Nanoparticle biointerfaceing by platelet membrane cloaking

Che-Ming J. Hu1,2, Ronnie H. Fang1,4, Kuei-Chun Wang3,4, Brian T. Luk2,3, Soracha Thamphiwatana1,2, Diana Dehaini1,2, Phu Nguyen1,4, Pavimol Angsantikul1,2, Cindy H. Wen7, Ashley V. Kroll1,2, Cody Carpenter1, Manikantan Ramesh1, Vivian Qu1, Sherrina H. Patel5, Jie Zhu5, William Shi5, Florence M. Hofman6, Thomas C. Chen6, Weiwei Gao1,2, Kang Zhang1,2,4,7, Shu Chien3,4 & Liangfang Zhang1,2,4

Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1–3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4–7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfaceing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.

Owing to their role as circulating sentinels for vascular damage and for invasive microorganisms, platelets have inspired the design of many functional nanocarriers8–11. The multitude of platelet functions stem from a unique set of surface moieties responsible for immune evasion12,13, subendothelial adhesion14,15, and pathogen interactions16,17. By adopting a cell membrane cloaking technique17–19, we demonstrate the preparation of platelet membrane-cloaked nanoparticles (PNPs) consisting of a biodegradable polymeric nanoparticle core shielded entirely in the plasma membrane of human platelets. Several inherent platelet properties, including immunocompatibility, binding to injured vasculature and pathogen adhesion, as well as their therapeutic implications, were studied (Extended Data Fig. 1a).

PNPs were prepared by fusing human platelet membrane with 100-nm poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Before platelet collection, blood and plasma samples were mixed with EDTA, which prevents platelet aggregation by deactivating fibrinogen-binding integrin αIIbβ3 (ref. 20). Platelets were then processed for nanoparticle membrane cloaking (Extended Data Fig. 1b). Physicochemical characterizations revealed that the final PNPs were approximately 15 nm larger than the uncoated PLGA nanoparticles (bare NPs) and possessed an equivalent surface charge to that of platelets and platelet membrane-derived vesicles (platelet vesicles) (Fig. 1a). Transmission electron microscopy (TEM) visualization showed the formation of distinctive nanoparticulates and consistent unilamellar membrane coatings over the polymeric cores (Fig. 1b and Extended Data Fig. 2). Improved colloidal stability was observed with the PNPs compared to bare NPs (Fig. 1c), which is attributable to the stabilizing effect by the plasma membrane’s hydrophilic surface glycans20. Translocation of platelet membrane protein content, including immunomodulatory proteins, CD47, CD55, and CD5914,15, integrin components, αIIb, α2, α5, β6, β1, and β3, and other transmembrane proteins, GPIbα, GPIV, GPIX, GPI, GPI, and CLEC-21–16, onto the nanoparticles was examined by western blotting (Fig. 1d and Extended Data Fig. 3). Platelets derived from multiple protocols were prepared in parallel for comparison, and it was observed that the PNP preparation resulted in membrane protein retention and enrichment that was very similar across the different platelet sources (Extended Data Fig. 3). Notably, platelets derived from blood treated with heparin, an anticoagulant that inactivates thrombin rather than platelets, showed evidence of higher platelet activation including increased GPIIbα cleavage and CLEC-2 oligomerization21. Using blood anticoagulated with EDTA as the platelet source, a right-side-out membrane orientation on the PNPs was verified by both immunogold staining and flow cytometric analysis with antibodies targeting either the intracellular or extracellular domain of CD47 (Fig. 1e and Extended Data Fig. 4). Pro-thrombotic, platelet-activating molecules such as thrombin, ADP and thromboxane were removed in the PNP formulation (Fig. 1f–h), thereby permitting PNP administration with little risk of a thrombotic response (Fig. 1i).

The platelet-mimicking functionalities of PNPs were first studied via binding of the particles to human type IV collagen, a primary subendothelial component22. Fluorescently labelled PNPs, along with bare NPs and red blood cell membrane-cloaked nanoparticles (RBCNPs), were incubated on collagen-coated plates. The PNPs showed significantly enhanced retention compared to bare NPs and RBCNPs (Fig. 2a), indicating that the collagen adhesion was membrane-type-specific. Reduced PNP retention on non-collagen-coated plates and in the presence of anti-GPVI antibodies supports a specific collagen–platelet membrane interaction attributable to the presence of membrane glycoprotein receptors for collagen23 (Extended Data Fig. 3). Further examination of the differential binding of PNPs to endothelial and collagen surfaces was performed using collagen-coated tissue culture slides seeded with human umbilical vein endothelial cells (HUVECs). PNPs adhered primarily outside of areas encompassed by the cells (Fig. 2b and Extended Data Fig. 5a–g). In addition, the
PNPs were incubated with the extracellular matrix derived from decellularized human umbilical cord arteries. After PBS washes, scanning electron microscopy (SEM) revealed a significant number of PNPs remaining on the fibrous structures on the luminal side of the artery (Fig. 2c and Extended Data Fig. 5h, i).

Examination of PNPs’ immunocompatibility was conducted using differentiated human THP-1 macrophage-like cells. The platelet membrane cloaking reduced particle internalization in a CD47-specific manner, as blocking by anti-CD47 antibodies increased the cellular uptake (Fig. 2d). The PNPs were further investigated for their interactions with the complement system based on quantifications of C4d and Bb split products. After incubation in human plasma, complement activation was assessed by measuring C4d and Bb split products (Fig. 2d). The PNPs were further investigated for their interactions with complements (Fig. 2d).

PNPs were used to evaluate the vascular remodelling quantitatively, intima-to-media ratios of coronary restenosis, therapeutic relevance of platelet-mimicking delivery was examined using docetaxel-loaded PNPs (PNP-Dtxl) (Extended Data Fig. 8). PNP-Dtxl treatment on day 0 and 5 at 0.3 mg per kg body weight (mg/kg) of docetaxel dosing potently inhibited neointima growth in balloon-denuded rats as evidenced by the arterial cross-sections collected on day 14 (Fig. 3g, h and Extended Data Fig. 9). To evaluate the vascular remodelling quantitatively, intima-to-media ratio (I/M) and luminal obliteration were calculated. Computed tomography angiography, which was performed in an I/M of 0.76 ± 0.18 (mean ± s.d.) and a luminal obliteration of 33.6%, PNP-Dtxl yielded significantly lower values of 0.18 ± 0.06 and 8.0%, respectively (P < 0.0001) (Fig. 3i, j). These results demonstrate the benefit of PNP-directed delivery in improving drug localization to diseased vasculatures.

We further examined the therapeutic potential of PNPs against platelet-adhering pathogens. Opportunistic bacteria, including several pathogens...
strains of staphylococci and streptococci, exploit platelets by both direct and indirect adherence mechanisms for tissue localization and immune evasion. To demonstrate that PNPs can exploit the inherent bacterial adherence mechanism for targeted antibiotics delivery, MRSA252, a strain of methicillin-resistant Staphylococcus aureus expressing a serine-rich adhesin for platelets (SraP), was used as a model pathogen for particle adhesion study. After 10 min of incubation between formalin-fixed MRSA252 and different nanoformulations, the collected bacteria showed preferential binding by PNPs (Fig. 4a), exhibiting a 12-fold increase in PNP retention compared to bare NPs (Fig. 4b and Extended Data Fig. 10). This adherence was membrane-specific as RBCNPs showed lower retention than PNPs.

The therapeutic potential of PNPs in rats (cell nuclei in blue and PNPs in red). Dimensions, arterial walls from multisectional images after intravenous administration reconstructed images of intact (top) and balloon-denuded (bottom) arteries after PNP incubation (tissue in green and PNPs in red). Lumenal side (scale bar, 500 μm) and damaged (bottom) human carotid arteries. Scale bar, 200 μm. Representative H&E-stained arterial cross-sections from different treatment groups in a rat model of coronary restenosis. Scale bar, 200 μm. Zoomed-in H&E-stained arterial cross-sections highlight the different vascular remodelling from the different treatment groups. I, intima; M, media. Scale bar, 100 μm. Quantitative analysis of intima-to-media area ratio and luminal obliteration from the different treatment groups (n = 6). All bars represent means ± s.d. NS, no statistical significance.

152.5 μm × 116 μm × 41 μm. Retention of PNPs at the denuded and the intact arteries over 120 h after PNP administration (n = 6). Representative H&E-stained arterial cross-sections from different treatment groups in a rat model of coronary restenosis. Scale bar, 200 μm. Zoomed-in H&E-stained arterial cross-sections highlight the different vascular remodelling from the different treatment groups. I, intima; M, media. Scale bar, 100 μm. Quantitative analysis of intima-to-media area ratio and luminal obliteration from the different treatment groups (n = 6). All bars represent means ± s.d. NS, no statistical significance.
of PNP s was further evaluated using vancomycin-loaded formulations. In an in vitro antimicrobial study, live MRSA252 bacteria were briefly incubated with free vancomycin, vancomycin-loaded RBCNPs (RBCNP-Vanc), or vancomycin-loaded PNP s (PNP-Vanc) followed by a wash and culturing in fresh media. The PNP-Vanc formulation showed statistically significant improvement in MRSA252 reduction that corroborates the targeting effect of the particles (Fig. 4c). An in vivo antimicrobial efficacy study was further conducted using a mouse model of systemic MRSA252 infection. Mice systemically challenged with 6 × 10^6 colony-forming units (CFU) of MRSA252 received once daily intravenous treatment of free vancomycin, RBCNP-Vanc, or PNP-Vanc for 3 days at 10 mg kg^-1 of vancomycin. A control group of high-dose vancomycin treatment in which infected mice received free vancomycin at 30 mg kg^-1 twice daily was conducted in parallel. 24 h after the last treatment, bacterial enumeration at the primary infection organs showed that the PNP-Vanc resulted in the lowest mean bacterial counts across all organs (Fig. 4d–i). Statistical analyses revealed significance between PNP-Vanc and free vancomycin at equivalent dosage in the lung, liver, spleen and kidney. In comparison to free vancomycin at sixfold the dosage, PNP-Vanc showed significantly better antimicrobial efficacy in the liver and spleen and was at least as effective in the blood, heart, lung and kidney. Notably, compared to RBCNP-Vanc, PNP-Vanc showed significantly higher potency in the heart, liver and spleen, reflecting membrane-specific modulation of nanoparticle performance. The study validates the feasibility of harnessing biomembrane interfaces to improve infectious disease treatment.

The vast medical relevance of platelets has inspired many platelet-mimicking systems that target dysfunctional vasculature in cardiovascular diseases,^8^ trauma,^9,10,11,12^ cancers^12^ and acute inflammations. The present PNP platform exploits platelet membrane in its entirety to enable biomimetic interactions with proteins, cells, tissues and microorganisms. Towards translation, the platform would benefit from existing infrastructures and logistics for transfusion medicine, polymeric nanotherapeutics and cell-derived pharmaceutics. Previous work on the cell membrane clotting approach demonstrated high clotting efficiency and viable storage upon platform optimization (Extended Data Fig. 2f–h). By employing large-scale purification and dispersion techniques commonly applied to biologics, reliable platelet membrane derivation and PNP production can be envisioned.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 21 November 2014; accepted 12 August 2015.

Published online 16 September 2015.

1. Pelaz, B. et al. Interfacing engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small 9, 1573–1584 (2013).
2. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnol. 8, 137–143 (2013).
3. Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnol. 8, 772–781 (2013).
4. Born, G. V. & Cross, M. J. The aggregation of blood platelets. J. Physiol. (Lond.) 168, 178–195 (1963).
5. Kieffer, N. & Phillips, D. R. Platelet membrane glycoproteins: functions in cellular interactions. Annu. Rev. Cell Biol. 6, 329–357 (1990).
6. Fitzgerald, J. R., Foster, T. J. & Cox, D. The interaction of bacterial pathogens with platelets. Nature Rev. Microbiol. 4, 445–457 (2006).
7. Yeaman, M. R. Platelets in defense against bacterial pathogens. Cell. Mol. Life Sci. 67, 525–544 (2010).
8. Peters, D. et al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc. Natl Acad. Sci. USA 106, 9815–9819 (2009).
9. Chan, J. M. et al. SPatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc. Natl Acad. Sci. USA 107, 2213–2218 (2010).
10. Bertram, J. P. et al. Intravenous hemostat: nanotechnology to halt bleeding. Sci. Transl. Med. 1, 11ra22 (2009).
11. Moderny-Pawlowski, C. L. et al. Approaches to synthetic platelet analogs. Biomaterials 34, 526–541 (2013).
12. Simberg, D. et al. Biomimetic amplification of nanoparticle homing to tumors. Proc. Natl Acad. Sci. USA 104, 932–936 (2007).
13. Anselmo, A. C. et al. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8, 11243–11253 (2014).
14. Olsson, M., Bruhns, P., Frazier, W. A., Ravetch, J. V. & Oldenborg, P. A. Platelet homeostasis is regulated by platelet expression of CD47 under normal conditions and in passive immune thrombocytopenia. Blood 105, 3577–3582 (2005).
15. Sims, P. J., Rollins, S. A. & Wiemerd, T. Regulatory control of complement on blood platelets. Modulation of platelet procoagulant responses by a membrane inhibitor of the C5b-9 complex. J. Biol. Chem. 264, 19228–19235 (1989).
16. Niewandt, B. & Watson, S. P. Platelet-collagen interaction: is GPVI the central receptor? Blood 102, 449–461 (2003).
17. Hu, C. M. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).
18. Hu, C. M., Fang, R. H., Copp, J., Luk, B. T. & Zhang, L. A biomimetic nanosponge that absorbs pore-forming toxins. Nature Nanotechnol. 8, 326–340 (2013).
19. Hu, C. M., Fang, R. H., Luk, B. T. & Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nature Nanotechnol. 8, 933–938 (2013).
20. Gachet, C. et al. Alpha IIB beta 3 integrin dissociation induced by EDTA results in morphological changes of the platelet surface-connected canalicuscular system with differential location of the two separate subunits. J. Cell Biol. 120, 1021–1030 (1993).
21. Luk, B. T. et al. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 6, 2730–2737 (2014).
22. Hughes, C. E. et al. CLEC-2 activates Syk through dimerization. Blood 115, 2947–2955 (2010).
23. Calluri, R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Rev. Cancer 3, 422–433 (2003).
24. Rodriguez, P. L. et al. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).
25. Law, S. K. A. & Dodds, A. W. The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci. 6, 263–274 (1997).
26. Terstappen, L. W. M. M., Nguyen, M., Lazarus, H. M. & Medof, M. E. Expression of the DAF (CD55) and CD59 antigens during normal hematopoietic cell differentiation. J. Leukoc. Biol. 52, 652–660 (1992).
27. Andersen, A. J., Hashemi, S. H., Andresen, T. L., Hunter, A. C. & Moghimi, S. M. Complement: alive and kicking nanomedicines. J. Biomed. Nanotechnol. 5, 364–372 (2009).
28. Siboo, I. R., Chambers, H. F. & Sullam, P. M. Role of SraP, a Serine-Rich Surface Protein of Staphylococcus aureus, in binding to human platelets. Infect. Immun. 73, 2273–2280 (2005).
29. Kamaly, N. et al. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc. Natl Acad. Sci. USA 110, 6506–6511 (2013).
30. Hu, C. M. et al. “Marker-of-self” functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale 5, 2664–2668 (2013).

Acknowledgements This work is supported by the National Institutes of Health under Award Numbers R01DK095168 (LZ), R01HL108735 (SC) and R01EY25090 (KZ), and partially by the Defense Threat Reduction Agency (DTRA) and the Office for Chemical and Biological Defense under Grant Number HDTRA1-14-1-0064 (LZ). R.H.F. is supported by a National Institutes of Health R25CA153915 training grant from the National Cancer Institute.

Author Contributions C.-M.J.H., R.H.F., K.-C.W., B.T.L., K.Z. S.C. and L.Z. conceived and designed the experiments; C.-M.J.H., R.H.F., K.-C.W., B.T.L., S.T., D.D., P.N., P.A., C.H.W., A.V.K., C.C., M.R., V.Q., S.H.P., J.Z., W.S., F.M.H., T.C.C. and W.G. performed all the experiments. The manuscript was written by C.-M.J.H., R.H.F., B.T.L., W.G. and L.Z. All authors discussed the results and reviewed the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to L.Z. (zhang@ucsd.edu), S.C. (shuchien@ucsd.edu) or K.Z. (kang.zhang@gmail.com).
METHODS

Human platelet isolation and platelet membrane derivation. Human type O− blood anti-coagulated with 1.5 mg ml−1 EDTA was purchased from BioreclamationIVT and processed for platelet collection approximately 16 h after blood collection. Unless otherwise stated, platelets derived from this commercial blood source were used in this study. Fresh human type O− blood was also collected with dipotassium EDTA-treated or lithium heparin-treated blood collection tubes (Becton, Dickinson and Company) under the approval of the Institutional Review Board (IRB) at the University of California, San Diego, USA. Patients consented to use of their blood samples for this study before collection. The freshly drawn blood was processed for platelet collection approximately 30 min after blood draw. In addition, unexpired (in-dated) human type O− platelet rich plasma (PRP) in acid-citrate-dextrose (ACD) was purchased from the San Diego Blood Bank. Samples not originally drawn in EDTA were adjusted to a concentration of 5 mM EDTA before platelet collection. To isolate platelets, the blood and plasma samples were centrifuged at 100g for 20 min at room temperature to separate red blood cells and white blood cells. The resulting PRP was then centrifuged at 100g for 20 min to remove remaining blood cells. PBS buffer containing 1 mM of EDTA and 2 μM of prostaglandin E1 (PGE1, Sigma Aldrich) was added to the purified PRP to prevent platelet activation. Platelets were then pelleted by centrifugation at 800g for 20 min at room temperature, after which the supernatant was discarded and the platelets were resuspended in PBS containing 1 mM of EDTA and mixed with protease inhibitor tablets (Pierce). 1.5 ml aliquots of platelet solution containing ~3 × 10^10 platelets were prepared and used to cloak 1 mg of PLGA nanoparticles.

Platelet membrane was derived by a repeated freeze-thaw process. Aliquots of platelet suspensions were first frozen at ~80 °C, thawed at room temperature, and pelleted by centrifugation at 4,000g for 3 min. After three repeated washes with PBS solution mixed with protease inhibitor tablets, the pelleted platelet membranes were suspended in water and sonicated in a capped glass vial for 5 min using a Fisher Scientific FS30D bath sonicator at a frequency of 42 kHz and a power of 100 W. The presence of platelet membrane vesicles was verified by size measurement using dynamic light scattering (DLS) and morphological examination by transmission electron microscopy (TEM).

Platelet membrane-cloaked nanoparticle (PNP) preparation and characterization. 100 nm polymeric cores were prepared using 0.67 dL g−1 carboxyl-terminated 50:50 poly(lactic-co-glycolic) acid (PLGA) (LACTEL Absorbable Polymers) in a nanoprecipitation process. 1 ml of 10 mg ml−1 PLGA solution in acetone was added dropwise to 3 ml of water. For fluorescently labelled nano formulations, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiD, excitation = 644 nm/emission = 665 nm, Life Technologies) was loaded into the polymeric cores at 0.1 wt%. The mixture was then stirred in open air for 1 h and placed in vacuum for another 3 h. The resulting nanoparticle solution was filtered with 10 kDa MWCO Amicon Ultra-4 Centrifugal Filters (Millipore). Platelet membrane cloaking was then accomplished by dispersing and fusing platelet membrane vesicles with 10 kDa MWCO Amicon Ultra-4 Centrifugal Filters (Millipore). Platelet membrane-cloaked nanoparticles (PNPs) of ~50:50 poly(lactic-glycolic) acid (PLGA) (LACTEL Absorbable Polymers) were prepared by nanoprecipitation based on the isotype of the primary antibody. MagicMark XP western protein detection kit (Sigma Aldrich), and Thromboxane B2 (TXB2) ELISA Kit (Enzo Life Sciences), Thrombin Activity Assay Kit (AnaSpec), ADP Colorimetric/Fluorometric Assay Kit (Sigma Aldrich), and Thrombomodulin Antibody Assay Kit (Enzo Life Sciences), respectively, based on the manufacturers’ instructions. Each sample was assayed in replicate (n = 3).

Examination of platelet membrane proteins. PNPs were purified from unbound proteins or membrane fragments by centrifugation at 16,000g in 10% sucrose. Platelet-rich plasma, platelets, platelet membrane vesicles, and PNPs were then normalized to equivalent overall protein concentration using a Pierce BCA Protein Assay Kit (Life Technologies). To examine the effect of different platelet derivation protocols on the membrane protein expression, platelets collected from commercial blood anti-coagulated in EDTA, freshly drawn blood anti-coagulated in EDTA or heparin, and transfusion-grade PRP in ACD were prepared in parallel. All platelets were processed using the aforementioned platelet membrane derivation protocol for PNP preparation. The samples containing equivalent total proteins were then lyophilized, prepared in lithium dodecyl sulfate (LDS) sample loading buffer (Invitrogen), and separated on a 4–12% Bis-Tris 17–well mini gel in MOPS running buffer using a Novex Xcell SureLock Electrophoresis System (Life Technologies). Identification of key membrane proteins by western blotting was performed using primary antibodies including mouse anti-human CD47 (eBioscience, B6H12), mouse anti-human CD55 (Biolegend, JS11), mouse anti-human CD59 (Biolegend, p282 (H19)), mouse anti-human integrin αIβb subunit (Biolegend, HIP8), rat anti-human integrin β2 subunit (R&D Systems, 430907), rabbit anti-human integrin α2 subunit (Abgent, AP12204c), mouse anti-human integrin α6 subunit (Abgent, AM18286), mouse anti-human integrin β1 subunit (R&D Systems, 4B7R), mouse anti-human integrin β3 subunit (Biolegend, V1-PL2), mouse anti-human GPIbα (R&D Systems, 486805), mouse anti-human GPIV (R&D Systems, 877346), mouse anti-human GPV (Santa Cruz Biotech, G-11), rat anti-human GPIV (EMD Millipore, 8E9), rabbit anti-human GPIX (Santa Cruz Biotech, A-9), and mouse anti-human CLEC-2 (Genetex, 8J24). A goat anti-mouse IgG-HRP conjugate (Biolegend, Poly4053), a goat anti-rat IgG-HRP conjugate (Biolegend, Poly4054), or a donkey anti-rabbit IgG–horseradish peroxidase (HRP) conjugate (Biolegend, Poly6064) was used for secondary staining based on the isotype of the primary antibody. MagicMark XP western protein standard (Invitrogen) was used as a molecular weight ladder. The nitrocellulose membrane was then incubated with ECL western blotting substrate (Pierce) and developed with the Mini-Medical/90 Developer (ImageWorks).
from human whole blood with sodium citrate as the anti-coagulant. The plasma was then loaded into a cuvette followed by addition of 500 μl of 2 mg ml⁻¹ PNPs in PBS solution. As negative and positive controls, the PRP was mixed with 500 μl of PBS or 500 μl of PBS containing 0.5 IU ml⁻¹ of human thrombin (Sigma Aldrich), respectively. The cuvettes were immediately placed in a TeCan Infinite M200 reader and monitored for change in absorbance at 650 nm over time, and platelet aggregation was observed based on the reduction of turbidity.

Collagen binding study. Collagen type IV derived from human placenta (Sigma Aldrich) was reconstituted to a concentration of 2.0 mg ml⁻¹ in 0.25% acetic acid. 200 μl of the collagen solution was then added to each well of a 96-well assay plate and incubated overnight at 4 °C. Prior to the collagen binding study, the plate was blocked with 2% BSA and washed three times with PBS. For the collagen binding study, 100 μl of 1 mg ml⁻¹ DiD-loaded nanoformulations in water were added into replicate wells (n = 6) of collagen-coated or non-collagen-coated plates. After 30 s of incubation, the plates were washed three times. Retained nanoparticles were then dissolved with 100 μl of DMSO for fluorescence quantification using a TeCan Infinite M200 reader.

Differential adhesion to endothelial and collagen surfaces. Collagen type IV was coated on 8-well Lab-Tek II chamber slides (Nunclon) as described above. The collagen-coated chamber slides were used to seed primary HUVECs obtained from the American Type Culture Collection and cultured in HUVEC Culture Medium (Cambrex) supplemented with 20% FBS. Following the fetal bovine serum (FBS) was replaced with the nuclei were then incubated with 1 μg ml⁻¹ DiD-loaded PNPs in PBS at 4 °C for 30 s. Next the cells were washed with PBS three times and fixed with tissue fixative (Millipore) for 30 min at room temperature. Fluorescence staining was done with 4,6-diamidino-2-phenylindole (DAPI, Life Technologies) for the nuclei and 22-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3(23)-ol (NBD cholesterol, Life Technologies) for the cytosol before mounting the cells in ProLong Gold antifade reagent (Life Technologies) and imaged using a DeltaVision deconvolution scanning fluorescence microscope. Z-stacks were collected at 0.25 μm intervals over 10 μm. The images were deconvolved and superimposed.

DiD fluorescence signal over collagen and endothelial surfaces as defined by the boundaries of NBD fluorescence were analysed using ImageJ. PNP retention over collagen and endothelial surfaces were quantified based on distinct images (n = 10) in which the average fluorescence per unit area was analysed.

Cellular uptake study with macrophage-like cells. THP-1 cells were obtained directly from the American Type Culture Collection and used without further authentication or testing for mycoplasma contamination. The cells were maintained in RPMI 1640 media (Life Technologies) supplemented with 10% FBS (Sigma Aldrich). THP-1 cells were differentiated in 100 ng ml⁻¹ phorbol myristate acetate (PMA, Sigma Aldrich) for 48 h and differentiation was visually confirmed by cellular attachment to Petri dishes. For the cellular uptake study, the differentiated macrophage-like cells were incubated in replicate wells (n = 3) with DiD-loaded PNPs, anti-CD47 blocked PNPs, and bare NPs at 100 μg/ml⁻¹ in culture medium. At 30 min of incubation at 37 °C, the macrophages at the bottom layer were scraped off the Petri dish and washed three times in PBS to remove non-internalized particles. Flow cytometry was performed to examine nanoparticle uptake by the macrophage-like cells. All flow cytometry studies were conducted on a FACSCan II flow cytometer (BD Biosciences) and the data was analysed using FlowJo software from Tree Star. Statistical analysis was performed based on a two-tailed, unequal variances t-test.

Complement activation study. To assess complement system activation, two complement split products (C3d and Bb) were analysed using enzyme-linked immunosorbent assay kits (Quidel Corporation). The nanoparticles were incubated in replicate aliquots (n = 4) of human serum at a volume ratio of 1:5 in a shaking incubator (80 r.p.m.) at 37 °C for 1 h. The reaction was terminated by adding 60 volumes of PBS containing 0.05% Tween-20 and 0.035% ProClino 300. Complement system activation of the nanoparticles was assessed following the manufacturer’s instructions, and zymosan was used as a positive control.

PNP adherence to human carotid artery. Human umbilical cord was collected under the approval of the Institutional Review Board (IRB) at the University of California, San Diego, USA, and human carotid arteries were collected under the approval of the IRB at the University of Southern California, USA. Patients consented to use their samples for this study before collection. To derive decellularized arterial extracellular matrix (ECM), human arteries were carefully dissected from the umbilical cord and removed from the surrounding Wharton’s jelly, and subsequently incubated in 2% sodium dodecyl sulfate (SDS, Sigma Aldrich) for 72 h. The decellularized tissue was then rinsed with PBS and incubated in PBS solution containing 200 μg ml⁻¹ PNPs for 30 s. The sample was then transferred to PBS solution and rinsed extensively before examination by scanning electron microscopy (SEM). A control decellularized arterial tissue sample without PNP incubation was prepared and visualized for comparison.

To examine PNP binding on denuded vascular walls, approximately 2 mm thick fresh human carotid artery sections were dissected and placed in normal saline on ice and transported immediately to the laboratory for a PNP binding study. To create the vascular characteristics of damaged arteries, an excised artery sample was surgically scraped on its luminal side with forceps to remove the endothelial layer. Successful denudation was confirmed by microscopy visualization. Prior to the nanoparticle binding experiment, both damaged and non-damaged artery samples were rinsed with PBS solution. The PNP binding experiment was performed by incubating the arterial samples in PBS solution containing 200 μg ml⁻¹ of DiD-loaded PNPs for 30 s. The samples were then transferred to PBS solution and rinsed extensively before visualization by fluorescence microscopy. Endogenous tissue components such as collagen and elastin were identified based on their autofluorescence, which excites and emits maximally at ~ 300 – 500 nm and was captured using a FITC filter. DiD fluorescence was captured using a Cy5 filter to examine the deposition of PNPs. The arterial samples were imaged by a cross-sectional view of a histological section and a top-down view on the luminal side. The images were normalized to a reference illumination image for proper comparison.

Pharmacokinetics, biodistribution and safety of PNPs in a rat model of angioplasty-induced arterial denudation. All animal experiments were performed in accordance with NIH guidelines and approved by the Animal Care Committee of the University of California, San Diego. For the pharmacokinetics study, adult male Sprague-Dawley rats weighing 300–350 g (Harlan Laboratories) were administered with DiD-labelled PNPs and their blood was collected at specific time points via tail-vein blood sampling for fluorescence quantification. For the safety study, rats were injected with 1 ml of 5 mg ml⁻¹ of PNPs on day 0 and day 5 following blood collection on day 10 for comprehensive metabolic panel analysis. Rats receiving equivalent PBS injections were prepared as a control.

For the biodistribution and vasculature-targeting studies, adult male Sprague-Dawley rats weighing 300–350 g (Harlan Laboratories) were subjected to carotid balloon injury. In brief, the animals were anaesthetized with intraperitoneal ketamine (Pfizer) at 100 mg kg⁻¹ and xylazine (Lloyd Laboratories) at 10 mg kg⁻¹. A ventral mid-line incision (~ 2 cm) was made in the neck, and the left common carotid artery and carotid bifurcation were exposed by blunt dissection. Proximal end of the left carotid artery, inner carotid artery and external carotid artery were temporarily clamped to avoid excessive blood loss during the induction of the 2F Fogarty arterial embolectomy catheter (Edward Lifesciences). The catheter was introduced into the left carotid artery through an arteriotomy on the external carotid artery. The catheter was slowly inflated to a determined volume (0.2 ml) and withdrawn with rotation for 3 times to denude the endothelium. The wound was later closed with 4-0 sutures.

After the wound closure, rats were injected intravenously with 1 ml of 5 mg ml⁻¹ DiD-loaded PNPs in 10% sucrose. At specified time points after the injection, animals were euthanized by CO₂ inhalation. After perfusion with PBS, organs including heart, lung, liver, spleen, kidney, gut, blood, and aortic branch including both the left and right carotid arteries were carefully collected and homogenized for biodistribution analysis. The overall PNP distribution at the aortic branch was visualized using a Keyence BZ-X700 fluorescence microscope. Tissue- and local distributions of PNP, damaged and non-damaged arteries were imaged by a confocal microscope (Leica), and the tissue sections were placed on polylysine-treated glass slides. Tissue sections on slides were dried at room temperature for 30 min before staining.
ing. For immunohistochemistry, frozen sections on slides were first washed with PBS to remove residual OCT medium and then subjected to standard haematoxylin and eosin (H&E) staining. Areas of intima and media were analysed using Image J. Luminal obliteration is defined as the intima area/the area within the internal elastic lamina. Statistical analysis was performed using one-way ANOVA. No statistical methods were used to predetermine sample size. Studies were done in a non-blinded fashion. All replicates represent different rats subjected to the same treatment (n = 6).

Staphylococcus aureus (MRSA252) bacteria adherence study. MRSA252 obtained from the American Type Culture Collection was cultured on tryptic soy broth (TSB) agar (Becton, Dickinson and Company) overnight at 37 °C. A single colony was inoculated in TSB medium at 37 °C in a rotary shaker. Overnight culture was refreshed in TSB medium at a 1:100 dilution at 37 °C under shaking for another 3 h until the OD_{600} of the culture medium reached approximately 1.0 (logarithmic growth phase). The bacteria were harvested by centrifugation at 5,000 g for 10 min and then washed with sterile PBS twice and then fixed with 10% formalin for 1 h. The fixed bacteria were washed with sterile PBS and suspended in 10% sucrose to a concentration of 1 × 10^8 CFU ml^{-1}. For the nanoparticle adhesion study, aliquots of 0.8 ml of 1 × 10^8 CFU ml^{-1} MRSA252 were mixed with 1.2 ml of 200 μg ml^{-1} DiD-loaded PNPs, RBCNPs or bare NPs in 10% sucrose for 10 min at room temperature. The bacteria were then isolated from unbound nanoparticles by repeated centrifugal washes in sucrose solution at 5,000 g. The purified bacteria were then suspended in 10% sucrose for replicate measurements (n = 3) by flow cytometric analysis and SEM imaging.

Antimicrobial efficacy study. For the *in vitro* antimicrobial efficacy study, 5 × 10^6 CFU of MRSA252 was mixed with 500 μl of 20 mg ml^{-1} nanoparticles (4 wt% vancomycin loading) in saline. As controls, equivalent amounts of bacteria were incubated in either PBS or free vancomycin (0.8 mg ml^{-1}). After 10 min of incubation, bacteria were isolated from the solution by centrifugation at 2,500g for 5 min. The collected bacteria pellet was resuspended with 500 μl of TSB culture medium and incubated for 5 h. The resulting samples were serially diluted in PBS and spotted on TSB agar plates. After 24 h of culturing, the colonies were counted to determine the bacteria count in each sample. Replicates represent separate bacterial aliquots incubated with the same formulation (n = 3).

For the *in vivo* antimicrobial efficacy study, vancomycin-loaded PNPs (PNP-Vanc) and vancomycin-loaded RBCNPs (RBCNP-Vanc) were suspended in 10% sucrose solution at 31.25 mg ml^{-1} (4 wt% vancomycin loading). An equivalent concentration of free vancomycin (1.25 mg ml^{-1}) was also suspended in 10% sucrose. Male CD-1 mice (Harlan Laboratories) weighing ~25 g were challenged intravenously with 6 × 10^6 CFU of MRSA252 suspended in 100 μl of PBS. 30 min after the bacteria injection, mice were randomly placed into separate groups and injected with 200 μl of PNP-Vanc, RBCNP-Vanc, free vancomycin (daily dosage: 10 mg kg^{-1} vancomycin), or PBS. To compare to the clinical dosing of vancomycin, a control group treated with twice daily dosing of 30 mg kg^{-1} free vancomycin was prepared (total daily dosage: 60 mg kg^{-1} vancomycin). The mice received their corresponding treatments from day 0 to 2. On day 3, blood was collected from the submandibular vein. The mice were then euthanized, perfused with PBS, and their organs were collected. The organs were homogenized using a Biospec Mini Beadbeater in 1 ml of PBS for 1 min, serially diluted in PBS by tenfold, and plated onto agar plates with a spotting volume of 50 μl. After 48 h of culture, bacterial colonies were counted to determine the bacterial load in each organ. Under the given experimental conditions, the detection limit was determined to be approximately 20 CFU per organ. Data points on the x-axis represent samples with no detectable bacterial colonies. It was confirmed that samples prepared from unchallenged mice had no detectable colonies. The data was tested for normal distribution using the Shapiro–Wilk test. For blood and heart, which contained non-normal distributions, statistical analysis was performed using Kruskal–Wallis test. For the other organs, in which all groups were normally distributed and variance criteria were met, statistical analysis was performed using one-way ANOVA. Grubbs’ test was used to detect and remove statistical outliers. No statistical methods were used to predetermine sample size. Studies were done in a non-blinded fashion. Replicates represent different mice subjected to the same treatment (n = 14).

©2015 Macmillan Publishers Limited. All rights reserved
Extended Data Figure 1 | Schematic preparation of PNPs. a, Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are enclosed entirely in plasma membrane derived from human platelets. The resulting particles possess platelet-mimicking properties for immunocompatibility, subendothelium binding, and pathogen adhesion. b, Schematic depicting the process of preparing PNPs.
Extended Data Figure 2 | PNP preparation and storage. a, Isolation of platelet rich plasma (PRP) was achieved by centrifugation at 100g. PRP was collected from the top layer (yellow) separated from the red blood cells (red, bottom layer). b, Collected human platelets under light microscopy, which possess a distinctive morphology from c, red blood cells. Scale bars, 10 µm. d, Transmission electron micrographs of platelet membrane vesicles and e, PNPs, both of which were negatively stained with 1% uranyl acetate. Scale bars, 200 nm. f, Dynamic light scattering measurements of PNPs in 10% sucrose show that the particles retain their size and stability after a freeze-thaw cycle and re-suspension upon lyophilization (n = 3). Bars represent means ± s.d. g, Transmission electron micrograph shows retentions of the core-shell structure of PNPs after a freeze-thaw cycle in 10% sucrose. Scale bar, 100 nm. h, Transmission electron micrograph shows retentions of the core-shell structure of PNPs upon resuspension after lyophilization in 10% sucrose. Scale bar, 100 nm.
Extended Data Figure 3 | Overall protein content on PNP s resolved by western blotting. Primary platelet membrane protein/protein subunits including CD47, CD55, CD59, αIIb, α2, α5, α6, β1, β3, GP Ibα, GPIV, GPV, GPVI, GPIX, and CLEC-2 were monitored in platelet rich plasma, platelets, platelet vesicles, and PNP s. Platelets derived from four different protocols, including commercial blood anti-coagulated in EDTA, freshly drawn blood anti-coagulated in EDTA, freshly drawn blood anti-coagulated in heparin, and transfusion-grade platelet rich plasma anti-coagulated in acid-citrate-dextrose (ACD), were examined to compare the membrane protein expression. Each sample was normalized to equivalent overall protein content before western blotting. It was observed that the PNP preparation resulted in membrane protein retention and enrichment very similar across the different platelet sources.
Extended Data Figure 4 | Platelet membrane sidedness on PNPs.

a, Transmission electron micrograph of PNPs primary-stained with anti-CD47 (intracellular), secondary-stained with immunogold, and negatively stained with 2% vanadium. The immunogold staining revealed presence of intracellular CD47 domains on collapsed platelet membrane vesicles, but not on PNPs.

b, Transmission electron micrograph of PNPs primary-stained with anti-CD47 (extracellular), secondary-stained with immunogold, and negatively stained with 2% vanadium. PNPs were shown to display extracellular CD47 domains.

c, 2 μm polystyrene beads were functionalized with anti-CD47 against the protein’s extracellular domain, anti-CD47 against the protein’s intracellular domain, or a sham antibody. Flow cytometric analysis of the different beads after DiD-loaded PNP incubation showed the highest particle retention to beads functionalized with anti-CD47 against the protein’s extracellular domain.

d, Normalized fluorescence intensity of PNP retention to the different antibody-functionalized beads. Bars represent means ± s.e.m.
Extended Data Figure 5 | PNP binding to collagen and extracellular matrix.
a–f, Collagen-coated tissue culture slides seeded with human umbilical vein endothelial cells (HUVECs) were incubated with PNP solution for 30 s. Fluorescence microscopy samples demonstrate differential PNP adherence to exposed collagen versus covered endothelial surfaces. a–c, Representative fluorescence images visualizing DiD-loaded PNPs (red), cellular cytosol (green), and cellular nuclei (blue). d–f, Images showing only the red and blue channels to highlight the differential localization of PNPs. Scale bar, 10 μm.

g, Fluorescence quantification of PNP per unit area on collagen and endothelial surfaces. Bars represent means ± s.d. (n = 10).
h, i, PNP adherence to arterial extracellular matrix (ECM) as visualized by SEM. h, SEM images of the ECM of a decellularized human umbilical cord artery. Left, scale bar, 1 μm; right, scale bar, 500 nm. i, SEM images of the ECM of a decellularized human umbilical cord artery after PNP incubation. Left, scale bar, 1 μm; right, scale bar, 500 nm.
Extended Data Figure 6 | Pharmacokinetics, biodistribution and safety of PNP s. a, DiD-loaded PNP s were injected intravenously through the tail vein of Sprague–Dawley rats. At various time points, blood was withdrawn via tail vein blood sampling for fluorescence quantification to evaluate the systemic circulation lifetime of the nanoparticles (n = 6). b, Biodistribution of the PNP nanoparticles in balloon-denuded Sprague–Dawley rats at 2 h and 48 h after intravenous nanoparticle administration through the tail vein (n = 6).

c, Comprehensive metabolic panel of rats after injections with human-derived PNP s and PBS (n = 6). The rats received intravenous injections of PNP s and PBS on day 0 and day 5, and the blood test conducted on day 10 did not reveal significant changes between the two groups, indicating normal liver and kidney functions after the PNP administration. All bars and markers represent means ± s.d.
Extended Data Figure 7 | PNP targeting of damaged vasculatures upon intravenous injection to rats with angioplasty-induced arterial denudation.

a. Fluorescence microscopy of the aortic branch revealed selective PNP binding to the denuded artery (right) as opposed to the undamaged artery (left) (PNP fluorescence in red).
b. Fluorescence images acquired from the control artery, which did not reveal PNP fluorescence upon focusing on either the endothelium (top) or the smooth muscle layer (bottom) (nuclei in blue).
c. Fluorescence images acquired from the denuded artery, which revealed significant PNP retention as fluorescent punctates (PNP fluorescence in red) above the smooth muscle layer.
d. Fluorescence image of arterial cross-section acquired from the control artery, which showed nuclei of endothelial cells above the collagen layer (autofluorescence in green) and an absence of PNP fluorescence.
e. Fluorescence image of arterial cross-section acquired from the denuded artery, which showed PNP retention as fluorescent punctates on the collagen layer (PNP fluorescence in red; collagen autofluorescence in green) and an absence of endothelial cell nuclei. All scale bars, 100 μm.
Extended Data Figure 8 | Characterizations of drug-loaded cell membrane cloaked nanoparticles.

a, Physicochemical properties of drug-loaded cell membrane cloaked nanoparticles.

	Size (nm)	ζ-potential (mV)	PDI	Drug loading (wt%)
PNP-docetaxel	113.4±1.2	-29.5±1.2	0.11	2.1±0.04
PNP-vancomycin	200.3±3.1	-30.2±1.0	0.28	4.0±0.23
RBCNP-vancomycin	202.3±2.4	-29.5±1.7	0.22	4.1±0.17

b, TEM visualization of docetaxel-loaded PNPs (PNP-Dtxl). Scale bar, 200 nm. **c**, Drug release profile of PNP-Dtxl compared to polyethylene glycol (PEG)-PLGA diblock nanoparticles of equivalent size and docetaxel loading (n = 3).

d, TEM visualization of vancomycin-loaded PNPs (PNP-Vanc). Scale bar, 200 nm. **e**, Drug release profiles of PNP-Vanc and RBCNP-Vanc (n = 3). Bars represent means ± s.d.
Extended Data Figure 9 | Treatment of an experimental rat model of coronary restenosis. a–e, H&E-stained arterial cross-sections reveal the vascular structure of non-damaged arteries (serving as baseline, a) and denuded arteries after treatment with PNP-Dtxl (b), PBS (c), PNP with no docetaxel content (d), or free docetaxel (e). Scale bar, 200 μm.
Extended Data Figure 10 | PNP adherence to MRSA252 bacteria. a, Flow cytometric analysis of MRSA252 bacteria after incubation with different DiD-loaded nanoformulations. b, Pellets of MRSA252 after incubation with DiD-loaded RBCNPs (left) and DiD-loaded PNPs (right) show differential retention of nanoformulation with MRSA252 upon pelleting of the bacteria. c, A pseudocoloured SEM image of PNPs binding to MRSA252 under high magnification (MRSA coloured in gold, PNP coloured in orange). Scale bar, 400 nm.