Cosmic Gamma-ray Bursts
Lectures Presented at XXVII ITEP Winter School,
Snegiri, Feb. 16 – 24, 1999

Sergei Blinnikov 1,2

1Institute for Theoretical and Experimental Physics, 117259 Moscow, Russia
2Sternberg Astronomical Institute, 119899 Moscow, Russia
sergei.blinnikov@itep.ru, blinn@sai.msu.su

Abstract

The properties of the cosmic Gamma-ray Bursts (GRBs) are briefly summarized. A detailed bibliography is given with titles of the papers. Two fundamental theoretical problems are pointed out: the problem of the energy source, and the problem of compactness. I demonstrate some inconsistencies in the estimates of the fireball optical thickness that are widely used in the discussion of the latter problem. The possible connection of GRBs with the Dark Matter candidates is mentioned. I argue that GRBs can be produced by collapses or mergers of stars made of one probable Dark Matter candidate, namely the mirror particles. I speculate on the impact that the parameters of the neutrino oscillations might have on the observed properties of GRBs if the latter are the products of mirror star deaths.

Keywords: Gamma-rays: bursts — dark matter — stars: mirror — neutrino oscillations
Cosmic Gamma-ray Bursts (GRBs) are irregular pulses of photons peaking near \(\sim 0.1 - 1 \) MeV, with duration from a fraction of second to minutes. Typical values of their fluence (exposition) are near \(F \sim 10^{-7} \) ergs/cm\(^2\) \(\sim \) 1 photon/cm\(^2\) and are determined primarily by the threshold of the sensitivity of the detectors. Some of GRBs have much higher fluences and fluxes. Here I use astronomical terminology, so the flux is the power of radiation coming through a unit surface. GRBs are discovered three decades ago by the Vela satellites that had a mission to check the observance of the Moscow-1963 nuclear test-ban treaty. Announced by Klebesadel et al. (1973), this discovery was quickly confirmed for the burst on 17 January 1972, i.e. GRB 720117 in modern notation, by Soviet Kosmos-461 measurements (Mazets et al., 1974). In subsequent years many satellites and interplanetary missions have observed the bursts. Before the first publication by the Vela group, some dramatic pages in the story were written by the Kosmos-428 team, led by Melioransky: Bratoliubova-Tsulukidze et al. (1973) reported about hard X-ray transients, which they later (Babushkina et al., 1975a) found similar to GRBs described by Klebesadel et al. (1973). It is remarkable that the short communication of Kosmos-428 results was published even earlier than the Vela paper was submitted! Unfortunately, the data of the Kosmos-428 team (Babushkina et al., 1975b) are believed to be heavily contaminated by the background noise. (For a modern approach to extracting GRB events from the background see Stern et al., 1999).

Here I present only a brief sketch of the GRB properties. For general recent reviews on GRBs see e.g. Piran (1999a,1999b), Tavani (1998), Postnov (1999) and Mészáros (1999).

The time profiles of pulses of gamma ray radiation show a great variety. Figure 1 displays the famous GRB 990123 in four BATSE channels with two prominent spikes. For other bursts Fig. 2 shows a single pulse, and Fig. 3 presents an example of multiple pulses. It is hard to observe any regularity in the time profiles of bursts. See, however, the paper by Stern and Svensson (1996), who claim that they find scale-invariant properties in light curves of GRBs.

The spectra are also rather different from burst to burst. Observations of the GRB spectra (Band et al., 1993) show that, in general, they are well described by a low-energy power law with the exponent \(\alpha \), being exponentially cut off at \(E \sim E_0 \), and by a high-energy power law with the exponent \(\beta \). Though the values of \((\alpha, \beta, E_0)\) can be different for individual bursts, they usually are in the ranges \(\alpha \sim [-1.5 \ldots 0.5], \beta \sim [-3 \ldots -2], E_0 \sim [100 \ldots 200 \text{ keV}] \).

Note that in the literature on GRBs there are three forms used for describing the spectra.
1) The photon number spectrum \(N(E) \), or \(N(\nu) \), with \(E = h \nu \), units of photons per second per cm\(^2\) per unit energy.
2) The differential energy flux density \(S(E) = E N(E) \), written also as \(S_\nu = h \nu N(\nu) \). In terms of the theory of probability distribution functions (PDFs), this is the first moment of the PDF \(N(E) \), see, e.g., the review (Blinnikov, Moessner, 1998). The notation \(F_\nu \) is often used for the flux instead of \(S_\nu \), but I will preferably use the letter \(F \) (without subscripts) for the fluence.
3) The second moment of the PDF \(N(E) \) is the so called \(\nu F_\nu \) distribution, \(\nu F_\nu \equiv \nu S_\nu \propto E^2 N(E) \), which peaks where the maximum radiation power comes (per decade of the photon energy).

By default, all the exponents \(\alpha \) and \(\beta \) below refer to \(N(E) \). The spectra are apparently far from a black body (see Figs. 4, 5), so it is widely believed that the source of gamma radiation is optically thin, i.e. the photon mean free path is larger than the emitting plasma cloud. Yet the spectra are not always described by nonthermal emission in a simple synchrotron shock model (see e.g. Crider et al., 1997).
It is most probable that the source of gamma radiation, moves to us with extreme relativistic speed, corresponding to the Lorentz factor $\Gamma \gg 1$ (see the section on the compactness problem below). This means that, for example, $\delta t = 10$ ms, the time of signal integration by an observer, corresponds to $\sim 2T^2\delta t \approx 5$ hours of emission time if $\Gamma \approx 10^3$. During this long time the emitting object can expand and cool significantly, so the spectra it produces in the beginning and at the end of the observation interval δt can differ drastically. Therefore, the observed spectrum is formed by an integration of some cooling sample of instantaneous spectra. In principle, the instantaneous spectra can be even black-body (Rozental, Belousova, 1997; Blinnikov et al., 1999), in any case they are not necessarily produced by the synchrotron mechanism (Ryde & Svensson, 1999).

For decades, the nature of GRBs remains mysterious. Even their locations were absolutely uncertain: the distance d could vary in different models from tens of astronomical units (1 AU $\approx 1.5 \times 10^{13}$ cm), up to Gigaparsecs (1 Gpc $\approx 3 \times 10^{27}$ cm). So, for the same fluence $F \sim 10^{-7}$ ergs/cm2 the energy $E_{\text{GRB}} = 4\pi F d^2$ could be as low as $\sim 10^{23}$ ergs for the nearest locations, and go up to $\sim 10^{49}$ ergs for 1 Gpc, if the radiation is not beamed to us but distributed uniformly over 4π. And if F is 4 orders of magnitudes higher (as e.g. for GRB 990123), and/or the distance is larger than 1 Gpc, then the energy release in gamma photons becomes correspondingly higher.

An indirect evidence for cosmological location of GRBs, i.e., on the Gpc distance scale for them, is their isotropic distribution on sky (Prilutskii, Usov, 1975). Before BATSE (Burst And Transient Source Experiment) telescope was launched aboard the Compton Gamma Ray Observatory in 1991, the statistics was poor. Now there are tens of hundreds GRBs in BATSE catalogs, e.g. 1637 in the Fourth BATSE burst catalog (Paciesas et al., 1999), see also a review by Fishman & Meegan (1995) on earlier BATSE results. In spite of a rich statistics, the bursts do not correlate significantly with any known class of objects (although various claims on correlations appear in literature from time to time).

Another hint for cosmological distances of GRBs came from their distribution over fluences F or peak fluxes S. If the sources are distributed uniformly, then their number N_s grows with distance d as $N_s \propto d^3$, and if they have the same intrinsic power then the flux falls as squared distance, $S \propto 1/d^2$. This implies $N_s(S) \propto S^{-3/2}$ if $N_s(S)$ denotes the number of sources with fluxes larger than S. In logarithmic scale one should expect $\log N_s = -(3/2) \log S + \text{const.}$ In reality the distribution is different, see Fig. 3. The deviation of the log $N_s - \log S$ histogram from a simple $-3/2$ law tells us (Prilutskii, Usov, 1975; Usov, Chibisov, 1975) that either the GRB distribution is centered on us, or that the relations $N_s = N_s(d)$ and $S = S(d)$ are different from the simple expressions that we have used. If we discard the former option, i.e. assume the uniformity of sources, then we are left with the possibility that $N_s = N_s(d)$ dependence is dictated by the volume evolution in expanding Universe. It is often said, that $N_s \propto d^3$ is derived in Euclidean geometry, and the Universe is non-Euclidean. This is not quite correct. The spatial (i.e. 3D) geometry of the Universe can be exactly Euclidean, as is the case for the total energy density $\Omega = 1$ in units of the critical density (for definitions see, e.g. Carroll et al., 1992). The space-time (4D geometry) is always non-Euclidean. What matters, is that the space-time is non-steady, so the comoving volume is time-dependent, and for sources uniformly distributed in the comoving volume, we have another law $N_s = N_s(d)$ because more distant objects live in the younger Universe.

The breakthrough in proving that at least some of GRBs are at cosmological distances occurred in 1997 due to the Italian-Dutch satellite Beppo-SAX. The location of GRBs on sky is known normally with accuracy of tens of degrees, if they are observed by only one gamma-ray
detector. In the past, accurate positions were obtained from a triangulation based on the time delays between several detectors. This requires the processing of data which takes days and weeks. Beppo-SAX has both a gamma-ray detector and a wide field (∼30°) soft X-ray camera. It could for the first time find an X-ray transient in the same field where a GRB flashed after a delay of only 4-6 hours for processing and could provide X-ray positions with accuracy of a few arcminutes. The technique led to the discovery by Beppo-SAX (Costa et al., 1997) of the first X-ray transient associated with GRB 970228. This allowed follow-ups in X-rays, in visual light (van Paradijs et al., 1997), as well as at radio waves (Frail et al., 1997). The transient counterparts to GRBs are called X-ray, optical (i.e. visual light) and radio ‘afterglows’. For some of them the observations last many months (Zharikov et al., 1998). The number of discovered GRB afterglows is growing continuously. By January 1999 there were 14 X-ray afterglows known (Postnov, 1999). Full information on recent GRBs and their afterglows one can find in Internet at [http://gcn.gsfc.nasa.gov/].

2 The energy problem

The spectacular discovery of GRB afterglows allowed to measure the redshift, and hence the distance to some of them. The redshift z is defined as $z = (\lambda_{\text{obs}} - \lambda_{\text{lab}})/\lambda_{\text{lab}}$, where λ_{obs} is the observed wavelength of a feature (a line or a jump) in the spectrum of a source, and λ_{lab} is the laboratory wavelength value for the same feature if it can be unambiguously identified. See e.g. Weinberg (1972) and Carroll et al. (1992) for the relations connecting z with the distance in standard cosmological models. First, absorption lines with $z = 0.835$ were measured in the spectrum of the counterpart to GRB 970508 (Metzger et al., 1997). Since the absorption was seen in the light of the afterglow, the source could be only more distant. Thus $z = 0.835$ is a lower limit to the redshift of the transient and the GRB that induced it. Later, in some cases the identification of candidate host galaxies was suggested. The outstanding example is the galaxy associated with GRB 971214, its redshift is probably $z = 3.418$ (Kulkarni et al., 1998). Yet, there can be doubts in correctness of this value, since there is only one emission line discernible above the noise level of the spectrum of this very distant galaxy, and the identification relies heavily on the assumption that the line is Lyman-α. Much more convincing is the observation of a system of absorption lines with $z = 1.600$ in the spectrum of the afterglow of GRB 990123 (Kulkarni et al., 1999). The energy output up to 3.4×10^{54} ergs $\approx 1.9 M_\odot c^2$, with M_\odot being the solar mass, is implied by the redshift $z = 1.600$. The huge energy release in some of the bursts poses extremely hard questions to theorists who try to explain these superpowerful events. Even if a beaming is invoked, which reduces the energy budget by a couple of orders of magnitude, this is still too high for conventional models that involve collapses or mergers of objects with masses on M_\odot scale. (Blinnikov et al., 1984; Eichler et al., 1989; Paczyński, 1986; Janka and Ruffert, 1996, Ruffert et al., 1997).

This is the energy problem of GRB central engine. For objects with huge masses (Prilutskii, Usov, 1975), which have high energy resources, it is harder to explain the short time-scale variability (see below the section on the compactness problem) as well as the statistics of events.

3 The compactness problem

The time-scale of the variability of the gamma-ray flux during a burst can be $\delta t \sim 10^{-2}$ seconds, and even shorter. The naive estimate for the source at rest implies that the size of the emitting
region must be $R \lesssim c\delta t$, as small as $R \sim 3 \times 10^3$ km. With c being the speed of light, I put $c = 1$ hereinafter in formulae for simple relativistic transformations or in the expressions for elementary processes, so this estimate gives $R \sim \delta t$ light seconds. I write down c explicitly in formulae written in technical units and when microscopic and macroscopic quantities appear simultaneously. The enormous number of gamma photons in such a small volume should produce electron-positron pairs via the process $\gamma + \gamma \rightarrow e^+ + e^-$ if the energy of the photon collision at angle θ is above the threshold, i.e. $s > 4m_e^2$ where s is the total squared c.m.s. energy,

$$s = 2E\epsilon(1 - \cos \theta),$$

if the photon energies are E and ϵ. The emitting region can become optically thick, i.e. the mean free path l_γ of a photon before a creation of an e^+e^- pair can become less than R, so the optical depth $\tau_{\gamma\gamma} \equiv R/l_\gamma > 1$. Then the photon energy will degrade and the spectrum will be thermalized. This conflicts with the observed nonthermal spectra, they have rather large energy in the power-law tails above the threshold, thus leading to the so called compactness problem of GRBs (Guilbert, Fabian & Rees, 1983).

Some bright GRBs detected at standard range of a few hundred keV have also been seen at much higher energies (above 10 MeV). An outstanding example is GRB 940217, which had the most energetic GRB photon detection to date, up to ~ 18 GeV. “Such observations imply that these bursts are optically thin to photon-photon pair production at all observed energies, for target photons both internal and external to the source” (Baring, Harding, 1997).

The absorption of gamma-quanta by a photon gas was considered by Nikishov (1961), Gould, Schröder (1967), Brown et al. (1973). These papers have dealt with an isotropic photon gas. Here I present only crude estimates, because the situation in GRBs can be far from isotropy, even inside the source of radiation.

We will consider only the process of single-pair creation $\gamma + \gamma \rightarrow e^+ + e^-$, because the processes of multiple-pair creation are not important for the energies typical for GRBs (Brown et al., 1973). The cross-section $\sigma_{\gamma\gamma}$ of the process of single-pair creation can be easily expressed through s (e.g. Akhiezer, Berestetskii, 1965). For our estimates we simply note that $\sigma_{\gamma\gamma}$ grows quickly above the threshold. The maximum of $\sigma_{\gamma\gamma}$ is reached at $s_{1/2} = 1.40 \times 2m_e$ (Svensson, 1982). At reasonable, mildly relativistic, energies above the threshold the cross-section is of the order of r_e^2, where $r_e = e^2/m_e$ is the classical electron radius. For high energies the cross-section falls:

$$\sigma_{\gamma\gamma} = 4\pi r_e^2 m_e^2/s[2\ln(s^{1/2}/m_e) - 1], \quad s \gg m_e^2.$$

(2)

If the photon number density is n_γ, then the rate of pair production in a photon beam colliding with another beam with density n_γ at an angle θ is

$$n_\gamma n_\gamma \sigma_{\gamma\gamma}(s)(1 - \cos \theta)$$

(3)

(Nikishov, 1961; Gould, 1971; Weaver, 1976). One can estimate the absorption probability per unit path length, i.e. the inverse mean free path l_γ^{-1} of a photon with energy E, using (2) and ignoring logarithms, as well as all angle dependencies:

$$\frac{1}{l_\gamma} \sim \int_{2m_e^2/E}^{\infty} \frac{d\epsilon}{\epsilon} n(\epsilon)\sigma_{\gamma\gamma}(2E\epsilon),$$

(4)

where $n(\epsilon)$ is the number of photons per unit volume per unit energy interval and I have put $\cos \theta = 0$ in (2) and (3). For the case of the isotropic distribution of photons an accurate
expression for the power law spectrum is obtained by Gould, Schréder (1967). If we assume that
the spectral distribution of photons in the source is a power law, \(n(\epsilon) = C\epsilon^\beta \), then we get from
(3)
\[
l_{\gamma}^{-1} \sim C r_{\gamma}^2 (m_e^2/E)^{\beta+1}.
\]
(5)
(Normally, in GRBs \(\beta \sim [-2 \div -3] \), so the absorption probability grows as \(E^{1+2\beta} \).)

We estimate the photon number density \(n(\epsilon) \) in the following way (cf. Carrigan, Katz, 1992).
Take the observed number flux \(N(\epsilon) \) (say, in units of photons per second per cm\(^2\) per erg), and
find the flux at the source surface at distance \(d \) from the solar system, it will be \(N(\epsilon)(d/R)^2 \), if
the surface is of the radius \(R \). Divided by speed of light \(c \), this flux gives the photon number
density \(n(\epsilon) \). If the observed number flux is
\[
N(\epsilon) = N(\epsilon_0)(\epsilon/\epsilon_0)^\beta,
\]
where \(\epsilon_0 \) is just a typical energy of observed gamma photons, say, 0.5 MeV \(\approx m_e \), then we get
the constant \(C \) in the expression (5):
\[
C = \frac{d^2 N(\epsilon_0)}{cR^2 \epsilon_0^\beta}.
\]

Now the optical depth of the photon creation of pairs, \(\tau_{\gamma\gamma} \equiv R/l_{\gamma} \), is
\[
\tau_{\gamma\gamma} \sim \frac{d^2 N(\epsilon_0) r_e^2 m_e}{cR^2 \epsilon_0^\beta} \left(\frac{m_e^2}{E} \right)^{\beta+1}.
\]
(6)

For \(E = \epsilon_0 = m_e \) this gives:
\[
\tau_{\gamma\gamma} \sim \frac{d^2 N(\epsilon_0) r_e^2 m_e}{cR^2} S(\epsilon_0) r_e^2.
\]
(7)

I have preserved the symbol \(c \) for speed of light in the last expressions for the case when the fluxes
\(N \) and \(S \) are measured in technical units. It is easy to see that we have got really dimensionless
quantity \(\tau_{\gamma\gamma} = R/l_{\gamma} \), since the dimension of the spectral flux density \(S \) is cm\(^{-2}\) s\(^{-1}\).

We take for the typical energy scale of GRB photons the electron mass \(m_e \), and assume
that the burst has \(N \) pulses with duration \(\delta t \) each and with the typical flux \(S \). The number of
pulses \(N \) can be as high as hundreds, and their duration like 10 ms or even shorter. Let \(f_{0.5} \)
be the fraction of the total energy \(E_{\text{GRB}} \) that comes in the decade of photon spectrum near
\(\epsilon_0 = 0.5 \text{ MeV} \sim m_e \). Then \(f_{0.5} E_{\text{GRB}} \sim m_e S d^2 N \delta t \), and

\[
\tau_{\gamma\gamma} \sim f_{0.5} \frac{E_{\text{GRB}} r_e^2}{m_e \delta t^2 N} \approx 10^{12} f_{0.5} \frac{E_{\text{GRB}}}{N \times 10^{10} \text{ ergs}} \left(\frac{\delta t}{10 \text{ ms}} \right)^{-2},
\]
(8)

or, expressed through the fluence \(f_{0.5} F \sim m_e S N \delta t \),

\[
\tau_{\gamma\gamma} \sim 10^{12} f_{0.5} \frac{F}{N \times 10^{-7} \text{ ergs/cm}^2} \left(\frac{d}{1 \text{ Gpc}} \right)^2 \left(\frac{\delta t}{10 \text{ ms}} \right)^{-2}.
\]
(9)

One can find another way for estimating the optical depth \(\tau_{\gamma\gamma} \) in the astrophysical literature,
see, e.g. Piran (1996,1999a,1999b). One denotes by \(f_p \) the fraction of photons in a burst that
satisfy the threshold condition for pair creation. Take the fluence \(F \), find the energy of the
burst $E_{\text{GRB}} = 4\pi F d^2$, multiply by f_p/m_e, divide by volume $4\pi R^3/3$ and get the photon number density:

$$n_\gamma \sim \frac{f_p F d^2}{R^3 m_e}.$$

Then the optical depth would be

$$\tau_{\gamma\gamma} \sim \frac{f_p^2 \gamma^2 R^3 F d^2}{R^2 m_e},$$

or, for $R \sim \delta t$,

$$\tau_{\gamma\gamma} \sim 10^{12} f_p \frac{F}{10^{-7}\text{ergs/cm}^2} \left(\frac{d}{1\text{ Gpc}}\right)^2 \left(\frac{\delta t}{10\text{ ms}}\right)^{-2}. \quad (10)$$

This expression is wrong: it overestimates the photon density by a factor N. It is unwise to take the fluence F in the estimate of n_γ for bursts with multiple short pulses. Suppose, that a burst has ~ 1000 pulses, it is clear, that the concentration of photons n_γ in the source will be 1000 times lower than in another GRB with the same fluence and at the same distance d that has only one short pulse. Yet nothing changes in the estimate (10). The correct, though crude, estimate is given by expressions (8) and (9).

The compactness problem arises because of the conflict of the naive estimate of the source size R with the observed nonthermal GRB spectra. The conflict can be resolved if one supposes that the emitting region moves towards the observer with an extreme relativistic speed with Lorentz factor $\Gamma \gg 1$. Then, as is shown in the next paragraph, the actual size would be $\sim \Gamma^2 \delta t$, and the optical depth becomes correspondingly smaller (Guilbert, Fabian & Rees, 1983, Paczyński, 1986, Goodman, 1986, Krolik & Pier, 1991, Rees & Mészáros, 1992).

Let us suppose that the emitter is moving towards the ‘terrestrial’ observer with the velocity v corresponding to $\Gamma = (1 - v^2)^{-1/2}$. Here we assume that all clocks are synchronized in the observer’s rest frame, i.e. the effect under consideration is purely kinematic, moreover it is Galilean, not truly relativistic (in the sense that Relativity plays no role in its explanation). The Lorentz factor Γ is here simply a measure of the deviation of the emitter’s motion from the Galilean, not truly relativistic (in the sense that Relativity plays no role in its explanation).

The Lorentz invariance of the photon distribution in the phase space νdν is the brightness and $I(\Omega)$ is the photon occupation number for the frequency ν in the direction Ω, then $I_\nu = (2\pi^3/c^2)f_\nu$. The Lorentz invariance of the photon distribution in the phase space f_ν...
implies that the brightness I_ν transforms as ν^3. Let us assume that an observer is moving with the same speed v with large Γ and in the same direction as a distant source and measures its flux at the same world point as a ‘terrestrial’ detector. It is easy to show that the flux $S_\nu = S_{\text{com}}(E)$, measured in the frame comoving with the source, is lower than the one measured for the terrestrial detector by the Doppler factor: $S_{\text{com}}(E_{\text{com}}) = S(E_{\text{obs}})/\{(1 + v)\Gamma\}$. For the total flux and for the νS_ν distribution the factor is $1/\{(1 + v)\Gamma\}^2$. Moreover, due to the Lorentz transformation of coordinates, $x_{\text{com}} = \Gamma(x + vt)$, the distance in the comoving frame is $d_{\text{com}} = d/(1 + v)\Gamma$, if $x = d$ is the distance ascribed by the terrestrial observer to the source position for the moment when radiation was emitted (if the photons are detected at $t = 0$ they were emitted in our frame at $t = -d$). Thus, the luminosity (i.e. the power of the source emission) per unit energy can be overestimated by the terrestrial observer by a factor of Γ^3, and the total luminosity by a factor of Γ^4 (Lightman et al., 1975, problem 5.11). One should be careful in measuring distances in relativistic situations: if we are interested in the distance D to the source at the moment $t = 0$ we see that $d_{\text{com}} = \Gamma D$, so $D \ll d_{\text{com}} \ll d$.

The combination of all effects leads to the division of the optical depth by a factor of Γ to a high power, like $\sim 5 - \beta$ or more. The power depends on the geometry, beaming etc. I have presented the estimate for the case when the photons are being created and interacting in the source itself. Another approach to relativistic motion in GRBs is pursued in a number of papers. For the test photons with energy E, which have left the source already, the factor of Γ^4 for transformation of the luminosity does not enter. Still a factor of $\Gamma^{\beta - 2}$ at least does suppress the optical depth (from the spectrum, and from larger R). The aberration effects are more important for the photons external to the source. Fenimore et al. (1993), Woods, Loeb (1995) consider the latter situation: they check at which value of Γ the highest energy photons (say, GeV external photons) are able to escape the pair production with the lower energy photons outside an opaque, relativistically expanding source. A very detailed analysis for all geometries is given by Baring & Harding (1997). Summarizing the results of those studies, we conclude that $\Gamma \sim 10^2 \div 10^3$ can help in reducing the optical depth below unity.

Another option for solving the compactness problem stems from a chance to have $\cos \theta$ in (1) and (3) exactly equal to zero. Imagine that we are sitting in a beam of a gamma-ray laser pointed to us. The coherent photons are not able to collide, and there is no pair creation. The picture seems quite fantastic, since we observe rather smooth energy distributions and do not see prominent lines in GRB spectra. To reduce the statistics of GRB events we need the solid angle of the radiation to be rather large. It is hard to imagine gamma-ray laser guns pointing to different directions, while their beams do not collide, but who knows! I failed to find a model like this in the literature (see, e.g. the list of more than 100 GRB models compiled by Nemiroff, 1994), but the idea of extremely narrow beams with solid angles $\sim 10^{-6}$ is being pushed by Dar (1998), Dar, Plaga (1999) in a different context (not invoking a laser mechanism).

4 GRB models and their baryonic contamination

If the huge energy required for explanation of distant GRBs is quickly injected into the interstellar matter then it will inevitably lead to a formation of a hot cloud of rapidly expanding plasma. This picture is similar to the fireball formation resulting in nuclear explosions in the Earth’s atmosphere (Sedov, 1959; Zel’doovich, Raizer, 1966). The fireball model of GRB emission (Rees & Mészáros, 1992) is semi-qualitative, and has some ad hoc assumptions (like formation of the so called ‘internal’ shocks of mysterious nature: Rees & Mészáros, 1994), yet it has led
to partially successful explanations of some observed features of GRBs, and especially of their afterglows. See numerous references in Piran (1999b) and Mészáros (1999). Those authors claim that the fireball theory is an absolute success (though it does not explain the physical nature of the ‘central engine’ of a GRB). Other opinions are also expressed in literature. E.g. Dar (1998) writes: “The observed afterglows of gamma-ray bursts (GRBs), in particular the afterglow of GRB 970228 after 6 months, seem to rule out, as the origin of GRBs, relativistic fireballs driven by the mergers or accretion-induced collapse of compact stellar objects in galaxies. GRBs can be produced by superluminal jets from such events.” Other options for producing the radiation are also possible, e.g. heavy blobs (or ‘bullets’) running into the circumstellar matter (Blinnikov et al., 1999; Heinz, Begelman, 1999).

In any case, if a fireball forms, it must not be heavily contaminated with baryons. If the Lorentz factor $\Gamma \sim 10^3$ then the presence of a small baryon mass $M_b \sim 10^{-3} M_\odot$ will require enormous energy release of the order of the solar mass, $M_b \Gamma \sim M_\odot$, even if the total photon energy E_{GRB} is several orders of magnitude lower. Another problem with baryons is their high opacity due to photoeffect in keV range which is shifted to MeV range with $\Gamma \sim 10^3$. Some amount of baryons, like $\sim 10^{-7} \div 10^{-5} M_\odot$ is OK, and it is even needed in the fireball models to preserve the energy produced by the ‘central engine’ in the form of kinetic energy which is transported to the optically thin regions and transformed into photon energy in shock waves and their collisions.

The low optical depth and the ultrarelativistic motion require that the fireball should be very clean. Yet the majority of GRB models suggested so far are producing rather ‘dirty’ fireballs. Those models are trying to produce an event on the supernova energy scale normally do involve an acceleration of the baryonic matter on the same scale as at stellar explosions, i.e. an appreciable fraction of M_\odot. So, to avoid additional complications with the energy problem one should find a mechanism of producing a GRB with low baryon loading.

The mechanism that can act outside the body of a collapsing star is a chain of reactions:

$$\nu + \bar{\nu} \rightarrow e^- + e^+ \rightarrow \gamma's$$

The process of neutrino annihilation was put forward in relation with GRB models by Berezinskii & Prilutskii (1985, 1987), and discussed in supernova models by Cooperstein et al. (1986, 1987), Goodman et al. (1987). The pairs $\nu\bar{\nu}$ of all flavors are copiously produced during collapse. Many neutrino processes produces positrons, and their annihilation with electrons, $e^- + e^+ \rightarrow \gamma's$ were proposed for GRB models already by Bisnovatyi et al. (1975). Berezinskii & Prilutskii (1985, 1987) used the predictions for the neutrino spectra computed for stellar collapse by Nadyozhin (1978), Nadyozhin, Otroshchenko (1980). A lot of work has been done during last two decades in improving physics in the stellar core collapse computations, see e.g. Messer et al. (1998) and references therein, but the main features of the neutrino spectra are robust and change only slightly in comparison with Nadyozhin’s work.

In view of the importance of the process of pair creation by neutrinos I present some estimates for it. The cross-section $\sigma_{\nu\bar{\nu}}$ is

$$\sigma_{\nu\bar{\nu}} \approx \frac{8\xi^2 \pm 4\xi + 1}{6\pi} G_F^2 s$$

in ultrarelativistic limit, $s \gg m^2_e$. Here s is again the total squared energy in the center-of-mass frame, but E and ϵ in (11) are now the neutrino energies. The ‘+’ sign is for $\nu_\mu \bar{\nu}_\mu$ and the ‘−’ sign is for $\nu_\mu \bar{\nu}_\mu$ and $\nu_\tau \bar{\nu}_\tau$, and $\xi = \sin^2 \theta_W$. (Berezinskii & Prilutskii, 1985, 1987, write down $\sigma_{\nu\bar{\nu}}$ for the general case, but, with the typical neutrino energies $\sim 10 \div 20$ Mev, the relativistic limit is
OK). For electron neutrinos the cross-section is almost an order of magnitude larger, since the charge current contributes to the process appreciably. But this is also the reason why the average energy of ν_e is a factor 2 to 3 lower than for ν_μ and ν_τ: the medium is more transparent for non-electronic species and we see deeper, hotter layers of a collapsing star in ν_μ’s and ν_τ’s. For example, in their computations of the collapse in merging neutron star scenario, Ruffert et al. (1997) find that “after the two neutron stars have merged, luminosities up to several 10^{52} erg/s are reached for every neutrino species and the average energies of ν_e leaking out of the merger are 10–13 MeV, of $\bar{\nu}_e$ they are 19–21 MeV, and of heavy-lepton neutrinos around 26–28 MeV”. So, the net effect for electron pair production is comparable for all neutrino species.

Let us give a dimensional estimate of the neutrino optical depth, $\tau_{\nu\bar{\nu}}$, for annihilation of ν_i and $\bar{\nu}_i$ into e^+e^--pairs neglecting blocking effects in the phase spaces of $e^−$ and e^+ and ν’s, since we are interested in the process outside the collapsing body where occupation numbers are not close to 1. The procedure is very similar to the estimates of the photon optical depth $\tau_{\gamma\gamma}$, but now we have to be more careful with angular dependencies. If the neutrino number density is n_ν, then the rate of the annihilations in a beam colliding with a beam of $\bar{\nu}$ at an angle θ is

$$n_\nu n_\bar{\nu} \sigma_{\nu\bar{\nu}}(s)(1 - \cos \theta),$$

the same angular factor as for photons in (3). Then the probability of the process in the beam traversing the distance dr is by definition

$$d\tau_{\nu\bar{\nu}} = n_\nu \sigma_{\nu\bar{\nu}}(1 - \cos \theta)dr.$$

We estimate n_ν from the neutrino luminosity L_ν (the power of the neutrino emission) at a radius R when E is an average energy of neutrinos:

$$L_\nu \sim n_\nu EcR^2_\nu.$$

This gives

$$d\tau_{\nu\bar{\nu}} \sim \frac{L_\nu}{EcR^2_\nu} G^2_F s(1 - \cos \theta)dr. \quad (11)$$

So in the region near the neutrinosphere of radius R_ν (a surface of last scattering of neutrinos in a collapsing object), where $s \sim E^2$ and for $dr \sim R_\nu$ we get, putting $\cos \theta = 0$,

$$\tau_{\nu\bar{\nu}} \sim \frac{L_\nu}{cR_\nu} G^2_F E. \quad (12)$$

Substituting the values typical for the stellar collapse, like $L_\nu \sim 10^{52}$ erg/s, $E \sim 10$ MeV, $R_\nu \sim 20$ km, and taking $G^2_F = 5.3 \times 10^{-44}$ cm2/MeV2, we find $\tau_{\nu\bar{\nu}} \simeq 0.1$. One should not take this number very seriously, since we have neglected all numerical factors like π’s in our estimate.

Yet it is quite reasonable and can be easily understood if one remembers the definition of the neutrinosphere: the optical depth there is unity for the processes of ν interaction with electrons and nucleons, and the number density of neutrinos is an order of magnitude lower than of the latter, while the cross-section is always $\sim G^2_F$ times the typical energy squared.

The possibility of a GRB to appear during a bare core collapse was suggested by Dar et al. (1992) who assumed a GRB to be a result of the neutrino-antineutrino pair creation and annihilation. Although the idea of involving $\nu\bar{\nu}$ annihilation for producing GRBs is very appealing, the model by Dar et al. (1992) should be rejected on the grounds of being too contaminated by baryon loading, see e.g. Woosley (1993).
A plausible way of forming GRBs at cosmological distances involves binary neutron star merging (originally proposed by Blinnikov et al., 1984; see more recent references and statistical arguments in favor of this model in Lipunov et al., 1995). However, as detailed hydrodynamical calculations currently demonstrate, this mechanism also fails in producing powerful clean fireballs (Janka and Ruffert, 1996; Ruffert et al., 1997). On the GRB models with a moderately high baryon loading see Woosley (1993), Ruffert & Janka (1998), Kluzniak & Ruderman (1998), Fuller & Shi (1998), Fryer & Woosley (1998), Popham, Woosley & Fryer (1999).

For illustration of a possible construction of the GRB central engine I reproduce a figure from the paper by Janka et al. (1998), see Fig. 8. The merging of two neutron stars is inevitable in a neutron star binary system due to gravitational radiation (Clark, Eardley, 1977; Blinnikov et al., 1984). After the merging the stars may form a black hole and a hot torus (an ‘accretion disk’) of a hot dense matter which emits neutrinos of all flavors. The annihilation of $\nu + \bar{\nu} \rightarrow e^- + e^+$ creates pairs and a jet able to produce a short burst of gamma radiation.

A jet of a longer duration (tens of seconds) is investigated in the paper by Macfadyen, Woosley (1999). It is formed by the accretion of the dense matter onto a massive black hole formed inside a very massive star at the latest stages of its life. The jet can be very powerful and can punch a hole through the body of the star. The computations are not yet able to follow all stages of this process which can lead to the explosion of the star. Macfadyen and Woosley (1999) write: “During the tens of seconds that it takes the star to come apart, if energy input continues at their base, the relativistic jets created in the deep interior erupt from the surface of the star and break free. Their relativistic Γ rises. They then travel hundreds of AU’s before making the GRB.”

A GRB with a reasonable energy can be produced, and the authors believe that it will not be overloaded with baryons, but one has two await the detailed computations of the whole process. It may happen that the same energy release from $\nu \bar{\nu}$ that sustains jets, forces too many baryons to go in the same direction.

Knowing $\tau_{\nu \bar{\nu}}$ one can estimate the power, taken from the total luminosity, that is from $L\nu$, which goes into the creation of e^-e^+ pairs. When $\tau_{\nu \bar{\nu}} < 1$ the power deposited by neutrinos is just $\tau_{\nu \bar{\nu}}L\nu$. Using our expression (12) it is easy to understand the numerical results by Ruffert et al. (1997) who find in our notation

$$\tau_{\nu \bar{\nu}} = (2 \ldots 3) \times 10^{-3} \frac{L\nu}{1.5 \cdot 10^{52} \text{erg/s}} \frac{\langle E \rangle}{13 \text{MeV}} \frac{20 \text{km}}{R_d}$$

for the disk or torus geometry with a typical radius R_d. This is an order of magnitude smaller than our crude estimate (12) just because the geometrical factors and accurate coefficients were ignored in (12).

For large distances, $r \gg R\nu$, the optical depth falls sharply, since s contains $1 - \cos \theta$ in (11) which goes down as $(R\nu/r)^2$, the same power is added by $1 - \cos \theta$ in (11). Finally, $n\nu$ drops also as $(R\nu/r)^2$ and, after integration over dr in (11), all that leads to a fast decrease, $\propto r^{-5}$, of the rate of pair creation by $\nu \bar{\nu}$ with the growing distance from the collapsing body.

One should note also that the spectrum of the neutrino is close to the blackbody one (i.e. it is a Fermi distribution with zero chemical potential, Nadyozhin, 1978; Nadyozhin, Otroshchenko, 1980). So, usually $L\nu$ and E are not independent in (12). Expressed through the blackbody temperature T, the typical energy is $\langle E \rangle \simeq 3T$ for T in energy units (or $\langle E \rangle \simeq 3kT$ for T in Kelvins) and $n\nu \simeq (kT/\hbar c)^3$, then

$$L\nu \sim \left(\frac{kT}{\hbar c}\right)^4 cR_{\nu}^2,$$
and (12), i.e. the expression for the optical depth above the radial distance \(r \), when the neutrinosphere is located at \(R_{\nu} \), takes the form

\[
\tau_{\nu\bar{\nu}} \sim G_F^2 \frac{(kT)^5}{(\hbar c)^3} R_{\nu} \left(\frac{R_{\nu}}{r} \right)^5 .
\] (14)

Cf. Berezinskii & Prilutskii (1987), who find essentially the same expression in their Eq.(8), but be careful with their numerical factor.

In a recent paper Salmonson, Wilson (1999) consider the General relativistic effects for \(\nu + \bar{\nu} \rightarrow e^- + e^+ \) and claim that the efficiency of this process is enhanced over the Newtonian values up to a factor of more than 4 (sometimes up to a factor of 30) in various regimes of collapse.

Vietri & Stella (1998) and Spruit (1999) suggest (on the qualitative level) other models that probably have a small baryon contamination. In these models the magnetic field plays a crucial role. A very strong magnetic field of a rapidly rotating neutron star as a source of GRB was proposed by Usov (1992). Without the detailed quantitative computations, it is hard to check that one can derive the huge energy, required by the most recent GRB observations, from the ‘magnetic’ models. A good example here is the magneto-rotational supernova mechanism that was proposed by Bisnovatyi-Kogan (1970) and required further elaborating during three decades to get a definite answer, see Ardeljan et al.(1996a,b).

5 Neutrino Oscillations

A very interesting idea, involving neutrino oscillations, was put forward by Kluźniak (1998) in an attempt to solve the problem of the baryon loading in the neutrino driven GRBs. The Super-Kamiokande data (Fukuda et al., 1998; see also Shiozawa, 1999, presented at this School) suggest that vacuum oscillations of the \(\mu \) neutrino are possible \(\nu_\mu \leftrightarrow \nu_x \), where \(\nu_x \) may be \(\nu_\tau \) or a non-interacting ‘sterile’ neutrino.

The probability of the neutrino transformation between two flavor eigenstates \(\nu_\alpha \leftrightarrow \nu_\beta \) in vacuum, in terms of the distance \(d \) from the source, is

\[
P(\nu_\alpha \leftrightarrow \nu_\beta)(d) = \sin^2 2\theta_\nu \sin^2 \left(\frac{\delta m^2 c^3 d}{4\hbar E} \right),
\] (15)

Here \(E \) is the neutrino energy, \(\delta m^2 \equiv |m_2^2 - m_1^2| \) for two mass eigenstates 1 and 2, and \(\theta_\nu \) is the vacuum mixing angle. The expression (15) is equivalent to

\[
P(\nu_\alpha \leftrightarrow \nu_\beta)(d) = \sin^2 2\theta_\nu \sin^2 \left(1.27 \frac{\delta m^2 (eV)d(km)}{E(GeV)} \right),
\] (16)

which was used in many lectures presented at this school.

The Super-Kamiokande data are consistent with \(\sin^2 2\theta_\nu \simeq 1.0 \) and \(\delta m^2 \sim 10^{-3} \text{(eV)}^2 \). For \(E \sim 10 \text{ MeV} \) and \(\delta m^2 \sim 10^{-3} \text{ (eV)}^2 \) the oscillation length

\[
L_o = \frac{4\pi \hbar c E}{\delta m^2 c^2}
\] (17)

comes out to be on the order of tens kilometers, i.e. it is comparable with the size of collapsing stellar objects. This opens interesting possibilities for GRB models.
Kluźniak (1998) suggested that the ordinary muon neutrinos, born by a collapsing body, do oscillate into sterile ones, go out to the regions relatively free of baryons, and then transform back into ordinary neutrinos. They deposit their energy into electron-positron pairs in vacuum and eventually produce the GRB event.

For this scenario the difficulty is similar to the one encountered in the models discussed previously: if the oscillation length is comparable with the size of the collapsing body then the baryonic contamination is unavoidable. So L_o must be much larger than the neutrinosphere R_{ν}. If it is too long then a very small number of neutrinos will annihilate, see (14). Another difficulty is noted by Volkas and Wong (1999): “there is no reason to assume that only μ-type neutrinos are (thermally) emitted. Thus all neutrino flavors must individually oscillate into a sterile neutrino to substantially eliminate ν_{ν} annihilation in the baryonic region. The conversion of ν_{μ} to ν_{s} (and their antiparticles) alone will not solve the baryon-loading problem.”

In this lecture I propose the possibility of drastic extension for the GRB model with neutrino oscillations by invoking stars made of the so-called mirror matter (the first version of this proposal appeared during this Winter School in Blinnikov, 1999). The sterile neutrino should be abundantly produced by the mirror matter during collapses or mergers of stars, made of mirror baryons. If the sterile neutrinos oscillate to ordinary neutrinos, they do this in the space practically free of ordinary baryons, and this can give birth to a powerful gamma-ray burst.

6 The concept of mirror matter

The concept of mirror matter stems from the idea of Lee & Yang (1956) who suggested the existence of new particles with the reversed sign of the parity violating asymmetry in weak interactions. Lee and Yang believed that these particles (whose masses are degenerate with the masses of ordinary particles) could participate in the ordinary strong and electromagnetic interactions. Later, in their seminal paper, Kobzarev, Okun & Pomeranchuk (1966) argued that this conjecture was not correct, and that the ordinary strong, weak and electromagnetic interactions were forbidden for the new particles by experimental evidence. Only gravity and super-weak interaction is allowed for the new particles by experimental evidence. Only gravity and super-weak interaction is allowed for their coupling to the ordinary matter. But if the new particles really mirror the properties of ordinary ones, then there must exist new, “mirror”, photons, gluons etc., coupling the mirror fermions to each other. Thus, the possibility of existence of the mirror world was demonstrated first by Kobzarev et al. (1966), and the term “mirror” was coined in that paper. The particle mass pattern and particle interactions in the mirror world are quite analogous to that in our world, but the two worlds interact with each other essentially through gravity only. It is shown in the cited paper that a world of mirror particles can coexist with our, visible, world, and some effects that should be observed are discussed.

Later the idea was developed in a number of papers, e.g. Okun (1980), Blinnikov & Khlopov (1983), and the interest to it is revived recently in attempts to explain all puzzles of neutrino observations by Foot & Volkas (1995), Berezhiani & Mohapatra (1995), Berezhiani et al. (1996), Berezhiani (1996), Silagadze (1997).

It was shown by Blinnikov & Khlopov (1983) that ordinary and mirror matter are most likely well mixed on the scale of galaxies, but not in stars, because of different thermal or gasdynamic processes like SN shock waves which induce star formation. It was predicted that star counts by Hubble Space Telescope (HST) must reveal the deficit of local luminous matter if the mirror stars do really exist in numbers comparable to ordinary stars and form a galaxy with properties similar to our spiral Milky Way. Then the mirror stars and mirror gas contribute
significantly to the gravitational potential of galactic disk. Recent HST results (Gould et al., 1997) show the reality of the luminous matter deficit: e.g., instead of 500 stars expected from the Salpeter mass function in the HST fields investigated for the range of absolute visual magnitudes $14.5 < M_V < 18.5$ only 25 are actually detected. It is found that the mass distribution function of weak stars does not follow the power law, known for massive stars, but has a maximum near $M \sim 0.6 M_\odot$, and then falls abruptly. So the low mass stars do not contribute much to the total luminous mass, contrary to what was thought previously. The total column density of the galactic disk, $\Sigma \approx 40 M_\odot pc^{-2}$ is a factor of two lower than published estimates of the dynamical mass of the disk, that reflects the gravitating mass (Gould et al., 1997). If true, this result is a direct evidence in favor of existence of local invisible matter.

Unfortunately, astronomers cannot reach an agreement on this subject. Recent Hipparcos results (Holmberg, Flynn, 1999) do not see a local deficit of visible matter. If Hipparcos is more correct than HST, this does not exclude the existence of the mirror stars. This tells that the mirror stars can be distributed around us in the extended halo of our Galaxy, and do not form a very flattened disk system as massive stars in spirals.

It should be remembered that till this moment I have discussed a contribution of invisible stars to the gravity of the galactic disk only, which has more to do with the local Oort limit (see e.g. Oort, 1965) than with the dark matter found in halos of other galaxies. There are virtually no doubts in existence of the halo dark matter (DM) (see a historical review by Van den Berg, 1999). The modern paradigm is that the DM must be ‘cold’ (Navarro et al., 1997), it cannot consist predominantly, e.g., from light massive neutrinos, which give ‘hot’ DM, but the nature of the DM remains unknown. Recent results show that many properties of the cold DM must be similar to ordinary baryonic matter (Burkert, Silk, 1999). This makes the mirror matter (or other types of the ‘ghost’ matter) an attractive candidate for DM (or at least to an essential fraction of DM). Other references on the subject see also in Mohapatra & Teplitz (1999).

The distribution of mirror stars in the halo of our galaxy is supported by observations of gravitational microlensing events. Okun (1980), Blinnikov & Khlopov (1983), Berezhiani (1996) have pointed out that mirror objects can be observed by the effect of gravitational lensing. After the discovery of MACHO (Alcock, 1997) microlensing events, I have discussed their interpretation as mirror stars at Atami meeting in 1996 (Blinnikov, 1998). This interpretation is proposed also by Silagadze (1997). Recently, the idea is developed by Foot (1999) and Mohapatra & Teplitz (1999). A very important evidence that MACHOs cannot be stars made of ordinary baryons is presented by Freese et al. (1999).

The ghost world that interacts with ordinary matter exclusively via gravity follows quite naturally from some models in superstring theory (see, e.g., recent results by Chang et al., 1996, Faraggi, 1997), but those models are too poor to be useful in the GRB problem. Especially interesting for explaining GRBs are the models that predict the existence of a light sterile neutrino that can oscillate into ordinary neutrino. The development of the idea can be traced from the following references.

The ordinary neutrino oscillations was first discussed by Pontecorvo (1958), who pointed out the analogy with $K_0 \leftrightarrow \bar{K}_0$ oscillations. For the mirror matter searches, Nikolaev and Okun (1968) also considered kaons. The mirror neutrino oscillations have drawn the interest of researchers later. Interesting oscillation phenomena for ‘paraphotons’ were considered by Okun (1982).

Foot et al. (1991) rediscovered the idea of mirror particles. They assumed that the neutrinos are massless and showed that there are only two possible ways in addition to gravity, that the mirror particles can interact with the ordinary ones, i.e. through photon-mirror photon mixing
(this had already been discussed earlier, in a slightly different context, by Glashow, 1986), and through Higgs-mirror Higgs mixing. In another paper, Foot et al. (1992) have shown that if neutrinos have mass, then the mirror idea can be tested by experiments searching for neutrino oscillations and can explain the solar neutrino problem (though, see Gonzalez-Garcia et al., 1999).

The same idea can also explain the atmospheric neutrino deficit (recently confirmed by SuperKamiokande data), which suggests that the muon neutrino is maximally mixed with another species. Parity symmetry suggests that each of the three known neutrinos is maximally mixed with its mirror partner (if neutrinos have mass). This was pointed out by Foot (1994). Finally, the idea is also compatible with the LSND experiment which suggests that the muon and electron neutrinos oscillate with small angles with each other, see Foot & Volkas (1995).

Berezhiani & Mohapatra (1995) developed a different model with parity symmetry spontaneously broken. In this model the mirror particles have masses differing from the masses of their ordinary counterparts. The model gives a natural explanation why the primordial nucleosynthesis constraint (Shvartsman, 1969) does not preclude the existence of relativistic mirror particles. Several solutions to this are possible also in the Exact Parity Model (Hodges, 1993; Foot, Volkas, 1995, 1999).

7 Dark matter candidates and GRBs

The idea to connect the Dark Matter (DM) and GRBS is not new. E.g. Loeb (1993) considered axions, produced by collapsing stars, and their decays to gammas. This model does not directly involves DM stars, but axions remain a plausible candidate for DM. Recently other models involving axions and axion stars, and other exotic particles are suggested (Bertolami, 1999; Demir and Mosquera Cuesta, 1999; Iwazaki, 1999) They predict a relatively weak GRB, so to explain the observed afterglows they refer to our ‘mini supernova model’ (Blinnikov, Postnov, 1998) for a GRB bursting in a binary system. This can help with the visual light but cannot increase the power of the gamma radiation itself.

I suggest another scenario. I propose that Gamma-ray Bursts (GRB) are produced by collapses or mergers of mirror stars. The mirror neutrinos (which are sterile for our matter) are born at these events in a way similar to what one can expect for ordinary stars. See e.g. the Fig. 8, taken from Janka et al. (1998), but imagine, that all emitted neutrinos are the mirror ones. The latter can oscillate into ordinary neutrinos. The annihilations or decays of those create an electron-positron plasma and subsequent relativistic fireball with a very low baryon loading needed for GRBs.

In speculating about such a scenario it is instructive to assume that the properties of mirror particles are the same as in our world. I wish to stress here that this is not absolutely necessary. E.g. the model by Berezhiani & Mohapatra (1995) with masses of nucleons in the mirror world higher by a factor ~ 1.5, predicts that there is no nuclear burning in mirror stars, because the mass difference between mirror neutron and proton is predicted to be ~ 100 MeV, while mirror electron has mass ~ 30 MeV. Yet this does not preclude the formation of white dwarf or neutron star (Berezhiani, 1996) binaries and their merging due to gravitational wave emission. A result of this merging can be a catastrophic collapse to a rotating black hole accompanied by the formation of accretion disk and huge neutrino flux. In what follows I assume for simplicity that not only the pattern of particles in the mirror world, but all their properties are the same as in the visible one (Kobzarev et al., 1966; Foot & Volkas 1995).
If the properties of mirror matter are very similar to the properties of particles of the visible world, then the events like neutron star mergers, failed supernovae (with a collapse to a rotating black hole, Woosley, 1993; Macfadyen, Woosley, 1999) etc. must occur in the mirror world. These events can easily produce sterile (for us) neutrino bursts with energies up to 10^{53} ergs, and the duration and beaming of mirror neutrinos are organized naturally like for ordinary neutrinos in the standard references given above. The neutrino oscillations then take place which transform them at least partly to ordinary neutrinos, but without the presence of big amounts of visible baryons. Some number of ordinary baryons is needed, like $10^{-5} M_{\odot}$ (Piran, 1999b) for producing standard afterglows etc. This number is easily accreted by mirror stars during their life from the uniform ordinary interstellar matter (cf. Blinnikov and Khlopov, 1983).

Taking into account magnetic moment of standard neutrinos can help in producing a larger variety of GRB variability due to neutrino interaction with the turbulent magnetic field inevitably generated in the fireball. This is good for temporal features similar to the observed fractal or scale-invariant properties found in gamma-ray light curves of GRB (Shakura et al., 1994; Stern and Svensson, 1996). Another extension of the model is possible if heavier neutrinos can decay into lighter ones producing photons directly (see e.g. Jaffe & Turner, 1997). Invoking a magnetic field helps to explain a rich variety of properties of GRBs even for zero neutrino magnetic moment, as suggested by Kluźniak & Ruderman (1998) for ordinary matter.

Neglecting matter effects on the parameters of neutrino oscillations, one can estimate that the oscillation length required in this scenario must be less than the size of the system ($10 – 100$ km) multiplied by the square root of N_{sc} – the number of scatterings of mirror neutrinos. E.g. in the body of a mirror neutron star, with optical thickness to neutrino extinction equal to τ, we have $(N_{sc})^{1/2} \sim (\tau)^{1/2} \sim 10^3$. This estimate obtains if one takes into account that after each interaction of neutrino the coherence is lost and the oscillation process start anew (e.g., Raffelt, 1996). The number N_{sc} can be much less in the accretion disk.

This is correct only if the matter does not influence the parameters of neutrino oscillations, e.g. if δm^2 is big. In reality the properties of oscillations do change drastically if the parameter

$$X = 2\sqrt{2} G_F n E / \delta m^2 - \cos 2\theta_\nu$$

is large (Wolfenstein, 1978, Mikheyev & Smirnov, 1985), see reviews in Raffelt (1996), Smirnov (1998), Haxton (1999). Here θ_ν is the vacuum mixing angle and n is an effective number density of the relevant particles. In the case $|X| \gg 1$ one has

$$\sin 2\theta \simeq \sin 2\theta_\nu / |X|$$

for the effective mixing angle θ, so the probability of the neutrino transformation is strongly suppressed. The expression (18) is OK, say, for $\nu_e - \nu_\mu$ oscillations in hydrogen plasma (no neutrons) when the neutrino density is not high (e.g. in solar interiors), when n is equal to electron number density, $n = n_e$. In presence of neutrons with the concentration n_n, the amplitude of the coherent weak interaction of ν_e changes and $n = n_e - n_n/2$ (Voloshin et al., 1986; Voloshin, 1988). When n_{ν_e} is negligible, it is more complicated since the neutrino-neutrino interactions are also important and one has $n = n_e - n_n/2 + 2n_{\nu_e}$ (Okun, 1988). The adiabatic change of sign of $X(r)$ inside a collapsing star allows a resonance (i.e. complete) transformation of neutrino flavors as in Mikheyev & Smirnov (1985) mechanism. Now the location r of the resonance is determined primarily by the root of $n(r) = 0$ (Voloshin, 1988; Blinnikov, Okun, 1988; Akhmedov et al., 1997).
For transformation of sterile neutrinos during collapse the situation is analogous and one has to add to n the appropriate concentrations of neutrinos of all flavors (e.g. McLaughlin et al., 1999).

Volkas and Wong (1999) considered recently the role of neutrino oscillations for the mirror matter model of GRBs (though without taking into account the neutrino contribution to n). They find that for a spherical collapse of a mirror star the oscillations occur at a large radius r above the neutrinosphere. But for $r \gg R_\nu$ the estimate (14) shows that the power of annihilations falls as $(R_\nu/r)^3$. Volkas and Wong (1999) conclude, that a GRB event will be too week, but this argument does not kill the mirror GRB model. In reality, a spherical collapse in the mirror world should not give a powerful GRB – otherwise they would be observed too frequently (like each 10 – 100 years per a galaxy, but their statistics is like one per million, or 10 millions years per a galaxy). Only rear events, like merging neutron stars, or massive collapses with rotation are needed to produce GRBs. But in a highly non-spherical geometry the transition to a low density medium takes place on the same length-scale as the size of the system, R_d in (13). Moreover, the jets formed in those systems reduce the density of mirror matter, so the neutrinos can oscillate at higher average energy $\langle E \rangle$, making a more powerful GRB event, cf. (13).

8 Conclusion: arguments in favor of mirror matter models

Recent discoveries of GRB afterglows put the bursts at cosmological distances. This leads to the energy and to the compactness problems in GRB models. The models involving collapses and mergers of ordinary stars are only marginally successful in explaining these events. The restrictions on the properties of Dark Matter show that it cannot consist of ordinary baryons. On the other hand the discovery of MACHO microlensing events and explanation of rotation curves of galaxies suggest the existence of invisible matter and stars with properties similar to the properties of ordinary baryonic matter. This is a hint that a large fraction of the Dark Matter can be in a form of mirror particles. There are models that explain the neutrino experiments by oscillations of ordinary neutrinos to their sterile mirror counterparts. The mirror neutrinos that must be abundantly produced at mergers of mirror star can produce a powerful gamma-ray burst after oscillating to ordinary neutrinos in the space with a very low contamination of ordinary baryons.

Summarizing, here are the arguments in favor of the proposed scenario.

1. The mirror matter is aesthetically appealing, because it restores the parity symmetry of the world (at least partly).

2. It allows to explain the observed neutrino deficits.

3. It explains the galactic missing mass, and in some models the Dark matter in general.

4. It explains MACHO microlensing events.

5. For GRBs it provides the model with the low baryon loading, if the mirror neutrinos oscillate to the ordinary ones.

6. Matter effects on the neutrino oscillations suppress the production of gamma-rays in the quasi-spherical collapses. This is in agreement with statistics of powerful GRBs which must be caused by rare events like merging of mirror neutron stars.
7. The available baryon loading on the scale of the mass of a small planet is exactly what is needed for fireball models.

8. All host galaxies for optical transients of GRBs are strange ones. This may be an indication for the gravitational interaction of the ordinary galaxy with the mirror one in which it can be immersed.

Acknowledgements. I am grateful to Lev Okun, Mikhail Voloshin, Mikhail Vysotsky, Vladimir Imshennik, Dmitriy Nadyozhin, Vasilyi Morgunov, Konstantin Postnov, Ilya Tipunin, Mikhail Prokhorov, Darja Kosenko, Aleksandra Kozyreva, Elena Sorokina, Henk Spruit, for stimulating discussions and assistance, and to Robert Foot and Zurab Berizhiani for interesting correspondence. The manuscript was prepared mostly during my stay at MPA, Garching, in summer 1999. I thank Wolfgang Hillebrandt, Emmi and Friedrich Meyer, Fritz and Helga Rollwagen for their warm hospitality. The work in Russia is partly supported by RFBR Grant 99-02-16205.

References

Akhiezer, A.I. and Berestetskii, V.B., Quantum Electrodynamics, Interscience Publishers, New York, London, Sydney (1965).

Akhmedov E. Kh., Lanza A., Petcov S. T., Sciana D. W., “Resonant neutrino spin-flavor precession and supernova shock revival”, Phys. Rev. D, 55, 515 (1997).

Alcock C. et al. (The MACHO Collaboration), “The MACHO Project Large Magellanic Cloud Microlensing Results from the First Two Years and the Nature of the Galactic Dark Halo”, Astrophys. J., 486, 697 (1997).

Ardeljan, N.V., Bisnovatyi-Kogan, G.S., Kosmachevskii, K.V., Moiseenko, S.G., “An implicit Lagrangian code for the treatment of nonstationary problems in rotating astrophysical bodies”, Astron.Astrophys.Suppl., 115, 573 (1996a).

Ardeljan, N.V., Bisnovatyi-Kogan, G.S., Moiseenko, S.G., “2D Calculations of the Collapse of Magnetized Gas Cloud”, Astrophys.Space Sci., 239, 1 (1996b).

Babushkina, O.P., Bratolyubova-Tsulukidze, L.S., Kudryavtsev, M.I., Melioranskii, A.S., Savenko, I.A. & Yushkov, B.Yu., “Hard X-ray bursts in June 1971” Pis’ma v Astron. Zh., 1, No.1, 20 [Soviet Ast. Lett., 1, 32] (1975a).

Babushkina, O. P., Bratoljubova-Tsulukidze, L. S., Izrailovich, R. N., Kudriavtsev, M. I., Melioranskii, A. S., Savenko, I. A. & Shamolin, V. M. “Hard X-ray bursts at 40-290 keV”, Pis’ma v Astron. Zh., 1, No.6, 6 [Soviet Ast. Lett., 1, 115] (1975b).

Band D. et al., “BATSE observations of gamma-ray burst spectra. I - Spectral diversity”, Astrophys. J., 413, 281 (1993).

Baring, M. G., & Harding, A. K., “The Escape of High-Energy Photons from Gamma-Ray Bursts”, Astrophys. J., 491, 663 (1997).

Berezhiani Z.G., Mohapatra R.N., “Reconciling Present Neutrino Puzzles: Sterile Neutrinos as Mirror Neutrinos”, Phys. Rev. D, 52, 6607 (1995).

Berezhiani, Z.G., Dolgov, A.D., Mohapatra, R.N., “Asymmetric Asymmetric Inflationary Reheating and the Nature of Mirror Universe”, Phys. Lett., B375, 26 (1996).

Berezhiani, Z.G., “Astrophysical Implications of the Mirror World with Broken Mirror Parity”, Acta Phys.Polon., B27, 1503 (1996).
Berezinsky, V.S. & Prilutsky, O.F., “Neutrino-antineutrino annihilation around collapsing star” NASA Goddard Space Flight Center 19th Intern. Cosmic Ray Conf., Vol. 1 p. 29 (1985).

Berezinskii, V.S. & Prilutskii, O.F., “Neutrino-antineutrino annihilation around a collapsar”, *Astron. Astrophys.*, **175**, 309 (1987).

Bertolami, O., “Gamma-ray bursts, axion emission and string theory dilaton”, *Astroparticle Phys.*, **11**, 357 (1999).

Bisnovatyi-Kogan G.S.,”The explosion of a rotating star as a supernova mechanism”, *Astron.Zh*, **47**, 813 [*Soviet Ast.*, **14**, 652] (1970).

Bisnovatyi-Kogan, G. S., Imshennik, V. S., Nadyozhin, D. K. & Chechetkin, V. M., “Pulsed gamma-ray emission from neutron and collapsing stars and supernovae”, *Astrophys.Space Sci.*, **35**, 23 (1975).

Blinnikov S.I., “A quest for weak objects and for invisible stars”, presented at "Baryonic Matter in the Universe and Its Spectroscopic Studies" (November 22 - 24, 1996, Atami, Japan), [astro-ph/9801015](http://arxiv.org/abs/astro-ph/9801015) (1998).

Blinnikov, S.I., Moessner, R., “Expansions for nearly Gaussian distributions”, *Astron.Astrophys.Suppl.*, **130**, 193 (1998).

Blinnikov, S.I., Novikov, I.D., Perevodchikova, T.V., Polnarev, A.G., “Exploding neutron stars in binary systems”, *Pis’ma Astron.Zh*, **10**, 422 [*Soviet Ast. Lett.*, **10**, 177] (1984).

Blinnikov, S.I., Okun, L.B., “Models of supernova explosion and the neutrino magnetic moment”, *Pis’ma Astron.Zh*, **14**, 867 [*Soviet Ast. Lett.*, **14**, 368] (1988).

Blinnikov, S.I., Postnov, K.A., “A mini-supernova model for optical afterglows of gamma-ray bursts”, *Monthly Notices Roy. Astron. Soc.*, **293**, L29 (1998).

Bratoliubova-Tsulukidze, L.S., Grigorov, N.L., Kolesnikov, B.P., Kudryavtsev, M.I., Melioranskii, A.S., Savenko, I.A., and Fursov, Yu.S., Astron.Tsirc. 762, 4 (1973).

Brown, R.W., Hunt, W.F., Mikaelian, K.O., Muzinich, I.J., “Role of $\gamma + \gamma \to e^+ + e^- + e^+ + e^-$ in Photoproduction, Colliding Beams, and Cosmic Photon Absorption”, *Phys. Rev. D.*, **8**, 3083 (1973).

Burr, A., Silk, J., “On the structure and nature of dark matter halos”, in “Dark matter in astro and particle physics”, ed. H.V. Klappdor-Kleingrothaus, [astro-ph/9904159](http://arxiv.org/abs/astro-ph/9904159) (1999).

Carrigan, B.J., & Katz, J.I., “Radiation transfer in gamma-ray bursts”, *Astrophys. J.*, **399**, 100 (1992).

Carroll, S.M., Press, W.H., & Turner, E.L., “The cosmological constant”, *Ann. Rev. Astron. Astrophys.*, **30**, 499 (1992).

Chang, S., Corianò, C., Faraggi, A.E., “Stable Superstring Relics”, *Nucl. Phys. B*, **477** 65 (1996).

Clark, J.P.A., & Eardley, D., “Evolution of close neutron star binaries”, *Astrophys. J.*, **215**, 311 (1977).

Cohen, E., Katz, J.I., Piran, T., Sari, R., Preece, R.D., and Band, D.L. “Possible Evidence for Relativistic Shocks in Gamma-Ray Bursts”, *Astrophys. J.*, **488**, 330 (1997)

Cooperstein, J., Van Den Horn, L.J. & Baron, E.A., “Neutrino flows in collapsing stars - A two-fluid model”, *Astrophys. J.*, **309**, 653 (1986).
Cooperstein, J., van den Horn, L.J., Baron, E.A., “Neutrino pair energy deposition in supernovae”, *Astrophys. J. Lett.*, **321**, L129 (1987).

Costa, E., et al., “Discovery of the X-Ray Afterglow of the Gamma-Ray Burst of February 28 1997”, *Nature*, **387**, 783 (1997).

Crider A., Liang E.P., Preece R.D., “Confronting Synchrotron Shock and Inverse Comptonization Models with GRB Spectral Evolution” to appear in ‘Gamma-Ray Bursts, 4th Huntsville Symposium’, eds. C. Meegan, R. Preece and T. Koshut, astro-ph/9711100 (1997).

Dar, A. “Can Fireball Models Explain Gamma-Ray Bursts?”, *Astrophys. J. Lett.*, **500**, L93 (1998).

Dar, A., Kozlovsky, B.Z., Nussinov, S. and Ramaty, R., “Gamma-ray bursts and cosmic rays from accretion-induced collapse”, *Astrophys. J.*, **388**, 164 (1992).

Dar, A., Plaga, R., “Galactic gamma-ray bursters - an alternative source of cosmic rays at all energies”, *Astron.Astrophys.*, in press, astro-ph/9902133 (1999).

Demir, D.A., and Mosquera Cuesta, H.J., “Weak-Scale Hidden Sector and Fireball Models of Gamma-Ray Bursts”, astro-ph/9903262 (1999).

Eichler, D., Livio, M., Piran, T. and Schramm, D.N., “Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars”, *Nature*, **340**, 126 (1989).

Faraggi, A.E., “Superstring Phenomenology Present-and-Future Perspective”, hep-ph/9707311, UFIFT-HEP-97/12 (1997).

Fenimore, E.E., Epstein, R.I. & Ho, C.H., “The escape of 100 MeV photons from cosmological gamma-ray bursts”, *Astron.Astrophys.Suppl.*, **97**, 59 (1993).

Fishman, G. & Meegan, C., “Gamma-Ray Bursts”, *Ann. Rev. Astron. Astrophys.*, **33**, 415 (1995).

Foot R., “Neutrino oscillations and the exact parity model”, *Mod.Phys.Lett.*, **A9**, 169 (1994).

Foot R., “Have mirror stars been observed?”, astro-ph/9902065 (1999).

Foot R., Lew H., Volkas R.R., “A model with fundamental improper spacetime symmetries”, *Phys. Lett.*, **B272**, 67 (1991).

Foot R., Lew H., Volkas R.R., *Mod. Phys. Lett.*, **A7**, 2567 (1992).

Foot R., Volkas R.R., “Neutrino physics and the mirror world: how exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment”, *Phys. Rev. D*, **52**, 6595 (1995).

Foot R., Volkas R.R., “Implications of mirror neutrinos for early universe cosmology”, hep-ph/9904336 (1999).

Frail, D., A., et al., “The radio afterglow from the γ-ray burst of 8 May 1997”, *Nature*, **389**, 261 (1997).

Freese, K, Fields, B., Graff, D., “Limits on Stellar Objects as the Dark Matter of Our Halo: Non-baryonic Dark Matter Seems to be Required”, in the Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and Cosmology, astro-ph/9904401 (1999).

Fryer, C.L., Woosley, S.E., “Helium Star/Black Hole Mergers: A New Gamma-Ray Burst Model”, *Astrophys. J. Lett.*, **502**, L9 (1998).

Y. Fukuda et al., (Super-Kamiokande Collaboration), “Evidence for oscillation of atmospheric neutrinos”, *Phys. Rev. Lett.*, **81**, 1562 (1998).

Fuller G.M., Shi X., “Supermassive Objects as Gamma-Ray Bursters”, *Astrophys. J. Lett.*, **502**, L5 (1998).

Glashow, S.L., “Positronium versus the mirror Universe”, *Phys. Lett.*, **B167**, 35 (1986).
Gonzalez-Garcia, M.C., de Holanda, P.C., Pena-Garay, C., Valle, J.W.F., “Status of the MSW Solutions of the Solar Neutrino Problem”, hep-ph/9906468 (1999).

Gould A., Bahcall J.N., Flynn C., “M Dwarfs from Hubble Space Telescope Star Counts. III. The Groth Strip”, Astrophys. J., 482, 913 (1997).

Gould, R.J., “Collisions Rates in Photon and Relativistic-Particle Gases”, Amer.J.Phys., 39, 911 (1971).

Gould, R.J., Schréder P.G. “Pair Production in Photon-Photon Collisions”, Phys. Rev., 155, 1404 (1967).

Goodman, J., “Are gamma-ray bursts optically thick?”, Astrophys. J. Lett., 308, L47 (1986).

Goodman, J., Dar, A. & Nussinov, S., “Neutrino annihilation in Type II supernovae”, Astrophys. J. Lett., 314, L7 (1987).

Guilbert, P.W., Fabian, A.C. & Rees, M.J., “Spectral and variability constraints on compact sources”, Monthly Notices Roy. Astron. Soc., 205, 593 (1983).

Haxton, W.C., “Topics in Neutrino Astrophysics”, 1998 TASI summer school lectures; nucl-th/9901076 (1999).

Heinz, S., Begelman, M.C., “A Shotgun Model for Gamma Ray Bursts”, submitted to Astrophys. J. Lett., astro-ph/9908026 (1999).

Hodges, H.M., “Mirror baryons as the dark matter”, Phys. Rev. D, 47, 456 (1993).

Holmberg, J., Flynn, C., “The local density of matter mapped by Hipparcos”, Submitted to Monthly Notices Roy. Astron. Soc., astro-ph/9812404 (1999).

Iwazaki, A. “A Possible Origin of Gamma Ray Bursts and Axionic Boson Stars”, Phys. Lett., B455, 192 (1999).

Jaffe, A., Turner, M.S. “Gamma Rays and the Decay of Neutrinos from SN1987A”, Phys. Rev. D, 55, 7951 (1997).

Janka, H.-T. & Ruffert, M. “Can neutrinos from neutron star mergers power gamma-ray bursts?”, Astron.Astrophys., 307, L33 (1996).

Janka, H.-T., Ruffert, M., Eberl, T., “Merging Neutron Stars and Black Holes as Sources of Gamma-Ray Bursts and Heavy Elements”, in Nuclei in the Cosmos V, Editions Frontieres, astro-ph/9810057 (1998).

Klebesadel, R., Strong, I. & Olson, R., “Observations of Gamma-ray Bursts of Cosmic Origin”, Astrophys. J. Lett., 182, L85 (1973).

Kluźniak, W., “Neutrino Oscillations and Gamma-Ray Bursts”, Astrophys. J. Lett., 508, L29 (1998).

Kluźniak, W. & Ruderman, M., “The Central Engine of Gamma-Ray Bursters”, Astrophys. J. Lett., 508, L113 (1998).

Kobzarev, I.Yu., Okun, L.B., Pomeranchuk, I.Ya., “On the possibility of observing mirror particles”, Yad. Fiz., 3, 1154 [Sov.J.Nucl.Phys., 3, 837] (1966).

Krolik, J.H., & Pier, E.A., “Relativistic motion in gamma-ray bursts”, Astrophys. J., 373, 277 (1991).

Kulkarni, S., et al., “Identification of a host galaxy at redshift z = 3.42 for the gamma-ray burst of 14 December 1997”, Nature, 393, 35 (1998).

Kulkarni, S., et al., “The afterglow, the redshift, and the extreme energetics of the gamma-ray burst 990123”, Nature, 398, 389 (1999).

Lee T.D., Yang C.N., “Question of parity conservation in weak interactions” Phys. Rev., 104, 254 (1956).
Lightman, A.P., Press, W.H., Price, R.H., Teukolsky, S.A., *Problem book in relativity and gravitation*, Princeton: Princeton University Press (1975).

Lipunov, V.M., Postnov, K.A., Prokhorov, M.E., Panchenko, I.E., Jorgensen, H.E., “Evolution of the Double Neutron Star Merging Rate and the Cosmological Origin of Gamma-Ray Burst Sources”, *Astrophys. J.*, 454, 593 (1995).

Loeb, A., “Are γ-ray bursts at cosmological distances optically thin?”, *Phys. Rev. D*, 48, 3419 (1993).

Macfadyen, A. & Woosley, S., “Collapsars - Gamma-Ray Bursts and Explosions in Failed Supernovae”, *Astrophys. J.*, in press [astro-ph/9810274] (1999).

Mazets, E.P., Golenetskii, S.V. and Ilinskii, V.N., “A burst of cosmic gamma-radiation observed by Kosmos-461 satellite”, *Pis’ma Zh.Expt.Teor.Fiz.*, 19, 126 [JETP Lett., 19, 77] (1974).

McLaughlin, G.C., Fetter, J.M., Balantekin, A.B., Fuller, G.M., “An Active-Sterile Neutrino Transformation Solution for r-Process Nucleosynthesis”, *Phys. Rev. C*, 59, 2873 (1999).

Messer, O.E.B., Mezzacappa, A., Bruenn, S.W. & Guidry, M.W., “A Comparison of Boltzmann and Multigroup Flux-Limited Diffusion Neutrino Transport During the Postbounce Shock Reheating Phase in Core Collapse Supernovae”, *Astrophys. J.*, 507, 353 (1998).

Mészáros “Gamma Ray Bursts and Bursters”, Invited talk at the 19th Texas Symposium on Relativistic Astrophysics and Cosmology, Paris, Dec. 1998. To appear in *Nuclear Phys. B*, (Proceedings Supplements), Elsevier Science, [astro-ph/9904038] (1999).

Metzger, M., et al., “Spectral constraints on the redshift of the optical counterpart to the gamma-ray burst of 8 May 1997”, *Nature*, 387, 878 (1997).

Mohapatra, R.N., Teplitz, V.L., “Mirror Matter MACHOs”, [astro-ph/9902085] (1999).

Nadyozhin, D.K., “The neutrino radiation for a hot neutron star formation and the envelope outburst problem”, *Astrophys.Space Sci.*, 53, 131 (1978).

Nadyozhin, D.K., Otroshchenko, I.V., “The spectrum of the electron neutrinos and antineutrinos associated with the process of neutron star formation”, *Soviet Ast.*, 24, 47 (1960).

Navarro, J.F., Frenk, C.S. & White, S.D.M., “A Universal Density Profile from Hierarchical Clustering” *Astrophys. J.*, 490, 493 (1997).

Nemiroff, R.J., “A century of Gamma-Ray Burst models”, *Comm. Astrophys.*, 17, 189 (1994).

Nikishov, A.I., “Absorption of high-energy photons in the Universe”, *Zh.Expt. Teor.Fiz.*, 41, 549 (1961) [Sov. Physics JETP, 14, 393 (1962)].

Nikolaev, N.N., and Okun, L.B., “Possible experiments on search for mirror K^0 mesons”, *Physics Lett.*, B4, 226 (1968).

Okun, L.B., “On the search for new long-range forces”, *Zh.Expt. Teor.Fiz.*, 79, 694 [Sov. Physics JETP, 52, 351] (1980).

Okun, L.B., “The limits of electrodynamics: paraphotons?”, *Zh.Expt. Teor.Fiz.*, 83, 892 (1982).

Oort, J.H., “Stellar Dynamics”, in Galactic Structure, eds. Blaauw A. and Schmidt, M., Univ. of Chicago Press, Chicago (1965).

Paciesas, W.S. et al., “The Fourth BATSE Gamma-Ray Burst Catalog (Revised)”, *Astrophys. J. Suppl.*, accepted, [astro-ph/9903203] (1999).
Paczyński, B., “Gamma-ray bursters at cosmological distances“, Astrophys. J. Lett., 308, L43 (1986).
Piran T., in Unsolved Problems in Astrophysics Eds. Bahcall J. N., Ostriker J. P., Princeton University Press, Princeton, p.343 (1996).
Piran T., “Gamma-Ray Bursts and Related Phenomena” in the proceedings of the Fifth Conference on Underground Physics, TAUP97, Nucl.Phys.Proc.Suppl., 70, 431 (1999a).
Piran T., “Gamma-Ray Bursts and the Fireball Model” Physics Reports, 314, 575 (1999b).
Pontecorvo, B. Zh.Expt.Teor.Fiz., 33, 549 (1958).
Popham R., Woosley S.E., Fryer C., “Hyper-Accreting Black Holes and Gamma-Ray Bursts”, accepted by Astrophys. J., astro-ph/9807028 (1999).
Postnov, K.A., “Cosmic gamma-ray bursts”, Uspekhi Fiz. Nauk, 169, 545 (1999).
Prilutskii, O. F. & Usov, V. V. “On the nature of gamma-ray bursts” Astrophys.Space Sci., 34, 395 (1975).
Raffelt G.G., Stars as Laboratories for Fundamental Physics, The Univ. of Chicago Press, Chicago & London (1996).
Rees, M.J., Mészáros, P., “Relativistic fireballs - Energy conversion and time-scales”, Monthly Notices Roy. Astron. Soc., 258, 41P (1992).
Rees, M.J., & Mészáros, P., “Unsteady outflow models for cosmological gamma-ray bursts”, 1994, Astrophys. J. Lett., 430, L93.
Rozental, I.L., Belousova, I.V. “Origin of Cosmic Gamma-Bursts”, Astrophys.Space Sci., 249, 117 (1997).
Ruffert, M., Janka, H.-T., Takahashi, K., Schaefer, G., “Coalescing neutron stars - a step towards physical models. II. Neutrino emission, neutron tori, and gamma-ray bursts”, Astron.Astrophys.319, 122 (1997).
Ruffert, M. & Janka,H.-T., “Colliding neutron stars. Gravitational waves, neutrino emission, and gamma-ray bursts”, Astron.Astrophys., 338, 535 (1998).
Ryde F., Svensson R., “On the Shape of Pulse Spectra in Gamma-Ray Bursts”, Astrophys. J., 512, 693 (1999).
Salmonson, J.D., Wilson, J.R., “General Relativistic Augmentation of Neutrino Pair Annihilation Energy Deposition Near Neutron Stars”, Astrophys. J., 517 859 (1999).
Sedov, L.I. “Similarity and dimensional methods in mechanics”, 363 p., London: Infosearch (1959).
Shakura N.N., Prokhorov M.E., Shakura, N.I., “On fractal properties of light curves of gamma-ray bursts”, Astronomy Lett., 20, 137 (1994).
Shiozawa, M., “Results from Super-Kamiokande”, in this volume (1999).
Shvartsman, V.F., “On the density of relic particles with zero rest-mass in the Universe”, Sov.Physics JETPLett., 9, 184 (1969).
Silagadze, Z., “Neutrino mass and mirror universe”, Phys. Atom. Nucl. 60, 272 (hep-ph/9503481) (1997).
Smirnov, A.Yu., “Neutrino Conversion and Neutrino Astrophysics”, talk given at the Symposium ‘New Era in Neutrino Physics’, Tokyo Metropolitan University, Japan, 11-12 June, 1998, hep-ph/9811296 (1998).
Spruit, H.C., “Gamma-ray bursts from X-ray binaries”, Astron.Astrophys., 341, L1 (1999).
Stern B.E., Svensson R. “Evidence for ‘Chain Reaction’ in the Time Profiles of Gamma-Ray Bursts”, *Astrophys. J.*, 469, L109 (1996).

Stern, B., Tikhomirova, Ya., Stepanov, M., Kompaneets, D., Berezhnoy, A., Svensson, R., “Search for Non-Triggered Gamma Ray Bursts in the BATSE Continuous Records: Preliminary Results” to appear in Proceedings ”Gamma Ray Bursts in the Afterglow Era”, Rome, November 1998, *Astron.Astrophys.Suppl.*, (1999), [astro-ph/9903094](http://arxiv.org/abs/astro-ph/9903094).

Svensson, R., “Electron-positron Pair Equilibria in Relativistic Plasma” *Astrophys. J.*, 258, 335 (1982).

Tavani, M., “Gamma-Ray Bursts: the Four Crises”, *Astrophysical Letters and Communications*, in press, [astro-ph/9812422](http://arxiv.org/abs/astro-ph/9812422) (1998).

Usov, V.V., “Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts”, *Nature*, 357, 472 (1992).

Usov, V.V. & Chibisov, G.V., “Statistics of gamma-ray bursts” *Astron.Zh, 52*, 192 [Soviet Ast., 19, 115] (1975).

Van den Berg, S., “The Early History of Dark Matter”, *Publ. Astron. Soc. Pacific*, June (1999), [astro-ph 9904251](http://arxiv.org/abs/astro-ph/9904251).

van Paradijs, J., *et al.*, “Transient optical emission from the error box of the gamma-ray burst of 28 February 1997”, *Nature*, 386, 686 (1997).

Vietri, M. & Stella, L., “A Gamma-Ray Burst Model with Small Baryon Contamination”, *Astrophys. J. Lett.*, 507, L45 (1998).

Wolfenstein, L., “Neutrino oscillations in matter”, *Phys. Rev. D*, 17, 2369 (1978).

Woods, E., & Loeb, A., “Empirical Constraints on Source Properties and Host Galaxies of Cosmological Gamma-Ray Bursts”, *Astrophys. J.*, 383, 292 (1995).

Zel’dovich, Ya.B., Raizer, Yu.P., “Physics of shock waves and high-temperature hydrodynamic phenomena”, New York, Academic Press (1966).

Zharikov, S.V., Sokolov, V.V. & Baryshev, Y.V. “BVRcIc light curves of GRB 970508 optical remnant and colors of underlying host galaxy”, *Astron.Astrophys.*, 337, 356 (1998).
Figure 1: BATSE fluxes in four channels for GRB 990123 (source: http://gcn.gsfc.nasa.gov/gcn/)
Figure 2: A smooth, single pulse, light curve (counts vs. time) of GRB 921123 (source: Cohen et al., 1997)
Figure 3: Multiple pulses in the light (counts vs. time) of GRB 940217 (source: Cohen et al., 1997)
Figure 4: Spectra a) GRB 921123; b) GRB 930201 (source: Cohen et al., 1997; fits Blinnikov et al., 1999)
Figure 5: GRB spectra, that are steeper at low-energy than allowed by the synchrotron shock model (source: Crider et al., 1997)
Figure 6: The differential log \(N_s - \log S \) distribution from Stern et al. (1999). Here \(P \) denotes the peak flux \(S \). The full distribution is shown by thin crosses. Thick crosses are for the case when short bursts are removed.
Figure 7: The space-time diagram for the emission of a shell (thick solid line) expanding with the speed v. Emission begins at $t = t_0$ and ends at $t = t_1$, when the shell has the radius R. The observer at rest at distance d detects the duration of the radiation pulse $\delta t = (t_1 - t_0)/2\Gamma^2 \ll t_1 - t_0$.
Figure 8: A sketch of a jet near the black hole (BH) formed after the merging of two neutron stars (source: Janka et al., 1998)

\(\gamma\)-jet:
\[\Delta t \sim 0.01 \ldots 1 \text{ s} \]
\[E_{\text{jet}} < \text{few } 10^{51} \text{ erg}/f_0 \]
\[M_{\text{jet}} < 10^{-5} M_\odot/f_0 \]
\[\Gamma_{\text{jet}} > 100 \]
\[s_{\text{jet}} > 1000 \Gamma_{\text{jet}} k_b/\text{nucleon} \]

\(\dot{M}_w \) high, s low
\(\dot{M}_w \) low, s high

\(\nu \)-driven wind

baryon intrusion