Partial correlation analysis: applications for financial markets

This work was made openly accessible by BU Faculty. Please share how this access benefits you.
Your story matters.

Version	Accepted manuscript
Citation (published version)	Dror Y Kenett, Xuqing Huang, Irena Vodenska, Shlomo Havlin, H Eugene Stanley. 2015. "Partial correlation analysis: applications for financial markets." QUANTITATIVE FINANCE, Volume 15, Issue 4, pp. 569 - 578. https://doi.org/10.1080/14697688.2014.946660

https://hdl.handle.net/2144/38490
Boston University
Partial correlation analysis:
Applications for financial markets

Dror Y. Kenett∗ †, Xuqing Huang∗ †, Irena Vodenska† ‡,
Shlomo Havlin‡ § and H. Eugene Stanley†

†Center for Polymer Studies and Department of Physics,
Boston University, Boston, MA 02215 USA
‡Administrative Sciences Department, Metropolitan College,
Boston University, Boston MA 02215 USA
§Department of Physics,
Bar-Ilan University, Ramat-Gan 52900 Israel

(February 7, 2014)

The presence of significant cross-correlations between the synchronous time evolution of a pair of
equity returns is a well-known empirical fact. The Pearson correlation is commonly used to indicate
the level of similarity in the price changes for a given pair of stocks, but it does not measure whether
other stocks influence the relationship between them. To explore the influence of a third stock on the
relationship between two stocks, we use a partial correlation measurement to determine the underlying
relationships between financial assets. Building on previous work, we present a statistically robust
approach to extract the underlying relationships between stocks from four different financial markets:
the United States, the United Kingdom, Japan, and India. This methodology provides new insights into
financial market dynamics and uncovers implicit influences in play between stocks. To demonstrate the
capabilities of this methodology, we (i) quantify the influence of different companies and, by studying
market similarity across time, present new insights into market structure and market stability, and (ii)
we present a practical application, which provides information on the how a company is influenced by
different economic sectors, and how the sectors interact with each other. These examples demonstrate
the effectiveness of this methodology in uncovering information valuable for a range of individuals,
including not only investors and traders but also regulators and policy makers.

Keywords: Financial markets; Partial correlations; Influence; Risk

JEL Classification: G10, C10, D40

∗These authors had equal contribution. Corresponding author email: drorkenett@gmail.com
∗These authors had equal contribution. Corresponding author email: eqing2700@gmail.com
1. Introduction

Understanding the complex nature of financial markets remains a great challenge, especially in light of the most recent crisis of 2008. Recent studies have investigated large data sets of financial markets, and have analyzed and modeled the static and dynamic behavior of this very complex system \(E_{\text{Fama 1965}}\), \(E_{\text{Lo et al. 1997}}\), \(E_{\text{Lo and Craig MacKinlay 1990}}\), \(E_{\text{Brock et al. 2009}}\), \(E_{\text{Cont and Bouchaud 2000}}\), \(E_{\text{Eisler and Kertesz 2006}}\), \(E_{\text{Lux et al. 1999}}\), \(E_{\text{Bouchaud and Potters 2003}}\), \(E_{\text{Voit 2003}}\), \(E_{\text{Sinha et al. 2010}}\), \(E_{\text{Abergel et al. 2011}}\), \(E_{\text{Takayasu 2006}}\), \(E_{\text{Sornette 2004}}\), suggesting that financial markets exhibit systematic shifts and display non-equilibrium properties.

One prominent feature in financial markets is the presence of an observed correlation (positive or negative) between the price movements of different financial assets. The presence of a high degree of cross-correlation between the synchronous time evolution of a set of equity returns is a well known empirical fact \(E_{\text{Markowitz 1952}}\), \(E_{\text{Elton et al. 2009}}\), \(E_{\text{Campbell et al. 1997}}\). The Pearson correlation coefficient \(E_{\text{Pearson 1895}}\) provides information about the similarity in the price change behavior of a given pair of stocks. Much effort has been devoted to extracting meaningful information from the observed correlations in order to gain insights into the underlying structure and dynamics of financial markets \(E_{\text{Embrechts et al. 2002}}\), \(E_{\text{Morgen et al. 2000}}\), \(E_{\text{Campbell et al. 2008}}\), \(E_{\text{Krishan et al. 2009}}\), \(E_{\text{Aste et al. 2010}}\), \(E_{\text{Campbell et al. 2008}}\), \(E_{\text{Cizeau et al. 2001}}\), \(E_{\text{Laloux et al. 2000}}\), \(E_{\text{Plerou et al. 1999}}\), \(E_{\text{Podobnik et al. 2009}}\), \(E_{\text{Pollet and Wilson 2010}}\), \(E_{\text{Tumminello et al. 2010}}\), \(E_{\text{Huang et al. 2013}}\), \(E_{\text{Forbes and Rigobon 2002}}\).\n
A large body of work has dealt with the systemic risks introduced into a financial system when there is a co-movement of financial assets. To understand how risks propagate through the entire system, many studies have focused on understanding the synchronization in financial markets that is especially pronounced during periods of crisis \(E_{\text{Haldane and May 2011}}\), \(E_{\text{Biais et al. 2012}}\). Recent advancements include the CoVaR methodology \(E_{\text{Adrian and Brunnermeier 2011}}\), and and Granger causality analysis \(E_{\text{Granger 1965}}\), \(E_{\text{Billio et al. 2012}}\). These measures focus on the relationship of one variable on a second variable, for a given time period. Finally, much work has been focused on the issue of conditional correlation \(E_{\text{Engle 2002}}\) and event conditional correlation \(E_{\text{Maugis 2014}}\), and its applications in financial markets. However, a missing dimension of these methodologies is the investigation of many-body interaction between financial assets.

Despite the meaningful information provided by investigating the correlation coefficient, it lacks the capacity to provide information about whether a different stock(s) eventually controls the observed relationship between other stocks. To overcome this issue we introduce the use of the partial correlation coefficient \(E_{\text{Baba et al. 2004}}\), and its applications.

A partial (or residual) correlation measures how much a given variable, say \(j\), affects the correlation between another pair of variables, say \(i\) and \(k\). Thus, in this \((i, k)\) pair, the partial correlation value indicates the correlation remaining between \(i\) and \(k\) after the correlation between \(i\) and \(j\) and between \(k\) and \(j\) have been subtracted. Defined in this way, the difference between the correlations and the partial correlations provides a measure of the influence of variable \(j\) on the correlation \((i, k)\). Therefore, we define the influence of variable \(j\) on variable \(i\), or the dependency of variable \(i\) on variable \(j\), as \(D(i,j)\), to be the sum of the influence of variable \(j\) on the correlations of variable \(i\) with all other variables. This methodology has originally been introduced for the study of financial data \(E_{\text{Kenett et al. 2010, 2012}}\), \(E_{\text{Maugis 2014}}\), it has been extended and applied to other systems, such as the immune system \(E_{\text{Madi et al. 2011}}\), and semantic networks \(E_{\text{Kenett et al. 2011}}\). Causality, and more specifically the nature of the correlation relationships between different stocks, is a critical issue to unveil. The main goal of our study is to understand the underlying mechanisms of influence that are present in financial markets.

Previous work has focused on how variable \(j\) affects variable \(i\), by averaging over all \((i, k)\) pairs, thus quantifying how variable \(j\) affects the average correlation of \(i\) with all other variables. Although this has provided important information that has been both investigated and statistically validated, our goal here is to present a more general and robust method to statistically pick...
the meaningful links without first averaging over all pairs. Unlike the previous work in which the average influence of \(j \) on the correlation of \(i \) with all others was calculated, and then statistically validated, here we first filter for validated links, and then average the influence. In order to achieve this we expand the original methodology and use statistical validation methods to filter the significant links. This statistically validated selection process reveals significant influence relationships between different financial assets. This new methodology allows us to quantify the influence different assets (e.g., economic sectors, other markets, or macro-economic factors) have on a given asset. The information generated by our methodology is applicable to such areas as risk management, portfolio optimization, and financial contagion, and is valuable to both policy makers and practitioners.

The rest of this paper is organized as follows: In Section 2 we introduce the partial correlation approach to quantify influence between financial assets. We present the new extensions of the methodology, which allows the selection of statistically significant influence links between different assets. We further discuss the empirical data analyzed in this study. In Section’s 3 and 4 we present two possible applications of the methodology. In Section 3 we focus on how the methodology provides new insights into market structure and its stability across time, while in Section 4 we present a practical application, which provides information on the how a company is influenced by different economic sectors, and how the sectors interact with each other. Finally, in Section 5 we discuss our results and provide additional insights into possible applications of this methodology.

2. Quantifying underlying relationships between financial assets

The aim of this paper is to present a new methodology that sheds new light on the underlying relationships between financial assets. Building on previous work (Kenett et al. (2010)), we present a robust and statistically significant approach to extracting the hidden underlying relationships. As such, the presented methodology provides new insights into the underlying mechanisms of financial markets.

2.1 Data

For the analysis reported in this paper we use daily adjusted closing stock price time series from four different markets, data provided by the Thomson Reuters Datastream. The markets investigated are the U.S., the U.K., Japan, and India, (see Table 1 for details, also Kenett et al. (2012)). We only consider stocks that are active from January 2000 until December 2010. Volume data was used to identify and eliminate illiquid stocks from the sample. Table 1 presents the number of stocks remaining after filtering out the stocks that had no price movement for more than 6 percent of the 2700 trading days.

Market	Stocks used	Index used	# before	# filtered
U.S.	S&P 500	S&P 500	500	403
U.K.	FTSE 350	FTSE 350	356	116
Japan	Nikkei 500	Nikkei 500	500	315
India	BSE 200	BSE 100	193	126
2.2 Stock raw and partial correlation

To study the similarity between stock price changes, we calculate the time series of the daily log return, given by

$$r_i(t) = \log \left(\frac{P_i(t)}{P_i(t-1)} \right),$$

where $P_i(t)$ is the daily adjusted closing price of stock i at day t. The stock raw correlations are calculated using the Pearson correlation coefficient (Pearson 1895)

$$\rho(i, j) = \frac{\langle r(i) - \langle r(i) \rangle \rangle \cdot \langle r(j) - \langle r(j) \rangle \rangle}{\sigma(i) \cdot \sigma(j)},$$

where $\langle \rangle$ represents average over all days, and $\sigma(i)$ denotes the standard deviation.

However, in some cases, a strong correlation not necessarily means strong direct relation between two variables. For example, two stocks in the same market can be influenced by common macroeconomic factors and investor psychological factors. To study the direct correlation of the performance of these two stocks, we need to remove the common driving factors, which are represented by the market index. Partial correlation quantifies the correlation between two variables, e.g. stocks returns, when conditioned on one or several other variables (Baba et al. 2004, Shapira et al. 2009, Kenett et al. 2010). Specifically, let X, Y be two stock return time series and M be the index. The partial correlation, $\rho(X, Y : M)$, between variables X and Y conditioned on variable M is the Pearson correlation coefficient between the residuals of X and Y that are uncorrelated with M. To obtain these residuals of X and Y, they are both regressed on M. The partial correlation coefficient can be expressed in terms of the Pearson correlation coefficients as

$$\rho(X, Y : M) \equiv \frac{\rho(X, Y) - \rho(X, M)\rho(Y, M)}{\sqrt{1 - \rho^2(X, M)} \cdot [1 - \rho^2(Y, M)]}.$$

In figure (a), we plot the correlation and partial correlation (using the index as the conditioning variable) between stocks that belong to the S&P 500 index. The figure shows that all points are below the diagonal straight line, which means the influence from the index to the correlation between any pair of stocks is always positive. Furthermore, when two stocks X and Y both have business relation with a third common stock Z, their prices can be both affected by the performance of the third stock, thus showing similar price movements even after removing the index. By removing the influence from the third company, we can see the importance of the role that the third stock acts in the correlation of two stocks. Partial correlation coefficient between X and Y conditioned on both M and Z is

$$\rho(X, Y : M, Z) \equiv \frac{\rho(X, Y : M) - \rho(X, Z : M)\rho(Y, Z : M)}{\sqrt{1 - \rho^2(X, Z : M)} \cdot [1 - \rho^2(Y, Z : M)]}.$$

In order to quantify the influence of stock Z on the pair of X and Y, we focus on the Influence quantity

$$d(X, Y : Z) \equiv \rho(X, Y : M) - \rho(X, Y : M, Z).$$

This quantity is large when a significant fraction of the partial correlation $\rho(X, Y : M)$ can be explained in terms of Z. In previous research, Kenett et al. defined this quantity by $d^*(X, Y :
\[Z \equiv \rho(X, Y) - \rho(X, Y : Z), \] which holds for general cases \cite{Kenett2010}. However, for the stock market case specifically, the fraction of \(\rho(X, Y) \) that can be explained by \(Z \) contains two parts, index influence and stocks \(Z \) influence, because stock \(Z \) contains information of the index. Usually, the influence from the index is prevailing and overwhelms the influence from an individual stocks. For example, when \(X \) and \(Y \) are competitor and cooperator respectively to stock \(Z \), performances of \(X \) and \(Y \) should have negative correlation because of \(Z \). In this case, the influence from \(Z \) to the correlation between stocks \(X \) and \(Y \) should be negative. However, because of the dominant correlation between these two stocks and the index, the \(d^*(X, Y : Z) \) is still positive. Thus, we suggest to remove the influence of the market before studying the influence of a stock \(Z \) on a pair of stocks. In the scatter plot of the partial correlation conditioned on index v.s. the partial correlation conditioned on both index and an individual stock (figure 1(b)), the points distribute at both sides of the diagonal line, meaning a significant fraction of \(d(X, Y : Z) \) is negative.

![Scatter plots](image)

Figure 1. (a) Scatter plot of correlation v.s. partial correlation conditioned on index. It is possible to observe that all points are below the diagonal straight line, which means the influence from the index to the correlation between any pair of stocks is always positive. (b) Scatter plot of partial correlation conditioned on index v.s partial correlation conditioned on both index and a third stock. It is possible to observe that the points distribute at both sides of the diagonal line, meaning a significant fraction of \(d(X, Y : Z) \) is negative (mainly for low \(\rho(X, Y : M) \) values). In both figures, \(X, Y, Z \) represent return time series of stocks, \(M \) represents return time series of S&P 500 index. The red curve is the diagonal straight line.

The average influence \(d(X : Z) \) of stock \(Z \) on the correlations between stock \(X \) and all the other stocks in the system is defined as

\[
d(X : Z) \equiv \langle d(X, Y : Z) \rangle_{Y \neq X}.
\]

It is important to note that \(d(X : Z) \) approximates the net influence from stock \(Z \) to stock \(X \), excluding the influence from the index.

2.3 Test of statistical significance

In a system of size \(N \), there exists \(N(N-1)(N-2)/2 \) partial correlation interactions, \(d(X, Y : Z) \), when all information is considered. To simplify the description of the system, the non-trivial interactions with certain significance level are selected. To decide the significance of partial correlation, we provide two methods: 1) Fisher’s transformation based approach; and 2) empirical based approach.
2.3.1 Fisher transformation statistical significance test. We first introduce the Fisher’s transformation method. According to ref. [Fisher1915], when \(X \) and \(Y \) follow a bivariate normal distribution and \(X(t), Y(t) \) pairs to form the correlation are independent for \(t = 1...n \), a transformation of the Pearson correlation

\[
z(\rho) = \frac{1}{2} \ln \left(\frac{1 + \rho}{1 - \rho} \right) = \text{artanh}(\rho)
\]

approximately follows normal distribution \(\mathcal{N}(\frac{1}{2} \ln \left(\frac{\text{artanh}(\rho) + 1}{\text{artanh}(\rho) - 1} \right), \frac{1}{\sqrt{N - 3}}) \), where \(r \) is the population correlation coefficient and \(N \) is the sample size. The Fisher transformation holds when \(\rho \) is not too large and \(N \) is not too small. Furthermore, the Fisher’s \(z \)-transform of the partial correlation coefficients approximately follows [Fisher1924]

\[
\begin{align*}
z(\rho(X, Y : M)) &\sim \mathcal{N}(\frac{1}{2} \ln \left(\frac{1 + r(X, Y : M)}{1 - r(X, Y : M)} \right), \frac{1}{\sqrt{N - 3}}) \\
z(\rho(X, Y : M, Z)) &\sim \mathcal{N}(\frac{1}{2} \ln \left(\frac{1 + r(X, Y : M, Z)}{1 - r(X, Y : M, Z)} \right), \frac{1}{\sqrt{N - 3}})
\end{align*}
\]

which leads to

\[
z(\rho(X, Y : M)) - z(\rho(X, Y : M, Z)) \sim
\mathcal{N} \left(\frac{1}{2} \ln \left(\frac{1 + r(X, Y : M)}{1 - r(X, Y : M)} \right) - \frac{1}{2} \ln \left(\frac{1 + r(X, Y : M, Z)}{1 - r(X, Y : M, Z)} \right), \sqrt{\frac{2}{N - 3}} \right).
\]

When \(\rho(X, Y : M) \) is significantly different from \(\rho(X, Y : M, Z) \), \(d(X, Y : Z) \) is significantly different from zero. Thus the Student’s t-test is used to determine if \(\rho(X, Y : M) \) and \(\rho(X, Y : M, Z) \) are different. Since \(N \) is large, the degree of freedom is also large, where the t-test is approximately the same as the Z-test [Chou1975]. In the next section, we propose a complementary empirical statistical significance test. The empirical approach overlaps with the Fisher transformation approach, and is faster and simpler to evaluate. For real finite size data the two are interchangeable, and the empirical approach is simpler to implement. Thus, after introducing the empirical approach below, we will make use of it throughout the remainder of the paper.

2.3.2 Empirical statistical significance test. Next, we introduce the empirical time series shuffling statistical significance method. For each time series that we study, we shuffle the sequences of the returns, which destroys any correlations among these time series. The influences \(d(X, Y : Z) \) calculated from these time series should also be not different than zero. We shuffle the return time series of each stock by randomly rearranging the sequences of the returns. The shuffling process destroys correlations between each pairs of stocks returns, and between stock returns and benchmark return, i.e. \(\rho(X, Y) \) and \(\rho(X, M) \) should be zero, which leads to \(d(X, Y : Z) \) equal to zero. By plotting the distribution of \(d(X, Y : Z) \), we can find the thresholds of different significant levels for \(d(X, Y : Z) \). In fig. 2, we shuffle the return time series of 403 S&P500 stocks, and the index, and plot the distribution of \(d(X, Y : Z) \) (solid black curve). As a comparison, we plot the Gaussian distribution with same average and standard deviation value in brown color. From the comparison, it is possible to observe that the empirical distribution of \(d(X, Y : Z) \) has fat tails, and significantly deviates from the case of a gaussian distribution observed for random or shuffled data. The dashed lines represent the positions of one-tailed 1%,
5% and 10% significance levels or two-tailed 2%, 10% and 20% significance levels. We suggest to make use of the two-tailed test, due to the fact that the significant negative influence is also important. The red curve in fig. 2 presents the distribution of empirical $d(X, Y : Z)$. For the case of the S&P500 companies example presented in fig. 2 significance level of 2% corresponds to a z-value (Equation 9) $z > 1.6449$; confidence level of 10% corresponds to $z > 1.2816$; and confidence level of 20% corresponds to $z > 0.8416$ (see Table 2).

Table 2. Summary of two-tail significance thresholds

Significance level	Threshold
1%	0.00152
2%	0.00108
5%	0.00081
10%	0.00057
20%	0.00037

Figure 2. Empirical statistical significance test of influence between financial assets. We present the distribution of influence from one stock to pair of stocks, for the case study of 403 S&P500 companies, for a period of 11 years. The black curve represents the distribution of the influences, $d(X, Y : Z)$, calculated from the shuffled time series. The dashed lines denotes the positions of one-tailed 1%, 5% and 10% significance levels or two-tailed 2%, 10% and 20% significance levels. The distribution of $d(X, Y : Z)$ has an average value $9.9 \cdot 10^{-8}$, standard deviation $\sigma = 3.6 \cdot 10^{-4}$, skewness $9.5 \cdot 10^{-7}$ and kurtosis 9.83. The brown curve represents the Gaussian distribution with the same average value and standard deviation as the black curve. The red curve is the distribution of influences, $d(X, Y : Z)$, calculated from the empirical stock return time series. We suggest to make use of the two-tailed test, due to the fact that the significant negative influence values are also important. For the two-tailed test, significance level of 2% corresponds to $z > 1.6449$; confidence level of 10% corresponds to $z > 1.2816$; and confidence level of 20% corresponds to $z > 0.8416$. The inset shows the full empirical distribution.

As discussed above, while the two methods are interchangeable in respect to the resulting significance levels, there are additional benefits to using the empirical approach. The empirical shuffling method conserves the distribution of returns without requiring ad-hoc assumptions on the underlying distribution of the data. Furthermore, the empirical approach can also be expanded to meet stricter requirements. For example, if the short term time series structure is
required to be conserved, the whole time series can be divided into segments with a given length and we can then shuffle the segments without changing the sequence of time series within the segments.

The empirical statistical significance test allows a selection of significant influence relationships between the investigated financial assets. In previous work (Kenett et al. 2010), this was achieved by using different network based approaches, which than further allowed to investigate the nature of these relationships. Below we propose two new applications of this methodology, using the empirically statistically significant values of \(d(X, Y : Z) \). The significance level used through out the paper is the \(z > 1.6449 \), corresponding to two-tailed 2%.

3. Market structure and its stability

High correlation between two stocks at a given time do not necessarily guarantee high correlation in the future, because the behavior of stocks in financial markets evolve. In certain markets, companies change their strategies faster than in the other markets, which can be uncovered by the partial correlation analysis of the behavior of their stocks. If the companies tend to keep their past strategies, then the level of partial correlation between two companies’ stocks tends to be stable. While in markets where companies switch their strategies more quickly, two companies which had similar behavior in the previous year might have quite different behavior in the next year. In such markets, partial correlation between stocks should be more volatile.

We apply the partial correlation influence analysis to study the stability of the market structure. Specifically, we define the average influence \(d(X) \) of stock \(X \) on all the other stocks in the market as

\[
d(X) \equiv \langle d(X : Z) \rangle,
\]

where \(\langle \rangle \) is the average over all \(Z \) stocks. We rank the stocks by their \(d(X) \) values, which we consider as a representation of the structure of the market. By dividing the 11 year period into 44 quarterly periods, we can compare similarity of the market structures (ranking of stocks) in different years. Kendall \(\tau \) rank correlation coefficient (Kendall 1938) is applied to measure the similarity of the orderings for different periods. Let \((x_1(t), x_1(t')), (x_2(t), x_2(t')),...,(x_n(t), x_n(t'))\) be a set of rankings of the variables \(X \) for different periods \(t \) and \(t' \) respectively. Any pair of observations \((x_i(t), x_i(t'))\) and \((x_j(t), x_j(t'))\) are said to be concordant if both \(x_i(t) > x_j(t) \) and \(x_i(t') > x_j(t') \) or if both \(x_i(t) < x_j(t) \) and \(x_i(t') < x_j(t') \). Otherwise, they are said to be discordant. The Kendall \(\tau \) coefficient is defined as

\[
\tau = \frac{\text{number of concordant pairs} - \text{number of discordant pairs}}{\frac{1}{2}n(n - 1)},
\]

where if two rankings are the same, \(\tau \) is one, if two rankings are independent, \(\tau \) is zero, and if two rankings are discordant, \(\tau \) equals minus one.

In figure 3, we present the Kendall \(\tau \) coefficient for each different quarter pairs for the four investigated markets. Generally speaking, each market shows that the longer the time interval the smaller the rank correlation coefficient, meaning lower similarity between the market structures for the two quarters which are compared. Comparing the rank correlations for the four markets, we find that S&P 500, FTSE 350 and Nikkei 500 stocks show strong market stability patterns, while Indian BES 200 stocks almost do not demonstrate any stable patterns. This can be understood by considering that developed markets tend to keep their market structure longer than fast developing markets. Furthermore, it is possible to observe that for the US market there were structural changes in the market following the “dot com” crisis of 2000 and the “credit crunch” crisis of 2008. These can be identified in figure 3 by the red rectangle in the upper left corner for the former (Q4 of 2000 till Q4 of 2001), and the red rectangle in the bottom right
corner for the latter (Q4 of 2007 till Q4 of 2008). These rectangles present a strong similarity in the structure during the two crises, followed by consecutive quarters with low values of the rank correlation, representing the change in structure. Studying the other markets, it is also possible to observe the structural changes resulting from the 2008 financial crisis in the UK, but not in the structure of Japan or India.

To further quantitatively study the market stability, we plot the correlation coefficient of two rankings against the time interval of these two rankings (fig. 4). By averaging the correlation coefficients for each time interval, we can study how correlation coefficients decay as time evolves. We find the decay of the rank correlation coefficients follow an approximate exponential process, $\tau(t) = \tau_0 e^{-t/\lambda}$, as shown in the insets in fig. 4. Parameter τ_0 describes the consistency of the rankings between two consecutive quarters. The larger τ_0 is, the more consistent two consecutive rankings are. The λ parameter describes the characteristic time after which the correlation coefficient decays. Larger λ values mean longer persistence period, and thus describe the change in influence ranking across time. These two parameters together describes the stability of the markets. For the investigated markets, we obtain the following values: US - $\tau_0 = 0.28, \lambda = 16.2$; UK - $\tau_0 = 0.22, \lambda = 19.8$; Japan - $\tau_0 = 0.2, \lambda = 18.8$; and India - $\tau_0 = 0.17, \lambda = 42.9$. As can also be observed in figure 3, τ_0 has the largest value for the S&P500 case, and smalls value for the BES200 case; however, the persistence in India is largest (as represented by the values of λ). We observe that the results for the Indian market differ from the other three markets. This is possibly related to the differences observed between developing and developed markets.

Put together, these analyses provide new insights into the dynamics of financial markets. Using the τ_0 and λ parameters, can help in monitoring structural changes in the market, and their persistence. Thus, this methodology presents a unique tool for regulators and policy makers to monitor the stability and robustness of financial markets.
Figure 4. Kendall tau correlation coefficient between rankings v.s. time interval between rankings. By averaging the correlation coefficients for each time interval, we can study how correlation coefficients decay as time evolves. We find the decay of the τ rank correlation coefficients follow an approximate exponential process, $\tau = \tau_0 e^{-t/\lambda}$. Parameter τ_0 describes the consistency of the rankings between two and consecutive quarters. The larger τ_0 is, the more consistent two consecutive ranking are. The λ describes the speed that the correlation coefficient decays as time evolves. Larger λ means longer decay period and smaller decay speed. These two parameters together describes the stability of the markets. For the investigated markets, we obtain the following values: US - $\tau_0 = 0.28$, $\lambda = 16.2$; UK - $\tau_0 = 0.22$, $\lambda = 19.8$; Japan - $\tau_0 = 0.2$, $\lambda = 18.8$; and India - $\tau_0 = 0.17$, $\lambda = 42.9$.

4. Quantifying the influence of economic sectors

As our society becomes more and more integrated, production activities from different industries depend upon and influence each other. Categorizing a company into only one industrial sector can not reflect its whole performance and associated risk. Many listed companies in the stock market belong to conglomerates, conducting their business in different industry sectors, hence these companies’ performance will naturally be influenced by multiple industries. Even if a company only conducts its business in one sector, its performance can still be influence by other sectors because of the division of labor in modern society. For example, Alcoa Inc. as the world’s third largest producer of aluminum is listed in the materials sector in NYSE. However, the production of Alcoa Inc. requires dedicated supply of energy, e.g. Alcoa accounts for 15% of State of Victoria’s annual electricity consumption in Australia. Thus their performance is also heavily influenced by and contributes to the performance of the energy sector. In this section, we present an application of the partial correlation methodology to study the multiple-sector influence on stocks. We use the sector classification from the Global Industry Classification Standard (GICS).

To study the influence on a stock X from different sectors, we first calculate the influence $d(X : Z)$ (eq. [4]) from all other stocks Z. The analysis in this section is performed for the entire investigated time period. Next we calculate the average influence by sector, in which we use the
sector categorization information of other stocks, as follows

\[d_X^S = \frac{1}{N_S} \sum_{Z_S=1}^{N_S} d(X : Z_S), \quad (12) \]

where \(X \) represents the investigated stock, \(S \) represents a given sector, \(N_S \) is the number of stocks in sector \(S \) and \(Z_S \) represents the stocks in sector \(S \). The average influence \(d_X^S \) reflects the level of influence that stock \(X \) receives from sector \(S \). After we normalize the average influence, we can attribute stock \(X \)'s performance to sectors' performances with coefficients

\[\beta_X^S = \frac{d_X^S}{\sum_S d_X^S}. \quad (13) \]

In figure 5, we present an example of four typical stocks to show the pie picture of \(\beta_X^S \). We can see from the figure that in the case of Alcoa Inc., we observe significant influence from the energy, materials and industrials sector. In the case of Franklin Templeton Investments, we find that the largest influence is from the financials sector. In the case of GE, we find that the main influence stems from the materials, utilities, and financial sector. Finally, studying the example of Apple, we find that there is a more homogeneous division of the influence between the different sectors. This could possibly indicate that out of these 4 companies, Apple is the most diverse in its activities, being influenced almost uniformly by different sectors of the economy.

Finally, we perform a validation test on the the partial correlation analysis results, investigating
whether the result of multi-sector influence on stocks is plausible. To this end, we first rank all the stocks in the S&P 500 dataset by their fraction of influence (β_S^X) from the financials sector. We then investigate what are the economic sectors influencing these stocks, according to the rank. We find that the top stocks in the ranking according to our partial correlation analysis are dominantly classified into the financials sector. We repeat this analysis for all other economic sectors. Indeed, all other sectors show that our analysis is in agreement with the GICS sector classification. To quantitatively show this agreement, we calculate the correct prediction rate. According to the GICS, we find the total numbers of stocks (N_S) in all sectors. From the ranking of stocks according to the influence from a given sector, we select the N_S top stocks. We then calculate the fraction of these top stocks that are classified by GICS into that certain sector as the correct prediction rate. If the partial correlation analysis prediction is in total agreement with the formal classification, then this correct prediction rate should be 1. If the prediction corresponds to the case of random picking, this correct prediction rate should be $\frac{N_S}{N}$, where N is the total number of stocks. In figure 6(c), we show that the partial correlation analysis of sector keeps a high correct prediction rate for all sectors, except the telecommunications sector, which could be related to the small number of telecommunication stocks that are part of the S&P500 index. An alternative interpretation to these results is that the financials and energy sectors are both highly cohesive sectors of economic activity. This means that the activity in these economic sectors is mainly contained inside each sector, with little influence of external economic sectors. Other sectors, such as Industrials and Materials, have stronger dependencies on other sectors, and are strongly influenced other sectors’ activities. Repeating this analysis for shorter periods of time, or combining the analysis with a moving window approach, could provide meaningful insights into the degree of interdependencies between the different economic sectors over time.

![Figure 6. Partial correlation test of the extent of sectorial influence. To this end, we first rank all the stocks in S&P 500 by their fraction of influence (β_S^X). We plot the fraction of true prediction of stocks' sector from partial correlation analysis (red solid curve). The blue dashed curve is for the case of random picking strategy, for the purpose of comparison.](image)

After studying the amount of influence that stocks receive from different sectors, we find that some sectors tend to influence the same stocks concurrently. We thus study the Pearson correlation of influences from two sectors to the same stocks, i.e. $\rho(d^{S_i}, d^{S_j})$, where d^{S_i} represents the vector variable of influence from sector i to all stocks. Applying this definition of sector correlation to the S&P 500 data results in values that are presented in the first panel of figure 7. We find that in the S&P 500 index, the pairs of industrials sector and consumer discretionary sector, materials sector and industrials sector and the communications sector and the technology sector are very close to each other, in terms of their influence. Whenever a stock is highly influenced by one of these sectors, the other in the pair also tends to be influential to this stock. We also notice some dark blue area, e.g. the correlation between the utilities sector and the consumer discretionary sector, which means when a stocks is highly influence by one of the them, the other tends to be of little influence to the stock. We also study the UK FTSE 350
index, the Japanese Nikkei 500 index and the India BES 200 index. They all commonly show high correlation between materials sector and industrials sector.

Figure 7. The correlation of influences from two sectors to the same stocks, i.e. $\rho(d^{S_i}, d^{S_j})$, where d^{S_i} represents the vector variable of influence from sector i to all stocks. We represent the correlation using a heat map of closeness between sectors in different markets, using a color code to represent the strength of the correlation, ranging from blue for full anti correlation, to red, for complete correlation. We observe that for the S&P 500 data, the pairs of industrials sector and consumer discretionary sector, materials sector and industrials sector and the communications sector and the technology sector are very close to each other, in terms of their influence, and an anti correlation between the utilities sector and the consumer discretionary sector. For the case of the other three investigated markets - the UK FTSE 350 index, the Japanese Nikkei 500 index and the India BES 200 index - we find that all show high correlation between materials sector and industrials sector.

5. Summary

This work presents a more general, statistically robust framework of the dependency network methodology introduced by Kenett et al. (2010). Using the dependency network methodology, we apply the partial correlation analysis to uncover dependency and influence relationship between the different companies in the investigated sample. Here we present a new statistically robust approach to filtering the extracted influence relationships, by either using a theoretical or an empirical approach. The influence method introduced in this study is generic and scalable, making it highly accessible to both policy makers and practitioners.

Here, we present two possible applications of this methodology. First, we study the stability of financial market structure and show that developed markets such as the US, UK, and Japan exhibit higher degree of market stability compared to developing countries such as India. Second, we show that one stock can be influenced by different sectors outside of its primary sector classification.

While financial analysts are usually specialized in one industry sector, a broader perspective of equity research is required to grasp the insights of stock performance expectations. The presented methodology provides new information on the interaction between different assets, and different economic sectors. Such information is valuable not only for investors and their practitioners, but
also for regulators and policy makers.

Acknowledgements

We wish to thank ONR (Grant N00014-09-1-0380, Grant N00014-12-1-0548), DTRA (Grant HDTRA-1-10-1-0014, Grant HDTRA-1-09-1-0035), NSF (Grant CMMI 1125290), the European MULTIPLEX (EU-FET project 317532), CONGAS (Grant FP7-ICT-2011-8-317672), FET Open Project FOC 255987 and FOC-INCO 297149, and LINC (no. 289447 funded by the ECs Marie-Curie ITN program) projects, DFG, the Next Generation Infrastructure (B sik), Binational US-Israel Science Foundation (BSF), and the Israel Science Foundation for financial support.

References

Abergel, F., Chakrabarti, B., Chakraborti, A. and Mitra, M., Econophysics of order-driven markets, 2011, Springer.

Adrian, T. and Brunnermeier, M.K., CoVaR. Technical report, National Bureau of Economic Research, 2011.

Aste, T., Shaw, W. and Di Matteo, T., Correlation structure and dynamics in volatile markets. New Journal of Physics, 2010, 12, 085009.

Baba, K., Shibata, R. and Sibuya, M., Partial correlation and conditional correlation as measures of conditional independence. Australian & New Zealand Journal of Statistics, 2004, 46, 657–664.

Billio, M., Getmansky, M., Lo, A. and Pelizzon, L., Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of Financial Economics, 2012, 104, 535–559.

Bisias, D., Flood, M., Lo, A. and Valavanis, S., A survey of systemic risk analytics. US Department of Treasury, Office of Financial Research, 2012.

Bouchaud, J. and Potters, M., Theory of financial risk and derivative pricing: from statistical physics to risk management, 2003, Cambridge Univ Pr.

Brock, W., Hommes, C. and Wagener, F., More hedging instruments may destabilize markets. Journal of Economic Dynamics and Control, 2009, 33, 1912–1928.

Campbell, J., Lo, A. and MacKinlay, A., The econometrics of financial markets, Vol. 1, , 1997, princeton University press Princeton, NJ.

Campbell, R., Forbes, C., Koedijk, K. and Kofman, P., Increasing correlations or just fat tails?. Journal of Empirical Finance, 2008, 15, 287–309.

Chou, Y., Statistical analysis: with business and economic applications, 1975, Holt, Rinehart and Winston New York.

Cizeau, P., Potters, M. and Bouchaud, J., Correlation structure of extreme stock returns. Quantitative Finance, 2001, 1, 217–222.

Cont, R. and Bouchaud, J., Herd behavior and aggregate fluctuations in financial markets. Macroeconomic dynamics, 2000, 4, 170–196.

Eisler, Z. and Kertesz, J., Scaling theory of temporal correlations and size-dependent fluctuations in the traded value of stocks. Physical Review E, 2006, 73, 046109.

Elton, E.J., Gruber, M.J., Brown, S.J. and Goetzmann, W.N., Modern portfolio theory and investment analysis, 2009, John Wiley & Sons.

Embrechts, P., McNeil, A. and Straumann, D., Correlation and dependence in risk management: properties and pitfalls. Risk management: value at risk and beyond, 2002, pp. 176–223.

Engle, R., Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 2002, 20, 339–350.

Fama, E.F., The behavior of stock-market prices. The Journal of Business, 1965, 38, 40–105.

Fisher, R., Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 1915, 10, 507–521.

Fisher, R.A., The Distribution of the Partial Correlation Coefficient. Metron, 1924, 3, 329–332.

Forbes, K.J. and Rigobon, R., No contagion, only interdependence: measuring stock market comovements. The Journal of Finance, 2002, 57, 2223–2261.
Granger, C., Investigating causal relations by econometric models and cross-spectral methods. *Econometrica: Journal of the Econometric Society*, 1969, pp. 424–438.

Haldane, A.G. and May, R.M., Systemic risk in banking ecosystems. *Nature*, 2011, **469**, 351–355.

Huang, X., Vodenska, I., Havlin, S. and Stanley, H.E., Cascading Failures in Bi-partite Graphs: Model for Systemic Risk Propagation. *Scientific reports*, 2013, **3**.

Kendall, M.G., A new measure of rank correlation. *Biometrika*, 1938, **30**, 81–93.

Kenett, D.Y., Preis, T., Gur-Gershgoren, G. and Ben-Jacob, E., Dependency network and node influence: Application to the study of Financial Markets. *International Journal of Bifurcation and Chaos*, 2012a, **22**, 1250181.

Kenett, D.Y., Raddant, M., Zatlavi, L., Lux, T. and Ben-Jacob, E., Correlations in the global financial village. *International Journal of Modern Physics Conference Series*, 2012b, **16**, 13–28.

Kenett, D.Y., Tumminello, M., Madi, A., Gur-Gershgoren, G., Mantegna, R.N. and Ben-Jacob, E., Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market. *PLoS one*, 2010, **5**, e15032.

Kenett, Y.N., Kenett, D.Y., Ben-Jacob, E. and Faust, M., Global and Local Features of Semantic Networks: Evidence from the Hebrew Mental Lexicon. *PLoS one*, 2011, **6**, e23912.

Krishan, C.N.V., Petkova, R. and Ritchken, P., Correlation risk. *Journal of Empirical Finance*, 2009, **16**, 353–367.

Laloux, L., Cizeau, P., Bouchaud, J. and Potters, M., Noise dressing of financial correlation matrices. *Physical Review Letters*, 1999, **83**, 1467–1470.

Laloux, L., Cizeau, P., Potters, M. and Bouchaud, J., Random matrix theory and financial correlations. *International Journal of Theoretical and Applied Finance*, 2000, **3**, 391–398.

Lo, A.A.W.C., CRAIG, A. et al., *The econometrics of financial markets*, 1997, princeton University press.

Lo, A.W. and Craig MacKinlay, A., An econometric analysis of nonsynchronous trading. *Journal of Econometrics*, 1990, **45**, 181–211.

Lux, T., Marchesi, M. and Bonn, U., Scaling and criticality in a stochastic multi-agent model of a financial market. *Nature*, 1999, **397**, 498–500.

Madi, A., Kenett, D., Bransburg-Zabary, S., Merbl, Y., Quintana, F., Boccaletti, S., Tauber, A., Cohen, I. and Ben-Jacob, E., Analyses of antigen dependency networks unveil immune system reorganization between birth and adulthood. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 2011, **21**, 016109–016109.

Markowitz, H., Portfolio selection. *The journal of finance*, 1952, **7**, 77–91.

Maugis, P., Event Conditional Correlation: Or How Non-Linear Linear Dependence Can Be. *arXiv preprint arXiv:1401.1130* 2014.

Morck, R., Yeung, B. and Yu, W., The information content of stock markets: why do emerging markets have synchronous stock price movements?. *Journal of financial economics*, 2000, **58**, 215–260.

Pearson, K., Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. *Philosophical Transactions of the Royal Society of London. A*, 1895, **186**, 343–414.

Plerou, V., Gopikrishnan, P., Rosenow, B., Nunes Amaral, L. and Stanley, H., Universal and nonuniversal properties of cross correlations in financial time series. *Physical Review Letters*, 1999, **83**, 1471–1474.

Podobnik, B., Horvatic, D., Petersen, A. and Stanley, H., Cross-correlations between volume change and price change. *Proceedings of the National Academy of Sciences of the United States of America*, 2009, **106**, 22079–22084.

Pollet, J. and Wilson, M., Average correlation and stock market returns. *Journal of Financial Economics*, 2010, **96**, 364–380.

Shapira, Y., Kenett, D. and Ben-Jacob, E., The index cohesive effect on stock market correlations. *The European Physical Journal B*, 2009, **72**, 657–669.

Sinha, S., Chatterjee, A., Chakrabarti, A. and Chakrabarti, B., *Econophysics: an introduction*, 2010, Wiley-VCH.

Sornette, D., *Why stock markets crash: critical events in complex financial systems*, 2004, Princeton University Press.

Takayasu, H., *Practical Fruits of Econophysics: Proceedings of the Third Nikkei Econophysics Symposium*, 2006, Springer.

Tumminello, M., Lillo, F. and Mantegna, R., Correlation, hierarchies, and networks in financial markets. *Journal of Economic Behavior & Organization*, 2010, **75**, 40–58.

Voit, J., *The statistical mechanics of financial markets*, 2005, Springer.