Spatiotemporal dynamics of habitat suitability for the Ethiopian staple crop, *Eragrostis tef* (teff), under changing climate

Dinka Zewudie¹, Wenguang Ding Corresp.¹, Zhanlei Rong², Chuanyan Zhao³, Yapeng Chang³

¹ College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China, Lanzhou, China
² College of Geographical Science, Qinghai Normal University, Xining 810008, China, Lanzhou, China
³ State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China, Lanzhou, China

Corresponding Author: Wenguang Ding
Email address: wgding@lzu.edu.com

Teff (*Eragrostis tef* (Zucc.) Trotter) is a staple, ancient food crop in Ethiopia. Its growth is affected by climate change, so it is essential to understand climatic effects on its habitat suitability in order to design countermeasures to ensure food security. Based on the four Representative Concentration Pathway emission scenarios (i.e. RCP2.6, RCP4.5, RCP6.0 and RCP8.5) set by the Intergovernmental Panel on Climate Change (IPCC), we predicted the potential distribution of teff under current and future scenarios using a maximum entropy model (Maxent). Eleven variables were selected out of 19, according to correlation analysis combined with their contribution rates to the distribution. Simulated accuracy results validated by the area under the curve (AUC) had strong predictability with values of 0.83-0.85 for current and RCP scenarios. Our results demonstrated that mean temperature in the coldest season, precipitation seasonality, precipitation in the cold season and slope are the dominant factors driving potential teff distribution. Proportions of suitable teff area, relative to the total study area were 58% in current climate condition, 58.8% in RCP2.6, 57.6% in RCP4.5, 59.2% in RCP6.0, and 57.4% in RCP8.5, respectively. We found that warmer conditions are correlated with decreased land suitability. As expected, bioclimatic variables related to temperature and precipitation were the best predictors for teff suitability. Additionally, there were geographic shifts in land suitability, which need to be accounted for when assessing overall susceptibility to climate change. The ability to adapt to climate change will be critical for Ethiopia’s agricultural strategy and food security. A robust climate model is necessary for developing primary adaptive strategies and policy to minimize the harmful impact of climate change on teff.
Spatiotemporal dynamics of habitat suitability for the Ethiopian staple crop, *Eragrostis tef* (teff), under changing climate

Dinka Zewudie \(^a\), Wenguang Ding \(^a\)*, Zhanlei Rong \(^b\), Chuanyan Zhao \(^c\) Yapeng Chang \(^c\)

\(^a\) College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

\(^b\) College of Geographical Science, Qinghai Normal University, Xining 810008, China

\(^c\) State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China

\(\square\) Wenguang Ding (Corresponding author) , wgdng@lzu.edu.com

Abstract

Teff (*Eragrostis tef* (Zucc.) Trotter) is a staple, ancient food crop in Ethiopia. Its growth is affected by climate change, so it is essential to understand climatic effects on its habitat suitability in order to design countermeasures to ensure food security. Based on the four Representative Concentration Pathway emission scenarios (i.e. RCP2.6, RCP4.5, RCP6.0 and RCP8.5) set by the Intergovernmental Panel on Climate Change (IPCC), we predicted the potential distribution of teff under current and future scenarios using a maximum entropy model (Maxent). Eleven variables were selected out of 19, according to correlation analysis combined with their contribution rates to the distribution. Simulated accuracy results validated by the area under the curve (AUC) had strong predictability with values of 0.83-0.85 for current and RCP scenarios. Our results demonstrated that mean temperature in the coldest season, precipitation seasonality, precipitation in the cold season and slope are the dominant factors driving potential teff distribution. Proportions of suitable teff area, relative to the total study area were 58% in current climate condition, 58.8% in RCP2.6, 57.6% in RCP4.5, 59.2% in RCP6.0, and 57.4% in RCP8.5, respectively. We found
that warmer conditions are correlated with decreased land suitability. As expected, bioclimatic
variables related to temperature and precipitation were the best predictors for teff suitability.
Additionally, there were geographic shifts in land suitability, which need to be accounted for when
assessing overall susceptibility to climate change. The ability to adapt to climate change will be
critical for Ethiopia’s agricultural strategy and food security. A robust climate model is necessary
for developing primary adaptive strategies and policy to minimize the harmful impact of climate
change on teff.

Keywords: climate change, Ethiopia, Maxent, potential distribution, Eragrostis tef
1. Introduction

Climate is the key controlling factor in the distribution of species, and variations in habitat distribution patterns can be attributed to climate change (Parmesan & Yohe, 2003; Lenoir et al., 2008; Bertrand et al., 2011; Guo et al. 2016). The global average surface temperature has caused warming of 0.8 °C over the past century (Hansen et al. 2006; Yumbya et al. 2014), and is accelerating, with a 0.6°C increase in the last four decades (Hansen et al. 2010; Suwannatrai et al. 2017). International Panel on Climate Change (IPCC, 2007) reports that over the course of this century, net carbon uptake by the terrestrial ecosystem made a peak mid-century and then weakened or even reversed the increase on climate change. Global average temperature increases exceeding the 1.5–2.5 °C range and the concomitant CO₂ concentration, is projected to trigger major changes in the ecosystem structure and function, alter species ecological interactions and produce shifts in species’ geographical ranges with predominantly negative consequences for biodiversity and ecosystem goods and services, e.g. water and food supply (Kumar 2012; Liao & Chang 2014; Pachauri et al. 2014). Evidence suggests that a significant impact of global warming is already discernible in animal and plant populations (Root et al. 2003).

Temperature in Africa is expected to increase faster than the global average throughout the 21st century (Christensen et al., 2007; Joshi et al., 2011; James and Washington, 2013). However, future values for Africa estimated by the International Panel on Climate Change (IPCC 2007) are relatively uncertain (Solomon et al. 2007). In particular, Ethiopia is predicted to be highly vulnerable to climate change, manifesting an increased warming accompanied by inconsistent rainfall leading to decreased crop security (Conway & Schipper 2011).

Climate change may increase the risk for food production in many African countries as their agricultural systems are mostly rain-fed. These impacts on livelihood, will undoubtedly mean that
countries will have to change their farming policies (Dinar 2007). In Ethiopia, agriculture plays a crucial role in enhancing economic growth and contributes up to half of the Gross Domestic Product (GDP) (Gebrehiwot & Van Der Veen 2013). Despite being one of the largest cereal producers in East Africa, the country is still not self-sufficient; 85% of Ethiopians live in agrarian areas relying on agricultural production as means of living (Gebrehiwot & Van Der Veen 2013). Moreover, many rural Ethiopians face long or short seasonal droughts, leading to crop failure (Tefera & Quintin 2012; Kamali et al. 2018). “Green famines” are caused in Ethiopia by a seasonal pattern shift with delayed rains for several weeks or starting and stopping suddenly in critical germination periods. Consequently, crops are lost while the natural vegetation is able to resume normal phenological cycles, thus providing a green landscape (Evangelista et al. 2013). Changing patterns of drought and precipitation in Ethiopia have already been documented by other researchers, and greater changes are expected under future conditions (Deressa & Hassan 2009; Viste et al. 2013). Cereal crops face an especially critical threat due to climate change (Ledig et al. 2010), affecting human populations that rely on only a few edible species for nutrition and sustenance out of more than 50,000 known edible species available worldwide (Cheng et al. 2017).

Teff (Eragrostis tef (Zucc.) Trotter), is an ancient and major staple food crop in Ethiopia, accounting for the largest share of land cultivation for cereal crops, 24% nationwide (Tafesse et al. 2012), showing a wide geographic condition and marked plasticity by growing in 10 to 18 agro ecological zones (Assefa et al., 2001). Teff is a warm-season annual crop that produces very small grains and is also gluten-free and high in iron (Figure 1A) (Rosell et al. 2014). Teff contains a huge amount of nutrients, and moreover is tolerant of extremes such as drought, Water logging, pests, and diseases (Cheng et al. 2017).
Teff crops occupy nearly 30,000 km² (CSA 2014) about 30% of the total area covered by cereals in all administrative regions, predominantly on the highlands of Tigray, Amhara, Oromia, and SNNPR regions (Wondimu and Tekabe 2001). Teff growth has been reported at altitudes up to 3000 m.a.s.l. ranging from semiarid areas with low rainfall to areas with high rainfall. Under current conditions, teff is suitable in most areas of the country covering diverse agro ecological regions where millions of people rely on it as a daily food--indeed, nearly 60% of the Ethiopian population.

However, due to climate change, it is one of the most vulnerable crops in the region (Evangelista et al. 2013). It is estimated that enjera, made from teff, provides up to two-thirds of the food consumed by Ethiopians (Figure 1B) (Cheng et al. 2017; VanBuren et al. 2020). Therefore, predicting potential teff distribution is necessary to take safe and effective countermeasures to reduce its ecological risk under climate change (Kamilar et al. 2013).

Maxent is an ecological tool and statistical model used to examine ecological processes and interactions across spatial and temporal scales (Elith et al. 2006; Phillips et al. 2006) that has been employed to explore a range of species, habitats and ecosystem conditions (Alberto et al. 2013; Brown et al., 2014; Beltramino et al. 2015). Species distribution models (SDMs) are a subset of the approaches outlined and were developed by combining current and historical species distribution data with relevant environmental variables to explain both occurrence and abundance of organisms in ecosystems (Peterson et al., 2006; Zimmermann et al., 2010; Caminade et al., 2012; Kamilar et al. 2013;Guo et al. 2017b). A variety of SDMs have been developed to predict species distributions under different climate scenarios (e.g. RCP). Commonly used SDM models including the Genetic Algorithm for Rule-set Production (GARP), BIOCLIM and Ecological Niche Factor Analysis (ENFA) have proved to be essential for predicting target species
distributions under current, and also future climate scenarios (Rong et al. 2019; Tognelli et al. 2009). Maxent (maximum entropy) has been widely used due to its many advantages, including its ability to: deal with incomplete data, small sample size, species presence data, both continuous and categorical environmental data; reduce laborious jobs in data collection; facilitate model interpretation, and for its prediction accuracy and reliability (Guo et al. 2017a; Rong et al. 2019). SDMs assume that available presence locations represent a random (representative) sample in the geographical space, with no spatial dependencies and bolstered by data-rich technologies, such as geographical information systems (GIS) (Rushton et al. 2004, Elith et al. 2011).

Teff had been an important crop in the past and will continue to be a staple food for the majority of the Ethiopian people in the future. Being a major staple crop, teff is an essential food in Ethiopia, so any impact on suitable areas for its cultivation due to climate change will have a direct impact on food security. Unfortunately, there is already a huge deficit between teff production and the national demand, which will be exacerbated by the effects of climate change. Therefore, as long as teff production decreases against a rising demand due to Ethiopia’s fast-growing population, the teff price will increase. As cultural food insecurity remains widespread in Ethiopia, policy makers should pay attention to areas with low habitat suitability and resilience for teff. It is important to maintain nutrition and sustainable food security for the Ethiopian people with the implementation of a strategy to foster diversification and avoid over reliance on this crop.

In a climate change context, understanding and planning for crop resilience is crucial for protection of global food supplies, and therefore research on key crops is needed for decision makers to plan and strategize future actions (Cowie et al. 2018). In line with this, the major objectives of this study are to: (1) predict the potential distribution of teff species under current climates; (2) forecast suitable areas for teff species under four future climate scenarios, and (3) evaluate the effects of
climate change on teff distribution. Identifying shifts in the ranges of suitable areas under future scenarios is a novel approach in the study and we also shown the full workflow on which every step of analyses of our work is delineated in Figure 2.

Figure 1. A. Teff (*Eragrostis tef*), a fine-grain annual cereal. (Source: FAO [http://www.fao.org/traditional-crops/teff/en/]; B. Teff-made enjera is a staple food product in Ethiopia.

Figure 2. The workflow shows that data sets of two topographic data and Climatic Variables (Bio1-Bio19) for multicollinearity test and Variables importance with Species occurrence presence only data with MAXENT and then Teff distribution prediction based on multiple climate conditions scenarios.

2. Materials and Methods

In this study, we analyzed the geographic distribution of *Eragrostis tef* occurrence from Ethiopian Biodiversity Institute (EBI) (https://www.ebi.gov.et/) and Ethiopian National Herbarium, Addis Ababa University with Maxent climate envelope model (CEM) under four climate change scenarios.

2.1 Study Area

Ethiopia lies in northeast Africa, and is located between latitude 3.30°–15°N and longitude 33°–48°E covering 1.13 × 10^6 km^2 with heterogenous landscapes including mountains, hills, and flat regions with elevations from below sea level to more than 4,000 m.a.s.l. (Tilahun & Schmidt 2012) (Figure 3). Due to this varied relief, Ethiopia has a variety of climates going from desert climate to that typical of equatorial mountains (tropical) with three major climatological seasons: June–September (called Kiremt), October–January (Bega), and February–May (Belg) (Gissila et al. 2004; Korecha & Barnston 2007; Fazzini et al. 2015). Annual average temperature ranges from 10
to 27°C and precipitations vary across the country and season from 145 to 2,100 mm annually (Hordofa et al. 2008; Fazzini et al. 2015).

2.2 Crop production in Ethiopia

Though agricultural planning is difficult due to variable rainfall, a large proportion of Ethiopia receives sufficient rain for crop production, that is mostly sown from June to October and harvested from September to February (Taffesse et al. 2012). The primary crop season corresponds to the summer rainy season, from June to August and in the autumn from September to November (Yumbya et al. 2014). Light rains also fall during spring, from March through May. Some crops - only about 8% of total crop land- are harvested between March and August, making Ethiopia’s crop season somewhat bimodal (Hordofa et al. 2008; Taffesse et al. 2012). Teff grows primarily in the highlands where clouds are forced to release rain. The optimal growing conditions for teff are 430–560 mm of rain per year and a temperature range of 10–30°C (Roseberg et al. 2005).

2.3 Teff Distribution Data

The distribution dataset contains 2490 verified, geo-referenced data-points (latitude, longitude and altitude) belonging to germplasm collections and herbarium specimens from the gene bank of the Institute of Biodiversity Conservation, and 14 specimens from the Ethiopian National Herbarium, Addis Ababa University, collected between 1978 and 2019. Teff was present in all sites over the nine Ethiopian regional state administrations, predominantly in the Oromia, Amhara, Tigray, the

Figure 3 Locations of sampling sites and land elevation within the nine Ethiopian regional state administrations: Oromia, Amhara, Tigray, Afar, Benishangul-Gamuz, Gambella, Harari, Southern Region, and Somali Region.
Southern Nations, and Harari regions, with only a few locations in Gambela, Beninshangul-Gumuz, and the Somali Region, and had no significant presence in Afar.

2.4 Topographical data

The Digital Elevation Model (DEM) with a 90-meter special resolution was acquired from the USGS Shuttle Radar Topography Mission dataset (www.srtm.usgs.gov). Two terrain variables (aspect and slope) from the DEM were re-sampled into 1 km spatial resolution using neighbor sampling in ArcGIS 10.5. The two topographical variables were used as model inputs.

2.5 Current and future climate data

Climatic data consisting of 19 bioclimatic variables, here coded Bio1 through Bio19, were obtained from the WorldClim (http://www.worldclim.org/) at 30” resolution (1 km × 1 km) for the climate from 1950 to 2000 in the study area (Fick & Hijmans 2017). The dataset comprises global gridded information with 1 km spatial resolution on past, current, and future scenarios (http://www.worldclim.org/).

Future climate data is based on the standard scenarios of the Fifth Assessment Report from the IPCC (IPCC 2013). All four greenhouse gas concentration trajectories provided by the IPCC were used, Representative Concentration Pathway (RCP): RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.0. In 2100, the total radiative forcing values in the four scenarios stated would have attained 2.6W/m2, 4.5 W/m2, 6.0 W/m2, and 8.5 W/m2 over the value in the preindustrial period (Taylor et al. 2012, Rogelj et al. 2012, Stocker et al. 2013). The data used was produced by interpolation of data predictions for 2060 and 2080 to produce an estimate of climate condition for the year 2070. Cross correlation among 19 bioclimatic variables and two independent variables was checked to avoid the presence of redundant variables in the model. The input rate of the variables was
calculated by Jackknife test of Maxent model, and IBM-SPSS statistical software (Statistical Product and Service Solutions, Version 20.0, SPSS Inc., Chicago, IL, USA) was used for Pearson’s correlation. From each highly correlated pair of variables, one variable was removed (> |0.8|) and the ones with high contribution rate were chosen (Liu et al. 2005).

2.6 Climatic niche Modeling

We used Maxent Version 3.4.1 (https://www.biodiversityinformatics.amnh.org/open_source/Maxent, (Phillips et al. 2006)) to predict the current and future potential distribution of teff. Species distribution point data was stored in csv file format and included coordinate data such as name, latitude and longitude of the species. ArcGIS 10.5 converted all environmental variables to ASCII raster grids and species presence coordinates to decimal degrees. Certain settings (500 iterations, 0.00001 convergence requirement, 10,000 peak context points) were kept by default. The software ran with 75% of presence locations and tested the efficiency of the model with the remaining 25% of the presence points (Phillips et al. 2006, Phillips & Dudík 2008). In Phillips et al. (2006), a detailed mathematical description of Maxent was mentioned.

A continuous probabilistic layer ranging from 0 to 1 is the output of the model. Higher-value areas indicate more desirable conditions for growth of species (Phillips et al. 2006). For each case, we selected the minimum performance by training presence (MTP) as a threshold or "cut-off" value (Hijmans & Graham 2006). The MTP can be interpreted ecologically to include those cells that are expected to be at least as sufficient as those where the species has been defined as present. We have categorized four habitat suitability groups, unsuitable, low suitability, moderate suitability, and high suitability by Spatial Analyst tool in ArcMap 10.5, so as to measure the niche centroid from present to future climate change scenarios.
There are two ratification processes in the Maxent model: area under the curve (AUC) and Jackknife. Area Under the Curve (AUC) of Receiver Operating Characteristic (ROC) curves was used to verify the suitability of teff estimated by the model. The AUC represents the probability that a randomly chosen teff occurrence exceeds that of randomly choosing an absence. The AUC values lie between 0.5 and 1.0 (perfect prediction), and can be divided into five categories: outstanding (>0.9), good (0.8 – 0.9), approved (0.7 – 0.8), poor (0.6 – 0.7) and invalid (<0.6) (Elith 2006, Suwannatrai et al. 2017).

Jackknife is part of Maxent model and it is calibrated with all permutations of the groups using occurrence points and background data from \(k-1\) spatial groups and then evaluated with the withheld and alternate estimates of which variables are most important in the model (Hu et al. 2011). Variables that significantly affected the model were identified and chosen based on percent contribution to the model.

3. Results

3.1 Variable Contribution Analysis

After testing for independence between climatic variables, the ones with low predictive power or high similarities to other variables in prediction were identified. Eleven variables (11) were selected for the model according to the contribution rate of each variable (Table 1). The potential teff distribution under current projected climate change was mostly affected by the mean temperature of the coldest season (Bio11 78.3%) and precipitation seasonality (Bio15 8.3%) (Table 1). The potential teff distribution under the RCP scenarios was also influenced mainly by Bio11 (77.8%-80.4%), Bio15 (7.3%-9.04%). The Pearson’s correlation coefficients are included in the supplementary material (Table S1).
The jackknife test indicated that the bioclimatic variables Bio11, Bio14, Bio19, and Bio4 provided huge gains when they were used independently to estimate potential teff distribution under current conditions and under RCP scenarios 2.6 to 6.0 (Figure 4). The potential distribution of the species under the RCP8.5 scenario was most strongly associated with Bio11 (gain, 0.59), Bio2 (gain, 0.12), Bio19 (gain, 0.15) and Bio4 (gain, 0.13), respectively (Figure 4E).

The response curves indicate the relationship between environmental variables and habitat suitability and can provide information on teff ecological niche. The ranges of suitability for environmental variables were identified by the threshold of normal suitable habitats. The response curves of 8 variables of teff habitat suitability are illustrated in Figure 5, as is the suitable range for each variable. The highest suitability areas for teff have a mean temperature of the coldest season (Bio11) between 14-19 °C, an annual precipitation seasonality (Bio15) between 60% to 122%, precipitation of the coldest season (Bio19) between 8.5-110 mm, a slope between 0 to 3°, a temperature annual range (Bio7, Bio5-Bio6) from 11.8 to 26.6 °C, a temperature seasonality

Table 1. Percent contributions of the climate variables for teff distribution in the MaxEnt model.

Variable	Contribution (%)
Bio11	59
Bio2	12
Bio19	15
Bio4	13

Figure 4 Jackknife test variable contributions to the potential distribution of teff distribution under: (A) current climate condition scenario, (B) RCP 2.6 scenario, (C) RCP 4.5 scenario, (D) RCP 6.0 scenario, and (E) RCP 8.5 scenario. The regularized training gain describes how much better the simulated distribution fits the present data compared to a uniform distribution. The dark blue bars indicate the gain from using each variable in isolation, the light blue bars indicate the gain lost by removing the single variable from the full model, and the red bar indicates the gain using all the variables.
(standard deviation $\times 100$, Bio4) from 1000-1550, precipitation of the driest period (Bio14) from 0.3 mm to 20 mm, an isothermality (Bio3) above 68 and an aspect from 355 to 0° (Figure 5).

3.2 Performance and accuracy of the Maxent Model

Of the climatic variables, mean temperature of the coldest quarter played the greatest role in the model in both percent contribution and permutation importance, which reflects the effect of a variable determined by impact to the model when the variable is absent (Table 2). However, in the variable analysis, mean temperature of the coldest quarter was not independent of mean temperature of the warmest quarter, or mean temperature of the driest quarter. Therefore, temperature generally had the greatest effect, especially during the growing season, which would logically be the highest for teff.

AUC values were above 0.829 under current and four projected climate scenarios (Table 3). According to the performance classification standard, prediction accuracy was very good, as AUC for training and testing were 0.84 and 0.83, respectively.

| Table 2. Estimates of relative contributions and permutation importance of the predictor environmental variables to the Maxent model. |
| Table 3. Results of receiver operating characteristic (ROC) analysis under current climate and four future projected scenarios. |
3.3. Predicted distribution of teff under current climate condition and future scenarios

The model showed that teff has a climatically suitable area of minimum annual precipitation between 550 and 1770 mm. The minimum mean temperature is expected to be 14.9 °C with maximum values of 26.75 °C in Ethiopia. The model showed that under such temperature conditions, suitable distribution classes under the current and future scenarios showed that the warmer the climate condition, there will be a greater shift from high-level to low-level suitability. The distribution classes under current and future scenarios show that teff in Ethiopia is highly suitable in the central region of the country. Areas with higher temperature that do not correlate with suitable teff habitat lie on the eastern side of highlands and those that do not correlate with higher temperature lie in the western lowlands (Figure 6).

Generally, teff simulated distribution includes the west part of Ethiopia in current and future climate condition (Fig.7). The high suitable area lies in the northwest part of the country, related to low temperature and high precipitation (Fig.6). There is no distribution of teff in the eastern part of Ethiopia related to low altitude, high temperature and low precipitation (Fig.6).

Figure 6 Average annual rainfall (A) and average annual temperature (B) in Ethiopia over three decades.

3.4. Teff Habitat Suitability under current and future scenarios

Under current climate, the distribution area with low suitability summed up 463,453 km², moderate suitability 296,933 km², and with high suitability, 14,513 km², giving a total suitable area of 58% of our research area. Considering the four projection scenarios, the total suitable area declined with climate warming in RCP 4.5 (770,139 km²) and RCP 8.5 (767,554 km²) while in other scenarios suitable area increased (Table 4, Figure 7). A difference was found between the current suitable area and the predicted habitat in RCP 2.6 and 6.0 (Figure 7). In particular, the area of suitable teff
habitat increased in both RCP 2.6 and 6.0 while it decreased in RCP 4.5 (-4760 km2) and RCP 8.5 (-7345 km2) (Table 4).

Suitable habitat including moderately and highly suitable areas remained roughly the same in each future scenario (from 0.042 to 0.052 for RCP 2.6 and 8.5 respectively). Taking the ratio of moderately suitable habitat to low suitable habitat, the largest projected deviation was under the RCP 4.5 scenario (ratio = 0.74 vs. 0.64-0.67 for the other RCPs), resulting in a relative decrease of low suitable area and an increase of moderate suitability. In the other scenarios, the model predicted a slight increase of highly suitable and a decrease of moderately suitable area (Table 4).

Unsuitable area in the future decreases in RCP 2.6 and RCP 6.0 compared to the current situation while it increases in RCP 4.5 and RCP 8.5. Also, low suitability areas decrease in RCP 2.6, RCP 4.5 and RCP 8.5 while increasing in the RCP 6.0 scenario. Moderate suitability areas increase in RCP 2.6, RCP 4.5 and RCP 6.0 but decline in RCP 8.5. Again, high suitability areas compared with the current situation increase in area in RCP 4.5, RCP 6.0 and RCP 8.5 but not in the RCP 2.6 scenario (Table 4).

On the regional scale, the largest projected shifts in habitat suitability occur in the northwest region of the country under the most extreme radiative forcing case of RCP 8.5, where a patch of currently unsuitable area becomes moderately suitable (Figure 7).
area, overall, suitable land area is expected to decrease under RCP 4.5 and RCP 8.5, including a
decrease in total moderately suitable land. The result of a shift in suitable land towards the west
and away from the east contrasts with the path of rainclouds traveling from west to east.

4. Discussion

Ultimately, several studies and our own research results show it is necessary to assess the impact
of climate change on teff distribution and take it into account in adaptive management policies in
order to minimize the impact of climate change.

Recent research findings indicate that most updated climate projections of GCM (global climate
model) used in the IPCC Fifth Assessment Report were used to forecast the effect of climate
change on teff that was used for crop suitability (Alemayehu et al 2020). The distribution of plants
would be significantly affected by climate change according to the findings of several researchers.

For example: McSweeney et al., 2010a and Niang et al., 2014, reported that increased temperature
and precipitation was projected in East Africa. This had an impact by decreasing the yield of many
cereals by shortening the growing season length, amplifying water stress and increasing incidence
of weed outbreak and diseases. As (Prasad et al., 2008; Nelson et al., 2009 and Thornton et al.,
2009) indicated that for high altitude regions in Ethiopia, such as mountainous land where
temperature is the limiting factor for plant growth, a rise in temperature will possibly increase crop
yield, but that in lowland areas, it will increase the risk of water stress. They also indicated that
precipitation variability due to various effects of climate change, and the resulting heat and water
stress, are considered the most important factors. (Elith and Graham, 2009) also reported that there
is always uncertainty about selecting the best fit methods to model species distributions, as
different models and methods change the result of the predictions under different scenarios due to
various mechanisms. While there remains considerable uncertainty as to the extent and pace of
global warming trends and their impact on plant species, preceding researchers have pointed out
that climate change has a significant impact on the distributions of the different species by causing
shifts, even contractions in species ranges, and change of terrestrial ecosystems function (Barbet
et al., 2012; Li et al., 2015 and Petitpierre et al., 2016). Considerable effort was made to expand the
collection and increase the number of species studied. Due to limiting factors, such as climatic and
environmental conditions, difficulty accessing some of the data and time constraints during
occurrence sampling, some locations that were unreachable may have been overlooked. This
shortcoming is believed to have slightly affected our results; hence, future studies should more
comprehensively focus on the climate factor and other variables such as soil organic carbon, clay,
bulk density (BD), Elevation, and pH. In future research, we should consider these methods to
improve the accuracy of the predictors.

Ethiopia is predicted to be highly vulnerable to climate change, manifesting an increased warming
accompanied by inconsistent rainfall (Conway & Schipper 2011). In that direction, potential teff
distribution under current conditions and projected climate change scenarios was mostly affected
by the temperature and precipitation. Evangelista et al. (2013) found that teff distribution depended
most on precipitation variables, especially precipitation of the wettest quarter. However, we have
found that the potential teff distribution was mostly affected by mean temperature of coldest
quarter (Bio11), precipitation seasonality (Bio15) and precipitation of coldest quarter (Bio19).

As reported by Tan et al. 2016, due to increasing temperature and varying rainfall the areas suitable
for cultivating teff will become centralized to the plateau of Ethiopia in the future. Yet, (Gregory
et al., 2005, Turner and Rao, 2013) suggest that for most of the crops, including teff, suitability
decreased due to the warming trend of climate change. Furthermore, Thornton et al., 2009 state
that if temperature increases above the level suitable for a crop then it will lead to the death of that
crop. Teff is known to be a primary cereal, which is less tolerant of cold (Chamberlin and Schmidt,
2012; Yumbya et al., 2014, Sen et al., 2016). Though our model share some common data and
methods with preceding studies, it has arrived at different findings because it uses a wider range
of data and environmental variables than those earlier studies. Existing research of different
regions has reported variables found to have an important effect on various species. For example:
Evangelista et al., 2013 Studied teff by using three climate projection model that the value of
predictable were 0.79 (Bio16, Bio12, Bio19, Bio15) and others studied different species in different
geographical area including, Elham et al., 2015 (Bio2, Bio3, Bio7, Bio8, Bio13, Bio14, Bio15,
Bio18), Ardestani et al., 2015 (Bio8, Bio19, Bio2, Bio13, Bio7), Sen et., 2016 (Bio4 and Bio19),
Rong et., 2019 (Bio1, Bio8 and elevation), Abdelaal et al., 2020 (elevation, precipitation,
temperature and soil), and Yang et., 2020 (Temp Seasonality, Precipitation, Vegetation Type, Soil
Type). Our results indicate that temperature of coldest quarter had a predictability value of 0.83
for teff, which is stronger than that of any other existing model. Mean temperature of coldest
quarter (Bio11), Precipitation seasonality (Bio15), Precipitation of coldest quarter (Bio19), Slope,
and Temperature annual range (Bio7) were the variables with the greatest effect on teff
distribution.

Our result indicates that the suitable and unsuitable area somehow varies, increasing and
decreasing under four climate change scenarios (i.e., RCP2.6, RCP4.5, RCP6.0 and RCP8.5).
Comparing unsuitable area in current condition with that in scenario RCP 2.6 and RCP 6.0,
unsuitable area decreased by 11058 and 16186 km² respectively. Also, the RCP 4.5, RCP 8.5
decreased by 4760, and 7345 km² respectively. Suitability area decreased comparing the current
condition with RCP 8.5, suitability area increased comparing RCP 8.5 with the other three
scenarios due to different climate changes under four scenarios. Future climate change scenarios
RCP 2.6 and RCP 6.0 provided the most favorable outcomes in terms of loss of suitable teff habitat.
However, RCP 2.6 resulted in a greater loss of high suitable habitat, whereas projections from
RCP 6.0 show the highest preservation of total potential crop area. Surprisingly, projected loss of
suitable habitat did not correlate with increasing projected radiative forcing. Alemayehu et al
(2018), in relation to future climate change from 2050-2070s, indicated that generally suitable area
for teff under climate change scenarios will suffer a slight increase in almost all administrative
regions of Ethiopia. This increase in suitability will transform marginalized currently unsuitable
areas to suitable area for teff under climate change scenarios. An example of these areas are Afar
and Somali regional states which have low precipitation and high temperature conditions, and are
predicted to have increased precipitation and higher temperatures. In contrast with our results in
the four scenarios, they demonstrate the possible future expansion of the cultivation of teff in the
east lowlands of Ethiopia. In 2050, the area expects a temperature range between 15 °C and 27 °C,
and a compensating increase in rainfall between 600 and 1900 mm where teff would be
climatically suitable (Yumbya 2014). Several studies indicate that changes in rainfall, temperature
and seasonality in Ethiopia directly affect rainfed agriculture (Evangelista et al. 2013; Gebre et al.
2013; Asfaw et al. 2018; Alemayehu & Bewket 2017; Worku et al. 2019). Evangelista et al. (2013)
predicted a 350,000 km² loss of suitable crop area by 2050, however, in our study, areas of crop
suitability showed different trends in the future climate change scenarios. In the model used by
Evangelista et al. (2013) rainfall was the primary climate driver (and not coupled with mean
temperature of the coldest season), so the model outcomes were heavily dependent on the specific
rainfall predictions of the climate data. The main difference in the models lies in the confidence of
an environmental variable versus the prediction of a climatic variable.
Most studies using models to predict the climate change in Ethiopia revealed that important climate variables influence teff distribution. The contribution rates of precipitation of wettest quarter (Bio16), annual precipitation (Bio12), precipitation of the coldest quarter (Bio19), and precipitation seasonality (Bio15) are 26.6, 9.3, 8.3, and 6.1%, respectively (Evangelista et al. 2013). By contrast, our analysis results show that contribution rates of four environmental variables (Bio11, Bio15, Bio19, and slope) are 78.3, 8.3, 3.7, 3.3% respectively suggesting that precipitation in the wettest quarter is even more important than previously thought.

Our model provided reasonably strong AUC predictions on the geographic changes in teff suitability throughout Ethiopia under projected climate change. Several studies reveal that all models have associated assumptions and extrapolation modes in time or space, and are subject to violating assumptions of species distribution models (Wiens et al. 2009). We used a Maxent model to show current teff distribution and to predict future climate impacts on it. Since the model relies on predicted future climate scenarios, an amount of uncertainty is added. We should have considered including management, soil and other teff varieties which are grown in Ethiopia in our model analysis. We strongly believe that our research could be improved by including management of farming practice and preparation for teff harvesting components, but we believe that lack of soil and other data in our analysis did not significantly affect the results.

Climate change affects the teff crop both in current and future scenarios. Results indicate that the differing future distributions are not uniformly affected by predicted changes in climate. Moreover, the predicted future damage is so severe that the survival of the Ethiopian agricultural sector, will be at stake unless adaptive policies are implemented. As Ethiopia, many other East African countries are facing the erratic effects of climate change with the same projections (Deresa & Hassan 2009; Di Falco & Veronesi 2013).
5. Conclusions

Our work presents an opportunity for the agricultural sector, modelers and policy makers to examine the effect of climate change on teff so as to minimize negative impacts. Our result revealed that four environmental factors have an important influence on teff distribution, namely Mean temperature of coldest quarter (Bio11), Precipitation seasonality (Bio15), Precipitation of coldest quarter (Bio19), Slope, and Temperature annual range (Bio7). Furthermore, based on current and future climate future scenarios conditions, we found out that for teff distribution in western Ethiopia the high suitable area lies on the northwest part of the county. We discovered climate change is happening and influencing the teff distribution, with a total projected loss 5000-7300 km² of suitable habitat. While this change does not pose substantial threat on the short term, on the long term it may have a significant impact on the future availability to grow teff as staple crop in Ethiopia.

Author Attribution

Dinka Zewudie wrote the paper, prepared figures and tables, reviewed drafts of the paper.

Wenguang Ding reviewed drafts of the paper.

Chuanyan Zhao conceived and designed the experiments.

Zhanlei Rong and Yapeng Chang analyzed the data.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

Supported by the Strategic Priority Research Program of Chinese Academy of Sciences Grant No. XDA20100102

Conflict of Interest
The authors declare there are no competing interests

Acknowledgment: We thank people who help in the manuscript, and foundation support.

References

Abdelaal, M., Fois, M., Dakhil, M. A., Bacchetta, G., & El-Sherbeny, G. A. (2020). Predicting the Potential Current and Future Distribution of the Endangered Endemic Vascular Plant Primula boveana Decne. ex Duby in Egypt. Plants, 9(8), 957.

Alberto, F. J., Aitken, S. N., Alia, R., González-Martínez, S. C., Hänninen, H., Kremer, A., ... & Savolainen, O. (2013). Potential for evolutionary responses to climate change—evidence from tree populations. Global Change Biology, 19(6), 1645-1661.

Alemayehu N., Masafu M., Ebro A., Tegegne A., Gebru G. (2018) Climate Change and Variability in the Mixed Crop/Livestock Production Systems of Central Ethiopian Highland. In: Leal Filho W. (eds) Handbook of Climate Change Resilience. Springer, Cham. https://doi.org/10.1007/978-3-319-71025-9_120-1

Alemayehu N., Masafu M., Ebro A., Tegegne A., Gebru G. (2020) Climate Change and Variability in the Mixed Crop/Livestock Production Systems of Central Ethiopian Highland. In: Leal Filho W. (eds) Handbook of Climate Change Resilience. Springer, Cham. https://doi.org/10.1007/978-3-319-93336-8_120

Alemayehu, A., & Bewket, W. (2017). Local spatiotemporal variability and trends in rainfall and temperature in the central highlands of Ethiopia. Geografiska Annaler: Series A, Physical Geography, 99(2), 85-101.

Anderson, R. P., Lew, D., & Peterson, A. T. (2003). Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling, 162(3), 211-232.

Ardestani, E. G., Tarkesh, M., Bassiri, M., & Vahabi, M. R. (2015). Potential habitat modeling for reintroduction of three native plant species in central Iran. Journal of arid land, 7(3), 381-390.

Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29-41.

Assefa, K., Tefera, H., Merker, A., Kefyalew, T., & Hundera, F. (2001). Quantitative trait diversity in tef [Eragrostis tef (Zucc.) Trotter] germplasm from Central and Northern Ethiopia. Genetic Resources and Crop Evolution, 48(1), 53-61.

Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many?. Methods in ecology and evolution, 3(2), 327-338.
Barnett, T. P., Hegerl, G., Knutson, T., & Tett, S. (2000). Uncertainty levels in predicted patterns of anthropogenic climate change. *Journal of Geophysical Research: Atmospheres*, 105(D12), 15525-15542.

Beltramo, A. A., Vogler, R. E., Gregoric, D. E. G., & Rumi, A. (2015). Impact of climate change on the distribution of a giant land snail from South America: predicting future trends for setting conservation priorities on native malacofauna. *Climatic Change*, 131(4), 621-633.

Bertrand, R., Lenoir, J., Piedallu, C., Ríofrío-Dillon, G., de Ruffray, P., Vidal, C., ... & Gégout, J. C. 2011. Changes in plant community composition lag behind climate warming in lowland forests. *Nature*, 479(7374), 517-520.

Betts, R. A., Collins, M., Hemming, D. L., Jones, C. D., Lowe, J. A., & Sanderson, M. G. 2011. When could global warming reach 4°C?. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 369(1934), 67-84.

Brown, J. L. (2014). SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. *Methods in Ecology and Evolution*, 5(7), 694-700.

Caminade, C., Medlock, J. M., Ducheyne, E., McIntyre, K. M., Leach, S., Baylis, M., & Morse, A. P. (2012). Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. *Journal of the Royal Society Interface*, 9(75), 2708-2717.

Chamberlin, J., & Schmidt, E. (2012). Ethiopian agriculture: A dynamic geographic perspective. *Food and agriculture in Ethiopia: progress and policy challenges*, 21-52.

Cheng, A., Mayes, S., Dalle, G., Demissew, S., & Massawe, F. (2017). Diversifying crops for food and nutrition security–a case of teff. *Biological Reviews*, 92(1), 188-198.

Conway, D., & Schipper, E. L. F. (2011). Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. *Global Environmental Change*, 21(1), 227-237.

Cowie, A. L., Orr, B. J., Sanchez, V. M. C., Chasek, P., Crossman, N. D., Erlewein, A., ... & Tengberg, A. E. (2018). Land in balance: The scientific conceptual framework for Land Degradation Neutrality. *Environmental Science & Policy*, 79, 25-35.

CSA. (2014). Agricultural Sample Survey for 2013/14. Statistical Bulletin 532. Addis Ababa, Ethiopia: Central Statistical Agency

Deressa, T. T., & Hassan, R. M. (2009). Economic impact of climate change on crop production in Ethiopia: Evidence from cross-section measures. *Journal of African economies*, 18(4), 529-554.

Di Falco, S., & Veronesi, M. (2013). How can African agriculture adapt to climate change? A counterfactual analysis from Ethiopia. *Land Economics*, 89(4), 743-766.

Dinar A (2007) Climate change: the final blow for agriculture in Africa? Research Brief. The World Bank, Washington

Dinku, T., Connor, S. J., Ceccato, P., & Ropelewski, C. F. (2008). Comparison of global gridded precipitation products over a mountainous region of Africa. *International Journal of Climatology: A Journal of the Royal Meteorological Society*, 28(12), 1627-1638.

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists. *Diversity and distributions* 17:43-57.
Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., ... & Li, J. (2006). Novel methods improve prediction of species’ distributions from occurrence data. *Ecography, 29*(2), 129-151.

Evangelista P, Young N, and Burnett J. 2013. How will climate change spatially affect agriculture production in Ethiopia? Case studies of important cereal crops. *Climatic Change* 119:855-873. 10.1007/s10584-013-0776-6

Fazzini M, Bisci C, Billi P. 2015. The Climate of Ethiopia. In book: *Landscapes and Landforms of Ethiopia* (pp.23) Ed: World Geomorphological Landscapes. Springer Verlag. Editors: Billi P. doi: 10.1007/978-94-017-8026-1_3

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. *International journal of climatology, 37*(12), 4302-4315.

Funk, V. A., & Richardson, K. S. (2002). Systematic data in biodiversity studies: use it or lose it. *Systematic biology, 51*(2), 303-316.

Gebre, H., Kindie, T., Girma, M., & Belay, K. (2013). Trend and variability of rainfall in Tigray, northern Ethiopia: analysis of meteorological data and farmers’ perception. *Academia Journal of Agricultural Research, 1*(6), 088-100.

Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2019). Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. *Scientific Reports, 9*(1), 1-9.

Gebrehiwot, T., & Van Der Veen, A. (2013). Farm level adaptation to climate change: the case of farmer’s in the Ethiopian Highlands. *Environmental management, 52*(1), 29-44.

Gissila, T., E.Black, D. I. F.Grimes, and J. M.Slingo, (2004): Seasonal forecasting of the Ethiopian summer rains.Int. J. Climatol., 24, 1345–1358.

Gleixner, S., Keenlyside, N., Viste, E., & Korecha, D. (2017). The El Niño effect on Ethiopian summer rainfall. *Climate Dynamics, 49*(5-6), 1865-1883.

Graham, C. H., & Hijmans, R. J. (2006). A comparison of methods for mapping species ranges and species richness. *Global Ecology and biogeography, 15*(6), 578-587.

Gregory, P. J., Ingram, J. S., & Brklacich, M. (2005). Climate change and food security. *Philosophical Transactions of the Royal Society B: Biological Sciences, 360*(1463), 2139-2148.

Guo Y, Li X, Zhao Z, Wei H, Gao B, and Gu W. 2017a. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. *Scientific Reports* 7. 10.1038/srep46221

Guo Y, Wei H, Lu C, Gao B, and Gu W. 2016. Predictions of potential geographical distribution and quality of *Schisandra sphenanthera* under climate change. *PeerJ* 4:e2554. 10.7717/peerj.2554

Guo, Y., Li, X., Zhao, Z., Wei, H., Gao, B., & Gu, W. (2017). Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. *Scientific reports, 7*, 46221.

Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. *Reviews of Geophysics, 48*(4).

Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. *Proceedings of the National Academy of Sciences, 103*(39), 14288-14293.
Hijmans, R. J., & Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global change biology, 12(12), 2272-2281.

Hordofa, T. & Menkir, Michael & Awulachew, Seleshi Bekele & Erkossa, T. (2008). "Irrigation and rain-fed crop production system in Ethiopia," Conference Papers h044065, International Water Management Institute.

Hu, J., & Jiang, Z. (2011). Climate change hastens the conservation urgency of an endangered ungulate. PloS one, 6(8), e22873.

Intergovernmental Panel on Climate Change. (2007). Climate Change 2007 - Mitigation of Climate Change: Working Group III contribution to the Fourth Assessment Report of the IPCC. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511546013.

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

James, R., & Washington, R. (2013). Changes in African temperature and precipitation associated with degrees of global warming. Climatic change, 117(4), 859-872.

Joshi, M., Hawkins, E., Sutton, R., Lowe, J., & Frame, D. 2011. Projections of when temperature change will exceed 2 C above pre-industrial levels. Nature Climate Change, 1(8), 407-412.

Kamali, B., Abbaspour, K. C., Lehmann, A., Wehrli, B., & Yang, H. (2018). Spatial assessment of maize physical drought vulnerability in sub-Saharan Africa: Linking drought exposure with crop failure. Environmental Research Letters, 13(7), 074010.

Kamilar, J. M., & Beaudrot, L. (2013). Understanding primate communities: Recent developments and future directions. Evolutionary Anthropology: Issues, News, and Reviews, 22(4), 174-185.

Korecha, D., & Barnston, A. G. (2007). Predictability of june–september rainfall in Ethiopia. Monthly weather review, 135(2), 628-650.

Kumar, P. (2012). Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodiversity and Conservation, 21(5), 1251-1266.

Kumar, S., & Stohlgren, T. J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomycrica monticola in New Caledonia. Journal of Ecology and the Natural Environment, 1(4), 094-098.

Kumar, S., Spaulding, S. A., Stohlgren, T. J., Hermann, K. A., Schmidt, T. S., & Bahls, L. L. (2009). Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US. Frontiers in Ecology and the Environment, 7(8), 415-420.

Ledig, F. T., Rehfeldt, G. E., Sáenz-Romero, C., & Flores-López, C. (2010). Projections of suitable habitat for rare species under global warming scenarios. American journal of botany, 97(6), 970-987.

Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century. Science. 2008 Jun 27;320(5884):1768-71. doi: 10.1126/science.1156831. PMID: 18583610.

Li, R., Xu, M., Wong, M. H. G., Qiu, S., Sheng, Q., Li, X., & Song, Z. (2015). Climate change-induced decline in bamboo habitats and species diversity: Implications for giant panda conservation. Diversity and Distributions, 21(4), 379-391.
Liao, H., & Chang, W. (2014). Integrated assessment of air quality and climate change for policy-making: highlights of IPCC AR5 and research challenges. *National Science Review, 1*(2), 176-179.

Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. *Ecography, 28*(3), 385-393.

McSweeney, C., New, M., Lizcano, G., & Lu, X. (2010). The UNDP Climate Change Country Profiles: Improving the accessibility of observed and projected climate information for studies of climate change in developing countries. *Bulletin of the American Meteorological society, 91*(2), 157-166.

Minten, B., Tamru, S., Engida, E., & Kuma, T. (2016). Feeding Africa’s cities: The case of the supply chain of teff to Addis Ababa. *Economic Development and Cultural Change, 64*(2), 265-297.

Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., ... & Magalhaes, M. (2009). Climate change: Impact on agriculture and costs of adaptation (Vol. 21). *Intl Food Policy Res Inst.*

Niang, I., Ruppel, O. C., Abdrabo, M. A., Essel, A., Lennard, C., Padgham, J., & Urquhart, P. (2014). Africa. Part B: Regional Aspects. *Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change.*

Pachauri, R. K., Allen, M. R., Barros, V. R., Broune, J., Cramer, W., Christ, R., ... & Dubash, N. K. (2014). *Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change* (p. 151). *Ipcp.*

Parmesan, C., & Yohe, G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. *Nature, 421*(6918), 37-42.

Peterson, A. T. (2006). Ecologic niche modeling and spatial patterns of disease transmission. *Emerging infectious diseases, 12*(12), 1822.

Petitpierre, B., McDougall, K., Seipel, T., Broennimann, O., Guisan, A., & Kueffer, C. (2016). Will climate change increase the risk of plant invasions into mountains?. *Ecological Applications, 26*(2), 530-544.

Phillips SJ, Anderson RP, and Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. *Ecological Modelling 190*:231-259.

https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. *Ecography, 31*(2), 161-175.

Prasad, P. V., Staggenborg, S. A., Ristic, Z., Ahuja, L. R., Reddy, V. R., Saseendran, S. A., & Yu, Q. (2008). *Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes (Advances in agricultural systems modeling series 1).*

Rogelj, J., Meinshausen, M., & Knutti, R. (2012). Global warming under old and new scenarios using IPCC climate sensitivity range estimates. *Nature climate change, 2*(4), 248-253.

Rong Z, Zhao C, Liu J, Gao Y, Zang F, Guo Z, Mao Y, and Wang L. 2019. Modeling the Effect of Climate Change on the Potential Distribution of Qinghai Spruce (*Picea crassifolia* Kom.) in Qilian Mountains. *Forests* 10:62.

Roseberg, R. J., Norberg, S., Smith, J., Charlton, B., Rykbose, K., & Shock, C. (2005). Yield and quality of teff forage as a function of varying rates of applied irrigation and nitrogen. *Klamath Experiment Station, 1069*, 119-136.
Rosell, C. M., Barro, F., Sousa, C., & Mena, M. C. (2014). Cereals for developing gluten-free products and analytical tools for gluten detection. *Journal of Cereal Science, 59*(3), 354-364.

Rushton, S. P., Ormerod, S. J., & Kerby, G. (2004). New paradigms for modelling species distributions?. *Journal of applied ecology, 41*(2), 193-200.

Segele ZT, Lamb PJ, Leslie LM (2009) Large-scale atmospheric circulation and global sea surface temperature associations with Horn of Africa June–September rainfall. *Int J Climatol* 29:1075–1100

Seleshi, Y., & Zanke, U. (2004). Recent changes in rainfall and rainy days in Ethiopia. *International Journal of Climatology: A Journal of the Royal Meteorological Society, 24*(8), 973-983.

Sen, S., Gode, A., Ramanujam, S., Ravikanth, G., & Aravind, N. A. (2016). Modeling the impact of climate change on wild *Piper nigrum* (Black Pepper) in Western Ghats, India using ecological niche models. *Journal of plant research, 129*(6), 1033-1040.

Solomon, S., Manning, M., Marquis, M., & Qin, D. (2007). *Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC* (Vol. 4). Cambridge university press.

Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, and Midgley PM. 2013. *Climate change 2013: The physical science basis*. Cambridge University Press Cambridge.

Suwannatrai, A., Pratumchart, K., Suwannatrai, K., Thinkhamrop, K., Chaiyos, J., Kim, C. S., ... & Sripa, B. (2017). Modeling impacts of climate change on the potential distribution of the carcinogenic liver fluke, *Opisthorchis viverrini*, in Thailand. *Parasitology research, 116*(1), 243-250.

Taffesse, A. S., Dorosh, P., & Gemessa, S. A. (2012). Crop production in Ethiopia: Regional patterns and trends. *Food and agriculture in Ethiopia: Progress and policy challenges, 53-83.*

Tan, Z., Yang, Y., Wang, Y., Wang, L., & Sun, G. (2016). The decrease of potential suitable areas and the distribution tendency of staple crops in Ethiopia under future climate conditions. *African Journal of Agricultural Research, 11*(24), 2092-2101.

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. *Bulletin of the American Meteorological Society, 93*(4), 485-498.

Tefera, A., & Quintin, G. (2012). *Ethiopia: grain and feed annual report. Global Agricultural Information Network. USDA Foreign Agriculture Service, Report Number ET, 1201.*

Tilahun, Helina & Schmidt, Emily, 2012. "Spatial Analysis of Livestock Production Patterns in Ethiopia;" ESSP working papers 44, International Food Policy Research Institute (IFPRI).

Tognelli, M. F., Roig, S. A., Marvaldi, A., Flores, G. E., & Lobo, J. M. (2009). An evaluation of methods for modelling distribution of Patagonian insects.

Turner, N. C., & Rao, K. P. C. (2013). Simulation analysis of factors affecting sorghum yield at selected sites in eastern and southern Africa, with emphasis on increasing temperatures. *Agricultural Systems, 121*, 53-62.

VanBuren, R., Wai, C. M., Wang, X., Pardo, J., Yocca, A. E., Wang, H., ... & Messing, J. (2020). Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. *Nature communications, 11*(1), 1-11.
Viste, E., Korecha, D., & Sorteberg, A. (2013). Recent drought and precipitation tendencies in Ethiopia. *Theoretical and Applied Climatology, 112*(3-4), 535-551.

Wei, B., Wang, R., Hou, K., Wang, X., & Wu, W. (2018). Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. *Global Ecology and Conservation, 16*, e00477.

Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: assessing the assumptions and uncertainties. *Proceedings of the National Academy of Sciences, 106*(Supplement 2), 19729-19736.

Wondimu, A. and Tekabe, F. (2001) Utilization of Teff in the Ethiopian Diet. Narrowing the Rift. Teff Research and Development: Proceedings of the International Workshop on Teff Genetics and Improvement, Debre Zeit, 16-19 October 2000, 239-244.

Worku, G., Teferi, E., Bantider, A., & Dile, Y. T. (2019). Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. *Theoretical and Applied Climatology, 135*(3-4), 839-854.

Yang, M., Li, Z., Liu, L., Bo, A., Zhang, C., & Li, M. (2020). Ecological niche modeling of Astragalus membranaceus var. mongholicus medicinal plants in Inner Mongolia, China. *Scientific reports, 10*(1), 1-18.

Yumbya, J., Maria, D., Vaate, B. D., Kiambi, D., Kebebew, F., & Rao, K. P. C. (2014). Assessing the effects of climate change on teff in Ethiopia: Implications for food security. Technical report.

Zimmermann, N. E., Edwards Jr, T. C., Graham, C. H., Pearman, P. B., & Svenning, J. C. (2010). New trends in species distribution modelling. *Ecography, 33*(6), 985-989.

Pearson’s correlation coefficient attached (see Table S1), Correlation of environmental variables. Variables Bio2, Bio3, Bio4, Bio7, Bio11, Bio14, Bio15, Bio18, and Bio19 were deemed independent and used in subsequent analyses.
Figure 1

Left: The crop teff, a fine-grain annual cereal. (Source: FAO http://www.fao.org/traditional-crops/teff/en/) Right: Injera made from teff is a staple food product in Ethiopia.

Photo by Gamechis E. Hambisa
Figure 2

Figure 2 Workflow of the Study
Manuscript to be reviewed

- Topographical Data
 - Slope
 - Aspect

- Climatic Variables
 - Bio 1
 - Bio 2
 - Bio 3
 - Bio 4
 - Bio 5
 - Bio 6
 - Bio 7
 - Bio 8
 - Bio 9
 - Bio 10
 - Bio 11
 - Bio 12
 - Bio 13
 - Bio 14
 - Bio 15
 - Bio 16
 - Bio 17
 - Bio 18
 - Bio 19

- Multicollinearity Test
- Species Occurrence
 - Presence-only data

- Potential habitat distribution
- MAXENT
- AUC analysis
- Jackknife test
- Current
- Future distribution
- RCP 2.6
- RCP 4.5
- RCP 6.0
- RCP 8.5
Figure 3

Locations of sampling sites and land elevation within the nine Ethiopian regional state administrations: Oromia, Amhara, Tigray, Afar, Benishangul-Gamuz, Gambella, Harari, Southern Region, and Somali Region.
Figure 4

Jackknife test variables contributions to potential distribution of teff distribution under (A) current climate condition scenario, (B) RCP 2.6 scenario, (C) RCP 4.5 scenario, (D) RCP 6.0 scenario, and (E) RCP 8.5 scenario. (The regularized training
Manuscript to be reviewed
Figure 4. Response curves of 8 environmental variables in the teff habitat distribution model. A: Bio11 (Mean temperature of coldest season (°C*10)); B: Bio15 (Precipitation seasonality (CV)); C: Bio7 (Temperature annual range (Bio5–Bio6)); D: Bio19 (Precip
Figure 6

Average annual rainfall (A) and average annual temperature (B) in Ethiopia over three decades.
Figure 7

Figure 6. Distribution of unsuitable, and low, moderate, and highly suitable teff habitats based on current and future distribution under four climate scenarios (Note: A: current; B: RCP 2.6; C: RCP4.5; D: RCP6.0; E: RCP8.5)

Figure 6. Distribution of unsuitable, and low, moderate, and highly suitable teff habitats based on current and future distribution under four climate scenarios.
Table 1 (on next page)

Percent contributions of the variables to teff distribution in the MaxEnt model.
Table 1. Percent contributions of the variables to teff distribution in the MaxEnt model.

Code	Environmental factor	Unit	Current	RCP2.6	RCP4.5	RCP6.0	RCP8.5
BIO1	Annual mean temperature	°C	0.23	0.6	0.2	0.5	0.40
BIO2	Mean diurnal range (Monthly max. min. and mean temp.)	°C	0.6	0.2	0.5	0.40	
BIO3	Isothermality (Bio2/Bio7×100)		1.11	1.3	0.9	1.3	0.81
BIO4	Temperature seasonality (standard deviation×100)		1.33	0.8	0.5	0.45	0.44
BIO5	Maximum temperature of warmest month	°C					
BIO6	Minimum temperature of coldest month	°C					
BIO7	Temperature annual range (Bio5–Bio6)	°C	2.17	2.6	2.3	2.85	2.39
BIO8	Mean temperature of wettest quarter	°C					
BIO9	Mean temperature of driest season	°C					
BIO10	Mean temperature of warmest season	°C					
BIO11	Mean temperature of coldest season	°C	78.3	79.7	80.4	78.5	77.8
BIO12	Annual precipitation	mm					
BIO13	Precipitation of wettest period	mm	1.3	1.1	0.8	1.35	1.49
BIO14	Precipitation of driest period	mm	8.3	7.3	7.8	7.76	9.04
BIO15	Precipitation seasonality (CV)		-	-	-	-	-
BIO16	Precipitation of wettest season	mm	0.2	0.2	0.1	0.14	0.03
BIO17	Precipitation of driest season	mm	3.7	2.9	3.5	3.90	4.32
BIO18	Precipitation of warmest season	mm	0.1	0.1	0.2	0.1	0.09
BIO19	Precipitation of coldest season	mm	3.3	3.2	3.5	3.09	3.10
SLOP	Slope	°	0.1	0.1	0.2	0.1	0.09
ASP	Aspect	°	0.1	0.1	0.2	0.1	0.09

Note: The variables in bold were key variables selected by their contribution rates and multicollinearity test.

RCP: (Representative Concentration Pathway).
Manuscript to be reviewed
Table 2 (on next page)

Estimates of relative contributions and permutation importance of the predictor environmental variables to the MaxEnt model.
Table 2. Estimates of relative contributions and permutation importance of the predictor environmental variables to the MaxEnt model.

Variable	Percent Contribution	Permutation Importance (%)
(Bio11) Mean temperature of coldest quarter	78.3	66.5
(Bio15) Precipitation seasonality	8.3	4.7
(Bio19) Precipitation of coldest quarter	3.7	3.8
Slope	3.3	3.9
(Bio7) Temperature annual range	2.2	5.3
(Bio4) Temperature seasonality	1.3	3.1
(Bio14) Precipitation of driest month	1.3	1.8
Bio3) Isothermality (mean diurnal range/temperature annual range)	1.1	8.4
(Bio2) Mean diurnal range (mean of monthly temp range)	0.2	1.8
(Bio18) Precipitation of warmest quarter	0.2	1.8
Aspect	0.1	0.4
Table 3

Results of receiver operating characteristic (ROC) analysis under current climate and four future projected scenarios.
Table 3. Results of receiver operating characteristic (ROC) analysis under current climate and four future projected scenarios.

	Current	RCP2.6	RCP4.5	RCP6.0	RCP8.5
AUC (Training Data)	0.841	0.839	0.835	0.835	0.843
AUC (Test data)	0.829	0.833	0.846	0.842	0.826
Table 4 (on next page)

The total area of suitable and unsuitable teff habitats based on current distribution data and projected four future climate scenarios.
Table 4. The total area of suitable and unsuitable teff habitats based on current distribution data and projected four future climate scenarios.

	Current	RCP2.6	RCP4.5	RCP6.0	RCP8.5
Unsuitable area (km²)	560960	549902	565720	544774	568305
Low suitability area (km²)	463453	463044	434560	464483	458548
Moderate suitability area (km²)	296933	309811	320942	311603	293716
High Suitability area (km²)	14513	13102	14637	14999	15290
Total Suitability area (km²)	774899	785957	770139	791085	767554
Change area (km²)	11058	-4760	16186	-7345	
Percent (%)	58	58.8	57.6	59.2	57.4