Dysmorphic erythrocytes are superior to hematuria for indicating non-diabetic renal disease in type 2 diabetics

Zhe-yi Dong, Yuan-da Wang, Qiang Qiu, Kai Hou, Li Zhang, Jie Wu, Han-yu Zhu, Guang-yan Cai, Xue-feng Sun, Xue-guang Zhang, Mo-yan Liu, Jia Kou, Xiang-mei Chen*

Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China

Keywords
Hematuria, Nephropathy, Type 2 diabetics

*Correspondence
Xiang-mei Chen
Tel.: +86-10-66935462
Fax: +86-10-68130297
E-mail address: xmchen301@126.com

J Diabetes Invest 2016; 7: 115–120
doi: 10.1111/jdi.12371

ABSTRACT
Aims/Introduction: There are sparse and limited studies on erythrocyte morphology in renal biopsy identifying nephropathic patients among type 2 diabetics. The present study sought to clarify the predictive value of dysmorphic erythrocytes in type 2 diabetics with non-diabetic renal disease and influences on hematuria.

Materials and Methods: We examined 198 patients with type 2 diabetes who underwent kidney biopsies between 2012 and 2013. Hematuria was defined as >3 or >10 red blood cells per high-power field (RBCs/hpf) in urine sediment. If >80% of the erythrocytes were dysmorphic, glomerular hematuria was diagnosed. Clinical findings and predictive value of dysmorphic erythrocytes were compared between patients with hematuria (n = 19) and those without (n = 61). The potential risk factors for hematuria among diabetic nephropathy patients were also screened.

Results: There was a statistically significant difference between the diabetic nephropathy group and the non-diabetic renal disease group (6.6 vs 16.8%; P = 0.04) when the demarcation point of hematuria was 10 RBCs/hpf. When the definition of hematuria was based on an examination of urinary erythrocyte morphology, a marked difference was seen (3.3 vs 24.8%; P < 0.001). Glomerular hematuria showed high specificity and a positive predictive value (0.97 and 0.94, respectively) in non-diabetic renal disease. A multivariate analysis showed that nephrotic syndrome was significantly associated with hematuria (odds ratio 3.636; P = 0.034).

Conclusions: Dysmorphic erythrocytes were superior to hematuria for indicating non-diabetic renal disease in type 2 diabetics. Nephrotic syndrome was an independent risk factor for hematuria.

INTRODUCTION
It is commonly accepted that microscopic hematuria is an uncommon symptom in diabetic nephropathy (DN), which suggests the presence of non-diabetic renal disease (NDRD). American Diabetes Association guidelines consider hematuria an indication for renal biopsy in patients with diabetes mellitus. There are two types of erythrocytes in urine sediment: isomorphic (indicating non-glomerular hematuria) and dysmorphic (indicating glomerular hematuria). Only glomerular hematuria represents kidney disease. Microscopic hematuria in DN patients is glomerular hematuria. The most likely mechanism could involve pathological changes in the glomerular basement membrane and ruptured pseudoaneurysms. Urinary erythrocyte morphology examined by phase-contrast microscopy is a ‘classical’ and important diagnostic tool, because it helps distinguish the causes of hematuria. However, screening for urinary dysmorphic erythrocytes in type 2 diabetics with microscopic hematuria has become an overlooked technique. In

Received 18 December 2014; revised 3 April 2015; accepted 6 May 2015
recent studies, the reported prevalence of microscopic hematuria in patients with biopsy-confirmed isolated DN even reached 32.3–78%6–8. Furthermore, given the definition of hematuria and subjects with diabetes among the patients studied, non-glomerular hematuria might interfere significantly. Thus, we hypothesized that a failure to identify the site of bleeding leads to a high reported prevalence of microscopic hematuria in diabetic patients.

A finding of acanthocyturia is indicative of NDRD in diabetic patients with proteinuria, but NDRD is indicated without a pathological diagnosis9. Few studies have discussed the relationship between microscopic hematuria and DN in type 2 diabetics, but without any examination of urinary erythrocyte morphology10,11. We studied the prevalence of microscopic hematuria and dysmorphic erythrocytes in patients with pathologically diagnosed DN and NDRD to analyze whether dysmorphic erythrocytes occur in both types of renal lesions or whether they are specific to NDRD. In type 2 diabetics, a finding of >80% dysmorphic erythrocytes in urine sediment could point to a non-diabetic, potentially treatable glomerulopathy for which a renal biopsy might be indicated9.

MATERIALS AND METHODS

Study Population

In total, 221 consecutively diagnosed type 2 diabetics who underwent a renal biopsy at the Chinese People’s Liberation Army General Hospital (Beijing, China) between January of 2012 and December of 2013 were considered for the study. The diagnosis of type 2 diabetes was made by experienced endocrinologists. All patients including those with suspected DN and NDRD with persistent overt proteinuria and nephropathy, as diagnosed by renal biopsy, were admitted to our hospital. All patients provided written informed consent for the study. Whether they are specifically diagnosed DN and NDRD to analyze whether dysmorphic erythrocytes occur in both types of renal lesions or whether they are specific to NDRD. In type 2 diabetics, a finding of >80% dysmorphic erythrocytes in urine sediment could point to a non-diabetic, potentially treatable glomerulopathy for which a renal biopsy might be indicated9.

Table 1 | Clinical and laboratory indexes of patients with diabetic nephropathy and patients with non-diabetic renal disease

n	DN group	NDRD group	P-value
Sex, male (%)	61	137	0.07
Age (years)	49.90 ± 9.24	50.03 ± 10.94	0.94
Diabetes duration (months)	144 (61.50–192)	6 (1–24)	<0.001
Hemoglobin (g/L)	117.56 ± 21.44	134.59 ± 20.43	<0.001
HbA1c (%)	7.18 ± 1.69	6.81 ± 1.28	0.10
Scr (μmol/L)	151.21 ± 85.49	111.16 ± 95.94	0.01
eGFR (mL/min/1.73 m²)	58.33 ± 32.07	89.18 ± 42.60	<0.001
24-h urinary total protein (g)	3.41 (1.66–5.38)	2.08 (0.73–4.67)	0.02

DN, diabetic nephropathy; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin; NDRD, non-diabetic renal disease; Scr, serum creatinine.
If a patient had provided a single sample, we used the single morphology result. If a patient had two samples, they were used if the two results were consistent, or excluded as an uncertain result. If a patient had three samples, we used two or three consistent results.

Renal Biopsy and Pathological Examination
All patients stopped taking agents with antiplatelet/anticoagulation activity 3 days before the renal biopsy. Patients with a high risk of thrombosis were allowed to restart anticoagulant and/or antiplatelet therapy at least 3 days after the renal biopsy, whereas the remaining individuals restarted treatment at least 0.5–1 months after the renal biopsy. Renal biopsies were carried out by two experienced nephrologists. No patients exhibited gross hematuria after the operations. The diagnosis of DN or NDRD was made by a single pathologist.

Statistical Analysis
Continuous variables are reported as means ± standard deviations and percentages; categorical data are reported as medians and 25–75th percentiles. The independent t-test was used to compare normally distributed continuous variables. Between-group differences in data for variables not normally distributed were analyzed using the Mann–Whitney U-test. The χ²-test was used to compare categorical variables. Clinical parameters that were significant at the 0.05 level in a univariate logistic regression analysis were assessed to evaluate their contributions to hematuria. A P-value <0.05 was considered to indicate statistical significance. SPSS software (version 17; SPSS Inc., Chicago, IL, USA) was used for all analyses.

RESULTS
Performance Measures of Hematuria
Among the enrolled 198 patients, 80 (40.4%) had microscopic hematuria. The percentages of hematuria in the DN and NDRD groups were 31.3% and 43.8%, respectively, with no statistically significant difference (P = 0.77). However, there was a statistically significant difference between the groups (6.6% vs 16.8%, P = 0.04) when the demarcation point of hematuria was 10 (not 3) RBCs/hpf. When the definition of hematuria was based on the urinary erythrocyte morphological examination, a marked difference was evident (3.3% vs 24.8%, P < 0.001; Table 2).

We used three different definitions of hematuria: >3 RBCs/hpf, >10 RBCs/hpf and dysmorphic erythrocytes >80% in urine sediment (glomerular hematuria). These criteria were used to diagnose NDRD. For glomerular hematuria, the specificity and positive predictive values were high (0.97 and 0.94, respectively). If a patient had glomerular hematuria, the probability of NDRD was 0.97. Conversely, the rate of exclusion of NDRD was 0.94. Furthermore, glomerular hematuria had the maximum area under the receiver operator characteristic curve (0.61 vs 0.57 and 0.56; Table 3).

In total, 61 patients (30.8%) were diagnosed with DN among the 198 participants. We compared the clinical param-

Table 2	Comparison of the incidence of hematuria in the diabetic nephropathy and non-diabetic renal disease groups		
Definition of hematuria (RBCs/hpf)	DN group, presence (%)	NDRD group, presence (%)	P-value
>2	24 (39.3%)	64 (46.7%)	0.29
>3	19 (31.1%)	60 (43.8%)	0.77
>5	15 (24.6%)	42 (30.7%)	0.33
>7	10 (16.4%)	31 (22.6%)	0.62
>8	7 (11.5%)	27 (19.7%)	0.13
>10	4 (6.6%)	23 (16.8%)	0.04
>15	3 (4.9%)	15 (10.9%)	0.17
Glomerular hematuria	2 (3.3%)	34 (24.8%)	<0.001

DN, diabetic nephropathy; NDRD, non-diabetic renal disease; RBCs/hpf, red blood cells per high-power field.

Table 3	Predictive value of three different diagnostic criteria for hematuria		
	>3 RBCs/hpf	>10 RBCs/hpf	Glomerular hematuria
Sensitivity	0.44	0.17	0.25
Specificity	0.69	0.93	0.97
Positive predictive value	0.76	0.85	0.94
Negative predictive value	0.35	0.33	0.36
ROC AUC	0.57	0.56	0.61

AUC, area under the curve; RBCs/hpf, red blood cells per high-power field; ROC, receiver operator characteristic curve.

Relationship Between DN and Hematuria
The results from the univariate logistic regression analysis showed that NS, D-dimer and brain natriuretic peptide were related to DN. However, NS showed collinearity with D-dimer and brain natriuretic peptide. Furthermore, DR was more meaningful than those two variables. Ultimately, in the multivariate predictive logistic regression analysis model, we used the variables NS and DR (Table 5).
Table 4 | Clinical characteristics and pertinent laboratory findings in diabetic nephropathy patients with and without microscopic hematuria

	Group 1 (n = 19)	Group 2 (n = 42)	P-value
Age (years)	51.32 ± 12.12	49.26 ± 7.70	0.43
Duration of diabetes	132.84 ± 91.76	135.55 ± 90.58	0.92
NS, yes (%)	12 (63.2%)	11 (26.2%)	0.006
Hypertension, yes (%)	18 (94.7%)	38 (90.5%)	0.57
DR, yes (%)	13 (68.4%)	30 (71.48%)	0.97
Hemoglobin (g/L)	113.05 ± 20.27	119.59 ± 21.87	0.27
BUN (mmol/L)	6.77 ± 1.4	7.04 ± 1.4	0.21
BUN (g/24 h)	9.42 ± 3.28	9.32 ± 4.30	0.93
Scr (µmol/L)	132.74 ± 74.04	159.57 ± 89.77	0.26
eGFR (mL/min/1.73 m²)	61.95 ± 26.69	56.70 ± 34.40	0.56
Urine protein excretion	4.56 ± 2.75	3.47 ± 2.37	0.12

BUN, blood urea nitrogen; DR, diabetic retinopathy; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin; NS, nephrotic syndrome; Scr, serum creatinine.

Table 5 | Univariate and multivariate logistic regression models of clinical findings associated with hematuria

	Odds ratio	95% Confidence interval	P-value
Univariate logistic regression			
NS	4.831	1.517–15.387	0.008
D-dimer	7.852	1.78–34.408	0.006
BNP	1.001	1.00–1.001	0.046
DR	0.975	0.254–3.745	0.971
Multivariate logistic regression			
NS	3.636	1.105–11.969	0.034

BNP, brain natriuretic peptide; DR, diabetic retinopathy; NS, nephrotic syndrome.

DISCUSSION

There is a common consensus not to carry out renal biopsies in clinically diagnosed DN patients, but to do so in NDRD patients\(^6\). Thus, it is important to define the clinical characteristics and laboratory features to correctly indicate the presence of NDRD and to selectively carry out renal biopsies in those patients. Studies based on renal biopsies in diabetic patients have shown that the incidence of NDRD in patients with type 2 diabetes mellitus was much higher than in patients with type 1 diabetes mellitus\(^1,2,1\). The incidence of NDRD in the present study was 69.2%. The major pathological types were membranous nephropathy and immunoglobulin A nephropathy. Most NDRD patients require aggressive immunosuppressive treatment to obtain more favorable outcomes. Thus, making an accurate diagnosis of NDRD by non-invasive methods is more important for type 2 diabetic patients.

Some guidelines\(^1,2\) and reports\(^2\) have proposed that hematuria suggests non-diabetic glomerulopathy in diabetic patients. However, hematuria is a rather frequent finding in diabetic patients with renal injury. Indeed, several reports have suggested that hematuria is a sign of DN\(^2,24\). The incidence of hematuria was 32.3–78% in renal biopsy studies of patients with type 2 diabetes mellitus and proteinuria\(^2,8\). More importantly, hematuria had low specificity for the diagnosis of NDRD\(^25\). The incidence of hematuria was 0.69 in our data, consistent with other reports, but was not increased in NDRD patients when compared with isolated DN patients. Thus, the presence of hematuria does not generally indicate NDRD. The criteria and patterns of hematuria in diabetic patients must be studied further to help detect non-DN before a renal biopsy.

The definition of microscopic hematuria has not been uniform. In previous reports, there have been inconsistent criteria for hematuria that are pathologically significant; this warrants further investigation. According to current guidelines, the presence of >3 RBCs/hpf is considered clinically significant microscopic hematuria\(^26\). There have been various criteria, for both scientific research and the clinical diagnoses of hematuria: >2 RBCs/hpf\(^6\), >3 RBCs/hpf\(^6,13\), >5 RBCs/hpf\(^7\), >10 RBCs/hpf\(^7\), and >15 RBCs/hpf. As a result, the incidence of hematuria varied from 4.9 to 39.3%. The incidence of hematuria did not differ between the DN and NDRD groups when defined as >3 RBCs/hpf, but it did differ when defined as >10 RBCs/hpf. However, the latter definition had lower diagnostic efficiency. Thus, we studied the urinary erythrocyte morphology.

Scattered and limited studies have investigated urinary erythrocyte morphology in type 2 diabetics diagnosed with DN or NDRD by renal histopathology. We found that the incidence of glomerular hematuria was 3.3% in renal biopsy-proven DN patients; indicative performance was better in DN patients than in NDRD patients. A previous study observed that glomerular hematuria (hematuria comprising >5% acanthocytes of all red cells excreted) was seen in just 4% of all patients with clinically diagnosed DN\(^9\). In contrast, among all patients with NDRD, glomerular hematuria was found in 40%\(^9\). Because of the usual absence of renal biopsies in clinically diagnosed DN patients, some NDRD patients might be misdiagnosed with DN, thereby losing the opportunity for renal biopsy. Therefore, the prevalence of hematuria in DN...
might have been overestimated. Nevertheless, microscopic inspection of urine sediment should be part of the non-invasive diagnostic work-up of diabetic patients with proteinuria to identify diabetic patients with hematuria who are likely to have NDRD9. Additionally, Kincaid-Smith et al.28 reported that urine microscopy was often second only to renal biopsy in making a diagnosis. Other guidelines also stress the role of urinary sediment as a discriminating diagnostic instrument in patients with hematuria29–32.

However, the problem is both a lack of professional and technical personnel to detect urinary erythrocyte morphology, and the standardized definition of dysmorphic erythrocytes. Simply, with the appearance of more effective methods, the examination of urinary erythrocyte morphology has become overlooked. Renal biopsy is an invasive test that is currently underused in type 2 diabetic patients, who require supplementary methods. This technique, the fastest and cheapest of all investigations, can provide a wealth of information for making a diagnosis. When examining increasing numbers of urine samples, the incidence of acanthocyturia increased in patients with NDRD and in patients with DN9. On analysis of three urine samples, the prevalence of acanthocyturia increased, improving the diagnostic accuracy. Another study confirmed that patients undergoing a renal biopsy had equivalent percentages of dysmorphic RBCs, both pre- and post-biopsy33. Therefore, the analysis of a patient’s dysmorphic erythrocytes after a biopsy should be carried out to increase the diagnostic accuracy. The examination of urinary erythrocyte morphology should be carried out by an experienced technologist; it is a useful diagnostic tool, but only if strict criteria established in each laboratory are adhered to35.

To date, the relationship of hematuria with clinical and laboratory variables in DN patients with type 2 diabetes has been described in only a few studies, and the details remain unclear. One study recruited patients with type 2 diabetes and biopsy-proven DN3. When compared with the non-hematuria group, the hematuria group had a longer known duration of diabetes mellitus, with a mean time of 108 months; a higher Scr level, with a mean value of 123.76 μmol/L; and a lower level of Scr, with a mean value of 45.2 mL/min. Significant increases in the prevalence of NS (72%) and DR (57%) were also found in cases with hematuria, but not in those without hematuria3. Akimoto et al.3 suggested that hematuria might be a common feature in patients with late-stage glomerular damage caused by diabetes. Conversely, our data and those from another study show no difference in these variables between groups31. A multivariate logistic regression analysis identified the presence of NS3, the duration of diabetes3 and the index of arteriolar hyalnosis11 to be significant predictors of hematuria with DN. We found only the presence of NS to be higher in hematuria patients, and NS was the only independent predictor of hematuria in biopsy-proven DN patients with type 2 diabetes in the present study. The discrepancies between these different studies are partly the result of differences in the populations of diabetic patients examined.

Although the present study provides new information on the diagnostic value of dysmorphic erythrocytes in patients with type 2 diabetic nephropathy, it also has several limitations. First, the number of DN patients who had hematuria included in the present study was small, which likely means that the results might be underpowered to detect NS as a predictor of hematuria. However, these clinical observations drew our attention to a latent relationship between NS and hematuria. Further analysis involving a larger number of type 2 diabetic patients with pathologically defined DN from multiple centers is required. Second, the lack of a quantitative evaluation of morphological analyses of the kidney might cause performance degradation in a multivariate logistic regression analysis. However, in the absence of this information, the findings of the present study could still serve as a reference. Third, we used >80% dysmorphic erythrocytes as a criterion for glomerular hematuria, the specificity of which was lower than acanthocyturia, while the sensitivity was higher. The examination of three early morning urine samples taken on three different days before a renal biopsy should be recommended, because it increases the specificity of the method. Fourth, we analyzed only the efficacy of a hematuria-based diagnostic strategy in this retrospective study of patients who already had a diagnosis of DN or NDRD. A prospective study should be carried out to verify the validity of dysmorphic erythrocytes in the diagnosis of unknown individuals.

In summary, glomerular hematuria is rare in DN patients with type 2 diabetes mellitus. A renal biopsy should be considered when a type 2 diabetic patient with proteinuria shows >80% dysmorphic erythrocytes in a urine sample. We suggest that a urinary erythrocyte morphological examination should be part of the diagnostic work-up in those patients to identify which patients are likely to have NDRD. NS was the only independent predictor of hematuria in type 2 diabetic patients with DN.

ACKNOWLEDGMENTS
This study was partially supported by the National Basic Research program of China (973 Program; no. 2013CB530803, 2015CB553605), National High Technology R&D Program (863 Program; no. 2012AA02A512), Science & Technology Project of Beijing, China (no. Z131100002613004, D131100004713003). The fund sources did not play roles in the study design data collection, analysis and interpretation, decision to publish, or manuscript preparation. The English in this document has been checked by at least two professional editors, both native English speakers. For a certificate, please see: http://www.textcheck.com/certificate/ShAg1L.

DISCLOSURE
The authors declare no conflict of interest.
REFERENCES

1. American Diabetes A. Clinical practice recommendations 2005. Diabetes Care 2005; 28(Suppl 1): S1–579.
2. Lopes de Faria JB, Moura LA, Lopes de Faria SR, et al. Glomerular hematuria in diabetics. Clin Nephrol 1988; 30: 117–121.
3. Akimoto T, Ito C, Saito O, et al. Microscopic hematuria and diabetic glomerulosclerosis–clinical pathologic analysis of type 2 diabetic patients associated with overt proteinuria. Nephron Clin Pract 2008; 109: c119–c126.
4. Hayashi H, Karasawa R, Inn H, et al. An electron microscopic study of glomeruli in Japanese patients with non-insulin dependent diabetes mellitus. Kidney Int 1992; 41: 749–757.
5. Schifferli J, Rees AJ, Pearse E. Haematuria: glomerular or non-glomerular? Lancet 1979; 2: 1014.
6. Pham TT, Sim JJ, Kujubu DA, et al. Prevalence of nondiabetic renal disease in diabetic patients. Am J Nephrol 2007; 27: 322–328.
7. Oh SW, Kim S, Na KY, et al. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy. Diabetes Res Clin Pract 2012; 97: 418–424.
8. Liu MY, Chen XM, Sun XF, et al. Validation of a differential diagnostic model of diabetic nephropathy and non-diabetic renal diseases and the establishment of a new diagnostic model. J Diabetes 2014; 6: 519–526.
9. Heine GH, Sester U, Girnitz M, et al. Acanthocytes in the urine: useful tool to differentiate diabetic nephropathy from glomerulonephritis? Diabetes Care 2004; 27: 190–194.
10. Shen FC, Lee CT, Sun CK, et al. Prevalence of haematuria positively associated with urine albumin excretion in Type 2 diabetes. Diabet Med 2012; 29: 1178–1183.
11. Okada T, Nagao T, Matsumoto H, et al. Clinical significance of microscopic haematuria in diabetic nephropathy in type 2 diabetes patients with overt proteinuria. Nephrology 2013; 18: 563–568.
12. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604–612.
13. Kohler H, Wandel E, Brunck B. Acanthocyturcia—a characteristic marker for glomerular bleeding. Kidney Int 1991; 40: 115–120.
14. Parving HH, Gall MA, Skott P, et al. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int 1992; 41: 758–762.
15. Chang TI, Park JT, Kim JK, et al. Renal outcomes in patients with type 2 diabetes with or without coexisting non-diabetic renal disease. Diabetes Res Clin Pract 2011; 92: 198–204.
16. Mohammad KS, Bdhesa AS, Snell ME, et al. Phase contrast microscopic examination of urinary erythrocytes to localise source of bleeding: an overlooked technique? J Clin Pathol 1993; 46: 642–645.
17. Roth S, Renner E, Rathert P. Microscopic hematuria: advances in identification of glomerular and some non-glomerular dysmorphic erythrocytes. J Urol 1991; 146: 680–684.
18. Fassett RG, Horgan BA, Mathew TH. Detection of glomerular bleeding by phase-contrast microscopy. Lancet 1982; 1: 1432–1434.
19. De Santo NG, Nuñez F, Capodicasa G, et al. Phase contrast microscopy of the urine sediment for the diagnosis of glomerular and nonglomerular bleeding-data in children and adults with normal creatinine clearance. Nephron 1987; 45: 35–39.
20. Hovind P, Rossing P, Tarnow L, et al. Progression of diabetic nephropathy. Kidney Int 2001; 59: 702–709.
21. Parving HH, Hornemel E, Mathiesen E, et al. Prevalence of microalbuminuria, arterial hypertension, retinopathy and neuropathy in patients with insulin dependent diabetes. Br Med J (Clin Res Ed) 1988; 296: 156–160.
22. KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 2007; 49: S12–S154.
23. Kumar J, Sahai G. Non-diabetic renal diseases in diabetics. Clin Quer Nephrol 2012; 1: 172–177.
24. O'Neill WM Jr, Wallin JD, Walker PD. Hematuria and red cell casts in typical diabetic nephropathy. Am J Med 1983; 74: 389–395.
25. Mak SK, Gwi E, Chan KW, et al. Clinical predictors of non-diabetic renal disease in patients with non-insulin dependent diabetes mellitus. Nephrol Dial Transplant 1997; 12: 2588–2591.
26. Davis R, Jones JS, Barcos DA, et al. Diagnosis, evaluation and follow-up of asymptomatic microhematuria (AMH) in adults: AUA guideline. J Urol 2012; 188: 2473–2481.
27. Lin YL, Peng SJ, Feng SH, et al. Clinical indicators which necessitate renal biopsy in type 2 diabetes mellitus patients with renal disease. Int J Clin Pract 2009; 63: 1167–1176.
28. Kincaid-Smith P, Fairley K. The investigation of hematuria. Semin Nephrol 2005; 25: 127–135.
29. Cohen RA, Brown RS. Clinical practice: microscopic hematuria. N Engl J Med 2003; 348: 2330–2338.
30. Grossfeld GD, Litwin MS, Wolf JS Jr, et al. Evaluation of asymptomatic microscopic hematuria in adults: the American Urological Association best practice policy–part II: patient evaluation, cytology, voided markers, imaging, cystoscopy, nephrology evaluation, and follow-up. Urology 2001; 57: 604–610.
31. Mazhari R, Kimmer PL. Hematuria: an algorithmic approach to finding the cause. Cleve Clin J Med 2002; 69: 870, 872-874, 876 passim.
32. House AA, Catran DC. Nephrology: 2. Evaluation of asymptomatic hematuria and proteinuria in adult primary care. CMAJ 2002; 166: 348–353.
33. Pollock C, Liu PL, Gyory AZ, et al. Dysmorphism of urinary red blood cells—value in diagnosis. Kidney Int 1989; 36: 1045–1049.