The complete mitochondrial genome of a parthenogenetic ant \textit{Monomorium triviale} (Hymenoptera: Formicidae)

Naoto Idogawaa, Chih-Chi Leeb, Chín-Čeng Scotty Yangc and Shigeto Dobatad

aLaboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; bDepartment of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel; cDepartment of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; dDepartment of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan

\section*{ABSTRACT}
\textit{Monomorium} is one of the most species-rich yet taxonomically problematic ant genus. An East Asian species, \textit{M. triviale} Wheeler, W.M., 1906, is reproduced by obligate thelytokous parthenogenesis and performs strict reproductive division of labor. We sequenced the \textit{M. triviale} mitogenome using next-generation sequencing methods. The circular mitogenome of \textit{M. triviale} was 16,290 bp in length, consisting of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and a single non-coding region of 568 bp. The base composition was AT-biased (82\%). Gene order rearrangements were detected and likely to be unique to the genus \textit{Monomorium}. We announce the \textit{M. triviale} mitogenome as additional genomic resources for elucidating phylogenetic and taxonomic problems of \textit{Monomorium} and comparative genomics of parthenogenetic ant species.
the two Monomorium species had two gene rearrangements: an inversion between trnPa and ND1 (Myrmicinae, ND6-CYTB-trnS; Monomorium, trnS-CYTB-ND6; underlines indicate inverted genes) and translocations between ND3 and trnF (Myrmicinae common, trnA-trnR-trnN-trnS-trnE; Monomorium, trnR-trnE-trnA-trnN-trnS). This feature was different from the common gene order of the subfamily Myrmicinae and likely unique to Monomorium ants (Babbucci et al. 2014; Park 2020). This may help identify the genus Monomorium sensu stricto, in addition to nucleotide substitutions.

We inferred the phylogenetic relationships of 25 ant species using the concatenated nucleotide sequences of all 13 PCGs, with the honeybee Apis mellifera as an outgroup. Sequence alignment was constructed using ClustalW (Thompson et al. 2003) implemented in MEGA-X (Kumar et al. 2018). The GTR + I + G model was determined as a best-fit model by ModelTest-NG v0.1.6 (Darriba et al. 2020). Both a maximum-likelihood tree made by RAxML-NG v1.0.0 (Kozlov et al. 2019) and Bayesian inference tree made by MrBayes v3.2.7 (Ronquist et al. 2012) consistently support the current phylogenetic placement of Monomorium in the subfamily Myrmicinae (Figure 1).

In conclusion, the newly sequenced complete mitochondrial genome of M. triviale provides additional resources for further phylogenetic characterization of the taxonomically problematic genus Monomorium and comparative genomics of parthenogenetic ant species.

Acknowledgements
The authors are grateful to Kenji Matsuura who allowed us to use his laboratory.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was supported by a Japan Society for the Promotion of Science (JSPS) Research Fellowship for Young Scientists to NI [19J22242] and a Grant from the Secom Science and Technology Foundation to SD.

ORCID
Naoto Idogawa http://orcid.org/0000-0003-4055-8204
Chih-Chi Lee http://orcid.org/0000-0002-8778-1449
Chin-Cheng Scotty Yang http://orcid.org/0000-0003-0967-5170
Shigeto Dobata http://orcid.org/0000-0003-1586-6758

Data availability statement
The genome sequence data that support the findings of this study are openly available in DDBJ/GenBank at https://www.ddbj.nig.ac.jp under the accession no. LC605004. The associated BioProject, SRA, and BioSample numbers are PRJDB12079, DRX301164, and SAMD00394597, respectively.
References

Babucci M, Basso A, Scupola A, Patarnello T, Negrisolo E. 2014. Is it an ant or a butterfly? Convergent evolution in the mitochondrial gene order of Hymenoptera and Lepidoptera. Genome Biol Evol. 6(12):3326–3343.

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2):313–319.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120.

Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 37(1):291–294.

Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18.

Gotoh A, Billen J, Tsuji K, Sasaki T, Ito F. 2012. Histological study of the spermatheca in three thelytokous parthenogenetic ant species, Pristomyrmex punctatus, Pyramica membranifera and Monomorium tri- viale (Hymenoptera: Formicidae). Acta Zool. 93(2):200–207.

Idogawa N, Sasaki T, Tsuji K, Dobata S. 2021. Comprehensive analysis of male-free reproduction in Monomorium triviale (Formicidae: Myrmicinae). PLOS ONE. 16(4):e0246710.

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 35(21):4453–4455.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Laslett D, Canbäck B. 2008. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 24(2):172–175.

Park J, Xi H, Park J. 2020. The complete mitochondrial genome of Aphaenogaster famelica (Smith, 1874) (Hymenoptera: Formicidae). Mitochondrial DNA B Resour. 5(1):492–494.

Pontieri L, Links vayer TA. 2019. Monomorium. In: Starr C. (ed.), Encyclopedia of social insects. Cham: Springer International Publishing; p. 1–6.

Rombel IT, Sykes KF, Rayner S, Johnston SA. 2002. ORF-FINDER: a vector for high-throughput gene identification. Gene. 282(1–2):33–41.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.

Sparks KS, Andersen AN, Austin AD. 2019. A multi-gene phylogeny of Australian Monomorium Mayr (Hymenoptera: Formicidae) results in reinterpretation of the genus and resurrection of Chelaner Emery. Invertebr Syst. 33:225–236.

Thompson JD, Gibson TJ, Higgins DG. 2003. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics.

Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq: versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45(W1):W6–W11.

Ward PS, Brady SG, Fisher BL, Schultz TR. 2015. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst Entomol. 40(1):61–81.