Spin-polarized superconductivity: order parameter topology, current dissipation, and double-period Josephson effect

Eyal Cornfeld,1 Mark S. Rudner,2 and Erez Berg1

1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100 01, Israel
2Niels Bohr International Academy and Center for Quantum Devices, University of Copenhagen, 2100 Copenhagen, Denmark

We discuss transport properties of fully spin-polarized triplet superconductors, where only electrons of one spin component (along a certain axis) are paired. Due to the structure of the order parameter space, wherein phase and spin rotations are intertwined, a configuration where the superconducting phase winds by $4\pi$ in space is topologically equivalent to a configuration with no phase winding. This opens the possibility of supercurrent relaxation by a smooth deformation of the order parameter, where the order parameter remains non-zero at any point in space throughout the entire process. During the process, a spin texture is formed. We discuss the conditions for such processes to occur and their physical consequences. In particular, we show that when a voltage is applied, they lead to an unusual alternating-current Josephson effect with double the usual period. These conclusions are substantiated in a simple time-dependent Ginzburg-Landau model for the dynamics of the order parameter. Our analysis is potentially applicable to twisted double-bilayer graphene, where evidence for triplet superconductivity in proximity to ferromagnetism was recently discovered.

I. INTRODUCTION

Two-dimensional moiré materials, such as twisted bilayer graphene (TBG) heterostructures based on other two-dimensional van der Waals materials, have recently emerged as a fertile ground for novel many-body phenomena [1–22]. In particular, recent experiments in twisted double bilayer graphene (TDBG) with a perpendicular electric field revealed a ferromagnetic ground state at half filling of the moiré lattice [23, 24]. Upon changing the density away from half filling, evidence for superconductivity was found [23, 25]. Most strikingly, the superconducting onset temperature increases linearly as a function of an in-plane magnetic field for small fields, a clear indication for triplet superconductivity [23, 26–30]. Moreover, since the superconductor (SC) emerges from a ferromagnetic state, it is natural to expect that the spin polarization persists into the superconducting state [31].

These remarkable findings motivate us to reexamine the physics of triplet SCs in systems with negligible spin-orbit coupling. We focus on a particular state which is natural for TDBG: a fully spin-polarized triplet superconductor, in which only electrons of one spin component (along a spontaneously chosen quantization axis) are paired. This phase is analogous to the $A_1$ and $\beta$ phases discussed in the context of superfluid $^3$He [32–34]. The order parameter of such a superconductor is specified by the spin direction of the condensate and its phase; topologically, the order parameter space is equivalent to the space of three-dimensional rotation matrices, $SO(3)$ [35]; see Fig. 1(b). This property crucially determines the topology of the order parameter space, and hence the ability of the superconductor to carry stable supercurrents.

In a ring geometry, the superconducting phase of an ordinary (e.g., singlet) superconductor can wind any integer number of times around the hole of the ring. Mathematically, this is expressed by the homotopy group $\pi_1[U(1)] = \mathbb{Z}$. Changing the winding number requires

![Fig. 1](image-url)
creating a topological defect at which the magnitude of the order parameter is suppressed to zero, such as a phase slip or a vortex [36, 37]. Since such defects are energetically suppressed, a configuration with a non-zero winding number (corresponding to a supercurrent) is metastable and may persist over a very long time.

In contrast, the homotopy group the order parameter of a fully spin-polarized triplet SC on a ring is $\pi_1[SO(3)] = \mathbb{Z}_2$. Physically, this means that in such a SC, two vortices can always annihilate each other, regardless of their vorticity. A configuration in which the SC phase winds twice, either around a point or in a ring geometry, can be “untwisted” back to a uniform configuration continuously, without diminishing the magnitude of the order parameter at any location. The untwisting process involves a temporary change in the system’s magnetization; thus, the timescale for this process to occur depends on the coupling of the SC condensate to either an intrinsic or extrinsic bath with which it can exchange spin angular momentum.

The purpose of this work is to explore the unusual transport properties of fully spin-polarized triplet SCs that result from the topology of their order parameter space. We find that in such SCs, a supercurrent-carrying state is much more fragile than in an ordinary SC. The current critical density, $J_c$, that the system can sustain in a metastable state scales inversely with the system size along the current direction, and depends on both the spin and phase stiffnesses. A small voltage applied across the superconductor results in a time-dependent current with a direct-current (DC) component of magnitude close to this critical current, and an alternating-current (AC) component with a fundamental frequency $\omega_J = eV/h$, i.e., half of the usual Josephson frequency across a SC weak link; see Fig. 1(c). This doubled periodicity is directly related to the $\mathbb{Z}_2$ topological structure of the order parameter space.

We demonstrate these phenomena within a time-dependent Ginzburg-Landau model, where we assume that the system is coupled to a bath with which it can exchange both energy and spin angular momentum. For currents larger than the current critical density mentioned above, $J_c$, the model provides a prediction for the current–voltage relation: $V \propto (J - J_c)^2$, up to logarithmic corrections, where $J$ is the DC component of the current. When an external Zeeman field is applied (e.g., an in-plane magnetic field in a two-dimensional system), it pins the direction of the spin magnetization, and the properties of the system rapidly cross over to those of an ordinary superconductor. We hope that these predictions will provide guidance to experiments in novel exotic superconductors, such as TDBG, where they can be used to confirm or invalidate the existence of a fully spin-polarized triplet SC.

This paper is organized as follows. In Sec. II we review the properties of a fully-spin polarized SC, its distinction from other triplet SC phases, and the topology of its order parameter space. We then describe the physical picture and summarize the main results of the paper. Sec. III describes the Ginzburg-Landau (GL) model. In Sec. IV we study the energy landscape of the model, either with or without an applied Zeeman field, deriving the maximum supercurrent the system can carry in a metastable state. Sec. V introduces a time-dependent extension of the GL model. This model allows us to study dynamic phenomena, such as the properties of the system in the presence of a finite applied voltage. The results are discussed in Sec. VI. The Appendices contain technical details of the solution of the time-dependent Ginzburg-Landau (TDGL) equations.

II. PHYSICAL PICTURE & MAIN RESULTS

In order to gain physical intuition of spin-polarized triplet superconductivity, we begin with a short review of the relevant order parameters. Those who are already familiar with this material may opt to skip to the results which are presented in Sec. II B.

A. Review of triplet superconductivity and application to TDBG

I. Order parameter

The order parameter of a triplet SC can be represented in terms of the so-called $d$-vector, which is a complex vector defined as $d_k = \langle \psi^+_k i \sigma_2 \sigma \psi^-_{-k} \rangle$, where $\psi^+_k = (\psi_{k,\uparrow}^+, \psi_{k,\downarrow}^+)$, and the Pauli matrices $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ act on the spin degrees of freedom ($\uparrow, \downarrow$). The Pauli principle forces $d_k = -d_{-k}$.

The existence of multiple valleys in systems such as TDBG enables the possibility of a valley-singlet state which does not require the order parameter to be momentum dependent within each valley. In the context of TDBG, we denote creation operators of electrons at the $K_+$ and $K_-$ valleys by the two-component spinors $\psi^+_\uparrow = (\psi^+_{\uparrow,\downarrow}, \psi^+_{\downarrow,\uparrow})$ and $\psi^+_\downarrow = (\psi^+_{\downarrow,\uparrow}, \psi^+_{\uparrow,\downarrow})$, respectively. An inter-valley, valley-singlet superconducting order parameter corresponds to

$$d = \langle \psi^+_\uparrow i \sigma_2 \sigma \psi^+_{\downarrow} \rangle,$$

where $d$ is independent of momentum within each valley. For simplicity, we will focus on this type of state henceforth.

The $d$-vector may be conveniently described using two real vectors $d^{(1,2)}$,

$$d = d^{(1)} + id^{(2)},$$

We define the pairing polarization $m$ and superfluid density $\rho$ as

$$m = \frac{1}{2i} d^* \times d = d^{(1)} \times d^{(2)}, \quad \rho = d^* \cdot d,$$
FIG. 2. Continuous trajectory for supercurrent relaxation. We present the trajectory of Eq. (30) relaxing a supercurrent of $J = 2J_0$ at $t = 0$ to a supercurrent of $J = 0$ at $t = \tau$. The order parameter components, $d^{(1)}$ and $d^{(2)}$, are depicted by the red and blue arrows, the gray arrows depict the pairing polarization, $m$; see Fig. 1(b).

see Fig. 1(b). At temperatures far below the mean-field superconducting phase transition, we may treat the problem within the London limit where the magnitude of the order parameter is essentially fixed,

$$d^* \cdot d = 2d_0^2. \quad (4)$$

Note that the pairing polarization $m$ arises from the anomalous expectation value $d$ in Eq. (1). At equilibrium, the pairing polarization is coupled to the physical magnetization (spin polarization) density, and proportional to it. This relation also holds for slowly varying magnetization textures. Thus, below we will discuss the behavior of the pairing polarization interchangeably with that of the magnetization density.

2. Symmetry classification of valley-singlet states

Triplet superconducting phases have been studied in great detail in the context of superfluid $^3$He; see Refs. 32 and 34 for a review. These works naturally focused on $p$-wave phases. However, as discussed above, in materials such as TDBG there is a possibility of a valley-singlet phase. Nevertheless, a similar symmetry classification of the possible phases can be carried out.

Neglecting spin-orbit coupling, the free energy of the system is invariant under transformations in the $SO(3)_S$ group of global spin rotations and in the group of $U(1)_\phi$ gauge transformations. We thus distinguish three distinct triplet phases, according to their patterns of broken symmetries:

(i) Non-spin-polarized, unitary spin nematic phase. In this phase, the pairing polarization vanishes, $m = 0$, corresponding to $d^{(1)} || d^{(2)}$. The symmetry is reduced to the group of $SO(2)_S$ spin rotations around a preferred direction and the $[Z_2]_{S+\phi}$ operation of a simultaneous $\pi$ spin rotation around an axis perpendicular to $d_{1,2}$ and a $\pi$ gauge transformation. The order parameter degeneracy space is given by

$$SO(3)_S \times U(1)_{\phi} \times [Z_2]_{S+\phi} = [S^2/Z_2]_S \times U(1)_{\phi}. \quad (5)$$

This phase has the same pattern of spin and gauge symmetry breaking as the A and B$_2$ phases of $^3$He [32, 33]. We note, however, that the phases of $^3$He differ by the breaking of orbital symmetry which is absent for the valley-singlet phase described here.

(ii) Fully spin-polarized non-unitary triplet. In this phase $d \cdot d = 0$, corresponding to $d^{(1)} \perp d^{(2)}$ and $|d^{(1)}| = |d^{(2)}|$. The condition $d \cdot d = 0$ can be interpreted as the vanishing of a charge $4e$ scalar order parameter $\Delta_{4e} = d \cdot d$. The symmetry is reduced to that of $U(1)_{S+\phi}$ rotations around the pairing polarization direction, $m$, matched with gauge transformations by the same phase. The order parameter degeneracy space is given by

$$SO(3)_S \times U(1)_{\phi} \times [Z_2]_{S+\phi} = SO(3)_{S+\phi}. \quad (6)$$

This situation is similar to the A$_1$ and $\beta$ phases of $^3$He [32, 33], up to orbital symmetries (see above).

(iii) Partially spin-polarized non-unitary triplet. In this phase neither $m$ nor $\Delta_{4e}$ vanish. The symmetry...
is completely broken and the degeneracy space is given by
\[ SO(3)_S \times U(1)_\phi. \]  
(7)

This situation is similar to the B and A2 phases of \(^3\)He [32, 33], up to orbital symmetries (see above).

Recent theoretical works [26, 27] have pointed out that the order parameter of TDBG might be in a fully spin-polarized state, at least in a part of the phase diagram. Motivated by this possibility, together with a fundamental interest in the novel properties that we uncover below, in the remainder of this work we will focus on the properties of fully spin-polarized triplet SCs [phase (ii) above].

\[ \pi_1[SO(3)] = Z_2, \]
(8)

has important consequences for the stability of the supercurrent. Specifically, consider an initial current-carrying configuration with a constant pairing polarization, and a certain number \( n \) of windings of the superconducting phase across the system. A continuous relaxation event, such as the one illustrated in Fig. 2, can reduce the phase winding to \( n - 2 \). The unwinding event may involve a finite free energy barrier, which depends on the initial number of windings, \( n \), on the ratio between the phase and pairing polarization stiffnesses, and on the applied Zeeman field. The barrier originates from the fact that the unwinding process involves twisting the pairing polarization in space and changing its average direction.

We analyze the energy landscape of the continuous unwinding process in Sec. IV. The result is that the energy barrier vanishes above a certain current density, which we define as the critical current \( J_c \). The critical current has two contributions,

\[ J_c \sim J_{c,\text{micro}} + J_{c,\text{macro}}, \]
(9)

where \( \mu \) is the magnetic moment density in the material, \( L_x \) is the length of the sample along the current direction, and \( B \) is the applied Zeeman field. Here, \( c \) is some non-universal constant which is nevertheless limited to the range \( 1 \leq c \leq 2 \). Intuitively, in the absence of a Zeeman field, we find only a mesoscopic contribution that scales inversely with system size, corresponding to a finite (fixed) number of windings. On the contrary, the presence of a Zeeman field acts to lock the pairing polarization, increasing the critical current. For a large enough Zeeman field, \( J_c \) exceeds the intrinsic (microscopic) critical current density; continuous unwinding events then become irrelevant, and the system behaves as an ordinary SC.

A direct physical manifestation of the order parameter topology can be observed when a voltage is applied across a fully spin-polarized SC [Fig. 1(a)]. The voltage causes the superconducting phase at the right lead to wind relative to the phase at the left lead, at a constant rate \( \omega_j = 2eV/h \). Once the phase difference across the system has increased by \( 4\pi \), there is no topological obstruction to continuously “unwind” the phase twist, relaxing the supercurrent. After the unwinding event, the phase difference (and hence the supercurrent) starts growing linearly in time again. Assuming that the dissipation rate is large compared to the Josephson frequency (a condition to be discussed further in Sec. VI C), we find that the current undergoes periodic oscillations with frequency \( \tilde{\omega}_j = eV/h \), i.e., half of the ordinary AC Josephson frequency [see Fig. 1(c)]. This is one of our main results. We substantiate it by solving a time-dependent Ginzburg-Landau model in Sec. V.

\section{Ginzburg-Landau model}

\subsection{Complex vector description}

The starting point of our analysis of a spin-polarized triplet SC is most generic gauge-invariant form of the of the free energy, expanded in long wavelengths up to second order in derivatives, as a function of the complex d-vector order parameter:

\begin{align*}
F[\mathbf{d}] = \int d^2r & \left\{ \frac{\kappa_d}{2d_0^2} |(\nabla - iq\mathbf{A})\mathbf{d}|^2 + \frac{\kappa_m}{2d_0^4} (\nabla(\frac{1}{2}\mathbf{d}^* \times \mathbf{d}))^2 \\
& - \frac{\mu}{d_0^2} \mathbf{B} \cdot (\frac{1}{2}\mathbf{d}^* \times \mathbf{d}) + U(\mathbf{d}) \right\}. 
\end{align*}

(10)

Here, \( \kappa_d \) is a generalized phase stiffness, \( \kappa_m \) is the excess spin stiffness, \( \mathbf{B} \) is the applied Zeeman field, \( \mu \) is the magnetic moment density, and the potential \( U(\mathbf{d}) \) can be any gauge-invariant function [39]. In order for the free energy to be bounded from below, the generalized phase stiffness, \( \kappa_d \), and the excess spin stiffness, \( \kappa_m \), must satisfy \( \kappa_d \geq 0 \) and \( \kappa_m \geq -\kappa_d \). We have opted for the Weyl gauge, i.e., zero electric scalar potential, \( \phi = 0 \), such that the system is coupled to the magnetic vector potential \( \mathbf{A} \); for generality we keep the charge, \( q \), generic (in electronic SCs \( q = -2e \)).

For the purpose of studying dynamics, we postulate the following Poisson bracket between the components of \( \mathbf{d} \):

\[ \{d_i(\mathbf{r}), d_j(\mathbf{r}')\} = 2i\delta_{ij}\delta(\mathbf{r} - \mathbf{r}'). \]

(11)
These give rise to the following relations:

\[
\begin{align*}
\{m_i(r), m_j(r')\} &= \varepsilon_{ijk}m_k(r)\delta(r - r'), \\
\{d_i(r), m_j(r')\} &= \varepsilon_{ijk}d_k(r)\delta(r - r'), \\
\{d_i(r), \rho(r')\} &= -2id_i(r)\delta(r - r'),
\end{align*}
\]

(12)

consistent with \(m\) and \(\rho\) being the generators of spin rotations and gauge transformations, respectively.

The supercurrent density is given by

\[
J = -\frac{\delta F}{\delta A} = q\kappa_d \mathbf{d}^* \cdot \nabla \mathbf{d} - \mathbf{d} \cdot \nabla \mathbf{d}^* - q^2\kappa_d^2 \frac{\mathbf{d}^* \cdot \mathbf{d}}{d_0^2} \mathbf{A}. 
\]

(13)

### IV. ENERGY LANDSCAPE

We now consider the energetics of the continuous unwinding process for supercurrent relaxation. In general, a supercurrent carrying configuration would be energetically less favorable than a configuration with a smaller supercurrent. This less favorable configuration may be either a metastable or an unstable state. As long as the higher-energy configuration is metastable, either thermally activated or quantum tunneling events would act to relax the current; however, such processes are expected to be exponentially suppressed. Therefore, as the supercurrent gradually increases (e.g., in response to an applied DC voltage; see Fig. 1), the system should stabilize on a value of the current close to its lowest unstable state.

#### A. Linear stability

We seek the lowest possible supercurrent for which a supercurrent carrying state ceases to be metastable (i.e., where an instability develops).

Without loss of generality we set \(B = B\hat{z}\). In the presence of this Zeeman field, the system always has as a fixed point, \(\delta F/\delta \mathbf{d} = 0\), where the d-vector exhibits a uniform configuration described by

\[
\mathbf{d}_0 = (1, i, 0)d_0. 
\]

(19)

This configuration may be set to carry arbitrarily high currents by applying a vector potential \(A = -\frac{1}{2\pi^2\kappa_d}J\); see Eq. (13). In search of an instability, we study small deviations, \(\mathbf{d} = \mathbf{d}_0 + \delta \mathbf{d}\), from the configuration \(\mathbf{d}_0\) in Eq. (19), with

\[
\begin{align*}
\delta \mathbf{d}^{(1)}/d_0 &= (-\frac{1}{2}(\eta_2^2 + \eta_3^2), \eta_3, -\eta_2), \\
\delta \mathbf{d}^{(2)}/d_0 &= (-\eta_3, -\frac{1}{2}(\eta_1^2 + \eta_3^2), \eta_1), \\
\delta (\mathbf{d}^{(1)} \times \mathbf{d}^{(2)})/d_0 &= (\eta_2, -\eta_1, -\frac{1}{2}(\eta_1^2 + \eta_2^2)), 
\end{align*}
\]

(20)

where \(\eta = (\eta_1, \eta_2, \eta_3)\) is real, and \(|\eta| \ll 1\). Here we have taken the most general deviation respecting the fully spin-polarized \(SO(3)\) structure, \(\mathbf{d}^* \cdot \mathbf{d} = 2d_0^2\), and \(\mathbf{d} \cdot \mathbf{d} = 0\), up to second order in \(\eta\). Expanding the free energy to second order in the deviation \(\eta\) yields

\[
\delta F[\eta] = \int d^2r \left\{ \frac{\kappa_m + \kappa_d}{2} \left[ (\nabla \eta_1)^2 + (\nabla \eta_2)^2 \right] + \kappa_d(\nabla \eta_3)^2 - \frac{1}{2\eta} \mathbf{J} \cdot (\nabla \mathbf{d}) + \frac{\mu B}{2}(\eta_1^2 + \eta_2^2) \right\},
\]

(22)

When considering a system on a cylinder of height \(L_y\) and circumference \(L_x\) with a current \(\mathbf{J} = J\hat{x}\), one immediately finds the least stable direction (defined with respect to the curvature of \(\delta F\) in configuration space to be

\[
\eta = (\eta \cos \frac{2\pi x}{L_x}, \eta \sin \frac{2\pi x}{L_x}, 0).
\]

(23)
For a deviation of this form, the corresponding change of the free energy is given by
\[ \delta F[\eta] = \frac{L_x L_y n^2}{2} \left[ (\kappa_m + \kappa_d) \left( \frac{\eta}{\pi} \right)^2 - \frac{1}{\eta} J \frac{L_x}{\pi} + \mu B \right]. \tag{24} \]

We thus find the critical current for the onset of instability, \( J_{c1} \), as the value of \( J \) for which the curvature of the quadratic dependence of \( \delta F \) on \( \eta \) becomes negative:
\[ J_{c1} = \frac{2\pi q(\kappa_m + \kappa_d)}{L_x} + \frac{qL_x \mu B}{2\pi}. \tag{25} \]

For \( J \geq J_{c1} \), the uniform pairing-polarization fixed-point configuration in Eq. (19) becomes a saddle point, and a spontaneous polarization texture should form. Nevertheless, this does not guaranty the existence of a trajectory in configuration space which connects the system to a new stable fixed-point without traversing an energy barrier. In the next section we thus estimate the possible energy barriers and seek out these trajectories.

**B. Unwinding trajectories and energy barriers**

We move on to estimate the free energy barrier for relaxing two windings of the superconducting phase continuously, as allowed by the topology of the order parameter [Eq. (8)].

This is easiest to describe using the unitary matrix presentation and by taking the gauge of \( A \) = 0. In this presentation, a uniform persistent supercurrent carrying state is given by
\[ u(r) = u_0 e^{i\sigma_3 \frac{x}{\pi \sigma_d}}. \tag{26} \]

As before, we keep the cylindrical geometry, whereby the order parameter, \( d \), has periodic boundary conditions along \( x \), which force either periodic or anti-periodic boundary conditions for \( u \). These correspond to the two \( Z_2 \) classes of maps from the cylinder to the order parameter space [see Eq. (8) and discussion in Sec. III B]. As a consequence, the supercurrent is quantized to \( J = J_0 n \), where \( n \in \mathbb{Z} \) and
\[ J_0 = \frac{4\pi q\kappa_d}{L_x} \tag{27} \]

is the fundamental current; this configuration is overlaid in Fig. 1(a).

From the \( Z_2 \) order parameter topology we know there exist trajectories \( u(r, t) \) with \( n \) windings at \( t = 0 \) and \( n - 2 \) windings at some later time \( t = \tau \), in which the order parameter magnitude remains constant throughout the deformation. Among these, we seek the trajectory with the minimal energy barrier.

We keep \( B = B\hat{z} \), and look for trajectories with uniform pairing polarization \( m = 0 \hat{z} \) at initial and final times \( t = 0 \) and \( t = \tau \), respectively:
\[ u(r, t = 0) = e^{i\pi \sigma_3 n \frac{x}{\pi \sigma_d}}, \tag{28} \]
\[ u(r, t = \tau) = e^{i\pi \sigma_3 (n - 2) \frac{x}{\pi \sigma_d}}. \tag{29} \]

We study the following variational family of trajectories \( u(r, s_1, s_2) \), which connect these initial and final states, and parametrically depend on time via \( s_1, s_2(t = 0) = 0 \) and \( s_1, s_2(t = \tau) = 1 \):
\[ u(r, s_1, s_2) = e^{-i\frac{2\pi}{L_x} s_1 \sigma_2} e^{i\pi \sigma_3 \frac{x}{\pi \sigma_d}} e^{i\frac{2\pi}{L_x} s_1} e^{i\pi \sigma_3 (n - 1) \frac{x}{\pi \sigma_d}}. \tag{30} \]

Comparing Eqs. (28)-(30) with Eq. (26), it is evident that this trajectory connects a supercurrent-carrying state with \( n \) windings to a state with \( n - 2 \) windings. For example, the trajectory \( s_1 = t/\tau, s_2 = 0 \) is shown in Fig. 2.

By inserting the ansatz for \( u(r, t) \) in Eq. (30) into Eq. (18), one finds that the variation of \( s_1 \) (for \( s_2 \) held fixed at 0) acts to dissipate the current but flips the pairing polarization relative to its initial orientation parallel to the external field. The variation of \( s_2 \) acts to re-align the pairing polarization. An upper bound on the free energy barrier can be obtained by considering an example trajectory where \( s_1 \) rises from 0 to 1 strictly before \( s_2 \) does so. Such a trajectory has the appealing property that the free energy density is spatially homogeneous, and is given by
\[ \frac{1}{L_x L_y} F[u(r, s_1, 0)] = -\mu B \cos(\pi s_1) + \frac{4\pi^2}{L_x^2} \left[ \kappa_m n^2 + (\kappa_m - \kappa_d (4n - 3) + (\kappa_m - \kappa_d) \cos(\pi s_1)) \sin^2(\frac{\pi s_1}{2}) \right], \]
\[ \frac{1}{L_x L_y} F[u(r, 1, s_2)] = \mu B \cos(\pi s_2) + \frac{4\pi^2}{L_x^2} \kappa_d (n - 2)^2. \tag{31} \]

We find a simple expression for the maximal energy barrier \( \Delta F[u] \) along this trajectory:
\[ \Delta F[u] \overset{\text{def}}{=} \max_{t \in [0, \tau]} [F[u(r, t, 0)] - F[u(r, t = 0)] = \begin{cases} 0, & 2\pi^2 L_y \left( \frac{L_x^2 \mu B}{2\pi \kappa_d} + \kappa_m - (2n - 1) \kappa_d \right)^2 \leq 2n - 1, \\ \frac{\kappa_m + \frac{L_x^2 \mu B}{2\pi \kappa_d}}{2\pi \kappa_d}, & 2\pi^2 L_y \left( \frac{L_x^2 \mu B}{2\pi \kappa_d} + \kappa_m - \kappa_d \right) > 2n - 1. \end{cases} \tag{32} \]

This provides an upper bound on the energy barrier amongst all possible trajectories \( \Delta F \mid_{\text{var}} \). Beyond a certain critical current, denoted \( J_{c2} \), there is no energy barrier for supercurrent relaxation. Through the dependence of the right-hand side of Eq. (32) on the number of windings, \( n \), and the expression for the current [Eq. (18)], our variational calculation yields an upper bound \( J_{c2} \leq J_{c2}^{\text{var}} \) at which the free energy barrier for the continuous unwinding process vanishes:
\[ J_{c2}^{\text{var}} = \frac{2\pi q(\kappa_m + \kappa_d)}{L_x} + \frac{qL_x \mu B}{\pi}. \tag{33} \]

Note that \( J_{c1} \ [\text{Eq. (25)}] \) is in general a lower bound on \( J_{c2} \), and indeed we find that \( J_{c1} \leq J_{c2}^{\text{var}} \). Particularly, for \( B = 0 \) our variational bound is fully saturated and our estimate for \( J_{c2} \) is exact.
In terms of this critical current estimate, $J_{\text{var}}^{c2}$, the free energy barrier in Eq. (32) gives

$$\Delta F \leq \begin{cases} 0 & J \geq J_{\text{var}}^{c2} \\ \frac{\pi L_{x}}{q(J_{\text{var}}^{c2} - J_{0})} (J - J_{\text{var}}^{c2})^2 & J < J_{\text{var}}^{c2}. \end{cases}$$  \hspace{1cm} (34)

For $J < J_{c2}$, current relaxation by continuous unwinding processes is possible, but requires traversing a barrier. In this case, relaxation is expected to be much slower than relaxation for $J \geq J_{c2}$, especially at low temperatures.

\section*{C. Mean supercurrent}

Upon driving the system, e.g., by applying a DC voltage, the system would oscillate back and forth between a current close to the critical current $J \sim J_{c2}$ and the relaxed state with $J \sim J_{c2} - 2J_{0}$; see Fig. 1. Hence, the observable mean current, $\bar{J}$, should be well approximated by

$$\bar{J} \sim \frac{2\pi q(\kappa_{m} - \kappa_{d})}{L_{x}} + c \cdot \frac{qL_{x} \mu B}{2\pi},$$  \hspace{1cm} (35)

where $c$ is limited to the range $1 \leq c \leq 2$. Note, that this estimate only holds for $J_{c2} > J_{0}$, since otherwise, $J_{c2} < |J_{c2} - 2J_{0}|$, and there is no energy gained by dissipating two windings.

As we show in Sec. V, using dynamical simulations, Eq. (30) provides a good approximation for the continuous unwinding trajectories that naturally emerge from the dynamics of the system, and the critical current is indeed given by (35).

\section*{D. Competing mechanisms}

Throughout this analysis, we have assumed that the order parameter is uniform in the $y$ direction. There also exist trajectories where the unwinding process occurs in a “domain wall” whose width in the $y$ direction is smaller than $L_{y}$. The domain wall then propagates along $y$ and unwinds the phase twist in the entire system. However, the optimal width of the domain wall is proportional to $L_{x}$, and thus its formation is only favorable when $L_{y}$ is sufficiently larger than $L_{x}$.

Another competing mechanism for current relaxation is by vortex motion perpendicular to the current direction. As discussed in Sec. VI, we find the continuous unwinding mechanism is dominant at sufficiently low currents and low temperatures.

\section*{V. DYNAMIC TRANSPORT}

So far, we have explored current relaxation from an energetic point of view. In this section, we support the predictions from the analysis of Sec. IV using an unbiased model for the order parameter dynamics that enables the system to explore its configuration space.

\subsection*{A. Time dependent model}

To capture the dynamics of the current relaxation process, we use a Time-Dependent Ginzburg-Landau (TDGL) formulation supplemented by a stochastic noise term [40–42]. Crucially for the continuous unwinding process, we must include a mechanism for the system to exchange magnetization with its environment (relaxing the constraint of angular momentum conservation).

To this end, we assume that the system is coupled to an external spin bath; for further discussion see Sec. VI B.

Within the stochastic TDGL approach, the order parameter evolves according to a Langevin-type equation of motion of the form

$$\frac{\partial d_{ij}^{(\alpha)}}{\partial t} = \varepsilon_{ij}^{\alpha} \frac{\delta F}{\delta d_{ij}^{(\beta)}} - \Gamma g_{ijk}^{*} g_{jk}^{\beta} \frac{\delta F}{\delta d_{ij}^{(\beta)}} + g_{ij}^{a} \zeta_{j}. \hspace{1cm} (36)$$

Here, we have utilized the Einstein summation convention, with $\alpha$, $\beta \in \{1, 2\}$ and $i, j, k \in \{1, 2, 3\}$. The three terms on the right hand side of Eq. (36) are the kinetic (dissipationless) term, the dissipative term, and the source (noise) term, respectively. We take $\zeta \tau$ to be a real Gaussian-distributed stochastic field with zero mean and correlation function

$$\langle \zeta_{i}(r, t) \zeta_{j}(r', t') \rangle = 2k_{B}T \delta_{ij} \delta(r - r') \delta(t - t'). \hspace{1cm} (37)$$

We choose $g_{ijk}^{a} = \varepsilon_{ijk} d_{j}^{*}$, which corresponds to a spin bath acting as a spatiotemporally-fluctuating Zeeman field $\zeta$ that induces precession of the order parameter. The form of Eq. (36) guarantees that the fluctuation-dissipation theorem is satisfied at thermal equilibrium; see Appendix A.

In terms of the complex d-vector, the Langevin equation takes the form

$$\frac{\partial d}{\partial t} = \frac{i}{2} \left( \frac{\delta F}{\delta d} - \frac{1}{d^*} \frac{\delta F}{\delta d^*} \right) d^*$$

$$- \Gamma \left[ (d \cdot d^*) \frac{\delta F}{\delta d^*} + (d \cdot d) \frac{\delta F}{\delta d} \right] + d \times \zeta. \hspace{1cm} (38)$$

As our system is in the fully spin-polarized state, the potential in the free energy [Eq. (10)] must include a polarizing term, $U(d) = \lambda |d \cdot d|^{2} + \ldots$, with large coupling $\lambda$. When taking the limit $\lambda \rightarrow \infty$ we generate the correction to the kinetic term in the first line of Eq. (38).

Importantly, Eq. (38) is manifestly gauge invariant,
and, as constructed, leads to the conservation laws

\[
\frac{\partial (\mathbf{d} \cdot \mathbf{d})}{\partial t} = 0, \tag{39}
\]

\[
\frac{\partial (\mathbf{d}^* \cdot \mathbf{d})}{\partial t}|_{\mathbf{d} = 0} = \frac{1}{i} \left( \mathbf{d}^* \cdot \frac{\delta F}{\delta \mathbf{d}^*} - \mathbf{d} \cdot \frac{\delta F}{\delta \mathbf{d}} \right) = -\nabla \cdot \mathbf{J}. \tag{40}
\]

By design, the pairing polarization \( \mathbf{m} = \frac{1}{2\tau} \mathbf{d}^* \times \mathbf{d} \), which is proportional to the spin magnetization at equilibrium, is not conserved.

### B. Solutions

To compute transport in the system, we consider a cylindrical geometry with circumference \( L_x \) and height \( L_y \), where a current flows due to the presence of an applied electromotive force, equivalent to a DC voltage, \( V \). Within our stochastic model, we thus seek the mean current, \( \langle J(t) \rangle_\zeta \) (averaged over all realizations of the noise, \( \zeta \)), that flows due to a uniform, constant electric field

\[
\mathbf{A}(\mathbf{r}, t) = -Et. \tag{41}
\]

Here, \( \mathbf{E} = V\mathbf{\hat{x}}/L_x \). Since the TDGL equations [Eq. (38)] are nonlinear stochastic partial differential equations, their solutions are cumbersome to write. Therefore, we leave the details of the solution to Appendices B and C and present here the main results.

We study the dependence on the model parameters, i.e., the stiffnesses \( \kappa_d \) and \( \kappa_m \), sample dimensions \( L_x \) and \( L_y \), fluctuation coefficient \( \Gamma \), temperature \( T \), and applied voltage \( V \). We focus on certain analytically tractable limits of physical interest. First, in order to avoid the domain-wall formation discussed in Sec. IV, we keep \( L_y \) sufficiently small compared to \( L_x \). Current relaxation by transverse motion of vortices is neglected, assuming that the temperature is sufficiently low (see discussion in Sec. VI C). Under these conditions, the order parameter may be assumed to be independent of \( y \). Second, for simplicity, we study the case of large fluctuation and dissipation, \( \Gamma \gg d^2 \), such that the kinetic term in Eq. (38) is negligible compared to the dissipation and noise terms. The applied Zeeman field is moreover set to zero. Finally, in order to work in the regime where relaxation occurs through well-separated-in-time individual unwinding events, we focus on low temperatures such that \( k_B T \ll L_y \sqrt{\kappa_d qV/\Gamma} \); see Eq. (B27) in Appendix B.

Below, we present the time dependent solution of the TDGL equations, Eq. (38), as well as the the long-time-averaged mean supercurrent,

\[
\bar{J} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau dt \langle J(t) \rangle_\zeta. \tag{42}
\]

Note that, as the system is self averaging, the long-time averaged current takes the value \( \bar{J} \) for each generic realization, \( \bar{J} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau dt J(t) \).

Our analysis of the continuous supercurrent dissipation mechanism and estimates of the critical supercurrent in Sec. IV enable us to give predictions for the DC transport setup discussed above. Suppose we start from a configuration with a uniform pairing polarization and apply a voltage. As long as this configuration is locally stable, the current rises linearly with time. This proceeds until the current exceeds \( J_c \). Then, the energy barrier for spontaneous dissipation vanishes and a dissipation event would initiate. This process should repeat itself, thus maintaining the average current close to the critical value, \( J_c \), estimated in Eq. (35). At a finite voltage, the current may overshoot the critical value, since the uniform configuration is a saddle point of the free energy (despite being unstable). The escape process is triggered by thermal fluctuations and takes a finite time to occur. The larger the voltage, the more the current overshoots \( J_c \), and hence the average current increases. Hence we anticipate

\[
\bar{J} \simeq J_c + O(V^\beta), \tag{43}
\]

with some exponent \( \beta \).

In the following sections, we present both analytic and numeric results (see Figs. 3 and 4) showing these generic predictions are indeed realized in our specific TDGL model.

#### 1. Energy landscape predictions

1. **Large dissipation limit**

The simplest case to analyze is the case of

\[
\frac{\Gamma \kappa_d}{L_x qV} \to \infty,
\]

where the dissipation rate is large compared with the
FIG. 4. Supercurrent profiles $J(t)$ for infinite dissipation; see Sec. V B 2. The average supercurrent $\bar{J}$ is depicted by the dashed line; the shaded areas depict the deviation from 0 supercurrent. Here, $t_0 = \frac{2\pi}{qV}$ is the Josephson period.

In the generic case of finite dissipation rate, we obtain a power-law relation between the time-averaged current $\bar{J}$ and the applied voltage. We find that

$$\bar{J} - \bar{J}_c \propto q\sqrt{\frac{\kappa_m}{\kappa_d}qV},$$

where $\bar{J}_c = \frac{2\pi q}{L_x} (\kappa_m - \kappa_d)$; see Eq. (35). This result holds for the supercurrent range of $\frac{1}{2}(\kappa_m + 3) - \frac{\bar{J}}{J_0} \gg \frac{L_x}{L_x} \sqrt{\frac{qV}{\kappa_d}}$, and $\bar{J} > |\bar{J}_c|$: see Eq. (B40) in Appendix B. The dependence of $J(V)$ on temperature is (sub-)logarithmic; the power-law dependence on $V$ in Eq. (45) may similarly be modified by logarithmic voltage corrections. Such logarithmic corrections are explicitly presented in the following subsection.

4. Transition point

In the limit of infinite dissipation rate, Eq. (44) displays a non-analytic dependence of $\bar{J}$ on the ratio $\kappa_m/\kappa_d$, with a critical (transition) point at $\kappa_m = \kappa_d$. For finite dissipation rates, the full equations for $\bar{J}$ are somewhat simplified at this transition point. At this point we can obtain a complete solution; we find a characteristic voltage and temperature dependence of the average supercurrent,

$$\bar{J} = q\sqrt{\frac{\kappa_d qV}{\pi T} \ln \left( \frac{8L_y}{k_BT} \sqrt{\frac{\kappa_d qV}{\Gamma}} \right)}.$$  

This result is in excellent agreement with numerical simulations of Eq. (38), as seen in Fig. 3; the details of the simulations are given in Appendix C.

Note that our result for the average current in Eq. (46) naively diverges at $T \to 0$. Although the current exceeds a level where there is no longer an energy barrier for the continuous unwinding process, at $T = 0$ there are no fluctuations to trigger decay within the classical model of Eq. (38). However, at exponentially low temperatures where $\bar{J} \gg J_0$, spontaneous quantum decay process uncaptured by our analysis are expected to dominate the relaxation.

VI. DISCUSSION AND CONCLUSIONS

We end with a discussion of various points regarding the implications of our results in the context of polar-
ized triplet SCs in general, and in TDBG in particular. In the following, we discuss the thermal phase diagram of two-dimensional spin-polarized SCs, possible mechanisms for relaxation of the magnetization (necessary for our topological mechanism for continuous current relaxation), the role of conventional supercurrent relaxation by vortex-antivortex dissociation, and estimated parameters for triplet superconductivity in TDBG. Finally, we point out some topics worthy of future studies.

A. Thermodynamics of 2D spin-polarized superconductors

Throughout our discussion we have assumed that, at equilibrium, our system is essentially long-range ordered, i.e., (d) \( \neq 0 \). This is, of course, never strictly true in two spatial dimensions at any non-zero temperature. In the absence of a Zeeman field and any other breaking of spin rotational symmetry, the system is always in a disordered phase at all \( T > 0 \) [43], in accordance with the Mermin-Wagner theorem. However, the spin correlation length grows rapidly with decreasing temperature, \( \xi \sim e^{2\pi(\kappa_m+\kappa_d)/(k_B T)} \); hence, at sufficiently low temperatures, \( \xi \gg \max(L_x, L_y) \) and our treatment should apply. If \( \kappa_m \) is larger than \( \kappa_d \), there is a finite temperature crossover for finite systems that resembles a Berezinskii-Kosterlitz-Thouless (BKT) transition. In the presence of a Zeeman field that pins the direction of the pairing polarization, the system undergoes a genuine finite-temperature BKT transition.

We note in passing that, in contrast to a fully polarized triplet SC [phase (ii) in Sec. II A 2], a partially polarized phase [phase (iii) in Sec. II A 2] undergoes a true BKT transition at finite temperature even for \( B = 0 \), at which \( \Delta_{4e} \) becomes quasi-long range ordered [43]. This phase is interesting in its own right, as it supports half quantum vortices (carrying flux \( h/4e \)). We leave a more detailed discussion of this phase and its physical implications for future work.

B. Mechanism for magnetization relaxation

The continuous supercurrent relaxation process discussed in this work requires a mechanism for the pairing polarization to dynamically change in time (both locally and globally). Since the pairing polarization is pinned to the physical spin polarization, this requires a mechanism for the system to exchange spin angular momentum with its environment. In our time-dependent model (Sec. V), we assumed the existence of a spin bath on empirical grounds. In practice, the maximum rate at which the continuous relaxation process can proceed, \( 1/\tau_s \), depends on the physical mechanism of spin relaxation. (Within our model, \( 1/\tau_s \) corresponds to the dissipation rate, Eq. B2.) The system’s spin can relax either through spin-orbit coupling (which also introduces anisotropic terms in spin space into the free energy), a spin bath due to internal or substrate impurities or nuclear spins, or through the boundaries, in cases where the system is coupled to metallic leads.

In the context of TDBG, spin-orbit coupling is expected to be weak, and nuclear spins are rare (unless \(^{13}\text{C} \) impurities are introduced intentionally). In the absence of other magnetic impurities, the most dominant source of spin relaxation is likely by spin transport to the metallic leads. This mechanism is absent in our simple dynamical model of Sec. V and we leave its detailed study to follow up work. An appropriate description of this mechanism might be the use of either solitons of the degeneracy space [44, 45] or the Goldstone modes of the order parameter in order to carry the magnetic texture to the leads.

Here, we make a rough estimate of the spin relaxation time due to this mechanism. Given that the spin stiffness in our model is \( \kappa_m + \kappa_d \) [see Eq. (B4)], we expect on dimensional grounds that \( 1/\tau_s \sim (\kappa_m+\kappa_d)\xi_s^2/m \), where \( \xi_s \) is a microscopic “magnetic coherence length” (essentially, \( \mu_B/\xi_s^2 \), it represents the magnetic coherence length and \( L_s \) is the distance between the leads. This estimate for \( \tau_s \) can be understood as the time it takes for a quadratically dispersing magnon with wavevector \( |Q| \sim 1/L_x \) to travel across the system.

For a sufficiently small applied voltage such that \( eV \ll 4\pi \hbar/\tau_s \), the continuous unwinding process can take place within one (doubled) Josephson period, with spin carried in and out of the system through its connection to the leads. For larger voltages, the continuous unwinding process is limited by the rate of spin relaxation. The study of this case goes beyond our present analysis. A possible scenario, in this case, is that the phase accumulates more than two windings between the continuous unwinding events, decreasing the effective Josephson frequency below \( \omega_J = eV/\hbar \).

To get a rough estimate of \( 1/\tau_s \), due to spin dissipation at the boundaries in TDBG, we assume that the spin stiffness \( \kappa_m + \kappa_d \) is of the order of 0.1 – 1 meV and \( \xi_m \) is of the order of a few times the moiré lattice spacing \( a \approx 10 \text{ nm} \). For example, suppose that \( \kappa_m + \kappa_d = 1 \text{ meV} \) and \( \xi_m = 5a \). Then, for a system of size \( L_x = 1 \mu \text{m} \), the above considerations give that the crossover voltage is \( V \approx 4\pi \hbar/(e\tau_s) \approx 30 \mu \text{V} \).

C. Phase unwinding due to vortex motion

In our analysis of the supercurrent relaxation through continuous unwinding, we have neglected the ordinary mechanism of vortex-antivortex dissociation and motion of free vortices. In two spatial dimensions, this mechanism gives rise to the celebrated nonlinear I-V characteristics [36, 37, 46–48] associated with the BKT transition: \( V \propto I^\alpha \) with \( \alpha(T) = \pi\kappa_s(k_B T)/k_B + 1 \), where the phase stiffness \( \kappa_s \) satisfies \( \kappa_s(T_{\text{BKT}}) = \frac{\pi}{2} k_B T_{\text{BKT}} \).
that $\alpha(T_{BKT}) = 3$ (in our model $\kappa_d = \frac{1}{2}\kappa_s$).

In order to determine which mechanism dominates the supercurrent relaxation, we need to compare the rate of phase unwinding (i.e., the voltage) generated by vortex motion to the rate of the continuous unwinding process. The voltage due to vortex motion is estimated as [36]

$$V_{vm} \approx 2\rho_n JL_x (\alpha(T) - 3) \left[ \max\left( \frac{\xi}{L}, \frac{J}{J_{c,0}} \right) \right]^{-\alpha(T)-1}.$$  

(47)

Here, $\rho_n$ is the normal state resistivity, $J$ is the current density, $\xi$ is the coherence length, $L = \min(L_x, L_y)$, and $J_{c,0} \sim \frac{\hbar k_B T_{BKT}}{\ell_0}$ is microscopic critical current density.

The continuous unwinding mechanism occurs when $J \gtrsim J_c$ (where $J_c$ is estimated in Eq. (35)), whereby it does not involve passing through an energy barrier. Hence, the continuous unwinding mechanism is dominant when $V \gg V_{vm}(J_c)$. Therefore, as long as $J_c < J_{c,0}$, one sees that $V_{vm}(J_c) \to 0$ at low temperature, since the vortex-antivortex unbinding process is thermally activated.

D. TDBG parameters

Specifically for the case of TDBG we may estimate the values of the various parameters in our model using the experimental data of Ref. [23]. The sample dimensions in these experiments were of the order of a few $\mu$m, with a carrier density of $n \approx 1 \times 10^{12}$ cm$^{-2}$. As discussed in Sec. II A, we focus on dynamics far below the critical temperature $T_{BKT} \approx 3.5$ K. For an order of magnitude estimate, we set $\kappa_d \sim \frac{1}{2}\kappa_s(T_{BKT}) = \frac{1}{2}k_BT_{BKT} \approx 0.1$ meV. We furthermore estimate the magnetic moment density as $\mu \approx n\mu_B$.

Using these estimated parameter values, we assess the two contributions to the critical current in Eq. (9). For small applied Zeeman field we have $I_c^{\text{micro}} \approx L_y J_0 \approx 600$ nA $\times \frac{T}{T_c}$, while for large applied Zeeman field we find $I_c^{\text{macro}} \approx 200$ nA $\times \frac{L_x L_y B}{\mu_n\mu_B T}$, see Sec. II B. The crossover between the two regimes occurs at $B \approx 3$ mT $\times \frac{\mu_n^2}{T_c}$.

E. Conclusions and future directions

In this paper, we have studied the transport properties of fully spin-polarized triplet SCs. Interestingly, we found that the topology of the order parameter degeneracy space can have dramatic consequences, given that a mechanism for spin dissipation is available. Basically, two windings of the order parameter are topologically equivalent to zero windings, and hence a supercurrent can decay via a smooth deformation of the order parameter that involves a transient inhomogeneous spin texture but does not involve creating topological defects (such as vortices). We expect that this mechanism of supercurrent relaxation may become dominant at sufficiently low temperatures, where vortex configurations are suppressed.

A direct observable manifestation of the continuous supercurrent relaxation mechanism is that a sample subjected to a DC voltage exhibits an oscillatory current with a fundamental frequency which is half the Josephson frequency. Furthermore, an applied Zeeman field suppresses the continuous supercurrent decay mechanism, since it pins the direction of the system’s magnetization.

A possible extension of our analysis is the study of the equation of the equilibrium properties of the system in the presence of a perpendicular magnetic field. At high applied field one would find the standard vortex lattice groundstate. However, at low magnetic fields, one would suspect a stabilization of a vortex-free spin texture; this would be reminiscent of Fig. 2 in space rather than in time. We leave the analysis to a followup work.

ACKNOWLEDGMENTS

We are grateful for illuminating discussions with A. Auerbach, J. Ruhman, O. Golan, S. Kivelson, D. Podolsky, T. Senthil, and A. Vishwanath. EB and EC were supported by the European Research Council (ERC) under grant HQMAT (Grant Agreement No. 817799) and the US-Israel Binaional Science Foundation (BSF). EB and MR acknowledge support from CRC 183 of the Deutsche Forschungsgemeinschaft. MR gratefully acknowledges the support of the European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation Programme (Grant Agreement No. 678862), and the Villum Foundation.

Appendix A: Fluctuation-dissipation theorem

In this Appendix, we show that the Langevin equation [Eq. (36)] satisfies the fluctuation-dissipation theorem (FDT) at equilibrium. Recall that a sufficient condition for a stationary stochastic process to satisfy the FDT is that the Gibbs distribution, $W \propto e^{-F/k_BT}$, is time-independent under the stochastic process [49]. This means that the Gibbs distribution is a solution of the corresponding Fokker-Planck equation.

We consider a set of dynamical variables $X_I$ which satisfy general Langevin equations of the form (using the Stratonovich convention [42])

$$\frac{\partial X_I}{\partial t} = h_I(\{X\}) + g_{I\mu}(\{X\})\zeta_\mu(t),$$  

(A1)

where repeated indices are summed over; $h_I$, $g_{I\mu}$ are differentiable functions, and $\zeta_\mu(t)$ are independent Gaussian noise sources with zero mean, satisfying $\langle \zeta_\mu(t)\zeta_\nu(t') \rangle = k_BT\delta_\mu\nu\delta(t - t')$. The corresponding Fokker-Planck equation that describes the evolution of the distribution
function $W(\{X\}, t)$ is \cite{42}:

$$
\frac{\partial W}{\partial t}(\{X\}, t) = - \frac{\partial}{\partial X_i} [h_i(\{X\}) W] + k_B T \frac{\partial}{\partial X_i} \left\{ g_{i\mu}(\{X\}) \frac{\partial}{\partial X_j} [g_{j\mu}(\{X\}) W] \right\}.
$$

(A2)

Applying this rule to our Langevin equation (36) with $X_i \mapsto d^{(\alpha)}_i(\mathbf{r})$, we obtain:

$$
\frac{\partial W}{\partial t}(\{d\}, t) = - \frac{\partial}{\partial d^{(\alpha)}_i} \left\{ e^{\alpha\beta} \frac{\delta F}{\delta d^{(\beta)}_j} \Gamma g_{ik} g_{jk} \frac{\delta F}{\delta d^{(\beta)}_j} \right\} W + k_B T \frac{\partial}{\partial d^{(\alpha)}_i} \left\{ g_{ik} \frac{\partial}{\partial d^{(\beta)}_j} [g_{jk} W] \right\}.
$$

(A3)

Substituting $W = e^{-F(\{d\})/k_B T}/Z$ and using the fact that for our choice $g_{ik} = \varepsilon_{ijk} d^{(\alpha)}_j$ [see discussion below Eq. (36)]:

$$
\frac{\partial g_{jk}^{(\beta)}}{\partial d^{(\beta)}_j} = 0,
$$

(A4)

we find that the Gibbs distribution is a stationary solution of Eq. (A3). Hence the FDT is satisfied.

---

**Appendix B: Analytic solutions to the TDGL equations**

In this appendix we present the details of the analytic solution to Eq. (38).

1. Preliminaries

We focus on the case of large dissipation $\Gamma \gg d_0^{-2}$. In this case there are three frequency scales in the system. The inverse of the Josephson period,

$$
\frac{1}{\tilde{\nu}_0} = \frac{qEL_x}{2\pi},
$$

(B1)

the dissipation rate,

$$
\gamma = \frac{4\pi^2 \kappa_d \Gamma}{L_x^2},
$$

(B2)

and the fluctuation rate,

$$
\mathcal{E} = \frac{2k_B T \Gamma}{L_x L_y}.
$$

(B3)

Whenever possible we shall express our equations and results in terms of these quantities.

2. The equations

We explicitly take $\mathbf{d} \cdot \mathbf{d} = 0$, characteristic of the fully spin-polarized phase, as discussed in Sec. II A 2; this condition is conserved by the equations of motion. We furthermore take the London limit of $\mathbf{d} \cdot \mathbf{d}^* = 2d_0^2$. These conditions imply $U(\mathbf{d}) = \text{const}$ and $\nabla \cdot \mathbf{J} = -\dot{\phi} = 0$. This allows one to rewrite the free energy as

$$
F[\mathbf{d}] = \int d^2 r \left\{ \frac{\kappa_d + \kappa_m}{2d_0^2} |(\nabla - iq \mathbf{A}) \mathbf{d}^*|^2 - \frac{\kappa_m}{4\kappa_d^2} \mathbf{J}^2 \right\},
$$

(B4)

and to explicitly write the equations of motion [Eq. (38)],

$$
\frac{\partial \mathbf{d}}{\partial t} = \frac{\kappa_d + \kappa_m}{2} \left[ 2(\nabla^2 - 2iq\mathbf{A} \cdot \nabla) \mathbf{d} - \frac{1}{d_0^2} (\mathbf{d} \cdot (\nabla^2 - 2iq\mathbf{A} \cdot \nabla) \mathbf{d}) \mathbf{d}^* - \frac{1}{d_0^2} (\mathbf{d} \cdot (\nabla^2 + 2iq\mathbf{A} \cdot \nabla) \mathbf{d}^*) \mathbf{d} \right] + \mathbf{d} \times \mathbf{e}.
$$

(B5)

This nonlinear partial differential equation is best solved by the method of guessing the solution. We use an ansatz inspired by the unwinding trajectory of Sec. IV,

$$
u = u_0 e^{i\sigma_3 (\pi \Delta / 2 + \Delta \phi)} e^{i\sigma_1 (\phi_0 / 2 + \phi_0)} e^{i\sigma_3 (-\pi n / 2 + \Delta)},
$$

(B6)

and to explicitly write the equations of motion [Eq. (38)],

Here, $n$ and $\Delta$ are integers, while $\phi_n$ and $\phi_\Delta$ are some arbitrary phases, and $u_0$ is an arbitrary $SU(2)$ matrix.

The current is given by

$$
\mathbf{J}(t) = J_0 \left[ e^{it / \tau_0} - (n + \Delta \sin f(t)) \right].
$$

(B7)
Thus reducing the equations of motion to a stochastic ODE. As seen in Fig. 6 in Appendix C, this effective model exquisitely captures the numerical detail of Eq. (38).
a. Evaluation of the diffusion rate

Given our original 2+1 dimensional vector model,
\[
\langle \zeta_i(r, t) \zeta_j(r', t') \rangle = 2k_B T T \delta_{ij} \delta(r - r') \delta(t - t'),
\]
and an effective 0+1 dimensional scalar model fluctuating in the \(v(x)\) direction,
\[
\langle \zeta(t) \zeta(t') \rangle = 2k_B T T \Delta \delta(t - t'),
\]
we wish to find the value of \( \Gamma_{\Delta} \) such that the effective scalar model best approximates the original vector model.

Hence, we project \( \zeta(r, t) \) onto \( v(x) \), i.e.
\[
\zeta(t) = \frac{\int_0^{L_y} dy \int_0^{L_x} dx v(x) \cdot \zeta(r, t)}{L_y \int_0^{L_x} dx v(x) \cdot v(x)},
\]
such that
\[
\langle \zeta(t) \zeta(t') \rangle = \frac{\int d^2r \int d^2r' v(x) \cdot \langle \zeta(r, t) \zeta(r', t') \rangle \cdot v(x')}{L_x^2 L_y} = \frac{1}{L_x L_y} 2k_B T T \Delta \delta(t - t'),
\]
and thus find \( \Gamma_{\Delta} = \Gamma / L_x L_y \).

5. Solutions of the effective model

We are now finally in a position to derive the results of Sec. V B. We solve Eq. (B12) and use Eq. (B7) and Eq. (42) to obtain the average supercurrent \( \bar{J} \) for various ratios of the rates \( t_0^{-1}, \gamma, \bar{E} \) and various ratios of the stiffnesses \( \kappa_d, \kappa_m \).

a. Infinite dissipation

The simplest solution is when \( t_0 \gamma \to \infty \). In such cases the solution is
\[
\kappa_m < \kappa_d : \sin f(t) = \begin{cases} -1 & t < t_{\text{init}}, \\ -1 + \frac{t - t_{\text{init}}}{t_{\text{fin}} - t_{\text{init}}} & t_{\text{init}} \leq t \leq t_{\text{fin}}, \\ 1 & t > t_{\text{fin}}, \end{cases}
\]
\[
\kappa_m \geq \kappa_d : \sin f(t) = \begin{cases} -1 & t < t_{\text{init}}, \\ 1 & t > t_{\text{fin}}, \end{cases}
\]
where we have defined
\[
t_{\text{init}} = t_0 \left( n - \frac{\Delta}{2} \left( 1 - \frac{\kappa_m}{\kappa_d} \right) \right),
\]
\[
t_{\text{fin}} = t_0 \left( n + \frac{\Delta}{2} \left( 1 - \frac{\kappa_m}{\kappa_d} \right) \right),
\]
By matching the initial and final conditions discussed in Sec. B2 we find that all unwinding events have \( \Delta = 1 \) (corresponding to the fundamental 2 windings relaxation event), and that \( n = 1, 3, 5, \ldots \). For \( \kappa_m \leq \kappa_d \) the current profile is an asymmetric triangle wave pattern which averages out to 0, but for \( \kappa_m > \kappa_d \) we have a shifted saw-tooth wave pattern for \( \bar{J}(t) \) and \( \bar{J} = J_0 \frac{t_{\text{fin}} - t_{\text{init}}}{t_{\text{fin}} - t_{\text{init}}} = J_0 \frac{1}{2} \left( \frac{\kappa_m}{\kappa_d} - 1 \right) \). We thus conclude:
\[
\hat{J} = \begin{cases} 0 & \kappa_m \leq \kappa_d, \\ J_0 \frac{1}{2} \left( \frac{\kappa_m}{\kappa_d} - 1 \right) & \kappa_m > \kappa_d. \end{cases}
\]

This is precisely Eq. (44) of the main text, with the corresponding behavior plotted in Fig. 4.

b. Finite dissipation

For finite \( t_0 \gamma \), we linearize Eq. (B12) around \( f(t) = -\frac{\gamma}{2} + h(t) \) with small \( h(t) \) such that
\[
h(t) \simeq 2\gamma \Delta \frac{t - t_{\text{init}}}{t_0} h(t) + \zeta(t).
\]
This is solved by
\[
h(t) = e^{\frac{2\Delta}{\gamma_0} (t - t_{\text{init}})^2} \int_{-\infty}^{t_{\text{init}}} dt' e^{-\frac{2\Delta}{\gamma_0} t'^2} \zeta(t'),
\]
\[
\langle h(t)^2 \rangle = e^{\frac{2\Delta}{\gamma_0} (t - t_{\text{init}})^2} \int_{-\infty}^{t_{\text{init}}} dt' \int_{-\infty}^{t_{\text{init}}} dt'' e^{-\frac{2\Delta}{\gamma_0} (t'^2 + t''^2)} \zeta(t' - t'')
\]
\[
= e^{\frac{2\Delta}{\gamma_0} (t - t_{\text{init}})^2} \int_{-\infty}^{t_{\text{init}}} dt' e^{-2\Delta t'^2},
\]
\[
h_{\text{init}}^2 = \langle h(t_{\text{init}})^2 \rangle = \bar{E} \frac{2}{\gamma^2} \left( \frac{t_0}{\gamma \Delta} \right)^{1/2}.
\]

Here we have approximated \( h(t \to -\infty) \to 0 \). This approximation requires contributions from previous unwinding events, which end at time \( t_{\text{prev}} \), to decay before the initiation of a new event:
\[
1 \gg \frac{\langle h(t_{\text{prev}})^2 \rangle}{\langle h(t_{\text{init}})^2 \rangle} \simeq \frac{t_{\text{init}} - t_{\text{prev}}}{2\pi \gamma \Delta}.
\]

We evaluate \( t_{\text{prev}} \) and check our solutions for this condition at Sec. B5.d.

Moreover, the linearization requires
\[
h_{\text{init}} \ll \pi, \quad \text{where} \quad h_{\text{init}} \sim \bar{E}^{1/2} (t_0 / \gamma)^{1/4}.
\]

This is the low-temperature condition discussed in Sec. V B. It ensures there are well separated unwinding events as the temperature is not so high that the system escapes the stable fixed-points at any time by thermal fluctuations.
c. Exactly solvable point

The nonlinear ordinary differential equation Eq. (B12) becomes an exact differential equation at \( \kappa_m = \kappa_d \).

First, we set \( \Delta = 1 \) as in the \( t_0 \gamma \rightarrow \infty \) case (see discussion in Sec. B5d). Next, we use the linearized equation to find the initial displacement [Eq. (B25)]. Then, starting from \( f(t_{\text{init}}) \approx -\frac{\pi}{2} + h_{\text{init}} \), we propagate in time, neglecting the effects of the noise term,

\[
\dot{f}(t) \approx 2\gamma \frac{t - t_{\text{init}}}{t_0} \cos f(t),
\]

\[
f(t > t_{\text{init}}) = 2 \arctan \left( \frac{\gamma}{2t_0} (t - t_{\text{init}})^2 \right)
- \arctanh \tan \left( \frac{\pi}{2} - h_{\text{init}} \right).
\]

We may hence evaluate the average supercurrent,

\[
\bar{J} \approx \frac{1}{2t_0} \int_0^\infty dt \left\{ J(t) - J_0 \left( \frac{t}{t_0} - 2 \right) \right\}
= \frac{J_0}{2t_0} \int_0^\infty dt' \frac{1}{1 + e^{\frac{2\gamma}{t_0} t'^2} \tan^2 \frac{h_{\text{init}}}{2}}
= -J_0 \sqrt{\frac{\pi}{8\gamma t_0}} \text{Li}_2 \left( -\text{cot}^2 \frac{h_{\text{init}}}{2} \right).
\]

Here, \( \text{Li}_2(z) \) is the polylogarithm function. As we have taken \( h_{\text{init}} \ll \pi \) we may use \( \text{Li}_2(-z) \approx -\frac{1}{\pi^2} \ln^2 z \) and get

\[
\bar{J} \approx J_0 \sqrt{\frac{1}{2\gamma t_0}} \ln \frac{8}{E \sqrt{\pi} \sqrt{\frac{\kappa_m}{\kappa_d}}}
\]

This is Eq. (46) of the main text.

d. Generic case

At large but finite dissipation we wish to find the approximate escape times \( t_* > t_{\text{init}} \) when the linearization breaks down and \( h(t_*) \sim \frac{\pi}{2} \) is no longer small.

We focus on

\[
t_* - t_{\text{init}} \gg \sqrt{\frac{t_0}{2\gamma}},
\]

where one finds

\[
h_*^2 = \langle h(t_*)^2 \rangle \approx E \sqrt{\frac{\gamma}{2}} \frac{t_0}{\gamma} e^{2\gamma \Delta \frac{1}{E} (t_* - t_{\text{init}})^2},
\]

\[
t_* \approx t_{\text{init}} + \frac{\Gamma(t_{\text{fin}} - t_{\text{init}}) t_0}{2\gamma \Delta E \sqrt{\frac{\pi}{2}} \sqrt{\frac{t_0}{\gamma}}}. \quad \text{(B33)}
\]

The first unwinding event satisfies \( n = \Delta \). The following cascade of unwinding events is very complicated. Although this case looks interesting, we suspend its analysis to further research. We thus stick for now with the assumption that \( \Delta = 1 \), which requires \( t_* \Delta = 1 \leq t_* \Delta \geq 2 \).

This holds when

\[
\ln \frac{h_*^2}{E \sqrt{\frac{\pi}{2}} \sqrt{\frac{t_0}{\gamma}}} \leq 4\sqrt{2} \left( 1 + \frac{\kappa_m}{\kappa_d} \right)^2 \frac{t_0}{\gamma} \approx 4\sqrt{2} \left( 1 + \frac{\kappa_m}{\kappa_d} \right)^2 \frac{t_0}{\gamma} \quad \text{(B34)}
\]

Note that this condition is only violated for exponentially small temperatures.

To proceed, we evaluate the difference from the solution at infinite dissipation \( J_\infty(t) \) given by

\[
\kappa_m < \kappa_d : J_\infty(t) = J_0 \begin{cases}
\frac{t}{t_0} & \text{for } t_{\text{fin}} < t < t_{\text{init}},
\frac{t - t_{\text{init}}}{t_0} & \text{for } t_{\text{init}} < t < t_{\text{fin}},
\gamma t_{\text{fin}} & \text{for } t > t_{\text{fin}}.
\end{cases}
\]

\[
\kappa_m \geq \kappa_d : J_\infty(t) = J_0 \begin{cases}
\frac{t - t_{\text{init}}}{t_0} & \text{for } t < t_{\text{init}},
\gamma t_{\text{fin}} & \text{for } t > t_{\text{fin}}.
\end{cases}
\]

We approximate the unwinding events as immediate transitions to \( J_\infty \) at time \( t_* \); this makes our following results hold up to order-one corrections:

\[
\bar{J} \approx \frac{1}{2t_0} \int_0^{t_*} dt \left\{ J_0 \frac{t}{t_0} - J_\infty(t) \right\}
= J_0 \begin{cases}
\frac{2(t_* - t_{\text{init}})}{t_{\text{fin}} - t_{\text{init}}} & \text{for } t_* \leq t_{\text{fin}},
\frac{t_* - t_{\text{init}}}{t_0} & \text{for } t_* \geq t_{\text{fin}}.
\end{cases}
\]

Plugging Eq. (B33) into Eq. (B37) immediately yields

\[
\text{for } \sqrt{\frac{1}{2t_0} \ln \frac{h_*^2}{E \sqrt{\pi} \sqrt{\frac{t_0}{\gamma}}} < 1 - \frac{\kappa_m}{\kappa_d}}, \quad \text{(B38)}
\]

Here, recall that \( h_* \sim \frac{\pi}{2} \), and note, that for \( \kappa_m = \kappa_d \), the exact solution Eq. (B31) matches the form above for
FIG. 5. Supercurrent profiles $J(t)$ for various voltages; see Sec. V B 3. The average supercurrent $J$ is depicted by the dashed line; the shaded areas depict the deviation from the infinite dissipation limit; see Fig. 4. Here, $t_1 = \frac{2\pi}{qV_1}$, exact details of the simulation are found in Appendix C.

FIG. 6. Logarithmic corrections to the current-voltage curve for $\kappa_m = \kappa_d$; see Fig. 3. Each circle depicts the average supercurrent from 18 instances of numerical simulations of Eq. (38); the gray area depict 95% statistical confidence. The dashed line depicts the analytic results of Eq. (46). Here, $V_1 = \frac{\kappa_d}{qL_x^2}$. There are no fitting parameters.

$h_* = 2\sqrt{2}$.

To evaluate the consistency condition in Eq. (B26), we use $t_{\text{prev}} = \max\{t_*, t_{\text{fin}}\} - 2t_0$ as well as $t_* \sim \frac{J}{J_0} + 1$ for $t_* \geq t_{\text{fin}}$. We thus find

$$\frac{1}{\sqrt{2\pi t_0 \gamma}} \ll \begin{cases} 1 + \frac{\kappa_m}{\kappa_d} & t_* \leq t_{\text{fin}}, \\ \frac{1}{2} \left(3 + \frac{\kappa_m}{\kappa_d}\right) - \frac{J}{J_0} & t_* \geq t_{\text{fin}}. \end{cases}$$  (B39)

This is the condition on moderately low currents presented in Sec. V B 4.

Our results in Eq. (B38) may be re-expressed using the original model parameters to yield the characteristic $I$-$V$ curves of the model in Eq. (45),

$$\kappa_m < \kappa_d : \begin{cases} & \begin{cases} J \propto qV \left(1 - \frac{\kappa_m}{\kappa_d}\right) \gamma \sqrt{\frac{L_x \kappa_d}{j_{\text{in}}}} \\ J - J_c \propto qV \left(1 - \frac{\kappa_m}{\kappa_d}\right) \gamma \sqrt{\frac{L_x \kappa_d}{j_{\text{in}}}} \end{cases} \\ & \begin{cases} \text{for } J < |J_c| \text{ and } \frac{\kappa_m}{\kappa_d} + 1 > \frac{L_x}{4\pi} \sqrt{\frac{qV}{\Gamma \kappa_d}} \\ \text{for } J > |J_c| \text{ and } \frac{1}{2} \left(\frac{\kappa_m}{\kappa_d} + 3\right) - \frac{J}{J_0} > \frac{L_x}{4\pi} \sqrt{\frac{qV}{\Gamma \kappa_d}} \end{cases} \end{cases}  (B40)$$

Here, $J_c = \frac{2\pi q(\kappa_m - \kappa_d)}{L_x}$. The supercurrent profile $J(t)$ is simulated and plotted in Fig. 5 for various voltages.

Appendix C: Numeric solutions to the TDGL equations

In this appendix, we provide the details of the numerical simulations presented in Sec. V B.

We numerically evaluate Eq. (B5) for a time interval $t \in [0, \tau]$. We use a stochastic noise term

$$\zeta(x, t) = \frac{1}{\sqrt{L_x L_y T}} \sum_{k_x = -N_x}^{N_x} \sum_{k_y = -N_y}^{N_y} \sum_{\omega = -N_t}^{N_t} \frac{1}{\sqrt{2}} \left(\epsilon_{k_x, \omega} + \epsilon_{-k_x, -\omega}^*\right)e^{2\pi i k_x x} e^{2\pi i k_y y} e^{2\pi i \omega t},$$  (C1)

where $N_x, N_y, N_t$ are integers. Here the noise Fourier...
components \(\{c_{k,\omega}\}\) are random variables satisfying
\[
\langle c_{i,k,\omega}c_{j,k',\omega'}^* \rangle = \mathcal{E} \delta_{ij} \delta_{k,k'} \delta_{\omega,\omega'}. \tag{C2}
\]
This formulation ensures that
\[
\langle \zeta_i(r,t)\zeta_j(r,t) \rangle = \mathcal{E} \delta_{ij} (2N_x + 1)(2N_y + 1)(2N_t + 1),
\]
\[
\int_0^{L_x} dx \int_0^{L_y} dy \int_0^r dt \langle \zeta_i(r,t)\zeta_j(r',t') \rangle = \mathcal{E} \delta_{ij}. \tag{C4}
\]

1. Exact parameter values for the figures

In Fig. 3 we choose \(L_y/L_x = 1, \kappa_m/\kappa_d = 1, \mathcal{E}/\gamma = \frac{1}{4\pi} \times 10^{-7}, qV_1/\gamma = \frac{1}{4\pi}, V/V_1 \in [10^{-2},1], \tau = \frac{4\pi}{qV_1}, N_x = 8, N_y = 0, N_t = 100. \)

In Fig. 5 we choose \(L_y/L_x = 1, \kappa_m/\kappa_d = 0, \mathcal{E}/\gamma = \frac{1}{4\pi} \times 10^{-5}, qV_1/\gamma = \frac{1}{2\pi}, V/V_1 \in [1,4], \tau = \frac{4\pi}{qV_1}, N_x = 8, N_y = 0, N_t = 100. \)

In Fig. 6 we normalize Fig. 3 by the leading power-law behavior and find a very good agreement with our predicted logarithmic corrections.

[1] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, “Graphene bilayer with a twist: Electronic structure,” Phys. Rev. Lett. 99, 256602 (2007).
[2] Rafi Bistritzer and Allan H MacDonald, “Moiré bands in twisted double-layer graphene,” Proceedings of the National Academy of Sciences 108, 12233–12237 (2011).
[3] Guohong Li, A Luican, JMB Lopes Dos Santos, AH Castro Neto, A Reina, J Kong, and EY Andrei, “Observation of van hove singularities in twisted graphene layers,” Nature Physics 10, 69–113 (2013).
[4] Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang, Spencer L Tomarken, Jason Y Luo, Javier D Sanchez-Yamagishi, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, et al., “Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,” Nature 556, 80 (2018).
[5] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, and Pablo Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature 556, 43–50 (2018).
[6] Alexander Kerelsky, Leo J McGilly, Dante M Kennes, Lede Xian, Matthew Yankowitz, Shaowen Chen, K Watanabe, T Taniguchi, James Hone, Cory Dean, et al., “Maximized electron interactions at the magic angle in twisted bilayer graphene,” Nature 572, 95–100 (2019).
[7] Matthew Yankowitz, Shaowen Chen, Hryhoriy Polshyn, Yuxuan Zhang, K. Watanabe, T. Taniguchi, David Graf, Andrea F. Young, and Cory R. Dean, “Tuning superconductivity in twisted bilayer graphene,” Science 363, 1059–1064 (2019).
[8] Xiaobo Lu, Petr Stepanov, Wei Yang, Ming Xie, Mohammed Ali Aamir, Ipsita Das, Carles Urgell, Kenji Watanabe, Takashi Taniguchi, Guanguy Zhang, et al., “Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene,” Nature 574, 653–657 (2019).
[9] Yuhang Jiang, Xinyuan Lai, Kenji Watanabe, Takashi Taniguchi, Kristjan Haule, Jinhai Mao, and Eva Y. Andrei, “Charge order and broken rotational symmetry in magic-angle bilayer graphene,” Nature (London) 573, 91–95 (2019).
[10] Yonglong Xie, Biao Lian, Berthold Jäck, Xiaomeng Liu, Cheng-Li Chiu, Kenji Watanabe, Takashi Taniguchi, B Andrei Bernevig, and Ali Yazdani, “Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene,” Nature 572, 101–105 (2019).
[11] Youngjoon Choi, Jeannette Kemmer, Yang Peng, Alex Thomson, Harpreet Arora, Robert Polski, Yiran Zhang, Hechen Ren, Jason Aliche, Gil Refael, et al., “Electronic correlations in twisted bilayer graphene near the magic angle,” Nature Physics 15, 1174–1180 (2019).
[12] Uri Zondiner, Asaf Rozen, Daniel Rodan-Legrain, Yuan Cao, Raquel Queiroz, Takashi Taniguchi, Kenji Watanabe, Yuval Oreg, Felix von Oppen, Ady Stern, Erez Berg, Pablo Jarillo-Herrero, and Shahal Ilani, “Cascade of Phase Transitions and Dirac Revivals in Magic Angle Graphene,” arXiv e-prints , arXiv:1912.06150 (2019), arXiv:1912.06150 [cond-mat.mes-hall].
[13] Dillon Wong, Kevin P Nuckolls, Myungchul Oh, Biao Lian, Yonglong Xie, Sangjun Jeon, Kenji Watanabe, Takashi Taniguchi, B Andrei Bernevig, and Ali Yazdani, “Cascade of electronic transitions in magic-angle twisted bilayer graphene,” Nature 582, 198–202 (2020).
[14] Petr Stepanov, Ipsita Das, Xiaobo Lu, Ali Fathiimiya, Kenji Watanabe, Takashi Taniguchi, Frank H. L. Koppens, Johannes Lischner, Leonid Levitov, and Dmitri K. Efetov, “The interplay of insulating and superconducting orders in magic-angle graphene bilayers,” arXiv e-prints , arXiv:1911.09198 (2019), arXiv:1911.09198 [cond-mat.supr-con].
[15] Aaron L. Sharpe, Eli J. Fox, Arthur W. Barnard, Joe Finney, Kenji Watanabe, Takashi Taniguchi, M. A. Kastner, and David Goldhaber-Gordon, “Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene,” Science 365, 605–608 (2019).
[16] Guorui Chen, Lili Jiang, Shuang Wu, Bosai Lyu, Hongyuan Li, Bheema Lingam Chittari, Kenji Watanabe, Takashi Taniguchi, Zhiwen Shi, Jeil Jung, et al., “Evidence of a gate-tunable mottn insulator in a trilayer graphene moiré superlattice,” Nature Physics 15, 237–241 (2019).
[17] Guorui Chen, Aaron L Sharpe, Patrick Gallagher, Ian T Rosen, Eli J Fox, Lili Jiang, Bosai Lyu, Hongyuan Li, Kenji Watanabe, Takashi Taniguchi, et al., “Signatures of tunable superconductivity in a trilayer graphene moiré superlattice,” Nature 572, 215–219 (2019).

[18] Aviram Uri, Sameer Grover, Yuan Cao, John A Crosse, Kousik Bagani, Daniel Rodan-Legrain, Yury Mysasoev, Kenji Watanabe, Takashi Taniguchi, Pilkyung Moon, et al., “Mapping the twist-angle disorder and landau levels in magic-angle graphene,” Nature 581, 47–52 (2020).

[19] Yuan Cao, Debanjan Chowdhury, Daniel Rodan-Legrain, Oriol Rubies-Bigorda, Kenji Watanabe, Takashi Taniguchi, T. Senthil, and Pablo Jarillo-Herrero, “Strange Metal in Magic-Angle Graphene with near Planckian Dissipation,” Phys. Rev. Lett. 124, 076801 (2020).

[20] Yuan Cao, Daniel Rodan-Legrain, Jeong Min Park, Fanqi Noah Yuan, Kenji Watanabe, Takashi Taniguchi, Rafael M. Fernandes, Liang Fu, and Pablo Jarillo-Herrero, “Nematicity and Competing Orders in Superconducting Magic-Angle Graphene,” arXiv e-prints, arXiv:2004.04148 (2020), arXiv:2004.04148 [cond-mat.mes-hall].

[21] Emma C Regan, Danqing Wang, Chenhao Jin, M Iqbal Bakshi Utama, Beini Gao, Xin Wei, Sihan Zhao, Wenyu Zhao, Zuoqiang Zhang, Kenta Yanagisawa, et al., “Mott and generalized wigner crystal states in wse 2/ws 2 moiré superlattices,” Nature 579, 359–363 (2020).

[22] Guorui Chen, Aaron L Sharpe, Eli J Fox, Ya-Hui Zhang, Shaoxin Wang, Lili Jiang, Bosai Lyu, Hongyuan Li, Kenji Watanabe, Takashi Taniguchi, et al., “Tunable correlated chern insulator and ferromagnetism in a moiré superlattice,” Nature 579, 56–61 (2020).

[23] Xiaomeng Liu, Zeyu Hao, Eslam Khalaf, Jong Yeon Lee, Kenji Watanabe, Takashi Taniguchi, Ashvin Vishwanath, and Philip Kim, “Spin-polarized correlated insulator and superconductor in twisted double bilayer graphene,” arXiv:1903.08130 (2019).

[24] Yuan Cao, Daniel Rodan-Legrain, Oriol Rubies-Bigorda, Jeong Park, Kenji Watanabe, Takashi Taniguchi, and Pablo Jarillo-Herrero, “Tunable correlated states and spin-polarized phases in twisted bilayer bilayer graphene,” Nature , 1–6 (2020).

[25] Cheng Shen, Yanbang Chu, QuanSheng Wu, Na Li, Shuopei Wang, YanChong Zhao, Jian Tang, Jieying Liu, Jinfeng Tian, Kenji Watanabe, et al., “Correlated states in twisted double bilayer graphene,” Nature Physics 16, 520–525 (2020).

[26] Jong Yeon Lee, Eslam Khalaf, Shang Liu, Xiaomeng Liu, Zeyu Hao, Philip Kim, and Ashvin Vishwanath, “Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene,” Nature communications 10, 1–10 (2019).

[27] Mathias S. Scheurer and Rhine Samajdar, “Pairing in graphene-based moiré superlattices,” arXiv e-prints, arXiv:1906.03258 (2019), arXiv:1906.03258 [cond-mat.supr-con].

[28] Rhine Samajdar and Mathias S. Scheurer, “Microscopic theory of superconductivity in twisted double-bilayer graphene,” arXiv e-prints, arXiv:2001.07716 (2020), arXiv:2001.07716 [cond-mat.supr-con].

[29] Yi-Ting Hsu, Fengcheng Wu, and S. Das Sarma, “Topological superconductivity, ferromagnetism, and valley-polarized phases in moire systems: An RG analysis for twisted double bilayer graphene,” arXiv e-prints, arXiv:2003.02847 (2020), arXiv:2003.02847 [cond-mat.str-el].

[30] Fengcheng Wu and Sankar Das Sarma, “Identification of superconducting pairing symmetry in twisted bilayer graphene using in-plane magnetic field and strain,” Phys. Rev. B 99, 220507 (2019).

[31] A different interpretation for these observations has been proposed, however; see M. He et al. [50].

[32] Dieter Vollhardt and Peter Wolffe, The superfluid phases of helium 3 (Corrigeur Corporation, 2013).

[33] Christoph Bruder and Dieter Vollhardt, “Symmetry and stationary points of a free energy: The case of superfluid 3He,” Phys. Rev. B 34, 131–146 (1986).

[34] Grigory E Volovik, The universe in a helium droplet, Vol. 117 (Oxford University Press on Demand, 2003).

[35] N. D. Mermin, “The topological theory of defects in ordered media,” Rev. Mod. Phys. 51, 591–648 (1979).

[36] BI Halperin and David R Nelson, “Resistive transition in superconducting films,” Journal of low temperature physics 36, 599–616 (1979).

[37] Vinay Ambegaokar, B. I. Halperin, David R. Nelson, and Eric D. Siggia, “Dynamics of superfluid films,” Phys. Rev. B 21, 1806–1826 (1980).

[38] In a rotationally symmetric system, this implies that Cooper pairs carry an odd orbital angular momentum. Note that the term proportional to \( \kappa_{\text{int}} \) itself gives an energy cost for twists of the pairing polarization; therefore \( \kappa_{\text{int}} \) captures the excess spin stiffness beyond that included in the generalized phase stiffness term.

[39] P. C. Hohenberg and B. I. Halperin, “Theory of dynamic critical phenomena,” Rev. Mod. Phys. 49, 435–479 (1977).

[40] Paul M Chaiken, Tom C Lubensky, and Thomas A Witten, Principles of condensed matter physics, Vol. 10 (Cambridge university press Cambridge, 1995).

[41] H Risken and TK Caughey, The fokker-planck equation: Methods of solution and application (Springer-Verlag Berlin Heidelberg, 1996).

[42] Subroto Mukerjee, Cenke Xu, and J. E. Moore, “Topological defects and the superfluid transition of the s = 1 spinor condensate in two dimensions,” Phys. Rev. Lett. 97, 120406 (2006).

[43] J. Tjon and Jon Wright, “Solitons in the continuous heisenberg spin chain,” Phys. Rev. B 15, 3470–3476 (1977).

[44] Austen Lamacraft, “Persistent currents in ferromagnetic condensates,” Phys. Rev. B 95, 224512 (2017).

[45] K. Epstein, A. M. Goldman, and A. M. Kadin, “Vortex-antivortex pair dissociation in two-dimensional superconductors,” Phys. Rev. Lett. 47, 534–537 (1981).

[46] A. M. Kadin, K. Epstein, and A. M. Goldman, “Renormalization and the kosterlitz-thouless transition in a two-dimensional superconductor,” Phys. Rev. B 27, 6691–6702 (1983).

[47] RS Newrock, CJ Lobb, U Geigenmüller, and M Octavio, “The two-dimensional physics of josephson junction arrays,” Solid state physics (New York. 1955) 54, 263–512 (2000).

[48] Wikipedia contributors, “Fluctuation-dissipation theorem,” Wikipedia (2020).

[49] Minhao He, Yuhao Li, Jiaqi Cai, Yang Liu, K. Watanabe, T. Taniguchi, Xiaodong Xu, and Matthew Yankowitz, “Tunable correlation-driven symmetry break-
ing in twisted double bilayer graphene,” arXiv e-prints, arXiv:2002.08904 (2020), arXiv:2002.08904 [cond-mat.mes-hall].