Association of a *TNIP1* Polymorphism with Vogt-Koyanagi-Harada Syndrome but Not with Ocular Behcet’s Disease in Han Chinese

Yanyun Shi¹, Yading Jia², Shengping Hou¹,³,⁴, Jing Fang¹, Yan Zhou¹, Aize Kijlstra⁵, Peizeng Yang¹,³,⁴*

¹ The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, ² Shanxi Eye Hospital, Taiyuan, Shanxi, China, ³ Chongqing Eye Institute, Chongqing, China, ⁴ Chongqing Key Laboratory of Ophthalmology, Chongqing, China, ⁵ University Eye Clinic Maastricht, Maastricht, Limburg, The Netherlands

Abstract

Objectives: The aim of the study was to investigate the association of TNFα-induced protein 3 interacting with protein 1 (*TNIP1*) gene polymorphisms with Vogt-Koyanagi-Harada (VKH) syndrome and Behcet’s disease (BD) in a Han Chinese population.

Methods: A total of 656 BD patients, 961 VKH syndrome patients and 1534 healthy controls were included in this two-stage case control study. Seven SNPs, including rs17728338, rs7708392, rs10036748, rs3762999, rs999556, rs4958881 and rs3792783, belonging to *TNIP1* were genotyped and analyzed by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The data were analyzed by using the χ² or Fisher’s exact test and corrected for multiple comparisons by the Bonferroni method.

Results: A significantly increased frequency of the GG genotype and a decreased frequency of the AG genotype of rs17728338 were found in VKH patients (Pc=0.038 OR=1.934, 95% CI =1.438–2.601). No significant difference was noted in allele or genotype frequencies of rs7708392, rs10036748, rs3762999, rs999556, rs4958881 and rs3792783, between VKH patients and healthy controls (Pc>0.05). No significant difference was noted in allele or genotype frequencies of the tested 7 SNPs between BD patients and healthy controls. Analysis of extraocular clinical findings, did not reveal an association of the *TNIP1* gene polymorphisms with BD or VKH syndrome subgroups.

Conclusion: A *TNIP1* polymorphism may be a risk factor for VKH syndrome in Han Chinese.

Introduction

TNFα-induced protein 3 interacting with protein 1 (*TNIP1*), located on chromosome 5q32-q33.1, encodes the A20 binding inhibitor of the NF-κB1 (ABIN1) protein. *TNIP1* is an important regulator of NF-κB activity, playing an important role in maintaining homeostasis of the immune system [1]. Recently, genome-wide association and replication analysis studies have shown that genes in the NF-κB pathway such as TNFα-induced protein 3 (*TNFAIP3*) and *TNIP1* are associated with several autoimmune diseases including systemic lupus erythematosus (SLE) [2–5], psoriasis [6–7], psoriatic arthritis (PsA) [8], systemic sclerosis (SSc), and rheumatoid arthritis (RA) [9–10].

Vogt-Koyanagi-Harada (VKH) syndrome and Behçet’s disease (BD), manifesting as bilateral panuveitis, are two of the most common uveitis entities encountered in China [11]. Numerous studies have indicated that intrinsic factors play an important role in the development of these diseases. BD and VKH syndrome present a familial aggregation and a geographic distribution. BD is particularly common in populations of the Far East and the Mediterranean basin along the ancient silk route and VKH syndrome is mostly observed in Asians, Amerindians and Hispanics [12]. Human leukocyte antigen (HLA) class genes have been shown to be strongly associated with BD and VKH syndrome in populations with different ethnic backgrounds. HLA-DRB1, HLA-DR4/DRw53 and HLA-DR1 are connected with the susceptibility to VKH syndrome in Japanese (90% of VKH patients have them) and the same results were found in Chinese, Indian, Korean, Mexican, and Hispanic patients [13–16]. HLA-B51/B5 is the most prominent immunogenetic susceptibility factor for BD in multiple ethnic groups [17].

However, HLA genes only account for part of the genetic-risk effect for VKH syndrome or Behçet’s disease, highlighting the fact that much of the heritable basis for these diseases remains unknown and implicating a possible role for non-HLA genes. Increasing evidence indicates that autoimmune diseases such as...
SLE, RA and Crohn’s disease share common risk genes with Behçet’s disease and VKH, including genes such as interleukin-23 receptor (IL23R) [10–20], protein tyrosine phosphatase non-receptor type 22 (PTPN22) [21–23] and signal transducer and activator of transcription 4 (STAT4) [24–25].

The aim of the present study was to investigate the association of TNIP1 gene variants with the risk for BD and VKH syndrome, which to our knowledge, has not yet been reported.

Materials and Methods

Patients

A total of 656 BD patients, 961 VKH syndrome patients and 1534 healthy controls were included in this two-stage study. All patients were recruited from the First Affiliated Hospital of Chongqing Medical University (Chongqing, China) or the Zhongshan Ophthalmic Center of Sun Yat-sen University (Guangzhou, China) and fulfilled the VKH syndrome and BD disease international criteria respectively [26–27]. All patients and controls belong to the Chinese Han population and were matched according to age and geographic area.

In this two-stage study, 377 BD, 374 VKH syndrome patients and 480 healthy controls were used to find out the susceptible SNPs (Pc<0.05) in the first stage study. In the second stage study, we added another 279 BD and/or 587 VKH syndrome patients and 1054 controls to replicate the associated SNPs identified in the first stage study. Clinical findings of BD and VKH syndrome patients are presented in Table 1 and Table 2. This study was approved by the Ethics Committee of the First Affiliated Hospital of Chongqing Medical University. Written informed consent was obtained from all the subjects after explaining the purpose of the study. All procedures were carried out in compliance with the principles of the Declaration of Helsinki.

SNP selection

SNP selection was based on published data. Seven SNPs of TNIP1, including rs17728338, rs7708392, rs10036748, rs3762999, rs999556, rs4958881 and rs3792783, were selected. These 7 SNPs have been proven to be associated with autoimmune diseases including SLE, psoriasis, psoriatic arthritis (PsA) and systemic sclerosis (SSc) [2–10]. The frequencies of these seven SNPs are higher than 0.10 in Chinese Han according to the dbSNP (http://www.ncbi.nlm.nih.gov/SNP/).

Genotyping

Peripheral blood samples were collected in ethylenediamine tetraacetic acid (EDTA) anti-coagulated tubes and kept at −80°C before used. Genomic DNA was extracted by the QIamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The target TNIP1 gene sequences were amplified by polymerase chain reaction (PCR) and the 7 SNPs were subsequently genotyped and analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis using primers, enzymes and conditions as shown in Table 3. The primers were designed using Primer Premier 5.0 software (Premier Biosoft International, Palo Alto, CA).

Randomly selected subjects (10% of all samples) were directly sequenced (Biomed, Beijing, China) to double check the validation of the PCR-RFLP results.

Statistical analysis

Data analysis was performed using an SPSS statistical package (version 17.0, SPSS Inc., Chicago, IL, USA). Genotype frequencies were calculated by direct counting. Chi-square analysis was used to test for deviation of genotype frequencies from Hardy–Weinberg equilibrium. The frequency of alleles and genotypes between patients and controls were compared using χ² test or Fisher’s exact test and the probability of an association was corrected with the Bonferroni method. P Bonferroni correction values of <0.05 were considered significant. Odds ratios (ORs) and 95% confidence intervals (95% CI) were also assessed.

Results

Genotype frequencies of tested seven SNPs in this study did not deviate from Hardy–Weinberg equilibrium in the case and control

Table 1. Clinical features of BD patients used for the first and second stage study.

Clinical features	BD patients in the first stage	%	BD patients in the second stage	%
Age at onset (years±SD)	Total(377)	33.6±9.0	Total(279)	33.7±8.3
Male	217	57.6	218	78.1
Female	160	42.4	61	21.9
Uveitis	377	100	279	100
Oral ulcer	355	94.2	266	95.3
Gentle ulcer	219	58.1	160	57.3
Hypopyon	95	25.2	75	26.9
Skin lisions	269	71.3	212	76.0
Positive pathergy test	104	27.6	32	11.5
Arthritis	57	15.1	25	9.0

doi:10.1371/journal.pone.0095573.t001
In the first stage study, 377 BD, 374 VKH syndrome patients and 480 healthy controls were randomly chosen from the whole patient and healthy control cohort to find out the susceptible SNPs (Pc < 0.05). The results showed that the frequencies of the GG genotype and G allele of rs17728338 were significantly increased in VKH patients (Bonferroni Pc = 0.019, OR = 2.265, 95% CI = 1.400-3.363; Pc = 0.014, OR = 2.170, 95% CI = 1.357-3.471; respectively). No significant difference was noted in allele or genotype frequencies of rs7708392, rs10036748, rs3762999, rs999556, rs4958881 and rs3792783, between VKH patients and healthy controls (Pc > 0.05). No significant difference was noted in allele or genotype frequencies of all tested 7 SNPs between BD patients and healthy controls. (Table 4)

In the second stage study, we replicated the association of the rs17728338 polymorphism using another set of 587 VKH patients and 1054 controls. Genotypes distribution and allele frequencies are shown in Table 5. The results showed a significantly increased frequency of the GG genotype and a decreased frequency of the AG genotype in VKH patients (Pc = 0.038; P < 0.05). The combined results also showed a significant association of SNP rs17728338 with VKH syndrome (P = 1.83 × 10^{-4}, OR = 1.934, 95% CI = 1.438–2.601).

Subdivision of the patients according to the extraocular clinical findings, did not reveal an association of the tested seven SNPs with BD or VKH syndrome subgroups.

Discussion

In this study we show an association between a TNIP1 rs17728338 gene polymorphism with VKH syndrome but not with BD. We found that the frequency of the AG genotype of rs17728338 was decreased in VKH patients, which suggests that it may play a protective role in the development of VKH syndrome in the Chinese Han population.

As a chronic multisystemic relapsing inflammatory disorder, VKH syndrome is characterized as a bilateral granulomatous panuveitis accompanied by meningitis, vitiligo, alopecia, poliosis, tinnitus and hearing loss [28–29]. BD is characterized as a relapsing uveitis accompanied by recurrent oral aphthous ulcers, genital ulcerations with mucocutaneous, articular, neurologic, urogenital and vascular manifestations [30]. Although clinical features of both diseases have been described comprehensively, their precise etiology and pathogenesis are still unclear. Other autoimmune diseases such as SLE, RA and psoriasis, which had been found with association with TNIP1 polymorphisms, may share autoimmune features and mechanism with VKH syndrome and Behcet’s disease (BD) [31].

TNIP1 is a newly discovered gene influencing susceptibility to multiple immune-related diseases [2–10]. One of the important functions of TNIP1 is to regulate NF-kB pathways. NF-kB pathways may promote the expression of genes and secretion of cytokines by human uveal melanocytes, which are considered antigen-presenting cells in human Vogt-Koyanagi-Harada disease [32]. TNIP1 can inhibit signaling pathways of various transmem-
Table 4. Frequencies of alleles and genotypes of TNIP1 polymorphisms in BD, VKH patients and controls in the first stage study.

SNPs	Genotype/allele	VKH (n = 374)	BD (n = 377)	Controls (n = 480)	P* / Pc*	OR(95%CI)	P* / Pcb	OR(95%CI)
rs17728338	GG	349(93.3)	342(90.7)	413(86.0)	0.001/0.019	2.265(1.400–3.363)	0.036/NS	1.585(1.028–2.445)
	AG	25(6.7)	35(9.3)	67(14.0)				
	G	72(19.6)	719(95.4)	893(93.8)	0.001/0.014	2.170(1.357–3.471)	0.115/NS	2.170(1.357–3.471)
	A	25(6.3)	35(4.6)	67(7.0)				
rs7708392	CC	186(49.7)	177(46.9)	244(50.8)	0.750/NS	0.957(0.730–1.254)	0.259/NS	0.856(0.653–1.121)
	CG	152(40.6)	168(44.8)	187(39.0)				
	GG	36(9.6)	32(8.5)	49(10.2)				
	C	52(70.1)	52(69.2)	67(70.3)	0.908/NS	0.988(0.801–1.217)	0.628/NS	0.950(0.772–1.169)
	G	224(29.9)	232(30.8)	285(29.7)				
rs10036748	TT	221(59.1)	223(59.2)	277(57.7)	0.684/NS	1.059(0.805–1.393)	0.987/NS	0.998(0.746–1.334)
	CT	138(36.9)	138(36.6)	183(38.1)				
	CC	15(4.0)	16(4.2)	20(4.2)				
	T	580(77.5)	584(77.5)	73(77.6)	0.707/NS	1.405(0.832–2.312)	0.739/NS	1.039(0.828–1.305)
	C	168(22.5)	170(22.5)	223(22.4)				
rs3762999	AA	223(59.6)	218(57.8)	295(61.5)	0.586/NS	0.926(0.702–1.221)	0.281/NS	0.860(0.653–1.132)
	AG	136(36.4)	142(37.7)	171(35.6)				
	GG	15(4.0)	17(4.5)	14(2.9)				
	A	582(77.8)	586(77.8)	761(79.3)	0.464/NS	0.917(0.727–1.157)	0.194/NS	0.859(0.682–1.081)
	G	166(22.2)	176(23.2)	199(20.7)				
rs9995556	AA	11(2.9)	13(3.4)	15(3.1)	0.877/NS	0.999(0.426–2.070)	0.693/NS	0.848(0.375–1.919)
	AG	132(35.8)	142(37.7)	171(35.6)				
	GG	23(6.1)	22(5.8)	29(6.1)				
	A	594(79.4)	586(77.7)	759(79.1)	0.860/NS	0.979(0.773–1.239)	0.502/NS	1.083(0.859–1.365)
	G	94(13.2)	102(26.8)	112(11.9)				
rs4958881	CT	40(10.6)	37(9.8)	71(14.8)	0.077/NS	0.690(0.456–1.043)	0.029/NS	0.627(0.411–0.957)
	TT	334(89.4)	340(90.2)	409(85.2)				
	C	40(5.3)	37(4.9)	71(7.4)	0.088/NS	0.707(0.474–1.055)	0.035/NS	0.646(0.429–0.973)
	T	708(94.7)	717(95.1)	889(93.6)				
rs3792783	CC	11(2.9)	12(3.2)	15(3.1)	0.877/NS	0.939(0.426–2.070)	0.962/NS	1.019(0.471–2.204)
	CT	125(33.4)	120(31.8)	168(35.0)				
	TT	238(63.6)	245(65.0)	297(61.9)				
	C	147(19.7)	144(19.1)	198(20.6)	0.619/NS	0.941(0.741–1.195)	0.432/NS	0.908(0.715–1.154)
	T	601(80.3)	610(80.9)	762(79.4)				

CI, confidence intervals; OR, odds ratios; NS, not significant; Pc value, the Bonferroni correction P values. Pc* value, the Bonferroni correction P values for VKH syndrome. Pcb value, the Bonferroni correction P values for BD. doi:10.1371/journal.pone.0095573.t004
branl receptors, such as the TNFα-receptor, epidermal growth factor receptor (EGF-R), toll-like receptors (TLR), nuclear receptors peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RARs) [33–35]. These receptors play key roles in regulating inflammation and inflammatory diseases.

A polymorphism of rs17728338 near TNIP1 was first reported to be associated with psoriasis in Americans from European ancestry and subsequently confirmed in other Caucasian populations with PsA [2] [22]. In our study, we genotyped 7 SNPs of TNIP1. One of these SNPs, rs17728338, was observed to be associated with VKH syndrome, whereby the frequency of the A allele was shown to be decreased in VKH syndrome patients. Whether the observed rs17728338 polymorphism has implications concerning the biological function of TNIP1 is not yet known as deserves further study. The other 6 SNPs were not associated with VKH although earlier studies showed that there was an association with autoimmune diseases such as SLE, RA and VKH.

We also investigated the relationship between the clinical features of VKH syndrome patients and TNIP1 polymorphisms. These clinical features include neck stiffness, tinnitus, alopecia, poliosis, dysacusia, scalp hypersensitivity, and vitiligo. No significant association could be detected between TNIP1 gene polymorphisms and the clinical features of VKH syndrome, but a larger sample size may be needed to resolve this issue.

There are limitations in our study. First, it is not clear whether the observed TNIP1 rs17728338 polymorphism has implications concerning the biological function of TNIP1. Second, we did not observe an association with TNIP1 gene polymorphisms with BD and it is possible that other relevant polymorphisms of this gene are associated with this uveitis entity. Furthermore the association of the TNIP1 gene association with VKH syndrome was only performed in a Chinese Han population and further studies are needed in other ethnic populations.

Author Contributions
Conceived and designed the experiments: YS YJ SH PY. Performed the experiments: YS SH JF YZ. Analyzed the data: YS SH JF. Contributed reagents/materials/analysis tools: YS SH JF YZ. Wrote the paper: YS SH AK PY.

References
1. Wagner S, Carpentier I, Rogov V, Kreike M, Ikeda F, et al. (2008) Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27: 3739–3745.
2. Gateva V, Sandling JK, Hori G, Taylor KE, Chung SA, et al. (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41: 1228–1233.
3. He CF, Liu YS, Cheng YL, Gao JP, Pan TM, et al. (2010) TNIP1, SLCO1A4, ETS1, RasGRPs and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus 19:1181–1186.
4. Kawasaki A, Ito S, Furukawa H, Hayashi T, Goto D, et al. (2010) Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study. Arthritis Res Ther 12: R174.
5. Zhong H, Li XL, Li M, Hao LX, Chen RW, et al. (2011) Replicated associations of TNFAIP3, TNIP1 and ETS1 with systemic lupus erythematosus in a southwestern Chinese population. Arthritis Res Ther 13: R196.
6. Nair RP, Duffffin KC, Helms C, Ding J, Stuart PE, et al. (2009) Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 41: 199–204.
7. Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, et al. (2010) Analyses identifies six new psoriasis susceptibility loci in the Chinese population. Nat Genet 42: 1005–1009.
8. Bowers J, Orozco G, Flynn E, Ho P, Bierer B, et al. (2011) Confirmation of TNIP1 and IL23R as susceptibility loci for psoriatic arthritis. Ann Rheum Dis 70: 1641–1644.
9. Alano T, Saad M, Dieudé P, Avouac J, Dutler HJ, et al. (2011) Genome-wide scan identifies PSORS8/C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 7: e1002091.
10. Zhang J, Chen Y, Shao Y, Wu Q, Guan M, et al. (2012) Identification of TNIP1 Polymorphisms by High Resolution Melting Analysis with Unlabelled Probe: Association with Systemic Lupus Erythematosus. Autoimmune Dis 2012: 265023.
11. Yang P, Zhang Z, Zhou H, Li B, Huang X, et al. (2005) Clinical patterns and characteristics of uveitis in a tertiary center for uveitis in China. Curr Eye Res 30: 943–948.
12. Sakane T, Takeno M, Suzuki N, Inaba GN (1999) Behc¸et’s disease. Engl J Med. 341: 1294–1291.
13. Damico FM, Bezerra FT, Silva GC, Gasparin F, Yamamoto JH (2009) New insights into Vogt-Koyanagi-Harada disease. Arq Bras Oftalmol 72: 413–420.
14. Weiz JM, Holland GN, Roer LN, Park MS, Yuje AJ, et al. (1995) Association between Vogt-Koyanagi-Harada syndrome and IL10 in Hispanic patients living in southern California. Ophthalmologica 102: 1102–1105.
15. Airellanes-Garcia L, Baptista N, Mora P, Ortega-Larroces G, Burguet A, et al. (1998) HLADR-B is strongly associated with Vogt-Koyanagi-Harada disease in Mexican Mestizo patients. Ocul Immunol Inflamm 6: 93–100.
16. Kim MH, Seong MC, Kwak NH, Yoo JS, Huh W, et al. (2000) Association of HLAD with Vogt-Koyanagi-Harada syndrome in Koreans. Am J Ophthalmol 129: 173–177.
17. de Menthon M, Lavalley MP, Mahlin C, Guillemin L, Mahr A (2009) HLA-B51/B5 and the risk of Behçet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum 61: 1287–1296.
18. Jiang Z, Yang P, Hou S, Li F, Zhou H (2010) Polymorphisms of IL23R and Vogt-Koyanagi-Harada syndrome in a Chinese Han population. Hum Immunol. 71: 414–417.
19. Kim ES, Kim SW, Moon CM, Park JJ, Kim TI, et al. (2012) Interactions between IL17A, IL23R, and STAT4 polymorphisms confer susceptibility to intestinal Behc¸et’s disease in Korean population. Life Sci 90: 740–746.
20. Mizuki N, Meguro A, Ota M, Ohno S, Shiozawa T, et al. (2010) Genome-wide association studies identify IL23R, IL12B, and IL10 as Behc¸et’s disease susceptibility loci. Nat Genet 42: 705–706.

Table 5. Frequencies of alleles and genotypes of TNIP1 polymorphisms in VKH patients and controls in the second stage and combined results.

Genotype/allele	VKH (n = 587)	Controls (n = 1054)	p value (OR, 95% CI)	P value combined (OR, 95% CI)	P value combined value
GG	548(93.3%)	935(88.9%)	0.002 (OR = 1.788, 95% CI = 1.227–2.606)	0.038	9.67 × 10^-6 (OR = 1.935 95% CI = 1.438–2.601)
AG	39(6.7%)	119(11.1%)			1.83 × 10^-4
G	1135(96.7%)	1993(94.5%)	0.042 (OR = 1.765, 95% CI = 1.221–2.553)	0.042	1.74 × 10^-5 (OR = 1.871, 95% CI = 1.400–2.444 × 10^-4)
A	39(3.3%)	119(5.5%)			
21. Horie Y, Kitaichi N, Katsuyama Y, Yoshida K, Miura T, et al. (2009) Evaluation of PTPN22 polymorphisms and Vogt-Koyanagi-Harada disease in Japanese patients. Mol Vis 15: 1115–1119.
22. Sahin N, Bicakcioglu M, Atagunduz P, Direskeneli H, Saruhan-Direskeneli G (2007) PTPN22 gene polymorphism in Behçet’s disease. Tissue Antigens 70: 432–434.
23. Baranathan V, Stanford MR, Vaughan RW, Kondeatis E, Graham E, et al. (2007) The association of the PTPN22 620W polymorphism with Behçet’s disease. Ann Rheum Dis 66: 1531–1533.
24. Yi L, Wang JC, Guo XJ, Gu YH, Tu WZ, et al. (2013) STAT4 is a genetic risk factor for systemic sclerosis in a Chinese population. Int J Immunopathol Pharmacol 26: 473–478.
25. Shen L, Liu R, Zhang H, Huang Y, Sun R, et al. (2013) Replication study of STAT4 rs7574865 G/T polymorphism and risk of rheumatoid arthritis in a Chinese population. Gene 526: 259–264.
26. Read RW, Holland GN, Rao NA, Tabbara KF, Ohno S, et al. (2001) Revised diagnostic criteria for Vogt-Koyanagi-Harada disease: report of an international committee on nomenclature. Am J Ophthalmol 131: 647–652.
27. Migliorini MD, Fedele S, Lo Russo L (2000) International diagnostic criteria and delay of diagnosis in Behçet’s disease. J Rheumatol 27: 2725.
28. Bordaberry MF (2010) Vogt-Koyanagi-Harada disease: diagnosis and treatments update. Curr Opin Ophthalmol 21: 430–435.
29. Fang W, Yang P (2008) Vogt-Koyanagi-Harada syndrome. Curr Eye Res 33: 517–523.
30. Krause I, Weinberger A (2008) Behçet’s disease. Curr Opin Rheumatol 20: 82–87.
31. Yuan J, Yu M, Cao AL, Chen X, Zhang LH, et al. (2015) Novel Epitope from CD22 Regulates Th1 and Th17 Cell Function in Systemic Lupus Erythematosus. PLoS One 8: e68572.
32. Hu DN, Chen M, Zhang DY, Ye F, McCormick SA, et al. (2011) Interleukin-1beta increases baseline expression and secretion of interleukin-6 by human uveal melanocytes in vitro via the p38 MAPK/NF-kappaB pathway. Invest Ophthalmol Vis Sci 52: 3767–3774.
33. Ramirez VP, Gurevich I, Anekevich BJ (2012) Emerging roles for TNIP1 in regulating post-receptor signaling. Cytokine Growth Factor Rev 23: 109–118.
34. Gurevich I, Zhang C, Francis N, Struzynsky CP, Livings SE, et al. (2013) Human TNF-a-induced protein 3-interacting protein 1 (TNIP1) promoter activation is regulated by retinoic acid receptors. Gene 515: 42–48.
35. Gurevich I, Zhang C, Encarnacao PC, Struzynski CP, Livings SE, et al. (2012) PPARy and NF-κB regulate the gene promoter activity of their shared repressor, TNIP1. Biochim Biophys Acta 1819: 1–13.