Phosphate-based treatments for consolidation of salt-bearing Globigerina limestone

G. Graziani1,2, E. Sassoni2, G.W. Scherer3, E. Franzoni2
1 Rizzoli Orthopaedic Institute (IOR), Laboratory of NanoBiotechnology, Bologna, Italy
2 Dept. Civil, Chemical, Environmental & Materials Engineering (DICAM), University of Bologna, Italy
3 Dept. Civil and Environmental Engineering (CEE), Princeton University, USA
E-mail: gabriela.graziani2@unibo.it

Abstract. Phosphate-based treatments have proven to be effective for consolidation of porous limestone. However, application on salt-laden stone must be evaluated, as salt-weathering is among the main deterioration phenomena for this lithotype and salts present in the stone can interfere with the outcome of consolidation. For this reason, here, the phosphate-based consolidant was tested on a salt-bearing porous limestone (Globigerina limestone). To achieve salt contamination and to induce weathering, stone samples were subjected to crystallization cycles in sodium sulfate, which is among the most common and damaging salts that affect limestone on site. Phase formation and distribution of the consolidant were evaluated in the presence of salts. The treatment efficacy was investigated in comparison with ethyl silicate, which is currently the most used consolidant for porous limestone. Promising results were obtained, indicating that the presence of sodium sulfate does not hamper penetration of the phosphate-based consolidant. By penetrating deeply into the stone and sealing cracks caused by weathering, the consolidant enhances strength and stiffness. Moreover, the presence of salts does not interfere with the formation of calcium phosphates, hydroxyapatite being the only phase to be detected. These results indicate that the phosphate-based treatment is suitable for consolidation of limestone, even when contaminated with salt.

1. Introduction
Consolidation of porous limestone and other carbonate substrates by phosphate-based treatments has yielded promising results in terms of efficacy, compatibility and durability [1-12]. These treatments aim at forming insoluble hydroxyapatite (HAP, Ca10(PO4)6(OH)2) inside the stone, by reaction of a water-based solution of diammonium hydrogen phosphate ((NH4)2HPO4, DAP) with calcium ions (deriving from the stone itself or externally added). Notably, because the precursor is applied in solution and no particles are present, even at the nanoscale, the consolidant exhibits remarkable penetration depth [3]. In addition, it is capable of successfully binding cracks formed by weathering, hence guaranteeing efficacy while maintaining good compatibility [3].

The efficacy of the treatments depends on the formation of hydroxyapatite, or, at least, calcium phosphates having low solubility, such as octacalcium phosphate (CaH2(PO4)2·5H2O, OCP). However,
different outcomes in terms of amount, morphology and composition of phases that form as a result of the treatment could be experienced, depending on the substrate, the treating solution and procedure and on the presence of substrate contaminants, such as soluble salts [6,13].

In particular, salts in the stone might affect the outcome of consolidation by two main mechanisms:
- by blocking pores, thereby inhibiting penetration and homogeneous distribution of the consolidant in the substrate;
- by interfering with HAP-formation reactions. This can be detrimental if soluble calcium phosphates, or other phosphate compounds (not including calcium) form instead of HAP [14-16].

On the other hand, increased phase formation in the presence of salts has also been reported [6,13], indicating that the substrate lithotype, weathering level and surface roughness, as well as the salt type and its amount, can all have an impact on phase formation.

Salt contamination of porous limestone is very common in the field, as salt weathering is among the most frequent and severe deterioration phenomena for this lithotype [17-22]. In addition, it is rarely possible to completely remove salts from the stone, even when desalination procedures are carried out.

For these reasons, here, application of phosphate-based treatments is tested on Globigerina limestone, purposely contaminated by sodium sulfate crystallization cycles. The effects of the treatments on mechanical properties are investigated and the impact of the presence of sodium sulfate on phase formation is evaluated in terms of their nature, morphology and distribution.

2. Materials and Methods

2.1. Materials

Tests were carried out on Globigerina limestone, an organogenic limestone, mainly composed of calcite with fractions of silicates (kaolinite) and quartz [23]. Cores (5 cm in height and 2 cm in diameter) were used for all the tests, all cut from one single quarry slab.

2.2. Contamination by sodium sulfate crystallization cycles

Samples were contaminated by 3 cycles of sodium sulfate crystallization, performed as follows:
 1) Wetting phase (24 h): samples were immersed to a depth of about 1 cm in a 14 wt% solution of sodium sulfate decahydrate (Na₂SO₄·10H₂O) in deionized water as recommended in the European Standard EN12370;
 2) Drying phase (22 h): samples were dried in a ventilated oven with forced convection at 50°C;
 3) Cooling (1 h) and measuring of weight and dynamic elastic modulus (total: 2 h).

The number and duration of the cycles were selected based on preliminary tests, with the aim of contaminating the stone with salts and cause weathering, while not causing rupture and conserving a morphology suitable for mechanical testing. To reproduce the conditions on site, where treatment of stone exhibiting abundant efflorescence is uncommon and the substrate is normally desalinated by poulticing before the application of the consolidant, the cores were desalinated after contamination, purposely leaving a fraction of the salts in the stone (“samples DESALT”). This allows evaluation of the effects of salt contamination and simulates the conditions on site, where it is often impossible to completely remove salts from the substrate, even when desalination is performed. Desalination was achieved by applying a deionized water poultice (water:cellulose pulp ratio 1:5, thickness ~1 cm). The poultice was kept sealed for 24 hours to allow solubilization of the salts, then left to dry in contact with the samples to allow advection of the salts towards the external surface.

2.3. Treating procedure

Two HAP-based treatments were tested that were previously developed for the consolidation and protection of limestone and marble [2,8]:

IOP Conf. Series: Materials Science and Engineering 364 (2018) 012082 doi:10.1088/1757-899X/364/1/012082
1) Treatment “3M”: a 3 M DAP solution is applied by brushing (10 strokes) followed by the application of a limewater poultice (1.7 g/L Ca(OH)₂, limewater:poultice ratio 1:6). Limewater poultice is applied with the aim of providing further calcium ions to boost HAP formation and to remove possible residual DAP from the stone after treatment;

2) Treatment “0.1M”: a 0.1 M DAP solution also containing 0.1 mM CaCl₂ and 10 vol% ethanol is applied, followed by the application of a 0.1 M DAP + 0.1 mM CaCl₂ solution without the addition of ethanol. Both solutions are applied by brushing (10 strokes). This procedure was developed for the consolidation of marble, for which it was found that ethanol promotes HAP formation (and thus efficacy), while using lower amounts of precursors [16,24].

Ethyl silicate (ES) was also tested for comparison’s sake, as it is currently the most widely used product for consolidation of Globigerina limestone. For ES treatment a commercial formulation (Estel 1000, CTS, Italy, composed of 75 wt% ethyl silicate and 25 wt% white spirit D40, also containing 1 wt% dibutyltin dilaurate as a catalyst) was applied by brushing (10 brush strokes). After treatment, samples were left to cure for 1 month in room conditions prior to testing.

For all the procedures, stone cores were treated on the whole external surface.

2.4. Post-treatment characterization
All characterizations were performed on partially desalinated (“DESALT”) cores, before and after treatment.

Mechanical properties after treatments were evaluated in terms of dynamic elastic modulus (Ed, measured by ultrasonic tests) and tensile strength (σt, measured by tensile splitting tests). Ultrasonic tests were carried out by a Matest instrument with 55KH transducers. Rubber couplants and vaseline were used to ensure proper contact between the samples and the transducers, while avoiding contamination of the sample. Briefly, an ultrasonic pulse is transmitted across the sample by piezoelectric transducers. The time required by the wave to cross the sample is recorded, that is linked to dynamic elastic modulus by the equation: \(Ed = \rho v^2 \), \(\rho \) being the ultrasonic pulse velocity. Tensile splitting test consists in subjecting cylindrical specimens to compression along two lines parallel to the axis. \(\sigma_t \) is calculated with the equation \(\sigma_t = 2P/(\pi DL) \), \(P \) being the maximum load, \(D \) the diameter and \(L \) the length of the cylindrical specimens, respectively. Three samples were taken for each consolidation treatment (3M, 0.1M and ES) and for the untreated reference (UT). Variations in dynamic elastic modulus and tensile strength caused by the treatments were also calculated, according to the formulas:

\[
\Delta Ed = (Ed_{after \ treatment} - Ed_{before \ treatment})/Ed_{after \ treatment}; \quad \Delta \sigma_t = (\sigma_t^{after \ treatment} - \sigma_t^{before \ treatment})/\sigma_t^{after \ treatment}
\]

Salt content after salt contamination, desalination and consolidation treatment was evaluated by ion chromatography (IC), performed on the ground stone after salt extraction and filtering. Salt extraction was performed by grinding the samples and boiling the obtained powder in deionized water, to favor solubilization of the salts. Samples (~5x5x5 mm³) were collected from the tops of the cores (i.e. the area opposite to that immersed in the sodium sulfate solution), where salt concentration is expected to be maximal.

Phase morphology and distribution were evaluated by SEM/EDS, to understand whether the presence of salts prevents consolidants from penetrating and homogeneously distributing into the stone and to evaluate the treatments’ capability of sealing cracks caused by weathering.

Phase formation after 3M and 0.1M treatments was examined by FT-IR to verify which phases form in the presence of salt contamination. FT-IR (Perkin Elmer Spectrum 2, ATR mode, resolution 2 cm⁻¹, 32 scans) was performed on ground samples, to maximize the intensity of the bands. Powder was collected from the surface of the samples (0-2 mm depth). FT-IR was also performed on ES-treated samples to verify whether the presence of salts interferes with ES curing, according to the very same procedure.
3. Results

As a result of salt contamination and desalination, sulfate concentrations of 1.4 wt% and 0.3 wt% are achieved, respectively.

Dynamic elastic modulus and tensile strength after salt contamination, desalination and consolidation are reported in Table 1. HAP-based treatments cause a minor change in dynamic elastic modulus, but a significant increase in tensile strength, indicating good efficacy for both treatments. The different behavior in terms of E_d and σ_T can be explained as follows. σ_T is essentially determined by the capability of the consolidant to increase stone cohesion by bridging cracks caused by weathering. For the consolidant to be effective, it must seal at least the tip of the cracks caused by weathering, so as to bind the surfaces together and prevent them from propagating through the boundary. However, some porosity in the binder can be beneficial, because it allows volume variations in calcite grains from temperature changes to be accommodated without causing stress [25]. E_d, on the other hand, is raised by pore occlusion and by large amounts of precipitates, even if they don’t bind strongly to the substrate. As a consequence, if the consolidant bridges cracks without significantly filling them, the effect can be much more visible in terms of σ_T than it is in terms of E_d. ES, in contrast, causes a significant increase in terms of E_d and, especially, σ_T. Such a large increase in tensile strength can cause over-strengthening, as it is generally believed that increases lower than +50% are to be preferred [26,27]. In fact, the final dynamic elastic modulus and tensile strength are significantly higher than those of unweathered stone ($E_d= 14.2 \text{ GPa}, \sigma_T= 3.1 \text{ MPa}$). Both treatments with DAP exhibit similar increases in both dynamic elastic modulus and tensile strength, indicating that the treatments have similar performance despite significant differences in the amount of DAP used as a precursor, pointing out the efficacy of the addition of ethanol to the treating solution.

	E_d (GPa)	ΔE_d (GPa)	σ_T (MPa)	$\Delta \sigma_T$ (MPa)
UT	12.8 ±0.2	/	2.3 ±0.4	/
3M	13.1 ±0.1	+2%	3.3 ±0.2	+ 39%
0.1M	13.1 ±0.2	+2%	3.3 ±0.3	+ 40%
ES	15.7 ±0.1	+23%	5.5 ±0.9	+ 134%

SEM images of samples 3M and 0.1M (Figure 1) show that phosphate phases formed both on the exterior surface in the form of a coating (~1-2 μm thick) and in the interior of the samples. This indicates that the presence of the salt did not prevent the penetration and curing of the consolidant due to pore blocking.

Phase formation (Figures 1 and 2) is more abundant for samples treated by 3M compared with 0.1M, which is consistent with the much higher amount of precursor used. However, for both treatments, the phosphate phases that form are capable of bridging cracks caused by weathering, including in the areas far from the surfaces (see red arrows in Figure 1). This explains the similar increase in the mechanical properties caused by the two treatments, in spite of the different amount of phases formed. In ES-treated samples, agglomerates of salts, probably incorporated in the glass network constituted by cured ethyl silicate, are visible across the whole sample. This indicates that significant pore clogging occurs, which can be responsible for the large increase in mechanical properties. For this reason, evaluation of compatibility and durability of the treatments is in progress.
Figure 1. SEM images of cross sections of treated samples, at the surface (left column) and at a depth ~1 cm from the treated surface (right column). Red arrows indicate cracks bridged by HAP.
Figure 2: EDS spectra of 3M and 0.1M samples. Red arrows indicate points were acquisition was performed. As can be seen by the spectra, abundant formation of phosphate phases can be detected on the exterior surface and around cracks caused by weathering.

FT-IR spectra are reported in Figure 3. Bands detected are characteristic of calcite (873, 712, 472 cm\(^{-1}\)) [28,29] and kaolinite (1035, 525, 470 cm\(^{-1}\)) [29,30] of Globigerina limestone, sodium sulfate (1138, 1110 cm\(^{-1}\)) and either hydroxyapatite (1030, 600, 560 cm\(^{-1}\)) [28,31] or ethyl silicate (1080, 1001 cm\(^{-1}\)) [32-34]. FT-IR data indicate that all phosphate phases, formed as a result of 0.1M and 3M treatments and observed by SEM/EDS, correspond to HAP. No bands characteristic of other calcium phosphates phases or soluble phases are detected. This indicates that the presence of salts did not interfere with HAP nucleation by causing the formation of less stable compounds, which would have been detrimental for the treatment success and could represent an issue for the application of the consolidant on site. This was confirmed by IC results, which indicate that no soluble phosphates were extracted when treated samples were crushed and rinsed with water. Phase formation is more abundant
for treatment 3M compared to 0.1M, as already shown by SEM. Samples 3M also exhibit a negligible content of residual sodium sulfate, which was successfully removed by the limewate poultice, together with unreacted DAP. This is confirmed by ion chromatography, indicating a much lower sulfate concentration for samples 3M (0.07 wt% sulfate vs. 0.31 wt% for ES and 0.1M). The possibility of achieving desalination during consolidation can be regarded as a further advantage of the 3M treatment. Residual salt content is greatest in samples ES, for which the main bands are those of sodium sulfate.

Figure 3. FT-IR spectra of salt contaminated samples. Bands characteristic of HAP (1030, 600, 560 cm\(^{-1}\)) are highlighted in blue.

4. Conclusions

The application of two HAP-based treatments was tested on Globigerina limestone contaminated by sodium sulfate. The following conclusions can be derived:

- The presence of salts in the stone does not prevent penetration of the HAP-based consolidants, nor cause formation of soluble phases. In fact, HAP is the only phase to form.
- Because no formation of soluble phases, nor insufficient or inhomogeneous HAP distribution were found, even for high levels of contamination, it can be concluded that the treatments can be safely applied to sodium sulfate-containing substrates.
- 0.1M and 3M treatments result in a good increase in stone tensile strength as they lead to the formation of HAP that binds cracks caused by weathering. Both treatments have comparable efficacy, even though 3M results in more abundant calcium phosphate formation, as treatment 0.1M still guarantees effective crack-sealing.
- ES provides greater, but possibly excessive, increases in Ed and oT. Durability tests will be carried out to better evaluate the long-term performance of all treatments.

References
[1] Sassoni E, Naidu S and Scherer GW 2011 The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones J. Cult. Herit. 12 346–355
[2] Franzoni E, Sassoni E and Graziani G 2015 Brushing, poultice or immersion? Role of the application technique on the performance of a novel hydroxyapatite-based consolidating treatment for limestone J. Cult. Herit. 16 173–184.
[3] Sassoni E, Graziani G and Franzoni E 2016 An innovative phosphate-based consolidant for limestone. Part 1: effectiveness and compatibility in comparison with ethyl silicate Constr. Build. Mater. 102 918-930
[4] Possenti E, Colombo C, Bersani D, Bertasa M, Botteon A, Conti C, Lottici PP and Realini M 2016 New insight on the interaction of diamonium hydrogen phosphate conservation treatment with carbonatic substrates: A multi-analytical approach Microchem. J. 127 79-86
[5] Sassoni E, Graziani G and Franzoni E 2016 An innovative phosphate-based consolidant for limestone. Part 2. Durability in comparison with ethyl silicate Constr. Build. Mater. 102 931-942
[6] Graziani G, Sassoni E and Franzoni E Hydroxyapatite-based treatments application to salt-bearing Porous limestones: A study on sodium sulphate-contaminated Lecce Stone, Fourth International Conference on Salt Weathering of Building Stones and Sculptures, Potsdam (G), 20-22 September 2017
[7] Matteini M, Rescic S, Fratini F. Botticelli G 2011 Ammonium phosphates as consolidating agents for carbonatic stone materials used in architecture and cultural heritage: Preliminary research Int. J. Archit. Herit. 5 717-736
[8] Yang F, Zhang B, Liu Y, Guofeng W, Zhang H, Cheng W, Xu Z 2011 Biomimic conservation of weathered calcareous stones by apatite New J. Chem. 35 887-892
[9] Ma X, Balonis M, Pasco H, M. Tounazou, Counts D, Kakoulli I 2017 Evaluation of hydroxyapatite effects for the consolidation of a Hellenistic-Roman rock-cut chamber tomb at Athienou-Malloura in Cyprus Constr. Build. Mater. 150 333–344
[10] Barriuso BC, Botticelli G, Cuzman OA, Osticioli I, Tiano P, Matteini M 2017 Conservation of calcareous stone monuments: Screening different diamonium phosphate based formulations for countering phototrophic colonization J. Cult. Herit. 27 97-106
[11] Snethlage R, Gruber C, Tucic V, Wendler E 2008 Transforming gypsum into calcium phosphate - a better way to preserve lime paint layers on natural stone? Proc. Int. Symp. Stone consolidation in cultural heritage 1-13, eds. J. Delgado Rodrigues and J. Manuel Mimoso ISBN 978-972-49-2135-8
[12] Balonis-Sant M, Ma X, Kakoulli I 2013 Preliminary Results on Biomimetic Methods Based on Soluble Ammonium Phosphate Precursors for the Consolidation of Archaeological Wall Paintings, Archaeological Chemistry VIII. Washington DC: American Chemical Society, ACS Symposium Series 420-47
[13] Sassoni E, Graziani G and Franzoni E 2015 Repair of sugaring marble by ammonium phosphate: Comparison with ethyl silicate and ammonium oxalate and pilot application to historic artifact Mater. Design 88 1145-57
[14] Dorozhkin SV 2012 Biphasic, triphasic and multiphasic calcium orthophosphates Acta Biomater. 8 963–977
[15] Dorozhkin SV 2011 Calcium orthophosphates Biomatter. 12 121–164
[16] Graziani G, Sassoni E, Franzoni E and Scherer GW 2016 Hydroxyapatite coatings for marble
protection: Optimization of calcite covering and acid resistance Appl. Surf. Sci. 368 241-57
[17] Cardell C, Delalieux F and Roumpopoulos 2003 K Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France Constr. Build. Mater. 17
[18] Cardell C, Benavente D and Rodríguez-Gordillo J 2008 Weathering of limestone building material by mixed sulfate solutions. Characterization of stone microstructure, reaction products and decay forms Mater. Charact. 59 1371-1385
[19] Flatt RJ 2002 Salt damage in porous materials: how high supersaturations are generated J.Cryst. Growth 242 435-454,
[20] Tsui N, Flatt RJ and Scherer GW 2003 Crystallization damage by sodium sulfate J. Cult. Herit. 4 109-115,
[21] Benavente D, Garcí’a del Cura MA, Ber nabéu A and Ordóñez S 2001 Quantification of salt weathering in porous stones using an experimental continuous partial immersion method Eng. Geol. 59 313-325
[22] Benavente D, Garcí’a del Cura MA, Garcí’a del Cura J, Sánchez-Moral S and Ordóñez S 2004 Role of pore structure in salt crystallisation in unsaturated porous stone J.Cryst. Growth 320 532-544
[23] Cassar J 2002 Deterioration of the Globigerina limestone of the Maltese Islands Geol. Soc. Spec. Publ. 205 33-49
[24] Sassoni E, Graziani G, Franzoni E and Scherer GW 2018 Calcium phosphate coatings for marble conservation: Influence of ethanol and isopropanol addition to the precipitation medium and performance Corros. Sci., DOI: 10.1016/j.corsci.2018.03.019
[25] Sassoni E, Graziani G, Ridolfi G, Bignozzi MC, Franzoni E 2017 Thermal behavior of Carrara marble after consolidation by ammonium phosphate, ammonium oxalate and ethyl silicate, Mater. Design 120 345-353
[26] Maravelaki-Kalaitzaki P, Kallithrakas-Kontos N, Korakaki D, Agioutantis Z and Maurigiannakis S 2006 Evaluation of silicon-based strengthening agents on porous limestones Prog. Org. Coat. 57 140–8.
[27] Maravelaki-Kalaitzaki P, Kallithrakas-Kontos N, Agioutantis Z, Maurigiannakis S and Korakaki D 2008 A comparative study of porous limestones treated with silicon-based strengthening agents Prog. Org. Coat. 62 49–60.
[28] Tao J 2013 FTIR and Raman studies of structure and bonding in mineral and organic–mineral composites Method. Enzymol. 532 533–556
[29] Gunasekaran S, Anbalagan G and Pandi S 2006 Raman and infrared spectra of carbonates of calcite structure J. Raman Spectrosc. 37 892-899
[30] Saikia BJ and Parhasarathy G 2010 Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India J. Mod. Phys. 1 206-210S.
[31] Koutspoulos S 2002 Synthesis and characterization of hydroxyapatite crystals: areview study on the analytical methods J. Biomed. Mater. Res. 62 600–612
[32] Franzoni E, Graziani G and Sassoni E 2015 TEOS-based treatments for stone consolidation: acceleration of hydrolysis–condensation reactions by poulticing J. Sol-Gel Sci. Technol. 74 398
[33] Xu F and Li D 2013 Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone protective materials J. Sol-Gel Sci. Technol. 65 212–219
[34] Rubio F, Rubio J and Oteo JL 1998 A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS) Spectrosc. Lett. 3 199–219