Supporting Information for Design, Synthesis, Molecular Modeling and Bioactivity Evaluation of 1,10-Phenanthroline and Prodigiosin (Ps) Derivatives and Their Copper(I) Complexes against mTOR and HDAC Enzymes as Highly Potent and Effective New Anticancer Therapeutic Drugs

M. Mustafa Cetin,1,* Wenjing Peng,2 Daniel Unruh,2 Michael F. Mayer,2 Yehia Mechref,2,* Kemal Yelekci,1,*

1Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali Campus Fatih, Istanbul, Turkey

2Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA

*E-mail (corresponding authors): mustafa.cetin@khas.edu.tr, yelekci@khas.edu.tr and yehia.mechref@ttu.edu

Table of Contents

Section A. Materials / General Methods / Instrumentation S2
Section B. Synthetic Protocols S3
Section C. NMR Spectroscopy S9
Section D. Computational Calculations and Molecular Modeling Studies S13
Section E. Anticancer Activities and Cytotoxicity Tests S16
Section F. Crystallographic Characterization S34
Section G. References S41
Section A. Materials / General Methods / Instrumentation

All chemicals and reagents were purchased from commercial suppliers (Aldrich, Alfa Aesar or Fisher) and used without further purification. Anhydrous dichloromethane (DCM) and acetonitrile were separately distilled over CaH$_2$ under nitrogen. Dioxane was separately distilled over Na/benzophenone under nitrogen. Thin layer chromatography (TLC) was performed on silica gel 60 F254 (E. Merck). Column chromatography was carried out on silica gel 60F (Merck 9385, 0.040–0.063 mm). Ligands (L_1-L_6) (Cetin, 2017; Dietrich-Buchecker and Sauvage, 1990; Zhong et al., 2010; Kang et al., 2014; Kohler et al., 2016; Kohler et al., 2017; Hayes et al., 2018; Hayes et al., 2018; Schmittel et al., 1997; Cetin et al., 2017; Cetin et al., 2020) precursors (Cetin, 2017; Kang et al., 2014; Cetin et al., 2017; Cetin et al., 2020; Melvin et al., 2002; Kang et al., 2008) for ligands (L_7-L_{15}), and complexes (C_1-C_{15}) (Cetin, 2017; Dietrich-Buchecker and Sauvage, 1990; Kang et al., 2014; Cetin et al., 2017; Cetin et al., 2020; Kang et al., 2008) were prepared according to previous literature procedures with slight/moderateCOMPLETE modifications. All details for synthetic procedures are described in the Section B.

Proton and carbon nuclear magnetic resonance (1H, 19F and 13C NMR) spectra were recorded on JEOL ECS–400 or a Varian Unity Inova 500 spectrometer, with working frequency of 400 or 500 MHz for 1H, 100 or 125 MHz for 13C, and 376 or 471 MHz for 19F nuclei, respectively. Chemical shifts are reported in ppm relative to the signals corresponding to the residual non–deuterated solvent (CDCl$_3$ (99.9% D with 0.05% v/v TMS): $\delta = 7.24$ ppm for 1H NMR, and (CDCl$_3$ (99.9% D with 0.05% v/v TMS): $\delta = 77.16$ ppm for 13C NMR). Coupling constants, J, are reported in hertz. High-resolution ESI mass spectrometry was performed on an Exactive-Orbitrap mass spectrometer at Texas Tech University (Lubbock, TX). Flash
chromatography was performed using Silicycle UltraPure Flash Silica Gel (60 Å, 40-63 μm). Thin layer chromatography (TLC) was performed using EMD HPTLC plates, silica gel 60, F254. All reaction vessels were flame-dried under vacuum and filled with nitrogen prior to use. All reactions were performed under a nitrogen atmosphere as a routine practice, not as an essential requirement.

Section B. Synthetic Protocols

The detailed synthetic procedures and the structural characterization data for the intermediates and target compounds are presented below.

![Scheme S1](image)

Scheme S1 Synthesis of the copper(I) complexes (C1-C6) — 2:1 ligand-to-metal complexes, as PF$_6^-$ salts — from their respective 1,10-phenanthroline-based ligand derivatives (L1-L^6).
Scheme S2 Synthesis of the Prodigiosin (Ps) derivatives (L^7-L^{15}) and their respective 2:1 ligand-to-metal copper(I) complexes (C7-C15), as PF$_6^-$ salts.

Synthesis of 4-methoxy-5-(5-ethyl-1H-pyrrol-2-ylmethylidene)-1,5-dihydropyrrol-2-one:

To a solution of 2-formyl-5-ethylpyrrole (0.500 grams, 4.06 mmol) and 4-methoxy-3-pyrroline-2-one (0.920 grams, 8.13 mmol) in 20 mL DMSO was added 2N aq. NaOH (15 mL) and the mixture was stirred at 60 °C for 8 hours. After dilution with 100 mL DI-water, the suspension was extracted with 300 mL dichloromethane (3 x 100 mL). The organic phase was washed (shaken) with saturated brine and DI-water, dried over Na$_2$SO$_4$, and evaporated to dryness. The crude was dissolved in 2-3 mL dichloromethane and then excess hexane (50 mL) was added. The solution was evaporated under vacuum at 45 °C until 15-20 mL hexane was left. The black solid formation occurred. It was filtered and solid was collected over the filter paper. Then it was dissolved in 2-3 mL dichloromethane again and excess hexane (50 mL) was added into it. The solution was started to concentrate by evaporating under vacuum at 45 °C until 15-20 mL hexane was left again. Formation of brown solid was observed. The solid was collected over filter paper, dried, and left under vacuum overnight. After checking the proton NMR of the solid, 0.696 grams (78%) pure
product was obtained. 1H NMR (400 MHz, CDCl$_3$, 25 ºC) δ 10.8 (s, 1H), 10.31 (s, 1H), 6.37 (t, J = 3.2 Hz, 1H), 6.32 (s, 1H), 5.99 (t, J = 2.7 Hz, 1H), 5.10 (d, J = 2.0 Hz, 1H), 3.90 (s, 3H), 2.79 (q, J = 15 and 7.3 Hz, 2H), 1.34 (t, J = 7.8 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$, 25 ºC) δ 173.13, 168.00, 141.98, 125.63, 123.98, 117.38, 107.01, 102.75, 90.12, 58.18, 21.30, 13.71.

Synthesis of 2-trifluoromethansulfonyloxy-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole (Key Intermediate):

To a solution of 4-methoxy-5-(5-ethyl-1H-pyrrol-2-ylmethylidene)-1,5-dihydropyrrol-2-one (0.696 grams, 3.19 mmol) in dichloromethane (55 mL) at 0-5 ºC was added Tf$_2$O (0.1.80 grams (0.650 mL), 6.37 mmol) dropwise under nitrogen atmosphere. After stirring at this temperature for 30 minutes, the reaction mixture was poured into a 2% aq. NaHCO$_3$ solution, and extracted with ethyl acetate (2 x 50 mL). Then solvent was removed and the crude was left under vacuum for 2-3 hours. After dissolving the crude in ethyl acetate (50 mL), the solution was washed with saturated brine solution. After separating the organic layer, it was dried over anhydrous Na$_2$SO$_4$ and evaporated to the dryness. The crude was chromatographed on silicagel eluting with 50:50 hexane:dichloromethane solvent mixture. The pure 2-trifluoromethansulfonyloxy-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole was obtained (1.03 grams, 92%); 1H NMR (400 MHz, CDCl$_3$) δ 10.8 (s, 1H), 7.03 (s, 1H), 6.66 (d, J = 3.6 Hz, 1H), 6.07 (d, J = 3.7 Hz, 1H), 5.40 (s, 1H), 3.88 (s, 3H), 2.74 (q, J = 15 and 7.3 Hz, 2H), 1.32 (t, J = 7.8 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 168.07, 161.21, 146.65, 132.44, 128.54, 123.20, 122.20, 120.39, 109.75, 87.18, 58.82, 21.61, 12.73.; 19F NMR (376 MHz, CDCl$_3$) δ -72.7 (s, -CF$_3$).
Synthesis of 2-(1-Boc-pyrrol-2-yl)-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrrole:

An oxygen-free solution of 2-trifluoromethansulfonyloxy-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrrole (0.142 g, 0.404 mmol) in dry and freshly distilled 1,4-dioxane (30 mL) was treated in sequence with 1-Boc-pyrrole-2-boronic acid (0.341 g, 1.62 mmol), K$_2$CO$_3$ (0.446 g, 3.23 mmol). The solution purged with nitrogen for 10 mins and then Pd(PPh$_3$)$_4$ (23.3 mg, 5mol%) was added, and then the reaction mixture was heated to 90 °C under nitrogen atmosphere with stirring for 24 hours. After cooling to room temperature, the reaction mixture was poured into ice-water (50 mL) and extracted with ethyl acetate (4 x 50 mL). The organic phase was washed (shaken) with saturated brine solution and DI-water, then dried over anhydrous sodium sulfate. Then it was evaporated to dryness and kept under vacuum for 2-3 hours. The crude was then columned with alumina (activated) by eluting 100 % hexane (300 mL) and then hexane:ethyl acetate (85:15) to purify the product. It was columned over activated alumina twice to get pure product (67.7 mg, 46%); 1H NMR (400 MHz, CDCl$_3$) δ 6.84 (s, 1H), 6.72 (s, 1H), 6.68 (dd, $J = 3.7$ and 1.4 Hz, 1H), 6.49 (d, $J = 3.6$ Hz, 1H), 6.17 (t, $J = 2.3$ Hz, 1H), 6.04 (s, 1H), 5.89 (d, $J = 3.7$ Hz, 1H), 3.96 (s, 3H), 3.67 (s, 1H), 2.30 (q, $J = 15$ and 7.3 Hz, 2H), 1.26 (s, 9H), 1.05 (t, $J = 7.8$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 168.95, 145.30, 128.75, 128.74, 122.74, 120.64, 115.95, 112.78, 110.31, 108.13, 95.59, 58.52, 37.50, 32.02, 29.79, 22.78, 20.31, 14.22, 13.36.

Synthesis of dimethylated macrocycle (L^1):

In a flame-dried round-bottom flask, a mixture of dimethylated diphenol (10.0 g, 25.4 mmol) and 1,14-diodo-3,6,9,12-tetraoxatetradecane (12.4 g, 27.0 mmol) in DMF (400 mL) was added drop wise within 24 hours under efficient stirring to a nitrogen flushed suspension of Cs$_2$CO$_3$ (25.6 g, 72.6 mmol) in DMF (150 mL) kept at 55-60 °C. At the end of the addition, stirring was continued for another 48 hours at the same temperature. DMF was removed under reduced pressure with a rotary evaporator. The yellowish residue was dissolved in 150 mL of DCM, washed with saturated...
aq. NH₄Cl (3 x 100 mL), dried over anhydrous Na₂SO₄ and filtered. The solvent was evaporated under reduced pressure by a rotary evaporator to leave a yellow solid that was purified on silica gel by flash column chromatography using DCM-methanol (99.5:0.5) to provide dimethylated macrocycle L₁ (12.5 g, 82%) as a bright yellow solid, m.p. 153.8-155.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.37 (dd, 2.0, 2.0 Hz, 2H), 8.26-8.24 (m, 4H), 8.07 (d, J = 8.0 Hz, 2H), 7.74 (s, 2H), 7.15 (d, J = 8.5 Hz, 2H), 4.34 (t, J = 5.0 Hz, 5.5 Hz, 4H), 3.84 (t, J = 5.5 Hz, 5.0 Hz, 4H), 3.75-3.69 (m, 12H), 2.42 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) 158.37, 156.40, 145.88, 136.53, 132.35, 130.14, 127.64, 127.27, 126.51, 125.41, 119.04, 112.95, 71.02, 70.66, 70.56, 69.52, 68.28, 16.69; HRMS (ESI) calcd for C₃₆H₃₉N₂O₆ [M+H]+ m/z 595.2803, found m/z 595.2800; Anal. calcd. for C₃₆H₃₈N₂O₆: C, 72.71; H, 6.44; N, 4.71; found: C, 72.33; H, 6.51; N, 4.66.

General procedure for the syntheses of complexes:

A solution of the ligand (L₂-L₁₅) (0.250 mmol) in DCM (10 mL) and acetonitrile (10 mL) was prepared at room temperature under a nitrogen atmosphere. The light yellow-colored solution was stirred until the ligand was dissolved completely. To this solution, tetrakis(acetonitrile)copper(I) hexafluorophosphate (0.125 mmol) was added and the solution was stirred for 20 minutes at room temperature. The color of the solution turned to a dark brown-red-black. Concentration of the mixture under reduced pressure using a rotary evaporator provided the crude product. Purification on silica gel by flash column chromatography, using DCM–methanol (99:1) as eluent, afforded the corresponding copper(I) complex, [Cu(Lⁿ)₂]PF₆ (C₂-C₁₅), where Lⁿ = L₂-L₁₅.

In the synthesis of C₁, to a solution of dimethylated macrocycle L₁ (205 mg, 0.362 mmol) in dichloromethane (10 mL) and acetonitrile (10 mL) at room temperature under nitrogen was added tetrakis(acetonitrile)copper(I) hexafluorophosphate (123 mg, 0.463 mmol) and stirred for 20 min.
A dichloromethane (5 mL) and acetonitrile (5 mL) solution of \(\text{L}^2 \) (142 mg, 0.362 mmol) was added from another Schlenk flask under nitrogen via cannula. The reaction mixture was stirred for two hours at room temperature under nitrogen followed by concentration of the mixture under reduced pressure by a rotary evaporator. Purification on SEC column chromatography using DCM as eluent afforded the partially oxidized complex \([\text{CuL}^1\text{L}^2]\text{PF}_6\) (C1). The partially oxidized product was dissolved in 10 mL DCM, and 5 mg sodium dithionite (90%), and five drops of 2N aqueous sodium hydroxide were added to the solution and the mixture was stirred for 30 min at room temperature. After 30 min, the solution was filtered through a fritted-funnel which was filled with 1 cm height of Celite 545 and 1 cm height of anhydrous \(\text{Na}_2\text{SO}_4 \) to provide reduced and pure \([\text{CuL}^1\text{L}^2]\text{PF}_6\) (C1) (400 mg, 98%) as a red glassy solid, m.p. 252.4-253.0 °C; \(^1\text{H} \text{NMR (500 MHz, CDCl}_3) \delta 8.64 \text{ (d, J = 8.5 Hz, 2H)}, 8.46 \text{ (d, J = 8.0 Hz, 2H)}, 8.22 \text{ (s, 2H)}, 8.00 \text{ (s, 2H)}, 7.89 \text{ (d, J = 8.0 Hz, 2H)}, 7.80 \text{ (d, J = 8.0 Hz, 2H)}, 7.51 \text{ (d, J = 8.5 Hz, 4H)}, 7.18 \text{ (d, J = 8.5 Hz, 2H)}, 6.95 \text{ (s, 2H)}, 6.08 \text{ (d, J = 8.5 Hz, 4H)}, 5.81 \text{ (d, J = 8.0 Hz, 2H)}, 3.88 \text{ (s, 4H)}, 3.76-3.74 \text{ (m, 4H)}, 3.67-3.64 \text{ (m, 8H)}, 3.61-3.59 \text{ (m, 4H)}, 3.52 \text{ (s, 6H)}, 1.51 \text{ (s, 6H)}; \(^{13}\text{C} \text{NMR (125 MHz, CDCl}_3) \delta 160.28, 157.24, 157.06, 155.74, 143.46, 137.81, 136.86, 132.22, 131.20, 130.30, 129.28, 129.28, 128.16, 127.84, 127.20, 126.56, 126.09, 125.85, 124.19, 112.58, 112.58, 109.38, 71.31, 71.06, 71.06, 69.52, 67.52, 55.38, 15.88 \}; \text{HRMS (ESI) calcd for C}_{62}\text{H}_{58}\text{CuN}_4\text{O}_8 \text{[M-PF}_6]^+ \text{ m/z 1049.3545, found m/z 1049.3521; Anal. calcd. for C}_{62}\text{H}_{58}\text{CuF}_6\text{N}_4\text{O}_8\text{P: C, 62.28; H, 4.89; N, 4.69; found: C, 62.35; H, 4.69; N, 4.62.}
Section C. NMR Spectroscopy

1H NMR Spectrum of 4-methoxy-5-(5-ethyl-1H-pyrrol-2-ylmethylidene)-1,5-dihydropyrrol-2-one

Figure S1 | Annotated 1H NMR spectrum (400 MHz, CDCl$_3$, 25 °C) of 4-methoxy-5-(5-ethyl-1H-pyrrol-2-ylmethylidene)-1,5-dihydropyrrol-2-one.

13C NMR Spectrum of 4-methoxy-5-(5-ethyl-1H-pyrrol-2-ylmethylidene)-1,5-dihydropyrrol-2-one

Figure S2 | Annotated 13C NMR spectrum (100 MHz, CDCl$_3$, 25 °C) of 4-methoxy-5-(5-ethyl-1H-pyrrol-2-ylmethylidene)-1,5-dihydropyrrol-2-one.
1H NMR Spectrum of 2-trifluoromethansulfonyloxy-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole (Key Intermediate):

Figure S3 | Annotated 1H NMR spectrum (400 MHz, CDCl$_3$, 25 ºC) of 2-trifluoromethansulfonyloxy-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole.

^{13}C NMR Spectrum of 2-trifluoromethansulfonyloxy-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole (Key Intermediate):

Figure S4 | Annotated ^{13}C NMR spectrum (100 MHz, CDCl$_3$, 25 ºC) of 2-trifluoromethansulfonyloxy-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole.
1H NMR Spectrum of 2-(1-Boc-pyrrol-2-yl)-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole:

Figure S5 | Annotated 1H NMR spectrum (400 MHz, CDCl$_3$, 25 ºC) of 2-(1-Boc-pyrrol-2-yl)-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole.

13C NMR Spectrum of 2-(1-Boc-pyrrol-2-yl)-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole:

Figure S6 | Annotated 13C NMR spectrum (100 MHz, CDCl$_3$, 25 ºC) of 2-(1-Boc-pyrrol-2-yl)-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole.
1H NMR Spectrum of dimethylated macrocycle (C1)

Figure S7 Annotated 1H NMR spectrum (500 MHz, CDCl$_3$, 25 °C) of dimethylated macrocycle (C1).

13C NMR Spectrum of dimethylated macrocycle (C1)

Figure S8 Annotated 13C NMR spectrum (125 MHz, CDCl$_3$, 25 °C) of dimethylated macrocycle (C1).
Section D. Computational Calculations and Molecular Modeling Studies

Table S1: Calculated binding energies (in kcal/mol) and inhibition constants (in μM, except C7 being in mM) for commercially available Taxol, Ps, ligands L2-L15 and copper(I) complexes C1-C15.

Compound ID	mTOR Binding Energies (kcal/mol)	mTOR Inhibition Constants (μM)	HDAC1 Binding Energies (kcal/mol)	HDAC1 Inhibition Constants (μM)
Taxol (commercial)	−4.63	405.16	−4.72	348.25
Ps				
L2				
L3				
L4				
L5				
L6				
L7				
L8				
L9				
L10				
L11				
L12				
L13				
L14				
L15				
C1				
C2				
C3				
C4				
C5				
C6				
C7				
C8				
C9				
C10				
C11				
C12				
C13				
C14				
C15				

S13
Table S2 | Three-dimensional (3D) images generated via molecular docking of Ps, ligands \(\text{L}_7 \) and \(\text{L}_{14} \) and copper(I) complexes C1 and C14, and two-dimensional (2D) images generated via molecular docking of Ps, ligands \(\text{L}_7 \) and \(\text{L}_{14} \) into mTOR and HDAC1 enzymes.

Compound ID	mTOR	HDAC1
Ps	![3D Image](image1.png)	![3D Image](image2.png)
Ps (2D)	![2D Image](image3.png)	![2D Image](image4.png)
C1	![3D Image](image5.png)	![3D Image](image6.png)
\(\text{L}_7 \)	![3D Image](image7.png)	![3D Image](image8.png)
Table S3 | Primary anticancer activity screening of compounds (L₁⁴, L⁹, C₁⁴, C⁹, L₁³, L₁⁵, L₁⁰, C₁⁵, C₁₃, C₈, C₁₀, L⁷, Ps, Taxol (Paclitaxel)) on different cell lines.

L₁⁴:

cell line	7.90E-10	7.90E-09	7.90E-08	7.90E-07	7.90E-06	7.90E-05	Positive	Negative
231BR	0.628	0.596	0.573	0.589	0.603	0.319	0.623	0.160
	0.604	0.568	0.596	0.597	0.318	0.624	0.162	
	0.653	0.577	0.601	0.573	0.314	0.635	0.161	
	0.614	0.673	0.641	0.635	0.623	0.316	0.607	0.162
	0.638	0.608	0.56	0.611	0.593	0.305	0.625	0.164
	0.629	0.636	0.622	0.609	0.619	0.317	0.642	0.159
average	0.628	0.610	0.599	0.602	0.602	0.315	0.626	0.161
deviation (SD)	0.0173	0.0392	0.0300	0.0213	0.0165	0.0051	0.0119	0.0018
Inhibition ratio	-0.0036	0.0351	0.0584	0.0513	0.0509	0.6692	SD 3.89E-06	

cell line	7.90E-10	7.90E-09	7.90E-08	7.90E-07	7.90E-06	7.90E-05	Positive	Negative
HTB22	0.325	0.319	0.333	0.331	0.351	0.349	0.343	0.122
	0.335	0.321	0.317	0.327	0.332	0.329	0.341	0.127
	0.264	0.331	0.314	0.295	0.343	0.344	0.347	0.126
	0.336	0.352	0.328	0.333	0.332	0.332	0.318	0.127
	0.337	0.329	0.32	0.329	0.335	0.335	0.336	0.126
	0.345	0.335	0.32	0.348	0.345	0.345	0.35	0.124
average	0.324	0.331	0.322	0.327	0.340	0.339	0.339	0.125
deviation (SD)	0.0299	0.0119	0.0071	0.0174	0.0078	0.0081	0.0114	0.0020
Inhibition ratio	0.0717	0.0366	0.0794	0.0553	-0.0031	0.0000		

cell line	7.90E-10	7.90E-09	7.90E-08	7.90E-07	7.90E-06	7.90E-05	Positive	Negative
CRL	1.784	1.674	1.667	1.667	1.682	1.061	1.763	0.161
	1.748	1.672	1.641	1.639	1.655	1.006	1.784	0.165
	1.715	1.499	1.585	1.602	1.586	1.053	1.67	0.169
	1.715	1.611	1.636	1.759	1.662	1.059	1.771	0.165
	1.737	1.818	1.684	1.698	1.629	1.023	1.81	0.17
	1.875	1.865	1.87	1.833	1.785	1.016	1.789	0.165
average	1.762	1.690	1.681	1.700	1.667	1.036	1.765	0.166
deviation (SD)	0.0608	0.1344	0.0988	0.0844	0.0668	0.0241	0.0490	0.0033
Inhibition ratio	0.0017	0.0470	0.0528	0.0409	0.0616	0.4557		
C14:

Cell Line	3.85E-08	3.86E-07	3.85E-06	3.85E-05	3.85E-04	Positive Control	Negative Control	Drug Control
HTB131	1.259	1.580	1.546	0.719	2.079	1.487	0.078	0.147
	1.878	1.523	1.960	0.791	1.934	0.101	0.077	0.150
	1.555	1.385	1.537	0.648	2.010	1.381	0.079	0.162
	1.478	1.147	1.304	0.711	2.122	1.474	0.076	0.469
	1.039	1.366	1.407	0.645	2.191	1.541	0.079	0.835
	1.765	2.030	2.143	0.763	1.901	1.378	0.076	IC50 > 2.28E-05 M

C14:

Cell Line	3.85E-08	3.86E-07	3.85E-06	3.85E-05	3.85E-04	Positive Control	Negative Control	Drug Control
HTB131	1.259	1.580	1.546	0.719	2.079	1.487	0.078	0.147
	1.878	1.523	1.960	0.791	1.934	0.101	0.077	0.150
	1.555	1.385	1.537	0.648	2.010	1.381	0.079	0.162
	1.478	1.147	1.304	0.711	2.122	1.474	0.076	0.469
	1.039	1.366	1.407	0.645	2.191	1.541	0.079	0.835
	1.765	2.030	2.143	0.763	1.901	1.378	0.076	IC50 > 2.28E-05 M

Positive versus Negative

Positive	Negative
Control	Control

231BR

Positive	Negative
Control	Control

HTB22

Positive	Negative
Control	Control

CRL

Positive	Negative
Control	Control

Drug Concentration (M)

Positive	Negative
Control	Control

Average

Positive	Negative
Control	Control

SD

Positive	Negative
Control	Control

Inhibition Rate

Positive	Negative
Control	Control

IC50

- 2.28E-05 M
- 3.85E-06 < IC50 < 3.85E-05
- 2.41E-06
| Cell Line | drug concentration (M) | Positive Control | Negative Control | Drug Control |
|-----------|------------------------|------------------|------------------|--------------|
| **CRL** | | | | |
| | 3.85E-08 | 2.333 | 0.726 | 2.370 |
| | 3.86E-07 | 2.333 | 2.149 | 2.370 |
| | 3.85E-06 | 2.441 | 1.136 | 2.441 |
| | 3.85E-05 | 2.441 | 2.114 | 2.441 |
| | 3.85E-04 | 2.441 | 2.202 | 2.441 |
| | 2.444 | 2.441 | 0.906 | 2.441 |
| | 2.444 | 2.441 | 2.315 | 2.441 |
| | 2.444 | 2.441 | 0.867 | 2.441 |
| | 2.444 | 2.441 | 2.302 | 2.441 |
| | 2.444 | 2.441 | 0.888 | 2.441 |
| | 2.444 | 2.441 | 2.219 | 2.441 |
| | 2.444 | 2.441 | 0.852 | 2.441 |
| | 2.444 | 2.441 | 2.270 | 2.441 |
| | 2.444 | 2.441 | 0.443 | 2.441 |
| | 2.444 | 2.441 | 1.382 | 2.441 |
| | **Average** | **2.316** | **0.896** | **2.655** |
| | **SD** | **0.1446** | **0.1030** | **0.0517** |
| | **Inhibition rate** | **-0.0236** | **-0.0824** | **-0.0327** |

31BR				
	3.85E-08	0.653	0.460	1.007
	3.86E-07	0.653	0.500	2.019
	3.85E-06	0.500	0.520	2.182
	3.85E-05	0.500	0.729	0.717
	3.85E-04	0.500	0.538	2.108
	2.238	0.500	0.536	2.242
	2.238	0.500	0.784	0.130
	Average	**0.707**	**0.695**	**0.134**
	SD	**0.0681**	**0.0974**	**0.0723**
	Inhibition rate	**0.0476**	**0.0687**	**-0.2270**

231				
	3.85E-08	0.575	0.432	2.106
	3.86E-07	0.575	0.429	2.179
	3.85E-06	0.575	0.398	2.146
	3.85E-05	0.575	0.448	2.134
	3.85E-04	0.575	0.538	2.154
	2.435	0.575	0.536	2.242
	2.435	0.575	0.784	0.130
	Average	**0.613**	**0.595**	**0.078**
	SD	**0.0495**	**0.0279**	**0.0366**
	Inhibition rate	**0.0153**	**0.0150**	**-0.1056**

MCF10A				
	3.85E-08	0.492	0.579	1.113
	3.86E-07	0.492	0.604	1.228
	3.85E-06	0.492	0.551	1.174
	3.85E-05	0.492	0.646	1.298
	3.85E-04	0.492	0.607	1.229
	2.490	0.492	0.668	1.189
	2.490	0.492	0.466	0.607
	Average	**0.462**	**0.609**	**1.205**
	SD	**0.0191**	**0.0214**	**0.0024**
	Inhibition rate	**-0.0110**	**0.0687**	**-0.3266**
Cell Line	drug concentration (M)	Positive Control	Negative Control	Drug Control
HTB131	5.60E-08	1.738	0.374	1.498
	5.60E-07	1.566	0.433	2.081
	5.60E-06	1.817	0.439	2.311
	5.60E-05	1.576	0.472	1.962
	5.60E-04	1.502	0.488	2.232
	Control	1.777	0.393	1.707
CRL	5.60E-08	1.763	0.457	1.860
	5.60E-07	1.898	0.499	1.788
	5.60E-06	2.078	0.441	1.983
	5.60E-05	2.161	0.555	2.561
	5.60E-04	2.276	0.534	2.268
	Control	2.036	0.463	2.344
231BR	5.60E-08	0.679	0.566	0.666
	5.60E-07	0.745	0.719	0.688
	5.60E-06	0.642	0.627	0.648
	5.60E-05	0.625	0.579	0.739
	5.60E-04	0.631	0.535	0.810
	Control	0.745	0.502	0.716
231	5.60E-08	0.646	0.563	0.636
	5.60E-07	0.664	0.541	0.573
	5.60E-06	0.587	0.479	0.595
	5.60E-05	0.621	0.484	0.597
	5.60E-04	0.599	0.493	0.632
	Control	0.770	0.482	0.693

Approximate average

Cell Line	drug concentration (M)	Positive Control	Negative Control	Drug Control				
HTB131	1.663	5.60E-08	5.60E-07	5.60E-06				
	1.566	5.60E-05	5.60E-04	5.60E-03				
	1.635	5.60E-02	5.60E-01	5.60E-00				
	1.942							
CRL	1.735	5.60E-08	5.60E-07	5.60E-06				
	1.820	5.60E-05	5.60E-04	5.60E-03				
	1.784	5.60E-02	5.60E-01	5.60E-00				
	1.784							
231BR	1.763	5.60E-08	5.60E-07	5.60E-06				
	1.837	5.60E-05	5.60E-04	5.60E-03				
	1.589	5.60E-02	5.60E-01	5.60E-00				
	1.589							
231	1.763	5.60E-08	5.60E-07	5.60E-06				
	1.642	5.60E-05	5.60E-04	5.60E-03				
	1.641	5.60E-02	5.60E-01	5.60E-00				
	1.641							
Cell Line	5.60E-08	5.60E-07	5.60E-06	5.60E-05	5.60E-04	Control	Control	Control
-----------	---------	---------	---------	---------	---------	---------	---------	---------
MCF10A	0.458	0.443	0.418	0.242	0.408	0.445	0.180	0.184
	0.474	0.464	0.425	0.249	0.426	0.466	0.185	0.181
	0.441	0.438	0.412	0.249	0.425	0.476	0.183	0.187
	0.434	0.446	0.402	0.252	0.438	0.455	0.182	0.240
	0.485	0.439	0.411	0.248	0.434	0.499	0.184	0.402
	0.487	0.443	0.396	0.244	0.412	0.474	0.177	
average	0.463	0.446	0.411	0.247	0.424	0.469	0.182	0.184
deviation	0.02250	0.00952	0.01050	0.00367	0.01184	0.01873	0.00293	

Inhibition Rate	0.02033	0.08188	0.20325	0.180	0.184	0.474	0.464	0.425
	0.441	0.438	0.412	0.249	0.425	0.476	0.183	0.187
	0.434	0.446	0.402	0.252	0.438	0.455	0.182	0.240
	0.485	0.439	0.411	0.248	0.434	0.499	0.184	0.402
	0.487	0.443	0.396	0.244	0.412	0.474	0.177	

| Approximate | 0.463 | 0.446 | 0.411 | 0.247 | 0.424 | 0.469 | 0.182 | 0.184 |
| | 0.02250 | 0.00952 | 0.01050 | 0.00367 | 0.01184 | 0.01873 | 0.00293 | |

| IC50 | 1.14E-05 M | 5.6E-06 < IC50 < 5.6E-05 M | SD | 1.11E-06 |

Drug Concentration (M):
- Positive
- Negative
- Drug

Approximate deviation (SD):
- 0.02250
- 0.00952
- 0.01050
- 0.00367
- 0.01184
- 0.01873
- 0.00293

IC50:
- 1.14E-05 M
- 5.6E-06 < IC50 < 5.6E-05 M
- SD 1.11E-06

Inhibition Rate:
- 0.02033
- 0.08188
- 0.20325
- 0.180
- 0.184
- 0.474
- 0.464
- 0.425

Drug Concentration (M):
- Positive
- Negative
- Drug

Approximate deviation (SD):
- 0.04979
- 0.01513
- 0.03897
- 0.00404
- 0.01277
- 0.03009
- 0.00208

IC50:
- 3.1E-06 M

Inhibition Rate:
- 0.05802
- 0.04691
- 0.51235
- 0.98230
- 0.99630

Drug Concentration (M):
- Positive
- Negative
- Drug

Approximate deviation (SD):
- 0.02919
- 0.03372
- 0.02003
- 0.02950
- 0.01114
- 0.02042
- 0.00058

IC50:
- 3.2E-05 M

Inhibition Rate:
- -0.04491
- -0.00577
- 0.02555
- 0.82283
- 0.98146

Drug Concentration (M):
- Positive
- Negative
- Drug

Approximate deviation (SD):
- 0.01852
- 0.03995
- 0.05679
- 0.05590
- 0.00400
- 0.02043
- 0.00153

IC50:
- 2.85E-04 M

Inhibition Rate:
- -0.02847
- -0.01542
- 0.08541
- 0.01265
- 0.59549

Drug Concentration (M):
- Positive
- Negative
- Drug

Approximate deviation (SD):
- 0.01154
- 0.02042
- 0.00058

IC50:
- 3.1E-06 M

Inhibition Rate:
- -0.02847
- -0.01542
- 0.08541
- 0.01265
- 0.59549

Drug Concentration (M):
- Positive
- Negative
- Drug

Approximate deviation (SD):
- 0.01852
- 0.03995
- 0.05679
- 0.05590
- 0.00400
- 0.02043
- 0.00153

IC50:
- 2.85E-04 M

Inhibition Rate:
- -0.02847
- -0.01542
- 0.08541
- 0.01265
- 0.59549

Drug Concentration (M):
- Positive
- Negative
- Drug

Approximate deviation (SD):
- 0.01852
- 0.03995
- 0.05679
- 0.05590
- 0.00400
- 0.02043
- 0.00153

IC50:
- 2.85E-04 M

Inhibition Rate:
- -0.02847
- -0.01542
- 0.08541
- 0.01265
- 0.59549

S20
Cell Line	drug concentration (M)	Positive Control	Negative Control	Drug Control	
	3.70E-08	3.70E-07	3.70E-06	3.70E-05	3.70E-04
231BR	1.051	1.025	0.929	0.599	1.451
	1.042	0.986	0.934	0.496	1.437
	1.041	1.020	0.882	0.424	1.300
average	1.045	1.010	0.915	0.506	1.396
deviation (SD)	0.005508	0.021221	0.087956	0.083433	0.022605
Inhibition Rate	0.000385	0.040077	0.030777	0.03667	0.001155

IC50 3.19E-05 M

C8:

Cell Line	drug concentration (M)	Positive Control	Negative Control	Drug Control	
	2.50E-08	2.50E-07	2.50E-06	2.50E-05	2.50E-04
231BR	1.296	1.219	1.095	0.878	0.499
	1.297	1.223	1.089	0.867	0.510
	1.246	1.239	1.089	0.838	0.509
average	1.280	1.227	1.091	0.861	0.506
deviation (SD)	0.02916	0.01058	0.00346	0.02066	0.00608
Inhibition Rate	-0.04203	0.00866	0.13956	0.36092	0.75938

IC50 4.85E-05 M

C13: (Batch 1)

Cell Line	drug concentration (M)	Positive Control	Negative Control	Drug Control	
	1.60E-08	1.60E-07	1.60E-06	1.60E-05	1.60E-04
231BR	1.204	1.259	1.254	0.905	0.906
	1.281	1.271	1.236	0.913	0.916
	1.263	1.217	1.205	0.898	0.962
average	1.249	1.249	1.232	0.905	0.928
deviation (SD)	0.04028	0.02835	0.02479	0.00751	0.02987
Inhibition Rate	0.02027	0.02058	0.03679	0.19052	0.96352

IC50 2.78E-05 M

C13: (Batch 2)

Cell Line	drug concentration (M)	Positive Control	Negative Control	Drug Control	
	1.65E-08	1.65E-07	1.65E-06	1.65E-05	1.65E-04
231BR	1.238	1.239	1.124	0.340	1.396
	1.263	1.285	1.224	0.354	1.366
	1.161	1.293	1.214	0.339	1.210
average	1.221	1.272	1.187	0.344	1.324
deviation (SD)	0.05316	0.02914	0.05508	0.00839	0.09986
Inhibition Rate	0.01855	-0.03103	0.05054	0.75016	0.83877

IC50 1.12E-05

C15:

Cell Line	drug concentration (M)	Positive Control	Negative Control	Drug Control	
	2.50E-08	2.50E-07	2.50E-06	2.50E-05	2.50E-04
231BR	1.296	1.219	1.095	0.878	0.499
	1.297	1.223	1.089	0.867	0.510
	1.246	1.239	1.089	0.838	0.509
average	1.280	1.227	1.091	0.861	0.506
deviation (SD)	0.02916	0.01058	0.00346	0.02066	0.00608
Inhibition Rate	-0.04203	0.00866	0.13956	0.36092	0.75938

IC50 4.85E-05 M
Drug concentration (M)	Positive	Negative	Drug	Control	Control	Control
7.50E-10	1.030	0.941	0.486	0.383	0.363	0.902
7.50E-09	1.028	0.955	0.513	0.391	0.358	0.935
7.50E-08	1.035	0.958	0.536	0.407	0.365	1.000
7.50E-07	1.064	0.966	0.520	0.429	0.370	0.970
7.50E-06	1.020	0.928	0.548	0.422	0.370	0.943
7.50E-05	1.045	1.034	0.563	0.424	0.372	1.005
7.50E-04	1.035	0.955	0.529	0.411	0.367	0.962
Control						
Control						
Control						

Approximate deviation (SD):
0.007594 0.010424 0.015777 0.015341 0.003559 0.029428 0.001708

IC50: 7.5E-08 M

Inhibition Rate:
1.084131 0.991877 0.497824 0.360603 0.309545

SD: 3.78E-09

Drug concentration (M)	Positive	Negative
4.80E-08	1.256	1.264
4.80E-07	1.255	1.260
4.80E-06	1.219	1.226
4.80E-05	1.243	1.250
4.80E-04	0.02108	0.02088
Control		
Control		
Control		

Approximate:
1.255 1.260 0.322 0.237 1.844 1.234 0.196 0.204

IC50: 1.2E-06 M

Inhibition Rate:
0.00349 -0.00286 0.88032 0.96635 1.18730

IC50: 7.5E-08 M

Inhibition Rate:
1.084131 0.991877 0.497824 0.360603 0.309545

SD: 3.78E-09

Drug concentration (M)	Positive	Negative
2.695	2.614	2.435
2.568	2.403	1.415
2.510	2.281	1.385
2.560	2.425	1.448
2.565	2.427	1.394
2.641	2.441	1.386
2.577	2.423	1.399
Control		
Control		
Control		

Approximate:
2.651 2.577 2.423 1.400 1.224 1.202 1.204 1.216

IC50: 7.5E-07 < IC50 < 7.5E-06 M

Inhibition Rate:
0.05677 0.02505 0.01370 0.01226 0.02691 0.02186 0.00096

SD: 3.78E-09

Drug concentration (M)	Positive	Negative
2.695	2.614	2.435
2.568	2.403	1.415
2.510	2.281	1.385
2.560	2.425	1.448
2.565	2.427	1.394
2.641	2.441	1.386
2.577	2.423	1.399
Control		
Control		
Control		

Approximate:
2.651 2.577 2.423 1.399 1.386 1.378 1.369 1.358

IC50: 7.5E-07 < IC50 < 7.5E-06 M

Inhibition Rate:
1.11461 1.08086 1.01029 0.54192 0.04827
Cell Line	drug concentration (M)	Positive	Negative						
	7.50E-10	7.50E-09	7.50E-08	7.50E-07	7.50E-06	Control	Control		
HTB131									
	1.463	1.143	0.695	0.546	0.264	1.125	0.139		
	1.280	1.212	0.858	0.665	0.290	1.222	0.144		
	1.145	1.317	0.958	0.536	0.262	1.169	0.138		
	1.093	1.110	0.707	0.607	0.287	1.109	0.137		
	1.207	1.205	0.798	0.573	0.241	1.143	0.134		
	1.230	1.173	0.686	0.534	0.221	0.947	0.132		
average	1.216	1.183	0.765	0.566	0.264	1.137	0.137		
deviation (SD)	0.05601	0.03175	0.07746	0.03178	0.01881	0.02574	0.00216		
inhibition rate	1.125	0.139	1.280	1.212	0.858	0.665	0.264	1.137	0.137
IC50									
HTB22									
	0.732	0.712	0.444	0.401	0.274	0.737	0.170		
	0.696	0.756	0.464	0.381	0.276	0.720	0.166		
	0.778	0.715	0.465	0.419	0.284	0.757	0.182		
	0.733	0.696	0.493	0.372	0.258	0.708	0.170		
	0.747	0.715	0.457	0.387	0.279	0.660	0.168		
	0.723	0.552	0.444	0.375	0.278	0.717	0.166		
average	0.734	0.710	0.458	0.386	0.277	0.721	0.169		
deviation (SD)	0.00991	0.00911	0.00968	0.01114	0.00222	0.01212	0.00191		
inhibition rate	1.0994	0.98007	0.52355	0.39402	0.19611	0.01135	0.00129		
IC50									
MCF10A-Core									
	1.239	1.139	0.776	0.653	0.351	1.140	0.182		
	1.267	1.167	0.825	0.684	0.361	1.141	0.189		
	1.299	1.238	0.832	0.703	0.366	1.255	0.190		
	1.267	1.159	0.733	0.638	0.342	1.237	0.191		
	1.256	1.130	0.745	0.649	0.353	1.151	0.192		
	1.316	1.126	0.719	0.623	0.334	1.133	0.240		
average	1.272	1.149	0.770	0.656	0.352	1.196	0.191		
deviation (SD)	0.01857	0.01717	0.04105	0.01971	0.00780	0.05834	0.00129		
inhibition rate	1.07583	0.95301	0.57608	0.46295	0.11114	0.05834	0.00129		
IC50									
drug concentration (M)

cell line	7.5xE-10	7.5xE-9	7.5xE-8	7.5xE-7	7.5xE-6	7.5xE-5	Positive	Negative	Drug
231BR	0.98	0.825	0.78	0.456	0.411	1.162	0.119		
	0.999	0.976	0.915	0.756	0.413	0.927	0.126		
	1.024	0.969	0.963	0.795	0.403	0.93	0.123		
	0.821	0.869	0.87	0.76	0.413	0.943	0.12		
	0.979	0.979	0.945	0.768	0.391	0.918	0.123		
	1.077	1.039	0.942	0.842	0.413	0.98	0.245	Approximate	
average	0.9373	0.9483	0.9413	0.7698	0.4100	0.9450	0.1230	IC50	7.5E-07 < IC50 < 7.5E-06 M
deviation	0.0211	0.0530	0.0198	0.0176	0.0048	0.0243	0.0024		
inhibition rate	0.9907	1.0040	0.9954	0.7868	0.3491				

cell line	7.5xE-10	7.5xE-9	7.5xE-8	7.5xE-7	7.5xE-6	7.5xE-5	Positive	Negative	Drug
361	1.362	0.985	1.183	1.238	1.167	1.25	0.138		
	1.408	1.181	1.054	1.111	1.231	1.24	0.139		
	1.334	1.213	1.095	1.323	1.253	1.253	0.139		
	1.35	1.264	1.192	1.118	0.138	1.143	0.133		
	1.466	0.982	1.182			1.143	0.133		
	1.438	1.332	1.26			1.142	0.137	Approximate	
average	1.3895	1.1608	1.1953	1.1763	1.2403	1.1938	0.1380	IC50	> 7.5E-06 M
deviation	0.0409	0.1221	0.0456	0.0636	0.0784	0.0593	0.0008		
inhibition rate	1.1854	0.9687	1.0015	0.9835	1.0441				

cell line	7.5xE-10	7.5xE-9	7.5xE-8	7.5xE-7	7.5xE-6	7.5xE-5	Positive	Negative	Drug
CRL	2.644	2.631	2.393	1.187	0.582	2.496	0.213		
	2.642	2.595	2.31	1.265	0.619	2.433	0.215		
	2.512	2.542	2.324	1.225	0.6	2.277	0.213		
	2.51	2.631	2.36	1.317	0.649	2.562	0.22		
	2.58	2.464	2.303	1.256	0.671	2.507	0.214		
	2.593	2.556	2.264	1.16	0.562	2.499	0.213	Approximate	
average	2.58175	2.581	2.32425	1.23325	0.6125	2.48375	0.21375	IC50	7.5E-07 < IC50 < 7.5E-06 M
deviation	0.0536	0.0402	0.0254	0.0353	0.0286	0.0342	0.0010		
inhibition rate	1.0432	1.0428	0.9297	0.4491	0.1757				

cell line	7.5xE-10	7.5xE-9	7.5xE-8	7.5xE-7	7.5xE-6	7.5xE-5	Positive	Negative	Drug
HTB131	1.297	1.202	0.872	0.465	0.381	1.18	0.146		
	1.117	1.222	1.051	0.558	0.432	1.288	0.147		
	1.21	1.286	1.04	0.51	0.414	1.251	0.148		
	1.264	1.307	1.034	0.415	0.468	1.309	0.145		
	1.192	1.067	0.949	0.705	0.459	1.312	0.146		
	1.263	1.172	0.976	0.513	0.435	0.972	0.149	Approximate	
average	1.23225	1.2205	0.99975	0.5115	0.435	1.257	0.14675	IC50	7.5E-07 < IC50 < 7.5E-06 M
deviation	0.0368	0.0483	0.0445	0.0380	0.0185	0.0567	0.0010		
inhibition rate	0.9777	0.9671	0.7683	0.3285	0.2596				
Taxol (Paclitaxel):

Cell Line	7.50E-10	7.50E-09	7.50E-08	7.50E-07	7.50E-06	Positive Control	Negative Control
HTB131	1.559	0.96	1.15	0.365	0.703	1.587	0.148
	1.869	0.98	0.873	0.512	0.363	1.744	0.148
	1.727	1.277	1.17	0.591	0.593	1.521	0.145
	1.704	1.152	1.088	0.539	0.778	1.827	0.146
	1.742	1.053	1.017	0.522	0.899	1.818	0.149
	1.794	1	1.06	0.507	0.856	1.841	0.149
average	1.733	1.070	1.060	0.506	0.699	1.723	0.148
SD	0.103	0.122	0.108	0.075	0.198	0.137	0.002
inhibition rate	-0.006	0.414	0.421	0.772	0.650		

Cell Line	7.50E-10	7.50E-09	7.50E-08	7.50E-07	7.50E-06	Positive Control	Negative Control
CRL	1.158	0.812	0.657	0.497	0.386	1.579	0.19
	1.378	0.601	0.571	0.566	0.573	1.572	0.185
	1.38	1.03	0.651	0.513	0.545	1.633	0.189
	1.602	0.695	0.48	0.609	0.484	1.565	0.188
	1.578	0.801	0.696	0.67	0.605	1.626	0.187
	1.713	0.996	0.705	0.497	0.522	1.61	0.188
average	1.468	0.823	0.627	0.559	0.519	1.598	0.188
SD	0.201	0.167	0.086	0.070	0.077	0.029	0.002
inhibition rate	0.092	0.550	0.689	0.737	0.765		

Cell Line	7.50E-10	7.50E-09	7.50E-08	7.50E-07	7.50E-06	Positive Control	Negative Control
231BR	0.641	0.577	0.452	0.449	0.423	0.654	0.256
	0.606	0.556	0.502	0.483	0.493	0.822	0.258
	0.605	0.607	0.52	0.458	0.43	0.722	0.256
	0.685	0.604	0.531	0.503	0.459	0.762	0.249
	0.726	0.582	0.53	0.479	0.448	0.786	0.262
	0.835	0.605	0.562	0.522	0.441	0.935	0.288
average	0.683	0.589	0.516	0.482	0.449	0.780	0.262
SD	0.080	0.019	0.034	0.025	0.023	0.087	0.012
inhibition rate	0.187	0.370	0.509	0.575	0.639		

HTB131 Cell Line

- **Drug concentration (M)**: 7.5xE-10, 7.5xE-9, 7.5xE-8, 7.5xE-7, 7.5xE-6, 7.5xE-5, Control
- **Positive inhibition rate**: 0.9250, 0.9232, 0.7656, 0.3439, 0.1231
- **Negative inhibition rate**: 0.198, 0.593, 0.694, 0.167, 0.025
- **SD**: 3.9E-08 M
- **IC50**: 7.5E-07 < IC50 < 7.5E-06 M

CRL Cell Line

- **Drug concentration (M)**: 7.50E-10, 7.50E-09, 7.50E-08, 7.50E-07, 7.50E-06, Control
- **Positive inhibition rate**: 0.441, 0.601, 0.812, 0.599, 0.383
- **Negative inhibition rate**: 0.358, 0.398, 0.426, 0.595, 0.73
- **SD**: 1.587, 1.744, 1.521, 1.827, 1.818
- **IC50**: 5.7E-08 M

231BR Cell Line

- **Drug concentration (M)**: 7.50E-10, 7.50E-09, 7.50E-08, 7.50E-07, 7.50E-06, Control
- **Positive inhibition rate**: 0.641, 0.606, 0.605, 0.605, 0.685
- **Negative inhibition rate**: 0.423, 0.493, 0.458, 0.458, 0.479
- **SD**: 0.256, 0.258, 0.256, 0.256, 0.249
- **IC50**: 3.9E-08 M

- **SD**: 0.674, 0.674, 0.696, 0.696, 0.696
- **SD**: 0.025, 0.167, 0.167, 0.167, 0.167
- **SD**: 0.080, 0.080, 0.080, 0.080, 0.080

S25
Cell Line	drug concentration (M)	Positive control	Negative control									
231	7.50E-10	7.50E-09	7.50E-08	7.50E-07	7.50E-06	Control	Control					
						0.703	0.429	0.399	0.391	0.363	0.747	0.211
						0.624	0.455	0.37	0.379	0.363	0.723	0.212
						0.615	0.448	0.369	0.347	0.344	0.679	0.213
						0.661	0.472	0.371	0.349	0.358	0.717	0.238
						0.65	0.469	0.36	0.352	0.361	0.707	0.218
						0.652	0.57	0.358	0.304	0.401	0.762	0.223
average						0.651	0.484	0.371	0.354	0.365	0.723	0.219
SD	0.031	0.045	0.015	0.030	0.019	0.029	0.010					
inhibition rate	0.142	0.473	0.698	0.733	0.710							

Cell Line	drug concentration (M)	Positive control	Negative control				
MCF10A	7.50E-10	7.50E-09	7.50E-08	7.50E-07	7.50E-06	Control	Control
	0.425	0.37	0.356	0.35	0.313	0.45	0.179
	0.424	0.44	0.367	0.354	0.353	0.464	0.184
	0.405	0.367	0.368	0.351	0.346	0.426	0.178
	0.411	0.379	0.349	0.337	0.35	0.419	0.181
	0.425	0.374	0.363	0.334	0.346	0.442	0.182
	0.411	0.369	0.362	0.332	0.333	0.469	0.179
average	0.417	0.383	0.361	0.343	0.340	0.445	0.181
SD	0.009	0.028	0.007	0.010	0.015	0.020	0.002
inhibition rate	0.107	0.234	0.319	0.386	0.397		

Cell Line	drug concentration (M)	Positive control	Negative control				
361	7.50E-10	7.50E-09	7.50E-08	7.50E-07	7.50E-06	Control	Control
	3.247	3.147	2.67	2.501	2.601	3.618	0.156
	3.159	2.865	2.36	2.443	2.49	3.27	0.158
	3.074	3.033	2.444	2.399	2.693	3.416	0.159
	3.378	3.239	2.44	2.455	2.506	3.269	0.152
	3.593	3.137	2.437	2.444	2.335	3.33	0.156
	3	3.039	2.567	2.312	2.221	3.264	0.156
average	3.292	3.077	2.486	2.426	2.474	3.361	0.156
SD	0.182	0.129	0.112	0.065	0.172	0.139	0.002
inhibition rate	0.022	0.089	0.273	0.292	0.277		

cell line	drug concentration (M)	Positive control	Negative control	Drug control			
HTB22	7.50E-10	7.50E-9	7.50E-8	7.50E-7	7.50E-6	7.50E-5	
	0.753	0.672	0.682	0.516	0.739	0.676	0.125
	0.689	0.666	0.648	0.495	0.709	0.648	0.157
	0.671	0.672	0.652	0.503	0.702	0.696	0.157
	0.697	0.674	0.645	0.492	0.711	0.704	0.155
	0.684	0.663	0.642	0.498	0.711	0.653	0.154
	0.688	0.664	0.654	0.514	0.757	0.637	0.154
average	0.6895	0.6685	0.64975	0.5025	0.70825	0.66825	0.155
deviation	0.0083	0.0041	0.0040	0.0083	0.0043	0.0222	0.0014
inhibition rate	1.0414	1.0005	0.9640	0.6771	0.5390		
Table S4: Secondary cytotoxicity tests of L13, C10, L7, C1, and Ps, respectively, on different cancer cell lines.

L13:

Cell Line	drug concentration (M)	Positive Control	Negative Control	Drug Control		
231BR	3.90E-07	7.80E-07	1.56E-06	1.33E-06		
	6.25E-06	1.25E-05	2.10E-05	4.20E-05		
				SD 9.47E-07		
CRL	1.83	1.67	1.67	1.74		
	1.69	1.49	0.27	0.21		
	1.71	0.33	0.20	0.34		
	1.65	0.47	0.32	0.32		
	1.42	0.31	0.26	0.30		
	0.0050	0.0476	0.0727	0.0125		
Inhibition Rate	0.0601	0.0119	0.0480	0.9165	0.98600	0.97254

IC50 5.06E-06 M

Cell Line	drug concentration (M)	Positive Control	Negative Control	Drug Control				
3.90E-07	7.80E-07	1.56E-06	1.33E-06	6.25E-06				
	1.25E-05	2.10E-05	4.20E-05	SD 3.84E-07				
HTB131	1.98	1.83	1.70	1.41				
	1.41	1.35	0.91	0.23				
	1.37	1.37	0.30	0.23				
	1.34	1.34	0.32	0.32				
	0.1241	0.09351	0.07410	0.0125				
Inhibition Rate	-0.1622	-0.08112	-0.00929	0.03082	0.20304	0.34421	0.87310	0.93700

IC50 1.26E-05 M

Cell Line	drug concentration (M)	Positive Control	Negative Control	Drug Control				
3.90E-07	7.80E-07	1.56E-06	1.33E-06	6.25E-06				
	1.25E-05	2.10E-05	4.20E-05	SD 3.84E-07				
231	0.635	0.619	0.593	0.528				
	0.385	0.251	0.214	0.248				
	0.244	0.201	0.199	0.252				
	0.241	0.198	0.196	0.249				
	0.0125	0.03031	0.00071	0.00971				
Inhibition Rate	0.09937	0.16038	0.21761	0.31950	0.61195	0.86541	0.99811	0.98050

SD 1.03E-07

SD 2.59E-07
Table 1: Inhibition Rates and IC50 Values for Different Drug Concentrations

Cell Line	3.75E-07	7.50E-07	1.50E-06	3.00E-06	6.00E-06	1.20E-05	2.40E-05	4.80E-05
CRL	1.839	1.251	0.972	0.569	0.202	0.177	0.185	0.190
	1.847	1.493	0.931	0.563	0.212	0.186	0.183	0.189
	1.675	1.403	0.944	0.519	0.212	0.181	0.184	0.192
	1.765	1.544	0.972	0.535	0.215	0.195	0.183	0.205
	1.768	1.434	0.961	0.568	0.210	0.208	0.187	0.200
	1.885	1.656	1.010	0.651	0.219	0.198	0.183	0.199
average	1.797	1.464	0.965	0.568	0.212	0.191	0.184	0.196
deviation (SD)	0.07584	0.13718	0.02733	0.04561	0.00568	0.01162	0.00160	0.00643
Inhibition Rate	0.00154	0.20659	0.51355	0.75831	0.97742	0.99025	0.99436	0.98717
IC50	0.160E-06							
SD	8.42E-08							

Table 2: Inhibition Rates and IC50 Values for Different Drug Concentrations

Cell Line	3.75E-07	7.50E-07	1.50E-06	3.00E-06	6.00E-06	1.20E-05	2.40E-05	4.80E-05
HT13B1	1.534	1.577	0.653	0.661	0.446	0.124	0.118	0.132
	1.536	1.493	0.656	0.600	0.435	0.132	0.118	0.134
	1.578	1.491	0.676	0.638	0.439	0.122	0.120	0.137
average	1.549	1.520	0.662	0.633	0.440	0.126	0.119	0.134
deviation (SD)	0.02485	0.04908	0.01250	0.03081	0.00557	0.00529	0.00115	0.00252
Inhibition Rate	0.00046	0.02054	0.61519	0.63504	0.76870	0.98615	0.99123	0.98869
IC50	0.17E-06							
SD	1.00E-07							

Table 3: Inhibition Rates and IC50 Values for Different Drug Concentrations

Cell Line	3.75E-07	7.50E-07	1.50E-06	3.00E-06	6.00E-06	1.20E-05	2.40E-05	4.80E-05
3B	0.640	0.679	0.597	0.438	0.242	0.132	0.116	0.121
	0.631	0.649	0.601	0.440	0.237	0.130	0.111	0.120
	0.675	0.685	0.615	0.466	0.264	0.135	0.115	0.128
average	0.649	0.671	0.604	0.448	0.248	0.132	0.114	0.123
deviation (SD)	0.02325	0.01929	0.00945	0.01156	0.01436	0.00252	0.00265	0.00436
Inhibition Rate	0.11436	0.07805	0.18645	0.44065	0.76640	0.95393	0.98374	0.99350
IC50	0.286E-06							
SD	2.13E-07							
Cell Line	drug concentration (M)	Positive	Negative	Drug				
-----------	------------------------	----------	----------	------				
MCF10A	1.143 1.906 0.216 0.202 1.904 1.513 0.181 0.180							
	1.164 1.192 0.217 0.197 1.803 1.173 0.183 0.193							
	1.196 1.263 0.220 0.197 1.813 1.283 0.183 1.486							
average	1.168 1.184 0.218 0.199 1.840 1.203 0.182							
deviation (SD)	0.02669 0.08381 0.00208 0.00289 0.05565 0.07000 0.00115							
Inhibition Rate	0.03736 0.02177 0.96329 0.98181 0.65497							

L7:

Cell Line	drug concentration (M)	Positive	Negative
361	5.86E-08 1.17E-07 2.34E-06 2.34E-05 9.83E-06 1.88E-05 1.35E-05 1.35E-04		
231BR	5.86E-09 1.17E-08 2.34E-07 2.34E-06 9.83E-06 1.88E-05 1.35E-05 1.35E-04		
CRL	5.86E-08 1.17E-07 2.34E-06 2.34E-05 9.83E-06 1.88E-05 1.35E-05 1.35E-04		
HTB 131	2.93E-09 5.86E-09 1.17E-08 2.34E-07 2.34E-06 9.83E-06 1.88E-05 1.88E-04		

Cell Line	drug concentration (M)	Positive	Negative	Drug
361	5.86E-08 1.17E-07 2.34E-06 2.34E-05 9.83E-06 1.88E-05 1.35E-05 1.35E-04			
231BR	5.86E-09 1.17E-08 2.34E-07 2.34E-06 9.83E-06 1.88E-05 1.35E-05 1.35E-04			
CRL	5.86E-08 1.17E-07 2.34E-06 2.34E-05 9.83E-06 1.88E-05 1.35E-05 1.35E-04			
HTB 131	2.93E-09 5.86E-09 1.17E-08 2.34E-07 2.34E-06 9.83E-06 1.88E-05 1.88E-04			

SD 1.51E-07
Cell Line	Inhibition Rate	SD	IC50	7.58E-06 M	27.8186 ng/mL
231	-0.00800	0.03222	0.02003	0.03122	0.02906

C1:

Cell Line	Inhibition Rate	SD	IC50	9.7E-07 M	3.2E-08
231BR	0.00174	0.02159	0.01209	0.00442	0.00044

SD: 9.7E-07
Cell Line	drug concentration (M)	Positive Control	Negative Control	drug concentration (M)	Positive Control	Negative Control	Inhibition Rate	SD
HTB131	1.24E-08	2.47E-08	4.94E-08	9.88E-08	1.98E-07	3.95E-07	7.90E-07	
	1.592	1.416	1.224	1.288	0.733	0.695	0.714	
	1.585	1.328	1.347	1.113	0.651	0.682	0.654	
	1.587	1.550	1.625	1.272	0.674	0.727	0.646	
average	1.588	1.431	1.399	1.224	0.686	0.701	0.671	
deviation (SD)	0.03606	0.111791	0.205432	0.096749	0.042297	0.023159	0.037166	
Inhibition Rate	0.076825	0.176296	0.197037	0.307725	0.649524	0.639788	0.658836	
	7.58095	0.041885	0.001000	2.28E-07 M	1.11E-08			
231	1.24E-08	2.47E-08	4.94E-08	9.88E-08	1.98E-07	3.95E-07	7.90E-07	
	0.7619	0.06964	0.06429	0.07857	0.09762	0.60417	0.79643	
MCF10A	1.58E-08	1.58E-07	1.58E-06	1.58E-05	1.58E-04	1.58E-03	1.58E-02	
	1.286	0.938	0.774	0.209	0.271	1.257	0.181	
	1.286	0.973	0.715	0.202	0.270	1.261	0.183	
	1.211	0.901	0.752	0.207	0.247	1.310	0.183	
average	1.261	0.937	0.747	0.206	0.263	1.276	0.289	
deviation (SD)	0.04330	0.03600	0.02982	0.00361	0.01358	0.02951	IC50 1.0E-06 M	
Inhibition Rate	0.01371	0.30957	0.48355	0.97806	0.94180	IC50 6.5E-06 M		
361	1.58E-08	1.58E-07	1.58E-06	1.58E-05	1.58E-04	1.58E-03	1.58E-02	
	4.163	3.463	2.892	0.726	0.296	3.363	0.156	
	4.160	3.184	2.707	0.869	0.396	3.133	0.155	
	4.105	3.344	2.881	0.876	0.343	3.255	0.153	
	4.107	3.518	2.827	0.914	0.349	3.509	0.155	
	4.090	3.325	2.603	0.846	0.329	3.056	0.154	
	4.160	3.119	2.681	0.823	0.369	3.363	0.158	
average	4.131	3.326	2.765	0.842	0.347	3.280	0.155	
deviation (SD)	0.03358	0.15425	0.11840	0.06465	0.03415	0.16651	IC50 7.15E-07	
Inhibition Rate	-0.27227	-0.01456	0.16475	0.78005	0.93856	0.142	0.183	

Ps:
Table 1: IC50 and Inhibition Rate

Cell Line	IC50 (M)	Increased drug concentration (mg/mL)	Positive Control	Negative Control
CRL	5.86E-07	1.17E-07 2.34E-06 4.69E-06 9.38E-06 1.88E-05 3.75E-05 7.50E-05	1.376 0.195	1.301 0.203
HTB131	5.86E-08	1.17E-07 2.34E-07 4.69E-07 9.38E-07 1.88E-06 3.75E-06 7.50E-06	0.324 0.397	0.348 0.397
231	5.86E-08	1.17E-07 2.34E-07 4.69E-07 9.38E-07 1.88E-06 3.75E-06 7.50E-06	1.397 0.194	1.397 0.194

Table 2: Average Inhibition Rate

Cell Line	Inhibition Rate	Positive Control	Negative Control	
CRL	0.948029	0.817441 0.939881 0.495265 0.256772 0.173530 0.174411 0.243338	0.324 0.397	0.348 0.397
HTB131	1.046811	0.965658 0.960957 0.920074 0.808258 0.516149 0.386549 0.340352	0.159750	0.197507
231	1.025816	0.986712 1.002278 0.923690 0.765756 0.526955 0.416856 0.333713	0.77408	0.77408

Table 3: SD and SD (M)

Cell Line	SD	SD (M)										
CRL	3.20E-07	(1504.70 mg/mL)										
HTB131	3.20E-07	(910.16 mg/mL)										
231	7.74E-08	(510.86 mg/mL)										
Cell Line	5.86E-07	1.17E-06	2.34E-06	4.69E-06	9.38E-06	1.88E-05	3.75E-05	7.50E-05	Positive	Negative	Control	Control
-----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	---------	---------
MCF10A	1.187	1.079	0.814	0.819	0.793	0.787	0.693	0.573	1.533	0.182		
	1.244	1.135	0.822	0.813	0.816	0.793	0.673	0.608	1.455	0.186		
	1.317	1.063	0.820	0.831	0.748	0.797	0.689	0.591	1.414	0.186		
	1.234	1.102	0.821	0.794	0.768	0.686	0.653	0.469	1.450	0.180		
	1.244	1.056	0.761	0.752	0.765	0.760	0.636	0.578	1.346	0.184		
	1.341	0.961	0.709	0.737	0.788	0.689	0.627	0.568	1.510	0.186		
average	1.261	1.066	0.791	0.791	0.780	0.752	0.662	0.565	1.451	0.184		
deviation (SD)	0.057129	0.058924	0.046594	0.038247	0.024172	0.051614	0.027542	0.048952	0.067254	0.002530		
Inhibition Rate	0.149829	0.303867	0.520784	0.529916	0.551697	0.622862	0.699684	0.002530	0.067254			
IC50	8.75E-06 M (2839.91 ng/mL)	2.98E-07										
Section F. Crystallographic Characterization

All the crystallographic data for the 2-trifluoromethansulfonfonyloxy-4-methoxy-5-[(5-ethyl-2H-pyrrol-2-ylidene)methyl]-1H-pyrrole (Key Intermediate) structure reported in this paper have been deposited to the Cambridge Crystallographic Data Centre (CCDC) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. CCDC deposition number and all data for the compound can be found in Tables S5–S10.

Table S5 | Crystallographic data and structure refinement for the Key Intermediate.

	CCDC# 2160302
Empirical Formula	C_{13}H_{13}F_{3}N_{2}O_{4}S
Mol. Weight	350.31
Temperature / K	100(2)
Crystal System	Monoclinic
Space Group	C2/c
a, b, c (Å)	24.822(11), 4.954(2), 23.601(10)
α, β, γ (°)	90, 93.027(5), 90
Volume (Å³)	2898(2)
Z	8
ρcalc / mg mm⁻³	1.606
μ / mm⁻¹	0.280
F(000)	1440
Crystal Size / mm³	0.350 × 0.095 × 0.010
2Θ Range for Data Collection	1.643 to 25.641°
Index Ranges	-30 ≤ h ≤ 30, -6 ≤ k ≤ 6, -28 ≤ l ≤ 28
Reflections Collected	12659
Independent Reflections	2727[R(int) = 0.0530]
Data/Restraints/Parameters	2727/0/214
Goodness-of-fit on F²	1.056
Final R Indexes [I>2σ (I)]	R₁ = 0.0421, wR₂ = 0.1020
Final R Indexes [All Data]	R₁ = 0.0604, wR₂ = 0.1108
Largest Diff. Peak/Hole / e Å⁻³	0.372/-0.492
Crystallographic Data of the Key Intermediate

Method: Single crystals of C$_{13}$H$_{13}$F$_3$N$_2$O$_4$S were submitted. A suitable crystal was selected (a Zeiss Stemi 305 microscope was used to identify a suitable specimen) and the crystal was mounted on a MiTiGen holder in Paratone oil on a Bruker Kappa APEX-II CCD diffractometer (operated at 1500 W (50kV, 30 mA) to generate (graphite monochromated) Mo Kα radiation (λ = 0.71073 Å)). The crystal was kept at 100 K during data collection. Using Olex2 (Dolomanov et al., 2009), the structure was solved with the XT (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined with the XL (Sheldrick, 2007) refinement package using Least Squares minimization.

Crystal Data: For C$_{13}$H$_{13}$F$_3$N$_2$O$_4$S ($M = 350.31$): monoclinic, space group C2/c (no. 15), $a = 24.822(11)$ Å, $b = 4.954(2)$ Å, $c = 23.601(10)$ Å, $\alpha = 90^\circ$, $\beta = 93.027(5)^\circ$, $\gamma = 90^\circ$, $V = 2898(2)$ Å3, $Z = 8$, $T = 100(2)$ K, μ(MoKα) = 0.280 mm$^{-1}$, $D_{calc} = 1.606$ g/mm3, 12659 reflections measured (1.643° ≤ 2Θ ≤ 25.641°), 2727 unique ($R_{int} = 0.0530$) which were used in all calculations. The final R_1 was 0.0421 (I > 2σ(I)) and wR_2 was 0.1108 (all data).

Refinement Details: After data collection, the unit cell was re-determined using a subset of the full data collection. Intensity data were corrected for Lorentz, polarization, and background effects using the Bruker program APEX 3. A semi-empirical correction for adsorption was applied using the program SADABS (Krause et al., 2014). The SHELXL-2014 (Sheldrick, 2007), series of programs was used for the solution and refinement of the crystal structure. Hydrogen atoms bound to carbon atoms were located in the difference Fourier map and were geometrically constrained using the appropriate AFIX commands. The hydrogen atom bound to N2 (H2A) was last major peak found in the difference Fourier map and was allowed to refine both its position and thermal displacement parameter.
Figure S9 | Single crystal X-ray structures of the **Key Intermediate**.

Table S6 | Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($\AA^2 \times 10^3$) for **Key Intermediate**. $U(\text{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor for the **Key Intermediate**.

	x	y	z	U(\text{eq})
S(1)	4689(1)	7266(1)	6443(1)	24(1)
F(1)	5300(1)	4339(3)	5793(1)	33(1)
F(2)	4454(1)	4241(3)	5584(1)	42(1)
F(3)	4912(1)	7752(3)	5385(1)	46(1)
O(1)	5079(1)	9725(3)	6507(1)	27(1)
O(2)	4802(1)	5311(4)	6866(1)	29(1)
O(3)	4170(1)	8362(4)	6333(1)	32(1)
O(4)	6701(1)	11156(4)	7681(1)	28(1)
N(1)	5944(1)	7780(4)	6551(1)	25(1)
N(2)	6581(1)	3847(5)	6053(1)	26(1)
C(1)	5607(1)	9460(5)	6756(1)	24(1)
C(2)	5790(1)	11114(5)	7213(1)	24(1)
C(3)	6316(1)	10326(5)	10326(5)	23(1)
C(4)	6418(1)	8219(5)	6892(1)	25(1)
C(5)	6886(1)	6852(5)	6833(1)	26(1)
C(6)	6973(1)	4782(5)	6435(1)	25(1)
C(7)	7441(1)	3366(5)	6330(1)	27(1)
C(8)	7318(1)	1607(5)	5881(1)	28(1)
C(9)	6781(1)	1934(5)	5710(1)	26(1)
C(10)	6441(1)	607(6)	5257(1)	32(1)
C(11)	6748(1)	-1408(6)	4910(1)	34(1)
C(12)	6538(1)	13191(5)	8070(1)	28(1)
C(13)	4859(1)	5817(5)	5759(1)	28(1)
Table S7 | Bond lengths [Å] and angles [°] for the Key Intermediate.

Bond lengths [Å]	Bond angles [°]	Bond lengths [Å]	Bond angles [°]
S(1)-O(2)	1.4075(18)	N(1)-C(1)-O(1)	120.6(2)
S(1)-O(3)	1.4096(19)	C(2)-C(1)-O(1)	121.2(2)
S(1)-O(1)	1.5589(19)	C(3)-C(2)-C(1)	102.5(2)
S(1)-C(13)	1.836(3)	C(3)-C(2)-H(2B)	128.7
F(1)-C(13)	1.317(3)	C(1)-C(2)-H(2B)	128.7
F(2)-C(13)	1.323(3)	O(4)-C(3)-C(2)	131.0(2)
F(3)-C(13)	1.315(3)	C(2)-C(3)-C(4)	107.6(2)
O(1)-C(1)	1.413(3)	C(5)-C(4)-N(1)	123.9(2)
O(4)-C(3)	1.342(3)	C(5)-C(4)-C(6)	126.2(2)
O(4)-C(12)	1.435(3)	C(5)-C(4)-C(3)	127.3(2)
N(1)-C(1)	1.292(3)	N(1)-C(4)-C(3)	108.8(2)
N(1)-C(4)	1.406(3)	C(4)-C(5)-C(6)	126.2(2)
N(2)-C(9)	1.357(3)	C(4)-C(5)-H(5)	116.9
N(2)-C(6)	1.372(3)	C(6)-C(5)-H(5)	116.9
N(2)-H(2A)	0.79(3)	N(2)-C(6)-C(7)	106.5(2)
C(1)-C(2)	1.410(3)	N(2)-C(6)-C(5)	123.6(2)
C(2)-C(3)	1.369(3)	C(7)-C(6)-C(5)	129.9(2)
C(2)-H(2B)	0.9500	C(6)-C(7)-C(8)	107.4(2)
C(3)-C(4)	1.452(3)	C(6)-C(7)-H(7)	126.3
C(4)-C(5)	1.360(4)	C(8)-C(7)-H(7)	126.3
C(5)-C(6)	1.415(4)	C(9)-C(8)-C(7)	108.6(2)
C(5)-H(5)	0.9500	C(9)-C(8)-H(8)	125.7
C(6)-C(7)	1.391(3)	C(7)-C(8)-H(8)	125.7
C(7)-C(8)	1.393(4)	N(2)-C(9)-C(8)	106.6(2)
C(7)-H(7)	0.9500	N(2)-C(9)-C(10)	121.9(2)
C(8)-C(9)	1.382(4)	C(8)-C(9)-C(10)	131.6(2)
C(8)-H(8)	0.9500	C(9)-C(10)-C(11)	113.4(2)
C(9)-C(10)	1.481(4)	C(9)-C(10)-H(10A)	108.9
C(10)-C(11)	1.523(4)	C(11)-C(10)-H(10A)	108.9
C(10)-H(10A)	0.9900	C(9)-C(10)-H(10B)	108.9
C(10)-H(10B)	0.9900	C(11)-C(10)-H(10B)	108.9
C(11)-H(11A)	0.9800	H(10A)-C(10)-H(10B)	107.7
C(11)-H(11B)	0.9800	C(10)-C(11)-H(11A)	109.5
C(11)-H(11C)	0.9800	C(10)-C(11)-H(11B)	109.5
C(12)-H(12A)	0.9800	H(11A)-C(11)-H(11B)	109.5
C(12)-H(12B)	0.9800	C(10)-C(11)-H(11C)	109.5
C(12)-H(12C)	0.9800	H(11A)-C(11)-H(11C)	109.5
O(2)-S(1)-O(3)	122.87(11)	H(11B)-C(11)-H(11C)	109.5
Bond	Distance (Å)	Bond	Distance (Å)
-----------------------	--------------	-----------------------	--------------
O(2)-S(1)-O(1)	111.72(11)	O(4)-C(12)-H(12A)	109.5
O(3)-S(1)-O(1)	105.90(11)	O(4)-C(12)-H(12B)	109.5
O(2)-S(1)-C(13)	107.88(12)	H(12A)-C(12)-H(12B)	109.5
O(3)-S(1)-C(13)	103.76(12)	O(4)-C(12)-H(12C)	109.5
O(1)-S(1)-C(13)	102.68(11)	H(12A)-C(12)-H(12C)	109.5
C(1)-O(1)-S(1)	121.66(15)	H(12B)-C(12)-H(12C)	109.5
C(3)-O(4)-C(12)	115.28(19)	F(3)-C(13)-F(1)	109.5(2)
C(1)-N(1)-C(4)	103.0(2)	F(3)-C(13)-F(2)	108.8(2)
C(9)-N(2)-C(6)	111.0(2)	F(1)-C(13)-F(2)	107.9(2)
C(9)-N(2)-H(2A)	121(2)	F(1)-C(13)-S(1)	109.97(18)
C(6)-N(2)-H(2A)	127(2)	F(1)-C(13)-S(1)	113.17(18)
N(1)-C(1)-C(2)	118.1(2)	F(2)-C(13)-S(1)	107.43(17)

Symmetry transformations used to generate equivalent atoms

Table S8 | Anisotropic displacement parameters (Å² x 10³) for the Key Intermediate. The anisotropic displacement factor exponent takes the form: $-2 \pi² [h² a*² U^{11} + ... + 2 h k a* b* U^{12}]$

U11	U22	U33	U23	U13	U12
S(1)	26(1)	26(1)	21(1)	-1(1)	10(1)
F(1)	30(1)	37(1)	31(1)	-9(1)	11(1)
F(2)	33(1)	51(1)	43(1)	-22(1)	3(1)
F(3)	74(1)	43(1)	23(1)	7(1)	16(1)
O(1)	30(1)	23(1)	28(1)	-2(1)	4(1)
O(2)	30(1)	32(1)	24(1)	6(1)	10(1)
O(3)	27(1)	36(1)	33(1)	-2(1)	5(1)
O(4)	26(1)	32(1)	26(1)	-6(1)	8(1)
N(1)	27(1)	24(1)	23(1)	1(1)	11(1)
N(2)	24(1)	30(1)	26(1)	0(1)	12(1)
C(1)	27(1)	24(1)	21(1)	4(1)	5(1)
C(2)	29(1)	22(1)	21(1)	-1(1)	11(1)
C(3)	28(1)	24(1)	18(1)	2(1)	11(1)
C(4)	28(1)	24(1)	23(1)	2(1)	11(1)
C(5)	27(1)	28(1)	24(1)	1(1)	12(1)
C(6)	26(1)	25(1)	25(1)	2(1)	12(1)
C(7)	26(1)	26(1)	30(1)	0(1)	10(1)
C(8)	27(1)	28(1)	29(1)	1(1)	13(1)
C(9)	31(1)	24(1)	23(1)	1(1)	12(1)
C(10)	30(1)	36(2)	31(2)	-5(1)	9(1)
C(11)	34(2)	37(2)	31(2)	-8(1)	15(1)
C(12)	31(1)	28(1)	26(1)	-5(1)	9(1)
C(13)	32(1)	30(2)	24(1)	-1(1)	7(1)

S38
Table S9 | Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for the Key Intermediate.

	x	y	z	U(eq)
H(2A)	6282(12)	4380(60)	6006(12)	28(8)
H(2B)	5596	12441	7410	28
H(5)	7184	7333	7082	31
H(7)	7782	3562	6528	32
H(8)	7562	388	5720	33
H(10A)	6283	2010	5000	38
H(10B)	6140	-340	5432	38
H(11A)	6504	-2186	4613	51
H(11B)	6893	-2849	5158	51
H(11C)	7046	-485	4734	51
H(12A)	6843	13661	8331	43
H(12B)	6241	12502	8286	43
H(12C)	6418	14800	7857	43

Table S10 | Hydrogen bonds for the Key Intermediate.

D-H	d(D-H)	d(H..A)	<DHA	d(D..A)	A
N2-H2A	0.791	2.461	159.77	3.215	F1
N2-H2A	0.791	2.304	122.23	2.806	N1
Section G. References

Cetin, M. M. (2017). Syntheses and characterization of copper(I) complexes for study of dynamic supramolecular ring-chain equilibria and application as photoredox catalysts. PhD Dissertation. Texas Tech University, Lubbock, TX, USA

Cetin, M. M., Hodson, R. T., Hart, C. R., Cordes, D. B., Findlater, M., Casadonte Jr., D. J., et al. (2017). Characterization and photocatalytic behavior of 2,9-di(aryl)-1,10-phenanthroline copper (I) complexes. Dalton Trans. 46 (20), 6553–6569. doi:10.1039/c7dt00400a

Cetin, M. M., Shafiei-Haghighi, S., Chen, J., Zhang, S., Miller, A. C., Unruh, D. K., et al. (2020). Synthesis, structures, photophysical properties, and catalytic characteristics of 2,9-dimesityl-1,10-phenanthroline (dmesp) transition metal complexes. J. Polym. Sci. 58 (8), 1130–1143. doi:10.1002/pol.20190276

Dietrich-Buchecker, C. and Sauvage, J.-P. (1990). Templated synthesis of interlocked macrocyclic ligands, the catenands. Preparation and characterization of the prototypical bis-30 membered ring system. Tetrahedron, 46 (2), 503–512. doi:10.1016/s0040-4020(01)85433-8

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42 (2), 339–341. doi:10.1107/s0021889808042726

Hayes, D., Kohler, L., Chen, L. X. and Mulfort, K. L. (2018). Ligand Mediation of Vectorial Charge Transfer in Cu(I)diimine Chromophore–Acceptor Dyads. J. Phys. Chem. Lett. 9 (8), 2070–2076. doi:10.1021/acs.jpclett.8b00468

Hayes, D., Kohler, L., Hadt, R. G., Zhang, X., Liu, C., Mulfort, K. L., et al. (2018). Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy. Chem. Sci. 9 (4), 860–875. doi:10.1039/c7sc04055e

Kang, S., Berkshire, B. M., Xue, Z., Gupta, M., Layode, C., May, P. A., et al. (2008). Polypseudorotaxanes via Ring-Opening Metathesis Polymerizations of [2]Catenanes. J. Am. Chem. Soc. 130 (46), 15246–15247. doi:10.1021/ja806122r

Kang, S., Cetin, M. M., Jiang, R., Clevenger, E. S. and Mayer, M. F. (2014). Synthesis of Metalated Pseudorotaxane Polymers with Full Control over the Average Linear Density of Threaded Macrocycles. J. Am. Chem. Soc. 136 (36), 12588–12591. doi:10.1021/ja507167k
Kohler, L., Hadt, R. G., Hayes, D., Chen, L. X. and Mulfort, K. L. (2017). Synthesis, structure, and excited state kinetics of heteroleptic Cu(I) complexes with a new sterically demanding phenanthroline ligand. *Dalton Trans.* 46 (38), 13088–13100. doi:10.1039/c7dt02476b

Kohler, L., Hayes, D., Hong, J., Carter, T. J., Shelby, M. L., Fransted, K. A., et al. (2016). Synthesis, structure, ultrafast kinetics, and light-induced dynamics of CuHETPHEN chromophores. *Dalton Trans.* 45 (24), 9871–9883. doi:10.1039/c6dt00324a

Krause, L., Herbst-Irmer, R., Sheldrick, G. M., Zachariae, U., de Groot, B. L. (2014). SADABS v2014/5. *J. Appl. Cryst.* 48, 3–10. https://doi.org/10.1107/S1600576714022985

Melvin, M. S., Tomlinson, J. T., Park, G., Day, C. S., Saluta, G. R., Kucera, G. L., et al. (2002). Influence of the A-Ring on the Proton Affinity and Anticancer Properties of the Prodigiosins. *Chem. Res. Toxicol.* 15 (5), 734–741. doi:10.1021/tx025507x

Schmittel, M., Lüning, U., Meder, M., Ganz, A., Michel, C. and Herderich, M. (1997). Synthesis of sterically encumbered 2,9-diaryl substituted phenanthrolines. Key building blocks for the preparation of mixed (Bis-heteroleptic) phenanthroline copper(I) complexes. *Heterocycl. Commun.* 3 (6), 493–498. doi:10.1515/hc.1997.3.6.493

Sheldrick, G. M. (2007). A short history of SHELX. *Acta Crystallogr., Sect. A Fundam. Cryst.* 64 (1), 112–122. doi:10.1107/s0108767707043930

Sheldrick, G. M. (2015). SHELXT-Integrated space-group and crystal-structure determination. *Acta Crystallogr., Sect. A: Found Adv.* 71 (1), 3–8. doi:10.1107/s2053273314026370

Zhong, W., Tang, Y., Zampella, G., Wang, X., Yang, X., Hu, B., et al. (2010). A rare bond between a soft metal (FeI) and a relatively hard base (RO−, R = phenolic moiety). *Inorg. Chem. Commun.* 13 (9), 1089–1092. doi:10.1016/j.inoche.2010.06.026