′24″E	0	+	+	i	0	+	+	+	+	+	+	+	in	+	+	–	0
L. pulmonaria	289/1	Russia, Primorsky Krai	43°39′44″N, 134°24′32″E	+	+	+	i	0	–	+	+	+	+	+	0	–	0	0	0	0
L. spathulata	001/3	Russia, Sakhalin	47°38′26″N, 142°33′24″E	0	+	+	i	0	+	+	+	+	+	+	+	–	+	in	0	0
Lobaria sp.	377/2	Russia, Primorsky Krai	44°57′13″N, 136°30′50″E	0	i	+	+	0	0	+	+	i	in	+	+	+	0	+	–	0

Note: + = microsatellite present; – = no microsatellite present; 0 = no PCR product obtained; i = insertion within the flanking region; in = microsatellite interrupted.