Heterologous Production of the Marine Myxobacterial Antibiotic Haliangicin and Its Unnatural Analogues Generated by Engineering of the Biochemical Pathway

Yuwei Sun1, Zhiyang Feng1,†, Tomohiko Tomura1, Akira Suzuki1, Seishi Miyano1, Takashi Tsuge1, Hitoshi Mori1, Joo-Won Suh2, Takashi Iizuka3, Ryosuke Fudou4 & Makoto Ojika1

Despite their fastidious nature, marine myxobacteria have considerable genetic potential to produce novel secondary metabolites. The marine myxobacterium Haliangium ochraceum SMP-2 produces the antifungal polyketide haliangicin (1), but its productivity is unsatisfactory. The biosynthetic gene cluster hli (47.8 kbp) associated with 1 was identified and heterologously expressed in Myxococcus xanthus to permit the production of 1 with high efficiency (tenfold greater amount and threefold faster in growth speed compared with the original producer), as well as the generation of bioactive unnatural analogues of 1 through gene manipulation. A unique acyl-CoA dehydrogenase was found to catalyse an unusual γ,δ-dehydrogenation of the diketide starter unit, leading to the formation of the terminal alkene moiety of 1. Biological evaluation of the analogues obtained through this study revealed that their bioactivities (anti-oomycete and cytotoxic activities) can be modified by manipulating the vinyl epoxide at the terminus opposite the β-methoxyacrylate pharmacophore.

Natural products derived from microorganisms have a long history of use as antibiotics for clinical use. As an alternative to conventional antibiotic producers such as Streptomyces, myxobacteria have attracted considerable attention, especially since the remarkable discovery of epothilones as microtubule-stabilizing agent. Myxobacteria are unique Gram-negative proteobacteria that are characterized by gliding and by the formation of multicellular fruiting bodies. They have larger genomes than other taxa of bacteria, and they can produce structurally diverse bioactive secondary metabolites having novel modes of action, making them a promising alternative source of new drugs. Marine myxobacteria are particularly rare and difficult to handle; consequently, their products have only recently been examined. Several groups of antibiotics from the marine environment have been identified, including haliangicins, miuraenamides, salimabromides, salimyxins, and enhygrolides. Haliangicin (1), a polyene-type polyketide with a unique terminal epoxy alkene group and β-methoxyacrylate pharmacophore (Fig. 1), was isolated as the first marine myxobacterial secondary metabolite from the halophilic myxobacterium Haliangium ochraceum SMP-2. It has been reported to be a potent fungicide that interferes with the electron flow within the cytochrome b-c1 segment in fungal mitochondrial respiratory chains.

1Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan. 2Center for Nutraceutical and Pharmaceutical Materials, Department of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-do 449-728, Korea. 3Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan. 4R&D Planning Department, Ajinomoto Co., Inc., Chuo-ku, Tokyo 104-8315, Japan. 5Present address: College of Food Science and Technology, Nanjing Agricultural University, Weigang, Nanjing 210095, China. Correspondence and requests for materials should be addressed to M.O. (email: ojika@agr.nagoya-u.ac.jp)
Most myxobacterial metabolites are polyketides, nonribosomal peptides, or their hybrids; these are known to be biosynthesized by megasynthese polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs). Although it has been reported that the sequences of the PKS genes in marine myxobacterial isolates are highly novel, biochemical studies on their metabolites have been hampered by unfavourable factors, such as difficulties in isolation, slow growth rates, cell aggregation, and poor metabolite productivity. In the case of haliangicin (1), the producer requires culture periods in excess of two weeks to reach maximal production of 1, and typically produces only about 1 mg L$^{-1}$.

Furthermore, the lack of a well-developed genetic methodology applicable to the marine strains is another major obstacle. Therefore, biosynthetic studies on these fastidious marine myxobacteria are still at an early stage, and they remain quite challenging, although attractive.

Here, we describe the cloning and identification of the haliangicin biosynthetic machinery and its use as the first representative of a marine myxobacterial biosynthetic assembly line. The establishment of a heterologous expression system allowed us to optimize the production titre, to manufacture unnatural analogues, and to analyse the function of the biosynthetic enzymes, which would be difficult to achieve with the native producer of 1.

Results

Identification and heterologous expression of the haliangicin biosynthetic gene cluster (hli). The polyene structure of haliangicin (1) suggests that its biosynthetic machinery is a pure PKS system that is accompanied by various enzymes involved in tailoring modifications. To clone the biosynthetic gene cluster responsible for formation of haliangicin, we first constructed a cosmid library of the *H. ochraceum* genome by using the *E. coli/Streptomyces* shuttle vector pDW103^17_. The resulting library, consisting of approximately 1700 cosmids clones, was then screened by colony hybridization using probes homologous to the ketosynthase (KS) genes of terrestrial myxobacteria (Supplementary Fig. S1). The end sequences of several KS-positive cosmids indicated that they might be responsible for the biosynthesis of 1 (Supplementary Fig. S2); these included HMG-CoA synthase for installing a β-branch methyl (9-Me) group and a 3-hydroxyacyl-CoA dehydrogenase for biosynthesizing methoxymalonyl-ACP, a precursor of the 1,2-dioxy unit at the C-3–C-4 position. Of the cosmids that were obtained, two partially overlapping cosmids, c7-6E and c10-11C, were sequenced, revealing a contiguous 63-kbp segment that putatively harbours the entire haliangicin biosynthetic gene cluster (hli). Sequence annotation suggested that the hli gene cluster (GC content 67.2%) spans 47.8 kbp and contains 21 open reading frames (Fig. 2a, Table 1 and Supplementary Tables S1–S3). We assigned these genes to hliA–U. Five Type-I PKS genes (hliF, G, P, S and T) were predicted to be responsible for the construction of the haliangicin backbone. Other genes could be assigned to a β-methyl branching cassette (hliL, M, N, O, and C), a methoxymalonyl-ACP cassette (hliQ, H, I, J, and K), and modification genes encoding an O-methyltransferase (hliD), a metallo-β-lactamase-type thioesterase (hliE), an acyl-CoA dehydrogenase (hliR), and an epoxidase (hliU). As discussed below, there were particular features in the gene cluster, for example, a rather disorganized gene arrangement (scattered PKS genes and segmented gene cassettes) and the presence of insufficient modules to construct the haliangicin backbone.

Demonstration that this gene cluster is responsible for the biosynthesis of haliangicin was hampered by the slow growth and a severe tendency for cell aggregation of the native producer. We therefore set out to express the biosynthetic machinery for 1 heterologously in a more readily cultivated and more tractable host. Our initial attempt to express the hli genes in a *Streptomyces* sp. resulted in transformants that showed no titre of haliangicin (1). Finally, we found that *Mycococcus xanthus*, a fast-growing terrestrial myxobacterium,^19–21_ is a suitable host. The aforementioned cosmids c7-6E and c10-11C, corresponding to the upstream and downstream parts of hli, respectively, were each modified through λ-Red recombineering22 (Supplementary Fig. S3 and S4) and integrated into the chromosome of *M. xanthus* ATCC25232 in a stepwise manner to reconstitute the haliangicin biosynthetic pathway (Supplementary Fig. S5–S7). The constructed strain, which we named *M. xanthus* c10-11C/c7-6E, was found to produce haliangicin (1) successfully, as revealed by HPLC (Fig. 3), verifying that the hli gene cluster is responsible for haliangicin biosynthesis. It is intriguing and worth mentioned that the heterologous host did not produce significant quantities of the 12,13-cis-epoxy isomer (cis-haliangicin), which usually accompanies 1 in the original producer (Fig. S8).

Next, we took advantage of the heterologous producer of 1, *M. xanthus* c10-11C/c7-6E, to settle several issues that were difficult to resolve with the native haliangicin producer.

Optimization of the heterologous production of haliangicin based on the identified biosynthetic precursors. The biosynthetic units for haliangicin (1) were first examined. The producer was fed various 13C-labelled precursors, and the labelled haliangicins produced were analysed by NMR spectroscopy (Supplementary Fig. S9). This revealed that two acetate units, one acetate-derived methyl branch (9-Me), four

Figure 1. Structure of haliangicin.
Propionate units, and three S-adenosylmethionine-derived O-methyl carbon atoms had been incorporated into 1 (Fig. 4a). The remaining two-carbon unit (C3–C4) bearing vicinal oxygen atoms was found to originate from glycerol, as supported by the incorporation of two carbon atoms from [U-13C3]glycerol (Supplementary Fig. S9e). Such a unit is known as a glycolate extender in some metabolites.23–25

Secondly, we evaluated the effects of these biosynthetic precursors on the productivity of haliangicin (1) (Fig. 4b). The haliangicin titre increased significantly when sodium acetate was added at a concentration higher than 50 mM and finally reached 11.0 ± 2.1 mg L–1 at 200 mM of sodium acetate after 5 days. The efficiency of haliangicin production was eleven times higher in quantity and three times shorter in culture period than that achieved with the native producer H. ochraceum.

Proposed mechanism for the biosynthesis of haliangicin. The use of the heterologous host for 1 also made gene manipulation much easier, allowing us not only to acquire a complete picture of the somewhat irregular biosynthetic machinery for 1, but also to generate several new analogues of haliangicin. On the basis of the deduced architecture of the hli gene cluster, we propose the haliangicin biosynthetic route shown in Fig. 2b. From the viewpoint of conventional PKS biosynthesis, the construction of the heptaketide backbone of 1 is likely to require six elongation steps following a C3 starter-loading step, but the hli machinery possesses only five elongation modules (modules 1–5 in Fig. 2b). An iterative function of any particular PKS is unlikely, because all the KS domains in hli are classified as modular not iterative (Supplementary Fig. S10). One possible solution to this problem of a missing module might be the direct use of a diketide (C6) starter, such as 2-methylpent-2-enoyl-CoA.

Figure 2. Haliangicin biosynthetic machinery. (a) Genetic organization of the haliangicin biosynthetic gene cluster (hli). (b) A proposed biosynthetic pathway for haliangicin (1). AT, in module 2 is inactive, but no complementary trans-AT is found in hli. The dashed arrows indicate the unnatural pathways in the gene-disrupted strains of the heterologous host M. xanthus c10-11C/c7-6E. Abbreviations: ACAD, acyl-CoA dehydrogenase; ACP, acyl carrier protein; AT, acyl transferase; DH, dehydratase; ECH, enoyl-CoA hydratase; EPO, epoxidase; ER, enoyl reductase; FkbH, FkbH-like protein; HCS, HMG-CoA synthase; KR, ketoreductase; KS, ketosynthase; MβL-TE, metallo β-lactamase-type thioesterase; O-MT, O-methyltransferase; 3HCDH, 3-hydroxyacyl-CoA dehydrogenase.
methyl-branching cassette26,27 (HliC and HliL–O) (Supplementary Fig. S13). Module 4 incorporates a glycolate module 2-mediated elongation step is followed by the formation of \(\text{HliS} \). The domain arrangements of the PKSs corresponded well with the chemical structure of haliangicin (Fig. 2b). Sequence analysis showed that the diketide precursor might undergo O-demethylation at the carboxyl terminus by HliD and epoxidation at the diene terminus by HliU (Fig. 2b). The diketide precursor might undergo O-demethylation at the carboxyl terminus by HliD and epoxidation at the diene terminus by HliU (Fig. 2b). The diketide precursor might undergo O-demethylation at the carboxyl terminus by HliD and epoxidation at the diene terminus by HliU (Fig. 2b). The diketide precursor might undergo O-demethylation at the carboxyl terminus by HliD and epoxidation at the diene terminus by HliU (Fig. 2b).

Verification of some biosynthetic genes and generation of unnatural analogues of haliangicin.

By using the genetically amenable host producer, we manipulated three genes involved in the formation of haliangicin to validate the proposed biosynthetic pathway discussed above and to produce several unnatural analogues of (Fig. 2b and Supplementary Fig. S11), which is suggested by a putative diketide synthase found in the genomes of *H. ochraceum* and *M. xanthus* (Supplementary Fig. S12).

The diketide precursor 2 might undergo \(\gamma,\delta \)-dehydrogenation by HliR, a particular acyl-CoA dehydrogenase, to form 2-methylpent-2,4-dienoyl CoA (3), which might serve as a starter for the formation of the unique 14,15-terminal olefin of 1. A detailed functional analysis of HliR will be described later. The diene starter, biosynthesized by the methoxymalonyl-ACP cassette24,28 (HliH–K and HliQ) (Supplementary Fig. S14), is next loaded into the typical starter-loading module encoded by HliR, is next loaded into the typical starter-loading module encoded by HliR, is next loaded into the typical starter-loading module encoded by HliR, is next loaded into the typical starter-loading module encoded by HliR, is next loaded into the typical starter-loading module encoded by HliR.

\(\text{HliE} \), 3-hydroxyacyl-CoA dehydrogenase hydroxyacyl-CoA dehydrogenase (Sorangium cellulosum), CCE88386 79/66

\(\text{HliF} \), PKS (KS-AT-O-MT-ACP) polyketide synthase (Chondromyces crocatus), CRD77738 61/48

\(\text{HliG} \), PKS (KS-AT-DH-KR-ACP) polyketide synthase (Sorangium cellulosum), CCE88385 78/62

\(\text{HliH} \), acyl-CoA dehydrogenase acyl-CoA dehydrogenase (Sorangium cellulosum), CCE88384 73/57

\(\text{HliI} \), acyl-CoA dehydrogenase acyl-CoA dehydrogenase (Sorangium cellulosum), CCE88384 73/57

\(\text{HliJ} \), acyl-CoA dehydrogenase acyl-CoA dehydrogenase (Sorangium cellulosum), CCE88384 73/57

\(\text{HliK} \), acyl-CoA dehydrogenase acyl-CoA dehydrogenase (Sorangium cellulosum), CCE88384 73/57

\(\text{HliL} \), PKS (KS-AT) polyketide synthase (Chondromyces crocatus), CRD77738 61/48

\(\text{HliM} \), HMG-CoA synthase HMG-CoA synthase (Nostoc punctiforme PCC 73102), YP_001866566 65/48

\(\text{HliN} \), acyl carrier protein (Nostoc sp. Peltigera membranacea cyanobiont), AGH69805 75/45

\(\text{HliO} \), enoyl-CoA hydratase enoyl-CoA hydratase/isomerase (Nostoc punctiforme PCC 73102), YP_001866567 58/42

\(\text{HliP} \), PKS (KS-ACP-KS-AT-DH-KR-ACP) polyketide synthase (Myxococcus xanthus DK 1622), YP_632696 55/42

\(\text{HliQ} \), PKS (KS-AT-DH-ER-KR-ACP) polyketide synthase (Sorangium cellulosum), CCE88378 61/44

\(\text{HliR} \), acyl-CoA dehydrogenase acyl-CoA dehydrogenase (Burkholderia crenata), WP_030456088 69/55

\(\text{HliS} \), AT-ACP-O-MT putative methoxymalonyl-CoA synthase (Sorangium cellulosum), AAK19984 59/44

\(\text{HliT} \), PKS (KS-AT-DH-ER-KR-ACP) polyketide synthase (Sorangium cellulosum), CCE88378 61/44

\(\text{HliU} \), epoxidase FAD-binding monooxygenase (Geodermatophilus obscurus DSM 43160), YP_003408356 56/42

Table 1. Proposed functions of the proteins involved in haliangicin biosynthesis.
LC-MS (Supplementary Fig. S16). However, because of their labile nature, these acids could not be purified for NMR analyses; consequently, their structures were chemically confirmed by methylation with trimethylsilyldiazomethane to give 12,13-deoxyhaliangicin (7) and haliangicin (1), respectively (Supplementary Fig. S17).

The accumulation of 1-O-demethylhaliangicin (6) in the ΔhliD strain suggests that the free acid 1-O-demethyl-12,13-deoxyhaliangicin (5) also undergoes epoxidation by HliU. Finally, as expected, inactivation of hliU caused 12,13-deoxyhaliangicin (7) to accumulate without the formation of 1 (Supplementary Fig. S18). These results provide convincing confirmatory evidence for our proposed haliangicin biosynthetic machinery.

Functional analysis of dehydrogenase HliR responsible for terminal alkene formation. Terminal alkene structures are found in a few natural products, for example, curacin A,31,32 tautomycetin,33 and FK50634 The unique terminal vinyl epoxide alkene moiety in haliangicin (1) prompted us to elucidate the biosynthetic mechanism responsible for its formation. Because hliR is homologous to acyl-CoA dehydrogenases, the enzyme encoded by this gene might also be a good candidate for introducing the double bond between C-14 and C-15. Actually, the aforementioned gene disruption of hliR prevented the formation of 1 and resulted in the production of analogue 4 with a saturated terminus, thereby providing unequivocal evidence of the direct involvement of hliR. A detailed sequence and phylogenetic analysis indicated that HliR is homologous to short-chain acyl-CoA dehydrogenases and is closest to the propylmalonyl-ACP desaturase TcsD, which catalyses the desaturation of a propyl group to an allyl group in the side-chain biosynthesis of FK50635–37 (Fig. 6). Because functional analyses for such terminal dehydrogenases have been limited exclusively to FK506 and its related metabolites35,38,39, we next expressed HliR in Escherichia coli as a polyhistidine-tagged protein to analyse its biochemical features (Supplementary Fig. S19). With the full-length dihydro analogue 4 in hand, we first examined the possibility of HliR-mediated dehydrogenation being the ultimate step in the biosynthesis of haliangicin. The lack of conversion of 4 into 1 by HliR in vitro precluded this hypothesis (Supplementary Fig. S20). Next, we examined the possibility that formation of the terminal alkene might occur in the starter diketide 2. To prove this, a thio ester mimic of 2, S-(2-methylpent-2-enoyl)-N-acetylcysteamine (2a), was synthesized as the proposed substrate. The recombinant HliR converted 2a entirely into the corresponding dehydro product 3a (Fig. 7a). Preparation of 3a by feeding 2a to the HliR-expressing E. coli yielded a sufficient amount of 3a to permit comprehensive spectroscopic analysis (Supplementary Methods). The substrate specificity was then evaluated by using 14 additional short thio ester mimics, revealing that HliR is highly specific to α,β-unsaturated short acyl compounds, but does not consume saturated or γ,δ-unsaturated compounds (Fig. 7b and Supplementary Fig. S20). Among the substrates tested, S-(pent-2-enoyl)-N-acetylcysteamine (2b), like 2a, was also completely converted into 3b, whereas S-(hex-2-enoyl)-N-acetylcysteamine (2c) and S-(4-methylpent-2-enoyl)-N-acetylcysteamine (2d) underwent partial dehydrogenation. These results suggested that the presence of substituents at the γ- or δ-position might
hinder the dehydrogenation reaction from the enzyme. In addition, unlike TcsD, which demands acyl-carrier protein-tethered substrates, HliR can utilize free small thio esters that mimic acyl-CoA substrates, offering a new strategy for preparing terminal alkenes.

Biological activities of haliangicin analogues. Haliangicin (1) is known to show potent inhibitory activity against the plant pathogenic oomycete *Phytophthora capsici*; in this activity, the terminal β-methoxyacrylate moiety serves as the pharmacophore. Because the unnatural analogues 4 and 7 obtained in this study are modified at the terminus opposite the β-methoxyacrylate, additional biological information might be obtained. In a test using *P. capsici*, analogue 4, which is saturated at the 14,15-olefin, showed the same activity as 1 and the versatile fungicide metalaxyl, whereas analogue 7, lacking the 12,13-epoxide moiety, was 30-fold less active than the other analogues (Table 2), suggesting that the epoxide plays a key role in this activity. It is noteworthy that these
compounds showed potent cytotoxicity against a tumour cell line and that analogue 7 was more active than the natural compound 1. These compounds showed no inhibitory effects on other microorganisms tested.

Discussion

Since the isolation in 2002 of *Haliangium ochraceum* as the first marine myxobacterium, there have been few additional examples of this group. Although such a rare group of microorganisms might appear to be inconsequential, their secondary metabolites, once isolated, were found to be chemically and biologically novel. In addition, a report on Type I PKS genes of marine myxobacterial isolates suggested that the genes in marine myxobacteria were much more unusual than those in terrestrial strains. One of the greatest difficulties in studying marine myxobacteria is their fastidious nature (slow growth, low secondary metabolism, cell aggregation, etc.), which also makes it difficult to apply recently developed techniques for genetic manipulation. Therefore, the present work provides the first insights into biosynthesis in marine myxobacteria. The successful heterologous expression of the biosynthetic machinery for the PKS-type metabolite haliangicin (1) provided several benefits that would be difficult to achieve with the native producer, especially the improved productivity of the fungicide and the production of unnatural analogues, one of which was a more potent cytotoxin than the natural 1. The easier access to the biosynthetic machinery of 1 in a different organism also led to the functional characterization of a unique dehydrogenase that introduces the terminal alkene moiety of 1, thereby widening our understanding of the biosynthetic mechanism underlying the formation of terminal alkene groups. Such γ,δ-dehydrogenation reactions hold promise for generating novel structures in vitro in the future. Genomic information on the native antibiotic producer *H. ochraceum*, which suggests the presence of six other latent biosynthetic gene clusters, prompts us to analyse them by applying our present expertise to produce novel metabolites that are not obtained by cultivation of the native marine myxobacterium.

Methods

Bacterial strains, plasmids, primers and culture conditions. All bacterial strains, vectors, and oligonucleotides (STAR Oligo; Riken Co., Ltd., Nagoya) used in this study are listed in Supplementary Tables S4–S6. The marine myxobacterium *Haliangium ochraceum* SMP-2 was cultivated as previously described. CTT medium was used for the preculture of *Myxococcus xanthus* ATCC25232 (wild type) and all its mutants at 30 °C. Production medium supplemented with 2–4% (w/v) Sepabeads SP207 resin (Mitsubishi Chemical Co., Tokyo) and a 0.1% (v/v) trace-elements solution (TES) was used for the heterologous production of haliangicin (1) and its related metabolites.
were transferred into Extract kit (Stratagene California, San Diego, CA) to obtain about 530 ng of DNA and [U-13C3]glycerol in water were separately added in two portions to the bacterial culture after 48 hours and incubated with [3-13C]acetate, [1, 2-13C2]acetate, [1-13C]propionate, [2-13C]acetyl-CoA (w/v) absorbent resin (Sepabeads SP207) and 0.1% TES. Filter-sterilized 0.2 M solutions of the isotope-labelled precursors were introduced through the 14 kbp region shared with the first cosmid. Electrocompetent cells of M. xanthus ATCC25232 and electroporated (Gene PulserTM, BIO-RAD) at 25 μF, 800 V/cm, 25 μs. The heterologous host M. xanthus c10-11C/c7-6E was cultivated in three or four 100 mL aliquots of production medium supplemented with 2% (w/v) absorbent resin (Sepabeads SP207) and 0.1% TES. Filter-sterilized 0.2 M solutions of the isotope-labelled precursors were introduced through the 14 kbp region shared with the first cosmid. Electrocompetent cells of M. xanthus ATCC25232 and electroporated (Gene PulserTM, BIO-RAD) at 25 μF, 800 V/cm, 25 μs. The expected homologous recombination of the TA fragment was also confirmed by PCR (Supplementary Fig. S6b). Subsequently, 1.7 μg of the second modified cosmid c10-11C TetR was electroporated into M. xanthus c7-6E TA-KanR under the same conditions as those for c7-6E TA-KanR through the 14 kbp region shared with cosmid c7-6E. Mutants were selected on CTT agar plate (oxytetracycline 12.5 μg/mL) for one week and checked by colony PCR using specific primers (Supplementary Fig. S7). The obtained construct carrying the entire length of the hli gene cluster in M. xanthus was named M. xanthus c10-11C/c7-6E. The confirmation of the heterologous production of haliangicin (1) in M. xanthus c10-11C/c7-6E is described in the Supplementary Methods.

Table 2. Biological evaluation of haliangicin (1) and its analogues (4 and 7) obtained through gene disruption. Growth inhibition of the oomycete F. oxysporum f. sp. melonis was evaluated by a disk diffusion test and denoted as minimum doses to form a definite inhibition zone. Metalaxyl was used as a positive control (PC). In MIC test, PCs were amphotericin B for C. rugosa and ampicillin for B. subtilis and E. coli. The cytotoxicity against HeLa cells was determined by MTT test and paclitaxel was used as PC.

Organisms	HeLa S3 cells (IC50, nM)	1	4	7	PC
Phytophthora capsici	41	55	17	8.6	
Candida rugosa (MIC, μg/mL)	>32	>32	>32	0.13	
Bacillus subtilis (MIC, μg/mL)	>32	>32	>32	0.88	
Escherichia coli (MIC, μg/mL)	>32	>32	>32	8.0	

Feeding experiments with stable-isotope-labelled precursors. The heterologous host M. xanthus c10-11C/c7-6E was cultivated in three or four 100 mL aliquots of production medium supplemented with 2% (w/v) absorbent resin (Sepabeads SP207) and 0.1% TES. Filter-sterilized 0.2 M solutions of the isotope-labelled precursors were introduced through the 14 kbp region shared with the first cosmid. Electrocompetent cells of M. xanthus ATCC25232 and electroporated (Gene Pulser™, BIO-RAD) at 25 μF, 800 V/cm, 25 μs. The expected homologous recombination of the TA fragment was also confirmed by PCR (Supplementary Fig. S6b). Subsequently, 1.7 μg of the second modified cosmid c10-11C TetR was electroporated into M. xanthus c7-6E TA-KanR under the same conditions as those for c7-6E TA-KanR through the 14 kbp region shared with cosmid c7-6E. Mutants were selected on CTT agar plate (oxytetracycline 12.5 μg/mL) for one week and checked by colony PCR using specific primers (Supplementary Fig. S7). The obtained construct carrying the entire length of hli was named M. xanthus c10-11C/c7-6E. The confirmation of the heterologous production of haliangicin (1) in M. xanthus c10-11C/c7-6E is described in the Supplementary Methods.
72 hours, respectively, to give a final concentration of 4 mM. After cultivation for six or seven days in total at 30 °C and 180 rpm, labelled haliangicin was extracted, purified, and analysed by 13C NMR spectroscopy (Supplementary Fig. S9).

Optimization of haliangicin production in the M. xanthus heterologous host. The heterologous host M. xanthus c10-11C/c7-6E was cultured in the production medium. 1 M Aqueous solutions of sodium acetate, sodium propionate, and glycerol were prepared, filter-sterilized, and added to the autoclaved culture medium. L-Methionine was added before autoclaving. For higher concentrations of sodium acetate (100 mM or 200 mM), an autoclaved 5 M stock solution was added in two portions to the medium on the second and third day, respectively, to avoid inhibition of the growth of M. xanthus in its early phase. After cultivation at 30 °C and 180 rpm for the scheduled time, the resins and cell pellets were separated from the medium by centrifugation (6000 rpm, 10 min) and extracted twice with acetone. The crude extracts were filtered, evaporated to dryness, and subjected to HPLC analysis [Develosil ODS-UG-5 (ϕ 4.6 × 250 mm), λ = 290 nm; 75% MeOH–H2O, flow rate: 1 mL/min]. The results are summarized in Supplementary Fig. 4b.

Inactivation of haliangicin biosynthetic genes in M. xanthus c10-11C/c7-6E. Disruption of the hli genes was accomplished by integration of a disruption vector into the genome of the heterologous host M. xanthus c10-11C/c7-6E through single crossover recombination. Plasmid pHSG398 (Takara Bio. Co., Ltd, Tokyo) was first linearized by inverse PCR using primers pHSG398 Inverse-F/pHSG398 Inverse-R; by infusion, the original chloramphenicol-resistance gene was replaced with the Tn5 promoter and a nourseothricin-resistance gene (NrsR) (amplified from pNR150 with primers Kan Nrs-f/Amp Nrs-r), resulting a plasmid named pHSG398 Infu NrsR. The internal fragments of the target genes hliD, hliI, and hliU were amplified from H. ochraceum genomic DNA with primers ORF4-MT-f1/ORF4-MT-r1, pHSG18ACAD Infu-f/pHSG18ACAD Infu-r, and pHSG 21Ox Infu f/pHSG 21Ox Infu R, respectively, and inserted into pHSG398 Infu NrsR. Each disruption vector (1.0–1.5 μg) was electroporated into the haliangicin-producing host M. xanthus c10-11-7/6E at 25 μF, 1.8 kV, and 200 Ω in 0.2 cm electroporation cuvettes. Transformants were selected on CTT agar plate (nourseothricin: 100 μg/mL) for about 5–7 days and then grown in 1 mL of CTT medium (kanamycin 200 μg/mL, octetrayclicine 12.5 μg/mL, nourseothricin 100 μg/mL) for an additional three days. The cell culture was directly subjected to PCR to detect integration of the corresponding plasmid into the genome (Supplementary Fig. S15, S16, S18). For the isolation of the unnatural analogues, please refer to the Supplementary Methods.

Cloning and expression of HliR (acyl-CoA dehydrogenase). HliR was amplified from the H. ochraceum genome by PCR using high-fidelity PrimeSTAR Max DNA polymerase (Takara Bio Inc.) and the primers HliR Exp Infu f/HliR Exp Infu r, and subsequently cloned into BamHI/Xhol double-digested pET32a by using an In-Fusion® HD Cloning Kit (Clontech Laboratories, Inc., Mountain View, CA). The purified plasmid was transformed into Single Step (KRX) Competent Cells (Promega, Madison, WI). For the expression of HliR, when the OD600 reached 0.6, a final concentration of 0.1% rhamnose and 0.4 mM IPTG were added to induce protein expression. After induction for additional 20 h at 20 °C, the cells were harvested by centrifugation (6000 rpm, 5 min) and resuspended in 3 mL of extraction buffer (50 mM Tris-HCl, 0.4 M NaCl, pH 7.8). The resulting suspension was lysed by using a sonication homogenizer (50 W, 5 cycles) in the presence of benzonase nuclease (Novagen, Madison, WI) over ice for 30 min. The lysate was centrifuged (6000 rpm, 5 min) to remove insoluble cell debris. The crude protein extracts were stored at −30 °C for subsequent purification. A MagneHis® Protein Purification System (Promega, Madison, WI) was used to purify the His-tagged protein. The crude extract and purified HliR were analysed by SDS-PAGE (10% Tris-HCl gel) (Supplementary Fig. S19).

In vitro enzymatic characterization of HliR. A typical HliR assay contained 500 μM flavin adenine dinucleotide (FAD), 500 μM substrate (for chemical synthesis, see Supplementary Methods), and 1 μM recombinant HliR, in a pH 7.5 buffer (8 mM MgSO4, 10 mM Tris-HCl, and 1 mM potassium phosphate; total volume: 100 μL). The assay mixture was incubated at 30 °C overnight and then extracted with EtOAc. The extracts were analysed by HPLC under the conditions indicated in Supplementary Fig. S20.

References
1. Höfle, G. H. et al. Epothilones A and B: Novel 16-membered macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. Angew. Chem. Int. Ed. 35, 1567–1569 (1996).
2. Nettles, J. H. et al. The binding mode of epothilone A on αβ-tubulin by electron crystallography. Science 305, 866–869 (2004).
3. Weissman, K. J. & Müller, R. A brief tour of myxobacterial secondary metabolism. Bioorg Med. Chem. 17, 2121–2136 (2009).
4. Wenzel, S. C. & Müller, R. Myxobacteria ‘microbial factories’ for the production of bioactive secondary metabolites. Mol. Biosyst. 5, 567–574 (2009).
5. Schäberle, T. F., Lohr, F., Schmitz, A. & König, G. M. Antibiotics from myxobacteria. J. Gen. Appl. Microbiol. 48, 109–116 (2002).
6. Höfle, G. H. et al. Marine myxobacteria as a source of antibiotics: Comparison of physiology, polyketide-type genes and antibiotic production of three new isolates of Enhygromyxa salina. Mar. Drugs 8, 2466–2479 (2010).
7. Höfle, G. H., Iizuka, T., Yamana, S. & Konig, G. M. Antibiotics from myxobacteria. Int. J. Syst. Evol. Microbiol. 63, 1360–1367 (2013).
8. Fudou, R., Fujii, Y., Iizuka, T. & Yamana, S. Hiliangicin, a novel antifungal metabolite produced by a marine myxobacterium. J. Gen. Appl. Microbiol. 48, 109–116 (2002).
9. Iizuka, T., Yamana, S. & Konig, G. M. Antibiotics from myxobacteria. Int. J. Syst. Evol. Microbiol. 63, 1360–1367 (2013).
10. Fudou, R. et al. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. J. Antibiot. (Tokyo) 54, 153–156 (2001).
11. Fudou, R. & Iizuka, T. & Yamana, S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 1. Fermentation and biological characteristics. J. Antibiot. (Tokyo) 54, 149–152 (2001).
12. Kundim, B. A. et al. New haliangicin isomers, potent antifungal metabolites produced by a marine myxobacterium. J. Antibiot. 56, 630–638 (2003).
13. Iizuka, T. et al. Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: Taxonomy, production, and biological properties. J. Antibiot. 59, 385–391 (2006).
14. Ojika, M. et al. Miuraenamides: Antimicrobial cyclic depsipeptides isolated from a rare and slightly halophilic myxobacterium. Chem.–Asian J. 3, 126–133 (2008).
15. Felder, S. et al. Salmobromide: Unexpected chemistry from the obligate marine myxobacterium Enhydrogymoxysalina. Chem.–Eur. J. 19, 9319–9324 (2013).
16. Felder, S. et al. Salymphins and enhygrolides: Antibiotic, sponge-related metabolites from the obligate marine myxobacterium Enhydrogymoxysalina. ChemBioChem 14, 1363–1371 (2013).
17. Komaki, H. et al. PCR detection of type I polyketide synthase genes in myxobacteria. Appl. Environ. Microbiol. 74, 5551–5574 (2008).
18. Hyun, C. G. et al. An efficient approach for cloning the dNTP-glucose synthase gene from actinomycetes and its application in Streptomyces spectabilis, a spectinomycin producer. FEBS Microbiol. Lett. 183, 183–189 (2000).
19. Julien, B. & Shah, S. Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob. Agents. Chemother. 46, 2772–2774 (2002).
20. Stevens, D. C., Henry, M. R., Murphy, K. A. & Boddy, C. N. Heterologous expression of the oxytetracycline biosynthetic pathway in Myxococcus xanthus. Appl. Environ. Microbiol. 76, 2681–2683 (2010).
21. Perlova, O. et al. Reconstitution of the mytotoxizol biosynthetic gene cluster by Red/ET recombination and heterologous expression in Myxococcus xanthus. Appl. Environ. Microbiol. 72, 7485–7494 (2006).
22. Sharan, S. K., Thomason, L. C., Kuznetsov, S. G. & Court, D. L. Recombineering: A homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).
23. Yu, T. W. et al. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinomysnema pretiosum. Proc. Natl. Acad. Sci. USA. 99, 7968–7973 (2002).
24. Wenzel, S. C. et al. On the biosynthetic origin of methoxymalonyl-acetyl carrier protein, the substrate for incorporation of “glycolate” units into ansamitocin and soraphen A. J. Am. Chem. Soc. 128, 14325–14336 (2006).
25. Wu, K., Chang, L., Revill, W. P., Katz, L. & Reeves, C. D. The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene 251, 81–90 (2000).
26. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. 48, 4688–4716 (2009).
27. Calderone, C. T. Isoprenoid-like alkylations in polyketide biosynthesis. Nat. Prod. Rep. 25, 845–853 (2008).
28. Carroll, B. J. et al. Identification of a set of genes involved in the formation of the substrate for the incorporation of the unusual “glycolate” chain extension unit in ansamitocin biosynthesis. J. Am. Chem. Soc. 124, 4176–4177 (2002).
29. Li, Y., Cho, Y.-H., Sheng, Y., Valentine, J. S. & Tang, Y. Comparative characterization of fungal anthraquinone and naphthacenedione biosynthetic pathways reveals an α-hydroxylation-dependent Claisen-like cyclization catalyzed by a dimanganese thioesterase. J. Am. Chem. Soc. 133, 15773–15785 (2011).
30. Cho, Y.-H. et al. Genome mining of a prey-lあなたd and immunosuppressive polyketide from pathogenic fungi. Org. Lett. 15, 780–783 (2013).
31. Chang, Z. X. et al. Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 67, 1356–1367 (2004).
32. Gerwick, W. H. et al. Structure of curacin-a, a novel antimitotic, antiproliferative, and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J. Org. Chem. 59, 1243–1245 (1994).
33. Ubukata, M., Cheng, X. C., Uzawa, J. & Isono, K. Biosynthesis of the dialkylmaleic arylidine-containing antibiotics, tautomycin and tautomycetin. J. Chem. Soc., Perkin Trans. 1, 2399–2404 (1995).
34. Tanaka, H. et al. Structure of FK506: A novel immunosuppressant isolated from Streptomyces. J. Am. Chem. Soc. 109, 5031–5033 (1987).
35. Mo, S. et al. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J. Am. Chem. Soc. 133, 976–985 (2011).
36. Chen, D. D. et al. Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. Appl. Environ. Microbiol. 78, 5093–5103 (2012).
37. Andexer, J. N. et al. Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc. Natl. Acad. Sci. USA. 108, 4776–4781 (2011).
38. Lechner, A. et al. Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering. ACS Synth. Biol. 2, 379–383 (2013).
39. Goranović, D. et al. Origin of the allyl group in FK506 biosynthesis. J. Biol. Chem. 285, 14292–14300 (2010).
40. Hodgkin, J. & Kaiser, D. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA. 74, 2938–2942 (1977).
41. Ojika, M. et al. Cystothiazoles A and B, and new bithiozole-type antibiotics from the myxobacterium Cystobacter fuscus. J. Antibiot. (Tokyo) 51, 275–281 (1998).
42. Reichenbach, H. & Dworkin, M. In: The prokaryotes 2nd edn, (eds Balows, A., Truper, H. G., Dworkin, M., Harder W. & Schleifer K.) Ch. 118, 3416–3487 (Springer, 1992).
43. Sato, J., Coyne, C. K. C. & Swarup, S. A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal. Biochem. 278, 86–90 (2000).
44. Beyer, S., Kunze, B., Silakowski, B. & Müller, R. Metabolic diversity in myxobacteria: Identification of the malalamin and the stigmatelmin biosynthetic gene cluster of Stigmatella aurantiaca Sg a15 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strain Sorangium cellulosum So c e90. Biochem. Biophys. Acta 1445, 185–195 (1999).
45. Marchler-Bauer, A. et al. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229 (2011).
46. Blin, K. et al. antiSMASH 2.0: a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 41, W204–W212 (2013).
47. Ziemert, N. et al. The natural product domain seeker NaPDoS: A phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7, e34064 (2012); doi: 10.1371/journal.pone.003406.
48. Simonovic, M. et al. Myxovirescins A biosynthesis is directed by hybrid polyketide synthases/nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl-CoA synthases, and trans-acting acyltransferases. ChemBioChem 7, 1206–1220 (2006).
49. Fu, J. et al. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res. 36, e113 (2008); doi: 10.1093/nar/gkn499.
50. Malonek, S., Rojas, M. C., Hedden, P., Hopkins, P. & Tudzynski, B. Restoration of gibberellin production in Fusarium proliferatum by functional complementation of enzymatic blocks. Appl. Environ. Microbiol. 71, 6014–6025 (2005).
Acknowledgements
This work was financially supported in part by Takeda Science Foundation. We thank the National Cancer Institute (USA) and the National BioResource Project (NIG, JAPAN): E. coli for providing bacterial strains. Y.S. is grateful for a scholarship provided by the China State-Funded Postgraduates Overseas Study Program from the Chinese Scholarship Council. J.S.’s work was carried out with the support of Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01128901), Rural Development Administration, Republic of Korea.

Author Contributions
Y.S. deciphered the detailed mechanism of the haliangicin biosynthesis, performed its efficient production, and prepared the manuscript. Z.F. constructed the cosmid library. T.To. performed the biological tests. A.S. accomplished the heterologous expression. S.M. performed the incorporation experiments. T.Ts. and H.M. gave important advice. J.S. provided the cosmid vector and its associated information. T.I. and R.F. cultured the myxobacteria. M.O. designed the project and wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Sun, Y. et al. Heterologous Production of the Marine Myxobacterial Antibiotic Haliangicin and Its Unnatural Analogues Generated by Engineering of the Biochemical Pathway. Sci. Rep. 6, 22091; doi: 10.1038/srep22091 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/