Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Bilateral cardiac sympathetic denervation in children with long-QT syndrome and catecholaminergic polymorphic ventricular tachycardia

Murat Akkuş, MD a,⁎, Yunus Seyrek, MD a, Hasan Candaş Kafali, MD b, Yakup Ergül, MD b

a Department of Thoracic Surgery, Sağlık Bilimleri University, Mehmet Akif埃soy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
b Department of Pediatric Cardiology, Sağlık Bilimleri University, Mehmet Akif埃soy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey

Introduction

Channelopathy, which may cause specific arrhythmias, such as long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) in children, leads to ventricular tachycardia and fibrillation, which are life-threatening in nature. An increase in sympathetic stimulation, which is responsible for triggering such arrhythmias, is often resistant to antiarrhythmic treatment. Modulation of the cardiac autonomic nervous system is now being used frequently in the treatment of channelopathy. Cardiac sympathetic denervation (CSD) is carried out via surgical excision or pharmacological inhibition of the extrinsic thoracic sympathetic chain (SC). For this reason, left CSD (LCSD) has been shown to decrease the number of sudden deaths and events in cases of CPVT and LQTS [1].

LCSD is frequently carried out in medical-resistant pediatric channelopathy; however, no bilateral CSD (BCSD) series for children has been presented in the literature. Some articles report low recurrence rates in adults who undergo BCSD compared to LCSD [2]. Therefore, the bilateral approach may also reduce recurrence rates of sympathetic denervation in pediatric patients. The aim of this study is to present the initial results for pediatric cases where BCSD was carried out to treat LQTS and CPVT.

Methods

Patients and methods

In this retrospective study, data from 156 patients with ventricular arrhythmia at our tertiary hospital’s pediatric cardiology arrhythmia clinic were collected between September 2011 and April 2019. 135 patients had LQTS and 21 had CPVT. Implantable cardioverter-defibrillators (ICDs) were implanted in 26 LQTS patients and 17 CPVT patients according to the HRS/EHRA/APHRS expert consensus [3]. The research team agreed that LCSD would be indicated in patients who had an intolerance for medical treatment, who continued to experience ICD shocks despite optimal care, who refused to be implanted with an ICD, and in those with CPVT in whom a primary prevention operation was indicated due to a family history of cardiac arrest. LCSD is accepted as the standard surgical procedure for denervation in patients with CPVT and LQTS [1]; thus, we performed LCSD in the first two patients who were referred from the arrhythmia clinic. One patient with CPVT and one with LQTS underwent LCSD; however, both patients were admitted to the pediatric clinic after six months due to recurrent events. After this clinical experience, we decided to perform BCSD initially in patients with channelopathy. Patients who underwent LCSD followed by right CSD (RCSD) due to recurrence were excluded from the research. This study was granted approval by our hospital's Ethical Committee (2018/63). Informed consent was obtained from patients’ families as needed.

15 patients were included in our study for a video-assisted thoracoscopic surgery (VATS) BCSD operation. Four patients had a history of epilepsy and seven had a family history of sudden death. In total, eight of the 26 LQTS patients and six of the 17 CPVT patients who had frequent shocks were included. Additionally, one patient with CPVT who did not have an ICD underwent BCSD for primary prevention. The reasons for inclusion are summarized in Table 1. Patients’ demographic characteristics, operational data, medical treatment, ICD records, and monitoring data were assessed in detail.

Surgical technique

All operations were performed by a single surgical team. In the supine position, both arms were opened at an angle of 90°. All patients were intubated with a single-lumen endotracheal tube, and an external defibrillator pad was attached to the posterior and anterior regions of the thorax. Their ICD devices were then switched off. After all required coverings were carried out, the head of the operating table was tilted up by 45° and rotated 30° away from the side on which the operation was due to be performed. Operations were carried out on patients’ left sides first. The fourth intercostal space (ICS) was opened into the first port middle axillary line, and CO2 insufflation commenced. A camera was used to visualize the scene, while the second port was placed into an anterior axillary line through the third ICS. A minimally invasive two-port VATS procedure was performed. Then, CO2 insufflation was adjusted to a pressure of 6 mmHg. In several patients, it was impossible to achieve sufficient exposure at this pressure, so insufflation was increased up to 8–10 mmHg. When this failed to result in sufficient exposure, the third...
A port was placed at the fifth ICS through the anterior axillary line to retract the lung. Electrocautery was used to separate T2–4 ganglions, beginning from the SC T1 distal rami communicans (Kuntz nerves) and spinal nerves (Fig. 1). Kuntz nerves were cauterized to 1 cm from the medial and at least 2 cm from the lateral. Subsequently, T2, T3, and T4 ganglions were totally cauterized to execute sympathetic denervation. The location of the port was sutured once CO2 was totally discharged from the thorax cavity. Rarely, the discharge of air persisted in some patients, so a thoracic drain was inserted. The thoracic drain tube was connected to an underwater drainage system. The same surgical procedures were repeated after passing to the contralateral side. The ICD device was restarted after the operation during a weaning period, and patients were taken to the intensive care unit. Patients were continuously monitored for 24 h.

Table 1

No.	Age	Sex	Arrhythmia	Antiarrhythmic	Dose/daily	Period between ICD-BCSD (months)	Mutation	Family history of sudden death
1	4	F	LQTS-JLNS	NAD	1	5	KCNQ1	
2	17	F	CPVT	PRP + FLC	3 + 100	1		
3	12	M	CPVT	PRP + FLC	3 + 100	3	CASQ2	2 siblings
4	14	M	CPVT	PRP + FLC	3 + 100	64		Father
5	15	F	LQTS-7	PRP	3	-	KCNJ2	2 siblings
6	14	F	LQTS-7	PRP	3	10	KCNJ2	
7	9	M	LQTS-JLNS	PRP	3	72	KCNQ1	Cousin
8	13	M	CPVT	PRP	3	50	RYR2	
9	15	F	CPVT	PRP + FLC	3 + 100	48		
10	17	M	CPVT	PRP	3	72		
11	14	M	LQTS-1 + 2	PRP	3	41	KCNQ1 + KCNQ2	1 sibling, mother
12	14	M	LQTS-1	PRP	3	54	KCNQ1	1 sibling
13	10	F	LQTS-7	PRP + FLC	3 + 100	50		
14	7	M	LQTS-JLNS	PRP	3	8	KCNQ1	
15	15	F	CPVT	PRP + FLC	3 + 100	60		Father, 2 cousins

F: female M: male LQTS: long-QT syndrome, CPVT: catecholaminergic polymorphic ventricular tachycardia JLNS: Jervell and Lange Nielsen syndrome, LQTS-7: Andersen Tawil syndrome, NAD: nadolol, PRP: propranolol, FLC: flecainide, dose/daily: mg/kg/day for NAD and PRP, mg/m²/day for FLC.

Fig. 1. Illustration of bilateral cardiac sympathetic denervation.
Statistical analyses

Data was analyzed using SPSS software version 20.0 (IBM Inc., Chicago, IL, USA). Variable distribution normality was assessed using the Shapiro-Wilk test. Continuous abnormal variables were shown as median (min–max) values. Categorical variables were shown as numbers and percentages. A Wilcoxon signed-rank test was used to compare dependent continuous variables. Statistical significance was set at \(p < 0.05 \).

Results

In total, BCSD operations were conducted on 15 patients. Of these, nine patients (60%) were male, and six (40%) were female. Patients’ median age was 14 years (4–17). The patients’ data are shown in Table 2. A video-thoracoscopic BCSD operation using two ports was conducted on 11 patients, and the same procedure using three ports was conducted on four patients. The median operation duration was 43 min (22–65). In all patients, sympathetic denervation was achieved through the electrocautery of sympathetic ganglia and Kuntz fibers. All patients remained on the same medications/doses following the surgery.

Complications were as follows: one LQTS patient experienced perioperative polymorphic ventricular tachycardia, which went into the sinus through perioperative electroshock, and one CPVT patient had a prolonged air-leak. In addition, alternate sweating was spotted in one CPVT patient and one LQTS patient in the follow-up. A unilateral thoracic drain was inserted into four patients during their operations due to the preoperative continuous air leak. The thoracic drains of three patients were removed on the first post-operative day, while a postoperative air leak lasted two days in one patient. Most importantly, no cases showed any sign of Horner syndrome, and there was no mortality.

The median duration of hospitalization was one day (1–3). The median monitoring period after BCSD was 22 months (12–73). The number of preoperative shocks in those with ICDs after BCSD fell from 13 (0–30) to 0 (0–3) in one year in the postoperative period (\(Z = –3.29, \ p = 0.001 \)). A total resolution of shocks (100%) was detected in 60% of patients \((n = 9)\) after BCSD (two out of seven CPVT patients and seven out of eight LQTS patients). One LQTS patient who had BCSD as a primary prevention was followed clinically because there was no ICD. A satisfactory partial resolution (88%) was detected in 40% of patients \((n = 6)\) without recurrence (five out of seven CPVT patients and one out of eight LQTS patients) (Table 2). In addition, cohort’s both pre-operative and post-operative heart rates, PR, QRS, QT levels and corrected QT (QTc) interval on electrocardiogram (ECG) by using Bazett, Frederichia, Framingham and Hodges formulas are given in Table 3. There is no significant difference between pre-operative and post-operative PR, QRS, QT and QTc values; but, there is significant difference in pre-operative and post-operative heart rates \((p = 0.003)\).

Discussion

The sympathetic nervous system plays a significant role in the progress of ventricular arrhythmias. Certain arrhythmias, such as CPVT and LQTS, have characteristics that affect a person’s survival. The progress of these diseases is caused by sympathetic stimulation in vulnerable individuals who do not respond to anti-arrhythmic agents. It has been stated that 46–69% of patients with channelopathy continue to have cardiac events despite maximum therapy [4]. In such cases, ICDs may be used to prevent sudden deaths. Ironically, ICD shocks may trigger arrhythmias depending on the sympathetic stimulation, as they can cause “electrical storms.” Furthermore, ICD is not ideal in pediatric patients due to extreme sensitivity to catecholamines released as a consequence of anxiety and pain associated with ICD shocks.

Up until now, LCSD has commonly been carried out because patients experienced multiple appropriate shocks due to ICD. In the Heart Rhythm Society’s guidelines on primary inherited arrhythmia syndromes, Class I LCSD is recommended for patients with LQTS who are resistant to or unable to use beta blockers, those who refuse an ICD device, or those who have symptoms despite the implantation of an ICD. Similarly, Class IIb LCSD is recommended during the use of beta blockers in CPVT cases, in cases in which beta blockers are contraindicated, or in cases in which syncope or ICD-originated shock has been observed [3]. In addition, there are several case reports that present renal sympathetic denervation is also beneficial in pediatric [5] and adult patients [6] with catecholaminergic polymorphic ventricular tachycardia.

In patients with severe ventricular arrhythmias, LCSD lessens the frequency of ventricular arrhythmias and sudden death of cardiac origin [7,8]. Research has shown that LCSD has been an effective treatment for many types of CPVT and LQTS [9,10]. Atallah et al. [11] reported the full recovery of three in four children with CPVT (75%) after LCSD, whom they monitored themselves. In addition, LCSD has been shown to be effective in cases of CPVT and LQTS in many studies at a rate of over 70% [12,13], though a recurrence rate of 24–66% has also been reported in several articles [12–15]. Nevertheless, LCSD for arrhythmias originating from a region controlled by the right-sided sympathetic nerves is likely to be ineffective. In cases where LCSD fails to hamper ventricular arrhythmias, an auxiliary treatment, RCSD, might be an alternative.
Research has shown that RCSD lessens cardiac arrhythmia [16,17]. Lin et al. [18] reported that three of the six patients had undergone previous LCSD but developed arrhythmia recurrence; RCSD after prior LCSD was effective in suppressing these arrhythmias.

The thoracic sympathetic truncus has complex alternative ways of being carried out via the rami communicans [19]. Cadaver studies have shown that rami communicans are concentrated in bilateral T2 sympathetic ganglia, although fewer have also been observed in T3 and T4 ganglia [20]. In addition, it is stated that there is a functional asymmetry in the innervation of the heart. The left sympathetic nerve chain influences the left and posterior walls of heart innervation, and the right sympathetic nerve chain effects heart rate due to its stimulation on the sinus node [21].

There is a theoretical concern that even if LCSD is initially effective, the right cardiac sympathetic nerves may hypertrophy and extend nerve sprouts to regions subtended by the resected left-sided ganglia [22,23]. This process of remodeling in the right sympathetic nerves may induce the recurrence of arrhythmias. Kirgis et al. [24] reported that the incidence rate of two-sided and one-sided intercostal rami originating from the T2 nerve and connected to the T1 nerve was 59% and 31.8%, respectively, and the incidence rate of those originating from the T3 nerve and connected to the T2 nerve was 34.1% and 40.9%.

Vaseghi and Aijola presented that in adults, BCSD is more effective than LCSD but developed arrhythmia recurrence; RCSD after prior LCSD was effective in suppressing these arrhythmias [25].

Vaseghi and Aijola presented that in adults, BCSD is more effective than LCSD but developed arrhythmia recurrence; RCSD after prior LCSD was effective in suppressing these arrhythmias [25].

The incidence rate of two-sided and one-sided intercostal rami originating from the T2 nerve and connected to the T1 nerve was 59% and 31.8%, respectively, and the incidence rate of those originating from the T3 nerve and connected to the T2 nerve was 34.1% and 40.9% [18]. In our study, alteration in the sweating pattern was spotted in two patients (13.3%); one of them returned to normal after six months. In the literature, the rate of chronic Horner syndrome is 5%, while the rate of temporary signs of Horner syndrome varies from 23% to 48% [9,17,29,30]. It has been suggested that in order to prevent recurrence, the lower half of the stellate ganglion or the lower third of the stellate ganglion and the T1–T4 ganglia must be denervated [31]. In pediatric patients, Horner syndrome or its signs can be difficult for families to accept and may have psychosocial consequences. In our study, neither chronic nor temporary Horner syndrome, nor any of its signs, were observed in any case. A potentially lower risk of Horner syndrome in our study is not “an advantage” of the BCSD surgical technique; rather, it is the result of sparing the stellate ganglion. Our pediatric patients were not at risk of Horner syndrome or its signs.

Limitations

This retrospective study was based on observation; therefore, patients were not randomly selected. The retrospective nature of this study prevented the inclusion of other factors in evaluating the outcomes of BCSD, such as comorbidities and previous ventricular arrhythmia storms. Hence, the effects of LCSD in this population may have been over- or under-estimated. If there was a control group of patients who underwent LCSD, comparing results with BCSD would have provided better insight into the topic.

Conclusion

Overall, BCSD seems to be an effective and reliable method of decreasing arrhythmic burden and the number of shocks in pediatric patients with LQTS and CPVT. The use of this method in the early stages of the disease may prevent recurrent ventricular arrhythmia storms and the incapacitating psychosocial effects attributed to ICD shocks.

Table 3

No.	Diagnosis	Pre-op PR (ms)/p = 0.588	QRS duration (ms)/p = 0.093	QT interval (ms)/p = 0.533	QTC Bazett (ms)/p = 0.110	QTC Frederichia (ms)/p = 0.319	QTC Framingham (ms)/p = 0.262	QTC Hodges (ms)/p = 0.221	HR/bpm/p = 0.003								
1	LQTS-JLNS	144	144	74	72	500	478	598	526	561	517	568	513	101	81		
2	CPVT	148	154	92	96	408	416	453	453	438	440	437	440	443	435	74	67
3	CPVT	160	152	86	102	498	396	426	409	449	405	442	406	470	403	68	64
4	CPVT	152	158	88	92	389	402	441	422	423	416	423	415	419	413	77	66
5	LQTS-7	142	140	92	90	402	400	428	429	419	420	419	416	416	416	79	69
6	LQTS-7	170	168	78	72	446	422	449	439	441	440	443	440	443	436	68	58
7	LQTS-JLNS	132	138	86	89	445	430	520	485	494	462	486	465	484	458	82	76
8	CPVT	166	154	92	102	388	378	434	425	418	410	419	409	414	406	95	75
9	CPVT	156	163	98	90	379	403	454	448	427	432	427	432	425	428	86	74
10	CPVT	148	152	96	92	366	389	436	417	411	409	411	408	410	405	85	68
11	LQTS-1 + 2	172	178	86	84	422	403	429	426	427	419	427	418	426	415	72	67
12	LQTS-1	163	162	81	83	455	446	498	478	484	465	481	466	476	462	80	69
13	LQTS-7	167	169	79	85	420	404	443	434	429	430	429	427	429	425	72	64
14	LQTS-JLNS	129	139	99	95	465	466	512	489	492	480	487	481	483	477	73	66
15	CPVT	163	140	83	88	422	418	443	421	436	421	436	420	432	420	66	61

QTC: corrected QT interval; ECG: electrocardiogram; LQTS: long QT syndrome; CPVT: catecholaminergic polymorphic ventricular tachycardia; JLNS: Jervell and Lange-Nielsen syndrome; LQTS-7: Andersen-Tawil syndrome.
Future prospective and randomized studies with larger cohorts are warranted to confirm the efficacy of BCSD as optimal treatment in the management of pediatric patients with LQTS and CPVT.

Funding

There was no funding source for this study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

The study was granted approval by the Ethical Committee (2018/63) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was retrospectively designed.

Informed consent

Not obtained due to retrospective study design.

CRediT authorship contribution statement

Murat Akkuş: Conceptualization, Methodology, Formal analysis, Writing - original draft, Investigation, Project administration, Supervision.

Yunus Seyrek: Formal analysis, Methodology, Writing - review & editing.

Hasan Canďaş Kafal: Data curation, Investigation.

Yakup Ergül: Data curation, Investigation, Supervision.

Declaration of competing interest

All of the authors have no conflicts of interest to report.

Acknowledgments

None.

References

[1] Schwartz PJ. Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat Rev Cardiol. 2014;11(6):346. https://doi.org/10.1038/nrcardio.2014.19 Jun.

[2] Yagishita A, Goya M, Takahashi Y, Ishibashi H, Akiyoshi K, Sekigawa M, et al. Bilateral sympathetic blockade and left cardiac sympathetic denervation in patients with recurrent ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2012;5(4):742–9. https://doi.org/10.1161/CIRCEP.112.971754 Aug.

[3] De Ferrari GM, Dusi V, Spazoliini C, Bos JM, Abrams DJ, Berul CI, et al. Clinical management of catecholaminergic polymorphic ventricular tachycardia in children: a survey of current practice. J Cardiovasc Electrophysiol. 2000;11(9):848–54. https://doi.org/10.1046/j.1540-8167.2000.00612.x Sep.

[4] Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;105(18):2083–8. https://doi.org/10.1161/01.CIR.105.18.2083 Apr 2.

[5] Xiao Mingyang, Chen Weijie, Yin Yuehui. Congenital long QT syndrome treated by sympathetic denervation. Heart Rhythm Case Reports. 2018;23–26;6(1). https://doi.org/10.1016/j.hrcr.2019.10.003.

[6] Schwartz PJ. Sympathetic denervation of refractory ventricular arrhythmias and electrical storms: a single-center series. J Cardiothorac Surg. 2019;14(1):17. https://doi.org/10.1186/s13019-019-0838-6 Dec.

[7] Wilde AA, Bhiuyan ZA, Croft L, Facchini M, De Ferrari GM, Paul T, et al. Left sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N Engl J Med. 2008;358(19):2024–9. https://doi.org/10.1056/NEJMoa078006 May 8.

[8] Schwartz PJ, Snehold NG, Brown AM. Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am J Cardiol. 1976;37(7):1034–40. https://doi.org/10.1016/0002-9149(76)90420-3 Jun 1.

[9] Garvey EM, Paper AL, Notrica DM, Egan JC, Molitor M, Cohen MI, et al. Thoracoscopic sympathectomy for recurrent ventricular arrhythmias: adjunct therapy for secondary prevention of life-threatening ventricular arrhythmias in children. Journal of Laparoendoscopic & Advanced Surgical Techniques. 2018;28(11):1387–92. https://doi.org/10.1007/00210-019-0838-6 Nov 1.

[10] Lin TS, Kuo SJ, Chu MC. Unilateral endoscopic thoracic sympatheticectomy for treatment of palmar and axillary hyperhidrosis: analysis of 2002 cases. Neurosurgery. 2002;51(5 Suppl):S84–7. [PubMed PMID: 12234434].

[11] Pick J, Sheehan D. Sympathetic rami in man. J Anat. 1946;80(Pt 1):12 Jan. [PMID: 2170898].

[12] Cho HM, Lee DY, Sung SW. Anatomical variations of rami communicantes in the upper thoracic sympathetic trunk. Eur J Cardiothorac Surg. 2005;27(2):320–4. https://doi.org/10.1016/j.ejcts.2004.10.057 Feb 1.

[13] Yanowitz F, Preston JB, Ahidjov JA. Functional distribution of right and left stellate innervation to the vertebrae. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res. 1966;18:416–28. https://doi.org/10.1161/01.RES.18.4.416.

[14] Ajjilo OA, Vaseghi M, Mahajan A, Shivkumar K. Bilateral cardiac sympathetic denervation: why, who and when? Expert Rev Cardiovasc Ther. 2012;10(8):947–9. https://doi.org/10.1586/erc.12.93 Aug 1.

[15] Fiorotto ET, Rahal SC, Borges AS, Mayehow TM, Nyengaard JR, Marcordes JC, et al. Hypothalamic and neuropeptide Y-induced intracranial changes in sheep SCG induced by unilateral sympathectomy. Int J Dev Neurosci. 2011;29(4):475–81. https://doi.org/10.1016/j.ijdevneu.2011.02.002 Jun 1.

[16] Kirgis HD, Kuntz A. Inconstant sympathetic neural pathways: their relation to sympathetic blockades. Circ Res. 1967;20(1):1–16. https://doi.org/10.1161/01.RES.20.1.1 Jan 1.

[17] Collura CA, Johnson JN, Moir C, Ackerman MJ. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol. 2019;12(1):2255–62. https://doi.org/10.1161/CIRCULATIONAHA.119.039703 Jun 1.

[18] Coleman MA, Bos JM, Johnson JN, Owen HJ, Deschamps C, Moir C, et al. Videoseopic left cardiac sympathetic denervation for patients with recurrent ventricular fibrillation in malignant congenital long QT syndrome: a prospective randomized study. Circ Arrhythm Electrophysiol. 2012;5(4):742–8. https://doi.org/10.1161/CIRCEP.112.971754 Aug.

[19] De Ferrari GM, Dusi V, Spazoliini C, Bos JM, Abrams DJ, Berul CI, et al. Clinical management of catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm. 2009;6(6):752–9. https://doi.org/10.1016/j.hrthm.2009.03.024 Jun 1.

[20] Schwartz PJ. Efficacy of left cardiac sympathetic denervation has an unforeseen side effect: medicolegal complications. Heart Rhythm. 2010;7(9):1330–7. https://doi.org/10.1016/j.hrthm.2010.04.038 Sep 1.