First survey of centimeter-scale AC-LGAD strip sensors with a 120 GeV proton beam

S. Xie, A. Apresyan, C. Pena, C. Madrid, R. Heller, S. Los, A. Tricoli, G. Giacomini, W. Chen, Z. Ye, S. Nanda, W. Brooks, C. San Martin, R. Rios, O. Koseyan,
CPAD 2023
Future trackers need timing

- 4D-trackers will play a key role at future machines
 - For bkg reduction and triggering
 - Enhance PID and LLP reco capability
 - Unique opportunity for detector design

- HL-LHC timing detectors is major first step
 - LGADs with 1.3x1.3 mm2 pixels
 - Resolutions of ~375 μm and 30 ps

Measurement	Technical requirement
Tracking for e$^+$e$^-$	Granularity: 25x50 μm2 pixels
	Resolutions of 5 μm and <10 ps
Tracking for μ$^+$μ$^-$	Granularity: 25x25 μm2 pixels
	Resolutions of 5 μm and <30 ps
Tracking for 100 TeV pp	Radiation tolerant up to 8x1017 n/cm2
	Resolutions of 5 μm and <10 ps

Technical requirements for future trackers:
from DOE’s HEP BRN and Snowmass 4D tracker whitepaper

HL-LHC: pileup ~ 200, 14 TeV

Future collider: >1000 pileup, 100 TeV
AC-coupled LGADs

- Conventional LGAD suffers from poor fill factor
 - Gain layer termination requires ~50 μm interchannel gap size

- AC-LGADs solve this issue
 - Electrons collect at the resistive n+ and then slowly flow to an ohmic contact at the edge

- Signal sharing allows for improved position resolution
High resolution AC-LGAD strips

- Excellent performance from several BNL 100 to 200 μm strip prototypes
 - Well-tuned signal sharing → uniform 2-strip efficiency

• Promising 4D sensors: 26-30 ps timing and 5-10 μm resolution
Large-area AC-LGAD strips

- To cover large areas, need to demonstrate performance with longer (larger) strip

- First test of cm-length sensors
 - A promising approach for TOF layer of ePIC detector @ EIC to achieve PID
Measurements

- **Conducted at Fermilab Test Beam Facility (FTBF)**
 - Results based on two separate test beam campaigns
 - Used 120 GeV proton beam from main injector

- **First beam test in March 2022** focusing on first batch of long strip BNL sensors
 - Paper detailing 2022 beam test results ([2023 JINST 17 P06013](#))

- **Second beam test concluded in January 2023** on second batch of long strip BNL sensors and HPK pixels with thickness variation
FTBF 4D-tracking Infrastructure

- Permanent setup in FNAL test beam facility (FTBF)
 - Movable: slide in and out of beamline as needed
 - Tracking with ~5 μm resolution
 - Time reference detector with ~10 ps resolution (MCP)
 - Specialized readout boards for LGAD characterization
 - DAQ: high bandwidth, high ADC resolution 8-channel scope
 - Environmental control and monitoring: Temp (-25 C to 20 C) & Humidity

8-channel oscilloscope, 2 GHz, 10 GSa/s
Long (cm) strip sensors

- Survey conducted on ~30 sensors
 - Strips with 500 μm pitch and 0.5, 1.0, and 2.5 cm long channels
 - Pixels with 500x500 μm² channel size

- Focused on geometry optimization and tradeoffs with larger channels
Checking gain uniformity

• **Initial sensors** had localized gain featured
 - BNL adapted their gain implantation procedure
• Greatly improved gain uniformity with **second batch**
Propagation delays across surface

- Signal arrival depends on location of hit with $O(100 \text{ ps})$ delays
- Can be corrected with dual-end readout

\[\Delta t_{L-R} \rightarrow \text{reconstruct longitudinal position with mm precision} \]
4D tracking performance: BNL 1cm strips

- Sensor provides 100% efficiency with ~80% having signals in two or more strips
- Measure mostly uniform 20 μm position resolution
- Quantified different time resolutions based on how the time delay is accounted
 - Using perfect time delay (eg. using full tracking) can achieve ~40 ps time resolution
4D tracking performance: HPK strips

- Better quality sensor fabrication from HPK results in improved signal to noise
- Best prototype achieves 12 μm position resolution and 34 ps time resolution
Sensor Thickness Study

- Competing effects from Landau fluctuations vs S/N
 - Thinner sensors decrease Landau contribution but have smaller signals
 - Thinner sensors also have faster rise time
- We study this effect using HPK sensors of thickness 20, 30, 50 μm

HPK 2x2, each 500x500 μm²
Sensor Thickness Study

- Achieve excellent timing performance for 20 μm sensors
 - 20 ps resolution for 20 μm sensors
 - 25 ps resolution for 30 μm sensors
- Uniformity is maintained
Summary

• AC-LGADs provide excellent 4D performance while achieving:
 - 100% fill factor
 - few micron level spatial resolution
• Progress made towards large area sensors with promising performance
 - Achieved 12 μm spatial resolution and 34 ps time resolution simultaneously
 - Close to meeting design goals of EIC’s ePIC TOF detector
• Demonstrated path towards sub-30 ps time resolution using 20 and 30 μm thick sensors from HPK
• Great progress in 4D tracking in past year and more to follow!
Backup
| Name | Wafer | Pitch (μm) | Strip length (mm) | Metal width (μm) | Active thickness (μm) | Resistivity (Ω/□) | Capacitance (pF/mm²) | Optimal bias voltage (V) |
|------|-------|------------|------------------|------------------|----------------------|-------------------|----------------------|-------------------------|
| SHW1 | W9 | 500 | 5 | 50 | 20 | 1600 | 600 | 110 |
| SHW2 | W9 | | 5 | 50 | 20 | 1600 | 600 | 114 |
| SHW3 | W4 | | 5 | 50 | 50 | 400 | 240 | 204 |
| SHW4 | W8 | | 5 | 50 | 50 | 1600 | 600 | 200 |
| SHW5 | W2 | | | 100 | 20 | 1600 | 240 | 180 |
| SHW6 | W5 | | | 100 | 50 | 1600 | 600 | 190 |
| SHW7 | W9 | | | 100 | 50 | 400 | 600 | 208 |
| SHW8 | W8 | | | 100 | 50 | 400 | 600 | 112 |
| SHN1 | WN1 | 80 | 10 | 60 | 20 | 1600 | 240 | 112 |
| SHN2 | WN2 | | 80 | 60 | 50 | 1600 | 240 | 190 |
| BNL | | | | | | | | |
| SB1 | WB2 | 500 | 10 | 50 | 20 | 1600 | 240 | 95 |
| SB2 | WB3 | | | 50 | 20 | 1600 | 240 | 80 |
| SB3 | WB1 | | | 50 | 20 | 1600 | 240 | 170 |
| SB4 | WB4 | | | 50 | 20 | 1600 | 240 | 185 |
| SB5 | WB3 | | | 50 | 20 | 1600 | 240 | 95 |
| SB6 | WB2 | | | 100 | 20 | 1600 | 240 | 80 |
| SB7 | WB1 | | | 100 | 20 | 1600 | 240 | 160 |
Pulse shapes

- Longer strips associated with slower rising edge
 - Likely due to extra capacitance, and transmission line reflection effects

- 1 cm strips: already work well!
- > 2 cm: trying few ideas to improve in next beam test.