Erratum: Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model

Carmelo Evoli, a Daniele Gaggero, b,c Dario Grasso c and Luca Maccione a,d

aSISSA, via Beirut, 2-4, 34014 Trieste, Italy
bDipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa, Italy
cINFN, Sezione di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa, Italy
dINFN, Sezione di Trieste, Via Valerio, 2, 34127 Trieste, Italy
E-mail: evoli@sissa.it, daniele.gaggero@pi.infn.it, dario.grasso@pi.infn.it, maccione@sissa.it

Received April 5, 2016
Accepted April 5, 2016
Published April 14, 2016

Erratum to: JCAP10(2008)018

Keywords: cosmic rays, neutrino and gamma astronomy

1 Errata

Instead of:

• we developed a new numerical code, DRAGON (Diffusion of cosmic RAys in Galaxy modelizatIOn). DRAGON is especially designed to account for a spatially inhomogeneous and an-isotropic diffusion coefficient.

should be:

• we developed a new numerical code, DRAGON (Diffusion of cosmic RAys in Galaxy modelizatIOn). The main focus of the project is on CR transport. The code solves a general version of the diffusion equation allowing for position-dependent diffusion; the solver is linked to routines and data tables taken from the current public version of GALPROP.1 (see the text for more details)

1 Galprop code can be downloaded from: http://galprop.stanford.edu.
Instead of:

- As in GALPROP (see [1] and references therein) the spallation cross sections and the spallation network are based on a compilation of experimental data and semi-empirical energy dependent interpolation formulas as provided e.g. in [2–4].

should be:

- We included the routines and data tables taken from the public version of GALPROP [1]. In more detail, the material included in our code contains (see, also, [5]):
 1) the nuclear reaction network, built using the Nuclear Data Sheets;
 2) the isotopic cross section database built using the T16 Los Alamos compilation [6] and the CEM2k and LAQGSM codes [7];
 3) fits to some particular channels of isotopic production cross section [8–10];
 4) phenomenological approximations adapted from [11] and [12];
 5) inelastic cross section database adapted from [13, 14].

References

[1] GALPROP project web page, http://galprop.stanford.edu.
[2] J.R. Letaw, R. Silberberg and C.H. Tsao, Proton-nucleus total inelastic cross sections — an empirical formula for $E > 10$ MeV, *Astrophys. J. Suppl.* 51 (1983) 271.
[3] W.R. Webber, J.C. Kish and D.A. Schrier, Total charge and mass changing cross-sections of relativistic nuclei in hydrogen, helium and carbon targets, *Phys. Rev. C* 41 (1990) 520 [nucl-th/9812071 [SPIRE]].
[4] R. Silberberg and C.H. Tsao, Spallation processes and nuclear interaction products of cosmic rays, *Phys. Rept.* 191 (1990) 351 [SPIRE].
[5] A.W. Strong and I.V. Moskalenko, Models for galactic cosmic ray propagation, *Adv. Space Res.* 27 (2001) 717 [astro-ph/0101068 [SPIRE]].
[6] S.G. Mashnik, A.J. Sierk, K.A. Van Riper and W.B. Wilson, Production and validation of isotope production cross-section libraries for neutrons and protons to 1.7-GeV, *nucl-th/9812071 [SPIRE]*.
[7] S.G. Mashnik, K.K. Gudima, I.V. Moskalenko, R.E. Prael and A.J. Sierk, CEM2k and LAQGSM as event generators for space radiation shielding and cosmic ray propagation applications, *Adv. Space Res.* 34 (2004) 1288 [nucl-th/0210065 [SPIRE]].
[8] I.V. Moskalenko, S.G. Mashnik and A.W. Strong, New calculation of radioactive secondaries in cosmic rays, in proceedings of the 27th International Cosmic Ray Conference (ICRC), Hamburg, Germany (2001), p. 1836, *astro-ph/0106502 [SPIRE]*.
[9] I.V. Moskalenko, A.W. Strong, S.G. Mashnik and J.F. Ormes, Challenging cosmic ray propagation with antiprotons. Evidence for a fresh nuclei component?, *Astrophys. J.* 586 (2003) 1050 [astro-ph/0210480 [SPIRE]].
[10] I.V. Moskalenko and S.G. Mashnik, Evaluation of production cross sections of Li, Be, B in CR, in proceedings of the 28th International Cosmic Ray Conference (ICRC), Tsukuba, Japan (2003), p. 1969, *astro-ph/0306367 [SPIRE]*.
[11] W.R. Webber, J.C. Kish and D.A. Schrier, Formula for calculating partial cross-sections for nuclear reactions of nuclei with $E > 200$ MeV/nucleon in hydrogen targets, *Phys. Rev. C* 41 (1990) 566 [SPIRE].
[12] R. Silberberg, C.H. Tsao and A.F. Barghouty, Updated Partial Cross Sections of Proton-Nucleus Reactions, *Astrophys. J.* 501 (1998) 911 [SPIRE].
[13] V.S. Barashenkov, *Cross-sections of interactions of particles and nuclei with nuclei*, JINR technical report (1993).

[14] V.S. Barashenkov and A. Polanski, *Electronic guide for nuclear cross-sections*, JINR-E2-94-417 (1994) [inSPIRE].