Expression of ST3GAL4 Leads to SLex Expression and Induces c-Met Activation and an Invasive Phenotype in Gastric Carcinoma Cells

Catarina Gomes1, Hugo Osório1,3, Marta Teixeira Pinto1, Diana Campos1, Maria José Oliveira2,3, Celso A. Reis1,3,4,*

1 Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, Porto, Portugal, 2 Instituto de Engenharia Biomédica, INEB, University of Porto, Porto, Portugal, 3 Faculty of Medicine, University of Porto, Porto, Portugal, 4 Institute of Biomedical Sciences of Abel Salazar, ICBS, Porto, Portugal

Abstract

Sialyl-Lewis X (SLex) is a sialylated glycan antigen expressed on the cell surface during malignant cell transformation and is associated with cancer progression and poor prognosis. The increased expression of sialylated glycans is associated with alterations in the expression of sialyltransferases (STs). In this study we determined the capacity of ST3GAL3 and ST3GAL4 sialyltransferases to synthesize the SLex antigen in MKN45 gastric carcinoma cells and evaluated the effect of SLex overexpression in cancer cell behavior both in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. The activation of tyrosine kinase receptors and their downstream molecular targets was also addressed. Our results showed that the expression of ST3GAL4 in MKN45 gastric cancer cells leads to the synthesis of SLex antigens and to an increased invasive phenotype both in vitro and in the in vivo CAM model. Analysis of phosphorylation of tyrosine kinase receptors showed a specific increase in c-Met activation. The characterization of downstream molecular targets of c-Met activation, involved in the invasive phenotype, revealed increased phosphorylation of FAK and Src proteins and activation of Cdc42, Rac1 and RhoA GTPases. Inhibition of c-Met and Src activation abolished the observed increased cell invasive phenotype. In conclusion, the expression of ST3GAL4 leads to SLex antigen expression in gastric cancer cells which in turn induces an increased invasive phenotype through the activation of c-Met, in association with Src, FAK and Cdc42, Rac1 and RhoA GTPases activation.

Citation: Gomes C, Osório H, Pinto MT, Campos D, Oliveira MJ, et al. (2013) Expression of ST3GAL4 Leads to SLex Expression and Induces c-Met Activation and an Invasive Phenotype in Gastric Carcinoma Cells. PLoS ONE 8(6): e66737. doi:10.1371/journal.pone.0066737

Editor: Bart O. Williams, Van Andel Institute, United States of America

Received January 11, 2013; Accepted May 9, 2013; Published June 14, 2013

Copyright: © 2013 Gomes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was partially supported by Portuguese Foundation for Science and Technology FCT (PTDC/EBB-EBI/0786/2012) financiado no âmbito do Programa Operacional Temático de Fatores de Competitividade (COMPETE) e do Quadro de Referência Estratégia Nacional OREN. FCT supports CG (PDI grant SFRH/BD/44236/2008), and HO and MTP (Cieância 2007 program). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by the Portuguese Foundation for Science and Technology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: celsor@ipatimup.pt

Introduction

Alterations in cell surface glycosylation are considered a hallmark during carcinogenesis. These alterations usually lead to the expression of tumor-associated carbohydrates on glycoproteins or glycolipids that decorate cell surfaces [1]. One of the most common glycan alterations is the increase of sialylated Lewis-type blood group antigens, such as sialyl Lewis A (SLea; NeuAcα2,3-Galβ1-3(Fucα1-4)GlcNAc-R) and sialyl Lewis X (SLeb; NeuAcα2,3Galβ1-4(Fucα1-3)GlcNAc-R). SLea and SLeb are expressed in cancer cells, mimicking their normal expression on blood cells (monocytes and neutrophils) potentiating cancer cell migration through binding to endothelial cell selectins [2,3]. Therefore, SLea and SLeb overexpression is a common feature of several carcinomas (e.g., lung, colon, gastric and pancreas) and it is associated with increased metastatic capacity [4,5,6,7] and poor patients survival [8,9,10,11,12].

The increased expression of sialylated glycans associated to carcinogenesis is the result of altered expression of sialyltransferases (STs) genes which encode for enzymes involved in the biosynthesis of the glycan antigens described above [13]. Up to 20 different sialyltransferases have been described to catalyse the transfer of sialic acid residues from a donor substrate CMP-sialic acid to the oligosaccharide side chain of the glycoconjugates. This sialic acid generally occupies the terminal non-reducing position on glycan chains [14]. Different STs show cell and tissue specific expression pattern and differ in substrate specificities and types of linkage formed [14]. Depending on these characteristics, STs are classified in four families - ST3Gal, ST6Gal, ST6GalNAc and ST6Sia. ST3Gal family are α2,3-STs which catalyze the transfer of sialic acid residues to terminal galactopyranosyl (Gal) residues and include six members from ST3Gal I to ST3Gal VI [15].

Among the six ST3Gal sialyltransferases, ST3Gal III, IV and VI have been described to contribute to SLex formation [16,17], with a substantial role attributed to ST3Gal IV [18,19].

The sialyl-Lewis antigens are synthesized on type 1 (Gal β1,3 GlcNAc) or type 2 (Gal β1,4 GlcNAc) disaccharide sequences. The sialyltransferase ST3Gal III preferentially acts on type 1 rather than on type 2 disaccharides and is involved in the synthesis of...
SLex [20]. ST3Gal IV mainly catalyzes the α2,3-sialylation of type 2 disaccharides, leading to the biosynthesis of SLex [18,21].

We previously demonstrated the contribution of different ST3Gal sialyltransferases to the synthesis of sialyl Lewis antigens in gastric carcinoma cells, and described that ST3Gal IV is involved in the synthesis of SLex antigen [22]. In line with this report, other studies also found that high expression of ST3Gal IV, contributes to the expression of α2,3-linked sialic acid residues, and is associated with the malignant behavior of gastric cancer cells [23].

In gastric carcinoma tissues, the increased expression of ST3Gal IV [24] and of sialyl Lewis antigens have been associated with poor prognosis and metastatic capacity [8]. These reports highlight the role of STs and evidenced that the expression of crucial glycan determinants, such SLex, play an important role in tumor progression. However, the molecular mechanisms underlying the aggressive behavior of gastric cancer cells expressing SLex are not fully understood. Some studies pointed to the importance of tyrosine kinase receptor activation in STs overexpression models [25,26,27]. In the present study we assessed the effect of ST3Gal IV overexpression in the synthesis of SLex in gastric carcinoma cells and evaluated the functional role of SLex in vitro (proliferation, invasion and adhesion) and in vivo (angiogenesis, tumor growth and invasion). We further evaluated the contribution to cell behavior of tyrosine kinase receptors activation and identified the downstream effectors in the context of ST3Gal IV/SLex overexpressing gastric carcinoma cells.

Materials and Methods

Cell culture

The gastric cancer cell line MKN45 was obtained from the Japanese Cancer Research Bank (Tsukuba, Japan) and was stably transfected with full length human gene for ST3Gal3 (MST3Gal III), ST3Gal4 (MST3Gal IV) and the empty vector pcDNA3.1 (Mock) as shown previously [22]. The cells were grown in monolayer culture in T75cm² flasks and maintained at 37 °C in an atmosphere of 5% CO₂, in Roswell Park Memorial Institute (RPMI) 1640 GlahtMAX, HEPES medium supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin (P/S) and is associated with the malignant behavior of gastric cancer cells [23].

RT (Invitrogen) in a total volume of 20 μL of total RNA, random oligonucleotides primers and SuperScript II III and MST3Gal IV cell lines using TRI Reagent (Sigma) and was stably transfected with full length human gene for ST3Gal3 (MST3Gal III), ST3Gal4 (MST3Gal IV) and the empty vector pcDNA3.1 (Mock) as shown previously [22]. The cells were grown in monolayer culture in T75cm² flasks and maintained at 37 °C in an atmosphere of 5% CO₂, in Roswell Park Memorial Institute (RPMI) 1640 GlahtMAX, HEPES medium supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin (P/S) and in the presence of 0.5 mg/mL G418 (all from Invitrogen). Culture medium was replaced every two days.

RNA isolation, cDNA synthesis and real-time PCR analysis

Total RNA was extracted from cell lysates of Mock, MST3Gal III and MST3Gal IV cell lines using TRI Reagent (Sigma) and converted to cDNA using the SuperScript® II Reverse Transcriptase (Invitrogen). Reverse transcription was performed using 3 μg of total RNA, random oligonucleotides primers and SuperScript II RT (Invitrogen) in a total volume of 20 μL as described by the manufacturer. For real-time PCR analysis, cDNA samples were diluted 50-fold with water and PCR amplified in triplicate with 10.0 μL Power SYBRGreen Master Mix (Applied Biosystems), 0.48 μL of each 10 μM primer and 4 μL cDNA using an ABI Prism 7000 Sequence Detection System (Applied Biosystems). The primers used were the following: ST3Gal3 for5’-cagctgcacgacag-3’; rev5’-catcagctgcacgacag-3’; ST3Gal4 for5’-ctcgttcaccgtaatct-3’; rev5’-ctcgttcaccgtaatct-3’. Expression of 18S (for5’-gcctgcagcagagttt-3’; rev5’-catcagctgcacgacag-3’) and GAPDH (for5’-gcctgcagcagagttt-3’; rev5’-catcagctgcacgacag-3’) were also measured in triplicate for each sample and used for normalization of target gene abundance. Specificity of amplification was confirmed by melting curve analysis. Standard curves were determined for each gene, and results were presented as ratio between target gene and housekeeping genes, 18S and GAPDH.

Proliferation assays

Cell growth was analyzed using the BrdU reagent (Roche) according to the manufacturer’s directions. Cells (1×10⁵) were seeded in slides on 24-well plates (Thermo Fisher Scientific) and grown in RPMI containing 10% FBS, 1% P/S in the presence of 0.5 mg/mL G418. When cells reached 50% of confluence, BrdU was incorporated in cell culture medium and incubated for 20 minutes. After incorporation cell culture medium was removed and cells fixed with methanol for 30 minutes. Cell labeling with anti-BrdU antibody and FITC secondary antibody was performed according to manufacturer’s instructions. Three independent assays were performed and each assay was done in quadruplicates for all the cell lines. Percentage of dividing cells was calculated by measuring positive BrdU cells in relation to total cells with the help of ImageJ software. Results are presented as means ± SD for each sample, and proliferation levels obtained were compared with the Mock control cell line.

Invasion assay

Invasion assays were performed in a BD Biocoat Matrigel invasion chamber with an 8-μm diameter pore size membrane and a thin layer of Matrigel, in a 24-well plate. Inserts were rehydrated for at least 1 hour in RPMI medium. After detachment of confluent cells with trypsin/EDTA, cells (5×10⁵) were seeded in the upper surface of Transwell plates and cultured in RPMI containing 10% FBS, 1% P/S in the presence of 0.5 mg/mL G418 for 6 hours, and the same culture medium was added in the lower part of the insert. After incubation, non-invading cells in the upper part of the insert were carefully removed, cells were fixed with methanol and membranes were removed from the inserts and mounted in a slide using Vectashield with DAPI (Vector labs). Three independent assays were performed and cells were seeded in duplicate for each cell line. Invading cells were counted under a fluorescence microscope, and measurement was done by counting cells in three different fields in each sample, with application of ImageJ software. Results are presented as means ± SD for each sample, and invasion levels obtained were compared with the Mock control cell line.

Cell-substrate adhesion assay

Cell adhesion assays were performed in a 96-well plate coated overnight at 4°C with 50 μL of different extracellular matrix (ECM) proteins: collagen IV, fibronectin and vitronectin in the concentration of 20 μg/mL, while bovine serum albumin (BSA) (Sigma-Aldrich) was used as negative control. After coating, the plate was incubated for 1 hour with 0.5% of BSA in phosphate buffer saline (PBS) and viable cells (2×10⁵ cells/well) were introduced into the plate and allowed to adhere for 30 min in RPMI serum-free medium at 37°C and 5% CO₂. Removal of non-adherent cells was performed by washing the plate with PBS and adherent cells were fixed with methanol for 30 minutes. Cells were subjected to 0.5% crystal violet dissolved in 20% of methanol for 1 hour, and then washed several times with water and allowed to air dry. Crystal violet dye was solubilized with 10% acetic acid and absorbance was measured at λ = 560 nm. Results are presented as means ± SD for each sample, and adhesion levels obtained were compared with the Mock control cell line.
Phospho-RTK array analysis

Cells were cultured until reached confluence on T75 cm² flasks with RPMI medium supplemented with 10% FBS and 100 units/ mL penicillin-streptomycin in the presence of 0.5 mg/mL G418. Cells were then lysed in NP40 lysis buffer (1% NP40, 20 mM Tris-HCl (pH 8.0), 137 mM NaCl, 10% glycerol, 2 mM EDTA, 1 mM sodium orthovanadate, and protease inhibitor cocktail tablet (Roche), protein concentration was determined by the bicinchoninic acid (BCA) protein assay (Pierce) and 300 μg of total protein was used for the human Phospho-RTK array kit (R&D Systems). Phospho-RTK array protocol was performed according to manufacturer’s instructions. Activated receptors were matched according to the phospho-RTK array coordinates: a: c1, c2: EphA5; a3, a4: EphA7; a5, a6: EphB1; a7, a8: EphB2; a9, a10: EphB4; a11, a12: EphB6; a13, a14: mouse IgG1 negative control; a15, a16: mouse IgG2A negative control; a17, a18: mouse IgG2B negative control; a19, a20: goat IgG negative control; a21, a22: PBS negative control; b1, b2: Tie-2; b3, b4: TrkA; b5, b6: TrkB; b7, b8: TrkC; b9, b10: VEGFR1; b11, b12: VEGFR2; b13, b14: VEGFR3; b15, b16: MusK; b17, b18: EphA1; b19, b20: EphA2; b21, b22: EphA3; b23, b24: EphA4; c1, c2: Mer; c3, c4: c-Met; c5, c6: MSPR; c7, c8: PDGFRα; c9, c10: PDGFRB; c11, c12: SCFR; c13, c14: Flt-3; c15, c16: M-CSFR; c17, c18: c-Ret; c19, c20: ROR1; c21, c22: ROR2; c23, c24: Tie-1; d1, d2: EGFR; d3, d4: ErbB2; d5, d6: ErbB3; d7, d8: ErbB4; d9, d10: FGFR1; d11, d12: FGFR2x; d13, d14: FGFR3; d15, d16: FGFR4; d17, d18: insulin R; d19, d20: IGF-IR; d21, d22: Axl; d23, d24: Dtk. Black dots represent phospho-tyrosine positive controls.

c-Met and Src inhibition assay

c-Met and Src inhibitors were used to evaluate the invasive capacity of the cells upon inhibition. c-Met inhibition was performed with 0.1 μM of PHA-665752 (Sigma) and Src inhibition with 20 μM of PP2 (Sigma) both during 10h. Inhibition was assessed by Western blot for the phosphorylation status of c-Met and Src, and invasion capacity of cells was evaluated as described above, after 10h of inhibitors incubation.

Immunoblotting

Proteins were obtained from total cell lysates of each cell line. Briefly, confluent T75 cm² flasks were incubated with NP40 lysis buffer and cells were scraped. Total cell lysates were centrifuge at 14000 rpm for 10 minutes to remove pellet cell debris. Protein concentration was determined by the bicinchoninic acid (BCA) protein assay (Pierce). Proteins from cell lysates were separated accordingly to protein molecular weight by gel electrophoresis in 7.5% acrylamide/bis acrylamide (Sigma) SDS-PAGE. For c-Met, phospho-Met, phospho-AKT, phospho-STAT3 and phospho-ERK detection, 25 μg of total protein extract were used and for phospho-Src and phospho-FAK detection we used 50 μg of total protein extract. Gels were then transferred onto a nitrocellulose membrane (Amersham) in a semi-dry system. Membranes were then blocked with 5% non-fat milk, washed three times with Tris buffer saline (TBS), and incubated overnight at 4°C with primary antibodies. After incubation, membranes were washed three times with TBS and incubated 1 hour with secondary antibodies. Analysis was done by chemiluminescence using the ECL Western blotting detection reagent and films (both from GE Healthcare).

Chicken embryo in vivo tumorigenesis and angiogenic assay

The chicken embryo chorioallantoic membrane (CAM) model was used to evaluate the angiogenic response and growth capability of Mock and MST3Gal IV cells (n=13 for each group). According to the European Directive 2010/63/EU, ethical approval is not required for experiments using embryonic chicken. Correspondingly, the Portuguese law on animal welfare does not restrict the use of chicken eggs. Briefly, fertilized chick (Gallus gallus) eggs obtained from commercial sources were incubated horizontally at 37.8°C in a humidified atmosphere and referred to embryonic day (E). On E3 a square window was opened in the shell after removal of 1.5–2 mL of albumin to allow detachment of the developing CAM. The window was sealed with a transparent adhesive tape and the eggs returned to the incubator. The window in the egg shell does not interfere in any way with the normal development of the chick embryo. Cells, resuspended in 10 μL of complete medium (1×10⁶ cells per embryo), were placed on top of E10 growing CAM into a 3 mm silicon ring under sterile conditions. The eggs were re-sealed and returned to the incubator for an additional 3 days. At this point the embryos are at E 13, thus still in the first 2/3 of development. The embryos were euthanized by adding 2 mL of fixative in the top of the CAM which is a very efficient and fast method. After removing the ring, the CAM was excised from the embryos, photographed ex vivo under a stereoscope, at 20x magnification (Olympus, SZX16 coupled with a DP71 camera). The number of new vessels (less than 20 μm diameter) growing radial towards the ring area was counted in a blind fashion manner. The area of CAM tumors was determined using the Cell A (Olympus) software.
Immunohistochemistry analysis and tumor invasive phenotype

Excised CAMs were fixed in 10% neutral-buffered formalin, paraffin-embedded for slide sections and stained with hematoxylin-eosin for histological examination. Slides with clear view of the CAM tumors were also processed for cytokeratin, SLex and p-Met immunohistochemical detection in order to characterize the phenotype of CAM tumors. Briefly, sections were dewaxed, rehydrated and the endogenous peroxidase activity was blocked with 3% H2O2 in methanol for 30 minutes. Then, sections were incubated with normal rabbit or swine serum diluted 1:5 in PBS containing 10% BSA for 30 minutes followed by incubation with the monoclonal antibodies overnight at 4°C. Incubation with both biotinylated rabbit anti-mouse and swine anti-rabbit secondary antibodies (DAKO) was done during 30 minutes at room temperature followed by avidin/biotin complex detection (Vectorstain). Staining was performed with 3,3′-diaminobenzidine tetrahydrochloride (Sigma) containing 0.02% hydrogen peroxide and counter staining of the nucleus was done with Mayer’s hematoxylin. Monoclonal antibodies used were KM93 1:60, p-Met 1:100 and cytokeratins AE1/AE3 1:300, and for both antigen retrieval was achieved with citrate buffer pH 6.0. Evaluation of tumour invasion was performed in a blind fashion way by two independent observers. The semi-quantitative evaluation took into consideration the quantity of human AE1/AE3 labeled cells present in the CAM mesenchyme.

Statistical analysis

Statistical analysis was performed using Graph Pad program. ANOVA tests were used to calculate significance in an interval of 95% confidence level. All statistics were compared with Mock group and values of p<0.05 were considered to be statistically significant.

Results

Induction of SLex by overexpression of ST3GAL4 in gastric carcinoma cells

To evaluate the role of ST3GAL3 and ST3GAL4 sialyltransferases in the synthesis of SLex structures, the previously established MKN45 cell line model stably transfected with full length of either ST3GAL3 (MST3Gal III), ST3GAL4 (MST3Gal IV) genes, or an empty vector as control (Mock) were used [22]. The evaluation of the expression levels of ST3GAL3 and ST3GAL4 genes by Real Time-PCR (Figure 1A), showed the induction of SLex antigen, further experiments were performed using the MST3Gal IV and Mock cells.

Statistical analysis was performed using Graph Pad program. ANOVA tests were used to calculate significance in an interval of 95% confidence level. All statistics were compared with Mock group and values of p<0.05 were considered to be statistically significant.

In vitro biological behavior of SLex expressing cells - MST3Gal IV

Cell growth, invasive capacity and adhesion properties of cells transfected with the ST3Gal IV gene were evaluated in order to characterize these cellular phenotypes, and also to address the biological role of SLex expression. MST3Gal IV cells showed no statistical differences when compared to Mock cells in terms of BrdU incorporation (Figure 2A), suggesting that the expression of ST3Gal IV sialyltransferase and of SLex do not affect the proliferation rate of these cells.

Cell invasion was analyzed by counting the number of invasive cells on Transwell Matrigel invasion chambers. This analysis revealed that cells overexpressing ST3Gal IV sialyltransferase presented 3 fold increased ability to invade in vitro, when compared with Mock control cells (Figure 2B). This result evidence the importance of SLex expression for the invasive phenotype of MST3Gal IV cells.

In addition, the adhesion to extracellular matrix proteins was also evaluated by seeding cells in plates pre-coated with collagen type IV, fibronectin or vitronectin. Interestingly, SLex expressing cells (MST3Gal IV) present an increase capacity to adhere to collagen IV and to vitronectin when compared with Mock control cells (Figure 2C). In contrast, no statistical differences were found in the adhesion capacity of these cells to fibronectin.

In vivo evaluation of angiogenesis, tumor growth and invasion capacity of MST3Gal IV cell line using chicken embryo chorioallantoic membrane model

Transfected cells were inoculated into the chicken embryo chorioallantoic membrane (CAM) and different parameters were evaluated after 3 days of inoculation, specifically, the angiogenic response, tumor size and tumor cell invasive capacity (Table 1). The angiogenic potential was assessed by counting the number of vessels with less than 20 μm diameter growing radially towards the inoculation area. The results show no statistical differences in vessel number between Mock control cells and MST3Gal IV indicating that ST3Gal IV and SLex expression do not influence the angiogenic response. Tumor size was assessed by measuring the area (mm²) of the tumor in the different groups. The results show no statistical differences in tumor size arising from the different cell lines, indicating no influence of ST3Gal IV and SLex expression in tumor growth potential.

For the evaluation of tumor cell invasive capacity, CAMs were excised from the embryos, fixed with formalin and paraffin-embedded. Invasion of inoculated cells was evaluated in sections of CAM tumors immunostained for human citokeratins. The results show an increased invasive capacity of MST3Gal IV cells inoculated in CAM in comparison to Mock cells (Table 1). To assess if cells invading the CAM expressed SLex antigens, CAM sections were immunostained for SLex. The results show that MST3Gal IV invasive cells expressed SLex antigens, contrary to the observed in Mock control cells (Figure 3).

Increased activation of c-Met receptor in SLex expressing cells-MST3Gal IV

To evaluate the possible effects of SLex expression on the activation of cell surface receptors and on the induction of the cancer cell invasive phenotype, a receptor tyrosine kinase array was performed using total cell lysates from Mock and MST3Gal IV cells. The results show consistently that MST3Gal IV cells induce increased activation of hepatocyte growth factor receptor (HGF/c-Met) (Figure 4A). The increased level of c-Met receptor tyrosine phosphorylation (p-Met) was further evaluated by
Western blot, and the results confirmed that phosphorylation of c-Met is increased in MST3Gal IV cells, with no differences in total c-Met protein expression levels (Figure 4B).

To assess if the CAM invading cells are expressing the activated c-Met, CAM sections were immunostained for phospho-c-Met, demonstrating that MST3Gal IV invasive cells are indeed expressing activated c-Met (Figure 4C).
Evaluation of downstream effectors of c-Met activation

c-Met activation relies on stereotypical signaling modulators common to many RTKs [28,29]. To evaluate possible downstream effectors of c-Met activation, we analyzed the activation of Src, FAK, STAT3, AKT and ERK, proteins involved in different c-Met downstream pathways. Our results show that MST3Gal IV cells present increased activation of Src and FAK proteins which are known to be involved in cell motility and invasion (Figure 5A, B). The small GTPases of the Rho family, such as Rac1, Cdc42, and RhoA were also evaluated as possible downstream modulators of c-Met activation by pull-down of activated GTPases. Our results demonstrate that in MST3Gal IV cells, the expression of sialyltransferase IV and SLex induce activation of Rac1, Cdc42 and RhoA (Figure 5C).

Inhibition of invasion in SLex expressing cells using c-Met and Src activation inhibitors

In order to confirm the biological role of c-Met and Src activation in the invasive capacity of SLex expressing cells, inhibition of phosphorylation of c-Met, Src and both in combination were performed. The inhibition was tested using different concentration of each inhibitor, and different time-points of incubation (data not shown). Longer incubations with 0.1 μM of PHA-665752 c-Met inhibitor (24h and 48h) led to decrease in cell proliferation and cell death (data not shown), therefore a 10h incubation time-point, showing no alteration in cell proliferation, was used for the evaluation of cell invasion. Src inhibition occurred after 10h of incubation with 20 μM of PP2 and no differences in cell death and proliferation was observed after longer incubation periods (data not shown). The activation status of c-Met and Src was assessed by Western blot analysis, and results confirmed the decreased in activation of both proteins after 10 h incubation with the inhibitors (Figure 6A).

Given the observation that SLex expressing cells present increased cell invasive capacity resulting from the activation of c-Met and Src, invasion of cells was evaluated after c-Met and Src inhibition. The results confirmed the increased invasion of SLex expressing cells in DMSO control treatment, and demonstrated the abolishment of this invasion capacity upon inhibition of c-Met, Src and both proteins in combination (Figure 6B). Moreover, the results showed that inhibition of Src or both Src and c-Met in combination were more effective in precluding cell invasion (Figure 6B).

Discussion

Aberrant glycosylation has been described for many years as a hallmark of cancer, and many of the resulting altered glycosyl epitopes are tumor associated antigens [30,31]. These cancer-related antigens are caused by disease-specific alterations in the
glycan synthesis pathway such as changes in the Golgi and Endoplasmic Reticulum compartments, mutations in enzymes or chaperons, altered expression of enzymes and biochemical competition, and even variations in sugar donor availability [for a review see 1]. A common alteration is the abnormal expression of sialyltransferases, responsible for adding sialic acids residues to cell surface molecules and to secreted proteins, and which have been involved in the oncogenic transformation, as well as in invasion and metastasis [30,31,32]. Sialic acids are typically attached to the outermost ends of glycoproteins and glycolipids that can mediate and modulate a wide variety of physiological and pathological processes [33].

The SLe x antigen is a sialylated glycan structure which expression has been associated with cancer progression and aggressiveness as well as poor overall patient survival [4,5,6,7,8,9,10,11,12]. The expression of SLe x in cancer results from the altered expression of sialyltransferases, that adds the sialic acid in a α2,3 linkage to Galactose residues on type-II chains [13].

In this study, we have characterized the role ST3Gal IV sialyltransferase in the synthesis of SLe x antigen. Expression analyzes of SLe x in stably transfected gastric carcinoma cells by immunofluorescence and Western blot confirmed that ST3Gal IV leads to the biosynthesis of SLe x. Moreover, our results indicate that SLe x antigen is expressed on proteins from total cell lysates as well as on secreted proteins from MST3Gal IV cells. These results confirm previous observations that described the importance of ST3Gal IV in the synthesis of SLe x, the glycan ligand of selectins [18,19]. In addition, our results are in agreement with recent reports showing an increased mRNA level of ST3Gal IV and α2,3 sialic acid residues expression in gastric cancer tissues [23].

The carbohydrate SLe x functions as a ligand for cell adhesion molecules of the selectin family, usually expressed on vascular endothelial cells. The expression of SLe x on cancer cells is known to facilitate tumor cell spreading by mediating tumor-endothelial cell interactions [34,35]. The SLe x antigen is known to be important in selectin interactions participating in the adhesion of cancer cells to vascular endothelium thus contributing to hematogenous metastasis [36]. These previous observations further support that SLe x antigen plays a functional role in malignant cancer cell behavior. Noteworthy, the crosstalk between cancer cells and host mechanisms like cell-cell adhesion and cell-matrix adhesion interactions, tumor cell growth and motility are known to be important in modulating the process of cancer cell invasion. In the present study we performed a comprehensive evaluation of the biological role of SLe x in gastric cancer cells using in vitro and in vivo models. The in vitro analysis showed that SLe x expressing cells display a similar proliferative rate when compared with Mock transfected cells. However, SLe x expressing cells demonstrated a higher capacity to invade in vitro in Matrigel chambers, demonstrating the active role of this sialylated glycan structure in tumor cell motility and invasion. Concomitant to this invasive capacity, SLe x expressing cells evidenced higher capacity to adhere to collagen IV and vitronectin extracellular matrix proteins. These findings highlight the importance of this sialylated glycan in the malignant invasive phenotype. Furthermore, this invasive phenotype was also confirmed in vivo where cells transfected with ST3Gal IV and expressing SLe x antigen presented increased capacity to invade the chorioallantoic membrane of the chicken embryo. Our results are in keeping with studies that associate SLe x expressing tumors with more aggressive phenotypes [8,37,38]. In the gastric carcinoma context it has also been described that SLe x antigen expression correlates with liver metastasis [7]. The modulation of cancer cell biological behavior by sialylated glycans has been previously described in...
human pancreatic cells. In this pancreatic model the restoration of α1,2 fucosyltransferase activity, a enzymatic competitor of ST3Gal transferases, reduces the expression of Sialyl Lewis antigens and decreases the adhesive and metastatic properties of these cells [39].

In addition, previous reports have shown that increased cellular sialylation leads to receptor and signaling pathways activation and that the hypersialylation contributes to cancer progression and increased cell motility [40,41]. Moreover, it has been described that TNF-α can induce SLeα and 6-sulfo-SLeα expression in human cancer cells, by increasing the expression of ST3GAL4 [21]. This mechanism has also been shown to be mediated by neutrophils expressing TNF-α leading to cancer cells invasiveness and metastasis [42].

In order to clarify the potential implication of ST3Gal IV and of its product SLeα in the biological behavior of gastric cancer cells, we evaluated the expression of activated tyrosine kinase receptors and downstream modulators involved in cancer cell invasion. The tyrosine kinase receptor array allowed the identification of a constitutive activation of c-Met in SLeα expressing cells. The activation of tyrosine receptors, directly or indirectly by glycan antigens has previously been observed in other cancer cell models. Singh and colleagues described that the Thomsen-Friedenreich antigen (T antigen) present in CD44v6 promotes the activation of c-Met and MAPK signaling leading to cancer cell proliferation [43]. Furthermore, activation of c-Met receptor has been described in a breast cancer cell model that overexpress

Figure 4. Tyrosine kinase receptors activation evaluation in gastric carcinoma cells; increased c-Met in MST3GAL IV cells. A – phospho-RTK array of transfected Mock and MST3Gal IV cells. Total cell lysates were collected and 300 μg of total protein were incubated into a phospho-RTK membrane array. The array shows an increased activation of c-Met (HGFR) in MST3Gal IV cells. Activated receptors were matched according to the phospho-RTK array coordinates indicated in the material and methods section. c3, c4 correspond to c-Met; B – Analysis of c-Met activation in MOCK and MST3Gal IV cells by Western blot; Cell lysates were analyzed by Western blot with antibodies directed against human c-Met and the phosphorylated tyrosine residues 1234/1235 of the kinase domain to confirm the activation of c-Met in MST3GAL IV cells. The results show an increase expression of phosphorylated c-Met (p-Met) in MST3Gal IV cell line with no differences in c-Met total protein levels in both cell lines. Anti-tubulin antibody was used to assess loading. C – Expression of phosphorylated c-Met was assessed in CAM tissues. The evaluation of c-Met activation in CAM tumors show that MST3Gal IV/SLeα expressing cells present positive staining for phospho c-Met and that the resulting invading cells are also positive for the phosphorylated form of this receptor.

doi:10.1371/journal.pone.0066737.g004
glycosyltransferases and this activation has been implicated in proliferation and invasion of cancer cells [25,26,27]. The MKN45 cell line model has been reported to have a high level of expression and dependence on c-Met [44] and therefore modulation of cellular glycosylation can have implications in this c-Met dependent cells.

c-Met overexpression has been considered a hallmark of cancer, playing a role in many tumors and in metastatic progression [45]. In gastric cancer, c-Met expression alterations have been reported, such as the Tpr/Met rearrangement [46,47] and c-Met copy number amplification [48], concomitantly with increased phosphorylated c-Met. Results are presented as means ± SD. C - Evaluation of Cdc42, Rac1 and RhoA GTPases as potential modulators of c-Met activation by pull-down assay of their activated forms. Western blot analysis of pull-down proteins evidence an increased activation of Cdc42, Rac1 and RhoA in MST3Gal IV cell line. A-GTPase WB protein positive control (His-Cdc42, His-Rac1 and His-RhoA); B-Mock total cell protein pull down; C-MST3Gal IV total cell protein pull down; D-Mock total cell protein pull down with previous GTPases activation (pull down positive control); E-Mock total cell protein pull down with previous GTPases inhibitors (pull down negative control); F-Mock total cell protein input; G-MST3Gal IV total cell protein input. Highlighted areas represent regions of interest regarding the specific protein migration.

doi:10.1371/journal.pone.0066737.g005

Figure 5. Evaluation of downstream effectors of c-Met activation. A – Increased levels of p-FAK and p-Src proteins in MST3Gal IV cells. The contribution of other effector proteins, such as AKT, ERK, FAK and Src was evaluated by Western blot for their phosphorylated forms in Mock and MST3Gal IV cell lines, and expression of β-actin protein was used as protein loading control. Results show increased levels of phosphorylated FAK and Src supporting their involvement as downstream effectors of phosphorylated c-Met (p-Met). B – Analysis of 5 independent Western blot of c-Met, STAT3, AKT, ERK, FAK and Src phosphorylated forms in MOCK and MST3 Gal IV cells showing statistically significant increased levels of p-FAK and p-Src, concomitantly with increased phosphorylated c-Met. Results are presented as means ± SD. C - Evaluation of Cdc42, Rac1 and RhoA GTPases as potential modulators of c-Met activation by pull-down assay of their activated forms. Western blot analysis of pull-down proteins evidence an increased activation of Cdc42, Rac1 and RhoA in MST3Gal IV cell line. A-GTPase WB protein positive control (His-Cdc42, His-Rac1 and His-RhoA); B-Mock total cell protein pull down; C-MST3Gal IV total cell protein pull down; D-Mock total cell protein pull down with previous GTPases activation (pull down positive control); E-Mock total cell protein pull down with previous GTPases inhibitors (pull down negative control); F-Mock total cell protein input; G-MST3Gal IV total cell protein input. Highlighted areas represent regions of interest regarding the specific protein migration.

doi:10.1371/journal.pone.0066737.g005

SLε and c-Met Activation in Cancer Cell Invasion
phosphatidylinositol 3-kinase (PI3K)-AKT, v-src oncogene homolog (Src), signal transducer and activator of transcription (STAT), which are signaling pathways that are involved in increased cell growth, scattering, motility, invasion, protection from apoptosis, branching morphogenesis, and angiogenesis [28,29]. Taking that into consideration, we evaluated the downstream effectors of c-Met activation and found that FAK and Src proteins showed increased activation in cells expressing ST3Gal IV. In combina-

Figure 6. Inhibition of invasion in SLex expressing cells by targeting c-Met and Src activation. A - Evaluation by WB of the activation of c-Met and Src in the MST3Gal IV and Mock cells with or without the presence of inhibitors of c-Met (PHA-665752) and Src (PP2). B - Cell invasion assay on Matrigel chambers after inhibition of c-Met and Src activation. Cells were seeded on Matrigel-coated filters after incubation with inhibitors for 10 hours. Invading capacity was measured by counting the number of cells that invade, through the Matrigel-coated filter, after 6 hours. MST3Gal IV cells demonstrated an invasive phenotype presenting a significant increased number of invasive cells when compared with MOCK cells. Inhibition of c-Met, Src, and both in combination led to abolishment of cell invasion capability of the MST3Gal IV cells (*p<0.05; **p<0.01; ***p < 0.001).

doi:10.1371/journal.pone.0066737.g006
tion with our invasion assays results (in vivo and in vitro), these results strongly suggest that c-Met activation mediates tumor cell motility and invasion, also in gastric cancer cells. These results are in agreement with previous studies that associate Src-FAK signaling pathway with the metastatization process [31,52,53,54]. Furthermore, our results show that inhibition of c-Met and Src could preclude the increased invasion observed in SLex expressing cells supporting the importance of this glycosylation alteration in the activation of this invasive related pathways.

Oncogenic transformation is often associated with changes in organization of the cytoskeleton, which can influence cell migration, adhesion and invasion. The c-Met activation can cause changes in gene expression of cell-cycle regulators (Cdk6, p27), extracellular matrix proteinases (such as matrix metalloproteinases and urokinase plasminogen activator), and in alterations of cytoskeleton functions that control migration, invasion and proliferation [55]. The cytoskeleton is composed of a complex and organized network of various fibrous proteins within the cytoplasm, playing an essential structural and regulatory role in the maintenance of cell structure and strength, in cell division, proliferation, motility, invasion and also in signaling functions [56,57,58]. The activation of tyrosine kinase receptors can modify the phosphorylation status of cytoskeleton regulatory and structural proteins. Signaling pathways initiated by the activation of cell surface receptors can promote distinct membrane protrusions by converging onto the Rho family of GTPases [59,60]. Rho proteins are small (21-25 kDa) molecules that share structural homology and become activated only when bound to GDP. One of the best characterized Rho GTPase family members is RhoA regulating the formation of stress fibers and focal adhesion assembly, while Rac1 and Cdc42 are mainly involved in membrane ruffling and formation of filopodia, respectively [61]. Estimation of GTPases activation is frequently a molecular marker in the evaluation of cytoskeleton alterations during cell migration [62,63,64]. Here we showed the activation of Rho GTPases, specifically RhoA, Rac1 and Cdc42. These results further supports the evidence that SLex expression leads to cytoskeleton protein alterations in cancer cells, underlying the observed increased cell motility and invasion of these cells. Our findings are in keeping with previous reports showing the importance of RhoA, Rac1 and Cdc42 in cancer progression [63], and also the crosstalk between these GTPases and other signaling pathways like Src-FAK in the migratory phenotype of cancer cells [66]. Our present findings support the hypothesis that increased expression of SLex on the surface of malignant cells plays an important role in tumor invasion and metastasis. Overall, our study showed that tumor cell invasion is induced by SLex expression on gastric cancer cells through the activation of c-Met in association with downstream signaling effectors Src, FAK and RhoA GTPases activation (Figure 7).

These results open new avenues to design intervention strategies that target ST3Gal IV/SLeα in cancer cells as well as the

Figure 7. Schematic representation of the alterations induced by increased expression of SLeα and activation of c-Met. Increased transcription of ST3Gal IV leads to increased expression of the ST3Gal IV enzyme in the Golgi apparatus of the cells. This enzyme will glycosylate type-2 terminal oligosaccharide chains leading to the presence of SLeα in glycoproteins targeted for the membrane or to be secreted by the cells. The expression of SLeα in membrane-associated and secreted proteins can promote the interactions between these proteins and c-Met leading to its activation. c-Met activation leads to downstream signaling activation target proteins Src, FAK and Rho GTPases leading to a modified cell-matrix adhesion and an increased cell invasion.

doi:10.1371/journal.pone.0066737.g007
References

1. Reis CA, Orócio H, Silva L, Gomes C, David L (2010) Alterations in glycosylation as biomarkers for cancer detection. J Clin Pathol 63: 322–329.
2. Fuster MM, Eko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5: 526–542.
3. Varík A (1994) Selectin ligands. Proc Natl Acad Sci U S A 91: 7390–7397.
4. Borsig L, Wong R, Hynes RO, Varík NM, Varík A (2002) Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci U S A 99: 2193–2198.
5. Fukaoka K, Narita N, Saio J (1998) Increased expression of sialyl Le(x) antigen is associated with distant metastasis in lung cancer patients: immunohistochemical study on bronchoalveolar biopsy specimens. Lung Cancer 20: 109–116.
6. Kim VJ, Borsig L, Varík NM, Varík A (1998) PS-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci U S A 95: 9325–9330.
7. Tsatsimi M, Watanabe A, Sawaeda H, Yamada Y, Shinohara T, et al. (1998) Immunohistochemical expression of the sialyl Le(x) antigen on gastric cancer cell lines correlates with the presence of liver metastasis. Clin Exp Metastasis 16: 737–750.
8. Amano M, Carneiro F, Seixas M, Clauser H, Sohribino-Saious M (1998) Dimeric sialyl-Le(x) expression in gastric carcinoma correlates with venous invasion and poor outcome. Gastroenterology 114: 462–470.
9. Baldus SE, Zirbes TK, Monig SP, Engel S, Monaca E, et al. (1998) Carbohydrate histochemistry subtypes and prognosis of gastric cancer are correlated with the expression of mucin-associated sialylated antigens: Sialosyl-Lewis(a), Sialosyl-Lewis(x) and sialosyl-Tn. Tumour Biol 19: 445–453.
10. Grabowski F, Mann B, Mannannum U, Lovén N, Foss HD, et al. (2000) Expression of SIALYL-Le(x) antigen defined by MAb AM-3 is an independent prognostic marker in colorectal carcinoma patients. Int J Cancer 88: 201–206.
11. Nakamori S, Kameyama M, Imaoka S, Furukawa H, Ishikawa O, et al. (1997) Involvement of carbohydrate antigen sialyl Le(x) in colorectal cancer metastasis. Du Colon Rectum 40: 420–421.
12. Nakamori S, Nishiura S, Ikehara Y, Naganoe H, Donohue T, et al. (1999) Molecular mechanism involved in increased expression of sialyl Le(x) antigen in duodenal carcinoma of the pancreas. J Exp Clin Cancer Res 18: 425–432.
13. Harduin-Lepers A, Krzewinski-Rewica MA, Colomb F, Fouldsier F, Groux-Degroote S, et al. (2012) Sialyltransferase functions in cancers. Front Biosci (Elite Ed) 4: 499–513.
14. Harduin-Lepers A, Mollonc R, Delannoy L, Orid O (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glyobiology 15: 805–817.
15. Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Oriol R (2005) The animal alpha2,3-sialyltransferase-IV is essential for L-selectin ligand function in cancer. Blood 100: 3618–3625.
16. Nakamori S, Kameyama M, Imaoka S, Furukawa H, Ishikawa O, et al. (1997) Consequences of the expression of sialylated antigens in breast cancer. Adv Med Oncol 3: S7–S19.
17. Okajima T, Fukumoto S, Miyazaki H, Ishida H, Kiso M, et al. (1999) Molecular mechanism involved in increased expression of sialyl Lewis antigens in colorectal cancer. Carbohydr Res 345: 1377–1383.
18. Ellies LG, Sperandio M, Underhill GH, Yousif J, Smith M, et al. (2002) CAR. Contributed reagents/materials/analysis tools: CG HO MTP MJO CAR. Conceived and designed the experiments: CG HO MTP MJO CAR. Author Contributions

Author Contributions
Conceived and designed the experiments: CG HO MTP MJO CAR. Performed the experiments: CG HO. Analyzed the data: CG HO. MTP MJO CAR. Wrote the paper: CG HO CAR.
47. Yu J, Miehlke S, Elbert MP, Hoffmann J, Breidert M, et al. (2000) Frequency of TPR-MET rearrangement in patients with gastric carcinoma and in first-degree relatives. Cancer 88: 1801–1806.
48. Lee J, Seo JW, Jun HJ, Ki CS, Park SH, et al. (2011) Impact of MET amplification on gastric cancer: possible roles as a novel prognostic marker and a potential therapeutic target. Oncol Rep 25: 1517–1524.
49. Dua R, Zhang J, Parry G, Penuel E (2011) Detection of hepatocyte growth factor (HGF) ligand-c-MET receptor activation in formalin-fixed paraffin embedded specimens by a novel proximity assay. PLoS One 6: e19932.
50. Inoue T, Kataoka H, Goto K, Nagaike K, Igami K, et al. (2004) Activation of c-Met (hepatocyte growth factor receptor) in human gastric cancer tissue. Cancer Sci 95: 803–808.
51. Lim SK, Choi YW, Lim IK, Park TJ (2012) BTG2 suppresses cancer cell migration through inhibition of Src-FAK signaling by downregulation of reactive oxygen species generation in mitochondria. Clin Exp Metastasis.
52. Peng I, Ran YL, Hu H, Yu L, Liu Q, et al. (2009) Secreted LOXL2 is a novel therapeutic target that promotes cancer metastasis via the Src/FAK pathway. Carcinogenesis 30: 1660–1669.
53. Sanchez-Bailon MP, Calcabrini A, Gomez-Dominguez D, Morte B, Martin-Foreiro E, et al. (2012) Src kinases catalytic activity regulates proliferation, migration and invasiveness of MDA-MB-231 breast cancer cells. Cell Signal 24: 1276–1286.
54. Shen J, Xu L, Owonikoko TK, Sun SY, Khuri FR, et al. (2012) NNK promotes migration and invasion of lung cancer cells through activation of c-Src/ PKCalpha/FAK loop. Cancer Lett 318: 106–113.
55. Birchmeier C, Birchmeier W, Gherardi E, Van de Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4: 915–925.
56. de Curtis I, Meldolesi J (2012) Cell surface dynamics - how Rho GTPases orchestrate the interplay between the plasma membrane and the cortical cytoskeleton. J Cell Sci.
57. Machekony LM, Insall RH (1999) Signaling to actin dynamics. J Cell Biol 146: 267–272.
58. Tapon N, Hall A (1997) Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9: 86–92.
59. Hall A (1999) Signal transduction pathways regulated by the Rho family of small GTPases. Br J Cancer 80 Suppl 1: 25–27.
60. Kyoller J, Hall A (1999) Signaling to Rho GTPases. Exp Cell Res 253: 166-179.
61. Pertz O (2010) Spatio-temporal Rho GTPase signalling - where are we now? J Cell Sci 123: 1841–1850.
62. Evers EE, Zondag GC, Malliri A, Price LS, ten Klooster JP, et al. (2000) Rho family proteins in cell adhesion and cell migration. Eur J Cancer 36: 1269–1274.
63. Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8: 23.
64. Wessler S, Gimona M, Rieder G (2011) Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells. Cell Commun Signal 9: 27.
65. Kamai T, Yamanishi T, Shirataki H, Takagi K, Asami H, et al. (2004) Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res 10: 4799–4805.
66. Leve F, Marzorinis TG, Bastos LG, Rabello SV, Tanaka MN, et al. (2011) Lysophosphatidic acid induces a migratory phenotype through a crosstalk between RhoA-Rock and Src-FAK signalling in colon cancer cells. Eur J Pharmacol 671: 7–17.