Enantioselective Copper-Catalyzed Synthesis of Trifluoromethyl-Cyclopropylboronates

Julia Altarejos, David Sucunza, Juan J. Vaquero, and Javier Carreras*

ABSTRACT: A copper-catalyzed enantioselective cyclopropanation involving trifluorodiazoethane in the presence of alkenyl boronates has been developed. This transformation enables the preparation of 2-substituted-3-(trifluoromethyl)-cyclopropylboronates with high levels of stereocontrol. The products are valuable synthetic intermediates by transformation of the boronate group. This methodology can be applied to the synthesis of novel trifluoromethylated analogues of trans-2-arylcyclopropylamines, which are prevalent motifs in biologically active compounds.

Cyclopropanes are widespread carbocycles in bioactive natural and synthetic compounds. It is currently a standard fragment in drug discovery, which allows one to modulate properties such as lipophilicity, metabolic stability, pKa or binding, among others. Nowadays, it is present in numerous drugs, for example Ticagrelor, which is active against cardiovascular diseases, or Tezacaftor, which is used to treat cystic fibrosis.

Numerous methods have been described for the synthesis of substituted cyclopropanes. Among all the different possibilities, the preparation of cyclopropanes with fluorinated groups, in particular trifluoromethyl, is of special interest. This functional group is present in a vast number of therapeutic compounds. However, the enantioselective procedures for the preparation of trifluoromethylcyclopropanes are scarce in the literature. All the existing protocols, which are summarized in Scheme 1a, led to cyclopropanes with an unsubstituted carbon on the three-membered ring. For this reason, there is still a need to develop efficient enantioselective methodologies to prepare all-carbon-substituted trifluoromethylcyclopropanes.

On the other hand, the synthesis of versatile cyclopropanes, such as cyclopropylboronates, has also attracted the interest of the synthetic community. A boronate group can be easily transformed into a wide range of different functional groups. This allows the generation of compound libraries from a common structure. In this area, several strategies have been recently developed to prepare optically active cyclopropylboronates, including cyclopropanation of alkyl boronates with diazo compounds, borylative cyclization of allylic carbonates, phosphonates, or epoxides, hydroboration of cyclopro-
2 h (Table 1, entry 1). This point was crucial from a practical point of view, as cyclopropane 2a was not easily separable from the starting material by column chromatography. Further increases in the amount of the diazo compound (4 equiv) combined with a longer reaction time (6 h) raised the conversion to 90% (Table 1, entries 2–4). The relative configuration of cyclopropane 2a was determined by 1H NMR experiments (see the Supporting Information).

Gratifyingly, good results of diastereoenantiocontrol were obtained under these catalytic conditions (92:8 dr, 95:5 er). We examined different organic solvents such as THF or toluene (see SI). Toluene significantly reduced reactivity and diastereoselectivity, and THF led to no conversion of the olefin. Subsequently we investigated different co-merically available BOX ligands. Whereas the iPrBOX (L2) ligand decreased the conversion and stereocntrol of the reaction, PhBOX (L3) slightly improved the diastereoselectivity (entries 5–6). At this stage, concentration of trifluorodiazoethane was increased from ca. 0.5 to 1 M, con-ducting to complete conversion (entry 7). Furthermore, the amount of diazo compound could be reduced to 2 equiva-lents (entry 8).

Under the optimized conditions, using 5 mol % of [Cu(NCMe)$_4$]PF$_6$ and fBuBOX as the catalyst and 2 equiv of trifluorodiazoethane added during 6 h, 69% of cyclopropylboronate 2a was isolated, with high level of stereo-control (94:6 dr, 95:5 er). With the optimized conditions in hand, the scope of the cyclopropanation was examined (Scheme 2). The procedure was successful with a variety of (E)-alkenyl boronates, considering electron-withdrawing and electron-donating groups (alkyl, halogens, trifluoromethyl, ether and ester substituents) at different positions in the aromatic substituent of the olefin. Moderate to good yields were obtained for the entire series (40%–77%) and high stereoselectivity was also achieved, in terms of diastereoselectivity (up to 95:5) and enantioselectivity (up to 97:3). Notably, both parameters increase as the electron density of the aromatic ring decreases. A similar result was obtained with an electron-rich heterocycle such as thiophene (2l), with moderate enantioselectivity (90:10 er). Furthermore, an aliphatic-substituted cyclopropane (2m) was also accessible with moderate yield and levels of enantioinduction. In several substrates, an increase of the equivalents of trifluorodiazoethane was necessary to achieve complete conversion, whereas the reaction was suppressed in the presence of functional groups such as nitrile or nitro. The absolute configuration of the stereogenic centers of the cyclopropane were determined by single-crystal X-ray diffraction (XRD) analysis of 2-bromo and 2-methoxy derivatives 2i and 2l (Scheme 2).15

As mentioned above, cyclopropylboronates are versatile intermediates in organic synthesis by the transformation of the C–B bond. To highlight the synthetic utility of the new compounds, we performed several transformations of the pinacol boronate group, following reported methodologies (Scheme 3). Boronic acid 3 was smoothly obtained by treatment with methylboronic acid.20 Standard conditions of Suzuki–Miyaura cross-coupling led to 3-trifluoromethyl-1,2-diarylsubstituted cyclopropane 4 in good yield. Furthermore, oxidation of the boronate group could be achieved under basic conditions to get alcohol 5.10 Finally, amination of the cyclopropylboronate was accomplished by using BCl$_3$ and BnN$_3$ to get the benzylamine derivative in good yield (6).21 The latter transformations gave access to substituted trans-2-trifluoromethylcyclopropan-1-amine and trans-2-trifluoromethylcyclopropanol, rarely described in the literature in an enantioselective manner.12

Then, we focused our interest in amine derivative 6, as a trifluoromethylated analogue of trans-2-arylcylopropylamines. This scaffold is common to numerous biological active
compounds23 and is present in drugs such as Tranylcypromine (an antidepressant), Ticagrelor (a platelet aggregation inhibitor), or candidates under clinical trials for the treatment of cancer and neurodegenerative diseases.23,24 Because of the implication of F atoms in the properties of bioactive compounds,25 we targeted the enantioselective synthesis of a CF\textsubscript{3} analogue of a lysine-specific demethylase 1 (LSD1) inhibitor (Scheme 4). The amination of cyclopropylboronate 2a with 3-(azidomethyl)-2-methoxypyridine (7) allowed us to obtain the trifluoromethyl analogue 8 of LSD1 inhibitor in a good yield.

Scheme 2. Substrate Scope of Copper-Catalyzed Cyclopropanation of Alkenyl Boronates4

```
| Reaction conditions: | [Cu(NCMe)\textsubscript{4}]PF\textsubscript{6} (0.03 mmol, 5 mol \%), (S,S)-L3 (0.03 mmol, 5 mol \%), DCE (1.5 mL), inert atmosphere trifluorodiazoothane in DCE (2 equiv), 6 h slow addition. Isolated yields. | 76% at 1.25 mmol scale. |
|----------------------|---------------------------------------------------------------------------------|------------------------|
| a                    | 1 (0.61 mmol), [Cu(NCMe)\textsubscript{4}]PF\textsubscript{6} (0.03 mmol, 5 mol \%), (S,S)-L3 (0.03 mmol, 5 mol \%), DCE (1.5 mL), inert atmosphere trifluorodiazoothane in DCE (2 equiv), 6 h slow addition. Isolated yields. | 76% at 1.25 mmol scale. |
| b                    | Trifluorodiazoothane (6 equiv). |
| c                    | Trifluorodiazoothane (4 equiv). |
| d                    | Thermal ellipsoids are drawn at the 50% probability level. |
```

Scheme 3. Transformations of Cyclopropylboronate Ester

```
| Reaction conditions: | (a) MeB(OH)\textsubscript{2} (5 equiv), TFA (5\%)/DCM, 8 h, 72\%. | 62% |
|----------------------|-----------------------------------------------------------------|------|
| a                    | 1 (5 equiv), TFA (5\%)/DCM, 8 h, 72\%. | 62% |
| b                    | 4-iodoanisole (1.5 equiv), Pd\textsubscript{2}(dba)\textsubscript{3}·CHCl\textsubscript{3} (10 mol \%), PPh\textsubscript{3} (1 equiv), Ag\textsubscript{2}O (1.5 equiv), THF, 70 °C, 24 h, 45\%. | 50% |
| c                    | 3 M NaOH 30\% H\textsubscript{2}O\textsubscript{2}, THF, 30 min, 68\%. | 50% |
| d                    | BCl\textsubscript{3} (5.0 equiv, CH\textsubscript{2}Cl\textsubscript{2}, 25 °C, 1.5 h), then BnN\textsubscript{3} (3.0 equiv, CH\textsubscript{2}Cl\textsubscript{2}, from 0 to 25 °C, 2 h), 51\%. | 51% |
```

Scheme 4. Preparation of a Trifluoromethyl Analogue of LSD1 Inhibitor

```
| Reaction conditions: | (a) BCl\textsubscript{3} (5.0 equiv, CH\textsubscript{2}Cl\textsubscript{2}, 25 °C, 1.5 h), then BnN\textsubscript{3} (3.0 equiv, CH\textsubscript{2}Cl\textsubscript{2}, from 0 to 25 °C, 2 h), 51\%. | 55% |
|----------------------|-----------------------------------------------------------------|------|
| a                    | BCl\textsubscript{3} (5.0 equiv, CH\textsubscript{2}Cl\textsubscript{2}, 25 °C, 1.5 h), then BnN\textsubscript{3} (3.0 equiv, CH\textsubscript{2}Cl\textsubscript{2}, from 0 to 25 °C, 2 h), 51\%. | 55% |
| b                    | BnN\textsubscript{3} (3.0 equiv, CH\textsubscript{2}Cl\textsubscript{2}, from 0 to 25 °C, 2 h), 51\%. | 51% |
```

In summary, we have developed a catalytic approach for the preparation of enantiomerically enriched 2-substituted-3-(trifluoromethyl)cyclopropylboronates by cyclopropanation of (E)-alkenyl boronates with trifluorodiazoothane. This methodology is general for a variety of substrates, using commercially available copper catalyst and ligand. Valuable synthetic intermediates can be obtained by the functionalization of the C–B bond. This route provides straightforward access to enantioenriched 2-aryl-3-(trifluoromethyl)-cyclopropylamines, a relevant scaffold in medicinal chemistry.
ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c02420.

Experimental procedures; characterization data; 1H, 13C, 11B and 19F NMR spectral data; HPLC; mass spectrometry data of new compounds and X-ray crystallographic data for 2i and 2l (PDF)

Accession Codes

CCDC 2079480 and 2079481 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 1 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Javier Carreras – Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, and Instituto de Investigación Química Andrés Manuel del Río (IQAR), Alcalá de Henares 28805, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (I RyCIS), Madrid 28034, Spain; orcid.org/0000-0002-1521-6758; Email: javier.carreras@uah.es

Authors

Julia Alterejos – Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, and Instituto de Investigación Química Andrés Manuel del Río (IQAR), Alcalá de Henares 28805, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (I RyCIS), Madrid 28034, Spain

David Sucunza – Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, and Instituto de Investigación Química Andrés Manuel del Río (IQAR), Alcalá de Henares 28805, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (I RyCIS), Madrid 28034, Spain; orcid.org/0000-0002-3307-4204

Juan J. Vaquero – Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, and Instituto de Investigación Química Andrés Manuel del Río (IQAR), Alcalá de Henares 28805, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (I RyCIS), Madrid 28034, Spain; orcid.org/0000-0002-3820-9673

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c02420

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge MICINN (PID2019-105007GA-I00, CTQ2017-85263-R), Instituto de Salud Carlos III (FEDER funds, ISCIII RETIC REDINREN RD16/0009/0015), Comunidad de Madrid and Universidad de Alcalá (CM/JIN/2019-025, CCG19/CC-038) for financial support. We thank Dr. C. Gola, University of Göttingen, for the X-ray analyses of compounds 2i and 2l. We also thank Dr. Pedro Pérez and Dr. Ana Caballero, Universidad de Huelva, for fruitful discussions and Pilar Franco (Chiral Technologies) for HPLC advice. J.A. thanks MEFP for a predoctoral contract.

REFERENCES

(1) For selected reviews, see: (a) Ebner, C.; Carreira, E. M. Cyclopropanation Strategies in Recent Total Syntheses. Chem. Rev. 2017, 117, 11651–11679. (b) Casar, Z. Synthetic Approaches to Contemporary Drugs That Contain the Cyclopropyl Moiety. Synthesis 2020, 52, 1315–1345.

(2) (a) Talete, T. T. The "Cyclopropyl Fragment" Is a Versatile Player That Frequently Appears in Preclinical/Clinical Drug Molecules. J. Med. Chem. 2016, 59, 8712–8756. (b) Bauer, M. R.; Di Fruscia, P.; Lucas, S. C. C.; Michaelides, I. N.; Nelson, J. E.; Storer, R. I.; Whitehurst, B. C. Put a Ring on It: Application of Small Aliphatic Rings in Medicinal Chemistry. RSC Med. Chem. 2021, 12, 448–471.

(3) Wijeyeratne, Y. D.; Joshi, R.; Heptinstall, S. Ticagrelor: A P2Y12 Antagonist for Use in Acute Coronary Syndromes. Expert Rev. Clin. Pharmacol. 2012, 5, 257–269.

(4) Hughes, D. L. Patent Review of Synthetic Routes and Crystalline Forms of the CFTR-Modulator Drugs Ivacaftor, Lumacaftor, Tezacaftor, and Elecaftor. Org. Process Res. Dev. 2019, 23, 2302–2322.

(5) Pellissier, H., Lattanzi, A.; Dalpozzo, R. Asymmetric Cyclopropanation. In Asymmetric Synthesis of Three-Membered Rings; John Wiley & Sons, Ltd., 2017; pp 1–204.

(6) For a selected reviews, see: (a) Decaens, J.; Couve-Bonnaire, S.; Charrette, A. B.; Poisson, T.; Jubault, P. Synthesis of Fluoro-, Monofluoromethyl-, Difluoromethyl-, and Trifluoromethyl-Substituted Three-Membered Rings. Chem. - Eur. J. 2021, 27, 2935–2962. For recent examples: (b) Cyrl, P.; Flynn-Robitaille, J.; Boissarie, P.; Mariner, A. Mild andDiazo-Free Synthesis of Trifluoromethyl-Cyclopropanes Using Sulfonium Ylides. Org. Lett. 2019, 21, 2265–2268. (c) Chen, G.-S.; Yan, X.-X.; Chen, S.-J.; Mao, X.-Y.; Li, Z.-D.; Liu, Y.-L. Diastereoselective Synthesis of 1,3-Diyne-Tethered Trifluoromethylcyclopropanes through a Sulfur Ylide Mediated Cyclopropanation/DBU-Mediated Epimerization Sequence. J. Org. Chem. 2020, 85, 6522–6620. (d) Chernyk, A. V.; Ollir, O. S.; Kuchkovska, Y. O.; Volochynyuk, D. M.; Yarmolchuk, V. S.; Grygorenko, O. O. Fluororoalkyl-Substituted Cyclopropane Derivatives: Synthesis and Physicochemical Properties. J. Org. Chem. 2020, 85, 12692–12702.

(7) Meanwell, N. A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosters for Drug Design. J. Med. Chem. 2018, 61, 5822–5880.

(8) (a) Le Maux, P.; Jaullard, S.; Simonneaux, G. Asymmetric Synthesis of Trifluoromethylphenyl Cyclopropanes Catalyzed by Chiral Metalloporphyrins. Synthesis 2006, 2006, 1701–1704. (b) Denton, J. R.; Sukumaran, D.; Davies, H. M. L. Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes. Org. Lett. 2007, 9, 2625–2628. (c) Morandi, B.; Mariampillai, B.; Carreira, E. M. Enantioselective Cobalt-Catalyzed Preparation of Trifluoromethyl-Substituted Cyclopropanes. Angew. Chem., Int. Ed. 2011, 50, 1101–1104. (d) Tinoco, A.; Steck, V.; Tyagi, V.; Fasan, R. Highly Diastereoand Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes via Myoglobin-Catalyzed Transfer of Trifluoromethylcarbene. J. Am. Chem. Soc. 2017, 139, 5293–5296. (e) Kotozaki, M.; Chanthamath, S.; Fujii, T.; Shibatomi, K.; Iwasa, S. Highly Enantioselective Synthesis of Trifluoromethyl Cyclopropanes by Using Ru(II)–Pheox Catalysts. Chem. Commun. 2018, 54, 5110–5113. (f) Huang W.-S.; Schlinquer, C.; Poisson, T.; Pannecoucke, X.; Charrette, A. B.; Jubault, P. General Catalytic Enantioselective Access to Monohalomethyl and Trifluoromethyl Cyclopropanes. Chem. - Eur. J. 2018, 24, 10339–10343. (g) Carminati, D. M.; Decaens, J.; Couve-Bonnaire, S.; Jubault, P.; Fasan, R. Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF2-Containing Trisubstituted Cyclopropanes. Angew. Chem., Int. Ed. 2021, 60, 7072–7076.
1,2,3-Trisubstituted Cyclopropanes Using gem-Dizinc Reagents. J. Iridium-Catalyzed Enantioselective C(sp3)-Dibutyl 2-(Trifluoromethyl)Cyclopropylboronate as a Useful Tetrahedron Lett. TRPV1. (Trifluoromethyl)Cyclopropyl Donor: Application to Antagonists of propanes. J. Am. Chem. Soc. J. Allylboronic Acids by Enantioselective 1,2-Borotropic Migration. Adv. Synth. Multigram Synthesis and C Tymtsunik, A. V.; Kovtunenko, V. O.; Komarov, I. V. Copper-Catalyzed Desymmetrization of 1,2-Disubstituted Cyclopropyltrifluoroborates. O. O. Cu/Copper-Catalyzed Diastereo- and Enantioselective Desymmetrization of Cyclopropenes: Synthesis of Cyclopropylboronates. Copper(I)-Catalyzed Enantioselective Hydroboration of Cyclopropenes: Synthesis of Opticaly Active Boron Derivatives from Fragments. Adv. Synth. Catal. 2019, 131, 15624–15626.

(16) Shi, Y.; Gao, Q.; Xu, S. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Enantioselective C(sp3)–H Borylation of Cyclopropanes. J. Am. Chem. Soc. 2019, 141, 10599–10604.

(17) Duncton, M. A. J.; Ayala, L.; Kaub, C.; Janaganí, S.; Edwards, W. T.; Orike, N.; Ramamoorthy, K.; Kincaid; J.; Kelly, M. G. Highly Trifluoromethylated 2-(Triﬂuoromethyl)cyclopropenylboronate as a Useful (Triﬂuoromethyl)cyclopropenyl Donor: Application to Antagonists of TRPV1. Tetrahedron Lett. 2010, 51, 1009–1011.

(18) Jonker, S. J. T.; Jayarajan, R.; Kireilis, T.; Deliaval, M.; Eriksson, L.; Szabó, K. J. Organo catalytic Synthesis of α-Trifluoromethyl Allylic Boronates by Enantioselective 1,2-Borotropic Migration. J. Am. Chem. Soc. 2020, 142, 21254–21259.

(19) CCDC 2079481 (21) and CCDC 2079480 (21) contain the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

(20) Hinkes, S. P. A.; Klein, C. D. P. Virtues of Volatility: A Facile Transesterification Approach to Boronic Acids. Org. Lett. 2019, 21, 3048–3052.

(21) Hupe, E.; Marek, I.; Knochel, P. Diastereoselective Reduction of Alkenylboronic Esters as a New Method for Controlling the Stereoechemistry of up to Three Adjacent Centers in Cyclic and Acyclic Molecules. Org. Lett. 2002, 4, 2861–2863.

(22) See reference 8e. For some racemic examples, see: (a) Mykhailiuk, P. K.; Afonin, S.; Ulrich, A. S.; Komarov, I. V. A Convenient Route to Trifluoromethyl-Substituted Cyclopropane Derivatives. Synthesis 2008, 2008, 1757–1760. (b) Yarmolchuk, V.; Bezduyn, A.; Tolmachev, A; Tolmachev, A; Mykhailiuk, P. An Efficient and Safe Method for the Multigram Synthesis of Trans-2-(Triﬂuoromethyl)Cyclopropylamine. Synthesis 2012, 44, 1152–1154. and references cited therein. (c) Miyamura, S.; Itami, K.; Yamaguchi, J. Syntheses of Biologically Active 2-Arylcyclopropylamines. Synthesis 2017, 49, 1131–1149. For recent synthetic examples, see: (b) Miyamura, S.; Araki, M.; Suzuki, T.; Yamaguchi, J.; Itami, K. Stereodivergent Synthesis of Aryl cyclopropylamines by Sequential C-H Borylation and Suzuki–Miyaura Coupling. Angew. Chem., Int. Ed. 2015, 54, 846–851.

In the future, this research may be extended to the synthesis of other functionalized cyclopropanes, possibly with applications in drug discovery and materials science.

(23) This paper provides a detailed protocol for the synthesis of 1,2,3-trisubstituted cyclopropanes using gem-dizinc reagents, highlighting the versatility of this methodology in the construction of complex organic scaffolds.

(24) The authors have synthesized a variety of functionalized cyclopropanes, demonstrating the utility of their protocol for the synthesis of diverse and functionalized cyclopropane derivatives.

(25) Although the focus of this paper is on the synthesis of cyclopropanes, the methodologies described could be extended to the synthesis of other challenging carbon frameworks, offering new possibilities for the construction of complex organic molecules.