Antileishmanial activity of medicinal plants from Africa: A review

Abdeslam Et-Touys 1,2, Abdelhakim Bouyahya 1,2*, Hajiba Fellahi 2, Meryem Mniouil 1,4, Houria El Boury 3, Nadia Dakka 1, Abderrahim Sadak 1, Youssef Bakri 1

1Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco
2National Reference Laboratory of Leishmaniasis, National Institute of Health, Rabat, Morocco
3Laboratory of Zoology and General Biology, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco
4Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco

ARTICLE INFO
Article history:
Received 19 Sep 2017
Received in revised form 23 Oct, 2nd revised form 31 Oct 2017
Accepted 15 Nov 2017
Available online 29 Nov 2017

Keywords:
Leishmaniasis
Medicinal plants
Antileishmanial activity

ABSTRACT
Leishmaniasis is a serious disease that presents a real public health problem worldwide. Today, antileishmanial therapy remains expensive and has intolerable side effects; therefore, it is important to dissect antileishmanial molecules that present a selective efficacy and tolerable safety. Several studies revealed the accumulative antileishmanial activity of natural substances isolated from medicinal plants. Several organic extracts-essential oils and their constituents have been tested in some African countries for their antileishmanial activities. The aim of this review is to summarize the investigations that have been undertaken on the antileishmanial activities of medicinal plants from Africa. The ethnobotanical surveys revealed the use of several species for leishmaniasis treatment. Furthermore, in vitro and in vivo experiences have been conducted on medicinal plants and showed cytoxicity against a variety of Leishmania species such as Leishmania major (cutaneous leishmaniasis) and Leishmania infantum (visceral leishmaniasis). There has been little analysis of the mechanisms of action of natural molecules from medicinal plants against Leishmania species, but some studies revealed that these molecules could affect different targeting pathways including apoptosis.

1. Introduction

Leishmaniasis is regarded as a major public health problem, causing significant morbidity and mortality rates in Africa, Asia and Latin America. The disease currently threatens about 350 million women, men and children in 88 countries around the World, with about 2 millions being affected annually[1]. In recent years, the research on molecules that could be useful for leishmaniasis treatment has been increased. In African countries, as many of the world century, the therapeutic of this disease became dominated since the beginning by antimony derivatives which remain toxic and expensive (pentavalent antimony, amphotericin B) [2]. Indeed, some forms of leishmaniasis (visceral and cutaneous) exhibit, in addition, some degree of resistance against conventional drugs, and sometimes even exhibit total resistance to any treatment[3].

Hence, it is essential to seek new alternative antileishmanial molecules that would be effective and would present low toxicity. The nature is a veritable candidate that can offer a variety of molecules that possess diverse chemical structures. It has been considered since always as the main source of medicines against diseases. Medicinal plants, due to their ability to synthesize a variety of molecules that have several pharmacological interests, are considered as the major target for screening bioactive molecules in different therapeutic systems including antibacterial[4-8], antiviral[9-11], antitumor[8,12-16], antioxidant[17,18], antifungal[19], anti-inflammatory[20,21], anti-pyretic and antileishmanial activities[22-24]. These natural products extracted from medicinal plants are very diverse as they present several functional structures such as phenols, alcohols and acids[25-27].

Experimental approaches are needed for the evaluation of antileishmanial activity of natural substances from medicinal plants; the viability assay presents a veritable test that is used for the screening of cytotoxicity of organic extracts, essential oils and their derivatives[28,29]. The isolation of molecules that possess an antileishmanial effect can offer some therapeutic applications for leishmaniasis treatment.

In this context, we are interested in identifying and cataloging...
2. Overview of leishmaniasis

Leishmaniasis is caused by a protozoan parasite, Leishmania, which is transmitted by the bite of a small vector Diptera: phlebotomine mosquito belonging to the genus Lutzomyia (New World) and Phlebotomus (Old World) and affecting many species of domestic and wild mammals. Various forms of clinical manifestations of human leishmaniasis have been described in the literature[30]. They are due to twenty species of the genus Leishmania following biochemical characterization of the strains by enzyme electrophoresis, based on its modern taxonomy[31] which can be grouped into three entities: visceral leishmaniasis (VL, kala azar), cutaneous leishmaniasis (CL, sore oriental, uta, yaws, chilcero’s ulcer) and mucocutaneous leishmaniasis (MCL, espundia)[32]. In the New World, leishmaniasis is caused by Leishmania braziliensis complex (MCL and CL), the Leishmania mexicana complex (CL), Leishmania peruviana (CL) and Leishmania infantum (L. infantum) (VL and CL); while in the Old World, leishmaniasis is caused by Leishmania donovani (L. donovani) (VL), L. infantum (VL and CL), Leishmania tropica (L. tropica) (CL), Leishmania major (L. major) (CL) and Leishmania aethiopica (CL). L. infantum and L. chagasi were found to have an identical biochemical genotype and are considered as synonyms[33]. The diseases are mainly zoonoses with two exceptions: the CL due to L. tropica in urbanized areas of the Near- and Middle-East and the VL due to L. donovani in the Indian subcontinent (North India, Nepal and Bangladesh). Canine leishmaniasis (CanL) is a chronic viscerocutaneous disease caused by L. infantum; Leishmania chagasi), for which the dog acts as a reservoir. In some cases, parasites belonging to Leishmania braziliensis complex, L. major and L. tropica have been isolated from the host[34,35].

3. Epidemiology and development cycle of leishmaniasis

Leishmaniasis is caused by parasites of Leishmania genus, kinetoplastid protozoa belonging to the family Trypanosomatidae and transmitted by bite of an infected female sandfly[35]. In Africa, these little hairy flies belong to the genera Phlebotomus (Table 1), and bite at night, preferably at dusk. Parasites of the Leishmania genus exist in two forms. The flagellate form, or promastigote, is found in the digestive tract of the female sandfly, where it multiplies before being transmitted during a blood meal. Under promastigote forms, the parasite is 3 × 15-20 microns. Once humans or other host receptive mammals are bitten, promastigotes are phagocytosed by macrophages, where they proliferate in a vacuole parasitophorous as not strict intracellular flagellate, or amastigote form (3 × 3-4 microns). Twenty Leishmania species are divided into two kinds: Leishmania and Viannia[31](Table 1). Depending on the region and species, the parasite reservoir is either an animal or a human. Humans and canines are the main visceral leishmaniasis reservoirs. Cutaneous leishmaniasis reservoirs, in Africa, are the felines, rodents and Cercopithecidae[36](Table 1). Typically, in humans there is a link between the clinical presentation and the species responsible[37]. In fact, host parasite interaction, including the immune status of the host, appears to play a key role in the evolution of the disease.

4. Clinical forms of the disease in humans

In humans, the immune response plays an important role in...
the development of the disease. Differences of clinical cases are associated with several species of *Leishmania* and the patient’s immunological status[38]. In Africa, symptomatic manifestations of two groups can be described, one having the VL and the other featuring the tegumentary forms in which the parasite remains localized in the skin and mucous membranes; thereof includes those forms of cutaneous leishmaniasis, diffus mucocutaneous.

4.1. Visceral leishmaniasis (VL)

It is called kala azar or “black fever” and presents the most severe form of the disease. In untreated case, VL is mortal. During the bite of the sandfly, the parasites migrate through the bloodstream and lymphatic system to lymphoid organs (spleen and bone marrow) and liver. Its clinic case is generally characterized by an inflammation of the liver and spleen, causing hepatosplenomegaly, severe abdominal distension, severe weight loss and anemia. Death usually occurs after 6 months to a few years following the progression of the infection[39].

4.2. Cutaneous leishmaniasis (CL)

Formerly known as the “Oriental button”, the CL can cause skin lesions at the bite place, pruritic papule. This is followed by an inflammatory reaction with epithelial hyperplasia and necrosis of the dermis leading to ulceration. These ulcers are usually circular with well-defined edges that have a purplish color. They are covered with a thin crust and moving towards a form called “wet” (like “Uta”) or “dry”. These lesions are usually painless but leave after healing deep non-pigmented scars[39-42].

5. Necessity of screening antileishmanial natural agents

Several chemical agents have been described for the treatment of leishmaniasis. Amongst them, the compounds of antimony, antileishmanial drugs like chloroquine, quinacrine, emetine, metronidazole and minomycin antibiotics, tetracycline and rifampin are used (Table 2)[43-45]. The efficacy of these treatments depends on the parasite strain and determination of specification is important in order to plan control and prevention. However, the use of these chemical agents is almost always limited by side effects, including increased liver enzymes.

5.1. Current treatments and their side effects

In Table 2 we summarize different treatments used in leishmaniasis therapy. Trivalent antimony was the first molecule used against leishmaniasis but was quickly abandoned because of its toxicity. Since 1940, the most commonly used first-line drugs are pentavalent antimony, N-methyl glucamine and sodium stibogluconate. These drugs have many side effects of early anaphylactic treatment as muscle pain, rash, vomiting, hyperthermia, tachycardia and bleeding. The other side effects occur at the end of treatment and result in general signs, cardiac, hepatic, pancreatic, renal and hematological disorders[41,46,64,65]. The duration of treatment ranged from 20 to 28 days by intravenous or intramuscular administration[51]. The problem arises when some leishmanial strains have developed resistance against this drug[66-68]. The emergence of parasites resistance is mainly due to numerous factors such as the immune system status of patients, pharmacokinetic drug elimination, differences in biochemical and structural levels of each species of *Leishmania* that are responsible for selective responses to drugs[55]. Finally, access to treatment is difficult because of the poverty that affects the peoples of underdeveloped countries. This situation facilitates significantly the progression of the disease.

The amphotericin B and pentamidine come as the second-line of treatments. The amphotericin B is a polyene antibiotic which inhibits powerful demethylation of lanosterol. The action of amphotericin B is due to the disruption of membrane permeability of *Leishmania*. It is used almost against visceral leishmaniasis, effective with high cure rates administered by intravenous infusion, has significant renal and hematological liposomes toxicity (AmBisome “lipid formulations of amphotericin B” are less toxic and more effective in patients with visceral leishmaniasis, but the cost is always higher[41,51,69,70].

Pentamidine is a synthesized aromatic diamine which inhibits the synthesis of parasite DNA by blocking the thymidine synthetase and by binding to tRNA. The administration is by slow infusion, and inherent toxic effects of the dose reaching the kidney, pancreas or blood lineages[41].

The Miltefosine is an alkylphospholipid that affects cells signaling pathways and membrane synthesis; it was originally developed as an oral antineoplastic agent aim is licensed for use in visceral leishmaniasis in India[71,70]. Gastrointestinal adverse effects[58], vomiting and diarrhea were more common with miltefosine[59]. Fatal acute pancreatitis has been attributed to miltefosine in a 41-year-old man with visceral leishmaniasis[60].

The Paromomycin is an aminoglycoside that is active against many Gram-negative and Gram-positive strains as well as against some protozoa and tapeworms. It is of use as an antibiotic, well tolerated and affordable treatment for visceral leishmaniasis (VL) at a dose of 11 mg/kg (base) for 21 days, no nephrotoxicity has been reported with the dose/duration used for VL. The toxicity is infrequently encountered (< 1%), goal audiometric function was not tested in MOST studies and hepatotoxicity is rare (< 1%). Paromomycin has been extensively used as an antibiotic and no serious adverse effects have been encountered. The results of phase IV studies in India showed that the side effects seen after the treatment of *Leishmania* by paromomycin are uncommon and include itching, erythema, edema and tenderness. Because reports of efficacy are confounded by natural healing of CL, the results are mixed; at best, active drug shows a modest benefit over placebo purpose, and it is usually less effective than pentavalent antimonials[54].

Imiquimod, an imidazoquinoline that induces the production of nitric oxide is used in the formulations of creams for genital warts, actinic keratosis and basal cell carcinomas with very high response rates[72-74]. A high concentration of NO is toxic to parasites. Studies of oral administration of this drug have shown cure rates of 60% at a dose of 5 mg/kg in mice infested with *L. donovani*[75].

This medicine was tested topically in combination with antimony showing a decrease healing time for patients with cutaneous leishmaniasis[55,76].
5.2. Natural substances and fight against leishmaniasis

For the reasons of high toxicity of synthetic molecules, the search of other alternative compounds that are free of these problems and disadvantages is necessary. Furthermore, medicinal plant products play a veritable role as source of diverse functional molecules. Indeed, these plants are used since always to fight against leishmaniasis and showed important results[77-83]. In recent years, the screening of antileishmanial compounds from medicinal plants has been studied[23,24,84-88]. The poverty imposes to the underdeveloped countries such as African countries to use medicinal plants to treat diseases as leishmaniasis. Here we report many scientific evidences for the traditional use of plants for leishmaniasis treatment.

5.3. Antileishmanial activity of medicinal plants from Africa

The African countries remain a source of excellence of medicinal plants given the modesty of their economies and in particular the poverty of their populations who do not have the means to purchase the drugs that are still very expensive for a large segment of the African population. In addition, bacterial, viral, fungal and parasitic diseases such as leishmaniasis anthropozoontic, hydatid disease, brucellose, etc. are spreading in all parts of this continent[4,8,23,24]. The scientific research that was conducted by African researchers on medicinal plants used against leishmaniasis in situ, in vitro or in vivo in Africa, led to valuable results and contributed to the discovery of alternative molecules that could be used in the future. The
antileishmanial activity of natural products of medicinal plants has been extensively tested in different African areas\[89-96\]. This activity depends on the plant used, the type of extract, the part studied and harvest area (Table 3).

Based on Figure 1, the African family plants which has the best antileishmanial effect is the Annonaceae family. Plants belonging to this family seem to have some medicinal properties and contain chemical compounds that have leishmanicidal effects. Plants of this family include *Pistacia atlantica*, *Annonidium mannii*, *Enantia chlorantha*, *Isolona hexaloba*, *Annona glauca*, *Annona senegalensis* and *Annickia kummeriae*.

The bioactive compounds of *Pistacia atlantica* including α-Pinene + α-thujene, camphene, β-pinene, p-cymene, terpinen-4-ol and other compounds\[107\]. *Pistacia atlantica* has bioactive compounds such as flavonoids\[108\], fatty acids and triglycerides\[109-113\], oleoresins\[114,115\], essential oils\[116,117\]. Recently, a new hispolone compound has been isolated from the methanolic extract\[118\].

Another example of a medicinal plants traditionally used in Morocco to fight against leishmaniasis is *Salvia officinalis*\[24\], its major components are: 1,8-cineole, camphor, borneol, bornyl acetate, camphene, α- and β-thujone, linalool, α- and β-caryophyllene, α-humulene, α- and β-pinene, viridiflorol, pimaradiene, salvianolic acid, rosmarinic acid, carnosolic acid, ursolic acid, etc.\[119,120\]. Several studies showed that some biological properties of the essential oil of *Salvia* depend on camphor, 1,8-cineole, α-thujone, and β-thujone\[121\]. The essential oil of sage contains about 20% camphor, and as the leaves expand, the camphor content also increases\[122\]. In another study, the most powerful scavenging compounds were reported to be α-thujone and β-thujone, bornyl acetate, camphor, menthone, and 1,8-cineol in the essential oil. Sage is also a natural source of flavonoids and polyphenolic compounds\[23\].

In Morocco, antileishmanial activity of medicinal plants has been reported in situ by El Rhaffari *et al.*\[77\] in the Meknes-Tafillalt Area (Southeastern Morocco), on the use of medicinal plants to fight against leishmaniasis. This study revealed numerous plant species belonging to different botanical families, which are frequently used by the population of this area. Amongst the most cited plants are: *Pistacia atlantica*, *Apium graveolens*, *Nerium oleander*, *Calotropis procera*, *Artemista herba-alba Asso*, *Launaea arborescens*, *Anthemis stiperum*, *Inula viscosa*, *Lactuca virosa*, *Lipidium sativum*. On the other hand, several studies have been conducted by several authors in different countries of Africa based only on ethnobotanical surveys namely Iwu *et al.*\[100\] in Nigeria etc.

The *in vitro* antileishmanial studies were evaluated by different authors. Malebo *et al.*\[93\] showed an effect of dichloromethane extract from the bark root of the *Annickia kummeriae* (Tanzania) against *L. donovani*. This activity could be due to the presence of phenolic compounds in this plant extract. In fact, phenolic compounds are highly recognized by their antileishmanial activities.

![Figure 1](https://example.com/fig1.png)

Figure 1. Distribution of medicinal plants species according to their families.

Family A : Anacardiaceae, Menispermaceae; Family B: Aloeaceae, Asclepiadaceae, Brassicaceae, Celastraceae, Chenopodiaceae, Combretaceae, Cupressaceae, Meliaceae, Papilionaceae, Rosaceae, Solanaceae, Verbenaceae; Family C: Acanthaceae, Apiceae, Cacinceae, Cactaceae, Caryophyllaceae, Cercopitateae, Convulaceae, Cucurbitaceae, Ebenaceae, Huaceae, Lauraceae, Lecythidaceae, Lithraceae, Moraceae, Myristicaceae, Phytolaccaceae, Piperaceae, Plantaginaceae, Rannunculaceae, Sapindaceae, Sapotaceae, Simaroubaceae, Vitaceae, Zingiberaceae, Zygophyllaceae.
Table 3
Ethnomedicinal and pharmacological properties of African medicinal plants against *Leishmania* species.

Plant family	Plant species	Country	Used part	Type of extraction	Leishmania species used	Compounds	Results of biological activity (IC50 ± SD)	References
Acanthaceae	*Thomandersia hensii*	Congo	Leaves	Aqueous decoction	*Leishmania infantum*	n.d	> 64 µg/mL	[95]
	Aloe nyeriensis	Kenya	Leaves	Methanol extract	*Leishmania major*	n.d	n.d	[94]
			Aqueous extract	*Leishmania major*	n.d	n.d		
Anacardiaceae	*Pseudoponias microcarpa*	Tanzania	Stem bark	Ethanol extract	*Leishmania donovani*	n.d	29.9 ± 4.19 µg/mL	[93]
		Morocco	Stem bark	Aqueous decoction	*Leishmania donovani*	n.d	> 30 µg/mL	[89]
	Anitia chlorantha	Congo	Stem bark	Aqueous decoction	*Leishmania infantum*	n.d	> 64 µg/mL	[95]
	Isolona hexaloba	Morocco	Stem bark	Aqueous decoction	*Leishmania donovani*	n.d	10.08 µg/mL	[95]
	Polyalthia microcarpa	Morocco	Stem bark	Aqueous decoction	*Leishmania donovani*	n.d	32.46 µg/mL	[97]
	Anonidium mannii	Congo	Stem bark	Aqueous decoction	*Leishmania infantum*	n.d		
	Enantia chlorantha	Tanzania	Leaves	Petroleum ether extract	*Leishmania donovani*	n.d	> 30 µg/mL	[93]
			Leaves	Dichloro methane extract	*Leishmania donovani*	n.d		
			Roots	Dichloro methane extract	*Leishmania donovani*	n.d		
			Stem bark	Petroleum ether extract	*Leishmania donovani*	n.d		
			Stem bark	Dichloro methane extract	*Leishmania donovani*	n.d		
			Stem bark	Methanol extract	*Leishmania donovani*	n.d	9.74 ± 1.82 µg/mL	[93]
			Stem bark	Dichloro methane extract	*Leishmania donovani*	n.d	18.00 ± 0.42 µg/mL	[93]
			Root bark	Petroleum ether extract	*Leishmania donovani*	n.d	19.41 ± 1.66 µg/mL	[93]
			Root bark	Methanol extract	*Leishmania donovani*	n.d	9.79 ± 2.5 µg/mL	[93]
			Root bark	Dichloro methane extract	*Leishmania donovani*	n.d	12.38 ± 1.12 µg/mL	[93]
Annonaceae	*Uvaria afzelii* Sc. Elliot	Ivory Coast	Leaves	Methanol extract	*Leishmania donovani*	n.d	12.5 µg/mL	[90]
	Polyalthia suaveolens	Gabon	Stem barks	Methanol extract	*Leishmania infantum*	n.d	1.8 µg/mL	[99]
	Monodora myristica	Ivory Coast	Seeds	Methanol extract	*Leishmania donovani*	n.d	>100 µg/mL	[90]
	Uvaria afzelii	Nigeria	Leaves	Methanol extract	*Leishmania donovani*	n.d	12.5 µg/mL	[90]
Apiaceae	*Aptium graveolens*	Morocco	Aerial part	n.d	*Leishmania major*	n.d	n.d	[89]
	Alstonia boonei	Ivory Coast	Leaves	MeOH	*Leishmania donovani*	n.d	>100 µg/mL	[90]
	Picralima nitida	Congo	Stem bark	Aqueous decoction	*Leishmania infantum*	n.d	>64 µg/mL	[95]
	Picralima nitida Th.	Nigeria	Seeds	Chloroform extract	*Leishmania donovani*	n.d	n.d	[100]

(continued on next page)
Plant family	Plant species	Country	Used part	Type of extraction	Leishmania species used	Compounds	Results of biological activity (IC50 ± SD)	References
Apocynaceae	Nerium oleander	Morocco	Stem/Leaves/ Root	n.d	Leishmania major	n.d	n.d	[89]
Asclepiadaceae	Gomortega latifolia Benth	Nigeria	Leaves	Methanol extract	Leishmania donovani	n.d	n.d	[100]
Asteraceae	Calotropis procera	Morocco	Leaves / Stem n.d	Aqueous extract	Leishmania major	n.d	n.d	[89]
Artemisia herba-alba Asox					Leishmania tropica	n.d	n.d	[101]
	Artemisia annua	Tanzania	Leaves	n-Hexane extract	Leishmania donovani	n.d	6.4 ± 0.6 µg/mL	[93]
	Stem	Morocco	n.d	Ethanol extract	Leishmania donovani	n.d	>30.00 µg/mL	[93]
Launaea arborescens					Leishmania major	n.d	n.d	[89]
Antheros stipanum					Leishmania major	n.d		
Inula viscosa			Aerialpart	n.d	Leishmania major	n.d		
Lactuca virosa			Aerialpart	n.d	Leishmania major	n.d		
Brassicaceae	Lipidium sativum	Morocco	Seed	n.d	Leishmania major	n.d		
Baccharis oleracea			Leaves	n.d	Leishmania major	n.d		
Cacinaceae	Pyrenacantha kleiniana	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	> 64 µg/mL	[95]
Cactaceae	Opatia ficus-indica	Morocco	Fruit	n.d	Leishmania major	n.d	n.d	[89]
Caryophyllaceae	Saponaria vaccaria	Morocco	Root / Leaves n.d	Leishmania major	n.d	n.d	[89]	
Cereopsisae	Musanga cecropioidees	Congo	Stem bark	Aqueous decoction	Leishmania infantum	n.d	6.35 µg/mL	[95]
Cellaraceae	Maytenus senegalensis	Sudan	Stem bark	Dichloro methane extract	Leishmania major	n.d	n.d	[80]
	Maytenus senegalensis	Tanzania	Root bark	Ethanol extract	Leishmania donovani	n.d	16.5 ± 2.32 µg/mL	[93]
Chenopodiaceae	Haloxylon scoparium	Morocco	Leaves	n.d	Leishmania major	n.d	n.d	[89]
Clusiaceae	Garcinia punctata	Congo	Stem bark	Aqueous decoction	Leishmania infantum	n.d	32.00 µg/mL	[95]
	Harungana madagascariensis				Leishmania infantum	n.d	20.32 µg/mL	[95]
	Mammea africana				Leishmania infantum	n.d	27.27 µg/mL	[95]
	Psorospermum guineense	Mali	Root bark	Dichloro methane extract	Leishmania major	n.d	n.d	[91]
	Harungana madagascariensis	Cameroun	Seeds	Methanol extract	Leishmania donovani	n.d	1.60.6 µg/mL	[92]
Combretaceae	Anogeissus leiocarpus	Ivory Cost	Leaves	Methanol extract	Leishmania donovani	n.d	>100 µg/mL	[90]
	Terminalia glanecenec				Leishmania donovani	n.d	>100 µg/mL	[90]
	Combretum comosum	Gabon	Leaves	Methanol extract	Leishmania infantum	n.d	>100 µg/mL	[99]
	Combretum castipadum				Leishmania infantum	n.d	28.6 µg/mL	[99]
Convolvulaceae	Calycobolus sp.	Congo	Stem bark	Aqueous decoction	Leishmania infantum	n.d	32.00 µg/mL	[95]
Cucurbitaceae	Citrullus ooloycynthia	Morocco	Fruit/Fresh fruit	n.d	Leishmania major	n.d	n.d	[89]
Cupressaceae	Juniperus oxycedrus	Morocco	Wood	n.d	Leishmania major	n.d	n.d	[89]
	Juniperus thurifera	Morocco	Leaves	n.d	Leishmania major	n.d	n.d	[89]
Dioscoraceae	Dioscorea preussi	Gabon	Leaves	Methanol extract dichloromethane-methanol (1:1)	Leishmania infantum	n.d	68.6 µg/mL	[99]
	Diospyros canaliculata	Cameroon	Stem bark	Ethanol extract	Leishmania donovani	n.d	2.99 µg/mL	[92]
Plant family	Plant species	Country	Used part	Type of extraction	Leishmania species used	Compounds	Results of biological activity (IC50 ± SD)	References
--------------	---------------	---------	-----------	--------------------	------------------------	-----------	--	------------
Euphorbiaceae	Alchornea cordifolia	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	32.46 µg/mL	[95]
	Alchornea floribunda	Congo	Leaves/Stem bark	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
	Drypetes gosweilleri	Congo	Stem bark	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
	Jatropha curcas	Congo	Root bark	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
	Manniophyton fulvum	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	50.80 µg/mL	[95]
	Drypetes natalensis	Tanzania	Stem bark	Ethanol extract	Leishmania donovani	n.d	19.00 ± 3.27 µg/mL	[93]
	Andrachne telephioïdes	Morocco	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Euphorbia calyptrata	(Batt) Maire	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Desmodium gangeticum	Nigeria	Leaves	Methanol extract	Leishmania donovani	n.d	n.d	[100]
	Bobgunnia madagascarensis	Mali	Root bark	Dichloro methane extract	Leishmania major	n.d	n.d	[91]
	Entada africana Gill. and Perr.	Nigeria	Roots	Aqueous extract	Leishmania major	n.d	n.d	[91]
	Albizia coriaria	Kenya	Stem bark	Aqueous extract	Leishmania major	n.d	n.d	[94]
	Acacia tortilis	Kenya	Stem bark	Aqueous extract	Leishmania major	n.d	n.d	[94]
	Tephrosia fulvinervis	Cameroun	n.d	Aqueous decoction	Leishmania infantum	n.d	20.32 µg/mL	[95]
	Augouardia letestui	Gabon	Stem barks	Methanol extract	Leishmania infantum	n.d	>100 µg/mL	[99]
	Dialium lopense	Gabon	Stem barks	Methanol extract	Leishmania infantum	n.d	>100 µg/mL	[99]
	Quercus rotundifolia	Morocco	Fruit	n.d	Leishmania major	n.d	n.d	[89]
	Pelargonium odoratissimum	Gabon	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Entada africana Gill. and Perr.	Gabon	Roots	Aqueous extract	Leishmania major	n.d	n.d	[91]
	Albizia coriaria	Kenya	Stem bark	Aqueous extract	Leishmania major	n.d	n.d	[94]
	Acacia tortilis	Kenya	Stem bark	Aqueous extract	Leishmania major	n.d	n.d	[94]
	Tephrosia fulvinervis	Cameroun	n.d	Aqueous decoction	Leishmania infantum	n.d	20.32 µg/mL	[95]
	Augouardia letestui	Gabon	Stem barks	Methanol extract	Leishmania infantum	n.d	>100 µg/mL	[99]
	Dialium lopense	Gabon	Stem barks	Methanol extract	Leishmania infantum	n.d	>100 µg/mL	[99]
	Quercus rotundifolia	Morocco	Fruit	n.d	Leishmania major	n.d	n.d	[89]
	Pelargonium odoratissimum	Gabon	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Alchornea floribunda	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	32.46 µg/mL	[95]
	Drypetes gosweilleri	Congo	Stem bark	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
	Jatropha curcas	Congo	Root bark	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
	Manniophyton fulvum	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	50.80 µg/mL	[95]
	Drypetes natalensis	Tanzania	Stem bark	Ethanol extract	Leishmania donovani	n.d	19.00 ± 3.27 µg/mL	[93]
	Andrachne telephioïdes	Morocco	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Euphorbia calyptrata	(Batt) Maire	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Desmodium gangeticum	Nigeria	Leaves	Methanol extract	Leishmania donovani	n.d	n.d	[100]
	Bobgunnia madagascarensis	Mali	Root bark	Dichloro methane extract	Leishmania major	n.d	n.d	[91]
	Entada africana Gill. and Perr.	Gabon	Roots	Aqueous extract	Leishmania major	n.d	n.d	[91]
	Albizia coriaria	Kenya	Stem bark	Aqueous extract	Leishmania major	n.d	n.d	[94]
	Acacia tortilis	Kenya	Stem bark	Aqueous extract	Leishmania major	n.d	n.d	[94]
	Tephrosia fulvinervis	Cameroun	n.d	Aqueous decoction	Leishmania infantum	n.d	20.32 µg/mL	[95]
	Augouardia letestui	Gabon	Stem barks	Methanol extract	Leishmania infantum	n.d	>100 µg/mL	[99]
	Dialium lopense	Gabon	Stem barks	Methanol extract	Leishmania infantum	n.d	>100 µg/mL	[99]
	Quercus rotundifolia	Morocco	Fruit	n.d	Leishmania major	n.d	n.d	[89]
	Pelargonium odoratissimum	Gabon	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Alchornea floribunda	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	32.46 µg/mL	[95]
	Drypetes gosweilleri	Congo	Stem bark	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
	Jatropha curcas	Congo	Root bark	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
	Manniophyton fulvum	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	50.80 µg/mL	[95]
	Drypetes natalensis	Tanzania	Stem bark	Ethanol extract	Leishmania donovani	n.d	19.00 ± 3.27 µg/mL	[93]
	Andrachne telephioïdes	Morocco	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Euphorbia calyptrata	(Batt) Maire	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Desmodium gangeticum	Nigeria	Leaves	Methanol extract	Leishmania donovani	n.d	n.d	[100]
	Bobgunnia madagascarensis	Mali	Root bark	Dichloro methane extract	Leishmania major	n.d	n.d	[91]
	Entada africana Gill. and Perr.	Gabon	Roots	Aqueous extract	Leishmania major	n.d	n.d	[91]
	Albizia coriaria	Kenya	Stem bark	Aqueous extract	Leishmania major	n.d	n.d	[94]
	Acacia tortilis	Kenya	Stem bark	Aqueous extract	Leishmania major	n.d	n.d	[94]
	Tephrosia fulvinervis	Cameroun	n.d	Aqueous decoction	Leishmania infantum	n.d	20.32 µg/mL	[95]
	Augouardia letestui	Gabon	Stem barks	Methanol extract	Leishmania infantum	n.d	>100 µg/mL	[99]
	Dialium lopense	Gabon	Stem barks	Methanol extract	Leishmania infantum	n.d	>100 µg/mL	[99]
	Quercus rotundifolia	Morocco	Fruit	n.d	Leishmania major	n.d	n.d	[89]
	Pelargonium odoratissimum	Gabon	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Alchornea floribunda	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	32.46 µg/mL	[95]
	Drypetes gosweilleri	Congo	Stem bark	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
	Jatropha curcas	Congo	Root bark	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
	Manniophyton fulvum	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	50.80 µg/mL	[95]
	Drypetes natalensis	Tanzania	Stem bark	Ethanol extract	Leishmania donovani	n.d	19.00 ± 3.27 µg/mL	[93]
	Andrachne telephioïdes	Morocco	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
	Euphorbia calyptrata	(Batt) Maire	Aerial part	n.d	Leishmania major	n.d	n.d	[89]
Plant family	Plant species	Country	Used part	Type of extraction	Leishmania species used	Compounds	Results of biological activity (IC₅₀ ± SD)	References
-------------	--------------	---------	-----------	-------------------	------------------------	-----------	--	------------
Lamiaceae	Salvia officinalis L.	Morocco	Leaves	n-Hexane extract	Leishmania major	n.d	>0000 µg/mL	[104]
	Thymus satvureoides	Aerial part	n.d	Methanol extract	Leishmania major	n.d	>0000 µg/mL	[89]
Laraceae	Cinamomum zeylanicum	Morocco	Bark	n.d	Leishmania major	n.d	n.d	[89]
Lecithinaceae	Napoleon vogelii	Congo	Stem bark	Aqueous decoction	Leishmania infantum	n.d	5.66 µg/mL	[95]
Leguminosae	Dalhousia africana	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
	Piptadeniastrum africanum	Congo	Stem bark	Aqueous decoction	Leishmania infantum	n.d	6.01 µg/mL	[95]
	Scordophloeus zenkeri	Stem bark	Aqueous decoction	Leishmania infantum	n.d	9.51 µg/mL	[95]	
Liliaceae	Allium sativum	Morocco	Stem/Bulb	n.d	Leishmania major	n.d	n.d	[89]
	Allium cepa	Stem	n.d	Methanol extract	Leishmania major	n.d	n.d	[94]
	Arparagus racemosus	Kenya	Roots	Methanol extract	Leishmania major	n.d	n.d	[94]
Liliaceae	Lawsonia inermis	Morocco	Leaves	n.d	Leishmania major	n.d	n.d	[89]
Malpighiaceae	A. indica A. sudanica	Sudan	Stem bark	Methanol extract	Leishmania donovani	n.d	>30 µg/mL	[93]
Meliaceae	A. indica A. sudanica	Sudan	Stem bark	Methanol extract	Leishmania donovani	n.d	>30 µg/mL	[93]
Menispermaeae	Pentanthes longifolius	Congo	Root bark	Aqueous decoction	Leishmania infantum	n.d	32.00 µg/mL	[95]
	Tricalisia dictyophilla	Leaves	Aqueous decoction	Leishmania infantum	n.d	32.00 µg/mL	[95]	
Moraceae	D. multiradiata	Nigeria	Leaves	Aqueous decoction	Leishmania infantum	n.d	1.50 ± 0.16 µg/mL	[103]
Myrtaceae	Staudia kamerunensis	Congo	Stem bark	Aqueous decoction	Leishmania infantum	n.d	>64 µg/mL	[95]
Myrtaceae	Psidium guajava	Congo	Leaves	Aqueous decoction	Leishmania infantum	n.d	32.46 µg/mL	[95]
Oleaceae	Eugenia carophyllata	Leaves	n.d	Methanol extract	Leishmania major	n.d	n.d	[89]
Oleaceae	Olea europea (Lelimouni)	Tunisia	Floral button	n.d	Leishmania amasonensis	n.d	6.970 ± 0.316 µg/mL	[104]
Oleaceae	Olea europea (Zarrazzi)	Leaves	Ethanol extract	Leishmania amasonensis	n.d	14.379 ± 1.400 µg/mL	[104]	
Oleaceae	Olea europea (Dhokkar)	Leaves	Ethanol extract	Leishmania amasonensis	n.d	17.373 ± 1.430 µg/mL	[104]	
Oleaceae	Olea europea (Toffelli)	Leaves	Ethanol extract	Leishmania amasonensis	n.d	23.707 ± 2.852 µg/mL	[104]	
Oleaceae	Olea europea (Chemlali Tataouine)	Leaves	Ethanol extract	Leishmania amasonensis	n.d	23.808 ± 1.651 µg/mL	[104]	
Table 3 (continued)

Plant family	Plant species	Country	Used part	Type of extraction	Leishmania species used	Compounds	Results of biological activity (IC50 ± SD)	References
Papilionaceae	*Abies alba*	Morocco	Fruit	n.d	*Leishmania donovani*	n.d	15.7 µg/mL	[93]
	Uvaria aethiopica	Morocco	Leaves	n.d	*Leishmania donovani*	n.d	>64 µg/mL	[95]
Polysiaaceae	*Polysiphonia stricta*	Morocco	Aerial part	n.d	*Leishmania infantum*	n.d	8.8 ± 1.06 µg/mL	[93]
	Polysiphonia stricta	Morocco	Aerial part	n.d	*Leishmania major*	n.d	8.8 ± 1.06 µg/mL	[93]
	Polysiphonia stricta	Morocco	Aerial part	n.d	*Leishmania major*	n.d	8.8 ± 1.06 µg/mL	[93]
	Polysiphonia stricta	Morocco	Aerial part	n.d	*Leishmania major*	n.d	8.8 ± 1.06 µg/mL	[93]

In Congo, a study was conducted by Musuyu Munganza et al.,[95] on the aqueous extract of the stem bark of *Enantia chlorantha* against *L. infantum*. The study has revealed that the extract give a powerful effect with an IC50 = 10.08 µg/mL. Kigondi et al.,[94] studied the antileishmanial activity of aqueous and methanol extracts of leaves from *Aloe nieriensis* (Kenya) against *L. major*, and showed low activity with percent mortality at 1 mg/mL of extract are 53.30 ± 5.10 and 68.40 ± 6.30 respectively.

On the other hand, in Côte d’Ivoire, the antileishmanial screening revealed three species, *Lippia multiflora*, *Aframomum sceptra* and *Uvaria afzelii* with an IC50 extract below 25 µg/mL.[90]. This difference in results of the antileishmanial activity could be attributed to the chemical composition of plants by active molecules such as phenols, flavonoids, terpenes, etc... and which can be influenced and determined by the edaphic factors. Furthermore, the antileishmanial effect can also be affected by *Leishmania* strains used, the methods of extraction and the pharmacological tests.

In Morocco, the study of antileishmanial research has been recently started by Et-Toys et al.,[23]. *Salvia verbenaca* has been used, which is a medicinal plant from Morocco that has been traditionally used to treat leishmaniasis.[89]. In this study, leishmanial cytotoxicity of n-hexane, dichloromethane and methanol extracts from *Salvia verbenaca* against *L. major*, *L. tropica* and *L. infantum* promastigotes form using viability assay have been tested.[23]. *N*-hexane and dichloromethane extracts showed a highest antileishmanial activity than methanolic extract. Indeed, *n*-hexane showed a half-maximal
Table 4

Molecules	Mechanisms of action	References
Coumarins	Coumarins (gallic acid) induce apoptotic cell death.	[123]
Chalcones	Licochalcone A activity is well documented in vitro and in vivo against *Leishmania donovani* and *L. major* strains. The mechanism of action is related to the inhibition of mitochondrial electron transport. These main targets are the enzymes of the respiratory chain dehydrogenase such as fumarate, succinate dehydrogenase and malate dehydrogenase.	[124]
Aurones	The aurones share similar ant parasitic activities. Chalcones inhibit the same target sites as chalcone. A planar structure is typical for all aurones and this conformation exhibits strong similarity with compounds that Li *et al.* proposed as a lead structure which is optimal chalcones as protease inhibitors.	[125, 126]
Flavonoids: Flavone, flavanone, iso flavone, glucorhamnosyl-flavone Exemple:	Specific flavonoids affect the transport mechanisms in *Leishmania*.	[57]
Iridoids:	This compound has a leishmanicidal activity by inhibition the activity of DNA-topoisomerase I in *Leishmania donovani*.	[127]
Naphtoquinon: diospyrin	Naphtoquinone dimer diospyrin extract from *Diospyros montana* (Ebenaceae) was found to be active against *Leishmania donovani*. The inhibition of topoisomerase type for this parasite has been suggested as a mechanism of action.	[128]
Monoterpenes: Piquerol A	The interaction of Piquerol A with the enzymatic system of redox of parasite induce to enzymes inhibition and death of parasite.	[129]
Lactons sesquiterpenics : parthenin	The parthenin is able to bloc specific targets of parasite responsible for glutathionylspermidin, trypanothion of cystein and glutathon precursors synthesis in *Leishmania* species.	[130]
inhibitory concentration at IC$_{50}$ = 155.43 µg/mL, IC$_{50}$ = 148.23 µg/mL, and IC$_{50}$ = 14.11 µg/mL respectively against L. major, L. tropica and L. infantum. While, dichloromethane has an IC$_{50}$ value at IC$_{50}$ = 24.56 µg/mL against L. major, IC$_{50}$ = 33.77 µg/mL against L. tropica and IC$_{50}$ = 31.57 µg/mL against L. infantum. In another study also conducted by Et-touys et al.,[23], methanol, n-hexane and ethanol extracts from Salvia officinalis (medicinal plant largely used in Morocco pharmacopeia) have been tested against L. major using MTT assay. Leishmania tests showed a similar sensitivity when tested at or above concentrations 1000 µg/mL.

5.4. Antileishmanial mechanisms of action of molecules from plants

The antileishmanial activity of natural extracts is certainly attributed to the presence of bioactive molecules that can inhibit the growth of these parasites by numerous mechanisms of action. The mechanisms of action depend on the chemical composition, the leishmanial strains tested and the used methods. The spectrum of action of these molecules against leishmanial strains is very variable and comes from the morphological destruction to the regulation levels.

Table 4 summarizes the various antileishmanial modes of action of natural molecules. Phenolic substances such as coumarins have demonstrated their ability to inhibit parasites via induction of apoptosis of a readable manner dose-dependent[123]. While some flavonoids such as flavones, flavonone, isoflavone and glucorhamnosyl-flavone were able to stop the growth of Leishmania by affecting the transport mechanisms of this strain, antileishmanial cytotoxicity mechanisms may also affect the energy level of the strains tested by disrupting the electrons chain transport[123]. Indeed, a study carried out by Ray et al.[127] showed a cytotoxic activity of iridoids against L. donovani. In another work, Zhai et al.[124] showed such mechanism by studying the activity licochalcone A (molecules that belong to chalcones) against L. donovani and L. major. The main targets are the enzymes of the electrons respiratory chain such as fumarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase. Leishmanicidal mechanisms have been linked to the ability of these compounds to inhibit DNA topoisomerase; the key enzyme in the DNA compaction. Another example of a compound that has been suggested as a topoisomerase inhibitor is that of naphthoquinone (dimer diospyrin). This compound is isolated from the extracts of Diospyros montana (Ebenaceae) and shows a strong antileishmanial activity against L. donovani[128]. The leishmanicidal activity can also be linked to the disruption of energy levels in the mitochondrion. Indeed, some monoterpene such as Piquerol A proved to be capable of interacting with the enzymatic system of electrons chain transport of the parasites leading to their inhibitions and falling energetic potential (ATP). This situation induces apoptosis of parasite via mitochondrial signals[129].

6. Conclusion

Medicinal plants are used for the treatment of several illnesses including infectious diseases. In vitro and in vivo works showed the biological properties of molecules isolated from these plants and some of them are now used as medicaments. The African continent is rich in medicinal plants with very powerful pharmacological properties such as antioxidant, antifungal, anti-inflammatory, antibacterial, antiviral, antitumor and antileishmanial. Several studies were conducted in African countries to reveal antileishmanial activity of secondary metabolites from these plants and the results suggested potential therapeutic applications. Different species are used traditionally to treat leishmaniasis. The in vitro assay of extracts from these species was also carried out in some countries and showed promising results. However, the screening and purification or hemisynthesis of bioactive compounds from the extracts with several molecules require much time, strong capital and high curiosity. Future research must be addressed to draw from African medicinal plants pure molecules with specificity against the leishmanial strains to fight against leishmaniasis.

Conflict of interest statement

We declare that we have no conflict of interest.

References

[1] World Health Organization. WHO technical report series, no. 949. Control of the leishmaniasis. Report of a meeting of the WHO Expert Committee on the Control of Leishmaniasis, Geneva, 22–26 March 2010, E World Health Organization, 2010, WHO Press, Switzerland. [Online] Available from: http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf [Accessed on May 23rd, 2012]

[2] Akendengue B, Ngou-Milama E, Laurens A, Hocquemiller R. Recent advances in the fight against leishmaniasis with natural products. Parasite 1999; 6: 3-8.

[3] Berman JD, Gallalee JV, Best JM. Sodium stibogluconate (Pentostam) inhibition of glucose catabolism via the glycolytic pathway, and fatty acid β-oxidation in Leishmania mexicana amastigotes. Biochem Pharmacol 1987; 36: 197-201.

[4] Bouyahya A, Abrini J, El-Baaboua B, Bakri Y, Dakka N. Determination of phenol content and antibacterial activity of five medicinal plants ethanol extracts from North-West of Morocco. J Plant Pathol Microbiol 2016; 7: 107-11.

[5] Bouyahya A, El Moussaoui N, Abrini J, Bakri Y, Dakka N. Determination of phenolic contents, antioxidant and antibacterial activities of strawberry tree (Arbutus unedo L.) leaf extracts. Br Biotechnol J 2016; 14: 1-10.

[6] Bouyahya A, Dakka N, Et-Touys A, Abrini J, Bakri Y. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pac J Trop Med 2017; 10: 729-43.

[7] Bouyahya A, Abrini J, Et-Touys A, Bakri Y, Dakka N. Indigenous knowledge of the use of medicinal plants in the North-West of Morocco and their biological activities. Eur J Integr Med 2017; 13: 9-25.

[8] Aneb M, Talbaoui A, Bouyahya A, EL Boury H, Amzazi S, Benjouad A. In vitro cytotoxic effects and antibacterial activity of Moroccan medicinal plants Aristolochia longa and Lavanda multifida. Eur J Med Plant 2016; 16: 1-13.

[9] El Moussaoui N, Sanchez G, Khay EO, Idaomar M, Ibn Mansour M, Abrini J, et al. Antibacterial and antiviral activities of essential oils of northern Moroccan plants. Br Biotechnol J 2013; 3: 318-31.

[10] Amzazi S, Ghoumani S, Bakri Y, Il Idrissi A, Fkih-Tetouani S, Benjouad A. Human immunodeficiency virus type 1 inhibitory activity of Mentha longifolia. Thérapeu 2003; 58: 531-4.

[11] Mouhajir F, Hudson JB, Rejdaali M, Towers GHN. Multiple antiviral activities of endemic medicinal plants used by Berber peoples of Morocco. Pharm Biol 2001; 39: 364-74.

[12] Merghoub N, Benbacer L, Amzazi S, Morjani H, El mzibri M. Cytotoxic effect of some Moroccan medicinal plant extracts on human cervical cell lines. J Med Plant Res 2009; 3: 1045-50.

[13] Merghoub N, Benbacer L, El Btaouri H, Ait Benhassou H, Terryn C, Attaele M, et al. In vitro antiproliferative effect and induction of apoptosis by Retama monosperma L. extract in human cervical cancer cells. Cell Mol Biol 2011; 57: 1581-91.

[14] Belayachi L, Accevs-Luquero C, Merghoub N, Bakri Y, de Mattos SF, Amzazi S. Screening of north African medicinal plant extracts for
cytotoxic activity against tumor cell lines. *Eur J Med Plant* 2013; 3: 310-32.

[15] Belayachi L, Acceves-Luquero C, Merghoub N, Bakri Y, de Mattos SF, Amazazi S. *Retama monosperma* n-hexane extract induces cell cycle arrest and extrinsic pathway dependent apoptosis in Jurkat cells. *BCM Complement Altern Med* 2014; 14: 38-50.

[16] Bakali F, Averbeck S, Averbeck D, Zniri A, Issamor M. Cytotoxicity and gene induction by some essential oils in the yeast *Saccharomyces cerevisiae*. *Mutat Res* 2005; 585: 1-13.

[17] Bouyahya A, Abrini J, Bakri Y, Dakka N. [Essential oils as anticancer agents: news on mode of action]. *Phytotherapy* 2016; doi: 10.1007/s10298-016-1058-z. French.

[18] Amensour M, Sendra E, Abrini J, Boudidid S, Pérez-Alvarez JA, Fernández-López J. Total phenolic content and antioxidant activity of myrtle (*Myrtus communis*) extracts. *Nat Prod Commun* 2009; 4: 819-24.

[19] Marmouzi I, Kaddafi A, Harhar H, Gharby S, Sayah K, El Madani N, et al. Functional composition, antibacterial and antioxidative properties of oil and phenolics from Moroccan *Pennisetum glaucum* seeds. *J Saudi Soc Agric Sci* 2016; 2: 305-10.

[20] Oumziil H, Ghoulimi S, Rhjoumi A, Ilidrissi A, Fkh-Tetouani S, Faid M, et al. Antibacterial and antifungal activity of essential oils of *Mentha suaveolens*. *Phytother Res* 2002; 16: 727-31.

[21] Vikas VS, Vinas RP. Evaluation of anti-inflammatory activity of *Ficus carica* Linn. leaves. Maharashatra: Department of Pharmaceutical Chemistry and Pharmacognosy; 2010, p. 151-5.

[22] Ephraim PL, Helena MP, Alison DP, Robert AN. *Ficus* spp. (fig): ethnombotany as potential as anticancer and anti-inflammatory agents. *J Ethnopharmacol* 2008; 119: 195-213.

[23] Vikas VS, Bhangale SC, Patil VR. Evaluation of anti-pyretic potential of *Ficus carica* leaves. Maharashatra: Department of Pharmaceutical Chemistry and Pharmacognosy; 2010, p. 48-50.

[24] Et-Touys A, Fellah H, Sebi F, Mniouil M, Aneb M, Elboury H, et al. *In vitro* antileishmanial activity of extracts from endemic Moroccan medicinal plant *Salvia verbenaca* (L.) Briq. spp. verbenaca Maire (*S. clandestina* Batt. non L.). *Eur J Med Plant* 2016; 16: 1-8.

[25] Et-Touys A, Fellah H, Mniouil M, Bouyahya A, Dakka N, Abdennebi EH, et al. Screening of antioxidant, antibacterial and antileishmanial activities of *Salvia officinalis* L. extracts from Morocco. *Br Microbiol Res J* 2016; 1: 1-10.

[26] Bouyahya A, Guaouegoua FE, Dakka N, Bakri Y. Pharmacological activities and medicinal properties of endemic Moroccan medicinal plant *Origanum compactum* (Benth) and their main compounds. *Asian Pac J Trop Dis* 2017; 7: 628-40.

[27] Lahlu M. The success of natural products in drug discovery. *Pharmacol Pharm* 2013; 4: 17-31.

[28] Bouyahya A, Dakka N, Talbaoui A, Et-Touys A, El-Boury H, Abrini J, et al. Correlation between phenological changes, chemical composition and biological activities of the essential oil from Moroccan endemic *Oregano* (*Origanum compactum* Benth). *Ind Crop Prod* 2017; 108: 729-37.

[29] Bouyahya A, Et-Touys A, Bakri Y, Talbaoui A, Fellah H, Abrini J, et al. Chemical composition of *Mentha pulegium* and *Rosmarinus officinalis* essential oils and their antileishmanial, antibacterial and antioxidant activities. *Microb Pathog* 2017; 111: 41-9.

[30] Bouyahya A, Bakri Y, Belmehdi O, Et-Touys A, Abrini J, Dakka N. Phenolic extracts of *Centaurium erythraea* with novel antiradical, antibacterial and antileishmanial activities. *Asian Pac J Trop Dis* 2017; 7: 433-9.

[31] Reed SG, Campos-neto A. Vaccines for parasitic and bacterial diseases. *Curr Opin Immunol* 2003; 15: 456-60.

[32] World Health Organization. Control of leishmaniases. Technical Report Series 793. Geneva: WHO; 1990, p. 1-158.

[33] Mauricio IL, Stothard JR, Miles MA. The strange case of *Leishmania chagasi*. *Parasitol Today* 2000; 16: 188-9.

[34] Mohebali M, Hajarian H, Hamzavi Y, Mobedi I, Arshi S, Zarei Z. Epidemiological aspects of canine visceral leishmaniasis in the Islamic Republic of Iran. * Vet Parasitol* 2005; 129: 243-51.

[35] Ryan JA, Arana BA, Ryan JR, Wirtz RA, Wortmann GW, Rizzo NR. The domestic dog, a potential reservoir for *Leishmania* in the Peten region of Guatemala. *Vet Parasitol* 2003; 115: 1-7.

[36] Dereure J. [Reservoirs of *Leishmania*]. In: Dedet JP, editor. *Leishmaniases*. Paris: Ellipses/AUPELF/UREF; 1999, p. 109-27. French.

[37] Gay E, Guegan H, Ameline M, Gangneux JP. [Human leishmaniasis: imported and indigenous parasitosis]. *Revue Francoph des Labo* 2015; 477: 61-5.

[38] Ouellette M. Studies on the parasite *Leishmania* in the post-genomicera. *Med Sci (Paris)* 2003; 19: 900-9.

[39] Banuls AL, Hide M, Prugnolle F. *Leishmania* and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. In: Rollinson D, Stothard JR, editors. *Advances in parasitology*. Cambridge: Academic Press; 2007, p. 1-109. French.

[40] Greveling SA, Lerner EA. Leishmaniases. *J Am Acad Dermatol* 1996; 34: 257-72.

[41] Dedet JP. *Leishmania*. Paris: Ellipses; 1999. French.

[42] Reithinger R. Cutaneous leishmaniasis. *Lancet Infect Dis* 2007; 7: 581-96.

[43] Aguiar MG, Silva DL, Nunan FA, Fernandes AP, Ferreira LA. Combined topical paromomycin and oral miltefosine treatment of mice experimentally infected with *Leishmania (Leishmania)* major leads to reduction in both lesion size and systemic parasite burdens. *J Antimicrob Chemother* 2009; 64: 1234-40.

[44] Amer El, Eissa MM, Mossallam SF. Oral azithromycin versus its combination with miltefosine for the treatment of experimental Old World cutaneous leishmaniasis. *J Parasit Dis* 2016; 40: 475-84.

[45] Want MY, Yadav P, Afrin F. Nanomedicines for therapy of visceral leishmaniasis. *J Nanosci Nanotechnol* 2016; 16: 2143-51.

[46] Roberts WL, McMurray, Rainey PM. Characterization of the antimonial agent *Leishmania* and the leishmaniases: a double-blind control study. *J Immunol* 1990; 144: 456-60.

[47] Berman J. Current treatment approaches to leishmaniasis. *BMC Chemother* 2001; 167: 3391-7.

[48] Berman JD, Waddel D, Hanson BD. Biochemical mechanisms of the antileishmanial activity of sodium stibogluconate. *Antimicrob Agents Chemther* 1985; 29: 1076-82.

[49] Roberts CW. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. *Mol Biochem Parasitol* 2003; 126: 129-42.

[50] Berman J. Current treatment approaches to leishmaniasis. *Curr Opin Infect Dis* 2003; 16: 397-401.

[51] Fries DS, Fairlamb AH. Antiprotozoal agents. In: Abraham DJ, editor. *Burger’s medicinal chemistry and drug discovery*. Hoboken: Wiley-Interscience; 2003, p. 1033-87.

[52] El-On J. Topical treatment of Old World cutaneous leishmaniasis caused by *Leishmania major*: a double-blind control study. *J Am Acad Dermatol* 1992; 27: 227-31.
Yousfi M, Nedjmi B, Belal R, Bombarda I, Nadjemi B. Fatty acids and sterols of Pistacia atlantica var. officinalis subsp. atlantica from Algeria. Chem Nat Comp 2007; 43: 121-4.

Farhoosh R, Tavakoli J, Khodaparast MHH. Chemical composition and oxidative stability of kernel oils from two Current subspecies of Pistacia atlantica in Iran. J Am Oil Chem Soc 2008; 85: 723-9.

Delazar A, Nazemyeh H, Modarresi M, Afshar J. Study on essential oil obtained from oleoresin of Pistacia atlantica var. matica. Pharm Sci J Fac Pharm Univ-I Darooi (Tabriz, Islamic Republic of Iran) 2002; 2: 27-38.

Benhassaini H, Beneddouchou FZ, Mehldali Z, Romane A. GC/MS analysis of the essential oil from the oleoresin of Pistacia atlantica Desf.subsp. atlantica from Algeria. Nat Prod Commun 2008; 3: 929-32.

Barreiro AF, Herrador MM, Arteaga JF, Akssira M, Belgarrab A, Mellouki F. Chemical composition of the essential oils of Pistacia atlantica. J Essent Oil Res 2005; 17: 52-4.

Mecherara-Ijderi S, Hassani A, Castola V, Casanova J. Composition of leaf, fruit and gall essential oils of Algerian Pistacia atlantica Desf. J Essent Oil Res 2008; 20: 215-9.

Yousfi M, Djeridane A, Bombarda I, Hamia C, Duhem B, Gaydou EM. New hispolone derivative from antioxidant extracts of Pistacia atlantica. Phytother Res 2009; 23: 1237-42.

Khan A, Njeeree B, Alkharfy K, Gilani A. Antidiarrheal and antispasmodic activities of Salvia officinalis are mediated through activation of K + channels. J Bangladesh Pharmacol Soc 2011; 6: 111-6.

Croteau R, Felton M, Kjonaas R. Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiol 1981; 67: 820-4.

Radulescu V, Chilmint S, Oprea E. Capillary gas chromatography-mass spectrometry of volatile and semi-volatile compounds of Salvia officinalis. J Chromatogr 2004; 1027: 121-6.

Avato P, Fortunato I, Ruta C, D Elia R. Glandular hairs and essential oils in micro propagated plants of Salvia officinalis L. Plant Sci 2005; 169: 29-36.

Izuo M, Suzuki R, Koido T, Sakaguchi N, Ogihara Y, Yabu Y. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. J Ethnopharmacol 2003; 103: 281-7.

Farhoosh R, Tavakoli J, Khodaparast MHH. Chemical composition and oxidative stability of kernel oils from two Current subspecies of Pistacia atlantica in Iran. J Am Oil Chem Soc 2008; 85: 723-9.

Delazar A, Nazemyeh H, Modarresi M, Afshar J. Study on essential oil obtained from oleoresin of Pistacia atlantica var. matica. Pharm Sci J Fac Pharm Univ-I Darooi (Tabriz, Islamic Republic of Iran) 2002; 2: 27-38.

Benhassaini H, Beneddouchou FZ, Mehldali Z, Romane A. GC/MS analysis of the essential oil from the oleoresin of Pistacia atlantica Desf.subsp. atlantica from Algeria. Nat Prod Commun 2008; 3: 929-32.

Barreiro AF, Herrador MM, Arteaga JF, Akssira M, Belgarrab A, Mellouki F. Chemical composition of the essential oils of Pistacia atlantica. J Essent Oil Res 2005; 17: 52-4.

Mecherara-Ijderi S, Hassani A, Castola V, Casanova J. Composition of leaf, fruit and gall essential oils of Algerian Pistacia atlantica Desf. J Essent Oil Res 2008; 20: 215-9.

Yousfi M, Djeridane A, Bombarda I, Hamia C, Duhem B, Gaydou EM. New hispolone derivative from antioxidant extracts of Pistacia atlantica. Phytother Res 2009; 23: 1237-42.

Khan A, Njeeree B, Alkharfy K, Gilani A. Antidiarrheal and antispasmodic activities of Salvia officinalis are mediated through activation of K + channels. J Bangladesh Pharmacol Soc 2011; 6: 111-6.

Croteau R, Felton M, Kjonaas R. Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiol 1981; 67: 820-4.

Radulescu V, Chilmint S, Oprea E. Capillary gas chromatography-mass spectrometry of volatile and semi-volatile compounds of Salvia officinalis. J Chromatogr 2004; 1027: 121-6.

Avato P, Fortunato I, Ruta C, D Elia R. Glandular hairs and essential oils in micro propagated plants of Salvia officinalis L. Plant Sci 2005; 169: 29-36.

Izuo M, Suzuki R, Koido T, Sakaguchi N, Ogihara Y, Yabu Y. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. J Ethnopharmacol 2003; 103: 281-7.

Farhoosh R, Tavakoli J, Khodaparast MHH. Chemical composition and oxidative stability of kernel oils from two Current subspecies of Pistacia atlantica in Iran. J Am Oil Chem Soc 2008; 85: 723-9.

Delazar A, Nazemyeh H, Modarresi M, Afshar J. Study on essential oil obtained from oleoresin of Pistacia atlantica var. matica. Pharm Sci J Fac Pharm Univ-I Darooi (Tabriz, Islamic Republic of Iran) 2002; 2: 27-38.

Benhassaini H, Beneddouchou FZ, Mehldali Z, Romane A. GC/MS analysis of the essential oil from the oleoresin of Pistacia atlantica Desf.subsp. atlantica from Algeria. Nat Prod Commun 2008; 3: 929-32.