Introduction: Rituximab (RTX) is a B cell depleting agent approved for the treatment of granulomatosis with polyangiitis (GPA). RTX reduces antibody producing precursor plasma cells and inhibits B and T cells interaction. Infections related to T cell immunodeficiency are not infrequent during RTX treatment. Our study investigated CD4 cell count and CD4/CD8 ratio in GPA patients during the first 2 years of long-term RTX treatment.

Methods: Single centre cohort study of 35 patients who received median total cumulative dose of cyclophosphamide (CYC) of 15 g and were treated with RTX 2 g followed by retreatment with either 2 g once annually or 1 g biannually. Serum levels of total immunoglobulin and lymphocytes subsets were recorded at RTX initiation and at 3, 6, 12, 18 and 24 months. Low CD4 count and inverted CD4/CD8 ratio were defined as CD4 < 0.3 x 10^9/l and ratio < 1. Results: The CD4 cell count and CD4/CD8 ratio decreased slightly following the initial RTX treatment and then increased gradually during maintenance treatment. While the proportion of patients with low CD4 cell count decreased from 43 % at baseline to 18 % at 24 months, the ratio remained inverted in 40 %. Oral daily prednisolone dose at baseline, cyclophosphamide exposure and the maintenance regimen did not influence the CD4 cell count and ratio. Being older (p=0.012) and having a higher CRP (p=0.044) and ESR (p=0.024) at baseline significantly increased the risk of inverted CD4/CD8 ratio at 24 months. Inverted ratio at baseline associated with lower total immunoglobulin levels during the study. Conclusions: Overall, CD4 and CD4/CD8 ratio increased during maintenance RTX therapy in GPA with no discernible impact of other immunosuppressive therapy. However the increase in CD4 was not followed by an increase in CD4/CD8 ratio, especially in older patients. Inverted CD4/CD8 ratio associated with lower immunoglobulin levels, suggesting a more profound B cell depleting effect of RTX with a relative increase in CD8+ lymphocytes.
CD4 cell count and CD4/CD8 ratio increase during rituximab maintenance in Granulomatosis with polyangiitis patients.

Emilio Besada 1 and Johannes C Nossent 2,3

1 Bone and joint research group, Institute of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
2 School of Medicine & Pharmacology QEII Medical Centre Unit, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
3 Sir Charles Gairdner Hospital, Rheumatology, Nedlands WA 6009, Australia

Email addresses:
emilio.besada@uit.no
johannes.nossent@uwa.edu.au

Corresponding author:
Emilio Besada
Bone and Joint Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
Telephone: + 47 776 27294
Fax: +47 776 27258
E-Mail: emilio.besada@uit.no
Abstract

Introduction

Rituximab (RTX) is a B cell depleting agent approved for the treatment of granulomatosis with polyangiitis (GPA). RTX reduces antibody producing precursor plasma cells and inhibits B and T cells interaction. Infections related to T cell immunodeficiency are not infrequent during RTX treatment. Our study investigated CD4 cell count and CD4/CD8 ratio in GPA patients during the first 2 years of long-term RTX treatment.

Methods

Single centre cohort study of 35 patients who received median total cumulative dose of cyclophosphamide of 15 g and were treated with RTX 2 g followed by retreatment with either 2 g once annually or 1 g biannually. Serum levels of total immunoglobulin and lymphocytes subsets were recorded at RTX initiation and at 3, 6, 12, 18 and 24 months. Low CD4 count and inverted CD4/CD8 ratio were defined as CD4 < 0.3 x 10^9/l and ratio < 1.

Results

The CD4 cell count and CD4/CD8 ratio decreased slightly following the initial RTX treatment and then increased gradually during maintenance treatment. While the proportion of patients with low CD4 cell count decreased from 43 % at baseline to 18 % at 24 months, the ratio remained inverted in 40 %. Oral daily prednisolone dose at baseline, cyclophosphamide exposure and the maintenance regimen did not influence the CD4 cell count and ratio. Being older (p=0.012) and having a higher CRP (p=0.044) and ESR (p=0.024) at baseline significantly increased the risk of inverted CD4/CD8 ratio at 24 months. Inverted ratio at baseline associated with lower total immunoglobulin levels during the study.

Conclusions
Overall, CD4 and CD4/CD8 ratio increased during maintenance RTX therapy in GPA with no discernible impact of other immunosuppressive therapy. However the increase in CD4 was not followed by an increase in CD4/CD8 ratio, especially in older patients. Inverted CD4/CD8 ratio associated with lower immunoglobulin levels, suggesting a more profound B cell depleting effect of RTX with a relative increase in CD8+ lymphocytes.
1. Introduction

Granulomatosis with polyangiitis (GPA) is an antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) resulting in a necrotizing small to medium vessels vasculitis and a necrotizing granulomatous inflammation involving predominantly the upper and lower respiratory tract and the kidneys. GPA is the result of a complex interplay between the humoral and cellular immunity involving proteinase 3-ANCA (PR3-ANCA), neutrophils, endothelial cells, B and T cells [1].

T cells are important in GPA as persistent activation of T cells through aberrant expression of costimulatory molecules favours the expansion of effector memory T cells and the formation of granuloma [2]. Changes in T cells in GPA patients occur during remission when circulating memory T cells are increased and naive T CD4+ cells are decreased [3]. Also, T cell-targeted therapies such as abatacept, alemtuzumab and gusperimus are alternative treatments to B cell depletion with rituximab (RTX) in GPA [4].

However, a subgroup of GPA patients has low CD4 cell count and inverted CD4/CD8 ratio irrespective of disease activity and the use of immunosuppressive drugs, possibly due to the recruitment of T cells into the inflamed tissue [5]. It is not clear whether it is the decrease of CD4 cell count [6], the expansion of CD8 cell count or a combination of both [7,8] that is responsible for the inversion of the ratio.

RTX is a chimeric human-mouse monoclonal antibody directed against CD20 that induces rapid and sustained depletion of premature and mature B cells through antibody-dependent, complement-mediated cellular cytotoxicity and apoptosis [9]. RTX reduces auto-antibody
producing precursor plasma cells, inhibits B cell interaction with auto reactive T cells and decreases the level of soluble factors secreted by B cells [9]. RTX is approved for the treatment of rheumatoid arthritis (RA) and AAV and is used off label in a large number of autoimmune conditions [10]. In AAV, RTX is used to induce [11,12] and to maintain [13-16] remission through iterative infusions. Relevant side effects of RTX include late onset neutropenia [17], hypogammaglobulinemia [18,19] and an increased risk of infections [16,20-22]. In 2 studies, 27-44 % of all severe infections during RTX treatment were either viral or fungal [16,18], possibly related to T cell immunodeficiency.

Our study investigated the course of CD4 cell count, CD4/CD8 ratio and serum levels of total immunoglobulin (Ig) in GPA patients receiving long-term RTX treatment.
2. Methods

The Vasculitis Registry in Northern Norway is an observational prospective registry collecting data on disease presentation and course from patients with an established diagnosis of primary vasculitis. All patients gave informed written consent at inclusion in accordance with the declaration of Helsinki.

A total of 35 patients from the Vasculitis Registry in Northern Norway with an established diagnosis of GPA were included in the study. The study did not require formal ethical approval and conformed to the standards currently applied in Norway. Patients’ characteristics at baseline have been previously described [16].

At RTX initiation, the patients (median age of 50 (14-79), 54 % males) had median disease duration of 55 months (1-270). 86 % of the patients were ANCA positive; all except one were PR3-ANCA positive. Renal, lung and orbital or/and subglottic involvement was present in 60 %, 63 % and 57 % of the patients. Median Birmingham Vasculitis Activity Score (BVAS) was 9 (0-22) at baseline. The main indication for RTX was disease relapse (80 %), new disease onset (17 %) and maintenance therapy (3%). Patients had received a median cumulative cyclophosphamide (CYC) dose of 14 g (0-250) prior to RTX and all had normal total Ig levels (>6 g/l) prior to RTX.

Patients received 2 g RTX at induction (1 g twice in a fortnight) with co-administration of methylprednisolone 125 mg, paracetamol 1000 mg and either cetirizine 10 mg or polaramine 4 mg. RTX was usually combined with a median oral daily prednisolone dose (ODPD) of 20 mg (0-60) and an immunosuppressive drug in 91 % of the patients. Overall, patients received a
median cumulative RTX dose of 4 g (2-6) during the first 24 months following its initiation.

Respectively 49 % and 40 % received long-term maintenance with the 2 g annually regimen (1 g twice in a fortnight per year) or the 1 g biannually regimen (1 g every 6 months), while 11 % received only induction.

Clinical parameters such as gender, age, erythrocyte sedimentation rate (ESR, nr: < 20 in men and < 28 mm/h in women), C-reactive protein (CRP, nr < 5 mg/l), creatinine (nr: 60-105 in men and 45-90 μmol/l in women), ANCA titers (nr < 10 IU/ml), the ODPD and the cumulative dose of CYC were recorded at baseline. Serum levels of total Ig and lymphocytes subsets were measured at RTX initiation and at 3, 6, 12, 18 and 24 months in respectively 35, 24, 31, 34, 31 and 34 patients. CD4 and CD8 cell counts were determined by flow cytometry in blood specimens. Normal adult CD4 and CD8 cell counts for our laboratory ranged from 0.3 – 1.4 and 0.2 – 0.9 x 10⁹/l respectively. Low CD4 cell count was defined as CD4 < 0.3 x 10⁹/l and inverted CD4/CD8 ratio when ratio < 1. Hypogammaglobulinemia was defined as serum total Ig < 6 g/l.

Severe infections were defined as infections necessitating intravenous antibiotic treatment and/or hospitalisation.

Data were analysed with SPSS version 20.0 (SPSS Ltd, Chicago, IL, USA). The results are expressed in percentage for categorical variable and in median (range) for continuous variables, unless specified otherwise. Fisher’s exact test, Wilcoxon signed rank test and Man-Whitney U test were used as appropriate. Significant predictors of inversion of the CD4/CD8 ratio at 24 months determined during univariable analysis were entered in a multivariable binary logistic
regression model with backward selection (p<0.05 to enter and p<0.10 to stay). Missing data were excluded from the statistical analyses. P-values <0.05 were considered significant.
3. Results

3.1 CD4 cell count and ratio

Both the CD4 cell count and the CD4/CD8 ratio decreased initially after RTX administration, and thereafter increased gradually (Figure 1). The CD4 cell count seemed to decrease between baseline and 3 months (0.36 to 0.28 x10⁹/l, p=0.166), while the ratio decreased significantly from 1.16 to 0.99 (p=0.011). At 24 months, CD4 cell count and ratio had both significantly increased from baseline: respectively 0.45 x10⁹/l (p=0.039) and 1.38 (p=0.031).

However, while the proportion of patients with a low CD4 cell count decreased from 43 % at baseline to 18 % at 24 months, the proportion of patients with inverted ratio remained stable around 40 % throughout the study period (Figure 2).

3.2 Baseline clinical profile influence on CD4 cell count and ratio

3.2.1 CD4 cell count and ratio at baseline

Patients with low CD4 cell count and inverted ratio at baseline had a tendency to be older (respectively p=0.069 and p=0.057) (Tables 1 and 2). Only patients with low CD4 cell count seemed to have a higher cumulative dose of CYC compared with patients with a normal baseline CD4 cell count (p=0.071) (Table 2).

There were no difference in organ involvements, disease duration prior to RTX, BVAS, CRP, ESR, creatinine and ANCA titers at RTX initiation between patients with normal and low CD4 cell count at baseline (Table 1) and patients with normal and inverted ratio (Table 2).

3.2.2 CD4/CD8 ratio at 24 months
Patients who had an inverted CD4/CD8 ratio at 24 months were older (60 vs. 45 years, \(p=0.003 \)), had higher ESR (43 vs. 12 mm/hr, \(p=0.009 \)) and creatinine (82 vs. 67 \(\mu \)mol/l, \(p=0.018 \)) at baseline. Although not significant, they also had a tendency to higher BVAS (11 vs. 8, \(p=0.096 \)), CRP (24 vs. 6 mg/l, \(p=0.076 \)) and ANCA titers (16 vs. 5 IU/ml, \(p=0.089 \)). Being older and having higher CRP and ESR at baseline significantly increased the risk of inverted CD4/CD8 ratio at 24 months during univariable analysis (Table 3). Age was the most important predictor for inversion of the CD4/CD8 ratio at 24 months during the multivariable analysis (Table 3). Being 10 years older at RTX initiation increased the risk by 2.5 times.

3.3 Serum immunoglobulin levels

Serum total immunoglobulin levels in both patients with low CD4 cell count and inverted ratio were lower at all time points during RTX maintenance (Tables 1 and 2). This was only significant in patients with inverted ratio compared with patients with normal ratio at baseline (Table 2). The different RTX maintenance regimens did not influence CD4 cell count, ratio and total immunoglobulin levels in the first 2 years (Table 4).

3.4 Severe infections in the first 24 months after RTX initiation

Two patients (5.7 %) had severe infections during the study period 3 and 4 months after RTX initiation. One patient had sinusitis secondary to Pseudomonas aeruginosa and the other had Pneumocystis jiroveci pneumonia. They were men, aged 62 and 79 years old, who had received 250 and 25 g of CYC. They had low B cell (0.04 and 0.06 \(\times 10^9/l \)) and CD4 cell counts (0.17 and 0.26 \(\times 10^9/l \)), inverted ratio (0.35 and 0.43), but had normal serum levels of total Ig (11.2 and
193 12.6 g/l) at baseline. At the time of infection, CD4 cell count remained low (0.16 and 0.17 x
194 10^9/l) and total Ig had declined by to 4.8 g/l and 7.5 g/l respectively.
195
196 3.5 CD4 cell count and ratio in GPA patients who did not receive RTX maintenance
197 Four GPA patients (2 men and 2 women) with a median age of 65 (14 - 79) years who had
198 received a cumulative dose of 3 (0 - 25) g of CYC were only administered RTX at induction and
199 did not receive RTX maintenance.
200 The CD4 cell count and ratio decreased from 0.54 (0.26 - 0.98) at baseline to 0.36 (0.34 - 0.63) x
201 10^9/l at 24 months. The CD4/CD8 ratio decreased from baseline and became inverted at 24
202 months: from 1.4 (0.43 – 2.2) to 0.61 (0.45 – 2.0).
4. Discussion

In GPA patients on long term RTX treatment, overall CD4 cell count and CD4/CD8 ratio initially decreased in the first 3 months and thereafter gradually increased independent of the ODPD at baseline, the CYC cumulative dose and the maintenance regimen. However in older patients, the inverted ratio at baseline remained unchanged after 2 years and was associated with lower levels of total Ig.

4.1 Early effect of rituximab on CD4 cell count

Prior to RTX treatment, 34 and 43 % of GPA patients had respectively inverted CD4/CD8 ratio and decreased absolute numbers of CD4 cells. Age and the cumulative CYC dose were the most closely associated parameters, although these were not found statistically significant in this small cohort.

During RTX treatment, the early decrease in CD4 cell count seemed dependent of the baseline CD4 count. The higher the CD4 cell count was at baseline, the more CD4 cell count declined at 3 months. GPA patients with normal CD4 cell count (mean 0.67 x 10^9/L at baseline) had a 40 % decrease at 3 months while GPA patients with low CD4 cell count (mean 0.19 x 10^9/L at baseline) had an 89 % increase.

The same pattern was observed in rheumatoid arthritis (RA) [23-25] and in systemic lupus erythematosus (SLE) patients [26], but not in renal transplantation [27]. In RA, CD4 cell count decreased by 37 % at 3 months from a mean of 1.25 x 10^9/l at baseline [23], remained unchanged at 4 months from a mean of 0.93 x 10^9/l at baseline [24] and increased by 14 % from a mean of 0.63 x 10^9/l at baseline during the first 3 months [25]. SLE patients had a 46 % increase in CD4
cell count one month after RTX initiation from a mean of 0.43 x 10⁹/l at baseline [26]. However there were no effect of a single dose of RTX (375mg/m²) on the CD4 and CD8 cell counts as well as the percentage of the different CD4 cell subsets including regulatory T cells at 3 and 24 months in renal transplant recipients concomitantly treated with tacrolimus and mycophenolate mofetil during the first 6 months [27].

4.2 Rituximab failed to normalise the CD4/CD8 ratio at 24 months
RTX induction and maintenance failed to normalise the CD4/CD8 ratio in GPA patients with an inverted ratio at baseline, although CD4 cell counts recovered. Being 10 years older at baseline doubled the risk of inversion of the CD4/CD8 ratio at 24 months. This suggests a relative increase in CD8+ lymphocytes in older GPA patients receiving RTX. Still it remains unclear how absolute CD4 cell count and ratio related to changes in disease activity, subsets of CD4 and CD8 cells or the combination of toxic drug effects.

GPA patients with inverted ratio after 24 months of RTX maintenance seemed to have more disease activity prior to RTX, more kidney involvement and higher inflammation parameters, in accordance to a previous report from Iking-Konert et al [8]. They also had lower serum immunoglobulin during the course of our study, suggesting a more profound B cell depleting effect.

4.3 Limitations of the study
Our results should be interpreted with caution given the small size of the study cohort and the inherent risk of selection bias. Most of our GPA patients received RTX for refractory and relapsing disease, indicating a selected group who had received high cumulative dose of CYC
and prolonged corticosteroids exposure prior to RTX. In addition, we only followed CD4 and CD8 counts in patients, and did not study important T cell subsets such as regulatory T cells.
5. Conclusions

Our study suggests that the early decrease in CD4 after induction with RTX seemed dependent of the baseline CD4 count. Overall, CD4 cell count and CD4/CD8 ratio in GPA patients increased over time during RTX with no discernible impact of other immunosuppressive therapy. Increase in CD4 was not always followed by an increase in CD4/CD8 ratio, especially for a subgroup of older patients whom CD4/CD8 ratio remained inverted. Inverted CD4/CD8 ratio associated with lower immunoglobulin levels during maintenance with RTX.

Our study suggest that GPA patients with inverted CD4/CD8 ratio seemed to have a more profound B cell depleting effect of RTX and a relative increase in CD8+ lymphocytes. CD4/CD8 ratio could be an important marker of a patient’s net status of immunodeficiency during RTX, since inverted CD4/CD8 ratio is a common surrogate marker of immunosenescence of impaired responses to vaccination and infections due to the loss of repertoire diversity [28].
References

1. Kallenberg CG. Pathogenesis of ANCA-associated vasculitides. Ann Rheum Dis. 2011;70 Suppl 1:i59-63

2. Wilde B, Thewissen M, Damoiseaux J, van Paassen P, Witzke O, Tervaert JW. T cells in ANCA-associated vasculitis: what can we learn from lesional versus circulating T cells? Arthritis Res Ther. 2010;12:204

3. Abdulahad WH, van der Geld YM, Stegeman CA, Kallenberg CG. Persistent expansion of CD4 effector memory T cells in Wegener’s granulomatosis. Kidney Int. 2006;70:938–47.

4. Furuta S, Jayne D. Emerging therapies in antineutrophil cytoplasm antibody associated vasculitis. Curr Opin Rheumatol. 2014;26:1-6

5. Berden AE, Kallenberg CG, Savage CO, Yard BA, Abdulahad WH, de Heer E, Bruijn JA, Bajema IM. Cellular immunity in Wegener’s granulomatosis: characterizing T lymphocytes. Arthritis Rheum. 2009;60:1578-87

6. Marinaki S, Kälsch AI, Grimminger P, Breedijk A, Birck R, Schmitt WH, Weiss C, van der Woude FK, Yard BA. Persistent T-cell activation and clinical correlations with patients with ANCA-associated vasculitis. Nephrol Dial Transplant. 2006;21:1825-32

7. Ikeda M, Tsuru S, Watanabe Y, Kitahara S, Inouye T. Reduced CD4-CD8 T cell ratios in patients with Wegener’s granulomatosis. J Clin Lab Immunol. 1992;38:103-9

8. Iking-Konert C, Vogl T, Prior B, Wagner C, Sander O, Bleck E, Ostendorf B, Schneider M, Andrassy K, Hänsch GM. T lymphocytes in patients with primary vasculitis:
expansion of CD8+ T cells with the propensity to activate polymorphonuclear neutrophils. Rheumatology. 2008;47:609-16

9. Leandro MJ, de la Torre I. Translational mini-review series on B cell-directed therapies: the pathogenic role of B cells in autoantibody-associated autoimmune diseases – lessons from B cell-depletion therapy. Clin Exp Immunol. 2009;157:191-7

10. Edwards JCW, Cambridge G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nature Rev Immunol. 2006;6:394-403

11. Jones RB, Tevaert JW, Hauser T, Luqmani R, Morgan MD, Peh CA, Savage CO, Segelmark M, Tesar V, van Paassen P, Walsh D, Walsh M, Westman K, Jayne DR; European Vasculitis Study Group. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med. 2010;363:211-20

12. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, Kallenberg CG, St Clair EW, Turkiewicz A, Tchao NK, Webber L, Ding L, Sejismundo LP, Mieras K, Weitzenkamp D, Ikle D, Seyfert-Margolis V, Mueller M, Brunetta P, Allen NB, Fervenza FC, Geetha D, Keogh KA, Kissin EY, Monach PA, Peikert T, Stegeman C, Ytterberg SR, Specks U; RAVE-ITN Research Group. Rituximab versus cyclophosphamide for induction of remission in ANCA-associated vasculitis. N Engl J Med. 2010;363:221-32

13. Guillemin L, Pagnoux C, Karras A, Khouatra C, Aumaître O, Cohen P, Maurier F, Decaux O, Ninet J, Gobert P, Quémeneur T, Blanchard-Delaunay C, Godmer P, Puéchal X, Carron PL, Hatron PY, Limal N, Hamidou M, Ducret M, Daugas E, Papo T, Bonnotte B, Mahr A, Ravaud P, Mouthon L; French Vasculitis Study Group. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N Engl J Med. 2014;371:1771-80
14. Smith RM, Jones RB, Guerry MJ, Laurino S, Catapano F, Chaudhry A, Smith KG, Jayne DR. Rituximab for remission maintenance in relapsing ANCA-associated vasculitis. Arthritis Rheum. 2012;64: 3760-69

15. Cartin-Ceba R, Golbin JM, Keogh KA, Peikert T, Sánchez-Menéndez M, Ytterberg SR, Fervenza FC, Specks U. Rituximab for remission induction and maintenance in refractory granulomatosis with polyangiitis (Wegener’s): ten-year experience at a single center. Arthritis Rheum. 2012;64:3770-8

16. Besada E, Koldingsnes W, Nossent JC. Long-term efficacy and safety of pre-emptive maintenance therapy with rituximab in granulomatosis with polyangiitis: results from a single centre. Rheumatology. 2013;52:2041-7

17. Besada E, Koldingsnes W, Nossent J. Characteristics of late onset neutropenia in rheumatologic patients treated with rituximab: a case review analysis from a single center. QJM. 2012;105:545-50

18. Makatsori M, Kiani-Alikhan S, Manson A, Verma N, Leandro M, Gurugama NP, Longhurst HJ, Grigoriadou S, Buckland M, Kanfer E, Hanson S, Ibrahim MA, Grimbacher B, Chee R, Seneviratne SL. Hypogammaglobulinemia after rituximab treatment- its incidence and outcome. QJM. 2014;107:821-8

19. Besada E, Koldingsnes W, Nossent JC. Serum immunoglobulin levels and risk factors for hypogammaglobulinemia during long-term maintenance therapy with Rituximab in patients with Granulomatosis with polyangiitis. Rheumatology. 2014;53:1818-24

20. Ram R, Ben-Bassat I, Shpilberg O, Polliack A, Raanani P. The late adverse events of rituximab therapy – rare but there! Leuk Lymphoma. 2009;50:1083-95
21. Sailler L, Attane C, Michenot F, Canonge JM, Rostaing L, Arlet-Suau E, Arlet P, Launay F, Montastruc JL, Lapeyre-Mestre M. Rituximab off-label use for immune diseases: assessing adverse events in a single-centre drug-utilization survey. Br J Clin Pharmacol. 2008;66:320-2

22. Gottenberg JE, Ravaud P, Bardin T, Cacoub P, Cantagrel A, Combe B, Dougados M, Flipo RM, Godeau B, Guillevin L, Le Loët X, Hachulla E, Schaeverbeke T, Sibilia J, Baron G, Mariette X; AutoImmunity and Rituximab registry and French Society of Rheumatology. Risk factors for severe infections in patients with rheumatoid arthritis treated with rituximab in the autoimmunity and rituximab registry. Arthritis Rheum. 2010;62:2625-32

23. Mélet J, Mulleman D, Goupille P, Ribourtout B, Watier H, Thibault G. Rituximab-induced T cell depletion in patients with rheumatoid arthritis: association with clinical response. Arthritis Rheum. 2013;65:2783-90

24. Thurlings RM, Vos K, Wijbrandts CA, Zwinderman AH, Gerlag DM, Tak PP. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann Rheum Dis. 2008;67:917-25

25. Feuchtenberger M, Müller S, Roll P, Waschbisch A, Schäfer A, Kneitz C, Wiendl H, Tony HP. Frequency of regulatory T cells is not affected by transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Open Rheumatol J. 2008;2:81-88

26. Sfikakis PP, Boletis JN, Lionaki S, Vigklis V, Fragiadaki KG, Iniotaki A, Moutsopoulos HM. Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an open-label trial. Arthritis Rheum. 2005;52:501-13
27. Kamburova EG, Koenen HJ, van den Hoogen MW, Baas MC, Joosten I, Hilbrands LB. Longitudinal analysis of T and B cell phenotype and function in renal transplant recipients with or without rituximab induction therapy. PLoS One. 2014;9:e112658

28. Blackman MA, Woodland DL. The narrowing of the CD8 T cell repertoire in old age. Curr Opin Immunol. 2011;23:537-42
Figure 1 (on next page)

CD4 cell count and CD4/CD8 ratio in GPA patients during long-term RTX treatment.

Full line: low CD4 cell count. Dashed line: inverted CD4/CD8 ratio.

Table results are expressed in median and interquartile range.
CD4 cell count $x 10^9/L$

Months	CD4 cell count $x 10^9/L$
0	0.36±0.22-0.64
3	0.28±0.17-0.50
6	0.34±0.27-0.49
12	0.39±0.29-0.59
18	0.42±0.30-0.56
24	0.45±0.33-0.88

CD4/CD8 ratio

Months	CD4/CD8 ratio
0	1.16±0.85-1.74
3	0.99±0.54-1.34
6	1.12±0.71-1.46
12	1.14±0.75-1.78
18	1.19±0.82-1.85
24	1.38±0.61-1.99
Figure 2 (on next page)

Proportion of GPA patients with low CD4 cell count and inverted ratio during long-term rituximab

Full line: low CD4 cell count. Dashed line: inverted CD4/CD8 ratio.

The proportion of patients is expressed in percentage.
Inverted CD4/CD8 ratio

Low CD4 cell count
Characteristics of GPA patients with low CD4 cell count at baseline against the rest of the cohort.

Results are expressed in number (percentage) for categorical variables and median (range) for continuous variables. Differences were determined respectively by Fisher’s exact test and Mann Whitney U test. Serum total immunoglobulin level and CD4 cell count expressed respectively in g/L and x 10^9/L. ANCA: antineutrophil cytoplasmic antibodies; BVAS: Birmingham vasculitis activity score; CD: cluster of differentiation; CRP: C-reactive protein; CYC: cyclophosphamide; ESR: erythrocyte sedimentation rate; HypoG: hypogammaglobulinemia; Ig: immunoglobulins; mo: months; NA: not available; ODPD: oral daily prednisolone dose; RTX: rituximab
	Low CD4 count	Normal CD4 count	p-value
	15 patients	20 patients	
Male	9 (40 %)	10 (50 %)	0.784
Age y	58 (19-79)	47 (14-67)	0.069
Disease duration prior RTX mo	93 (2-270)	45 (1-198)	0.254
BVAS at baseline	11 (4-21)	8.5 (0-21)	0.657
ESR mm/t	15 (3-118)	17 (7-100)	0.400
CRP mg/L	6 (4-135)	7.5 (4-127)	0.908
Creatinine μmol/L	75 (46-244)	77 (43-819)	0.934
ANCA titers IU/L	7 (0-531)	8 (1-109)	0.780
Kidney involvement	8 (53 %)	13 (65 %)	0.511
Lung involvement	10 (67 %)	12 (60 %)	0.737
Orbital-subglottic involvemnt	10 (67 %)	10 (50 %)	0.492
ODPD mg	25 (3-50)	20 (0-60)	0.458
Total CYC dose g	25 (0-250)	13 (0-68)	0.071
Total RTX dose g	4.0 (2-5)	4.0 (2-6)	0.780
1g biannually RTX regimen	6 (40 %)	8 (40 %)	1.00

Baseline

	Total Ig	HypoG	CD4	Ratio
	10.0 (8.2-18)	0	0.21 (0.06-0.29)	0.94 (0.27-2.3)
	11.8 (6.7-21)	0	0.61 (0.31-1.4)	1.51 (0.55-3.0)

At 3 months

	Total Ig	HypoG	CD4	Ratio
	7.3 (4.8-15)	3 (25 %)	0.17 (0.09-1.4)	0.81 (0.34-1.5)
	8.7 (6.6-12)	0	0.32 (0.17-0.89)	1.12 (0.26-2.4)

At 6 months

	Total Ig	HypoG	CD4	Ratio
	7.4 (4.5-16)	3 (23 %)	0.27 (0.16-0.57)	0.93 (0.38-1.3)
	8.4 (4.1-12)	2 (11 %)	0.43 (0.24-0.93)	1.25 (0.42-4.5)

At 12 months

	Total Ig	HypoG	CD4	Ratio
	7.1 (4.9-15)	1 (7.1 %)	0.29 (0.17-0.64)	0.85 (0.33-1.8)
	8.5 (5.3-15)	2 (10 %)	0.49 (0.19-1.4)	1.4 (0.51-4.8)

At 18 months

	Total Ig	HypoG	CD4	Ratio
	6.7 (4.7-17)	3 (21 %)	0.35 (0.13-1.3)	0.92 (0.40-1.9)
	7.9 (4.9-14)	1 (5.9 %)	0.49 (0.21-1.1)	1.5 (0.53-6.0)

At 24 months

	Total Ig	HypoG	CD4	Ratio
	6.7 (3.0-14)	5 (33 %)	0.35 (0.06-1.0)	0.84 (0.34-2.9)
	7.5 (4.9-14)	3 (16 %)	0.70 (0.08-1.3)	1.40 (0.36-5.4)
Table 2 *(on next page)*

Characteristics of GPA patients with inverted ratio at baseline against the rest of the cohort.

Results are expressed in number (percentage) for categorical variables and median (range) for continuous variables. Differences were determined respectively by Fisher’s exact test and Mann Whitney U test. Serum total immunoglobulin level and CD4 cell count expressed respectively in g/l and x10⁹/l. ANCA: antineutrophil cytoplasmic antibodies; BVAS: Birmingham vasculitis activity score; CD: cluster of differentiation; CRP: C-reactive protein; CYC: cyclophosphamide; ESR: erythrocyte sedimentation rate; HypoG: hypogammaglobulinemia; Ig: immunoglobulins; mo: months; NA: not available; ODPD: oral daily prednisolone dose; RTX: rituximab.
Inverted ratio	Normal ratio	p-value
12 patients	23 patients	
Male | 6 (50 %) | 13 (57 %) | 0.736
Age years | 58 (37-79) | 48 (14-75) | 0.057
Disease duration prior RTX mo | 116 (2-270) | 47 (1-198) | 0.263
BVAS at baseline | 10.5 (4-21) | 8.0 (0-21) | 0.482
ESR mm/t | 29 (3-118) | 15 (3-100) | 0.548
CRP mg/l | 20 (4-135) | 6 (4-115) | 0.310
Creatinine μmol/l | 76 (58-244) | 75 (43-819) | 0.694
ANCA titers IU/ml | 6 (0-531) | 8 (1-213) | 0.878
Kidney involvement | 8 (67 %) | 13 (57 %) | 0.721
Lung involvement | 8 (67 %) | 14 (61 %) | 1.00
Orbital-subglottic involvement | 10 (83 %) | 15 (65 %) | 0.282
ODPD mg | 23 (3-50) | 23 (0-60) | 0.719
Total CYC dose g | 25 (0-250) | 13 (0-79) | 0.563
Total RTX dose g | 4 (2-5) | 4 (2-6) | 0.263
Ig biannually RTX regimen | 5 (42 %) | 9 (39 %) | 1.00
Baseline | | |
Total Ig | 11.3 (8.3-18) | 11.3 (6.7-21) | 0.461
HypoG | 0 | 0 | NA
CD4 | 0.22 (0.06-0.79) | 0.49 (0.15-1.4) | 0.005
Ratio | 0.61 (0.27-0.97) | 1.42 (1.0-3.0) | <0.001
At 3 months | | |
Total Ig | 7.1 (4.8-15) | 8.7 (5.0-12) | 0.238
HypoG | 1 (13 %) | 2 (12 %) | 1.00
CD4 | 0.20 (0.09-0.70) | 0.29 (0.13-1.4) | 0.264
Ratio | 0.46 (0.34-1.1) | 1.12 (0.26-2.4) | 0.002
At 6 months | | |
Total Ig | 6.7 (4.1-16) | 9.1 (5.0-12) | 0.017
HypoG | 3 (27 %) | 2 (10 %) | 0.310
CD4 | 0.27 (0.16-0.42) | 0.43 (0.18-0.93) | <0.001
Ratio | 0.55 (0.38-1.1) | 1.25 (0.65-4.5) | <0.001
At 12 months | | |
Total Ig | 6.6 (5.3-15) | 9.2 (4.9-15) | 0.021
HypoG | 1 (8.3 %) | 2 (9.1 %) | 1.00
CD4 | 0.28 (0.19-0.39) | 0.50 (0.17-1.4) | <0.001
Ratio | 0.62 (0.33-1.3) | 1.47 (0.77-4.8) | <0.001
At 18 months | | |
Total Ig | 6.5 (4.7-17) | 8.6 (5.5-13) | 0.012
HypoG | 3 (30 %) | 1 (4.7 %) | 0.087
CD4 | 0.34 (0.15-0.48) | 0.48 (0.13-1.3) | 0.026
Ratio | 0.53 (0.40-1.0) | 1.63 (0.60-6.0) | <0.001
At 24 months | | |
Total Ig | 6.2 (3.0-14) | 7.9 (4.0-14) | 0.063
HypoG | 5 (42 %) | 3 (14 %) | 0.098
CD4 | 0.34 (0.06-1.02) | 0.69 (0.13-1.3) | 0.007
Ratio | 0.56 (0.34-1.5) | 1.64 (0.60-5.4) | <0.001

1
Table 3 (on next page)

Odds ratio for inverted CD4/CD8 ratio at 24 months in GPA patients receiving rituximab maintenance.

All values were determined at rituximab initiation and were analysed with an unadjusted and multivariable logistic regression models with backward Wald selection (removal if p<0.10). Significant results are highlighted in bold. ANCA: antineutrophil cytoplasmic antibodies; BVAS: Birmingham vasculitis activity score; CI: confidence interval; CRP: C-reactive protein; CYC: cyclophosphamide; ESR: erythrocyte sedimentation rate; Ig: immunoglobulins; mo: months; ODPD: oral daily prednisolone dose; OR: odds ratio; y: years.
	Unadjusted analysis		Multivariable analysis			
	OR	95 % CI	p-value	OR	95 % CI	p-value
Men	1.06	0.27-4.24	0.934	1.10	1.01-1.18	0.027
Age (y)	1.10	1.02-1.18	**0.012**	1.09	1.01-1.18	**0.027**
Disease duration (mo)	1.01	0.99-1.02	0.075	1.01	0.99-1.03	0.089
BVAS	1.13	0.96-1.32	0.135			
ESR (mm/h)	**1.03**	**1.00-1.05**	**0.024**	1.03	0.99-1.06	0.098
CRP (mg/l)	**1.02**	**1.00-1.04**	**0.044**	1.02	0.99-1.05	0.081
Creatinine (μmol/l)	1.02	0.99-1.05	0.081			0.164
ANCA titers (IU/ml)	1.03	0.98-1.08	0.184			
ODPD (mg/d)	1.04	0.98-1.09	0.138			
CYC cumulative dose (g)	1.01	0.99-1.03	0.388			
IgG (g/l)	1.13	0.84-1.52	0.428			
IgA (g/l)	1.20	0.50-2.93	0.682			
IgM (g/l)	2.21	0.70-7.00	0.177			
Total Ig (g/l)	1.11	0.89-1.37	0.357			
Table 4 (on next page)

Characteristics of the GPA patients receiving RTX 1 g biannually as maintenance treatment compared with the rest of the cohort.

Differences between categorical and continuous variables are determined respectively by Fisher’s exact test and Mann Whitney U test. Serum total immunoglobulin level and CD4 cell count expressed respectively in g/L and x 10^9/L. CD: cluster of differentiation; CYC: cyclophosphamide; HypoG: hypogammaglobulinemia; Ig: immunoglobulins; RTX: rituximab.
	1 g biannually regimen	Other regimens	P-value
	14 patients	21 patients	
Male	9 (64 %)	10 (48 %)	0.491
Age y	50	47	0.702
Total CYC dose g	43	25	0.274
Total RTX dose g	4.9	3.7	<0.001
Baseline Total Ig	12.2	10.9	0.342
HypoG	0	0	NA
CD4	0.39	0.51	0.474
Ratio	1.31	1.37	0.881
At 3 months Total Ig	8.4	8.6	0.426
HypoG	3 (25 %)	0	0.096
CD4	0.25	0.46	0.194
Ratio	0.80	1.11	0.123
At 6 months Total Ig	8.8	7.9	0.600
HypoG	2 (15 %)	3 (16 %)	1.00
CD4	0.41	0.41	0.667
Ratio	1.51	1.20	0.421
At 12 months Total Ig	8.5	8.9	0.594
HypoG	1 (7.7 %)	2 (9.5 %)	1.00
CD4	0.45	0.49	0.600
Ratio	1.72	1.32	0.834
At 18 months Total Ig	8.3	8.4	0.666
HypoG	4 (31 %)	0	0.023
CD4	0.37	0.57	0.059
Ratio	1.78	1.41	0.953
At 24 months Total Ig	7.5	8.2	0.650
HypoG	3 (21 %)	5 (25 %)	1.00
CD4	0.52	0.61	0.522
Ratio	1.91	1.42	0.823