PLATFORM STRATEGY:
MANAGING ECOSYSTEM VALUE THROUGH SELECTIVE PROMOTION OF COMPLEMENTS

JOOST RIETVELD
j.rietveld@ucl.ac.uk
UCL School of Management
University College London
Level 38, One Canada Square, Canary Wharf,
London E14 5AA, United Kingdom

MELISSA A. SCHILLING
mschilli@stern.nyu.edu
Stern School of Business
New York University
40 West 4th Street
New York, NY 10012, USA

CRISTIANO BELLAVITIS
c.bellavitis@auckland.ac.nz
Auckland Business School
Auckland University
12 Grafton Road
Auckland, 1010, New Zealand

Forthcoming in Organization Science

Keywords: Platforms; ecosystems; complements; value creation; value capture; endorsements

This version: January, 2019

1 Corresponding author.
The paper benefited from feedback received during various presentations including a SMS special conference in Rome (2016), the Platform Strategy Research Symposium in Boston (2016), the Academy of Management in Anaheim (2016), the Innovation and Entrepreneurship conversation at Imperial College London (2017), and the Sumantra Ghoshal conference at London Business School (2017). The paper also benefited from seminar presentations at the Strategy unit of Harvard Business School, the Strategy and Entrepreneurship department at University College London, the Strategy area at INSEAD, the Strategy department at IESE, the Entrepreneurship and Innovation department at Imperial College London, the Management School of the University of Liverpool, and at the Stern School of Business of New York University. We are indebted to Marshall van Alstyne, Genevieve Bassellier, JP Eggers, Brad Greenwood, Masakazu Ishihara and Bill Greene for their feedback on our paper. We thank Suzanne Müller for helping to collect data. We also thank all of our industry informants for their insights into the video game industry and for sharing data to facilitate our research. Finally, we thank Senior Editor Gary Dushnitsky and two anonymous reviewers for their constructive and helpful feedback. All mistakes are our own.
PLATFORM STRATEGY:
MANAGING ECOSYSTEM VALUE THROUGH SELECTIVE PROMOTION OF COMPLEMENTS

Abstract: Platform sponsors typically have both incentive and opportunity to manage the overall value of their ecosystems. Through selective promotion, a platform sponsor can reward successful complements, bring attention to underappreciated complements, and influence the consumer’s perception of the ecosystem’s depth and breadth. It can use promotion to induce and reward loyalty of powerful complement producers, and it can time such promotion to both boost sales during slow periods and reduce competitive interactions between complements. We develop arguments about whether and when a platform sponsor will selectively promote individual complements, and test these arguments on data from the console video game industry in the United Kingdom. We find that platform sponsors do not simply promote “best in class” complements; they strategically invest in complements in ways that address complex tradeoffs in ecosystem value. Our arguments and results build significant new theory that helps us understand how a platform sponsor orchestrates value creation in the overall ecosystem.

Keywords: Platforms; ecosystems; complements; value creation; value capture; endorsements.
INTRODUCTION

Many markets are structured as platform ecosystems, where a stable core (such as a smartphone operating system or a music streaming service) mediates the relationship between a wide range of complements (such as software applications or music titles) and prospective end-users. When a market is composed of a platform and complements in this way, there can be a complex interplay in how each element of the bundle contributes to the overall value of the system, and there are important interdependencies between the actions of the members comprising the ecosystem (Ceccagnoli et al., 2012; Gawer, 2014; Jacobides, Cennamo and Gawer, 2018; McIntyre and Srinivasan, 2017; Pierce, 2009).

Members of a platform ecosystem often have strong vested interest in each other’s fates. Because it is the overall appeal of the ecosystem that attracts end-users to the platform, the success of individual members depends, at least in part, on the success of other members of the ecosystem—even those with which they may be simultaneously competing. Furthermore, in many platforms there are switching costs that make it difficult or costly to change ecosystems. Platforms and their complements may have made investments in co-specialization or signed exclusivity agreements that bind them into stickier, longer-term relationships than the market contracts used in typical reseller arrangements. A platform ecosystem is thus characterized by relationships that are neither as independent as arms-length market contracts, nor as dependent as those within a hierarchical organization. It is, in essence, a hybrid organizational form.

Because a platform sponsor interacts with all the complements and with the end-users, it is often in a strong position to exert governance over the ecosystem (Adner and Kapoor, 2010; Boudreau and Hagiu, 2009; Wareham, Fox and Giner, 2014; Yoffie and Kwak, 2006). It possesses both incentive and ability to manage how the ecosystem creates value. Its actions influence not only the standalone value of its platform, but also the breadth, range, and quality of the complements produced by others. It can draw attention to complements in areas in which the overall ecosystem needs bolstering, and it can influence the timing of that attention to manage the ecosystem’s lifecycle. Compared to a retailer that can let products compete in survival-of-the-fittest fashion and can easily adapt its product mix based on their performance, a platform sponsor is in longer-term relationships with its complements and is thus more
vested in their success over the long term. However, in its activities to influence their success, the platform sponsor must also consider the differential value that each offers to the overall ecosystem, the competitive relationships between complements, and issues relating to exclusivity agreements.

A key way a platform sponsor manages the value of its overall ecosystem is through selective promotion with which it nurtures the success of individual complements, and manages end-users’ perception of the breadth and depth of the platform. Apple provides an apt example: By choosing applications to feature on the home screen of its iOS App Store in categories like “Editor’s choice,” “Best New Apps,” “Best New Games,” it draws more attention to these complements and boosts their sales. Applications that are featured by Apple in this way may get up to six times as many downloads as other applications during the period they are featured. Furthermore, through selectively targeting different types of applications, it manages end-users’ perceptions of the range and overall quality of the ecosystem, and can help to broaden the range of applications adopted by consumers. Examples of other platforms that use selective promotion to manage their ecosystem of complements include music streaming service Spotify which generates curated playlists, Kickstarter which creates lists of “Projects We Love,” and Sony PlayStation which endorses video games under the “Platinum” re-release label.

Though the relationship between a platform and its complements is similar in some ways to the relationship between a reseller and the manufacturers it works with, the motives and mechanisms of selective promotion by a platform sponsor are substantially different from the reseller trade promotions studied in the marketing literature. The typical trade promotion transaction is a price cut offered by a manufacturer to a reseller to encourage the reseller to reduce the retail price (“pass through”). Occasionally such trade promotions take other forms such as bill-back allowances, advertising allowances, free goods, inventory financing, etc. (e.g., Kumar, Rajiv and Jeuland, 2001). One of the frequent findings in research on trade promotions is that retailers often do not fully pass the incentive on to consumers, but instead capture it as profit for themselves (Ailawadi and Harlam, 2009; Ailawadi et al.,

\[\text{Source: http://venturebeat.com/2014/04/24/apps-featured-by-apple-or-google-get-6-times-the-downloads-and-9-times-the-revenue-or-nothing/ - last accessed January, 2019.}\]
2009; Lal, 1990; Wellam, 1998). This highlights that, in general, trade promotion is initiated and funded by the manufacturer, not the retailer. It is uncommon for a reseller to invest in promoting a manufacturer’s goods unless that promotion has been funded by the manufacturer themselves, and when this occurs, it is typically for high market share, high margin products (Ailawadi and Harlam, 2009). Platform sponsors’ incentives, on the other hand, are more complex; the co-specialization that occurs between platform and complement, and the need to foster a valuable and complete ecosystem, motivate a platform to more actively orchestrate the attention paid to different complements.

Selective promotion can take many forms—endorsements, awards, special marketing campaigns, being featured in higher visibility locations, and more. Selective promotion can be important in any industry, but it is a particularly interesting and important strategic lever in platform industries precisely because of the interdependence between members of the ecosystem, and the governance role played by the platform sponsor (Jacobides et al., 2018). There has been considerable research on how types of awards or endorsements influence consumer perceptions and the subsequent economic value of a product or service (e.g., Agrawal and Kamakura, 1995; Biswas, Biswas and Das, 2006; Dean and Biswas, 2001; Erdogan, 1999; Friedman, Termini and Washington, 1976). However, in a platform ecosystem the sponsor has to choose between different complements to promote, many of which will be competing for the attention of the same users. This is a fundamentally different question than the one historically examined in the marketing literature (i.e., does endorsement help and which kinds help the most).

In a platform ecosystem, the decision to selectively promote a complement confers advantage to one complement over others, and it is a more complex strategic decision than may at first be apparent. First, a platform sponsor typically cannot promote all complements due to resource constraints and the need to protect the meaning and credibility of its promotion efforts. This means it must make careful choices about which promotion efforts will have the biggest payoff in terms of value created and captured. This leads to a second complication: Producers of complements are likely to be competing against each other, and the platform sponsor’s investment will influence the competitive dynamics.
between them, which in turn affects their incentives and their bargaining power. A third complication is that complements create value in the ecosystem both through their individual performance and, as alluded to earlier, through their contribution to the ecosystem’s overall depth and range that attracts end-users to the platform. Sometimes the complement with the best individual performance is not the one that would best increase the overall appeal of the portfolio or the range of consumers the portfolio can attract. If, for example, multiple high-quality complements meet the same consumer needs they may be redundant in terms of their contribution to the overall ecosystem. In this case, the platform sponsor might be better off rationing scarce resources in a way that meets a broader variety of needs. Finally, two complements might be of comparable quality, but one might be exclusive to the platform while the other is not. In general, a platform sponsor is likely to capture more of the value created by complements with which it has more favorable terms or an exclusive arrangement. Collectively, this means that complements of similar quality or performance could differ significantly in the value they offer to the platform sponsor. There is also a temporal element to platform’s governance strategies; the platform sponsor might, for example, use selective promotion to create excitement around a complement during an otherwise slow sales period, or bring a complement to the attention of later adopters of the platform. These complexities raise important questions about how and when platform sponsors deploy their resources to greatest advantage: How do platform sponsors choose the complements to promote, and when to promote them?

There has been considerable research on how a platform’s features such as price, openness, installed base, and complementor composition affect its competitive position (Boudreau, 2010; Boudreau and Jeppesen, 2015; Brynjolfsson and Kemerer, 1996; Clements and Ohashi, 2005; Parker and Van Alstyne, 2005; Schilling, 2003; Seamans and Zhu, 2013; Shankar and Bayus, 2003). There also has been growing interest in the determinants of complementor success (Boudreau, 2012; Eckhardt, 2016; Kapoor and Agarwal, 2017; Rietveld and Eggers, 2018; Yin, Davis and Muzyrya, 2014). However, despite a

3 In some cases, complement producers will be competing directly against the platform sponsor itself, when the platform sponsor also produces complements (see, for example: Gawer and Henderson, 2007; Zhu and Liu, 2018)
4 For an extensive literature review, see McIntyre and Srinivasan (2017).
growing awareness that platform ecosystems are often managed by a single player that possesses a high degree of architectural control (Boudreau and Hagiu, 2009; Jacobides et al., 2018; Schilling, 2009; Yoffie and Kwak, 2006), research on how platform owners deliberately orchestrate their ecosystems is relatively scant. Important exceptions include recent work by Adner and Kapoor (2010), and Wareham et al. (2014), but we still have much to learn about how platforms manage their ecosystems.

We build theoretical arguments about how platform sponsors decide which complements to selectively promote, and when to promote them, to increase the value of the ecosystem. We empirically test these arguments in the console video game industry using data on the decisions platforms (i.e., video game consoles) make about awarding “Best of” titles to individual video games, a practice that is referred to as “endorsement.” Video games chosen for endorsement are repackaged with the award figuring prominently and are relaunched to the market. Such selective promotion typically has a large effect on the subsequent performance of the game. Though our arguments are equally applicable to other types of selective promotion (e.g., advertising, prominently featuring or recommending complements on the platform’s website, selecting complements for a bundling arrangement with the platform), “Best of” endorsements are the primary means by which platforms selectively promote complements in the console video game industry. Furthermore, because they are visible, easily measured, and of high impact, they provide an excellent context for our study. We show that selective promotion is a complex strategic decision: Though platform sponsors seek both depth and breadth of complements to attract and satisfy end-users, quality concerns, exclusivity, and timing issues create strategic trade-offs the platform sponsor must take into consideration in determining whether and when to promote individual complements.

USING SELECTIVE PROMOTION TO MANAGE ECOSYSTEM VALUE

A platform sponsor wishes to increase the overall value of its ecosystem and its ability to extract value from the ecosystem. Increasing the overall value of its ecosystem enhances its direct profitability because the platform sponsor typically captures a share of the value created by each member of the ecosystem, in addition to the value it creates through sales of its own platform and its own complements. For example,
Sony sells its PlayStation video game consoles at a loss while profiting from the royalty payments it receives from third-party game developers as well as from the sales of its own video games.

The factors that have the greatest influence on the value of the overall ecosystem are a) consumers’ perception of the quality and installed base of the platform itself, b) consumers’ perception of the quality of individual complementary goods, which is in part due to their interaction with the quality of the platform, and c) the depth and breadth of the complements in the ecosystem (for a more detailed discussion, see Schilling, 1998, 2003). We focus on the latter two here: How platform sponsors can influence consumers’ perception of the quality, depth and breadth of complements. By promoting a particular complement, the platform helps to direct end-users’ attention to it, increasing its visibility and saliency, and providing information that serves as a signal of the complement’s quality. When there is a large number of complements competing for consumers’ attention, even high-quality complements may go undiscovered. In such cases, selective promotion can significantly increase awareness for such complements. Promoting a complement is, as we will discuss below, a powerful way to signal consumers about the quality of the complement, and to help consumers sort between competing complements.

Selecting complements for promotion

Complements enhance the value of the overall ecosystem both when they have high quality on a standalone basis, and when they collectively offer better depth and breadth of complements selection to the end-users of a platform. We examine how each of these factors drive the platform sponsor’s decision about whether and when to selectively promote a complement below.

High quality complements with unrealized potential. It should be clear that the platform sponsor is more likely to promote complements that have exceptional quality and strong sales performance. Exceptional complementary goods can have a disproportionate influence on platform adoption by consumers (Binken and Stremersch, 2009; Gretz and Basuroy, 2013; Lee, 2013). Many video game console consumers, for example, will choose their console based on the availability of one or a few highly desired games. Similarly, it is well understood that a “killer app” can make or break a computing or smartphone
platform. The platform sponsor thus wishes to bring complements with “killer app” potential to the attention of consumers. Furthermore, because consumers may perceive promotion by the platform as a signal of quality, the platform owner must be careful to avoid promoting complements of low quality because it would violate the trust between the platform and the consumer, and would erode the user’s faith in the platform. If a complement already has high quality and mass market appeal, using promotion, such as awarding a “Best of” title or preferred display location, can help consumers identify that complement and result in a much greater sales increase (in absolute terms) than promoting a weak complement. Complement quality is thus an important baseline control in our models.

However, while it is easy to assume that a platform will simply promote the best-selling complements, this is often not its best strategy for increasing the value of the overall ecosystem: The platform needs to take into account the opportunity for additional value creation in the form of sales increase for the complement. The marginal value of privileged access or selective promotion by the platform is not a linear function of the complement’s quality and prior sales performance: It is likely that at some point diminishing returns set in, i.e., the amount of improvement in either sales or visibility available to an already exceptional complement may be limited (e.g., Adner and Zemsky, 2006). The platform sponsor’s ability to increase the value of a complement through selective promotion may be greater for complements whose full value has no yet been recognized—the “up-and-coming” complements. These complements may have more untapped value to be harvested than a well-known complement. We thus argue that, controlling for quality, platforms are likely to promote complements that have good initial sales performance but are not yet the very best sales performers on the platform:

An additional benefit of promoting “up and coming” complements is that their producers may have less bargaining power which can translate into better terms for the platform, and greater loyalty to the platform.

Notably, this argument is partially consistent with research on promotion in reseller settings. Though resellers may have little incentive to invest in unlocking the star potential of up-and-coming products and instead usually leave that to the manufacturers themselves, they are more likely to promote products from whom they capture larger margins, such as private label brands (Ailawadi and Harlam, 2009).
Hypothesis 1: Platform sponsors will be more likely to promote complements that have demonstrated good-but-not-best initial sales performance than either complements that have demonstrated the very highest sales performance or poor sales performance.

Complements that round out the ecosystem. Next, because platforms need to manage the collective value creation of the ecosystem, they will be influenced by the contribution individual complements make to the overall ecosystem breadth (such as the number of product categories in the ecosystem) and depth (such as the number of high quality complements in a product category in the ecosystem). The depth and breadth of an ecosystem are often important both in an individual consumer’s adoption decision (i.e., when consumers seek a variety of complements), and for reaching different segments of the market that have heterogeneous preferences (Gupta, Jain and Sawney, 1999; Rietveld and Eggers, 2018). As told to us in an interview with a senior executive at Microsoft who was part of the original Xbox founding team, “We have a portfolio team and we look at how the games round out the portfolio and sell the console…you want to make sure the portfolio is well rounded. We have racing games, shooter games, fan favorites, etc. We have to decide which games to shine that limelight on.”

Platforms will often emphasize different categories of complements based on their intended positioning. Xbox, for example, emphasizes games targeted at hard-core gamers, while the games emphasized by Nintendo are often more family friendly and targeted at light, or casual, gamers. Similarly, the iPhone App Store has significantly more focus on music applications than the Android App Store because the iPod and iTunes are part of its core function and identity. However, even given these different positionings, platforms need to ensure that their ecosystem meets the range of needs of their target market. The depth and breadth of the portfolio of complements for a platform also sends a powerful signal to the market about the platform’s current and future success. Each complement developed for a platform is evidence that the complement producer believes the platform is likely to be successful.

The above suggests that platform sponsors will be inclined to spread their promotion efforts over important categories rather than choosing complements to promote purely on the basis of their standalone...
performance. If a platform does not have a high selling complement in an important product category on the platform, we argue, the platform sponsor is much more likely to selectively promote complements in that category to raise end-users’ perception of the quality of the platform’s complements in that category, and therefore the breadth of the overall ecosystem⁷:

Hypothesis 2: Platform sponsors will be more likely to promote complements in high-value categories in which the platform does not have a top-selling complement than either high value categories in which the platform already has a top-selling complement or low value categories.

Complements that are exclusive to the platform. Platform sponsors prefer to invest in enhancing the reputation of high-quality complements that are exclusive, both because it rewards their loyalty and because they prefer not to promote a product that customers may buy for a competing platform. Complements can be exclusive to a platform for multiple reasons. First, complements produced by the platform sponsor (“first-party complements”) are exclusive by default. Second, significant investments in co-specialization required between the platform and the complement may make it costly for a complement to work with multiple platforms (Anderson, Parker and Tan, 2013; Cennamo, Ozalp and Kretschmer, 2018). Third, platforms sometimes demand exclusivity agreements, or may factor exclusivity into their deal terms with complement producers (Johns, 2006). Fourth, a complement could be exclusive because it has not proven to be high quality or popular, and is not sought by other platforms. It is thus important to note that the platform sponsor only wishes to promote high quality exclusive complements; it does not seek to promote complements that are only exclusive because they are of low quality or not

⁷ This is partially analogous to a reseller’s decision to cut the price of a leading product in an important category to drive traffic to the store—a process known as creating “loss leaders” (Pancras, Gauri and Talukdar, 2013). Like the platform sponsor, with “loss leaders” the reseller is using price promotion to drive traffic to the store, similar to the platform sponsor’s motive to drive customers to its platform. However, the key difference is that the reseller uses the price cut to amplify the draw that a leading product already has, whereas we argue that the platform sponsor uses selective promotion to create a new star in a product category where no products have yet emerged as stars on its platform. This highlights again the longer term commitment between a platform sponsor compared to a reseller, and the more significant role the platform sponsor plays in orchestrating the value of the overall ecosystem.
desired on other platforms. Having an exclusive arrangement with an exceptional complement helps to differentiate the platform; having an exclusive arrangement with a poor complement does not. We thus expect the interaction of complement quality and complement exclusivity to increase the chances of selective promotion by the platform over and above the effect of quality or exclusivity alone. That is, we expect a positive main effect for quality (baseline hypothesis), and a positive interaction between high quality and exclusivity, and we have no expectations regarding a main effect for exclusivity:

Hypothesis 3: Platform sponsors will be more likely to promote complements that are both high quality and exclusive than complements that meet one or none of those criteria.

The timing of selective promotion

The platform must manage the value it creates and captures from its overall ecosystem throughout its entire lifecycle, and thus must take timing effects into account. Similar to the way that the platform uses promotion to manage the consumer’s perception of the ecosystem’s breadth (as articulated in hypothesis 2), it also uses promotion to manage the consumer’s perception of the ecosystem over time. The platform sponsor is thus likely to use endorsements to generate new “buzz” about the platform and its complements during periods when attention has waned, thereby reinvigorating sales. By promoting complements during a period when fewer complements are being released, the platform avoids competitive crowding and lessens cannibalization of newly released complements (Boudreau, 2012), and increases the impact of the promotion—the signal provided by the promotion is likely to stand out more clearly in a market that is not currently awash with promotional media about new complements entering the market.

Cash flow smoothing and avoiding competitive crowding are both evident in the following quotes we obtained during an interview with a Director of Sales Planning and Analysis at Sony PlayStation: “You don’t want all of your good stuff to come out at the same time … it’s all about managing the catalog. If the calendar is looking empty, we will re-release to fill the catalogue. Contrarily, during
Christmas we won’t re-release.” We thus predict that platform sponsors will promote more complements during periods when there are fewer new complements being released:

Hypothesis 4: Platform sponsors will promote more complements in periods when there are fewer new complements being released.

In each of these hypotheses it should be clear that the platform wishes to maximize the value it creates and captures from its promotions, and that the platform manages for the overall success of its ecosystem, including over its lifecycle. The platform is constrained in how many complements it can promote, and it thus wishes to maximize the marginal effect of each promotion for the entire ecosystem. The platform thus does not just promote the “best” complements as if these are independent decisions; instead the promotions are instruments whose effects and timing must be carefully orchestrated.

EMPIRICAL SETTING: PLATFORM ENDORSED CONSOLE VIDEO GAMES

We test our hypotheses in the context of home video game consoles. Video game consoles are often studied in the platform competition literature given their canonical features as a platform ecosystem (e.g., Cennamo and Santalo, 2013; Clements and Ohashi, 2005). Platform sponsors such as Sony and Microsoft invest heavily in designing technologically superior platforms that are released to the market approximately every seven years. In order to quickly ramp up adoption by consumers, platform sponsors generally price their consoles at or below cost. Console makers capture value from selling their own, internally developed, video games, and from the royalties paid by third-party video game publishers such as Electronic Arts, Activision and Ubisoft. A key strategy that console manufacturers deploy to govern their platforms is selectively issuing endorsements to promote individual video game titles.

A small portion (about 10%) of all video games are picked by the platform sponsor to be re-released with a “Best of” endorsement. Sony, for example, endorses games under the “Platinum: The Best of PlayStation” label. It describes this endorsement with the following: “Games that warrant a Platinum
release are the cream of the crop, the very best games that have been published… They’re often titles that are innovative in their design and feel, offer immersive gameplay, wowed game critics and received their fair share of accolades and awards.” Similarly, Microsoft endorses games under the “Xbox Classics” label. Platform sponsors select games for endorsement only after they have been on the market for some time and have surpassed certain sales and engagement thresholds. As described by a senior Xbox team member, “When a game comes out you don’t know what’s going to be a hit and what isn’t. You want to have more than a year under your belt because you want to have a nice snapshot. You want sales numbers, fan reviews, downloads…you want a complete story. That story takes a little while to reveal itself.” While the exact details of the requirements are kept confidential and vary across countries, industry informants tell us that in order to be eligible for an endorsement in the UK (our empirical context), a video game must have sold a minimum of 300,000 units in the wider European market and must also have been on the market for at least 180 days. A former senior executive at Microsoft’s Xbox group told us that the endorsement decision takes place at the highest levels of the organization (e.g., Senior Vice President and above). When there are disagreements about which games to endorse, the decision is escalated to even more senior personnel such as to a Senior Director. While a game’s publisher has some agency with regard to the endorsement of a specific game it published, the platform sponsor ultimately decides which games are eligible for endorsement and also determines when endorsed games get released.

Platform endorsed video games are re-released to the market with distinct packaging clearly marking the endorsement (see Appendix A for examples). Endorsed re-releases are often accompanied by a small drop in retail selling price (see Appendix B). Although the licensing contract between the publisher and the platform remains largely intact, platform sponsors do charge publishers a lower royalty payment for endorsed re-releases in order to offset this drop in selling price. This was confirmed by a Director of Sales Planning and Analysis at Sony PlayStation: “We charge them less to create the disc for Platinum games, so third-parties’ margin is less squeezed by the cheaper price point.” A game’s playable

8 Source: https://web.archive.org/web/20080820143738/http://mt.playstation.com/ps2/news/ps2-goes-platinum-part-1.html - last accessed January, 2019.
content, technical design, and other important details remain otherwise unchanged. In Appendix B we exploit data on games’ weekly unit sales to confirm that platform endorsements do indeed boost video games’ sales performance compared to otherwise identical non-endorsed video games.

Data: Seventh generation console video games in the United Kingdom

We collected longitudinal data on all games launched on seventh generation video game consoles in the UK between 2007 and 2011. In our analyses we particularly focus on video games released on Sony’s PlayStation 3 (launched in March, 2007) and Microsoft’s Xbox 360 (launched in December, 2005). The seventh generation is ideal for our study as both Sony and Microsoft were already established in the video game industry (Microsoft was a new entrant in the sixth generation), and the two companies competed directly against each other for both consumers and game developer support. We chose the UK market as our research site since the UK was the biggest country-market for video game software within Europe and the third biggest market worldwide during our study timeframe (IDG, 2011). Moreover, while *Platinum* and *Classics* re-releases are common in all three supra-regional markets for video game consoles (i.e., North America, Europe and Asia; see Johns, 2006), they are of greatest relevance and account for a disproportionate share of the total video game sales in the European market.

Data at the platform and at the game-level were provided by one of the platform sponsors, and are comprehensive in that they include over 90% of all retail transactions (including online and brick-and-mortar retail transactions) for all games released in the UK. We complemented these data with hand-collected data on expert review scores from review aggregation website Metacritic.com. At the time of

9 We exclude Nintendo’s Wii from our analyses because it was a fundamentally different kind of console that competed on different dimensions from the Xbox 360 or PlayStation 3. First, it had different technical specifications for the motion-controlled “Wii-mote” that enabled physical activity gameplay. This meant that many games developed for Wii could have never been developed for Xbox 360 or PlayStation 3 until their [much later] development of motion-controlled interfaces. Second, the Wii had a different market positioning (lower cost, lower speed, no Ethernet connectivity). It was also targeted toward casual gamers who had not previously been part of the gaming demographic. In fact, it even became popular as an exercise aid in nursing homes and for bowling leagues on cruise ships. Evidence of the fundamentally different nature of the Wii can be seen in the statistics on multi-homing: whereas over 50% of the games available on PlayStation 3 were also available on Xbox 360 and vice versa, only 8% of games for the Wii were available on the Xbox 360, and less than 3% were available on the PlayStation 3.
data collection, Metacritic tracked over 300 online and offline trade publications whose evaluations it aggregated and transformed into a weighted average “Metascore” ranging from 0 to 100 at the game-platform level. Because platform sponsors will only endorse video games after they have met a certain sales threshold in the wider European market, we collected additional sales data at the European level. European sales data were collected from online sales-tracking database VGChartz.com and are expressed in millions of units. To allow for a minimum lifecycle of one year to accumulate sales and become eligible for endorsement, we excluded games from our analysis that were released in 2011. We further excluded 91 games that were published by the platform sponsors as these games are exclusive by default, and platform sponsors possibly deploy a different set of rules when it comes to endorsing their own products. Our sample for analysis includes 419 PlayStation 3 and 499 Xbox 360 games of which 47 PlayStation 3 and 58 Xbox 360 games received an endorsement. On average, platform endorsed re-releases are launched onto the market one year and two months after a video game’s initial release.

Variable definitions

Dependent variable. Our hypotheses pertain to console makers’ strategic selection of video games for endorsement. *Endorsed* is a dummy variable that takes the value of 1 when a video game is endorsed and re-released through a platform sponsor’s selective promotion. The moment of endorsement and a game’s re-release coincide; in our sample all endorsed games are re-released and only the games that are endorsed are re-released. The unit of analysis for this measure is the game-platform level.

Independent variables. Hypothesis 1 tests the effect of video games’ initial sales performance on the probability of being endorsed. To test for this relationship, we look at games’ first month unit sales and take the percentage rank at the platform-year level. We use video games’ first month unit sales for

10 Confirming differential treatment for first-party video games, a Director of Sales Planning and Analysis at Sony PlayStation told us: “We use Platinum very differently for the games we release as a first-party publisher. For example, we will use two Platinum games to make a bundle with our hardware, which is different obviously from games by third-party publishers.” Lending some support to potentially differential treatment is the fact that 31% of the internally published (vs. 11% of third-party) video games in our sample received an endorsement. Note that we do still consider these first-party games in the construction of market level variables (e.g., *value of genre*).
two reasons. First, as depicted in Figure 1, first month unit sales account for a disproportionate share (> 40%) of games’ cumulative unit sales and are thus strongly indicative of overall market performance (Nair, 2007; Rietveld and Eggers, 2018). Second, to prevent concerns of reverse causality, we take a relatively narrow approach to avoid including any sales that may occur after the decision to issue a platform endorsement has been made. In order to distinguish between market-leading games, games with good (but not market-leading) sales, and games with sales below these thresholds, we break up the sales rank measure into three dummy variables: Top 2.5% sales rank (i.e. market-leading sales), top 2.6%-20% sales rank (i.e. good initial sales), and bottom 80% sales rank (poor initial sales; the base category). We chose the 20% cutoff point because the market for console video games exhibits the Pareto principle that 80% of the sales come from 20% of the products. We then chose the 2.5% cutoff because it is restrictive enough to ensure that we are looking at the very top video games, yet large enough to still include a sufficient number of observations and variance for robust analysis. For hypothesis 1 to hold, games with top 2.6%-20% sales rank should have a positive effect on the probability of receiving an endorsement, and the coefficient has to be significantly higher than games with market leading sales (top 2.5% sales rank) and games with poor sales performance (bottom 80% sales rank). Our reported results are robust to alternative specifications, such as using the top 1% as cut off point for best-selling games.

--- INSERT FIGURE 1 ABOUT HERE ---

To test if platform sponsors are more likely to endorse video games in high-value genres in which the platform lacks a recent top-selling video game, we construct two variables that are then interacted. The first is a variable that captures whether there has been no prior hit at the platform-genre-year level. No prior hit in genre is a dummy that takes the value of 1 if there is no top 20% ranked video game measured by first month unit sales in the same genre and platform of a game under consideration, measured over a one year rolling window prior to a game’s release. We then create a measure of value of genre by taking the percentage rank of all genres by total unit sales for each year and platform. To do this, all genres are first rank-ordered by the sum of first month unit sales of all games released in that genre, in that year, on that platform. To avoid concerns of simultaneity, we calculate this measure separately for
each game, and we exclude the focal video game from our measurements. The percent of genres with lower sales than a given genre is its percentage rank, such that if a genre has higher first month unit sales than 90% of the other genres that year, its percentage rank value would be 90%. Higher percentage ranks thus reflect more valuable genres. While our results are robust to using genres’ untransformed value as measured by the cumulative first month unit sales, the percentage rank transformation helps us to account for the fact that what constitutes a high value genre early in a platform’s lifecycle might not be the same as what constitutes a high value genre later in a platform’s lifecycle, as more games and consumers enter the platform over time. Moreover, we use a within-platform measure rather than a between-platform measure as different platforms are popular for different genres. If hypothesis 2 is correct, we would expect a positive coefficient on the interaction between these two variables.

To test if a high-quality exclusive game is more likely to receive an endorsement than a high quality multi-homed game, we first look at the population of video game releases and count the number of platforms a game is released on. Platform exclusive is a dummy variable that takes the value of 1 if a game is launched only on the focal platform.11 We then interact this variable with the high quality variable (explained in more detail below) and expect a positive coefficient for hypothesis 3 to be supported. Moreover, the coefficient has to be significantly more positive than that of high quality alone.

To measure the effects of the temporal dynamics on platforms’ decisions to issue endorsed re-releases, we count the number of endorsed video games that are released on a platform at the platform-genre-month level. We expect the count of endorsed re-releases to be higher during months when there are fewer new games being released, while controlling for confounding factors such as seasonality, genre popularity, and stage of the platform lifecycle (Kapoor and Agarwal, 2017; Rietveld and Eggers, 2018). We

11 We acknowledge that there is a growing interest in the platforms literature for why complements multi-home (Cennamo et al., 2018; Corts and Lederman, 2009; Landsman and Stremersch, 2011), suggesting that platform exclusive may be endogenously determined. Although we consider fully modelling the decision for games to be launched exclusively on one platform to be beyond the scope of our study, we have estimated an endogenous treatment effects model as a robustness test and the results are consistent with those reported in our main results.
test hypothesis 4 by counting the number of new games that are released within a particular genre per month and expect a negative coefficient for this hypothesis to be supported.

Control variables. As noted earlier, our baseline assumption is that a game’s quality will have a strong influence on receiving an endorsement. We use Metacritic’s reported Metascores to check for this. Many video game publishers use Metascores as a proxy for quality, as is reflected by their contracts with game developers. Furthermore, the vast majority of the expert reviews that Metascores are based on are published prior to a game’s release, reducing concerns of reverse causality. Metacritic produces a numerical score ranging from 0 to 100 that is then color-coded into ranges where scores of 75 and higher are green, and include those rated as “Generally Favorable” (scores of 75-89) and “Universal Acclaim” (scores of 90-100). We identify a high quality video game with a dummy that indicates if it has a Metascore of 75 or higher.\(^\text{12}\) We also run robustness checks using the continuous Metascore, and our reported results are robust to either specification. Given that platform sponsors in the UK will only endorse video games that exceed a certain sales threshold in the wider European market, we add games’ *European unit sales* (in millions) as a control. Notably, including this measure could dampen our ability to pick up the UK sales-rank effects, making our tests more conservative. We log-transform this measure to account for its skewness. We further control for the platform a game is released on, its genre, and its month and year of release. First, by including platform dummies we account for any variation in endorsement policies between the platforms in our sample. Second, since platforms may systematically be more likely to endorse games in certain categories, we include genre fixed effects. There are 15 pre-determined (by the data source) genres in our dataset such as *action, music, sports*, and *war*. Third, since demand and supply of video games vary throughout the year, we control for seasonality by including calendar-month-of-release dummies. We also account for macro trends by controlling for the year a game is released in, by including year-of-release dummies. At the firm-level we proxy for a publisher’s overall

\(^{12}\) The base group for *high quality* includes games with Metascores below 75 and games with missing Metascores. 90 games in our sample have no Metascore registered on Metacritic. Having no Metacritic score generally signifies a very poor quality video game. Since none of these games were endorsed we cannot control for this subgroup separately. In our robustness tests we use the continuous Metascore and drop games with missing Metascores.
relationship with a platform sponsor by counting the number of games in a publisher’s portfolio that were chosen for selective promotion during a period of five years leading up to a game’s release. We further control for a publisher’s age (in years) and whether it is listed on a major stock exchange as proxies for size and control over resources such as intellectual properties and marketing budget. We log transform the number of past endorsements and publisher age to account for their skewness.

RESULTS

We estimate video games’ probability of being endorsed with the following logit specification:

\[P(y_{ij} = 1|X_{ij}) = \frac{\exp(X'_{ij}\beta)}{1+\exp(X'_{ij}\beta)} \]

where \(y_{ij} = 1 \) equals the probability that game, released on platform, receives an endorsement, \(X_{ij} \) is a vector of variables at the game-platform level, and \(\beta \) is the vector of coefficients to be estimated. Table 1 reports summary statistics and pairwise correlations for the variables in our sample. Table 2 reports our main results estimated via Maximum Likelihood Estimation by first reporting the effects of the control variables in Model 1. We then sequentially add our independent variables testing for H1-H3 in Models 2-4. Model 5 includes all coefficients and is the model we rely on for the interpretation of our results as well as for effect sizes. Since results from non-linear models cannot be interpreted in a simplistic manner (Hoetker, 2007), we further report predicted probabilities as well as marginal effects (i.e., the estimated difference in predicted probabilities between two variables held at different values). Furthermore, since statistical significance for interactions in non-linear models cannot be assessed by only examining the sign and statistical significance of the interaction coefficient (Wiersema and Bowen, 2009; Zelner 2009), we plot predicted probabilities of the interaction effects for H2 and H3 in Figures 2 and 3, respectively. We estimate robust standard errors and report McFadden’s adjusted R-squared as measure of model fit.

\[13 \text{ Since only a fraction of the firms in our sample receive endorsements, we cannot include firm fixed effects in our models (many dummies predict failure perfectly). Our results, however, are fully consistent when we estimate fixed effects models on a restricted sample of games by publishers that have received at least one endorsed re-release.} \]
Results for which games platforms choose to endorse

In support of H1, we find that after controlling for quality and other controls, games in the top 2.6%-20% sales rank category are more likely to be endorsed than games in the bottom 80% sales rank category ($p < 0.01$), and more than games in the top 2.5% sales rank category ($p < 0.01$). The average predicted probability of endorsement for games in the top 2.6%-20% sales rank category is 12.85% higher than for games in the top 2.5% sales rank category ($p < 0.01$), and 15.75% higher than for games in the bottom 80% sales rank category ($p < 0.01$). Support for H1 is corroborated by the finding that of all games that receive endorsement, those with lower prior sales performance enjoy three times higher sales increases from endorsement than those with higher prior sales performance (see Appendix B).

We also note strong support for H2, as the interaction between value of genre and no prior hit in genre is positive and significant ($p < 0.01$). Indeed, while the average predicted probabilities plotted in Figure 2 suggest that the probability of being endorsed does not vary much for video games in genres with prior hits, the predicted probability of endorsement for games in genres without prior hits, on the other hand, changes noticeably as the value of the genre increases. For example, games in low value genres (value of genre = 0.20, or one standard deviation below the mean) without any prior hits have an average predicted probability of endorsement equivalent to 7.60%, while games in high value genres (value of genre = 0.80, or one standard deviation above the mean) with no prior hit have an average predicted probability of endorsement of 23.33%. Moreover, the difference in predicted probabilities for games in genres with and without any prior hits is statistically significant when value of genre takes values above 0.60 or below 0.30, which includes approximately half of the observations in our sample.

We note partial support for H3. While the interaction term between platform exclusive video games and high quality video games is positive and significant ($p < 0.01$), as well as significantly different from any of the other counterfactual scenarios ($p < 0.01$), the average predicted probabilities and marginal effects reported in Figure 3 show that the differences between platform exclusive and multi-homed games
primarily resides in the subsample of low quality video games: While the average predicted probability increases from near zero for platform exclusive games with low quality scores to 14.89% for platform exclusive games with high quality scores, so does the predicted probability for multi-homed games increase from 8.31% for games with low quality scores to 13.12% for multi-homed games with high quality scores. Furthermore, the difference in predicted probabilities between high quality platform exclusive games and high quality multi-homed games is not significantly different from zero.

--- INSERT FIGURES 2 AND 3 ABOUT HERE ---

Our control variables mostly load as expected.14 We find support for our baseline prediction that high quality games will be more likely to receive an endorsement than low quality games ($p < 0.05$). The predicted probability of high quality is 8.52% higher than of low quality games. The effect of a game’s sales in the European market on being endorsed is positive and significant ($p < 0.01$). The predicted probability of receiving an endorsement increases by 31.86% from one standard deviation below the variable’s mean to one standard deviation above. The effect of the number of past endorsements a publisher received from the platform is also positive and significant ($p < 0.05$). The predicted probability increases by 0.43% from one standard deviation below the variable’s mean to one standard deviation above its mean. We find no support that platforms are more or less likely to endorse games from older publishers, as the effect of publisher age is positive but not significantly different from zero. Last, we find that the effect of a game’s publisher being listed on a major stock exchange is negative and significant ($p < 0.10$), implying that platform sponsors are more likely to endorse games from publishers with fewer resources, consistent with our arguments about up-and-coming complement producers. The predicted probability of being publicly traded is 4.91% lower compared to privately held video game publishers.

14 Since variables’ effect sizes in non-linear models depend on the values of the other covariates in the model, Wiersema and Bowen (2009) caution against the interpretation of results (for first-order terms) in models that include interactions or log-transformations. For this reason, we have estimated a model that includes only first-order effects (i.e., no interactions), where none of the control variables are log-transformed. The results from this model are consistent with what is reported in our main analysis. We find that high quality video games have a 7.44% higher predicted probability of endorsement than low quality games ($p < 0.01$). Console exclusive, value of genre and no prior hit in genre have no significant first-order effects on endorsement. The direction and overall interpretation of our log-transformed control variables remain the same in this ‘natural’ model.
Results for when platforms choose to endorse games

We restructure our data to analyze how platforms’ decisions to issue endorsed video games are affected by the temporal dynamics at the platform-level. Specifically, we create a platform-genre-month panel dataset containing 30 panels for 15 genres on both platforms. Our data allow us to trace the number of endorsed re-releases within each genre-month from the start of our data in 2007 up to the last month of 2011, resulting in a dataset of 1,770 observations. We test whether platform sponsors release more endorsed games during months when there are fewer new releases at the platform-genre level. We isolate the effect of our independent variable by including platform, genre, and calendar month fixed effects. We also control for lifecycle dynamics by including the platform’s age, in months. Given that our outcome variable is a count measure and our data are structured as a longitudinal panel, we estimate a Poisson panel regression model. We report heteroscedasticity robust standard errors clustered at the platform level.

--- INSERT TABLES 3 AND 4 ABOUT HERE ---

Table 3 reports summary statistics and pairwise correlations. Table 4 reports main results as they pertain to hypothesis 4. Model 1 of Table 4 estimates fixed effects, Model 2 adds the effect of platform age, and Model 3 includes the number of new game releases. We focus on Model 3 for the interpretation of our results. As shown in Table 4, the coefficient for new game releases is negative and significant \(p < 0.05 \), indicating support for H4. Exponentiating the regression coefficient lets us interpret the estimated rate ratios: One additional same-genre game entering the platform, while keeping all other covariates constant, is associated with a 5.67\% lower endorsed re-release rate ratio. Consistent with the argument about leveraging platform endorsements to attract and direct late adopters on the platform (Rietveld and Eggers, 2018), we find that the coefficient for platform age is positive and significant \(p < 0.01 \). A one-month increase in platform age, while holding all other variables constant, is associated with a 2.03\% higher endorsed re-release rate ratio. Our reported results are robust to using the log-transformation of new game releases as well as to estimating the coefficients using a negative binomial regression model.

Electronic copy available at: https://ssrn.com/abstract=3061424
Robustness tests15

We subjected our findings to a number of robustness checks. First, we assessed the robustness of our findings for H1 by estimating our models using alternative thresholds for video games’ initial sales performance: *Top 1\% sales rank, top 2\%-5\% sales rank, top 6\%-20\% sales rank, and bottom 80\% ranks* (base). Our main results remain fully supported in this alternative specification.

Second, we checked the sensitivity of our findings for H2 by using the raw value of a game’s genre (i.e., the sum of first month unit sales for all games in the same genre, platform and year), instead of the percentage ranked transformation, and find that our support for H2 persists. We also confirmed that our results are robust to the exclusion of genre dummies from our models.

Third, further assessing our results for H3, we re-estimated our models using the continuous *Metascore* as our measure of quality. We find a positive and significant effect of *Metascore* on the probability of being endorsed whereby the average predicted probability for games with *Metascores* above 40 are significant. In the interaction between *Metascore* and *platform exclusive*, we find that for Metascores equal to or above 80, platform exclusive games have a higher predicted probability of being endorsed than multi-homed games. Similar to our main results, however, the marginal effects are not statistically significant. We also estimated an endogenous treatment effects model where we endogenize *platform exclusive* and allow for correlation between the error terms in both equations. We find that such correlation exists, suggesting that *platform exclusive* is indeed endogenous. That said, and controlling for this endogeneity, we confirm that our main results remain supported.

Fourth, we further validated the results pertaining to H4 by replacing *platform age* for the stock of games at the platform-genre-month level, to control for the number of games a platform owner can potentially select from for promotion. Expectedly, we find that *stock of games* has a very similar effect as *platform age*, and our main results remain supported. We also added additional control variables to the models testing H4, by measuring the average quality of the games released in a particular month and

15 Tabulated results from these tests are available from the first author upon request.
genre, and by documenting the share of games that are platform exclusive. Neither of these variables are statistically significant, while the main results for H4 remain unchanged.

Fifth, to rule out alternative explanations at the firm level, we re-ran our models with firm fixed effects on a restricted sample of 763 video games by publishers with more than one game in our sample and at least one endorsement received. Our findings are robust to this alternative specification. Our results are also robust to the following alternate model specifications: Adding platform age as an additional control variable; including a control variable indicating whether a game was endorsed on a competing platform; and, adding as an additional control variable the number of video games released by a game’s publisher on consoles by the focal platform sponsor over a rolling time period of five years.

DISCUSSION AND CONCLUSIONS

Value creation and capture is complex in platform ecosystems (Jacobides et al., 2018; Pierce, 2009). The value of the overall ecosystem is influenced not only by the quality of individual complements, but also by their interactions (Adner and Kapoor, 2010). While previous work has emphasized the importance of a platform attracting high quality complements to their ecosystem, we extend that work by explaining the more complex strategic choices the platform sponsor must make in managing the overall value of the ecosystem, and how it can influence that value through selective promotion of complements.

Though selective promotion at first appears to be a relatively simple lever employed by the platform sponsor, its strategic use and performance effects are quite complex. Platform sponsors do not just promote best-selling complements; instead they are using promotion to achieve myriad objectives in the management of their ecosystems. Using a large dataset on the endorsements of seventh generation video games in the UK, we found that platform sponsors select games for endorsement not only based on their quality and sales performance, but also on the degree to which they can unlock unrecognized value in the game, and the game’s potential to enhance the balance of the overall portfolio. Specifically, platform sponsors were more likely to endorse games that had high quality and good initial sales but were not market leaders. Additionally, they were more likely to endorse games that were in a high-value genre
in which the platform had no prior top-selling video game. Quality and platform exclusivity had an interesting interaction. We had expected that exclusive and high-quality video games would be even more likely to be endorsed than multi-homed and high quality video games. Instead we found that exclusive and high-quality games were about equally likely to be endorsed as non-exclusive and high-quality games (no significant difference), but that exclusive games of low quality were significantly less likely to be endorsed than non-exclusive games of low quality. We believe this is because many games are exclusive by default; they are not popular enough to warrant multi-homing (Anderson et al., 2013; Cennamo et al., 2018), and that an exclusive and low-quality video game is likely an exclusive-by-default game. Such games are unlikely to be endorsed. Finally, we looked at the timing of selective promotion. Consistent with our arguments about lifecycle management and competitive crowding, we found that platforms made more endorsements during periods when there were fewer new game releases within the genre.

Our paper is the first we know of to look at the complex strategic choices a platform sponsor makes in using selective promotion to manage its ecosystem. In so doing, it contributes both theoretically and empirically to our understanding of how platform sponsors govern their ecosystem. This is a topic of increasing interest and importance to both scholars and managers; digitization is enabling many industries to be restructured as platforms, and platform ecosystems are playing increasingly central roles in the global economy. The results of this study readily generalize to other platform settings: Operating systems that must decide which software applications to highlight; music streaming services that choose which artists to include in curated playlists; crowdfunding platforms that decide which projects to prominently feature, etc. For managers of platforms, the results help provide a more complete picture of how selective promotion can be used to manage the ecosystem’s value as well as its value capture. Our results also highlight the key dimensions that distinguish platform ecosystems from more typical reseller settings, and when we would expect reseller settings to behave more like platform ecosystems. First, our arguments highlight that because the ecosystem must be attractive to end-users for any individual complement producer to capture value, the many different complements in a platform ecosystem are vested in each other’s success. Though complements are competing with one another, they also need other complements.
in the ecosystem to be successful. Furthermore, because participation in a platform ecosystem requires investments in co-specialization, the relationships between a platform and its complements are stickier and longer-term. At a minimum it must manage their success over the entire platform lifecycle; it may also invest in its relationships with complement producers over multiple generations of the platform.

One of the limitations of our study is that we cannot directly observe how the value created in the ecosystem is divided among the platform sponsor and its complementors (i.e., we cannot directly observe value capture, or costs). In the video game industry, game-specific licensing revenues and royalty rates are closely guarded secrets, redacted from publicly-available financial reports. It is generally understood that games get royalty breaks (i.e., their publishers pay lower royalties to the console producer) as they pass certain sales thresholds. It is not uncommon, for example, for a licensing agreement to specify five or more levels of unit sales goals, with decreasing royalty rates above each level. Furthermore, these levels will have been negotiated based on the bargaining power of the game at the time it went into negotiations for the licensing contract. Both of these dynamics were evidenced in the explanation provided to us by an Executive at games publisher Take-Two Interactive: “Games that achieve superb commercial success receive a royalty break along the way,” and “with size and quality definitely comes the power to negotiate better rates.” This means that, in general, lower-selling video games are paying a higher royalty rate than top-selling video games and, at some sales levels, the console producer captures more value by using promotion to increase the sales of lower-selling games than it does by promoting top-selling games. Though we have provided some initial exploration of the complement’s bargaining power by looking at publisher age, listing status, prior endorsements and exclusivity, future research should attempt to more fully examine the interplay between promotion, bargaining power, and value capture.

The video game console industry is an iconic platform market where players have had many generations to refine their understanding of how to use selective promotion to best advantage. The findings here should thus be informative for managers in newer platform settings where players have had less time to accrue such experience. Our results show that platform sponsors can and should use selective promotion not just to reward hit products, but also to create new stars, and to manage both the range of
the overall ecosystem, and temporal variation in its product catalog. For managers of complements, the results suggest that up-and-coming complements have more opportunity to gain preferential treatment by the platform than it may first appear. The promise of future growth, and commitments to exclusivity can provide strong inducement to a platform sponsor to invest in the complement’s success.

REFERENCES
Adner R, Kapoor R. 2010. Value creation in innovation ecosystems: How the structure of technological interdependence affects firm performance in new technology generations. Strat Manage J, 31: 306-333.
Adner R, Zemsky P. 2006. A demand-based perspective on sustainable competitive advantage. Strat Manage J, 27: 215-239.
Agrawal J, Kamakura WA. 1995 The economic worth of celebrity endorsers: An event study analysis. J of Marketing, 1:56-62.
Ailawadi KL, Beauchamp JP, Donthu N, Gauri DK, Shankar V. 2009. Communication and promotion decisions in retailing: A review and directions for future research. J. Retailing, 85(1):42-55.
Ailawadi KL, Harlam BA. 2009. Retailer promotion pass-through: A measure, its magnitude, and its determinants. Marketing Sci, 28:782-791.
Anderson EG, Parker GG, Tan B. 2013. Platform performance investment in the presence of network externalities. Info Sys Res, 25(1): :152-172.
Angrist JD, Pischke JS. 2008. Mostly harmless econometrics: An empiricist's companion Princeton. New Jersey: University Press.
Autor DH. 2003. Outsourcing at will: The contribution of unjust dismissal doctrine to the growth of employment outsourcing. J Labor Econ, 21(1): 1-42.
Bertrand M, Duflo E, Mullainathan S. 2004. How much should we trust differences-in-differences estimates? Quart J Econ, 119(1): 249-275.
Besley T, Burgess R. 2004. Can labor regulation hinder economic performance? Evidence from India. Quart J Econ 119(1): 91-134.
Binken JL, Stremersch S. 2009. The effect of superstar software on hardware sales in system markets. J Marketing, 73(2): 88-104.
Biswa D, Biswas A, Das N. 2006. The differential effects of celebrity and endorser endorsements on consumer risk perceptions. The role of consumer knowledge, perceived congruency, and product technology orientation. J of Advertising, 35(2): 17-31.
Boudreau KJ. 2010. Open platform strategies and innovation: Granting access vs. devolving control. Manage Sci, 56: 1849-1872.
Boudreau KJ. 2012. Let a thousand flowers bloom? An early look at large numbers of software app developers and patterns of innovation. Org Sci, 23(5): 1409-1427.
Boudreau KJ, Hagiu A. 2009. Platform rules: Regulation of an ecosystem by a private actor. In Gawer, A. (ed.), Platforms, markets and innovation. Massachusetts: Edward Elgar.
Boudreau KJ, Jeppesen LB. 2015. Unpaid crowd complementors: The platform network effect mirage. Strat Manage J, 36(12): 1761-1777.
Brynjolfsson E, Kemerer CK 1996. Network externalities in microcomputer software: An econometric analysis of the spreadsheet market. Manage Sci, 42: 1627-1647.
Ceccagnoli M, Forman C, Huang P, Wu DJ. 2012. Coercation of values in a platform ecosystem: The case of enterprise software. MIS Quart, 36(1): 263-290.
Cennamo C, Ozalp H, Kretschmer T. 2018. Platform architecture and quality tradeoffs of multihoming complements. Info Sys Res, 29(2): 461-478.
Cennamo C, Santalo J. 2013. Platform competition: Strategic trade-offs in platform markets. Strat Manage J, 34: 1331-1350.

Clements MT, Ohashi H. 2005. Indirect network effects and the product cycle: Video games in the US, 1994-2002. J Indus Econ, 53: 515-542.

Corts KS, Lederman M. 2009. Software exclusivity and the scope of indirect network effects in the US home video game market. International J Indus Org, 27(2): 121-136.

Dean DH, Biswas A. 2001. Third-party organization endorsement of products: An advertising cue affecting consumer purchase evaluation of goods and services. J of Advertising, 30(4): 41-57.

Eckhardt JT. 2016. Welcome contributor or no price competitor? The competitive interaction of free and priced technologies. Strat Manage J, 37(4): 742-762.

Erdogan BZ. 1999. Celebrity endorsement: A literature review. J of Marketing Manage, 15(4): 291-314.

Friedman HH, Termini S, Washington R. 1976. The effectiveness of advertisements utilizing four types of endorsers. J of Advertising, 5(3): 22-24.

Gawer A. 2014. Bridging differing perspectives on technological platforms: Toward an integrative framework. Res Pol, 43(7): 1239-49.

Gawer A, Henderson R. 2007. Platform owner entry and innovation in complementary markets: Evidence from Intel. J Econ Manage Strat, 16(1): 1-34.

Greenwood B, Wattal S. 2017. Show me the way to go home: An empirical investigation of ride sharing and motor vehicle homicides. MIS Quart, 41(1): 163-187.

Gretz RT, Basuroy S. 2013. Why quality may not always win: The impact of product generation life cycles on quality and network effects in high-tech markets. J Retailing, 89(3): 281-300.

Gupta S, Jain DC, Sawhney MS. 1999. Modeling the evolution of markets with indirect network externalities: An application to digital television. Marketing Sc, 18(3): 396-416.

Hoetker G. 2007. The use of logit and probit models in strategic management research: Critical issues. Strat Manage J, 28(4): 331-343.

IDG (2011) IDG Global Forecast Update (Trade publication).

Jacobides MG, Cennamo C, Gawer A. 2018. Towards a theory of ecosystems. Strat Manage J, 39(8), 2255-2276.

Johns J. 2006 Video games production networks: Value capture, power relations and embeddedness. J Econ Geog, 6(2): 151-160.

Kapoor R, Agarwal S. 2017. Sustaining superior performance in business ecosystems: Evidence from application software developers in the iOS and Android smartphone ecosystems. Org Sci, 28(3): 531-551.

Kumar N, Rajiv S, Jeuland A. 2001. Effectiveness of trade promotions: Analyzing the determinants of retailer pass through. Marketing Sci, 20:382-404.

Lal R. 1990. Price promotions: Limiting competitive encroachment. Marketing Sci, 8: 247-262.

Landsman V, Stremersch S. 2011. Multihoming in two-sided markets: An empirical inquiry in the video game console industry. J Marketing, 75(6): 39-54.

Lee RS. 2013. Vertical integration and exclusivity in platform and two-sided markets. American Econ Rev, 103(7): 2960-3000.

McIntyre DP, Srinivasan A. 2017. Networks, platforms, and strategy: Emerging views and next steps. Strat Manage J, 38(1): 141-160.

Nair H. 2007. Intertemporal price discrimination with forward-looking consumers: Application to the US market for console video-games. Quant Mark Econ, 5(3): 239-292.

Pancras J, Gauri DK, Talukdar D. 2013. Loss leaders and cross-category retailer pass-through: A Bayesian multilevel analysis. J of Retailing, 89(2):140-157.

Parker G, Van Alstyne M. 2005. Two-sided network effects: A theory of information product design. Manage Sci, 51: 1494-1504.

Pierce L. 2009. Big losses in ecosystem niches: How core firm decisions drive complementary product shakeouts. Strat Manage J, 30(3): 323-347.
Rietveld J, Eggers JP. 2018. Demand heterogeneity and the adoption of platform complements. *Org Sci.*, 29(2): 304-322.

Schilling MA. 1998 Technological lockout: An integrative model of the economic and strategic factors driving technology success and failure. *Acad Manage Rev*, 23(2): 267-284.

Schilling MA. 2003 Technological leapfrogging: Lessons from the US video game console industry. *Cal Manage Rev*, 45(3): 6-32.

Schilling MA. 2009 Protecting or diffusing a technology platform: Trade-offs in appropriability, network externalities, and architectural control. In Gawer, A. (ed.), *Platforms, Markets and Innovation*. Massachusetts: Edward Elgar.

Seamans R, Zhu F. 2013 Responses to entry in multi-sided markets: The impact of Craigslist on local newspapers. *Manage Sci*, 60: 476-493.

Shankar V, Bayus BL. 2003. Network effects and competition: An empirical analysis of the home video game industry. *Strat Manage J*, 24: 375-384.

Wareham J, Fox PB, Cano Giner JL. 2014. Technology ecosystem governance. *Org Sci*, 25: 1195-1215.

Wellam D. 1998. Not-so-free trade. *Supermarket Bus*. 54(10): 46-48.

Wiersema MF, Bowen HP. 2009. The use of limited dependent variable techniques in strategy research: Issues and methods. *Strat Manage J*, 30(6): 679-692.

Yin PL, Davis JP, Muzyrya Y. 2014. Entrepreneurial innovation: Killer apps in the iPhone ecosystem. *American Econ Review*, 104(5): 255-59.

Yoffie DB, Kwak M. 2006. With friends like these: The art of managing complementors. *Harvard Bus Rev*, 84(9): 88-98.

Zelner BA. 2009. Using simulation to interpret results from logit, probit, and other nonlinear models. *Strat Manage J*, 30(12): 1335-1348.

Zhu F, Liu Q. 2018. Competing with complementors: An empirical look at Amazon.com. *Stat Manage J*, 39(10), 2618-2642.
TABLES AND FIGURES

Table 1. Descriptive Statistics and Pairwise Correlations for H1-H3

Variable	Mean	SD	Min	Max	1	2	3	4	5	6	7	8	9	10
1. Endorsed	0.11	0.32	0.00	1.00										
2. Top 2.5% sales rank	0.02	0.15	0.00	1.00	0.25									
3. Top 2.6%-20% sales rank	0.16	0.36	0.00	1.00	0.44	-0.07								
4. Value of genre	0.50	0.29	0.00	1.00	-0.03	-0.01	0.00							
5. No prior hit in genre	0.19	0.39	0.00	1.00	-0.07	-0.08	-0.06	-0.46						
6. Platform exclusive	0.12	0.32	0.00	1.00	-0.08	-0.06	-0.10	-0.07	0.12					
7. High quality	0.46	0.50	0.00	1.00	0.34	0.21	0.31	-0.13	0.00	-0.08				
8. ln(European unit sales)	0.20	0.25	0.00	1.69	0.51	0.63	0.45	-0.05	-0.10	-0.15	0.51			
9. ln(Number of past endorsements)	1.82	1.17	0.00	4.08	0.11	0.10	0.12	-0.08	0.09	-0.24	0.24	0.21		
10. ln(Publisher age)	3.16	0.61	0.00	4.25	0.05	0.01	0.03	0.11	-0.02	-0.12	0.05	0.11	0.35	
11. Publisher is listed	0.87	0.34	0.00	1.00	0.01	0.06	-0.01	0.05	0.05	-0.06	0.12	0.07	0.35	0.29

Note. Based on estimation sample of 918 video games. Pairwise correlations greater than |0.06| significant at \(p < 0.05\). Mean VIF statistic = 3.38.
Variable	1	2	3	4	5
Top 2.5% sales rank	-0.63	-0.78	-0.60	-0.76	
	[0.88]	[0.87]	[0.89]	[0.90]	
Top 2.6%-20% sales rank	1.82**	1.79**	1.81**	1.78**	
	[0.38]	[0.38]	[0.37]	[0.38]	
Value of genre * no prior hit in genre	3.77**				4.24**
	[1.30]				[1.39]
Platform exclusive * high quality					13.38**
					13.41**
					[0.79]
					[0.87]
Value of genre	0.55	0.19	-0.33	0.15	-0.38
	[0.57]	[0.68]	[0.73]	[0.68]	[0.73]
No prior hit in genre	-0.37	-0.65	-1.70*	-0.65	-1.78*
	[0.55]	[0.49]	[0.71]	[0.49]	[0.70]
Platform exclusive	-0.31	-0.08	-0.15	-13.13**	-13.16**
	[0.57]	[0.61]	[0.64]	[0.45]	[0.56]
High quality	1.01**	0.96**	0.91*	0.88*	0.81*
	[0.33]	[0.37]	[0.37]	[0.37]	[0.37]
ln(European unit sales)	4.84**	4.39**	4.54**	4.37**	4.55**
	[0.68]	[0.80]	[0.82]	[0.80]	[0.83]
ln(Number of past endorsements)	0.30*	0.25+	0.31*	0.24	0.31*
	[0.15]	[0.15]	[0.15]	[0.15]	[0.16]
ln(Publisher age)	0.48+	0.62	0.62	0.60	0.58
	[0.28]	[0.40]	[0.40]	[0.40]	[0.40]
Publisher is listed	-0.86*	-0.72	-0.84+	-0.71	-0.84+
	[0.40]	[0.47]	[0.48]	[0.47]	[0.48]
Constant	-7.43**	-8.36**	-8.18**	-8.19**	-7.98**
	[1.53]	[2.01]	[2.02]	[1.99]	[1.99]
Platform dummies	YES	YES	YES	YES	YES
Year dummies	YES	YES	YES	YES	YES
Calendar month dummies	YES	YES	YES	YES	YES
Genre dummies	YES	YES	YES	YES	YES
Games	918	918	918	918	918
Mc Fadden's Adj. R-squared	0.37	0.44	0.45	0.44	0.45

Note. **p < 0.01, * p < 0.05, + p < 0.10.
Heteroskedasticity robust standard errors reported in parentheses.
Table 3. Descriptive Statistics and Pairwise Correlations for H4

Variable	Mean	SD	Min	Max	1	2
1. Endorsed re-releases	0.10	0.36	0.00	5.00	0.10	0.11
2. Platform age	36.62	18.42	1.00	73.00	0.10	
3. New game releases	0.78	1.44	0.00	13.00	0.24	0.08

Note. Based on estimation sample of 1,770 observations (i.e., 870 genre-month observations for PS3 and 900 genre-month observations for Xbox 360). All pairwise correlations are significant at $p < 0.05$.

Table 4. Poisson panel regressions estimating the number of endorsed re-releases (H4)

Variable	1	2	3
Endorsed re-releases			
Platform age	0.02** [0.01]	0.02** [0.01]	-0.06* [0.03]
New game releases			
Constant	-1.58** [0.06]	-2.40** [0.31]	-2.29** [0.37]
Platform dummies	YES	YES	YES
Calendar month dummies	YES	YES	YES
Genre dummies	YES	YES	YES
Platform-genre-month	1,770	1,770	1,770
observations			
Log pseudolikelihood	-430.01	-421.17	-420.59

Note. ** $p < 0.01$, * $p < 0.05$, + $p < 0.10$. Heteroskedasticity robust standard errors clustered at the platform level.
Figure 1. Distribution of games’ average unit sales by months from release

![Figure 1](chart1.png)

Figure 2. Average predicted probabilities and marginal effects (H2)

![Figure 2](chart2.png)

Figure 3. Average predicted probabilities and marginal effects (H3)

![Figure 3](chart3.png)

16 The data labels in Figures 2 and 3 list marginal effect sizes, or the estimated differences in the predicted probabilities between both slopes at different values of the independent variables. The significance thresholds used for these marginal effect sizes (i.e., **, *, +) correspond with those reported in the main results tables.
APPENDIX A: EXAMPLES OF ENDORSED VIDEO GAMES

Figure A-1. PlayStation 3 game covers for Uncharted: Drake’s Fortune (published by Sony Interactive Entertainment)

Figure A-2. Xbox 360 game covers for Grand Theft Auto: IV (published by Take-Two Interactive)
APPENDIX B: THE EFFECT OF PLATFORM ENDORSEMENTS ON GAME SALES

To validate the positive effect of endorsements on sales, we analyze video games’ unit sales at the game-platform-week level. We expect unit sales to be higher in weeks where a video game is endorsed compared to weeks when it is not endorsed, while controlling for game age and for other game-related and external factors. We further seek to validate the suggested mechanism underlying hypothesis 1, that games with lower initial sales performance stand to benefit more from selective promotion.

The effect of selective promotion on game sales

Identification strategy. To identify the effect of platform endorsements on sales, we utilize a difference-in-difference (DiD) estimator. The main advantage of this method is that it mimics a quasi-experiment as our treatment effect is applied to different games at different times in their lifecycles. The DiD estimator contrasts the pre-treatment trend in games’ unit sales to the post-treatment trend for the subsample of games that received the platform endorsement (i.e. “treatment group”) to those that never received an endorsement and those receiving an endorsement later in their lifecycle (i.e. “control group”). The net effect is quantified as the difference in games’ weekly unit sales as an effect of the treatment.

The key identifying assumption of the DiD estimator is that the pre-treatment trends for the treatment and control groups are identical (Angrist and Pischke, 2008). Since we established that platform sponsors strategically select video games for endorsement, it is imperative to look for a control group that closely resembles the treatment group to estimate the counterfactual. We identify the effect of platform endorsements on game sales by exploiting a unique feature of our data: We narrow our focus to a subsample of 25 game pairs that multi-home on PlayStation 3 and Xbox 360 but receive an endorsement on only one of these consoles.17 A game that multi-homes is nearly identical in its aesthetic design, structural characteristics, gameplay, release date, marketing budget, and technical performance. Because the game is close to identical on both platforms, but endorsed on only one platform, we can minimize any

17 The list of 25 game pairs used for estimation is available from the first author upon request.
ex-ante heterogeneity that may exist between observations in the treatment and control groups. Figure B-1 compares the average weekly unit sales for the 25 game pairs for the eight-week period before and after the normalized time of endorsement. The figure clearly shows a) that there exist parallel pre-treatment trends, and b) that average game sales spike for the treatment group immediately after receiving the endorsement. Note that the values in this graph are group-level averages, and that the games in the control group are near identical counterparts that might benefit from spill-over effects from the endorsement.

--- INSERT FIGURE B-1 ABOUT HERE ---

We impose an additional restriction on our data: To account for games’ exponentially downward sloping sales curves (see Figure 1), and to best isolate the effect of endorsements on sales, we limit the sample to the eight weeks before and eight weeks after the normalized time of endorsement. The sample therefore includes 16 game-week observations for each of the 25 game pairs. The final sample for estimation includes 782 game-week observations; 18 game-week observations are missing because some video game lifecycles stretched beyond the data collection period for our study.

Since our outcome variable is continuous, we estimate coefficients using a fixed effects ordinary least squares (OLS) panel regression. To account for autocorrelation we cluster standard errors at the game-platform level (Bertrand, Duflo and Mullainathan, 2004). The estimation takes the following form:

\[y_{ijt} = a_{ij} + \eta_t + \beta D_{ijt} + X_{ijt} \delta + \epsilon_{ijt} \]

where \(y_{ijt} \) is a game’s weekly unit sales, \(a_{ij} \) is a vector of game-platform fixed effects, \(\eta_t \) is the vector of game age fixed effects, \(\beta D_{ijt} \) is the vector of endorsement treatments to be estimated, \(X_{ijt} \delta \) is a vector of time varying control variables (i.e., platform-year-month fixed effects to control for any platform-side variation including competition and installed base size), and \(\epsilon_{ijt} \) captures the error term.\(^{18}\)

\(^{18}\) Notwithstanding the fact that endorsed re-releases are often accompanied by a lower recommended retail price, we do not control for games’ selling prices in our models primarily for two reasons. First, although we observe in our data that prices of games drop shortly after the launch of an endorsed re-release, we also observe that prices of non-endorsed games decline. The maximum average difference in weekly selling prices between endorsed and non-endorsed video games at any point in the 16-week period surrounding the endorsement is 2.08 GBP (the average overall difference between in price between both types of games is 0.08 GBP as shown in Table B-1). Second, this difference in actual selling prices is likely explained by the fact that retailers strategically adjust games’ selling
with lower initial sales performance experience greater sales increases from receiving an endorsement, we include the interaction between *endorsed* and *lower initial sales*. Since our estimation sample is restricted to endorsed video games and likely all have high initial sales performance, we take the sample’s median as a threshold to identify those games with lower prior sales performance. *Lower prior sales* takes the value of 1 for games that have first month unit sales which are below the sample median.

Main results. Table B-1 reports summary statistics for the main variables in our analysis and Table B-2 reports our main results. Models 1 and 2 estimate the treatment effect on the full sample of 25 game pairs, models 3 and 4 estimate results on a restricted sample of treated-only games (variation comes from the treatment being implemented at different moments in a game’s lifecycle), and models 5 and 6 estimate results on a restricted sample of control-only games to test for spill-over effects.

--- INSERT TABLES B-1 AND B-2 ABOUT HERE ---

Consistent with our arguments, we find a positive and significant effect of *endorsed* on games’ weekly unit sales in Model 1 ($p < 0.05$), and a positive interaction effect between *endorsed* and *lower prior sales* in Model 2 ($p < 0.01$). On average, endorsed video games sell 269.43 units per week more than non-endorsed games in the eight-week period following the endorsement. Moreover, this effect is mostly driven by games with lower prior sales performance as these games enjoy a sales increase of 730.51 units per week, while games with higher initial sales performance enjoy a (non-significant) increase of 24.66 units per week. These results suggest that platform endorsements do not affect all video games equally, consistent with hypothesis 1. Our results become more pronounced in models 3 and 4, which replicate our results on a restricted sample of treated-only games. The results in Model 4 suggest that games with lower initial sales enjoy a sales increase of 765 units per week following the endorsement ($p < 0.05$), while endorsed games with high prior initial sales have sales increases of 265.81 units per week ($p < 0.05$).

prices to influence demand over a game’s lifecycle. Selling prices thus are endogenously determined in large part by video games’ sales performance in the previous period. Including selling prices in a model predicting weekly unit sales would be fruitless given the high correlation with the outcome variable. That being said, in one of our robustness tests (reported below) we do control for differences in selling prices between matched pairs of nearly identical games and find that the main effect of selective promotion persists.
Lastly, we find no evidence for spill-over effects in models 5 and 6 of Table B-2 as the treatment has a positive but non-significant effect on the control group subsample of never-endorsed video games. That said, our reported effect sizes should be interpreted as local average treatment effects only.

Relative time model. As noted previously, the identification of the treatment effect is only valid to the extent that there exist no differences in the pre-treatment trends between endorsed and non-endorsed video games. One concern is that sales for a certain video game on one platform are levelling off at a somewhat slower rate compared to the same game on a competing platform. A platform sponsor may see a greater potential for boosting a game’s unit sales precisely because of this slower decay, which would then violate the parallel trends assumption. To rule out this concern we implement a relative time model of which the main benefit is that it allows for different lags and leads of the treatment effect (Autor, 2003). An additional advantage of this model is that it provides insight into the dynamics of the treatment effect: Whether the effect of endorsement is constant, or perhaps first picks up and then mean-reverts after an endorsed video game has been on the market for a longer period of time.

The relative time model replaces the vector of treatments with a series of time dummies that indicate the relative distance between week t and the launch of an endorsed video game. The omitted category against which the coefficients are estimated is the week preceding the endorsement, in which we also group all observations for games that never received the endorsement (Greenwood and Wattal, 2017; Seamans and Zhu, 2013). Results from this time trend analysis are depicted graphically in Figure B-2. The graph shows that none of the pre-treatment dummies are significantly different from zero. This finding provides compelling evidence that there is homogeneity in the pre-treatment sales trends for games that eventually receive the endorsement and those that never receive an endorsement, validating the key identifying assumption of the difference-in-difference design (Angrist and Pischke, 2008). Furthermore, we note that the effect of endorsed on unit sales manifests from the moment an endorsed game hits the shelves; the effect then increases in magnitude in the following two weeks a game is on the market, after which it levels off. The positive effect of endorsed on video games’ weekly unit sales loses statistical significance after five weeks, equivalent to a cumulative sales increase of 2,742 units.
Robustness tests. We subjected our findings to a range of robustness checks. First, to further exploit the uniquely matched nature of our data, we conducted a matched pairs estimation wherein we subtract the unit sales of ‘control group’ games from those of ‘treatment group’ games, for each week, within each pair of identical games. We then regressed the difference in weekly unit sales on endorsed in a model that includes matched-pair fixed effects (Besley and Burgess, 2004). Lending further support to our main results, we find that the difference in sales between endorsed games and their non-endorsed counterparts increases by 761.13 units per week in the period following the endorsement. Second, this matched pairs analysis also allows us to control for any differences in selling prices between games, by including a variable that measures the difference in selling price between two ‘twin’ games. Although we find that a 1 GBP higher selling price leads to a non-significant drop in sales of 22.61 units per week, the positive effect of endorsed on sales persists suggesting that the sales increase effect is driven by the endorsement more so than by the drop in video games’ selling price. Third, we re-estimated our models with the inclusion of treatment specific time-trends. Including treatment specific time-trends is an alternative way of controlling for unobserved heterogeneity in time-trends between treated and control group observations (Besley and Burgess, 2004). Here, too, our main findings remain unchanged. Fourth, we ran a series of falsification checks to rule out the possibility of a false positive association. We re-estimated our main analysis on a sample of pre-implementation observations by creating a vector of endorsement dummies where we bring forward the implementation of the endorsement by 16, 12, and 8 weeks. We then re-generated the estimation sample based on these normalized “placebo” treatments and repeated our analyses. We find no significant effects of any of the placebo treatments on weekly unit sales in any of the weeks preceding the platform sponsor’s endorsement of a video game, strengthening the confidence in our results. Finally, we re-estimated the results by fitting the models with AR(1) disturbances as an alternative way to account for autocorrelation. Our main results remain supported.

--- INSERT FIGURE B-2 ABOUT HERE ---

Tabulated results from these robustness tests are available from the first author upon request.
Table B-1. Summary statistics for estimations testing the effect of platform endorsements on games’ unit sales

Variable	Full estimation sample	Non-endorsed games	Endorsed games	Mean difference								
	Obs	Mean	SD	Min	Max	Obs	Mean	SD	Obs	Mean	SD	Mean difference
Endorsed	782	0.23	0.42	0.00	1.00	391	0.00	0.00	391	0.47	0.50	-0.47**
Unit sales	782	585.87	794.53	0.00	6914.00	391	498.74	669.06	391	672.99	895.16	-174.25**
Lower prior sales	782	0.49	0.50	0.00	1.00	391	0.63	0.48	391	0.35	0.48	0.29**
Game price (GBP)	630	17.51	5.59	1.00	50.00	308	17.55	4.41	322	17.47	6.54	0.08

*Note.** **p < 0.01, * p < 0.05, + p < 0.10. Mean differences between non-endorsed and endorsed video games estimated using two-sample t-tests.*

Table B-2. OLS panel regressions estimating the effect of platform endorsements on weekly unit sales

Variable	1	2	3	4	5	6
Endorsed	269.43*	24.66	570.51*	265.81*	33.01	111.73
	[126.46]	[102.14]	[233.54]	[127.36]	[136.62]	[181.42]
Endorsed * lower prior sales	730.51**	765.00*	-154.45			
	[188.79]	[354.23]				
Constant	4197.04**	3959.63**	5730.65**	5629.85**	3297.70**	3465.69**
	[765.74]	[861.93]	[1128.30]	[1101.20]	[443.02]	[887.88]

*Note.** **p < 0.01, * p < 0.05, + p < 0.10. Heteroskedasticity robust standard errors clustered at the game-platform level.*

Models 1 and 2 estimate the treatment effect on the full sample of 25 game-pairs (treatment and control groups). Models 3 and 4 estimate the treatment effect on the subsample of 25 treated-only games. Models 5 and 6 estimate the treatment effect on the subsample of 25 control-only games.
Figure B-1. Average weekly unit sales by endorsed and not endorsed video games

Figure B-2. Dynamic effect of platform endorsement on weekly game sales

The data labels in Figure B-2 list estimated differences in weekly unit sales between endorsed and non-endorsed video games. Only those estimated differences that are significant at conventional levels are listed. The significance thresholds used for these estimates (i.e., **, *, +) correspond with those reported in the main results tables.

Electronic copy available at: https://ssrn.com/abstract=3061424