Strong interfacial exchange field in a heavy metal/ferromagnetic insulator system determined by spin Hall magnetoresistance

Juan M. Gomez-Perez, Xian-Peng Zhang, Francesco Calavalle, Maxim Ilyin, Carmen González-Orellana, Marco Gobbi, Celia Rogero, Andrey Chuvilin, Vitaly N. Golovach, Luis E. Hueso, F. Sebastian Bergeret, Félix Casanova

1CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Basque Country, Spain
2IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
3Donostia International Physics Center, 20018 Donostia-San Sebastian, Basque Country, Spain
4Centro de Física de Materiales CFM-MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastian, Basque Country, Spain
5Departamento de Física de Materiales UPV/EHU, 20018 Donostia-San Sebastian, Basque Country, Spain

Abstract: Spin-dependent transport at heavy metal/magnetic insulator interfaces is at the origin of many phenomena at the forefront of spintronics research. A proper quantification of the different spin-dependent interface conductances is crucial for many applications. Here, we report the first measurement of the spin Hall magnetoresistance (SMR) of Pt on a purely ferromagnetic insulator (EuS). We perform SMR measurements in a wide range of temperatures and fit the results by using a microscopic model. From this fitting procedure we obtain the temperature dependence of the spin conductances (G_s, G_i and G_r), disentangling the contribution of field-like torque (G_i), anti-damping-like torque (G_r), and spin-flip scattering (G_s). An interfacial exchange field of the order of 1 meV acting upon the conduction electrons of Pt can be estimated from G_r, which is at least three times larger than G_i below the Curie temperature. Our work provides an easy method to quantify this interfacial spin-splitting field, which play a key role in emerging fields such as superconducting spintronics and caloritronics, and topological quantum computation.

Keywords: spin Hall magnetoresistance, spin-mixing conductance, europium sulfide, interfacial exchange field

Spin transport in systems consisting of magnetic insulators (MIs) and non-magnetic metals is of extreme importance in the field of spintronics. The spin currents through the interface of such heterostructure are at the origin of many phenomena, from spin pumping\(^1\) to spin Seebeck effect\(^2\), or spin Hall magnetoresistance\(^3,4,13-21,5-12\). The spin transport at the interface can be described in terms of three parameters: the spin-sink conductance G_s, which originates when the electron spins of the non-magnetic metal are collinear with the MI magnetization\(^22-24\), and the real and imaginary part of the spin-mixing conductance, $G_{1 \pm}= G_r + i G_i$ (refs 25,26), which originate from torques that the electron spins of the non-magnetic metal exert to the magnetization of the MI when they are noncollinear. G_i is determined by the Slonczewski (or anti-damping-like) torque, an important quantity in spin-transfer torque magnetic random-access memory (STT-MRAM) devices, currently ready for mass production\(^27\). On the other hand, G_i quantifies the exchange field between the electron spins of the non-magnetic metal and the magnetic moments of the MI, which induces a field-like torque. This interfacial exchange field is very relevant in different areas. For instance, when the non-magnetic metal is a superconductor, it leads to a spin-splitting field, even in the absence of an external magnetic field\(^28-31\). Such spin-splitting in superconductors are subjected to intense research\(^32,33\) because of their possible applications in cryogenic memories\(^34\), thermoelectric...
Spin Hall magnetoresistance (SMR) is a simple, yet powerful technique that can be used to quantify the spin-dependent interface conductances. When a heavy metal (HM), with a sizable spin Hall effect, is placed in contact with a MI, the SMR appears as a modulation of the HM resistivity, governed by $G_r - G_s$ (ref 42), which follows the relative orientation between the magnetization (\mathbf{M}) in the MI and the spin-Hall induced spin accumulation ($\mathbf{\mu}_s$) in the HM. SMR has been extensively studied in different MIs, for instance, ferrimagnetic insulators such as Y$_3$Fe$_5$O$_{12}$ (refs 3,4,6,7,9,10,13,16,43), Tm$_3$Fe$_5$O$_{12}$ (refs 44,45), Gd$_3$Fe$_5$O$_{12}$ (compensated ferrimagnet)8 or CuOSeO$_2$ (spiral ferrimagnet)46, antiferromagnetic insulators such as NiO$_2$, Cr$_2$O$_3$ and CoO (refs 11,15,20,21,47,48), low dimensional ferromagnets49 or even paramagnetic insulators$^{18,50-52}$. SMR also shows up as an anomalous Hall-like contribution in the HM, in this case governed by G_i (ref 42). In the studied cases with ferrimagnetic garnets, G_r is at least one order of magnitude larger than G_i (refs 7,9,10,26,44,45). In 2006, A. Brataas et al. 25 suggested that, at the interface with a ferromagnetic insulator (FMI), such as an europium chalcogenide, G_i might dominate over G_r, a prediction also pointed out more recently by some of the authors from a microscopic model of SMR32. However, up to date, there are no reports characterizing SMR in a purely FMI, mainly because of the small number of FMIs with large enough Curie temperature (T_c) available.

In this letter, we report the SMR in a HM such as Pt on top of EuS, a FMI with a T_c around 19 K. The temperature dependence of the SMR amplitudes can be fit using either random phase approximation (RPA) or Weiss field theory (WFT) model with the microscopic theory for SMR42. From the fittings, we can quantify the exchange interaction between the conduction electrons of Pt and the localized moments of Eu (~18 meV), as well as the values of G_r, G_i, and G_s as a function of temperature. We demonstrate that, in a FMI where there is no compensation of magnetic moments at the interface, G_i is larger than G_r. The precise quantification of the interfacial exchange field from G_i is relevant in many fields where this quantity plays a crucial role.

A detailed description of the fabrication process and characterization of the EuS/Pt samples is given in methods. Figure 1a shows the temperature dependence of the EuS magnetization measured by SQUID at constant magnetic field ($\mu_0 H = 0.01$ T). EuS exhibits a ferromagnetic behavior with a broad transition at $T_c \sim 19$ K, in agreement with previous reports53,54, but the magnetization does not saturate down to 4 K, a trend observed in similarly evaporated EuS films55. Importantly for the SMR measurements, the TEM analysis (Figure 1b) shows the good quality of the interface between the Pt and EuS, where EuS has the right composition and crystalline structure.
Figure 1. (a) Temperature dependence of the EuS magnetization measured at $\mu_0 H = 0.01$ T. (b) TEM image of the SiO₂/Pt/EuS heterostructure. The solid lines on the right side represent the composition profile along the sample thickness. The colors correspond to Si (blue), O (green), Pt (purple), Eu (red), and S (yellow). (c-d) Normalized longitudinal ($\Delta \rho_L / \rho$) and transverse (ρ_T / ρ) ADMR measurements at 2.5 K along the three relevant H-rotation planes (α, β, γ) (see sketches on the right side) for different applied magnetic fields: (c) $\mu_0 H = 0.1$ T and (d) $\mu_0 H = 2$ T, respectively.

According to the original SMR theory\(^\text{12}\), the longitudinal and transverse resistivity in a HM layer in contact with a MI depends on the direction of the MI magnetization as follows:

$$
\rho_L = \rho + \Delta \rho_0 + \Delta \rho_1 \left(1 - m_z^2 \right), \\
\rho_T = \Delta \rho_1 m_x m_y + \Delta \rho_2 m_z,
$$

where $m = (m_x, m_y, m_z)$ is a unit vector along M, ρ is the Pt resistivity, $\Delta \rho_0$ accounts for a resistivity correction due to the spin Hall effect, and $\Delta \rho_1$ and $\Delta \rho_2$ are the SMR amplitudes.

The longitudinal ($R_L = V_L / I$) and transverse ($R_T = V_T / I$) resistance are measured using the standard configurations shown in the sketches on the right side of Figure 1. Figures 1c and 1d show the longitudinal ($\Delta \rho_L / \rho$) and transverse (ρ_T / ρ) angular dependent magnetoresistance (ADMR) measurements at 2.5 K with the magnetic field ($\mu_0 H = 0.1$ T and 2 T, respectively) rotating along three main planes (α, β, and γ) defined in the sketches on the right side of the panels. $\Delta \rho_L / \rho$ and ρ_T / ρ are obtained as $\Delta \rho_L / \rho = [R_L(\alpha, \beta) - R_L(90^\circ)] / R_L(90^\circ)$, where $R_L(90^\circ) = 170 \Omega$, and $\rho_T / \rho = (L/w)[R_T(\alpha) - R_T(90^\circ)] / \rho$, where ρ is $\sim 47 \mu\Omega \cdot \text{cm}$. At $\mu_0 H = 0.1$ T (Figure 1c), only the longitudinal (transverse) ADMR in α–plane follows the $\cos^2(\cos \cdot \sin)$ dependence predicted by eqs 1 (refs 3,5,7,9,16,49), because only the in-plane magnetization follows the external field, as expected from the shape anisotropy of a soft ferromagnet such as EuS. In order to saturate the EuS film out-of-plane, we applied $\mu_0 H = 2$ T (Figure 1d). In this case, a clear \cos^2 dependence of the longitudinal ADMR in α– and β–plane and a $\cos \cdot \sin$ dependence of the transverse ADMR in α–plane is observed, all with a similar amplitude, which corresponds
This symmetry follows well eqs 1, and is linked to the interaction between $\mathbf{\mu}_s$ induced by the spin Hall effect56,57 in the Pt when a charge current is applied and the magnetic moments of the EuS at the interface. When $\mathbf{\mu}_s$ and the magnetic moments are parallel, the spins are reflected at the interface and converted back into a charge current by the inverse spin Hall effect, decreasing the overall Pt resistance. However, when $\mathbf{\mu}_s$ and the magnetic moments are perpendicular, $\mathbf{\mu}_s$ exerts a torque to \mathbf{M} and part of the spin angular momentum is absorbed by the MI, resulting in an increase of the Pt resistance. In the case of γ-plane, no modulation is expected from eqs 1. Nonetheless, there is a small modulation not related to SMR, which has been previously identified as weak antilocalization (WAL) that appears in Pt at low temperatures and large out-of-plane field58,59.

Figure 2. (a) Longitudinal FDMR measurements performed along the three main axes at 2.5 K in a range of magnetic fields between 4 T and –4 T (see sketch for the definition of the axes, color code of the magnetic field direction, and measurement configuration). (b) Zoom of panel a at low magnetic fields between 0.1 and -0.1 T, where the magnetization reversal occurs. (c) Transverse FDMR measurements performed with the applied magnetic field in plane at $\alpha = 45^\circ$ and $\alpha = 135^\circ$. The red arrow shows the amplitude corresponding to $\Delta \rho_1 / \rho$. (d) Transverse resistivity measurement in Hall configuration (see sketch for the measurement configuration). Dash purple lines correspond to the linear fit performed at large magnetic fields and extrapolated to zero. The red arrow shows the amplitude corresponding to $\Delta \rho_2 / \rho$.

The observation of SMR in our system is confirmed by the longitudinal field dependent magnetoresistance (FDMR) measurements shown in Figure 2a in the three main axes (see sketch in the figure). The curve with applied H_z should be the same as the one with H_x due to the spin symmetry by SMR: in both cases, $\mathbf{\mu}_s$ is perpendicular to the EuS magnetization, leading to a high resistance state. The fact that, at large magnetic fields, the FDMR with H_z is larger than with H_x is
a clear feature of the WAL in Pt. The curve with H_y applied shows lower resistance than that the ones with H_x and H_z as expected from SMR. The slight increase of the FDMR with H_y is also related to WAL59. At low magnetic fields, a clear gap corresponding to the $\Delta \rho_1/\rho$ amplitude appears between the curve with H_x (and with H_z) and the curve with H_y, with peaks around zero field corresponding to the reversal magnetization of EuS (~5 mT in plane) (see Figure 2b). The same information can be obtained, with larger signal to noise ratio, from the transverse resistivity. Figure 2c plots the transverse FDMR, with the magnetic field applied in plane, at angles $\alpha = 45^\circ$ and $\alpha = 135^\circ$ (corresponding to the maximum and minimum resistance values), confirming both the $\Delta \rho_1/\rho$ amplitude and the magnetization reversal around ~5 mT. In the case of H_z, the magnetization reversal occurs at larger values (~1.5 T) because the magnetic hard axis of the EuS film lies out of plane.

Next, we performed measurements with a Hall configuration (i.e., transverse resistivity with H_z, see sketch in Figure 2d). At large H_z, we observe a linear dependence of ρ_T with H_z that corresponds to the ordinary Hall effect in the Pt. At low H_z, ρ_T shows an anomalous Hall-like feature which follows the out-of-plane magnetization reversal of EuS. This observed feature corresponds to the $\Delta \rho_2$ term of the SMR theory (eqs 1). $\Delta \rho_2$ appears when the magnetization is out-of-plane since $\mathbf{\mu}_s$ precesses around m_z, an effect quantified by G_i. Since the spin polarization rotates from the y– to the x–direction, the inverse spin Hall effect acting in the Pt converts the spins back to charge current along the y–direction, leading to the measured transverse voltage12. An anomalous Hall effect origin caused by magnetic proximity effect in Pt has been ruled out recently by using Au instead of Pt7. $\Delta \rho_2/\rho$ can be extracted from Figure 2d with the intercept of the linear fittings at large (positive and negative) magnetic fields. According to the original SMR theory12, $\Delta \rho_1/\rho$ essentially depends on the real part of the spin-mixing conductance, whereas $\Delta \rho_2/\rho$ mostly depends on the imaginary part. The anomalous Hall-like amplitude, which has only been reported few times in ferrimagnetic garnets7,9,10,26,44,45, is small because G_i is at least one order of magnitude smaller than G_r in these ferrimagnetic insulators due to the partial compensation of the magnetic moments at the surface. Nonetheless, in our EuS/Pt system, we can see a clear $\Delta \rho_2/\rho$ amplitude. Figure 3b plots the temperature dependence of both $\Delta \rho_1/\rho$ and $\Delta \rho_2/\rho$, showing that $\Delta \rho_2/\rho$ is larger, in absolute value, than $\Delta \rho_1/\rho$. Both amplitudes disappear close to the T_c of the EuS film.
Figure 3. (a) Temperature dependence of the experimental EuS magnetization (blue open squares) and of the spin-operator $S_{||}$ (dark yellow line) extracted from the fitting of the experimental curve to the RPA model for ferromagnetism. (b) Temperature dependence of the normalized SMR amplitudes $\Delta \rho_1/\rho$ (extracted from the transverse FDMR at $\mu_0 H = 0.1$ T as the example shown in Figure 2c) and $\Delta \rho_2/\rho$ (extracted from the Hall configuration measurement as the example shown in Figure 2d). The open dots represent the experimental data and the solid (dashed) lines are the amplitudes obtained with RPA (WMF) model and the microscopic theory42. (c) Temperature dependence of the real part (G_ρ), imaginary part (G_ι) of the spin-mixing conductance and the spin-sink conductance (G_s). The solid (dashed) lines are calculated values from the best fits obtained with the RPA (WMF) model.
In the original SMR theory12, the spin-mixing conductance terms are assumed to be temperature and field independent. The spin current at the HM/MI interface is given by60,61

\[-e J_{s,z} = G_s \mu_s + G_r \mathbf{n} \times [\mathbf{n} \times \mu_s] + G_i \mathbf{n} \times \mu_s,
\]

where \(e \) is the elementary charge, \(J_{s,z} \) is the spin current flowing in \(z \) direction, \(\mu_s \) the vector of the spin accumulation and \(\mathbf{n} \) is the unit vector in the direction of the applied magnetic field \(H \). \(G_i \) and \(G_r \) are the spin-mixing conductance terms. The spin-sink conductance \(G_s \) is related to the spin-flip scattering at the interface and plays an important role for the excitation of magnons in MIs62–65. Since we are interested in the temperature dependence of the spin-mixing conductances, it is necessary to use a microscopic derivation of these parameters. As shown in ref 42, the different spin conductances can be defined in terms of the spin-spin correlation functions of the local magnetic moments at the surface of the MI. This allows to study their temperature and magnetic field dependencies62. Hence, \(G_r, G_i \) and \(G_s \) are defined as1

\[
G_r = e^2 v_F \left(\frac{1}{\tau_l} - \frac{1}{\tau_i} \right),
\]

\[
G_i = -\frac{e^2}{\hbar} n^{2D}_{\text{imp}} v_F J_{\text{int}} \langle \hat{S}_\parallel \rangle,
\]

\[
G_s = -e^2 v_F \frac{1}{\tau_i},
\]

with

\[
\frac{1}{\tau_i} = \frac{2\pi}{T} n^{2D}_{\text{imp}} v_F J_{\text{int}} \omega_L^m n_B (\omega_L^m) [1 + n_B (\omega_L^m)] \langle \hat{S}_\parallel \rangle, \quad \frac{1}{\tau_L} = \frac{1}{2\tau_i} + \frac{\pi}{\hbar} n^{2D}_{\text{imp}} v_F J_{\text{int}} \langle \hat{S}_\parallel^2 \rangle,
\]

where \(T \) is the temperature, \(n_B = 1/(e^{\hbar \omega_B/T} - 1) \) is the Bose-Einstein distribution function, \(\omega_L^{m} = \omega_B - \langle \hat{S}_\parallel \rangle \sum_J J_{ij}/\hbar \) with \(J_{ij} \) being the coupling constant of the Heisenberg ferromagnet, \(\omega_B = g\mu_B B/\hbar \) with \(g \) the gyromagnetic factor and \(\mu_B \) the Bohr magneton, \(v_F \) is the density of the electronic states per spin species in the HM at the Fermi level, \(J_{\text{int}} \) is the exchange interaction between the electron spins in the Pt and the magnetic moments of the FMI, \(n^{2D}_{\text{imp}} \) is the surface density of localized magnetic moments at the interface, and \(\hbar \) the reduced Planck constant. \(\hat{S}_\parallel \) is the longitudinal spin operator of a representative local moment, with \(\langle \hat{S}_\parallel \rangle \) being the spin expectation value, which is the projection of the localized moment parallel to \(H \). In addition, \(\langle \hat{S}_\parallel^2 \rangle \) is the spin-spin correlation function obtained from \(\hat{S}_\parallel \). Due to the spontaneous magnetization in a FMI, the spin relaxation times become anisotropic (\(\tau_\parallel \neq \tau_\perp \)) leading to the appearance of SMR. In this scenario, the SMR amplitudes \(\Delta \rho_1/\rho \) and \(\Delta \rho_2/\rho \) are given by

\[
\Delta \rho_1/\rho = \theta_{2\text{SH}}^2 \left[F(G_s, \lambda) - \Re [F(G_s - G_{11}, \Lambda)] \right],
\]

\[
\Delta \rho_2/\rho = \theta_{2\text{SH}}^2 \Im [F(G_s - G_{11}, \Lambda)],
\]

1 It is important to emphasize that in order to write eq 2 in this customary form \(G_i \) is a negative quantity. See ref 42 for more details.
where \(\frac{1}{\Lambda} = \sqrt{\frac{1}{\Lambda^2} + \frac{1}{\Lambda^m}} \) with \(\lambda_m = \sqrt{\frac{\partial h}{\partial \rho |_{B=0}}} \). \(D \) the diffusion coefficient of the HM, \(\lambda \) the spin diffusion length of the HM, and \(\theta_{SH} \) the spin Hall angle of the HM. The auxiliary function \(\mathcal{F}(G, \lambda) \) is defined as

\[
\mathcal{F}(G, \lambda) = \frac{2\lambda}{d_N} \tanh \left(\frac{d_N}{2\lambda} \right) \frac{1-\rho \frac{G \lambda}{\coth \left(\frac{d_N}{\lambda} \right)}}{1-2\rho \frac{G \lambda}{\coth \left(\frac{d_N}{\lambda} \right)}}.
\]

In order to fit simultaneously the temperature dependence of the two SMR amplitudes, we need to model the magnetic ordering in EuS. For this, we used two possible approaches: the random phase approximation (RPA) and the Weiss mean field theory (WMF). First of all, by using the RPA model, we fit the experimental magnetization (Figure 3a) to extract the exchange integral for first neighbors, \(J_1 \) (12 first neighbors), and the second neighbors, \(J_2 \) (6 second neighbors) for 4f electrons in EuS. The values extracted from the model fit are 0.27kB for \(J_1 \) and -0.12kB for \(J_2 \), which match well the experimental ones obtained by neutron scattering, \(J_1 = 0.221kB \) and \(J_2 = -0.100kB \) (refs 66,67). In the RPA model, we calculate \(\langle S_\parallel \rangle \) and \(\langle S_\perp^2 \rangle \) from the obtained \(J_1 \) and \(J_2 \) values, whereas in the WMF model, we use the experimental magnetization as \(\langle S_\parallel \rangle \) and from \(\langle S_\parallel \rangle \), we calculate \(\langle S_\perp^2 \rangle \) (ref 42). As for the Pt parameters, we take the values of \(\lambda \) (~1.3 nm) and \(\theta_{SH} \) (~0.19) corresponding to the Pt resistivity at each temperature\(^{68}\). Figure 3b shows the fits of the SMR amplitudes \(\Delta \rho_1/\rho \) (purple lines) and \(\Delta \rho_2/\rho \) (blue lines) to the RPA (solid lines) and WMF (dashed lines) models, with \(J_{int} \) and \(n_{imp}^{2D} \) being the only free parameters. The fits reproduce reasonably well the two experimental curves for both the RPA and WMF models. The parameter values obtained in the fittings are: i) \(J_{int} = 21.3 \text{ meV} \) (RPA) and 14.8 meV (WMF), which is the exchange interaction between the conduction electrons in Pt and the localized magnetic moments in EuS and is ferromagnetic \(J_{int} > 0 \); (ii) \(n_{imp}^{2D} = 0.10/\alpha^2 \) (RPA) and 0.14/\(\alpha^2 \) (WMF), with \(\alpha = 5.94 \) Å being the EuS lattice parameter. The best fitting parameters are similar for both methods, which strengthen the reliability of the obtained values. The obtained \(J_{int} \) here is much smaller than other experimental accessible values, for instance \(J_{int} = 350 \text{ meV} \) for Co/Cu (ref 69). \(n_{imp}^{2D} \) values are 10–14\% of the ideal value, but they depend on the slicing of the lattice surface and the quality of the HM/FMI surface. The difference between the RPA model and the experimental data arises from the fact that EuS does not behave as an ideal ferromagnet and the \(M(T) \) curve cannot be fully captured by a simple model (see Figure 3a). In this regard, the WMF model gives a better fit because it uses the experimental \(M(T) \) curve to extract one of the required parameters (\(\langle S_\parallel \rangle \)).

From the same fitting parameters obtained from the fits in Figure 3b, we use eqs 4 to calculate \(G_r, G_i \), and \(G_s \) as a function of temperature, which are plotted in Figure 3c. At low temperatures, when the EuS magnetization saturates, \(G_r \) and \(G_i \) are largest since \(\langle S_\parallel \rangle \), and thus the torque, is maximum. However, because the magnetization is frozen, the conservation of the angular momentum leads to a reduction of the spin-flip scattering and hence to a suppression of \(G_s \). In contrast, at higher temperatures and close to \(T_c \), with the absence of net magnetization due to the randomized spins (\(\langle S_\parallel \rangle \rightarrow 0 \)), \(G_r \) and \(G_i \) vanish to zero because of the isotropic relaxation time (see eqs 5), whereas |\(G_s \)| becomes maximum. A key point of the obtained results is that we experimentally demonstrate for the first time that in a FMI such as EuS, \(G_i \) is larger than \(G_r \), at least 3 times larger at the lowest measured temperature (2.5 K), as predicted in ref 25 for europium.
chalcogenides. According to our results, we can confirm that the field-like torque plays an important role in Pt/EuS because all magnetic moments of the interface contribute to the interfacial exchange field, as opposed to the ferrimagnetic case7,9,10,26,44,45, where there is a compensation of the magnetic moments.

A recent work based on spin sinking in lateral spin valves estimates $|G_i| \approx 3 \times 10^{12} \, \Omega^{-1} \text{m}^{-2}$ in EuS/Cu at 10 K25, with EuS being also evaporated on top, in good agreement with our value of $|G_i| \approx 1.1 \times 10^{12} \, \Omega^{-1} \text{m}^{-2}$ at the same temperature. Another work on EuS evaporated on graphene estimates an interfacial exchange field $>14 \, \text{T}$ based on measurements of the Zeeman spin Hall effect at 4.2 K (ref 40). We can calculate the interfacial exchange field h_{ex} that is related to G_i obtained from our SMR measurements by using the following expression12: $h_{ex} = G_f/\pi G_0 v_F b$, where G_0 is the conductance quantum, and b is a length of the order of the mean free path (l). From the value $G_i \approx 7.0 \times 10^{12} \, \Omega^{-1} \text{m}^{-2}$ observed at the lowest temperature, and taking typical values $v_F \approx 3-4 \times 10^8 \, \text{m} \text{s}^{-1}$ (ref 70) for a metal and $l \approx 10^{-9} \, \text{m}$ for highly resistive Pt, we obtain $h_{ex} = 0.72-0.96 \, \text{meV}$ (equivalent to $12.4-16.6 \, \text{T}$), in good agreement with ref 40.

As mentioned in the introduction, the interfacial exchange field plays a crucial role in several applications. Therefore, an accurate control of it is very important. For example, for bolometers and cryogenic memories34,35 based on the spin-splitting induced in EuS/Al bilayers, the effective spin-splitting field induced in Al is given by $h_{eff} = h_{ex} b/d_{Al}$, where d_{Al} is the thickness of the Al layer. If we assume the same order of magnitude of the interfacial h_{ex} that we obtain for Pt, for $d_{Al} \approx 3-10 \, \text{nm}$ (refs 30,39) we obtain $h_{eff} \approx 0.07-0.3 \, \text{meV}$, whereas the superconducting gap for Al at low temperatures is approximately $\Delta \approx 0.2 \, \text{meV}$ (ref 30). In order to observe coexistence between superconductivity and the spin-splitting field, the effective exchange field may not exceed the paramagnetic limit, which at low temperatures is $h_{eff} < 0.7 \Delta \approx 0.14 \, \text{meV}$ (ref 71). Hence, for the observation of a clear spin-split Bardeen–Cooper–Schrieffer (BCS) density of states, special care should be taken in the fabrication of EuS/Al bilayers.

In summary, we characterize the spin transport in a Pt/EuS interface, where EuS is a pure ferromagnetic insulator below $\sim 19 \, \text{K}$, by using spin Hall magnetoresistance. We observe a substantial AHE-like contribution of the SMR, driven by a large imaginary part of the spin-mixing conductance. We apply a microscopic theory of SMR to extract relevant parameters such as the exchange interaction between the conduction electrons in Pt and the localized magnetic moments in EuS ($j_{int} \sim 15-21 \, \text{meV}$). We also obtain the temperature dependence of the interfacial spin conductances, experimentally demonstrating a larger field-like torque (G_i) than anti-damping-like torque (G_f) in a heavy metal/magnetic insulator interface. The strong interfacial exchange field associated to G_i is estimated as $0.72-0.96 \, \text{meV}$ ($12.4-16.6 \, \text{T}$). Therefore, SMR measurements offer a simple way to quantify effective exchange fields which are of interest in different areas of Condensed Matter Physics, such as proximity effects in superconducting hybrid systems.

Methods. Device fabrication. EuS/Pt samples were prepared by patterning a Pt Hall bar (width $w=500 \, \mu\text{m}$, length $L=900 \, \mu\text{m}$, and thickness $d_{Pt}=5 \, \text{nm}$) on top of a SiO$_2$ (150 nm)/Si substrate by photolithography process and magnetron-sputtering deposition (80 W; 3 mTorr). A EuS layer was ex-situ evaporated on top of the Pt film. For growing the EuS, the patterned sample was inserted in a UHV preparation chamber (base pressure $5 \times 10^{-9} \, \text{mbar}$) and left for twelve hours.
at room temperature to remove the water absorbed at the Pt surface. EuS was grown by means of sublimation of a stoichiometric EuS powder (99.9% purity) in a commercial e-beam evaporator. During preparation the substrate was kept at room temperature and the growth rate was calibrated with a quartz microbalance (0.5 nm/min). The total thickness of the EuS layer is 14 nm.

Materials Characterization. The magnetic properties of the EuS film were studied by superconducting quantum interference device (SQUID). The quality of the Pt/EuS interface by (scanning) transmission electron microscopy (S)TEM, performed on a TitanG2 60–300 electron microscope (FEI Co., The Netherlands). The composition profiles were acquired in STEM mode utilizing energy dispersive X-ray spectroscopy (EDX) signal.

Electrical measurements. Magnetotransport measurements were carried out in a liquid-He cryostat at temperatures T between 2.5 K and 40 K, externally applied magnetic fields $\mu_0 H$ up to 9 T, and a 360º sample rotation.

AUTHOR INFORMATION

Corresponding Author
E-mail: f.casanova@nanogune.eu

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The work was supported by the Spanish MICINN under the Maria de Maeztu Units of Excellence Programme (MDM-2016-0618), and projects No. MAT2015-65159-R, MAT2016-78293-C6-5-R, FIS2017-82804-P, and RTI2018-094861-B-100, by the Regional Council of Gipuzkoa (projects No. 100/16 and IT-1255-19), by the EU’s Horizon 2020 research and innovation program under Grant Agreements No. 800923-SUPERTED and No. 766025-QuESTech. J.M.G.-P. thanks the Spanish MINECO for a Ph.D. fellowship (Grant No. BES-2016-077301). M.G. acknowledges support from the European Commission through the Marie Sklodowska-Curie IEF project SUPER2D (Grant No. GA-748971).

REFERENCES

1. Mosendz, O.; Woltersdorf, G.; Kardasz, B.; Heinrich, B.; Back, C. H. Magnetization Dynamics in the Presence of Pure Spin Currents in Magnetic Single and Double Layers in Spin Ballistic and Diffusive Regimes. *Phys. Rev. B* **2009**, *79* (22), 224412.

2. Uchida, K.; Ishida, M.; Kikkawa, T.; Kirihara, A.; Murakami, T.; Saitoh, E. Longitudinal Spin Seebeck Effect: From Fundamentals to Applications. *J. Phys. Condens. Matter* **2014**, *26* (34), 343202.

3. Isasa, M.; Vélez, S.; Sagasta, E.; Bedoya-Pinto, A.; Dix, N.; Sánchez, F.; Hueso, L. E.; Fontcuberta, J.; Casanova, F. Spin Hall Magnetoresistance as a Probe for Surface Magnetization in Pt/CoFe2O4 Bilayers. *Phys. Rev. Appl.* **2016**, *6* (3), 034007.
(4) Marmion, S. R.; Ali, M.; McLaren, M.; Williams, D. A.; Hickey, B. J. Temperature Dependence of Spin Hall Magnetoresistance in Thin YIG/Pt Films. *Phys. Rev. B* **2014**, *89* (22), 220404.

(5) Vélez, S.; Bedoya-Pinto, A.; Yan, W.; Hueso, L. E.; Casanova, F. Competing Effects at Pt/YIG Interfaces: Spin Hall Magnetoresistance, Magnon Excitations, and Magnetic Frustration. *Phys. Rev. B* **2016**, *94* (17), 174405.

(6) Nakayama, H.; Althammer, M.; Chen, Y. T.; Uchida, K.; Kajiwara, Y.; Kikuchi, D.; Ohtani, T.; Geprägs, S.; Opel, M.; Takahashi, S.; Gross, R.; Bauer, G. E. W.; Goennenwein, S. T. B.; Saitoh, E. Spin Hall Magnetoresistance Induced by a Nonequilibrium Proximity Effect. *Phys. Rev. Lett.* **2013**, *110* (20), 206601.

(7) Kosub, T.; Vélez, S.; Gomez-Perez, J. M.; Hueso, L. E.; Fassbender, J.; Casanova, F.; Makarov, D. Anomalous Hall-like Transverse Magnetoresistance in Au Thin Films on Y$_3$Fe$_5$O$_{12}$. *Appl. Phys. Lett.* **2018**, *113* (22), 222409.

(8) Ganzhorn, K.; Barker, J.; Schlitz, R.; Piot, B. A.; Ollefs, K.; Guillou, F.; Wilhelm, F.; Rogalev, A.; Opel, M.; Althammer, M.; Geprägs, S.; Huebl, H.; Gross, R.; Bauer, G. E. W.; Goennenwein, S. T. B. Spin Hall Magnetoresistance in a Canted Ferrimagnet. *Phys. Rev. B* **2016**, *94* (9), 094401.

(9) Althammer, M.; Meyer, S.; Nakayama, H.; Schreier, M.; Altmannshofer, S.; Weiler, M.; Huebl, H.; Geprägs, S.; Opel, M.; Gross, R.; Meier, D.; Klewe, C.; Kuschel, T.; Schmalhorst, J. M.; Reiss, G.; Shen, L.; Gupta, A.; Chen, Y. T.; Bauer, G. E. W.; Saitoh, E.; Goennenwein, S. T. B. Quantitative Study of the Spin Hall Magnetoresistance in Ferromagnetic Insulator/Normal Metal Hybrids. *Phys. Rev. B* **2013**, *87* (17), 174417.

(10) Vlietstra, N.; Shan, J.; Castel, V.; Ben Youssef, J.; Bauer, G. E. W.; Van Wees, B. J. Exchange Magnetic Field Torques in YIG/Pt Bilayers Observed by the Spin-Hall Magnetoresistance. *Appl. Phys. Lett.* **2013**, *103* (3), 032401.

(11) Ji, Y.; Miao, J.; Meng, K. K.; Ren, Z. Y.; Dong, B. W.; Xu, X. G.; Wu, Y.; Jiang, Y. Spin Hall Magnetoresistance in an Antiferromagnetic Magnetoellectric Cr2O3/Heavy-Metal W Heterostructure. *Appl. Phys. Lett.* **2014**, *105* (14), 142402.

(12) Chen, Y.-T.; Takahashi, S.; Nakayama, H.; Althammer, M.; Goennenwein, S.; Saitoh, E.; Bauer, G. E. W. Theory of Spin Hall Magnetoresistance. *Phys. Rev. B* **2013**, *87* (14), 144411.

(13) Hahn, C.; De Loubens, G.; Klein, O.; Viret, M.; Naletov, V. V.; Ben Youssef, J. Comparative Measurements of Inverse Spin Hall Effects and Magnetoresistance in YIG/Pt and YIG/Ta. *Phys. Rev. B* **2013**, *87* (17), 174417.

(14) Hou, D.; Qiu, Z.; Barker, J.; Sato, K.; Yamamoto, K.; Vélez, S.; Gomez-Perez, J. M.; Hueso, L. E.; Casanova, F.; Saitoh, E. Tunable Sign Change of Spin Hall Magnetoresistance in Pt/NiO/YIG Structures. *Phys. Rev. Lett.* **2017**, *118*, 147202.

(15) Hoogeboom, G. R.; Aqeel, A.; Kuschel, T.; Palstra, T. T. M.; Van Wees, B. J. Negative Spin Hall Magnetoresistance of Pt on the Bulk Easy-Plane Antiferromagnet NiO. *Appl. Phys. Lett.* **2017**, *111* (5), 052409.

(16) Isasa, M.; Bedoya-Pinto, A.; Vélez, S.; Golmar, F.; Sánchez, F.; Hueso, L. E.; Fontcuberta, J.; Casanova, F. Spin Hall Magnetoresistance at Pt/CoFe2O4 Interfaces and Texture Effects. *Appl. Phys. Lett.* **2014**, *105* (14), 142402.

(17) Vlietstra, N.; Shan, J.; Castel, V.; Van Wees, B. J.; Ben Youssef, J. Spin-Hall Magnetoresistance in Platinum on Yttrium Iron Garnet: Dependence on Platinum Thickness and in-Plane/out-of-Plane Magnetization. *Phys. Rev. B* **2013**, *87* (18), 184421.
Aqeel, A.; Vlietstra, N.; Heuver, J. A.; Bauer, G. E. W.; Noheda, B.; Van Wees, B. J.; Palstra, T. T. M. Spin-Hall Magnetoresistance and Spin Seebeck Effect in Spin-Spiral and Paramagnetic Phases of Multiferroic CoCr2O4 Films. *Phys. Rev. B* 2015, 92 (22), 224410.

Wang, P.; Jiang, S. W.; Luan, Z. Z.; Zhou, L. F.; Ding, H. F.; Zhou, Y.; Tao, X. D.; Wu, D. Spin Rectification Induced by Spin Hall Magnetoresistance at Room Temperature. *Appl. Phys. Lett.* 2016, 109 (11), 112406.

Gomez-Perez, J. M.; Vélez, S.; McKenzie-Sell, L.; Amado, M.; Herrero-Martín, J.; López-López, J.; Blanco-Canosa, S.; Hueso, L. E.; Chuvilin, A.; Robinson, J. W. A.; Casanova, F. Synthetic Antiferromagnetic Coupling between Ultrathin Insulating Garnets. *Phys. Rev. Appl.* 2018, 10 (4), 044046.

Baldrati, L.; Ross, A.; Niizeki, T.; Schneider, C.; Ramos, R.; Cramer, J.; Gomonay, O.; Filianina, M.; Savchenko, T.; Heinze, D.; Kleibert, A.; Saitoh, E.; Sinova, J.; Kläui, M. Full Angular Dependence of the Spin Hall and Ordinary Magnetoresistance in Epitaxial Antiferromagnetic NiO(001)/Pt Thin Films. *Phys. Rev. B* 2018, 98 (2), 024422.

Flipse, J.; Dejene, F. K.; Wagenaar, D.; Bauer, G. E. W.; Youssef, J. Ben; Van Wees, B. J. Observation of the Spin Peltier Effect for Magnetic Insulators. *Phys. Rev. Lett.* 2014, 113 (2), 027601.

Cornelissen, L. J.; Peters, K. J. H.; Bauer, G. E. W.; Duine, R. A.; van Wees, B. J. Magnon Spin Transport Driven by the Magnon Chemical Potential in a Magnetic Insulator. *Phys. Rev. B* 2016, 94 (1), 014412.

Das, K. S.; Dejene, F. K.; Van Wees, B. J.; Vera-Marun, I. J. Temperature Dependence of the Effective Spin-Mixing Conductance Probed with Lateral Non-Local Spin Valves. *Appl. Phys. Lett.* 2019, 114, 072405.

Brataas, A.; Bauer, G. E. W.; Kelly, P. J. Non-Collinear Magnetoelectronics. *Phys. Rep.* 2006, 427 (4), 157–255.

Jia, X.; Liu, K.; Xia, K.; Bauer, G. E. W. Spin Transfer Torque on Magnetic Insulators. *EPL (Europhysics Lett.)* 2011, 96 (1), 17005.

Liu, Y.; Yu, G. MRAM Gets Closer to the Core. *Nat. Electron.* 2019, 2 (12), 555–556.

Moodera, J. S.; Hao, X.; Gibson, G. A.; Meservey, R. Electron-Spin Polarization in Tunnel Junctions in Zero Applied Field with Ferromagnetic EuS Barriers. *Phys. Rev. Lett.* 1988, 61 (5), 637–640.

Li, B.; Roschewsky, N.; Assaf, B. A.; Eich, M.; Epstein-Martin, M.; Heiman, D.; Münzenberg, M.; Moodera, J. S. Superconducting Spin Switch with Infinite Magnetoresistance Induced by an Internal Exchange Field. *Phys. Rev. Lett.* 2013, 110 (9), 097001.

Strambini, E.; Golovach, V. N.; De Simoni, G.; Moodera, J. S.; Bergeret, F. S.; Giazotto, F. Revealing the Magnetic Proximity Effect in EuS/Al Bilayers through Superconducting Tunneling Spectroscopy. *Phys. Rev. Mater.* 2017, 1 (5), 054402.

Rouco, M.; Chakraborty, S.; Aikebaier, F.; Golovach, V. N.; Strambini, E.; Moodera, J. S.; Giazotto, F.; Heikilä, T. T.; Bergeret, F. S. Charge Transport through Spin-Polarized Tunnel Junction between Two Spin-Split Superconductors. *Phys. Rev. B* 2019, 100 (18), 184501.

Bergeret, F. S.; Silaev, M.; Virtanen, P.; Heikilä, T. T. Colloquium: Nonequilibrium Effects in Superconductors with a Spin-Splitting Field. *Rev. Mod. Phys.* 2018, 90 (4), 041001.

Heikilä, T. T.; Silaev, M.; Virtanen, P.; Bergeret, F. S. Thermal, Electric and Spin
Transport in Superconductor/Ferromagnetic-Insulator Structures. *Prog. Surf. Sci.* 2019, 94 (3), 100540.

(34) De Simoni, G.; Strambini, E.; Moodera, J. S.; Bergeret, F. S.; Giazotto, F. Toward the Absolute Spin-Valve Effect in Superconducting Tunnel Junctions. *Nano Lett.* 2018, 18 (10), 6369–6374.

(35) Heikkilä, T. T.; Ojajärvi, R.; Maasilta, I. J.; Strambini, E.; Giazotto, F.; Bergeret, F. S. Thermoelectric Radiation Detector Based on Superconductor-Ferromagnet Systems. *Phys. Rev. Appl.* 2018, 10 (3), 034053.

(36) Linder, J.; Robinson, J. W. A. Superconducting Spintronics. *Nat. Phys.* 2015, 11 (4), 307–315.

(37) Giazotto, F.; Heikkilä, T. T.; Bergeret, F. S. Very Large Thermophase in Ferromagnetic Josephson Junctions. *Phys. Rev. Appl.* 2018, 10 (3), 034053.

(38) Linder, J.; Robinson, J. W. A. Superconducting Spintronics. *Nat. Phys.* 2015, 11 (4), 307–315.

(39) Giazotto, F.; Heikkilä, T. T.; Bergeret, F. S. Very Large Thermophase in Ferromagnetic Josephson Junctions. *Phys. Rev. Appl.* 2018, 10 (3), 034053.

(40) Wei, P.; Lee, S.; Lemaitre, F.; Pinel, L.; Cutaia, D.; Cha, W.; Katmis, F.; Zhu, Y.; Heiman, D.; Hone, J.; Moodera, J. S.; Chen, C. T. Strong Interfacial Exchange Field in the Graphene/EuS Heterostructure. *ACS Appl. Mater. Interfaces* 2020, 12 (7), 8780–8787.

(41) Leutenantsmeyer, J. C.; Kaverzin, A. A.; Wojtaszek, M.; Wees, B. J. van. Proximity Induced Room Temperature Ferromagnetism in Graphene Probed with Spin Currents. *2D Mater.* 2017, 4 (1), 014001.

(42) Zhang, X.-P.; Bergeret, F. S.; Golovach, V. N. Theory of Spin Hall Magnetoresistance from a Microscopic Perspective. *Nano Lett.* 2019, 19 (9), 6330–6337.

(43) Meyer, S.; Althammer, M.; Geprägs, S.; Opel, M.; Gross, R.; Goennenwein, S. T. B. Temperature Dependent Spin Transport Properties of Platinum Inferred from Spin Hall Magnetoresistance Measurements. *Appl. Phys. Lett.* 2014, 104 (24), 242411.

(44) Vélez, S.; Schaab, J.; Wörnle, M. S.; Müller, M.; Gradauskaite, E.; Welte, P.; Guttsell, C.; Nistor, C.; Degen, C. L.; Trassin, M.; Fiebig, M.; Gambardella, P. High-Speed Domain Wall Racetracks in a Magnetic Insulator. *Nat. Commun.* 2019, 10 (1), 4750.

(45) Avci, C. O.; Quindeau, A.; Pai, C.-F.; Mann, M.; Caretta, L.; Tang, A. S.; Onbasli, M. C.; Ross, C. A.; Beach, G. S. D. Current-Induced Switching in a Magnetic Insulator. *Nat. Mater.* 2016, 16 (3), 309–314.

(46) Äqel, A.; Vlietstra, N.; Roy, A.; Mostovoy, M.; Van Wees, B. J.; Palstra, T. T. M. Electrical Detection of Spiral Spin Structures in Pt|Cu2OSeO3 Heterostructures. *Phys. Rev. B* 2016, 94 (13), 134418.

(47) Wang, H.; Hou, D.; Qiu, Z.; Kikkawa, T.; Saitoh, E.; Jin, X. Antiferromagnetic Anisotropy Determination by Spin Hall Magnetoresistance. *J. Appl. Phys.* 2017, 122 (8), 083907.

(48) Fischer, J.; Gomonay, O.; Schlitz, R.; Ganzhorn, K.; Vlietstra, N.; Althammer, M.; Huebl, H.; Opel, M.; Gross, R.; Goennenwein, S. T. B.; Geprägs, S. Spin Hall Magnetoresistance in Antiferromagnet/Heavy-Metal Heterostructures. *Phys. Rev. B* 2018, 97 (1), 014417.

(49) Vélez, S.; Golovach, V. N.; Gomez-Perez, J. M.; Bui, C. T.; Rivadulla, F.; Hueso, L. E.;
Bergeret, F. S.; Casanova, F.; Chuvilin, A.; Bui, C. T.; Rivadulla, F.; Hueso, L. E.; Bergeret, F. S.; Casanova, F. Spin Hall Magnetoresistance in a Low-Dimensional Heisenberg Ferromagnet. *Phys. Rev. B* **2019**, *100* (18), 180401(R).

(50) Lammel, M.; Schlitz, R.; Geishendorf, K.; Makarov, D.; Kosub, T.; Fabretti, S.; Reichlova, H.; Huebner, R.; Nielsch, K.; Thomas, A.; Goennenwein, S. T. B. Spin Hall Magnetoresistance in Heterostructures Consisting of Noncrystalline Paramagnetic YIG and Pt. *Appl. Phys. Lett.* **2019**, *114* (25), 252402.

(51) Schlitz, R.; Kosub, T.; Thomas, A.; Fabretti, S.; Nielsch, K.; Makarov, D.; Goennenwein, S. T. B. Evolution of the Spin Hall Magnetoresistance in Cr$_2$O$_3$/Pt Bilayers Close to the Néel Temperature. *Appl. Phys. Lett.* **2018**, *112* (13), 132401.

(52) Oyanagi, K.; Gomez-Perez, J. M.; Zhang, X. P.; Sagasta, E.; Kikkawa, T.; Golovach, V. N.; Bergeret, F. S.; Casanova, F.; Saitoh, E. Paramagnetic Spin Hall Magnetoresistance. *Unpublished* 2020.

(53) Mauger, A.; Godart, C. The Magnetic, Optical, and Transport Properties of Representatives of a Class of Magnetic Semiconductors: The Europium Chalcogenides. *Phys. Rep.* **1986**, *141* (2–3), 51–176.

(54) Hao, X.; Moodera, J. S.; Meservey, R. Spin-Filter Effect of Ferromagnetic Europium Sulfide Tunnel Barriers. *Phys. Rev. B* **1990**, *42* (13), 8235–8243.

(55) Muduli, P. K.; Kimata, M.; Omori, Y.; Wakamura, T.; Dash, S. P.; Otani, Y. Detection of the Interfacial Exchange Field at a Ferromagnetic Insulator-Nonmagnetic Metal Interface with Pure Spin Currents. *Phys. Rev. B* **2018**, *98* (2), 024416.

(56) Sinova, J.; Valenzuela, S. O.; Wunderlich, J.; Back, C. H.; Jungwirth, T. Spin Hall Effects. *Rev. Mod. Phys.* **2015**, *87* (4), 1213.

(57) Saitoh, E.; Ueda, M.; Miyajima, H.; Tatara, G. Conversion of Spin Current into Charge Current at Room Temperature: Inverse Spin-Hall Effect. *Appl. Phys. Lett.* **2006**, *88* (18), 182509.

(58) Shiomi, Y.; Ohtani, T.; Iguchi, S.; Sasaki, T.; Qiu, Z.; Nakayama, H.; Uchida, K.; Saitoh, E. Interface-Dependent Magnetotransport Properties for Thin Pt Films on Ferrimagnetic Y$_3$Fe$_5$O$_{12}$. *Appl. Phys. Lett.* **2014**, *104* (24), 242406.

(59) Vélez, S.; Golovach, V. N.; Bedoya-Pinto, A.; Isasa, M.; Sagasta, E.; Abadia, M.; Rogero, C.; Hueso, L. E.; Bergeret, F. S.; Casanova, F. Hanle Magnetoresistance in Thin Metal Films with Strong Spin-Orbit Coupling. *Phys. Rev. Lett.* **2016**, *116* (1), 016603.

(60) Brataas, A.; Nazarov, Y. V.; Bauer, G. E. W. Spin-Transport in Multi-Terminal Normal Metal-Ferromagnet Systems with Non-Collinear Magnetizations. *Eur. Phys. J. B* **2001**, *22* (1), 99–110.

(61) Brataas, A.; Nazarov, Y. U. V.; Bauer, G. E. W. Finite-Element Theory of Transport in Ferromagnet-Normal Metal Systems. *Phys. Rev. Lett.* **2000**, *84* (11), 2481–2484.

(62) Cornelissen, L. J.; Liu, J.; Duine, R. A.; Youssef, J. Ben; Van Wees, B. J. Long Distance Transport of Magnon Spin Information in a Magnetic Insulator at Room Temperature. *Nat. Phys.* **2015**, *11* (12), 1022.

(63) Cornelissen, L. J.; Shan, J.; Van Wees, B. J. Temperature Dependence of the Magnon Spin Diffusion Length and Magnon Spin Conductivity in the Magnetic Insulator Yttrium Iron Garnet. *Phys. Rev. B* **2016**, *94* (18), 180402(R).

(64) Das, K. S.; Liu, J.; Van Wees, B. J.; Vera-Marun, I. J. Efficient Injection and Detection of Out-of-Plane Spins via the Anomalous Spin Hall Effect in Permalloy Nanowires. *Nano Lett.* **2018**, *18* (9), 5633–5639.
(65) Ross, A.; Lebrun, R.; Gomonay, O.; Grave, D. A.; Kay, A.; Baldrati, L.; Becker, S.; Qaimzadeh, A.; Ulloa, C.; Jakob, G.; Kronast, F.; Sinova, J.; Duine, R.; Brataas, A.; Rothschild, A.; Kläui, M. Propagation Length of Antiferromagnetic Magnons Governed by Domain Configurations. *Nano Lett.* **2019**, *20* (1), 306–313.

(66) Bohn, H. G.; Zinn, W.; Dorner, B.; Kollmar, A. Neutron Scattering Study of Spin Waves and Exchange Interactions in Ferromagnetic EuS. *Phys. Rev. B* **1980**, *22* (11), 5447–5452.

(67) Bohn, H. G.; Kollmar, A.; Zinn, W. Spin Dynamics in the Cubic Heisenberg Ferromagnet EuS. *Phys. Rev. B* **1984**, *30* (11), 6504–6513.

(68) Sagasta, E.; Omori, Y.; Isasa, M.; Gradhand, M.; Hueso, L. E.; Niimi, Y.; Otani, Y.; Casanova, F. Tuning the Spin Hall Effect of Pt from the Moderately Dirty to the Superclean Regime. *Phys. Rev. B* **2016**, *94* (6), 060412.

(69) Wahl, P.; Simon, P.; Diekhöner, L.; Stepanyuk, V. S.; Bruno, P.; Schneider, M. A.; Kern, K. Exchange Interaction between Single Magnetic Adatoms. *Phys. Rev. Lett.* **2007**, *98* (5), 056601.

(70) Ashcroft, N. W.; Mermin, N. D. *Solid State Physics*; Saunders college: Philadelphia, 1976.

(71) Buzdin, A. I. Proximity Effects in Superconductor-Ferromagnet Heterostructures. *Rev. Mod. Phys.* **2005**, *77* (3), 935–976.