Review on the Interface Pressure Measurement for Below Knee Prosthetic Socket

Esraa A Abbod and Kadhim K Resan

Al-Mustansiriyah University, Faculty of Engineering, Materials Engineering Department, Iraq

E-mail: edu.esraa.a@uomustansiriyah.edu.iq

Abstract. The prosthesis consists of several essential parts such as socket, shank, ankle, and foot. A socket is an important part of prosthetic limbs; it is an interface between the residual limb and prosthetic parts. Biomechanics of socket-residual limb interface, particularly the effect of pressure and force distribution, has on the amputee regarding comfort and function. The most demanding process is designing and fitting of the socket. This is because each patient's residual limb is unique and complex. It is very significant to take into account the interface pressure of an amputee patient. The prosthetic socket dispenses the entire weight of the amputee's torso while in the walking cycle. This is why it is vital to measure the quantity of these interface stresses to measure the amount of damage the socket imposes on the residual limb tissues. Different types of methods have been utilized to identify the locations of extreme stresses that might cause skin breakdown. A comparison of stress distributed in a number of socket designs was made to assess interface cushioning and suspension systems, among others.

Keywords. Interface Pressure, Below Knee, Prosthetic Socket.

1. Introduction

The materials used for manufacturing prosthesis structures were composite materials. However, in the last year, these materials' mechanical properties are modified with various composite materials applications. Where, the composite materials being by mixing resin materials by reinforcement fiber, [1-3], then, additive powder materials to modify the mechanical properties, [4-6], and finally additive of the Nanomaterials to increase the mechanical properties for composite materials, [7-12], with different applications. So, the composite materials are used in vibration, [13-14], buckling, [15-17], fatigue, [18-20], and other applications, which is where the application is given agreement behavior for structure with composite materials. Then, after calculating the useful properties of composite materials, manufacture the prosthesis structure from composite. There, manufacturing different parts from composite materials and given good characterizations with different applied load, such as prosthesis socket, [21-24], prosthesis foot, [25], hip joint structure, [26], Partial Denture, [27-28], prosthesis knee, [29-31], and other application, [32-35]. Finally, artificial prosthesis was modified by manufacturing a robot structure with different movement directions [36-40]. There is an increase in amputations in developed countries due to diabetes motor vehicle accidents, the latter being the major causes. [41-43]. A prosthesis situated below the knee consists of numerous vital parts, i.e., socket, shank, ankle, and foot, as shown in Figure (1). The socket provides the link between the residual limb (stump) and the prosthetic device's remaining parts. Designing and mounting the socket is the hardest process because of each patient's residual limb's individuality and intricacy. An uncomfortable
prosthetic part results from misfit and poor design at the socket/limb interface leading to extreme stresses [44-48]. The main foremost reason for a prosthetic foot, shank, and socket are to substitute the means of replacing the missing structure and function of the skeleton and muscles of the foot, ankle, and shank. This comprises delivering support from a stable foundation, the flexibility that simulates the normal walking succession, and generation absorbing shock due to healing contact. Muscle spasm is also important because of the energy or absorption by the ankle [48-51]. Bearing loads have the primary role for a prosthetic socket for transtibial amputated patients; because of this, the amputee's patients socket's structure is very significant, and their (the patients) comfort as well as the function of the prosthesis are prominently influenced by the mechanical interaction between the skin of the amputated limb's skin and prosthetic socket [52]. How long it takes a prosthetic socket to become uncomfortable and needs replacement expressed by its life cycle. Thus, the numerical value for this is obtained by applying the part to cyclic loading and unloading, where a phenomenon known as hysteresis may occur during this phase [53-56].

This research aims to compare different interface pressure measurement methods and then know each method's advantages and disadvantages.

2. Prosthetic socket

The luxury and overall performance of a prosthesis's socket, which links the prosthetic to the patient below the knee, is significantly enriched by design. Fitting the socket at the lower part of the amputated limb specifies the prosthesis' value. Traditionally, the preparation of prosthetic sockets is dependent on the practice of prosthetists [57]. A socket's part of a trans-tibial prosthesis is considerable since the rest of the extremities do not encompass the similar weight-bearing capacities as the base. As a result, the designing and fitting of a socket are substantial factors for succeeding in the patient treatment process. The socket border design can be subdivided into three requisite categories due to weight-bearing character: Patellar Tendon Bearing (PTB), Total Surface Bearing (TSB), and Hydrostatic Loading. The socket manufacturing may be achieved by two methods [58-61], as shown in Figure (2).

Figure 1. Below-knee prosthetic components.

Figure 2. Socket manufacturing methods.
3. Interface pressure Measuring

The shape of the socket is not a replica of the residual limb. However, it contains modifications (corrections) such that a significant transfer of load between the prosthesis and the remaining limb has been achieved [62]. Even though force and/or pressure sensor is used as a direct investigation method to the interface pressure, the sensors and wiring are positioned between the amputated limb and socket unavoidably interrupt the mechanical order at the interface [63]. Pressure probes devoted to measuring the distribution of stresses within the sockets may be piezo-resistive, strain gauges, capacitive, or optical. All the methods implemented are for evaluating pressure, and socket residual limb tension was intended to increase precision and produce results with an approximation to the practical and medical situation [64]. The methods for interface pressure of a socket were.

3.1. Vacuum diaphragm and liquid sensor

In 1959, D. S. McKenzi researched improving the entire sockets' exterior plane. To make an exterior bearing with a self-suspending atop the socket knee where the load would be dispersed as homogenously as achievable to evade and the uneasiness accompanying excessive concentrated loads at with high loads concentrated in related zones, [65]. Chino N. et al. (1975) measured the sub-zero pressures of the small void between the distal stump and the prosthetic socket situated below the knee. This was accomplished during the swing stage for nine individuals. It was found that a sleeve of a molded rubber that connected the prosthetic enhanced this effect in which the suspension suction was carried out through the whole swing stage [66]. R. G. REDHEAD (1979) investigated Ferranti silicone etched diaphragm type ZPT50A (7/8" long x 1/4" diameter) was elected as the transducers for pressure 16 holders were fixed to the socket's wall to maintain the seal's suction pressure [67]. Nine transducers were attached (screwed) into the socket's wall. For each socket, 16 transducers were fixed to the socket wall [68].

Van Pijekeren et al. (1980) improved a sensing system, as illustrated in Figure (3); in which the used sensors were very thin and can be attached to the inner surface of the socket wall to as slightly as it is possible to disrupt the prevailing pressure shape [68]. Dynamic pressure for the whole socket was logged and determined by MARINUS NAEFF, M .D and TEUN van PIJKEREN (1980); instead of using water air ("aerostatic" casting procedure), an equivalent pressure was applied to the Paris plaster as a hardened to apply equal pressure to plaster of Paris wrapping around the residual limb while it hardens. They also used a container with a flexible plastic bag inside [69].

![Figure 3. Principle of interface pressure measurement system by Van Pijekeren [68].](image)

In this method, they measured only "normal" pressures, i.e., pressures observe at the local socket wall or seat. They did not consider shear forces parallel to the wall because the skin is very easily moved over subcutaneous tissue, and therefore the shear force will be small. The capability to recurrently
observe the pressure at the prosthetic's socket/the remaining amputated limb's interface can supply important data to the scientific and medical societies. Taking all of these into consideration, this research can be defined as an original type of sensor which contains a MEMS pressure sensor and patterned electronics packed inside a bubble filled with a fluid by Jason W. Wheeler (2011). The sensor is characterized and compared to two commercially-available technologies. The bubble sensor (as shown in Figure 4) has great drift and excellent detecting resolution [70].

![Figure 4. Fluid-filled bubble sensor.](image)

3.2. Displacement sensor
Francis A. Appoldt et al. (1968) conducted research to determine the amount of slip at numerous places inside the socket's suction, as shown in Figure (5-a and b). The range of overall slip values in four patients is set as a locating task inside the socket under the walking level settings [71]. The residual limb/prosthetic socket interface pressures and shear stresses were measured by Joan E. Sanders et al. (1997). The maximum stresses for 13 of the interface while in the stance stage were measured for two patients with amputation of type unilateral transtibial (TTA). A prosthetic of patellar-tendon-bearing with full contact was used. The stress interface transducers were attached to mounts that were fixed on the surface's exterior [72] (as shown in Figure (5-c)). Jumaa S. Chiad et al. (2014) suggested developing an interface pressure measurement system (Displacement Sensor) to obtain the interface's pressure amid the remaining amputated limb and the fabricated socket. This new method was used for patients that have amputation above the knee [73].

![Figure 5. Different types of sensor position.](image)

3.3. Force sensing resistors and strain gauge
The pressures that existed at the stump/socket were measured by Appoldt et al. (1968), two patients supplied over the knee prosthetic. The strain gauge is the popular primary sensor used in this type of installation method. They investigated the consequences when the legs' alignments changed with the
passaging of time are detailed in terms of local dynamic pressures felt while strolling [74]. J.E. Sanders and C.H. Daly (1993) improved transducers to determine stresses in three orthogonal trends to which directed at an amputated below the knee inside the prosthetic's socket while strolling [75]. In order to determine the dynamic pressures at the interface between remaining amputated limb and socket "Force Sensing resistors were employed while going through the gait of a trans-tibial amputated patient. Three hundred fifty (350) pressure-sensitive sensors were fixed to the inside of a hydro-cast socket. P.Convey and A.W.Buis (1997) presented a comparison of pressure dispersal between a hand-cast socket to that of a hydrocast socket. The study was performed on the same patient. The pressure's gradients for Patellar-Tendon-Bearing (PTB) hand-cast are higher than that of the hydro cast sockets. The proximal "ring" of elevated pressure in the hand-cast PTB socket is replaced with a further distal pressure in the hydrocast socket [76]. Interface pressures and shear stresses were determined on two adults, male, unilateral, transtibial volunteer amputee subjects wearing patellar-tendon-bearing (PTB) design sockets by S. G. ZACHARIAH and J. E. SANDERS (2001) determined compressive stress and two right-angled with respect to the shear stress of the transducer's face. They have been placed on 13 locations strain transducers on the prosthetic socket [77]. Interface pressures were determined during ambulation with a normal total-surface weight-bearing suction socket and a vacuum-aided socket by Tracy L. Beil et al. (2002). The vacuum-assisted socket has been shown to eliminate daily volume loss. Urethane liners were instrumented with five force-sensing resistors to measure positive pressures and one air pressure sensor at the liner's distal end to document negative pressures. Nine unilateral transtibial amputees participated in the study [78]. The pressure distribution depends on the ground reaction force's value at the gait cycle, as shown in Figure (6). Also, J. C. H. Goh et al. (2003), with the aid of pressure-sensitive transducers, determined dispersion of pressure and gait boundaries were determined concurrently while the patient stood and walked [79].

![Figure 6. Interface pressure distribution with the gait cycle.](image)

3.4. Tactile Pressure Sensor and piezoelectric sensor
Measurement of pressure and prosthetic sockets mapping has improved the understanding of prosthetic fit at the same fundamental level and has helped facilitate objectively-based designs of the socket. The sensor of the F-socket was used based on piezoelectric ink between two layers. The area of contact between the ink particles was increased as pressure increased due to the changing resistance to current flows through the ink [80-84]. Engsberg et al. and Houston et al. (1992) were pioneers studying the interface pressure underneath the knee socket using such a method. They presented optimistic results on the possible usage of F-socket pads in clinical sets. The F-socket sensing pads exhibited and were both sensitive and flexible; they were also easy to use [85]. Kazuko L. Shem et al. (1998) used a Rincoe socket fitting system (SFS) to measure interface pressure. With this system,
sensor strips are placed between the residual limb and the socket; in this study, the amount of interface pressure relieved was measured in transtibial amputees with thigh lacer side joint prostheses [86]. You-Li CHOU et al. (2003) investigated the dissimilarities at different strolling speeds, gait, maximum forces, and pressures at the interface between residual limb and socket. To study the system's kinematics and kinetic, an analysis of the system's motion implemented to study the kinematics and kinetics of the gait, and the Pedar system was used to measure the maximum forces and pressures between amputated limb and socket through different strolling speeds. Fifteen male transtibial amputates rounded up this study. The force-time integrals' discernment was the same when a comparison was made with maximum force, and the pain scale of subjects' subjective feeling [87]. The problem of a bio-mechanical answer for human mobility post amputation of a lower limb. Using a transtibial prostheses socket designed by Rajtukova, V.A (2004). An inapplicable action occurs in the socket/stump vicinity, steering to enhancing friction and succeeding surface impairment to the soft tissue. In exclusive personal types of transtibial prostheses, position sites can be loaded and those that cannot. Based on this research for the amputated limb's foreshore, two unloadable and three loadable locations were registered. With the aid of the "TACTILUS" tactile pressure sensor (Sensor Products Inc.) to observe the pressure dispersion for these locations, this was considered in assessing exerted pressure on the selected location technique [88]. Sadeeq Ali et al. (2013) measured the pressure at the interface with a transducer (9811E||) F-socket; this was accomplished while going up and down a staircase stump to have finer insight on the pressure between the stump and socket. Front, middle, and side sensor devices were fixed in the middle of the patella level [89]. Tim Dumbleton et al. (2009) performed a comparison between dynamic interface pressure dispersion of hands-off and hands-on transtibial prosthetic systems. They performed this by charting pressures determined 90% of the dynamic pressure utilizing pressure mapping. They measured the dynamic pressure contour of the area in the prosthetic socket with the aid of four Tekscan F-Scan socket transducer arrays. A comparison was made between socket concepts for interface pressure [90]. Muhsin J. Jweeg et al. (2012) investigated the effect of high temperatures in hot weather countries on a socket fabricated from a composite material while in gait. Interchanging pressure on the inside surface (obtained by Piezoelectric disk sensor) of the socket is created and guides to alternative stresses resulting in the composite material's fatigue failure. It is essential that as temperature increases, the mechanical properties decline through time due to creep, which is a source for socket failure due to the interaction of fatigue and creep [91]. Shireen H. Chalob et al. (2015) evaluated the effect of stress relaxation on the socket material by testing this material at 50 °C by creep test and evaluating creep data by using the Burger model to obtain the equation of the stress relaxation modulus with time; the interface pressure was measured by F-scan sensors[92]. Ikram R. Abd Al-Razaq et al. (2015, 2016) investigated the effect of temperature below the knee socket manufactured by Modular Socket System (MSS) and compared it with the traditional method. The interface pressure was measured by F-scan sensors [93-94]. Kadhim K. Resan (2016) subjected four polypropylene groups at different times of exposure to an ultraviolet ray. The lengths of times of subjection were: zero, 20 hours, and 40 hours. Stresses were determined for shear relaxation at 50 °C for the same group. This research was conducted to investigate the ultraviolet ray effect on tensile strength, hardness, and polypropylene morphology. The pressure for the interface was taken in the vicinity below the knee's socket and amputated lime, between the knee socket and prosthetic with F-socket sensors' aid, after which the socket is modeled using ANSYS workbench [95]. Gianna Morelli et al. (2019) also showed how the pressure mapping socket technology used in the F-Socket system is essential to developing stronger, more comfortable, and more efficient prosthetic technologies. The sensors used in this system are paper-thin and can be sized and readjusted to fit securely in the socket's curvature [96-97].

3.5. Fiber Bragg grating (FBG) sensors method
Fiber Bragg grating (FBG) sensors used by Ebrahim A.AL et al. (2013), these sensors were implemented to determine the pressure between the amputated limb and the prosthetic socket; interface; of a trans-tibial amputated patient. FBG element(s) were repainted with entrenched in an alight film of epoxy substance to form a sensing cushion, which was, in turn, entrenched in a silicone
polymer substance to make a pressure sensor. The sensor was experimented with in real-time by slotting in a heavy-duty balloon into the socket. Ebrahim A.AL et al. (2016) researched an efficient fiber Bragg grating (FBG)-based sensory cushion that can measure the interface pressure inside prosthetic sockets and shows four required sensitivity, greater robustness, and the lowest possible five hysteresis error. Three essential manufacturing boundaries were studied to assess their effects on the performance of different sensory pad model blueprints [98-99]. Also, Ebrahim A.AL et al. (2017) introduced an innovative, customized FBG instrumented silicone liner that eliminates the previous limitations and provides a practical and straightforward means of sensing. It is designed to cushion the typical loads applied by the socket to the residual limb and functions as a real-time interface pressure sensing tool [100-104].

4. The Disadvantage of different methods to measure the interface pressure
I. Vacuum diaphragm and liquid sensor, the disadvantages of these type of sensor are,
 a. It is measured the normal pressure only, which means the shear stress is neglected.
 b. The low impact resistance (Limited life when subject to shock and vibration)
 c. Hysteresis on cycling.
 d. It measures pressure at a point, meaning that it cannot measure the pressure distribution for all areas inside the socket.
 e. Lower measurement pressure.
II. Displacement sensor disadvantages
 a. It measures pressure at a point, meaning that it cannot measure the pressure distribution for all areas inside the socket.
 b. It is measured the normal pressure only.
 c. It is not accurate, as it depends on the deformation in the socket, and if the socket is of high stiffness, the piston of the sensor not move sufficiently, Although high pressure was applied
III. Force sensing resistors and strain gauge disadvantages
 a. It measures pressure at a point.
 b. Strain gauge measured lateral deformation; therefore, it is not accurate to measure the normal pressure.
 c. Temperature-sensitive
 d. The thermoelastic strain causes hysteresis
IV. Tactile Pressure Sensor and piezoelectric sensor disadvantages
 a. Mats may wrinkle and malfunction during experiments.
 b. 2- Dynamic sensing only
V. Fiber Bragg grating (FBG) sensors method disadvantage
 a. It is thermally sensitive.
 b. The mats sensors are not fully flexible
 c. It is expensive to build and maintain.
 d. It is challenging to discriminate wavelength shift due to temperature and strain separately.

5. References
[1] Mohsin Abdullah Al-Shammari, Sahar Emad Abdullah 2018 Stiffness to Weight Ratio of Various Mechanical and Thermal Loaded Hyper Composite Plate Structures (IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences) vol 433
[2] Lara E Yousif, Kadhim K Resan and Raad M Fenjan 2018 Temperature Effect on Mechanical Characteristics of A New Design Prosthetic Foot (International Journal of Mechanical Engineering and Technology (IJMET)) vol 09 no 13 pp 1431-1447
[3] Ekhlas Edan Kader, Akram Mahdi Abed and Mohsin Abdullah Al-Shammari 2020 Al_2O_3 Reinforcement Effect on Structural Properties of Epoxy Polysulfide Copolymer (Journal of Mechanical Engineering Research and Developments) vol 43 no 4 pp 320–328
[4] Muhamad Al-Waily and Zaman Abd Almalik Abd Ali 2015 A Suggested Analytical Solution of Powder Reinforcement Effect on Buckling Load for Isotropic Mat and Short Hyper
Composite Materials Plate (International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS) vol 15 no 04

[5] Jumaa S Chiad, Muhammad Al-Wailly and Mohsin Abdullah Al-Shammari 2018 Buckling Investigation of Isotropic Composite Plate Reinforced by Different Types of Powders (International Journal of Mechanical Engineering and Technology (IJMET)) vol 09 no 09 pp 305–317

[6] Ameer A Kadhim, Muhammad Al-Wailly, Zaman Abud Almalik Abud Ali, Muhsin J Jweeg and Kadhim K. Resan 2018 Improvement Fatigue Life and Strength of Isotropic Hyper Composite Materials by Reinforcement with Different Powder Materials (International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS) vol 18 no 02

[7] Jawad K Oleiwi, Rana Afif Majed Anaee and Safaa Hashim Radhi 2018 Tensile Properties of UHMWPE Nanocomposites Reinforced by CNTs and nHA for Acetabular Cup in Hip Joint Replacement (Journal of Engineering and Applied Sciences) vol 13 no 13

[8] Ehab N Abbas, Muhsin J Jweeg and Muhammad Al-Wailly 2018 Analytical and Numerical Investigations for Dynamic Response of Composite Plates Under Various Dynamic Loading with the Influence of Carbon Multi-Wall Tube Nano Materials (International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS) vol 18 no 06 pp 1–10

[9] Marwah Mohammed Abdulridha, Nasreen Dakel Fahad, Muhammad Al-Wailly and Kadhim K. Resan 2018 Rubber Creep Behavior Investigation with Multi Wall Tube Carbon Nano Particle Material Effect (International Journal of Mechanical Engineering and Technology (IJMET), vol 09 no 12 pp 729–746

[10] Jawad Kadhim Oleiwi, Rana Afif Anaee and Safaa Hashim Radhi 2018 Roughness, Wear And Thermal Analysis of UHMWPE Nanocomposites Asacetabular Cup In Hip Joint Replacement (International Journal of Mechanical and Production Engineering Research and Development) vol 8 no 6 pp 855–864

[11] Muhammad Al-Wailly, Iman Q Al Saffar, Suhair G Hussein and Mohsin Abdullah Al-Shammari 2020 Life Enhancement of Partial Removable Denture made by Biomaterials Reinforced by Graphene Nanoplates and Hydroxyapatite with the Aid of Artificial Neural Network (Journal of Mechanical Engineering Research and Developments) vol 43 no 6 pp 269–285

[12] Muhammad Al-Wailly, Mohsin Abdullah Al-Shammari and Muhsin J Jweeg 2020 An Analytical Investigation of Thermal Buckling Behavior of Composite Plates Reinforced by Carbon Nano Particles (Engineering Journal) vol 24 no 3

[13] Bashar A Bedaiwi and Jumaa S Chiad 2012 Vibration analysis and measurement in the below knee prosthetic limb part I: Experimental work (ASME 2012 International Mechanical Engineering Congress and Exposition, Proceedings (IMECE))

[14] Mohsin Abdullah Al-Shammari 2018 Experimental and FEA of the Crack Effects in a Vibrated Sandwich Plate (Journal of Engineering and Applied Sciences) vol 13 no 17 pp 7395–7400

[15] Muhammad Al-Wailly, Alaa Abdulzahra Deli, Aziz Darweesh Al-Mawash and Zaman Abud Almalik Abud Ali 2017 Effect of Natural Sisal Fiber Reinforcement on the Composite Plate Buckling Behavior (International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS) vol 17 no 01

[16] Mohsin Abdullah Al-Shammari and Muhammad Al-Wailly 2018 Analytical Investigation of Buckling Behavior of Honeycombs Sandwich Combined Plate Structure (International Journal of Mechanical and Production Engineering Research and Development (IJMPERD)) vol 08 no 04 pp 771–786

[17] Mahmud Rasheed Ismail, Zaman Abud Almalik Abud Ali and Muhammad Al-Wailly 2018 Delamination Damage Effect on Buckling Behavior of Woven Reinforcement Composite Materials Plate (International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS) vol 18 no 05 pp 83–93

[18] Ahmed Khaleel Abdulameer and Mohsin Abdullah Al-Shammari 2018 Fatigue Analysis of Syne's Prosthesis (International Review of Mechanical Engineering) vol 12 no 03

[19] Saïf M Abbas, Kadhim K Resan, Ahmed K Muhammad, Muhammad Al-Wailly 2018 Mechanical and Fatigue Behaviors of Prosthetic for Partial Foot Amputation with Various Composite
Materials Types Effect (International Journal of Mechanical Engineering and Technology (IJMET)) vol 09 no 09 pp 383–394

[20] Ehab N Abbas, Muhsin J Jweeg and Muhammad Al-Wailly 2020 Fatigue Characterization of Laminated Composites used in Prosthetic Sockets Manufacturing (Journal of Mechanical Engineering Research and Developments) vol 43 no 5 pp 384–399

[21] Mohsin Abdullah Al-Shammari, Emad Q Hussein and Ameer Alaa Oleiwi 2017 Material Characterization and Stress Analysis of a Through Knee Prosthesis Sockets (International Journal of Mechanical & Mechatronics Engineering IJMMIE-JENS) vol 17 no 06

[22] Saif M Abbas, Ayad M Takhakh, Mohsin Abdullah Al-Shammari and Muhammad Al-Wailly 2018 Manufacturing and Analysis of Ankle Disarticulation Prosthetic Socket (SYMES) (International Journal of Mechanical Engineering and Technology (IJMET)) vol 09 no 07 pp 560–569

[23] Muhsin J Jweeg, Zaid S Hammoudi and Bassam A Alwan 2018 Optimised Design, Analysis, and Fabrication of Trans-Tibial Prosthetic Sockets (IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences) vol 433

[24] Fahad M. Kadhim, Ayad M. Takhakh and Asmaa M. Abdullah 2019 Mechanical Properties of Polymer with Different Reinforcement Material Composite That used for Fabricates Prosthetic Socket (Journal of Mechanical Engineering Research and Developments) vol 42 no 4 pp 118–123

[25] Ayad M Takhakh, Saif M Abbas 2018 Manufacturing and Analysis of Carbon Fiber Knee Ankle Foot Orthosis (International Journal of Engineering & Technology) vol 07 no 04 pp 2236–2240

[26] Muhammad Al-Wailly, Emad Q Hussein and Nibras A Aziz Al-Roubaie 2019 Numerical Modeling for Mechanical Characteristics Study of Different Materials Artificial Hip Joint with Inclination and Gait Cycle Angle Effect (Journal of Mechanical Engineering Research & Developments (JMERD)) vol 42 no 04 pp 79–93

[27] Esraa A. Abdod, Muhammad Al-Wailly, Ziadoon M R Al-Hadrayi, Kadhim K Resan and Saif M Abbas 2020 Numerical and Experimental Analysis to Predict Life of Removable Partial Denture (IOP Conference Series: Materials Science and Engineering, 1st International Conference on Engineering and Advanced Technology, Egypt) vol 870

[28] Nada N Kadhim, Qahtan A Hamad and Jawad K Oleiwi 2020 Tensile and Morphological Properties of PMMA Composite Reinforced by Pistachio Shell Powder used in Denture Applications (2nd International Conference on Materials Engineering & Science, AIP Conference Proceedings)

[29] Noor Dhia Yaseen, Jamua S Chiad and Firas Mohammed Abdul Ghani 2018 The Study and Analysis of Stress Distribution Subjected on the Replacement Knee Joint Components using Photo-Elasticity and Numerical Methods (International Journal of Mechanical and Production Engineering Research and Development (IJMPERD)) vol 08 no 06 pp 449–464

[30] Fahad M Kadhim, Jamua S Chiad and Ayad M Takhakh 2018 Design And Manufacturing Knee Joint for Smart Transfemoral Prosthetic (IOP Conference Series: Materials Science and Engineering, International Conference on Materials Engineering and Science) vol 454

[31] Fahad M Kadhim, Jamua S Chiad and Maryam Abdul Salam Enad 2020 Evaluation and Analysis of Different Types of Prosthetic Knee Joint Used by above Knee Amputee (Defect and Diffusion Forum Journal) vol 398 pp 34–40

[32] Jamua S Chiad 2014 Study the Impact Behavior of the Prosthetic Lower Limb Lamination Materials due to Low Velocity Impactor (ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA, 2014, July 25–27)

[33] S I Salih and J K Oleiwi, H M Ali 2018 Study the Mechanical Properties of Polymeric Blends (SR/PMMa) Using for Maxillofacial Prosthesis Application (International Conference on Materials Engineering and Science, IOP Conference Series: Materials Science and Engineering) vol 454

[34] Muhsin J. Jweeg, Abdulkareem Abdulrazzaq Ahumdayni and Ali Faik Mohammed Jawad 2019 Dynamic Stresses and Deformations Investigation of the Below Knee Prosthesis using CT-
Scan Modeling (International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS) vol 19 no 01

[35] Fahad M Kadhim, Ayad M Takakh and Jumaa S Chiad 2020 Modeling and Evaluation of Smart Economic Transfemoral Prosthetic (Defect and Diffusion Forum Journal) vol 398 pp 48–53

[36] Bakhy, S H, Hassan, S S, Nacy, S M, Dermitzakis, K and Arieta, A H 2013 Contact mechanics for soft robotic fingers: Modeling and experimentation (Robotica)

[37] Bakhy, S.H. 2014 Modeling of Contact Pressure Distribution and Friction Limit Surfaces for Soft Fingers in Robotic Grasping (Robotica)

[38] Mortada A Jabbar, Sadeq H Bakhy and Enass H Flaieh 2018 An Experimental Study for Grasping and Pinching Controls for an Underactuated Robotic Finger Using A PID Controller (IOP Conference Series: Materials Science and Engineering) vol 433 pp 012047

[39] Mortada A Jabbar, Sadeq H Bakhy and Enass H Flaieh 2020 A New Multi-Objective Algorithm for Underactuated Robotic Finger During Grasping and Pinching Assignment (IOP Conference Series: Materials Science and Engineering) vol 671 p 012135

[40] Mahmood, S K, Bakhy, S H and Tawfik, M A 2020 Novel Wall-Climbing Robot Capable of Transitioning and Perching (IOP Conference Series: Materials Science and Engineering)

[41] Muhsin J Jweeg, Muslim Muhsin Ali 2011 Underactuated Robotic Finger During Grasping and Pinching Assignment (IOP Conference Series: Materials Science and Engineering)

[42] Saif M Abbas 2020 Fatigue Characteristics and Numerical Modeling Socket for Patient with Above Knee Prostheses, Materials Science and Engineering (IOP Conference Series) vol 433

[43] Muhsin J Jweeg, Kadhim K Resan and Ali Abdulameer Najm 2014 Improving Fatigue Life of Bolt Adapter of Prosthetic SACH Foot (Journal of Engineering) vol 20 no 3 pp 62–67

[44] Marc L Edwards CP 2000 Below Knee Prosthetic Socket Designs and Suspension Systems (Physical Medicine and Rehabilitation Clinics of North America) vol 11 no 3; pp 585–594

[45] Joan E Edelstein and Alex Moroz 2010 Lower-Limb Prosthetics and Orthotics: Clinical Concepts (J Sports Sci Med.) vol 10 no 1 p 235

[46] Gabi Nehme and Saeed Ghalambor 2017 Optimization of Important Relief Areas in Prosthetic Socket for Below-Knee Amputees Using Design of Experiment and Finite Element Model (Journal of Prosthetics and Orthotics) vol 26 no 4 pp 194–204

[47] Nehme G and Dib M 2011 Impact of Pressure Distribution on the Relief Areas of Prosthetic Sockets for Transtibial Amputees Using Design of Experiment and Finite Element Analysis (J Prosthet Orthot) vol 23 no 4 pp 170–183

[48] Ayad M Takakh, Saif M Abbas and Aseel K Ahmed 2018 A Study of the Mechanical Properties and Gait Cycle Parameter for a Below-Knee Prosthetic Socket (IOP Conference Series: Materials Science and Engineering) 2nd International Conference on Engineering Sciences 26–27 March 2018, Kerbala, Iraq) vol 433

[49] Geertzien J, van der Linde H, Rosenbrand K and et al. Dutch 2015 Evidencebased Guidelines for Amputation and Prosthetics of the Lower Extremity (rehabilitation process and prosthetics Part 2. Prosthet Orthot Int 2015) vol 39 no 5 pp 361–371

[50] Sedki I and Fisher K 2015 Developing Prescribing Guidelines for Microprocessor-Controlled Prosthetic Knees in the South East England (Prosthet Orthot Int 2015) vol 39 no 3 pp 250–254

[51] Highsmith MJ, Kahle JT, Lewandowski A and et al. 2016 Economic Evaluations of Interventions for Transtibial Amputees: A Scoping Review of Comparative Studies (Technol Innov) vol 18 pp 85–98

[52] Richardson A and Dillon MP 2017 User Experience of Transtibial Prosthetic Liners (a systematic review. Prosthet Orthot Int.) vol 41 pp 6–18

[53] Waters RL and Mulroy S 1999 The Energy Expenditure of Normal and Pathologic Gait (Gait
Posture) vol 9 pp 207–231
[55] Sagawa Y Jr, Turcot k, Armand S and et al. 2011 Biomechanics and Physiological Parameters During Gait in Lower-Limb Amputees: A Systematic Review (Gait Posture) vol 33 pp 511–526
[56] Zhang M, Mak AFT and Roberts VC 1998 Finite Element Modeling of a Residual Lower-Limb in a Prosthetic Socket: a Survey of the Development in the First Decade (Med Eng Phys.) vol 20 no 5 pp 360–373
[57] Colombo G, Filippi S, Rizzi C and et al. 2010 A New Design Paradigm for the Development of Custom-Fit Soft Sockets for Lower Limb Prostheses (Comput Ind.) vol 61 pp 513–523
[58] Carroll K 2009 Options in Sockets and Liners Options (In Motion Mag. vol 19 pp 19–22
[59] Paterno L, Ibrahim M, Grupponi E, Mencassi A and Ricotti L 2018 Sockets for Limb Prostheses: A Review of Existing Technologies and Open Challenges (IEEE Trans Biomed Eng.) vol 65 no 9 pp 1996–2010
[60] Lin SJ and Bose NH 2008 Six-Minute Walk Test in Persons with Transtibial Amputation (Arch Phys Med Rehabil) vol 89 no 12 pp 2354–2359
[61] Cheung-Hwa Hsu, Chao-Hui Ou, Wei-Lun Hong a and Yu-Han Gao 2018 Comfort Level Discussion for Prosthetic Sockets with Different Fabricating Processing Conditions (BioMed Eng OnLine) vol 17 no 2 pp 76–91
[62] Hanspal R, Fisher K and Nieveen R Prosthetic 2003 Socket Fit Comfort Score (Dis Rehabilit) vol 25 pp 1278–1280
[63] Shuxian Z, Wanhua Z and Bingheng L 2005 3D Reconstruction of the Structure of a Residual Limb for Customising the Design of a Prosthetic Socket (Med Eng Phys.) vol 27 pp 67–74
[64] JE Sanders and S Fatone 2011 Residual Limb Volume Change: Systematic Review of Measurement and Management (J Rehabil Res Dev.) vol 48 no 8 pp 949–986
[65] MCKENZIE, D S 1959 Total Bearing Socket for Above-Knee Prostheses. Phase I and II Reports (Research Dept., Ministry of Health, Roehampton) Project no 26
[66] Chino N, Pearson JR and Cockrell JL 1975 Negative Pressure During Swing Phase in Below-Knee Prostheses with Rubber Sleeve Suspension (Arch Phys Med Rehabil) vol 56 pp 22–26
[67] R. G. REDHEAD 1979 Total Surface Bearing Self Suspending Above-Knee Sockets (Prosthetics and orthotics International) vol 3 pp 126-136
[68] Van Pijkeren T and Naeff M, Kwee HH 1980 A New Method for the Measurement of Normal Pressure Between Amputation Residual Limb and Socket (Bull Prosthet Res)vol 10-33 pp 31-4
[69] MARINUS NAEFF and M D TEUN van PIJKEREN 1980 Dynamic Pressure Measurements at the Interface Between Residual Limb and Socket the Relationship Between Pressure Distribution, Comfort, and Brim Shape (Bulletin of Prosthetics Research) vol 17 pp 35–50
[70] Jason W Wheeler , Jeffrey G Dabling , Douglas Chinn , Timothy Turner , Anton Filatov , Larry Anderson and Brandon Rohrer 2011 MEMS-Based Bubble Pressure Sensor for Prosthetic Socket Interface Pressure Measurement (2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society ; Boston, MA, USA)
[71] Francis A Appoldt, Leon Bennett and Renato Contini 1968 Socket Pressure as a Function of Pressure Transducer Protrusion (Bulletin of Prosthetics Research-Fall)
[72] Joan E Sanders, Dickson Lam, Alan J Dralle and Ramona Okumura 1997 Interface Pressures and Shear Stresses at Thirteen Socket Sites on Two Persons with Transtibial Amputation (Journal of Rehabilitation Research and Development) vol 34 no 1 pp 19–43
[73] Jumaa Salman Chiad, Muhsin J Jweeg and Shaker S hasan 2014 A New Interface Pressure Measurement System for A-K Prosthetic Ampute. Conference (International conference for engineering science, Mustansiryah University, Baghadad)
[74] Appoldt, F, Bennett, L, Contini and R 1968 Stump-Socket Pressure in Lower Extremity Prostheses (J. Biomech) vol 1 pp 247–257
[75] J E Sanders and C H Daly 1993 Measurement of Stresses in Three Orthogonal Directions at the Residual Limb-Prosthetic Socket Interface (IEEE Transactions on Rehabilitation Engineering) vol 1 no 2
REFERENCES

[76] Buis, A and Convery, P 1997 Calibration Problems Encountered While Monitoring Stump/Socket Interface Pressures with Force Sensing Resistors (Techniques adopted to minimise inaccuracies. Prosthet. Orthot. Int.) vol 21 pp 179–182

[77] Zachariah, S and Sanders, J 2001 Standing Interface Stresses as a Predictor of Walking Interface Stresses in the Trans-Tibial Prosthesis (Prosthet. Orthot. Int.) vol 25 pp 34–40

[78] Tracy L Beil, Glenn M Street and Steven J Covey 2002 Interface Pressures During Ambulation using Suction and Vacuum-Assisted Prosthetic Sockets (Journal of Rehabilitation Research and Development) vol 39 no 6 pp 693–700

[79] Goh, J, Lee, P and Chong, S 2003 Stump/Socket Pressure Profiles of the Pressure Cast Prosthetic Socket. (Clin. Biomech.) vol 18 pp 237–243

[80] A A Polliack, R C Sieh, D D Craig, S Landsberger, D R McNeil, and E Ayyappa 2000 Scientific Validation of Two Commercial Pressure Sensor Systems for Prosthetic Socket Fit. (Prosthetics and Orthotics International) vol 4 no 1 pp 63–73

[81] D A Boone, T Kobayashi and T G Chou 2013 Influence Of Malalignment On Socket Reaction Moments During Gait In Amputees With Transtibial Prostheses (Gait and Posture) vol 37 no 4 pp 620–626

[82] Convery P and Buis AW 1999 Socket/Stump Interface Dynamic Pressure Distributions Recorded During the Prosthetic Stance Phase of Gait of a Trans-Tibial Amputee Wearing a Hydrocast Socket (Prosthet Orthot Int.) vol 23 no 2 pp 107–12

[83] Dou P, Jia X, Suo S, Wang R and Zhang M 2006 Pressure Distribution at the Stump/Socket Interface in Transtibial Amputees on Walking on Stairs (slope and non-flat road. Clin Biomech (Bristol, Avon)) vol 21 no 10 pp 1067–1073

[84] Asrul Anuar Abd Razak, Noor Azuan Abu Osman, Hossein Gholizadeh and Sadeeq Ali 2014 Prosthetics Socket that Incorporates an Air Splint System Focusing on Dynamic Interface Pressure (BioMedical Engineering OnLine.) vol 13 p 108

[85] J Engsberg, J Springer and J Harder, 1992 Quantifying Interface Pressures in Below-Knee-Ampuette Sockets (J. Assoc. Child. Prosth-Orthot Clin.) vol 27 pp 81–88

[86] Shem, K L, Brelakey, J W and Werner, P C 1998 Pressures at the Residual Limb- Socket Interface in Transtibial Amputees with Thigh Lacer-Side Joints (J. Prosthet. Orthot.0 vol 10 pp 51–55

[87] You-Li CHOU, SHIUH-SHENG SHI2, GWO-FENG HUANG* and TING-SHENG LIN2 2003 Interface Pressure and Gait Analysis in Different Walking Speeds and on the Belowknee Amputees with Multiple Axis Prosthetic Foot Prosthesis vol 15 no 5

[88] Rajtukova, V, Hudak, R, Zivcak, J, Halfarova, P and Kudrikova, R 2014 Pressure Distribution in Transtibial Prostheses Socket and the Stump Interface (Science Direct ,Procedia Engineering) vol 96 pp 374–381

[89] Sadeeq Ali 2015 Interface Pressure Between Socket and Residual Limb in Prosthesis with Seal-In X5 and Dermo Liner During Level Ground (stairs, and ramp walking.Ph.D thesis faculty of engineering university of Malaya, kuala lumpur.)

[90] Tim Dumbleton, Arjan W P Buis, Angus McFadyen, Brendan F McHugh, Geoff McKay, Kevin D Murray and Sandra Sexton 2009 Dynamic Interface Pressure Distributions of Two Transtibial Prosthetic Socket Concepts (Journal of Rehabilitation Research & Development) vol 46 no 3 pp 405–416

[91] Muhsin J Jweeg, Kadhim K Resan and Mustafa Taraq 2012 Study of Creep-Fatigue Interaction in a Prosthetic Socket Below Knee (ASME 2012 International Mechanical Engineering Congress and Exposition) pp1105–1110

[92] SHIREEN HASAN CHALLOOB, KADHIM KAMIL RESAN and YASIR KHALIL IBRAHIM. 2015 Stress Relaxation on Prosthetic Laminated Socket Materials (Journal of Engineering and Sustainable Development) vol 19 no 3 pp 110–124

[93] Ikrar R Abd Al-razaq, Kadhim Kamil Resan and Yasir Khalil Ibrahim Design and Manufacturing of Prosthetic Below Knee Socket By Modular Socket System (Journal of Engineering and Sustainable Development) vol 20 no 2 pp 147–162

[94] Ikrar R Abd Al-razaq, Kadhim Kamil Resan and Yasir Khalil Ibrahim. 2016 Modular Socket
System Versus Vacuum Technique in Transtibial Prosthetic Socket (International Journal of Energy & Environment) vol 7 no 6 pp 457–468

[95] Kadhim K Resan 2017 The Effect of Ultraviolet Radiation on the Modulus of Stress Relaxation of Polypropylene Prosthetic Sockets (International Journal of Energy and Environment) vol 8 no 6 pp 491–500

[96] Gianna Morelli, Amanda Martin and Audrey Hendriks 2019 Incorporating Pressure Mapping Systems In An F-Socket To Improve Transtibial Prosthetics (University of Pittsburgh, Swanson School of Engineering First-Year Conference Paper)

[97] Saif M Abbas and Mohammad H Abbas 2018 Analysis and Manufacturing of Above Knee Prosthesis Socket by using Revo Fit Solution (IOP Conf. Series: Materials Science and Engineering) vol 454 p 012025

[98] Ebrahim A Al-Fakih, Noor Azuan Abu Osman, Arezoo Eshraghi and Faisal Rafiq Mahamd Adikan 2013 The Capability of Fiber Bragg Grating Sensors to Measure Amputees’ Trans-Tibial Stump/Socket Interface Pressures (J.of sensor vol 13 no 8 pp 10348–10357

[99] E Al-Fakih, N A Abu Osman and F R Mahmad Adikan 2016 Techniques for Interface Stress Measurements within Prosthetic Sockets of Transtibial Amputees A review of the past 50 years of research (Journal Sensors) vol 16 no 7 p 1119

[100] Ebrahim A Al-Fakih, Nooranida B Arifin, Gholamhossein Pirouzi, Faisal R Mahamd Adikan, Hanie N Shasmin and Noor A Abu Osman 2017 Optical Fiber Bragg Grating-Instrumented Silicone Liner for Interface Pressure Measurement within Prosthetic Sockets of Lower-Limb Amputees (Journal of biomedical optics.) vol 22 no 8 p 087001

[101] Ehab N Abbas, Muhammad Al-Waily, Tariq M Hammza and Muhsin J Jweeg 2020 An Investigation to the Effects of Impact Strength on Laminated Notched Composites used in Prosthetic Sockets Manufacturing (IOP Conference Series: Materials Science and Engineering, 2nd International Scientific Conference of Al-Ayen University) vol 928

[102] Sadiq Emad Sadiq, Muhsin J Jweeg and Sadeq H Bakhy 2020 The Effects of Honeycomb Parameters on Transient Response of an Aircraft Sandwich Panel Structure (IOP Conference Series: Materials Science and Engineering) vol 928

[103] Muhammad Al-Waily, Moneer H Tolephih and Muhsin J Jweeg 2020 Fatigue Characterization for Composite Materials used in Artificial Socket Prostheses with the Adding of Nanoparticles (IOP Conference Series: Materials Science and Engineering, 2nd International Scientific Conference of Al-Ayen University) vol 928

[104] S E Sadiq, S H Bakhy and M J Jweeg 2020 Crashworthiness Behavior of Aircraft Sandwich Structure with Honeycomb Core Under Bending Load (IOP Conference Series: Materials Science and Engineering)

Acknowledgment
We would like to thank Mustansiriyah University- College of Engineering –Materials Engineering Department to provide facilities.