Metastatic Wilms tumor and dilated cardiomyopathy

Sir,

Wilms tumor (WT) is the most common pediatric kidney tumor and typically presents as an asymptomatic abdominal mass.[1] WT-associated cardiomyopathy is a rare complication that is thought to be either secondary to mechanical compression of the renal artery or the production of renin by the tumor.[2] This report describes a unique case of metastatic WT-associated cardiomyopathy with treatment complicated by pulsus alternans.

A 13-year-old female presented with abdominal pain and weight loss for 1 year. Physical examination demonstrated a tender distended abdomen, a palpable abdominal mass (heart rate: 86, blood pressure: 167/92, respiratory rate: 18, O₂ saturation 97%). Computed tomography revealed a left renal mass with multiple pulmonary nodules. Follow-up magnetic resonance imaging demonstrated a 2.4 cm × 12.9 cm × 14.3 cm mass in the left renal fossa [Figure 1a]. The patient underwent a left radical nephrectomy and removal of the retroperitoneal mass with pathology demonstrating Stage IV WT with favorable histology.

The patient was started on adjuvant chemotherapy. Before adding doxorubicin to her regimen, an echocardiogram demonstrated a reduced left ventricular ejection fraction (LVEF) of 31% and a global longitudinal strain of 13.4% [Figure 1b]. Doxorubicin was excluded from her treatment regimen to avoid cardiotoxicity. The patient was started on oral heart failure therapy, which was complicated by pulsus alternans after the patient was switched from carvedilol to metoprolol [Figure 1c]. The patient was changed back to carvedilol with no further evidence of pulsus alternans.

After 6 weeks of chemotherapy, her lung metastases were reduced but not eliminated. At this time, her cardiomyopathy had not improved (LVEF: 30%). Chest radiation was considered but not pursued to avoid the risk of additional cardiotoxicity. It was decided that she would receive an additional 6 weeks of chemotherapy followed by a 12-week taper. This led to complete resolution of pulmonary metastasis and modest improvement of her LVEF (43%). She continued to be asymptomatic, and after completion of adjuvant chemotherapy, an echocardiogram demonstrated an LVEF of 61.8% and global longitudinal strain of 19.2% [Figure 1b].

The association between dilated cardiomyopathy and WT has only been reported in 6 previous cases. After resection of the WT, improvement of cardiac function despite receiving some potentially cardiotoxic chemotherapy drugs would suggest the WT is responsible for the cardiomyopathy.[3] The etiology of LV dysfunction has been speculated to be caused by prolonged hypertension,[2,4] however, our patient’s blood pressure was largely normal after beginning a heart failure regimen but continued to have LV dysfunction. Reports of patients having WT-associated cardiomyopathy without hypertension were secondary to vasoactive mediators other than renin and catecholamines. Our hypothesis is that our patient’s LV dysfunction was likely a combination of both mechanisms. Pulsus alternans is also a rare phenomenon our patient experienced. The beat-to-beat variation in systolic flow typically indicates left ventricular dysfunction and is associated with a poor prognosis.[4] This phenomenon was observed when the patient was switched from carvedilol to metoprolol, which has not been documented previously.

Only one prior case of WT-associated cardiomyopathy had metastases at diagnosis. This patient’s metastatic disease resolved after 3 months of chemotherapy and had an LVEF increase of 29%–50%. After surgical resection and adjuvant chemoradiation, the patient’s LVEF increased to 58%.[5] In our patient, surgical resection had little effect on cardiac function. She required a prolonged course of adjuvant therapy to resolve her

Figure 1: (a) Abdominal magnetic resonance imaging showing the mass (2.4 cm × 12.9 cm × 14.3 cm). (b) Cardiac strain demonstrating global longitudinal strain of 13.4% (1). One year after shows a global longitudinal strain of 19.2% (2). (c) Transthoracic echocardiogram shows beat variations in the left ventricular outflow tract
metastases and full recovery of her LVEF (61.8%). The timing of LVEF improvement would suggest that the remaining metastatic disease was responsible for the slow LVEF recovery.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Vivek Mohan, Maxwell F. Kilcoyne, Randy M. Stevens, Vicki Lynn Mahan
Department of Cardiothoracic Surgery, St Christopher Hospital for Children, Philadelphia, Pennsylvania, USA.
E-mail: maxkilcoyne@gmail.com

Submitted: 06-Dec-2020 Revised: 03-Feb-2021
Accepted: 19-May-2021 Published: 25-Mar-2022

REFERENCES
1. Irtan S, Ehrlich PF, Pritchard-Jones K. Wilms tumor: “State-of-the-art” update, 2016. Semin Pediatr Surg 2016;25:250-6.
2. Agarwala B, Mehrotra N, Waldman JD. Congestive heart failure caused by Wilms’ tumor. Pediatr Cardiol 1997;18:43-4.
3. Chalavon E, Lampin ME, Lervat C, Leroy X, Bonneville M, Recher M, et al. Dilated cardiomyopathy caused by Wilms tumor. Pediatr Emerg Care 2017;33:41-2.
4. Sethasathien S, Choed-Amphai C, Saengsin K, Sathitsamitphong L, Charoenkwan P, Tepmalai K, et al. Wilms tumor with dilated cardiomyopathy: A case report. World J Clin Oncol 2019;10:293-9.
5. Sanandajifar H, Batlivala SP. Pulsus alternans in a child with dilated cardiomyopathy. Cardiol Young 2018;28:479-81.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Susceptibility of children with congenital heart disease to coronavirus disease 2019: A potential challenge as schools reopen
Sir,

Given the tendency of coronavirus disease 2019 (COVID-19) to cause critical disease in individuals with predisposing conditions, comorbid cardiac conditions – including congenital heart disease (CHD) – may increase disease severity in COVID-19. As schools around the world reopen, this letter highlights mechanisms by which children with CHD may be at increased risk of severe COVID-19, particularly in lower-middle-income countries.

Otherwise “benign” viral respiratory illnesses in CHD patients carry a high risk of critical hypoxemia due to the altered baseline cardiorespiratory status of children with CHD, predisposing to low cardiac output, ventilation-perfusion mismatch, or pulmonary hypertensive crises.

In addition, CHD patients may also have decreased immunocapabilities, which may result in higher susceptibility to viral respiratory illnesses. As seen with respiratory syncytial virus infection, a mostly self-limiting disease in healthy infants, infection may result in severe bronchiolitis and pneumonia in infants with CHD, with greater rates of hospitalization, mechanical ventilation, intensive care unit admission, and perioperative mortality.

Although 1% of children with COVID-19 have shown progression to acute respiratory distress syndrome,

77% of hospitalized children have preexisting conditions.

Although few studies have evaluated the clinical course of COVID-19 in pediatric patients with CHD, Sabatino et al. from Italy showed that potential cardiac complications in pediatric CHD patients with COVID-19 included heart failure, pulmonary hypertension, pericardial effusion, and myocardial injury.

Of particular concern is the risk of Multisystem Inflammatory Syndrome in Children, a hyperinflammatory syndrome that occurs in pediatric COVID-19 patients that may cause cardiac involvement resulting in acute heart failure and ventricular dysfunction.

With school resuming worldwide, it is inevitable that COVID-19 outbreaks such as those in the US, England, France, and Israel will occur in schools, particularly when precautionary measures are followed suboptimally, and may possibly lead to worse outcomes for children with CHD. Developing countries, which harbor more than

| How to cite this article: Mohan V, Kilcoyne MF, Stevens RM, Mahan VL. Metastatic Wilms tumor and dilated cardiomyopathy. Ann Pediatr Cardiol 2021;14:564-5. |

© 2021 Annals of Pediatric Cardiology | Published by Wolters Kluwer - Medknow