DIRECT DETECTION OF PRECURSORS OF GAS GIANTS FORMED BY GRAVITATIONAL INSTABILITY WITH THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY

Lucio Mayer1, Thomas Peters2, Jaime E. Pineda3, James Wadsley4, and Patrick Rogers4,5

1 Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
2 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
3 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany
4 Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
5 Marianopolis College, 4873 Westmount Avenue, Westmount, Montreal, QC H3Y 1X9, Canada; p.rogers@marianopolis.edu

Received 2016 February 15; revised 2016 April 25; accepted 2016 May 3; published 2016 June 1

ABSTRACT

Phases of gravitational instability (GI) are expected in the early phases of disk evolution, when the disk mass is still a substantial fraction of the mass of the star. Disk fragmentation into sub-stellar objects could occur in the cold outer part of the disk. Direct detection of massive gaseous clumps on their way to collapse into gas giant planets would offer an unprecedented test of the disk instability model. Here we use state-of-the-art 3D radiation-hydro simulations of disks undergoing fragmentation into massive gas giants, post-processed with RADMC-3D to produce dust continuum emission maps. These are then fed into the Common Astronomy Software Applications (CASA) ALMA simulator. The synthetic maps show that both overdense spiral arms and actual clumps at different stages of collapse can be detected with the Atacama Large Millimeter/submillimeter Array (ALMA) in the full configuration at the distance of the Ophiuchus star forming region (125 pc). The detection of clumps is particularly effective at shorter wavelengths (690 GHz) combining two resolutions with multi-scale clean. Furthermore, we show that a flux-based estimate of the mass of a protoplanetary clump can be comparable to a factor of three higher than the gravitationally bound clump mass. The estimated mass depends on the assumed opacity, and on the gas temperature, which should be set using the input of radiation-hydro simulations. We conclude that ALMA has the capability to detect “smoking gun” systems that are a signpost of the disk instability model for gas giant planet formation.

Key words: hydrodynamics – methods: numerical – planets and satellites: formation – protoplanetary disks

1. INTRODUCTION

Gravitationally unstable (GI) disks are expected in the early phases of star formation, when the disk mass can still be an appreciable fraction of the stellar mass, during the Class 0/Class I stage. Whether disk fragmentation is a common outcome of GI and results in long-lived objects that contract to become gas giant planets (Mayer et al. 2004; Boss 2005), or even lower mass planets via tidal mass loss (Boley et al. 2010; Galvagni & Mayer 2014), is still debated (Helled et al. 2014). However, disk instability offers a natural explanation for the massive planets on wide orbits discovered via imaging surveys in the last decade (e.g., Marois et al. 2008) because the conditions required for disk fragmentation, namely a Toomre instability parameter $Q<1.4$ and short radiative cooling timescales, should be satisfied in the disk at $R > 30$ au (Durisen et al. 2007; Rafikov 2007; Clarke 2009; Boley et al. 2010; Meru & Bate 2010, 2012). Yet, direct evidence that disk fragmentation into planetary-sized objects can take place is still lacking. In disk instability when protoplanets form from condensations in overdense spiral arms they are massive and extended, spanning 2–6 au in size for a typical mass of a few Jupiter masses (Boley et al. 2010). The first phase of clump collapse should last $10^3–10^4$ years (Galvagni et al. 2012), after which rapid contraction to Jupiter-like densities should occur owing to H$_2$ dissociation (Helled et al. 2006). The initial slow phase of collapse, in which the protoplanet is still very extended, should be the easiest to detect due to less stringent angular resolution constraints. The huge step in sensitivity and angular resolution made possible with the advent of the

Atacama Large Millimeter/submillimeter Array (ALMA) observatory prompted us to consider the possible detection of such early stages of planet formation by disk instability.

Recently, several works have indeed focused on detecting spiral structure in gravitationally unstable disks using ALMA (Cossins et al. 2010; Douglas et al. 2013; Dipierro et al. 2014; Evans et al. 2015). Similar studies of marginally unstable disks exhibiting strong spiral patterns have also been carried out with near-infrared observations of scattered light (Dong et al. 2015). These studies have been motivated by the recent discovery of several disks with prominent spiral arms, such as MWC 758 (Benisty et al. 2015) and SAO 206462 (Garufi et al. 2013). They do not focus on the detectability of the extreme outcome of GI, namely fragmentation into gas giant planets or more massive sub-stellar companions, thus they do not address if ALMA could detect a “smoking gun” signature of planet formation by GI. In addition, spiral arms can also be produced by migrating planets (Dong et al. 2015; Pohl et al. 2015; Zhu et al. 2014), or perturbations by nearby stellar companions, while extended clumps are a unique feature of disk instability.

With the exception of Douglas et al. (2013), previous works studying the detectability of spiral structure in GI disks have employed simulations with simple radiative cooling prescriptions for the disk rather than solving the full set of radiation-hydrodynamic equations. This also applies to previous studies of the detectability of GI clumps for ALMA, such as in 3D MHD protostellar disk collapse simulations (Seifried et al. 2016) and in 2D massive embedded disks fragmenting predominantly into brown-dwarf-sized objects (Vorobyov et al. 2013). Also, Stamatellos et al. (2011) included an
approximate treatment of radiative transfer and focused on detectability by IRAM. The limited treatment of radiation can enhance fragmentation and the masses of clumps (Rogers & Wadsley 2011; Helled et al. 2014) as well as affect the resulting temperature structure in the disk (Durisen et al. 2007; Boley et al. 2006; Evans et al. 2015), and hence any inference concerning detectability.

Here we report on the first study of the detectability of massive protoplanets formed by disk instability with ALMA, which employs state-of-the-art 3D radiation-hydro SPH simulations. The latter are used to generate ALMA images by means of the post-processing radiative transfer code RADMC-3D used in ray-tracing mode for stellar irradiation⁶ combined with the ALMA simulator.

2. METHODS

2.1. The Simulations

We perform very high-resolution 3D radiation hydrodynamics simulations using the GASOLINE SPH code (Wadsley et al. 2004) with the implementation of an implicit scheme for flux-limited diffusion and photospheric cooling described and thoroughly tested in Rogers & Wadsley (2011, 2012). We solve the mono-frequency radiation-hydro equations using Rosseland mean and Planck mean opacities by means of a look-up table. We use the opacities of D’Alessio et al. (2001). Stellar irradiation is included in the computation of the initial equilibrium of the disk but not in the simulation. We adopt an equation of state with a variable adiabatic index as a function of temperature, which includes the effect of hydrogen ionization and molecular dissociation (Boley et al. 2007; Galvagni et al. 2012).

We model self-gravitating protoplanetary disks without an embedding envelope. The disk parameters are very similar to those adopted in Boley et al. (2010). The central star has a mass of 1.35\(M_\odot\), comparable to that in the HR8799 exoplanetary system (Marois et al. 2008). The disk mass is 0.69\(M_\odot\) out to a radius of 200 au. A high disk mass, comprising a significant fraction of the mass of the host star, should be typical of Class II disks (Greaves & Rice 2010; Dunham et al. 2014), although occasionally massive systems are also found in the Class II/T-Tauri stage (Miotello et al. 2014).

The initial conditions are constructed using an iterative procedure to ensure local balance between pressure, gravity, and centrifugal forces, taking into account the actual gravitational potential of each gas particle as determined by both the disk and the central star (Rogers & Wadsley 2011). The temperature profile is determined by imposing an initial Toomre Q parameter that reaches a minimum of \(Q_{\text{min}} \approx 1.4\) at \(R \approx 60\) au (see, e.g., Durisen et al. 2007). The simulations comprise one million particles in the disk, with a fixed gravitational softening of 0.16 au and a variable SPH smoothing length that is comparable to the softening at the beginning but can become as small as 0.05 au in the highest density regions. The simulation employed in this paper is part of a set of simulations with different disk masses, stellar masses, and opacities. Here we focus on one particular simulation, which produces a few massive clumps, one of which is gravitationally bound by the end of the simulation, thereby lending itself naturally for the analysis that we intend to carry out.

2.2. Post-processing Radiative Transfer

We map the SPH data to a homogeneous grid with dimensions \(2500 \times 2500 \times 1250\) and a cell size of 0.16 au. We assume a constant gas-to-dust ratio of 100 and that gas and dust are collisionally coupled, so that the gas and dust temperatures are identical. We use the radiative-transfer code RADMC-3D to produce synthetic dust emission maps from these data. We follow Dipierro et al. (2014), who used the opacity law adopted in Cossins et al. (2010):

\[
\kappa_\nu = 0.025 \left(\frac{\nu}{10^{12}\text{ Hz}} \right) \text{cm}^2\text{g}^{-1}
\]

for dust in solar metallicity gas. Note that in this step we adopt a frequency-dependent opacity law while the simulations simply employed frequency-integrated opacities to limit the computational burden of the radiative calculation (see Section 2.1.). We produce images of thermal dust emission at four frequencies (230, 345, 460, and 690 GHz) and for five different inclination angles (face-on, 30°, 45°, 60°, and edge-on).

2.3. ALMA Synthetic Observations

We simulate the ALMA full array observations of the dust continuum emission using tasks +simobserve+ and +simanalyze+ in CASA 4.1.0 (McMullin et al. 2007). We assume the disk is at the distance of the Ophiuchus star forming region, 125 pc. We simulate the continuum ALMA observations for a 10-minute on-source time, with a 2 GHz bandwidth, and using five different array configurations (alma.out01, alma.out07, alma.out14, alma.out21, alma.out28). We chose these parameters because they represent feasible parameters of future snapshot surveys for young disks. The different array configurations allow for a clear display of the trade-off between sensitivity and angular resolution. Note that the chosen integration time is realistic and at the same time allows us to achieve a good signal-to-noise ratio. For comparison, Dipierro et al. (2014) have considered longer integration times (typically 30–120 minutes) in their analysis of spiral structure detection, while we preferred to be conservative. Clearly for systems located at significantly larger distances (e.g., 400 pc for Orion) longer integration times will be required in order to approach the quality of the results presented here. In addition, we have also combined the synthetic observations of two array configurations: alma.out14 and alma.out28. The imaging of these combined data sets was done using standard clean and multi-scale clean. The images created using multi-scale clean show an improved image fidelity when compared to the standard clean, as we show in the next section.

3. RESULTS

The disk quickly develops a prominent spiral pattern that grows in amplitude, quickly leading to overdensities along the arms. The disk fragments into two clumps with masses of several \(M_\odot\) after a few orbits, at a radius of about 80 au, where the orbital time is \(\sim2000\) years (Figure 1). A third overdensity begins to form along one of the spiral arms near the end of the simulation. The simulation is stopped once the first clump that forms, seen at 10 o’clock in Figure 1 (right panel), becomes

http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
gravitationally bound and collapses further, reaching extremely high central densities that render the time-integration prohibitively slow. The bound mass of the latter clump is $\sim 6.2 M_J$ at the last snapshot, and it has been measured using the SKID group finder (see\(^7\)). SKID works by first identifying “groups” of particles that are near a local density maximum, linking them with a friends-of-friends scheme. Second, it removes unbound particles of such groups by computing the binding energy of the group of particles iteratively, and stopping when it becomes positive. The binding energy is defined as the sum of the kinetic, gravitational and thermal energy of particles, computed in the center-of-mass reference frame of the “group” (the center-of-mass frame is iteratively updated during the unbinding procedure). The group of particles remaining after such an unbinding procedure is identified as a “clump” in our simulations.

The strong spiral pattern, dominated by low-order modes, $m = 2–4$, and the masses of the clumps, are fairly typical of GI-unstable disks undergoing fragmentation (Mayer et al. 2004, 2007; Durisen et al. 2007; Boley et al. 2010). While the clump has a mass at the high end of the mass distribution of extrasolar gas giants, we note that the gas accretion rate of $\sim 10^{-7} M_J \text{ yr}^{-1}$ implies that the protoplanet will gather only 5 Jupiter masses, hence its mass would less than double, in 5×10^4 years. The latter timescale is more than an order of magnitude longer than the characteristic timescale of migration and consequent tidal mass loss found for massive planets in gravitationally unstable disks (Malik et al. 2015), suggesting that the mass of the clump should remain in the gas giant regime, if not decrease (see Boley et al. 2010; Galvagni & Mayer 2014). Furthermore, higher resolution simulations capable of following the collapse of clumps to near-planetary densities, have determined that, irrespective of migration, the planetary mass resulting at the end of the collapse is at least a factor of two lower since a significant fraction of the mass resides in an extended, loosely bound circumplanetary disk, which would be stripped by stellar tides even at relatively large distances from the central star (Galvagni et al. 2012; Galvagni & Mayer 2014).

Our most important result is that massive clumps formed by GI are detectable. Figure 2 shows a comparison of the resulting ALMA images for the face-on disk projection. In general, the

\(^7\) http://www-hpcc.astro.washington.edu/tools/skid.html
higher frequency channels, 460 and 690 GHz, are those that best capture the actual substructure in the disk and its density contrast, correctly separating the clumps, even the more diffuse ones, from the spiral arms. At lower frequency, the noisy map renders the interpretation more uncertain, making it difficult to single out even the bound clump. Note that in all these images multi-scale clean has been adopted. Its adoption as well as the combination of both high- and mid-resolution configuration are crucial, as shown by the comparison in Figure 3. Interestingly, Figure 3 shows that high resolution alone produces severe artifacts that prevent any identification of clumps or spiral structure. Finally Figure 4 shows the comparison of images obtained for different inclination angles for our best configuration and frequency band. It is clear that substructure and its relative contrast can be identified for a range of inclinations.

The key information that one would like to extract from the ALMA images is the mass of the clumps. This is for two reasons. First, the inferred masses can be used to support or
refute the hypothesis that the clumps are candidate gas giants rather than, e.g., brown-dwarf-sized objects or simply false detections. Second, by combining the information on mass and size in the ALMA images the comparison with simulations can allow one to assess whether clumps are gravitationally bound objects rather than transient overdensities. We thus measured fluxes on the maps shown in Figure 2 with an aperture of radius 0.06, corresponding to 7.5 au at the distance of Ophiucus, which visually identifies the (bound) clump in Figure 1. This is about a factor of two larger than the radius of the bound clump estimated with SKID so it should yield an upper limit on its mass. Assuming optically thin emission, a dust-to-gas ratio of 0.01, a temperature of 300 K, and the Cossins et al. (2010) opacities, we estimate masses (in increasing frequency) of 18.3, 17.7, 17.1, and 16.5 MJ for this clump. Using another popular choice of the opacity law, $\kappa_\nu = 0.1(\nu/1.2\, \text{THz})\, \text{cm}^2\, \text{g}^{-1}$ (Hillenbrand 1983), the estimated masses would be a factor of 3.3 lower, hence nearly identical to the actual bound mass of the clump.

Mass estimates are extremely sensitive to the assumed gas temperature. If we adopt 30 K, which is close to the background disk temperature rather than to the temperature of the gas in the clump region, the inferred mass is largely overestimated, in the range of 70–90 MJ even for the lowest opacities. This would lead to the erroneous conclusion that the clump is a brown dwarf rather than a gas giant. Therefore the simulations are instrumental in yielding a good guess on important parameters such as local temperature. The temperature is, however, well constrained as spiral shocks in massive gravitationally unstable disks yield temperatures of the order of 200–400 K, quite irrespective of the details of the disk model, hydro code, and radiation solver adopted (see, e.g., Boley et al. 2006; Mayer et al. 2007; Podolak et al. 2011; Rogers & Wadsley 2011). Since spiral arms are the sites of clump formation, this is the temperature expected for clumps soon after their formation. As a gravitationally bound clump collapses further its core temperature eventually approaches the H$_2$ dissociation temperature of 2000 K eventually, but this occurs on scales of a few Jupiter radii (Helled et al. 2014) that are not resolved with ALMA. Before that happens, however, high-resolution simulations of clump collapse show that the mean temperature rapidly increases to 500–600 K (Galvagni et al. 2012). Using a temperature of 500 K would yield masses of 3–10 MJ depending on opacity choice, hence very close to the actual bound mass.

Finally, we verified that the inferred mass estimates, for the apparent size of 7.5 au and for the reference temperature of 300 K, automatically yield that the clump is virialized
making it difficult to determine their presence as physical substructures in the disk (especially for the overdensity at 6 o’clock). Note that marginally bound, transient overdensities that are easily dissolved by shear are a recurrent feature of GI disks, hence recovering their presence is almost as important as being able to identify a single bound clump because it is never observed in simulations that a fragmenting disk produces only a single clump (Mayer et al. 2004;Meru 2015). Applying our flux-based mass estimates across the different frequency bands, we also obtain masses in the gas giant planet range for two such overdensities, varying in the range of 1–4\(M_J\), depending on the assumed opacity.

4. DISCUSSION AND CONCLUSIONS

We have reported a proof-of-concept study that combines high-resolution radiation-hydro simulations of GI disks with synthetic observations. Our study shows that ALMA can detect GI clumps on the scale of gas giants in the early stages of their collapse. This finding extends the results of Dipierro et al. (2014), who showed how even fairly complex spiral structure can be detected by ALMA for a variety of frequencies. Although we cannot exclude the fact that some of the clumps might grow to brown dwarf sizes on much longer timescales, we have shown that the characteristic timescales of the key processes in clump evolution and the moderate accretion rate measured in our radiative transfer simulations suggest that they should be able to maintain masses below 15–20 Jupiter masses for timescales exceeding 10^7 years. While the possibility of clump detection by ALMA was already suggested by Vorobyov et al. (2013), we note that the 2D simulations in their work considered extremely massive disks, arising soon after the collapse of the molecular cloud core, that fragmented much more violently than ours and rapidly gave rise to brown-dwarf-sized clumps, probably owing to the simplified treatment of radiation. Such a violent disk instability phase, if it ever happens, would last only a couple of rotations, after which the disk itself would disappear. It would then be hardly observable, and it would not lead to long-lasting planetary-sized objects (Helled et al. 2014).

Based on our results, detection is possible not only for very dense, gravitationally bound clumps, which yield the highest density contrast, but also for more loosely bound overdensities, which, while transient, are expected during a GI phase. A high-frequency combination of two (or more) ALMA configurations and imaging with multi-scale clean provide the optimal setup to capture very closely the substructure in the disk at large radii, where the optical depth is relatively low. This leads to fairly accurate mass estimates for clumps once they can be clearly identified and provided that a sensible temperature is assumed. Radiation-hydro simulations are crucial to constraining the temperature.

Note that we find little dependence of the ability to detect clumps and spiral structure on the inclination angle, which is at variance with Dipierro et al. (2014). However, in the latter work, inclination was affecting the simulated ALMA maps when a high-order, tightly wound spiral pattern was present. In our case, the disk, being very massive, develops only global, large-scale, large pitch angle \(m = 2–4\) modes (see also Dong et al. 2015), whose morphology is inherently less affected by inclination, as was also found by Douglas et al. (2013).
Our simulations have some limitations that could have an impact on the ALMA mocks. We do not include a gaseous envelope, which should still embed the disk in Class 0-I phases, and be the source of significant accretion. In principle, protostellar collapse simulations in realistic turbulent cores should be considered. Note that the envelope could have a non-trivial temperature distribution that is, on average, colder than the spiral shocks and clumps (with temperatures of a few tens of K), but with hot spots where accretion shocks hit the disk. Since accretion is filamentary and patchy in a turbulent core (e.g., Hayfield et al. 2011) inhomogeneities in density and temperature might arise in the outer disk that could render clump identification more difficult. However, using mocks for both continuum and molecular line emission/absorption, Douglas et al. (2013) have shown that a strong spiral pattern should be detectable with ALMA even in embedded disks.

Another important caveat is that here we assumed dust and gas to be distributed in the same way, both in the simulations and in the post-processing step with RADMC-3D. Recent observations of putative young protoplanets in HD100546 provide a striking example of how different the distributions of dust and gas can be (Pineda et al. 2014; Walsh et al. 2014). In particular, in GI-unstable disk dust would tend to concentrate in spiral arms due to ensuing negative pressure gradients toward the overdensity peaks (Rice et al. 2004), and would do even more so after dense clumps have formed (Boley & Durisen 2010). Therefore, opacities could be significantly higher at clump sites, perhaps by an order of magnitude, and also to some extent in spiral arms, relative to the background flow. In this case, lower frequency observations may have to be considered. The resulting ALMA mocks will have to be investigated in detail by future work.

The authors thank Patrick Rogers for deploying the new disk initial condition generator used and Marina Galvagni for running the GASOLINE simulations used in this paper. We thank Ravit Helled, Aaron Boley, and Farzana Meru for useful comments during the preparation of the final manuscript. L.M. thanks the Munich Institute for Astro and Particle Physics (MIAPP) for hospitality during a crucial phase of this work during summer 2015. J.E.P. was supported by the SINERGIA grant “STAR-FORM” of the Swiss National Science Foundation during the early stages of this work, which also enabled the collaboration with L.M. and T.P. J.E.P. acknowledges the financial support of the European Research Council (ERC: project PALs 320620). T. P. acknowledges support by a “Forschungskredit” grant of the University of Zürich and by the DFG Priority Program 1573 Physics of the Interstellar Medium.

REFERENCES

Benisty, M., Juhasz, A., Boccaletti, A., et al. 2015, A&A, 758, L6
Boley, A. C., & Durisen, R. H. 2010, ApJ, 724, 618
Boley, A. C., Hartquist, T. W., Durisen, R. H., & Scott, M. 2007, ApJL, 656, L89
Boley, A. C., Hayfield, T., Mayer, L., & Durisen, R. 2010, Icar, 207, 509
Boley, A. C., Mejia, A. C., Durisen, R. H., et al. 2006, ApJ, 651, 517
Boss, A. P. 2005, ApJ, 629, 535
Clarke, C. J. 2009, MNRAS, 396, 1066
Cossins, P, Lodato, G., & Testi, L. 2010, MNRAS, 407, 181
D’Alessio, P., Calvet, N., & Hartmann, L. 2001, ApJ, 553, 321
Dipierro, G., Lodato., G., Testi, L., & De Gregorio, M. I. 2014, MNRAS, 444, 1919
Dong, R., Hall, C., Rice, K., & Chiang, E. 2015, ApJL, 812, L32
Douglas, T. A., Caselli, P., Ilee, J. D., et al. 2013, MNRAS, 433, 2064
Dunham, M. M., Vorobyov, E., & Arce, H. G. 2014, MNRAS, 444, 887
Durisen, R. H., Boss, A. P., Mayer, L., et al. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson, AZ: Univ. Arizona Press), 607
Evans, M. G., Ilee, J. D., Boley, A. C., et al. 2015, MNRAS, 453, 1147
Galvagni, M., Hayfield, T., Boley, A., et al. 2012, MNRAS, 427, 1725
Galvagni, M., & Mayer, L. 2014, MNRAS, 437, 2909
Garufi, A., Quanz, S., Avenhaus, H., et al. 2013, A&A, 560, 105
Greaves, J. S., & Rice, W. K. M. 2010, MNRAS, 407, 1981
Hayfield, T., Mayer, L., Wadsley, J., & Boley, A. C. 2011, MNRAS, 417, 1839
Helled, R., Bodenheimer, P., Podolak, M., et al. 2014, in Protostars and Planets VI, ed. H. Beuther et al. (Tucson, AZ: Univ. Arizona Press), 914
Helled, R., Podolak, M., & Kovetz, A. 2006, Icar, 185, 64
Hillenbrand, R. H. 1983, QRAS, 24, 267
Malik, M., Meru, F., Mayer, L., & Meyer, M. 2015, Apl, 802, 56
Marois, C., Macintosh, B., Barman, T., et al. 2008, Sci, 322, 1348
Mayer, L., Lufkin, G., Quinn, T., & Stadel, J. 2007, ApJL, 66, L77
Mayer, L., Quinn, T., Wadsley, J., & Stadel, J. 2004, ApJ, 609, 1045
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in ASP Conf. Ser. 376, Astronomical Data Analysis Software and Systems XVI , ed. R. A. Shaw, F. Hill, & D. J. Bell (San Francisco, CA: ASP), 127
Meru, F. 2015, MNRAS, 454, 2529
Meru, F., & Bate, M. R. 2010, MNRAS, 410, 559
Meru, F., & Bate, M. R. 2012, MNRAS, 427, 2022
Miotello, A., Bruderer, S., & Van Dishoeck, E. F. 2014, A&A, 572, 96
Pineda, J. E., Quanz, S. P., Meru, F., et al. 2014, ApJL, 788, L34
Podolak, M., Mayer, L., & Quinn, T. 2011, ApJL, 734, 56
Pohl, A., Pinilla, P., Benisty, M., et al. 2015, MNRAS, 453, 1768
Rafikov, R. R. 2007, ApJ, 662, 642
Rice, W. K. M., Lodato, G., Pringle, J. E., Armitage, P. J., & Bonnell, I. A. 2004, MNRAS, 355, 543
Rice, W. K. M., Lodato, G., Pringle, J. E., et al. 2006, MNRAS, 372, L9
Rogers, P. D., & Wadsley, J. 2011, MNRAS, 414, 913
Rogers, P. D., & Wadsley, J. 2012, MNRAS, 423, 1896
Seifried, D., Sánchez-Monge, Á., Walche, S., & Banerjee, R. 2016, MNRAS, 459, 1892
Stamatellos, D., Maury, A., Whitworth, A., & Andre, P. 2011, MNRAS, 413, 1787
Vorobyov, E., Zakhozhay, O. V., & Dunham, M. M. 2013, MNRAS, 433, 3256
Wadsley, J., Stadel, J., & Quinn, T. R. 2004, NewA, 9, 137
Walsh, C., Juhasz, A., Panilla, P., et al. 2014, ApJL, 791, L6
Zhu, Z., Stone, J. M., Rafikov, R., & Bai, X. 2014, ApJ, 785, 12