Elsevier has created a Monkeypox Information Center in response to the declared public health emergency of international concern, with free information in English on the monkeypox virus. The Monkeypox Information Center is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its monkeypox related research that is available on the Monkeypox Information Center - including this research content - immediately available in publicly funded repositories, with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the Monkeypox Information Center remains active.
Monkeypox: A focused narrative review for emergency medicine clinicians

Brit Long, MD, Alex Koyfman, MD, Michael Gottlieb, MD, Stephen Y. Liang, MD, Michael Gottlieb, MD, Summer Chavez, DO, MPH, William J. Brady, MD

abstract

Introduction: Monkeypox is an emerging viral disease that has been declared a global health emergency. While this disease has been present for over 50 years, the recent surge in cases and expanding knowledge of this has prompted a need for a focused review for practicing clinicians.

Objective: This narrative review provides a focused overview of the epidemiology, presentation, evaluation, and management of monkeypox for emergency clinicians.

Discussion: Monkeypox is an orthopoxvirus endemic to central and western Africa. An outbreak in May and June 2022 across Asia, Europe, North America, and South America was declared a global health emergency in July 2022. The disease can be transmitted via contact with an infected animal or human, as well as contact with a contaminated material. The disease presents with a prodromal flu-like illness and lymphadenopathy. A rash spreading in a centrifugal manner involving the oral mucosa, face, palms, and soles is typical. Lesions progress along various stages. Complications such as bacterial skin infection, pneumonitis, ocular conditions, and encephalitis are uncommon. Confirmation typically includes polymerase chain reaction testing. The majority of patients improve with symptomatic therapy, and as of July 2022, there are no United States Food and Drug Administration-approved treatments specifically for monkeypox. However, antiviral treatment should be considered for several patient populations at risk for severe outcomes.

Conclusion: An understanding of the presentation, evaluation, and management of monkeypox is essential for emergency clinicians to ensure appropriate diagnosis and treatment of this emerging disease.

American Journal of Emergency Medicine 61 (2022) 34–43

1. Introduction

Monkeypox is a viral zoonosis endemic to central and western Africa with the initial cases diagnosed over 50 years in the region; a zoonosis is an infectious disease that can be transmitted from animals to humans. On May 6, 2022, several cases of Monkeypox were confirmed in the United Kingdom (UK), originating from a UK resident who had traveled to Nigeria [1-3]. Additional clusters of cases have occurred in Asia, Europe, North America, and South America, with a rapid rise in cases leading the World Health Organization (WHO) to declare the current monkeypox outbreak in non-endemic countries a global health emergency in July 2022; in early August 2022, the federal government of the United States made a similar declaration, noting that Monkeypox is a national health emergency. The majority of cases currently are not associated with travel to an endemic region [3,4]. Monkeypox classically presents with a rash that develops on the face and even oral mucosa and then spreads centrifugally. It may involve the palms and soles [5-9]. However, atypical presentations have been common in the present outbreak, including oral, perianal, and genital lesions as well as pharyngitis and proctitis [10,11]. The majority of cases improve with symptomatic therapy; complications are uncommon and can include encephalitis, ophthalmologic sequelae, pneumonitis, bacterial skin infections, and death. [5-7,12,13] During the recent past, the case fatality ratio has been approximately 3–6% [3]. As of August 2, 2022, there have been

https://doi.org/10.1016/j.ajem.2022.08.026
0735-6757/© 2022 Elsevier Inc. All rights reserved.
23,620 cases worldwide in over 80 countries [14]. Patients with signs and symptoms concerning for monkeypox will present to the emergency department (ED), so it is critical for the emergency medicine clinician to be aware of the current literature on this disease. This review will summarize the current information concerning the presentation, diagnosis, and management of monkeypox for the emergency medicine clinician.

2. Methods

The authors searched PubMed and Google Scholar for articles using the keyword “monkeypox”. Authors included case reports, case series, retrospective studies, prospective studies, systematic reviews and meta-analyses, clinical guidelines, narrative reviews, and online resources. The literature search was restricted to studies and resources published in English. Emergency physicians with experience in critical appraisal of the literature reviewed all of the resources and decided which resources to include for the review by consensus, with a focus on emergency medicine-relevant articles. A total of 90 resources were selected for inclusion in this review. Refer to Flowchart 1 for methodology used in reference selection for this narrative review.

3. Discussion

3.1. Epidemiology

Monkeypox was originally discovered in 1958 as a vesicular rash present in monkeys transported to Denmark from Singapore for research, resulting in the name “monkeypox” [15,16]. The first human case was detected in 1970 in a 9-month-old in the Democratic Republic of the Congo (DRC) [15,17,18]. Since then, the virus has become endemic in 11 countries in central and western Africa, with most cases occurring in the DRC, followed by the Central African Republic, Nigeria, and Liberia [3,8,17,19-22].

Prior to the current outbreak, monkeypox had rarely been documented outside of central and western Africa. From 1970 to 1999, approximately 900 suspected cases were reported in Africa, with less than half being confirmed with testing [21]. An outbreak of 79 patients discovered in the midwestern United States in 2003 was attributed to ill rodents imported from Ghana that infected co-located pet prairie dogs distributed to the community [5,12,23,24]. Two patients from this outbreak had severe disease. One patient had encephalitis, and the other patient experienced airway compromise due to a retropharyngeal abscess with lymphadenopathy; neither patient died [5,12,13,23,24].

Since that time, sporadic, isolated cases have occurred in patients with connections to western Africa, primarily those returning from Nigeria, as well as direct contact with healthcare workers [25-30].

The current outbreak, however, does not reflect this previous pattern of transmission. The majority of patients affected by the virus in May through July 2022 have not traveled to endemic regions [19]. The epidemiology of this current outbreak initially focused on cases predominately in the men who have sex with men (MSM) community between the ages of 20-to-50 years, and is suspected to stem from close skin-to-skin contact within sexual networks [19,31-35]. However, there are other routes of transmission, and contact with any lesion is the most likely form of transmission [1,6].

Of note, smallpox vaccination may be up to 85% effective for protecting against monkeypox, although data is limited to a single study published in 1988 [3]. Routine smallpox vaccination ended in the United States in 1972, with global eradication confirmed in 1980 [22,36-38]. The discontinuation of the smallpox vaccine may have allowed monkeypox to resurge and become endemic, with an increase in incidence in the DRC from 0.64 cases per 100,000 to 2.82 cases per 100,000 from 2001 to 2013 [3,36,39]. Similarly, many studies note disproportionate disease burden among younger patients, most born after smallpox eradication efforts were stopped, with the median age of patients ranging from 11 to 29 years of age [40-42].

3.2. Virology and pathophysiology

Monkeypox is a member of the genus Orthopoxvirus, which belongs to the Poxviridae family. The orthopoxvirus genus also contains smallpox and cowpox [1,20,21]. Monkeypox is a large virus measuring approximately 200–250 nm in size with an ovoid or “brick-like” appearance (Fig. 1) [1,8,25]. It has a lipoprotein membrane and is a double-stranded DNA virus [1,8,20].

Prior studies identified two distinct groups, or ‘clades’, of monkeypox: the Central African clade (commonly referred to as the “Congo Basin clade”) and the West African clade [8,21,22,43-45]. The Central African clade demonstrates higher virulence and infectivity, while the West African clade tends to be less severe [43,44]. The West African clade is suspected to be responsible for this current outbreak, as well as the 2003 outbreak [3]. Several mammalian species are susceptible to the virus including humans, primates, rope and tree squirrels, dormice, and Gambian pouched rats [8,20,22-24,45]. The most likely host reservoir is a rodent species rather than a monkey [38,20,45].

Human transmission occurs via animal-human or human-human spread. Indirect and direct contact with live or dead animals such as

Flowchart 1. Methodology used in reference selection for this narrative review.

Identified records through Pubmed (705) and Google Scholar (1490) databases using “monkeypox” in title

First 200 articles selected for inclusion

Additional records identified through other sources (CDC, WHO)

Authors reviewed articles to determine which are most relevant for inclusion

90 articles included for review
- 2 systematic reviews
- 18 reviews
- 21 case series or case reports
from a bite or scratch, handling wild game, or contact with fluids or lesions from an infected animal can result in viral transmission [6,12,42,46,47]. Human-human transmission can occur through contact with an infected person’s respiratory droplets, lesions, body fluids (including semen), or contaminated personal objects such as bedding or clothing [6,28,46,48]. The virus may also be aerosolized [3,6,20,46]. Contact with genital lesions and body fluids appears to play a significant role in the current outbreak with the largest number of cases occurring among the MSM community [6,43,46,49-51]. Secondary attack rates (i.e., the number of new cases among contacts divided by total number of contacts) range between 0.3 and 10.2%, but this may approach 50% among household contacts [39,52].

3.3. Clinical presentation

The time course of Monkeypox disease can be quite long with an incubation period that ranges from several days to three weeks and a period of active viral infection from 2 to 5 weeks. Refer to Fig. 2 for the natural history of the illness, including incubation and infection. During the incubation phase, the virus replicates and spreads from the original inoculation site to the lymphatic system, followed by viremia, and eventual spread to other organ systems [6,46,53]. Symptoms can last 2 to 5 weeks [1,3]. Initial symptoms develop over the first five days of illness and are often nonspecific, including fever, myalgias, malaise, headache, sore throat, and cough (Table 1) [35,41,45,54-56].

![Fig. 1. Electron microscopy of Monkeypox virus. Available at https://phil.cdc.gov/PHIL_Images/22664/22664_lores.jpg.](https://phil.cdc.gov/PHIL_Images/22664/22664_lores.jpg)

![Fig. 2. Development and progression of various features of monkeypox infection, from exposure to recovery [63-65].](https://phil.cdc.gov/PHIL_Images/22664/22664_lores.jpg)
Table 1
The frequency of occurrence of the symptoms and signs seen in the monkeypox patient [9,63-65].

Symptom or Sign	Frequency (%)	Time of Development	Comment
Fever	62-85	1-5 days	prodromal presentation
Myalgias / body aches	31		
Malaise / weakness / lethargy	41		
Sore throat / pharyngitis	21		
Cough / dyspnea	20-60		
Nausea / vomiting	20-60		
Headache	27-65		
Rash – any distribution	95	2-11 days; pruritic / painful, macular lesions with progression to papules (day 3) & vesicles (days 4-5), then to pustules (days 6-7) with scabbing (days 7-14) initially on face (95%) with spread to arms & legs then to hands & feet (75%); lesions in successive crops	
Rash – mucous membrane	41-70	3-8 days	oral 70% / conjunctiva 20% rectal 14% / genitalia 30% distinguishing feature; widespread or localized to neck & groin
Lymphadenopathy	56-90	2-6 days; usually with fever onset & 1-2 days before rash	
Secondary infection of skin lesions	19	5-28 days	
Complications	<1-12	5-28 days	Encephalitis <1% / pneumonitis 12% / ophthalmologic 5%

Lymphadenopathy is common and most frequently occurs in the neck, groin, and submandibular region with the first six days of illness, which can help distinguish this monkeypox from smallpox [35,41,45,54-56]. It is important to understand the presentation of the illness over its various stages (Fig. 2).

The rash (Table 2 and Figs. 3, 4, 5) is the most characteristic feature of the disease and can present with all lesions at the same stage (similar to smallpox) or with lesions at various phases of development (similar to chickenpox) [1,57]. The rash typically begins on days 1-3 as pruritic or painful, indurated, umbilicated lesions most commonly on the face [5,40,41]. It can appear as late as the 11th day of illness [5,40,41]. Lesions most commonly spread in a centrifugal manner to involve the chest, arms, and legs, followed by the hands and feet [5,20,40,41]. Involvement of the whole body is common within 24 h of the first lesion, and may involve the oral mucosa, genitalia, and conjunctivae as well [1,3,6,51]. Current data suggest the face is involved in 95%, the upper extremities in 81.3%, palms and soles in 75%, the lower extremities in 65.6%, the oral mucosa in 70%, the genitalia in 30%, and conjunctivae in 20% [1,5-7]. Lesions are generally 2-5 mm in diameter, though they may reach 1 cm [34,58,59]. They usually begin as macules and uniformly progress every 1-2 days to papules (day 3), then to vesicles containing clear liquid (days 4-5), and finally to pustules filled with yellow fluid (days 6-7), which then crust over and form scabs (days 7-14) [6,7]. The sequential nature of the rash helps distinguish monkeypox from its closest differential, chickenpox, in which all four stages of the rash appear concurrently. While the monkeypox rash usually progresses as described, successive crops can appear over the first period of illness, allowing for the simultaneous appearance of various stages of lesions. The patient is considered contagious until all scabs have fallen off [1,58]. Refer to Table 1 for a summary of the frequency of occurrence of the symptoms and signs seen in monkeypox.

Severe illness may occur, including secondary skin infections in 19%, pneumonitis in 12%, ophthalmologic complications in up to 5%, and encephalitis in <1% [6,20,56,58,59]. Mortality rates can reach 10% and most commonly occur within the second week of infection [20,40,56]. There are several risk factors for greater disease severity and complications. These include patients with over 100 skin lesions and patients with mucous lesions causing dysphagia, leading to decreased oral

Table 2
Features of the monkeypox rash [63-65].

Feature	Descriptor	Comment
lesion morphology with evolution	initially macular lesions with progression to papules (day 3 of rash), to vesicles (days 4-5), & to pustules (days 6-7) with eventual scabbing (days 7-14) initially on face (95%) with spread to arms & legs (80-85%) & subsequently to hands & feet (75%); upper extremities (80%) are more often involved than lower extremities (65%)	lesions can appear in successive crops over the first 1-2 weeks of illness
lesion distribution	trunk also involved in cases with widespread distribution in cases involving focal inoculation, lesions appear at inoculum site initially	overall disease severity is related to lesion number with severe illness encountered in patients with extensive rash
lesion number (rash burden)	mild disease - < 10 lesion moderate disease - 10 to 100 lesions severe disease - > 100 lesions mucosal lesions indicate severe disease	specific mucous membrane involvement follows general rash distribution skin & mucosal lesions can be very painful
mucous membrane involvement	oral 70%, genitalia 30%, conjunctiva / cornea 20%, & rectal 14% skin: pain & pruritis mucous membranes: painful swallowing, difficulty with defecation, dysuria, foreign body sensation in eyes	complications are more common in moderate to severe disease
dermatologic symptoms		
complications	secondary bacterial infection of lesions dehydration desquamation of skin with fluid & electrolyte losses visual impairment	

Fig. 3. 4-year-old female with monkeypox, 1971. Available at https://upload.wikimedia.org/wikipedia/commons/e/ef/Monkeypox.jpg.
intake and volume depletion [56,58]. Alternatively, patients with <25 lesions tend to have a less severe course [5]. Children, young adults, and patients not immunized against smallpox are at greater risk for severe disease, as are patients with cancer, diabetes mellitus, heart failure, emphysema, and those with immunodeficiencies (e.g., HIV/AIDS, undergoing treatment with cytotoxic chemotherapy, anti-rejection medications, radiation, or chronic steroids) [6,20,43,60]. Patients with HIV can have longer duration of illness and greater likelihood of genital ulcers, larger sized lesions, and secondary skin infections [61,62]. HIV infection is also associated with a higher mortality risk [40].

3.3.1. Current outbreak with differing presentation characteristics

Much of the knowledge regarding the clinical presentation of monkeypox is based on prior sporadic cases as well as smaller outbreaks [1,3]. The current outbreak, as noted above, has been especially prominent in the MSM community, with a distinct presentation pattern. First, the patients are predominantly male in the 30 to 50 year age period. The classic prodromal symptoms are encountered somewhat less frequently in the current outbreak, ranging from 27 to 62% of those recently infected compared to past experience with approximately 70–80% presenting with weakness, myalgias, etc.; fever is seen commonly in both the recent outbreak (60%) and the historical comparison groups (80%) [63-65].

The rash typical of monkeypox also appears to have a different distribution and density in the current outbreak. Recent reports note that the current rash, involving both skin and mucous membranes, can be the initial manifestation of illness in more than half of infected patients. In other words, these patients do not present with current or recent prodromal symptoms and signs, such as fever and the reportedly characteristic lymphadenopathy. In a small subset of these patients, the mucocutaneous rash is the only manifestation of monkeypox infection. The number of monkeypox lesions on the skin or mucous membranes is also lower in the current outbreak; more than half of patients had 10 or fewer lesions, frequently noted in the perineal region (genital and ano-rectal areas) – importantly, a very large percentage of these these patients with fewer genital lesions presented with 1 single monkeypox sore. In the current outbreak, penile, ano-rectal, and oral-pharyngeal lesions are seen with significant frequency [63-65]. Refer to Table 3 for a comparison of past with current outbreak presenting characteristics.

3.4. Differential diagnosis

Several other conditions can be mistaken for monkeypox, including chickenpox (Varicella-zoster) and smallpox (Variola major or minor) (Table 4). These are unlikely to produce lymphadenopathy, and chickenpox lesions more commonly are superficial and rapidly progress, reaching the crust stage within 24 h [7,57,66,67]. Smallpox has not been documented since 1977, but bioterrorism remains a possibility [68]. Smallpox has lesions all at the same stage, but this is not present in all cases of monkeypox. Other conditions to consider include anthrax, cowpox, drug reactions, erythema multiforme, hand-foot-mouth disease, measles, molluscum contagiosum, Rocky Mountain Spotted Fever, scabies, syphilis, staphylococcal skin infections, Stevens-Johnson Syndrome / Toxic Epidermal Necrolysis, and tinea species.

3.5. Isolation precautions & personal protective equipemnt

Patients with suspected monkeypox should be isolated in a room with a closed door. Clinicians entering the patient’s room should wear personal protective equipment (PPE) with standard, contact, and airborne precautions. This form of PPE will typically include a disposable gown, gloves, eye protection, and an N95 respirator or equivalent [68].

3.6. Establishing the diagnosis

Clinical history is essential in the initial evaluation of the patient with suspected monkeypox, including travel to an endemic area, contact with other infected patients, previous and current symptoms, onset of symptoms, sexual history, and whether they have previously received smallpox vaccination. Clinicians should perform a full skin examination, along with the oral mucosa and the eyes, viewing the location and the stage of the lesions. Examination of the cardiopulmonary,

Table 3

Feature	Current Outbreak	Past Outbreaks
Gender	predominately male	equal gender distribution
Age	30–50 years	variable range
Sexual orientation	predominantly gay male & bisexual male	primarily heterosexual (male & female)
Mode of virus transmission	skin-skin contact during sexual activity	large droplet aerosol & contact with skin lesions
Prodromal symptoms	25–60%	70–80%
Fever	60%	80–85%
Rash as initial manifestation	before prodromal symptoms & fever	60%
Lymphadenopathy	55–60%	90%
Rash-cutaneous	90–100%	95%
Rash-mucous membranes	100%	15–70%
Muco-cutaneous rash only without systemic features	15%	uncommon
Table 4
Comparison of the clinical characteristics of chickenpox, monkeypox, and smallpox.

Characteristic	Chickenpox	Monkeypox	Smallpox
Incubation period (days)	12–14	2–21	7–17
Length of prodromal phase (days)	0–2	1–5	2–4
Stages of lesion development	Lesions at different stages of development	Usually at the same stage of development but can also be at different stages	Lesions at the same stage of development
Rash distribution	Centripetal	Centrifugal	Centrifugal
Frequency of lesions on palms or soles	Rare	Superficial, 2–3	Common
Lesion depth (mm)	Within 24 h	5–7	Deep, 4–6
Length of time until crusting of pustules (days)	6–14	14–21	1
Length of time from rash onset to desquamation (days)	Usually absent	Significant	Usually absent
Lymphadenopathy			

abdominal, and neurologic sites is also recommended for evaluating any complications of monkeypox or other conditions.

3.6.1. Laboratory testing

Laboratory testing including complete blood cell count (CBC), electrolytes, and renal and liver function should be obtained. In the 2003 outbreak, abnormal findings included elevated blood urea nitrogen in 61%, hypoalbuminemia and elevated liver function tests in 50%, leukocytosis in 45% and thrombocytopenia in 35% [5]. However, these findings are not necessarily associated with greater disease severity [5].

To diagnose monkeypox, samples should be obtained from the lesion (roofs or contents) or exudates, but preferably an open lesion, if possible in all institutions [3,69-74]. Immunologic serum testing for anti-VGIV (Table 7) [76-79]. The currently preferred test is nucleic acid amplification testing with real time polymerase chain reaction (RT-PCR). Sensitivity and specificities reach 100% for RT-PCR, but this is not available in all institutions [3,69-74]. Immunologic serum testing for antigens or antibodies is available. However, there is cross-reactivity with other orthopoxviruses, and immunologic testing is not sufficiently sensitive or specific for diagnosis of monkeypox [71,72]. The CDC has provided a case definition based on clinical characteristics and testing (Table 5) [75].

3.7. Management

Current treatment of monkeypox is primarily supportive with pain control, hydration, and managing any complications. Intravenous fluid resuscitation may be required in patients with hypovolemia. Antibiotics may be necessary in patients with a secondary bacterial skin infection, pneumonia, or conjunctivitis but should not be given prophylactically to prevent infection. High-risk patient populations should be considered in treatment decisions (Table 6).

There are no medications specifically approved for monkeypox as of July 28, 2022, but the United States Food and Drug Administration (FDA) has approved several medications for the management of smallpox [6,76]. These medications may be helpful for monkeypox, as it is also an orthopoxvirus, and the CDC recommends their use in several populations listed in Table 3. Medications that may be used from the Strategic National Stockpile include brincidofovir, cidofovir, tecovirimat and vaccinia immune globulin intravenous (VIGIV) (Table 7) [76-79]. There are no clinical studies evaluating these medications in humans with monkeypox, but animal studies do demonstrate efficacy.

3.8. Disposition

Disposition is based on the ability to tolerate oral intake, adequate pain control, and associated complications. Patients unable to tolerate oral intake, those with uncontrolled pain, and those with major organ complications may require inpatient admission. If the patient does not require admission, they should strictly quarantine from others around them, as well as other mammals (e.g., pet dogs or cats). Patients require isolation until all scabs have fallen off and there is a new layer of skin [6,60,80]. Local and state health authorities should also be involved in the decision to discontinue quarantine. If the patient must break quarantine, they should wear long sleeves and pants and a surgical mask in order to reduce contact with any lesions and protect others from respiratory droplets [6,80]. If they live with others, they should isolate themselves in a separate room. If this is not possible, the patient should cover the lesions and maintain as much distance from others as possible.

A surgical mask at minimum should be worn [6,80]. The dirty laundry, including bedding, from infected patients should be washed in warm to hot water in a laundry machine. Soiled dishes and utensils can be cleaned in a dishwasher or by hand with warm/hot water and soap. Any contaminated surfaces in the living area should be disinfected with cleaning products [6,80]. Dried matter from lesions may be suspended in the air with certain activities such as sweeping or vacuuming, so this should be avoided [80].

3.9. Vaccination

At the present time, there are no data available regarding the effectiveness of the two existing vaccines in the current Monkeypox viral outbreak [90]. Two different vaccines exist and can be considered for prevention of Monkeypox infection: the JYNNEOS vaccine and the ACAM2000 vaccine.

The JYNNEOS vaccine (also known as Imvamune or Invanex) is FDA licensed and approved for the prevention of Monkeypox infection. JYNNEOS contains a live Vaccinia virus that does not replicate efficiently in human cells. This vaccine is administered as two subcutaneous injections 28 days apart with immunity reaching its peak 14 days after the second injection. JYNNEOS is FDA approved for use in the prevention of smallpox or monkeypox in people ages 18 years and older. Use in younger populations currently requires a single patient emergency use authorization from FDA for each person under 18 years. The CDC is developing an Expanded Access Investigational New Drug protocol to allow broader use of JYNNEOS in the pediatric population. In contrast to the ACAM2000 vaccine, JYNNEOS is safe to administer to people with HIV and exfoliative skin conditions. While there are no human data, animal studies do not demonstrate evidence of reproductive harm; at the present time, both pregnancy and breastfeeding are not considered contraindications to receiving the JYNNEOS vaccine. Currently, the JYNNEOS vaccine is in short supply in the United States, though production is increasing with an anticipated augmented stock within the next one to three months [90].

ACAM2000, is licensed and approved by the FDA only for the prevention of smallpox virus infection; however, its use has been approved for the prevention of Monkeypox infection via an Expanded Access Investigational New Drug application. The ACAM2000 vaccine contains a live Vaccinia virus that is replication-competent, meaning that the
Confusing diseases might be mistaken for monkeypox (e.g., herpes, secondary syphilis, and varicella zoster). Immune boosting does not occur for 28 days after ACAM2000 administration. The ACAM2000 technique with a special, or bifurcated, needle. Maximal immune response can be observed for 28 days after ACAM2000 administration.

Table 5
CDC Case Definition [1].

| Suspect Case: | New characteristic rash
| OR | Meets one of the epidemiologic criteria and has a high clinical suspicion for monkeypox
| Probable Case: | No suspicion of other recent Orthopoxvirus exposure (e.g., Vaccinia virus in ACAM2000 vaccination) AND demonstration of the presence of Orthopoxvirus DNA by polymerase chain reaction of a clinical specimen
| OR | Orthopoxvirus using immunohistochemical or electron microscopy testing methods
| OR | Demonstration of detectable levels of anti-orthopoxvirus IgM antibody during the period of 4 to 56 days after rash onset
| Confirmed Case: | Demonstration of the presence of Monkeypox virus DNA by polymerase chain reaction testing or Next-Generation sequencing of a clinical specimen OR isolation of Monkeypox virus in culture from a clinical specimen

Epidemiologic Criteria:
Within 21 days of illness onset:
- Reports having contact with a person or people with a similar appearing rash or who received a diagnosis of confirmed or probable monkeypox
- Had close or intimate in-person contact with individuals in a social network experiencing monkeypox activity, this includes men who have sex with men (MSM) who meet partners through an online website, digital application ("app"), or social event (e.g., a bar or party)
- Travelled outside the US to a country with confirmed cases of monkeypox or where Monkeypox virus is endemic
- Had contact with a dead or live wild animal or exotic pet that is an African endemic species or used a product derived from such animals (e.g., game meat, creams, lotions, powders, etc.)

Exclusion Criteria:
- A case may be excluded as a suspect, probable, or confirmed case if:
 - An alternative diagnosis can fully explain the illness
 - An individual with symptoms consistent with monkeypox does not develop a rash within 5 days of illness onset
 - A case where high-quality specimens do not demonstrate the presence of Orthopoxvirus or Monkeypox virus or antibodies to orthopoxvirus

Abbreviations: HIV/AIDS - human immunodeficiency virus and acquired immuno-deficiency syndrome infection; TNF - tumor necrosis factor; GVHD - graft-versus-host disease; VZV - varicella zoster virus; HSV - herpes simplex virus.

Table 6
CDC recommended on identification of high-risk populations – those individuals at increased risk for adverse outcome due to monkeypox viral infection.

High-Risk Populations – Those Individuals at Increased Risk for Adverse Outcome due to Monkeypox Viral Infection
• Patients with Monkeypox viral infection complications
• Secondary bacterial skin infection
• Dehydration
• Pneumonia
• Concurrent disease
• Significant comorbidities
• Patients with severe disease
• Sepsis
• Pneumonitis
• Encephalitis
• Hemorrhagic disease
• Extensive rash with confluent lesions
• Immunocompromised patients
• HIV/AIDS
• Leukemia / lymphoma
• Generalized malignancy
• Solid organ transplantation
• Recipient with hematopoietic stem cell transplant <24 months post-transplant or ≥ 24 months but with GVHD or disease relapse
• Therapy with alkylating agents, antimitobolites, radiation, TNF inhibitors, or high-dose steroids
• Autoimmune disease with immunodeficiency
• Pediatric patients (particularly <8 years of age)
• Patients with history or presence of atopic dermatitis or other active exfoliative skin conditions
• Eczema or psoriasis (extensive)
• Burns
• Impetigo
• Varicella/extended HSV infection
• Severe acne
• Severe diaper dermatitis with extensive areas of denuded skin
• Pregnant or breastfeeding women
• Patients with infections in the following anatomic regions: conjunctival/corneal, oral cavity, oropharyngeal, genital, ano-rectal areas

4. Conclusion

Monkeypox was declared a global health emergency in July 2022; in early August 2022, the federal government of the United States made a similar declaration, noting that Monkeypox is a national health emergency. This review seeks to provide emergency medicine clinicians with a focused overview of this virus, based upon extrapolated healthcare or laboratory workers), post-exposure prophylaxis (PEP, used in individuals who have been directly exposed to a patient with suspected or confirmed Monkeypox infection), and outbreak-response post-exposure prophylaxis (PEP + , an expanded form of PEP aimed at larger groups of individuals who may have been exposed to Monkeypox viral infection).

While emergency medicine clinicians can be involved in all four vaccine strategies, during periods of heightened Monkeypox contagion, the emergency medicine clinician is most likely to deliver PEP to patients only in the post-exposure prophylaxis strategy (i.e., considering the use of the vaccine in patients who have been exposed to a suspected or confirmed case). The PEP strategy is most effective in preventing infection if the vaccine is administered within 4 days of exposure. If given between 4 and 14 days post-exposure, the likelihood of preventing infection is much lower but can still reduce the severity of the illness should it develop. It is also recommended to consider administering the vaccine from a PEP strategic perspective beyond 14 days exposure to those individuals at higher risk of adverse outcome, such as those patients with significant immunosuppression [90].

Virus particles are capable of infecting cells and replicating to produce additional infectious particles. Due to it being replication competent, this vaccine should not be given to patients with moderate to severe immunosuppression, chronic skin conditions such as eczema or other exfoliative disorders, or pregnancy. Importantly, the ACAM2000 vaccine has been associated with both myocarditis and pericarditis. The effectiveness of ACAM2000 in the prevention of the smallpox viral infection is supported by human clinical trials and animal studies; at the present time, there are no data regarding its effectiveness in the prevention of Monkeypox viral infection in the current outbreak. The ACAM2000 vaccine is administered as one subcutaneous dose via multiple puncture technique with a special, or bifurcated, needle. Maximal immune boosting does not occur for 28 days after ACAM2000 administration. This vaccine is more readily available in the United States [90].

During widespread viral illness outbreaks, vaccines are used in four strategic approaches, including general vaccination of the population (general prophylaxis), pre-exposure prophylaxis (PrEP), targeted at individuals at high risk for acquiring monkeypox infection, such as...
knowledge from past outbreaks as well as from related infectious illnesses, such as smallpox. The virus is transmitted by contact with an infected animal or human or contaminated material. Patients present with a prodromal flu-like illness and lymphadenopathy. A rash spreading in a centrifugal manner involving the oral mucosa, face, palms, and soles is typical, with lesions progressing along various stages. Confirmation includes PCR testing, if locally available. Most patients improve with symptomatic therapy, and as of August 2022, there are no approved treatments specifically for monkeypox. There are several high-risk patient populations for whom antiviral treatment should be considered, if it is locally available.

Conflict of interest

None.

CRediT authorship contribution statement

Brit Long: Writing – review & editing, Writing – original draft, Validation, Supervision, Resources, Project administration, Methodology, Formal analysis, Data curation, Conceptualization. **Alex Koyfman:** Writing – review & editing, Writing – original draft, Resources, Methodology, Investigation, Conceptualization. **Michael Gottlieb:** Writing – review & editing, Writing – original draft, Validation, Methodology, Formal analysis, Conceptualization. **Stephen Y. Liang:** Writing – review & editing, Writing – original draft, Methodology, Formal analysis, Conceptualization. **Brandon M. Carius:** Writing – review & editing, Writing – original draft, Methodology, Formal analysis, Conceptualization. **Summer Chavez:** Writing – review & editing, Writing – original draft, Methodology, Formal analysis, Conceptualization. **William J. Brady:** Writing – review & editing, Writing – original draft, Supervision, Resources, Project administration, Methodology, Formal analysis, Data curation, Conceptualization.

References

[1] About Monkeypox. Centers for Disease Control and Prevention. Updated June 17, 2022. https://www.cdc.gov/poxvirus/monkeypox/about.html; 2021.
[2] Monkeypox – United Kingdom of great Britain and northern Ireland. (nd) World Health Organization Retrieved May 22, 2022, from https://www.who.int/ emergencies/disease-outbreak-news/item/2022-DON383. 2022
[3] Monkeypox. World Health Organization. https://www.who.int/news-room/factsheets/detail/monkeypox; 19 May 2022. Accessed July 21, 2022.
[4] Monkeypox. Centers for Disease Control and Prevention. https://www.cdc.gov/poxvirus/monkeypox/index.html. Accessed July 24, 2022.
[5] Huhn G, Bauer A, Yorita K, et al. Clinical characteristics of human Monkeypox, and risk factors for severe disease. Clin Infect Dis. 2005;41(12):1742–51.
[6] ACP Monkeypox Field Guide. American College of Emergency Physicians. https://www.acep.org/monkeypox-field-guide/cover-page/; 2022. Accessed July 8, 2022.
[7] Clinical Recognition. Centers for Disease Control and Prevention. Updated June 24, 2022. https://www.cdc.gov/poxvirus/monkeypox/clinicians/clinical-recognition.html. Accessed July 8, 2022.

Table 7

Name	Dose	Treatment Length	Adverse Effects	Contraindications
Brincidofovir (CMX001 or Tembexa)	• <10 kg: 6 mg/kg oral suspension once weekly			
• 10 to 47 kg: 4 mg/kg oral suspension once weekly
• ≥48 kg: 200 mg tablet once weekly | Two weeks | • Nausea, vomiting, diarrhea
• Abdominal pain
• Transaminits
• Male fertility impairment
• Fetal toxicity
• Fever
• Nausea & vomiting
• Nephrotoxicity
• Neutropenia
• Decreased intraocular pressure
• Anterior uveitis or iritis
• Fanconi syndrome
• Headache
• Nausea & vomiting
• Abdominal pain
• Anemia
• ECG changes | None |

| Cidofovir (Vistide) | • 3 to 5 mg/kg IV
• Administer 1 L normal saline before and after the infusion
• Administer probenecid 2 g 3 h prior to infusion, followed by 1 g at 2 h and 1 g at 8 h post-infusion | Single dose | Absolute:
• Severe creatinine >1.5 mg/dL
• ≥2+ proteinuria | Relative:
• Renal impairment with creatinine ≤1.5 mg/dL |

| Tecovirimat (TPOXX, ST-246) | Capsule:
• 13 to 24 kg: 200 mg BID
• 25 to 39 kg: 400 mg BID
• 40 to 119 kg: 600 mg BID
• ≥120 kg: 600 mg TID
• Must be taken with full, fatty meal | 14 days | Capsule: None
• Headache
• Nausea & vomiting
• Abdominal pain
• Anemia
• ECG changes
• Parenteral: creatinine clearance <30 mL/min |

| Vaccinia Immunoglobulin (VIGIV) | • 6000 units/kg IV
• 9000 to 24,000 units/kg IV may be considered if the patient does not respond to the initial dose | Single dose; may repeat based on patient condition (specific data are lacking) | • Isolated vaccinia keratitis
• History of anaphylaxis or prior severe systemic reaction associated with parenteral administration of VIGIV or other human immune globulin preparations
• IgA-deficient patients with antibodies against IgA & history of IgA hypersensitivity |
