Editorial: “Global Challenges in Radiation Oncology”

Daniel Grant Petereit¹,²* and C. Norman Coleman²,³

¹Walking Forward Program, Rapid City Regional Cancer Center, Rapid City, SD, USA, ²International Cancer Expert Corps, New York, NY, USA, ³Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA

Keywords: editorial, radiation oncology, global cancer disparities, LMICs

Introduction

In the United States, much of the research is focused on developing new and expensive technologies and drugs that are of great scientific and clinical interest, but usually providing incremental therapeutic benefit. In contrast, in resource-limited countries, basic oncology care is frequently lacking. In addition, the outcomes from various chemo–radiotherapy combinations for a number of malignancies are unknown, as these populations have not been adequately investigated. For oncologists in these countries who have marginal to barely adequate resources, accrual to clinical trials is virtually nonexistent because of the complexities of social and economic issues facing their population, competing comorbidities and lack of access. As a result, there is a tremendous disparity in outcomes for these populations, as compared to those in developed countries.

At first, it may appear odd that radiation oncologists, often associated with high-cost technology, would have leading role in global cancer disparities. However, radiation is a critical treatment modality for the majority of cancers whether the intent is curative or palliative. In fact, a single dose of palliative radiotherapy is more cost effective than a prolonged course of narcotics (1). In addition, for many solid malignancies observed in low to middle income countries (LMICs), such as breast, cervical, head and neck (H&N), upper GI, central nervous system (CNS), and lung cancers, radiation will achieve very effective palliation, and sometimes cure, even when concurrent chemotherapy cannot be given or when oncologic surgeons are unavailable. In addition, radiation oncology centers are often the hub of technologies, such as telemedicine, which can facilitate collaboration with other cancer centers worldwide.

The authors are privileged to be guest editors for this Frontiers Research Topic highlighting the issues addressing global cancer disparities. The authors have asked a number of oncologists from different parts of the world to report their experience and thank them for their time and work over the last year.

Topics covered include systematic review of radiation resources in low and middle income countries, planning national radiotherapy services, human resources for cancer control in Uttar Pradesh, India, locally advanced breast and cervical cancer (India, Africa), patient navigation, the challenges of performing clinical trials in South Africa, the cervical cancer research network (CCRN), the US Cancer Disparities Research Partnership (CDRP), training radiation oncologists in underserved parts of the world, and building sustainable partnerships through the newly formed International Cancer Export Corps (ICEC). The authors discuss “lessons learned” from their populations, practical suggestions to address these disparities, and how we as a global oncology community can address and potentially mitigate these global challenges.

According to the World Bank classification, 139 countries are considered LMICs as their gross national income (GNI) per capita is ≤USD 12,615 (2). The World Health Organization (WHO) report in 2010 and the United Nations declaration in 2012 chronicled the growing burden of non-communicable diseases (NCD) in the developing world (3, 4). In the past decade, the global
incidence of cancer has increased by 20%, mostly because of cases in LMIC (5). By 2020, up to 70% of the 20 million new cancer cases are expected to occur in these countries (6). Furthermore, these countries are not prepared to address this cancer epidemic, and consequently, cancer survival rates are less than one-third of those for site specific cancer types in high-income countries. It is imperative that they develop and sustain the infrastructure needed to prevent, diagnose, and treat this cancer “tsunami” (7). Case burdens are also increasing in rural underserved areas in resource-rich countries with the native/aboriginal populations often having similar access and care issues as LMICs, as the Northern Plains American Indians (AIs) have the highest cancer mortality rate in the United States (8–10).

Cervical cancer is of global interest as almost 85% of the worldwide 530,000 cases in 2012 were diagnosed in developing countries. This is amenable to detection by screening and potentially preventable with vaccination (11, 12). Furthermore, even patients with advanced stages of cervical cancer are still curable if appropriate radiation doses can be given with a combination of external beam radiation and brachytherapy (13). The social and economic impact is substantial as cervical cancer disproportionately affects young women (14–16).

The International Atomic Energy Agency (IAEA) recommends a teletherapy unit, a radiation oncologist, a medical physicist, and two radiotherapists (RTTs) per 250,000 people (17, 18). The inadequacy of radiation oncology services for LMICs is reported by Grover et al. in a systematic review of five international databases. A world map of current teletherapy units from the IAEA is depicted in Figure 1 from the Rosenblatt article (18). In many parts of Africa, there is only one teletherapy unit per 10 million people! The inadequacy of radiation therapy infrastructure from the IAEA–DIRAC database was recently reported by Datta et al. (19). They estimated by 2020, 84 LMICs will need 9,169 teletherapy units, 12,149 radiation oncologists, 9,915 medical physicists, and 29,140 radiation therapy technologists. It is estimated that Africa is functioning at 25% of its potential for treating cervical cancer (20). These projected needs are simply staggering and cannot be allowed to stand.

Determining the human resources needed to treat cancer is a critical first step as it is important to guide investment and progress (21). Daphtry et al. (22) describe a unique methodology for estimating these resources needed in the state of Uttar Pradesh, India, with a population of 200 million. Using the publicly available sources of GLOBOCAN¹ and city population², they explain an enormous need in the state of Uttar Pradesh, India, with the tribulations of an IAEA sponsored phase III trial investigating radiation alone versus chemo-radiation for HIV positive cervical cancer patients. Even with minimal resources to conduct research, they successfully enrolled 81 patients. No clinically relevant conclusions could be drawn because of “relatively” small numbers and incomplete follow-up. Twenty percent of patients were lost to follow-up and 6% died during the first 6 months reflecting advanced stages of disease, impaired nutritional status, and significant medical co-morbidities. Their experience detailed several problematic areas including inadequate radiation therapy equipment, delays in obtaining pathology and imaging promptly, unavailability of chemotherapy drugs, transportation, social and medical co-morbidities, and non-supportive hospital policies with the extra research expenses incurred. Lakier and his co-workers are to be commended for conducting this phase III trial in a very resource-limited environment.

As evident by Lakier, access to cancer clinical trials is scare in LMICs with limited to unavailable research support and infrastructure. The Cervix Cancer Research Network (CCRN) was developed as a potential solution whose overall goal is to promote cervical cancer research and improve access to novel therapies. Of course, basic radiation services are a pre-requisite before novel therapies are considered. The CCRN is a subsidiary of the Gynecologic Cancer Intergroup (GCIG), and was developed under the vision of Dr. Henry Kitchener from the University of Manchester. As described by Grover et al. in a systematic review of five international data-

¹http://globocan.iarc.fr/
²http://www.citypopulation.de/
by Suneja, 17 CCRN site visits have been performed with four multinational clinical trials opened that were deemed suitable. They suggest the use of cell phone technology to increase patient compliance which was problematic in Lakier’s experience. We recently implemented a mobile health technology (mHealth) randomized trial using customized text messaging, counseling, and nicotine replacement to address the high smoking rates among the Northern Plains American Indians (26). In this resource-limited population, recruitment and compliance to this trial has been high. Therefore, the use of mHealth technology for LMIC populations for treatment compliance, follow-up, and clinical trials may be a potential solution.

The disparity of breast cancer in LMIC is evident as it occurs in younger women who present with a higher incidence of locally advanced breast cancer (LABC) when compared with women from developed countries as discussed by Balogun and Formenti. They make the case that “financial resources are likely better invested in public awareness campaigns and training community health workers to educate the public and perform clinical breast exams (CBE) rather than screening mammography” (27–29). Basic chemotherapeutic agents such as paclitaxel, doxorubicin, cyclophosphamide, and tamoxifen, rather than expensive targeted therapy such as herceptin, are recommended for systemic therapy. The dire need for adjuvant external beam radiation is discussed in the context of hypofractionation and concurrent with chemotherapy in order to maximize resources.

To increase access of underserved/health disparate communities to NCI clinical trials, the Radiation Research Program (RRP) piloted a unique model – the Cancer Disparities Research Partnership (CDRP) program. CDRP targeted community hospitals with a limited past NCI funding history and provided funding to establish the infrastructure for their clinical research program. Wong summarizes the results from the initial six CDRP institutions. Key findings from these community-based hospitals include enrolling ~2,300 patients to clinical trials with ~5,100 patients receiving patient navigation (PN) once the infrastructure was established. Another finding is the need for the cooperative groups to develop clinical trials for locally advanced cancers observed in these disparate populations.

American Indians experience tremendous cancer disparities with the highest 5 year mortality rates when compared with other US races (10). PN is a method to mitigate this disparity as presented by Burhanstipanov and co-workers. According to the Affordable Care Act where a navigator is an “insurance broker”, the true model of patient navigation, as created by Freeman, is one who helps patients overcome barriers to accessing and using a specific health care system (30). Burhanstipanov describes a unique model of PN where navigators are AI and part of the community who navigate in a culturally appropriate fashion. In South Dakota, the authors implemented a similar model of PN for the AI community (Walking Forward) where they were able to document improved satisfaction with the health care system and improved treatment compliance for AIs undergoing radiation (8, 31).

International Cancer Expert Corps (ICEC): Building a Sustainable Global Network

Likely because of the magnitude of the problem, when global cancer disparities are discussed, often only the problem is presented, rather than solutions and a logical plan to address these complex economic, social, political, and healthcare inequality issues. Signaling a transformational change to respond both to the global need and to create a sustainable altruistic component to healthcare careers, Coleman and colleagues detail the newly formed ICEC whose goal is to reduce the mortality and improve the quality of life for cancer patients in LMIC. They outline key steps in this process including structured support for dedicated faculty attempting to establish a formal career path, with metrics for human service.

The goal for an ICEC Center, within the LMIC, or geographic access limited setting within resource-rich countries, as often encountered with indigenous populations, is to develop and retain a high-quality sustainable workforce who can provide best possible cancer care for their setting, conduct research, and become a regional center of excellence from which to help other ICEC Centers develop. An international mentoring network of cancer professionals, including many of the contributors to this issue of Frontiers, will work with local and regional in-country groups on projects to develop and sustain expertise and local solutions for better cancer care, as detailed in Figure 1 of the Coleman article (32). The vision is a world in which everyone has access to cost-effective interventions to prevent and treat cancer and its symptoms in ways that are consistent with best possible practices for the local circumstances.

Partnering with and enhancing ongoing global health programs and “twinning” between programs in resource-rich and health disparity communities is an essential tenet of ICEC to help create a critical mass of sustainable expertise, which is difficult to obtain from the independent well-intended smaller programs (i.e., the current model). In essence, ICEC is aiming to create a “public health oncology” road map to “taps into” a global panel of experts to mentor physicians, nurses, scientists, epidemiologists, and other health care and health policy workers from LMICs (33). Global expertise will include academicians, private practitioners, and senior mentors who along with their institution are willing to commit time so that person-to-person relationships will enhance investment in and quality of cancer care where there is a need that must be met by the global community.

Although cancer at the cellular and molecular level is a complex disease that requires multiple interventions for a successful outcome, so too is cancer at the global level as multiple partners are required to address multiple barriers to mitigate these ongoing global cancer disparities. The contributors and their colleagues and partners in this issue of Frontiers are agents of change, addressing a problem that some might consider “too hard”, or “too expensive” … and they are demonstrating that with dedication, support, and commitment, change will occur. Two quotes come to mind from those who have changed the world. Margaret Meade noted: “Never believe that a few caring people can’t change the world. For, indeed, that’s all who ever have”. The authors believe there are a growing number of dedicated and passionate individuals who will transform global oncology sometime in the not too distant future. The authors in the cancer community will smile when they think of the remark by Nelson Mandella, “It always looks hard until it is done!”
References

1. Konski A. Radiotherapy is a cost-effective palliative treatment for patients with bone metastasis from prostate cancer. *Int J Radiat Oncol Biol Phys* (2004) 60(3):1373–8. doi:10.1016/j.ijrobp.2004.03.053

2. World Development Indicators: Size of Economy. The World Bank (2014). (2014 World View); p. Table 1.1.

3. Alwan A. Global status report on noncommunicable diseases. In: Alwan A, editor. *Noncommunicable Diseases and Mental Health*. Geneva: World Health Organization; World Health Organization Library Cataloguing-in-Publication — (2011).

4. Lucas S, Wolfe R. Draft Political Declaration of the High-level Meeting on the Prevention and Control of Non-Communicable Diseases. New York, NY: United Nations General Assembly (2011).

5. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. *Cancer Epidemiol Biomarkers Prev* (2010) 19(9):1893–907. doi:10.1158/1055-9966.EPI-10-0437

6. Farmer P, Frenk J, Knaul FM, Shulman LN, Allelyne G, Armstrong L, et al. Expansion of cancer care and control in countries of low and middle income: a call to action. *Lancet* (2010) 376(9747):1186–93. doi:10.1016/S0140-6736(10)61152-X

7. Reeler AV, Mellstedt H. Cancer in developing countries: challenges and solutions. *Ann Oncol* (2006) 17(Suppl 8):vi7–8. doi:10.1093/annonc/mld981

8. Petereit DG, Guadagnolo BA, Wong R, Coleman CN. Addressing cancer disparities among American Indians through innovative technologies and patient navigation: the walking forward experience. *Front Radiat Oncol* (2011) 1:11. doi:10.3389/fonc.2011.00011

9. Espey DK, Wu XC, Swan J, Wiggins C, Jim MA, Ward E, et al. Annual report to the nation on the status of cancer, 1975–2004, featuring cancer in American Indians and Alaska natives. *Cancer* (2007) 110(10):2119–52. doi:10.1002/cncr.23044

10. White MC, Espey DK, Wu XC, Swan J, Wiggins C, Jim MA, et al. Annual report to the nation on the status of cancer, 1975–2004, featuring cancer in American Indians and Alaska natives. *Cancer* (2007) 110(10):2119–52. doi:10.1002/cncr.23044

11. Sankaranarayanan R. Overview of cervical cancer in the developing world. *Int J Gynecol Obstet* (2006) 95(Suppl 1):S205–10. doi:10.1016/S0020-7292(06)60035-0

12. Organization WH. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. IARC (2012).

13. Petereit DG, Edel P, Thomas G. Cervical cancer. In: Gunderson LL, Tepper JE, Sankaranarayanan R. Overview of cervical cancer in the developing world. *Int J Gynecol Obstet* (2006) 95(Suppl 1):S205–10. doi:10.1016/S0020-7292(06)60035-0

14. Freeman HP. A model patient navigation program: breaking down barriers to ensure that all individuals with cancer receive timely diagnosis and treatment. *Ann Intern Med* (2009) 151(10):716–26. doi:10.7326/0003-4819-151-10-200911170-00008

15. Quanstrum KH, Hayward RA. Lessons from the mammography wars. *N Engl J Med* (2010) 363(11):1076–9. doi:10.1056/NEJMsa1002538

16. Formenti SC, Arslan AA, Love SM. Global breast cancer: the lessons to bring home. *Int J Breast Cancer* (2012) 2012:7. doi:10.1155/2012/249501

17. Freeman HP. A model patient navigation program: breaking down barriers to ensure that all individuals with cancer receive timely diagnosis and treatment. *Ann Intern Med* (2009) 151(10):716–26. doi:10.7326/0003-4819-151-10-200911170-00008

18. Guadagnolo BA, Boylan A, Sargent M, Koop D, Brunette D, Kanekar S, et al. Toward an mHealth intervention for smoking cessation. *Proc COMPSAC* (2013) 345–50. doi:10.1109/COMPSACW.2013.61

19. Daphtary M, Agrawal S, Vikram B. Human resources for cancer control in Uttar Pradesh, India: a case study for low and middle-income countries. *Front Oncol* (2014) 4:237. doi:10.3389/fonc.2014.00237

20. Brinkhoff T. City Population: Population Statistics for Countries, Administrative Areas, Cities and Agglomerations – Interactive Maps and Charts (2015).

21. Einck JP, Hudson A, Shulman AG, Yashar CM, Dieng MM, Diagne M, et al. Implementation of a high-dose-rate brachytherapy program for carcinoma of the cervix in senegal: a pragmatic model for the developing world. *Int J Radiat Oncol Biol Phys* (2014) 89(3):462–7. doi:10.1016/j.ijrobp.2013.12.008

22. Ahsan GM, Addo ID, Ahamed SL, Petereit D, Kanekar S, Burhanstipanov L, et al. Toward an mHealth intervention for smoking cessation. *Proc COMPSAC* (2013) 345–50. doi:10.1109/COMPSACW.2013.61

23. US Preventive Services Task Force. Screening for breast cancer: U.S. preventive services task force recommendation statement. *Ann Intern Med* (2009) 151(10):716–26. doi:10.7326/0003-4819-151-10-200911170-00008

24. Coleman CN, Formenti SC, Williams TR, Petereit DG, Soo KC, Wong J, et al. The International Cancer Expert Corps: a unique approach for sustainable cancer care in low and lower-middle income countries. *Ann Oncol* (2011) 22(11):S205–10. doi:10.1016/j.annonc.2011.07.018

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Peteriet and Coleman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.