The *in silico* identification of potential members of the Ded1/DDX3 subfamily of DEAD-box RNA helicases from the protozoan parasite *Leishmania infantum* and their analyses in yeast.

Molka Mokdadi, Yosser Zina Abdelkrim, Josette Banroques, Emmeline Huvelle, Rafeh Oualha, Hilal Yeter-Alat, Ikram Guizani, Mourad Barhoumi*, and N. Kyle Tanner*

Supplementary Table S1. Oligonucleotides used in this study

Constructs*	Sequence (5’—3’)*
LINF08-1 (SpeI-Ndel–SalI/XhoI)	GCCTATCTAGTCATATGCCTAAGGGGC
LINF08-1_up	GCCTATCTAGTCATATGCCTAAGGGGC
LINF08-1_low	GCCTATCTAGTCATATGCCTAAGGGGC
LINF08-2 (SpeI-Ndel–SalI/XhoI)	GCCTATCTAGTCATATGCCTAAGGGGC
LINF08-2_up	GCCTATCTAGTCATATGCCTAAGGGGC
LINF08-2_low	GCCTATCTAGTCATATGCCTAAGGGGC
LINF08-2syn (SpeI-Ndel–XhoI)	GCCTATCTAGTCATATGCCTAAGGGGC
LINF08-2_low2	GCCTATCTAGTCATATGCCTAAGGGGC
LINF32 (SpeI-Ndel–XhoI)	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.32_up	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.32_low	GCCTATCTAGTCATATGCCTAAGGGGC
TRYP08 (XbaI-Ndel–SalI/XhoI)	GCCTATCTAGTCATATGCCTAAGGGGC
Tb427-08_up	GCCTATCTAGTCATATGCCTAAGGGGC
Tb427-08_low	GCCTATCTAGTCATATGCCTAAGGGGC
TRYP32 (SpeI-Ndel–XhoI)	GCCTATCTAGTCATATGCCTAAGGGGC
Tb427_32_up	GCCTATCTAGTCATATGCCTAAGGGGC
Tb427_32_low	GCCTATCTAGTCATATGCCTAAGGGGC
TRYP35 (SpeI-Ndel–SalI)	GCCTATCTAGTCATATGCCTAAGGGGC
Tb427_35_up	GCCTATCTAGTCATATGCCTAAGGGGC
Tb427_35_low	GCCTATCTAGTCATATGCCTAAGGGGC
LINF08-2-GAT (SpeI-Ndel–XhoI)	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.08_up3	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.08_low2	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.08_GAT_up	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.08_GAT_low	GCCTATCTAGTCATATGCCTAAGGGGC
LINF08-1-GAT (SpeI-Ndel)	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.08_up4	GCCTATCTAGTCATATGCCTAAGGGGC
LINF32-GAT (SpeI-Ndel–XhoI)	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.32_up2	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.32_low2	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.32_GAT_up	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.32_GAT_low	GCCTATCTAGTCATATGCCTAAGGGGC
LINF35-GAT (SpeI-Ndel–XhoI)	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.35_up2	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.35_low2	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.35_GAT_up	GCCTATCTAGTCATATGCCTAAGGGGC
LINJ.35_GAT_low	GCCTATCTAGTCATATGCCTAAGGGGC

Chimera constructs

Ded1-5’-pUC18_fwd (SpeI-Ndel)	GCCTATCTAGTCATATGCCTAAGGGGC
Ded1-3’-pUC18_rev (XhoI)	GCCTATCTAGTCATATGCCTAAGGGGC
Ded1-5’-pUC18_fwd2 (XbaI-Ndel)	GCCTATCTAGTCATATGCCTAAGGGGC
Ded1-3’-pUC18_rev2 (SalI)	GCCTATCTAGTCATATGCCTAAGGGGC
Ded1-DDX3-Ded1	GCCTATCTAGTCATATGCCTAAGGGGC
Regions of hybridization are shown underlined, restriction sites are in bold and mutations are in lowercase.

Supplementary Table S2. Constructs used in this study

Name	Description	Source
pUC18	BlueScript (AM)	
ADH-2HA_p415	2HA, ADH/CYC1 (LEU2/CEN)	[1]
ADH-2HA_p424	2HA, ADH/CYC1 (TRP2/µ)	[1]
GPD-2HA_p424	2HA, GPD/CYC1 (TRP2/µ)	This study
ADH-2HA-DED1_p415	2HA-DED1, ADH/CYC1 (LEU2/CEN)	[1]
ADH-2HA-DED1_p424	2HA-DED1, ADH/CYC1 (TRP2/µ)	[1]
ADH-2HA-DBP1_p424	2HA-DBP1, ADH/CYC1 (TRP2/µ)	[1]
ADH-2HA-DDX2_p424	2HA-DDX3, ADH/CYC1 (TRP2/µ)	[2]
ADH-2HA-TIF1_p424	2HA-TIF1, ADH/CYC1 (TRP2/µ)	[1]
ADH-2HA-FAL1_p424	2HA-FAL1, ADH/CYC1 (TRP2/µ)	[1]
ADH-2HA-DBP2_p424	2HA-DBP2, ADH/CYC1 (TRP2/µ)	[1]
LINF08L_B.S.	LINF08L, BlueScript (AM)	This study
LINF08S_B.S.	LINF08S, BlueScript (AM)	This study
LINF32_B.S.	LINF32, BlueScript (AM)	This study
LINF35_B.S.	LINF35, BlueScript (AM)	This study
ADH-2HA-LINF08L_p415	2HA-LINF08L, ADH/CYC1 (LEU2/CEN)	This study
ADH-2HA-LINF08S_p415	2HA-LINF08S, ADH/CYC1 (LEU2/CEN)	This study
ADH-2HA-LINF32_p415	2HA-LINF32, ADH/CYC1 (LEU2/CEN)	This study
ADH-2HA-LINF35_p415	2HA-LINF35, ADH/CYC1 (LEU2/CEN)	This study
ADH-2HA-LINF08L_p424	2HA-LINF08L, ADH/CYC1 (TRP2/µ)	This study
ADH-2HA-LINF08S_p424	2HA-LINF08S, ADH/CYC1 (TRP2/µ)	This study
ADH-2HA-LINF32_p424	2HA-LINF32, ADH/CYC1 (TRP2/µ)	This study
ADH-2HA-LINF35_p424	2HA-LINF35, ADH/CYC1 (TRP2/µ)	This study
1. Tanner, N.K., Cordin, O., Banroques, J., Doere, M. and Linder, P. (2003) The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell, 11, 127-138. 10.1016/s1097-2765(03)00006-6

2. Senissar, M., Le Saux, A., Belgareh-Touze, N., Adam, C., Banroques, J. and Tanner, N.K. (2014) The DEAD-box helicase Ded1 from yeast is an mRNP cap-associated protein that shuttles between the cytoplasm and nucleus. Nucleic Acids Res, 42, 10005-10022. 10.1093/nar/gku584
Supplementary Figure S1. Phylogenetic tree of LINF and Ded1/DDX3 proteins. A neighbor-joining tree is shown without distance corrections and with cladogram branch lengths to facilitate viewing. The distances are as shown. (A) Core sequences consisting of the amino-terminal, isolated, aromatic group to the end of motif VI. (B) Flanking sequences consisting of the fused amino- and carboxyl-terminal sequences and excluding the cores sequences used in A.

![Supplementary Figure S1](image1.png)

Supplementary Figure S2. Complementation of synthetic LINF genes optimized for expression in yeast. The yeast strain ded1::HIS was transformed with the indicated genes and grown in SD-TRP medium. Cultures were then serial diluted and spotted on SD plates containing 5-FOA. Plates were incubated for 6 days at 18°C and for 3 days at 30°C and 36°C. The isolated colonies that grew with the LINF genes contained the DED1 gene, and hence no LINF-specific complementation was detected.
Supplementary Figure S3. Expression of synthetic *LINF* genes optimized for yeast. The HA-tagged proteins in the p424 plasmid were expressed off the *ADH* promoter in the W303 yeast strain. (A) The proteins from the extracted cells were separated on an 10% SDS-PAGE, the separated proteins transferred to nitrocellulose membranes and then visualized with IgG specific to the HA tag or PGK1. (B) The quantified values of the gels shown in (A). Variations in loading were adjusted relative to the PGK1, and then the values were normalized relative to the expression of HA-Ded1.
Supplementary Figure S4. Complementation of the yeast ded1::HIS strain. The chimeras with the LINF and TRYP catalytic cores and the Ded1 flanking sequences are shown bracketed. They contained the RecA-like catalytic cores of the indicated LINF and TRYP proteins and the amino- and carboxyl-terminal sequences of yeast Ded1. The plates are the same as those shown in Figure 4 except for the chimeras. Plates were incubated 7 days at 30°C and 36°C, and for 10 days at 18°C. The large isolated colonies in the LINF and TRYP lanes contained the DED1 plasmid, which is most apparent at 18°C.