Perioperative ARDS and lung injury: for anaesthesia and beyond

Robert Wise*, David Bishop†, Gavin Joynt‡ and Reitze Rodseth§

*Perioperative Research Unit, Metropolitan Department of Anaesthetics, Critical Care and Pain Management, Pietermaritzburg, University of KwaZulu-Natal, Discipline of Anaesthesiology and Critical Care, Durban, South Africa
†Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong
‡Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA
§Corresponding author, email: Robert.Wise@kznhealth.gov.za

Postoperative pulmonary complications are common and may be associated with significant cost. Acute respiratory distress syndrome (ARDS), a life-threatening respiratory disease process characterised by hypoxaemia and reduced lung compliance, is one of the more serious pulmonary complications. The development of ARDS or the related entity of lung injury is associated with prolonged hospitalisation, ventilation, and time spent in intensive care, and profoundly increases the risk of mortality and significant morbidity. Patients with, or at risk of ARDS and lung injury, must be identified, optimised and managed with sound intraoperative principles (particularly ventilation and fluid management) – with the specific aim of limiting harm. This review will focus on the diagnosis, pathophysiology, prevention and management of ARDS and lung injury in the perioperative period.

Keywords: acute lung injury, anaesthesia, ARDS, ventilation

Introduction
Pulmonary complications after surgery are common and are associated with significant cost. These complications lengthen hospitalisation, ventilation, and time spent in intensive care, and profoundly increase the risk of mortality and significant morbidity. Acute respiratory distress syndrome (ARDS), a life-threatening respiratory disease process characterised by hypoxaemia and reduced lung compliance,1,2 is one of the more serious postoperative pulmonary complications. In its severe form, ARDS carries a mortality rate of 45%.3,4 This concise review will focus on the diagnosis, pathophysiology, prevention and management of ARDS and the related entity of lung injury. The aim is to provide a broad overview of a complex clinical area.

Perioperative mechanical ventilation is one of the primary risk factors for the development of postoperative pulmonary complications; as many as one in four patients with normal lungs will develop some form of lung injury following mechanical ventilation.5 In patients with lung injury or ARDS, further lung injury risk with mechanical ventilation is significantly greater. However, much of this damage can be attenuated by using appropriate ventilation strategies.

Pathophysiology
The pathophysiological mechanisms of ARDS vary depending on the causative pathology, but several common inflammatory pathways that subsequently cause alveolar damage are involved. These inflammatory processes cause endothelial damage, disrupt normal protective barriers, inhibit surfactant production and function, impair coagulation, and inhibit normal alveolar immunological responses.6,7 Increased vascular permeability and damage to the pulmonary microvasculature results in fluid and neutrophil leakage into alveolar and interstitial tissue.8 The result is impaired gas exchange due to damaged alveolar-capillary membranes, and the two hallmark features of ARDS: hypoxaemia and reduced lung compliance.9 These lung changes are rarely homogenous and result in areas of disease interspersed with normal lung units. The stretching at the interface of diseased and healthy lung also causes excessive shear stress and perpetuates the release of inflammatory mediators and exacerbates local and systemic inflammation.

Diagnostic criteria
In 2012 the Berlin Definitions replaced the 1994 American-European Consensus Conference (AECC) definition of ‘acute lung injury’ (ALI).10 The term ALI was discarded and the distinction between primary and secondary ALI (largely related to onset time) was integrated into a new ARDS definition. The Berlin Definitions, compiled by the European Society of Intensive Care Medicine and endorsed by the American Thoracic Society and the Society of Critical Care Medicine, recognise three stages of severity based on the PaO$_2$/FiO$_2$ ratio.6 Four factors are involved in making the diagnosis:

(a) Timing – onset over less than seven days;
(b) Chest x-ray (or computerised tomography [CT] scan) changes – bilateral opacification not explained by alternative lung pathology;
(c) Origin of oedema – must not be fully explained by cardiac failure or fluid overload, and an objective assessment (cardiac ultrasound) should be performed if there is uncertainty;
(d) Severity of hypoxaemia, graded according to PF ratio (PpO$_2$ in mmHg, with a minimum positive end-expiratory pressure (PEEP) of 5 cm H$_2$O [mild 200–300], moderate (100–200) or severe (< 100)).11

Anaesthetic management strategies for patients with ARDS
Several advancements have improved ARDS outcomes. These include better ventilation strategies and care bundles, transfusion and fluid management, and early appropriate management of sepsis.12–18 Patients with, or at risk of ARDS, must be identified, optimised and managed with sound intraoperative principles.
(particularly ventilation and fluid management) – with the specific aim of limiting harm.

Anaesthesiologists caring for patients with, or at risk of ARDS, should aim to:
(1) Provide optimal ventilation and anaesthesia without compromising the cardiovascular system;
(2) Ventilate patients with lung protective strategies to limit inflammatory processes;
(3) Avoid unnecessary intravenous fluids that contribute to extravascular lung water accumulation; and
(4) Promote recovery and postoperative mobilisation.

Despite a lack of data showing that these principles improve outcomes in healthy patients, it seems prudent to adopt these strategies in all ventilated perioperative patients.

A. Preoperative management

Preoperative objectives include the identification of patients at risk for developing ARDS (using general risk factors and scoring systems) and optimisation of these patients where possible. These measures are outlined below.

(1) Identification of general risk factors for developing ARDS (Table 1).

Table 1: General risk factors for developing ARDS

Direct risk factors	Indirect risk factors
Pneumonia	Non-pulmonary sepsis
Aspiration of gastric contents	Major trauma
Inhalational injury	Pancreatitis
Pulmonary contusion	Severe burns
Pulmonary vasculitis	Non-cardiogenic shock
Drowning	Drug overdose
	Multiple transfusions or TRALI

Notes: ARDS = acute respiratory distress syndrome; TRALI = transfusion-associated acute lung injury.

(2) Risk prediction scores for ARDS.

(a) Several ARDS risk prediction models exist and vary from specific surgical populations (predominantly cardiothoracic) to general surgical patients. The Surgical Lung Injury Prediction 2 model (SLIP-2) is a mathematical model that predicts patients at risk of developing early postoperative lung injury (Table 2). The score performed well in distinguishing patients that develop early lung injury from those that do not (AUC [95% CI], 0.84 [0.81, 0.88]). Kor et al. identified nine independent ARDS predictors.

(b) The Lung Injury Prediction (LIP) Score is an alternative model initially developed for all patients, and validated in surgical critical care patients. The LIP Score performed well in this surgical population (receiver operating characteristic [ROC] area under the curve of 0.79, with good calibration).

(c) More recently, early oxygen saturation to fraction of inspired oxygen ratio (within 6 hours of hospital admission) has been shown to be an independent indicator of ARDS development in patients at risk.

B. Intraoperative management

General anaesthesia has several negative consequences on the respiratory system:

(i) Basal atelectasis (due to positioning, high inspired FiO₂, and reduced functional residual capacity).
(ii) Loss of muscle tone and subsequent decreased negative pressure lung expansion.
(iii) Decreased minute ventilation.
(iv) Closing capacity nearing functional residual capacity.
(v) Volatile anaesthetic-induced inhibition of hypoxic pulmonary vasoconstriction leading to increased intrapulmonary shunting.
(vi) Increased alveolar dead space ventilation due to atelectasis and alterations in perfusion characteristic in the supine and anaesthetised position.
(vii) Blunting of the normal responses to hypercarbia.

Ventilating patients with ARDS undergoing general anaesthesia adds even more complexity.
(1) Ventilation

Mechanical forces generated by positive pressure ventilation contribute to ventilator-induced lung injury and ARDS. This is particularly severe at the interface between normal lung units and diseased lung units. Management strategies attempt to limit the amount of stretching, strain and biotrauma generated at these interfaces. Newer concepts in reducing ventilator-induced lung injury include minimising alveolar damage through the reduced transfer of energy to at-risk lung units. Recent focus has moved away from traditional concepts such as barotrauma and volutrauma, towards mechanical and driving power. Driving pressure (the plateau pressure minus PEEP) is one such theory that explores the relationship between reduced energy transfer and improved mortality in perioperative and ARDS patients. Although further research is required, it is a promising field that is supported by both physiological explanations and retrospective data analysis. Mechanical power is a concept that attempts to unify multiple ventilator-related causes of lung injury into a single variable. Ventilator indices such as tidal volume, driving pressure, flow, PEEP and respiratory rate are expressed in an equation that quantifies mechanical power, measured in joules. Initial experimental work has confirmed that with rising power there is a higher likelihood of developing ventilator-induced lung injury (VILI). Driving power and mechanical power are increasingly being suggested as new targets in ventilator strategies aimed at reducing VILI. A detailed discussion is beyond the scope of this review, but further reading is advised in this area.

(a) FiO2: The majority of evidence from ICU patients now recommends targeting an FiO2 resulting in a SpO2 of between 88 and 95%. Additional research is needed to determine the net benefits related to potential lung toxicity caused by unnecessarily high concentrations of inspired oxygen (such as diffuse alveolar damage, direct airway injury, increasing dead space), and the potential benefits on neurocognitive outcomes when targeting normoxaemia.

(b) Positive end expiratory pressure (PEEP): Selecting the ideal PEEP is challenging. PEEP maintains open alveolar units, and potentially avoids repeated opening and closing of alveoli and interfaces between collapsed and open units. This minimises shear forces and biotrauma experienced in an unevenly atelectatic lung. However, in heterogeneously affected lungs, where PEEP may be beneficial in some lung units, excessive PEEP may result in overdistension. It may be reasonable to apply a PEEP of 10 cmH2O at the start of ventilation.

(c) Tidal volumes (TV): Increasing data support low tidal volume ventilation in patients with established ARDS. Despite a lack of randomised control trials showing a related decrease in postoperative pulmonary complications, low tidal volumes are likely to reduce the shear stresses imposed byIPPV within diseased lung regions, and this approach has the potential to improve outcomes. Increasing importance is being placed on the measurement and control of the driving pressure (ratio between tidal volume and compliance, or plateau pressure minus PEEP). Tidal volumes of 6–8 ml/kg (importantly, ideal ventilatory body weight) should be targeted, with a low plateau pressure (< 13 cm H2O). Tidal volumes of 4–5 ml/kg or less should be targeted for one lung ventilation. If achieving ventilator targets described above does not allow normalisation of pCO2, permissive hypercapnia in the absence of raised intracranial pressure or severe right heart failure should be allowed. The physiological benefits of hypercapnia include a rightward shift of the oxygen-haemoglobin dissociation curve, increased cardiac output and an anti-inflammatory action.

(d) Mode of ventilation: The mode of ventilation does not appear to influence ARDS outcomes.

(e) Recruitment manoeuvres: Recruitment manoeuvres are controversial, being recommended by some and avoided by those supporting ‘intraoperative permissive atelectasis’. This new concept suggests recruitment manoeuvres should not be routine, particularly in severe ARDS. Recruitment manoeuvres may also be associated with significant haemodynamic instability due to effects on right ventricular preload and afterload. Recommendations support individualised practice and avoidance of unnecessary attempts to expand lung units and the worsening of biotrauma and atelectrauma. The benefit of recruitment manoeuvres on patient outcome remain inconclusive, and, as a recent publication suggests, may even increase mortality in patients with moderate to severe ARDS.

(f) Fluid management:

(i) Although maintaining adequate tissue perfusion is important, excess intravenous fluid potentially worsens hypoxaemia, as leakage through a dysfunctional endothelial lung barrier increases extravascular lung water. Intravenous fluids should be given judiciously, guided by regular and repeated volume assessments and assessment of fluid responsiveness. Dynamic markers of fluid responsiveness are superior to static markers and should be incorporated in the routine assessment of perioperative patients. Xiaoming et al. demonstrated that a large positive net fluid balance – independent of ventilator settings, plasma transfusions and severity of disease – was a risk factor for ARDS.

(ii) Blood product transfusions (red blood cells, plasma and platelets) have been identified as risk factors for ARDS. In the ICU and when possible in the operating room, a restrictive transfusion strategy with a haemoglobin transfusion trigger of 7 g/dl and target haemoglobin of > 7 g/dl should be used. Transfusion-related acute lung injury has been linked to plasma containing blood products (platelets, fresh frozen plasma). While efforts in the developed world aim to screen for high-risk donors, this is usually not possible in the developing world.

(2) Anaesthetic choices

(a) Inhalational anaesthetics: In animal models, volatile anaesthetic agents protect against the damage caused during ischaemic-reperfusion injury. The benefit may be multifactorial and includes protection against endothelial glycocalyx degradation, ischaemic pre-conditioning,
and even immune-modulating effects (inhibition of pro-inflammatory mediators including IL-8, IL-10, and TNF).64−66

(b) There is little evidence to support one type of anaesthetic over another. Volatile anaesthetic agents do inhibit hypoxic pulmonary vasoconstriction, but carry potential advantages mentioned above. Intravenous agents, such as propofol, may worsen endothelial function when given in overdose, but this requires further research.67

(c) There is little evidence to guide the choice of anaesthesia with a view to reducing the postoperative complications of ARDS. However, a general anaesthetic is likely to be appropriate for most ARDS patients, as management of PEEP and TV generally requires tracheal intubation. There is some evidence supporting the approach of a combined general anaesthetic and neuraxial technique for postoperative analgesia as it has been shown to decrease the incidence of postoperative pneumonia and respiratory failure – potential triggers for ARDS54–56 although the benefits of neuraxial block and postoperative epidural are not universal.69

Table 3: Modalities of therapy investigated for ARDS management

Therapy	Comment
Corticosteroids51−56	Identification of 21 microRNA has suggested steroid-sensitive and steroid-independent mechanisms in the development of ARDS. This may account for different responses to the use of corticosteroids in previous studies.
Inhaled vasodilators34,77	Nitric oxide has vasodilatory effects on pulmonary vasculature, and improves arterial oxygenation, but its use has not demonstrated mortality or significant outcome benefits. Its use is complicated by high costs and increased renal dysfunction.
Muscle relaxants36,78,79	Short-term use of muscle relaxation (up to 48 h) for patients with severe ARDS may reduce mortality risk and reduce ventilator-associated lung injury. This may be mediated by reducing transpulmonary pressures during mechanical ventilation and reducing oxygen consumption, but this strategy requires further investigation.
ECMO80	ECMO has shown promising results in uncontrolled reports of its use in the management of severe ARDS. The role of this expensive therapy in ARDS treatment and in the transport of those with severe ARDS requires further investigation.
Aspirin81	Aspirin may have positive effects on platelets that play an active role in the development of ARDS. The Lung Injury Prevention Study with Aspirin, a phase II trial, did not show any outcome benefit.
Aerosolised beta-2-agonists	These agents have previously been effective in reducing pulmonary oedema by stimulating cyclic adenosine monophosphate-dependent alveolar fluid clearance. Initial studies demonstrated harm in patients with ARDS. However, a recent study showed favourable results with inhaled budesonide and formoterol. Patients had improved oxygenation, lower rates of acute respiratory failure and ARDS. This therapy appears promising.
Keratinocyte growth factor and mesenchymal stem cells	Keratinocyte growth factor (KGF) is expressed by mesenchymal cells and appears to promote cell repair via several mechanisms including stimulating type-2 pneumocyte development, increased surfactant production, DNA repair, and improved alveolar fluid clearance. The effects of KGF may explain the possible benefits of mesenchymal stem cells in ARDS. Researchers are currently investigating the role of intravenous KGF in patients with ARDS, and the immunomodulating role of mesenchymal stem cells.
Surfactant	Surfactant inhibition and degradation is an important contributor to the pathogenesis of ARDS. Although successful in neonates and infants, multiple large trials in adults failed to show improved clinical outcomes, despite reports of transient improvements in oxygenation and lung function. There is a continued search for a better exogenous surfactant replacement therapy.
Beta-blockers	The theoretical benefit of beta-blockers in ARDS involves suppression of the overstimulated sympathetic response that may negatively affect pulmonary vasculature. Some benefit has been demonstrated in a porcine endotoxin shock model; however, further RCTs are required to understand benefit.

Notes: ARDS = acute respiratory distress syndrome, ECMO = extracorporeal membrane oxygenation, DNA = deoxyribonucleic acid.
extravascular lung water extravasation. The authors of a recent review emphasise the importance of ensuring euvoalaemia, without unnecessary use of intravenous fluid administration. Bedside echocardiography, transpulmonary thermodilution, and inotropic support may provide additional monitoring information. Right ventricular ventilation protection strategies include minimising driving pressures, providing PEEP and ensuring adequate oxygenation.

Questions and future developments

Table 3 outlines several potential new strategies based on putative pathophysiological mechanisms for the management of ARDS. None have been shown to provide a definitive clinical benefit.

Prone positioning may benefit oxygenation due to the heterogenous atelectasis and consolidation seen in ARDS. Despite mortality benefit in the PROSEVA and other trials, its use in the perioperative period is unrealistic in most circumstances.

Conclusion

Lung injury is a common pathology facing anaesthesiologists and accounts for significant postoperative pulmonary complications. Pulmonary and systemic complications can possibly be limited with appropriate ventilatory, haemodynamic and preoperative and postoperative critical care management bundles. New research is exploring multiple approaches to preventing and treating ARDS. These include optimisation of mechanical ventilation settings to minimise injury from positive pressure ventilation (pressures and volumes), pathophysiological mechanisms (inflammatory mediation), and supportive care (fluid therapy), and even alternative methods of respiratory support (ECMO).

Summary and learning points

1. Anaesthesiologists can play a potentially important role in preventing ARDS occurring postoperatively by applying preventive strategies, and minimising the complications of mechanical ventilation in patients with ARDS presenting for operation.
2. ARDS management strategies should be implemented throughout the preoperative, intraoperative and postoperative periods.
3. Ventilation goals in patients with ARDS presenting for anaesthesia should include: minimise F_O_2 to maintain SpO_2 above 88%; appropriate PEEP to avoid atelectasis, but sufficient to prevent shear stress; consider lowering PEEP if the driving pressure is high, particularly if increasing PEEP increases driving pressure, or there are other signs of overdistension; maintain low tidal volumes (6 ml/kg ideal body weight); a plateau pressure < 16 cmH$_2$O (maximum 30 cmH$_2$O) and a low ΔP (< 13 cm H$_2$O), even if the resulting low TV requires permissive hypercapnia.
4. Avoid excessive intraoperative transfusion with goal of targeting 7 g/dl in the postoperative ICU period.
5. Volatile anaesthetics may provide a theoretical protective function, despite the negative effects on hypoxic pulmonary vasoconstriction.
6. Haemodynamic stability should be achieved through continuous volume status assessment and judicious inotropic therapy. Utilisation of bedside investigations such as echocardiography, and transpulmonary thermodilution/cardiac output monitoring may provide additional guidance for fluid and vasopressor management.

Disclosure statement — No potential conflict of interest was reported by the authors.

ORCID

Robert Wise [http://orcid.org/0000-0001-5237-5582]
Gavin Joynt [http://orcid.org/0000-0002-5823-3435]
Reitze Rodseth [http://orcid.org/0000-0002-3779-7805]

References

1. Force ADT, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.
2. Emr B, Gatto LA, Roy S, et al. Airway pressure release ventilation prevents ventilator-induced lung injury in normal lungs. JAMA Surg. 2013;148:1005–12. https://doi.org/10.1001/jamasurg.2013.3746
3. Fernandez-Perez ER, Sprung J, Assesa B, et al. Intraoperative ventilator settings and acute lung injury after elective surgery: a nested case control study. Thorax 2009;64:121–7. https://doi.org/10.1136/thx.2008.102228
4. Ware LB, Camerer E, Welty-Wolf K, et al. Bench to bedside: targeting coagulation and fibrinolysis in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2006;291:307–11. https://doi.org/10.1152/ajplung.00157.2006
5. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–49. https://doi.org/10.1056/NEJM20000504343421806
6. Paurakos C, Karanikolas M, Scolletta S, et al. Acute respiratory distress syndrome: pathophysiology and therapeutic options. J Clin Med Res. 2012;4:7–16.
7. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–24. https://doi.org/10.1164/ajrccm.149.3.7509706
8. Voigtgsberger S, Lachmann RA, Leutert AC, et al. Sevoflurane ameliorates gas exchange and attenuates lung damage in experimental lipopolysaccharide-induced lung injury. Anesthesiology. 2009;111:1238–48. https://doi.org/10.1097/ALN.0b013e3181f58f57
9. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–8.
10. Rivers E, Nguyen B, Havstad S, et al. Early Goal-Directed Therapy Collaborative. G. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77. https://doi.org/10.1056/NEJMoa010307
11. Ciesla DJ, Moore EE, Johnson JL, et al. Decreased progression of postinjury lung dysfunction to the acute respiratory distress syndrome and multiple organ failure. Lancet. 2006;367:640–7; discussion 7–8. https://doi.org/10.1016/s0140-6736(06)68615-7
12. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96. https://doi.org/10.1097/01.CCM.0000217961.75225.E9
13. Gajic O, Rana R, Winters JL, et al. Transfusion-related acute lung injury: the Berlin definition. JAMA. 2012;307:2526–33. https://doi.org/10.1001/jama.2012.13730
37

17. Fietter E, Constantin JM, Paugam-Burtz C, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–37. https://doi.org/10.1056/NEJMoa1310182

18. Beiter JL, Schoenfeld DA, Thompson BT. Preventing ARDS: progress, promise, and pitfalls. Chest. 2014;146:1102–13. https://doi.org/10.1378/chest.14-0555

19. Christenson JT, Aeberhard JM, Badel P, et al. Adult respiratory distress syndrome after cardiac surgery. Cardiovasc Surg. 1996;4:115–21. https://doi.org/10.1016/0967-2191(96)83778-1

20. Licker M, de Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97:1558–65. https://doi.org/10.1213/01.ANE.000008799.85495.8A

21. Messent M, Sullivan K, Keogh BF, et al. Adult respiratory distress syndrome following cardiopulmonary bypass: incidence and prediction. Anaesthesia. 1992;47:267–8. https://doi.org/10.1111/ana.1992.47.issue-3

22. Milot J, Perron J, Lacasse Y, et al. Incidence and predictors of ARDS after cardiac surgery. Chest. 2001;119:884–8. https://doi.org/10.1378/chest.119.3.884

23. Alam N, Park BJ, Wilton A, et al. Incidence and risk factors for lung injury after lung cancer resection. Ann Thorac Surg. 2007;84:1085–91; discussion 91. https://doi.org/10.1016/j.jathoracsur.2007.05.053

24. Fernandez-Perez ER, Keegan MT, Brown DR, et al. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14–8. https://doi.org/10.1097/00000542-200607000-00001

25. Sen S, Sen S, Senturk E, et al. Postersurgical lung injury in thoracic surgery pre and intraoperative risk factors: a retrospective clinical study of a hundred forty-three cases. J Cardiothorac Surg. 2010;5:62. https://doi.org/10.1186/1749-8090-5-62

26. Kor DJ, Warner DO, Alsaia A, et al. Derivation and diagnostic accuracy of the surgical lung injury prediction model. Anesthesiology. 2011;115:117–28. https://doi.org/10.1097/ALN.0b013e3182b15839

27. Kor DJ, Lingineni RK, Gajic O, et al. Predicting risk of postoperative lung injury in high-risk surgical patients: a multicenter cohort study. Anesthesiology. 2014;120:1168–81. https://doi.org/10.1097/ALN.0000000000000216

28. Bauman ZM, Gassner MY, Coughlin MA, et al. Lung Injury Prediction Score Is Useful in Predicting Acute Respiratory Distress Syndrome and Mortality in Surgical Critical Care Patients. Crit Care Res Pract. 2015;2015:157408.

29. Gajic O, Dabbagh O, Park PK, et al. Injury trials group: lung injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome: the mechanical power. Intensive Care Med. 2013;39:547–58. https://doi.org/10.1007/s00134-013-3156-1

30. Bass CM, Sajed DR, Adedipe AA, et al. Pulmonary ultrasound and pulse oximetry versus chest radiography and arterial blood gas analysis for the diagnosis of acute respiratory distress syndrome: a pilot study. Crit Care. 2015;19:282. https://doi.org/10.1186/s13054-015-0995-5

31. Umbrello M, Formenti P, Bolgiaghi L, et al. Current Concepts of ARDS: a narrative review. Int J Mol Sci. 2016;18 pii: E64. doi:10.3390/ijms1810064

32. Saraswat V. Effects of anaesthesia techniques and drugs on pulmonary function. Indian J Anaesth. 2015;59:557–64. https://doi.org/10.4103/0019-5049.165850

33. GattinoniL,QuintelM.HowARDSShouldbeTreated.CritCare.2016;20:86. https://doi.org/10.1186/s13054-016-1268-7

34. GattinoniL,TonettiT,CressoniM,et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–75. https://doi.org/10.1007/s00134-016-4505-2

35. Cressoni M, Gotti M, Chiaruzzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124:1100–8. https://doi.org/10.1097/ALN.0000000000001056

36. Tonetti T, Vasques F, Rapetti F, et al. Driving pressure and mechanical power: new targets for VILI prevention. Anesth Analg. 2017;1:286–95. https://doi.org/10.21037/atm

37. Aggarwal NR, Brover RG. Targeting normoxemia in acute respiratory distress syndrome may cause worse short-term outcomes because of oxygen toxicity. Ann Am Thorac Soc. 2014;11:1449–53. https://doi.org/10.1513/AnnalsATS.201407-297PS

38. Guldner A, Kiss T, Serpa Neto A, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology. 2015;123:692–713. https://doi.org/10.1097/01.ANE.0000000000000754

39. Neto AS, Hennes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4:2272–80. https://doi.org/10.1016/S2213-8587(16)30109-X

40. Yang D, Grant MC, Stone A, et al. A Meta-analysis of Intraoperative Ventilation Strategies to Prevent Pulmonary Complications: Is Low Tidal Volume Alone Sufficient to Protect Healthy Lungs? Ann Surg. 2016;263:881–7. https://doi.org/10.1097/SLA.0000000000001443

41. Gattinoni L, Carlesso E, Cairoi P. Stress and strain within the lung. Curr Opin Crit Care. 2012;18:42–7. https://doi.org/10.1097/MCC.0b013e32834f17d9

42. Guay J, Ochroch EA. Intraoperative use of low volume ventilation to decrease postoperative mortality, mechanical ventilation, lengths of stay and lung injury in patients without acute lung injury. Cochrane Database Syst Rev. 2015;CD011151

43. Petrucci N, De Feo C. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev. 2013;CD003844.

44. Wiedemann HP, Arroliga AC. Acute respiratory distress syndrome: low-stretch ventilation improves survival. Cleve Clin J Med. 2000;67:435–40. https://doi.org/10.3949/cjcm.67.6.435

45. Cairoi P. Driving pressure and intraoperative protective ventilation. Lancet Respir Med. 2016;4:243–5. https://doi.org/10.1016/S2213-8587(16)30010-8

46. Chacko B, Peter JV, Tharyan P, et al. Pressure-controlled versus volume-controlled ventilation for acute respiratory failure due to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev. 2015;CD008807.

47. RittayamaiN,KatsiosCM,BeloncileF, etal. Pressure-ControlledvsVolume-Controlled Ventilation in Acute Respiratory Failure: A Physiology-Based Narrative and Systematic Review. Chest. 2015;148:340–55. https://doi.org/10.1378/chest.14-3169

48. Pelosi P, Ball L, de Abreu MG, et al. General Anaesthesia Closes the Lungs: Keep Them Resting. Turk J Anaesth Reanim. 2016;44:163–4. https://doi.org/10.4103/0019-5049.165716

49. Suzumura EA, Figueiro M, Normilio-Silva K, et al. Effects of alveolar recruitment maneuvers on clinical outcomes in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Intensive Care Med. 2014;40:1227–40. https://doi.org/10.1007/s00134-014-3413-6
55. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial I, Cavalcanti AB, Susumu EA, et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2017;318:1335–45.

56. Gosele K, Voigtberger C-A. Grundlagen zur Geräuschminderung bei Wserauslauffahrungen. Stuttgart: Forschungsgemeinschaft Bauen und Wohnen; 1970.

57. Khan H, Belsher J, Yilmaz M, et al. Fresh-frozen plasma and platelet transfusions are associated with development of acute lung injury in critically ill medical patients. Chest. 2007;131:1308–14. https://doi.org/10.1378/chest.06-3048

58. Gajic O, Yilmaz M, Isscimen R, et al. Transfusion from male-only versus female donors in critically ill recipients of high plasma volume components. Crit Care Med. 2007;35:1645–8. https://doi.org/10.1097/01.CCM.0000269036.16398.0D

59. Kleinman S, Grossman B, Kopko P. A national survey of transfusion-related acute lung injury risk reduction policies for platelets and plasma in the United States. Transfusion. 2010;50:1312–21. https://doi.org/10.1111/j.1537-2995.2010.02935.x

60. Fujinaga T, Nakamura T, Fukuse T, et al. Isoflurane inhalation after circulatory arrest protects against warm ischemia reperfusion injury of the lungs. Transplantation. 2006;82:1168–74. https://doi.org/10.1097/01.tp023720.73439.2e

61. DeConno E, Steurer MP, Wittlinger M, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2008;109:1316–23. https://doi.org/10.1097/ALN.0b013e3181a7031

62. Mahmoud K, Ammar A. Immunomodulatory Effects of Anesthetics during Thoracic Surgery. Anesthesiol Res Pract. 2011;2011:37140. doi:10.1155/2011/37140

63. Schilling T, Kozian A, Kretzschmar M, et al. Effects of sevoflurane and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth. 2007;99:368–75. https://doi.org/10.1093/bja/aem184

64. Chen C, Chappell D, Annecke T, et al. Sevoflurane mitigates shedding of hyaluronan from the coronary endothelium, also during ischemia/ reperfusion. Am J Physiol Lung Cell Mol Physiol. 2002;282:L924–40. https://doi.org/10.1152/ajplung.00439.2001

65. Kolarova H, Ambrozova B, Svilhalkova Siverlova L, et al. Modulation of endothelial glyocalyx structure under inflammatory conditions. Mediators Inflamm. 2014;2014:694312. doi:10.1155/2014/694312

66. Lin M, Lin C, Li C, et al. Anesthetic propofol overdose causes vascular hyperpermeability by reducing endothelial glyocalyx and ATP production. Int J Mol Sci. 2015 Jun;16:12092–107. https://doi.org/10.3390/ijms160612092

67. Kelkar KV. Postoperative pulmonary complications after non-cardiothoracic surgery. Indian J Anaesth. 2015;59:599–605. https://doi.org/10.4103/0019-5049.165857

68. Leslie K, McIlroy D, Kasza J, et al. Neuraxial block and postoperative epidural analgesia: effects on outcomes in the POISE-2 trial/dagger. Br J Anaesth. 2016;116:100–12. https://doi.org/10.1093/bja/aew255

69. Lohse E, Voigtberger S. Handwerk, Privatindustrie und Aufbau des Sozialismus; Ein Beitrag zur sozialistischen Umgestaltung des Handwerks und des privatkapitalistischen Industrie in der DDR. Berlin: Deutscher Zentralverlag; 1959.

70. Bernard GR, Luce JM, Sprung CL, et al. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med. 1987;317:1565–70. https://doi.org/10.1056/NEJM198712173171204

71. Foster PS, Plank M, Collison A, et al. Emerging role of microRNAs in regulating immune and inflammatory responses in the lung. Immunol Rev. 2013;253:198–215. https://doi.org/10.1111/imr.2013.253.issue-1

72. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24. https://doi.org/10.1038/nrm3838

73. Meduri GU, Headley AS, Golden E, et al. Effect of prolonged Methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1998;280:159–65. https://doi.org/10.1001/jama.280.2.159

74. Narute P, Seam N, Tropea M, et al. Temporal changes in microrna expression in blood leukocytes from patients with the acute respiratory distress syndrome. Shock. 2016;47(6):688–695. https://doi.org/10.1097/SHK.0000000000000806

75. Steinberg KP, Hudson LD, Goodman RB, et al. Blood institute acute respiratory distress syndrome clinical trials N. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354:1671–84.

76. Adhikari NK, Dellinger RP, Lundin S, et al. Inhaled nitric oxide does not reduce mortality in patients with acute respiratory distress syndrome regardless of severity: systematic review and meta-analysis. Crit Care Med. 2014;42:404–12. https://doi.org/10.1097/CCM.00003387.3182a799

77. Hraiech S, Yoshida T, Papazian L. Balancing neuromuscular blockade versus preserved muscle activity. Curr Opin Crit Care. 2015;21:26–33. https://doi.org/10.1097/MCC.0000000000000175

78. Neto AS, Pereira VG, Esposito DC, et al. Neuraxial blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials. Ann Intensive Care. 2012;2:33. https://doi.org/10.1186/2110-5820-2-33

79. AokaTe, Palmer K, Ichibash, et al. Extracorporeal membrane oxygenation for acute respiratory distress syndrome. J Intensive Care. 2015;3:17. https://doi.org/10.1186/s40560-015-0082-7

80. Kor DI, Carter RE, Park PK, et al. Injury Trials Group: Lung Injury Prevention with Aspirin Study G. Effect of Aspirin on Development of ARDS in At-Risk Patients Presenting to the Emergency Department: The LIPS-A Randomized Clinical Trial. JAMA. 2016;315:2406–14. https://doi.org/10.1001/jama.2016.6330

81. Gao S, Smith F, Perkins GD, Gates S, et al. Lamb SE, investigators B-S. Effect of intravenous beta-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet. 2012;379:229–35. https://doi.org/10.1016/S0140-6736(11)61623-1

82. Perkins GD, Gates S, Park D, et al. Collaborators BP-A. The beta agonist lung injury trial prevention. A randomized controlled trial. Am J Respir Crit Care Med. 2014;189:674–83. https://doi.org/10.1164/rccm.201310-1549OC

83. Matthy M, Brower R, Carson S, et al. National heart L, and Blood Institute Acute Respiratory Distress Syndrome (ARDS), Network CT. Randomized, placebo-controlled clinical trial of an aerosolized b2 agonist for treatment of acute lung injury. Am J Respir Crit Care Med. 2011;184:561–8.

84. Festic E, Carr GE, Cartin-Ceba R, et al. Randomized clinical trial of a combination of an inhaled corticosteroid and beta agonist in patients at risk of developing the acute respiratory distress syndrome. Crit Care Med. 2017;45:798–805. https://doi.org/10.1097/CCM.0000000000002284

85. Ware LB, Matthay MA. Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. Am J Physiol Lung Cell Mol Physiol. 2002;282:L924–40. https://doi.org/10.1152/ajplung.00439.2001

86. Shyamsundar M, McAuley DF, Ingram RJ, et al. Keratinocyte growth factor promotes epithelial survival and resolution in a human model of lung injury. Am J Respir Crit Care Med. 2014;189:1520–9. https://doi.org/10.1164/rccm.201310-1892OC

87. Fanelli V, Vlachou A, Ghanadian S, et al. Acute respiratory distress syndrome: new definition, current and future therapeutic options. J Thorac Dis. 2013;5:326–34.

88. Dushianthan A, Cusack R, Grocott M, et al. Exogenous surfactant therapy in acute lung injury/acute respiratory distress syndrome: the need for a revised paradigm approach. J Cardiothorac Vasc Anesth. 2012;26:e50. https://doi.org/10.1053/j.jvca.2012.03.008
91. Coppola S, Froio S, Chiumello D. beta-blockers in critically ill patients: from physiology to clinical evidence. Crit Care. 2015;19:119. https://doi.org/10.1186/s13054-015-0803-2
92. Aboab J, Sebille V, Jourdain M, et al. Effects of esmolol on systemic and pulmonary hemodynamics and on oxygenation in pigs with hypodynamic endotoxin shock. Intensive Care Med. 2011;37:1344–51. https://doi.org/10.1007/s00134-011-2236-y
93. Henderson WR, Griesdale DE, Dominelli P, et al. Does prone positioning improve oxygenation and reduce mortality in patients with acute respiratory distress syndrome? Can Respir J. 2014;21:213–5. https://doi.org/10.1155/2014/472136

Received: 05-12-2017 Accepted: 05-03-2018