The Effectiveness of Net to Reduce the Entomological Indices in Dengue-Endemic Areas in Balikpapan, Indonesia

Ike Helena Febriana1,2, Ansariadi Ansariadi1, Hasanuddin Ishak1, Ida Leida Maria1, Ridwan Aminuddin3, Agnees Pamantouw2
1Department of Epidemiology, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia; 2Department of Disease Prevention and Control, Balikpapan City Health Office, Balikpapan, Indonesia; 3Departement of Environmental Health, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia

Abstract

BACKGROUND: Drums and cisterns are ubiquitous water storages in Indonesian households, seldom being drained and left open to create access for the rainwater, providing a favorable breeding site for dengue vector. The bigger the container, the more it produces immature mosquitoes that are soon to be mature, increasing the entomological indices and raising the potency of cases in the area. Previous studies revealed that the net covering the reservoir was able to effectively protect the water from mosquito oviposition; therefore, a modification of the net was made.

AIM: The aim of this study is to discover whether the net as a cover for water containers is effective in reducing the entomological indices in dengue-endemic areas.

METHODS: The quasi-experimental study with pretest and posttest control group design, involved 3 intervention and 3 control clusters, 150 houses which have 672 water-holding containers with 116 large containers were intervened with non-insecticide tulle nets for 3 months. The larval presence data were performed by larval survey.

RESULTS: It revealed that net reduced the container index (CI) in intervened large containers 18%–84% as well as the environment entomological indices in general in study areas: CI decreased 75%–79%, house index decreased 65%–70%, and Breteau index decreased 75.5%–78.7%, while Free Larva Index rose 73.7%–88%.

CONCLUSIONS: The nets had lowered the CI in the intervened large container and affected the entomological indices and raising the potency of cases in the area. Previous studies revealed that the net covering the reservoir was able to effectively protect the water from mosquito oviposition; therefore, a modification of the net was made.

Introduction

Dengue is a major public health problem in tropical and subtropical regions that infects all ages. It is estimated that 390 million dengue virus infections occur per year in 129 countries, and 70% of the burden is in the Asian region [1]. In Indonesia, cases of dengue hemorrhagic fever in 2020 up to the week 49 were recorded as many as 95,893 with 661 deaths; the largest morbidity occurred at school age 5–14 years (33.97%) and productive age 15–44 years (37.45%) [2].

Preventing and reducing transmission of dengue virus entirely depends on controlling mosquito vectors or breaking human-vector contact [3]; the latter is difficult. Vector control targets the eradication of larvae’s breeding sites (aquatic phase), because in this phase, eradication of mosquitoes is easier than when mosquitoes are adults and can move freely. To reduce the transmission of dengue cases, the vector index needs to be low [4]. The Indonesian Ministry of Health has developed an Aedes aegypti vector control program with the 3M Plus (Menguras, Menutup, Mengubur plus Menabur Larvasida/to drain, to lid, to bury used goods or to recycle plus sow the larvicide). The 3MPlus becomes jargon in Indonesia to call the activities which eradicate breeding places of immature mosquitoes that transmit DHF by draining and lid the water containers, burying/recycling used goods, plus sow the larvicide [5].

However, vector control methods are a hitherto problem in Indonesia. Many aspects make vector control not work out in some areas due to the 5-year cycle, geographical conditions (temperature and weather), and community effectiveness of larvicides (wrong dose, wrong storage, and wrong application) [6]. Meanwhile, from interviews with Puskesmas (Community Health Center) officers regarding vector control constraints in their area, they said that limited health cadres, refusal to use larvicides, and community behavior that did not comply with 3M Plus made cases of dengue hemorrhagic fever easy to rise.

Fluctuations in dengue cases still follow the seasons. Community’s habits regarding season create problems to vector control programs, for instance, collect rainwater during the rainy. The water reservoir is left open by the residents; hence, whenever it rains, the water can go directly into the reservoir without having
to open the reservoir lid, especially when they are not at home. The open water container creates breeding place for female Aedes aegypti mosquitoes to infest the eggs [7]. Meanwhile, surmise over the temephos resistance which has been used for 40 years in vector control programs in Indonesia [8], [9] and the alleged decrease in efficacy due to dilution by high water turnover in the rainy season are other problems from the internal program, besides the rejection temephos by community because of its smell. Therefore, a new method is needed to be an alternative solution in controlling the dengue vector that is accepted and can be practiced more broadly by the community so the cases can be reduced.

Covering domestic water storage containers is recommended by the WHO [1]; this is a low-cost and effective vector control to prevent mosquitoes from contacting water. In controlling vector, we need to limit the contact of adult mosquitoes with water reservoirs to prevent oviposition; hence, the water-holding container does not become a breeding place. Krueger et al. found that windows and covers for household water containers with insecticide nets can reduce the Breteau index (BI), reduce dengue vector density to a lower level, and potentially affect dengue disease transmission [10], [11].

Inspired by Krueger’s research, the net method that covers the water containers was adopted with some modifications to be used as a method for controlling dengue vectors in dengue-endemic areas in Indonesia. This study aims to see the effectiveness of using non-insecticide nets to cover water reservoirs by decreasing the entomological indices in dengue hemorrhagic fever endemic areas in Indonesia.

Methods

This is a study with a quasi-experimental approach, with pre-test and post-test measurements. The sampling method used random sampling to determine the samples but used purposive sampling as the single-stage cluster sampling to determine houses instead of random sampling because of the need to create clusters in the study area. A cluster is a population with homogeneous characteristics and has the same opportunity to be part of the sample [12]. If there are one or more houses that do not meet the inclusion criteria, then the cluster is shifted until a homogeneous sample cluster is formed. It is intended to limit the movement of the Aedes aegypti mosquito, which can fly to lay eggs up to 320 m across the urban area [13], expected to minimize bias in larval surveys.

The device in this study is nets made of tulle, with pore diameter <2 mm, sewn circular on the edges (round shape), 120 cm in diameter, and has rope along the edge of the net as fixation. To avoiding ethics issue, even though the control clusters gave no information about the study and obtained no specific intervention, they still went with what they usually do on a daily basis for vector control.
Population and sample
The study was conducted in Graha Indah subdistrict, Balikpapan city, East Kalimantan province, Indonesia.

Figure 2: Design of study

The population of this research is all the Rukun Tetangga (RT) (neighborhood) in the Graha Indah subdistrict which consists of 73 RTs. RT is a small group of households with a maximum number of 150–250 people based on the Indonesian National Standard for Housing Planning (SNI 03-1733-2004) [14]. The sample of this study consisted of six clusters of RTs selected randomly, three study clusters, and three control clusters (Figure 2).

The cluster formed consists of equal 25 houses so that there was no difference in the number of houses in each study area. We chose 25 houses each, to create a homogeneous cluster, and the RT with the least number of buildings could still form a cluster of the same number of houses as other clusters because the premises in each RT varied from 60 to 150 including empty houses, abandoned buildings, and families in COVID-19 isolation. The study lasted for 3 months from the 1st week of March 2021 to the 1st week of June 2021 (Figure 3).

The inclusion criteria of the houses in study areas included having a water reservoir with a diameter of less than 120 cm, the house owner being willing to drain the water container to clean the previous investment of eggs and larvae before the research begins, willing to use the nets for their water reservoir, willing to comply with all instructions regarding the intervention, such as reporting if the nets torn or damaged and immediately closing the mosquito net after took the water. The water containers for all treatments were always filled with water, draining the container was prohibited, and there was no larva-eating fish dwell in the container to prevent bias. As for the exclusion criteria, all conditions conflict with the inclusion criteria.

This study involved 150 houses and 672 water-holding containers found in all housing environments in the study areas and intervened 116 among them. Most of the water reservoirs are indoors such as bathtubs, buckets, and refrigerator reservoirs. Meanwhile, the outdoor shelters were in the form of drums and used goods. From the number of water reservoirs, it can be divided based on the type as described in Table 1.

The parties who participated in this study were the community in the selected RT, cadres as vector surveillance and sanitary officers at the Graha Indah Community Health Center as field coordinators, and RT heads as protectors and supporters of activities in their area.

Intervention
All activities in this study followed the health protocol for preventing the transmission of COVID-19 from the Indonesian Ministry of Health. Before commencing the study work, the cadres who helped the researchers were given some directions.

The intervention begins by explaining to the community in the net clusters what will be applied to the water reservoir in their home for the next 3 months from early March 2021 to early June 2021 and its objectives; then, they signed the informed consent. The larval examination and the calculation of the entomological indices were carried out before the intervention; then, the community was given 7 days to drain the water in the containers that had been selected for intervention. After the reservoirs were filled with new water, the nets were installed in water reservoirs and tightened. The community was given instructions to close the net back after they took water and report immediately if the net was damaged.

Figure 3: Research Timeline
The intervention was maintained for 3 months, and every month the cadres checked whether there were damaged nets, any larva-eating fish found in intervened containers, and had the containers were drained. House owners can request new nets at any time if their nets were damaged during the intervention period.

After 3 months of treatment, larval surveys were conducted in all water reservoirs in the home environment. The larvae and pupae found in intervention clusters were taken as samples to identify the genus. The immature mosquitos were put into transparent containers with lid along with water from their natural habitat, labeled with the name of the head of the household where the larvae and pupae were found, RT, and house number. Larvae were identified based on simple physical characteristics that can be seen with a magnification of 10 times using a magnifying glass such as the appearance of the thorax and abdomen, siphon shape, hair distribution and morphology, as well as the movement and position of pupae and larvae in the water [15], [16], [17]. The larvae that have been identified were put back into the pot until it changed into adult mosquitos and re-identification was conducted based on physical appearance with a magnification of 10 times. The difference in the identification results between larvae or pupae and adult mosquitos took the identification results of adult mosquitos as the final result.

Ethics

This research has been approved by the Health Research Ethics Commission, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia, number: 2068/UUN4.14.1/TP/02.02/2021.

Results

The primary data obtained from observations during the study were the number of water reservoirs, residents’ water sources, entomological indices, and genus of mosquito larvae found in the study area. The secondary data were obtained from the Balikpapan Health Office, Graha Indah Community Health Center officers, the Balikpapan City Government’s website, and the Balikpapan’s annual report in the form of data on the number of houses and data on dengue cases.

The results were assessed using a larval density survey, conducted before and after the treatment/intervention, including several indicators, e.g., Free Larva Index (FLI: percentage of houses without larvae), house index (HI: percentage of houses with larvae/pupae), container index (CI: percentage of water reservoirs filled with larvae or pupae), and BI (number of positive containers per 100 houses inspected) (Figure 4). In the dengue hemorrhagic fever control program in Indonesia, the FLI target is set ≥95% to reduce the transmission of DHF [18], [19].

Research samples were 6 clusters from 6 RTs in Graha Indah subdistrict, Balikpapan city, Indonesia, with a total of 150 houses, 672 water reservoirs, and 116 intervened containers; none was eliminated during the study which lasted from the 1st week of March 2021 to the 1st week of June 2021.

The majority of residents have drums made of plastic or metal, both as indoor containers for consumption (tightly lid containers) or outdoors containers to collect rainwater (not covered) and other non-consumable water containers (closed but not tightly closed). The bathroom tubs were on average the second largest water container in the research area in general. As many as 11.5% of the shelters in the three research areas are small shelters that are prone to be neglected and have the potential as breeding places, such as refrigerator reservoirs, used cans, and flower vases (Table 1).

The majority of the water sources used were from waterwork municipal, managed by the local government of Balikpapan. Meanwhile, gallon/bottled water is used for drinking and rainwater for non-consumption use such as cleaning and washing.
CI in one cluster experienced an increase almost 30%. In cluster control, the intervention, the net installation was negatively clusters were intervened with nets. After 3-month (Figure 4: Trial profile, analysis samples, and outcomes). If the water distribution from the waterwork is As many as 116 water containers in three sub-districts in North Balikpapan district. Randomized: Graha Indah sub-district.

Randomized: 73 RTs in Graha Indah sub-district: 6 RTs to create 6 clusters.

Month	Control 1	Control 2	Control 3
1st month	0 eliminated sample	0 intervened containers	0 intervened containers
Net 1	22 houses	73 indoor containers	35 outdoor containers
Net 2	25 houses	91 indoor containers	48 outdoor containers
Net 3	25 houses	46 indoor containers	64 outdoor containers
2nd month	Same with 1st month	0 eliminated sample	0 intervened containers
3rd month	0 eliminated sample	0 intervened containers	0 intervened containers

Intervention: Net

Month	Net 1	Net 2	Net 3	Control 1	Control 2	Control 3
1st month	22 houses	73 indoor containers	35 outdoor containers	0 eliminated sample	0 intervened containers	0 intervened containers
Net 1	22 houses	73 indoor containers	35 outdoor containers	0 eliminated sample	0 intervened containers	0 intervened containers
Net 2	25 houses	91 indoor containers	48 outdoor containers	0 eliminated sample	0 intervened containers	0 intervened containers
Net 3	25 houses	46 indoor containers	64 outdoor containers	0 eliminated sample	0 intervened containers	0 intervened containers
2nd month	0 eliminated sample	0 intervened containers	0 intervened containers	0 eliminated sample	0 intervened containers	0 intervened containers
3rd month	0 eliminated sample	0 intervened containers	0 intervened containers	0 eliminated sample	0 intervened containers	0 intervened containers

Randomized 73 RTs in Graha Indah sub-district: 6 sub-districts in North Balikpapan district.

Discussion

To our knowledge, this is the first report of a quasi-experimental study with pre-test and post-test measurements related to the use of non-insecticidal nets in vector control of dengue hemorrhagic fever in Indonesia.
Various types of containers can be breeding grounds for immature mosquitoes, but certain shelters can produce more and efficient more for developing immature mosquitoes [20]. The most prominent habitat types for vector breeding were buckets, drums, tires, and pots which produced 75% of pupae from all breeding sites [21]. However, the open larger container played a significant role as vector factories in the environment. The wide-open the mouth of the container and the larger the size, the greater number of immature mosquitoes will be produced [7]. Hence, in this study, we targeted the larger water containers to observe if nets treatment manages to reduce the density of immature mosquitos in the water container, so the number of adult mosquitos in nature could deflate.

Tsunoda et al. in Vietnam conducted a field trial using insecticide net, Olyset® Net, which revealed that it managed to reduce the density of immature A. aegypti in 1 month after installation in all trial areas [22]. Kittapayong and Strickman pioneered the use of net as a water container cover, which revealed that after 7 days of exposure, no mosquito larvae were found in the jars [23].

In this study, the non-insecticide tulle net intervention showed an association with reduction of all entomological indices’ panels in 2 out of 3 intervention clusters (Figure 6). CI decreased 75%–79%, HI decreased 65%–70%, and BI decreased 75.5%–78.7%, while FLI rose 73.7%–88%. Meanwhile, the control clusters demonstrated opposite pattern, 2 clusters underwent a significant increase in entomological indices and drop in LFI, while 1 cluster had minuscule escalated in LFI and insignificant decreased in entomological indices. However, for the intervened containers, nets performed good by reducing the CI.

Table 3: Bivariate analysis with paired t-test net-intervened clusters (n = 3)

Parameters	Mean	SD	SEM	95% CI of the difference	t	df	Significant
	Lower	Upper					
Container index	20.333	17.954	10.366	-24.266 to 64.933	1.962	2	0.189
House index	36.000	38.158	22.030	-58.789 to 130.789	1.634	2	0.244
Breteau index	97.333	87.757	50.667	-128.668 to 315.334	1.921	2	0.195
Larva free index	-36.000	38.158	22.030	-130.789 to 58.789	-1.634	2	0.244

SD: Standard deviation, SEM: Standard error of mean, CI: Confidence interval.
However, the use of nets is vulnerable to the compliance of the residents to reinstall the net after they access the water from the mouth of the reservoir. Therefore, if residents are negligent, mosquitoes have the opportunity to enter and lay eggs on the water surface. In terms of eradicating vector breeding places, in addition to its effectiveness, the net can help the community more easily perform vector control independently because large containers are protected with nets so that the community and cadres can pay more attention on small water-holding containers which are numerous around the house but tend to be neglected. In addition, by using nets on outdoor reservoirs, especially in areas with vegetation, the debris from plants are prevented from contaminating the water.

The majority of residents' water sources came from municipal waterworks. In the rainy season, according to residents, water from waterworks was very smooth distributed in their areas; hence, they left the rainwater unused. The result was an accumulation of rainwater in reservoirs which became potential breeding places for immature mosquitoes even in areas where temephos is used as a larvicide because temephos is susceptible to water turnover [27, 28, 29, 30]. This is why the installation of nets might manage the vector control to overcome the susceptibility of temephos toward high water turnover in the rainy season. However, the effectiveness of its combination needed further study.

Need to be improved in this study is a survey for adult mosquitoes, which made it not possible to reveal the density levels of pre- and post-intervention toward the abundance of adult Aedes mosquitoes in that area. The number of houses used for the study was limited; the duration of the study was short due to the COVID-19 pandemic, which made the researchers unable to conclude the effects of 3-month intervention toward the cases of dengue fever in the Graha Indah subdistrict let alone in Balikpapan city. Furthermore, the identification of larvae was conducted manually instead of entomology laboratory examination.

Conclusions

Nets show positive impact by lowering the entomological indices of the water containers and the environment around it. It is not affected by water turnover and can keep the water clean from debris. The effectiveness of the net intervention is influenced by the community’s compliance with the correct use of the net for maximum protection. For mass implementation, it is recommended to ensure that the community understands how the net covering the water reservoir
works. Net is suitable for areas where temephos is averse or unable to provide it.

References

1. World Health Organization. Dengue and Severe Dengue. Geneva: World Health Organization; 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue [Last accessed on 2021 Jul 07]. https://doi.org/10.2105/cdcmvl.2868.046

2. Ministry of Health of Republic of Indonesia. Newest Data of Dengue Hemorrhagic Fever Cases in Indonesia. Available from: https://sehatnegeriku.kemkes.go.id/baca/umum/20201203/2335899/data-kasus-dbd-indonesia [Last accessed on 2021 Dec 25].

3. World Health Organization. Dengue Control Strategies. Available from: https://www.who.int/denguecontrol_control_strategies/en [Last accessed on 2020 Feb 10].

4. Bowman LR, Runge-Ranzinger S, McCall PJ. Assessing the relationship between vector indices and dengue transmission: A systematic review of the evidence. PLoS Negl Trop Dis. 2014;8(5):2848. https://doi.org/10.1371/journal.pntd.0002848 PMid:24810901.

5. Directorate General of Disease Control and Environmental Health. Guidelines for Controlling Dengue Hemorrhagic Fever in Indonesia. Jakarta: Indonesia Ministry of Health; 2015.

6. George L, Lenhart A, Toledo J, Lazaro A, Han WW, Alexander N, et al. Resistance status of Aedes aegypti larvae to temephos in West Banjarmasin. J Epidemiol Penyakit Bersumber Binaan. 2012;4(2):53-8. https://doi.org/10.22435/bij.v12.i2.53-8

7. Islam S, Haque CE, Hossain S, Rochon K. Role of container type, behaviourial, and ecological factors in Aedes pupal production in Dhaka, Bangladesh: An application of zero-Inflated negative binomial model. Acta Trop. 2019;193:50-9. https://doi.org/10.1016/j.actatropica.2019.02.019 PMid:30790554.

8. Istiana I, Heriyani F, Isnaini I. Resistance status of Aedes aegypti larvae to temephos in West Banjarmasin. J Epidemiol Penyakit Bersumber Binaan. 2012;4(2):53-8. https://doi.org/10.22435/asje.v12.i2.4032.1-14

9. Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A. Temephos resistance in Aedes aegypti in colombia compromises dengue vector control. PLoS Negl Trop Dis. 2013;7(9):2438. https://doi.org/10.1371/journal.pntd.0002438 PMid:24069492.

10. Raharjo B.Uji Kerentanan (Susceptibility Test) Aedes aegypti (Linnaeus) dari Surabaya, Palembang dan Beberapa Wilayah di Bandung terhadap Larvaisida Temephos (Abate 1 SG). Sekolah Ilmu dan Teknologi Hayati ITB, Bandung; 2006. https://doi.org/10.5994/jei.13.1.1

11. Krueger A, Lenhart A, Ochoa M, Villegas E, Levy M, Alexander N, et al. Effective control of dengue vectors with curtains and water container cover treated with insecticide in Mexico and Venezuela: Cluster randomized trial. BMJ Clin Res. 2006;75:1247-52. https://doi.org/10.1136/bmj.332.7552.1247 PMid:16735334.

12. Cluster Sampling: Definition, Method and Examples Questionpro. Available from: https://www.questionpro.com/blog/cluster-sampling/#:~:text=Cluster%20sampling%20is%20defined%20as%20part%20of%20the%20sample [Last accessed on 2021 Jan 07].

13. Liew C, Curtis CF. Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti, and Aedes albopictus in Singapore. Med Vet Entomol. 2004;18:351-60. https://doi.org/10.1111/j.0269-283x.2004.00517.x PMid:15642001.

14. Yuliastuti N, Syahbana JA, Soetomo S. The role of community institutions “Rukun Tetangga” in social housing, Indonesia. Int J Hum Soc Sci. 2015;5(10):44-52.

15. Farajollahi A, Price DC. A rapid identification guide for larvae of the most common North American container-inhabiting Aedes species of medical importance. J Am Mosq Control Assoc. 2013;29(3):203-21. https://doi.org/10.2987/11-6198r1 PMid:24199495.

16. Rueda LM. Pictorial Keys for the Identification of Mosquitoes (Diptera: Culicidae) Associated with Dengue Virus Transmission. United States: Magnolia Press; 2004. https://doi.org/10.11646/zootaxa.589.1.1

17. World Health Organization. WHO South-East Asia Region. Pictorial Identification Key of Important Disease Vectors in the WHO South-East Asia Region. Geneva: World Health Organization; 2021. https://doi.org/10.4103/2224-3151.282999

18. Directorate General of Preventing and Disease Control. Guidelines for Hemorrhagic Dengue Fever Prevention and Control in Indonesia. Jakarta: Ministry of Health of Republic of Indonesia; 2017.

19. Dana AF. UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases. In: A Review of Entomological Sampling Methods and Indicators for Dengue Vectors. Geneva: World Health Organization; 2004. https://doi.org/10.1016/0001-706x(92)90012-m

20. Paul KK, Dhar-Chowdhury P, Haque CE, Al-Amin HM, Goswami DR, Kaif MA, et al. Risk factors for the presence of dengue vector mosquitoes, and determinants of their prevalence and larval site selection in Dhaka, Bangladesh. PLoS One. 2018;13(6):0199457. https://doi.org/10.1371/journal.pone.0199457 PMid:29928055

21. Ngugi HN, Mutuku F, Musunzaji PS, Alberto Ndenga B, Irungu LW, et al. Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya. Parasit Vector. 2017;10:331. https://doi.org/10.1186/s13071-017-2271-9 PMid:29928055

22. Tsunoda T, Kawada H, Huytnh T, Luu LL, Le SH, Hasebe F, et al. Field trial on a novel control method for the dengue vector, Aedes aegypti by the systematic use of Olyset(R) Net and pyriproxyfen in Southern Vietnam. Parasit Vector. 2013;6(1):6. https://doi.org/10.1186/1756-3305-6-6

23. Kittiapayong P, Strickman D. Three simple devices for preventing development of Aedes aegypti larvae in water jars. Am J Trap Med Hyg. 1993;49(2):158-65. https://doi.org/10.2105/cdcmvl.1993.49.158 PMid:8357077

24. Polwiang S. The time series seasonal patterns of dengue fever and associated weather variables in Bangkok (2003-2017). BMC Infect Dis. 2020;20(1):208. https://doi.org/10.1186/s12879-020-4902-6

25. Farajollahi A, Price DC. A rapid identification guide for larvae of the most common North American container-inhabiting Aedes species of medical importance. J Am Mosq Control Assoc. 2013;29(3):203-21. https://doi.org/10.2987/11-6198r1 PMid:24199495.

26. Elevate Pest Control. Available from: https://elevatepestcontrol.com/mosquito-faq#how-much-time-can-a-mosquito-live-without-eating [Last accessed on 2020 Jan 15].
27. Ishak H, Mallongi A, Wahid I, Bachtiar I. Spatio-temporal factors related to dengue hemorrhagic fever in Makassar city, 2010-2014. Indian J Public Health Res Dev. 2018;9(6):452. https://doi.org/10.5958/0976-5506.2018.00596.x

28. Rahman SA, Rahim A, Mallongi A. Risk analysis of dengue fever occurrence in bone province sulawesi south using temporal spatial geostatistical model. Indian J Public Health Res Dev. 2018;9(4):221-6. https://doi.org/10.5958/0976-5506.2018.00287.5

29. Garelli FM, Epinosa MO, Weinberg D, Trinelli MA, Gurtler RE. Water use practice limit he effectiveness of a temephos-based Aedes aegypti larvael control program in North Argentina. PLoS Negl Trop Dis. 2011;5(3):991. https://doi.org/10.1371/journal.pntd.0000991

30. Amran A, Stang S, Mallongi A. Analysis of Dengue Fever Risk Using Geostatistics Model in Bone Regency. AIP Conference Proceedings. Vol. 18125. 4th International Symposium on Biomathematics, SYMOMATH 2016; Ibis Hotel Makassar, Indonesia; 7 October 2016 through 9 October 2016; Code127177; 2017. https://doi.org/10.1063/1.4978971