OPERATOR SPLITTING FOR DISSIPATIVE DELAY EQUATIONS

ANDRÁS BÁTKAI, PETRA CSOMÓS, AND BÁLINT FARKAS

Abstract. We investigate operator splitting methods for a special class of nonlinear partial differential equations with delay. Using results from the theory of nonlinear contraction semigroups in Hilbert spaces, we explain the convergence of the splitting procedure. The order of the convergence is also given in some important, linear special cases.

1. Introduction

Partial differential equations with delay play an increasingly important role in modeling physical, chemical, economical, etc. phenomena, since it is quite natural to assume that past occurrences effect the model. For further motivation see for example the monographs by Wu [26] or Bátkai and Piazzera [3].

There has been lots of work describing the asymptotic behavior and regularity of solutions, as well as in the numerical analysis of ordinary differential equations with delay, see for example the monograph by Bellen and Zennaro [4]. The numerical analysis of partial differential equations with delay, however, seems to be in its infancy. The present paper aims to contribute to this topic in analyzing an operator splitting procedure for nonlinear partial differential equations with delay.

Operator splitting is widely used in numerical analysis of complex systems. The idea is to decompose the differential equation into simpler equations which can be solved in an effective way, and then represent the solution of the original equation using product formulae. For ordinary differential equations, the theory seems to be quite complete, as witnessed in Hairer-Lubich-Wanner [15, Section II.4,5]. There has also been enormous progress in the theoretical investigation of splitting procedures for infinite dimensional systems in recent years, see for example the monographs by Faragó and Havasi [13], Holden et al. [17], Hundsdorfer and Verwer [18], or Lubich [24]. See also the recent papers by Bátkai et al. [2, 1], where nonautonomous equations and spatial approximations are also considered. Unfortunately, abstract results analyzing the order of convergence are rather incomplete, and, as it seems, can be applied to delay equations only with enormous difficulty.

The idea to apply splitting procedures to delay equations is the following. Consider, e.g., a delay equation of the form

$$ u'(t) = \Delta u(t) + \sin \left(u(t-1) + \int_{-0.5}^{0} \sigma \cdot u(t+\sigma) \, d\sigma \right). $$

1991 Mathematics Subject Classification. 47D06, 47N40, 65J10, 34K06.

Key words and phrases. Operator splitting, Trotter product formula, spatial approximation, C_0-semigroups, delay equation.

Supported by the Alexander von Humboldt-Stiftung.
with some initial and boundary conditions. The delay term appearing here represents the two main classes of possible delays in applications: point delays corresponding to dependence on a single event in the past, and distributed delays (given by an integral term) corresponding to dependence on a whole time period in the past. In our opinion, distributed delays are more realistic in modeling.

Since the delay term is in a way a scalar operator, it is natural to decompose the equation into two sub-problems: the heat equation
\[w'(t) = \Delta w(t), \]
and a scalar-valued delay equation
\[v'(t) = \sin \left(v(t - 1) + \int_{-0.5}^{0} \sigma \cdot v(t + \sigma) \, d\sigma \right). \]

Both equations can be solved numerically in an effective way. Note that the second equations becomes here an ordinary differential equation with delay, hence the methods described in Bellen and Zennaro [4] can be applied.

Our aim is to put this example in an abstract perspective explaining the convergence and analyzing the order of convergence in some special cases. To be more specific, we will consider on the Hilbert space \(H \) the following abstract delay differential equation
\[
\begin{cases}
\frac{du(t)}{dt} = Bu(t) + \Phi u_t, & t \geq 0, \\
u(0) = x \in H, \\
u_0 = f \in L^p([-1, 0]; H),
\end{cases}
\]
where \(u: [-1, \infty) \to H \) is unknown and the history function \(u_t \) defined by \(u_t(\sigma) := u(t + \sigma) \) for \(s \in [-1, 0] \). The further precise definitions and assumptions will be made in Section 2, see also the monograph Bátkai and Piazzera [3]. In many cases, as explained above, it is easier to solve the equation without delay and the “pure” delay equation separately. In this case, it is natural to apply some operator splitting procedure described below.

Let us fix a time-step \(h > 0 \) and solve first the equation
\[
\begin{cases}
\frac{dv^{(1)}(t)}{dt} = \Phi v^{(1)}_t, & t \in [0, h], \\
v^{(1)}(0) = x =: x_1, \\
v^{(1)}_0 = f =: f_1.
\end{cases}
\]
Then for \(y_1 := v^{(1)}(h) \) we solve the equation
\[
\begin{cases}
\frac{dw^{(1)}(t)}{dt} = Bw^{(1)}(t), & t \in [0, h], \\
w^{(1)}(0) = y_1.
\end{cases}
\]
To initialize the next step we set
\[x_2 := w^{(1)}(h), \]
\[f_2 := w^{(1)}_h. \]
Then we start the procedure again by solving Equation (SP1) on the time-interval \(t \in [h, 2h] \) with initial values \((x_2, f_2) \). We iterate this procedure and solve the purely
delayed equation

\[
\begin{cases}
\frac{dv^{(k)}(t)}{dt} = \Phi v^{(k)}_t, & t \in [(k-1)h, kh], \\
v^{(k)}((k-1)h) = x_k, \\
v^{(k)}_{(k-1)h} = f_k.
\end{cases}
\]

(SPk/1)

Then we take \(y_k := v^{(k)}(kh) \) and solve equation without delay

\[
\begin{cases}
\frac{dw^{(k)}(t)}{dt} = Bw^{(k)}_t, & t \in [(k-1)h, kh], \\
w^{(k)}((k-1)h) = y_k.
\end{cases}
\]

(SPk/2)

Finally, we initialize

\[
x_{k+1} := w^{(k)}(kh) \\
f_{k+1} := w^{(k)}_{kh}.
\]

The sequentially split solution at time level \(t = kh \) is then

\(u^{sq}(kh) := x_{k+1}. \)

We shall show that for fixed \(t \in [0, \infty) \) and for \(h \to 0 \) \((t = kh, \text{ so } k \to \infty) \) this split solution \(u^{sq}(kh) \) converges to \(u(t) \).

This procedure is especially useful, if we can drastically reduce the computational complexity of the problem by the splitting. This is, e.g., the case if \(\Phi = C \delta(-1) \) is a point delay. Hence, we can integrate the first split equation explicitly, reducing the problem to solving the second equation, a classical partial differential equation. For a different splitting procedure, designed specifically for distributed delays, we refer to Csomόs and Nickel \[8\].

Besides the sequential splitting there are other splitting methods known in the literature. However for the sake of simplicity, in this paper we only deal with the sequential and the first order Lie splitting. The convergence of higher order splitting schemes can be explained along the same lines. More refined convergence analysis of higher order splitting, and numerical experiments are subject to further research.

In Section 2, we show a way to rewrite a delay equation as an abstract Cauchy problem, and show how to associate nonlinear contraction semigroups to that. Also basic facts and about such semigroups are recalled there. These results are then used to explain the convergence of the splitting procedure. In the final Section 3 we study the order of convergence in some important special, linear cases.

2. THE DELAY SEMIGROUP

Consider the abstract delay equation of the following form (see, e.g., Bάtkai and Piazzera [3]):

\[
\begin{cases}
\frac{du(t)}{dt} = Bu(t) + \Phi u_t, & t \geq 0, \\
u(0) = x \in H, \\
u_0 = f \in L^p([-1,0];H)
\end{cases}
\]

(1)

on the Hilbert space \(H \) where \(1 \leq p < \infty \) and \(u_t \) is the history function, i.e.

\(u_t(\sigma) = u(t + \sigma), \quad t \geq 0, \sigma \in [-1,0]. \)
It is possible to transform the delay equation (1) into an abstract Cauchy problem, see Bátkai and Piazzera [3]. In order to do so, we take the product space $E := H \times L^p([-1, 0]; H)$ and the new unknown function as

$$
t \mapsto U(t) := \begin{pmatrix} u(t) \\ u_t \end{pmatrix} \in E.
$$

Then (1) can be written as an abstract Cauchy problem on the space E

$$
\begin{cases}
\frac{dU(t)}{dt} = GU(t), & t \geq 0, \\
U(0) = \begin{pmatrix} x \\ f \end{pmatrix} \in E,
\end{cases}
$$

where the operator G is given by the operator matrix

$$
G := \begin{pmatrix} B & \Phi \\ 0 & \frac{d}{dt} \end{pmatrix}
$$

on the domain $D(G) := \left\{ \begin{pmatrix} x \\ f \end{pmatrix} \in D(B) \times W^{1, p}([-1, 0]; H) : f(0) = x \right\}$.

It is shown in Bátkai and Piazzera [3, Corollary 3.5, Proposition 3.9] that the delay equation (1) and the abstract Cauchy problem (2) are equivalent, i.e., they have the same solutions. More precisely, the first coordinate of the solution of (2) always solves (1).

Now the abstract Cauchy problem (2) can be solved by semigroup theoretic methods. These we recall briefly.

The best Lipschitz constant of a Lipschitz continuous function $T : X \to X$ on a Banach space X is denoted by $\|T\|_{\text{Lip}}$. The operator T is called then a contraction if $\|T\|_{\text{Lip}} \leq 1$. A subset $A \subset X \times X$ is called dissipative if for each $\alpha > 0$, $(I - \alpha A)^{-1}$ is a function and a contraction. We call A m-dissipative if $D(A) = X$ and for all $\alpha > 0 \text{ ran}(I - \alpha A) = X$ ($D(A)$ is the domain of definition of A). A family T of Lipschitz continuous operators on the Banach space X is called a strongly continuous semigroup of type $\omega \in \mathbb{R}$ if

1. $T(t) : X \to X$ for all $t \geq 0$,
2. $T(t)T(s)x = T(t+s)x$ for all $t, s \geq 0$, and $T(0) = I$,
3. $\|T(t)\|_{\text{Lip}} \leq e^{\omega t}$ for all $t \geq 0$,
4. $\lim_{t \to 0} T(t)x = x$.

The central point in this theory is the theorem of Crandall and Liggett [7] generalizing the classical Hille-Yosida Theorem.

Theorem 2.1. Let $A \subset X \times X$ be ω-m-dissipative for some $\omega \in \mathbb{R}$, i.e. suppose that $A - \omega I$ is m-dissipative. Then A generates a strongly continuous semigroup of type ω given by the formula

$$
T(t)x = \lim_{n \to \infty} (I - \frac{t}{n} A)^{-n} x
$$

for all $x \in X$ and $t \geq 0$.

If A generates a semigroup in this way, we call the abstract Cauchy problem associated to A well-posed on X. We return to our Cauchy problem (2), which under the next conditions becomes well-posed on E.

Assumption 2.2. Suppose that

1. there is $\alpha \in \mathbb{R}$ such that $B - \alpha I$ is m-dissipative and hence B is the generator of a strongly continuous (nonlinear) semigroup V on H, and
(2) $\Phi : W^{1,p}([-1,0]; H) \rightarrow H$ is an operator defined as follows. Let $g : H \rightarrow H$ be a Lipschitz continuous function with Lipschitz constant β, and let $\eta : [-1,0] \rightarrow \mathcal{L}(H)$ be a function of bounded variation with values as bounded linear operators. Assume further that $\eta(-1) = 0$ and that $\lim_{\sigma \to -1} \eta(\sigma) \neq 0$.

Now the operator Φ is given as

$$\Phi(f) := g \left(\int_{-1}^{0} d\eta(\sigma) f(\sigma) \right) \quad \text{for } f \in C([-1,0]; H).$$

Following Webb [25, Section 4], it is possible to find a new equivalent norm in \mathcal{E} such that the operator $G - \gamma I$ becomes an m-dissipative operator and hence the generator of a (nonlinear) semigroup. We define

$$\tau(r) := \int_{-1}^{r} |d\eta(\sigma)|$$

denote the total variation of η on $[-1,r]$. Let us introduce the new equivalent norm as

$$\left\| (\tilde{f}) \right\| := \left(\|x\|^p + \int_{-1}^{0} |f(\sigma)|^p \tau(\sigma) \, d\sigma \right)^{\frac{1}{p}} \quad \text{for } (\tilde{f}) \in \mathcal{E}.$$

Then we have the following result, see Webb [25, Proposition 4.1].

Theorem 2.3. If $p > 1$, then $G - \gamma I$ is m-dissipative in \mathcal{E} for

$$\gamma = \max\{0, \tau(0)(\frac{1}{p} + \frac{\beta}{q}) + \alpha\},$$

where $\frac{1}{p} + \frac{1}{q} = 1$. If $p = 1$ and $\beta \leq 1$, then $G - \gamma I$ is m-dissipative in \mathcal{E}, where $\gamma = \max\{0, \tau(0) + \alpha\}$.

Let us turn our attention to the splitting procedure described in the introduction. On the semigroup level in the product space \mathcal{E} this corresponds to the splitting

$$\mathcal{A}_1 = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}, \quad \mathcal{A}_2 = \begin{pmatrix} 0 & \Phi \\ 0 & \frac{d}{d\sigma} \end{pmatrix},$$

with $D(\mathcal{A}_1) = D(B) \times L^p([-1,0], \tau; H)$ and $D(\mathcal{A}_2) = \{ (\tilde{\tilde{f}}) \in H \times W^{1,p}([-1,0], \tau; H) : f(0) = x \}$. These operators generate strongly continuous semigroups of the form

$$\mathcal{T}_1(t) = \begin{pmatrix} V(t) & 0 \\ 0 & I \end{pmatrix}, \quad \mathcal{T}_2(t) \begin{pmatrix} x \\ f \end{pmatrix} = \begin{pmatrix} v(t) \\ v_t \end{pmatrix},$$

with I being the identity operator on $L^p([-1,0], \tau; H)$ and

$$v(t) = x + \int_{0}^{t} \Phi v_\sigma \, d\sigma,$$

see Webb [25, Proposition 5.12]. If we denote the projection to the first coordinate with

$$\mathcal{P}_1(\tilde{\tilde{f}}) := x,$$
then the sequential splitting (after k steps with time step h) can be written as

$$u^{sq}(hk) = P_1 \left[(T_1(h)T_2(h))^k \right].$$

Our first aim is to show the convergence $u^{sq}(hk) \to u(t) = P_1 U(t)$ for $k \to \infty$ and $kh = t$.

The main abstract technical tool in investigating splitting procedures are Lax-Chernoff type theorems and variants of the Lie-Trotter product formula for non-linear semigroups. Such result were proved in the paper by Brezis and Pazy [5, Section 3], and improved by Kobayashi [20]. We recall here the important results for our investigation.

Theorem 2.4. (a) Let A, B, and $A+B$ are ω-m-dissipative sets in a Banach space X generating the semigroups S, T, and U, respectively. Then

$$U(t)x = \lim_{n \to \infty} \left[(I - \frac{t}{n}A)^{-1} (I - \frac{t}{n}B)^{-1} \right]^n x$$

for all $x \in X$.

(b) If, in addition, X is a Hilbert space and $A + B$ is closed, then

$$U(t)x = \lim_{n \to \infty} \left[S \left(\frac{t}{n} \right) T \left(\frac{t}{n} \right) \right]^n x.$$

We shall refer to the case (a) as the Lie-splitting, and to case (b) as the sequential splitting. For more general product formulae we refer to the seminal paper by Lions and Mercier [23].

The extra condition about the Banach space in (b) is important, as a counterexample by Kurtz and Pierre [22] shows. Nevertheless, one can fairly relax this condition by requiring that X has uniformly Gateaux differentiable norm, see Kobayashi [21]. It seems to be folklore that a separable Banach space can be equivalently renormed such that the new norm has this differentiability property. Note however, that for a Hilbert space H and $1 < p < \infty$, the norm of the H-valued Bochner space $L^p(H)$ is uniformly Gateaux differentiable (by a result of Day [9] the space $L^p(H)$ is uniformly convex and uniformly smooth, which is even more than what is required; see also Diestel [10, Sec.2.3]). All in all we note that the above theorem is applicable in the situation of the delay equation, i.e., for the semigroups T_1 and T_2 on the product space $\mathcal{E} = H \times L^p([-1,0]; H)$, as described above. Notice too that one has to endow the product space with an appropriate smooth and uniformly convex product norm (see Clarkson [6]).

After all these preparations, we obtain the following general convergence result.

Theorem 2.5. Suppose that Assumption 2.2 holds. Consider the delay equation (1) and the splitting of the operator $G = A_1 + A_2$ described above. For every $p \in (1, \infty)$ the sequential splitting given by the formulae (SPk/1) and (SPk/2) and Lie splitting converge in $H \times L^p([-1,0]; \tau; H)$.

Proof. By Theorem 2.3 the semigroups T_1, T_2 and T are all of type γ for some $\gamma \in \mathbb{R}$. Since $A_1 + A_2$ is readily seen to be closed (and generates T), Theorem 2.4 and the paragraph thereafter yield the proof.

\[\square \]

3. Splitting in linear case

We now turn to the case of linear delay equations and prove convergence of the sequential splitting together with error estimates. Further analysis of more complicated equations is subject to ongoing research. For the terminology on linear semigroups we refer to Engel and Nagel [11].
First we show how an abstract semigroup result can be applied directly to the problem, demonstrating the power of the semigroup approach. To obtain some error estimates one can apply a general result by Hansen and Ostermann [16, Theorem 3.1].

Theorem 3.1. Assume that operators \(A_1 \) and \(A_2 \) generate (linear) contraction \(C_0 \)-semigroups in the Hilbert space \(E \) and that \(G = A_1 + A_2 \) generates the strongly continuous semigroup \(T \) and satisfies

\[
D(G^2) \subset D(A_1 A_2).
\]

Then the for sufficiently smooth initial values the Lie- and the sequential splittings have first order convergence, i.e., for every \((\tilde{\gamma}) \in D(G^2) \),

\[
\left\| (I - h A_1)^{-1}(I - h A_2)^{-1}(\tilde{\gamma}) - T(h)(\tilde{\gamma}) \right\| \leq C \cdot h^2 \cdot \| (\tilde{\gamma}) \|_{G^2} \quad \text{and} \quad \left\| T_1(h)T_2(h)(\tilde{\gamma}) - T(h)(\tilde{\gamma}) \right\| \leq C \cdot h^2 \cdot \| (\tilde{\gamma}) \|_{G^2}.
\]

For other abstract error estimates, see for example Jahnke and Lubich [19] or Faragó and Havasi [12].

Theorem 3.2. Assume that \(B \) generates a linear contraction \(C_0 \)-semigroup and that the linear operator \(\Phi \) satisfies the condition \(\text{ran} \Phi \subset D(B) \). Then for \((\tilde{\gamma}) \in D(G^2) \) the sequential splitting is of first order.

Proof. To prove the desired estimate, we have to check the conditions in Theorem 3.1 for the operators

\[
A_1 = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & \Phi \\ 0 & \frac{d}{dx} \end{pmatrix},
\]

with their respective domains, see Section 2.

By Theorem 2.3, we know that each operator \(A_i \) generates a contraction semigroup in \(E \). Hence, we only have to check the domain condition.

Consider first the right-hand side. Then

\[
D(A_1 A_2) = \left\{ (\tilde{\gamma}) \in D(A_2) : A_2(\tilde{\gamma}) \in D(A_1) \right\}
= \left\{ (\tilde{\gamma}) \in D(A_2) : \Phi f \in D(B) \right\} = D(A_2)
\]

since \(\text{ran} \Phi \subset D(B) \).

For the left-hand side we obtain

\[
D(G^2) = \left\{ (\tilde{\gamma}) \in D(G) : G(\tilde{\gamma}) \in D(G) \right\} = \left\{ (\tilde{\gamma}) \in D(G) : (Bx + \Phi f) \in D(G) \right\} = \left\{ (\tilde{\gamma}) \in D(B) \times W^{2,p}([-1,0] ; H) : f(0) = x, f'(0) = Bx + \Phi f \in D(B) \right\}.
\]

Hence,

\[
D(G^2) \subset D(G) \subset D(A_2) = D(A_1 A_2),
\]

and the assertion is proved. \(\square \)

We now want to weaken the assumption about \(\text{ran} \Phi \) and still obtain a convergence rate result. To do so we directly calculate the local error of the splitting. The splitting procedure is certainly stable, as all appearing semigroups are of type \(\gamma \). So without changing the stability of the splitting, we can take arbitrary equivalent norms on \(E \), and so get rid of the function \(\tau \). Let us record this fact for later reference: there exist constants \(M \geq 1 \) and \(\omega \in \mathbb{R} \) such that

\[
\| (T_1(t)T_2(t))^k \| \leq M \omega^k t \quad \text{holds for all } t \geq 0, k \in \mathbb{N},
\]
where \mathcal{T}_1 and \mathcal{T}_2 are the semigroups generated by the operators

$$\mathcal{A}_1 = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}, \quad \mathcal{A}_2 = \begin{pmatrix} 0 & \Phi \\ 0 & \frac{d\Phi}{dt} \end{pmatrix},$$

with $D(\mathcal{A}_1) = D(B) \times L^p([-1,0];H)$ and

$$D(\mathcal{A}_2) = \left\{ (\tau_j) \in H \times W^{1,p}([-1,0];H) : f(0) = x \right\},$$

and are given by (5).

Further, by the calculations in Section 2 and by the results in Bátkaí and Piazzera [3, Section 3.1], we know that the semigroup \mathcal{T} generated by $(\mathcal{G}, D(\mathcal{G}))$ is given by

$$\mathcal{T}(t)(\tau_j) = \begin{pmatrix} u(t) \\ u_t \end{pmatrix},$$

and we have

$$u_t(\sigma) = \begin{cases} u(t+\sigma) & \text{if } t+\sigma > 0, \\ f(t+\sigma) & \text{if } t+\sigma \leq 0. \end{cases}$$

Here is now the assumption replacing the one “$\text{ran } \Phi \subseteq D(B)$”. The price we shall pay for weakening the assumption is, however, that we will have to improve the regularity of the initial condition.

Assumption 3.3. Let Y be a Banach space, $p \in (1, \infty)$, and consider the linear operator

$$\Phi : W^{1,p}([-1,0];Y) \to Y$$

given by

$$\Phi f = \int_{-1}^{0} d\eta(\sigma) f(\sigma),$$

with $\eta : [0,1] \to \mathcal{L}(Y)$ of bounded variation, such that for some $\sigma_0 < 0$

$$\eta : [\sigma_0, 0] \to \mathcal{L}(Y)$$

is Lipschitz continuous.

a) Suppose that the above holds for $Y = H$.

b) Suppose that the above holds for $Y = D(B)$.

c) Assume further that

$$\eta(-1) = 0 \quad \text{and that} \quad \lim_{\sigma \to -1} \eta(\sigma) \neq 0.$$

Informally, this means that Φ maps $D(B)$-valued functions into $D(B)$ and that there are no point delays accumulating around zero. Note that if the operator Φ is “scalar”, for example if $\Phi = c\delta_{-1}$ with $c \in \mathbb{C}$, then this condition is always satisfied, while the conditions of the previous Theorem 3.2 are not.

In what follows, we abbreviate the norm notation $\|\cdot\|_{L^p([-1,0];D(B))}$ to $\|\cdot\|_{L^p(D(B))}$, and similarly to all function spaces defined on $[-1,0]$ with values in H or $D(B)$.

Theorem 3.4. Assume that $p \geq 1$, B generates a linear contraction semigroup in the Hilbert space H, and that Assumption 3.3 a) and b) are satisfied. Define

$$D := \left\{ (\tau_j) \in D(B^2) \times W^{1,p}([-1,0];D(B)), \ f \in \text{Lip}([-1,0];H), f(0) = x \right\}.$$

Then for $(\tau_j) \in D$ the sequential splitting is of first order. More precisely, for all $T_0 > 0$ there is a constant $C > 0$ such that

$$\left\| \left(\mathcal{T}_i \left(\frac{t}{n} \right) \mathcal{T}_2 \left(\frac{t}{n} \right) \right)^n - \mathcal{T}(t) \left(\tau_j \right) \right\|_D \leq C \left\| \left(\tau_j \right) \right\|_D \quad \text{for all } t \in [0,T_0].$$
Lemma 3.5. Let \((\sigma) \in \mathcal{D}\) one defines
\[
\left\| \left(\frac{\sigma}{t} \right) \right\|_p := \left\| x \right\|_B + \| Bx \|_B + \| f \|_{W^{1,p}(D(B))} + \| f \|_{\text{Lip}(H)}.
\]

The proof of this theorem follows the standard route of stability analysis and estimating the local error using the variation of constants formula.

Proof. By (9) we know that \(u_t : [-t, 0] \to H, \quad u_t(\sigma) = u(t + \sigma).
\]
This is a Lipschitz continuous function, since it is continuously differentiable, with constant
\[
\sup_{\sigma \in [-t, 0]} \left\| \mathcal{P}_1 \mathcal{T}(t + \sigma) \mathcal{G} \left(\frac{\sigma}{t} \right) \right\| \leq M \left\| \mathcal{G} \left(\frac{\sigma}{t} \right) \right\|.
\]
Now, since \(f\) is assumed to be Lipschitz continuous and since \(f(0) = x = u_t(-t)\) (for \((\sigma) \in D(\mathcal{G})\)), and also by taking into account (9) again, it follows that \(u_t\) is Lipschitz continuous with the asserted constant.

Lemma 3.6. Let \((\sigma) \in \mathcal{E}\), let \(v_t := \mathcal{P}_2(T_2(t) \left(\frac{\sigma}{t} \right))\) and \(u_t := \mathcal{P}_2(T(t) \left(\frac{\sigma}{t} \right))\). Then for all \(t \in [0, -\sigma_0]\) we have
\[
\Phi v_t = \Phi u_t + O(t),
\]
where \(O(t)\) denotes a term of magnitude \(t \cdot C \max\{\|f\|_{L^p(H)}, \|x\}\) with a constant \(C\) independent of \(x\) and \(f\).

Proof. Similarly to (9) we have
\[
v_t(\sigma) = \begin{cases}
 v(t + \sigma) & \text{if } t + \sigma > 0, \\
 f(t + \sigma) & \text{if } t + \sigma \leq 0.
\end{cases}
\]
We now can write
\[
\left\| \Phi u_t - \Phi v_t \right\| = \left\| \int_{-1}^{0} d\eta(\sigma)(u_t(\sigma) - v_t(\sigma)) \right\|
\]
\[
\leq \int_{-1}^{-t} \left\| u_t(\sigma) - v_t(\sigma) \right\| d\eta(\sigma) + \int_{-1}^{0} \left\| u(t + \sigma) - v(t + \sigma) \right\| d\eta(\sigma)
\]
\[
\leq \int_{-1}^{-t} \left\| f(t + \sigma) - f(t + \sigma) \right\| d\eta(\sigma) + \int_{-1}^{0} \left\| u(t + \sigma) - v(t + \sigma) \right\| d\eta(\sigma)
\]
\[
= 0 + \int_{-t}^{0} \left\| u(t + \sigma) - v(t + \sigma) \right\| d\eta(\sigma) \leq 2M \max\{\|f\|_{L^p(H)}, \|x\}\} t.
\]
Hence

b) Let $0 \leq (t) \begin{equation}
\text{with Assumption 3.3.b). The domain of the generator is } \end{equation}

\begin{equation}
D \text{ is invariant under the semigroup } T. \end{equation}

b) For $(\gamma) \in D$ the function

$$[0, -\sigma_0] \ni s \mapsto \Phi u_s \in H$$

is Lipschitz continuous with constant $C(\|x\|_B + \|f\|_{\text{Lip}(H)} + \|f\|_{W^{1, p}(H)})$.

c) For $(\gamma) \in D$ the function

$$[0, -\sigma_0] \ni s \mapsto V(\sigma) \Phi u_s \in H$$

is Lipschitz continuous with constant $C(\|x\|_B + \|f\|_{W^{1, p}(D(B))} + \|f\|_{\text{Lip}(H)} + \|Bx\|_B)$.

Proof. a) Let \tilde{T} be the semigroup generated by the part \tilde{G} of \mathcal{G} in $\tilde{E} := D(B) \times L^p([0, 1]; D(B))$. This semigroup exists by the general facts presented in the beginning of Section 2 and by Assumption 3.3.b). The domain of the generator is

$$D(\tilde{G}) = \{ (\eta) \in D(B) \times W^{1, p}([0, 1]; D(B)), \ f(0) = x \}.$$

Hence

$$D = D(\tilde{G}) \cap (H \times \text{Lip}([0, 1]; H)).$$

The space $D(\tilde{G})$ is invariant under \tilde{T}. It is easy to see that for $(\gamma) \in D$ we have $T(t)(\gamma) = \tilde{T}(t)(\gamma)$ for all $t \geq 0$. This follows from the fact that $D \subset D(\tilde{G})$, from the uniqueness of the classical solutions of (1), and from the comparison of the topologies of E and \tilde{E}. Next, since $D(\tilde{G}) \subseteq D(\tilde{G})$ from Lemma 3.5 we obtain that $T(t)(\gamma) \in D$.

b) Let $0 \leq s \leq t \leq -\sigma_0$ and take $(\eta) \in D$. By the definition of u_t we have

$$\|\Phi u_s - \Phi u_t\| = \left\| \int_{-1}^{0} \|f(\eta) (u_s(\sigma) - u_t(\sigma))\| \, d\sigma \right\| \leq \int_{-1}^{0} \|u_s(\sigma) - u_t(\sigma)\| \, d\sigma.$$

The first of these three terms can be estimated as

$$\int_{-1}^{t} \|f(\eta)(s) - f(\eta)(t + \sigma)\| \, d\sigma.$$

Similarly, since u is a classical solution of the delay equation (by $D \subset D(\tilde{G}) \subseteq D(\tilde{G})$), it is continuously differentiable and hence Lipschitz continuous. Hence the
third term can be bounded in a similar way as the first. For the Lipschitz constant here note that
\[
(z'(t)) \rightarrow \tilde{T}(t) \tilde{G}(z(t)) = \mathcal{T}(t) \mathcal{G}(\tilde{z}),
\]
and hence
\[
L \leq M(\|Bx + \Phi f\| + \|f\|_{L^p(H)}).
\]
Finally, in the second term we integrate on the interval \([-t, -s]\) with \(t, s \leq -\sigma_0\).
Hence this term can be bounded by \(C(t-s)(\|x\| + \|f\|_{L^p(H)})\), where \(C\) depends on \(\mathcal{T}\) and on the Lipschitz constant of \(\eta\) on \([\sigma_0, 0]\).
c) By the considerations in part a), we have that for \((t^*) \in \mathcal{D}\), the function
\[
s \rightarrow P_2 \tilde{T}(s)(t^*) \in W^{1,p}([-1, 0]; D(B))
\]
is continuous, and hence especially bounded on \([0, 1]\) by
\[
\sup_{s \in [0, 1]} \|P_2 \tilde{T}(s)(t^*)\|_{W^{1,p}(D(B))} \leq \sup_{s \in [0, 1]} \|\tilde{T}(s)(t^*)\|_\mathcal{D} \leq M(\|Bx\|_B + \|f\|_{W^{1,p}(D(B))}).
\]
This shows the first assertion, since \(\Phi \in \mathcal{L}(W^{1,p}([-1, 0]; D(B)), D(B))\) by Assumption 3.3.b). The second statement is a trivial consequence now, since for large \(\lambda > 0\) the function \([0, 1] \ni s \mapsto V(s)R(\lambda, B) \in \mathcal{L}(H)\) is Lipschitz, hence so is \(s \mapsto V(s)R(\lambda, B)(\lambda - B)\Phi u_s\) if we take into account also part b). The Lipschitz constant is
\[
L = C(\|x\|_B + \|f\|_{W^{1,p}(D(B))} + \|f\|_{Lip(H)} + \|Bx + \Phi f\|_B),
\]
where \(C\) does not depend on \(x\) and \(f\). \(\square\)

Lemma 3.8 (Local error). There is a constant \(K > 0\) such that for all \(t \in [0, -\sigma_0)\) we have
\[
\left\|\mathcal{T}_1(t)\mathcal{T}_2(t)(t^*) - \mathcal{T}(t)(t^*)\right\|_\mathcal{D} \leq K t^2 \left\|\left(t^*\right)\right\|_\mathcal{D} \text{ for all } (t^*) \in \mathcal{D}.
\]

Proof. Take \((t^*) \in \mathcal{D}\), and let \(u, u_t, v, v_t\) be as in (5) and (8), respectively. We can write
\[
V(t)v - u(t) = V(t)x + V(t) \int_0^t \Phi u_s \, ds - V(t)x - \int_0^t V(t-s)\Phi u_s \, ds.
\]
By Lemma 3.6, this is further equal to
\[
= V(t)x + V(t) \int_0^t \Phi u_s \, ds - V(t)x - \int_0^t V(t-s)\Phi u_s \, ds + \int_0^t \mathcal{O}(s) \, ds
\]
\[
= \int_0^t V(t-s)(V(s)\Phi u_s - \Phi v_s) \, ds + \mathcal{O}(t^2)
\]
\[
= \int_0^t V(t-s)(V(s)\Phi u_s - \Phi u_0) \, ds + \int_0^t V(t-s)(\Phi u_0 - \Phi u_s) \, ds + \mathcal{O}(t^2).
\]
By Lemma 3.7, the function \([0, -\sigma_0] \ni s \mapsto \Phi u_s\) is Lipschitz-continuous, and the function \([0, -\sigma_0] \ni s \mapsto V(s)\Phi u_s\) is Lipschitz continuous. Denoting their Lipschitz constant with \(L\), we obtain that
\[
\|V(t)u(t) - v(t)\| \leq MLt^2 + Mlt^2 + \|\mathcal{O}(t^2)\| \leq Ct^2 \left\|\left(t^*\right)\right\|_\mathcal{D}.
\]
As for the second coordinates, we can write
\[
\left\| u_t - v_t \right\|_{L^p((H)}^p = \int_0^1 \left\| u_t(\sigma) - v(t + \sigma) \right\|^{p} \, d\sigma
\]
\[
= \int_{-t}^0 \left\| u(t + \sigma) - v(t + \sigma) \right\|^{p} \, d\sigma \leq C t^{2p+1} (\left\| f \right\|_{L^p((H)} + \left\| x \right\|)^p.
\]
This finishes the proof by defining K in terms of the constant C from the above. □

Proof of Theorem 3.4. Without loss of generality we may assume $T_0 = 1$ (the constant C shall depend on T_0, however). By a standard telescopic summation we get
\[
(T_1(\frac{s}{n})T_2(\frac{s}{n}))^n - T(t) = \sum_{k=0}^{n-1} (T_1(\frac{s}{n})T_2(\frac{s}{n}))^{n-k} (T_1(\frac{s}{n})T_2(\frac{s}{n}) - T(\frac{s}{n})) T(\frac{s}{n})^k.
\]
As we have seen in Lemma 3.7, the set \mathcal{D} is invariant under the delay semigroup T, and also from this Lemma 3.7 and Lemma 3.5 it follows that for some $M \geq 1$
\[
\left\| T(s)(\frac{j}{n}) \right\|_{\mathcal{D}} \leq M \left\| (\frac{j}{n}) \right\|_{\mathcal{D}} \text{ for all } s \in [0,1], \ (\frac{j}{n}) \in \mathcal{D}.
\]
From Theorem 2.5 we obtain a possibly larger M, which makes it possible to estimate the first factors on the right hand side of (10) by exponential terms. Hence, by applying Lemma 3.8 we obtain that
\[
\left\| (T_1(\frac{s}{n})T_2(\frac{s}{n}))^n - T(t)(\frac{j}{n}) \right\|_{\mathcal{D}} \leq \sum_{k=0}^{n-1} M e^{\omega k/n} K (\frac{k}{n})^2 \left\| T(\frac{k}{n})(\frac{j}{n}) \right\|_{\mathcal{D}} \leq \frac{C}{n} \left\| (\frac{j}{n}) \right\|_{\mathcal{D}},
\]
where $C = M^2 K e^{\omega |\omega|}$.

Acknowledgments

A. Bátkai was supported by the Alexander von Humboldt-Stiftung and by the OTKA grant Nr. K81403. The European Union and the European Social Fund have provided financial support to the project under the grant agreement no. TÁMOP-4.2.1/B-09/1/KMR-2010-0003.

References

[1] A. Bátkai, P. Csomós, B. Farkas, and G. Nickel, Operator splitting for non-autonomous evolution equations, J. Funct. Anal. 260 (2010), 2163–2190.
[2] A. Bátkai, P. Csomós, and G. Nickel, Operator splittings and spatial approximations for evolution equations, J. Evol. Equ. 9 (2009), no. 3, 613–636.
[3] A. Bátkai and S. Piazzera, Semigroups for delay equations, Research Notes in Mathematics, vol. 10, A K Peters Ltd., Wellesley, MA, 2005.
[4] A. Bellen and M. Zennaro, Numerical methods for delay differential equations, Numerical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, New York, 2003.
[5] H. Brezis and A. Pazy, Semigroups of nonlinear contractions on convex sets, J. Functional Analysis 6 (1970), 237–281.
[6] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414.
[7] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298.
[8] P. Csomós and G. Nickel, Operator splitting for delay equations, Comput. Math. Appl. 55 (2008), no. 10, 2234–2246.
[9] M. M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 504–507.
[10] J. Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin, 1975.
[11] K.-J. Engel and R. Nagel, *One-parameter semigroups for linear evolution equations*, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000, With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.

[12] I. Faragó and Á. Havasi, *Consistency analysis of operator splitting methods for \(C^0 \)-semigroups*, Semigroup Forum **74** (2007), no. 1, 125–139.

[13] I. Faragó and Á. Havasi, *Operator splittings and their applications*, Mathematics Research Developments, Nova Science Publishers, New York, 2009.

[14] J. A. Goldstein, *Approximations of nonlinear semigroups and evolution equations*, J. Math. Soc. Japan **24** (1972), 558–573.

[15] E. Hairer, C. Lubich, and G. Wanner, *Geometric numerical integration*, second ed., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006, Structure-preserving algorithms for ordinary differential equations.

[16] E. Hansen and A. Ostermann, *Dimension splitting for evolution equations*, Numer. Math. **108** (2008), no. 4, 557–570.

[17] H. Holden, K. H. Karlsen, K.-A. Lie, and N. H. Risebro, *Splitting methods for partial differential equations with rough solutions*, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2010, Analysis and MATLAB programs.

[18] W. Hundsdorfer and J. Verwer, *Numerical solution of time-dependent advection-diffusion-reaction equations*, Springer Series in Computational Mathematics, vol. 33, Springer-Verlag, Berlin, 2003.

[19] T. Jahnke and C. Lubich, *Error bounds for exponential operator splittings*, BIT **40** (2000), no. 4, 735–744.

[20] Y. Kobayashi, *Product formula for nonlinear semigroups in Hilbert spaces*, Proc. Japan Acad. Ser. A Math. Sci. **58** (1982), no. 10, 425–428.

[21] Y. Kobayashi, *Product formula for nonlinear contraction semigroups in Banach spaces*, Hiroshima Math. J. **17** (1987), no. 1, 129–140.

[22] T. G. Kurtz and M. Pierre, *A counterexample for the Trotter product formula*, J. Differential Equations **52** (1984), no. 3, 407–414.

[23] P.-L. Lions and B. Mercier, *Splitting algorithms for the sum of two nonlinear operators*, SIAM J. Numer. Anal. **16** (1979), no. 6, 964–979.

[24] C. Lubich, *From quantum to classical molecular dynamics: reduced models and numerical analysis*, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008.

[25] G. F. Webb, *Functional differential equations and nonlinear semigroups in \(L^p \)-spaces*, J. Differential Equations **20** (1976), no. 1, 71–89.

[26] J. Wu, *Theory and applications of partial functional-differential equations*, Applied Mathematical Sciences, vol. 119, Springer-Verlag, New York, 1996.

A.B., EÖTVÖS LORÁND UNIVERSITY, INSTITUTE OF MATHEMATICS, 1117 BUDAPEST, PÁzmány P. sétány 1/C, HUNGARY

E-mail address: batka@cs.elte.hu

P.Cs., UNIVERSITÄT INNSBRUCK, INSTITUT FÜR MATHMATIK, TECHNIKERSTRASSE 13, 6020 INNSBRUCK, AUSTRIA

E-mail address: petra.csomos@uibk.ac.at

B.F., TECHNISCHE UNIVERSITÄT DARMSTADT, FACHBEREICH MATHEMATIK, SCHLOSSGARTENSTR. 7, 64289 DARMSTADT, GERMANY

E-mail address: farkas@mathematik.tu-darmstadt.de