An assessment of the effect of hepatitis B vaccine in decreasing the amount of hepatitis B disease in Italy

Giuseppe La Torre*, Nicola Nicolotti, Chiara de Waure, Giacomina Chiaradia, Maria Lucia Specchia, Alice Mannocci and Walter Ricciardi

Address: Catholic University of the Sacred Heart, Institute of Hygiene, Rome, Italy

Email: Giuseppe La Torre* - giuseppe.latorre@rm.unicatt.it; Nicola Nicolotti - nicola.nicolotti@libero.it; Chiara de Waure - chiaradw@alice.it; Giacomina Chiaradia - gemmachiaradia@yahoo.it; Maria Lucia Specchia - marialucia.specchia@rm.unicatt.it; Alice Mannocci - alice.mannocci@rm.unicatt.it; Walter Ricciardi - wricciardi@rm.unicatt.it

* Corresponding author

Abstract

Background: Hepatitis B (HBV) infection is an important cause of morbidity and mortality and it is associated to a higher risk of chronic evolution in infected children. In Italy the anti-HBV vaccination was introduced in 1991 for newborn and twelve years old children. Our study aims to evaluate time trends of HBV incidence rates in order to provide an assessment of compulsory vaccination health impact.

Method: Data concerning HBV incidence rates coming from Acute Viral Hepatitis Integrated Epidemiological System (SEIEVA) were collected from 1985 to 2006. SEIEVA is the Italian surveillance national system that registers acute hepatitis cases. Time trends were analysed by joinpoint regression using Joinpoint Regression Program 3.3.1 according to Kim’s method. A joinpoint represents the time point when a significant trend change is detected. Time changes are expressed in terms of the Expected Annual Percent Change (EAPC) with 95% confidence interval (95% CI).

Results: The joinpoint analysis showed statistically significant decreasing trends in all age groups. For the age group 0–14 EAPC was -39.0 (95% CI: -59.3; -8.4), in the period up to 1987, and -12.6 (95% CI: -16.0; -9.2) thereafter. EAPCs were -17.9 (95% CI: -18.7; -17.1) and -6.7 (95% CI: -8.0; -5.4) for 15–24 and ≥25 age groups, respectively. Nevertheless no joinpoints were found for age groups 15–24 and ≥25, whereas a joinpoint at year 1987, before compulsory vaccination, was highlighted in 0–14 age group. No joinpoint was observed after 1991.

Discussion: Our results suggest that the introduction of compulsory vaccination could have contribute partly in decreasing HBV incidence rates. Compulsory vaccination health impact should be better investigated in future studies to evaluate the need for changes in current vaccination strategy.
Background
HBV infection is an important cause of morbidity and mortality. The World Health Organisation (WHO) estimates that two billion of people worldwide have a serological evidence of past or present HBV infection [1].

The prevalence of chronic HBV infection is low (<2%) in the general population in Northern and Western Europe, North America, Australia, New Zealand, Mexico, and Southern South America. The prevalence of chronic HBV infection is intermediate (2%–7%) in South Central and Southwest Asia, Israel, Japan, Eastern and Southern Europe, Russia, most areas surrounding the Amazon River basin, Honduras, and Guatemala. The prevalence of chronic HBV infection is high (>8%) in all Countries in Africa, Southeast Asia, the Middle East (except Israel), Southern and Western Pacific islands, the interior Amazon River basin and certain parts of the Caribbean (Haiti and the Dominican Republic) [2].

In Italy, the prevalence of HBV infection is set under 2% from the beginning of the twentieth. The most important routes of transmission are sexual intercourse, intrafamiliar contacts and i.v. drug use [3]. The HBV infection trend is changed through the years. There were two important downward tendencies in the serum prevalence of infection, one at the beginning of the eighties, related to the improved socio-economic conditions and to the reduction in family numerosity [4], and one at the end of the eighties, after the spreading of HIV infection and before compulsory vaccination.

In 1985, the Acute Viral Hepatitis Integrated Epidemiologic System data (SEIEVA) was established [5]. The national surveillance system underlined an impressive reduction of the incidence of HBV infection from 12/100,000 to 5.1/100,000 through the 1985–1991 period, reporting the highest number of cases among individuals 15–24 years old and among males [6]. From the starting of compulsory vaccination campaign, in 1991, there was another downfall in HBV incidence with a reduction of 40% from 1988–91 to 1991–99. The incidence reduction was of 66% among 0–14 years old individuals and 59% among 15–24 years old ones [6].

The compulsory vaccination was mainly introduced by the high risk of chronic evolution of the infection in children. SEIEVA data demonstrated a stabilisation of the epidemiological trend of infection with a mean incidence of 1.65 cases for 100,000 in the last 6 years available [7]; this trend was also demonstrated in other European nations [8].

Anti-hepatitis B vaccine has still some aspects, such as the immunity memory length and the failure rate, to go in deep [9,10].

Our study aims to evaluate the epidemiology of HBV infection in Italy and to provide an assessment of compulsory vaccination health impact by studying time trends through the use of the joinpoint regression. This statistical technique highlights the time points that divide periods characterised by different time trends. It should so represent an innovative approach to in depth investigate the HBV incidence rates decreasing trends described by other authors [6,8,11-14] and to give some additional insight to the vaccine impact.

Methods
Data and setting
HBV incidence rates, reported by the SEIEVA, were collected from 1985 to 2006 [7]. SEIEVA is a surveillance system that covers 57% of Italian population and aims to investigate epidemiology of viral acute hepatitis. The system is coordinated by the National Institute of Health and each Local Health Unit (LHU) can join voluntary the system.

Data regarded incidence rates for 100,000 and were stratified by age (0–14; 15–24; ≥ 25). Rates were computed dividing the number of cases by the total population of each joining LHU. In the surveillance system the diagnosis of acute hepatitis B was posed if a serologically confirmed positivity for IgM anti-HBcAg was found.

Since SEIEVA data were available before mass vaccination introduction for the period 1985–1991, study of time trend changes was made possible.

In Italy another national database on HBV infections (SIMI) exists from Italian Public Health Ministry [15]. However, this database is not exclusively devoted to this type of infection, but covers all notifiable infectious diseases. We were not allowed to perform the same evaluation, done with SEIEVA surveillance, since SIMI data were available from 1996 only.

Statistical analysis
The analysis on SEIEVA data was carried out for three different age groups (0–14; 15–24; over 25 years) and for all ages together. Incidence rates time trends were analysed by joinpoint regression according to Kim’s method [16].

The following formula was used for the logarithmic transformation of incidence rates:

\[\ln(y) = bx \]
where \(x \) represents the calendar years, \(b \) is the regression coefficient and \(y \) the incidence rate.

A joinpoint represents the time point when a significant trend change is detected. Time changes are expressed in terms of Expected Annual Percent Change (EAPC) with respective 95% confidence interval; significance level of time trends is also reported. The null hypothesis was tested using a maximum of three changes in slope with an overall significance level of 0.05 divided by the number of join-points in the final model.

For the analysis we used the Joinpoint Regression Program, Version 3.3.1 [17].

Results

In the 1985–2006 period a strong reduction of hepatitis B incidence rates in all age groups was observed (Figure 1).

SEIEVA data showed the highest incidence rates of hepatitis B in individuals belonging to the 15–24 and ≥25 age groups. The incidence rate reduction goes from 6.00 to 0.02 for 100,000 in the age class 0–14, from 41.00 to 0.50 in the group 15–24 years and from 7.00 to 2.30 in individuals of 25 years or more, in the period 1985–2006. Considering all the age groups, the incidence rate decreased from 12 for 100,000 to 1.6 for 100,000.

The joinpoint analysis showed a statistically significant decrease of HBV infection incidence rates too, in particular in 0–14 and 15–24 age groups.

For the age group 0–14 the analysis highlighted a joinpoint at year 1987; EAPC changed from -39.0 (95% CI: -59.3; -8.4), in the period up to 1987, to -12.6 (95% CI: -16.0; -9.2) thereafter thus meaning that from 1987 HBV incidence rates showed a significant overall annual decrease of 12.6% (Table 1).

No joinpoints were found for the other age groups. EAPCs were -17.9 (95% CI: -18.7; -17.1) and -6.7 (95% CI: -8.0; -5.4) for 15–24 and ≥25 age groups: HBV incidence rates

Table 1: EAPC and 95% CI

Age group	Years range	EAPC (%)	95% CI	p-value
0–14	1985–1987	-39.0	(-59.3; -8.4)	0.02
	1987–2006	-12.6	(-16.0; -9.2)	<0.001
15–24	1985–2006	-17.9	(-18.7; -17.1)	<0.001
Over 25	1985–2006	-6.7	(-8.0; -5.4)	<0.001
All	1985–1992	-15.6	(-18.4; -12.8)	<0.001
	1992–2006	-7.1	(-9.0; -5.1)	<0.001

Figure 1

Incidence rates (for 100,000) of HBV infection in Italy, 1985–2006.
showed an annual decrease of 17.6% and 6.7% respectively (Table 1).

On the other hand, considering all age groups a joinpoint at year 1992 was detected; overall annual decrease was of 15.6% (95% CI: -18.4; -12.8) before 1992 and 7.1% (95% CI: -9.0; -5.1) thereafter (Table 1).

Time trend changes are illustrated in Figures 2, 3, 4 and 5.

Discussion
Hepatitis B incidence rates decreased in each age group throughout the period considered.
From the analysis of time trends, it is possible to suppose that the reduction of HBV incidence rates was influenced not only by mass vaccination. Moreover, considering that vaccination coverage reached about 95% since 1991 [18], other factors (i.e. different lifestyles, new hygiene rules and the introduction of different systems of prevention such as the blood screening and the use of precautions in medical setting), besides vaccination campaign, could have contributed to the decrease of HBV infections.

According to the joinpoint analysis of SEIEVA data, a statistically significant change in HBV incidence rates time trend was found, before the introduction of compulsory vaccination, for the age group 0–14 (up to 1087). In par-
ticular, a smaller decrease of HBV incidence rates in the
following period (1987–2005) than in the first one
(1985–1987) was observed. Nevertheless, in this age
group, prevalence rates of HBV serological markers were
estimated to be low in low/intermediate endemic areas
for the infection [19]. Moreover, the decrease of HBV inci-
dence rates before compulsory vaccination could be
related to the strongly recommendation of HBsAg screen-
ing for pregnant women during the last trimester of preg-
nancy since 1984 [20]. In low/intermediate endemic
areas, such as Italy as a whole, and such as the other
Southern Mediterranean European regions, horizontal
transmission is the main way of acquiring infection thus
determining the highest HBV incidence rates among
adults [21]. Improved sanitation, obtained with the use of
universal precautions in medical settings and blood
screening, social, behavioural and demographic changes
and sexual educational campaigns seem yet to have been
effective to reduce horizontal transmission in these coun-
tries and there are some evidences that the highest HBV
incidence rates have to be expected in adults older than 50
[19,22]. These same changes could be positively associ-
ated to the decrease of HBV incidence rates observed
among people from 15 to 24 years of age and in 25 years
or older people. HBV incidence rates have progressively
decreased through the years in all age groups, even if
EAPC was smaller in over 25 years old than in the other
groups. The incidence rate reduction in over 25 years peo-
ple could be also partly attributed to the herd immunity
induced by the high coverage rate of children immuni-
sations [23].

The introduction of compulsory vaccination has deter-
rmined a reduction of HBV incidence rates and this
decrease, according to our analysis, could have been influ-
enced not only by primary prevention sustained by vacci-
nation stategies. This could be also sustained from the
evidence of a joinpoint at the year 1992. After this year
there was a smaller decrease in HBV incidence rates than
before. Moreover, the vaccination of high risk adults, such
as injection drugs users and persons at risk of sexual trans-
mision, should be promoted. In fact, there are evidences
that these groups of adults, despite of recommendations,
are not used to be vaccinated [24,11,12]. This is also con-
firmed by EAPC value.

Our study has some strenght and limitations. As far as
concerns the former ones, this is the first time that the
Joinpoint regression model was used in assessing the time
trends of a particular infectious in Italy, thus allowing to
give some insight to effectiveness of a specific vaccination
campaign. The principal limit of our study was concerning
the internal validity: unfortunately there is a lack of data
before 1985, that could have helped us to better estimate
time trend changes in HBV incidence rates. Finally,

another problem is related to external validity: the use of
SEIEVA data system that could not completely represent
the national epidemiological setting. Nevertheless, it
should be considered that the wide distribution of LHUs
allows standard approaches and procedures to anti-HBV
vaccination [13].

This study still underlines the importance of a correct and
exhaustive data collection in a surveillance system to real-
ise survey on efficacy of public health interventions.

Since the results of this study could be considered prelimi-
ary, we would suggest to carry out new evidences about
anti-HBV vaccine health impact to evaluate the possible
need to modify current vaccination strategy.

Authors’ contributions
GLT designed the study and guided the statistical analysis.
NN and CdW collected data and performed the statistical
analysis. GC and MLS drafted the manuscript. AM verified
the results. WR coordinated the working group and
reviewed the paper. All authors read and approved the
final manuscript.

References
1. Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP: Hepatitis B
Virus Infection: Epidemiology and vaccination. Epidemic Rev 2006,
28:112-125.
2. Centers for Disease Control and Prevention. US Department of
Health and Human Services, Public Health Service: Health Informa-
tion for International Travel 2008. Atlanta 2007.
3. Stroffolini T: The changing pattern of hepatitis B virus infec-
tion over the past three decades in Italy. Dig Liver Dis 2005,
37:622-627.
4. Crovari P: Epidemiology of viral hepatitis B in Italy. Vaccine
1995, 13(suppl 1):S26-S30.
5. Mele A, Rosmini F, Zampieri A, Gill ON: Integrated epidemiolo-
gical system for acute viral hepatitis in Italy (SEIEVA): description and preliminary results. Eur J Epidemiol 1986,
4(4):300-304.
6. Stroffolini T, Mele A, Tosti ME, Gallo G, Balocchini E, Ragni P, Santo-
nastasi F, Marzolini A, Ciccozzi M, Moroaghi A: The impact of the
hepatitis B mass immunisation campaign on the incidence and
risk factors of acute hepatitis B in Italy. J Hepatol 2000,
33:980-985.
7. ISS. Acute Viral Hepatitis Integrated Epidemiologic System
data (SEIEVA) [http://www.iss.it/binary/seie/cont/
tablo06.2.1184669248.pdf]
8. Salleras L, Dominguez A, Bruguera M, Cardenosa N, Batalla J, Car-
mona G, Navas E, Taberner JL: Dramatic decline in acute hepata-
tis B infection and disease incidence rates among
adolescents and young people after 12 years of a mass hepa-
titis B vaccination programme of pre-adolescents in the
schools of Catalonia (Spain). Vaccine 2005, 23:2181-2184.
9. Humbert LL, Hennessy TW, Fiore AE, Zanis C, Hummel KB, Dun-
way E, Bulkow L, McMahon BJ: Hepatitis B immunity in children
vaccinated with recombinant hepatitis B vaccine beginning at
birth: a follow-up study at 15 years. Vaccine 2007,
25(39-40):6958-64.
10. Gabburu A, Romain L, Blanc P, Meacci F, Amendola A, Mele A, Maz-
zotta F, Zanetti AR: Long-term immunogenicity of hepatitis B
vaccination in a cohort of Italian healthy adolescents. Vaccine
2007, 25(16):3129-32.
11. Mele A, Tosti ME, Mariano A, Pizzuti R, Ferro A, Borrini B, Zotti C,
Lopalco P, Curtale F, Balocchini E, Spada E, National Surveillance Sys-
tem for Acute Viral Hepatitis (SEIEVA) Collaborating Group: Acute
hepatitis B 14 years after the implementation of universal
vaccination in Italy: areas of improvement and emerging challenges. Clin Infect Dis 2008, 46(6):868-75.
12. Spada E, Mele A, Ciccozzi M, Tosti ME, Bianco E, Szkló A, Ragni P, Gallo G, Balocchini E, Sangalli M, Lopalco PL, Moiraghi A, Stroffolini T, SEIEVA collaborating group: Changing epidemiology of parenterally transmitted viral hepatitis: results from the hepatitis surveillance system in Italy. Dig Liver Dis 2001, 33(9):778-84.
13. Fitzsimons D, Vorsters A, Hoppenbrouwers K, Van Damme P. Prevention and control of viral hepatitis through adolescent health programmes in Europe. Vaccine 2007, 25:8651-8659.
14. Da Villa G, Romanò L, Sepe A, Iorio R, Paribello N, Zappa A, Zanetti AR: Impact of hepatitis B vaccination in a highly endemic area of south Italy and long-term duration of anti-HBs antibody in two cohorts of vaccinated individuals. Vaccine 2007, 25:3133-3136.
15. Italian Public Health Ministry (SIMI) [http://www.simiss.iss.it/bancaDati.aspx]
16. Kim HJ, Fay MP, Feuer EJ, Midthune DN: Permutation tests for jointpoint regression with applications to cancer rates. Stat Med 2000, 19:335-351.
17. Joinpoint Regression Program, Version 3.3.1, April 2008. Statistical Research and Applications Branch, National Cancer Institute [http://srab.cancer.gov/joinpoint]
18. WHO – Immunization surveillance, assessment and monitoring [http://www.who.int/entity/immunization_monitoring/data/coverage_series.xls]
19. Stroffolini T, Guadagnino V, Chionne P, Procopio B, Mazzuca EG, Quin-tieri F, Scerbo P, Giancotti A, Nisticò S, Focà A, Tosti ME, Rapi-cetta M: A population based survey of hepatitis B virus infection in a southern Italian town. Ital J Gastroenterol Hepatol 1997, 29:415-9.
20. Stroffolini T, Bianco E, Szkló A, Bernacchia R, Bove C, Colucci M, Cristina Coppola R, D’Argenio P, Lopalco P, Parlato A, Ragni P, Simonetti A, Zotti C, Mele A: Factors affecting the compliance of the antenatal hepatitis B screening programme in Italy. Vaccine 2003, 21(11-12):1246-9.
21. Custer B, Sullivan SD, Hazlet TK, Iloeje U, Veenstra DL, Kowdley KV: Global epidemiology of Hepatitis B virus. J Clin Gastroenterol 2004, 38(Suppl 3):S158-S168.
22. Bolke E, Flehmig B: New epidemiologic patterns of hepatitis A and B infections in Germany. Zentralbl Hyg Umweltmed 1995, 196:511-514.
23. Da Villa G, Romanò L, Sepe A, Iorio R, Paribello N, Zappa A, Zanetti AR: Impact of hepatitis B vaccination in a highly endemic area of south Italy and long-term duration of anti-HBs antibody in two cohorts of vaccinated individuals. Vaccine 2007, 25(16):3133-6.
24. Hepatitis B vaccine coverage among adults – United States, 2004. MMWR Morb Mortal Wkly Rep 2006, 55:509-11.