Effect of Jahn-Teller coupling on Curie temperature in the Double Exchange Model

Vasil Michev and Naoum Karchev

Department of Physics, University of Sofia, 1164 Sofia, Bulgaria

We consider the two-band double exchange model for manganites with Jahn-Teller (JT) coupling and explore the suppression of the ferromagnetism because of the JT distortion. The localized spins of the t_{2g} electrons are represented in terms of the Schwinger bosons, and two spin-singlet Fermion operators are introduced instead of the e_g electrons’ operators. In terms of the new Fermi fields the on-site Hund’s interaction is in a diagonal form and one accounts for it exactly. Integrating out the spin-singlet fermions, we derive an effective Heisenberg model for a vector which describes the local orientations of the total magnetization. The exchange constants are different for different space directions and depend on the density n of e_g electrons and JT energy. At zero temperature, with increasing the density of the e_g electrons the system undergoes phase transition from ferromagnetic phase ($0 < n < n_c$) to A-type antiferromagnetic phase ($n_c < n$). The critical value n_c decreases as JT energy is increased. At finite temperature we calculate the Curie temperature as a function of electron density for different JT energy. The results show that JT coupling strongly suppresses the spin fluctuations and decreases the Curie temperature.

PACS numbers: 75.47.Lx, 63.20.kd, 71.27.+a, 75.30.Ds

Jahn-Teller (JT) effect is related to systems with degenerated electronic states [1]. The importance of the JT coupling for manganites was first discussed in [2] with regard to the colossal magnetoresistance. The most widely studied representatives have chemical formula $R e_{1−x}A_xMnO_3$, where $R e$ is rare earth such as La or Nd, and A is a divalent alkali such as Ca or Sr. The important electrons in these compounds are $M n \, d$ electrons. They have five degenerate levels [3]. The crystal environment results in a particular splitting of the five d-orbitals (crystal field splitting) into two groups: the e_g and t_{2g} states. The electrons from the e_g sector form a doublet, while the t_{2g} electrons form a triplet. The population of the t_{2g} electrons remains constant, and the Hund rule enforces alignment of the three t_{2g} spins into a $S = 3/2$ state. Then, the t_{2g} sector can be replaced by a localized spin at each manganese ion, reducing the complexity of the original five orbital model. The only important interaction between the two sectors is the Hund coupling between localized t_{2g} spins and mobile e_g electrons. The oxygens surrounding the manganese ion readjust their locations creating an asymmetry between the different directions. This effectively removes the degeneracy of the e_g electrons’ states. The lifting of the degeneracy due to the orbital-lattice interaction is called Jahn-Teller effect.

The interaction between the electrons and phonons is unusually strong and leads to a wide range of striking physical phenomena. Changing the e_g electrons’ concentration produces a variety of phases, which may be characterized by their magnetic, transport and charge-ordering properties [4]. The manganites $La_{1−x}Ca_xMnO_3$ have attracted interest due to their colossal magnetoresistance. The phase boundary between ferromagnetism and paramagnetism, in these materials, also separates a low temperature metallic phase from a high-temperature insulating phase. At temperatures below Curie temperature $T < T_C$ the resistivity is relatively low and increases as T is increased, whereas at $T > T_C$ the resistivity is very high and (for most x) decreases as T is increased. The magnetoresistance for $T \approx T_C$ can be very large [4].

The double exchange model with JT coupling is a widely used model for manganites. The procedures followed to obtain the essential features of the model are different: numerical studies [3, 8], Dynamical Mean-Field Theory (DMFT) \cite{7, 8, 9}, ab initio density-functional calculations \cite{10}, and analytical calculations \cite{5, 8, 11, 12}. In spite of the common conclusion that JT coupling suppresses the ferromagnetic state, the results are quite different and do not match the experimental results. For example the calculated Curie temperatures are two and even three times larger then the experimentally measured. Because of that it is important to formulate theoretical criteria for adequacy of the method of calculation. In our opinion the calculations should be in accordance with the Mermin-Wagner theorem \cite{13}. It claims that in two dimensions there is no spontaneous magnetization at nonzero temperature. Hence, the critical temperature should be equal to zero. We employ a technique of calculation \cite{14}, which captures the essentials of the magnon fluctuations in the theory, and for 2D systems one obtains zero Curie temperature, in accordance with Mermin-Wagner theorem. The physics of the ferromagnetic manganites near the Curie temperature is dominated by the magnon fluctuations and it is important to account for them in the best way.

The present paper is focused on the influence of the JT distortion on the ferromagnetism of manganites. To model the manganites we employ the Hamiltonian $H = H_{DE} + H_{el-ph}$. The first term describes the hopping of e_g electrons and the Hund interaction between the spin...
electron spin is parallel with e is the static JT energy important energy scale of the phonon-electron interaction.

The second term in Eq. (1) is the Hund interaction between the spin S_i of the e_g electron and the localized t_{2g} spin S_i

$$H_{DE} = \sum_{i\alpha\alpha'} t_{i\alpha}^a c^a_{i\alpha} c^a_{i\alpha'} + 2J_H \sum_i s_i \cdot S_i$$

where $c^a_{i\alpha}$ and $c^a_{i\alpha'}$ are creation and annihilation operators for e_g electron with spin α in $d_{z^2 - r^2}$ orbital at site i, and a is the vector connecting nearest neighbor sites. For the cubic lattice, the hopping amplitudes between l and l' orbitals along the x, y, z directions are:

$$t_{ll'}^x = -\sqrt{3}t_{ll'}^z = 3t_{ll'}^x = t$$

$$t_{ll'}^y = \sqrt{3}t_{ll'}^y = \sqrt{3}t_{ll'}^x = t$$

$$t_{ll'}^z = t_{ll'}^z = t_{ll'}^z = 4t/3$$

The second term in Eq. (1) is the Hund interaction between the spin S_i of the e_g electron and the localized t_{2g} spin S_i with $s_i = \frac{1}{2}\sum_{\alpha, \beta} \sigma^\alpha_i \sigma^\beta_i$, where $\sigma^x, \sigma^y, \sigma^z$ are Pauli matrices, and the Hund's constant is positive ($J_H > 0$).

The H_{el-ph} Hamiltonian models the coupling of e_g electrons to the lattice distortion

$$H_{el-ph} = g \sum_i \left(Q_{2i} \tau_{2i} + Q_{3i} \tau_{3i} \right) + \frac{k}{2} \sum_i \left(Q^2_{2i} + Q^2_{3i} \right)$$

where $\tau_{2i} = \sum_{\alpha} (c^a_{i\alpha} c^a_{i\alpha} + c^a_{i\alpha} c^a_{i\alpha})$ and $\tau_{3i} = \sum_{\alpha} (c^a_{i\alpha} c^a_{i\alpha} - c^a_{i\alpha} c^a_{i\alpha})$. In equation (3) g is the electron-phonon coupling constant, while Q_{2i} and Q_{3i} are JT phonons. The second term in H_{el-ph} is the usual quadratic potential for distortions with constant k. The important energy scale of the phonon-electron interaction is the static JT energy $E_{JT} = g^2/(2k)$.

One can represent the spin operators S_i of the localized t_{2g} electrons in terms of Schwinger bosons ($\varphi^\alpha_{i\alpha}, \varphi^{\dagger}_{i\alpha}$)

$$S'_i = \frac{1}{2\sqrt{2}} \varphi^\dagger_{i\alpha} \varphi^\dagger_{i\alpha}, \varphi^{\dagger}_{i\alpha} \varphi^\dagger_{i\alpha} = 2s_i$$

by means of the Schwinger-bosons we introduce spin-singlet Fermi fields

$$\Psi^A_{ii}(\tau) = \frac{1}{\sqrt{2s_i}} \varphi^\dagger_{i\alpha} c^a_{i\alpha}(\tau)$$

$$\Psi^B_{ii}(\tau) = \frac{1}{\sqrt{2s_i}} \left[\varphi_{i1}(\tau) c^a_{i1}(\tau) - \varphi_{i2}(\tau) c^a_{i2}(\tau) \right]$$

and write the spin of the e_g electron and the total spin of the system $S_{tot} = S_i + s_i$ in terms of the singlet fermions

Further, we average the total spin of the system in the subspace of the singlet fermions A and B. The vector $M_i = \langle S_{tot} \rangle f$ identifies the local orientation of the total magnetization. Because of the fact that t_{2g} electron spin is parallel with e_g electron spin we obtain $M_i = \frac{2}{3} S_i$ with $M = S + \frac{2}{3} \sum_i (\Psi^A_{ii} \Psi^B_{ii} - \Psi^A_{ii} \Psi^B_{ii}) f$.

Now, if we use Holstein-Primakoff representation for the vectors $M_i(a^\dagger, a)$ with M as an "effective spin" of the system $(M_e^2 = M^2)$, the boson fields a_i and a_i^\dagger are the true magnons in the system.

An important advantage of working with singlet fermions is the fact that in terms of these spin-singlet fields the spin-fermion interaction is in a diagonal form, the spin variables (magnons) are removed, and one accounts for it exactly. The theory is quadratic with respect to the spin-singlet fermions and one can integrate them out to obtain the free energy of fermions as a function of the magnons' fields a_i^\dagger, a_i. We expand the free energy in powers of magnons' fields and keep only the first two terms. The first term F_{f0}, which does not depend on the magnons’ fields, is a free energy of Fermions with spins of localized t_{2g} electrons treated classically. We fix the model parameters and consider this term as a function of the JT distortion modes independent on the lattice sites. The numerical calculations show that the function depends only on $\sqrt{Q_2^2 + Q_3^2}$ and we set $Q_3 = 0$. The physical value of the JT distortion is the value at which F_{f0} has a minimum. In this way we obtain the distortion as a function of the density of e_g electrons for different values of JT energy and fixed Hund’s coupling. We fix the hopping parameter $t = 1$ to set the energy unit. The results for the renormalized distortion $Q = gQ_2$ as a function of charge carrier density n are plotted in Fig. 1, for different values of the JT energy E_{JT} and $J_H = 15$. The figure (1) shows that JT distortion appears at critical value of the charge carrier density n^* and increases as density n is increased. The inset demonstrates that n^* decreases and approaches zero as JT energy E_{JT} is increased.

The second term in the Fermion free energy is quadratic with respect to the magnons’ fields a_i^\dagger, a_i and defines the effective magnon Hamiltonian in Gaussian approximation.

$$H_{eff} = \sum_{ia} \rho^a \left(a_i^\dagger a_i + a_i^\dagger a_{i+n} + a_i^\dagger a_{i+n} - a_i^\dagger a_i - a_i^\dagger a_{i+n} - a_i^\dagger a_{i+n} a_i \right)$$

In equation (6) ρ^a are spin stiffness constants which de-
pend on the space directions \mathbf{a}. They are calculated at zero temperature, for fixed Hund’s coupling, JT energy, charge density, and JT distortion determined above. The calculations follow the technique developed in [13]. Based on the rotational symmetry, one can supplement the Hamiltonian (6) up to an effective Heisenberg like

$$H_{\text{eff}} = - \sum_{i,a} J^a \mathbf{M}_i \cdot \mathbf{M}_{i+a}$$

(7)

where $J^a = \rho^a / M$. The ferromagnetic phase is stable if all effective exchange coupling constants are positive $J^a > 0$ ($\rho^a > 0$). If one of them is negative, for example $J^y < 0$ ($\rho^y < 0$), and the others are positive $J^x > 0$, $J^z > 0$ ($\rho^x > 0$, $\rho^z > 0$), the stable state is A-type antiferromagnetic phase which has planes (x, z) that are ferromagnetic (parallel moments), with antiferromagnetic (antiparallel) moments between them. The spin-stiffness constant, as a function of charge carrier density, is depicted in Fig. 2 for $J_H = 15$, and three different values of JT energy, $E_{JT} = 1.73$, $E_{JT} = 2$ and $E_{JT} = 4$. The vertical dash lines correspond to the density n^* at which the JT distortion appears. The figure on the left illustrates in the best way the impact of the JT distortion on the spin stiffness constants. The appearance of the distortion at n^* is accompanied with a change of the slopes of the curves. The distortion splits the ρ^x (blue) and ρ^y (red) lines, and ρ^y starts to decrease. At critical density n_c, ρ^y becomes equal to zero and the system undergoes a transition from ferromagnetic to A-type antiferromagnetic phase. The two other figures show that spin stiffness constants decrease when JT energy increases and the critical density n_c decreases too. As the spin stiffness constants are a measure for the magnon fluctuations in the ferromagnetic phase we conclude that JT distortion suppresses the magnon fluctuations.

The most evident consequence of this suppression is the Curie temperature (T_C) decreasing. To calculate T_C we utilize the Schwinger-bosons mean-field theory [15]. We represent the vector \mathbf{M}_i Eq. (7) by means of Schwinger bosons $(\phi_{i\sigma}, \phi^+_{i\sigma})$

$$M^\nu_i = \frac{1}{2} \sum_{\alpha\beta} \phi^+_{i\alpha} \sigma^\nu_{\alpha\beta} \phi_{i\beta} \quad \phi^+_{i\alpha} \phi_{i\alpha} = 2M$$

(8)

Next we use the identity

$$\mathbf{M}_i \cdot \mathbf{M}_j = \frac{1}{2} \left(\phi^+_{i\alpha} \phi_{j\alpha} \right) \left(\phi^+_{j\beta} \phi_{i\beta} \right) - \frac{1}{4} \left(\phi^+_{i\alpha} \phi_{i\beta} \right) \left(\phi^+_{j\beta} \phi_{j\beta} \right)$$

(9)

and rewrite the effective Hamiltonian in the form

$$H_{\text{eff}} = - \frac{1}{2} \sum_{i,a} J^a \left(\phi^+_{i\alpha} \phi_{i+a\sigma} \right) \left(\phi^+_{i+a\beta} \phi_{i\beta} \right)$$

(10)

where the constant term is dropped. To ensure the constraint we introduce a parameter (λ) and add a new term to the effective Hamiltonian [15].

$$\hat{H}_{\text{eff}} = H_{\text{eff}} + \lambda \sum_i \left(\phi^+_{i\alpha} \phi_{i\sigma} - 2M \right)$$

(11)

We treat the four-boson interaction within Hartree-Fock approximation. The Hartree-Fock hamiltonian which corresponds to the effective hamiltonian reads

$$H_{\text{H-F}} = \frac{1}{2} \sum_{i,a} J^a \bar{u}_{i,i+a} u_{i,i+a} + \lambda \sum_i \left(\phi^+_{i\alpha} \phi_{i\sigma} - 2M \right)$$

$$- \frac{1}{2} \sum_{i,a} J^a \left[\bar{u}_{i,i+a} \phi^+_{i\alpha} \phi_{i+a\sigma} + u_{i,i+a} \phi^+_{i+a\alpha} \phi_{i\sigma} \right]$$

(12)

where $\bar{u}_{i,i+a}$ ($u_{i,i+a}$) are Hartree-Fock parameters to be determined self-consistently. We are interested in real parameters which do not depend on the lattice sites, but depend on the space directions $u_{i,i+a} = \bar{u}_{i,i+a} = u_a$. Then in momentum space representation, the Hamiltonian [12] has the form

$$H_{\text{H-F}} = \frac{N}{2} \sum_a u_a^2 J^a - 2 \lambda M N + \sum_k \varepsilon_k \phi^+_{k\sigma} \phi_{k\sigma}$$

(13)

where N is the number of lattice sites and ε_k is the dispersion of the $\phi_{k\sigma}$-boson (spinon). The free energy of the theory with Hamiltonian $H_{\text{H-F}}$ is

$$F = \frac{1}{2} \sum_a u_a^2 J^a - 2 \lambda M + \frac{2T}{N} \sum_k \ln \left(1 - e^{-\varepsilon_k} \right)$$

(14)

where T is the temperature. The equations for the parameters u_a and λ are: $\partial F / \partial u_a = 0$, $\partial F / \partial \lambda = 0$.

To solve the system of four equations it is more convenient to introduce a new parameter (μ) instead of (λ):
The results for the Curie temperature T_C as a function of e_g electron density n for $J_H = 15$ and different values of the JT energy.

$$\lambda = \sum \left(u_n J^n + \mu u_n \right).$$

In terms of the new parameter the ϕ_k-boson dispersion is $\varepsilon_k = \sum \left[u_n J^n \left(1 - \cos k_n \right) + \mu u_n \right]$ and the theory is well defined for positive constants $u_n \geq 0$ and $\mu \geq 0$. For high enough temperatures $\mu(T)$ and $u_n(T)$ are positive, and the excitation is gapped. Decreasing the temperature leads to decrease of $\mu(T)$. At temperature T_C it becomes equal to zero $\mu(T_C) = 0$, and long-range excitation emerges in the spectrum. Therefore this is the Curie temperature. We set $\mu = 0$ and obtain a system of equations for the Curie temperature T_C and u_n

$$u_{n'} = \frac{\alpha}{N} \sum k e^{m k_n} \frac{\cos k_{n'}}{\sum n e^{m k_n} \left(1 - \cos k_n \right)} - 1$$

$$M = \frac{1}{N} \sum k e^{m k_n} \frac{1}{\sum n e^{m k_n} \left(1 - \cos k_n \right)} - 1$$

For high enough temperatures $\mu(T)$ and $\mu(T)$ are positive, and the excitation is gapped. Decreasing the temperature leads to decrease of $\mu(T)$. At temperature T_C it becomes equal to zero $\mu(T_C) = 0$, and long-range excitation emerges in the spectrum. Therefore this is the Curie temperature. We set $\mu = 0$ and obtain a system of equations for the Curie temperature T_C and u_n.

We have used a large value for Hund’s constant to better demonstrate the impact of the JT distortion on the ferromagnetism. Decreasing of J_H suppresses the ferromagnetic phase, decreases the Curie temperature, and reduces the impact of the JT distortion on the ferromagnetism. For example, for $J_H/t = 5$ we obtain $T_C = 1092K$, while for $J_H/t = 5$ we obtain $T_C = 738K$. For non-zero distortion, $E_{JT}/t = 2$, the Curie temperatures are $T_C = 818K$ and $T_C = 620K$ respectively. These results show that the reduction of the Curie temperature due to JT distortion depends on the value of J_H.

The authors acknowledge the financial support of the Sofia University. This work was partly supported by a Grant-in-Aid DO02-264/18.12.08 from NSF-Bulgaria.