Centralna gojaznost kod normalno uhranjenih odraslih pacijenata u primarnoj zdravstvenoj zaštiti

Tatjana M. Egić
Dom zdravlja Novi Sad, Srbija

Correspondence to:
Prim. dr Tatjana M. Egić
tatjana.egic@gmail.com

Sažetak

Uvod. Pobjedinci sa normalnom telesnom težinom i podječnim obimom struka imaju 20% veći rizik za nastanak oboljenja od lica sa normalnom telesnom težinom i obimom struka.

Cilj rada. Ispitati stepen uhranjenosti i učestalost centralne gojaznosti kod normalno uhranjenih odraslih pacijenata Doma zdravlja Novi Sad i da li postoje razlike u odnosu na pol i godine starosti.

Metod. Retrospektivna analiza antropometrijskih podataka, evidentiranih u elektronskom zdravstvenom kartonu 39.751 odraslog pacijenta.

Rezultati. Analizirani su podaci 23.264 žena i 16.487 muškaraca. Prosečna starost ispitanika iznosila je 53,8 godine (SD 15,419). Prosečna vrednost indeksa telesne mase – ITM iznosila je 26,5 kg/m² (SD 4,73), a obima struka 90,1 cm (SD 14,25001). Normalno uhranjenih ispitanika muškog pola bilo je 28,8% i ženskog pola 46,1%. Postoji značajna statistička razlika u stepenu uhranjenosti u odnosu na pol i godine starosti (p<0,005). Centralna gojaznost imala je 21,2% normalno uhranjenih osoba muškog pola i 37,0% ženskog pola. U grupi normalno uhranjenih pacijenata sa centralnom gojaznošću, 79,7% činile su osobe ženskog pola a 20,3% muškog pola. U ovoj grupi pacijenata centralna gojaznost je najzastupljenija u starosnoj grupi od 60 do 69 godina. Postoji statistička značajna razlika u odnosu na pol i starosnu grupu (p<0,005).

Zaključak. Imajući u vidu da je više od trećine normalno uhranjenih ispitanika imalo centralnu gojaznost, radi utvrđivanja rizika za nastanak hroničnih masovnih nezaražnih bolesti povezanih sa centralnom gojaznošću, pored određivanja indeksa telesne mase-ITM neophodno je i rutinsko merenje obima struka.

Ključne reči. Uhranjenost, gojaznost, obim struka, gojaznost u normalnoj telesnoj masi, ITM.

Central obesity in adult patients with optimal weight in primary health care

Tatjana M. Egic
Primary health center Novi Sad, Serbia

Abstract

Introduction: There are people with optimal body weight and exceeding waist circumference and they’ve got a 20% higher risk of developing the disease as compared to people with optimal weight and waist circumference.

Objective: Examine the nutritional status and the prevalence of central obesity in optimally fed adult patients of Primary Health Center (PHC) Novi Sad and find out whether there were differences when age and sex were taken into account.

Method: Retrospective analysis of the anthropometric data recorded in the electronic health records (EHR) of 39,751 adult patients.

Results: We analyzed the data of 23,264 women and 16,487 men. The average age of the participants was 53.8 years (SD 15.419). The average body mass index (BMI) was 26.5 kg/m² (SD 4.73), and waist circumference 90.1 cm (SD 14.25001). There were 28.8% of the male patients and 46.1% of the female patients with optimal body weight. There was a significant statistical difference in the nutritional status levels with respect to sex and age (p<0.005). Central obesity was found in 21.1% of optimally fed males and 37.0% of females. In the group of optimally fed patients with central obesity, 79.7% were females and 21.3% males. In this group of patients, central obesity was the most frequent in the 60-69 age group. There is a statistically significant difference in relation to gender and age group (p<0.005).

Conclusion: We found a third of patients with normal body weight had central obesity. In order to calculate the risk for chronic non-communicable diseases, besides BMI, we should also take into account a routine measurement of the waist circumference.

Keywords: Nutrition, obesity, waist circumference, obesity with normal body weight, BMI.
Central obesity in adult patients with optimal weight in primary health care

Introduction

Overweight and obesity are defined as an unusual or excessive accumulation of fats, which may endanger one’s health, and due to the worldwide spread of the disease it has become a global problem.

According to the WHO (World Health Organisation) data from 1975, the number of obese people in the world almost tripled. In 2016 more than 1.9 billion people, aged 18 and older were overweight, and among them 650 millions were obese.

According to the WHO criteria, obesity is defined as a BMI ≥ 30 kg/m² and it goes for both genders and all age groups. Although this method is the most common in clinical practice, it has its limitations because it doesn’t take into account the same percentages of fats in different individuals. So, in order to define and classify obesity other parameters should be considered, such as waist circumference (WC), hip to waist ratio, or the percentage of body fat. Measuring waist circumference in primary health care (PHC) is easy and it is a useful clinical surrogate marker for the evaluation of the abdominal fat. It may be used for the evaluation of the cardiometabolic risk related to the distribution of body fat.

Overweight and obesity are the main risk factors for many non-communicable diseases. It is important to stress the risk of cardiometabolic multimorbidity increases with the increase of BMI; it’s twice as high in the overweight patients to more than ten times higher in excessively obese patients, when compared to people with optimal weight.

From the clinical aspect, according to the IDF (International Diabetes Federation), the waist circumference (≥ 94 cm for men and ≥80 cm for women, in European countries) which is defined in relation to ethnicity, abdominal, central obesity is gaining a place of a necessary parameter essential for the diagnosis of metabolic syndrome. The main diagnostic components of the metabolic syndrome, besides waist circumference, are triglycerides levels > 1.7 mmol/L; HDL cholesterol < 1.03 mmol/L for men and < 1.29 mmol/L for women, or prethodinal therapy antihypertensive therapy; glucose levels ≥ 5.6 mmol/l or previously diagnosed type 2 diabetes. Using the internationally accepted waist circumference threshold values, it was found the metabolic syndrome doubles the risk of cardiovascular diseases. Also, there is a strong correlation between central obesity, hypertension, cardiovascular diseases, hyperlipoproteinemia, type 2 diabetes, port vein thrombosis, and breast cancer.

The study of Hu et al. in 2016 proved that abdominal obesity had a significant connection with diabetic nephropathy in generally obese individuals. Central obesity was also connected to the higher risk of cardiovascular death.

Also, it was found the individuals with the optimal body weight or BMI and enlarged waist circumference had a 20%
Antropometrijska merenja služe za skrining lica koja

Za procenu postojanja centralne gojaznošću a normalne težine, izložene većem riziku od smrtnosti od svih uzroka, kardiovaskularnih bolesti i smrtnosti od raka u poređenju sa ženama s normalnom težinom bez abdominalne gojaznosti.

Cilj rada

Cilj ovog rada je da se ispita stepen uhranjenosti i uče

Method

Retrospektivna analiza podataka o telesnoj visini, te
desnoj težini, vrednostima ITM i obima struka evidentiranih u elektronskom kartonu 39.751 odraslog pacijenta Doma zdravlja Novi Sad.

Antropometrijska merenja odraslih pacijenata DZ Novi Sad, koja uključuju merenje telesne visine (TV), telesne mase (TM), obima struka (OS) i izračunavanje vrednosti indeksa telesne mase, vršena su u okviru svakodnevnog rada timova izabranih lekara i svi podaci su registrovani u elektronskom kartonu pacijenata.

Radi procene stepena uhranjenosti, izračunavan je indeks telesne mase po formuli TM (kg)/TV (m²). Stepen uhranjenosti procenjen je na osnovu kriterijuma Svetske zdravstvene organizacije: ITM < 18,5 kg/m² označava po
hranjenost, između 18,5 - 24,9 kg/m² normalnu uhranjenost, vrednosti između 25 kg/m² i 29,9 kg/m² - predgojaznost, a ≥30 kg/m² gojaznost. Za procenu postojanja centralne gojaznosti korišćena je vrednost obima struka prema kriterijumi Mađunarodne dijabetološke federacije (International Diabetes Federation - IDF) za metabolički sindrom i evropsko područje, odnosno vrednosti ≥94 cm za muškarce i ≥80 cm za žene. Antropometrijska merenja služe za skrining lica koja su pothranjena ili prekomerno uhranjena, ali se za procenu nutritivnog statusa, pored antropometrijskih merenja koriste i biohemijeske analize, klinički pregled, demografski podaci i uticaj spolne sredine i kulturoloških faktora.

Za merenje telesne mase (TM) korišćena je medicinska vaga s preciznošću merenja od 0,1 kg. Merenje telesne visine (TV) vršeno je u stojećem stavu, sa preciznošću merenja od 0,1 cm.

Objective

We aimed at investigating the nutrition level and the prevalence of central obesity in the PHC “Novi Sad” patients with optimal body weight and whether there was a difference in relation to gender and age.

Method

The retrospective analysis of the EHR database of the 39.751 adult patients of the PHC “Novi Sad”. We took into account their body weight, height, BMI, and waist circumference. The anthropometric measurements of the patients (weight, height, waist circumference, BMI) are a part of daily activities in our PHC and all the data are safely stored in the patients’ EHRs.

BMI was calculated to estimate the nutritional status (BMI = body weight/body height², kg/m²). The nutritional status was estimated using the WHO`s criteria: BMI < 18.5 kg/m² means a patient is underweight, BMI between 18.5-24.9 kg/m² means a patient has optimal weight, BMI between 25-29.9 kg/m² signifies pre-obesity, and BMI ≥ 30 kg/m² means the patient is obese. To estimate the presence of the central obesity we measured waist circumference, using the IDF metabolic syndrome criteria for the European area (waist circumference for men ≥ 94 cm, women ≥ 80 cm).

The anthropometric measurements are used to screen for the underweight or overweight patients, but also to evaluate the nutritional status. Besides anthropometric measurements, lab tests, physical examinations, demographic data, the influence of the environment and the cultural factors should also be taken into account.

To measure body weight, we used the medical scale with the measuring accuracy of 0.1kg. Body height was measured in the standing position, with the measuring accuracy of 0.1cm. Waist circumference was measured by using measuring tape with the measuring accuracy of 0.1cm, at the level of the mid-range between the lowest point of the rib cage and the top of the hip bone.

The gathered data were entered into the specifically designed database and analyzed using statistical package SPSS for Windows.
Меренje obima struka vršeno je nerastegljivom trakom s preciznošću merenja od 0,1 cm, u nivou sredine rastojanja najniže tačke na rebarnom luku i najviše tačke na bedrenom grebenu karlične kosti.

Podaci prikupljeni tokom istraživanja, unošeni su u posebno osmišljenu bazu podataka i analizirani primenom statističkog paketa SPSS for Windows.

Deskriptivna statistika obuhvatala je prikaz minimalnih, maksimalnih i srednjih vrednosti, kao i standardne devijacije. Od testova za procenu statističke značajnosti korišćeni su neparametarski Pirsonov (Pearson) χ^2-test i Fišerov (Fisher) test. Rezultati su prikazani tabelarno. Za korišćenje podataka iz elektronske baze podataka dobijena je saglasnost Etičke komisije DZ Novi Sad.

Rezultati

Prikupljeni su podaci 39.842 pacijenta Doma zdravlja Novi Sad, od kojih je pravilno popunjeno 39.751. Analizirani su podaci 23.264 (58,52%) osoba ženskog pola i 16.487 (41,48%) osoba muškog pola. Minimalna starost ispitanika bila je 18, maksimana 105 godina, a prosečna starost 53,77 (SD 15,419). Minimalna vrednost ITM iznosila je 11,65 kg/m2, maksimalna 69,79 kg/m2, prosečna vrednost 26,51 kg/m2 (SD 4,73), (Tabela 1).

Tabela 1. Telesna uhranjenost u odnosu na pol i starosno doba

ITM/BMI (kg/m^2)	< 18,5	18,5-24,9	25,0-29,9	\geq30,00
Muški/Male N 79	4756	7961	3691	
% 0.5	28.8	48.3	22.4	
Ženski/Female N 629	10714	7337	4584	
% 2.7	46.1	31.5	19.7	
Starosno doba N 236	3344	1919	772	
% 6.5	64.6	22.3	6.5	
18-29 N 236	3344	1919	772	
% 6.5	64.6	22.3	6.5	
30-39 N 115	3187	2376	1216	
% 3.8	53.3	30.6	12.3	
40-49 N 92	2650	3259	1885	
% 1.2	33.6	41.3	23.9	
50-59 N 92	2650	3259	1885	
% 1.2	33.6	41.3	23.9	
60-69 N 10	357	619	249	
% 0.6	28.1	43.8	27.5	
70-79 N 10	357	619	249	
% 0.6	28.1	43.8	27.5	
80-89 N 1	18	20	1	
% 0.7	38.0	43.7	17.6	
90-105 N 2.5	45.0	50.0	2.5	
% 2.5	45.0	50.0	2.5	

The descriptive statistics included minimal, maximal, and mean values, as well as standard deviation. For the evaluation of the statistical significance, we used Pearson’s non-parameter χ^2-test and Fischer’s test. The results were shown in the tables. The Ethical Board of the PHC Novi Sad permitted the use of the patients’ data from EHRs.

Results

We gathered the data of 39,842 patients from PHC Novi Sad, of whom 39,751 patients’ data were properly entered. We analyzed the data of 23,264 (58.52%) female patients and 16,487 (41.48%) male patients. The youngest participant was 18, and the eldest 105, and the average age was 53.77 (SD 15.419). The lowest BMI was 11.65 kg/m2 and the maximum 69.79 kg/m2, and the average BMI was 26.51 kg/m2 (SD 4.73), (Table 1).
Vrednost obima struka kretala se u rasponu od minimalnih 35 cm do maksimalnih 170 cm, sa prosečnom vrednošću od 90,09 cm (SD 14.25001). Prisustvo centralne gojaznosti, odnosno obima struka ≥ 80 cm za žene i ≥ 94 cm za muškarce u odnosu na pol i godine starosti, prikazana je u Tabeli 2.

Waist circumference values ranged from minimal 35cm to a maximum of 170 cm, with an average value of 90.09cm (SD 14.25001). The presence of central obesity, with a waist circumference of ≥ 80 cm for women, and ≥ 94 cm for men, in relation to gender and age are shown in Table 2.

Tabela 2. Centralna gojaznost u odnosu na pol i starosno doba
Table 2. Central obesity in relation to gender and age

Gender	Ne	Da
Muški/ Male	6710	9777
Ženski/ Female	8179	15085

Fisher test
Fisher test
p<0.005

Age	Ne	Da
18-29	1778	726
30-39	3464	2807
40-49	2908	3986
50-59	2495	5391
60-69	2541	7444
70-79	1208	3548
80-89	470	945
90-105	25	15

Ukupno/ Total
Ne	Da
14889	24862

χ² = 3160.530
df = 7
p<0.005

U populaciji normalno uhranjenih ispitanika oba pola, centralnu gojaznost imalo je ukupno 4.977 (32,17%). Prisustvo centralne gojaznosti u odnosu na pol i starosno doba u grupi pacijenata sa normalnom uhranjenošću prikazana je u Tabeli 3.

In the population of the participants of both genders, with the optimal weight, central obesity was found in 4,977 (32.17%). The presence of central obesity, in relation to gender and age, among the participants with optimal weight is presented in Table 3.
Tabela 3. Centralna gojaznost kod normalno uhranjenih osoba u odnosu na pol i starosnu dob

Pol Gender	Muški/Male	Ženski/Female		
	N	%	Ne	Da
18-29	3764	73.8	1008	919
30-39	2543	77.0	801	679
50-59	1646	78.1	1004	520
60-69	1619	74.7	1187	650
70-79	782	78.2	528	240
80-89	325	62.7	211	168
90-105	13	27.2	5	8
Ukupno/Total	10493	67.8	4977	4977

In the group of patients with optimal weight and central obesity, 79.7% were women and 20.3% were men. When compared to age, central obesity in participants with optimal weight was the most frequent in the 60-69 age group (Table 4).

Tabela 4. Distribucija normalno uhranjenih pacijenata sa centralnom gojaznošću u odnosu na pol i starosno doba

Starosno doba	Muški	Ženski
18-29	65	180
% od pola	6.4	4.5
% od ukupnog broja	1.3	3.6
30-39	171	630
% od pola	17.0	15.9
% od ukupnog broja	3.4	12.7
40-49	172	824
% od pola	17.1	20.8
% od ukupnog broja	5.5	16.6
50-59	156	848
% od pola	15.5	21.4
% od ukupnog broja	3.1	17.0
60-69	262	925
% od pola	26.0	23.3
% od ukupnog broja	5.3	18.6
70-79	125	406
% od pola	12.1	10.2
% od ukupnog broja	2.5	8.2
80-89	59	152
% od pola	5.9	3.8
% od ukupnog broja	1.2	3.1
90-105	1	4
% od pola	0.1	0.1
% od ukupnog broja	0.0	0.1
Ukupno/Total	1008	3969
% od pola	100.0	100.0
% od ukupnog broja	20.3	79.7
Više od polovine odraslih pacijenata Doma zdravlja Novi Sad ima telesnu masu veću od normalne, pri čemu je oko jedne petine pacijenata gojazno, dok je nešto manje od dve petine normalno uhranjeno. Osobe muškog pola u većem procenatu imaju prekomernu telesnu masu i gojaznost od osoba ženskog pola. Postoji značajna statistička razlika u stepenu uhranjenosti u odnosu na pol (p<0,005). Najveći procenat pothranjenih i normalno uhranjenih zastupljen je u populaciji starosti od 18 do 29 godina. U dobu od 70 do 79 godina je najveći procenat pacijenata sa prekomernom telesnom masom, dok je najveći procenat gojaznih u dobu od 60 do 69 godina. U stepenu uhranjenosti postoji statistički značajna razlika u odnosu na godine starosti (p<0,005). U posmatranom uzorku manji je procenat normalno uhranjenih a veći procenat onih sa povećanom telesnom masom, u odnosu na podatke dobijene tokom Istraživanja zdravlja stanovnika Srbije obavljenog 2013. godine26. Procena autora iz Hrvatske 2003. godine jeste da je 38,11% celokupnog stanovništva Hrvatske prekomerno uhranjeno a 20,34% gojazno, što je slično rezultatima dobijenim našim istraživanjem27.

Reču, centralnu gojaznost prema posmatranim kriterijumima, imalo je oko 62% ispitanika. Nešto manje od dve trećine žena ima obim struka 80 cm ili više. U odnosu na starosno doba, centralna gojaznost je najzastupljenija u dobu od 60 do 79 godina. Postoji statistička značajna razlika u odnosu na pol i starosno doba u pogledu zastupljenosti centralne gojaznosti (p<0,005). Procenat muškaraca sa centralnom gojaznošću u ovom uzorku je veći a žena manji u odnosu na rezultate dobijene prilikom Istraživanje zdravlja stanovnika Srbije 2013. godine26. U poređenju sa ispitivanjem sprovedenim u Hrvatskoj 2003. godine, procenat osoba sa centralnom gojaznošću je znatno veći, što može biti posledica različitih kriterijuma za definisanje centralne gojaznosti (kriterijumi IDF vs kriterijumi WHO)27.

Nešto više od jedne petine normalno uhranjenih muškaraca i jedne trećine normalno uhranjenih žena imalo je centralnu gojaznost. U studiji koju je sprovedla Stokić E.J sa saradnicima 2002. godine, učestalost gojaznosti u normalnoj telesnoj masi bila je 32,89% kod osoba ženskog pola i 17,18% kod osoba muškog pola. Iako su dobijeni pokazatelji slični, ne mogu se u potpunosti porediti jer su u navedenoj studiji uzorak činili studenti IV i V godine Medicinskog fakulteta u Novom Sadu, a za procenu visceralnog masnog tkva korišćen je procenat masne mase tela određen metodom bioelektrične impedanse28.

U grupi normalno uhranjenih pacijenata sa centralnom gojaznošću postoji statistička značajna razlika u odnosu na pol i starosnu grupu (p<0,005). Dobijeni podaci su u skladu sa podacima iz 2017. i 2019. godine koji, takođe, ukazuju da je abdominalna gojaznost česta na nivou primarne zdravstvene zaštite, kao i da je češća kod žena nego kod muškaraca29,30.

Discussion

More than half of the adult patients from PHC Novi Sad were overweight, one fifth was obese, and less than two-fifths had optimal weight. Unlike females, males were more likely to be overweight or obese. There was a significant statistical difference in nutritional status in relation to gender (p<0.005). The largest percentage of the underweight or those with optimal weight was found in the 18-29 age group. The largest percentage of the overweight was found in the 70-79 age group and the obese in the 60-69 age group. There was a significant statistical difference in nutritional status in relation to age (p<0.005). There was a smaller percentage of those with optimal weight, than those who were overweight, in our sample, when compared to the findings of the Health research of the Serbian inhabitants, from 201326. The assessment of the Croatian authors, from 2003, was that 38.11% of the Croatian population was overweight and 20.34% was obese, which is along the lines of our research27.

Central obesity, according to the criteria, was found in 62% of the participants. Less than two-thirds of the females had a waist circumference of ≥80 cm. In relation to age, central obesity was most frequent in the 60-79 age group. There was a statistically significant difference in the prevalence of central obesity, in relation to gender and age (p<0.005). The percentage of males with central obesity, in our sample, was higher than that of females when compared to the Health research of the Serbian inhabitants, from 201328. When compared to the results of the Croatian research, from 2003, the percentage of our participants with central obesity was much higher, which can be attributed to different central obesity defining criteria (IDF vs. WHO criteria)27.

More than a fifth of males and a third of females with optimal weight had central obesity. In the study of Stokić E.J. et al. from 2002, the incidence of obesity in optimal body mass was 32.89% in females and 17.18% in males. Although quite similar, these parameters could not be compared because their study participants were the students of the fourth and fifth year of the Medical school, Novi Sad, and for the assessment of the visceral fat they used the percentage of the fat body mass calculated by using bioelectric impedance29.

In the group with optimal weight and central obesity, there was a statistically significant difference in relation to gender and age (p<0.005). Our data were consistent with data from 2017 and 2019 which also indicate the abdominal obesity was very frequent in PHCs, and more so in women than men29,30.
Zaključak

Imajući u vidu da je više od trećine normalno uhranjenih ispitanika imalo centralnu gojaznost, radi utvrđivanja ri-
zika za nastanak hroničnih masovnih nezaraznih oboljenja sa
centralnom gojaznošću, pored određivanja ITM neophodno
je i rutinsko merenje obima struka.

Ovakav rezultat takođe ukazuje na neophodnost inten-
zivnog preventivnog rada sa stanovništvom, kako bi se trajno
usvojio zdrav način života i sprečilo nastajanje gojaznosti, ali
i intenzivirao terapijski pristup u lečenju gojaznosti i smanje-
nju rizika za nastanak pridruženih bolesti.

Conclusion

Bearing in mind that more than a third of the partici-
pants with optimal weight had central obesity, and in order to
assess the risk of the non-communicable diseases connected
to it, besides BMI it is necessary to measure waist circumfer-
ee as well.

Our results also indicate it’s necessary to step up our
preventive activities with our patients, so they could acquire
healthy lifestyles and prevent obesity. We should be also in-
tensifying our therapeutic approach to treating obesity and
lowering the risk of the appearance of the consequent dis-
eases.
Comparison of body weight and BMI in adult patients with normal weight in primary health care

Tatjana M. Egić

Central obesity in adult patients with optimal weight in primary health care

General Practice 2020;26(3-4):59-67

Literatura / Reference

1. World Health Organisation. Obesity: preventing and managing the global epidemic. Geneva: WHO Tech Rep Series 894, Geneva, 2000. Available from: https://www.who.int/nutrition/publications/obesity/WHO_tr8_894en/

2. Gregg EW, Shaw JE. Global health effects of overweight and obesity. N. Engl. J. Med. 2017;377:80-1.

3. World Health Organization. Obesity: and overweight - News-room, 3 March 2020, accessed 07.03.2020. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

4. Mathew H, Farr OM, Mantzoros CS. Metabolic health and weight: understanding metabolically unhealthy normal weight or metabolically healthy obese patients. Metabolism 2016;65:73–80.

5. Durrer Schutz D, Busetto L, Dicker D, Farpout-Lambert N, Pryke R, Toplak H, et al. European practical and patient-centred guidelines for adult obesity management in primary care. Obes Facts. 2019;12:40–66

6. Yumuk W, Tsigos C, Fried M, Schindler K, Busetto L, Micic D, et al. Obesity Management Task Force of the European association for the Study of Obesity. European Guidelines for Obesity Management in adults. Obes Facts. 2015;8:402-24.

7. Pi-Sunyer FX. The obesity epidemic: pathophysiology and consequences of obesity. Obes Res. 2002;10 (Suppl 2):97S–104S.

8. Hruby A, Manson JAE, Qi L, Malik VS, Rimm EB, Sun Q, et al. Determinants and consequences of obesity. American Journal of Public Health. 2016;106:1656–62.

9. Kivimaki, M, Kuosma, E, Ferrie, JE, Seidell JC, Perusse L, Despres JP, et al. Central obesity and risks of pre- and postmenopausal breast cancer: a dose–response meta-analysis. Epidemiol Rev 2007;29:115–128.

10. Chen GC, Chen SJ, Zhang R, Hidayat K, Qin JB, Zhang YS et al. Central obesity and risks of pre- and postmenopausal breast cancer: a dose–response meta-analysis of prospective studies. Obes. Rev. 2016; 17, 1167–1177

11. Han TS, Lean ME. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis. 2016;5.

12. Niu J, Seo DC. Central obesity and hypertension in Chinese adults: a 12-year longitudinal examination. Prev Med 2014;62:113–118.

13. Zhang P, Wang R, Gao C, et al. Prevalence of central obesity among adults with normal BMI and its association with metabolic diseases in northeast China. PLoS ONE. 2016;11:e0160402.

14. Vazquez G, Duval S, Jacobs DR Jr, Silventoinen K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev 2007;29:115–128.

15. Hu J, Yang S, Zhang A, Yang P, Cao X, Li X, et al. Abdominal obesity is more closely associated with diabetic kidney disease than general obesity. Diabet Care. 2016;39(10):e179-80.

16. Bureau C, Laurent J, Robic MA, Christol C, Guillaume M, Ruidavets JB, et al. Central obesity is associated with non-cirrhotic portal vein thrombosis. J Hepatol 2016;64:427-432.

17. Seidell JC, Perusse L, Despres JP, et al. General and abdominal adiposity and risk of death in Europe. JAMA Network Open. 2019;2:e197337–e197337.

18. Upadhyay R, Tripathi KD. How can we assess the nutritional status of an individual. J Nutr Food Sci. 2017;7(640).

19. Ministarstvo zdravlja Republike Srbije. Rezultati istraživanja zdravlja stanovnika Republike Srbije, 2013. godina. Beograd: Ministarstvo zdravlja Republike Srbije, 2014.

20. Fister K, Kolcic I, Milanovic SM et al. The prevalence of overweight, obesity and central obesity in six regions of Croatia: results from the Croatian Adult Health Survey. Coll Antropol 2009;33(1): 5–29.

21. Stokić EJ, Srđić B, Peter A, Ivković-Lazar TA. Massa masa tela u normalnoj uhranjenosti. Medicinski pregled. 2002;55(9-10):407-411.

22. Shankar SP, Kartikeya G. Abdominal obesity in primary care. Int J Adv Med. 2017;4(4):915-918.

23. Lukács A, Horváth E, Mátyé Z et al. Abdominal obesity increases metabolic risk factors in non-obese adults: a Hungarian cross-sectional study. BMC Public Health. 2019;19:1533.

24. Cerhan JR, Moore SC, Jacobs EJ et al. A pooled analysis of waist circumference and mortality in 650,000 adults. Mayo Clin Proc 2014;89: 35–45.

25. Koster A, Leitzmann MF, Schatzkin A et al. Waist circumference and mortality. American Journal of Epidemiology, 2008;67(12):1465-1475.

26. Sun Y, Liu B, Snetselaar LG et al. Association of normal-weight central obesity with all-cause and cause-specific mortality among postmenopausal women. JAMA Network Open. 2019;2:e197337–e197337.

27. Primljen - Received 10.01.2020.

Ispravljen - Corrected 12.03.2020.

Prihvaćen - Accepted 30.04.2020.

Conflict of Interest: None declared.