Bariatric surgeries are far superior to other intensive medical therapies for weight loss and diabetic control [1]. Remarkably, improvements in diabetic control occur prior to substantial weight loss, suggesting that profound alterations in gut physiology have important roles in metabolic adaptations following bariatric surgery. Of the gut factors, the lower gut hormones Peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) are often increased in the circulation following bariatric surgery [2,3]. Though enhanced GLP-1 secretion partly mediates the glycemic improvements following Roux-en-Y gastric bypass surgery in humans [4], much less is known of the role of PYY in the metabolic benefits of bariatric surgery. Peripheral blockade of both GLP-1 and PYY increased food intake in RYGB subjects [5]. However, an important question is whether PYY is essential for the resolution of diabetes in bariatric subjects.

In this article of EBioMedicine, Guida et al. [6], utilize a combination of blood samples from bariatric patients, ex vivo pancreatic islet culture, and animal models of bariatric surgery, to determine whether PYY plays a role in resolving diabetes following bariatric surgery. The authors initially confirm that the reduction in circulating PYY concentrations in obese are restored to normal levels in bariatric subjects. They next show that serum from bariatric patients increased insulin content in pancreatic islets and, importantly that immunoneutralization of PYY inhibits pancreatic exocrine secretion in humans and rodents [10,11] partly through a Y2 dependent mechanism in rats [12]. Guida et al. [6] now show that IL-22 secretion is robustly stimulated from islets [6]; however, it remains to be determined whether immunoneutralization of circulating PYY decreases insulin secretion, worsens glycemic control and exacerbates peripheral insulin resistance post-bariatric surgery in humans or animal models. Though the expression of PYY Y2 receptor is low in the pancreas [7], yet, it is well known that PYY inhibits pancreatic exocrine secretion in humans and rodents [10,11]. It is unknown whether endogenous PYY isoforms act through similar mechanism to modulate endocrine pancreatic secretions in bariatric subjects.

Among the gut microbial products, the short chain fatty acids stimulate PYY secretion from the gut in humans [12]. The authors extend these findings and show that of these fatty acids, only propionate stimulates PYY secretion from the islets, which would make sense given that majority of butyrate is metabolized by the gut and some propionate may very likely reach pancreatic circulation. Apart from fatty acids, the cytokine IL-22 has been reported to stimulate PYY secretion, with Y2 receptor blockade attenuating the hypophagic effects of IL-22 in mice [13]. Guida et al. [6] now show that IL-22 secretion is robustly upregulated in bariatric subjects and that it also stimulates pancreatic PYY. The stimulatory effects of IL-22 occur at a fold higher concentrations than circulating concentrations, and hence, whether IL-22 is a PYY-secretagogue at physiological concentrations remains to be studied.

In summary, the current study contributes significantly to our understanding of the role of pancreatic PYY in enhancing insulin secretion in bariatric surgery. Future studies should define whether PYY secreted from the intestine and islets is necessary and sufficient to improve diabetic control following bariatric surgery. If PYY does indeed prove to be a key player in resolving diabetes in bariatric subjects, then it could lead to its active use in the management of diabetes.
to the development of novel PYY-based therapeutics for treating diabetes.

Funding sources

Operating grants from Natural Sciences and Engineering Research Council of Canada (NSERC #355993) and Heart and Stroke Foundation of Canada (#G-18-0022205) to P. K. Chelikani.

Conflicts of interest

There are no conflicts of interest to disclose.

Author contributions

P. K. Chelikani wrote the article.

References

[1] Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N Engl J Med 2017;376:641–51.

[2] Chelikani PK, Sekhar D. Sleeve gastrectomy: mechanisms of weight loss and diabetes improvements. In: Preedy Victor R, Martin Colin R, editors. Metabolism and Pathophysiology of Bariatric Surgery: Nutrition, Procedures, Outcomes and Adverse Effects. United Kingdom: Elsevier, Academic Press; 2016. p. 295–301.

[3] Ashrafian H, Le Roux CW. Metabolic surgery and gut hormones - a review of bariatric entero-humoral modulation. Physiol Behav 2009;97:320–31.

[4] SvanES, Bojesen-Moller KN, Nielsen S, Jorgensen NB, Dirksen C, Bendtsen F, et al. Effects of endogenous GLP-1 and GIP on glucose tolerance after Roux-en-Y gastric bypass surgery. Am J Physiol Endocrinol Metab 2016;310:E505–14.

[5] SvanES, Jorgensen NB, Bojesen-Moller KN, Dirksen C, Nielsen S, Kristiansen VB, et al. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int J Obes (Lond) 2016;40:1669–706.

[6] Guida C, Stephen S, Watson M, Dempster N, Larraufle P, Marjot P, et al. PYY plays a key role in the resolution of diabetes following bariatric surgery in humans. ElBioMedicine 2019;2019. https://doi.org/10.1016/j.ebiom.2018.12.040.

[7] Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Islet distribution of Peptide YY and its regulatory role in primary mouse islets and immobilised rodent and human beta-cell function and survival. Mol Cell Endocrinol 2016;436:102–13.

[8] Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geyer N, Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev 2017;97:411–63.

[9] van den Hoek AM, Heijboer AC, Voshol PJ, Havekes LM, Romijn JA, Cosmina EP, et al. Chronic PYY3-36 treatment promotes fat oxidation and ameliorates insulin resistance in C57BL/6 mice. Am J Physiol Endocrinol Metab 2007;292:E238–45.

[10] Symersky T, Biemond I, Frolich M, Masclée A. Effect of peptide YY on pancreaticobiliary secretion in humans. Scand J Gastroenterol 2005;40:944–9.

[11] Guarita DR, Deng X, Huh YB, Wood PG, Reeve Jr JR, Whitcomb DC. PYY regulates pancreatic exocrine secretion through multiple receptors in the awake rat. Dig Dis Sci 2000;45:1696–702.

[12] Canfora EE, van der Beek CM, Jocck JWE, Goossens GH, Holst JJ, Olde Damink SVM, et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci Rep 2017;7:2360.

[13] Wang X, Ota N, Manzanillo P, Kates L, Zavala-Solorio J, Eidsenchenk C, et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 2014;514:237–41.