Research Article

Measurement in the de Broglie-Bohm Interpretation: Double-Slit, Stern-Gerlach, and EPR-B

Michel Gondran¹ and Alexandre Gondran²

¹ University Paris Dauphine, Lamsade, 75 016 Paris, France
² École Nationale de l’Aviation Civile, 31000 Toulouse, France

Correspondence should be addressed to Alexandre Gondran; alexandre.gondran@enac.fr

Received 24 February 2014; Accepted 7 July 2014; Published 10 August 2014

Academic Editor: Anand Pathak

Copyright © 2014 M. Gondran and A. Gondran. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose a pedagogical presentation of measurement in the de Broglie-Bohm interpretation. In this heterodox interpretation, the position of a quantum particle exists and is piloted by the phase of the wave function. We show how this position explains determinism and realism in the three most important experiments of quantum measurement: double-slit, Stern-Gerlach, and EPR-B. First, we demonstrate the conditions in which the de Broglie-Bohm interpretation can be assumed to be valid through continuity with classical mechanics. Second, we present a numerical simulation of the double-slit experiment performed by Jönsson in 1961 with electrons. It demonstrates the continuity between classical mechanics and quantum mechanics. Third, we present an analytic expression of the wave function in the Stern-Gerlach experiment. This explicit solution requires the calculation of a Pauli spinor with a spatial extension. This solution enables us to demonstrate the decoherence of the wave function and the three postulates of quantum measurement. Finally, we study the Bohm version of the Einstein-Podolsky-Rosen experiment. Its theoretical resolution in space and time shows that a causal interpretation exists where each atom has a position and a spin.

1. Introduction

“I saw the impossible done” [1]. This is how John Bell describes his inexpressible surprise in 1952 upon the publication of an article by Bohm [2]. The impossibility came from a theorem by John von Neumann outlined in 1932 in his book The Mathematical Foundations of Quantum Mechanics [3], which seemed to show the impossibility of adding “hidden variables” to quantum mechanics. This impossibility, with its physical interpretation, became almost a postulate of quantum mechanics, based on von Neumann’s indisputable authority as a mathematician. Bernard d’Espagnat notes in 1979 the following:

“At the university, Bell had, like all of us, received from his teachers a message which, later still, Feynman would brilliantly state as follows: “No one can explain more than we have explained here [. . .]. We do not have the slightest idea of a more fundamental mechanism from which the former results (the interference fringes) could follow”. If indeed we are to believe Feynman (and Banesh Hoffman, and many others, who expressed the same idea in many books, both popular and scholarly), Bohm’s theory cannot exist. Yet it does exist, and is even older than Bohm’s papers themselves. In fact, the basic idea behind it was formulated in 1927 by Louis de Broglie in a model he called “pilot wave theory”. Since this theory provides explanations of what, in “high circles”, is declared inexplicable, it is worth consideration, even by physicists [. . .] who do not think it gives us the final answer to the question how reality really is” [4].

And in 1987, Bell wonders about his teachers’ silence concerning the Broglie-Bohm pilot wave:

“But why then had Born not told me of this “pilot wave”? If only to point out what was wrong with it? Why did von Neumann not consider it? More extraordinarily, why did people go on producing “impossibility” proofs after 1952, and as recently as 1978? [sic] While even Pauli, Rosenfeld, and Heisenberg could produce no more devastating criticism of Bohm’s version than to brand it as “metaphysical” and “ideological”? Why is the pilot-wave picture ignored in text books? Should it not be taught, not as the only way, but
display as an antidote to the prevailing complacency? To show that
vagueness, subjectivity and indeterminism are not forced on
us by experimental facts, but through a deliberate theoretical
choice?” [5].

More than thirty years after John Bell’s questions, the
interpretation of the de Broglie-Bohm pilot wave is still
ignored by both the international community and the
textbooks.

What is this pilot wave theory? For de Broglie, a quantum
particle is not only defined by its wave function. He assumes
that the quantum particle also has a position which is piloted
by the wave function [6]. However, only the probability
density of this position is known. The position exists in
itself (ontologically) but is unknown to the observer. It only
becomes known during the measurement.

The goal of the present paper is to present the Broglie-
Bohm pilot wave through the study of the three most impor-
tant experiments of quantum measurement: the double-slit
experiments which is the crucial experiment of the wave-
particle duality, the Stern and Gerlach experiment with
the measurement of the spin, and the EPR-B experiment with
the problem of nonlocality.

The paper is organized as follows. In Section 2, we
demonstrate the conditions in which the de Broglie-Bohm
interpretation can be assumed to be valid through continuity
with classical mechanics. This involves the de Broglie-Bohm
interpretation for a set of particles prepared in the same
way. In Section 3, we present a numerical simulation of the
double-slit experiment performed by Jönsson in 1961
with electrons [7]. The method of Feynman path integrals
allows us to calculate the time-dependent wave function.

The evolution of the probability density just outside the
slits leads one to consider the dualism of the wave-particle
interpretation. And the de Broglie-Bohm trajectories provide
an explanation for the impact positions of the particles.

Finally, we show the continuity between classical and quan-
tum trajectories with the convergence of these trajectories
to classical trajectories when \(\hbar \to 0 \).

In Section 4, we present an analytic expression of the wave function
in the Stern-Gerlach experiment. This explicit solution requires
the calculation of a Pauli spinor with a spatial extension.

This solution enables us to demonstrate the decoherence of
the wave function and the three postulates of quantum
measurement: quantization, Born interpretation, and wave
function reduction. The spinor spatial extension also enables
the introduction of the de Broglie-Bohm trajectories which
gives a very simple explanation of the particles’ impact and
of the measurement process. In Section 5, we study the EPR-
B experiment, the Bohm version of the Einstein-Podolsky-
Rosen experiment. Its theoretical resolution in space and time
shows that a causal interpretation exists where each atom
has a position and a spin. Finally, we recall that a physical
explanation of nonlocal influences is possible.

2. The de Broglie-Bohm Interpretation

The de Broglie-Bohm interpretation is based on the following
demonstration. Let us consider a wave function \(\Psi(x, t) \)
solution to the Schrödinger equation:

\[
\frac{i\hbar}{2m} \frac{\partial \Psi(x, t)}{\partial t} = \frac{-\hbar^2}{2m} \Delta \Psi(x, t) + V(x) \Psi(x, t),
\]

(1)

\[
\Psi(x, 0) = \Psi_0(x).
\]

(2)

With the variable change \(\Psi(x, t) = \sqrt{\rho^h(x, t)} \exp(iS^h(x, t) / \hbar) \), the Schrödinger equation can be decomposed into
Madelung equations [8] (1926):

\[
\frac{\partial S^h(x, t)}{\partial t} + \frac{1}{2m} (\nabla S^h(x, t))^2 + V(x) - \frac{\hbar^2}{2m} \frac{\partial \rho^h(x, t)}{\partial t} = 0,
\]

(3)

\[
\frac{\partial \rho^h(x, t)}{\partial t} + \text{div} \left(\rho^h(x, t) \frac{\nabla S^h(x, t)}{m} \right) = 0
\]

(4)

with initial conditions:

\[
\rho^h(x, 0) = \rho^h_0(x), \quad S^h(x, 0) = S^h_0(x).
\]

(5)

Madelung equations correspond to a set of noninteracting
quantum particles all prepared in the same way (same \(\rho^h_0(x) \)
and \(S^h_0(x) \)).

A quantum particle is said to be statistically prepared if
its initial probability density \(\rho^h_0(x) \) and its initial action \(S^h_0(x) \)
converge, when \(h \to 0 \), to nonsingular functions \(\rho_0(x) \) and
\(S_0(x) \). It is the case of an electronic or \(C_{60} \) beam in the double-
slit experiment or an atomic beam in the Stern and Gerlach
experiment. We will see that it is also the case of a beam of
entangled particles in the EPR-B experiment. Then, we have
the following theorem [9, 10].

Theorem 1. For statistically prepared quantum particles, the
probability density \(\rho^h(x, t) \) and the action \(S^h(x, t) \), solutions to the
Madelung equations (3), (4), and (5), converge, when \(h \to 0 \), to the classical
density \(\rho(x, t) \) and the classical action \(S(x, t) \), solutions to the statistical
Hamilton-Jacobi equations:

\[
\frac{\partial S(x, t)}{\partial t} + \frac{1}{2m} (\nabla S(x, t))^2 + V(x, t) = 0,
\]

(6)

\[
S(x, 0) = S_0(x),
\]

(7)

\[
\frac{\partial \rho(x, t)}{\partial t} + \text{div} \left(\rho(x, t) \frac{\nabla S(x, t)}{m} \right) = 0,
\]

(8)

\[
\rho(x, 0) = \rho_0(x).
\]

(9)

We give some indications on the demonstration of this
theorem when the wave function \(\Psi(x, t) \) is written as a function
of the initial wave function \(\Psi_0(x) \) by the Feynman
paths integral [11]:

\[
\Psi(x, t) = \int F(t, h) \exp \left(\frac{i}{\hbar} S_{cl}(x, t; x_0) \right) \Psi_0(x_0) \, dx_0,
\]

(10)

where \(F(t, h) \) is an independent function of \(x \) and of \(x_0 \). For a
statistically prepared quantum particle, the wave function is
written: \(\Psi(x, t) = F(t, h) \int \sqrt{\rho^h_0(x_0)} \exp((i/h)(S^h_0(x_0) + S_c(x, t; x_0))) \, dx_0 \). The theorem of the stationary phase shows that if \(h \) tends towards 0, we have \(\Psi(x, t) \sim \exp((i/h)\min_{x_0}(S_0(x_0) + S_c(x, t; x_0))) \); that is to say, the quantum action \(S^h(x, t) \) converges to the function:

\[
S(x, t) = \min_{x_0} (S_0(x_0) + S_c(x, t; x_0))
\]

which is the solution to the Hamilton-Jacobi equation (6) with the initial condition (7). Moreover, as the quantum density \(\rho^h(x, t) \) satisfies the continuity equation (4), we deduce, since \(S^h(x, t) \) tends towards \(S(x, t) \), that \(\rho^h(x, t) \) converges to the classical density \(\rho(x, t) \), which satisfies the continuity equation (8). We obtain both announced convergences.

These statistical Hamilton-Jacobi equations (6), (7), (8), and (9) correspond to a set of classical particles prepared in the same way (the same \(S_0(x) \) and \(S_c(x) \)). These classical particles are trajectories obtained in Eulerian representation with the velocity field \(v(x, t) = \nabla S(x, t)/m \), but the density and the action are not sufficient to describe it completely. To know its position at time \(t \), it is necessary to know its initial position. Because the Madelung equations converge to the statistical Hamilton-Jacobi equations, it is logical to do the same in quantum mechanics. We conclude that a *statistically prepared quantum particle* is not completely described by its wave function. It is necessary to add this initial position and an equation to define the evolution of this position in the time. It is the de Broglie-Bohm interpretation where the position is called the "hidden variable."

The two first postulates of quantum mechanics, describing the quantum state and its evolution [12], must be completed in this heterodox interpretation. At initial time \(t = 0 \), the state of the particle is given by the initial wave function \(\Psi_0(x) \) (a wave packet) and its initial position \(X(0) \); it is the new first postulate. The second new postulate gives the evolution on the wave function and on the position. For a single spinless particle in a potential \(V(x) \), the evolution of the wave function is given by the usual Schrödinger equations (1), (2) and the evolution of the particle position is given by

\[
\frac{dX(t)}{dt} = \frac{J^h(x, t)}{\rho^h(x, t)} = \frac{\nabla S^h(x, t)}{m}
\]

where

\[
J^h(x, t) = \frac{\hbar}{2mi} (\Psi^*(x, t) \nabla \Psi(x, t) - \Psi(x, t) \nabla \Psi^*(x, t))
\]

is the usual quantum current.

In the case of a particle with spin, as in the Stern and Gerlach experiment, the Schrödinger equation must be replaced by the Pauli or Dirac equations.

The third quantum mechanics postulate which describes the measurement operator (the observable) can be conserved. But the third postulates of measurement are not necessary: the postulate of quantization, the Born postulate of probabilistic interpretation of the wave function, and the postulate of the reduction of the wave function. We see that these postulates of measurement can be explained on each example as we will show in the following.

We replace these three postulates by a single one, the "quantum equilibrium hypothesis," [13–15] that describes the interaction between the initial wave function \(\Psi_0(x) \) and the initial particle position \(X(0) \); for a set of identically prepared particles having \(t = 0 \) wave function \(\Psi_0(x) \), it is assumed that the initial particle positions \(X(0) \) are distributed according to

\[
P[X(0) = x] = \rho_0^h(x).
\]

It is the Born rule at the initial time.

Then, the probability distribution \(P(X(0) = x) \) for a set of particles moving with the velocity field \(\nabla \Psi^h(x, t) = \nabla S^h(x, t)/m \) satisfies the property of the "equivariance" of the \(|\Psi(x, t)|^2 \) probability distribution [13]:

\[
P[X(t) = x] = \rho^h(x, t).
\]

It is the Born rule at time \(t \).

Then, the de Broglie-Bohm interpretation is based on a continuity between classical and quantum mechanics where the quantum particles are statistically prepared with an initial probability density that satisfies the "quantum equilibrium hypothesis" (14). It is the case of the three studied experiments.

We will revisit these three measurement experiments through mathematical calculations and numerical simulations. For each one, we present the statistical interpretation that is common to the Copenhagen interpretation and the de Broglie-Bohm pilot wave and then the trajectories specific to the de Broglie-Bohm interpretation. We show that the precise definition of the initial conditions, that is, the preparation of the particles, plays a fundamental methodological role.

3. Double-Slit Experiment with Electrons

Young's double-slit experiment [16] has long been the crucial experiment for the interpretation of the wave-particle duality. They have been realized with massive objects, such as electrons [7, 17–19], neutrons [20, 21], cold neutrons [22], and atoms [23], and, more recently, with coherent ensembles of ultracold atoms [24, 25] and even with mesoscopic single quantum objects such as \(C_{60} \) and \(C_{70} \) [26, 27]. For Feynman, this experiment addresses "the basic element of the mysterious behavior [of electrons] in its most strange form. It is a phenomenon which is impossible, absolutely impossible to explain in any classical way and which has in it the heart of quantum mechanics. In reality, it contains the only mystery" [28]. The de Broglie-Bohm interpretation and the numerical simulation help us here to revisit the double-slit experiment.
with electrons performed by Jönsson in 1961 and to provide an answer to Feynman’s mystery. These simulations [29] follow those conducted in 1979 by Philippidis et al. [30] which are today classics. However, these simulations [30] have some limitations because they did not consider realistic slits. The slits, which can be clearly represented by a function $G(y)$ with $G(y) = 1$ for $-\beta \leq y \leq \beta$ and $G(y) = 0$ for $|y| > \beta$, if they are 2β in width, were modeled by a Gaussian function $G(y) = e^{-y^{2}/2\beta^{2}}$. Interference was found, but the calculation could not account for diffraction at the edge of the slits. Consequently, these simulations could not be used to defend the de Broglie-Bohm interpretation.

Figure 1 shows a diagram of the double-slit experiment by Jönsson. An electron gun emits electrons one by one in the horizontal plane, through a hole of a few micrometers, at a velocity $V = 1.8 \times 10^{8}$ m/s along the horizontal x-axis. After traveling for $d_{1} = 35$ cm, they encounter a plate pierced with two horizontal slits A and B, each 0.2μm wide and spaced 1μm from each other. A screen located at $d_{2} = 35$ cm after the slits collects these electrons. The impact of each electron appears on the screen as the experiment unfolds. After thousands of impacts, we find that the distribution of electrons on the screen shows interference fringes.

The slits are very long along the z-axis, so there is no effect of diffraction along this axis. In the simulation, we therefore only consider the wave function along the y-axis; the variable x will be treated classically with $x = vt$. Electrons emerging from an electron gun are represented by the same initial wave function $\Psi(y)$.

3.1. Probability Density

Figure 2 gives a general view of the evolution of the probability density from the source to the detection screen (a lighter shade means that the density is higher; i.e., the probability of presence is high). The calculations were made using the method of Feynman path integrals [29]. The wave function after the slits ($t_{1} = d_{1}/v = 2.10^{-11}$ s < $t < t_{1} + d_{2}/v = 4.10^{-11}$ s) is deduced from the values of the wave function at slits A and B: $Ψ(y, t) = Ψ_{A}(y, t) + Ψ_{B}(y, t)$ with $Ψ_{A}(y, t) = \int_{A} K(y, t, y_{a}, t_{j})Ψ(y_{a}, t_{j})dy_{a}$, $Ψ_{B}(y, t) = \int_{B} K(y, t, y_{b}, t_{j})Ψ(y_{b}, t_{j})dy_{b}$, and $K(y, t, y, t_{j}) = (m/2i\hbar(t - t_{j}))^{1/2}e^{im(y - y_{j})^{2}/2\hbar(t - t_{j})}$.

Figure 3 shows a close-up of the evolution of the probability density just after the slits. We note that interference will only occur a few centimeters after the slits. Thus, if the detection screen is 1 cm from the slits, there is no interference and one can determine by which slit each electron has passed. In this experiment, the measurement is performed by the detection screen, which only reveals the existence or absence of the fringes.

The calculation method enables us to compare the evolution of the cross-section of the probability density at various distances after the slits (0.35 mm, 3.5 mm, 3.5 cm, and 35 cm) where the two slits A and B are open simultaneously (interference: $|Ψ_{A} + Ψ_{B}|^{2}$) with the evolution of the sum of the probability densities where the slits A and B are open independently (the sum of two diffractions: $|Ψ_{A}|^{2} + |Ψ_{B}|^{2}$).
Figure 4 shows that the difference between these two phenomena appears only a few centimeters after the slits.

3.2. Impacts on Screen and de Broglie-Bohm Trajectories. The interference fringes are observed after a certain period of time when the impacts of the electrons on the detection screen become sufficiently numerous. Classical quantum theory only explains the impact of individual particles statistically.

However, in the de Broglie-Bohm interpretation, a particle has an initial position and follows a path whose velocity at each instant is given by (12). On the basis of this assumption we conduct a simulation experiment by drawing random initial positions of the electrons in the initial wave packet (quantum equilibrium hypothesis).

Figure 5 shows, after its initial starting position, 100 possible quantum trajectories of an electron passing through one of the two slits: we have not represented the paths of the electron when it is stopped by the first screen. Figure 6 shows a close-up of these trajectories just after they leave their slits.

The different trajectories explain both the impact of electrons on the detection screen and the interference fringes. This is the simplest and most natural interpretation to explain the impact positions: “the position of an impact is simply the position of the particle at the time of impact.” This was the view defended by Einstein at the Solvay Congress of 1927. The position is the only measured variable of the experiment.

In the de Broglie-Bohm interpretation, the impacts on the screen are the real positions of the electron as in classical mechanics and the three postulates of the measurement of quantum mechanics can be trivially explained: the position is an eigenvalue of the position operator because the position variable is identical to its operator \(X\Psi = x\Psi \), the Born postulate is satisfied with the "equivariance" property, and the reduction of the wave packet is not necessary to explain the impacts.
quantum mechanics and classical mechanics. All particles have quantum properties, but specific quantum behavior only appears in certain experimental conditions: here when the ratio \hbar/m is sufficiently large. Interferences only appear gradually and the quantum particle behaves at any time as both a wave and a particle.

4. The Stern-Gerlach Experiment

In 1922, by studying the deflection of a beam of silver atoms in a strongly inhomogeneous magnetic field (cf. Figure 8) Gerlach and Stern [31, 32] obtained an experimental result that contradicts the common sense prediction: the beam, instead of expanding, splits into two separate beams giving two spots of equal intensity N^+ and N^- on a detector, at equal distances from the axis of the original beam.

Historically, this is the experiment which helped establish spin quantization. Theoretically, it is the seminal experiment posing the problem of measurement in quantum mechanics. Today it is the theory of decoherence with the diagonalization of the density matrix that is put forward to explain the first part of the measurement process [33–38]. However, although these authors consider the Stern-Gerlach experiment as fundamental, they do not propose a calculation of the spin decoherence time.

We present an analytical solution to this decoherence time and the diagonalization of the density matrix. This solution requires the calculation of the Pauli spinor with a spatial extension as the equation:

$$
\Psi_0^0(z) = \left(2\pi\sigma_0^2\right)^{-1/2} e^{-z^2/4\sigma^2_0} \begin{pmatrix}
\cos \frac{\theta_0}{2} e^{-i(p_0/2)} \\
\sin \frac{\theta_0}{2} e^{i(p_0/2)}
\end{pmatrix}. \quad (16)
$$

Quantum mechanics textbooks [12, 28, 39, 40] do not take into account the spatial extension of the spinor (16) and simply use the simplified spinor without spatial extension:

$$
\Psi_0^0 = \begin{pmatrix}
\cos \frac{\theta_0}{2} e^{-i(p_0/2)} \\
\sin \frac{\theta_0}{2} e^{i(p_0/2)}
\end{pmatrix}. \quad (17)
$$

However, as we shall see, the different evolutions of the spatial extension between the two spinor components will have a key role in the explanation of the measurement process. This spatial extension enables us, in following the precursory works of Takabayasi [41, 42], Bohm et al. [43, 44], Dewdney et al. [45], and Holland [46], to revisit the Stern and Gerlach experiment, to explain the decoherence, and to demonstrate the three postulates of the measure: quantization, Born statistical interpretation, and wave function reduction.

Silver atoms contained in the oven E (Figure 8) are heated to a high temperature and escape through a narrow opening.
Figure 7: Convergence of 100 electron trajectories when \(h \) is divided by 10, 100, 1000, and 10000.

Figure 8: Schematic configuration of the Stern-Gerlach experiment.

A second aperture, \(T \), selects those atoms whose velocity, \(v_0 \), is parallel to the \(y \)-axis. The atomic beam crosses the gap of the electromagnet \(A_1 \) before condensing on the detector, \(P_1 \). Before crossing the electromagnet, the magnetic moment of each silver atom is oriented randomly (isotropically). In the beam, we represent each atom by its wave function; one can assume that at the entrance to the electromagnet, \(A_1 \) and at the initial time \(t = 0 \), each atom can be approximately described by a Gaussian spinor in \(z \) given by (16) corresponding to a pure state. The variable \(y \) will be treated classically with \(y = vt \). \(\sigma_0 = 10^{-4} \) m corresponds to the size of the slot \(T \) along the \(z \)-axis. The approximation by a Gaussian initial spinor will allow explicit calculations. Because the slot is much wider along the \(x \)-axis, the variable \(x \) will be also treated classically. To obtain an explicit solution of the Stern-Gerlach experiment, we take the numerical values used in the Cohen-Tannoudji textbook [12]. For the silver atom, we have \(m = 1.8 \times 10^{-25} \) kg, \(v_0 = 500 \) m/s (corresponding to the temperature of \(T = 1000^\circ \) K). In (16) and in Figure 9, \(\theta_0 \) and \(\phi_0 \) are the polar angles characterizing the initial orientation of the magnetic moment and \(\theta_0 \) corresponds to the angle with the \(z \)-axis. The experiment is a statistical mixture of pure states where the \(\theta_0 \) and the \(\phi_0 \) are randomly chosen: \(\theta_0 \) is drawn in a uniform way from \([0, \pi] \) and \(\phi_0 \) is drawn in a uniform way from \([0, 2\pi] \).
The evolution of the spinor $\Psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix}$ in a magnetic field B is then given by the Pauli equation:

$$i\hbar \left(\begin{array}{c} \frac{\partial \psi_+}{\partial t} \\ \frac{\partial \psi_-}{\partial t} \end{array} \right) = -\frac{\hbar^2}{2m} \Delta \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix} + \mu_B B \sigma \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix},$$

(18)

where $\mu_B = e\hbar/2m_e$ is the Bohr magneton and where $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ corresponds to the three Pauli matrices. The particle first enters an electromagnetic field directed along the z-axis, $B_x = B^0_x x$, $B_y = 0$, and $B_z = B^0_z z$, with $B^0_z = 5$ Tesla, $B^0_0 = |\partial B/\partial z| = 10^7$ Tesla/m over a length $\Delta l = 1$ cm. On exiting the magnetic field, the particle is free until it reaches the detector P_1 placed at a $D = 20$ cm distance.

The particle stays within the magnetic field for a time $\Delta t = \Delta l/v = 2 \times 10^{-5}$ s. During this time $[0, \Delta t]$, the spinor is [47] (see the Appendix)

$$\rho_{0s} (z, t + \Delta t) = (2\pi \sigma_0^2)^{-1/2} \begin{pmatrix} \cos \frac{\theta_0}{2} e^{-i\frac{(z - z_\Delta - ut)^2}{2\sigma_0^2}} \\ \sin \frac{\theta_0}{2} e^{i\frac{(z - z_\Delta + ut)^2}{2\sigma_0^2}} \end{pmatrix},$$

(22)

Equation (20) takes into account the spatial extension of the spinor and we note that the two spinor components have very different z values. All interpretations are based on this equation.

4.1. The Decoherence Time. We deduce from (20) the probability density of a pure state in the free space after the

$$\rho^s (t) = \left(\begin{array}{c} \int |\psi_+ (z, t)|^2 dz \\ \int \psi_+ (z, t) \psi^*_- (z, t) dz \end{array} \right).$$

(24)
Figure 10: Evolution of the probability density of a pure state with $\theta_0 = \pi/3$.

For $t \geq t_D$, the product $\psi_+ (z, t + \Delta t) \psi_-(z, t + \Delta t)$ is null and the density matrix is diagonal: the probability density of the initial pure state (20) is diagonal:

$$
\rho^S (t + \Delta t) = \left(\frac{2\pi \sigma_0}{2} \right)^{-1} \begin{pmatrix}
\cos^2 \frac{\theta_0}{2} & 0 \\
0 & \sin^2 \frac{\theta_0}{2}
\end{pmatrix}.
$$

(25)

4.2. Proof of the Postulates of Quantum Measurement.

We then obtain atoms with a spin oriented only along the z-axis (positively or negatively). Let us consider the spinor $\Psi(z, t + \Delta t)$ given by (20). Experimentally, we do not measure the spin directly but the position of the particle impact on P_1 (Figure II).

If $\bar{z} \in N^+$, the term ψ_+ of (20) is numerically equal to zero and the spinor Ψ is proportional to $(\frac{1}{\sqrt{2}})$, one of the eigenvectors of the spin operator $S_z = (\hbar/2)\sigma_z$, $\Psi(\bar{z}, t + \Delta t) = (2\pi \sigma_0)^{-1/4} \cos(\theta_0/2) e^{-(\bar{z} - z_0)^2/4\sigma_0^2} e^{i(m\bar{z} + \arg(p_0))} \Psi(\frac{1}{\sqrt{2}})$. Then, we have $S_z \Psi = (\hbar/2) \sigma_z \Psi = +h/2 \Psi$.

If $\bar{z} \in N^-$, the term ψ_- of (20) is numerically equal to zero and the spinor Ψ is proportional to $(\frac{1}{\sqrt{2}})$, the other eigenvector of the spin operator $S_z = (\hbar/2)\sigma_z$, $\Psi(\bar{z}, t + \Delta t) = (2\pi \sigma_0)^{-1/4} \sin(\theta_0/2) e^{-(\bar{z} - z_0)^2/4\sigma_0^2} e^{i(m\bar{z} + \arg(p_0))} \Psi(\frac{1}{\sqrt{2}})$. Then, we have $S_z \Psi = (\hbar/2) \sigma_z \Psi = -h/2 \Psi$. Therefore, the measurement of the spin corresponds to an eigenvalue of the spin operator. It is a proof of the postulate of quantization.

Equation (25) gives the probability $\cos^2(\theta_0/2)$ (resp., $\sin^2(\theta_0/2)$) to measure the particle in the spin state $+h/2$ (resp., $-h/2$); this proves the Born probabilistic postulate.

By drilling a hole in the detector P_2 to the location of the spot N^+ (Figure 8), we select all the atoms that are in the spin state $|\uparrow\rangle = (\frac{1}{\sqrt{2}})$. The new spinor of these atoms is obtained by making the component Ψ_+ of the spinor Ψ identically zero (and not only numerically equal to zero) at the time when the atom crosses the detector P_1; at this time the component Ψ_- is indeed stopped by detector P_1. The future trajectory of the silver atom after crossing the detector P_1 will be guided by this new (normalized) spinor. The wave function reduction is therefore not linked to the electromagnet but to the detector P_1 causing an irreversible elimination of the spinor component Ψ_-.

4.3. Impacts and Quantization Explained by de Broglie-Bohm Trajectories. Finally, it remains to provide an explanation of the individual impacts of silver atoms. The spatial extension of the spinor (16) allows us to take into account the particle’s initial position z_0 and to introduce the de Broglie-Bohm trajectories [2, 6, 45, 46, 50] which is the natural assumption to explain the individual impacts.

Figure 12 presents, for a silver atom with the initial spinor orientation $(\theta_0 = \pi/3, \varphi_0 = 0)$, a plot in the (Oyz) plane of a set of 10 trajectories whose initial position z_0 has been randomly chosen from a Gaussian distribution with standard deviation σ_0. The spin orientations $\theta(z, t)$ are represented by arrows.

The final orientation, obtained after the decoherence time t_D, depends on the initial particle position z_0 in the spinor with a spatial extension and on the initial angle θ_0 of the spin with the z-axis. We obtain $+\pi/2$ if $z_0 > z^{\theta_0}$ and $-\pi/2$ if $z_0 < z^{\theta_0}$ with

$$
z^{\theta_0} = \sigma_0 F^{-1} \left(\sin^2 \frac{\theta_0}{2} \right),
$$

(26)

where F is the repartition function of the normal centered-reduced law. If we ignore the position of the atom in its wave function, we lose the determinism given by (26).

In the de Broglie-Bohm interpretation with a realistic interpretation of the spin, the “measured” value is not independent of the context of the measure and is contextual. It conforms to the Kochen and Specker theorem [51]: realism and noncontextuality are inconsistent with certain quantum mechanics predictions.
Now let us consider a mixture of pure states where the initial orientation \((\theta_0, \phi_0)\) from the spinor has been randomly chosen. These are the conditions of the initial Stern and Gerlach experiment. Figure 13 represents a simulation of 10 quantum trajectories of silver atoms from which the initial positions \(z_0\) are also randomly chosen.

Finally, the de Broglie-Bohm trajectories propose a clear interpretation of the spin measurement in quantum mechanics. There is interaction with the measuring apparatus as is generally stated, and there is indeed a minimum time required for measurement. However, this measurement and this time do not have the signification that is usually applied to them. The result of the Stern-Gerlach experiment is not the measure of the spin projection along the \(z\)-axis, but the orientation of the spin either in the direction of the magnetic field gradient or in the opposite direction. It depends on the position of the particle in the wave function. We have therefore a simple explanation for the noncompatibility of spin measurements along different axes. The measurement duration is then the time necessary for the particle to point its spin in the final direction.

5. EPR-B Experiment

Nonseparability is one of the most puzzling aspects of quantum mechanics. For over thirty years, the EPR-B, the spin version of the Einstein-Podolsky-Rosen experiment [52], proposed by Bohm and Aharonov [53, 54], the Bell theorem [55], and the BCHSH inequalities [5, 55, 56] have been at the heart of the debate on hidden variables and nonlocality. Many experiments since Bell’s paper have demonstrated violations of these inequalities and have vindicated quantum theory [57–63]. Now, EPR pairs of massive atoms are also considered [64, 65]. The usual conclusion of these experiments is to reject the nonlocal realism for two reasons: the impossibility of decomposing a pair of entangled atoms into two states, one for each atom, and the impossibility of interaction faster than the speed of light.

Here, we show that there exists a de Broglie-Bohm interpretation which answers these two questions positively. To demonstrate this nonlocal realism, two methodological conditions are necessary. The first condition is the same as in the Stern-Gerlach experiment: the solution to the entangled state is obtained by resolving the Pauli equation from an initial singlet wave function with a spatial extension as

\[
\Psi_0(r_A, r_B) = \frac{1}{\sqrt{2}} f(r_A) f(r_B) (|\!\!+\!\!\rangle_A |\!\!-\!\!\rangle_B - |\!\!-\!\!\rangle_A |\!\!+\!\!\rangle_B)
\]

(27)

and not from a simplified wave function without spatial extension:

\[
\Psi_0(r_A, r_B) = \frac{1}{\sqrt{2}} (|\!\!+\!\!\rangle_A |\!\!-\!\!\rangle_B - |\!\!-\!\!\rangle_A |\!\!+\!\!\rangle_B).
\]

(28)

\(f\) function and \(|\!\!\pm\!\!\rangle\) vectors are presented later.

The resolution in space of the Pauli equation is essential: it enables the spin measurement by spatial quantization and explains the determinism and the disentangling process. To explain the interaction and the evolution between the spin of the two particles, we consider a two-step version of the EPR-B experiment. It is our second methodological condition. A first causal interpretation of EPR-B experiment was proposed in 1987 by Dewdney et al. [66, 67] using these two conditions. However, this interpretation had a flaw [46, page 418]: the spin module of each particle depends directly on the singlet wave function, and thus the spin module of each particle varied during the experiment from 0 to \(\hbar/2\). We present a de Broglie-Bohm interpretation that avoids this flaw [68].

Figure 14 presents the Einstein-Podolsky-Rosen-Bohm experiment. A source \(S\) creates, in \(O\), pairs of identical atoms \(A\) and \(B\), but with opposite spins. The atoms \(A\) and \(B\)
split following the y-axis in opposite directions and head towards two identical Stern-Gerlach apparatus E_A and E_B. The electromagnet E_A “measures” the spin of A along the z-axis and the electromagnet E_B “measures” the spin of B along the z''-axis, which is obtained after a rotation of an angle δ around the y-axis. The initial wave function of the entangled state is the singlet state (27), where $r = (x, z)$, $f(r) = (2\pi\sigma_0^2)^{-1/2}e^{-(x^2+z^2)/2\sigma_0^2}$, $|\pm_\lambda\rangle$ are the eigenvectors of the operators σ^x, σ^y, and σ^z; $\sigma_{\pm_\lambda} = \pm |\pm_\lambda\rangle$, $\sigma_{\pm_\lambda} = \pm |\pm_\lambda\rangle$. We treat the dependence with y classically: speed $-v_j$ for A and v_j for B. The wave function $\Psi(r_A, r_B, t)$ of the two identical particles A and B, electrically neutral and with magnetic moments μ, subject to magnetic fields E_A and E_B, admits on the basis of $|\pm_\lambda\rangle$ and $|\pm_\lambda\rangle$ four components $\psi^{ab}(r_A, r_B, t)$ and satisfies the two-body Pauli equation [46, page 417]:

$$\frac{\partial}{\partial t}\psi_{ab}^{\pm_\lambda}(r_A, r_B, 0) = \psi_{ab}^{\pm_\lambda}(r_A, r_B) + \mu E_E^a \sigma_j^a \psi_{ab}^{\pm_\lambda}(r_A, r_B) + \mu E_E^b \sigma_j^b \psi_{ab}^{\pm_\lambda}(r_A, r_B) \psi_{ab}^{\pm_\lambda}(r_A, r_B)$$

(29)

with the initial conditions:

$$\psi_{ab}^{\pm_\lambda}(r_A, r_B, 0) = \psi_{ab}^{\pm_\lambda}(r_A, r_B)$$

(30)

where $\psi_{ab}^{\pm_\lambda}(r_A, r_B)$ corresponds to the singlet state (27).

To obtain an explicit solution of the EPR-B experiment, we take the numerical values of the Stern-Gerlach experiment.

One of the difficulties of the interpretation of the EPR-B experiment is the existence of two simultaneous measurements. By doing these measurements one after the other, the interpretation of the experiment will be facilitated. That is the purpose of the two-step version of the experiment EPR-B studied below.

5.1. First Step EPR-B: Spin Measurement of A. In the first step we make a Stern and Gerlach “measurement” for atom A, on a pair of particles A and B in a singlet state. This is the experiment first proposed in 1987 by Dewdney et al. [66, 67].

Consider that at time t_0, the particle A arrives at the entrance of electromagnet E_A. After this exit of the magnetic field E_A, at time $t_0 + \Delta t + t$, the wave function (27) becomes [68]

$$\Psi(r_A, r_B, t_0 + \Delta t + t) = \frac{1}{\sqrt{2}} f(r_B) \times \left(f^+(r_A, t) | +_\lambda \rangle | -_\lambda \rangle - f^-(r_A, t) | -_\lambda \rangle | +_\lambda \rangle \right)$$

(31)

with

$$f^+(r, t) = f(x, z + z_\Delta + ut) e^{i((\sigma_0 z_\Delta + \sigma_x u t) / 2\sigma_0^2)}$$

(32)

where z_Δ and u are given by (21).

The atomic density $\rho(z_A, z_B, t_0 + \Delta t + t)$ is found by integrating $\Psi^*(r_A, r_B, t_0 + \Delta t + t) \Psi(r_A, r_B, t_0 + \Delta t + t)$ on x_A and x_B:

$$\rho(z_A, z_B, t_0 + \Delta t + t)$$

$$= \left(2\pi\sigma_0^2\right)^{-1/2} e^{-\Delta^2 z_A^2 / 2\sigma_0^2} \times \left(2\pi\sigma_0^2\right)^{-1/2} \times \frac{1}{\sqrt{2}} \left(e^{-\Delta^2 z_A^2 / 2\sigma_0^2} + e^{-\Delta^2 z_B^2 / 2\sigma_0^2} \right)$$

(33)

We deduce that the beam of particle A is divided into two, while the beam of particle B stays undivided:

(i) the density of A is the same, whether particle A is entangled with B or not;

(ii) the density of B is not affected by the “measurement” of A.
Our first conclusion is that the position of \(B \) does not depend on the measurement of \(A \); only the spins are involved. We conclude from (31) that the spins of \(A \) and \(B \) remain opposite throughout the experiment. These are the two properties used in the causal interpretation.

5.2. Second Step EPR-B: Spin Measurement of \(B \). The second step is a continuation of the first and corresponds to the EPR-B experiment broken down into two steps. On a pair of particles \(A \) and \(B \) in a singlet state, first we made a Stern and Gerlach measurement on the \(A \) atom between \(t_0 \) and \(t_0 + \Delta t + t_D \); secondly, we make a Stern and Gerlach measurement on the \(B \) atom with an electromagnet \(E_B \) forming an angle \(\delta \) with \(E_A \) during \(t_0 + \Delta t + t_D \) and \(t_0 + 2(\Delta t + t_D) \).

At the exit of magnetic field \(E_A \) at time \(t_0 + \Delta t + t_D \), the wave function of \(B \) depends on the measurement \(\pm \alpha \) of \(A \):

\[
\Psi(\vec{r}_B, t_0 + \Delta t + t_1) = f(\vec{r}_B) |\pm \alpha \rangle . \tag{34}
\]

Then, the measurement of \(B \) at time \(t_0 + 2(\Delta t + t_D) \) yields, in this two-step version of the EPR-B experiment, the same results for spatial quantization and correlations of spins as in the EPR-B experiment.

5.3. Causal Interpretation of the EPR-B Experiment. We assume, at the creation of the two entangled particles \(A \) and \(B \), that each of the two particles \(A \) and \(B \) has an initial wave function with opposite spins: \(\Psi_0^A(\vec{r}_A, \theta_0^A, \phi_0^A) = f(\vec{r}_A) (\cos(\theta_0^A/2)|+\alpha\rangle + \sin(\theta_0^A/2)e^{i\phi_0^A}|-\alpha\rangle) \) and \(\Psi_0^B(\vec{r}_B, \theta_0^B, \phi_0^B) = f(\vec{r}_B) (\cos(\theta_0^B/2)|+\beta\rangle + \sin(\theta_0^B/2)e^{i\phi_0^B}|-\beta\rangle) \) with \(\theta_0^B = \pi - \theta_0^A \) and \(\phi_0^B = \phi_0^A - \pi \). The two particles \(A \) and \(B \) are statistically prepared as in the Stern and Gerlach experiment. Then the Pauli principle tells us that the two-body wave function must be antisymmetric; after calculation, we find the same singlet state (27):

\[
\Psi_0(\vec{r}_A, \theta_A^A, \phi_A^A, \vec{r}_B, \theta_B^B, \phi_B^B) = -e^{i\phi_B^B} f(\vec{r}_A) f(\vec{r}_B) \times \left(|+\alpha\rangle \left|\pm \beta\right
angle - |\pm \alpha\rangle \left|- \beta\right
angle \right) . \tag{35}
\]

Thus, we can consider that the singlet wave function is the wave function of a family of two fermions \(A \) and \(B \) with opposite spins: the direction of initial spins \(A \) and \(B \) exists but is not known. It is a local hidden variable which is therefore necessary to add in the initial conditions of the model.

This is not the interpretation followed by the Bohm school [44-46, 66, 67] in the interpretation of the singlet wave function; they do not assume the existence of wave functions \(\Psi_0^A(\vec{r}_A, \theta_0^A, \phi_0^A) \) and \(\Psi_0^B(\vec{r}_B, \theta_0^B, \phi_0^B) \) for each particle but only the singlet state \(\Psi_0(\vec{r}_A, \theta_A^A, \phi_A^A, \vec{r}_B, \theta_B^B, \phi_B^B) \). In consequence, they suppose a zero spin for each particle at the initial time and a spin module of each particle varied during the experiment from 0 to \(\hbar/2 \) [46, page 418].

Here, we assume that at the initial time we know the spin of each initial particle (given by each initial wave function) and the initial position of each particle.

Step 1 (spin measurement of \(A \)). In (31) particle \(A \) can be considered independent of \(B \). We can therefore give it the wave function:

\[
\Psi_A(\vec{r}_A, t_0 + \Delta t + t) = \cos \frac{\theta_A^A}{2} f^+(\vec{r}_A, t)|+\alpha\rangle + \sin \frac{\theta_A^A}{2} e^{i\phi_A^A} f^-(\vec{r}_A, t)|-\alpha\rangle \tag{36}
\]

which is the wave function of a free particle in a Stern-Gerlach apparatus and whose initial spin is given by \((\theta_0^A, \phi_0^A) \). For an initial polarization \((\theta_0^A, \phi_0^A) \) and an initial position \((z_A^0) \), we obtain, in the de Broglie-Bohm interpretation [44] of the Stern and Gerlach experiment, an evolution of the position \((z_A(t)) \) and of the spin orientation of \(A \) \((\theta_A^A(z_A(t), t)) \) [48].

The case of particle \(B \) is different. \(B \) follows a rectilinear trajectory with \(y_B(t) = v_B t, z_B(t) = z_B^0, \) and \(x_B(t) = x_B^0 \). By contrast, the orientation of its spin moves with the orientation of the spin of \(A \): \(\theta_B^B(t) = \pi - \theta_A^A(z_A(t), t) \) and \(\phi_B^B(t) = \phi(z_A(t), t) - \pi \). We can associate the following wave function with the particle \(B \):

\[
\Psi_B(\vec{r}_B, t_0 + \Delta t + t) = f(\vec{r}_B) \left(\cos \frac{\theta_B^B(t)}{2} |+\beta\rangle + \sin \frac{\theta_B^B(t)}{2} e^{i\phi_B^B(t)} |-\beta\rangle \right) . \tag{37}
\]

This wave function is specific, because it depends upon initial conditions of \(A \) (position and spin). The orientation of spin of the particle \(B \) is driven by the particle \(A \) through the singlet wave function. Thus, the singlet wave function is the nonlocal variable.

Step 2 (spin measurement of \(B \)). At the time \(t_0 + \Delta t + t_D \), immediately after the measurement of \(A \), \(\theta_B^B(t_0 + \Delta t + t_D) = \pi \) or 0 in accordance with the value of \(\theta_A^A(z_A(t), t) \) and the wave function of \(B \) is given by (34). The frame \((Ox'y'z')\) corresponds to the frame \((Oxyz)\) after a rotation of an angle \(\delta \) around the \(y \)-axis. \(\theta^B \) corresponds to the \(B \)-spin angle with the \(z \)-axis and \(\theta^B \) to the \(B \)-spin angle with the \(z' \)-axis; then \(\theta^B(t_0 + \Delta t + t_D) = \pi + \delta \) or \(\delta \). In this second step, we are exactly in the case of a particle in a simple Stern and Gerlach experiment (with magnet \(E_B \)) with a specific initial polarization equal to \(\pi + \delta \) or \(\delta \) and not random like in Step 1. Then, the measurement of \(B \), at time \(t_0 + 2(\Delta t + t_D) \), gives, in this interpretation of the two-step version of the EPR-B experiment, the same results as in the EPR-B experiment.

5.4. Physical Explanation of Nonlocal Influences. From the wave function of two entangled particles, we find spins, trajectories, and also a wave function for each of the two particles. In this interpretation, the quantum particle has a local position like a classical particle, but it has also a nonlocal behavior through the wave function. So, it is the wave function that creates the nonclassical properties. We can keep a view of a local realist world for the particle, but we should add a nonlocal vision through the wave function.
As we saw in Step 1, the nonlocal influences in the EPR-B experiment only concern the spin orientation not the motion of the particles themselves. Indeed only spins are entangled in the wave function (27) not positions and motions like in the initial EPR experiment. This is a key point in the search for a physical explanation of nonlocal influences.

The simplest explanation of this nonlocal influence is to reintroduce the concept of ether (or the preferred frame) but a new format given by Lorentz-Poincaré and by Einstein in 1920 [69]: “Recapitulating, we may say that according to the general theory of relativity space is endowed with physical qualities; in this sense, therefore, there exists an ether. According to the general theory of relativity space without ether is unthinkable; [sic] for in such space there not only would be no propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and clocks), nor therefore any space-time intervals in the physical sense. But this ether may not be thought of as endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through time. The idea of motion may not be applied to it.”

Taking into account the new experiments, especially Aspect’s experiments, Popper [70, page XVIII] defends a similar view in 1982:

“I feel not quite convinced that the experiments are correctly interpreted; but if they are, we just have to accept action at a distance. I think (with J.P. Vigier) that this would of course be very important, but I do not for a moment think that it would shake, or even touch, realism. Newton and Lorentz were realists and accepted action at a distance; and Aspect’s experiments would be the first crucial experiment between Lorentz’s and Einstein’s interpretation of the Lorentz transformations.”

Finally, in the de Broglie-Bohm interpretation, the EPR-B experiments of nonlocality have therefore a great importance not to eliminate realism and determinism but as Popper said to rehabilitate the existence of a certain type of ether, like Lorentz’s ether and like Einstein’s ether in 1920.

6. Conclusion

In the three experiments presented in this paper, the variable that is measured in fine is the position of the particle given by this impact on a screen. In the double-slit, the set of these positions gives the interferences; in the Stern-Gerlach and the EPR-B experiments, it is the position of the particle impact that defines the spin value.

It is this position that the de Broglie-Bohm interpretation adds to the wave function to define a complete state of the quantum particle. The de Broglie-Bohm interpretation is then based only on the initial conditions $\Psi(0)$ and $X(0)$ and the evolution equations (1) and (12). If we add as initial condition the “quantum equilibrium hypothesis” (14), we have seen that we can deduce, for these three examples, the three postulates of measurement. These three postulates are not necessary if we solve the time-dependent Schrödinger equation (double-slit experiment) or the Pauli equation with spatial extension (Stern-Gerlach and EPR experiments). However, these simulations enable us to better understand those experiments: in the double-slit experiment, the interference phenomenon appears only some centimeters after the slits and shows the continuity with classical mechanics; in the Stern-Gerlach experiment, the spin-up/down measurement appears also after a given time, called decoherence time; in the EPR-B experiment, only the spin of B is affected by the spin measurement of A not its density. Moreover, the de Broglie-Bohm trajectories propose a clear explanation of the spin measurement in quantum mechanics.

However, we have seen two very different cases in the measurement process. In the first case (double-slit experiment), there is no influence of the measuring apparatus (the screen) on the quantum particle. In the second case (Stern-Gerlach experiment, EPR-B), there is an interaction with the measuring apparatus (the magnetic field) and the quantum particle. The result of the measurement depends on the position of the particle in the wave function. The measurement duration is then the time necessary for the stabilisation of the result.

This heterodox interpretation clearly explains experiments with a set of quantum particles that are statistically prepared. These particles verify the “quantum equilibrium hypothesis” and the de Broglie-Bohm interpretation establishes continuity with classical mechanics. However, there is no reason that the de Broglie-Bohm interpretation can be extended to quantum particles that are not statistically prepared. This situation occurs when the wave packet corresponds to a quasiclassical coherent state, introduced in 1926 by Schrödinger [71]. The field quantum theory and the second quantification are built on these coherent states [72]. It is also the case, for the hydrogen atom, of localized wave packets whose motions are on the classical trajectory (an old dream of Schrödinger’s). Their existence was predicted in 1994 by Bialynicki-Birula et al. [73–75] and discovered recently by Maeda and Gallagher [76] on Rydberg atoms. For these nonstatistically prepared quantum particles, we have shown [9, 10] that the natural interpretation is the Schrödinger interpretation proposed at the Solvay congress in 1927. Everything happens as if the quantum mechanics interpretation depended on the preparation of the particles (statistically or not statistically prepared). It is perhaps a response to the “theory of the double solution” that Louis de Broglie was seeking since 1927: “I introduced as the ‘double solution theory’ the idea that it was necessary to distinguish two different solutions that are both linked to the wave equation, one that I called wave u, which was a real physical wave represented by a singularity as it was not normalizable due to a local anomaly defining the particle, the other one as Schrödinger’s Ψ wave, which is a probability representation as it is normalizable without singularities” [77].

Appendix

Calculating the Spinor Evolution in the Stern-Gerlach Experiment

In the magnetic field $B = (B_x, 0, B_z)$, the Pauli equation (18) gives coupled Schrödinger equations for each spinor
component:

\[
\frac{i\hbar}{\partial t} \psi_\pm (x, z, t) = -\frac{\hbar^2}{2m} \nabla^2 \psi_\pm (x, z, t) \pm \mu_B \left(B_0 - B'_0 z \right) \psi_\pm (x, z, t) + i\mu_B B'_0 x \psi_\pm (x, z, t) .
\]

(A.1)

If one affects the transformation \[47\]

\[
\psi_\pm (x, z, t) = \exp \left(\pm \frac{i\mu_B B'_0 t}{\hbar} \right) \overline{\psi}_\pm (x, z, t)
\]

(A.2) becomes

\[
\frac{i\hbar}{\partial t} \overline{\psi}_\pm (x, z, t) = -\frac{\hbar^2}{2m} \nabla^2 \overline{\psi}_\pm (x, z, t) \mp \mu_B B'_0 z \overline{\psi}_\pm (x, z, t) + i\mu_B B'_0 x \overline{\psi}_\pm (x, z, t) .
\]

(A.3)

The coupling term oscillates rapidly with the Larmor frequency \(\omega_L = 2\mu_B B_0 / \hbar = 1, 4 \times 10^{11} \text{ s}^{-1}\). Since \(|B_0| \gg |B'_0 z|\) and \(|B'_0| \gg |B'_0 x|\), the period of oscillation is short compared to the motion of the wave function. Averaging over a period that is long compared to the oscillation period, the coupling term vanishes, which entails \[47\]

\[
\frac{i\hbar}{\partial t} \overline{\psi}_\pm (x, z, t) = -\frac{\hbar^2}{2m} \nabla^2 \overline{\psi}_\pm (x, z, t) \mp \mu_B B'_0 z \overline{\psi}_\pm (x, z, t) .
\]

(A.4)

Since the variable \(x\) is not involved in this equation and \(\psi_\pm^0(x, z)\) does not depend on \(x\), \(\overline{\psi}_\pm^0(x, z, t)\) does not depend on \(x\): \(\overline{\psi}_\pm^0(x, z, t) \equiv \overline{\psi}_\pm^0(z, t)\). Then we can explicitly compute the preceding equations for all \(t\) in \([0, \Delta t]\) with \(\Delta t = \Delta l / v = 2 \times 10^7 \text{ s}\).

We obtain

\[
\overline{\psi}_+ (z, t) = \psi_K (z, t) \cos \frac{\theta}{2} e^{-i\phi_0 / 2}, \quad K = -\mu_B B'_0 ,
\]

\[
\overline{\psi}_- (z, t) = \psi_K (z, t) i \sin \frac{\theta}{2} e^{-i\phi_0 / 2}, \quad K = +\mu_B B'_0
\]

(A.5)

\[
\sigma_\downarrow^2 = \sigma_\uparrow^2 = \left(\frac{\hbar t}{2m\sigma_0^2} \right)^2 \text{ and }
\]

\[
\psi_K (z, t) = \left(2\pi\sigma_0^2\right)^{-1/4} e^{-i(z+Kt^2)/2m\sigma_0^2} \exp \left[\frac{i}{\hbar} \left(\frac{ht}{2m\sigma_0} \right) - Ktz - \frac{K^2t^2}{6m} \right] .
\]

(A.6)

where (A.6) is a classical result \[11\].

The experimental conditions give \(\hbar t / 2m\sigma_0 = 4 \times 10^{-11} \text{ m} \ll \sigma_0 = 10^{-4} \text{ m}\). We deduce the approximations \(\sigma_t = \sigma_0\) and

\[
\overline{\psi}_K (z, t) = \left(2\pi\sigma_0^2\right)^{-1/4} e^{-i(z+Kt^2)/2m\sigma_0^2} \exp \left[\frac{i}{\hbar} \left(-Ktz - \frac{K^2t^2}{6m} \right) \right] .
\]

(A.7)

At the end of the magnetic field, at time \(\Delta t\), the spinor is equal to

\[
\psi (z, \Delta t) = \begin{pmatrix} \psi_+ (z, \Delta t) \\
\psi_- (z, \Delta t) \end{pmatrix}
\]

(A.8)

with

\[
\psi_+ (z, \Delta t) = \left(2\pi\sigma_0^2\right)^{-1/4} e^{-i(z-z_\Delta^2)/2m\sigma_0^2} \exp \left[\frac{\theta_0}{2} e^{i\phi_-} \right] ,
\]

\[
\psi_- (z, \Delta t) = \left(2\pi\sigma_0^2\right)^{-1/4} e^{-i(z-z_\Delta^2)/2m\sigma_0^2} - i \sin \frac{\theta_0}{2} e^{i\phi_-} ,
\]

\[
z_\Delta = \frac{\mu_B B'_0 (\Delta t)^2}{2m} , \quad u = \frac{\mu_B B'_0 (\Delta t)}{m} ,
\]

\[
\varphi_+ = \frac{\pi}{2} - \frac{\mu_B B_0 \Delta t}{\hbar} - \frac{K^2(\Delta t)^3}{6m\hbar} ,
\]

\[
\varphi_- = \frac{\pi}{2} + \frac{\mu_B B_0 \Delta t}{\hbar} - \frac{K^2(\Delta t)^3}{6m\hbar} .
\]

(A.9)

We remark that the passage through the magnetic field gives the equivalent of a velocity \(+u\) in the direction \(0z\) to the function \(\psi_+\) and a velocity \(-u\) to the function \(\psi_-\). Then we have a free particle with the initial wave function (A.8). The Pauli equation resolution again yields \(\psi_+ (x, z, t) = \psi_+(x, t)\psi_+(z, t)\) and with the experimental conditions we have \(\psi_+(x, t) = \left(2\pi\sigma_0^2\right)^{-1/4} e^{-x^2/2\sigma_0^2}\) and

\[
\psi_+ (z, t + \Delta t) = \left(2\pi\sigma_0^2\right)^{-1/4} \cos \frac{\theta_0}{2} \exp \left[-\left(\frac{z+z_\Delta - \Delta t^2}{2m\sigma_0^2} \right) + i\left(\frac{t}{m\sigma_0^2} + \frac{K^2t^2}{6m} \right) + \frac{i}{\hbar} \left(\frac{ht}{2m\sigma_0} \right) - Ktz - \frac{K^2t^2}{6m} \right] .
\]

(A.10)

\[
\psi_- (z, t + \Delta t) = \left(2\pi\sigma_0^2\right)^{-1/4} \sin \frac{\theta_0}{2} \exp \left[-\left(\frac{z+z_\Delta - \Delta t^2}{2m\sigma_0^2} \right) + i\left(\frac{t}{m\sigma_0^2} - \frac{K^2t^2}{6m} \right) - \frac{i}{\hbar} \left(\frac{ht}{2m\sigma_0} \right) - Ktz - \frac{K^2t^2}{6m} \right] .
\]
Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] J. S. Bell, "On the impossible pilot wave," in Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, 1987.

[2] D. Bohm, "A suggested interpretation of the quantum theory in terms of hidden variables, I and II," Physical Review, vol. 85, pp. 166–193, 1952.

[3] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, USA, 1996.

[4] B. d'Espagnat, A la Recherche du Rêve, Gauthiers-Villard, Paris, France, 1979.

[5] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, 2nd edition, 2004.

[6] L. de Broglie, "La mécanique ondulatoire et la structure atomique de la matière et du rayonnement," Journal de Physique et Le Radium, vol. 8, no. 5, pp. 225–241, 1927. An English translation can be found in G. Bacciagalluppi and A. Valentini, Quantum Theory of the Crossroads (Cambridge University Press, Cambridge, UK, 2009).

[7] C. Jönsson, "Elektronenintereferenzen an mehreren künstlich hergestellten Feinspalten," Zeitschrift für Physik, vol. 161, pp. 454–474, 1961.

[8] E. Madelung, "Quantentheorie in hydrodynamischer form," Zeitschrift für Physik, vol. 40, no. 3–4, pp. 322–326, 1927.

[9] M. Gondran and A. Gondran, "Discerned and non-discerned particles in classical mechanics and convergence of quantum mechanics to classical mechanics," Annales de la Fondation Louis de Broglie, vol. 36, no. 1, pp. 117–135, 2011.

[10] M. Gondran and A. Gondran, "The two limits of the Schrödinger equation in the semi-classical approximation: discerned and non-discerned particles in classical mechanics," in Foundations of Probability and Physics-6, vol. 1424 of AIP Conference Proceedings, pp. 111–115, 2012.

[11] R. Feynman and A. Hibbs, Quantum Mechanics and Paths Integrals, McGraw-Hill, 1965.

[12] C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, John Wiley & Sons, New York, NY, USA, 1977.

[13] D. Durr, S. Goldstein, and N. Zhangi, "Quantum equilibrium and the origin of absolute uncertainty," Journal of Statistical Physics, vol. 67, no. 5-6, pp. 843–907, 1992.

[14] A. S. Sanz and S. Miret-Artés, "Quantum phase analysis with quantum trajectories: a step towards the creation of a Bohmian thinking," The American Journal of Physics, vol. 80, no. 6, pp. 525–533, 2012.

[15] T. Norsen, "The pilot-wave perspective on quantum scattering and tunneling," American Journal of Physics, vol. 81, no. 4, pp. 258–266, 2013.

[16] T. Young, "On the theory of light and colors," Philosophical transactions of the Royal Society, vol. 92, pp. 12–48, 1802.

[17] C. Davison and L. H. Germer, "The scattering of electrons by a single crystal of nickel," Nature, vol. 119, no. 2998, pp. 558–560, 1927.

[18] P. G. Merlin, G. F. Missiroli, and G. Pozzi, "On the statistical aspect of electron interference phenomena," American Journal of Physics, vol. 44, no. 3, pp. 306–307, 1976.

[19] A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, "Demonstration of single-electron buildup of an interference pattern," American Journal of Physics, vol. 57, pp. 117–120, 1989.

[20] H. V. Halbon Jr. and P. Preiswerk, "Preuve expérimentale de la diffraction des neutrons," Comptes Rendus de l’Académie des Sciences, vol. 203, pp. 73–75, 1936.

[21] H. Rauch and A. Werner, Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Oxford University Press, London, UK, 2000.

[22] A. Zeilinger, R. Gähler, C. G. Shull, W. Treimer, and W. Mampre, "Single- and double-slit diffraction of neutrons," Reviews of Modern Physics, vol. 60, no. 4, pp. 1067–1073, 1988.

[23] I. Estermann and O. Stern, "Beugung von Molekularstrahlen," Zeitschrift für Physik, vol. 61, no. 1-2, pp. 95–125, 1930.

[24] F. Shimizu, K. Shimizu, and H. Takuma, "Double-slit interference with ultracold metastable neon atoms," Physical Review A, vol. 46, no. 1, pp. R7–R20, 1992.

[25] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of Bose-Einstein condensation in a dilute atomic vapor," Science, vol. 269, no. 5221, pp. 198–201, 1995.

[26] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger, "Wave-particle duality of C60 molecules," Nature, vol. 401, no. 6754, pp. 680–682, 1999.

[27] O. Nairz, M. Arndt, and A. Zeilinger, "Experimental challenges in fullerene interferometry," Journal of Modern Optics, vol. 47, no. 14-15, pp. 2811–2821, 2000.

[28] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 3: Quantum Mechanics, Addison-Wesley, New York, NY, USA, 1965.

[29] M. Gondran and A. Gondran, "Numerical simulation of the double slit interference with ultracold atoms," The American Journal of Physics, vol. 73, no. 6, pp. 507–515, 2005.

[30] C. Philippidis, C. Dewdney, and B. J. Hiley, "Quantum interference and the quantum potential," Il Nuovo Cimento B: Serie II, vol. 52, no. 1, pp. 15–28, 1979.

[31] W. Gerlach and O. Stern, "Der experimentelle Nachweis des magnetischen moments des silberatoms," Zeitschrift für Physik, vol. 8, no. 1, pp. 110–111, 1921.

[32] W. Gerlach and O. Stern, "Der experimentelle Nachweis der Richtungszuordnung im Magnetfeld," Zeitschrift für Physik, vol. 9, no. 1, pp. 349–352, 1922.

[33] H. D. Zeh, "On the interpretation of measurement in quantum theory," Foundations of Physics, vol. 1, pp. 69–76, 1970, Reprinted in Wheeler and Zurek, pp. 342–349, 1983.

[34] W. H. Zurek, "Environment-induced superselection rules," Physical Review D: Particles and Fields, vol. 26, no. 8, pp. 1862–1880, 1982.

[35] J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurement, Princeton Series in Physics, Princeton University Press, Princeton, NJ, USA, 1983.

[36] W. H. Zurek, "Decoherence, einselection, and the quantum origins of the classical," Reviews of Modern Physics, vol. 75, no. 3, pp. 715–775, 2003.

[37] R. Omnès, "Consistent interpretations of quantum mechanics," Reviews of Modern Physics, vol. 64, no. 2, pp. 339–382, 1992.
[38] M. Schlosshauer, *Decoherence and the Quantumto—Classical Transition*, Springer, 2007.

[39] J. J. Sakurai, *Modern Quantum Mechanics*, Addison-Wesley, 1985.

[40] M. Le Bellac, *Quantum Physics*, Cambridge University Press, Cambridge, UK, 2006.

[41] T. Takabayasi, "On the formulation of quantum mechanics associated with classical pictures," *Progress of Theoretical Physics*, vol. 8, no. 2, pp. 143–182, 1952.

[42] T. Takabayasi, "The formulation of quantum mechanics in terms of ensemble in phase space," *Progress of Theoretical Physics*, vol. 11, no. 4–5, pp. 341–373, 1954.

[43] D. Bohm, R. Schiller, and J. Tiomno, "A causal interpretation of the pauli equation," *Il Nuovo Cimento Series*, supplement 1, pp. 48–66, 1955.

[44] D. Bohm and B. J. Hiley, *The Undivided Universe*, Routledge, London, UK, 1993.

[45] C. Dewdney, P. R. Holland, and A. Kyprianidis, "What happens in a spin measurement?" *Physics Letters A*, vol. 119, no. 6, pp. 259–267, 1986.

[46] P. R. Holland, *The Quantum Theory of Motion*, Cambridge University Press, Cambridge, Mass, USA, 1993.

[47] D. E. Platt, "A modern analysis of the Stern-Gerlach experiment," *American Journal of Physics*, vol. 60, no. 4, pp. 306–308, 1992.

[48] M. Gondran, A. Gondran, and A.Kenoufi, "Decoherence time and spin measurement in the Stern-Gerlach experiment," *AIP Conference Proceedings*, vol. 1424, pp. 116–120, 2012.

[49] G. B. Roston, M. Casas, A. Plastino, and A. R. Plastino, "Quantum entanglement, spin-1/2 and the Stern-Gerlach experiment," *European Journal of Physics*, vol. 26, no. 4, pp. 657–672, 2005.

[50] A. Challinor, A. Lasenby, S. Gull, and C. Doran, "A relativistic causal account of a spin measurement," *Physics Letters A*, vol. 218, no. 3–6, pp. 128–138, 1996.

[51] S. Kochen and E. P. Specker, "The problem of hidden variables in quantum mechanics," *Journal of Applied Mathematics and Mechanics*, vol. 17, pp. 59–87, 1967.

[52] A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" *Physical Review*, vol. 47, no. 10, pp. 777–780, 1935.

[53] D. Bohm, *Quantum Theory*, Prentice-Hall, New York, NY, USA, 1951.

[54] D. Bohm and Y. Aharanov, "Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky," vol. 108, pp. 1070–1076, 1957.

[55] J. S. Bell, "On the Einstein Podolsky Rosen paradox," *Physics*, vol. 1, no. 3, pp. 195–200, 1964.

[56] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed experiment to test local hidden-variable theories," *Physical Review Letters*, vol. 23, no. 15, pp. 880–884, 1969.

[57] S. J. Freedman and J. F. Clauser, "Experimental test of local hidden-variable theories," *Physical Review Letters*, vol. 28, no. 14, pp. 938–941, 1972.

[58] A. Aspect, P. Grangier, and G. Roger, "Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: a new violation of Bell's inequalities," *Physical Review Letters*, vol. 49, no. 2, pp. 91–94, 1982.

[59] A. Aspect, J. Dalibard, and G. Roger, "Experimental test of Bell's inequalities using time-varying analyzers," *Physical Review Letters*, vol. 49, no. 25, pp. 1804–1807, 1982.

[60] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of bell inequalities by photons more than 10 km apart," *Physical Review Letters*, vol. 81, no. 17, pp. 3563–3566, 1998.

[61] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, "Violation of Bell's inequality under strict Einstein locality conditions," *Physical Review Letters*, vol. 81, no. 23, pp. 5039–5043, 1998.

[62] R. A. Bertlmann and A. Zeilinger, Eds., *Quantum [Un]speaking: From Bell to Quantum Information*, Springer, 2002.

[63] M. Genovese, "Research on hidden variable theories: a review of recent progresses," *Physics Reports*, vol. 413, no. 6, pp. 319–396, 2005.

[64] A. Beige, W. J. Munro, and P. L. Knight, "Bell's inequality test with entangled atoms," *Physical Review A*, vol. 62, no. 5, Article ID 052102, 2000.

[65] M. A. Rowe, D. Kielpinski, V. Meyer et al., "Experimental violation of a Bell's inequality with efficient detection," *Nature*, vol. 409, no. 6822, pp. 791–794, 2001.

[66] C. Dewdney, P. R. Holland, and A. Kyprianidis, "A causal account of nonlocal Einstein-Podolsky-Rosen spin correlations," *Journal of Physics A: Mathematical and General*, vol. 20, no. 14, pp. 4717–4732, 1987.

[67] C. Dewdney, P. R. Holland, A. Kyprianidis, and J. P. Vigier, "Spin and non-locality in quantum mechanics," *Nature*, vol. 336, no. 6199, pp. 536–544, 1988.

[68] M. Gondran and A. Gondran, "A new causal interpretation of EPR-B experiment," in *Proceedings of the International Conference Quantum Theory: Reconsideration of Foundations-6 (QTRF '12)*, pp. 370–375, Vaxjo, Sweden, June 2012.

[69] A. Einstein, *Ether and the Theory of Relativity*, University of Leyden, 1920.

[70] K. Popper, *Quantum Theory and the Schism in Physics: From The Postscript to the Logic of Scientific Discovery*, Hutchinsons, London, UK, edited by W. W. Bartley III, 1982.

[71] E. Schrödinger, "Der stetige Übergang von der Mikro- zur Makromechanik," *Die Naturwissenschaften*, vol. 14, no. 28, pp. 664–666, 1926.

[72] R. J. Glauber, C. deWitt, A. Blandin, and C. Cohen-Tannoudji, in *Quantum Optics and Electronics*, *Les Houches Lectures* 1964, p. 63, Gordon and Breach, New York, NY, USA, 1965.

[73] I. Bialynicki-Birula, M. Kalinski, and J. H. Eberly, "Lagrangian equilibrium points in celestial mechanics and nonspreading wave packets for strongly driven rydberg electrons," *Physical Review Letters*, vol. 73, no. 13, pp. 1777–1780, 1994.

[74] A. Buchleitner and D. Delande, "Nondispersive electronic wave packets in multiphoton processes," *Physical Review Letters*, vol. 75, no. 8, pp. 1487–1490, 1995.

[75] A. Buchleitner, D. Delande, and J. Zakrzewski, "Non-dispersive wave packets in periodically driven quantum systems," *Physics Reports*, vol. 368, no. 5, pp. 409–547, 2002.

[76] H. Maeda and T. F. Gallagher, "Nondispersing wave packets," *Physical Review Letters*, vol. 92, Article ID 130404, 2004.

[77] L. de Broglie and J. L. Andrade e Silva, *La Réinterprétation de la Mécanique Ondulatoire*, Gauthier-Villars, 1971.
