Clinical and Genomic Profiles of Korean Patients with MECOM Rearrangement and the t(3;21)(q26.2;q22.1) Translocation

Jikyo Lee, M.D., Sung Min Kim, B.S., Soonok Kim, M.T., Jiwon Yun, M.D., Dajeong Jeong, M.D., M.D., Young Eun Lee, M.D., Eun-Youn Roh, M.D., Ph.D., and Dong Soon Lee, M.D., Ph.D.

1Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea; 2Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea; 3Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; 4Department of Laboratory Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea

The translocation (3;21)(q26.2;q22.1) is a unique cytogenetic aberration that characterizes acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) in patients with AML and myelodysplastic syndrome (MDS) or a therapy-related myeloid neoplasm. Using multigene target sequencing and FISH, we investigated the clinical and genomic profiles of patients with t(3;21) over the past 10 years. The frequency of t(3;21) among myeloid malignancies was very low (0.2%). Half of the patients had a history of cancer treatment and the remaining patients had de novo MDS. Twenty-one somatic variants were detected in patients with t(3;21), including in CBL, GATA2, and SF3BI. Recurrent variants in RUNX1 (c.1184A>C, p.Glu395Ala) at the same site were detected in two patients. None of the patients with t(3;21) harbored germline predisposition mutations for myeloid neoplasms. MECOM rearrangement was detected at a higher rate using FISH than using G-banding, suggesting that FISH is preferable for monitoring. Although survival of patients with t(3;21) is reportedly poor, the survival of patients with t(3;21) in this study was not poor when compared with that of other AML patients in Korea.

Key Words: Gene rearrangement, Chromosomal translocation, Myelodysplastic syndrome, Acute myeloid leukemia

Acute myeloid leukemia (AML) with inv(3)(q21.3q26.2) or t(3;3) (q21.3q26.2) was added to the 2016 WHO classification as a distinct entity categorized within AML with recurrent genetic abnormalities [1]. The translocation t(3;21) is regarded as an myelodysplastic syndrome (MDS)-related cytogenetic abnormality occurring after chemotherapy or radiation therapy that suggests a poor prognosis and rapid disease progression [2]. Detection of t(3;21) is clinically important because of the grave prognostic implications [3]. The WHO distinguishes AML with t(3;21)(q26.2;q22.1) from AML with inv(3) or t(3;3), which is typical of therapy-related neoplasms (t-MN) [1]. Without a history of cytotoxic or radiation treatment, t(3;21)(q26.2;q22.1) is included in the cytogenetic abnormalities within the diagnostic criteria for AML with myelodysplasia-related changes (AML-MRC) [1]. The t(3;21)(q26.2;q22.1) translocation involves gene rearrangement in the MDS1-EVI1 complex (MECOM) locus on chromosome 3q26 [4]. Although inv(3)(q21.3q26.2), t(3;3)(q21.3q26.2), and t(3;21) (q26.2;q22.1) commonly involve 3q26.2, hematologic neoplasms with t(3;21)(q26.2;q22.1) are classified as AML-MRC or t-MN. We attempted to determine the clinical signatures of patients with t(3;21)(q26.2;q22.1) using multigene target sequencing. Based on a retrospective review of 1,945 patients diagnosed as having a myeloid neoplasm (928 patients with AML, 811 patients with MDS, 127 patients with AML-MRC, and 79 patients with t-MN),...
with t-MN) over the past 10 years (January 2010 to December 2019), four patients had the chromosome aberration t(3;21) (q26.2;q22.1) based on G-banding analysis. To detect hidden t(3;21), which was not detected using G-banding in follow-up samples, we performed FISH for MECOM rearrangement using XL MECOM (3q26) Dual Color Break Apart Rearrangement Probe (MetaSystems, Altlussheim, Germany). To find unique gene variants associated with t(3;21), we sequenced a 506- or 650-gene panel for hematologic malignancies using the Illumina NextSeq550 platform (Illumina, San Diego, CA, USA). The institutional review boards of Seoul National University Hospital and Seoul National University Boramae Medical Center in Korea approved this study (Nos. 2008-068-1147 and 20-2020-149, respectively).

Case 1 (23-year-old male) was diagnosed as having hypoplastic MDS at the age of two years (Table 1, Fig. 1). Prednisolone and oxymetholone were administered without chemotherapy. At 23 years of age, the patient developed pancytopenia (Hb, 45 g/L; WBC count, 1,290×10⁶/L; platelet [PLT] count, 10×10⁹/L), and he was diagnosed as having MDS with excess blasts 1 (MDS-EB1). The bone marrow (BM) was markedly hypocellular (cellularity, 1%–10%) with blasts (7.5%). A peripheral blood smear showed a dysgranulopoietic feature in the neutrophils. G-banding revealed the cytogenetic aberration 46,XY,t(3;21)(q26;q22)[8]/46,XY[15]. MECOM rearrangement was detected in 49% of the BM nucleated cells (Supplemental Data Figure S1). Multigene sequencing revealed eight somatic variants in RUNX1 (c.1184A>C, p.Glu395Ala), BCOR (c.4071+1G>A, p?), MXRA5 (c.6508G>T, p.Ala2170Ser), RAF1 (c.353A>G, p.Tyr118Cys), TERF1 (c.186_188del, p.Glu62del), RELN (c.3513G>C), CBL (c.711G>A, p.Glu237Lys), RTEL1 (c.1009C>T, p.Thr336Met), and DDX54 (c.1363C>T, p.Pro455Ser).

Characteristics	Case 1	Case 2	Case 3	Case 4
Diagnosis	MDS-EB1	t-MDS	t-MDS	MDS-U
Age† (yr/sex)	23/male	17/male	66/male	72/female
Underlying disease (age, yr)	MDS (2)	Osteosarcoma (16)	Rectal cancer (59)	Bladder cancer (67)
Chemotherapy or RT	None	Methotrexate, ifosfamide, etoposide, carboplatin, busulfan, melphalan	Oxaliplatin, folinic acid, fluorouracil	None
Survival‡	78 months (alive)	31 months	37 months (alive)	36 months
CBC (Hb, WBC, PLT)	60 g/L, 1,800×10⁶/L, 60×10⁹/L	119 g/L, 2,980×10⁶/L, 73×10⁹/L	117 g/L, 2,130×10⁶/L, 47×10⁹/L	74 g/L, 900×10⁶/L, 48×10⁹/L
Blast count in BM§	9.0%	<5%	<5%	<5%
Dysplasia	Dygranulopoiesis	Dyserthropoiesis, dysmegakaryopoiesis	Dysemagakaryopoiesis	N/A
Chromosome (G-banding)¹	46,XY,t(3;21)(q26.2;q22)	46,XY,t(3;21)(q26.2;q22),−7	46,XY,t(3;21)(q26.2;q22)	46,XX,t(3;21)(q26.2;q22)
MECOM FISH positivity	Positive (52.7%)	Positive (46%)	Positive (50%)	N/A
Somatic variant genes (VAF, %)	RUNXI (16.1)	RUNXI (43.6)	TERFI (17.3)	SF3B1 (23.9)
	BCR (62.1)	DHX58 (13.0)		GATA2 (27.9)
	MXRA5 (48.9)	RTE1 (44.1)		GNAS (22.6)
	RAF1 (38.8)	DDX54 (57.3)		
	TERFI (12.3)	CBL (57.7)		
	RELN (22.5)	PAX1 (14.5)		
	STRIP2 (49.5)	STAT5B (73.5)		
	CACNA1E (39.4)	FAH (50.0)		
	TNFAIP3 (46.4)			

*Initial hematologic diagnosis in the presence of a MECOM rearrangement; †Age at initial hematologic diagnosis with MECOM rearrangement; ‡Survival time from initial hematologic diagnosis to April 2021 for patients who are still alive; §Blast count observed on BM aspiration or BM section at initial diagnosis; ¹Chromosome and MECOM FISH results at AML transformation.

Abbreviations: MDS, myelodysplastic syndrome; MDS-EB1, myelodysplastic syndrome with excess blasts 1; t-MDS, treatment-related myelodysplastic syndrome; MDS-U, myelodysplastic syndrome, unclassifiable; RT, radiotherapy; CBC, complete blood count; BM, bone marrow; N/A, not available due to poor quality; VAF, variant allele frequency; WBC, white blood cell; PLT, platelet.
Fig. 1. Detailed flow charts of clinical and genomic events in four patients with t(3;21). Serial BM analyses of cases 1 (A) to 4 (D) are indicated as round circles in the charts. Orange and gray circles represent BM samples analyzed and not analyzed using multigene target sequencing, respectively. All detected somatic variants are indicated in brown letters. Black circles indicate the death of a patient. Diagnosis is indicated above the timeline and treatments are indicated below the timeline as green triangles. *BM with initial detection of MECOM rearrangement.

Abbreviations: M, male; F, female; OSA, osteosarcoma; MDS-EB, myelodysplastic syndrome with excess blasts; AML-MRC, acute myeloid leukemia with myelodysplasia-related changes; t-MDS, therapy-related myelodysplastic syndrome; t-AML, therapy-related acute myeloid leukemia; APL, acute promyelocytic leukemia; MDS-U, myelodysplastic syndrome, unclassifiable; AlloPBSCT, allogeneic peripheral blood stem cell transplantation; MCR, marrow complete remission; DLI, donor leukocyte infusion; GVHD, graft-versus-host disease; d/t, due to; SD, stable disease; R, remission; CR, continuous remission; DP, disease progression; P, persistent; Tx, treatment; BMI, bone marrow involvement.
Lee J, et al.
MECOM rearrangement with t(3;21)(q26.2;q22.1)

p.Met1171Ile), STRIP2 (c.560G>A, p.Arg187Gln), and CACNA1E (c.598C>G, p.Leu200Val). The patient underwent two peripheral blood stem cell transplantations (PBSCTs) from his sister and from his mother, respectively. The disease subsequently progressed to AML-MRC and remission was achieved after chemotherapy. He is currently planning to undergo lung transplantation for chronic graft-versus-host disease (GVHD).

Case 2 (17-year-old male) was previously diagnosed as having osteosarcoma (OSA). Nine months after chemotherapy with alkylating agents (methotrexate, busulfan, and melphalan), the patient developed pancytopenia (Hb, 119 g/L; WBC, 2,980×10^9/L; PLT, 73×10^9/L), and he was diagnosed as having t-MDS. G-banding revealed the cytogenetic aberration 45,XY,t(3;21)(q26;q11.2).–7(1)[51],idem,+8,+9,+13,+14,+20,+mar[4]/[46,XY] and FISH revealed 9% concordance at follow-up when 16.7% of the samples were analyzed only using the FISH probe for MECOM, which was not detected using G-banding. Dysmegakaryopoietic features were observed in all four patients, with a percentage of dyspoietic megakaryocytes ranging from 10% to 75.0% (mean, 52.3%). Dysmegakaryopoietic features were determined using Wright–Giemsa staining of BM aspirates and immunohistochemical staining for CD61 (CD61 Mouse Monoclonal Antibody, Roche, Indianapolis, IN, USA) in BM sections, based on WHO criteria [5].

The overall survival (OS) was 78 months (case 1), 31 months (case 2), 37 months (case 3), and 36 months (case 4) (mean OS, 45.5 months). Two-year survival was 100% and 3-year survival was 75%, whereas 5-year survival was 25%. Case 4 was the oldest patient, who died 36 months after the initial diagnosis. Case 2 showed the shortest OS; this patient harbored monosomy 7 in the context of t(3;21) at initial karyotyping, whereas the other patients had t(3;21) only. Summerer, et al. [6] reported poor outcomes in patients with MECOM rearrangement and multiple cytogenetic alterations, especially in chromosome 7, compared to those of patients with a single aberration. Case 2 showed a poor prognostic implication of monosomy 7 in a patient with t(3;21). In case 1, the patient was still alive after 78 months. The survival of these patients was not as poor as expected for patients with t(3;21), with a reported median OS for AML and MDS in Korea of 15.7 and 17.7 months, respectively [7, 8].

Targeted multigene sequencing was performed using a 356- or 507-gene panel including known leukemia-related genes and WHO 2016 genetic predisposition genes. The variant-calling strategy is described in Supplemental Data Figure S2, and pathogenicity was assessed according to the 2015 American College of Medical Genetics (ACMG) guidelines [9]. Variant calling revealed 21 somatic variants that were sorted into tier groups (Table 1) [10]. Somatic variants in RUNX1 and CBL are strongly associated with a short OS in MDS patients [11]. RUNX1 (c.1184A>C, p.Glu395Ala) was detected at the same site in two patients (cases 1 and 2) and CBL (c.122_127dup, p.His41_His42dup) was detected in one patient (case 2). None of the patients with t(3;21) harbored germline predisposition mutations to myeloid neoplasms. Ripperger, et al. [12] suggested the MECOM locus as a novel...
Table 2. Somatic variants in four patients with MECOM rearrangement with t(3;21)

Case No.	Chr Start	End	Ref	Variant	Gene	Type	Accession No.	Base change	AA change	SIFT	Polyphen2	CADD	Tier [10]		
1	1	21	36,164,610	36,164,610	T	G	RUNXI*	Substitution	NM_001001890	c.1184A>C	p.Glu395Ala	D	B	23.5	2
2	X	21	39,921,998	39,921,998	C	T	BCOR	Substitution	NM_001123383	c.4071+1G>T	p.Ala1354Val	D	D	25.8	3
3	X	235,214	323,352	A	MRA5	Substitution	NM_015419	c.6508G>T	p.Ala2170Ser	D	D	25.8	3		
4	3	12,645,774	12,645,774	T	RAI1	Substitution	NM_001354695	c.353A>G	p.Tyr118Cys	T	P	14.16	3		
5	8	73,921,284	73,921,286	GAG	-	TERF1	Deletion	NM_003218	c.186_188del	p.Glu52del	
6	7	103,236,929	103,236,929	C	G	RELN	Substitution	NM_005045	c.3513G>C	p.Met1171Ile	T	P	25.4	3	
7	7	129,094,012	129,094,012	G	A	MXRA5	Substitution	NM_015419	c.6508G>T	p.Ala2170Ser	D	D	25.8	3	
8	8	181,546,987	181,546,987	C	G	CACNA1E	Substitution	NM_001001890	c.1184A>C	p.Glu395Ala	D	B	23.5	2	

*RUNXI (c.1184A>C, p.Glu395Ala) was detected in cases 1 and 2; †Protein-level prediction algorithms (SIFT, Polyphen2) are presented for the nonsynonymous variants. Tolerated and deleterious variants found in the SIFT prediction algorithm are annotated as T and D, respectively, and benign, possibly damaging, and probably damaging variants identified from Polyphen2 prediction are annotated as B, P, and D, respectively; ‡The prediction algorithm CADD can score human single nucleotide variants and short insertion/deletions. Variants with score above 10 to 20 indicate potential deleteriousness in CADD prediction.

Abbreviations: Chr, chromosome; Ref, reference sequence; AA, amino acid; SIFT, sorting intolerant from tolerant; Polyphen2, polymorphism phenotyping version 2; T, tolerated; D, deleterious; B, benign; P, possibly damaging; CADD, combined annotation-dependent depletion.
candidate gene for hereditary hematological malignancies, and their literature review revealed that constitutional MECOM variants include mutations and microdeletions. Reported variants in MECOM are p.His751Arg (missense), p.Arg750Trp (missense), and p.Cys766Gly (missense), with the latter as the most frequently reported MECOM variant [12]. Inherited predisposition genes related to myeloid neoplasms and MECOM variants were not detected in patients with t(3;21)(q26.2;q22.1) in this study.

The limitation of this study is that the germline analysis results could not be confirmed using saliva samples. Alternatively, the detected variants from serial BM samples in the same patients were reviewed based on clinical associations and correlated with the patient's clinical course. As a small number of patients were enrolled because t(3;21)(q26.2;q22.1) is rare, we compared the survival length of MDS and AML patients who received intensive treatment in Korea. To consider the Korean ethnicity, we filtered out the variants observed in healthy Korean controls [13].

In conclusion, the frequency of t(3;21) is very low (0.2%), and the association between t(3;21) and t-MN is 50%. Targeted mutigene sequencing revealed 21 somatic variants in patients with MECOM rearrangement with t(3;21), including in CBL, GATA2, and SF3B1. RUNXI (c.1184A>C, p.Glu395Ala) was detected in half of the patients. The detection rate of t(3;21) by FISH was higher than that by G-banding at follow-up; thus, FISH is recommended for monitoring and should be considered a routine evaluation for patients with MECOM rearrangements.

ACKNOWLEDGEMENTS

None.

AUTHOR CONTRIBUTIONS

Lee DS and Lee J designed the study and wrote the manuscript. Lee DS and Roh EY collected the samples. Lee DS, Lee J, and Yun J reviewed the medical records of the patients. Kim S performed the cytogenetic analyses. Kim SM processed the data. Yun J, Jeong D, and Lee Y interpreted the data. Lee DS contributed to the revision of the manuscript. All authors approved the final manuscript to be published.

CONFLICTS OF INTEREST

None.

REFERENCES

1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127:2391-405.
2. Bejar R. Clinical and genetic predictors of prognosis in myelodysplastic syndromes. Haematologica 2014;99:956-64.
3. Glass C, Wilson M, Gonzalez R, Zhang Y, Perkins AS. The role of EVII in myeloid malignancies. Blood Cells Mol Dis 2014;53:67-76.
4. De Braekeleer E, De Braekeleer M, Basinko A, Morel F, Douety-Guilbert N. 3q26/EVI1 rearrangements in myeloid neoplasms: a cytogenetic review. Future Oncol 2015;11:1675-86.
5. Barbui T, Thiele J, Gisslinger H, Vannucchi AM, Guglielmelli P, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J 2018;8:15.
6. Summerer I, Haferlach C, Meggendorfer M, Kern W, Haferlach T, Stengel A. Prognosis of MECOM (EVII)-rearranged MDS and AML patients rather depends on accompanying molecular mutations than on blast count. Leuk Lymphoma 2020;61:1756-9.
7. Kwon J, Kim SY, Yeob KE, Han HS, Lee KH, Shin DW, et al. Differences in diagnosis, treatment, and survival rate of acute myeloid leukemia with or without disabilities: A national cohort study in the Republic of Korea. Cancer Med 2020;9:5335-44.
8. Lee JH, Jang JH, Park J, Park S, Joo YD, Kim YK, et al. A prospective multicenter observational study of decitabine treatment in Korean patients with myelodysplastic syndrome. Haematologica 2011;96:1441-7.
9. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24.
10. Li MM, Datto M, Duncavage EJ, Kulkarni S, Linderman NI, Roy S, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: A joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 2017;19:4-23.

RESEARCH FUNDING

This study was funded by a National Research Foundation of Korea (NRF) grant by the Korean government (MSIT) (NRF-2017 R1A2A1A17069780).

ORCID

Jikyo Lee https://orcid.org/0000-0002-7988-312X
Sung Min Kim https://orcid.org/0000-0001-7937-4547
Soonok Kim https://orcid.org/0000-0001-6302-5860
Jiwon Yun https://orcid.org/0000-0002-6306-3944
Dajeong Jeong https://orcid.org/0000-0003-4848-668X
Young Eun Lee https://orcid.org/0000-0002-4439-2283
Eun-Youn Roh https://orcid.org/0000-0002-1787-7509
Dong Soon Lee https://orcid.org/0000-0002-7085-9270

https://doi.org/10.3343/alm.2022.42.5.590
www.annlabmed.org 595
11. Bejar R, Papaemmanuil E, Haferlach T, Garcia-Manero G, Maciejewski JP, Sekeres MA, et al. Somatic mutations in MDS patients are associated with clinical features and predict prognosis independent of the IPSS-R: analysis of combined datasets from the International Working Group for Prognosis in MDS-Molecular Committee. Blood 2015;126:907.
12. Ripperger T, Hofmann W, Koch JC, Shirneshan K, Haase D, Wulf G, et al. MDS1 and EVI1 complex locus (MECOM): a novel candidate gene for hereditary hematological malignancies. Haematologica 2018;103:e55-8.
13. Lee S, Seo J, Park J, Nam JY, Choi A, Ignatius JS, et al. Korean Variant Archive (KOVA): a reference database of genetic variations in the Korean population. Sci Rep 2017;7:4287.
Case 1 (23 years/male)

Year	Event/Condition	Details
1994	BM/araC	MDS-EB1, in Stable Disease, Cellularity 21 - 30% with MEOM 9.9%
2015	s/p Prednisone, Osmethylene	MDS-EB1, in Stable Disease, Cellularity 21 - 30% with MEOM 9.9%
2016	s/p BuFluCy conditioning	1st alloPBSCT (from sister)
2017	Acute GvHD after DLI	s/p GvHD, Osteonecrosis, Thrombosis
2018	t-MDS EB-2, in Disease Progression	No evidence of BM of OSA Cell 15-40% Blast 5% 45,XY/47,XY(11q13),-7[8]
2019	t-MDS EB-2, in Disease Progression	Cell 10-20% Blast 5% 46,XY/20[3] MECOM 1.3%
2020	t-MDS EB-2, in Disease Progression	Cell 10-20% Blast 5% 46,XY/20[3] MECOM 1.3%

Case 2 (17 years/male)

Year	Event/Condition	Details
2015	BM/araC	MDS-EB1, in Stable Disease, Cellularity 21 - 30% with MEOM 9.9%
2016	s/p Prednisone, Osmethylene	MDS-EB1, in Stable Disease, Cellularity 21 - 30% with MEOM 9.9%
2017	s/p BuFluCy conditioning	1st alloPBSCT (from sister)
2018	t-MDS EB-2, in Disease Progression	No evidence of BM of OSA Cell 15-40% Blast 5% 45,XY/47,XY(11q13),-7[8]

Supplemental Data Figure S1. Progression timelines with patient information from BM, CBC, and cytogenetic analyses. Disease progression and treatments are presented in the timeline by year. CBC, hematologic diagnosis, and bone marrow blast counts are shown. The chromosomes and FISH results are described. The black rectangle indicates a patient’s death.

Abbreviations: M, male; F, female; BM, bone marrow; Cell, cellularity; CBC, complete blood count; APL, acute promyelocytic leukemia; AlloPBSTC, allogeneic peripheral blood stem cell transplantation; MCR, marrow complete remission; DLI, donor leukocyte infusion; GVHD, graft-versus-host disease; d/t, due to; CR, continuous remission; THRA, total hip replacement arthroplasty; VATS, video-assisted thoracic surgery; LAR, low anterior resection; Bu, busulfan; Flu, fludarabine; Cy, cyclophosphamide; ATG, antithymocyte globulin; PTCy, transplantation cyclophosphamide; ICE, ifosfamide, carboplatin, and etoposide; High-dose araC, high-dose cytarabine; FOLFOX, folinic acid, fluorouracil, and oxaliplatin; ATRA, all-trans-retinoic acid.

(Continued to the next page)
Case 3 (64 years/male)

At age of 64
Acute Promyelocytic Leukemia with t(15;17)(q22;q12); G61 96% Blast 32.2%
46,XY[15]/17q[24]/q23]{12}/46,XY[10]
PML-RARA 99% MECOM 0%
CBC 86-440-27

At age of 66
I-MDS
APL in CR
G61 10% and 41-60% Blast <5%
46,XY[3]/21p[20]/q22]{7}/46,XY[13]
MECOM 9%
CBC 117-2130-47
Dysmegakaryopoiesis

At age of 67
APL in CR
G61 78% Blast <5%
46,XY 3/21p[20]/q22]{7}/46,XY[13]
MECOM 9%
CBC 93-2500-72

At age of 68
AML in CR
G61 78% Blast <5%
46,XY 3/21p[20]/q22]{7}/46,XY[13]
MECOM 9%
CBC 134-7080-170
Dysmegakaryopoiesis

Supplemental Data Figure S1. Continued.
Supplemental Data Figure S2. Variant-calling strategy for somatic and germline variants. Evaluation of the multigene target sequencing results for somatic and germline variants from bioinformatics analyses to the interpretation of the variants.

Abbreviations: PBSCT, peripheral blood stem cell transplantation; ACMG, American College of Medical Genetics; HGMD, Human Gene Mutation Database; NCCN, National Comprehensive Cancer Network; SIFT, sorting intolerant from tolerant; CADD, combined annotation-dependent depletion.