On \(n \)-connected minors of the \(es \)-splitting binary matroids

Prashant Pralhad Malavadkara, Santosh Baburao Dhotreb, Maruti Shikareb

aSchool of Mathematics and Statistics, Dr. Vishwanath Karad MIT-World Peace University, Pune-411038, India
bDepartment of Mathematics, Savitribai Phule Pune University, Pune-411007, India

prashant.malavadkar@mitcoe.edu.in, dsantosh2@yahoo.co.in, mmshikare@gmail.com

Abstract

The \(es \)-splitting operation on an \(n \)-connected binary matroid may not yield an \(n \)-connected matroid for \((n \geq 3)\). In this paper, we show that given an \(n \)-connected binary matroid \(M \) of rank \(r \), the resulting \(es \)-splitting binary matroid has an \(n \)-connected minor of rank-\((r+1)\) having \(|E(M)|+1\) elements.

Keywords: graph, binary matroids, \(es \)-splitting operation
Mathematics Subject Classification: 05B35, 05C50, 05C83
DOI: 10.5614/ejgta.2021.9.2.3

1. Introduction

Slater [13] specified the \(n \)-line splitting operation on graphs as follows. Let \(G \) be a graph and \(e = uv \) be an edge of \(G \) with \(\deg u \geq 2n - 3 \) with \(u \) adjacent to \(v, x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_h \), where \(k \) and \(h \geq n - 2 \). Let \(H \) be the graph obtained from \(G \) by replacing \(u \) by two adjacent vertices \(u_1 \) and \(u_2 \), with \(v \) adj \(u_1, v \) adj \(u_2, u_1 \) adj \(x_i \) (\(1 \leq i \leq k \)), and \(u_2 \) adj \(y_j \) (\(1 \leq j \leq h \)), where \(\deg u_1 \geq n \) and \(\deg u_2 \geq n \). The transition from \(G \) to \(H \) is called an \(n \)-line splitting operation. We also say that \(H \) is obtained from \(G \) by an \(n \)-line splitting operation. This construction is explicitly illustrated with the help of Figure 1.

Slater [13] proved that if \(G \) is \(n \)-connected and \(H \) is obtained from \(G \) by \(n \)-line-splitting operation, then \(H \) is \(n \)-connected. In fact, he characterized 4-connected graphs, in terms of the 4-line
splitting operation along with some other operations. The notion of connectivity of graphs also has been studied in [6, 13] and connectivity of binary matroids has been studied in [3, 14].

Suppose G is a graph with n vertices and m edges. Let $X = \{e, x_1, x_2, \ldots, x_k\}$ be a subset of $E(G)$. The incident matrix A of G is a matrix of size $n \times m$. The row corresponding to the vertex u has 1 in the columns of $e, x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_h$ and 0 in the other columns. The graph H has $(n + 1)$ vertices and $(m + 2)$ edges. The incidence matrix A' of H is a matrix of size $(n + 1) \times (m + 2)$. The row corresponding to u_2 has 1 in the columns of $y_1, y_2, \ldots, y_h, \gamma$ and 0 in the other columns, where as the row corresponding to the vertex u_1 has 1 in the columns of e, x_1, x_2, \ldots, x_k and 0 in other columns. One can check that the matrix A' can be obtained from A by adjoining an extra row corresponding to the vertex u_1 to A with entries zero every where except in the columns corresponding to e, x_1, x_2, \ldots, x_k where it takes the value 1. The row vector obtained by addition (mod 2) of row vectors corresponding to vertices u and u_1 will corresponds to the row vector of the vertex u_2 in A'.

Noticing the above s Azanchiler [1] extended the notion of n-line-splitting operation from graphs to binary matroids in the following way:

Definition 1. Let M be a binary matroid on a set E and let X be a subset of E with $e \in X$. Suppose A is a matrix representation of M over GF(2). Let A_X^e be a matrix obtained from A by adjoining an extra row δ_X to A with entries zero every where except in the columns corresponding to the elements of X, where it takes the value 1 and then adjoining two columns labelled a and γ to the resulting matrix such that the column labelled a is zero everywhere except in the last row where it takes the value 1, and γ is sum of the two column vectors corresponding to the elements a and e. The vector matroid of the matrix A_X^e is denoted by M_X^e. The transition from M to M_X^e is called an e-s-splitting operation. We call the matroid M_X^e as e-s-splitting matroid.

The following proposition characterizes the circuits of the matroid M_X^e in terms of the circuits of the matroid M.

Proposition 1.1. [1] Let $M(E, C)$ be a binary matroid together with the collection of circuits C. Suppose $X \subseteq E$, $e \in X$ and $a, \gamma \notin E$. Then $M_X^e = (E \cup \{a, \gamma\}, C')$, where $C' = C_0 \cup C_1 \cup C_2 \cup C_3 \cup \{\Delta\}$ with $\Delta = \{e, a, \gamma\}$ and
\[C_0 = \{C \in \mathcal{C} \mid \text{C contains an even number of elements of } X \}; \]
\[C_1 = \text{The set of minimal members of } \{C_1 \cup C_2 \mid C_1, C_2 \in \mathcal{C}, C_1 \cap C_2 = \phi \text{ and each of } C_1 \text{ and } C_2 \text{ contains an odd number of elements of } X \text{ such that } C_1 \cup C_2 \text{ contains no member of } C_0 \}; \]
\[C_2 = \{C \cup \{a\} \mid C \in \mathcal{C} \text{ and } C \text{ contains an odd number of elements of } X\}; \]
\[C_3 = \{C \cup \{e, \gamma\} \mid C \in \mathcal{C}, e \notin C \text{ and } C \text{ contains an odd number of elements of } X \} \cup \{(C \setminus e) \cup \{\gamma\} \mid C \in \mathcal{C}, e \in C \text{ and } C \text{ contains an odd number of elements of } X \} \cup \{(C \setminus e) \cup \{a, \gamma\} \mid C \in \mathcal{C}, e \in C \text{ and } C \setminus e \text{ contains an odd number of elements of } X \}. \]

Throughout this paper we assume that \(M \) is a loopless and coloopless binary matroid, \(X \subseteq E(M) \) and \(M^e_X \) is the \(es \)-splitting matroid of \(M \). We denote by \(C_{OX} \) the set of all circuits of a matroid \(M \) each of which contains an odd number of elements of the set \(X \). The members of the set \(C_{OX} \) are called \(OX \)-circuits. On the other hand, \(C_{EX} \) denotes the set of all circuits of a matroid \(M \) each of which contains an even number of elements of the set \(X \). The members of the set \(C_{EX} \) are called \(EX \)-circuits.

It is interesting to observe that \(M^e_X \setminus \gamma \) and \(M^e_X \setminus \{a, \gamma\} \) are isomorphic with element splitting matroid and splitting matroid of \(M \), respectively. The main theorems of this paper, Theorem 3.1 and Theorem 3.2 are motivated by a series of earlier work on splitting operation, element splitting operation and \(es \)-splitting operation [1, 2, 4, 7, 8, 10, 11, 12, 15, 17].

The following result characterizes the rank function of the matroid \(M^e_X \) in terms of the rank function of the matroid \(M \) [4].

Lemma 1.1. Let \(r \) and \(r' \) be the rank functions of the matroids \(M \) and \(M^e_X \), respectively. Suppose that \(A \subseteq M(E) \). Then

1. \(r'(A) = r(A) + 1 \), if \(A \) contains an \(OX \)-circuit of the matroids \(M \);
 \[= r(A); \text{ otherwise}. \]

2. \(r'(A \cup a) = r(A) + 1 \).

3. \(r'(A \cup \{\gamma\}) = r(A) \), if not \(A \) but \(A \cup \{e\} \) contains an \(OX \)-circuit of \(M \);
 \[= r(A) + 2; \text{ if } A \text{ contains an } OX \text{-circuit of } M \text{ and } e \notin cl(A); \]
 \[= r(A) + 1; \text{ otherwise}. \]

4. \(r'(A \cup \{a, \gamma\}) = r(A) + 1 \), if \(e \in cl(A) \);
 \[= r(A) + 2; \text{ if } e \notin cl(A). \]

Using Lemma 1.1, one can obtain the following corollary.

Corollary 1.1. Let \(r \) and \(r' \) be the rank functions of the matroids \(M \) and \(M^e_X \), respectively. Then
\[r'(M^e_X) = r(M) + 1. \]

Remark 1.1. As \(\Delta = \{a, e, \gamma\} \subseteq M^e_X \), we have \(r'(M^e_X) = r'(M^e_X \setminus \{a\}) = r'(M^e_X \setminus \{e\}) = r'((M^e_X \setminus \{\gamma\})). \)
We recall that matroid \(M \) is connected if and only if for every pair of distinct elements of \(E(M) \), there is a circuit containing both. The concept of \(n \)-connected matroids was introduced by W. T. Tutte [14]. If \(k \) is positive integer, the matroid \(M \) is \(k \)-separated if there is a subset \(X \subset E(M) \) such that \(|X| \geq k, |E\setminus X| \geq k \) and \(r(X)+r(E\setminus X)-r(M) = k-1 \). Connectivity \(\lambda(M) \) of \(M \) is the list positive integer \(j \) such that \(M \) is \(j \)-separated. If there is no such integer we say \(\lambda(M) = \infty \). Note that \(\lambda(U_{2,4}) = \infty \). The following result from [9] provides a necessary condition for a matroid to be \(n \)-connected.

Lemma 1.2. If \(M \) is a \(n \)-connected matroid and \(|E(M)| \geq 2(n-1) \) then all circuits and all cocircuits of \(M \) have at least \(n \) elements.

Let \(M \) be an \(n \)-connected binary matroid and \(X \subset E(M) \). Note that if \(|X| < n \) then \(X \cup \{a\} \) will be a cocircuit of \(M^e_X \). Further, if \(|X \cup \{a\}| < n \) then, by Lemma 1.2, \(M^e_X \) is not \(n \)-connected. Azanchiler [1] proved that \(es \)-splitting operation on a connected binary matroid yields a connected binary matroid. In fact, he proved the following theorem.

Theorem 1.1. Let \(M \) be a connected binary matroid and \(X \subset E(M) \) with \(|X| \geq 2 \). Then \(M^e_X \) is connected binary matroid.

In the following result Dhotre, Malavadkar and Shikare [4], provided a sufficient condition for the \(es \)-splitting operation to yield a 3-connected binary matroid from a 3-connected binary matroid.

Theorem 1.2. Let \(M \) be a 3-connected binary matroid, \(X \subset E(M) \) and \(e \in X \). Suppose that \(M \) has an \(OX \)-circuit not containing \(e \). Then \(M^e_X \) is a 3-connected binary matroid.

In particular, when \(X = \{x, y\} \) the \(es \)-splitting maroid is denoted by \(M^e_{x,y} \). As a consequence of the above result, Dhotre, Malavadkar and Shikare [4] obtained a splitting lemma for \(es \)-splitting matroid \(M^e_{x,y} \).

Corollary 1.2. (Splitting Lemma). If \(M \) is a 3-connected binary matroid then, \(M^e_{x,y} \) is a 3-connected binary matroid for any pair \(\{x, y\} \) of elements of \(E(M) \).

2. 3-Connected Minors of the \(es \)-splitting Matroids.

In this section, we provide a sufficient condition for a 3-connected binary matroid \(M \) of rank \(r \), where \(M^e_X \setminus e \) and \(M^e_X \setminus \gamma \) are 3-connected minors of rank \(r+1 \) of the matroid \(M^e_X \).

Let \(M \) be a cycle matroid of a wheel \(W_5 \) as shown in the Figure 2, \(X = \{8, 9, 10\} \) and \(e = 10 \). Then \(M^e_X \) is the \(es \)-splitting matroid of \(M \). Observe that \(M^e_X \setminus e \) and \(M^e_X \setminus \gamma \) are 3-connected minors of \(M^e_X \). But \(M^e_X \setminus a \) is not a 3-connected minor of \(M^e_X \).

In the following result, we provide a sufficient condition for a 3-connected binary matroid \(M \) where \(M^e_X \setminus e \) is a 3-connected minor of \(M^e_X \).

Lemma 2.1. Let \(M \) be a 3-connected binary matroid, \(|E(M)| \geq 4 \) and let \(X \subset E(M) \), where \(|X| \geq 3 \). Suppose for \(x \in E(M) \) there is an \(OX \)-circuit of \(M \) not containing \(x \). Then \(M^e_X \setminus e \) is a 3-connected binary matroid.
Case 1. Let $A \subseteq \{a, \gamma \} \subset A$. Then there is an OX-circuit C of M not containing x and $C \subset B'$. Thus, by Lemma 1.1 (2) and (3), $r'(A) = r(A) + 1$ and $r'(B) \geq r(B') + 1$. By inequality (1), we have $r(A') + 1 + r(B') - r(M) - 1 \leq 1$. That is, $r(A') + r(B') - r(M) \leq 0$ where $|A'|, |B'| \geq 1$. This implies (A', B') is a 1-separation of M, a contradiction. If $B = 2$, and suppose $B = \{\gamma, x\}$. Then by the argument similar to one as given above we get a contradiction to the 3-connectedness of M.

Subcase 1.2. $|A|, |B| > 2$.

Then, by Lemma 1.1 (2) and (3), $r'(A) = r(A') + 1$ and $r'(B) \geq r(B')$. By inequality (1), we have $r(A') + r(B') - r(M) - 1 \leq 1$. That is, $r(A') + r(B') - r(M) \leq 1$ where $|A'|, |B'| \geq 2$. This implies (A', B') is a 2-separation of M, a contradiction.

Case 2. $\{a, \gamma\} \subset A$.

Let $A = A \setminus \{a, \gamma\}$ and $B' = B$. We have the following three subcases.

Subcase 2.1. $|A| = 2$.

Then $A = \{a, \gamma\}$, $r'(A) = 2$ and $A' = \{\phi\}$. By hypothesis, there is an OX-circuit C of M not containing e and thus, $C \subseteq B$. Then, by Lemma 1.1 (1), $r'(B) = r(B') + 1$. So, by inequality (1),
2 + r(B') + 1 − r(M) − 1 ≤ 1. That is, r(B') − r(M) ≤ −1 or r(B') ≤ r(M) − 1. This is a contradiction.

Subcase 2.2. |A| = 3. Suppose A = \{a, γ, x\}. Then e ∉ Cl(A') since otherwise, \{x, e\} forms a 2-circuit, which is not possible in a 3-connected matroid M. We conclude that e ∉ Cl(A'). Consequently, by Lemma 1.1 (4), r'(A) = r(A') + 2. Also, by Lemma 1.1 (1), r'(B) ≥ r(B'). Thus, by inequality (1), r(A') + 2 + r(B') − r(M) − 1 ≤ 1. That is, r(A') + r(B') − r(M) ≤ 0 and |A'|, |B'| ≥ 1. This gives a 1-separation of M, a contradiction.

Subcase 2.3. |A| > 3.

Applying Lemma 1.1 to A and B, we get r'(A) ≥ r(A) + 1 and r'(B) ≥ r(B). Then, by inequality (1), we get r(A') + 1 + r(B') − r(M) − 1 ≤ 1. That is, r(A') + r(B') − r(M) ≤ 1 and |A'|, |B'| ≥ 2. This leads to a 2-separation of M; a contradiction. The above facts imply that M_X has no 2-separation. We conclude that M_X \ e is 3-connected matroid.

In the following lemma, we provide a sufficient condition for a 3-connected binary matroid M so that M_X \ γ is a 3-connected minor of the es-splitting matroid M_X.

Lemma 2.2. Let M be a 3-connected binary matroid, |E(M)| ≥ 4. Let X ⊂ E(M) with |X| ≥ 3. Suppose for x ∈ E(M) there is an OX-circuit of M not containing x. Then, M_X \ γ is a 3-connected binary matroid.

Proof. If x = e then, by hypothesis, there is an OX-circuit of M not containing x. So, by Theorem 1.2, M_X is 3-connected and M_X \ γ is connected. Suppose M_X \ γ is not 3-connected and let (A, B) be a 2-separation of E(M_X \ γ). Then min \{|A|, |B|\} ≥ 2 and

\[r'(A) + r'(B) - r'(M_X \setminus \gamma) ≤ 1. \] (2)

Assume that \{a\} ⊂ A. Let A' = A \ a and B' = B. Then, by Lemma 1.1, r'(A) = r(A') + 1 and r'(B) ≥ r(B'). Now one of the following two cases occurs.

Case 1. |A| = 2.

Suppose A = \{z, a\} and A' = \{z\} where z ∈ E(M). Then, by Lemma 1.1 (2), r'(A) = r(A') + 1. Now M contains an odd circuit C of M and \{z\} ∩ C = φ, implies C ⊆ B. Then, by Lemma 1.1 (1), r'(B) = r(B') + 1. Thus, by inequality (2), r(A') + 1 + r(B') + 1 - r(M) - 1 ≤ 1. That is, r(A') + r(B') − r(M) ≤ 0, and |A'|, |B'| ≥ 1. This implies that (A', B') is a 1-separation of M, a contradiction.

Case 2. |A| > 2.

By (1) and (2) of Lemma 1.1, r'(A) ≥ r(A') + 1 and r'(B) ≥ r(B'). Then, by inequality (2), r(A') + 1 + r(B') − r(M) − 1 ≤ 1. That is, r(A') + r(B') − r(M) ≤ 1 and |A'|, |B'| ≥ 2. This leads to a 2-separation of M, a contradiction. Thus, M_X \ γ has no 2-separation. We conclude that M_X \ γ is a 3-connected binary matroid.

3. \(n\)-Connected Minors of the es-splitting Matroids.

In this section, we provide a sufficient condition for an \(n\)-connected binary matroid \(M (n ≥ 4)\) of rank \(r\), where \(M_X \setminus e\) and \(M_X \setminus \gamma\) are \(n\)-connected minors of rank \(r + 1\) of the es-splitting
matroid M_X^ϵ.

Let M be an n-connected binary matroid $(n \geq 4)$, $X \subseteq E(M)$ and $e \in X$. Suppose that M has an OX-circuit not containing e. Then, by Theorem 1.2, the binary matroid M_X^ϵ is 3-connected. Note that the matroid M_X^ϵ contains a triangle $\triangle = \{a,e,\gamma\}$. Hence, by Proposition 1.2, M_X^ϵ is not 4-connected. We observe that for any $x \in E(M_X^\epsilon)$, M_X^ϵ/x contains a 2-circuit or a triangle and therefore it is not 4-connected. Further, for any $x \in (E(M_X^\epsilon) - \triangle)$, the minor $M_X^\epsilon \setminus x$ contains the triangle \triangle and therefore, it is not 4-connected. Thus, the possible 4-connected minors of M_X^ϵ are $M_X^\epsilon \setminus e$ and $M_X^\epsilon \setminus \gamma$.

In the following theorem, we give a sufficient condition for an n-connected binary matroid M where $M_X^\epsilon \setminus e$ is an n-connected minor of M_X^ϵ.

Theorem 3.1. Let M be an n-connected binary matroid where $n \geq 4$, $|E(M)| \geq 2(n-1)$ and let $X \subset E(M)$ with $|X| \geq n$. Suppose that for any $(n-2)$-element subset S of $E(M)$ there is an OX-circuit C of M such that $S \cap C = \emptyset$. Then $M_X^\epsilon \setminus e$ is n-connected.

Proof. The proof is by induction on n. First we prove the case $n = 4$. The matroid $M_X^\epsilon \setminus e$ is 3-connected by Lemma 2.1. To prove that $M_X^\epsilon \setminus e$ is 4-connected, it is enough to show that it has no 3-separation. On the contrary, suppose (A, B) forms a 3-separation of $M_X^\epsilon \setminus e$. Then

$$\min\{|A|, |B|\} \geq 3 \quad \text{and} \quad r'(A) + r'(B) - r'(M_X^\epsilon \setminus e) \leq 2. \quad (3)$$

Now one of the following two cases occurs.

Case 1. $a \in A$ and $\gamma \in B$

Subcase 1.1. $|A| = 3$ Let $A = \{a, x, y\}$. Then there is an OX-circuit C of M not containing x, y and $C \subset B'$. Thus, by Lemma 1.1 (2) and (3), $r'(A) = r(A') + 1$ and $r'(B') \geq r(B') + 1$. By inequality (1), we have $r(A') + 1 + r(B') + 1 - r(M) - 1 \leq 2$. That is, $r(A') + r(B') - r(M) \leq 1$ where $|A'|, |B'| \geq 2$. This implies (A', B') is a 2- separation of M, a contradiction.

Subcase 1.2. $|A|, |B| > 3$

Then, by Lemma 1.1 (2) and (3), $r'(A) = r(A') + 1$ and $r'(B') \geq r(B')$. By inequality (1), we have $r(A') + 1 + r(B') - r(M) - 1 \leq 2$. That is, $r(A') + r(B') - r(M) \leq 2$ where $|A'|, |B'| \geq 3$. We conclude that (A', B') is a 3- separation of M, a contradiction.

Case 2. $\{a, \gamma\} \subset A$

Let $A' = A \setminus \{a, \gamma\}$ and $B' = B$. We have the following three subcases.

Subcase 2.1. $|A| = 3$ and $A = \{a, \gamma, x\}$, where $x \in E(M) \setminus e$

If $e \in Cl(A')$, then $\{x, e\}$ forms a 2-circuit of M. This is not possible, since M is 4-connected. Thus, $e \notin Cl(A')$ and by Lemma 1.1 (4), $r'(A) = r(A') + 2$. Also, there is an OX-circuit C of M not containing x and $C \subseteq B'$. Therefore, $r'(B) = r(B') + 1$. Consequently, by inequality (3),

$$r(A') + 2 + r(B') + 1 - r(M) - 1 \leq 2.$$

That is, $(A') + r(B') - r(M) \leq 0$ and $|A'|, |B'| \geq 1$. So M has a 1-separation; a contradiction.

Subcase 2.2. $|A| = 4$ and $A = \{a, \gamma, x, y\}$ where $x, y \in E(M) \setminus e$

If $e \in Cl(A')$, then the set $\{x, y, e\}$ itself is a 3-circuit or contains a 2-circuit of M. This is not possible, since M is 4-connected. Thus, $e \notin Cl(A')$ and, by Lemma 1.1 (4), $r'(A) = r(A') + 2$.

271
Now there is an OX-circuit C of M not containing x and y and $C \subseteq B'$. So, $r'(B) = r(B') + 1$. Therefore, by inequality (3),

$$r(A') + 2 + r(B') + 1 - r(M) - 1 \leq 2.$$

That is, $r(A') + r(B') - r(M) \leq 0$ and $|A'|, |B'| \geq 1$. We conclude that M has a 1-separation, a contradiction.

Subcase 2.3. $|A| > 4$

Now by (1) and (4) of Lemma 1.1, $r'(B) \geq r(B)$ and $r'(A) \geq r(A) + 1$. By inequality (3), we get

$$r(A') + 1 + r(B') - r(M) - 1 \leq 2.$$

That is, $r(A') + r(B') - r(M) \leq 2$ and $|A'|, |B'| \geq 3$. This leads to a 3-separation of M, a contradiction.

Thus, M_X^e has no 3-separation. We conclude that $M_X^e \setminus e$ is 4-connected.

Now we assume that the result is true for $k \geq 4$ and prove that the result is true for $k + 1$.

Let M be a $(k + 1)$-connected binary matroid and M_X^e be the es-splitting matroid of M and any $(k - 1)$-element subset S of $E(M)$ there is an OX-circuit C of M such that $S \cap C = \phi$. Note that $M_X^e \setminus e$ is a k-connected minor by induction hypothesis. Thus, it is enough to show that $M_X^e \setminus e$ has no k-separation.

On the contrary, suppose $M_X^e \setminus e$ is not $(k+1)$-connected. Let (A, B) be a k-separation of $E(M_X^e \setminus e)$. Then, $\min \{|A|, |B|\} \geq k$, and

$$r'(A) + r'(B) - r'(M_X^e \setminus a) \leq k - 1. \quad (4)$$

Now one of the following two cases occurs.

Case 1. $a \in A$ and $\gamma \in B$

Let $A' = A \setminus a$ and $B' = B \setminus \gamma$. Then, by (2) and (3) of Lemma 1.1, $r'(A) = r(A') + 1$ and $r'(B) \geq r(B') + 1$. By inequality (4), we have $r(A') + 1 + r(B') + 1 - r(M) - 1 \leq k - 1$. That is, $r(A') + r(B') - r(M) \leq k - 2$, where $|A'|, |B'| \geq k$. Thus, (A', B') is a k-separation of M and this is a contradiction.

Case 2. $\{a, \gamma\} \subset A$

Let $A' = A \setminus \{a, \gamma\}$ and $B' = B$. We have the following two subcases.

Subcase 2.1. $|A| = 4$

If $e \in Cl(A')$ then the set $\{x, y, e\}$ itself is a 3-circuit or contains a 2-circuit of M. This is not possible, since M is 4-connected. If $e \notin Cl(A')$ then, by Lemma 1.1 (4), $r'(A) = r(A') + 2$. Since there is an OX-circuit C of M not containing x and y, $C \subseteq B'$. So $r'(B) = r(B') + 1$. Consequently, by inequality (4),

$$r(A') + 2 + r(B') + 1 - r(M) - 1 \leq k - 1.$$

That is, $r(A') + r(B') - r(M) \leq k - 2$ and $|A'|, |B'| \geq k$. This implies that M has a k-separation, a contradiction.

Subcase 2.2. $|A| > 4$

Now by (1) and (4) of Lemma 1.1, $r'(B) \geq r(B)$ and $r'(A) \geq r(A) + 1$. By inequality (4), we get
On n-connected minors of the es-splitting binary matroids | P. P. Malavadkar et al.

$r(A') + 1 + r(B') - r(M) = 1 \leq k - 1$. That is, $r(A') + r(B') - r(M) \leq k - 2$ and $|A'|, |B'| \geq k$.

This leads to a k-separation of M, a contradiction.

Thus, M_X^e has no k-separation. We conclude that $M_X^e \setminus e$ is $k + 1$-connected. We conclude that, by principle of mathematical induction, the result is true for all $n \geq 4$.

In the following theorem, we give a sufficient condition for an n-connected binary matroid M so that $M_X^e \setminus e$ is an n-connected minor of M_X^e.

Theorem 3.2. Let M be an n-connected binary matroid with $n \geq 4$, $|E(M)| \geq 2(n - 1)$ and let $X \subset E(M)$, where $|X| \geq n$. Suppose that for any $(n - 2)$-element subset S of $E(M)$ there is an OX-circuit C of M such that $S \cap C = \phi$. Then $M_X^e \setminus \gamma$ is n-connected.

The proof follows by the arguments similar to one as given for the proof of Theorem 3.1.

Thus, we proved that given an n-connected binary matroid M of rank r, $M_X^e \setminus e$ and $M_X^e \setminus \gamma$ are the n-connected minors of rank $(r + 1)$ of the es-splitting matroid M_X^e. In other words, we provide a procedure to obtain n-connected matroids of rank $(r + 1)$ from an n-connected matroid of rank r. The matroids also have the property that each of them has exactly one additional element than M. We illustrate Theorems 3.1 and 3.2 with the help of the following example.

Example 1. Let matrix M be a cycle matroid of a complete bipartite graph $K_{4,4}$ shown in Figure 3. M is 4-connected matroid. Let $X = \{1, 2, 5, 6\}$. Observe that there is an OX-circuit in M avoiding every pair of elements $\{x, y\}$. Let A be the matrix representation of the cycle matroid M over $GF(2)$ where

$$A = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.$$

Let $X = \{1, 2, 5, 6\}$ and $10 = e$. Then representation of es-splitting matroid M_X^e over the field $GF(2)$ is given by the matrix
On n-connected minors of the es-splitting binary matroids

Note that, by Theorem 1.2, the es-splitting matroid M^e_X is 3-connected. But if $A = \{a, e, \gamma\}$ and $B = E(M^e_X) \setminus A$, then $r'(A) + r'(B) - r'(M^e_X) = 2 + r'(B) - 8 \leq 2$. Thus (A, B) is a 3-separation of M^e_X and hence M^e_X is not 4-connected. Further, it is easy to verify that $M^e_X \setminus e$ and $M^e_X \setminus \gamma$ are 4-connected minors of the es-splitting matroid M^e_X.

4. Acknowledgement

The authors are thankful to the anonymous referee for providing valuable suggestions which have helped to improve the presentation of the paper.

References

[1] H. Azanchiler, Extension of line-splitting operation from graphs to binary matroid, *Lobachevskii J. Math.*, 24 (2006), 3-12.

[2] H. Azanchiler, A characterization of the bases of line-splitting matroids, *Lobachevskii J. Math.*, 26 (2007), 5–15.

[3] Y.M. Borse and S.B. Dhotre, On connected splitting matroids, *Southeast Asian Bull. Math.*, 34 (2010), 807–811.

[4] S.B. Dhotre, P.P. Malavadkar, and M.M. Shikare, On 3-connected es-splitting binary matroids, *Asian-European J. Math.*, 9 (1)(2016), 1650017-26.

[5] K.V. Dalvi, Y.M. Borse, and M.M. Shikare, Forbidden-minors for graphic and cographic es-splitting matroids. *Lobachevskii J. Math.*, 31 (1) (2010), 27–35.

[6] O. Khormali, On the connectivity of k-distance graphs. *Electron. J. Graph Theory Appl.*, 5 (1) (2017), 83–93.

[7] P.P. Malavadkar, M.M. Shikare, and S.B. Dhotre, A characterization of n-connected splitting matroids, *Asian-European J. Math.*, 7 (4)(2014), 1450060-7.
[8] P.P. Malavadkar, M.M. Shikare, and S.B. Dhotre, A characterization of cocircuits of an \(es \)-splitting matroid, *J. Comb. Math. Comb. Comput.*, 105 (2018) 247–258.

[9] J.G. Oxley, *Matroid theory*, Oxford University Press, Oxford (1992).

[10] T.T. Raghunathan, M.M. Shikare, and B.N. Waphare, Splitting in a binary matroid, *Discrete Math.*, 184 (1998), 267–271.

[11] M.M. Shikare, Splitting lemma for binary matroids, *Southeast Asian Bull. Math.*, 32 (2008), 151–159.

[12] M.M. Shikare, S.B. Dhotre, and P.P. Malavadkar, A forbidden-minor characterization for the class of regular matroids which yield the cographic \(es \)-splitting matroids, *Lobachevskii J. of Math.*, 34 (2013), 173–180.

[13] P.J. Slater, A Classification of 4-connected graphs, *J. Combin. Theory*, 17 (1974), 282–298.

[14] W.T. Tutte, Connectivity in matroids, *Canad. J. Math.* 18 (1966), 1301–1324.

[15] D.K. Wagner, Bipartite and Eulerian minors, *European J. Combin.*, 74 (2018), 1–10.

[16] D.J.A. Welsh, Euler and bipartite matroids, *J. Combin. Theory*, 6 (1969), 375–377.

[17] Y. Wu, Even poset and a parity result for binary linear code, *Linear Algebra Appl.*, 418 (2006), 591–594.