Some linear Jacobi structures on vector bundles

David IGLESIAS, Juan C. MARRERO

Abstract. We study Jacobi structures on the dual bundle A^* to a vector bundle A such that the Jacobi bracket of linear functions is again linear and the Jacobi bracket of a linear function and the constant function 1 is a basic function. We prove that a Lie algebroid structure on A and a 1-cocycle $\phi \in \Gamma(A^*)$ induce a Jacobi structure on A^* satisfying the above conditions. Moreover, we show that this correspondence is a bijection. Finally, we discuss some examples and applications.

Quelques structures de Jacobi linéaires sur des fibrés vectoriels

Résumé. On étudie des structures de Jacobi sur le fibré dual A^* d’un fibré vectoriel A tels que le crochet de Jacobi de fonctions linéaires est à nouveau linéaire et le crochet de Jacobi d’une fonction linéaire et la fonction constante 1 est une fonction basique. On démontre qu’une structure d’algébroïde de Lie sur A et un 1-cocycle $\phi \in \Gamma(A^*)$ induisent une structure de Jacobi sur A^* qui vérifie les conditions antérieures. On voit aussi que cette correspondance est une bijection. On montre finalement quelques exemples et applications.

Version française abrégée

Soit M une variété différentiable et $\pi : A \to M$ un fibré vectoriel sur M.

Un cocycle pour une structure d’algébroïde de Lie sur $\pi : A \to M$ est une section ϕ du fibré dual $A^* \to M$ telle que $\phi[\mu, \eta] = \rho(\mu)(\phi(\eta)) - \rho(\eta)(\phi(\mu))$, pour tout $\mu, \eta \in \Gamma(A)$, où $[,]$ est le crochet de Lie sur l’espace $\Gamma(A)$ des sections de $\pi : A \to M$ et $\rho : A \to TM$ est l’application ancre (voir [13]). On dénote donc par \tilde{A} l’ensemble des paires $(([,] , \rho), \phi)$, où $([,] , \rho)$ est une structure d’algébroïde de Lie sur $\pi : A \to M$ et $\phi \in \Gamma(A^*)$ un 1-cocycle. D’ailleurs, on dénote par \mathcal{J} l’ensemble des structures de Jacobi (Λ, E) sur A^*, lesquelles satisfont les deux conditions suivantes:

(C1) Le crochet de Jacobi de deux fonctions linéaires est linéaire.

(C2) Le crochet de Jacobi d’une fonction linéaire et la fonction constante 1 est une fonction basique.

On démontre donc, dans cette note, qu’il y a une correspondance bijective $\Psi : \tilde{A} \to \mathcal{J}$ entre les ensembles \tilde{A} et \mathcal{J}. L’application Ψ est définie par $\Psi(([[,] , \rho), \phi) = (\Lambda_{(A^*, \phi)}, E_{(A^*, \phi)})$ avec

$\Lambda_{(A^*, \phi)} = \Lambda_{A^*} + \Delta \wedge \phi^v$, \hspace{1cm} $E_{(A^*, \phi)} = -\phi^v$,

où Λ_{A^*} est le bi-vecteur de Poisson sur A^* induit par la structure d’algébroïde de Lie $([,], \rho)$ (voir [2, 3]), Δ est le champ de Liouville sur A^* et ϕ^v est le relèvement vertical de ϕ. Observons que les paires dans \tilde{A} de la forme $(([[,] , \rho), 0)$ correspondent, à travers Ψ, aux structures de Poisson dans \mathcal{J}. Ainsi, comme conséquence, on déduit un résultat démontré dans [2, 3].

Les conditions (C1) et (C2) établies ci-dessus sont naturelles. En fait, on démontre que celles-ci sont vérifiées pour quelques structures de Jacobi, bien connues et importantes, définies sur l’espace
total de quelques fibrés vectoriels. En même temps, la correspondance Ψ nous permet d’obtenir de nouveaux et intéressants exemples de structures de Jacobi. On voit finalement, comme une autre application, qu’une structure d’algébroïde de Lie sur un fibré vectoriel \(A \rightarrow M \) et un 1-cocycle \(φ \in Γ(A^*) \) induisent une structure d’algébroïde de Lie sur le fibré vectoriel \(A \times \mathbb{R} \rightarrow M \times \mathbb{R} \).

1 Jacobi manifolds and Lie algebroids

Let \(M \) be a differentiable manifold of dimension \(n \). We will denote by \(C^∞(M, \mathbb{R}) \) the algebra of \(C^∞ \) real-valued functions on \(M \), by \(Ω^1(M) \) the space of 1-forms, by \(X(M) \) the Lie algebra of vector fields and by \([\, , \,] \) the Lie bracket of vector fields.

A Jacobi structure on \(M \) is a pair \((\Lambda, E)\), where \(\Lambda \) is a 2-vector and \(E \) is a vector field on \(M \) satisfying the following properties:

\[
([\Lambda, \Lambda])_{SN} = 2E \wedge \Lambda, \quad [E, \Lambda]_{SN} = 0. \tag{1}
\]

Here \([\, , \,]_{SN}\) denotes the Schouten-Nijenhuis bracket \((I, IV)\). The manifold \(M \) endowed with a Jacobi structure is called a Jacobi manifold. A bracket of functions (the Jacobi bracket) is defined on \(M \) by \(\{f, g\} = \Lambda(d\bar{f} \wedge dg) + f\bar{E}(g) - g\bar{E}(f) \), for all \(f, g \in C^∞(M, \mathbb{R}) \). Note that

\[
\{\bar{f}, \bar{g}\} = \bar{g}\{\bar{f}, \bar{h}\} + \bar{h}\{\bar{f}, \bar{g}\} - \bar{g}\bar{h}\{\bar{f}, 1\}. \tag{2}
\]

In fact, the space \(C^∞(M, \mathbb{R}) \) endowed with the Jacobi bracket is a local Lie algebra in the sense of Kirillov (see \([8]\)). Conversely, a structure of local Lie algebra on \(C^∞(M, \mathbb{R}) \) defines a Jacobi structure on \(M \) (see \([3]\)). If the vector field \(E \) identically vanishes then \((M, \Lambda)\) is a Poisson manifold. Jacobi and Poisson manifolds were introduced by Lichnerowicz (\([10, 11]\)) (see also \([3, 4, 12]\)).

A Lie algebroid structure on a differentiable vector bundle \(π : A \rightarrow M \) is a pair that consists of a Lie algebra structure \([\, , \,]\) on the space \(Γ(A) \) of the global cross sections of \(π : A \rightarrow M \) and a homomorphism of vector bundles \(ρ : A \rightarrow TM \), the anchor map, such that if we also denote by \(ρ : Γ(A) \rightarrow X(M) \) the homomorphism of \(C^∞(M, \mathbb{R}) \)-modules induced by the anchor map then: (i) \(ρ : (Γ(A), [\, , \,]) \rightarrow (X(M), [\, , \,]) \) is a Lie algebra homomorphism and (ii) for all \(f, g \in C^∞(M, \mathbb{R}) \) and for all \(μ, η \in Γ(A) \), one has \([μ, f] = f[μ, η] + (ρ(μ)(f))η \) (see \([13]\)).

If \((A, [\, , \,], ρ)\) is a Lie algebroid over \(M \), one can introduce the Lie algebroid cohomology complex with trivial coefficients (for the explicit definition of this complex we remit to \([13]\)). The space of 1-cochains is \(Γ(A^*) \), where \(A^* \) is the dual bundle to \(A \), and a 1-cochain \(φ \in Γ(A^*) \) is a 1-cocycle if and only if

\[
\phi[μ, η] = ρ(μ)(φ(η)) - φ(ρ(η)(μ)), \quad \text{for all} \quad μ, η \in Γ(A). \tag{3}
\]

A Jacobi manifold \((M, \Lambda, E)\) has an associated Lie algebroid \((T^*M \times \mathbb{R}, [,], #, (\Lambda, E))\), where \(T^*M \) is the cotangent bundle of \((M, E)\), \(#, (\Lambda, E) \) are defined by

\[
[(α, \bar{f}), (β, \bar{g})](\Lambda, E) = \left(\mathcal{L}_{#, (\Lambda)}β - \mathcal{L}_{#, (\Lambda)}α - d(Λ(α, β)) + \bar{f}\mathcal{L}_E β - \bar{g}\mathcal{L}_E α - i_E(α \wedge β), \right. \\
\left. \Lambda(β, α) + #, (\Lambda)(\bar{g}) - #, (\Lambda)(\bar{f}) + \bar{f}\mathcal{L}_E(\bar{g}) - \bar{g}\mathcal{L}_E(\bar{f}), \right)
\]

\[
#(\Lambda, E)(α, \bar{f}) = #, (\Lambda)(α) + \bar{f}E, \tag{4}
\]

for \((α, \bar{f}), (β, \bar{g}) \in Ω^1(M) \times C^∞(M, \mathbb{R})\), \(\mathcal{L} \) being the Lie derivative operator and \(#, (\Lambda) : Ω^1(M) \rightarrow X(M) \) the mapping given by \(β(#, (\Lambda)(α)) = Λ(α, β) \) (see \([9]\)).

In the particular case when \((M, \Lambda, E)\) is a Poisson manifold we recover, by projection, the Lie algebroid \((T^*M, [,], #, (\Lambda, E))\), where \([,]\) is the bracket of 1-forms defined by (see \([3, 2, 14]\)):

\[
[\, , \,]_\Lambda : Ω^1(M) \times Ω^1(M) \rightarrow Ω^1(M), \quad [α, β]_\Lambda = \mathcal{L}_{#, (\Lambda)}β - \mathcal{L}_{#, (\Lambda)}α - d(Λ(α, β)).
\]
2 Some linear Jacobi structures on vector bundles

Let \(\pi : A \to M \) be a vector bundle and \(A^* \) the dual bundle to \(A \). Suppose that \(\pi^* : A^* \to M \) is the canonical projection. If \(\mu \in \Gamma(A) \) and \(f \in C^\infty(M, \mathbb{R}) \) then \(\mu \) determines a linear function on \(A^* \) which we will denote by \(\tilde{\mu} \) and \(f = \tilde{f} \circ \pi^* \) is a \(C^\infty \) real-valued function on \(A^* \) which is basic.

Now, assume that \((A, [,], \rho) \) is a Lie algebroid over \(M \). Then \(A^* \) admits a Poisson structure \(\Lambda_{A^*} \), such that the Poisson bracket of linear functions is again linear (see [2, 3]). The local expression of \(\Lambda_{A^*} \) is given as follows. Let \(U \) be an open coordinate neighbourhood of \(M \) with coordinates \((x^1, \ldots, x^n) \) and \(\{\epsilon_i\}_{i=1, \ldots, n} \) a local basis of sections of \(\pi : A \to M \) in \(U \). Then, \((\pi^*)^{-1}(U) \) is an open coordinate neighbourhood of \(A^* \) with coordinates \((x^i, \mu_j) \) such that \(\mu_j = \tilde{\epsilon}_j \), for all \(j \). In these coordinates the structure functions and the components of the anchor map are

\[
[e_i, e_j] = \sum_{k=1}^n c_{ij}^k e_k, \quad \rho(e_i) = \rho_i^j \frac{\partial}{\partial x^j}, \quad i, j \in \{1, \ldots, n\},
\]

with \(c_{ij}^k, \rho_i^j \in C^\infty(U, \mathbb{R}) \), and the Poisson structure \(\Lambda_{A^*} \) is given by

\[
\Lambda_{A^*} = \sum_{i<j} \sum_k c_{ij}^k \mu_k \frac{\partial}{\partial \mu_i} \wedge \frac{\partial}{\partial \mu_j} + \sum_{i,l} \rho_i^j \frac{\partial}{\partial \mu_i} \wedge \frac{\partial}{\partial x^l}.
\]

Next, we will show an extension of the above results for the Jacobi case.

We will denote by \(\Delta \) the Liouville vector field of \(A^* \) and by \(\phi^* \in \mathcal{X}(A^*) \) the vertical lift of \(\phi \in \Gamma(A^*) \). Note that if \((x^i, \mu_j) \) are fibred coordinates on \(A^* \) as above and \(\phi = \sum_{i=1}^n \phi_i \epsilon^i \), with \(\phi_i \in C^\infty(U, \mathbb{R}) \) and \(\{\epsilon^i\} \) the dual basis of \(\{\epsilon_i\} \), then

\[
\Delta = \sum_{i=1}^n \mu_i \frac{\partial}{\partial \mu_i}, \quad \phi^* = \sum_{i=1}^n \phi_i \frac{\partial}{\partial \mu_i}.
\]

Thus, using \([\hbar, \hbar] = 0 \), \([\cdot, \hbar] \), \((\cdot, \cdot) \) and \((\cdot, \cdot, \cdot) \), we deduce

Theorem 1 Let \((A, [,], \rho) \) be a Lie algebroid over \(M \) and \(\phi \in \Gamma(A^*) \) a 1-cocycle. Then, there is a unique Jacobi structure \((\Lambda_{(A^*, \phi)}, E_{(A^*, \phi)}) \) on \(A^* \) with Jacobi bracket \(\{\cdot, \cdot\}_{(A^*, \phi)} \) satisfying

\[
\{\tilde{\mu}, \tilde{\eta}\}_{(A^*, \phi)} = [\tilde{\mu}, \tilde{\eta}], \quad \{\tilde{\mu}, \tilde{f} \circ \pi^*\}_{(A^*, \phi)} = (\rho(\mu)(\tilde{f}) + \phi(\mu)\tilde{f}) \circ \pi^*, \quad \{\tilde{f} \circ \pi^*, \tilde{g} \circ \pi^*\}_{(A^*, \phi)} = 0,
\]

for \(\mu, \eta \in \Gamma(A) \) and \(\tilde{f}, \tilde{g} \in C^\infty(M, \mathbb{R}) \). The Jacobi structure is given by

\[
\Lambda_{(A^*, \phi)} = \Lambda_{A^*} + \Delta \wedge \phi^*, \quad E_{(A^*, \phi)} = -\phi^*.
\]

Now, we will prove a converse of Theorem 1.

Theorem 2 Let \(\pi : A \to M \) be a vector bundle over \(M \) and let \((\Lambda, E) \) be a Jacobi structure on the dual bundle \(A^* \) satisfying:

(C1) The Jacobi bracket of linear functions is again linear.

(C2) The Jacobi bracket of a linear function and the constant function 1 is a basic function.

Then, there is a Lie algebroid structure on \(\pi : A \to M \) and a 1-cocycle \(\phi \in \Gamma(A^*) \) such that \(\Lambda = \Lambda_{(A^*, \phi)} \) and \(E = E_{(A^*, \phi)} \).
Proof: Denote by \(\{,\} \) the Jacobi bracket on \(A^* \) induced by the Jacobi structure \((\Lambda, E) \) and suppose that \(\mu, \eta \in \Gamma(A) \) and that \(f, g \in C^\infty(M, \mathbb{R}) \). If \(\pi^*: A^* \to M \) is the canonical projection, the function \(\{(f \circ \pi^*)\mu, 1\} = \{f\mu, 1\} \) is basic. Thus, from (2) and (C2), we have that
\[
\{f \circ \pi^*, 1\} = 0. \tag{8}
\]
On the other hand, the function \(\{\tilde{\mu}, (f \circ \pi^*)\tilde{\eta}\} = \{\tilde{\mu}, f\tilde{\eta}\} \) is linear. Therefore, from (3), (C1) and (C2), we obtain that the function \(\{\tilde{\mu}, f \circ \pi^*\} \) is basic. Consequently, the Jacobi bracket of a linear function and a basic function is a basic function. In particular, \(\{f \circ \pi^*, (g \circ \pi^*)\tilde{\mu}\} = \{f \circ \pi^*, g\tilde{\mu}\} \) is basic. This implies that (see (3) and (8))
\[
\{f \circ \pi^*, g \circ \pi^*\} = 0. \tag{9}
\]
Now, we define the section \([\mu, \eta] \) of the vector bundle \(\pi: A \to M \) and the \(C^\infty \) real-valued functions on \(M \), \(\phi(\mu) \) and \(\rho(\mu)(f) \), which are characterized by the following relations
\[
[\mu, \eta] = \{\tilde{\mu}, \tilde{\eta}\}, \quad \phi(\mu) \circ \pi^* = \{\tilde{\mu}, 1\}, \quad \rho(\mu)(f \circ \pi^*) = \{\tilde{\mu}, f \circ \pi^*\} - (f \circ \pi^*)(\{\tilde{\mu}, 1\}). \tag{10}
\]
From (3), (4), (6) and (10), we deduce that \(\phi \) can be considered as a \(C^\infty(M, \mathbb{R}) \)-linear map \(\phi: \Gamma(A) \to C^\infty(M, \mathbb{R}) \) (that is, \(\phi \in \Gamma(A^*) \)) and that \(\rho \) can be considered as a \(C^\infty(M, \mathbb{R}) \)-linear map \(\rho: \Gamma(A) \to \mathfrak{X}(M) \). Moreover, using (2), (4), (10) and the fact that \(\{,\} \) is the Jacobi bracket of a Jacobi structure (see Section 4), it follows that the triple \((A, [\ [,]], \rho) \) is a Lie algebroid over \(M \) and that \(\phi \in \Gamma(A^*) \) is a \(1 \)-cocycle. Finally, by (2), (10) and Theorem 3, we conclude that \((\Lambda, E) = (\Lambda_{(A^*, \phi)}, E_{(A^*, \phi)}) \).

Remark 1 That condition (C1) does not necessarily imply condition (C2) is illustrated by the following simple example. Let \(M \) be a single point and \(A^* = \mathbb{R}^2 \) endowed with the Jacobi structure \((\Lambda, E) \), where \(\Lambda = xy \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} \) and \(E = x^2 \frac{\partial}{\partial x} \). It is easy to prove that the Jacobi bracket satisfies (C1) but not (C2).

Let \(M \) be a differentiable manifold and \(\pi: A \to M \) a vector bundle. Denote by \(A \) and \(\mathcal{J} \) the following sets. \(A \) is the set of the pairs \(([\ [,]], \rho) \), where \(([\ [,]], \rho) \) is a Lie algebroid structure on \(\pi: A \to M \) and \(\phi \in \Gamma(A^*) \) is a \(1 \)-cocycle. \(\mathcal{J} \) is the set of the Jacobi structures \((\Lambda, E) \) on \(A^* \) which satisfy the conditions (C1) and (C2) (see Theorem 2).

Then, using Theorems 2 and 3, we obtain

Theorem 3 The mapping \(\Psi: A \to \mathcal{J} \) between the sets \(A \) and \(\mathcal{J} \) given by
\[
\Psi(([\ [,]], \rho)) = (\Lambda_{(A^*, \phi)}, E_{(A^*, \phi)})
\]
is a bijection.

Note that \(\Psi(A) = \mathcal{P} \), where \(\mathcal{P} \) is the subset of the Jacobi structures of \(\mathcal{J} \) which are Poisson and \(A \) is the subset of \(A \) of the pairs of the form \(([\ [,]], 0) \), that is, \(A \) is the set of the Lie algebroid structures on \(\pi: A \to M \). Therefore, from Theorem 3, we deduce a well known result (see 2.3): the mapping \(\Psi \) induces a bijection between the sets \(A \) and \(\mathcal{P} \).

3 Examples and applications

In this section we will present some examples and applications of the results obtained in Section 2.
1.- Let $(\mathfrak{g},[,]\rangle$ be a real Lie algebra of dimension n. Then, \mathfrak{g} is a Lie algebroid over a point. The resultant Poisson structure $\Lambda_{\mathfrak{g}^*}$ on \mathfrak{g}^* is the well known Lie-Poisson structure (see [3]). Thus, if $\phi \in \mathfrak{g}^*$ is a 1-cocycle then, using Theorem 1, we deduce that the pair $(\Lambda_{(\mathfrak{g}^*,\phi)},E_{(\mathfrak{g}^*,\phi)})$ is a Jacobi structure on \mathfrak{g}^*, where

$$
\Lambda_{(\mathfrak{g}^*,\phi)} = \Lambda_{\mathfrak{g}^*} + R \wedge C_\phi, \quad E_{(\mathfrak{g}^*,\phi)} = -C_\phi,
$$

R is the radial vector field on \mathfrak{g}^* and C_ϕ is the constant vector field on \mathfrak{g}^* induced by $\phi \in \mathfrak{g}^*$. From (1), (3) and (4), it follows that

$$
\eta = \text{canonical projection over the first factor and}
$$

Thus, if Λ is the radial vector field on \mathfrak{g} and C_ϕ is the constant vector field on \mathfrak{g} induced by $\phi \in \mathfrak{g}$.

2.- Let $(TM,[,],\text{Id})$ be the trivial Lie algebroid. In this case, the Poisson structure Λ_{T^*M} on T^*M is the canonical symplectic structure. Therefore, if ϕ is a closed 1-form on M, then the pair

$$
\Lambda_{(T^*M,\phi)} = \Lambda_{T^*M} + \Delta \wedge \phi^v, \quad E_{(T^*M,\phi)} = -\phi^v,
$$

is a Jacobi structure on T^*M. Furthermore, we can prove that the map $\#_{\Lambda_{(T^*M,\phi)}} : \Omega^1(T^*M) \to \mathfrak{X}(T^*M)$ is an isomorphism and consequently, using the results of [5, 8] (see also [4]), it follows that $(\Lambda_{(T^*M,\phi)},E_{(T^*M,\phi)})$ is a locally conformal symplectic structure.

3.- Let (M,Λ) be a Poisson manifold and $(T^*M,[,]_\Lambda,\#_\Lambda)$ the associated cotangent Lie algebroid (see Section 3). The induced Poisson structure on TM is the complete lift Λ^c to TM of Λ (see [3]). Thus, if $X \in \mathfrak{X}(M) = \Gamma(TM)$ is a 1-cocycle, that is, X is a Poisson infinitesimal automorphism ($\mathcal{L}_X \Lambda = 0$), we deduce that

$$
\Lambda_{(TM,X)} = \Lambda^c + \Delta \wedge X^v, \quad E_{(TM,X)} = -X^v,
$$

is a Jacobi structure on TM.

4.- The triple $(TM \times \mathbb{R},[,],\pi)$ is a Lie algebroid over M, where $\pi : TM \times \mathbb{R} \to TM$ is the canonical projection over the first factor and $[,]$ is the bracket given by

$$
[(X,\dot{f}),(Y,\dot{g})] = ([X,Y],X(\dot{g}) - Y(\dot{f})), \quad \text{for } (X,\dot{f}),(Y,\dot{g}) \in \mathfrak{X}(M) \times C^\infty(M,\mathbb{R}). \tag{11}
$$

In this case, the Poisson structure $\Lambda_{T^*M \times \mathbb{R}}$ on $T^*M \times \mathbb{R}$ is just the canonical cosymplectic structure of $T^*M \times \mathbb{R}$, that is, $\Lambda_{T^*M \times \mathbb{R}} = \Lambda_{T^*M}$. Now, it is easy to prove that $\phi = (0,-1) \in \Omega^1(M) \times C^\infty(M,\mathbb{R}) = \Gamma(T^*M \times \mathbb{R})$ is a 1-cocycle (see [3] and (11)). Moreover, using Theorem 4, we have that the Jacobi structure $(\Lambda_{(T^*M \times \mathbb{R},\phi)},E_{(T^*M \times \mathbb{R},\phi)})$ on $T^*M \times \mathbb{R}$ is the one defined by the canonical contact 1-form η_M. We recall that η_M is the 1-form on $T^*M \times \mathbb{R}$ given by $\eta_M = dt + \lambda_M$, λ_M being the Liouville 1-form of T^*M (see [2]).

5.- Let (M,Λ,\mathbf{E}) be a Jacobi manifold and $(T^*M \times \mathbb{R},[,]_{(\Lambda,\mathbf{E})},\#_{(\Lambda,\mathbf{E})})$ the associated Lie algebroid (see Section 4). From (3), (5) and (6), it follows that $\phi = (-\mathbf{E},0) \in \mathfrak{X}(M) \times C^\infty(M,\mathbb{R}) = \Gamma(T^*M \times \mathbb{R})$ is a 1-cocycle. On the other hand, a long computation, using (3), (5), (6) and Theorem 4, shows that

$$
\Lambda_{(TM \times \mathbb{R},\phi)} = \Lambda^c + \frac{\partial}{\partial t} \wedge E^c - t\left(\Lambda^v + \frac{\partial}{\partial t} \wedge E^v\right), \quad E_{(TM \times \mathbb{R},\phi)} = E^v,
$$

where Λ^c (resp. Λ^v) is the complete (resp. vertical) lift to TM of Λ and E^c (resp. E^v) is the complete (resp. vertical) lift to TM of E. We remark that in [6] the authors characterize the conformal infinitesimal automorphisms of (M,Λ,\mathbf{E}) as Legendre-Lagrangian submanifolds of the Jacobi manifold $(TM \times \mathbb{R},\Lambda_{(TM \times \mathbb{R},\phi)},E_{(TM \times \mathbb{R},\phi)})$.

6.- Let $(\mathfrak{A},[,],\rho)$ be a Lie algebroid over M and $\phi \in \Gamma(A^*)$ a 1-cocycle. Denote by $\hat{\Lambda}_{A^* \times \mathbb{R}}$ the Poissonization of the Jacobi structure $(\Lambda_{(A^*,\phi)},E_{(A^*,\phi)})$, that is, $\hat{\Lambda}_{A^* \times \mathbb{R}}$ is the Poisson structure
on $\hat{A}^* = A^* \times \mathbb{R}$ given by (see \cite{1,11})

$$\hat{A}_{A^* \times \mathbb{R}} = e^{-t} \left(\Lambda_{(A^*, \phi)} + \frac{\partial}{\partial t} \wedge E_{(A^*, \phi)} \right).$$ \hfill (12)

\hat{A}^* is the total space of a vector bundle over $M \times \mathbb{R}$ and, from (12), we obtain that the Poisson bracket of two linear functions on \hat{A}^* is again linear. This implies that the dual vector bundle $\hat{A} = A \times \mathbb{R} \to M \times \mathbb{R}$ admits a Lie algebroid structure $\langle \cdot, \cdot \rangle$. Note that the space $\Gamma(\hat{A})$ can be identified with the set of time-dependent sections of $A \to M$. Under this identification, we deduce that (see \cite{10} and \cite{12})

$$\left[\hat{\mu}, \hat{\eta} \right] = e^{-t} \left(\left[\hat{\mu}, \hat{\eta} \right] + \phi(\hat{\mu}) \left(\frac{d\hat{\eta}}{dt} - \hat{\eta} \right) - \phi(\hat{\eta}) \left(\frac{d\hat{\mu}}{dt} - \hat{\mu} \right) \right), \quad \hat{\rho}(\hat{\mu}) = e^{-t} \left(\rho(\hat{\mu}) + \phi(\hat{\mu}) \frac{\partial}{\partial t} \right),$$

for all $\hat{\mu}, \hat{\eta} \in \Gamma(\hat{A})$, where $\frac{d\hat{\mu}}{dt}$ (resp. $\frac{d\hat{\eta}}{dt}$) is the derivative of $\hat{\mu}$ (resp. $\hat{\eta}$) with respect to the time. Note that if $t \in \mathbb{R}$ then the sections $\hat{\mu}$ and $\hat{\eta}$ induce, in a natural way, two sections $\hat{\mu}_t$ and $\hat{\eta}_t$ of $A \to M$ and that $\left[\hat{\mu}, \hat{\eta} \right]$ is the time-dependent section of $A \to M$ given by $\left[\hat{\mu}, \hat{\eta} \right](x,t) = \left[\hat{\mu}_t, \hat{\eta}_t \right](x)$, for all $(x,t) \in M \times \mathbb{R}$.

The construction of the Lie algebroid $(\hat{A}, \langle \cdot, \cdot \rangle, \hat{\rho})$ from the Lie algebroid $(A, \langle \cdot, \cdot \rangle, \rho)$ and the cocycle ϕ plays an important role in \hat{A}^*.

Acknowledgments. Research partially supported by DGICYT grant PB97-1487 (Spain). D. Iglesias wishes to thank the Spanish Ministerio de Educaci´on y Cultura for a FPU grant.

References

[1] K.H. Bhaskara, K.Viswanath: Poisson algebras and Poisson manifolds, Research Notes in Mathematics, 174, Pitman, London, 1988.
[2] A. Coste, P. Dazord, A. Weinstein: Groupoides symplectiques, Pub. Dép. Math. Lyon, 2/A (1987), 1-62.
[3] T.J. Courant: Dirac manifolds, Trans. A.M.S. 319 (1990), 631-661.
[4] P. Dazord, A. Lichnerowicz and Ch.M. Marle: Structure locale des variétés de Jacobi, J. Math. Pures Appl., 70 (1991), 101-152.
[5] F. Guédira, A. Lichnerowicz: Géométrie des algèbres de Lie locales de Kirillov, J. Math. Pures Appl., 63 (1984), 407-484.
[6] R. Ibáñez, M. de León, J.C. Marrero and D. Martín de Diego: Co-isotropic and Legendre-Lagrangian submanifolds and conformal Jacobi morphisms, J. Phys. A: Math. Gen., 30 (1997), 5427-5444.
[7] D. Iglesias, J.C. Marrero: Generalized Lie bialgebroids and Jacobi structures, Preprint (2000).
[8] A. Kirillov: Local Lie algebras, Russian Math. Surveys, 31 (1976), 55-75.
[9] Y. Kerbrat, Z. Souici-Benhammadi: Variétés de Jacobi et groupoïdes de contact, C.R. Acad. Sci. Paris, 317 Sér. I (1993), 81-86.
[10] A. Lichnerowicz: Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, 12 (1977), 253-300.
[11] A. Lichnerowicz: Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl., 57 (1978), 453-488.
[12] P. Libermann, Ch. M. Marle: Symplectic Geometry and Analytical Mechanics, Kluwer, Dordrecht, 1987.
[13] K. Mackenzie: Lie groupoids and Lie algebroids in differential geometry, Cambridge University Press, 1987.
[14] I. Vaisman: Lectures on the Geometry of Poisson Manifolds, Progress in Math. 118, Birkhäuser, Basel, 1994.
[15] A. Weinstein: The local structure of Poisson manifolds, J. Differential Geometry, 18 (1983), 523-557, Errata et Addenda 22 (1985), 255.