Ultra-low Energy charge trap flash based synapse enabled by parasitic leakage mitigation

Shalini Shrivastava*, Tanmay Chavan and Udayan Ganguly†
Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
*shalinishrivastava@iitb.ac.in; †uyayan@ee.iitb.ac.in

Abstract

Brain-inspired computation promises complex cognitive tasks at biological energy efficiencies. The brain contains 10^4 synapses per neuron. Hence, ultra-low energy, high-density synapses are needed for spiking neural networks (SNN). In this paper, we use tunneling enabled CTF (Charge Trap Flash) stack for ultra-low-energy operation (1f); Further, CTF on an SOI platform and back-to-back connected pn diode and Zener diode (2D) prevent parasitic leakage to preserve energy advantage in array operation. A bulk 100 µm × 100 µm CTF operation offers tunable, gradual conductance change (ΔG) i.e. 10^4 levels, which gives 100× improvement over literature. SPICE simulations of 1F2D synapse shows ultra-low energy ($\leq 3 \, \text{fJ/pulse}$) at 180nm node for long-term potentiation (LTP) and depression (LTD), which is comparable to energy estimate in biological synapses (10 fJ). A record low learning rate (i.e., maximum $\Delta G \leq 1\%$ of G-range) is observed – which is tunable. Excellent reliability (> 10^6 endurance cycles at full conductance swing) is observed. Such a highly energy efficient synapse with tunable learning rate on the CMOS platform is a key enabler for the human-brain-scale systems.

Keywords: Spiking Neural Network; Charge trap flash, SONAS, Fowler-Nordheim Tunneling, Synapse

The high-performance computing such as IBM Watson supercomputer is $10^6 \times$ less energy- and $10^3 \times$ less area-efficient than biological neural network [1]. Each biological pre-neuron transmits information to post-neurons through a synapse (Fig. 1a). There are approximately 10^4 synapses per neuron, which make the synapses the largest component of the neural network. Hence, area density and energy of operation of the synapse are critical determinants of system performance. Recently, instead of large digital circuits to represent analog weights [2], various nanoscale memristive synapses have been proposed [3-16]. These memristive devices store the weight as an analog conductance (G) value to provide excellent areal density improvement [17]. The synapse “learns” by conductance change (ΔG) which depends upon the spike time difference (Δt) of pre- and post-neurons (Fig. 1b, known as spike time dependent plasticity (STDP)). Long-term potentiation (LTP: $\Delta G > 0$) and depression (LTD: $\Delta G < 0$) is needed. For memristive synapses, the application of a Δt-dependent pulse voltage (V_{pulse}) at fixed pulse-width (t_p) causes ΔG. The ΔG per pulse depends upon both the instantaneous conductance G and V_{pulse}. For varying V_{pulse}, ΔG increases/decreases with V_{pulse} (Fig. 1c), which is widely shown [13][18]. In addition, for fixed V_{pulse} applied repeatedly, G increases/decreases gradually and then saturates (Fig. 1d). For fixed V_{pulse}, the maximum ΔG (i.e., G_{max}) occurs initially. Synapses have two key challenges. First, both LTP and LTD need to be gradual for SNN algorithms in software [19]. In fact, the learning rate, i.e., G_{max} for repeated maximum V_{pulse} needs to be low (<2% of the total range of G) for stable weight evolution in a network during training [20-21][27]. In other words, the change in G should saturate after a larger number of identical V_{pulse} i.e., in excess of 256 identical pulses for analog-valued datasets like Fischer Iris [22]. Second, low energy operation (especially write-energy) in the analog synapse is a critical challenge for memristors [17]. Presently, nanoscale memristive synapse may not have gradual LTP and LTD. For example, some synapses are binary (e.g., HfO$_2$ RRAM [23]). Other synapse has gradual LTP but abrupt LTD (e.g., Phase Change Memory), which requires novel synapse circuit design with enhanced controller complexity [24-25]. Other memristors (e.g., Mn doped HfO$_2$ [12] or PCMO RRAM [13]) have analog LTP and LTD. However, due to their large energy consumption, they are unsuitable for on-chip implementation.
with <100 states. In fact, multiple analog RRAMs in parallel are required to obtain sufficient precision in weight storage to enable software equivalent learning [26][27]. As an alternative to RRAMs, Flash memory-based synapses have been proposed [28-34]. The channel hot electron injection (CHI) for programming during LTP [28-30] uses a large current to inject electrons in the floating gate, resulting in a high energy-loss [35]. NBTI based trap generation in high κ dielectric MOSFETs is also shown to mimic synaptic activity, but it requires large electrical stressing to prepare the device [31-35]. Thus, a highly energy efficient, scalable synaptic device with gradual LTP and LTD is still challenging.

In this paper, we propose a synapse based on highly manufacturable Charge Trap Flash (CTF) Memory (1F) device [36] on an SOI platform shown in Fig. 1e. The bulk Si technology based CTF capacitors exhibit gradual V_T shift by Fowler Norheim (FN) tunneling to enable symmetric LTP & LTD with high energy efficiency and a designable learning rate. A careful design of operation and sub-circuit using SOI-platform and diodes (2D) in SPICE show the essential energy efficiency (≤3 fJ/spike) is preserved by preventing undesirable (parasitic) leakage currents. A mathematical model of the experimental LTP / LTD is developed. A Spiking Neural Network (SNN) for Iris classification is implemented with CTF synapse to show excellent performance due to gradual LTD & LTP. Finally, a benchmarking of this work with the state-of-the-art is presented.

Charge Trap Flash (CTF) device

To demonstrate synapse by FN tunneling in CTF device, a 100 μm x 100 μm CTF capacitor shown in Fig. 1e is fabricated as described in detail earlier [36]. In brief, the device is fabricated on an n-Si substrate with 4 nm thermal SiO₂ as the tunnel oxide, 6 nm LPCVD Si₅N₃ as the charge trap layer (CTL), and 12 nm MOCD Al₂O₃ as the blocking oxide and n⁺ polysilicon on 300 nm Si substrate by Applied Materials cluster tool. Aluminum is used as the back contact. A self-aligned Boron implant provides a source for minority carriers for fast programming. In this CTF capacitor test vehicle, the bias is applied at the gate, and the source/drain and body are shorted to ground to measure total current. Though the demonstration is based on p-channel based CTF device, the conclusions are valid for n-channel CTF MOSFETs.

Fowler Nordheim (FN) Tunneling based CTF Synapse

The gradual program/erase operation to enable LTP & LTD is performed through FN tunneling, which is an electric field driven current transport to charge/discharge the CTL, which enables low current operation. The detailed physical mechanisms of CTF memory operation is presented elsewhere [37]. However, in brief, when a positive (negative) voltage is applied to the gate (V_G) with the body and source/drain grounded, electrons tunnel from (to) the channel through 4 nm tunnel oxide from (to) the CTL to enable threshold voltage shift $ΔV_T > 0$ i.e., programming, $ΔV_T < 0$ i.e. erase). The threshold voltage (V_T) translates to drain current (I_D), which represents synaptic conductance (G) as follows:

$$I_D = K(V_{GS} - V_T)VD$$

$$G = K(V_{GS} - V_T)$$

where K is proportionality constant [38]. Erasing ($ΔV_T < 0$) results in LTP ($ΔG > 0$) and programming ($ΔV_T > 0$) implies the LTD ($ΔG < 0$). Thus, V_T shift translates to conductance change ($ΔG$) to enable LTP and LTD. Given that V_T has a range from V_{T-min} to V_{T-max}, and we applied $V_{GS} = V_{T-max}$; then,

$$G = K(V_{T-max} - V_T)$$

This implies a $G_{min} ≈ 0$ and $G_{max} = K(V_{T-max} - V_{T-min})$ corresponding to V_{T-max} and V_{T-min}. Experimental LTD and LTP based on V_T shift with repeated application of identical V_G pulse is shown in Fig. 2a. The program pulse (12.5V for 1ms) and erase pulse (-14.5V for 20ms) are chosen such that symmetric operation LTD & LTP (V_T shift from -1.3 V to -0.3 V, i.e., $Range(V_T) = 1 V$) (same LTD and LTD window) occurs within 1000 pulses. As pulse voltage reduces for fixed pulse-width, the V_T shift magnitude reduces. The $Range(V_T)$ after a fixed number of (say 1000) pulses for different pulse bias is plotted in Fig. 2b. The $Range(V_T)$ vs. V_G curves are linearly extrapolated to $Range(V_T) = 0$, to estimate the threshold of V_G for finite LTD and LTD. For 1000 pulses, the threshold was estimated as 9.8 V at 1 ms pulse width of LTD and -11.5 V at 20 ms pulse width of LTD. The V_T change vs. programming time at fixed programming voltage (V_G) is well-documented [41].

Fig. 2 a) Repeated application of same V_{pulse} on gate (V_G) shows gradual V_T shift for symmetric LTP and LTD with pulse-widths of 1 ms and 20 ms respectively. Higher V_{pulse} increases V_T range. b) $Range(V_T)$ vs. $Range(V_G)$ extracted increases with the total number of pulses and V_G respectively. The extrapolation to $Range(V_T) = 0$ estimates the threshold for write and erase for different pulse numbers. c) LTD and LTD behaviour can be tuned by the pulse-width arbitarily, for fixed V_G 12.5 V (LTD) and -14.5 V (LTP). d) A learning rate i.e. $ΔG_{LTD}^max$ and $ΔG_{LTD}^max$ normalized by range ($G_{max} - G_{min}$) is 10x lower for CTF compared to the state-of-the-art (filled squares are RRAM technology).

The gradual V_T shift with pulse number can be designed alternatively by varying the pulse-width (T_p). Fig. 2c shows V_T shift become more gradual with decreasing pulse-width for a
fixed pulse amplitude (12.5 V for LTD & -14.5 V for LTP). Experimentally, \(10^4\) states for LTP and LTD are demonstrated by pulse-width reduction, which is \(10^2 \times\) improved than Flash [28-34] or memristor devices [4].

STDP has been demonstrated on several devices as synapse present in the literature [3][6-11][13][24-34]. Since the conductance change is non-uniform, the maximum conductance change (\(|\Delta G_{\text{max}}| = |\Delta G_{\text{LTD}}|\) over the synaptic conductance-range (\(G_{\text{max}} - G_{\text{min}}\) range should be a reasonable metric. The learning rate should be lower than 1-2% for supervised learning for analog-valued dataset [20-22][27]. As Fig. 2d shows, none of the other devices demonstrated as synapse in the literature have achieved this specification. Such a specification is satisfied for the first time.

The gradual \(V_T\) shift from Fig. 2a (for -13.5 V, 20 ms for LTP and 11.5 V, 1 ms for LTD) is made more gradual by pulse width based designability in Fig. 2c (-14.5 V, 5 ms for LTP and 12.5 V, 0.7 ms for LTD) as shown in Fig. 2d cited as This work.

To briefly understand the mechanism behind the observations in Fig. 2, the \(V_T\) shift occurs due to charge storage in the charge trap layer of Si\(_3\)N\(_4\) because of the imbalance between (i) the tunnel-in current \(I_{\text{in}}\) through tunnel oxide being higher than the (ii) tunnel-out current \(I_{\text{out}}\) through the blocking oxide i.e. \(I_{\text{in}} > I_{\text{out}}\). As charge is stored, the electric field reduces in the tunnel oxide and increases in blocking oxide simultaneously to reduce the difference between \(I_{\text{in}}\) and \(I_{\text{out}}\). Eventually, a steady-state situation occurs when \(I_{\text{in}}=I_{\text{out}}\) and no further charge storage occurs causing \(V_T\) to saturate. Pulse-width reduction limits the time-duration of the net charging current i.e. \(I_{\text{in}}-I_{\text{out}}\) (Fig. 2c). Thus, the rate of \(V_T\) shift with pulses can be arbitrary reduced by reducing the pulse-width. Such a simple field dependent mechanism is not available in memristive devices, where usually complex interplay of self-heating based thermal runaway and ionic transport enables abrupt SET process [42-43], in contrast to the requirement of gradual conductance changes.

Fig. 3 a) Full \(V_T\) swing for the window of \(\text{Range}(V_T) = 1V\) based endurance of more than \(10^6\) cycle with low variability i.e., the coefficient of variation (\(\sigma/\mu\)) of 0.9% is demonstrated. It takes 1000 cycles for \(\text{Range}(V_T) = 1\) of LTP and LTD during operation. b) Tunnelling current measured at the gate of the \(100 \times 100 \ \mu\text{m}^2\) device shows very low current during programming/erasing.

The endurance of more than \(10^6\) cycle for the window \(\Delta V_T\) of 1V for the pulse of 12.0 V, 250 ms to -14.0 V, 10 s is shown in Fig. 3a. This endurance is 3 orders higher than high voltage (18 V) endurance presented earlier [36]. Each pulse during the endurance test is 1000\(\times\) longer than the short single pulses for analog programming to enable large single step Range \((V_T) = 1V\) as an extreme case. Thus, the \(10^6\) cycle with large Range \((V_T) \approx 1V\) can be equivalent to \(10^9\) gradual LTP/LTD cycles. Further, the coefficient of variation (\(\sigma/\mu\)) of the states compared to a memory window on 1V is 0.9%, which is extremely low compared to RRAM [12-13].

Energy Cost due to Gate Leakage in Flash Synapse

The essential energy loss during FN based programming for LTD and erasing for LTP is the tunneling current through the gate stack. At maximum voltage i.e. 12.5 V for LTP and -14.5 V for LTD, the current is 0.47 nA and 2.34 nA respectively for \(100 \times 100 \ \mu\text{m}^2\) as shown in Fig. 3b. For scaled device at 180 nm node, the current is in 0.47-2.31 fA range estimated by area scaling of current transport [44]. Based on the pulse-width, this results in the very low energy dissipation i.e., in 5.64 – 646.80 aJ range. This is extremely low, compared to other synapses presented in the literature [45], and comparable to biological synapses, which use 10 fJ per synaptic events [45]. Thus, LTP and LTD operations enabled by FN tunnelling in a scaled CTF device produce extreme energy efficiency. The number of levels in the proposed synaptic device will be limited by the cycle-to-cycle and device-to-device variability in \(V_T\) updates. The experimentally measured cycle-to-cycle (C2C) variability (noise) and device-to-device (D2D) variability were measured to be \(\sigma/\text{Range} < 0.1\%\), much smaller than maximum \(\Delta V_T\) per pulse (\(\text{max}(\Delta V_T)/\text{Range} = 2\%\).

CTF Scaling Feasibility: The scalability of CTF to 180 nm node is key to estimate energy and yet maintain gradual LTP / LTD. First, CTF is highly manufacturable technology in production [44][46]. Variability in Flash has two sources (i) Cell-to-Cell Interference, which is less than 0.1% at the 90nm node and reduces even further with the inter-cell spacing increase [47]. (ii) Number of electrons per cell is \(\approx 10^6\) at \(\text{Range}(V_T) = 1V\) at 100nm node, which will be sufficient to ensure low variability, as even a small \(\Delta V_T = 1mV\) is represented by a 1000 electrons. Thus, it is immune to few electron problem of sub-30nm scaled Flash. Thus, relaxed scaling to 180nm node is promising. A total \(V_T\) range of 1.0V requires a stored electron density \(2 \times 10^{12}/\text{cm}^2\). A 2% maximum \(\Delta V_T\) per spike is about 20mV. As charge density is constant, the area scaling reduces number of charges (\(n\)) – which leads to fluctuation as coefficient of variation (\(\sigma/\mu = 1/\sqrt{n}\)). At 200 nm, the 20±4 electrons are stored for the intended 20mV \(V_T\) shift i.e. a 22% coefficient of variation (\(\sigma/\mu\)) – which is an estimation of scaling limit for devices. Alternatively, the variability based limit on minimum number of electrons per spike could also limit the minimum timescale for pulse-width.

Flash Synapse Performance in the Array: Minimizing Parasitic Energy Loss

To evaluate whether the extreme energy efficiency of the device translates to similar gains in a network, we present the
implementation of the synapse in a crossbar array. This scheme for 2-terminal RRAMs explained in detail earlier [4] is adapted for 3-terminal CTF devices here. The FN tunneling based charge storage in CTF device is the primary process for LTP and LTD. To enable STDP, a pre-neuronal waveform (Fig. 4a (blue)) is applied to the gate, and a post neuronal waveform (Fig. 4a (brown)) is applied on the drain. The superposition of the gate voltage (V_G) and the drain voltage (V_D) (essentially channel voltage) offset by Δt produces a peak voltage (V_{peak}) that depends upon Δt in both polarity and magnitude i.e. $V_{peak}(\Delta t)$ as shown in Fig. 4b. The conductance change is related to V_T shift as Equation (3). As ΔV_T depends upon $V_{peak}(\Delta t)$ as shown in Fig. 4c, hence, the pre- and post-neuronal waveforms cause ΔG to change with Δt i.e., $\Delta G(\Delta t)$ to produce STDP. The gate waveform has a positive spike of $V_{pos} = 9.8$ V and gentle negative voltage variation with peak negative voltage $V_{neg} = -3.0$ V. Similarly, the drain has a voltage spike $V_{post} = 11.5$ V with a gentle negative voltage variation with peak negative voltage $V_{neg} = -2.7$ V. These voltage magnitudes of the individual gate and drain waveforms are selected such that they produce no conductance change on their own i.e., they are below the write/erase threshold in Fig. 2b. However, the superposition of these pulses produces a Δt dependent peak voltage in the range of 9.8 V to 12.5 V for $\Delta t < 0$ and -11.5 V to -14.5 V for $\Delta t > 0$ as shown in Fig. 4c. The superposition of the gate voltage (V_G) and the drain voltage (V_D) (essentially channel voltage) offset by Δt produces a peak voltage (V_{peak}) that depends upon Δt in both polarity and magnitude i.e. $V_{peak}(\Delta t)$ as shown in Fig. 4c. The Fig. 4d shows the actual dependence of peak voltage (V_{peak}) on Δt. When this peak voltage is applied to the CTF synapse, it results in a Δt dependent ΔV_T. Since ΔV_T implies ΔG we obtain a particular ΔG corresponding to a specific Δt, which is the STDP as shown in Fig. 4e. Here, ΔG is the difference between initial conductance (G_i) before the applied pulse final conductance (G_f) afterwards. We set $G_i = G_{min}$ for LTP, while $G_i = G_{max}$ for LTD to show the maximum ΔG corresponding to the Δt, which is equivalent to V_T shift with V_{peak} as shown in Fig. 2a. Also, ΔG is normalized with respect to range i.e. $G_{max} - G_{min}$ i.e. $\Delta G = \Delta G/(G_{max} - G_{min})$.

The peak voltage causes V_T shift i.e. $V_{peak}(\Delta V_T)$, which leads to conductance change $\Delta G(V_{peak})$. The actual dependence of peak voltage (V_{peak}) on Δt is shown. The experimental STDP shows normalized ΔG changes with Δt i.e., $\Delta G(\Delta t)$ achieved by applying pre- and post-neuronal waveforms on the CTF synapse.

Fig. 5 a) Schematic of p-MOS based Flash synapse (1F) causes high I_D from ground source and body. Modified synapse where the source is connected to the ground via two diodes (2D) sub-circuit i.e. a standard $p\!n$ diode (SD) and Zener diode (2D) in a back-to-back connection to produce the 1F2D configuration. b) The 1F2D synapses in a cross-bar array where the gate is connected to pre-neuron, the drain to post-neuron. c) Biasing scheme during (i) write operations and (ii) read operation. d) Post-neuron voltage waveform is compared to e) the IV characteristics of 2D sub-circuit (dashed) which blocks the current in the source-drain due to post-neuronal voltage waveform. Essentially, the IV characteristics of the SD (purple) and Zener diode (pink). f) Gate pulses and drain dc voltage during reading. g) IV characteristics show that I_D is limited by 2D sub-circuit which is off prior to Zener breakdown. However, during the read operation, the 2D-subcircuit turns on by Zener breakdown. Thus, the I_D depends upon the V_T of the Flash device. The essential tunneling current through the gate (G) is extremely small when the body is grounded as shown in Fig. 3b. However, if the body (B) and the source (S) terminals are grounded as in a typical Flash device, then assuming that the channel is on (worst case), the post-neuronal waveform applied on the drain (D) terminal will drive a large, non-essential and undesirable drain current (I_D) as shown in Fig. 5a. I_D has two components due to post-neuronal V_D waveform - (i) from grounded source due to a V_{DG} applied to a MOSFET in the on state in the worst-case situation. (ii) the forward bias current flowing from the grounded body. First, to cut off the drain to body junction forward bias leakage, CTF device is fabricated on an SOI substrate to produce a floating body n-channel MOSFET i.e., eliminate the body contact and any resultant leakage. Second, to eliminate the high S-D current due finite V_{DS}, a circuit element is used block current in the range of the drain bias due to the post-neuronal waveform. A simple and highly manufacturable solution of two diodes (2D) i.e., back-to-back connected Zener diode with a standard $p\!n$ diode is added in series with SOI based CTF as shown in Fig. 5a. This 1F2D synapse is incorporated in a cross-bar network as shown in Fig. 5b. There are two modes of operation, write and read [48-49] as shown in Fig. 5c. In the write mode during learning, the write occurs by the superposition of gate and drain waveforms. In the read mode during inference, the read occurs when a dc drain bias is applied while the gate is pulsed with a read bias ($V_{G,read}$) when the pre-neuron spikes. When the post-neuronal bias (Fig. 5d) is applied for the write operation, the reverse bias $p\!n$ standard diode (SD) blocks the current for positive V_D, while
the reverse biased Zener diode (ZD) blocks the current for negative V_D, as shown in Fig 5e. During the read operation, the 2D sub-circuit turns on as the read bias ($V_{D,\text{read}}$) exceeds V_{ZD-} (Fig. 5f). Thus, the current is controlled by the Flash memory in series (Fig. 5g), which is dependent upon the V_T of CTF. The 2D sub-circuit acts like a rectifier with a tunable threshold that depends on Zener breakdown voltage (V_{ZD-}) to block current and reduce parasitic energy loss during write but enable read when V_D exceeds V_{ZD-}.

During write, $V_D < e\approx 6.60$ aJ of output current is disabled by the Flash device (1F2D) as shown in Fig. 6a. Depending on the magnitude compared to the 1F2D synapse on bulk Si technology as shown in Fig. 6d. The energy including parasitic is 2.5 Ω, which is a slight enhancement over the 660 aJ of essential energy. Instead of the 2D sub-circuit, there are other possibilities like punch-through diodes [50] that can have desirable asymmetry [51-52].

A CTF device has a layout area of $10F^2$, while the standard diode has $4F^2$ while Zener diode has an area of $10F^2$ to produce a $<30F^2$ synapse area. The general principles of peripheral circuit-design to supply high operational voltages akin to Flash memories is well-known [53]. Specific circuits need to be developed to estimate systems level performance. The area vs. energy comparison of 1F2D (SOI) synapse with state-of-the-art shows excellent area and energy performance in Fig. 6e. In fact, it even competes with energy estimates of the biological synapse of 10fJ. Further, the input of synapse is high impedance. Given a spiking rate of 1kHz the impedance for 500nm CTF device is $10^{12} \Omega$ which is significantly higher impedance compared to typical $10^6\Omega$ RRAMs. Hence it should support high fan-out as opposed to 2-terminal devices, which may load the source i.e., pre-neuron and also produces interconnect drop [54-55].

Mathematical Model of STDP by Flash Synapse

A modified spike time dependent plasticity rule, which incorporates weight dependent plasticity is used for learning [56]. The CTF flash is modeled for above mention SNN by mapping the time difference (Δt) between pre, and post synaptic spike (t_{pre} and t_{post}) to peak voltage (V_{peak}) at the gate terminal by the equation given below:

$$V_{\text{peak,Norm}} = \frac{V_{\text{peak}} - \max(V_{\text{peak}})}{\max(V_{\text{peak}}) - \min(V_{\text{peak}})}$$

$$\Delta t_{\text{LTP}} = -\tau_{\text{LTP}} \times V_{\text{peak,Norm}}; \quad t_{\text{LTD}} = \tau_{\text{LTD}} \times V_{\text{peak,Norm}}$$

Where, LTP, LTD is Long-Term Potentiation/Depression and $\tau_{\text{LTP}}, \tau_{\text{LTD}}$ time constants for learning.

The conductance change across the flash device is modeled using two independent exponentially decaying functions (f and g) with a maximum value of 1, accounting for spike time dependent plasticity and weight dependent plasticity respectively given by the equation below:

$$g_{\text{LTP}}(\Delta t_{\text{LTP}}) = e^{-\Delta t_{\text{LTP}}/\tau_{\text{LTP}}}$$
$$g_{\text{LTD}}(\Delta t_{\text{LTD}}) = e^{-\Delta t_{\text{LTD}}/\tau_{\text{LTD}}}$$
$$f_{\text{LTP}}(\Delta t_{\text{LTP}}) = e^{-\Delta t_{\text{LTP}}/\tau_{\text{LTP}}}$$
$$f_{\text{LTD}}(\Delta t_{\text{LTD}}) = e^{-\Delta t_{\text{LTD}}/\tau_{\text{LTD}}}$$

Where, G_i is initial conductance. The device can undergo LTP or LTD, conductance change in both regimes is treated as follows...
separately using two different functions (ΔG\text{LTP} and ΔG\text{LTD}) given below:

\[ΔG_{\text{LTP}} = ΔG_{\text{LTD}}^{\text{max}} \times f_{\text{LTP}}(Δt_{\text{LTP}}) \times g_{\text{LTP}}(G_{\text{syn}}) \]

\[ΔG_{\text{LTD}} = ΔG_{\text{LTD}}^{\text{max}} \times f_{\text{LTD}}(Δt_{\text{LTD}}) \times g_{\text{LTD}}(G_{\text{syn}}) \]

where ΔG_{\text{LTD}}^{\text{max}} and ΔG_{\text{LTP}}^{\text{max}} are the maximum conductance changes possible in one learning cycle.

Flash synapse based SNN Performance

We demonstrate supervised learning using a spiking neural network with mathematical modeling for a typical analog dataset – Fisher Iris flower classification [22] for CTF. The experimental data from the CTF based synapse is fit using the following equations:

\[ΔG_{\text{LTD}} = ΔG_{\text{LTD}}^{\text{max}} \times e^{-\frac{G_{\text{max}} - G_{\text{syn}}}{G_{\text{max}} - G_{\text{min}}} \times τ_{\text{LTD}}} \]

\[ΔG_{\text{LTP}} = ΔG_{\text{LTP}}^{\text{max}} \times e^{-\frac{G_{\text{max}} - G_{\text{syn}}}{G_{\text{max}} - G_{\text{min}}} \times τ_{\text{LTP}}} \]

where Δt_{\text{LTD}} = Δt < 0 and Δt_{\text{LTP}} = Δt > 0. The fit parameters (G_{\text{min}} = 0, G_{\text{max}} = G_{\text{max}}^{\text{max}} = 1, τ_{\text{LTD}} = 1.24 \text{ s} and, ΔG_{\text{LTP}}^{\text{max}} = 0.07, τ_{\text{LTP}} = 1.05 \text{ s}) produce an excellent match as shown in Fig. 7a-b. These synaptic models are incorporated into the network to be compared with ideal synapses described in the literature [44]. In Fig. 7c, learning produces an evolution of weights and consequent increase in classification for different initial weight randomizations (light blue) where the average behavior (black dashed) such that the performance converges with the “ideal” synapse to produce software-equivalent learning. To ensure this, at least 256 levels are needed [7], which is available for the CTF synapse. The noise in V_T is 22 × smaller than the resolution (i.e. 2% of maximum V_T shift) and about 0.9 × 10^{-3} times the range of V_T and thus has no effect on the maximum learning accuracy achieved in the network.

Fig. 7 Experimental a) LTD and b) LTP compared to the mathematical model (by curve fitting) for various write pulses. c) The experimentally validated synaptic model is implemented in SNN algorithm to compare with ideal synapse. Various random initialization of synaptic weights (light blue) with average (black dashed) behavior shows eventual convergence to software-equivalent learning performance (red).

Benchmarking

Finally, we benchmark our work against the state-of-the-art artificial synapses present in the literature in table 1. The CTF based synapse consumes very low energy. In fact, it is among the lowest energy possible after SRAM technology, which is volatile and expensive in terms of area (>120 F^2), binary and not amenable to cross-bar implementation. Further, low energy ONWST is based on an organic material flash not compatible with CMOS technology. Area of the CTF based synapse is highly competitive. The timescale is comparable to biology (~1 ms), which can be interesting for some real-time learning applications from natural data – as opposed to accelerated applications in software. This technology is highly manufacturable among CMOS silicon industry. The endurance is more than 10^5 LTP/LTD cycle essential for multiple learning and reading cycle. This technology shows the gradually 10^4 level of learning, which is a record improvement by 2 orders. Thus, the energy of write, CMOS compatibility, technological maturity, gradual and symmetric LTP and LTD, and LTP/LTD cycling reliability are the significant advantages.

Table 1: Benchmarking with State-of-the-art

Synapse Technology	Energy (fJ)	Area (F^2)	Timing (ns)	CMOS Compatible	LTP cycles	Learning level	Gradual Symmetry
SRAM	0.5	50	1	High	No	2	No
STT-RAM14	>10^4	20	>2	Mid	1012	~100	No
PCM4,24-25	>10^3	5	10	High	10^2	100	No
RRAM31	>10^4	4	>10	High	10^2	~100	No
ONW ST87	1	8	10^3	Low	10^3	20	Yes
Tun. Flash30,35	<10^5	75	10^3	High	10^3	1000	Yes
SIT's ESF56	>10^4	20	>10	High	NR	100	Yes
Stressed MOSFET54	10^2	8	10^3	High	NR	~200	No
FB ST78-74	>10^3	8	10^3	High	NR	20	Yes
This work32	2.5	30	10^4	High	>10^9	>10^4	Yes

*energy estimated at a scaled 180 nm technology

Conclusion

In summary, we have proposed a synapse based on highly manufacturable Charge Trap Flash Memory on SOI technology. Gradual symmetric LTP and LTD is demonstrated where the number of states is arbitrarily tunable, e.g., shown as 10^4 – 10^8 states by pulse characteristics. STDP is demonstrated by FN tunneling, which enables ultra-low energy dissipation (< 660 aJ) of essential energy. A 1F2D on SOI technology based synapse is presented to leverage the low energy operation in a synaptic array with a slight increase in total energy to 2.5 fJ energy per spike of LTP/LTD. The synaptic unit cell size of 30F^2 is highly competitive. The synapse is highly reliable as it is capable of significant LTP/LTD cycles (>10^6 cycles of 1V) without any degradation. The experimentally measured noise in V_T is 22 × smaller than the resolution (i.e. 2% of maximum V_T shift) and about 0.9 × 10^{-3} times the range of V_T. These features compare very favorably against literature benchmarking. The record learning rate of 1-2% – a key specification to learn analog dataset – which is highly challenging for other synapse candidates in literature. An SNN using the CTF based synapse is used to solve a Fisher Iris classification problem with software equivalent performance. Such a synaptic array is a key step in enabling large scale neural network to mimic the human brain – including the timescale and energy.

Acknowledgment

The authors wish to acknowledge helpful discussions regarding flash memory with Mr. Sunny Sadana, the Research Associate at IIT Bombay. This work was supported in part by Nano Mission & Science and Engineering Research Board (SERB), the Department of Science and Technology (DST), Department of Electronics and IT, Govt. of India (DEITY).
Memristors with diffusive processing on spike timing, synaptic strength, and memristive computing.

1. Z. Strukov, P. Chui, D. Stewart, and R. Shah, “Memristive devices for computing,” in Nature nanotechnology, vol. 8, no. 1, pp. 13, Dec 2012. doi: 10.1038/nnano.2012.240

2. J. W. Jang, S. Park, Y. H. Jeong, and H. Hwang, “ReRAM-based synaptic device for neuromorphic computing,” in IEEE Circuits and Systems (ISCAS), Jun 2014, pp. 1054-1057. doi: 10.1109/ISCAS.2014.686520

3. M. Prezioso, F. M. Bayat, B. Hoskins, K. Likharev, and D. Strukov, “Self-adaptive spike-time-dependent plasticity of metal-oxide memristors,” in Nature Scientific reports, vol. 6, pp. 21331, Feb 2016. doi: 10.1038/srep21331

4. S. Yu, D. Kuzum, and H. S. P. Wong, “Design considerations of synaptic device for neuromorphic computing,” in IEEE Circuits and Systems (ISCAS), Jun 2014, pp. 1062-1065. doi: 10.1109/ISCAS.2014.686532

5. Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Mudiya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, and Q. Wu, “Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing,” in Nature materials, vol. 16, no. 1, pp. 101, Sep 2016. doi: 10.1038/nmat4756

6. Z. Wang, S. Ambrogio, S. Balatti, and D. Ielmini, “A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems,” in Frontiers in neuroscience, vol. 8, pp. 438, Jan 2015. doi: 10.3389/fnins.2014.00438

7. Y. F. Wang, Y. C. Lin, I. T. Wang, T. P. Lin, and T. H. Hsu, “Characterization and modeling of nonfilamentary Ta/TaO x/TiO z/2/Ti analog synaptic device,” in Nature Scientific reports, vol. 5, pp. 10150, May 2015. doi: 10.1038/srep10150

8. Y. Li, Y. Zhong, J. Zhang, L. Xu, Q. Wang, H. Sun, H. Tong, X. Cheng, and X. Miao, “Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems,” in Nature Scientific reports, vol. 4, pp. 4906, May 2014. doi: 10.1038/srep04906

9. S. Mandal, A. El-Amin, K. Alexander, B. Rajendran, and R. Jha, “Novel synaptic memory device for neuromorphic computing,” in Nature Scientific reports, vol. 4, pp. 5333, Jun 2014. doi: 10.1038/srep05333

10. N. Panwar, D. Kumar, N. K. Upadhyay, P. Arya, U. Ganguly, and B. Rajendran, “Memristive synaptic plasticity in Pr 0.7 Ca 0.3 MnO 3 RRAM by bio-mimetic programming,” in IEEE Device Research Conference (DRC), Jun 2014, pp. 135-136. doi: 10.1109/DRC.2014.6872334

11. S. Lashkare, N. Panwar, P. Kumhare, B. Das, and U. Ganguly, “PCMO-Based RRAM and NPN Bipolar Selector as Synapse for Energy Efficient STDP,” in IEEE Electron Device Letters, vol. 38, no. 9, pp. 1212-1215, Jul 2017. doi: 10.1109/LED.2017.2723503

12. S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H. S. P. Wong, “An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation,” in IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2729-2737, Jun 2011. doi: 10.1109/TED.2011.2147791

13. S. Mandal, B. Long, A. El-Amin, and R. Jha, “Doped HfO 2 based nanoelectronic memristive devices for self-learning neural circuits and architecture,” in IEEE Nanoscale Architectures (NANOARCH), Jul 2013, pp. 13-18. doi: 10.1109/NanoArch.2013.6623030

14. B. Rajendran, Y. Liu, J. S. Sze, K. Gopalakrishnan, L. Chang, D. J. Friedman, and M. B. Ritter, “Specifications of nanoscale devices and circuits for neuromorphic computational systems,” in IEEE Transactions on Electron Devices, vol. 60 no. 1, pp. 246-253, Jan 2013 , doi: 10.1109/TED.2012.2227169

15. C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery, P. Lin, Z. Wang, and W. Song, “Efficient and self-adaptive in-situ learning in multilayer memristor neural networks,” in Nature Communications, vol. 9, no. 1. pp. 2385, Jun 2018. doi: 10.1038/s41467-018-04484-z

16. S. Yu, “Neuro-inspired computing with emerging nonvolatile memories,” in Proceedings of the IEEE, vol. 106, no. 2, pp. 260-285, Feb 2018. doi: 10.1109/JPROC.2018.2790840

17. G. Q. Bi, and M. M. Poo, “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and post synaptic cell type,” in Journal of neuroscience, vol. 18, no. 44, pp. 10464-10472, Dec 1998, doi: 10.1523/JNEUROSCI.18-24-10464.1998

18. L. F. Abbott, and S. B. Nelson, “Synaptic plasticity: taming the beast,” in Nature neuroscience, vol. 3, no. 11s, pp. 1178, Nov 2000, doi: 10.1038/31453

19. A. Biswas, S. Prasad, S. Lashkare, and U. Ganguly, “A simple and efficient SNN and its performance & robustness evaluation method to enable hardware implementation,” in Dec 2016. arXiv preprint arXiv:1612.02233.

20. S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H. S. P. Wong, “An electronic synaptic device based on metal oxide resistive switching memory for neuromorphic computation,” in IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2729-2737, Aug 2011. doi: 10.1109/TED.2011.2147791

21. M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Permiola, V. Sousa, D. Vuillaume, C. Ganrat, and B. DeSalvo, “Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction,” in IEEE Electron Devices Meeting (IEDM), Dec 2011, pp. 4-4, doi: 10.1109/IEDM.2011.6131488

22. O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, and C. Ganrat, “Visual pattern extraction using energy-efficient “2-PCM synapse” neuromorphic architecture,” in IEEE Transactions on Electron Devices, vol. 59, no. 8, pp. 2206-2214, Aug 2012. doi: 10.1109/TED.2012.2197951

23. I. Boybat, M. L. Gallo, S. R. Nandakumar, T. Moraitis, T. Parnell, T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, and E. Eleftheriou, “Neuromorphic computing with multi-memristive synapses,” in Nature communications, vol. 9, no. 1, pp. 2514, Jun 2018, doi: 10.1038/s41467-018-04933-y
35. Z. Chen, K. Hess, J. Lee, J. W. Lyding, E. Rosenbaum, I. Kizilyalli, S. Chetlar, and R. Huang. “On the mechanism for interface trap generation in MOS transistors due to channel hot carrier stressing,” in *IEEE Electron Device Letters*, vol. 21, no. 1, pp. 24-26, Jan 2000, doi: 10.1109/55.817441

36. C. Sandhya, U. Ganguly, N. Chattar, C. Olsen, S. M. Seutter, L. Date, R. Hung, J. M. Vasi, and S. Mahapatra, “Effect of SiN on performance and reliability of charge trap flash (CTF) under Fowler–Nordheim tunneling program/erase operation,” in *IEEE Electron Device Letters*, vol. 30, no. 2, pp. 171-173, Feb 2009, doi: 10.1109/LED.2008.2009552

37. H. Bachhofer, H. Reisinger, E. Bertagnolli, and H. Von Philipsborn, “Transient conduction in multidelectric silicon-oxide-nitride-oxide semiconductor structures,” in *Journal of Applied Physics*, 89(5), pp. 2791-2800, Feb 2001, doi: 10.1063/1.1343892

38. Taur, Yuan, and Tak H. Ning. *Fundamentals of modern VLSI devices*. Cambridge university press, 2013, doi: 10.1017/CBO9781139195065

39. W. Xu, S. Y. Min, H. Kwang, and T. W. Lee, “Organic core-sheath nanowire artificial synapses with femt joule energy consumption,” in *Science advances*, vol. 2, no. 6, pp. 1501326, Jun 2016, doi: 10.1126/sciadv.1501326

40. P. Krzysteczko, J. Munchenberger, M. Schifers, G. Reiss, and A. Thomas, “The Memristive Magnetic Tunnel Junction as a Nanoscopic Synapse-Neuron System,” in *Advanced Materials*, vol. 24, no. 6, pp. 762-766, Jan 2012, doi: 10.1002/adma.201103723

41. Bu, J., & White, M. H. (2001). Design considerations in scaled SONOS nonvolatile memory devices. *Solid-State Electronics*, 45(1), 113-120. https://doi.org/10.1016/S0038-1101(00)00232-X

42. N. Panwar, A. Khanna, P. Kumbhare, I. Chakraborty, and U. Ganguly, “Self-heating during sub microsecond current transients in Pr 0.7 Ca 0.3 MnO 3-based RRAM,” in *IEEE Transactions on Electron Devices*, vol. 64, no. 1, pp. 137-144, Jan 2017, doi: 10.1109/TED.2016.2632712

43. I. Chakraborty, N. Panwar, A. Khanna, and U. Ganguly, “Space Charge Limited Current with Self-heating in Pr0.3Ca0.7MnO3 based RRAM,” May 2016, *arXiv preprint arXiv:1605.08755*

44. C. Y. Lu, K. Y. Hsieh, and R. Liu, “Future challenges of flash memory technologies,” in *Microelectronic engineering*, vol. 86, no. 3, pp. 283-286, Mar 2009, doi: 10.1016/j.mee.2008.08.007

45. D. Kuzum, S. Yu, and H. S. P. Wong, “Synaptic electronics: materials, devices and applications,” *Nanotechnology*, vol. 24, no. 38, pp. 382001, Sep 2013, doi: 10.1088/0957-4484/24/38/382001

46. D. Kang, W. Jeong, C. Kim, D. H. Kim, Y. S. Cho, K. T. Kang, and H. Lee, “256 Gb 3 bitcell V-NAND flash memory with 48 stacked WL layers,” in *IEEE Journal of Solid-State Circuits*, vol. 52, no. 1, pp. 210-217, Feb 2016, doi: 10.1109/JSSC.2016.7417941

47. K. Prall, “Scaling non-volatile memory below 30nm,” in *IEEE Non-Volatile Semiconductor Memory Workshop*, Aug 2007, pp. 5-10, doi: 10.1109/NVSWM.2007.4290561

48. A. Shukla, V. Kumar, and U. Ganguly, “A software-equivalent SNN hardware using RRAM-array for asynchronous real-time learning,” in *IEEE Neural Networks (IJCNN)*, May 2017, pp. 4657-4664, doi: 10.1109/IJCNN.2017.7966447

49. A. Shukla, and U. Ganguly, “An On-Chip Trainable and the Clock-Less Spiking Neural Network With IR Memristive Synapses,” *IEEE Transactions on Biomedical Circuits and Systems*, vol. 12, no. 4, August 2018, doi: 10.1109/TBCAS.2018.2831618

50. V. S. S. Srinivasan, S. Chopra, P. Karkare, P. Bafna, S. Lashkare, P. Kumbhare, Y. Kim, S. Srinivasan, S. Kuppurao, S. Lodha, and U. Ganguly, “Punchthrough-diode-based bipolar RRAM selector by Si epitaxy,” in *IEEE Electron Device Letters*, vol. 33, no. 10, pp. 1396-1398, Oct 2012, doi: 10.1109/LED.2012.2209394

51. R. Mandalapati, A. S. Borkar, V. S. Srinivasan, P. Bafna, P. Karkare, S. Lodha, and U. Ganguly, “The impact of spn selector-based bipolar RRAM cross-point on array performance,” in *IEEE Transactions on Electron Devices*, vol. 60, no. 10, pp. 3385-3392, Oct 2013, doi: 10.1109/TED.2013.2279553

52. S. Lashkare, P. Karkare, P. Bafna, M. V. S. Raju, V. S. S. Srinivasan, S. Lodha, U. Ganguly, J. Schulze, and S. Chopra, “A bipolar RRAM selector with designable polarity dependent on-voltage asymmetry,” in *IEEE Memory Workshop (IMW)*, May 2013, pp. 178-181, doi: 10.1109/IMW.2013.6582128

53. Micheloni, Rino, and Luca Crippa. "Charge pumps, voltage regulators and HV switches." *Inside NAND Flash Memories*. Springer, Dordrecht, 2010. 299-327. https://doi.org/10.1007/978-90-481-9431-5_11

54. S. B. Eryilmaz, D. Kuzum, S. Yu, and H. S. P. Wong, “Device and system level design considerations for analog-non-volatile-memory based neuromorphic architectures,” in *IEEE Electron Devices Meeting (IEDM)*, Dec 2015, pp. 4-1, doi: 10.1109/IEDM.2015.7409622

55. R. Mandalapati, A. Borkar, V. S. S. Srinivasan, P. Bafna, P. Karkare, S. Lodha, B. Rajendran, and U. Ganguly, “On pairing of bipolar RRAM memory with NPN selector based on set/reset array power considerations,” in *IEEE Transactions on Nanotechnology*, vol. 12, no. 6, pp. 1178-1181, Nov 2013, doi: 10.1109/TNANO.2013.2284508

56. S. Prasad, A. Biswas, A. Shukla, U Ganguly, “A Highly Efficient Performance and Robustness Evaluation Method for a SNN based Recognition Algorithm,” International Conference on Artificial Neural Networks (ICANN) 2017 (accepted), doi: arXiv:1612.02233v1