Cell-Cycle Perturbations Suppress the Slow-Growth Defect of spt10Δ Mutants in Saccharomyces cerevisiae

Jennifer S. Chang¹ and Fred Winston²
Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115

ABSTRACT Spt10 is a putative acetyltransferase of Saccharomyces cerevisiae that directly activates the transcription of histone genes. Deletion of SPT10 causes a severe slow growth phenotype, showing that Spt10 is critical for normal cell division. To gain insight into the function of Spt10, we identified mutations that impair or improve the growth of spt10 null (spt10Δ) mutants. Mutations that cause lethality in combination with spt10Δ include particular components of the SAGA complex as well as asf1Δ and hir1Δ. Partial suppressors of the spt10Δ slow-growth defect include mutations that perturb cell-cycle progression through the G1/S transition, S phase, and G2/M. Consistent with these results, slowing of cell-cycle progression by treatment with hydroxyurea or growth on medium containing glycerol as the carbon source also partially suppresses the spt10Δ slow-growth defect. In addition, mutations that impair the Lsm1-7—Pat1 complex, which regulates decapping of polyadenylated mRNAs, also partially suppress the spt10Δ growth defect. Interestingly, suppression of the spt10Δ growth defect is not accompanied by a restoration of normal histone mRNA levels. These findings suggest that Spt10 has multiple roles during cell division.

The Saccharomyces cerevisiae Spt10 protein plays important roles in gene expression and growth. Mutations in the SPT10 gene have been identified in many different ways, including as suppressors of the transcriptional defects caused by Ty and Ty LTR insertion mutations (Fassler and Winston 1988; Natsoulis et al. 1991), suppressors of glucose repression of ADH2 (Denis and Malvar 1990), and suppressors of loss of an upstream activation sequence (Prelich and Winston 1993; Yamashita 1993). Several subsequent studies have demonstrated that Spt10 is a site-specific DNA binding protein that binds cooperatively at the regulatory regions of the four S. cerevisiae histone loci where it activates transcription (Dollard et al. 1994; Eriksson et al. 2005, 2011; Hess et al. 2004; Mendiratta et al. 2006, 2007; Xu et al. 2005). DNA binding is dependent upon both a zinc finger domain and an adjacent region required for cooperative binding (Mendiratta et al. 2006, 2007). Spt10 also plays a negative role in histone gene transcription, as it is required for repression of several histone loci outside of S phase (Sherwood and Osley 1991). An intriguing feature of the Spt10 amino acid sequence is a conserved acetyltransferase domain (Neuwald and Landsman 1997). Although this domain is required for Spt10 function (Hess et al. 2004), no acetyltransferase activity or acetyltransferase substrates have yet been identified for Spt10, despite efforts by several laboratories.

The SPT10 gene is functionally related to SPT10. Mutations in SPT21 were isolated in two of the same mutant selections as mutations in SPT10 (Natsoulis et al. 1991; Prelich and Winston 1993), including one large-scale selection that identified only these two genes (Natsoulis et al. 1991). In addition, mutations in SPT21 appear to cause the same pattern of histone locus transcription defects as do mutations in SPT10 (Dollard et al. 1994; Hess et al. 2004; Sherwood and Osley 1991). In vivo, Spt10 is also recruited to all four histone loci, and this recruitment is required for the recruitment of Spt10 during S-phase (Hess et al. 2004). Mutations in SPT10 and SPT21 share other phenotypes, including silencing defects (Chang and Winston 2011). Mutations have been identified in SPT10 that suppress the requirement for SPT21, suggesting that Spt21 is an accessory factor, required for optimal Spt10 function (Hess et al. 2004).

In addition to the close functional relationships between SPT10 and SPT21, obvious differences between them suggest that they do not always function together. There are three especially striking differences

KEYWORDS Spt10, Spt21, histones, suppressors

INVESTIGATION
between the two. First, SPT10 is transcribed throughout the cell cycle, whereas SPT21 is transcribed only during S phase, at the same time as histone genes (Cho et al. 1998; Spellman et al. 1998). Second, a complete deletion of SPT10 (spt10Δ) causes a severe growth defect, whereas a complete deletion of SPT21 (spt21Δ) causes only a mild growth defect (Natsoulis et al. 1994). Finally, mutations that suppress an spt21Δ mutation do not suppress spt10Δ and, in fact, sometimes cause lethality when combined with spt10Δ (Hess and Winston 2005). Taken together, the common and distinct phenotypes of spt10Δ and spt21Δ mutants suggest that Spt10 and Spt21 function together to regulate histone gene expression and that, in addition, Spt10 plays other roles that are critical for normal growth.

To gain insight into other possible roles for Spt10, we have screened for both enhancers and suppressors of the spt10Δ growth defect. The identification of mutations that cause lethality when combined with spt10Δ suggests that Spt10 has overlapping roles with the SAGA coactivator complex. In addition, Spt10 appears to be functionally related to Asf1, the Hir complex, and the Cac-1 complex, whose functions are connected in histone gene regulation, transcriptional silencing, and chromatin assembly (Amin et al. 2012; Eriksson et al. 2012; Kaufman et al. 1998; Sutton et al. 2001). The identification of partial suppressors of the spt10Δ growth defect suggests that Spt10 plays important roles throughout the cell cycle. In support of the idea that these functions are independent of the role of Spt10 as an activator of histone gene transcription, suppressors of the spt10Δ growth defect do not reverse the defects in histone gene transcription.

MATERIALS AND METHODS

Yeast strains, media, and crosses

All S. cerevisiae strains (Table 1) are GAL2* derivatives of the S288C background (Winston et al. 1995). Capital letters denote wild-type genes, lowercase letters denote mutant alleles, and Δ indicates a complete open reading frame deletion. To construct spt10Δ haploids, the open reading frame of SPT10 was first replaced with the LEU2 gene or a kanamycin resistance marker in a diploid strain. Then, plasmid pFW217 (SPT10-URA3-CEN) was used to transform the diploid to Ura+, followed by sporulation of the diploid to obtain haploids with the spt10Δ mutation and pFW217. Whenever possible, spt10Δ strains were grown in the presence of pFW217 to minimize selection for spontaneous growth suppressors. Then, the spt10Δ phenotypes were tested after growth on medium with 5-fluoroorotic acid (5-FOA) to select for cells that had lost pFW217. For the nap1Δ::kanMX, hsl1Δ::kanMX, LSM1Δ::kanMX, mih1Δ::kanMX, swe1Δ::kanMX, and pat1Δ::kanMX alleles, a 2.4-kb cassette was amplified by polymerase chain reaction (PCR) from genomic DNA isolated from the corresponding deletion set strain (Giaever et al. 2002), then used to transform a wild-type strain. The cassette contains a replacement of the entire open reading frame with a kanamycin resistance marker. The can1Δ::HIS3, LSM1Δ::MATMX, and bck2Δ::pho8Δ alleles were generated by PCR-mediated disruption of the entire open reading frame (Goldstein and McCusker 1999). All deletions were confirmed by PCR. The cdc28-T18A Y19F allele was generated by digesting p433 (a generous gift from A. Amon) with EcoRI and using the fragment containing the cdc28-T18A Y19F allele and the URA3 marker to transform a wild-type strain. The URA3 gene was then replaced with the KanMX drug resistance cassette of pRS400. Media, basic yeast techniques, mating, sporulation, and tetrad dissection were as previously described (Rose et al. 1990). Crosses to test double mutant lethality generally contained one parent with an spt10Δ mutation and also carrying plasmid pFW217 (SPT10-URA3-CEN). Double-mutant lethality was assayed by replica plating the spore colonies to 5-FOA plates to determine whether strains that had lost pFW217 were viable.

Transposon mutagenesis screen

The transposon mutagenesis screen was performed as described (Burns et al. 1994). In summary, the LEU2-marked library DNA was digested with NotI, then used to transform strain FY2191. Transformant colonies were selected on SC-Leu-Ura medium then replica plated to 5-FOA medium to select for cells that had lost pFW217 (SPT10-URA3), leaving colonies containing the library insertion in an spt10Δ genetic background. Colonies that failed to grow were designated synthetic lethal candidates, and colonies growing more quickly than FY2191 were designated growth suppressor candidates. All candidates were purified to single colonies, which were then individually patched on SC-Leu medium followed by replica plating to verify the growth phenotype. All candidates remaining after this rescoring were purified and tested a third time. Each candidate was then crossed to an spt10Δ leu2 strain to test whether the mutant phenotype cosegregated with the LEU2 marker on the transposon. For the confirmed mutants, genomic DNA was isolated, and vectorette PCR was used to identify the location of each transposon insertion (Arnold and Hodgson 1991). As one growth suppressor candidate was tightly linked to the SPT10 locus, instead of vectorette PCR, we used a candidate gene approach and by a combination of PCR and sequencing, demonstrated the insertion to be within LSM1.

Synthetic genetic array (SGA) screen

A collection of yeast strains containing deletions of every nonessential gene was screened for phenotypes in an spt10Δ background using an SGA screen (Tong et al. 2001). The collection was spotted onto YPD plates with deletion set strains high::KanMX, lys2Δ::KanMX, and lys12Δ::KanMX spotted separately at the top and bottom of each plate as controls that do not affect spt10Δ growth. The array was mated by replica plating to a lawn with an spt10Δ strain (FY2923) containing a can1Δ::STE2pr-HIS3 allele and carrying the pFW217 (SPT10-URA3) plasmid. Diploids were selected on SC-Leu-Ura and sporulated on solid 1% potassium acetate medium supplemented with histidine, uracil, leucine, and lysine. MATa haploids that contain the deletion set mutation, spt10Δ, and the SPT10 plasmid were selected by replica plating onto SC-Arc-His-Leu-Ura+canavanine+G418 medium. The cells were then replica plated to SC + 5-FOA medium to leave the mutant spt10Δ as the only SPT10 allele present. Strains with better or worse growth compared with the control strains were identified and restested, and then tetrads were dissected to assay for 2:2 segregation and cosegregation of the suppression phenotype with the kanamycin resistance marker.

Dilution spot tests

For dilution spot tests, unless noted otherwise, strains harboring the pFW217 (SPT10-URA3-CEN) plasmid were single colony purified on 5-FOA medium to select for plasmid loss, and single colonies were then patched to YPD media. After 2 d, the cells were resuspended in water to a density of 4 × 10⁶ cells/mL (Figure 2) or 1 × 10⁷ cells/mL (Figures 1, 3–6). Fivefold serial dilutions were spotted onto the media indicated. Plates were scanned after 2–3 d at 30°C, unless otherwise indicated.

cDNA synthesis and real-time PCR

RNA was extracted from 10 mL of yeast cultures in exponential growth as described (Ausubel et al. 1988; Swanson et al. 1991). Then,
Name	Genotype
FY2191 MATa spt10Δ201::HIS3 lys2-1286 ura3-52 his3Δ200 leu2Δ1 + pFW217 (SPT10-URA3-CEN)	
FY2915 MATa his7-gse65::Trn3-LEU2 spt10Δ201::HIS3 lys2-1288 ura3-52 his3Δ200 leu2Δ1	
FY2917 MATa his7-gse65::Trn3-LEU2 spt10Δ201::HIS3 lys2-1286 ura3-52 his3Δ200 leu2Δ1	
FY2918 MATa ism1-68::Trn3-LEU2 spt10Δ201::HIS3 lys2-1288 ura3-52 his3Δ200 leu2Δ1	
FY2919 MATa asfl-69c::Trn3-LEU2 spt10Δ201::HIS3 lys2-1286 ura3-52 his3Δ200 leu2Δ1	
FY2920 MATa asfl-69c::Trn3-LEU2 spt10Δ201::HIS3 lys2-1288 ura3-52 his3Δ200 leu2Δ1	
FY2921 MATa dbf2-719a::Trn3-LEU2 spt10Δ201::HIS3 lys2-1288 ura3-52 his3Δ200 leu2Δ1	
FY2922 MATa lea1-719a::Trn3-LEU2 spt10Δ201::HIS3 lys2-1288 ura3-52 his3Δ200 leu2Δ1	
FY2923 MATa spt10Δ::LEU2 can1Δ::STE2pr-HIS3 lys2-128d ura3Δ0 his3Δ1 + Δleu2Δ0 leu2Δ0 lyp1Δ or LYP1 + pFW217 (SPT10-URA3-CEN)	
FY2928 MATa ubp8Δ::kanMX4 spt10Δ::LEU2 lys2-1286 or LYS2-173R2 ura3-52 leu2Δ1 his3Δ200 + pFW217 (SPT10-URA3-CEN)	
FY2929 MATa spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2930 MATa his7::HIS3 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2931 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2932 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2933 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2934 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2935 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2936 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2937 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2938 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2939 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2940 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2941 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2942 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2943 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2944 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2945 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2946 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2947 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2948 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2949 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2950 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2951 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2952 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2953 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2954 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2955 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2956 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2957 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2958 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2959 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2960 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2961 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2962 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	
FY2963 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2964 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2965 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	
FY2966 MATa nap1::kanMX4 spt10Δ::LEU2 lys2-1286 ura3Δ0 his3Δ200 leu2Δ0	

(continued)
10 μg of RNA was treated with 2 units of DNase (TURBO DNA free kit, Ambion) and reverse transcribed with SuperScript III reverse transcriptase (Invitrogen) using an oligo-dT primer. Real-time PCR was performed with a Stratagene MX3000P machine using 50 ng of cDNA and 1 μg of each primer per 50 μL of reaction, with each reaction performed in triplicate. Primer sequences (Table 2) were provided by Neil McLaughlin and David Clark (personal communication). The specificity of each primer pair was confirmed using the corresponding deletion mutant. Thermocycling parameters were: 10:00 at 94°C, then 35–40 cycles of (0:30 at 94°C, 0:30 at 52°C, 1:00 at 72°C), followed by a melting curve to assay product specificity. Linearity and efficiency were confirmed for each primer pair on each plate.

RESULTS

Identification of mutations that enhance or suppress the spt10Δ slow-growth phenotype

To study the basis of the spt10Δ slow growth phenotype, we screened for mutations that enhance or suppress the growth defect by using both transposon insertion mutagenesis (Burns et al. 1994) and the S. cerevisiae deletion set (Giaever et al. 2002), both as described in Materials and Methods. As spontaneous suppressors of the spt10Δ slow growth phenotype arise at a high frequency, we maintained a low-copy SPT10 plasmid (pFW217) in the spt10Δ strains until the final screening step for each method.

We began with a transposon insertion mutagenesis screen (Burns et al. 1994; Kumar and Snyder 2002) in which we tested 9000 independent transformants for improved or impaired growth compared with the spt10Δ parent (Materials and Methods). By this approach, we identified eight mutations in a total of six genes (Table 3). Three mutations that confer suppression of spt10Δ poor growth were in two genes and five mutations that cause lethality when combined with spt10Δ were identified in four genes. For all six genes, we tested a complete deletion of the identified gene and found the same suppression phenotype, suggesting that all of the insertion mutations cause null phenotypes. For all subsequent experiments, the deletion mutations were used.

From this initial screen, a concern of bias arose, as we had obtained two different transposon insertions within ASF1 without obtaining any insertions in other genes whose deletions were previously shown to be lethal in combination with spt10Δ. These genes include HTA1, HTB1, HHF1, HIR1, ASFI, RRK1, and MBP1 (Braun et al. 2007; Fassler and Winston 1988; Hess 2004; Hess and Winston 2005; Sutton et al. 2001). Therefore, rather than saturate the transposon mutagenesis screen, which would require testing 30,000 transformants (Burns et al. 1994), we switched to the more systematic approach of screening the deletion set.

We screened the deletion set for mutations that either suppress or enhance the spt10Δ slow growth defect (Materials and Methods). Our screen yielded 44 mutations that cause lethality in combination with spt10Δ (Table 4) and 13 mutations that improve spt10Δ growth (Table 5). Interestingly, there was no overlap with the mutations identified from the transposon mutagenesis screen, although some functionally related genes were identified (LSM genes). The lack of overlap indicates that the deletion set screen had many false-negative results. There was also a class of 12 mutants that appeared to cause lethality related genes were identified (Materials and Methods). Our screen yielded 44 mutations that cause lethality in combination with spt10Δ (Table 4) and 13 mutations that improve spt10Δ growth (Table 5). Interestingly, there was no overlap with the mutations identified from the transposon mutagenesis screen, although some functionally related genes were identified (LSM genes). The lack of overlap indicates that the deletion set screen had many false-negative results. There was also a class of 12 mutants that appeared to cause lethality during the original screen but showed little or no growth defect upon

Table 2 Primers used to measure histone mRNA levels

Primer	Gene	Orientation	Sequence
FO6006	HTA1	Forward	TTTGAACAAAAAATTTCAA
FO6007	HTA1	Reverse	AAATCCAGAGCCGATCTTAA
FO6008	HTA2	Forward	GGAAAGTACAAGACAGAGGC
FO6009	HTA2	Reverse	CTTTTGTCTTTCTTACTCA
FO6010	HTB1	Forward	CAACCCACAAATGACACCAA
FO6011	HTB1	Reverse	AGGGAGTATGTTGTATTCA
FO6012	HTB2	Forward	ACCCAACACAACTTCTCTACA
FO6013	HTB2	Reverse	ATCACAATACCTACTGAGTA
FO6014	HTT1	Forward	TATATACACGAACAAATAGG
FO6015	HTT1	Reverse	AACTGTAGCAATGCAAACAAA
FO6016	HTT2	Forward	TACTAAAGATCCCAAGACAA
FO6017	HTT2	Reverse	AAAATTCGCCCTCTATATT
FO6018	HHF1	Forward	AACAACAAAGAACACAGAAC
FO6019	HHF1	Reverse	TTGGTTGACCGCTTTCTTA
FO6020	HHF2	Forward	GTAGCCAAAACAACACATCA
FO6021	HHF2	Reverse	ATATATTCAAACCAAGCATT
FO6145	ACT1	Forward	TTGTGCCTTGTGACTCTTCC
FO6146	ACT1	Reverse	CTGAATCTCTGATCA

Name	Genotype	Note
FY2967	MAT a mec1Δ::LEU2 sml1Δ:::HIS3 lys2-1286 ura3Δ10 his3Δ200 leu2Δ0	-
FY2816	MAT a spt2Δ1::HIS3 lys2-1286 ura3Δ10 his3Δ200 leu2Δ0	-
FY2817	MAT a spt2Δ1::HIS3 lys2-1286 ura3Δ10 his3Δ200 leu2Δ0	-
FY2968	MAT a nap1Δ:::kanMX spt10Δ::LEU2 lys2-1286 ura3Δ10 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	-
FY2969	MAT a bck2Δ::pHM1 spt10Δ::LEU2 lys2-1286 ura3Δ10 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	-
FY2970	MAT a lem1Δ::natMX spt10Δ::LEU2 lys2-1286 ura3Δ10 his3Δ200 leu2Δ0 + pFW217 (SPT10-URA3-CEN)	-
FY2971	MAT a hsl7Δ::HIS3 lem1Δ::natMX spt10Δ::LEU2 lys2-1286 ura3Δ10 his3Δ200 leu2Δ0	-
FY2972	MAT a hsl7Δ::HIS3 bck2Δ::pHM1 lem1Δ::natMX spt10Δ::LEU2 lys2-1286 ura3Δ10 his3Δ200 leu2Δ0	-
FY1924	MAT a hsl7Δ::HIS3 ura3Δ10 his3Δ200 leu2Δ0 trp1Δ63	-
FY2973	MAT a nap1Δ:::kanMX lys2-1286 ura3Δ10 his3Δ200 leu2Δ0	-
FY2974	MAT a bck2Δ::pHM1 lys2-1286 ura3Δ10 his3Δ200 leu2Δ0	-
FY2975	MAT a lem1Δ::natMX lys2-1286 ura3Δ10 his3Δ200 leu2Δ0	-
FY2976	MAT a spt10Δ:::kanMX leu2Δ11 ura3-52 lys2-1286 his3Δ200 + pFW217 (SPT10-URA3-CEN)	-
FY2977	MAT a asf1Δ::HIS3 leu2Δ10 ura3-52 lys2-1286 his3Δ200	-
FY2980	MAT a hir1Δ::LEU2 his4-9128 HIS3 ura3Δ10 or ura3-52 lys2-1286 leu2Δ0 or leu2Δ1	-
FY2981	MAT a spt2Δ1::HIS3 ura3Δ10 leu2Δ0 lys2-1286 his3Δ200	-
FY2982	MAT a asf1Δ::HIS3 ura3Δ10 leu2Δ0 lys2-1286 his3Δ200	-
FY2983	MAT a cac1Δ:::kanMX leu2Δ10 ura3Δ10 lys2-1286 his3Δ200	-
FY2993	MAT a spt1Δ:::HIS3 ura3Δ10 leu2Δ0 lys2-1286 his3Δ200	-
FY1235	MAT a hir1Δ::LEU2 leu2Δ11 ura3-52 lys2-1286 his4-9126 trp1Δ63	-
tetrad dissection (discussed in the section Genes involved in silencing show mutant phenotypes in combination with spt10Δ).

The loss of specific classes of SAGA genes is lethal in combination with spt10Δ

Our screens identified four genes encoding components of the SAGA coactivator complex whose deletion is lethal when combined with spt10Δ: SPT3, SPT8, SGF11, and SGF29. These four factors are believed to be involved in distinct activities of the multifunctional SAGA complex, as Spt3 and Spt8 modulate the recruitment of the TATA-binding protein (TBP) to promoters (Bhaumik and Green 2001, 2002; Dudley et al. 1999; Larschan and Winston 2001). Sgf11 is part of the DUB module of SAGA (Kohler et al. 2010; Samara et al. 2010), and Sgf29 has recently been shown to bind to H3K4me2/3, to be required for Gcn5-dependent histone acetylation in vivo, and to help recruit TBP to promoters (Bian et al. 2011; Shukla et al. 2012). To test whether the double-mutant lethality with spt10Δ is general for all SAGA deletion mutants or specific for certain classes, we tested deletions of SPT20, encoding a core component of SAGA, UBP8, encoding a histone deubiquitylase, and GCN5, encoding the histone acetyltransferase. Our results (Figure 1) show that the spt20Δ spt10Δ double mutant is inviable, whereas both the ubp8Δ spt10Δ and gcn5Δ spt10Δ double mutants are viable but grow poorly, even worse than the spt10Δ single mutant. Our genetic analysis, then, demonstrates that Spt10 shares essential or important roles with distinct functions of the SAGA coactivator complex. In light of the spt10Δ-gcn5Δ genetic interaction, we note that we did not see a genetic interaction between spt10Δ and rttil6Δ (RTT106 encodes a histone chaperone that has been implicated in histone gene transcription) (Fillingham et al. 2009).

Table 3 Genes identified by a transposon screen

Gene	Effect When Combined With spt10Δ	Insertion Location Relative to ATG	Description
HSL7	Improved growth	+1232	Arginine N-methyltransferase involved in regulation of Swe1 degradation
HSL7	Improved growth	+1654	Arginine N-methyltransferase involved in regulation of Swe1 degradation
LSM1	Improved growth	−191	Part of a complex involved in degradation of cytoplasmic mRNAs
ASF1	Lethality	+102	Histone chaperone
ASF1	Lethality	+283	Histone chaperone
YDR333C	Lethality	+530	Unknown function
DBF2	Lethality	+1475	Ser/Thr kinase; exit from mitosis
LEA1	Lethality	+361	Component of U2 snRNP
cac1ifr2Δ (CAC1 encodes a component of the Caf-1 complex)			to test for double mutant lethality. Our results (Table 6) show that spt10Δ causes inviability with asf1Δ and hir/hpc mutations, but not with cac1Δ. This pattern is reminiscent of earlier studies that showed that both asf1Δ and hir/hpc mutations cause double-mutant sickness with cac mutations, but not with each other (Kauffman et al. 1998; Sutton et al. 2001). We note that our screens did not identify mutations in RTT106, which encodes a histone chaperone that has been shown to regulate histone gene transcription by interactions with Asf1/Hir/Caf-1 (Fillingham et al. 2009; Huang et al. 2007; Kurat et al. 2011; Silva et al. 2012; Zunder and Rine 2012). Similarly, a screen for mutations that cause double-mutant lethality with rttil6Δ did not identify spt10Δ (Imbeault et al. 2008). In contrast to spt10Δ, an spt21Δ mutation allowed viability when combined with hir1Δ or asf1Δ (Table 6). Taken together, our results suggest that Spt10, but not Spt21, contributes to an essential function in collaboration with Asf1 and the Hir complex, likely either in histone gene activation or an aspect of chromatin assembly.

Genes involved in silencing show mutant phenotypes in combination with spt10Δ

One notable class of mutants appeared to show lethality in combination with spt10Δ during our systematic screen. However, upon retesting by tetrad dissection, viable double mutant spores were obtained at the expected frequency, without substantial growth defects. This class of mutants included sir1Δ, ard1Δ, and pol32Δ, all of which have roles in silencing (Pillus and Rine 1989; van Welsem et al. 2008; Whiteay et al. 1987). Others have reported a similar pattern of apparent lethality for sir1Δ dot1Δ and pol32Δ dot1Δ in another deletion set screen (van Welsem et al. 2008). They discovered that the pattern actually resulted from mating type silencing defects, which prevent growth when the SAGA screening method is used. Our studies of Spt10 have demonstrated it to be required for silencing (Chang and Winston 2011).

Double-mutant lethality of spt10Δ with asf1Δ and hir/hpc mutations suggests functional overlaps

Among the genes identified as causing double-mutant lethality with spt10Δ were asf1Δ, hir1Δ, hir3Δ, and hpc2Δ. Previous studies also showed that spt10Δ asf1Δ double mutants are inviable (Sutton et al. 2001). Asf1 has been shown to be a histone chaperone (Munakata et al. 2000), the Hir complex (comprised of Hir1-3 and Hpc2) has been implicated in chromone and nucleosome assembly activities (Green et al. 2005; Prochasson et al. 2005), and both Asf1 and the Hir complex have been shown to regulate histone gene transcription (Osley and Lycan 1987; Sutton et al. 2001; Xu et al. 1992). Furthermore, these factors are believed to function both physically and genetically with each other and with the Caf-1 complex (Green et al. 2005; Kaufman et al. 1998; Liu et al. 2012; Sutton et al. 2001).

The isolation of asf1Δ and hir/hpc2Δ mutations as causing lethality when combined with spt10Δ suggests that Spt10 participates in this set of functions. To test this further, we crossed spt10Δ by hir1Δ and by cac1ifr2Δ (CAC1 encodes a component of the Caf-1 complex) to test for double mutant lethality. Our results (Table 6) show that spt10Δ causes inviability with asf1Δ and hir/hpc mutations, but not with cac1Δ. This pattern is reminiscent of earlier studies that showed that both asf1Δ and hir/hpc mutations cause double-mutant sickness with cac mutations, but not with each other (Kauffman et al. 1998; Sutton et al. 2001). We note that our screens did not identify mutations in RTT106, which encodes a histone chaperone that has been shown to regulate histone gene transcription by interactions with Asf1/Hir/Caf-1 (Fillingham et al. 2009; Huang et al. 2007; Kurat et al. 2011; Silva et al. 2012; Zunder and Rine 2012). Similarly, a screen for mutations that cause double-mutant lethality with rttil6Δ did not identify spt10Δ (Imbeault et al. 2008). In contrast to spt10Δ, an spt21Δ mutation allowed viability when combined with hir1Δ or asf1Δ (Table 6). Taken together, our results suggest that Spt10, but not Spt21, contributes to an essential function in collaboration with Asf1 and the Hir complex, likely either in histone gene activation or an aspect of chromatin assembly.

The slow growth of spt10Δ mutants can be suppressed through multiple genetic pathways

The mutations that we identified to suppress the spt10Δ growth defect fall into several functional categories. For the remainder of our analysis, we focused on the four mutations that individually caused the strongest suppression of the spt10Δ growth defect: hsl7Δ, nap1Δ, bck2Δ, and lsm1Δ (Figure 2). Hsl7 is an arginine methyltransferase with a role in the bud morphogenesis checkpoint (Lew 2000). Nap1 is a histone chaperone involved in the nuclear import of histones, and it regulates cell-cycle progression in G2/M (Zlatanova et al. 2007). Bck2 regulates the transition from G1 to S phase of the cell cycle (Epstein and Cross 1994; Lee et al. 1993), and Lsm1 is part of a heteroheptameric complex involved in RNA decapping and
Table 4 Genes found by SGA analysis whose deletion causes double-mutant lethality or extreme sickness with spt10Δ

Gene	Description
BCK1	MAP KKK in the protein kinase C signaling pathway
BUD20	Protein involved in bud site selection
CAC2	Component of chromatin assembly complex CAF-I
CTF19	Component of the COMA complex
CY53	Cysteine biosynthesis
DOA1	Ubiquitin-mediated protein degradation
ELP2	Component of the Elongator complex
ELP4	Component of the Elongator complex
ELP6	Component of the Elongator complex
HCF1	Histone H4
HHT1	Histone H3
HIR2	Component of the HIR complex
HIR3	Component of the HIR complex
HIT1	Function unknown
HPC2	Component of the HIR complex
IES2	Associates with the INO80 chromatin remodeling complex
IXR1	Binds DNA containing intranuclear cross-links formed by cisplatin
MCM21	Component of the COMA complex
MDM20	Component of the NatB N-terminal acetyltransferase
MRPL38	Mitochondrial ribosomal protein of the large component
MSD1	Mitochondrial aspartyl-tRNA synthetase
NIK1	Endosomal Na+/H+ exchanger
PEP3	Facilitates vesicle-mediated vacuolar protein sorting
PGD1	Component of the mediator complex
REG1	Negative regulation of glucose-repressible genes
RMD8	Cysolic protein required for sporulation
SAM37	Component of the mitochondrial SAM complex
SGG11	Component of the SAGA complex
SGG29	Component of the SAGA complex
SIN3	Component of the Rpd3-Sin3 complex
SLX8	Component of the S.Sl5-8 SUMO-targeted ubiquitin ligase complex
SOD1	Cytoplasmic copper-zinc superoxide dismutase
SPT3	Component of the SAGA complex
SPT8	Component of the SAGA complex
SWC3	Component of the SWR1 complex
TAF14	Component of the TFIID, TFIIF, INO80, SWI/SNF, and NuA3 complexes
THR1	Threonine synthesis
THR4	Threonine synthase
UMP1	Chaperone required for maturation of the 2OS proteasome
VMA8	Component of the peripheral membrane domain of the vacuolar H+-ATPase
VMS1	Protein degradation and quality control
VPS54	Component of the GARP complex
YAF9	Component of both the NuA4 histone H4 and SWR1 complexes
YGL149W	Dubious open reading frame, overlaps INO80

processing (Tharun 2009). Lsm1 has recently been shown to control histone mRNA stability (Herrero and Moreno 2011). All of the deletion mutations are partial suppressors individually, but when lsm1Δ is combined with hsl7Δ or bck2Δ, strong additive effects are seen (Figure 2). Little or no additivity is seen with other combinations. This finding suggests that hsl7Δ and bck2Δ suppress the spt10Δ growth defect through a different genetic pathway than does lsm1Δ. To study these effects, we conducted a more detailed genetic analysis of each suppressor.

Table 5 Genes found by SGA analysis whose deletion suppresses the spt10Δ poor growth phenotype

Gene	Description
BCK2	Protein kinase C signaling pathway and the G1/S transition
CLB2	B-type cyclin involved in G2 to M progression
HAL5	Putative protein kinase
HDA2	Component of a class II histone deacetylase complex
IES3	Component of the INO80 complex
ITR1	Myo-inositol transporter
LAS21	Synthesis of the glycosylphosphatidylinositol (GPI) core structure
LSM6	Part of complexes involved in RNA processing, splicing, and decay
LSM7	Part of complexes involved in RNA processing, splicing, and decay
NAP1	Bud morphogenesis, microtubule dynamics, and transport of histones H2A and H2B
SIF2	Component of the Set3C complex
SLM4	Component of the EGO complex
SYH1	Protein of unknown function, influences nuclear pore distribution

Perturbations of the G2/M transition allow spt10Δ mutants to grow faster

HSL7, along with HSL1, initially was isolated in a histone synthetic lethal screen, which identified genes that become essential when the tail of either histone H3 or histone H4 is deleted (Ma et al. 1996). Although the basis of this synthetic lethality remains unknown, Hsl1, a protein kinase, and Hsl7 have been shown to regulate the bud morphogenesis checkpoint through the Hsl–Swe1–Cdc28 pathway, which monitors whether cytoskeletal events have been properly completed prior to mitosis (Figure 3A) (Lew 2000). The cyclin-dependent kinase Cdc28 controls cell-cycle progression through the G2/M transition; its activity is inhibited by the kinase Swe1 and activated by the phosphatase Mih1. When an S. cerevisiae cell buds, Hsl1 recruits Hsl7 to the bud neck and phosphorylates both proteins. This recruits Swe1, leading to Swe1 degradation, causing decreased phosphorylation of Cdc28 and thereby promoting progression through G2/M. Thus, an

Figure 1 Mutations in genes encoding SAGA subunits lead to lethality or poor growth in an spt10Δ background. Shown are fivefold dilution spot tests. All strains were grown to saturation in SC-Ura medium in the presence of the pFW217 SPT10-URA3-CEN plasmid. They were serially diluted fivefold and spotted onto SC-Ura and 5-FOA plates to select for cells that have maintained or lost the SPT10 plasmid, respectively. The SC-Ura plate is shown after 2 d of incubation at 30°C and the 5-FOA plate after 5 d. Upper and lower panels are from the same plate. The strains were wild type (FY2200), spt10Δ (FY2924), spt8Δ spt10Δ (FY2925) spt20Δ spt10Δ (FY2926), gcn5Δ spt10Δ (FY2927), and ubp8Δ spt10Δ (FY2928).
Table 6. spt10Δ is inviable with hir1Δ and asf1Δ

Double Mutant	Phenotype
spt10Δ hir1Δ	Inviableb
spt10Δ asf1Δ	Inviablec
spt10Δ cac1Δ	Viabledo
spt2Δ hir1Δ	Viabledo
spt2Δ asf1Δ	Viabledo
spt2Δ cac1Δ	Viabledo

The phenotype was determined by testing the ability of the double mutant to survive loss of plasmid pFW217 (SPT10-URA3-CEN) by assaying growth on SCFOA plates as described in Materials and Methods. The cross done for each combination is listed below.

b FY2978 × FY1235.

The phenotype was determined by testing the ability of the double mutant to survive loss of plasmid pFW217 (SPT10-URA3-CEN) by assaying growth on SCFOA plates as described in Materials and Methods. The cross done for each combination is listed below.

b FY2978 × FY1235. c FY2924 × FY2979. d FY2903 × FY2938. e FY2980 × FY2933. f FY2981 × FY2982. g FY2903 × FY2933.

hs7Δ single mutant has increased Swe1 activity, resulting in decreased Cdc28 activity. We tested the effects of other mutations in the Hsl–Swe1–Cdc28 pathway on spt10Δ growth. Consistent with our findings for hs7Δ, both hsl1Δ and mih1Δ, which also impair progression through the bud morphogenesis checkpoint, suppress the spt10Δ slow growth defect, whereas a mutation (swe1Δ) that promotes progression does not (Figure 3B). As additional evidence that impairment of G2/M progression suppresses the spt10Δ growth defect, we identified cdc7Δ as a suppressor in our screen (Table 5).

To test whether suppression of the spt10Δ growth defect by hs7Δ occurs within the Hsl–Swe1–Cdc28 pathway, we tested combinations of mutations in this pathway. First, we found that swe1Δ is epistatic to hs7Δ with respect to suppression of the spt10Δ growth defect (Figure 3B), suggesting that suppression by hs7Δ is mediated through Swe1 activity. Second, we tested whether the inhibitory phosphorylation of Cdc28 by Swe1 plays a role in hs7Δ suppression of the spt10Δ growth defect. To do this, we used the cdc28-T18A Y19F allele (Amon et al. 1992; Sorger and Murray 1992), which makes cells insensitive to mutations upstream in the Hsl-Swe1-Cdc28 pathway, thus mimicking loss of Swe1. We found that hs7Δ no longer suppresses the spt10Δ growth defect in the presence of the cdc28-T18A Y19F allele (Figure 3C), further supporting that hs7Δ- and hs7Δ-mediated suppression occurs through the Hsl–Swe1–Cdc28 pathway. Taken together, our genetic analysis suggests that mutations that activate the bud morphogenesis checkpoint can confer improved growth of spt10Δ cells.

Perturbations at the G1/S transition also suppress the spt10Δ slow growth defect

Bck2Δ was originally isolated as a factor important in protein kinase C signaling, and it has been found to be important in controlling the G1/S transition of the cell cycle (Epstein and Cross 1994; Lee et al. 1993). A related protein involved in regulating the G1/S transition is Cln3, a cyclin that binds to Cdc28 to regulate the transition through START (Richardson et al. 1989). We asked whether a cln3Δ mutation can also suppress the spt10Δ slow growth defect. Spot tests demonstrate that cln3Δ spt10Δ mutants grow better than spt10Δ single mutants (Figure 4), suggesting that different perturbations in the G1/S transition can suppress the spt10Δ growth defect. Taken together with the hs7Δ suppression data, our genetic analysis demonstrates that the spt10Δ slow growth can be suppressed by mutations that delay cell cycle progression at either the G1/S transition or the bud morphogenesis G2/M checkpoint.

Impairment of the Lsm1-7 → Pat1 complex suppresses the spt10Δ slow growth phenotype

Next we conducted a more detailed genetic analysis of three closely related suppressors: lsm1Δ, lsm6Δ, and lsm7Δ. The eight S. cerevisiae LSM (like 5′) genes form two distinct, ring-shaped, heteroetopamatic complexes (Tharun 2009). The first complex, containing Lsm2-8, localizes to the nucleus and regulates pre-mRNA splicing. The second complex, containing Lsm1-7, is localized to the cytoplasm and regulates the decapping of polyadenylated mRNAs, in conjunction with Pat1 (protein associated with Topoisomerase II). We note that in both larger eukaryotes (Thorun 2009) and in yeast (Herrero and Moreno 2011), the Lsm1-7→Pat1 complex has been implicated in promoting the degradation of histone mRNAs.

The result that lsm1Δ suppresses the spt10Δ slow growth phenotype suggests that it is the Lsm1-7→Pat1 complex, rather than the Lsm2→Lsm8 complex that is related to spt10Δ growth. We therefore also tested whether pat1Δ suppresses the spt10Δ growth phenotype. Our results (Figure 5) show that pat1Δ does suppress the spt10Δ slow growth phenotype. Shown are fivefold dilution spot tests. spt10Δ strains were cured of the pFW217 SPT10-URA3-CEN plasmid and grown as described in Materials and Methods, then resuspended to 4 × 10⁶ cells/ml. They were subjected to fivefold dilutions, spotted onto YPD medium, and photographed after 2 d. Strains were wild type (FY2200), spt2Δ (FY2482), hts2-htb2Δ hht2Δ (FY2929), spt10Δ (FY2924), spt1Δ (FY2930), nap1Δ (FY2931), bck2Δ spt10Δ (FY2932), lsm1Δ spt10Δ (FY2933), hsl7Δ (FY2934), nap1Δ (FY2935), bt2Δ (FY2936), lsm1Δ (FY2937), spt10Δ (FY2938), hsl7Δ nap1Δ spt10Δ (FY2939), hsl7Δ bck2Δ spt10Δ (FY2940), hsl7Δ lsm1Δ spt10Δ (FY2941), nap1Δ bck2Δ spt10Δ (FY2942), nap1Δ lsm1Δ spt10Δ (FY2943), bck2Δ lsm1Δ spt10Δ (FY2944), hsl7Δ nap1Δ bck2Δ lsm1Δ spt10Δ (FY2945), nap1Δ bck2Δ lsm1Δ spt10Δ (FY2946), hart1Δ cdc15 Δ spt10Δ (FY2947), nap1Δ bck2Δ lsm1Δ spt10Δ (FY2948), and hsl7Δ nap1Δ bck2Δ lsm1Δ spt10Δ (FY2949).
growth defect and, furthermore, that suppression by \textit{lsm1Δ} and \textit{pat1Δ} is not additive, suggesting that \textit{lsm1Δ} and \textit{pat1Δ} suppress the \textit{spt10Δ} growth defect through the same pathway. The other \textit{LSM} genes in the complex are essential for viability and could not be tested.

Environmental conditions that slow cell division also suppress the \textit{spt10Δ} slow growth phenotype

Considering that genetic means of slowing cell-cycle progression can suppress the \textit{spt10Δ} slow growth phenotype, we asked whether altered growth conditions that slow cell cycle progression will also suppress this phenotype. First, we assayed the growth of \textit{spt10Δ} strains on medium containing 25 mM hydroxyurea (HU), a ribonucleotide reductase inhibitor that impedes S-phase progression. We found that addition of 25 mM HU causes modest suppression of the \textit{spt10Δ} growth defect relative to wild-type growth (Figure 6A).

Second, we slowed growth using medium that contains glycerol rather than glucose as a carbon source. Relative to wild-type, \textit{spt10Δ} growth modestly improves on this medium (Figure 6B). These findings are consistent with the possibility that slowing cell cycle progression through multiple means improves \textit{spt10Δ} growth.

Suppressors of the \textit{spt10Δ} growth phenotype do not restore histone mRNA levels

Because Spt10 binds to histone gene promoters and regulates histone gene transcription (Dollard \textit{et al.} 1994; Eriksson \textit{et al.} 2011; Hess \textit{et al.} 2004; Sherwood and Osley 1991; Xu \textit{et al.} 2005), we wanted to test whether the suppressors improve \textit{spt10Δ} growth by increasing histone gene mRNA levels. We therefore measured mRNA levels for all eight histone genes in the suppressor strains, using reverse transcription and real-time PCR. We used primer pairs highly specific for their corresponding transcripts (Table 2; N. McLaughlin and D. Clark, personal communication) to distinguish the two nearly identical copies of each histone gene.

Our results (Figure 7) show that the suppressors do not restore histone mRNA levels in an \textit{spt10Δ} background. First, in agreement with previous results (Dollard \textit{et al.} 1994; Hess \textit{et al.} 2004), we found that, in asynchronously growing cultures, \textit{HTA2} and \textit{HTB2} mRNA levels are decreased approximately 20-fold, with more modest decreases of \textit{HHF1}, \textit{HHF2}, and \textit{HHF4} mRNA levels. In an \textit{spt10Δ} background, no single suppressor mutation or multiple suppressor combination restores mRNA levels for any histone gene. The only substantial change with any suppressor mutation is a decrease in \textit{HHF1} mRNA levels in \textit{spt10Δ} mutants when \textit{LSM1} is deleted. This is in spite of the finding that some of the suppressor mutations cause modest changes in histone mRNA levels in a wild-type \textit{SPT10} background.
overlapping roles in histone gene regulation.

HHT1
HTA1
in mRNA levels for
or the suppressor strains, the
levels of
with gene-specific mRNA abundance for the core histone genes in growth suppressor strains. RNA was isolated and reverse transcribed, and real-time PCR

Figure 7

DISCUSSION

In this work, we have identified a broad spectrum of mutations that either cause lethality when combined with spt10Δ or that suppress the slow growth phenotype caused by spt10Δ. The first set of genes suggests that the function of Spt10 partially overlaps with the SAGA coactivator complex as well as with two factors involved in chromatin assembly and histone gene transcription, Asf1 and the Hir complex. Given the pleiotropic nature of mutants lacking these functions, as well as the documented role of Asf1 and the Hir complex in histone gene regulation (Osley and Lycan 1987; Sutton et al. 2001; Xu et al. 1992), these double mutant lethalities are not surprising. Several additional genes were identified in the screen for double-mutant lethality (Tables 3 and 4), and the results suggest that functional overlaps also exist between Spt10 and both the Elongator complex and the Ino80 complex. As there are no known roles for SAGA, Elongator, or Ino80 in histone gene expression, further studies of these interactions will be required to understand whether the essential process in which Spt10 and these other factors participate involves histone gene expression or a previously uncharacterized role for Spt10.

The suppressors of the spt10Δ growth defect led us to conclude that perturbations at multiple points of the cell cycle can suppress the slow growth of spt10Δ mutants. Although it seems paradoxical that an impairment of cell-cycle progression would enhance growth, there is precedent for a defect in one process suppressing a defect in a related process. For example, a cold-sensitive spt5 mutation is suppressed with 6-azauracil, which decreases the rate of transcription elongation (Hartog et al. 1998). Furthermore, perturbations in multiple different cell cycle phases can suppress a silencing defect at the S. cerevisiae silent mating type loci and telomeres (Laman et al. 1995).

One model to explain our findings is that spt10Δ mutants grow slowly due to the shortage of a factor or factors necessary for normal
growth, and that cell cycle perturbations compensate for this growth-limitation, either by allowing more time for the factor to be produced, or by adjusting the relative levels of factors with which it interacts. Considering the well-characterized role of Spt10 in activating histone gene transcription, obvious candidates for such factors are histone proteins. We note that histone levels are clearly a factor in spt10Δ growth, as a plasmid that encodes all four core histones (with the HTA1-HTB1 and HHT1-HHF1 loci) restores spt10Δ growth to nearly wild-type levels (Eriksson et al. 2005; Silva et al. 2012). However, we found that suppressors of the spt10Δ growth defect do not suppress the spt10Δ defect in histone mRNA levels, suggesting that the slow growth can be affected by other routes, possibly independent of histone gene transcription. Alternatively, the suppressors might partially alleviate the requirement for normal histone levels.

Left unresolved by these and other studies of Spt10 is the role of the Spt10 acetyltransferase domain. While it is required for Spt10 function (Hess et al. 2004), its target(s) remain unknown. The elucidation of these targets will go a long ways toward helping us understand the roles of Spt10 in growth.

ACKNOWLEDGMENTS

We thank David Hess for providing the initial evidence for the genetic relationships between Spt10, Asf1, Hir1, and Cac1. We also thank Neil McLaughlin and David Clark for providing primer sequences, Angelika Amon for providing plasmid p433, and Dan Spatt for help with strain constructions. This work was supported by National Institutes of Health grant GM32967 to F.W.

LITERATURE CITED

Amin, A. D., N. Vishnoi, and P. Prochasson, 2012 A global requirement for transcriptional silencing in budding yeast. Genes Dev. 15: 1737–1742.
Amon, A., D. Knapp, and C. L. Jones, 1992 Regulation of transcriptional silencing in yeast by chromatin structure and the histone upstream activating sequence elements. Mol. Cell. Biol. 25: 9127–9137.
Amon, A., J. P. Lambert, D. van Bakel, K. Tsui, C. L. Jones, 1994 Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8: 1087–1105.
Bhaumik, S. R., and M. R. Green, 2002 Differential requirement of SAGA histone H2A/H2B gene activation in budding yeast. Mol. Cell. Biol. 22: 9904–9916.
Bhat, S., B. Grimwade, P. B. Ross-Macdonald, E. Y. Choi, K. Finberg et al., 1994 Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8: 1087–1105.
Chang, I. S., and F. Winston, 2011 Spt10 and Spt21 are required for transcriptional silencing in Saccharomyces cerevisiae. Eukaryot. Cell 10: 118–129.
Cho, R. J., M. J. Campbell, E. A. Winzele, L. Steinmetz, A. Conway et al., 1998 A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2: 65–73.
Denis, C. L., and T. Malvar, 1990 The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentative and spt-mediated gene expression. Genetics 124: 283–291.
Dollard, C., S. L. Ricupero-Hovasse, G. Natsoulis, J. D. Boeke, and F. Winston, 1994 SPT10 and SPT21 are required for transcription of particular histone genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 5223–5228.
Dudley, A. M., C. Rougeulle, and F. Winston, 1999 The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev. 13: 2940–2945.
Epstein, C. B., and F. R. Cross, 1994 Genes that can bypass the CLN requirement for Saccharomyces cerevisiae cell cycle START. Mol. Cell. Biol. 14: 2041–2047.
Eriksson, P. R., G. Mendiratta, N. B. McLaughlin, T. G. Wolfsberg, L. Mar-ino-Ramirez et al., 2005 Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone upstream activating sequence elements. Mol. Cell. Biol. 25: 9127–9137.
Eriksson, P. R., D. Ganguli, and D. J. Clark, 2011 Spt10 and Swi4 control the timing of histone H2A/H2B gene activation in budding yeast. Mol. Cell. Biol. 31: 557–572.
Eriksson, P. R., D. Ganguli, V. Nagarajavel, and D. J. Clark, 2012 Regulation of histone gene expression in budding yeast. Genetics 191: 7–20.
Fassler, J. S., and F. Winston, 1988 Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetic 118: 203–212.
Fillingham, J., P. Kainth, J. P. Lambert, H. van Bakel, K. Tsui et al., 2009 Two-color cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression. Mol. Cell 35: 340–351.
Giaever, G., A. M. Chu, L. Ni, C. Connelly, L. Riles et al., 2002 Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391.
Goldstein, A. L., and J. H. McCusker, 1999 Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541–1555.
Green, E. M., A. J. Antczak, A. O. Bailey, A. A. Franco, J. K. Wu et al., 2005 Replication-independent histone deposition by the HIR complex and Asf1. Curr. Biol. 15: 2044–2049.
Hartzog, G. A., G. T. Wada, H. Handa, and F. Winston, 1998 Evidence that Spt9, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12: 357–369.
Herrero, A. B., and S. Moreno, 2011 Lsm1 promotes genomic stability by controlling histone mRNA decay. EMBO J. 30: 2008–2018.
Hess, D., 2004 Genetic and Molecular Analysis of Spt10 and Spt21 of Saccharomyces cerevisiae: Roles in Histone Gene Transcription and Other Chromatin-Related Processes. Harvard University, Cambridge, MA.
Hess, D., and F. Winston, 2005 Evidence that Spt10 and Spt21 of Saccharomyces cerevisiae play distinct roles in vivo and functionally interact with MCB-binding factor, SCB-binding factor and Snf1. Genetics 170: 879–894.
Hess, D., B. Liu, N. R. Roan, R. Sternglanz, and F. Winston, 2004 Spt10-dependent transcriptional activation in Saccharomyces cerevisiae requires both the Spt10 acetyltransferase domain and Spt21. Mol. Cell. Biol. 24: 135–143.
Huang, S. H., Zhou, J. Tarara, and Z. Zhang, 2007 A novel role for histone chaperones CAF1 and Rtt106p in heterochromatin silencing. EMBO J. 26: 2274–2283.
Imbeault, D., L. Gamar, A. Ru, E. Paquet, and A. Nourani, 2008 The Rtt106 histone chaperone is functionally linked to transcription elongation and is involved in the regulation of spurious transcription from cryptic promoters in yeast. J. Biol. Chem. 283: 27350–27354.
Kaufman, P. D., J. L. Cohen, and M. A. Osley, 1998 Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol. 18: 4793–4806.
Kohler, A., E. Zimmerman, M. Schneider, E. Hurt, and N. Zheng, 2010 Structural basis for assembly and activation of the heterotetrameric Saccharomyces histone H2B deubiquitinase module. Cell 141: 606–617.
Kumar, A., and M. Snyder, 2002 Protein complexes take the bait. Nature 415: 123–124.
Kurt, C. F., J. P. Lambert, D. van Dyk, K. Tsui, H. van Bakel et al., 2011 Restriction of histone gene transcription to S phase by phos- phorylation of a chromatin boundary protein. Genes Dev. 25: 2489–2501.
Laman, H., D. Balderes, and D. Shore. 1995 Disturbance of normal cell cycle progression enhances the establishment of transcriptional silencing in *Saccharomyces cerevisiae*. Mol. Cell. Biol. 15: 3608–3617.

Larschan, E., and F. Winston. 2001 The *S. cerevisiae* SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 15: 1946–1956.

Lee, K. S., L. K. Hines, and M. E. Levin, 1993 A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway. Mol. Cell. Biol. 13: 5843–5853.

Lew, D. J. 2000 Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in *Saccharomyces cerevisiae*. Curr. Opin. Genet. Dev. 10: 47–53.

Liu, W. H., S. C. Roemer, A. M. Port, and M. E. Churchill. 2012 CAF-1-dependent oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Res. 40: 11229–11239.

Ma, X. J., Q. Lu, and M. Grunstein. 1996 A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swi1 kinase in *Saccharomyces cerevisiae*. Genes Dev. 10: 1327–1340.

Mendiratta, G., P. R. Eriksson, C. H. Shen, and D. J. Clark. 2006 The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J. Biol. Chem. 281: 7040–7048.

Ma, X. J., Q. Lu, and M. Grunstein. 1997 Cooperative binding of the yeast Spt10p activator to the histone upstream activating sequences is mediated through an N-terminal dimerization domain. Nucleic Acids Res. 35: 812–821.

Munakata, T., N. Adachi, N. Yokoyama, T. Kuzuhasha, and M. Horikoshi. 2000 A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes Cells 5: 221–233.

Natsoulis, G., C. Dollard, F. Winston, and J. D. Boeke. 1991 The products of the SPT10 and SPT21 genes of *Saccharomyces cerevisiae* increase the amplitude of transcriptional regulation at a large number of unlinked loci. New Biol. 3: 1249–1259.

Natsoulis, G., F. Winston, and J. D. Boeke. 1994 The SPT10 and SPT21 genes of *Saccharomyces cerevisiae*. Genetics 136: 93–105.

Neuwald, A. F., and D. Landsman. 1997 GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem. Sci. 22: 154–155.

Osley, M. A., and D. Lycan, 1987 Trans-acting regulatory mutations that increase the amplitude of transcriptional repression of the nucleosome core. Mol. Cell. Biol. 7: 4204–4210.

Pillus, L., and J. Rine. 1989 Epigenetic inheritance of transcriptional states in *S. cerevisiae*. Cell 59: 637–647.

Prelich, G., and F. Winston. 1993 Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics 135: 665–676.

Prochasson, P., L. Florens, S. K. Swanson, M. P. Washburn, and J. L. Workman. 2005 The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Genes Dev. 19: 2534–2539.

Richardson, H. E., C. Wittenberg, F. Cross, and S. I. Reed, 1989 An essential G1 function for cyclin-like proteins in yeast. Cell 59: 1127–1133.

Rose, M. D., F. Winston, and P. Hieter, 1990 *Methods in Yeast Genetics: A Laboratory Course Manual*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Samara, N. L., A. B. Datta, C. E. Berndsen, X. Zhang, T. Yao *et al.*, 2010 Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 328: 1025–1029.

Sherwood, P. W., and M. A. Osley. 1991 Histone regulatory (hir) mutations suppress delta insertion alleles in *Saccharomyces cerevisiae*. Genetics 128: 729–738.

Shukla, A., S. Luhadkar, G. Durairaj, and S. R. Bhat, 2012 Sgf29p facilitates the recruitment of TATA box binding protein but does not alter SAGA’s global structural integrity in vivo. Biochemistry 51: 706–714.

Silva, A. C., X. Xu, H. S. Kim, J. Fillingham, T. Kislinger *et al.*, 2012 The replication-independent histone H3–H4 chaperones HIP1 and RTT106 co-operate to maintain promoter fidelity. J. Biol. Chem. 287: 1709–1718.

Sorger, P. K., and A. W. Murray. 1992 S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc2. Nature 355: 365–368.

Spallman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders *et al.*, 1998 Comprehensive identification of cell cycle-regulated genes of the yeast *Saccharomyces cerevisiae* by microarray hybridization. Mol. Biol. Cell 9: 3273–3297.

Sutton, A., J. Bucaria, M. A. Osley, and R. Sternglanz. 2001 Yeast ASF1 protein is required for cell cycle regulation of histone gene transcription. Genetics 158: 587–596.

Swanson, M. S., E. A. Malone, and F. Winston. 1991 SPT5, an essential gene important for normal transcription in *Saccharomyces cerevisiae*, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell. Biol. 11: 3009–3019.

Tharun, S., 2009 Lam1–7–Pat1 complex: a link between 3' and 5'-ends in mRNA decay? RNA Biol. 6: 228–232.

Tong, A. H., M. Evangelista, A. B. Parsons, H. Xu, G. D. Bader *et al.*, 2001 Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364–2368.

van Welsenum, T., F. Frederiks, K. F. Verzijlbergen, A. W. Faber, Z. W. Nelson *et al.*, 2008 Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core. Mol. Cell. Biol. 28: 3861–3872.

Whiteway, M., R. Freedman, S. Van Arsdell, J. W. Szostak, and J. Thörner, 1987 The yeast ARD1 gene product is required for repression of cryptic mating-type information at the HML locus. Mol. Cell. Biol. 7: 3713–3722.

Winston, F. D., C. Dollard, and S. L. Ricupero-Hovasse. 1995 Construction of a set of convenient *Saccharomyces cerevisiae* strains that are isogenic to *S. cerevisiae S288C*. Yeast 11: 53–55.

Xu, H., U. J. Kim, T. Schuster, and M. Grunstein. 1992 Identification of a new set of cell cycle-regulatory genes that regulate S-phase transcription of histone genes in *Saccharomyces cerevisiae*. Mol. Cell. Biol. 12: 5249–5259.

Xu, F., K. Zhang, and M. Grunstein. 2005 Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121: 375–385.

Yamashita, I., 1993 Isolation and characterization of the *SUD1* gene, which encodes a global repressor of core promoter activity in *Saccharomyces cerevisiae*. Mol. Gen. Genet. 241: 616–626.

Zlatanova, J., C. Seebart, and M. Tomschik. 2007 Nap1: taking a closer look at a juggling protein of extraordinary skills. FASEB J. 21: 1294–1310.

Communicating editor: B. J. Andrews