Can we understand the decay width of the T_{cc}^+ state?

Xi-Zhe Ling, Ming-Zhu Liu, Li-Sheng Geng, En Wang, and Ju-Jun Xie

1School of Physics, Beihang University, Beijing 102206, China
2School of Space and Environment, Beihang University, Beijing 102206, China
3Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing, 102206, China
4School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
5Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
6School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
7Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China

(Dated: January 5, 2022)

Inspired by the recent discovery of a doubly charmed tetraquark state T_{cc}^+ by the LHCb Collaboration, we employ the effective Lagrangian approach to investigate the decay width of $T_{cc}^+ \to D^+D^0\pi^0/D^0D^0\pi^+ + T_{cc}^+ \to D^0D^+\gamma$ with the assumption that T_{cc}^+ is an isoscalar DD^* molecule. We show that both the $T_{cc} \to DD\pi$ and $T_{cc} \to DD\gamma$ modes contribute to the decay width of T_{cc}, with the former being dominant. The resulting total decay width of about $\Gamma \approx 63$ keV is smaller than the experimental decay width obtained from the Breit-Wigner fit of the LHCb data, $\Gamma = 410 \pm 165 \pm 18 \pm 43$ keV, while close to the number obtained from the alternative unitary analysis, $\Gamma = 48 \pm 2^{+10}_{-14}$ keV, which supports the molecular nature of T_{cc}.

I. INTRODUCTION

Mesons made of a pair of quark and anti-quark and baryons made of three quarks can be well understood in the conventional quark model [1]. Although Quantum ChromoDynamics (QCD) allows for other quark configurations, such as tetraquark, pentaquark, and hexaquark states, their existence were not experimentally confirmed until the charged tetraquark state $Z_c(4430)$, with the minimum quark content $c\bar{c}u\bar{d}$, was discovered in 2007 by the Belle Collaboration [2]. In 2015, the LHCb Collaboration reported the first
pentaquark states $P_c(4380)$ and $P_c(4450)$ \[3\], while the latter was shown to be a superposition of two states, $P_c(4440)$ and $P_c(4457)$ \[4\]. In 2020, the LHCb Collaboration discovered the first fully heavy tetraquark state $X(6900)$ \[5\]. It should be noted that all of these exotic states carry hidden charm number. The first open charm tetraquark states, $X_0(2866)$ and $X_1(2904)$, were only discovered in 2020 by the LHCb Collaboration \[6\].

Since forty years ago, a series of pioneer works have already investigated the likely existence of $QQ\bar{q}\bar{q}$ tetraquark states in the quark model, which showed that the stability of a $QQ\bar{q}\bar{q}$ tetraquark depends on the mass ratio of $m_Q/m_{\bar{q}}$ \[7–13\]. As the ratio is larger, such a multiquark state is more stable. However, due to the uncertainty of $m_c/m_{\bar{q}}$, whether the mass of the $cc\bar{q}\bar{q}$ tetraquark state is above or below the DD^* mass threshold is unsettled. Later, meson exchange potentials were employed to study the likely existence of DD^* molecules \[14, 15\], where due to the unknown parameters the existence of DD^* bound states is also uncertain. In 2002, a doubly charmed baryon was discovered by the SELEX Collaboration \[16\], which motivated further theoretical studies on $cc\bar{q}\bar{q}$ tetraquark states \[17, 18\]. In 2003, $X(3872)$ was discovered by the Belle Collaboration \[19\], which opened a new era in hadron physics. One of the most promising interpretations of $X(3872)$ is a $D\bar{D}^*$ bound state. This has further stimulated theoretical studies on $D^{(*)}D^{(*)}$ molecules, i.e., T_{cc} \[20–32\]. In 2017, the LHCb collaboration reported the doubly charmed baryon Ξ_{cc} \[33\], which allows the cc-diquark mass precisely extracted by the mass of Ξ_{cc} and predicts a doubly charmed compact tetraquark state above the DD^* mass threshold by 8 MeV \[34\]. Taking into account the heavy quark symmetry between Ξ_{cc} and T_{cc}, in Refs. \[35, 36\] a doubly charmed compact tetraquark state above the DD^* mass threshold was also predicted.

Very recently, the LHCb Collaboration reported the discovery of a doubly charmed tetraquark state T_{cc}^+ with $I(J^P) = 0(1^+)$, which is found in the $D^0\bar{D}^0\pi^+$ invariant mass spectrum \[37\]. Its binding energy with respect to the $D^{(*)}\bar{D}^{(*)}$ mass threshold is found to be $\delta = 273 \pm 61 \pm 5^{+11}_{-14}$ keV and decay width is $\Gamma = 410 \pm 165 \pm 43^{+18}_{-38}$ keV. In the unitarized Breit-Wigner profile that takes into account the effect of mass threshold, the binding energy and decay width change to $\delta = 360 \pm 40^{+4}_{-0}$ keV and $\Gamma = 48 \pm 2^{+0}_{-14}$ keV, respectively \[38\]. The T_{cc} state could be either a compact tetraquark state or a hadronic molecule of DD^*. Since the T_{cc} mass is below the mass threshold of $D^{(*)}\bar{D}^{(*)}$ by 273 keV, the molecular picture seems more appealing.

In the present work, we revisit the molecular picture for the T_{cc}^+ state. In particular, we study its hadronic and radiative decays to check whether one can obtain a decay width in reasonable agreement with the LHCb measurement. This can serve as a highly nontrivial check on its nature.
In this work, we assume that T_{cc} is generated by couple channels $D^{*+}D^{0}$ and $D^{0}D^{*+}$, and it then can decay into $D^{+}D^{0}\pi^{0}/D^{0}D^{0}\pi^{+}$ and $D^{+}D^{0}\gamma$ via the tree-level diagrams, as shown in Fig. 1. In the following, we employ the effective Lagrangian approach to calculate the partial decay widths of $T_{cc} \rightarrow D^{+}D^{0}\pi^{0}/D^{0}D^{0}\pi^{+}$ and $D^{+}D^{0}\gamma$.

The interaction between the T_{cc} state and the DD^{*} pair is described by the following effective Lagrangian [40]

$$
\mathcal{L}_{T_{cc}}(x) = ig_{T_{cc}} T_{cc}^{\mu}(x) \int dy \Phi(y^{2}) D(x + \omega_{D^{*}} y) D^{\mu}_{p}(x - \omega_{D^{*}} y),
$$

where $\omega_{D^{*}} = \frac{m_{D^{*}}}{m_{p} + m_{D}}$ and $\omega_{D} = \frac{m_{D}}{m_{p} + m_{D}}$ are the kinematic parameters with $m_{D^{*}}$ and m_{D} the masses of D and D^{*}, and $g_{T_{cc}}$ is the coupling between T_{cc} and the $D^{*}D$ component. The correlation function $\Phi(y^{2})$ is introduced to reflect the distribution of the two constituent hadrons in a molecule, which also renders the

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig1.png}
\caption{Tree-level diagrams for strong decays of $T_{cc}^{+} \rightarrow D^{+}\pi^{0}(D^{*+})D^{0}$ (a), $T_{cc}^{+} \rightarrow D^{0}\pi^{+}(D^{*+})D^{0}$ (b) and $T_{cc}^{+} \rightarrow D^{0}\pi^{0}(D^{*0})D^{+}$ (c) as well as radiative decays of $T_{cc}^{+} \rightarrow D^{+}\gamma(D^{*+})D^{0}$ (d) and $T_{cc}^{+} \rightarrow D^{0}\gamma(D^{*0})D^{+}$ (e).}
\end{figure}
Feynman diagrams ultraviolet finite. Here we choose the Fourier transformation of the correlation function in form of a Gaussian function

$$\Phi(p^2) = e^{-p^2/\Lambda^2},$$

where Λ is a size parameter, which is expected to be around 1 GeV \cite{41,42}, and P_E is the Euclidean momentum. The coupling of $g_{T\cc}$ can be estimated by reproducing the binding energy of the T_{cc} state via the compositeness condition \cite{43,44,45}. The condition indicates that the coupling constant can be determined from the fact that the renormalization constant of the wave function of a composite particle should be zero.

For a spin-1 meson, the self energy can be divided into a transverse part and a longitudinal part, i.e.,

$$\Sigma^{\mu\nu} = g_+^{\mu\nu} \Sigma_{T_{cc}}(k_0^2) + \frac{p^\mu p^\nu}{p^2} \Sigma_{L}(k_0^2),$$

with $g_+^{\mu\nu} = g^{\mu\nu} - \frac{p^\mu p^\nu}{p^2}$. The compositeness condition can then be estimated from the transverse part of the self energy

$$Z_{T_{cc}} = 1 - \frac{d\Sigma_{T_{cc}}(k_0^2)}{dk_0^2}
|_{k_0=m_{T_{cc}}} = 0.$$ \hspace{1cm} (4)

The T_{cc} mass is below the $D^{*+}D^0$ mass threshold by 273 keV with an uncertainty of 66 keV. We note that the threshold of $D^{*0}D^+$ is above that of $D^{*+}D^0$ by only about 1.4 MeV, and therefore we assume that the couplings of $g_{T_{cc}D^{*0}D^+}$ and $g_{T_{cc}D^{*+}D^0}$ are the same, from SU(2)-isospin symmetry. Therefore, we take the average mass of D^{*0} and D^{*+} (D^0 and D^+) to calculate the coupling of T_{cc} to its component $g_{T_{cc}D^+D^-}$ (as a result, the binding energy is 0.978 MeV), then obtain $g_{T_{cc}D^{*0}D^+}$ and $g_{T_{cc}D^{*+}D^0}$ using isospin symmetry. In the isospin symmetric limit, the T_{cc} couplings to $D^{*+}D^0$ and $D^{*0}D^+$ satisfy the following relationship

$$g_{T_{cc}D^+D^0} = \frac{1}{\sqrt{2}} g_{T_{cc}D^0D^+}.$$ \hspace{1cm} (5)

Substituting the coupling $g_{T_{cc}D^0D^+}$ estimated by the compositeness condition, the couplings $g_{T_{cc}D^{*0}D^+}$ and $g_{T_{cc}D^{*+}D^0}$ are determined, which turn out to be consistent with the result of the chiral unitary approach \cite{48}.

Table I. Masses, quantum numbers and partial decay widths of relevant mesons used in this work \cite{46}.

Meson	$I(J^P)$	M (MeV)	Meson	$I(J^P)$	M (MeV)
D^0	$\frac{1}{2}(0^-)$	1864.84 ± 0.05	D^+	$\frac{1}{2}(0^-)$	1869.66 ± 0.05
D^{*0}	$\frac{1}{2}(1^-)$	2006.85 ± 0.05	D^{*+}	$\frac{1}{2}(1^-)$	2010.26 ± 0.05
π^+	$1(0^-)$	139.57039 ± 0.00018	π^0	$1(0^-)$	134.9768 ± 0.0005

Decay mode	Width (keV)	Decay mode	Width (keV)
$D^{*+} \rightarrow D^0\pi^+(D^+\pi^0)$	56.5 ± 1.2(25.6 ± 0.6)	$D^{*+} \rightarrow D^+\gamma$	1.33 ± 0.03
$D^{*0} \rightarrow D^0\pi^0$	34.658 \cite{47}	$D^{*0} \rightarrow D^0\gamma$	21.242 \cite{47}
In Fig. 2 we present the dependence of the T_{cc} coupling to DD^* on the T_{cc} mass with the size parameter Λ fixed at 1 and 2 GeV. The masses of the involved particles are given in Table I. One can see that the coupling gradually decreases as the T_{cc} mass increases. Note that the coupling is only weakly dependent on the size parameter Λ.

![Graph showing the dependence of $g_{T_{cc}}$ on $m_{T_{cc}}$.](image)

FIG. 2. Coupling of T_{cc} to DD^* as a function of the T_{cc} mass with $\Lambda = 1$ and $\Lambda = 2$ GeV. The vertical dashed line indicates the experimental central value for the T_{cc} mass.

The Lagrangian describing the D^* decay into $D\pi$ and $D\gamma$ are

\[
L_{DD^*\pi} = -ig_{DD^*\pi}(D\bar{\partial}\mu\pi D^\mu - D^\mu\bar{\partial}\mu\pi D^\dagger),
\]

\[
L_{DD^*\gamma} = eg_{DD^*\gamma}\varepsilon^{\mu\nu\alpha\beta}\partial_\mu A_\nu D^\beta D^\dagger, \tag{6}
\]

where the fine structure constant $\frac{e^2}{4\pi} = \frac{1}{137}$, and relevant couplings are determined as $g_{D^+D^0\pi^0} = 16.818$ and $g_{D^+D^0\gamma} = 0.468$ GeV$^{-1}$ by reproducing the decay widths of $D^{*+} \rightarrow D^0\pi^+$ and $D^{*+} \rightarrow D^+\gamma$ [46], respectively. Experimentally, there exists only an upper limit $\Gamma < 2.1$ MeV for the D^{*0} width. Thus we turn to the quark model [47], where the strong and radiative decay widths of D^{*0} were estimated to be $\Gamma_{D^{*0} \rightarrow D^0\pi^0} = 34.658$ keV and $\Gamma_{D^{*0} \rightarrow D^0\gamma} = 21.242$ keV. With these numbers, we obtain the couplings $g_{D^{*0}D^0\pi^0} = 11.688$ and $g_{D^{*0}D^0\gamma} = 1.843$ GeV$^{-1}$. It is clear that the strong couplings satisfy approximately isospin symmetry while the electromagnetic couplings do not.

1 We note that the lattice QCD simulation [49] gave relatively larger values, i.e., $\Gamma_{D^{*0} \rightarrow D^0\pi^0} = 53 \pm 9$ keV and $\Gamma_{D^{*0} \rightarrow D^0\gamma} = 33 \pm 6$ keV. From isospin symmetry, we expect that the D^{*0} strong decay width be smaller than the D^{*+} strong decay width because the $D^{*0} \rightarrow D^*\pi^-$ decay mode is kinematically forbidden. As a result, we do not use these lattice QCD results.
With the above Lagrangians the decay amplitudes of $T_{cc} \rightarrow DD\pi$ and $T_{cc} \rightarrow DD\gamma$ are

$$M_{T_{cc} \rightarrow DD\pi} = ig_{T_{cc}}g_{DD\pi}p_2\mu\frac{\mu^\nu - k_1^\nu k_1^\mu/m_D^2}{k_1 - m_D^2 + im_D\Gamma_{m_D^2}}\epsilon_\nu(p_0),$$

$$M_{T_{cc} \rightarrow DD\gamma} = ig_{T_{cc}}g_{DD\gamma}\epsilon^{\mu\nu}\alpha\beta p_2\mu\epsilon_\nu(p_0)\frac{k_1^\mu k_1^\nu/m_D^2}{k_1^2 - m_D^2 + im_D\Gamma_{m_D^2}}\epsilon^{\alpha\beta}(p_0),$$

where p_2, k_1, and p_0 are the momentum of $\pi(\gamma)$, D^\ast, and T_{cc}, respectively. The partial decay widths of $T_{cc} \rightarrow DD\pi$ and $T_{cc} \rightarrow DD\gamma$ as a function of m_{12}^2 and m_{23}^2 read:

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{2J + 1} \frac{|M|^2}{32m_{T_{cc}}^3} dm_{12}^2 dm_{23}^2,$$

with m_{12} the invariant mass of DD and m_{23} the invariant mass of $D\pi$ or $D\gamma$ for the $T_{cc} \rightarrow DD\pi$ or $T_{cc} \rightarrow DD\gamma$ decay, respectively.

In principle, there exist three possible decay channels, $T_{cc} \rightarrow D^0D^0\pi^\ast$, $T_{cc} \rightarrow D^0D^+\pi^0$, and $T_{cc} \rightarrow D^+D^+\pi^-$. In Fig. 3(a)(b), we show the decay width of $T_{cc} \rightarrow DD\pi/\gamma$ as a function of the T_{cc} mass, where we take the size parameter $\Lambda = 1$ and 2 GeV. With the T_{cc} mass varying from 3874.751 to 3874.883 MeV, the decay width of $T_{cc} \rightarrow DD\pi$ is found to be about 46 to 62 keV with the size parameter $\Lambda = 1$ GeV, which is smaller than the Breit-Wigner width by one order of magnitude [37], but close to the result yielded from the unitary analysis [38]. One should note that the decay $T_{cc}(D^0D^+) \rightarrow D^+\pi^-D^+$ is kinematically forbidden. The $T_{cc}(D^+D^0) \rightarrow D^0\pi^+D^0$ contribution accounts for 50% of the total decay width, and the remaining is from $T_{cc}(D^+D^0) \rightarrow D^+\pi^0D^0$ and $T_{cc}(D^0D^+) \rightarrow D^0\pi^0D^+$.

![Graph](image-url)

FIG. 3. Total decay width and partial decay widths of $T_{cc} \rightarrow DD\pi(a)$ and $T_{cc} \rightarrow DD\gamma(b)$ as a function of the T_{cc} mass. The solid and dashed lines represent the results obtained with a cutoff $\Lambda = 1$ GeV and $\Lambda = 2$ GeV, respectively.

The radiative decay width of $T_{cc} \rightarrow DD\gamma$ is about 10 keV, which mainly originates from the D^0D^+ component of the DD^* molecule because the radiative decay width of D^0 is about 16 times that of
Considering isospin breaking due to the mass difference of the D^+D^0 and $D^{*0}D^+$ channels, the radiative decay width will decrease. As a result, what we obtained should be viewed as an upper limit. The ratio of the decay widths of $T_{cc} \rightarrow DD\gamma$ and $T_{cc} \rightarrow DD\pi$ is in agreement with the ratio of the decay widths of $D^* \rightarrow D\gamma$ and $D^* \rightarrow D\pi$, reflecting the fact that the decay width of T_{cc} is mainly from the decay of D^*. Since the decay width of a free D^{*+} is 83.4 keV \cite{46}, the decay width of a weakly bound DD^* molecule is not expected to be larger than 83.4 keV.

III. SUMMARY AND OUTLOOK

We studied the decay width of the T_{cc}^+ state in the effective Lagrangian approach. Assuming that the T_{cc}^+ state is a hadronic molecule of DD^*, we obtained a partial decay width of $T_{cc} \rightarrow DD\pi$ of about 53 keV and a radiative decay width of about 10 keV. Their sum is much smaller than the central experimental value of the Breit-Wigner fit, but agrees with that of the unitary fit. We argued that although the experimental binding energy favors a molecular interpretation for the T_{cc} state, a complete understanding of its decay width is still missing.

The discovery of the doubly charmed tetraquark state T_{cc}^+ may open up another new era for hadron physics, in the same way that the discovery of $X(3872)$ did \cite{19}. For open charm exotic baryons, it is very reasonable to expect a complete multiplet of doubly charmed $D^{(*)}\Sigma_c^*$ hadronic molecules, which are more bound than their hidden charm $\bar B^{(*)}\Sigma_c$ counterparts \cite{39}, consistent with Refs. \cite{50–52}. From SU(3) symmetry, one may expect the existence of D^*D_s or D^*D_s molecules. However, these two systems are found difficult to bind, at least from the perspective of OBE models \cite{26}. In a series of recent works \cite{53–56}, we predicted one $DD\pi$ bound state with isospin $1/2$, spin-parity 0^-, and a minimum quark content of $cc\bar s\bar q$, which can be regraded as the strangeness partner of T_{cc}. All these remain to be further studied in more detail both theoretically and experimentally.

Note added: After the T_{cc}^+ state was discovered by the LHCb Collaboration, a series of works have been performed to investigate the property of T_{cc} \cite{48, 50, 57–66}. In Refs. \cite{57, 58}, in addition to the tree level contribution, the final DD rescattering effect was also taken into account. However, it only contributes several keV, which obeys the power counting of effective field theory. In Refs. \cite{59, 60}, the authors argued that in the molecular picture of T_{cc}^+ the explicit breaking of isospin should be considered and it may lead to another molecular state mainly coupling to the $D^{*0}D^+$ channel. However, the authors of Ref. \cite{48} did not find another T_{cc} denominated by the $D^{*0}D^+$ channel in the chiral unitary model. In Ref. \cite{61}, Dai et al. have considered the interaction of $D^{*+}D^0$ and $D^0D^0\pi^+$ coupled channels by fitting to the LHCb data, and interpreted the T_{cc}^+ state as a virtual state. Moreover, several theoretical works investigated the production
of $T_{cc} [62, 63]$. In Ref. [64], M. Albaladco predicted several D^*D^* bound states based on heavy quark spin symmetry and the molecular picture where the T_{cc} state is a DD^* molecule.

IV. ACKNOWLEDGMENTS

MZL thank Mao-Jun Yan for useful discussions. This work is partly supported by the National Natural Science Foundation of China under Grants No.12105007, No.11735003, No.11975041, No.11961141004, No.11961141012, No.12075288, and No.1210050997, and the fundamental Research Funds for the Central Universities, the Youth Innovation Promotion Association CAS, the Key Research Projects of Henan Higher Education Institutions under No. 20A140027, the Project of Youth Backbone Teachers of Colleges and Universities of Henan Province (2020GGJS017), and the Fundamental Research Cultivation Fund for Young Teachers of Zhengzhou University (JC202041042).

[1] M. Gell-Mann, Phys. Lett. 8, 214 (1964).
[2] S. K. Choi et al. (Belle), Phys. Rev. Lett. 100, 142001 (2008) [arXiv:0708.1790 [hep-ex]].
[3] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015) [arXiv:1507.03414 [hep-ex]].
[4] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 222001 (2019) [arXiv:1904.03947 [hep-ex]].
[5] R. Aaij et al. (LHCb), Sci. Bull. 65, 1983 (2020) [arXiv:2006.16957 [hep-ex]].
[6] R. Aaij et al. (LHCb), Phys. Rev. Lett. 125, 242001 (2020) [arXiv:2009.00025 [hep-ex]].
[7] J. P. Ader, J. M. Richard, and P. Taxil, Phys. Rev. D 25, 2370 (1982).
[8] S. Zouzou, B. Silvestre-Brac, C. Gignoux, and J. M. Richard, Z. Phys. C 30, 457 (1986).
[9] H. J. Lipkin, Phys. Lett. B 172, 242 (1986).
[10] L. Heller and J. A. Tjon, Phys. Rev. D 35, 969 (1987).
[11] J. Carlson, L. Heller, and J. A. Tjon, Phys. Rev. D 37, 744 (1988).
[12] B. Silvestre-Brac and C. Semay, Z. Phys. C 57, 273 (1993).
[13] C. Semay and B. Silvestre-Brac, Z. Phys. C 61, 271 (1994).
[14] A. V. Manohar and M. B. Wise, Nucl. Phys. B 399, 17 (1993) [arXiv:hep-ph/9212236].
[15] S. Pepin, F. Stancu, M. Genovese, and J. M. Richard, Phys. Lett. B 393, 119 (1997) [arXiv:hep-ph/9609348].
[16] M. Mattson et al. (SELEX), Phys. Rev. Lett. 89, 112001 (2002) [arXiv:hep-ex/0208014].
[17] B. A. Gelman and S. Nussinov, Phys. Lett. B 551, 296 (2003) [arXiv:hep-ph/0209095 [hep-ph]].
[18] J. Vijande, F. Fernandez, A. Valcarce, and B. Silvestre-Brac, Eur. Phys. J. A 19, 383 (2004) [arXiv:hep-ph/0310007].
[19] S. K. Choi et al. (Belle), Phys. Rev. Lett. 91, 262001 (2003) [arXiv:hep-ex/0309032].
[20] D. Janc and M. Rosina, Few Body Syst. 35, 175 (2004) [arXiv:hep-ph/0405208 [hep-ph]].
[53] M. Sanchez Sanchez, L.-S. Geng, J.-X. Lu, T. Hyodo, and M. P. Valderrama, Phys. Rev. D 98, 054001 (2018), arXiv:1707.03802 [hep-ph].

[54] A. Martinez Torres, K. P. Khemchandani, and L.-S. Geng, Phys. Rev. D99, 076017 (2019), arXiv:1809.01059 [hep-ph].

[55] T.-W. Wu, M.-Z. Liu, L.-S. Geng, E. Hiyama, and M. P. Valderrama, Phys. Rev. D100, 034029 (2019), arXiv:1906.11995 [hep-ph].

[56] T.-W. Wu, M.-Z. Liu, and L.-S. Geng, Phys. Rev. D 103, L031501 (2021), arXiv:2012.01134 [hep-ph].

[57] M.-J. Yan and M. P. Valderrama, (2021), arXiv:2108.04785 [hep-ph].

[58] S. Fleming, R. Hodges, and T. Mehen, (2021), arXiv:2109.02188 [hep-ph].

[59] L. Meng, G.-J. Wang, B. Wang, and S.-L. Zhu, Phys. Rev. D 104, 051502 (2021), arXiv:2107.14784 [hep-ph].

[60] R. Chen, Q. Huang, X. Liu, and S.-L. Zhu, (2021), arXiv:2108.01911 [hep-ph].

[61] L.-Y. Dai, X. Sun, X.-W. Kang, A. P. Szczepaniak, and J.-S. Yu, (2021), arXiv:2108.06002 [hep-ph].

[62] Y. Huang, H. Q. Zhu, L.-S. Geng, and R. Wang, (2021), arXiv:2108.13028 [hep-ph].

[63] Y. Hu, J. Liao, E. Wang, Q. Wang, H. Xing, and H. Zhang, (2021), arXiv:2109.07733 [hep-ph].

[64] M. Albaladejo, (2021), arXiv:2110.02944 [hep-ph].

[65] Y. Jin, S.-Y. Li, Y.-R. Liu, Q. Qin, Z.-G. Si, and F.-S. Yu, (2021), arXiv:2109.05678 [hep-ph].

[66] H. Ren, F. Wu, and R. Zhu, (2021), arXiv:2109.02531 [hep-ph].