Assessment of Neurodisability and Malnutrition in Children in Africa

Melissa Gladstone, MBChB, MRCPCH, MD,* Mac Mallewa, MBBS, DTM&H, MRCPCH, PhD,†‡
Alhaji Alusine Jalloh, MBBS,† Wieger Voskuijl, MD, PhD,‡ Douglas Postels, MD,§
Nora Groce, MSc, PhD,‖ Marko Kerac, DTM&H, MRCPCH, MPH, PhD,‖‡ and
Elizabeth Molyneux, FRCPCH, FRCP, FCEM†

Neurodevelopmental delay, neurodisability, and malnutrition interact to contribute a significant burden of disease in global settings. Assessments which are well integrated with plans of management or advice are most likely to improve outcomes. Assessment tools used in clinical research and programming to evaluate outcomes include developmental and cognitive tools that vary in complexity, sensitivity, and validity as well as the target age of assessment. Few tools have been used to measure socioemotional outcomes and fewer to assess the disabled child with malnutrition. There is a paucity of tools used clinically which actually provide families and professionals with advice to improve outcomes. Brain imaging, electroencephalography, audiometry, and visual assessment can also be used to assess the effect of malnutrition on brain structure and function. The interaction of neurodisability and malnutrition is powerful, and both need to be considered when assessing children. Without an integrated approach to assessment and management, we will not support children and families to reach their best potential outcomes.

Semin Pediatr Neurol 21:50-57 © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

Introduction

There is good evidence for the interplay between neurodisabling conditions and malnutrition. We know that malnutrition causes neurodevelopmental delay, and neurodisability leads to poor growth.3-4 A large number of tools are used in research or for programming purposes to assess neurodevelopmental outcomes in children with malnutrition; however, few tools are applied clinically. In Africa, any assessments of children with neurodisabilities and malnutrition are very limited.

Research studies have focused neurodevelopmental assessment on general development, intelligence, and school readiness, with less emphasis on socioemotional regulation and wider cognition (attention and memory). There is no consensus on which assessment tools provide the most robust evidence for assessing change. At a population level, assessment can clarify burden of disease and effectiveness of programs. Programs to improve malnutrition are most effective if they also target the neurodevelopment of children and robust assessment tools are required that measure not just growth but also development.5-6 Tools at this level need to be easy to provide training on, be reliable, and if possible, be linked to programs that can help families. Clinical tools are few
but good examples of validated tools for use in Africa include the Malawi Developmental Assessment Tool and Kilifi Developmental Inventory. These will be most beneficial if linked into programs for training health professionals, community provision of advice, and interventions for families for children with malnutrition or neurodisabilities or both.

In this review, we discuss assessment tools as well as clinical imaging tools used to assess neurodevelopmental and neurodisabling conditions in children with malnutrition. We focus on tools validated in Africa and discuss the implications of the use of these tools.

Assessment of Neurodevelopment in Children With Malnutrition

Children's neurodevelopment may be assessed using general developmental assessment tools or more precise measures to identify specific changes in brain function as a result of malnutrition. Tools include those to assess cognition (memory, executive function, and nonverbal or verbal reasoning), specific language abilities or behavioral aspects of the child such as attention or emotional regulation. It is clearly important that the relevant domains and constructs are assessed with tools that are specific and sensitive. Tools vary depending on the nature of studies (longitudinal vs cross-sectional), age of child (infancy, preschool, school age, or adolescence), timing of insult of malnutrition (antenatal, neonatal, preschool, etc) and type of malnutrition. The effects of malnutrition on the brain may differ according to the type of malnutrition, for example, chronic malnutrition (stunting, manifested as low height for age), acute malnutrition (formerly known as protein-energy malnutrition [PEM] and manifested as either kwashiorkor or wasting, low middle-upper arm circumference [MUAC] or low weight for height), or a specific micronutrient deficiency such as iron or zinc. Some deficiencies, such as chronic malnutrition, will affect global functioning of the brain and are assessed best through general developmental assessment tools. Other deficiencies such as iron deficiency may have more effect on myelination and tools to assess processing speeds may be more useful.

In assessing the neurodevelopmental status of children with malnutrition, a thorough physical examination should be made looking for evidence of chronic disease. A neurologic examination should include assessment of tone, cranial nerve problems (particularly swallowing difficulties), head circumference, and dysmorphic features to help in understanding any underlying etiology for the child’s condition.

Developmental Assessment

Developmental tools are generally used for children up to the age of 5 or 6 years with more detailed cognitive assessments being used in school-aged children. Many of these require training and are expensive to buy. They include the Griffith's Scales of Mental Development and the Bayley Scales of Infant Development. Developmental screening tools such as the Denver II require less training and are more user-friendly but there is debate about their sensitivity or specificity or how culturally appropriate these tools are. Their use can lead to overreferrals of children who do not need to be treated, which is particularly difficult when resources are limited. Parental report measures such as the Ages and Stages or the Paediatric Evaluation of Development Status are used to detect developmental delay and are highly predictive of true problems. These tools require reading abilities unless a professional reads out the items to the parent. They have all been used in Africa (as referenced) to assess outcomes. Often these different developmental assessment tools are translated into local languages but not adapted or validated for a particular population. It is rare that there are standardized norms for these tools, and they are mainly used for research rather than for clinical purposes. In more recent years, some developmental tools such as the Malawi Developmental Assessment Tool and the Kilifi Developmental Inventory have been created or adapted specifically for African settings and have gone through validation and reliability processes to show good predictive validity. The WHO Gross Motor Milestones are also used but the normal parameters for attainment on these are wide. New tools are being created that may be used for surveillance with specific messages interlinked to provide parents and caregivers with advice.

Cognitive and Executive Function

Specific measures to assess cognitive function, executive function, and attention are used primarily for research. Many proponents would recommend using these specific tests rather than general developmental tools as they are more sensitive to specific nutritional deficiencies. These tests require training, time, and psychological support. Previously, IQ tests such as the Stanford-Binet or the Weschler Adult intelligence scales were used. Recently, tools that do not require language such as Raven’s progressive matrices or the Kaufman ABC have become popular, with some tools specifically adapted for African settings such as the Kilifi ABC. Other recent studies have used computer-administered tests in the form of simple touch screen games—which also have the advantage of language independence. Developmental psychologists are recognizing how closely linked cognition is with emotional regulation, motor development, and motor activity. Therefore some specific simple tests of executive function have been used, particularly with infants. These include measures of self-control or delay inhibition such as the “snack delay test.” Other tests of executive function in infants include “the windows test” or the A not B task.

Specific Areas of Development or Language

Specific language abilities have been assessed to identify particular impairments in children that may be related to malnutrition. For example, the test of verbal analogies or the Peabody Picture Vocabulary Test. Recently, the MacArthur
Bates Communication Development Inventory has been used more widely and has been shown to provide a more sensitive description of the level of language of children between 1 and 2 years of age than many developmental tools. It has been used in different cultural settings with good validity and reliability.50-55

Socioemotional Functioning

It is becoming clearer how relevant and predictive socioemotional functioning is in relation to malnutrition.56 Carers have often described the malnourished child as apathetic with little ability to interact with others. There are few assessment tools which have been used, but one research tool which has shown good validity in some settings is the Socio Emotional Development Scale.57,58 Many researchers see maternal-child interaction as an important factor in childhood malnutrition. Maternal depression or mental health difficulties that lead to poor interaction may play a part in this.59-64 A clinically useful assessment of the child with malnutrition should include an assessment of maternal mental health and the interaction between child and mother or caregiver. Specific tools for this exist,65,66 but they vary in their use at a practical level as many take time and require equipment such as video facilities.

The Assessment of Nutritional Status and Functioning of the Child With Neurodisability

Assessing nutritional status in nondisabled children can be challenging; it is even more so in those with disabilities. As a result, nutritional status is often assessed poorly and sometimes neglected entirely. One challenge is that there are many forms of malnutrition—often coexisting in the same child—that require different types of assessment. Many of these are proxies for what really determines nutritional “health.” Assessing these children in a clinical setting reveals a number of interactions which, if addressed by the family, can make big differences to the ability to feed and to nutritional intake. The most common difficulty is low nutritional intake and studies have shown that this is often the case when little time is spent with children who have difficulties feeding.67

Firstly, understanding the specific problems for that child is important. These include understanding the underlying diagnosis. A general examination looking for signs of nutrient deficiencies should include an examination of the skin looking for depigmentation, hyperpigmentation, and desquamation, sometimes seen in kwashiorkor, as well as hyperpigmented hyperkeratosis in zinc deficiency. Other signs to look for are general pallor and koilonychia in iron deficiency. An eye examination should include looking for conjunctival pallor and dryness, wrinkling and Bitot spots (silvery plaques of desquamated epithelial cells and mucus on the bulbar aspect) —all seen in vitamin A deficiency. Examination of the locomotor system, checking for sternal deformities, rib rosaries, and bowing of the tibia will be useful— all signs of rickets (vitamin D deficiency). Children should be assessed for medical conditions (eg, cardiac or renal disease).68 On
neurologic assessment, the child’s tone (stiff or floppy) would aid in advice about positioning (vital for good feeding).99 The severity of a child’s motor disability is known to be associated with feeding difficulties. Assessing the child’s ability to sit, their use of assistive devices and their abilities and positioning for feeding in the home may provide further information for the assessor.70 A classification system such as the Gross Motor Functioning Classification System (Fig. 2), a broad 5-category classification system of motor functional limitations and abilities, may help to put this in context71,72 (Fig. 2).

We know that anthropometric measurement is crucial in all children but it is particularly important in children with disabilities. Their underlying difficulties can make anthropometry challenging. Measurement of height and weight are not easy in children who cannot stand or sit and who have limb or spine flexion deformities. This influences the ability to undertake height-for-age (a marker of chronic malnutrition or stunting), body mass index, and weight-for-height (a marker of wasting and a key criterion for entry to therapeutic feeding programs) evaluations. In addition, we must not use appearance alone as a way of assessing acute malnutrition as this has poor sensitivity or specificity and many children would be missed and would not get needed treatment. Arm span and tibial length, as proxy measures of height, have good validity, in particular for nonambulant children, for example, those with cerebral palsy.73-75 Weight measurements should be encouraged but interpreted with caution. The easiest and most useful tool to assess acute malnutrition is the MUAC. MUAC avoids the need for height measurement, is cheap, quick, and easy to use, and is the assessment of choice in populations at risk of wasting.76,77 Head circumference may imply an underlying diagnosis and likely continued progression of the neurologic condition. Children with cerebral palsy or other developmental disorders have different parameters for normal growth.78-80 Normal growth charts are often not applicable and many children do not achieve “normal” growth. Some disabilities (eg, Down syndrome and cerebral palsy) result in different growth patterns and specialized growth charts are needed to determine growth or nutrition.81 As cerebral palsy is a heterogeneous and complex group, there are different charts for each of the 5 functional levels of cerebral palsy as related to the Gross Motor Functioning Classification System. These are not always easily available so for clinicians, it is more important to just have a general awareness that these children do have different growth trajectories.

Assessment of vision and hearing helps a family understand how best they can enable some children to improve their development, play, communication, and feeding. If visual impairments are not understood, it may be difficult for children to feed. If hearing impairments are present, children can have delayed communication skills and behavioral problems that affect their ability to ask for food.

The assessment of a child with a disability should include a detailed feeding history. This includes information about how they feed, how long it takes, who feeds them, what they feed with (utensils), what kind of foods they take (soft, lumpy, and thickened only), whether they choke or cough regularly, have recurrent chest infections, and whether they drool.82 Understanding the social situation for a family with a child with neurodisability enables work with families to improve nutrition. Often, the families of children with disabilities do not really understand their child’s diagnosis. Compounding this, families may feel isolated and stigmatized and have problems with child care.82 Access to food is a right for children with disabilities, guaranteed under the United Nations Committee of the Rights of Disabled Persons and the United Nations Committee of the Rights of the Child. However, if parents and carers anticipate that their child will die young or will be unable to contribute to the welfare of the household as an adult, families may hesitate to provide enough food, enough nutritious food, or may withhold food altogether.83 We need to understand issues surrounding quality of life and participation of those with disabilities within society—as promoted within the new International Classification of Functioning framework of disability.84 It is important to consider the effect of the child’s condition on the family and the community, and how this may affect the ability of the family to care for and nurture a child. Social support structures and the assessment of these for a family are vital for these children. Availability of services for children vary but in some settings there may be a social or disability welfare worker or a palliative care service which can provide advice and information for families.

Neuroimaging and Electrophysiological Assessment of Children With Malnutrition

Studies over many years have demonstrated that nutritional deficiency impairs central nervous system functioning at many levels.85-91 Human and animal histological and imaging studies of the developing brain have shown both macrostructural and microstructural changes in the nutritionally impaired brain.92,93 Kwashiorkor is associated with retarded brain growth,94 reduced cerebral cellularity,95 reduced or delayed myelination,96 and, in the neurophysiological field, changes in electroencephalography (EEG)97,98 and evoked potential tracings.99

Neuroradiology

Neuroradiology technology is now available in some low-income settings. Imaging studies have shown that cerebral atrophy and ventricular dilatation with prominent sylvian fissures and basal cisterns are common in children with kwashiorkor.100-103 Some studies have shown that brain pathology, as demonstrated on magnetic resonance imaging, is reversible after nutritional rehabilitation.102,101,104

EEGs and Malnutrition

EEG, has become more useful with recent advances in EEG technology, particularly through computer analysis procedures.105 The first studies were conducted in West Africa in the 1950s106 where abnormal EEGs in children with PEM were shown. In these children, the dominant frequency of the EEG was much lower than in normal children. Similarly, lower frequencies over all EEG bands have been shown in up to one-
third of children with kwashiorkor. Some studies have demonstrated that with treatment these abnormalities tend to disappear but may persist for several months after nutritional rehabilitation in case of severe malnutrition and in children who had PEM before 6 months of age.37,38 Long-term follow-up of previously marasmic children confirms that acute PEM results in marked retardation in faster EEG frequencies (α rhythm) for up to 12 years after successful nutritional treatment.34,107 Some studies have also related poor cognitive outcomes to the EEG changes of diminished voltage and excessively slow rhythm.108

Auditory Evoked Potentials and Malnutrition

Auditory evoked potentials (AEP) are understood to be a sensitive measure of brain functions and have been used by many researchers both in human studies109,110 and experimental animal studies.111 Studies evaluating electrophysiological parameters have reported diverse nervous system consisting of auditory,112 visual,112,113 corticospinal,114 and somatosensory paths,115 as well as interhemispheric modulation.118 Clinical studies have shown that early malnutrition (marasmus and kwashiorkor) can produce marked alterations in the electrophysiological parameters of AEP117,118 and irreversible increased latencies of AEP waves 12 months after rehabilitation. This suggests deficiencies in the myelination process with decreased synaptic efficiency in the auditory system. Studies have shown brain recovery in laboratory animals when stimulated.119,120 Some studies report that the effects of malnutrition on AEPs are reversed by nutritional rehabilitation if associated with daily and individual sensorimotor and environmental stimulation.121 Sensory stimulation used in a properly directed, systematic, and individualized manner showed encouraging results in AEP recovery in these children.

Future Plans

The interaction among malnutrition, developmental delay, neurodisability, and malnutrition is strong. Nutritional assessment tools have been used in low-income settings but developmental assessment or cognitive tools have not been well used in these settings. Many tools are not designed for practical identification of developmental delay or disability with linked advice and support for families. There is an obvious need to make available simple, practical neurodevelopmental monitoring or surveillance tools that can be integrated with nutritional assessments to benefit children with neurodevelopmental delays or disabilities and nutritional disorders. All acute malnutrition units should use simple developmental monitoring tools and give advice to families. Table 1 describes some simple measures to use in a busy clinic.

Sensitive and specific tools are required to assess the effect of interventions on outcomes in malnourished children. It may be that specific cognitive and language measures that identify specific brain function problems are of more practical use than overall developmental or cognitive tools. All such tools must be valid and reliable in a variety of cultural settings.35,36,51 Improved imaging and EEG technology has advanced the understanding of neurobiological changes in the brain as a result of malnutrition. These modalities will continue to direct

Table 1 The 5 Most Important Things to Assess in Children With Malnutrition and Those With Neurodisability

Malnutrition	Neurodevelopment or Disability
1 Middle-upper arm circumference (MUAC)	
In children aged 6-59 mo:	
< 125 mm = moderate wasting	
< 115 mm = severe wasting	
2 Weight for age (and weight trend)	
Weight for age may be lower than in nondisabled children, but all children should be growing. Loss of weight is a dangerous sign needing further assessment.	
3 Appetite test and feeding technique	
If a malnourished child still has appetite and is able to consume a “test” feed, he or she may be eligible for home-based treatment. Those without appetite or with significant feeding problems may need admission	
4 Oedema	
If bilateral pitting edema, then consider kwashiorkor	
5 HIV status	
In HIV-prevalent areas, this is another major factor underlying malnutrition and should be tested for and excluded	

Weight for height or length is also used to assess wasting severity but is a poorer predictor of mortality outcomes than MUAC—plus and is difficult to assess in some disabilities (eg, children who cannot stand or those with contractures).
research on anatomical areas most affected in different types of malnutrition.

The combined assessments of neurodisabilities and nutrition and growth are not always straightforward but provide the basis for appropriate advice and interventions to improve outcomes and quality of life for children and families. Comprehensive and integrated approaches between health, education, and social services will take this forward.

References

1. Grantham-McGregor S, Cheung YB, Cueto S, et al. Developmental potential in the first 5 years for children in developing countries. Lancet 369:60-70, 2007
2. Kuperminc MN, Stevenson RD: Growth and nutrition disorders in children with cerebral palsy. Dev Disabil Res Rev 14:137-146, 2008
3. Andrew MJ, Sullivan PB: Feeding difficulties in disabled children. Paediatr Child Health 20:321, 2010
4. Sullivan PB: Gastrointestinal disorders in children with neurodevelopmental disabilities. Dev Disabil Res Rev 14:128-136, 2008
5. Pollitt E: Developmental sequel from early nutritional deficiencies: Conclusive and probability judgements. J Nutr 130:350-353, 2000
6. Engle PL, Fernald LC, Alderman H, et al: Strategies for reducing inequalities and improving developmental outcomes for young children in low-income and middle-income countries. Lancet 378:1339-1335, 2011
7. Gladstone M, Lancaster GA, Umar E, et al: The Malawi Developmental Assessment Tool (MDAT): The creation, validation, and reliability of a tool to assess child development in rural African settings. PLoS Med 7:e1000273, 2010
8. Abubakar A, Holding PA, Van Baar A, et al: Monitoring psychomotor development in a resource limited setting: An evaluation of the Kilifi Developmental Inventory. Ann Trop Paediatr 28:217-226, 2008
9. Erem IO, Dogan DG, Gok CG, et al: A guide for monitoring child development in low- and middle-income countries. Pediatrics 121:e581-e589, 2008
10. Khan NZ. Best resource use for disabled children. World Health Forum 19:47-52, 1998
11. Georgiell MK: Nutrition and the developing brain: Nutrient priorities and measurement. Am J Clin Nutr 85:614S-620S, 2007
12. Griffiths R: The Abilities of Young Children. Amersham: ARICD, 1984
13. Griffiths R: The Abilities of Babies. High Wycombe, Bucks: The Test Agency Ltd, 1986
14. Grantham-McGregor S: A review of studies of the effect of severe malnutrition on mental development. J Nutr 125:2233-2238, 1995
15. Luiz D, Faragher B, Barnard A, et al: Griffiths Mental Development Scales—Extended Revised (GMDS-ER): 2-8 Years. Technical Manual. Amersham: Association for Research in Child Development (ARICD), 2006
16. Bayley N: Bayley Scales of Infant Development Manual. Orlando: The Psychological Association. Harcourt, Brace and Company, 1993
17. Black MM, Baqui AH, Zaman K, et al: Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr 80:903-910, 2004
18. Boivin MJ, Green SD, Davies AG, et al: A preliminary evaluation of the cognitive and motor effects of pediatric HIV infection in Zairian children. Health Psychol 14:13-21, 1995
19. Obotherhelma RA, Guerrero ES, Fernandez ML, et al: Correlations between intestinal parasitosis, physical growth and psychomotor development among infants and children from rural Nicaragua. Am J Trop Med Hyg 58:470-475, 1998
20. Glascoe FP: Developmental Screening. In: Parker S, Zuckermand B (eds): Behavioral and Developmental Pediatrics. Boston, Little, Brown and Company, 25-29, 1995
21. Glascoe FP, Martin ED, Humphrey SA. Comparative review of developmental screening tests. Pediatrics 86:547-554, 1990
22. Junee J, Mohanty M, Jain R, et al: Ages and Stages Questionnaire as a screening tool for developmental delay in Indian children. Indian Pediatr 49:457-461, 2012
23. Kvestad I, Tanja S, Kumar T, et al: The assessment of developmental status using the Ages and Stages questionnaire-3 in nutritional research in north Indian young children. Nutri J 12:1-11, 2013
24. Abubakar A, Uriyo J, Stray-Pedersen B, et al: Prevalence and risk factors for poor nutritional status among children in the Kilimanjaro Region of Tanzania. Int J Environ Res Public Health 9:3505-3518, 2012
25. Glascoe FP: Parents’ Evaluation of Developmental StatusNashville, TN: Ellsworth & Vandermeer Press, 1997
26. Glascoe FP: Collaborating With Parents: Using Parents Education of Developmental Status to Detect and Address Developmental and Behavioural ProblemsNashville, TN: Ellsworth and Vandermeer Press, 1998
27. Glascoe FP: If you don’t ask, parents may not tell: Noticing problems vs expressing concerns. Arch Pediatr Adolesc Med 160:220, 2006; [author reply 20-21]
28. Glascoe FP: Re: Parents’ evaluation of developmental status. J Paediatr Child Health 41:615-616, 2005; [author reply 16]
29. Glascoe FP: Parents’ evaluation of developmental status: How well do parents concerns identify children with behavioral and emotional problems? Clin Pediatr 42:133-138, 2003
30. Glascoe FP, Alteneier WA, MacLean WE. The importance of parents’ concerns about their child’s development. Am J Dis Child 143:955-958, 1989
31. Glascoe FP, MacLean WE, Stone WL: The importance of parents concerns about their child’s behavior. Clin Pediatr 30:8-11, 1991; [discussion 12-4]
32. Geisinger K: Cross-cultural normative assessment: Translation and adaptation issues influencing the normative interpretation of assessment instruments. Psychol Assess 6:304-312, 2006
33. Carter JA, Lees JA, Murtna G, et al: Issues in the development of cross-cultural assessments of speech and language for children. Int J Lang Commun Disord 40:385-401, 2003
34. Holding PA, Taylor HG, Kazungu SD, et al: Assessing cognitive outcomes in a rural African population. Development of a neuropsychological battery in Kilifi District, Kenya. J Int Neuropsychol Soc 10:246-260, 2004
35. Prado EL, Hamti S, Rahmanwati A, et al: Test selection, adaptation, and evaluation: A systematic approach to assess nutritional influences on child development in developing countries. Br J Educ Psychol 80:31-53, 2010
36. Gladstone M, Lancaster G, Jones A, et al: Can Western developmental screening tools be modified for use in a rural Malawian setting? Arch Dis Child 93:23-29, 2008
37. Gladstone M, Lancaster G, Umar E, et al: Perspectives of normal child development in rural Malawi—a qualitative analysis to create a more culturally appropriate developmental assessment tool. Child Care Health Dev 36:345-353, 2010
38. Abubakar A, Van de Vijver FJR, Van Baar A, et al: Socioeconomic status, anthropometric status and psychomotor development of Kenyan children from resource-limited settings: A path-analytic study. Early Hum Dev 84:613-621, 2008
39. Group WHOMGRS: W.H.O Motor Development Study: Windows of achievement for six gross motor developmental milestones. Acta Paediatr Suppl 450:86-95, 2006
40. Connolly RJ, Kvalsoig JD: Infection, nutrition and cognitive performance in children. Parasitology 107:S187-S200, 1998
41. Stoch MB, Smythe PM: 15-Year developmental study on effects of severe undernutrition during infancy on subsequent physical growth and intellectual functioning. Arch Dis Child 51:327-336, 1976
42. Walker SP, Chang S, Powell CA, et al: Effects of early childhood psychosocial stimulation and nutritional supplementation on cognition and education in growth-stunted Jamaican children: Prospective cohort study. Lancet 366:1804-1807, 2005
43. Raven J: The Raven’s progressive matrices: Change and stability over culture and time. Cognit Psychol 41:1-48, 2000
Assessment of neurodisability and malnutrition in children in Africa

86. Bedi KS, Thomas YM, Davies AA, et al: Synapse to neuron ratios of the frontal and cerebellar cortex of 30 day old and adult rats undernourished during early post natal life. J Comp Neurol 193:49-56, 1980

87. Cragg BG: The development of cortical synapses during starvation in the rat. Brain 95:143-150, 1972

88. Cravioto J, E.R. D, Birch HG: Nutrition, growth and neurointegrative development: An experimental and ecological study. Pediatrics 38:319-367, 1966

89. Dobbing J: Effects of experimental undernutrition on development of the nervous system. In: Srinshaw NS, Gordon JE (eds): Malnutrition, Learning and Behaviour. Cambridge, Mass, MIT Press, 181-202, 1968

90. Dobbing J, Sands J: Vulnerability of developing brain. IX. The effect of nutrition, growth retardation on the timing of the brain growth spurt. Biol Neonate 19:363-378, 1971

91. Finger S, Stein DG: Brain Damage and Recovery: Research and Clinical Perspectives. New York: Academic Press, 1982

92. Quirk GJ, Mejia WR, Hesse H, Su H: Early malnutrition followed by nutritional restoration lowers the conduction velocity and excitability of the corticospinal tract. Brain Res 670:277-282, 1995

93. Wang L, Xu RJ: The effects of perinatal protein malnutrition on spatial learning and memory behaviour and brain-derived neurotrophic factor concentration in the brain tissue in young rats. Asia Pac J Clin Nutr 16:467-472, 2007

94. Stoch MB, Smythe PM: Does undernutrition during infancy inhibit brain growth and subsequent intellectual development? Arch Dis Child 38:546-552, 1963

95. Winick M, Rosso P: The effect of severe early malnutrition on cellular growth of human brain. Pediatr Res 3:181, 1969

96. Fishman MA, Prensky AL, Dodge PR: Low content of cerebral lipids in infants suffering from malnutrition. Nature 221:552-553, 1969

97. Engel R: Abnormal brain wave patterns in Kwashiorkor. Electroenceph Clin Neurophysiol 8:489, 1956

98. Nelson GK: The electroencephalogram in kwashiorkor. Electroenceph Clin Neurophysiol 11:73, 1959

99. Flinn JM, Barnett AB, Lydick S, et al: Infant malnutrition affects cortical auditory evoked potentials. Percep Mot Skills 76:1359-1362, 1993

100. Akinyinju OO, Adeyinola AO, Falade AG: The computed axial tomography of the brain in protein energy malnutrition. Ann Trop Paediatr 15:329-333, 1995

101. Gunston G, Burkimsher D, Malan H, et al: Reversible cerebral shrinkage in kwashiorkor: An MRI study. Arch Dis Child 62:589-592, 1992

102. Househam KC, De Villers JF: Computed tomography in severe protein energy malnutrition. Arch Dis Child 62:580-592, 1987

103. Aalati OM, Lagunju IA, Tongi OO, et al: Cranial magnetic resonance imaging findings in kwashiorkor. Int J Neurosci 120:23-27, 2010

104. Stein DG, Finger S, Hart T: Brain damage and recovery: Problems and perspectives. Behav Neural Biol 37:185-222, 1983

105. Metcalfe DL: Electroencephalography. In: Prescott JW, Read MS, Cousin DB (eds): Brain Function and Malnutrition: Neuropsychological Methods of Assessment. New York, John Wiley and Sons, 119, 1995

106. Gallais PJ, Bert J, Corrodi J, et al: Les rythmes des noires d’Afrique (Etude des 100 premiers traces sujets normaux). Electroenceph Clin Neurophysiol 3:110, 1951

107. Baraitser M, Evans DE: The effect of undernutrition on brain-rhythm development. S Afr Med J 43:56, 1969

108. Sarrouy C, Saint-Jean M, Clausee Algerie Med: 57:584, 1953

109. Hecox K, Galambos R: Brainstem auditory responses in human infants and adults. Arch Otolarngol 99:30-33, 1974

110. Shiple J, Buchwald JS, Normand R, et al: Brain stem auditory evoked response development in the kiten. Brain Res 182:313-326, 1980

111. Buchwald JS, Huang C: Far-field acoustic response: Origins in the cat. Science 189:382-384, 1975

112. Durmaz S, Karagöl U, Deda G, et al: Brainstem auditory and visual evoked potentials in children with protein energy malnutrition. Pediatr Int 41:615-619, 1999

113. McDonald CG, Jolle CI, Barnet AB, et al: Abnormal flash visual evoked potentials in malnourished infants: An evaluation using principal component analysis. Clin Neurophysiol 118:896-900, 2007

114. Arakal B, Misra S, Garg RK, et al: A study of transcranial magnetic stimulation in older (>3 years) patients of malnutrition. Neurol India 47:229-233, 1999

115. Hesse H, Rivera MF, de Diaz I, et al: Central somatosensory conduction time in severely growth-stunted children. Am J Clin Nutr 67:93-96, 1998

116. Pinto AV, Guedes RC: Direct evidence of inter-hemispheric modulation by callosal fibers: A cortical spreading depression study in well-nourished and early-malnourished adult rats. Exp Brain Res 186:39-46, 2008

117. Barnett AB, Weiss IP, Sotillo MV, et al: Abnormal auditory evoked potentials in early infancy malnutrition. Science 201:450-452, 1978

118. Barlet PR, Robinson E, Conradie JM, et al: Brainstem auditory evoked potentials in severely malnourished children with kwashiorkor. Neuro-pediatrics 17:178-182, 1986

119. Bedi KS, Bhide PG: Effects of environmental diversity on brain morphology. Early Hum Dev 17:107-143, 1988

120. Rocinholi LF, de Oliveira LM, Colaferina JF: Malnutrition and environmental stimulation in rats: Wave latencies of the brainstem auditory evoked potentials. Nutr Neurosci 4:199-212, 2001

121. Lima JC: Estudo morfológico e morfométrico do corpo caloso de ratos submetidos a diferentes tipos de dietas e à estimulação sensorial e ambiental. Universidade de São Paulo, 1992