Tandem UGT71B5s Catalyze Lignan Glycosylation in *Isatis indigotica* With Substrates Promiscuity

Xiao Chen1,2†, Junfeng Chen1†, Jingxian Feng1†, Yun Wang3, Shunuo Li1, Ying Xiao1, Yong Diao2, Lei Zhang4* and Wansheng Chen1*

1Center of Chinese Traditional Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2School of Biomedical Sciences, Huaxiao University, Fujian, China, 3Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai, China, 4Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China

Lignans are a class of chemicals formed by the combination of two molecules of phenylpropanoids with promising nutritional and pharmacological activities. Lignans glucosides, which are converted from aglycones catalyzed by uridine diphosphate (UDP) glycosyltransferases (UGTs), have abundant bioactivities. In the present study, two UGTs from *Isatis indigotica* Fort., namely *Ii*UGT71B5a and *Ii*UGT71B5b, were characterized to catalyze the glycosylation of lignans with promiscuities toward various sugar acceptors and sugar donors, and pinoresinol was the preferred substrate. *Ii*UGT71B5a was capable of efficiently producing both pinoresinol monoglucoside and diglucoside. However, *Ii*UGT71B5b only produced monoglucoside, and exhibited considerably lower activity than *Ii*UGT71B5a. Substrate screening indicated that ditetrahydrofuran is the essential structural characteristic for sugar acceptors. The transcription of *Ii*UGT71B5s was highly consistent with the spatial distribution of pinoresinol glucosides, suggesting that *Ii*UGT71B5s may play biological roles in the modification of pinoresinol in *I. indigotica* roots. This study not only provides insights into lignan biosynthesis, but also elucidates the functional diversity of the UGT family.

Keywords: Lignan glucosides, uridine diphosphate glycosyltransferase, *Isatis indigotica* Fort, recombinant enzyme catalysis, diversity

INTRODUCTION

Lignans, with a wide variety of clinically and dietarily important biological activities (Milder et al., 2005; Saarinen et al., 2007; Wang et al., 2011; Shi et al., 2012; Satake et al., 2013; Nantarat et al., 2020), are a class of derivatives formed by the combination of two molecules of phenylpropanoids (Fang and Hu, 2018). Lignans can be classified into eight subclasses depending on the way in which oxygen is incorporated into the skeleton and the cyclization pattern (Supplementary Figure S1; Teponno et al., 2016; Fang and Hu, 2018). The biosynthesis of lignans has been well-studied in *Isatis indigotica* Fort., *Linum usitatissimum* L., *Sinopodophyllum hexandrum* (Royle) Ying., *Sesamum indicum* Linn., *Forsythia koreana*, *Arabidopsis thaliana*, and other plants (Ono et al., 2010; Ghose et al., 2014; Lau and Sattely, 2015; Okazawa et al., 2015; Xiao et al., 2015; Teponno et al., 2016; Murata et al., 2017). As shown in Figure 1, two
molecules of coniferyl alcohol undergo an oxidative coupling reaction to generate pinoresinol with the participation of dirigent protein (DIR; Davin et al., 1997). Then pinoresinol can be reduced by pinoresinol/lariciresinol reductase (PLR) to lariciresinol, which can be subsequently reduced to secoisolariciresinol under the catalysis of PLR. Next, the oxidative dehydrogenation of isolariciresinol produces matairesinol under the catalysis of secoisolariciresinol dehydrogenase (SIRD). The conversion from coniferyl alcohol to matairesinol represents the general biosynthetic pathway of plant lignans (Ghose et al., 2014; Xiao et al., 2015; Teponno et al., 2016). Matairesinol can be continually converted into (−)-deoxypodophyllotoxin by cytochrome P450s (CYPs), O-methyltransferases (OMTs), and 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD), and finally hydroxylated by CYPs to produce (−)-4′-desmethyl-epipodophyllotoxin in S. hexandrum (Lau and Sattely, 2015). In another lignan
biosynthesis pathway that mainly occurs in the seeds of *S. indicum*, pinoresinol can be catalyzed by CYP81Q1 to sequentially generate piperitol and sesamin, then sesamin can be converted into sesaminol and sesaminol (Murata et al., 2017; Ono et al., 2020). In *Forsythia suspensa*, after the transformation of coniferyl alcohol into epipinoresinol, phyllgenin is produced by OMT (Ono et al., 2010). Ultimately, lignans are usually glycosylated by uridine diphosphate (UDP) glycosyltransferases (UGTs), and stored stably in plant cells (Lorenc-Kukula et al., 2005; Hano et al., 2006; Ono et al., 2010, 2020; Ghose et al., 2014; Teponno et al., 2016; Murata et al., 2017).

Isatis indigotica is a traditional Chinese medicinal herb, and its dried root (*Radix Isatidis*) is widely used for the treatment of influenza with lignan glucosides as the proven antiviral active ingredients (Lin et al., 2005; Yang et al., 2013; Li et al., 2015; Zhou et al., 2017; Runfeng et al., 2020). Currently, a variety of lignans and their glycosides have been identified from *I. indigotica*, including pinoresinol, lariciresinol, secoisolariciresinol, matairesinol, (+)-pinoresinol-4-O-glucoside, lariciresinol-4-O-glucoside, lariciresinol-4′-O-glucoside, pinoresinol diglucoside, lariciresinol diglucoside, etc. (Chen et al., 2013; Zhang et al., 2016, 2019). Each of these lignan glycoside exhibits both similar and specific bioactivities in mammals (Wang et al., 2011; Yang et al., 2013; Li et al., 2015, 2019; Zhou et al., 2017). Previous studies have elucidated the lignan biosynthetic pathway of *I. indigotica* from pinoresinol to secoisolariciresinol (Xiao et al., 2015). However, the catalytic enzymes involved in lignan glycosylation remain unknown.

Generally, glycosylation is catalyzed by UGT, which transfers a sugar moiety from a UDP-sugar to an acceptor molecule (Noguchi et al., 2008). To gain insights into lignan biosynthesis, we identified two lignan *UGT* genes, named *IiUGT71B5a* and *IiUGT71B5b*, which are responsible for glucosylation at the 4-position of pinoresinol. Meanwhile, the comprehensive catalytic properties and expression profiles of these two *IiUGTs* were also characterized. Thus, our findings will be important for understanding the biosynthesis of lignans, as well as for elucidating the functional diversity of the *I. indigotica* family.

MATERIALS AND METHODS

Plant Materials

Isatis indigotica Fort. and *Nicotiana benthamiana*: the seeds were kept in our laboratory. The plants were growing under a constant temperature of 25°C, light for 16 h, and a constant temperature of 18°C in a dark environment for 8 h, with humidity of approximately 75%.

Chemical Standards

The names and manufacturers of the standards are as follows: pinoresinol, (+)-pinoresinol-4-O-glucoside, lariciresinol, secoisolariciresinol, secoisolariciresinol monoglucoside, secoisolariciresinol diglucoside, isolariciresinol, (-)-isolariciresinol-9′-O-glucoside, matairesinol, matairesinoside, matairesinol monoglucoside, phyllynen, and forsythin (BioBioPha, China); pinoresinol diglucoside, clemaphenol A, trans-coniferin, coniferyl alcohol, sesaminol, quer cetin, quer cetin-3-O-glucoside, and quer cetin-7-O-glucoside (SHYuanYe, China); quer cetin-4′-O-glucoside (extracted by our laboratory), UDP-glucoside (UDP-Glc; Sigma, United States); UDP-xylene (UDP-Xyl), UDP-rhamnose (UDP-Rha), UDP-arabinose (UDP-Ara), and UDP-galacturonic acid (CarboSource, United States). All chemicals used in this study were of analytical or HPLC grade.

UHPLC-Q-TOF/MS Based Metabolic Profiling

Lignans and phenylpropanoids profiling was carried out on an Agilent 1290A Infinity II ultra-performance liquid chromatography (UHPLC) system coupled with an Agilent 6530A accurate mass quadrupole-time of flight mass spectrometer (Q-TOF/MS; Agilent, United States) equipped with a dual AJS electrospray ionization source (ESI) operated in negative ion mode. The parameters were as follows: nitrogen drying gas temperature, 350°C; flow, 11 L·min⁻¹; nebulizer pressure, 45 psi; sheath gas temperature and flow rate were the same as those of the drying gas; capillary voltage, 4 kV; fragment voltage, 120 V; skimmer voltage, 60 V; octopole 1 RF peak voltage, 750 V; and mass range, 100–3,200 m/z. Chromatographic separations were performed using an Agilent Poroshell 120 SB-C18 column (2.7 μm, 2.1 mm × 150 mm; Agilent) at 35°C with the mobile phase consisting of (0.01% formic acid + 2 mM ammonium acetate) aqueous solution (phase A) and mass spectrometry grade acetonitrile (phase B), and the following elution method: 5% ACN at 0 min, 20% ACN at 2 min, 25% ACN at 10 min, 95% ACN at 20 min, and a final 4.5 min of equilibration post run. The injection volume was 3.0 μl, and the flow rate was 0.3 ml/min. The main mass spectrometry parameters of the target compound were all designated in the negative ion mode of UHPLC-Q-TOF/MS. Mass spectrometry parameters of the target compound in the negative ion mode of UHPLC-Q-TOF/MS are listed in Supplementary Table S1. All data acquisition and analysis were controlled by Agilent MassHunter Workstation Software (Agilent Technologies, United States).

LC/MS Based Lignans and Phenylpropanoids Assay

The liquid phase mass spectrometer (LC/MS) was an Agilent 1200–6410 LC/MS, the chromatographic column was an Agilent ZORBAX SB-C18 (3.5 μm, 2.1 mm × 100 mm), the column temperature was 30°C, the flow rate was controlled at 0.3 ml/min, and the injection volume was 5 μl. The mobile phase was composed of acetonitrile (phase A) and 5 mM ammonium acetate aqueous solution (phase B), and the elution method was as follows: 14% ACN at 0 min, 20% ACN at 2 min, 25% ACN at 10 min, 95% ACN at 20 min, and a final 4.5 min of equilibration post run. The injection volume was 3.0 μl, and the flow rate was 0.3 ml/min. The main mass spectrometry parameters of the target compound were all designated in the negative ion mode of LC/MS 6410 (Supplementary Table S2).

Expression and Purification of UGTs

The coding regions of each *UGT* gene were subcloned into the pET-32a⁺ expression vector and then transformed into *Escherichia coli*.
strains BL21(DE3; primers are listed in Supplementary Table S3). The cell cultures were induced by 1 mM isopropyl-β-D-thiogalactoside (IPTG) until the OD₆₀₀ reached 0.5–0.7. After 10–16 h of incubation at 16°C at 200 rpm, the cells were harvested by centrifugation at 4°C. The tagged recombinant proteins were purified by Ni-NTA affinity chromatography (Bio-Scale Mini Profinity IMAC Cartridges, BIO-RAD, United States).

Activity Assays in vitro
Pinosinolenol, (+)-pinosinolenol-4-O-glucoside, laricaresinol, secoisolaricresinol, matairesinol, isolariciresinol, phillygenin, sesaminol, clemaphenol A, and coniferyl alcohol were selected as sugar acceptors. UDP-glucose, UDP-Xyl, UDP-Rha, UDP-Ara, and UDP-galacturonic acid were tested as sugar donors. The reaction was carried out in 50 μl of 100 mM phosphate buffer (pH 8.0), containing 2 mM sugar donor, 200 μM substrate, and 1 μg of purified protein. The reaction mixture without enzyme was preincubated at 30°C for 10 min, and then the purified protein was added and incubated at 30°C for 5 min to 12 h. The reaction was stopped by adding 150 μl of absolute ethanol. The reaction solution was evaporated to dryness, and reconstituted with methanol before chemical analysis.

Sequence Analyses
Multiple sequence alignments of target UGTs were performed using the Clustal-W program, and phylogenetic trees were constructed using MEGA 7.0 (Kumar et al., 2016). The neighboring-joining statistical method was used to calculate the phylogenetic tree, with 1,000 bootstrap replications. The homology models of IiUGT71B5a and IiUGT71B5b were built using the crystal structure of Medicago truncatula UGT71G1 [Shao et al., 2005; Protein Data Bank (PDB) code: 2acv1.A] as a template with the SWISS-MODEL server at http://swissmodel.expasy.org. UDP-glucose and sesaminol bound in GTB were taken as the sugar donor and sugar acceptor, respectively, and were docked into the built model of IiUGT71B5a using Autodock 4.2. The models were visualized with the PyMOL molecular graphics system.1

Transcription Analysis
Total RNA was extracted by a TransZol Plus RNA Kit (TransZol Up Plus RNA Kit, ER501, TransGen, China). cDNA was synthesized by one-step reverse transcription (PrimeScript™ 1st Strand cDNA Synthesis Kit, 6110A, TAKARA, China) using 2 μg of total RNA as a template. Gene expression levels were detected using real-time quantitative PCR (qRT-PCR; TB Green® Premix Ex Taq™ (Tli RNaseH Plus), RR420A, TAKARA, China; QuantStudio™ 3, Applied Biosystems, United States). Gene specific primers are listed in Supplementary Table S3. Each group of samples had six biological replicates, and each biological replicate was assayed three times.

Subcellular Localization of UGTs
The coding regions of IiUGT71B5a and IiUGT71B5b were cloned into the plant expression vector PHB-YFP. Primers are listed in Supplementary Table S3. PHB-YFP vectors carrying IiUGT71B5a and IiUGT71B5b were transferred into Agrobacterium tumefaciens strain GV3101. Cultures were inoculated in 10 ml of YEB medium (containing 75 μg·ml⁻¹ kanamycin and 25 μg·ml⁻¹ rifampicin) overnight (28°C, 200 rpm) and collected by centrifugation (5,000 g, 10 min, RT). The collected cells were resuspended in Murashige and Skoog medium (10 mM MES, 100 μM acetoxyrinoine, pH 5.8) to a final OD₆₀₀ of 0.3–0.6. After incubation for 2–3 h at RT, the mixed A. tumefaciens was injected into the abaxial surface of leaves of 4-week-old N. benthamiana plantlets by needle-free syringes. The infected leaves were harvested 48–72 h after infiltration. Agrobacterium tumefaciens containing PHB-YFP was infiltrated as a negative control. The YFP fluorescence was imaged using a laser scanning confocal microscope (Leica TCS SP3, Germany).

Synteny and Collinearity Analysis in Plant Genomes
Syntenic blocks were assigned via all-by-all BLASP with cutoffs of identity ≥40% and e-value ≤ 1e⁻¹⁰. Synteny comparison and Microsynteny visualization were performed using JCVI with LASTAL (Tang et al., 2008).

Data Availability
The sequence data of IiUGT71B5a, IiUGT71B5b, and IiUGT71B5c have been submitted to the GenBank databases under accession numbers: MW051594, MW051595, and MW051596, respectively.

RESULTS
Identification of UGTs
To annotate UGT genes from the I. indigotica genome (VHIU00000000; Kang et al., 2020), HMMER was used to search UGTs according to the plant secondary product glycosyltransferase (PSPG) motif (Yonekura-Sakakibara and Hanada, 2011; Caputi et al., 2012). As a result, 83 putative UGTs were identified, which were further assigned to 15 previously characterized groups based on phylogenetic tree construction (Figure 2; Wilson and Tian, 2019). Three IiUGT71B5s (IiUGT71B5a, IiUGT71B5b, and IiUGT71B5c) were suggested to have lignan catalytic activity as they have close phylogenetic relationship with a known pinosinolenol glycosyltransferase (FkUGT71A18) from F. koreana (Figure 2; Ono et al., 2010).

Cloning and Functional Characterization of IiUGT71B5a and IiUGT71B5b
IiUGT71B5a has an open reading frame (ORF) of 1,449 bp encoding 482 amino acids (aa), and IiUGT71B5b has an ORF of 1,443 bp encoding 480 aa. However, IiUGT71B5c only shows an ORF of 435 bp encoding a protein (145 aa) without the PSPG motif (Supplementary Figure S3). Thus, IiUGT71B5a and IiUGT71B5b were chosen for further studies. To identify the catalytic capability of the two IiUGTs in vitro, recombinant
IiUGT71B5a and IiUGT71B5b driven by pET-32a+ expression vectors were obtained using E. coli BL21(DE3) cells (Supplementary Figure S4), and pinoresinol (1) was tested as the sugar acceptor. With uridine 5' diphosphate glucose (UDP-Glc) as the sugar donor, IiUGT71B5a could efficiently convert pinoresinol (1) into 1a and 1b, while IiUGT71B5b could only convert pinoresinol (1) into 1a (Figure 3A). The mass spectrum of 1a was identified with the [M-H]− ion at m/z 519, which could produce fragments at m/z 357 ([M-H-162]−), indicating that 1a is a mono-O-glucoside (Figure 3B, 1a). The mass spectrum of 1b showed an [M-H]− ion at m/z 682, which could produce fragments at m/z 519 ([M-H-162]−) and m/z 357 ([M-H-324]−), indicating that 1b is a di-O-glucoside (Figure 3B, 1b). Notably, 1a and 1b were detected with the same retention time as the authentic compounds of (+)-pinoresinol-4-O-glucoside and pinoresinol diglucoside, respectively (Figure 3A). The above results suggest that both IiUGT71B5a and IiUGT71B5b may be involved in lignan biosynthesis in I. indigotica, while only IiUGT71B5a may contribute to the production of pinoresinol diglucoside (Figure 3C).
Biochemical Properties of Recombinant *Ii*UGT71B5a

With pinoresinol as the sugar acceptor and UDP-glucose as the sugar donor, the biochemical properties of *Ii*UGT71B5a were investigated. We found that *Ii*UGT71B5a exhibits its maximum activity at pH 8.0 and 30°C (Figures 4A, B). The effect of metal cations showed that *Ii*UGT71B5a is a non-cation-dependent protein, which is significantly inhibited by Cu²⁺ (Figure 4C). Under the catalysis of *Ii*UGT71B5a, pinoresinol (1) was first transferred into pinoresinol-4-O-glucoside (1a). As the reaction continued, pinoresinol-4-O-glucoside (1a) was gradually converted into pinoresinol diglucoside (1b). At 12 h after reaction, pinoresinol (1) was almost completely converted into pinoresinol-4-O-glucoside (1a) and pinoresinol diglucoside (1b; Figure 4D).

Substrate Heterogeneities of *Ii*UGT71B5a and *Ii*UGT71B5b

It has been reported that UGTs have wide range of reorganization properties toward substrates (Koeller and Wong, 2001; Ono et al., 2010; Ban et al., 2012; Okazawa et al., 2015). To determine whether *Ii*UGT71B5a and *Ii*UGT71B5b are lignan glycosyltransferases with substrate promiscuity, a variety of lignans, including pinoresinol (1), (+)-pinoresinol-4-O-glucoside (1a), clemaphenol A (2), sesamolin (3), phillygenin (4), lariciresinol (5), matairesinol (6), isolariciresinol (7), and secoisolariciresinol (8), were tested as sugar acceptors (Figure 5A). Coniferyl alcohol (9), the common precursor of lignans, was also tested. The reactions were performed in 50 μl of 100 mM phosphate buffer (pH 8.0) containing 1 μg of purified protein, 20 μM UDP-Glc, and 200 μM sugar receptors. Using the UHPLC-Q-TOF/MS method, according to chemical standards (Supplementary Figure S5) or their MS² fragments (Supplementary Figure S6), we found that *Ii*UGT71B5a could catalyze all tested substrates, and *Ii*UGT71B5b could catalyze eight of them (1–8), indicating that both *Ii*UGT71B5a and *Ii*UGT71B5b have high promiscuity. Moreover, *Ii*UGT71B5a had significantly higher catalytic activity toward each substrate compared to that of *Ii*UGT71B5b (Figure 5B). According to the characteristics of each glycosylated product, we proposed that *Ii*UGT71B5a have two catalytic properties. First, the convrsional efficiency of *Ii*UGT71B5a varies depending on the substrate (Figure 5B). Compared to other types of lignans, *Ii*UGT71B5a has higher catalytic activities toward dietherhydrofuran lignans (1, 1a, 2, and 3), including both backbones and their monoglucosides. Second, the glycosylation sites of *Ii*UGT71B5s are aromatic hydroxyl groups rather than aliphatic hydroxyl groups, supported by the productions of secoisolariciresinol and isolariciresinol (Supplementary Figure S5).

Determination of Enzyme Kinetic Parameters

Considering that *Ii*UGT71B5b had much lower catalytic properties than *Ii*UGT71B5a, we focused on the kinetics of *Ii*UGT71B5a. The detailed catalytic properties of recombinant *Ii*UGT71B5a were measured using UDP-glucose as the sugar donor and a variety of lignan substrates as sugar acceptors. The kinetic parameters (Table 1) were analyzed through Lineweaver Burk plots (Supplementary Figure S7). As a result, *Ii*UGT71B5a had the highest catalytic efficiency for sesaminol (kcat/Km = 1.17 × 10⁴ s⁻¹·M⁻¹), followed by pinoresinol (kcat/Km = 1.04 × 10³ s⁻¹·M⁻¹), (+)-pinoresinol-4-O-glucoside (kcat/Km = 9.39 × 10² s⁻¹·M⁻¹), clemaphenol A (kcat/Km = 7.16 × 10² s⁻¹·M⁻¹), matairesinol (kcat/Km = 6.46 × 10¹ s⁻¹·M⁻¹), and secoisolariciresinol (kcat/Km = 5.71 × 10⁰ s⁻¹·M⁻¹), with the lowest catalytic efficiency for lariciresinol (kcat/Km = 2.85 × 10⁵ s⁻¹·M⁻¹). In contrast, the catalytic efficiency of *Ii*UGT71B5b for sesaminol (kcat/Km = 1.06 × 10⁴ s⁻¹·M⁻¹) and matairesinol...
According to the structures of these lignans, IiUGT71B5a seemed to have a substrate preference for ditetrahydrofuran lignans. Given that sesaminol does not exist in *I. indigotica*, we proposed that IiUGT71B5a is the major UGT contributing to the biosynthesis of pinoresinol glucosides.

Sugar Donor Preference of IiUGT71B5a

To determine the sugar donor specificity of IiUGT71B5a, UDP-Glc, UDP-Xyl, UDP-Rha, UDP-Ara, and UDP-glucuronic acid (UDP-GalA) were tested (Figure 6A). When pinoresinol (1) was used as the substrate, UGT71B5a could efficiently utilize UDP-Glc (conversion rate of pinoresinol > 85%) and UDP-Xyl (conversion rate of pinoresinol > 10%), but not UDP-Rha, UDP-Ara, or UDP-GlcA (Figure 6B). In support of this, similar results were observed when using (+)-pinoresinol-4-O-glucoside (1a) or lariciresinol (5) as the substrate (Figure 6C). Consistent with previous report (Zhang et al., 2020), by comparing the structures of the five sugar donors (Figure 6D), we confirmed that the 4-OH configuration of the sugar group is an essential structural trait that affects the selective binding to the sugar donor. Furthermore, diglucosides (1b and 1d) with glucose and xylose moieties were also detected (Supplementary Figure S8).

Modeling and Docking of IiUGT71B5a and IiUGT71B5b

To explore the potential structural basis for the catalytic properties of IiUGT71B5a, molecular docking was performed to model the binding sites. A glycosyltransferase from
FIGURE 5 | Substrate heterogeneities of UGT71B5a and UGT71B5b. (A) Structures of 1–9 and part of the glycosylated products (1: pinoresinol, 2a: (+)-pinoresinol-4-O-glucoside, 2: clemaphenol A, 3: sesaminol, 4: phillygenin, 5: lariciresinol, 6: matairesinol, 7: 7: isolariciresinol, 8: secoisolariciresinol, and 9: coniferyl alcohol). (B) Conversion rates of glycosylated products for substrates 1–9, using UDP-Glc as the sugar donor. The reaction was carried out in 50 μl of 100 mM phosphate buffer (pH 8.0), containing 2 mM sugar donor, 200 μM substrate, and 1 μg of purified protein, and then incubated at 30 °C for 1 h. The ordinate value is expressed as the average value, and the error bar indicates SD (n = 3).

TABLE 1 | Enzyme kinetic parameters of recombinant UGT71B5a and UGT71B5b with lignans as substrates (20–200 μM) and uridine diphosphate (UDP)-glucose (2 mM) as a sugar donor.

UGT	Sugar receptor	Vmax (nMol s⁻¹)	Km (μM)	kcat (s⁻¹)	kcat/Km (s⁻¹·M⁻¹)
UGT71B5a	Sesaminol	8.17 × 10⁻³	48.00 ± 0.79	5.63 × 10⁻¹	1.17 × 10⁴
	Pinocresinol	1.02 × 10⁻³	67.16 ± 2.00	7.00 × 10⁻²	1.04 × 10³
	(+)-Pinocresinol-4-O-	1.85 × 10⁻³	136.06 ± 6.56	1.28 × 10⁻¹	9.39 × 10²
	glucoside				
UGT71B5b	Clemaphenol A	1.28 × 10⁻³	123.20 ± 4.95	8.82 × 10⁻²	7.16 × 10³
	Matairesinol	5.84 × 10⁻⁴	62.35 ± 1.53	4.03 × 10⁻²	6.46 × 10²
	Seccoisolariciresinol	1.39 × 10⁻⁴	168.48 ± 9.18	9.61 × 10⁻²	5.71 × 10²
	Lariciresinol	2.35 × 10⁻⁵	568.29 ± 16.08	1.62 × 10⁻¹	2.85 × 10³
	Sesaminol	2.08 × 10⁻³	135.48 ± 10.90	1.43 × 10⁻¹	1.06 × 10⁴
	Matairesinol	4.01 × 10⁻⁴	61.34 ± 1.48	2.77 × 10⁻²	4.51 × 10⁴

The kinetic parameters were analyzed through Lineweaver Burk plots (Supplementary Figure S7). The detailed lignans and the reaction time of recombined UGT71B5s to different substrates were shown in Supplementary Table S6.
M. truncatula was selected as the template (PDB: 2ACV; Shao et al., 2005). Binding sites for UDP-glucose were modeled first (Figure 7A). Several residues (Ile13, Thr141, Ser283, Ala350, Gln352, His367, Ser372, Tyr389, and Gln392) were shown to form hydrogen bonds (2.1–2.7 Å) with UDP-glucose, with a predicted affinity of -9.2 kcal·mol$^{-1}$ (Figure 7B). Among these residues, most were located on the plant secondary product PSPG motif (Gln352, His367, Ser372, Tyr389, and Gln392; Figure 7C). Given that Gln392 is conserved and considered the critical residue for the preference toward UDP-glucose (Kubo et al., 2004), pinoresinol and pinoresinol-4-O-glucose were then docked into the predicted pocket (IiUGT71B5a-UDP-Glc). Two amino acids (Ser10 and Arg42) were predicted to interact with pinoresinol, with a predicted affinity of -7.7 kcal·mol$^{-1}$ (Figure 7D). Meanwhile, only one residue (Asp47) was predicted to form a hydrogen bond with pinoresinol-4-O-glucose, with an affinity of -6.9 kcal·mol$^{-1}$ (Figure 7E). Notably, the two ligands approached UDP-glucose at different angles and positions in the predicted pocket with an estimated volume of 1,121 Å3, which was a broad binding space. This

FIGURE 6 | Sugar donor selectivity of UGT71B5a. (A) UHPLC-Q-TOF/MS chromatograms of purified recombinant UGT71B5a for the enzymatic reaction of three sugar receptors (1: pinoresinol, 1a: (+)-pinoresinol-4-O-glucoside, and 5: lariciresinol). (B) Conversion rates of substrates (1, 1a, and 5) catalyzed by recombinant UGT71B5a using different sugar donors [UDP-Glc, UDP-xylose (UDP-Xyl), UDP-ribose (UDP-Rha), UDP-arabinose (UDP-Ara), and UDP-glucuronic acid (UDP-GalA)] separately. The reaction was carried out in 50 μl of 100 mM phosphate buffer (pH 8.0), containing 2 mM sugar donor, 200 μM substrate, and 1 μg of purified protein, and then incubated at 30°C for 12 h. The ordinate value is expressed as the average value, and the error bar indicates SD ($n = 3$). (C) The structures and glycosyl sites of sugar receptors. (D) The structures of sugar donors.
FIGURE 7 | Homology modeling and multiple sequence alignment of IiUGT71B5a and IiUGT71B5b. (A) Cartoon representation of the structure of IiUGT71B5a-UDP-glucose. UDP-glucose is shown as sticks. The structure of IiUGT71B5a is shown as a dark green cartoon and the product glycosyltransferase (PSPG) motif is colored light blue. (B) Interactions between UDP-glucose and the residues of IiUGT71B5a. Hydrogen bonds are represented by dark blue dashed lines. (C) The PSPG boxes of IiUGT71B5a, IiUGT71B5b, FkUGT71A18, LuUGT74S1, SiUGT71A9, and SiUGT94D1. The key residues determining the UDP-sugar donor activity specificity are denoted with a red frame. (D) Binding mode of pinoresinol with IiUGT71B5a-UDP-glucose predicted by molecular dynamics simulations. The structure is shown as a dark green cartoon, pinoresinol is shown as light green sticks, and UDP-glucose is shown as yellow sticks. Hydrogen bonds are represented by yellow dashed lines. (E) Binding model of (+)-pinoresinol-4-O-glucoside with IiUGT71B5a-UDP-glucose predicted by molecular dynamics simulations. The structure is shown as a dark green cartoon, (+)-pinoresinol-4-O-glucoside is shown as light green sticks, and UDP-glucose is shown as orange sticks. Hydrogen bonds are represented by yellow dashed lines. (F) The divergent residues between IiUGT71B5a and IiUGT71B5b were mostly located near the entrance of the pocket. The overall structures of IiUGT71B5a and IiUGT71B5b are shown with an overlay cartoon representation. Red and yellow represent IiUGT71B5a. Blue and green represent IiUGT71B5b. The different amino acid residues of the two IiUGTs are shown in yellow and green, respectively.
might be caused by the structural basis for the substrate promiscuity of \textit{Ii}UGT71B5s. Interestingly, when comparing the secondary structure of \textit{Ii}UGT71B5s (90% sequence similarity), most of the different residues were located on the surface of the proteins and near the entrance of the pocket (Figure 7F), which might be critical for their difference in catalytic capability.

Correlation Between Spatial Distribution of Lignans and Transcription of \textit{Ii}UGT71B5s

To verify the correlation between \textit{Ii}UGT71B5s and correlated lignan glucosides, chemical profiling of lignans was carried out in different organs (leaf, root) and specific root cells (epidermis and cortex, phloem, xylem, and cambium). LC/MS profiling showed that at least three lignans and three lignan glucosides were present in \textit{I. indigotica}, including pinoresinol, (+)-pinoresinol-4-O-glucoside, pinoresinol diglucoside, lariciresinol, secoisolariciresinol, and secoisolariciresinol monoglucoside (Supplementary Table S5). Only a single lignan was analyzed and found that (+)-pinoresinol-4-O-glucoside and pinoresinol diglucose were mainly distributed in the roots, with the highest accumulation in the epidermis and cortex (Figure 8A). In contrast, pinoresinol was not detected in any root cells, which could be due to an extremely low accumulation. Besides, as a precursor of lignan biosynthesis, we also characterized coniferyl alcohol and found that coniferyl alcohol was not detected in these tissues (Supplementary Table S5). It is mainly stored in the form of trans-coniferin in plants because coniferyl alcohol may have a toxic effect on cells (Vaisanen et al., 2015). Interestingly, trans-coniferin has a high accumulation in roots, but it is almost undetectable in leaves, and the abundance of lignans in roots is much higher than that in leaves (Supplementary Table S5). These above results indicate that the process of synthesis and accumulation of lignans is mainly carried out in the roots, not in the leaves.

The correlated transcription level of \textit{Ii}UGT71B5s was analyzed by qRT-PCR. In different organs, the transcription levels of the two \textit{Ii}UGT71B5s in leaves were much higher than those in roots. Among different root cells, the highest transcription levels of both \textit{Ii}UGT71B5a and \textit{Ii}UGT71B5b were detected in the epidermis and cortex cells, followed by phloem cells, and their expression in xylem and cambium cells were slightly lower than those in phloem (Figure 8B). The transcription of \textit{Ii}UGT71B5s and the metabolism of pinoresinol glucosides are highly consistent in the roots of \textit{I. indigotica}, suggesting that \textit{Ii}UGT71B5s could possibly be a major contributor to the accumulation of pinoresinol glucosides in roots. However, the high expressions of \textit{Ii}UGT71B5s did not increase the accumulation of pinoresinol glucosides in the leaves, which may be due to the extremely low biosynthesis
of pinoselinol in leaves. Obviously, the low accumulation of pinoselinol is also caused by the low abundance of its precursor (trans-coniferin) in the leaves (Supplementary Table S5). In addition, the high transcription levels of IiUGT71B5s in leaves imply that they may also assume wider glycosylation functions in plants, and the substrate heterogeneities of IiUGT71B5s also support this conjecture (Figure 5).

Subcellular Localizations of IiUGT71B5a and IiUGT71B5b

To investigate the subcellular localizations of IiUGT71B5a and IiUGT71B5b, their ORFs were fused with YFP at the C-terminus and transiently expressed in *N. benthamiana* leaves. As shown in Figure 8C, the signals of both fused proteins presented in the cytoplasm, which was consistent with those of previously reported UGTs, such as MtUGT72L1, PhUGT79B31, and PbUGT72A2 (Pang et al., 2013; Knoch et al., 2018; Cheng et al., 2019). This result also indicated that the cytoplasm might be the subcellular site for lignan glycoside biosynthesis.

DISCUSSION

Substrate Heterogeneities of IiUGT71B5s

Although there are diverse types of lignans, only a few UGTs involved in lignan glycosylation have been discovered, including lignans (pinoselinol and larisierosinol) glycosyltransferase UGT71C1 from *A. thaliana*, pinoselinol glycosyltransferase UGT71A18 from *F. koreana*, secoisolariciresinol glycosyltransferase UGT74S1 from *L. usitatissimum*, and sesaminol glycosyltransferases UGT71A9, UGT94D1, UGT94A1G, and UGT94AA2 from *S. indicum* (Ono et al., 2010, 2020; Ghose et al., 2014; Okazawa et al., 2015; Teponno et al., 2016; Murata et al., 2017). UGTs, such as AtUGT71C1, FkUGT71A18, and IiUGT71B5s are able to catalyze glycosylation of pinoselinol, however, their subcellular catalytic characteristics are not the same. For example, AtUGT71C1 has a more extensive substrate heterogeneity than IiUGT71B5s, which can catalyze phenylpropanoids, flavonoids, as well as lignans (Lim et al., 2003; Okazawa et al., 2015). FkUGT71A18 also exhibits relatively broad sugar acceptor specificity for lignans with a preference for dihydrofuran lignans, but it performs well catalytic activity for phillygenin (Figure 5B, compound 4) compared with IiUGT71B5s (Ono et al., 2010). The identification of novel lignan glucosyltransferases from *I. indigotica* based on the similarity to the *Fs*UGT71A18, AtUGT71C1, and *Su*UGT71A9 highlights the structural conservation of lignan UGTs across plant species (Figure 2). Nevertheless, similar to flavonoid UGTs forming independent phyllogenetic clades based on their various regio-specificities (Noguchi et al., 2009), the structural diversity of lignan glucosides strongly suggests that not all lignan UGTs belong to the UGT71 family, such as LuUGT74S1, SiUGT94D1, SiUGT94A1G, and SiUGT94AA2 (Supplementary Figure S2). In addition to the catalytic activities of lignans, glycosylation 3-OH of quercetin by AtUGT71B5 was also reported (Lim et al., 2004). IiUGT71B5s, as homologous genes of AtUGT71B5, are preferred to glycosylate 3′-OH of quercetin, indicating that functional differentiation occurs in UGT71B5s (Figure 2; Supplementary Figure S1).

Among these known UGTs, most have been validated to have functional plasticity with a wide range of substrate recognition toward a variety of lignans. In this study, the promiscuity of both sugar acceptors and donors of two IiUGT71B5s was demonstrated. On the other hand, although IiUGT71B5s are capable of catalyzing multiple lignan substrates (Figure 5), we surmise that two IiUGT71B5s may contribute mainly to the catalysis of pinoselinol, owing to its substrate preference (Figure 5B) and high consistency with the accumulation of pinoselinol glucosides in the roots of *I. indigotica* (Figures 8A,B). Notably, the similar catalytic activities and transcription patterns suggested functional redundancy between IiUGT71B5a and IiUGT71B5b (Laruson et al., 2020). In support of this, a tandem duplication, including three loci (Ii4G26670, I4G26680, and I4G26690) coding UGT17B5 genes was discovered on chromosome 4 (Supplementary Figure S12), which could be the primary source for redundancy of UGT17B5 genes. In addition, I4G26690 (IiUGT71B5c) represented as a partial gene with an ORF region of 435 bp, accompanied by two extra introns (2,009 and 104 bp; Supplementary Figures S3, S13), indicating the pseudogenization of this locus. Although transcription of IiUGT71B5c was detected in the leaves and roots of *I. indigotica* (Supplementary Figure S9), without the PSPG box it could only become a nonfunctional UGT (Supplementary Figure S3). However, it is also possible that the *in vivo* activity of IiUGT71B5s does not match its *in vitro* activity, which has been reported in many plant UGT proteins, including AtUGT73C6, MtUGT78G1, and JyUGTs (Peel et al., 2009; Husar et al., 2011; Yin et al., 2017). Therefore, further validation of the roles of UGT71B5s in planta is required. Interestingly, although sesaminol (Figure 5B, compound 3) and its glucosides are not produced in *I. indigotica*, IiUGT71B5a had the strongest activity toward sesaminol, indicating that IiUGT71B5a might be used as an efficient catalytic element for biosynthesis.

Catalytic Properties of IiUGT71B5s

IiUGT71B5s seemed to exhibit similar functions as previously reported lignan UGTs such as FkUGT71A18, with a wide range substrate promiscuity (Ono et al., 2010). However, specificities of substrate were also discovered in IiUGT71B5s catalysis. First, although IiUGT71B5s catalyzed various lignan substrates, they have showed obvious substrate preferences toward lignans containing dihydrofuran on the skeleton, such as pinoselinol (1), clemaphenol A (2), and sesaminol (3; Figure 5). In addition, among the tested four dihydrofuran lignan substrates (Figure 5A, compounds 1–4), IiUGT71B5s had extremely low activities toward phillygenin (4), the only substrate in the S configuration with a phenolic group at C-1, supporting the strong stereoselectivity of IiUGT71B5s. Furthermore, conserved activities toward sugar donors were also observed. IiUGT71B5s only showed high conversion efficiency with UDP-Glc, which was supposed to correlate with the conserved glutamine (Gln, Q) located at the end of the PSPG motif (Supplementary Figure S3; Kubo et al., 2004).
Evolution of the Lignan Biosynthesis Pathway

Lignans represent eight categories according to the differences in their basic skeleton (Teponno et al., 2016; Fang and Hu, 2018), and they have diverse chemical compositions and distributions in the plant kingdom (Ono et al., 2010; Lau and Sattely, 2015; Murata et al., 2017; Zhang et al., 2019). Thus, the diversity of lignan biosynthesis pathways in different plants provides an ideal example to study the evolution of the origins and the loss of plant chemical diversity. For example, the major lignans accumulated in the roots of *A. thaliana* are lariciresinol glucosides but not secoisolariciresinol, which is determined by variance in the activity of PLR (Nakatsubo et al., 2008). In this study, we found that the pinoresinol in *I. indigotica* is not only catalyzed by PLR to produce lariciresinol and secoisolariciresinol (Xiao et al., 2015; Zhang et al., 2016), but also accumulates in the form of its glucosides (Figure 1; Supplementary Table S5), which may be influenced by functional differentiation of UGT71B5s. In addition, some categories of lignans are not produced in *I. indigotica*, such as sesaminol and podophyllotoxin, which is due to the functional diversity of gene families involved in the lignan biosynthesis network, including CYPs (Murata et al., 2017; Harada et al., 2020), OMTs (Lau and Sattely, 2015), and UGTs (Ono et al., 2020). Studying the activity, diversity, and evolution of these families will help to reveal mechanisms for the diversity of lignans in plants.

In summary, we identified two UGTs that may primarily contribute to the modification of pinoresinol. We discussed the structural insights of their functional diversity, which will provide an in-depth understanding of lignan biosynthesis and the functional diversity of the UGT family in plants. In addition, these novel UGTs may facilitate further enzyme engineering to produce bioactive lignan glucosides.

REFERENCES

Ban, L., Pettit, N., Li, L., Stuparu, A. D., Cai, L., Chen, W., et al. (2012). Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. *Nat. Chem. Biol.* 8, 769–773. doi: 10.1038/nchembio.1022

Caputi, L., Malnoy, M., Gorernykvin, V., Nikiforova, S., and Martens, S. (2012). A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. *Plant J.* 69, 1030–1042. doi: 10.1111/j.1365-313X.2011.04853.x

Chen, J., Dong, X., Li, Q., Zhou, X., Gao, S., Chen, R., et al. (2013). Biosynthesis of the active compounds of *Isatis indigotica* based on transcriptome sequencing and metabolites profiling. *BMC Genomics* 14:857. doi: 10.1186/1471-2164-14-857

Cheng, X., Muhammad, A., Li, G., Zhang, J., Cheng, J., Qiu, J., et al. (2019). Family-1 UDP-glycosyltransferases in pears (Pyrus brechneideri): molecular identification, phylogenetic characterization and expression profiling during stone cell formation. *Mol. Biol. Rep.* 46, 2153–2175. doi: 10.1007/s11033-019-04669-y

Davin, L. B., Wang, H. B., Crowell, A. L., Bedgar, D. L., Martin, D. M., Sarkanen, S., et al. (1997). Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. *Science* 275, 362–367. doi: 10.1126/science.275.3298.362

Fang, X., and Hu, X. (2018). Advances in the synthesis of lignan natural products. *Molecules* 23:3385. doi: 10.3390/molecules23123385

Ghose, K., Selvaraj, K., McCallum, J., Kirby, C. W., Sweeney-Nixon, M., Cloutier, S. J., et al. (2014). Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG). *BMC Plant Biol.* 14:82. doi: 10.1186/1471-2229-14-82

Hano, C., Martin, I., Fliniaux, O., Legrand, B., Gutierrez, L., Arroo, R. R., et al. (2006). Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (*Linum usitatissimum*) seeds. *Planta* 224, 1291–1301. doi: 10.1007/s00425-006-0308-y

Harada, E., Murata, J., Ono, E., Toyonaga, H., Shiraiashi, A., Hideshima, K., et al. (2020). (+)-Sesamin-oxidising CYP2B14 shapes specialised lignan metabolism in sesame. *Plant J.* 104, 1117–1128. doi: 10.1111/tpj.14989

Husar, S., Berthiller, F., Fujikota, S., Rozhon, W., Khan, M., Kalaivanan, F., et al. (2011). Overexpression of the UGT77CS alters brassinosteroid glucoside formation in *Arabidopsis thaliana*. *BMC Plant Biol.* 11:51. doi: 10.1186/1471-2229-11-51

Kang, M., Wu, H., Yang, Q., Huang, L., Hu, Q., Ma, T., et al. (2020). A chromosome-scale genome assembly of *Isatis indicotica*, an important medicinal plant used in traditional Chinese medicine: an isatis genome. *Hortic Res.* 7:18. doi: 10.1038/s41438-020-0240-5

Knoch, E., Sugawara, S., Mori, T., Nakabayashi, R., Saito, K., and Yonekura-Sakakibara, K. (2018). UGT79B31 is responsible for the final modification step of pollen-specific flavonoid biosynthesis in *Petunia hybrida*. *Planta* 247, 779–790. doi: 10.1007/s00425-017-2822-5

Koeller, K. M., and Wong, C. H. (2001). Enzymes for chemical synthesis. *ACS Symposium Series* 753, 1–12. doi: 10.1021/bk-2001-0753.ch001

Kubo, A., Arai, Y., Nagashima, S., and Yoshikawa, T. (2004). Alteration of the activity, diversity, and evolution of these families will help to reveal mechanisms for the diversity of lignans in plants.

In summary, we identified two UGTs that may primarily contribute to the modification of pinoresinol. We discussed the structural insights of their functional diversity, which will provide an in-depth understanding of lignan biosynthesis and the functional diversity of the UGT family in plants. In addition, these novel UGTs may facilitate further enzyme engineering to produce bioactive lignan glucosides.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

WC, LZ, and JC were the leading investigators of this research program. JC and XC designed the experiments and wrote the manuscript. JF performed the most of experiments and analyzed the data. JF performed the molecular docking. YW, SL, YX, and YD assisted in experiments and discussed the results. All authors contributed to the article and approved the submitted version.

FUNDING

This work was financially supported by the National Key R&D Program of China (2019YFC1711000), National Natural Science Foundation of China (81673550, 81803668, 81874335, and 31872665), Shanghai Rising-Star Program (18QB1402700), Shanghai local Science and Technology Development Fund Program guided by the Central Government (YDZX20203100002948), and the program of Shanghai University of Traditional, Chinese Medicine (A1-GY20-306-02-08).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.637695/full#supplementary-material
Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* 33, 1870–1874. doi: 10.1093/molbev/msw654

Larsson, A. J., Yeaman, S., and Lotterhos, K. E. (2020). The importance of genetic redundancy in evolution. *Trends Ecol. Evol.* 35, 809–822. doi: 10.1016/j.tree.2020.04.009

Lau, W., and Sattely, E. S. (2015). Six enzymes from mayapple that complete the biosynthetic pathway to the etopoide glycosylate. *Science* 349, 1224–1228. doi: 10.1126/science.aac7202

Li, J., Liang, X., Zhou, B., Chen, X., Xie, P., Jiang, H., et al. (2019). (+)-pinocembrinObetaDglucopyranoside from *Eucomium ulmario* Oliver and its antiinflammatory and antiviral effects against influenza A (H1N1) virus infection. *Mol. Med. Rep.* 19, 563–572. doi: 10.3892/mmr.2018.9696

Li, J., Zhou, B., Li, C., Chen, Q., Wang, Y., Li, Z., et al. (2015). Lariciresinol-4-O-beta-D-glucopyranoside from the root of *Isatis indigotica* inhibits influenza A virus-induced pro-inflammatory response. *J. Ethnopharmacol.* 174, 379–386. doi: 10.1016/j.jep.2015.08.037

Lim, E. K., Ashford, D. A., Hou, B., Jackson, R. G., and Bowles, D. J. (2004). Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. *Biotechnol. Bioeng.* 87, 623–631. doi: 10.1002/bit.20154

Lim, E. K., Higgins, G. S., Li, Y., and Bowles, D. J. (2003). Regioselectivity of glucosylation of caffeic acid by a UDP-glucose:glycosyltransferase is maintained in planta. *Biochem. J.* 373, 987–992. doi: 10.1042/BJ20021453

Liu, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y., et al. (2005). Anti-SARS coronavirus 3C-like protease effects of plant-derived phenolic compounds. *Antivir. Res.* 68, 36–42. doi: 10.1016/j.antiviral.2005.07.002

Lorenc-Kukula, K., Amaroewicz, R., Ozsmianski, J., Doerrmann, P., Starzycki, M., Skala, J., et al. (2005). Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. *J. Agric. Food Chem.* 53, 3685–3692. doi: 10.1021/jf047987z

Milder, I. E., Feskens, E. J., Arts, I. C., Bueno de Mesquita, H. B., Hollman, P. C., and Karkonen, A. (2015). Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings. *Planta* 242, 747–760. doi: 10.1007/s00253-015-1363-8

Tung, H., Bowers, J. E., Wang, X., Ming, R., Alam, M., and Paterson, A. H. (2008). Synteny and collinearity in plant genomes. *Science* 320, 486–488. doi: 10.1126/science.1153917

Teponno, R. B., Kusari, S., and Spittle, M. (2016). Recent advances in research on lignans and neolignans. *Nat. Prod. Rep.* 33, 1044–1092. doi: 10.1039/c5np00216e

Vaisanen, E. E., Smeds, A. I., Fagerstedt, K. V., Teeri, T. H., Willfor, S. M., and Karkonen, A. (2015). Coniferyl alcohol inhibits the growth of tobacco BY-2 cells and *Nicotiana benthamiana* seedlings. *Planta* 242, 747–760. doi: 10.1007/s00253-015-1363-8

Wang, H., Li, M. C., Yang, J., Yang, D., Su, Y. F., Fan, G. W., et al. (2011). Estrogenic properties of six compounds derived from *Eucumium ulmario* Olov. and their differing biological activity through estrogen receptors alpha and beta. *Food Chem.* 129, 408–416. doi: 10.1016/j.foodchem.2011.04.092

Wilson, A. E., and Tian, L. (2019). Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. *Plant J.* 100, 1273–1288. doi: 10.1111/pj.14514

Yin, Q., Shen, G., Chang, Z., Tang, Y., Gao, H., and Pang, Y. (2017). Involvement of dietary lignans in the reduction of breast cancer risk. *Mol. Nutr. Food Res.* 51, 857–866. doi: 10.1002/mnfr.200600240

Satake, H., Ono, E., and Murata, J. (2013). Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. *J. Agric. Food Chem.* 61, 11721–11729. doi: 10.1021/jf4007704

Shao, H., He, X., Achnine, L., Blount, J. W., Dixon, R. A., and Wang, X. (2005). Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from *Medicago truncatula*. *Plant Cell* 17, 3141–3154. doi: 10.1105/tpc.103.035055
Zhou, B., Li, J., Liang, X., Yang, Z., and Jiang, Z. (2017). Transcriptome profiling of influenza A virus-infected lung epithelial (A549) cells with lariciresinol-4-beta-D-glucopyranoside treatment. PLoS One 12:e0173058. doi: 10.1371/journal.pone.0173058

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.