Cardiorespiratory fitness does not offset the increased risk of chronic obstructive pulmonary disease attributed to smoking: a cohort study

Setor K. Kunutsor · Sae Young Jae · Timo H. Mäkikallio · Jari A. Laukkanen

Received: 22 October 2021 / Accepted: 20 December 2021 / Published online: 5 February 2022
© The Author(s) 2022

Abstract
Though evidence suggests that higher cardiorespiratory fitness (CRF) levels can offset the adverse effects of other risk factors, it is unknown if CRF offsets the increased risk of chronic obstructive pulmonary disease (COPD) due to smoking. We aimed to evaluate the combined effects of smoking status and CRF on incident COPD risk using a prospective cohort of 2295 middle-aged and older Finnish men. Peak oxygen uptake, assessed with a respiratory gas exchange analyzer, was used as a measure of CRF. Smoking status was self-reported. CRF was categorised as low and high based on median cutoffs, whereas smoking status was classified into smokers and non-smokers. Multivariable-adjusted hazard ratios with confidence intervals (CIs) were calculated. During 26 years median follow-up, 119 COPD cases were recorded. Smoking increased COPD risk 10.59 (95% CI 6.64–16.88), and high CRF levels decreased COPD risk 0.43 (95% CI 0.25–0.73). Compared with non-smoker-low CRF, smoker-low CRF was associated with an increased COPD risk in multivariable analysis 9.79 (95% CI 5.61–17.08), with attenuated but persisting evidence of an association for smoker-high CRF and COPD risk 6.10 (95% CI 3.22–11.57). An additive interaction was found between smoking status and CRF (RERI = 6.99). Except for CRF and COPD risk, all associations persisted on accounting for mortality as a competing risk event. Despite a wealth of evidence on the ability of high CRF to offset the adverse effects of other risk factors, it appears high CRF levels have only modest attenuating effects on the very strong association between smoking and COPD risk.

Keywords Smoking · Cardiorespiratory fitness · Chronic obstructive pulmonary disease · Cohort study

Introduction
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the lungs that results in progressive and irreversible airflow obstruction [1]. It is the third leading cause of death globally; there were 3.23 million COPD-related deaths in 2019 [2]. Apart from being one of the leading causes of death, COPD is associated with substantial healthcare costs and recurrent hospitalizations and also a major cause of disability-adjusted life years [1, 3]. COPD represents three percent of the healthcare spending in Europe [4]. Though active smoking is the major risk factor for COPD, not all smokers develop COPD—it has been reported that 20–25% of smokers develop COPD [1]. The
prevalence of COPD in non-smokers has been estimated to be 4%, suggesting the existence of other risk factors [3]. Other important risk factors include occupational exposure (e.g., dust, fumes, chemicals), indoor air pollution, and infections [2, 3]. Though COPD is incurable, early diagnosis and treatment can slow the progression of symptoms. In addition, COPD is potentially preventable through modulation or reduction in exposure to underlying risk factors.

Cardiorespiratory fitness (CRF), often expressed as maximal oxygen consumption (VO2 max) in healthy individuals or peak VO2 in those with limitations to exercise, is a modifiable risk factor that can be improved through exercise training and increased physical activity [5], which is associated with reduced risk of COPD [6]. CRF is an independent predictor for all-cause and disease-specific morbidity and mortality [5]. High CRF levels have also been demonstrated to be associated a lower risk of respiratory diseases including COPD and death from COPD [7, 8]. CRF, which is dependent on both cardiovascular and pulmonary function, has recently been proposed as a vital sign and reported to be stronger than many traditional risk factors for COPD, such as type 2 diabetes mellitus and smoking [5]. There is growing consistent evidence that higher levels of CRF can attenuate or offset the adverse effects of other risk factors [9–11]. Furthermore, studies have demonstrated the protective effect of higher CRF against smoking-related cancer incidence and mortality [12, 13]. Given the overall evidence, we hypothesized that CRF could offset the increased risk of COPD due to smoking. In this context, we aimed to evaluate the combined effects of smoking status and CRF on the risk of incident COPD using a population-based prospective cohort of 2295 middle-aged and older Finnish men. We also evaluated the separate associations of smoking status and CRF with the risk of COPD to confirm previous evidence of the associations.

Methods

The study population was part of the Kuopio Ischemic Heart Disease (KIHD) population-based prospective cohort study, comprising a representative sample of middle-aged and older men aged 42–61 years recruited from Kuopio, eastern Finland. They had baseline examinations performed from March 1984 through December 1989. The study was approved by the Research Ethics Committee of the University of Eastern Finland, and each participant gave written informed consent. Participants completed self-administered health and lifestyle questionnaire for the assessment of smoking and other factors. Smoking was categorised as smokers and non-smokers. A participant was defined as a smoker if he had ever smoked regularly and had smoked cigarettes, cigars, or a pipe within the past 30 days. Peak oxygen uptake (VO2peak) was used as a measure of CRF, which was directly assessed using a computerized metabolic measurement system (Medical Graphics, MCG, St. Paul, Minnesota) during progressive exercise testing to volitional fatigue on an electrically braked cycle ergometer [14]. The standardized testing protocol included a 3-min warm-up at 50 watts (W); 1 W = 6.12 kg/min), followed by 20 W/min increases in workload with direct analyses of expired respiratory gases. We included all incident cases of COPD that occurred from study enrollment through 2014. No losses to follow-up were recorded in the KIHD study. Participants (using Finnish personal identification codes) are under continuous annual surveillance for the development of new outcome events. Incident COPD cases were collected by linkage to the National Hospital Discharge Register. Qualified physicians made the diagnoses of COPD which was based on clinical history, symptoms and spirometry findings (based on forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC)). The FEV1/FVC ratio < 0.70 of the participants’ best reading was used as the threshold for expiratory airway obstruction, i.e., COPD.

Multivariable-adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for incident COPD were estimated using Cox proportional hazard models. Selection of confounders was based on their previously established role as risk factors for COPD, evidence from previous research, or their potential as confounders based on known associations with COPD and observed associations with the exposures using the available data [15]. CRF was modelled as both categorical (tertiles) and continuous (per standard deviation (SD) increase) variables. Evaluation of the joint association of smoking status and CRF with COPD risk was based on the following four combinations of smoking status categories and median cutoffs for CRF: non-smoker-low CRF; non-smoker-high CRF; smoker-low CRF; and smoker-high CRF. Formal tests of interaction were used to assess if the two exposures are independent on the risk of COPD. Interactions between smoking status and CRF were examined on both the additive and multiplicative scales in relation to COPD risk. Additive interactions were assessed using the “relative excess risk due to interaction” (RERi), computed for binary variables as RERiHR = HR11 – HR10 − HR01 + 1 [16]. Multiplicative interactions were assessed using the ratio of HRs = HR11/(HR10xHR01) [16]. A positive additive interaction is indicated if RERi > 0 and a positive multiplicative interaction is indicated if the ratio of HRs > 1. All statistical analyses were conducted using Stata version MP 17 (Stata Corp, College Station, Texas).
Cardiorespiratory fitness does not offset the increased risk of chronic obstructive pulmonary…

Results

The overall mean (SD) age and CRF of study participants at baseline was 53 (5) years and 30.3 (8.0) ml/kg/min, respectively (Table 1). Age-standardized values of CRF based on methods previously suggested [17] are provided in Appendix 1. Smokers comprised 31.5% (723) of the study participants. During a median (interquartile range) follow-up of 26.0 (18.3–28.0) years, 119 incident cases of COPD occurred. Compared to non-smokers, smokers had an increased risk of COPD following adjustment for age, body mass index, history of type 2 diabetes, histories of coronary heart disease, asthma, chronic bronchitis and tuberculosis, alcohol consumption, energy intake, leisure-time physical activity, and socioeconomic status 11.39 (95% CI 7.16–18.11), which was minimally attenuated to 10.59 (95% CI 6.64–16.88) following further adjustment for CRF. A multivariable restricted cubic spline curve showed that the risk of COPD decreased continuously with increasing CRF across the range 25–65 ml/kg/min (P-value for nonlinearity = 0.95) (Fig. 1). The HR for COPD per 1 SD increase in CRF in analysis adjusted for the covariates above plus smoking status was 0.66 (95% CI 0.52–0.84) (Table 2). When the top tertile of CRF was compared to the bottom tertile, the corresponding HR for COPD was 0.43 (95% CI 0.25–0.73) (Table 2).

Crude cumulative hazard curves showed the risk for COPD was highest for smoker-low CRF group compared with other groups (P-value for log-rank test < 0.001; Fig. 2). Compared with non-smoker-low CRF, smoker-low CRF was associated with an increased risk of COPD in multivariable analysis 9.79 (95% CI 5.61–17.08), with attenuated but persisting evidence of an association for smoker-high CRF and COPD risk 6.10 (95% CI 3.22–11.57). Results of interaction analysis showed the RERI was 6.99 and the ratio of HRs was 0.72, indicating the presence of an additive interaction but absence of a multiplicative interaction.

Given the high mortality rate in the KIHD cohort, we included a fourth model in the association analysis to estimate the baseline cumulative subhazard of COPD considering all-cause mortality as a competing outcome to COPD. A total of 1112 deaths occurred during follow-up. In analyses including all-cause mortality as a competing risk event, there was still significant evidence of associations of smoking status and smoking status-CRF combinations (smoker-low CRF and smoker-high CRF) with COPD risk.

Table 1 Baseline characteristics of study participants

Characteristics	Mean (SD) or median (IQR) or n (%)
Cardiorespiratory fitness, ml/kg/min	30.3 (8.0)
Age, year	53 (5)
Alcohol consumption, g/week	31.5 (6.4–92.3)
Total energy intake, kJ/day	9919 (2589)
Leisure-time physical activity, kJ/day	1208 (631–1991)
History of type 2 diabetes	80 (3.5)
Current smoking	723 (31.5)
History of CHD	541 (23.6)
History of asthma	77 (3.4)
History of chronic bronchitis	163 (7.1)
History of tuberculosis	87 (3.8)
Physical measurements	
BMI, kg/m²	26.9 (3.5)
SBP, mmHg	134 (17)
DBP, mmHg	89 (10)
Socio-economic status	8.43 (4.25)
Blood biomarkers	
Total cholesterol, mmol/l	5.91 (1.07)
HDL-C, mmol/l	1.29 (0.30)
Fasting plasma glucose, mmol/l	5.34 (1.32)

BMI body mass index, CHD coronary heart disease, DBP diastolic blood pressure, HDL-C high-density lipoprotein cholesterol, IQR interquartile range, SD standard deviation, SBP systolic blood pressure.

Fig. 1 Restricted cubic spline of the hazard ratios of incident chronic obstructive pulmonary disease with cardiorespiratory fitness. Reference value for cardiorespiratory fitness is 17 ml/kg/min; dashed lines represent the 95% CIs for the spline model (solid line). Models were adjusted for age, body mass index, history of type 2 diabetes, prevalent coronary heart disease, history of asthma, history of chronic bronchitis, history of tuberculosis, alcohol consumption, energy intake, leisure-time physical activity, and socioeconomic status. COPD chronic obstructive pulmonary disease.
COPD risk, but the association was attenuated to null for CRF and COPD risk (Table 2).

To minimize the effects of potential reverse causation, we re-analysed the data on exclusion of the first five years of follow-up and the findings were similar to the main results (Appendix 2).

Comment

Our findings showed that smokers were about 11 times as likely to develop COPD than non-smokers, findings which confirm the well-established fact that smoking is the major risk factor for COPD. We have also confirmed the independent associations of elevated levels of CRF with a decreased risk of COPD, which was consistent with a linear dose–response relationship. New findings based on the joint associations of smoking status and CRF with the risk of COPD showed that the risk of COPD was substantially

Table 2 Separate and combined associations of smoking status and cardiorespiratory fitness with the risk of chronic obstructive pulmonary disease

Exposure categories	Events/total	Model 1	Model 2	Model 3	Model 4				
		HR (95% CI)	P-value						
Smoking status									
Non-smoker	25/1572	Ref.							
Smoker	94/723	12.57 (8.07–19.59)	< 0.001	11.39 (7.16–18.11)	< 0.001	10.59 (6.64–16.88)	< 0.001	7.72 (3.40–17.54)	< 0.001
CRF (ml/kg/min)									
Per 1 SD increase in CRF	119/2295	0.60 (0.48–0.74)	< 0.001	0.59 (0.46–0.74)	< 0.001	0.66 (0.52–0.84)	0.001	0.74 (0.50–1.10)	0.13
Tertile 1 (6.4–26.8)	62/765	Ref.							
Tertile 2 (26.9–33.2)	32/765	0.46 (0.30–0.71)	< 0.001	0.49 (0.31–0.76)	0.002	0.49 (0.31–0.77)	0.002	0.72 (0.29–1.79)	0.48
Tertile 3 (33.3–65.0)	25/765	0.36 (0.22–0.58)	< 0.001	0.34 (0.20–0.58)	< 0.001	0.43 (0.25–0.73)	0.002	0.61 (0.20–1.81)	0.37
Smoking status and CRF (ml/kg/min) combination									
Non-smoker-low CRF	17/733	Ref.		NA	NA	Ref.			
Non-smoker-high CRF	8/839	0.43 (0.18–1.00)	0.05	0.45 (0.19–1.07)	0.07	NA	NA	0.28 (0.06–1.27)	0.10
Smoker-low CRF	60/415	10.11 (5.88–17.37)	< 0.001	9.79 (5.61–17.08)	< 0.001	NA	NA	4.89 (1.82–13.15)	0.002
Smoker-high CRF	34/308	7.13 (3.92–12.97)	< 0.001	6.10 (3.22–11.57)	< 0.001	NA	NA	4.44 (1.42–13.89)	0.01

CI confidence interval, CRF cardiorespiratory fitness, HR hazard ratio, NA not applicable, ref reference, SD standard deviation

Model 1: adjusted for age

Model 2: model 1 plus body mass index, history of type 2 diabetes, prevalent coronary heart disease, history of asthma, history of chronic bronchitis, history of tuberculosis, alcohol consumption, energy intake, leisure-time physical activity, and socioeconomic status

Model 3: model 2 plus CRF for smoking status and smoking status for CRF

Model 4: model 3 plus all-cause mortality as a competing risk event

Fig. 2 Crude cumulative Kaplan–Meier curves for COPD during follow-up according to combined categories of smoking status and CRF. COPD chronic obstructive pulmonary disease, CRF cardiorespiratory fitness
Cardiorespiratory fitness does not offset the increased risk of chronic obstructive pulmonary disease in men...
References

1. King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med. 2015;4(1):68. https://doi.org/10.1186/s40169-015-0068-z.

2. WHO Global Health Estimates. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 15 Aug 2021.

3. Raherison C, Girodet PO. Epidemiology of COPD. Eur Respir Rev. 2009;18(114):213–21. https://doi.org/10.1183/09059180.00036609.

4. Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–65. https://doi.org/10.1164/rccm.201204-0596PP.

5. Billingsley H, Rodriguez-Miguelez P, Del Buono MG, Abbate A, Lavie CJ, Carbone S. Lifestyle interventions with a focus on nutritional strategies to increase cardiorespiratory fitness in chronic obstructive pulmonary disease, heart failure, obesity, sarcopenia, and frailty. Nutrients. 2019. https://doi.org/10.3390/nu11122849.

6. Fisher JE, Loft S, Ulrik CS, et al. Physical activity, air pollution, and the risk of asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;194(7):855–65. https://doi.org/10.1164/rccm.201510-2036OC.

7. Kunutsor SK, Laukkanen T, Laukkanen JA. Cardiorespiratory fitness and future risk of pneumonia: a long-term prospective cohort study. Ann Epidemiol. 2017;27(9):603–5. https://doi.org/10.1016/j.annepidem.2017.08.011.

8. Hansen GM, Marott JL, Holtermann A, Gyntelberg F, Lange P, Jensen MT. Midlife cardiorespiratory fitness and the long-term risk of chronic obstructive pulmonary disease. Thorax. 2019;74(9):843–8. https://doi.org/10.1136/thoraxjnl-2018-212821.

9. Jae SY, Heffernan KS, Kurl S, et al. Cardiorespiratory fitness, inflammation, and the incident risk of pneumonia. J Cardiopulm Rehabil Prev. 2021;41(3):199–201.

10. Jae SY, Kurl S, Bunsawat K, et al. Impact of cardiorespiratory fitness on survival in men with low socioeconomic status. Eur J Prev Cardiol. 2021;28(4):450–5. https://doi.org/10.1177/20477319001057.

11. Kokkinos P, Faselis C, Franklin B, et al. Cardiorespiratory fitness, body mass index and heart failure incidence. Eur J Heart Fail. 2019;21(4):436–44. https://doi.org/10.1002/ejhf.1433.

12. Vainselboim B, Lima RM, Kokkinos P, Myers J. Cardiorespiratory fitness, lung cancer incidence, and cancer mortality in male smokers. Am J Prev Med. 2019;57(5):659–66. https://doi.org/10.1016/j.amepre.2019.04.020.

13. Sui X, Lee DC, Matthews CE, et al. Influence of cardiorespiratory fitness on lung cancer mortality. Med Sci Sports Exerc. 2010;42(5):872–8. https://doi.org/10.1249/MSS.0b013e3181c47b65.

14. Kunutsor SK, Khan H, Laukkanen T, Laukkanen JA. Joint associations of sauna bathing and cardiorespiratory fitness on cardiovascular and all-cause mortality risk: a long-term prospective cohort study. Ann Med. 2018;50(2):139–46.

15. Groenwold RH, Klungel OH, Grobbee DE, Hoes AW. Selection of confounding variables should not be based on observed associations with exposure. Eur J Epidemiol. 2011;26(8):589–93. https://doi.org/10.1007/s10654-011-9606-1.

16. Li R, Chambless L. Test for additive interaction in proportional hazards models. Ann Epidemiol. 2007;17(3):227–36. https://doi.org/10.1016/j.anepidem.2006.10.009.

17. Kokkinos P, Faselis C, Franklin B, et al. Cardiorespiratory fitness, body mass index and heart failure incidence. Eur J Heart Fail. 2019. https://doi.org/10.1002/ejhf.1433.

18. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA, J Am Med Assoc. 2009;301(19):2024–35. https://doi.org/10.1001/jama.2009.681.

19. Artero EG, Lee DC, Lavie CJ, et al. Effects of muscular strength on cardiovascular risk factors and prognosis. J Cardiopulm Rehabil Prev. 2012;32(6):351–8. https://doi.org/10.1097/HCR.0b013e3182642688.

20. Laniado-Laborin R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21 century. Int J Environ Res Public Health. 2009;6(1):209–24. https://doi.org/10.3390/ijerph6010209.

21. Hopkinson NS, Polkey MI. Does physical inactivity cause chronic obstructive pulmonary disease? Clin Sci (Lond). 2010;118(9):565–72. https://doi.org/10.1042/CS20090458.

22. Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease: a population-based cohort study. Am J Respir Crit Care Med. 2007;175(5):458–63. https://doi.org/10.1164/rccm.200607-896OC.

23. Laukkanen JA, Lavie CJ, Khan H, Kurl S, Kunutsor SK. Cardiorespiratory fitness and the risk of serious ventricular arrhythmias: a prospective cohort study. Mayo Clin Proc. 2019;94(5):833–41. https://doi.org/10.1016/j.mayocp.2018.11.027.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.