Prevalence and Etiological Agents for Chronic Suppurative Otitis Media among Patients Attending Otorhinolaryngology Department at Muhimbili National Hospital, Tanzania

CURRENT STATUS: Accepted

BMC Research Notes

Zephania Saitabau Abraham
University of Dodoma College of Health Sciences
zsaitabau@yahoo.com Corresponding Author

Daudi Ntunaguzi
Muhimbili University of Health and Allied Sciences

Aveline Aloyce Kahinga
Muhimbili University of Health and Allied Sciences

Kassim Babu Mapondella
Muhimbili University of Health and Allied Sciences

Enica Richard Massawe
Muhimbili University of Health and Allied Sciences

Emmanuel James Nkuwi
The University of Dodoma College of Health Sciences

Aslam Nkya
Muhimbili University of Health and Allied Sciences

DOI: 10.21203/rs.2.10600/v1

SUBJECT AREAS
Otorhinolaryngology Epidemiology

KEYWORDS
Prevalence, Aetiology, Chronic suppurative otitis media, Muhimbili, Tanzania
Abstract

Objective

Chronic suppurative otitis media is among the commonest otological condition reported in otorhinolaryngology practice commonly attributing to preventable hearing loss. The aim of this study was thus to determine the prevalence and etiological agents for chronic suppurative otitis media in our department.

Results

A total of 5591 patients were recruited in this study where 79 (1.4%) were found to have chronic suppurative otitis media. Male preponderance (54.4%) was found in this study and the left ear (58.2%) was more affected than right ear. Central perforation was the commonest pattern reported in 53% of cases and none had attic perforation. Of the 81 processed ear swabs, microbial growth was seen in 80 (98.8%) whilst one sample showed no microbial growth whereas 52.5% had polymicrobial growth.

Introduction

Chronic suppurative otitis media (CSOM) is a disease condition associated with chronic inflammation of the middle ear cleft characterized by persistent perforation of tympanic membrane with recurrent or persistent mucopurulent otorrhoea. The duration of otorrhoea for classifying CSOM has been a subject of discussion among Otorhinolaryngologists with duration ranging from 3 weeks to 3 months. In this study the period taken will be at least 2 weeks in accordance with WHO [1]. It is also one of the leading causes of preventable hearing loss worldwide and in most cases it is a sequela of improperly attended acute otitis media and it consequently impairs one’s quality of life [1,2].

Hearing loss is common among patients with CSOM and exceed 30dB and with tendency to occur in about 50 to 60 percent of such patients [3,4]. Conductive hearing loss is typically moderate to severe in up to two-thirds of patients and being marked at low frequencies and with increased bone
conduction threshold tendency [4-12].

The site of the perforation corresponds to degree of hearing loss, with posterior perforations having greater decibel level loss probably as a result of loss of protection of the round window membrane from impinging sound pressure waves [7].

MRSA and MSSA have been found in pus swab culture of patients with CSOM and this pose a significant challenge in medical management due to its resistance to commonly antibiotics used [13,14].

On the other hand, there has been increased incidence of multi drug resistance which poses a significant challenge as they are related to increased complications associated with CSOM [13,14]. In Tanzania, most of the available studies were based on the prevalence of this condition and very few studies have been conducted to look on the bacteriological and sensitivity pattern to antibiotics of which its pertinent in management of such patients.

Methods

Study design, participants and sampling method.

This was a hospital based descriptive cross-sectional study conducted between September 2015 and February 2016 and included 1200 patients who attended Otorhinolaryngology (ORL) Department.

Convenient sampling technique was utilized.

Inclusion and exclusion criteria

All adult patients who consented to participate in the study and those under the age of 18 years whose parents/caretakers consented on their behalf. Patients on regular follow up were excluded.

Specimen Collection Procedures

Pus swab was collected from the external auditory canal and introduced into Amies transport medium bottle and sent for laboratory analysis.
Laboratory Procedures

From each specimen, a portion was subjected to primary gram stain for pus cells and possible organism while the remaining portions were inoculated into Blood agar (Oxoid, UK), and MacConkey agar (Oxoid, UK) and incubated aerobically at 370C for 24-48 Hours.

Identification of Bacterial Pathogens

Identification of pathogens was based on Microscopy (Gram stain, shape, cells arrangement) and colony characteristics (colony morphology, hemolysis on blood agar, changes in the physical appearance of the differential media). Organisms from discrete colonies were cultured into Nutrient Agar (Oxoid, UK) for subsequent. Biochemical tests. Gram positive isolates were tested for catalase and Coagulase tests while biochemical tests for gram negative isolated bacteria were tested for oxidase, Triple sugar Iron (TSI), Sulphur indole and motility (SIM), urease production and citrate utilization [15].

Antimicrobial Susceptibility Testing

Antibiotic susceptibility pattern of isolated bacteria pathogens was performed using modified Kirby Bauer disc diffusion method according to the guidelines of the clinical and Laboratory Standard Institute (CLSI) [16].

A colony suspension with concentration equivalent to 0.5 McFarland solution was prepared for each identified isolate and inoculated into Mueller Hinton-Agar (Oxoid, UK). Appropriate Selected Antibiotic discs were placed onto the media and incubated at 37°Celsius for 24 hours.

Gram positive isolates were tested against Ampicillin (10µg), Amoxicillin/clavunate (20/10µg), Ceftriaxone(30µg), Gentamycin (10µg), Ciprofloxacin (5µg), Trimethoprim/sulfamethoxazole (1.25/23.75µg), Chloramphenicol (30µg), Amikacin (17 µg) and Cephalexin (18 µg).

Gram negative organisms were tested against Ampicillin (10µg), Amoxicillin/clavulanate (20/10µg), Ceftriaxone(30µg), Gentamicin(10µg), Ciprofloxacin,(5µg), Triomethoprim/sulfamethoxazole (1.25/23.75µg) and Chloramphenicol (30µg). Reference stains used for quality control were Staphylococcus aureus (ATCC 25922 and ATCC 29213), Escherichia coli (ATCC 25922), Pseudomonas
Data analysis

Data analysis was done using the Statistical Package for Social Sciences version 21. p-value of <0.05 was considered statistically significant.

Results

Demographic Characteristics of Study Participants

A total of 5591 patients were recruited including both in patients and out patients. The age distribution ranged from 7 months to 82 years. The mean age of study participants was 12.9, (SD ± 7.9). Majority of patients were over 40 years old (28.1%) and the least were 16 -20 (4.9%) (Table 1). Over half of the patients were females (52.4%).

Table 1: Demographic Characteristics of the Study Participants

Prevalence of Chronic Suppurative Otitis Media

Of 5591 patients, 1.4% (79/5591) had CSOM. Proportion of CSOM was high in age between 11-15 (3%) and least in those aged more than 40 years (0.6%). Males predominance (54.4%) was found (Table 2).

Laterality and Types of Tympanic Membrane Perforation

Unilateral involvement (97.5%) was more common than bilaterality (2.5%). Left ear infection and bilaterality accounted for 58.3% and 2.5% of cases respectively. Central perforation (53.2%) was the predominant type.

Distribution of Bacterial and Fungal Isolates

Of the 79 patients with CSOM whom pus specimen were collected for culture, 98.8% yielded positive culture. Most of culture growth yielded polymicrobial growth (52.5%), in which the most common was a mixture of *Proteus mirabilis* and *Klebsiella pneumoniae* (16.7%) (Figure 1). As for single microbial
growth, *Escherichia coli* and *Staphylococcus aureus* were equally prevalent (21.1%).

Overall, Gram negative bacteria were more common (59.7%) and least was fungi (*Candida albicans*) (14.7%) (Figure S1). Among Gram-negative bacteria, *Klebsiella pneumoniae* was the most prevalent (33.8%), Among Gram-positive bacteria, Coagulase negative *staphylococcus spp* was the commonest (54.5%). Generally, of all isolates, *Klebsiella pneumoniae* was the commonest (20.2%) followed by *Proteus mirabilis* (17.8%) (Figure S1).

Figure 1 above: Polymicrobial Combination of Isolates

Susceptibility Pattern of Bacterial Isolates

Klebsiella pneumoniae was highly susceptible to Gentamicin (80.8%) and moderately susceptible to Ceftriaxone (73.1%) and Ciprofloxacin (61.5%), whereas none among these two isolates were susceptible to Ampicillin and Amoxicillin/clavulanic acid. (Table S1).

Discussion

CSOM is one of the public health concerns particularly in developing countries [1]. Early identification and proper management of these cases is of help in alleviating complications associated with this disease. In the present study, the proportion of patients with chronic suppurative otitis media was found to be 1.4%. This observation was slightly lower than the previous hospital based study in Tanzania [17] and other community based studies conducted in Dar es Salaam and Northern Tanzania [18,19]. Elsewhere hospital based studies in Sudan [20] and community based studies in India [21] and Solomon Islands [22] had reported higher prevalence than what has been found in our study. This low proportion observed could likely be due to differences in sample size and sampling techniques. Subjects aged below five years had high proportion of the disease accounting for 26.6% of all cases of chronic suppurative otitis media. This may be explained by their relative immature immunity, leading to recurrent upper respiratory tract infections and their relatively short and horizontal eustachian tube making them prone to infection. This finding correlate to what has been found in other studies previous studies where majority of the cases were below five years of age [1]. In this study, we found males to be more affected than females with male to female ratio being 1.2:1 and this was statistically significant. Such finding shows resemblance to other studies done elsewhere [22] though
differing with observed findings done elsewhere with female propensity [23] and equal gender predominance [10]. Since our study employed random selection of subjects, male predominance might be an incidental findings and still no known anatomical and genetic differences between male and females pertaining the ear exists.

Our study found left ear disease to account for the majority of the cases (58.2%) with bilateral involvement accounting for the least (2.5%) number of cases. This has resemblance with was found by Olowookere et al [23] though differing with findings established by Taipale et al and an Aboriginal study [3,24] with bilateral predominance. Predominance of the left ear may be due to random selection of the study cases but no any genetic or structural differences have been identified between the right and left ear.

This study found central perforation (tubotympanic type) to be predominant (53%) while none of patients had attic perforation. Such findings correlate closely with what was found elsewhere [22,25]. Analysis of 81 ear pus swabs for culture revealed microbial growth in 98.8% while the rest had no growth, mixed infections (polymicrobial) accounted for the majority of the cases. The commonest mixed infections were of *Proteus mirabilis* and *Klebsiella pneumoniae*, followed by *Klebsiella pneumoniae* and *Pseudomonas aeruginosa*. Predominance of mixed bacterial infection is in line to previous finding by Gupta et al [26] from India which found that about 70% of the CSOM had polymicrobial infections. The polymicrobial nature of the disease may well be explained by the fact that the perforated ear drum makes easier for coliform bacteria such as *Escherichia coli* and *Pseudomonas aeruginosa* which are associated with wet and poor hygienic environment and fungi from the external ear to migrate in the middle ear and proliferate.

This polymicrobial nature of the disease with both gram positives, gram negative and fungi necessitates the need for antibacterial drugs with action against both gram positive and gram negative with an addition of antifungal drug.

We also observed that gram negative bacteria accounted for the majority of the isolates with the least being fungi and most of the isolates were facultative anaerobes similar to other studies [17,27] while other authors observed gram positive *Staphylococcus aureus* as the predominant isolates [28,29].
Isolation of coliform bacteria *Escherichia coli* and *Klebsiella pneumoniae* which are known to be fecal bacteria and *Pseudomonas aeruginosa* which is associated with wet environmental conditions suggests people are at high-risk of infection due to poor hygienic environment. These findings were in line with observational study done in Nigeria by Bakari A. et al [27] which had *Klebsiella pneumoniae* as the commonest isolated bacteria. But most authors elsewhere have reported *Pseudomonas aeruginosa* as the commonest isolates [17,20,26,30,31] while Feređe et al [32] in their study found *Proteus species* followed by *Staphylococcus aureus* as their commonest isolates.

Antimicrobial susceptibility test was carried out for all the aerobic isolates (except for Coagulase negative staphylococcus). Ciprofloxacin was found to be the most effective drug resembling other studies [27,33]. This study has thus elucidated the prevalence and etiological profile for CSOM at MNH which is the largest country’s tertiary hospital.

Conclusions

Prevalence of CSOM at MNH appears to be in line with what has been reported elsewhere. Male predominance was found and the left ear was more affected than the right ear. Prevalent Polymicrobial nature and antimicrobial resistance among isolates in CSOM cases warrants importance for culture and sensitivity of pus isolates. Ciprofloxacin, Gentamicin, Ceftriaxone and Amikacin are highly recommended as the first line management in patients with CSOM, with consideration of appropriate antifungals for possible fungal etiology as per our study findings.

Limitations

Due to lack of anaerobic culture facility we couldn’t further explore the role of anaerobic bacteria in chronic suppurative otitis media. Contaminants were also identified and this is explained by the nature of swab which was employed.

Declarations

Ethics approval and consent to participate: Ethical clearance was obtained from the Senate Research and Publications Committee of Muhimbili University of Health and Allied Sciences. Permission to conduct the study was obtained from MNH authority as per hospital management protocols. A written informed consent was obtained from participants before recruiting them into our study.
Consent for publication: Written informed consent was obtained from research participants.

Availability of data and materials: All relevant data pertinent to this research can be obtained from the corresponding author upon a reasonable request.

Competing interests: The authors declare that they have no competing interests.

Funding: None.

Authors’ contributions: ZSA, DN, AAK, KBM, ERM, EJN and AK participated in the conception and designing of the study. AK and ZSA participated in undertaking the experiments and acquisition of data. ZSA, DN, AAK, KBM, ERM, EJN and AK analyzed and interpreted data. ZSA, DN, AAK, KBM, ERM, EJN and AK participated in manuscript drafting. All authors read and approved the final manuscript.

Acknowledgements: We are grateful to all the study participants who without them this research would have not come into accomplishment. Special appreciation goes to MNH for provision of a conducive environment for conducting our study.

References

1. WHO. Child and adolescent health and development. Prevention of blindness and deafness. Chronic suppurative otitis media. Burden of illness and management options. Geneva, Switzerland: WHO; 2004.

2. Adoga A, Nimkur T, Silas O. Chronic suppurative otitis media: Socio-economic implications in a tertiary hospital in Northern Nigeria. Pan African Medical Journal. 2010;4(1).

3. Taipale A, Pelkonen T, Taipale M, et al. Chronic suppurative otitis media in children of Luanda, Angola. Acta Paediatr 2011; 100:84.

4. Azevedo AF, Pinto DC, Souza NJ, Greco DB, Gonçalves DU. Sensorineural hearing loss in chronic suppurative otitis media with and without cholesteatoma. Revista
5. Homøe P, Bjarnsholt T, Wessman M, Sørensen HC, Johansen HK. Morphological evidence of biofilm formation in Greenlanders with chronic suppurative otitis media. European Archives of Oto-rhino-laryngology. 2009 Oct 1;266(10):1533-8.

6. Lasisi AO, Sulaiman OA, Afolabi OA. Socio-economic status and hearing loss in chronic suppurative otitis media in Nigeria. Annals of tropical paediatrics. 2007 Dec 1;27(4):291-6.

7. Maharjan M, Kafle P, Bista M, Shrestha S, Toran KC. Observation of hearing loss in patients with chronic suppurative otitis media tubotympanic type. Kathmandu University Medical Journal. 2009;7(4):397-401.

8. Couzos S, Lea T, Culbong M, Mueller R, Murray R. Effectiveness of ototopical antibiotics for chronic suppurative otitis media in Aboriginal children: a community-based, multicentre, double-blind randomised controlled trial. Medical Journal of Australia. 2003 Aug;179(4):185-90.

9. Olatoke F, Ologe FE, Nwawolo CC, Saka MJ. The prevalence of hearing loss among schoolchildren with chronic suppurative otitis media in Nigeria, and its effect on academic performance. ENT: Ear, Nose & Throat Journal. 2008 Dec 2.

10. Matanda RN, Muyunga KC, Sabue MJ, Creten W, de Heyning Van P. Chronic suppurative otitis media and related complications at the University Clinic of Kinshasa. B-ent. 2005;1(2):57-62.

11. Papastavros T, Varlejides S. Reversible and permanent bone conduction threshold shift in cases of chronic suppurative otitis media. The American journal of otology. 1986 Sep;7(5):338-46.

12. Kaplan DM, Fliss DM, Kraus M, Dagan R, Leiberman A. Audiometric findings in children with chronic suppurative otitis media without cholesteatoma. International
journal of pediatric otorhinolaryngology. 1996 Apr 1;35(2):89-96.

13. Choi HG, Park KH, Park SN, Jun BC, Lee DH, Yeo SW. The appropriate medical management of methicillin-resistant Staphylococcus aureus in chronic suppurative otitis media. Acta oto-laryngologica. 2010 Jan 1;130(1):42-6.

14. Park MK, Jung MH, Kang HJ, Woo JS, Lee HM, Jung HH, Hwang SJ, Chae SW. The changes of MRSA infections in chronic suppurative otitis media. Otolaryngology–Head and Neck Surgery. 2008 Sep;139(3):395-8.

15. Tiedt NJ, Butler IR, Hallbauer UM, Atkins MD, Elliott E, Pieters M, Joubert G, Seedat RY. Paediatric chronic suppurative otitis media in the Free State Province: Clinical and audiological features. South African Medical Journal. 2013;103(7):467-70.

16. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology. 1966 Apr 1;45(4_ts):493-6.

17. Moshi NH, Minja BM, Ole-Lengine L, Mwakagile DS. Bacteriology of chronic otitis media in Dar es Salaam, Tanzania. East African medical journal. 2000 Jan;77(1):20-2.

18. Bastos I, Mallya J, Ingvarsson L, Reimer Â, Andréasson L. Middle ear disease and hearing impairment in northern Tanzania. A prevalence study of schoolchildren in the Moshi and Monduli districts. International Journal of Pediatric Otorhinolaryngology. 1995 Apr 1;32(1):1-2.

19. Minja BM, Machemba A. Prevalence of otitis media, hearing impairment and cerumen impaction among school children in rural and urban Dar es Salaam, Tanzania. International journal of pediatric otorhinolaryngology. 1996 Sep 1;37(1):29-34.

20. Yagi HI. Chronic suppurative otitis media in Sudanese patients. East African medical journal. 1990 Jan;67(1):4-8.

21. Rupa V, Jacob A, Joseph A. Chronic suppurative otitis media: prevalence and
practices among rural South Indian children. International journal of pediatric otorhinolaryngology. 1999 May 25;48(3):217-21.

22. Eason RJ, Harding E, Nicholson R, Nicholson D, Pada J, Gathercole J. Chronic suppurative otitis media in the Solomon Islands: a prospective, microbiological, audiometric and therapeutic survey. The New Zealand Medical Journal. 1986 Oct;99(812):812-5.

23. Olowookere SA, Ibekwe TS, Adeosun AA. Patterns of tympanic membrane perforation in Ibadan: a retrospective study. Annals of Ibadan postgraduate medicine. 2008;6(2):31-3.

24. Morris PS, Leach AJ, Silberberg P, Mellon G, Wilson C, Hamilton E, Beissbarth J. Otitis media in young Aboriginal children from remote communities in Northern and Central Australia: a cross-sectional survey. BMC pediatrics. 2005 Dec;5(1):27.

25. Adhikari P. Chronic suppurative otitis media in school children of Kathmandu valley. Int Arch Otorhinolaryngol. 2007;11(2):1-5.

26. Saini S, Gupta N, Sachdeva OP. Bacteriological study of paediatric and adult chronic suppurative otitis media. Indian journal of pathology & microbiology. 2005 Jul;48(3):413-6.

27. Bakari AA, Adoga AA, Afolabi OA, Kodiya AM, Ahmad BM. Pattern of chronic suppurative otitis media at the National Ear Care Centre Kaduna, Nigeria. Journal of Medicine in the Tropics. 2010;12(1).

28. Prakash R, Juyal D, Negi V, Pal S, Adekhandi S, Sharma M, Sharma N. Microbiology of chronic suppurative otitis media in a tertiary care setup of Uttarakhand state, India. North American journal of medical Sciences. 2013 Apr;5(4):282.

29. Pajor A, Durko M, Jankowski A, Bartoszko-Tyczkowska A, Stańczyk R. Bacteriological evaluation in chronic otitis media. Otolaryngologia polska= The Polish...
Sattar A, Alamgir A, Hussain Z, Sarfraz S, Nasir J. Bacterial spectrum and their sensitivity pattern in patients of chronic suppurative otitis media. Journal of the College of Physicians and Surgeons--Pakistan: JCPSP. 2012 Feb;22(2):128-9.

Gül HC, Kurnaz A, Turhan V, Oncül O, Pahsa A. Microorganisms isolated from middle ear cultures and their antibacterial susceptibility in patients with chronic suppurative otitis media. Kulak burun bogaz ihtisas dergisi: KBB= Journal of ear, nose, and throat. 2006;16(4):164-8.

Ferede D, Geyid A, Lulseged S, Melaku A. Drug susceptibility pattern of bacterial isolates from children with chronic suppurative otitis media. Ethiopian Journal of Health Development. 2001;15(2).

Aduda DS, Macharia IM, Mugwe P, Oburra H, Farragher B, Brabin B, Mackenzie I. Bacteriology of chronic suppurative otitis media (CSOM) in children in Garissa district, Kenya: a point prevalence study. International journal of pediatric otorhinolaryngology. 2013 Jul 1;77(7):1107-11.

Tables

Table 1: Demographic Characteristics of the Study Participants

Variable	Frequency	Percentage
Age Group (Years)		
< 5	1468	26.3
6-10	416	7.4
11-15	332	5.9
16-20	274	4.9
21-25	445	8.0
25 – 30	391q	7.0
31 – 35	348	6.8
36 – 40	342	6.1
>40	1575	28.1
Sex		
Male	2663	47.6
Female	2958	52.4
Total	5591	100
Table 2: **Prevalence of Chronic Suppurative Otitis Media by Age and Sex**

Variables	Frequency	CSOM	Proportion (%)
Age Group (Years)			
< 5	1468	21	1.4
6 – 10	416	9	2.2
11 – 15	332	10	3.0
16 – 20	274	7	2.6
21 – 25	445	8	1.8
26 – 30	391	4	1.0
31- 35	348	8	2.3
36 – 40	342	3	0.9
>40	1575	9	0.6
Sex			
Male	2663	43	1.6
Female	2958	36	1.2
Total	5591	79	1.4

Figures
Figure 1

Polymicrobial Combination of Isolates

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

SUPPLEMENTARY FILE.docx