Towards evidence based emergency medicine: Best BETs from the Manchester Royal Infirmary

Edited by Simon D Carley

BET 1: CAN THE VALUE OF END TIDAL CO2 PROGNOSTICATE ROSC IN PATIENTS COMING INTO EMERGENCY DEPARTMENT WITH AN OUT-OF-HOSPITAL CARDIAC ARREST (OOHCA)?

Authors: Harish Venkatesh, Elizabeth Keating
Affiliation: Royal Berkshire Hospital, Berkshire, London, UK

ABSTRACT
A short cut review was carried out to establish whether end tidal CO2 can be used to prognosticate in out-of-hospital cardiac arrest. 232 papers were found of which 4 presented the best evidence to answer the clinical question. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of these best papers are tabulated. The clinical bottom line is that a single end tidal CO2 reading cannot be used as an indicator to terminate resuscitation attempts in out-of-hospital cardiac arrest.

THREE-PART QUESTION
Patient group—(In adults admitted to the ED with an out-of-hospital cardiac arrest)
Intervention—(does end tidal CO2 measurement)
Outcome—(predict/prognosticate return of spontaneous circulation)?

CLINICAL SCENARIO
A 60-year-old male is brought into the ED with an out-of-hospital cardiac arrest (OOHCA). All monitoring is attached while ALS protocol is ongoing, including CO2 monitoring. You want to assess whether the patient is going to survive and thereby achieve a return of spontaneous circulation (ROSC) and you wonder whether the patient’s end tidal CO2 (ETCO2) level can prognosticate this.

SEARCH STRATEGY
Medline, Cochrane and EMBASE databases (2006 to present).

Best Evidence Topic reports (BETs) summarise the evidence pertaining to particular clinical questions. They are not systematic reviews, but rather contain the best (highest level) evidence that can be practically obtained by busy practising clinicians. The search strategies used to find the best evidence are reported in detail in order to allow clinicians to update searches whenever necessary. Each BET is based on a clinical scenario and ends with a clinical bottom line which indicates, in the light of the evidence found, what the reporting clinician would do if faced with the same scenario again.

The BETs published below were first reported at the Critical Appraisal Journal Club at the Manchester Royal Infirmary or placed on the BestBETs website. Each BET has been constructed in the four stages that have been described elsewhere. The BETs shown here together with those published previously and those currently under construction can be seen at http://www.bestbets.org. Three BETs are included in this issue of the journal.

Title
1. Can the value of end tidal CO2 prognosticate ROSC in patients coming into EDemergency department with an out-of-hospital cardiac arrest (OOHCA)?
2. Trendelenburg Pposition helps tocardiovert patients in SVT back to sinus rhythm.
3. Peripheral Mmetaraminol infusiation in the Eemergency Ddepartment.

1. Carley SD, Mackway-Jones K, Jones A, et al. Moving towards evidence based emergency medicine: use of a structured critical appraisal journal club. J Accid Emerg Med 1998;15:220–2.
2. Hou LC Mackway-Jones K, Carley SD, Morton RJ, et al. The best evidence topicreport: A modified CAT for summarising the available evidence in emergency medicine. J Accid Emerg Med 1998;15:222–6.
3. Mackway-Jones K, Bestbets.org: odds on favourite for evidence in emergency medicine reaches the world wide web. Emer Med J 2000;17:235–6.

Best Evidence Topic reports (BETs) summarise the evidence pertaining to particular clinical questions. They are not systematic reviews, but rather contain the best (highest level) evidence that can be practically obtained by busy practising clinicians. The search strategies used to find the best evidence are reported in detail in order to allow clinicians to update searches whenever necessary. Each BET is based on a clinical scenario and ends with a clinical bottom line which indicates, in the light of the evidence found, what the reporting clinician would do if faced with the same scenario again.

The BETs published below were first reported at the Critical Appraisal Journal Club at the Manchester Royal Infirmary or placed on the BestBETs website. Each BET has been constructed in the four stages that have been described elsewhere. The BETs shown here together with those published previously and those currently under construction can be seen at http://www.bestbets.org. Three BETs are included in this issue of the journal.

Title
1. Can the value of end tidal CO2 prognosticate ROSC in patients coming into EDemergency department with an out-of-hospital cardiac arrest (OOHCA)?
2. Trendelenburg Pposition helps tocardiovert patients in SVT back to sinus rhythm.
3. Peripheral Mmetaraminol infusiation in the Eemergency Ddepartment.

1. Carley SD, Mackway-Jones K, Jones A, et al. Moving towards evidence based emergency medicine: use of a structured critical appraisal journal club. J Accid Emerg Med 1998;15:220–2.
2. Hou LC Mackway-Jones K, Carley SD, Morton RJ, et al. The best evidence topicreport: A modified CAT for summarising the available evidence inemergency medicine. J Accid Emerg Med 1998;15:222–6.
3. Mackway-Jones K, Bestbets.org: odds on favourite for evidence in emergency medicine reaches the world wide web. Emer Med J 2000;17:235–6.

Best Evidence Topic reports (BETs) summarise the evidence pertaining to particular clinical questions. They are not systematic reviews, but rather contain the best (highest level) evidence that can be practically obtained by busy practising clinicians. The search strategies used to find the best evidence are reported in detail in order to allow clinicians to update searches whenever necessary. Each BET is based on a clinical scenario and ends with a clinical bottom line which indicates, in the light of the evidence found, what the reporting clinician would do if faced with the same scenario again.

The BETs published below were first reported at the Critical Appraisal Journal Club at the Manchester Royal Infirmary or placed on the BestBETs website. Each BET has been constructed in the four stages that have been described elsewhere. The BETs shown here together with those published previously and those currently under construction can be seen at http://www.bestbets.org. Three BETs are included in this issue of the journal.

Title
1. Can the value of end tidal CO2 prognosticate ROSC in patients coming into EDemergency department with an out-of-hospital cardiac arrest (OOHCA)?
2. Trendelenburg Pposition helps tocardiovert patients in SVT back to sinus rhythm.
3. Peripheral Mmetaraminol infusiation in the Eemergency Ddepartment.

1. Carley SD, Mackway-Jones K, Jones A, et al. Moving towards evidence based emergency medicine: use of a structured critical appraisal journal club. J Accid Emerg Med 1998;15:220–2.
2. Hou LC Mackway-Jones K, Carley SD, Morton RJ, et al. The best evidence topicreport: A modified CAT for summarising the available evidence inemergency medicine. J Accid Emerg Med 1998;15:222–6.
3. Mackway-Jones K, Bestbets.org: odds on favourite for evidence in emergency medicine reaches the world wide web. Emer Med J 2000;17:235–6.
Table 1 Relevant papers

Author, year, country of publication	Patient group	Study type (level of evidence)	Outcomes	Key results	Study weaknesses
Hartmann et al, 2015, USA	7276 subjects from 27 studies used for qualitative analysis. 6565 subjects from 20 studies used for average ETCO₂. 6550 subjects from 19 studies for meta-analysis	Systematic review and meta-analysis	Participants with ROSC after CPR have statistically higher levels of ETCO₂	The overall mean ETCO₂ value was significantly higher among participants with ROSC than those without ROSC (25.8 ± 9.8 mm Hg vs 13.1 ± 8.2 mm Hg, p = 0.001)	(1) The overall level of evidence was characterised as very low by the GRADE criteria. (2) Mostly only cohort studies analysed (26/27 studies). (3) Big variance on time taken to initiate resuscitation; quality of compressions and use of different methods to deliver compressions between studies. (4) Presence of serious inconsistency, as measured by the degree of heterogeneity (p < 0.001 and I² value of 98.5%)
Poon et al, 2016, Hong Kong	319 patients	Prospective cohort study	A 3 min ETCO₂ ≤10 mm Hg was associated with poor prognosis and low chance of ROSC	A 3 min ETCO₂ >10 mm Hg was a predictor of ROSC with OR 18.16 (95% CI 4.79 to 51.32, p < 0.001). In other words, when cardiac arrested, for a patient with a 3 min ETCO₂ > 10 mm Hg the odds of ROSC was 18 times higher than those with ETCO₂ ≤10 mm Hg	Large number of patients excluded due to improper documentation of the use of ETCO₂ (approximately one-third). (2) Quality of chest compressions was not controlled or measured. (3) The decision to stop resuscitation may have been influenced by the ETCO₂ value at the time, which could have potential bias on ROSC rate
Akinci et al, 2014, Turkey	80 patients	Prospective cohort study	PetCO₂ values are higher in the ROSC group	ETCO₂ levels of the ROSC group in the 5th, 10th, 15th and 20th min were significantly higher compared with the Exitus group (p < 0.001)	(1) ETCO₂ levels not measured on transport to hospital. ETCO₂ value differences, which might be resulting from different arrest aetiologies (asphyxia and cardiac) could not be determined as a result of this. (2) Small sample size. (3) No clear indication or suggestion of what ETCO₂ level can be used to prognosticate ROSC—however, does give an indication of when best to assess this. (4) Published in a low impact medical journal
Pantopoulos et al, 2014, Greece	42 studies included in qualitative synthesis	Narrative review	None of the patients who had ETCO₂ levels less than 14 mm Hg survived	Although changes and trends in ETCO₂ values during CPR are more important than absolute ETCO₂ levels, current data suggest that certain cut-off values may be targeted; an ETCO₂ > 10 mm Hg is correlated with increased possibility for ROSC	No systematic review or meta-analysis done

CPR, cardiopulmonary resuscitation; ETCO₂, end tidal CO₂; PetCO₂, end tidal CO₂ tension; ROSC, return of spontaneous circulation.
highlights that a 20 min ETCO₂ check has a greater performance in predicting ROSC than earlier times, although the data itself may not be robust enough to go by from a resuscitation guideline perspective. Having said this, the data are important and as such more studies in this research topic would definitely help.

Clinical bottom line

Current literature suggests that: (1) Our current ETCO₂ aim of 10–20 mm Hg may be inadequate and should be modified to 25 mm Hg. (2) A 3–5 min ETCO₂ level of ≤10 mm Hg is associated with bad prognosis and as such, it may be beneficial to consider stopping patient resuscitation should this be the clinical case. (3) It is important to see the trend of ETCO₂ rather than making a decision solely on one specific value, as sometimes an abrupt increase in ETCO₂ could be a sign of impending ROSC. (4) More robust prospective data on the optimal ETCO₂ value that is associated with ROSC would be helpful in defining a more accurate future target for intervention.

REFERENCES

1. Hartmann SM, Farris RWD, Di Gennaro JL, et al. Systematic review and Meta-Analysis of End-Tidal carbon dioxide values associated with return of spontaneous circulation during cardiopulmonary resuscitation. *J Intensive Care Med* 2015;30:426–35.
2. Poon KM, Lui CT, Tsui KL. Prognostication of out-of-hospital cardiac arrest patients by 3-min end-tidal capnometry level in emergency department. *Resuscitation* 2016;102:80–4.
3. Akincı E, Ramadan H, Yuzbasioglu Y, et al. Comparison of end-tidal carbon dioxide levels with cardiopulmonary resuscitation success presented to emergency department with cardiopulmonary arrest. *Pak J Med Sci* 2014;30:16–21.
4. Pantazopoulos C, Xanthos T, Pantazopoulos I, et al. A review of carbon dioxide monitoring during adult cardiopulmonary resuscitation. *Heart Lung Circ* 2015;24:1053–61.

Emerg Med J 2017;34:187–189.
doi:10.1136/emermed-2017-206590.1