Model Discrimination at the LHC: a Case Study

Gregory Hallenbeck, Maxim Perelstein, Christian Spethmann, Julia Thom, and Jennifer Vaughan

Newman Laboratory of Elementary Particle Physics
Cornell University, Ithaca, NY 14853, USA

glh59@cornell.edu, maxim@lepp.cornell.edu, cs366@cornell.edu, jt297@cornell.edu, jjv27@cornell.edu

Abstract

We investigate the potential of the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) to discriminate between two theoretical models predicting anomalous events with jets and large missing transverse energy, minimal supersymmetry and Little Higgs with T Parity. We focus on a simple test case scenario, in which the only exotic particles produced at the LHC are heavy color-triplet states (squarks or T-quarks), and the only open decay channel for these particles is into the stable missing-energy particle (neutralino or heavy photon) plus a quark. We find that in this scenario, the angular and momentum distributions of the observed jets are sufficient to discriminate between the two models with a few inverse fb of the LHC data, provided that these distributions for both models and the dominant Standard Model backgrounds can be reliably predicted by Monte Carlo simulations.
1 Introduction

Theoretical arguments strongly indicate that the Standard Model (SM) picture of electroweak symmetry breaking is incomplete, and numerous extensions of the SM at the electroweak scale have been proposed. It is expected that at least some of the new particles and interactions predicted by such extended theories will be discovered and studied at the LHC. The ultimate goal of the experiments is, of course, to determine the correct theory of physics at the TeV scale. This task may be quite complicated. In particular, it is quite likely that nature is described by one of the several models possessing the following features:

- Physics at the TeV scale is weakly coupled, and there is a light Higgs (as motivated by precision electroweak data);
- A number of new states are present at the TeV scale, and new particles can be paired up with the known SM states, with states in the same pair carrying identical gauge charges;
- New states carry a parity quantum number distinct from their SM counterparts, implying that the lightest new particle (LNP) is stable;
- The LNP is weakly interacting (as motivated by cosmological constraints on stable particles).

The best known model of this class is the minimal supersymmetric standard model (MSSM). Other contenders include models with universal extra dimensions (UED) and Little Higgs models with T parity. Broadly speaking, all these theories share the same LHC phenomenology: the new physics production is dominated by the colored states, which are pair-produced, and then decay down to the LNP and SM states. The interesting final states then involve jets in association with missing transverse energy and possibly leptons and photons. Only by studying the detailed properties of these objects can one hope to discriminate among the models.

The most convincing way to discriminate between supersymmetry and its competitors is to measure the spin of the new particles: in the Little Higgs and UED models the new states and their SM partners have the same spin, while in SUSY models their spins differ by 1/2. Measuring spin at the LHC, however, is notoriously difficult. Almost all existing proposals rely on the observation that, if the produced strongly interacting state decays via a cascade chain, angular correlations between the particles emitted in subsequent steps in the cascade carry information about spin. (See Refs. [1, 2, 4, 5, 6, 7, 8], as well as a recent review [9].) The availability of cascade decays with the right properties for this to work, however, depends on the spectrum and couplings of the model, and is by no means guaranteed. Moreover, a large amount of data is typically needed to alleviate combinatoric and other backgrounds.

1 Robust discrimination between the Little Higgs and UED would require observing or ruling out the excited level-2 and higher KK excitations of the UED model, absent in the Little Higgs.
If unambiguous spin measurements are unavailable, the experiments can still attempt a more modest task of model discrimination, *i.e.* determining which of two or more specific theoretical models provides a better fit to the available data. Unlike a direct spin measurement, which would rule out the entire *class* of models with the wrong spin assignment, this approach can only discriminate between *specific* models. For example, if it is found that the minimal Littlest Higgs with T-parity (LHT) model cannot fit the data, it does not exclude the possibility that another model of the Little Higgs class could provide a better fit. Still, this approach can provide valuable information, and is well worth pursuing at the LHC, especially at the early stages.

The goal of our study is to estimate the prospects for model discrimination with the CMS detector. As a test case, we consider a very simple scenario: We assume that the *only* new physics process observable at the LHC is pair-production of new color-triplet particles, followed by their decay into a quark and an LNP. This process occurs at the LHC at a significant rate over large parts of the parameter space of the MSSM, LHT, and UED models. Its detector signature is two hard jets (plus possibly additional jets from gluon radiation and showering) and missing transverse energy. Our assumption that no other signatures are observed allows us to focus on this channel alone, and to understand in detail the issues important for model discrimination. It would be straightforward to repeat our exercise with more complicated models for the exotic particle production (*e.g.* including color octet pair-production channels) and decay (*e.g.* including cascade chains involving leptons and/or weak bosons).

The main motivation for our study comes from the work of Barr [10], who showed that the angular distributions of leptons from the decay of lepton partners produced directly (via electroweak processes) in hadron collisions carry information about the lepton partner spin. This example is particularly simple since the lepton partners are always produced in s-channel quark collisions, and their angular distribution in the production frame is almost unambiguously determined by their spin. However, its utility is somewhat limited by the small cross section of the direct lepton partner process. For quark partners, the cross sections are larger, but the production mechanism is more complicated: both quark-initiated and gluon-initiated processes need to be included, and in both cases there are both s-channel and t-channel diagrams. Still, as we will show, the model-dependence of the matrix elements can be sufficiently strong to yield observable differences between the models. Crucially, the differences cannot be removed by simply varying the free parameters of the model with the wrong spin assignments: to demonstrate this, we performed a scan over the parameter space of the “untrue” model. (A recent model-discrimination study of Hubisz *et. al.* [11], which studied a situation similar to our test case, also noted the significant differences in jet distributions between models with different spins, but was restricted to a single benchmark point in each model’s parameter space. The importance of scanning over parameters in model-discrimination studies has been recently emphasized in Refs. [8, 12].)

The rest of the paper is organized as follows: In section 2, we give a description of the minimally supersymmetric and Little Higgs models used in our study, including input parameters and particle spectra as well as the relevant production processes and decay
chains. We discuss the dominant standard model backgrounds and the selection cuts that were applied to isolate signal events. We then define our observables and describe the statistical analysis. Section 3 contains the results of our model scan, including exclusion plots for 200 pb$^{-1}$, 500 pb$^{-1}$, 1 fb$^{-1}$ and 2 fb$^{-1}$ of integrated luminosity. We summarize our conclusions in section 4. Finally, the appendix includes a list of formulas for error estimates, a description of our method to calculate covariances, as well as an example of the angular distribution of jets at an excluded LHT model point.

2 Setup

We will focus on the discrimination between the minimal versions of the MSSM and the Littlest Higgs with T-parity (LHT) \cite{13,14,15,16}. Both models have been extensively studied in the literature; for reviews, see Refs. \cite{17,18}. Each model contains color-triplet massive partners for each SM quark: squarks in the MSSM and T-odd quarks, or TOQs, in the LHT. Also, each model contains a stable weakly-interacting particle: the neutralino of the MSSM and the “heavy photon” (the T-odd partner of the hypercharge gauge boson) of the LHT. We will assume that these are the only particles that play a role in the LHC phenomenology; the rest of the new states in each model are too heavy to be produced. Note that the two minimal models have important differences in their particle content: for example, the minimal LHT does not have a color-octet heavy particle, a counterpart of the gluino; while the MSSM does not have a T-even partner of the top quark present in the LHT \cite{19,20}. In our scenario, however, neither of these particles is observed. This null result does not help with model discrimination, since we don’t know whether the particles don’t exist or are simply beyond the LHC reach. Model discrimination must rely on the observed properties of the produced exotic particles or their decay products.

Our strategy is to simulate a large sample of events corresponding to one of the models (we will choose the MSSM) with fixed parameters, and treat this sample as “data”. The question is then, how well can this data be fitted with the alternative model, in this case the LHT? It should be emphasized that the predictions of the LHT model are not unique, but depend on the LHT parameters. So, when fitting data, one should look for the point in the

final state	$\bar{u}_L\bar{d}_L$	$\bar{q}_{L,R}\bar{q}_{L,R}$	$\bar{u}_L\bar{u}_L$	$\bar{u}_R\bar{d}_R$	$\bar{d}_L\bar{d}_L$	$\bar{u}_L\bar{u}_R^*$	$\bar{d}_R\bar{d}_R^*$	$\bar{u}_L^*\bar{d}_R^*$	
σ(fb)	600	400	300	230	170	80	65	40	30

Table 1: Cross sections of squark pair-production processes at the LHC at the study point of Eq. (1). Here $q = u, d, s, c$. Factorization and renormalization scales are set to 500 GeV. The CTEQ6L1 parton distribution functions are used. The matrix elements are evaluated at tree level using MadGraph/MadEvent, and no K-factors are applied.
LHT parameter space that provides the best fit. The LHT can be said to be disfavored by data only to the extent that this best-fit point is disfavored.

2.1 “Data”

For our case study, we assume that the MSSM is the correct underlying theory, with the following parameters:

\[\begin{align*}
 m(\tilde{Q}_L^{1,2}) &= m(\tilde{u}_R^{1,2}) = m(\tilde{d}_R^{1,2}) = 500 \text{ GeV;} \\
 m(\tilde{Q}_L^3) &= m(\tilde{u}_R^3) = m(\tilde{d}_R^3) = 1 \text{ TeV;} \\
 m(\tilde{L}_L^{1,2,3}) &= m(\tilde{e}_R^{1,2,3}) = 1 \text{ TeV;} \\
 A_{Q,L}^{1,2,3} &= 0; \\
 M_1 &= 100 \text{ GeV;} \\
 M_2 &= 1 \text{ TeV;} \\
 M_3 &= 3 \text{ TeV;} \\
 M_A &= 1 \text{ TeV;} \\
 \mu &= 1 \text{ TeV;} \\
 \tan \beta &= 10.
\end{align*} \tag{1} \]

All parameters are defined at the weak scale, and no unification or other high-scale inputs are assumed. The parameter choices are driven by the desire to study a point with very simple collider phenomenology: the new physics production at the LHC is completely dominated by pair-production of the first two generations of squarks. The total squark pair-production cross section is 5.0 pb. Table 1 lists the 22 leading squark pair-production processes, which together account for over 98% of the total. Associated squark-gluino production is strongly suppressed by the high gluino mass; the cross section (summed over squark flavors) is only 11 fb. Associated squark-neutralino production is larger, with the total cross section of about 290 fb. However, these events have only a single hard jet, and will not pass the analysis cuts (see section 2.4). Production of third generation squarks is also strongly suppressed, with a total cross section of only 17 fb. Thus, in our analysis we will simulate the processes listed in Table 1 and ignore all other SUSY production channels.

Another simplification that occurs at the chosen parameter point is in the decay pattern of the produced squarks: they decay into quarks and the lightest neutralino (essentially a bino) with a 100% probability. This means that in this model, the only place where strong evidence for new physics would show up at the LHC is the two jets+missing energy channel. We will limit our study to this channel.

The “data” event sample has been generated in the following way. First, we simulate a sample of parton-level events using the MadGraph/MadEvent package [21]. The production processes included in this simulation, and their cross sections, are listed in Table 1. The squark decays are also handled by MadGraph/MadEvent, using the narrow-width approximation. The sample size corresponds to 10 fb$^{-1}$ of integrated luminosity at the LHC. The resulting events are stored in a format compatible with the Les Houches accord, and then passed on to PYTHIA [22] to simulate showering and hadronization. The PYTHIA output is then passed on to the detector simulation code. We use a modified version of the PGS code to perform fast (parametrized) detector simulation. The drastic speed-up of the event simulation provided by PGS (compared to full CMS detector simulation) allows us to scan the LHT parameter space, generating a statistically significant event sample for each point in
Figure 1: Jet p_T and missing transverse energy distributions in the MSSM, obtained with
PGS (red histograms) and full CMS simulation (black histograms). Left panel: Uncorrected PGS. Right panel: A jet energy scale correction factor has been applied to the PGS output.

the scan. To calibrate PGS to the CMS detector, we have generated two calibration event
samples (one in the MSSM and one in the LHT) using the full CMS detector simulation, and
compared them to the PGS output for the same two underlying models. On the basis of this
comparison, we determined that the energy and angular distributions of the PGS jets are in
excellent agreement with the full CMS simulation, once the jet energy has been appropriately
corrected. This is clear from Fig. 1 which shows the jet p_T and missing transverse energy
distributions in the MSSM, obtained with PGS (red histograms) and full CMS simulation
(black histograms). For jets satisfying the selection criteria of our analysis (in particular,
$p_T^{\text{min}} = 100$ GeV), the correction factor is essentially the same as the one appearing in
translation from parton-level jet energy to the energy reconstructed by the detector [25] (i.e., the
PGS output in this p_T range essentially corresponds to parton-level jets). We have applied
this correction factor to the PGS output throughout our analysis.

2.2 Little Higgs Model

If the only evidence for new physics is in the two jets+missing energy channel, it is natural
to try to fit the data with the LHT model, assuming the dominant production process

$$pp \rightarrow U_i \bar{U}_i,$$ \hspace{1cm} (2)
where U'_i is the TOQ of flavor i. We will assume that four flavors of TOQs, $i = u, d, s, c$, are degenerate at mass M_Q and are within the reach of the LHC, with the other two flavors being too heavy to play a role. Once produced, TOQs promptly decay via

$$U'_i \rightarrow q_i B', \quad \bar{U}'_i \rightarrow \bar{q}_i B',$$

(3)

giving a 2 jets+MET signature. Here B' is the lightest T-odd particle (LTP), the heavy photon of mass $M_{B'}$. The LHT predictions in this channel are sensitive to only two model parameters, M_Q and $M_{B'}$, which allows us to scan the parameter space with realistic computing resources. The counterpart of the process (2), (3) in the pp collisions at the Tevatron was considered in Ref. [23]. The Tevatron experiments exclude a region in the $M_Q - M_{B'}$ plane: roughly, they place a lower bound of $M_Q \gtrsim 350$ GeV for light B', $M_Q - M_{B'} \gtrsim 250$ GeV, and somewhat weaker bounds for heavier B'. (There is no bound if $M_Q - M_{B'} < \sim 50$ GeV.)

To assess how well the data can be fitted with the LHT model, we perform a scan in the $(M_Q, M_{B'})$ plane. We have picked 125 points in the LHT parameter space, uniformly scanning in the ranges

$$M_Q = [500, 950] \text{ GeV},$$
$$M_{B'} = [100 \text{ GeV}, M_Q].$$

(4)

For each point in the scan, we generate an event sample using the procedure outlined in section 2.1 above. Each sample corresponds to 10 fb$^{-1}$ of integrated luminosity at the LHC.

2.3 Backgrounds

Several Standard Model processes contribute to the jets + missing energy final state. The following background processes are dominant:

Process	σ_{tot}	σ_1	σ_2	σ_3	σ_6	σ_7	N_{sim}
Signal (SUSY)	5.00	4.98	4.10	2.91	2.06	0.65	10,037
$(Z \rightarrow \nu\nu) + jj$	271.54	259.73	94.05	64.34	10.21	0.20	543,080
$(W \rightarrow \nu\ell) + jj$	55.80	52.58	19.30	12.89	6.27	0.37	111,602
$(W \rightarrow \nu\tau) + j$	138.27	92.67	12.18	2.49	0.52	0.04	276,540
$t\bar{t}$	398.52	384.14	27.85	13.89	1.62	0.04	797,039
total BG	864.13	789.11	153.37	93.61	18.62	0.65	1,728,261
- $Z+2$ jets, with Z decaying invisibly (irreducible background);
- $W+2$ jets, with W decaying leptonically and the charged lepton misidentified or undetected;
- $W+1$ jet, with W decaying to $\tau \nu_\tau$, the τ decaying hadronically and misidentified as a jet
- $t\bar{t}$, with at least one of the top quarks decaying leptonically and the charged lepton(s) misidentified or undetected.

The cross sections for each process are listed in Table 2. (For the $Z/W+\text{jets}$ channels, we list the parton-level $Z/W+2$ jets cross sections with $p_T^j \geq 100$ GeV.) We simulated two independent Monte Carlo samples for each process. One of the samples is mixed with the SUSY events to obtain the “data” sample, while the other one is mixed with the LHT events and used to fit the data. The size of each sample corresponds to 2 fb^{-1} of LHC data. All samples have been simulated following the same simulation path as for the signal: parton-level simulation with MadGraph/MadEvent, followed by showering and hadronization simulation with PYTHIA and a parametrized detector simulation with the modified PGS. It should be kept in mind that some of the CMS detector performance parameters which affect the background rates, such as lepton misidentification probabilities, may not be realistically modeled by PGS. In principle one could normalize these parameters using full CMS detector simulation, as we did for the jet-energy corrections. However, given the preliminary nature of our study, we did not attempt such normalization.

In addition to the processes listed above, pure QCD multi-jet events with mismeasured jets leading to apparent missing energy are expected to make an important contribution to the background. However, until the detector is calibrated with real data, it is difficult to predict this background. We have not included it in this preliminary analysis.

2.4 Triggers and Selection Cuts

Throughout the analysis, we impose the following cuts:

1. At least two reconstructed jets in the event
2. $p_T^j(j_1) \geq 150$ GeV
3. $p_T^j(j_2) \geq 100$ GeV
4. $\eta(j_1) \leq 1.7$
5. $\eta(j_2) \leq 1.7$
6. No identified leptons (e, μ or τ) in the event
7. $E_T \geq 300$ GeV
where the jets are labeled according to their p_T, in descending order. We do not impose any explicit cuts on jet separation, since jet reconstruction in PGS effectively acts as a minimum separation cut. The LHC data samples will correspond to certain trigger paths, in our case to the E_T trigger and to jet triggers. Using simple parametrizations for the trigger efficiencies [24] we expect them to be essentially 100% efficient, given our selection cuts.

The signal and background cross sections passing each of the selection cuts are listed in Table 2. After the cuts are applied, we obtain

$$S/B = 1.0, \quad S/\sqrt{B} = 36 \quad (2 \text{ fb}^{-1})$$

for the SUSY signal. The S/B value is not as good as those obtained in some existing studies of SUSY search prospects (see, for example, Refs. [27, 11]). The reason is that in those analyses gluinos are assumed to be light, around 500 GeV, which greatly increases the signal cross section and also yields three or more hard jets in the final state in most events, allowing to further suppress the background. Still, the relatively large new physics cross section implies that if reasonably accurate predictions of the background rate are available, the presence of new physics can be convincingly established. In particular, using the 10 observables listed below and the assumptions about the systematic and statistical errors described in Appendix A we estimate that the existence of new physics in this channel will be established at the level of 2.5, 4.2, and 4.9 sigma, with analyzed data samples of 200 pb$^{-1}$, 500 pb$^{-1}$, and 1 fb$^{-1}$, respectively. The discovery is dominated by shape observables: if the total rate, which may suffer from large uncertainties in the MC predictions, is removed from the fit completely, the confidence levels are only marginally lower.

2.5 Observables

Our analysis uses the following observables:

- σ_{eff}: The cross section, in pb, of events that pass the analysis cuts. Experimentally, this quantity is inferred from the measured event rate using $N_{\text{obs}} = L_{\text{int}}\sigma_{\text{eff}}$, where N_{obs} is the number of events passing the cuts in a sample collected with integrated luminosity L_{int}. It is related to the total production cross section by $\sigma_{\text{eff}} = \sum_i \sigma_i E_i$, where the sum is over all processes (signal and background) which contribute to the sample, and σ_i and E_i are the total cross section and combined trigger/cuts efficiency, respectively, for channel i.

- $\langle p_T \rangle$: The average transverse momentum of all jets with $p_T > 100$ GeV in a given data sample that pass the analysis cuts. This variable is tightly correlated with the mass difference between TOQ and the LTP, $M_Q - M_B$.

- $\langle |\Sigma\eta| \rangle$: The average of the absolute value of the sum of the pseudo-rapidities of the two leading (highest-p_T) jets in the event.
• $\langle H_T \rangle$: The average of the scalar sum of the transverse momenta of all jets in the event plus the missing transverse energy

$$H_T = \sum_{\text{jets}} p_T^{(i)} + E_T.$$

• $\langle E_T \rangle$, the average of the missing transverse momentum in the events that pass the selection cuts.

• **Beam Line Asymmetry (BLA):** This observable is defined as $(N_+ - N_-)/(N_+ + N_-)$, where N_+ and N_- are the numbers of events with $\eta_1 \eta_2 > 0$ and $\eta_1 \eta_2 < 0$.

• **Directional Asymmetry (DA):** The same as above, where $N_+ (N_-)$ are now the numbers of events where $\vec{p}_1 \cdot \vec{p}_2$ is positive (negative)\(^2\). A plot showing the distribution of relative angles between the two hardest jets can be found in Fig.6 in the appendix.

• **Transverse momentum asymmetry (PTA):** The ratio N^+/N^- of the number of jets with p_T larger than $\langle p_T \rangle$ and the number of jets with p_T smaller than $\langle p_T \rangle$.

• **Transverse momentum bin ratios:** We distribute the jets in the event into three fixed bins, depending on their transverse momentum. The first bin corresponds to $100 \text{ GeV} < p_T < 300 \text{ GeV}$ (N_1 events), the second to $300 \text{ GeV} < p_T < 500 \text{ GeV}$ (N_2 events), and the third to $p_T > 500 \text{ GeV}$ (N_3 events). We then define two bin count ratios, $R_1 = N_2/N_1$ and $R_2 = N_3/N_1$.

We compute the “measured” values of these observables using the “data” sample. For each LHT point in the scan, we compute the expected central values of the observables using the corresponding MC sample. We then use the standard χ^2 technique to estimate the quality of the fit between the expected and measured values. The observables are assumed to be Gaussian distributed, with the variances including statistical and systematic errors added in quadrature. The correlation matrix between observables for each LHT point is obtained from the generated Monte Carlo sample; the details of the procedure and error analysis are described in Appendix A. As an example, we show the correlation matrix for our susy “data” sample in Table 3. The quality of the fit to data at each LHT point is quantified by the χ^2 value, which can in turn be converted into probability that the observed disagreement between the measured and expected values of the observables is the result of a random fluctuation. (If this probability is close to one, the fit is perfect; if it approaches zero, the fit is very poor.) As a sanity check to validate our statistical procedure, we simulated a large number of independent subsamples of SUSY and SM background events, and confirmed that the distribution of χ^2 values agrees with statistical fluctuations.

\(^2\)For a recent analysis using BLA and DA in a context similar to ours, see Ref. 26.
3 Results

The main results of the analysis are presented in Fig. 2, which shows the level at which the LHT model is excluded depending on the assumed values of the parameters. For illustration purposes, we label the exclusion contours by the number of standard deviations in a single-variable Gaussian distribution corresponding to the same probability. With 200 pb$^{-1}$ of accumulated data, the combined fit to the 10 observables excludes only about half of the LHT parameter space at better than 3-sigma level, or better than 99.7% confidence level. In the rest of the parameter space the LHT model is still consistent with data at this level, with the best-fit point at $M_Q = 650$ GeV, $M_B = 250$ GeV showing a less than 1-sigma deviation from the data. With more integrated luminosity and correspondingly smaller statistical errors, however, the LHT model can no longer fit the data. For 2 fb$^{-1}$, we find that the complete LHT parameter space in our study is excluded at a more than 3-sigma level, and most of the parameter space is already excluded at a 5-sigma level. Thus, it appears that in our test-case scenario, experiment can exclude the LHT interpretation of the data with a modest integrated luminosity of only a few fb$^{-1}$.

While we include the estimates of the systematic uncertainties for all observables in our study, some of the observables may suffer from additional uncertainties. One example is the total production cross section. We assumed a 30% systematic error on the value of the cross section computed in the LHT model, to account for the scale uncertainty of the leading-order calculation, as well as pdf and luminosity uncertainties. However, other effects, for example the possibility that the number of degenerate TOQ flavors is different from the assumed value (four), the possible presence of additional TOQ decay channels, etc., could significantly change this observable, keeping all others intact. Thus, it is interesting to fit the

Table 3: Correlation matrix of observables in the SUSY plus SM background “data” sample, generated from 2 fb$^{-1}$ of simulated events with 50 subsamples and 10,000 iterations. A description of the procedure used to calculate this matrix can be found in appendix A.
Figure 2: Exclusion level of the LHT hypothesis, based on the combined fit to the ten observables discussed in the text. Top left panel: with integrated luminosity of 200 pb$^{-1}$ at the LHC. Top right panel: same, with integrated luminosity of 500 pb$^{-1}$, Bottom left panel: integrated luminosity of 1 fb$^{-1}$, Bottom right panel: 2 fb$^{-1}$.

data with the LHT model without using the cross section information at all. Interestingly, this fit leads to exclusion of the LHT model at levels not much weaker than the original fit, see Fig. 3. In other words, the cross section information does not seem to play a crucial role in model discrimination: a combination of transverse-momentum and angular distributions of the two jets is sufficient. This is certainly reassuring. We have also performed a fit without using the average missing transverse momentum and H_T observables, which may suffer from unexpected instrumental systematics. The results are shown in the right panel of Fig. 3. The impact of removing these observables is more significant; some parameter values in the LHT model are now no longer excluded at the 3-sigma level. If those two observables are not included, it would therefore be necessary to increase the integrated luminosity to arrive at the same confidence level for the rejection of the Little Higgs hypothesis.
4 Conclusions

Using Monte Carlo samples, we determined χ^2 values for fitting a SUSY + BG “data” sample with Little Higgs model predictions, using the heavy TOQ and “heavy photon” masses as fit parameters and including dominant standard model backgrounds.

With 2 fb^{-1} of signal and background events, we were able to show that a combination of ten observables encoding angular and transverse momentum distributions of the observed jets contains enough information to exclude the LHT model at a 3-sigma confidence level, provided that these distributions for both models and the dominant Standard Model backgrounds can be reliably predicted by Monte Carlo simulations. We found that neither the effective cross section, which depends on potentially unknown decay branching ratios, nor information about the missing energy is crucial for this method of model discrimination.

In reality, it is likely that the LHC phenomenology is much richer than the simple scenario described here, involving, for example, competing SUSY production processes and complicated decay chains. In this case, the model-discrimination analysis would involve multiple channels, and more new particles (and hence parameters) would be required to fit. However, while the details are highly model-dependent, it should be conceptually straightforward to extend our analysis to such situations.

Acknowledgments

The authors acknowledge the CMS collaboration for the permission to use the detector simulation software, and for useful discussions within the CMS SUSY physics group. We are grateful to Jay Hubisz and Frank Paige for useful discussions. This research is supported
by the NSF grants PHY-0355005, PHY-0757894 and PHY-0645484. J.T. acknowledges the Cornell University College of Arts and Sciences for their support.

A Error estimates

Our estimates for the significance level of model exclusion rely on correct evaluation of statistical and systematic errors. We therefore include a summary of formulas used in our analysis. We use three fundamentally different types of observables. The first class consists of averages of measured quantities like the mean jet p_t and the mean H_t of events. Secondly, asymmetries in event shapes, as well as bin ratios, are obtained by counting events that do or do not fulfill certain conditions. Finally, the cross section is calculated from the total number of signal and background events after cuts.

A.1 Mean value observables

The error in transverse momentum p_T of individual jets is estimated using the parameterization given in [27].

$$\sigma_{p_T} = \left(\frac{5.6}{p_T^{\text{PGS}}} + \frac{1.25}{\sqrt{p_T^{\text{PGS}}}} + 0.033 \right) p_T^{\text{meas}}$$

where all momenta are in GeV, p_T^{PGS} is the transverse momentum obtained from PGS, and p_T^{meas} is the rescaled momentum as in [25].

The average transverse momentum observable $\langle p_T \rangle$ is calculated by taking the mean of all jets with a minimum p_T of 100 GeV in the events that pass our selection cuts.

The missing transverse energy as given by PGS has to be corrected to account for the change in jet energy scales. The modified missing transverse energy is

$$E_T^{\text{meas}} = E_T^{\text{PGS}} + \sum_{i=1}^{N_{\text{jets}}} (p_T^{\text{PGS}} - p_T^{\text{meas}}),$$

where the sum is a vector sum in the transverse plane.

The error in the missing transverse energy E_T is estimated as

$$\sigma^2_{E_T} = (3.8 \text{ GeV})^2 + 0.97^2 \text{ GeV} E_T + (0.012 E_T)^2$$

as given in [27].

The observable $\langle H_T \rangle$ is given by the scalar sum of the transverse momentum of all objects plus the missing energy in the event. The error of this quantity is calculated by adding the errors of each object and the missing energy in quadrature.

Given a list of individual measurements of the jet p_T, E_T, or H_T, the statistical error of the mean value is given by

$$\sigma^2_{\text{stat}} = V/N,$$
where V is the variance of the distribution and N is the number of entries. The systematic error is given by

$$
\sigma_{syst}^2 = \nu^2 / N,
$$

where ν is the mean value of the distribution.

For the average sum of leading jet pseudorapidities $\langle |\Sigma \eta| \rangle$ the statistical error is estimated as above, while the systematic error is calculated from

$$
\sigma_{syst}^2 = \frac{w^2}{2N},
$$

where the η cell width w_c is 0.087.

A.2 Counting type observables

Given two bins of events N^+ and N^-, we define the asymmetry as

$$
A = \frac{N^+ - N^-}{N^+ + N^-}.
$$

We assume purely statistical errors given by

$$
\sigma^+ = \sqrt{N^+}, \quad \sigma^- = \sqrt{N^-},
$$

which leads to an asymmetry error of

$$
\sigma_A^2 = \frac{4N^+N^-}{(N^+ + N^-)^2}.
$$

Given the same two bins, we define the event ratio as

$$
R = \frac{N^+}{N^-}.
$$

The statistical error is then given by

$$
\sigma_R^2 = \frac{N^+N^- + (N^+)^2}{(N^-)^3}.
$$

A.3 Cross Section

The cross section after cuts σ_{eff} is given by

$$
\sigma_{eff} = \frac{N_{obs}}{L_{int}},
$$

where L_{int} is the integrated luminosity and N_{obs} the observed number of events. The statistical error is given by

$$
\sigma_{stat} = \frac{\sigma_{eff}}{\sqrt{N_{obs}}},
$$

and the systematic error is estimated as 30 percent,

$$
\sigma_{syst} = 0.3 \sigma_{eff}.
$$
Figure 4: Histogram of the N_{repeat} values of the correlation between $\langle H_T \rangle$ and $\langle E_T \rangle$ obtained by applying the bootstrapping procedure on 2 fb^{-1} of SUSY plus background events, with $N_{\text{sub}} = 20$ and $N_{\text{repeat}} = 10,000$. The mean value of the distribution is 0.66, as given in Table 3.

A.4 Covariance Matrix Estimate

Preserving information about the expected correlations of observables can considerably increase or decrease χ^2 values, depending on the relative signs of observed deviations from the expected mean values. It is therefore highly desirable to estimate the elements of the covariance matrix in a consistent way.

Since it is not possible to calculate the covariances of all observables O_i analytically, we have to rely on an estimate based on a sample of Monte Carlo simulations.

In an ideal world, we would simulate a full sample corresponding to the desired luminosity at each Little Higgs model point (including standard model backgrounds) N_S times and estimate the covariance matrix from

$$V_{ab} = \langle (O_a - \langle O_a \rangle) (O_b - \langle O_b \rangle) \rangle,$$

where $\langle \rangle$ denotes the mean over the N_S sets. Because of limited computing resources, this is not feasible and we have to estimate the correlations from existing subsets of events for each data point. We use a bootstrapping procedure, where we randomly select N_{sub} subsamples from 2 fb^{-1} of signal plus background events. We calculate the correlation matrix from those subsamples, repeat the procedure N_R times and then calculate the mean values of the correlation matrix elements,

$$C_{ab} = \frac{1}{N_R} \sum_{i=1}^{N_R} \frac{V_{ab}^{(i)}}{\sigma_a^{(i)} \sigma_b^{(i)}},$$

where $V^{(i)}$ and $\sigma^{(i)}$ are the covariance and standard deviations obtained from the N_{sub} subsamples in iteration i. Those average matrix elements are then assumed to be the correct correlations of the observables in the full sample. A histogram of results obtained by this procedure is shown in Fig. 4.

Finally, we assume that the correlation is independent of the sample size, and extrapolate
Figure 5: Exclusion level of the LHT hypothesis, based on the combined fit to the ten observables discussed in the text at 2 fb\(^{-1}\). Left: As in Fig. 2 including correlations between observables as determined by the bootstrapping procedure. Right: Assuming that all observables in the Little Higgs model are uncorrelated.

to find the covariances for the full set of events

\[V_{ab} = C_{ab} \sigma_a \sigma_b, \]

where the standard deviations for the two observables \(\sigma_a \) and \(\sigma_b \) are now calculated from the full sample and include both statistical and systematic errors.

We verified that this procedure produces the correct \(\chi^2 \) probability distribution function for the model distance between subsample and full sample observables.

Since the selection of subsample events that have passed our cuts is randomized, no information about the correlation of the cross section with the other observables can be obtained by this method, and we assume that the cross section is uncorrelated.

Fig. 5 illustrates the importance of including correlation information. Assuming uncorrelated observables, a small fraction of points in the LHT parameter space are found to be excluded at a higher confidence level. However, the exclusion level of the best fit point is lowered significantly, and so the LHT model can no longer be rejected at the 3-sigma level.

B Angular distribution of jets

As an example, we show the relative angular distribution of the two hardest jets in the SUSY “data” sample and for the Little Higgs model with \((m_Q = 500 \text{ GeV}, m_B = 100 \text{ GeV})\). The directional asymmetry is \(-0.079 \pm 0.019\) for the SUSY “data” and \(0.008 \pm 0.017\) for the LHT + BG sample. Using just this observable, the \(\chi^2 \) between the two models is 26.19, so that it would be excluded at the 5-sigma level.
Figure 6: Distribution of the cosine of the angle θ_{12} between the two hardest jets in the SUSY sample ("data" points), as well as the prediction from the LHT model (histogram) with parameters $m_Q = 500$ GeV, $m_B = 100$ GeV.

References

[1] A. J. Barr, Phys. Lett. B 596, 205 (2004) [arXiv:hep-ph/0405052].

[2] J. M. Smillie and B. R. Webber, JHEP 0510, 069 (2005) [arXiv:hep-ph/0507170].

[3] A. Datta, K. Kong and K. T. Matchev, Phys. Rev. D 72, 096006 (2005) [Erratum-ibid. D 72, 119901 (2005)] [arXiv:hep-ph/0509246].

[4] C. Athanasiou, C. G. Lester, J. M. Smillie and B. R. Webber, JHEP 0608, 055 (2006) [arXiv:hep-ph/0605286].

[5] L. T. Wang and I. Yavin, JHEP 0704, 032 (2007) [arXiv:hep-ph/0605296].

[6] C. Kilic, L. T. Wang and I. Yavin, JHEP 0705, 052 (2007) [arXiv:hep-ph/0703085].

[7] A. Alves, O. Eboli and T. Plehn, Phys. Rev. D 74, 095010 (2006) [arXiv:hep-ph/0605067].

[8] M. Burns, K. Kong, K. T. Matchev and M. Park, JHEP 0810, 081 (2008) [arXiv:0808.2472 [hep-ph]].

[9] L. T. Wang and I. Yavin, “A Review of Spin Determination at the LHC,” [arXiv:0802.2726 [hep-ph]].
[10] A. J. Barr, JHEP 0602, 042 (2006) [arXiv:hep-ph/0511115].

[11] J. Hubisz, J. Lykken, M. Pierini and M. Spiropulu, Phys. Rev. D 78, 075008 (2008) [arXiv:0805.2398 [hep-ph]].

[12] C. Csaki, J. Heinonen and M. Perelstein, JHEP 0710, 107 (2007) [arXiv:0707.0014 [hep-ph]].

[13] H. C. Cheng and I. Low, JHEP 0309, 051 (2003) [arXiv:hep-ph/0308199];

[14] I. Low, JHEP 0410, 067 (2004) [arXiv:hep-ph/0409025].

[15] J. Hubisz and P. Meade, Phys. Rev. D 71, 035016 (2005) [arXiv:hep-ph/0411264].

[16] J. Hubisz, P. Meade, A. Noble and M. Perelstein, JHEP 0601, 135 (2006) [arXiv:hep-ph/0506042].

[17] S. P. Martin, “A supersymmetry primer;” [arXiv:hep-ph/9709356].

[18] M. Perelstein, Prog. Part. Nucl. Phys. 58, 247 (2007) [arXiv:hep-ph/0512128].

[19] T. Han, H. E. Logan, B. McElrath and L. T. Wang, Phys. Rev. D 67, 095004 (2003) [arXiv:hep-ph/0301040].

[20] M. Perelstein, M. E. Peskin and A. Pierce, Phys. Rev. D 69, 075002 (2004) [arXiv:hep-ph/0310039].

[21] MadGraph/MadEvent v4 can be downloaded from http://madgraph.phys.ucl.ac.be/. For a discussion of the Madgraph project, see F. Maltoni and T. Stelzer, JHEP 0302, 027 (2003) [arXiv:hep-ph/0208156]; J. Alwall, P. Artoisnet, S. de Visscher, C. Duhr, R. Frederix, M. Herquet and O. Mattelaer, “New Developments in MadGraph/MadEvent,” [arXiv:0809.2410 [hep-ph]].

[22] T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001). [arXiv:hep-ph/0010017];

T. Sjostrand, S. Mrenna and P. Skands, JHEP 0605, 026 (2006) [arXiv:hep-ph/0603175].

[23] M. S. Carena, J. Hubisz, M. Perelstein and P. Verdier, Phys. Rev. D 75, 091701 (2007) [arXiv:hep-ph/0610156].

[24] P. Sphicas [CMS Collaboration], “CMS: The TriDAS project. Technical Design Report, Vol. 2: Data Acquisition and High-Level Trigger”, CERN-LHCC-2002-026.

[25] A. Heister et. al., “Measurement of Jets with the CMS Detector at the LHC”, CMS Note 2006/036.

[26] P. Meade and M. Reece, Phys. Rev. D 74, 015010 (2006) [arXiv:hep-ph/0601124].

[27] “CMS Physics Technical Design Report Volume I”, 2 Feb 2006.