Current status of assisted reproductive technologies in buffaloes

Kanokwan Srirattana1 | Danilda Hufana-Duran2,3 | Eufrocinia P. Atabay2 | Peregrino G. Duran2,3 | Edwin C. Atabay2,3 | Kehuan Lu4 | Yuanyuan Liang5 | Thuchadaporn Chaikhun-Marcou6 | Kasem Theerakittayakorn1 | Rangsun Parnpai1

1Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
2Reproduction and Physiology Section, Department of Agriculture-Philippine Carabao Center, Science City of Munoz, Nueva Ecija, Philippines
3Department of Animal Science, Central Luzon State University, Science City of Munoz, Nueva Ecija, Philippines
4Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
5Department of Reproductive Medicine, Liuzhou General Hospital, Liuzhou, Guangxi, China
6Obstetrics Gynecology Andrology and Animal Biotechnology Clinic, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand

Correspondence
Rangsun Parnpai, Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Email: rangsun@g.sut.ac.th

Funding information
Thailand Science Research and Innovation; Suranaree University of Technology

Abstract
Buffaloes are raised by small farm holders primarily as source of draft power owing to its resistance to hot climate, disease, and stress conditions. Over the years, transformation of these animals from draft to dairy was deliberately carried out through genetic improvement program leading to the development of buffalo-based enterprises. Buffalo production is now getting more attention and interest from buffalo raisers due to its socioeconomic impact as well as its contribution to propelling the livestock industry in many developing countries. Reproduction of buffaloes, however, is confronted with huge challenge and concern as being generally less efficient to reproduce compared with cattle due to both intrinsic and extrinsic factors such as poor estrus manifestation, silent heat, marked seasonal infertility, postpartum anestrus, long calving interval, delayed puberty, inherently low number of primordial follicles in their ovaries, high incidence of atresia, and apoptosis. Assisted reproductive technologies (ARTs) are major interventions for the efficient utilization of follicle reserve in buffaloes. The present review focuses on estrus and ovulation synchronization for fixed time artificial insemination, in vitro embryo production, intracytoplasmic sperm injection, cryopreservation of oocytes and embryos, somatic cell nuclear transfer, the factors affecting utilization in various ARTs, and future perspectives in buffaloes.

KEYWORDS
buffalo, embryo and oocytes cryopreservation, estrus synchronization, in vitro embryo production, SCNT
1 | Estrus and Ovulation Synchronization for Fixed-Time Artificial Insemination

Artificial insemination (AI) is considered one of the major and widely used biotechnologies in disseminating superior genetic material of paternal origin in domestic animals. However, buffaloes are generally known to exhibit “silent heat” phenomenon, causing difficulties in estrus detection due to poor expression of estrus resulting in the less precise timing of AI, low conception rate, and ultimately to low calf production (Zicarelli, 1997). Consequently, tremendous research efforts have been exerted to improve pregnancy in buffaloes, focusing on induction of ovulation to achieve more precise timing of AI and increase pregnancy rate. For almost three decades, extensive work and improvement in the efficiencies have been achieved following the development of the original ovulation synchronization protocol: Ovsynch in dairy cattle (Pursely et al., 1995).

1.1 Estrus synchronization (ES) in buffaloes

Hormonal synchronization of estrus and AI technologies are indispensable reproductive technology tandem for buffalo propagation.

Breed type	Hormone used	Observed estrus, %	Conception/pregnancy after AI, %	References
Swamp	PG single dose	43.33–79.10	33.21–41.68	Jiang et al., 2003; He et al., 2005; Liang et al., 2007
Swamp	PG single dose + CIDR	86.13–100	37.00–46.03	Jiang et al., 2003; Gabriel et al., 2019
Swamp	PG single dose + PMSG	73.01–84.5	43.48–45.6	Jiang et al., 2003
Swamp	PG single dose + GnRH or hCG	97.37–100	21.05–38.70	Atabay et al., 2020
Swamp	PG double dose 11–12 days apart	100	21.70–83.87	Chantaraprateep et al., 1981; Chirachalikitt et al., 1982; Chantaraprateep et al., 1983; Capitan et al., 1992; Yuan et al., 2008; Sianturi et al., 2012
Swamp	PG double dose 11–12 days apart + hCG	81.30–100	50.00–86.60	Situmorang & Siregar, 1997
PRID	-	47.0		Chantaraprateep et al., 1983.
PRID + PMSG	6.30–45.60	47.16–50.00		Feng et al., 1990; Jiang et al., 2003
CIDR	57.5–78.02	56.52		Cai et al., 2011
CIDR + GnRH	75.0	55.00		Cai et al., 2011
Norgestomet	36.0	30.77		Virakal et al., 1988
Norgestomet + PMSG	45.5	39.13	Virakal et al., 1988	
Riverine	PG single dose	75.0–100.0	41.5–80.0	Pant & Singh, 1991; Khattab et al., 1996; Ribeiro et al., 1998; Brito et al., 2002
Riverine	PG double dose 11–12 days apart	25.0–95.0	22.8–83.0	Chohan et al., 1993; Diaz et al., 1994; Singh & Dabas, 1998; Misra et al., 2003; Srivastava, 2005.
Riverine	Norgestomet + E2	60.0–100	30.0–70.0	Phadnis et al., 1994; Patel et al., 2003
Riverine	Norgestomet + eCG	86.0–97.6	44.6–66.7	Luthra et al., 1994; Malik et al., 2011
Riverine	Norgestomet + PG	100	45.0–66.7	Utage et al., 2010; Chaudhary et al., 2015

Manipulation of luteal phase by hormonal treatment has been applied for shortening or extending this stage of estrous cycle by administration of prostaglandin (PG) and progesterone (P4), respectively.

The major hormone involved in the synchronization of estrus in luteal phase buffaloes is the PG. Earlier insemination using prostaglandin F2 alpha (PGF2α) and its synthetic analogs in buffaloes have been reported (Brito et al., 2002; Chantaraprateep, 1987; Kamonpatana et al., 1987). PG causes lysis of the corpus luteum (CL) during the responsive phase, especially between 5 days after ovulation and 5 days before the next estrus (Chantaraprateep, 1987), and a consequent decrease in the levels of P4 within 24 h after administration leading to the development of follicles of the next wave (De Rensis & López-Gatius, 2007; Galina & Orthuella, 2007). Table 1 shows various ES protocols and results enhancing estrus manifestation and detection, thereby facilitating the use of AI for genetic improvement programs. The conception or pregnancy rates vary from 21 to 86% with the highest pregnancy rate achieved in PG double dose 11–12 days apart + hCG protocol (Situmorang & Siregar, 1997).

In buffalo reproduction, difficulty in estrus detection hindered the accurate timing of AI, thus, leading to a low conception rate. Enhancing PG-based ES with either gonadotropin-releasing hormone (GnRH) or human chorionic gonadotropin (hCG) at the time of AI increases the pregnancy rate from 20% to 37% (Atabay et al., 2020). The use of...
GnRH and PGF2α was proven to be very successful in synchronizing estrus in cattle and buffaloes (Amaya-Montoya et al., 2007) for timed insemination.

1.2 Ovulation synchronization (Ovsynch) and fixed time artificial insemination (FTAI) in buffaloes

Several years after the successful outcome of Ovsynch in dairy cattle (Pursely et al., 1995), FTAI technology has been successfully applied in buffaloes (Baruselli et al., 2002; Baruselli, Madureira, Visintin, et al., 1999). To date, synchronization of estrus and ovulation in tandem with FTAI is widely practiced in buffaloes (Alyas et al., 2013; Atabay et al., 2019; Campanile et al., 2005; Kalwar et al., 2015; Ravikumar & Asokan, 2008). The ovarian activity is manipulated so that the time of ovulation can be predicted. This is achieved by controlling the luteal phase of the estrous cycle or controlling the follicular development and ovulation through hormonal interventions using different combinations of PG, P₄, GnRH, hCG, eCG, and estradiol (E₂) (De Rensis & López-Gatius, 2007). The original Ovsynch protocol is done by administration of GnRH at day 0, PGF2α at Day 7, second GnRH on Day 9, and FTAI 16 h later (Pursely et al., 1995).

FTAI program provides an organized approach to the enhanced use of AI, the genetic progress, and the improved reproductive efficiency of dairy and beef cattle (Baruselli et al., 2004; Pursely et al., 1995). In buffaloes, hormonal treatments have been designed to control both luteal and follicular functions, providing exciting possibilities for the synchronization of follicular growth and ovulation that enabled the use of timed artificial insemination (TAI) during the breeding and nonbreeding season (Baruselli, Madureira, Barnabe, et al., 1999; De Rensis et al., 2005). Satisfactory pregnancy rates of approximately 40–60% have been achieved with the Ovsynch protocol in cycling buffalo synchronized during the breeding season (Ali & Fahmy, 2007; Baruselli, Madureira, Visintin, et al., 1999; Berber et al., 2002; Neglia et al., 2003). However, anestrous buffaloes respond poorly to the Ovsynch protocol and have lower pregnancy rates after TAI during the nonbreeding season (Ali & Fahmy, 2007; Baruselli et al., 2007; De Rensis et al., 2005). There are still various factors that limit or reduce the effectiveness of these protocols such as the presence of noncycling cows (seasonal anestrus), asynchronous ovulation, incomplete luteal regression, and luteal sub-function. To rescue acyclic animals, several hormonal protocols have been employed. Previous studies have shown that P₄ concentration during the late luteal phase before insemination is positively associated with conception rates in cattle. In some parts of the Mediterranean countries where riverine and swamp buffaloes are raised, the supplementation of P₄ with Ovsynch protocol to improve the synchronization rate, ovulation rate, and pregnancy rate has been employed with different degrees of efficacy (Barile et al., 2001; Bartolomeu et al., 2002; Chaikhun et al., 2012; Murugavel et al., 2009). One reason for variability in the effectiveness of the Ovsynch protocol is related to asynchrony between induced ovulation and insemination.

TREATMENT with intravaginal P₄ devices followed by eCG at device removal has been used to increase ovulation rate, CL growth rate, initial P₄ concentration, and pregnancy rate after FTAI in buffalo during the nonbreeding season (Carvalho et al., 2013). Hormonal interventions have been developed to control ovarian dynamics and allow the use of AI without heat detection. Table 2 shows the use and results on percent estrus manifestation and pregnancy obtained in Ovsynch-based protocol by several researchers.

Numerous strategies were developed to evaluate the efficiency of the Ovsynch protocol in buffaloes (Atabay et al., 2019; Baruselli,

TABLE 2 Estrus and conception rates following various Ovsynch-based FTAI protocols in buffaloes

Treatment protocol	Observed estrus, %	Conception after AI, %	References
Ovsynch	46.3–100	28.0–66.6	Ali & Fahmy, 2007; Atabay et al., 2019; Bartolomeu et al., 2002; Berber et al., 2001; Campanile et al., 2005; De Araujo Berber et al., 2002; Derar et al., 2012; Francillo et al., 2005; Hoque et al., 2014; Liang et al., 2007; Neglia et al., 2003; Presicce et al., 2004; Ravikumar et al., 2009; Sathiamoorthy et al., 2007; Sianturi et al., 2012
Ovsynch + FTAI 12 and 24 h after 2nd GnRH	-	18.0–59	Akhtar et al., 2013; Camelo et al., 2002; Chaikhun, Tharasanit, & Rattanatep, 2010; Karen & Darwish, 2010
Presynch + Ovsynch	83.3	-	Chaikhun, Promdireg, & Suthikrai, 2010
Select sync	100	77.14–100	Sianturi et al., 2012; Yendraliza et al., 2011
GnRH+ PGF2α + LH	-	64.2	De Araujo Berber et al., 2002
CIDR-Ovsynch	58.3–100	18.18–66.67	Atabay et al., 2019; Alyas et al., 2013; Campanile et al., 2005; Chaikhun et al., 2012; Kalwar et al., 2015; Murugavel et al., 2009
CIDR-Ovsynch + hCG on day 9	97.0–100	58.04–60.38	Atabay et al., 2019; Tilwani et al., 2019
Norgestomet + Ovsynch	-	71.4	Malik et al., 2010
Madureira, Baruelli, et al., 1999; Baruelli, Madureira, Visintin, et al., 1999; Berber et al., 2002; Chaikhun, Promdireg, & Suthikrai, 2010). These works provided evidence that bufaloes respond to hormonal treatment and that a new follicular wave emergence occurs due to the ovulation of the dominant follicle present at the time of the first GnRH injection. Purohit et al. (2019) emphasized the importance of having a dominant follicle and CL at the start of the treatment, achieving a pregnancy rate of 45–50% in cycling bufaloes during the breeding season.

Carvalho, Vannucci, et al. (2007) documented an increase in pregnancy rates and birth rates with the administration of GnRH 6 days after FTAI in bufaloes on the Ovsynch protocol. This GnRH administration induced the formation of accessory CL to increase the plasmatic concentration of P4 and resulted to a positive effect on the pregnancy rate and birth rate (Campanile et al., 2010; Ferrer et al., 2021). The formation of an accessory CL and supplementation of P4 after insemination increased the plasma P4 concentration, which is very important in the preparation of the uterine environment for subsequent development of the embryos to term. When Ovsynch protocol is used during spring and summer when a high incidence of anestrous was observed, 5–35% pregnancy rates were obtained (Atabay et al., 2019; Baruelli et al., 2002; Baruelli, Madureira, Visintin, et al., 1999; Chaikhun, Tharasanit, & Rattanatap, 2010).

The protocol using controlled internal drug release synchronization (CIDR-Synch) is basically the same with Ovsynch except that CIDR is inserted at day 0 during the injection of the first GnRH, and removed at the time of injection of PGF2α at day 7. Chaikhun et al. (2012) reported that CIDR-Synch could induce estrus and ovulation in anestrous swamp buffalo during the breeding season with an average ovulation time after second GnRH injection of 10 ± 5.6 h. Therefore, AI should be applied at the same time as the second GnRH injection in swamp buffalo cows. The P4 supplementation with Ovsynch protocol produces synchronous follicular wave emergence, large preovulatory follicles and synchronous ovulation and thus the efficacy of timed-AI is improved. In cycling cows, this positive effect of P4 supplementation can be related to the fact that CIDR acts to maintain elevated blood P4 concentrations before FTAI (Chaikhun et al., 2012).

A further modification of Ovsynch protocol in bufaloes, which involves the use of exogenous P4, is the norgestomet implant and intramuscular injection of estradiol benzoate (EB) on a random day of the estrous cycle (Day 0). Five to 9 days later, the implant is removed and intramuscular doses of PGF2α and eCG are administered. Forty-eight hours after the removal (day 7–11), ovulation is induced by the administration of GnRH or hCG. FTAI is performed 16 h after the induction of ovulation, resulting in improved AI efficiencies (Atabay et al., 2019; Baruelli et al., 2003; Carvalho, Nagasaku, et al., 2007).

Moreover, the combination of P4 and E2 at the beginning of the protocol (day 0) is effective in inducing the emergence of a new follicular wave due to the suppression of both FSH and LH, which promote the atresia of all follicles present in the ovary in buffalo (reviewed by Baruelli et al., 2007). Previous studies demonstrated that P4 treatment stimulates an increase in LH pulse frequency during and following treatment period. Treatment of anestrous cows with P4 results in greater follicular fluid volume and circulating concentrations of E2, increased pulsatile release of LH, and increased number of LH receptors in granulosa and theca cells in preovulatory follicles (Rhodes et al., 2002). Furthermore, a short period of elevated P4 concentrations during the anestrous period is important for the expression of estrus and subsequent normal luteal function (McDougall et al., 1992). Gabriel et al. (2019) determined the effects of different PG analogs on P4 level, follicular growth, estrus manifestation, and pregnancy in dairy bufaloes under CIDR Synch Protocol. Their study revealed that estrus manifestation, follicle size, and pregnancy rate were not significantly different among the animals that received different PG analogs during CIDR-based FTAI program.

Treatment with eCG at the time of device removal increases the follicular diameter, ovulation rate, CL diameter, P4 concentrations, and pregnancy rate (Carvalho et al., 2013). These results confirm the necessity of eCG in Ovsynch protocols for FTAI during the nonbreeding season. Similarly, replacing second GnRH with hCG as ovulatory hormones resulted in satisfactory follicular response, ovulation rate, and pregnancy rate during the nonbreeding season (Atabay et al., 2019; Carvalho et al., 2012). In addition, the use of Ovsynch protocol during the breeding season and P4 + EB, PGF2α and eCG protocol during the nonbreeding season resulted in a pregnancy rate of approximately 50% in a single FTAI. Therefore, the FTAI program can be used throughout the year to efficiently schedule conception and the calving period in buffalo.

In a recent study, a third GnRH injection was given to swamp bufaloes during the normal AI time (AI must be done 24 h after the second GnRH injection) as part of the Ovsynch protocol. The ovulation rate and pregnancy rate were improved from 80 to 100% and 34% (n = 50) to 50% (n = 45), respectively (Chaikhun-Marcou et al., unpublished data). This research is ongoing in generating more data. In other research, kisspeptin-10 administration was compared with GnRH administration to see which one produced higher LH levels during luteal phase in swamp buffalo cows, and the result showed that the LH concentration level with GnRH administration was greater than kisspeptin-10 (Chaikhun-Marcou et al., 2019).

Lastly, the efficiency between pre-synch protocol and with Ovsynch protocol was compared in Argentinean bufaloes; however, no statistical differences were found between the treatment groups (Konrad et al., 2010). Essentially, the success of the application of certain protocol is affected by various factors, and this must be seriously taken into consideration in the implementation of timed AI in water bufaloes.

2 | IN VITRO EMBRYO PRODUCTION

The multiple ovulation and embryo transfer (MOET) in bufaloes resulted in very low recovery of embryos from the nonsurgical collection. The average number of embryos collected from a donor was 1.0 (Drost et al., 1988; Vlakhov et al., 1986), 2.0 (Cruz et al., 1991) 2.7 (Misra, 1993), 1.5 (Kasiraj et al., 1993), 1.6 (Kandil et al., 2012), 2.7...
2.2.1 | Collection from abattoir ovaries

Collection of ovaries from the local abattoir is a requisite of IVEP technology. The factors that limit and influence its efficiency were elaborated earlier (Hufana-Duran & Duran, 2015; Neglia & Bifulco, 2017). Due to the scarce results of in vivo embryo recovery in superovulated buffaloes, the association of ovum pick-up (OPU) with in vitro embryo production (IVEP) represents an alternative method of exploiting the genetics of high yield buffaloes (Baruselli et al., 2018). With the above considerations, the production of buffalo embryos using IVEP technique become an alternative to MOET.

The pioneering works in the production of buffalo embryos from follicular oocytes by in vitro maturation (IVM), in vitro fertilization (IVF), and in vitro culture (IVC) have resulted in the birth of calves out of embryo transfer (ET) using freshly produced river buffalo embryos (Madan et al., 1994), crossbred 50:50 river: swamp embryos (Ocampo et al., 2000), and vitrified in vitro produced river buffalo embryos both in the river (Galli et al., 2012; Hufana-Duran et al., 2004) and swamp (Hufana-Duran et al., 2007) buffalo recipients including twins (Hufana-Duran et al., 2008).

2.2.2 | Collection by transvaginal ultrasound-guided ovum pick up

To produce embryos in vitro from oocytes of live donors, OPU is used. OPU involves ultrasound-guided follicle aspiration for the recovery of oocytes that allows great use of genetically valuable females. Studies showed that repeated OPU has no major impact on the health of female donors (Boni et al., 1996) and can be applied to cycling and lactating postpartum buffaloes (Promdireg et al., 2005), donors of all ages from two-month-old calves to very old cows with exception of pregnant animals after the third or fourth month of pregnancy (Duran et al., 2013), and animals with severe ovarian hypoplasia or during the immediate postpartum period (Galli et al., 2001).

The technique of OPU in buffaloes is the same in cattle with the step-by-step procedure described earlier (Hufana-Duran & Duran, 2015). Antral follicles ≥2 mm in diameter are aspirated from each ovary using stainless steel needle of 50 cm (Aquino et al., 2013) to 55 cm (Manjunatha, Ravindra, et al., 2008) long with a 0.1-cm diameter or 18-gauge to minimize mechanical damage to the oocyte. The ultrasound echo tip is 5-MHz (Manjunatha, Ravindra, et al., 2008) to 9-MHz (Sakaguchi et al., 2019) micro-convex transvaginal transducer to aspirate the oocytes from the follicles using a negative pressure of 40 mmHg (Li et al., 2008; Neglia et al., 2011), 68 (Ferraz et al., 2015), 55–70 mmHg (Sakaguchi et al., 2019), or 110 mmHg (Manjunatha, Gupta, et al., 2008) depending on the machine. Studies showed that checking the quality of the cumulus cells surrounding the oocytes is needed for each machine.

The efficiency of OPU is affected by various factors such as the frequency and length of the collection. Females submitted to OPU every 14 to 15 days had a larger (P < 0.001) number of ovarian follicles suitable for puncture (15.6 ± 0.7 vs. 12.8 ± 0.4) and an increased (P = 0.004) number of cumulus-oocyte complexes (COCs) recovered (10.0 ± 0.5 vs. 8.5 ± 0.3) compared with 7-day interval (Konrad et al., 2017). From the retrieved COCs, average of 5.2 ± 3.9 are selected to continue the in vitro maturation process with 3.1 ± 2.6 COCs/animal/aspiration session considered viable according to the morphological characteristics of the COCs (Di Francesco et al., 2012). A twice-a-week collection allows for the maximum recovery of oocytes of suitable quality for embryo production (Yindee et al., 2011) while a once-a-week collection results in the recovery of a smaller number of oocytes (of lower quality) that have already undergone

2.1 | Laboratory and culture conditions

In carrying out the IVEP in buffalo, studies showed that a complete aseptic condition is necessary and in vitro manipulation procedures were found best at an appropriate temperature (35–37°C), pH (7.1 to 7.4), osmolarity (280–300 mOsmol), minimum exposure to UV light, and IVC in a humidified CO2 incubator at 38–39°C (Hufana-Duran, 2008; Ravindranatha et al., 2003). It was found that oocytes from juvenile donors lack the developmental requirements while those from adult donors have a high incidence of chromosome abnormalities. The sequential steps involved in IVEP are collection of oocytes by retrieval from abattoir-derived ovaries or by ovum pick up (OPU) from live donors, selection of developmentally competent oocytes, and IVM to mature the oocyte, sperm capacitation and IVF, and IVC for embryo development.

2.2 | Sources of oocytes

2.2.1 | Collection from abattoir ovaries

Collection of ovaries from the local abattoir is a requisite of IVEP research and the common ovary storage used was physiological saline with (Hufana-Duran et al., 2004) or without antibiotics (Abdoon et al., 2001). Developmental competence of oocytes was found affected by the ovary storage temperatures; within 6 h is best stored at 25–33°C (Hufana-Duran, 2008) and beyond 6 h, 15°C is preferred (Atabay, Atabay, Aquino, et al., 2010). Oocyte recovery from ovaries is best done by follicular aspiration using an 18-gauge needle (Mehmood et al., 2011) and to preserve ovocyte viability Tissue Culture Medium-199 (TCM199) with 10% fetal calf serum (FCS) buffered with 25-mM HEPES and 5-mM sodium bicarbonate (Gasparini, 2002), prewarmed modified phosphate-buffered saline (m-PBS) with 3 mg/ml bovine serum albumin (BSA) (Hufana-Duran et al., 2008) or 5% (v/v) heat-inactivated FCS (Hegab et al., 2009) were used as holding and washing media.

(Quin et al., 2012), and 5.8 (Singh et al., 2015). These outputs cover the trials made in Bulgaria, India, Philippines, Egypt, and China (Hufana-Duran & Duran, 2015). This technology is one of the biotechnologies of reproduction that is supposed to be most utilized in the world to produce a high number of in vivo embryos. In the buffalo species, however, the application meets several difficulties and the embryo recovery rate is definitely lower than that recorded in cattle (Neglia & Bifulco, 2017). The state of art of MOET in buffaloes and analysis of the factors that limit and influence its efficiency were elaborated earlier (Hufana-Duran & Duran, 2015; Neglia & Bifulco, 2017). Due to the scarce results of in vivo embryo recovery in superovulated buffaloes, the association of ovum pick-up (OPU) with in vitro embryo production (IVEP) represents an alternative method of exploiting the genetics of high yield buffaloes (Baruselli et al., 2018). With the above considerations, the production of buffalo embryos using IVEP technique become an alternative to MOET.
cumulus expansion and atresia (Duran et al., 2013). Gupta et al. (2006) found that OPU has no side effects even after twice-a-week collections for over a year. In some cases, though, hardening of the surface of the ovaries occurred after several months of repeated collections, a decline in the follicle recruitment, and oocytes collection with a drop in developmental competence after the first 2 months of recovery (Neglia et al., 2011). It was reported that a combination of superovulation with OPU to recover the oocytes before the onset of estrus can be repeated at best every 2 weeks (Galli et al., 2001). Prior stimulation in buffaloes with gonadotrophins (Promdireg et al., 2005) or bovine somatotropin (Ferraz et al., 2015) or pharmacologically synchronized follicular waves (Gimenes et al., 2015) before OPU is known to increase the number of medium and large-sized follicles. OPU during the breeding season yielded a better oocyte recovery and better-quality embryos after IVEP (Abdoon et al., 2014) and has its own therapeutic effect on infertile donors, especially those affected by ovarian cysts (Duran et al., 2013). In vitro produced embryos from OPU resulted in births of live calves after embryo transfer (Aquino et al., 2013; Galli et al., 2012; Prasad et al., 2013) demonstrating the potential of the in vitro embryo production as a tool in the production of genetically valued water buffaloes and in overcoming the various reproductive problems that affect the reproduction of this animal species.

The mean number of good oocytes collected from a buffalo ovary ranges from 0.43 to 3.3 oocytes/ovary (Sharma et al., 2013). Competence and efficiency of the person doing the aspiration, breed and health condition of donor, size of the ovary, number of follicles present in the ovary, presence or absence of CL, the season of the year (Manjunatha, Ravindra, et al., 2008), and the inherent low follicular reserve in buffaloes (Smith, 1990) affect the number of oocyte retrieval.

2.3 Oocyte selection and in vitro maturation

Oocyte selection is critical for IVEP in water buffalo and the selection is based on the compaction of the cumulus-corona investment and homogeneity of the ooplasm (Hufana-Duran, 2008). The time required for complete nuclear maturation of oocytes in vitro is from 18 to 24 h (Gasparrini et al., 2008) and the length can be determined by the appearance of the surrounding cumulus cells where oocytes with a compact cumulus cell mass require a longer period of IVM while those with loose cumulus mass require a shorter period for optimum blastocyst development (Hufana-Duran, 2008).

The quality of oocytes is important in ensuring the production of viable embryos in vitro. A decrease in developmental competence is due to insufficient nuclear and cytoplasmic maturity brought about by the limitations in the IVC environment. Increased oxidative stress was found as a major factor affecting in vitro embryo development (Gasparrini et al., 2000). Ultrastructural studies showed an abundance of cytoplasmic granules characterized by significant lipid content (Hufana-Duran, 2008) that probably renders the buffalo oocytes and embryos more sensitive to oxidative damage.

The critical factor in the IVM environment is the provision of the support needed for signals that enhances the mechanisms to acquire developmental competence by the oocyte. Culture media and its components play an important role and can be categorized into simple and complex (Gasparrini, 2002). TCM 199, Ham’s F-10, CR1aa, and CR2aa, MEM, mSOF, and RPMI-1640 are used as basic media and made complex by the supplementation with either serum (Hufana-Duran, 2008) or follicular fluid (Gupta et al., 2002), growth factors (Chauhan et al., 1998), hormones (Abdoon et al., 2001), antioxidants (Gasparrini et al., 2006), and a controlled level of antibiotics to provide protection from bacterial contamination.

2.4 Sperm capacitation and in vitro fertilization

The success of IVF in water buffalo is significantly influenced by bull fertility, the medium used, and the duration of IVF (Suresh et al., 2009). Separation of live sperm cells for IVF by swim-up procedures (Jamil et al., 2007), ion-exchange filtration (Mustafa et al., 1998), or centrifugation using discontinuous density gradients of percoll (Purohit et al., 2005) or silica particles (Hufana-Duran et al., 2005) improved success rate. Appropriate sperm concentration is necessary as too high could result in polyspermy while too few sperm could result in a low fertilization rate. Sperm capacitation necessary for the sperm to penetrate and fertilize an egg can be enhanced using various media such as Brackett & Oliphant medium with 2.5-mM caffeine and 10 µg/ml heparin (Hufana-Duran et al., 2004; Madan et al., 1994; Nandi et al., 1998) or theophylline (Hufana-Duran, 2008) or a mixture of phenylephrine, hypotaurine, and epinephrine (Purohit et al., 2005), or osteopontin (Boccia et al., 2013). Oocytes partly freed from cumulus cells enhance sperm penetration and promote a higher fertilization rate. Sperm-oocyte co-culture for IVF is carried out for 6 to 18 h depending upon the composition of the IVF medium. It is necessary to examine the best duration of sperm-oocyte co-culture as differences exist depending on the IVF media formulation, sperm concentration, and bull used (Gasparrini et al., 2008). The use of sex-sorted sperm cells for IVF in water buffalo was successfully demonstrated resulting in the birth of calves of predetermined sex (Liang et al., 2008; Lu et al., 2007). Accuracy of sexing is around 90% in water buffalo, and a 4% difference in DNA contents between X- and Y-chromosome-bearing spermatozoa was observed (Lu et al., 2007). Embryos produced from IVF using silica gel isolated sperm cells (Hufana-Duran et al., 2005) and sex-sorted sperm cells (Liang et al., 2008; Lu et al., 2007) resulted in the birth of live healthy calves.

2.5 IVC and blastocysts development

The culture of embryos in vitro requires the necessary nutrients and appropriate environment (temperature, humidity, gas) so that the fertilized oocytes can undergo cleavage divisions and be able to reach the blastocyst stage of development. Several culture media have...
been tested in the culture of buffalo embryos and all resulted in the development of blastocysts: CR1aa, CR2aa, TC-199, MEM, RPMI-1640, and mSOF media (Gasparrini, 2002; Suresh et al., 2009). The effectiveness of each medium formulation depends mainly on providing the appropriate combination of antioxidants, co-culture, growth factors, and gas phases. The methods used in IVC of bovine embryos by co-culture with cumulus cells (Hamano & Kuwayama, 1993) and the sequential media system containing pyruvate and lactate and different concentrations of serum and presence of glucose (Hufana-Duran, 2008) resulted in full-term development after embryo transfer (Hufana-Duran et al., 2004, 2007, 2008). Glucose has been required by buffalo embryos for their proper development from the earliest cultivation (Kumar et al., 2012). It was observed that removal of the uncleaved oocytes during IVC promotes a better quality of embryos that reach the blastocyst stage with blastocyst development ranging from 22% to 32% (Gasparrini, 2002; Hufana-Duran, 2008; Suresh et al., 2009). Metabolism of water buffalo embryos is different from cattle evidenced by the 12 to 24 h earlier development than bovine embryos both under in vitro and in vivo conditions (Galli et al., 2001; Ocampo et al., 2000). Table 3 presents the breakthroughs in IVEP of water buffalo.

3 | Intracytoplasmic Sperm Injection (ICSI)

A micromanipulation technique that involves the injection of a single spermatozoon into the cytoplasm of a mature oocyte is called ICSI. As the egg will theoretically be fertilized using only a single sperm, this method is considered a standard way to produce normal diploid embryos. With regard to buffalo, ICSI became an alternative fertilization technique for research and production purposes. Frozen buffalo spermatozoa sometimes show immobility after thawing (Muer et al., 1988), which may cause reduced fertility. This technique has successfully been applied to buffaloes since 2006 (Lu et al., 2006).

3.1 | Application of buffalo ICSI

ICSI was applied in buffalo for the first time using the sex-sorted sperm to produce sex-specific buffalo embryos (Lu et al., 2006). It is beneficial in the preservation and conservation of endangered buffalo species using frozen-thawed sperm or oocytes. With ICSI, reproduction of males with motility and fertilizing capacity problems as observed in sex-sorted sperm cells and some sperm cells after cryopreservation can be made possible as it can improve pronuclear formation and cleavage rate (Liang, Ye, et al., 2011) compared with IVF (Liang et al., 2020). IVF with sex-sorted sperm that resulted in poor embryo development can be improved via ICSI. ICSI-derived in vitro production of buffalo embryos can reach 17–29% blastocyst rates (Liang, Phermthai, et al., 2011).

3.2 | Factors affecting ICSI in buffalo

Chemical activation of oocytes is considered a key factor in buffalo ICSI (Liang, Ye, et al., 2011). These authors found that without chemical activations, none of the buffalo oocytes could be fertilized by sperm injection. This means that additional activation treatment is necessary for meiosis completion, pronuclear formation, and embryo development. In their report, the highest rate of second polar body extrusion occurred at 3 h of activation with ethanol (EtOH) found as the best chemical for activation when compare with ionomycin (Io) (Liang, Ye, et al., 2011). After that, the oocytes showed second polar body from both EtOH and Io groups were cultured in either 6-dimethylaminopurine (6-DMAP) or cycloheximide (CHX) and then in vitro embryo cultured to examine embryo development to

TABLE 3 | Success rate on calf production of in vitro matured, fertilized, and cultured water buffalo embryos

Embryo production method	Nature of sperm	Resultant embryo status before ET	Embryo breed	Embryo recipient breed	Calf production rate, % (calf/recipient)	References
Abattoir ovary, IVM, IVF, IVC	Frozen–thawed	Frozen–thawed	Riverine (2n = 50)	Riverine (2n = 50)	23.1 (9/39)	Kasiraj et al., 1993
Abattoir ovary, IVM, IVF, IVC	Frozen–thawed	Transferred fresh	Riverine (2n = 50)	Riverine (2n = 50)	25.0 (4/16)	Madan et al., 1994
Abattoir ovary, IVM, IVF, IVC	Frozen–thawed	Vitrified–warmed	Riverine (2n = 50)	Riverine (2n = 50)	10.9 (6/55) 26.9 (7/26)	Hufana-Duran et al., 2004, 2008
Abattoir ovary, IVM, IVF, IVC	Frozen–thawed	Vitrified–warmed	Riverine (2n = 50)	Swamp (2n = 48)	10.0 (4/40)	Hufana-Duran et al., 2007
Abattoir ovary, IVM, ICSI, IVC	Sex–sorted	Transferred fresh	Riverine (2n = 50)	Riverine (2n = 50)	200.0 (2/1) (twins)	Lu et al., 2007
OPU, IVM, ICSI, IVC	Sex–sorted	Transferred fresh	Riverine (2n = 50)	Riverine (2n = 50)	20.6 (7/34) 9.0 (4/43)	Liang et al., 2008

Abbreviations: IVC, in vitro culture; IVF, In vitro fertilization; IVM, In vitro maturation; OPU, Ovum pick up.
blastocyst stage. The combination of io + 6-DMAP showed highest (29%) blastocyst rates but no significant differ with EtOH + CHX (24%) (Liang, Ye, et al., 2011).

3.3 | Frozen–thawed buffalo oocytes affecting the developmental ability of ICSI-derived embryo

After cryopreservation or treatment with cryoprotectant (CPA), structural changes in the zona pellucida (ZP) have been shown to reduce fertilization rates (Carroll et al., 1990; Vincent et al., 1990), but this ZP hardening could be overcome by ICSI (Carroll et al., 1990; Karlsson et al., 1996; Kazem et al., 1995; Mavrides & Morrell, 2002; Porcu et al., 1997). Liang reported buffalo oocytes vitrified by the microdrop method and activated by EtOH and CHX after ICSI (Liang, Phermthai, et al., 2011). In this study, the blastocyst rates in the ICSI control groups (23%) were significantly higher than those of vitrified groups (11%). In another oocyte vitrification study, oocytes that extruded the second polar body after ICSI and activation revealed that only a minority (7–20%) of the vitrified oocytes compared with 46–48% of the control oocytes also had two pronuclei, indicating that normal activation is compromised by vitrification (Liang, Sirirattana, et al., 2012).

4 | CRYOPRESERVATION OF OOCYTES AND EMBRYOS

The scarcity of oocytes is a major drawback for exploiting embryo technologies in buffaloes. Therefore, cryopreservation can be a useful technique to avail buffalo oocytes for various reproductive technologies. There are two methods applied to the cryopreservation of oocytes and embryos: controlled slow freezing, which was favored in early procedures, and ultra-rapid cooling by vitrification, which is now a widely used method. Conventional slow freezing was first introduced in 1971, which has become the cornerstone of slow freezing of embryos (Whittingham, 1971). This method basically involves the use of a single cryoprotectant in low concentrations (approximately 1 to 2 M) minimizing chemical and osmotic toxicity. However, during slow cooling, ice crystal formation occurs, which is the major cause of cryoinjury and cell death following cryopreservation (Fuller & Paynter, 2004). Meanwhile, over the past several years, vitrification has become an alternative method for oocyte/embryo cryopreservation that minimizes cellular damage wherein ice crystal formation is prevented by the viscosity of the high concentrations of cryoprotectants in vitrification media (Vaja, Holm, et al., 1997). Vitrification is generally defined as the glass-like solidification of solutions at low temperatures due to the increased concentration of cryoprotectant during cooling, without the formation of intracellular ice crystals (Rall & Fahy, 1985). It is being described as an inexpensive, fast, and simple procedure (Stachectki et al., 2008) compared with the slow freezing method. The principle of slow freezing and vitrification of oocytes and embryos has been extensively reviewed elsewhere (Hwang & Hochi, 2014; Konc et al., 2014; Leibo & Songsasen, 2002; Mandawala et al., 2016).

4.1 | Cryopreservation of buffalo embryos

Both slow freezing and vitrification techniques are used for buffalo embryo cryopreservation, and pregnancies as well as live calves from slow-freezing (Galli et al., 2011) and vitrified–warmed embryos (Hufana-Duran et al., 2004, 2007, 2008) have been achieved. To date, cryopreservation of buffalo embryos is mainly carried out by vitrification, as shown in Table 4.

The most commonly used vitrification protocol applied to any embryo stage in buffaloes is the two-step equilibration in a combination of permeating cryoprotective agents (CPAs), most often ethylene glycol (EG) and dimethyl sulfoxide (DMSO). The protocol was reported to be effective for buffalo embryos with good post-thaw in-vitro development using in-straw vitrification (Manjunatha, Gupta, et al., 2009) and solid-surface vitrification (SSV) method (Rahangdale et al., 2021). High survival rates of compact buffalo morula and blastocyst development were achieved following the use of EG as sole vitrification solution or in combination with DMSO (Rahangdale et al., 2021). In contrast, lower cryosurvival rate of buffalo morula stage embryos was reported if compared with blastocyst stage embryos (Manjunatha, Gupta, et al., 2008; Manjunatha, Ravindra, et al., 2009). Hufana-Duran et al. (2004), however, demonstrated no significant differences in the hatching rates (75–90%) among vitrified-thawed embryos at the morula, early blastocyst, blastocyst, and expanded blastocyst stages, following vitrification with EG-based solution. As to the type of vitrification containers, several devices have been applied for buffalo embryo vitrification such as French straw (Hufana-Duran et al., 2004), Cryotop (Laowtammathron et al., 2005), open pulled straw (OPS) (Sirisha et al., 2013), and SSV (Rahangdale et al., 2021). High hatchability blastocyst rate (90%) and birth of live calves were reported following vitrification of buffalo embryos at the early stage (Hufana-Duran et al., 2004). Meanwhile, somatic cell nuclear transfer (SCNT) buffalo blastocysts were found more tolerant to vitrification yielding a higher survival rate than bovine blastocysts using Cryotop (Laowtammathron et al., 2005). In addition, OPS was found to be superior over slow freezing for the cryopreservation of zona-free cloned buffalo blastocysts with improved cryosurvival rates at post-warming (Sirisha et al., 2013). Meanwhile, OPU technique has been successfully applied to buffaloes (Atabay et al., 2008; Boni et al., 1996; Galli et al., 2014). Vitrified blastocysts derived from OPU oocytes resulted in significantly higher blastocyst hatching rates (53%) than vitrified blastocysts derived from slaughterhouse oocytes (40%) (Manjunatha, Gupta, et al., 2008). Essentially, though vitrification technologies have been applied on buffalo embryos more successfully than slow freezing methods (Sirisha et al., 2013), buffalo embryos are found more cryosensitive compared with bovine or ovine embryos, thus optimization of the protocol considering several factors can improve embryonic development.
To date, there has been no consistent oocyte cryopreservation method established in buffaloes, unlike in other livestock species such as in cattle (Vajta, Hyttel, & Callensen, 1997). The development of procedures for decreasing the detrimental effects of vitrification on buffalo oocytes is needed to increase oocyte availability for reproductive technologies.

Oocytes collected from slaughterhouse-derived ovaries are at the germinal vesicle (GV) stage in which the genetic material is contained within the nucleus. Because this stage has no spindle present, GVs are assumed to be less prone to chromosomal and microtubular damage during cryopreservation. Possible damages of the meiotic spindle, and other cytoskeletal elements and zona hardening, which could have occurred during vitrification of buffalo oocytes at metaphase of the second meiotic division (MII), can be overcome by cryopreservation of buffalo immature oocytes (Chen et al., 2003) involving optimized cryodevices and CPAs (Table 5). Earlier works using traditional French straws on GV stage buffalo oocytes reported a high postwarming survival but poor maturation rates (Dhali et al., 1999, 2000; Wani, Maurya, et al., 2004). Wani, Misra, and Maurya (2004) reported the first successful production of buffalo blastocysts from vitrified immature GV-stage oocytes. High concentration of the CPAs has proven to be more efficient, wherein higher cleavage and blastocyst rates were obtained from oocytes cryopreserved in 6- and 7-M DMSO, EG, propanediol (PROH), and glycerol (GLY) compared with oocytes cryopreserved in lower concentrations (3.5–5 M). Subsequent works reported higher maturation rates (40%, 43%, 40%, and 24%) from buffalo immature oocytes vitrified in 7-M DMSO, EG, PROH, and GLY (Wani, Misra, & Maurya, 2004). Furthermore, a high blastocyst rate (15%) from vitrified-warmed GV-stage buffalo oocytes with the combination of CPAs such as EG, DMSO, and trehalose was described (Abd-Allah, 2009). Recently, different vitrification solutions and various cryodevices were compared with assess the developmental competence of buffalo cumulus oocyte-complexes vitrified at GV

Table 4 Vitrification of buffalo embryos using various protocols and devices

Embryo source	Stage of embryos	Equilibration solution	Vitrification solution	Devices	Survival rate	References
IVF	Morula Early BL BL Expanded BL	10% EG 2 min	40% EG + 18% Ficoll 1 min	Straw	Morula 91% Early BL 80% BL 75%, Expanded BL 90%	Hufana-Duran et al., 2004
SCNT	BL	10% EG + 10% DMSO 2 min	20% EG + 20% DMSO 30 s	Cryotop	87%–89%	Laowtammathron et al., 2005
IVF	BL	10% EG + 10% DMSO 4 min	25% EG + 25% DMSO 45 s	Straw	SH-derived oocytes 40% OPU-derived oocytes 53%	Manjunatha, Ravindra, et al., 2008
IVF	Morula BL	a.10% EG b.10% GLY + 10% EG c.10% EG + 10% DMSO 2, 4, 6 min	a.40% EG b.25% GLY + 25% EG c.25% EG + 25% DMSO 45 s	Straw	2 and 4 min in group c yielded reasonable results Mor. 46%–51% BL 68%–72%	Manjunatha, Gupta, et al., 2009
IVF	Morula BL	10% EG + 10% DMSO 4 min	25% EG + 25% DMSO 45 s	Straw	Mor. 45% w/o CB 53% w/CB BL 66% w/o CB 75% w/CB	Manjunatha, Ravindra, et al., 2009
SCNT	BL	7.5% EG + 7.5% DMSO 1 min	15% EG + 15% DMSO 30 s	Straw	Conception rate: 11%–25%	Saha et al., 2013
SCNT	BL	8.5% EG + 8.5% DMSO 5 min	16% EG + 16% DMSO 35–40 s	OPS	71%	Sirisha et al., 2013
SCNT	BL	8.5% EG + 8.5% DMSO 5 min	16% EG + 16% DMSO 35–40 s	OPS	Domestic buffalo as donor: 50% Wild buffalo as donor: 38%	Priya et al., 2014
IVF	Morula	4% EG 15 min	35% EG + 0.5 M sucrose + 0.5% PVP 45 s	SSV	Compact morula 59.0 ± 1.94, blastocyst 32.0 ± 1.10	Rahangdale et al., 2021
		7.5% EG + 7.5% DMSO 4 min	15% EG + 15% DMSO + 0.5 M sucrose 45 s	SSV	Compact morula 49.0 ± 1.63, Blastocyst 29.0 ± 1.63	

Abbreviations: BL, blastocysts; CB, cytochalasin B; DMSO, dimethyl sulfoxide; EG, ethylene glycol; GLY, glycerol; OPS, open-pulled straw; OPU, ovum-pick-up; PVP, polyvinyl pyrrolidone.

4.2 Cryopreservation of immature buffalo oocytes

To date, there has been no consistent oocyte cryopreservation method established in buffaloes, unlike in other livestock species such as in cattle (Vajta, Hyttel, & Callensen, 1997). The development of procedures for decreasing the detrimental effects of vitrification on buffalo oocytes is needed to increase oocyte availability for reproductive technologies.

Oocytes collected from slaughterhouse-derived ovaries are at the germinal vesicle (GV) stage in which the genetic material is contained within the nucleus. Because this stage has no spindle present, GVs are assumed to be less prone to chromosomal and microtubular damage during cryopreservation. Possible damages of the meiotic spindle, and other cytoskeletal elements and zona hardening, which could have occurred during vitrification of buffalo oocytes at metaphase of the second meiotic division (MII), can be overcome by cryopreservation of buffalo immature oocytes (Chen et al., 2003) involving optimized cryodevices and CPAs (Table 5). Earlier works using traditional French straws on GV stage buffalo oocytes reported a high postwarming survival but poor maturation rates (Dhali et al., 1999, 2000; Wani, Maurya, et al., 2004). Wani, Misra, and Maurya (2004) reported the first successful production of buffalo blastocysts from vitrified immature GV-stage oocytes. High concentration of the CPAs has proven to be more efficient, wherein higher cleavage and blastocyst rates were obtained from oocytes cryopreserved in 6- and 7-M DMSO, EG, propanediol (PROH), and glycerol (GLY) compared with oocytes cryopreserved in lower concentrations (3.5–5 M). Subsequent works reported higher maturation rates (40%, 43%, 40%, and 24%) from buffalo immature oocytes vitrified in 7-M DMSO, EG, PROH, and GLY (Wani, Misra, & Maurya, 2004). Furthermore, a high blastocyst rate (15%) from vitrified-warmed GV-stage buffalo oocytes with the combination of CPAs such as EG, DMSO, and trehalose was described (Abd-Allah, 2009). Recently, different vitrification solutions and various cryodevices were compared with assess the developmental competence of buffalo cumulus oocyte-complexes vitrified at GV
Equilibration solution	Vitrification solution	Devices	Survival rate	Maturation rate	BL rate	References			
2.25 M EG + 1.7 M DMSO 1 or 3 min	4.5 M EG + 3.4 M DMSO 2 min	Straw	1 min: 88% 3 min: 98.4%	1 min: 22% 3 min: 32%	NA	Dhali et al., 1999			
a. 2.25 M EG + 1.7 M DMSO 1 or 3 min	b. 3.5 M EG 2 min	Straw	a. 1 min: 89% b. 3 min: 96% b. 1 min: 92% b. 3 min: 92%	a. 1 min: 28% b. 3 min: 32%	NA	Dhali et al., 2000			
1.5 M DMSO, EG, PROH, and glycerol, respectively, 5 min	3.5, 4, 5, 6, and 7 M DMSO, EG, PROH, and glycerol, respectively, 5 min	Straw	82–96%	27–43%	6 and 7 M DMSO, EG, PROH, and glycerol: 10–15%	Wani, Maurya, et al., 2004			
a. 1.5 M DMSO 5 min + 3.5 M DMSO 2 min	b. 7 M DMSO 30–40 s	Straw	a. 80.6% b. 82.3% c. 76.4% d. 71.6%	a. 28% b. 41.5% c. 19% d. 17.8%	NA	Mahmoud et al., 2010			
a. 3 M EG	b. 1.5 M EG + 1.5 M DMSO	c. 1.5 M EG + 1.5 M glycerol	d. 1.5 M DMSO + 1.5 M glycerol 45 s each	Straw, OPS	a. 6 M EG b. 3 M EG + 3 M DMSO c. 3 M EG + 3 M glycerol d. 3 M DMSO + 3 M glycerol 25 s each	a. 80.6% b. 82.3% c. 76.4% d. 71.6%	a. 28% b. 41.5% c. 19% d. 17.8%	NA	Liang, Rakwongrit, et al., 2012
10% EG 5 min with 10% EG + 0.3 M trehalose 5 min	40% EG + 0.3 M trehalose + 20% PVP 1 min	Straw	81%	82%	15%	Abd-Allah, 2009			
a. 7.5 mg/ml CB 15 min + 10% EG + 10% DMSO 1 min (with CB)	20% EG + 20% DMSO 30 s	Cryotop, SSV	CT(-CB): 86% CT(+CB): 82% SSV(-CB): 80% SSV (+CB): 71%	CT(-CB): 32% CT(+CB): 22% SSV(-CB): 23% SSV (+CB): 13%	CT(-CB): 1.4% CT(+CB): 1% SSV(-CB): 0.6% SSV (+CB): 0%	El-Shalofy et al., 2017			
b. 10% EG + 10% DMSO 1 min (without CB)	20% EG + 20% DMSO (VS1) 60s 20% EG + 20% GLY (VS2) 60s	Straws	Straw VS1:71.8% Straw VS2:73.6% OPS VS1:73.9% OPS VS2:88.2% SSV VS1:96.3% SSV VS2:96.7%	36.3% 35.7% 43.8% 44.1% 70.0% 75.0%	1.9% 5.0% 6.5% 7.1% 12.3% 24.0%	El-Shalofy et al., 2017			
7.5% EG + 7.5% DMSO	15% EG + 15% DMSO + 0.5 M sucrose and (0, 5, 10% PVP) 1 min	Cryotop	0% PVP: 40% 5% PVP: 93% 10% PVP: 2%	0% PVP: 0% 5% PVP: 40% 10% PVP: 0%	NA NA NA	Jannatul et al., 2020			

Abbreviations: CB, cytochalasin B; CT, cryotop; DMSO, dimethyl sulfoxide; EG, ethylene glycol; OPS, open-pulled straw; PROH, propylene glycol (1,2-propanediol); PVP, polyvinyl pyrrolidone; SSV, solid surface vitrification.
stage (El-Shalofy et al., 2017). The highest survival rate (97%), maturation rate (76%), cleavage rate (47%), and blastocyst development rates (24%) of the COCs were achieved in SSV group compared with those vitrified using traditional straws or those vitrified using OPS. In addition, the use of VS1 solution (20% EG plus 20% DMSO) was found more effective than VS2 solution (20% EG plus 20% GLY). This work clearly shows that the combination of SSV and 20% EG + 20% DMSO could be used effectively to vitrify GV stage buffalo COCs (El-Shalofy et al., 2017). While DMSO has been used for the vitrification of oocytes in buffalo (Wani, Maurya, et al., 2004), it has been reported however that DMSO adversely affects the developmental processes of oocytes (Vincent et al., 1990). Most recently, the replacement of DMSO with 5% PVP on EG + sucrose vitrification solution protects buffalo oocytes from cryoinjury and supports the meiotic progression of oocytes in-vitro after vitrification and warming (Jannatul et al., 2020).

Pretreatment of immature buffalo oocytes with cytochalasin B (CB) for their cryopreservation in SSV and cryotop vitrification methods failed to increase the viability, maturation, or embryo development of vitrified oocytes (Liang, Rakwongrit, et al., 2012). Sharma and Loganathasamy (2007) provided evidence that the meiotic stage affects survival rates of buffalo cumulus-oocyte complexes submitted to vitrification and/or warming with higher survival for matured oocytes compared with immature ones. The low efficiency of vitrified GV stage buffalo oocytes can be attributed to the lower penetrability of GV-stage membrane compared with MII stage emphasizing the effect of cryopreservation on uncoupling of cumulus cells and oocytes, leading to poor maturation rates of vitrified immature oocytes.

4.3 | Cryopreservation of matured buffalo oocytes

Comparative evaluation of efficiency between slow freezing and vitrification of invitro matured buffalo oocytes resulted in successful embryo development following vitrification (Atabay, Atabay, de Vera, et al., 2010; Gautam et al., 2008). In the MII stage oocyte, the cumulus cells surrounding the oocyte are expanded, microfilaments of actin are involved in cell shape and movements, and microtubules form the spindle apparatus (Manjunatha, Gupta, et al., 2008; Manjunatha, Ravindra, et al., 2008). Accordingly, the oocyte stage (GV or MII) affects the composition and permeability of the plasma membrane, which determines its sensitivity to cryopreservation (Agca et al., 1998; Le Gal et al., 1994). In most species, MII stage oocytes survive cryopreservation at higher rates than GV stage ones (Otoi et al., 1995; Somfai et al., 2012). Although vitrification of MII stage buffalo oocytes also worked better than that of GV stage ones (Sharma & Loganathasamy, 2007), the subsequent embryo-development competence was still lower than the fresh oocytes. To overcome problems of container volumes, several devices have been applied for buffalo MII oocyte vitrification by using very small amounts of solution and submerging the sample quickly into the LN2 (Table 6). This includes SSV (Atabay et al., 2013; Boonkusol et al., 2007; Gasparini et al., 2007; Liang, Rakwongrit, et al., 2012; Cryoloop (Gasparini et al., 2007), Cryotop (Atabay et al., 2013; Attanasio, Boccia, et al., 2010; Liang, Rakwongrit, et al., 2012; Muenthaisong et al., 2007; Wang et al., 2016), straws (Gautam et al., 2008), and microdrop (Liang, Srirattana, et al., 2012). Cryotop has been successfully applied for IVM oocytes and SCNT blastocysts (Laowattamathron et al., 2005; Parnpai et al., 2004, 2016). On the other hand, parthenote blastocysts were obtained from invitro matured buffalo oocytes vitrified using SSV and French straw, which resulted in less damage and better blastocyst development (Boonkusol et al., 2007).

Cryotop method has resulted in excellent survival and development rates in human and bovine oocytes (Kuwayama et al., 2005). Attanasio, De Rosa, et al. (2010) reported the blastocyst production after IVF of vitrified matured oocytes, proving the feasibility of Cryotop in buffalo. To date, Cryotop has been successfully proven to vitrify buffalo embryos and MII-stage oocytes, which retain the capability to develop into blastocyst following parthenogenetic activation, SCNT, IVF, and ICSI (Atabay & Atabay, 2017; Liang, Srirattana, et al., 2012). Most recently, a more advanced form of Cryotop method, known as Cryotech has been widely used in the human oocyte (Kuwayama et al., 2005) and in bovine embryo vitrification with 47% pregnancy rate (Gutnisky et al., 2013). Report on the use of Cryotech in buffaloes has not been available so far. On the other hand, microdrop was effective in terms of buffalo oocyte recovery, survival, and embryo developmental rates (Liang, Srirattana, et al., 2012).

On the type of permeable cryoprotectants, a mixture of EG and DMSO has been widely used for buffalo MII oocyte vitrification (Atabay et al., 2013; Attanasio, Boccia, et al., 2010; Gautam et al., 2008; Liang, Srirattana, et al., 2012; Muenthaisong et al., 2007). The exposure time in CPAs is considered a critical factor that requires balancing between preventing the formation of intracellular ice and preventing toxic injury. Evidence showed that buffalo oocytes exposed in 7.5% EG and 7.5% DMSO (without cooling) for 4 min gave a similar blastocyst rate (22%) as that of control (23%) but not in the 7- and 10-min exposure groups with 14–15% blastocyst rates, respectively (Muenthaisong et al., 2007). The low development rate after warming has been attributed to the high lipid content in buffalo oocytes, cytoskeleton damage during freezing, and plasma membrane enriched with cholesterol or unsaturated fatty acids, making it more sensitive to chilling injuries. Most recently, supplementation with 0.6 mg/ml L-carnitine during IVM improves the buffalo oocytes’ survival, IVF rates, and subsequent embryo development, which had been associated with improved mitochondrial activity, enhanced β-oxidation, and reduced levels of reactive oxygen species (Liang et al., 2020). Finally, the addition of cytoskeleton stabilizers, such as CB has been demonstrated to reduce injury to oocytes during vitrification. Treatment with 8 mg/ml CB prior to vitrification had a positive effect on the developmental capacity of vitrified buffalo oocytes (Wang et al., 2016).
Equilibration solution	Vitrification solution	Devices	Survival rate	BL rate	Reference
SSV: 4% EG 12–15 min	SSV: 35% EG + 5% PVP + 0.4 M trehalose 25–30 s	SSV, CLV	SSV + cumulus cell: 95.8%	SSV + cumulus cell: 1.5% SSV cumulus cell: 7%	Gasparini et al., 2007
CLV: 7.5% EG + 7.5% DMSO 3 min	CLV: 7.5% EG + 7.5% DMSO 25 s		SSV + cumulus cell: 84.6%	CLV + cumulus cell: 98.5% CLV + cumulus cell: 81.4%	
SSV: 4% EG 5–10 min	SSV: 35% EG + 5% PVP + 0.4 M trehalose 25–30 s	SSV, straw	SSV: 89.3% straw: 81.8%	SSV: 13.6% straw: 5.5%	Boonkusol et al., 2007
Straw: 4% EG 5–10 min	Straw: 40% EG + 5% PVP + 0.4 M trehalose 1 min + LN2 vapor 3 min				
7.5% EG + 7.5% DMSO 4 min	7.5% EG + 7.5% DMSO 1 min	Cryotop	MII/vitrified: 66%–71% enucleated/vitrified: 69%–71%	MII/vitrified: 4 min: 10% 7 min: 9% 10 min: 8% enucleated/vitrified: 4 min: 9% 7 min: 7% 10 min: 7%	Muenthaisong et al., 2007
7 min					
10 min					
a. 10%, 25%, 40% EG each 1 min	a. 40% EG 1 min	Straw	a. 85%	a. 1.66%	Gautam et al., 2008
b. 10%, 25%, 40% DMSO each 1 min	b. 40% DMSO 1 min		b. 92%	b. 2.29%	
c. 10% EG + 10% DMSO 1 min	c. 20% EG + 20% DMSO 1 min		c. 96%	c. 5.49%	
d. 10% EG + 10% PROH 1 min	d. 20% EG + 20% PROH 1 min		d. 95%	d. 2.74%	
10% EG + 10% DMSO 3 min	20% EG + 20% DMSO 20–25 s	Cryotop	86%–92%	1.4%–8.0%	Attanasio, Boccia, et al., 2010
10% EG + 10% DMSO 1 min	20% EG + 20% DMSO 30 s or 45 s	Microdrop	30 s: 96% 45 s: 91%	30 s: 11% 45 s: 7%	Liang, Phernthai, et al., 2011
VA: 10% EG + 10% DMSO 1 min	VA: 20% EG + 20% DMSO 30 s	Microdrop	VA + microdrop: 93% VA + Cryotop: 97% VA + microdrop: 79% VA + Cryotop: 81%	VA + microdrop: 8% VA + Cryotop: 10% VA + microdrop: 5% VA + Cryotop: 11%	Liang, Rakwongrit, et al., 2012
VB: 4% EG 12–15 min	VB: 35% EG + 50 mg/ml PVP 30 s				
7.5% EG + 7.5% DMSO 5 min	15% EG + 15% DMSO + 0.5 M sucrose	Cryotop	CTP cumulus (+): 85.93% CTP cumulus (−): 82.67% SSV cumulus (+): 87.74% SSV cumulus (−): 81.38%	CTP cumulus (+): 10.46% CTP cumulus (−): 4.29% SSV cumulus (+): 12.41% SSV cumulus (−): 3.00%	Atabay et al., 2013
10% DMSO and 10% EG 1 min. (with pre-treatment with CB 8 μg/ml for 30 min)	20% DMSO, 20% EG and 0.5 M sucrose 30 s	Cryotop	2nd polar body formation: CB + Cryotop: 51.16% Cryotop: 43.88%	17.08% 10.21%	Wang et al., 2016
10% EG + 10% DMSO	20% EG + 20% DMSO	Cryotop	0 mg/ml L-carnitine 96% 0.3 mg/ml L-carnitine 97% 0.6 mg/ml L-carnitine 97% 1.2 mg/ml L-carnitine 96%	0 mg/ml L-carnitine 4% 0.3 mg/ml L-carnitine 4%	Liang et al., 2020

(Continues)
5 | SCNT

5.1 | Cloned buffalo embryo and offspring production

Cloned swamp buffalo embryos were first successfully produced by SCNT using fetal fibroblasts as the donor cells in 1999 (Parnpai et al., 1999). In 2004, three recipients were pregnant after transferring cloned swamp buffalo derived from fetal fibroblasts; however, no recipient could carry to term (Saikhun et al., 2004). Simon et al. (2006) also transferred cloned river buffalo embryos derived from fetal fibroblasts to the recipients but no pregnancy was found. In 2007, the first SCNT swamp buffalo was successfully produced using granulosa cells (Shi et al., 2007). After that, several cloned swamp and river buffalo calves were successfully produced by the conventional SCNT (Wilmut et al., 1997) and the handmade cloning (HMC) methods (Vajta, 2007) by different workers using various donor cell types (Table 7).

5.2 | Epigenetic modification to improve buffalo cloning efficiency

The overall efficiency of cloned animal production is still relatively low (Zhang et al., 2021). Several abnormalities have been found in SCNT embryos and offspring (Keefe, 2015; Niemann et al., 2002; Ogura et al., 2013), which may be caused by incomplete epigenetic reprogramming of the donor cell during SCNT (Tian et al., 2003; Yang et al., 2007). Epigenetic modifications such as DNA methylation and histone modifications play an important role in embryonic development (Niemann, 2016; Sproul et al., 2005). Aberrant epigenetic modifications such as DNA methylation and histone acetylation, and also abnormal gene expression patterns for example insulin-like growth factors (IGF-1 and IGF-2) have been found in cloned buffalo embryos when compared with those of IVF embryos (Jyoetsana et al., 2016; Luo et al., 2013; Mohapatra et al., 2015; Pandey et al., 2009; Saini et al., 2016, 2017; Srirattana et al., 2014; Sun et al., 2015; Suteevun, Parnpai, et al., 2006; Suteevun, Smith, et al., 2006).

Trichostatin A (TSA) is a hydroxamic acid inhibitor (Marks et al., 2001) and is one of the most used histone deacetylase inhibitors (HDACi) to improve cloning efficiency in many mammalian species such as mice (Kishigami et al., 2006), rhesus monkeys (Sparman et al., 2010), pigs (Zhang et al., 2007), rabbits (Shi et al., 2008), cattle (Akagi et al., 2011), and cynomolgus monkeys (Liu et al., 2018). To facilitate nuclear reprogramming, the donor cells were treated with 0.3-nM TSA for 48 h prior to SCNT. TSA treatment in donor cells increased the cleavage and blastocyst rates and increased the histone H4 lysine 8 acetylation (H4K8ac) level of SCNT swamp buffalo embryos to a level equivalent to those of IVF counterparts (Luo et al., 2013). Significant improvement in mouse cloning was found when TSA was treated on reconstructed oocytes/embryos (Kishigami et al., 2007). In SCNT swamp buffalo, treatment of TSA at 25 nM for 10 h on reconstructed oocytes could enhance embryo development, but no beneficial effect on the DNA methylation level was observed (Srirattana et al., 2014). When HMC river buffalo embryos treated with 75-nM TSA for 10 h, the global level of histone H4 lysine 5 acetylation (H4K5ac) in blastocysts was increased and level of histone H3 lysine 27 trimethylation (H3K27me3) were decreased, however, the global level of histone H3 lysine 18 acetylation (H3K18ac) was not affected (Selokar et al., 2015). And it was concluded that TSA treatment could not improve embryo development and offspring rate.

Scriptaid, 6-(1,3-Dioxo-1H, 3H-benzo[de]isoquinolin-2-yl)-hexanoic acid hydroxyamide is a drug that acts as a Histone deacetylase inhibitor (HDACi). Scriptaid has proven less toxic than TSA in cloned mice (Van Thuan et al., 2009), cattle (Wang et al., 2011), rabbit (Chen et al., 2013), and pigs (Xu et al., 2013). Adding 500 and 1000 nM of Scriptaid for 10 h into embryo culture media increased the blastocyst formation rate of HMC river buffalo embryos and increased cell number in blastocysts (Panda et al., 2012). Similarly, treatment of SCNT buffalo embryos with 500-nM Scriptaid for 24 h increased blastocyst formation rate and also resulted in higher levels of H3K18ac and lower methylation levels of global DNA at the blastocyst stage, which was similar to fertilized counterparts (Sun et al., 2015).

When donor cells were treated with TSA or 5-aza-2’-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor (DNMTi) prior to cloning, acetylation levels of these donor cells were increased and methylation levels were decreased (Saini et al., 2016). Moreover, treatment of 50-nM TSA and 7.5-nM 5-aza-dC in donor cells and/or reconstructed oocytes increased blastocyst rates and decreased apoptosis rate of HMC river buffalo embryos (Saini et al., 2017). However, valproic acid (VPA), another HDACi, treatment in donor cells increased histone acetylation of the cells but could not increase the blastocyst rate of HMC river buffalo embryos (Selokar et al., 2017). Moreover, treatment of donor cells with another DNMTi, RG108

TABLE 6 (Continued)

Equilibration solution	Vitrification solution	Devices	Survival rate	BL rate	Reference
Fresh control 100%	0.6 mg/ml L-carnitine 8%				
1.2 mg/ml L-carnitine 8%	Fresh control 19%				

Abbreviations: CB, cytochalasin B; CLV, cryoloop vitrification; DMSO, dimethyl sulfoxide; EG, ethylene glycol; LN2, liquid nitrogen; MII, metaphase II stage; PROH, propylene glycol (1, 2-propanediol); SSV, solid surface vitrification; VA, vitrification A solution; VB, vitrification B solutions.
could decrease DNA methylation level in buffalo donor cells and could increase the blastocyst formation rate of SCNT buffalo embryos (Sun et al., 2016).

There are a number of reports that nonchemical and biological agents were used for improving buffalo embryo production efficiency. Transfection of 50-nM DNMT1 small interfering RNA (siRNA) to 1-cell stage HMC buffalo embryos decreased levels of DNMT1 mRNA and DNMT1 protein and increased blastocyst formation rate but did not alter the DNA methylation level (Selokar et al., 2015). Treatment of buffalo donor cells with cell-free extracts from buffalo matured oocyte (BOE) decreased expression levels of HDAC1, and increased H3K9ac level as well as OCT4 and NANOG pluripotency-related gene expression levels in the donor cells. Moreover, HMC river buffalo embryos produced from BOE-treated donor cells had similar OCT4, NANOG, and SOX2 expression levels to those in IVEP blastocysts (Sadeesh et al., 2017). microRNAs (miRNAs) are single-stranded non-coding RNA molecule (about 22 nucleotides) that are involved in oocyte maturation and fertilization (Gilchrist et al., 2016), embryo development (Hossain et al., 2012), maternal-to-zygotic transition (Mondou et al., 2012), and epigenetic reprogramming and pluripotency (Onder & Daley, 2011). miRNA-145 is involved in early embryonic development (Tesfaye et al., 2009) and differentiation of stem cells (Xu et al., 2009) and was found to be a higher expression in cloned embryos than that in IVEP embryos. Treatment with an inhibitor of microRNA-145 (80 nM) for 1 h after electrofusion could decrease the apoptotic index and increase the blastocyst rate of HMC embryos.

Buffalo type	Cloning method	Donor cell	Blastocyst rate (%)	No. of recipient	Pregnancy rate (%)	Calving rate (%)	Reference
Swamp	SCNT	Fetal fibroblast	21.3	16	3 (18.8)	2 (12.5) one calf died	Shi et al., 2007
		Granulosa cell	22.2	5	1 (20.0)	1 (20.0) died after 14 days	
River	HMC	Fetal fibroblast	24.0	5	1 (20.0)	1 (20.0) died after 5 days	Shah et al., 2009
		Newborn fibroblast	33.0	8	2 (25.0)	1 (12.5)	
River	HMC	Embryonic stem cell	27.3	6	2 (33.3)	1 (16.7)	George et al., 2011
Swamp	SCNT	Fetal fibroblast	18.6	16	3 (18.8)	2 (12.5)	Lu et al., 2011
River	HMC	Fetal fibroblast	30.7	4	1 (25.0)	1 (25.0) died after 4 h	Panda et al., 2011
River	HMC	Newborn fibroblast	41.7	9	1(11.1)	1 (11.1) died shortly after birth	Saha et al., 2013
		Fetal fibroblast	39.1	4	1 (25.0)	1 (25.0)	
River	HMC	Fresh semen derived	48.8	12	1 (8.3)	1 (8.3)	Selokar et al., 2014
		epithelial cell					
		Frozen semen derived	51.4	10	2 (20.0)	1 (10.0) died after 12 h	
Swamp	SCNT	Skin fibroblast	25.0	12	10 (83.3)	1 (8.3)	Tasripoo et al., 2014
River	HMC	Skin fibroblast	28.8	3	1 (33.3)	1 (33.3)	Jyotsana et al., 2015
River	HMC	Urine-derived epithelial cell	50.4	5	1 (20.0)	1 (20.0)	Madheshiya et al., 2015
River	HMC	Skin fibroblast	50.0	4	1 (25.0)	1 (25.0) died after 21 days	Saini et al., 2016
Swamp	SCNT	Fetal fibroblast	27.9	7	2 (28.6)	2 (28.6)	Liu et al., 2018
River	HMC	Frozen thawed semen	12.7	8	1 (12.5)	1 (12.5) died after 12 days	Raja et al., 2019
		derived epithelial cell					
		Two demicytoplast	47.6	8	1 (12.5)	1 (12.5)	
River	HMC	Skin fibroblast	40.4	8	2 (25.0)	1 (12.5)	Selokar et al., 2019
River	HMC	Skin fibroblast	42.6	13	4 (30.8)	2 (15.4)	Shyam et al., 2020

Abbreviations: HMC, handmade cloning; SCNT, conventional somatic cell nuclear transfer.
river buffalo embryos (Sah et al., 2020). Other miRNAs play on embryonic development, miRNA-21 is involved in the regulation of apoptosis and miRNA-29b plays an important role in controlling DNA methylation in cells. Treatment of miRNA-21 (40 nM for 1 h) and miRNA-29b (40 nM for 1 h) mimics improved blastocyst quality, reduced apoptosis, and altered gene expression but did not increase the blastocyst rate of HMC buffalo embryos (Rashmi et al., 2019).

Canonical WNT (wingless-related mouse mammary tumor viruses) signaling pathway has been reported to inhibit embryonic development (Tepekoy et al., 2015). Dickkopf-1 (DKK1) is a secretory inhibitor of the canonical WNT signaling pathway, which could increase blastocyst formation, conception, and birth rates of HMC river buffalo embryos (Shyam et al., 2020). DKK1 can also increase the preimplantation development of bovine IVF embryos (Denicol et al., 2014).

Histone methylation plays an important role during embryonic development and is regulated by histone methyltransferases and histone demethylases (Jambhekar et al., 2019). Aberrant epigenetic reprogramming of histone 3 lysine 9 trimethylation H3K9me3 was found in cloned bovine (Pichugin et al., 2010; Santos et al., 2003), mouse (Ribeiro-Mason et al., 2012), and rabbit (Yang et al., 2013) embryos. Histone demethylase Kdm4d could regulate the level of H3K9me3. In SCNT buffalo embryos, the expression level of Kdm4d was significantly lower while the level of H3K9me3 was significantly higher when compared with the IVEP buffalo embryos. Microinjection of Kdm4d mRNA could correct the H3K9me3 level, increase the expression level of ZGA (ZSCAN5B, SNAI1, eIf-3a, and TRC) and pluripotency-related genes (POUSF1, SOX2, and NANOG) and promote the developmental ability of buffalo SCNT embryos (Feng et al., 2021). Events of epigenetic modification such as histone acetylation, DNA methylation, and histone methylation should be deeper studied during buffalo embryonic development. The effects of epigenetic modulators on the full-term development of cloned buffalo embryos are needed to be determined.

5.3 Generation of transgenic buffalos

The production of transgenic animals has numerous potential applications in establishing human genetic disease models, producing pharmaceutical proteins, and improving the growth performance and disease resistance of farm animals (Laible et al., 2015). In 2018, Lu et al. transfected enhanced green fluorescent protein (eGFP) into male swamp buffalo fetal fibroblasts using the electroporation technique. A total of 72 blastocysts produced from transfected donor cells were transferred to 36 recipients and six recipients became pregnant. At the end of gestation, the pregnant recipients delivered six healthy transgenic calves and one stillborn transgenic calf (Lu et al., 2018). Producing offspring with the desired sex is a significant goal in livestock production. The combination of CRISPR/Cas9-mediated gene editing and SCNT techniques could apply to sexing preimplantation embryos. The eGFP gene was integrated into the Y chromosome of swamp buffalo fetal fibroblasts. When these cells were used as the donor cells, the results showed that eGFP reporter is suitable for the visualization of the sex of embryos (Zhao et al., 2020). Moreover, the blastocyst rate of transgenic SCNT embryos was similar when compared with that of the nontransgenic group (Zhao et al., 2020). This report showed that the transgenic donor cells had no negative effect on buffalo embryonic development. On the other hand, when human insulin gene was transfected into buffalo fetal fibroblasts using nucleofection and these transgenic cells were used as the donor cells, the blastocyst rate of SCNT was lower than that of nontransgenic donor cells (Mehta et al., 2018). Moreover, when Venus construct (derivative of the enhanced yellow fluorescent protein) was transferred into river buffalo fetal fibroblasts using electroporation technique, the morula and blastocysts rates of HMC river buffalo embryos produced by Venus transgenic cells were found lower than that of nontransgenic cells (Kumar et al., 2018).

5.4 Interspecies SCNT (iSCNT) in buffalo

iSCNT, where the recipient cytoplasm and donor nucleus are derived from different species, provides an alternative tool for the preservation of endangered species using oocytes and recipients from related domestic species (Beyhan et al., 2007). iSCNT buffalo blastocysts were successfully produced using bovine oocytes as the recipient cytoplasm (Kitiyanant et al., 2001; Lu et al., 2005; Saikhun et al., 2004). However, the mixing of two populations of mitochondrial DNA from the buffalo donor cell and bovine recipient oocyte has been found in iSCNT buffalo embryos (Srirattana et al., 2011). Incompatibility between the nuclear and mitochondrial genomes is thought to be one of the major causes of developmental arrest among iSCNT embryos (Ogura et al., 2013). To improve iSCNT efficiency, treatment of buffalo–bovine iSCNT reconstructed oocytes with 20-μM zebularine (DMNTI) and 2-μM BIX-01294 (HDACi) could decrease the respective levels of 5-methylcytosine and histone 3 lysine 9 dimethylation (H3K9me2). The quality of iSCNT blastocysts was improved due to the significant expression of OCT4 and CDX2 in BIX-01294 and CDX2 in zebularine treatments. However, treatment with zebularine and BIX-01294 did not enhance developmental competence of iSCNT embryos (Alsalim et al., 2018). For iSCNT, river buffalo donor cells were transferred to swamp buffalo enucleated oocytes (Yang et al., 2010). The result showed that the blastocyst rate of river-swamp embryos was not different from the swamp–swamp embryos. A total of 30 river-swamp blastocysts were transferred to 13 recipients, four recipients established pregnancy. While three of them were aborted, one live river-swamp buffalo calf was born. These results indicate that swamp-river buffalo embryos can develop to full term (Yang et al., 2010). Moreover, buffalo oocytes also have the potential to reprogram somatic cells from bovine and goat up to the blastocyst stage (Selokar et al., 2011). In addition, wild buffalo iSCNT embryos were successfully produced through HMC using recipient oocytes from river buffalo (Bubalus bubalis) and skin fibroblasts from wild buffalo (Bubalus arnee) (Priya et al., 2014). The blastocyst rate of wild buffalo iSCNT embryos was about of 38–50% (Priya et al., 2014; Saini et al., 2015). iSCNT could be used as an alternative approach in...
buffalo cloning. However, nuclear and mitochondrial genomes incompatibility, mtDNA heteroplasmy, embryonic genome activation of the donor nucleus by the recipient oocyte, and availability of suitable foster mothers for iSCNT embryos are needed to be determined and solved.

6 CONCLUSION AND FUTURE PERSPECTIVE OF ART IN BUFFALO

ART in buffaloes has achieved considerable success as shown by the birth of live healthy riverine calves (2n = 50) out of in vitro produced-vitrified embryos in both the riverine and swamp (2n = 48) buffalo recipients. MOET produced embryos, embryos from OPU-derived oocytes, sex-sorted sperm cells, and SCNT.

ES and fixed-time artificial insemination partly solved distinct problems or the extrinsic factors affecting buffalo reproduction. The window on estrus occurrence and time of ovulation can be synchronized using Ovsynch protocols during breeding season and with P4-based protocols in combination with gonadotropin, estradiol, equine chorionic gonadotropin, human chorionic gonadotropin, and PG during the nonbreeding season. Enhancing PG-based ES protocol with gonadotropin (GnRH or hCG) had a beneficial effect on improving the pregnancy rate. A deep understanding and wide knowledge of follicular dynamics in buffalo are necessary for developing new innovative approaches and improving the currently used regimens for controlled breeding. There is a need to focus on the correlation between ovarian structures and endocrine milieu at various times points during hormonal treatment and the size of follicles at the time of insemination.

IVER is a potential alternative in the production of desired animals. The quality of the oocytes, the components of the IVC medium, the culture condition, and the quality of sperm cells are important considerations in the success rate. Resultant embryos can withstand cryopreservation and develop to term once given the appropriate condition. With the poor ovulation response of buffalo, IVEP is a good alternative in the production of genetilly superior animals. With the advancements in ICSI, reproduction among genetically superior bulls with sperm motility and fertility problems and enhancing fertilization using sex-sorted embryos become possible though the activation factor needs further improvement for a higher success rate.

Cryopreservation of oocytes has been found critically important in the progress and practical application of reproductive biotechnologies in buffaloes. However, overall efficiency obtained with frozen/thawed gametes and embryos remained low. Further research must focus on the biochemical evaluation of various CPAs and careful selection of the most effective CPAs along with efficient carrier methods. The development of procedures for decreasing the detrimental effects of vitrification on buffalo oocytes is needed to increase oocyte availability for reproductive biotechnologies. In addition, the transfer of vitrified buffalo embryos from vitrified/warmed oocytes into recipient animals to produce healthy calves must be seriously pursued in order to prove the full developmental potential of the vitrified/warmed buffalo oocytes. Moreover, variability of protocols with varying efficiencies exists, thus there is a need for standardization of protocols. The reduction of technical variations and mindfulness of quality control of the vitrification system will enhance procedural consistency, repeatability, and efficiency among laboratories. Therefore, future research undertakings should be directed not only on improving the efficiency of the vitrification system but also to narrowing down the variability of the manual system to achieve standardized operation to increase the overall efficiency of oocyte and embryo vitrification, especially in buffaloes.

Buffalo SCNT is a powerful tool for elite animal production, conservation of endangered species, and generating transgenic animals to improve human health and animal production. However, the molecular mechanisms and full-term development of the cloned buffalo embryos are still needing further investigation in order to improve buffalo cloning efficiency.

ACKNOWLEDGMENTS

This work was supported by Suranaree University of Technology (SUT) and by Thailand Science Research and Innovation (TSRI). K.S. and K.T. were supported by SUT Postdoctoral Research Fellowship.

CONFLICT OF INTEREST

The authors declare no conflict of interests for this article. The funders had no role in the writing of the manuscript or in the decision to publish the manuscript.

ORCID

Yuanyuan Liang https://orcid.org/0000-0003-4377-6645
Kasem Theerakittayakorn https://orcid.org/0000-0001-9997-7417
Rangsun Parnpai https://orcid.org/0000-0002-4764-9101

REFERENCES

Abd-Allah, S. M. (2009). In-vitro production of buffalo embryos from stepwise vitrified immature oocytes. Veterinaria Italiana, 45, 425–429.
Abdooon, A. S. S., Gabler, C., Holder, C., Kandil, O. M., & Einspanier, R. (2014). Seasonal variations in developmental competence and relative abundance of gene transcripts in buffalo (Bubalus bubalis) oocytes. Theriogenology, 82, 1055–1067. https://doi.org/10.1016/j.theriogenology.2014.07.008
Abdooon, A. S. S., Kandil, O. M., Otoi, T., & Suzuki, T. (2001). Influence of oocyte quality, culture media and gonadotropins on cleavage rate and development of in vitro fertilized buffalo embryos. Animal Reproduction Science, 65, 215–223. https://doi.org/10.1016/s0378-4320(01)00079-3
Agca, Y., Liu, J., Peter, A. T., Critser, E. S., & Critser, J. K. (1998). Effect of developmental stage on bovine oocyte plasma membrane water and cryoprotectant permeability characteristics. Molecular Reproduction and Development, 49, 408–415. https://doi.org/10.1002/(SICI)1098-2795(199804)49:4<408::AID-MRD8>3.0.CO;2-R
Akagi, S., Matsukawa, K., Mizutani, E., Fukunari, K., Kaneda, M., Watanabe, S., & Takahashi, S. (2011). Treatment with a histone deacetylase inhibitor after nuclear transfer improves the preimplantation development of cloned bovine embryos. The Journal of Reproduction and Development, 57, 120–126. https://doi.org/10.1262/jrd.10-058a
Akhtar, M. S., Ullah, S., Farooq, A. A., Mazhar, M., & Murtaza, S. (2013). Pregnancy rate in lactating buffaloes treated with or without
estradiol after estrus synchronization protocols at timed AI. Buffalo Bulletin, 32, 366–369.

Ali, A., & Fahmy, S. (2007). Ovarian dynamics and milk progesterone concentrations in cycling and non-cycling buffalo-cows (Bubalus bubalis) during Ovsynch program. Theriogenology, 68, 23–28. https://doi.org/10.1016/j.theriogenology.2007.03.011

Alsalim, H., Jafarpour, F., Tanhaei Vash, N., Nasr-Esfahani, M. H., & Niassari-Nasajl, A. (2018). Effect of DNA and histone methyl transferase inhibitors on outcomes of buffalo-bovine interspecies somatic cell nuclear transfer. Cellular Reprogramming, 20, 256–267. https://doi.org/10.1089/cell.2017.0039

Alyas, M., Razaqwa, W. A. A., Ali, R., Rao, M. W., & Kumar, S. (2013). Supplementation of progesterone in ovsynch to improve fertility in post-partum anestrous buffaloes. International Journal of Advanced Research, 1, 79–82.

Amaya-Montoya, C., Matsui, M., Kawashima, C., Hayashi, K. G., Matsuda, G., Kaneko, F., Kida, K., & Miyake, Y. (2007). Induction of ovulation with GnRH and PGF2α at two different stages during the early postpartum period in dairy cows ovarian response and changes in hormone concentration. Journal of Reproduction and Development, 53, 867–875. https://doi.org/10.1262/jrd.18163

Aquino, F. P., Atabay, E. P., Atabay, E. C., Ocampo, M. B., Duran, P. G., Pedro, P. B., Duran, D. H., de Vera, R., & Cruz, L. C. (2013). In vitro embryo production and transfer of bubaline embryos using oocytes derived from transvaginal ultrasound-guide follicular aspiration (TUF/A). Buffalo Bulletin, 32, 545–548. https://doi.org/10.3126/ijasbt.v2i2.10369

Atabay, E. P., & Atabay, E. C. (2017). In vitro production of embryos from vitrified buffaloo and bovine oocytes following intracytoplasmic sperm injection technique. Philippine Journal of Veterinary Medicine, 54, 111–117.

Atabay, E. P., Atabay, E. C., Aquino, F. P., Duran, H. D., de Vera, R. V., & Cruz, L. C. (2010). Cryopreservation of in-vitro matured buffalo (Bubalus bubalis) oocytes by slow freezing or vitrification. Philippine Journal of Veterinary Medicine, 47, 103–109.

Atabay, E. P., Atabay, E. C., & Cruz, L. C. (2013). Cryotop and solid surface vitrification cryodevices are suitable for the cryopreservation of in-vitro matured water buffalo (Bubalus bubalis L) oocytes. Philippine Journal of Veterinary Medicine, 50, 24–33.

Atabay, E. P., Atabay, E. C., de Vera, R. V., Aquino, F. A., Duran, D. H., & Cruz, L. C. (2010). Effects of holding water buffalo and bovine ovaries at various temperatures during transport and storage on in vitro embryo production.Philippine Journal of Veterinary and Animal Science, 33, 81–93.

Atabay, E. P., Atabay, E. C., Duran, P. G., Flores, E. B., Abesamis, A. F., & de Vera, R. V. (2008). Production of embryos from prepuberal buffaloes using ultrasound-guided ovum pick up and in-vitro embryo production (OPU-IVP) techniques. Philippine Journal of Veterinary and Animal Sciences, 34, 55–66.

Atabay, E. C., Atabay, E. P., Maylem, E. R. S., Encarnacion, E. C., & Salazar, R. L. (2020). Enhancing prostaglandin -based estrus synchronization protocol for artificial insemination in water buffaloes. Buffalo Bulletin, 39, 53–60.

Atabay, E. P., Atabay, E. C., Maylem, E. R. S., Tilwani, R. C., Flores, E. B., & Sarabia, A. S. (2019). Improved pregnancy in water buffaloes through synchronization of ovulation and fixed time artificial insemination technique. Philippine Journal of Veterinary Medicine, 56, 1–9.

Attanasio, L., Boccia, L., Vajta, G., Kuwayama, M., Campanile, G., Zicarelli, L., Neglia, G., & Gasparini, B. (2010). Cryoprotectant of buffalo (Bubalus bubalis) in vitro matured oocytes: Effects of cryoprotectant concentrations and warming procedures. Reproduction in Domestic Animals, 45, 997–1002. https://doi.org/10.1111/j.1439-0531.2009.01475.x

Attanasio, L., De Rosa, A., De Blasi, M., Neglia, G., Zicarelli, L., & Campanile, G. (2010). The influence of cumulus cells during in vitro fertilization of buffalo (Bubalus bubalis) denuded oocytes that have undergone vitrification. Theriogenology, 74, 1504–1508. https://doi.org/10.1016/j.theriogenology.2010.05.014

Barile, V. L., Galasso, A., Marchiori, E., Pacelli, C., Montemurro, N., & Borghese, A. (2001). Effect of PRID treatment on conception rate in Mediterranean buffalo heifers. Livestock Production Science, 68, 283–287. https://doi.org/10.1016/S0301-6226(00)00228-1

Bartolomeu, A. J., Rei, M., Del Madureira, E. H., Souza, A. J., Silva, A. O., & Barusselli, P. S. (2002). Timed insemination using synchronization of ovulation in buffaloes using CIDR-B, CRESTAR and Ovsynch. Animal Breeding Abstract, 70, 332.

Barusselli, P. S., Carvalho, N. A. T., Gimenes, L. U., & Crepaldi, G. A. (2007). Fixed-time artificial insemination in buffalo. Italian Journal of Animal Science, 6, 107–118. https://doi.org/10.4081/ijas.2007.s2.107

Barusselli, P. S., Carvalho, N. A. T., Hernandez, C. H. P., Amaral, R., & Nichi, M. (2002). Synchronization of ovulation for timed artificial insemination during the off-breeding season in the buffalo. In Proceedings of the 1st Buffalo Symposium of Americas (pp. 418–420). Associação de Criadores de Búfalos do Pará.

Barusselli, P. S., Carvalho, N. A. T., Nichi, M., & Reichert, R. H. (2003). Reduction of hCG dosage in a protocol for synchronization of ovulation for timed artificial insemination during the off breeding in buf- falo. Bubalus bubalis, 27, 261–264.

Barusselli, P. S., Madureira, E. H., Barnabe, V. H., Barnabe, R. C., Visintin, J. A., Oliveira, C. A., & Amaral, R. (1999). Follicular dynamics during the fixed time artificial insemination protocol in buffalo. Aqui- vos da Faculdade de Veterinaria, 2, 210.

Barusselli, P. S., Madureira, E. H., Visintin, J. A., Barnabe, V. H., Barnabe, R. C., & Amaral, R. (1999). Inseminacao artificial em tempo fixo com sincronizacao da ovulaçao em bubalinos. Revista Brasileira de Reprodução Animal, 23, 360–362.

Berger, R. C. A., Barusselli, P. S., & Madureira, E. H. (2001). Evaluation of utilization of subsequent estrus after synchronization of ovulation with ovsvynch protocols (GnRH vs LH) in buffaloes (Bubalus bubalis). Revista Brasileira de Reprodução Animal, 25, 379–381.

Berger, R. C. A., Madureira, E. H., & Barusselli, P. S. (2002). Comparison of two ovsvynch protocols (GnRH vs LH) for fixed time artificial insemination in buffalo (Bubalus bubalis). Theriogenology, 57, 1421–1430. https://doi.org/10.1016/S0093-691X(02)00639-8

Beyhan, Z., Forsberg, E. J., Eilertsen, K. J., Kent-First, M., & First, N. L. (2007). Gene expression in bovine nuclear transfer embryos in relation to donor cell efficiency in producing live offspring. Molecular Reproduction and Development, 74, 18–27. https://doi.org/10.1002/mrd.20618

Boccia, L., Francesco, S., Di Neglia, G., Blasi, M., De Longobardi, V., Campanile, G., & Gasparini, B. (2013). Osteopontin improves sperm capacitation and in vitro fertilization efficiency in buffalo (Bubalus bubalis). Theriogenology, 80, 212–217. https://doi.org/10.1016/j.theriogenology.2013.04.017

Boni, R., Roviello, S., & Zicarelli, L. (1996). Repeated ovum pick-up in Italian Mediterranean buffaloes. Theriogenology, 46, 899–909. https://doi.org/10.1016/S0093-691X(96)00248-8

Boonkukol, D., Faisai, K., Dinnyes, A., & Kitinyant, Y. (2007). Effects of vitrification procedures on subsequent development and ultra-structure of in vitro-matured swamp buffalo (Bubalus bubalis)
Chaikhun, T., Promdireg, A., & Suthikrai, W. (2010). Hormonal profile and ovulation time in Thai swamp buffaloes after ovulation synchronization program. Revista Veterina, 21, 902–904.

Chaikhun, T., Suthikrai, W., Jintana, R., Sophon, S., De Rensis, F., & Suadsong, S. (2012). The effect of progesterone supplementation (CIDR-B) with Ovsynch protocol on follicular turnover, luteal function and estrus and ovulation synchronization in swamp buffaloes. In Proceedings of the 15th AAAP Animal Science Congress 26–30 November 2012 (pp. 518–523). Thammasat University.

Chaikhun, T., Tharasainit, T., & Rattanatap, J. (2010). Fertility of swamp buffalo following the synchronization of ovulation by the sequential administration of GnRH and PGF2α combined with fixed time artificial insemination. Theriogenology, 74, 1371–1376. https://doi.org/10.1016/j.theriogenology.2010.06.007

Chaikhun-Marcou, T., Sothiibhandhu, P., Suthikrai, W., Jintana, R., Makoom, P., Suadsong, S., & De Rensis, F. (2019). Comparison of the effects of kispeptin-10 or GnRH on luteinizing hormone secretion during the luteal phase of the oestrous cycle in swamp buffalo cows. Buffalo Bulletin, 38, 127–134.

Chantaraprateep, P. (1987). Oestrus synchronization in buffalo. Buffalo Journal, Suppl. 1, 115–126.

Chantaraprateep, P., Lohachit, C., & Usanomakul, S. (1983). Estrus control in buffaloes by using PRID. Proceedings of the 5th World Conference on Animal Production. Tokyo Japan. 14–19.

Chantaraprateep, P., Virakul, P., & Bodhipaksha, P. (1981). Attempts to synchronize estrus of buffaloes by using analogue proglastanil F2 alpha (Estrumate 80996). Thai Journal of Veterinary Medicine, 11, 268–277.

Chaudhary, S. S., Singh, V. K., Upadhyay, R. C., Puri, G., Odedara, A. B., & Patel, P. A. (2015). Evaluation of physiological and biochemical responses in different seasons in Suril buffaloes. Veterinary World, 8, 727–731. https://doi.org/10.14202/vetworld.2015.727-731

Chauhan, M. S., Sigla, S. K., Palta, P., Manik, R. S., & Tomer, O. S. (1998). IL-2 stimulation of in vitro maturation, in vitro fertilization and subsequent development of buffalo (Bubalis bubalis) oocytes in vitro. Veterinary Record, 142, 727–728. https://doi.org/10.1136/vr.142.26.727

Chen, C. H., Du, F., Xu, J., Chang, W. F., Liu, C. C., Su, H. Y., Lin, T. A., Ju, J. C., Cheng, W. T. K., Wu, S. C., Chen, Y. E., & Sung, L. Y. (2013). Synergetic effect of trichostatin A and scriptaoid on the development of cloned rabbit embryos. Theriogenology, 79, 1284–1293. https://doi.org/10.1016/j.theriogenology.2013.03.003

Chen, S. U., Lien, Y. R., Chao, K. H., Ho, H. N., Yang, Y. S., & Lee, T. Y. (2003). Effect of cryopreservation on melodic spindles of oocytes and its dynamics after thawing: Clinical implications in oocytes freezing—a review article. Molecular and Cellular Endocrinology, 202, 101–107. https://doi.org/10.1016/S0303-7207(03)00704-0

Chirachaikitti, B., Tongsawasong, K., & Chinsakchai, S. (1982). Synchronization in swamp buffaloes with PGF2 alpha at Pitsanulok. Annual Report (pp. 3–13). NBRD.

Chohan, K. R., Iqbal, J., & Asghar, A. A. (1993). Influence of season on fertility of estrus synchronized buffaloes. Buffalo Journal, 9, 65–67.

Cruz, L. C., Venturina, H. V., Jha, S. S., Adriano, F., Serra, P., Duran, P. G., Smith, O. F., Lorenzo, N., & Faylon, P. S. (1991). Successful transfer of Murrah buffalo embryos into Philippine swamp buffalo recipients. In Proceedings of the 3rd World Buffalo Congress, Bulgaria, 3, p. 586.

De Araujo Berber, R. C., Madureira, E. H., & Baruselli, P. S. (2002). Comparison of two Ovsynch protocols (GnRH versus LH) for fixed timed insemination in buffalo (Bubalis bubalis). Theriogenology, 57, 1421–1430. https://doi.org/10.1016/s0093-691x(02)00639-8

De Renisis, F., & López-Gatius, F. (2007). Protocols for synchronizing estrus and ovulation in buffalo (Bubalis bubalis): A review. Theriogenology, 67, 209–216.

De Renisis, F., Ronci, G., Guerardi, P., Nguyen, B. X., Presicce, G. A., & Huszeniczic, G. (2005). Conception rate after fixed time insemination following Ovsynch protocol with or without progesterone supplementation in cyclic and non-cyclic Mediterranean Italian buffaloes (Bubalis bubalis). Theriogenology, 63, 1824–1841. https://doi.org/10.1016/j.theriogenology.2004.07.024

Denicol, A. C., Block, J., Kelley, D. E., Pohler, K. G., Dobbs, K. B., Mortensen, C. J., Sofia Ortega, M., & Hansen, P. J. (2014). The Wnt signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo. FASEB Journal, 28, 3975–3986. https://doi.org/10.1096/fj.14-253112

Derar, R., Hussein, H. A., Fahmy, S., El-Sherry, T. M., & Megashed, G. (2012). Ovarian response and progesterone profile during the ovsynch
Gimenes, L. U., Ferraz, M. L., Fantinato-Neto, P., Chiaratti, M. R., Mesquita, L. G., Sá Filho, M. F., Meirelles, F. V., Trinca, L. A., Rennó, F. P., Yeda, F., Watanabe, Y. F., & Baruselli, P. S. (2015). The interval between the emergence of pharmacologically synchronized ovarian follicular waves and ovum pickup does not significantly affect in vitro embryo production in Bos indicus, Bos taurus, and Bubalus bubalis. Theriogenology, 83, 385–393. https://doi.org/10.1016/j.theriogenology.2014.09.030

Gupta, V., Manik, R. S., Chauhan, M. S., Singla, S. K., Akshay, Y. S., & Palta, P. (2006). Repeated ultrasound-guided transvaginal oocyte retrieval from cyclic Murrah buffaloes (Bubalus bubalis): Oocyte recovery and quality. Animal Reproduction Science, 91, 89–96. https://doi.org/10.1016/j.anireprosci.2005.01.023

Gupta, P. S. P., Nandi, S., Ravindranatha, B. M., & Sarma, P. V. (2002). In vitro culture of buffalo (Bubalus bubalis) preantral follicles. Theriogenology, 57, 1839–1854. https://doi.org/10.1016/s0093-691x(02)00694-5

Gutnisky, C., Alvarez, G. M., Cetica, P. D., & Dalvit, G. C. (2013). Evaluation of the cryotec vitrification kit for bovine embryos. Cryobiology, 67, 391–393. https://doi.org/10.1016/j.cryobiol.2013.08.006

Hamano, S., & Kuwayama, M. (1993). In vitro fertilization and development of bovine oocytes recovered from ovaries of individual donors; a comparison between the cutting and aspiration method. Theriogenology, 39, 703–712. https://doi.org/10.1016/0093-691x(93)90255-4

He, Z. X., He, X. C., & Lou, Z. R. (2005). Experiments on synchronous estrus, superovulation and embryo transfer in buffaloes of Yunnan. Zoological Research, 26, 106–111.

Hegab, A. O., Montasser, A. E., Hammam, A. M., Abu El-Naga, E. M. A., & Karlsson, J. O., Eroglu, A., Toth, T. L., Cravalho, E. G., & Toner, M. (1996). Effect of bull and sperm preparation method on in vitro fertilization of buffalo (Bubalus bubalis) embryos. Pakistan Veterinary Journal, 27, 29–34. https://www.researchgate.net/publication/26520418

Jannatul, B., Islam, M. N., Alam, M. H., Khatun, A., Hashem, M. A., & Moniruzzaman, M. (2020). Effect of polyvinylpyrrolidone on vitrification of buffalo (Bubalus bubalis) oocytes. Journal of Buffalo Science, 9, 152–158. https://doi.org/10.6000/1927-520X.2020.09.16

Jiang, R. M., Wei, Y. M., & Ling, Z. J. (2003). The estrous and conception rates in swamp buffaloes after synchronization by PGc CIDR alone or combined with other hormones. Chinese Journal of Animal Science, 39, 17–18.

Jyotsana, B., Sahare, A. A., Raja, A. K., Singh, K. P., Nala, N., Singla, S. K., Chauhan, M. S., Manik, R. S., & Palta, P. (2016). Use of peripheral blood for production of buffalo (Bubalus bubalis) embryos by hand-made cloning. Theriogenology, 86, 1318–1324. https://doi.org/10.1016/j.theriogenology.2016.04.073

Kalmor, Q., Memon, A. A., Bhutto, M. B., Kumbhar, H. K., & Hussain, A. (2015). Estrus response and fertility rate in Kundhi buffaloes following estrus synchronization in breeding season. Journal of Advanced Veterinary and Animal Research, 2, 362–365.

Kamogatanta, M., Pansin, C., Jetana, T., Sophon, S., Sravasi, S., & Srisakwattana, K. (1987). Factors causing low conception rates when PGF2α is used for oestrous synchronization in swamp buffaloes. Buffalo Journal, Suppl. 1, 127–143.

Kandil, O. M., Abdoon, A. S. S., Kacheva, D., Kairaivanov, C. H., Fadel, M. S., Hemeida, N. A., Georgiev, N., Maslev, T. I., Ahmed, W. M., & Badr, H. R. (2012). Successful embryo transfer in Egyptian buffaloes. Global Vet, 8, 320–327.

Katey, A. M., & Darwish, S. (2010). Efficacy of ovsynch protocol in cyclic and acyclic Egyptian buffaloes in summer. Animal Reproduction Science, 119, 17–23. https://doi.org/10.1016/j.anireprosci.2009.12.005

Karlsson, J. O., Eroglu, A., Toth, T. L., Cravalho, E. G., & Toner, M. (1996). Fertilization and development of mouse oocytes cryopreserved using theoretically optimized protocol. Human Reproduction, 11, 1296–1305. https://doi.org/10.1093/oxfordjournals.humrep.a019375

Kasiraj, R., Misra, A. K., Mutha Rao, M., Jaiswal, R. S., & Rangareddi, N. S. (1993). Successful culmination of pregnancy and live birth following the transfer of frozen-thawed buffalo embryos. Theriogenology, 39, 1187–1192. https://doi.org/10.1016/0093-691x(93)90016-x

Kazem, R., Thompson, L. A., Srikantaharajah, A., Laing, M. A., Hamilton, M. P., & Templeton, A. (1995). Cryopreservation of human oocytes and fertilization by two techniques: In-vitro fertilization and intracytoplasmic sperm injection. Human Reproduction, 10, 2650–2654. https://doi.org/10.1093/humrep/10.10.2650

Keefe, C. L. (2015). Artificial cloning of domestic animals. Proceedings of the National Academy of Sciences, USA, 112, 8874–8878. https://doi.org/10.1073/pnas.1501718112
Kishigami, S., Bui, H. T., Wakayama, S., Tokunaga, K., Van Thuan, N., Hikichi, T., Mizutani, E., Ohta, H., Seutsugu, R., Sata, T., & Wakayama, T. (2007). Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. Journal of Reproduction and Development, 53, 165–170. https://doi.org/10.1262/jrd.18098

Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N. V., Wakayama, S., Bui, H. T., & Wakayama, T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochemical and Biophysical Research Communications, 340, 183–189. https://doi.org/10.1016/j.bbrc.2005.11.164

Kitiyanant, Y., Saikhu, J., Chaisalee, B., White, K. L., & Pavasuthipaisit, K. (2001). Somatic cell cloning in Buffalo (Bubalus bubalis): Effects of interspecies cytoplasmic recipients and activation procedures. Cloning and Stem Cells, 3, 97–104. https://doi.org/10.1089/1532001753205052

Konc, J., Kanyo, K., Kriston, R., Somoskvyi, B., & Cseh, S. (2014). Cryopreservation of embryos and oocytes in human assisted reproduction. BioMed Research International, 2014, 307268. https://doi.org/10.1155/2014/307268

Konrad, J., Clerico, G., Garrido, M. J., Taminelli, G., Yuponi, M., Yuponi, R., Crudds, G., & Sansinena, M. (2017). Ovum pick-up interval in buffalo (Bubalus bubalis) managed under wetland conditions in Argentina: Effect on follicular population, oocyte recovery, and in vitro embryo development. Animal Reproduction Science, 183, 39–45. https://doi.org/10.1016/j.anireprosci.2017.06.004

Konrad, J. L., Olazarr, M. J., Acuna, M. B., Patino, E. M., & Crudd, G. A. (2010). Effect of use pre-synch and Ovsynch protocols on the pregnancy of the buffalo rodeo of the Argentinian NEA. Proceedings: The 10th World Buffalo Congress and the 7th Asian Buffalo Congress, Phuket, Thailand. 177–180.

Kumar, D., Sharma, P., Vijayakshmy, K., Selokar, N. L., Kumar, P., Rajendran, R., & Yadav, P. S. (2018). Generation of Venus fluorochrome expressing transgenic handmade cloned buffalo embryos using sleeping beauty transposon. Tissue & Cell, 51, 49–55. https://doi.org/10.1016/j.tice.2018.02.005

Kumar, P., Verma, A., Roy, B., Rajput, S., Ojha, S., Anand, S., & Datta, T. K. (2012). Effect of varying glucose concentrations during in vitro maturation and embryo culture on efficiency of in vitro embryonic production in buffalo. Reproduction of Domestic Animals, 172, 269–273. https://doi.org/10.1439/j.1439-0521.2011.01849.x

Kuwayama, M., Vajta, G., Kato, O., & Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reproductive Biomedicine Online, 11, 300–308. https://doi.org/10.1016/S1472-6483(10)60837-1

Lable, G., Wei, J., & Wagner, S. (2015). Improving livestock for agriculture—Technological progress from random transgenesis to precise genome editing heralds a new era. Biotechnology Journal, 10, 109–120. https://doi.org/10.1002/biot.201400193

Laoowathamron, C., Lorthongpanich, C., Ketudat-Cains, M., Hochi, S., & Parpm, R. (2005). Factors affecting cryosurvival of nuclear transferred bovine and swamp buffalo blastocysts: Effects of hatching stage, linoleic acid-albumin in IVC medium and Ficoll supplementation to vitrification solution. Theriogenology, 64, 1185–1196. https://doi.org/10.1016/j.theriogenology.2005.02.001

Le Gal, F., Gasqui, P., & Renard, J. P. (1994). Differential osmotic behavior of mammalian oocytes before and after maturation: A quantitative analysis using goat oocytes as a model. Cryobiology, 31, 154–170. https://doi.org/10.1006/cryo.1994.1019

Leibo, S. P., & Songssen, A. (2002). Cryopreservation of gametes and embryos of non-domestic species. Theriogenology, 57, 303–326. https://doi.org/10.1016/s0093-691x(01)00673-2

Liang, X. W., Lu, Y. Q., Chen, M. T., Zhang, X. F., Lu, S. S., Zhang, M., Pang, C. Y., Huang, F. X., & Lu, K. H. (2008). In vitro embryo production in buffalo (Bubalus bubalis) using sexed sperm and oocytes from ovum pick up. Theriogenology, 69, 822–826. https://doi.org/10.1016/j.theriogenology.2007.11.021

Liang, Y. Y., Phermthai, T., Nagai, T., Somfai, T., & Parmp, R. (2011). In vitro development of vitrified buffalo oocytes following partheno-genetic activation and intracytoplasmic sperm injection. Theriogenology, 75, 1652–1660. https://doi.org/10.1016/j.theriogenology.2010.12.028

Liang, X. W., Qin, G. S., & Chen, M. T. (2007). Technical study on estrus synchronization of buffalo. Animal Husbandry and Veterinary Medicine, 39, 6–9.

Liang, Y. Y., Rakwongrit, D., Phermthai, T., Somfai, T., Nagai, T. & Parmp, R. (2012). Cryopreservation of immature buffalo oocytes: Effects of cytchalasin B pretreatment on the efficiency of cryotop and solid surface vitrification methods. Animal Science Journal, 83, 630–638. https://doi.org/10.1111/j.1740-0929.2012.01013.x

Liang, Y. Y., Konrattana, K., Phermthai, T., Somfai, T. & Parmp, R. (2012). Effects of vitrification cryoprotectant treatment and cooling method on the viability and development of buffalo oocytes after intracytoplasmic sperm injection. Cryobiology, 65, 151–156. https://doi.org/10.1016/j.cryobiol.2012.04.006

Liang, Y. Y., Ye, D. N., Lawtammahron, C., Parmpthai, T., Nagai, T., Somfai, T., & Parmp, R. (2011). Effects of chemical activation treatment on development of swamp buffalo (Bubalus bubalis) oocytes matured in vitro and fertilized by intracytoplasmic sperm injection. Reproduction in Domestic Animals, 46, e67–e73. https://doi.org/10.1111/j.1439-0531.2010.01636.x

Liang, Y. Y., Yoissrnugnern, T., Huang, Y., & Parmp, R. (2020). Effects of L-carnitine on embryo development of vitrified swamp buffalo oocytes following in vitro fertilization. Livestock Science, 232, 103933. https://doi.org/10.1016/j.livsci.2020.103933

Liu, Z., Cai, Y., Wang, Y., Nie, Y., Zhang, C., Xu, Y., Zhang, X., Lu, Y., Wang, Z., Poo, M., & Sun, Q. (2018). Cloning of Macaque monkeys by somatic cell nuclear transfer. Cell, 172, 881–887. https://doi.org/10.1016/j.cell.2018.01.020

Lu, F., Jiang, J., Li, N., Zhang, S., Sun, H., Luo, C., Wei, Y., & Shi, D. (2011). Effects of recipient oocyte age and interval from fusion to activation on development of buffalo (Bubalus bubalis) nuclear transfer embryos derived from fetal fibroblasts. Theriogenology, 76, 967–974. https://doi.org/10.1016/j.theriogenology.2011.04.026

Lu, Y. Q., Liang, X. W., Zhang, M., Wang, W. L., Kitiyanant, Y., Lu, S. S., Meng, B., & Lu, K. H. (2007). Birth of twins after in vitro fertilization with flow-cytometric sorted buffalo (Bubalus bubalis) sperm. Animal Reproduction Science, 100, 192–196. https://doi.org/10.1016/j.anireprosci.2006.09.019

Lu, F., Luo, C., Li, N., Liu, Q., Wei, Y., Deng, H., Wang, X., Li, X., Jiang, D., Deng, Y., & Shi, D. (2018). Efficient generation of transgenic buffalo (Bubalus bubalis) by nuclear transfer of fetal fibroblasts expressing enhanced green fluorescent protein. Scientific Reports, 8, 6967. https://doi.org/10.1038/s41598-018-25120-5

Lu, F., Shi, D., Wei, J., Yang, S., & Wei, Y. (2005). Development of embryos reconstructed by interspecies nuclear transfer of adult fibroblasts between buffalo (Bubalus bubalis) and cattle (Bos indicus). Theriogenology, 64, 1309–1319. https://doi.org/10.1016/j.theriogenology.2005.03.005

Lu, Y. Q., Wang, W. L., Yang, H., Liang, X. W., Liang, Y. Y., Zhang, M., Lu, S. S., Kitiyanant, Y., & Lu, K. H. (2006). Flow-cytometric sorting the sperm and production of sex-preselected embryo in buffalo (Bubalus bubalis). In K. H. Lu (Ed.), Proceedings of the 5th Asian
Mandawala, A. A., Harvey, S. C., Roy, T. K., & Fowler, K. E. (2016). Reproduction Nutrition Development, 42, 73–80. https://doi.org/10.1051/md/20020008

McDougal, S., Burke, C. R., Macmillan, K. L., & Williamson, N. B. (1992). The effect of pretreatment with progesterone on the oestrous response to oestradiol-17β benzoate in the postpartum dairy cow. Proceedings of the New Zealand Society of Animal Production, 52, 157–160.

Mehmood, A., Anwar, M., Andrabi, S. M. H., Afzal, M., & Naqvi, S. M. S. (2011). In vitro maturation and fertilization of buffalo oocytes: The effect of recovery and maturation methods. Turkish Journal of Veterinary and Animal Sciences, 35, 381–386. https://doi.org/10.3906/vet-0812-17

Mehta, P., Kaushik, R., Singh, K. P., Sharma, A., Singh, M. K., Chauhan, M. S., Palta, P., Singla, S. K., & Manik, R. S. (2018). Establishment, growth, proliferation, and gene expression of buffalo (Bubalus bubalis) transgenic fetal fibroblasts containing human insulin gene, and production of embryos by handmade cloning using these cells. Cellular Reprogramming, 20, 135–143. https://doi.org/10.1089/cell.2017.0013

Misra, A. K. (1993). Superoxovulation and embryo transfer in buffalo; progress, problems and future prospects in India. Buffalo Journal, 9, 13–24.

Misra, A. K., Kasiraj, R., Rao, M. M., Reddy, N. S. R., & Pant, H. C. (2003). Estrus response following PGF2α and superovulation treatments and its relationship with fertilization and viable embryo production in water buffalo. The Indian Journal of Animal Sciences, 73, 245–248.

Mohanapatra, S. K., Sandhu, A., Singh, K. P., Singla, S. K., Chauhan, M. S., Manik, R., & Palta, P. (2015). Establishment of trophectoderm cell lines from buffalo (Bubalus bubalis) embryos of different sources and examination of in vitro developmental competence, quality, epigenetic status and gene expression in cloned embryos derived from them. PLoS ONE, 10, e0129235. https://doi.org/10.1371/journal.pone.0129235

Mondou, E., Dufort, I., Gohin, M., Fournier, E., & Sirard, M. A. (2012). Analysis of microRNAs and their precursors in bovine early embryonic development. Molecular Human Reproduction, 18, 425–434. https://doi.org/10.1093/molehr/gas015

Muenthaisong, S., Laowtammathron, C., Ketudat-Cairns, M., Parnpai, R., & Hochi, S. (2007). Quality analysis of buffalo blastocysts derived from oocytes vitrified before or after enucleation and reconstructed with somatic cell nuclei. Theriogenology, 67, 893–900. https://doi.org/10.1016/j.theriogenology.2006.11.005

Muer, S. K., Roy, S. B., Mohan, G., & Dhole, R. L. (1988). Cryogenic changes in seminal protein of cattle and buffalo. Theriogenology, 30, 1005–1010. https://doi.org/10.1016/S0093-691X(88)80063-3

Murugavel, K., Antoine, D., Raju, M. S., & López-Gatius, F. (2009). The effect of addition of equine chlorionic gonadotropin to a progesterone-based estrous synchronization protocol in buffaloes (Bubalus bubalis) in tropical condition. Theriogenology, 71, 1120–1126. https://doi.org/10.1016/j.theriogenology.2008.12.012

Mustafa, G., Anzar, M., & Arslan, M. (1998). Separation of motile spermatozoa from frozen-thawed buffalo semen: Swim-up vs. filtration procedures. Theriogenology, 50, 205–211. https://doi.org/10.1016/S0093-691X(98)00127-7

Nandi, S., Chauhan, M. S., & Palta, P. (1998). Influence of cumulus cell and sperm concentration on cleavage rate and subsequent embryonic development of buffalo (Bubalis bubalis) oocytes matured and fertilized in vitro. Theriogenology, 50, 1251–1262. https://doi.org/10.1016/S0093-691X(98)00224-6

Neglia, G., & Bifulco, G. B. (2017). Multiple ovulation and embryo transfer in the buffalo species, the buffalo (Bubalus bubalis). Production and Research, 1, 340. https://doi.org/10.2174/9781681084176117010016

Neglia, G., Gasparini, B., Caracchiolo di Brienza, V., Di Palo, R., Campanile, G., Presicce, G. A., & Zicarelli, L. (2003). Bovine and
buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration. Theriogenology, 59, 1123–1130. https://doi.org/10.1016/S0093-691X(02)01170-6

Negla, G., Gasparini, B., Vecchio, D., Boccia, L., Varricchio, E., Di Palo, R., Zicarelli, L., & Campanile, G. (2011). Long term effect of ovum pick-up in buffalo species. Animal Reproduction Science, 123, 180–186. https://doi.org/10.1016/j.anireprosci.2011.01.011

Niemann, H. (2016). Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology, 86, 80–90. https://doi.org/10.1016/j.theriogenology.2016.04.021

Niemann, H., Wrenzycki, C., Lucas-Hahn, A., Brambrink, T., Kues, W. A., & Carthew, J. W. (2002). Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development. Cloning and Stem Cells, 4, 29–38. https://doi.org/10.1089/103326702601410466

Ocampo, M. B., Ocampo, L. C., Lorenzo, N. D., Manuad, F. V., Aquino, F. P., Mori, T., Shimizu, H., & Cruz, L. (2000). Live births resulting from swamp buffalo oocytes matured, fertilized and cultured in vitro. Asian-Australasian Journal of Animal Sciences, 13, 279–282.

Ogura, A., Inoue, K., & Wakayama, T. (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, 20110329. https://doi.org/10.1098/rstb.2011.0329

Onder, T. T., & Daley, G. Q. (2011). microRNAs become macro players in somatic cell reprogramming. Genome Medicine, 3, 40. https://doi.org/10.1186/gm256

Otoi, T., Yamamoto, K., Koyama, N., & Suzuki, T. (1995). In vitro fertilization and development of immature and mature bovine oocytes cryopreserved by ethylene glycol with sucrose. Cryobiology, 32, 455–460. https://doi.org/10.1016/cryo.1995.1045

Panda, S. K., George, A., Saha, A. P., Sharma, R., Manik, R. S., Chauhan, M. S., Palta, P., & Singla, S. K. (2011). Effect of cytoplasmic volume on developmental competence of buffalo (Bubalus bubalis) embryos produced through hand-made cloning. Cellular Reprogramming, 13, 257–262. https://doi.org/10.1089/cell.2010.0096

Panda, S. K., George, A., Saha, A. P., Sharma, R., Singh, A. K., Manik, R. S., Chauhan, M. S., Palta, P., & Singla, S. K. (2012). Effect of scriptaid, a histone deacetylase inhibitor, on the developmental competence of handmade cloned buffalo (Bubalus bubalis) embryos. Theriogenology, 77, 195–200. https://doi.org/10.1016/j.theriogenology.2011.07.033

Pandey, A., Singh, N., Gupta, S. C., Raja, A. K., Sahare, A. A., Jyotsana, B., Priya, D., Palta, P., Chauhan, M. S., Manik, S. K., & Singla, S. K. (2011). Estrus synchronization in buffaloes (Bubalis arnee) embryos by interspecies somatic cell nuclear transfer using domestic buffalo (Bubalus bubalis) oocytes. Reproduction in Domestic Animals, 46, 343–351. https://doi.org/10.1111/j.1439-2205.2005.00570.x

Purohit, G. N., Brady, M. S., & Sharma, S. S. (2005). Influence of epidermal growth factor and insulin-like growth factor-1 on nuclear maturation and fertilization of buffalo cumulus oocyte complexes in serum free media and their subsequent development in vitro. Animal Reproduction Science, 87, 229–239. https://doi.org/10.1016/j.anireprosci.2004.09.009

Purohit, G. N., Thanvi, P., Pushp, M., Gaur, M., Saraswat, C. S., Arora, A. S., Pannu, S. P., & Gocher, T. (2019). Estrus synchronization in buffaloes: Prospects, approaches and limitations. The Pharma Innovation Journal, 8, 54–62. https://doi.org/10.13140/RG.2.2.33173.78563

Pursely, J. R., Mee, M. O., & Wiltbank, M. C. (1995). Synchronization of ovulation in dairy cows using PGF2α and GnRH. Theriogenology, 44, 915–923. https://doi.org/10.1016/0093-691X(95)00279-H

Qin, G. S., Chen, M. T., Liang, X. W., Zhang, X. F., Pang, C. Y., Wei, S. J., Wei, S. J., Huang, F. X., & Jiang, H. S. (2012). Effects of different hormone combinations on superovulation in river buffaloes. Journal of Animal and Plant Sciences, 22, 257–261.

Rahangdale, S., Kumar, D., Singh, A. P., Jeena, L. M., & Sarkhel, B. C. (2021). Post-rewarming developmental competence of in vitro produced buffalo (Bubalis bubalis) embryos vitrified using the solid surface technique. Cryo Letters, 42, 13–18.

Raja, A. K., Sahare, A. A., Jyotsana, B., Priya, D., Palta, P., Chauhan, M. S., Manik, R. S., & Singla, S. K. (2019). Reducing the cytoplasmic volume during hand-made cloning adversely affects the developmental competence and quality, and alters relative abundance of mRNA transcripts and epigenetic status of buffalo (Bubalis bubalis) embryos.
Ravindranatha, B. M., Nandi, S., Raghu, H. M., & Reddy, S. M. (2003). In
Saikhun, J., Kitiyanant, N., Songtaveesin, C., Pavasuthipaisit, K., &
Saha, A., Panda, S. K., Selokar, N. L., Agrawal, H., Manik, R. S., & Palta, P. (2017). Treatment of donor cells and recon-
structed embryos with a combination of Trichostatin-A and 5-aza-2’-
deoxycytidine improves the developmental competence and quality of buffalo embryos produced by handmade cloning and alters their epigenetic status and gene expression. Cellular Reprogramming, 19, 208–215. https://doi.org/10.1089/cell.2016.0061
Saini, M., Selokar, N. L., Raja, A. K., Sahare, A. A., Singla, S. K., Manik, R. S., Manik, R. S., & Palta, P. (2015). Effect of donor cell type on developmental competence, quality, gene expression, and epigenetic status of interspecies cloned embryos produced using cells from wild buffalo and oocytes from domestic buffalo. Theriogen-
ology, 84, 101–108. https://doi.org/10.1016/j.theriogenology.2015.02.018
Sakaguchi, K., Maylem, E. R. S., Tilwani, R. C., Yanagawa, Y., Katagiri, S., Atabay, E. C., Atabay, E. P., & Nagano, M. (2019). Effects of follicle-stimulating hormone followed by gonadotropin-releasing hormone on embryo production by ovum pick-up and in vitro fertilization in the river buffalo (Bubalus bubalis). Animal Science Journal, 90, 690–695. https://doi.org/10.1111/asj.13196
Santos, F., Zakhar'tchenko, V., Stojkovic, M., Peters, A., Jeneuwin, T., Wolf, E., Reik, W., & Dean, W. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Current Biology, 13, 1116–1121. https://doi.org/10.1016/s0960-9822(03)00419-6
Sathiamoorthy, T., Parthasarathy, R., & Kathirvelan, M. (2007). Efficacy of PGF2α, C1D and ovsynch treatment on estrus induction and fer-
tility in postpartum buffaloes—A field study. Indian Journal of Animal Reproduction, 28, 8–11.
Selokar, N. L., George, A., Saha, A. P., Sharma, R., Muzaffer, M., Shah, R. A., Palta, P., Chauhan, M. S., Manik, R. S., & Singla, S. K. (2011). Production of interspecies handmade cloned embryos by nuclear transfer of cattle, goat and rat fibroblasts to buffalo (Bubalus bubalis) oocytes. Animal Reproduction Science, 123, 279–282. https://doi.org/10.1016/j.anireprosci.2011.01.008
Selokar, N. L., Saini, M., Agrawal, H., Palta, P., Chauhan, M. S., Manik, R., & Singla, S. K. (2015). Downregulation of DNA methyltransferase 1 in zona-free cloned buffalo (Bubalus bubalis) embryos by small interfering RNA improves in vitro development but does not alter DNA methylation level. Cellular Reprogramming, 17, 89–94. https://doi.org/10.1089/cell.2014.0056
Selokar, N. L., Saini, M., Agrawal, H., Palta, P., Chauhan, M. S., Manik, R., & Singla, S. K. (2017). Valproic acid increases histone acetylation and alters gene expression in the donor cells but does not improve the in vitro developmental competence of buffalo (Bubalus bubalis) embryos produced by hand-made cloning. Cellular Reprogramming, 19, 10–18. https://doi.org/10.1089/cell.2016.0029
Selokar, N. L., Saini, M., Palta, P., Chauhan, M. S., Manik, R., & Singla, S. K. (2014). Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen. PLoS ONE, 9, e90755. https://doi.org/10.1371/journal.pone.0090755
Selokar, N. L., Sharma, P., Saini, M., Sheoran, S., Rajendran, R., Kumar, D., Sharma, R. K., Motiani, R. K., Kumar, P., Jerome, A., Khanna, S., & Yadav, P. S. (2019). Successful cloning of a superior buffalo bull. Scientific Reports, 9, 11366. https://doi.org/10.1038/s41598-019-47909-8
Shah, R. A., George, A., Singh, M. K., Kumar, D., Anand, T., Chauhan, M. S., Manik, R. S., Palta, P., & Singla, S. K. (2009). Pregnancies established from handmade cloned blastocysts reconstructed using skin fibro-
blasts in buffalo (Bubalus bubalis). Theriogenology, 71, 1215–1219. https://doi.org/10.1016/j.theriogenology.2008.10.004
Sharma, G. T., Dubey, P. K., Nath, A., & Saikumar, G. (2013). Co-culture of buffalo (Bubalus bubalis) preantral follicles with antral follicles: A comparative study of developmental competence of oocytes derived
Singh, N., Dhaliwal, G. S., Malik, V. S., Dadarwal, D., Honparkhe, M., Sproul, D., Gilbert, N., & Bickmore, W. A. (2005). The role of chromatin

Sparman, M. L., Tachibana, M., & Mitalipov, S. M. (2010). Cloning of non-

Smith, O. P. (1990).

Situmorang, P., & Siregar, A. R. (1997). Effects of hormone hCG following

Sirisha, K., Selokar, N. L., Saini, M., Palta, P., Manik, R. S., Chauhan, M. S., & Singla, S. K. (2013). Cryopreservation of zona-free cloned buffalo (Bubalus bubalis) embryos: Slow freezing vs open-pulled straw vitrification. Reproduction in Domestic Animals, 48, 538–544. https://doi.org/10.10111/rd.12122

Situmorang, P., & Siregar, A. R. (1997). Effects of hormone hCG following injection of Estrumate on the reproductive performance of swamp buffaloes (Bubalus bubalis). Indonesian Journal of Veterinary Sciences, 2, 213–217. https://doi.org/10.14334/jivt.v2i4.74

Smith, O. P. (1990). Follicular dynamics in the Philippine water buffalo (Bubalus bubalis). Thesis (p. 227). Central Luzon State University.

Somfai, T., Kikuchi, K., & Nagai, T. (2012). Factors affecting cryopreservation of porcine oocytes. Journal of Reproduction and Development, 58, 17–24. https://doi.org/10.1262/jrd.11-140N

Sparman, M. L., Tachibana, M., & Mitalipov, S. M. (2010). Cloning of non-

human primates: The road “less traveled by”. International Journal of Developmental Biology, 54, 1671–1678. https://doi.org/10.1387/ jdb.103196ms

Sproul, D., Gilbert, N., & Bickmore, W. A. (2005). The role of chromatin structure in regulating the expression of clustered genes. Nature Reviews. Genetics, 6, 775–781. https://doi.org/10.1038/nrg1688

Srirattana, K., Ketudat-Cairns, M., Nagai, T., Kaneda, M., & Parnpai, R. (2014). Effects of trichostatin A on in vitro development and DNA methylation level of the satellite I region of swamp buffalo (Bubalus bubalis) cloned embryos. Journal of Reproduction and Development, 60, 336–341. https://doi.org/10.1262/jrd.2013-116

Srirattana, K., Matsukawa, K., Akagi, S., Tasai, M., Tagami, T., Nirasawa, K., Nagai, T., Kanai, Y., Parnpai, P., & Takeda, K. (2011). Constant transmission of mitochondrial DNA in intergeneric cloned embryos reconstructed from swamp buffalo fibroblasts and bovine ooplasm. Animal Science Journal, 82, 236–243. https://doi.org/10.1111/j.1740-0929.2010.00827.x

Srivastava, S. K. (2005). Oestrus induction and conception in buffaloes after hormonal treatment during summer. The Indian Journal of Animal Sciences, 75, 765–768.

Stachecki, J. J., Garrisi, J., Sabino, S., Caetano, J. P., Wiemer, K. E., & Cohen, J. (2008). A new safe, simple and successful vitrification method for bovine and human blastocysts. Reproductive Biomedicine Online, 17, 360–367. https://doi.org/10.1472/jas.2010.0084

Sun, H., Lu, F., Zhu, P., Liu, X., Tian, M., Luo, C., Ruan, Q., Ruan, Z., Liu, Q., Jiang, J., Wei, Y., & Shi, D. (2015). Effects of Scriptaid on the histone acetylation, DNA methylation and development of buffalo somatic cell nuclear transfer embryos. Cellular Reprogramming, 17, 404–414. https://doi.org/10.1089/cell.2014.0084

Sun, H. L., Meng, L. N., Zhao, X., Jiang, J. R., Liu, Q. Y., Shi, D. S., & Lu, F. H. (2016). Effects of DNA methyltransferase inhibitor RG108 on methylation in buffalo adult fibroblasts and subsequent embryonic development following somatic cell nuclear transfer. Genetics and Molecular Research, 15, gmr-15038455. https://doi.org/10.4238/ gmr.15038455

Suresh, K. P., Nandi, S., & Mondal, S. (2009). Factors affecting laboratory production of buffalo embryos: A meta-analysis. Theriogenology, 72, 978–985. https://doi.org/10.1016/j.theriogenology.2009.06.017

Suteevun, T., Parnpai, R., Smith, S. L., Chang, C. C., Muenthaisong, S., & Tian, X. C. (2006). Epigenetic characteristics of cloned and in vitro-fertilized swamp buffalo (Bubalus bubalis) embryos. Journal of Animal Science, 84, 2065–2071. https://doi.org/10.2527/jas.2005-695

Suteevun, T., Smith, S. L., Muenthaisong, S., Yang, X., Parnpai, R., & Tian, X. C. (2006). Anomalous mRNA levels of chromatin remodeling genes in swamp buffalo (Bubalus bubalis) cloned embryos. Theriogenology, 65, 1704–1715. https://doi.org/10.1016/j.theriogenology.2005.09.015

Tasripoo, K., Suthikrai, W., Sophon, S., Jintana, R., Nuachuen, W., Usawang, S., Bintvihok, A., Techakumphu, M., & Sriskawattana, K. (2014). First cloned swamp buffalo produced from adult ear fibroblast cell. Animal, 8, 1139–1145. https://doi.org/10.1089/cell.2014.0084

Tepekoy, F., Akkoyunlu, G., & Demir, R. (2015). The role of Wnt signaling members in the uterus and embryo during pre-implantation and implantation. Journal of Assisted Reproduction and Genetics, 32, 337–346. https://doi.org/10.1016/j.sajr.2015-014-0409-7

Tesfaye, D., Worku, D., Rings, F., Phatsara, C., Tholen, E., Schellander, K., & Hoekler, M. (2009). Identification and expression profiling of micro-RNAs during bovine oocyte maturation using heterologous approach. Molecular Reproduction and Development, 76, 665–677. https://doi.org/10.1002/mrd.21005

Tian, X., Kubota, C., Enright, B., & Yang, X. (2003). Cloning animals by somatic cell nuclear transfer—Biological factors. Reproductive Biology and Endocrinology, 1, 98. https://doi.org/10.1186/1477-7827-1-98

Tiwani, R. C., Ortiz, J. G. M., Apolinario, J. P. R., Maylem, E. R. S., Atabay, E. C., & Atabay, E. P. (2019). Comparison of transrectal ultrasonography and pregnancy-associated glycoprotein analysis in detection of warly pregnancy in water buffaloes (Bubalus bubalis). Philippine Journal of Veterinary Medicine, 56, 1–9.

Utage, S. G., Raghuwanshi, D. S., Vhora, S. C., Khan, I. A., & Sahatpure, S. K. (2010). Efficacy of crestar PGF2α and GnRH combination in treatment of postpartum anestrus buffaloes. Indian Journal of Animal Reproduction, 31, 28–29.

from in vivo developed and in vitro cultured antral follicles. Zygote, 21, 286–294. https://doi.org/10.1017/S0967199411000700

Sharma, G. T., & Loganathanamy, K. (2007). Effect of meiotic stages during in vitro maturation on the survival of vitrified-warmed buffalo oocytes. Veterinary Research Communications, 31, 881–893. https://doi.org/10.1007/s11259-007-0059-7

Shi, L. H., Ai, J. S., OuYang, Y. C., Huang, J. C., Lei, Z. L., Wang, Q., Yin, S., Han, Z. M., Sun, Q. Y., & Chen, D. Y. (2008). Trichostatin A and nuclear reprogramming of cloned rabbit embryos. Journal of Animal Science, 86, 1106–1113. https://doi.org/10.2527/jas.2007-0718

Shi, D., Lu, F., Wei, Y., Cui, K., Yang, S., Wei, J., & Liu, Q. (2007). Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biology of Reproduction, 77, 285–291. https://doi.org/10.1095/biolreprod.107.060210
Vajta, G. (2007). Handmade cloning: The future way of nuclear transfer? Trends in Biotechnology, 25, 250–253. https://doi.org/10.1016/j.tibtech.2007.04.004

Vajta, G., Holm, P., Greve, T., & Callesen, H. (1997). Vitrification of porcine embryos using the open pulled straw (OPS) method. Acta Veterinaria Scandinaevica, 38, 349–352. https://doi.org/10.1186/BF03548481

Vajta, G., Hyttel, P., & Callesen, H. (1997). Morphological changes of in vitro produced bovine blastocysts after vitrification, in straw direct rehydration, and culture. Molecular Reproduction and Development, 48, 9–17. https://doi.org/10.1002/(SICI)1098-2795(199709)48:1<9::AID-MRD2>3.0.CO;2-N

Van Thuan, N., Bui, H. T. T., Kim, J. H. H., Hikichi, T., Wakayama, S., Kishigami, S., Mizutani, E., & Wakayama, T. (2009). The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction, 138, 309–317. https://doi.org/10.1530/REP-08-0299

Vincent, C., Pickering, S. J., & Johnson, M. H. (1990). The hardening effect of dimethylsulfoxide on the mouse zona pellucida requires the presence of an oocyte and is associated with a reduction in the number of cortical granules present. Journal of Reproduction and Fertility, 89, 253–259. https://doi.org/10.1530/jrf.0.0890253

Virakal, V., Chantaraprateep, P., & Lohachit, C. (1988). Synchronization of estrous in swamp buffalo by using norgestomet plus PMSG. Buffalo Journal, 4, 95–98.

Vlakhov, K., Karaivanov, K., Petrov, M., & Kacheva, D. (1986). Superovulation and the production of embryos in the water buffalo (Bubalus bubalis) in Bulgaria. Veterinarne-Meditsinski Nauki, 23(3), 84–88.

Wang, C. L., Xu, H. Y., Xie, L., Lu, Y. Q., Yang, X. G., Lu, S. S., & Lu, K. H. (2016). Stability of the cytoskeleton of matured buffalo oocytes pretreated with cytochalasin B prior to vitrification. Cryobiology, 72, 274–282. https://doi.org/10.1016/j.cryobiol.2016.03.005

Wang, L. J., Zhang, H., Wang, Y. S., Xu, W. B., Xiong, X. R., Li, Y. Y., Su, J. M., Hua, S., & Zhang, Y. (2011). Scriptaid improves in vitro development and nuclear reprogramming of somatic cell nuclear transfer bovine embryos. Cellular Reprogramming, 13, 431–439. https://doi.org/10.1089/cell.2011.0024

Wani, N. A., Maurya, S. N., Misra, A. K., Saxena, V. B., & Lakhchaura, B. D. (2004). Effect of ciprofloxacin and their concentration on in vitro development of vitrified-warmed immature oocytes in buffalo (Bubalus bubalis). Theriogenology, 61, 831–842. https://doi.org/10.1016/j.theriogenology.2003.06.002

Wani, N. A., Misra, A. K., & Maurya, S. N. (2004). Maturation rates of vitrified-thawed immature buffalo (Bubalus bubalis) oocytes: Effect of different types of cryoprotectants. Animal Reproduction Science, 84, 327–335. https://doi.org/10.1016/j.anireprosci.2004.02.007

Whittingham, D. G. (1971). Survival of mouse embryos after freezing and thawing. Nature, 233, 125–126. https://doi.org/10.1038/233125a0

Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813. https://doi.org/10.1038/385810a0

Xu, W., Li, Z., Yu, B., He, X., Shi, J., Zhou, R., Liu, D., & Wu, Z. (2013). Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer. PLoS ONE, 8, e64705. https://doi.org/10.1371/journal.pone.0064705

Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., & Kosik, K. S. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137, 647–658. https://doi.org/10.1016/j.cell.2009.02.038

Yang, C. Y., Li, R. C., Pang, C. Y., Yang, B. Z., Qin, G. S., Chen, M. T., Zhang, X. F., Huang, F. X., Zheng, H. Y., Huang, Y. J., & Liang, X. W. (2010). Study on the inter-subspecies nuclear transfer of river buffalo somatic cell nuclei into swamp buffalo oocyte cytoplasm. Animal Reproduction Science, 121, 78–83. https://doi.org/10.1016/j.anireprosci.2010.05.011

Yang, C. X., Liu, Z., Fleurot, R., Adenot, P., Duranthon, V., Vignon, X., Zhou, Q., Renard, J. P., & Beaujean, N. (2013). Heterochromatin reprogramming in rabbit embryos after fertilization, intra-, and interspecies SCNT correlates with preimplantation development. Reproduction, 145, 149–159. https://doi.org/10.1530/rep-11-0421

Yang, X., Smith, S., Tian, X., Lewin, H., Renard, J.-P., & Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nature Genetics, 39, 295–302. https://doi.org/10.1038/ng1973

Yendraliţa, B. P., Zespın, B. P., & Udin, Z. J. (2011). Effect of combination of GnRH and PGF2α for estrus synchronization on onset of estrus and pregnancy rate in different postpartum days in swamp buffalo in Kampar Regency. Journal of the Indonesian Tropical Animal Agriculture, 36, 9–13. https://doi.org/10.14710/jita.36.1.9-13

Yinée, M., Techakumphu, M., Lohachit, C., Sirivaidyapong, S., Na-Chiangmai, A., Roelen, B. A. J., & Colenbrander, B. (2011). Maturation competence of swamp buffalo oocytes obtained by ovum pick-up and from slaughter house ovaries. Reproduction of Domestic Animals, 46, 824–831. https://doi.org/10.1111/j.1439-0531.2011.01750.x

Yuan, L. W., Tsan, L. B., & Shine, J. Y. (2008). Improving the fertility of buffalo cows (Bubalus bubalis) in Taiwan with PGF2α treatment. Journal of Taiwan Livestock Research, 41, 51–62.

Zhang, X., Gao, S., & Liu, X. (2021). Advance in the role of epigenetic reprogramming in somatic cell nuclear transfer-mediated embryonic development. Stem Cells International, 2021, 6681337. https://doi.org/10.1155/2021/6681337

Zhang, Y., Li, J., Villemoes, K., Pedersen, A. M., Purup, S., & Vajta, G. (2007). An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer. Cloning and Stem Cells, 9, 357–363. https://doi.org/10.1089/clc.2006.0090

Zhao, X., Nie, J., Tang, Y., He, W., Xiao, K., Pang, C., Liang, X., Lu, Y., & Zhang, M. (2020). Generation of transgenic cloned buffalo embryos harboring the EGFP gene in the Y chromosome using CRISPR/Cas9-mediated targeted integration. Frontiers in Veterinary Science, 7, 199. https://doi.org/10.3389/fvets.2020.00199

Zicarelli, L. (1997). Superovulatory response in buffalo bred in Italy. In Third course on biotechnology of reproduction in buffaloes (pp. 167–188), Caserta.

How to cite this article: Srirattana, K., Hufana-Duran, D., Atabay, E. P., Duran, P. G., Atabay, E. C., Lu, K., Liang, Y., Chaikhun-Marcou, T., Theerakittayakorn, K., & Parrpai, R. (2022). Current status of assisted reproductive technologies in buffaloes. Animal Science Journal, 93(1), e13767. https://doi.org/10.1111/asj.13767