Rho-meson mass in light nuclei

K. Saito
Physics Division, Tohoku College of Pharmacy
Sendai 981, Japan
K. Tsushima and A. W. Thomas
Department of Physics and Mathematical Physics
and
Special Research Center for the Subatomic Structure of Matter
University of Adelaide, South Australia, 5005, Australia

Abstract

The quark-meson coupling (QMC) model is applied to a study of the mass of the \(\rho \)-meson in helium and carbon nuclei. The average mass of a \(\rho \)-meson formed in \(^3\text{He} \) and \(^{12}\text{C} \) is expected to be around 730, 690 and 720 MeV, respectively.

PACS numbers: 24.85.+p, 24.10.Jv, 12.39.Ba
As the nuclear environment changes, hadron properties are nowadays expected to be modified [1, 2, 3, 4, 5, 6]. In particular, the variation of the light vector-meson mass is receiving a lot of attention, both theoretically and experimentally. Recent experiments from the HELIOS-3, CERES and NA50 collaborations at SPS/CERN energies have shown that there exists a large excess of the lepton pairs in central S + Au, S + W, Pb + Au and Pb + Pb collisions [7]. An anomalous J/ψ suppression in Pb + Pb collisions has also been reported by the NA50 collaboration [8]. Those experimental results may give a hint of some change of hadron properties in nuclei (for a recent review, see Ref. [9]). We have previously studied the variation of hadron masses in medium mass and heavy nuclei using the quark-meson coupling (QMC) model [4, 10].

On the other hand, even in light nuclei like helium and carbon, an attempt to measure the ρ^0-meson mass in the nucleus is underway at INS, using tagged photon beams and the large-acceptance TAGX spectrometer at the 1.3 GeV Tokyo Electron Synchrotron [11]. They have measured ρ^0 decay into two charged pions with a branching fraction of approximately 100% in low-atomic-number nuclei, in which pions suffer less from final state interactions. The actual experiments involved measurements of the $\pi^+\pi^-$ photoproduction on 3He, 4He and 12C nuclei in the energy region close to the ρ^0 production threshold. In view of this experimental work it is clearly very interesting to report on the variation of the ρ-meson mass in these light nuclei.

To calculate the hadron mass in a finite nucleus, we use the second version of the quark-meson coupling (QMC-II) model, which we have recently developed to treat the variation of hadron properties in nuclei (for details, see Ref. [10]). This model was also used to calculate detailed properties of spherical, closed shell nuclei from 16O to 208Pb, where it was shown that the model can reproduce fairly well the observed charge density distributions, neutron density distributions, etc. [12]. In this approach, which began with work by Guichon [13] in 1988, quarks in non-overlapping nucleon bags interact self-consistently with scalar (σ) and vector (ω and ρ) mesons (the latter also being described by meson bags), in the mean-field approximation (MFA). Closely related investigations
have been made in Refs. [14, 15, 16].

In the actual calculation, we use the MIT bag model in static, spherical cavity approximation. The bag constant B and the parameter z_N, in the familiar form of the MIT bag model Lagrangian [17], are fixed to reproduce the free nucleon mass ($M_N = 939$ MeV) and its free bag radius ($R_N = 0.8$ fm). Furthermore, to fit the free vector-meson masses, $m_\omega = 783$ MeV and $m_\rho = 770$ MeV, we introduce new z-parameters for them, z_ω and z_ρ. Taking the quark mass in the bag to be $m_q = 5$ MeV, we find $B^{1/4} = 170.0$ MeV, $z_N = 3.295$, $z_\omega = 1.907$ and $z_\rho = 1.857$ [10].

The model has several coupling constants to be determined: the σ-nucleon coupling constant (in free space), g_σ, and the ω-nucleon coupling constant, g_ω, are fixed to fit the binding energy (-15.7 MeV) at the correct saturation density ($\rho_0 = 0.15$ fm$^{-3}$) for symmetric nuclear matter. Furthermore, the ρ-nucleon coupling constant, g_ρ, is used to reproduce the bulk symmetry energy, 35 MeV. Those values are listed in Tables 1 and 3 of Ref. [10].

Within QMC-II, the non-strange vector mesons are described by the bag model and their masses in the nuclear medium are given as a function of the mean-field value of the σ meson at that density [10]. However, the σ meson itself is not so readily represented by a simple quark model (like a bag), because it couples strongly to the pseudoscalar (2π) channel and a direct treatment of chiral symmetry in medium is important [3].

On the other hand, many approaches, including the Nambu–Jona-Lasinio model [3, 18], the Walecka model [1, 19] and Brown-Rho scaling [2] suggest that the σ-meson mass in medium, m_σ^*, should be less than the free one, m_σ. We have parametrized it using a quadratic function of the scalar field:

$$\left(\frac{m_\sigma^*}{m_\sigma}\right) = 1 - a_\sigma (g_\sigma \sigma) + b_\sigma (g_\sigma \sigma)^2,$$

with $g_\sigma \sigma$ in MeV. To test the sensitivity of our results to the σ mass in the medium, the parameters were chosen [10]: (a_σ ; b_σ) = (3.0, 5.0 and 7.5 $\times 10^{-4}$ MeV$^{-1}$; 10, 5 and 10 $\times 10^{-7}$ MeV$^{-2}$) for sets A, B and C, respectively. These values lead to a reduction of the σ mass for sets A, B and C by about 2%, 7% and 10% respectively, at saturation density.
Using this parametrization for the σ mass, the ρ-meson mass in matter is found to take quite a simple form (for $\rho_B \lesssim 3\rho_0$):

$$m^*_\rho \simeq m_\rho - \frac{2}{3}(g_\sigma\sigma)\left[1 - \frac{a_\rho}{2}(g_\sigma\sigma)\right],$$ \hspace{1cm} (2)

where $a_\rho \simeq 8.59, 8.58$ and 8.58×10^{-4} (MeV$^{-1}$) for parameter sets A, B and C, respectively \(\dagger\).

For medium and heavy nuclei, it should be reasonable to use the MFA, and the mean-field values of all the meson fields at position \vec{r} in a nucleus can be determined by (self-consistently) solving a set of coupled non-linear differential equations, generated from the QMC-II Lagrangian density \[10\]. We have calculated the ρ-meson mass in 12C in that way. However, for 3He and 4He, the MFA is not expected to be reliable. Therefore, we shall use a simple local-density approximation to calculate m^*_ρ in helium.

In practice it is easy to parametrize the mean-field value of the σ field calculated in QMC-II as a function of ρ_B (see Fig.1 of Ref. \[10\]) and it is given as

$$g_\sigma\sigma \simeq s_1 x + s_2 x^2 + s_3 x^3,$$ \hspace{1cm} (3)

where $x = \rho_B/\rho_0$ and the parameters, s_{1-3}, are listed in Table \[\dagger\]. Therefore, once one knows the density distribution of the helium nucleus, one can easily calculate $g_\sigma\sigma$ at position \vec{r} from Eq.(3), and then calculate $m^*_\rho(r)$ in the nucleus using Eq.(2).

In this paper we use a simple gaussian form for the density distribution of 3He, in which the width parameter, β_3, is fitted to reproduce the rms charge radius of 3He, 1.88 fm. For 4He, we parametrized the matter density as:

$$\rho_4(r) = A_4(1 + \alpha_4 r^2) \exp(-\beta_4 r^2),$$ \hspace{1cm} (4)

where $\alpha_4 = 1.34215$ (fm$^{-2}$) and $\beta_4 = 0.904919$ (fm$^{-2}$). This was chosen to reproduce the rms matter radius of 4He, 1.56 fm, and the measured central depression in the charge density.

Now we show our numerical results. In Figs. \[\dagger\]-\[3\] the density distributions and the ρ-meson masses in 3He, 4He and 12C are illustrated (for 3,4He the density distribution is
common to all of the parameter sets, $A \sim C)$. The ρ-meson mass decreases by about 10 ~ 15 % at the center of the nucleus, although it depends a little on the parameter set chosen for the σ mass variation.

We also show the average ρ-meson mass in the nucleus, which is defined as

$$\langle m^*_\rho \rangle_A = \frac{1}{A} \int d\vec{r} \rho_A(r)m^*_\rho(r),$$

where $\rho_A(r)$ is the density distribution of the nucleus A. The average mass is summarized in Table 2. In the present model the ρ-meson mass seems to be reduced by about 40 MeV in 3He, 80 MeV in 4He and 50 MeV in 12C, due to the nuclear medium effect. The larger shift in 4He is a consequence of the higher central density in this case.

It may be also very interesting to study the variation of the width of the ρ meson in a nucleus. Unfortunately, since the present model does not involve the effect of the width, we cannot say anything about it. Asakawa and Ko [20], however, have reported on the mass and width of the ρ meson although their calculations were carried out in nuclear matter. They have used a realistic spectral function, which was evaluated in the vector dominance model including the effect of the collisional broadening due to the π-N-Δ-ρ dynamics, on the hadronic side of the QCD sum rules, and concluded that the width of the ρ meson decreases slightly as the density increases, which implies that the phase space suppression (from the $\rho \rightarrow 2\pi$ process) due to the reduction of the ρ-meson mass more or less balances the collisional broadening at finite density. Provided that the width of the ρ meson is not significantly decreased by such medium corrections we may expect that the ρ meson created by an external beam should decay inside the nucleus. This should lead to a clean signal of the variation of the ρ-meson mass [6].

In conclusion, we have calculated the ρ-meson mass in 3He, 4He and 12C using the QMC-II model, and found that it is reduced by about 10 ~ 15 % in those nuclei. It will be very interesting to compare our results with the experimental data taken at INS and currently being analysed [11].
This work was supported by the Australian Research Council. The authors thank G. Lolos for valuable discussions and comments. One of the authors (K.S.) thanks K. Maruyama for stimulating discussions.
References

[1] K. Saito, T. Maruyama and K. Soutome, Phys. Rev. C40, 407 (1989).

[2] G.E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991).

[3] T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).

[4] K. Saito and A.W. Thomas, Phys. Rev. C51, 2757 (1995).

[5] K. Saito and A.W. Thomas, Phys. Rev. C52, 2789 (1995).

[6] T. Hatsuda, UTHEP-357 (Univ. of Tsukuba), nucl-th/9702002.

[7] M. Masera (HELIOS-3 collaboration), Nucl.Phys. A590, 93c (1995);
 Th. Ullrich (CERES collaboration), Nucl. Phys. A610, 317c (1996);
 E. Scomparin (NA50 collaboration), Nucl. Phys. A610, 331c (1996).

[8] M. Gonin (NA50 collaboration), Nucl. Phys. A610, 404c (1996).

[9] Quark Matter '96, Nucl. Phys. A610 (1996).

[10] K. Saito, K. Tsushima and A.W. Thomas, ADP-96-40/T236 (Univ. of Adelaide),
 nucl-th/9612001, to be published in Phys. Rev. C55, May (1997).

[11] INS-ES-134 and INS-ES-144, “Current experiments in elementary particle physics”,
 LBL-91 revised, UC-414, p.108 (1994);
 K. Maruyama, Proc. of the 25th Int. Symp. on Nuclear and Particle Physics with
 High-Intensity Proton Accelerators, Dec. 1996, Tokyo (Japan), to be published by
 World Scientific (Singapore), 1997.

[12] P.A.M. Guichon, K. Saito, E. Rodionov and A.W. Thomas, Nucl. Phys. A601, 349
 (1996);
 K. Saito, K. Tsushima and A.W. Thomas, Nucl. Phys. A609, 339 (1996),
 P.A.M. Guichon, K. Saito and A.W. Thomas, Australian Journal of Physics 50, 115
references are therein.

[13] P.A.M. Guichon, Phys. Lett. B200, 235 (1988).

[14] X. Jin and B.K. Jennings, Phys. Lett. B374, 13 (1996);
 Phys. Rev. C54, 1427 (1996);
 nucl-th/9606023, to be published in Phys. Rev. C55 (1997).

[15] P.G. Blunden and G.A. Miller, Phys. Rev. C54, 359 (1996).

[16] M. Jaminon and G. Ripka, Nucl. Phys. A564, 505 (1993);
 M.K. Banerjee and J.A. Tjon, nucl-th/9612007 (1996).

[17] A. Chodos, R.L. Jaffe, K. Johnson and C.B. Thorn, Phys. Rev. D10, 2599 (1974).

[18] V. Bernard and Ulf-G. Meissner, Nucl. Phys. A489, 647 (1988).

[19] J.C. Caillon and J. Labarsouque, Phys. Lett. B311, 19 (1993).

[20] M. Asakawa, C.M. Ko, P. Lévai and X.J. Qiu, Phys. Rev. C46, R1159 (1992);
 M. Asakawa and C.M. Ko, Phys. Rev. C48, R526 (1993).
Figure captions

Fig.1 Effective ρ-meson mass and the density distribution in 3He. The solid, dashed and dotted curves are, respectively, for the parameter sets A, B and C.

Fig.2 Same as for Fig.1 but for 4He.

Fig.3 Same as for Fig.1 but for 12C.
Figure 1:
Figure 2:
Figure 3:
Table 1: Three parameters for the mean-field value of σ (in MeV).

type	s_1	s_2	s_3
A	195.2	−52.1	5.1
B	214.0	−44.3	1.9
C	228.0	−51.8	2.8
Table 2: Average ρ-meson mass (in MeV).

type	3He	4He	12C
A	732	701	723
B	727	691	718
C	725	688	715