Health-related quality of life and lived experiences in males and females with thoracic aortic disease and their partners

Carlijn G E Thijssen,1,2 Silvy Dekker,1 Lidia Rianne Bons,1 Arjen L Gökalp,3 Robert M Kauling,1 Annemien E van den Bosch,1 Judith Anne Adriane Ell Cuypers,1 Elisabeth M W J Utens,4,5 Roland R L van Kimmenade,1,2 Johanna J M Takkenberg,3 Leontien M H Roos,6 Eva Goossens7,8,9 Jolien W Roos-Hesselink1

ABSTRACT

Objective Thoracic aortic disease (TAD) may have substantial impact on health-related quality of life (HRQoL). We described HRQOL in patients with TAD, cardiovascular screening participants and their partners; identified factors associated with HRQOL; and explored lived experiences and feelings of anxiety or depression using a mixed methods design.

Methods For this cross-sectional study, all consecutive patients visiting the TAD outpatient clinic (2017–2019) at our centre were asked to complete three questionnaires: the Short Form 36 (SF-36), the Hospital Anxiety and Depression Scale (HADS) and the Rotterdam Disease Specific Questionnaire (RDSQ). A subsample was invited for in-depth interviews.

Results In total, 261 participants were included: 147 patients with TAD (thoracic aortic diameter ≥40 mm; 54 females, 36.7%), 114 screening participants (cardiovascular family screening; 71 females, 62.3%) and 66 partners. Compared with the general population, patients with TAD showed markedly lower HRQOL, whereas screening participants’ HRQOL was less impaired. Female and younger participants scored significantly lower on the SF-36 and HADS compared with male and older participants. Smaller aortic diameter was associated with better RDSQ score, and previous aortic surgery was associated with higher HADS depression scores. Furthermore, partners scored significantly lower on 2/8 SF-36 subscales when compared with the general population. From 11 interviewees, determinants of psychological distress included coping strategies, impact on social and professional life, disease-related knowledge, state of aortic diameters and physical symptoms.

Conclusions Healthcare professionals must be aware of HRQOL impairments in patients with TAD, particularly in younger females. Moreover, attention for partners is needed. Coping strategies and communication within the family were found to be important factors influencing psychological distress, and might be valuable leads for counselling and HRQOL improvement in this population.

INTRODUCTION

Thoracic aortic disease (TAD), including thoracic aortic aneurysms and dissections, has
an estimated prevalence of 9/100 000 per year in females, and 16/100 000 per year in males. These patients are at risk of sudden cardiac death. An inherited pattern of TAD is found in about 20% of cases. Therefore, patients and family members are often included in genetic and cardiovascular screening programmes, and may face lifelong uncertainties.

The scarce evidence on health-related quality of life (HRQOL) in patients with TAD showed suboptimal results. Most research has been performed in patients with hereditary thoracic aortic diseases (HTAD) such as Marfan syndrome and Loeys-Dietz syndrome. In patients with HTAD, HRQOL was reduced as compared with the general population, and comparable to other chronic diseases.

To achieve HRQOL improvement, it is important to obtain more patient and disease-specific information on HRQOL and lived experiences. However, no studies to date have evaluated male-female-specific HRQOL in patients with TAD. Furthermore, the impact of the disease on HRQOL of partners of patients with TAD has not yet been investigated. It has been suggested that studies using disease-specific questionnaires and a combined quantitative and qualitative approach would provide better insight. Therefore, in addition to existing well-validated questionnaires, we developed a disease-specific questionnaire, and aimed to: 1) evaluate HRQOL, anxiety and depression in patients with TAD, screening participants and partners and compare this with the general population, 2) compare HRQOL between males and females, 3) identify factors associated with HRQOL and 4) explore lived experiences of patients with TAD and their feelings of anxiety or depression.

METHODS

Study populations

All consecutive patients who visited the specialised TAD outpatient clinic of our tertiary care centre between October 2017 and July 2019, were eligible for inclusion. The TAD outpatient clinic is a specialised outpatient clinic in which patients are seen by cardiologists or physician assistants for cardiovascular family screening or aortic surveillance, including referral from primary care and secondary care. Inclusion criteria were: adult age (≥18 years), outpatient clinic visit for cardiovascular (family) screening or follow-up of TAD. Exclusion criteria were intellectual disability or language barrier. All eligible patients were invited to participate in the study, reasons for exclusion or failure to complete the questionnaires are shown in figure 1. Included participants were divided into two groups: participants with a (genetic) predisposition and/or positive family history of TAD, hereafter referred to as ‘screening participants’; and ‘patients with TAD’ under surveillance for confirmed thoracic aortic aneurysm defined as a thoracic aortic diameter of ≥40 mm.

![Figure 1. Flowchart of patient inclusion](http://openheart.bmj.com/)

Data collection

All included patients completed three questionnaires: the Short Form 36 (SF-36), the Hospital Anxiety and Depression Scale (HADS) and the Rotterdam Disease Specific Questionnaire for TAD (RDSQ), which was developed for this study. The questionnaires were distributed 1–2 weeks before the scheduled outpatient visit. Partners were asked to complete the same set of questionnaires either during the outpatient clinic visit or via email. All questionnaires were documented using a secured web-based application for distribution of questionnaires during clinical research (GEneric Medical Survey Tracker, Erasmus MC and Equipe Zorgbedrijven, latest release 2019, V.1.8.6, open source). This application did not allow any missing answers. Patients who did not complete all three questionnaires were excluded. Additional data were collected from the patient files using a standardised case report form. Body surface area (BSA) was calculated using the DuBois and DuBois formula.
Questionnaires

The SF-36 questionnaire is a widely used HRQOL questionnaire with 36 items, which has eight domains: Physical Functioning (PF), Role limitations due to Physical health problems (RP), Bodily Pain (BP), General Health perceptions (GH), Vitality (VT), Social Functioning (SF), Role limitations due to Emotional problems (RE) and general Mental Health (psychological distress) (MH).12 13 The first four domains (PF, RP, BP and GH) together form the Physical Component Summary (PCS) and the last four domains (VT, SF, RE and MH) form the Mental Component Summary (MCS). All SF-36 subdomains have a score range of 0–100, with higher scores reflecting a better quality of life. The SF-36 has been translated and validated in the Dutch language.12 Male and female SF-36 scores of participants were compared with male-female-specific norm values.12 Unfortunately, no age-specific norm values were available for males and females separately. Therefore, an additional analysis was performed to compare participants with an age-matched general Dutch population.12 Likewise, SF-36 scores of partners were compared with the general population. Male-female-specific PCS and MCS were calculated using the mean and SD of the general Dutch population.

The HADS questionnaire assesses signs of anxiety and depression, and has been validated in the Dutch language.14 This 14-item scale is divided in two dimensions: anxiety (seven items) and depression (seven items). The responses result in a score for each dimension with a score range of 0–21 and a total overall score with a score range of 0–42. Higher scores represent higher levels of anxiety and depression. A score of ≥8 on the HADS anxiety and depression subscales is internationally used as the cut-off score to define elevated levels of anxiety/depression.15 HADS scores of participants were compared with age-matched norm values.14

The RDSQ for TAD was developed by a multidisciplinary team in our centre, including a cardiologist, psychologist, PhD candidate and physician assistant (online supplemental file 1).10 16 The purpose of this disease-specific questionnaire was to assess the impact of having TAD on daily life factors, such as: employment; family life; sexual functioning and sports participation. The questionnaire contains 18 statements which participants were asked to rate on a 10-point Likert scale. A higher score reflects better agreement with the statements, and more impaired TAD-related quality of life.

In-depth interviews

Eleven participants were purposively selected by an independent researcher based on differences in age, sex, genetic disorder, previous surgery, symptoms of depression and anxiety (HADS score) and RDSQ score (figure 1), in order to create a heterogeneous group. They were invited for a semi-structured qualitative interview using a topic list, which evolved over the course of the study as an iterative process. Interviews were audio-taped using a voice recorder and non-verbal signs were noted. A verbatim transcript of the interviews was made on the same day.

The verbatim transcripts were analysed using content analysis, applying a multistep consecutive approach starting with an initial open coding phase, followed by axial coding and finishing with a selective coding process.17 In addition to the interviewer (SD), two other researchers (CGET and EG) read the interview transcripts, and the individual narrative of each participant was constructed (ie, open coding). In the second phase, these researchers independently coded the individual narratives to identify significant and common aspects (ie, axial coding). When necessary, decisions were made in consensus. In a third phase, SD and EG analysed the codes together to construct the narrative syntheses (ie, selective coding) and the final coding tree, including an overview of the most important factors. The coding process was carried out using the NVIVO V.12 plus software (QSR International, March 2018).

Statistical analysis

Data were analysed using SPSS statistics (IBM SPSS Statistics V.25). Continuous data were presented as mean and SD when normally distributed, and as median with IQR when skewed. Categorical data were presented as frequencies with percentages. Comparison between patient and normative data was analysed using means and SD. Unpaired Student’s t-test or non-parametric Wilcoxon test were used to compare continuous variables, χ^2 test or Fisher’s exact test were used to compare categorical variables. The one-sample Student’s t-test was used to compare norm-values with the study population means. Associations between baseline characteristics and RDSQ and HADS scores were evaluated using univariable linear regression models. Factors with a p value of <0.2 and factors that were considered clinically relevant were considered for multivariable linear regression models. All models were adjusted for age and sex. Linear regression analyses were performed for screening participants and patients with TAD combined, and for partners separately. An α-value of ≤0.05 was considered significant. Bonferroni correction for multiple testing was applied.

RESULTS

Patient population

Figure 1 shows a flow chart of the inclusion process. In total, 261 participants were included comprising 147 patients with TAD (54 females, 36.7%) and 114 screening participants (71 females, 62.3%). Furthermore, 66 partners completed the questionnaires. The partners’ sex was registered in 53 participants (80%), of which 63% was female.

Table 1 shows baseline characteristics of included males and females. Males showed significantly higher height, weight, BSA and absolute diameters of the thoracic aorta. Females showed higher adjusted ascending aortic diameters (indexed for BSA). A significantly higher percentage

Thijssen CGE, et al. Open Heart 2020;7:e001419. doi:10.1136/openhrt-2020-001419
Table 1 Patient characteristics

	Total (n=261)	Interviews (n=11)	Males (n=136)	Females (n=125)	P value
Age, years	52.9±15.8	55.5±14.2	53.7±15.9	52.1±15.7	0.407
Length, cm	177.2±14.7	178.0±8.5	180.4±13.9	169.7±11.7	<0.001
Weight, kg	83.9±19.4	84.5±16.5	92.2±17.9	75.3±17.1	<0.001
BSA, m²	2.0±0.2	2.0±0.2	2.1±0.2	1.9±0.2	<0.001
Hypertension	117 (44.8)	8 (72.7)	66 (48.5)	51 (40.8)	0.267
Hyperlipidemia	66 (25.3)	4 (36.4)	42 (30.9)	24 (19.2)	0.082
Smoking	25 (9.6)	0 (0.0)	10 (7.4)	15 (12.0)	0.25
Diabetes	9 (3.4)	0 (0.0)	5 (3.7)	4 (3.2)	0.833
Renal dysfunction	5 (1.9)	0 (0.0)	2 (1.5)	3 (2.4)	0.584
History of depression	16 (6.1)	1 (9.1)	2 (1.5)	14 (11.2)	0.001
History of anxiety disorder	4 (1.5)	1 (9.1)	2 (1.5)	2 (1.6)	0.932
Beta-blocker use	60 (23.0)	5 (45.5)	35 (25.7)	25 (20.0)	0.271
ARB use	34 (13.0)	3 (27.3)	24 (17.6)	10 (8.0)	0.021
ACEI use	42 (16.1)	3 (27.3)	30 (22.1)	12 (9.6)	0.006
Diagnosis	0.314				
Marfan syndrome	10 (3.8)	1 (9.1)	7 (5.1)	3 (2.4)	0.267
Loeys-Dietz syndrome	10 (3.8)	3 (27.3)	4 (2.9)	6 (4.8)	0.407
Ehlers-Danlos syndrome	2 (0.8)	0 (0.0)	0 (0.0)	2 (1.6)	0.133
Other	12 (4.6)	0 (0.0)	6 (4.4)	6 (4.8)	0.841
Confirmed genetic mutation	61 (23.4)	4 (36.4)	28 (20.6)	33 (26.4)	0.537
Positive family history aortic disease	132 (50.6)	6 (54.5)	64 (47.1)	68 (54.4)	0.489
Abdominal aortic aneurysm	9 (3.4)	2 (18.9)	8 (5.9)	1 (0.8)	0.025
Maximal diameter aortic root†	37.6±5.7	38.9±4.5	40.1±5.5	34.7±4.3	<0.001
Indexed diameter aortic root,† mm/BSA	19.0±2.9	23.5±13.9	18.7±2.4	19.0±2.7	0.395
Maximal diameter ascending aorta†	37.0±6.8	41.8±6.4	38.4±6.6	35.7±7.0	0.004
Indexed diameter ascending aorta,† mm/BSA	18.7±3.9	20.8±3.5	17.9±3.3	19.5±4.2	0.003
Maximal diameter descending aorta†	27.1±6.3	27.6±3.2	28.0±6.2	25.2±6.2	0.004
Indexed diameter descending aorta,† mm/BSA	13.7±3.3	14.1±2.3	13.1±2.8	13.7±3.7	0.276
Previous aortic surgery	33 (12.6)	3 (27.3)	21 (15.4)	12 (9.6)	0.156
Previous dissection	23 (8.8)	1 (9.1)	9 (6.6)	14 (11.2)	0.192
Current partner	126 (48.3)		73 (53.7)	53 (42.4)	0.115
Current employment‡	103 (39.5)	6 (54.5)	64 (47.1)	39 (31.2)	0.008
Paid job	96 (36.8)	6 (54.5)	62 (45.6)	34 (27.2)	
Volunteer work	7 (2.7)	0 (0.0)	2 (1.5)	5 (4.0)	
Retired	57 (21.8)	3 (27.3)	28 (20.6)	29 (23.2)	
Student	16 (6.1)	0 (0.0)	7 (5.1)	9 (7.2)	
Unable to work/disabled	16 (6.1)	2 (18.2)	8 (5.9)	8 (6.4)	
Unemployed	12 (4.6)		1 (0.7)	11 (8.8)	
Exercise	0.799				0.035
Sports participation§	105 (40.2)	4 (36.4)	63 (46.3)	42 (33.6)	
Walking or cycling	104 (39.8)	5 (45.5)	47 (34.6)	57 (45.6)	
None	36 (13.8)	2 (18.2)	18 (13.2)	18 (14.4)	

Data are expressed as mean±SD or as absolute and percentage.
*Only patients without previous aortic surgery.
†Current employment=paid job or volunteer work.
‡Defined as: participating in any sport other than daily walking or cycling at any level at least once a week.
ACEI, ACE inhibitor; ARB, angiotensin II receptor blocker; BSA, body surface area.
Aortic and vascular disease

of males used ACE inhibitors (p=0.006) and angiotensin receptor blockers (ARBs) (p=0.021). Males were more often employed, and performed regular exercise more often, whereas females more often had a history of depression. Additionally, baseline characteristics between patients with TAD and screening participants were compared (online supplemental file 2).

Scores of patients with TAD and screening participants compared with the general population

Figure 2 shows comparison of SF-36 subscores of patients with TAD and screening participants with a sex-matched general population. Male screening participants showed a significantly higher score on the subdomain BP (77.3±22.7 vs 86.3±19.5, p=0.004), whereas male patients with TAD showed significantly lower scores on PF (77.9±25.0 vs 85.4±21.0, p=0.005), GH (54.0±23.1 vs 71.6±20.6, p<0.001) and VT (61.7±24.1 vs 71.9±18.3, p<0.001). Female screening participants showed a significantly lower score on GH (54.0±25.8 vs 69.9±20.6, p<0.001) and VT (54.8±26.4 vs 64.3±19.7, p=0.005). Female patients with TAD showed significantly lower scores on all SF-36 subdomains except MP and MH when compared with the general population: PF 64.7±26.3 vs 80.4±24.2, p≤0.001; RP 46.3±42.5 vs 73.8±38.5, p≤0.001; GH 49.0±21.9 vs 69.9±20.6, p≤0.001; VT 49.0±23.6 vs 64.3±19.7, p<0.001; SF 69.9±28.8 vs 82.0±23.5, p=0.003; RE 60.5±42.0 vs 78.5±35.7, p=0.003.

Figure 3 shows SF-36 scores of screening participants and patients with TAD compared with the age-matched general population. Younger patients with TAD and screening participants showed lower scores on all SF-36 subdomains, with increasing age this difference became smaller. HADS scores of patients with TAD and screening participants aged 18–65 years were not significantly different compared with the age-matched general population. Patients with TAD and screening participants older than 65 years showed lower scores when compared with the age-matched general population, especially on the HADS depression subdomain (2.9±3.7 vs 4.6±3.6, p=0.001).

Differences between HRQOL scores of males and females

Table 2 shows scores of male and female participants on subdomains of all questionnaires. Elevated scores (≥8) on the HADS anxiety subdomain occurred significantly more often in females (12.5% vs 29.6%, p=0.001).

Online supplemental file 3 shows stratified analysis of male-female HRQOL for screening participants and patients with TAD. Results were comparable to the unstratified analysis.

Online supplemental file 4 shows median scores of males and females on the RDSQ questionnaire. A significant difference was found between males and females on question 13, which indicates whether the participant experiences more anxiety than before the (potential) diagnosis of TAD (1.0 (IQR 1.0–3.0) vs 2.0 (IQR 1.0–5.0), p=0.011) and question 17 which indicates worries about the heredity of TAD (5.0 (IQR 2.0–8.0) vs 7.0 (IQR 5.0–9.0), p<0.001).

Health-related quality of life of partners

Table 3 shows the partners’ scores on all three questionnaires. Scores in partners were not significantly different compared with patients with TAD and screening participants. When compared with the general population, partners showed significantly lower scores on 2/8 SF-36 subdomains after Bonferroni correction: GH and VT. There were no significant differences in scores on the three questionnaires between partners of patients with TAD (n=46) and partners of screening participants (n=20).

Factors associated with HRQOL in patients with TAD, screening-participants and their partners

Multivariable analysis showed only history of anxiety disorder was associated with higher HADS anxiety score. Additionally, history of anxiety disorder, previous aortic
surgery, diabetes and indexed descending aortic diameter were found to be associated with higher HADS depression score. Higher RDSQ score was significantly associated with employment.

ARB use and history of aortic dissection in participants were associated with higher HADS anxiety scores in partners. Higher HADS depression scores of partners was associated with previous aortic surgery in the participants. Higher RDSQ score of partners was found to be associated with history of aortic dissection in the participants. The results of the univariable and multivariable analyses are displayed in online supplemental file 5.

In-depth interviews

Eleven participants (six females, mean age 57 years) were interviewed: four had a low scores; four had intermediate and three had high scores on the HADS and the RDSQ; four had known genetic mutations (Loeys-Dietz syndrome (n=3), Marfan syndrome (n=1)); five had familial TAD but no genetic diagnosis; three had already undergone aortic surgery, one had been accepted for surgery. Anxiety was not found to be a major topic in the interviews. Participants described a form of psychological distress related to having TAD and the risk of sudden events. Roughly, three groups could be distinguished, representing (almost) no psychological distress (n=5); moderate psychological distress (n=3) or prominent psychological distress (n=3). Among these groups there was great variability in the degree their daily life, personality and professional career were affected. Several factors seemed to positively influence the level of psychological distress: disease-related communication with family members; level of the disease-related knowledge of the participant; evolution of the aortic disease (stable aortic diameter) and coping strategies such as expressing emotions and seeking emotional support. Factors that negatively influenced the level of distress were: physical complaints; sense of loss of identity due to the disease, including sports participation and choice of profession.

Figure 4 was made to create an overview and shows which of these factors resulting from the coding tree were found to influence psychological distress the most. All participants had physical complaints such as thoracic pain, dyspnoea or tachycardia causing psychological distress. Sense of loss of identity was found to be a trigger in a smaller number of participants. Regular controls and stable aortic diameters had a great positive influence on psychological distress for the majority of participants. Knowledge about the disease seemed to decrease distress, although some participants expressed becoming more distressed after knowing what could happen. The unpredictable and uncertain course of the disease triggered a certain loss of control and increased psychological distress in almost all participants. Lifestyle restrictions on physical activity

Table 2 Male-female scores of participants on all questionnaires

	Total (n=261)	Males (n=136)	Females (n=125)	P value
RDSQ				
Total score	51.0 (32.0–80.0)	48.0 (29.3–78.5)	53.0 (34.5–85.5)	0.160
SF-36				
Physical Functioning	85.0 (60.0–95.0)	95.0 (71.3–100.0)	80.0 (50.0–95.0)	<0.001*
Role Physical	100.0 (25.0–100.0)	100.0 (50.0–100.0)	75.0 (12.5–100.0)	0.024
Bodily Pain	80.0 (57.5–100.0)	90.0 (67.5–100.0)	67.5 (45.0–100.0)	<0.001*
General Health	55.0 (40.0–100.0)	60.0 (40.0–80.0)	55.0 (35.0–70.0)	0.030
Vitality	60.0 (40.0–80.0)	70.0 (50.0–83.8)	50.0 (35.0–75.0)	<0.001*
Social Functioning	87.5 (62.5–100.0)	100.0 (75.0–100.0)	75.0 (62.5–100.0)	<0.001*
Role Emotional	100.0 (66.7–100.0)	100.0 (100.0–100.0)	100.0 (33.3–100.0)	<0.001*
Mental health	80.0 (64.0–88.0)	84.0 (69.0–92.0)	76.0 (56.0–88.0)	0.007
PCS	49.2 (38.2–55.8)	51.6 (41.8–56.3)	46.2 (35.4–54.5)	0.017
MCS	51.9 (42.8–56.9)	54.4 (48.0–57.4)	48.5 (37.9–55.0)	<0.001*
HADS				
Anxiety score	4.0 (2.0–7.0)	4.0 (2.0–6.0)	4.0 (2.0–8.0)	0.023
Depression score	2.0 (1.0–5.0)	1.5 (0.0–4.8)	2.0 (1.0–5.0)	0.043
Anxiety score ≥8	54 (20.7)	17 (12.5)	37 (29.6)	0.001*
Depression score ≥8	39 (14.9)	16 (11.8)	23 (18.4)	0.133
Total score	6.0 (3.0–12.0)	5.0 (2.3–10.0)	6.0 (4.0–15.5)	0.037

Data was non-parametrically distributed and therefore expressed as medians (IQR), or as absolute and percentage.

*Significant after Bonferroni correction.

HADS, Hospital Anxiety and Depression Scale; MCS, Mental Component Summary; Participants, screening participants and patients with thoracic aortic disease; PCS, Physical Component Summary; RDSQ, Rotterdam Disease Specific Questionnaire; SF-36, Short Form 36.
Aortic and vascular disease

Table 3
Scores of partners compared with participants and with the general population

	Partners (n=66)	Participants (n=261)	P value	General population	P value
RDSQ					
Total score	49.5 (32.5–77.0)	51.0 (32.0–80.0)	0.784		
SF-36					
Physical Functioning	76.1±25.2	76.1±26.5	0.991	83.0±22.8	0.035
Role Physical	65.6±41.1	67.4±4.6	0.748	76.4±36.3	0.044
Bodily Pain	74.1±25.4	75.5±25.7	0.707	74.9±23.4	0.806
General Health	55.8±21.8	55.4±24.4	0.902	70.7±20.7	<0.001*
Vitality	60.1±23.4	59.0±25.1	0.768	68.6±19.3	0.006*
Social Functioning	80.1±24.2	79.2±25.8	0.802	84.0±22.4	0.216
Role Emotional	84.7±31.4	77.2±37.5	0.108	82.3±32.9	0.553
Mental Health	76.9±17.1	75.2±19.4	0.529	76.8±17.4	0.957
PCS	45.5±11.5	46.4±11.5	0.568		
MCS	50.1±9.7	48.2±11.5	0.255		
HADS					
Anxiety score	4.0 (2.0–6.0)	4.0 (2.0–7.0)	0.554		
Depression score	1.0 (0.0–4.0)	2.0 (1.0–5.0)	0.158		
Total score	5.5 (3.3–10.0)	6.0 (3.0–12.0)	0.112		

Data are expressed as medians (IQR) when non-parametrically distributed. However, for comparison with the general population mean±SD was used.

*Significant after Bonferroni correction.

HADS, Hospital Anxiety and Depression Scale; MCS, Mental Component Summary; Partners, screening participants and patients with thoracic aortic disease; PCS, Physical Component Summary; RDSQ, Rotterdam Disease Specific Questionnaire; SF-36, Short Form 36.

and professional career were accepted by most of the participants. The majority (n=9) stated that their level of distress increased shortly prior to regular check-ups of the aortic diameter, and decreased again when the results showed a stable aortic diameter. Coping strategies seemed to influence all factors mentioned above. A more detailed description of the in-depth interviews results can be found in online supplemental file 6.

Figure 4
The influence on psychological distress of factors described in the coding tree. Red circle=negative influence on psychological distress; green circle=positive influence on psychological distress. The size of the circles corresponds with the amount of participants in whom psychological distress was triggered by this factor. Depression can result from a large amount of psychological distress. Patients’ coping strategies regulate the effect of these factors.
DISCUSSION
To our knowledge, this is the first study describing male-female-specific aspects of HRQOL in both screening participants and patients with TAD using a mixed methods approach. Male and female patients with TAD reported clearly impaired HRQOL compared with the general population, while screening participants were affected to a lesser extent. Moreover, female and younger participants showed the lowest HRQOL scores. HRQOL in partners was also found to be suboptimal, although less impaired than in patients with TAD. Additionally, level of anxiety in patients with TAD was not found to be a major topic in the in-depth interviews, participants rather described a form of psychological distress.

In this study, patients with TAD were found to have decreased HRQOL, coping problems and psychological distress, similar to the findings of Olsson et al and Connors et al. Additionally, we found HRQOL in screening participants was impaired, although to a lesser extent. We hypothesised that the risk of having TAD would equally impact screening participants compared with patients with TAD. However, having an aortic diameter ≥40 mm clearly had a more profound impact on HRQOL. This does not seem to result in clinically relevant levels of anxiety or depression, since HADS scores of patients with TAD were comparable to the general population. As has been reported before, most of our participants accepted an anxiety or depression, since HADS scores of patients with chronic kidney disease, but has not previously been reported clearly impaired HRQOL compared with the general population, while screening participants were comparable to the general population. As has been reported before, most of our participants accepted restrictions on physical activity and employment as ‘part of life’,

In the general population, HRQOL is known to decline with increasing age. We found a much less pronounced decline in patients with TAD. Presumably, the impact of having a serious disease with reduced life expectancy is more distinct at young age. In addition, we found less favourable scores, and more anxiety in females compared with males. This is also described in the general population and in patients with heart disease as well as chronic kidney disease, but has not previously been reported in patients with TAD. Multiple studies reported these male-female differences were largely attributable to sociodemographic factors such as income, physical activity and marital status. This might also apply to our population, since employment status and physical activity were significantly different between males and females. However, this does not completely seem to explain male-female difference in HRQOL. Another potential explanation might be that females experience their functional capacity and quality of life different from males, and this certainly needs more attention in future studies.

Partners’ HRQOL was also found to be affected, although to a lesser extent, and seemed to be negatively influenced by factors related to aortic events and disease progression in the participants. HADS anxiety scores in partners were associated with ARB use of the participants. This may be due to the increased risk of aortic expansion and eventually dissection when hypertension persists. The need of antihypertensive medication might therefore cause more worries and anxiety in partners. The impact of TAD on partners has been underexposed, but might be very important, especially since interviewed participants reported that communication with their partners and family about the disease was an important factor influencing their level of psychological distress. Therefore, we believe the impact of the disease on the quality of life in partners should be assessed on a regular basis as it might impact the HRQOL of the patients. More research is needed to evaluate which factors are important and can be easily addressed. It is essential to involve partners in counselling and interventions for HRQOL improvement, and provide practical advice on coping with the disease for patients as well as their partners.

Goldfinger et al and Moon et al showed that daily life aspects such as employment or health insurance impacted HRQOL rather than disease-related factors. In contrast, we found mainly disease-related factors, such as a history of aortic dissection or surgery and the diameter of the aorta, to be associated with HRQOL. These factors emerged from results of both the quantitative and qualitative analyses. Potentially, this is due to the presence of a reliable social-security system in the Netherlands. Interviewed participants experienced the disease as a continuous threat, as was previously described in patients with abdominal aortic aneurysm. When looking into the RDSQ results in more detail, we noticed the highest scores were found on questions about heredity and surgery (online supplemental file 4), which indicates these factors warrant attention. Our findings emphasise the importance of expectation management and counselling regarding the disease course and treatment plan to the patient and their partner or family members, as well as providing clear and patient specific information about the disease and treatment options for shared decision making. Clinicians should be aware of HRQOL impairments, anxiety and depression in patients with TAD and their partners, and systematic screening is mandatory. Several factors were identified which might improve HRQOL: employment of constructive coping strategies such as expressing one’s emotions, seeking emotional support, grieving loss of one’s identity; and good communication within the family. When indicated, psychological support should be offered. More research is needed to evaluate the potential positive effect of psychological support and counselling in these patients.

Limitations
In this study, we used three (digital) questionnaires to measure self-reported quality of life. Two are well-known validated questionnaires, the RDSQ questionnaire, however, was newly developed and used in one previous study so far. Its psychometric properties have to be further evaluated. Therefore, results of this questionnaire are to be interpreted with caution. The SF-36 is more suited to assess overall HRQOL and the HADS was used for detecting clinically relevant anxiety and depression. With the addition of the RDSQ, especially...
when combined with the results from the in-depth interviews, we were able to identify specific disease-related factors influencing HRQOL in this population. The overall response rate of patients participating in this study was 57%, which is comparable to other (online) surveys. In order to provide insight into potential selection bias, the selection process is represented in figure 1. Although some bias cannot be ruled out, we expect to have included a representative sample. The number of partners included was limited (25%). Not all patients had a partner, but still this number is relatively low and better coverage of the partners is important for future research.

CONCLUSIONS

HRQOL of patients with TAD was found to be impaired, most significantly in younger females. Previous aortic surgery, aortic dissection and larger diameter of the aorta were found to be associated with impaired HRQOL. Partners’ HRQOL was also reduced, warranting further attention. Patients with TAD and partners should be systematically screened for symptoms of depression and anxiety, and when indicated psychological support should be offered. Counselling patients to employ constructive coping strategies and good communication within the family might reduce psychological distress and improve HRQOL in this population.

Author affiliations

1Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
2Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
3Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
4Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, The Netherlands
5Research Institute of Child Development and Education, De Bascule-AMC, University of Amsterdam, Amsterdam, The Netherlands
6Paediatric Care, Erasmus Medical Center, Rotterdam, The Netherlands
7Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
8Fonds Wetenschappelijk Onderzoek-Vlaanderen, Brussels, Belgium
9Department of Nursing, UAntwerpen, Antwerp, Belgium

Contributors CGE and SD provided substantial contributions to the conception, design, data collection, data analysis, interpretation of the data and preparation of the manuscript. JWR-H supervised this project from its conception, including the study design, data analysis and interpretation and manuscript preparation. EG co-supervised the project on qualitative study design, data analysis and interpretation and manuscript preparation. These authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. LRB, ALS, RMK, AÉvdB, JAECC, EMWJJ, PRLvK, JMT and LMR provided substantial contributions to the conception, design and drafting of this work, aided in revising the work critically for important intellectual content and provided final approval of the version to be published. All authors consented to the submission of this manuscript.

Funding This study was supported by ZonMW (project number: 849200014) and by an ESON grant of the Erasmus MC (project number: 108600).

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval This study was approved by the local ethics committee (METC Erasmus MC, MEC-2017-057), and was designed, performed and controlled in accordance with current local and international Good Clinical Practice guidelines. Written and signed informed consent was obtained from all participants. This study was designed and performed without patient involvement.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. The data that support the findings of this study are available from the corresponding author (JWR-H) on reasonable request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Eva Gossens http://orcid.org/0000-0003-3421-5256
Jolien W Roos-Hesselink http://orcid.org/0000-0002-6770-3830

REFERENCES

1. Olsson C, Thelin S, Ståleå E, et al. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a national population-based study of more than 14,000 cases from 1987 to 2002. Circulation 2006;114:2611–8.
2. Mehta RH, Suzuki T, Hagan PG, et al. Predicting death in patients with acute type A aortic dissection. Circulation 2002;105:200–6.
3. Albomoz G, Coady MA, Roberts M, et al. Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg 2006;82:1400–5.
4. Erbel R, Aboyans V, Boileau C, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of cardiology (ESC). Eur Heart J 2014;35:2873–926.
5. Olsson C, Franco-Cereceda A. Health-related quality of life in thoracic aortic disease: Part I. cases managed Non-operatively. Aorta 2013;1:13–61.
6. Velvin G, Wilhelmse JN, Johansen H, et al. Systematic review of quality of life in persons with hereditary thoracic aortic aneurysm and dissection diagnoses. Clin Genet 2019;95:661–78.
7. Rand-Hendriksen S, Johansen H, Semb SO, et al. Health-Related quality of life in Marfan syndrome: a cross-sectional study of short form 36 in 84 adults with a verified diagnosis. Genet Med 2010;12:517–24.
8. Goldfinger JZ, Pieris LR, Devereux RB, et al. Marfan syndrome and quality of life in the GenTAC registry. J Am Coll Cardiol 2017;69:2821–30.
9. Fusar-Poli P, Klersy C, Stramesi F, et al. Determinants of quality of life in Marfan syndrome. Psychosomatics 2008;49:43–8.
10. Bons LR, van den Hoven AT, Damirchi AE, et al. Psychological well-being in patients with aneurysms-aorto-oesophageal syndrome. Am J Med Genet A 2019;179:1491–7.
11. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989;5:303–11, discussion 12–3.
12. Aaronson NK, Muller M, Cohen PD, et al. Translation, validation, and norming of the Dutch language version of the SF-36 health survey in community and chronic disease populations. J Clin Epidemiol 1998;51:1055–68.
13. Ware JE, Sherbourne CD. The mos 36-item short-form health survey (SF-36). I. conceptual framework and item selection. Med Care 1992;30:473–83.
14. Spinhoven P, Ormel J, Sloekers PP, et al. A validation study of the hospital anxiety and depression scale (HADS) in different groups of Dutch subjects. Psychol Med 1997;27:363–70.
15. Bjelland I, Dahl AA, Haug TT, et al. The validity of the hospital anxiety and depression scale. An updated literature review. J Psychosom Res 2002;52:69–77.
16. Utens B R-H. Rotterdam disease specific questionnaire for thoracic aortic disease (TAD). Erasmus MC, 2017.
17. Boeije H. Analysieren in kwalitatief Onderzoek, denken en doen. Boom, 2019.
18. Connors E, Jeremy RW, Fisher A, et al. Adjustment and coping mechanisms for individuals with genetic aortic disorders. Heart Lung Circ 2015;24:1193–202.
19. McLean CP, Olsson NK, Muller M, Cohen PD, et al. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res 2011;45:1027–35.
20. Huber A, Oldridge N, Höfer S. International SF-36 reference values in patients with ischaemic heart disease. Qual Life Res 2016;25:2787–98.
21 Zimbudzi E, Lo C, Ranasinha S, et al. Predictors of health-related quality of life in patients with co-morbid diabetes and chronic kidney disease. *PLoS One* 2016;11:e0168491.

22 Cherpanov D, Palta M, Fryback DG, et al. Gender differences in health-related quality-of-life are partly explained by sociodemographic and socioeconomic variation between adult men and women in the US: evidence from four us nationally representative data sets. *Qual Life Res* 2010;19:1115–24.

23 Hajian-Tilaki K, Heidari B, Hajian-Tilaki A. Are gender differences in health-related quality of life attributable to sociodemographic characteristics and chronic disease conditions in elderly people? *Int J Prev Med* 2017;8:95.

24 Moon JR, Cho YA, Huh J, et al. Structural equation modeling of the quality of life for patients with Marfan syndrome. *Health Qual Life Outcomes* 2016;14:83.

25 Berterö C, Carlsson P, Lundgren F. Screening for abdominal aortic aneurysm, a one-year follow up: an interview study. *J Vasc Nurs* 2010;28:97–101.

26 Ebert JF, Huibers L, Christensen B, et al. Paper- or web-based questionnaire invitations as a method for data collection: cross-sectional comparative study of differences in response rate, completeness of data, and financial cost. *J Med Internet Res* 2018;20:e24.
Rotterdam Disease Specific Questionnaire
thoracic aortic aneurysm

This questionnaire addresses possible limitations, consequences, concerns or anxiety that you may experience because of (the risk of) a dilatation of the aorta in the chest. Please read each question carefully and circle the number that best reflects how you felt during the last month.

Do not think too long about each question, as your initial response often best reflects your feelings about the subject.

The possibility, or presence, of a vascular dilatation of the aorta in my chest:

1. Causes limitations in my work environment

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		

2. Causes limitations in hobby's/leisure activities:

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		

3. Has a negative influence on my family life

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		

4. Has a negative influence on the relationship with my partner

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		
The possibility, or presence, of a vascular dilatation of the aorta in my chest:

5. Causes limitations in my sexual functioning
 Totally disagree Neutral Totally agree
 1 2 3 4 5 6 7 8 9 10

6. Causes avoidance of physical activities
 Totally disagree Neutral Totally agree
 1 2 3 4 5 6 7 8 9 10

7. Causes anxiety to be alone
 Totally disagree Neutral Totally agree
 1 2 3 4 5 6 7 8 9 10

8. Causes chest pain
 Totally disagree Neutral Totally agree
 1 2 3 4 5 6 7 8 9 10

9. Causes worries/anxiety
 Totally disagree Neutral Totally agree
 1 2 3 4 5 6 7 8 9 10

10. Causes insomnia (related to stress/worrying/anxiety)
 Totally disagree Neutral Totally agree
 1 2 3 4 5 6 7 8 9 10

© 2017 E.M.W.J. Utens, L.R. Bons and J.W. Roos-Hesselink.
Permission for the use of the Rotterdam Disease Specific Questionnaire can be obtained by email: j.roos@erasusmc.nl.
The possibility, or presence, of a vascular dilatation of the aorta in my chest:

11. Causes nightmares

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		

12. Causes avoidance of travelling alone

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		

13. Causes more anxiety than prior

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		
Because of the possibility, or presence, of a vascular dilatation:

14. I worry about my health in the future

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		

15. I worry about my work situation in the future

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		

16. I worry that I die prematurely

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		

17. I worry about the heritability of an aortic dilatation (whether my children may develop aortic dilatation)

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		

18. I am concerned about surgery because of an aortic dilatation

Totally disagree	Neutral	Totally agree
1	2	3
4	5	6
7	8	9
10		
19. Are there any other factors that negatively affect the quality of life due to the possibility, or presence, of an aortic dilatation that have not been addressed in the questions above?

………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………

20. Has living with the possibility, or presence, of an aortic dilatation brought you something good? (eg. the realization of what is important in life)

………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………
………………………………………………………………………………………………

Thank you for your time!
Supplemental File 2. Patient characteristics of TAD-patients and screening-participants

	Total (n=261)	TAD patients (n=147)	Screening-participants (n=114)	p-value
Age - y	52.9±15.8	59.2±12.6	44.9±15.9	<0.001**
Sex - % female	125 (47.9)	54 (36.7)	71 (62.3)	<0.001**
Length - cm	177.2±14.7	178.4±14.2	175.6±15.3	0.137
Weight - kg	83.9±19.4	87.9±19.1	78.7±18.6	<0.001**
BSA - m²	2.0±0.2	2.0±0.2	1.9±0.2	<0.001**
Hypertension	117 (44.8)	84 (57.1)	33 (28.9)	<0.001**
Hyperlipidemia	66 (25.3)	51 (34.7)	15 (13.2)	<0.001**
Smoking	25 (9.6)	13 (8.8)	12 (10.5)	0.647
Diabetes	9 (3.4)	7 (4.8)	2 (1.8)	0.187
Renal dysfunction	5 (1.9)	4 (2.7)	1 (0.9)	0.281
History of depression	16 (6.1)	8 (5.4)	8 (7.0)	0.599
History of anxiety disorder	4 (1.5)	2 (1.4)	2 (1.8)	0.797
Beta blocker use	60 (23.0)	50 (34.0)	10 (8.8)	<0.001**
ARB use	34 (13.0)	30 (20.4)	4 (3.5)	<0.001**
ACEi use	42 (16.1)	32 (21.8)	10 (8.8)	0.005**
Diagnosis				<0.001**
Marfan Syndrome	10 (3.8)	6 (4.1)	4 (3.5)	
Loeys-Dietz Syndrome	10 (3.8)	4 (2.7)	6 (5.3)	
Ehlers-Danlos Syndrome	2 (0.8)	0 (0.0)	2 (1.8)	
Other	12 (4.6)	2 (1.4)	10 (8.8)	
Confirmed genetic mutation	61 (23.4)	31 (21.1)	30 (26.3)	0.001
Positive family history aortic disease	132 (50.6)	60 (40.8)	72 (63.2)	0.001
Abdominal aortic aneurysm	9 (3.4)	8 (5.9)	1 (0.8)	0.025*
Maximal diameter aortic root - mm/BSA	37.6±5.7	40.4±5.5	34.3±4.0	<0.001**
Indexed diameter aortic root - mm/BSA	19.0±2.9	19.7±3.0	18.0±2.5	<0.001**
Maximal diameter ascending aorta - mm/BSA	37.0±6.8	40.8±5.5	32.2±5.1	<0.001**
Indexed diameter ascending aorta - mm/BSA	18.7±3.9	20.1±3.7	16.8±3.2	<0.001**
Maximal diameter descending aorta - mm/BSA	27.1±6.3	30.0±5.9	23.9±5.2	<0.001**
Indexed diameter descending aorta - mm/BSA	13.7±3.3	14.7±3.3	12.5±2.9	<0.001**
Previous aortic surgery	33 (12.6)	32 (21.8)	1 (0.9)	<0.001**
Previous dissection	23 (8.8)	20 (13.6)	3 (2.6)	0.002**
Current partner	126 (75.9)	50 (66.7)	76 (83.5)	0.012
Current employment²	103 (39.5)	61 (51.7)	42 (48.8)	0.687
Paid job	96 (36.8)	57 (48.3)	39 (45.3)	
Volunteer work	7 (2.7)	4 (3.4)	3 (3.5)	
Retired	57 (21.8)	43 (36.4)	14 (16.3)	
Student	16 (6.1)	1 (0.8)	15 (17.4)	
Unable to work / disabled	16 (6.1)	10 (8.5)	6 (7.0)	
Unemployed	12 (4.6)	3 (2.5)	9 (10.5)	
Exercise				
Sports participation³	105 (40.2)	50 (34.0)	55 (48.2)	0.023*
Walking or cycling	104 (39.8)	63 (42.9)	41 (36.0)	
None	36 (13.8)	24 (16.3)	12 (10.5)	

Data are expressed as mean ± SD or as absolute and percentage. BSA=Body Surface Area; ARB= Angiotensin II receptor blocker; ACEI= Angiotensin Converting Enzyme inhibitor; LVEF= left ventricular ejection fraction; MFS= Marfan Syndrome; LDS 3= Loeys-

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s) Open Heart

doi: 10.1136/openhrt-2020-001419: e001419. 7 2020; Open Heart, et al. Thijssen CGE
Dietz Syndrome type 3 (SMAD3 mutation).

1 Only patients without previous aortic surgery.
2 Current employment= Paid job or volunteer work.
3 Defined as: Participating in any sport other than daily walking or cycling at any level at least once a week.
* Significant at the 0.05 level
** Significant at the 0.01 level
SUPPLEMENTAL FILE 3. Stratified analysis for male-female differences in TAD-patients and screening-participants.

TABLE 2a. Male-female scores of screening-participants on all questionnaires.

	Total (n=114)	Males (n=43)	Females (n=71)	p-value
RDSQ				
Total score	44.0 (29.5-68.3)	40.0 (28.0-65.0)	47.0 (32.0-70.0)	0.185
SF-36				
Physical Functioning	90.0 (75.0-100.0)	100.0 (85.0-100.0)	90.0 (60.0-95.0)	0.001*
Role Physical	100.0 (50.0-100.0)	100.0 (75.0-100.0)	100.0 (25.0-100.0)	0.257
Bodily Pain	90.0 (57.5-100.0)	100.0 (77.5-100.0)	77.5 (57.5-100.0)	0.002*
General Health	62.5 (40.0-81.3)	75.0 (55.0-90.0)	55.0 (35.0-70.0)	0.003*
Vitality	62.5 (45.0-85.0)	75.0 (65.0-90.0)	55.0 (35.0-75.0)	<0.001*
Social Functioning	87.5 (62.5-100.0)	100.0 (87.5-100.0)	87.5 (62.5-100.0)	0.004*
Role Emotional	100.0 (66.7-100.0)	100.0 (100.0-100.0)	100.0 (33.3-100.0)	0.021
Mental Health	84.0 (67.0-92.0)	84.0 (76.0-92.0)	80.0 (60.0-92.0)	0.030
PCS	53.0 (42.1-57.9)	54.6 (45.5-58.5)	49.5 (36.4-56.9)	0.026
MCS	52.3 (44.2-56.9)	55.4 (49.2-58.1)	49.4 (42.6-55.7)	0.004*
HADS				
Anxiety score	4.0 (2.0-7.0)	4.0 (1.0-5.0)	5.0 (2.0-9.0)	0.028
Depression score	2.0 (0.8-3.0)	1.0 (0.0-3.0)	2.0 (1.0-5.0)	0.004*
Total score	5.5 (3.0-10.3)	5.0 (2.0-7.0)	6.0 (4.0-16.0)	0.014*

Data are expressed as medians (IQR).

RDSQ= Rotterdam Disease Specific Questionnaire; SF-36= Short Form 36; HADS= Hospital Anxiety and Depression Scale; PCS= Physical Component Summary; MCS= Mental Component Summary.

* Significant after Bonferroni correction.
TABLE 2b. Male-female scores of TAD-patients on all questionnaires.

	Total (n=147)	Males (n=93)	Females (n=54)	p-value
RDSQ				
Total score	59.0 (34.0-89.0)	54.0 (31.0-81.5)	67.5 (39.0-98.5)	0.057
SF-36				
Physical Functioning	80.0 (55.0-95.0)	85.0 (65.0-95.0)	72.5 (43.8-90.0)	0.001*
Role Physical	75.0 (25.0-100.0)	100.0 (37.5-100.0)	37.5 (0.0-100.0)	0.001*
Bodily Pain	80.0 (57.5-100.0)	90.0 (67.5-100.0)	67.5 (45.0-92.5)	0.003*
General Health	50.0 (35.0-70.0)	50.0 (37.5-75.0)	50.0 (33.8-65.0)	0.233
Vitality	60.0 (40.0-75.0)	65.0 (47.5-80.0)	47.5 (33.8-61.3)	0.002*
Social Functioning	87.5 (62.5-100.0)	100.0 (62.5-100.0)	75.0 (50.0-100.0)	0.004*
Role Emotional	100.0 (58.3-100.0)	100.0 (100.0-100.0)	66.7 (25.0-100.0)	<0.001*
Mental health	80.0 (60.0-88.0)	80.0 (64.0-88.0)	72.0 (56.0-88.0)	0.019
PCS	47.3 (37.3-53.0)	49.3 (40.1-53.7)	41.7 (35.0-50.6)	0.010
MCS	57.8 (39.4-56.9)	54.0 (46.4-57.2)	45.7 (36.3-53.7)	0.003*
HADS				
Anxiety score	4.0 (2.0-7.0)	4.0 (2.0-6.0)	4.0 (2.0-8.0)	0.204
Depression score	2.0 (1.0-5.0)	2.0 (0.0-5.0)	2.0 (1.0-5.0)	0.509
Total score	6.0 (3.0-12.0)	6.0 (3.0-11.0)	6.5 (4.0-13.8)	0.320

Data are expressed as medians (IQR).

TAD= Thoracic aortic aneurysm ≥ 40 mm; RDSQ= Rotterdam Disease Specific Questionnaire; SF-36= Short Form 36; HADS= Hospital Anxiety and Depression Scale; PCS= Physical Component Summary; MCS= Mental Component Summary.

* Significant after Bonferroni correction.
SUPPLEMENTAL FILE 4. Male-female scores on the Rotterdam Disease Specific Questionnaire.

- Work activities
- Hobbies / Leisure
- Family life
- Relationship
- Sexual activities
- Physical activities
- Being alone
- Chest Pain
- Worries
- Insomnia
- Nightmares
- Travelling alone
- Increase in anxiety
- Future health
- Future employment
- Premature death
- Heredity
- Potential surgery

Males
Females

Median score (1-10)

* Significant at the 0.05 level
** Significant at the 0.01 level
SUPPLEMENTAL FILE 5. Univariable and multivariable analyses

Variable	RDSQ score Coefficient	p-value	HADS anxiety score Coefficient	p-value	HADS depression score Coefficient	p-value
Age - y	-0.04	0.770	-0.04	0.024*	-0.01	0.535
Sex	5.31	0.209	1.47	0.003**	0.74	0.114
Length - m	-0.10	0.482	-0.02	0.263	-0.01	0.725
Weight - kg	-0.11	0.335	-0.02	0.186	0.00	0.985
BSA	-9.84	0.313	-1.64	0.151	-0.01	0.996
Hypertension	2.70	0.525	-0.12	0.817	0.21	0.661
Hyperlipidemia	0.39	0.937	-0.32	0.578	0.05	0.923
Smoking	2.72	0.717	1.23	0.169	1.57	0.056
Diabetes	13.56	0.241	2.12	0.120	3.97	0.002**
Renal dysfunction	8.02	0.603	0.66	0.717	-1.30	0.449
Depression	-1.34	0.879	2.05	0.048*	2.44	0.013*
Anxiety	15.61	0.364	6.14	0.002**	7.59	<0.001**
Beta blocker use	6.91	0.169	-0.46	0.437	0.94	0.092
ARB use	9.52	0.129	0.32	0.662	0.36	0.608
ACEi use	1.04	0.857	-0.62	0.355	0.04	0.950
Diagnosis						
Marfan Syndrome	8.75	0.432	-1.10	0.402	-1.34	0.284
Loeys-Dietz Syndrome	-6.98	0.531	-2.14	0.102	-2.07	0.097
Ehlers-Danlos Syndrome	-39.62	0.105	-2.58	0.373	-2.40	0.381
Other	-12.40	0.224	-0.50	0.680	-0.05	0.964
Positive family history aortic disease	-4.86	0.252	-0.27	0.593	-0.48	0.308
Abdominal aortic aneurysm	-11.18	0.334	-0.53	0.699	1.10	0.396
Maximal diameter aortic root	0.62	0.106	-0.06	0.164	-0.01	0.873
Indexed diameter aortic root1 (mm/BSA)	2.13	0.010**	0.04	0.684	0.01	0.890
Maximal diameter ascending aorta	0.90	0.004**	-0.01	0.815	0.014	0.694
Indexed diameter ascending aorta1 (mm/BSA)	1.85	0.002**	0.07	0.344	0.04	0.551
Maximal diameter descending aorta	0.26	0.483	-0.03	0.568	0.03	0.437
Indexed diameter descending aorta1 (mm/BSA)	1.04	0.187	0.04	0.657	0.136	0.131
Previous aortic surgery	7.90	0.214	-0.12	0.872	1.70	0.016*
Previous dissection	11.63	0.118	-0.14	0.873	0.41	0.62
Current partner	13.04	0.034*	1.98	0.009**	1.52	0.035*
Current employment	7.35	0.125	0.16	0.774	0.01	0.988
Exercise	-5.614	0.200	-0.10	0.851	-0.34	0.498

BSA=Body Surface Area; ARB= Angiotensin II receptor blocker; ACEi= Angiotensin Converting Enzyme inhibitor; LVEF= left ventricular ejection fraction; MFS= Marfan Syndrome.

* Significant at the 0.05 level
** Significant at the 0.01 level
1 Aortic diameter indexed for Body Surface Area.
Univariable analysis partners

Variable	RDSQ score			HADS anxiety score			HADS depression score	
	Coefficient	p-value	Coefficient	p-value	Coefficient	p-value	Coefficient	p-value
Age - y	0.16	0.581	0.05	0.252	0.07	0.097		
Sex	0.78	0.915	-0.82	0.339	-0.36	0.658		
Length - m	-0.30	0.375	-0.00	0.910	-0.03	0.518		
Weight - kg	-0.26	0.263	0.01	0.750	-0.00	0.970		
BSA	-18.62	0.268	0.395	0.845	-0.52	0.792		
Hypertension	9.12	0.220	1.60	0.067	1.83	0.026		
Hyperlipidemia	16.82	0.023*	0.00	0.998	1.01	0.226		
Smoking	42.81	0.004**	1.41	0.500	4.24	0.042*		
Diabetes	36.79	0.031*	1.76	0.370	3.90	0.034*		
Renal dysfunction	-0.68	0.705	-0.54	0.69	0.611			
Depression	12.44	0.287	-0.54	0.69	0.611			
Anxiety	-0.82	0.362	1.37	0.103				
Beta blocker use	10.75	0.284	-0.39	0.599				
ARB use	-1.58	0.848	1.62	0.085	0.93	0.301		
ACEi use	-13.59	0.287	1.76	0.370				
Diagnosis	-28.88	0.097	-0.68	0.735	-2.42	0.201		
Marfan Syndrome	-15.05	0.325	-1.21	0.466				
Loeys-Dietz Syndrome	-15.05	0.025	-1.21	0.466				
Ehlers-Danlos Syndrome	-12.44	0.287	-0.54	0.69				
Other	-25.43	0.040*	0.08	0.711				
Positive family history aortic	0.85	0.191	0.08	0.711				
disease	2.92	0.016*	0.14	0.336				
Abdominal aortic aneurysm	1.18	0.061	0.14	0.095				
Maximal diameter aortic root	2.46	0.021*	0.24	0.074				
(mm/BSA)	0.88	0.251	-0.00	0.975				
Indexed diameter ascending aorta	2.96	0.045*	-0.08	0.643				
(mm/BSA)	18.73	0.036*	1.32	0.203				
Maximal diameter descending aorta	21.77	0.080	2.97	0.035*				
Previous aortic surgery	-4.27	0.594	-0.33	0.670				
Previous dissection	-11.74	0.134	-0.34	0.719				
Current employment	-0.33	0.594	-0.33	0.670				
Exercise	-0.34	0.719	-0.34	0.719				

BSA=Body Surface Area; ARB= Angiotensin II receptor blocker; ACEi= Angiotensin Converting Enzyme inhibitor; LVEF= left ventricular ejection fraction; MFS= Marfan Syndrome.

* Significant at the 0.05 level

** Significant at the 0.01 level

Aortic diameter indexed for Body Surface Area.
Multivariable analyses in screening participants and TAD-patients

HADS anxiety score

Covariate	Coefficient	95% CI	p-value
Intercept	4.26	0.044	
Sex	1.81	0.058	
Age	-0.03	0.279	
History of depression	-2.17	0.275	
History of anxiety disorder	6.89	0.006	

HADS depression score

Covariate	Coefficient	95% CI	p-value
Intercept	-1.19	0.651	
Sex	0.89	0.364	
Age	-0.04	0.180	
History of depression	-1.90	0.42	
History of anxiety disorder	9.80	<0.001	
Previous aortic surgery	3.55	0.016	
Diabetes Mellitus	6.38	0.009	
Indexed descending aortic diameter1	0.36	0.028	

RDSQ score

Covariate	Coefficient	95% CI	p-value
Intercept	30.68	0.093	
Sex	11.36	0.142	
Age	0.06	0.786	
History of depression	-4.42	0.783	
History of anxiety disorder	6.10	0.756	
Employment	17.28	0.023	

Multivariable analyses in partners

HADS anxiety score

Covariate	Coefficient	95% CI	p-value
Intercept	1.31	0.666	
Age	0.06	0.200	
Sex	-0.40	0.667	
Previous aortic dissection	7.42	<0.001	
ARB use	-5.79	0.007	

HADS depression score

Covariate	Coefficient	95% CI	p-value
Intercept	-4.15	0.198	
Age	0.06	0.241	
Sex	1.60	0.085	
Previous aortic surgery	3.30	0.010	

RDSQ score

Covariate	Coefficient	95% CI	p-value
Intercept	-14.95	0.692	
Age	0.75	0.183	
Sex	12.64	0.247	
Previous aortic dissection	36.41	0.049	

HADS= Hospital Anxiety and Depression Scale; RDSQ= Rotterdam Disease Specific Questionnaire; TAD= Thoracic aortic disease; ARB= Angiotensin Receptor Blocker; CI= Confidence Interval.

1 Aortic diameter indexed for Body Surface Area.
SUPPLEMENTAL FILE 6. Coding tree and full version results of in-depth interviews.

In the third phase of the content analysis procedure of all 11 interviews, SD and EG analyzed the codes together to construct the narrative syntheses (i.e., selective coding) and the final coding tree.

Coding tree

- Psychological distress
 - (Fairly) No psychological distress
 - Moderate level of psychological distress
 - Prominent level of psychological distress
- Communication
 - Communication within healthcare team
 - Communication within familial context
- Sense of control
 - Sense of control through disease-related knowledge
 - Sense of control in unpredictable and uncertain prognosis
- Coping styles
 - Coping style in relation to the self
 - Coping style in relation to partner, family and environment
- Expressions of depressive feelings because of the condition
- Physical complaints
- Sense of loss
 - Sense of loss in daily life, spare time and social life
 - Sense of loss in personality and professional choice
 - Sense of loss in future and thoughts about family planning.

Figure 4 is based on the results of this coding tree. In this tree the pronunciations of the interviewees were divided under the different subjects. These pronunciations were analysed and summarized in the result section below.

Result section

Psychological distress rather than feelings of fear

Fear did not appear as the main topic in our analyses as was hypothesized at the start of this study. All participants did, however, express some level of emotional (di)stress related to their condition, although a large variability between interviewees was observed. While some patients expressed feelings of being overwhelmed by the condition and experienced daily, persistent and paralyzing emotional distress, others only encountered distress when an outpatient check-up was approaching. Hence, the concept of psychological/emotional distress is deemed more in line with patients’ expression in contrast to the concept of ‘fear’. Furthermore, three different groups could be described in our sample based on their
respective level of experienced psychological distress: (i) (fairly) no psychological distress; (ii) moderate level of psychological distress; and (iii) prominent level of psychological distress.

The majority of patients (n=5/11) in our sample, expressed (fairly) no psychological distress. The explanation of this absence of fear appeared to be found in relation to regularly check-ups performed at the outpatient clinic, the confirmation of a stable aorta diameter and a specific, down-to-earth and rational personality. The only time these patients reported some distress was a short period before an outpatient check-up. Within this group, patients did not report having fear of being alone or getting complications after an operation in the future. Furthermore, they did not spontaneously express any concerns about the hereditary nature of their condition in relation to their children.

Three participants experienced variable levels of distress at different points in time (i.e., moderate level of psychological distress). Distress was not experienced on a daily basis, nor was it predominant in patients’ daily. One patient said: “It’s fine that I know my diagnosis, but it’s also terrible to know!” In this group, patients were not afraid of being alone. Their annual check-up of the aorta diameter resulted in a feeling of safety. However, experiences of bodily pain and symptoms during exercise caused uncertainties, thinking: “Is it my heart? My aorta?”

In three out of 11 participants, the level of psychological distress was prominent. These patients experienced a significant level of psychological distress on a daily basis. They described constantly being aware of the fact that they have an aortic aneurysm that could dissect or rupture. One participant said: “It feels like having a ‘time bomb’, because you don’t know when it goes off. And... you have to live with that knowledge”. Two of the three were women; both diagnosed with a genetic predisposition for thoracic aortic aneurysm, positive family history of familial aneurysm and both already underwent surgery. The other patient was a man, without any known genetic disorder or familial aneurysm and with a thoracic aortic diameter of 50 mm. For these patients the diagnosis of the disease had been shocking, especially for the patient who had received surgery a short time after receiving the diagnosis. This patient expressed thoughts such as: “Will the surgery be performed in time, what if the aorta will rupture before it’s my turn?”.

These feelings of prominent distress were triggered by bodily pain and symptoms, as expressed by one patient: “I am feeling pain, does this mean there is something wrong with my aorta?”. Two patients did not feel comfortable being alone, because they were afraid that something might happen. One of the patients, experienced distress especially when family members expressed their fear. In one participant religion played an important role, thinking: “Do I take good care of my ‘borrowed’ body?”. While another patient who experienced moderate psychological distress, felt supported by her religion.

Communication

Communication with their healthcare team had little influence on the level of distress expressed by patients. However, when patients experienced having a ‘positive’ conversation with the physician, during which confirmation was given that the diameter of the aorta remained stable, this was reassuring. Receiving additional information by the physician about the disease and prognosis, was very much appreciated.
The communication within the familial context appeared to have a bigger influence on the level of psychological distress as compared to communication with the healthcare team. Eight out of 11 participants had an ‘open’ communication style about their disease with family members. In these cases, patients could freely talk about their worries with family members, which resulted in decreased feelings of distress. However, such an ‘open’ communication climate in the family was also found to be stressful for the whole family. For example, when posing the question if there is any kind of fear having this aorta disease, a family member replied: "Do they really think we don’t have any fear, of course we have fear!". Three participants did not talk about their disease with their family members, as they deliberately did not want them to worry about their condition. Although most patients had a network of friends whom they could talk to about their disease, these conversations were experienced as superficial by patients.

Sense of control

Disease-related knowledge

Patients described that having more knowledge about their disease could give them a stronger feeling of control resulting in decreased levels of distress. On the one hand, a lack of disease-related knowledge of the participant or the family physician, gave a loss of control resulting in an increased level of distress. Some participants self-fulfilled this condition and increased their level of disease-related knowledge by reading about the disease, attending scientific meetings or participating in a patient association. On the other hand, some patients described that ‘having more knowledge about the disease’ resulted into more awareness and subsequently generated more distress.

Unpredictable and uncertain prognosis

Almost all participants reported that the unpredictable and uncertain evolution of the disease triggered feelings of loss of control and thereby increased levels of psychological distress. Some participants said: "They can’t guarantee that the aorta will not rupture. If the aorta will rupture, than you will die at once". This uncertainty again plays a major role in the degree of distress expressed by patients. "If something will happen, is there a chance that I can have surgery on time and that I can make it?" Shortly before a scheduled check-up of the aorta diameter, all patients expressed increased feelings of distress, which mostly disappeared when they received confirmation that the diameter had remained stable.

Coping strategies

Coping strategies employed by our sample can be divided in two categories: (i) related to how the individual (the participant) handles his/her disease and (ii) in relationship with their partner, family member(s) and environment.

Coping style in relation to the self

Two participants seemed to have an inadequate coping style, resulting in a daily state of emotional distress due to their altered future perspectives. They experienced problems because they can’t live their life the way they had planned before being diagnosed with their aortic disease. They said:
“Honestly, I don’t feel good at all, I’m always tired, I can’t sleep and at my work I forget everything”. “I can’t be myself like I was in the past”. Any proposal to talk about their problems with a healthcare professional was, however, refused because they believed nobody could take away the fear they experienced. Other participants eventually accepted their disease, although most of them first experienced a period of shock, anger and sadness, having to change their sport practice or profession. For example: “Then you have to adjust yourself, I couldn’t play soccer anymore, that was really a bummer”. Feelings of acceptance were also encountered by some patients, as expressed by this patient “I can worry, but I live now and when I continue to worry, I may live shorter”. Some patients have a generally more positive attitude towards life because of their aortic disease, they felt like they are living in spare time. These patients were grateful that they could be operated in time, increasing their changes to live a longer life.

Coping style in relation to partner, family and environment

Coping with the disease in relation to the partner, family and environment was seen as something individual by the participants. Patients carry their own worries and uncertainties, as if it was their individual responsibility. Illustrated by this quote: “I know it can be hereditary, but I don’t want to burden my children with it”, “Don’t want to bother them in their fantasies, life and stress”. In contrast, sharing with family members made them take over some tasks to relieve the participant.

Feelings of depression

Two participants expressed depressive thoughts, although these patients experienced these feelings in a very different way. One patient expressed depressive complaints at the moment of the interview. In this patient, the depressive thoughts were partly related to the aorta disease, although not exclusively. Other factors were: physical complaints not related to the aorta; being confronted with a partner who was depressed; having no other family members to rely on; and the recent suicide of a family member. In this participant, a constructive coping strategy for his disease was totally lacking and he explicitly did not want any professional help for his emotional problems. The other participant, however, described experiencing depressive thoughts in the past, shortly after receiving aortic surgery and losing a family member. At the moment of the interview, these thoughts were not present anymore. Many family members of this patient were diagnosed with aortic pathology, underwent surgery and were confronted with death originating from the aortic disease. “I know I was ehhh tired of life, when my third brother....than I thought, arrggh, I don’t have the energy for it, for mourning, I don’t want to anymore”. This patient sought professional help from a psychologist who helped her tackle these difficult circumstances and described that those negative thoughts disappeared largely. Meanwhile, this participant developed a very good coping strategy to live with her disease.
Physical complaints

All participants reported experiencing some physical complaints, like thoracic pain, dyspnea or tachycardia. These complaints often triggered increased levels of distress. Most patients described an unsettling feeling when having physical complaints, because they wondered whether these complaints could be directly linked to their aortic disease or the heart.

Sense of loss

The aortic disease had an impact on the patient’s daily life, their spare time and social life. Furthermore, the majority of patients reported that the diagnosis itself had a significant impact on their personality, their professional choice and future, and thoughts about family planning. “Yes, that’s though, you suddenly have to adjust yourself, I wasn’t allowed to play soccer anymore. I had many friends there, which I lost, because I stopped”. Another participant could not do his job anymore, because he was not allowed to lift weights. One participant felt angry towards life when she had to work fewer hours, and have less responsibility. “The biggest problem of this disease is that I couldn’t do the things that I have always done”. Three of the 11 participants informed their sports instructor about their disease, in case something happened during exercise. This makes them less free to do sports anywhere, limited their personal space and freedom.

On the other hand, five participants reported living without limits and doing everything they wanted to do. They deliberately choose not to let their disease determine what they can or cannot do. The participants who underwent surgery in the past expressed a significant decline of their physical health condition, shortly after their operation, but also many years later. Three participants said they are not themselves anymore; they changed into a different personality due to the condition, being more emotional or easily triggered by certain events.

One participant even described that her diagnosis had a significant impact on her decision not to have children and start a family. However, two out of seven patients who had already children before they knew about their heredity disease, did not know what they would have done if they knew about their diagnosis beforehand.