Buckling analyses of carbon nanotube reinforced functionally graded composite cylindrical panels

Zhong-Tong Huang¹, Bin Lin², Shun-Qi Zhang¹,⁴, Ying-Shan Gao¹, and Lv-Sheng Lin²

¹ School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, P.R. China, zhangsq@shu.edu.com
² Zhejiang CHR Intelligent Equipment Co., Ltd., Jinyun 321404, P.R. China
³ State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, P.R. China

Abstract. This paper investigates the buckling analyses of carbon nanotube (CNT) reinforced composite cylindrical panels via a geometrically nonlinear finite element model with large rotations based on the first-order shear deformation (FOSD) hypothesis. Fully geometrically nonlinear strain-displacement relations and large rotation of shells are considered in the model. First, the proposed model is validated by a frequency analysis of a simply supported CNT reinforced composite cylindrical panel from an existing reference. Then, the model is applied to simulate the behaviors of carbon nanotube reinforced functionally graded (CNT-FG) composite cylindrical panels. The effects of curvature ratio, different buckling behaviors and four representative forms of CNT distributions are studied for their material performance comparatively.

1. Introduction
Recently, an advanced material known as carbon nanotube (CNT) has been drowned much attention for its excellent thermal, electrical and mechanical properties. Due to its high strength, stiffness and aspect ratio, and low density, the so-called “material for the 21st century” [1] poured into the new vigor for the investigation of composite structures. Hence, numerous researchers have reported a large number of analyses on physical and mechanical properties of composite structures with CNT.

In order to investigate the structural response of CNT composite cylindrical panels, some papers took the classical shell theory (CST) based on the Kirchhoff-Love assumption which neglects the transverse shear deformations[1], then the first-order shear deformation (FOSD) hypothesis was widely used. Fruitful dynamic behaviors of different CNT structures were obtained in the articles, see Dai et al.[7-10]. Zhang & Lei[2,6] investigated flexural strength and free vibration responses of CNT reinforced composites cylindrical panels based on the FOST using the mesh-free kp-Ritz method. They have also analyzed the free vibration of carbon nanotube (CNT) reinforced functionally graded rotating to reveal the influences of volume fraction of carbon nanotubes, edge-to-radius ratio and rotation speed on the frequency characteristics of cylindrical panels. But few references have mentioned geometrically nonlinear modeling. In thin-walled structures, it is easily undergoing larger displacement or rotations, which requires fully geometrically nonlinear with large rotation theory, but not simplified nonlinear theories.

Therefore, this paper developed a fully geometrically nonlinear model with large rotations for the nonlinear behavior analysis of the CNT-FG composite cylindrical panels. First the nonlinear model is
validated by a cylindrical panel. Then several simulation examples are presented to show the effects of nanotube volume fraction, the thickness of the panel and different representative forms of CNT distributions.

2. CNT reinforced composite panels

In the present article, the geometry of the CNT-FG composite cylindrical panel are presented in Figure 1, where “h” is the thickness of the panel, “R” is the radius , “β” is the angle, and “L” is the half length of the side along Θ1 direction, in the cylindrical coordinate.

![Figure 1. Geometry of the CNT-FG composite cylindrical panel](image-url)

In this paper, the CNTs are assumed to be aligned in axial direction and four representative forms of CNT distributions, namely uniform, V-shaped, O-shaped, and X-shaped distributions, denoted by U, V, O, X, respectively. The mathematical expression of the effective volume fractions of each type is as follow[3]:

\[
V_{\text{CNT}}^* = \frac{\omega_{\text{CNT}}}{\omega_{\text{CNT}} + (\frac{\rho_{\text{CNT}}}{\rho_m} - (\frac{\rho_{\text{CNT}}}{\rho_m})\omega_{\text{CNT}})}
\]

(2)

where

\[
V_{\text{CNT}}^* = \frac{\omega_{\text{CNT}}}{\omega_{\text{CNT}} + (\frac{\rho_{\text{CNT}}}{\rho_m} - (\frac{\rho_{\text{CNT}}}{\rho_m})\omega_{\text{CNT}})}
\]

(2)

in which \(V_{\text{CNT}}^* \) is the total volume fraction of CNT, \(\rho_{\text{CNT}} \) and \(\rho_m \) are the densities of the CNTs and the matrix, respectively, and \(\omega_{\text{CNT}} \) is the mass fraction of the CNT.

The effective Young’s modulus, shear modulus and other effective material properties can be expressed as[3]:

\[
E_{11} = \eta_1 V_{\text{CNT}}^* E_{11}^\text{CNT} + V_m E_m
\]

(3)

\[
\frac{\eta_2}{E_{22}} = \frac{V_{\text{CNT}}^*}{E_{22}^\text{CNT}} + \frac{V_m}{E_m}
\]

(4)

\[
\frac{\eta_3}{G_{12}} = \frac{V_{\text{CNT}}^*}{G_{12}^\text{CNT}} + \frac{V_m}{G_m}
\]

(5)
where E_{11}, E_{22} and G_{12} are the effective Young’s moduli of composite along and transverse direction and the effective shear modulus, respectively. E_{11}^{CNT}, E_{22}^{CNT} and G_{12}^{CNT} are the Young’s moduli and shear modulus of the CNT, E^m and G^m are the corresponding properties of the matrix, η_i (i=1,2,3) are the CNT efficiency parameters, V_m and V_{CNT} are the matrix and CNT volume fractions.

2.1 Geometrically nonlinear model

The Green-Lagrange strain tensors of the in-plane terms, the transverse shear and transverse normal terms, which include full geometric nonlinearities based on the FOSD hypothesis can be obtained as

$$
\varepsilon_{\alpha\beta} = \epsilon_{\alpha\beta} + \Theta^3 \varepsilon_{\alpha\beta} + \left(\Theta^3 \right)^2 \varepsilon_{\alpha\beta}
$$

(6)

$$
\varepsilon_{\alpha3} = \varepsilon_{\alpha3} + \Theta^3 \varepsilon_{\alpha3}
$$

(7)

$$
\varepsilon_{33} = \varepsilon_{33}
$$

(8)

Here, the strain terms have their own physical meanings, the in-plane longitudinal strains (ε_{11}, ε_{22}), the in-plane shear strains (ε_{12}, ε_{21}), the bending strains (ε_{11}, ε_{22}), the torsional strains (ε_{12}, ε_{21}), the transverse shear strains (ε_{13}, ε_{23}), and the transverse normal strain (ε_{33})[11].

With the assumption of an inextensible shell director, the transverse normal strain will be $\varepsilon_{33} = 0$, and that will lead to $\varepsilon_{\alpha3} = 0$, the strain components with six parameters can be expressed as[5]

$$
2 \varepsilon_{\alpha\beta} = \nu_{\alpha,\beta} + \nu_{\beta,\alpha} + 3 \nu_{3,\alpha} \nu_{3,\beta} + \nu_\delta, \alpha \nu_\delta, \beta,
$$

(9)

$$
2 \varepsilon_{\alpha\beta} = \nu_{\alpha,\beta} + \nu_{\beta,\alpha} + 3 \nu_{3,\alpha} \nu_{3,\beta} + \nu_\delta, \alpha \nu_\delta, \beta + \nu_\delta, \alpha \nu_\delta, \beta,
$$

(10)

$$
2 \varepsilon_{\alpha3} = \nu_{\alpha} + \nu_{3,\alpha} + \nu_\delta, \alpha \nu_\delta + \nu_{3,\alpha} \nu_{3}.
$$

(12)

with

$$
\nu_{\alpha} = \nu_{\alpha} + \Theta^3 \nu_{\alpha},
$$

(13)

$$
\nu_{3} = \nu_{3} + \Theta^3 \nu_{3}.
$$

(14)

where $0 \nu_{\alpha}$ and $0 \nu_{3}$ denote the translational displacements at the mid-surface, $1 \nu_{\alpha}$ and $1 \nu_{3}$ represent the generalized rotational parameters, Θ^3 is the distance from the mid surface. The lower Greek symbols α can be 1 or 2, $1 \nu_{3}$ is usually neglected under the condition of the small and moderate rotations.
3. Numerical results and discussions

In the present analysis, the properties of the CNT at 300K and the matrix materials are considered as Table 1. It is assumed that $G_{12}^{CNT} = G_{13}^{CNT} = G_{23}^{CNT}$, and in the non-dimensional central deflection, $\bar{w}_{\text{MAX}} = W_{\text{MAX}} / h$, in the formula, W_{MAX} is the maximum central deflection.

Table 1. Material properties of the CNT at 300K

	CNT	Matrix
Y_{11}^{CNT}	5646.6 GPa	$Y^m = 3.52$ GPa
Y_{22}^{CNT}	7080.0 GPa	$\rho^m = 1150$ kg / m3
G_{12}^{CNT}	1945.5 GPa	$\nu^m = 0.34$
ρ^{CNT}	1400 kg / m3	
ν_{12}^{CNT}	0.175	

3.1 Linear simulation

In this part, the non-dimensional central deflection of the four type CNT-FG composite cylindrical panel are presented in the Table 2 for different curvature ratio with all edges simply supported (SSSS) supported condition under 1MPa surface force, and the parameters are $R=1$m, $L=0.5$m, $\beta=0.05$rad, $h=0.002$m.

Table 2. Non-dimensional central deflection of simply supported cylindrical panel for different curvature ratio

Curvature ratio	Type	Present	Ref[3]	Deviation
5	U	11.30	11.47	-1.48%
	V	16.00	16.154	-0.95%
	O	19.80	21.048	-5.93%
	X	7.95	7.906	0.56%
10	U	11.30	11.47	-1.48%
	V	16.00	16.154	-0.95%
	O	19.80	21.048	-5.93%
	X	7.95	7.906	0.56%
20	U	11.50	11.583	-0.72%
	V	16.30	16.481	-2.28%
	O	20.30	21.527	-5.70%
	X	8.05	7.947	0.63%
50	U	11.55	11.615	-0.56%
	V	16.35	16.59	-3.02%
The example shows that the non-dimensional central deflection with different forms of CNT distribution of the simply supported cylindrical panel does not change obviously as the curvature ratio increases. The O-shaped distribution type has the largest displacement, and the X-shaped distribution type is the most stable one. As shown in the table, perfect agreement is achieved between the results presented and those of Ref [3]. Hence, the present model is accurate enough to be employed in the following simulation.

3.2 Buckling analysis of CNT-FG shells

In this part, the non-dimensional central deflections of the four types of CNT-FG composite cylindrical panels are presented in Figure 2, using different theories abbreviated as RVK5, MRT5, LRT5, and LRT56[4] with two straight edges hinged and the two curved ones free (HFHF) support condition under 2500N concentrated force, and the parameters are as follow: $R=1m$, $L=0.16m$, $\beta=0.1rad$, $h=0.002m$.

![Figure 2](image_url)

Figure 2. Non-dimensional central deflection of simply supported cylindrical panel for (a) different theories and (b) different types of CNT distributions.

Fig 2 (a) shows that using different theories lead to similar outputs, that means the model does not have a large rotation. And Fig 2 (b) shows different buckling behaviors of four forms of CNT distributions based on the same theory, the trend of deformation is the same as in previous examples that the X-shaped distribution type has the largest stiffness, and the O-shaped distribution type is on the contrary.

Conclusions

In this paper, the behavior of carbon nanotube reinforced functionally graded (CNT-FG) composite cylindrical panels of four representative forms of CNT distributions has been analyzed using the geometrically nonlinear model. The model is verified through the comparison to the reference and the effects of curvature ratio and CNT distribution are shown in the linear simulation, then by computing the responses for the different theories and distributions, the nonlinear behaviors of model are presented. From the results it is obvious that curvature ratio does not affect much on the non-dimensional central deflection and the theories has little effect on the final displacement, but the CNT distributions make a difference, the X-shaped distribution type has larger stiffness compared to other three types.
Acknowledgement

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11972020,11602193), the Opening Fund of the State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China (Grant No. GZ1709), the Nature Science Foundation of Shaanxi Province (Grant No. 2017JQ1027), and the Opening Fund of the State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, China (Grant No. MCMS-0517G01).

References

[1] Tan N. Nguyen and Chien H. Thai 2018 NURBS-based analyses of functionally graded carbon nanotube-reinforced composite shells, Composite Structures 203(2018)349–360.

[2] L.W. Zhang, Z.X. Lei: Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels, Composite Structures 111 (2014) 205–212.

[3] K. Mehar and S. Panda 2018 Thermoeelastic flexural analysis of FG-CNT doubly curved shell panel, Aircraft Engineering and Aerospace Technology, Vol. 90 Issue: 1(2018), pp.11-23.

[4] S Q Zhang and R Schmidt 2013 Large rotation FE transient analysis of piezolaminated thin-walled smart structure, SMART MATERIALS AND STRUCTURE 22(2013) 105025(8pp).

[5] S.Q.Zhang, R.Schmidt 2014 Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations. Composite Structures 112(2014)345-357.

[6] Z.X. Lei, L.W. Zhang, K.M. 2015 Liew: Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method. Composites Part B 77 (2015) 291e303.

[7] Dai HL and Wang X 2006 Non-Linear dynamic response of a single wall carbon nanotube subjected to radial impulse. Archive of Applied Mechanics 76(3-4), 145-158.

[8] Rao YN and Dai HL’ 2017 Micromechanics-based thermo-viscoelastic properties prediction of fiber reinforced polymers with graded interphases and slightly weakened interfaces. Composite Structures 168, 440-455.

[9] Dai HL’, Dai T, Luo WF 2017 Thermoviscoelastic behavior of a short fiber-reinforced polymer hollow cylinder accounting for porosity. Journal of Composite Materials 51(19), 2779-2791.

[10] He Q, Pang J, Dai HL, Xu XM, Li XQ 2019 Thermo-electro-elastic behavior of a carbon nanotubes bundles-reinforced electro-active polymer hollow cylinder considering hierarchical structure of the bundles. Journal of Reinforced Plastics and Composites 38(23-24), 1089-1107.

[11] Zhang S.Q. 2014 Nonlinear FE simulation and active vibration control of piezoelectric laminated thin-walled smart structures[D]. Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen.