The Efficacy of Iodine-131-Metaiodobenzylguanidine Therapy in Relapsed or Refractory Neuroblastoma: A Meta-Analysis

Huihui He
Affiliated Hospital of Jiangnan University

Qiaoling Xu
Affiliated Hospital of Jiangnan University

Chunjing Yu (ycjwxd1978@jiangnan.edu.cn)
Affiliated Hospital of Jiangnan University

Research Article

Keywords: 131I-MIBG, neuroblastoma, neural oncology, clinical trials, meta-analysis

DOI: https://doi.org/10.21203/rs.3.rs-731005/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective
Neuroblastoma is a common extracranial solid tumor of childhood. Recently, multiple treatments have been practiced including Iodine-131-metaiodobenzylguanidine radiation (131I-MIBG) therapy. However, the efficacy varies greatly. The aim of this meta-analysis is to evaluate the efficacy of 131I-MIBG for relapsed or refractory neuroblastoma and to provide evidence and hints for clinical decision-making.

Methods
Medline, EMBASE database and the Cochrane Library were searched for relevant studies. Eligible studies were clinical trials of refractory assigned to 131I-MIBG with data on efficacy including tumor response. The overall efficacy was calculated using a random-effects model considering of the heterogeneity.

Results
A total of 26 clinical trials including 883 patients were analyzed. The overall rates of objective response SD, PD and MR was 39% (95% CI: 32%-47%), 31% (95% CI: 24%, 37%), 22% (95% CI: 15%, 30%) and 15% (95% CI: 3%, 31%), respectively. Overall objective response rates of 131I-MIBG in combination with chemotherapy was 28%±95% CI: 14%, 44%. Median event-free survival (EFS) ranged from 10 to 16 months in the studies included.

Conclusion
131I-MIBG treatment is effective on clinical outcomes in relapsed or refractory neuroblastoma, more randomized-controlled clinical trials investigating the efficacy of 131I-MIBG in combination with chemotherapy should be conducted.

Introduction
Neuroblastoma is a common extracranial solid tumor of childhood, accounting for approximately 8% of total pediatric malignant tumors [1, 2]. It derives from primitive sympathetic nervous system tissue and arises mostly from adrenal medulla or paraspinal ganglia of the neck, chest, abdomen, or pelvis [3]. Statistically, neuroblastoma occurs more common in boys than in girls, however, the potential causes remain long-standing mysteries [4]. Furthermore, over one-third of the patients are diagnosed at the age of < 12 months and the median age at diagnosis is 17 months More than 50% of children present with widely metastatic disease [5].

The type of therapy for neuroblastoma depends on risk group in which a patient identifies [5, 6]. Risk stratification is determined according to a patient's International Neuroblastoma Risk Group (INRG) stage, age, histological condition of tumor, degree of tumor differentiation, and et al [6]. Typically, in low-risk patients may be monitored for spontaneous differentiation or regression of tumor and either chemotherapy or radiation may not be necessary in these patients. Conversely, chemotherapy may be used in patients with intermediate or high risk. Moreover, patients with high risk may receive stem cell transplant, immunotherapy and surgery.

Despite multiple choices of treatment mentioned above, patients with neuroblastoma continue to be at high risk of treatment failure [7–10]. Unfortunately, patients with refractory or relapsed neuroblastoma suffer from poor prognosis, while novel therapy is in need [11]. Currently, there is no consensus on the optimal treatment for neuroblastoma.

Meta-iodobenzylguanidine (MIBG) is an analogue of adrenergic neuron blockers, it shows high affinity to cells of the sympathetic nervous system and by neoplasms arised from them, such as neuroblastoma [9]. Interestingly, iodine-131 labeled MIBG (131I-MIBG) was used to treat neuroendocrine tumors including neuroblastoma after the development of MIBG [12, 13]. Since then, findings on the treatment role of 131I-MIBG have occurred [14, 15]. The first I-131 MIBG therapy for neuroblastoma were reported in 1986 [16]. In the following years, several other groups also conducted phase I or phase II clinical trials on the efficacy of 131I-MIBG on the treatment of neuroblastoma. However, the objective response (partial or complete response) rate varied widely, from 30–71% [14, 15, 17–24].

As far as we know, a few studies limited to small sample sizes and heterogeneity of treatment outcomes have investigated the efficacy of 131I-MIBG for the treatment of neuroblastoma. The aim of this study was to conduct a meta-analysis by collating the available
evidence to generate an accurate and sounding assessment of the efficacy of 131I-MIBG monotherapy and 131I-MIBG in combination with chemotherapy, and subsequently to provide evidence and hints for clinical implement and decision-making.

Materials And Methods

Statement

This meta-analysis was entirely based on previous published studies which had declared ethical approvals, and no original clinical raw data of the published results were collected or utilized, thereby ethical approval was not conducted for this study. This review was conducted on the basis of the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) [25].

Literature search and selection criteria

We conducted a comprehensive literature search of online databases of the Medline (via PubMed), Embase database and the Cochrane Library (until December, 2019) from inception to May 31, 2021. Our search strategy was (("Iodine Radioisotopes"[Mesh] OR ("iodine radioisotopes"[MeSH Terms] OR ("iodine"[All Fields] AND "radioisotopes"[All Fields]) OR "iodine radioisotopes"[All Fields] OR "chemotherapy"[All Fields]) AND "neuroblastoma"[All Fields]). Additionally, we manually searched the reference lists of all accepted papers to ensure that no studies were missed. All articles were published in English. Studies that met the following criteria were enrolled for this meta-analysis: (1) clinical trials designed to evaluate the efficacy of 131I-MIBG or 131I-MIBG in combination with chemotherapy in relapsed or refractory neuroblastoma; (2) data available for the extraction or calculation tumor treatment response rates. Once studies recruited participants over the same period or from the same study centers, only the study with the largest sample size or yielding the most pertinent outcomes was included to avoid duplications. All the potentially relevant papers were reviewed independently by two investigators (HH and QX) and disagreement were resolved by discussion and a third reviewer (CY) was involved in case that no consensus was achieved.

Data extraction and quality assessments

Two independent reviewers screened the titles and abstracts of articles to judge whether they meet the inclusion criteria. Thereafter a full-text reading of the literature was performed for the final inclusion. Details on patients’ characteristics, 131I-MIBG dose and schedule, tumor response rates were also extracted independently by two investigators. The main clinical endpoints were tumor response rate, including complete response (CR), partial response (PR), progressive disease (PD), stable disease (SD), minor response (MR). Objective response was defined as patients either undergo a partial or complete response. Event-free survival in each study was also extracted. We used the Newcastle-Ottawa Quality Assessment Scale to assess the methodological quality of enrolled studies [26]. The Newcastle-Ottawa Quality Assessment Scale contains 3 categories (quality selection, comparability and outcome) across which cohort studies are assessed for quality.

Statistical analysis

All statistical analyses were conducted using R 3.6.1 software package. The efficacy of 131I-MIBG treatment in neuroblastoma was assessed depending on the indicators mentioned above. A Cochran Q test was used to assess heterogeneity between studies and I^2 statistic was used to investigate the magnitude of the heterogeneity. Pooled rates of objective response, SD, PD, and MR and their respective 95% confidence intervals (CIs) were calculated with a random-effects model or a fixed-effects model. If I^2 value was >50%, a random-effects model was used, otherwise we used a fixed-effects model [27]. a sensitivity analysis was conducted in order to check the stability of pooled outcomes. Furthermore, an Egger's test was performed to assess the potential publication bias. A two-tailed P value <0.05 was regarded as statistically significant. was deemed statistically significant.

Results

Identification of relevant studies

A total of 917 articles were identified from the databases searched. A total of 26 articles were identified for analysis. Figure 1 shows the details of the literature search and study selection process. The enrolled 26 studies containing a total of 883 patients with diagnosed neuroblastoma, provided relevant outcomes that met the inclusion criteria in this meta-analysis. The majority of these studies did not
have a control group. These clinical trials were studies conducted in UK, USA, Italy, Thailand, Japan and Netherlands. All studies included showed low levels of bias. More details of the studies included was shown in Table 1.

Efficacy of 131I-MIBG treatment

The numbers of articles included in the analysis of rates of objective response, SD, PD and MR were 17, 14, 13 and 8, respectively. The objective response rates ranged from 30.0% to 71.0%. The overall objective response was 39% (95% CI: 32%-47%) as calculated utilized the random-effects model (Figure 2). The pooled rates of SD, PD and MR were 31% (95% CI: 24%, 37%), 22% (95% CI: 15%, 30%) and 15% (95% CI: 3%, 31%), respectively. 9 studies investigating the efficacy of 131I-MIBG in combination with chemotherapy were included, the pooled objective response rate was 28% (95% CI: 14%, 44%). Detailed results of the analyses were presented in Figures 3-6. 3 studies reported median event-free survival (EFS) which ranged from 10 to 16 months.

Heterogeneity and publication bias

The results of the heterogeneity tests in rates of objective response, SD, PD, MR and 131I-MIBG in combination with chemotherapy groups were as follows respectively: $I^2 = 72.0\%, p < 0.01; I^2 = 57.0\%, p < 0.01; I^2 = 73.0\%, p < 0.01; I^2 = 91.0\%, p < 0.01$ and $I^2 = 77.0\%, p < 0.01$ (see Figures 2-6). Egger's tests for publication bias yielded p values of 0.614, 0.240, 0.834, 0.243 and 0.210 for rates of objective response, SD, PD, MR and 131I-MIBG in combination with chemotherapy groups, respectively.

Sensitivity Analysis

We performed the sensitivity analysis to assess the impacts of each single study on the pooled outcomes. For the analysis of MR, the sensitivity analysis revealed that result from Garaventa's study may have impacts on the outcomes, suggesting that the study was probably to be the main source of heterogeneity. Nevertheless, after excluding single study one after another, the pooled rates of objective response, SD, and PD demonstrated the robustness of the results.

Discussion

Neuroblastoma is the most common extracranial solid tumor in children, and is regarded as the most common malignant tumor in infants so far [28]. Treatment outcomes vary significantly among patients with neuroblastoma, as patients with low risk of neuroblastoma fare well with little or no treatment, whereas high-risk children was diagnosed with metastatic disease or have an event-free survival (EFS) of approximately 50% despite multimodality therapeutic schedule that give rise to significant long-term side-effects [29–31]. Iodine-131-metaiodobenzylguanidine (131I-MIBG) has been used to treat neuroblastoma with a rapid development in recent decades. The efficacy of 131I-MIBG therapy remains the most concerned issues. However, the efficacy varied greatly in different investigations. The objective response rates ranged from 30.0–71.0% in studies included in this meta-analysis. The overall objective response was 45% (95% CI: 36%-54%). Besides, the pooled rates of SD, PD and MR were 31% (95% CI: 24%, 39%), 19% (95% CI: 12%, 26%) and 16% (95% CI: 2%, 36%), respectively. Event-free survival (EFS) and toxicity were not evaluated because no sufficient information was provided by the studies included so as to be enrolled for pooled analysis.

In this meta-analysis, we did a detailed literature search in PubMed, Embase and the Cochrane Library databases to enhance the probability of retrieving all relevant studies as we can. Data extraction was conducted by two independent investigators using a well-designed form. Moreover, the heterogeneity in the studies included was assessed. The results of the meta-analysis showed that there were significant heterogeneities in all indicators. The potential reasons may be attributed to differences in inclusion criteria of the study participants, study design, drug compliance, median lines of prior therapy in each study, batch of drug and other relevant factors. Sensitivity analysis revealed that the results of objective response, SD, and PD demonstrated the robustness of the outcomes in this meta-analysis. Furthermore, Egger's tests for publication indicated that no potential publication bias was observed in the studies included. Despite the existences of heterogeneity, the results of this analysis may provide hints and assistance for a profile of clinical trials detecting the efficacy of 131I-MIBG therapy with larger sample sizes and longer follow-ups.

Our study has provided a comprehensive evaluation of 131I-MIBG as a treatment modality of refractory neuroblastoma. Currently, the best available evidence on the efficacy is derived from several single-arm phase II clinical trials. Our meta-analysis of these trials has demonstrated that though the overall objective response rate is less than 50% (45%, 95% CI: 36%-54%), the efficacy needs to be improved. More randomized controlled trials to furtherly evaluate the efficacy of 131I-MIBG in the setting of relapsed or refractory neuroblastoma is strongly recommended.
Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials
The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding
There is no fund support for this study.

Author Contributions
HH conceived and designed this study. HH and QX were responsible for the collection, extraction, and analysis of the data. HH and CY was responsible for writing the paper. CY performed the quality evaluation and completed data analysis. HH and CY polished the English language. All authors and participants reviewed the paper and reached an agreement to approve the final manuscript.

Acknowledgements
Thanks to all the authors whose article were included and provided the original research data for this meta-analysis.

References

1. Gurney JG, Davis S, Severson RK, Fang JY, Ross JA, Robison LL: Trends in cancer incidence among children in the U.S. Cancer 1996, 78(3):532-541.
2. Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M: Neuroblastoma. Japanese Journal of Clinical Oncology 2018, 48(3):214-241.
3. Newman EA, Abdessalam S, Aldrink JH, Austin M, Heaton TE, Bruny J, Ehrlich P, Dasgupta R, Baertschiger RM, Lautz TB et al: Update on neuroblastoma. Journal of pediatric surgery 2019, 54(3):383-389.
4. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA: Neuroblastoma. Nature Reviews Disease Primers 2016, 2(1):16078.
5. London WB, Castleberry RP, Matthay KK, Look AT, Seeger RC, Shimada H, Thorner P, Brodeur G, Maris JM, Reynolds CP et al: Evidence for an Age Cutoff Greater Than 365 Days for Neuroblastoma Risk Group Stratification in the Children’s Oncology Group. 2005, 23(27):6459-6465.
6. Cohn SL, Pearson ADJ, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D et al: The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report. 2009, 27(2):289-297.
7. Yalcin B, Kremer LC, van Dalen EC: High-dose chemotherapy and autologous haematopoietic stem cell rescue for children with high-risk neuroblastoma. The Cochrane database of systematic reviews 2015(10):Cd006301.
8. Peinemann F, Tushabe DA, van Dalen EC, Berthold F: Rapid COJEC versus standard induction therapies for high-risk neuroblastoma. The Cochrane database of systematic reviews 2015(5):Cd010774.
9. Cougnenc O, Defachelles AS, Carpentier P, Lervat C, Clisant S, Oudoux A, Kolesnikov-Gauthier H: HIGH-DOSE 131I-MIBG THERAPIES IN CHILDREN: FEASIBILITY, PATIENT DOSIMETRY AND RADIATION EXPOSURE TO WORKERS AND FAMILY CAREGIVERS. Radiation protection dosimetry 2017, 173(4):395-404.
10. Peinemann F, van Dalen EC, Tushabe DA, Berthold F: Retinoic acid post consolidation therapy for high-risk neuroblastoma patients treated with autologous hematopoietic stem cell transplantation. *The Cochrane database of systematic reviews* 2015, 1:Cd010685.

11. Swift CC, Eklund MJ, Kraveka JM, Alazraki AL: Updates in Diagnosis, Management, and Treatment of Neuroblastoma. *Radiographics: a review publication of the Radiological Society of North America, Inc* 2018, 38(2):566-580.

12. Hoefnagel CA, Voute PA, de Kraker J, Marcuse HR: Total-body scintigraphy with 131I-meta-iodobenzylguanidine for detection of neuroblastoma. *Diagnostic imaging in clinical medicine* 1985, 54(1):21-27.

13. Bombardieri E, Giannarile F, Aktolun C, Baum RP, Delaloye A, Maffioli L, Moncayo R, Mortelmans L, Pepe G, Reske S et al.: 131I/123I-Metaiodobenzylguanidine (mIBG) scintigraphy: Procedure guidelines for tumour imaging. *European journal of nuclear medicine and molecular imaging* 2010, 37:2436-2446.

14. Hoefnagel CA, De Kraker J, Valdes Olmos RA, Voute PA: 131I-MIBG as a first-line treatment in high-risk neuroblastoma patients. *Nuclear medicine communications* 1994, 15(9):712-717.

15. De Kraker J, Hoefnagel CA, Caron H, Valdes Olmos RA, Zsiros J, Heij HA, Voute PA: First line targeted radiotherapy, a new concept in the treatment of advanced stage neuroblastoma. *European journal of cancer (Oxford, England : 1990)* 1995, 31a(4):600-602.

16. Treuner J, Klingebiel T, Feine U, Buck J, Bruchelt G, Dopfer R, Girgenti R, Müller-Schauenburg W, Meinke J, Kaiser W: Clinical experiences in the treatment of neuroblastoma with 131I-metaiodobenzylguanidine. *Pediatric hematology and oncology* 1986, 3:205-216.

17. Garaventa A, Bellagamba O, Lo Piccolo MS, Milanaccio C, Lanino E, Bertolazzi L, Villavecchia GP, Cabria M, Scopinaro G, Claudiani F et al.: 131I-metaiodobenzylguanidine (131I-MIBG) therapy for residual neuroblastoma: a mono-institutional experience with 43 patients. *British journal of cancer* 1999, 81(8):1378-1384.

18. Howard JP, Maris JM, Kersun LS, Huberty JP, Cheng SC, Hawkins RA, Matthey KK: Tumor response and toxicity with multiple infusions of high dose 131I-MIBG for refractory neuroblastoma. *Pediatric blood & cancer* 2005, 44(3):232-239.

19. Matthey KK, Yanik G, Messina J, Quach A, Huberty J, Cheng SC, Veatch J, Goldsby R, Brophy P, Kersun LS et al.: Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology* 2007, 25(9):1054-1060.

20. Matthey KK, Quach A, Huberty J, Franc BL, Hawkins RA, Jackson H, Groshen S, Shusterman S, Yanik G, Veatch J et al.: Iodine-131-metaiodobenzylguanidine double infusion with autologous stem-cell rescue for neuroblastoma: a new approaches to neuroblastoma therapy phase I study. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology* 2009, 27(7):1020-1025.

21. Johnson K, McGlynn B, Saggio J, Baniewicz D, Zhuang H, Maris JM, Mosse YP: Safety and efficacy of tandem 131I-metaiodobenzylguanidine infusions in relapsed/refractory neuroblastoma. *Pediatric blood & cancer* 2011, 57(7):1124-1129.

22. Polishchuk AL, Dubois SG, Haas-Kogan D, Hawkins R, Matthey KK: Response, survival, and toxicity after iodine-131-metaiodobenzylguanidine therapy for neuroblastoma in preadolescents, adolescents, and adults. *Cancer* 2011, 117(18):4286-4293.

23. de Kraker J, Hoefnagel KA, Verschuur AC, van Eck B, van Santen HM, Caron HN: Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. *European journal of cancer (Oxford, England : 1990)* 2008, 44(4):551-556.

24. Lashford LS, Lewis IJ, Fielding SL, Flower MA, Meller S, Kemshield JT, Ackery D: Phase I/II study of iodine 131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom Children's Cancer Study Group investigation. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology* 1992, 10(12):1889-1896.

25. Moher D, Liberati A, Tetzlaff J, Altman DG: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *International journal of surgery (London, England)* 2010, 8(5):336-341.

26. Stang A: Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *European journal of epidemiology* 2010, 25(9):603-605.

27. Higgins JPT, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. *BMJ* 2003, 327(7414):557.

28. Macfarland S, Bagatell R: Advances in neuroblastoma therapy. *Current Opinion in Pediatrics* 2019, 31(1):14-20.

29. Kreissman S, Seeger R, Matthey K, London W, Sposto R, Grupp S, Haas-Kogan D, Laquaglia M, Yu A, Diller L et al.: Purged Versus Non-Purged Peripheral Blood Stem-Cell Transplantation for High-Risk Neuroblastoma (COG A3973): A Randomised Phase 3 Trial. *The lancet oncology* 2013, 14.
30. Ladenstein R, Pötschger U, Pearson ADJ, Brock P, Luksch R, Castel V, Yaniv I, Papadakis V, Laureys G, Malis J et al: Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol 2017, 18(4):500-514.

31. Elzembely MM, Dahlberg AE, Pinto N, Leger KJ, Chow EJ, Park JR, Carpenter PA, Baker KS: Late effects in high-risk neuroblastoma survivors treated with high-dose chemotherapy and stem cell rescue. 2019, 66(1):e27421.

32. Hutchinson RJ, Sisson JC, Miser JS, Zasadny KR, Normolle DP, Shulkin BL, Francis IR, Wieland DM, Shapiro B: Long-term results of [131I]metaiodobenzylguanidine treatment of refractory advanced neuroblastoma. Journal of nuclear biology and medicine (Turin, Italy : 1991) 1991, 35(4):237-240.

33. Klingebiel T, Berthold F, Treuner J, Schwabe D, Fischer M, Feine U, Maul FD, Waters W, Wehinger H, Niethammer D: Metiodobenzylguanidine (mIBG) in treatment of 47 patients with neuroblastoma: results of the German Neuroblastoma Trial. Medical and pediatric oncology 1991, 19(2):84-88.

34. Matthay KK, Huberty JP, Hattner RS, Ablin AR, Engelstad BL, Zoger S, Hasegawa BH, Price D: Efficacy and safety of [131I]metaiodobenzylguanidine therapy for patients with refractory neuroblastoma. Journal of nuclear biology and medicine (Turin, Italy : 1991) 1991, 35(4):244-247.

35. Troncone L, Rufini V, Riccardi R, Lasorella A, Mastrangelo R: The use of [131I]metaiodobenzylguanidine in the treatment of neuroblastoma after conventional therapy. Journal of nuclear biology and medicine (Turin, Italy : 1991) 1991, 35(4):232-236.

36. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F et al: Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 1993, 11(8):1466-1477.

37. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC et al: New guidelines to evaluate the response to treatment in solid tumours. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. Journal of the National Cancer Institute 2000, 92(3):205-216.

38. Mastrangelo S, Rufini V, Ruggiero A, Di Giannatale A, Riccardi R: Treatment of advanced neuroblastoma in children over 1 year of age: the critical role of 131I-metaiodobenzylguanidine combined with chemotherapy in a rapid induction regimen. Pediatric blood & cancer 2011, 56(7):1032-1040.

39. DuBois SG, Chesler L, Groshen S, Hawkins R, Goodarzian F, Shimada H, Yanik G, Tagen M, Steward C, Mosse YP et al: Phase I study of vincristine, irinotecan, and 131I-metaiodobenzylguanidine for patients with relapsed or refractory neuroblastoma: a new approaches to neuroblastoma therapy trial. Clinical cancer research : an official journal of the American Association for Cancer Research 2012, 18(9):2679-2686.

40. Kushner BH, Modak S, Kramer K, Basu EM, Roberts SS, Cheung NK: 5-day/5-drug myeloablative outpatient regimen for resistant neuroblastoma. Bone marrow transplantation 2013, 48(5):642-645.

41. DuBois SG, Allen S, Bent M, Hilton JF, Hollinger F, Hawkins R, Courtiere J, Mosse YP, Matthay KK: Phase I/II study of (131)I-MIBG with vincristine and 5 days of irinotecan for advanced neuroblastoma. British journal of cancer 2015, 112(4):644-649.

42. DuBois SG, Groshen S, Park JR, Haas-Kogan DA, Yang X, Geier E, Chen E, Giacomini K, Weiss B, Coholl SL et al: Phase I Study of Vorinostat as a Radiation Sensitizer with 131I-Metaiodobenzylguanidine (131I-MIBG) for Patients with Relapsed or Refractory Neuroblastoma. Clinical cancer research : an official journal of the American Association for Cancer Research 2015, 21(12):2715-2721.

43. Kraa KC, Tytgat GA, van Eck-Smit BL, Kam B, Caron HN, van Noesel M: Upfront treatment of high-risk neuroblastoma with a combination of 131I-MIBG and topotecan. Pediatric blood & cancer 2015, 62(11):1886-1891.

44. Yanik GA, Villablancja JG, Mars JS, Weiss B, Groshen S, Marachelian A, Park JR, Tsaou-Wei D, Hawkins R, Shulkin BL et al: 131I-metaiodobenzylguanidine with intensive chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma: A new approaches to neuroblastoma therapy (NANT) phase II study. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 2015, 21(4):673-681.

45. George SL, Falzone N, Chittenden S, Kirk SJ, Lancaster D, Vaidya SJ, Mandeville H, Saran F, Pearson AD, Du Y et al: Individualized 131I-MIBG therapy in the management of refractory and relapsed neuroblastoma. Nuclear medicine communications 2016, 37(5):466-472.

46. Modak S, Zanzonico P, Carrasquillo JA, Kushner BH, Kramer K, Cheung NK, Larson SM, Pandit-Taskar N: Arsenic Trioxide as a Radiation Sensitizer for 131I-Metaiodobenzylguanidine Therapy: Results of a Phase II Study. Journal of nuclear medicine : official
47. Genolla J, Rodriguez T, Minguez P, Lopez-Almaraz R, Llorens V, Echebarria A: **Dosimetry-based high-activity therapy with (131)I-metaiodobenzylguanidine ((131)I-mIBG) and topotecan for the treatment of high-risk refractory neuroblastoma.** European journal of nuclear medicine and molecular imaging 2019, **46**(7):1567-1575.

48. Anongpornjossakul Y, Sriwatcharin W, Thamnirat K, Chamroonrat W, Kositwattanarerk A, Utamakul C, Sritara C, Chokesuwanthanasakul P, Thokanit NS, Pakakasama S et al: **Iodine-131 metaiodobenzylguanidine (131I-mIBG) treatment in relapsed/refractory neuroblastoma.** Nuclear medicine communications 2020.

49. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M et al: **New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).** European journal of cancer (Oxford, England : 1990) 2009, **45**(2):228-247.

50. Kayano D, Wakabayashi H, Nakajima K, Kuroda R, Watanabe S, Inaki A, Toratani A, Akatani N, Yamase T, Kunita Y et al: **High-dose (131)I-metaiodobenzylguanidine therapy in patients with high-risk neuroblastoma in Japan.** Annals of nuclear medicine 2020.

Tables

Table 1 Characteristics and efficacy results of the studies included in the meta-analysis
Year	Name of First Author	Country	Trial design	Schedule	Response criteria	Patients Enrolled	Tumor response			
1991	Hutchinson[32]	NS²	Single-arm Phase I	Doses ranged from 50-220 mCi, with cumulative doses of 50-654 mCi in one to three doses	NS	14	4	-	-	2
1991	Klingebiel[33]	Germany	NS	NS NS NS	47	9	-	-	-	
1991	Matthy[34]	NS	Single-arm Phase I	100-400 mCi/m²/course	NS	11	2	2	7	0
1991	Troncone[35]	Italy	Single-arm Phase I	single doses (2.6-9.5 GBq)	NS	11²	2	4	2	1
1992	Lashford[24]	UK	Single-arm Phase I	NS	ENSG Criteria[24]	25	8	9	7	-
1994	Hoefnagel[14]	Netherlands	Single-arm Phase I	First 200mCi, If necessary, more cycles with100mCi at 4 weeks intervals	NS	31	22	8	-	-
1995	de Kraker[15]	Netherlands	Single-arm Phase II	First 200mCi, If necessary, more cycles with100mCi at 4-6 weeks intervals	INRC[36]	33	19	11	3	-
1999	Garaventa[17]	Italy	Single-arm Phase II	67.5-148mCi 1-5 courses	INRC	43	13	-	5	25
2005	Howard[18]	USA	Single-arm Phase II	3-19mCi/kg 2 to 4 courses	INRC	28	11	8	8	1
2007	Matthy[19]	USA	Single-arm Phase II	12 or 18mCi/kg	INRC	164	59	55	44	5
2008	de Kraker[23]	Netherlands	Single-arm Phase II	200 mCi for the first infusion and 100-150 mCi for the second and all subsequent infusions.	INRC	41²	27	5	4	4
2009	Matthy[20]	USA	Single-arm Phase I	Day 0 and day 14, 12-21mCi/kg	RECIST[37]	20	10	3	7	8
2011	Johnson[21]	USA	Single-arm	18mCi/kg	INRC	117	35	52	30	-
Year	Name	Country	Study Type	Treatment Description	Criteria	Response Rate	Progression Rate	Total	Duration	Notes
------	--------------	---------	------------	--	-----------------	--------------	-----------------	-------	----------	-------
2011	Mastrangelo[38]	Italy	Pilot study							
			Phase II 131I-MIBG combined with chemotherapy	INRC	13	6	-	-	1	
2011	Polishchuk[22]	USA	Single-arm Phase II	17.8 millicuries (mCi)/kg	INRC	39	18	17	2	2
2012	DuBois[39]	USA	Single-arm Phase I	131I-MIBG combined with chemotherapy	NANT Response Criteria[39]	24	6	-	-	-
2013	Kushner[40]	USA	NS	131I-MIBG combined with chemotherapy	INRC	3	1	2	0	0
2015	DuBois[41]	USA	Single-arm Phase I, II	131I-MIBG combined with chemotherapy	NANT Response Criteria	32	9	-	-	-
2015	DuBois[42]	USA	Single-arm Phase I	131I-MIBG combined with chemotherapy	NANT Response Criteria	27	7	-	-	-
2015	Kraal[43]	Netherlands	Single-arm Phase II	131I-MIBG combined with chemotherapy	INRC	16	9	-	-	-
2015	Yanik[44]	USA	Single-arm Phase II	131I-MIBG combined with chemotherapy	INRC	49	7	26	6	10
2016	George[45]	UK	NS	131I-MIBG monotherapy	INRC	25	15	8	-	-
2016	Modak[46]	USA	Single-arm Phase II	131I-MIBG combined with chemotherapy	INRC	19	0	-	7	-
2019	Genolla[47]	Spain	NS	131I-MIBG combined with chemotherapy	INRC, RECIST	10	7	2	1	0
2020	Anongpornjossakul[48]	Thailand	NS	mean dose of 136 mCi per treatment	RECIST 1.1[49]	22	7	3	12	0
2020	Kayano[50]	Japan	NS	single dose of 444 to 666 MBq/kg	RECIST 1.1	19⁴	5	10	3	0

a: 2 patients were not evaluable. b: 1 patient was not evaluable. NS: Not specified. RECIST, Response Evaluation Criteria in Solid Tumors.

INRC, the International Neuroblastoma Response Criteria. NANT, the New Approaches to Neuroblastoma Therapy. ENSG, European Neuroblastoma Study Group

Figures
Figure 1

Flow diagram of study selection process
Figure 2

Forest plot of overall objective response rates in studies included.
Figure 3

Forest plot of overall stable disease rates in studies included.
Figure 4

Forest plot of overall progressive disease rates in studies included.
Figure 5

Forest plot of overall minor response rates in studies included.
Figure 6

Forest plot of overall objective response rates of 131I-MIBG in combination with chemotherapy in studies included.

Study	Events	Total	Proportion	95%-CI	Weight (fixed)	Weight (random)
Mastrangelo2011	6	13	0.46	[0.19; 0.75]	6.8%	10.5%
DuBois2012	6	24	0.25	[0.10; 0.47]	12.4%	12.3%
Kushner2013	1	3	0.33	[0.01; 0.91]	1.8%	5.5%
DuBois2015	9	32	0.28	[0.14; 0.47]	16.5%	12.9%
DuBois2015	7	27	0.26	[0.11; 0.46]	13.9%	12.6%
Kraai2015	9	16	0.56	[0.30; 0.80]	8.4%	11.2%
Yanik2015	7	49	0.14	[0.06; 0.27]	25.1%	13.7%
Modak2016	0	19	0.00	[0.00; 0.18]	9.9%	11.7%
Genolla2016	7	10	0.70	[0.35; 0.95]	5.3%	9.7%

Fixed effect model
- Total: 193
- Proportion: 0.24 [0.17; 0.31] (100.0%)

Random effects model
- Proportion: 0.28 [0.14; 0.44] (100.0%)

Heterogeneity: $I^2 = 77\%$, $Q^2 = 0.0399$, $p < 0.01$