APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases

Hélène-Marie Lanoiselée1,2*, Gaël Nicolas3, David Wallon1, Anne Rovelet-Lecrux1, Morgane Lacour1, Stéphane Rousseau3, Anne-Claire Richard1, Florence Pasquier4,5, Adeline Rollin-Sillaire4,5, Olivier Martinaud1, Muriel Quillard-Muraine6, Vincent de la Sayette7, Claire Boutoleau-Bretonnière6, Frédérique Etcherry-Bouvyx9, Valérie Chauvire9, Marie Sarazin10, Isabelle le Ber11, Stéphane Epelbaum11, Thérèse Jonveaux12, Olivier Rouaud13, Mathieu Ceccaldi14, Olivier Félician14, Olivier Godefroy15, Maïte Formaglio16, Bernard Croisile16, Sophie Auriacombe17, Ludwine Chamard18, Jean-Louis Vincent19, Mathilde Sauvée20, Cecilia Marelli-Tosi21, Audrey Gabelle21, Canan Ozsancak22, Jérémie Pariente22, Claire Paquet23, Didier Hannequin1, Dominique Campion2,24*, collaborators of the CNR-MAJ project1

1 Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France. 2 Department of Neurology, Orleans Regional Hospital, Orleans, France. 3 Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France. 4 Department of Neurology and CNR-MAJ, Lille University Hospital, Lille, France. 5 Inserm UMR-S 1171, Université Lille Nord de France, Lille, France. 6 Biochemistry Laboratory, Rouen University Hospital, Rouen, France. 7 Department of Neurology, Caen University Hospital, Caen, France. 8 Department of Neurology, Nantes University Hospital, Nantes, France. 9 Department of Neurology, Angers University Hospital, Angers, France. 10 Department of Neurology, Saint Anne University Hospital, Paris, France. 11 CNR-MAJ, AP-H, Hôpital de la Pitié-Salpêtrière, Paris, France. 12 Department of Neurology, Nancy University Hospital, Nancy, France. 13 Department of Neurology, Dijon University Hospital, Dijon, France. 14 Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France; AP-HM, Service de Neurologie et Neuropsychiatrie, CHU Timone, Marseille, France. 15 Department of Neurology, Amiens University Hospital Center, Amiens, France. 16 Department of Neurology and CMRR Lyon University Hospital, Lyon, France. 17 Department of Neurology, Bordeaux University Hospital, Bordeaux, France. 18 Department of Neurology, Besançon University Hospital, Besançon, France. 19 Biochemistry Laboratory, Lille University Hospital, Lille, France. 20 Department of Neurology, Grenoble University Hospital, Grenoble, France. 21 Department of Neurology, Montpellier University Hospital, Montpellier, France. 22 Department of Neurology, Toulouse University Hospital, Toulouse, France. 23 CMR Paris Nord AP-HP, Hôpital Lariboisière, INSERM, U942, Université Paris Diderot, Sorbonne Paris Cité, UMRs 942, Paris, France. 24 Department of Research, Centre Hospitalier du Rouvray, Sottevillès-Rouen, France

* Membership of the CNR-MAJ project is provided in the Acknowledgments
dominique.campion@univ-rouen.fr

Abstract

Background

Amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) mutations cause autosomal dominant forms of early-onset Alzheimer disease (AD-EOAD). Although these genes were identified in the 1990s, variant classification remains a challenge, highlighting the need to colligate mutations from large series.
Methods and findings

We report here a novel update (2012–2016) of the genetic screening of the large AD-EOAD series ascertained across 28 French hospitals from 1993 onwards, bringing the total number of families with identified mutations to \(n = 170 \). Families were included when at least two first-degree relatives suffered from early-onset Alzheimer disease (EOAD) with an age of onset (AOO) \(\leq 65 \) y in two generations. Furthermore, we also screened 129 sporadic cases of Alzheimer disease with an AOO below age 51 (44% males, mean AOO = 45 \(\pm \) 2 y). APP, PSEN1, or PSEN2 mutations were identified in 53 novel AD-EOAD families. Of the 129 sporadic cases screened, 17 carried a \(PSEN1 \) mutation and 1 carried an \(APP \) duplication (13%). Parental DNA was available for 10 sporadic mutation carriers, allowing us to show that the mutation had occurred de novo in each case. Thirteen mutations (12 in \(PSEN1 \) and 1 in \(PSEN2 \)) identified either in familial or in sporadic cases were previously unreported. Of the 53 mutation carriers with available cerebrospinal fluid (CSF) biomarkers, 46 (87%) had all three CSF biomarkers—total tau protein (Tau), phospho-tau protein (P-Tau), and amyloid \(\beta (A\beta)_{42} \)—in abnormal ranges. No mutation carrier had the three biomarkers in normal ranges. One limitation of this study is the absence of functional assessment of the possibly and probably pathogenic variants, which should help their classification.

Conclusions

Our findings suggest that a nonnegligible fraction of \(PSEN1 \) mutations occurs de novo, which is of high importance for genetic counseling, as \(PSEN1 \) mutational screening is currently performed in familial cases only. Among the 90 distinct mutations found in the whole sample of families and isolated cases, definite pathogenicity is currently established for only 77%, emphasizing the need to pursue the effort to classify variants.

Author summary

Why was this study done?

- Mutations in the \(amyloid protein precursor (APP) \), \(presenilin-1 (PSEN1) \), and \(presenilin-2 (PSEN2) \) genes are a known cause of familial, early-onset Alzheimer disease (EOAD) (onset below age 65).
- However, in order to improve genetic counseling, it is necessary to report mutational screening from large cohorts of patients.

What did the researchers do and find?

- In the present study, we performed sequencing of the \(APP \), \(PSEN1 \), and \(PSEN2 \) genes in EOAD families and in 129 sporadic cases.
- Mutations were identified in 170 EOAD families and in 18 sporadic cases.
In 10 sporadic cases, we showed that the mutation was absent in the parents, indicating that it occurred “de novo.”

What do these findings mean?

- Sufficient evidence of pathogenicity is reached for 77% of the 90 distinct mutations identified in this sample, allowing their use in genetic counseling.
- Our results suggest a potential benefit to screening nonfamilial Alzheimer disease (AD) cases with onset before 50 y for APP, PSEN1, and PSEN2 mutations.

Introduction

Alzheimer disease (AD) (MIM #104300) is the most common form of dementia. However, early-onset AD (EOAD) constitutes a minority of patients, with an estimated prevalence of 41.2 per 100,000 persons at risk [1]. Among these forms, presenilin-1 (PSEN1) (MIM #104311), presenilin-2 (PSEN2) (MIM #600759) [2–5], and amyloid protein precursor (APP) (MIM #104760) mutations [6–8] and duplications [9] cause autosomal-dominant EOAD (AD-EOAD), the prevalence of which is estimated to be 5.3 per 100,000 persons at risk [1]. PSEN1 is the most commonly involved gene, with 221 mutations reported as pathogenic in the Alzforum database (www.alzforum.org/mutations). The second most commonly involved gene is APP, with 32 pathogenic mutations described, while 19 different PSEN2 pathogenic mutations have been reported. APP encodes the amyloid-β precursor protein, the processing of which by the β-secretase and the γ-secretase complex leads to the production of the amyloid β (Aβ) peptide, a key event in AD pathogenesis. The aggregation of the Aβ peptide in the brain’s parenchyma indeed triggers a cascade of events leading to AD. Its aggregation in cerebrovascular vessels leads to cerebral amyloid angiopathy (CAA), a condition frequently associated with AD and responsible for recurrent haemorrhagic strokes and white matter lesions. PSEN1 and PSEN2 encode the presenilins, which constitute the catalytic subunit of the γ-secretase complex (for review, see [10,11]). AD-EOAD causative mutations are thought to be responsible for the increased aggregation of the Aβ peptide in the brain’s parenchyma through one of the two following mechanisms: increased overall production of all Aβ species (e.g., APP duplications or APP mutations located around the β cleavage site) or production of a more aggregation-prone form of the Aβ peptide.

The power to detect genetic variations has dramatically improved over the last few years, but the interpretation of rare variants remains a challenge in a high proportion of cases. The pathogenicity of most APP, PSEN1, and PSEN2 variants has not yet been assessed through in vitro functional experiments. In cases of insufficient genetic evidence (i.e., lack or limited familial segregation or recurrence), definite pathogenicity of a given variant may therefore remain uncertain. An algorithm was proposed to classify those variants, based on (i) intrafamilial segregation, (ii) recurrence of the mutation in independent cases and association in case-control samples, (iii) residue conservation between PSEN1 and PSEN2 and residue localization on functional domains, and (iv) functional tests, when available [12]. Reporting patients carrying novel as well as previously known mutations along with the associated phenotypes will aid
in classification of these variants and will eventually allow genetic counseling and inclusion in preventive trials for presymptomatic carriers [13].

We had previously described the PSENs and APP mutational spectrum in a large French series of families with an EOAD diagnosis in at least two first-degree relatives from two generations [14]. The aim of the present article is to report mutations in additional families included since our last 2012 update [14]. Furthermore, we add the results of the genetic screening of 129 sporadic EOAD patients with an age of onset (AOO) before 51. The involvement of PSEN1, PSEN2, and APP mutations in the genetics of sporadic EOAD has been scarcely studied. In particular, systematic genetic assessments of series of patients with youngest AOO who are at high risk to carry an AD-EOAD mutation were not reported before. In these patients, the family history can remain negative because of a censoring effect (i.e., death of the transmitting parent before EOAD onset) [15] or if the mutation occurs de novo (i.e., if it is not found in parents but occurs in the parental germline or as a postzygotic event) [16].

Materials and methods

The study was approved by the Paris Ile de France II ethics committee.

Subjects

EOAD subjects were referred to the National Reference Center for Early-Onset Alzheimer Patients (CNR-MAJ) from 28 university hospitals across France. For each patient, AD diagnosis was established using the National Institute of Aging–Alzheimer’s Association (NIA–AA) criteria [17]. All patients underwent a comprehensive clinical examination, including personal medical and family history and neuropsychological assessment. Search for mutations in APP, PSEN1, and PSEN2 genes was performed (i) in AD-EOAD presentations (i.e., if at least two first-degree relatives suffered from EOAD [AOO ≤ 65 y]) in two generations or (ii) in sporadic presentations if a patient without family history of AD had an age of onset before 51 y. No other exclusion criteria were applied. Familial cases (n = 63 mutation carriers belonging to 53 families, 42% males, mean AOO = 48 ± 5 y) were included in the 2012–2016 interval, whereas sporadic cases (n = 129, 44% males, mean AOO = 45 ± 2 y) were included from 1999 onwards. All patients were from European origin with the exception of five patients from African descent: three familial and two sporadic cases. Cerebrospinal fluid (CSF) AD biomarkers were assessed in 65% of the mutation carriers, and neuropathological examination was performed in 3 mutation carriers. A written consent to participate to the study was signed by every patient.

CSF analysis

CSF samples were obtained using a Sprotte needle in polypropylene collection tubes and aliquoted after centrifugation into polypropylene tubes (catalog number 62.610.201; Sarstedt, Nümbrecht, Germany), then frozen at −80°C within 1 h. Aβ_{42}, Tau, and P-Tau measurements were performed using enzyme-linked immunosorbent assays (ELISA) (Fujirebio Europe N.V., Ghent, Belgium) according to the manufacturer’s instructions. The analysis of all biomarkers was performed in two duplicates and averaged for statistical analyses. Following values were used to define biochemical AD signature: Aβ_{42} < 700 pg/mL; Tau > 350 pg/mL, and P-Tau > 60 pg/mL. Each subject was classified according to the Paris, Lyon, Marseille (PLM) scale [18]: class 0, corresponding to no pathologic biomarkers; class 1, corresponding to 1/3 pathologic biomarkers; class 2, corresponding to 2/3 pathologic biomarkers; and class 3, with all three biomarkers being pathologic.
Genetic analyses

Genetic analyses were performed on DNA extracted from whole blood. Exons 2–12 of PSEN1 (NM_000021.3), exons 4–13 of PSEN2 (NM_000447.2), and exons 16 and 17 of APP (NM_000484.3) were analysed by Sanger sequencing. APP duplications and PSEN1 exon 9/10 deletion were detected using QMPSF (quantitative multiplex PCR of short fluorescent fragments). APOE genotype was determined for each subject by Sanger sequencing. Primers are available upon request. Guerreiro’s algorithm [12] and Alzforum (www.alzforum.org/mutations) database were used to classify each mutation’s pathogenicity.

In sporadic cases, when DNA was available for both unaffected parents, parenthood was checked using a package of four microsatellites markers, each with a heterozygosity index from 79 to 88%, and the presence of the mutation identified in the proband was assessed by Sanger sequencing.

Results

Update of the EOAD French series

We identified mutations in 53 previously unreported AD-EOAD families and in 18/129 sporadic cases, including 44 PSEN1, 2 PSEN2, and 20 APP mutations as well as five APP duplications. The total number of mutation carriers including affected relatives in AD-EOAD families was n = 81 patients (Tables 1–4). Overall, 12 PSEN1 mutations and 1 PSEN2 mutation were previously unreported (Tables 1 and 2, in bold). In the next sections, we describe the mutation spectrum, with a particular focus on novel mutations.

PSEN1. Five of the 12 novel PSEN1 mutations were identified in AD-EOAD families: a sister and the mother of the patient carrying the c.251T>C, p.(Met84Thr) mutation were also affected with AD (age at death: 61 and 64 y, respectively); the father of the patient carrying the c.263C>A, p.(Pro88His) mutation died at age 47 with an AD diagnosis; the father of the patient carrying the c.629T>G, p.(Met210Arg) mutation died from AD at age 50, with an AOO of 47 y; the mother and the maternal grandmother of the patient carrying the c.1148T>G, p.(Leu383Trp) mutation died from AD at 54 and 50 y, respectively (AOO was 47 y for both). We also detected in an AD-EOAD family a novel genomic in-frame deletion encompassing PSEN1 exons 9 and 10: c.(868+1_869–1)_(1129+1_113 0–1)del, p.Ser290_Arg1129delinsTrp, thereafter named Δ9–10, which resulted in a missense change from serine to tryptophan at the aberrant exon 8–11 junction (Table 1). The remaining 7 novel PSEN1 mutations were found in patients with sporadic EOAD. Among these mutations, a censoring effect was observed in families of patients carrying the c.772T>C, p.(Leu241Arg), the c.539T>A, p.(Ile180Asn), and the c.710T>G, p.(Phe237Cys) substitutions, while the c.331G>T, p.(Gly111Trp), the c.350C>A, p.(Pro117Gln), and the c.614_616del, p.(Phe205_Gly206delinsCys) mutations occurred de novo. The seventh patient carried the c.1078G>A, p.(Ala360Thr) variant. No censoring effect was noted in his family, but parental DNA was not available to verify the de novo occurrence of the mutation (Table 1). Among carriers of the PSEN1 mutation, the clinical presentation was mainly isolated progressive cognitive decline, but six patients carrying either the p.(Pro264Leu), p.(Leu173Trp), p.(Gln222His), or the Δ9–10 PSEN1 mutation displayed an associated phenotype of spastic paraparesis. Another patient carrying the PSEN1 p.(Gly378Glu) substitution also exhibited an atypical presentation: cerebellar ataxia and extra pyramidal syndrome.

PSEN2. Only one novel PSEN2 mutation, c.850A>G, p.(Arg284Gly), and a previously known mutation, p.(Thr122Pro), were identified during this screen (Table 2). No atypical phenotype was noticed.
Table 1. Previously unreported French families with AD-EOAD and sporadic cases carrying a PSEN1 mutation. Novel mutations appear in bold.

Protein change	Nucleotide change	Exon	Pathogenicity	ID fam	APOE (years)	DD (years)	Family history	MC (n)	De novo
p.Ala79Val	c.236C>T	4	definite	EXT 85	E3 E4	[60–80]	F	1	
p.Met84Thr	c.251T>C	4	definite	EXT 117	E2 E4	[52–60]	F	2	
p.Pro88His	c.263G>A	4	probable	EXT 890	E3 E3	[42–45]	F	1	
p.Gly111Trp	c.331G>T	4	probable	EXT 502	E3 E3	47	S	1	
p.Tyr115Cys	c.344A>G	5	definite	EXT 755	E3 E3	[44–50]	F	1	
p.Pro117Gln	c.350C>A	5	probable	EXT 851	E2 E3	37	S	1	
p.Ile143Thr	c.428T>C	5	definite	EXT 670	E3E4	35	S	1	
p.His163Arg	c.488A>G	6	definite	EXT 766	E3 E4	[40–46]	F	1	
p.Leu173Trp	c.518T>G	6	probable	EXT 149	E3E3	34	S	1	
p.Ile180Asn	c.539T>A	6	possible	CAE 007	E4 E4	50	S	1	
p.Gly206delinsCys	c.614–616del	7	probable	EXT 1127	E3 E3	[47–48]	F	1	
p.Pro264Leu	c.791G>T	8	definite	EXT 1193	E3 E4	[48–53]	F	1	
p.Arg269His	c.806G>A	8	definite	EXT 1228	E3E3	60	F	1	
p.Glu273Gly	c.818A>G	8	definite	EXT 1119	E3 E4	[44–54]	F	1	
p.Ala360Thr	c.1078G>A	10	possible	SAL 629	E3 E3	45	S	1	
p.Gly378Glu	c.1133G>A	11	probable	EXT 390	E3 E3	[38–44]	F	1	
p.Gly378Val	c.1133G>T	11	definite	EXT 396	E3 E3	[48–53]	F	2	
p.Leu383Trp	c.1148T>G	11	probable	EXT 1010	E3 E3	[55–65]	F	1	
p.Val391Phe	c.1171G>T	11	definite	EXT 902	E3 E3	[55–65]	F	1	
p.Leu418Phe	c.1254G>C	12	definite	ROU 1306	E3 E3	33	S	1	
p.Ser290_Ser319delinsCys(D9)	c.869-2A-G	9	definite	EXT 235	E2 E3	46	S	1	
p.Ser290_Arg377delinsTrp(D9–10)	c.(868+1_8691) (1129_1,1130–1)del	9	probable	EXT 313	E2 E4	[55–56]	F	1	
Total and ranges:									
					[25–80]	[1–16]	F	27	49
					17 S	8 U			

ID fam, family code; MC, number of mutations carriers in the family; AOO, age of onset ranges in the family; DD, disease duration (at death or last examination); APOE, Apolipoprotein E genotype; F, familial; S, sporadic; Y, yes, U, unknown.

*Indicates a previously reported de novo mutation in a sporadic case [20, 21, 40].

https://doi.org/10.1371/journal.pmed.1002270.t001
Table 2. Previously unreported French families with AD-EOAD carrying a \textit{PSEN2} mutation. Novel mutations appear in bold.

Protein change	Nucleotide change	Exon	Pathogenicity	APOE	ID fam	AOO (years)	DD (years)	Family history	MC (n)
p.Thr122Pro	c.364A>C	6	probable	E3 E4	EXT 441	[45–47]	[2–7]	F	1
p.Arg284Gly	c.850A>G	9	possible	E3 E4	GRE 004	57	6	F	1

Total and ranges: 2 [45–57] [2–7] 2 F 2

ID fam, family code; MC, number of mutations carriers in the family; AOO, age of onset ranges in the family; DD, disease duration (at death or last examination); APOE, Apolipoprotein E genotype; F, familial; S, sporadic.

https://doi.org/10.1371/journal.pmed.1002270.t002

Table 3. Previously unreported French families with AD-EOAD carrying an \textit{APP} mutation.

Protein change	Nucleotide change	Exon	Pathogenicity	APOE	ID fam	AOO (years)	DD (years)	Family history	MC (n)
p.Ala713Thr	c.2137G>A	17	definite	E3 E3	EXT 1064	50	3	F	1
p.Val717Ile "London"	c.2149G>A	17	definite	E3 E3	EXT 1059	[61–66]	[4–9]	F	1
p.Ala692Gly "Flemish"	c.2075C>G	17	definite	E3 E3	EXT 1015	[50–85]	[5–9]	F	2

p.Lys724Asn "Belgian" | c.2172G>C | 17 | definite | E3 E3| EXT 624 | [55–65] | [7–14] | F | 1 |
p.Asp694Asn "Iowa"	c.2080G>A	17	definite	E3 E3	EXT 233	[51–56]	[1–11]	F	2
p.Glu693Lys "Italian"	c.2077G>A	17	definite	E3 E3	EXT414	[60–63]	5	F	2
p.Ala692Gly "Flemish"	c.2075C>G	17	definite	E3 E3	EXT 1025	[45–51]	[2–9]	F	1

Total and ranges: 20 [39–85] [1–15] 20 F 25

ID fam, family code; MC, number of mutations carriers in the family; AOO, age of onset ranges in the family; DD, disease duration (at death or last examination); APOE, Apolipoprotein E genotype; F, familial; S, sporadic.

https://doi.org/10.1371/journal.pmed.1002270.t003

Table 4. Previously unreported French families with AD-EOAD and sporadic cases carrying an \textit{APP} duplication.

Protein change	Duplication size (Mb)	APOE	ID fam	AOO (years)	DD (years)	MC (n)	Family history	De Novo
DUP APP	2.2	E3 E3	EXT 1093	[53–65]	[6–9]	1	F	
DUP APP	1.4	E3 E4	EXT 857	[56–62]	[2–6]	1	F	
DUP APP	5.9	E3 E3	EXT 814	[50–54]	[8–10]	1	F	
DUP APP	1.4	E3 E3	EXT 1252	[54–58]	2	1	F	
DUP APP*	7.6	E3 E3	EXT 773	44	12	1	S	Y

Total and ranges: [1.4–7.6] 5 [44–65] [2–12] 5 4F 1S

ID fam, family code; MC, number of mutations carriers in the family; AOO, age of onset ranges in the family; DD, disease duration (at death or last examination); APOE, Apolipoprotein E genotype; F, familial; S, sporadic.

* Indicates a previously reported de novo mutation in a sporadic case [20].

https://doi.org/10.1371/journal.pmed.1002270.t004
APP. In the **APP** gene, no novel mutation was found. We identified a previously reported mutation in 25 patients from 20 AD-EOAD families (Table 3). The most frequent one was the c.2149G>A, p.(Val717Ile) substitution, which was present in 12 subjects from 11 families. Clinical features were typical of AD with amnestic presentation. The c.2137G>A, p.(Ala713Thr) mutation was found in 7 patients from 5 unrelated families. They exhibited a progressive cognitive decline starting from age 50 to 66 y. Notably, the mother of a patient who carried the mutation together with an **APOE 4–4** genotype had no cognitive impairment until the age of 85, when she presented recurrent lobar hematoma. In addition, 5 subjects from 3 families carried mutations located within the coding sequence of the Aβ peptide: one carried the “Flemish” **APP** mutation c.2075C>G, p.(Ala692Gly), two carried the “Italian” mutation c.2077G>A, p.(Glu693Lys), and another two carried the “Iowa” mutation c.2080G>A, p.(Asp694Asn). A complete description of the phenotype of these 5 patients is provided in Sellal et al. [19].

APP duplications. Four subjects in four distinct AD-EOAD families and a sporadic case carried an **APP** duplication (Table 4). All patients exhibited progressive cognitive impairment. Only one presented signs of CAA and suffered from intracerebral hematoma at the age of 60.

CSF biomarkers. CSF biomarkers were available for 53 out of 81 mutation carriers (65%) (Table 5). There was no significant difference in Aβ42, Tau, and P-Tau mean values between patients bearing **PSEN1** and **APP** mutations or duplications (two groups, p-values = 0.78, 0.19, and 0.16, respectively, Mann–Whitney U test). Among the 53 patients, 46 (87%) were classified PLM 3, 5 (9%) were classified PLM 2, and 2 (4%) were classified PLM 1; no patient was classified PLM 0. Among the 5 patients classified PLM 2, 2 had low Aβ42 and elevated Tau levels, and 3 had elevated Tau and P-Tau with normal Aβ42 CSF level. Two of the latter 3 patients carried a **PSEN1** mutation: 1 carried the p.(Leu383Trp) with AOO at 57 y and 4 y of evolution, and the other carried the p.(Ala231Thr) with AOO at 50 y and 3 y of evolution. The third one carried an **APP** p.(Val717Ile) mutation with an AOO at 56 y and 4 y of evolution. The two patients classified PLM 1 had low Aβ42 value, without Tau or P-Tau elevation. One carried a p.(Ala360Thr) **PSEN1** mutation with AOO at 45 y and 3 y of evolution; the second carried a p.(Ala692Gly) **APP** mutation with AOO at 45 y and 2 y of evolution.

Neuropathology. Neuropathological examination was available for three subjects. For patient EXT 773, who carried an **APP** duplication, the diagnosis was definite AD with Braak stage VI, Thal stage V. There was amyloid deposition in vessel walls in the insula and basal ganglia. Signs of severe CAA were found in middle frontal gyrus, superior temporal gyrus, inferior parietal cortex, and primary motor area. Lewy bodies were found in the amygdala, locus niger, nucleus basalis of Meynert, and entorhinal cortex.

For patient EXT 149, who carried the c.518T>G, p.Leu173Trp de novo **PSEN1** mutation, rare senile plaques associated with numerous cotton wool deposits and neurofibrillary tangles were present in hippocampal regions and cortical areas. Lewy bodies were found in the amygdala and limbic cortex as well as the frontal, temporal, and parietal cortices and cingulum. CAA was noted in hippocampal regions, the temporal lobe, and the cerebellum.

For patient EXT 1117, who carried the c.251T>C, p.Met84Thr **PSEN1** mutation, neuropathological examination showed global atrophy, particularly in temporal lobes. Samples from the cerebellum and the frontal, temporal, and parietal cortices showed numerous senile plaques and neurofibrillary tangles associated with severe CAA. No Lewy bodies were observed.

Mutational spectrum in the whole French EOAD series

Adding this sample to our previous reports [1,8,9,14,15,19,21–24], a total of 170 AD-EOAD families and 18 sporadic cases carrying mutations in genes known to cause EOAD have now
Gene	Mutation	ID	Aβ42	Tau	p-Tau	PLM
PSEN1	p.Ala79Val	EXT 85	494	>1,200	206	3
PSEN1	p.Thyr115Cys	EXT 755	622	207	68	3
PSEN1	p.Pro117Gln	EXT 851	587	>1,200	173	3
PSEN1	p.Ile143Thr	EXT 670	393	>1,200	84	3
PSEN1	p.Met146ile	EXT 622	543	857	105	3
PSEN1	p.His163Arg	EXT 1242	615	>1,200	129	3
PSEN1	p.His163Arg	EXT 766	434	849	66	3
PSEN1	p.Phe205, Gly206 delinsCys	EXT 177	376	397	91	3
PSEN1	p.Met210Arg	EXT 832	235	672	104	3
PSEN1	p.Gly222His	EXT 807	502	1,000	132	3
PSEN1	p.Ala231Thr	EXT 680	772	1,028	113	2
PSEN1	p.Met233Thr	EXT 1201	440	692	107	3
PSEN1	p.Leu241Arg	EXT 504	464	595	94	3
PSEN1	p.Ala246Pro	EXT 1194	470	523	80	3
PSEN1	p.Cys263Phe	EXT 1193	561	993	121	3
PSEN1	p.Cys263Phe	EXT 768	454	368	66	3
PSEN1	p.Pro264Leu	EXT 966	543	731	92	3
PSEN1	p.Pro264Leu	EXT 1010	445	696	92	3
PSEN1	p.Arg269His	EXT 1228	231	558	111	3
PSEN1	p.Glu273Gly	EXT 886	541	>1,200	165	3
PSEN1	P.Glu273Gly	EXT 1195	643	767	104	3
PSEN1	p.Ala360Thr	SAL 629	487	217	35	1
PSEN1	p.Gly378Glu	EXT 390	515	545	79	3
PSEN1	p.Gly378Val	EXT 596 ind. 001	288	922	86	3
PSEN1	p.Gly378Val	EXT 596 ind. 002	464	517	79	3
PSEN1	p.Leu383Trp	EXT 1071	745	1,140	130	2
PSEN1	p.Val391Phe	EXT 902 ind. 001	279	782	129	3
PSEN1	p.Val391Phe	EXT 902 ind. 002	545	495	41	2
PSEN1	p.Ser290-Ser319delinsCys (Δ 9)	EXT 235	481	777	56	2
PSEN1	Δ exon 9–10	EXT 313	153	414	64	3
APP	p.Ala71Thr	EXT 1064	344	>1,200	191	3
APP	p.Ala71Thr	ROU 1580	605	>1,200	229	3
APP	p.Ala71Thr	EXT 551	150	>1,200	150	3
APP	p.Ala71Thr	EXT 1059	246	>1,200	212	3
APP	p.Ala71Thr	ROU 1562	287	1,198	156	3
APP	p.Val717ile	ALZ 568	252	809	118	3
APP	p.Val717ile	EXT 1055	545	533	69	3
APP	p.Val717ile	EXT 1044	603	841	102	3
APP	p.Val717ile	EXT 1017	595	974	101	3
APP	p.Val717ile	EXT 1015	663	>1,200	357	3
APP	p.Val717ile	EXT 993	255	573	91	3
APP	p.Val717ile	EXT 519	595	1,008	94	3
APP	p.Val717ile	EXT 397	801	841	112	2
APP	p.Val717ile	SAL 638	536	732	132	3
APP	p.Lys724Asn	EXT 624	427	720	74	3
APP	p.Asp694Asn	EXT 233	316	>1,200	203	3

(Continued)
been identified by our national reference center. Ninety distinct mutations (78 PSEN1, 4 PSEN2, and 8 APP, including APP duplication) were represented by respectively 127, 9, 34, and 18 occurrences in this whole sample (S1 Table). For each distinct mutation, the frequency reported in the Exome Aggregation Consortium (ExAC) database [25], which colligates human exome data from ~60,000 individuals, is null or very low (S1 Table).

The mean AOO for PSEN1 mutation carriers was 44.4 y (range 24–80), 53.9 y (range 45–69) for PSEN2 mutation carriers, 50.9 y (range 39–85) for APP mutation carriers, and 51.1 y (range 41–69) for patients carrying APP duplications. Variation of AOO by mutated gene was similar to the one reported by Ryman et al. (2014) [26].

Sporadic cases and de novo mutations

Among the 129 patients with a sporadic presentation and an AOO before 51 y for whom a mutation screening was performed, we identified 18 mutations, including 17 PSEN1 mutations and 1 APP duplication (Tables 1 and 4). For 10 patients, DNA of the unaffected parents was available, and analysis of parental DNA showed that the 10 mutations had occurred de novo: 7 patients carried a de novo PSEN1 missense mutation, 1 carried a de novo splicing PSEN1 mutation, 1 carried a de novo PSEN1 indel, and another 1 carried an APP de novo duplication. Interestingly, 5 out of 7 missense de novo PSEN1 mutations occurred at a position already known to be hit by pathogenic mutations. Parental DNA was not available for the remaining PSEN1 mutation carriers, but we noted a strong censoring effect due to a young age at death in two families, and the parents were unknown in three other families. For the remaining 3 patients, the absence of both a censoring effect and AD history in the parents is suggestive of a de novo occurrence, but this could not be proved by parental DNA analysis.

Discussion

We have studied two samples of EOAD patients and identified 10 novel missense mutations, 1 novel indel, and 1 novel genomic deletion in PSEN1 and 1 novel missense mutation in PSEN2. According to the Guerreiro’s algorithm [12], pathogenicity was considered as definite for 1 mutation, probable for 9, and possible for 3. Considering the whole French EOAD series, 90 distinct mutations (including the APP duplication) are now reported, and pathogenicity is considered definite for 69 mutations (77%), probable for 16 (18%), and possible for 3 (5%). The pathological effect of three known mutations deserves discussion because of incomplete penetrance, nonpathogenicity, or wide range of AOO.

The PSEN1 c.236C>T, p.(Ala79Val) substitution is currently considered pathogenic and leads to an increase in Aβ42 level and Aβ42/Aβ40 ratios in cell cultures [27]. However, this
variant seems to be associated with a later onset compared to the other PSEN1 variants. It was found in several families with late-onset AD (LOAD) [26,28,29]. Four mutation carriers from one family had a definite, neuropathological diagnosis of AD and an AOO after 75 y [28]. Of note, this variant has been reported once in the ExAC database [25] (among ~60,000 controls). Considering that it was also found in subjects with EOAD [30,31], these data suggest that this mutation is associated with a large range of AOO (53–78 y), which could lead to underestimation of its frequency and is of importance for genetic counseling.

Second, the PSEN2 c.211T>C, p.(Arg71Trp) variant was initially found in patients with LOAD [12,32,33]. We previously reported this variant in two EOAD families [14], but we removed it from our complete list because it is now considered as nonpathogenic. It did not segregate with AD in several families [32], including 8/14 affected individuals not carrying this variant in one large family [29]. It was found with an allele frequency of 0.034% (1.95% in the Finnish population) in the ExAC database. When coexpressed in HEK293 cells with APP, the variant did not alter the \(A\beta_{42}/A\beta_{40} \) ratio in vitro [34]. As previously discussed, these elements lead us to consider this mutation as nonpathogenic [15].

Third, since our first report in a patient with sporadic probable AD [8], the APP c.2137G>A p.(Ala713Thr) mutation has now been found in 24 patients from 11 families [5,35–39], including the 6 patients from 5 families included here. Although cerebrovascular lesions were described in brain imaging of some of these patients [36–38], the clinical presentation was a progressive cognitive decline in all but one of the reported cases. Interestingly, AOO ranged from 49 to 85 y, and several asymptomatic carriers were also reported, including one 88- y-old woman [8]. In one family, the mutation was found homozygous in 3 patients [38], and the disease onset was not different from the heterozygous carriers. In the present report, the mother of the proband ROU-1562 had no cognitive impairment until the age of 85, when a diagnosis of probable CAA was made. Of note, this variant has been reported with an allele frequency of 0.0058% in the ExAC database. Taken together, this suggests that the p.Ala713Thr substitution is a pathological variant with reduced penetrance, which is unusual compared to other APP mutations and is of main consequence for genetic counseling.

A notable finding of this study, as compared with the state of the literature, is the number (\(n = 10 \)) of de novo PSEN1 or APP mutations detected in this set of 129 sporadic cases with onset below age 51. Furthermore, this could be underestimated, as parental DNA was not available for all cases. To our knowledge, only four de novo mutations had previously been reported in APP or PSEN1, including three by our group [20,22,23,40]. To our knowledge, there is no evidence to suggest that the PSEN1 gene is a hot spot of de novo mutations. Following the estimations by Samocha and coauthors [41] provided on the ExAC database [25], the probability to observe a PSEN1 de novo missense mutation in an individual is \(1.29 \times 10^{-5} \). This probability is that of an average gene since 56% of genes are more mutable and 44% less mutable than PSEN1. Thus, the discrepancy between the low number of previously reported de novo PSEN1 mutations in sporadic EOAD patients and the present report is likely to reflect a lack of inclusion of these patients in previous mutational screenings, which focused on familial cases. This underscores the need to systematically include patients with sporadic presentation and very early AOO in genetic screening. Consequences for genetic counseling are important, as the offspring of a mutation carrier has a same 50% risk to be a mutation carrier regardless of the familial or sporadic presentation of the affected parent; the offspring can then (i) be accurately informed, (ii) ask for a presymptomatic testing, and (iii) be a possible candidate for preventive clinical trials [13].

Concerning CSF biomarkers, 48/53 (91%) of patients with available CSF exhibit signs of both A\(\beta \) and Tau pathology, and 87% of the mutation carriers were classified PLM 3. This is higher than the 76% reported in our previous series [14]. This difference can be explained by
the change in the Aβ42 cutoff (<700 versus <500 pg/ml in our previous series) according to the 2013 recommendations of the PLM network, whose aim is to homogenize preanalytical treatment for CSF biomarkers across French centers [42]. Overall, no AD mutation carrier presented with normal CSF biomarkers, suggesting that when all three CSF biomarkers are in normal ranges, genes involved in other neurodegenerative diseases should be screened in the first instance.

Our primary goal was to provide to clinicians a list of variants that can accurately be used in genetic counseling. Considering our whole series, this goal is achieved for 60/78 (77%) of PSEN1, 1/4 of PSEN2, and 8/8 of APP mutations reported in the French population. However, despite a large effort, too many mutations in AD-EOAD genes remain insufficiently characterized, and some are incompletely penetrant. The recent analysis of ~60,000 human exomes by the ExAC consortium has revealed an implausibly high per-individual burden of variants reported as causing disease in databases listing Mendelian disease alleles. These findings cast doubt on the validity of these databases and lead to a reclassification of numerous variants as benign [25]. In this context, it is reassuring to see that all variants reported here have a null or very low frequency in ExAC, which is a strong argument for pathogenicity.

A limitation of this study is the absence of functional assessment of the possibly and probably pathogenic variants, which should help their classification. Moreover, only three genes were analyzed. It is possible that de novo mutations in other genes are also involved in the genetic determinism of sporadic forms. To address this latter issue, the next step is now to perform exome sequencing on negatively screened families and sporadic cases. Indeed, this approach already enabled us to show that (i) rare variations in the SORL1 gene might be responsible of a subset of AD-EOAD families [43] or at least constitute a penetrant risk factor for familial EOAD [44] and (ii) a set of genes defining an Aβ-centered genetic network are enriched in de novo mutations in sporadic cases [20].

Our findings suggest that a nonnegligible fraction of PSEN1 mutations occur de novo. The practical implication for clinicians is to highlight the need to systematically include patients with sporadic presentation and very early AOO in genetic screening for the APP, PSEN1, and PSEN2 genes. In addition, the need to pursue the effort to classify variants should be emphasized since, based on our results, definite pathogenicity is currently established for only 77% of identified mutations in these genes.

Supporting information

S1 Table. Different PSEN1 (n = 78), PSEN2 (n = 4), and APP (n = 8) mutations identified in the French EOAD whole series, totaling 188 occurrences. Y = yes.
(XLSX)

S1 Analysis plan. Analysis plan.
(DOCX)

Acknowledgments

The collaborators of the French CNR-MAJ project include Didier Hannequin, Dominique Campion, David Wallon, Olivier Martinaud, Lucie Guyant-Marechal, Annie Laquérriere, Emmanuel Gerard (Centre Hospitalo Universitaire [CHU], Rouen); Olivier Godefroy, (CHU Amiens); Frederique Etcharry-Bouyx, Valerie Chauvire (CHU Angers); Eric Berger, Eloi Magnin, Ludivine Chamard (CHU Besancon); Sophie Auriacome, Jean-François Dartygues, François Tison (CHU Bordeaux); Vincent de la Sayette, Julien Cogez, Françoise Chapon (CHU Caen); Dominique Castan (CHU Castres); Elsa Dionet (CHU Clermont-Ferrand);
Francois Sellal (CH Colmar); Claire Thiriez (CHU Créteil); Olivier Rouaud, Christel Thauvin-Robinet (CHU Dijon); Olivier Moreaud, Mathilde Sauvee (CHU Grenoble); Stephanie Bombois, Adeline Rollin-Sillaire, Marie-Anne Mackowiak, Vincent Daramecourt, Thibaud Lebouvier, Jean-Louis Vincent, Florence Pasquier (CHU Lille); Maité Formaglio, Isabelle Roullet-Solignac, Alain Vighetto, Nathalie Streichenberger (CHU Lyon); Helene Mollion, Bernard Croisile (CMRR, CHU Lyon); Mira Didic, Olivier Felician, Lejla Koric, Mathieu Ceccaldi, Andre Maues de Paula (CHU Marseille); Audrey Gabelle, Cecilia Marelli, Pierre Labauge (CHU Montpellier); Thérèse Jonveaux (CHU Nancy); Martine Verceletto, Claire Bouteleur-Bretonniere, Mathieu Sevin (CHU Nantes); Giovanni Castelnovo (CHU Nimes); Helène-Marie Lanoiselée, Canan Ozsancak, Marie-Hélène Lemaitre, Béatrice Laudier, (CH Orleans); Claire Paquet, Julien Dumurgier, Jacques Hugon (CHU Lariboisiere, Paris); Agnes Michon, Isabelle Le Ber, Bruno Dubois, Stephane Epelbaum, Charles Duyckaerts (CHU La Salpetriere, Paris); Marie Sarazin, Carole Roué-Jagot, Julien Lagarde (CHU St Anne, Paris); Foucauld De Boisguenehec, Brigitte Gilbert-Dussardier (CHU Poitiers); Serge Belliard (CHU Rennes); Marie Odile Barrellon (CHU Saint-Etienne); Frederic Blanc, Christine Tranchant, Mathieu Anheim, Beatrice Lannes (CHU Strasbourg); Jérémie Pariente, Marie-Bernadette Delisle (CHU Toulouse); and Caroline Hommet and Karl Mondon (CHU Tours).

Author Contributions

Data curation: HML GN ML DC.

Funding acquisition: DH DC.

Investigation: ARL SR ACR MQM JLV FP ARS OM VS CBBC FEB VC MSar ILB SE TJ OR MC OF OG MF BC SA LC MSau CMT AG CO JP CP.

Methodology: GN DW ARL DH DC.

Software: HML GN DW ML FP ARS OM VS CBBC FEB VC MSar ILB SE TJ OR MC OF OG MF BC SA LC MSau CMT AG CO JP CP DH.

Supervision: DC.

Writing – original draft: HML GN DC.

Writing – review & editing: HML GN DW ML SR ACR MQM FP ARS OM VS CBBC FEB VC MSar ILB SE TJ OR MC OF OG MF BC SA LC JLV MSau CMT AG CO JP CP DH DC.

References

1. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. American journal of human genetics. 1999; 65(3):664–70. https://doi.org/10.1086/302553 PMID: 10441572

2. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995; 375(6534):754–60. https://doi.org/10.1038/375754a0 PMID: 7596406

3. Levy-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, et al. A familial Alzheimer’s disease locus on chromosome 1. Science. 1995; 269(5226):870–3. PMID: 7638621

4. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995; 376(6543):775–8. https://doi.org/10.1038/376775a0 PMID: 7651536

5. Sherrington R, Froelich S, Sorbi S, Campion D, Chi H, Rogaeva EA, et al. Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Human molecular genetics. 1996; 5(7):985–8. PMID: 8817335

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002270 March 28, 2017 13 / 16
6. Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, et al. Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature. 1991; 353(6347):844–6. https://doi.org/10.1038/353844a0 PMID: 1944558

7. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991; 349(6311):704–6. https://doi.org/10.1038/ng1292-255 PMID: 1303275

8. Carter DA, Desmarais E, Bellis M, Campion D, Clerget-Darpoux F, Brice A, et al. More missense in amyloid gene. Nature genetics. 1992; 2(4):255–6. https://doi.org/10.1038/ng1292-255 PMID: 1303275

9. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nature genetics. 2006; 38(1):24–6. https://doi.org/10.1038/ng1718 PMID: 16369530

10. Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harbor perspectives in medicine. 2012; 2(5):a006270. https://doi.org/10.1101/cshperspect.a006270 PMID: 22553493

11. Campion D, Pottier C, Nicolas G, Le Guennec K, Rovelet-Lecrux A. Alzheimer disease: modeling an Abeta-centered biological network. Molecular psychiatry. 2016; 21(7):861–71. https://doi.org/10.1038/mp.2016.38 PMID: 27021818

12. Guerreiro RJ, Baquero M, Blesa R, Boada M, Bras JM, Bullido MJ, et al. Genetic screening of Alzheimer’s disease genes in Iberian and African samples yields novel mutations in presenilins and APP. Neurobiology of aging. 2010; 31(5):725–31. https://doi.org/10.1016/j.neurobiolaging.2008.06.012 PMID: 18667258

13. Moulder KL, Snider BJ, Mills SL, Buckles VD, Santacruz AM, Bateman RJ, et al. Dominantly Inherited Alzheimer Network: facilitating research and clinical trials. Alzheimer’s research & therapy. 2013; 5(5):48.

14. Wallon D, Rousseau S, Rovelet-Lecrux A, Quillard-Muraine M, Guyant-Marechal L, Martinaud O, et al. The French series of autosomal dominant early onset Alzheimer’s disease cases: mutation spectrum and cerebrospinal fluid biomarkers. Journal of Alzheimer’s disease: JAD. 2012; 30(4):847–56. https://doi.org/10.3233/JAD-2012-120172 PMID: 22475797

15. Nicolas G, Wallon D, Charbonnier C, Quenez O, Rousseau S, Richard AC, et al. Screening of dementia genes by whole-exome sequencing in early-onset Alzheimer disease: input and lessons. European journal of human genetics: EJHG. 2016; 24(5):710–6. https://doi.org/10.1038/ejhg.2015.173 PMID: 26242991

16. Acuna-Hidalgo R, Veltman JA, Hoischen A. New insights into the generation and role of de novo mutations in health and disease. Genome biology. 2016; 17(1):241. https://doi.org/10.1186/s13059-016-1110-1 PMID: 27894357

17. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & dementia: the journal of the Alzheimer’s Association. 2011; 7(3):263–9.

18. Lehmann S, Dumurgier J, Schraen S, Wallon D, Blanc F, Magnin E, et al. A diagnostic scale for Alzheimer’s disease based on cerebrospinal fluid biomarker profiles. Alzheimer’s research & therapy. 2014; 6(3):38.

19. Sellal F, Wallon D, Martinez-Almoyna L, Marelli C, Dhar A, Oesterle H, et al. APP Mutations in Cerebral Amyloid Angiopathy with or without Cortical Calcifications: Report of Three Families and a Literature Review. Journal of Alzheimer’s disease: JAD. 2017; 56(1):37–46. https://doi.org/10.3233/JAD-160709 PMID: 27858710

20. Rovelet-Lecrux A, Charbonnier C, Wallon D, Nicolas G, Seaman MN, Pottier C, et al. De novo deleterious genetic variations target a biological network centered on Abeta peptide in early-onset Alzheimer disease. Molecular psychiatry. 2015; 20(9):1046–56. https://doi.org/10.1038/mp.2015.100 PMID: 26194182

21. Raux G, Guyant-Marechal L, Martin C, Bou J, Penet C, Brice A, et al. Molecular diagnosis of autosomal dominant early onset Alzheimer’s disease: an update. Journal of medical genetics. 2005; 42(10):793–5. https://doi.org/10.1136/jmg.2005.033456 PMID: 16033913

22. Portet F, Daunieux Y, Campion D, Raux G, Hauw JJ, Lyon-Caen O, et al. Very early onset AD with a de novo mutation in the presenilin 1 gene (Met 233 Leu). Neurology. 2003; 61(8):1136–7. PMID: 14581682

23. Dumanchin C, Brice A, Campion D, Hannequin D, Martin C, Moreau V, et al. De novo presenilin 1 mutations are rare in clinically sporadic, early onset Alzheimer’s disease cases. French Alzheimer’s Disease Study Group. Journal of medical genetics. 1998; 35(8):672–3. PMID: 9719376
24. Dumanchin C, Tournier I, Martin C, Didic M, Belliard S, Carlander B, et al. Biological effects of four PSEN1 gene mutations causing Alzheimer disease with spastic paraparesis and cotton wool plaques. Human mutation. 2006; 27(10):1063.

25. Lek M, Karczewska KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 536(7616):285–91. https://doi.org/10.1038/nature19057 PMID: 27535533

26. Ryman DC, Acosta-Baeza N, Aisen PS, Bird T, Danea A, Fox NC, et al. Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology. 2014; 83(3):253–60. https://doi.org/10.1212/WNL.0000000000000596 PMID: 24928124

27. Kumar-Singh S, Theuns J, Van Broeck B, Pirici D, Vennekens K, Corssmit E, et al. Mean age-of-onset of familial Alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Human mutation. 2006; 27(7):686–95. https://doi.org/10.1002/humu.20336 PMID: 16752394

28. Kauwe JS, Jacquart S, Chakraverty S, Wang J, Mayo K, Fagan AM, et al. Extreme cerebrospinal fluid amyloid beta levels identify family with late-onset Alzheimer’s disease presenilin 1 mutation. Annals of neurology. 2007; 61(3):446–53. https://doi.org/10.1002/ana.21099 PMID: 17366635

29. Ryman DC, Acosta-Baeza N, Aisen PS, Bird T, Danea A, Fox NC, et al. Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology. 2014; 83(3):253–60. https://doi.org/10.1212/WNL.0000000000000596 PMID: 24928124

30. Kumar-Singh S, Theuns J, Van Broeck B, Pirici D, Vennekens K, Corssmit E, et al. Mean age-of-onset of familial Alzheimer disease caused by presenilin mutations correlates with both increased Abeta42 and decreased Abeta40. Human mutation. 2006; 27(7):686–95. https://doi.org/10.1002/humu.20336 PMID: 16752394

31. Kauwe JS, Jacquart S, Chakraverty S, Wang J, Mayo K, Fagan AM, et al. Extreme cerebrospinal fluid amyloid beta levels identify family with late-onset Alzheimer’s disease presenilin 1 mutation. Annals of neurology. 2007; 61(3):446–53. https://doi.org/10.1002/ana.21099 PMID: 17366635

32. Cruchaga C, Haller G, Chakraverty S, Mayo K, Vallsions FL, Mitra RD, et al. Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PLoS ONE. 2012; 7(2):e31039. https://doi.org/10.1371/journal.pone.0031039 PMID: 22312439

33. Cruts M, van Duijn CM, Backhoven H, Van den Broeck M, Wehner A, Serneels S, et al. Estimation of the genetic contribution of presenilin-1 and -2 mutations in a population-based study of presenile Alzheimer disease. Human molecular genetics. 1998; 7(1):43–51. PMID: 9384602

34. Finckh U, Muller-Thomsen T, Mann U, Eggers C, Marksteiner J, Meins W, et al. High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes. American journal of human genetics. 2000; 66(1):110–7. https://doi.org/10.1086/302702 PMID: 10631141

35. Sleegers K, Roks G, Theuns J, Aulchenko YS, Rademaker R, Cruts M, et al. Familial clustering and genetic risk for dementia in a genetically isolated Dutch population. Brain: a journal of neurology. 2004; 127(Pt 7):1641–9.

36. Brouwers N, Sleegers K, Van Broeckhoven C. Molecular genetics of Alzheimer’s disease: an update. Annals of medicine. 2008; 40(8):562–83. https://doi.org/10.1080/07853890802186905 PMID: 18608129

37. To MD, Gokgoz N, Doyle TG, Donoviel DB, Knight JA, Hyslop PS, et al. Functional characterization of novel presenilin-2 variants identified in human breast cancers. Oncogene. 2006; 25(28):3557–64. https://doi.org/10.1038/sj.onc.1209397 PMID: 16474849

38. Rossini G, Giaccone G, Maletta R, Morbin M, Capobianco R, Mangieri M, et al. A family with Alzheimer disease and strokes associated with A713T mutation of the APP gene. Neurology. 2004; 63(5):910–2. PMID: 15365148

39. Bernardi L, Geracitano S, Colao R, Puccio G, Gallo M, Anfossi M, et al. AbetaPP A713T mutation in late-onset Alzheimer’s disease with cerebrovascular lesions. Journal of Alzheimer’s disease: JAD. 2009; 17(2):383–9. https://doi.org/10.3233/JAD-2009-1061 PMID: 19938265

40. Conidi ME, Bernardi L, Puccio G, Smime N, Muraca MG, Curcio SA, et al. Homozygous carriers of APP A713T mutation in an autosomal dominant Alzheimer disease family. Neurology. 2015; 84(22):2266–73. https://doi.org/10.1212/WNL.0000000000001648 PMID: 25948718

41. Barber IS, Garcia-Cardenas JM, Sakdapanichkul C, Deacon C, Zapata Erazo G, Guerreiro R, et al. Screening exons 16 and 17 of the amyloid precursor protein gene in sporadic early-onset Alzheimer's disease. Neurobiology of aging. 2016; 39:220 e1–7.

42. Gabelle A, Dumurgier J, Vercruysse O, Paquet C, Bombois S, Laplanche JL, et al. Impact of the 2008–2012 French Alzheimer Plan on the use of cerebrospinal fluid biomarkers in research memory center: the PLM Study. Journal of Alzheimer’s disease: JAD. 2013; 34(1):297–305. https://doi.org/10.3233/JAD-121549 PMID: 23186986
43. Pottier C, Hannequin D, Coutant S, Rovelet-Lecrux A, Wallon D, Rousseau S, et al. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Molecular psychiatry. 2012; 17(9):875–9. https://doi.org/10.1038/mp.2012.15 PMID: 22472873

44. Nicolas G, Charbonnier C, Wallon D, Quenez O, Bellenguez C, Grenier-Boley B, et al. SORL1 rare variants: a major risk factor for familial early-onset Alzheimer’s disease. Molecular psychiatry. 2016; 21(6):831–6. https://doi.org/10.1038/mp.2015.121 PMID: 26303663