SOBOLEV EMBEDDING IMPLIES REGULARITY OF MEASURE IN METRIC MEASURE SPACES

NIJJWAL KARAK

ABSTRACT. We prove that if the Sobolev embedding $M_1^{1,p}(X) \hookrightarrow L^q(X)$ holds for some $q > p \geq 1$ in a metric measure space (X, d, μ), then a constant C exists such that $\mu(B(x,r)) \geq Cr^n$ for all $x \in X$ and all $0 < r \leq 1$, where $\frac{1}{p} - \frac{1}{q} = \frac{1}{n}$. This was proved in [3] assuming a doubling condition on the measure μ.

Keywords: Hajłasz-Sobolev spaces, Metric measure spaces, Sobolev embeddings.
2010 Mathematics Subject Classification: 46E35.

1. Introduction

It is well-known that, for an an open set $\Omega \subset \mathbb{R}^n$ and $1 \leq p < n$, the Sobolev embedding $W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$ holds, where $p^* = \frac{np}{n-p}$, if the boundary of Ω is sufficiently regular, see e.g. [1]. On the other hand, it has been proved in [5] that if the embedding $W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$ holds, then Ω satisfies the so-called measure density condition, i.e. there exists a constant $c > 0$ such that for all $x \in X$ and all $0 < r \leq 1$

\begin{equation}
|B(x,r) \cap \Omega| \geq cr^n.
\end{equation}

Let (X, d, μ) be a metric measure space equipped with a metric d and a Borel regular measure μ. We assume throughout the note that the measure of every open nonempty set is positive and that the measure of every bounded set is finite. In a metric measure space (X, d, μ), Hajłasz [4] has shown that if the space X is n-regular, then the embedding $M_1^{1,p}(X) \hookrightarrow L^{p^*}(X)$ holds, where $p^* = \frac{np}{n-p}$. Recall that a space (X, d, μ) is n-regular if there exists a constant C such that

\begin{equation}
\mu(B(x,r)) \geq Cr^n
\end{equation}

for all $B(x,r) \subset X$ with $r < \text{diam} X$. Also recall that a p-integrable function u belongs to the Hajłasz-Sobolev space $M_1^{1,p}(X)$ if there exists a non-negative $g \in L^p(X)$, called a generalized gradient, such that

$$|u(x) - u(y)| \leq d(x,y)(g(x) + g(y)) \quad \text{a.e. for } x, y \in X.$$
The space $M^{1,p}(X)$ is a Banach space with the norm
\[\|u\|_{M^{1,p}(X)} = \|u\|_{L^p(X)} + \inf \|g\|_{L^p(X)}, \]
where the infimum is taken over all the generalized gradients.

In [3], it has been proved that if the embedding $M^{1,p}(X) \hookrightarrow L^q(X)$ holds for some $q > p$, then the measure μ satisfies (1.2) for all $x \in X$ and all $0 < r \leq 1$ provided that the space (X, d, μ) is doubling, i.e. there exists a constant c_d such that for every ball $B(x, r)$,
\[\mu(B(x, 2r)) \leq c_d \mu(B(x, r)). \]

In this note, we prove the same result but without assuming the doubling condition, as conjectured in [3] and the proof of the same is inspired by [2] and [6].

Theorem 1.1. Let (X, d, μ) be a metric measure space and $p \geq 1$. If $M^{1,p}(X) \hookrightarrow L^q(X)$, $q > p$, then there exists $C = C(p, q, C_e)$ such that
\[\mu(B(x, r)) \geq Cr^n, \quad \text{for} \quad r \in (0, 1], \]
where \(\frac{1}{p} - \frac{1}{q} = \frac{1}{n} \) and C_e is the constant of the embedding.

2. **Proof of Theorem 1.1**

For each $u \in M^{1,p}(X)$ and for any generalized gradient g of u we have, by the Sobolev embedding,
\[\left(\int_X |u|^q \, d\mu \right)^{\frac{1}{q}} \leq C_e \left[\left(\int_X |u|^p \, d\mu \right)^{\frac{1}{p}} + \left(\int_X g^p \, d\mu \right)^{\frac{1}{p}} \right]. \]

Fix $x \in X$ and $r \in (0, 1]$. For each fixed $j \in \mathbb{N}$, set $r_j = (2^{-j} + 2^{-1})r$, and $B_j = B(x, r_j)$. Note that, for all $j \in \mathbb{N}$,
\[\frac{r}{4} < r_{j+1} < r_j \leq \frac{3r}{4}. \]

For each $j \in \mathbb{N}$, let us define $u_j : X \to \mathbb{R}$ as follows:
\[u_j(y) = \begin{cases}
1 & \text{if } y \in B_{j+1}, \\
\frac{r_j - d(x, y)}{r_j - r_{j+1}} & \text{if } y \in B_j \setminus B_{j+1}, \\
0 & \text{if } y \in X \setminus B_j.
\end{cases} \]

It is easy to see that, for each $j \in \mathbb{N}$, u_j is a $(r_j - r_{j+1})^{-1}$-Lipschitz function on X and the function $g_j := (r_j - r_{j+1})^{-1} \chi_{B_j}$ is a generalized gradient of u_j. In particular, $u_j \in M^{1,p}(X)$ and
hence the functions \(u_j \) and \(g_j \) satisfy (2.1). Noting that \((r_j - r_{j+1})^{-1} = 2^{j+2}r^{-1}\) we have, for each \(j \in \mathbb{N} \),

\[
\int_X g_j^p \, d\mu = \frac{2^{p(j+2)}}{r^p} \mu(B_j) \quad \text{and} \quad \int_X |u_j|^p \, d\mu \leq \mu(B_j).
\]

Moreover, for each \(j \in \mathbb{N} \),

\[
\int_X |u_j|^p \, d\mu \geq \mu(B_{j+1}).
\]

Use these estimates while applying (2.1) for the pair \((u_j, g_j)\), for every \(j \in \mathbb{N} \), to obtain

\[
\mu(B_{j+1})^{1/q} \leq C_e \left(1 + \frac{2^{j+2}}{r}\right) \mu(B_j)^{1/p}
\]

\[
\leq \frac{C_e}{r} 2^{j+3} \mu(B_j)^{1/p},
\]

where in the last inequality we have used the fact that \(r \leq 1 \). Raising both sides of the inequality (2.2) to the power \(p/\alpha^j-1 \), where \(\alpha = q/p \in (1, \infty) \), yields

\[
\mu(B_{j+1})^{1/\alpha^j} \leq \left(\frac{C_e}{r}\right)^{p/\alpha^j-1} 2^{p(j+3)/\alpha^j-1} \mu(B_j)^{1/\alpha^j-1}.
\]

Letting \(P_j = \mu(B_j)^{1/\alpha^j-1} \), we rewrite the above inequality as

\[
P_{j+1} \leq \left(\frac{C_e}{r}\right)^{p/\alpha^j-1} 2^{p(j+3)/\alpha^j-1} P_j \quad \forall j \in \mathbb{N}.
\]

After iteration, we obtain, for every \(j \in \mathbb{N} \),

\[
P_{j+1} \leq P_1 \prod_{k=1}^{j} 2^{p(k+3)/\alpha^k-1} \left(\frac{C_e}{r}\right)^{p/\alpha^k-1}.
\]

Observe that

\[
\prod_{k=1}^{\infty} \left(\frac{C_e}{r}\right)^{p/\alpha^k-1} = \left(\frac{C_e}{r}\right)^{p \sum_{k=1}^{\infty} \alpha^{-k}} = \left(\frac{C_e}{r}\right)^{\frac{p\alpha}{\alpha-1}}
\]

and

\[
\prod_{k=1}^{\infty} 2^{p(k+3)/\alpha^k-1} = 2^p \sum_{k=1}^{\infty} (k+3)\alpha^{-k} = 2^{\frac{p\alpha^2}{(\alpha-1)^2} + \frac{3p\alpha}{\alpha-1}}.
\]

On the other hand, from the construction of \(B_j \)'s, we have

\[
\mu(B(x, r/2))^{1/\alpha^j-1} \leq P_j = \mu(B_j)^{1/\alpha^j-1} \leq \mu(B(x, r))^{1/\alpha^j-1}
\]

and therefore \(\lim_{j \to \infty} P_j = 1 \). Consequently, passing to the limit in (2.3) and using \(P_1 \leq \mu(B(x, r)) \), we obtain

\[
1 \leq 2^{\frac{p\alpha^2}{(\alpha-1)^2} + \frac{3p\alpha}{\alpha-1}} \left(\frac{C_e}{r}\right)^{\frac{p\alpha}{\alpha-1}} \mu(B(x, r)).
\]

Therefore

\[
\mu(B(x, r)) \geq Cr^{\frac{p\alpha}{3}},
\]
where
\[\frac{1}{C} = 2^{\frac{n^2}{2(\alpha-1)^2}} \left(\frac{\alpha}{\alpha-1} \right)^{\frac{n\alpha}{\alpha-1}}. \]

Finally, we use \(q = np/(n - p) \) and \(\alpha = q/p \) to get the desired result.

References

[1] Robert A. Adams. *Sobolev spaces*. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.

[2] Ryan Alvarado and Piotr Hajlasz. A note on metric-measure spaces supporting Poincaré inequalities. preprint 2019, https://arxiv.org/abs/1902.10876.

[3] Przemysław Górkę. In metric-measure spaces Sobolev embedding is equivalent to a lower bound for the measure. *Potential Anal.*, 47(1):13–19, 2017.

[4] Piotr Hajlasz. Sobolev spaces on an arbitrary metric space. *Potential Anal.*, 5(4):403–415, 1996.

[5] Piotr Hajlasz, Pekka Koskela, and Heli Tuominen. Sobolev embeddings, extensions and measure density condition. *J. Funct. Anal.*, 254(5):1217–1234, 2008.

[6] Lyudmila Korobenko, Diego Maldonado, and Cristian Rios. From Sobolev inequality to doubling. *Proc. Amer. Math. Soc.*, 143(9):4017–4028, 2015.

Department of Mathematical Analysis, Charles University, Sokolovská 83, 18600 Prague 8, Czech Republic

E-mail address: nijjwal@gmail.com