O.M. Smorodska, Yu.V. Moskalenko, I.O. Vynnychenko, O.I. Vynnychenko, V.V. Kostuchenko

MODERN VECTOR IN TREATMENT OF PATIENTS WITH LUNG CANCER: TYROSINE KINASE INHIBITORS IN EPIDERMAL GROWTH FACTOR RECEPTOR MUTATIONS (literature review)

Abstract. Modern vector in treatment of patients with lung cancer: tyrosine kinase inhibitors in epidermal growth factor receptor mutations (literature review). Smorodska O.M., Moskalenko Yu.V., Vynnychenko I.O., Vynnychenko O.I., Kostuchenko V.V. Tumor molecular profiling in patients with non-small cell lung cancer (NSCLC) is used to identify driver mutations, which lead to premature carcinogenesis in more than 80% of adenocarcinoma cases, including epidermal growth factor receptor (EGFR) mutations. Identification of specific somatic aberrations allows to personalize treatment. Personalization of treatment resulted in improvement of NSCLC outcomes. The aim of our study was to consider scientific data on modern concepts of treatment of patients with non-small cell lung cancer with previously detected oncogenic mutations, especially EGFR mutation. In our study we analyzed scientific papers and data of international scientific literature on the problem of lung cancer treatment. Methods used: scientific research, analytical and generalizing. Different drugs are used in treatment of lung cancer. Choice of treatment scheme depends on type and presence of mutations. Patients with advanced non-small-cell lung cancer and detected mutation in the EGFR can be treated with tyrosine kinase inhibitors (TKIs). Nowadays three first generation drugs are recommended by FDA: afatinib, erlotinib, gefitinib. They showed good clinical benefit. Most patients with metastatic NSCLC typically show disease progression after approximately 9 to 13 months of erlotinib, gefitinib, or afatinib therapy. The first and only commercially available third-generation EGFR TKI is osimertinib - an oral drug, which selectively inhibits both EGFR-TKI and EGFR T790M resistance mutations. Nowadays scientists are in active investigation of mechanisms of acquired resistance to TKIs, but little is known yet. Clinical success can be observed in patients who were treated with TKIs. EGFR T790M is a mutation that leads to acquired resistance to EGFR TKI therapy. Its incidence is approximately 60% after disease progression on TKI drugs (erlotinib, gefitinib, or afatinib). Third-generation EGFR TKIs demonstrate high efficacy, but acquired resistance development cannot be avoided. Mechanisms of acquired resistance to these agents are still investigated.

Reферат. Сучасний вектор у лікуванні пацієнтів, хворих на рак легень: інгібітори тирозин кінази при ЕГФР мутаціях (огляд літератури). Смородська О.М., Москаленко Ю.В., Винниченко І.О., Винниченко О.І., Костюченко В.В. Молекулярне дослідження пухлин у пацієнтів з недрібноклітинним раком легень (НДРЛ) використовується для визначення драйверних мутацій, що призводять до раннього канцерогенезу в більшій ніж 80% випадках аденоаркарциноми, включаючи мутацію рецептора епідермального фактора росту (ЕГФР). Визначення специфічних соматичних мутацій дозволяє лікувати хворих персоналізовано, що приводить до значного покращення результатів лікування НДРЛ. Метою роботи було вивчення проблеми таргетної терапії НДРЛ шляхом аналізу відповідної наукової літератури. В якості досліджуваного матеріалу було використано дані захворюваних джерел, які досліджують проблематику лікування раку легень. Науковий паук, аналіз та узагальнення були обрані в якості методів. Інгібітори тирозин кінази (TKIs) використовують в якості стандардної терапії першої лінії для лікування пацієнтів з недрібноклітинним раком легень, у яких наявна мутація ЕГФР. До першого покоління інгібіторів тирозин кінази відносять гефітиніб,
EGFR is one of the representatives in the tyrosine kinase receptor family. It is activated by binding dimerization ligand and receptor. This interaction leads to activation of several cellular signaling pathways: phosphoinositide 3 – kinase (PI3K) – AKT pathway, STAT pathway, and MAPK pathway. Activation of these pathways caused increased cell migration, proliferation, angiogenesis, survival and decreased apoptosis [13, 39]. In 2004 activating mutations of EGFR were identified [39]. A lot of activating mutations were described, but only two of them can be found in most cases. These main mutations are called classical activating mutations. The first one is exon 19 deletion. It was found in 85%. The second one is exon 21 L.858R substitution (found in 90%). Presence of any of these two mutations is associated with a good clinical response to EGFR-targeted inhibitor therapies [11, 26, 36, 40, 49]. Clinical trials have shown that about 80% of patients had good results after treatment with tyrosine kinase inhibitors (TKI). Median of progression-free survival (PFS) was about 13 months [41]. It was found that treatment with TKIs improved overall survival compared with chemotherapy among patients with exon 19 deletion, while such improvement was not observed in patients with linked disease L.858R substitution [18, 22, 38, 45, 49].

After 9-13 months of tyrosine kinase inhibitor therapy, 60% of patients develop a specific T790M mutation, linked with acquired resistance to aphantinib, erlotinib or gefitinib [6, 11, 24, 28, 47]. Resistance to treatment with targeted drugs may be primary. Most often, such patients have KRAS mutations or insertions of exon 20, as well as rearrangements of ALK or ROS1 genes [8, 9, 24, 47].

In 1948 Dr. Karnofsky reported that advanced lung cancer responds to cytotoxic chemotherapy. He also noticed that cytotoxic chemotherapy has lower outcomes in the treatment of advanced or metastatic lung cancer [30]. This idea leads to an absolutely new treatment concept of patients with advanced non-small-cell lung cancer with a mutant epidermal
growth factor receptor (EGFR). Thus, EGFR tyrosine kinase inhibitors (TKIs) were chosen as standard first-line therapy [44]. Afatinib gefitinib and erlotinib have shown clinical benefit.

The third phase of clinical studies (IDEAL-1/-2) with gefitinib has shown possibility to use it as second-/ third-line treatment for pretreated patients with advanced non-small-cell lung. Once-daily 250 or 500 mg dose showed high antitumor activity with middle degree of toxicity (overall response rate – 9% to 19%; overall survival – 6 to 8 months) [37].

INTACT-1 and -2 study analyzes benefit of gefatinib vs platinum-doublet chemotherapy for treatment of patients with unresectable stage III/IV NSCLC. In this clinical trial chemotherapy-naive patients were randomly divided into two groups: first group was treated with gefitinib, while second received placebo in combination with platinum-doublet chemotherapy. There were no additional benefits observed in the main indicators of survival and prognosis compared with standard chemotherapy. In 2003 based on the results of INTACT gefitinib was approved by the US FDA as monotherapy for patient with locally advanced or metastatic NSCLC after completion of the classic scheme of cytotoxic chemotherapy [35, 44].

Since 2004 erlotinib has been used to treat patients with locally advanced or / and metastatic NSCLC. It was prescribed after at least one previous chemotherapy regimen [19, 33]. For patients with sensitizing EGFR mutations, the FDA has permitted the use of this drug as first-line therapy in the case of metastatic, recurrent, or progressive tumors [17, 19]. Treatment of patients with the most common activating EGFR mutations with the first generation EGFR TKIs lead to good clinical success [4, 33]. Reliable data were obtained in a randomized phase III study (IPASS). Patients with EGFR sensitizing mutations receiving gefitinib had significantly higher survival and better quality of life compared with the group of patients treated with paclitaxel and carboplatin (standard chemotherapy) [16]. A significant improvement in disease-free survival up to 11.8 months when using erlotinib as a first-line therapy is reported in Chinese studies on phase III OPTIMAL and phase II JO22903 [15].

The aim of the updated study (CALGB 30406) was to compare treatment with erlotinib and its combination with chemotherapy in patients (predominantly white) with longstanding lung cancer. Patients receiving erlotinib as monotherapy had fewer side effects compared with chemotherapy and erlotinib group. If EGFR sensitizing mutations are detected during chemotherapy, it was recommended to discontinue or finish planned chemotherapy and switch to target therapy. According to the NCCN guidelines based on the CALGB study, it is not recommended to combine erlotinib, gefitinib or afatinib with chemotherapy. If the patient has a progression of the disease, but has no clinical symptoms, it is possible to continue target therapy [34].

A similar drug was afatinib. It has slightly more side effects than erlotinib or gefitinib, but has been approved by the FDA as a first-line therapy drug [2, 17, 25, 40].

It is a proven fact that the progression of the disease begins about a year after taking targeted drugs. EGFR T790M mutation occurs, which indicates the development of resistance to therapy with TKI [31, 35]. Occurrence of T790M mutation in exon 20 of the EGFR gene leads to loosing of efficacy of quinazoline-based first-generation EGFR TKI. Loosing of efficacy is observed due to absence of opportunity to bind to the ATP binding pocket at a receptor, which decreases efficacy of inhibition of signaling in future. Biology and epidemiology of the T790M resistance mutation has been studied well. For targeting at T790M mutation, third-generation EGFR TKIs were designed [1, 20]. Pyrimidines named WZ3146, WZ4002 and WZ8040 were investigated and WZ4002 was found to be the most powerful against EGFR T790M. However, the drug has not been approved by the FDA [20].

The only commercially available third-generation TKI is osimertinib. Osimertinib is a third-generation EGFR-TKI. One of its benefits is that the drug is used orally. It can selectively inhibit both sensitizing to EGFR-TKI mutations and EGFR T790M resistance mutations. But it has lower activity against wild-type. Positive results of the AURA clinical trial let osimertinib be approved worldwide for the treatment of patients with the T790M mutation, which arose during treatment with TKIs of previous generation [8, 38].

A randomized study of phase III EGFRA (among patients with EGFR T790M-positive metastatic NSCLC), evaluating platinum and pemetrexed chemotherapy against osimertinib was performed. The study showed that treatment with osimertinib increased PFS compared with standard chemotherapy (10.1 vs 4.4 months), especially among patients with CNS metastases. The disease controlled rate was higher in patients treated with osimertinib compared with standard chemotherapy (93% vs 74%) [10].

It was found, that osimertinib showed good clinical benefits for treatment of patients with metastatic EGFR T790M-positive NSCLC with disease progression after or during TKI EGFR therapy. Due to this the FDA approved it. Later osimertinib was also recommended by the NCCN [34, 38].
Even after disease progression, it is recommended to continue treatment with erlotinib, gefitinib or afatinib as this is beneficial for the patient. It is known that discontinuation of therapy leads to faster progression of the disease (appearance of symptoms, increase in tumor size and deterioration of the response during PET scan) [32].

In 2017, the NCCN group made adjustments to the treatment protocols of patients with EGFR sensitizing mutations which progressed on erlotinib, gefitinib, or afatinib. After review, osimertinib was recommended for the treatment of patients with symptomatic brain metastases. As an alternative treatment regimen, continuation of afatinib, erlotinib or gefitinib therapy was suggested for this group of patients. When continuing therapy, it was recommended to add or modify additional therapy (e.g. local or systemic therapy). First-line systemic therapy combinations were recommended for patients who have multiple symptomatic lesions and were not sensitive to T790M. If the patient was positive for T790M, it was recommended to include osimertinib in his therapy [34].

Other mechanisms of resistance are multivariable. They include HER2 and/or MET amplification, PIK3CA and/or BRAF mutation, and small cell lung cancer transformation. Their incidence is much lower than the T790M mutation. Extremely rare these mutations or amplifications occurred together with T790M mutation [43, 46].

CONCLUSIONS

1. Clinical success was observed in treatment with the first generation EGFR TKIs. Similar results were observed in patients with the most common EGFR activating mutations.

2. Presence of 790M mutation in EGFR leads to resistance to TKI therapy. Its incidence is approximately in 60% among patients with disease progression on TKI drugs (erlotinib, gefitinib, or afatinib).

3. Third-generation TKIs of EGFR demonstrate high efficacy, but acquired resistance development cannot be avoided.

4. Reasons and ways of development of acquired resistance to these agents are still investigated.

Conflict of interest. The authors declare no conflict of interest.

This research was performed as part of the research topics of Department of Oncology and Radiology of Sumy State University № 0118U003570 "Efficiency of liquid biopsy and tissue biopsy in the diagnosis and treatment of malignant tumors”.

REFERENCES

1. Zhang Y, Chen Z, Zhang X, Xu C, Yan H, Xie Z, et al. Analysis of resistance mechanisms to abirateronib, a third-generation EGFR tyrosine kinase inhibitor, in patients with EGFR T790M-positive non-small cell lung cancer from a phase I trial. EBioMedicine. 2019;43:180-7. doi: https://doi.org/10.1016/j.ebiom.2019.04.030

2. Goto K, Nishio M, Yamamoto N, Chikamori K, Hida T, Maemondo M, et al. A prospective, phase II, open-label study (JO22903) of first-line erlotinib in Japanese patients with epidermal growth factor receptor (EGFR) mutation-positive advanced non-small-cell lung cancer (NSCLC). Lung Cancer. 2013;82:109-14. doi: https://doi.org/10.1016/j.lungcan.2013.07.003

3. Chen R, Chen H, Jiang B, Zhang X, Zhou Q, Tu H, et al. Bevacizumab plus chemotherapy for patients with advanced pulmonary adenocarcinoma harboring EGFR mutations. Clinical and Translational Oncology. 2017;20(2):243-52. doi: https://doi.org/10.1007/s12094-017-1714-2

4. Yang JC, Sequist LV, Geater SL, Tsai CM, Mok TS, Schuler M, et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015;16(7):830-8. doi: https://doi.org/10.1016/S1470-2045(15)00026-1

5. Lou N, Zhang X, Chen H, Zhou Q, Yan L, Xie Z, et al. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutatio, ALK rearrangement and EGFR/ALK co-alterations. Oncotarget. 2016;7(40):65185-95. doi: https://doi.org/10.18632/oncotarget.11218

6. Da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: https://doi.org/10.1146/annurev-pathol-011110-130206

7. Dearden S, Stevens J, Wu YL and Blowers D. Mutation incidence and coincidence in non-small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 2013;24:2371-6. doi: https://doi.org/10.1093/annonc/mdt205

8. Finlay MR, Anderton M, Ashton S, Ballard P, Bethel PA, Box MR, et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J Med Chem. 2014;57:8249-67. doi: https://doi.org/10.1021/jm500973a

9. Tetsu O, Hangauer M, Phuchareon J, Eisele D, McCormick F. Drug Resistance to EGFR Inhibitors in Lung Cancer. Chemotherapy. 2016;61(5):223-35. doi: https://doi.org/10.1159/000443368

10. Dungo RT, Keating GM. Afatinib: first global approval. Drugs. 2013;73:1503-15. doi: https://doi.org/10.1007/s40265-013-0111-6

11. Yi L, Fan J, Qian R, Luo P, Zhang J. Efficacy and safety of osimertinib in treating EGFR-mutated advanced NSCLC: A meta-analysis. International Journal of Cancer. 2019;145(1):284-94. doi: https://doi.org/10.1002/ijc.32097
12. Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12:220-9. doi: https://doi.org/10.1158/1535-7163.MCT-12-0620

13. Konduri K, Gallant J, Chae Y, Giles F, Gillitiz B, Gowen K, et al. EGFR Fusions as Novel Therapeutic Targets in Lung Cancer. Cancer Discovery. 2016;6(6):601-11. doi: https://doi.org/10.1158/2159-8290.CD-16-0075

14. Ripamonti F, Albano L, Rossini A, et al. EGFR through STAT3 modulates ΔN63α expression to sustain tumor-initiating cell proliferation in squamous cell carcinomas. J Cell Physiol. 2013;228:871-8. doi: https://doi.org/10.1002/jcp.24238

15. Antonicelli A, Cafarotti S, Indini A, Galli A, Russo A, Cesario A et al. EGFR-targeted therapy for non-small cell lung cancer: focus on EGFR oncogenic mutation. Int J Med Sci. 2013;10:320-30. doi: https://doi.org/10.7150/ijms.4609

16. Shepherd FA, Pereira JR, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353(2):123-32. doi: https://doi.org/10.1056/NEJMoa050753

17. Jiang Y, Zhang J, Huang J, Xu B, Li N, Cao L, et al. Erlotinib versus gefitinib for brain metastases in Asian patients with exon 19 EGFR-mutant lung adenocarcinoma: a retrospective, multicenter study. BMC Pulmonary Medicine. 2018;18(1).

18. Yu X, Zhang X, Zhang Z, Lin Y, Wen Y, Chen Y, et al. First-generation EGFR tyrosine kinase inhibitor therapy in 106 patients with compound EGFR-mutated lung cancer: a single institution’s clinical practice experience. Cancer Communications. 2018;38(1):51. doi: https://doi.org/10.1186/s40880-018-0329-7

19. Giaccone G, Herbst RS, Maneogld C, Scaglotti G, Rosell R, Natale VMRB, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial – INTACT 1. J Clin Oncol. 2004;22(5):775-84. doi: https://doi.org/10.1200/JCO.2004.08.001

20. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947-57. doi: https://doi.org/10.1056/NEJMoa0810699

21. Chang C, Lee C, Ko J, Chang L, Lee M, Wang J, et al. Gefitinib or erlotinib in previously treated non-small-cell lung cancer patients: a cohort study in Taiwan. Cancer Medicine. 2017;6(7):1563-72. doi: https://doi.org/10.1002/cam4.1121

22. Chang I, Jiang S, Yang J, Su W, Chien L, Hsiao C, et al. Genetic Modifiers of Progression-Free Survival in Never-Smoking Lung Adenocarcinoma Patients Treated with First-Line Tyrosine Kinase Inhibitors. American Journal of Respiratory and Critical Care Medicine. 2017;195(5):663-73. doi: https://doi.org/10.1164/ajrccm.201602-0300OC

23. Im J, Herrmann A, Bernatchez C, Haymaker C, Molldrem J, Hong W, et al. Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer. PLOS ONE. 2016;11(7):e0160004. doi: https://doi.org/10.1371/journal.pone.0160004

24. Santoni-Rugiu E, Melchior L, Urbanska E, Jakobsen J, Stricker K, Grauslund M, et al. Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance. Cancers. 2019;11(7):923.

25. Ke E, Wu Y. Afatinib in the first-line treatment of epidermal-growth-factor-receptor mutation-positive non-small cell lung cancer: a review of the clinical evidence. Therapeutic Advances in Respiratory Disease. 2016;10(3):256-64. doi: https://doi.org/10.1177/1753465816634545

26. Kennedy BJ. The snail’s pace of lung carcinoma chemotherapy cancer. Cancer. 1998;82(5):801-3. doi: https://doi.org/10.1002/(SICI)1097-0142(19980301)82:5<801::AID-CNCR1>3.0.CO;2-M

27. Liu X, Wang P, Zhang C, Ma Z. Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget. 2017;8(30):50209-20. doi: https://doi.org/10.18632/oncotarget.16854

28. Westover D, Zugazagoitia J, Cho B, Lovly C, Paz-Ares L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Annals of Oncology. 2018;29:10-19. doi: https://doi.org/10.1093/annonc/mdx703

29. Midha A, Dearden S, McCormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Cancer Res. 2015;5(9):2892-911. PMID: 26609494; PMCID: PMC4633915.

30. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Nishiwaki J, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol. 2003;21(12):2237-46. doi: https://doi.org/10.1200/JCO.2003.10.038

31. Ettinger DS, Wood D E, Aisner D L, Akerley W, Bauman J, Chirieac LR, et al. Non-Small Cell Lung Cancer, Version 5.2017. Clinical Practice Guidelines in Oncology.JNCCN.2017;15(4):504-534. doi: https://doi.org/10.6004/jnccn.2017.0050

32. Zhou W, Ercan D, Chen I, Yun CH, Li D, Chapelletti M, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2000;462(7276):1070-4. doi: https://doi.org/10.1038/nature08622

33. Wen F, Zheng H, Zhang P, Hutton D, Li Q. OPTIMAL and ENSURE trials-based combined cost-effectiveness analysis of erlotinib versus chemotherapy for the first-line treatment of Asian patients with non-squamous non-small-cell lung cancer. BMJ Open. 2018;8(4):e020128. doi: https://doi.org/10.1136/bmjopen-2017-020128

34. Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, et al. Osimertinib or platinum-
pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376:629-40. doi: https://doi.org/10.1056/NEJMo1612674

35. Pakkal S, Ramalingam S. Personalized therapy for lung cancer: Striking a moving target. JCI Insight. 2018;3(15):120858. doi: https://doi.org/10.1172/jci.insight.120858

36. Bonomi P, Gandara D, Hirsch F, Kerr K, Obasa C, Paz-Ares L, et al. Predictive biomarkers for response to EGFR-directed monoclonal antibodies for advanced squamous cell lung cancer. Annals of Oncology. 2018;29(8):1701-9. doi: https://doi.org/10.1093/annonc/mdy196

37. Riely GJ, Kris MG, Zhao B, Tim A, Milton DT, Moore E, et al. Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus. Clin Cancer Res. 2007;13:5150-5. doi: https://doi.org/10.1158/1078-0432.CCR-07-0560

38. Leonetti A, Sharma S, Minari R, Perogo P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. British Journal of Cancer. 2019;121(9):725-37. doi: https://doi.org/10.1038/s41416-019-01573-8

39. Paik PK, Varghese AM, Sima CS, Moreira AL, Ladanyi M, Kris MG, et al. Response to erlotinib in patients with EGFR mutant advanced non-small cell lung cancers with a squamous or squamous-like component. Mol Cancer Ther. 2012;11:2535-40. doi: https://doi.org/10.1158/1535-7163.MCT-12-0163

40. Ricciuti B, Baglivo S, De Giglio A, Chiari R. Afatinib in the first-line treatment of patients with non-small cell lung cancer: clinical evidence and experience. Therapeutic Advances in Respiratory Disease. 2018;12:17534661880865. doi: https://doi.org/10.1177/175346618808659

41. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169-81. doi: https://doi.org/10.1038/nrc2088

42. Siegel R, Naishadham D, Jemal A. Cancer statistics 2013. CA Cancer J Clin 2013;63:11-30. doi: https://doi.org/10.3322/caac.21166

43. Soria J-C, Ohe Y, Vansteenkiste J, Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer N Engl J Med. 2018;378(2):113-25. doi: https://doi.org/10.1056/NEJMo1713137

44. Stewart EL, Tan SZ, Liu G. Known and putative mechanism of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res. 2015;4(1):67-81. doi: https://doi.org/10.3978/j.issn.2218-6751.2014.11.06

45. Masters GA, Temin S, Azzoli CG, Giaccone G, Baker S, Brahmer JR, et al. Systemic therapy for Stage IV non small cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline update. J Clin Oncol. 2015;33:3488-515. doi: https://doi.org/10.1200/JCO.2015.62.1342

46. Gou L, Li A, Yang J, Zhang X, Su J, Yan H, et al. The coexistence of MET over-expression and an EGFR T790M mutation is related to acquired resistance to EGFR tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget. 2016;7(32):51311-9. doi: https://doi.org/10.18632/oncotarget.9697

47. Tseng J, Su K, Yang T, Chen K, Hsu K, Chen H, et al. The emergence of T790M mutation in EGFR-mutant lung adenocarcinoma patients having a history of acquired resistance to EGFR-TKI: focus on rebiopsy timing and long-term existence of T790M. Oncotarget. 2016;7(30):48059-69. doi: https://doi.org/10.18632/oncotarget.10351

48. Ochiai S, Nomoto Y, Watanabe Y, Yamashita Y, Toyomasu Y, Kawamura T, et al. The impact of epidermal growth factor receptor mutations on patterns of disease recurrence after chemoradiotherapy for locally advanced non–small cell lung cancer: a literature review and pooled analysis. Journal of Radiation Research. 2016;57(5):449-59. doi: https://doi.org/10.1093/jrr/rrw075

49. Wu S, Shih J. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer. Molecular Cancer. 2018;17(1). doi: https://doi.org/10.1186/s12943-018-0777-1

50. Zhang C, Leighl N, Wu Y, Zhong W. Emerging therapies for non-small cell lung cancer. Journal of Hematology & Oncology. 2019;12(1). doi: https://doi.org/10.1186/s13045-019-0731-8

СПИСОК ЛІТЕРАТУРИ

1. Analysis of resistance mechanisms to abivotinib, a third-generation EGFR tyrosine kinase inhibitor, in patients with EGFR T790M-negative non-small cell lung cancer from a phase I trial / Y. Zhang et al. EBioMedicine. 2019. Vol. 43. P. 180-187. DOI: https://doi.org/10.1016/j.ebiom.2019.04.030

2. A prospective, phase II, open-label study (JOO22903) of first-line erlotinib in Japanese patients with epidermal growth factor receptor (EGFR) mutation-positive advanced non-small-cell lung cancer (NSCLC) / K. Goto et al. Lung Cancer. 2013. Vol. 82. P. 109-114. DOI: https://doi.org/10.1016/j.lungcan.2013.07.003

3. Bevacizumab plus chemotherapy for patients with advanced pulmonary adenocarcinoma harboring EGFR mutations / R. Chen et al. Clinical and Translational Oncology. 2017. Vol. 20, No. 2. P. 243-252. DOI: https://doi.org/10.1007/s12943-018-0777-1

4. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6 / J.C. Yang et al. Lancet Oncol. 2015. Vol. 16, No. 7. P. 830-838. DOI: https://doi.org/10.1016/S1470-2245(15)00026-1
5. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutatio, ALK rearrangement and EGFR/ALK co-alterations / N. Lou, et al. Oncotarget. 2016. Vol. 7, No. 40. P. 65185-65195. DOI: https://doi.org/10.18632/oncotarget.11218

6. Da Cunha Santos G., Shepherd F. A., Tsao M. S. EGFR mutations and lung cancer. Annu Rev Pathol. 2011. Vol. 6. P. 49-69. DOI: https://doi.org/10.1146/annurev-pathol-011110-130206

7. Dearden S., Stevens J., Wu Y. L., Blowers D. Mutation incidence and coincidence in non-small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 2013. Vol. 24. P. 2371-2376. DOI: https://doi.org/10.1093/annonc/mdt205

8. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor / M. R. Finlay et al. J Med Chem. 2014. Vol. 57. P. 8249-8267. DOI: https://doi.org/10.1021/jm500973a

9. Drug Resistance to EGFR Inhibitors in Lung Cancer / O. Tetsu et al. Chemotherapy. 2016. Vol. 61, No. 5. P. 223-235. DOI: https://doi.org/10.1159/00043368

10. Dungo RT. Keating G. M. Afatinib: first global approval. Drugs. 2013. Vol. 73. P. 1503-1515. DOI: https://doi.org/10.1007/s00265-013-1111-6

11. Efficacy and safety of osimertinib in treating EGFR-mutated advanced NSCLC: A meta-analysis / L. Yi et al. International Journal of Cancer. 2019. Vol. 145, No. 1. P. 284-294. DOI: https://doi.org/10.1002/ijc.32097

12. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics / M. E. Arcila et al. Mol Cancer Ther. 2013. Vol. 12. P. 220-229. DOI: https://doi.org/10.1158/1535-7163.MCT-12-0620

13. EGFR Fusions as Novel Therapeutic Targets in Lung Cancer / K. Konduri et al. Cancer Discovery. 2016. Vol. 6, No. 6. P. 601-611. DOI: https://doi.org/10.1158/2159-8290.CD-16-0075

14. EGFR through STAT3 modulates ΔN63α expression to sustain tumor-initiating cell proliferation in squamous cell carcinomas / F. Ripamonti et al. J Cell Physiol. 2013. Vol. 228. P. 871-878. DOI: https://doi.org/10.1002/jcp.24238

15. EGFR-targeted therapy for non-small cell lung cancer: focus on EGFR oncogenic mutation / A. Antonicelli et al. Int J Med Sci. 2013. Vol. 10. P. 320-330. DOI: https://doi.org/10.7150/ijms.4609

16. Erlotinib in previously treated non-small-cell lung cancer / F. A. Shepherd et al. N Engl J Med. 2005. Vol. 353, No. 2. P. 123-132. DOI: https://doi.org/10.1056/NEJMoa050753

17. Erlotinib versus gefitinib for brain metastases in Asian patients with exon 19 EGFR-mutant lung adenocarcinoma: a retrospective, multicenter study / Y. Jiang J et al. BMC Pulmonary Medicine. 2018. Vol. 186 No. 1. DOI: https://doi.org/10.1186/s12890-018-0734-1

18. First-generation EGFR tyrosine kinase inhibitor therapy in 106 patients with compound EGFR-mutated lung cancer: a single institution's clinical practice experience / X. Yu et al. Cancer Communications. 2018. Vol. 38, No. 1. P. 51. DOI: https://doi.org/10.1186/s40880-018-0321-0

19. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial – INTACT I / G. Giaccone et al. J Clin Oncol. 2004. Vol. 22, No. 5. P. 777-784. DOI: https://doi.org/10.1200/JCO.2004.08.001

20. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma / T. S. Mok et al. N Engl J Med. 2009. Vol. 361. P. 947-957. DOI: https://doi.org/10.1056/NEJMoa0810699

21. Gefitinib or erlotinib in previously treated non-small-cell lung cancer patients: a cohort study in Taiwan / C. Chang et al. Cancer Medicine. 2017. Vol. 6, No. 7. P. 1563-1572. DOI: https://doi.org/10.1002/cam4.1121

22. Genetic Modifiers of Progression-Free Survival in Never-Smoking Lung Adenocarcinoma Patients Treated with First-Line Tyrosine Kinase Inhibitors / I. Chang et al. American Journal of Respiratory and Critical Care Medicine. 2017. Vol. 195, No. 5. P. 663-673. DOI: https://doi.org/10.1164/rccm.201602-0300OC

23. Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer / J. Im et al. PLOS ONE. 2016. Vol. 11, No. 7. P. e0160004. DOI: https://doi.org/10.1371/journal.pone.0160004

24. Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance / E. Santoni-Rugiu et al. Cancers. 2019. Vol. 11, No. 7. P. 923. DOI: https://doi.org/10.3390/cancers11070923

25. Ke E., Wu Y. Afatinib in the first-line treatment of epidermal-growth-factor-receptor mutation-positive non-small cell lung cancer: a review of the clinical evidence. Therapeutic Advances in Respiratory Disease. 2016. Vol. 10, No. 3. P. 256-264. DOI: https://doi.org/10.1177/175346816634545

26. Kennedy B. J. The snail’s pace of lung carcinoma chemotherapy cancer. Cancer. 1998. Vol. 82, No. 5. P. 801-803. DOI: https://doi.org/10.1002/(SICI)1097-0142(19980301)82:5<801::AID-CNCR1>3.0.CO;2-M

27. Liu X., Wang P., Zhang C., Ma Z. Epidermal growth factor receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget. 2017. Vol. 8, No. 30. P. 50209-50220. DOI: https://doi.org/10.18632/oncotarget.16854

28. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors / D. Westover et al. Annals of Oncology. 2018. Vol. 29. P. 10-19. DOI: https://doi.org/10.1093/annonc/mdx703

29. Midha A., Dearden S., McCormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Cancer Res. 2015. Vol. 5, No. 9. P. 2892-2911. PMID: 26609494; PMCID: PMC4633915.

30. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer / M. Fukuoka et al. J Clin
For the first-line treatment of patients with non-squamous or squamous-like component / P. K. Paik et al.

Novel mutant-selective EGFR kinase inhibitors against EGFR T790M / W. Zhou et al. Nature. 2000. Vol. 462, No. 7276. P. 1070-1074.

DOI: https://doi.org/10.1038/nature06822

33. OPTIMAL and ENSURE trials-based combined cost-effectiveness analysis of erlotinib versus chemotherapy for the first-line treatment of Asian patients with non-squamous non-small-cell lung cancer / F. Wen et al. BMJ Open. 2018. Vol. 8, No. 4. P. e020128.

DOI: https://doi.org/10.1136/bmjopen-2017-020128

34. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer / T. S. Mok et al. N Engl J Med. 2017. Vol. 376. P. 629-640. DOI: https://doi.org/10.1056/NEJMoa1612674

35. Pakkala S., Ramalingam S. Personalized therapy for lung cancer: Striking a moving target. JCI Insight. 2018. Vol. 3, No. 15. P. 120858.

DOI: https://doi.org/10.1172/jci.insight.120858

36. Predictive biomarkers for response to EGFR-directed monoclonal antibodies for advanced squamous cell lung cancer / P. Bonomi et al. Annals of Oncology. 2018. Vol. 29, No. 8. P. 1701-1709.

DOI: https://doi.org/10.1093/annonc/mdy196

37. Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus / G. J. Riely et al. Clin Cancer Res. 2007. Vol. 13. P. 5150-5155.

DOI: https://doi.org/10.1158/1078-0432.CCR-07-0560

38. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer / A. Leonetti et al. British Journal of Cancer. 2019. Vol. 121, No. 9. P. 725-737. DOI: https://doi.org/10.1038/s41416-019-0573-8

39. Response to erlotinib in patients with EGFR mutant advanced non-small cell lung cancers with a squamous or squamous-like component / P. K. Paik et al. Mol Cancer Ther. 2012. Vol. 11. P. 2535-2540.

DOI: https://doi.org/10.1158/1535-7163.MCT-12-0163

40. Ricciuti B., Baglivo S., De Giglio A., Chiari R. Afatinib in the first-line treatment of patients with non-small cell lung cancer: clinical evidence and experience. Therapeutic Advances in Respiratory Disease. 2018. Vol. 12. P. 1753466618808659.

DOI: https://doi.org/10.1177/1753466618808659

41. Sharma S. V., Bell D. W., Settleman J., Haber D. A. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007. Vol. 7. P. 169-181.

DOI: https://doi.org/10.1038/nrc2088

42. Siegel R., Naishadham D., Jemal A. Cancer statistics 2013. CA Cancer J Clin. 2013. Vol. 63. P. 11-30.

DOI: https://doi.org/10.3322/caac.21166

43. Soria J.-C., Ohe Y., Vansteenkiste J. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med. 2018. Vol. 378, No. 2. P. 113-125.

DOI: https://doi.org/10.1056/NEJMoa1713137

44. Stewart E. L. Tan S. Z., Liu G. Known and putative mechanism of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res. 2015. Vol. 4, No. 1. P. 67-81.

DOI: https://doi.org/10.3978/j.issn.2218-6751.2014.11.06

45. Systemic therapy for Stage IV non small cell lung cancer: American Society of Clinical Oncology Clinical Practice Guideline update / G. A. Masters et al. J Clin Oncol. 2015. Vol. 33. P. 3488-3515.

DOI: https://doi.org/10.1200/JCO.2015.62.1342

46. The coexistence of MET over-expression and an EGFR T790M mutation is related to acquired resistance to EGFR tyrosine kinase inhibitors in advanced non-small cell lung cancer / L. Gou et al. Oncotarget. 2016. Vol. 7, No. 32. P. 51311-51319.

DOI: https://doi.org/10.18632/oncotarget.9697

47. The emergence of T790M mutation in EGFR-mutant lung adenocarcinoma patients having a history of acquired resistance to EGFR-TKI: focus on rebiopsy timing and long-term existence of T790M / J. Tseng et al. Oncotarget. 2016. Vol. 7, No. 30. P. 48059-48069.

DOI: https://doi.org/10.18632/oncotarget.10351

48. The impact of epidermal growth factor receptor mutations on patterns of disease recurrence after chemoradiotherapy for locally advanced non–small cell lung cancer: a literature review and pooled analysis / S. Ochiai et al. Journal of Radiation Research. 2016. Vol. 57, No. 5. P. 449-459.

DOI: https://doi.org/10.1093/jrr/rrw075

49. Wu S., Shih J. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer. Molecular Cancer. 2018. Vol. 17, No. 1.

DOI: https://doi.org/10.1186/s12943-018-0777-1

50. Zhang C., Leighl N., Wu Y., Zhong W. Emerging therapies for non-small cell lung cancer. Journal of Hematology & Oncology. 2019. Vol. 12, No. 1.

DOI: https://doi.org/10.1186/s13045-019-0731-8

Стаття надійшла до редакції 05.02.2020