Effect of Irrigation and Fertilization on Growth and Yield in Coriander: A Review

Harshita Singh¹, Suryapal Singh², V.P.S. Panghal³

ABSTRACT
Coriander is second most important seed spice crop grown for its seed as well as leaves. Among the major yield determining factors, NPK fertilization along with correct supply of water play an important role in the quality and yield aspects of coriander. Since coriander is grown mainly in arid and semi-arid areas, water is one of the main constraints in crop production as these growing areas are deficit in annual rainfall. Coriander grown particularly during winter season requires assured irrigation for successful production. Also, dumping of huge quantity of fertilizers in the soil becomes uneconomical besides polluting the environment. Therefore, application of optimum dose of fertilizers not only increases the yield but also improves the quality of the crop as well as soil. Extensive research work has been reported on irrigation and fertilizer requirement of coriander. Therefore, an attempt is been made to review the information available regarding the irrigation and fertilization studies and their impact on growth, yield and other attributing parameters of coriander.

Key words: Coriander, Fertilizers, Growth, Irrigation, Seed yield.

Coriander (Coriandrum sativum L.), also known as Chinese parsley, cilantro, or dhania, belonging to the Umbelliferae family is an important herbaceous annual spice crop and occupies a prime position in flavouring substances. It is native to Mediterranean region, but now a day, it is grown worldwide and is commercially produced in India, Morocco, Russia, East European countries, France, Central America, Mexico and USA. Coriander is cultivated for its high commercial value of stems, leaves and seeds and considered as natural source of essential oils, i.e., petroselinic acid, geraniol, limonene and linalool, used in pharmaceutical and food industries (Carrubba, 2009; Hassan and Ali, 2013). It is appreciated worldwide as basic ingredient in many traditional food items, particularly curry powder because of its strong and typical aroma (Ramadan and Morsel, 2002; Mahendra and Bisht, 2011; Sahib et al., 2013). Coriander seeds are also used in preparation of Ayurvedic and Unani medicines (Sharma and Sharma, 2004). These characteristics qualify coriander as an important medicinal and aromatic spice. The new value-added products, volatile oil and oleoresins, obtained from coriander seeds are also in high demand in the international markets. India is the largest producer and acreage holder of this crop, covering 663 thousand hectares area and giving production of 609 thousand tonnes during the year 2016-17 (Anonymous, 2017). Although India is the largest producer of coriander in the world but the average productivity is very low as compared to European countries, i.e., 9.18 q/ha. Low productivity of coriander may be ascribed to many reasons, of which, inadequate and imbalanced fertilization with limited moisture is the major factor. The requirement of water by the crop depends predominantly on the edapho-climatic conditions; however, the uniform and continuous supply of water is desirable (Thamburaj and Singh, 2004). In this context, inadequate irrigation management stands out among the limiting factors for the cultivation and production of this spice. Also, application of fertilizers (NPK) in right proportion and in optimum quantity according to soil and climatic conditions is essential to realize maximum potential of the crop and to get higher economic benefit since these are the indispensable plant nutrients required for growth, development and various physiological and biochemical processes. Coriander needs adequate moisture for its growth and development and responds greatly to applied nutrients, varying widely from place to place depending upon fertility level of the soil and other environmental conditions.

Effect of Irrigation
The survival of plant and its growth are closely associated with the availability of water since imbalance of water in plants will produce proportionately deleterious deviation in physiological activity, growth and production. The research information on the effect of irrigation has been reviewed below under the following headings:
Effect of irrigation on growth parameters

Irrigation at higher levels resulted in the highest vegetative growth in coriander compared to the lower levels (Osman and El-Feky, 2005). Also, it is possible to limit the number of irrigation up to pre-flowering stage but it is necessary to provide optimum irrigation to coriander crop at the time of flowering and seed setting stage as reported by Verma et al. (2015). Supplying irrigation at branching, flowering and seed formation stage gave the maximum value for number of branches per plant in coriander but it was at par with omitting irrigation at seed formation stage as observed by Kumar et al. (2008), whereas, Moniruzzaman et al. (2013) obtained maximum height of coriander plant along with maximum number of primary branches per plant by irrigating the crop at branching, flowering and seed filling stage. Hesami et al. (2012) observed improvement in plant height of coriander with the reduction in irrigation interval from 8 to 4 days. Application of irrigation at 25, 50, 75 and 100 days after sowing (DAS) gave higher values for growth characters viz., plant height and number of primary branches per plant in coriander over two irrigations (Singh et al., 2018). The plant height of coriander was gradually increased with the increase in the irrigation level and reached its maximum value with an irrigation treatment of 120% of potential evapotranspiration (ETP), though, there were no significant differences concerning the effect of different irrigation treatments on the number of branches per plant as obtained by Hassan and Ali (2013). The pronounced effect of irrigation on growth characters might be attributed to the beneficial effect of higher soil moisture status on absorption of water, uptake of nutrients, cell turgidity, cell elongation, net-assimilation rate and translocation of assimilates to the actively growing parts of plant.

Effect of irrigation on seed yield and yield attributing parameters

While working on coriander, Tripathi et al. (2009) observed that the seed yield of coriander along with umblets/plant, umbel/plant, 1,000-seed weight and biomass production was significantly higher on the application of three irrigations at 20, 40 and 60 DAS, i.e., (1.96 tonne/ha) and resulted in 38.31 per cent and 3.93 per cent increase in seed yield over two (at 20 and 40 DAS) and four irrigations (20, 40, 60 and 80 DAS), respectively. On the other hand, eight irrigations at 15 days interval recorded higher seed yield in coriander (Sharanagi and Roy Chowdhury, 2014; Hassan et al., 2012). Singh et al. (2018) obtained higher values for yield attributing characters, seed yield (16.48 q/ha) and biological yield (50.79 q/ha) in coriander with irrigation at 25, 50, 75 and 100 days after sowing (DAS) over two irrigations. Verma et al. (2015) and Lakpale et al. (2007) reported that deficit drip irrigation at vegetative stage (60% ETc) followed by optimum irrigation in reproductive and seed development stages (80% ETc) improved the yield attributes and seed yield in coriander. This helped in increased in root growth during initial stages and later it utilizes water effectively. However, increasing irrigation level up to 120% ET will increase the seed yield and oil percentage in coriander seeds as recorded by Hassan and Ali (2013). Highest seed yield in coriander was obtained with the application of irrigation at branching, flowering and seed formation stage but it was at par with omitting irrigation at the seed formation stage (Kumar et al., 2008) and seed yield of 2.1 t/ha was obtained with the application of irrigation at branching, flowering and seed filling stage (Moniruzzaman et al., 2013). The favourable effects of irrigation might be explained based on more plant height, which ultimately led to more number of primary branches per plant, and hence, increased the yield attributing characters, resulting in higher yield.

Effect of fertilizers

Among various factors, the application of fertilizers is one of the most important agronomic factors in stepping up the yield of coriander crop. The research information on the effect of fertilizers has been reviewed below under the following headings:

Effect of fertilizers on growth parameters

The application of fertilizers, i.e., N_{50} and P_{50} kg/ha, registered higher plant growth (Singh et al., 2018), whereas, higher doses of water soluble fertilizer (125%) through fertigation in variety Co CR-4 resulted in better growth parameters, i.e., increased plant height, number of branches, number of leaves and root length than that of other levels of fertigation as compared to variety CS 11 in coriander (Rajaraman et al., 2011). Lokhande et al. (2015) recorded maximum plant height, number of branches per plant, days for first flowering and days for 50% flowering with 60 kg nitrogen and 30 kg phosphorus followed by 30 kg nitrogen and 45 kg phosphorus as compared to control without application of fertilizers. This might be due to rapid conversion of carbohydrates into protein, which in turn might have increased the protoplasm and size of cell. Also, the optimum dose of nitrogen and phosphorus helped to increase the availability of other nutrients to the plants.

Effect of fertilizers on seed yield and yield attributing parameters

Kumar et al. (2013) stated that higher dose of nitrogen (N @ 100 kg/ha) and medium dose of phosphorus (P @ 30 kg/ha) proved better in respect of seed yield per hectare (18.84 q), seed weight (6.86 g) and straw weight per plant (24.33 g). On the other hand, application of N_{50} and P_{50} kg/ha, registered higher seed yield and its attributing characters in coriander (Singh et al., 2018). The application of nitrogen 80 kg/ha resulted in highest seed yield in coriander (Patel et al., 2013; Moniruzzaman and Rahman, 2015), whereas, application of nitrogen 75 kg/ha significantly increased the seed yield to the extent of 11.9, 32.7 and 84.3% over nitrogen 50, 25 kg/ha and control, respectively in coriander (Choudhary et al., 2014). Jan et al. (2011) obtained the maximum seed yield (1360.0 kg/ha) and test weight (10.32 g) with phosphorus 45 kg/ha in coriander, while Yousuf
et al. (2014) obtained highest seed yield (2.06 t/ha in 2008-09 and 2.09 t/ha in 2009-10) with moderate application of nitrogen, phosphorus, potassium and sulphur (70, 50, 30, and 20 kg/ha, respectively) but declining trend could be seen in yield with higher doses of these elements in coriander. Application of 60 kg nitrogen and 30 kg phosphorus resulted in higher fresh and dry biomass weight, number of umbels per plant, seed yield and germination percent of primary as well as secondary umbels (Lokhande et al., 2015). The favourable effect of fertility levels might be explained based on more plant height, which ultimately led to more number of branches, hence, increased yield attributes, resulting in more yield.

Interaction effect of irrigation and fertilizers

Effect of irrigation and fertilization on growth, seed yield and yield attributing parameters

The research information available in literature on the interactive effect of irrigation and fertilizers has been reviewed under:

The maximum growth is obtained by Angeli et al. (2016) with the application of nitrogen 105 kg/ha and irrigation depth of 121% of required real irrigation, whereas, nitrogen dose of 94 kg/ha and irrigation depth of 115% of required real irrigation promoted the greatest seed yield (29.0 t/ha) in coriander. Also an increase in seed yield from 35 to 45% due to the application of fertilizers and irrigation has been reported by different researchers (Prabhu et al., 2002; Lakpale et al., 2007; Tripathi, 2008). Tripathi et al. (2009) found the interaction effect of irrigation and fertility levels on seed yield of coriander significant and positive and recorded maximum yield (2.09 t/ha) with combined application of three irrigations and 100% recommended dose of fertilizer followed by three irrigation and 125% recommended dose of fertilizer (2.02 t/ha).

REFERENCES

Angeli, K.P., Delazari, F.T., Nick, C., Ferreria, M.G. and da Silva, D.J.H. (2016). Yield components and water use efficiency in coriander under irrigation and nitrogen fertilization. Revista Brasileira de Engenharia Agrícola e Ambiental. 20(5): 415-420.

Anonymous (2017). Second advance estimate of area and production of horticultural crops. National Horticulture Board, Ministry of Agriculture, Government of India. www.nhb.gov.in.

Carrubba, A. (2009). Nitrogen fertilization in coriander (Coriandrum sativum L.): A review and meta-analysis. Journal of the Science of Food and Agriculture. 89: 921-926.

Choudhary, I., Yadav, S.S., Yadav, L.R., Sharma, O.P. and Yadav, B.L. (2014). Effect of weed and nitrogen management on coriander (Coriandrum sativum L.) yield and economics. Journal of Spices and Aromatic Crops. 23(1): 38-44.

Hassan, F.A.S. and Ali, E.F. (2013). Impact of different water regimes based on class-A pan on growth, yield and oil content of Coriandrum sativum L. plant. Journal of the Saudi Society of Agricultural Sciences. 13: 155-161.

Hesami, S., Nabizadeh, E., Rahimi, A. and Rokhzadi, A. (2012). Effects of salicylic acid levels and irrigation intervals on growth and yield of coriander (Coriandrum sativum) in field conditions. Environmental and Experimental Biology. 10: 113-116.

Jan, I., Sajid, M., Shah, A.H., Rab, A., Khan, N.H., Wahid, F.I., Rahman, A., Alam and R. and Alam, H. (2011). Response of seed yield of coriander to phosphorus and row spacing. Sarhad Journal of Agriculture. 27(4): 549-552.

Kumar, A., Singh, R. and Chhillar, R.K. (2008). Influence of omitting irrigation and nitrogen levels on growth, yield and water use efficiency of coriander (Coriandrum sativum L.). Acta Agronomica Hungarica. 56(1): 69-74.

Kumar, R., Sahay, S., Mishra, P. and Rashmi, K. (2013). Effect of Nitrogen Phosphorus and Potash on coriander yield. Environment and Ecology. 34(1A): 360-364.

Lakpale, R., Shrivastava, G.K. and Tripathi, R.S. (2007). Effect of irrigation schedule on growth, yield and economics of spices crop. Indian Journal of Agricultural Sciences. 77 (3): 170-173.

Lokhande, S.N., Jogdande, N.D. and Thakare, S.S. (2015). Effect of varying levels of nitrogen and phosphorus on growth and seed yield of coriander (Coriandrum sativum). Plant Archives. 15(1): 57-59.

Mahendra, P. and Bisht, S. (2011). Coriandrum sativum: a daily use spice with great medicinal effect. Pharmacognosy Journal. 21(3): 84-88.

Moniruzzaman, M. and Rahman, M.M. (2015). Effect of nitrogen level and leaf cutting frequency on foliage and seed yield of coriander. Bangladesh Journal of Agricultural Research. 40(1): 53-60.

Moniruzzaman, M., Rahman, M.M., Hossain, M.M., Sirajul Karim, A.J.M. and Khalqi, Q.A. (2013). Effect of irrigation on seed yield and yield attributes of coriander (Coriandrum sativum L.). Bulletin Institute of Tropical Agriculture, Kyushu University. 36: 35-43.

Osman, A.M. and El-Fiky, Y.S. (2005). Effect of applied irrigation water amounts and plant densities on coriander (Coriandrum sativum L.) production in sandy soils. Annual Conference Msr Society of Agricultural Engineers. 22(4): 758-770.

Patel, C.B., Amin, A.U. and Patel, A.L., 2013. Effect of varying levels of nitrogen and sulphur on growth and yield of coriander (Coriandrum sativum L.). The Bioscan. 8(4): 1285-1289.

Prabhu, T., Narwadkar, P.R., Sajindranath, A.K. and Rathod, N.G. (2002). Effect of integrated nutrient management on growth and yield of coriander (Coriandrum sativum L.). South India Horticulture. 50: 680-684.

Rajaraman, G., Paramaguru, P., Aruna, P., Sudagar, I.P. and Ragothaman, G. (2011). Effect of fertigation on growth parameters in coriander (Coriandrum sativum L.). International Journal of Agricultural Sciences. 7(1): 163-166.

Ramadan, F.M. and Morsel, J.T. (2002). Oil composition of coriander (Coriandrum sativum L.) fruit-seeds. European Food Research Technology. 215: 204-209.

Sahib, N.G., Anwer, F., Gilani, A.H., Hamid, A.A., Saari, N. and Alkharfy, K.M. (2013). Coriandrum sativum: a potential source of high value components for functional food and nutraceuticals- A review. Phytotheoretical Research. 27: 1439-1456.
Effect of Irrigation and Fertilization on Growth and Yield in Coriander: A Review

Sharangi A.B. and Roychowdhury, A. (2014). Phenology and yield of coriander as influenced by sowing dates and irrigation. The Bioscan. 9(4): 1513-1520.

Sharma, M.M. and Sharma, R.K., 2004. Coriander. In: Handbook of Herbs and Spices, Vol. 2 (Ed. Peter, K. V.). Woodhead Publisher, Abington Hall, Abington Cambridge CB16AH, England, pp. 145-161.

Singh, H., Panghal, V.P.S. and Duhan, D.S. (2018). Irrigation and nutritional effect on growth and seed yield of coriander (Coriandrum sativum L.). Journal of Plant Nutrition. 41(13): 1705-1710, DOI: 10.1080/01904167.2018.1459693.

Thamburaj, S. and Singh, N. Vegetables, tuber crops and spices. Kuldeep sharma, incharge, New Delhi Directorate of Information and Publication of Agriculture. Pusa: Indian Council of Agriculture Research, Krishi Anusandhan Bhaban, 2004. 115p

Tripathi, M.L. (2008). Effect of fertilizer, FYM and biofertilizer on growth and yield of coriander. Annals of Plant and Soil Research. 10(2): 161-163.

Tripathi, M.L., Trivedi, S.K. and Yadav, R.P. (2009). Effect of irrigation and nutrient levels on growth and yield of coriander (Coriandrum sativum L.). Indian Journal of Agronomy. 45(4): 25-28.

Verma, I.M., Bhunia, S.R., Sharma, N.C., Balai, K. and Sahu, M.P. (2015). Effect of FYM, foliar feeding of nitrogen and deficit irrigation on drip irrigated coriander (Coriandrum sativum L.). Journal of Spices and Aromatic Crops. 24(2): 98-101.

Yousuf, M.N., Brahma, S., Kama, M.M., Akter, S. and Chowdhury, M.E.K. (2014). Effect of nitrogen, phosphorus, potassium and sulphur on the growth and seed yield of coriander (Coriandrum sativum L.). Bangladesh Journal of Agricultural Research. 39(2): 303-309.