Novel functions for ADF/cofilin in excitatory synapses - lessons from gene-targeted mice

Marco B Rust*
Molecular Neurobiology Group; Institute of Physiological Chemistry; University of Marburg; Marburg, Germany

Actin filaments (F-actin) are the major structural component of excitatory synapses. In excitatory synapses, F-actin is enriched in presynaptic terminals and in postsynaptic dendritic spines, and actin dynamics – the spatiotemporally controlled assembly and disassembly of F-actin – have been implicated in pre- and postsynaptic physiology, additionally to their function in synapse morphology. Hence, actin binding proteins that control actin dynamics have moved into the focus as regulators of synapse morphology and physiology. Actin depolymerizing proteins of the ADF/cofilin family are important regulators of actin dynamics, and several recent studies highlighted the relevance of cofilin 1 for dendritic spine morphology, trafficking of postsynaptic glutamate receptors, and synaptic plasticity. Conversely, almost nothing was known about the synaptic function of ADF, a second ADF/cofilin family member present at excitatory synapses, and it remained unknown whether ADF/cofilin is relevant for presynaptic physiology. To comprehensively characterize the synaptic function of ADF/cofilin we made use of mutant mice lacking either ADF or cofilin 1 or both proteins. Our analysis revealed presynaptic defects (altered distribution and enhanced exocytosis of synaptic vesicles) and behavioral abnormalities reminiscent of attention deficit-hyperactivity disorder in double mutants that were not present in single mutants. Hence, by exploiting gene-targeted mice, we demonstrated the relevance of ADF for excitatory synapses, and we unraveled novel functions for ADF/cofilin in presynaptic physiology and behavior.

Addendum to: 1. Wolf M, Zimmermann AM, Görlich A, Gumüsi CB, Sassoli-Pognetto M, Friauf E, Witke W, Rust MB. ADF/cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis. Cereb Cortex 2015; 25:2863–75. 2. Zimmermann AM, Jene T, Wolf M, Görlich A, Gumüsi CB, Sassoli-Pognetto M, Witke W, Friauf E, Rust MB. ADHD-like phenotype in a mouse model with impaired synaptic actin dynamics. Biol Psychiatry 2015; 78:95–106.
revealed that cofilin 1 controls i) actin dynamics in dendritic spines, ii) dendritic spine density and morphology, iii) trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and ultimately iv) long-term potentiation (LTP) and long-term depression (LTD). In ADF mutant mice, the morphology of excitatory synapses is unchanged and these mutants do not display any defects in presynaptic vesicle distribution, recruitment or exocytosis of synaptic vesicles or postsynaptic mechanisms (LTP, LTD). Conversely, dendritic spine profiles and the postsynaptic density (PSD) are both enlarged in cofilin 1 mutants, and these morphological changes are associated with reduced LTP, absence of LTD, and impaired extra-synaptic mobility of AMPA receptors (indicated by a thinner double arrow compared to the control synapse). Like in ADF mutants, presynaptic mechanisms are unchanged in cofilin 1 mutants. Compared to single mutants, dendritic spine size is further increased in double mutants lacking both ADF and cofilin 1, and double mutants display presynaptic defects that are not present in single mutants including an altered distribution, a reduced recruitment (indicated by the thinner arrow compared to control and single mutant synapses) and elevated exocytosis of synaptic vesicles. Whether AMPA receptor mobility is affected in ADF and/or double mutants, or whether LTP and LTD are impaired in double mutants has not been tested experimentally yet.

ADF shares very similar biochemical properties with cofilin 1 (for review, see24), and, like cofilin 1, it was found broadly expressed in the adult brain and present in presynaptic terminals and in dendritic spines.9,11 However, while the relevance of cofilin 1 for synapse physiology and behavior is well established,16 relatively little is known about the role of ADF, because in vitro studies almost exclusively focused on cofilin 1, and ADF mutant mice did not display synaptic or behavioral defects.11 However, we found elevated cofilin 1 levels in synaptic structures from ADF mutants,11 and we therefore hypothesized i) functional redundancy of ADF and cofilin 1 in the mouse brain and ii) that cofilin 1 can compensate for the loss of ADF in excitatory synapses. To test these hypotheses and to comprehensively characterize the synaptic function of ADF/cofilin, we generated double mutant mice lacking both ADF and cofilin 1. Indeed, these mutants displayed synaptic defects that were not present in ADF or cofilin 1 single mutants, thereby validating our aforementioned working hypotheses.

Compared to cofilin 1 single mutants, dendritic spine size was strongly increased in the hippocampus and striatum of double mutants,25,26 thus demonstrating that ADF is relevant for dendritic spine morphology, too. Moreover, our data let us suggest that cofilin 1 can fully compensate for the loss of ADF at excitatory synapses, while ADF can only partially rescue cofilin 1 inactivation. Notably, a role of ADF in spine morphology and a redundant function of ADF and cofilin 1 in dendritic spine morphology has just recently been confirmed in rat hippocampal slices.22 While our initial characterization of double mutant mice revealed a role of ADF in spine morphology, its function in dendritic spine actin dynamics, AMPA receptor trafficking or synaptic plasticity has not been examined yet, but will be tackled in future studies.

The analysis of double mutants not only revealed a redundant postsynaptic function for ADF and cofilin 1, but also demonstrated their relevance for presynaptic physiology.25,26 In hippocampal synapses of double mutants, we found an altered distribution of synaptic vesicles, including an elevated number of synaptic vesicles attached to the active zone.25 Consequently, synaptic vesicle exocytosis was increased in hippocampal synapses from these mice, and, similarly, we found increased glutamate release in the striatum. Such defects were not present in ADF or cofilin 1 single mutants.10,11,25,26 Hence, cofilin 1 emerged as the predominant ADF/cofilin form in dendritic spines, while ADF and cofilin 1 are apparently equally important for presynaptic physiology. Together, our analysis of double mutant mice unraveled a novel function for ADF/cofilin in neurotransmitter release, which is in line with presynaptic defects upon inactivation of upstream regulators such as RhoB, ROCK2, PAK, LIMK1 or slingshot.7,27-30 Based on its
relevance for actin dynamics, it is very likely that ADF/cofilin controls neurotransmitter release via regulating the presynaptic actin cytoskeleton, although this has not been demonstrated experimentally yet. However, in line with this idea, a pivotal role of actin dynamics in vesicle exocytosis has been demonstrated by exploiting actin drugs (for review see31) or by manipulating the activity of actin dynamics regulators such as profilin2 or DR132-34.

Interestingly, double mutant mice displayed behavioral alterations that were not present in single mutants, again providing compelling evidence for overlapping functions of ADF or cofilin 1 in the mouse brain.26 These alterations included strongly increased locomotor activity, working memory deficits, impulsivity and a paradoxical calming effect of pharmacological treatment with psychostimulants such as methylphenidate, thus closely modeling typical clinical symptoms of attention deficit-hyperactivity disorder (ADHD) for which methylphenidate is widely prescribed in clinical practice.35

Hence, our analysis of double mutant mice revealed that defects in neuronal actin dynamics can cause behavioral abnormalities reminiscent of human psychiatric diseases, thereby suggesting defective neuronal actin dynamics as a pathomechanism in mental disorders. Indeed, several genes that have been associated with human psychiatric diseases such as schizophrenia (DISC1, SHANK2), autism spectrum disorders (SHANK2, SHANK3, FMRP) or ADHD (GTT1) have just recently been linked to neuronal actin dynamics in vesicle exocytosis has been demonstrated experimentally yet. However, in line with this idea, a pivotal role of actin dynamics in vesicle exocytosis has been demonstrated by exploiting actin drugs (for review see31) or by manipulating the activity of actin dynamics regulators such as profilin2 or DR132-34. Thus, it is very likely that ADF/cofilin controls neurotransmitter release via regulating the presynaptic actin cytoskeleton, although this has not been demonstrated experimentally yet. However, in line with this idea, a pivotal role of actin dynamics in vesicle exocytosis has been demonstrated by exploiting actin drugs (for review see31) or by manipulating the activity of actin dynamics regulators such as profilin2 or DR1.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by a Research grant (24/2014 MR) of the University Medical Center Giessen and Marburg (UKGM).

References

1. Hild G, Kalmar L, Kardos R, Nyitrai M, Bugyi B. The LIN2 or DRR1.32-34 2. Blanchoin L, Pollard TD. Mechanism of interaction of Acanthamoeba actinophilin (ADF/Cofilin) with actin filaments. J Biol Chem 1999; 274:15538-46; PMID:10336448; http://dx.doi.org/10.1074/jbc.274.22.15538
3. Maciver SK, Zolot GV, Pollard TD. Characterization of actin filament severing by actoporin from Acanthamoeba castellanii. J Cell Biol 1991; 151:1611-20. PMID:17757465; http://dx.doi.org/10.1083/jcb.151.6.1611
4. Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekevervho J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 2008; 87:649-67; PMID:18499298; http://dx.doi.org/10.1016/j.ejcb.2008.04.001
5. Andrianantondrando E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 2006; 24:13-23; PMID:17018289; http://dx.doi.org/10.1016/j.molcel.2006.08.006
6. Yang N, Higuchi O, Ohashi K, Nogata K, Wada A, Kangawa K, Ikeda E, Misumi K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac mediated actin reorganization. Nature 1998; 393:809-12; PMID:9655398; http://dx.doi.org/10.1038/31735
7. Meng Y, Zhang Y, Truongbov V, Zhang Y, Truongbov V, Cui L, Jackson M, Lu WY, MacDonald JF, Wang YJ, Falls DL, et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 2002; 35:121-33; PMID:12123631; http://dx.doi.org/10.1016/S0896-6273(02)00758-4
8. Racz B, Weinstein RJ. Spatial organization of cofilin in dendritic spines. Neuroscience 2006; 138:447-56; PMID:16388910; http://dx.doi.org/10.1016/j.neuroscience.2005.11.025
9. Bellenchini GC, Gurniak CB, Perlas E, Middei S, Ammannas-Teule M, Witke W. N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 2007; 21:2347-57; PMID:1785668; http://dx.doi.org/10.1101/gad.343307
10. Rust MB, Gurniak CB, Menner M, Vera H, Morando L, Gorlich A, Sasso-Pognetto M, Banchaabouchi MA, Giustetto M, Triller A, et al. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J 2010; 29:1880-902; PMID:20407421; http://dx.doi.org/10.1002/emboj.2010.7.2
11. Gorlich A, Wolf M, Zimmermann AM, Gurniak CB, Al Banchaabouchi M, Sasso-Pognetto M, Witke W, Fraudi E, Rust MB. N-Cofilin Can Compensate for the Loss of ADF in Exocytotic Synapses. PloS One 2011; 6: e26789; PMID:22046357; http://dx.doi.org/10.1371/journal.pone.0026789
12. Agawal PB, Greenleaf RS, Tomcuk AK, Lehtokari VL, Wallgren-Pettersson C, Wallefeld W, Laing NG, Darras BT, Mavicer SK, Dormitzer PR, et al. NMNL myopathy with minicores caused by mutation of the Naco.2 gene. Neurogenetics 2012; 22:632-9; PMID:22560515; http://dx.doi.org/10.1016/j.nmg.2012.03.008
13. Ockelen CW, Gilhuis HJ, Pfundt R, Kamsteeg EJ, Agawal PB, Beggs AH, Darras BT, Mavicer SK, Dormitzer PR, et al. Mutation of the Naco.2 gene. Neurogenetics 2012; 22:632-9; PMID:22560515; http://dx.doi.org/10.1016/j.nmg.2012.03.008
14. Gurniak CB, Chevessier F, Jokwitz M, Janus C, Cruz L, Gorlich A, Sasso-Pognetto M, Banchaabouchi MA, Blanchoin L, Pollard TD. The N-cofilin Isoform Associated with Human Psychiatric Diseases. J Neurosci 2012; 32:13992-8; PMID:22959888; http://dx.doi.org/10.1016/j.jneurosci.2012.11.007
15. Kremneva E, Makkonen MH, Skwarek-Maruszewska A, Gorlich A, Menner M, Darras BT, Gorlich A, Sasso-Pognetto M, Banchaabouchi MA, Blanchoin L, Pollard TD. The N-cofilin Isoform Associated with Human Psychiatric Diseases. J Neurosci 2012; 32:13992-8; PMID:22959888; http://dx.doi.org/10.1016/j.jneurosci.2012.11.007
16. Rust MB, Gurniak CB, Chevessier F, Jokwitz M, Janus C, Cruz L, Gorlich A, Sasso-Pognetto M, Banchaabouchi MA, Blanchoin L, Pollard TD. The N-cofilin Isoform Associated with Human Psychiatric Diseases. J Neurosci 2012; 32:13992-8; PMID:22959888; http://dx.doi.org/10.1016/j.jneurosci.2012.11.007
by cofilin phosphatase Slingshot in cortical neurons. J Physiol 2010; 588:2361-71; PMID:20442266; http://dx.doi.org/10.1113/jphysiol.2009.186353

29. McNair K, Spike R, Guilding C, Prendergast GC, Stone TW, Cobb SR, Morris BJ. A role for RhoB in synaptic plasticity and the regulation of neuronal morphology. J Neurosci 2010; 30:3508-17; PMID:20203211; http://dx.doi.org/10.1523/JNEUROSCI.5386-09.2010

30. Huang W, Zhou Z, Azaiez S, Henkelman M, Xia W, Jia Z, p21-Activated kinases 1 and 3 control brain size through coordinated neuronal complexity and synaptic properties. Mol Cell Biol 2011; 31:388-403; PMID:21115725; http://dx.doi.org/10.1128/MCB.00969-10

31. Rust MB, Maritzen T. Relevance of presynaptic actin dynamics for synapse function and mouse behavior. Exp Cell Res 2015; 335:165-71; PMID:25579398; http://dx.doi.org/10.1016/j.yexcr.2014.12.020

32. Pilo Boyl P, Di Nardo A, Mulle C, Sassoe-Pognetto M, Panzanelli P, Mele A, Kneussl M, Costantini V, Perlas E, Massimi M, et al. Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior. EMBO J 2007; 26:2991-3002; PMID:17541406; http://dx.doi.org/10.1038/j.emboj.7601737

33. Waites CL, Leal-Ortiz SA, Andlauer TF, Sigrist SJ, Garner CC. Piccolo regulates the dynamic assembly of presynaptic actin. J Neurosci 2011; 31:14250-63; PMID:21976510; http://dx.doi.org/10.1523/JNEUROSCI.1835-11.2011

34. Schmidt MV, Schulke JP, Liebl C, Stiess M, Avrabos C, Bock J, Wochnik GM, Davies HA, Zimmermann N, Scharf SH, et al. Tumor suppressor down-regulated in renal cell carcinoma 1 (DRR1) is a stress-induced actin bundling factor that modulates synaptic efficacy and cognition. Proc Natl Acad Sci USA 2011; 108:17213-8; PMID:21969952; http://dx.doi.org/10.1073/pnas.1103318108

35. Antshel KM, Hargrave TM, Simonescu M, Kaul P, Hendrichs K, Fataone SV. Advances in understanding and treating ADHD. BMC Med 2011; 9:72; PMID:21658285; http://dx.doi.org/10.1186/1714-7015-7-97

36. Reeve SP, Bassetto L, Genova GK, Kleyner Y, Leysen M, Jackson FR, Hassan BA. The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr Biol : CB 2005; 15:1156-63; PMID:NOTFOUND; http://dx.doi.org/10.1016/j.cub.2005.05.050

37. Won H, Mah W, Kim E, Kim JW, Hahn EK, Kim MH, Cho S, Kim J, Jang H, Cho SC, et al. GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat Med 2011; 17:566-72; PMID:21499268; http://dx.doi.org/10.1038/nm.2330

38. Durand CM, Perroy J, Loll F, Perrais D, Fagni L, Bourgeron T, Montecucciol M, Sans N. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 2012; 17:71-84; PMID:21606927; http://dx.doi.org/10.1038/mp.2011.57

39. Daffney LJ, Wei J, Cheng J, Liu W, Smith KR, Kirtler JT, Yan Z. Shank2 deficiency induces NMDA receptor hypo-function via an actin-dependent mechanism. J Neurosci 2013; 33:15767-78; PMID:24089484; http://dx.doi.org/10.1523/JNEUROSCI.1175-13.2013

40. Steinbecker A, Gampe C, Nitsche F, Bolz J. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton. Front Cell Neurosci 2014; 8:190; PMID:25071449; http://dx.doi.org/10.3389/fncel.2014.00190

41. Peykov S, Berkel S, Schoen M, Weiss K, Degenhardt F, Stromhauser J, Weiss B, Propper C, Schuett G, Nothen MM, et al. Identification and functional characterization of rare SHANK2 variants in schizophrenia. Mol Psychiatry 2015; 20:1489-98; http://dx.doi.org/10.1038/mp.2014.172

42. Daffney LJ, Zhong P, Wei J, Mazas E, Cheng J, Qin L, Ma K, Diet DM, Kajiwara Y, Budbaum JD, et al. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators. Cell Rep 2015; 11 (9):1400-13; PMID:26027926