Case Report

Brainstem intraparenchymal schwannoma: A case report and literature review

Anselmi Kovalainen¹, Roel Haeren¹,², Anders Paetau¹, Martin Lehecka¹

1Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland, ²Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands, ³Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.

E-mail: *Anselmi Kovalainen - anselmi.kovalainen@hus.fi; Roel Haeren - roel.haeren@mumc.nl; Anders Paetau - anders.paetau@hus.fi; Martin Lehecka - martin.lehecka@hus.fi

ABSTRACT

Background: Intracranial intraparenchymal schwannomas (IS) are rare tumors that have mainly been described in case reports. Here, we report on a case of a brainstem IS and included a comprehensive literature review.

Case Description: A 74-year-old man presented with progressive gait disturbances. CT- and MRI-imaging revealed a contrast-enhancing mass accompanied by a cyst in the dorsolateral pons. Hemangioblastoma was suspected and surgery was advised. During surgery, gross total resection of a non-invasive tumor was performed. Postoperative recovery was uneventful. Based on histopathological examination, the intraparenchymal brainstem tumor was diagnosed as schwannoma.

Conclusion: Our extensive review illustrates that ISs are benign tumors that most often present in relatively young patients. Malignant cases have been described but form an extremely rare entity. Preoperative diagnosis based on radiological features is difficult but should be considered when peritumoral edema, calcifications, and cysts are noted. In benign cases, gross total resection of the lesion is curative. To adequately select this treatment and adjust the surgical strategy accordingly, it is important to include IS in the preoperative differential diagnosis when the abovementioned radiological features are present.

Keywords: Brainstem, Case report, Intraparenchymal, Review, Schwannoma, Tumor

INTRODUCTION

Schwannomas are tumors that originate from Schwann cells, which form the myelin sheath of peripheral nerves.[¹] Intracranial schwannomas comprise around 8% of all primary brain tumors, with the vast majority arising from the cranial nerves.[²,³] Less than 1% of intracranial schwannomas are located within the brain parenchyma.[¹,⁴] The first case of intraparenchymal schwannoma (IS) was described by Gibson et al. in 1966.[⁵] Their histogenesis remains speculative, and radiological and histopathological diagnosis can be extremely difficult. Here, we present a case of a brainstem IS and included a comprehensive review on IS to shed light on the clinical, radiological, and histopathological characteristics.
CASE REPORT

A 74-year-old man with no reported prior medical condition presented with progressive gait disturbances and hearing loss that had developed over a few months. Neurological examination revealed sensory asymmetry in the left upper and middle trigeminal branch areas, broad-based gait, diplopia, dysphagia, and dysarthric speech. Imaging studies showed a cystic tumor in the left dorsolateral pons [Figure 1]. A pontine hemangioblastoma was suspected and surgery was recommended.

A left-sided suboccipital retrosigmoid craniotomy was performed [Video 1]. Intra-operative monitoring of trigeminal, facial, and vestibulocochlear nerve was used. An opaque aspect of the dorsolateral pons was noted and punctured, relieving a yellowish fluid. The solid mass consisted of flakey grey-yellowish tissue that was not invasive into the surrounding brain. Intraoperatively, the tumor resembled a pilocytic astrocytoma more than a hemangioblastoma. Gross total resection was performed.

Postoperatively, all symptoms had alleviated and hearing had subjectively returned to normal. The direct postoperative MRI showed a small dorsomedial remnant. Radiological follow-up after 1 year was agreed upon.

Histological assessment of the tumor sections showed clusters of spindle cells surrounded by fascicles and palisades in addition to thick-walled vessels [Figure 2a]. Some paucicellular areas were present, but no typical cystic spaces. Additional immunohistochemical examination exhibited positivity for S-100 protein, pericellular collagen IV basement membrane staining, and in some areas scattered few neurofilament (NF2F11) positive intratumoral axons [Figure 2b-d]. GFAP glial marker was negative, and MIB-1 proliferative activity was only 2%. The final histopathological diagnosis was IS Grade I. No clinical signs nor family history of neurofibromatosis (NF) was reported.

DISCUSSION

ISs are rare intracranial intra-axial tumors. We have found 150 cases reporting on histopathological confirmed IS [Table 1]. Intraventricular or schwannomas with dural attachment were excluded from our review as they form a different entity with an extra-axial origin. Based on our literature review, we will discuss characteristics of the clinical presentation, histogenesis, radiological features, histopathological findings, treatment, and prognosis of IS.

Clinical characteristics

ISs present at a relatively young age, with a majority occurring before the age of 30 and a slight male predominance [Table 2]. Around 65% of these tumors were located supratentorially and 35% infratentorially. The frontal lobe was most frequently affected [Table 3]. Only six cases of patients older than 70 years have been reported. Furthermore, we found only nine cases with pontine IS. This makes our case on a 74-year-old with a pontine IS unique.
Kovalainen, et al.: Brainstem intraparenchymal schwannoma: A case report and literature review

The mass lesion and cyst wall may indicate the relative rarity of ISs is in this latter theory explained by the intraparenchymal Schwann cells originate from the perivascular nerve plexus of parenchymal arterioles. Various theories have been proposed to explain the origin of IS. Menkü et al. differentiated these theories into developmental and non-developmental theories. Various theories have been proposed to explain the origin of IS. Menkü et al. differentiated these theories into developmental and non-developmental theories. According to the developmental theory, a distorted embryogenesis forms the source of aberrant foci of Schwann cells in the brain parenchyma. These foci may originate from transformation of developed mesenchymal pial cells into Schwann cells, differentiation of multipotential mesenchymal elements into Schwann cells, ectopic migration of neural crest cells forming foci of Schwann cells, or misplaced myelinated nerve fibers. The non-developmental theory suggests that the intraparenchymal Schwann cells originate from the perivascular nerve plexus of parenchymal arterioles. The relative rarity of ISs is in this latter theory explained by considering the relative amounts of peripheral as opposed to parenchymal myelinated peripheral nerve plexus.

In our case, one could suggest a relation of the tumor with Schwann cells of the trigeminal nerve. However, the radiological findings suggested an intraparenchymal origin of the tumor as there was no border between the brainstem and the tumor. In addition, the tumor was located within the brainstem parenchyma as observed intraoperatively. If the tumor was related to trigeminal nerve Schwann cells, one would have expected a capsule between the Schwannoma and the brainstem which was not apparent in this case. Since the intraparenchymal myelin covering of the trigeminal nerve is dependent on astrocytes, and not Schwann cells, it is unlikely that the tumor is directly related to the trigeminal nerve.

Radiological features

Diagnosis of IS based on preoperative radiological examinations is difficult. Our review revealed that a wide variety of differential diagnoses were suspected preoperatively and IS was not considered in any of these cases (Table 1). CT-images of the brain may show a hypodense and sometimes hyperdense mass with occasional cysts, calcifications, and peritumoral edema. The mass lesion and cyst wall may enhance following contrast administration. ISs usually appear hypointense and hyperintense on T1-weighted and T2-weighted MRI sequences, respectively. (The solid portion and cyst wall usually show homogeneous enhancement with gadolinium.) It is noteworthy that peritumoral edema, cyst formation and calcifications are commonly reported characteristics of IS, yet they lack specificity.

In contrast, cranial nerve Schwannomas are radiologically characterized by a heterogeneous hyperintensity in T2-weighted images, with deformation of adjacent parenchyma, neural cisterns and bony foramina, and have a clear relation to a cranial nerve. Moreover, cranial nerve Schwannomas usually have a well delineated margin from the brainstem parenchyma and cause minimal peritumoral edema.

Histopathological findings

Histological evaluation of IS shows a typical biphasic tissue pattern of Antoni type A and B areas. It remains however difficult to differentiate IS from other tumors without immunohistochemical examination. As there are no schwannoma-specific immunohistochemical markers to date, several markers should be included to differentiate schwannomas from other tumors. Schwannomas show a strong diffuse reactivity to S-100 protein and vimentin filament. There is usually no reactivity for GFAP, EMA, CD34 on endothelial cells or α-SMA, excluding glial tumors, meningiomas, solitary fibrous tumors, and smooth muscle cell tumors, respectively. The combination of histological analysis and immunohistochemical reactivity findings is required to make a definite diagnosis of IS. Malignant IS,
Authors and year	Sex	Age	Symptoms	Site of lesion	Radiological diagnosis	Treatment	Histological diagnosis	IHC confirmed di...
Gibson et al., 1966	M	6	Seizures	Temporal	N.A.	CR	Ye s (EM: fibrillary basement membranes)	No
New, 1972	M	8	Seizures, headache, vomiting	Parietal	Glioma	CR	Ye s	No
Ghatak et al., 1975	F	63	Seizures, hemiparesis	Parietal	N.A.	Resection	N.A.	N.A.
Pialat et al. 1975				Frontal	N.A.	N.A.	N.A.	N.A.
Van Rensburg et al., 1975	M	21	Seizures, headache	Temporal	Glioma or calcified hamartoma	CR	Ye s	No
Hahn and Netsky., 1977	M	26	Headache, visual impairment	Frontal	N.A.	STR	Ye s	No
Komminoth et al., 1977	M	15	Cerebellar signs, headache	Cerebellar	N.A.	STR	Ye s	N.A.
Russel and Rubinstein, 1979	M	26	N.A.	Frontal	N.A.	N.A.	N.A.	N.A.
Prakash et al., 1980	F	14	Abducent and facial nerve palsy, tinnitus	Pons	N.A.	STR	Ye s (GFAP -)	No (EM: fibrillary basement membranes)
Vassilouthis and Richardson, 1980	M	17	Behavioral problems, headache, vomiting, confusion	Frontal	Meningioma	CR	Ye s	No
Kasantikul et al., 1981	M	23	Schizophrenia	Parietal	Metastasis	GTR	Ye s	No (EM: fibrillary basement membranes)
	M	21	Seizures	Temporal	N.A.	Temporal lobectomy	Ye s	No (EM: fibrillary basement membranes)
Auer et al., 1982	M	15	SAH	Frontal	N.A.	STR	Ye s	No (EM: fibrillary basement membranes)
Shalit et al., 1982	F	29	Headache, visual impairment, syncope	Parieto-occipital	Astrocytoma	Resection	Ye s	No
Doi et al., 1983	M	23	Headache, vomiting, vertigo	2 cerebellar and 4 cerebral lesions	CR (cerebellar lesions)	CR	Yes, malignant	N.A. (NF1)
Bruner et al., 1984	M	18	Syncope	Frontal	N.A.	GTR	Ye s	No
Bruni et al., 1984	M	39	Seizures	Frontal	N.A.	CR	Ye s	No
Gökay et al., 1984	F	16	Seizures, hemiparesis	Frontotemporal	N.A.	STR, later CR	Ye s (EM: fibrillary basement membranes)	No (EM: fibrillary basement membranes)
(Contd...)								
Authors and year	Sex and Age	Symptoms	Site of lesion	Radiological diagnosis	Treatment	Histological diagnosis	IHC confirmed diagnosis	Additional findings
-----------------------------	-------------	---	---------------------------	------------------------	---	-------------------------	--------------------------	--------------------------
Rodriquez-Salazar et al., 1984	F, 10	Seizures	Frontal	N.A.	Frontal lobectomy	Yes	No (EM: fibrillary basement membranes)	
Kuhn et al., 1985 [abstract only]	E, 42	N.A.	Cerebellar	N.A.	N.A.	N.A.	N.A.	
Stefanko et al., 1986	M, 15	Headache, vomiting	Parieto-occipital	N.A.	CR and RT, later re-resection	Yes, malignant	Yes (S-100 +)	Recurrence, died 9 months postop
Sarkar et al., 1987	M, 24	Headache, vomiting, diplopia, visual impairment, gait disturbance	Cerebellar	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
Solomon et al., 1987	M, 69	Hemiparesis	Medulla oblongata and cervical medulla	N.A.	GTR	Yes	No (S-100 -)	
Aryanpur and Long., 1988	E, 50	Headache, vomiting, diplopia, facial numbness	Medulla oblongata	Cystic glioma	CR	Yes	Yes (S-100 +, GFAP -)	
Ben Rhouma et al., 1988 [abstract only]	E, 13	ICP complaints	N.A.	N.A.	N.A.	Yes	N.A.	Recurrence
Cervoni et al., 1988 [abstract only]	E, 61	Hemiparesis	Parieto-occipital	N.A.	CR	Yes	N.A.	NF1
Ng and South, 1988	F, 42	Headache	Temporal	N.A.	N.A.	N.A.	N.A.	
Schwartz and Sotrel, 1988	M, 48	Headache, sensory complaints	Cerebellar	N.A.	CR	Yes	N.A.	
Benazza et al., 1989 [abstract only]	M, 8	N.A.	Cerebellar	N.A.	N.A.	N.A.	N.A.	
Ladoucœur et al., 1989	E, 46	Visual impairment, dysarthria, dysphagia	Pons	N.A.	STR	Yes	Yes (S-100 +, GFAP -)	
Wilberger, 1989	E, 62	Headache	Intrasellar	Pituitary tumor	Transsphenoidal STR followed by transcranial GTR	Yes	No	Second surgery for residual tumor
Redekop et al., 1990	M, 7	Ophthalmoplegia and facial nerve palsy	Pons / 4th ventricle	Glioma, ependymoma	STR	Yes	Yes (S-100 +, Vimentin +, GFAP -)	
Tran-Dinh et al., 1991 [abstract only]	E, 64	N.A.	Cerebellar and brainstem	N.A.	Resection	N.A.	N.A.	
Authors and year	Sex and Age	Symptoms	Site of lesion	Radiological diagnosis	Treatment	Histological diagnosis	IHC confirmed diagnosis	Additional findings
---------------------------	-------------	-------------------------------	----------------	------------------------	-----------	------------------------	-------------------------	--------------------------
Bando et al., 1992	F, 55	Visual impairment, anosmia	Frontal	N.A.	CR	Yes	Yes (S-100 +)	Re-resection
Ezura et al., 1992	F, 13	Seizures	Frontal	N.A.	CR	Yes	Yes (S-100 +, Vimentin +, GFAP -, EMA -)	
Frim et al., 1992	F, 11	Seizures	Temporal	N.A.	GTR	Yes	Yes (S-100 +, Vimentin +)	
Ghosh and Chandy, 1992	M, 27	Seizures, hemiparesis	Frontal	N.A.	CR	Yes	Yes (S-100 +, Vimentin +)	
Casadei et al., 1993	M, 16	Asymptomatic	Temporal	N.A.	CR	Yes	Yes (S-100 +, GFAP -, EMA -)	
	M, 17	Seizures	Temporal	N.A.	STR	Yes	Yes (S-100 +, GFAP -, EMA -)	
	M, 21	Seizures	Parietal	N.A.	CR	Yes	Yes (S-100 +, GFAP -, EMA -)	
	F, 23	Headache	Temporal	N.A.	CR	Yes	Yes (S-100 +, GFAP -, EMA -)	
	F, 49	Headache	Temporal	N.A.	CR	Yes	Yes (S-100 +, GFAP -, EMA -)	
	F, 52	Headache, hemiparesis	Cerebellar	N.A.	CR	Yes	Yes (S-100 +, GFAP -, EMA -)	
	M, 55	Headache	Cerebellar	N.A.	CR	Yes	Yes (S-100 +, GFAP -, EMA -)	
	F, 79	Ataxia	Cerebellar	N.A.	STR	Yes	Yes (S-100 +, GFAP -, EMA -)	
	F, 84	Mental change, hemiparesis	Temporal	N.A.	STR	Yes	Yes (S-100 +, GFAP -, EMA -)	
Sharma and Newton, 1993	M, 18	Hemiparesis	Brainstem	Glioma	RT followed by STR	Yes	Yes (S-100 +)	No improvement after RT
Sharma et al., 1993	F, 73	Gait disturbance, headache, vomiting	Brainstem	N.A.	GTR	Yes	Yes (S-100 +, GFAP -, EMA -)	
Singh et al., 1993	F, 61	Headache, vomiting, gait disturbance	Cerebellar	N.A.	GTR	Yes, malignant	Yes (S-100 +, GFAP -)	Recurrence, died 18 months postop
Weiner et al., 1993	M, 61	Facial nerve palsy and spasm, gait disturbance, headache	Brainstem	Glioma, epidermoid, arachnoid cyst	STR	Yes	No	
	F, 78	Facial nerve spasm, diplopia	Brainstem	Ependymoma, glioma, plexus papilloma	STR	Yes	Yes (S-100 +, GFAP -)	
Authors and year	Sex and Age	Symptoms	Site of lesion	Radiological diagnosis	Treatment	Histological diagnosis	IHC confirmed diagnosis	Additional findings
-----------------	-------------	----------	----------------	------------------------	-----------	-----------------------	------------------------	---------------------
Deogaonkar et al., 1994	F, 45	Visual impairment	Frontal	Meningioma	CR	Yes	No	
Di Biasi et al., 1994 [abstract only]	M, 19	N.A.	N.A.	Glioma	N.A.	Yes	N.A.	
Ranjan et al., 1995	F, 65	Vomiting, gait disturbance	Cerebellar	N.A.	CR	Yes	Yes (S-100 +)	Melanotic schwannoms
Blömer et al., 1996	M, 8	Hemiparesis	Frontal	N.A.	CR	Yes	Yes (S-100 +, GFAP +)	
Erongun et al., 1996	F, 4	Headache, vomiting	Parieto-occipital	Plexus papilloma	STR followed by CR	Yes	No	2nd surgery for residual tumor
Sharma et al., 1996	F, 19	Hemiparesis	Occipital	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 8	Seizures	Temporal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	NF2
	F, 0.5	Seizures, hemiparesis, vomiting	Temporal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 21	Seizures, headache, vomiting	Frontal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 14	Visual impairment, gait disturbance	Brainstem	N.A.	STR	Yes	Yes (S-100 +, GFAP -)	
	M, 45	Headache, vomiting	Cerebellar	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 24	Headache, vomiting, gait disturbance	Cerebellar	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 14	Abducent and facial palsy	Pons	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
Tanabe et al., 1996	F, 68	Hemiparesis, diplopia	Pons	HGG	CR	Yes	Yes (S-100 +, GFAP -, EMA -)	
Haga et al., 1997	F, 15	Seizures	Parieto-occipital	HGG	CR	Yes	Yes (S-100 +, GFAP -)	
Tsuiki et al., 1997	M, 17	Seizures	Frontal	N.A.	CR	Yes	Yes (S-100 +, Vimentin +, EMA -, GFAP +)	
	F, 64	Syncope	Cerebellar	N.A.	CR	Yes	Yes (S-100 +, Vimentin +, EMA -, GFAP -)	
	M, 21	Seizures	Frontal	N.A.	CR	Yes	Yes (S-100 +, Vimentin +, EMA -, GFAP -)	
Table 1: (Continued)

Authors and year	Sex and Age	Symptoms	Site of lesion	Radiological diagnosis	Treatment	Histological diagnosis	IHC confirmed diagnosis	Additional findings
Sharma et al., 1998 [abstract only]	M, 15	Posttraumatic incidental finding, headache, vomiting	Parietal, Cerebellar	N.A.	Biopsy followed by CR CR	Yes	Yes (S-100 +, GFAP -)	No recurrence
Zagardo et al. 1998	F, 8	N.A.	Temporal	N.A.	CR	Yes	Yes (S-100 +)	No recurrence
Bhatiwele and Gupta, 1999	F, 29	Hearing loss, facial numbness, gait disturbance	Multiple lesion: cerebellar, brainstem, cervical medulla	N.A.	STR	Yes	Yes (S-100 +, GFAP -)	No recurrence
Lee et al., 1999	M, 15	Headache, vomiting	Parieto-occipital	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	No recurrence
Tanaka et al., 2000	M, 4	Headache, vomiting	Thalamus	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	No recurrence
Andrade et al., 2002	M, 17	Headache, vomiting, diplopia	Temporal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	No recurrence
Bhatoe et al., 2003 [abstract only]	F, 3	Headache, vomiting	Parieto-occipital	N.A.	STR	Yes	Yes (S-100 +, GFAP -)	Patient died 10 days postop due to hemorrhage
Chng et al., 2003 [abstract only]	M, 48	Seizures, ataxia, dysphagia, facial palsy and numbness	Medulla oblongata	Cystic glioma	RT followed by CR CR	Yes	Yes (Vimentin +, GFAP -)	No response to RT
Lin et al., 2003	M, 21	Seizure	N.A.	Pilocytic astrocytoma	N.A.	Yes	N.A.	Died 29 months after biopsy
Sarkar et al., 2003 [abstract only]	F, 29	Diplopia, headache, gait disturbance	Mesencephalon Astrocytoma	N.A.	Biopsy, chemotherapy	Yes, malignant	Yes (S-100 +, GFAP -)	Recurrence at 6 months, died 8 months postop
Beauchesne et al., 2004	F, 7	Headache, vomiting, visual impairment	Cerebellar	N.A.	GTR and RT	Yes, malignant	Yes (S-100 +, GFAP -)	Died 29 months after biopsy
Table 1: (Continued)

Authors and year	Sex and Age	Symptoms	Site of lesion	Radiological diagnosis	Histological diagnosis	Treatment	Additional findings	
Vaishya and Sharma, 2004	M, 13	Seizures, headache, vomiting, diplopia	Frontal	TBC lesion	Yes	No / N.A.	TB infection suspected	
Takel et al., 2005	F, 33	Headache, hemiparesis	Frontoparietal	Meningioma	CR	CR	Ye s	
Yako et al., 2005	M, 14	Headache, vomiting, anosmia	Frontal	Neuroblastoma, glioma, meningioma, metastasis	CR	CR	Ye s	
Ahmad et al., 2006	M, 21	Seizures	Frontal	N.A.	CR	CR	Ye s	
Bristol et al., 2006	M, 8	Seizures, ICP symptoms	Frontal	N.A.	CR	CR	Ye s	
Bourgine et al., 2007 (abstract only)	F, 20	Seizures	Frontal	N.A.	CR	CR	Ye s	
DeCaen et al., 2007	M, 57	Seizures	Frontal	N.A.	CR	CR	Ye s	
Cetekoglu et al., 2007	M, 23	Seizures	Frontal	N.A.	GTR	GTR	Ye s	
Kozic et al., 2008	M, 39	Hemiparesis, ataxia, disadra, developmental delay	Frontotemporal	N.A.	Biopsy	Ye s		
Oztnur et al., 2008	F, 1	Seizures	Pons	N.A.	STR	STR	Ye s	
Ambekar et al., 2009	M, 32	Seizures, headache	Frontal	N.A.	GTR	GTR	Ye s	
Ishihara et al., 2009	M, 5	Headache	Frontal	N.A.	Tuberculoma	GTR	Ye s	
Menku et al., 2009	M, 37	Seizures	Frontal	N.A.	HGG, metastasis, lymphoma	CR	Ye s	
Consales et al., 2010	M, 5	Headache, vomiting, diplopia, gait disturbance, hiccups	Frontal	N.A.	Parieto-occipital	CR	Ye s	
Muzzafar et al., 2010	M, 68	Seizures	Brainstem	N.A.	GTR	GTR	Ye s	
Authors and year	Sex and Age	Symptoms	Site of lesion	Radiological diagnosis	Treatment	Histological diagnosis	IHC confirmed diagnosis	Additional findings
------------------------	-------------	---------------------------------	----------------	------------------------	-----------	------------------------	-------------------------	---------------------
Barnard et al., 2011	F, 75	Personality changes and dysphasia	Frontal	N.A.	GTR + RT	Yes, malignant	Yes (S-100 +, GFAP -, EMA-, CD34 -, a-SMA -)	
Ellis et al., 2011	F, 9	Headaches	Frontal	N.A.	STR	Yes, malignant	Yes (S-100 +)	
Khursheed et al., 2011	M, 16	Seizures	Frontal	N.A.	CR	Yes	Yes (S-100 +)	
Luan et al., 2011	F, 39	Seizures	Frontal	N.A.	CR	Yes	N.A.	
Srivastav et al., 2011	M, 13	Hemiparesis, headache	Pons	N.A.	STR	Yes	Yes (S-100 +, Vimentin +, GFAP -)	NF
Umredkar et al., 2011	F, 35	Headaches, vomiting, ataxia	Cerebellar	Pylocytic astrocytoma, hemangioblastoma, metastasis	GTR	Yes	Yes (S-100 +, Vimentin +, GFAP -)	
Guha et al., 2012	F, 51	Seizures	Temporal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
Kanakis et al., 2012	M, 32	Death due to sepsis	Brainstem	N.A.	N.A.	Yes (S-100 +, Vimentin +)	Yes (S-100 +, Vimentin +, GFAP +, a-SMA -, CD-34 -)	
Khoo and Taki, 2012	M, 60	Vertigo	Frontal	LGG	GTR	Yes	Yes (S-100 +, GFAP -)	
Paredes et al., 2012	M, 19	Seizures	Occipital	SFT, Meningioma, PXA, DNET, Ganglioglioma	CR	Yes	Yes (S-100 +, Vimentin +, EMA -)	
	F, 32	Dizziness	Occipital	HGG	CR	Yes	Yes (S-100 +, Vimentin +, EMA -)	
Sharma et al., 2012	M, 25	Seizure, headache	Parieto-occipital	PAC or PXA	CR	Yes	Yes (S-100 +, GFAP +)	
Lee et al., 2013	M, 25	Seizures	Frontal	PXA, ganglioglioma, DNET	CR	Yes	Yes (S-100 +)	
Li et al., 2013	M, 19	Seizures	Frontal	Meningioma	GTR	Yes	Yes (S-100 +, Vimentin +, GFAP -, EMA -)	
Authors and year	Sex and Age	Symptoms	Site of lesion	Radiological diagnosis	Treatment	Histological diagnosis	IHC confirmed diagnosis	Additional findings
------------------	-------------	---	-----------------	------------------------	-----------	------------------------	-------------------------	----------------------
Luo et al., 2013	M, 17	Asymptomatic	Parietal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	F, 31	Headache	Brainstem	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	F, 44	Headache, visual impairment, gait disturbance	Brainstem	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 51	Headache	Temporal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	F, 18	Seizures	Frontal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 72	Hemiparesis, headache	Parieto-occipital	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 38	Headache, anosmia	Frontal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 24	Headache	Lateral ventricle	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	F, 43	Headache	Occipitotemporal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 41	Headache	Intrasellar	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	F, 10	Visual impairment	Frontal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 34	Asymptomatic	Occipital	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	F, 55	Anosmia	Frontal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 64	Vomiting, gait disturbance	Cerebellar	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 51	Gait disturbance	Cerebellar	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 13	Seizures	Frontal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	F, 31	Seizures, anosmia	Frontal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
	M, 35	Visual impairment	Frontal	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
Table 1: (Continued)

Authors and year	Sex and Age	Symptoms	Site of lesion	Radiological diagnosis	Treatment	Histological diagnosis	IHC confirmed diagnosis	Additional findings
Ma et al., 2013	F, 24	Seizures	Frontal	Meningioma	GTR	Yes	Yes (S-100 +, Vimentin +, GFAP -, EMA-)	
Ramos et al., 2013	F, 17	Headache, dizziness	Brainstem + CPA	N.A.	CR	Yes	Yes (S-100 +, GFAP -)	
Rotondo et al., 2013	F, 45	Depression, headache, visual impairment	Frontal	Meningioma	GTR	Yes	No / N.A.	
Shweikeh et al., 2013	M, 18	Headache, hemiparesis	Frontoparietal	Glioma	GTR and RT, followed by re-resection	Yes, malignant	Yes (S-100 +, Vimentin+, GFAP -)	
Srinivas et al., 2013	F, 16	Seizures, headache	Frontoparietal	Glioma	GTR	Yes	No / N.A.	
Al Batly et al., 2014	F, 49	Headache, gait disturbance	Temporal	Glioma	STR	Yes	Yes (S-100 +, GFAP -)	
Gupta et al., 2016	M, 17	Headache, vomiting	Temporoparietal	HGG	GTR	Yes	Yes (S-100 +)	
Sharma et al., 2016	F, 26	Headache, hemiparesis, facial palsy, gait disturbance	Pons and medulla oblongata	LGG	GTR	Yes		
Wilson et al., 2016	M, 34	N.A.	Temporal	Ganglioglioma, Oligodendroglioma, post infectious	CR	Yes	Yes (S-100 +, EMA -, GFAP - CD34 +)	
Zhang et al., 2016	F, 40	Paresis, numbness upper extremities, cervical pain	Medulla oblongata	Glioma	STR followed by GTR	Yes	Yes (S-100 +, Vimentin +, GFAP -)	
Pearson et al., 2017	F, 22	Headache	Frontal	LGG, Pilocytic astrocytoma, ependymoma, neurocytoma	GTR	Yes	Recurrence (STR due to adherence)	
Gao et al., 2018	F, 12	Headache, vomiting, gait disturbance	Brainstem	N.A.	CR	Yes	Yes (S-100 +, GFAP - , EMA-)	
Khaleghi et al., 2018	F, 44	Headache, vomiting, diplopia	Frontal	Meningioma	GTR	Yes	Yes (S-100 +, GFAP - , EMA-)	
Ten et al., 2018	M, 19	Visual impairment, headache	Occipital	N.A.	CR	Yes	No (EM: basement membrane attached to neoplastic cells)	
often called malignant intracerebral nerve sheath tumor (MINST), is extremely rare. Compared to benign IS, MINST are characterized by a high mitotic activity and Ki-labeling index.\(^9,18\) A variant of MINST is a triton tumor, which is characterized additionally by rhabdomyoblastic components.\(^3\)

Treatment and prognosis

Since IS are mostly benign lesions, gross total or complete resection of the tumor is usually curative. Therefore, surgical resection is the preferred treatment for symptomatic lesions.\(^7\) We calculated a recurrence rate of 5.3% following gross total or complete resection [Table 1]. All recurrences were related to malignant histopathology. In cases with subtotal resection, only four patients required reoperation because of residual tumor or recurrence.\(^4,6,21,22\) None of these recurrent cases were related to malignant pathology, suggesting that recurrence was the result of subtotal resection. Mortality rate among histopathological benign IS cases was 0% compared to 53% in malignant cases [Table 1].

Although rare, IS should be included in the differential diagnosis when typical radiological features are present. This is relevant as surgical approach and technique may be different in comparison to the many differential diagnoses that are included
in [Table 1]. For example, IS can be removed in a piecemeal intratumoral debulking fashion, whereas hemangioblastomas, being the preoperative suspected diagnosis in our case, requires an en bloc removal and entering the tumor could result in unnecessary blood loss. Similarly, in some cases, high grade glioma (of the brainstem) was the preoperative suspected diagnosis [Table 1] which may result in diagnostic biopsy surgery instead of surgical resection. Therefore, including IS in the differential diagnosis when typical radiological features are present is relevant for the surgical strategy.

The role of radiotherapy or chemotherapy as primary treatment of benign IS remains unknown. We found two cases in which radiotherapy was given as primary treatment. In both cases, radiotherapy failed to reduce tumor size and tumor-related symptoms after which surgery was performed. Radiotherapy and chemotherapy may play a role as adjuvant treatment in malignant IS cases.

CONCLUSION

ISs are rare benign tumors occurring mostly in young patients. Clinical presentation is usually related to tumor location or increased intracranial pressure. Gross total resection of the lesion is curative. To adjust the surgical strategy accordingly, ISs should be considered preoperatively when radiological features such as peritumoral edema, calcifications, and cysts are noted.

Acknowledgments

None.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Casadei GP, Komori T, Scheithauer BW, Miller GM, Parisi JE, Kelly PJ. Intracranial parenchymal schwannoma. J Neurosurg 2009;79:217-22.
2. Chen F, Zhao S, Yu Y, Chen D. Intraparenchymal schwannoma with calcification of the temporal lobe: Case report and literature review. Medicine (Baltimore) 2019:98:e14263.
3. de Cauwer H, Bogers JP, Duwel V, van den Hauwe, Creese P, van Marck E. An intracerebral intraparenchymatous triton tumor in a man with neurofibromatosis. J Neurol 2007;254:1009-11.
4. Erongun U, Ozkal E, Acar O, Uygun A, Kocaogullar Y, Gungor S. Intracerebral schwannoma: Case report and review. Neurosurg Rev 1996;19:269-74.
5. Gibson AA, Hendrick EB, Conen PE. Intracerebral schwannoma. Report of a case. J Neurosurg 1966;24:552-7.
6. Gokay H, Izi N, Barlas O, Erseven G. Supratentorial intracerebral schwannomas. Surg Neurol 1984;22:69-72.
7. Khoo HM, Taki T. Periventricular intraparenchymal schwannoma. Case report. Neurol Med Chir (Tokyo) 2012;52:603-7.
8. Khursheed N, Rumana M, Ramzan A, Furqan N, Abrar W, Salma B. Frontal intraparenchymal schwannoma. J Clin Neurosci 2011;18:411-3.
9. Kozic D, Nagulic M, Samardzic M, Ostoji J, Rasulic L, Cvetkovic-Dzic D. Intrapontine malignant nerve sheath tumor: MRI and MRS features. Acta Neurol Belg 2008;108:67-71.
10. Lin J, Feng H, Li F, Zhao B, Guo Q. Intraparenchymal schwannoma of the medulla oblongata: Case report. J Neurosurg 2003;98:621-4.
11. Luo W, Ren X, Chen S, Liu H, Sui D, Lin S. Intracranial intraparenchymal and intraventricular schwannomas: Report of 18 cases. Clin Neurol Neurosurg 2013;115:1052-7.
12. Mahore A, Kanal S, Epari S, Kataria N, Sharma P. Supratentorial intraparenchymal schwannoma mimicking a glial tumor. Neurol India 2012;60:335-7.
13. Menkutu A, Oktem IS, Kontas O, Akdemir H. Atypical intracerebral schwannoma mimicking glial tumor: Case report. Turk Neurosurg 2009;19:82-5.
14. Muzzafar S, Ketonen L, Ricoy JR. Intraparenchymal schwannomas of the medulla oblongata: Case report. J Neurosurg 2013;118:367-9.
15. Paredes I, Jimenez Roldan L, Ramos A, Lobato RD, Rico Jr. Intraparenchymal schwannomas: Report of two new cases studied with MRI and review of the literature. Clin Neurol Neurosurg 2012;114:42-6.
16. Peker S, Kurtkaya O, Uzun I, Pamir MN. Microanatomy of the central myelin-peripheral myelin transition zone of the trigeminal nerve. Neurosurgery 2006;59:354-9.
17. Sharma V, Newton G. Schwannoma of the medulla oblongata. Br J Neurosurg 1993;7:427-9.
18. Shweikeh F, Drazin D, Banykh SI. Malignant intracerebral nerve sheath tumors: A case report with review of the literature. Acta Neurochir (Wien) 1997;139:756-60.
19. Takamura M, Takamatsu T, Ishii M, Uchida T, Takenaka T. Intraparenchymal schwannoma. Report of 18 cases. Clin Neurol Neurosurg 2013;115:1052-7.
20. Skolnik AD, Loevner LA, Sampathu DM, Newman JG, Lee JY, Bagley IJ, et al. Cranial nerve schwannomas: Diagnostic imaging approach. Radiographics 2016;36:1463-77.
21. Tsuiki H, Kuratsu J, Ishimaru Y, Nakahara T, Kishida K, Takamura M, et al. Intracranial intraparenchymal schwannoma: Report of three cases. Acta Neurochir (Wien) 1999;139:756-60.
22. Wilberger JE. Primary intrasellar schwannoma: Case report. Surg Neurol 1989;32:156-8.
23. Zhang Q, Ni M, Liu WM, Jia W, Jia GJ, Zhang JT. Intra-and extramedullary dumbbell-shaped schwannoma of the medulla oblongata: A case report and review of the literature. World Neurosurg 2017;98:873-e1-7.

How to cite this article: Kovalainen A, Haeren R, Paetau A, Lehecka M. Brainstem intraparenchymal schwannoma: A case report and literature review. Surg Neurol Int 2021:12:508.