Association between serotonin - related gene polymorphisms and early effects of sertraline in Chinese Han patients with panic disorder

CURRENT STATUS: UNDER REVIEW

BMC Psychiatry BMC Series

Zhili Zou
Sichuan Academy of Medical Sciences and Sichuan People's Hospital

Yulan Huang
Sichuan Academy of Medical Sciences and Sichuan People's Hospital

Jinyu Wang
Sichuan Academy of Medical Sciences and Sichuan People's Hospital

Wenjiao Min
Sichuan Academy of Medical Sciences and Sichuan People's Hospital

Bo Zhou
Sichuan Academy of Medical Sciences and Sichuan People's Hospital

✉ BoZhou_xsk@163.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-4691-2801

DOI:
10.21203/rs.3.rs-16543/v1

SUBJECT AREAS
Psychiatry

KEYWORDS
Panic disorder, Serotonin, Polymorphism, China
Abstract
Objective The aim of the present study was to examine the association of serotonin-related gene polymorphisms with PD risk. Then, we analyzed the correlation between these gene polymorphisms and response to sertraline drug.

Methods 230 patients with PD and 231 healthy controls were enrolled in the study. Panic Disorder Severity Scale (PDSS) were administered to all subjects, and all patients in the study were also assessed after 4 weeks of treatment. The SLC6A4 (rs140701, rs3813034, 5-HTTLPR and STin2), HTRA1 rs6295, HTR2A rs6313 and COMT rs4680 genes were genotyped and assessed for allele.

Results The allelic model showed that the SLC6A4 rs140701 variant was significantly associated with increased risk of PD (OR = 0.624, 95% CI 0.450-0.864, p <0.05), and significant results was found in the dominant model (OR = 0.546; 95% CI, 0.371-0.804, p <0.05). There was a significant difference in allele and genotype frequency between responders and nonresponders in the 5-HTTLPR polymorphism (OR = 0.205, 95% CI 0.128-0.328; OR = 0.249, 95% CI 0.155-0.401, both p <0.001), and indicated the PD patients with S-allele had a poorer response to sertraline than L-allele carriers.

Conclusions The present study suggest that the SLC6A4 rs140701 variant may be associated with susceptibility to PD, and 5-HTTLPR polymorphism may be a predictor of response to sertralines in the treatment of PD.

Background
Panic disorder is a common anxiety disorder characterized by sudden and unexpected panic attacks and accompany with obviously anticipatory anxiety. The estimated lifetime prevalence of PD is 3.4 to 4.7% [1, 2]. It typically occurs in young adults, and women are more likely to be affected than men[3]. However, The etiology of PD is complex and unclear. Family and twin studies have shown that genetic factors explain approximately 48% of the variance in the PD[4], and indicated genetic factors may play an important role in PD. To date, although genetic studies reported several susceptibility genes with PD, especially the serotonin-ergic system. such as serotonin transporter gene (SLC6A4), 5-HT1A receptor (5-HTR1A), 5-HT2A receptor (5HTR2A), and catechol-O-methyltransferase (COMT) genes were involved in PD [5-15]. However, few of them were replicated.
and the pathogenesis of PD remains to be clarified. It is important to note that previous studies have been conducted in other ethnic groups, there are few studies in the literature that have examined the relationship between serotonin-related gene polymorphisms and PD in Chinese population. With the advancement of pharmacogenetic technologies, genetic variation is known to contribute to individual response to antidepressants. Plenty of evidence suggest that genetic factor play an important role in the clinical effects of antidepressants. A number of candidate genes were involved in the antidepressant response and remission. For example, in one meta-analysis suggested that BDNF rs6265 (Val66Met) heterozygous genotype was associated with better selective serotonin-reuptake inhibitors (SSRIs) response compared to the homozygous genotypes, particularly in Asians[16]. However, to our knowledge, many previous studies have been conducted in major depressive disorder[17–20]. Few studies in the literature that have examined the relationship between serotonin-related gene polymorphisms and the response to antidepressant treatment in PD. In clinical practice, SSRIs and serotonin has been used widely to treat PD[21]. For example, the sertraline is significantly superior to placebo for PD patients, and the incidence of adverse events was not different between sertraline and placebo[22–24]. Hence, in this study, The main aim of this study was to investigate the association of candidate genes from both serotonergic pathways including regulatory and coding variants of the SLC6A4, 5-HTR1A, 5-HTR2A and COMT genes. Our secondary objective was to examine the association between candidate genes and early response to sertraline in PD.

Methods
Participants
233 patients with PD were recruited from inpatient and outpatient populations in the Department of Psychosomatic, Sichuan Provincial People’s Hospital between May 2015 and December 2018. Diagnosis of PD was conducted according to the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders fourth edition (DSM-IV) (SCID)[25]. Patients with neurological diseases, and/or past or current episodes of major depression disorder, generalized anxiety disorder, manic disorder, bipolar disorder, schizophrenia or other psychiatric disorders were excluded. In addition, 231 healthy controls were recruited from the Center of Health Examination, Sichuan
Provincial People’s Hospital. The SCID was also administered by a trained clinical psychiatrist to exclude lifetime or current diagnosis of PD, major depression, generalized anxiety disorder and so on. All subjects in this study were Han Chinese in China, and all subjects were free of acute or chronic somatic disorders. All patients were free of antidepressants or other psychotropic medications intake within 2 weeks before their examination. Demographic data and clinical presentations were obtained from medical records or qualified interviews. A 3-mL EDTA-anticoagulated peripheral blood sample was collected from every individual.

Measures
Panic Disorder Severity Scale (PDSS)
The Panic Disorder Severity Scale comprises 7 items, and participants are instructed to rate each item from 0–4 based on the severity of each symptom, with possible responses ranging from “none” to “extremely severe” [26]. The scale was translated into Chinese by Xiong HF [27], and the Panic Disorder Severity Scale-Chinese Version has good internal consistency (Cronbach’s alpha) with the overall score (0.83).

Treatment
All patients received treatment for a 4-week period with sertraline (100–200 mg qd), other psychotropic medications were not permitted during the study except for benzodiazepine, which was prescribed occasionally for insomnia with a minimal dosage at bedtime. PD severity was assessed using the PDSS at baseline and after 4 weeks of treatment. The response of PD was defined as a reduction of the pre-treatment PDSS score of at least 40%[28].

SNP Genotyping
SNP genotyping was performed using an improved multiplex ligation detection reaction (iMLDR) technique which developed by Genesky Biotechnologies Inc. (Shanghai, China). The primer information of the reaction mixtures is described in Tables S1 and S2. The multiplex polymerase chain reaction (PCR) reaction volume (20 µl) included 1 x GC-I buffer (Takara), 3.0 mM Mg 2+, 0.3 mM dNTP, 1 U HotStar Taq Polymerase (Qiagen Inc., Hilden, Germany), 1 µl genomic DNA (5–10 ng/µl), and 1 µl Multiplex-PCR primermix. In addition, The 5-HTT of PCR reaction volume (10 µl) included 10 x buffer I (Qiagen Inc), Q Solution (Qiagen Inc.), 0.2 mM Mg 2+, 1 U HotStarTaq polymerase (Qiagen Inc.), 1 µl
genomic DNA, and 1 µl PCR primermix. The cycling program for PCR was 95 °C for 2 min, followed by 11 Cycles of 94 °C for 20 s, 65 °C for 40 s and 72 °C for 1.5 min, and each cycle decreased 0.5 °C. The third step, 24 cycles of 94 °C for 20 s, 59 °C for 30 s, finally, 72 °C for 2 min and 4 °C and a hold at 4 °C. In addition, the 5-HTT of cycling program for PCR was 95 °C for 2 min, 35 cycles of amplification consisted of 94 °C for 20 s and 72 °C for 1.5 min, and final extension at 68 °C for 60 min and a hold at 4 °C. The PCR product was purified with 5 U SAP and 2 U Exonuclease I at 37 °C for 1 h and then 15 min of 75 °C inactivation. The ligation reaction contained 1 µl of 10 × ligation buffer, 0.25 µl Tag DNA ligase, 5′ ligation primer (1 µM) 0.4 µl, 3′ ligation primer (2 µM) 0.4 µl, 2 µl purified multiplex PCR product, and 6 µl ddH 2 O mixture. The ligation cycling program was 38 cycles× (94 °C for 1.5 min and 56 °C for 4 min), and a hold at 4 °C. Sequencing was conducted on 0.5 µl ligation product, 0.5 µl Liz500 Size Standard, and 9 µl Hi-Di mixture (ABI3730XL). The raw data were analyzed by Gene Mapper v4.1 software (AppliedBiosystems, Foster City, CA USA). All primers, probes and labeling oligos were designed by and ordered from Genesky Biotechnologies Inc.

Statistical analysis
The data were analyzed using SPSS version 18.0 software (SPSS Inc., Chicago, IL, USA). Student’s t-tests were used for inter group comparisons of continuous variables, with Pearson’s chi-square tests utilized for categorical variables. P values for the Hardy-Weinberg equilibrium (HWE) were tested by Pearson’s chi-square test, and P > 0.05 indicated no significant deviation in allele and genotype frequencies among subjects. Associations between single nucleotide polymorphism (SNPs) and disease status were determined based on the distributions of allelic frequencies and genetic models (additive, dominant, and recessive model), and odds ratios (ORs) and 95% confidence intervals (CIs) were performed in unconditional logistic regression analysis using PLINK v1.07, 20 adjusting for age, gender, educational level and resident location. To protect from Type I error, a Bonferroni correction was conducted. For all analyses, statistical tests were two-tailed and an alpha level of 0.05 was used to define statistical significance.

Results
Demographic data and clinical manifestations
A total of 233 patients with PD (92 men, 141 women) and 231 controls (98 men, 133 women) were
selected. The average age of the study sample was (35.65 ± 9.77) years, and the mean age of the
control group was (36.96 ± 7.82) years. 53.6 percent of the patients (n = 125) were residing in urban
locations, and 46.4 percent of the patients (n = 108) were residing in rural locations. No statistically
significant differences were noted between cases and controls in terms of sex, age, education level
and resident location(p > 0.05). In addition, the mean total duration of panic disorder was (2.49 ±
1.45) years. The PDSS score was 9.51 ± 3.81 before medication and 9.51 ± 3.81 after 4 weeks of
medication, the score was significantly reduced after medication (p < 0.05). According to the
definition of remission, the response rate was 42.1%(n = 98). The demographic details of the sample
are given in Table 1.

Variable	PD (n = 233)	Controls(n = 231)	t/χ 2-value	p-value
Sex, n (%)				
Female	141(60.5)	133(57.6)	0.414	0.520
Male	92(39.5)	98(42.4)		
Age	35.65 ± 9.77	36.96 ± 7.82	1.594	0.112
Educational level, n (%)				
<Junior high school	49(21.0)	42(18.2)	3.836	0.147
High school	95(40.8)	80(34.6)		
College and above	89(38.2)	109(47.2)		
Resident location, n (%)				
Urban	125(53.6)	129(55.8)	0.266	0.635
Rural	108(46.4)	102(44.2)		
Total duration of PD, years	2.49 ± 1.45			
PDSS baseline	15.47 ± 3.82			
PDSS 4-week	9.51 ± 3.81			

Association Of Serotonin-related Gene Polymorphisms With Pd Risk

All selected SNPs fulfilled the HWE in both cases and controls(p > 0.05). The linkage-disequilibrium
evaluated in PD group and controls for variants rs140701 and rs3813034 of SLC6A4 are shown in
Fig. 1 (r² > 0.9). The allele distributions of SLC6A4 (rs140701 and rs3813034) were significantly
different between PD cases and the controls(OR = 0.624, 95% CI 0.450–0.864, p = 0.004; OR = 0.705,
95% CI 0.509–0.975, p = 0.034; respectively), and only SLC6A4 rs140701 remained significant after
adjusting for Bonferroni’s multiple testing(p = 0.028). After adjustment for age, gender, educational
level and resident location, the dominant model of SLC6A4 rs140701 showed the relative risk of PD
for genotype CC + CT was lower than for genotype TT (OR = 0.546; 95% CI, 0.371–0.804, p = 0.004),
and after Bonferroni correction for multiple comparisons, the significance remained (p = 0.028). In addition, the dominant model of rs3813034 showed the relative risk of PD for genotype CA + AA was lower than for genotype CC (OR = 0.636; 95% CI, 0.432–0.935, p = 0.025). For serotonin-transporter-linked polymorphic region (5-HTTLPR) polymorphism, the relative risk of PD for genotype LL + LS was lower than for genotype SS (OR = 0.632; 95% CI, 0.436–0.916; p = 0.021). The additive model of rs140701 and rs3813034 showed similar association with PD(OR = 0.638, 95% CI 0.463–0.879, p = 0.009; OR = 0.721, 95% CI 0.526–0.988, p = 0.048; respectively). However, these correlations were no longer significant after adjusting for Bonferroni’s multiple testing (p > 0.05). Also, there were no significant associations of other SNPs with PD in allelic or other models (p > 0.05). (Table 2).
Table 2

Association of serotonin-related gene polymorphisms with PD risk in Chinese Han population.

Gene	SNP	Alleles and Genotypes (n, %)	PD (n = 233)	Controls (n = 231)	Model	OR (95% CI)	p-value	p-valuecorr
SLC6A4	rs140701	C 76(16.3)	110(23.8)	352(76.2)	Allelea	0.624(0.45 0.86)	0.004	0.028
		T 390(83.7)	13(5.6)		Additiveb	0.638(0.46 0.87)	0.009	0.063
		CC 10(4.3)	352(76.2)		Dominantb	0.546(0.37 1.08)	0.004	0.028
		CT 56(24.0)	84(36.4)		Recessiveb	0.752(0.32 1.75)	0.438	1
		TT 167(71.7)	134(58.0)					
	rs3813034	C 386(82.8)	357(77.3)		Allelea	0.705(0.50 0.97)	0.034	0.238
		A 80(17.2)	105(22.7)					
		CC 164(70.4)	139(60.2)		Additiveb	0.721(0.52 0.98)	0.048	0.336
		CA 58(24.9)	79(34.2)		Dominantb	0.636(0.43 0.93)	0.025	0.175
		AA 11(4.7)	13(5.6)		Recessiveb	0.831(0.36 1.19)	0.662	1
	rs140701	L 107(23.0)	130(28.1)		Allelea	0.761(0.56 0.96)	0.071	0.497
		S 359(77.0)	332(71.9)					
5-HTTLPR		LL 22(4.9)	20(8.7)		Additiveb	0.785(0.59 0.99)	0.010	0.700
		LS 63(27.0)	90(39.0)		Dominantb	0.632(0.43 0.91)	0.021	0.147
		SS 148(63.5)	121(52.3)		Recessiveb	1.100(0.58 2.07)	0.842	1
STin2		10 44(9.4)	43(9.3)		Allelea	1.016(0.65 1.58)	0.944	1
		12 422(90.6)	419(90.7)					
		10/10 5(2.1)	2(0.9)		Additiveb	1.015(0.66 1.55)	0.956	1
		12/10 34(14.6)	39(16.9)		Dominantb	0.932(0.57 1.50)	0.711	1
		12/12 194(83.3)	190(82.2)		Recessiveb	2.511(0.48 13.08)	0.393	1
HTRA1	rs6295	G 359(77.0)	358(77.5)		Allelea	1.026(0.75 1.39)	0.870	1
		C 107(23.0)	104(22.5)					
		GG 138(59.2)	138(59.7)		Additiveb	1.026(0.75 1.39)	0.554	1
		GC 83(35.6)	82(35.5)		Dominantb	1.022(0.70 1.48)	0.560	1
		CC 12(5.2)	11(4.8)		Recessiveb	1.086(0.46 2.51)	0.772	1
HTR2A	rs6313	G 163(35.0)	179(38.7)		Allelea	0.868(0.65 1.11)	0.234	1
		A 303(65.0)	283(61.3)					
		AA 106(45.5)	86(37.2)		Additiveb	0.859(0.66 1.11)	0.252	1
		GA 91(39.1)	111(48.1)		Dominantb	0.711(0.49 1.03)	0.061	0.427
		GG 36(15.4)	34(14.7)		Recessiveb	1.059(0.63 1.76)	0.749	1
COMT	rs4680	A 143(30.7)	118(25.5)		Allelea	1.291(0.96 1.72)	0.021	0.028
		G 323(69.3)	344(74.5)					
		AA 24(10.3)	15(6.5)		Additiveb	1.284(0.65 1.70)	0.118	0.826
		GA 95(40.8)	88(38.1)		Dominantb	1.297(0.90 1.86)	0.175	1
		GG 114(48.9)	128(55.4)		Recessiveb	1.654(0.84 3.24)	0.236	1

aA" represent wild type and "a" represent mutant type: allele, a vs. A; additive, aa vs. Aa vs. AA; dominant, aa + Aa vs. AA, recessive, aa vs. Aa + AA. bChi-square test, corr Logistic regression analyses by adjustment for age, gender, educational level and resident location. corr adjusted by boferroni multiple comparison correction.

Association between serotonin related gene polymorphisms and early response to sertralines in the treatment of PD.
Finally, we investigated whether variations of gene could predict response to sertraline in Han Chinese population with PD. There was a significant difference in allele and genotype frequency between responders and nonresponders in the 5-HTTLPR polymorphism (OR = 0.205, 95% CI 0.128–0.328; OR = 0.249, 95% CI 0.155–0.401, all \(p^\text{corr} = 0.000 \); respectively), and the dominant and recessive model of 5-HTTLPR showed significant association with therapeutic response, indicated the PD patients with S-allele had a poorer response to sertraline than L-allele carriers. However, Genotype and allele frequencies of the other gene polymorphisms were not significantly different between responders and nonresponders (\(p > 0.05 \)). (Table 3).
Table 3
Genotype and allele frequencies of serotonin-related gene polymorphisms between responder and nonresponder

Gene	SNP	Alleles and Genotypes (n, %)	Responder (n = 98)	Nonresponder (n = 135)	Model	OR (95% CI)	p-value	p-value\(corr\)
SLC6A4	rs140701	C 37(18.9) T 159(81.1)	39(14.4) 231(85.6)	Allele\(^a\)	0.726(0.44 3-1.188)	0.201	1	
		C 5(5.1) T 5(3.7)	5(3.7)	Additive\(^b\)	0.638(0.47 0-1.198)	0.159	1	
		C 27(27.6) T 29(21.5)	29(21.5)	Dominant\(^b\)	0.694(0.39 1-1.232)	0.160	1	
		C 66(67.3) T 101(74.8)	101(74.8)	Recessive\(^b\)	0.715(0.20 1-2.542)	0.446	1	
	rs3813034	C 155(79.1) A 41(20.9)	C 231(85.6)	Allele\(^a\)	0.638(0.39 4-1.035)	0.067	0.469	
		C 63(64.3) A 101(74.8)	101(74.8)	Additive\(^b\)	0.669(0.42 3-1.060)	0.113	0.791	
		C 29(29.6) A 29(21.5)	29(21.5)	Dominant\(^b\)	0.606(0.34 4-1.069)	0.128	0.896	
		C 6(6.1) A 5(3.7)	5(3.7)	Recessive\(^b\)	0.590(0.17 5-1.991)	0.332	1	
5-HTTLPR		L 76(38.8) S 120(61.2)	L 239(85.6)	Allele\(^a\)	0.205(0.12 8-0.328)	0.000	0.000	
STin2		L 16(16.3) S 6(4.4)	6(4.4)	Additive\(^b\)	0.249(0.15 5-0.401)	0.000	0.000	
		L 44(44.9) S 19(14.1)	19(14.1)	Dominant\(^b\)	0.144(0.07 9-0.261)	0.000	0.000	
		L 38(38.8) S 110(81.5)	110(81.5)	Recessive\(^b\)	0.238(0.09 0-0.634)	0.004	0.029	
HTRA1	rs6295	G 151(77.0) C 45(23.0)	G 208(77.0)	Allele\(^a\)	1.000(0.64 6-1.549)	0.999	1	
		G 59(60.2) C 79(58.5)	79(58.5)	Additive\(^b\)	1.000(0.64 5-1.551)	0.985	1	
		G 33(33.7) C 50(37.0)	50(37.0)	Dominant\(^b\)	1.072(0.62 1-1.822)	0.903	1	
		G 6(6.1) C 6(4.4)	6(4.4)	Recessive\(^b\)	0.713(0.22 3-2.281)	0.826	1	
HTR2A	rs6313	G 62(31.6) A 134(68.4)	G 101(37.4)	Allele\(^a\)	1.292(0.87 5-1.906)	0.197	1	
		G 48(49.0) A 58(43.0)	169(62.6)	Additive\(^b\)	1.252(0.86 9-1.805)	0.199	1	
		G 38(38.8) A 53(39.3)	53(39.3)	Dominant\(^b\)	1.274(0.75 6-2.149)	0.233	1	
		G 12(12.2) A 24(17.8)	24(17.8)	Recessive\(^b\)	1.550(0.73 3-3.274)	0.355	1	
COMT	rs4680	A 66(33.7) G 130(66.3)	A 77(28.5)	Allele\(^a\)	0.786(0.52 8-1.169)	0.234	1	
		A 11(11.2) G 13(9.6)	13(9.6)	Additive\(^b\)	0.793(0.53 7-1.172)	0.294	1	
		A 44(44.9) G 51(37.8)	51(37.8)	Dominant\(^b\)	0.705(0.41 8-1.189)	0.174	1	
		A 43(43.9) G 71(52.6)	71(52.6)	Recessive\(^b\)	0.843(0.36 1-1.969)	0.954	1	

\(^a\) A represent wild type and "a" represent mutant type; allele, a vs. A; additive, aa vs. Aa vs. AA; dominant, aa + Aa vs. AA; recessive, aa vs. Aa + AA. \(^b\) Chi-square test, \(^c\) Logistic regression analyses by adjustment for age, gender, educational level and resident location. \(p_{corr}\): adjusted by boferroni multiple comparison correction.

Discussion
In this present study, a significant relationship was found between the SLC6A4 rs140701 polymorphism and PD. The patients with PD had significantly higher frequencies of the TT genotype of rs140701, and this is consistent with the results of the previous study reported that only rs140701 polymorphism of SLC6A4 provided evidence of association with PD from 163 sample of African American[7]. SLC6A4 is involved in the transport of serotonin from synaptic spaces to presynaptic neurons, and maintaining the pool of available serotonin for subsequent release[29]. A plenty of evidence points to the involvement of the serotonin system in the neurobiology and pharmacotherapy of PD. Clinical studies demonstrated that SSRIs increasing the synaptic availability of 5-HT and are effective in the treatment of PD[30]. So specific SLC6A4 variants may have an influence on its function. Previous studies consistently found serotonin transporter (5-HTT) knockout mice show increased anxiety-like behaviour. For example, animal experiment found homozygous 5-HTT knockout mice were more anxious [31, 32]. 5-HTT overexpressing mice displayed reduced anxiety-like behaviour, whilst 5-HTT knockout mice showed increased anxiety-like behaviour[33]. These findings show that variation in 5-HTT gene produces robust changes in anxiety. In addition, imaging study shown the 5-HTTLPR genotype may alter resting brain function in emotion-related regions, including the amygdala and ventromedial prefrontal cortex[34]. Domschke found PD patients carrying the homozygous of the 5-HT1A -1019G risk allele or patients carrying the short risk allele of the 5-HTTLPR showed higher amygdala activation in response to happy faces[35]. Imaging data also revealed activations in areas associated with the fear circuit including amygdala, insula, and hippocampal areas[36, 37]. these alterations may suggest a important role of the 5-HTT gene in brain function that may be associated with the genetic susceptibility for PD. The above findings may contribute to our understanding of the mechanism linking SLC6A4 variants to PD.

In addition, there was no significant associations of SLC6A4 rs3813034, 5-HTTLPR and STin2 polymorphisms with PD, and inconsistent with findings from other studies. For example, previous research found the rs3813034 of SLC6A4 is a putative risk factor for PD and other behavioral disorders that involve dysregulation of serotonergic neurotransmission[38]. Also, we found no significant statistical differences in the genotype distributions or allele frequencies of the SNPs
between PD and control groups in 5-HTR1A rs6295, 5-HTR2A rs6313 and COMT rs4680. For example, in a study in which 119 PD patients and 119 healthy controls from Japanese population were included, no significant differences were found in the allele frequencies or genotype distributions of the COMT rs4680, 5-HTTLPR polymorphisms or the 5-HT1A (rs6295) between PD patients and controls[15]. A significant relationship was found between the COMTVal158Met polymorphism and PD[9, 13]. In other meta analysis, the COMT gene val158met polymorphism (rs4680) has been found to be associated with PD in European ancestry, but not Asian ancestry samples[39]. Previous studies also found pure PD was associated with HTR2A 102T-C (rs6313) polymorphism[40], but not in other study[13]. The above findings of genetic association studies suggest that certain 5-HT-related genes may contribute to the susceptibility to PD. however, these results are rather limited and inconsistent. These mixed results of studies might be partly attributable to different samples, sex, races, agoraphobia co-morbidity or severity of PD. For example, Previous study showed that the the HTR2A rs6311 polymorphism was associated with the severity of PD[41]. In addition, these conflicting findings indicate that the contribution of genetic factors to PD may involve a complex network of mutations. In the present study, we only found significant correlation between 5-HTTLPR polymorphism and treatment response to sertraline for 4-weeks in patients with PD. The results of our study indicated the PD patients with S-allele has been linked to poorer response to sertraline during the early stage of treatment, and suggest that 5-HTTLPR could be a predictor of response to sertralines treatment. 5-HTTLPR is a 44 base pair insertion–deletion polymorphism which can exist as a long (L) variant of a 16 repeat sequence or a short (S) variant of 14 repeats[42]. Previous researches indicated the L allele is associated with higher levels of transcription and concentrations of 5-HTT mRNA compared to the S allele, and the short (S) allele of the 5-HTTLPR polymorphism results in less efficient transcription[43-45]. In addition, SSRIs are effective in the treatment of PD, and SLC6A4 is the primary target. These findings may contribute to our understanding of the association between 5-HTTLPR polymorphism and antidepressant response. Consistent study found the 5-HTTLPR low-expression genotypes showed a more favorable response to exposure-based behavior therapy in PD with agoraphobia[46]. Similar findings were found in subjects with depressive disorder or premature
ejaculation treated with sertraline [47, 48]. However, previous report found no association of the 5-HTTLPR polymorphism with treatment response was observed in 102 patients with PD receiving sertraline or paroxetine[49]. Also, there was no significant associations between the 5-HTTLPR polymorphism and sertraline responses in major depression patients[50]. On the one hand, other polymorphisms of SLC6A4 may have a combined effect with 5-HTTLPR. In addition, variation in genes involved in the pharmacokinetics of SSRIs. Drugs metabolized by cytochrome P450 (CYP450) system and related genes of CYP450 enzymes may contribute to pharmacokinetics. For example, one study found the CYP2C19 genetic polymorphism is associated with Escitalopram treatment response in Chinese patients with PD[51]. On the other hand, functional variants in SLC6A4 may be related to epigenetic mechanisms and affect gene expression. For instance, epigenetic modifications of SLC6A4 gene is showing promising results as biomarkers for prediction of antidepressant response [52]. These association need to be further studied in PD with large sample size. However, we failed to find the relationship between others gene polymorphisms and treatment response to sertraline. which is inconsistent with previous studies that found the 5-HT1A receptor – 1019C/G polymorphism was strongly associated with response to treatment in PD receiving sertraline or paroxetinethe[49, 53]. In another study suggest that the genetic variant of the COMT enzyme may be related to treatment response to paroxetine in PD[54]. Inconsistent results may be related to small sample size, short follow-up periods, definition of response, antidepressant choice and ethnic differences. For instance, in one meta-analysis suggest that in Europeans 5-HTTLPR polymorphism may be a predictor of antidepressant response and remission, while it does not appear to play a major role in East Asians[55]. Considering these factors, these gene polymorphisms should be replicated in further study.

Conclusions
The present study suggest that the SLC6A4 rs140701 variant may be associated with susceptibility to PD, and 5-HTTLPR polymorphism may be a predictor of response to sertralines in the treatment of PD. However, the results of our study should be considered in light of the following limitations: (1) The sample size was limited and only from Sichuan provinces of western China, which may not completely
represent the Chinese ethnicity. (2) The etiology of PD is complex and comprises environmental and genetic factors, a potential gene-environment interaction or epigenetics study should be investigated. (3) We did not measure the relationship between plasma sertralines concentration and clinical response.

Abbreviations

BDNF: Brain-Derived Neurotrophic Factor; COMT: Catechol-O-Methyltransferase; CI:s: Confidence Intervals; CYP450: Cytochrome P450; DSM-IV: Diagnostic and Statistical Manual of Mental Disorders fourth edition; HWE: Hardy-Weinberg Equilibrium; L: Long; ORs: Odds Ratios; PD: Panic disorder; PDSS: Panic Disorder Severity Scale; PCR: Polymerase Chain Reaction; SCID: Structured Clinical Interview for DSM-IV; SNPs: Single Nucleotide Polymorphism; S: Short; SLC6A4: Serotonin Transporter Gene; SSRIs: Selective Serotonin- Reuptake Inhibitors; STin2: intron 2; 5-HTR1A: 1A receptor; 5-HTR2A: 5-Hydroxytryptamine 2A receptor; 5-HTT: Serotonin Transporter; 5-HTTLPR: Serotonin-Transporter-Linked Polymorphic Region.

Declarations

Acknowledgements

The authors would like to thank all participants in this study. We thank Shanghai Genesky Bio-Tech Co., Ltd. for their excellent technical assistance with the genotyping analyses.

Authors’ contributions

ZLZ was critically involved in the study design and wrote the manuscript. YLH, JYW and WJM were involved in subject recruitment. BZ guided this research and supervised the entire project. All authors read and approved the final manuscript.

Funding

This study was supported by grants from National Natural Science Foundation of China(81801360). In addition, this study was also supported by grants from the Chinese academy of medical sciences (2019PT310020). The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.
Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The study was approved by the Sichuan Provincial People’s Hospital ethics committee, reference number: (2016) Ethics Review (29). All individuals provided written informed consent prior to the initiation of study procedures.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Kessler RC, Stang PE, Wittchen HU, Ustun TB, Roy-Burne PP, Walters EE. Lifetime panic-depression comorbidity in the National Comorbidity Survey. Arch Gen Psychiatry. 1998;55: 801-8.
2. Kessler RC, Chiu WT, Jin R, Ruscio AM, Shear K, Walters EE. The epidemiology of panic attacks, panic disorder, and agoraphobia in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2006; 63: 415-24.
3. Schumacher J1, Kristensen AS, Wendland JR, Nöthen MM, Mors O, McMahon FJ. The genetics of panic disorder. J Med Genet. 2011;48:361-8.
4. Middeldorp CM, Birley AJ, Cath DC, Gillespie NA, Willemsen G, Statham DJI. Familial clustering of major depression and anxiety disorders in Australian and Dutch twins and siblings. Twin Res Hum Genet. 2005; 8: 609-15
5. Maron E, Lang A, Tasa G, Liivlaid L, Tõru I, Must, A, et al. Associations between serotonin-related gene polymorphisms and panic disorder. Int J Neuropsychopharmacol. 2005; 8: 261-6.
6. Kim W, Choi YH, Yoon KS, Liivlaid L, Tõru I, Must A, et al. Tryptophan hydroxylase and serotonin transporter gene polymorphism does not affect the diagnosis, clinical features and treatment outcome of panic disorder in the Korean population. Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30:1413-8.
7. Strug LJ, Suresh R, Fyer AJ, Talati A, Adams PB, Li W, et al. Panic disorder is associated with the serotonin transporter gene (SLC6A4) but not the promoter region (5-HTTLPR). Mol Psychiatry. 2010;15:166-76.
8. Rothe C, Koszycki D, Bradwejn J, King N, De Luca V, Shaikh S, et al. Association study of serotonin-2A receptor gene polymorphism and panic disorder in patients from Canada and Germany. Neurosci Lett. 2004;363:276-9.

9. Rothe C, Koszycki D, Bradwejn J, King N, De Luca, V, Tharmalingam S, et al. Association of the Val158Met catechol O-methyltransferase genetic polymorphism with panic disorder. Neuropsychopharmacology. 2006;31:2237-42.

10. Choi WS, Lee BH, Yang JC, Kim YK. Association Study between 5-HT1A Receptor Gene C(-1019)G Polymorphism and Panic Disorder in a Korean Population. Psychiatry Investig. 2010;7:141-6.

11. Yoon HK, Yang JC, Lee HJ, Kim YK. The association between serotonin-related gene polymorphisms and panic disorder. J Anxiety Disord. 2008; 22:1529-34.

12. Annerbrink K, Westberg L, Olsson M, Olsson M, Allgulander S, Andersch S, et al. Association between the catechol-O-methyltransferase Val158Met polymorphism and panic disorder: a replication. Psychiatry Res. 2010;178:196-8.

13. Karacetin G, Bayoglu B, Cengiz M, Demira T, Kocabasoglu N, Uysal O, et al. Serotonin-2A receptor and catechol-O-methyltransferase polymorphisms in panic disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36:5-10.

14. Schumacher J, Deckert J. Serotonin transporter polymorphisms and panic disorder. Genome Med. 2010; 2: 40.

15. Watanabe T, Ishiguro S, Aoki A, Ueda M, Hayashi Y, Akiyama K, et al. Genetic Polymorphism of 1019C/G (rs6295) Promoter of Serotonin 1A Receptor and Catechol-O-Methyltransferase in Panic Disorder. Psychiatry Investig. 2017; 14: 86-92.

16. Niitsu T, Fabbri C, Bentini F, Serretti A. Pharmacogenetics in major depression: a comprehensive meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 45: 183-94.

17. Nonen S, Kato M, Takekita Y, Wakeno M, Sakai S, Serretti A, et al. Polymorphism of rs3813034 in Serotonin Transporter Gene SLC6A4 Is Associated With the Selective Serotonin and Serotonin-Norepinephrine Reuptake Inhibitor Response in Depressive Disorder: Sequencing Analysis of SLC6A4. J Clin Psychopharmacol. 2016; 36: 27-31.

18. Andre K, Kampman O, Illi A, Viikki M, Setälä-Soikkeli E, Mononen N, et al. SERT and NET polymorphisms, temperament and antidepressant response. Nord J Psychiatry. 2015; 69: 531-8.
19. Yeh YW, Chen CJ, Jang FL, Kuo SC, Chen CY, Liang CS, et al. SLC6A2 variants may predict remission from major depression after venlafaxine treatment in Han Chinese population. J Psychiatr Res. 2015;61:33-9.

20. Camarena B, Álvarez-Icaza D, Hernández S, Aguilar A, Münch L, Martínez C, et al. Association Study Between Serotonin Transporter Gene and Fluoxetine Response in Mexican Patients With Major Depressive Disorder. Clin Neuropharmacol. 2019;42:9-13.

21. Mochcovitch MD, Nardi AE. Selective serotonin-reuptake inhibitors in the treatment of panic disorder: a systematic review of placebo-controlled studies. Expert Rev Neurother. 2010;10:1285-93.

22. Pohl RB, Wolkow RM, Clary CM. Sertraline in the treatment of panic disorder: a double-blind multicenter trial. Am J Psychiatry. 1998;155:1189-95.

23. Bandelow B, Behnke K, Lenoir S, Hendriks GJ, Alkin T, Goebel C, et al. Sertraline versus paroxetine in the treatment of panic disorder: an acute, double-blindnoninferiority comparison. J Clin Psychiatry. 2004; 65:405-13.

24. Kamijima K, Kuboki T, Kumano H, Burt T, Cohen G, Arano I, et al. A placebo-controlled, randomized withdrawal study of sertraline for panic disorder in Japan. Int Clin Psychopharmacol. 2005; 20: 265-73.

25. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) (Clinical Version). American Psychiatric Press Inc, Washington DC, USA. 1997.

26. Shear MK, Brown TA, Barlow DH, Money R, Sholomskas DE, Woods SW, et al. Multicenter collaborative panic disorder severity scale. Am J Psychiatry. 1997; 154:1571-5.

27. Xiong HF, Li ZJ, Han HY, Xu ZY, Guo ZH, Yao SM, et al. Panic disorder severity scale-chinese version: reliability and validity. Chin J Psychiatry. 2012;45:285-288.

28. Furukawa TA, Katherine Shear M, Barlow DH, Gorman J M, Woods S W, Money R, et al. Evidence-based guidelines for interpretation of the Panic disorder severity scale. Depress Anxiety. 2009; 26:922–929.

29. Lesch KP, Gutknecht L. Pharmacogenetics of the serotonin transporter. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:1062-73.

30. Maron E, Shlik J. Serotonin function in panic disorder: important, but why? Neuropsychopharmacology. 2006;31:1-11.

31. Bodden C, Richter SH, Schreiber RS, Kloke V, Gerß J, Palme R, et al. Benefits of adversity?! How life history
affects the behavioral profile of mice varying in serotonin transporter genotype. Front Behav Neurosci. 2015;9:47.

32. Meyer N, Richter SH, Schreiber RS, Kloke V, Kaiser S, Lesch KP, et al. The Unexpected Effects of Beneficial and Adverse Social Experiences during Adolescence on Anxiety and Aggression and Their Modulation by Genotype. Front Behav Neurosci. 2016;10:97.

33. Line SJ, Barkus C, Coyle C, Jennings KA, Deacon RM, Lesch KP, et al. Opposing alterations in anxiety and species-typical behaviours in serotonin transporter overexpressor and knockout mice. Eur Neuropsychopharmacol. 2011; 21:108-16.

34. Rao H, Gillihan SJ, Wang J, Korczykowski M, Sankoorikal GM, Kaercher KA, et al. Genetic variation in serotonin transporter alters resting brain function in healthy individuals. Biol Psychiatry. 2007; 62:600-6.

35. Domschke K, Braun M, Ohrmann P, Suslow T, Kugel H, Bauer J, et al. Association of the functional -1019C/G 5-HT1A polymorphism with prefrontal cortex and amygdala activation measured with 3 T fMRI in panic disorder. Int J Neuropsychopharmacol. 2006; 9:349-55.

36. Pfleiderer B, Zinkirciran S, Arolt V, Heindel W, Deckert J, Domschke K. fMRI amygdala activation during a spontaneous panic attack in a patient with panic disorder. World J Biol Psychiatry. 2007;8:269-72.

37. Wittmann A, Schlagenhauf F, John T, Guhn A, Rehbein H, Siegmund A, et al. A new paradigm (Westphal-Paradigm) to study the neural correlates of panic disorder with agoraphobia. Eur Arch Psychiatry Clin Neurosci. 2011; 261:185-94.

38. Gyawali S, Subaran R, Weissman MM, Hershkowitz D, McKenna MC, Talati A, et al. Association of a polyadenylation polymorphism in the serotonin transporter and panic disorder. Biol Psychiatry. 2010;67:331-8.

39. Howe AS, Buttenschøn HN, Bani-Fatemi A, Maron E, Otowa T, Erhardt A, et al. Candidate genes in panic disorder: meta-analyses of 23 common variants in major anxiogenic pathways. Mol Psychiatry. 2016; 21:665-79.

40. Maron E, Nikopensius T, Köks S, Altmäe S, Heinaste E, Vabrit K, et al. Association study of 90 candidate gene polymorphisms in panic disorder. Psychiatr Genet. 2005;15:17-24.

41. Saiz PA, Martínez-Barrondo S, García-Portilla MP, Corcoran P, Morales B, Bascaran MT, et al. Role of serotonergic polymorphisms in the clinical severity of the panic disorder. Rev Psiquiatr Salud Ment. 2009;2:35-41.

42. Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D, et al. Allelic variation of human serotonin transporter
gene expression. J Neurochem. 1996; 66: 2621-4.

43. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science. 1996; 274:1527-31.

44. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, et al. Serotonin transporter genetic variation and the response of the human amygdala. Science. 2002; 297:400-3.

45. Hu XZ, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD, et al. Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet. 2006;78:815-26.

46. Knuts I, Esquivel G, Kenis G, Overbeek T, Leibold N, Goossens L, et al. Therapygenetics: 5-HTTLPR genotype predicts the response to exposure therapy for agoraphobia. Eur Neuropsychopharmacol. 2014; 24:1222-8.

47. Umene-Nakano W, Yoshimura R, Ueda N, Suzuki A, Ikenouchi-Sugita A, Hori H, et al. Predictive factors for responding to sertraline treatment: views from plasma catecholamine metabolites and serotonin transporter polymorphism. J Psychopharmacol. 2010; 24:1764-71.

48. Safarinejad MR. Analysis of association between the 5-HTTLPR and STin2 polymorphisms in the serotonin-transporter gene and clinical response to a selective serotonin reuptake inhibitor (sertraline) in patients with premature ejaculation. BJU Int. 2010;105:73-8.

49. Yevtushenko OO, Oros MM, Reynolds GP. Early response to selective serotonin reuptake inhibitors in panic disorder is associated with a functional 5-HT1A receptor gene polymorphism. J Affect Disord. 2010;123:308-11.

50. Dogan O, Yuksel N, Ergun MA, Yilmaz A, Ilhan MN, Karslioglu HE, et al. Serotonin transporter gene polymorphisms and sertraline response in major depression patients. Genet Test. 2008;12: 225-31.

51. He Q, Yuan Z, Liu Y, Zhang J, Yan H, Shen L, et al. Correlation between cytochrome P450 2C19 genetic polymorphism and treatment response to escitalopram in panic disorder. Pharmacogenet Genomics. 2017; 27: 279-84.

52. Lisoway AJ, Zai CC, Tiwari AK, Kennedy JL. DNA methylation and clinical response to antidepressant medication in major depressive disorder: A review and recommendations. Neurosci Lett. 2018; 669:14-23.

53. Ishiguro S, Watanabe T, Ueda M, Saeki Y, Hayashi Y, Akiyama K, et al. Determinants of pharmacodynamic trajectory of the therapeutic response to paroxetine in Japanese patients with panic disorder. Eur J Clin Pharmacol. 2011;67:1213-21.
54. Woo JM, Yoon KS, Choi YH, Oh KS, Lee YS, Yu BH. The association between panic disorder and the L/L genotype of catechol-O-methyltransferase. J Psychiatr Res. 2004; 38:365-70.

55. Porcelli S, Fabbri C, Serretti A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol. 2012; 22:239-58.

Figures
Figure 1

Linkage disequilibrium in SLC6A4 gene polymorphisms (rs3813034 and rs140701).

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
Table-S1.S2.docx