Background. Pulmonary nocardiosis is an infection targeting immunocompromised patients characterized by high mortality and requires frontline antibiotics for treatment. Nocardiosis is currently confirmed or excluded by BAL fluid culture following by further phenotypic identification steps. A culture-independent method with more timely results would accelerate the administration of appropriate treatment.

Methods. Oligonucleotides for a rapid NOC PCR comprehensive of the causative agents of nocardiosis were aligned to the 16S regions of common NOC species and other pathogens. Specificity was tested against publicly available bacterial 16S sequences. Rapid automated nucleic acid extraction (<1 hour for 24 samples) followed by fast PCR (<1 hour) was validated according to relevant compliance standards. Spiked/unspiked human BAL samples were used to assess analytical specificity, limit of detection (LOD), precision and accuracy using NOC and non-NOC strains.

Results. The NOC PCR detected, among others, the most common NOC species (N. cyriacigeorgica, N. nova, N. farcinica and N. brasiliensis). We estimate more than 95% of causative agents of nocardiosis are detectable by the assay. No cross-reactivity was detected from 30 non-NOC bacterial pathogens except for Rhodococcus and Crossiella spp. LOD in BAL fluid was determined to be 206, 41, and 24 copies/ml for N. cyriacigeorgica, N. nova, and N. transvalensis, respectively. Intra- and inter-assay precision studies revealed copies/ml %CV’s of <10% and <8% at a high concentration and <21% and <26% at a low concentration, respectively. Accuracy studies yielded 100% concordance with 33 BAL positives and 20 BAL negatives.

Conclusion. The specificity, inclusivity, sensitivity, precision and accuracy of a qualitative PCR have been deployed as an aid in the diagnosis of pulmonary nocardiosis. NOC PCR allows for a culture-independent method that can rapidly detect clinically relevant NOC species with an improved turnaround time, leading to prompt diagnosis and administration of appropriate treatment.

Disclosures. E. Smith, Viracor Eurofins Clinical Diagnostics: Employee, Salary. K. Baecht, Viracor Eurofins Clinical Diagnostics: Employee, Salary. J. Grantham, Viracor Eurofins Clinical Diagnostics: Employee, Salary. N. Powell, 1987: Employee, Salary. M. Altrich, Viracor Eurofins Clinical Diagnostics: Employee, Salary. S. Kleibocker, Viracor Eurofins Clinical Diagnostics: Employee, Salary. M. Wissel, Viracor Eurofins Clinical Diagnostics: Employee, Salary.

1997. Impact of Blood Culture Fill Volumes

Ilan Bitliner, MD; Aradhana Khamaera, RN, MSN, CITC; Rebecca Schwartz, PhD; Rehana Rasul, MA, MPH; Pranisha Gautham-Goyal, MD; Bruce Farber, MD; and Prashant Malhotra, MBBS, FACP, FIDSA 1; Infectious Disease, Northwell Health, North Shore University Hospital, Manhasset, New York; 2Infection Prevention, Northwell Health, North Shore University Hospital, Manhasset, New York; 3Department of Occupational Medicine, Epidemiology and Prevention, Zucker School of Medicine at Hofstra-Northwell, Manhasset, New York; 4Biostatistics, Northwell Health, Feinstein Institute of Medical Research, Manhasset, New York

Session: 228. Diagnostics: Bacteria and Mycobacteria

Saturday, October 6, 2018: 12:30 PM

Background. Historically, increases in blood culture (BC) fill volumes (FVs) have been shown to increase yield of BCs and lower contamination rates. Low FVs are a common cause of false negative BCs. 10 mL is considered an ideal FV for a BC. In 2015 and 2016, at North Shore University Hospital, FVs averaged <5 mL per BC. In 2017, several interventions were implemented to increase FVs, including convening informal meetings and seminars to educate nursing staff, educational pamphlets posted, placing 10-mL markings on BC bottles and using butterfly catheters and tabulets for collection. Our aim was to assess trends in overall yield (OY), contaminants and FVs.

Methods. Average FVs, positive BC quantities and organism identification were obtained from 2015 through 2017. Contaminants included bacillus, coagulase negative staphylococcus, micrococcus and single sets of α-hemolytic strep. OY was the number of positive sets in a subgroup divided by the total number of BCs. Subgroup yield (SY) was the number of positive sets in a subgroup divided by the total number of BCs. Trends in OY, SY, and contaminants were assessed using the Cochran Armitage Trend test. The one-way ANOVA test was used to assess differences between FVs by year.

Results. OY increased over the 2015–2017 period (Table 1; P < 0.0001). All SYs increased except for staphylococcus and anaerobes. Contaminants did not show a decreasing trend (Table 2; P = 0.9002).

Table 1. Yield by Year

Year	2015	2016	2017
SY	6.79	7.90	7.90
SY (infections)	2.11	2.01	1.95
Enterococcus	0.66	0.88	0.98
Gram-negative	2.52	3.03	3.64
Anaerobe	0.22	0.24	0.26
Fungal	0.15	0.18	0.27
Mixed	0.28	0.38	0.42
Other	0.09	0.12	0.21

Includes staphylococcus and enterococcus.

Table 2. Mean FV by Year

Year	2015	2016	2017
bulk ordered,	35,624	38,440	37,042
Contaminants, %	2.87	2.99	2.88
Mean FV (SD), mL	4.32 (0.26)	4.39 (1.39)	6.11 (0.98)

1998. Urine Culture Incubation Time: One vs. 2 Days

Mir H Noorbakhsh, PhD, (ABMM); Microbiology and Molecular, Sutter Health Shared Laboratory, Livermore, California

Session: 228. Diagnostics: Bacteria and Mycobacteria

Saturday, October 6, 2018: 12:30 PM

Background. One day incubation time for non-invasive urine cultures makes the lab operation and work flow more efficient. However, it has been a matter of debate since striking a balance between use of low-growing pathogens, significant saving in labor and incubation space for large volume laboratories, or laboratories with total microbiology automation.

Methods. Only routinely collected urine cultures has been included in this study and invasive collection such as nephrostomy, straight or diagnostic catheter collection were excluded. SHSL urine culture procedure defines the workup cut off for uropathogenic organisms (UO) culture and counted process was performed using WASP automated plating system. 1 mL sterile loops were used to inoculate BAP/MAC bi-plates. Plates were incubated in 5% CO2 at 35°C for at least 14 hours and maximum 24 hours for the first day evaluation. All no-growth plates were examined with a regular bench top magnifier/light for evidence of growth, and if verified, they were incubated for an extra day of incubation. Organism identifications performed by Vitek MS instrument.

Results. Total of 501 out of 2,709 samples were determined No-Growth on the first day evaluation. The sensitivity of 2-day incubation was 86.8%, 66 samples (13.2%) indicate growth of normal Uro-Genital (UG) microbiota, and no uropathogenic organisms detected. Among those with growth 54 (10.8%) samples grew <10K, 10 samples (2.0%) grew 10-50K, and 2 samples (0.4% [95% CI: 0.1-1.5%]) grew >50K CFU/ml of normal UG microbiota.

Conclusion. Although small percentage with low level urogenital microbiota was missed on the first day of incubation, there were no uropathogenic organisms missed. Therefore, the 1-day incubation of routine urine culture plates in CO2, and careful examination of the plates appeared to have same efficiency of 2-day incubation in uropathogenic detection. One-day incubation of routine urine culture plates in CO2, and careful examination of the plates appeared to have same efficiency of 2-day incubation in uropathogenic detection. One-day incubation of routine urine culture plates in CO2, and careful examination of the plates appeared to have same efficiency of 2-day incubation in uropathogenic detection.

Disclosures. All authors: No reported disclosures.

1999. Performance of Pneumococcal Urinary Antigen Testing: Riding the Vaccination Waves?

Anne-Marie Van Den Abeele, MD; Jos Van Acker, MD; Charlotte Verfaillie, PharmD 1; and Lien Cattoir, MD; 1Microbiology Laboratory, St-Lucas Hospital, Ghent, Belgium; 2Microbiology Laboratory, OLV Hospital, Aalst, Belgium

Session: 228. Diagnostics: Bacteria and Mycobacteria

Saturday, October 6, 2018: 12:30 PM

Background. Urinary antigen testing for Streptococcus pneumoniae (PAGT) is an accurate test and rapidly can still be used days after initiation of antibiotic therapy or when conventional methods are failing. PAGT is recommended by international guidelines in severe community acquired pneumonia (CAP). The test attains an excellent specificity (>90%) in adults but shows a varying sensitivity (80–85%). We aimed to analyze the PAGT sensitivity in a population with blood culture proven invasive pneumococcal disease (IPD) and to study its performance for the different pneumococcal serotypes.

Methods. PAGT (BinaxNOW®, Alere®) was introduced in 2009 in a large secondary care hospital in Ghent, Belgium. PAGT is requested by the attending physician or the clinical microbiologist in case of IPD suspicion. Pneumococci from blood are identified by standard methods (optochin susceptibility and bile solubility) and serotyped by the national reference center. Overall PAGT performance and test sensitivity for different serotypes were calculated.

Results. Over a 9-year period, 2007–2017, 235 bacteremia episodes in 234 patients were observed with an average of 26 episodes/year (range 12–36). 31/235 (13%) episodes occurred in pediatric patients. Most prevalent serotypes were 1, 12, 8, 3, 7, 9, 5, and 6 for the whole time period. PAgT was performed in 161/235 (69%), test execution for the individual most prevalent serotypes ranged from 55 to 86%.