THE REPRESENTATION-THEORETIC RANK OF THE DOUBLES OF QUASI-QUANTUM GROUPS

DANIEL BULACU AND BLAS TORRECILLAS

ABSTRACT. We compute the representation-theoretic rank of a finite dimensional quasi-Hopf algebra H and of its quantum double $D(H)$, within the rigid braided category of finite dimensional left $D(H)$-modules.

1. Introduction

The definition of a quasi-bialgebra H ensures that the category of left H-modules $H\mathcal{M}$ is a monoidal category, and for a quasi-Hopf algebra H the definition ensures that $H\mathcal{M}^{fd}$, the category of finite dimensional left H-modules, is a monoidal category with duality. Moreover, a quasi-Hopf algebra is called quasi-triangular (ribbon) if the monoidal category $H\mathcal{M}$ is braided (ribbon, at least in the finite dimensional case). So, in general, the study of quasi-Hopf algebras is strictly connected to the study of monoidal, or braided (ribbon) categories. Consequently, when we want to define some classes of quasi-Hopf algebras the first thing we should think about is to reword at a categorical level the corresponding definitions given in the classical Hopf case. If it is possible, then we can come back to the quasi-Hopf case. For example, this was the case in [3], where using the categorical interpretation of a factorizable Hopf algebra (due to Majid [27]), we were able to define and study the class of factorizable quasi-Hopf algebras. But sometimes this point of view cannot be followed. For further use we choose as an example the cosemisimple notion.

It is well known that a Hopf algebra H is cosemisimple if the category of left or right H-comodules is cosemisimple. In the quasi-Hopf case we cannot consider H-comodules, because the quasi-Hopf algebra H is not coassociative; thus in this case we have to look at some other objects. One of these objects could be the quantum double $D(H)$ associated to a finite dimensional quasi-Hopf algebra H. In the Hopf case we know that $D(H)$ is semisimple if and only if H is semisimple and cosemisimple (see [31]). But, once again, at this moment we cannot follow this path because in the quasi-Hopf case we do not know the form of an integral in $D(H)$. However, in the Hopf case, the Maschke-type theorem asserts that H is cosemisimple if and only if there exists a left or right integral λ in H^* such that $\lambda(1) = 1$. Now by [1] this is equivalent to the existence of a bilinear form $\sigma \in (H \otimes H)^*$ such that $h_1 \sigma(h_2, h') = \sigma(h, h'_1)h'_2$ and $\sigma(h_1, h_2) = \varepsilon(h)$, for all $h, h' \in H$. This approach was

1991 Mathematics Subject Classification. 16W30.

Key words and phrases. quasi-Hopf algebra, Schrödinger representation, quantum dimension, trace formula.

During the time of the preparation of this work the first author was financially supported by the LIEGRITS program, a Marie Curie Research Training Network funded by the European community as project MRTN-CT 2003-505078. He would like to thank to the guest, University of Almeria (Spain), for their warm hospitality.
used by Hausser and Nill in [21] for the quasi-Hopf algebra setting. They proved that for a finite dimensional quasi-Hopf algebra H there is a one-to-one correspondence between left cointegrals $\lambda \in H^*$ (see the definition below) satisfying the normalized condition $\lambda(S^{-1}(\alpha)\beta) = 1$ (here α and β are the elements which occur in the definition of the antipode S of H), and certain bilinear forms $\sigma \in (H \otimes H)^*$ satisfying properties which generalize the ones described above. This is why we will say that a finite dimensional quasi-Hopf algebra H is cosemisimple if H admits a left cointegral λ obeying $\lambda(S^{-1}(\alpha)\beta) = 1$. Furthermore, we believe that an integral in $D(H)$ has the form $\beta \leftarrow \lambda \Rightarrow r$, so if it is the case then $D(H)$ is semisimple if and only if H is semisimple and the left cointegral λ satisfies $\lambda(S^{-1}(\alpha)\beta) = 1$ (here r is a right integral in H). Comparing this with the Hopf algebra case we will land to the same definition for a finite dimensional cosemisimple quasi-Hopf algebra.

The starting point of this paper was the intention to generalize some important results concerning semisimple cosemisimple Hopf algebras to quasi-Hopf algebras. Namely, a Hopf algebra over a field of characteristic zero is semisimple if and only if it is cosemisimple, if and only if it is involutory, this means $S^2 = id_H$. The result was proved by Larson and Radford in [23, 24], answering in positive, in characteristic zero, the fifth conjecture of Kaplansky. They have also proved that in characteristic p sufficiently large a semisimple cosemisimple Hopf algebra is involutory. Afterwards, using this result and a lifting theorem, Etingof and Gelaki prove in [18] that the antipode of a semisimple cosemisimple Hopf algebra over any field is an involution.

Trying to generalize the above results for quasi-Hopf algebras, the first problem which occur is: what could be an involutory quasi-Hopf algebra? We believe that we cannot keep the same definition as in the Hopf case because, in general, S^2 is not a coalgebra morphism, while id_H is. So one of the purposes of this paper is to find a plausible definition for this notion. Toward this end we will use a categorical point of view due to Majid [26]. More exactly, he has observed that $\text{Tr}(S^2)$, the trace of S^2, is an important invariant of any finite dimensional Hopf algebra. In fact, he has shown that $\text{Tr}(S^2)$ arises in a very natural way as the representation-theoretic rank of the Schrödinger representation of H, $\dim(H)$, or as the representation-theoretic rank of the canonical representation of the quantum double, $\dim(D(H))$. Correlating this with the trace formula obtained by Radford in [32] we get that

$$\dim(H) = \dim(D(H)) = \text{Tr}(S^2) = \varepsilon(r)\lambda(1),$$

where λ is a left integral in H^* and r is a right integral in H such that $\lambda(S(r)) = 1$. By the Larson-Radford-Etingof-Gelaki results we conclude that

$$\dim(H) = \dim(D(H)) = \begin{cases} 0, & \text{if } H \text{ is not semisimple or cosemisimple} \\ \dim(H), & \text{if } H \text{ is both semisimple and cosemisimple}. \end{cases}$$

The aim of this paper is to generalize some of the results presented above for quasi-Hopf algebras by computing the representation-theoretic rank of a finite dimensional quasi-Hopf algebra H and of its quantum double $D(H)$. We hope that the point of view presented here will open the way for solving the remaining ones. The paper is organized as follows. In Section 8 we compute the Schrödinger representation associated to a finite dimensional quasi-Hopf algebra H. In fact, we will transfer the associated algebra structure of H within the category of left Yetter-Drinfeld modules constructed in [9, 8] to the category of left $D(H)$-modules, through some monoidal isomorphisms explicitly constructed in [4] and [12]. Now following
In any braided rigid monoidal category C we can compute the representation-theoretic rank of an object V of C. Considering $C = D(H)\mathcal{M}^{fd}$, the category of finite dimensional left $D(H)$-modules, we will compute in Section 3 the representation-theoretic rank of H and $D(H)$ within C, $\dim(D(H))$ and $\dim(D(H))$, respectively. After some technical and complicated computations we will find that

$$\dim(H) = \dim(D(H)) = \text{Tr}(h \mapsto S^{-2}(S(\beta)\alpha h \beta S(\alpha))).$$

Therefore, we call a quasi-Hopf algebra H involutory if $h \mapsto S^{-2}(S(\beta)\alpha h \beta S(\alpha)) = id_H$. Firstly, because, just as in the Hopf case, the above representation-theoretic ranks reduce to the classical dimension of H, provided H involutory. Secondly, because $g = \beta S(\alpha)$ is invertible with $g^{-1} = S(\beta)\alpha$ and g^{-1} defines both S^2 as an inner automorphism of H and (assuming k algebraically closed of characteristic zero) that unique pivotal structure in [17, Propositions 8.24 and 8.23]. More explicitly, if k is an algebraically closed field of characteristic zero then g^{-1} gives rise to the unique pivotal structure of $H\mathcal{M}^{fd}$ with respect to which the categorical dimensions of simple objects coincide with their usual dimensions. (Complete proofs for the above facts, examples, properties and results on involutory (dual) quasi-Hopf algebras can be found in [13].) Furthermore, specializing the above equality for $H = H^*_v$, the quasi-Hopf algebra considered in [29], we obtain that $\text{dim}(D^v(H)) = \text{dim}(H)$, where $D^v(H)$ is the quasi-triangular quasi-Hopf algebra constructed in [11], and we should stress the fact that in this particular case both H^*_v and $D^v(H)$ are involutory in the quasi-Hopf sense mentioned above.

Finally, in Section 5 we prove a trace formula for quasi-Hopf algebras. Specializing it for the endomorphism $h \mapsto S^{-2}(S(\beta)\alpha h \beta S(\alpha))$ we get that

$$\text{Tr}(h \mapsto S^{-2}(S(\beta)\alpha h \beta S(\alpha))) = \varepsilon(r)(\lambda(S^{-1}(\alpha))\beta),$$

where λ is a left cointegral in H and r is a right integral in H such that $\lambda(r) = 1$. Combining the results in the last two Sections we conclude that $\text{dim}(H) = \text{dim}(D(H)) = \varepsilon(r)(\lambda(S^{-1}(\alpha))\beta)$, so this scalar is non-zero if and only if H is both semisimple and cosemisimple.

In view of these results we believe that a semisimple cosemisimple quasi-Hopf algebra is always involutory and therefore, in this case, $\text{dim}(H) = \text{dim}(D(H)) = \text{dim}(H)$, the classical dimension of H. In this direction we do not know if the techniques used in [23, 24, 18] can be generalized for quasi-Hopf algebras. But without doubt it is an interesting problem which is worthwhile to study.

2. Preliminaries

2.1. Quasi-Hopf algebras. We work over a commutative field k. All algebras, linear spaces etc. will be over k; unadorned \otimes means \otimes_k. Following Drinfeld [16], a quasi-bialgebra is a four-tuple $(H, \Delta, \varepsilon, \Phi)$ where H is an associative algebra with unit, Φ is an invertible element in $H \otimes H \otimes H$, and $\Delta : H \to H \otimes H$ and $\varepsilon : H \to k$ are algebra homomorphisms satisfying the identities

$$\begin{align*}
(1 \otimes \Phi)(id \otimes \Delta \otimes id)(\Phi)(\Phi \otimes 1) &= (id \otimes id \otimes \Delta)(\Phi)(\Delta \otimes id \otimes id)(\Phi), \\
(id \otimes \Delta)(\Phi) &= 1 \otimes 1 \otimes 1.
\end{align*}$$
The map Δ is called the coproduct or the comultiplication, ε the counit and Φ the reassociator. As for Hopf algebras we denote $\Delta(h) = h_1 \otimes h_2$, but since Δ is only quasi-coassociative we adopt the further convention (summation understood):

$$(\Delta \otimes \text{id})(\Delta(h)) = h_{1(1)} \otimes h_{1(2)} \otimes h_2, \quad (\text{id} \otimes \Delta)(\Delta(h)) = h_1 \otimes h_{2(1)} \otimes h_{2(2)},$$

for all $h \in H$. We will denote the tensor components of Φ by capital letters, and the ones of Φ^{-1} by small letters, namely

$$\Phi = X^1 \otimes X^2 \otimes X^3 = T^1 \otimes T^2 \otimes T^3 = V^1 \otimes V^2 \otimes V^3 = \ldots$$

$$\Phi^{-1} = x^1 \otimes x^2 \otimes x^3 = t^1 \otimes t^2 \otimes t^3 = v^1 \otimes v^2 \otimes v^3 = \ldots$$

H is called a quasi-Hopf algebra if, moreover, there exists an anti-morphism S of the algebra H and elements $\alpha, \beta \in H$ such that, for all $h \in H$, we have:

$$S(h_1)\alpha h_2 = \varepsilon(h)\alpha \quad \text{and} \quad h_1 \beta S(h_2) = \varepsilon(h)\beta,$$

$$X^1 \beta S(X^2)\alpha X^3 = 1 \quad \text{and} \quad S(x^1)\alpha x^2 \beta S(x^3) = 1.$$

Our definition of a quasi-Hopf algebra is different from the one given by Drinfeld in the sense that we do not require the antipode to be bijective. Nevertheless, in the finite dimensional or quasi-triangular case this condition can be deleted because it follows from the other axioms, see [10] and [11].

Together with a quasi-Hopf algebra $H = (H, \Delta, \varepsilon, \Phi, S, \alpha, \beta)$ we also have H^{cop} and H^{cop} as quasi-Hopf algebras, where "cop" means opposite multiplication and "cop" means opposite comultiplication. The quasi-Hopf structures are obtained by putting $\Phi_{\text{cop}} = \Phi^{-1}$, $\Phi_{\text{cop}} = (\Phi^{-1})^{221}$, $S_{\text{cop}} = S^S_{\text{cop}} = S^{-1}$, $\alpha_{\text{cop}} = S^{-1}(\alpha)$ and $\beta_{\text{cop}} = S^{-1}(\beta)$.

The axioms for a quasi-Hopf algebra imply that $\varepsilon \circ S = \varepsilon$ and $\varepsilon(\alpha)\varepsilon(\beta) = 1$, so, by rescaling α and β, we may assume without loss of generality that $\varepsilon(\alpha) = \varepsilon(\beta) = 1$. The identities (2.2), (2.3) and (2.4) also imply that

$$(\varepsilon \otimes \text{id} \otimes \varepsilon)(\Phi) = (\text{id} \otimes \varepsilon \otimes \varepsilon)(\Phi) = 1 \otimes 1 \otimes 1.$$

It is well-known that the antipode of a Hopf algebra is an anti-coalgebra morphism. For a quasi-Hopf algebra, we have the following statement: there exists an invertible element $f \in H \otimes H$ such that $(\varepsilon \otimes \text{id})(f) = (\text{id} \otimes \varepsilon)(f) = 1$ and

$$f \Delta(S(h))f^{-1} = (S \otimes S)(\Delta^{\text{cop}}(h)),$$

for all $h \in H$, where $\Delta^{\text{cop}}(h) = h_2 \otimes h_1$. f can be computed explicitly. First set

$$A^1 \otimes A^2 \otimes A^3 \otimes A^4 = (\Phi \otimes 1)(\Delta \otimes \text{id} \otimes \text{id})(\Phi^{-1}),$$

$$B^1 \otimes B^2 \otimes B^3 \otimes B^4 = (\Delta \otimes \text{id} \otimes \text{id})(\Phi)(\Phi^{-1} \otimes 1)$$

and then define $\gamma, \delta \in H \otimes H$ by

$$\gamma = S(A^2)\alpha A^3 \otimes S(A^1)\alpha A^4 \quad \text{and} \quad \delta = B^1 \beta S(B^4) \otimes B^2 \beta S(B^3).$$

f and f^{-1} are then given by the formulas

$$f = (S \otimes S)(\Delta^{\text{cop}}(x^1))\gamma \Delta(x^2 \beta S(x^3)),$$

$$f^{-1} = \Delta(S(x^1)\alpha x^2)\delta(S \otimes S)(\Delta^{\text{cop}}(x^3)).$$

Moreover, $f = f^1 \otimes f^2$ and $f^{-1} = g^1 \otimes g^2$ satisfy the following relations:

$$f \Delta(\alpha) = \gamma, \quad \Delta(\beta)f^{-1} = \delta,$$

$$\Delta(\beta)(f^{-1})(f^{-1})(f^{-1} \otimes 1) = S(X^3) \otimes S(X^2) \otimes S(X^1),$$

$$f^1 \beta S(f^2) = S(\alpha), \quad g^1 S(g^2 \alpha) = \beta, \quad (S f^1)f^2 = \alpha.$$
In a Hopf algebra H, we obviously have the identity
\[h_1 \otimes h_2 S(h_3) = h \otimes 1, \text{ for all } h \in H. \]

We will need the generalization of this formula to quasi-Hopf algebras. Following [19, 20], we define
\[p_R = p^1 \otimes p^2 = x^1 \otimes x^2 \beta S(x^3), \quad q_R = q^1 \otimes q^2 = X^1 \otimes S^{-1}(\alpha X^3)X^2, \]
\[p_L = \tilde{p}^1 \otimes \tilde{p}^2 = X^2 S^{-1}(X^1 \beta) \otimes X^3, \quad q_L = \tilde{q}^1 \otimes \tilde{q}^2 = S(x^1) \alpha x^2 \otimes x^3. \]

For all $h \in H$, we then have
\[(2.17) \quad \Delta(h_1)p_R(1 \otimes S(h_2)) = p_R(h \otimes 1) \]
\[(2.18) \quad (S(h_1) \otimes 1)q_L \Delta(h_2) = (1 \otimes h)q_L. \]

Furthermore, the following relations hold
\[(2.19) \quad (1 \otimes S^{-1}(p^2))q_R \Delta(p^1) = 1 \otimes 1 \]
\[(2.20) \quad \Delta(q^1)p_R(1 \otimes S(q^2)) = 1 \otimes 1 \]
\[(2.21) \quad (S(\tilde{p}^1) \otimes 1)q_L \Delta(\tilde{p}^2) = 1 \otimes 1 \]
\[\Phi(\Delta \otimes id)(p_R)(p_R \otimes id) = (id \otimes \Delta)(\Delta(x^1)p_R)(1 \otimes f^{-1})(1 \otimes S(x^3) \otimes S(x^2)) \]
\[(2.22) \quad (q_R \otimes 1)(\Delta \otimes id)(q_R)\Phi^{-1} = (1 \otimes S^{-1}(f^2X^3) \otimes S^{-1}(f^1X^2))(id \otimes \Delta)(q_R \Delta(X^1)), \]
\[(2.23) \quad (1 \otimes q_L)(id \otimes \Delta)(q_L)\Phi = (S(x^2) \otimes S(x^1) \otimes 1)(f \otimes 1)(\Delta \otimes id)(q_L \Delta(x^3)). \]

2.2. Quasi-triangular quasi-Hopf algebras and the quantum double. Recall that a quasi-Hopf algebra H is quasi-triangular if there exists an element $R \in H \otimes H$ such that
\[(2.25) \quad (\Delta \otimes id)(R) = \Phi_{312}R_{13}\Phi^{-1}_{132}R_{23}\Phi, \]
\[(2.26) \quad (id \otimes \Delta)(R) = \Phi_{231}R_{13}\Phi_{213}R_{12}\Phi^{-1}, \]
\[(2.27) \quad \Delta^{op}(h)R = R\Delta(h), \text{ for all } h \in H, \]
\[(2.28) \quad (\varepsilon \otimes id)(R) = (id \otimes \varepsilon)(R) = 1. \]

Here we use the following notation. If σ is a permutation of $\{1, 2, 3\}$, we set $\Phi_{\sigma(1)\sigma(2)\sigma(3)} = X^{\sigma^{-1}(1)} \otimes X^{\sigma^{-1}(2)} \otimes X^{\sigma^{-1}(3)}$, and R_{ij} means R acting non-trivially in the i^{th} and j^{th} positions of $H \otimes H \otimes H$.

In [7] it is shown that R is invertible, and that the element
\[(2.29) \quad u = S(R^2p^2)\alpha R^1p^1 \]
(with $p_R = p^1 \otimes p^2$ defined as in (2.15)) is invertible in H and satisfies for all $h \in H$ the following relation
\[(2.30) \quad S^2(h) = uh^{-1}. \]

As in the Hopf algebra theory the most important example of quasi-triangular quasi-Hopf algebra is produced by the double construction.

From [20, 5], we recall the definition of the quantum double $D(H)$ of a finite dimensional quasi-Hopf algebra H. Let $\{e_i\}_{i=1, \ldots, n}$ be a basis of H, and $\{e^i\}_{i=1, \ldots, n}$ the corresponding dual basis of H^*. We can easily see that H^*, the linear dual of H,
is not a quasi-Hopf algebra. But H^* has a dual structure coming from the initial structure of H. So H^* is a coassociative coalgebra, with comultiplication

$$\hat{\Delta}(\varphi) = \varphi_1 \otimes \varphi_2 = \sum_{i,j=1}^{n} \varphi(e_i e_j) e^i \otimes e^j,$$

or, equivalently,

$$\hat{\Delta}(\varphi) = \varphi_1 \otimes \varphi_2 \leftrightarrow \varphi(h h') = \varphi_1(h) \varphi_2(h'), \quad \forall \ h, h' \in H.$$

H^* is also an H-bimodule, by

$$\langle h \rightarrow \varphi, h' \rangle = \varphi(h' h), \quad \langle \varphi \leftarrow h, h' \rangle = \varphi(h h').$$

The convolution is a multiplication on H^*; it is not associative, but only quasi-associative:

$$[\varphi \psi] \xi = (X^1 \rightarrow \varphi \leftarrow x^1)(X^2 \rightarrow \psi \leftarrow x^2)(X^3 \rightarrow \xi \leftarrow x^3), \quad \forall \ \varphi, \psi, \xi \in H^*.$$

We also introduce $\overline{S} : H^* \rightarrow H^*$ as the coalgebra antimorphism dual to S, this means $\langle \overline{S}(\varphi), h \rangle = \langle \varphi, S(h) \rangle$, for all $\varphi \in H^*$ and $h \in H$.

Now consider $\Omega \in H^\otimes 5$ given by

$$\Omega = \Omega^1 \otimes \Omega^2 \otimes \Omega^3 \otimes \Omega^4 \otimes \Omega^5$$

$$\quad \quad = X^{1,(1,1)}_{x^1} x^1 \otimes X^{1,(2,2)}_{x^1} y^1 x^2 \otimes X^{1,2}_{x^2^3} x^2 \otimes S^{-1}(f^1 X^2 x^3) \otimes S^{-1}(f^2 X^3),$$

where $f \in H \otimes H$ is the element defined in (2.10). We define the quantum double $D(H) = H^* \rtimes H$ as follows: as a k-linear space, $D(H)$ equals $H^* \otimes H$, and the multiplication is given by

$$\langle \varphi \triangleright h \rangle \langle \psi \triangleright h' \rangle = ([\Omega^1 \rightarrow \varphi \leftarrow \Omega^5]([\Omega^2 \rightarrow \psi \leftarrow \Omega^4]) \triangleright \Omega^3([\overline{S}^{-1}(\psi_1) \rightarrow h) \leftarrow \psi_3])h' $$

$$\quad \quad = ([\Omega^1 \rightarrow \varphi \leftarrow \Omega^5]([\psi^2, h_{(1,1)} \rightarrow \psi \leftarrow S^{-1}(h_2)\Omega^4]) \triangleright \Omega^3 h_{(1,2)} h'. $$

From [19][20] we have that $D(H)$ is an associative algebra with unit $\varepsilon \triangleright 1$, and H is a unital subalgebra via the morphism $i_D : H \rightarrow D(H)$, $i_D(h) = \varepsilon \triangleright h$. Moreover, $D(H)$ is a quasi-triangular quasi-Hopf algebra with the following structure:

$$\Delta_D(\varphi \triangleright h) = (\varepsilon \triangleright X^1 Y^1)(p^1_1 x^1 \rightarrow Y^2 S^{-1}(p^2 \triangleright p^1_2 x^2 y^1))$$

$$\otimes (X^2_1 \rightarrow \varphi_1 \leftarrow S^{-1}(X^3) \triangleright X^2_2 Y^2 x^3 x^2 y^2)$$

$$\varepsilon_D(\varphi \triangleright h) = \varepsilon(\varphi) \varepsilon(S^{-1}(\alpha))$$

$$\Phi_D = (i_D \otimes i_D \otimes i_D)(\Phi)$$

$$S_D(\varphi \triangleright h) = (\varepsilon \triangleright S(h) f^1)(p^1_1 U^1 \rightarrow \overline{S}^{-1}(\varphi) \leftarrow f^2 S^{-1}(p^2) \triangleright p^1_2 U^2)$$

$$\alpha_D = \varepsilon \triangleright \alpha, \quad \beta_D = \varepsilon \triangleright \beta$$

$$R_D = \sum_{i=1}^{n} (\varepsilon \triangleright S^{-1}(p^2) e_i p^1_1) \otimes (e^i \triangleright p^2).$$

Here $p_R = p^1 \otimes p^2$ and $f = f^1 \otimes f^2$ are the elements defined by (2.15) and (2.10), respectively, and $U = U^1 \otimes U^2 \in H \otimes H$ is the following element

$$U = U^1 \otimes U^2 = g^1 S(q^2) \otimes g^2 S(q^1),$$

where $f^{-1} = g^1 \otimes g^2$ and $q_R = q^1 \otimes q^2$ are the elements defined by (2.11) and (2.15), respectively.
2.3. The center construction and the Yetter-Drinfeld modules. If H is a quasi-bialgebra then the category of left H-modules, denoted by $\mathcal{H}\mathcal{M}$, is a monoidal category and, moreover, if H is quasi-triangular then $\mathcal{H}\mathcal{M}$ is braided (the reader is invited to consult [22 XI.4] or [27 IX.1] for the complete definition of a monoidal or (pre) braided category, and also for the notion of a monoidal, respectively (pre) braided, functor between them). The tensor product \otimes is given via Δ, for $U,V,W \in \mathcal{H}\mathcal{M}$ the associativity constraint on $\mathcal{H}\mathcal{M}$ is given by

$$a_{U,V,W}((u \otimes v) \otimes w) = X^1 \cdot u \otimes (X^2 \cdot v \otimes X^3 \cdot w),$$

the unit is k as a trivial H-module and the left and right unit constraints are the usual ones. When H is quasi-triangular we have the following braiding c on $\mathcal{H}\mathcal{M}$:

$$c_{U,V}(u \otimes v) = R^2 \cdot v \otimes R^1 \cdot u.$$

To any monoidal category \mathcal{C} we can associate two (pre) braided monoidal categories, namely the (weak) left and right centers $(\mathcal{W}_l(\mathcal{C}))$, $(\mathcal{W}_r(\mathcal{C}))$ of \mathcal{C}. For the (weak) left center construction the reader is invited to consult [25] for the right (weak) center construction [22 XIII.4], and for the connection between them [3], respectively.

Since for a quasi-bialgebra H the category $\mathcal{H}\mathcal{M}$ is monoidal it makes sense to consider $\mathcal{W}_l(\mathcal{H}\mathcal{M})$ or $\mathcal{W}_r(\mathcal{H}\mathcal{M})$. In [25] Majid computed the left weak center $\mathcal{W}_l(\mathcal{H}\mathcal{M})$. The objects are identified with the so called left Yetter-Drinfeld modules, i.e. left H-modules M (denote the action by $h \otimes m \mapsto h \cdot m$) together with a k-linear map $\lambda_M : M \rightarrow H \otimes M$, $\lambda_M(m) := m \cdot_{(-1)} \otimes m \cdot_{(0)}$, such that $\varepsilon(m \cdot_{(-1)})m \cdot_{(0)} = m$ and for all $h \in H$ and $m \in M$ the following relations hold:

$$X^1 m \cdot_{(-1)} \otimes (X^2 \cdot m \cdot_{(0)})
\otimes X^3 \otimes (X^2 \cdot m \cdot_{(0)}) \cdot_{(0)}$$

$$= X^1 \cdot Y^1 \cdot m \cdot_{(-1)} \otimes Y^2 \otimes X^2 \cdot Y^1 \cdot m \cdot_{(-1)} \otimes Y^3 \otimes X^3 \cdot Y^1 \cdot m \cdot_{(0)},$$

$$h_1 m \cdot_{(-1)} \otimes h_2 \cdot m \cdot_{(0)} = (h_1 \cdot m) \cdot_{(-1)} h_2 \otimes (h_1 \cdot m) \cdot_{(0)}.$$

The category of left Yetter-Drinfeld modules and k-linear maps that preserve the H-action and H-coaction is denoted by $\mathcal{H}^l\mathcal{Y}\mathcal{D}$.

The prebraided monoidal structure on $\mathcal{W}_l(\mathcal{H}\mathcal{M})$ induces a prebraided monoidal structure on $\mathcal{H}^l\mathcal{Y}\mathcal{D}$. This structure is such that the forgetful functor $\mathcal{H}^l\mathcal{Y}\mathcal{D} \rightarrow \mathcal{H}\mathcal{M}$ is monoidal, and the coaction on the tensor product $M \otimes N$ of two left Yetter-Drinfeld modules M and N is given by

$$\lambda_M \otimes_N (m \otimes n) = X^1 (x^1 Y^1 \cdot m) \cdot_{(-1)} x^2 (Y^2 \cdot n) \cdot_{(-1)} Y^3 \otimes X^2 \cdot (x^1 Y^1 \cdot m) \cdot_{(0)} \otimes X^3 x^3 \cdot (Y^2 \cdot n) \cdot_{(0)}.$$

For any $M, N \in \mathcal{H}^l\mathcal{Y}\mathcal{D}$ the braiding $c_{M,N} : M \otimes N \rightarrow N \otimes M$ is given by

$$c_{M,N}(m \otimes n) = m \cdot_{(-1)} \cdot n \otimes m \cdot_{(0)},$$

for all $m \in M$ and $n \in N$. Moreover, if H is a quasi-Hopf algebra then $c_{M,N}$ is invertible (see [3]) and therefore $\mathcal{H}^l\mathcal{Y}\mathcal{D}$ is a braided category.

We notice that the right weak center $\mathcal{W}_r(\mathcal{H}\mathcal{M})$ was computed in [3]: it is isomorphic to the category of left-right Yetter-Drinfeld modules (see the definition below).
3. The Schrödinger representation

Let H be a finite dimensional Hopf algebra. It is well known that H is a left $D(H)$-module algebra via the action $(\varphi \in H^*, h, h' \in H)$:

$$(\varphi \triangleleft h) \bullet h' = \langle \varphi, S^{-1}((h \triangleright h')_1)\rangle(h \triangleright h')_2.$$

Here and also in the rest of the paper, $h \triangleright h' := h_1 h'S(h_2)$, for all $h, h' \in H$.

The aim of this section is to compute a similar structure for a finite dimensional quasi-Hopf algebra H. This fact is absolutely necessary in order to compute the representation-theoretic rank (or quantum dimension) of H within the braided category of left $D(H)$-modules. Toward this end, we will use the following three results:

1) To any quasi-Hopf algebra H we can associate an algebra, denoted by H_0, in the category of left Yetter-Drinfeld modules $H\mathcal{YD}$, cf. [8]. More precisely, we denote by H_0 the k-vector space H with the new multiplication \circ defined by

$$(3.1) \quad h \circ h' = X^1 h S(x^1 X^2) \alpha x^2 X_1^3 h' S(x^3 X_2^3),$$

for all $h, h' \in H$. From [9] we know that H_0 is a left H-module algebra, this means an algebra in $H\mathcal{M}$. The unit of H_0 is β and H_0 is an object of $H\mathcal{M}$ via the left adjoint action \triangleright, i.e. for all $h, h' \in H$,

$$(3.2) \quad h \triangleright h' = h_1 h'S(h_2).$$

Moreover, H_0 becomes an algebra in $H\mathcal{YD}$ with the additional structure $\lambda_{H_0} : H_0 \to H \otimes H_0$, given by

$$(3.3) \quad (H_0, \triangleright) := X^1 Y^1 h_1 Y h S(q^2 Y^2_2) Y^3 \otimes X^2 Y^2_2 h_2 Y_2 S(X^3 q^1 Y^2_1),$$

for all $h \in H$, where $q_R = q^1 \otimes q^2$ is the element defined by (2.15).

2) There is a braided isomorphism between $H\mathcal{YD}$ and $H\mathcal{YD}^M$, cf. [4]. First of all recall that the category of left-right Yetter-Drinfeld modules over a quasi-bialgebra H, denoted by $H\mathcal{YD}^H$, has as objects left H-modules M (denote the action by $h \otimes m \mapsto h \cdot m$) for which H coacts on the right (denote the right H-coaction by $M \ni m \mapsto m_0 \otimes m_1 \in M \otimes H$) such that $\varepsilon(m_1) m_0 = m$ and for all $m \in M$ and $h \in H$ the following relations hold

$$(3.4) \quad (x^2 \cdot m_0)_0 \otimes (x^2 \cdot m_0)_1 x^1 \otimes x^3 m_1$$

$$(3.5) \quad h_1 \cdot m_0 \otimes h_2 m_1 = (h_2 \cdot m)_0 \otimes (h_2 \cdot m)_1 h_1.$$

The morphisms are left H-linear, right H-colinear maps.

Since $H\mathcal{YD}^H$ can be identified with the right weak center of $H\mathcal{M}$ (see [4]) we find that $H\mathcal{YD}^H$ has the following prebraided structure: the right H-coaction on the tensor product $M \otimes N$ of $M, N \in H\mathcal{YD}^H$ is the following:

$$(3.6) \quad \rho_{M \otimes N}(m \otimes n) = x^1 X^1 \cdot (y^2 \cdot m)_0 \otimes x^2 \cdot (X^3 y^3 \cdot n)_0 \otimes x^3 (X^3 y^3 \cdot n)_1 X^2 (y^2 \cdot m)_1 y^1,$$

for all $m \in M, n \in N$, and the functor forgetting the H-coaction is monoidal, so

$$(3.7) \quad h \cdot (m \otimes n) = h_1 \cdot m \otimes h_2 \cdot n.$$
The braiding ϵ on $_H\mathcal{YD}^H$ is defined by

$$\epsilon_{M,N}(m \otimes n) = n_{(0)} \otimes n_{(1)} \cdot m,$$

for $m \in M$ and $n \in N$. Furthermore, if H is a quasi-Hopf algebra the braiding ϵ is invertible. The inverse braiding is given by

$$\epsilon^{-1}_{M,N}(m \otimes n) = q_1^1 x_1 S(q_2^2 x_3 (\tilde{p}_2^2 \cdot n_{(1)}) \tilde{p}_1^1) \cdot m \otimes q_2^1 x_2 \cdot (\tilde{p}_2^2 \cdot n_{(0)}),$$

where $q_R = q^1 \otimes q^2$ and $p_L = \tilde{p}_1 \otimes \tilde{p}_2$ are the elements defined in (2.15) and (2.16), respectively. Finally, for a quasi-Hopf algebra H, $_HYD^H$ will be our notation for the category of left-right Yetter-Drinfeld modules endowed with the braided structure given by (3.6-3.8), and $_H\mathcal{YD}^{H^\text{in}}$ will be our notation for the category $_HYD^H$ with monoidal structure (3.6-3.7) and the mirror reversed braiding $\epsilon_{M,N} = \epsilon^{-1}_{N,M}$.

Now, by [4] there is a monoidal isomorphism between $_H\mathcal{YD}$ and $_HYD^H$ produced by the following functor \mathfrak{g}. If $M \in _H\mathcal{YD}$ then $\mathfrak{g}(M) = M$ as left H-modules and with the right H-coaction defined by

$$\rho_{F(M)}(m) = q_1^2 x_2 \cdot (p_1 \cdot m)_{(0)} \otimes q_2^1 x_3 S^{-1}(q_1^1 X_1 (p_1 \cdot m)_{(-1)} \tilde{p}_2),$$

for all $m \in M$. The functor \mathfrak{g} acts as identity on morphisms. Moreover, \mathfrak{g} provides a braided isomorphism between $_H\mathcal{YD}$ and $_HYD^{H^\text{in}}$, see [4] for more details.

3) The category $_HYD^H$ is braided isomorphic to $_{D(H)}\mathcal{M}$.

Indeed, from [20] [12] we know that the above categories are isomorphic. The isomorphism is the following. To any left-right Yetter-Drinfeld module M we can associate a left $D(H)$-module structure given by

$$(\varphi \otimes h) \cdot m = \langle \varphi, q^2 (h \cdot m)_{(1)} \rangle q^1 \cdot (h \cdot m)_{(0)},$$

for all $\varphi \in H^*$, $h \in H$ and $m \in M$, where, as usual, $q_R = q^1 \otimes q^2$ is the element defined in (2.15). Moreover, a morphism between two left-right Yetter-Drinfeld modules becomes in this way a morphism between two left $D(H)$-modules, so we have a well defined functor $\mathcal{F} : _HYD^H \rightarrow _{D(H)}\mathcal{M}$. If H is a finite dimensional quasi-Hopf algebra then \mathcal{F} is an isomorphism (for the explicit description of the inverse of \mathcal{F} see [12]). Also, it is not hard to see that the functor \mathcal{F} is monoidal; the functorial isomorphism $\Psi_{M,N} : \mathcal{F}(M) \otimes \mathcal{F}(N) \rightarrow \mathcal{F}(M \otimes N)$ is the identity morphism. Moreover, the next result asserts that it is a braided isomorphism.

Proposition 3.1. Let H be a finite dimensional quasi-Hopf algebra. Then the categories $_HYD^H$ and $_{D(H)}\mathcal{M}$ are braided isomorphic.

Proof. By the previous comments, we only have to check that the functor \mathcal{F} defined above is braided, this means that for any two left-right Yetter-Drinfeld modules M and N we have

$$\mathcal{F}(\epsilon_{M,N}) \circ \Psi_{\mathcal{F}(M), \mathcal{F}(N)} = \Psi_{\mathcal{F}(N), \mathcal{F}(M)} \circ \epsilon_{\mathcal{F}(M), \mathcal{F}(N)}.$$
Indeed, for all \(m \in M \) and \(n \in N \) we compute
\[
\Psi_{F(M),F(M)} \circ c_{F(M),F(N)}(m \otimes n) = \sum_{i=1}^{n} (e^i \otimes p_1^i) \rightarrow n \otimes (\varepsilon \otimes S^{-1}(p^2)e_ip_1^i) \rightarrow m
\]
\[
= (e^i, q^2(p_1^i \cdot n)(1))q^1 \cdot (p_1^i \cdot n)_{(0)} \otimes S^{-1}(p^2)e_ip_1^i \cdot m
\]
\[
= q^1 \cdot (p_1^i \cdot n)_{(0)} \otimes S^{-1}(p^2)q^2(p_1^i \cdot n)(1)p_1^i \cdot m
\]
\[
= q^1 p_1^i \cdot n_{(0)} \otimes S^{-1}(p^2)q^2 p_1^i n_{(1)} \cdot m
\]
\[
= n_{(0)} \otimes n_{(1)} \cdot m = F(c_{M,N}) \circ \Psi_{F(M),F(N)}(m \otimes n),
\]
as needed, so the proof is complete.

Using these braided isomorphisms we will transfer the algebra structure of \(H_0 \) in \(H^H\mathcal{YD} \) to \(D(H)\mathcal{M} \). In this way we will associate to any finite dimensional quasi-Hopf algebra \(H \) a left \(D(H) \)-module algebra structure. As in the classical Hopf algebra case, the obtained representation will be called the Schrödinger representation.

First we shall compute the algebra structure of \(H_0 \) in \(H^H\mathcal{YD} \), and then its left \(D(H) \)-module algebra structure.

Proposition 3.2. Let \(H \) be a quasi-Hopf algebra. Then \(H_0 \) is an algebra in the monoidal category \(H^H\mathcal{YD} \) with the left \(H \)-module structure defined in (3.12) and with the right \(H \)-coaction \(\rho_{H_0} : H_0 \rightarrow H_0 \otimes H \) given for all \(h \in H \) by
\[
(3.12) \quad \rho_{H_0}(h) = h_{(0)} \otimes h_{(1)} = x^1 q^2 y_2^2 h_2 g^2 S(x^2 y_1^3 \otimes x^3 y_2^3 S^{-1}(q^1 y_1^3 h_1 g^1))y_1^1,
\]
where \(q_L = q^1 \otimes q^2 \) and \(f^{-1} = g^1 \otimes g^2 \) are the elements defined in (2.10) and (2.11), respectively. Moreover, \(H_0 \) is a left \(D(H) \)-module algebra via the action
\[
(3.13) \quad \phi \triangleright h = \langle \phi, q^2 x^3 y_2^3 S^{-1}(q^1 y_1^3 (h \triangleright h')) \rangle y_1^1
\]
\[
q_1^1 x^1 q^2 y_2^2 (h \triangleright h') g^2 S(q_2^2 y_2^3 y_1^1),
\]
for all \(\phi \in H^* \) and \(h, h' \in H \), where \(q_R = q^1 \otimes q^2 \) is the element defined in (2.16).

Proof. Since the functor \(\mathfrak{F} \) described in (3.10) is monoidal it carries algebras to algebras. Moreover, the isomorphisms \(\Psi_{M,N} : \mathfrak{F}(M) \otimes \mathfrak{F}(N) \rightarrow \mathfrak{F}(M \otimes N), M, N \in H^H\mathcal{YD} \), which define the monoidal structure of the functor \(\mathfrak{F} \) are trivial, so if \(A \) is an algebra in \(H^H\mathcal{YD} \) then \(\mathfrak{F}(A) \) is an algebra in \(H^H\mathcal{YD} \) with the same multiplication and unit. Now, \(\mathfrak{F} \) acts as identity on objects at the level of actions. Thus \(\mathfrak{F}(H_0) = H_0 \) as left \(H \)-module algebras, so we only have to show that that corresponding right \(H \)-action on \(H_0 \) through the functor \(\mathfrak{F} \) is the one claimed in (3.12). For this we need the following relations
\[
(3.14) \quad X^1 p_1^i \otimes X^2 p_1^i \otimes X^3 p_2^2 = x^1 \otimes x_2^1 p_1^i \otimes x_2^2 p_2^2 S(x^3),
\]
\[
(3.15) \quad q^1 X^1 \otimes q_2^2 X^2 \otimes q_2^2 X^3 = S(x^1) q^1 x^2_2 \otimes q^2 x^2 \otimes x^3,
\]
\[
(3.16) \quad f^{-1} = \Delta(S(h_1)) U(h_2 \otimes 1) = U(1 \otimes S(h)), \quad \forall h \in H.
\]

Indeed, (3.14) and (3.15) follow easily from (2.3), (2.5) and from the definitions of \(p_R \) and \(q_L \), respectively. The relation (3.16) is an immediate consequence of (2.8) and (2.19), and the formula in (3.17) can be found in [21].
Finally, by (2.8) and (2.35) we get the following second formula for the left
H-coaction on H_0 defined in (3.3)
\[\lambda_{H_0}(h) = h_{(-1)} \otimes h_{(0)} = (X^1 \otimes X^2) \Delta(Y^1 h S(Y^2)) U(Y^3 \otimes S(X^3)). \]

Now, for any $h \in H$ we calculate
\[\rho_{H_0}(h) = q_1^3 Z^2 \triangleright (p_1 \triangleright h)_{(0)} \otimes q_2^3 Z^3 S^{-1}(q_1^1 Z^1 (p_1 \triangleright h)_{(-1)} p_2^2) \]
\[= q_1^3 Z^2 \triangleright [X^2 (Y^1 (p_1 \triangleright h) S(Y^2)) U^2 S(X^3)] \]
\[\otimes q_2^3 Z^3 S^{-1}(q_1^1 Z^1 Y^1 (p_1 \triangleright h) S(Y^2)) U^1 Y^3 p_2^2) \]
\[= q_1^3 Z^2 \triangleright [X^2 x_2^2 h_2 S(x_1^2 p_1) U^2 S(X^3)] \]
\[\otimes q_2^3 Z^3 x_1^3 S^{-1}(q_1^1 Z^1 X_1^1 h_1 S(x_1^2 p_1) U^1 x_2^2 p_2^2) \]
\[= q_1^3 \triangleright [Z^2 x_2^2 h_2 S(p_1) U^2 S(Z_2^2 X^3 x_1^3)] \]
\[\otimes q_2^3 Z^3 x_1^3 S^{-1}(q_1^1 Z^1 X_1^1 h_1 S(p_1) U^1 p_2^2) \]
\[= q_{(2,1)}^2 q_{(1,1)}^1 X^2 h_2 g^2 S(q_2^2 x^2 x_1^3) \otimes q_2^1 x_1^3 S^{-1}(q_1^1 X_1^1 h_1 g^1) \]
\[= x^1 q^2 y_2 h_2 g^2 S(x_2 y_1^1) \otimes x^3 y_3 S^{-1}(q_1^1 y_1^1 h_1 g^1) y_1^1, \]
as needed. The last assertion is a consequence of (3.11) and (3.12), the details are
left to the reader. \qed

Remark 3.3. Let H be a quasi-triangular quasi-Hopf algebra. Under this condition
it was proved in [8] that H_0 is a braided Hopf algebra in $\text{H \text{YD}}$. Using the functor
\otimes described above we obtain that H_0 has also a braided Hopf algebra structure in
$\text{H \text{YD}}^{\text{Hin}}$; note that the left H-coaction of H_0 in $\text{H \text{YD}}$ (viewed as a braided Hopf
algabra) is different from the coaction defined in (3.2), so the braided Hopf algebra
structure of H_0 within $\text{H \text{YD}}^{\text{Hin}}$ is not induced by the algebra structure of H_0
which was defined in Proposition 3.2. Furthermore, if we want to associate to H a braided
Hopf algebra in $\text{H \text{YD}}^H$ (and therefore in D(H) when H is finite dimensional),
is sufficient to consider H_0^{op} (or H_0^{coop}), the opposite (the cooposite, respectively)
braided Hopf algebra associated to H_0. We leave the verification of the details to
the reader.

4. The representation-theoretic rank

Let \mathcal{C} be a braided category which is left rigid (the definition of a left rigid
category can be found in [22 XIV.2] or [27 IX.3]). If V is an object of \mathcal{C} and ev_V
and $coev_V$ are the evaluation and coevaluation maps associated to V, then following
[26] we define the representation-theoretic rank (or quantum dimension) of V as
follows:
\[\dim(V) = ev_V \circ c_V \circ V \circ coev_V. \]

If H is a quasi-Hopf algebra then the category Mfd of finite dimensional modules
over H is left rigid. For $V \in \text{M}$, its left dual is $V^* = \text{Hom}(V, k)$, with left
H-action $(h \cdot \varphi, v) = (\varphi, S(h) \cdot v)$. The evaluation and coevaluation maps are
given for all $\varphi \in V^*$ and $v \in V$ by
\[ev_V(\varphi \otimes v) = \varphi(\alpha \cdot v), \quad coev_V(1) = \sum_i \beta \cdot v_i \otimes v_i, \]
where $\{v_i\}_i$ is a basis in V with dual basis $\{v^i\}_i$ in V^*.
Therefore, if \(H \) is a quasi-triangular quasi-Hopf algebra and \(V \) a finite dimensional left \(H \)-module it makes sense to consider the representation-theoretic rank of \(V \). If \(R = R^1 \otimes R^2 \) is an \(R \)-matrix for \(H \) then by [10] we have that

\[
\text{dim}(V) = \sum_i v^i (S(R^2)\alpha R^1 \beta \cdot v_i) = \text{Tr}(\eta),
\]

where \(\eta := S(R^3)\alpha R^1 \beta \). (Here \(\text{Tr}(\eta) \) is the trace of the linear endomorphism of \(V \) defined by \(v \mapsto \eta \cdot v \).)

Let \(u \) be the element defined in (2.29). By [2, 7] we have that \(S(R^2)\alpha R^1 = S(\alpha)u \), so by (2.30) we obtain

\[
\eta = S(S(\beta)\alpha)u = uS^{-1}(\alpha)\beta.
\]

In the rest of this section \(H \) will be a finite dimensional quasi-Hopf algebra, and \(\{ e_i \}_{i=1}^n \) a basis in \(H \) with dual basis \(\{ e^i \}_{i=1}^n \) in \(H^* \). Our goal is to compute \(\text{dim}(H) \) and \(\text{dim}(D(H)) \) within the braided rigid category \(D(H)_\mathcal{M}^{id} \). To this end we shall compute for \(D(H) \) the corresponding elements \(u \) and \(\eta \), denoted in what follows by \(u_D \) and \(\eta_D \), respectively.

Proposition 4.1. Let \(H \) be a finite dimensional quasi-Hopf algebra, and \(u_D \) and \(\eta_D \) the corresponding elements \(u \) and \(\eta \) for \(D(H) \), the quantum double of \(H \). Then

\[
u_D = \sum_{i=1}^n \beta \rightarrow S^{-1}(e^i) \otimes e_i \quad \text{and} \quad \eta_D = \sum_{i=1}^n \beta \rightarrow S^{-1}(e^i) \otimes e_i S^{-1}(\alpha)\beta.
\]

Proof. Let us start by noting that (2.13), (2.14) and (2.5) imply

\[
f_1^1 p^1 \otimes f_2^2 p^2 S(f^2) = g^1 S(q^2) \otimes g^2 S(q^1).
\]

Secondly, observe that the definition (2.30) of the antipode \(S_D \) of \(D(H) \) can be reformulated as follows:

\[
S_D(\varphi \triangleright h) = (\varepsilon \triangleright S(h)) \left((f_1^1 p^1)_1 U^1 \rightarrow S^{-1}(\varphi) \leftarrow f_2^2 S^{-1}(f_2^2 p^2) \otimes (f_1^1 p^1)_2 U^2 \right) \right.
\]

\[
(\varepsilon \triangleright S(h)) \left(g_1^1 S(q^2)_1 U^1 \rightarrow S^{-1}(\varphi) \leftarrow q_1^1 S^{-1}(g^2) \otimes g_2^2 S(q^2)_2 U^2 \right)
\]

\[
(\varepsilon \triangleright S(h)) \left(g_1^1 G^1 S(q^2 q^2_2) \rightarrow S^{-1}(\varphi) \leftarrow q_1^1 S^{-1}(g^2) \otimes g_2^1 G^2 S(q^1 q^2_1) \right),
\]

where we denoted by \(G^1 \otimes G^2 \) another copy of \(f^{-1} \). Now, we claim that

\[
S_D(R^2)\alpha D^1 R^1 = \sum_{i=1}^n \beta \rightarrow S^{-1}(e^i) \leftarrow \alpha \triangleright e_i,
\]

where \(R_D = R^1 \otimes R^2 \) is the \(R \)-matrix of \(D(H) \) defined in (2.35). Indeed, we can easily check that

\[
S^{-1}(h \rightarrow \varphi) = S^{-1}(\varphi) \leftarrow S(h) \quad \text{and} \quad S^{-1}(\varphi \leftarrow h) = S(h) \rightarrow S^{-1}(\varphi),
\]
for all $\varphi \in H^*$ and $h \in H$. Now, we calculate:

$$S_D(R^2)\alpha_D R^1$$

(2.38) \[\sum_{i=1}^{n} S_D(e^i \bowtie p_1^1)(\varepsilon \bowtie \alpha)(\varepsilon \bowtie S^{-1}(p^2)e_i p_1^1) \]

(2.39) \[\sum_{i=1}^{n} (S(p_1^1)g^1)_1 G^1 S(q^2_1 q_2^2) \rightarrow S^{-1}(e^i) \leftarrow q^1 S^{-1}(S(p_1^2)g_2^2) \]

(2.4) \[\varepsilon_{\bowtie \alpha_D}(S(p_1^2)g_2^2) G^2 S(q^1_1 g_2^1) \alpha S^{-1}(p^2)e_i p_1^1 \]

(2.5) \[\sum_{i=1}^{n} g^1_i G^1 S(q^2_1 p_1^2 q_2^2) \rightarrow S^{-1}(e^i) \leftarrow q^1 S^{-1}(p^2) \]

(2.8) \[\varepsilon_{\bowtie \alpha_D} g^1_i G^2 S(q^1_1 p_1^1) \alpha S^{-1}(p^2)e_i \]

(2.9) \[\sum_{i=1}^{n} g^1_i G^1 S(\varepsilon_{\bowtie \alpha_D}) \rightarrow S^{-1}(e^i) \leftarrow q^1 S^{-1}(g^2) \]

(2.10) \[\varepsilon_{\bowtie \alpha_D} g^1_i G^2 S(q^1_1 g_2^1) \alpha S^{-1}(p^2) \]

(2.11) \[\sum_{i=1}^{n} g^1_i G^1 S(q^2_1 q_2^2) \rightarrow S^{-1}(e^i) \leftarrow q^1 S^{-1}(g^2) \]

(2.12) \[\varepsilon_{\bowtie \alpha_D} g^1_i G^2 S(q^1_1 g_2^1) \alpha S^{-1}(g^2) \]

We are now able to calculate the element u_D. Since H can be viewed as a quasi-Hopf subalgebra of $D(H)$ via the morphism i_D it follows that the corresponding element p_H for $D(H)$ is $(p_H)_D = p_D^1 \otimes p_D^2 = \varepsilon \bowtie p^1 \otimes \varepsilon \bowtie p^2$. Therefore:

$$u_D$$

(2.29) \[S_D(R^2)\alpha_D R^1 p_1^1 = (\varepsilon \bowtie S(p^2)) S_D(R^2)\alpha_D R^1(\varepsilon \bowtie p^1) \]

(4.3) \[\sum_{i=1}^{n} S(p^2)_{(1,1)} \beta \rightarrow S^{-1}(e^i) \leftarrow \alpha S^{-1}(S(p^2)) \]

(4.3) \[\sum_{i=1}^{n} \varepsilon_{\bowtie \alpha_D} S(p^2)_{(1,2)} S^{-1}(\alpha S^{-1}(S(p^2)) \varepsilon_{\bowtie p^1} \alpha S^{-1}(S(p^2)) S(p^2)_{(1,1)} \beta) p^1 \]

(2.3) \[\sum_{i=1}^{n} \varepsilon_{\bowtie \alpha_D} S^{-1}(p^1) \alpha p^2 e_i \beta \]

(2.3) \[\sum_{i=1}^{n} \varepsilon_{\bowtie \alpha_D} S^{-1}(e_i \beta) = \sum_{i=1}^{n} \beta \rightarrow S^{-1}(e^i) \bowtie e_i, \]

as claimed. It is clear now that the above equality and (4.3) imply the expression of η_D in (4.4), so our proof is complete.
4.1. The representation-theoretic rank of H. We start to compute the representation-theoretic rank (or quantum dimension) of H within the braided rigid category $D_H \mathcal{M}^{fd}$. Let us start by noting that the action $\varphi \otimes h$ obtained in (3.13) can be rewritten as follows:

\[
\varphi \otimes h \mapsto h' = (\varphi, S^{-1}(Y^3)q^2Y^2_y y^3_2 S^{-1}(\bar{q}^1 y^2(h \triangleright h')_1 g^1) y^1) \]

\[
Y^1 q^2 y^2_2 (h \triangleright h')_2 g^2 S(q^1 Y^2_y y^3_1) \]

\[
\varphi \otimes S^{-1}(Y^3)q^2Y^2_y y^3_2 S^{-1}(\bar{q}^1 y^2(h \triangleright h')_1 S(Y^2_y^3)) \]

\[
Y^1 q^2(y^2(h \triangleright h') S(Y^2_y^3))_1 U^1 Y^3 \]

\[
\bar{q}^2(Y^2_y^3(h \triangleright h') S(Y^2_y^3))_2 U^2. \]

Hence we have showed that for all $\varphi \in H^*$ and $h, h' \in H$ we have

\[
(\varphi \otimes h) \mapsto h' = (\varphi, S^{-1}(Y^3)q^2Y^2_y y^3_2 S^{-1}(\bar{q}^1 y^2(h \triangleright h')_1 S(Y^2_y^3)) \]

\[
Y^1 q^2(Y^2_y^3(h \triangleright h') S(Y^2_y^3))_1 U^1 Y^3 \]

(4.8)

\[
\bar{q}^2(Y^2_y^3(h \triangleright h') S(Y^2_y^3))_2 U^2.
\]

So this action defines on H a left $D(H)$-module structure, and on H_0 a left $D(H)$-module algebra structure.

In order to "simplify" the computation for $\text{dim}(H)$ we need the following formulas.

Lemma 4.2. Let H be a finite dimensional quasi-Hopf algebra and $\{e_i\}_i$ a basis in H with dual basis $\{e^i\}$. Then for all $h, h', h'' \in H$ the following relations hold:

\[
\sum_{i=1}^n \langle e^i, S^{-1}(\beta)S^{-2}(\bar{Q}^1(e_i)_1 h') h q^2 \bar{Q}^2_2(e_i)_2(2,2) h'' S^{-1}(\bar{q}^1 \bar{Q}^2_1(e_i)(2,1)) \rangle
\]

\[
\sum_{i=1}^n \langle e^i, S^{-1}(\beta)S^{-2}(\bar{Q}^1(e_i)_1 h') h q^2 \bar{Q}^2_2(e_i)_2(2,2) S^{-1}(\bar{q}^1 \bar{Q}^2_1(e_i)(2,1)) h \rangle
\]

\[
\sum_{i=1}^n \langle e^i, S^{-1}(\beta)S^{-2}(\bar{Q}^1(e_i)_1 h') h q^2 \bar{Q}^2_2(e_i)_2(2,2) X^3 p^2 S(h_2) h'' \]

\[
\times S^{-1}(\bar{q}^1 \bar{Q}^2_1(e_i)(2,1) X^2 p_2 h_1) \rangle = \sum_{i=1}^n \langle e^i, S^{-1}(\beta)S^{-2}(\bar{Q}^1(e_i)_1 h') h q^2 \bar{Q}^2_2(e_i)_2(2,2) X^3 p^2 S(h_2) h'' \]

\[
\times S^{-1}(\bar{q}^1 \bar{Q}^2_1(e_i)(2,1) X^2 p_2 h_1) \rangle \]

(4.10)

where we denoted $q_L = q^1 \otimes q^2 = \bar{Q}^1 \otimes \bar{Q}^2$ and $p_R = p^1 \otimes p^2$.

Proof. In order to prove (4.9) we shall apply (2.18) twice, and then the properties of dual bases and (2.9). Explicitly,

\[
\sum_{i=1}^n \langle e^i, S^{-1}(\beta)S^{-2}(\bar{Q}^1(e_i)_1 h') h q^2 \bar{Q}^2_2(e_i)_2(2,2) S^{-1}(\bar{q}^1 \bar{Q}^2_1(e_i)(2,1)) \rangle
\]

\[
= \sum_{i=1}^n \langle e^i, S^{-1}(\beta)S^{-2}(\bar{Q}^1(e_i)_1 h') h q^2(h_2 \bar{Q}^2_2(e_i)(2,2) h'' \]

\[
\times S^{-1}(\bar{q}^1(h_2 \bar{Q}^2_2)(e_i)(2,1) h_1) \rangle
\]
We finally need the following formula
\[S^{-1}(\beta)S^{-2}(S(h_{(2,1)})\hat{Q}^{1}(h_{(2,2)}e_{i}h')\hat{q}^{2}\hat{Q}^{2}_{2}(h_{(2,2)}e_{i})(2,2)h'') \]
\[\times S^{-1}(\hat{q}^{1}\hat{Q}^1_{2}(h_{(2,2)}e_{i})(2,1))h_{1}) \]
\[= \sum_{i=1}^{n} \langle e^{i}, S^{-1}(\beta)S^{-2}(S(h_{(2,1)})\hat{Q}^{1}(e_{i})h')\hat{q}^{2}\hat{Q}^{2}_{2}(e_{i})(2,2)h'' \]
\[\times S^{-1}(\hat{q}^{1}\hat{Q}^1_{2}(e_{i})(2,1))h_{1}) \]
\[= \sum_{i=1}^{n} \langle e^{i}, S^{-1}(\beta)S^{-2}(\hat{Q}^{1}(e_{i})h')\hat{q}^{2}\hat{Q}^{2}_{2}(e_{i})(2,2)h'' \]
\[\times S^{-1}(\hat{q}^{1}\hat{Q}^1_{2}(e_{i})(2,1))h_{1}) \]
\[= \sum_{i=1}^{n} \langle e^{i}, S^{-1}(\beta)S^{-2}(\hat{Q}^{1}(e_{i})h')\hat{q}^{2}\hat{Q}^{2}_{2}(e_{i})(2,2)h'' \]
\[\times S^{-1}(\hat{q}^{1}\hat{Q}^1_{2}(e_{i})(2,1))h_{1}) \].

In a similar manner we can prove (4.10). It follows applying (4.9), dual basis, (2.1) and (2.17), we leave the details to the reader. □

Now, equation (2.9) shows by using (2.3) and (2.5) that
\[\gamma = \gamma^{1} \otimes \gamma^{2} = S(x^{1}X^{2})\alpha x^{3}X^{3} \otimes S(X^{1})\alpha x^{3}X^{3}, \]
\[\delta = \delta^{1} \otimes \delta^{2} = x^{1}S(x^{3}X^{3}) \otimes x^{2}X^{1}S(x^{3}X^{3}). \]

We finally need the following formula
\[p_{R} = \Delta(S(p^{1}))U(\hat{p}^{2} \otimes 1), \]
which can be found in [21]. We are now able to compute \(\dim(H) \).

Proposition 4.3. Let \(H \) be a finite dimensional quasi-Hopf algebra. Then the representation-theoretic rank of \(H \) is
\[\dim(H) = \text{Tr} \left(h \mapsto S^{-2}(S(\beta)\alpha h S(\alpha)) \right). \]

Proof. We know from Proposition 4.1 that in the quantum double case the element \(\eta_{D} \) is given by
\[\eta_{D} = \sum_{i=1}^{n} \gamma^{1} \otimes \gamma^{2} = \sum_{i=1}^{n} (e^{i} \otimes S^{-1}(\alpha e^{i})) \otimes \beta \].

We set \(p_{R} = p^{1} \otimes p^{2} = P^{1} \otimes P^{2} \), \(q_{L} = q^{1} \otimes q^{2} = \hat{Q}^{1} \otimes \hat{Q}^{2} \) and \(f = f^{1} \otimes f^{2} = F^{1} \otimes F^{2} \). Then by (1.2) and the above expression of \(\eta_{D} \) we have:
\[\dim(H) \]
\[= \sum_{i,j=1}^{n} \langle e^{i}, (e^{i} \otimes S^{-1}(\alpha e^{i})) \otimes e^{j} \rangle \]
\[= \sum_{i,j=1}^{n} \langle e^{i}, S^{-1}(\hat{q}^{1}(Y_{1}^{2}y^{2}(S^{-1}(\alpha e^{i})) \beta \otimes e_{j}S(Y^{2}y^{3})), Y^{1}U^{Y^{3}})Y_{1}^{1}y^{1} \rangle \]
\[\langle e^{i}, \hat{q}^{2}(Y_{2}^{2}y^{2}(S^{-1}(\alpha e^{i})) \beta \otimes e_{j}S(Y^{2}y^{3})), U^{2} \rangle \]
\[= \sum_{i,j,k=1}^{n} \langle e^{i}, Y_{1}^{1}y^{1} \rightarrow e^{i}, S^{-1}(\hat{q}^{1}(e_{k}))U^{1}Y^{3} \rangle \langle e^{i}, \hat{q}^{2}(e_{k})U^{2} \rangle \]
\[
\sum_{i,k=1}^{n} \langle e^k, Y_1^i y^2 (S^{-1}(\alpha e_i Y_1^i y^1 \beta) \triangleright \tilde{q}^2(e_k) U^2) S(Y^2 y^3) \rangle \\
\langle e^i, S^{-1}(\tilde{q}^1(e_k) U^1 Y^3) \rangle \\
\sum_{i,k=1}^{n} \langle e^k, Y_1^i y^2 S^{-1}(f_2^1 Y_1^i (1,2) y_2^1 \delta_2^2) (S^{-1}(\alpha e_i) \triangleright \tilde{q}^2(e_k) U^2) \rangle \\
x f_1^1 Y_1^i (1,1) y_1^1 \delta_1^1 S(Y^2 y^3) \langle e^i, S^{-1}(\tilde{q}^1(e_k) U^1 Y^3) \rangle \\
\sum_{i,k=1}^{n} \langle e^k, Y_1^i S^{-1}(f_2^1 Y_1^i (1,2) p_2^1) (S^{-1}(\alpha e_i) \triangleright \tilde{q}^2(e_k) U^2) f_1^1 p_1^1 \rangle \\
\langle e^i, S^{-1}(\tilde{q}^1(e_k) U^1 p_2^1) \rangle \\
\sum_{i,k=1}^{n} \langle e^k, S^{-1}(f_2^1 p_2^1) (S^{-1}(\alpha S^{-1}(\tilde{q}^1(e_k) 1 P^1)) \triangleright \tilde{q}^2(e_k) U^2) f_1^1 p_1^1 \rangle \\
\langle e^i, S^{-1}(\tilde{q}^1(e_k) U^1 p_2^2) \rangle \\
\sum_{k=1}^{n} \langle e^k \triangleright x^3, S^{-1}(f_2^1 S^{-1}(F_1^1 q_1^1(e_k) (1,1) p_1^1 g_1^1)x^2 \beta) \rangle \\
x (S^{-1}(\alpha) \triangleright \tilde{q}^2(e_k) U^2) f_1^1 S^{-1}(F_2^1 q_2^1(e_k) (1,2) p_2^1 g_2^1)x^1 \rangle \\
\sum_{k=1}^{n} \langle e^k, S^{-1}(f_2^1 S^{-1}(F_1^1 q_1^1 x_1^3 (1,1) (e_k) (1,1) p_1^1 g_1^1)x^2 \beta) \rangle \\
x (S^{-1}(\alpha) \triangleright \tilde{q}^2(e_k) U^2) f_1^1 S^{-1}(F_2^1 q_2^1 x_1^3 (1,2) (e_k) (1,2) p_2^1 g_2^1)x^1 \rangle \\
\sum_{k=1}^{n} \langle e^k, S^{-1}(\gamma^2 S^{-1}(\tilde{Q}^1 X^1 (e_k) (1,1) p_1^1 g_1^1) \beta) \rangle \\
x \beta_1 \tilde{q}^2 \tilde{Q}^1 X^3 (e_k) U^2 S(\beta_2) \gamma^1 S^{-1}(\tilde{q}^1 \tilde{Q}^2 X^2 (e_k) (1) p_2^1 g_2^2) \rangle \\
\sum_{k=1}^{n} \langle e^k, S^{-1}(\gamma^2 S^{-1}(\tilde{Q}^1 (e_k) X^1 p_1^1 g_1^1) \beta) \rangle \\
x \tilde{q}^2 \tilde{Q}^2 (e_k) (2,2) X^3 g^2 S(\beta_2) \gamma^1 S^{-1}(\tilde{q}^1 \tilde{Q}^2 (e_k) (2,1) X^2 g^2) \rangle \\
\sum_{k=1}^{n} \langle e^k, S^{-1}(\gamma^2 S^{-1}(\tilde{Q}^1 (e_k) X^1 p_1^1 \delta^1) \beta) \rangle \\
x \tilde{q}^2 \tilde{Q}^2 (e_k) (2,2) X^3 g^2 S(\gamma^1 S^{-1}(\tilde{q}^1 \tilde{Q}^2 (e_k) (1) X^2 p_2^1 g_2^2) \rangle \\
\sum_{k=1}^{n} \langle e^k, S^{-1}(\beta) S^{-2}(\tilde{Q}^1 (e_k) X^1 p_1^1 \tilde{Y}_1^1 X^1 \beta S(S(Z^1) \alpha g^3 Z_2^3 Y^3) \rangle \\
x \tilde{q}^2 \tilde{Q}^2 (e_k) (2,2) X^3 g^2 S(\gamma^1 S^{-1}(\tilde{q}^1 \tilde{Q}^2 (e_k) (1) X^2 p_2^1 \delta^1) \beta) \rangle
so the proof is finished.

4.2. the trace formula for quasi-Hopf algebras.

In Section 5 we will see that the representation-theoretic rank of H can be expressed in terms of integrals in H and H^*. This result is strictly connected to the trace formula for quasi-Hopf algebras.

4.2. The representation-theoretic rank of $D(H)$. Let H be a finite dimensional quasi-triangular quasi-Hopf algebra. Then H is an object in its own category of finite dimensional representations via the left regular action, so it makes sense to consider $\text{dim}(H)$. The purpose of this subsection is to compute $\text{dim}(D(H))$. As we will see the computation is harder than the one for $\text{dim}(H)$ but the result will be the same. Again, we need some preliminary work.

Recall that $t \in H$ is called a left (respectively right) integral in H if $ht = \varepsilon(h)t$ (respectively $th = \varepsilon(h)t$), for all $h \in H$. We denote by \int_l and \int_r the space of left and right integrals in H. When H is finite dimensional we have that $\text{dim}(\int_l) = \text{dim}(\int_r) = 1$, $S(\int_l) = \int_r$ and $S(\int_r) = \int_l$ (see [21, 4]). In addition, if we define

$$\mathfrak{P}(h) = \sum_{i=1}^n \langle e^i, \beta S^2(q^2(e_i)h)q^1(e_i) \rangle, \quad \forall \ h \in H,$$

so the proof is finished. \hfill \Box
then by Proposition 4.5 we have that \(\tilde{\Psi}(h) \in \int_f \), for all \(h \in H \), and \(\tilde{\Psi}(t) = t \) for any \(t \in \int_f \).
Therefore, \(\tilde{\Psi} \) defines a projection from \(H \) to \(\int_f \). Replacing the quasi-Hopf algebra \(H \) by \(H^{\text{cop}} \) we obtain a second projection onto the space of left integrals, denoted in what follows by \(\tilde{\Psi} \). Since in \(H^{\text{cop}} \) we have \((q_R)_{\text{cop}} = \tilde{q}^2 \otimes \tilde{q}^1 \) we obtain

\[
\tilde{\Psi}(h) = \sum_{i=1}^{n} \langle e^1, S^{-1}(\beta)S^{-2}(\tilde{q}^1(e_i))h \rangle \tilde{q}^2(e_i) \in \int_f, \forall h \in H.
\]

We finally need the following formulas.

Lemma 4.4. In a quasi-Hopf algebra \(H \) the following relations hold:

\[
\begin{align*}
\Omega^1_1 \delta^1 S^2(\Omega^1) \otimes \Omega^1_1 \delta^2 g^1 S(\Omega^3) \otimes \Omega^1_2 \delta^2 g^2 S(\Omega^2) \otimes \Omega^5 \\
= X^1 p_1^1 P^1 S(f^1 p^1) \otimes X^2 p_2^2 P^2 \otimes X^3 p^2 \otimes S^{-1}(f^2 p^2), \\
\gamma^1 X^1 \otimes f^1_1 \gamma^2_2 X^2 \otimes f^2_2 \gamma^2_1 X^3 = S(X^3) f^1_1 \gamma^1_1 \otimes S(X^2) f^2_2 \gamma^2_2 \otimes S(X^1) \gamma^2, \\
q_1 x_1^1 \otimes S^{-1}(x^3) q_2^2 x_2^1 \otimes x^3 = X^1 \otimes S^{-1}(\tilde{q}^1 X^1) X^2 \otimes \tilde{q}^2 X^2.
\end{align*}
\]

Here \(\Omega = \Omega^1_1 \otimes \cdots \otimes \Omega^5, \delta = \delta^1 \otimes \delta^2, \gamma = \gamma^1 \otimes \gamma^2, f = f^1 \otimes f^2, f^{-1} = g^1 \otimes g^2, q_R = q^1 \otimes q^2, p_R = p^1 \otimes p^2 = P^1 \otimes P^2 \) and \(q_L = \tilde{q}^1 \otimes \tilde{q}^2 \) are the elements defined in (2.31), (2.11), (2.17) and (2.16), respectively.

Proof. Observe that the element \(\delta \) in (2.31) can be rewritten as

\[
\delta = Y^1 p^1_1 \beta S(Y^3) \otimes Y^2 p^2 S(Y^2).
\]

Now, using the above description for \(\delta \) and the definition of \(\Omega \) we compute:

\[
\begin{align*}
\Omega^1_1 \delta^1 S^2(\Omega^1) \otimes \Omega^1_1 \delta^2 g^1 S(\Omega^3) \otimes \Omega^1_2 \delta^2 g^2 S(\Omega^2) \otimes \Omega^5 \\
= X^1_1 \gamma_1^1 Y^1_1 p_1^1 \beta S(f^1_1 X^3) \otimes X^1_1 \gamma_1^1 Y^1_1 p_1^1 \beta S(X^1_1 y^3) \\
\otimes X^1_1 \gamma_1^1 \gamma_2^1 Y^1_1 p_1^1 \beta S(X^1_1 y^3) \otimes X^1_1 \gamma_1^1 \gamma_2^1 S^{-1}(f^2_1 X^3) \\
= Y^1 ((X^1_1)_1 p^1_1) P^1_1 \beta S(f^1_1 X^3) \otimes Y^2 ((X^1_1)_1 p^1_1) P^2_1 \beta S(X^1_2) \\
\otimes Y^2 ((X^1_1)_2 p^2_2) \beta S((X^1_1)_2) \otimes S^{-1}(f^2_1 X^3) \\
= Y^1 p^1_1 P^1_1 S(f^1_1 p^1_1) \otimes Y^2 p^2_1 P^2_1 \otimes Y^3 p^3_1 \beta S^{-1}(f^2_1 p^2_1),
\end{align*}
\]

so the equality in (4.15) is proved. The relation in (4.17) follows more easily since

\[
\begin{align*}
\gamma^1_1 X^1 \otimes f^1_1 \gamma^2_2 X^2 & \otimes f^2_2 \gamma^2_1 X^3 \\
= F^1 \alpha_1 X^1 \otimes f^1_1 \gamma^2_2 X^2 \otimes f^2_2 X^3 \\
= S(X^3) f^1_1 \alpha_1 \otimes S(X^2) f^2_2 \alpha_2 \\
= S(X^3) f^1_1 \gamma^1_1 \otimes S(X^2) f^2_2 \gamma^2_2 \otimes S(X^1) \gamma^2,
\end{align*}
\]

where we denoted by \(F^1 \otimes F^2 \) another copy of \(f \). Finally, (4.18) is an immediate consequence of (2.31) and (2.32).

\[\square \]

We can now compute the representation-theoretic rank of \(D(H) \). The next result generalizes Proposition 2.1.

Proposition 4.5. Let \(H \) be a finite dimensional quasi-Hopf algebra and \(D(H) \) its quantum double. Then

\[
\dim(D(H)) = \dim(H) = \text{Tr} \left(h \mapsto S^{-2}(S(\beta) \alpha h \beta S(\alpha)) \right).
\]
Proof. We set \(p_R = p^1 \otimes p^2 = P^1 \otimes P^2 \), \(q_R = q^1 \otimes q^2 = Q^1 \otimes Q^2 \) and \(f = f^1 \otimes f^2 = F^1 \otimes F^2 = F^1 \otimes F^2 \). In what follows, we shall not perform all the computations but we shall point out the relations which are used in every step.

The expression of \(\eta_D \) in Proposition 4.1 allows us to compute:

\[
\dim(D(H)) = \sum_{i,j=1}^{n} \langle e_i \otimes e^j, \eta_D(e^i \otimes e^j) \rangle
\]

\[
= \sum_{i,j,k=1}^{n} \langle e_i \otimes e^j, (\beta \rightarrow \Theta_i^{-1}(e^k) \leftarrow S(\beta) \otimes e_k)(e^i \otimes e^j) \rangle
\]

\[
= \sum_{i,j,k=1}^{n} \langle (\Theta_i^{-1}(e^k), S(\beta) \otimes (e_i) \otimes (e_j)^r) \rangle
\]

\[
\langle e^i, S^{-1}(e(k)) \Omega^4(e_i) \Omega^2(e(k))_{(1,1)} \rangle
\]

\[
= \sum_{i,j=1}^{n} \langle e^i, \Omega^3 S^{-1}(S(\beta_2) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(1,1)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\times S^{-1}(F^2 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(2,2)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\langle e^i, S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(1,1)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\times S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(2,2)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\langle e^i, S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(1,1)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\times S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(2,2)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\langle e^i, S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(1,1)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\times S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(2,2)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\langle e^i, S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(1,1)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\times S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(2,2)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\langle e^i, S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(1,1)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\times S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(2,2)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\langle e^i, S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(1,1)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\times S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(2,2)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\langle e^i, S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(1,1)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\times S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(2,2)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\langle e^i, S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(1,1)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]

\[
\times S^{-1}(f^1 S(\beta_1) \gamma^2 S^{-1}(F^2 \bar{p}^2)_{(2,2)}(e_i) \otimes (e_j)^{r^2}) \rangle
\]
\((e^i, (\beta_1)_{2S^{-1}}(S(Y^2)f^2\gamma_2^1(e_1)_2(\beta_1)_{1,2}P^2)e_j) \)

2.17.1.2
\[\sum_{i,j=1}^n \langle e^i, \gamma^1 S^{-2} \left(S(Y\gamma^2)j^1(e_1)_1 P^1 \delta^1 S(S(Y^1)\gamma^2) \right) \rangle \]
\[\langle e^i, S^{-1}(S(Y^2)f^2(e_1)_2P^2)e_j \rangle \]

2.9.1.12
\[\sum_{i,j=1}^n \langle S^{-2}(e^i), S(Y^1)X^1 \alpha x^3 y_2^2 Z^3 S^{-1}(f^1 P^1 y^1 \beta)(e_1)_2 Y^3 y^2 Z^1 \beta \]
\[\times S(S(Y^3)\alpha X^3 x^3 y_2^1 Z^3 Y^2(x_2^1)) \langle e^i, S^{-1}(f^2 P^2)(e_1)_1 Y^2 e_j \rangle \]

4.7.2.16
\[\sum_{i,j=1}^n \langle S^{-2}(e^i), S(q^1 Y^1)\alpha x^3 y_2^3 Z^3 S^{-1}(f^1 P^1 y^1 \beta)(e_1)_2 x^1(1) Y^3 \]
\[\times y^2 Z^1 \beta S(S(q^2 x^2 y_2^1 Z^2)) \langle e^i, S^{-1}(f^2 P^2)(e_1)_1 x^1(2,1) Y^2 e_j \rangle \]

2.17.1.2.8
\[\sum_{i,j=1}^n \langle S^{-2}(e^i), S(q^1 Y^1)\alpha x^3 y_2^3 Z^3 S^{-1}(f^1 x^1(1) P^1 y^1 \beta)(e_1)_2 Y^3 x^1 \]
\[\times y^2 Z^1 \beta S(S(q^2 x^2 y_2^1 Z^2)) \langle e^i, (x_1^1)_2 S^{-1}(f^2 x^1(1) P^2)(e_1)_1 Y^2 e_j \rangle \]

4.7.1.2.8
\[\sum_{i,j=1}^n \langle S^{-2}(e^i), S(q^1 Y^1)\alpha S^{-1}(f^1 P^1 p^1 \beta)(e_1)_2 Y^3 p^2 S^2(q^2) \]
\[\langle e^i, S^{-1}(f^2 P^2)(e_1)_1 Y^2 e_j \rangle \]

4.7.1.2.8
\[\sum_{i,j=1}^n \langle S^{-2}(e^i), S(q^1 Q^1 x^1(1,1)) S^{-1}(f^1 P^1 y^1 \beta)(e_1)_2 S^{-1}(x^2 y^1) \]
\[\times x^2(x_2^1 P^2) \langle e^i, S^{-1}(f^2 P^2)(e_1)_1 S^{-1}(x^3 y^2) \rangle q^2 Q^1 x^1(1,2) e_j \]

2.8
\[\sum_{i,j=1}^n \langle S\gamma^1(e^i), S(q^1 Q^1 x^1(1,1)) S^{-1}(x^2(e_1)_1 P^1 p^1 \beta)Q^2 x^2 p^2 \]
\[\langle e^i, S^{-1}(x^3(e_1)_2 P^2)q^2 Q^1 x^1(1,2) e_j \rangle \]

4.7
\[\sum_{i,j=1}^n \langle S\gamma^1(e^i), S(q^1 Q^1 x^1(1,1)) S^{-1}(x^2(e_1)_1 q^1(1) Q^1 x^1(1,1) P^1 p^1 \beta)Q^2 x^2 p^2 \]
\[\langle e^i, q^2(Q^1 x^1(1,2) S^{-1}(x^3(e_1)_2) q^2(Q^1 x^1(1,2) P^2) e_j \rangle \]

2.17.1.2.20
\[\sum_{i,j=1}^n \langle S\gamma^1(e^i), S^{-1}(x^2(e_1)_1 Q^1 x^1(1,y^1 \beta)Q^2 x^1 P^2) \rangle \langle e^i, S^{-1}(x^3(e_1)_2) e_j \rangle \]

4.13.1.14
\[\sum_{i,j=1}^n \langle S\gamma^1(e^i), S^{-1}(q^1(e_1)_1 X^1 p^1 \beta)X^2 p^2 S(X^2) \rangle \langle e^i, S^{-1}(q^2 e_1)_2 e_j \rangle \]

2.16.1.15
\[\sum_{j=1}^n \langle e^i, S^{-1} \left(\Psi(S^{-2}(\beta S(\alpha))) \right) e_j \rangle \]
\[= \varepsilon \left(\Psi(S^{-2}(\beta S(\alpha))) \right) \]

4.15
\[\sum_{i=1}^n \langle e^i, S^{-2}(S(\beta)\alpha e_i \beta S(\alpha)) \rangle = \text{Tr} \left(h \mapsto S^{-2}(S(\beta)\alpha h \beta S(\alpha)) \right) , \]
where in the last but one equality we used the fact that $S^{-1}\left(\tilde{\Omega}(S^{-2}(\beta S(\alpha)))\right)$ is a right integral in H. So the proof is complete. \hfill \Box

We will end this Section by computing the representation-theoretic rank of $D^\omega(H)$, the quasi-triangular quasi-Hopf algebra constructed in [11].

Let H be a finite dimensional cocommutative Hopf algebra and $\omega : H \otimes H \otimes H \to k$ a normalized 3-cocycle on H, this means a convolution invertible map satisfying the conditions:

\[
\omega(a, b, c, d) = \omega(a, b) = \omega(a, 1, b) = \omega(a, b, 1) = \varepsilon(a)\varepsilon(b),
\]

for all $a, b, c, d \in H$. Identifying $(H \otimes H \otimes H)^*$ with $H^* \otimes H^* \otimes H^*$ we can regard ω and its convolution inverse ω^{-1} as elements of $H^* \otimes H^* \otimes H^*$. Then the commutative Hopf algebra H^* has a non-trivial quasi-Hopf algebra structure by keeping the usual multiplication, unit, comultiplication, counit and antipode of H^*, and defining the reassociator $\Phi = \omega^{-1}$ and the elements $\alpha = \varepsilon, \beta(h) = \omega(h_1, S(h_2), h_3), h \in H$. We shall denote by H^*_ω the quasi-Hopf algebra structure on H^* defined above.

Now, roughly speaking, the quasi-Hopf algebra $D^\omega(H)$ can be identified as a quasi-triangular quasi-Hopf algebra with $D(H^*_\omega)$, the quantum double associated to the finite dimensional quasi-Hopf algebra H^*_ω. Note that this point of view was given in [29], the initial construction of $D^\omega(H)$ being presented earlier in [11] as a generalization of the Dijkgraaf-Pasquier-Roche quasi-Hopf algebra $D^\omega(G)$ constructed in [15] (here G is a finite group and ω is a normalized 3-cocycle on G).

Having this description for $D^\omega(H)$ and the result in Proposition 4.5 we can easily compute its representation-theoretic rank. Note that, one of the goals in [10] was to compute this rank but at that moment only a partial answer was given.

Proposition 4.6. Let H be a finite dimensional cocommutative Hopf algebra and ω a normalized 3-cocycle on H. Then $\dim(D^\omega(H)) = \dim(H)$.

Proof. By Proposition 4.5 we have that

\[
\dim(D^\omega(H)) = \text{Tr}\left(\varphi \mapsto \tilde{\Omega}(S^{-2}(\beta S(\alpha)))\right).
\]

Since H^* is commutative we have that $\tilde{\Omega}^2 = id_{H^*}$. Moreover, $\alpha = \varepsilon$ and from [11] we know that β is convolution invertible with $\beta^{-1} = \tilde{\Omega}(\beta)$. Therefore, the above formula comes out explicitly as

\[
\dim(D^\omega(H)) = \text{Tr}(\varphi \mapsto \varphi) = \text{Tr}(id_{H^*}) = \dim(H^*) = \dim(H),
\]

and this ends the proof. \hfill \Box

5. The Trace Formula for Quasi-Hopf Algebras

When H is an ordinary Hopf algebra the formula in Proposition 4.5 reduces to $\dim(H) = \dim(D(H)) = \text{Tr}(S^{-2}) = \text{Tr}(S^2)$. As we has already explained in Introduction, using the Radford and Larson results [23, 24] on one hand, and the Etingof and Gelaki result [18] on the other hand, we obtain that

\[
\dim(H) = \dim(D(H)) = \begin{cases}
0 & \text{if } H \text{ is neither semisimple or cosemisimple} \\
\dim(H) & \text{if } H \text{ is both semisimple and cosemisimple}.
\end{cases}
\]
In this Section we will generalize to the quasi-Hopf algebra setting the first result. Even if a quasi-Hopf algebra is not a coassociative coalgebra, as we have seen in Introduction we can define the cosemisimple notion. Let us explain this more precisely.

Let H be a finite dimensional quasi-Hopf algebra and t a non-zero right integral in H. Since \int_l is a two-sided ideal of H, it follows from the uniqueness of the integrals in H that there exists $\mu \in H^*$ such that

$$th = \mu(h)t, \; \forall \; t \in \int_l \text{ and } h \in H.$$

Note that μ is an algebra map; as in the Hopf case we will call μ the distinguished group-like element of H^*. We notice that $\mu = \epsilon$ if and only if H is unimodular, this means if and only if $\int_l = \int_r$.

Now, following [21], a left cointegral in H is an element $\lambda \in H^*$ such that

$$\lambda(V^2h_2U^2)V^1h_1U^1 = \mu(x^1)\lambda(hS(x^2))x^3, \; \forall \; h \in H,$$

where $U = U^1 \otimes U^2$ is the element defined in (2.33) and

$$V = V^1 \otimes V^2 := S^{-1}(f^2p^2) \otimes S^{-1}(f^1p^1).$$

We will say that a left cointegral λ is normalized if $\lambda(S^{-1}(\alpha)\beta) = 1$ and we will call a finite dimensional quasi-Hopf algebra H cosemisimple if H has a normalized left cointegral.

By L we denote the space of left cointegral in H. Then the map

$$\nu : L \otimes H \rightarrow H^*, \; \nu(\lambda \otimes h)(h') = \lambda(h'S(h)) \; \forall \; \lambda \in L \text{ and } h,h' \in H,$$

is an isomorphism of right quasi-Hopf bimodules (the definition of a right quasi-Hopf H-bimodule can be found in [21]; roughly speaking it is a right H-comodule within the monoidal category of H-bimodules). Here $L \otimes H$ and H^* are right quasi-Hopf H-bimodules via the structures

$$L \otimes H : \left\{ \begin{array}{l}
h' \cdot (\lambda \otimes h) \cdot h'' = \mu(h'_1)\lambda \otimes h'_2hh'' \\
\lambda \otimes h \mapsto \mu(x^1)\lambda \otimes x^2h_1 \otimes x^3h_2,
\end{array} \right.$$

and

$$H^* : \left\{ \begin{array}{l}
\langle h' \rightarrow \varphi \leftarrow h'' \rangle, \\
\varphi \mapsto \sum_{i=1}^{n} e^i \ast \varphi \otimes e_i,
\end{array} \right.$$

for all $\lambda \in L$, $h,h',h'' \in H$ and $\varphi \in H^*$, where we denoted by \ast the non-associative multiplication on H^* defined for all $\varphi, \psi \in H^*$ and $h \in H$ by

$$\langle \varphi \ast \psi, h \rangle := \langle \varphi, V^1h_1U^1 \rangle \langle \psi, V^2h_2U^2 \rangle.$$

It follows from the above that $\dim(L) = 1$, and that for a fixed non-zero left cointegral λ in H the isomorphism ν defined in (5.1) induces a right H-linear isomorphism

$$\tilde{\nu} : H \rightarrow H^*, \; \tilde{\nu}(h)(h') = \lambda(h'S(h)) \; \forall \; h,h' \in H.$$

(Here H and H^* are right H-modules via the right regular representation and $(\varphi \leftarrow h)(h') = \varphi(h'S(h))$, respectively.) In particular, there is an unique $r \in H$ such that $\tilde{\nu}(r) = \epsilon$, this means $\lambda(hS(r)) = \epsilon(h)$, for all $h \in H$. As in the Hopf case we can show that r is a non-zero integral with the property that $\lambda(S(r)) = 1$. Indeed, the fact that $\tilde{\nu}$ is right H-linear implies:

$$\tilde{\nu}(rh) = \tilde{\nu}(r) \leftarrow h = \epsilon \leftarrow h = \epsilon(h) \epsilon = \tilde{\nu}(\epsilon(h)r),$$

and

$$\tilde{\nu}(r) = \epsilon \leftarrow h = \epsilon \leftarrow h = \epsilon(h) \epsilon = \tilde{\nu}(\epsilon(h)r).$$
for all \(h \in H \). Since \(\tilde{\nu} \) is bijective we conclude that \(rh = \varepsilon(h)r \), for all \(h \in H \), i.e. \(r \in \int r \). Now, \(\tilde{\nu}(r) = \varepsilon \) implies \(\lambda(hS(r)) = \varepsilon(h) \) for all \(h \in H \), and this is equivalent to \(\lambda(S(r)) = 1 \).

As we will see the pair \((\lambda, r)\) described above plays an important role in the trace formula for quasi-Hopf algebras. In particular, we will obtain an important result characterizing semisimple cosemisimple quasi-Hopf algebras in terms of the trace of the “square” of the antipode. Recall that a semisimple quasi-Hopf algebra is a quasi-Hopf algebra which is semisimple as an algebra.

Theorem 5.1. Let \(H \) be a finite dimensional quasi-Hopf algebra, \(\mu \) the distinguished group-like element of \(H^* \), \(\lambda \) a non-zero left cointegral in \(H \) and \(r \) a right integral in \(H \) such that \(\lambda(S(r)) = 1 \). Then:

i) For any endomorphism \(\chi \) of \(H \) we have that
\[
\text{Tr}(\chi) = \mu(q_1^1x^1)\lambda(\chi(q_1^2x^2r_2p_2^2)S(q_2^1x^2r_1p_1^1)).
\]

ii) \(\text{Tr} (h \mapsto \beta S(\alpha)S^2(h)S(\beta)\alpha) = \varepsilon(r)\lambda(S^{-1}(\alpha)\beta). \) In particular, \(H \) is semisimple and cosemisimple if and only if \(\text{Tr} (h \mapsto \beta S(\alpha)S^2(h)S(\beta)\alpha) \neq 0 \).

Proof. For any linear morphism \(\chi : H \to H \) we denote by \(\chi^* : H^* \to H^* \) the dual morphism of \(\chi \). We also denote by \(\eta : H^* \otimes H \to \text{End}(H^*) \) the linear map defined for all \(\varphi, \psi \in H^* \) and \(h \in H \) by
\[
\eta(\varphi \otimes h)(\psi) = \psi(h)\varphi.
\]
Then, exactly as in [14, Section 7.4], one can easily see that
\[
\eta(\varphi \otimes h) \circ \chi^* = \eta(\varphi \otimes \chi(h)),
\]
\[
\text{Tr}(\eta(\varphi \otimes h)) = \varphi(h),
\]
for all \(\varphi \in H^* \), \(h \in H \) and \(\chi \in \text{End}(H) \).

i) The fact that \(\nu \) is right \(H \)-colinear shows by using of \([5.2, 5.3]\) that
\[
\varphi(V^1h_1U^1)\lambda(V^2h_2U^2S(h')) = \mu(x^1)\varphi(x^2h'_2)\lambda(hS(x^2h'_1)),
\]
for all \(\varphi \in H^* \) and \(h, h' \in H \). If we write the above equation for \(h' = r \) and use the fact that \(S(r) \in \int r \) such that \(\lambda(S(r)) = 1 \), we obtain
\[
\varphi(S^{-1}(\beta)h) = \mu(x^1)\varphi(x^2r_2)\lambda(hS(x^2r_1)),
\]
for all \(\varphi \in H^* \) and \(h \in H \). In particular, we have that
\[
\langle q^2 \mapsto \varphi \leftarrow q^2, S^{-1}(\beta)S^{-1}(q^1)hS(p^1)\alpha \rangle = \mu(x^1)\langle q^2 \mapsto \varphi \leftarrow q^2, x^3r_2 \rangle\lambda(S^{-1}(q^1)hS(p^1)S(x^2r_1)),
\]
and this comes out explicitly as
\[
\varphi(h) = \mu(q_1^1x^1)\varphi(q_2^1x^3r_2p_2^2)\lambda(hS(q_2^1x^2r_1p_1^1)),
\]
for all \(\varphi \in H^* \) and \(h \in H \), where we used the formula
\[
\lambda(S^{-1}(h)h') = \mu(h_1)\lambda(h'S(h_2)), \ \forall \ h, h' \in H,
\]
which can be found in [6, Lemma 3.3]. In other words we have obtained
\[
\eta(\lambda \leftarrow q_2^1x^2r_1p_1^1 \otimes \mu(q_1^1x^1)q_2^1x^3r_2p_2^2) = \text{id}_{H^*}.
\]
Now, using (5.4), (5.5) and the fact that \(\text{Tr}(\chi) = \text{Tr}(\chi^*) \) we conclude that
\[
\text{Tr}(\chi) = \text{Tr}(\chi^*) = \text{Tr}(\text{id}_H \circ \chi^*) = \text{Tr}(\eta(\lambda \rightarrow q_1^2 x^2 r_1 p_1 \otimes \mu(q_1^2 x^2) q^2 x^3 r_2 p_2^2) \circ \chi^*)
\]
\[
= \text{Tr}(\eta(\lambda \leftarrow q_1^2 x^2 r_1 p_1 \otimes \mu(q_1^2 x^2) \lambda(q^2 x^3 r_2 p_2^2)) = \mu(q_1^2 x^2) \lambda(\chi(q^2 x^3 r_2 p_2^2) S(q_1^2 x^2 r_1 p_1)).
\]

ii) One can easily see that (2.20) and \(r \in \mathcal{F}_r \) imply:
\[
r_1 \otimes r_2 = r_1 q_1^2 p_1 \otimes r_2 q_2^2 p_2 S(q^2) = r_1 p_1 \otimes r_2 p_2^2 \alpha.
\]
Also, by (2.17) we have
\[
r_1 p_1 h \otimes r_2 p_2 = (r h_1)_1 p_1 \otimes (r h_1)_2 p_2 S(h_2) = r_1 p_1 \otimes r_2 p_2^2 S(h),
\]
for any \(h \in H \). Combining the two relations above we obtain
\[
(5.8) \quad r_1 \otimes r_2 = r_1 p_1 \otimes r_2 p_2^2 \alpha = r_1 p_1 S^{-1}(\alpha) \otimes r_2 p_2^2.
\]

Now, by part i) we have
\[
\text{Tr}(h \mapsto \beta S(\alpha) S^2(h) S(\beta) \alpha)
\]
\[
= \mu(q_1^2 x^2) \lambda(\beta S(\alpha) S^2(q^2 x^3 r_2 p_2^2) S(\beta) \alpha S(q_1^2 x^2 r_1 p_1))
\]
\[
= \mu(q_1^2 x^2) \lambda(\beta S(\alpha) S(q_1^2 x^2 r_1 \beta S(q^2 x^3 r_2)))
\]
\[
= \varepsilon(r) \mu(q_1^2 p_1) \lambda(\beta S(\alpha) S(q_2^2 p_2^2 S(q^2)))
\]
\[
= \varepsilon(r) \lambda(\beta S(\alpha)).
\]

Next, we claim that \(\varepsilon(r) \lambda(\beta S(\alpha)) = \varepsilon(r) \lambda(S^{-1}(\alpha) \beta) \). Indeed, if \(H \) is not semisimple then by (30) we have that \(\varepsilon(r) = 0 \) and therefore \(\varepsilon(r) \lambda(\beta S(\alpha)) = \varepsilon(r) \lambda(S^{-1}(\alpha) \beta) = 0 \). On the other hand, if \(H \) is semisimple then by the same result in (30) we have that \(\varepsilon(\mathcal{F}_r) = \varepsilon(\mathcal{F}_r) \neq 0 \). In this situation, applying similar arguments as in the Hopf algebra case we can prove that \(H \) is unimodular, so \(\mu = \varepsilon \). Finally, by (5.6) we get
\[
\lambda(S^{-1}(\alpha) \beta) = \mu(\alpha_1) \lambda(\beta S(\alpha_2)) = \varepsilon(\alpha_1) \lambda(\beta S(\alpha_2)) = \lambda(\beta S(\alpha)),
\]
as claimed. Thus the proof is finished. \(\square \)

As a consequence of Proposition 4.5 and Theorem 5.1 we obtain the following formula for the representation-theoretic ranks of \(H \) and \(D(H) \).

Theorem 5.2. Let \(H \) be a finite dimensional quasi-Hopf algebra, \(\lambda \) a left cointegral in \(H \) and \(r \) a right integral in \(H \) such that \(\lambda(r) = 1 \). Then
\[
\dim(H) = \dim(D(H)) = \varepsilon(r) \lambda(S^{-1}(\alpha) \beta) = \varepsilon_D(\beta \rightarrow \lambda \otimes r).
\]

In particular, if \(H \) is not semisimple or cosemisimple then
\[
\dim(H) = \dim(D(H)) = 0.
\]

Proof. By \(\lambda_{op} \) we denote a left cointegral in \(H_{op} \). It is straightforward to check that in \(H_{op} \) we have \(\mu_{op} = \mu^{-1} := \mu \circ S \), and that the roles of \(U \) and \(V \) interchange. So \(\lambda_{op} \) is an element of \(H^* \) satisfying
\[
\lambda_{op}(V^2 h_2 U^2) V^1 h_1 U^1 = \mu^{-1}(X^1) \lambda_{op}(S^{-1}(X^2) h) X^3, \quad \forall \, h \in H.
\]
Note that, if H is unimodular then $\mu = \varepsilon$ and therefore a left cointegral in H^{op} is nothing else than a left cointegral in H.

Applying now Theorem 5.1 to the quasi-Hopf algebra H^{op} we obtain

$$\text{Tr} \left(h \mapsto S^{-2}(S(\beta)\alpha h S(\alpha)) = \varepsilon(t)\lambda_{\text{op}}(S^{-1}(\alpha)\beta), \right)$$

where t is a left integral in H such that $\lambda_{\text{op}}(S^{-1}(t)) = 1$. If we denote $r = S^{-1}(t)$ we get that r is a right integral in H such that $\lambda_{\text{op}}(r) = 1$. It follows that $\varepsilon(t) = \varepsilon(r)$, and that

$$\dim(H) = \dim(D(H)) = \text{Tr} \left(h \mapsto S^{-2}(S(\beta)\alpha h S(\alpha)) = \varepsilon(r)\lambda_{\text{op}}(S^{-1}(\alpha)\beta). \right)$$

Finally, we apply the same trick as in the proof of the above Theorem. Namely, if H is not semisimple then $\varepsilon(r) = 0$ and we are done. If H is semisimple then it is unimodular. In this case we have seen that λ_{op} is a cointegral in H and since $\lambda_{\text{op}}(r) = 1$ the above equality finishes the proof.

\begin{proof}

Remark 5.3. It is conjectured in [21] that $\beta \rightarrow \lambda \bowtie r$ is a left integral in $D(H)$. If it is the case then by the Maschke’s theorem proved in [30] we obtain that $\dim(H) = \dim(D(H)) \neq 0$ if and only if $D(H)$ is a semisimple quasi-Hopf algebra.

Now, we conjecture that $D(H)$ is semisimple if and only if H is both semisimple and cosemisimple, if and only if $h \mapsto S^{-2}(S(\beta)\alpha h S(\alpha)) = \text{id}_H$. If it is true then the scalar $\dim(H) = \dim(D(H))$ has the same value as in the Hopf algebra case.

References

[1] E. Abe, ”Hopf algebras”, Cambridge University Press, 1980.
[2] D. Altschuler and A. Coste, Quasi-quantum groups, knots, three-manifolds, and topological field theory, Comm. Math. Phys. 150 (1992), 83–107.
[3] D. Bulacu and B. Torrecillas, Factorizable quasi-Hopf algebras–applications, J. Pure Appl. Algebra 194 (2004), 39–84.
[4] D. Bulacu, S. Caenepeel and F. Panaite, Yetter-Drinfeld categories for quasi-Hopf algebras, Comm. Algebra, to appear.
[5] D. Bulacu and S. Caenepeel, The quantum double for quasitriangular quasi-Hopf algebras, Comm. Algebra 31(3) (2003), 1403–1425.
[6] D. Bulacu and S. Caenepeel, Integrals for (dual) quasi-Hopf algebras. Applications, J. Algebra 266(2) (2003), 552–583.
[7] D. Bulacu and E. Nauwelaerts, Quasitriangular and ribbon quasi-Hopf algebras, Comm. Algebra 31(2) (2003), 657–672.
[8] D. Bulacu and E. Nauwelaerts, Radford’s biproduct for quasi-Hopf algebras and bosonization, J. Pure Appl. Algebra 174 (2002), 1–42.
[9] D. Bulacu, F. Panaite and F. Van Oystaeyen, Quasi-Hopf algebra actions and smash products, Comm. Algebra 28 (2000), 631–651.
[10] D. Bulacu, F. Panaite and F. Van Oystaeyen, Quantum traces and quantum dimensions for quasi-Hopf algebras, Comm. Algebra 27 (1999), 6103–6122.
[11] D. Bulacu and F. Panaite, A generalization of the quasi-hopf algebra $D^{\omega}(G)$, Comm. Algebra 26 (1998), 4125–4141.
[12] D. Bulacu, F. Panaite and F. Van Oystaeyen, Generalized diagonal crossed products and smash products for (quasi) Hopf algebras. Applications, preprint.
[13] D. Bulacu, S. Caenepeel and B. Torrecillas, Involutory (dual) quasi-Hopf algebras, preprint 2006.
[14] S. Dăscălescu, C. Năstăscu and Ş. Raianu, ”Hopf algebras: An Introduction”, in Monographs Textbooks in Pure Appl. Math., Vol. 235, Dekker, New York, 2001.
[15] R. Dijkgraaf, V. Pasquier and P. Roche, Quasi-Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18 B (1990), 60–72.
[16] V. G. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), 1419–1457.
[17] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math. 162 (2) (2005), 581–642.
[18] P. Etingof and S. Gelaki, On finite dimensional semisimple and cosemisimple Hopf algebras in positive characteristic, Internat. Math. Res. Notices 16 (1998), 851–864.
[19] F. Hausser and F. Nill, Diagonal crossed products by duals of quasi-quantum groups, Rev. Math. Phys. 11 (1999), 553–629.
[20] F. Hausser and F. Nill, Doubles of quasi-quantum groups, Comm. Math. Phys. 199 (1999), 547–589.
[21] F. Hausser and F. Nill, Integral theory for quasi-Hopf algebras, preprint math. QA/9904164.
[22] C. Kassel, "Quantum Groups", in Graduate Texts in Mathematics, Vol. 155, Springer Verlag, Berlin, 1995.
[23] R. G. Larson and D. E. Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988), 267–289.
[24] R. G. Larson and D. E. Radford, Semisimple cosemisimple Hopf algebras, Amer. J. Math. 110 (1988), 187–195.
[25] S. Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998), 1–9.
[26] S. Majid, Representation-theoretic rank and double Hopf algebras, Comm. Algebra 18(11) (1990), 3705–3712.
[27] S. Majid, "Foundations of quantum group theory", Cambridge University Press, 1995.
[28] F. Panaite and F. V. Oystaeyen, Existence of integrals for finite dimensional quasi-Hopf algebras, Bull. Belg. Math. Soc.-Simon Stevin 7 (2000), 261–264.
[29] F. Panaite and F. V. Oystaeyen, Quasi-Hopf algebras and the centre of a tensor category, in "Hopf algebras and quantum groups" (Brussels, 1998), 221–235, Caenepeel S. and Van Oystaeyen F. (eds.), Lecture Notes in Pure and Appl. Math., Vol. 209, Dekker, New York, 2000.
[30] F. Panaite, A Maschke-type theorem for quasi-Hopf algebras, in "Rings, Hopf algebras, and Brauer groups" (Antwerp/Brussels, 1996), 201–207, Caenepeel S. and Verschoren A. (eds.), Lecture Notes in Pure and Appl. Math., Vol. 197, Dekker, New York, 1998.
[31] D. E. Radford, Minimal quasitriangular Hopf algebras, J. Algebra 157 (1993), 285–315.
[32] D. E. Radford, The trace function and Hopf algebras, J. Algebra 163 (1994), 583–622.

Faculty of Mathematics and Informatics, University of Bucharest, Str. Academiei 14, RO-010014, Bucharest 1, Romania
E-mail address: dbulacu@al.math.unibuc.ro

Department of Algebra and Analysis, University of Almeria, 04071 Almeria, Spain
E-mail address: btorreci@ual.es