Autophagy and amino acids with their metabolites

Yoshimitsu Kiriya, Katsuhiro Kino* and Hiromi Nochi*
Tokushima Bunri University, Kagawa School of Pharmaceutical Sciences, Sanuki, Japan

Abstract

Macroautophagy (hereafter referred to as autophagy) is a highly conserved cellular process that delivers proteins and organelles to the lysosome and controls the degradation of these substrates to facilitate homeostasis. In addition, it is an important process to adapt the availability of nutrients. Amino acids activate mammalian target of rapamycin complex 1 (mTORC1), which is the key regulator of the autophagy signaling pathway. The depletion of amino acids negatively regulates mTORC1 and induces autophagy. Recent studies have shown that amino acids recruit mTORC1 to the lysosome by affecting vacuolar-type H+-ATPase (v-ATPase) and Rag guanosine triphosphatase A/B (RagA/B), thereby leading to the activation of mTORC1 on the lysosome and the inhibition of autophagy. Here, we review recent advances in the understanding of autophagy signaling by amino acids and their metabolites.

Introduction

Autophagy degrades cellular cytosolic components by delivering them to the lysosome and is a highly conserved catabolic process in organisms ranging from yeasts to mammals [1,2]. Autophagy plays an important role in basic biological functions, such as intracellular clearance of defective proteins and organelles, differentiation, and development [3-5]. Dysfunctions in autophagy are associated with severe diseases, such as heart disease, neurodegenerative disorders, and cancers [6,7]. There are three distinct types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Macroautophagy (hereafter referred to as autophagy) comprises bulk degradation and a multi-step process by which the portions of the cytoplasm and/or organelles are sequestered in a double-layered membrane structure called the autophagosome. This autophagosomal fusion then fuses with the lysosome for degradation. The autophagosome–lysosome structure is called the autolysosome [5]. For many years, it has been known that autophagy is activated by starvation, including amino acid depletion and it controls the concentration of free amino acids [8]. Although the detailed mechanism related to the control of autophagy by amino acids has not been completely clarified, it has been shown that the mammalian (or mechanistic) target of rapamycin complex 1 (mTORC1) is the key regulator of autophagy by amino acids [9-12]. In this review, we focus on the regulation of autophagy by amino acids and their metabolites as well as recent advances in studies of the regulation of mTORC1 by amino acids.
membrane sources of the autophagosome include the endoplasmic reticulum [28,29], mitochondrial membrane [30], plasma membrane [31], Golgi [32], and recycling endosomes [33]. After autophagosome formation is complete, the autophagosome fuses with a lysosome to form an autophysosome. The fusion between an autophagosome and a lysosome is mediated by Rab7 [34,35], homotypic fusion and protein sorting (HOPS) complex [36], UV radiation resistance-associated gene protein (UVRAG) [37], and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) [38-40]. A recent study indicated that the phosphorylation of LC3B by serine/threonine kinase (STK) 3 and STK4 is also necessary for the fusion of an autophagosome and a lysosome [41]. On the other hand, mTORC1 phosphorylates UVRAG to inhibit the fusion of an autophagosome with a lysosome [42], indicating that mTORC1 negatively regulates the autophagy process not only at the initiation stage but also during the maturation stage. Finally, the enzymes in the lysosomes or autolysosomes degrade the substrates brought by the autophagosomes.

Autophagy by amino acids and their metabolites

Amino acids are transported into the cell from outside by solute carrier (SLC) superfamily proteins, which are membrane-spanning amino acid transporter proteins [43]. It has been reported that amino acids (particularly leucine, glutamine, or arginine) activate mTORC1, thereby blocking the autophagy pathway [9-12]. However, it is still unclear whether mTORC1 signaling is affected by one specific amino acid or by a combination of amino acids. Some amino acid transporters are antiporters, which require an extra amino acid for transport. For example, glutamine is imported into the cell by SCLC1A5, and the imported glutamine is then exported by the bidirectional amino acid transporter SLC7A5, which transports the extracellular essential amino acids into cells [11,44]. This indicates that extracellular amino acid signaling is not the same as intracellular amino acid signaling. Therefore, it is difficult to separate the signals of amino acids received from outside the cells. In addition, amino acid metabolites regulate mTORC1 signaling. Nitric oxide (NO) and citrulline are produced from arginine by NO synthase. NO inhibits autophagy via the S-nitrosylation of JNK1 and IKKβ. JNK1 phosphorylates Bcl-2, which binds and inhibits Beclin 1. Phosphorylated Bcl-2 releases Beclin 1, which then initiates autophagosome formation. In addition, IKKβ phosphorylates AMPK, which then phosphorylates tuberous sclerosis 2 (TSC2). Phosphorylated TSC2 is a negative regulator of mTORC1, which induces autophagy [45]. Citrulline stimulates the phosphorylation of 4EBP1 and rpS6, which indicates mTORC1 activities; thus, citrulline is considered to be a candidate regulator of autophagy [46]. The metabolism of glutamine, which is called glutaminolysis, is processed by glutaminase (GLS) and glutamate dehydrogenase (GDH). GLS catalyzes glutamine to generate glutamate and ammonia. GDH catalyzes glutamate to generate α-ketoglutarate (αKG) and ammonia. It has been reported that ammonia induces autophagy, but the induction of autophagy by ammonia is independent of the mTORC1 and ULK1/2 signaling pathway [47-49]. By contrast, αKG activates mTORC1 signaling and blocks autophagy [50,51]. The metabolism of arginine, histidine, or proline also generates αKG. Therefore, the balance between αKG and ammonia may be important in the regulation of autophagy. Specific leucine metabolites do not induce mTORC1 signaling [52]; however, leucine activates GDH via an allosteric regulation to increase glutaminolysis, which regulates mTORC1 [51]. Thus, amino acids and their metabolites may affect mTORC1 and autophagy via complex signaling pathways.

Regulation of the activity of mTORC1 by amino acids

mTORC1 is recruited to the lysosome and is activated by GTP-loaded Ras homolog enriched in brain (Rheb) on the lysosome. Several protein complexes play important roles in activating mTORC1 on the lysosome by amino acids (Figure 1). The biological substances that affect mTORC1 and autophagy are summarized in Table 1.

Recruitment of mTORC1 to the lysosome by amino acids

mTORC1 is recruited to the lysosome surface in amino acid-rich conditions. Rag guanosine triphosphatase (GTPase) heterodimers found on the lysosomes are the key players in the translocation of mTORC1 to the lysosome membrane by amino acids. In mammals, four Rag GTPase have been found, namely RagA, RagB, RagC, and RagD [53,54]. Unlike other small GTPases, Rag GTPTases have no lipid anchor and they form a heterodimer that comprises RagA or RagB with either RagC or RagD. The GTP or GDP states in Rags are regulated by amino acids. RagA/B binds to GDP and RagC/D binds to GTP in amino acid-depleted conditions, whereas RagA/B binds to GTP and RagC/D binds to GDP in amino acid-rich conditions, the latter state being the active state of the Rag heterodimer. The active Rag heterodimer binds with Raptor in mTORC1, thereby leading to the localization of mTORC1 to the lysosome membrane [53]. Rag GTPTases lack a lipid anchor; hence, the Rag heterodimer is localized to the lysosomal membrane by binding to “Ragulator”, a guanine nucleotide exchange factor (GEF) and a lysosomal protein complex, which comprises five proteins, namely p18, p14, MP1, C7orf5, and HBXIP [55,56]. The binding of Ragulator to the lysosomes is possibly mediated by p18, which possesses myristoylation and palmitoylation sites on its N-terminal side [57]. Moreover, Ragulator binds to vacuolar-type H+...
Table 1. Biological substances with effects on mTORC1 and autophagy.

Biological substances	mTORC1	Autophagy
Amino Acids	activate	inhibit
RagA/B (GTP-bound)	activate	inhibit
Ragulator	activate	inhibit
v-ATPase	activate	inhibit
GATOR1	inhibit	activate
GATOR2	activate	inhibit
Sestrins	inhibit	activate
Growth factor/Insulin	activate	inhibit
TSC2 (TSC-TBC)	inhibit	activate
Rheb (GTP-bound)	activate	inhibit
NO	activate	inhibit
JNK1	No Effect	activate
Beclin	No Effect	activate
IKKb	inhibit	activate
ammonium	No Effect	activate
aKG	activate	inhibit

Amino acids activate RagA/B and recruit mTORC1 to the lysosome. The recruited mTORC1 is activated by interacting with GTP-loaded Rheb on the lysosome membrane surface. Thus, both amino acids and the PI3K–Akt pathway involving growth factors are considered to be necessary for the activation of mTORC1, which inhibits the autophagy pathway.

Concluding remarks

Recent studies of mTORC1 have shown that mTORC1 is a crucial factor related to the sensing and signaling of amino acids in the regulation of autophagy pathway. These include the discovery of mTORC1 regulators, such as Rag complex, Ragulator, GATOR complex, and Sestrins.

However, the upstream signal transduction pathway that regulates Sestrins and the detailed mechanisms related to the regulation of v-ATPase by amino acids remain unclear. New technological developments may help to understand the detailed mechanism involved in the sensing and signaling of amino acids to control mTORC1 and autophagy.

References

1. Nakatogawa H, Suzuki K, Kamada Y, Obsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10: 458-467. [Crossref]
2. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12: 814-822. [Crossref]
3. Feng Y, Ye D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24: 24-41. [Crossref]
4. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147: 728-741. [Crossref]
5. Shen HM, Mizushima N (2014) At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci 39: 61-71. [Crossref]
6. Cheng Y, Ren X, Hui WN, Yang JM (2013) Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev 65: 1162-1197. [Crossref]
7. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075. [Crossref]
8. Mortimore GE, Schworer CM (1977) Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270: 174-176. [Crossref]
9. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Bellah C, et al. (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273: 14484-14494. [Crossref]
10. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, et al. (2015) Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347: 194-198. [Crossref]
11. Nicklin P, Bergman P, Zhang B, Triantafellou E, Wang H, et al. (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136: 521-534. [Crossref]
12. Wang S, Tsun YZ, Wolfson RL, Shen K, Wyatt GA, et al. (2015) Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347: 188-194. [Crossref]
13. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40: 280-293. [Crossref]
14. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149: 274-293. [Crossref]
15. Kim DH, Sarbassov DD, Ali SM, Latke RR, Guntur KV, et al. (2003) GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11: 895-904. [Crossref]
16. Peterson TR, Laplante M, Thoreen CC, Sanacik Y, Kang SA, et al. (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137: 873-886. [Crossref]
Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRA540. Nat Cell Biol 9: 316-323. [Crossref]

Haraka K, Maruki Y, Long X, Yoshino K, Oshiro N, et al. (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177-189. [Crossref]

Kim DH, Sarbassov DD, Ali SM, King JE, Latke RR, et al. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163-175. [Crossref]

Kaziraka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, et al. (2010) Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 285: 20109-20116. [Crossref]

Hosokawa N, Hara T, Kaziraka T, Kishi C, Takamura A, et al. (2009) Nutrient-dependent mTORC1 association with the ULK1-Ag13-FIP200 complex required for autophagy. Mol Biol Cell 20: 1981-1991. [Crossref]

Hara T, Takamura A, Kishi C, Isomura S, Natsume T, et al. (2008) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181: 497-510. [Crossref]

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720-5728. [Crossref]

Kabeya Y, Mizushima N, Yamamoto A, Ohshima-Otakaya S, Osumi Y, et al. (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form II formation. J Cell Sci 117: 2805-2812. [Crossref]

Tanida I, Komatsu M, Ueno T, Komnini E (2003) GATE-16 and GABARAP are authentic modifiers mediated by Atg7 and Atg3. Biochem Biophys Res Commun 306: 637-644. [Crossref]

Wild P, McEwan DG, Dikic I (2014) The LC3 interactome at a glance. Autophagy 10: 775-785. [Crossref]

Xin Y, Yu L, Chen Z, Zheng L, Fu Q, et al. (2001) Cloning, expression patterns, and characterization of a mammalian homologue of yeast Apg8p receptor-associate protein. Genomics 74: 408-413. [Crossref]

Axe EL, Walker SA, Maniﬁva M, Chandra P, Roderick HL, et al. (2008) Autophagosome formation from membrane compartments enriched in phospholipidinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182: 685-701. [Crossref]

Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, et al. (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11: 1433-1437. [Crossref]

Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sourgrout R, et al. (2010) Mitocondria supply membranes for autophagosome biogenesis during starvation. Cell 141: 656-667. [Crossref]

Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztejn DC (2010) Plasma membrane contributes to the formation of autophagophore structures. Nat Cell Biol 12: 747-757. [Crossref]

Rubinsztejn DC, Shchipkova T, Elazar Z (2012) Mechanisms of autophagosome biogenesis. Curr Biol 22: R29-34. [Crossref]

Puri C, Renna M, Bento CF, Moreau K, Rubinsztejn DC (2013) Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 154: 1285-1299. [Crossref]

Gutierrez MG, Munafó DB, Berón W, Colombo MI (2004) Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Biol 167: 2687-2697. [Crossref]

Jüger S, Bucci C, Tanida I, Ueno T, Komnini E, et al. (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Biol 117: 4837-4848. [Crossref]

Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, et al. (2014) The HOPS complex mediates autophagy-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25: 1327-1337. [Crossref]

Li J, Lee JS, Inn KS, Gack MU, Li Q, et al. (2008) Beclin-1 binding UV/UVAG target the class V/cls complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10: 776-787. [Crossref]

Atashkian V, Kreykenbohm V, Eskelelin EL, Wenzel D, Fayyazi A, et al. (2003) Deletion of the SNARE vit3 in mice results in the loss of a single SNARE partner, syntaxin 8. Mol Cell Biol 23: 5198-5207. [Crossref]

Fraldi A, Amunziata F, Lombardi A, Kaiser HIJ, Medina DL, et al. (2010) Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J 29: 3607-3620. [Crossref]
61. Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, et al. (2014) The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9: 1-8. [Crossref]

62. Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, et al. (2014) Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep 9: 1281-1291. [Crossref]

63. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, et al. (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25: 903-915. [Crossref]

64. Dibble CC, Eliz W, Menon S, Qin W, Klekota J, et al. (2012) TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47: 535-546. [Crossref]