Supporting information to “Self-Consistent Implementation of Kohn-Sham Adiabatic Connection Models with Improved Treatment of the Strong-Interaction Limit”

Szymon Śmigaa, Fabio Della Salab,c, Paola Gori-Giorgid, Eduardo Fabianob,c

a Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland

b Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy

c Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano (LE), Italy

d Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands,

E-mail: szsmiga@fizyka.umk.pl

August 19, 2022

Contents

1 Summary of the basis sets 2
2 Dissociation of H\textsubscript{2} with SPL functional 2
3 Hookes atom results 3
1 Summary of the basis sets

- **He, He**: even tempered 20s10p2d basis.

- **Be, Ne, Ne**: uncontracted ROOS-ATZP basis\(^1\).

- **Mg**: uncontracted aug-cc-pVTZ basis set\(^2\).

- **Ar**: s and p basis functions from the uncontracted ROOS-ATZP\(^1\) basis set and d and f functions from the uncontracted aug-cc-pwCVQZ basis set\(^3\).

- **HF, CO, H\(_2\)O, H\(_2\), Cl\(_2\), N\(_2\), HCl, NH\(_3\), C\(_2\)H\(_6\)**: uncontracted cc-pVTZ basis set of Dunning\(^4\).

2 Dissociation of H\(_2\) with SPL functional

![Graph](image)

Figure S1: The total energy of the H\(_2\) molecule as it is stretched calculated with the various methods. The inset presents the same data around the equilibrium distance.
Figure S2: Relative error on correlation energies of harmonium atoms for various values of ω computed at @SCF orbitals for ISI and SPL functionals using the hPC and mPC models for the strong-interaction functionals. The errors have been computed with respect FCI data obtained in the same basis set. The exact ISI and SPL values are taken from Ref., and are obtained by inserting exact densities into the ISI and SPL functionals, including the exact treatment (SCE) of the strong-interaction limit.
References

[1] Per-Olof Widmark, Per-Ake Malmqvist, and Björn O Roos, “Density matrix averaged atomic natural orbital (ano) basis sets for correlated molecular wave functions”, Theor. Chim. Acta 77(5), pp. 291–306 (1990).

[2] D. E. Woon and T. H. Dunning, Jr., “Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminium through argon”, J. Chem. Phys. 98, pp. 1358–1371 (1993).

[3] K. A. Peterson and T. H. Dunning, Jr, J. Chem. Phys. 117, pp. 10548 (2002).

[4] Thom H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen”, J. Chem. Phys. 90(2), pp. 1007–1023 (1989).

[5] Eduard Matito, Jerzy Cioslowski, and Sergei F. Vyboishchikov, “Properties of harmonium atoms from fci calculations: Calibration and benchmarks for the ground state of the two-electron species”, Phys. Chem. Chem. Phys. 12, pp. 6712–6716 (2010).

[6] Derk P Kooi and Paola Gori-Giorgi, “Local and global interpolations along the adiabatic connection of dft: a study at different correlation regimes”, Theor. Chem. Acc. 137(12), pp. 166 (2018).