Accelerating Real-Time Question Answering via Question Generation

Yuwei Fang1 Shuohang Wang1 Zhe Gan1 Siqi Sun1 Jingjing Liu2 Chenguang Zhu1

1Microsoft Cognitive Services Research Group, 2Tsinghua University
{yuwfan, shuowa, zhe.gan, siqi.sun, chezhu}@microsoft.com
JJLiu@air.tsinghua.edu.cn

Abstract

Although deep neural networks have achieved tremendous success for question answering (QA), they are still suffering from heavy computational and energy cost for real product deployment. Further, existing QA systems are bottlenecked by the encoding time of real-time questions with neural networks, thus suffering from detectable latency in deployment for large-volume traffic. To reduce the computational cost and accelerate real-time question answering (RTQA) for practical usage, we propose to remove all the neural networks from online QA systems, and present Ocean-Q (an Ocean of Questions), which introduces a new question generation (QG) model to generate a large pool of QA pairs offline, then in real time matches an input question with the candidate QA pool to predict the answer without question encoding. Ocean-Q can be readily deployed in existing distributed database systems or search engine for large-scale query usage, and much greener with no additional cost for maintaining large neural networks. Experiments on SQuAD(-open) and HotpotQA benchmarks demonstrate that Ocean-Q is able to accelerate the fastest state-of-the-art RTQA system by 4X times, with only a 3+% accuracy drop.

1 Introduction

Real-time question answering (QA) (Seo et al., 2018, 2019) has enjoyed steadily growing attention in the community due to its commercial value in web-scale applications. For practical use, QA search engines are required to return the answer given any real-time question within milliseconds in order to avoid human-detectable latency. So far, state-of-the-art QA models (Devlin et al., 2019; Liu et al., 2019b) rely heavily on cross-sequence attention between a given question and its relevant context in the document. Whenever a new question comes in, it needs to be encoded on the fly and attended to a list of relevant documents, which leads to considerable computational overhead especially when the given context is unlimited (e.g., open-domain setting).

To speed up the process, query-agnostic methods have been proposed to reuse question-related context for different questions. Seo et al. (2018) proposed to build representations of key phrases only in the document and match them with the question representation to obtain answer. Seo et al. (2019) further improved the quality of phrase embeddings and proposed a more effective way for caching. However, the embeddings of incoming questions cannot be cached offline, which still leads to noticeable latency and additional cost of maintaining large neural networks in real applications.

How can we efficiently reduce the energy cost while simultaneously speeding up real-time question answering for practical use? Here, we propose Ocean-Q (an Ocean of Questions), which removes the need of maintaining neural networks for real-time inference, and significantly reduces question-encoding time in query-agnostic QA methods by leveraging high-quality offline question generation. The proposed pipeline consists of three steps: (i) Candidate Answer Extraction from the context; (ii) Question Generation based on the candidate answers; and (iii) QA-pair Verification by state-of-the-art QA models. Specifically, a candidate pool of all possible QA pairs is generated offline from the data corpus, and when a real-time question comes in, it is directly matched with the candidate pool via n-gram overlap to select the answer from the highest-ranked QA pair.

To encourage more organic integration of Question Generation (QG) (Rus et al., 2008; Du et al., 2017; Zhang and Bansal, 2019; Dong et al., 2019) into QA systems, besides the QG evaluation metrics of BLEU (Papineni et al., 2002), ROUGE (Lin, 2004) and METEOR (Lavie and Denkowski, 2009), we also consider RTQA as a new quality criterion for QG models. The symbiotical connection of QG
and RTQA ensures end-to-end performance boost. In addition, we propose a new data augmentation approach and leverage multi-task learning and diverse beam search for QG enhancement to further improve RTQA performance.

Our main contributions are summarized as follows. (i) We set up the first benchmark under the setting of answering open-domain questions without neural networks in real time. To the best of our knowledge, no previous work has leveraged question generation models to reduce the computational cost and mitigate the speed bottleneck in Real-time QA. (ii) By generating possible candidate questions offline and circumventing real-time question encoding, Ocean-Q can successfully accelerate existing fastest RTQA system (Seo et al., 2019) by 4 times, with minimum accuracy drop, and make QA system greener by removing the cost of maintaining and running neural encoders. (iii) We introduce a new data augmentation method and propose the use of multi-task learning and diverse beam search for QG quality enhancement that further boosts RTQA performance. (iv) Experiments show that our proposed approach achieves multifold speedup on generic QA models without sacrificing accuracy much. Our augmented QG component also achieves state-of-the-art performance on QG benchmarks of HotpotQA.

2 Related Work

Open-Domain Question Answering Open-domain QA aims to answer any given factoid question without knowing the target domain. We focus on text-based open-domain QA system (Chen et al., 2017), which first uses information retrieval (IR) to select passages, then applies a machine reading comprehension (MRC) model to extract answers from the passage pool. Most works rely heavily on cross-sequence attention between questions and related context (Yang et al., 2019; Raison et al., 2018; Wang et al., 2019), which translates to heavy online computational cost, since every related context needs to be processed repeatedly for a new input question. In order to
reuse the context, Seo et al. (2018) proposed the phrase index QA task by encoding and indexing every possible text span offline into a dense vector. DENSPI (Seo et al., 2019) further improved contextualized phrase embeddings with sparse vector, and designed effective caching strategies for real-time QA. However, the shared bottleneck of all these works is the demanding time for encoding questions in real time execution. In this paper, we propose to make full use of a QG-based RTQA framework that is able to achieve 4X speed-up without losing much accuracy.

Question Generation Question generation was first proposed by Rus et al. (2008) as a task to automatically generate questions from given input. Since then, early work mainly focused on using manually designed rules or templates to transform input text to questions (Heilman, 2011; Chali and Hasan, 2012; Lindberg et al., 2013). Due to the recent progress in deep learning, QG research started to adopt the prevailing encoder-decoder framework (Serban et al., 2016; Du et al., 2017; Du and Cardie, 2018; Liu et al., 2019a; Song et al., 2018; Zhao et al., 2018). More recently, large-scale language model pre-training has been applied to QG (Dong et al., 2019; Bao et al., 2020; Xiao et al., 2020), which achieved state-of-the-art performance with significant improvement. Our QG method is based on the released UniLM model (Dong et al., 2019), further improving it via novel data augmentation, multi-task learning and diverse beam search. Moreover, to the best of our knowledge, we are the first work to connect neural question generator with real-time question answering.

Green NLP The primary focus of green NLP is to measure or reduce the amount of required computation to build effective models. Green AI (Schwartz et al., 2019) covers a broader, long-standing interest in environmentally-friendly scientific research. With the success of pre-trained models (Devlin et al., 2019) and large-scale datasets (Deng et al., 2009; Liu et al., 2019b), efficient training and inference becomes increasingly critical regarding the green purpose. However, training time is relatively fixed comparing to real large-scale inference requirement, such as queries in Google search. In this paper, we focus on addressing the green NLP problem regarding the inference efficiency of question answering systems. Model distillation (Sun et al., 2019) or answer-embedding index (Seo et al., 2019) based methods are widely adopted to speed up the inference time. However, these works still suffer from maintaining a large neural network to encode questions. Instead, we propose to remove all the neural networks from the QA system. Thus, there will be little computational cost of answering questions, but only some information retrieval cost which can be quite efficient by reverted index.

3 Ocean-Q for Real-Time QA

3.1 Framework Overview

Our proposed approach to real-time question answering (RTQA) utilises QA pairs generated from a large-scale textual corpus (e.g., Wikipedia). The overview of the framework is illustrated in Figure 1, consisting of two main components: (i) Offline QA-pair generation; and (ii) Online question matching.

The QA-pair generation pipeline mainly consists of three steps: (i) Candidate answer extraction; (ii) Answer-aware question generation; and (iii) QA-pair verification. First, we train an answer extraction model to create K possible answer candidates \{\(a_{i,j,k}\)\}_{k=0}^{K-1} from paragraph \(p_{i,j}\) in document \(d_i\). Then, for each candidate answer \(a_{i,j,k}\), we generate \(L\) diverse questions \{\(q_{i,j,k,l}\)\}_{l=0}^{L-1} by combining \(p_{i,j}\) and \(a_{i,j,k}\) as the input of an answer-aware QG model. To further validate the generated QA pairs, a BERT-based QA model is utilized for authentication. By these three steps, we obtain approximately \(N \times M \times K \times L\) QA pairs from the whole Wikipedia, where \(N\) is the number of documents, \(M\) is the average number of paragraphs in a document, \(K\) is the average number of answer candidates in a paragraph, and \(L\) is the number of questions for each answer candidate. With these pairs, the RTQA task is formulated as a ranking function \(R\), where given an input question \(\tilde{q}\), the goal is to predict the answer as \(a = \arg \max_{i,j,k,l} R(q_{i,j,k,l}, \tilde{q})\).

3.2 Offline QA-pair Generation

Answer Extraction In principle, any span in a paragraph could be an answer candidate. To maintain high recall for QA, we formulate answer extraction as a classification problem and use pre-trained RoBERTa (Liu et al., 2019b). For each token in the paragraph, we predict its probability of being the start and end position of the answer. Then, predicted answers with top-K scores are selected as candidate answers. Assume the encoded representation of a paragraph is denoted as \(C \in \mathbb{R}^{n \times d}\), where \(n\) is the length of the paragraph and \(d\) is the...
dimension of each contextualized token representation. Then, the logits of every position being the start and end of the candidate answer span can be computed by a linear layer on top of C:

$$o_s = C w_1, \quad o_e = C w_2,$$

(1)

where $o_s, o_e \in \mathbb{R}^n$ and $w_1, w_2 \in \mathbb{R}^d$. During training, the ground-truth distribution of a position being the start and end of an answer span is calculated over all possible answers in each paragraph, denoted as P_s and P_e. A KL divergence loss is then defined as:

$$\mathcal{L} = D_{KL}(P_s||Q_s) + D_{KL}(P_e||Q_e),$$

(2)

where Q_s and Q_e are the predicted distributions of a position being the start and end of an answer span based on the logits o_s and o_e. During inference, we first calculate the start and end logits for each token in the paragraph, then top-K answer spans are extracted based on the score below:

$$s_k = o_s[a_{s,k}] + o_e[a_{e,k}],$$

(3)

where s_k is the score for the k-th answer candidate a_k with start and end position being $a_{s,k}$ and $a_{e,k}$.

Question Generation For question generation, we build upon the released state-of-the-art UniLM model (Dong et al., 2019). To generate L different questions given an answer span, we adopt standard beam search strategy. More formally, we concatenate a given input passage $p_{i,j}$ and an answer span $a_{i,j,k}$ as the first segment (denoted as X), and incrementally generate each token of the target question. At time step $t - 1$, the model keeps track of L hypotheses and their scores $S(\hat{q}_{t-1}|X)$, where L is the beam size and \hat{q}_{t-1} is a generated token. Then, at time step t, each hypothesis selects L extensions, which leads to $L \times L$ hypotheses in total. In the end, the top-L generated questions are selected from $L \times L$ hypotheses at the final time-step T. We further explore different strategies to improve QG model, detailed in the Enhanced Question Generation Section.

QA-pair Verification With the aforementioned two steps, we can obtain an initial set of QA pairs. However, these answers may not be accurate enough since answer extraction model could not precisely know where is the answer boundary. For example, the extracted span “February 7” might be a sub span of the gold answer “February 7, 2016” which leads to a lower RTQA performance. Therefore, we use the initial QA dataset to train a BERT-based QA model, to validate the initial QA pool. Then, we replace the the initial answer $a_{i,j,k}$ with the predicted answer $a'_{i,j,k}$ from the QA model.

3.3 Online Question Matching

The main challenge in real-time question matching is how to efficiently search over the entire question “ocean” that consists of $N \times M \times K \times L$ questions. Given that the ranking function R can be a simple scoring function, the problem can be redefined as finding accurate paragraphs among $N \times M$ paragraphs that may lead to the correct answer. Therefore, we propose a two-step ranker and conduct question matching as follows.

A Two-step Ranker DrQA (Chen et al., 2017) has demonstrated strong capability in finding relevant documents based on bi-gram hashing and TF-IDF matching. Therefore, we leverage DrQA to build a document-level TF-IDF sparse vector d_i for each document. The input question is also encoded into a bi-gram TF-IDF sparse vector q. Then, top-n documents are retrieved from N documents by calculating the inner product between q and each d_i. Similarly, we also compute a second paragraph-level TF-IDF sparse vector d_i for each paragraph after the first ranker, and collect top-m paragraphs only based on the inner product score on paragraph-level. Since paragraphs capture more local information than documents, by implementing the two-step ranker, we can safely reduce the number of paragraphs from $N \times M$ to m ($m \ll N \times M$) for question ranking in the final step.

Question Matching After the proposed two-step ranking process, the total number of candidate questions reduces to $m \times K \times L$ (around 200k, if m, K, L are 100, 100, 20, respectively). We simply calculate the common number of unique tokens to measure the similarity between each question candidate q_i and the input question \hat{q}. Specifically,

$$score(\hat{q}, q_i) = \frac{\hat{q} \cdot q_i}{|\hat{q}| + |q_i|},$$

(4)

where \hat{q} and q_i are binary sparse representations, indicating whether each token in the vocabulary exists in the question or not. $|\hat{q}|$ and $|q_i|$ are the ℓ_1 norm of each vector. After question matching, we use the corresponding answer to the retrieved question as the final predicted answer.
3.4 Enhanced Question Generation

Question Generation is a critical component in Ocean-Q framework. We hypothesize that more diverse questions from QG model may enhance the RTQA performance. To verify this, we investigate from three perspectives: (i) we propose a new data augmentation method to increase in-domain training data diversity; (ii) we leverage multi-task learning with out-of-domain training data; (iii) we leverage diverse beam search in decoding phase.

Data Augmentation To increase the diversity of the QG training dataset D_1, we select additional samples from the generated question pool and reuse them as training data. A caveat is that the generated questions may semantically diverge from the original question, so we aim to select only a small portion from the pool to augment the training data. To this end, we train a question paraphrasing model on the Quora Question Pairs (QQP) dataset\footnote{https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs} D_2 to obtain a paraphrase score between the generated question and the ground-truth question, and use it as one of the guidelines for question selection. Moreover, since semantically-similar questions may overlap with each other, we also use the F_1 metric to calculate the number of overlapping tokens between the generated question and the ground-truth question as another guideline. Thus, for each data sample in D_1, we can effectively craft augmented training samples, forming a new dataset D_3, and the final QG model M_{QG} is trained by combining D_1 and D_3. The proposed data augmentation method is summarized in Algorithm 1.

Multi-task Learning Multi-task learning (MTL) (Caruana, 1997) has been proved to be effective for improving model generalization. However, directly mixing all the tasks has the potential downside of biasing the model towards auxiliary tasks instead of the intended target task. Therefore, Xu et al. (2019) proposed a mixed ratio strategy and verified its effectiveness in MRC tasks. Inspired by this, we apply the MTL algorithm to QG: given K different tasks and D_1 as the target task, we use all mini-batches from D_1 and sample specified ratio of mini-batches from the remaining tasks. In experiments, we use hyper-parameter search to find the best ratio for each target task.

Diverse Beam Search Standard beam search tends to generate similar sequences in the n-best list. To mitigate this, Li et al. (2016) proposed to penalize the hypotheses that are extended from the same parent node, effectively favoring outlets from more diverse parents. In our work, we leverage this directly to generate more diverse questions for each candidate answer. More formally, the score for each question hypothesis is written as:

$$S(q^{k}_{t-1}, q^k_t|X) = S(q^{k}_{t-1}, q^k_t|X) - \gamma k', \quad (5)$$

where X is the context, q^{k}_{t-1} is the $(t-1)$-th generated token at beam k, q^k_t is the t-th generated token at beam k' based on q^{k}_{t-1}, k' is the rank of the current hypothesis among its siblings, and γ is the diversity rate. $S(q^{k}_{t-1}, q^k_t|X)$ is the ranking score used in standard beam search. In experiments, we show that using diverse beam search can effectively improve RTQA performance.

4 Experiments

4.1 Experimental Setup

Datasets We conduct experiments on SQuAD (Rajpurkar et al., 2016) and HotpotQA (Yang et al., 2018) to validate the effectiveness of our proposed approach. SQuAD is one of the largest QA datasets that requires mostly single-hop reasoning, while HotpotQA is a popular benchmark for multi-hop QA. Both are collected over 100K questions by presenting a set of Wikipedia articles to crowdworkers.

Algorithm 1: Data Augmentation for QG.

Input:	QG dataset D_1, QQP dataset D_2, QQP score threshold s_{min}, s_{max}, F_1 score threshold f_{min}, f_{max}, maximum selection number N
Train QG model M_{QG} on D_1;	
Train QQP model M_{QQP} on D_2;	
$D_3 = \{\}$;	
foreach $(p, q, a) \in D_1$ do	
Generate L different questions with beam search $q_1, \ldots, q_L = M_{QG}(p, a)$;	
Calculate QQP score for each question $s_{qpp} = M_{QQP}(q, a), 1 \leq i \leq L$;	
Calculate F_1 score for each question $s_{f1} = F_1(q, a), 1 \leq i \leq L$;	
$D_{sel} = \{\}$;	
for $i = 1$ to L do	
if $s_{min} \leq s_{qpp} \leq s_{max}$ and $f_{min} \leq s_{f1} \leq f_{max}$ and $\text{len}(D_{sel}) \leq N$ then	
add (p, q, a) to D_{sel}	
end	
end	
add D_{sel} to D_3;	
end	
Train QG model M_{QG} on D_1 and D_3;	
Output: M_{QG}	
For RTQA evaluation, we follow DEN-SPI (Seo et al., 2019) to compare EM, F1 and inference speed (s/Q) on open-domain SQuAD (SQuAD-Open) and SQuAD v1.1 development sets as our test sets. The answer extraction and QA-pair verification models are trained on the original SQuAD v1.1 training set. The question generation model is trained on SQuAD, HotpotQA and NewsQA datasets through multi-task learning.

For QG evaluation, we follow Du and Cardie (2018) to split the original training set into training and test on SQuAD, and follow Pan et al. (2020) to use their released data split for a fair comparison on HotpotQA. Besides commonly used metrics such as BLEU-4, METEOR and ROUGE-L, we also use final RTQA performance to measure QG quality. Since Pan et al. (2020) pre-processes the original HotpotQA dataset to select relevant sentences because of the difficulty in producing accurate semantic graphs for very long documents, the RTQA score on HotpotQA is based on the evidence sentences rather than the whole context.

Implementation Details Our implementation is mainly based on HuggingFace’s Transformers (Wolf et al., 2019), UniLM (Dong et al., 2019) and DrQA (Chen et al., 2017). We conduct experiments on 16 NVIDIA V100 GPUs and Intel(R) Xeon(R) W-2175 CPU. Each model in Ocean-Q framework took several hours to finetune. For offline QA-pair generation from Wikipedia, it took about one week. Datasets and more implementation details can be found in the Appendix.

4.2 Real-Time QA Experiments

Baselines On SQuAD-Open, state-of-the-art (SOTA) models include DrQA (Chen et al., 2017), R^3 (Wang et al., 2018), Paragraph ranker (Lee et al., 2018), Multi-step reasoner (Das et al., 2019), MINIMAL (Min et al., 2018), BERTserini (Yang et al., 2019), Weaver (Raison et al., 2018) and DENSPI (Seo et al., 2019). On SQuAD v1.1, we follow Seo et al. (2019) to compare with two types of model. The first group includes DrQA (Chen et al., 2017) and BERT (Devlin et al., 2019) that rely on cross attention between the question and context. The second group includes LSTM+SA+ELMO (Seo et al., 2018) and DENSPI (Seo et al., 2019) as query-agnostic models. The accuracy comparison in following experiments is based on subtracting the EMs from two comparing systems.

Results

Table 1 and 2 summarize results on SQuAD-Open and SQuAD v1.1 datasets. In open domain setting: (i) Ocean-Q outperforms DrQA by 3% and achieves 125x speedup. This indicates that Ocean-Q could outperform earlier cross-attention model while achieving much faster inference speed. (ii) Compared to BERTserini, Ocean-Q achieves 410 times speedup while sacrificing accuracy by 5.8%. As pointed out in Seo et al. (2019), the main gap between query-agnostic model and cross-sequence attention model is due to the decomposability gap. (iii) Ocean-Q accelerates DENSPI by 4 times at the expense of 3.5% accuracy drop. We call this gap the generative gap, since Ocean-Q relies on question generation model to enumerate possible questions for RTQA. A more rigorous QG model design to generate more diverse questions may help close this gap. In close-domain setting (a simpler problem than open domain), Table 2 shows that Ocean-Q outperforms the query-agnostic baseline (Seo et al., 2018), which drops 30.3% from close- to open-domain; while DENSPI, BERT and

Model	EM	F1	s/Q	
DrQA	68M	29.8	35	
R^3	-	29.1	37.5	-
Paragraph ranker	68M	30.2	-	-
Multi-step reasoner	68M	31.9	39.2	-
MINIMAL	-	34.7	42.5	-
BERTserini	110M	38.6	46.1	115
Weaver	-	42.3	-	-
DENSPI-Hybrid	336M	36.2	44.4	1.24*

Ocean-Q

Model	EM	F1
DrQA	69.5	78.8
BERT	84.1	90.9
LSTM+SA+ELMo	52.7	62.7
DENSPI	73.6	81.7
Ocean-Q	63.0	70.5

Table 1: Results on SQuAD-open. ‘s/Q’ is the average seconds per query in CPU environment. Note that DENSPI does not include the inference time of question embedding in their evaluation. We used their code to load question embedding on the dev set, which cost 0.43 seconds on average and was added to their reported numbers, marked as asterisk (*).

Table 2: Results on SQuAD v1.1. DrQA (Chen et al., 2017) and BERT (Devlin et al., 2019) results are reported by SQuAD leaderboard. LSTM+SA+ELMo (Seo et al., 2018) and DENSPI (Seo et al., 2019) are two query-agnostic baselines.
Table 3: Results of QG Enhancement on SQuAD and HotpotQA. The first group follows the data split in Du and Cardie (2018) on SQuAD, while the second group follows Pan et al. (2020) on HotpotQA. MTR is short for METEOR, and RG-L for ROUGE-L.

	BLEU-4	MTR	RG-L	EM	F1
SQuAD					
CorefNQG	15.16	19.12	-	-	-
SemQG	18.37	22.65	46.68	-	-
UniLM	22.78	25.49	51.57	-	-
UniLMv2	24.70	26.33	52.13	-	-
Our baseline	22.89	25.46	51.52	62.33	70.09
+ DA-sim	23.72	26.07	52.23	62.03	69.68
+ DA-div	22.15	25.13	51.29	62.71	70.34
+ MTL	23.16	25.74	51.94	63.04	70.52
+ DBS	22.89	25.46	51.52	62.43	70.26
HotpotQA					
SRL-Graph	15.03	19.73	36.24	-	-
DP-Graph	15.53	20.15	36.94	-	-
Our baseline	26.46	26.75	46.64	42.93	54.18
+ DA-sim	28.53	28.36	48.78	44.39	55.79
+ DA-div	26.94	27.27	47.18	44.19	55.43
+ MTL	26.76	27.03	46.97	44.30	55.73
+ DBS	26.46	26.75	46.64	43.53	54.91

DrQA drop 37.4%, 45.5%, and 39.7%, respectively. This demonstrates Ocean-Q’s better generalization ability from close- to open-domain.

4.3 Question Generation Experiments

Baselines On SQuAD, we compare with SOTA baselines: CorefNQG (Du and Cardie, 2018), SemQG (Zhang and Bansal, 2019), UniLM (Dong et al., 2019) and UniLMv2 (Bao et al., 2020). On HotpotQA, our chosen baselines are SRL-Graph (Pan et al., 2020) and DP-Graph (Pan et al., 2020). We reproduced the results from the released SOTA model UniLM and used this as our baseline.

Results Table 3 compares Ocean-Q with baselines over QG metrics as well as final RTQA scores. For data augmentation (DA), we use two different F1 thresholds. One from 0.5 to 1.0 (DA-sim) is intended to select similar questions, while the other one from 0.0 to 0.5 (DA-div) tends to select more diverse questions. Our observations from the comparison results: (i) DA-div, multi-task learning (MTL) and diverse beam search (DBS) improve RTQA score by 0.38/0.71/0.10 and 1.26/1.37/0.60 points, respectively, over the baseline on SQuAD and HotpotQA. This indicates that diversified questions could be beneficial for lifting RTQA performance. (ii) DA improves 0.83/0.61/0.71 and 2.07/1.61/2.14 points, respectively, over our strong baseline on SQuAD and HotpotQA. Compared to current SOTA, it still falls behind by 0.98/0.26/0.10 points over UniLMv2 on SQuAD, but it significantly boosts 13.0/8.21/11.84 points over DP-Graph on HotpotQA. (iii) MTL improves the most for RTQA, and DA improves the most on QG metrics. This indicates that RTQA benefits more from out-of-domain data, while QG metrics gain more from in-domain data. (iv) Similar in-domain data help more on QG metrics than diverse data. Comparing DA-sim with our baseline, it improves 0.83/0.61/0.71 and 2.07/1.61/2.14 points on SQuAD and HotpotQA, respectively. In contrast, DA-div is worse than the baseline on SQuAD and achieves less gain on HotpotQA.

4.4 Analysis

We provide four analysis to evaluate the effectiveness of each component in Ocean-Q framework: (i) Effect of different numbers of candidates in answer extraction; (ii) Effect of beam size in question generation; (iii) Ablation on QA pair verification; and (iv) Effect of the two-step ranker in online question matching. Figure 2 show that RTQA score receives consistent improvement by increasing the number of candidate answers and beam search size, since both methods generate more diverse candidate question-answer pairs. By increasing the answer number from 10 to 100, RTQA score receives 16.96/18.85 points improvement. By enlarging beam size from 1 to 20, there is 12.02/11.59 points improvement. For QA-pair verification, we see 9.46% accuracy drop if ablating this step in the experiment, which demonstrates that QA pair verification is useful for improving RTQA performance. For two-step ranker, Table 5 shows that by using the ranker, our model achieves 5.6% higher
Passage

Super Bowl 50 was an American football game to determine the American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24-10 to earn their third Super Bowl title. The game was played on ...

QA Pairs

What was the winning score in the Super Bowl? 24-10
What was the final score of the Super Bowl? 24-10
Who did the Denver Broncos defeat in the Super Bowl? Carolina Panthers

Question

What was the final score of Super Bowl 50?

Passage

Demographically, it was the most diverse city in Poland, with significant numbers of foreign-born inhabitants. ... In 1933, out of 1,178,914 inhabitants 833,500 were of Polish mother tongue. World War II changed the demographics of the city, and to this day ...

QA Pairs

What was the population of Warsaw in 1933? 1,178,914
How many people in 1933 had Polish mother tongue? 833,500
How many inhabitants in 1933 had Polish mother tongue? 833,500

Question

How many of Warsaw’s inhabitants spoke Polish in 1933?

Table 4: Qualitative examples of generated QA pairs and predictions. Blue and red represent the extracted answers and matched QA pair. Sampled QA pairs generated by Ocean-Q correspond to the underline answer span.

Retriever	#Docs	#Paras	Accuracy(%)
DrQA	5	214	77.8
Two-step Ranker	20	100	80.6
	20	150	82.4
	20	200	83.4

Table 5: Paragraph retrieval results on SQuAD-Open. ‘#Docs’ and ‘#Paras’ are the number of retrieved document and paragraph per query. ‘Accuracy’ is the percentage of questions whose answers appear in the retrieved paragraphs. DrQA (Chen et al., 2017) retrieves 5 documents for each question. For the two-step ranker, we retrieve 100, 150 and 200 paragraphs from 20 Wikipedia documents for each question.

Green NLP Analysis

As shown in Table 1, we are the first method that can answer questions without using neural networks. Usually, models with more parameters can achieve better performance, especially when they are initialized by pre-trained models. Our model without neural networks during inference can achieve very competitive performance. Compared to the baseline of DENSPI, we both need to save a large amount of answer candidates into disk. However, DENSPI still needs to compute the question embedding whenever a new question comes in. Our method does not require a heavy computational cost from neural networks, but only the information retrieval cost based on inverted index which is included in all the baseline methods. When deployed into large-scale question answering systems, such as Google, our method can be greener than DENSPI.

5 Conclusion

In this paper, we present Ocean-Q, a novel method that uses QG to reduce the computational cost of RTQA, and address the bottleneck of encoding coming question which cannot be cached offline. Experiments on SQuAD-Open demonstrate that Ocean-Q is able to accelerate the fastest RTQA system by 4 times, while only losing the accuracy by 3+. To further improve QG quality, we introduce a new data augmentation method and leverage multi-task learning and diverse beam search to boost RTQA performance. Currently, there still exists a gap between Ocean-Q and the state-of-the-art RTQA models. Future work that includes designing a better QG model may help closing the gap.
References

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang, Xiaodong Liu, Yu Wang, Songhao Piao, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2020. Unilmv2: Pseudo-masked language models for unified language model pre-training. In ICML.

Rich Caruana. 1997. Multitask learning. Machine learning.

Ylilias Chali and Sadid A Hasan. 2012. Towards automatic topical question generation. In COLING.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading Wikipedia to answer open-domain questions. In ACL.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. 2019. Multi-step retriever-reader interaction for scalable open-domain question answering. In ICLR.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In CVPR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In NAACL.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language model pre-training for natural language understanding and generation. In NeurIPS.

Xinya Du and Claire Cardie. 2018. Harvesting paragraph-level question-answer pairs from Wikipedia. In ACL.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learning to ask: Neural question generation for reading comprehension. In ACL.

Michael Heilman. 2011. Automatic factual question generation from text. Language Technologies Institute School of Computer Science Carnegie Mellon University, 195.

Alon Lavie and Michael J Denkowski. 2009. The meteor metric for automatic evaluation of machine translation. Machine translation.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung Ko, and Jaewoo Kang. 2018. Ranking paragraphs for improving answer recall in open-domain question answering. In EMNLP.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A simple, fast diverse decoding algorithm for neural generation. arXiv preprint arXiv:1611.08562.

Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out.

David Lindberg, Fred Popowich, John Nesbit, and Phil Winne. 2013. Generating natural language questions to support learning on-line. In Proceedings of the 14th European Workshop on Natural Language Generation.

Bang Liu, Mingjun Zhao, Di Niu, Kunfeng Lai, Yancheng He, Haojie Wei, and Yu Xu. 2019a. Learning to generate questions by learning what not to generate. In The World Wide Web Conference.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Sewon Min, Victor Zhong, Richard Socher, and Caiming Xiong. 2018. Efficient and robust question answering from minimal context over documents. In ACL.

Li Yang, Xiaodong Liu, Yu Wang, Songhao Piao, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2020. Unilmv2: Pseudo-masked language models for unified language model pre-training. In ICML.

David Lindberg, Fred Popowich, John Nesbit, and Phil Winne. 2013. Generating natural language questions to support learning on-line. In Proceedings of the 14th European Workshop on Natural Language Generation.

Bang Liu, Mingjun Zhao, Di Niu, Kunfeng Lai, Yancheng He, Haojie Wei, and Yu Xu. 2019a. Learning to generate questions by learning what not to generate. In The World Wide Web Conference.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019b. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Sewon Min, Victor Zhong, Richard Socher, and Caiming Xiong. 2018. Efficient and robust question answering from minimal context over documents. In ACL.

Li Yang, Xiaodong Liu, Yu Wang, Songhao Piao, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2020. Unilmv2: Pseudo-masked language models for unified language model pre-training. In ICML.
Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. Patient knowledge distillation for bert model compression. In EMNLP.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu Chang, Gerry Tesauro, Bowen Zhou, and Jing Jiang. 2018. R³: Reinforced ranker-reader for open-domain question answering. In AAAI.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. 2019. Multi-passage BERT: A globally normalized BERT model for open-domain question answering. In EMNLP.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierec Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. 2019. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771.

Dongling Xiao, Han Zhang, Yukun Li, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. 2020. Ernie-gen: An enhanced multi-flow pre-training and fine-tuning framework for natural language generation. arXiv preprint arXiv:2001.11314.

Yichong Xu, Xiaodong Liu, Yelong Shen, Jingjing Liu, and Jianfeng Gao. 2019. Multi-task learning with sample re-weighting for machine reading comprehension. In NAACL.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019. End-to-end open-domain question answering with bertserini. arXiv preprint arXiv:1902.01718.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In EMNLP.

Shiyue Zhang and Mohit Bansal. 2019. Addressing semantic drift in question generation for semi-supervised question answering. In EMNLP.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa Ke. 2018. Paragraph-level neural question generation with maxout pointer and gated self-attention networks. In EMNLP.
A Datasets

QG On SQuAD, we use preprocessed dataset\(^2\) from Dong et al. (2019) to fair compare with previous works (Du and Cardie, 2018; Zhang and Bansal, 2019; Dong et al., 2019; Bao et al., 2020). As the test set is hidden, they split the original training set into 75,722 training and 11,877 test samples. The original development set that includes 10,570 samples is used for validation. On HotpotQA, we use preprocessed dataset\(^3\) from Pan et al. (2020) which includes 90,440 / 6,972 examples for training and evaluation, respectively. For multitask-learning, NewsQA data\(^4\) includes 74,159 training samples.

RTQA We use SQuAD v1.1\(^5\) for RTQA training and testing. Answer extraction and QA pair verification models are trained on the whole training set that includes 87,599 examples. Follow previous work, the development set is used as the test set since the official test set is hidden. For HotpotQA, we exclude questions whose answers are “yes/no” as they do not appear in the passage and this lead to 82,095 / 6,515 examples for training and testing respectively.

B Implementation Details

Answer Extraction We use pre-trained RoBERTa-large model (355M parameters) and finetune on the original SQuAD training set for 3 epochs, with batch size 8, max sequence length 512 and learning rate 1e-5. During inference, we limit the maximum answer length to 10 and extract 100 candidate answers per paragraph.

Question Generation We use pre-trained UniLM-large model (340M parameters) and their default parameters. Specifically, we finetune on the training set for 10 epochs, with batch size 32, masking probability 0.7, learning rate 2e-5, and label smoothing 0.1. For QQP model, we use HuggingFace’s transformers (Wolf et al., 2019) and finetune on QQP dataset for 3 epochs, with batch size 16, gradient accumulation steps 2, max sequence length 256, and learning rate 1e-5. For

\[^2\]https://drive.google.com/open?id=11E3Ij-ctbKUTIQjurers2poVzLMP1VUZ
\[^3\]https://drive.google.com/drive/folders/1vj2pWYZ7s0f4qP8vHA3FEHnYa_Ct
\[^4\]https://github.com/mrqa/MRQA-Shared-Task-2019
\[^5\]https://github.com/rajpurkar/SQuAD-explorer/blob/master/dataset

C Inference Speed Analysis

Table 6 shows the inference speed for each component in Ocean-Q framework. We note that document ranker and question matching are the main cost. We expect Ocean-Q can achieve greater speed-up by further optimizing on these two parts.