Classes of harmonic starlike functions defined by Sălăgean-type q-differential operators

Jay Jahangiri*1, Gangadharan Murugusundaramoorthy2, Kaliappan Vijaya2

1Mathematical Sciences, Kent State University, Kent, Ohio, U.S.A.
2Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore - 632014, T.N., INDIA

Abstract
Sufficient and necessary coefficient bounds, extreme points of closed convex hulls, and distortion theorems are determined for a family of harmonic starlike functions of complex order involving Sălăgean-type q-differential operators.

Mathematics Subject Classification (2010). 30C45, 30C50.

Keywords. harmonic univalent functions, q-calculus, Sălăgean-type differential operators.

1. Introduction
Let A denote the class of functions h of the form

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. Also let S denote the subclass of A consisting of functions that are univalent in U.

We now recall the notion of q-operators or q-difference operators that play vital roles in the theory of hypergeometric series, quantum physics and operator theory. The application of q-calculus was initiated by Jackson [7] who have used the fractional q-calculus operators in investigations of certain classes of functions which are analytic in U. For more details on q-calculus and its applications one can refer to [1,5,7,13] and the references cited therein.

For $0 < q < 1$ the Jackson’s q-derivative of a function $h \in S$ is given as follows [7]

$$D_q h(z) = \begin{cases} \frac{h(z) - h(qz)}{(1-q)z} & \text{for } z \neq 0, \\ h'(z) & \text{for } z = 0, \end{cases}$$

(1.2)

From (1.2), we have $D_q h(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1}$ where $[n]_q = \frac{1-q^n}{1-q}$ is sometimes called the basic number n. If $q \to 1^-$ then $[n]_q = [n] \to n$. For $h \in A$, $m \in \mathbb{N}_0 = \{0, 1, 2, \ldots\}$

*Corresponding Author.
Email addresses: jjahangi@kent.edu (J. Jahangiri), gmmsmoorthy@yahoo.com (G. Murugusundaramoorthy), kvijaya@vit.ac.in (K. Vijaya)
Received: 05.07.2018; Accepted: 21.12.2018
and \(z \in \mathbb{U} \), Govinderaj and Sivasubramanian [5] considered the Sălăgean \(q \)-differential operators

\[
D_q^0 h(z) = h(z), \\
D_q^1 h(z) = zD_q h(z), \ldots , \\
D_q^m h(z) = zD_q(D_q^{m-1} h(z)) = z + \sum_{n=2}^{\infty} [n]_q^m a_n z^n.
\]

(1.3)

We note that if \(q \to 1^- \) then

\[
D_q^m h(z) = z + \sum_{n=2}^{\infty} [n]_q^m a_n z^n \quad (m \in \mathbb{N}_0, z \in \mathbb{U})
\]

is the familiar Sălăgean derivative[15].

Let \(\mathcal{H} \) denote the family of harmonic functions \(f = h + \overline{g} \) that are orientation preserving and univalent in \(\mathbb{U} \) with \(h \) as in (1.1) and \(g \) given by

\[
g(z) = \sum_{n=1}^{\infty} b_n z^n, \quad |b_1| < 1.
\]

(1.4)

We note that the family \(\mathcal{H} \) of orientation preserving, normalized harmonic univalent functions reduces to the well known class \(\mathcal{S} \) of normalized univalent functions if the co-analytic part of \(f \) is identically zero, i.e. \(g \equiv 0 \). We let \(\mathcal{H}_q \) be the subfamily of \(\mathcal{H} \) consisting of harmonic functions \(f = h + \overline{g} \) for which \(h \) and \(g \) are given by

\[
h(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n, \quad a_n \geq 0 \text{ and } b_n \geq 0.
\]

The seminal work of Clunie and Sheil-Small [4] on harmonic mappings prompted many research articles on classes of complex-valued harmonic univalent functions. In particular, [2, 6, 8, 9, 11, 12, 14, 16] have investigated properties of various subclasses of harmonic univalent functions.

For harmonic functions \(f = h + \overline{g} \in \mathcal{H} \) where \(h \) and \(g \) are, respectively, given by (1.1) and (1.4), let \(D_q^m h(z) \) be defined by (1.3) and \(D_q^m g(z) \) be defined by

\[
D_q^0 g(z) = g(z), \\
D_q^1 g(z) = zD_q g(z), \ldots , \\
D_q^m g(z) = zD_q(D_q^{m-1} g(z)) = z + \sum_{n=2}^{\infty} [n]_q^m b_n z^n.
\]

(1.5)

Recently, Jahangiri [10] considered a generalized Sălăgean \(q \)- differential operator \(\mathcal{H}_q^m(\alpha) \) defined by

\[
\Re \left(\frac{D_q^{m+1} f(z)}{D_q^m f(z)} \right) \geq \alpha; \quad 0 \leq \alpha < 1,
\]

where, \(D_q^m h(z) \) and \(D_q^m g(z) \) are, respectively, defined by (1.3) and (1.5) and

\[
D_q^m f(z) = D_q^m h(z) + (-1)^m D_q^m g(z), \quad m > -1.
\]

The subfamily \(\mathcal{H}_q^m(\alpha) \subset \mathcal{H}_q^m(\alpha) \) consists of harmonic functions \(f_m = h + \overline{g}_m \) for which

\[
h(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad g_m(z) = (-1)^m \sum_{n=1}^{\infty} b_n z^n, \quad a_n \geq 0 \text{ and } b_n \geq 0.
\]

(1.6)
For non-zero complex number \(b \) with \(|b| \leq 1 \), real number \(\gamma \) and \(0 \leq \alpha < 1 \) we let \(\mathcal{HS}^m_q(b, \gamma, \alpha) \) be the subclass of \(\mathcal{H} \) consisting of harmonic functions \(f = h + \overline{g} \) satisfying
\[
\Re \left(1 + \frac{1}{b} \left((1 + e^{i\gamma}) \frac{D_{q}^{m+1}f(z)}{D_{q}^{m}f(z)} - e^{i\gamma} - 1 \right) \right) > \alpha. \tag{1.7}
\]
We also let \(\mathcal{HS}^m_q(b, \gamma, \alpha) \equiv \mathcal{HS}^m_q(b, \gamma, \alpha) \cap \mathcal{H} \).
We note that \(\mathcal{HS}^m_q(1, \gamma, \alpha) \equiv \mathcal{HR}^m_q(\gamma, \alpha) \) is generalized class of Goodman-Ronne-type harmonic starlike functions (see [14], Inequality (2), p. 46) satisfying
\[
\Re \left(1 + e^{i\gamma} \frac{D^{m+1}_q f(z)}{D^{m}_q f(z)} - e^{i\gamma} - 1 \right) > \alpha
\]
and \(\mathcal{HS}^m_q(b, 0, \alpha) \equiv \mathcal{HR}^m_q(b, \alpha) \) is the harmonic version of generalized starlike functions of complex order (see [3], Definition 1) satisfying
\[
\Re \left(1 + \frac{2}{b} \left(\frac{D^{m+1}_q f(z)}{D^{m}_q f(z)} - 1 \right) \right) > \alpha.
\]
It is the aim of this paper to obtain sufficient coefficient conditions, extreme points, growth theorem, and distortion bounds for harmonic functions \(f = h + \overline{g} \) in \(\mathcal{HS}^m_q(b, \gamma, \alpha) \). Moreover, we show that those sufficient coefficient conditions for \(f \in \mathcal{HS}^m_q(b, \gamma, \alpha) \) are also necessary for \(f \in \mathcal{HS}^m_q(b, \gamma, \alpha) \).

2. Main results

The sufficient coefficient condition for \(\mathcal{HS}^m_q(b, \gamma, \alpha) \) is given in the following theorem.

Theorem 2.1. Let \(f = h + \overline{g} \in \mathcal{H} \) where \(b \) is a non-zero complex number with \(|b| \leq 1 \), \(\gamma \) is a real number and \(0 \leq \alpha < 1 \). If
\[
\sum_{n=1}^{\infty} \left(\frac{[n]_q^{m} [2[n]_q - 2 + (1 - \alpha)|b|]}{(1 - \alpha)|b|} |a_n| + \frac{[n]_q^{m} [2[n]_q + 2 - (1 - \alpha)|b|]}{(1 - \alpha)|b|} |b_n| \right) \leq 2, \tag{2.1}
\]
then \(f \) is harmonic univalent and orientation-preserving in \(U \) and \(f \in \mathcal{HS}^m_q(b, \gamma, \alpha) \).

Proof. First we establish that \(f \) is orientation preserving in \(U \). In other words, we need to show that \(|D^{m+1}_q h(z)| \geq |D^{m+1}_q g(z)| \). This is accomplished using the properties of absolute values and the coefficient inequality (2.1).

\[
|D^{m+1}_q h(z)| \geq 1 - \sum_{n=2}^{\infty} [n]_q^{m+1} |a_n| n^{-1} > 1 - \sum_{n=2}^{\infty} [n]_q^{m+1} |a_n|
\]
\[
\geq 1 - \sum_{n=2}^{\infty} \left[\frac{2[n]_q - 2 + (1 - \alpha)|b|}{(1 - \alpha)|b|} \right] [n]_q^{m} |a_n| \]
\[
\geq \sum_{n=1}^{\infty} \left[\frac{2[n]_q + 2 - (1 - \alpha)|b|}{(1 - \alpha)|b|} \right] [n]_q^{m} |b_n| \]
\[
\geq \sum_{n=1}^{\infty} [n]_q^{m+1} |b_n| \geq \sum_{n=1}^{\infty} [n]_q^{m+1} |b_n| n^{-1} \geq |D^{m+1}_q g(z)|.
\]

To show \(f \) is univalent in \(U \) we use a method that was first used by Jahangiri [8]. We will show that \(f(z_1) \neq f(z_2) \) when \(z_1 \neq z_2 \). Consider \(z_1 \) and \(z_2 \) in \(U \) so that \(z_1 \neq z_2 \). Since the unit disc \(U \) is simply connected and convex, we have \(z(t) = (1 - t)z_1 + tz_2 \in U \) for \(0 \leq t \leq 1 \). Then we may write
\[
D^{m+1}_q f(z_2) - D^{m+1}_q f(z_1) = \frac{1}{0} \int [(z_2 - z_1)(D^{m+1}_q h(z(t)) + (z_2 - z_1)(D^{m+1}_q g(z(t)))dt.
\]
Dividing the above equation by $z_2 - z_1$ and taking the real parts we obtain

$$
\Re \left(\frac{D_{q}^{m+1}f(z_2) - D_{q}^{m+1}f(z_1)}{z_2 - z_1} \right) = \int_{0}^{1} \Re[D_{q}^{m+1}h(z(t)) + \frac{(z_2 - z_1)D_{q}^{m+1}g(z(t))}{z_2 - z_1}] dt \quad (2.2)
$$

On the other hand

$$
\Re(D_{q}^{m+1}h(z(t))) - |D_{q}^{m+1}g(z(t))| \geq \Re(D_{q}^{m+1}h(z(t))) - \sum_{n=1}^{\infty} |n|^m |a_n| - \sum_{n=1}^{\infty} |n|^m b_n
$$

$$
\geq 1 - \sum_{n=2}^{\infty} |n|^m |a_n| - \sum_{n=1}^{\infty} |n|^m b_n
$$

$$
\geq 1 - \sum_{n=2}^{\infty} |n|^m \left[\frac{2|n|q - 2 + (1 - \alpha)|b|}{(1 - \alpha)|b|} \right] |a_n|
$$

$$
- \sum_{n=1}^{\infty} |n|^m \left[\frac{2|n|q + 2 - (1 - \alpha)|b|}{(1 - \alpha)|b|} \right] b_n
$$

$$
\geq 0 \text{ by } (2.1).
$$

This together with inequality (2.2) implies the univalence of f.

Next we show that if the condition (2.1) holds then $f \in \mathcal{S}_q^m(b, \gamma, \alpha)$. In other words, we need to show that the condition (1.7) is satisfied if (2.1) holds.

Using the fact that $\Re(w(z)) \geq \alpha$ if and only if $|1 - \alpha + w| \geq |1 + \alpha - w|$ for $0 \leq \alpha < 1$ it suffices to show that

$$
|(2b - \alpha b - e^{i\gamma} - 1)(D_{q}^{m}h(z) + (-1)^m D_{q}^{m}g(z)) + (1 + e^{i\gamma})(D_{q}^{m+1}h(z) - (-1)^m D_{q}^{m+1}g(z))|
$$

$$
- |(1 + \alpha b + e^{i\gamma})(D_{q}^{m}h(z) + (-1)^m D_{q}^{m}g(z))| - (1 + e^{i\gamma})(D_{q}^{m+1}h(z) - (-1)^m D_{q}^{m+1}g(z))| \geq 0.
$$

Upon substituting for $D_{q}^{m}h(z)$ and $D_{q}^{m}g(z)$ we obtain

$$
|(2b - \alpha b - (1 + e^{i\gamma})) \left[z + \sum_{n=2}^{\infty} |n|^m a_n z^n + (-1)^m \sum_{n=1}^{\infty} |n|^m b_n z^n \right]
$$

$$
+ (1 + e^{i\gamma}) \left[z + \sum_{n=2}^{\infty} |n|^m a_n z^n - (-1)^m \sum_{n=1}^{\infty} |n|^m b_n z^n \right] |
$$

$$
- |(1 + \alpha b + e^{i\gamma}) \left[z + \sum_{n=2}^{\infty} |n|^m a_n z^n + (-1)^m \sum_{n=1}^{\infty} |n|^m b_n z^n \right]
$$

$$
- (1 + e^{i\gamma}) \left[z + \sum_{n=2}^{\infty} |n|^m a_n z^n - (-1)^m \sum_{n=1}^{\infty} |n|^m b_n z^n \right] |
$$
2.1
follows from
To prove the

Let g
Since

Theorem

Proof.

The functions

$$f(z) = z + \sum_{n=2}^{\infty} \left(\frac{(2 - \alpha)|b|}{2[n]_q - 2 + (1 - \alpha)|b|} \right) x_n z^n + \sum_{n=1}^{\infty} \left(\frac{(1 - \alpha)|b|}{2[n]_q + 2 - (1 - \alpha)|b|} \right) y_n z^n,$$

where $\sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 1$, shows that the coefficient bound given by (2.1) is sharp.

The next theorem shows that condition (2.1) is also necessary for $f \in \mathcal{HS}_q^m(b, \gamma, \alpha)$.

Theorem 2.2. Let $f_m = h + g_m$ be given by (1.6) where b is a non-zero complex number with $|b| \leq 1$, γ is a real number and $0 \leq \alpha < 1$. Then f_m is harmonic univalent and orientation-preserving in U and $f_m \in \mathcal{HS}_q^m(b, \gamma, \alpha)$ if and only if

$$\sum_{n=1}^{\infty} \left(\frac{[n]_q |2[n]_q - 2 + (1 - \alpha)|b|}{(1 - \alpha)|b|} a_n + \frac{[n]_q |2[n]_q + 2 - (1 - \alpha)|b|}{(1 - \alpha)|b|} b_n \right) \leq 2. \quad (2.3)$$

Proof. Since $\mathcal{HS}_q^m(b, \gamma, \alpha) \subset \mathcal{HS}_q^m(b, \gamma, \alpha)$, the if part of the Theorem 2.2 follows from Theorem 2.1. To prove the only if part, we will show that if (2.3) does not hold then f_m is not in $\mathcal{HS}_q^m(b, \gamma, \alpha)$.

For $f_m \in \mathcal{HS}_q^m(b, \gamma, \alpha)$ we must have

$$\Re \left(1 + \frac{1}{b} \left((1 + e^{i\gamma}) \frac{D_q^{m+1}h(z) - (-1)^m D_q^{m+1}g_m(z)}{D_q^m h(z) + (-1)^m D_q^m g_m(z) - (e^{i\gamma} + 1)} \right) \right) \geq \alpha.$$
Or equivalently
\[
\Re \left((1 - \alpha) bz - \sum_{n=2}^{\infty} [(1 - \alpha)b + ([n]_q - 1)(1 + e^{i\gamma})][n]_q^m |a_n| z^n \right)
\]
\[
= \Re \left((1 - \alpha)b^2 - \sum_{n=2}^{\infty} [(1 - \alpha)b + ([n]_q - 1)(1 + e^{i\gamma})][n]_q^m |a_n| z^n \right)
\]
\[
= \Re \left(\frac{(1 - \alpha)b^2 - \sum_{n=2}^{\infty} [(1 - \alpha)b + ([n]_q - 1)(1 + e^{i\gamma})][n]_q^m |a_n| z^n}{|b|^2 \left(1 - \sum_{n=1}^\infty |n|_q^m |a_n| z^{n-1} + \sum_{n=1}^\infty |n|_q^m |b_n| z^{(n)_q-1} \right)} \right)
\geq 0.
\]

The above condition must hold for all values of \(\gamma, |z| = r < 1 \) and \(0 < |b| < 1 \). For \(\gamma = 0 \) and \(|b| = b \) let \(z = r < 1 \) be on the positive real axis. Then the above condition becomes
\[
\frac{(1 - \alpha)b^2 - \sum_{n=2}^{\infty} [(2[n]_q + 2) - (1 - \alpha)b][n]_q^m |a_n| z^{n-1}}{|b|^2 \left(1 - \sum_{n=2}^\infty |n|_q^m |a_n| z^{n-1} + \sum_{n=2}^\infty |n|_q^m |b_n| z^{(n)_q-1} \right)} \geq 0.
\]

Now we observe that the numerator in the above required inequality (2.4) is negative if condition (2.3) does not hold. Thus, there exists a point \(z_0 = r_0 \) in \((0,1)\) for which the quotient in the above inequalities are negative. This contradicts the required condition (1.7) for \(f_m \in \overline{\mathcal{F}S}_{q}^m(b, \gamma, \alpha) \). Hence the proof is complete.

The following theorem is a consequence of the above Theorem 2.2.

Theorem 2.3. Let \(f_m = h + \mathfrak{g}_m \) be given by (1.6). Then \(f_m \in \overline{\mathcal{F}S}_{q}^m(\gamma, \alpha) \) if and only if
\[
\sum_{n=1}^{\infty} \left(\frac{[n]_q^m [2[n]_q - 1 - \alpha]}{1 - \alpha} a_n + \frac{[n]_q^m [2[n]_q + 1 + \alpha]}{1 - \alpha} b_n \right) \leq 2.
\]

The extreme points of closed convex hull of \(\overline{\mathcal{F}S}_{q}^m(b, \gamma, \alpha) \), denoted by \(cldc \overline{\mathcal{F}S}_{q}^m(b, \gamma, \alpha) \), are determined in the following theorem.

Theorem 2.4. Let \(f_m \in cldc \overline{\mathcal{F}S}_{q}^m(b, \gamma, \alpha) \) if and only if
\[
f_m(z) = \sum_{n=1}^{\infty} (X_n h_n + Y_n g_m)
\]
where
\[
h_1(z) = z, h_n(z) = z - \frac{(1 - \alpha)|b|}{[n]_q^m [2[n]_q - 2 + (1 - \alpha)|b|]} z^n, \ n = 2, 3, \ldots;
\]
\[g_{m_n}(z) = z + (-1)^m \frac{(1 - \alpha)|b|}{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]} z^n, \quad n = 1, 2, \ldots; \]

\[\sum_{n=1}^{\infty} (X_n + Y_n) = 1, \quad X_n \geq 0 \text{ and } Y_n \geq 0. \]

In particular, the extreme points of \(\text{clco} \Re \mathcal{D}^m_q(b, \gamma, \alpha) \) are \(\{h_n\} \) and \(\{g_{m_n}\} \).

Proof. For functions of the form (2.5), we have

\[
\begin{align*}
 f_m(z) &= \sum_{n=1}^{\infty} (X_n h_n + Y_n g_{m_n}) \\
 &= \sum_{n=1}^{\infty} (X_n + Y_n) z - \sum_{n=2}^{\infty} \frac{(1 - \alpha)|b|}{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]} X_n z^n \\
 &\quad + (-1)^m \sum_{n=1}^{\infty} \frac{(1 - \alpha)|b|}{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]} Y_n z^n.
\end{align*}
\]

Therefore

\[
\begin{align*}
 \sum_{n=2}^{\infty} \frac{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]}{(1 - \alpha)|b|} \left(\frac{(1 - \alpha)|b|}{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]} \right) X_n \\
 + \sum_{n=1}^{\infty} \frac{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]}{(1 - \alpha)|b|} \left(\frac{(1 - \alpha)|b|}{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]} \right) Y_n \\
 = \sum_{n=2}^{\infty} X_n + \sum_{n=1}^{\infty} Y_n = 1 - X_1 \leq 1.
\end{align*}
\]

Thus, \(f_m \in \text{clco} \Re \mathcal{D}^m_q(b, \gamma, \alpha) \). Conversely, suppose that \(f_m \in \text{clco} \Re \mathcal{D}^m_q(b, \gamma, \alpha) \). Set

\[X_n = \frac{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]}{(1 - \alpha)|b|} |a_n|, \quad n = 2, 3, \ldots, \]

and

\[Y_n = \frac{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]}{(1 - \alpha)|b|} |b_n|, \quad n = 1, 2, \ldots, \]

where \(\sum_{n=1}^{\infty} (X_n + Y_n) = 1 \). Then

\[
\begin{align*}
 f_m(z) &= z - \sum_{n=2}^{\infty} a_n z^n + (-1)^m \sum_{n=1}^{\infty} b_n z^n \\
 &= z - \sum_{n=2}^{\infty} \frac{(1 - \alpha)|b|}{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]} X_n z^n + (-1)^m \sum_{n=1}^{\infty} \frac{(1 - \alpha)|b|}{|n|^m_2[|n|_q + 2 - (1 - \alpha)|b|]} Y_n z^n \\
 &= z - \sum_{n=2}^{\infty} [X_n (h_n(z) - z)] + \sum_{n=1}^{\infty} [Y_n (g_{m_n}(z) - z)] \\
 &= \sum_{n=1}^{\infty} (X_n h_n + Y_n g_{m_n}).
\end{align*}
\]

Now from Theorem 2.2, we can deduce that \(0 \leq X_n \leq 1, \ (n \geq 2) \) and \(0 \leq Y_n \leq 1, \ (n \geq 1) \).

Therefore \(X_1 = 1 - \sum_{n=2}^{\infty} X_n - \sum_{n=1}^{\infty} Y_n \geq 0 \). Thus \(\sum_{n=1}^{\infty} (X_n h_n + Y_n g_{m_n}) = f_m(z) \) as required in the theorem.

Finally, we determine the distortion theorem for the family \(\Re \mathcal{D}^m_q(b, \gamma, \alpha) \).
Theorem 2.5. Let $f_m \in \mathcal{F}_{q_d}^{m}(b, \gamma, \alpha)$ where $|z| = r < 1$. Then

$$|f_m(z)| \leq (1 + b_1)r + \left(\frac{(1 - \alpha)|b|}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|} - \frac{4 - (1 - \alpha)|b|}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|}\right)r^2$$

and

$$|f_m(z)| \geq (1 - b_1)r - \left(\frac{(1 - \alpha)|b|}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|} - \frac{4 - (1 - \alpha)|b|}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|}\right)r^2.$$

\textbf{Proof.} We will prove the right hand inequality. The proof for the left hand inequality will be similar and is omitted. Let $f_m(z) \in \mathcal{F}_{q_d}^{m}(b, \gamma, \alpha)$. Upon taking the absolute value of f_m, we obtain

$$|f_m(z)| \leq (1 + |b_1|)r + \sum_{n=2}^{\infty} n[a_n] + |b_n| |n_q^m| r^n$$

$$= (1 + |b_1|)r + \sum_{n=2}^{\infty} (|a_n| + |b_n|)|n_q^m| r^n$$

$$= (1 + |b_1|)r + \frac{(1 - \alpha)|b|r^2}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|} \times \sum_{n=2}^{\infty} [2]_q^m \left(\frac{2[2]_q - 2 + (1 - \alpha)|b|}{(1 - \alpha)|b|} |a_n| + \frac{2[2]_q - 2 + (1 - \alpha)|b|}{(1 - \alpha)|b|} |b_n|\right)$$

$$\leq (1 + |b_1|)r + \frac{(1 - \alpha)|b|r^2}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|} \times \sum_{n=2}^{\infty} [n_q^m] \left(\frac{2[n_q] - 2 + (1 - \alpha)|b|}{(1 - \alpha)|b|} |a_n| + \frac{2[n_q] - 2 - (1 - \alpha)|b|}{(1 - \alpha)|b|} |b_n|\right)$$

$$\leq (1 + |b_1|)r + \frac{(1 - \alpha)|b|r^2}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|} \left(1 + \frac{|4 - (1 - \alpha)|b|}{(1 - \alpha)|b|} |b_1|\right)r^2$$

$$\leq (1 + |b_1|)r + \frac{(1 - \alpha)|b|r^2}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|} \left(1 + \frac{4 - (1 - \alpha)|b|}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|} |b_1|\right)r^2.$$

The result is sharp for

$$f(z) = z + |b_1|z + \left(\frac{(1 - \alpha)|b|}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|} - \frac{4 - (1 - \alpha)|b|}{[2]_q^m[2][2]_q - 2 + (1 - \alpha)|b|}\right)z^2,$$

where $|b_1| \leq \frac{(1 - \alpha)|b|}{4 - (1 - \alpha)|b|}$.

\textbf{References}

[1] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, 2013.

[2] Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie- Sklodowska Sect. A, 44, 1–7, 1990.

[3] T. Bulboaca, M.A. Nasr and G.F. Sălăgean, A generalization of some classes of starlike functions of complex order, Mathematica (Cluj), 34 (57), 113–118, 1992.

[4] J. Clunie and T. Sheil-Small, Harmonic univalent Functions, Ann. Acad. Aci. Ferm. Ser. A.I. Math. 9, 3–25, 1984.

[5] M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math. 43(3)(5), 475–487, 2017.

[6] S.A. Halim and A. Janteng, Harmonic functions starlike of complex order, Proc. Int. Symp. on New Development of Geometric function Theory and its Applications, 132–140, 2008.
[7] F.H. Jackson, *On q-functions and a certain difference operator*, Trans. Roy. Soc. Edinburgh, **46**, 253–281, 1908.

[8] J.M. Jahangiri, *Coefficient bounds and univalence criteria for harmonic functions with negative coefficients*, Ann. Univ. Mariae Curie-Sk łodowska Sect. A, **5** (2), 57–66, 1998.

[9] J.M. Jahangiri, *Harmonic functions starlike in the unit disc*, J. Math. Anal. Appl. **235**, 470–477, 1999.

[10] J.M. Jahangiri, *Harmonic univalent functions defined by q—calculus operators*, Inter. J. Math. Anal. Appl. **5** (2), 39–43, 2018.

[11] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, *Sălăgean-Type harmonic univalent functions*, Southwest J. Pure Appl. Math. **2**, 77–82, 2002.

[12] J.M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, *Starlikeness of Rucheweyh type harmonic univalent functions*, J. Indian Acad. Math. **26**, 191–200, 2004.

[13] S. Kanas, and D. Răducanu, *Some subclass of analytic functions related to conic domains*, Math. Slovaca, **64** (5), 1183–1196, 2014.

[14] T. Rosy, B.A. Stephen, K.G. Subramanian and J.M. Jagangiri, *Goodman–Rønning type harmonic univalent functions*, Kyungpook Math. J. **41**, 45–54, 2001.

[15] G.F. Sălăgean, *Subclasses of univalent functions*, Springer-Verlag **1013**, 362–372, 1983.

[16] H. Silverman, *Harmonic univalent functions with negative coefficients*, J. Math. Anal. Appl. **220**, 283–289, 1998.