ON A RESULT BY Y. GROMAN AND J. P. SOLOMON

JULIEN DUVAL

ABSTRACT. We give a short proof of a reverse isoperimetric inequality due to Y. Groman and J. P. Solomon.

1. Introduction.

Let (X, J) be a compact almost complex manifold equipped with a hermitian metric and $S \subset X$ a compact totally real submanifold of maximal dimension. Then J-holomorphic curves with boundary in S satisfy a reverse isoperimetric inequality. Namely there exists a constant $A > 0$ such that for any compact J-holomorphic curve $(C, \partial C) \subset (X, S)$ then

$$\text{long}(\partial C) \leq A \text{area}(C).$$

This statement is due to Y. Groman and J. P. Solomon [2] (with an extra term involving the genus of C on the right hand side). We refer also to [2] for motivation and applications. The proof of [2] is geometric and combinatorial in nature. We propose here an analytic approach of this inequality based on a monotonicity principle, which gives in fact a stronger semi-local statement.

Theorem. There exists $A > 0$ such that for any compact J-holomorphic curve $(C, \partial C) \subset (X, S)$ then $\text{long}(\partial C) \leq \frac{A}{r} \text{area}(C \cap U_r)$ where U_r is the r-neighborhood of S, for $r > 0$ small enough.

Our approach is reminiscent of Lelong method [3] for proving the following inequality. Let C be a holomorphic curve in \mathbb{C}^n, m its multiplicity at 0 and B_r the ball of radius r centered at 0, then

$$m \leq \frac{\text{area}(C \cap B_r)}{\pi r^2}.$$
It is based on the plurisubharmonicity of $\log |z|^2$. It implies that the function $a(r) = \frac{4}{r^2} \text{area}(C \cap B_r) = \frac{1}{r} \int_{C \cap B_r} dd^c |z|^2$ is increasing. Indeed, by Stokes theorem, $a(r) = \int_{C \cap \partial B_r} d^c \log |z|^2$, so $a(r) - a(s) = \int_{C \cap (B_r \setminus B_s)} dd^c \log |z|^2 \geq 0$ where $r > s > 0$. As $\lim_{s \to 0} a = 4\pi m$ the inequality follows.

In our situation the local model is $\mathbf{R}^n \subset \mathbb{C}^n$ where $\mathbf{R}^n = (y = 0)$ with the usual coordinates $z = x + iy$ in \mathbb{C}^n. Now $|y|^2$ is strictly plurisubharmonic, so $dd^c |y|^2$ restricts to an area form on holomorphic curves. It turns out that $|y|$ is still plurisubharmonic and will play the role of $\log |z|^2$ above. This can be globalized. Near S there exists a function ρ looking like the square of the distance to S; strictly J-plurisubharmonic and such that $\sqrt{\rho}$ is still J-plurisubharmonic. Let us enter the details.

2. Proof of the theorem.

All objects are supposed smooth except otherwise mentioned. Recall that S is a compact totally real submanifold in X of maximal dimension (say n). This means that $TS \oplus JT S = TX|_S$. The point is the following

Lemma. Near S there exists a strictly J-plurisubharmonic function $\rho \geq 0$ of class C^2, vanishing exactly on S, such that $\sqrt{\rho}$ is J-plurisubharmonic outside S.

This means that $dd^J \rho > 0$ and $dd^J \sqrt{\rho} \geq 0$ where $d^J g$ stands for $-dg \circ J$. Recall that a 2-form θ is non negative (resp. strictly positive) if $\theta(v, Jv) \geq 0$ (resp. > 0) for any tangent vector $v \neq 0$. Assuming this lemma for a while let us prove the theorem.

We may take $dd^J \rho$ as the area form of our hermitian metric near S. As ρ is comparable to the square of the distance to S we may also take $U_r = (\rho \leq r^2)$. This will only change the constant A in the end.

Take C a compact J-holomorphic curve of X with boundary in S. Precisely it is the image of a map $f : (\Sigma, i) \to (X, J)$ where Σ is a compact Riemann surface with boundary, such that $df \circ i = J \circ df$ and $f(\partial \Sigma) \subset S$. All the integrals below should be meant parametrized by f, though we write them on C for simplicity.

As above $a(r) = \frac{1}{r} \text{area}(C \cap U_r) = \frac{1}{r} \int_{C \cap U_r} d^J \rho$ is increasing. Indeed, by Stokes theorem, $a(r) = 2 \int_{C \cap \partial U_r} d^J \sqrt{\rho}$, so $a(r) - a(s) = 2 \int_{C \cap (U_r \setminus U_s)} d^J \sqrt{\rho} \geq 0$ where $r > s > 0$. Hence $\lim_{s \to 0} a \leq a(r)$.

On the other hand, as ρ has a minimum along S, there exists $A > 0$ such that $|\nabla \rho| \leq As$ in U_s. So $A a(s) \geq \frac{1}{s^2} \int_{C \cap U_s} |\nabla (\rho|_C)| d^J \rho = \frac{1}{s^2} \int_0^{s^2} \text{long}(C \cap (\rho = t)) \, dt$ by the coarea formula (see for instance [1]). Hence $A \lim_{s \to 0} a \geq \text{long}(\partial C)$.

We conclude that $\text{long}(\partial C) \leq A \, a(r).$
Proof of the lemma. Take any function $\rho \geq 0$ near S, vanishing on S and non degenerate transversally to S. It is known that ρ is strictly J-plurisubharmonic (see below). Now $\sqrt{\rho}$ is not necessarily J-plurisubharmonic outside S but we will find $B > 0$ such that $\sqrt{\rho} + B\rho$ is. This will do for our lemma replacing ρ by $(\sqrt{\rho} + B\rho)^2$.

So we need only check that $dd^c \sqrt{\rho} \geq O(1)$. We verify it locally.

Parametrize a piece of S by a piece of \mathbb{R}^n via ϕ. Extend ϕ to a local diffeomorphism from \mathbb{C}^n to X such that $d\phi \circ i = J \circ d\phi$ on \mathbb{R}^n. This amounts to prescribing the normal derivative of ϕ along \mathbb{R}^n. Transport the situation via ϕ in \mathbb{C}^n. Locally we get a function $\rho \geq 0$, vanishing on \mathbb{R}^n and non degenerate transversally, and an almost structure J coinciding with i on \mathbb{R}^n. Take the usual coordinates $z = x + iy$ in \mathbb{C}^n such that $\mathbb{R}^n = (y = 0)$.

As $J - i = O(|y|)$ and $\rho = O(|y|^2)$ we infer that $dd^c \sqrt{\rho} = dd^c \sqrt{\rho} + O(1)$. Note that $d^c g$ is nothing but the more familiar $d^c g$. So it is enough to check that $dd^c \sqrt{\rho} \geq O(1)$ where the positivity is meant with respect to i. Now by assumption $\rho = q + O(|y|^3)$ where $q = \sum a_{kl}(x) y_k y_l$ with (a_{kl}) symmetric positive definite. We may then replace ρ by q in our inequality. Actually we don’t even have to differentiate the coefficients a_{kl} of q as we work modulo $O(1)$.

So everything boils down to proving that $dd^c \sqrt{q} \geq 0$ where q is now a constant positive definite quadratic form in y. By a linear change of coordinates this reduces further to the model case $q = |y|^2$. Computing we get $4|y|^3 dd^c |y| = 2|y|^2 dd^c |y|^2 - d|y|^2 \wedge d^c |y|^2 = 2 \sum_{kl} (y_k dy_l - y_l dy_k) \wedge (y_k d^c y_l - y_l d^c y_k) \geq 0$.

In the same way the strict J-plurisubharmonicity of ρ near S reduces to the strict plurisubharmonicity of $|y|^2$ which is clear.

References

1. I. Chavel, Riemannian geometry. A modern introduction, Cambridge Univ. Press, Cambridge, 2006.
2. Y. Groman and J. P. Solomon, A reverse isoperimetric inequality for J-holomorphic curves, Geom. Funct. Anal. 24 (2014), 1448-1515.
3. P. Lelong, Propriétés métriques des variétés analytiques définies par une équation, Ann. Sci. Ecole Norm. Sup. 67 (1950), 393-419.