Investigation of interaction between boronic acids and sugar: effect of structural change of sugars on binding affinity using steady state and time resolved fluorescence spectroscopy and molecular docking

Raveendra Melavanki a,*, Raviraj Kusanurb b, Kishor Kumar Sadasivuni c,**, Diksha Singh d, N.R. Patile e

a Department of Physics, M S Ramaiah Institute of Technology, Bangalore, Karnataka, 560054, India
b Department of Chemistry, R V College of Engineering, Bangalore, Karnataka, 560059, India
Centre for Advanced Materials, Qatar University, Doha, Qatar
c Department of Physics, M S Ramaiah University of Applied Science, Bengaluru, Karnataka 560058, India
d Department of Physics, B.V.B. College of Engineering & Technology, Hubli, Karnataka 580031, India

ARTICLE INFO

Keywords:
Analytical chemistry
Food analysis
Food science
Binding constant
Boronic acids
Sugars
Fluorescent intensity
Glucose level
Dissociation constant

ABSTRACT

Binding interactions of boronic acid derivatives viz. 2-Methylphenylboronic acid (B1) and 3-Methoxyphenylboronic acid (B2) with mono saccharides (arabinose, fructose and galactose) and disaccharides (sucrose, lactose and maltose) in aqueous condition at pH 7.4 by means of fluorescence spectroscopy is reported in the present investigation. Sugar sensing as well as continuous glucose monitoring (CGM) plays a significant role in diabetes regulation. Sugar sensors mediated through enzymes have their own drawbacks, which led to encouragement to search for designing new sensors through alternate approaches. Among many, fluorescence-based sensors are drawing more attention. Boronic acid-based fluorescence sensors have the capacity to bind reversibly with diols, which makes their demand high in applications. Addition of sugar reduces fluorescence intensities. Change in intensities is associated to cleavage of intermolecular hydrogen bonding which leads in reduced stability of boronate ester. Lineweaver-Burk and Benesi-Hildebrand equation is used for analysing data. Mono sugars are estimated to have higher binding constants. Mutarotation leads to structural changes in saccharides which play a key role in binding interactions. Sugars in furanose form are found to be highly favoured for binding. Molecular docking of B1 and B2 with proteins with PDB ID: 2IPL and 2IPM being periplasm was done with the help of Schrodinger Maestro 11.2 version. GLIDE scores terms are used for expressing binding affinity.

1. Introduction

Boronic acids are the important building blocks in carbon-carbon bond formation in organic synthesis. In addition to their application in synthetic organic chemistry, they also found application in recognition of nucleic acids, adenosine triphosphate (ATP) and fluoride ions [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Though they usually exist in neutral trigonal planar form, can comfortably change into tetrahedral anionic form at pH value being higher the pKa. The reason behind it is the behaviour of boron as Lewis acid and the fact that it accepts a pair of electrons from donors forming covalent bonds. Functional groups in boronic acid form strong complexes along with compounds like cis-diols i.e. compounds having two adjacent nucleophiles. Boronic acids are continuing to gain interest in scaffold designing of sensors for carbohydrate cognition because of their high sugar intrinsic affinity and reversible rapid equilibrium. Even in simple cells, carbohydrates are found to be endogenous and vital in many of the biochemical processes [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. Also, they are often linked to proteins that affect activity and cell surfaces. As an example, blood type is determined by chain of carbohydrates in red blood cell. Modified forms of saccharide chains have been detected in many diseases that are degenerative, and glycosylated proteins are found to take part in cancer metastasis and communication between cell to cell. Boronic acids are abundantly found

* Corresponding author.
** Corresponding author.
E-mail addresses: melavanki73@gmail.com (R. Melavanki), chishorecumar@gmail.com (K.K. Sadasivuni).

1 Affiliated to Visvesvaraya Technological University, Belagavi, Karnataka- 590018, India.

https://doi.org/10.1016/j.heliyon.2020.e05081
Received 31 May 2020; Received in revised form 21 July 2020; Accepted 23 September 2020
2405-8440/© 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
in metabolic processes so, they are focused in large number for sensing of fructose and glucose. Still, it is equally important to detect other carbohydrates too. So, for specificity to sugars, the synthesis and design of boronic acids is important. The application of boronic acids also includes recognition of carbohydrates on cell surface and in sensing various types of saccharides. Boronic acid ligands are more stable, of low cost and are easy to handle, so they are being used in replacing enzymes. Due to their ability of binding tightly with diols which are found in sugar molecules, boronic acids are used for designing chemo sensors. It has a covalent ability of binding tightly with diols which are found in sugar molecules, easy to handle, so they are being used in replacing enzymes. Due to their recognition of carbohydrates on cell surface and in sensing various types of carbohydrates, the synthesis and design of sensors is important. The application of boronic acids also includes - (a) extremely sensitive technique, (b) host system is not damages due to fluorescence measurements, (c) better results due to fluorescence decay time measurements, (d) the information on micro-environment of the molecule and about the structure is obtainable. For studying the interaction between sugars and boronic acid, it is desired to know general steps involved in bonding process and also about the structural properties of boronic acid. Boronic acids being Lewis acids, their reaction with water yields tetrahedral boronate. There is a release of proton during the process (Scheme 1). The tetrahedral form is found to be anionic and trigonal form is generally neutral. Boronic acids have an ability to bind reversibly with Lewis bases and diols due to their open shell structure. Like boronic acid, boronic ester also reacts with water, forms tetrahedral boronic ester. In reaction Scheme 1, 1 refers to boronic acid, 2 represents anionic boronate having tetrahedral geometry, 3 refers to boronate ester, finally 4 represents boronate ester having tetrahedral geometry [19, 20, 21, 22, 23, 24]. Two esters are produced as a result of diol binding in tetrahedral or trigonal form. Various factors like concentration and nature of buffer, pH of medium, temperature, dihedral angle of diol, the and pKa value of formed ester, influences the process of binding [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]. To have a quantitative study of process of binding, calculation of binding constant, here association constant (Ka) is important.

2. Theory

Boronic acids have intrinsic affinity for carbohydrates, their bonding with mono-saccharide and disaccharides changes the intensity of fluorescence and have reversible and rapid equilibrium which is why they are considered to be good fluorescence sensors. Studies for the same are performed under physiological conditions and in aqueous solution. One of our group's long-term goal is to create a library of scaffolds of boronic acids to design chemosensors for identifying some specific biomarkers. Calculated values of Ka were used for determining the binding affinity and binding strength of boronic acid with sugars. For calculating the values of Ka, an equation was derived which correlates change in fluorescence intensity to sugar concentration. For calculating the Ka value for boronate ester is done using Eq. (1) [37].

\[
K_a = \frac{[BQ]}{[B][Q]}
\]

At equilibrium, [BQ] is the sugar-boronic acid complex concentration, [B]-[BQ] is boronic acid concentration, and [Q]-[BQ] gives sugar concentration. We are assuming the sugar concentration to be greater than the concentrations of boronic acids as well as sugar-boronic acid complex and $[B] = m \times [Q]$ and $[BQ] = n \Delta I$. Now from the derivation, Ka is calculated by using linear equation as shown below:

Boronic acid + sugar \rightarrow Boronate ester

\[
[B] = \text{Boronic acid concentration}, [Q] = \text{Sugar concentration}, [BQ] = \text{Boronate ester concentration}
\]

Now $[Q]$ is varying whereas $[B]$ is set to be constant. Assuming $[B] < < [Q]$, binding constant can be defined by,

\[
K_a = \frac{[BQ]}{[B][Q]}
\]

Again defining $[B]_0 = \text{Total } B \ [\text{Un-complexed + Complexed}] = [B] + [BQ]$

And $[Q]_0 = \text{Total } Q \ [\text{Un-complexed + Complexed}] = [Q] + [BQ]$

\[
K_a = \frac{[BQ]}{([B]_0 - [BQ]) ([Q]_0 - [BQ])}
\]

Since $[B] < < [Q]$, $[Q]_0 - [BQ] \approx [Q] \approx [Q]_0$ and fluorescence intensity before is I_0 and after adding sugar, change in intensity is ΔI, then

Boronic acid derivatives	G-Scores	
2IPL	2IPL	
B1	-6.3	-5.4
B2	-4.3	-4.5

![Figure 1. Molecular structures: (a) 2-Methylphenyl boronic acid B1, and (b) 3-Methoxy phenyl boronic acid B2.](image-url)
\[|B| \propto I_0 \Rightarrow |B| = m I_0 \quad |BO| \propto \Delta I \Rightarrow |BO| = n \Delta I \]

Here, \(n, m \) are constants depending on [boronic acid], temperature and path length.

\[
\frac{n \Delta I}{I_0} = \frac{m [Q] K_a}{1 + [Q] K_a} \Rightarrow \frac{I_0}{n \Delta I} = 1 + \frac{[Q] K_a}{m [Q] K_a}
\]

\[
\frac{I_0}{\Delta I} = \frac{n}{m K_a} \times \frac{1}{[Q]} + \frac{n}{m}
\]

(2)

The above equation is linear. It was initially obtained by Benesi-Hildebrand for studying absorption; and then used for studying fluorescence \([37, 38, 39, 40]\). Binding constant \(K_a \) can be calculated using the graph of \((I_0/\Delta I) vs [Q]\) \((K_a = \text{intercept/slope})\). Dissociation constant \((K_D)\) is the reciprocal of \(K_a \).

2.2. Experimental methods

Boronic acids used in our study are 2-Methylphenyl boronic acids (B1), 3-Methoxyphenyl boronic acid (B2) were purchased from Combi-Blocks, USA Figure 1. Monosaccharides (arabinose, fructose, galactose) and disaccharides (sucrose, lactose, galactose) are purchased from Thomas Baker, Mumbai, India. Samples were prepared by dilution method using double distilled water. Boronic acid solutions were prepared in distilled water, concentrations were adjusted to \(1 \times 10^{-4}\)M. The required buffers were prepared by dissolving \(\text{NaH}_2\text{PO}_4\) (0.023M) and \(\text{Na}_2\text{HPO}_4\) (0.077 M) in 1 L of double distilled water, also pH is adjusted to 7.4 by using saturated \(\text{NaOH}\) and 0.1M HCl. Measurement of pH values for all samples is done by Elico LI-120 pH meter which is portable. Further, buffer solvents are used for diluting the boronic acids dissolved in water. Phosphate buffer is commonly used since phosphate ions does not have any

Figure 2. Docked image of compound B1 with 2-IPM protein.

Figure 3. Interaction of compound B1 with amino acid residues of 2-IPL protein.
Figure 4. Docked image of compound B2 with 2-IPM protein.

Figure 5. Interaction of compound B2 with amino acid residues of 2-IPM protein.

Table 2. Fluorescence intensities of B1 upon mixing of sugars in various sugar concentrations [Q].

[Q] mM	Fluorescence Intensities (a. u)					
	Sucrose	Lactose	Maltose	Arabinose	Fructose	Galactose
0	4530	4530	4530	4530	4530	4530
9.8	4395	4070	4252	4288	4443	3625
19.2	4283	3965	4115	4148	4371	3279
37	4113	3870	3958	4035	4313	3010
53.6	3911	3811	3884	3969	4279	2905
69	3778	3791	3872	3905	4258	2850
83.33	3613	3766	3809	3844	4250	2699
96.77	3542	3743	3360	3768	4235	2587
influence on intensity of fluorescence [19]. Stock solutions (0.5M) of all sugars were prepared in distilled water. Using these stock solutions, solutions of different concentrations viz 97mM, 83.3mM, 69.9mM, 53.5mM, 37.0mM, 19.3mM and 9.8mM were prepared using dilution method. Sugar concentration was maintained approximately 100–1000 times more than boronic acids. Spectra of absorption of boronic acid solutions with and without sugar were recorded using uv-visible spectrometer in the range 250–600nm (Shimazdu UV-1800 spectrometer). The fluorescence spectra were recorded at 285nm (excitation wavelength) in quartz cuvettes of perpendicular geometry using fluorescence spectrometer (Hitachi F-2700). Operating voltage was set to 400V and the slit width 5 nm. After the addition of sugar, the fluorescence spectra were recorded within 30 min.

In-silico Maestro software 11.2 version was used in molecular docking of both compounds B1 and B2. From protein data bank, retrieving the crystal structure of galactose binding periplasmic protein (PDB ID: 2IPL and 2IPM) was performed. Using a protein preparation wizard, protein was pre-processed and preparation for docking. Also, refinement of their bond orders, formal charges and missing hydrogen atoms, topologies, incomplete and terminal amide groups was done. Elimination of Water molecules of more than 3Å was done. Protein structures with possible ionization states was generated to choose the best stable state among them. Corrections were carried out in orientations of retained water molecules and hydrogen bonds was assigned. For selection of ligand most

[Q] mM	Fluorescence Intensities (a. u)					
	Sucrose	Lactose	Maltose	Arabinose	Fructose	Galactose
0	2857	2857	2857	2857	2857	2857
9.8	2309	2371	2787	2419	2390	2445
19.2	2250	2265	2730	2207	2171	2158
37	2217	2173	2630	2020	2000	1914
53.6	2198	2158	2463	1890	1940	1757
69	2180	2143	2257	1811	1873	1583
83.3	2178	2130	2229	1722	1859	1370
96.77	2166	2105	2220	1625	1796	1289

Figure 6. Spectra of emission for compounds without and with different concentration of sugar in galactose (a) B1 (b) B2.

Figure 7. Variation of fluorescence intensity with increase in concentration of sugars (a) B1 (b) B2.

Scheme 2. Formation of boronic ester with sugars.
probable binding site on the surface of protein, protein receptor grid generation was performed. With the use of ligand docking module, docking was performed. Results analysis was done with the help of extra precession visualizer (XP visualizer) [5, 6, 7, 8, 9, 10].

3. Results and discussions

3.1. Molecular docking

Protein interaction of compounds 2IPL and 2IPM with glide scores are illustrated in Table 1. 2IPL interaction with B1 has shown G score to be -5.4 kcal/mol with five Hydrogen-bonds with Asp154, Asn256, Asn91 and Pi-Pi stacking interaction with Trp183 where as B2 has shown G score of -4.5 kcal/mol with four Hydrogen-bonds with His152, Asn91, Asp14 and Asp236. The interaction of 2IPM with B1 has shown -6.3 kcal/mol G score with four H-bonds with Asn211, Asp236 twice, Arg158 and stacking interaction Pi-Pi with Trp183 whereas B2 has shown G score -4.3 kcal/mol with four H-bonds with His152, Asn91, Asp14, Asp236 [5]. Results denote that both the compounds have good binding affinity.

Molecular docking results were compared using the two proteins and both of them gave similar results with good agreements. Best affinity mode for B1 which is the docked compound with proteins 2-IPL and 2-IPM is illustrated in Figures2 and 3 whereas Figures4 and 5 indicates that of docked compound B2 with 2-IPL and 2-IPM proteins.

3.2. Change in fluorescence intensities

On adding sugar, the determination of binding constant is done by measuring the intensity of fluorescence of the emission peak. Intensities corresponding to the maxima of emission at different concentrations of sugar level are recorded in Tables 2 and 3. It is observed that the fluorescence intensity decreases with increase in concentration of sugar in all cases. Figure 6 shows the emission spectra of B1 and B2 in the aqueous medium after addition of galactose. Figure 7 shows the fluorescence intensity vs sugar concentration [S] plot. Decrease in the fluorescence intensity shows the binding of sugar with boronic acids is highly effective leading to the formation of boronate ester. It is found to be 21% decrement in arabinose, 23% in galactose, 29% in fructose, 17% in sucrose, 25% in maltose and 27% in lactose. Explanation for the decrement in intensity is, there is an opportunity for an intramolecular hydrogen bonding between O-methyl group and hydrogen atoms of boronic acid. There is a high stability of boronic acid because of the hydrogen bond between oxygen and free boronic acid. The fluorescence intensity is higher as a result of hydrogen bonding in the form of ester, none of the hydrogen atoms are linked to oxygen atoms of boronic acid; so that results to absence of any hydrogen bonding. We can also predict that after adding sugar, the breaking of hydrogen bond might play a key role in decreasing the intensity of fluorescence [22]. Scheme 2 shows formation of boronic ester.

3.3. Binding constants (Kₐ) or determination of association and dissociation constants (Kₒ)

Benesi-Hildebrand plots are constructed using Eq. (2) by taking into account the intensities matching to emission peak for all different concentrations of sugar. A linear variation is observed in the co-efficient which is as shown in Figure 8. The Lineweaver-Burk equation is used to analyze fluorescence data [38]:

\[\frac{1}{\Delta I} = \frac{1}{K_a [Q]} + \frac{1}{f} \]

ΔI is change in fluorescence intensity, [Q] is sugar concentration and f is a constant.

Figure 9 shows \(\frac{1}{\Delta I} \) versus \(\frac{[Q]}{C_0} \) i.e. double reciprocal plots which is observed to have a linear relation. These plots are used for estimating \(K_a \) and \(K_d \) values using the slope and y-intercept. Tables 4 and 5 lists the determined \(K_a \) and \(K_d \) values with R i.e. correlation co-efficient values. L-B plots and B–H plots are used for calculating binding constants which is nearly same. In the case of disaccharides and monosaccharides the
The estimated binding constant is observed to be high. The findings were 124.7 for sucrose and 80.0 for galactose (B–H plot). The corresponding values of dissociation constant are 0.008 mM for sucrose and 0.012 mM for galactose (B–H plot). The binding constant values being in the moderate clinical range, the studied boronic acids are capable of sensing sucrose and galactose in an efficient way. Moreover, selectivity to mono and disaccharides by B1 and B2 can be attributed to changes in structure in saccharides and hydroxyl group availability and relevant explanation is given as follows. Similarly, same results obtained from L-B plot.

Sugars	B–H Plot	L-B Plot				
	K_a (M$^{-1}$)	K_D (mM)	R	K_a (M$^{-1}$)	K_D (mM)	R
Sucrose	124.7	0.008	0.98	123.7	0.009	0.98
Lactose	4.8	0.205	0.99	4.81	0.205	0.99
Maltose	44.5	0.022	0.99	44.3	0.023	0.99
Arabinose	35.3	0.028	0.99	35.1	0.027	0.99
Fructose	26.4	0.037	0.99	26.1	0.036	0.99
Galactose	80.0	0.012	0.99	80.1	0.013	0.99

Sugars	B–H Plot	L-B Plot				
	K_a (M$^{-1}$)	K_D (mM)	R	K_a (M$^{-1}$)	K_D (mM)	R
Sucrose	370.9	0.002	0.98	369.9	0.003	0.98
Lactose	163.6	0.006	0.99	163.4	0.007	0.99
Maltose	0.2	4.402	0.99	0.22	4.400	0.99
Arabinose	51.2	0.019	0.99	51.0	0.018	0.99
Fructose	65.2	0.015	0.99	65.1	0.016	0.99
Galactose	26.1	0.038	0.99	26.3	0.039	0.99

Literature survey makes it evident that, there are various factors that affect binding interaction and complex formation between boronic acids and sugar. One of the key factors responsible for complex formation is the mutarotation of sugar which changes the structure. When sugar is dissolved in water, there is generation of α- and β-furanose and α- and β-pyranose forms because of opening and closing of ring. The furanose and

Table 4. Values of K_a, K_D and R obtained from various plots of B1.

Table 5. Values of K_a, K_D and R obtained from various plots of B2.

Figure 10. Fluorescence life time decay curve without sugar concentration (a) B1 (b) B2.

Figure 11. Lifetime decay with sugar concentration (a) B1 (b) B2.
pyranose forms having configurations α and β are specific forms of anomeric ring present in sugar. Convincing evidence was found for α-D-glucofuranose formation with boronic acids rather than α-D-glucopyranose complexes from NMR investigations by Nørrell and Eggert [28].

The preference of boronic acids for diol of furanose whereas lactose yields dextrose and galactose. Thus, sucrose and lactose are disaccharides which on hydrolysis gives the mixture of two different mono saccharides. Sucrose results in to dextrose and fructose whereas lactose yields dextrose and galactose.

The reason behind it might point towards presence of dextrose which has lower percentage value for α and β furanose form, also binding constant values in disaccharides are not comparatively higher than sucrose and D-galactose. So, the above observations point to the fact that intrinsic structural features of sugar are the factors that govern the binding of boronic acid to sugar. Upon adding glucose there is a 40% of decrement in fluorescence intensity caused due to increment in concentration of sugar shows a 40% of decrement in the mean lifetime. Fluorescence lifetime decay curves without addition of sugar and with 97 mM sugar concentrations are given for both B1 and B2 in Figures 10 and 11. The fluorescence lifetime decay curves are in good agreement with experimental values. The results show that B1 and B2 when labelled with suitable fluorophores, serves as protein sensor for glucose. So, for the increment in binding affinity and selectivity to sucrose and D-galactose, it is a necessity for a more selective recognition element to be built into the system.

4. Conclusions

It is concluded that in both boronic acids, the decrement in fluorescence intensity caused due to increment in concentration of sugar shows that binding interaction between sugar and boronic acid is highly effective and the decrease is attributed to the intramolecular hydrogen bond cleavage on ester formation. Also, values estimated for larger Ks by using L-B plot and B–H plot suggests that compounds under study are more favorable to sugars like sucrose and galactose. Higher values of Ks in these two sugars are as a result of high percentage of their furanose forms. Molecular docking study revealed that both the boronic acid derivatives B1 and B2 showed best suitable binding pattern at the active site by interacting non-covalently with amino acid residues of proteins.

Declarations

Author contribution statement

Raveendra Melavanki: Conceived and designed the experiments; Performed the experiments; Wrote the paper.

N R Patil: Conceived and designed the experiments; Wrote the paper.

Raviraj Kusuran: Performed the experiments; Contributed reagents, materials, analysis tools or data.

Kishor Kumar Sadasivuni, Diksha Singh: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

References

No additional information is available for this paper.
[24] Binghe Wang, Nanjing Ni, Yingji Wang, Sarah Laughlin, Arylboronic acids with strong fluorescence intensity changes upon sugar binding, Heterocycl. Commun. 18 (1) (2012) 23–28.
[25] Spencer D. Dreher, Larry J. Trice, Gary A. Molander, Direct boronic acid synthesis from aryl chlorides: A simplified route to diverse boronate ester derivatives, Chem. Soc. 132 (50) (2010) 17701–17703.
[26] Sh. Shinkai, M. Philips, T. James, The importance of pyranose to furanose interconversion. In boronic acids in saccharide recognition, RSC (2006) 77–82. Cambridge, UK.
[27] H. Egger, J.C. Norrild, Evidence for mono- and bis-identate boronate complexes of glucose in the furanose form. Application of 1Jc-C coupling constants as a structural probe, Chem. Soc. 117 (1995) 1479–1484.
[28] Hari Mohan, K.I. Priyadarsini, Barik Alok, Photophysical studies on binding of curcumin to bovine serum albumin, Photochem. Photobiol. 77 (6) (2003) 597–603.
[29] Nasseem Ahmad El-Khatatn, Mariyam Gilandoust, Shamantha Kumar, B.H. Doreswamy, M. Mahendra, N.R. Bhayya, Computational and spectroscopic investigations on boronic acid based fluorescent carbohydrate sensor in aqueous solution at physiological pH 7.5, J. Mol. Struct. 1194 (15 October 2019) 304–319.
[30] Guo-wei Xing, Zhang-wei Ning, Guang-ian Liu, Xiao-tai Zhang, Boronic acid-based chemical sensors for saccharides, Carbohydr. Res. 452 (27 November 2017) 129–146.
[31] Ronald E. Wrolstad, Food Carbohydrate Chemistry, frit ed., John Wiley & Sons, 2012.
[32] Jens Christian Norrild, Thomas Hoeg-Jensen, Johannes Fabritius Petersen, Jorn Bolstad Christensen, Jon Stefan Hansen, Arylboronic acids: A diabetic eye on carboxylic acid-based fluorescence nano sensor for glucose sensing, Mater. Sci. Eng. C 58 (Jan 2016) 103–109.
[33] J.H. Hildebrand, H.A. Benesi, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2707–2707.
[34] D. Burk, H. Lineweaver, The determination of enzyme dissociation constants, J. Am. Chem. Soc. 56 (3) (1934) 658–666.
[35] Todd A Houston, Milton J Kiefel, Brigid Pappin, Boron-carbohydrate interactions: chap. 3
[36] J.H. Hildebrand, H.A. Benesi, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2707–2707.
[37] Sarat K. Swain, S.K. Basiruddin, Phenyboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing, Mater. Sci. Eng. C 58 (Jan 2016) 103–109.
[38] P Bhayya, Raveendra Melavanki, C K Narayannappa, Raviraj Kusanur, Meghana U and Sama B., Binding interaction between boronic acid derivatives with monosaccharaides: effect of structural change of monosaccharaides upon binding using S-V Plots, Macromolecular Symposia.
[39] Piyush A. Gediya, Sharanappa Nembenna, Shanmugasundar Saravanakumar, Manjunath D. Ghate, Nikum D. Sitwala, Raviraj Kusanur, Dayanand Patagar, Synthesis of novel 4-substituted coumarins, docking studies, and DHODH inhibitory activity, J. Heterocycl. Chem. 56 (10) (2019) 2761–2771.
[40] Emil C Buruiana, Melinte-Tinc Buruiana, Andreea L. Chibac, Fluorescent polymeric sensors containing boronic acid derivatives for sugars and dopamine detection. Sensing characteristics enhancement by Au NPs, Sensor. Actuator. B Chem. 253 (Dec 2017) 987–998.
[41] Yufang Liu, Hua Zhang, Xiaopeng Xuan, Tony D. James, Ge Wang, Yufu Wang, Yuhuan Li, Yonggang Yang, Yuhui Wang, Yuehua Chen, A molecular-logic gate for COX-2 and NAT based on conformational and structural changes: visualizing the progression of liver disease, Chem. Sci. 11 (2020) 6209–6216 (Edge Article).
[42] Nasseem Ahmad El-Khatatn, Mariyam Gilandoust, Shamantha Kumar, B.H. Doreswamy, M. Mahendra, N.R. Bhayya, Computational and spectroscopic investigations on boronic acid based fluorescent carbohydrate sensor in aqueous solution at physiological pH 7.5, J. Mol. Struct. 1194 (15 October 2019) 304–319.
[43] Mehdi Salami-Kalajahi, Mahdi Salami Hoseini, Behrozeh Dehghani, Neutral pH monosaccharide receptor based on boronic acid decorated poly(2-hydroxyethyl methacrylate): Spectral Methods for determination of glucose-binding and ionization constants, Microchem. J. 157 (Sept 2020) 105112.
[44] Eduardo Nieto-Sepulveda, Andrew D. Bage, Louisa E. Evans, Thomas A. Hunt, Andrew G. Leach, Stephen P. Thomas, Guy C. Lloyd-Jones, Kinetics and mechanism of the arase-hoshi R2BH-catalyzed alkyne hydroboration: allylboronate generation via B–H/C–B metathesis, J. Am. Chem. Soc. 141 (46) (2019) 18600–18611.
[45] Sayying Xu, Adam C. Sedgwick, Souaad A. Elfeky, Wensbo Chen, Ashley S. Jones, George T. Williams, A.Toby A. Jenkins, Steven D. Bull, John S. Fossey, Tony D. James, A boronic acid-based fluorescent hydrogel for monosaccharide detection, Front. Chem. Sci. Eng. 14 (2020) 112–116.
[46] Qingxian Wang, Man Fu, Ying Guan, Tony D. James, Yongjun Zhang, Mechanistic insights into the novel glucose-sensitive behavior of P(NIPAM-co-2-AAPBA), Sci. China Chem. 63 (2020) 377–385.
[47] Veronica Forcina, Andres Garcia-Dominguez, C. Guy, Lloyd-Jones, Kinetics of initiation of the third generation grubs metathesis catalyst: convergent associative and dissociative pathways, Faraday Discuss 220 (2019) 179–195.