Seroprevalence and associated risk factors of *Toxoplasma gondii* infection in patients undergoing hemodialysis and healthy group

Shahrzad Soltani, Mehdi Sagha Kahvaz, Sheyda Soltani, Fatemeh Maghsoudi and Masoud Foroutan*

Abstract

Objectives: In this study, the seroprevalence of anti-*Toxoplasma gondii* (*T. gondii*) specific antibodies in patients undergoing hemodialysis compared to the control group were evaluated. In this case–control study, 200 hemodi-
alysis patients (HDP) and 100 healthy controls were participated. The specific antibodies (IgG/IgM) in both groups were tested using enzyme-linked immunosorbent assay (ELISA) method. A structured questionnaire containing some demographic information was completed for each person in case and control groups.

Results: The overall seroprevalence of *T. gondii* infection was 49.5% (99/200) and 23.0% (23/100) in the case and control groups, respectively. There was a significant association between seroprevalence of *T. gondii* infection and contact with cats (*P* < 0.001), consumption of raw/undercooked meat (*P* = 0.01), and source of drinking water (*P* = 0.001) in the hemodialysis patients. Also, in the control subjects, there were a significant association between consumption of raw/undercooked meat (*P* = 0.04) and source of drinking water (*P* = 0.001) with *T. gondii* infection. The findings showed a high seroprevalence of *T. gondii* infection in HDP compared with healthy controls; thus, we recommend the regular screening programs for *T. gondii* infection in this susceptible group.

Keywords: *Toxoplasma gondii*, Hemodialysis, Seroprevalence, ELISA, Iran

Introduction

Toxoplasma gondii (*T. gondii*) is the well-known intracel-
lular parasite with widespread distribution in all conti-
nents which could infect a broad range of warm-blooded vertebrates [1, 2]. *T. gondii* infection is mainly transmit-
ted through ingestion of oocyst-contaminated food or water, ingestion of raw/undercooked meat contaminated with tissue cysts, consumption of raw/unwashed vegeta-
bles, vertical transmission from mother to the fetus and rarely by organ transplantation and blood transfusion [3–7].

It is estimated that approximately one-third of the human population is chronically infected throughout the globe [3, 4, 8]. The previously articles with meta-analysis approach in Iran have reported the pooled seropreva-

Correspondence: masoud_foroutan_rad@yahoo.com

USERN Office, Abadan Faculty of Medical Sciences, Abadan, Iran
opportunistic microorganisms, such as *T. gondii* [13, 15]. The current investigation was aimed to evaluate the prevalence of anti-*T. gondii* specific antibodies in patients undergoing hemodialysis in comparison to control groups.

Methods

In this case–control study, 200 HDP who were referred to Shahid Beheshti and Valiasr hospitals affiliated to the Abadan Faculty of Medical Sciences in the southwest Iran (Khuzestan Province, between 2018 and 2019) and 100 healthy controls were enrolled and venous blood samples were collected from all participants. The inclusion criteria were as follows: (1) subjects ≥ 10 years old; (2) volunteer to participate in the study upon obtaining a written informed consent; (3) in case group: the patients undergoing regular hemodialysis; and (4) in the control group: healthy volunteers with normal blood urea nitrogen and creatinine levels as well as without any renal disease. It should be noted that the subjects were matched in terms of gender and age in both groups.

A structured questionnaire containing some demographic information was developed and accomplished for each person in case and control groups, as previously described [16, 17]. The demographic information and related risk factors with *T. gondii* infection were as follows: gender, age, residence, education level, contact with cats, consumption of raw/undercooked meat, and source of drinking water.

From each participant who have met the inclusion criteria, 5 mL of venous blood was taken and then the samples were transferred to the laboratory of the Abadan Faculty of Medical Sciences. As earlier described [17], the sera were separated by centrifugation at 1700 × g for 5 min and then stored in −20 °C till examined. The specific antibodies (IgG/IgM) in both groups were measured using commercial available enzyme-linked immunosorbent assay kits (Torch-IgG, IgM-Trinity Biotech Company), according to the manufacturer’s guideline. The Chi-square test was performed using SPSS version 21 (SPSS Inc., Chicago, IL, USA). Also, we used Univariate logistic regression analysis to assess the probable association between the related risk factors and seropositivity of *T. gondii* infection. The level of significance was considered *p* < 0.05 [16].

Results

The main characteristics and seroprevalence of *T. gondii* infection of the participants in case and control groups are listed in Table 1. Briefly, the overall seroprevalence of *T. gondii* infection was estimated to be 49.5% (99/200) and 23.0% (23/100) in the case and control groups, respectively. Of these, anti-*T. gondii* IgG antibodies were found in 40.0% (80/200) of HDP and 21.0% (21/100) of healthy controls, while IgM were identified in 9.5% (19/200) and 2.0% (2/100) of these groups, respectively (*p* < 0.05). Upon analysis, HDP were significantly more likely to be seropositive for IgG (OR, 2.50; 95% CI 1.43–4.38; *p* < 0.001) and IgM (OR, 5.14; 95% CI 1.17–22.54; *p* < 0.016) antibodies against *T. gondii* infection than healthy volunteers.

In this study, we have recorded seven probable risk factors associated with *T. gondii* infection. There was a significant association between seroprevalence of *T. gondii* infection and contact with cats (OR 3.73 [95% CI 2.00–6.95]; *p* < 0.001), consumption of raw/undercooked meat (OR 2.04 [95% CI 1.14–3.63]; *p* = 0.01), and source of drinking water (OR 3.07 [95% CI 1.59–5.95]; *p* = 0.001) in the hemodialysis patients. Also, in the control subjects, there were a significant association between consumption of raw/undercooked meat (OR 2.71 [95% CI 1.01–7.26]; *p* = 0.04) and source of drinking water (OR 5.54 [95% CI 1.82–16.86]; *p* = 0.001) with *T. gondii* infection. More details are shown in Table 1.

Discussion

During the two past decades, an increasing trend was reported in the number of persons with renal failure and end-stage renal disease requiring hemodialysis [18]. There is a lack of knowledge about the epidemiological status of *T. gondii* infection in rural and urban communities of southwest Iran amongst patients undergoing hemodialysis. Thus, in the current study, we evaluated the seroprevalence of anti-*T. gondii* antibodies in HDP compared to control group from these regions. The results showed that the seroprevalence rate of *T. gondii* infection was higher in patients undergoing hemodialysis than normal subjects (49.5% vs. 23.0%). Our findings were in accordance with previous studies such as Ebrahim Zadeh in Zahedan city (Sistan and Baluchistan province) [19], Solhjoo et al. in Jahrom city (Fars province) [20], Bayani et al. in Babol city (Mazandaran province) [21], Saadat et al. in Rasht city (Guilan province) [22], Arefkhah et al. in Boyer-Ahmad city (Kohgiluyeh and Boyer-Ahmad province) [16], Saki et al. in Ahvaz city (Khuzestan province) [23], and Hamidi et al. in East Azerbaijan province [24].

In case group, 40.0% and 9.5% of HDP were found positive for IgG and IgM antibodies using ELISA, respectively. This seroprevalence rate of latent infection is similar with Khalili et al. study in Chaharmahal and Bakhtiari province (45.0%) [25]. In the majority of studies in different parts of Iran such as Tehran (60.0%) [26], Sistan and Baluchistan (73.7%) [27], East Azerbaijan (70.2%) [24], Guilan (72.0%) [22], Mazandaran (80.0%) [21], Isfahan and Qom provinces (63.0%) [28], the seropositivity in patients...
undergoing hemodialysis were reported over 60%, while the lower seroprevalence rate of *T. gondii* infection was reported by Saki et al. from Khuzestan province (29.3%) [23] and Arefkhah et al. from Kohgiluyeh and Boyer-Ahmad province (27.7%) [16]. The disagreement between studies is may be due to several reasons, including, study area, the number of participants, type of sampling, methodology, cultural habits of the subjects, different cutoff values or antibody titers and so on.

In a comprehensive systematic review with meta-analysis approach that performed by Foroutan et al. [13] in Iran, the pooled seroprevalence of latent and acute *T. gondii* infection in patients undergoing hemodialysis was evaluated up to December 2017. Finally, 1865 individuals (1048 HDP and 817 normal subjects as controls) were eligible to be included. The results revealed that 58% (95% CI 46–70%) and 40% (95% CI 31–50%) of HDP and healthy controls were seropositive in terms of IgG, while IgM antibody were detected in 2% (95% CI 0–6) and 0% (95% CI 0–1) of these groups, respectively. They concluded that patients undergoing hemodialysis were more likely to be seropositive for IgG (OR = 2.04; 95% CI 1.54–2.70; *P* < 0.001) and IgM (OR = 2.53; 95% CI 1.23–5.22; *P* < 0.001) antibodies against *Toxoplasma* infection than healthy volunteers. Also, the latent infection ranged from 29 to 80% with the highest prevalence in Mazandaran province [13]. Also, it is worth to mention that in two different systematic reviews among the Iranian general population (approximately 59%) and pregnant women (ranged from 56 to 75%), Mazandaran province revealed one of the highest seroprevalence rate of *T. gondii* infection throughout the country [10, 11]. It seems the climate status of this province is an important parameter. Mazandaran province has ideal mean humidity and annual rainfall, which considered as suitable conditions for *T. gondii* oocysts sporulation. Also, the cultural habits of the people and working on farming lands may be the other reasons [10].

The results of our study showed that there was a significant association between *T. gondii* seroprevalence and consumption of raw/undercooked meat and source of drinking water in both case and control groups. Belluco

| Table 1 Seroprevalence of *Toxoplasma gondii* infection in HDP and healthy controls [n (%)] |
Characteristic	Hemodialysis patients	Control group								
Number tested	Seropositive, n (%)	Univariate analysis	Number tested	Seropositive, n (%)	Univariate analysis					
Gender		OR	95% CI	P value	OR	95% CI	P value			
Male	105	54 (51.42)	0.85	0.48–1.48	0.56	53	12 (22.64)	1.04	0.41–2.65	0.92
Female	95	45 (47.36)	1.17	0.67–2.05	0.47	47	11 (23.40)	0.95	0.37–2.43	0.92
Age										
≤ 20	15	7 (46.66)	1.00	Referent	0.99	10	1 (10.00)	1.00	Referent	0.99
21–40	35	16 (45.71)	1.03	0.30–3.49	0.03	19	4 (21.05)	0.75	0.07–8.08	0.92
41–60	60	29 (48.33)	0.93	0.30–2.90	0.78	25	7 (28.00)	0.42	0.04–4.23	0.92
61–80	76	40 (52.63)	0.78	0.26–2.38	0.57	37	8 (21.62)	0.60	0.06–6.77	0.60
81–90	14	7 (50.00)	0.88	0.20–3.76	0.89	9	3 (33.33)	0.33	0.02–1.18	0.60
Residence										
Urban	147	76 (51.70)	1.39	0.74–2.62	0.30	72	17 (23.61)	1.13	0.39–3.25	0.81
Rural	53	23 (43.39)	0.71	0.38–1.34	0.71	28	6 (21.42)	0.88	0.30–2.53	0.92
Education level										
Diploma or lower	154	80 (51.94)	1.53	0.78–2.99	0.20	75	19 (25.33)	1.78	0.54–5.85	0.33
University degree	46	19 (41.30)	0.65	0.33–1.26	0.57	25	4 (16.00)	0.56	0.17–1.84	0.92
Contact with cat										
Yes	70	49 (70.00)	3.73	2.00–6.95	<0.001	33	10 (30.30)	1.80	0.69–4.70	0.22
No	130	50 (38.46)	0.26	0.14–0.49	0.26	67	13 (19.40)	0.55	0.21–1.44	0.92
Consumption of raw/undercooked meat										
Yes	78	47 (60.25)	2.04	1.14–3.63	0.01	27	10 (37.03)	2.71	1.01–7.26	0.04
No	122	52 (42.62)	0.49	0.27–0.87	0.93	73	13 (17.80)	0.36	0.13–0.98	0.92
Source of drinking water										
Sanitary water	145	61 (42.06)	0.32	0.16–0.62	0.001	83	14 (16.86)	0.18	0.05–0.54	0.001
Unsanitary water	55	38 (69.09)	3.07	1.59–5.95	0.001	17	9 (52.94)	5.54	1.82–16.86	0.001

HDP hemodialysis patients, OR odds ratio, CI confidence interval
et al. [29] have confirmed that different meat products are considered as the main sources for acquiring the infection. So, they concluded that the increase in consumer knowledge definitely could influence in the reduction of the infection rate in societies [6, 29].

Conclusions
In conclusion, our investigation showed a high seroprevalence of *T. gondii* infection in patients undergoing hemodialysis compared with healthy controls in southwest Iran. Since, these patients are immunocompromised and toxoplasmosis may cause severe and progressive complications with very poor prognosis in such patients, we recommend the regular screening programs for *T. gondii* infection into the routine clinical care of patients undergoing hemodialysis.

Limitations
In this study, the only ELISA assay was performed on collected sera with no supporting data by molecular confirmation. As evident, it would have been ideal to perform PCR technique on IgM positive samples by ELISA, but this point was not possible due to financial constraints. On the other hands, the PCR technique is used when the patient is in the acute stage and the tachyzoites are in the bloodstream. Since this step is very short, therefore PCR only responds to patients who are positive for IgM and is mostly used for immunocompromised subjects.

Abbreviations
ELISA: Enzyme-linked immunosorbent assay; HDP: Hemodialysis patients; IgG: Immunoglobulin G; IgM: Immunoglobulin M; *T. gondii*: *Toxoplasma gondii*.

Acknowledgements
The authors sincerely appreciate all personnel of Shahid beheshti and Valiasr hospitals in Abadan and Khorramshahr cities for their kind cooperation.

Authors’ contributions
SS and MF conceived, designed and drafted the manuscript; SHS and MSK involved in data acquisition; FM involved in statistical analysis; MF critically revised the text. All authors read and approved the final version of the manuscript.

Funding
This study was financially supported by Abadan Faculty of Medical Sciences, Abadan, Iran (Grant No. 97U-547).

Availability of data and materials
The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Ethics approval and consent to participate
All subjects voluntarily agreed to be tested. A written informal consent was obtained from adult persons and parent or guardian of subjects less than 18 years old. This study received the approval from the Abadan Faculty of Medical Sciences Ethical Committee (IR.ABADANUMS.REC.1397:017).

Consent for publication
Not applicable.

Competing interests
The authors declare that there is no conflict of interest.

References
1. Dubey JP. The history of *Toxoplasma gondii*—the first 100 years. J Eukaryot Microbiol. 2008;55:467–75.
2. Foroutan M, Fakhri Y, Riahi SM, Ebrahimpour S, Namroodi S, Taghipour A, et al. The global seroprevalence of *Toxoplasma gondii* in pigs: a systematic review and meta-analysis. Vet Parasitol. 2019;269:42–52.
3. Wang ZD, Liu HH, Ma ZX, Ma HY, Li ZY, Yang ZB, et al. *Toxoplasma gondii* infection in immunocompromised patients: a systematic review and meta-analysis. Front Microbiol. 2017;8:389.
4. Foroutan-Rad M, Majidiani H, Dalvand S, Daryani A, Kooti W, Saki J, et al. Toxoplasmosis in blood donors: a systematic review and meta-analysis. Transfus Med Rev. 2016;30:116–22.
5. Fallahi S, Rostami A, Nourollahpour Shidadeh M, Behniafar H, Faktinat S. An updated literature review on maternal-fetal and reproductive disorders of *Toxoplasma gondii* infection. J Gynecol Obstet Hum Reprod. 2018;47:133–40.
6. Belluco S, Simonato G, Mancini P, Pietrobelli M, Ricci A. *Toxoplasma gondii* infection and food consumption: a systematic review and meta-analysis of case-controlled studies. Crit Rev Food Sci Nutr. 2018;58:3085–96.
7. Foroutan M, Zaki L, Tavakoli S, Foroutan S, Taghipour A, Ghaffarifar F. Rhombooid antigens are promising targets in the vaccine development against *Toxoplasma gondii*. EXCLI J. 2019;18:259–72.
8. Rostami A, Riahi SM, Gamble HR, Fakhri Y, Nourollahpour Shidadeh M, Danesh M, et al. Global prevalence of latent toxoplasmosis in pregnant women: a systematic review and meta-analysis. Clin Microbiol Infect. 2020;26:673–83.
9. Ahmadpour E, Daryani A, Shanf M, Sarvi S, Aarabi M, Mizani A, et al. Toxoplasmosis in immunocompromised patients in Iran: a systematic review and meta-analysis. J Infect Dev Ctries. 2014;8:1503–10.
10. Daryani A, Sarvi S, Aarabi M, Mizani A, Ahmadpour E, Shokri A, et al. Seroprevalence of *Toxoplasma gondii* in the Iranian general population: a systematic review and meta-analysis. Acta Trop. 2014;137:185–94.
11. Foroutan-Rad M, Khademvatani S, Majidiani H, Aryamand S, Rahim F, Malehi AS. Seroprevalence of *Toxoplasma gondii* in the Iranian pregnant women: a systematic review and meta-analysis. Acta Trop. 2016;158:160–9.
12. Mansouri A, Adhami Mojarrad MR, Badfar G, Abasian L, Rahmati S, Kooti W, et al. Epidemiology of *Toxoplasma gondii* among blood donors in Iran: a systematic review and meta-analysis. Transfus Apher Sci. 2017;56:404–9.
13. Foroutan M, Rostami A, Majidiani H, Riahi SM, Khazaei S, Badri M, et al. A systematic review and meta-analysis of the prevalence of toxoplasmosis in hemodialysis patients in Iran. Epidemiol Health. 2018;40:e2018016.
14. Kato S, Chmielewski M, Honda H, Pepeots-Filho R, Matsuo S, Yuzawa Y, et al. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol. 2008;3:1526–33.
15. Omran VF, Fallahi S, Rostami A, Siyadatpanah A, Barzegarpour G, Mehrvarar S, et al. Prevalence of intestinal parasite infections and associated clinical symptoms among patients with end-stage renal disease undergoing hemodialysis. Infection. 2015;43:537–46.
16. Areifkhah N, Hosseini SA, Karimzade R, Moshfe A, Hadinia F, Lakri RA, et al. Seroprevalence and risk factors of *Toxoplasma gondii* infection among cancer and hemodialysis patients in southwest Iran. Clin Epidemiol Glob Health. 2019;7:596–9.
17. Soltani S, Foroutan M, Afshari H, Hezarian M, Tahvizi M, Khazaei S, et al. Prevalence of *Toxoplasma gondii* infection in hemodialysis patients in southwest Iran. Clin Epidemiol Glob Health. 2019;7:596–9.
18. Kurella TM. Incidence, management, and outcomes of end-stage renal disease in the elderly. Curr Opin Nephrol Hypertens. 2009;18:252–7.
19. Foroutan M, Rostami A, Majidiani H, Dalvand S, Daryani A, Kooti W, Saki J, et al. Toxoplasmosis in blood donors: a systematic review and meta-analysis. Transfus Med Rev. 2016;30:116–22.
20. Fallahi S, Rostami A, Nourollahpour Shidadeh M, Behniafar H, Faktinat S. An updated literature review on maternal-fetal and reproductive disorders of *Toxoplasma gondii* infection. J Gynecol Obstet Hum Reprod. 2018;47:133–40.
21. Bayani M, Mostafazadeh A, Oliaee F, Kalantari N. The Prevalence of Toxoplasma gondii in hemodialysis patients. Iran Red Crescent Med J. 2013;15:e5225.
22. Saadat F, Mahmoudi MR, Rajabi E, RoshanZA, Shad BM, Karanis P. Seroepidemiology and associated risk factors of Toxoplasma gondii in hemodialysis patients. Acta Parasiotol. 2020;65:906–12.
23. Saki J, Khademvatan S, Soltani S, Shahbazian H. Detection of toxoplasmosis in patients with end-stage renal disease by enzyme-linked immunosorbent assay and polymerase chain reaction methods. Parasitol Res. 2013;112:163–8.
24. Hamidi F, Etemadi J, Mehrabani NG, Mahami-Oskouei M, Motavalli R, Ardalan M. Comparison of Toxoplasma gondii seropositivity in hemodialysis and peritoneal dialysis patients. J Coast Life Med. 2015;3:621–2.
25. Khalili B, Mortezaei S, Fazeli M. The comparison of anti-Toxoplasma antibody (IgM, IgG) in hemodialysed patients and those undergoing chemotherapy with healthy blood donor, shahr-E-kord, 1392. Iran J Parasiotol. 2015;10:311–311.
26. Rezavand B, Poornaki AM, Mohktari KR, Mohammad A, Andalibian A, Abdi J. Identification and determination of the prevalence of Toxoplasma gondii in patients with chronic renal failure by ELISA and PCR. Asian Pac J Trop Dis. 2016;6:347–9.
27. Dorri M, Dabirzadeh M, Maroufi Y, Afshari M, Chowkamy MB. Prevalence of anti-Toxoplasma IgG and IgM in hemodialysis patients comparing to healthy individuals in Sistan area. Iran J Nephropharmacol. 2017;6:106–9.
28. Rasti S, Hassanzadeh M, Sollemmani A, Hooshhyar H, Mousavi SG, Nikoueinejad H, et al. Serological and molecular survey of toxoplasmosis in renal transplant recipients and hemodialysis patients in Kashan and Qom regions, central Iran. Ren Fail. 2016;38:970–3.
29. Belluco S, Mancin M, Conficoni D, Simonato G, Pietrobelli M, Ricci A. Investigating the determinants of Toxoplasma gondii prevalence in meat: a systematic review and meta-regression. PLoS One. 2016;11:e0153856.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

Learn more biomedcentral.com/submissions