ABSTRACT The quantitative characteristics of traps created in the bandgap-engineered tunneling oxide (BE-TOX) layer and block layer after program/erase (P/E) stress-cycling in a 3D NAND flash memory were investigated. The trap spectroscopy by charge injection and sensing technique was used to obtain the distribution of traps in these layers. In the BE-TOX layer, significant traps were generated at 1.3 eV in the nitrogen-doped layer (N1) and increased by 48% in the fresh cell after P/E stress-cycling. The H bonds in the N1 are more likely to break during the stress-cycling and create neutral \(\equiv \text{SiO}^0 \) traps. In the block layer, however, trap generation was negligible after stress-cycling.

INDEX TERMS 3D NAND flash memory, bandgap-engineered tunneling, program/erase cycling, trap profile, TSCIS

I. INTRODUCTION

The three-dimensional (3D) NAND flash memory has various applications, including consumer electronics, autonomous vehicles, and data centers, owing to its low bit cost and high storage density [1-2]. Thus, multilevel operation and cell scaling have been intensively developed for the 3D NAND flash memory to increase its density and reduce its manufacturing cost. These developments require a considerably tighter distribution of the cell threshold voltage \(V_{TH} \) and high-immune and retention characteristics. A bandgap-engineered tunneling oxide (BE-TOX) layer and block layer have been introduced to enhance the program/erase (P/E) speed and retention reliability, replacing the conventional SiO\(_2\) layer [3-4].

The performance of the 3D NAND flash memory is limited by the number of P/E operations that create defects in dielectric layers [5-6]. Previous results described trap generation based on stress conditions and provided minimal information on origin of traps created in a cell [5-6]. A detailed analysis of trap generation in dielectric layers is crucial to develop a high-efficient barrier structure and enhanced memory performance.

Herein, we characterized the traps generated in the BE-TOX layer and block layer of a 3D NAND flash memory after P/E stress-cycling with the help of technology computer-aided design (TCAD) simulation and the trap spectroscopy by charging injection and sensing (TSCIS) technique [7-9]. First, simulation was performed to match the measured characteristics and obtain the relevant electric field for the trap spectroscopy. Second, trap profiles were qualitatively designed in terms of energy using TSCIS. Lastly, a quantitative model was applied to correlate trap generation with the stress condition and process quality.

II. EXPERIMENTS AND SIMULATIONS

A. DATA RETENTION CHARACTERISTICS

Fig. 1(a) shows a schematic of the 3D NAND flash memory consisting of a dielectric filler, a poly-Si channel (CH), BE-TOX (O1/N1/O2) layer, charge trap layer (CTL), and block layer (BOX/HK). Fig. 1(b) shows the retention characteristics of fresh and cycled cells at 25 °C. For the P/E stress-cycling, the program (18 V, \(t_{PGM}=50 \mu s \)) and erase (-17 V, \(t_{ER}=1 \) ms) biases were repeatedly applied to the gate electrode for 1000 cycles. The threshold voltage variation \((\Delta V_{TH,LOSS} = V_{TH, time} - V_{TH, 0sec}) \) was caused by the vertical and
lateral charge losses. The worse retention of the cycled cell was attributed to the vertical charge loss due to trap generation in the BE-TOX layer after P/E stress-cycling [5, 10].

Fig. 1(c) shows the $\Delta V_{TH,LOSS}$ with various gate voltages in a programmed state for fresh and cycled cells. A positive gate bias preferentially accelerates the charge loss through the gate-side (GS) region, whereas a negative bias enhances the charge loss through the channel-side (CS) region. A higher $\Delta V_{TH,LOSS}$ with a negative bias indicates that the trap generation in the BE-TOX layer is more severe than that in the block layer and the trap-assisted tunneling and detrapping toward the CS region could be the dominant mechanism.

B. TSCIS MEASUREMENT AND SIMULATION

Fig. 2 shows the change of V_{TH} as a function of program time and compares it with the TCAD simulation; the density-gradient model was included to consider the quantum effect. The doping-dependent mobility model and an incomplete ionization model were used to calibrate the simulation and measurement data. In addition, the Shockley-Read-Hall generation-recombination model was employed to explain the capture and emission of carriers. The calibrated program speed data were well matched to the measured ones. The parameters used for the simulation are listed in Table 1. TCAD simulation was performed to obtain the energy band and relevant electric field, which were used to extract the trap levels in the BE-TOX layer and block layer using TSCIS.

The trap energy level and trap depth were extracted by varying charging voltage (V_{CHRG}) and charging time (t_{CHRG}). The V_{CHRG} and the t_{CHRG} determine the trap levels from the E_C of N1 and the distance from the channel interface based on Shockley-Read-Hall (SRH) statics and WKB approximation (T_{WKB}) for tunneling probability [7-9]. During the TSCIS charging period, the electric field in the dielectric layer was continuously changed by the electrons captured in the trap. These trapped charges also affected the tunneling probability and capture rate of the trap. Thus, the electric fields in the dielectric layers were recalculated using the numerical Poisson solver considering the captured electrons. The TSCIS charging condition should be carefully chosen to avoid any trap generation during the charging period. Negligible differences were observed in fully discharged V_{TH} – initial state V_{TH} and the subthreshold swing values with V_{CHRG} up to 6.1 V and t_{CHRG} up to 103 s for channel-side TSCIS (CS-TSCIS), which confirmed a negligible trap generation in the BE-TOX layer and at the O1/CH interface during the charging period [20]. Gate-side TSCIS (GS-TSCIS) also observed minimal trap generation with V_{CHRG} up to – 6.5 V.
Fig. 3 shows the measured V_{TH} shifts ($\Delta V_{TH,\text{CHRG}}$) as functions of V_{CHRG} and t_{CHRG} for fresh and 1000-cycled cells, respectively. Initially, the I_D-V_G curve of the fresh cell was measured, and then V_{CHRG} was applied to the gate during 0.01 to 2000 s. At the end of a charging time, the constant V_{sense} was biased to measure the drain current, which was transferred to $\Delta V_{TH,\text{CHRG}}$ based on the initial I_D-V_G curve. Before increasing V_{CHRG}, V_G was grounded to relax electron traps. In GS-TSCIS, the same procedure was performed except that the negative V_{CHRG} was applied to the gate, as shown in Fig. 3(c) and (d). The insets in Fig. 3(a) and (c) show the profiled regions that were determined by V_{CHRG} and t_{CHRG} in TSCIS technique.

III. RESULTS AND DISCUSSION

Fig. 4 shows the trap maps obtained via the CS-TSCIS technique. The energy level of the trap was calculated from the conduction band ($E_{C,N1}$) of N1. The red–yellow region shows the maximum trap density for a fresh cell. Notably, as P/E stress was applied, the trap density (D_T) with the energy levels of 1.3 to 1.5 eV increased in the N1 region, and negligible trap creation in other O1/N1 regions was observed.

Fig. 5(a) shows the average trap density ($D_{T,\text{AVG}}$) as a function of the distance from the O1/Poly-Si interface and the energy from $E_{C,N1}$. The energy level was extracted by applying Gaussian fitting curves. For a fresh cell, the extracted peak value of $D_{T,\text{AVG}}$ was obtained as 2.4×10^{10} cm$^{-2}$eV$^{-1}$ with a 1.34 eV energy level by applying Gaussian fitting curves. The $D_{T,\text{AVG}}$ value was very similar to that of previous noise measurement results [21-22]. It can be seen that the P/E stress-cycling could increase the trap density and slightly change the energy level of the peak trap density.

There are two main electron traps in a nitrogen-doped oxide (N1): $\equiv \text{Si}-\text{N}^\bullet$ and $\equiv \text{SiO}^\bullet$ [23]. The former is a shallow trap with an energy level of less than 1.0 eV from $E_{C,N1}$, and the energy level of the latter is typically in the range of 1.3 to 1.9 eV from $E_{C,N1}$ [23-25]. The energy level of the peak trap density is similar to that of $\equiv \text{SiO}^\bullet$, as shown in Fig. 5(a).

According to the following reaction, the trap generation in a stressed cell could be the break of a hydrogen (H) atom bound to $\equiv \text{SiOH}$ [23, 26].

$$\equiv \text{SiOH} \rightarrow \equiv \text{SiO}^\bullet + \text{H} \quad (1)$$

Fig. 5(b) shows the variation of $\Delta D_{T,\text{AVG}}$, defined as ($D_{T,\text{AVG,1000cycles}} - D_{T,\text{AVG,fresh}}$)/$D_{T,\text{AVG,fresh}}$ with P/E stress. With 1000 cycles of P/E stress, the peak $\Delta D_{T,\text{AVG}}$ of 48% at 1.3 eV is obtained, which rapidly decreases as the trap level increases. The majority of the P/E stress-induced traps could be $\equiv \text{SiO}^\bullet$, located at approximately 1.3 eV using (1), and a significant cause of the degradation of retention in a stressed cell.

Fig. 6 shows the variation in the accumulated total trap density ($N_{T,X}$) as a function of the number of P/E cycles. Initial N_T was obtained by integrating the Gaussian profile of $D_{T,\text{AVG}}$. The tunneling current density (J) during P/E stress-cycling was obtained using TCAD simulation. The P/E current densities through the BE-TOX layer became large as the P/E cycle increased, as shown in the inset of Fig. 6. Also, the J decreases continuously as time evolves in a P/E cycle.
To correlate the trap generation in the BE-TOX layer with the P/E stress-cycling, the injected charge fluence \((Q_{\text{inj},N}(l))\), the newly created traps \((\Delta N_{T,N}(l))\) and the \(N_{T,N}\) for \(N^{\text{th}}\) P/E cycle were modeled under current stress conditions as follows [27, 28]:

\[
Q_{\text{inj},N}(l) = \left(\frac{N_{T,N}(l-1)}{K_p r_f^\beta \cdot J_{\text{stress},N}(l)} \right)^{\frac{1}{\alpha}} + \int_{t}^{t+\Delta t} J_{\text{stress},N}(l) \, dt
\]

\[
\Delta N_{T,N}(l) = K_p r_f^\beta \cdot J_{\text{stress},N}(l) \left(Q_{\text{inj},N}(l) - \left(\frac{N_{T,N}(l-1)}{K_p r_f^\beta \cdot J_{\text{stress},N}(l)} \right) \right) \]

\[
N_{T,N} = \sum_{l=0}^{L} \Delta N_{T,N}(l) + N_{T,N-1}(L)
\]

where \(l\) is a counter from \(l = 0\) to \(l = L = \frac{t_{\text{PGM}}}{\Delta t}\) in a P/E step, \(N\) is the number of P/E cycles, \(K_p\) is a constant depending on the dielectric thickness and processing conditions, \(J_{\text{stress},N}\) is the simulated tunneling current density flowing through the BE-TOX layer, \(\alpha\) and \(\beta\) are the dielectric quality evaluation parameters.

For the program and erase stress, \(\alpha_p = 0.6\), \(\beta_p = 0.23\), and \(K_p = 1.2 \times 10^{31}\) and \(\alpha_e = 0.50\), \(\beta_e = 0.65\), and \(K_e = 3.93 \times 10^{21}\) were extracted, respectively. These values were very similar to those found in previous results [27, 28].

Fig. 7 shows the trap maps with P/E stress for the high-k dielectric in the blocking layer. The \(D_T\) value of approximately \(10^{18}\) cm\(^{-3}\) eV\(^{-1}\) was obtained in a fresh cell. The extracted traps were almost uniformly distributed along the trap energy axis. As shown in Fig. 7(b), the P/E stress-cycling did not affect trap generation in the high-k blocking layer.

IV. CONCLUSION

After P/E stress-cycling, the trap generation in both the BE-TOX and block layers was characterized using the
TSCIS technique, revealing that traps in the BE-TOX layer were intensively generated at 1.3 eV in N1 and increased by 48% in the fresh cell. Among several trap candidates in the nitrided layer, the neutral SiO* trap could be a major one considering the energy from the trap profiles. The quantitative model of trap generation was also evaluated based on the stress conditions and quality of dielectric layers. In the blocking layer, negligible trap generation was characterized with the P/E stress-cycling.

REFERENCES

[1] N. Papandreou et al., “Characterization and analysis of bit errors in 3D TLC NAND flash memory,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Monterey, CA, USA, 2019, pp. 1–6.

[2] S. Inaba, “3 Flash Memory for Data-Intensive Applications,” in 2018 IEEE 10th Int. Mem. Work. IMW 2018, pp. 1–4, 2018.

[3] H.-T. Lee, S.-Y. Wang, E.-K. Lai, Y.-H. Shih, S.-C. Lai, W.-L. Yang, K.-C. Chen, J. Ku, K.-Y. Hsieh, R. Liu, C.-Y. Lu, “BE-SONOS: A bandgap engineered SONOS with excellent performance and reliability,” in IEDM Tech. Dig., Dec. 2005, pp. 547–550.

[4] S.-C. Lai et al., “An oxide-buffered BE-MANOS charge-trapping device and the role of Al2O3,” in Proc. Joint Non-Volatile Semiconductor, Memory Workshop Int. Conf. Memory Technol. Design, 2008, pp. 101–102.

[5] C. Woo, S. Kim, J. Park, H. Shin, H. Kim, G.-B. Choi, M.-S. Seo, and K. H. Noh, “Modeling of charge failure mechanisms during the short-term retention depending on program/erase cycle counts in 3-D NAND flash memories,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Apr. 2020, pp. 1–6.

[6] S. Kim, K. Lee, C. Woo, Y. Hwang, and H. Shin, “Analysis of failure mechanisms during the long-term retention operation in 3-D NAND flash memories,” IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5472–5478, 2020.

[7] R. Degraeve, M. Cho, B. Govoreanu, B. Kaczcr, M. B. Zahid, J. Van Houdt, M. Jurczak, and G. Groeseneken, “Trap spectroscopy by charge injection and sensing (TSCIS): A quantitative electrical technique for studying defects in dielectric stacks,” in IEDM Tech. Dig., 2008.

[8] M. Cho, R. Degraeve, P. Roussel, B. Govoreanu, B. Kaczcr, M. B. Zahid, E. Simoen, A. Arreghini, M. Jurczak, J. Van Houdt, and G. Groeseneken, “A consistent model for oxide trap profiling with the trap spectroscopy by charge injection and sensing (TSCIS) technique,” Solid State Electron., vol. 54, no. 11, pp. 1384–1391, 2010.

[9] G. Groeseneken, R. Degraeve, B. Kaczcr, and K. Martens, “Trends and perspectives for electrical characterization and reliability assessment in advanced CMOS technologies,” in Proc. IEEE ESSDERC, pp. 64–72, Sep. 2010.

[10] K. Mizoguchi, S. Kotaki, Y. Deguchi, and K. Takeuchi, “Lateral charge migration suppression of 3D-NAND flash by vth leaning for near data computing,” in IEDM Tech. Dig., 2017, pp. 19.2.1–19.2.4.

[11] T. Melde, M. F. Beug, L. Bach, S. Riedel, N. Chan, C. Ludwig, and T. Mikolajick, “Accurate program simulation of TANOS charge trapping devices,” in Proc. 9th NVMTS, 2008, pp. 90–94.

[12] X. Guo and T. P. Ma, “Tunneling leakage current in oxynitride: Dependence on oxygen/nitrogen content,” IEEE Electron. Device Lett., vol. 19, no. 6, pp. 207–209, Jun. 1998.

[13] T. H. Lee, S. Lee, I. S. Lee, J. Bong, E. Shin, S. Kim, W. Hwang, J. Moon, Y. Choi, and B. Cho, “Analysis of fluorine effects on charge-trap flash memory of W/ TiN/Al2O3/SiN/SiO2/poly-Si gate stack,” Solid-State Electronics, vol. 164, 2020.

[14] A. Padovani, A. Arreghini, L. Vandelli, L. Larcher, G. V. Bosch, P. Pavan, and J. V. Houdt, “A comprehensive understanding of the erase of TANOS memories through charge separation experiments and simulations,” IEEE Trans. Electron Devices, vol. 58, no. 9, pp. 3147–3155, Sep. 2011.

[15] H. Bachhofer, H. Reisinger, E. Bertagnolli, and H. von Philippsborn, “Transient conduction in multielectric silicon–oxide–nitride–oxide semiconductor structures,” J. Appl. Phys., vol. 89, no. 5, pp. 2791–2800, Mar. 2001.

[16] A. V. Vishnyakov, Y. N. Novikov, V. A. Griskenko, and K. A. Nasyrov, “The charge transport mechanism in silicon nitride: Multiphonon trap ionization,” Solid-State Electron., vol. 53, no. 3, pp. 251–255, Mar. 2009.

[17] S. Fleischer, P. T. Lai, Y. C. Cheng, “Effects of nitridation temperature on the electron trap characteristics of nitrided-oxide metal-oxide-semiconductor capacitors,” J. Appl. Phys., vol. 74, 1993.

[18] G.-H. Lee, H.-J. Yang, S.-W. Jung, E.-S. Choi, S.-K. Park, and Y.-H. Song, “Physical modeling of program and erase speeds of metal–oxide-nitride–oxide–silicon cells with three-dimensional gate-all-around architecture,” Jpn. J. Appl. Phys., vol. 53, no. 1, p. 014201, 2014.

[19] Y. N. Novikov, A. V. Vishnyakov, V. A. Griskenko, K. A. Nasyrov, and H. Wong, “Modeling the charge transport mechanism in amorphous Al2O3 with multphonon trap ionization effect,” Microelectron. Rel., vol. 50, no. 2, pp. 207–210, 2010.

[20] K. T. Lee, C. Y. Kang, O. S. Yoo, R. Choi, B. H. Lee, J. C. Lee, H.-D. Lee, and Y.-H. Jeong, “PBTI-associated high-temperature hot carrier degradation of nMOSFETs with metal-gate/high-k dielectrics,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 389–391, Apr. 2008.

[21] P. Morfouli, G. Ghiamba, T. Ouisse, E. Vogel, W. Hill, V. Misra, P. McLarty, and J. J. Wortman, “Low-frequency noise characterization of n- and p-MOSFET’s with ultrathin oxynitride gate films,” IEEE Electron Device Lett., vol. 17, no. 8, pp. 395–397, Aug. 1996.

[22] P. Masson, P. Morfouli, J. L. Autran, and J. J. Wortman, “Electrical characterization of n-channel MOSFETs with oxynitride gate dielectric formed by Low-Pressure Rapid Thermal Chemical Vapor Deposition,” Microelectronic engineering, vol. 48, pp. 211–214, 1999.

[23] H. Wong and V. A. Gritsenko, “Defects in silicon oxynitride gate dielectric films,” Microelectron. Rel., vol. 42, nos. 4–5, pp. 597–605, 2002.

[24] S. Cho, K. Joo, I. Yeo, and I. Chung, “Study On Charge Trap Layers In Charge Trap Metal–Oxide–Semiconductor Field Effect Transistor,” Japanese Journal of Applied Physics, vol. 48, 2009.

[25] S. Habermehl and R. T. Apodaca, “Dielectric breakdown and Poole–Frenkel field saturation in silicon oxynitride thin films,” Appl. Phys. Lett., vol. 86, no. 7, p. 072 103, Feb. 2005.

[26] V. A. Gritsenko, A. V. Shaposhnikov, Yu. N. Novikov, A. P. Baraban, Hei Wong, G. M. Zhidomirov, and M. Roger, “Onefold coordinated oxygen atom: An electron trap in the silicon oxide,” Microelectron. Rel., vol. 43, pp. 665–669, 2003.

[27] J. De Blauwe, J. Van Heudt, D. Wellekens, G. Groeseneken, and H. E. Maes, “SILC-related effects in flash E’PROM’s-Part II: Prediction of steady-state SILC-related disturb characteristics,” IEEE Trans. Electron Devices, vol. 45, pp. 1751–1760, Aug. 1998.

[28] J. P. Bastos, A. Arreghini, D. Verreck, F. Schanovsky, R. Degraeve, D. Linten, M. Rosmeulen, G. Van den Bosch, and A. Fumerton, “Application of Single Pulse Dynamics to Model Program and Erase Cycling-Induced Defects in the Tunnel Oxide of Charge-Trapping Devices,” IEEE International Integrated Reliability Workshop (IRW), 2019.

Gilsang Yoon received an M.S. degree in electrical engineering (EE) at Pohang University of Science and Technology (POSTECH). He is currently pursuing a Ph.D. degree in EE POSTECH. His research interests include characterization and reliability of 3D Vertical NAND Flash Memory.
Donghyun Go received an M.S. degree in electrical engineering (EE) at Pohang University of Science and Technology (POSTECH). He is currently pursuing a Ph.D. degree in EE POSTECH. His research interests include characterization and reliability of 3D Vertical NAND Flash Memory.

Jounghun Park received a B.S. degree in electrical engineering (EE) at Pohang University of Science and Technology (POSTECH). He is currently pursuing a Ph.D. degree in EE POSTECH. His research interests include characterization and reliability of 3D Vertical NAND Flash Memory.

Donghwi Kim received a B.S. degree in physics at Pohang University of Science and Technology (POSTECH). He is currently pursuing the M.S degree in electrical engineering POSTECH. His research interests include characterization and reliability of 3D Vertical NAND Flash Memory.

Jungsik Kim received the Ph.D. degree in IT Convergence Engineering from Pohang University of Science and Technology, Pohang, Korea, in 2016. He worked in SK-Hynix (Feb. 2016 ~ Mar. 2018) for modeling of 96-stacks VNAND, and in Samsung Electronics (Apr. 2019 ~ Feb. 2020) for compact modeling of 1a-node DRAM. He was a visiting scholar in NASA Ames Research Center (Apr. 2018 ~ Mar. 2019) for reliability due to radiation effect in silicon devices. He is currently an Assistant Professor with the Department of Electrical Engineering in Gyeongsang National University, Jinju, Korea. His research interests include the modeling and reliability of nano-scale devices based on Technical Computer-Aided Simulation and measurement, respectively.

Jeong-Soo Lee received a B.S., an M.S., and the Ph.D. degree in electrical engineering from POSTECH, Korea in 1991, 1993, and 1996, respectively. In 1996, he joined Samsung Electronics and worked as senior engineer on the development of logic devices and nonvolatile memory devices. He was a visiting scholar at UC Berkeley in 2001 where he developed Fin-FETs and ultra-thin-body (UTB) FETs. In 2005 he was a founding member of National Center of Nanomaterials Technology (NCNT) established by the ministry of Knowledge Economy, Korea. Since 2008, he has become a full professor in the department of electrical engineering at POSTECH and also served as Vice-director at NCNT. His research interests include Si-based nonplanar transistors, nanoscale devices, bottom-up nanowire transistors, and their biosensor applications. He is a senior member of the Institute of Electrical and Electronics Engineering (IEEE).