Review Article

Natural Antispasmodics: Source, Stereochemical Configuration, and Biological Activity

Edith Fabiola Martínez-Pérez,¹ ² **Zaida N. Juárez,**³ **Luis R. Hernández** ² and **Horacio Bach** ¹

¹Department of Medicine, Division of Infectious Diseases, University of British Columbia, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6
²Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, 72810 San Andrés Cholula, PUE, Mexico
³Ingeniería en Biotecnología, Facultad de Biotecnología, Decanato de Ciencias Biológicas, Universidad Popular Autónoma del Estado de Puebla, 21 Sur No. 1103, Barrio Santiago, 72410 Puebla, PUE, Mexico

Correspondence should be addressed to Luis R. Hernández; luisr.hernandez@udlap.mx and Horacio Bach; hbach@mail.ubc.ca

Received 24 July 2018; Accepted 28 August 2018; Published 8 October 2018

Academic Editor: Juergen Buenger

Copyright © 2018 Edith Fabiola Martínez-Pérez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Natural products with antispasmodic activity have been used in traditional medicine to alleviate different illnesses since the remote past. We searched the literature and compiled the antispasmodic activity of 248 natural compounds isolated from terrestrial plants. In this review, we summarized all the natural products reported with antispasmodic activity until the end of 2017. We also provided chemical information about their extraction as well as the model used to test their activities. Results showed that members of the Lamiaceae and Asteraceae families had the highest number of isolated compounds with antispasmodic activity. Moreover, monoterpenoids, flavonoids, triterpenes, and alkaloids were the chemical groups with the highest number of antispasmodic compounds. Lastly, a structural comparison of natural versus synthetic compounds was discussed.

1. Introduction

Antispasmodic compounds are currently used to reduce anxiety, emotional and musculoskeletal tension, and irritability. Although most of the available antispasmodic compounds are synthetic or semisynthetic, traditional uses of this group of compounds are still popular.

We collected information about natural compounds with antispasmodic activity isolated from terrestrial plants. We searched the databases of Google Scholar, PubMed, and SciFinder and compiled the information about 248 compounds published until December 2017. This review focuses on the antispasmodic activity of isolated compounds and activities from extracts without further purification are not discussed.

2. The Neurons

Nerve cells or neurons are responsible for receiving, conducting, and transmitting signals. A neuron consists of a nucleated body, a long thin extension called an axon, and several dendrites or prolongations extended from the cell body. Axons conduct signals from the nucleated body towards distant targets, while dendrites provide an enlarged surface area to receive signals from the axons of other neurons.

Signal transmission through axons is driven by a change in the electrical potential across the plasma membrane of neurons. This plasma membrane contains voltage-gated cation channels, which are responsible for generation of action potentials. An action potential is triggered by a depolarization of the plasma membrane or a shift to a less negative value.

In nerve and skeletal muscle cells, a stimulus can cause sufficient depolarization to open voltage-gated Na⁺ channels allowing the entrance of Na⁺ into the cell. This influx of Na⁺ depolarizes the membrane further causing the opening of more Na⁺ channels. To avoid a permanent influx, Na⁺ channels are able to reclose rapidly even when the membrane...
is still depolarized. This function is based on the presence of voltage-gated K⁺ channels, which are responsible for K⁺ efflux equilibrating the membrane potential even before the total inactivation of Na⁺ channels. In some cases, the action potential in some muscles depends on voltage-gated Ca²⁺ channels.

2. Transmission of Signals. The transmission of signals occurs mainly between neurons or from neurons to skeletal muscles, which are the final acceptors of electrical signals, causing a muscular contraction.

2.1. Signal Transmission between Neurons. Neuronal signals are transmitted between neurons at specialized sites of contact known as synapses. Neurons are separated by a synaptic cleft where a release of a neurotransmitter occurs. This neurotransmitter is stored in vesicles and is released by exocytosis. Upon triggering, the neurotransmitter is released into the cleft provoking an electrical change in the postsynaptic cell by binding to the transmitter-gated ion channels. To avoid a continuous electrical change and to ensure both spatial and temporal precision of signal transmission, the neurotransmitter is rapidly removed from the cleft either by specific enzymes in the synaptic cleft or by reuptake mediated by neurotransmitter carrier proteins [1].

Neurotransmitters can also open cation channels causing an influx of Na⁺ and then called excitatory neurotransmitters (e.g., acetylcholine, glutamate, and serotonin) or produce an opening of Cl⁻ channels and then inhibiting the signal transmission by maintaining the postsynaptic membrane polarization [e.g., γ-aminobutyric acid (GABA) and glycine].

2.1.2. Neuromuscular Signal Transmission. The transmission of electrical signals to muscles involves five sequential and orchestrated steps: (i) nerve electric signal reaches the nerve terminal, (ii) it depolarizes the plasma membrane of the terminal, (iii) voltage-gated Ca²⁺ channels opens causing an increase in Ca²⁺ concentration in the neuron cytosol, and (iv) release of acetylcholine into the synaptic cleft is triggered. Acetylcholine binds to acetylcholine receptors in the muscle plasma membrane opening Na⁺ channels and provoking a membrane depolarization. This depolarization enhances the opening of more Na⁺ channels causing a self-propagating depolarization. The generalized depolarization of the muscle plasma membrane activates Ca²⁺ channels in specialized regions on the membrane causing Ca²⁺ release from the sarcoplasmic reticulum (Ca²⁺ storage) into the cytosol.

As a consequence of an increase in the Ca²⁺ concentration, myofibrils in the muscle cell contract. The increase of Ca²⁺ in the cytosol is transient because Ca²⁺ is rapidly pumped back into the sarcoplasmic reticulum causing a relaxation of the myofibrils. This process is very fast and Ca²⁺ concentration at resting levels is restored within 30 milliseconds [2].

3. Receptors

The autonomic nerve system controls and monitors the internal environment of the body. The input of its activity is provided by neurons that are associated with specific sensory receptors located in the blood vessels, muscles, and visceral organs (Table 1). According to the neurotransmitter secreted, these neurons are classified as adrenergic or cholinergic. The adrenergic neurons secrete the neurotransmitter noradrenalin termed also norepinephrine. Adrenergic receptors include the types α and β, which are further categorized as α₁, α₂, β₁, β₂, and β₃. On the other hand, cholinergic neurons secrete acetylcholine, which induces a postsynaptic event. There are two types of cholinergic receptors, the nicotinic receptor (abundant at the neuromuscular junction) and the muscarinic receptor (abundant on smooth and cardiac muscles and glands).

There are several agonists (neurotransmitters, hormones, and others) able to bind to specific receptors and activate the contraction of smooth muscle. Upon binding the agonist to the receptor, the mechanism of contraction is based on an increase of phospholipase C. This enzyme hydrolyzes phosphatidylinositol 4,5-bisphosphate located on the membrane, producing two powerful secondary messengers termed diacylglycerol (DG) and inositol 1,4,5 triphosphate (IP3). IP3 binds to specific receptors in the sarcoplasmic reticulum, causing release of Ca²⁺ within the muscle. DG together with Ca²⁺ activates the protein kinase C (PKC), which phosphorylates specific proteins. In most smooth muscles, the contraction process commences when PKC phosphorylates Ca²⁺ channels or other proteins that regulate the cyclic process. For instance, Ca²⁺ binds to calmodulin (a multifunctional intermediate calcium-binding messenger protein), triggering the activation of the myosin light chain (MLC) kinase, which phosphorylates the light chain of myosin and together with actin carries out the process of initiating the shortening of the smooth muscle cell [147]. However, the elevation of the intracellular concentration of Ca²⁺ is transient, and the contractile response is maintained by a mechanism sensitized by Ca²⁺ modulated by the inhibition of myosin phosphatase activity by Rho kinase. This mechanism sensitized to Ca²⁺ is initiated at the same time that phospholipase C is activated and involves the activation of the small RhoA protein bound to guanosine triphosphatase (GTP). Above activation, RhoA increases the activity of Rho kinase, leading to the inhibition of myosin phosphatase. This promotes the contractile state, since the myosin light chain cannot be dephosphorylated [147].

Relaxation of smooth muscle occurs as a result of either removing the contractile stimuli or by the direct action of a substance that stimulates the inhibition of the contractile mechanism. In any circumstance, the relaxation process requires a decrease in the intracellular Ca²⁺ concentration and an increase in the activity of the MLC phosphatase. The sarcoplasmic reticulum and plasma membrane remove Ca²⁺ from the cytosol. Na⁺/Ca²⁺ channels are located on the plasma membrane and help to reduce the intracellular concentration of Ca²⁺. During relaxation, other contributors that restrict the Ca²⁺ entry into the cell are the voltage-operated channels and Ca²⁺ receptors in the plasma membrane, which remain closed [147].
Receptor	Targeted by
Adrenergic	Epinephrine (adrenaline)
	Norepinephrine (noradrenaline)
Dopaminergic	Dopamine
Cholinergic	Acetylcholine
GABAergic	GABA
Glutaminergic	Glutamate
Histaminergic	Histamine
Serotonergic	Serotonin
Glycinergic	Glycine
Opioid	Dynorphin
Receptor	Targeted by
-----------	-------------
Enkephalin	![Enkephalin structure](image)
Endorphin	![Endorphin structure](image)
Endomorphin	![Endomorphin structure](image)
Nociceptin	![Nociceptin structure](image)
4. Spasmodic Compounds

The historical antecedents date from the year 1504 when South American natives inhabiting the basins of the high Amazon and the Orinoco prepared a mixture of alkaloids termed curare. This substance was placed in the tips of arrows in order to hunt (prey paralyzing) and fight in wars. Curare produces muscle weakness, paralysis, respiratory failure, and death [148]. In 1800, Alexander von Humboldt, identified that curare was made from the extracts of the species Chondrodendron tomentosum and Strychnos toxifera.

In 1935, the French physiologist Claude Bernard managed to isolate the alkaloid d-tubocurarine from the curare [149]; and one year later, it was elucidated that this compound had the ability to inhibit acetylcholine, blocking the transmission of nerve impulses to the muscles [150]. Lastly, new benzylisoquinoline alkaloids were isolated from curare by Galeffi et al. in 1977 [151, 152].

In 1822, the pharmacist Rudolph Brandes obtained an impure alkaloid from Atropa belladonna (Solanaceae), which after purification was named atropine. Interestingly, atropine was not produced as a natural compound from the plant and it was a derivative generated from the alkaloid hyoscyamine during the process of purification [153]. It is important to note that atropine has been naturally found in small quantities in other members of the Solanaceae family such as Datura stramonium, Duboisia myoporoides, and Scopolia japonica [154–156].

The use of the plant Papaver somniferum (opium poppy) (Papaveraceae) dates back to about 4000 BC. At present the plant is only used to extract a base material for the manufacture of other alkaloids, such as noscapine and codeine, both discovered by the French pharmacist Pierre-Jean Robiquet in 1831 and 1832, respectively [157]. In 1848, papaverine was another substance extracted from the same plant by the German chemist Georg Merck [158], which is rarely used today because of the high doses needed (approximately 6 to 12 mg). However, it is still used as a control in experimental models with the purpose of studying antispasmodic activity of plant extracts.

In the 20th century, extracts and powders derived from A. belladonna were widely used as antispasmodics, but from the 1950s these preparations were displaced by synthetic and semisynthetic anticholinergic compounds in order to obtain a better response [159], such as the case of methocarbamol and guaifenesin. On the other hand, a series of compounds such as dantrolene, glutethimide, methaqualone, chloromezanone, metiprilone, and ethchlorvynol were introduced to replace the meprobamate, which had to be withdrawn from the market in 1960 due to problems resulting from use such as abstinence, addictions, and overdoses.

In 1962, the Swiss chemist Heinrich Keberle synthesized baclofen, which can be obtained by reacting glutarimide with an alkaline solution [160]. Glutarimide can also be found in plants such as Croton cuneatus and C. membranaceus (Euphorbiaceae) [161, 162].

The arrival of the quaternary compounds of nitrogen reinforce their peripheral anticholinergic activity offering also the advantages of being poorly absorbed in the gastrointestinal tract, producing a more powerful and longer lasting sedative effect unlike atropine [1]. For example, ipratropium bromide was developed by the German company Boehringer Ingelheim in 1976 and used to treat asthma. This compound was obtained by reacting atropine with isopropyl bromide [163]. Another quaternary compound was the n-butylyhydroxycine bromide, which is possible to obtain by the organic synthesis of scopalamine and the cimetropium bromide found in the A. belladonna [164]. Although at present the preparations of plant mixtures are no longer used for therapeutic purposes, these compounds formed a part of and served as the basis for modern pharmacology for their applicability as antispasmodics and anesthetics.

Spasms are involuntary contractions of the muscles, which are normally accompanied by pain and interfere with the free and effective muscular voluntary activity. Muscle spasm can originate from multiple medical conditions and is often associated with spinal injury, multiple sclerosis, and stroke.

Spasticity and rigidity are caused by a disinhibition of spinal motor mechanisms. There are several scenarios where a muscle can produce a spasm: (i) unstable depolarization of motor axons; (ii) muscular contractions persist even if the innervation of muscle is normal and despite attempts of relaxation (myotonia); (iii) after one or a series of contractions, the muscle can decontract slowly, as occurring in hypothyroidism; and (iv) muscles lack the energy to relax.

4.1. Distribution of Spasmodic Compound in Nature. Spasmodic compounds are widely distributed in nature (Table 2). Frequently, these compounds are found in animals that paralyze their preys or used for defense. Some examples include the venom of the black widow and tarantula spiders [11, 165] and the venom of snakes [166]. Plants also produce spasmodic metabolites, such as strychnine, an alkaloid obtained from the tree Strychnos nux-vomica (Loganiaceae). Furthermore, microorganisms synthesize spasmodic compounds such as the neurotoxins tetanospasmin and botulinum toxin from the Gram-positive bacteria Clostridium tetani and C. botulinum, respectively. These toxins produce a toxic disorder, which is characterized by persistent spasms of skeletal muscles on spinal neurons similar to strychnine.

4.2. Mechanisms of Antispasmodic Activity of Natural Products. Antispasmodic compounds exert their activity in different ways, such as antispasmodic activity through inhibition of the response to the neurotransmitters 5-hydroxytryptamine (5-HT) or serotonin and acetylcholine. However, other authors attribute the antispasmodic effect to (i) capsacin-sensitive neurons, (ii) the participation of vanilloid receptors [167], (iii) the activation of K+ ATP channels, (iv) the blockade of Na+ channels and muscarinic receptors, (v) the reduction of extracellular Ca2+, or (vi) the blockade of Ca2+ channels [22, 168, 169]. The above is merely a reflection of the ambiguity of the studies showing the mechanisms of action of the antispasmodic compounds [36]. For example, the hydroalcoholic extract of Marrubimum vulgare showed antispasmodic effect, having the ability to inhibit the
Table 2: Representative organisms producing spasmodic compounds.

Compound	Organism	Symptoms	Mechanism	Reference
Bacterial				
Botulinum toxin	*Clostridium botulinum*	Muscular relaxation	Secretion of acetylcholine into synapses is blocked	[3]
Tetanospasmin	*Clostridium tetani*	Muscular spasm	Inhibits the binding of GABA and glycine	[4]
Marine				
Nematocyst venom extract	Sea anemones	Nausea, vomiting, muscle cramp, severe pain, paralysis	Delay in the voltage-dependent Na\(^+\) channels inactivation	[5]
Nematocyst venom extract	*Chironex fleckeri* (Cnidaria)	Contraction of arterial smooth muscle	Increase of cytosolic Ca\(^{2+}\) concentration	[6]
Ciguatoxin	*Gambierdiscus toxicus* (Dinoflagellate)	Nausea, vomiting, abdominal pain, intestinal spasm	Interact with voltage-gated increasing the Na\(^+\) permeability and Ca\(^{2+}\) homeostasis	[7]
Chordata	*Plotosus lineatus* (Catfish)	Violent pain, shock, spasm	Increase of the vascular permeability in peritoneum	[8]
Terrestrial				
Ergotamine	*Claviceps purpurea* (fungus)	Seizure, spasms psychosis, nausea, vomiting	Agonist of several neurotransmitter receptors	[9]
α-Latrotoxin	*Latrodectus tredecimguttatus* (black widow spider)	Facial flushing, hypertension, muscle spasm, tachycardia	Causes Ca\(^{2+}\)-dependent and -independent release of neurotransmitters	[10]
Vanillo-toxin, hanatoxin, huwentoxin	Tarantula species	Severe pain, cramps, erythema, swelling, tachycardia	Unrevealed	[11–14]
β-Neurotoxin	*Mesobuthus martensi* (scorpion)	Increases muscular contraction, spasm, convulsion	Modulates Ca\(^{2+}\) channels	[15]
Crototoxin	*Crotalus durissus terrificus* (rattlesnake)	Severe pain, drooping eyelids, low blood pressure, muscle weakness	Blocks the cholinergic post-synaptic response	[16]

neurotransmitters acetylcholine, bradykinin, prostaglandin E2, histamine, and oxytocin [170], whereas a dual effect of antidiarrheal and laxative activities was reported in *Fumaria parviflora* [171].

5. Methods Used to Evaluate Antispasmodic Compounds

5.1. Gastrointestinal Model. The small intestine is characterized by its large surface area as a result of its circular folds, villi, and microvilli. It is the longest part of the GI system (approximately 5 meters) and comprises about 5% of its initial length, which corresponds to the duodenum (characterized by the absence of the mesentery) and then the jejunum (around 40% of the intestinal length), ending with the ileum. It is the organ of absorption of nutrients and digestion in organisms. These functions are carried out mainly in the duodenum and jejunum.

The main types of bowel movement are the segmentation and peristalsim. The segmentation is most frequent in the small intestine and consists of contractions of the circular muscle layer in very close areas. Contractions last for 11-12 and 8-9 contractions per min in the duodenum and ileum, respectively. When this segmentation is rhythmic, the contractions are alternated with relaxation. This type of movement results in a mixed effect of the chyme (acidic fluid that passes from the stomach to the small intestine) with the digestive secretions, allowing an optimal contact with the intestinal mucosa. In the case of peristalsis, contractions of successive sections of the circular smooth muscle cause the movement of the intestinal contents in anterograde form. The short peristaltic movement also takes place in the small intestine, but less frequently than the segmentation movements. Peristaltic waves rarely cross more than 10 cm of intestine and, due to the low frequency of propulsion of the chyme, it is in this zone where digestion and absorption are preferably carried out.
Peristalsis is regulated mainly by the nervous action of the myenteric plexus (major nerve supply to the gastrointestinal tract that controls GI tract motility) in the intestinal wall.

The diversity of experimental models used for the testing of antispasmodic compounds is large. These models mainly use isolated organs or live animals. Once the organ is extracted from the animal, the intestinal motility is assessed with the administration of a substance. The use of extracted organs can be sustained for hours when placed in a physiological solution, such as Ringer, Jalon, Tyrode, and Krebs [172].

The most used organs to perform the studies are guinea pig ileum, duodenum, heart, trachea, and jejunum. The same organs can be also extracted from rabbit, mouse, rat, and hamster (Table 3). The preparation of ileum is preferred because it evaluates the spasmolytic activity. However, although the jejunum contracts spontaneously, it allows evaluating the spasmolytic activity directly and without the use of an agonist [173].

Some advantages of performing ex vivo experiments are as follows: (i) different substances can be evaluated in fresh tissues without absorption factors, metabolic excretion or interference due to nerve reflexes; (ii) it is possible to quantify the effect produced by a precisely determined drug; and (iii) it is easier to obtain dose-effect curves, such as the smooth muscle where the contraction obtained under the influence of a spasm or in tissue homogenates is measured by determination of the enzyme activities [172, 174].

5.2. Guinea Pig Ileum and Rat Stomach. The ileum is removed and cut in strips of approximately 2 cm long and then placed in a bath filled with an isotonic solution as mentioned earlier. Electrophysiological studies are performed by graphically recording the contractions with the aid of a transducer, which is calibrated 30 min before the treatment begins. A range of 0.01 to 0.03 μM is generally used to determine dose response curves of the antispasmodic substance [175].

In rats, the stomach is removed and the corpus and fundus are cut in strips of approximately 5 mm x 15 mm and placed on a prewarmed warm solution as mentioned before.

5.3. Compounds Used to Elicit a Spasmodic Activity. The main compounds used are acetylcholine, atropine, BaCl₂, carbachol, histamine, KCl, and serotonin.

Acetylcholine is a postganglionic neurotransmitter in the parasympathetic neurons that innervate the intestine. The response to acetylcholine is regulated by activation of the two types of muscarinic receptors: M2 and M3 [176]. The activation of these receptors causes contractions by increasing the intracellular concentration of Ca²⁺ via IP3 [176]. Atropine is a competitive reversible antagonist of muscarinic acetylcholine receptors M1, M2, M3, M4, and M5.

Different substances are used to produce contractions. For example, BaCl₂ induces contractions by mobilizing membrane-bound Ca²⁺ [177], carbachol is a cholinomimetic drug (cholinergic agonist) that binds and activates acetylcholine receptors [178], histamine acts by either accelerating the release of acetylcholine or interacting supra-additively with the acetylcholine at the smooth muscle [179], whereas KCl increases the voltage-operated Ca²⁺ channel activity by increasing intracellular free Ca²⁺ in smooth muscle [180]. Serotonin is also an important neurotransmitter mainly stored in the digestive tract, affecting the secretory and motor activities. At high concentrations, it acts as a vasoconstrictor by contracting endothelial smooth muscle directly or by potentiating the effects of other vasoconstrictors [181, 182].

6. Antispasmodic Activity of Natural Compounds

Compounds isolated from terrestrial plants have shown the ability to function as antispasmodic compounds. The chemical group with the highest number of members of antispasmodic compounds is the monoterpenoid group (41 compounds) followed by flavonoids (35 compounds), alkaloids (with 33 compounds), and triterpenes with 31 (Figure 1). Although we summarize in Table 3 248 compounds, in most of the cases the mechanism behind their activity has not been elucidated.

7. Mutagenicity

Studies related to the mutagenicity of antispasmodics are very scarce. This topic has been underestimated when testing the bioactivities of ethnomedicinal plants. Probably the most useful method to determine the mutagenicity of natural products or plant extracts is the Ames method [183]. This test is based on the rate of mutations detected in genetically modified strains of Salmonella typhimurium. Moreover, this test has also been developed to detect mutagenicity of metabolized compounds in the liver. In this situation, a mixture of liver
Table 3: Natural products with antispasmodic activity isolated from terrestrial plants.

Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
Monoterpenoids					
1 Myrcene, β-myrcene	*Plectranthus barbatus* (Lamiaceae)	Leaf (MeOH)	ACh, BaCl\(_2\), KCl in guinea pig ileum	EO	[17]
2 Citral B, β-citral, Neral	*Aloysia triphylla* (Verbenaceae)	Leaf (Hexane)	Carbachol, KCl, O, PGF (2α) in rat uterus	IC	[18]
3 Geranyl formate	*Cymbopogon citratus* (Poaceae)	Leaf (MeOH 70%)	ACh, KCl in rabbit ileum	IC	[19]
4 Geranyl acetate	*Melissa officinalis* (Lamiaceae)	Aerial part (EtOH 70%)	ACh, KCl in rat ileum	EO	[20]
5 Geraniol	*Athyris mauritiana* (Compositae)	Flower (Distillation)	Ca\(^{2+}\), carbachol, KCl in rabbit and jejenum	EO	[21]
6 Citronellol	*Nepeta cataria* (Lamiaceae)	Leaf (Aqueous)	Carbachol, KCl in guinea pig trachea and jejenum	EO	[22]
7 (+)-α-Phellandrene	*Rosa damascene* (Rosaceae)	Flower (hydrodistillation)	ACh, KCl, electrical field stimulation in rat ileum	IC	[23]
8 (+)-β-Phellandrene	*Zingiber officinalis* (Zingiberaceae)	Leaf (Distillation)	ACh, KCl in rat tracheal smooth muscle	EO	[25]
9 Terpinolene	*Zingiber officinalis* (Zingiberaceae)	Rhizome (MeOH)	Serotonin in rat ileum	EO	[24]
10 D-(+)-Limonene	*Zingiber officinalis* (Zingiberaceae)	Rhizome (MeOH)	Serotonin in rat ileum	EO	[24]
11 γ-Terpinene	*Rosmarinus officinalis* (Lamiaceae)	Leaf infusion (MeOH)	Carbachol, KCl in rat duodenal smooth muscle	EO	[26]
12 Thymoquinone	*Acalypha phleioides* (Euphorbiaceae)	Aerial part (Hydrodistillation)	KCl in guinea pig ileum	IC	[27]
13 (R)-(+)-Pulegone	*Calamintha glandulosa* (Lamiaceae)	Aerial part infusion (EtOH)	ACh, BaCl\(_2\), H, S in guinea pig ileum and jejenum	IC	[29]
14 (-)-Menthol	*Rosa damascene* (Rosaceae)	Leaf and flower infusion (EtOH)	KCl in guinea pig ileum	IC	[27]
	Dracocephalum kotschyi (Lamiaceae)	Aerial part (EtOH)	S in rat ileum	IC	[27]
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
------------------------	-----------------------------------	---	--	--------	-----------
dl-α-Terpineol	*Casimiroa pringlei* (Rutaceae)	Aerial part infusion (Ethyl ether)	KCl in rat uterine smooth muscle	IC	[33]
Zingiber roseum	**Zingiberaceae**	Fresh seeds (Hydrodistilled with diethyl ether)	Carbachol, KCl in rat duodenal smooth muscle	EO	[26]
Dracocephalum kotschyi	(Lamiaceae)	Aerial part (Hydrodistillation)	ACh, electrical field stimulation, KCl in rat ileum	EO	[28]
(-)-Piperitone	*Casimiroa pringlei* (Rutaceae)	Aerial part infusion (Ethyl ether)	KCl in rat uterine smooth muscle	IC	[33]
(+)-Rotundifolone	*Mentha x villosa* (Lamiaceae)	Leaf infusion (MeOH)	KCl in guinea pig ileum	IC	[27]
(R)-(−)-Carvone	*Mentha x villosa* (Lamiaceae)	Leaf infusion (MeOH)	KCl in guinea pig ileum	IC	[27]
(R,R,R)-Carvone-1,2-oxide	*Mentha x villosa* (Lamiaceae)	Leaf infusion (MeOH)	KCl in guinea pig ileum	IC	[27]
(S)-(−)-Carvone	*Mentha x villosa* (Lamiaceae)	Leaf infusion (MeOH)	KCl in guinea pig ileum	IC	[27]
Ocimum gratissimum	(Lamiaceae)	Leaf infusion (MeOH)	ACh, KCl in guinea pig ileum	IC	[34]
Nepeta cataria	(Lamiaceae)	Leaf infusion (Aqueous)	Carbachol, KCl in guinea pig trachea and rabbit jejunum	EO	[22]
Casimiroa pringlei	(Rutaceae)	Aerial part infusion (Ethyl ether)	KCl in rat uterine smooth muscle	IC	[33]
Lippia graveolens	(Verbenaceae)	Leaf infusion (Distillation)	Carbachol, H in guinea pig ileum	IC	[35]
Zingiber roseum	**Zingiberaceae**	Fresh seeds (Hydrodistilled with diethyl ether)	Carbachol, KCl in rat duodenal smooth muscle	EO	[26]
Polimomtha longiflora	(Lamiaceae)	Leaves stem infusion (Distillation)	Carbachol, H in guinea pig ileum	IC	[35]
Thymus vulgaris	(Lamiaceae)	Leaf, stem and flower infusion (MeOH)	Spontaneous contraction in rat ileum	EO	[36]
Acalypha phleoides	(Euphorbiaceae)	Aerial part infusion [MeOH·CHCl₃ (1:1)]	ACh, BaCl₂, KCl in rat trachea and ileum	IC	[37]
Thymus vulgaris	(Lamiaceae)	Whole plants (Ethanol)	ACh, BaCl₂, KCl in rat trachea and ileum	IC	[29]
Anthemis mauritiana	(Asteraceae)	Flower infusion (Aqueous)	Carbachol, KCl in rabbit jejunal smooth muscle	EO	[21]
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
--------------------	--------------------------------	--	---	--------	-----------
26 (±)-Camphor	*Acalypha phleoides* (Euphorbiaceae)	Aerial part infusion [MeOH-CHCl₃ (1:1)]	ACh, BaCl₂, H, KCl, S in guinea pig ileum and rabbit jejunum	IC	[29]
	Lippia dulcis (Verbenaceae)	Leaf infusion (Steam distillation)	Carbachol, H in porcine bronchi	EO	[38]
	Anthemis mauritiana (Asteraceae)	Flower infusion (Aqueous)	Carbachol, KCl in rabbit jejunal smooth muscle	EO	[21]
27 (+)-α-Pinene	*Nepeta cataria* (Lamiaceae)	Leaf infusion (Aqueous)	Carbachol, KCl in guinea pig trachea and rabbit jejunum	EO	[22]
	Plectranthus barbatus (Lamiaceae)	Leaf infusion (MeOH)	ACh, BaCl₂, H, KCl in guinea pig ileum	EO	[17]
	Dissotis rotundifolia (Melastomataceae)	Leaf infusion (EtOH)	Carbachol in mouse intestinal motility	E	[39]
28 (-)-α-Pinene	*Eucalyptus tereticornis* (Myrtaceae)	Commercial	ACh, KCl in rat trachea	EO	[40]
	Zingiber roseum (Zingiberaceae)	Fresh seeds (Hydrodistilled with diethyl ether)	Carbachol, KCl in rat duodenal smooth muscle	EO	[26]
	Ferula gummosa (Apioaceae)	Resin infusion (Hydroalcoholic, ether, MeOH)	ACh, KCl in rat ileum	IC	[41]
29 (+)-β-Pinene	*Zingiber officinale* (Zingiberaceae)	Rhizome infusion (MeOH)	S in rat ileum	EO	[24]
	Zingiber roseum (Zingiberaceae)	Fresh seeds (Hydrodistilled with diethyl ether)	Carbachol, KCl in rat duodenal smooth muscle	EO	[26]
30 Cantleyine	*Styrchnos trineris* (Loganiaceae)	Root bark (EtOAc)	Carbachol, H, KCl in guinea pig trachea	IC	[42]
31 Penstemonoside	*Parentucellia latifolia* (Scrophulariaceae)	Whole plant infusion (Butanol)	ACh, CaCl₂, KCl in rat uterus	IC	[43]
32 Aucubine or aucuboside					
	Parentucellia latifolia (Scrophulariaceae)	Whole plant infusion (Butanol)	ACh, CaCl₂, KCl in rat uterus	IC	[43]
33 2'-O-Acetylhydrogensteine	*Viburnum prunifolium* (Caprifoliaceae)	Root and stem bark infusion (MeOH)	Carbachol in rabbit jejenum and guinea pig trachea	E	[44]
34 2'-O-trans-p-Coumaroyldihydrogensteine	*Viburnum prunifolium* (Caprifoliaceae)	Root and stem bark infusion (MeOH)	Carbachol in rabbit jejenum and guinea pig trachea	E	[44]
35 2'-O-Acetylpatrinoside	*Viburnum prunifolium* (Caprifoliaceae)	Root and stem bark infusion (MeOH)	Carbachol in rabbit jejenum and guinea pig trachea	E	[44]
36 Patrinoside	*Viburnum prunifolium* (Caprifoliaceae)	Root and stem bark infusion (MeOH)	Carbachol in rabbit jejenum and guinea pig trachea	E	[44]
37 Valtriate or Valepotriate					
	Valeriana proceran (Valerianaceae)	Root infusion (EtOH)	BaCl₂, carbachol, KCl in guinea pig ileum and stomach	IC	[45]
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
--------------------------------	-------------------------------	-----------------------	---	--------	-----------
Isovaltrate or Isovaltratum	Valeriana procera (Valerianaceae)	Root infusion (EtOH)	BaCl₂, carbachol, KCl in guinea pig ileum and stomach	IC	[45]
Epoxygaertneroside	Morinda morindoides (Rubiaceae)	Leaf infusion (Aqueous)	ACh, KCl in guinea pig ileum	IC	[46]
Gaertneroside	Morinda morindoides (Rubiaceae)	Leaf infusion (Aqueous)	ACh, KCl in guinea pig ileum	IC	[46]
Catalpinoside or Catapol	Parentucellia latifolia (Scrophulariaceae)	Whole plant infusion (Butanol)	ACh, CaCl₂, KCl in rat uterus	IC	[43]

Sesquiterpenes

Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference	
43 (±)-Hernandulcin	Lippia dulcis (Verbenaceae)	Leaf infusion (Steam distillation)	Carbachol, H in porcine bronchi	EO	[38]	
43 Humulene or α-Caryophyllene	Nepeta cataria (Lamiaceae)	Leaf infusion (Aqueous)	Carbachol, KCl in guinea pig trachea and rabbit jejunum	EO	[22]	
44 β-Caryophyllene epoxide	Conyza filaginoides (Asteraceae)	Leaf infusion [CHCl₃:MeOH (1:1)]	ACh, KCl in rat tracheal smooth muscle	EO	[25]	
	Croton sonderianus (Euphorbiaceae)	Leaf infusion (Steam distillation)	ACh, KCl in rat tracheal smooth muscle	EO	[25]	
	Croton sonderianus (Euphorbiaceae)	Leaf infusion (Steam distillation)	ACh, KCl in rat tracheal smooth muscle	EO	[25]	
45 β-Caryophyllene	Conyza filaginoides (Asteraceae)	Leaf infusion [CHCl₃:MeOH (1:1)]	Spontaneous contraction in rat ileum	IC	[47]	
	Plectranthus barbatus (Lamiaceae)	Leaf infusion (MeOH)	Spontaneous contraction in rat ileum	IC	[47]	
	Pterodon polygalaeiflorus (Fabaceae)	Seed (Steam distillation)	ACh, KCl in rat ileum smooth muscle	IC	[48]	
46 Bicyclogermacrene or Leptidozene	Croton sonderianus (Euphorbiaceae)	Leaf infusion (Steam distillation)	ACh, KCl in rat tracheal smooth muscle	EO	[25]	
47 (+)-Capsidiol	Nicotiana silvestri (Solanaceae)	Leaf infusion (EtOAc)	ACh, BaCl₂, bradykinin, carbachol in guinea pig ileum and trachea	IC	[49]	
48 S-Petasin	Petasites formosanus (Compositae)	Aerial parts (EtOH)	CaCl₂, carbachol, H, KCl in guinea pig trachea	IC	[50]	
49 (+)-Isopetasin	Petasites formosanus (Compositae)	Aerial parts (EtOH)	CaCl₂, carbachol, H, KCl in guinea pig trachea	IC	[50]	
50 Valeranone o Jatamansone	Valeriana procera (Valerianaceae)	Root infusion (EtOH)	BaCl₂, carbachol, KCl in guinea pig ileum and stomach	IC	[45]	
51 Chamazulene	Matricaria recutita (Asteraceae)	Plant infusion (Aqueous)	Human platelet	E	[51]	
52 Spathulenol	Croton sonderianus (Euphorbiaceae)	Leaf infusion (Steam distillation)	ACh, KCl in rat tracheal smooth muscle	EO	[25]	
	Lepechiniaca caulescens (Lamiaceae)	Leaf infusion (Hexane)	KCl in rat uterus	IC	[52]	
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference	
---------------	------------------	-----------------------	--------------	--------	-----------	
53 Cynaropicrin	*Cynara scolymus* (Asteraceae)	Leaf and flower infusion (MeOH 70%)	ACh in guinea pig ileum	IC	[53]	
54 Cedrenol	*Anthemis mauritiana* (Asteraceae)	Flower infusion (Aqueous)	Carbachol, KCl in rabbit jejunal smooth muscle	EO	[21]	
55 (+)-Bakkenolide A	*Hertia cheirifolia* (Asteraceae)	Aerial parts (MeOH)	ACh, BaCl₂ in rat duodenum	IC	[54]	
56 Himachalol	*Cedrus deodara* (Pinaceae)	Wood infusion	ACh, BaCl₂, H, nicotine, S in guinea pig ileum and seminal vesicle, rabbit jejunum and rat uterus	IC	[55]	
57 (E)-Damascenone	*Ipomoea pes-caprae* (Convolvulaceae)	Leaf infusion (Aqueous)	H in guinea pig ileal smooth muscle	IC	[56]	
58 (-)-Isogermacrene D	*Artemisia vulgaris* (Compositae)	Stem and leaf infusion (Aqueous)	guinea pig ileum		[57]	
59 Ezoalantonin	*Artemisia vulgaris* (Compositae)	Leaf (CHCl₃)	H, PMA, S in guinea pig ileum and trachea	IC	[57]	
60 Costunolide	*Radix aucklandiae* (Asteraceae)	Rhizome (MeOH)	ACh, KCl, S in rat jejunum	IC	[58]	
61 Dehydrocostus lactone	*Radix aucklandiae* (Asteraceae)	Rhizome (MeOH)	ACh, KCl, S in rat jejunum	IC	[58]	
Diterpenes						
62 E-Phytol	*Ipomoea pes-caprae* (Convolvulaceae)	Leaf infusion (Aqueous)	H in guinea pig ileal smooth muscle	IC	[56]	
63 3α-Angelloyloxy-2α-hydroxy-13,14Z-dehydrocativic acid	*Brickellia paniculata* (Compositae)	Leaf infusion (MeOH)	KCl in rat myometrial tissue	IC	[59]	
64 15-Epicyllenin A	*Marrubium globosum* ssp. *libanoticum* (Lamiaceae)	Aerial part infusion (MeOH)	ACh in mouse ileum	IC	[60]	
65 Cyllenin A	*Marrubium globosum* ssp. *libanoticum* (Lamiaceae)	Aerial part infusion (MeOH)	ACh in mouse ileum	IC	[60]	
66 Marrulibacetal	*Marrubium globosum* ssp. *libanoticum* (Lamiaceae)	Aerial part infusion (MeOH)	ACh in mouse ileum	IC	[60]	
67 (13R)-9α,13α-epoxylabda-6β(9(16(15)-diol dilactone	*Marrubium globosum* ssp. *libanoticum* (Lamiaceae)	Aerial part infusion (MeOH)	ACh in mouse ileum	IC	[60]	
68 Marrubin	*Marrubium vulgare* (Lamiaceae)	Aerial parts (Aqueous)	KCl in rat aorta	IC	[61]	
69 Marrubenol or Marrubiol	*Marrubium vulgare* (Lamiaceae)	Aerial parts (Aqueous)	KCl in rat aorta	IC	[61]	
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference	
---------------	------------------	-----------------------	--------------	--------	-----------	
Marrulanic acid	Marrubium globosum ssp. libanoticum (Lamiaceae)	Aerial part infusion (MeOH)	ACh in mouse ileum	KC	[60]	
Marrulactone	Marrubium globosum ssp. libanoticum (Lamiaceae)	Aerial part infusion (MeOH)	ACh in mouse ileum	KC	[60]	
(+)-Dehydroabietic acid	Lepechinia acaulescens (Lamiaceae)	Leaf infusion (Hexane)	KC	in rat uterus	IC	[52]
9\(\beta\)-Hydroxydehydroabietyl alcohol	Lepechinia acaulescens (Lamiaceae)	Leaf infusion (Hexane)	KC	in rat uterus	IC	[52]
9\(\alpha\),13\(\alpha\)-Epidioxyabiet-8(14)-en-18-oic acid methyl ester	Lepechinia acaulescens (Lamiaceae)	Leaf infusion (Hexane)	KC	in rat uterus	IC	[52]
4-epi-Hyalic acid	Croton argyrophylloides (Euphorbiaceae)	Bark infusion (MeOH)	ACh, KCl in guinea pig ileum	IC	[62]	
Pimaradienoic acid or Continentalic acid	Viguiera arenaria (Asteraceae)	Root infusion (CH\(_2\)Cl\(_2\))	ACh, KCl in rat carotid artery	KC	IC	[63]
8(14),15-Sandaracopimaradiene-7\(\alpha\),18-diol	Tetradenia riparia (Lamiaceae)	Leaf infusion (CHCl\(_3\))	BaCl\(_2\), HCl, guinea pig ileum	IC	[64]	
3,4-Secoisopimara-4(18),7,15-triene-3-oic acid	Salvia cinnabarina (Lamiaceae)	Aerial parts (EtOH)	ACh, BaCl\(_2\), HCl in guinea pig ileum	IC	[65]	
ent-Kaurenoic acid	Viguiera hypargyrea (Asteraceae)	Root infusion (Hexane)	Spontaneous contraction in guinea pig ileum	IC	[66]	
	Viguiera hypargyrea (Asteraceae)	Root infusion (Hexane)	Spontaneous contraction in guinea pig ileum	IC	[66]	
Beyerenic acid or Monogynoic acid	Viguiera hypargyrea (Asteraceae)	Root infusion (Hexane)	Spontaneous contraction in guinea pig ileum	IC	[66]	
ent-7\(\alpha\)-Acetoxytrachyloban-18-oic acid	Xylopia langsdorfiana (Annonaceae)	Stem infusion (EtOH 95%)	BaCl\(_2\), HCl in guinea pig ileum	IC	[67]	
ent-7\(\alpha\)-hydroxytrachyloban-18-oic acid	Xylopia langsdorfiana (Annonaceae)	Stem infusion (EtOH 95%)	BaCl\(_2\), HCl in guinea pig ileum	IC	[67]	
Phorbol 12-acetate-13-tiglate	Croton tiglium (Euphorbiaceae)	Fruit (MeOH)	Spontaneous contraction in rabbit jejunum	E	[68]	
3,7,10,14,15-pentaacetyl-5-butanoyl-13,17-epoxy-8-myrsinene	Pycnocyclaspinosa (Umbelliferae)	Aerial parts (MeOH)	KCl in rat ileum	IC	[69]	
Agapanthagenin 3-O-\(\beta\)-D-glucopyranoside	Allium elburzense (Alliaceae)	Flower and bulb infusion (Hexane)	H in guinea pig ileum	E	[70]	
Agapanthagenin	Allium elburzense (Alliaceae)	Flower and bulb infusion (Hexane)	H in guinea pig ileum	IC	[70]	
\(\beta\)-Sisosterol	Eucalyptus camaldulensis (Myrtaceae)	Leaf infusion (EtOAc)	Spontaneous contraction in rabbit jejunum	IC	[71]	
Table 3: Continued.

Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
88 β-sitosterol 3-O-β-D-glucopyranoside	*Eucalyptus camaldulensis* (Myrtaceae)	Leaf infusion (EtOAc)	KCl, spontaneous contraction in rabbit jejunum	IC	[71]
89 α-Spinastyeryl β-D-glucoside	*Conyza filaginoides* (Asteraceae)	Leaf infusion [CHCl₃:MeOH (1:1)]	Spontaneous contraction in rat ileum	IC	[47]
90 Tropeoside B1 and B2	*Allium cepa* (Alliaceae)	Bulbs [CHCl₃:MeOH (9:1)]	ACh, H in guinea pig ileum	IC	[72]
91 Tropeoside A1 and A2	*Allium cepa* (Alliaceae)	Bulbs [CHCl₃:MeOH (9:1)]	ACh, H in guinea pig ileum	IC	[72]
92 Elburzensoside A1 and A2	*Allium elburzense* (Alliaceae)	Flower and bulb infusion (Hexane)	H in guinea pig ileum	IC	[70]
93 Elburzensoside C1 and C2	*Allium elburzense* (Alliaceae)	Flower and bulb infusion (Hexane)	H in guinea pig ileum	IC	[70]
94 Galphimin A	*Galphimia glauca* (Malpighiaceae)	Leaf infusion (MeOH)	Electrical-induced contraction in guinea pig ileum	IC	[73]
95 Galphimin B	*Galphimia glauca* (Malpighiaceae)	Leaf infusion (MeOH)	Electrical-induced contraction in guinea pig ileum	IC	[73]
96 Galphimin C	*Galphimia glauca* (Malpighiaceae)	Leaf infusion (MeOH)	Electrical-induced contraction in guinea pig ileum	IC	[73]
97 Galphimin E	*Galphimia glauca* (Malpighiaceae)	Leaf infusion (MeOH)	Electrical-induced contraction in guinea pig ileum	IC	[73]
98 Galphimin F	*Galphimia glauca* (Malpighiaceae)	Leaf infusion (MeOH)	Electrical-induced contraction in guinea pig ileum	IC	[73]
99 Handianol	*Herissanthia tiubae* (Malvaceae)	Leaf infusion (EtOH)	Carbachol, H, KCl in guinea pig ileum and trachea, and rat aorta	IC	[74]
100 Cycloartanol	*Herissanthia tiubae* (Malvaceae)	Leaf infusion (EtOH)	Carbachol, H, KCl in guinea pig ileum and trachea, and rat aorta	IC	[74]
101 Taraxasteryl acetate	*Brickellia veronicaefolia* (Malvaceae)	Aerial parts [CH₂Cl₂:MeOH (1:1)]	Gastrointestinal motility test in mouse	E	[75]
102 Pomolic acid or Benthamic acid or Randialic acid A	*Licania pittieri* (Rosaceae)	Leaf infusion (EtOH)	Carbachol, KCl in rat aorta	IC	[76]
103 Ursolic acid	*Agastache mexicana* (Lamiaceae)	Aerial part (MeOH)	ACh, KCl in guinea pig ileum	IC	[77]
104 Ehretiolide	*Eucalyptus camaldulensis* (Myrtaceae)	Leaf infusion (EtOAc)	KCl, spontaneous contraction in rabbit jejunum	IC	[78]
105 Ehretiolide acetate	*Eucalyptus camaldulensis* (Myrtaceae)	Leaf infusion (EtOAc)	KCl, spontaneous contraction in rabbit jejunum	IC	[78]
106 Camaldulin	*Eucalyptus camaldulensis* (Myrtaceae)	Leaf infusion (EtOAc)	KCl, spontaneous contraction in rabbit jejunum	IC	[71]
107 Zygophyloside N	*Zygophyllum gaetulum* (Zygophyllaceae)	Root infusion (MeOH)	Electrically-induced contractions of isolated guinea pig ileum	E	[79]
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	
---------------	-----------------	-----------------------	--------------	--------	
108 Erythrodiol	*Conyza filaginoides* (Asteraceae)	Leaf infusion [CHCl₃:MeOH (1:1)]	Spontaneous contraction in rat ileum	IC [47]	
109 3-β-tridecanoyloxy-28-hydroxyolean-12-ene	*Conyza filaginoides* (Asteraceae)	Leaf infusion [CHCl₃:MeOH (1:1)]	Spontaneous contraction in rat ileum	IC [47]	
110 3-β-Hydroxyolean-9(11),12-dien-28-oic acid	*Eucalyptus camaldulensis* (Myrtaceae)	Leaf infusion (EtOAc)	KCl, spontaneous contraction in rabbit ileum	IC [78]	
111 4-epi-Hederagenin	*Hedera helix* (Araliaceae)	Leaf infusion (EtOH)	ACh in guinea pig ileum	IC [80]	
112 Hederacoside C	*Hedera helix* (Araliaceae)	Leaf infusion (EtOH)	ACh in guinea pig ileum	IC [80]	
113 Betulinic acid	*Eucalyptus camaldulensis* (Myrtaceae)	Leaf infusion (EtOAc)	KCl, spontaneous contraction in rabbit ileum	IC [78]	
114 α-Amyrin acetate	*Tylophora hirsuta* (Asclepiadaceae)	Aerial parts (MeOH)	KCl in rabbit ileum	IC [81]	
Phloroglucinol derivatives					
115 Hyperforin	*Hypericum perforatum* (Hypericaceae)	Aerial parts (EtOH 70%)	KCl in rabbit ileum	IC [82]	
116 Hypericin	*Hypericum perforatum* (Hypericaceae)	Aerial parts (EtOH 70%)	KCl in rabbit ileum	IC [82]	
Coumarins					
117 Scopoletin	*Brunfelsia hopeana* (Solanaceae)	Root infusion (EtOH)	Phenylephrine, KCl, PGF2, serotonin in rat aorta	IC [83]	
118 Todannone	*Toddalia asiatica* var. floribunda (Rutaceae)	Aerial parts (EtOH 95%)	ACh, BaCl₂, H, nicotine in guinea pig ileum	IC [84]	
119 (2S,3R+)-2-([(3E)-4,8-dimethyl-7-hydroxy-2,3-dimethylfuro[3,2c]coumarin	*Ferula heuffelii* (Apiaceae)	Underground part (CHCl₃)	ACh, KCl in rat ileum	IC [85]	
120 Osthole	*Prangos ferulacea* (Apiaceae)	Root (Acetone)	ACh, KCl, electric field stimulation in rat ileum	IC [86]	
121 Angelicin	*Heracleum thomsoni* (Apiaceae)	Aerial part infusion (EtOH)	ACh, BaCl₂, H, S in cat ureter, guinea pig bile duct and trachea, monkey gall bladder, rabbit jejunum, and rat uterus	IC [87]	
122 Glycycoumarin	*Glycyrrhiza radix* (Leguminosae)	Root infusion (Aqueous)	A23187, BaCl₂, carbachol, KCl in mouse jejunum	IC [88]	
	Glycyrrhiza uralensis (Leguminosae)	Root infusion (Aqueous)	Carbachol in mouse jejunum	E [89]	
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
---------------	------------------	-----------------------	--------------	--------	-----------
Chalcones					
123 Davidigenin	*Mascarenhasia arborescens* (Apocynaceae)	Leaf and stem infusion (MeOH)	ACh, H in guinea pig and rat duodenum	IC	[90]
124 Isoliquiritigenin	*Glycyrrhiza glabra* (Leguminosae)	Root infusion (Aqueous)	ACh, KCl, O, spontaneous contraction in rat uterus	IC	[91]
	Glycyrrhiza ularensis (Leguminosae)	Root infusion (Aqueous)	BaCl₂, carbachol, KCl in mouse jejunum, ileum and rectum	IC	[92]
125 Licochalcone A	*Glycyrrhiza inflata* (Leguminosae)	Root infusion (Aqueous)	ACh, KCl, BaCl₂, carbachol, KCl in mouse jejunum	IC	[93]
Flavonoids					
126 (-)-Pinostrobin	*Conyza filaginoides* (Asteraceae)	Leaf infusion [CHCl₃:MeOH (1:1)]	Spontaneous contraction in rat ileum	IC	[47]
127 (-)-(S)-Sakuranetin	*Dodonaeaviscosa* (Sapindaceae)	Leaf infusion [CHCl₃:MeOH (1:1)]	ACh, BaCl₂, H in rat uterus	IC	[94]
128 (±)-Sternbin	*Artemisia monosperma* (Compositae)	Aerial part (EtOH)	ACh, O in rat ileum, pulmonary artery, urinary bladder, trachea, and uterus	IC	[95]
129 Ouratea catechin	*Maytenus rigida* (Celastraceae)	Stem bark (EtOH)	BaCl₂, carbachol, KCl, H in guinea pig ileum	IC	[96]
130 Apegenin	*Achillea millefolium* (Asteraceae)	Whole plant infusion (MeOH 40%)	ACh, CaCl₂, H, PE, S in rat ileum	IC	[97]
131 Buddleolavonol or Linarinigenin	*Achillea millefolium* (Asteraceae)	Aerial part (MeOH 40%)	ACh, KCl in guinea pig ileum	IC	[97]
132 Luteolin	*Achillea millefolium* (Asteraceae)	Aerial parts (Aqueous)	KCl, PE, S in rat aorta	E	[98]
	Artemisia copa (Compositae)	Aerial part (EtOH)	ACh, BaCl₂, H, KCl in guinea pig ileum and trachea	IC	[99]
	Plantago lanceolata (Plantaginaceae)	Leaf and flower (EtOH)	ACh, BaCl₂, carbachol, KCl in guinea pig ileum and trachea, and rat vas deferens	IC	[100]
133 Scutellarein 6-β-D-glucoside (isovitexin)	*Aloysia citridora* (Verbenaceae)	Leaf infusion (Aqueous)	ACh, CaCl₂, KCl in rat duodenum	IC	[101]
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
---------------	-----------------	-----------------------	--------------	--------	-----------
134 Vitexin	Aloysia citridora (Verbenaceae)	Leaf infusion (Aqueous)	ACh, CaCl₂, KCl in rat duodenum	IC	[101]
135 Xanthomyrcrol	Brickellia paniculata (Compositae)	Leaf infusion (MeOH)	KCl, O in rat uterus	IC	[59]
136 Demethoxycentaureidin	Piptadenia stipulacea (Leguminosae)	Aerial parts, (CHCl₃)	Carbachol, H, O, in guinea pig ileum and trachea, rat aorta and uterus	IC	[103]
137 Gnaphaliin B	Gnaphalium liebmannii (Asteraceae)	Aerial parts (Hexane)	ACh, carbachol in guinea pig trachea	IC	[104]
138 Kaempferol or Kaempherol	Hedera helix (Araliaceae)	Aerial parts (EtOH 30%)	ACh in guinea pig ileum	IC	[80]
139 Gnaphaliin A	Gnaphalium liebmannii (Asteraceae)	Aerial parts (Hexane)	ACh, carbachol in guinea pig ileum	IC	[104]
140 Quercetin	Achillea millefolium (Asteraceae)	Whole plant infusion (MeOH 40%)	ACh, CaCl₂, H, PE, serotonin in rat ileum	IC	[97]
141 3-O-Methylquercetin	Rhamnus nakaharai (Rhamnaceae)	Stem bark (not reported)	Carbachol, H, KCl in guinea pig trachea	IC	[108]
142 3,4′-Dimethylquercetin	Artemisia abrotanum (Asteraceae)	Aerial part (MeOH 67%)	Carbachol in guinea pig trachea	IC	[109]
143 3,7-Dimethylquercetin	Artemisia abrotanum (Asteraceae)	Aerial part (MeOH 67%)	Carbachol in guinea pig trachea	IC	[109]
144 Isoquercetin	Conyza ficaginoides (Asteraceae)	Leaf infusion [CHCl₃:MeOH (1:1)]	Spontaneous contraction in rat ileum	IC	[47]
	Hedera helix (Araliaceae)	Aerial parts (EtOH 30%)	ACh in guinea pig ileum	IC	[80]
	Drosera rotundifolia (Droseraceae)	Aerial parts (EtOH 70%)	Carbachol in guinea pig ileum	IC	[107]
	Drosera rotundifolia (Droseraceae)	Aerial parts (EtOH 70%)	Carbachol in guinea pig ileum	IC	[107]
	Drosera rotundifolia (Droseraceae)	Leaf extract (EtOH 70%)	Carbachol, H, PGF₂ in guinea pig ileum and trachea	IC	[106]
	Drosera rotundifolia (Droseraceae)	Leaf extract (MeOH)	Peristalsis in guinea pig ileum	IC	[105]
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
---------------	-----------------	-----------------------	--------------	--------	-----------
145 Quercetin 3-α-rhamnoside or Quercitroside	*Psidium guajava* (Myrtaceae)	Leaf extract (MeOH)	Peristalsis in guinea pig ileum	IC	[105]
	Morinda morindoides (Rubiaceae)	Leaf extract (Aqueous)	ACh, KCl in guinea pig ileum	IC	[46]
146 Quercetin 3-O-β-L-arabinoside	*Psidium guajava* (Myrtaceae)	Leaf extract (MeOH)	Peristalsis in guinea pig ileum	IC	[105]
147 Quercetin 3-O-β-D-galactoside	*Psidium guajava* (Myrtaceae)	Leaf extract (MeOH)	Peristalsis in guinea pig ileum	IC	[105]
148 Quercetin 3-O-β-gentiobioside	*Morinda morindoides* (Rubiaceae)	Leaf extract (Aqueous)	ACh, KCl in guinea pig ileum	IC	[46]
	Drosera madaseriensis (Droseraceae)	Leaf extract (EtOH 70%)	Carbachol, H, PGE2 in guinea pig ileum and trachea	IC	[106]
149 Centaureidin	*Artemisia abrotanum* (Asteraceae)	Aerial part (MeOH 67%)	Carbachol in guinea pig ileum	IC	[109]
150 Casticin or Vitexicarpin	*Artemisia abrotanum* (Asteraceae)	Aerial part (MeOH 67%)	Carbachol in guinea pig trachea	IC	[109]
151 Prunetol or Sophoricol	*Genista tridentata* (Papilionaceae)	Not reported	AC, electric field stimulation, 6-oxo PGE1 in guinea pig ileum	IC	[110]
152 Boeravinone E	*Boerhaavia diffusa* (Nyctaginaceae)	Root infusion (MeOH)	ACh in guinea pig ileum	IC	[111]
153 4,6,11-trihydroxy-9-methoxy-10-methyl-6,12-dihydro-5,7-dioxatetraphen-12-one	*Boerhaavia diffusa* (Nyctaginaceae)	Root infusion (MeOH)	ACh in guinea pig ileum	IC	[111]
154 Boeravinone G	*Garcinia buchananii* (Clusiaceae)	Stem bark (EtOH 70%)	Bay K 8644 in mouse ileum	IC	[112]
155 (2R,3S,2"R,3"R)-Manniflavonone	*Hypericum perforatum* (Hypericaceae)	Aerial parts (EtOH 70%)	KCl in rabbit jejunum	IC	[82]
156 Hyperoside	*Artemisia capa* (Compositae)	Aerial parts (Aqueous)	KCl, PE, S in rat aorta	E	[98]
157 Chrysoeriol	*Aspalathus linearis* (Fabaceae)	Commercial (Aqueous)	KCl in rabbit jejunum	IC	[102]
158 Spinacetin	*Artemisia capa* (Compositae)	Aerial parts (Aqueous)	KCl, PE, S in rat aorta	E	[98]
159 Vicenin 2	*Perilla frutescens* (Lamiaceae)	Commercial (Aqueous)	ACh, BaCl2 in rat ileum	IC	[113]
160 Orientin	*Aspalathus linearis* (Fabaceae)	Commercial (Aqueous)	KCl in rabbit jejunum	IC	[102]
Table 3: Continued.

Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
Phenylmetanoids					
Phenylmetanoids					
161 Salicylic acid methyl ether	Brickellia veronicaefolia (Asteraceae)	Aerial parts [CH$_2$Cl$_2$:MeOH (1:1)]	Gastrointestinal motility test in mouse	E	[75]
162 O-Anisic acid or 6-Methoxysalicylic acid	Brickellia veronicaefolia (Asteraceae)	Aerial parts [CH$_2$Cl$_2$:MeOH (1:1)]	Gastrointestinal motility test in mouse	E	[75]
163 Protocatechuc acid	Heder a helix (Araliaceae)	Aerial parts (EtOH 30%)	ACh in guinea pig ileum	IC	[80]
164 Benzyl 2,5-dimethoxybenzoate	Brickellia veronicaefolia (Asteraceae)	Aerial parts [CH$_2$Cl$_2$:MeOH (1:1)]	Gastrointestinal motility test in mouse	E	[75]
Phenylethanoids					
Phenylethanoids					
165 O-Methylbalsamide	Zanthoxylum hyemale (Rutaceae)	Stem bark infusion (EtOH)	ACh, BaCl$_2$ in rat ileum	IC	[114]
166 (-)-Tembamide	Zanthoxylum hyemale (Rutaceae)	Stem bark infusion (EtOH)	ACh, BaCl$_2$ in rat ileum	IC	[114]
167 O-Methyltembamide	Zanthoxylum hyemale (Rutaceae)	Steam bark infusion (EtOH)	ACh, BaCl$_2$ in rat ileum	IC	[114]
Phenylpropanoids					
Phenylpropanoids					
168 Eugenol	Ocimum gratissimum (Lamiaceae)	Not reported	ACh, KCl in guinea pig ileum	EO	[34]
169 Rosemaric acid or Rosemary acid or trans-Rosmarinic acid	Thymus vulgaris (Lamiaceae)	Commercial	KCl in rat trachea	IC	[100]
	Hedera helix (Araliaceae)				
	Hedera helix (Araliaceae)				
	Hedera helix (Araliaceae)				
170 trans-Chlorogenic acid	Hedera helix (Araliaceae)	Aerial parts (EtOH 30%)	ACh in guinea pig ileum	IC	[80]
171 cis-Chlorogenic acid	Hedera helix (Araliaceae)	Aerial parts (EtOH 30%)	ACh in guinea pig ileum	IC	[80]
172 3,5-Dicaffeoylquininic acid	Hedera helix (Araliaceae)	Aerial parts (EtOH 30%)	ACh in guinea pig ileum	IC	[80]
173 Verbascoside	Plantago lanceolata (Plantaginaceae)	Aerial part infusion (EtOH 20%)	ACh, BaCl$_2$, H, KCl in guinea pig ileum and trachea	E	[99]
174 Isoacteoside or Isoverbascoside	Plantago lanceolata (Plantaginaceae)	Aerial part infusion (EtOH 20%)	ACh, BaCl$_2$, H, KCl in guinea pig ileum and trachea	E	[99]
175 Plantamajoside or Plantamoside or Purpureaside A	Plantago lanceolata (Plantaginaceae)	Aerial part infusion (EtOH 20%)	ACh, BaCl$_2$, H, KCl in guinea pig ileum and trachea	E	[99]
176 Lavandulifolioside	Plantago lanceolata (Plantaginaceae)	Aerial part infusion (EtOH 20%)	ACh, BaCl$_2$, H, KCl in guinea pig ileum and trachea	E	[99]
177 Echinacoside	Cistanche tubulosa (Orobanchaceae)	No reported (EtOH)	KCl, PE in rat aorta	IC	[115]
178 Schisandrin A or Wuweizisu A	Schisandra chinensis (Schisandraceae)	Academic	Spontaneous contractions in rat colon	IC	[116]
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
---------------	-----------------	-----------------------	--------------	--------	-----------
Schisandrin B or Wuweizisu B	*Schisandra chinensis* (Schisandraceae)	Fruit decoction (Aqueous)	ACh, KCl, S in guinea pig ileum	IC	[117]
Schisandrol B	*Schisandra chinensis* (Schisandraceae)	Fruit decoction (Aqueous)	ACh, KCl, S in guinea pig ileum	IC	[117]
Stilbenoids					
Aloifol II or Dendrophenol or Moscatilin	*Nidema boothii* (Orchidaceae)	Whole plant infusion	Spontaneous contraction in guinea pig ileum	IC	[118]
Batatasin III	*Scaphyglottis livida* (Orchidaceae)	Whole plant infusion	ACh, BaCl$_2$, H in rat ileum	IC	[119]
4-[2-(3-hydroxy-5-methoxyphenyl)ethyl]-2-methoxyphenol	*Scaphyglottis livida* (Orchidaceae)	Whole plant infusion	ACh, BaCl$_2$, H in rat ileum	IC	[119]
Gigantol	*Nidema boothii* (Orchidaceae)	Whole plant infusion	Spontaneous contraction in guinea pig ileum	IC	[118]
Coelonin	*Scaphyglottis livida* (Orchidaceae)	Whole plant infusion	ACh, BaCl$_2$, H in rat ileum	IC	[119]
Erianthridin	*Maxillaria densa* (Orchidaceae)	Whole plant infusion	ACh, BaCl$_2$, H in rat ileum	IC	[120]
Ephemeranthoquinone	*Nidema boothii* (Orchidaceae)	Whole plant infusion	Spontaneous contraction in guinea pig ileum	IC	[118]
Nudol	*Scaphyglottis livida* (Orchidaceae)	Whole plant infusion	ACh, BaCl$_2$, H in rat ileum	IC	[120]
3,4- dimethoxyphenanthrene-2,5-diol	*Maxillaria densa* (Orchidaceae)	Whole plant infusion	ACh, BaCl$_2$, H in rat ileum	IC	[120]
3,4- dimethoxyphenanthrene-2,5-diol	*Maxillaria densa* (Orchidaceae)	Whole plant infusion	ACh, BaCl$_2$, H in rat ileum	IC	[120]
3,4- dimethoxyphenanthrene-2,5-diol	*Scaphyglottis livida* (Orchidaceae)	Whole plant infusion	ACh, BaCl$_2$, H in rat ileum	IC	[120]
Gymnopusin	*Maxillaria densa* (Orchidaceae)	Whole plant infusion	ACh, BaCl$_2$, H in rat ileum	IC	[120]
Fimbriol A	*Maxillaria densa* (Orchidaceae)	Whole plant infusion	ACh, BaCl$_2$, H in rat ileum	IC	[120]
Curcumoid					
Curcuminoid					
Benzofurans and Related					
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
---------------	------------------	-----------------------	--------------	--------	-----------
197 Ligustilide A or cis-Ligustilide	*Ligusticum wallichii* (Umbelliferae)	Rhizome (hydrodistillation)	CaCl₂, KCl in rat aorta	EO	[123]
198 12-acetoxytremetone	*Helichrysum italicum* ssp. *italicum* (Asteraceae)	Flowers (EtOH)	ACh, BaCl₂ in mouse ileum	IC	[124]
199 1-[(2R)-2-(3-hydroxyprop-1-en-2-yl)-2,3-dihydro-1-benzofuran-5-yl]ethan-1-one	*Helichrysum italicum* ssp. *italicum* (Asteraceae)	Flowers (EtOH)	ACh, BaCl₂ in mouse ileum	IC	[124]
Alkaloids					
200 Indicaxanthin	*Opuntia ficus indica* (Cactaceae)	Fruit pulp infusion (Aqueous)	Carbachol, KCl in mouse ileum	IC	[125]
201 Papaverine	*Daucus carota* (Apiaceae)	Seed infusion (MeOH 90%)	ACh, BaCl₂, H, KCl, S, O in dog trachea, guinea pig, rabbit, rat ilea, rat uterus	IC	[126]
202 Higenamine	*Nandina domestica* (Berberidaceae)	Fruit (Aqueous)	ACh, H, KCl in guinea pig trachea	IC	[127]
203 Atherospermine	*Fissistigma glaucescens* (Annonaceae)	Bark (MeOH)	Carbachol, KCl, LTC4, PGF2α, U46619 in guinea pig trachea	IC	[128]
204 (+)-Domestine or (+)-Nantenine	*Platyacanthus spicata* (Pumariaceae)	Academic supplier	BaCl₂, CaCl₂, KCl, PE, S in rat aorta and atria	IC	[129]
205 10-Methylacridone	*Citrus deliciosa* (Rutaceae)	Root juice (MeOH)	Rabbit ileum	IC	[130]
206 Spermatheridine or liriodenin	*Fissistigma glaucescens* (Annonaceae)	Leaf infusion (MeOH)	Carbachol in canine trachea	IC	[131]
207 Citpressine I	*Citrus deliciosa* (Rutaceae)	Root juice (MeOH)	Rabbit ileum	IC	[130]
208 Jatrorhizine or Neprotine	*Berberis aristata* (Berberidaceae)	Institutional supplier	ACh, S, spontaneous contractions in rat ileum	IC	[132]
209 Coptisine	*Coptis chinensis* (Ranunculaceae)	Rhizoma (EtOH 70%)	ACh in guinea pig ileum	IC	[133]
210 Escholine or Thalictrine	*Mahonia aquifolium* (Berberidaceae)	Cortex and fruit infusion	KCl, PE in rat aorta	IC	[134]
211 (+)-Isothebaine	*Mahonia aquifolium* (Berberidaceae)	Cortex and fruit infusion	KCl, PE in rat aorta	IC	[134]
212 (+)-Corytuberine	*Mahonia aquifolium* (Berberidaceae)	Cortex and fruit infusion	KCl, PE in rat aorta	IC	[134]
213 (+)-Isocorydine or Luteanine	*Mahonia aquifolium* (Berberidaceae)	Cortex and fruit infusion	KCl, PE in rat aorta	IC	[134]
214 (+)-Chelidonine or Stylphorine	*Chelidonium majus* (Papaveraceae)	Commercial supplier	BaCl₂, carbachol in guinea pig ileum	IC	[135]
Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
--	--------------------------------------	------------------------------------	-----------------------------------	--------	-----------
215 (-)-8beta-(4'-hydroxybenzyl)-2,3-dimethoxyberbin-10-ol	*Aristolochia constricta* (Aristolochiaceae)	Aerial part infusion (MeOH)	ACh, electrical contraction, H in guinea pig ileum	IC	[136]
216 3-O-methylconstrictosine	*Aristolochia constricta* (Aristolochiaceae)	Aerial part infusion (MeOH)	ACh, electrical contraction, H in guinea pig ileum	IC	[136]
217 3,5-di-O-methylconstrictosine	*Aristolochia constricta* (Aristolochiaceae)	Aerial part infusion (MeOH)	ACh, electrical contraction, H in guinea pig ileum	IC	[136]
218 5,6-dihydro-3,5-di-O-methylconstrictosine	*Aristolochia constricta* (Aristolochiaceae)	Aerial part infusion (MeOH)	ACh, electrical contraction, H in guinea pig ileum	IC	[136]
219 5,6-dihydroconstrictosine	*Aristolochia constricta* (Aristolochiaceae)	Aerial part infusion (MeOH)	ACh, electrical contraction, H in guinea pig ileum	IC	[136]
220 Constrictosine	*Aristolochia constricta* (Aristolochiaceae)	Aerial part infusion (MeOH)	ACh, electrical contraction, H in guinea pig ileum	IC	[136]
221 Isojuripidine	*Solanum asterophorum* (Solanaceae)	Leaf infusion (MeOH)	ACh, CaCl₂, H in guinea pig ileum	IC	[137]
222 Sarcodine	*Sarcococca saligna* (Buxaceae)	Whole plant (MeOH)	ACh, KCl in guinea pig ileum, rat stomach fundus, rabbit jejunum	IC	[138]
223 Saracorine or Sarcorine	*Sarcococca saligna* (Buxaceae)	Whole plant infusion (MeOH)	ACh, KCl in rabbit jejunum	IC	[139]
224 Saracocine	*Sarcococca saligna* (Buxaceae)	Whole plant (MeOH)	ACh, KCl in guinea pig ileum, rat stomach fundus, rabbit jejunum	IC	[138]
225 Alkaloid C	*Sarcococca saligna* (Buxaceae)	Whole plant (MeOH)	ACh, KCl in guinea pig ileum, rat stomach fundus, rabbit jejunum	IC	[138]
226 (-)-Pachyaximine A	*Sarcococca saligna* (Buxaceae)	Whole plant infusion (MeOH)	ACh, KCl in rabbit jejunum, KCl	IC	[139]
227 (-)-(R)-Geibalansine or (-)-R-Geibalansine	*Zanthoxylum hyemale* (Rutaceae)	Stem bark infusion (EtOH)	ACh, BaCl₂ in rat ileum	IC	[114]
228 Hyemaline	*Zanthoxylum hyemale* (Rutaceae)	Stem bark infusion (EtOH)	ACh, BaCl₂ in rat ileum	IC	[114]
229 Theophylline	*Fisistigma glaucescens* (Annonaceae)	Leaf infusion (MeOH)	Carbachol in canine trachea	IC	[131]
230 Carboxyscotangamine A	*Scopolia tanguatica* (Solanaceae)	Root (95% EtOH)	Carbachol in Chinese hamster ovarian cell	IC	[140]
231 Scotanamine A	*Scopolia tanguatica* (Solanaceae)	Root (95% EtOH)	Carbachol in Chinese hamster ovarian cell	IC	[140]
232 Piperine	*Piper nigrum* (Piperaceae)	Fruit (EtOH)	Ileum loop in mice	IC	[141]
Amines	*Scopolia tanguatica* (Solanaceae)	Root (95% EtOH)	Carbachol in Chinese hamster ovarian cell	IC	[123]
Table 3: Continued.

Compound name	Species (Family)	Preparation (Solvent)	Model tested	Source	Reference
234 Scotanamine C	*Scopolia tanguica* (Solanaceae)	Root (95% EtOH)	Carbachol in Chinese hamster ovarian cell	IC	[140]
235 Scotanamine D	*Scopolia tanguica* (Solanaceae)	Root (95% EtOH)	Carbachol in Chinese hamster ovarian cell	IC	[140]
236 N\(^1\)-Caffeoyl-N\(^3\)-dihydrocaffeoylspermidine	*Scopolia tanguica* (Solanaceae)	Root (95% EtOH)	Carbachol in Chinese hamster ovarian cell	IC	[140]
237 N\(^1\), N\(^{10}\)-Bis(dihydrocaffeoyl)spermidine	*Scopolia tanguica* (Solanaceae)	Root (95% EtOH)	Carbachol in Chinese hamster ovarian cell	IC	[140]
238 Caffeoylputrescine	*Scopolia tanguica* (Solanaceae)	Root (95% EtOH)	Carbachol in Chinese hamster ovarian cell	IC	[140]
	Cruciferous vegetables (Brassicaceae)	Commercial source	ACh, electrical contraction in mouse ileum	IC	[142]
240 (3E)-4-(3,4-dimethoxyphenyl)but-3-en-1-ol	*Zingiber cassumunar* (Zingiberaceae)	Chemically synthesized	O in rat uterus	IC	[143]
	Ruta chalepensis (Rutaceae)	Leaf (EtOH 70%)	KCl in rat ileum	E	[144]
243 2-Tridecanone	*Ruta chalepensis* (Rutaceae)	Leaf (EtOH 70%)	KCl in rat ileum	E	[144]
244 Latifolone	*Ferula heuffelii* (Apiaceae)	Underground part (CHCl\(_3\))	ACh, KCl in rat ileum	IC	[85]
245 Dshamirone	*Ferula heuffelii* (Apiaceae)	Underground part (CHCl\(_3\))	ACh, KCl in rat ileum	IC	[85]
246 6-(4-hydroxy-3-methoxyphenyl)hexanonic acid (HMPHA)	*Pycnophylla spinosa* (Umbelliferae)	Aerial parts (MeOH)	KCl in rat ileum	IC	[145]
247 Isovanillin	*Pycnophylla spinosa* (Umbelliferae)	Aerial parts (MeOH)	KCl in rat ileum	IC	[146]
248 Iso-acetovanillon	*Pycnophylla spinosa* (Umbelliferae)	Aerial parts (MeOH)	KCl in rat ileum	IC	[146]

IC = isolated compound, E = extract, EO = essential oil, ACh = acetylcholine, O = oxytocin, PMA = β-Phenylethyl amine, PGF = Prostaglandin F2α, H = histamine, S = serotonin.
Table 4: Synthetic antispasmodic compounds used in medicine.

Synthetic compound	Receptor targeted	Main use
Alkaloids		
Chlorzoxazone	Prevents release of histamine	Muscular spasm
Pancuronium	Nicotinic acetylcholine	Muscle relaxant
Riluzole	Sodium channels	Amyotrophic lateral sclerosis
Rocuronium	Antagonist of neuromuscular junction	Muscle relaxant and anaesthesia
Tizanidine	α₃ adrenergic agonist	Muscle relaxant
Vecuronium	Nicotinic acetylcholine	Muscle relaxant and anaesthesia
Curcuminoïds		
Atracurium	Nicotinic acetylcholine	Muscle relaxant and anaesthesia
Cisatracurium	Nicotinic acetylcholine	Muscle relaxant and anaesthesia
Mivacurium	Nicotinic acetylcholine	Muscle relaxant and anaesthesia
Methylpropanoid		
Diazepam	GABA_A	Anxiety, alcohol withdrawal syndrome, muscle spasms, seizures, and restless legs syndrome
Prograbide	GABA_A+B	Epilepsy
Orphenadrine		Skeletal muscle relaxant that is used for the treatment of acute muscle aches, pain, or spasms.
Phenylpropanoids		
Baclofen	GABA_B	Spinal cord injury, cerebral palsy, and multiple sclerosis
Idrocilamide	Prevents release of intracellular Ca²⁺	Skeletal muscle relaxant and muscular pain

enzymes (S9 microsomal fraction) is used to mimic the metabolites that will be produced in the liver [184]. Few studies have been performed to determine the mutagenicity of natural products with antispasmodic activity. For example, the flavonoids quercetin and luteolin were tested using the Ames method and the appearance of point mutations in four of the tested bacterial strains was shown [185]. In another study, the extracts of the plants *Brickellia veronicaefolia*, *Gnaphalium* sp., *Poliomintha longiflora*, and *Valeriana procera* were studied. Compounds isolated from these plants are listed as antispasmodic compounds (Table 3). Results of the mutagenicity test indicated that *Gnaphalium* sp., *Poliomintha longiflora* (used in the Mexican cuisine and as a traditional medicine), and *Valeriana procera* induced mutagenesis in the tested bacterial strain [186].

8. Chemical Similarities between Natural and Synthetic Antispasmodic Compounds

To determine whether or not there is an analogy between synthetic (Table 4) and natural antispasmodic compounds, the structures of both groups were compared. Results showed that no similarities were found except for alkaloids, amines, and amino acids.

One of the main differences is that commercial alkaloids are methylated in their nitrogen to make them positive, increasing their solubilities because of salt formation. In contrast, natural products have no positive nitrogen, rendering the molecule neutral and pH dependent. Thus, the compound may or may not be protonated, resulting in a change in its solubility and consequently a change on the targeting tissues.

The comparison can perhaps be focused on the distribution of charges rather than by functional groups or families of compounds, emphasizing the electron distribution. For example, a physical characterization such as the heat of formation, the surface electrostatic potential, the molecular weight, the surface tension, the refractive index, the lipophilicity, and others has been used to characterize the structure-activity relationship of alkaloids extracted from the Amaryllidaceae family [187]. These alkaloids were selected because of their ability to inhibit the effect of the acetylcholinesterase enzyme.

Of special interest is the natural compound salvinorin A isolated from the Mexican hallucinogenic *Salvia divinorum* (Lamiaceae) used in the traditional medicine as an antidiarrheal. It has been reported that this compound inhibited the intestinal motility through the activation of other receptors such as κ-opioid receptors (KORs). Upon inflammation of the gut, the cannabinoid C, B₁, and KOR receptors are upregulated. It appears that salvinorin A interacts in the cross-talk between these receptors with a reduction of the inflammation as demonstrated in murine and guinea pig models [188, 189].

Analysis of the similarities between synthetic and natural antispasmodic structures is depicted in Table 5.

9. Conclusions

A large number of natural products with antispasmodic activities have been reported. Although the use of plants in traditional medicine is still relevant, it is necessary to perform new studies to elucidate the mechanism of action.
Synthetic	Natural
Chlorzoxazone	Theophylline
Cl	
Riluzole	Butylphthalide
F	
O	
S	cis-Butylidenephthalide
NH₂	
Pancuronium	Isojuripidine
Rocuronium	Sarcodine
of antispasmodics. Moreover, more information about cytotoxicity and mutagenesis should be explored to ensure that these compounds are safe for consumption. The findings of this study corroborated the need for safety studies on plants extensively used for primary health care in countries such as Mexico. Such studies must be carried out before continuing with the widespread use of some species, which may provoke long-term and irreversible damage.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

The authors thank Marilyn Robertson for helpful discussion.

Supplementary Materials

This file contains the structures of the compounds described in the main text. (Supplementary Materials)

References

[1] D. M. Warburton, "Behavioral effects of central and peripheral changes in acetylcholine systems," *Journal of Comparative and Physiological Psychology*, vol. 68, no. 1, pp. 56–64, 1969.

[2] F. Anthony Lai, H. P. Erickson, E. Rousseau, Q.-Y. Liu, and G. Meissner, "Purification and reconstitution of the calcium release channel from skeletal muscle," *Nature*, vol. 331, no. 6154, pp. 315–319, 1988.

[3] A. Apostolidis, A. Haferkamp, and K. R. Aoki, "Understanding the Role of Botulinum Toxin A in the Treatment of the Overactive Bladder: More than Just Muscle Relaxation," *European Urology, Supplements*, vol. 5, no. 11, pp. 670–678, 2006.

[4] O. Rossetto, M. Scorzo, A. Megighian, and C. Montecucco, "Tetanus neurotoxin," *Toxicon*, vol. 66, pp. 59–63, 2013.

[5] A. Marino, V. Valveri, C. Muia et al., "Cytotoxicity of the nematocyst venom from the sea anemone Aiptasia mutabilis," *Comparative Biochemistry and Physiology - C Toxicology and Pharmacology*, vol. 139, no. 4, pp. 295–301, 2004.

[6] R. J. A. Hughes, J. A. Angus, K. D. Winkel, and C. E. Wright, "A pharmacological investigation of the venom extract of the Australian box jellyfish, Chironex fleckeri, in cardiac and vascular tissues," *Toxicology Letters*, vol. 209, no. 1, pp. 11–20, 2012.

[7] T. D. Nguyen-Huu, C. Mattei, P. J. Wen et al., "Ciguatoxin-induced catecholamine secretion in bovine chromaffin cells: Mechanism of action and reversible inhibition by brevenal," *Toxicon*, vol. 56, no. 5, pp. 792–796, 2010.

[8] M. E. P. Junqueira, L. Z. Grund, N. M. Orii et al., "Analysis of the inflammatory reaction induced by the catfish (Cathorops spixii) venoms," *Toxicon*, vol. 49, no. 7, pp. 909–919, 2007.

[9] J. Sawynok, "GABAergic mechanisms of analgesia: an update," *Pharmacology Biochemistry & Behavior*, vol. 26, no. 2, pp. 463–474, 1987.

[10] D. Quan and A.-M. Ruha, "Priapism associated with Latrodectus mactans envenomation," *The American Journal of Emergency Medicine*, vol. 27, no. 6, pp. 759–e2, 2009.

[11] N. Ahmed, M. Pinkham, and D. A. Warrell, "Symptom in search of a toxin: Muscle spasms following bites by Old World tarantula spiders (Lampropelma nigerrimum, Pterinochilus murinus, ...
Poecilotheria regalis) with review,' QJM: An International Journal of Medicine, vol. 102, no. 12, pp. 851–857, 2009.

[12] S. Liang, "An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)]," Toxicon, vol. 43, no. 5, pp. 575–585, 2004.

[13] K. J. Swartz, "Tarantula toxins interacting with voltage sensors in potassium channels," Toxicon, vol. 49, no. 2, pp. 213–230, 2007.

[14] B. A. Cromer and P. McIntyre, "Painful toxins acting at TRPV1," Toxicon, vol. 51, no. 2, pp. 163–173, 2008.

[15] Z.-F. Chai, M.-M. Zhu, Z.-T. Bai et al., "Chinese-scorpion (Buthus martensi Karsch) toxin BmK αIV, a novel modulator of sodium channels: From genomic organization to functional analysis," Biochemical Journal, vol. 399, no. 3, pp. 445–453, 2006.

[16] C. Bon, "Synergism of the two subunits of crotoxin," Toxicon, vol. 20, no. 1, pp. 105–109, 1982.

[17] C. C. Câmara, N. R. F. Nascimento, C. L. M. Cˆamara, N. R. F. Nascimento, C. L. M. Cˆamara, N. R. F. Nascimento, C. L. Macˆedo-Filho, F. B. Damascena, and T. M. D. Garcia et al., "Temporal variation of chemical composition and relaxant action of the essential oil of Calamintha glandulosa Silic on the isolated rat ileum," Phytotherapy Research, vol. 27, pp. C309–C317, 2011.

[18] H. Sadraei, G. Asghari, and F. Kasiri, "Comparison of anti-spasmodic effects of Dracocephalum kotschyi essential oil, limonene and α-terpinene," Research in Pharmaceutical Sciences, vol. 10, no. 2, pp. 109–116, 2015.

[19] A. Astudillo, E. Hong, R. Bye, and A. Navarrete, "Antispasmodic activity of extracts and compounds of Acalypha pheoides Cav.," Phytotherapy Research, vol. 18, no. 2, pp. 102–106, 2004.

[20] N. Wientkötter, D. Höpner, U. Schütte et al., "The effect of nigellone and thymoquinone on inhibiting trachea contraction and mucociliary clearance," Planta Medica, vol. 74, no. 2, pp. 105–108, 2008.

[21] S. V. Brankovic, D. V. Kićić, M. M. Radenkovic, S. M. Veljkovic, and T. D. Golubovic, "Calcium blocking activity as a mechanism of the spasmylocytic effect of the essential oil of Calamintha glandulosa Silic on the isolated rat ileum," General Physiology and Biophysics, vol. 28, pp. 174–178, 2009.

[22] K. Heimes, F. Hauk, and E. J. Verspohl, "Mode of action of peppermint oil and (-)-menthol with respect to 5-HT3 receptor subtypes: Binding studies, cation uptake by receptor channels and contraction of isolated rat ileum," Phytotherapy Research, vol. 25, no. 5, pp. 702–708, 2011.

[23] H. Ponce-Monter, M. G. Campos, S. Pérez et al., "Chemical composition and antispasmodic effect of Casimiroa pringlei essential oil on rat uterus," Fitoterapia, vol. 79, no. 6, pp. 446–450, 2008.

[24] S. V. F. Madeira, M. Rabelo, P. M. G. Soares et al., "Temporal variation of chemical composition and relaxant action of the essential oil of Ocimum gratissimum L. (Labiatae) on guinea-pig ileum," Phytochemistry, vol. 12, no. 6–7, pp. 506–509, 2005.

[25] I. Rivero-Cruz, G. Duarte, A. Navarrete, R. Bye, E. Linares, and R. Mata, "Chemical composition and antimicrobial and spasmylocytic properties of poliominthia longiflora and lippia graveolens essential oils," Journal of Food Science, vol. 76, no. 2, pp. C309–C317, 2011.

[26] S. I. H. Taqvi, A. J. Shah, and A. H. Gilani, "Insight into the possible mechanism of anti diarrheal and antispasmodic activities of piperine," Pharmaceutical Biology, vol. 47, no. 8, pp. 660–664, 2009.

[27] F. Begrow, J. Engelbertz, B. Feistel, R. Lehnfeld, K. Bauer, and E. J. Verspohl, "Impact of Thymol in thyme extracts on their antispasmodic action and ciliary clearance," Planta Medica, vol. 76, no. 4, pp. 311–318, 2010.

[28] T. Görnemann, R. Naylor, H. H. Pertz, and M. F. Melzig, "Antispasmodic activity of essential oil from Lippia dulcis Trev.," Journal of Ethnopharmacology, vol. 117, no. 1, pp. 166–169, 2008.

[29] T. A. Abere, P. E. Okoto, and F. O. Agoreyo, "Antidiarrhoea and toxicological evaluation of the leaf extract of Dissotis rotundifolia triana (Melastomataceae)," BMC Complementary and Alternative Medicine, vol. 10, article 71, 2010.

[30] F. J. B. Lima, T. S. Brito, W. B. Freire et al., "The essential oil of Eucalyptus tereticornis, and its constituents α- And β-pinene, potentiate acetylcholine-induced contractions in isolated rat trachea," Fitoterapia, vol. 81, no. 6, pp. 649–655, 2010.

[31] H. Sadraei, G. R. Asghari, V. Hajhashemi, A. Kolagar, and M. Ebrahimi, "Spasmylocytic activity of essential oil and various extracts of Ferula gummosa Boiss. on ileum contractions," Phytotherapy Research, vol. 8, no. 5, pp. 370–376, 2001.

[32] T. M. S. Da Silva, B. A. Da Silva, and R. Mukherjee, "The monoterpene alkaloid canleyeine from Strychnos trinervis root and its spasmylocytic properties," Phytotherapy Research, vol. 6, no. 3, pp. 169–176, 1999.
M. F. Cometa, L. Parisi, M. Palmery, A. Meneguz, and L. A. Nasiri, A. Holth, and L. Bjork, “Effects of the sesquiterpene

V. Leonhardt, J. H. Leal-Cardoso, S. Lahlou et al., “Antispasmodic effects of valeriana compounds: An in-vivo and in-vitro study on the guinea-pig ileum,” Archives Internationales de Pharmacodynamie et de Therapie, vol. 257, no. 2, pp. 274–287, 1982.

R. K. Cimanga, P. N. K. Mukenyi, O. K. Kambu et al., “The spasmytic activity of extracts and some isolated compounds from the leaves of Morinda morindoides (Baker) Milne-Redh. (Rubiacae),” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 215–220, 2010.

R. Mata, A. Rojas, L. Acevedo et al., “Smooth muscle relaxing flavonoids and terpenoids from Conyza filaginoides,” Planta Medica, vol. 63, no. 1, pp. 31–35, 1997.

V. Leonhardt, J. H. Leal-Cardoso, S. Lahlou et al., “Antispasmodic effects of essential oil of Pterodon polygalaeformus and its main constituent β-caryophyllene on rat isolated ileum,” Fundamental & Clinical Pharmacology, vol. 24, no. 6, pp. 749–758, 2010.

A. Nasiri, A. Hohl, and L. Bjork, “Effects of the sesquiterpene capsidiol on isolated guinea-pig ileum and trachea, and on prostaglandin synthesis in vitro,” Planta Medica, vol. 59, no. 3, pp. 203–206, 1993.

W.-C. Ko, C.-B. Le, Y.-L. Lin, and C.-F. Chen, “Mechanisms of relaxant action of S-petasin and S-isopetasin, sesquiterpenes of Petasites formosanus, in isolated guinea pig trachea,” Planta Medica, vol. 67, no. 3, pp. 224–229, 2001.

O. Maschi, E. Dal Cero, G. V. Galli, D. Caruso, E. Bossio, and M. Dell’Agli, “Inhibition of human cAMP-phosphodiesterase as a mechanism of the spasmytic effect of Matricaria recutita L.,” Journal of Agricultural and Food Chemistry, vol. 56, no. 13, pp. 5015–5020, 2008.

N. Perez-Hernandez, H. Ponce-Monter, J. A. Medina, and P. Joseph-Nathan, “Spasmytic effect of constituents from Lepechinia caulescens on rat uterus,” Journal of Ethnopharmacology, vol. 115, no. 1, pp. 30–35, 2008.

F. Emendörfer, F. Bellato, V. F. Noldin et al., “Antispasmodic activity of fractions and cynaropicrin from Cynara scolymus on guinea-pig ileum,” Biological & Pharmaceutical Bulletin, vol. 28, no. 5, pp. 902–904, 2005.

S. Ammar, H. Edziri, M. A. Mahjoub, R. Chatter, A. Bouraoui, and Z. Mighiri, “Spasmyltic and anti-inflammatory effects of constituents from Hertia cheirifolia,” Phytomedicine, vol. 16, no. 12, pp. 1156–1161, 2009.

K. Kar, V. N. Puri, G. K. Patnaik et al., “Spasmyltic constituents of Cedrus deodara (Roxb.) Loud. Pharmacological evaluation of himachalol,” Journal of Pharmaceutical Sciences, vol. 64, no. 2, pp. 258–262, 1975.

U. Pongprayoon, P. Baeckstrom, U. Jacobsson, M. Lindstrom, and L. Bohlin, “Antispasmodic activity of β-damascone and E-phytol isolated from Ipomoea pes-caprae,” Planta Medica, vol. 58, no. 1, pp. 19–21, 1992.

G. M. Natividad, K. J. Broadley, B. Kariuki, E. J. Kidd, W. R. Ford, and C. Simons, “Actions of Artemisia vulgaris extracts and isolated sesquiterpene lactones against receptors mediating contraction of guinea pig ileum and trachea,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 808–816, 2011.

H. Guo, J. Zhang, W. Gao, Z. Qu, and C. Liu, “Gastrointestinal effect of methanol extract of Radix Aucklandiae and selected active substances on the transit activity of rat isolated intestinal strips,” Pharmaceutical Biology, vol. 52, no. 9, pp. 1141–1149, 2014.

H. Ponce-Monter, S. Perez, M. A. Zavala et al., “Relaxant effect of xanthomicrol and 3α-angeloyloxy-2α-hydroxy-13,14Z-dehydroacetic acid from Brickelliapaniculata on rat uterus,” Biological & Pharmaceutical Bulletin, vol. 29, no. 7, pp. 1501–1503, 2006.

D. Rigano, G. Aviello, M. Bruno et al., “Antispasmodic effects and structure-activity relationships of labdane diterpenoids from Marrubium globosum sps. libanoticum,” Journal of Natural Products, vol. 72, no. 8, pp. 1477–1481, 2009.

S. El Bardai, N. Morel, M. Wibo et al., “The vasorelaxant activity of marrubanol and marrubini from Marrubium vulgare,” Planta Medica, vol. 69, no. 1, pp. 75–77, 2003.

L. A. Aguilar, R. S. Porto, S. Lahlou et al., “Antispasmodic effects of a new kaurene diterpene isolated from Croton argyrophylloides on rat airway smooth muscle,” Journal of Pharmacy and Pharmacology, vol. 64, no. 8, pp. 1155–1164, 2012.

S. R. Ambrosio, C. R. Tirapelli, D. Bonaventura, A. M. De Oliveira, and F. B. Da Costa, “Pimarane diterpene from Viguiera arenaria (Asteraceae) inhibit rat carotid contraction,” Fitoterapia, vol. 73, no. 6, pp. 484–489, 2002.

L. van Puyvelde, R. Lefebvre, P. Mugabo, N. De Kimpe, and N. Schamp, “Active principles of Tetradenia riparia; II. Antispasmodic activity of 8 (14),15-sandaracopimaradiene-7β,18-diol,” Planta Medica, vol. 53, no. 2, pp. 156–158, 1987.

G. Romussi, G. Ciarallo, A. Biso et al., “A new diterpenoid with antispasmodic activity from Salvia cinnabaria,” Planta Medica, vol. 67, no. 2, pp. 153–155, 2001.

A. Zamilpa, J. Tortoriello, V. Navarro, G. Delgado, and L. Alvarez, “Antispasmodic and antimicrobial diterpenic acids from Viguiera hypargyreus roots,” Planta Medica, vol. 68, no. 3, pp. 281–283, 2002.

R. F. Santos, I. R. R. Martins, R. A. Travassos et al., “Ent-7α-acetoxytrachyloban-18-β-ol and ent-7α-hydroxytrachyloban-18-β-ol from Xylopia langsdorfiana A. St-Hil. & Tul. modulate K + and Ca 2+ channels to reduce cytosolic calcium concentration on guinea pig ileum,” European Journal of Pharmacology, vol. 678, no. 1−3, pp. 39−47, 2012.

J. Hu, W.-Y. Gao, L. Ma, S.-L. Man, L.-Q. Huang, and C.-X. Liu, “Activation of M3 muscarinic receptor and Ca2+ influx by crude fraction from Crotonis Fructus in isolated rabbit jejunum,” Journal of Ethnopharmacology, vol. 139, no. 1, pp. 136–141, 2012.

M. Ghanadian, H. Sadrarai, S. Yousuf, G. Asghari, M. I. Choudhary, and M. Jahed, “New diterpene polyester and phenolic compounds from Pycnocynca spinosa Decne. Ex Boiss with relaxant effects on KCl-induced contraction in rat ileum,” Phytochemistry Letters, vol. 7, no. 1, pp. 57–61, 2014.

E. Barile, R. Capasso, A. A. Izzo, V. Lanzotti, S. E. Sajjadi, and B. Zolfaghari, “Structure-activity relationships for saponins from Allium hirtifolium and Allium elburzense and their antispasmodic activity,” Planta Medica, vol. 71, no. 11, pp. 1010–1018, 2005.

S. Begum, I. Sultana, B. S. Siddiqui, F. Shaheen, and A. H. Gilani, “Structure and spasmyltic activity of eucalyptanoic acid from Eucalyptus camaldulensis var. obtusa and synthesis of its active
derivative from oleanolic acid," Journal of Natural Products, vol. 65, no. 12, pp. 1939–1941, 2002.

[72] G. Corea, E. Fattorusso, V. Lanzotti, R. Capasso, and A. A. Izzo, "Antispasmodic saponins from bulbs of red onion, Allium cepa L. var. Tropea," Journal of Agricultural and Food Chemistry, vol. 53, no. 4, pp. 935–940, 2005.

[73] M. González-Cortazar, J. Tortoriello, and L. Alvarez, "Norseofridelanes as spasmolitics, advances of structure-activity relationships," Planta Medica, vol. 71, no. 8, pp. 711–716, 2005.

[74] A. Y. S. Gomes, M. D. F. V. Souza, S. F. Cortes, and V. S. Lemos, "Mechanism involved in the spasmolytic effect of a mixture of two tripterpenes, cycloartenol and cycloecualenol, isolated from Herissanthia tiuabe in the guinea-pig ileum," Planta Medica, vol. 71, no. 11, pp. 1025–1029, 2005.

[75] F. Palacios-Espinosa, M. Déciga-Campos, and R. Mata, "Antinociceptive, hypoglycemic and spasmolitics of Brickellia veronicifolia," Journal of Ethnopharmacology, vol. 118, no. 3, pp. 448–454, 2008.

[76] O. Estrada, J. M. González-Guzmán, M. Salazar-Bookaman, A. Z. Fernández, A. Cardozo, and C. Alvarado-Castillo, "Pomolic acid of Licania pittieri elicits endothelium-dependent relaxation in rat aortic rings," Phytomedicine, vol. 18, no. 6, pp. 464–469, 2011.

[77] M. E. González-Trujano, R. Ventura-Martínez, M. Chávez, I. Díaz-Reval, and F. Pellicer, "Spasmolitics and antinociceptive activities of ursoic acid and acacetin identified in Agastache mexicana," Planta Medica, vol. 78, no. 8, pp. 793–799, 2012.

[78] S. Begum, Farhat, I. Sultana, B. S. Siddiqi, F. Shaheen, and A. H. Gilani, "Spasmolitics constituents from Eucalyptus camaldulensis var. obtusa leaves," Journal of Natural Products, vol. 63, no. 9, pp. 1265–1268, 2000.

[79] R. Aquino, S. Tortora, S. Fkih-Tetouani, and A. Capasso, "Saponins from the roots of Zygophyllum gaetulum and their spasmolytic action of scopoletin," Planta Medica, vol. 67, no. 7, pp. 605–608, 2001.

[80] A. Trute, J. Gross, E. Mutschler, and A. Nahrstedt, "In vitro spasmolytic compounds of the dry extract obtained from Hedera helix," Planta Medica, vol. 63, no. 2, pp. 125–129, 1997.

[81] N. Ali, "Brine shrimp cytotoxicity of crude methanol extract and antispasmodic activity of α-amin acetate from Tylophora hirsuta Wall," BMC Complementary and Alternative Medicine, vol. 13, article 135, 2013.

[82] A.-U. Khan, A.-H. Gilani, and Najeeb-Ur-Rehman, "Pharmacological studies on Hypericum perforatum fractions and constituents," Pharmaceutical Biology, vol. 49, no. 1, pp. 46–56, 2011.

[83] A. Y. S. Gomes, E. Fattorusso, M. D. F. V. Souza, S. F. Cortes, and V. S. Lemos, "Mechanism involved in the spasmolytic effect of a mixture of two tripterpenes, cycloartenol and cycloecualenol, isolated from Herissanthia tiuabe in the guinea-pig ileum," Planta Medica, vol. 71, no. 11, pp. 1025–1029, 2005.

[84] G. Corea, E. Fattorusso, V. Lanzotti, R. Capasso, and A. A. Izzo, "Antispasmodic saponins from bulbs of red onion, Allium cepa L. var. Tropea," Journal of Agricultural and Food Chemistry, vol. 53, no. 4, pp. 935–940, 2005.

[85] M. González-Cortazar, J. Tortoriello, and L. Alvarez, "Norseofridelanes as spasmolitics, advances of structure-activity relationships," Planta Medica, vol. 71, no. 8, pp. 711–716, 2005.

[86] A. Y. S. Gomes, M. D. F. V. Souza, S. F. Cortes, and V. S. Lemos, "Mechanism involved in the spasmolytic effect of a mixture of two tripterpenes, cycloartenol and cycloecualenol, isolated from Herissanthia tiuabe in the guinea-pig ileum," Planta Medica, vol. 71, no. 11, pp. 1025–1029, 2005.

[87] F. Palacios-Espinosa, M. Déciga-Campos, and R. Mata, "Antinociceptive, hypoglycemic and spasmolitics of Brickellia veronicifolia," Journal of Ethnopharmacology, vol. 118, no. 3, pp. 448–454, 2008.

[88] O. Estrada, J. M. González-Guzmán, M. Salazar-Bookaman, A. Z. Fernández, A. Cardozo, and C. Alvarado-Castillo, "Pomolic acid of Licania pittieri elicits endothelium-dependent relaxation in rat aortic rings," Phytomedicine, vol. 18, no. 6, pp. 464–469, 2011.

[89] M. E. González-Trujano, R. Ventura-Martínez, M. Chávez, I. Díaz-Reval, and F. Pellicer, "Spasmolitics and antinociceptive activities of ursoic acid and acacetin identified in Agastache mexicana," Planta Medica, vol. 78, no. 8, pp. 793–799, 2012.

[90] S. Begum, Farhat, I. Sultana, B. S. Siddiqi, F. Shaheen, and A. H. Gilani, "Spasmolitics constituents from Eucalyptus camaldulensis var. obtusa leaves," Journal of Natural Products, vol. 63, no. 9, pp. 1265–1268, 2000.

[91] R. Aquino, S. Tortora, S. Fkih-Tetouani, and A. Capasso, "Saponins from the roots of Zygophyllum gaetulum and their spasmolytic action of scopoletin," Planta Medica, vol. 67, no. 7, pp. 605–608, 2001.

[92] A. Trute, J. Gross, E. Mutschler, and A. Nahrstedt, "In vitro antispasmodic compounds of the dry extract obtained from Hedera helix," Planta Medica, vol. 63, no. 2, pp. 125–129, 1997.

[93] N. Ali, "Brine shrimp cytotoxicity of crude methanol extract and antispasmodic activity of α-amin acetate from Tylophora hirsuta Wall," BMC Complementary and Alternative Medicine, vol. 13, article 135, 2013.

[94] A.-U. Khan, A.-H. Gilani, and Najeeb-Ur-Rehman, "Pharmacological studies on Hypericum perforatum fractions and constituents," Pharmaceutical Biology, vol. 49, no. 1, pp. 46–56, 2011.

[95] A. Trute, J. Gross, E. Mutschler, and A. Nahrstedt, "In vitro antispasmodic compounds of the dry extract obtained from Hedera helix," Planta Medica, vol. 63, no. 2, pp. 125–129, 1997.

[96] N. Ali, "Brine shrimp cytotoxicity of crude methanol extract and antispasmodic activity of α-amin acetate from Tylophora hirsuta Wall," BMC Complementary and Alternative Medicine, vol. 13, article 135, 2013.

[97] A.-U. Khan, A.-H. Gilani, and Najeeb-Ur-Rehman, "Pharmacological studies on Hypericum perforatum fractions and constituents," Pharmaceutical Biology, vol. 49, no. 1, pp. 46–56, 2011.

[98] E. J. Oliveira, M. A. Romero, M. S. Silva, B. A. Silva, and I. A. Medeiros, "Intracellular calcium mobilization as a target for the spasmolytic action of scopoletin," Planta Medica, vol. 67, no. 7, pp. 605–608, 2001.

[99] V. Lakshmi, S. Kapoor, K. Pandey, and G. K. Patnaik, "Spasmolytic activity of Toddalia asiatica var. floribunda," Phytotherapy Research, vol. 16, no. 3, pp. 281-282, 2002.

[100] I. Pavlović, A. Krunic, D. Nikolic et al., "Chloroform extract of underground parts of ferula heuffelii: Secondary metabolites and spasmolytic activity," Chemistry & Biodiversity, vol. 11, no. 9, pp. 1417–1427, 2014.

[101] H. Sadraei, Y. Shokoohinia, S. E. Sajjadi, and M. Mozafari, "Antispasmodic effects of Prangos ferialisaceae acetone extract and its main component osthole on ileum contraction," Research in Pharmaceutical Sciences, vol. 8, no. 2, pp. 137–144, 2013.
linearis) is mediated predominantly through K+ channel activation," Basic & Clinical Pharmacology & Toxicology, vol. 99, no. 5, pp. 365–373, 2006.

[103] C. L. Macêdo, L. H. C. Vasconcelos, A. C. D. Correia et al., "Spasmolytic effect of galtenin 3,6-dimethyl ether, a flavonoid obtained from Piptadenia stipulacea (Benth) Duke," Journal of Smooth Muscle Research, vol. 47, no. 5, pp. 123–134, 2011.

[104] F. Rodriguez-Ramos and A. Navarrete, "Solving the confusion of gnaphalin structure: Gnaphalin A and gnaphalin B identified as active principles of Gnaphalin liebmannii with tracheal smooth muscle relaxant properties," Journal of Natural Products, vol. 72, no. 6, pp. 1061–1064, 2009.

[105] X. Lozoya, M. Meckes, M. Abou-Zaid, J. Tortoriello, C. Nozzolillo, and J. T. Arnsan, "Quercetin glycosides in Psidium guajava L. leaves and determination of a spasmolytic principle," Archives of Medical Research, vol. 25, no. 1, pp. 11–15, 1994.

[106] M. F. Melzig, H. H. Pertz, and L. Krenn, "Anti-inflammatory and spasmolytic activity of extracts from Drosera Herba," Phytomedicine, vol. 8, no. 3, pp. 225–229, 2001.

[107] L. Krenn, G. Beyer, H. H. Pertz et al., "In vitro antispasmodic and anti-inflammatory effects of Drosera rotundifolia," Arzneimittel-Forschung/Drug Research, vol. 54, no. 7, pp. 402–405, 2004.

[108] W. C. Ko, H. L. Wang, C. B. Lei, C. H. Shiht, M. I. Chung, and C. L. Krenn, G. Beyer, H. H. Pertz et al., "In vitro antispasmodic effect of guaianolides from Boerhaavia diffusa and evaluation of their effect on isolated guinea-pig ileum," Plant Biology, vol. 11, no. 1, pp. 129–132, 2005.

[109] S. Estrada, A. Rojas, Y. Mathison, A. Israel, and R. Mata, "Nitric oxide/cGMP mediates the spasmolytic action of 3,4'-dihydroxy-5,5'-dimethoxybibenzyl from Scaphyglottis livida," Planta Medica, vol. 65, no. 2, pp. 109–114, 1999.

[110] S. Estrada, J. J. López-Guerrero, R. Villalobos-Molina, and R. Mata, "Spasmolytic stilbenoids from Maxillaria densa," Fitoterapia, vol. 75, no. 7–8, pp. 690–695, 2004.

[111] C. Ithipanichpong, W. Kemsri, N. Ruangrungsi, and A. Sawsedipanich, "Antispasmodic effects of curcuminoids on isolated guinea-pig ileum and rat uterus," Journal of the Medical Association of Thailand, vol. 86, no. 2, pp. S299–S309, 2003.

[112] K. Seya, K.-I. Furukawa, S. Taniguchi et al., "Endothelium-dependent vasodilatory effect of vitisin C, a novel plant oligostilbene from Vitis plants (Vitaceae), in rabbit aorta," Clinical Science, vol. 105, no. 1, pp. 73–79, 2003.

[113] M.-J. Liang, L.-C. He, and G.-D. Yang, "Screening, analysis and in vitro vasodilation of effective components from Lignicusticum Chuanxiong," Life Sciences, vol. 78, no. 2, pp. 128–133, 2005.

[114] D. Rigano, C. Formisano, F. Senatore et al., "Intestinal antispasmodic effects of Helichrysum italicum (Roth) Don spp. italicum and chemical identification of the active ingredients," Journal of Ethnopharmacology, vol. 150, no. 3, pp. 901–906, 2013.

[115] S. Baldassano, L. Tesorieri, A. Rotundo, R. Serio, M. A. Livrea, and F. Mulè, "Inhibition of the mechanical activity of mouse ileum by cactus pear (Opuntia ficus Indica, L. Mill.) fruit extract and its pigment indicaxanthin," Journal of Agricultural and Food Chemistry, vol. 58, no. 13, pp. 7565–7571, 2010.

[116] S. S. Gambhir, S. P. Sen, A. K. Sanyal, and P. K. Das, "Antispasmodic activity of the tertiary base of Dauceus carota, Linn. seeds," Indian Journal of Physiology and Pharmacology, vol. 23, no. 3, pp. 225–228, 1979.

[117] M. Tsukiyama, Y. Ueki, Y. Yasuda et al., "f2-adrenoceptor-mediated tracheal relaxation induced by higenamine from nandina domestica thunberg," Planta Medica, vol. 75, no. 13, pp. 1393–1399, 2009.

[118] C.-H. Lin, F.-N. Ko, Y.-C. Wu, S.-T. Lu, and C.-M. Teng, "The relaxant actions on guinea-pig trachealis of atherosperminine isolated from Fissistigma glaucescens; Europe Journal of Pharmacology, vol. 237, no. 1, pp. 109–116, 1993.

[119] F. Orallo, "Pharmacological effects of (+)-nantenine, an alkaloid isolated from Platyacnopus spicata, in several rat isolated tissues," Planta Medica, vol. 69, no. 2, pp. 135–142, 2003.

[120] A. M. El-Shafae and A. S. Soliman, "A pyranocoumarin and two alkaloids (one with antispasmodic effect) from Citrus delicosa," Die Pharmazie, vol. 53, no. 9, pp. 640–643, 1998.

[121] C. Lin, C. Yang, F. Ko, Y. Wu, and C. Teng, "Antimuscarinic action of liriodenine, isolated from Fissistigma glaucescens, in canine tracheal smooth muscle," British Journal of Pharmacology, vol. 113, no. 4, pp. 1464–1470, 1994.

[122] J. Yuan, J. Zhou, Z. Hu, G. Ji, X. Xie, and D. Wu, "The effects of jatrorrhizine on contractile responses of rat ileum," European Journal of Pharmacology, vol. 663, no. 1-3, pp. 74–79, 2011.

[123] M. Zhao, Y. Xian, S. Ip, H. H. S. Fong, and C. Che, "A new and weakly antispasmodic protoberberine alkaloid from rhizoma copitidis," Phytotherapy Research, vol. 24, no. 9, pp. 1414–1416, 2010.
