Therapeutic impacts of microRNAs in breast cancer by their roles in regulating processes involved in this disease

Amir Mehrgou, Mansoureh Akouchekian
Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

Breast cancer is the most common cancer in women around the world. So far, many attempts have been made to treat this disease, but few effective treatments have been discovered. In this work, we reviewed the related articles in the limited period of time, 2000–2016, through search in PubMed, Scopus database, Google Scholar, and psychology and psychiatry literature (PsycINFO). We selected the articles about the correlation of microRNAs (miRNAs) and breast cancer in the insight into therapeutic applicability from mentioned genetics research databases. The miRNAs as an effective therapy for breast cancer was at the center of our attention. Hormone therapy and chemotherapy are two major methods that are being used frequently in breast cancer treatment. In the search for an effective therapy for breast cancer, miRNAs suggest a promising method of treatment. miRNAs are small, noncoding RNAs that can turn genes on or off and can have critical roles in cancer treatment; therefore, in the near future, usage of these biological molecules in breast cancer treatment can be considered a weapon against most common cancer-related concerns in women. Here, we discuss miRNAs and their roles in various aspects of breast cancer treatment to help find an alternative and effective way to treat or even cure this preventable disease.

Key words: Breast cancer, chemotherapy, hormone therapy, microRNA, treatment

INTRODUCTION

Breast cancer strikes one million women around the world every year and is the most common cancer among American women. According to the January 2013 statistics of the World Health Organization, breast cancer is the most common malignancy among women, and it is the second leading cause of death for women around the world, accounting for 450,000 deaths annually. The incidence of this disease is increasing so that it is replacing heart disease as the first cause of death. Therefore, breast cancer can be considered a major cause of death among all cancer types.[1] Despite progressions in early diagnosis and treatment, breast cancer has remained the most common cancer-related cause of death among women living in developed countries.[2] Breast cancer is not a single disease, but rather this phenotype consists of a spectrum of distinct tumors. Although these tumors have different treatments and therapeutic outcomes, they are developed in a single organ.[3]

This has led to some research in the field of combining biological markers for improvement in disease diagnosis and prognosis.

There are six major subtypes of breast cancer including luminal A, luminal B, tumor enriched with human epidermal growth factor receptor 2 (HER2), triple-negative, normal-like, and claudin-low subtype.[4]

Triple-negative breast cancer (which does not express estrogen receptor [ER], progesterone receptor [PR], and HER-2) has a higher disease incidence rate and a higher risk of death as compared with other breast...
cancer subtypes. Often, this cancer leads to death through metastasis.

Metastasis is a multistep process through which cancer cells invade distant tissues. In this process, primary tumor cells attack peripheral tissues and enter the blood and lymphatic systems. These cells can eventually lead to secondary tumor development in the destination tissue.

One of the phenomena metastasis needs is vasculatation, a crucial process that leads to new vessel development. This process is necessary for tumor growth, invasion, and metastasis.

Despite all progressions in cancer research, the molecular basis of malignancy has remained unknown as one of the most challenging aspects of the disease.

Although early diagnosis of breast cancer has caused a decrease in death rates, prevention and treatment are still considered a general concern.

Each factor that can interfere with paths involved in breast cancer development would have at least a role in the improvement of disease treatment and the outcome which cancer patients receive. One such factor is microRNA (miRNA) molecule which can control many cancer development pathways.

MICRORNAS

miRNA biogenesis is a multistep process that begins in the cell nucleus. Pri-miRNA molecule is coded by RNA polymerase II enzyme, and Pri-miRNA expression occurs in distinctive genomic regions. There are many intergenic miRNAs with independent promoters. However, other miRNAs are clustered in poly cistronic transcripts. Specific miRNAs are located in the host intronic regions. This suggests that miRNAs’ biogenesis can be regulated by the host’s gene promoters. Pri-miRNAs are cut down to 70–85 nucleotide molecules called pre-miRNAs. Pre-miRNAs have impaired stem-loop structure. This molecule is transported to the cytoplasm, where it is cut down more to transient double-strand miRNAs. One of these strands is mature miRNA sequence, with about 22 nucleotides in length. Another one is the complementary strand (usually shown with a star sign).

microRNP (miRNA plus ribonucleoprotein) complex separates the two strands from each other. One of these strands turns into functionally active miRNA while the other one degrades. miRNAs demonstrate high conserved evolution in different species. The regulatory function of miRNAs can be inferred from this issue that miRNAs have different levels of expression in various types of cells. miRNAs play their role through one of the two following ways: (1) through mRNA degradation process or (2) through protein expression suppression process. Most of the animal miRNAs bind to the 3’UTR of the targeted mRNA. However, miRNAs can be effective through binding to coding sequences or the 5’UTR of targeted mRNA. Complete or nearly complete binding to miRNAs can lead to gene silencing. However, most of the times, this binding is noncomplete. Therefore, this leads just to translation suppression and eventually to a decrease in protein level. There is a specific region in miRNA sequence with two to eight nucleotides in length located in 5’ miRNA terminal that is called “seed sequence.” This region of miRNA sequence is important for binding to mRNA molecules. Computer software has predicted that every miRNA has the potential to regulate 200 mRNAs. Hence, miRNAs are responsible for the regulation of at least one-third of human mRNAs.

Figure 1 depicts the process which miRNAs pass to be produced.

miRNAs can be extracted from some body fluids such as serum, plasma, urine, and cells and tissues.

miRNAs are degraded hardly, due to their small size. These small biological molecules remain in pristine in paraffin-embedded tissues for 10 years. Some miRNAs, which are present in blood circulation, can be measured in peripheral blood and serum easily.

miRNA-encoding genes constitute one percent of the whole genome, while they control the expression of 30%
of genes. These molecules can increase and decrease the expression level of various genes. MiRNAs may regulate the function of more than one gene, and one gene can also be regulated by the function of more than one miRNA.

So far, 474 mature miRNA-encoding genes are known in the human genome, while the computerized prediction for this number was more than 1000.

Through gene regulation, miRNAs play critical roles in the normal biological processes such as differentiation, proliferation, and apoptosis. The relationship of miRNAs with disease severity, response to treatment, and outcome in several types of cancer has been established. Although miRNAs’ roles in a wide range of cancer types are identified formerly, about breast cancer, there is a missed ring that should be found to create a link which would be scrutinized below.

CHANGED LEVEL OF EXPRESSION OF MIRNAS IN CANCER

Half of the known human miRNAs are related to cancer. The expression levels of most of the miRNAs change in cancer. This changed expression level has effects on disease progression, severity, remission, and all aspects of disease.

The change of miRNA expression level has been previously established in a range of cancers, including lungs, prostate, thyroid, hepatocellular, pancreatic, gastric, colorectal, testicular, glioblastoma, and lymphatic cancers.

Additionally, each tissue has a specific amount of miRNAs called miRNA profile. This amount can vary from a few to millions. Also, a specific tumor has a different and unique miRNA profile from another one; therefore, miRNA levels in tumors are useful tool to determine metastasis resource and cancer subgrouping.

Most of the studies focus on a decrease in miRNAs in breast cancer, while these biological molecules can also increase in a cancer patient’s blood compared to a healthy subject’s blood. miRNA profile has been checked in several breast cancer patients while their tumors were not resected yet. After surgery and excision of tumor out of patients’ breast tissue, the miRNA profile has been measured again for each patient. Outstanding decreases were seen in patients when these two miRNA profiles were compared with each other. The amount of these molecules has been dropped in patients’ blood after tumor resection. This issue provides that these molecules might be released from tumorous tissue to blood through exosome, microvesicles, and apoptotic bodies. However, the precise process through which these molecules are released to blood is yet to be answered.

Some studies have accentuated that just specific miRNAs increase in cancer patients’ blood.

In breast cancer, there are also obvious differences in miRNA expression levels between normal and tumorous tissues. Several miRNAs always incur an obvious change in their expression levels in breast cancer. These miRNAs are shown in Table 1.

In the screening of breast cancer samples based on different expression levels of miRNAs in tumorous and pri-tumorous tissues, it was found that miR-139-5p will drop in human breast cancer tumors.

Some miRNAs in breast cancer have a different expression level in tumorous tissues compared to normal tissues. MiRNAs can also be useful in determining ER, PR (like miR-30), HER-2 status for breast cancer tumors, and for tumor subgrouping.

Zhang et al. found a correlation between a decreased level of expression of miR-125b and poor survival rates in patients. They also found that upregulation of miR-125b leads to proliferation suppression and colonization suppression in cell lines.

In the past years, the relevance between downregulation of miR-126 and miR-126* with poor prognosis has been established. In some studies, more than 15 miRNAs have been reported to be changed to develop potential of metastasis in breast cancer cell lines.

Breast tumors consist of different cell populations, some of which are considered stem cells. Due to stem cells’ abilities to self-proliferate and self-innovate, they may contribute to tumor development.

miRNAs have the ability to regulate the expression of several genes simultaneously, which makes these molecules appropriate candidates for regulating self-proliferation process and determining cell destiny in stem cells. There are documents proving that specific miRNAs have a specific amount of expression in stem cells.

miRNAs are necessary for G1/S cell cycle transition in stem cells, so manipulating such molecules can lead to facilitating the regulation of stem cells’ population. Over the past 8 years, studies about miRNAs have led to information about the molecular basis of the disease, a tool for molecular subgrouping of disease, detecting new predisposing genes.
to breast cancer, and new biomarkers with diagnosis and prognosis application.\[56\]

MICRONAS AS CANCER-CONTROLLING GENES

Various miRNAs have important roles in different stages of cancer [Figure 2].

Calin et al. found that half of known miRNAs are located in fragile or cancer-related genomic regions, so the role of these biological molecules in cancer is reinforced.\[57\]

miRNAs can have either an oncogenic or a tumor suppressor role in cancer development and the role they play depends on the path they activate or suppress. miRNAs play role in different biological events, including cell proliferation, tumor development, and migration.\[58\]

Therefore, they regulate gene expression in the process of tumor development and metastasis. Even it has been hypothesized that miRNAs are useful tools for suppression of oncopgenic-miRNAs and for induction of miRNAs with tumor suppressor role.\[11\]

There are some documents verifying that miRNAs have role in embryogenesis and organogenesis in fetals.\[59\]

It has recently been demonstrated that miRNAs can suppress cell proliferation and induce apoptosis through their roles as a tumor suppressor.\[60\]

ONCOGENIC MICRORNAS

Oncogenic miRNAs are referred to all miRNAs which can contribute to help tumor cells to develop and remain. Every oncogenic miRNA exerts its role through one or more than one cancer-controlling pathways.

miR-21 as an oncogene is upregulated in breast cancer, especially in breast cancer with a high proliferation rate and severe phenotype, like pregnancy-associated breast cancer, and through anti-apoptosis function which leads to cell proliferation. Another reason verifies that miR-21 has an oncogenic role is that miR-21 suppresses two tumor suppressor genes called TPM1 and PDCD4.\[61-63\]

Downregulation of this miRNA causes tumor growth suppression. There is also an inverse relationship between miR-21 expression and PTEN gene expression. Therefore, PTEN is one of the target genes for miR-21.\[63,64\]

miR-200a is one of the miR-200 family members that has a role in breast cancer progression and distant metastasis.\[65\]

Nassirpour et al. found that miR-221 is upregulated in triple-negative breast cancer, and if this miRNA is knocked out, cell cycle suspension, apoptosis, inhibition of cell proliferation, and tumor growth inhibition will be induced.\[66\]

miR-155 also has an oncogenic role in triple-negative breast cancer and downregulates a tumor suppressor gene called

Table 1: microRNAs that have changed expression level in breast cancer

Changed miRs in breast cancer	References
Increased miRs	References
miR-21	[20]
miR-155	
miR-210	
miR-29c	[23]
miR-196a	[25]
miR-213	[20]
miR-191	[27]
miR-93	[28]
miR-342-5p	[30]
miR-222	[32]
miR-221	
miR-374a	[35]
miR-181a	[37]
miR-506	[39]
miR-10a	[41]
miR-9	[43]

Decreased miRs	References
miR-125b	[20]
miR-145	
miR-100	
let-7a-2	[24]
miR-205	[26]
miR-125b-2	[21]
miR-497	[23]
miR-143	[29]
miR-26a	[31]
miR-133a	[33]
miR-7	[34]
miR-720	[36]
miR-19a-3p	[38]
miR-515-5p	[40]
miR-1258	[42]
miR-92a	[44]
miR-126	[45]
miR-335	[46]
miR-17-5p	[47]
miR-27b	[48]

miRs = microRNAs
VHL (Von Hippel–Lindau) through which it leads to angiogenesis in tumor. This miRNA contributes to migration and cell invasiveness.[61,67]

miR-9 plays a role as metastasis regulator through increasing tumor invasiveness and angiogenesis.[69]

In addition, some other oncogenic miRNAs are shown in Table 2. miRNAs are so necessary for the metastasis process that recently, the term “metasta miRNA” was coined to emphasize this role of miRNAs in migration, invasiveness, and their correlation with poor prognosis in cancer.[58]

TUMOR SUPPRESSOR MICRORNAS

Tumor suppressor miRNAs are all miRNAs which act against tumor cells through different pathways. Every tumor suppressor has its own spectrum of strategies.

miR-205 acts as a tumor suppressor and is downregulated in triple-negative breast cancer. This miRNA normally is upregulated by the PTEN gene.[107]

miR-125b inhibits tumor growth, colony development, and proliferation.[109]

Upregulation of miR-125a/b decreases HER-2 in transcriptional and protein level and eventually leads to decreased cell mobility and invasiveness. miR-125a inhibits cell growth and decreases migration and cell proliferation in healthy status. Altogether, miR-125b has an antiproliferative role.[77,109]

As the expression level of miR-125a/b and miR-205 declines, the expression level of HER-2 gene rises and leads to invasiveness.[77]

miR-126 and miR-126* suppress metastasis and angiogenesis in breast cancer, so this miRNA is downregulated in this common cancer.[51,52]

Tavazoie et al. demonstrated that induction of silenced metastasis-related miRNAs in malignant cells can suppress metastasis to lungs and bones in metastatic breast cancer. miR-126 and miR-335 are downexpressed, and sometimes complete silencing of miR-335 is reported in breast cancer. Induction of miR-126 decreases the tumor proliferation rate and induction of miR-335 leads to suppress migration, invasiveness, and metastasis. Therefore, these miRNAs are known as metastasis suppressors.[52,110]

miR-200c has a role in the inhibition of cell proliferation, so this miRNA is known as a tumor suppressor.[111]

Upregulation of miR-200c sensitizes cells to radiotherapy through inhibition of cell proliferation, increase in apoptosis, and development of double-strand DNA breakage.[112]

This miRNA decreases the metastasis rate by suppression of metastasis-associated proteins.[60]

Reinforcement of miR-200 family expression has resulted in the formation of “inhibition of metastasis” hypothesis.[113]

Another miR-200 family function is containment of EMT (epithelial–mesenchymal transition).[51]

Another tumor suppressor miRNA is miR-206. This miRNA can prevent cell growth, migration, and invasiveness and is eventually able to inhibit metastasis. This miRNA also has role in apoptosis, and its downregulation leads to advanced stage of disease and shorter overall survival.[52]

miR-497 is a tumor suppressor miRNA whose upregulation can decrease cell mobility and proliferation and restrain cell cycle progression in G1 phase.[60]

miR-17-5p is known as a possible tumor suppressor since this miRNA is downregulated in breast cancer. miR-429 and miR-141 through suppression of metastasis-associated proteins lead to a reduced metastasis rate.[47]

miR-31 is downregulated in breast cancer and can limit metastasis through suppression of invasiveness and colonization. Recently, it has been reported that miR-31 can induce apoptosis and sensitize cells to anticancer therapy through suppression of the BCL2 gene.

miR-7 suppresses mobility and invasiveness and represses the potential of connection-free growth in breast cancer cells. The ability of stem-like cells in metastasis to the brain in the animal breast cancer model is suppressed by this miRNA. The expression of this miRNA was found to be reduced in brain metastasis.

miR-15b/16 has an anti-angiogenic effect.[38,52,77,109]
Hormone receptors and epidermal growth factor receptors are known today as diagnostic indicators, and several miRNAs are recognized as their regulator.\(^{47}\)

For example, Cui et al. demonstrated that miR-133a may have a tumor suppressor role in breast cancer, since this miRNA, through targeting epidermal growth factor receptor, can regulate cell cycle and cell proliferation.\(^{33}\)

Leivonen et al. found that miR-342-5p prevents the growth of HER-2-positive cells in vitro.\(^{38}\)

Recently, it has been demonstrated that miR-26 is downregulated in breast cancer and has a regulatory role in cell proliferation and apoptosis.\(^{31}\)

\[\text{Zhang et al. found that miR-30a can interfere with migration and invasiveness in breast cancer, and the expression of this miRNA has an inverse relationship with metastasis to lymphatic nodes and lungs. As a result, loss of this miRNA can lead to the beginning of metastasis.}^{116}\]

Induction of miR-720 noticeably causes suppression of invasiveness and migration of breast cancer cells in vitro and in vivo.\(^{38}\) Several other miRNAs are also shown in Table 2.

miRNAs can be considered a promising treatment target in the near future for their roles as tumor suppressors. The treatment method of the expression level of tumor suppressor miRNAs is called “alternative miRNA therapy.”

Table 2: Tumor suppressor microRNAs and oncogenic microRNAs and an excerpt of their roles in breast cancer

miRs	Tumor suppressor Some of roles	References	miRs	Oncogene Some of roles	References
miR-205	Negative regulation of EMT, inhibition of cell proliferation	[68]	miR-22	EMT	[58]
miR-200 family	Inhibition of EMT	[26,69]	miR-103	Metasta miR	[70]
miR-146a/b	Inhibition of EMT	[26]	miR-107		
miR-206	Suppress breast cancer cell migration	[71,72]	miR-373	Promote cell migration	[73,74]
miR-335	Suppress metastasis and cell migration	[52]	miR-520c	and invasion	
miR-31	Inhibition of metastasis	[75]	miR-21	Increase invasion	[76]
miR-125a/b	Suppress cell growth, reduction of cell migration and proliferation	[77]	miR-143		
miR-145	Inhibition of tumor cell growth	[79]	miR-182	Metasta miR	[80]
miR-7	Inhibition of the motility and invasiveness	[34]	miR-183	Cell migration	[81]
miR-661	Blocking EMT	[26]	miR-9	Metasta miR	[82]
miR-126	Reduction of tumor growth and proliferation	[52]	miR-132	Metasta miR	[83]
miR-15b	Blocking EMT	[26]	miR-27a	Inducing breast cancer cell proliferation	[84]
miR-16	Cell cycle arrest	[85]	miR-96	Inducing cell proliferation	[86]
miR-17-5	Decrease proliferation	[47]	miR-92	Malignant transformation	[61]
miR-27b	Inhibition of tumor growth	[48]	miR-106a		
miR-30e	Reduction of tumorigenesis	[87]	miR-106b		[88]
miR-34	Cell cycle arrest in the G1	[89,90]	miR-93		
miR-193		[91]	miR-25		
miR-224		[92]	miR-127a	Increase cell progression through S phase	[61,93]
miR-448	Inhibition of EMT	[94]	miR-155	Induce chemoresistance	[95]
Let-7	Inducing cell cycle exit and terminal differentiation	[96]	miR-181	Maintaining stem cell-like family phenotype in breast cancer	[97]
miR-10b*	Inhibition of cell cycle	[49]	miR-191	Promote cell proliferation and migration	[98]
miR-148a	Inhibition of proliferation	[99]	miR-196a	Promote cell proliferation	[25]
miR-195	Suppress breast cancer cell proliferation	[100]	miR-210	Metasta miR	[20]
miR-300, miR-382, miR-494, miR-495, miR-539, miR-543, miR-544	Inhibition of EMT	[51]	miR-221	Increase cell migration and invasion	[101]
miR-98	Inhibition of angiogenesis	[102]			
miR-152	Inhibition of angiogenesis	[99]	miR-17-92		[103,104]
miR-542-3p	Inhibition of angiogenesis	[105]	miR-10a		[106]
			miR-374a	Cancer metastasis	[35]

EMT = Epithelial-mesenchymal transition; miRs = microRNAs
3. Triple negative (ER, PR, and HER-2 negative).

However, using the micro array method for determining miRNAs profile, this subgrouping is extended to more precise one, including:
1. Luminal A (ER positive with low grade)
2. Luminal B (ER positive with high grade)
3. HER-2 positive
4. Basal like (is almost equal to triple-negative status).

There are several miRNAs that are used for breast cancer subgrouping, as shown in Table 3.

- miRNAs can be used even as diagnostic tools to check whether a tumor is metastatic
- miR-21 and miR-155 increased in metastatic tumors
- miR-200 family decreased in metastatic tumors
- miR-21 has also been seen, especially in invasive breast cancer.[4]

Furthermore, Li et al. found that miR-720 downregulation is seen in breast cancer, and this decrease is especially seen in metastatic cells in this common cancer among women.[36]

There is an inverse relationship between miR-206 and ER alpha in ER-negative breast cancer and this miRNA upregulates in this form of breast cancer. Two binding sites for this miRNA have been found within 3'UTR of ER alpha gene, which can be one of the mechanisms leading to ER alpha gene silencing. On the other hand, inoculation of ER alpha agonist leads to miR-206 reduction. However, 64 other binding sites have been found in ER alpha gene for a variety of miRNAs, so each of these miRNAs can regulate this gene.[71]

The ability of miRNAs profiling in breast tumor subgrouping can be used currently. Therefore, this ability can help select cancer patients to receive adjuvant therapies. miRNA profiling can also be useful in discovering the molecular basis of breast cancer subgroups, and can therefore be effective in determining new therapy targets.

MICRORNAS AS PROGNOSTIC AND DIAGNOSTIC TOOLS

miRNAs are also recognized as predictors for disease development and progression.[9]

Using miRNAs as such predictors seems beneficial because this method has the advantage of being noninvasive. miRNAs could be biological markers in cancer for the following reasons:
1. The expression of these molecules changes in cancer
2. The expression of these molecules is tissue specific
3. These molecules are stable in formalin-fixed paraffin-embedded tissues.[15,117]

MICRORNAS AND BREAST CANCER SUBGROUPING

There are three major subgroups in breast cancer:
1. ER and PR positive
2. HER-2 positive

Table 3: microRNAs that are used for breast cancer subgrouping[74]

Breast cancer subgroup	Changes in miRs in different breast cancer subgroups
HER-2 positive	Upregulation of miR-150, miR-142-3p, miR-142-5p, miR-148a, miR-106b, miR-93, miR-155, miR-25, miR-187
Luminal A	Overexpression of miR-126, miR-136, miR-100, miR-99a, miR-145, miR-10a, miR-199a/b, miR-130a, miR-30a-3p, miR-30a-5p, miR-224, miR-214, let-7a/b/c/f, miR-342
Luminal B	Overexpression of miR-106a/b, miR-93, miR-25, miR-10a, miR-30a-3p, miR-30a-5p, miR-224, let-7b/c/f, miR-342c

HER-2 = Human epidermal growth factor receptor 2; miRs = microRNAs

MICRORNAS AND ASSORTMENT OF PATIENTS BASED ON RESPONSE TO TWO CURRENT THERAPIES

One of the most important applications of miRNAs is patients’ assortment based on response to therapies.

There is a mutual relevance between miRNAs and anticancer agents. miRNAs can regulate the amount of sensitivity to therapy agents in cancer cells. Furthermore, anticancer agents can have an effect on miRNA expression levels.[119]

Thus, miRNAs seem to be appropriate tools for selecting a cancer treatment method.
RESPONSE TO CHEMOTHERAPY

Chemotherapy is the current therapeutic method that is being used for breast cancer, especially for triple-negative form, but the patients do not usually receive a desirable outcome. miRNAs can suggest a new alternative therapeutic method for yielding better breast cancer chemotherapy outcome.

Studies have shown that the expression level of miRNAs can relate to patients’ response to chemotherapy. For example, upregulation of miR-663 occurs in breast cancer and relates to chemo-resistance.\cite{120}

miRNAs can have a role in drug resistance. MiR-326 causes a reduction of drug resistance and is downregulated in progressed breast cancer.

Suppression of miR-21 leads to sensitize cancer cells to chemotherapy, and upregulation of this miRNA increases resistance to treatment with Taxol in breast cancer.

miR-125b causes increased drug resistance through suppression of a pro-apoptotic protein. miR-27 and transfection of doxorubicin-treated breast cancer cells with miR-451 lead to increased sensitivity to this drug. This is a good example for amending breast cancer patients’ responses to treatment through miRNA expression control. Hence, miR-451 and miR-27 lead to doxorubicin resistance while miR-200b and miR-200c increase sensitivity to doxorubicin. Thus, miR-200c relates to increased doxorubicin sensitivity and miR-326 regulates MRP1 (multidrug-resistant associated protein 1).\cite{93,121,122}

Induction of miR-30c causes sensitivity to doxorubicin in vitro and in vivo. It is assumed that this miRNA acts as a tumor suppressor in doxorubicin-resistant breast tumors.\cite{123}

miR-222 and miR-29a can contribute to docetaxel and adriamycin resistance development.\cite{124}

miR-21 has an oncogenic role in breast cancer, so suppression of this miRNA can postpone tumor growth. On the other hand, induction of miRNAs with tumor suppressor role can lead to tumor shrinkage or prevent tumor progression. By the same token, in a study performed by Si et al. using anti-miR-21, the amount of this miRNA was reduced, and through inhibition of cell proliferation and promotion of apoptosis, led to decreased cell growth.\cite{84}

Therefore, anti-miR-21 in combination with chemotherapy can reduce tumor growth. Considering that this miRNA (miR-21) has an oncogenic role, suppression of this molecule can sensitize tumor cells to anticancer therapies.

RESPONSE TO HORMONE THERAPY

By targeting a specific miRNA, there is a possibility of regulating different pathways involved in the development of hormone therapy resistance in breast cancer. In this process, the miRNAs that are silenced in breast cancer will be induced, and the miRNAs that are induced in breast cancer will also be suppressed.\cite{14}

Tamoxifen is a drug used in ER-positive breast cancer and plays a role as an estrogen antagonist in the signal transduction process. miR-30c and miR-30a-3p have roles as predictors for tamoxifen efficacy in progressed breast cancer.\cite{125,126}

miR-222, miR-221, and downregulation of miR-301 confer tamoxifen resistance, while induction of miR-15a and miR-16 can lead to sensitize cells to tamoxifen. Uregulation of miR-30c and miR-30a-3p contribute to an increased response to hormone therapy and increased disease progression-free survival. miR-375, miR-342, and miR-451 develop tamoxifen sensitivity while miR-210, miR-181a, miR-101, miR-30c, and miR-26a develop tamoxifen resistance.\cite{127-129}

Trastuzumab is a drug against HER-2-positive breast cancer. Several miRNAs can target the HER-2 gene in HER-2-positive breast cancer patients. For example, miR-125b binds to the HER-2 gene 3'UTR through which prevents HER-2 overexpression and eventually leads to an increased response to trastuzumab drug in these patients. This miRNA declines in HER-2-positive breast cancer. Therefore, induction of this miRNA can be useful for HER-2-positive breast cancer treatment.\cite{20,61,77}

Upregulation of miR-125b causes HER-2 protein reduction through which reduces migration, invasiveness, and tumor growth in breast cancer. MiR-331-3p also suppresses HER-2 expression and its downstream signal transduction. However, there are several other miRNAs that can regulate HER-2 expression.\cite{77,130}

miR-221 and miR-222 are expressed two times as often in HER-2-positive breast cancer than normal status. Upregulation of miR-21 in HER-2-positive breast cancer patients causes trastuzumab resistance.\cite{131}

CONCLUSION

miRNAs are tools with a wide scope of roles through affecting on genes with various applications. By manipulating these biological molecules, there is a possibility of influencing different processes involved in treatment, diagnosis, and prognosis of diseases. In particular, cancers have been mentioned as diseases in which miRNAs have many roles
in their development and treatment. Since one of the most common cancers among women is breast cancer, miRNAs can also exert improvements in breast cancer treatment. There are also some advantages in miRNA-based therapy. Nowadays, we know that, using of miRNAs in different clinically grounds of cancers is simple and noninvasive, but the best thing is that, this technology does not have other methods’ side effects. So, in the near future, using of these smart and controller molecules would be turned into a dominant method to treat cancers, especially breast cancer, but it needs still researches to reach this goal and to be made applicable.

Acknowledgments
The figure and graphical abstract of this review article were designed by FB Scientific Art Design.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106-30.
2. Malvezzii M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2013. Ann Oncol 2013;24:792-800.
3. Bertos NR, Park M. Breast cancer – One term, many entities? J Clin Invest 2011;121:3789-96.
4. Perou CM, Serslie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000;406:747-52.
5. D’Ippolito E, Iorio MV. MicroRNAs and triple negative breast cancer. Int J Mol Sci 2013;14:2220-20.
6. Hwang MS, Yu N, Stinson SY, Yue P, Newman RJ, Allan BB, et al. MiR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One 2013;8:e66502.
7. Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.
8. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15-20.
9. Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 2003;100:9779-84.
10. Chou J, Lin JH, Breton A, Kim JW, Provot S, Werb Z, et al. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 2013;15:201-13.
11. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011;13:423-33.
12. Vasudevan S, Tong Y, Stitz JA. Switching from repression to activation: MicroRNAs can up-regulate translation. Science 2007;318:1931-4.
13. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005;120:21-4.
14. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001;294:853-8.
15. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes mir15 and mir16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-9.
16. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8.
17. Iguchi H, Kosaka N, Ochiya T. Secretory microRNAs as a versatile communication tool. Commun Integr Biol 2010;3:478-81.
18. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuaki Y, Ochiya T, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010;285:17442-52.
19. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Neveu J, Kerin MJ, et al. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 2010;251:499-505.
20. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65:7065-70.
21. Andorfer CA, Necela BM, Thompson EA, Perez EA. MicroRNA signatures: Clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med 2011;17:313-9.
22. Fassan M, Baffa R, Palazzo JP, Lloyd J, Crosariol M, Liu CG, et al. MicroRNA expression profiling of male breast cancer. Breast Cancer Res 2009;11:R58.
23. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008;14:2348-60.
24. Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, et al. Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 2007;67:11612-20.
25. Luthra R, Singh RR, Luthra MG, Li YX, Hannah C, Romans AM, et al. MicroRNA-196a targets annexin A1: A microRNA-mediated mechanism of annexin A1 downregulation in cancers. Oncogene 2008;27:6667-78.
26. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008;10:593-601.
27. Adams BD, Guttilla IK, White BA. Involvement of microRNAs in breast cancer. Semin Reprod Med 2008;26:522-36.
28. Brosh R, Shalgi R, Liran A, Landan G, Korotayev K, Nguyen GH, et al. P53-repressed microRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol 2008;4:229.
29. Akao Y, Nakagawa Y, Naoe T. MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 2006;16:845-50.
30. Leivonen SK, Sahlgren KK, Mäkelä R, Due EU, Kallioniemi O, Berresnes-Dale AL, et al. High-throughput screens identify microRNAs essential for HER2 positive breast cancer cell growth. Mol Oncol 2014;8:93-104.
31. Gao J, Li L, Wu M, Liu M, Xie X, Guo J, et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS One 2013;8:e65138.
32. Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem
33. Cui W, Zhang S, Shan C, Zhou L, Zhou Z. MicroRNA-133a regulates the cell cycle and proliferation of breast cancer cells by targeting epidermal growth factor receptor through the EGFR/Akt signaling pathway. FEBS J 2013;280:3962-74.

34. Reddy SD, Obshiro K, Rayala SK, Kurem R. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 2008;68:8195-200.

35. Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, et al. MicroRNA-374a acts on β-catenin signaling to promote breast cancer metastasis. J Clin Invest 2013;123:566-79.

36. Li LZ, Zhang CZ, Liu LL, Yi C, Lu SX, Zhou X, et al. MiR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1. Carcinogenesis 2014;35:469-78.

37. Zhang K, Zhang Y, Liu C, Xiong Y, Zhang J. MicroRNAs in the diagnosis and prognosis of breast cancer and their therapeutic potential (review). Int J Oncol 2014;45:950-8.

38. Yang J, Zhang Z, Chen C, Liu Y, Si Q, Chuang TH, et al. MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inhibiting macrophage polarization through downregulated expression of fra-1 proto-oncogene. Oncogene 2014;33:3014-23.

39. Arora H, Qureshi R, Park WY. MiR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One 2013;8:e64273.

40. Gilam A, Edry L, Mamluk-Morag E, Bar-Ilan D, Avivi C, Golan D, et al. Involvement of IGF-IR regulation by miR-515-5p modifies breast cancer risk among BRCA1 carriers. Breast Cancer Res Treat 2013;138:753-60.

41. Hoppe R, Aechinger-Kawecka J, Winter S, Fritz P, Lo WY, Schrot W, et al. Increased expression of miR-126 and miR-10a predict prolonged relay-free time of primary oestrogen receptor-positive breast cancer following tamoxifen treatment. Eur J Cancer 2013;49:3598-608.

42. Tang D, Zhang Q, Zhao S, Wang J, Lu K, Song Y, et al. The expression and clinical significance of microRNA-1258 and heparanase in human breast cancer. Clin Biochem 2013;46:926-32.

43. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al. MiR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010;12:2475-6.

44. Si H, Sun X, Chen Y, Cao Y, Chen S, Wang H, et al. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol 2013;139:223-9.

45. Greene SB, Herschkowitz JJ, Rosen JM. Small players with big potential (review). Int J Oncol 2014;45:950-8.

46. Tang J, Ahmad A, Sarkar FH. The role of microRNAs in breast cancer migration, invasion and metastasis. Int J Mol Sci 2012;13:13414-37.

47. Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of ABBI mRNA. Mol Cell Biol 2006;26:8191-201.

48. Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 2006;66:9090-8.

49. Biagiotti F, Bossel Ben-Moshe N, Fontemaggi G, Canu V, Mori F, Antoniani B, et al. MiR-10b*, a master inhibitor of the cell cycle, is down-regulated in human breast tumours. EMBO Mol Med 2012;4:1214-29.

50. Wei EJ, Peters K, Nair SS, Hulf T, Stein S, Wagner S, et al. Mapping the regulatory sequences controlling 93 breast cancer-associated miRNA genes leads to the identification of two functional promoters of the Hsa-mir-200b cluster, methylation of which is associated with metastasis or hormone receptor status in advanced breast cancer. Oncogene 2012;31:4182-95.

51. Haga CL, Phinney DG. MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-to-mesenchymal transition by targeting the TWIST1 protein signaling network. J Biol Chem 2012;287:42695-707.

52. Tavaizo SE, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008;451:147-52.

53. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells – Perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 2006;66:9339-44.

54. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee YJ, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol 2004;270:488-98.

55. Hattfeld SD, Scherberbta HR, Fischer KA, Nakahara K, Carthew RW, Ruobola-Baker H, et al. Stem cell division is regulated by the microRNA pathway. Nature 2005;435:974-8.

56. O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res Treat 2010;12:201.

57. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101:2999-3004.

58. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 2013;154:311-24.

59. Yi R, O’Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 2006;38:356-62.

60. Luo Q, Li X, Gao Y, Long Y, Chen L, Huang Y, et al. MiRNA-497 regulates cell growth and invasion by targeting cyclin E1 in breast cancer. Cancer Cell Int 2013;13:95.

61. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006;103:2257-61.

62. Huang GL, Zhang XH, Guo GL, Huang KT, Yang KY, Shen X, et al. Clinical significance of miR-21 expression in breast cancer: SYBR-green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep 2009;21:673-9.

63. Frankel LB, Christoffersen NR, Jacobsen A, Krogh A, Lund AH, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 2008;283:1026-33.

64. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY, et al. MiR-21-mediated tumor growth. Oncogene 2007;26:2799-803.

65. Yu SJ, Hu JY, Kuang XY, Luo JM, Hou YF, Di GH, et al. MicroRNA-200a promotes anoikis resistance and metastasis by targeting YAP1 in human breast cancer. Clin Cancer Res 2013;19:1389-99.

66. Nassirpour R, Mehta PP, Baxi SM, Yin MJ. MiR-221 promotes breast cancer migration, invasion and metastasis via TWIST1-mediation of epithelial-to-mesenchymal transition. J Biol Chem 2012;287:42695-707.

67. Kong W, He L, Richards EJ, Challa S, Xu CX, Perfum-Mwy EJ, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene 2014;33:679-89.

68. Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 2009;19:439-48.

69. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, et al. A reciprocal repression between ZEB1 and
members of the miR-200 family promotes EMT and invasion in breast cancer cells. EMBO Rep 2008;9:582-9.
70. Martello G, Rosato A, Ferrari F, Manfrin A, Cardononsi M, Dupont S, et al. A microRNA targeting dicer for metastasis control. Cell 2010;141:1195-207.
71. Adams BD, Furneaux H, White BA. The micro-rubonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 2007;21:1132-47.
72. Liu H, Cao YD, Ye WX, Sun YY. Effect of microRNA-206 on cytokoskeleton remodelling by downregulating cdc42 in MDA-MB-231 cells. Tumori 2010;96:751-5.
73. Negriini M, Calin GA. Breast cancer metastasis: A microRNA story. Breast Cancer Res 2008;10:203.
74. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008;10:202-10.
75. Valastyan S, Reinhardt F, Benaich N, Calogrios D, Szász AM, Wang ZC, et al. A pleiotropically active microRNA, miR-31, inhibits breast cancer metastasis. Cell 2009;137:1032-46.
76. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008;18:350-9.
77. Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC, et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem 2007;282:1479-86.
78. Zhai L, Ma C, Li W, Yang S, Liu Z. MiR-143 suppresses epithelial-mesenchymal transition and inhibits tumor growth of breast cancer through down-regulation of ERK5. Mol Carcinog 2016;55:1990-2000.
79. Wang S, Bian C, Yang Z, Bo Y, Li J, Zeng L, et al. MiR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol 2009;34:1461-6.
80. Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 2009;284:23204-16.
81. Lowery AJ, Miller N, Dwyer RM, Kerin MJ. Dysregulated miR-183 impedes migration in breast cancer cells. BMC Cancer 2010;10:502.
82. Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, et al. LIFR is a breast cancer metastasis suppressor upstream of the hippo-YAP pathway and a prognostic marker. Nat Med 2012;18:1511-7.
83. Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, et al. MicroRNA-132-134-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 2010;16:909-14.
84. Mertens-Talcott SU, Chintalapalli S, Li X, Safe S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res 2007;67:11001-11.
85. Rivas MA, Venturutti L, Huang YW, Schillaci R, Huang TH, Elizalde PV, et al. Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncocogenic signaling contributes to breast cancer development. Breast Cancer Res 2012;14:R77.
86. Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C, et al. Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3A. PLoS One 2010;5:e15797.
87. Yu F, Deng H, Yao H, Liu Q, Su F, Song E, et al. MiR-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010;29:4194-204.
88. Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibakawa M, Schelter JM, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 2008;28:2167-74.
89. Kato M, Paranjape T, Müller RU, Nallur S, Gillespie E, Keane K, et al. The mir-34 microRNA is required for the DNA damage response in vivo in C. Elegans and in vitro in human breast cancer cells. Oncogene 2009;28:2419-24.
90. Bommert GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al. P53-mediated activation of miR-34A candidate tumor-suppressor genes. Curr Biol 2007;17:1298-307.
91. Li XF, Yan PJ, Shao ZM. Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene 2009;28:3937-48.
92. Huang L, Dai T, Lin X, Zhao X, Chen X, Wang C, et al. MicroRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer cells. Biochem Biophys Res Commun 2012;425:127-33.
93. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 2008;7:2152-9.
94. Li QQ, Chen ZQ, Cao XX, Xu JD, Chen YJ, et al. Involvement of NF-kB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ 2011;18:16-25.
95. Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 2016;291:22855.
96. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131:1109-23.
97. Hwang-Verslues WW, Chang PH, Wei PC, Yang CY, Huang CK, Kuo WH, et al. MicroRNA-195 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 2011;30:2463-74.
98. Nagpal N, Ahmad HM, Molpabia R, Kulshreshtha R. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis 2013;34:1889-99.
99. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 2013;5:3-13.
100. Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, et al. Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer. Clin Cancer Res 2011;17:1722-30.
101. Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C, et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal 2011;4:ra41.
102. Zou C, Xu Q, Mao F, Li D, Bian C, Liu LZ, et al. MiR-145 inhibits tumor angiogenesis and growth by N-RAS and VEGF. Cell Cycle 2012;11:2317-45.
103. Jiang H, Wang P, Li X, Wang Q, Deng ZB, Zhuang X, et al. Restoration of miR17/20a in solid tumor cells enhances the natural killer cell antitumor activity by targeting Mekk2. Cancer Immunol Immunother 2014;2:789-99.
104. Fan M, Sethuraman A, Brown M, Sun W, Pfeffer LM. Systematic analysis of metastasis-associated genes identifies miR-17-5p as a metastatic suppressor of basal-like breast cancer. Breast Cancer Res Treat 2014;146:487-502.
Mehrgou and Akouchekian: miRNA roles in breast cancer

2014;232:499-508.

105. Moriarty CH, Pursell B, Mercurio AM. MiR-10b targets Tiam1: Implications for Rac activation and carcinoma migration. J Biol Chem 2010;285:20541-6.

106. Joerger AC, Fersht AR. Structure-function-rescue: The diverse nature of common p53 cancer mutants. Oncogene 2007;26:2226-42.

107. Zhang Y, Yan LX, Wu QN, Du ZM, Chen J, Liao DZ, et al. MiR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res 2011;71:3552-62.

108. Guo X, Wu Y, Hartley RS. MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol 2009;6:575-83.

109. Png KJ, Yoshida M, Zhang XH, Shu W, Lee H, Rimner A, et al. MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev 2011;25:226-31.

110. Lin J, Liu C, Gao F, Mitchel RE, Zhao L, Yang Y, et al. MicroRNA-200c downregulates XIAP expression to suppress proliferation and promote apoptosis of triple-negative breast cancer cells. Mol Med Rep 2014;10:315-21.

111. Ren Y, Han X, Yu K, Sun S, Zhen L, Li Z, et al. MicroRNA-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem 2013;114:606-15.

112. Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 2008;7:3112-8.

113. Castilla MA, Diaz-Martin J, Sarrioto D, Romero-Perez L, Lopez-Garcia MA, Vieites B, et al. MicroRNA-200 family modulation in distinct breast cancer phenotypes. PLoS One 2012;7:e47709.

114. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006;9:435-43.

115. Zhang N, Wang X, Huo Q, Sun M, Cai C, Liu Z, et al. MicroRNA-30a suppresses breast tumor growth and metastasis by targeting metadherin. Oncogene 2014;33:3119-28.

116. Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S, et al. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol 2007;7:36.

117. Baffa R, Fassan M, Volinia S, O'Hara B, Liu CG, Palazzo JP, et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 2009;219:214-21.

118. Bu Y, Lu C, Bian C, Wang J, Li J, Zhang B, et al. Knockdown of miR-326 in MCF-7 human breast carcinoma cells results in G1 arrest and increased sensitivity to cisplatin. Oncol Rep 2009;21:13-7.

119. Hu H, Li S, Cui X, Lv X, Jiao Y, Yu F, et al. The overexpression of hypomethylated miR-663 induces chemotherapy resistance in human breast cancer cells by targeting heparin sulfate proteoglycan 2 (HSPG2). J Biol Chem 2013;288:10973-85.

120. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 2010;79:817-24.

121. Chen Y, Sun Y, Chen L, Xu X, Zhang X, Wang B, et al. MicroRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep 2013;7:1579-84.

122. Fang Y, Shen H, Cao Y, Li H, Qin R, Chen Q, et al. Involvement of miR-30c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells. Braz J Med Biol Res 2014;47:60-9.

123. Zhong S, Li W, Chen Z, Xu J, Zhao J. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene 2013;531:8-14.

124. Sehdev S, Martin C, Sideris L, Lam W, Brisson S. Safety of adjuvant endocrine therapies in hormone receptor-positive early breast cancer. Curr Oncol 2009;16 Suppl 2:S14-23.

125. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 2008;283:29897-903.

126. Rodríguez-González FG, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AW, et al. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci U S A 2008;105:13021-6.

127. Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE, et al. Oncogenic HER2(Delta) 16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 2010;31:2049-57.

128. Rodriguez-Gonzalez FG, Sieuwerts AM, Smid M, Look MP, Meijer-van Gelder ME, de Weerd V, et al. MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res Treat 2011;127:43-51.

129. Eppis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ, et al. MicroRNA-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem 2009;284:24696-704.

130. Huang TH, Wu F, Long GB, Hsu R, Heidersbach A, Brincat A, et al. Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem 2009;284:18515-24.