A Rare Cause of Isolated Prolonged Activated Partial Thromboplastin Time: An Overview of Prekallikrein Deficiency and the Contact System

Ivy Riano, MD1,2 and Klaorat Prasongdee, MD1,2

Abstract
Prekallikrein (PK) deficiency, also known as Fletcher factor deficiency, is a very rare disorder inherited as an autosomal recessive trait. It is usually identified incidentally in asymptomatic patients with a prolonged activated partial thromboplastin time (aPTT). In this article, we present the case of a 52-year-old woman, with no prior personal or family history of thrombotic or hemorrhagic disorders, who was noted to have substantial protracted aPTT through the routine coagulation assessment before a kidney biopsy. The patient had an uneventful biopsy course after receiving fresh frozen plasma (FFP). Laboratory investigations performed before the biopsy indicated normal activity for factors VIII, IX, XI, XII, and von Willebrand factor (vWF) as well as negative lupus anticoagulant (LA) screen. The plasma PK assay revealed low activity at 15% consistent with mild PK deficiency. The deficit of PK is characterized by a severely prolonged aPTT and normal prothrombin time (PT) in the absence of bleeding tendency. PK plays a role in the contact-activated coagulation pathway and the inflammatory response. Thus, other differential diagnoses of isolated prolonged aPTT include intrinsic pathway factor deficiencies and nonspecific inhibitors such as LA. We concluded that the initial evaluation of a prolonged aPTT with normal PT should appraise the measurement of contact activation factors and factor inhibitors. PK deficiency should be considered in asymptomatic patients with isolated aPTT prolongation, which corrects on incubation, with normal levels of the contact activation factors and factor inhibitors.

Keywords
prekallikrein deficiency, Fletcher factor deficiency, kallikrein-kinin system, activated partial thromboplastin time, prolonged aPTT

Introduction
The contact factor system (also called the kallikrein-kinin system) consists of 2 zymogens, factor XII and prekallikrein (PK), and 1 cofactor, high-molecular-weight kininogen (HMWK).1 These proteins are involved in blood coagulation, fibrinolysis, complement activation, renin-angiotensin hormonal regulations, and bradykinin formation. Initially, these proteins were thought to have a role in homeostasis due to the prolonged activated partial thromboplastin time (aPTT) related to factor XII, PK, and HMWK deficiency. This was proven incorrect due to the lack of a bleeding tendency seen in these factor deficient patients. However, studies suggest that a role in thrombosis independent of hemostasis is possible.2 In recent years, significant evidence has emerged implicating a role for these coagulation factors in tissue repair, inflammatory response, and innate immune system.3,4 In the normal state, the plasma kallikrein-kinin system contributes to basal bradykinin formation by PK activation for the maintenance of vascular homeostasis. When vessel injury occurs, activation of factor XII through contact activation participates in intravascular thrombus formation.1

Hereditary PK deficiency, also known as Fletcher factor (FF) deficiency, is a rare autosomal recessive defect usually diagnosed incidentally during routine coagulation tests demonstrating substantially prolonged aPTT and normal prothrombin time (PT) without associated bleeding diathesis.5,6 This condition is exceedingly rare; thus, the characterization of its phenotype is not well elucidated. In this article, we present the case of an asymptomatic 52-year-old Black
woman with a prolonged aPTT revealed during a routine workup before a scheduled procedure. A PK activator assay using patient plasma was consistent with PK deficiency.

Case Presentation

A 52-year-old Black woman was noted to have a prolonged aPTT before her elective kidney biopsy. The patient had been recently diagnosed with Sjögren’s syndrome and started on steroids. She then developed acute kidney injury associated with a positive antinuclear antibody (ANA) concerning for systemic lupus erythematosus (SLE) complicated by lupus nephritis. She had a history of bulimia with a recent weight gain of 11 kg during the past 2 months. Given abnormal coagulation laboratories, she was instead admitted for an expedited workup in the setting of rapidly progressive renal dysfunction with an elevation of creatinine from 1.1 to 1.8 mg/dL in the past 2 months. Given abnormal coagulation laboratories, she was instead admitted for an expedited workup in the setting of rapidly progressive renal dysfunction with a new disorder of coagulation. The patient had normal PT of 10.3 seconds (reference interval = 9.4-12.5 seconds), platelet count of 248,000/µL (reference interval = 200-450,000/µL), and fibrinogen level of 212 mg/dL (reference interval = 150-400 mg/dL). Thrombin time was slightly increased (18.7 seconds; reference interval = 15-25 seconds), and fibrinogen level was 212 mg/dL (reference interval = 150-400 mg/dL), with a repeat value of 83 seconds, as well as rapid progression of renal dysfunction with an elevation of creatinine from 1.1 to 1.8 mg/dL in the past 2 months. Given abnormal coagulation laboratories, she was instead admitted for an expedited workup in the setting of rapidly progressive renal dysfunction with a new disorder of coagulation. The patient had normal PT of 10.3 seconds (reference interval = 9.4-12.5 seconds), platelet count of 248,000/µL (reference interval = 200-450,000/µL), and fibrinogen level of 212 mg/dL (reference interval = 150-400 mg/dL). Other laboratory results were notable for stable normocytic anemia (hemoglobin 10.8 g/dL), without further hematologic abnormalities. A mixing study was ordered. The patient presented with high-grade proteinuria, anasarca, hypoalbuminemia, and urine sediment notable for fat droplets and lipid-laden casts, all consistent with acute nephrotic syndrome. Thus, a decision was made to pursue renal biopsy to further understand kidney disease and guide treatment.

Her current medication list included hydroxychloroquine, torsemide, prednisone, lisinopril, potassium chloride, and sumatriptan. The patient did not have any medical or family history of abnormal hemorrhagic or thromboembolic events. She had an uncomplicated Cesarean section in the past without any bleeding complications. She reported a prolonged aPTT of around 200 seconds in her sister, found incidentally through routine laboratory tests before shoulder surgery, without further hematologic follow-up. The patient’s physical examination did not show any evidence of ecchymoses, purpura, or petechiae.

The patient underwent the planned kidney biopsy after receiving 3 units of fresh frozen plasma (FFP) in light of the prolonged aPTT, which corrected the aPTT to 27 seconds. Kidney biopsy pathology showed class V membranous disease as well as evidence of proliferative disease with crescents. Possible causes of isolated prolongation of aPTT were considered, including heparin administration, inherited intrinsic pathway factor deficiencies, including XII, XI, IX, and VIII, factor inhibitors, and von Willebrand disease. The patient’s laboratory studies before biopsy indicated normal PT as well as a normal activity of factors VIII, IX, XI, XII, vWF, and HMWK. The lupus anticoagulant (LA) screen was positive, but the confirmatory test was negative. Anti-cardiolipin antibodies and β-2-glycoprotein 1 (immunoglobulins G and M) levels were normal. The plasma PK assay revealed low activity at 15% consistent with mild PK deficiency (reference interval = normal >50%, mild deficiency = 5% to 49%, severe deficiency ≤5%). The plasma PK was measured indirectly by quantifying the amidolytic activity of kallikrein by using a synthetic chromogenic substrate. Antigenic assays for evaluation of structure or quantity of PK were not available.

Discussion

PK deficiency is an uncommon coagulation disease considered not to be associated with bleeding tendency, despite marked aPTT prolongation. PK is the precursor of plasma kallikrein, a procoagulant and proinflammatory protease, that plays a role in the early stages of the intrinsic pathway of the coagulation cascade. It is synthesized primarily by the liver and mainly activated by factor XIIa or other substances such as endothelial cell prolylcarboxypeptidase (PRCP), which functions independently of factor XII.

The contact activation of the coagulation pathway is initiated by factor XII that is activated to XIa via binding to (“contact” with) negatively charged artificial or biological surfaces (contact activation). Factor XIIa proteolytically activates PK to form plasma kallikrein. Kallikrein, then, accelerates the activation of factor XI. This feedback loop amplifies factor XIa and PK production. Additionally, HMWK binds to PK and factor XI to facilitate their activation (Figure 1). Factor XIa also activates factor XI, leading to thrombin generation, fibrin formation, and platelet activation. Essentially, factor XIa initiates the intrinsic pathway of coagulation via its substrate, factor XI, and leads to the liberation of the proinflammatory mediator bradykinin by activation of the kallikrein-kinin system. The contact factor deficiencies do not result in a pronounced bleeding tendency as factor XI is additionally activated by platelets and thrombin.

Furthermore, PK is an important mediator of the inflammatory response. Thus, the kallikrein-kinin system can result in an inflammatory response via plasma kallikrein cleaving HMWK and releasing bradykinin. Bradykinin then binds to its constitutively expressed B1 (or B2) receptors. Activation of these receptors in return modulates endothelial cell proliferation, increases vascular permeability, resulting in vasodilation, edema, and hypotension (Figure 1). This system can be activated either by factor XIa formation or independently formed by PRCP.
It is known that PK deficiency is caused by mutations in the \textit{Klkb1} gene, located on chromosome 4q34-35, that are inherited via an autosomal recessive pattern. A homozygous point mutation (C529Y) has been identified as the genetic basis in severe cases. Hereditary PK deficiency was first described in 1965 by Hathaway et al who noted prolonged aPTT among the children of the Fletcher family. Initially, it was hypothesized that the prolonged aPTT was due to a missing new plasma thromboplastin factor, termed the “Fletcher factor.” The identity of the FF remained a mystery until 1973 when it was correctly recognized as PK, and the deficient plasma demonstrated abnormalities in the kinin, coagulation, and fibrinolytic systems. This discovery marked for the first time the interrelationship between these systems.

In PK deficiency, the activation process of factor XII occurs in a slow manner resulting in prolonged aPTT. The aPTT is a test for assessing the intrinsic and common pathways of the coagulation cascade from the contact phase system activation to fibrin formation. In this assay, the plasma is preincubated with an activator of the contact phase system (ie, silica, celite, kaolin, ellagic) to provide a negatively charged surface and a so-called partial thromboplastin (phospholipids, ie, cephalin). During the preincubation of plasma with the aPTT reagents (activated “surface” and partial thromboplastin), the contact phase of the blood coagulation is activated. Subsequently, the plasma is recalcified and the clotting time is measured. In the Fletcher trait, the aPTT autocorrects on prolonged incubation (after 1 hour) at room temperature (37 °C). This phenomenon is unique to PK deficiency and can be explained by the factor XII autoactivation instead of the faster kallikrein-mediated factor XIIa generation in a healthy person. Factor XIIa then activates factor XI, which leads to factor IXa determining the clotting time. PK cofactor is necessary for factor XIIa–mediated factor Xa, hence the failure to normalize aPTT in prolonged incubation time in PK deficiency patients.

Possible causes of elevated aPTT include deficiencies of factors VIII, IX, XI, vWF, PK, or HMWK and nonspecific inhibitors such as LA. The correction of the aPTT test after FFP administration supports the diagnosis of a factor deficiency in our patient and argues against the presence of a factor inhibitor.

In PK deficiency, the aPTT will correct to normal ranges with the addition of an equal volume of normal plasma after prolonged incubation. The rationale for administering FFP for abnormal coagulation stems from the fact that plasma is a depot of all coagulation factors. Plasma doses of 10 to 15 mL/kg typically result in an increase in coagulation factors by 15% to 20%, which reaches levels needed for normal hemostasis. Also, the effect of FFP replacement depends on the starting level of coagulation factors. For
Table 1. Studies Reporting on Cases of Prekallikrein Deficiency.

Case	Year of publication	Author	Age (years)/sex	Degree of aPTT prolongation (reference values, seconds)	PK assay result and method	Outcome
1	2021	This case	52/Female	106.4 (23-32)	PK:C 15% (normal = 50%, mild = 5 to 49% severe = <5%)	aPTT normalized after 3 units of FFP
2	2020	Barco et al	68/Female	N/A	PK:C 1%	Surgery without complication
3	2006	Inoue et al	47/Male	N/A	PK:C <1%	Surgery without complication
4	2017	Criel et al	63/Male	125 (24-36)	PK:C 1%	N/A
5	2005	Jones et al	79/Male	130 (24-36)	PK:C 4%	N/A
6	2008	Katsuda et al	64/Female	136.5 (40-100)	PK:C <1%	N/A
7	2008	Katsuda et al	50/Female	126.2 (40-100)	PK:C <1%	N/A
8	2009	Francois et al	63/Male	176 (<35)	PK:C <1%	N/A
9	2010	Francois et al	32/Male	140 (24-36)	PK:C 1%	N/A
10	2011	Francois et al	38/Female	109 (24-42)	PK:C <1%	N/A
11	2012	Francois et al	38/Female	222 (26-376)	PK:C 5%	N/A
12	2013	Francois et al	38/Female	169 (24-34)	PK:C 5%	N/A
13	2014	Francois et al	32/Male	140 (24-36)	PK:C <1%	N/A
14	2015	Francois et al	55/Male	222 (26-376)	PK:C 4%	N/A
15	2016	Francois et al	15/Male	169 (24-34)	PK:C 1%	N/A
16	2017	Francois et al	43/Male	109 (24-42)	PK:C 1%	N/A
17	2018	Francois et al	38/Female	105 (24-42)	PK:C 1%	N/A
18	2019	Francois et al	48/Female	117 (26-36)	PK:C <1%	N/A
19	2020	Francois et al	66/Male	112 (26-36)	PK:C <1%	N/A
20	2021	Francois et al	36/Female	62.2 (23-35)	PK:C <1%	N/A
21	2022	Francois et al	50/Male	140 (23-33)	PK:C <1%	N/A
22	2022	Francois et al	32/Female	99.4 (N/A)	PK:C 1%	N/A
23	1982	Raffoux et al	11/Male	N/A	Fletcher factor level 0.41 U/mL (0.75-1.25 U/mL; ND)	Tonsillectomy performed with prolonged bleeding, which required transfusion of FFP and several sutures
24	1980	Waddell et al	62/Male	78 (N/A)	Fletcher factor clotting assay <1%	Tonsillectomy was performed with prolonged bleeding, which required transfusion of FFP and several sutures
25	1980	Waddell et al	7/Male	355 (N/A)	Fletcher factor clotting assay <0.01%	No abnormal bleeding in 2 years follow-up

(continued)
Case	Year of publication	Author	Age (years)/sex	Incidental finding of isolated prolonged aPTT prior to surgical or dental procedure	Degree of aPTT prolongation (reference values, seconds)	PK assay result and method	Outcome	
32	1990	Castaman et al.	38/Female	Yes	Race greater than 2	PK:C <1%; PK:Ag negative (by electroimmunoassay)	No improvement in PK level after DDAVP	
33	1990	De Stefano et al.	49/Female	Yes	116 (< 30.6)	PK:C <1%; PK:Ag 50% (by Laurell immunoelectrophoresis)	Total thyroidectomy without complication	
34			51/Male	Case 34’s family member	120 (< 30.6)	PK:C <1%; PK:Ag 34% (by Laurell immunoelectrophoresis)	PK:C <1%; PK:Ag 34% (by Laurell immunoelectrophoresis)	Total thyroidectomy without complication
35			47/Male	Case 34’s family member	94 (< 30.6)	PK:C <1%; PK:Ag 34% (by Laurell immunoelectrophoresis)	PK:C <1%; PK:Ag 34% (by Laurell immunoelectrophoresis)	Total thyroidectomy without complication
36			38/Female	Case 34’s family member	110 (< 30.6)	PK:C <1%; PK:Ag 34% (by Laurell immunoelectrophoresis)	PK:C <1%; PK:Ag 34% (by Laurell immunoelectrophoresis)	Total thyroidectomy without complication
37	1970	Hootsensky et al.	77/Female	Yes	135.9 (< 40.0)	Factor VIII clotting assay <1%	Closed reduction of the fracture without complication	
38			6/Male	Case 34’s family member	278.6 (< 40.5)	PK:C <1%; PK:Ag 34% (by Laurell immunoelectrophoresis)	PK:C <1%; PK:Ag 34% (by Laurell immunoelectrophoresis)	Total thyroidectomy without complication
39			50/Male	170.0 (N/A)	PK:C <1%; PK:Ag 34% (by Laurell immunoelectrophoresis)	PK:C <1%; PK:Ag 34% (by Laurell immunoelectrophoresis)	Total thyroidectomy without complication	
40	2009	Odumosu et al.	25/Female	Yes	69.4 (24-38)	PK:C <1%	Underwent hemorhoidectomy and polypectomy without complication	
41	2009	van Veen et al.	19/Male	Yes	132 (23.5-37.5)	PK:C <1%	Underwent hemorhoidectomy and polypectomy without complication	
42	1995	Dela Cadena et al.	9/Female	Yes	58 (< 38)	PK:C <1%; PK:Ag 20-25 (by ELISA)	Successful redo sternotomy and aortic valve replacement	
43	2008	Dietzel et al.	24/Male	Yes	N/A	PK:C <1%; PK:Ag normal (ND)	Dental extraction without complication	
44	1980	Saade et al.	29/Male	Yes	67.7 (33-40)	Factor VIII clotting assay 1%	Renal surgery without complication	
45	1983	Colla et al.	20/Male	Yes	131 (23-33)	Factor VIII clotting assay 1%	Renal surgery without complication	
46	1986	Bouma et al.	38/Female	Yes	N/A	PK:C <1%; PK:Ag 35% (ND)	Hysterectomy without complication	
47			N/A/Female	Case 47’s family member	N/A	PK:C <1%; PK:Ag 35% (ND)	Hysterectomy without complication	
48			N/A/Male	Case 47’s family member	N/A	PK:C <1%; PK:Ag 35% (ND)	Hysterectomy without complication	
51	2018	Baker et al.	15/Male	Yes	50.2 (21-32)	PK:C <5%	FFP 15 mL/kg 1 hour before for normalization of PK and improved monitoring during surgery. Open cardiac surgical repair for ASD without complication	
52	1945	Hatchway et al.	11/Female	Yes	250 (< 100)	First Factor VIII assay	Open cardiac surgical repair for ASD without complication	
53			8/Female	Case 53’s family member	208 (< 100)	PK:C <1%	Open cardiac surgical repair for ASD without complication	
54			4/Female	Case 53’s family member	174 (< 100)	PK:C <1%	Open cardiac surgical repair for ASD without complication	
55			9/Male	Case 53’s family member	168 (< 100)	PK:C <1%	Open cardiac surgical repair for ASD without complication	

Abbreviations: aPTT, activated partial thromboplastin time; PK, prekallikrein; PK:C, prekallikrein clotting assays; FFP, fresh frozen plasma; N/A, not available; PK:Ag, prekallikrein antigen; ELISA, enzyme-linked immunosorbent assay; ND, not described; TIA, transient ischemic attack; DDAVP, desmopressin; ASD, atrial septal defect.

*The decreasing/normalization of the aPTT with increasing preincubation time.
instance, if the levels are substantially low (very prolonged aPTT as presented in this patient), the plasma replacement may reflect significant improvement compared with those in whom the levels are mildly decreased. However, this is dependent on the specific sensitivity of the aPTT reagent to PK levels.

The patient also presented with a slightly increased thrombin time. Severe hypofibrinogenemia (<100 mg/dL) can extend the thrombin time. This can result from a complete lack of fibrinogen (afibrinogenemia), decreased amount of fibrinogen (hypofibrinogenemia), or the presence of dysfunctional fibrinogen (dysfibrinogenemia). Acquired conditions, such as liver or renal disease, amyloidosis, thrombolytic therapy, disseminated intravascular coagulation (DIC), malignancy, and thrombin inhibitors (heparin, dabigatran, argatroban, and hirudin), can also lead to reduced fibrinogen levels and hence prolonged thrombin time.18 Our patient did not present with any of these conditions, and she was not receiving any of these medications. Therefore, the normalization of the thrombin time indicates a likely artifact. It should be noted that despite a dysfibrinogenemia was not completely ruled out, it was unlikely given the normal fibrinogen and the normal postprocedure thrombin time.

Reports of PK deficiency diagnosed as an incidental finding of isolated prolonged aPTT before procedures have been published since 1965 (Table 1). These data have concluded that the prolongation of aPTT is due to PK deficiency: the characteristic normalization of the severely prolonged aPTT following increased preincubation time is due to autoactivation of factor XII.19 However, this is dependent on the specific sensitivity of the aPTT reagent to PK levels.

The case of PK deficiency described in this report was uncovered after the incidental finding of prolonged aPTT that could suggest a mode of inheritance. We concluded that the initial evaluation of a patient with a prolonged aPTT should raise the possibility of PK deficiency especially if the aPTT corrects on extended incubation.

Author Contributions

Ivy Riano and Klaorat Prasongdee wrote the original draft of the paper. All authors read and approved the final manuscript. All authors had access to the data and a role in writing this manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethics Approval

Our institution does not require ethical approval for reporting individual cases or case series.

Informed Consent

Verbal informed consent was obtained from the patient for her anonymized information to be published in this article.

ORCID iD

Ivy Riano (https://orcid.org/0000-0002-3312-286X)

References

1. Schmaier AH. Assembly, activation, and physiologic influence of the plasma kallikrein/kinin system. Int Immunopharmacol. 2008;8:161-165.
2. Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiological and physiologic activities. J Thromb Haemost. 2016;14:28-39.
3. Göbel K, Eichler S, Wiendl H, et al. The coagulation factors fibrinogen, thrombin, and factor XII in inflammatory disorders—a systematic review. Front Immunol. 2018;9:1731.
4. Healy LD, McCarty OJT. Contact system sends defenses to the rescue. Blood. 2019;133:385-386.
5. Weidmann H, Heikaus L, Long AT, Naudin C, Schlüter H, Renné T. The plasma contact system, a protease cascade at the nexus of inflammation, coagulation and immunity. Biochim Biophys Acta Mol Cell Res. 2017;1864(11 pt B):2118-2127.
6. Kitchens CS. The contact system. Arch Pathol Lab Med. 2002;126:1382-1386.
7. Nakao T, Yamane T, Katagami T, et al. Severe prekallikrein deficiency due to a homozygous Trp499Stop nonsense mutation. Blood Coagul Fibrinolysis. 2011;22:337-339.
8. Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood. 2018;131:1903-1909.
9. Yarovaya GA, Blokhina TB, Neshkova EA. Contact system. New concepts on activation mechanisms and bioregulatory functions. Biochemistry (Mosc). 2002;67:13-24.
10. Sollo DG, Saleem A. Prekallikrein (Fletcher factor) deficiency. Ann Clin Lab Sci. 1985;15:279-285.
11. François D, Triguí N, Leterreux G, et al. Severe prekallikrein deficiencies due to homozygous C529Y mutations. Blood Coagul Fibrinolysis. 2007;18:283-286.
12. Hathaway WE, Belhasen LP, Hathaway HS. Evidence for a new plasma thromboplastin factor I: case report, coagulation studies and physicochemical properties. Blood. 1965;26:521-532.
13. Asmis LM, Sulzer I, Furlan M, Lümmle B. Prekallikrein deficiency: the characteristic normalization of the severely prolonged aPTT following increased preincubation time is due to autoactivation of factor XII. Thromb Res. 2002;105:463-470.
14. Tcherniantchouk O, Laposata M, Marques MB. The isolated prolonged PTT. *Am J Hematol*. 2013;88:82-85.
15. Winter WE, Flax SD, Harris NS. Coagulation testing in the core laboratory. *Lab Med*. 2017;48:295-313.
16. Sanfelippo M, Cafaro A, Hollister W. APTT prolonged by prekallikrein deficiency. *Lab Med*. 1998;29:274-276.
17. Thachil J. Abnormal coagulation tests before kidney biopsies—what next? *Clin Kidney J*. 2013;6:50-54.
18. Kaur J, Jain A. Fibrinogen. In: *StatPearls*. StatPearls Publishing; 2021. https://www.ncbi.nlm.nih.gov/books/NBK537184/.
19. Barco S, Sollfrank S, Trinchero A, et al. Severe plasma prekallikrein deficiency: clinical characteristics, novel KLKB1 mutations, and estimated prevalence. *J Thromb Haemost*. 2020;18:1598-1617.
20. Lombardi AM, Sartori MT, Cabrio L, et al. Severe prekallikrein (Fletcher factor) deficiency due to a compound heterozygosis (383Trp stop codon and Cys529Tyr). *Thromb Haemost*. 2003;90:1040-1045.
21. Shigekiyo T, Fujino O, Kanagawa Y, et al. Prekallikrein (PK) deficiency: apropos of 2 cases [in French]. *Acta Clin Belg*. 1986;81:208-212.
22. Jones DW, Russell G, Allford SL, et al. Severe prekallikrein deficiency associated with homozygosity for an Arg94Stop nonsense mutation. *Br J Haematol*. 2004;127:220-223.
23. Katsuda I, Maruyama F, Ezaki K, et al. A new type of plasma prekallikrein deficiency associated with homozygosity for Gly104Arg and Asn124Ser in apple domain 2 of the heavy-chain region. *Eur J Haematol*. 2007;79:59-68.
24. Nagaya S, Morishita E, Takami A, et al. An elderly case of congenital prekallikrein deficiency [in Japanese]. *Nihon Ronen Igakkai Zasshi*. 2009;46:348-351.
25. Maak B, Kochhan L, Heuchel P, Jenderny J. Severe prekallikrein deficiency due to a compound heterozygosis in the KLKB1-gene. *Hum Genet*. 2009;127:187-189.
26. Girolami A, Marun S, Vettore S, et al. A large family from Argentina with prekallikrein deficiency due to a compound heterozygosis (T insertion in intron 7 and Asp558Glu in exon 15): prekallikrein cordoba. *Am J Hematol*. 2010;85:363-366.
27. Girolami A, Vidal J, Sabagh M, et al. The old and the new in the prekallikrein deficiency: historical context and a family from Argentina with PK deficiency due to a new mutation (Arg541Gln) in exon 14 associated with a common polymorphism (Asn124Ser) in exon 5. *Semin Thromb Hemost*. 2014;40:592-599.
28. Ryu S, Gu JY, Hong KT, et al. The first case of congenital prekallikrein deficiency in Korea with a novel pathogenic variant (c.1198G>T). *Ann Lab Med*. 2019;39:229-231.
29. Criel M, Declau F, Schuermans C, et al. Prekallikrein deficiency in a 15-year-old boy with Meniere’s disease: a case report. *Acta Clin Belg*. 2017;72:274-277.
30. Harris MG, Exner T, Rickard KA, Kronenberg H. Multiple cerebral thrombosis in Fletcher factor (prekallikrein) deficiency: a case report. *Am J Hematol*. 1985;19:387-393.
31. Joggi J, Stalder M, Knecht H, Hauert J, Bachmann F. Prekallikrein deficiency: apropos of 2 cases [in French]. *Schweiz Med Wochenschr*. 1990;120:1942-1944.
32. Hess DC, Krauss JS, Rardin D. Stroke in a young adult with Fletcher trait. *South Med J*. 1991;84:507-508.
33. Eckehoudt SL, Momeni M, Matta A, Latrine D, Arnout J, Hermans C. Management of prekallikrein deficiency during cardiac surgery. *Thromb Haemost*. 2010;103:866-867.
34. Bojanini EU, Loaida-Bonilla A, Pimentel A. Prekallikrein deficiency presenting as recurrent cerebrovascular accident: case report and review of the literature. *Case Rep Hematol*. 2012;2012:723204.
35. Raffoux C, Alexandre P, Perrier P, Briquel EM, Streiff F. HLA typing in a new family with Fletcher factor deficiency. *Hum Genet*. 1982;60:71-73.
36. Waddell CC, Brown JA, Udden MM. Plasma prekallikrein (Fletcher factor) deficiency in a patient with chronic lymphocytic leukemia. *South Med J*. 1980;73:1653-1655.
37. Poon MC, Moore MR, Castleberry RP, Lurie A, Huang ST, Lehmeyer J. Severe Fletcher factor (plasma prekallikrein) deficiency with partial deficiency of Hageman factor (factor XII): report of a case with observation on in vivo and in vitro leukocyte chemotaxis. *Am J Hematol*. 1982;12:261-270.
38. Castaman G, Ruggeri M, Rodeghiero F. A new Italian family with severe prekallikrein deficiency. Desmopressin-induced fibrinolysis and coagulation changes in homozygous and heterozygous members. *Ric Clin Lab*. 1990;20:239-244.
39. De Stefano V, Leone G, Teofili L, et al. Association of Graves’ disease and prekallikrein congenital deficiency in a patient belonging to the first CRM+ prekallikrein-deficient Italian family. *Thromb Res*. 1990;60:397-404.
40. Hattersley PG, Hayse D. Fletcher factor deficiency: a report of three unrelated cases. *Br J Haematol*. 1970;18:411-416.
41. Odumosu MC, Yoong WC, Fakokunde AF. Fletcher factor deficiency in a woman requiring emergency caesarean section. *J Obstet Gynaecol*. 2009;29:442.
42. van Veen JJ, Laidlaw S, Swanvelder J, et al. Contact factor deficiencies and cardiopulmonary bypass surgery: detection of the defect and monitoring of heparin. *Eur J Haematol*. 2009;82:208-212.
43. DeLa Cadena RA. Fletcher factor deficiency in a 9-year-old girl: mechanisms of the contact pathway of blood coagulation. *Am J Hematol*. 1995;48:273-277.
44. Dietzel H, Lutze G, Katzrel R, Liebscher K. Prekallikrein (Fletcher factor) deficiency and prolongation of APTT reaction [in German]. *Med Klin (Munich)*. 2003;98:587-590.
45. Saade M. Fletcher factor deficiency with mildly prolonged activated PT. *South Med J*. 1980;73:958.
46. Colla G, Carrea M, Shaff F. Fletcher factor deficiency (report of a new case). *Ric Clin Lab*. 1983;13:443-448.
47. Bouma BN, Kerberiou DM, Baker J, Griffin JH. Characterization of a variant prekallikrein, prekallikrein Long Beach, from a family with mixed cross-reacting material-positive and cross-reacting material-negative prekallikrein deficiency. *J Clin Invest*. 1986;78:170-176.
48. Baker SM, Kiefer A, Carollo DS, Warrier RP. Prolonged activated clotting time immediately prior to open cardiac surgery. *Ochsner J*. 2018;18:423-424.