Naturally occurring hotspot cancer mutations in Gaα13 promote oncogenic signaling

Marcin Maziarz1, Anthony Federico2, Jingyi Zhao1, Lorena Dujmusic1, Zhiming Zhao1, Stefano Monti2, Xaralabos Varelas1, and Mikel Garcia-Marcos1,∗

From the 1Department of Biochemistry and the 2Section of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA

Heterotrimeric G-proteins are critical transducers of signal-transduction pathways and transcriptional activity. We further showed that this mechanism is TAZ-dependent (TEAD) and MRTF-A/B-dependent (SRE.L).

Heterotrimeric G-proteins are signaling switches broadly divided into four families based on the sequence and functional similarity of their Ga subunits: Ga, Gα11, Gα13, and Gα12/13. Artificial mutations that activate Ga subunits of each of these families have long been known to induce oncogenic transformation in experimental systems. With the advent of next-generation sequencing, activating hotspot mutations in Ga, Gα11, or Gα13 proteins have also been identified in patient tumor samples. In contrast, patient tumor-associated Gα12/13 mutations characterized to date lead to inactivation rather than activation. By using bioinformatic pathway analysis and signaling assays, here we identified cancer-associated hotspot mutations in Arg-200 of Ga13 (encoded by GNA13) as potent activators of oncogenic signaling. First, we found that components of a Gα12/13-dependent signaling cascade that culminates in activation of the Hippo pathway effectors YAP and TAZ is frequently altered in bladder cancer. Up-regulation of this signaling cascade correlates with increased YAP/TAZ activation transcriptional signatures in this cancer type. Among the Gα12/13 pathway alterations were mutations in Arg-200 of Ga13, which we validated to promote YAP/TAZ-dependent (TEAD) and MRTF-A/B-dependent (SRE.L) transcriptional activity. We further showed that this mechanism relies on the same RhoGEF-RhoGTPase cascade components that are up-regulated in bladder cancers. Moreover, Gaα13 Arg-200 mutants induced oncogenic transformation in vitro as determined by focus formation assays. In summary, our findings on Ga13 mutants establish that naturally occurring hotspot mutations in Ga subunits of any of the four families of heterotrimeric G-proteins are putative cancer drivers.

Heterotrimeric G-proteins are critical transducers of signaling triggered by a large family of G-protein–coupled receptors (GPCRs). Essentially, GPCRs promote GTP loading on the α-subunits of G-proteins (1, 2), which triggers signaling downstream. Heterotrimeric G-proteins are composed of a nucleotide-binding Ga subunit and an obligatory Gβγ dimer, and they are classified into four families based on the nature of the Ga subunits. These four families are Ga, Gα11, Gα13, and Gα12/13, and Ga subunits of each one of them have distinct actions on specific effectors. For example, Ga members stimulate adenyl cyclase activity, whereas Gα11 family members tend to inhibit it; Gα13 members stimulate phospholipase C enzymes and a subgroup of RhoGEFs; and Gα12/13 members stimulate a different subgroup of RhoGEFs (3, 4). Signaling is terminated upon GTP hydrolysis mediated by the intrinsic GTPase of Ga subunits.

The role of heterotrimeric G-proteins in cancer-related signaling has been documented for decades. Early studies identified cancer-associated mutations in Ga that disrupted its GTPase activity, rendering the G-protein constitutively active (5). This seminal finding spurred a wave of studies exploring whether analogous mutations introduced artificially in other Ga subunits would also promote their ability to induce oncogenic transformation. It was found that GTPase-deficient mutants of most, if not all, Ga subunits tested led to oncogenic transformation in vitro, regardless of the G-protein family they belonged to. For example, Gaα12, Gaαω, and Gaα (Gα11 family); Gaα (Gα11 family); and Gaα2 and Gaα3 (Gα12/13 family), in addition to Gaα (Gα11 family), all promoted oncogenic transformation as assessed by in vitro assays using fibroblasts (6–13). In most cases, transformation in vitro correlated well with tumor growth in vivo using mouse xenografts. Thus, one theme emerging from these studies was that enhancement of GPCR/G-protein signaling tends to favor oncogenicity.

Despite these initial observations and the identification of some mutations in G-proteins in tumors (5, 14), only with the recent advent of deep-sequencing techniques has it become obvious that dysregulation of the GPCR/G-protein signaling axis in cancer is highly prevalent (15–17). The mutational landscape of GPCR/G-protein signaling components in cancer supports the theme that G-protein hyperactivation in cancer tends to be pro-oncogenic. There are many examples of GPCRs that are either overexpressed or contain activating mutations (15, 17–20), and negative regulators of G-protein activity have also been shown to bear loss-of-function mutations (21). As for G-proteins themselves, it is now known that hyperactive G-protein mutants can be very frequent in certain types of cancers. The most striking example is uveal melanoma, in which ~90% of tumors contain activating mutations in Ga (encoded by GNAQ) or Ga11 (GNA11) (22, 23). Similarly, activating mutations in Ga (GNAS) can be as frequent as 70% in certain subtypes of pancreatic ductal carcinomas (24, 25), and activating mutations in Gaα2 can be as frequent as 24% in epithelioid intestinal T-cell lymphomas (26). Thus, for representative members of three of four families of G-proteins (Ga11, Gaω, and Gaα2) the oncogenic activity in vitro caused by artificially introduced mutations has found a counterpart in prevalent mutations in cancer. Interestingly, findings so far suggest that the...
remaining family of G-proteins (G\(_{12/13}\)) might be an exception to this trend. For example, mutations in G\(_{\alpha13}\) in some types of lymphoma are frequent, but they lead to inactivation rather than activation (27, 28). This suggests that, at least in these lymphomas, G\(_{\alpha13}\) activity is tumor-suppressive. This is the opposite of the oncogene function previously suggested from experiments in vitro with a constitutively active artificial G\(_{\alpha13}\) mutation (7, 9).

Activation of G\(_{\alpha12}\) or G\(_{\alpha13}\) proteins leads to activation of RhoA-dependent transcriptional programs, including those mediated by the activation of the Hippo pathway effectors YAP and TAZ. The cascade of events involves the direct activation of a subgroup of RhoGEFs, composed of p115-RhoGEF, PDZ-RhoGEF, and LARG, by active, GTP-loaded G\(_{\alpha}\) subunits of G\(_{12/13}\) proteins, which in turn activates RhoA, RhoB, and RhoC GTPases (29). Through mechanisms that involve the remodeling of the actin cytoskeleton, Rho GTPases induce transcriptional responses that include those regulated by YAP/TAZ, which serve as co-factors for the TEA domain–containing transcription factor family (TEADs), and via myocardin-related transcription factors A and B (MRTF-A/B), which serve as co-activators for the transcriptional factor SRF (30–36).

The effect of hotspot mutations in G\(_{\alpha13}\) identified in this cancer type. We found that mutations in the Arg-200 of G\(_{\alpha13}\), a residue required to hydrolyze GTP, lead to activation of YAP/TAZ-dependent and MRTF-A/B-dependent transcription through a RhoGEF–Rho GTPase cascade and that they promote oncogenic transformation in vitro. This implies that naturally occurring hotspot mutations in G\(_{\alpha}\) subunits of any of the four families of heterotrimeric G-proteins are putative cancer drivers.

Results and discussion

G\(_{12/13}\) pathway up-regulation correlates with increased YAP/TAZ transcriptional activity in bladder cancer

We mined data from the Cancer Genome Atlas (TCGA) through cBioportal to explore genomic alterations in components of a G\(_{12/13}\)-YAP/TAZ pathway (Fig. 1A). More specifically, we queried the G-proteins G\(_{\alpha12}\) (GNA12) and G\(_{\alpha13}\) (GNA13); the RhoGEFs p115-RhoGEF (ARHGEF1), PDZ-RhoGEF (ARHGEF11), and LARG (ARHGEF12); the Rho GTPases RhoA (RHOA), RhoB (RHOB), and RhoC (RHOC); and the Hippo pathway effectors YAP (YAP1) and TAZ (WWTR1). We found that these genes were altered in a large portion (~40%) of the TCGA bladder cancers (TCGA-BLCA) (Fig. 1B). The alterations appeared to be largely mutually exclusive and trending toward up-regulation. For example, both heterotrimeric G-proteins, two of the three RhoGEFs, and both Hippo effectors displayed amplifications as the dominant feature.
(RHOA) and RhoB (RHOB), the main feature was that they were mutated, and several of these mutations are classified as putative drivers in cBioportal (38). Although not all RhoA/RhoB mutations have been characterized, some of them have been previously proposed to lead to signaling activation, like Ala-161 mutations in RhoA (39) or the E172K mutation in RhoB (40). Thus, although LARG (ARHGEF12) and RhoC (RHOC) are exceptions to the overall trend, these observations suggest that the G12/13-YAP/TAZ pathway might be up-regulated in bladder cancer.

Motivated by these observations, we carried out a bioinformatic analysis of gene expression data to establish a potential correlation between up-regulation of the G12/13 pathway and YAP/TAZ activation. For this, we turned to a previously characterized 24-gene signature that depends on YAP/TAZ (41) and analyzed its relationship to the expression levels of the rest of the upstream components of the proposed G12/13 pathway. We used single-sample gene set enrichment analysis (ssGSEA) to quantify relative enrichment of each pathway across over 400 primary tumors in the TCGA-BLCA RNA-Seq data set. We found a strong correlation between the activation scores of the G12/13 Pathway and the activation scores for YAP/TAZ (Fig. 1C). We then tested the observed correlation coefficient against a null distribution of correlations between ssGSEA-quantified activity of the G12/13 pathway and 10,000 random 24-gene signatures, resulting in a significant p value of 1e−4 (Fig. 1D).

Taken together, these observations indicate that up-regulation of the G12/13 pathway in bladder cancer correlates with increased transcriptional output of the downstream effectors YAP/TAZ.

Gα13 Arg-200 mutants induce YAP/TAZ activity via a RhoGEF–Rho GTPase axis

Although overexpression of WT Gα13 family Gα proteins has been found before to be sufficient to promote transformation (7, 8), a recent study also found that the mutation frequency of GNA13 in the TCGA-BLCA data set is statistically higher than background mutation frequency (q = 0.007) (42). Moreover, the distribution of mutations across the sequence of Gα13 suggested a hotspot at Arg-200 (Fig. 2A). The presence of an arginine in this position is absolutely conserved across Gα subunits (Fig. 2A), and its mutation in several other Gα subunits leads to increased activity and favors oncopgenic transfiguration (5, 11, 13, 14). From studies in other Gα proteins, it has been found that this arginine is crucial for GTPase activity and that it cannot be replaced by other amino acids, even if they preserve the positive charge of the side chain like in the case of lysine (5, 43–45). Thus, we hypothesized that Gα13 Arg-200 mutations identified in bladder cancer would similarly induce the formation of an active G-protein that increases downstream signaling, including YAP/TAZ (Fig. 2B).

Because mutation of this arginine to any other residue is expected to have similar consequences (5, 43), we focused our efforts on characterizing Gα13 R200K and Gα13 R200G because these are the two mutants most frequently found in bladder cancer. Before assessing the impact of these mutants in cell signaling assays, we validated that they adopted an active conformation by using a well-validated assay that relies on protection from trypsin hydrolysis (Fig. S1) (44, 46). Next, we expressed Gα13 R200K and Gα13 R200G in HEK293T cells and assessed activation of YAP/TAZ using a TEAD reporter assay (Fig. 2C). We compared the effect of expressing these two mutants with that of Gα13 WT as well as with that of Gα13 Q226L, an artificial mutant previously shown to enhance downstream signaling including YAP/TAZ-dependent TEAD transcriptional activity (34, 37).

Whereas expression of Gα13 WT led to a modest increase of TEAD activity, expression of Gα13 R200K and Gα13 R200G led to a significantly larger increase comparable with that observed in cells expressing the control mutant Gα13 Q226L (Fig. 2C). To determine whether the observed increase in TEAD activity by Gα13 mutants was mediated by YAP/TAZ, we knocked down both proteins simultaneously using a previously validated siRNA sequence (47, 48). As expected, depletion of YAP and TAZ led to a large suppression of TEAD activation by Gα13 R200K, R200G, or Q226L (Fig. 2D). To further map the cascade of events leading to YAP/TAZ activation by Gα13 mutants, we blocked the pathway that putatively operates in bladder cancer at different levels. First, inhibition of the Rho GTPases RhoA, RhoB, and RhoC by expression of Clostridium botulinum C3 toxin efficiently suppressed TEAD activation by Gα13 R200K, R200G, or Q226L (Fig. 2E). Then we tested the effect of a fragment of p115-RhoGEF that works as a dominant-negative by preventing the binding of active Gα13 to its target RhoGEFs that operate upstream of Rho GTPases in the pathway (49). Expression of this dominant-negative construct, consisting of p115-RhoGEF’s RGS homology (RH) domain (p115RH), but not a control construct, inhibited TEAD activation by Gα13 R200K, R200G, or Q226L (Fig. 2F). To further validate the specificity of these manipulations, we tested their impact on Gα13-mediated activation of another transcriptional output not controlled by YAP/TAZ but still dependent on Rho GTPase activation (i.e., the transcriptional activation of SRF via MRTF-A/B) (Fig. 2B).

Finally, we sought to determine whether the Gα13 hotspot mutations in Arg-200 found in bladder cancer are bona fide activating mutations that lead to induction of YAP/TAZ-dependent transcription via a RhoGEF–Rho GTPase cascade.

Gα13 Arg-200 mutants induce oncogenic transformation in vitro

Finally, we sought to determine whether the Gα13 hotspot mutations in Arg-200 described above would be sufficient to promote oncopgenic transformation in vitro. For this, we used focus formation assays with NIH3T3 cells. This widely used system is particularly well-suited to analyze the putative oncopgenic activity of Gα13 Arg-200 mutants because it has been used for the vast majority of Gα oncogenic mutants reported to date as a good proxy for tumor growth in mice, including for the oncogenic activity of artificial activating mutations introduced in Gα13 (7). First, we assessed whether Gα13 R200K and
Gα13 R200G mutants also lead to increased signaling activity in NIH3T3 cells. Surprisingly, we found that whereas Gα13 R200K and Gα13 R200G led to robust increases in the MRTF-A/B–dependent SRE.L reporter, they had no significant effect on the activity of the YAP-TAZ–dependent TEAD reporter (Fig. S2). These results confirm that Gα13 R200K and Gα13 R200G behave as active G-proteins but that the downstream signaling consequences are cell type–specific. Next, we generated...
NIH3T3 cell lines stably expressing Gα13 WT, Gα13 R200K, and Gα13 R200G at comparable levels by lentiviral transduction and selection with the appropriate agents (Fig. 3A). Both Gα13 R200K and Gα13 R200G induced the formation of numerous foci, whereas Gα13 WT only had a modest effect (Fig. 3, B and C).

Conclusions
Recent reports have suggested that mutations in Gα13 are putative oncogene drivers in bladder cancer based on bioinformatic predictions (17, 42, 50), but no other experimental evidence to support the predictions has been provided. The results presented here provide the missing experimental evidence that supports the idea of Gα13 hotspot mutations as putative drivers in bladder cancer and suggest that pharmacological blockade of the pathway activated downstream might be a viable therapeutic avenue. Moreover, our findings on Gα13 mutants establish that naturally occurring hotspot mutations in Gα subunits of any of the four families of heterotrimeric G-proteins (i.e. in Gαs, Gαi/o, Gαq/11, and, now, Gα12/13) are putative cancer drivers, thereby providing definitive confirmation of a long-held tenet.

Experimental procedures
Data processing
Data for the oncprint in Fig. 1B were obtained through cbioportal (38) by querying the term GNA13 on March 23rd, 2020 in the data set “Bladder Cancer (TCGA, Cell 2017).” For the lollipop plot in Fig. 2A, data were obtained from all of the data sets classified as Bladder Urothelial Carcinoma in cbioportal. TCGA-BLCA RNA-Seq count matrix (generated with STAR 2-Pass and HTSeq-Counts) and available metadata were downloaded through the Genomic Data Commons gdc-client (51, 52). We performed a variance-stabilizing transformation of the data using the R package DESeq2 (version 1.23.10) followed by a log transformation (53).

Pathway-level correlation analysis
Pathway activity in TCGA-BLCA was measured for G12/13 and YAP/TAZ signatures—represented by key selected genes (for G12/13: GNA12, GNA13, ARHGEF1, ARHGEF11, ARHGEF12, RHOA, RHOB, and RHOC; for YAP/TAZ: YAP1, WWTR1, MYOF, AMOTL2, LATS2, CTGF, CYR61, ANKR1D1, ASAPI1, AXL, F3, IGFBP3, CRIMI, FJX1, FOXF2, GADD45A, CCD80, NTSE, DOCK5, PTPN14, ARHGEF17, NLIAK2, ACCELERATED COMMUNICATION: GNA13 Arg-200 oncogenic mutants

Figure 3. Gα13 Arg-200 mutants induce NIH3T3 cell transformation in vitro. A, generation of NIH3T3 cell lines stably expressing the indicated Gα13 proteins. Lentiviral particles for the expression of Gα13 were generated in HEK293T cells and used to transduce NIH3T3 cells, followed by antibiotic selection. Lysates of each one of the cell lines were immunoblotted as indicated. Images were generated by splicing lanes from the same membrane, and the vertical dotted line indicates the position of the boundary between the two segments that were merged. B and C, Gα13 Arg-200 mutants promote focus formation in NIH3T3 cells more efficiently than Gα13 WT. Cells were seeded on plates and stained with crystal violet 10 days later. Images of a representative experiment are shown in B, whereas C shows the quantification of foci. Results are mean ± S.E. (error bars), n = 6, **, p < 0.01; ***p < 0.001; n.s., not significant, analysis of variance with Tukey post hoc test.

Figure 2. Hotspot mutations in Gα13 Arg-200 cause constitutive G-protein activation and lead to enhanced YAP/TAZ-dependent and MRTF-A/B-dependent transcription. A, top, lollipop plot of Gα13 residues mutated in bladder cancer. Bottom, alignment of Gα switch I region showing in red the fully conserved arginine that corresponds to Gα13 Arg-200. B, diagram of a Gα12/13 signaling cascade culminating in the activation of transcriptional regulators and specific luciferase-based reporters used to measure their activity. Manipulations implemented in other panels of this figure to inhibit specific steps of the pathway are indicated in red. C, Gα13 Arg-200 mutants activate YAP/TAZ-dependent transcription. HEK293T cells were transfected with plasmids for the expression of the indicated Gα13 constructs and a plasmid for the expression of mCherry-p115RhoG(TK) or mCherry as negative control. TEAD reporter or SREL reporter activity was determined as described under “Experimental procedures.” Results are mean ± S.E. (error bars), n = 4, *, p < 0.05; **, p < 0.01; ***p < 0.001, n.s., not significant, Student’s t test. D and G, YAP/TAZ depletion abolishes TEAD reporter (D) but not SREL reporter (G) activation caused by Gα13 Arg-200 mutants. HEK293T cells were transfected with plasmids for the expression of the indicated Gα13 constructs and with the indicated siRNAs, and TEAD reporter or SREL reporter activity was determined as described under “Experimental procedures.” Results are mean ± S.E., n = 3, *, p < 0.05; **, p < 0.01; ***p < 0.001, n.s., not significant, Student’s t test. E and H, Rho GTPase blockade abolishes TEAD reporter (E) and SREL reporter (H) activation caused by Gα13 Arg-200 mutants. HEK293T cells were transfected with plasmids for the expression of the indicated Gα13 constructs with or without a plasmid for the expression of C3 toxin. TEAD reporter or SREL reporter activity was determined as described under “Experimental procedures.” Results are mean ± S.E., n = 3–4, *, p < 0.05; **, p < 0.01; ***p < 0.001, Student’s t test. F and I, blocking Gα13-mediated activation of RhoGEFs with a dominant-negative construct (p115RhoG(TK)) inhibits TEAD reporter (F) and SREL reporter (I) activation caused by Gα13 Arg-200 mutants. HEK293T cells were transfected with plasmids for the expression of the indicated Gα13 constructs and a plasmid for the expression of mCherry-p115RhoG(TK) or mCherry as negative control. TEAD reporter or SREL reporter activity was determined as described under “Experimental procedures.” Results are mean ± S.E., n = 3–4, *, p < 0.05; **, p < 0.01; ***p < 0.001, Student’s t test. For all panels showing reporter activation results, an immunoblot of lysates of cells used in one of the experiments is shown below the graph.
ACCELERATED COMMUNICATION: GNA13 Arg-200 oncogenic mutants

TGFB2, and RBMS3)—through gene set variation analysis using the ssGSEA method and a Gaussian kernel from the R package GSVA (version 1.34.0) (54). We then measured the Pearson correlation between the activities of each pathway across all primary tumors. We further tested the significance of the observed correlation coefficient by comparing it with a null distribution generated through bootstrapping 10,000 random 24-gene signatures and measuring the correlation of their ssGSEA-quantified activity with the G12/13 pathway.

Plasmid constructs and siRNAs

pGL3b-8xGTIIC-luciferase (TEAD reporter) (55) was from Addgene (catalog no. 34615). pGL3-SRE.L (56) was a gift from Richard Neubig (Michigan State University), pCMV-Beta (Clontech, 631719) was a gift from Matthew Layne (Boston University). Plasmid pCS2-Nanoluc encoding nanoluciferase driven by the cytomegalovirus promoter was a gift from Daniel Cifuentes (Boston University). pcDNA3.1-Giel Cifuentes (Boston University). pcDNA3.1-G was driven by the cytomegalovirus promoter was a gift from Dan-...programming were manually counted in the whole plate.

Immunoblotting

Cell pellets were lysed and immunoblotted as described previously (58) using the following antibodies: GFP (1:1,000; Clon-...subject to Protein Data Bank terms and conditions (http://pdb.org/). The secondary antibodies were goat anti-rabbit Alexa Fluor 680 (1:1,000; Life Technologies A21077), goat anti-mouse Alexa Fluor 680 (1:1,000; Life Technologies A28183), goat anti-mouse IRDye 800 (1:10,000; LI-COR 926-32210), and goat anti-rabbit IRDye 800 (1:10,000; LI-COR 926-32211).

Data availability

All data are contained in the article except the raw data used for the genomics analysis, which corresponds to the Cancer Genome Atlas data set named TCGA-BLCA and was accessed and/or downloaded directly from cBioPortal or Genomic Data Commons as indicated under “Experimental procedures.”

Author contributions—M. M., A. F., and M. G.-M. formal analysis; M. M., A. F., J. Z., L. D., and Z. Z. investigation; M. M. and M. G.-M. writing-original draft; M. M. and M. G.-M. writing-review and editing; A. F. data curation; A. F. and M. G.-M. visualization; S. M., X. V., and M. G.-M. supervision; X. V. and M. G.-M. funding acquisition; M. G.-M. conceptualization; M. G.-M. project administration.

Funding and additional information—This work was primarily supported by National Institutes of Health Grant R01GM130120 (to M. G.-M.). M. M. was supported by American Cancer Society Post-doctoral Fellowship PF-19-084-01-CDD. X. V. was supported by National Institutes of Health Grant R01HL12439 and American Cancer Society Research Scholar Grant RSG-17-138-01-CSM. The content is solely the responsibility of the authors and does not
ACCELERATED COMMUNICATION: GNA13 Arg-200 oncogenic mutants

References

1. Oldham, W. M., and Hamm, H. E. (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. 9, 60–71 CrossRef Medline
2. Gilman, A. G. (1987) G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649 CrossRef Medline
3. Neves, S. R., Ram, P. T., and Iyengar, R. (2002) G protein pathways. Science 296, 1638–1639 CrossRef Medline
4. Dorsam, R. T., and Gutkind, J. S. (2007) G protein-coupled receptors and cancer. Nat. Rev. Cancer 7, 79–94 CrossRef Medline
5. Landis, C. A., Masters, S. B., Spada, A., Pace, A. M., Bourne, H. R., and Valiunas, V. (1989) GTAPase inhibiting mutations activate the α chain of Gi and stimulate adenyl cyclase in human pituitary tumours. Nature 340, 692–696 CrossRef Medline
6. Kalinec, G., Nazarali, A. J., Hermouet, S., Xu, N., and Gutkind, J. S. (1992) Mutated α subunits of the G13 protein induce malignant transformation in NIH 3T3 cells. Mol. Cell. Biol. 12, 4687–4693 CrossRef Medline
7. Xu, N., Vynyov-Yasenetskaia, T., and Gutkind, J. S. (1994) Potent transforming activity of the G13 α subunit defines a novel family of oncogenes. Biochem. Biophys. Res. Commun. 201, 603–609 CrossRef Medline
8. Xu, N., Bradley, L., Ambdukar, I., and Gutkind, J. S. (1993) A mutant α subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. Proc. Natl. Acad. Sci. U. S. A. 90, 6741–6745 CrossRef Medline
9. Vynyov-Yasenetskaia, T. A., Pace, A. M., and Bourne, H. R. (1994) Mutant α subunits of G12 and G13 proteins induce neoplastic transformation of Rat-1 fibroblasts. Oncogene 9, 2559–2565 Medline
10. Wong, Y. H., Chan, J. S., Yung, L. Y., and Bourne, H. R. (1995) Mutant α subunit of Gβg2 swaps with NIH 3T3 cells. Oncogene 10, 1927–1933 Medline
11. Pace, A. M., Wong, Y. H., and Bourne, H. R. (1991) A mutant α subunit of G12 induces neoplastic transformation of Rat-1 cells. Proc. Natl. Acad. Sci. U. S. A. 88, 7031–7035 CrossRef Medline
12. Ram, P. T., Hovarth, C. M., and Iyengar, R. (2000) Stat3-mediated transformation of NIH-3T3 cells by the constitutively active Q205L Gαs protein. Science 287, 142–144 CrossRef Medline
13. Gupta, S. K., Gallego, C., Lowndes, J. M., Pleiman, C. M., Sable, C., Eisfelder, B. I., and Johnson, G. L. (1992) Analysis of the fibroblast transformation potential of GTAPase-deficient Gα2 oncogenes. Mol. Cell. Biol. 12, 190–197 CrossRef Medline
14. Lyons, J., Landis, C. A., Harsh, G., Vallar, L., Grünewald, K., Feichtinger, H., Duh, Q. Y., Clark, O. H., Kawasaki, E., and Bourne, H. R., and (1990) Two G protein oncogenes in human endocrine tumours. Science 249, 655–659 CrossRef Medline
15. O'Hare, M., Vázquez-Prado, J., Kuferova, I., Staviski, E. W., Handel, T. M., Seshagiri, S., and Gutkind, J. S. (2013) The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat. Rev. Cancer 13, 412–424 CrossRef Medline
16. Kan, Z., Jaiswal, B. S., Stinson, J., Janakiraman, V., Bhatt, D., Stern, H. M., Yue, P., Haverty, P. M., Bourgon, R., Zheng, J., Moorhead, M., Chaudhuri, S., Tomsho, L. P., Peters, B. A., Pujara, K., et al. (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 CrossRef Medline
17. Wu, V., Yeerna, H., Nohata, N., Chiu, J., Harismendy, O., Raimondi, F., Inoue, A., Russell, R. B., Tamayo, P., and Gutkind, J. S. (2019) Illuminating the Onco-GPCRome: novel G protein-coupled receptor-driven oncogenic networks and targets for cancer immunotherapy. J. Biol. Chem. 294, 11062–11086 CrossRef Medline
18. Wright, S. C., Kozielewicz, P., Kowalski-Jahn, M., Petersen, J., Bowin, C. F., Slodkowicz, G., Martí-Solano, M., Rodriguez, D., Hot, B., Okashah, N., Straková, K., Valnohová, J., Babu, M. M., Lambert, N. A., Carlsson, J., et al. (2019) A conserved molecular switch in Class F receptors regulates receptor activation and pathway selection. Nat. Commun. 10, 667 CrossRef Medline
19. Moore, A. R., Ceraudo, E., Sher, J. J., Guan, Y., Shoushtari, A. N., Chang, M. T., Zhang, J. Q., Walczak, E. G., Kazmi, M. A., Taylor, B. S., Huber, T., Chi, P., Sakmar, T. P., and Chen, Y. (2016) Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 48, 675–680 CrossRef Medline
20. Chu, V., Lapadula, D., Randolph, C., Benovic, J. L., Wedegaertner, P. B., and Aplin, A. E. (2017) Disregulated GPCR signaling and therapeutic options in uveal melanoma. Mol. Cancer Res. 15, 501–506 CrossRef Medline
21. DiGiacomo, V., Maziarz, M., Luebbers, A., Norris, J. M., Laksmono, P., and Garcia-Marcos, M. (2020) Probing the mutational landscape of regulators of G protein signaling proteins in cancer. Sci. Signal. 13, eaax8620 CrossRef Medline
22. Van Raamsdonk, C. D., Bezrookove, V., Green, G., Bauer, J., Gaugler, L., O’Brien, J. M., Simpson, E. M., Barsh, G. S., and Bastian, B. C. (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457, 599–602 CrossRef Medline
23. Van Raamsdonk, C. D., Griewank, K. G., O’Kennedy, R., DiMuzio-Knutson, P., Cookson, M. W., Beal, G., Djakiew, D., Bockhorn, M., Green, G., Brouwer, H., Noomen, A. M., Baimukanova, G., Roy, R., Heguy, A., Dolgalev, L., et al. (2010) Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363, 2191–2199 CrossRef Medline
24. Ideno, N., Yamaguchi, H., Ghosh, B., Gupta, S., Okumura, T., Steffen, D. J., Fisher, C. G., Wood, L. D., Singh, A. D., Nakamura, M., Gutkind, J. S., and Maitra, A. (2018) GNAS(B2Q1C) induces pancreatic cystic neoplasms in mice that express activated KRAS by inhibiting YAP1 signaling. Gastroenterology 155, 1593–1607.e12 CrossRef Medline
25. Wu, J., Matthaei, H., Maitra, A., Dal Molin, M., Wood, L. D., Eshleman, J. R., Goggins, M., Canto, M. I., Schulick, R. D., Belfi, B. D., Wolfgang, C. L., Klein, A. P., Diaz, L. A., Jr., Allen, P. J., Schmidt, C. M., et al. (2011) Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci. Transl. Med. 3, 92ra66 CrossRef Medline
26. Nairismägi, M. L., Tan, J., Lim, J. Q., Nagarajan, S., Ng, C. C., Rajasegaran, V., Huang, D., Lim, W. K., Laurensia, Y., Wijaya, G. C., Li, Z. M., Cutucutache, I., Pang, W. L., Thangaraju, S., et al. (2016) JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia 30, 1311–1319 CrossRef Medline
27. O’Hare, M., Inoue, A., Kuferova, I., Wang, Z., Mikels, C. M., Drummond, R. A., Avino, S., Finkel, K., Kalim, K. W., DiPasquale, G., Guo, F., Aoki, J., Zheng, Y., Lionakis, M. S., Molinolo, A. A., et al. (2016) Inactivating mutations in GNA13 and RHOA in Burkitt’s lymphoma and diffuse large B-cell lymphoma: a tumor suppressor function for the Gna13/RhoA axis in B cells. Oncogene 35, 3771–3780 CrossRef Medline
28. Muppindi, J. R., Schmitz, R., Green, J. A., Xiao, W., Larsen, A. B., Braun, S. E., An, J., Xu, Y., Rosenwald, A., Ott, G., Gascoyne, R. D., Rimsza, L. M., Campo, E., Jaffe, E. S., Delabie, J., et al. (2014) Loss of signalling via Gna13 in germinal centre B-cell-derived lymphoma. Nature 516, 254–258 CrossRef Medline
29. Aittaleb, M., Boguth, C. A., and Tesmer, J. J. (2010) Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors. Mol. Pharmacol. 77, 111–125 CrossRef Medline
30. Miralles, F., Posern, G., Zaromytidou, A. I., and Treisman, R. (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 CrossRef Medline

31. Cen, B., Selvaraj, A., and Prywes, R. (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J. Cell. Biochem. 93, 74–82 CrossRef Medline

32. Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J. D., Wang, C.-Y., Chinnaiyan, A. M., Lai, Z.-C., and Guan, K.-L. (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–1971 CrossRef Medline

33. Yu, O. M., Miyamoto, S., and Brown, J. H. (2016) Myocardin-related transcription factor A and Yes-associated protein exert dual control in G protein-coupled receptor- and RhoA-mediated transcriptional regulation and cell proliferation. Mol. Cell. Biol. 36, 39–49 CrossRef Medline

34. Yu, F. X., Zhao, B., Panupinthu, N., Jewell, J. L., Lian, I., Wang, L. H., Zhao, J., Yuan, H., Tumaneng, K., Li, H., Fu, X. D., Mills, G. B., and Guan, K. L. (2012) Regulation of the Hippo-YAP pathway by G-protein coupled receptor signaling. Cell 150, 780–791 CrossRef Medline

35. Yu, O. M., Benitez, J. A., Plouffe, S. W., Rybak, D., Klein, A., Smith, J., Greenbaum, J., Delatte, B., Rao, A., Guan, K. L., Furnari, F. B., Chaim, O. M., Miyamoto, S., and Brown, J. H. (2018) YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity. Oncogene 37, 5492–5507 CrossRef Medline

36. Nagata, Y., Kontani, K., Enami, T., Kataoka, K., Ishii, R., Totoki, Y., Kataoka, T. R., Hirata, M., Aoki, K., Nakano, K., Kitana, A., Sakata-Yanagimoto, M., Egami, S., Shiraiishi, Y., Chiba, K., et al. (2016) Variegated RHOA mutations in adult T-cell leukemia/lymphoma. Blood 127, 596–604 CrossRef Medline

37. Hsi, J. M., Bernards, A., Kim, J., Miller, M., Taylor-Weiner, A., Haradhvala, N. J., Lawrence, M. S., and Getz, G. (2019) Passenger hotspot mutations in cancer. Cancer Cell 36, 288–301.e14 CrossRef Medline

38. Wang, Y., Xu, X., Maglic, D., Dill, M. T., Mojumdar, K., Ng, P. K., Jeong, K. J., Tsang, Y. H., Moreno, D., Bhavana, V. H., Peng, X., Ge, Z., Chen, H., Li, J., Chen, Z., et al. (2018) Comprehensive molecular characterization of the Hippo signaling pathway in cancer. Cell Rep. 25, 1304–1317.e5 CrossRef Medline

39. Robertson, A. G., Kim, J., Al-Ahmade, H., Bellmunt, J., Guo, G., Cher,niack, A. D., Hinoue, T., Laird, P. W., Hoadley, K. A., Akhani, R., Castro, M. A. A., Gibb, E. A., Kanchi, R. S., Gordenin, D. A., Shukla, S. A., et al. TCGA Research Network. (2017) Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556.e25 CrossRef Medline

40. Freimuth, M., and Gilman, A. G. (1989) Mutations of GS α designed to alter the reactivity of the protein with bacterial toxins: substitutions at ARG187 result in loss of GTPase activity. J. Biol. Chem. 264, 21907–21914 CrossRef Medline

41. Kleuss, C., Raw, A. S., Lee, E., Sprang, S. R., and Gilman, A. G. (1994) Mechanism of GTP hydrolysis by G-protein α subunits. Proc. Natl. Acad. Sci. U. S. A. 91, 9828–9831 CrossRef Medline

42. Berman, D. M., Wilkie, T. M., and Gilman, A. G. (1996) GαIP and GαS are GTase-activating proteins for the Gαi subfamily of G protein α subunits. Cell 86, 445–452 CrossRef Medline

43. Leyme, A., Marivin, A., Casler, J., Nguyen, L. T., and Garcia-Marcos, M. (2014) Different biochemical properties explain why two equivalent Gα subunit mutants cause unrelated diseases. J. Biol. Chem. 289, 21818–21827 CrossRef Medline

44. Chaulk, S. G., Lattanzi, V. J., Hiemer, S. E., Fahlan, R. P., and Varelas, X. (2014) The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7. J. Biol. Chem. 289, 1886–1891 CrossRef Medline

45. Yang, C. S., Stampouloglou, E., Kingston, N. M., Zhang, L., Monti, S., and Varelas, X. (2018) Glutamine-utilizing transaminases are a metabolic vulnerability of TAZ/YAP-activated cancer cells. EMBO Rep. 19, e43577 CrossRef Medline

46. Reinhard, N. R., Mastop, M., Yin, T., Wu, Y., Bosma, E. K., Gadella, T. W. J., Jr., Goedhart, J., and Nordjik, P. L. (2017) The balance between Gsp, Cdc42/Rac and Gα12/13-RhoA pathways determines endothelial barrier regulation by sphinogosine-1-phosphate. Mol. Biol. Cell 28, 3371–3382 CrossRef Medline

47. Bailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, A., Colaprico, A., Wendl, M. C., Kim, J., Reardon, B., Kwok-Shing Ng P., Jeong, K. J., Cao, S., Wang, Z., Gao, J., et al. (2018) Comprehensive characterization of cancer driver genes and mutations. Cell 174, 1034–1053 CrossRef Medline

48. Jensen, M. A., Ferretti, V., Grossman, R. L., and Staudt, L. M. (2017) The NCI Genomic Data Commons as an engine for precision medicine. Blood 130, 453–459 CrossRef Medline

49. Wilson, S., Fitzsimons, M., Ferguson, M., Heath, A., Jensen, M., Miller, J., Murphy, M. W., Porter, J., Sahni, H., Staudt, L., Tang, Y., Wang, Z., Yu, C., Zhang, J., Ferretti, V., et al. (2017) Developing cancer informatics applications and tools using the NCI genomic data commons API. Cancer Res. 77, e15–e18 CrossRef Medline

50. Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 CrossRef Medline

51. Hänzelmann, S., Castelo, R., and Guinney, I. (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 CrossRef Medline

52. Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Bigeard, J., Forcato, M., Bicciato, S., Elvissone, N., and Piccolo, S. (2011) Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 CrossRef Medline

53. Wells, C. D., Gutowski, S., Bollag, G., and Sternweis, P. C. (2001) Identification of potential mechanisms for regulation of p115 RhoGEP through analysis of endogenous and mutant forms of the exchange factor. J. Biol. Chem. 276, 28897–28905 CrossRef Medline

54. Maziarz, M., Park, J. C., Leyme, A., Marivin, A., Garcia-Lopez, A., Patel, P. P., and Garcia-Marcos, M. (2020) Revealing the activity of trimeric G proteins in live cells with a versatile biosensor design. J. Biol. Chem. 293, 19586–19599 CrossRef Medline