REVIEW

Emerging therapies in the management of macular edema: a review [version 1; peer review: 2 approved]

Riccardo Sacconi, Chiara Giuffrè, Eleonora Corbelli, Enrico Borrelli, Giuseppe Querques, Francesco Bandello

Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy

Abstract

Macular edema (ME) is a major complication of several vascular and inflammatory retinal diseases. Multiple mechanisms are implicated in its development and lead to visual impairment that could be reversible (the acute stages) or not reversible (long-standing ME). For this reason, an effective approach to the treatment of ME is of paramount importance in order to prevent irreversible damage of visual function. In this review, we discuss the management of ME and, in particular, current data of studies and clinical trials about drugs that have already been evaluated or are under investigation in the management of ME. Although several diseases could lead to the development of ME, we focus on the three main causes: diabetic retinopathy (DR), retinal vein occlusion (RVO), and uveitis. The introduction into clinical practice of anti-vascular endothelial growth factor injections (ranibizumab and aflibercept) and dexamethasone implants has revolutionized the treatment of ME secondary to DR and RVO. However, new drugs are needed in the treatment of resistant forms of ME secondary to DR and RVO. A flucinolone acetonide implant has been approved by the US Food and Drug Administration for the treatment of diabetic ME but not for RVO. Furthermore, brolucizumab and abicipar pegol have been shown to be effective in preliminary studies and have the chance to be approved soon for diabetic ME treatment. In ME secondary to uveitis, a crucial role is played by corticosteroids and non-biologic immunomodulatory drugs. However, several new biologic agents are under investigation in different clinical trials and could be important new therapeutic options in cases with a low response to first-line therapy. However, only a few of these drugs will enter the market after proving their safety and efficacy. Only after that will we be able to offer a new therapeutic option to patients affected by uveitic ME.

Keywords
corticosteroid, diabetic macular edema, macular edema, retinal vein occlusion, uveitic macular edema, uveitis, vascular endothelial growth factor
Corresponding author: Francesco Bandello (bandello.francesco@hsr.it)

Author roles: Sacconi R: Conceptualization, Data Curation, Methodology, Resources, Writing – Original Draft Preparation, Writing – Review & Editing; Giuffrè C: Conceptualization, Data Curation, Methodology, Writing – Original Draft Preparation; Corbelli E: Conceptualization, Data Curation, Methodology, Writing – Original Draft Preparation; Borrelli E: Data Curation, Methodology, Resources, Validation, Writing – Review & Editing; Querques G: Conceptualization, Methodology, Resources, Validation, Writing – Review & Editing; Bandello F: Conceptualization, Methodology, Resources, Writing – Review & Editing

Competing interests: GQ is a consultant for Alimera Sciences, Amgen (Thousand Oaks, CA, USA), Bayer Schering-Pharma (Berlin, Germany), Heidelberg (Germany), KBH (Chengdu, China), LEH Pharma (London, UK), LumiThera (Poulsbo, WA, USA), Novartis (Basel, Switzerland), Sandoz (Berlin, Germany), Sifi (Catania, Italy), Sooft-Fidea (Abano, Italy), and Zeiss (Dublin, OH, USA). FB is a consultant for Alcon (Fort Worth, TX, USA), Alimera Sciences, Allergan Inc., Farmila-Thea (Clermont-Ferrand, France), Bayer Schering-Pharma, Bausch + Lomb, Genentech, Hoffmann-La Roche (Basel, Switzerland), Novagali Pharma (Évry, France), Novartis, Sanofi-Aventis (Paris, France), Thrombogenics (Heverlee, Belgium), and Zeiss. The other authors declare that they have no competing interests.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2019 Sacconi R et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Sacconi R, Giuffrè C, Corbelli E et al. Emerging therapies in the management of macular edema: a review [version 1; peer review: 2 approved] F1000Research 2019, 8(F1000 Faculty Rev):1413 (https://doi.org/10.12688/f1000research.19198.1)

First published: 12 Aug 2019, 8(F1000 Faculty Rev):1413 (https://doi.org/10.12688/f1000research.19198.1)
Introduction

Macular edema (ME) is the major cause of visual impairment in several metabolic, vascular, and inflammatory retinal diseases. It affects about 7 million patients with diabetic retinopathy (DR)\(^1\) and 3 million patients with retinal vein occlusion (RVO)\(^2\) and causes a visual decline in 40% of patients affected by uveitis\(^3\). ME is characterized by an abnormal presence of fluid inside the retinal layers of the macula\(^4\). Normally, there is a fine balance between fluid that enters and exits inside the retinal layers. This balance is necessary for the retinal homeostasis in order to obtain the tissue transparency. However, for several diseases, this balance could be compromised, resulting in an imbalance between fluid that enters and exits and thus causing ME development. The accumulation of the fluid could be extracellular (resulting in cystic space formation), intracellular (causing a swelling of the cells), or subretinal (causing the accumulation in the subretinal space)\(^5\). The regulation of fluid and molecules that enter and exit from the vitreous, retinal vessels, and choroidal vessels is controlled by structures forming the inner and the outer blood-retinal barriers\(^6\). The inner blood-retinal barrier is composed of the tight junctions between the endothelial cells of the capillaries inside the retinal plexuses, astrocytes, Müller cells, pericytes, and smooth muscle cells\(^7\). On the other hand, the outer blood-retinal barrier is composed of the retinal pigment epithelium (RPE) cells and their inter-cellular junctions that regulate the passage of fluid and molecules from the choroidal vessels to the neurosensory retina\(^8\).

ME causes visual impairment that could be reversible or permanent. Multiple mechanisms are implicated in the development of visual impairment due to ME. During the acute phase of ME development, the imbalance of fluid that enters and exits inside the retinal layers causes a retinal hydration state that interferes with the passage of light through the neuroretinal layers. These alterations lead to an acute effect on visual function, such as central vision loss, a relative central scotoma, metamorphopsia, impaired stereopsis, or disturbed color vision\(^9\)-\(^11\). In this phase, the treatment or the spontaneous resolution of ME is able to reverse the visual impairment. On the other hand, long-standing ME causes irreversible changes of the retinal layers, leading to a permanent deficit in visual function. The main anatomical damage caused by chronic ME is linked to alterations of the outer limiting membrane, photoreceptor segments (outer nuclear layer thinning and outer segment atrophy), and disorganization of inner retinal layers\(^12\)-\(^17\). For these reasons, the treatment of ME should be performed as soon as possible in order to avoid structural retinal changes and irreversible damage of visual function.

In this review, we focus on the management of ME and, in particular, on current data of studies and clinical trials about drugs that are under investigation or have already been evaluated in ME management. Although several diseases could lead to the development of ME (that is, DR\(^1\), RVO\(^2\), uveitis\(^3\), Irvine–Gass postoperative ME\(^4\), idiopathic macular telangiectasia type 1 and 2\(^5\)-\(^6\), perifoveal exudative vascular anomalous complex\(^7\), paclitaxel-induced maculopathy\(^8\), MEK inhibitor–associated maculopathy\(^9\), hypoproteinemiac\(^10\), paracentral acute middle maculopathy\(^11\), and central serous chorioretinopathy\(^12\)), we will discuss the management of the major causes of ME, including DR, RVO, and uveitis.

Management of macular edema: diabetic retinopathy

Diabetic macular edema (DME) is the first cause of visual loss in patients with diabetes\(^13\). For several years, grid and focal laser photocoagulation were considered the standard of care for DME. However, thanks to the introduction into clinical practice of intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections and corticosteroid implants, the treatment of DME has been completely revolutionized. Anti-VEGF molecules, such as ranibizumab (Lucentis, Novartis Europharm Ltd, Horsham, UK) and aflibercept (Eylea\(^\circ\), Bayer Pharma, Berlin, Germany), demonstrated a benefit ratio and superior efficacy compared with the previous standard of care (laser photocoagulation) in large phase 3 clinical trials\(^14\)-\(^16\). The encouraging results in terms of clinically relevant improvement of visual acuity, reduction of fluid accumulation, and decreased severity of DR led to their approval for DME treatment by the US Food and Drug Administration (FDA) starting in 2012. Owing to the efficacy and safety profile of anti-VEGF therapy, it has become the first-line treatment. Besides ranibizumab and aflibercept, bevacizumab demonstrated efficacy in the treatment of DME. Bevacizumab is a monoclonal antibody used to treat a number of types of cancer, although its intraocular use is considered off-label. The Diabetic Retinopathy Clinical Research Network (DRCR.net) evaluated the outcomes of patients with DME treated with bevacizumab, ranibizumab, or aflibercept and reported best outcomes in patients whose DME was treated with aflibercept with visual acuity of 20/50 or worse at baseline\(^17\).

Ziv-aflibercept (Zaltrap; Sanofi-Aventis, Bridgewater, NJ, USA/Regeneron Pharmaceuticals, Tarrytown, NY, USA) is a fusion protein approved by the FDA for the treatment of metastatic colorectal carcinoma. Although aflibercept and ziv-aflibercept are structurally identical, they differ for the buffer. This difference results in a higher osmolarity of ziv-aflibercept compared to aflibercept. De Andrade et al.\(^18\) tested the safety and efficacy of ziv-aflibercept in seven eyes affected by DME and disclosed no systemic or ocular complications during a 48-week follow-up. Furthermore, Mansour et al.\(^19\) reported the off-label intraocular use of ziv-aflibercept in the treatment of 107 eyes affected by retinal diseases and concluded that ziv-aflibercept appeared safe and efficacious. However, further randomized studies are needed to demonstrate the safety and efficacy of intraocular use of ziv-aflibercept.

Corticosteroid implants are usually used as a second-line treatment for patients without significant response to anti-VEGF injections. In 2014, an intravitreal implant with 700 μg of sustained-release biodegradable dexamethasone (Ozurdex\(^\circ\), Allergan, Inc., Irvine, CA, USA) was approved by the FDA for the treatment of DME. The MEAD study demonstrated the efficacy of dexamethasone implant in the treatment of DME with an acceptable safety profile and a low number of implants (four or five injections over a 3-year follow-up)\(^20\).
Despite the strong efficacy achieved with anti-VEGF and corticosteroid therapies, a significant portion of patients do not experience clinically meaningful improvements in vision in the real world with persistent or resistant forms of DME31-35. Moreover, frequent intravitreal administration is required to achieve and, in some cases, to maintain the observed early benefits of DME treatment over a long period of time, imposing a significant burden on patients, caregivers, treating physicians, and the health-care system. Both of these factors formed the impetus for developing new drugs and alternative methods of administration for the treatment of DME.

Novel treatment strategies for DME could be classified into four subgroups: a new slow-release sustained-delivery system for intraocular steroid, next-generation anti-VEGF-A drugs, combination drugs, and suprachoroidal corticosteroids.

New slow-release sustained-delivery system for intraocular steroid

Iluvien. Iluvien (Alimera Sciences, Alpharetta, GA, USA) is an injectable non-biodegradable intravitreal insert for sustained release of fluorocinolone acetonide (FaC), a potent glucocorticoid receptor agonist, for up to 36 months. The implant, inserted into the vitreous cavity via a 25-gauge needle, contains 0.19 mg of FaC and provides a release rate of 0.2 µg/day. Iluvien is usually used for the treatment of DME in patients who previously received a course of corticosteroids and did not have a significant increase in eye pressure. The clinical efficacy of Iluvien has been evaluated in a phase 3 FAME clinical trial and confirmed by several real-life reports46-49. Of note, the continuous dosing ensures the treatment even in the case of delay to follow-up appointments. This is a fundamental advantage given that many factors can change the intensive dosing schedule required for optimal results in anti-VEGF therapy. Currently, Iluvien is approved by the FDA for the treatment of DME.

Next-generation anti-VEGF-A drugs

Brolicizumab. Brolicizumab (Novartis Pharmaceuticals, Basel, Switzerland) is a humanized single-chain fragment variable binding to VEGF-A and interfering with activation of VEGF receptor 1 and 2 on endothelial cells. A 6-mg dose of brolicizumab delivers a molar dose which is about 11 and 22 times higher than aflibercept 2 mg and ranibizumab 0.5 mg, respectively. In addition, the low molecular weight and high concentration gradient between the vitreous and the retina may increase drug distribution to the target site of action, supporting effective control of anatomical disease activity. The drug has already been shown to be promising for the treatment of neovascularization associated with wet age-related macular degeneration in the HAWK and HARRIER clinical trials51. Instead, in regard to DME, a phase 3, multi-center, double-masked clinical trial of this agent is ongoing to evaluate the efficacy and safety of brolicizumab in treatment of adult patients with visual disturbance due to DME in comparison with the administration of aflibercept53. The results will be available in the next few years.

Abicipar pegol. Abicipar pegol (Allergan Inc.) belongs to a novel class of small proteins that contain engineered ankyrin repeat domain(s) and bind to target proteins with high specificity and affinity. It is an antagonist of VEGF-A characterized by small size, high potency, and long intravitreal half-life. Results from the phase 2 study showed that abicipar pegol, injected every 8 or 12 weeks in patients affected by DME, offered the functional and anatomical effects with less frequent injections compared with ranibizumab over a 28-week period55.

Angiopoietin combination drugs. Together with VEGF-A, angiopoietin-2 (Ang-2) is considered a key factor in DME pathogenesis. Ang-2 is an antagonist of the Tie2 receptor tyrosine kinase on endothelial cells, counteracting vessel stabilization maintained through Ang-1–dependent Tie2 activation. The excess of Ang-2 and VEGF in the retinal tissues promotes vessel destabilization, vascular leakage, and neovascularization, Ang-2 is also involved in inflammatory pathways such as lymphocyte recruitment46-49. Different drugs targeting Ang-2, including RO6867461, a humanized full-length bispecific IgG1 antibody that selectively neutralizes VEGF-A and Ang-2, are in development. A phase III, double-masked, multicenter, randomized study is ongoing to evaluate the efficacy, safety, pharmacokinetics, and optimal treatment frequency of RO6867461 administered by intravitreal injection at 8-week intervals50.

Conbercept (KH902). Since its approval in China in 2013, conbercept has been used there for the treatment of neovascular age-related macular degeneration and other retinal vascular diseases, including DME52-55. However, it has not yet reached the market in other countries, although, given its excellent safety and efficacy profile, it has gained worldwide attention as a promising option. It is a recombinant fusion protein composed of the second IgG domain of VEGFR1 and the third and fourth domains of VEGFR2 to the constant region (Fc) of human IgG1. The structure is similar to that of aflibercept; however, conbercept has a VEGFR2 kinase insert domain receptor (KDR) Ig-like region 4 (KDRd4) that can improve the three-dimensional structure and increase dimer formation efficiency, thereby increasing the binding capacity of conbercept for VEGF. In vitro experiments have shown that binding of conbercept to VEGF is at least 30 times higher than that of ranibizumab and bevacizumab, achieving the same therapeutic effects but with a lower dose51-55.

In patients with DME, the FRONTIER56 and SAILING57 studies showed improvements in visual acuity and corresponding decreases in retinal thickness on optical coherence tomography. More trials on DME are in the planning stages.

Combination drugs

OPT-302. OPT-302 (Opthea Limited, South Yarra, Victoria, Australia) binds to VEGF receptor 2 and 3, neutralizing the activity of VEGF-C and -D. A combined use of OPT-302 with the currently available anti-VEGF-A therapy may be reasonable for a true total VEGF inhibition. A phase 1b dose escalation study to evaluate OPT-302 in combination with aflibercept showed good results in vision improvement and reductions in retinal swelling58. A phase 2a randomized controlled clinical study with OPT-302 is ongoing59.
ALG-1001. ALG-1001 (Allegro Ophthalmics, San Juan Capistrano, CA, USA) is a first-in-class integrin peptide therapy. The molecule is able to bind specific integrin receptor sites and works by affecting multiple angiogenic pathways and inflammation. ALG-1001 showed promising results in the phase Ib clinical trial that evaluated it as a sequential therapy or in combination with bevacizumab in patients with DME.

Suprachoroidal corticosteroid

Promising technologies for drug delivery currently under investigation include refillable surgical intravitreal implants, encapsulated cell technology, and suprachoroidal drug delivery. A phase 1 and 2 exploratory clinical trial examined suprachoroidal triamcinolone acetonide with and without intravitreal aflibercept, demonstrating increased efficacy and durability with the investigational drug. Used together with intravitreal aflibercept, suprachoroidal triamcinolone acetonide was generally well tolerated, and no treatment-related serious adverse events were reported in the TYBEE trial through the 24-week evaluation period.

Management of macular edema: retinal vein occlusion

ME is the main cause of the deterioration of visual acuity in RVO. Actually, the first-line therapy in the treatment of ME secondary to RVO is represented by the intravitreal anti-VEGF injections of ranibizumab and aflibercept. Moreover, intravitreal corticosteroid agents, such as triamcinolone and dexamethasone implant, have been evaluated and are currently considered valid therapeutic options in RVO treatment because of their anti-inflammatory, anti-angiogenic, and anti-edema properties. They are able to improve visual acuity in the short term and have proven especially useful in pseudophakic patients or patients who do not experience significant intraocular pressure elevation with local steroid use. In regard to new therapeutic strategies, Iluvien (Sooft S.p.a., Montegiorgio, Italy) injection via pars plana has been largely used in UME, and the response has been excellent though brief. It appears to be more effective than periocular triamcinolone but with more side effects.

The fully biodegradable slow-release implant of dexamethasone (Ozurdex) is delivered for a period of 4 months and its safety and efficacy in non-infectious intermediate and posterior uveitis have been shown by the HURON study group and others. Some studies reported the use of Ozurdex implant in persistent UME secondary to infectious uveitis after total control of active infection.

Retisert (Bausch + Lomb, Rochester, NY, USA) is a non-biodegradable depot of 0.59-mg FAc surgically implanted through the pars plana and sutured to the sclera. The MUST trial showed the overall superiority of FAc implant in controlling non-infectious uveitis compared with systemic therapy.

Iluvien is a non-biodegradable depot of 0.19-mg FAc approved for the treatment of DME. Iluvien is currently in randomized controlled clinical trials for the treatment of non-infectious uveitis.

Systemic. Systemic corticosteroids are effective in treating UME, especially when bilateral, but systemic adverse effects prevent their long-term use. Prednisone is the most commonly used, and dosing and tapering should be individualized to the patient.

Non-biologic immunomodulatory agents

Non-biologic immunomodulatory drugs are used as a second-line treatment for UME as corticosteroid-sparing agents. There are no randomized controlled trials toward the efficacy of these medications specifically on UME. Non-biologic immunomodulatory drugs include anti-metabolites (azathioprine, methotrexate, and mycophenolate mofetil), inhibitors of T-cell signaling (cyclosporine A, tacrolimus, and sirolimus), and alkylating agents (cyclophosphamide).

Corticosteroids

Corticosteroids are the mainstay of UME therapy because of their potent and fast-acting anti-inflammatory properties. However, short-term use is advised because of the harmful local (that is, cataract and intraocular pressure elevation) and systemic side effects.

Topical. When inflammation in either subclinical or mild or UME is associated with anterior uveitis, a topical corticosteroid represents the first-line approach. The dose and duration of therapy depend on the underlying cause and the grade of inflammation, beginning with higher doses to be slowly tapered over time.

Periocular. When inflammation is moderate to severe or UME is unresponsive to a topical approach, corticosteroids are administered through periocular depots. Triamcinolone acetonide and methylprednisolone acetate, administered via transeptal or sub-Tenon injections, are the most commonly employed.

Intravitreal. Triamcinolone acetonide (Taioftal®, Sooft S.p.a., Montegiorgio, Italy) injection via pars plana has been largely used in UME, and the response has been excellent though brief. It appears to be more effective than periocular triamcinolone but with more side effects.

Non-biologic immunomodulatory agents

Non-biologic immunomodulatory drugs are used as a second-line treatment for UME as corticosteroid-sparing agents. There are no randomized controlled trials toward the efficacy of these medications specifically on UME. Non-biologic immunomodulatory drugs include anti-metabolites (azathioprine, methotrexate, and mycophenolate mofetil), inhibitors of T-cell signaling (cyclosporine A, tacrolimus, and sirolimus), and alkylating agents (cyclophosphamide).

Below, we analyze the main treatments currently in use and the new therapeutic options for non-infectious UME. Infectious UME, conversely, is treated with targeted anti-microbial therapy, and anti-inflammatory treatments should be used after the active infection has been totally controlled.
Azathioprine, methotrexate, and mycophenolate in patients with uveitis, but few data exist when referring specifically to UME. Intravitreal sirolimus presents a better safety profile than subcutaneous route with good control of inflammation and improvement of UME, but the results of SAVE studies demonstrated that frequent reinjections are needed.

Cyclosporine A and tacrolimus are both effective in patients with uveitis, but few data exist when referring specifically to UME. Intravitreal sirolimus presents a better safety profile than subcutaneous route with good control of inflammation and improvement of UME, but the results of SAVE studies demonstrated that frequent reinjections are needed.

Cyclosporine inhibits both RNA transcription and DNA duplication. The SITE cohort study showed good control of cyclosporine with cyclophosphamide with a non-statistically significant increase in cancer-related mortality rates.

Biologic immunomodulatory agents
Biologic immunomodulatory agents are humanized antibodies used for recalcitrant UME despite steroidal or traditional immunosuppressive treatments or both. Their main adverse effects include exacerbation of infectious and autoimmune diseases.

Tumor necrosis factor alpha blockers (anti-TNF-α) inhibit TNF-α, a pro-inflammatory cytokine considered crucial in the pathogenesis of different uveitis. Adalimumab (Humira; AbbVie Inc., North Chicago, IL, USA) is currently the only systemic non-corticosteroid agent which has been approved by the FDA for the treatment of non-infectious intermediate uveitis, posterior uveitis, or panuveitis in adults and children more than 2 years old. Many studies have shown improvement in macular thickness after systemic adalimumab but not after intravitreal administration.

Infliximab (Remicade®, Janssen Biotech, Inc., Horsham, PA, USA) is an anti-TNF-α administered intravenously. Like adalimumab, infliximab has shown positive results with systemic delivery and not with an intravitreal route of administration.

Golimumab (Simponi®, Janssen Biotech Inc.) is another anti-TNF-α whose efficacy in UME has been demonstrated in case reports and small case series. Large control studies are required.

Etanercept (Enbrel®, Immunex Corporation, Seattle, WA, USA) is a fusion protein that blocks TNF-α and TNF-β and has been found to be ineffective for uveitis treatment. Its use has been discouraged in many case series.

Tocilizumab (Actemra®, Genentech Inc., San Francisco, CA, USA) blocks interleukin-6 (IL-6), a strong pro-inflammatory cytokine. Several studies have demonstrated efficacy in UME refractory to previous treatments in different types of uveitis.

Rituximab (Rituxan®, Genentech Inc.) targets CD20, which is the differentiation cluster of mature B cells. Multi-centered randomized controlled trials are lacking, but small case series have demonstrated beneficial effects in the treatment of non-infectious uveitis and UME.

Many other molecules—such as abatacept (Orencia®, Bristol-Myers Squibb Company, New York, NY, USA), a T-lymphocyte inhibitor; gevokizumab (XOMA 052, XOMA Corporation, Berkeley, CA, USA), an anti-IL-1β; ustekinumab (Stelara, Janssen-Cilag International NV, Beerse, Belgium), an anti-IL-12 and anti-IL-23; and filgotinib (GLPG0634), a janus kinase inhibitor—are under investigation in different phase 2 clinical trials with promising results.

Conclusions
ME is a major complication of several vascular and inflammatory retinal diseases and multiple mechanisms are implicated in its development. During the acute phase of ME development, there is a visual function decline that often is reversible after the resolution of the edema (spontaneous resolution or after treatment). On the other hand, long-standing ME causes irreversible anatomical changes of the retina, leading to a permanent impairment of visual function. For these reasons, ophthalmologists should treat ME in the early phases of development in order to avoid irreversible damage of visual function.

The treatment of ME changes depending on the causative disease. In the DR, different intravitreal drugs for the treatment of DME, such as anti-VEGF injections (ranibizumab and aflibercept) and intravitreal corticosteroids (Ozurdex and Iluvien), are available. However, despite the strong efficacy achieved with these drugs, a significant proportion of patients with DME do not achieve anatomical or functional improvements. For this reason, new drugs are needed in the treatment of persistent or resistant forms of DME. Some of the drugs described here, especially brodalucizumab and abicipar pegol, have been shown to be effective in preliminary studies, and these are probably the ones that have a better chance of soon being approved for the treatment of DME.

Also, for ME secondary to RVO, the therapeutic options are very similar to those for DME. However, Iluvien is not yet FDA-approved for the treatment of ME secondary to RVO.

ME secondary to uveitis is another important complication. In this case, a crucial role is played by corticosteroids (topical, periocular, intravitreal, and systemic) and non-biologic immunomodulatory drugs. However, in several cases, there is no resolution of UME, and the introduction into clinical practice of new biologic agents is an important new therapeutic option. Some of these new drugs (that is, adalimumab) have been approved by the FDA whereas several others are under investigation. Nonetheless, first it will be important to prove the safety and efficacy of these new drugs. Only after that will we have new therapeutic options in the treatment of UME.

Abbreviations
Ang, angiopoietin; DME, diabetic macular edema; DR, diabetic retinopathy; FAc, fluorocilolone acetonide; FDA, US Food and Drug Administration; IL, interleukin; ME, macular edema; RVO, retinal vein occlusion; TNF, tumor necrosis factor; UME, uveitic macular edema; VEGF, vascular endothelial growth factor.
Author contributions
All of the authors made substantial contributions to the conception, acquisition, and interpretation of data; drafted the work or revised it critically for important intellectual content; gave final approval of the version to be published; and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Grant information
The author(s) declared that no grants were involved in supporting this work.
37. Smiddy WE: Economic considerations of macular edema therapies. Ophthalmology. 2011;118(9):1827–33. Published Abstract | Publisher Full Text | Free Full Text

40. Xu Y, Rong A, Xu W, et al.: Intravitreal Conbercept Injections and Without Grid Laser Photocoagulation in the Treatment of Diffuse Diabetic Macular Edema in Real-Life Clinical Practice. J Ophthalmol. 2016; 2016: 2433082. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

42. Boyer DS, Yoon VH, Bellfort R Jr, et al.: Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014; 121(10): 1904–14. Published Abstract | Publisher Full Text | F1000 Recommendation

43. Lang GE, Belfort R Jr, Eidem BM, et al.: Two-year safety and efficacy of ranibizumab 0.5 mg in diabetic macular edema: interim analysis of the RESTORE extension study. Ophthalmology. 2013; 120(10): 2004–12. Published Abstract | Publisher Full Text

45. Campochiaro PA, Brown DM, Pearson A, et al.: Sustained delivery fluorocinolone acetate vireotus inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology. 2012; 119(10): 2125–32. Published Abstract | Publisher Full Text | F1000 Recommendation

46. Bailey C, Chakravarti U, Lotery A, et al.: Real-world experience with 0.2%dexamethasone intravitreal implant (LIVIEN) in the United Kingdom. Eye (Lond). 2017; 31(12): 1707–15. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

48. Fusius-Briano W, Mhkinage C, Lane M, et al.: Treating Diabetic Macular Oedema (DIMO): world UK clinical outcomes for the 0.1mg Fluocinolone Acetate intravitreal implant (liveni) at 2 years. BMC Ophthalmol. 2018; 18(1): 62. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

49. Novartis Pharmaceuticals: Study of efficacy and safety of Brolucizumab vs. Affiberep in Patients with visual impairment due to diabetic macular edema (KESTREL). In: ClinicalTrials.gov [cited 2019 Apr 27]. Reference Source

50. Hassan TS: A multicenter, double masked phase 2 clinical trial evaluating abicipar pegol for diabetic macular edema. Paper presented at: American Academy of Ophthalmology Annual Meeting; October 14-18; Chicago, IL, 2016.

51. Ayls J, Avery RL, Arrigg PG, et al.: Recombinant angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. N Engl J Med. 1997; 337(5322): 55–60. Published Abstract | Publisher Full Text

52. Fieder U, Kriess T, Koidl S, et al.: Angiopoietin-1 and angiopoietin-2 share the same binding site on the Tie-2 receptor involving the first ligand loop and the epidermal growth factor-like repeats. J Biol Chem. 2003; 278(3): 1721–7. Published Abstract | Publisher Full Text

53. Zhang M, Yu D, Yang C, et al.: The pharmacology study of a new recombinant human VEGF receptor-fc fusion protein in experimental choroidal neovascularization. Pharm Res. 2009; 26(1): 204–10. Published Abstract | Publisher Full Text

54. Zhang M, Zhang J, Yan M, et al.: Recombinant anti-vascular endothelial growth factor fusion protein efficiently suppresses choroidal neovascularization in monkeys. Mol Vis. 2008; 14: 37–47. Published Abstract | Free Full Text

56. Chengdu Kanghong Biotech Co: Safety and efficacy by multiple injection of KH902 in patients with diabetic macular edema (DME) (Frontier-1). In: ClinicalTrials.gov [cited 2019 Jul 15]. Reference Source

57. Chengdu Kanghong Biotech Co: Safety and efficacy study of conbercept in diabetic macular edema (DME) (Sailing). In: ClinicalTrials.gov [cited 2019 Jul 15]. Reference Source

58. Opteva Limited: A Dose Ranging Study of OPT-302 With Affiberep for Persistent Diabetic Macular Edema. In: ClinicalTrials.gov [cited 2019 Apr 27]. Reference Source

59. Kaiser PK: Topline results from prospective, double-masked, placebo controlled phase 2b clinical study evaluating Luminate in patients with diabetic macular edema. Paper presented at: Association for Research in Vision and Ophthalmology Annual Meeting; Washington, DC, 2017.

60. Boyer DS: Human phase 2a clinical studies update. DEL MAR Phase 2B. Paper presented at: Angiogenesis 2017; Miami, FL, 2017.

61. Pearce W, Hsu J, Yeh S: Advances in drug delivery to the posterior segment. Curr Opin Ophthalmol. 2015; 26(3): 233–9. Published Abstract | Publisher Full Text | Free Full Text

62. Wynkoop CC: Suprachoroidal triamcinolone acetone with and without intravitreal aflibercept for diabetic macular edema: Phase 1/2 HULK study. Paper presented at American Academy of Ophthalmology Retina Subspecialty Day; November 10-11, New Orleans, LA, 2017.

63. Clearside Biomedical, Inc: Suprachoroidal CLS-TA with intravitreal aflibercept versus aflibercept alone in subject with diabetic macular edema (TYBEE). In: ClinicalTrials.gov [cited 2019 Apr 27]. Reference Source

64. Hayreh SS: Ocular vascular occlusive disorders: natural history of visual outcome. Prog Retin Eye Res. 2014; 41: 1–25. Published Abstract | Publisher Full Text | Free Full Text

65. Holz FG, Roider J, Opara Y, et al.: VEGF Trap-Eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the phase III GALILEO study. Br J Ophthalmol. 2013; 97(3): 278–84. Published Abstract | Publisher Full Text | Free Full Text

66. Boyer D, Heier J, Brown DM, et al.: Vascular endothelial growth factor Trap-Eye for macular edema secondary to central retinal vein occlusion: six-month results of the phase 3 COPERNICUS study. Ophthalmology. 2012; 119(5): 1024–32. Published Abstract | Publisher Full Text | Free Full Text

67. Haller JA, Bandello F, Bellfort R Jr, et al.: Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macula edema due to retinal vein occlusion. Ophthalmology. 2010; 117(6): 1134–1146.e3. Published Abstract | Publisher Full Text

68. Novartis Pharmaceuticals: Assessing the Efficacy and Safety of Brolucizumab Versus Aflibercept in Patients With Visual Impairment Due to Macular Edema Secondary to Central Retinal Vein Occlusion (RAVEN). In: ClinicalTrials.gov [cited 2019 Apr 27]. Reference Source

69. Novartis Pharmaceuticals: Assessing the Efficacy and Safety of Brolucizumab Versus Aflibercept in Patients With Visual Impairment Due to Macular Edema Secondary to Branch Retinal Vein Occlusion (RAPTOR). In: ClinicalTrials.gov [cited 2019 Apr 27]. Reference Source

70. Cunningham ET, Zehnut M: Uveitic Macular Edema. Ocul Immunol Inflamm. 2018; 26(7): 987–90. Published Abstract | Publisher Full Text | F1000 Recommendation

71. Bodaghi B, Cassoux N, Wechsler B, et al.: Chronic severe uveitis: etiology and visual outcome in 927 patients from a single center. Medicine (Baltimore). 2001; 80(4): 263–70. Published Abstract | Publisher Full Text

72. Prble JM, Foster GS: Uveitic macular edema: A stepladder treatment paradigm, Clinical Investigation. 2015; 8(5): 509–17. Reference Source

73. Koronis S, Stavarakas P, Baldis M, et al.: Update in treatment of uveitic macular edema. Drug Des Devel Ther. 2019; 13: 667–80. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

74. Babu K, Mahendradass P: Medical management of uveits - current trends. Indian J Ophthalmol. 2013; 61(6): 277–83. Published Abstract | Publisher Full Text | Free Full Text

75. Dicker AD, Rosenbaum JT, Al-Omri HA, et al.: Guidance on Non corticosteroid Systemic Immunosupmodulatory Therapy in Noninfectious Uveitis: Fundamentals Of Care for Uveitis (FOCUS) Initiative. Ophthalmology. 2012; 119(5): 767–73. Published Abstract | Publisher Full Text | F1000 Recommendation

76. Sheppard JD, Toyoos MM, Kempen JH, et al.: Difluprednate 0.05% versus prednisolone acetate 1% for endogenous anterior uveitis: a phase III, multicenter, randomized study. Invest Ophthalmol Vis Sci. 2014; 55(5): 2993–3002. Published Abstract | Publisher Full Text | Free Full Text

77. Riordan-Eva P, Lightman S: Orbital floor steroid injections in the treatment of uveitis. Eye (Lond). 1994; 8(1): 66–9. Published Abstract | Publisher Full Text

78. Jennnings T, Rusin MM, Tessler HH, et al.: Posterior sub-Tenon’s injections of steroids in uveitis patients with cystoid macular edema. Jpn J Ophthalmol. 2014; 58(1): 115–20. Published Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✓ ✓

Editorial Note on the Review Process
F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1 Akitaka Tsujikawa
 Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
 Competing Interests: No competing interests were disclosed.

2 Andrew Chang
 Sydney Institute of Vision Science, Sydney, NSW, Australia
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com