Cohomology $C_\infty$-algebra and Rational Homotopy Type

Tornike Kadeishvili

Abstract

In the rational cohomology of a 1-connected space a structure of $C_\infty$-algebra is constructed and it is shown that this object determines the rational homotopy type

1 INTRODUCTION

Usually invariants of algebraic topology are not complete: the isomorphism of invariants does not guarantee the equivalence of spaces. The invariants which carry richer algebraic structure contain more information about the space. For example the invariant "cohomology algebra" allows to distinguish spaces, which can not be distinguished by the invariant "cohomology groups".

Let us assume that all $R$-modules $H^*(X,R)$ are free. In [24,25] we obtain an $A_\infty$-algebra structure on $H^*(X,R)$. This structure consists of a collection of operations

$$\{m_i : H^*(X,R) \otimes \ldots (i \text{ times}) \ldots \otimes H^*(X,R) \rightarrow H^*(X,R), \ i = 2, 3, \ldots \}.$$ 

In fact this structure extends the usual structure of cohomology algebra: the first operation $m_2 : H^*(X,R) \otimes H^*(X,R) \rightarrow H^*(X,R)$ coincides with the cohomology multiplication.

The cohomology algebra equipped with this additional structure, which we call cohomology $A_\infty$-algebra, carries more information about

\footnote{The research described in this publication was made possible in part by Award No. GNSF/ST06/3-007 of the Georgian National Science Foundation}
the space, than the cohomology algebra. For example just the coho-
mology algebra $H^*(X, R)$ does not determine cohomology of the loop
space $H^*(\Omega X, R)$, but the cohomology $A_\infty$-algebra $(H^*(X, R), \{m_i\})$
does. Dually, the Pontriagin ring $H_*(G)$ does not determine homol-
ogy $H_*(BG)$ of the classifying space, but the homology $A_\infty$-algebra
$(H_*(G), \{m_i\})$ does.

These $A_\infty$-algebras has several applications in the cohomology the-
ory of fibre bundles too, see [12].

But this invariant also is not complete. One can not expect th e
existence of more or less simply complete algebraic invariant in general
case but for the rational homotopy category there are various complete
homotopy invariants (algebraic models):

(i) The model of Quillen [21] $L_X$, which is a differential graded Lie
algebra;

(ii) The minimal model of Sullivan [2] $M_X$, which is a commutative
graded differential algebra;

(iii) The filtered model of Halperin and Stasheff [9] $\Lambda X$, which is
a filtered commutative graded differential algebra.

The rational cohomology algebra $H^*(X, Q)$ is not a complete in-
variant even for rational spaces: two spaces might have isomorphic
cohomology algebras, but different rational homotopy types.

The main result of this paper is the construction of a complet e
rational homotopy invariant: the cohomology $C_\infty$-algebra.

This notion of $C_\infty$-algebra is the commutative version of the Stash-
eff’s notion of $A_\infty$-algebra. It was mentioned in [22]; in [13] it was
called commutative $A_\infty$-algebra and was denoted as $CA_\infty$; in [20] it
was called balanced $A_\infty$-algebra; the modern notation $C_\infty$-algebra was
introduced in [7].

We show that in the rational case on cohomology $H^*(X, Q)$ arises
a structure of $C_\infty$-algebra $(H^*(X, Q), \{m_i\})$. The main application
of this structure is following: it completely determines the rational
homotopy type, that is 1-connected spaces $X$ and $X'$ have the same
rational homotopy type if and only if their cohomology $C_\infty$-algebras
$(H^*(X, Q), \{m_i\})$ and $(H^*(X', Q), \{m_i'\})$ are isomorphic.

We present also several applications of this complete rational ho-
motopy invariant to some problems of rational homotopy theory.

The $C_\infty$-algebra structure in homology of a commutative dg algebra
and the applications of this structure in rational homotopy theory
was actually presented in hardly available small book [15] (see also
the preprint [14]).

Applications of cohomology $C_\infty$-algebra in rational homotopy theory are inspired by the existence of Sullivan’s commutative cochains $A(X)$ in this case. The cohomology $C_\infty$-algebra $(H^*(X, Q), \{m_i\})$ carries the same amount of information as $A(X)$ does. Actually these two objects are equivalent in the category of $C_\infty$-algebras.

Outside of rational category generally we do not have commutative cochains, so some additional structures, such as Steenrod $\smile_i$ products, and much more, must be involved. For example as the first step one should add the operations which form so called homotopy G-algebra structure (in fact the little square operad) ([6], [18]). These in fact are cochain operations which control interaction between $\smile$ and $\smile_1$ products. Next, some new operations which control interaction between $\smile$ and $\smile_i$, $i = 1, 2, 3, ...$ products show up ([16]). Next must be operations which control interaction between $\smile_i$ and $\smile_j$ products, etc.

We presume that finally we obtain some specific $E_\infty$ algebra structure on singular cochains, see [10], [19], [1].

The final achievement in this direction is Mandel’s result: the $E_\infty$-algebra structure on cochain algebra determines (in some cases) the homotopy type.

In rational case $E_\infty$ operad can be replaced by commutative operad $\mathcal{C}$ acting on appropriate cochains. And in order to step from cochains to cohomology we replace $\mathcal{C}$ be the operad $C_\infty$.

# $A_\infty$-algebras

The notion of $A_\infty$-algebra was introduces by J. Stasheff [24]. This notion generalizes the notion of differential graded algebra (dga).

**Definition 1** An $A_\infty$-algebra is a graded module $M = \{M^k\}_{k \in \mathbb{Z}}$ equipped with a sequence of operations

$$\{m_i : M \otimes \ldots (i \text{ times}) \ldots \otimes M \to M, i = 1, 2, 3, \ldots\}$$

satisfying the conditions $m_i((\otimes^i M)^q) \subset M^{q-i+2}$, that is $\deg m_i = 2 - i$, and

$$\sum_{k=0}^{i-1} \sum_{j=1}^{i-k} \pm m_{i-j+1}(a_1 \otimes \ldots \otimes a_k \otimes m_j(a_{k+1} \otimes \ldots \otimes a_{k+j}) \otimes \ldots \otimes a_l) = 0. \quad (1)$$
In fact for an $A_\infty$-algebra $(M, \{m_i\})$ first two operations form a nonassociative dga $(M, m_1, m_2)$ with differential $m_1$ and multiplication $m_2$ which is associative just up to homotopy and the suitable homotopy is the operation $m_3$.

**Definition 2** A morphism of $A_\infty$-algebras

$$\{f_i\} : (M, \{m_i\}) \rightarrow (M', \{m'_i\})$$

is a sequence $\{f_i : \otimes^i M \rightarrow M', i = 1, 2, \ldots, \deg f_1 = 1 - i\}$ such that

$$\sum_{k=0}^{i-1} \sum_{j=1}^{i-k} \pm f_{i-j+1}(a_1 \otimes \ldots \otimes a_k \otimes m_j(a_{k+1} \otimes \ldots \otimes a_{k+j}) \otimes \ldots \otimes a_i) = \sum_{t=1}^{i} \sum_{k_1 + \ldots + k_t = i} \pm m'_t(f_{k_1}(a_1 \otimes \ldots \otimes a_{k_1}) \otimes \ldots \otimes f_{k_t}(a_{i-k_1+1} \otimes \ldots \otimes a_i)).$$

(2)

The composition of $A_\infty$ morphisms

$$\{h_1\} : (M, \{m_i\}) \xrightarrow{\{f_i\}} (M', \{m'_i\}) \xrightarrow{\{g_i\}} (M'', \{m''_i\})$$

is defined as

$$h_n(a_1 \otimes \ldots \otimes a_n) = \sum_{t=1}^{n} \sum_{k_1 + \ldots + k_t = n} g_t(f_{k_1}(a_1 \otimes \ldots \otimes a_{k_1}) \otimes \ldots \otimes f_{k_t}(a_{n-k_t+1} \otimes \ldots \otimes a_n)).$$

(3)

The bar construction argument (see (4.1) below) allows to show that so defined composition satisfies the condition (2).

For a morphism $\{f_i\} : (M, \{m_i\}) \rightarrow (M', \{m'_i\})$ the first component $f_1 : (M, m_1) \rightarrow (M', m'_1)$ is a chain map which is multiplicative just up to homotopy and the suitable homotopy is the map $f_2$.

$A_\infty$ algebra of type $(M, \{m_1, m_2, 0, 0, \ldots\})$ is a dga with the differential $m_1$ and strictly associative multiplication $m_2$. Furthermore, a morphism of such $A_\infty$-algebras of type $\{f_1, 0, 0, \ldots\}$ is a strictly multiplicative chain map. Thus the category of dg algebras is the subcategory of the category of $A_\infty$-algebras.

### 3 $C_\infty$-algebras

The shuffle product $\mu_{sh} : M^{\otimes m} \otimes M^{\otimes n} \rightarrow M^{\otimes (m+n)}$ is defined as

$$\mu((a_1 \otimes \ldots \otimes a_n) \otimes (a_{n+1} \otimes \ldots \otimes a_{n+m})) = \sum \pm a_{\sigma(1)} \otimes \ldots \otimes a_{\sigma(n+m)},$$

(4)
where summation is taken over all \((m, n)\)-shuffles, that is over all permutations of the set \(\{1, 2, \ldots, n + m\}\) which satisfy the condition: \(i < j\) if \(1 \leq \sigma(i) < \sigma(j) \leq n\) or \(n + 1 \leq \sigma(i) < \sigma(j) \leq n + m\).

**Definition 3** ([22], [13], [20], [7]) A \(C_\infty\)-algebra is an \(A_\infty\)-algebra \((M, \{m_i\})\) which additionally satisfies the following condition: each operation \(m_i\) disappears on shuffles, that is for \(a_1, \ldots, a_i \in M\) and \(k = 1, 2, \ldots, i - 1\)

\[ m_i(\mu_{sh}((a_1 \otimes \cdots \otimes a_k) \otimes (a_{k+1} \otimes \cdots \otimes a_i))) = 0. \quad (5) \]

**Definition 4** A morphism of \(\mathbb{C}_\infty\)-algebras is defined as a morphism of \(\mathbb{A}_\infty\)-algebras \(\{f_i\} : (M, \{m_i\}) \to (M', \{m'_i\})\) whose components \(f_i\) disappear on shuffles, that is

\[ f_i((\mu_{sh}(a_1 \otimes \cdots \otimes a_k) \otimes (a_{k+1} \otimes \cdots \otimes a_i))) = 0. \quad (6) \]

The composition is defined as in \(\mathbb{A}_\infty\) case and the bar construction argument (see (4.1) below) allows to show that the composition is a \(\mathbb{C}_\infty\) morphism.

In particular for the operation \(m_2\) we have \(m_2(a \otimes b \pm b \otimes a) = 0\), so a \(\mathbb{C}_\infty\)-algebra of type \((M, \{m_1, m_2, 0, 0, \ldots\})\) is a commutative dg algebra (cdga) with the differential \(m_1\) and strictly associative and commutative multiplication \(m_2\). Thus the category of cdg algebras is the subcategory of the category of \(\mathbb{C}_\infty\)-algebras.

4 Tensor coalgebra

The notions of \(\mathbb{A}_\infty\) and \(\mathbb{C}_\infty\) algebras can be interpreted in terms of differentials on the tensor coalgebra.

The tensor coalgebra of a graded module \(V\) is defined as

\[ T^c(V) = R \oplus V \oplus V \otimes V \oplus V \otimes V \oplus \cdots = \sum_{i=0}^{\infty} V^\otimes i \]

with the comultiplication \(\Delta : T^c(V) \to T^c(V) \otimes T^c(V)\) given by

\[ \Delta(a_1 \otimes \cdots \otimes a_n) = \sum_{i=0}^{n} (a_1 \otimes \cdots \otimes a_i) \otimes (a_{i+1} \otimes \cdots \otimes a_n). \]
Tensor coalgebra is the cofree object in the category of graded coalgebras: for a map of graded modules $\alpha : C \to V$ there exists unique morphism of graded coalgebras $f_\alpha : C \to T^c(V)$ such that $p_1 f_\alpha = \alpha$, here $p_n : T^c(V) \to V^{\otimes n}$ is the clear projection. The coalgebra map $f_\alpha$ is defined as $f_\alpha = \sum_k (\alpha \otimes \ldots \alpha) \Delta^k$, where $\Delta^k : C \to C^{\otimes k}$ is the $k$-th iteration of the comultiplication $\Delta : C \to C \otimes C$, i.e. $\Delta^1 = id$, $\Delta^2 = \Delta$, $\Delta^k = (\Delta^{k-1} \otimes id) \Delta$.

Tensor coalgebra has similar universal property also for coderivations, i.e. maps $\partial : C \to C'$ satisfying $\Delta \partial = (\partial \otimes id + id \otimes \partial) \Delta$. Namely, for each homomorphism $\beta : T^c(V) \to V$ there exists unique coderivation $\partial_\beta : T^c(V) \to T^c(V)$ such that $p_1 \partial_\beta = \beta$. The coderivation $\partial_\beta$ is defined as $\partial_\beta = \sum_{k,i} (id \otimes \beta \otimes id) \Delta^3$.

The shuffle multiplication $\mu_{sh} : T^c(V) \otimes T^c(V) \to T^c(V)$, introduced by Eilenberg and MacLane [3], turns $(T^c(V), \Delta, \mu_{sh})$ into a graded bialgebra.

This multiplication is defined as a graded coalgebra map induced by the universal property of $T^c(V)$ by $\alpha : T^c(V) \otimes T^c(V) \to V$ given by $\alpha(v \otimes 1) = \alpha(1 \otimes v) = v$ and $\alpha = 0$ otherwise. This multiplication is associative and in fact is given by

$$\mu_{sh}([a_1, \ldots, a_m] \otimes [a_{i+1}, \ldots, a_n]) = \sum \pm [a_{\sigma(1)}, \ldots, a_{\sigma(n)}],$$

where the summation is taken over all $(m,n)$-shuffles.

### 4.1 Bar construction of an $A_\infty$-algebra

Let $(M, \{m_i\})$ be an $A_\infty$-algebra. We consider the tensor coalgebra $T^c(s^{-1}M)$ where $s^{-1}M$ is the desuspension of $M$, i.e. $(s^{-1}M)^n = M^{n+1}$. We use the standard notation $s^{-1}a_1 \otimes \ldots \otimes s^{-1}a_n = [a_1, \ldots, a_n]$. The structure maps $m_i$ define the map $\beta : T^c(s^{-1}M) \to s^{-1}M$ by $\beta[a_1, \ldots, a_n] = [s^{-1}m_n(a_1 \otimes \ldots \otimes a_n)]$. Extending this $\beta$ as a coderivation we obtain $d^c : T^c(s^{-1}M) \to T^c(s^{-1}M)$ which in fact looks as

$$d^c[a_1, \ldots, a_n] = \sum_k \pm [a_1, \ldots, a_k, m_j(a_{k+1} \otimes \ldots \otimes a_{k+j}), a_{k+j+1}, \ldots, a_n].$$

The defining condition (1) of $A_\infty$-algebra guarantees that $d^c d^c = 0$. The obtained dg coalgebra $(T^c(s^{-1}M), d^c, \Delta)$ is called bar construction of $A_\infty$-algebra $(M, \{m_i\})$ and is denoted by $\tilde{B}(M)$.

For an $A_\infty$-algebra of type $(M, \{m_1, m_2, 0, 0, \ldots\})$ this bar construction coincides with the ordinary bar construction of this dga.
A morphism of $A_\infty$-algebras $\{f_i\} : (M, \{m_i\}) \to (M', \{m_i'\})$ defines a dg coalgebra map of bar constructions $F = \tilde{B}(\{f_i\})$ as follows: $\{f_i\}$ defines the map $\alpha : T^c(s^{-1}M) \to s^{-1}M$ by $\alpha[a_1, ..., a_n] = [s^{-1}f_n(a_1 \otimes ... \otimes a_n)]$. Extending this $\alpha$ as a coalgebra map we obtain $F : T^c(s^{-1}M) \to T^c(s^{-1}M)$ which in fact looks as

$$ F[a_1, ..., a_n] = \sum \pm [f_{k_1}(a_1 \otimes ... \otimes a_{k_1}), ..., f_{k_t}(a_{n-k_t+1} \otimes ... \otimes a_n)]. $$

The defining condition (2) of $A_\infty$ morphism guarantees that $F$ is a chain map.

Now we are able to show that the composition of $A_\infty$ morphisms is correctly defined: to the composition of morphisms (3) corresponds the composition of dg coalgebra maps

$$ \tilde{B}((M, \{m_i\})) \tilde{B}(\{f_i\}) \tilde{B}((M', \{m_i'\})) \tilde{B}(\{g_i\}) \tilde{B}((M'', \{m_i''\})) $$

which is a dg coalgebra map, thus for the projection $p_1 \tilde{B}(\{g_i\}) \tilde{B}(\{f_i\})$, i.e. for the collection $\{h_i\}$, the condition (2) is satisfied.

### 4.2 Bar construction of a $C_\infty$-algebra

The notion of $C_\infty$-algebra is motivated by the following observation. If a dg algebra $(A, d, \mu)$ is graded commutative then the differential of the bar construction $BA$ is not only a coderivation but also a derivation with respect to the shuffle product, so the bar construction $(BA, d_\beta, \Delta, \mu_{sh})$ of a cdga is a dg bialgebra.

By definition the bar construction of an $A_\infty$-algebra $(M, \{m_i\})$ is a dg coalgebra $\tilde{B}(M) = (T^c(s^{-1}M), d_\beta, \Delta)$.

But if $(M, \{m_i\})$ is a $C_\infty$-algebra, then $\tilde{B}(M)$ becomes a dg bialgebra:

**Proposition 1** For an $A_\infty$-algebra $(M, \{m_i\})$ the differential of the bar construction $d_\beta$ is a derivation with respect to the shuffle product if and only if each operation $m_i$ disappears on shuffles, that is $(M, \{m_i\})$ is a $C_\infty$-algebra.

**Proof.** The map $\Phi : T^c(s^{-1}M) \otimes T^c(s^{-1}M) \to T^c(s^{-1}M)$ defined as $\Phi = d_\beta \mu_{sh} - \mu_{sh}(d_\beta \otimes id + id \otimes d_\beta)$ is a coderivation. Thus, according to universal property of $T^c(s^{-1}M)$ the map $\Phi$ is trivial if and only if $p_1 \Phi = 0$ and the last condition means exactly (5).
Proposition 2 Let \( \{ f_i \} : (M, \{ m_i \}) \to (M', \{ m'_i \}) \) be an \( A_\infty \)-algebra morphism of \( C_\infty \)-algebras. Then the induced map of bar constructions \( \tilde{B}\{ f_i \} \) is a map of dg bialgebras if and only if each \( f_i \) disappears on shuffles, that is \( \{ f_i \} \) is a morphism of \( C_\infty \)-algebras.

**Proof.** The map \( \Psi = \tilde{B}\{ f_i \}\mu_{sh} - \mu_{sh}(\tilde{B}\{ f_i \} \otimes \tilde{B}\{ f_i \}) \) is a coderivation. Thus, according to universal property of \( T^c(s^{-1}M) \) the map \( \Psi \) is trivial if and only if \( p_1 \Psi = 0 \) and the last condition means exactly (6).

Thus the bar functor maps the subcategory of \( C_\infty \)-algebras to the category of dg bialgebras.

### 4.3 Adjunctions

The bar and cobar functors

\[
B : DGAlg \to DGCoalg, \quad \Omega : DGCoalg \to DGAlg
\]

are adjoint and there exist standard weak equivalences \( \Omega B(A) \to A \), \( C \to B\Omega C \). So \( \Omega B(A) \to A \) is a free resolution of a dga \( A \).

If \( A \) is commutative, the cobar-bar resolution is out of category: \( \Omega B(A) \) is not commutative.

In this case instead the cobar-bar functors we must use the adjoint functors \( \Gamma, \mathcal{A} \), see [25], which we describe now.

For a commutative dg algebra the bar construction is a dg bialgebra, so the restriction of the bar construction is the functor \( B : CDGAlg \to DGBialg \). Furthermore, the functor of indecomposables \( Q : DGBialg \to DGLieCoalg \) maps the category of dg bialgebras to the category of dg Lie coalgebras. Let \( \Gamma \) be the composition

\[
\Gamma : CDGAlg \xrightarrow{B} DGBialg \xrightarrow{Q} DGLieCoalg.
\]

There is the adjoint of \( \Gamma A : DGLieCoalg \to CDGAlg \), which is dual to Chevalle-Eilenberg functor. There is the standard weak equivalence \( \mathcal{A} \Gamma A \to A \).

### 4.4 Minimality

Let \( \{ f_i \} : (M, \{ m_i \}) \to (M', \{ m'_i \}) \) be a morphism of \( A_\infty \)-algebras. It follows from (2) that the first component \( f_1 : (M, m_1) \to (M', m'_1) \) is a chain map.
A weak equivalence of $A_\infty$-algebras is defined as a morphism $\{f_i\}$ for which $B(\{f_i\})$ is a weak equivalence of dg coalgebras. The standard spectral sequence argument allows to prove the following

**Proposition 3** A morphism of $A_\infty$-algebras is a weak equivalence if and only if its first component $f_1 : (M, m_1) \to (M', m'_1)$ is a weak equivalence of chain complexes.

**Proposition 4** A morphism of $A_\infty$-algebras is an isomorphism if and only if its first component $f_1 : (M, m_1) \to (M', m'_1)$ is an isomorphism.

**Proof.** The components of opposite morphism $\{g_i\} : (M', \{m'_i\}) \to (M, \{m_i\})$ can be solved inductively from the equation $\{g_i\}\{f_i\} = \{id_M, 0, 0, \ldots\}$.

**Definition 5** An $A_\infty$-algebra $(M, \{m_i\})$ we call minimal if $m_1 = 0$.

In this case $(M, m_2)$ is strictly associative graded algebra.

From the above propositions easily follows

**Proposition 5** Each weak equivalence of minimal $A_\infty$-algebras is an isomorphism.

It is clear that all above is true for $C_\infty$-algebras, thus

**Proposition 6** Each weak equivalence of minimal $C_\infty$-algebras is an isomorphism.

**Definition 6** A minimal $A_\infty$-algebra ($C_\infty$-algebra) $(M, \{m_i\})$ we call degenerate if it is isomorphic in the category of $A_\infty$ ($C_\infty$) algebras to the graded (commutative) algebra $(M, m_2)$.

5 Minimal $A_\infty$ and $C_\infty$ algebras and Hochschild and Harrison Cohomology

Here we present the connection of the notion of minimal $A_\infty$ (resp. $C_\infty$)-algebra with Hochschild (resp. Harrison) cochain complexes, studied in [13], see also [18].
Let $H$ be a graded algebra. Consider the Hochshild cochain complex $C^{*,*}(H,H)$ which is bigraded in this case:

$$C^{n,m}(H,H) = \text{Hom}^m(H^\otimes n, H),$$

where $\text{Hom}^m$ means homomorphisms of degree $m$.

This bigraded complex carries a structure of homotopy Gerstenhaber algebra, see [13], [7], [6], [18], which consists of following structure maps:

(i) The Hochshild differential $\delta : C^{n-1,m}(H,H) \to C^{n,m}(H,H)$ given by

$$\delta f(a_1 \otimes ... \otimes a_n) = a_1 \cdot f(a_2 \otimes ... \otimes a_n) + \sum_k \pm f(a_1 \otimes ... \otimes a_{k-1} \otimes a_k \cdot a_{k+1} \otimes ... \otimes a_n) \pm f(a_1 \otimes ... \otimes a_{n-1}) \cdot a_n;$$

(ii) The $\circ$ product defined by

$$f \circ g(a_1 \otimes ... \otimes a_{n+m}) = f(a_1 \otimes ... \otimes a_n) \cdot g(a_{n+1} \otimes ... \otimes a_{n+m}).$$

(iii) The brace operations $f\{g_1, ..., g_i\}$ which we write as $f\{g_1, ..., g_i\} = E_{1,i}(f; g_1, ..., g_i)$,

$$E_{1,i} : C^{n,m} \otimes C^{m_1,m_1} \otimes ... \otimes C^{m_i,m_i} \to C^{n+\sum_i n_i-i, m+\sum m_i},$$

given by

$$E_{1,i}(f; g_1, ..., g_i)(a_1 \otimes ... \otimes a_{n+m_1+...+n_i-i}) = \sum_{k_1, ..., k_i} \pm f(a_1 \otimes ... \otimes a_{k_1} \otimes g_1(a_{k_1+1} \otimes ... \otimes a_{k_1+n_i}) \otimes ... \otimes a_{k_i} \otimes g_i(a_{k_i+1} \otimes ... \otimes a_{k_i+n_i}) \otimes ... \otimes a_{n+m_1+...+n_i-i}). \tag{7}$$

The first brace operation $E_{1,1}$ has the properties of Steenrod’s $\sim_1$ product, so we use the notation $E_{1,1}(f,g) = f \sim_1 g$. In fact this is Gerstenhaber’s $f \circ g$ product [4], [5].

Now let $(H, \{m_i\})$ be a minimal $A_\infty$-algebra, so $(H, m_2)$ is an associative graded algebra with multiplication $a \cdot b = m_2(a \otimes b)$.

Each operation $m_i$ can be considered as a Hochshild cochain $m_i \in C^{i,2-i}(H,H)$. Let $m = m_3 + m_4 + ... \in C^{*,2-*}(H,H)$. The defining condition of $A_\infty$-algebra (1) means exactly $\delta m = m \sim_1 m$. So a minimal $A_\infty$-algebra structure on $H$ in fact is a twisting cochain in the Hochshild complex with respect to the $\sim_1$ product.
There is the notion of equivalence of such twisting cochains: \( m \sim m' \) if there exists \( p = p^{2,-1} + p^{3,-2} + ... + p^{i,-i} + ... \), \( p^{i,-i} \in C^{i,-i}(H,H) \) such that

\[
\begin{align*}
  m - m' &= \delta p + p \cdot p + p \cdot 1 m + \\
  m' &\sim 1 p + E_{1,2}(m';p,p) + E_{1,3}(m';p,p,p) + ... .
\end{align*}
\]

(8)

**Proposition 7** Twisting cochains \( m, m' \in C^{*,-*}(H,H) \) are equivalent if and only if \( (H,\{m_i\}) \) and \( (H',\{m'_i\}) \) are isomorphic \( A_\infty \)-algebras.

**Proof.** Indeed, 

\[
\{p_i\} : (H,\{m_i\}) \rightarrow (H,\{m'_i\})
\]

with \( p_1 = id, p_i = p^{i,-i} \) is the needed isomorphism: the condition (8) coincides with the defining condition (2) of a morphism of \( A_\infty \)-algebras and the Proposition 4 implies that this morphism is an isomorphism.

This gives the possibility of perturbation of twisting cochain without changing their equivalence class:

**Proposition 8** Let \( m \) be a twisting cochain (i.e. a minimal \( A_\infty \)-algebra structure on \( H \)) and \( p \in C^{n,1-n}(H,H) \) be an arbitrary cochain, then there exists a twisting cochain \( \tilde{m} \), equivalent to \( m \), such that \( m_i = \tilde{m}_i \) for \( i \leq n \) and \( \tilde{m}_{n+1} = m_{n+1} + \delta p \).

**Proof.** The twisting cochain \( \tilde{m} \) can be solved inductively from the equation (8).

**Theorem 1** Suppose for a graded algebra \( H \) Hochschild cohomology \( \text{Hoch}^{n,2-n}(H,H) = 0 \) for \( n \geq 3 \). Then each \( m \sim 0 \), that is each minimal \( A_\infty \)-algebra structure on \( H \) is degenerate.

**Proof.** From the equality \( \delta m = m \cdot 1 m \) in dimension 4 we obtain \( \delta m_3 = 0 \) that is \( m_3 \) is a cocycle. Since \( \text{Hoch}^{3,-1}(H,H) = 0 \) there exists \( p^{2,-1} \) such that \( m_3 = \delta p^{2,-1} \). Perturbing our twisting cochain \( m \) by \( p^{2,-1} \) we obtain new twisting cochain \( \tilde{m} = m_3 + m_4 + ... \) equivalent to \( m \) and with \( \tilde{m}_3 = 0 \). Now the component \( \tilde{m}_4 \) becomes a cocycle, which can be killed using \( \text{Hoch}^{4,2}(H,H) = 0 \) etc.

Suppose now \((H,\mu)\) is a commutative graded algebra. The Harrison cochain complex \( \tilde{C}^*(H,H) \) is defined as a subcomplex of the Hochschild complex consisting of cochains which disappear on shuffles. If \((H,\{m_i\})\) is a \( C_\infty \)-algebra then the twisting element \( m = m_3 + m_4 + ... \) belongs to Harrison subcomplex \( \tilde{C}^*(H,H) \subset C^*(H,H) \) and we have the
Theorem 2 Suppose for a graded commutative algebra $H$ Harrison cohomology $\text{Harr}^{n,2-n}(H,H) = 0$ for $n \geq 3$. Then each $m \sim 0$, that is each minimal $C_\infty$-algebra structure on $H$ is degenerate.

6 $A_\infty$-algebra structure in homology

Let $(A, d, \mu)$ be a dg algebra and $(H(A), \mu^*)$ be its homology algebra. Although the product in $H(A)$ is associative, there appears a structure of a (generally nondegenerate) minimal $A_\infty$-algebra, which can be considered as an $A_\infty$ deformation of $(H(A), \mu^*)$, [18]. Namely, in [11], [12] the following result was proved (see also [22], [8]):

Theorem 3 Suppose for a dg algebra $A$ all homology modules $H^i(A)$ are free.

Then there exist: a structure of minimal $A_\infty$-algebra $(H(A), \{m_i\})$ on $H(A)$ and a weak equivalence of $A_\infty$-algebras

$$\{f_i\} : (H(A), \{m_i\}) \rightarrow (A, \{d, \mu, 0, 0, \ldots\})$$

such that $m_1 = 0$, $m_2 = \mu^*$, $f_1^* = id_{H(A)}$.

Furthermore, for a dga map $f : A \rightarrow A'$ there exists a morphism of $A_\infty$-algebras $\{f_i\} : (H(A)\{m_i\}) \rightarrow (H(A')\{m'_i\})$ with $f_1 = f^*$.

Such a structure is unique up to isomorphism in the category of $A_\infty$-algebras: if $(H(A), \{m_i\})$ and $(H(A), \{m'_i\})$ are two such $A_\infty$-algebra structures on $H(A)$ then for $id : A \rightarrow A$ there exists $\{f_i\} : (H(A)\{m_i\}) \rightarrow (H(A)\{m'_i\})$ with $f_1 = id$, so, since of Proposition 4 $\{f_i\}$ is an isomorphism.

Let us look at the first new operation $m_3 : H(A) \otimes H(A) \otimes H(A) \rightarrow H(C)$. Let $f_1 : H(A) \rightarrow A$ be a cycle-choosing homomorphism: $f_1(a) \in a \in H(A)$. This map is not multiplicative but $f_1(a \cdot b) - f_1(a) \cdot f_1(b) \sim 0 \in C$ so there exists $f_2 : H(A) \otimes H(A) \rightarrow A$ s.t. $f_1(a \cdot b) - f_1(a) \cdot f_1(b) = \partial f_2(a \otimes b)$. We define $m_3(a \otimes b \otimes c) \in H(A)$ as the homology class of the cycle

$$f_1(a) \cdot f_2(b \otimes c) \pm f_2(a \cdot b \otimes c) \pm f_2(a \otimes b \cdot c) \pm f_2(a \otimes b) \cdot f_1(c).$$

From this description immediately follows the connection of $m_3$ with Massey product: If $a, b, c \in H(A)$ is a Massey triple, i.e. if $a \cdot b = b \cdot c = 0$, then $m_3(a \otimes b \otimes c)$ belongs to the Massey product $\langle a, b, c \rangle$. This gives examples of gd algebras with essentially nontrivial homology $A_\infty$-algebras.
6.1 Main examples and applications

Taking $A = C^*(X)$, the cochain dg algebra of a 1-connected space $X$, we obtain an $A_\infty$-algebra structure $(H^*(X), \{m_i\})$ on cohomology algebra $H^*(X)$.

Cohomology algebra equipped with this additional structure carries more information then just the cohomology algebra. Some applications of this structure are given in [12], [15]. For example the cohomology $A_\infty$-algebra $(H^*(X), \{m_i\})$ determines cohomology of the loop space $H^*(\Omega X)$ when just the algebra $(H^*(X), m_2)$ does not:

\textbf{Theorem 4} $H(\tilde{B}(H^*(X), \{m_i\})) = H^*(\Omega X)$.

Taking $A = C_*(G)$, the chain dg algebra of a topological group $G$, we obtain an $A_\infty$-algebra structure $(H_*(G), \{m_i\})$ on the Pontriagin algebra $H_*(G)$. The homology $A_\infty$-algebra $(H_*(G), \{m_i\})$ determines homology of the classifying space $H_*(BG)$ when just the Pontriagin algebra $(H_*(G), m_2)$ does not:

\textbf{Theorem 5} $H(B(\tilde{H}_*(G), \{m_i\})) = H_*(BG)$.

7 $C_\infty$-algebra structure in homology of a commutative dg algebra

There is a commutative version of the above main theorem, see[14], [15], [20]:

\textbf{Theorem 6} Suppose for a commutative dg algebra $A$ all homology $R$-modules $H^i(A)$ are free.

Then there exist: a structure of minimal $C_\infty$-algebra $(H(A), \{m_i\})$ on $H(A)$ and a weak equivalence of $C_\infty$-algebras

\{f_i\} : (H(A), \{m_i\}) \to (A, \{d, \mu, 0, 0, \ldots\})

such, that $m_1 = 0$, $m_2 = \mu^*$, $f^*_1 = \text{id}_{H(A)}$.

Furthermore, for a cdga map $f : A \to A'$ there exists a morphism of $C_\infty$-algebras $\{f_i\} : (H(A)\{m_i\}) \to (H(A')\{m'_i\})$ with $f_1 = f^*$.

Such a structure is unique up to isomorphism in the category of $C_\infty$-algebras.

Bellow we present some applications of this $C_\infty$-algebra structure in rational homotopy theory.
8 Applications in Rational Homotopy Theory

8.1 Classification of rational homotopy types

Let $X$ be a 1-connected space. In the case of rational coefficients there exist Sullivan’s commutative cochain complex $A(X)$ of $X$. It is well known that the weak equivalence type of cdg algebra $A(X)$ determines the rational homotopy type of $X$: 1-connected $X$ and $Y$ are rationally homotopy equivalent if and only if $A(X)$ and $A(Y)$ are weekly homotopy equivalent cdg algebras. Indeed, in this case $A(X)$ and $A(Y)$ have isomorphic minimal models $M_X \cong M_Y$, and this implies that $X$ and $Y$ are rationally homotopy equivalent. This is the key geometrical result of Sullivan which we are going to exploit below.

Now we take $A = A(X)$ and apply the Theorem 6. Then we obtain on $H_*(A) = H_*(X, \mathbb{Q})$ a structure of minimal $C_\infty$ algebra $(H_*(X, \mathbb{Q}), \{m_i\})$ which we call rational cohomology $C_\infty$-algebra of $X$.

Generally isomorphism of rational cohomology algebras $H^*(X, \mathbb{Q})$ and $H^*(Y, \mathbb{Q})$ does not imply homotopy equivalence $X \sim Y$ even rationally. We claim that $(H^*(X, \mathbb{Q}), \{m_i\})$ is complete rational homotopy invariant:

**Theorem 7** 1-connected $X$ and $X'$ are rationally homotopy equivalent if and only if $(H^*(X, \mathbb{Q}), \{m_i\})$ and $(H^*(X', \mathbb{Q}), \{m'_i\})$ are isomorphic as $C_\infty$-algebras.

**Proof.** Suppose $X \sim X'$, then $A(X)$ and $A(X')$ are weak equivalent, that is there exists a cdga $A$ and weak equivalences $A(X) \leftarrow A \rightarrow A(X')$. This implies weak equivalences of corresponding homology $C_\infty$-algebras

$$(H^*(X, \mathbb{Q}), \{m_i\}) \leftarrow (H^*(A), \{m_i\}) \rightarrow (H^*(X', \mathbb{Q}), \{m'_i\}),$$

which since of minimality both are isomorphisms.

Conversely, suppose $(H^*(X, \mathbb{Q}), \{m_i\}) \cong (H^*(X', \mathbb{Q}), \{m'_i\})$. Then

$$AQB(H^*(X, \mathbb{Q}), \{m_i\}) \cong AQB(H^*(X', \mathbb{Q}), \{m'_i\}).$$

Denote this cdga as $A$. Then we have weak equivalences of CGD algebras

$$A(X) \leftarrow A\Gamma A(X) \leftarrow A \rightarrow A\Gamma A(X') \rightarrow A(X').$$

14
This theorem in fact classifies rational homotopy types with given cohomology algebra $H$ as all possible minimal $C_\infty$-algebra structures on $H$ modulo $C_\infty$ isomorphisms.

**Example.** Here we describe an example which we will use to illustrate the results of this and forthcoming sections.

We consider the following commutative graded algebra. It’s underline graded $Q$-vector space has the generators: generator $e$ of dimension 0, generators $x$, $y$ of dimension 2, and generator $z$ of dimension 5, so

$$H^* = \{ H^0 = Qe, \ 0, \ H^2 = Qx \oplus Qy, \ 0, \ 0, \ H^5 = Qz, \ 0, \ 0, \ ... \}, \ (9)$$

and the multiplication is trivial by dimensional reasons, with unit $e$.

In fact

$$H^* = H^*(S^2 \vee S^2 \vee S^5, Q).$$

This example was considered in [9] and there was shown that there are just two rational homotopy types with such cohomology algebra.

The same result can be obtained from our classification.

What minimal $C_\infty$-algebra structures are possible on $H^*$?

By dimensional reasons only one nontrivial operation $m_3 : H^2 \otimes H^2 \otimes H^2 \rightarrow H^5$ is possible.

The specific condition of $C_\infty$-algebra, namely the disappearance on shuffles implies that

$$m_3(x, x, x) = 0, \ m_3(y, y, y) = 0, \ m_3(x, y, x) = 0, \ m_3(y, x, y) = 0$$

and

$$m_3(x, x, y) = m_3(y, x, x), \ m_3(x, y, y) = m_3(y, y, x).$$

Thus each $C_\infty$-algebra structure on $H^*$ is characterized by a couple rational numbers $p$, $q$,

$$m_3(x, x, y) = pz, \ m_3(x, y, y) = qz.$$

So let us write an arbitrary minimal $C_\infty$-algebra structure on $H^*$ as a column vector $\begin{pmatrix} p \\ q \end{pmatrix}$.

Now let us look at the structure of an isomorphism of $C_\infty$-algebras

$$\{ f_i \} : (H^*, m_3) \rightarrow (H^*, m'_3).$$
Again by dimensional reasons just one component $f_1 : H^* \to H^*$ is possible, which in its turn consists of two isomorphisms

$$f_1^2 : H^2 = Q_x \oplus Q_y \to H^2 = Q_x \oplus Q_y, \quad f_1^5 : H^5 = Q_z \to H^5 = Q_z.$$ 

The first one is represented by a nondegenerate matrix $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$,

$$f_1^2(x) = ax \oplus by, \quad f_1^2(y) = cx \oplus dy,$$

and the second one by a nonzero rational number $r$, $f_1^5(z) = rz$.

Calculation shows that the condition $f_1^5 m_3 = m'_3(f_1^2 \otimes f_1^2 \otimes f_1^2)$, to which degenerates the defining condition of an $A_\infty$-algebra morphism (2) looks as

$$r \begin{pmatrix} p \\ q \end{pmatrix} = \det A \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} p' \\ q' \end{pmatrix}.$$ 

This condition shows that two minimal $C_\infty$-algebra structures $m_3 = \begin{pmatrix} p \\ q \end{pmatrix}$ and $m'_3 = \begin{pmatrix} p' \\ q' \end{pmatrix}$ are isomorphic if and only if they are tied with nondegenerate linear transformation.

Thus that there exist just two isomorphism classes of minimal $C_\infty$-algebra on $H^*$: the trivial one $(H^*, m_3 = 0)$ and the nontrivial one $(H^*, m_3 \neq 0)$. So we have just two rational homotopy types whose rational cohomology is $H^*$. We denote them $X$ and $Y$ respectively and analyze in next sections.

Below we give some applications of cohomology $C_\infty$-algebra in various problems of rational homotopy theory.

### 8.2 Formality

Among rational homotopy types with given cohomology algebra, there is one called formal which is "formal consequence of its cohomology algebra" (Sullivan). Explicitly this is the type whose minimal model $M_X$ is isomorphic to the minimal model of cohomology $H^*(X, Q)$.

Our $C_\infty$ model implies the following criterion of formality:

**Theorem 8** $X$ is formal if and only if its cohomology $C_\infty$-algebra is degenerate, i.e. it is $C_\infty$ isomorphic one with $m_{\geq 3} = 0$. 


Bellow we deduce using this criterion some known results about formality.
1. A commutative graded 1-connected algebra $H$ is called \textit{intrinsically formal} if there is only one homotopy with cohomology algebra $H$, of course the formal one.

The above Theorem 2 immediately implies the following sufficient condition for formality due to Tanre [26]:

\textbf{Theorem 9} If for a 1-connected graded $Q$-algebra $H$ one has $$H^{arr}_{k,k-2}(H,H) = 0, \quad k = 3, 4, \ldots$$
then $H$ is intrinsically formal, that is there exists only one rational homotopy type with $H^*(X,Q) \approx H$.

2. The following theorem of Halperin and Stasheff from [9] is an immediate result of our criterion:

\textbf{Theorem 10} A commutative graded $Q$-algebra of type

$$H = \{H^0 = Q, 0, 0, \ldots, 0, H^n, H^{n+1}, \ldots, H^{3n-2}, 0, 0, \ldots\}$$

is intrinsically formal

\textbf{Proof.} Since $\text{deg } m_i = 2 - i$ there is no room for operations $m_{i>2}$, indeed the shortest range is $m_3 : H^n \otimes H^n \otimes H^n \rightarrow H^{3n-1} = 0$.

3. From the Theorem 8 easily follows the

\textbf{Theorem 11} Any 1-connected commutative graded algebra $H$ with $H^{2k} = 0$ is intrinsically formal.

\textbf{Proof.} Any $A_\infty$-operation $m_i$ has degree $2 - i$, thus

$$m_i : H^{2k_1+1} \otimes \ldots \otimes H^{2k_i+1} \rightarrow H^{2(k_1+\ldots+k_i+1)} = 0.$$ 

Thus any $C_\infty$ operation is trivial too.

From this follows one result of Baues: any space whose even dimensional cohomologies are trivial has rational homotopy type of wedge of spheres. Indeed, such algebra is realized as a wedge of spheres and since of intrinsical formality this is the only homotopy type.

\textbf{Example.} The algebra $H^*$ from the example of previous section is not intrinsically formal since there are two homotopy types, $X$ and $Y$. 

17
with \( H^*(X, Q) = H^* = H^*(Y) \). The space \( X \) is formal (and actually \( X = S^2 \vee S^2 \vee S^5 \)), since it’s cohomology \( C_\infty \)-algebra \( (H^*, m_3 = 0) \) is trivial. But the space \( Y \) is not: it’s cohomology \( C_\infty \)-algebra \( (H^*, m_3 \neq 0) \) is not degenerate.

We remark here that the formal type is represented by \( X = S^2 \vee S^2 \vee S^5 \) and it is possible to show that the nonformal one is represented by \( Y = S^2 \vee S^2 \cup_f S^4 \vee S^2 \vee S^5 \), where the attaching map \( f \) is a nontrivial element from \( \pi_4(S^2 \vee S^2) \).

### 8.3 Rational homotopy groups

Since the cohomology \( C_\infty \)-algebra \( (H^*(X, Q), \{m_i\}) \) determines the rational homotopy type it must determine the rational homotopy groups \( \pi_i(X) \otimes Q \) too. We present a chain complex whose homology is \( \pi_i(X) \otimes Q \). Moreover the Lie algebra structure is determined as well.

For cohomology \( C_\infty \)-algebra \( (H^*(X, Q), \{m_i\}) \) the bar construction \( B(H^*(X, Q), \{m_i\}) \) is dg bialgebra. Acting on this bialgebra by the functor \( Q \) of indecomposables we obtain a dg Lie coalgebra.

On the other hand rational homotopy groups \( \pi_*(\Omega X) \otimes Q \) form a graded Lie algebra with respect to Whiethead product. Thus it’s dual cohomotopy groups \( \pi^*(\Omega X, Q) = (\pi_*(\Omega X) \otimes Q)^* \) form a graded Lie coalgebra.

**Theorem 12** Homology of dg Lie coalgebra \( QB(H^*(X, Q), \{m_i\}) \) is isomorphic to cohomotopy Lie coalgebra \( \pi^*(\Omega X, Q) \).

**Proof.** The theorem follows from the sequence of graded Lie coalgebra isomorphisms:

\[
\pi^*(\Omega X, Q) \approx (\pi_*(\Omega X, Q))^* \approx (PH_*(\Omega x, Q))^* \approx QH^*(\Omega X, Q) \approx QH(B(A(X))) \approx QH(\bar{B}(H^*(X, Q), \{m_i\})) \approx H(Q\bar{B}(H^*(X, Q), \{m_i\})).
\]

**Example.** For the algebra \( H^* \) from the previous examples the complex \( QB(H^*) \) in low dimensions looks as

\[
0 \to Q_x \oplus Q_y \to Q_x \oplus Q_{x \otimes y} \oplus Q_{y \otimes y} \to Q_{x \otimes x \otimes y} \oplus Q_{x \otimes y \otimes y} \to Q_{x \otimes x \otimes y \otimes y} \to \cdots
\]

The differential \( d = m_3 \) is trivial for the formal space \( X \) and is nontrivial for \( Y \). Thus for both rational homotopy types we have

\[
\pi^2 = H^1(QB(H^*)) = 2Q, \quad \pi^3 = H^2(QB(H^*)) = 3Q,
\]
and
\[
\pi^4(X) = H^3(QB([H^*], d = 0) = 2Q, \\
\pi^4(Y) = H^3(QB([H^*], d \neq 0) = \text{Ker } d = Q.
\]

8.4 Realization of homomorphisms

Let \( G : H^*(X,Q) \to H^*(Y,Q) \) be a homomorphism of cohomology algebras. When this homomorphism is realizable as a map of rationalizations \( g : Y_Q \to X_Q, \ f^* = F? \) In the case when \( G \) is an isomorphism this question was considered in [9]. It was considered also in [27]. The following theorem gives the complete answer:

**Theorem 13** A homomorphism \( G \) is realizable if and only if it is extendable to a \( C_\infty \)-map
\[
\{g_1, g_2, g_3, \ldots \} : (H^*(X,Q), \{m_i\}) \to (H^*(Y,Q), \{m'_i\}).
\]

**Proof.** One side of is consequence of the last part of Theorem 6.

To show the other side we use Sullivan’s minimal models \( M_X \) and \( M_Y \) of \( A(X) \) and \( A(Y) \). It is enough to show that the existence of \( \{g_i\} \) implies the existence of cdg algebra map \( g : M_Y \to M_X \).

So we have \( C_\infty \)-algebra maps
\[
M_X \xrightarrow{\{f_i\}} (H^*(X,Q), \{m_i\}) \xrightarrow{\{g_i\}} (H^*(y, Q), \{m'_i\}) \xrightarrow{\{f'_i\}} M_Y.
\]
Recall the following property of a minimal cdg algebra \( M \): for a weak equivalence of cdg algebras \( \phi : A \to B \) and a cdg algebra map \( f : M \to B \) there exists a cdg algebra map \( F : M \to A \) such that \( \phi F \) is homotopic to \( f \). Using this property it is easy to show the existence of a cdg map \( \beta : M_X \to AQB(M_X) \), the right inverse of the standard map \( \alpha : AQB(M_X) \to M \). Composing this map with \( AQB(\{f'_i\})AQB(\{g_i\}) \) we obtain a cdg map
\[
AQB(\{f'_i\})AQB(\{g_i\})\beta : M_X \to M_Y.
\]
From this theorem immediately follows the

**Corollary 1** For formal \( X \) and \( Y \) each \( G : H^*(X,Q) \to H^*(Y,Q) \) is realizable.
Proof. In this case \( \{G, 0, 0, \ldots \} \) is a \( C_\infty \) extension of \( G \).

Example. Consider the homomorphism

\[
G : H^*(X) = H^*(Y) \to H^*(S^5)
\]

induced by the standard imbedding \( g : S^5 \to X = S^2 \vee S^2 \vee S^5 \). Of course \( G \) is realizable as \( g : S^5 \to X \) but not as \( S^5 \to Y \). Indeed, for such realizability, according to Theorem 13, we need a \( C_\infty \)-algebra morphism

\[
\{g_i\} : (H^*, \{0, 0, m_3, 0, \ldots \}) \to (H^5(S^5, Q), \{0, 0, 0, \ldots \})
\]

with \( g_1 = G \). By dimensional reasons all the components \( g_2, g_3, \ldots \) all are trivial, so this morphism looks as \( \{G, 0, 0, \ldots \} \). But this collection is not a morphism of \( C_\infty \)-algebras since the condition \( Gm_3 = 0 \), to which degenerates the defining condition (2) of an \( A_\infty \)-algebra morphism, is not satisfied.

References

[1] C. Berger, B. Fresse, Combinatorial operad action on cochains, Math. Proc. Cambridge Philos. Soc. 137 (2004), 135-174.

[2] P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real homotopy theory of K"{o}hler manifolds, Inv. math., 29(1975), 245-275.

[3] S. Eilenberg, S. Maclane, On the groups \( H(\pi, n) \), Ann. of Math. 58(1953), 55-106.

[4] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math., 78 (1963), 267-288.

[5] M. Gerstenhaber, On the deformations of rings and algebras, Ann. of Math., 79, 1 (1964), 59-103.

[6] M. Gerstenhaber and A. Voronov, Higher operations on Hochschild complex, Functional Annal. Appl. 29 (1995), 1-6.

[7] E. Getzler and J.D. Jones, Operads, homotopy algebra, and iterated integrals for double loop spaces, preprint (1994), hep-th/9403055.
[8] V. Gugenghaim and J. Stasheff, On perturbations and A(\infty)-structures, Bull. Soc. Math. Belgique, 38, (1986), 237-246.

[9] S. Halperin, J. Stasheff, Obstructions to homotopy equivalences, Adv. in Math., 23(1979), 233-279.

[10] V. Hinich, V. Schechtman, On homotopy limit of homotopy algebras, in K-theory, arithmetic and geometry (Moscow, 1984-1986), Lecture Notes in Mathematics 1289, Springer-Verlag (1987), 240-264.

[11] On the Differentials of Spectral Sequence of Fiber Bundle, Bull. of Georg. Acad. Sci., 82, 1976, 285-288.

[12] T. Kadeishvili, On the Homology Theory of Fibrations, Russian Math. Surveys, 35, 3 (1980), 231-238.

[13] T. Kadeishvili, The $A_\infty$-algebra Structure and Cohomology of Hochschild and Harrison, Proc. of Tbil. Math. Inst., 91, (1988), 19-27.

[14] $A(\infty)$-algebra Structure in Cohomology and Rational Homotopy Type, Forschungsswerpunkt Geometrie, Universitaet Heidelberg, Math. Inst., Heft 37, Oktober, 1988, 1-64.

[15] T. Kadeishvili, $A_\infty$-algebra Structure in Cohomology and Rational Homotopy Type, (in Russian), Proc. of Tbil. Mat. Inst., 107, (1993), 1-94.

[16] T. Kadeishvili, Cochain operations defining Steenrod $\smile_i$-products in the bar construction, Georgian Math. Journal, v.10, n. 1, 2003, 115-125, preprint at math.AG/0207010.

[17] T. Kadeishvili, On the cobar construction of a bialgebra, Homology, Homotopy and Appl., v. 7(2), 2005, 109-122.

[18] T. Kadeishvili, Twisting Elements in Homotopy G-algebra, arXiv:0709.3130.

[19] J. McLure, J. Smith, Multivariable cochain operations and little n-cubes, preprint (2001), math.QA/0106024.

[20] M. Markl, A cohomology theory for A(m)-algebras and applications. Journ. Pure Appl. Algebra, 83:141175, 1992.

[21] D. Quillen, Rational homotopy theory, Ann. of Math., 90(1969), 205-295.
[22] V. Smirnov, Homology of fiber spaces, Russian Math. Surveys, 35, 3 (1980), 183-188.

[23] V. Smirnov, Homotopy theory of coalgebras, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), 1302-1321. English translation in Math. USSR-Izv. 27 (1986), 575-592.

[24] J.D. Stasheff, Homotopy associativity of H-spaces. I, II, Trans. Amer. Math. Soc., 108 (1963), 275-312.

[25] M. Shlessinger and J. Stasheff, The Lie algebra structure on tangent cohomology and. deformation theory, J. Pure Appl. Algebra 89 (1993), 231-235.

[26] D. Tanre, Cohomologie de Harrison et type d’homotopie rationelle, J. of Pure and appl. Alg., 38(1985), 353-366.

[27] M. Vigue-Poirrier, Realisation de morphismes donnes en cohomologie et suite spectral d’Eilenberg-Moore, TAMS, 265, 2(1981), 447-483.

A. Razmadze Mathematical Institute,
1, M. Alexidze Str., Tbilisi, 0193, Georgia
kade@rmi.acnet.ge