DYNAMICAL PROPERTIES OF NONAUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY

ISMAEL MAROTO, CARMEN NÚÑEZ AND RAFAEL OBAYA

Departamento de Matemática Aplicada
Universidad de Valladolid, Paseo del Cauce 59
47011 Valladolid, Spain

(Communicated by Rafael de la Llave)

Abstract. A type of nonautonomous n-dimensional state-dependent delay differential equation (SDDE) is studied. The evolution law is supposed to satisfy standard conditions ensuring that it can be imbedded, via the Bebutov hull construction, in a new map which determines a family of SDDEs when it is evaluated along the orbits of a flow on a compact metric space. Additional conditions on the initial equation, inherited by those of the family, ensure the existence and uniqueness of the maximal solution of each initial value problem. The solutions give rise to a skew-product semiflow which may be noncontinuous, but which satisfies strong continuity properties. In addition, the solutions of the variational equation associated to the SDDE determine the Fréchet differential with respect to the initial state of the orbits of the semiflow at the compatibility points. These results are key points to start using topological tools in the analysis of the long-term behavior of the solution of this type of nonautonomous SDDEs.

1. Introduction. Functional differential equations of state-dependent delay type (SDDEs for short) have been object of active analysis during the last years, due in part to the high theoretical interest of this study, but mainly to the increasing number of models of applied sciences which respond to this pattern: see e.g. Hartung [6], Wu [19], Hartung et al. [7], Mallet-Paret and Nussbaum [13], Barbarossa and Walther [1], He and de la Llave [8], and Krisztin and Rezounenko [12], as well as the many references therein.

In this setting, the regularity properties required on the vector field to guarantee existence, uniqueness, and continuous variation of solutions of initial value problems are much more exigent than in the case of fixed delay or even time-dependent delay differential equations. Especially complex is the nonautonomous case: due to the time-dependence, the solutions do not generate a semiflow on the state space, and more sophisticated tools must be designed in order to use the methods of the topological dynamics in the analysis of the dynamical properties of the solutions. A detailed description of some of these methods can be found in Hale [9] and Sell and You [10]. To establish the bases for the use of these tools in the analysis of nonautonomous SDDEs is the global purpose of this paper.

2010 Mathematics Subject Classification. 37B55, 34K05, 54H20.
Key words and phrases. Nonautonomous FDEs, state-dependent delay, variational equation.
Let C and $W^{1,\infty}$ respectively represent the spaces of continuous and Lipschitz-continuous n-dimensional real functions on $[-r,0]$. Hartung analyzes in [56] the nonautonomous n-dimensional SDDE

$$
\dot{y}(t) = f(t,y(t),y(t-\tau(t,y(t))), \quad t \geq 0
$$

(1.1)

(where $y(t,s) := y(t+s)$ for $s \in [-r,0]$), and the associated initial value problems, given by $y_0 = x$ for $x \in W^{1,\infty}$. He establishes regularity conditions on the vector field $f: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ and on the delay $\tau: \mathbb{R} \times C \to [0,r]$ guaranteeing the local existence and uniqueness of the solutions $y(t,x)$ of the initial value problem, as well as the fact that the map $[-r,0] \to \mathbb{R}^n$, $s \mapsto y(t+s,x)$ belongs to $W^{1,\infty}$ for those values of (t,x) for which it is defined.

We have already mentioned that our global purpose is to describe a scenario on which the methods coming from the topological dynamics can be applied in the analysis of the long-term behavior of the solutions of (1.1). Let us describe our approach. Standard conditions on the temporal variation of the map

$$(f,\tau): \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \times C \to \mathbb{R}^n \times [0,r], \quad (t,y_1,y_2,v) \mapsto (f(t,y_1,y_2),\tau(t,v))$$

(which are satisfied in the uniformly almost-periodic case, but also in much more general situations), ensure that its hull Ω (which is defined as the closure in the compact open topology of the set of time-translated functions $(f,\tau)_t(s,y_1,y_2,v) := (f,\tau)(t+s,y_1,y_2,v)$ for t varying in \mathbb{R}) is a compact metric space. Its elements are functions

$$\omega = (\omega_1,\omega_2): \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \times C \to \mathbb{R}^n \times [0,r], \quad (t,y_1,y_2,v) \mapsto (\omega_1(t,y_1,y_2),\omega_2(t,v)).$$

In addition, the map $\mathbb{R} \times \Omega \to \Omega$, $(t, (\omega_1, \omega_2)) \mapsto (\omega_1, \omega_2) \cdot t$ given by time-translation (i.e., $(\omega_1, \omega_2) \cdot t)(s,y_1,y_2,v) = (\omega_1(t+s,y_1,y_2),\omega_2(t+s,v))$) defines a continuous flow on Ω. These conditions also ensure that the maps $F(\omega,y_1,y_2) = \omega_1(0,y_1,y_2)$ and $\tau(\omega,x) = \omega_2(0,x)$ for $\omega = (\omega_1, \omega_2)$ are continuous operators; see Hino et al. [9]. This procedure (designed by Bebutov around 1940) takes us to consider the family of nonautonomous SDDEs

$$\dot{y}(t) = F(\omega \cdot t,y(t),y(t-\tau(\omega \cdot t,y(t))), \quad t \geq 0$$

(1.2)

for $\omega \in \Omega$. Note that the initial equation is included in this one: just take $\omega = (f,\tau)$ (which in particular has a dense orbit in Ω). In addition, it turns out that any of the equations of the family satisfies the hypotheses assumed on the initial one. The great advantage of having this family of equations is that its solutions will allow us to define a semiflow of skew-product type on a suitable product space with base Ω.

As a matter of fact, we will take a family of the type (1.2) as starting point, without assuming that it comes from the single equation (1.1): Ω will simply be a compact metric space supporting a continuous flow, without further recurrence property (as the existence of a dense orbit on it). In this way, our framework is more general. The conditions that we will impose on F and τ are intended to ensure that each one of the equations of the family satisfied those of [5].

Our first purpose, carried out in Section 3, is to establish a global version of the fundamental Hartung’s result: we will show the existence and uniqueness of a maximal solution $y(t,\omega,x)$ of the equation (1.2) corresponding to ω with $y_0 = x \in W^{1,\infty}$, which is defined on a right-open interval $[-r,\beta_{\omega,x})$ with $0 < \beta_{\omega,x} \leq \infty$. We will also prove that $\beta_{\omega,x} = \infty$ if $y(t,\omega,x)$ is norm-bounded. As before, it turns out that the map $u(t,\omega,x)$ defined by $u(t,\omega,x)(s) := y(t+s,\omega,x)$ for $s \in [-r,0]$ belongs to $W^{1,\infty}$ whenever it is defined. We will show that $\Pi: \mathbb{R}^+ \times \Omega \times W^{1,\infty} \mapsto$
\(\Omega \times W^{1,\infty}, (t, \omega, x) \mapsto (\omega t, u(t, \omega, x))\), which is locally defined, determines what we call a pseudo-continuous semiflow: a possibly noncontinuous semiflow but with strong continuity properties, as the continuity of \(\Pi: \mathbb{R}^+ \times \Omega \times W^{1,\infty} \to \Omega \times C\); of the restriction \(\hat{\Pi}: [r, \infty) \times \Omega \times W^{1,\infty} \to \Omega \times W^{1,\infty}\); of the section \(\Pi_i: \Omega \times W^{1,\infty} \to \Omega \times W^{1,\infty}\) for any fixed time \(t\); and of the section \(\Pi_{\omega,x}: \mathbb{R}^+ \to \Omega \times W^{1,\infty}\) for any \((\omega, x)\) satisfying the compatibility condition \(\forall x \in C^1([r,0], \mathbb{R}^n)\) and \(\dot{x}(0^-) = F(\omega, x(0), x(-\tau(\omega, x)))\).

For further purposes we represent by \(C_0\) the set of points \((\omega, x)\) satisfying this compatibility property. These results can be easily extended to the continuous dependence with respect to parameters. A consequence of the previous properties is that the restriction of \(\Pi\) to any compact \(\Pi\)-invariant set \(K \subset \Omega \times W^{1,\infty}\) defines a global continuous semiflow. Section 3 also describes the Lipschitz variation of the solutions of a particular equation with respect to the initial data.

Our second purpose, carried out in Section 4, concerns the existence and regularity properties of the Fréchet differential of the solutions with respect to the state variable \(x\). We begin by analyzing the properties of the family of (linear) variational equations

\[
\dot{z}(t) = L(\Pi(t, \omega, x))z_t, \quad t \in [0, \beta_{\omega,x})
\]

for \((\omega, x) \in C_0\), where

\[
L(\omega, x)v := D_2F(\omega, x(0), x(-\tau(\omega, x)))v(0) + D_3F(\omega, x(0), x(-\tau(\omega, x)))v(-\tau(\omega, x))
\]

\[
- D_2F(\omega, x(0), x(-\tau(\omega, x)))\dot{x}(-\tau(\omega, x)) - D_2\tau(\omega, x)v
\]

for \((\omega, x) \in C_0\) and \(v \in C\). Note that the equation is nonautonomous, linear, and just time-dependent. We begin by analyzing the continuity properties of the maps \(C_0 \to \text{Lin}(W^{1,\infty}, \mathbb{R}^n), (\omega, x) \mapsto L(\omega, x)\) and \(C_0 \times C \to \mathbb{R}^n, (\omega, x, v) \mapsto L(\omega, x)v\).

These properties are one of the key points required to prove that, if \(z(t, \omega, x, v)\) represents the solution of (1.3) agreeing with \(v \in W^{1,\infty}\) in \([-r,0]\), and \(w(t, \omega, x, v)(s) := z(t + s, \omega, x, v)\) for \(s \in [-r,0]\), then the map \((t, \omega, x, v) \mapsto (\Pi(t, \omega, x), w(t, \omega, x, v))\) defines a new pseudo-continuous semiflow on \(K \times W^{1,\infty}\) (linear in this case), where \(K\) is any compact \(\Pi\)-invariant subset of \(\Omega \times W^{1,\infty}\). The importance of this result relies on the fact that \(w(t, \omega, x, v) = u_x(t, \omega, x)v\); that is, that \(w(t, \omega, x, \cdot)\) represents the differential (in the Fréchet sense, as a matter of fact) with respect to the state variable of the \(\Pi\)-semiorbit corresponding to a compatibility point. This last equality concerning the map \(u_x(t, \omega, x): W^{1,\infty} \to W^{1,\infty}\) is proved for the local solution by Hartung in 5. For the sake of completeness we include in Section 4 some steps of the proof adapted to our setting, since they are relevant to understand the regularity properties of the pseudo-continuous semiflow generated by \(u_x\). These properties mean that \(u_x(t, \omega, x)\) has full dynamical sense, as we will explain in the next paragraph. An in-depth analysis of some additional regularity properties of \(u_x(t, \omega, x)\) completes the section, and the paper.

In order to see that these results give indeed form to a scenario in which the topological dynamical methods can be applied in the analysis of nonautonomous SDEEs, we mention some of their consequences. The restriction of the pseudo-continuous semiflow \(\Pi\) to any positively invariant compact set \(K \subset \Omega \times W^{1,\infty}\) determines a continuous semiflow on \(K\). If, in addition, the points of \(K\) satisfy the compatibility condition previously mentioned, the solutions of the family of linearized equations determines the usually so-called linearized semiflow of \(\Pi\) along the semiorsbits of \(K\), namely \(\Pi^k: \mathbb{R}^+ \times K \times W^{1,\infty} \to K \times W^{1,\infty}, (t, \omega, x, v) \mapsto (\Pi(t, \omega, x)u_x(t, \omega, x)v)\). These results, also included on Sections 3 and 4, will be the starting point for the
analysis of long-term dynamics of the orbits of \(K \), for which we can make use of: the properties of the linear pseudo-continuous semiflow \(\Pi^L \); and the properties of the continuous discrete semiflows given by the iteration of the continuous map \(\Pi^L \) for any \(t > 0 \). These and other questions are developed in [14]. In turn, all these results, combined with techniques of monotone systems (also new in the case of SDDEs) can be applied in the description of applied models, as that of a biological neural network: see [15].

We close this introduction by remarking that some authors consider different formulations providing different properties of regularity. Let us mention some of them. Walther studies in [17] [18] autonomous SDEs defined by a continuously differentiable vector field \(F: U \subset C^1([-r, 0], \mathbb{R}^n) \rightarrow \mathbb{R}^n \) satisfying mild smoothness conditions; his phase space is \(\{ x \in C^1([-r, 0], \mathbb{R}^n) \mid \dot{x}(0^-) = F(x_t) \} \) endowed with the structure of \(C^1 \)-manifold. Hartung proves in [6] the existence of the linearized map \(u(t, x): W^{1,\infty} \rightarrow C \) for every \(x \in \Omega \times W^{1,\infty} \) and every \(v \in W^{1,\infty} \) when \((d/dt)(t - \sigma(t, u(t, x))) > \rho > 0 \) for every \(t \). If this inequality is globally satisfied, then the map \(U \rightarrow C, (t, x) \mapsto u(t, x) \) is differentiable with respect to the initial data in the complete domain \(U \) of \(F \). A similar approach is used by Chen et al. in [2], where the state-dependent delay is supposed to satisfy an ordinary differential equation given by a vector field which is bounded above by a constant \(\rho^* < 1 \). Properties of regularity of the semiflow are used by Hu and Wu in [10] and by Hu et al. in [11] in order to investigate the Hopf-bifurcation of one-parametric families of SDDEs as well as the global continuation of the periodic solutions. And He and de la Llave use in [8] the parameterization method in order to construct quasi-periodic solutions of quasi-periodic SDDEs, which are defined as the \(\varepsilon \)-perturbation of an hyperbolic family of ordinary differential equations.

2. Basic notions on topological dynamics. Let \(\Omega \) be a complete metric space. A continuous map \(\sigma: \Omega \times \Omega \rightarrow \Omega \), \((t, \omega) \mapsto \sigma(t, \omega) =: \sigma(\omega) \) satisfying

\begin{align*}
(\text{f1}) & \quad \sigma_0 = \Id \\
(\text{f2}) & \quad \sigma_{t+l} = \sigma_t \circ \sigma_l,
\end{align*}

for \(t, l \in \mathbb{R} \) in the case of [12], defines a real continuous flow \((\sigma, \Omega, \sigma, \mathbb{R})\). The orbit of the point \(\omega \in \Omega \) is the set \(\{ \sigma^t(\omega) \mid t \in \mathbb{R} \} \). A subset \(\mathcal{M} \subseteq \Omega \) is \(\sigma \)-invariant if \(\sigma_t(\mathcal{M}) = \mathcal{M} \) for every \(t \in \mathbb{R} \). The flow is local if the map \(\sigma \) is defined, continuous, and satisfies \([\text{f1}]\) and \([\text{f2}]\) (whenever it makes sense) on an open set \(\mathcal{O} \supseteq \{ 0 \} \times \Omega \).

Let us represent \(\mathbb{R}^+ := \{ t \in \mathbb{R} \mid t \geq 0 \} \). If \(\sigma: \mathbb{R}^+ \times \Omega \rightarrow \Omega, (t, \omega) \mapsto \sigma(t, \omega) \) is a continuous map which satisfies the properties \([\text{f1}]\) and \([\text{f2}]\) for all \(t, l \in \mathbb{R}^+ \), then \((\Omega, \sigma, \mathbb{R}^+)\) is a real continuous semiflow. The set \(\{ \sigma^t(\omega) \mid t \geq 0 \} \) is the (positive) semiorbit of the point \(\omega \in \Omega \). A subset \(\mathcal{M} \subseteq \Omega \) is positively \(\sigma \)-invariant if \(\sigma_t(\mathcal{M}) \subseteq \mathcal{M} \) for all \(t \geq 0 \). The semiflow is local if the map \(\sigma \) is defined, continuous, and satisfies \([\text{f1}]\) and \([\text{f2}]\) (whenever it makes sense) on an open subset \(\mathcal{O} \subseteq \mathbb{R}^+ \times \Omega \) containing \(\{ 0 \} \times \Omega \).

Let \((\Omega, \sigma, \mathbb{R}^+)\) be a global semiflow on a compact metric space \(\Omega \), and let \(X \) be a Banach space. We denote \(\omega \cdot t := \sigma^t(\omega) = \sigma(t, \omega) \). A local semiflow \((\Omega \times X, \Pi, \mathbb{R}^+)\) is a skew-product semiflow with base \((\Omega, \sigma, \mathbb{R}^+)\) and fiber \(X \) if it takes the form

\[\Pi: U \subset \mathbb{R}^+ \times \Omega \times X \rightarrow \Omega \times X, \quad (t, \omega, x) \mapsto (\omega \cdot t, u(t, \omega, x)). \]

Property \([\text{f2}]\) above (with \(\Omega \times X \) instead of \(\Omega \)) means that \(u \) satisfies the cocycle property \(u(t + l, \omega, x) = u(t, \omega \cdot l, u(l, \omega, x)) \) whenever the right-hand function is defined. A global skew-product semiflow \(\Pi \) is linear if it takes the form
\(\Pi: \mathbb{R}^+ \times \Omega \times X \to \Omega \times X, \) \((t, \omega, x) \mapsto (\omega \cdot t, \phi(t, \omega) x) \), where \(\phi(t, \omega) \) is a bounded linear operator on \(X \); in particular, \(u(t, \omega, x) \) is linear in \(x \) for each \((t, \omega) \in \mathbb{R}^+ \times \Omega \).

We end this short section by fixing some notation. Given two Banach spaces \((X, \| \cdot \|_X)\) and \((Y, \| \cdot \|_Y)\), we represent by \(\text{Lin}(X, Y) \) the set of bounded linear maps \(\phi: X \to Y \) equipped with the operator norm \(\| \phi \|_{\text{Lin}(X, Y)} = \sup_{\|x\|_X = 1} \| \phi(x) \|_Y \). Let us fix \(r > 0 \). The set \(C \) represents the Banach space of continuous functions \(C([-r, 0], \mathbb{R}^n) \) equipped with \(\| \psi \| := \sup_{s \in [-r, 0]} \| \psi(s) \|_n \), where \(\| \cdot \|_n \) is the Euclidean norm in \(\mathbb{R}^n \). The subset \(C^1 \subset C \) is given by the functions which have continuous derivative on \([-r, 0] \) (one-sided derivatives at the end points). The set \(L^\infty \) is the space of Lebesgue-measurable functions \(\psi: [-r, 0] \to \mathbb{R}^n \) which are essentially bounded; i.e., for which there exists \(k \geq 0 \) such that the set \(\{ x \in [-r, 0] \mid \| \psi(x) \| > k \} \) has zero measure. The norm on \(L^\infty \), which is denoted by \(\| \cdot \|_{L^\infty} \), is defined as the infimum of the set of real numbers \(k \geq 0 \) with the previous property. The set \(W^{1, \infty} \) is the Banach space of Lipschitz-continuous functions \(\psi: [-r, 0] \to \mathbb{R}^n \) equipped with the Lipschitz norm \(\| \psi \|_{W^{1, \infty}} := \max \{ \| \psi \|_C, \| \psi \|_{L^\infty} \} \). Finally, given a continuous function \(x: [-r, \gamma) \to \mathbb{R}^n \) for \(\gamma > 0 \) and a time \(t \in [0, \gamma) \), we denote by \(x_t \in C \) the function defined by \(x_t(s) = x(t + s) \) for \(s \in [-r, 0] \).

3. State-dependent delay differential equations. Let \((\Omega, \sigma, \mathbb{R})\) be a continuous flow on a compact metric space, and let us represent \(\omega \cdot t = \sigma(t, \omega) \). Given two maps \(F: \Omega \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) and \(\tau: \Omega \times C \to [0, r] \), we consider the family of nonautonomous SDDEs

\[
\dot{y}(t) = F(\omega \cdot t, y(t), y(t - \tau(\omega \cdot t, y_t))), \quad t \geq 0,
\]

for \(\omega \in \Omega \). The derivative at \(t = 0 \) is the right-hand derivative. It has been explained in the Introduction the way in which one of this families may arise from one of its equations, via the hull procedure. We have also mentioned that if this is the case, at least one of the elements \(\omega \in \Omega \) has a dense orbit. But recall that we are not assuming this fact here: we work in the most general case.

The conditions on \(F \) and \(\tau \) which we will assume are

H1 \(F: \Omega \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) is continuous, and its partial derivatives w.r.t. its second and third arguments exist and are continuous on \(\Omega \times \mathbb{R}^n \times \mathbb{R}^n \); and

H2 \(\tau: \Omega \times C \to [0, r] \) is continuous and differentiable w.r.t. its second argument, and the map \(D_2 \tau: \Omega \times C \to \text{Lin}(C, \mathbb{R}) \) is continuous.

Remarks 3.1. 1. Note that \(\text{H2} \) ensures the next property: \(\tau \) is locally Lipschitz-continuous in the sense that, for every compact subset \(K \subset \Omega \times C \), there exists a constant \(L_1 = L_1(K) > 0 \) such that

\[
|\tau(\omega, x_1) - \tau(\omega, x_2)| \leq L_1 \| x_1 - x_2 \|_C \quad \text{for all } (\omega, x_1) \text{ and } (\omega, x_2) \text{ in } K.
\]

In order to check this assertion, we take a compact subset \(K \subset \Omega \times C \) and note that the set \(\tilde{K} := \{ (\omega, s x_1 + (1 - s) x_2) \mid (\omega, x_1), (\omega, x_2) \in K \text{ and } s \in [0, 1] \} \) is also compact in \(\Omega \times C \). We define \(L_1 = L_1(K) := \sup \{ \| D_2 \tau(\omega, \bar{x}) \|_{\text{Lin}(C, \mathbb{R})} \mid (\omega, \bar{x}) \in \tilde{K} \} \); condition \(\text{H2} \) ensures that \(L_1 \) is finite. Then,

\[
|\tau(\omega, x_1) - \tau(\omega, x_2)| \leq \left| \int_0^1 D_2 \tau(\omega, s x_1 + (1 - s) x_2)(x_1 - x_2) \, ds \right| \leq L_1 \| x_1 - x_2 \|_C
\]

whenever \((\omega, x_1) \) and \((\omega, x_2) \) belong to \(K \), as asserted.
2. Having in mind the previous remark, it is easy to check that each one of the equations of the family satisfies the conditions A1 and A2 (adapted to our setting) assumed by Hartung in [3]. Therefore, all his local results may be applied.

Theorem 3.3 summarizes the dynamical properties of the solutions of the family (3.1). A key role is played by the set of pairs "(equation, initial datum)" which satisfy the compatibility condition,

\[
C_0 = \{(\omega, x) \in \Omega \times C^1 \mid \dot{x}(0^-) = F(\omega, x(0), x(-\tau(\omega, x)))\}. \tag{3.2}
\]

Remark 3.2. As a matter of fact, the continuous differentiability properties of \(F\) and \(\tau\) required in conditions [H1] and [H2] can be weakened for Theorem 3.3 in the line of conditions A1(i)&(ii) and A2(i)&(ii) of [3].

Theorem 3.3. Suppose that conditions [H1] and [H2] hold. Then,

(i) for \(\omega \in \Omega\) and \(x \in W^{1,\infty}\), there exists a unique maximal solution \(y(t, \omega, x)\) of the equation (3.1) corresponding to \(\omega\) satisfying \(y(s, \omega, x) = x(s)\) for \(s \in [-r, 0]\), which is defined for \(t \in [-r, \beta_{\omega, x}]\) with \(0 < \beta_{\omega, x} \leq \infty\). In particular, \(y(t, \omega, x)\) is continuous on \([-r, \beta_{\omega, x}]\) and satisfies (3.1) on \((0, \beta_{\omega, x})\), and there exists the one-sided derivative \(\dot{y}(0^+, \omega, x) = F(\omega, x(0), x(-\tau(\omega, x)))\).

Let us define \(u(t, \omega, x)(s) := y(t + s, \omega, x)\) for \((\omega, x) \in \Omega \times W^{1,\infty}\), \(t \in [0, \beta_{\omega, x}]\), and \(s \in [-r, 0]\). Then,

(ii) \(u(t, \omega, x) \in W^{1,\infty}\) for all \(t \in [0, \beta_{\omega, x}]\).

(iii) If \(\sup_{t \in [0, \beta_{\omega, x}]} \|u(t, \omega, x)\|_C < \infty\), then \(\beta_{\omega, x} = \infty\).

Let us further define \(C_0 \subset \Omega \times W^{1,\infty}\) by (3.2) and

\[
\begin{align*}
\mathcal{U} & := \{(t, \omega, x) \mid (\omega, x) \in \Omega \times W^{1,\infty}, \ t \in [0, \beta_{\omega, x})\} \subset \mathbb{R}^+ \times \Omega \times W^{1,\infty}, \\
\Pi & : \mathcal{U} \to \Omega \times W^{1,\infty}, \ (t, \omega, x) \mapsto (\omega, t, u(t, \omega, x)), \\
\tilde{\mathcal{U}} & := \{(t, \omega, x) \in \mathcal{U} \mid t \geq r\} \subset \mathbb{R}^+ \times \Omega \times W^{1,\infty}, \\
\mathcal{U}^0 & := \{(t, \omega, x) \mid (\omega, x) \in C_0, \ t \in [0, \beta_{\omega, x})\} \subset \mathbb{R}^+ \times \Omega \times W^{1,\infty},
\end{align*}
\tag{3.3}
\]

and provide \(\mathcal{U}, \tilde{\mathcal{U}}, C_0\) and \(\mathcal{U}^0\) with the respective subspace topologies. Then,

(iv) the set \(\mathcal{U}\) is open in \(\mathbb{R}^+ \times \Omega \times W^{1,\infty}\), and \(\Pi\) satisfies conditions (H1) and (H2) of Section 2 (wherever it makes sense, and with \(\Omega\) replaced by \(\Omega \times W^{1,\infty}\)).

(v) The map \(\mathcal{U} \to \Omega \times C^1, \ (t, \omega, x) \mapsto (\omega t, u(t, \omega, x))\) is continuous.

(vi) The map \(\tilde{\mathcal{U}} \to \Omega \times W^{1,\infty}, \ (t, \omega, x) \mapsto (\omega t, u(t, \omega, x))\) is continuous.

(vii) Let us fix \(\bar{\ell} \geq 0\) with \(\mathcal{U}_{\bar{\ell}} := \{(\omega, x) \mid (\bar{\ell}, \omega, x) \in \mathcal{U}\}\) nonempty. Then the map \(\mathcal{U}_{\bar{\ell}} \to \Omega \times W^{1,\infty}, \ (\omega, x) \mapsto (\omega \bar{\ell}, u(\bar{\ell}, \omega, x))\) is continuous.

(viii) The map \(\mathcal{U}_0^0 \to C_0 \subset \Omega \times W^{1,\infty}, \ (t, \omega, x) \mapsto (\omega t, u(t, \omega, x))\) is continuous.

(ix) If \(\sup_{t \in [0, \infty]} \|u(t, \omega, x)\|_C < \infty\), then the set \(\{(\omega t, u(t, \omega, x)) \mid t \in [r, \infty)\}\subset \Omega \times W^{1,\infty}\) is relatively compact.

Proof: (i)&(ii) Let us fix \((\omega, x) \in \Omega \times W^{1,\infty}\). Theorem 1 of [3] proves the existence of a constant \(\delta > 0\) and a map \([-r, \delta] \to \mathbb{R}^n, \ t \mapsto y(t, \omega, x)\) satisfying \(y(s, \omega, x) = x(s)\) for \(s \in [-r, 0]\); and equation (3.1) on \([0, \delta]\) with \(\dot{y}(0, \omega, x)\) and \(\dot{y}(\delta, \omega, x)\) replaced by \(\dot{y}(0^+, \omega, x)\) and \(\dot{y}(0^-, \omega, x)\). It also proves that \(u(t, \omega, x) \in W^{1,\infty}\). The classical method of prolongation of solutions outside any right-closed interval shows the existence of maximal solution defined on a right-open interval. The details are left to the reader.
(iii) Assume that \(\sup_{t \in [0, \beta]} \| u(t, \omega, x) \|_{C} =: c_{0} < \infty \) for a point \((\omega, x) \in \Omega \times W^{1,\infty}\), and, for contradiction, that \(\beta := \beta_{\omega, x} < \infty \). We will prove that \(y(t, \omega, x) \) exists on \([-r, \beta]\) and satisfies (3.1) on \([0, \beta]\): as indicated in (i), this contradicts the definition of \(\beta \). Recall that the derivatives at the edge points are one-sided.

It follows from \(x \in W^{1,\infty} \) and from \([H1]\) that \(|\dot{y}(t, \omega, x)| \leq c_{1} \) for Lebesgue-a.a. \(t \in [-r, 0] \) and all \(t \in [0, \beta] \), which means that \(\sup_{t \in [0, \beta]} \| u(t, \omega, x) \|_{W^{1,\infty}} =: c_{2} < \infty \). We take \((t_{m}) \uparrow \beta\) and note that the previous properties allow us to use Arzelà–Ascoli theorem in order to find a subsequence \((t_{m})\) and an element \(v \in C\) with \(v = \lim_{k \to \infty} u(t_{k}, \omega, x) \) in the \(\| \cdot \|_{C}\)-topology. It is easy to check that \(v(s) = y(\beta + s, \omega, x) \) for \(s \in [-r, 0) \). In addition, \(v(0) = \lim_{s \to 0^{-}} y(\beta + s, \omega, x) \). We define \(y(\beta, \omega, x) := v(0) \), so that we get a function \(y(t, \omega, x) \) defined and continuous on \([-r, \beta]\) and satisfying (3.1) on \([0, \beta]\). Note that the (extended) function \(y \) determines the value of the limit of \((u(t_{k})) \) in \(C \) irrespectively of the choice of the initial sequence \((t_{m})\). Therefore there exists \(u(\beta, \omega, x) := \lim_{s \to 0^{-}} u(\beta + s, \omega, x) = v \) in \(C \).

If \(s \in (-r, 0) \cap (-\beta, 0) \), then there exists \(\bar{y}(s + \beta, \omega, x) \). Using the previous properties together with \([H2]\) and \([H1]\) we conclude that there exists \(\lim_{s \to 0^{-}} \bar{y}(s + \beta, \omega, x) = F(\omega, \beta, y(\beta, \omega, x), y(\beta - \tau(\omega, \beta, y(\beta, \omega, x)), \omega, x)) \). Finally, the existence of the limit yields the existence of the left-side derivative \(\dot{y}(\beta^{-}) \), with \(\dot{y}(\beta^{-}) = \lim_{s \to 0^{-}} \dot{y}(s + \beta, \omega, x) \). The last two equalities complete the proof of the first assertion, and hence that of (iii).

(iv)&(v) We will first prove these properties under the assumption that \(F \) is bounded, which we will remove later.

An easy contradiction argument using property (iii) shows that \(\beta_{\omega, x} = \infty \) for all \((\omega, x) \in \Omega \times W^{1,\infty}\). Therefore, \(U = \mathbb{R}^{+} \times \Omega \times W^{1,\infty} \), and hence is open. It is obvious that \(\Pi \) satisfies \([H1]\). The uniqueness of solutions ensured by (i) implies \(y(t + l, \omega, x) = y(t, \omega, l, u(l, \omega, x)) \), so that also \([H2]\) holds for \(t \geq 0 \) and \(l \geq 0 \); (iv) is proved.

Now let us check that, if \((\omega, \bar{x}) = \lim_{m \to \infty} (\omega_{m}, x_{m}) \) in \(\Omega \times W^{1,\infty} \) and \(T > 0 \), then \(y(t, \omega, \bar{x}) = \lim_{m \to \infty} y(t, \omega_{m}, x_{m}) \) uniformly in \(t \in [-r, T] \). Since \(F \) is bounded, so is \(\{ y(t, \omega_{m}, x_{m}) \} \) \(t \in [0, T] \) and \(m \in \mathbb{N} \). An application of Arzelà–Ascoli theorem shows that any subsequence of \((y_{m})\), where \(y_{m}(t) := y(t, \omega_{m}, x_{m}) \), has in turn a subsequence \((y_{k})\) which converges to a limit \(\bar{y} \) uniformly on \([-r, T] \). Our goal is to prove that \(\bar{y}(t) = y(t, \omega, \bar{x}) \) for \(t \in [-r, T] \): if \(t \in [-r, 0] \), \(\bar{y}(t) = \lim_{k \to \infty} y_{k}(t) = \bar{x}(t) = y(t, \omega, \bar{x}) \); and if \(t \in (0, T] \), then

\[
\bar{y}(t) = \lim_{k \to \infty} y_{k}(t) = \lim_{k \to \infty} \left(x_{k}(0) + \int_{0}^{t} F(\omega_{k}, l, y_{k}(l), y_{k}(l - \tau(\omega_{k}, l, (y_{k})))) \ dl \right) = \bar{x}(0) + \int_{0}^{t} F(\omega, l, \bar{y}(l), l - \tau(\omega, l, \bar{y})) \ dl.
\]

(Here we have used \([H1]\) and \([H2]\). So, \(\bar{y}(\cdot) \) and \(y(\cdot, \bar{x}) \) agree on \([-r, T] \), as asserted.

Now we assume that \((\bar{t}, \omega, \bar{x}) = \lim_{m \to \infty} (t_{m}, \omega_{m}, x_{m}) \) in \(U \), take \(T \geq \sup_{m \in \mathbb{N}} t_{m} \), fix \(\varepsilon > 0 \), and write

\[
\| u(t, \omega, \bar{x}) - u(t_{m}, \omega_{m}, x_{m}) \|_{C} \leq \| u(t, \omega, \bar{x}) - u(t_{m}, \omega, \bar{x}) \|_{C} + \| u(t_{m}, \omega, \bar{x}) - u(t_{m}, \omega_{m}, x_{m}) \|_{C}.
\]

Since \(y(\cdot, \omega, \bar{x}) \) is uniformly continuous on \([-r, T] \), \(\| u(t, \omega, \bar{x}) - u(t_{m}, \omega, \bar{x}) \|_{C} \leq \varepsilon/2 \) if \(m \) is larger than an \(m_{0} \). And the property shown in the preceding paragraph ensures that \(\| u(t, \omega, \bar{x}) - u(t_{m}, \omega_{m}, x_{m}) \|_{C} \leq \varepsilon/2 \) for all \(t \in [0, T] \) if \(m \) is larger than
an \(m_1 \geq m_0 \). Altogether, \(\|u(t, \bar{\omega}, \bar{x}) - u(t, \omega_m, x_m)\|_C \leq \varepsilon \) if \(m \geq m_1 \), so that (v) is proved.

The boundedness of \(F \) is not assumed from now on. Let us fix \((\bar{t}, \bar{\omega}, \bar{x}) \in \mathcal{U} \); take \(T \in (\bar{t}, \beta_{\omega, x}) \); define \(\varepsilon := \max_{t \in [\bar{t}, T]} |y(t, \bar{\omega}, \bar{x})| \); take a \(C^1 \) function \(h : \mathbb{R} \rightarrow [0, 1] \) such that \(h(x) = 1 \) if \(|x| \leq 2c \) and \(h(x) = 0 \) if \(|x| \geq 3c \); and define \(G(\omega, y_1, y_2) = F(\omega, y_1, y_2) h(y_1) h(y_2) \), which is bounded and satisfies \(\|G\| \leq 1 \). We denote by \(y_G(t, \omega, x) \) the solution of the problem given by the equation (3.1) corresponding to \(F \).

(iv) and (v).

Now we take \(\varepsilon > 0 \). Since \(\mathcal{U} \) is open, there is no restriction in assuming the existence of \(t_0 \in (\bar{t}, \beta_{\omega, x}) \) such that \(t_m \leq t_0 < \beta_{\omega, x} \) for all \(m \in \mathbb{N} \). We define \(y_m(t) := y(t, \omega_m, x_m) \) and \(\tilde{y}(t) := y(t, \bar{\omega}, \bar{x}) \) for \(t \in [-r, t_0] \), and \(u_m(t) := u(t, \omega_m, x_m) \) and \(\tilde{u}(t) := u(t, \bar{\omega}, \bar{x}) \) for \(t \in [0, t_0] \). Note also that the set

\[
\mathcal{S} := \{ (\omega_m, x_m) \mid m \in \mathbb{N} \} \cup \{ (\bar{\omega}, \bar{x}) \}
\]

is compact in \(\Omega \times W^{1,\infty} \).

Let us fix \(\varepsilon > 0 \). According to (v), the map \(u : [0, t_0] \times \mathcal{S} \rightarrow \Omega \times C \) is uniformly continuous. This uniform continuity guarantees that the families \(\mathcal{F}_1 := \{ y_m \mid m \in \mathbb{N} \} \cup \{ \tilde{y} \} \subset C([-r, t_0], \mathcal{C}) \) and \(\mathcal{F}_2 : \{ y_m \mid m \in \mathbb{N} \} \cup \{ \tilde{y} \} \subset C([-r, t_0], \mathbb{R}^n) \) are equicontinuous. Let us take \(s_1, s_2 \in [0, t_0] \). Then

\[
\tilde{y}(s_1) - \tilde{y}_m(s_2) = F(\bar{\omega}, s_1, \bar{y}(s_1)), \tilde{y}(s_1 - \tau(\bar{\omega}, s_1, \bar{u}(s_1))) - F(\omega_m, s_2, y_m(s_2), y_m(s_2 - \tau(\omega_m, s_2, u_m(s_2)))).
\]

The set \(\mathcal{K} := \{ u(t, \omega, x) \mid t \in [0, t_0] \} \) is compact in \(C \), so that \(k := \sup \{ \|u(t, \omega, x)\|_C \mid t \in [0, t_0] \} \) is finite. We define \(\mathcal{B} := \{ y \in \mathbb{R}^n \mid \|y\| \leq k \} \). Then the map

\[
[0, t_0] \times \Omega \times \mathcal{B} \times \mathcal{B} \rightarrow \mathbb{R}^n, \quad (s, \omega, y_1, y_2) \mapsto F(s, \omega, y_1, y_2)
\]

is uniformly continuous: that is, there exists \(\delta_1 > 0 \) such that, if \(|s_1 - s_2| \leq \delta_1 \), \(|y_1 - y_1'| \leq \delta_1 \), and \(|y_2 - y_2'| \leq \delta_1 \), then \(|F(s_1, y_1, y_2) - F(s_2, y_1', y_2')| < \varepsilon \) for all \(\omega \in \Omega \). Since the family \(\mathcal{F}_1 \) is equicontinuous on \([-r, t_0]\), there exists \(\delta_2 \) such that if \(|s_1 - s_2| \leq \delta_2 \), then \(|\tilde{y}(s_1) - y_m(s_2)| \leq \delta_1 \) for all \(m \in \mathbb{N} \). And, since the family \(\mathcal{F}_2 \) is equicontinuous on \([0, t_0]\), we have \(|\tau(\bar{\omega}, s_1, \bar{u}(s_1)) - \tau(\omega_m, s_2, u_m(s_2))| \leq \delta_2 \) for all \(\omega \in \Omega \). Altogether, we take \(\delta = \min(\delta_1, \delta_2, \delta_3) \) and conclude that

\[
|s_1 - s_2| \leq \delta \text{ and } m \geq m_0, \text{ then } |\tilde{y}(s_1) - y_m(s_2)| \leq \varepsilon \text{ for } m \geq m_0.
\]

(3.5)

Now we take \(m_1 \geq m_0 \) such that \(|\bar{t} - t_m| \leq \delta \) for all \(m \geq m_1 \), and recall that \(t_m \geq r \) and \(\bar{t} \geq r \) to deduce from (3.4) that

\[
\|\tilde{u}(\bar{t}) - \tilde{u}_m(t_m)\|_{L^\infty} = \sup_{s \in [-r, 0]} |\tilde{y}(\bar{t} + s) - \tilde{y}_m(t_m + s)| \leq \varepsilon
\]
wherever \(m \geq m_1 \). Since, by (v), \(\| \tilde{u}(\tilde{t}) - u_m(t_m) \|_C \leq \varepsilon \) for large enough \(m \), we conclude that the same happens with \(\| \tilde{u}(\tilde{t}) - u_m(t_m) \|_{W^{1,\infty}} \), which proves (vi).

(vii) In the case that \(t \geq r \), property (vii) follows from (vi), and if \(\tilde{t} = 0 \) the assertion is trivial. So that assume that \(\tilde{t} \in (0, r) \). Let us take a sequence \((\omega_m, x_m)\) in \(\mathcal{U}_0 \) with limit \((\bar{\omega}, \bar{x}) \in \mathcal{U}_C \). Let us fix \(\varepsilon > 0 \) and \(\delta \in (0, \varepsilon) \). We call \(y_m(t) := y(t, \omega_m, x_m) \) and \(\tilde{y}(t) := y(t, \bar{\omega}, \bar{x}) \) for \(t \in [-r, \bar{t}] \), and \(u_m(t) := u(t, \omega_m, x_m) \) and \(\tilde{u}(t) := u(t, \bar{\omega}, \bar{x}) \) for \(t \in [0, \bar{t}] \). According to (v), \(\| \tilde{u}(\tilde{t}) - u_m(t_m) \|_C \) is as small as desired if \(m \) is large enough. Therefore, there exists \(m_0 \) such that, if \(m \geq m_0 \), then

\[
\| \tilde{u}(t) - u_m(t) \|_C \leq \| \tilde{u}(\tilde{t}) - u_m(t_m) \|_C + \| \tilde{x} - x_m \|_C \leq \delta \leq \varepsilon \quad \text{for} \quad t \in [0, \bar{t}]. \tag{3.6}
\]

On the other hand,

\[
\| \dot{\tilde{u}}(\tilde{t}) - \dot{u}_m(\tilde{t}) \|_{L^\infty} \leq \| \tilde{x} - \dot{x}_m \|_{L^\infty} + \sup_{t \in [0, \bar{t}]} |\dot{y}(t, \bar{\omega}, \bar{x}) - \dot{y}(t, \omega_m, x_m)|,
\]

and

\[
|\dot{y}(t) - \dot{y}_m(t)| = |F(\tilde{\omega} \cdot t, \tilde{y}(t), \tilde{u}(t)) - F(\omega_m \cdot t, y_m(t), u_m(t))|.
\]

It follows easily from the continuity of \(F \) and \(\tau \) guaranteed by \(H_1 \) and \(H_2 \) and from (3.6) (which is valid for a \(\delta \) which can be prefixed from the properties of \(F \) and \(\tau \)) that \(\| \dot{u}_m(t) \|_{L^\infty} \leq \varepsilon /2 \) for all \(t \in [0, \bar{t}] \) if \(m \) is large enough, and clearly the same happens with \(\| \tilde{x} - \dot{x}_m \|_{L^\infty} \). This ensures that \(\| \tilde{u}(\tilde{t}) - u_m(t_m) \|_{L^\infty} \leq \varepsilon \) for large enough \(m \), which together with (3.6) proves the result.

(viii) Let us take a sequence \((t_m, \omega_m, x_m)\) in \(\mathcal{U}_0 \) with limit \((\bar{t}, \bar{\omega}, \bar{x}) \in \mathcal{U}_C \) and define \(t_0, \tau, y_m, \bar{y}, u_m \) and \(\tilde{u} \) as at the beginning of the proof of (vi). Note that

\[
\| \tilde{u}(\tilde{t}) - u_m(t_m) \|_{W^{1,\infty}} \leq \| \tilde{u}(\tilde{t}) - u_m(\tilde{t}) \|_{W^{1,\infty}} + \| u_m(\tilde{t}) - u_m(t_m) \|_{W^{1,\infty}}
\]

and that we already know, by (vii) and (v), that \(\lim_{m \to \infty} \| \tilde{u}(\tilde{t}) - u_m(\tilde{t}) \|_{W^{1,\infty}} = 0 \) and \(\lim_{m \to \infty} \| u_m(\tilde{t}) - u_m(t_m) \|_C = 0 \). Hence, our goal is to prove that

\[
\lim_{m \to \infty} \| u_m(\tilde{t}) - u_m(t_m) \|_{L^\infty} = 0.
\]

It is very easy to check that this property follows from the equicontinuity of the family \(\{ \tilde{y}_m \mid m \in \mathbb{N} \} \) on \([-r, 0]\), which we will prove. It is also easy to deduce from the fact that \(\lim_{m \to \infty} \tilde{x}_m = \tilde{x} \) in \(C \) that the family \(\{ y_m \mid m \in \mathbb{N} \} \) is equicontinuous on \([-r, 0]\). On the other hand, given \(\varepsilon > 0 \), we conclude by repeating step by step the argument used in the proof of (vi) that there exists \(\delta > 0 \) such that, if \(s_1, s_2 \in [0, r] \) and \(|s_1 - s_2| \leq \delta \), then \(|y_m(s_1) - y_m(s_2)| \leq \varepsilon \) all \(m \in \mathbb{N} \). This means that the family \(\{ y_m \mid m \in \mathbb{N} \} \) is equicontinuous on \([0, r] \), and hence on \([-r, 0]\), which completes the proof of (viii).

(ix) We fix \((\omega, x)\) with \(c_0 := \sup_{x \in [0, \beta_{\omega, x}]} \| u(t, \omega, x) \|_C \leq \infty \), which according to (iii) ensures that \(\beta_{\omega, x} = \infty \). Property (vi) ensures that \(\{ (\omega, t, u(t, \omega, x)) \mid t \in [r, 2r] \} \) is compact, so that it suffices to prove that \(\{ (\omega, t, u(t, \omega, x)) \mid t \in [2r, \infty) \} \) is relatively compact. In order to check it, given a sequence \((t_m) \) in \([0, \infty]\), we look for a convergent subsequence of \((\omega(t_m + 2r), u(t_m + 2r, \omega, x)) \) in \(\Omega \times W^{1,\infty} \). Since \(\Omega \) is compact, there is no restriction in assuming the existence of \(\omega^* := \lim_{m \to \infty} \omega(t_m) \), and hence of \(\omega^*(2r) = \lim_{m \to \infty} \omega(t_m + 2r) \). We represent

\[
y_m : [0, 2r] \to \mathbb{R}^n, \quad t \mapsto y(t_m + t, \omega, x) \quad \text{for} \quad m \in \mathbb{N},
\]
so that we obtain a sequence \((y_m)\) in \(C([0, 2r], \mathbb{R}^n)\) which is uniformly bounded by \(c_0\). As in the proof of (iv)&(v), Arzelà–Ascoli theorem provides a subsequence \((y_k)\) which converges uniformly on \([0, 2r]\) to \(y^* \in C([0, 2r], \mathbb{R}^n)\). By condition \([H_2]\) \(\lim_{k \to \infty} \tau(\omega^*(t_k + t), (y_k)_t) = \tau(\omega^* - t, (y^*)_t)\) uniformly on \([r, 2r]\), which together with \([H_1]\) yields

\[
\lim_{k \to \infty} F(\omega^*(t_k + t), y_k(t), y(t_k + t) - \tau(\omega^*(t_k + t), (y_k)_t), \omega, x)) = F(\omega^* - t, y^*(t), y^* - \tau(\omega^* - t, (y^*)_t))
\]

(3.7) uniformly on \([r, 2r]\). Now, the sequence \((y_k)\) satisfies

\[
y_k(t) = y_k(r) + \int_r^t F(\omega^*(t_k + s), y_k(s), y(t_k + s - \tau(\omega^*(t_k + s), (y_k)_s), \omega, x)) \, ds.
\]

(3.8)

So, on the one hand, \(y^*(t) = \lim_{k \to \infty} y_k(t)\) for \(t \in [r, 2r]\); and on the other hand, by (3.7), the right hand term of (3.8) converges to

\[
y^*(r) + \int_r^t F(\omega^* - s, y^*(s), y^*(s - \tau(\omega^* - s, (y^*)_s))) \, ds.
\]

Therefore \(y^*\) solves the equation (3.1) on \([r, 2r]\). Consequently, \((\hat{y}_k)\) converges to \(\hat{y}^*\) uniformly on \([r, 2r]\). Altogether, we have checked the sequence \((u(t_k + 2r, \omega, x))\) converges to \(y^*_{2r}\) in \(W^{1,\infty}\), which completes the proof of (ix) and of the theorem.

Corollary 3.4. Suppose that conditions \([H_1]\) and \([H_2]\) hold, and let \(\Pi\) be defined by (3.3). Let \(K \subset \Omega \times W^{1,\infty}\) be a positively \(\Pi\)-invariant compact set. Then the restriction of \(\Pi\) to \(K\) defines a global continuous semiflow on \(K\).

Proof. Note that \(\mathbb{R}^+ \times K \subset \mathcal{U}\) and \(\Pi(t, \omega, x) \in K\) for all \((t, \omega, x) \in \mathbb{R}^+ \times K\), so that the restriction \(\Pi: \mathbb{R}^+ \times K \to K\) is well defined and globally defined. And it is easy to check that the topologies induced by \(\|\cdot\|_C\) and \(\|\cdot\|_{W^{1,\infty}}\) on \(K\) are the same, so that the continuity follows from Theorem 3.3(v). \square

Remark 3.5. We can repeat the arguments of the proofs of points (v), (vi) and (vii) of Theorem 3.3 in order to prove analogous results on the joint continuity with respect to \((t, \omega, x, \lambda)\) for the solutions of the family of equations \(\hat{y}(t) = F(\omega, y(t), y(t - \tau(\omega, y, \lambda), \lambda))\) when \(\lambda\) belongs to a Banach space and \(F\) and \(\tau\) satisfy the corresponding jointly continuity properties included in \([H_1]\) and \([H_2]\). The details are left to the reader, whom is referred to [5] for a more exhaustive analysis of the regularity properties with respect to parameters of the solution of SDDEs.

We complete this section by analyzing the Lipschitz behaviour of the map \(u\) defined in the statement of Theorem 3.3 with respect to the initial condition \(x\). This result is a global version, adapted to our setting, of the local property given by Theorem 1(iv) of [5]. Recall that \(d_0\) represents the distance in \(\Omega\).

Theorem 3.6. Suppose that conditions \([H_1]\) and \([H_2]\) hold, and define \(\mathcal{U}\) and \(u: \mathcal{U} \to W^{1,\infty}\) as in the statement of Theorem 3.3. Let us fix \(\tilde{t} > 0\) such that the set \(\mathcal{U}_{\tilde{t}} := \{(\omega, x) \mid (\tilde{t}, \omega, x) \in \mathcal{U}\}\) is nonempty. Let us also fix \((\tilde{\omega}, \tilde{x}) \in \mathcal{U}_{\tilde{t}}\). Then,

(i) there exists \(\rho > 0\) small enough to guarantee that

1. \(u(t, \omega, x)\) is defined (i.e., \((t, \omega, x) \in \mathcal{U}\)) whenever \(t \in [0, \tilde{t}]\) and \((\omega, x) \in \mathcal{B}_{0, \tilde{\omega}}^{\tilde{x}, \tilde{t}} := \{(\omega, x) \in \Omega \times W^{1,\infty} \mid d_0(\omega, \tilde{\omega}) < \rho\text{ and }\|x - \tilde{x}\|_{W^{1,\infty}} < \rho\};
2. \(\sup\{\|u(t, \omega, x)\|_C \mid t \in [0, \tilde{t}]\text{ and }\omega, x \in \mathcal{B}_{0, \tilde{\omega}}^{\tilde{x}, \tilde{t}}\} =: \tilde{c} < \infty\).
(i) Let us fix a value of ρ for which 1 and 2 hold. Then there exists $L = L(\bar{t}, \bar{\omega}, \bar{x}, \rho)$ such that, if (ω, x_1) and (ω, x_2) belong to $B_{\omega, x}^\rho$, then
\[|u(t, \omega, x_1) - u(t, \omega, x_2)| \leq L \|x_1 - x_2\|_{W^{1,\infty}} \text{ for all } t \in [0, \bar{t}]. \]

Proof. (i) Let us fix $\bar{t}, \bar{\omega}$, and \bar{x} as in the statement. The existence of $\bar{\rho} > 0$ such that 1 holds follows immediately from the open character of U ensured by Theorem 3.3 iv. In order to check the existence of $\rho \in (0, \bar{\rho}]$ such that also 2 holds, we assume for contradiction that, for any $m \in \mathbb{N}$, there exist $t_m \in [0, \bar{t}]$ and $(\omega_m, x_m) \in \Omega \times W^{1,\infty}$ such that $d_{\Omega}(\omega_m, \bar{\omega}) < 1/m$, $\|x_m - \bar{x}\|_{W^{1,\infty}} < 1/m$, and $|y(t_m, \omega_m, x_m)| \geq m$; take a subsequence (t_k) with limit t^*; observe that $((t_k, \omega_k, x_k))$ converges to $(t^*, \bar{\omega}, \bar{x})$ in $[0, \bar{t}] \times \Omega \times W^{1,\infty}$; and conclude from Theorem 3.3 v that $|y(t^*, \bar{\omega}, \bar{x})| = \infty$, which is impossible.

(ii) The points $\bar{t}, \bar{\omega}$, and \bar{x} will be fixed in the whole proof, as well as a constant ρ for which 1 and 2 hold. We begin by proving properties (3.9), (3.10) and (3.14), which will be used below. Let \bar{c} be the constant appearing in condition 2. Then
\[|s y(t_1, \omega, x_1) + (1-s) y(t_2, \omega, x_2)| \leq \bar{c} \tag{3.9} \]
for all $t_1, t_2 \in [-r, \bar{t}]$, (ω, x_1) and (ω, x_2) in $B_{\omega, x}^\rho$, and $s \in [0,1]$. On the other hand, the continuity of $D_i F; \Omega \times \mathbb{R}^n \times \mathbb{R}^n \to \text{Lin}(\mathbb{R}^n, \mathbb{R}^n)$ for $i = 2, 3$ ensured by H1 guarantees that these maps take compact set in compact sets, so that there exists $L_1 < \infty$ such that
\[\|D_i F(\omega, y_1, y_2)\|_{\text{Lin}(\mathbb{R}^n, \mathbb{R}^n)} \leq L_1 \text{ for all } \omega \in \Omega \text{ if } |y_1| \leq \bar{c} \text{ and } |y_2| \leq \bar{c} \tag{3.10} \]
for $i = 2, 3$. Note also that the continuity of $F; \Omega \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ ensured by H1 combined with condition 2 and equation (3.4) ensures that the set
\[\{ y(t, \omega, x) \mid t \in [0, \bar{t}] \text{ and } (\omega, x) \in B_{\omega, x}^\rho \} \subset \mathbb{R}^n \]
is bounded. In addition, $|\|y(s, \omega, x)\|_{W^{1,\infty}} | \leq |\|x\|_{W^{1,\infty}} < \rho + |\|\bar{x}\|_{W^{1,\infty}}$ for Lebesgue-a.a. $s \in [-r, 0]$ whenever $(\omega, x) \in B_{\omega, x}^\rho$. These two properties and 2 yield
\[\sup\{\|u(t, \omega, x)\|_{W^{1,\infty}} \mid t \in [0, \bar{t}] \text{ and } (\omega, x) \in B_{\omega, x}^\rho \} =: c^* < \infty, \tag{3.11} \]
which together with Arzelá-Ascoli theorem ensures that the set
\[\mathcal{K} = \Omega \times \text{closure}_C\{ u(t, \omega, x) \mid t \in [0, \bar{t}] \text{ and } (\omega, x) \in B_{\omega, x}^\rho \} \subset \Omega \times C \tag{3.12} \]
is compact. As seen in Remark 3.1, there exists L_2 such that
\[|\tau(\omega, x_1) - \tau(\omega, x_2)| \leq L_2 |x_1 - x_2|_C \text{ for all } (\omega, x_1) \text{ and } (\omega, x_2) \text{ in } \mathcal{K}. \tag{3.13} \]
Let us take (ω, x_1) and (ω, x_2) in $B_{\omega, x}^\rho$, and denote $y_1(t) := y(t, \omega, x_1)$ and $y_2(t) := y(t, \omega, x_2)$ for $t \in [-r, \bar{t}]$, and $u_1(t) := u(t, \omega, x_1)$, and $u_2(t) := u(t, \omega, x_2)$ for $t \in [0, \bar{t}]$. Note that $u_1(t)$ and $u_2(t)$ belong to the \mathcal{K} given by (3.12) for all $t \in [0, \bar{t}]$. Let c^* and L_2 be the constants appearing in (3.11) and (3.13). Then,
\[|y_1(t) - \tau(\omega, t, u_1(t))) - y_2(t - \tau(\omega, t, u_2(t))| \]
\[\leq |y_1(t) - \tau(\omega, t, u_1(t))) - y_2(t - \tau(\omega, t, u_1(t))| \]
\[+ |y_2(t - \tau(\omega, t, u_1(t))) - y_2(t - \tau(\omega, t, u_2(t))| \]
\[\leq \|u_1(t) - u_2(t)||_C + \|u_2(t)||_{W^{1,\infty}} |\tau(\omega, t, u_1(t))) - \tau(\omega, t, u_2(t))| \]
\[\leq \|u_1(t) - u_2(t)||_C + c^* L_2 \|u_1(t) - u_2(t)||_C = L_3 \|u_1(t) - u_2(t)||_C \]
for all $t \in [0, \bar{t}]$, where $L_3 := 1 + c^* L_2$.

Now we can proceed with the proof. With the previous notation, if \(t \in [0, \tilde{t}] \),
\[
F(\omega \cdot t, y_1(t), y_1(t - \tau(\omega \cdot t, u_1(t)))) - F(\omega \cdot t, y_2(t), y_2(t - \tau(\omega \cdot t, u_2(t)))) = \\
\int_0^1 D_2 \left(\omega \cdot t, s y_1(t) + (1 - s) y_2(t), s y_1(t - \tau(\omega \cdot t, u_1(t))) + (1 - s) y_2(t - \tau(\omega \cdot t, u_2(t))) \right) (y_1(t) - y_2(t)) \, ds \\
+ \int_0^1 D_3 \left(\omega \cdot t, s y_1(t) + (1 - s) y_2(t), s y_1(t - \tau(\omega \cdot t, u_1(t))) + (1 - s) y_2(t - \tau(\omega \cdot t, u_2(t))) \right) \\
\left(y_1(t - \tau(\omega \cdot t, u_1(t))) - y_2(t - \tau(\omega \cdot t, u_2(t))) \right) \, ds.
\]
This equality together with (3.9), (3.10) and (3.14) ensures that
\[
\|F(\omega \cdot t, y_1(t), y_1(t - \tau(\omega \cdot t, u_1(t)))) - F(\omega \cdot t, y_2(t), y_2(t - \tau(\omega \cdot t, u_2(t))))\| \leq L_4 \|u_1(t) - u_2(t)\|_C
\]
for all \(t \in [0, \tilde{t}] \), where \(L_4 := L_1(1 + L_3) \). Now, it follows from the integral form of equation (3.1) that \(y_1(t) - y_2(t) \) satisfies
\[
y_1(t) - y_2(t) = x_1(0) - x_2(0) + \int_0^t \left(F(\omega \cdot l, y_1(l), y_1(l - \tau(\omega \cdot l, u_1(l)))) - F(\omega \cdot l, y_2(l), y_2(l - \tau(\omega \cdot l, u_2(l)))) \right) \, dl
\]
for \(t \in [0, \tilde{t}] \), which together with (3.15) yields
\[
\|y_1(t) - y_2(t)\| \leq \|x_1 - x_2\|_C + \int_0^t L_4 \|u_1(l) - u_2(l)\|_C \, dl
\]
for all \(t \in [0, \tilde{t}] \). And \(|y_1(t) - y_2(t)| \leq \|x_1 - x_2\|_C \) for \(t \in [-r, 0] \), so that
\[
\|u_1(t) - u_2(t)\|_C \leq \|x_1 - x_2\|_C + \int_0^t L_4 \|u_1(l) - u_2(l)\|_C \, dl
\]
for \(t \in [0, \tilde{t}] \). Applying the Gronwall lemma we obtain
\[
\|u_1(t) - u_2(t)\|_C \leq L_5 \|x_1 - x_2\|_C
\]
(3.16)
for \(t \in [0, \tilde{t}] \), where \(L_5 = \exp(L_4 \tilde{t}) \geq 1 \). Combining now (3.1), (3.15) and (3.16), we obtain
\[
\|\dot{y}_1(t) - \dot{y}_2(t)\|
\leq \|F(\omega \cdot t, y_1(t), y_1(t - \tau(\omega \cdot t, u_1(t)))) - F(\omega \cdot t, y_2(t), y_2(t - \tau(\omega \cdot t, u_2(t))))\|
\leq L_4 \|u_1(t) - u_2(t)\|_C \leq L_4 L_5 \|x_1 - x_2\|_C \leq L_4 L_5 \|x_1 - x_2\|_{W^{1, \infty}}
\]
for \(t \in [0, \tilde{t}] \). Since \(|\dot{y}_1(t) - \dot{y}_2(t)| \leq \|x_1 - x_2\|_{W^{1, \infty}} \leq L_5 \|x_1 - x_2\|_{W^{1, \infty}} \) for Lebesgue a.a. \(t \in [-r, 0] \), we obtain
\[
\|u(t, \omega, x_1) - u(t, \omega, x_2)\|_{W^{1, \infty}} \leq L \|x_1 - x_2\|_{W^{1, \infty}} \quad \text{for all } \ t \in [0, \tilde{t}],
\]
where \(L := \max(L_5, L_4 L_5) \). This completes the proof of (ii). □
4. Differentiability with respect to the initial state. Throughout this section, we assume that [H1] and [H2] hold, and use the notation established in the previous one. Recall that the compatibility set C_0 and the closely related set U^0 are defined by
\begin{align*}
C_0 & := \{(\omega, x) \in \Omega \times C^1 | \dot{\omega}(0^-) = F(\omega, x(0), x(-\tau(\omega, x)))\}, \\
U^0 & := \{(t, \omega, x) \mid (\omega, x) \in C_0, \ t \in [0, \beta_{\omega, x})\},
\end{align*}
and that we provide them with the topologies induced by those of $\Omega \times W^{1,\infty}$ and $\mathbb{R}^+ \times \Omega \times W^{1,\infty}$, respectively. It is very easy to deduce from the definition (3.3) of the semiflow Π that $\Pi(U^0) = C_0$, which is a fundamental property for what follows.

Let us consider the family of (linear) variational equations
\begin{equation}
\dot{z}(t) = L(\Pi(t, \omega, x))z_1, \quad t \in [0, \beta_{\omega, x})
\end{equation}
for $(\omega, x) \in C_0$, where
\begin{align*}
L(\omega, x)v & := D_2F(\omega, x(0), x(-\tau(\omega, x)))v(0) + D_3F(\omega, x(0), x(-\tau(\omega, x)))v(-\tau(\omega, x)) \\
& \quad - D_2F(\omega, x(0), x(-\tau(\omega, x))) \dot{x}(-\tau(\omega, x)) - D_2\tau(\omega, x)v
\end{align*}
for $(\omega, x) \in C_0$ and $v \in C$. Note that each equation of the family (4.3) is evaluated along one of the positive Π-semiorbits lying on C_0, and that it is not state-dependent, but just time-dependent. This section presents an analysis of the solutions of this family of delay equations, in the line of that made in Section 3 for the family (3.1).

Its importance will be clarified by the properties stated in Corollary 4.3 and Theorem 4.4.

All the results of this section depend on the continuity properties of the maps
\[C_0 \to \text{Lin}(W^{1,\infty}, \mathbb{R}^n), \quad (\omega, x) \mapsto L(\omega, x), \]
and
\[C_0 \times C \to \mathbb{R}^n, \quad (\omega, x, v) \mapsto L(\omega, x)v, \]
which we analyze in the next proposition.

Proposition 4.1. Suppose that conditions [H1] and [H2] hold. Then,
\begin{enumerate}
\item[(i)] the map $C_0 \to \text{Lin}(W^{1,\infty}, \mathbb{R}^n), \ (\omega, x) \mapsto L(\omega, x)$ is continuous.
\item[(ii)] The map $U^0 \to \text{Lin}(W^{1,\infty}, \mathbb{R}^n), \ (t, \omega, x) \mapsto L(\Pi(t, \omega, x))$ is continuous.
\item[(iii)] Let us fix $(\omega, x) \in C_0$. The map $C_0 \to \mathbb{R}^n, \ v \mapsto L(\omega, x)v$ is a bounded linear operator. In addition, for each $k > 0$,
\[\sup \{ \|L(\omega, x)\|_{\text{Lin}(C_0, \mathbb{R}^n)} \mid (\omega, x) \in C_0 \text{ and } \|x\|_{W^{1,\infty}} \leq k \} < \infty. \]
\item[(iv)] The map $C_0 \times C \to \mathbb{R}^n, \ (\omega, x, v) \mapsto L(\omega, x)v$ is continuous.
\item[(v)] The map $U^0 \times C \to \mathbb{R}^n, \ (t, \omega, x, v) \mapsto L(\Pi(t, \omega, x))v$ is continuous.
\end{enumerate}

Proof. Recall that [H1] and [H2] ensure the continuity of $\tau: \Omega \times C \to \mathbb{R}$ and the existence and continuity of $D_iF: \Omega \times \mathbb{R}^n \times \mathbb{R}^n \to \text{Lin}(\mathbb{R}^n, \mathbb{R}^n)$ for $i = 1, 2, 3$ and of $D_2\tau: \Omega \times C \to \text{Lin}(C, \mathbb{R})$.

\begin{enumerate}
\item[(i)] Let us take a sequence $((\omega_m, x_m))$ in C_0 with limit $(\tilde{\omega}, \tilde{x}) \in C_0$. We will check that $L(\omega_m, x_m)v = \lim_{m \to \infty} L(\omega_m, x_m)v$ by proving this property for each one of the terms appearing in the expression of L. So, we write $L(\omega, x) = L_1(\omega, x) + L_2(\omega, x) + L_3(\omega, x)$. We take $\varepsilon > 0$ and $v \in W^{1,\infty}$ with $\|v\|_{W^{1,\infty}} = 1$, and call $\tilde{\tau} := \tau(\omega, x)$ and $\tau_m := \tau(\omega_m, x_m)$. For $|L_1(\omega, x) - L_1(\omega_m, x_m)|$, since $|v(0)| \leq 1$, we have
\begin{align*}
& \left| (D_2F(\omega, \tau(\omega, x)) - D_2F(\omega_m, x_m(0), x_m(-\tau_m)))v(0) \right| \\
& \leq \left| D_2F(\omega, \tau(\omega, x)) - D_2F(\omega_m, x_m(0), x_m(-\tau_m))v(0) \right|.
\end{align*}

\end{enumerate}
so that the continuity of \(\tau \) and \(D_2 F \) shows that it is smaller than \(\varepsilon \) if \(m \) is large enough. Therefore, \(L_1(\bar{\omega}, \bar{x}) = \lim_{m \to \infty} L_1(\omega_m, x_m) \) in \(\text{Lin}(W^{1,\infty}, \mathbb{R}^n) \).

The norm \(|L_2(\bar{\omega}, \bar{x})v - L_2(\omega_m, x_m)v| \) is bounded by the sum of two:

\[
\left| \left(D_3 F(\bar{\omega}, \bar{x}(0), \bar{x}(-\tau)) - D_3 F(\omega_m, x_m(0), x_m(-\tau_m)) \right) v(\tau_m) \right|
\leq \|D_3 F(\bar{\omega}, \bar{x}(0), \bar{x}(-\tau)) - D_3 F(\omega_m, x_m(0), x_m(-\tau_m))\|_{\text{Lin}(\mathbb{R}^n, \mathbb{R}^n)},
\]

which is in the same situation as the previous term; and

\[
\left| D_3 F(\bar{\omega}, \bar{x}(0), \bar{x}(-\tau)) \right| \left(v(\tau) - v(-\tau_m) \right) \leq \|D_3 F(\bar{\omega}, \bar{x}(0), \bar{x}(-\tau))\|_{\text{Lin}(\mathbb{R}^n, \mathbb{R}^n)} \|v\|_{L^\infty} |\tau - \tau_m| \quad (4.4)
\]

which is smaller than \(\varepsilon \) for large enough \(m \) due to the continuity of \(\tau \) on \(\mathcal{C}_0 \subset \Omega \times C \).

Here we have used that \(v(\tau) - v(-\tau_m) = \int_0^1 \dot{v}(s\tau + (s-1)\tau_m)(\tau_m - \tau) \, ds \) and that \(\|v\|_{L^\infty} \leq \|v\|_{W^{1,\infty}} = 1. \) (Incidentally: note that the proof would fail at this point if \(\text{Lin}(W^{1,\infty}, \mathbb{R}^n) \) were replaced by \(\text{Lin}(C, \mathbb{R}^n) \) as codomain of \(L \).) Altogether, \(L_2(\bar{\omega}, \bar{x}) = \lim_{m \to \infty} L_2(\omega_m, x_m) \) in \(\text{Lin}(W^{1,\infty}, \mathbb{R}^n) \).

The term \(L_3(\omega, x) \) has in turn two factors. For the second one, we have

\[
\left| \left(D_2 \tau(\bar{\omega}, \bar{x}) - D_2 \tau(\omega_m, x_m) \right) v \right| \leq \|D_2 \tau(\bar{\omega}, \bar{x}) - D_2 \tau(\omega_m, x_m)\|_{\text{Lin}(C, \mathbb{R})},
\]

and we can use the continuity of \(D_2 \tau \) to bound it by \(\varepsilon \) for large enough \(m \). Finally,

\[
\left| \left(D_3 F(\bar{\omega}, \bar{x}(0), \bar{x}(-\tau)) - D_3 F(\omega_m, x_m(0), x_m(-\tau_m)) \right) \dot{x}_m(-\tau_m) \right|
\leq \|D_3 F(\bar{\omega}, \bar{x}(0), \bar{x}(-\tau)) - D_3 F(\omega_m, x_m(0), x_m(-\tau_m))\|_{\text{Lin}(\mathbb{R}^n, \mathbb{R}^n)} \|\dot{x}_m\|_{W^{1,\infty}}
\]

and

\[
\left| D_3 F(\bar{\omega}, \bar{x}(0), \bar{x}(-\tau))(\dot{x}(-\tau) - \dot{x}_m(-\tau_m)) \right|
\leq \|D_3 F(\bar{\omega}, \bar{x}(0), \bar{x}(-\tau))\|_{\text{Lin}(\mathbb{R}^n, \mathbb{R}^n)} \left(\|\dot{x}(-\tau) - \dot{x}_m(-\tau_m)\| + \|\dot{x}_m\|_{W^{1,\infty}} \right),
\]

and both terms can be easily bounded by \(\varepsilon \) if \(m \) is large enough. It follows easily that \(L_3(\bar{\omega}, \bar{x}) = \lim_{m \to \infty} L_3(\omega_m, x_m) \) in \(\text{Lin}(W^{1,\infty}, \mathbb{R}^n) \). Altogether, we have checked that

\[
\lim_{m \to \infty} \|L(\omega_m, x_m) - \tilde{L}(\omega_m, x_m)\|_{\text{Lin}(W^{1,\infty}, \mathbb{R}^n)} = 0,
\]

so that (i) is proved.

(ii) We have already pointed out that \(\Pi(t, \omega, x) \in \mathcal{C}_0 \) whenever \((t, \omega, x) \in \mathcal{U}^0 \), so that \(L(\Pi(t, \omega, x)) \) is a well-defined map. Property (ii) follows from (i) and Theorem 3.3(viii).

(iii) The first assertion of (iii) is an easy consequence of the continuity of \(D_2 F \), \(D_3 F \) and \(D_2 \tau \). The second also follows easily from hypotheses \(\mathcal{H}1 \) and \(\mathcal{H}2 \).

(iv) We take a sequence \((\omega_m, x_m, v_m)\) of points of \(\mathcal{C}_0 \times C \) with limit \((\bar{\omega}, \bar{x}, \bar{v})\) in \(\mathcal{U}^0 \times C \), and repeat step by step the proof of (i) (no matter the fact that \(v_m \) and \(\bar{v} \) belongs to \(C \) instead of \(W^{1,\infty} \)): note that the sequence \(\{\|v_m\|_C\} \) is bounded, and that no uniformity in \(v_m \) is required. The only slightly different point is the analogous of (4.4), which is simpler in the current situation.

(v) As said in (ii), \(L(\Pi(t, \omega, x)) \) is a well-defined map. Property (iv) follows from (iv) and Theorem 3.3(viii).

The next results (Theorem 4.2 and Corollary 4.3) constitute the analogues of Theorems 3.3 and 3.6 for the family of variational equations (4.3). In particular, we show that this family induces a pseudo-continuous semiflow on \(\mathcal{K} \times W^{1,\infty} \), where
\(\mathcal{K} \) is any positively \(\Pi \)-invariant compact subset on \(\mathcal{C}_0 \). We will also prove that this semiflow is the one usually so-called linearized semiflow of \(\Pi \) along the semiorsbits of \(\mathcal{K} \): see Theorem 4.4.

Recall that the \(\Pi \)-semiorsbit \(\Pi(t, \omega, x) \) starting at \((\omega, x) \in \Omega \times W^{1, \infty} \) is defined on a maximal interval represented by \([-r, \beta_{\omega, x})\).

Theorem 4.2. Suppose that conditions [\(H_1 \)] and [\(H_2 \)] hold. Then,

1. for \((\omega, x) \in \mathcal{C}_0 \) and \(v \in \mathcal{C} \), there exists a unique maximal solution \(z(t, \omega, x, v) \) of the equation \(\text{(4.3)} \) corresponding to \((\omega, x) \) satisfying \(z(s, \omega, x, v) = v(s) \) for \(s \in [-r, 0] \), which is defined for \(t \in [-r, \beta_{\omega, x}) \). In addition, the map \(C \to \mathbb{R}^n, v \mapsto z(t, \omega, x, v) \) is linear and continuous for all \(t \in [-r, \beta_{\omega, x}) \).
2. Let us define
 \[
 w(t, \omega, x, v)(s) := z(t + s, \omega, x, v)
 \]
 for \((\omega, x) \in \mathcal{C}_0, t \in [0, \beta_{\omega, x}), v \in \mathcal{C} \), and \(s \in [-r, 0] \).

Then,

1. \(w(t + l, \omega, x, v) = w(t, \Pi(l, \omega, x), w(l, \omega, x, v)) \) whenever the right-hand term exists.
2. The map \(\mathcal{U}^0 \times \mathcal{C} \to \mathcal{C}, (t, \omega, x, v) \mapsto w(t, \omega, x, v) \) is continuous.
3. If \(v \in W^{1, \infty} \), then \(w(t, \omega, x, v) \in W^{1, \infty} \) for all \(t \in [0, \beta_{\omega, x}) \).
4. Let us define
 \[
 \tilde{U}^0 := \{(t, \omega, x) \in \mathcal{U}^0 \mid t \geq r\}
 \]
 The map \(\tilde{U}^0 \times W^{1, \infty} \to W^{1, \infty}, (t, \omega, x, v) \mapsto w(t, \omega, x, v) \) is continuous.
5. Let us fix \(\tilde{t} \geq 0 \) with
 \[
 \mathcal{U}^0_{\tilde{t}} := \{(\omega, x) \mid (\tilde{t}, \omega, x) \in \mathcal{U}^0\} = \{(\omega, x) \in \mathcal{C}_0 \mid \tilde{t} < \beta_{\omega, x}\}
 \]
 nonempty. Then the map \(\mathcal{U}^0_{\tilde{t}} \times W^{1, \infty} \to W^{1, \infty}, (\omega, x, v) \mapsto w(\tilde{t}, \omega, x, v) \) is continuous.
6. Let us define \(\mathcal{V}^0 := \{(t, \omega, x, v) \mid (t, \omega, x) \in \mathcal{U}^0 \) and \(v \in C^1 \) with \(\dot{v}(0^-) = L(\omega, x)v\} \). Then the map \(\mathcal{V}^0 \to W^{1, \infty}, (t, \omega, x, v) \mapsto w(t, \omega, x, v) \) is continuous.
7. Let \(\mathcal{U}^0_0 \) be defined by [\(\text{(4.7)} \)]. Let us fix \(\tilde{t} > 0 \) with \(\mathcal{U}^0_{\tilde{t}} \) nonempty, and \((\tilde{\omega}, \tilde{x}) \in \mathcal{U}^0_0 \). Let us also fix \(\rho > 0 \) be small enough to guarantee that
 \[
 1. u(t, \omega, x) \text{ is defined (i.e., } (t, \omega, x) \text{ belongs to } \mathcal{U}^0) \text{ whenever } t \in [0, \tilde{t}] \text{ and } (\omega, x) \in \mathcal{B}_{\tilde{\omega}, \tilde{x}}^{0, \rho} := \{(\omega, x) \in \mathcal{C}_0 \mid d_{\Omega}(\omega, \tilde{\omega}) < \rho \text{ and } ||x - \tilde{x}||_{W^{1, \infty}} < \rho\};
 \]
 \[
 2. \sup\{||u(t, \omega, x)||_C \mid t \in [0, \tilde{t}] \text{ and } (\omega, x) \in \mathcal{B}_{\tilde{\omega}, \tilde{x}}^{0, \rho}\} =: \bar{c} < \infty.
 \]
 Then there exists \(M = M(\tilde{t}, \tilde{\omega}, \tilde{x}, \rho) \) such that, if \((\omega, x) \in \mathcal{B}_{\tilde{\omega}, \tilde{x}}^{0, \rho} \), then
 \[
 ||w(t, \omega, x, v)||_{W^{1, \infty}} \leq M ||v||_{W^{1, \infty}} \quad \text{for all } t \in [0, \tilde{t}] .
 \]

Proof. (i) The properties proved in Proposition 4.1 (iii)-(v) allow us to apply the general theory for finite-delay differential equations of Hale and Verdyun Lunel [4], Section 2.2, in order to ensure the existence and uniqueness of \(z(t, \omega, x, v) \) and its continuity with respect to \(v \in \mathcal{C} \). The classical method of continuation of solutions for linear differential equations allows us to prove that \(z(t, \omega, x, v) \) is defined for all \(t \in [-r, \beta_{\omega, x}) \); and since the equation is linear, so is the map \(v \mapsto z(t, \omega, x, v) \).

(ii) This cocycle property follows from the uniqueness established in (i).

(iii) Let us take a sequence \((t_m, \omega_m, x_m, v_m) \) in \(\mathcal{U}^0 \times \mathcal{C} \) with limit \((\tilde{t}, \tilde{\omega}, \tilde{x}, \tilde{v}) \in \mathcal{U}^0 \times \mathcal{C} \). The open character of \(\mathcal{U} \) allows us to assume without restriction the
existence of $t_0 \in (\bar{t}, \beta_{\bar{\omega}, \bar{x}})$ such that $t_m \leq t_0 < \beta_{\omega_m, x_m}$ for all $m \in \mathbb{N}$. Let us represent
\[z_m(t) := z(t, \omega_m, x_m, v_m) \quad \text{for} \quad t \in [-r, t_0] \] and \(w_m(t) := w(t, \omega_m, x_m, v_m) \) for $t \in [0, t_0]$ and $m \in \mathbb{N}$. The integral form of (4.3) shows that
\[z_m(t) = v_m(0) + \int_0^t L(\Pi(l, \omega_m, x_m))w_m(l) \, dl \]
for $t \in [0, t_0]$. On the other hand, the set \mathcal{S} defined by (3.4) is contained in C_0 and compact in $\Omega \times W^{1, \infty}$; therefore, Proposition 4.1(ii) ensures that $(L \circ \Pi)([0, t_0] \times \mathcal{S}) \subset \text{Lin}(W^{1, \infty}, \mathbb{R}^n)$ is compact; and hence $k_0 := \sup \{\|L(\Pi(t, \omega_m, x_m))\|_{\text{Lin}(W^{1, \infty}, \mathbb{R}^n)} \mid t \in [0, t_0] \text{ and } m \in \mathbb{N}\}$ is finite. Let us call $\alpha := \sup_{m \in \mathbb{N}} |v_m|$. Then,
\[\|w_m(t)\|_C \leq \alpha + \int_0^{t_0} k_0 \|w_m(l)\|_C \, dl \]
for all $t \in [0, t_0]$, and the Gronwall lemma shows that $k := \sup \{\|w_m(t)\|_C \mid t \in [0, t_0] \text{ and } m \in \mathbb{N}\}$ is finite. In turn, this fact and (4.3) ensure that the set $\{z_m(t) \mid t \in [0, t_0] \text{ and } m \in \mathbb{N}\}$ is uniformly bounded.

Now we follow the scheme of the proof of Theorem 3.3(v). First, we deduce from Arzelà-Ascoli theorem that $\lim_{m \to \infty} z(t, \omega_m, x_m, v_m) = z(t, \bar{\omega}, \bar{x}, \bar{v})$ uniformly in $[-r, t_0]$. And second, we write $\|w(t, \bar{\omega}, \bar{x}, \bar{v}) - w(t, \omega_m, x_m, v_m)\|_C \leq \|w(t, \bar{\omega}, \bar{x}, \bar{v}) - w(t_m, \bar{\omega}, \bar{x}, \bar{v})\|_C + \|w(t_m, \bar{\omega}, \bar{x}, \bar{v}) - w(t_m, \bar{\omega}_m, \bar{x}_m, v_m)\|_C$ and note that: the term $\|w(t, \bar{\omega}, \bar{x}, \bar{v}) - w(t_m, \bar{\omega}, \bar{x}, \bar{v})\|_C$ is as small as desired for large enough m due to the uniform continuity of $t \to z(t, \bar{\omega}, \bar{x}, \bar{v})$ in $[-r, t_0]$; and the term $\|w(t_m, \bar{\omega}, \bar{x}, v_m) - w(t_m, \bar{\omega}_m, \bar{x}_m, v_m)\|_C$ is as small as desired for large enough m for all $t \in [0, t_0]$ due to the previously proved uniform convergence. Thus, (iii) is proved.

(iv) Let us take $v \in W^{1, \infty}$. We know that $z(t, \omega, x, v) = L(\Pi(t, \omega, x))w(t, \omega, x, v)$ for $t \geq 0$. This ensures that, if $t \geq r$, $\|\dot{w}(t, \omega, x, v)\|_{L^\infty} < \infty$, so that $w(t, \omega, x, v) \in W^{1, \infty}$. If $t \in [0, r]$, then $\|\dot{w}(t, \omega, x, v)\|_{W^{1, \infty}} \leq \|v\|_{W^{1, \infty}} + \|w(r, \omega, x, v)\|_{W^{1, \infty}}$.

(v)&(vi) These properties can be checked with the arguments used to prove Theorem 3.3(vi) &(vii).

(vii) The proof of this point can be done following the ideas of Theorem 3.3(viii), and is simpler: if $\lim_{m \to \infty} (t_m, \omega_m, x_m, v_m) = (\bar{t}, \bar{\omega}, \bar{x}, \bar{v})$ in \mathbb{V}^n, if $t_m \leq t_0 < \beta_{\omega_m, x_m}$ for all $m \in \mathbb{N}$, and if $z_m(t) := z(t, \omega_m, x_m, v_m)$ for $t \in [-r, t_0]$, then the equicontinuity of the family $\{z_m(t) \mid m \in \mathbb{N}\}$ on $[0, t_0]$ follows easily from (4.3), Proposition 4.1(i), and the uniform continuity of Π on $[0, t_0] \times \mathcal{S}$, where \mathcal{S} is given by (3.4).

(viii) The point $(\bar{t}, \bar{\omega}, \bar{x})$ will be fixed in this proof. The existence of $\rho > 0$ for which conditions 1 and 2 hold is proved by Theorem 3.6(i), where we also checked that (see (3.11))
\[\sup \{\|u(t, \omega, x)\|_{W^{1, \infty}} \mid t \in [0, \bar{t}] \text{ and } (\omega, x) \in B_{\bar{\omega}, \bar{x}}^\rho\} =: c^* < \infty. \]

Therefore, according to Proposition 4.1(iii),
\[\sup \{\|L(\Pi(t, \omega, x))\|_{\text{Lin}(C, \mathbb{R}^n)} \mid t \in [0, \bar{t}] \text{ and } x \in B_{\bar{\omega}, \bar{x}}^\rho\} =: \hat{c} < \infty. \]

We take $t \in [0, \bar{t})$, $(\omega, x) \in B_{\bar{\omega}, \bar{x}}^\rho$, and $v \in W^{1, \infty}$, and make use of (4.3) in order to write
\[|z(t, \omega, x, v)| \leq |v(0)| + \int_0^t \|L(\Pi(l, \omega, x))\|_{\text{Lin}(C, \mathbb{R}^n)} \|w(l, \omega, x, v)\|_C \, dl \]
\[\leq |v|_{W^{1, \infty}} + \int_0^t \hat{c} \|w(l, \omega, x, v)\|_C. \]
It follows easily that \(\|w(t, \omega, x, v)\|_{C} \leq \|v\|_{W^{1, \infty}} + \int_{0}^{t} \tilde{c} \|w(l, \omega, x, v)\|_{C} \), so that the Gronwall lemma ensures that \(\|w(t, \omega, x, v)\|_{C} \leq e^{\tilde{c}t} \|v\|_{W^{1, \infty}} \). To finish the proof of (i) is now easy: see for instance the end of the proof of Theorem 3.6(ii).

Corollary 4.3. Suppose that conditions [H1] and [H2] hold. Let \(K \subset C_{0} \) be a positively \(\Pi \)-invariant compact set. We define by (4.5) the function \(w(t, \omega, x, v) \) for \(t \in \mathbb{R}^{+} \), \((\omega, x) \in K \), and \(v \in C \). Then

(i) the map

\[
\Pi^{L}: \mathbb{R}^{+} \times K \times C \to K \times C, \quad (t, \omega, x, v) \mapsto (\Pi(t, \omega, x), w(t, \omega, x, v))
\]

is a continuous linear skew-product semiflow with base \((K, \Pi, \mathbb{R}^{+})\).

(ii) The map

\[
\tilde{\Pi}^{L}: \mathbb{R}^{+} \times K \times W^{1, \infty} \to K \times W^{1, \infty}, \quad (t, \omega, x, v) \mapsto (\tilde{\Pi}(t, \omega, x), w(t, \omega, x, v))
\]

satisfies properties [F1] and [F2] with \(\Omega \) replaced by \(K \times W^{1, \infty} \) (for all \(t \geq 0 \) and all \(l \geq 0 \) in the case of [F2]). In addition,

- \([r, \infty) \times K \times W^{1, \infty} \to K \times W^{1, \infty}, \quad (t, \omega, x, v) \mapsto (\Pi(t, \omega, x), w(t, \omega, x, v)) \]

\(\) is a continuous map.

- For each \(l \geq 0 \), the map \(\Pi_{l}^{L}: K \times W^{1, \infty} \to K \times W^{1, \infty}, \quad (\omega, x, v) \mapsto (\Pi(t, \omega, x), w(t, \omega, x, v)) \) is continuous.

- Let us define

\[
\mathcal{V}_{K}^{0} := \{ (t, \omega, x, v) \in V^{0} | (\omega, x) \in K \}
= \{ (t, \omega, x, v) \in \mathbb{R}^{+} \times K \times C^{1} | v(0^{-}) = L(\omega, x)v \}.
\]

The map \(\mathcal{V}_{K}^{0} \to K \times W^{1, \infty}, \quad t \mapsto (\Pi(t, \omega, x), w(t, \omega, x, v)) \) is continuous.

Proof. Corollary 3.4 shows that \((K, \Pi, \mathbb{R}^{+})\) is a global continuous semiflow. Having this in mind, all the assertions are trivial consequences of Theorem 4.2.

As we anticipated, our next result, Theorem 4.4 will show that, as a matter of fact, \(\tilde{\Pi}^{L}: \mathbb{R}^{+} \times K \times W^{1, \infty} \to K \times W^{1, \infty} \) is the linearized semiflow of \(\Pi \), in the sense that each one of its semi-orbits determine the differential with respect to the state variable of the semi-orbits of \(\Pi \). The first assertion in the theorem is proved (in a slightly different setting) in [5], Theorem 4. For the sake of completeness we give here part of the details of the proof, since they help the reader to understand the dynamical meaning of the function \(u_{x}(t, \omega, x) \).

Note that the uniformity of the limit \((4.8) \) with respect to the elements of the unit ball means that \(u_{x}(t, \omega, x) \) is the classical Fréchet differential with respect to the initial state of the function \(u(t, \omega, x) \), which provides it with full dynamical meaning.

The sets \(C_{0} \) and \(\mathcal{U}^{0} \) appearing in the next statement are given by (4.1) and (4.2).

Theorem 4.4. Suppose that [H1] and [H2] hold. Let us fix \((\omega, x) \in C_{0}\). If \(t \in [0, \beta_{\omega, x}) \), then there exists

\[
u_{x}(t, \omega, x, v) = \lim_{\varepsilon \to 0} \frac{u(t, \omega, x + \varepsilon v) - u(t, \omega, x)}{\varepsilon}
\]

in \(W^{1, \infty} \)

\[
\text{uniformly in } v \in B_{1},
\]

where \(B_{1} := \{ v \in W^{1, \infty} | \|v\|_{W^{1, \infty}} = 1 \} \). In addition, the map

\[
[-r, \beta_{\omega, x}) \to W^{1, \infty}, \quad t \mapsto (u_{x}(t, \omega, x)v)(t)
\]

...
is the unique solution of (4.3) agreeing with \(v \) on \([-r,0]\). That is, \(u_x(t,\omega,x)v = w(t,\omega,x,v) \), this last map being defined by (4.5).

Consequently, the map \((t,\omega,x,v) \mapsto u_x(t,\omega,x)v\) satisfies all the continuity properties described in Theorem 4.2.

Proof. In the whole proof, the point \((\omega,x) \in C_0\) will be fixed, and any \(v \) will belong to \(\overline{B}_1 \). We also fix an arbitrary time \(T \in (0,\beta_{\omega,x}) \). Theorem 3.3(iv) provides \(\delta > 0 \) such that, for \(\varepsilon \in [-\delta,\delta] \), there exists \(y^{\varepsilon}_v(t) := y(t,\omega,x+\varepsilon v) \) for \(t \in [-r,T] \), and \(v \in B_1 \). We also represent \(u^{\varepsilon}_v(t) := u(t,\omega,x+\varepsilon v) \), \(\tau^{\varepsilon}_v(t) := \tau(\omega,t,u^{\varepsilon}_v(t)) \), \(z^{\varepsilon}_v(t) := z(t,\omega,x,v) \), and \(w^{\varepsilon}_v(t) := w(t,\omega,x,v) \) for \(|\varepsilon| \leq \delta \), \(t \in [0,T] \), and \(v \in \overline{B}_1 \).

(Recall that \(z(t,\omega,x,v) \) is defined by (4.3) agreeing with \(v \) on \([-r,0]\), and that \(w(t,\omega,x,v) \) is defined by (4.5).) Note that \(y^{\varepsilon}_v(t), u^{\varepsilon}_v(t) \), and \(\tau^{\varepsilon}_v(t) \) are independent of \(v \in \overline{B}_1 \). For this reason, we omit the subscript when \(\varepsilon = 0 \).

Theorem 2 and Corollary 1 of Hartung \(5\) prove that, if \((\omega,x) \in C_0\) and \(t \in [0,\beta_{\omega,x}) \), then

\[
 u_x(t,\omega,x)v = \lim_{\varepsilon \to 0} \frac{u(t,\omega,x+\varepsilon v) - u(t,\omega,x)}{\varepsilon} \quad \text{in } C \text{ unif. in } v \in \overline{B}_1. \tag{4.9}
\]

They also prove that

\[
 (u_x(t,\omega,x,v)) = w(t,\omega,x,v). \tag{4.10}
\]

In particular, the map \(u_x(t,\omega,x) : W_{-1}^1 \to C \) is linear. And we have seen in Theorem 4.2(iv) that \(w(t,\omega,x,v) \in W_{-1}^1 \) if \(v \in W_{-1}^1 \), so that \(u_x(t,\omega,x,v) : W_{-1}^1 \to W_{-1}^1 \) is well defined. Therefore the goal is to prove that (4.9) is still true in the topology of \(W_{-1}^1 \) instead of that of \(C \). (See also Theorem 4 of \(5\).)

Since \(T \) is arbitrarily chosen, a standard compactness argument shows that (4.9) can be rewritten as

\[
 \lim_{\varepsilon \to 0} \left\| \frac{u^{\varepsilon}_v(t) - u^0(t)}{\varepsilon} - v(t) \right\|_C = 0 \quad \text{for all } t \in [0,T] \text{ unif. in } v \in \overline{B}_1. \tag{4.10}
\]

For the same reason, in order to prove (4.8), we must prove that

\[
 \lim_{\varepsilon \to 0} \left\| \frac{u^{\varepsilon}_v(t) - u^0(t)}{\varepsilon} - w_v(t) \right\|_{W_{-1}^1} = 0 \quad \text{for all } t \in [0,T] \text{ unif. in } v \in \overline{B}_1. \tag{4.11}
\]

Note that \((y^{\varepsilon}_v(s) - y^0(s))/\varepsilon = \dot{v}(s) = \dot{z}_v(s)\) for Lebesgue-a.a. \(s \in [-r,0] \). This property, (4.10), and the definition of \(\|\cdot\|_{W_{-1}^1} \), show that our goal will be achieved once we have proved that

\[
 \lim_{\varepsilon \to 0} \frac{y^{\varepsilon}_v(t) - y^0(t)}{\varepsilon} = \dot{z}_v(t) \quad \text{uniformly in } t \in [0,T] \text{ and } v \in \overline{B}_1. \tag{4.11}
\]

Equation (3.1) satisfied by \(y^{\varepsilon}_v(t) \) combined with \(H1\) and \(H2\) yield

\[
 \frac{y^{\varepsilon}_v(t) - y^0(t)}{\varepsilon} = F(\omega,t,y^{\varepsilon}_v(t),y^{\varepsilon}_v(t-\tau^\varepsilon_v(t))) - F(\omega,t,y^0(t),y^0(t-\tau^0(t)))
\]

\[
 = \int_0^1 \left(D_3 F(\omega,s,y^{\varepsilon}_v(t)+(1-s)y^0(t),sy^{\varepsilon}_v(t-\tau^\varepsilon_v(t)))
\]

\[
 + (1-s)y^0(t-\tau^0(t)) \right) \left(\frac{y^{\varepsilon}_v(t) - y^0(t)}{\varepsilon} \right) \right) ds
\]

\[
 + \int_0^1 \left(D_3 F(\omega,t,y^{\varepsilon}_v(t)+(1-s)y^0(t),sy^{\varepsilon}_v(t-\tau^\varepsilon_v(t)))
\]

\[
 + (1-s)y^0(t-\tau^0(t)) \right) \right) \left(\frac{y^{\varepsilon}_v(t) - y^0(t)}{\varepsilon} \right) \right) ds
\]
then we can combine the continuity of \(D_2F \) and \(D_3F \) ensured by [H1] in order to deduce that
\[
\lim_{\varepsilon \to 0} \frac{y^\varepsilon(t) - y^0(t)}{\varepsilon} = D_2F(\omega, t, y^0(t), y^0(t-t^0(t))) z_v(t) + D_3F(\omega, t, y^0(t), y^0(t-t^0(t))) z_v(t-t^0(t))
\]

which is uniform in \(t \in [0, T] \) and \(v \in \mathcal{B}_1 \). In order to check that this uniform limiting behavior yields indeed the result, we assume for the moment being that (4.12) and (4.13) hold. Then we can combine the continuity of \(D_2F \) and \(D_3F \) ensured by [H1] in order to deduce that
\[
\lim_{\varepsilon \to 0} \frac{y^\varepsilon(t) - y^0(t)}{\varepsilon} = D_2F(\omega, t, y^0(t), y^0(t-t^0(t))) z_v(t)
\]

which is uniform in \(t \in [0, T] \) and \(v \in \mathcal{B}_1 \). Since, according to (4.3), the last expression agrees with \(\dot{z}_v(t) \), the equality (4.11) (and hence assertion (i)) will be proved, as asserted.

It is easy to deduce from the continuity \(\Pi : \mathbb{R}^+ \times \Omega \times W^{1,\infty} \to \Omega \times C \) ensured by Theorem 3.3(v) that, given \(\rho > 0 \), there exists \(\delta = \delta(\rho) > 0 \) such that, if \(|\varepsilon| \leq \delta \), then \(\|u^\varepsilon(t) - u^0(t)\|_C \leq \rho \) for all \(t \in [0, T] \) and all \(v \in \mathcal{B}_1 \). In other words, \(\lim_{\varepsilon \to 0} u^\varepsilon(t) = u^0(t) \) uniformly in \(t \in [0, T] \) and \(v \in \mathcal{B}_1 \). This property guarantees that the following limits exist and are uniform in \(t \in [0, T] \) and \(v \in \mathcal{B}_1 \):
\[
y^0(t) = \lim_{\varepsilon \to 0} y^\varepsilon(t),
\]
\[
\tau^0(t) = \lim_{\varepsilon \to 0} \tau^\varepsilon(t),
\]
\[
y^0(t-t^0(t)) = \lim_{\varepsilon \to 0} y^\varepsilon(t-t^\varepsilon(t)).
\]

The last limit follows from the previous ones and \(\|y^0(t-t^0(t)) - y^\varepsilon(t-t^\varepsilon(t))\| \leq \|y^0(t-t^0(t)) - y^0(t-t^\varepsilon(t))\| + \|y^0(t-t^\varepsilon(t)) - y^\varepsilon(t-t^\varepsilon(t))\| \).

On the other hand, (4.10) yields
\[
\lim_{\varepsilon \to 0} \frac{y^\varepsilon(t) - y^0(t)}{\varepsilon} = z_v(t) \quad \text{uniformly in } t \in [-r, T] \text{ and } v \in \mathcal{B}_1.
\]

These facts and the continuity of \(D_2F \) guaranteed by [H1] allow us to check (4.12). To deal with the second integrand, we will prove that
\[
\lim_{\varepsilon \to 0} \frac{y^\varepsilon(t-t^\varepsilon(t)) - y^0(t-t^0(t))}{\varepsilon} = z_v(t-t^0(t)) - \dot{y}^0(t-t^0(t)) \cdot D_2\tau^0(t)w_v(t)
\]

uniformly in \(t \in [0, T] \) and \(v \in \mathcal{B}_1 \). Let us write
\[
\frac{y^\varepsilon(t-t^\varepsilon(t)) - y^0(t-t^\varepsilon(t))}{\varepsilon} = \frac{y^\varepsilon(t-t^\varepsilon(t)) - y^0(t-t^\varepsilon(t))}{\varepsilon} + \frac{y^0(t-t^\varepsilon(t)) - y^0(t-t^0(t))}{\varepsilon},
\]
and deal with each term to obtain (4.16).
We first check that
\[
\lim_{\varepsilon \to 0} \frac{y_\varepsilon^0(t) - y^0(t)}{\varepsilon} = z_\varepsilon^0(t) \quad \text{uniformly in } t \in [0, T] \text{ and } v \in \mathcal{B}_1,
\]
which in turn requires
\[
\lim_{\varepsilon \to 0} |z_\varepsilon^0(t) - z_\varepsilon(t)| = 0 \quad \text{uniformly in } t \in [0, T] \text{ and } v \in \mathcal{B}_1. \quad (4.17)
\]
To prove this last property, we use the convergence of \(r_\varepsilon^0(t)\) to \(r^0(t)\) as \(\varepsilon \to 0\) (see (4.14), which is uniform in \(t \in [0, T]\) and \(v \in \mathcal{B}_1\), together with the equicontinuity of \(\{z_\varepsilon^0 \mid v \in \mathcal{B}_1\}\) on \([-r, T]\): note first that the family is equiuniform on \([-r, 0]\) (where \(|z(t_1) - z(t_2)| \leq \|\varepsilon\|_{L^\infty}[t_1 - t_2] \leq |t_1 - t_2|\); and second, that
\[
|z_\varepsilon^0(t)| \leq \|L(\Pi(t, \omega, x))\|_{\text{Lin}(W^{1, \infty}, \mathbb{R}^n)} \|w_v(t)\|_{W^{1, \infty}}
\]
for \(t > 0\), so that the uniform continuity of the map \([0, T] \to \text{Lin}(W^{1, \infty}, \mathbb{R}^n), t \mapsto L(\Pi(t, \omega, x))\) (ensured by Proposition 4.1(ii)) and the Lipschitz behavior of \(w_v(t)\) (ensured by Theorem 4.2(viii)) provide a constant \(M\) such that \(|z_\varepsilon^0(t)| \leq M\) for all \(t \in [0, T]\) and \(v \in \mathcal{B}_1\). So, (4.17) is proved, and we can write
\[
\lim_{\varepsilon \to 0} \left| \frac{y_\varepsilon^0(t) - y^0(t)}{\varepsilon} - z_\varepsilon^0(t) \right| = 0 \quad \text{uniformly in } t \in [0, T] \text{ and } v \in \mathcal{B}_1.
\]

The remaining limit to compute is
\[
\lim_{\varepsilon \to 0} \frac{y^0(t) - y^0(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \int_0^1 y^0(t - s \tau_\varepsilon^0(t)) - (1 - s)\tau_\varepsilon^0(t) ds \cdot \lim_{\varepsilon \to 0} \frac{\tau_\varepsilon^0(t) - \varepsilon^0(t)}{\varepsilon}.
\]
Since \((\omega, x) \in C_0\), it follows from Theorem 3.3(vii) that \(y^0\) is uniformly continuous on \([-r, T]\), from where it follows easily that \(\lim_{\varepsilon \to 0} y^0(t - s \tau_\varepsilon^0(t)) - (1 - s)\tau_\varepsilon^0(t) = y^0(t - \tau^0(t))\) uniformly in \(t \in [0, T]\), \(s \in [0, 1]\) and \(v \in \mathcal{B}_1\). These properties yield
\[
\lim_{\varepsilon \to 0} \int_0^1 y^0(t - s \tau_\varepsilon^0(t)) - (1 - s)\tau_\varepsilon^0(t) ds = y^0(t - \tau^0(t))
\]
uniformly in \(t \in [0, T]\), \(s \in [0, 1]\) and \(v \in \mathcal{B}_1\). On the other hand, we can write
\[
\lim_{\varepsilon \to 0} \frac{\tau_\varepsilon^0(t) - \varepsilon^0(t)}{\varepsilon} = \lim_{\varepsilon \to 0} \int_0^1 D_2 \tau(\omega(t), u^0(t)) u^0(t) - (1 - s) u^0(t) ds.
\]
We deduce from \(H2\) and from the property \(\lim_{\varepsilon \to 0} u_\varepsilon(t) = u^0(t)\) uniformly in \(t \in [0, T]\) and \(v \in \mathcal{B}_1\) (see above) that \(\lim_{\varepsilon \to 0} D_2 \tau(\omega(t), u^0(t)) = D_2 \tau(\omega(t), u^0(t))\) in \(\text{Lin}(C, \mathbb{R}^n)\) uniformly in \(t \in [0, T]\), \(s \in [0, 1]\) and \(v \in \mathcal{B}_1\). Finally, according to (4.10), \(\lim_{\varepsilon \to 0} (u_\varepsilon(t) - u^0(t))/\varepsilon = w_v(t)\) in \(C\) uniformly in \(t \in [0, T]\) and \(v \in \mathcal{B}_1\). These facts ensure that
\[
\lim_{\varepsilon \to 0} \frac{\tau_\varepsilon^0(t) - \varepsilon^0(t)}{\varepsilon} = -D_2 \tau(\omega(t), u^0(t)) w_v(t) \quad \text{uniformly in } t \in [0, T] \text{ and } v \in \mathcal{B}_1.
\]
 Altogether, we see that (4.16) is proved. Now we can check the assertion concerning the second integrand by combining equalities (4.14), the continuity of D_3F ensured by H_1 and (4.16). The proof is complete.

We complete the paper with a deeper analysis of the regularity properties of the map $u_x(t, \omega, x)v$.

Theorem 4.5. Suppose that conditions H_1 and H_2 hold, and define the sets U_i^0 and \bar{U}^0 by (4.7) and (4.6).

(i) Let us fix $t \geq 0$ with U_i^0 nonempty. Then the map $U_i^0 \to \text{Lin}(W^{1,\infty}, W^{1,\infty})$,

$$(\omega, x) \mapsto u_x(t, \omega, x)$$

is continuous.

(ii) The map $\bar{U}^0 \to \text{Lin}(W^{1,\infty}, W^{1,\infty})$, $(t, \omega, x) \mapsto u_x(t, \omega, x)$ is continuous.

Proof. In the whole proof, we will use the notation $u_x(t, \omega, x)v = w(t, \omega, x, v)$, since we will permanently use the fact that the function $t \mapsto w(t, \omega, x, v)(0) = z(t, \omega, x, v)$ solves (4.3).

(i) Let us take a sequence $((\omega_m, x_m))$ in U_i^0 with limit $(\bar{\omega}, \bar{x}) \in U_i^0$. We also take a constant ρ satisfying conditions 1 and 2 of Theorem 4.2(viii), and assume without restriction that $(\omega_m, x_m) \in B_{\rho, \bar{\omega}, \bar{x}}$ for all $m \in \mathbb{N}$. For any $v \in W^{1,\infty}$, we represent $z_m(t, v) := z(t, \omega_m, x_m, v)$ and $\bar{z}(t, v) := z(t, \bar{\omega}, \bar{x}, v)$ for $t \in [-r, \bar{t}]$, and $w_m(t, v) := w(t, \omega_m, x_m, v)$ and $\bar{w}(t, v) := w(t, \bar{\omega}, \bar{x}, v)$ for $t \in [0, \bar{t}]$. Equation (4.3) yields

$$
|\bar{z}(t, v) - z_m(t, v)| \leq \left| \int_0^t (L(\Pi(l, \omega_m, \bar{x}_m)) - L(\Pi(l, \bar{\omega}, \bar{x}))) w_m(l, v) \, dl \right| \quad (4.18)
$$

for all $t \in [0, \bar{t}]$. Let us fix $\varepsilon > 0$, define \mathcal{S} by (3.4), note that $\mathcal{S} \subset C_0$, and use Proposition 4.1(ii) and the compactness of $[0, \bar{t}] \times \mathcal{S}$ to find m_0 such that $\|L(\Pi(t, \omega_m, \bar{x}_m)) - L(\Pi(t, \bar{\omega}, \bar{x}))\|_{\text{Lin}(\Omega, \mathbb{R}^n)} \leq \varepsilon$ for $t \in [0, \bar{t}]$ and $m \geq m_0$. According to Theorem 4.2(viii), there exists $M > 0$ such that $\|w_m(t, v)\|_{W^{1,\infty}} \leq M\|v\|_{W^{1,\infty}}$ for $t \in [0, \bar{t}]$. And Proposition 4.1(iii) yields $k := \sup_{t \in [0, \bar{t}]} \|L(\Pi(t, \omega_m, \bar{x}_m))\|_{\text{Lin}(C, \mathbb{R}^n)}$ is finite. Therefore, by (4.18),

$$
|\bar{z}(t, v) - z_m(t, v)| \leq \varepsilon \bar{t} M \|v\|_{W^{1,\infty}} + \int_0^t k \|\bar{w}(l, v) - w_m(l, v)\|_C \, dl
$$

for $t \in [0, \bar{t}]$ and $m \geq m_0$. Since $|\bar{z}(t, v) - z_m(t, v)| = 0$ for $t \in [-r, 0]$, we conclude that

$$
\|\bar{w}(t, v) - w_m(t, v)\|_C \leq \varepsilon \bar{t} M \|v\|_{C} + \int_0^t k \|\bar{w}(l, v) - w_m(l, v)\|_C \, dl
$$

for $t \in [0, \bar{t}]$ and $m \geq m_0$. The Gronwall lemma yields

$$
\|\bar{w}(t, v) - w_m(t, v)\|_C \leq \varepsilon \bar{t} M \|v\|_{W^{1,\infty}} e^{k\bar{t}} = \varepsilon \bar{M} \|v\|_{W^{1,\infty}}
$$

for $t \in [0, \bar{t}]$ and $m \geq m_0$, where $\bar{M} = \bar{t} M e^{k\bar{t}}$. Now,

$$
|\bar{z}(t, v) - \bar{z}_m(t, v)| \leq \|L(\Pi(t, \bar{\omega}, \bar{x})) - L(\Pi(t, \omega_m, \bar{x}_m))\|_{\text{Lin}(W^{1,\infty}, \mathbb{R}^n)} \|w_m(t, v)\|_{W^{1,\infty}}
$$

$$
+ \|L(\Pi(t, \bar{\omega}, \bar{x}))\|_{\text{Lin}(C, \mathbb{R}^n)} \|\bar{w}(t, v) - w_m(t, v)\|_C
$$

$$
\leq \varepsilon M \|v\|_{W^{1,\infty}} + \varepsilon k \bar{M} \|v\|_{W^{1,\infty}} = \varepsilon M^* \|v\|_{W^{1,\infty}}
$$

for some M^*. This completes the proof.
for \(t \in [0, \tilde{t}] \) and \(m \geq m_0 \), where \(M^* = M + k\tilde{M} \). And \(|\tilde{z}(t, v) - z_m(t, v)| = 0 \) for \(t \in [-r, 0) \). Therefore, if \(m \geq m_0 \), we have
\[
\|\tilde{w}(\tilde{t}, v) - w_m(\tilde{t}, v)\|_{W^{1, \infty}} \leq \varepsilon (\tilde{M} + M^*) \|v\|_{W^{1, \infty}}.
\]
Since the constants \(\tilde{M} \) and \(M^* \) can be defined from the beginning, (ii) is proved.

(ii) Let us take a sequence \(\{(t_m, \omega_m, x_m)\} \) in \(\tilde{U}^0 \) with limit \((t_0, \bar{\omega}, \bar{x}) \in \tilde{U}^0 \) and assume without restriction the existence of of \(\tilde{t} \in (t_0, \beta_{\tilde{t}, \tilde{\omega}, \tilde{x}}) \) with \(2r \leq t_m \leq \tilde{t} < \beta_{\omega_m, x_m} \) for all \(m \in \mathbb{N} \). We also take a constant \(\rho \) satisfying conditions 1 and 2 of Theorem 4.2 viii) for \((\tilde{t}, \bar{\omega}, \bar{x}) \), and assume without restriction that \((\omega_m, x_m) \in B_{\omega, x}^{\rho, t_0} \) for all \(m \in \mathbb{N} \). For any \(v \in W^{1, \infty} \), we represent \(z_m(t, v) := z(t, \omega_m, x_m, v) \) and \(\tilde{z}(t, v) := z(t, \bar{\omega}, \bar{x}, v) \) for \(t \in [-r, \tilde{t}] \), and \(w_m(t, v) := w(t, \omega_m, x_m, v) \) and \(\tilde{w}(t, v) := w(t, \bar{\omega}, \bar{x}, v) \) for \(t \in [0, \tilde{t}] \). And we fix \(\varepsilon > 0 \). Note that
\[
\|\tilde{w}(t_0, v) - w_m(t_0, v)\|_{W^{1, \infty}} \leq \|\tilde{w}(t_0, v) - w_m(t_0, v)\|_{W^{1, \infty}} + \|w_m(t_0, v) - w_m(t_m, v)\|_{W^{1, \infty}},
\]
so that (i) allows us to focus just on the second term. Equation (4.3) yields
\[
|z_m(t, v) - z_m(t^*, v)| = \left| \int_{t^*}^{t} L(\Pi(l, \omega_m, x_m)) w(l, v) \, dl \right|
\]
for all \(t \) and \(t^* \) in \([r, \tilde{t}]\) and \(m \in \mathbb{N} \). Let us define \(S \) by (3.4), note that \(S \subset C_0 \), and use Proposition 4.1(ii) and the compactness of \([0, \tilde{t}] \times S \) to ensure: first, that
\[
k^* := \sup \|L(\Pi(t, \omega_m, x_m))\|_{\text{Lin}(W^{1, \infty}_{[r, \tilde{t}], \mathbb{R}^n})} \mid t \in [r, \tilde{t}] \text{ and } m \in \mathbb{N}\]
is finite; and second, that there exists \(m_0 \in \mathbb{N} \) such that
\[
\|L(\Pi(t + s, \omega_m, x_m)) - L(\Pi(t + s, \omega_m, x_m))\|_{\text{Lin}(W^{1, \infty}_{[r, \tilde{t}], \mathbb{R}^n})} \leq \varepsilon
\]
for all \(m \geq m_0 \) and \(s \in [-r, 0) \). According to Theorem 4.2 viii), there exists \(M > 0 \) such that \(\|w_m(t, v)\|_{W^{1, \infty}} \leq M \|v\|_{W^{1, \infty}} \) for \(t \in [0, \tilde{t}] \). For next purposes, we assume without restriction that \(k^* M > 1 \). Therefore,
\[
|z_m(t, v) - z_m(t^*, v)| \leq k^* M |t - t^*| \|v\|_{W^{1, \infty}}
\]
for all \(t \), and \(t^* \in [0, \tilde{t}] \). On the other hand, if \(t \) and \(t^* \) in \([-r, 0] \), then
\[
|z_m(t, v) - z_m(t^*, v)| = |v(t) - v(t^*)| \leq |t - t^*| \|v\|_{L^\infty} \leq k^* M |t - t^*| \|v\|_{W^{1, \infty}},
\]
and, if \(-r \leq t \leq 0 \leq t^* \leq \tilde{t},
\[
|z_m(t, v) - z_m(t^*, v)| \leq |z_m(t, v) - z_m(0, v)| + |z_m(0, v) - z_m(t^*, v)|
\]
\[
\leq k^* M |v|_{W^{1, \infty}} + t^* k^* M \|v\|_{W^{1, \infty}} = |t^* - t| k^* M \|v\|_{W^{1, \infty}}.
\]
Consequently, if \(t \) and \(t^* \) belong to \([0, \tilde{t}]\) and \(m \in \mathbb{N} \),
\[
\|w_m(t, v) - w_m(t^*, v)\|_{C} \leq k^* M |t - t^*| \|v\|_{W^{1, \infty}}.
\]
Let us take \(m_1 \geq m_0 \) such that \(|t_m - t_0| \leq \varepsilon \) if \(m \geq m_1 \), and recall that \(t_0 \geq r \) and \(t_m \geq r \). Then, if \(m \geq m_1 \) and \(s \in [-r, 0] \),
\[
|z_m(t_0 + s, v) - z_m(t_m + s, v)|
\]
\[
\leq \|L(\Pi(t_0 + s, \omega_m, x_m)) - L(\Pi(t_m + s, \omega_m, x_m))\|_{\text{Lin}(W^{1, \infty}_{[r, \tilde{t}], \mathbb{R}^n})} \|w_m(t_0 + s, v)\|_{W^{1, \infty}}
\]
\[
+ \|L(\Pi(t_m + s, \omega_m, x_m))\|_{\text{Lin}(C, \mathbb{R}^n)} \|w_m(t_0 + s, v) - w_m(t_m + s, v)\|_{C}
\]
\[
\leq \varepsilon M \|v\|_{W^{1, \infty}} + \varepsilon (k^*)^2 M \|v\|_{W^{1, \infty}} = \varepsilon M^* \|v\|_{W^{1, \infty}}.
\]
where $M^* = (1 + (k^*)^2) M$. Therefore, if $m \geq m_1$, we have
\[
\|w_m(t_0, v) - w_m(t_m, v)\|_{W^{1,\infty}} \leq \varepsilon (k^* M + M^*) \|v\|_{W^{1,\infty}}.
\]
Since k^*, M and M^* can be defined from the beginning, (ii) is proved.

REFERENCES

[1] M. V. Barbarossa and H. O. Walther, Linearized stability for a new class of neutral equations with state-dependent delay, *Differ. Equ. Dyn. Syst.*, 24 (2016), 63–79.

[2] Y. Chen, Q. Hu and J. Wu, Second-order differentiability with respect to parameters for differential equations with adaptive delays, *Proc. Math. China*, 5 (2010), 221–286.

[3] J. K. Hale, *Asymptotic Behavior of Dissipative Systems*, Math. Surveys Monogr., 25, Amer. Math. Soc., 1988.

[4] J. K. Hale and S. M. Verduyn Lunel, *Introduction to Functional Differential Equations*, Appl. Math. Sciences, 99, Springer-Verlag, 1993.

[5] F. Hartung, On differentiability of solutions with respect to parameters in a class of functional differential equations, *Funct. Differ. Equ.*, 4 (1997), 65–79.

[6] F. Hartung, Differentiability of solutions with respect to the initial data in differential equations with state-dependent delays, *J. Dynam. Differential Equations*, 23 (2011), 843–884.

[7] F. Hartung, T. Krisztin, H. O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications, *Handbook of Differential Equations: Ordinary Differential Equations*, Elsevier, North-Holland, 3 (2006), 435–545.

[8] X. He and R. de la Llave, Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method II: Analytic case, *J. Differential Equations*, 261 (2016), 2068–2108.

[9] Y. Hino, S. Murakami and T. Naito, *Functional Differential Equations with Infinite Delay*, Lecture Notes in Math., 1473, Springer-Verlag, 1991.

[10] Q. Hu and J. Wu, Global Hopf bifurcation for differential equations with state-dependent delay, *J. Differential Equations*, 248 (2010), 2801–2840.

[11] Q. Hu, J. Wu and X. Zou, Estimates of periods and global continua of periodic solutions for state-dependent delay equations, *SIAM J. Math. Anal.*, 44 (2012), 2401–2427.

[12] T. Krisztin and A. Rezounenko, Parabolic partial differential equations with discrete state-dependent delay: Classical solutions and solution manifold, *J. Differential Equations*, 260 (2016), 4454–4472.

[13] J. Mallet-Paret and R. D. Nussbaum, Stability of periodic solutions of state-dependent delay-differential equations, *J. Differential Equations*, 250 (2011), 4085–4103.

[14] I. Maroto, C. Núñez and R. Obaya, Exponential stability for nonautonomous functional differential equations with state-dependent delay, to appear in *Discrete Contin. Dyn. Syst., Ser. B*, 2016.

[15] I. Maroto, C. Núñez and R. Obaya, Existence of global attractor for a biological neural network modelized by a nonautonomous state-dependent delay differential equation, submitted, 2016.

[16] G. R. Sell and Y. You, *Dynamics of Evolutionary Equations*, Appl. Math. Sci., 143, Springer-Verlag, 2002.

[17] H. O. Walther, The solution manifold and C^1-smoothness for differential equations with state-dependent delay, *J. Differential Equations*, 195 (2003), 46–65.

[18] H. O. Walther, Smoothness of semiflows for differential equations with state-dependent delays, *J. Math. Sci.*, 124 (2004), 5193–5207.

[19] J. Wu, *Introduction to Neural Dynamics and Signal Transmission Delay*, Series in Nonlinear Analysis and Applications 6, Walter de Gruyter, Berlin, New York, 2001.

Received June 2016; revised March 2017.

E-mail address: ismar@eii.uva.es
E-mail address: carnum@matem.eis.uva.es
E-mail address: rafoba@matem.eis.uva.es