Research Article

Evaluation of the In Vitro Antiplasmodial, Antileishmanial, and Antitrypanosomal Activity of Medicinal Plants Used in Saudi and Yemeni Traditional Medicine

Ramzi A. Mothana,1,2 Nawal M. Al-Musayeib,1 Mohamed F. Al-Ajmi,1 Paul Cos,3 and Louis Maes3

1 Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
2 Department of Pharmacognosy, Faculty of Pharmacy, Sana’a University, P.O. Box 33039, Sana’a, Yemen
3 Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Universiteitsplein 1, 2610 Antwerp, Belgium

Correspondence should be addressed to Ramzi A. Mothana; r.mothana@yahoo.com

Received 28 January 2014; Accepted 30 April 2014; Published 21 May 2014

Academic Editor: José Luis Ríos

Copyright © 2014 Ramzi A. Mothana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The antiplasmodial, antileishmanial, and antitrypanosomal activity of twenty-five medicinal plants distributed in Saudi Arabia and Yemen was evaluated. The plants were extracted with methanol and screened in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi, and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined on MRC-5 cells. Criteria for activity were an IC50 < 10 𝜇g/mL and high selectivity (SI). Seven plants showed interesting antiprotozoal activity in one or more models. Extracts of Caralluma penicillata and Acalypha ciliata showed fairly good activity against P. falciparum (IC50 of 6.7 and 10.8 𝜇g/mL and adequate selectivity (SI > 9.6 and > 5.9). Interesting activity against L. infantum was obtained with Verbascum bottae (IC50 of 3.2 𝜇g/mL, SI 10.2) and Solanum glabratum (IC50 8.1 𝜇g/mL, SI 3.4). The extracts of C. penicillata, Leucas virgata, Loranthus regularis, and V. bottae exhibited moderate activity against T. brucei (IC50 8.5, 8.1, 8.3, and 2.3 𝜇g/mL; SI > 7.6, 7.7, 4.3, and > 14.1). These results partly support the traditional use of some of the selected medicinal plants and warrant further investigations into the putative active constituents.

1. Introduction

About one billion people are afflicted with what the World Health Organization classifies as neglected tropical diseases (NTDs). A subset of life-threatening NTDs includes Kala azar (visceral leishmaniasis), sleeping sickness (African trypanosomiasis), and Chagas disease (American trypanosomiasis) which all may lead to fatal complications but are restricted to limited geographical areas and specific groups. Most current chemotherapeutics are toxic and marginally effective, must be given by injection, and become compromised by the development of drug-resistance [1]. Despite the large numbers of people at risk and the substantial burden of disease, with few exceptions, no major interventions have been developed for generations [2]. Malaria is yet another even bigger threat in many parts of the world with resistance spreading to almost all classes of antimalarials [3]. Hence, safe, effective, and more affordable therapeutics are clearly needed, whereby the natural biodiversity with its numerous plants, microorganisms, and marine organisms constitutes a broad source of potentially new molecules with great variety of structures and pharmacological potential. In addition, it is estimated that two-thirds of the world population still rely on traditional medical remedies, mostly plants, because of limited availability or affordability of pharmaceutical medicines [4].

In the present study, we evaluated twenty-five medicinal plants used in traditional medicine in Yemen and Saudi Arabia for their in vitro antiplasmodial, antileishmanial, and antitrypanosomal potential.
Table 1: List of selected plants and their use in traditional medicine.

Plant species	Family	Part used	Traditional uses
Acalypha ciliata Forssk.	Euphorbiaceae	L	Malaria, anthelmintic, and scabies (a, d)
Acalypha fruticosa Forssk.	Euphorbiaceae	L	Skin diseases, malaria, and wounds (a, b, d)
Amaranthus viridis L.	Amaranthaceae	L	Anthelmintic, cancer, and impotence (a, b)
Barleria trispinosa (Forssk.) Vahl	Acanthaceae	L, S	Warts (a, d)
Caralluma penicillata (Deflers) N.E.Br.	Asclepiadaceae	L	Diabetes, stomach ulcer, and smallpox (a, c)
Centaurothamus maximus (Forssk.)	Asteraceae	L	Wounds (a)
Wagenitz & Dittrich			
Cissus rotundifolia (Forssk.) Vahl	Vitaceae	L	Malaria, liver disease, and otitis (a, b, c, d)
Coccinia grandis (L.) Voigt	Cucurbitaceae	L, T	Anthelmintic, diuretic, and pneumonia (a)
Dichrocephala integripolia (L.f.) O. Kuntze	Asteraceae	L, S	Wounds (a)
Fagonia indica Burm. f.	Zygophyllaceae	L, T	Diabetes, diuretic, and headache (a, b, c)
Forskaolea tenacissima L.	Urticaceae	L, S	Diuretic, kidney disease (a)
Gomphocarpus fruticosus (L.) Ait. f.	Asclepiadaceae	L	Tumors, skin disease, scabies, and itching (a, b)
Hypoestes forskalei (Vahl) R. Br.	Acanthaceae	L	Fungal skin disease, scabies, itching, and warts (a)
Kedrostis foetidissima (Jacq.) Cogn.	Cucurbitaceae	L, S	Warts (a)
Kleinia pendula (Forssk.) DC.	Asteraceae	R	Otitis (a)
Leucas virgata	Labiatae	L, T	Heartburn, indigestion, and stomach problems (a)
Loranthus regularis Steud. ex Sprague	Loranthaceae	R	Diabetes, kidney disease (a)
Ochradenus baccatus Del.	Resedaceae	L, F	Diuretic, antiseptic, cough, and itching (a, b)
Otostegia fruticosa (Forssk.) Briq.	Labiatae	L, F	Antiparalytic, eye diseases (a)
Oxalis corniculata L.	Oxalidaceae	L, F	Antiparasitic, antivertigo, and mouth inflammation (a, b, c)
Rosmarinus officinalis L.	Labiatae	L, S	Antiseptic, cholagogue (a, d)
Solanum glabratum Dunal	Solanaceae	L, T	Diuretic, scabies, syphilis, cough, hemorrhoids (a, b, c, d)
Taraxacum officinale E.H. Wigg	Asteraceae	L	Gastrointestinal troubles (a)
Tecoma stans (L.) H.B.K.	Bignoniaceae	L, S	Diabetes (a, b)
Verbascum botae (Deflers) Huber-Mor.	Scrophulariaceae	L, F	Cough, skin disease, and rheumatism (a, b)

F: flower, L: leaves, R: roots or rhizomes, S: stems, and T: fruits. a: information has been taken from native people; b: Al-Dubai and Al-Khulaidi (1996) [5]; c: Fleurentin and Pelt (1982) [6]; d: Schopen (1983) [7].

2. Materials and Methods

2.1. Plant Material. Twenty-five plants were selected randomly from different areas of Yemen and Saudi Arabia in March and June 2008 and were identified at the Pharmacognosy Departments, Colleges of Pharmacy, King Saud and Sana’a Universities, Saudi Arabia and Yemen. The plants were chosen mainly on the basis of their local medicinal knowledge. Voucher specimens were deposited at the departments. The botanical names, plant parts used, and the traditional uses in the collected areas are presented in Table 1.

2.2. Extraction of Plant Materials. The air-dried and powdered plant material (50 g) was extracted with 500 mL methanol (CH$_3$OH) using a Soxhlet apparatus for 8 hours. The obtained methanolic extract was filtered and evaporated in a rotator evaporator and freeze dryer. The dried extracts were stored at −20°C until used. Stock solutions were prepared in 100% DMSO at 20 mg/mL just prior to in vitro evaluation.

2.3. Reference Drugs. For the different tests, appropriate reference drugs were used as positive control: tamoxifen for MRC-5, chloroquine for Plasmodium falciparum, miltefosine for Leishmania infantum, benzimidazole for Trypanosoma cruzi, and suramin for Trypanosoma brucei. All reference drugs were obtained either from the fine chemical supplier Sigma or from WHO-TDR.

2.4. Biological Assays. The integrated panel of microbial screens and standard screening methodologies were adopted as previously described [8]. All assays were performed at the Laboratory of Microbiology, Parasitology and Hygiene at the University of Antwerp, Belgium. Plant extracts were tested in
triplicate at 5 concentrations (64, 16, 4, 1, and 0.25 μg/mL) to establish a full dose-titration and determination of the IC₅₀ (inhibitory concentration 50%). The in-test concentration of DMSO did not exceed 0.5%.

2.4.1. Antileishmanial Activity. *L. infantum* MHOM/MA (BE)/67 amastigotes were collected from the spleen of an infected donor hamster and used to infect primary peritoneal mouse macrophages. Macrophages (3 x 10⁴) were seeded in each well of a 96-well plate. After 2 days of outgrowth, 5 x 10⁵ amastigotes were added to each well and incubated for 2 h at 37°C. The prediluted extracts were subsequently added and the plates were further incubated for 5 days at 37°C and 5% CO₂. Intracellular amastigotes burdens were microscopically assessed after Giemsa staining and expressed as a percentage of the burdens in the blank controls.

2.4.2. Antiplasmodial Activity. Chloroquine-resistant *P. falciparum* K1-strain was grown in human erythrocytes O⁺ at 37°C under a low oxygen atmosphere (3% O₂, 4% CO₂, and 93% N₂) in RPMI-1640 medium supplemented with 10% human serum. Infected red blood cells (200 μL, 1% parasitaemia and 2% hematocrit) were added to each well containing the prediluted extracts and incubated for 72 h. After incubation, test plates were frozen at −20°C and parasite multiplication was measured by the Malstat method [9].

2.4.3. Antitrypanosomal Activity. *T. brucei* Squib-427 strain (suramin-sensitive) was cultured at 37°C and 5% CO₂ in Hirumi-9 medium [10] supplemented with 10% fetal calf serum (FCS). About 1.5 x 10⁴ trypomastigotes were added to each well and parasite growth was assessed after 72 h at 37°C by adding resazurin [11]. For Chagas disease, *T. cruzi* Tulahuen CL2 (benznidazole-sensitive) was maintained on MRC-5 cells in minimal essential medium (MEM) supplemented with 20 mM L-glutamine, 16.5 mM sodium hydrogencarbonate, and 5% FCS. In the assay, 4 x 10⁴ MRC-5 cells and 4 x 10⁴ parasites were added to each well. After incubation at 37°C for 7 days, parasite growth was assessed by adding the β-galactosidase substrate chlorophenol red β-D-galactosidase [12]. The color reaction was read at 540 nm after 4 h and absorbance values were expressed as a percentage of the blank controls.

2.4.4. Cytotoxicity Assay. MRC-5SV3 cells were cultivated in MEM supplemented with L-glutamine (20 mM), 16.5 mM sodium hydrogencarbonate, and 5% FCS. For the assay, 10¹⁴ MRC-5 cells/well were seeded onto the test plates containing the prediluted extracts and incubated at 37°C and 5% CO₂ for 72 h. Cell viability was assessed fluorimetrically after 4 hours of addition of resazurin. Fluorescence was measured (excitation 550 nm, emission 590 nm) and the results are expressed as % reduction in cell viability compared to the blank controls.

3. Results

For the selection of relevant plant species for our screening program, different places in Yemen and Saudi Arabia were visited where elderly people with profound knowledge of folk medicine were interviewed. In total, 25 medicinal plants were collected (Table 1), extracted, and evaluated in the integrated *in vitro* screen for antileishmanial, antiplasmodial, and antitrypanosomal potential (Table 2). Seven plants showed interesting activity (acceptable potency and selectivity) in one or more models (Table 2).

3.1. Antiplasmodial Activity. The methanolic extracts of *Caralluma penicillata* and *Acalypha ciliata* showed relevant activity against *P. falciparum* with IC₅₀ of 6.7 and 10.8 μg/mL, respectively, and acceptable selectivity (SI > 9.6 and > 5.9). The extracts of *Dichrocephala integrifolia* and *Rosmarinus officinalis* showed similar activity with IC₅₀ values of 10.2 and 11.4 but with low selectivity (SI = 2.4 and 1.9). *Hypoestes forskalei* demonstrated nonselective inhibition (IC₅₀ 8.8 μg/mL; SI 1.3).

3.2. Antileishmanial Activity. The extract of *Verbascum bottae* showed promising and selective activity against *L. infantum* (IC₅₀ 3.2 μg/mL; SI 10.2); *Solanum glabratum* exhibited moderate antileishmanial activity (IC₅₀ 8.1 μg/mL; SI 3.4). *H. forskalei* demonstrated nonselective inhibition (IC₅₀ 8.1 μg/mL; SI 1.4).

3.3. Antitrypanosomal Activity. Against *T. brucei*, the extracts of *C. penicillata*, *Leucas virgata*, *Loranthus regularis*, and *V. bottae* exhibited the most remarkable activity with IC₅₀ values of 8.5, 8.1, 8.3, and 2.3 μg/mL, respectively, and acceptable selectivity (SI > 7.6, 7.7, 4.3, and > 14.1). Against *T. cruzi*, some inhibitory potential was shown for *D. integrifolia*, *R. officinalis*, and *S. glabratum*, however, with lower selectivity (IC₅₀ 6.6, 8.8, and 8.5 μg/mL, resp., with SI < 4).

3.4. Cytotoxicity. The selectivity of the antiprotozoal activity was assessed on MRC-5 cells. Clear cytotoxicity was found for *Gonophocarpus fruticosus* (IC₅₀ 2.3 μg/mL), *Centaurothamus maximus* (IC₅₀ 9.3 μg/mL), and *Hypoestes forskalei* (IC₅₀ 11.0 μg/mL). The observed antiprotozoal inhibition of these plant species is therefore considered as nonselective.

4. Discussion

In continuation of our search for substances of plant origin with pharmacological effects, 25 plants were collected from Saudi Arabia and Yemen and screened for their antiplasmodial, antileishmanial, and antitrypanosomal activity potential. It is important to mention that to the best of our knowledge, this study represents the first report on antiprotozoal evaluation for most of the investigated plants. Although some plants have already been partly investigated, knowledge remains very limited in many cases. Based on
Table 2: Antiprotozoal activity and cytotoxicity (IC\(_{50}\)—\(\mu\)g/mL) of the methanolic extracts of the investigated plants.

Plant species	P. falciparum IC\(_{50}\)	L. infantum IC\(_{50}\)	T. cruzi IC\(_{50}\)	T. brucei IC\(_{50}\)	MRC-5 IC\(_{50}\)
Acalypha ciliata	10.8 ± 1.3	>5.9	>64.0	34.4 ± 7.3	>2.0
Acalypha fruticosa	27.1 ± 6.2	>2.4	>64.0	35.7 ± 5.8	>2.0
Amaranthus polygamus	>64.0	>1.0	>64.0	>64.0	>64.0
Barleria trispinosa	59.8 ± 5.6	>1.1	>64.0	>64.0	>64.0
Caralluma penicillata	6.7 ± 0.9	>9.6	>64.0	28.0 ± 1.7	>2.3
Centaurothamus maximus	12.1 ± 3.4	<1.0	>64.0	8.5 ± 1.5	>7.6
Cissus rotundifolia	>64.0	>64.0	>64.0	>64.0	>64.0
Coccinia grandis-fruits	>64.0	>64.0	>64.0	>64.0	>64.0
Coccinia grandis-leaves	38.6 ± 7.3	>1.7	>64.0	36.9 ± 2.4	>2.0
Dicrocephala integfrigolia	10.2 ± 2.5	2.4	20.3 ± 2.6	6.6 ± 0.5	>24.5
Fagonia indica	>64.0	>64.0	>64.0	>64.0	>64.0
Forskloaletenacissima	>64.0	>64.0	>64.0	>64.0	>64.0
Gomphocarpus fruticosus	>64.0	>64.0	2.6 ± 0.5	>64.0	2.3 ± 0.4
Hypoestes forskalei	8.8 ± 2.0	1.3	8.1 ± 1.3	9.1 ± 1.0	>2.0
Kedrostis foetidissima	62.2 ± 8.3	>1.0	>64.0	60.2 ± 3.5	>64.0
Kleinia pendula	38.9 ± 6.4	>1.6	>64.0	32.3 ± 3.7	>2.0
Leucas virgata	>64.0	>64.0	>64.0	8.3 ± 0.9	>7.7
Loranthus regularis	>64.0	32.5 ± 0.5	33.6 ± 2.5	9.5 ± 2.1	4.3
Ochradenus baccatus	>64.0	>64.0	>64.0	>64.0	>64.0
Otostegia fruticosa	34 ± 5.2	>1.9	>64.0	36.6 ± 4.9	>1.8
Oxalis corniculata	>64.0	>64.0	54.7 ± 7.6	34.7 ± 5.2	>1.8
Rosmarinus officinalis	11.4 ± 2.7	1.9	32.5 ± 0.5	8.8 ± 1.2	2.5
Solanum glabratum	>64.0	8.1 ± 1.3	3.4	8.5 ± 0.9	3.3
Taraxacum officinale	>64.0	>64.0	45.6 ± 7.3	>1.4	>64.0
Tecoma stans	36.3 ± 5.8	>1.8	38.1 ± 4.7	>1.7	>2.0
Verbascum bottae	29.9 ± 4.5	1.1	3.2 ± 0.3	270 ± 4.2	1.2
Chloroquine	0.3 ± 0.1	—	—	—	—
Mitelofosine	—	—	—	—	—
Benznidazole	—	—	—	—	—
Suramin	—	—	—	—	0.03 ± 0.02
Tamoxifen	—	—	—	—	11.0 ± 2.3

IC\(_{50}\) values of reference drugs are expressed in \(\mu\)M concentrations.

potency (IC\(_{50}\)) and selectivity, seven plant extracts are considered promising enough to pursue further purification and biological evaluation of individual constituents.

The methanol extract of the C. penicillata (collected from Saudi Arabia) exhibited antiplasmodial activity with adequate selectivity (IC\(_{50}\) 6.7 \(\mu\)g/mL, SI 9.6). Some side-activity was present against T. brucei (IC\(_{50}\) 8.5 \(\mu\)g/mL, SI 7.6), which matches our previously published data on C. sinaica showing antileishmanial and antitypanosomal activity. However, C. sinaica was inactive against P. falciparum [13]. Pregnan e glycosides which represent the major compounds in Caralluma species are believed to be responsible for the observed effects. Isolation and characterization of some acylated pregnane glycosides revealed antiparasitic activity for C. tuberculata and C. penicillata. The pregnane glycosides penicilloside E isolated from C. penicillata and caratuberside C isolated from C. tuberculata exhibited a pronounced antitypanosomal activity (IC\(_{50}\) 1.0 and 1.8 \(\mu\)g/mL) [14, 15].

Interesting antiplasmodial activity was obtained with A. ciliata that is traditionally used in the treatment of malaria. Our result is in agreement with literature data on other Acalypha species [16–20]. We previously reported interesting antiplasmodial activity for the methanol and aqueous extracts of A. fruticosa [16], whereby both extracts showed complete inhibition of schizont maturation at 7.8 \(\mu\)g/mL. Furthermore, Bradacs et al. [17] reported that the leaf extracts of A. grandis significantly affected P. falciparum without showing obvious effects on other protozoa. Additionally, the extract and fractions of A. wilkesiana dose-dependently reduced parasitaemia induced by chloroquine-sensitive P. berghei infection in prophylactic, suppressive, and curative mouse models [18].

Interesting antileishmanial and antitypanosomal activities were observed for S. glabratum. Antiprotozoal properties have indeed been reported for extracts from other Solanum species [21–25]. Abdel-Sattar et al. [21] demonstrated potent
in vitro antitrypanosomal activity for the methanol extract of *S. schimperianum* (IC₅₀ 0.061 μg/mL). It is recently reported that the extract of *S. torvum* inhibited the proliferation of promastigotes of *L. donovani* [22]. The fruits of *S. stramonifolium* var. *stramonifolium* were shown to have marginal activity against amastigotes of *L. amazonensis* [23]. Although *S. sisymbriifolium* failed to inhibit promastigotes of *L. amazonensis* and *L. brasiliensis* (IC₅₀ of 33.8 and 20.5 μg/mL), the steroid derivative Cilistol-A as the main active principle of the chloroform fraction exhibited significant activity against both *Leishmania* species (IC₅₀ 6.6 and 3.1 μg/mL) [24]. It seems that the antileishmanial as well as antityrpanosomal activities can be attributed to the steroidal alkaloids, which represent the major constituents in *Solanium* species. Abreu Miranda et al. [25] isolated solamargine and solasonine from the fruits of *S. lycocarpum* and showed in vitro leishmanicidal activity against promastigotes of *L. amazonensis*. Our failure to demonstrate activity against *P. falciparum* (IC₅₀ > 64 μg/mL) is not in agreement with literature data on other *Solanium* species. For example, Chinchilla et al. [26] reported antimalarial effect for *S. arboretum*; Kamaraj et al. [27] found some effect for *S. torvum* against chloroquine-sensitive (3D7) and chloroquine-resistant strains of *P. falciparum*. Moreover, diosgenone which is a spirostan-type steroidal saponin isolated from *S. nudum*, showed a high activity against FCB-2 strain of *P. falciparum* [28]. These results showed that diosgenone could be a new therapeutic alternative for the treatment of malaria [28].

One of the more remarkable plants with antileishmanial and antitrypanosomal activities was *V. bottae*, which showed selective activity against *L. infantum* and *T. brucei* (IC₅₀ 3.2 and 2.3 μg/mL; SI 10.2 and 14.1). This result outperforms data reported on other *Verbascum* species. A very marginal antileishmanial activity for *V. arcturus* against *L. donovani* (IC₅₀ 57 μg/mL) was reported and no activity against *P. falciparum* was reported [29]. Manjili et al. [30] obtained an IC₅₀ of 451 μg/mL for a *V. thapsus* extract against *L. major* promastigotes, illustrating inefficacy.

Another plant with antitrypanosomal activity was *L. virgata* (IC₅₀ 8.8 μg/mL against *T. brucei*), which is in agreement with literature data on other *Leucas* species [31–34]. Our results on the antiplasmodial inactivity of *L. virgata* are not in agreement with the effects noted for *L. aspera* and *L. cephalotes*. It is recently reported that the leaf ethyl acetate and methanol extracts of *L. aspera* had good antiplasmodial activity (IC₅₀ 7.81 and 22.7 μg/mL with SI values of 5.4 and 2.0) [32]. A similar study was conducted by Kamaraj et al. [33] who reported similar results for *L. aspera* (IC₅₀ 12.5 μg/mL). In addition, it is reported that *L. cephalotes* showed promising antiplasmodial activity (IC₅₀ < 5 μg/mL) in addition to promising activities against *L. donovani* with IC₅₀ values of 3.61 μg/mL (SI = 8) [34]. Apparently, these findings are mostly attributed to the presence of essential oil constituents as well as diterpenoids [35–38]. Triterpenoids, such as ursolic acid isolated from some *Leucas* species [39], showed significant antityrpanosomal activity; it inhibited all movement of *T. cruzi* epimastigotes at 40 μg/mL after 48 h incubation [40]. Notably antityrpanosomal potencies against *T. brucei* were also displayed by the methanolic extract of *L. regularis* (IC₅₀ 9.5 μg/mL, SI 4.3). Based on the literature review and to the best of our knowledge this is the first report on antiprotozoal activity of the genus *Loranthus*.

The methanolic extract of *R. officinalis* inhibited both *P. falciparum* and *T. cruzi* (IC₅₀ 11.4 and 8.8 μg/mL; SI 1.9 and 2.5) which is in agreement with data reported previously [35, 40]. The inhibitory effect was attributed to the presence of essential oils and triterpenoids, such as ursolic acid and oleanolic acid [40].

5. Conclusion

In conclusion, this preliminary study led to the identification of seven plant extracts, namely, *A. ciliata*, *P. cencillata*, *L. virgata*, *L. regularis*, *R. officinalis*, *S. glabrum*, and *V. bot-tae* exhibiting relevant antiplasmodial, antileishmanial, and antityrpanosomal activity in one or more models. The obtained results support to some extent the traditional uses of some plants for the treatment of parasitic diseases. Isolation, purification, and structure elucidation of constituents from some of these investigated plants are warranted to support discovery of novel antiplasmodial, antileishmanial, and antityrpanosomal compounds.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This project was supported by NSTIP Strategic Technologies Programs no. (10-MED1288-02) in the Kingdom of Saudi Arabia. The authors extend their appreciation for that support. Mathieuussen and Margot Desmet are acknowledged for performing the in vitro screening work and processing of the data.

References

[1] M. M. Salem and K. A. Werbovetz, “Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomiasis,” *Current Medicinal Chemistry*, vol. 13, no. 21, pp. 2571–2598, 2006.

[2] World Health Organization (WHO), “Research priorities for chagas disease, human African trypanosomiasis and leishmaniasis,” Technical Report Series 975, WHO, Geneva, Switzerland, 2012.

[3] D. Ganesh, H. P. Fuehrer, P. Starzengruber et al., “Antiplasmodial activity of flavonol quercetin and its analogues in *Plasmodium falciparum*: evidence from clinical isolates in Bangladesh and standardized parasite clones,” *Parasitology Research*, vol. 110, no. 6, pp. 2289–2295, 2012.

[4] S. Hoet, F. Opperdoes, R. Brun, and J. Quetin-Leclercq, “Natural products active against African trypanosomes: a step towards new drugs,” *Natural Product Reports*, vol. 21, no. 3, pp. 353–364, 2004.

[5] A. S. Al-Dubai and A. A. Al-khulaidi, *Medicinal and Aromatic Plants of Yemen (in Arabic)*, Obadi Center, Sanaa, Yemen, 1996.
Colombian *Lippia* spp essential oils and their major components,” *Memorias do Instituto Oswaldo Cruz*, vol. 105, no. 2, pp. 184–190, 2010.

[37] T. Moon, J. M. Wilkinson, and H. M. A. Cavanagh, “Antiparasitic activity of two *Lavandula* essential oils against *Giardia duodenalis, Trichomonas vaginalis* and *Hexamita inflata*,” *Parasitology Research*, vol. 99, no. 6, pp. 722–728, 2006.

[38] S. K. Sadhu, E. Okuyama, H. Fujimoto, and M. Ishibashi, “Diterpenes from *Leucas aspera* inhibiting prostaglandin-induced contractions,” *Journal of Natural Products*, vol. 69, no. 7, pp. 988–994, 2006.

[39] S. N. Das, V. J. Patro, and S. C. A. Dinda, “A review: ethnobotanical survey of genus *Leucas*,” *Pharmacognosy Reviews*, vol. 6, no. 12, pp. 100–106, 2012.

[40] F. Abe, T. Yamauchi, T. Nagao et al., “Ursolic acid as a trypanocidal constituent in rosemary,” *Biological and Pharmaceutical Bulletin*, vol. 25, no. 11, pp. 1485–1487, 2002.
Submit your manuscripts at
http://www.hindawi.com