A connection formula between the Ramanujan function and the q-Airy function

Takeshi MORITA‡

Abstract

We show a connection formula between two different q-Airy functions. One is called the Ramanujan function which appears in Ramanujan’s ”Lost notebook”. Another one is called the q-Airy function that obtained in the study of the second q-Painlevé equation. We use the q-Borel transformation and the q-Laplace transformation following C. Zhang to obtain the connection formula.

1 Introduction

In the study of the q-analysis, it is known that there exist several different q-special functions corresponding to a special function defined by a differential equation. For example, three types of q-Bessel functions are known. We denote them $J_{\nu}^{(1)}(x;q)$, $J_{\nu}^{(2)}(x;q)$ and $J_{\nu}^{(3)}(x;q)$ due to Ismail [6]. The first and the second one are called Jackson’s first and second q-Bessel function and the third one is called the Hahn-Exton q-Bessel function. Similarly, two types of q-Airy functions are known. We denote them $A_q(x)$ and $\text{Ai}_q(x)$. The first one is called the Ramanujan function and the second one is called the q-Airy function.

‡Graduate School of Information Science and Technology, Osaka University, 1-1 Machikaneyama-machi, Toyonaka, 560-0043, Japan. E-mail: t-morita@cr.math.sci.osaka-u.ac.jp
Three q-Bessel functions are given by

\[J^{(1)}_{\nu}(x; q) := (q^{\nu+1}; q)_{\infty} \left(\frac{x}{2} \right)^{\nu} \sum_{n \geq 0} \frac{1}{(q^{\nu+1}; q)_{n}} \left(-\frac{x^{2}}{4} \right)^{n}, \]

\[J^{(2)}_{\nu}(x; q) := (q^{\nu+1}; q)_{\infty} \left(\frac{x}{2} \right)^{\nu} \sum_{n \geq 0} \frac{q^{n^{2}}}{(q^{\nu+1}; q)_{n}} \left(-\frac{q^{\nu} x^{2}}{4} \right)^{n}, \]

\[J^{(3)}_{\nu}(x; q) := (q^{\nu+1}; q)_{\infty} x^{\nu} \sum_{n \geq 0} \frac{q^{n(n+1)}}{(q^{\nu+1}; q)_{n}} (-x^{2})^{n}. \]

The Ramanujan function and the q-Airy function are defined by

\[A_{q}(x) := \sum_{n \geq 0} \frac{q^{n^{2}}}{(q; q)_{n}} (-x)^{n}, \]

\[\text{Ai}_{q}(x) := \sum_{n \geq 0} \frac{1}{(-q, q; q)_{n}} \left\{ (-1)^{n} q^{\frac{n(n-1)}{2}} \right\} (-x)^{n}. \]

Here, $(a; q)_{n}$ and $(a; q)_{\infty}$ are the q-Pochhammer symbol defined in section two. According to [1], the Ramanujan function $A_{q}(x)$ appears in the third identity on p.57 of Ramanujan’s “Lost notebook” [9] as follows (with x replaced by q^{ν}):

\[A_{q}(-a) = \sum_{n \geq 0} \frac{a^{n} q^{n^{2}}}{(q; q)_{n}} = \prod_{n \geq 1} \left(1 + \frac{a q^{2n-1}}{1 - q^{n} y_{1} - q^{2n} y_{2} - q^{3n} y_{3} - \cdots} \right), \]

where

\[y_{1} = \frac{1}{(1 - q)\psi^{2}(q)}, \]
\[y_{2} = 0, \]
\[y_{3} = \frac{q + q^{3}}{(1 - q)(1 - q^{2})(1 - q^{3})\psi^{2}(q)} - \sum_{n \geq 0} \frac{(2n+1)q^{2n+1}}{1 - q^{2n+1}}, \]
\[y_{4} = y_{1} y_{3}, \]
\[\psi(q) = \sum_{n \geq 0} q^{\frac{n(n+1)}{2}} = \frac{(q^{2}; q^{2})_{\infty}}{(q; q^{2})_{\infty}}. \]
Ismail has pointed out that the Ramanujan function is a q-analogue of the Airy function [6]. We show more detail about these functions in section three.

It is known that there exist a relation for the q-Bessel functions and the q-Airy function. One is a relation between Jackson’s first and second q-Bessel function [4]:

$$J^{(2)}_{\nu}(x; q) = \left(-\frac{x^2}{4}; q\right)_{\infty} J^{(1)}_{\nu}(x; q).$$

Another is a relation between the Hahn-Exton q-Bessel function and the q-Airy function [8]:

$$J^{(3)}_{\nu}(x; q) = \left(-\frac{q}{q}; q\right)_{\infty} \frac{(q; q)}{\infty} x^{\nu} \text{Ai}_q(-qx^2),$$

where $q^{\nu} = -1$.

Other relations are not known. The main result in this paper is a relation between two q-Airy functions. It is not known any relation between the Ramanujan function and the q-Airy function, but these two functions are related by a connection formula and not by algebraic relation like (1) or (2).

Connection problems of linear q-difference equations between the origin and the infinity are studied by G. D. Birkhoff [2]. Watson gave a connection formula for the basic hypergeometric equation $2\varphi_1$ in 1910 [11]:

$$2\varphi_1 (a, b; c; q, x) = \frac{(b, c/a; q)_{\infty}(ax, q/a; q)_{\infty}}{(c, b/a; q)_{\infty}(x, q/x; q)_{\infty}} 2\varphi_1 (a, aq/c; aq/b; q, cq/abx)$$

$$+ \frac{(a, c/b; q)_{\infty}(bx, q/bx; q)_{\infty}}{(c, a/b; q)_{\infty}(x, q/x; q)_{\infty}} 2\varphi_1 (b, bq/c; bq/a; q, cq/abx).$$

Recently, C. Zhang has given some connection formulae of q-difference equations of the confluent type [12], [13] and [14]. Zhang gives a connection formula of Jackson’s q-Bessel function $J^{(1)}_{\nu}(x; q)$ [14]. In [14], Zhang introduced the q-Borel transformation and the q-Laplace transformation which are useful to study connection problems. In section four, we apply Zhang’s method to the q-Airy functions.

The connection formula of the q-Airy function gives a relation between the Ramanujan function and the q-Airy function as follows:
Theorem For any $x \in \mathbb{C}^*$,

$$A_q^2 \left(-\frac{q^3}{x^2} \right) = \frac{1}{(q, -1; q)_\infty} \left\{ \theta \left(\frac{x}{q} \right) \operatorname{Ai}_q(-x) + \theta \left(-\frac{x}{q} \right) \operatorname{Ai}_q(x) \right\}.$$

Since our new relation shows an asymptotic behavior of the Ramanujan function near the infinity, it may be useful to study the Ramanujan function or similar type q-series.

2 Standard notations

In this section, we fix our notations. We assume that $q \in \mathbb{C}^*$ satisfies $0 < |q| < 1$. We define the q-Pochhammer symbol $(a; q)_n$.

Definition 1 For any $n \in \mathbb{Z}_{\geq 0}$,

$$(a; q)_n = \begin{cases} 1, & n = 0, \\ (1 - a)(1 - aq) \cdots (1 - aq^{n-1}), & n \geq 1, \end{cases}$$

and

$$(a; q)_\infty = \lim_{n \to \infty} (a; q)_n.$$

Moreover,

$$(a_1, a_2, \cdots, a_m; q)_\infty = (a_1; q)_\infty (a_2; q)_\infty \cdots (a_m; q)_\infty.$$

The q-difference operator σ_q is given by $\sigma_q f(x) = f(qx)$. The basic hypergeometric series r_{φ_s} is defined as follows.

Definition 2 The basic hypergeometric series is given by

$$r_{\varphi_s}(a_1, \cdots, a_r; b_1, \cdots, b_s; q, x) := \sum_{n \geq 0} \frac{(a_1, \cdots, a_r; q)_n}{(b_1, \cdots, b_s; q)_n n!(q; q)_n} \left[(-1)^n q^{\frac{n(n-1)}{2}} \right]^{1+s-r} x^n.$$

We define the theta function of Jacobi. We denote by $\theta_q(x)$ or more shortly $\theta(x)$. The theta function of Jacobi is given by following series;

Definition 3 For any $x \in \mathbb{C}^*$,

$$\theta_q(x) = \theta(x) = \sum_{n \in \mathbb{Z}} q^{\frac{n(n-1)}{2}} x^n.$$

4
The theta function has some important properties. The following lemma is called Jacobi’s triple product identity.

Lemma 1 For any \(x \in \mathbb{C}^* \), we have

\[
\theta(x) = \left(q, -x, -\frac{q}{x}, q \right)_\infty.
\]

The theta function satisfies the following \(q \)-difference relation.

Lemma 2 For any \(k \in \mathbb{Z} \), \(\theta(x) \) satisfies

\[
\theta(q^k x) = q^{-\frac{k(k-1)}{2}} x^{-k} \theta(x), \quad \forall x \in \mathbb{C}^*.
\]

From lemma 2, we remark that the function \(\theta(-\lambda x)/\theta(\lambda x), \forall \lambda \in \mathbb{C}^* \) satisfies a \(q \)-difference equation

\[
u(qx) = -u(x)
\]

which is also satisfied by the function \(u(x) = e^{\pi i \left(\frac{\log x}{\log q} \right)} \). From the definition, the theta function has the following inversion formula.

Lemma 3 For any \(x \in \mathbb{C}^* \), one gets

\[
x \theta \left(\frac{1}{x} \right) = \theta(x).
\]

3 Two types of the \(q \)-analogue of the Airy function

There are two different \(q \)-analogue of the Airy function. One is called the Ramanujan function which appears in [9]. Ismail [6] pointed out that the Ramanujan function can be considered as a \(q \)-analogue of the Airy function. The other one is called the \(q \)-Airy function which is obtained by K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada [7]. In this section, we see the properties of these functions. We explain the reason why they are called \(q \)-analogue of the Airy function and we show \(q \)-difference equations which they satisfy.
3.1 The Ramanujan function $A_q(x)$

The Ramanujan function appears in Ramanujan’s "Lost notebook" [9]. Ismail has pointed out that the Ramanujan function can be considered as a q-analogue of the Airy function. The Ramanujan function is defined by the following convergent series:

$$A_q(x) := \sum_{n \geq 0} \frac{q^{n^2}}{(q; q)_n} (-x)^n = \varphi_1(-; 0; q, -qx).$$

In the theory of ordinary differential equations, the term Plancherel-Rotach asymptotics refers to asymptotics around the largest and smallest zeros. With $x = \sqrt{2n + 1} - 2\pi n \frac{t}{1}$ and for $t \in \mathbb{C}$, the Plancherel-Rotach asymptotic formula for Hermite polynomials $H_n(x)$ is

$$\lim_{n \to +\infty} e^{-\frac{x^2}{2}} \frac{1}{3! \pi^{-\frac{3}{2}} 2^{n+\frac{1}{2}} \sqrt{n!}} H_n(x) = \text{Ai}(t). \quad (3)$$

In [6], Ismail shows the q-analogue of (3):

Proposition 1 One can get

$$\lim_{n \to \infty} q^{n^2} \frac{1}{n!} h_n(\sinh \xi_n|q) = A_q \left(\frac{1}{t^2} \right)$$

where $e^{\xi_n} = tq^{-\frac{n}{2}}$.

Here, $h_n(\cdot|q)$ is the q-Hermite polynomial. In this sense, we can deal with the Ramanujan function $A_q(x)$ as a q-analogue of the Airy function. The Ramanujan function satisfies the following q-difference equation:

$$(qx\sigma_q^2 - \sigma_q + 1) u(x) = 0. \quad (4)$$

Remark 1 We remark that another solution of the equation (4) is given by

$$u(x) = \theta(x) \varphi_0(0, 0; -; q, -x).$$

Here,

$$\varphi_0(0, 0; -; q, -x) = \sum_{n \geq 0} \frac{1}{(q; q)_n} \left\{ (-1)^n q^{\frac{n(n-1)}{2}} \right\} (-x)^n$$

is a divergent series.
3.2 The \(q \)-Airy function \(\text{Ai}_q(x) \)

The \(q \)-Airy function is found by K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada [7], in their study of the \(q \)-Painlevé equations. This function is the special solution of the second \(q \)-Painlevé equations and given by the following series

\[
\text{Ai}_q(x) := \sum_{n \geq 0} \frac{1}{(-q, q; q)_n} \{(−1)^n q^{\frac{n(n−1)}{2}}\} (-x)^n = \varphi_1(0; −q; q, −x).
\]

T. Hamamoto, K. Kajiwara, N. S. Witte [5] proved following asymptotic expansions;

Proposition 2 With \(q = e^{-\frac{2\pi i}{3}} \), \(x = −2ie^{-\frac{\pi i}{6}\delta^2} \) as \(\delta \to 0 \),

\[
\varphi_1(0; −q; q, −qx) = 2\pi^2\delta^2 e^{-\frac{\pi i}{3}ln^2\frac{\pi}{\delta^2} + \frac{\pi i}{6}ln^2\frac{\pi}{\delta^2}} \left[\text{Ai} \left(se^{\frac{\pi i}{3}} \right) + O(\delta^2) \right],
\]

for \(s \) in any compact domain of \(\mathbb{C} \).

Here, \(\text{Ai}(\cdot) \) is the Airy function. From this proposition, we can regard the \(q \)-Airy function as a \(q \)-analogue of the Airy function.

We can easily check out that the \(q \)-Airy function satisfies the second order linear \(q \)-difference equation

\[
(\sigma_q^2 + x\sigma_q − 1) u(x) = 0.
\]

Another solution of the equation (5) is given by

\[
u(x) = e^{\pi i \left(\frac{\log x}{\log q} \right)} \varphi_1(0; −q; q, x) = e^{\pi i \left(\frac{\log x}{\log q} \right)} \text{Ai}_q(-x).
\]

3.3 Shearing transformations

We define a shearing transformation of a second order linear \(q \)-difference equation.

Definition 4 For a \(q \)-difference equation

\[
a(x)u(q^2 x) + b(x)u(qx) + c(x)u(x) = 0,
\]

we define the shearing transformation as follows

\[
t^2 := x, \quad v(t) := u(t^2), \quad p := \sqrt{q}.
\]
The shearing transform of the equation (6) is given by
\[a(t^2)v(p^2 t) + b(t^2)v(pt) + c(t^2)v(t) = 0. \]

By the shearing transformation, the equation
\[(K \cdot x \sigma_q^2 - \sigma_q + 1) u(x) = 0 \]
is transformed to
\[(K \cdot t^2 \sigma_p^2 - \sigma_p + 1) v(t) = 0, \]
where \(K \) is a fixed constant in \(\mathbb{C}^* \).

3.4 The \(q \)-Airy equation around the infinity

We consider the behavior of the equation (5) around the infinity. We set \(x = \frac{1}{t} \) and \(z(t) = u(\frac{1}{t}) \). Then \(z(t) \) satisfies
\[\left(-\sigma_q^2 + \frac{1}{q^2 t} \sigma_q + 1 \right) z(t) = 0. \]

We set \(E(t) = \frac{1}{\theta(-q^2 t)} \) and \(f(t) = \sum_{n \geq 0} a_n t^n, \quad a_0 = 1 \). We assume that \(z(t) \) can be described as
\[z(t) = E(t)f(t) = \frac{1}{\theta(-q^2 t)} \left(\sum_{n \geq 0} a_n t^n \right). \]

The function \(E(t) \) has the following property;

Lemma 4 For any \(t \in \mathbb{C}^* \),
\[\sigma_q E(t) = -q^2 t E(t), \quad \sigma_q^2 E(t) = q^5 t^2 E(t). \]

From this lemma, \(f(t) \) satisfies the following equation
\[\left(-q^5 t^2 \sigma_q^2 - \sigma_q + 1 \right) f(t) = 0. \]

Since (8) is the same as (7) for \(K = -q^5 \), we obtain
\[f(t) = \varphi_1(-; 0; q^2, q^5 t^2) = \Lambda_{q^2}(-q^3 t^2). \]
4 The q-Borel transformation, the q-Laplace transformation and the connection formula

In this section, we show a connection formula for $f(t)$. In order to obtain a connection formula, we need the q-Borel transformation and the q-Laplace transformation following Zhang [13].

4.1 The q-Borel transformation and the q-Laplace transformation

Definition 5 For $f(t) = \sum_{n \geq 0} a_n t^n$, the q-Borel transformation is defined by

$$g(\tau) = (B_q f)(\tau) := \sum_{n \geq 0} a_n q^{-\frac{n(n-1)}{2}} \tau^n,$$

and the q-Laplace transformation is given by

$$(L_q g)(t) := \frac{1}{2\pi i} \int_{|\tau|=r} g(\tau) \theta \left(\frac{t}{\tau} \right) \frac{d\tau}{\tau}, \quad 0 < r < \frac{1}{|q^2|}.$$

The q-Borel transformation can be considered as a formal inverse of the q-Laplace transformation.

Lemma 5 For any entire function f,

$$L_q \circ B_q f = f.$$

Proof We can prove this lemma calculating residues of the q-Laplace transformation around the origin.

The q-Borel transformation has following operational relation;

Lemma 6 For any $l, m \in \mathbb{Z}_{\geq 0}$,

$$B_q(t^m \sigma_q^l) = q^{-\frac{m(m-1)}{2}} \tau^m \sigma_q^{l-m} B_q.$$
4.2 The connection formula of the q-Airy function

Applying the q-Borel transformation in 4.1 to the equation (7) and using lemma 6, we obtain the first order q-difference equation

$$g(q\tau) = (1 + q^2\tau)(1 - q^2\tau)g(\tau).$$

Since $g(0) = 1$, $g(\tau)$ is given by an infinite product

$$g(\tau) = \frac{1}{(-q^2\tau; q)_{\infty}(q^2\tau; q)_{\infty}}$$

which has single poles at

$$\{\tau; \tau = \pm q^{-2-k}, \quad \forall k \in \mathbb{Z}_{\geq 0}\}.$$

By Cauchy’s residue theorem, the q-Laplace transform of $g(\tau)$ is

$$f(t) = \frac{1}{2\pi i} \int_{|\tau|=r} g(\tau)\theta \left(\frac{t}{\tau}\right) \frac{d\tau}{\tau}$$

$$= -\sum_{k \geq 0} \text{Res} \left\{ g(\tau)\theta \left(\frac{t}{\tau}\right) \frac{1}{\tau}; \tau = -q^{-2-k} \right\}$$

$$-\sum_{k \geq 0} \text{Res} \left\{ g(\tau)\theta \left(\frac{t}{\tau}\right) \frac{1}{\tau}; \tau = q^{-2-k} \right\}$$

where $0 < r < r_0 := 1/|q^2|$. We can calculate the residue from lemma 7 and lemma 2.

Lemma 7 For any $k \in \mathbb{N}$, $\lambda \in \mathbb{C}^*$, one can get;

1. $\text{Res} \left\{ \frac{1}{(\tau/\lambda; q)_{\infty}} \frac{1}{\tau}; \tau = \lambda q^{-k} \right\} = \frac{(-1)^{k+1}q^{k(k+1)/2}}{(q; q)_k(q; q)_{\infty}}$,

2. $\frac{1}{(\lambda q^{-k}; q)_{\infty}} = \frac{(-\lambda)^{-k}q^{k(k+1)/2}}{(\lambda; q)_{\infty} (q/\lambda; q)_k}, \quad \lambda \not\in q\mathbb{Z}$.

Summing up all of residues, we obtain

$$f(t) = \frac{\theta(q^2t)}{(q, -1; q)_{\infty}} \varphi_1 \left(0, -q; q, \frac{1}{t}\right) + \frac{\theta(-q^2t)}{(q, -1; q)_{\infty}} \varphi_1 \left(0, -q; q, -\frac{1}{t}\right).$$

Combining with lemma 3, we get a connection formula for $z(t) = \mathcal{E}(t)f(t)$.

Finally, we acquire the following connection formula between the Ramanujan function and the q-Airy function.
Theorem For any $x \in \mathbb{C}^*$,

$$A_q^2 \left(-\frac{q^3}{x^2} \right) = \frac{1}{(q, -1; q)_\infty} \left\{ \theta \left(\frac{x}{q} \right) Ai_q(-x) + \theta \left(-\frac{x}{q} \right) Ai_q(x) \right\}.$$

Here, both $A_q(x)$ and $Ai_q(x)$ are defined by convergent series on whole of the complex plain. The connection formula above is valid for any $x \in \mathbb{C}^*$.

Acknowledgement

The author express his thanks to Professor Yousuke Ohyama for his careful conduct and kindly encouragement. The author also expresses his thanks to Mr. Nobutaka Nakazono from Kyushu University for his valuable comments. This work is partially supported by the Mitsubishi foundation.

References

[1] G. E. Andrews, Ramanujan’s ”lost” notebook. VIII: the entire Rogers-Ramanujan function, Adv. Math.191 (2005), no. 2, 393-407.

[2] G. D. Birkhoff, The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations, Proc. Am. Acad. Arts and Sciences, 49 (1914), 521 – 568.

[3] G. Gasper and M. Rahman (1990). Basic Hypergeometric Series. Encycl. Math. Appl. Cambridge Univ. Press, Cambridge.

[4] W. Hahn, Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der Hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation. Math. Nachr. 2, (1949). 340–379.

[5] T. Hamamoto, K. Kajiwara, N. S. Witte, Hypergeometric solutions to the q-Painlevé equation of type $(A_1 + A_1')(1)$, Int. Math. Res. Not. Vol. 2006, Article ID 84619, Pages 1 – 26.

[6] M. E. H. Ismail, Asymptotics of q-Orthogonal Polynomials and a q-Airy Function, Int. Math. Res. Not. (2005), No. 18 1063–1088.
[7] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, and Y. Yamada, Hypergeometric solutions to the q-Painlevé equations, Int. Math. Res. Not. (2004), no. 47, 2497–2521.

[8] Y. Ohyama A unified approach to q-special functions of the Laplace type, arXiv:1103.5232.

[9] S. Ramanujan, The Lost Notebook and Other Unpublished Papers (Intro by G. E. Andrews), Narosa, New Delhi, 1988.

[10] R. F. Swarttouw and H. G. Meijer A q-analogue of the Wronskian and a second solution of the Hahn-Exton q-Bessel difference equation Proc. Am. Math. Soc. 129 (1994), 855–864.

[11] G. N. Watson, The continuation of functions defined by generalized hypergeometric series, Trans. Camb. Phil. Soc. 21 (1910), 281–299.

[12] C. Zhang, Remarks on some basic hypergeometric series, in “Theory and Applications of Special Functions”, Springer (2005), 479–491.

[13] C. Zhang, Sur les fonctions q-Bessel de Jackson, J. Approx. Theory, 122 (2003), 208–223.

[14] C. Zhang, Une sommation discrè pour des équations aux q-différences linéaires et à coefficients, analytiques: théorie générale et exemples, in “Differential Equations and Stokes Phenomenon”, World Scientific (2002), 309–329.