Elevated serum bilirubin in acute appendicular perforation as a newer serum marker: a diagnostic validation test

Bhimanagouda V. Goudar, Varsha R. Kanchan*

Department of Surgery, S. Nijalingappa Medical College, Bagalkot, Karnataka, India

Received: 05 December 2019
Revised: 16 January 2020
Accepted: 17 January 2020

*Correspondence:
Dr. Varsha R. Kanchan,
E-mail: varshakanchan07@gmail.com

ABSTRACT

Background: Acute appendicitis is the commonest cause of acute surgical abdomen. Appendicectomy is the most frequently performed urgent abdominal operation and is often the first major procedure performed by a surgeon in training. Delay in diagnosis and treatment results in increased rate of perforation, morbidity, mortality and hospital stay.

Methods: A prospective study where a total of 100 patients with clinical, radiological and histopathological diagnosis of acute appendicitis or appendicular perforation were studied. The liver function tests were carried out in all the patients.

Results: In a study group of 100 patients (74 males and 26 females); 59 cases were acute appendicitis and 41 cases were appendicetal perforation proven histopathological. Out of which 48 cases had elevated serum bilirubin levels i.e., 17 in acute appendicitis group and 31 in appendicular perforation group. The mean serum total bilirubin is 1±0.4 in acute appendicitis cases and 1.9±1.13 in the appendicular perforation cases. Similarly, the sensitivity and specificity of elevated serum bilirubin as a diagnostic marker in appendicular perforation was found to be 75.6% and 71.2% respectively.

Conclusions: Elevated serum bilirubin levels appears to be a promising new supplemental diagnostic serum marker in Appendicular Perforation and perhaps be a decision-making investigation.

Keywords: Acute appendicitis, Appendicular perforation, Hyperbilirubinemia, Serum bilirubin

INTRODUCTION

Acute appendicitis is the commonest cause of “acute surgical abdomen”. Appendicectomy is the most frequently performed urgent abdominal operation and is often the first major procedure performed by a surgeon in training.

The diagnosis of appendicitis still remains a dilemma in spite of advances in the radiological and laboratory investigations. Experienced clinicians accurately diagnose appendicitis based on a combination of history, physical examination and laboratory studies about 80% of the time. Although most patients with acute appendicitis can be easily diagnosed, in some cases the sign and symptoms are variable and a firm diagnosis can be difficult. This is particularly true where the appendix is retrocaecal or retroileal.

Delay in diagnosis and treatment results in increased rate of perforation, morbidity, mortality and hospital stay. Moreover, radiological modalities like computerized tomography (CT) scan abdomen and ultrasonography (USG) abdomen are effective to supplement the diagnosis of acute appendicitis, both modalities have lower sensitivity in detecting perforated appendicitis. Thus to
prevents the catastrophic effects of perforated appendix, a surgeon might need a diagnostic aid which can signal perforation at its earliest.\(^7\)

Hyperbilirubinemia is recently postulated as a laboratory marker for diagnosing acute appendicitis and determining its severity.\(^8\) Studies have shown that bacterial infection causes disruption in production and excretion of bile.\(^8\)

In view of the above context, the present study was taken up to assess affiliation between hyperbilirubinemia and to see whether elevated serum bilirubin levels have a predictive potential for the diagnosis of appendiceal perforation.

METHODS

This is a prospective study was conducted in the Department of General Surgery, S. Nijalingappa Medical College, Bagalkot, Karnataka, India for 18 months duration from December 2017 to May 2019.

Source of data

All cases of clinically confirmed acute appendicitis and/or appendiceal perforation coming to Department of General Surgery.

Method of collection of data

Inclusion criteria

All cases of acute appendicitis and appendiceal perforation aged >15 years with suggestive reports.

Exclusion criteria

Patients with appendicular mass, chronic appendicitis, confirmed hepatitis, hemolytic anaemia and liver disease (alcoholic or non) were excluded.

Procedure

After obtaining ethical clearance, patient fitting the inclusion criteria were included. Their demographics were recorded, and were subjected to routine investigations including LFT. Radio-imaging like USG and/or CT to support the diagnosis were done. Patients underwent laparoscopic/open appendicectomy under spinal anaesthesia/general anaesthesia following which the specimen was sent for histopathological confirmation. Clinical and investigational data were compiled and analysed.

Sample size estimation

A total of 100 patients with clinical diagnosis of acute appendicitis or appendicular perforation were studied. Sample size was calculated as per the procedure adopted by Kumar et al.\(^9\)

\[
N = \left(a^2 \times b \times c \right) ÷ \left(z^2 \right)
\]

where, \(N \) is the sample size; \(a \) is equal to 1.96 i.e., \(z=2 \) (considering confidence as 95%); \(b \) is the prevalence (prevalence was taken as 50% as exact prevalence was not known); \(c \) is \((100 – p)\) that is, 50%; \(z \) is the absolute error which was 10%.

Statistical analysis

Patients with histological diagnosis of acute appendicitis and appendicular perforation having hyperbilirubinemia were expressed in percentages. Mean of the level of elevation of serum bilirubin was calculated for patients with clinical diagnosis of acute appendicitis and appendicular perforation. A hypothesis was made based on the observation of the level of the two means. Also, sensitivity, specificity, positive predictive value, negative predictive value and odds ratio was determined by \(2 \times 2 \) as shown in Table 1.

RESULTS

A total of 100 patients with clinical diagnosis of acute appendicitis or appendicular perforation admitted in the Department of General surgery, SNMC and HSK Hospital, Bagalkot were studied. As per the study, the age group 15-24 years is most commonly affected (44%) followed by age group 25-34 years (22%). The youngest patients of this study were of 16 years old while the oldest patient was 70 years. Out of 100 patients enrolled for the study, 74 patients (74%) were males while the remaining 26 patients (26%) were females. The overall mean age of all 100 patients was 30.75±12.8 years. The average age in males and females was 30.7±12.3 years and 30.8±14.2 years respectively.

The mean total bilirubin of all 100 patients was 1.45±0.9 mg/dl while the Direct bilirubin was 0.89±0.77 mg/dl. Mean indirect bilirubin was 0.55±0.37 (Table 2).

52 patients of all 100 patients were found to have normal bilirubin levels (≤1.0 mg/dl), while 48 patients had raised bilirubin levels (>1.0 mg/dl).

Of 59 patients diagnosed as acute appendicitis, 17 patients (28.8%) had raised bilirubin levels (>1.0 mg/dl), while the remaining 42 patients (71.2%) had normal levels (≤1.0 mg/dl). 41 patients diagnosed as Appendicular perforation, 31 patients (75.6%) had raised bilirubin levels (>1.0 mg/dl), while the remaining 10 patients (24.4%) had normal levels (≤1.0 mg/dl) (Table 3).
Histopathologically, 59 patients were confirmed as acute appendicitis while 41 patients were diagnosed with appendicular perforation (Tables 4 and 5).

Table 6: Accuracy of serum bilirubin as a marker in predicting appendicular perforation.

Parameters	%
Sensitivity	75.6
Specificity	71.2
Positive predictive value	64.5
Negative predictive value	80.7
Odds ratio	7.6
Positive predictive value	2.6
Negative predictive value	0.34
Diagnostic accuracy	73

DISCUSSION

Appendicular perforation in patients with acute appendicitis is associated with considerable mortality. A non perforated acute appendicitis can be cured by an appendicectomy without a long recovery period, perforated appendicitis can cause various complications that can be life threatening.

To decrease mortality a timely diagnosis and initiation of surgical intervention is essential. Clinical assessment and laboratory tests are still acknowledged as being of utmost importance in the diagnosing process, although it remains a complicated task for the surgeon.

A biomarker can be defined as an objectively, measurable characteristic that previous research has validated as a marker of a normal physiology, disease or the disease’s response to treatment. Numerous serum markers have been analysed as to predict the severity of appendicitis including CRP, interleukin (IL)-6 and lipopolysaccharide binding protein, procalcitonin.

Miller and Irvine first reported that jaundice was common in patients with severe appendicitis. In patients with abdominal infections bacterial load in portal blood increases beyond the capacity of Kupffer cell function. Additional it may cause damage to hepatocyte which is reflected by the rise in serum bilirubin. Elevated total bilirubin level in acute appendicitis can either be as a result of bacteremia or endotoxaemia, both possible in perforated appendix as well.

In the present study, out of 100 patients 74 patients were male and 26 were females. The mean age of presentation being 30.7±12.2 years in males and 30.8±14.1 years in females respectively, this was consistent with the quoted incidence of Appendicitis in the literature where it is most frequently seen in patients in their second through fourth decades of life.
In our study population of 100 patients, 75 patients (75%) were diagnosed as acute appendicitis pre-operatively while 25 patients (25%) were diagnosed with appendiceal perforation. On confirmation with histopathological reports (HPR) post-operatively 59 patients (59%) were acute appendicitis case and 41 patients (41%) of appendiceal perforation as diagnosis.

Hyperbilirubinemia was found in 48 patients out of the total 100 cases. 52 patients had normal bilirubin levels (≤1 mg/dl). Only 17 in 59 cases (45.8%) of acute appendicitis and 31 in 41 cases (75.6%) of appendiceal perforation had total bilirubin levels more than 1mg/dl. Hence it can be noted that hyperbilirubinemia was associated with most of appendiceal perforation cases.

The sensitivity and specificity of serum total bilirubin in diagnosis of appendiceal perforation was 75.6% and 71.2% respectively in our study.

Atahan et al were 70% and 77% which was in correspondence to our study.10,19 A study by Estrada et al and Emmanuel et al had obtained the specificity of 69% and 70% respectively, where the specificity of our study is found to be 71.2%.20,21 The highest sensitivity and specificity obtained with similar studies is found to be 80% and 90%, a study by Atahan et al and McGowen at al.14,19 Similarly the positive predictive value and negative predictive value was 64.5% and 80.7% respectively with the odds ratio as 7.6 (Table 7).

CONCLUSION

In our study appendicular perforation cases were more assured to have elevated serum bilirubin levels than those with acute appendicitis. Estimation of serum bilirubin level is a simple, reasonable and easily available investigation in every laboratory. Although clinical examination aided with radio-imaging remains the corner stone in diagnosis of appendicitis; evaluation of total serum bilirubin levels can predict a higher probability of perforated appendix.

In conclusion, an elevated serum bilirubin level appears to be a promising new supplemental diagnostic serum marker in appendicular perforation and perhaps be a decision-making investigation.

ACKNOWLEDGEMENTS

Authors would like to acknowledge all the staff of SNMC Departments of General Surgery, Pathology and Biochemistry.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Chaudhary P, Kumar A, Saxena N, Biswal UC. Hyperbilirubinemia as a predictor of gangrenous/perforated appendicitis: A prospective study. Ann Gastroenterol. 2013;26(4):325–31.
2. Williams NS, Bulstrode CJK, O’Connell PR (eds). The Vermiform Appendix. In: Bailey and Love’s - Short practice of surgery. 25th edition. London; 2008: 1204-1208.
3. Maas J. The Appendix. Sabiston Textbook of Surgery. 18th edition. In: Townsend CM, Beauchamp RD, Evers BM, Mattox KLE (eds). Philadelphia: Saunders Elsevier; 2016: 1333-1347.
4. Baird DLH, Similis C, Kontoumounisio C, Rashed S, Tekkis PP. Acute appendicitis. Br Med J. 2017;357:1703.
5. Vaziri M, Pazouki A, Tamannaie Z, Maghsoudloo F, Pishgahroudarsi M, Chaichian S. Comparison of pre-operative bilirubin level in simple appendicitis and perforated appendicitis. Med J Islam Repub Iran. 2013;27(3):109-12.
6. Burchart J, Pommergaard HC, Rosenberg J, Gögenur I. Hyperbilirubinemia as a predictor for
appendiceal perforation: A systematic review. Scand J Surg. 2013;102(2):55-60.
7. Mir FA, Aara S, Jan M, Wani NA. Diagnostic value of serum hyperbilirubinemia in acute appendicitis and its complications. Int Surg J Int Surg J. 2017;44(5):1710-4.
8. Gurleyik E, Gurleyik G, Unalmişer S. Accuracy of serum c-reactive protein measurements in diagnosis of acute appendicitis compared with surgeon’s clinical impression. Dis Colon Rectum. 1995;38(12):1270-4.
9. Kumar BA, Kalyan K, Rehman MM. Perforation in acute appendicitis: Evaluation of hyperbilirubinemia and elevated C reactive protein as a predictive factor. IAIM. 2017;4(3):18-23.
10. Sand M, Bechara FG, Holland-Letz T, Sand D, Mehnert G, Mann B. Diagnostic value of hyperbilirubinemia as a predictive factor for appendiceal perforation in acute appendicitis. Am J Surg. 2009;198(2):193-8.
11. Hong YR, Chung C-W, Kim JW, Kwon C I, Ahn DH, Kwon SW, et al. Hyperbilirubinemia Is a Significant Indicator for the Severity of Acute Appendicitis. J Korean Soc Coloproctol. 2012;28(5):247.
12. Chambers AC, Bismohun SL, Davies H, White P, Patil A V. Predictive value of abnormally raised serum bilirubin in acute appendicitis: A cohort study. Int J Surg. 2015;13:207-10.
13. Khan AQ, Patil A, Pawar P. Role of Hyperbilirubinemia as a Diagnostic Predictor of Appendicular Perforation. Int J Sci Res. 2014;3(12):2012-5.
14. Mcgowan DR, Sims HM, Zia K, Uheba M, Shaikh IA. The value of biochemical markers in predicting a perforation in acute appendicitis. 2013;83:79–83.
15. Miller DF, Irvine RW. Jaundice in acute appendicitis. Lancet. 1969;293(7590):321-3.
16. Utili R, Abernathy Co ZH. Cholestatic effects of Escherichia coli endotoxin on isolated perfused rat liver. Gastroenterology. 1976;70(2):248-53.
17. Cheekuri SK, Mohanty A, Ganann R, Smile R. Hyperbilirubinemia as a predictor of the severity of acute appendicitis - an observational study. Int Surg J. 2017;4(4):1341-4.
18. Socea B, Carăpă A, Constantin V. The Value of Serum Bilirubin Level and of White Blood Cell Count as Severity Markers for Acute Appendicitis. Chirurgia (Bucur). 2013;6:829-34.
19. Tahan KA, Reyen OÜ, Slan EA, Eniz MD, Ökmez AÇ, Ür SG, et al. Preoperative Diagnostic Role of Hyperbilirubinemia as a Marker of Appendix Perforation. J Int Med Res. 2011;609-18.
20. D’Souza N, Karim D, Sunthareswaran R. Bilirubin: a diagnostic marker for appendicitis. Int J Surg. 2013;11(10):1114-7.
21. Coll AR, Engl S, Emmanuel A, Murchan P, Wilson I, Balfe P. The value of hyperbilirubinaemia in the diagnosis of acute appendicitis. Ann R Coll Surg Engl. 2011;93(3):213-7.
22. Samuel Andreas Kaser, Gerhard Fankhauser NW & CAM. C-reactive protein is superior to bilirubin for anticipation of perforation in acute appendicitis. Scand J Gastroenterol. 2010;45(7-8):885-92.

Cite this article as: Goudar BV, Kanchan VR. Elevated serum bilirubin in acute appendicular perforation as a newer serum marker: a diagnostic validation test. Int Surg J 2020;7:414-8.