Supplemental Information

Improved Modeling of Compositional Heterogeneity
Supports Sponges as Sister to All Other Animals

Roberto Feuda, Martin Dohrmann, Walker Pett, Hervé Philippe, Omar Rota-Stabelli, Nicolas Lartillot, Gert Wörheide, and Davide Pisani
Figure S1. Results of phylogenetic analyses of Whelan20-Opistho, related to Figure 1, Table 1 and Table 3. Numbers at nodes are Bayesian posterior probabilities. (A) Under WAG+G: Burnin = 1000 samples; Total number of cycles = 2273; Bpcomp Maxdiff = 0; Tracecomp minimal overall effsize = 214; Maximal overall rel_diff = 0.17. (B) Under LG+G: Burnin = 500 samples; Total number of cycles = 1740; Bpcomp Maxdiff = 0; Tracecomp minimal overall effsize = 97; Maximal overall rel_diff = 0.147486. (C) Under GTR+G: Burnin: 500 samples; Total number of cycles = 1679; Bpcomp Maxdiff = 0; Tracecomp minimal overall effsize = 98; Maximal overall rel_diff = 0.281729. (D) Under CAT-GTR+G: Burnin = 20000 samples; Total number of cycles = 46067; Bpcomp Maxdiff = 0.0153846; Tracecomp minimal overall effsize = 40; Maximal overall rel_diff = 0.383492. (E) Under GTR+G with Dayhoff-6 recoding: Burnin = 7000 samples; Total number of cycles 17035; Bpcomp Maxdiff = 0.02; Tracecomp minimal overall effsize = 733; Maximal overall rel_diff = 0.0482448. (F) Under CAT-GTR+G with Dayhoff-6 recoding: Burnin = 10000 samples; Total number of cycles = 32512; Bpcomp Maxdiff = 0.0488889; Tracecomp minimal overall effsize = 732; Maximal overall rel_diff = 0.080975. (G) Under GTR+G with S&R-6 recoding: Burnin = 5000 samples; Total number of cycles 15132; Bpcomp Maxdiff = 0.056; Tracecomp minimal overall effsize = 406; Maximal overall rel_diff = 0.13. (H) Under CAT-GTR+G with S&R-6 recoding: Burnin = 5000 samples; Total number of cycles = 16087; Bpcomp Maxdiff = 0.21; Tracecomp minimal overall effsize = 468; Maximal overall rel_diff = 0.13. (I) Under GTR+G with KGB-6 recoding: Burnin = 5000 samples; Total number of cycles = 14381; Bpcomp Maxdiff = 0.0042; Tracecomp minimal overall effsize = 2107; Maximal overall rel_diff = 0.06. (J) Under CAT-GTR+G with KGB-6 recoding: Burnin = 8000 samples; Total number of cycles = 21145; Bpcomp Maxdiff = 0.03; Tracecomp minimal overall effsize = 1767; Maximal overall rel_diff = 0.1.
Figure S2. Results of phylogenetic analyses of WhelanD20-Holo, related to Table 3. Numbers at nodes are Bayesian posterior probabilities. (A) Under GTR+G: Burnin = 1000 samples; Total number of cycles = 2630; Bpcomp Maxdiff = 0.0617284; Tracecomp minimal overall effsize = 57; Maximal overall rel_diff = 0.176365. (B) Under CAT-GTR+G: Burnin = 40000 samples; Total number of cycles = 88851; Bpcomp Maxdiff = 0.067623; Tracecomp minimal overall effsize = 41; Maximal overall rel_diff = 0.656317. (C) Under GTR+G with Dayhoff-6 recoding: Burnin = 300 samples; Total number of cycles = 748; Bpcomp Maxdiff = 0.159091; Tracecomp minimal overall effsize = 84; Maximal overall rel_diff = 0.408643. (D) Under CAT-GTR+G with Dayhoff-6 recoding: Burnin = 10000 samples; Total number of cycles = 30038; Bpcomp Maxdiff = 0.0475; Tracecomp minimal overall effsize = 121; Maximal overall rel_diff = 0.179874. (E) Under GTR+G with S&R-6 recoding: Burnin = 5000 samples; Total number of cycles = 11673; Bpcomp Maxdiff = 0.102; Tracecomp minimal overall effsize = 558; Maximal overall rel_diff = 0.12. (F) Under CAT-GTR+G with S&R-6 recoding: Burnin = 6000 samples; Total number of cycles = 16904; Bpcomp Maxdiff = 0.014; Tracecomp minimal overall effsize = 618; Maximal overall rel_diff = 0.14. (G) Under GTR+G with KGB-6 recoding: Burnin = 5000 samples; Total number of cycles = 15605; Bpcomp Maxdiff = 0.17; Tracecomp minimal overall effsize = 2549; Maximal overall rel_diff = 0.04. (H) Under CAT-GTR+G with KGB-6 recoding: Burnin = 8000 samples; Total number of cycles = 16906; Bpcomp Maxdiff = 0.19; Tracecomp minimal overall effsize = 1273; Maximal overall rel_diff = 0.15.
Figure S3. Results of phylogenetic analyses: trees inferred from WhelanD20-Choano, WhelanD16-OutlierExcluded-Choano, and Whelan2017-all-outgroups. Related to Figure 1 and Table 3. Numbers at nodes are Bayesian posterior probabilities. (A) Under GTR+G: Burnin = 1000 samples; Total number of cycles = 2832; Bpcomp Maxdiff = 0.010989; Tracecomp minimal overall effsize = 62; Maximal overall rel_diff = 0.194923. (B) Under CAT-GTR+G: Burnin = 45000 samples; Total number of cycles = 87710; Bpcomp Maxdiff = 0.0491803; Tracecomp minimal overall effsize = 69; Maximal overall rel_diff = 0.399076. (C) Under GTR+G with Dayhoff-6 recoding: Burnin = 1000 samples; Total number of cycles = 3338; Bpcomp Maxdiff = 0.0699655; Tracecomp minimal overall effsize = 176; Maximal overall rel_diff = 0.244371. (D) Under CAT-GTR+G with Dayhoff-6 recoding: Burnin = 10000 samples; Total number of cycles = 21700; Bpcomp Maxdiff = 0.025641; Tracecomp minimal overall effsize = 227; Maximal overall rel_diff = 0.121302. (E) Under GTR+G with S&R-6 recoding: Burnin = 5000 samples; Total number of cycles = 29256; Bpcomp Maxdiff = 0.03; Tracecomp minimal overall effsize = 2658; Maximal overall rel_diff = 0.028. (F) Under CAT-GTR+G with S&R-6 recoding: Burnin = 6000 samples; Total number of cycles = 17184; Bpcomp Maxdiff = 0.073; Tracecomp minimal overall effsize = 613; Maximal overall rel_diff = 0.1. (G) Under GTR+G with KGB-6 recoding: Burnin = 6000 samples; Total number of cycles = 16672; Bpcomp Maxdiff = 0.013; Tracecomp minimal overall effsize = 2347; Maximal overall rel_diff = 0.04. (H) Under CAT-GTR+G with KGB-6 recoding: Burnin = 8000 samples; Total number of cycles = 22913; Bpcomp Maxdiff = 0.06; Tracecomp minimal overall effsize = 1666; Maximal overall rel_diff = 0.147. (I) WhelanD16-OutlierExcluded-Choano, under CAT-GTR+G (see STAR Methods – Testing the distribution of the signal in favour of Porifera-sister). Burnin = 5000 samples; Total number of cycles = 17581; Bpcomp Maxdiff = 0.0516; Tracecomp minimal overall effsize = 87; Maximal overall rel_diff = 0.414. (J) WhelanD16-OutlierExcluded-Choano, under CAT-GTR+G with Dayhoff-6 recoding (see STAR Methods – Testing the distribution of the signal in favour of Porifera-sister). Burnin = 12000 samples; Total number of cycles = 41550; Bpcomp Maxdiff = 0.0511; Tracecomp minimal overall effsize = 1703; Maximal overall rel_diff = 0.068. (K) Whelan2017_Metazoa_Choano_RCFV_strict, under CAT-GTR+G with Dayhoff-6 recoding (see STAR Methods – Testing the effect of incrementing the number of ctenophoran lineages on the phylogenetic stability of recorded dataset). Burnin = 7000 samples; Total number of cycles = 25851; Bpcomp Maxdiff = 0.0076; Tracecomp minimal overall effsize = 1572; Maximal overall rel_diff = 0.044.
Figure S4. Results of phylogenetic analyses of Chang dataset, related to Figure 1, Table 1, Table 3. (A) Under WAG+G: Burnin = 700 samples; Total number of cycles = 1286; Bpcomp MaxDiff = 0; Tracecomp minimal overall effsize = 80; Maximal overall rel_diff = 0.0746336. (B) Under LG+G: Burnin = 500 samples; Total number of cycles = 1276; Bpcomp MaxDiff = 0; Tracecomp minimal overall effsize = 170; Maximal overall rel_diff = 0.203421. (C) Under GTR+G: Burnin = 900 samples; Total number of cycles = 1835; Bpcomp MaxDiff = 0; Tracecomp minimal overall effsize = 41; Maximal overall rel_diff = 0.141175. (D) Tree inferred by Maximum Likelihood under the optimal PF-Scheme. (E) Under CAT-GTR+G: Burnin 1500; Total number of cycles = 6437; Bpcomp Maxdiff = 0.37; Tracecomp minimal overall effsize = 51; Maximal overall rel_diff = 2.1. (F) Under GTR+G with Dayhoff-6 recoding: Burnin = 1000 samples; Total number of cycles = 2272; Bpcomp Maxdiff = 0.015748; Tracecomp minimal overall effsize = 97; Maximal overall rel_diff = 0.356143. (G) Under CAT-GTR+G with Dayhoff-6 recoding: Burnin = 1000 samples; Total number of cycles = 20383; Bpcomp Maxdiff = 0.0628019; Tracecomp minimal overall effsize = 159; Maximal overall rel_diff = 0.130441. (H) Under GTR+G with S&K-6 recoding: Burnin = 4000 samples; Total number of cycles = 9148; Bpcomp Maxdiff = 0.027; Tracecomp minimal overall effsize = 493; Maximal overall rel_diff = 0.12. (I) Under CAT-GTR+G with S&K-6 recoding: Burnin = 5000 samples; Total number of cycles = 14687; Bpcomp Maxdiff = 0.13; Tracecomp minimal overall effsize = 846; Maximal overall rel_diff = 0.074. (J) Under GTR+G with K-6 recoding: Burnin = 5000 samples; Total number of cycles = 11923; Bpcomp Maxdiff = 0.02; Tracecomp minimal overall effsize = 437; Maximal overall rel_diff = 0.11. (K) Under CAT-GTR+G with K-6 recoding: Burnin = 6000 samples; Total number of cycles = 16023; Bpcomp Maxdiff = 0.075; Tracecomp minimal overall effsize = 484; Maximal overall rel_diff = 0.096. In panel D numbers at the nodes are bootstrap proportions. In panels A-C, E-K numbers at the nodes are Bayesian posterior probabilities.
Table S1. Comparing the adequacy of alternative evolutionary models, Related to Table 1.

Comparing the adequacy of WAG+G, LG+G, GTR+G the optimal PF-scheme and CAT-GTR+G when modelling site-specific and lineage-specific compositional heterogeneity for WhelanD20-Opistho (70 taxa and 46,542 amino acid positions) and Chang (77 taxa and 51,940 amino acid positions). In this table Z-Values for PPAs performed to test whether the models can adequately describe site-specific amino acid preferences are from PPA-CONV and PPA-VAR (see Methods and Results and Discussion for details). Z-scores for PPA-DIV are in Table 1. Z-Values for PPA performed to test whether the models can adequately describe across-taxa compositional heterogeneity are from PPA-MEAN (see Methods and Results and Discussion for details). Z-scores for PPA-MAX are in Table 1. For taxon specific heterogeneity see outputs of individual PPA analyses (https://bitbucket.org/bzxdp/feuda_et_al_2017).

Dataset	Recoding strategy	Model	Site-specific amino acid preferences: PPA-CONV	Site-specific amino acid preferences: PPA-VAR	Across-taxa compositional heterogeneity PPA-MEAN
WhelanD20	None	WAG	32.16	33.90	192.82
	None	LG	32.24	34.13	178.86
	None	GTR	29.85	31.60	172.27
	None	PF-scheme	28.17	29.57	126.45
	None	CAT-GTR	9.21	10.06	107.48
Method	Model	GTR	CAT-GTR	GTR+G	CAT-GTR+G
----------	-------------	-------	---------	-------	-----------
Dayhoff-6	GTR	15.48	10.54	22.85	17.72
	CAT-GTR		12.18	15.28	
S&R-6	GTR	20.19	10.79	25.45	18.75
	CAT-GTR		12.18	15.28	
KGB-6	GTR	18.57	10.70	20.19	18.75
	CAT-GTR		6.63	11.70	
None	WAG+G	34.38	12.58	12.58	
	LG+G	42.56	38.13		
	GTR+G	40.10	36.13		
	PF-scheme	40.10	36.13		
Chang	CAT-GTR+G	34.38	12.58	12.58	
--------	-------	-------	-------		
KGB-6	GTR+G	22.87	12.11	25.96	
KGB-6	CAT-	16.79	8.31	7.60	
	GTR+G				
Table S2. Detailed results of PPA analyses (PPA-DIV and PPA-MAX), Related to Table 1. This table illustrates the empirical heterogeneity observed directly from the data, the average posterior predictive mean and the dispersion around the mean for the mean amino acid diversity and maximal heterogeneity across taxa (the two measures used in Tables 1). These results illustrate that for all models, dispersion is comparable as long as the same recoding scheme is considered (as expected), and invariably tight (as expected given the large dimension of the datasets). Note: Observed, empirical, heterogeneity is not estimated but observed from the data. Accordingly, for each considered statistics and dataset this value does not change unless the recoding strategy changes.

See https://bitbucket.org/bzxdp/feuda_et_al_2017 for the output files from the PPA analyses including the values summarised in this table.

Dataset	Model & Recoding	Mean amino acid diversity	Maximal heterogeneity across the taxa				
		Posterior predictive test					
		Observed (empirical) Value	Posterior Predictive Mean +/−				
		Observed (empirical) Value	Posterior Predictive Mean +/−				
WhelanD20	WAG	5.546	6.761	0.010	0.00316	0.00014	0.00004
	LG	5.546	6.612	0.010	0.00316	0.00014	0.00004
	LG	5.546	6.546	0.011	0.00316	0.00015	0.00004
	CAT-GTR	5.546	5.604	0.009	0.00316	0.00030	0.00008
	Dayhoff-6 GTR	2.747	3.061	0.005	0.00254	0.00014	0.00007
	Dayhoff-6 CAT-GTR	2.747	2.742	0.005	0.00254	0.00030	0.00009
Model	States	Parameters	AIC	BIC	AICw	BICw	
----------	--------	------------	-----	-----	------	------	
S&R-6 GTR	2.893	3.222	0.005	0.00197	0.00014	0.00006	
S&R-6 CAT-GTR	2.893	2.887	0.005	0.00197	0.00061	0.00019	
KGB-6 GTR	2.724	3.013	0.005	0.00255	0.00014	0.00007	
KGB-6 CAT-GTR	2.724	2.723	0.004	0.00255	0.00038	0.00016	
WAG	4.080	5.569	0.008	0.00185	0.00021	0.00007	
LG	4.080	5.400	0.008	0.00185	0.00023	0.00008	
PF	4.080	5.381	0.008	0.00185	0.00032	0.00010	
SCHEME GTR	4.080	5.162	0.009	0.00185	0.00024	0.00009	
CAT-GTR	4.080	4.124	0.007	0.00185	0.00062	0.00010	
Dayhoff-6 GTR	2.153	2.454	0.004	0.00391	0.00020	0.00014	
Chang							
Dayhoff-6 CAT-GTR	2.153	2.147	0.004	0.00391	0.00273	0.00032	
S&R-6 GTR	2.247	2.573	0.005	0.00317	0.00021	0.00012	
S&R-6 CAT-GTR	2.247	2.241	0.004	0.00317	0.00216	0.00032	
KGB-6 GTR	2.145	2.449	0.004	0.00130	0.00019	0.00013	
KGB-6 CAT-GTR	2.145	2.142	0.003	0.00130	0.00102	0.00023	