Supporting information for

Enhanced heating rate of black carbon above planetary boundary layer over megacities in summertime

Dantong Liu¹, Delong Zhao²,³,⁶, Zhenzhen Xie⁴, Chenjie Yu⁷, Ying Chen⁸, Ping Tian²,³, Shuo Ding¹, Kang Hu¹, Douglas Lowe⁷, Quan Liu²,³, Wei Zhou²,³, Fei Wang²,³, Jiujiang Sheng²,³, Shaofei Kong⁵, Dawei Hu⁷, Zhenzhu Wang⁹, Deping Ding²,³

¹Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, China
²Beijing Weather Modification Office, Beijing, China
³Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, Beijing, China
⁴Huaian Meteorological Observatory of Jiangsu Province, Huaian, China
⁵Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China
⁶School of Atmospheric Sciences, Nanjing University, Nanjing, China
⁷Centre for Atmospheric Sciences, School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
⁸Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
⁹Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
Parameter	Input value
Radiative transfer solver	DISORT, 12-streams, delta-m method
Gas absorption parameterization	LOWTRAN/SBDART parameterization
Wavelength range	250-2550nm
Atmosphere	Standard Mid-latitude Summer atmosphere
Aerosol	All profiles use 200m altitude bin
	AOD profile derived from in-situ PCASP measurement, also applying an exponential λ-dependent function
	SSA profile derived from in-situ PCASP and SP2 measurement
	Asymmetry factor (g) profile derived from in-situ PCASP measurement
	Henyey-Greenstein phase function
Location	34.04°N, 117.48°E
Time	Aircraft profile time 9:30, 12:00 or 14:30
Solar zenith angle	Effective solar zenith angle
	Using aircraft profile time and location
Surface albedo	IGBP surface type 13 (Urban)
Cloud	One dimensional water cloud profile [Hu and Stamnes, 1993], liquid water content (LWC) and effective radius is derived from FCDP measurement
	Cloud cover is 0.15 according to aircraft camera

Table S1. Input parameters for radiative transfer calculation.
Parameters	Instrument	Additional information
Wind speed/direction, temperature, RH	Aircraft Integrated Meteorological Measurement System (AIMMS-20)	Wing-mounted
Size distribution 0.12-2.5μm	Passive Cavity Aerosol Spectrometer Probe (PCASP-100X)	Wing-mounted
Size distribution 0.006 -0.52μm	Engine Exhaust Particle Sizer (EPS)	In the cabin
Cloud liquid water content	Fast cloud droplet probe (FCDP)	Wing-mounted
rBC mass, size distribution and mixing state	Single particle soot photometer (SP2)	In the cabin

Table S2. Summary of the instruments and measured parameters in this study.
Fig. S1. (a) Pressure chart and wind field at geopotential height 700hpa, with the black square marking the flight region for Xuzhou summer flight 20180714. (b) Flight patterns in 0713-0715. From top to bottom panel on each figure: solar elevation angle with night time in red shade (elevation angle <0°), and the grey bars mark the periods when vertical profiles were performed; wind direction and wind speed profiles measured by the wind profile radar located close to Xuzhou.
Fig. S2. Lidar extinction measured at Huaian and Hefei on 0714 and 0715. The circles mark the aerosol layer above the PBL observed in the early afternoon.

Fig. S3. MODIS cloud images in the visible, and AOD (the image colour), in 0713, 0714 and 0715. The black square marks the region of flight path.
Fig. S4. Size distributions at altitude 1-2km for flight 20180715 midday profile, including the size distribution from EPS (d=6-550nm), the PCASP (d=0.12-2.5\(\mu\)m), uncoated and coated rBC size distribution from the SP2. The dash lines show the lognormal fitting on the uncoated and coated rBC size distribution.
Xuzhou summer
Beijing summer

Fig. S5. Vertical profiles of in-situ measured temperature, potential temperature and relative humidity for three campaigns. The large and small markers denote the PBL and FT respectively. The cloud layer was detected by the FCDP measurement during Xuzhou campaign, shown in blue lines in the middle panel. The right panel shows a typical picture of clouds taken by aircraft camera on 0714 and 0715 respectively.
Fig. S6. Vertical profiles of number concentration of Aitken mode particles (8-100nm measured by the EPS), accumulation mode particles (measured by the PCASP), PM$_1$ derived from the PCASP and the effective diameter (D_{eff}) from the PCASP for Xuzhou campaign.
Fig. S7. Vertical profiles of BC-related properties using identical legends with Fig. 2 but for the flight 0713 during Xuzhou campaign. For Beijing winter and summer campaigns, only rBC mass loading and coating information are shown.
Fig. S8. Input parameters (AOD, SSA and g) at λ=870nm for Libradtran radiative transfer calculation during Xuzhou campaign.
Fig. S9. Modelled actinic flux, direct and diffuse irradiances for Xuzhou campaign, the dash lines show the irradiance without aerosol input.
Fig. S10. Example for the calculation of BC heating power in the PBL during Xuzhou flight 20180714. From top to bottom: λ-segregated actinic flux; BC mass absorption cross section (MAC) for uncoated and coated BC; BC core size-resolved absorption power at each λ.