High-temperature and high-power piezoelectric characteristics of (Bi0.5Na0.5)TiO3-Based lead-free piezoelectric ceramics

Shinya SOMENO, Hagime NAGATA and Tadashi TAKENAKA
Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

The high-power piezoelectric characteristics of (Bi0.5Na0.5)TiO3 (BNT)-based solid solutions at a high temperature (~130°C) were studied, by comparing them with those of hard Pb(Zr,Ti)O3 (PZT) ceramics. The vibration velocity v_{0-p} of the BNT-based ceramics was stable as the temperature increased to 130°C, whereas that of the PZT-based ceramics markedly decreased with increasing temperature. It is generally known that the stability of v_{0-p} under high-amplitude vibration is related to mechanical losses caused by domain wall motion. Therefore, the temperature dependence of the mechanical quality factor Q_m of these ceramics was measured by electric transient response measurement. The measured Q_m values of the BNT-based ceramics were nearly constant or slightly decreased with increasing temperature, whereas Q_m for the PZT ceramic markedly decreased with increasing temperature.

©2014 The Ceramic Society of Japan. All rights reserved.

Key-words: Lead-free piezoelectric ceramics, Perovskite, Piezoelectric property, High-power, High-temperature

1. Introduction

Recently, many high-power piezoelectric ceramic devices, such as ultrasonic motors and piezoelectric actuators, have been developed.1-3 Hard Pb(Zr,Ti)O3 (PZT) ceramics or Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 (PMN-PZT) ceramics with a high mechanical quality factor (Q_m) are commonly used in high-power piezoelectric applications. However, PZT ceramics have certain problems in high-power applications, namely the vibration velocity is unstable, the mechanical quality factor Q_m decreases with increasing v_{0-p} and temperature, and the resonance frequency f_r decreases with increasing v_{0-P}. Because of these problems, hard PZT is usually used below $v_{0-P} = 1$ m/s. Moreover PZT contains a large amount of PbO; therefore, lead-free piezoelectric materials to replace PZT are required from the viewpoint of environmental protection.

As materials for lead-free high-power applications, SrBi2-Nb2O9 and (Sr,Ca)2NaNb5O15 ceramics and LiNbO3 single crystals have been reported.4-5 Furthermore, there have been some studies on the high-power piezoelectric characteristics of lead-free piezoelectric ceramics with a perovskite structure.6-13 Candidate materials for perovskite-type lead-free piezoelectric ceramics are BaTiO3 (BTO), (Bi1/2Na1/2)TiO3 (BNT) and KNbO3 (KN) among others.6-13 Important piezoelectric constants for obtaining a high vibration velocity are the piezoelectric strain constant d and mechanical quality factor Q_m. BNT-based solid solutions have attracted attention as lead-free piezoelectric ceramics with relatively high d and Q_m for high-power piezoelectric applications.4,14 Recently, we have clarified6-14 that Q_m for rhombohedral compositions is higher than those of tetragonal and MPB compositions for BNT-based ternary systems, such as (Bi1/2Na1/2)TiO3-(Bi1/2Li1/2)TiO3-(Bi2/3K1/3)TiO3 (BNLKT)6,14 and (Bi1/2Na1/2)TiO3-(Bi1/2Li1/2)TiO3-BaTiO3 (BNLBT).15 Moreover, the high-power piezoelectric properties of BNT-based ceramics with the above-mentioned compositions have been examined and relatively good properties were observed.10,13 However it is known that the temperature usually increases owing to heat generation under continuous driving. Additionally, the high-power piezoelectric characteristics of BNT-based ceramics at a high temperature have not sufficiently clarified been cleared enough.16 In this study, therefore, the high-power piezoelectric characteristics at a high temperature (~130°C) were studied to clarify the temperature stability of high-power piezoelectric properties of BNT-based ceramics such as BNLK and BNLBT ceramics. Moreover, we compared the temperature dependences of high-power piezoelectric properties with those of hard PZT ceramic [NEC Tokin: PZT-N82].

2. Experimental procedure

In this experiment, we selected the following compositions as BNT-based ceramics such as BNLKT and BNLBT ceramics.

- Non-doped (Bi1/2Na1/2)TiO3 (BNT)
- (1-x-y-z)(Bi1/2Na1/2)TiO3-x(Bi1/2Li1/2)TiO3-y(Bi1/2K1/2)TiO3-z(Bi1/2Na1/2)MnO3 (BNLKT 100x-100y-100z, x = 0.04, y = 0.08, z = 0.02; BNLKT4-8-2)12)
- (1-x-y-z)(Bi1/2Na1/2)TiO3-x(Bi1/2Li1/2)TiO3-yBaTiO3-z(Bi1/2Na1/2)MnO3 (BNLBT 100x-100y-100z, x = 0.04, y = 0.04, z = 0.25; BNLBT4-4-2.5)13)

These ceramics were prepared by a conventional solid-state reaction. The starting raw materials were Bi2O3 and Li2O of 99.99% purity, Na2CO3 of 99.95% purity, and TiO2, K2CO3, BaCO3, and MnCO3 of 99.9% purity. They were mixed by ball-milling for 10 h and calcined at 200°C for 2 h, 600°C for 2 h, and 850°C for 2 h. After calcining, the resulting ground and ball-milled powders were pressed into disks 20 mm in diameter. These disks were processed by cold isostatic pressing (CIP) at 150 MPa to obtain dense ceramics. After the processing, these disks were sintered at 1140°C for 2 h in air. The crystal structures and lattice

Footnotes:

1) Corresponding author: H. Nagata; E-mail: h-nagata@rs.noda.tus.ac.jp
2) Preface for this article: DOI http://dx.doi.org/10.2109/jcersj2.122.P6-1

©2014 The Ceramic Society of Japan
constants of the sintered ceramics were determined using an X-ray diffractometer (Rigaku; RINT2000). The sintered ceramics were cut and polished into rectangular specimens of $1 \times 3 \times 12$ mm3 in the (31) mode. Electrodes were prepared using fired-on Ag paste for electrical measurements such as their dielectric, ferroelectric, and piezoelectric properties. Samples were then poled in a silicone oil bath at RT. A DC electric field of 5–8 kV/mm was applied to the samples for 5 min during poling. Piezoelectric properties at low amplitude were measured by the resonance-antiresonance method on the basis of IEEE standards using an impedance analyzer (HP 4294A). The temperature dependences of the electromechanical coupling factor k_{31} and mechanical quality factor Q_m were measured using the same impedance analyzer with the same set up from RT to about 200°C. The vibration velocity v_{0-p} was measured using a laser Doppler vibrometer (Ono Sokki LV1710) equipped with an oscilloscope (Tektronix TDS3054B). The value of v_{0-p} for short-time driving was determined by frequency sweep measurement at approximately the resonant frequency. The value of Q_m under high-amplitude vibration was determined by electric transient response measurement. In addition, a PZT ceramic (NEC-Tokin N82) was also studied for comparison. The temperature dependences of v_{0-p} and Q_m under high-amplitude vibration were measured using the same impedance analyzer for high-power measurement attached to a thermostatic oven for heat treatment. The sample temperature was directly monitored using thermocouples.

3. Results and discussion

Figure 1 shows X-ray diffraction patterns of the BNT-based ceramics, which revealed a single-phase perovskite structure. The relative density ratios of the sintered ceramics were all higher than 95%, as measured by the Archimedes method. Table 1 shows the electrical and piezoelectric properties of the BNT, BNLBT4-4-2.5, BNLKT4-8-2, and PZT ceramics under low-amplitude vibration. The piezoelectric strain constants (d_{31}) of both BNT-based solid solutions were approximately 20 pC/N. The mechanical quality factors Q_m of BNLBT4-4-2.5 and BNLKT4-8-2 were 496 and 784, respectively. These values are consistent with those reported previously. In contrast, the PZT ceramic exhibited a large d_{31} of approximately 100 pC/N and a high Q_m of 1300 at RT, which are much larger than those of the BNT-based ceramics.

Table 1. Electrical and piezoelectric properties of BNT, BNLBT4-4-2.5, BNLKT4-8-2, and PZT ceramics under low-amplitude vibration

	k_{31}	d_{31}(pC/N)	Q_m	$\varepsilon_{31}/\varepsilon_0$	s_{31}(pm/N)	$\tan \delta$	ρ (Ω·cm)
BNT	0.10	15.1	366	345	7.2	0.02	1.98 $\times 10^{11}$
BNLBT4-4-2.5	0.13	21.4	496	351	8.4	0.19	1.76 $\times 10^{11}$
BNLKT4-8-2	0.13	21.6	784	380	7.7	0.12	2.45 $\times 10^{11}$
PZT	0.30	97.9	1340	802	1.5	0.09	4.05 $\times 10^{13}$

Figure 2 shows the temperature dependence of the electromechanical coupling factor k_{31} of the BNT, BNLBT4-4-2.5, BNLKT4-8-2, and PZT ceramics under the small-amplitude vibration. The k_{31} values of the BNT, BNLBT4-4-2.5, BNLKT4-8-2, and PZT ceramics markedly dropped at approximately 170, 130, and 280°C, respectively, indicating that these ceramics were depolarized at these temperatures. Considering this finding, the maximum temperature for piezoelectric measurement was determined to be 130°C in this study for the comparison of high-power characteristics of these compositions. Figure 3 shows the temperature dependence of Q_m of the BNT, BNLBT4-4-2.5, BNLKT4-8-2, and PZT ceramics under the small-amplitude vibration in the temperature range from RT to 130°C. Q_m for the PZT ceramic continuously decreased with increasing temperature.
Table 1. On the other hand, the PZT ceramic under the low-amplitude vibration as shown in the BNLKT and BNLBT ceramics were smaller than that of applied fields up to 2.0 m/s. This corresponds to the stability of domain walls under the high-amplitude vibration, which was considered that the domain walls in the PZT ceramic dynamically vibrated even during the low-amplitude measurement. On the other hand, the BNT-based ceramics basically have a smaller d_{31} and Q_m values and a larger coercive field E_c than the PZT ceramic. This is why the BNT-based ceramics showed more stable Q_m values the increasing temperature than the PZT ceramic. Among the BNT-based ceramics, the BNLKT ceramic showed the strongest temperature dependence of Q_m. Presently, it is difficult for us to determine the exact reason for this dependence. However, it is reasonable to assume the lowest depolarization temperature T_0 of the BNLKT ceramic to be 130°C.

Figure 4 shows the vibration velocity v_{0-p} as a function of the applied field E_a for the BNT, BNLBT4-4-2.5, BNLKT4-8-2, and PZT ceramics. The v_{0-p} values were obtained by frequency sweep measurement at approximately the resonant frequency. In the case of the BNT-based ceramics, the E_a dependence of v_{0-p} in BNLKT and BNLBT ceramics was larger than that in the BNT ceramic. The v_{0-p} values of both BNLKT and BNLBT were larger than 3 m/s under the short driving. On the other hand, v_{0-p} for the hard PZT ceramic increased to 2.5 m/s. Moreover, the hard PZT ceramic has larger v_{0-p} values at small E_a than the BNT-based ceramics. This is because the hard PZT ceramic has larger d_{31} and higher Q_m values. In terms of the linearity of v_{0-p} vs E_a, the hard PZT ceramic exhibited nonlinearity at approximately 1.0 m/s under the short time driving. In contrast, the BNLKT and BNLBT ceramics exhibited better linearity than the PZT and BNT ceramics up to 2.0 m/s. This linearity is considered to be associated with the stability of domain walls under the high-amplitude vibration, which corresponds to the stability of Q_m. Figure 5 shows Q_m as a function of the vibration velocity v_{0-p} for the BNT, BNLBT4-4-2.5, BNLKT4-8-2, and PZT ceramics. The PZT ceramic showed a significant drop in Q_m with increasing v_{0-p}. The Q_m values of the BNLKT and BNLBT ceramics were smaller than that of the PZT ceramic under the low-amplitude vibration as shown in Table 1. On the other hand, the Q_m values of the BNLKT and BNLBT ceramics in the region of v_{0-p} > 1.0 m/s were similar to or higher than that of the PZT ceramic. Therefore, BNT-based ceramics possess superior mechanical stability. This is a very good sign for high-power applicability.

Figure 6 shows the temperature dependence of the vibration velocity v_{0-p} under frequency sweeping for the BNT, BNLBT4-4-2.5, BNLKT4-8-2, and PZT ceramics. First, it is considered that the temperature dependence of v_{0-p} should differ among the samples with different v_{0-p} values owing to the variation of vibration stress. We considered it necessary to normalize v_{0-p} by its value at RT. We found that v_{0-p} was about 1.4 m/s at RT in this study. To obtain at value of 1.4 m/s at RT, the electric fields required for driving are different for BNT-based and PZT ceramics, as shown in Fig. 4. The applied fields for these ceramics are shown in the inset of Fig. 6. Again, Fig. 6 shows the temperature dependences of the vibration velocity v_{0-p} under frequency sweeping at a constant electric field for the BNT, BNLBT4-4-2.5, BNLKT4-8-2, and PZT ceramics. v_{0-p} of the PZT ceramic markedly decreased with increasing temperature. On the other hand, the v_{0-p} values of the BNT-based ceramics were nearly constant with increasing temperature. To understand the reason for the difference in the trend of v_{0-p} in relation to temperature, the temperature dependence of Q_m was examined. Figure 7 shows the temperature dependences of the Q_m at a constant electric field for the BNT, BNLBT4-4-2.5, BNLKT4-8-2, and PZT ceramics. Q_m for the PZT ceramic markedly decreased with increasing temperature. This trend is similar to that of the temperature dependence of Q_m under the low-amplitude vibration, as shown in Fig. 5. Q_m for the BNT-
based ceramic slightly decreased with increasing temperature. Comparing the Q_m reduction of BNLKT between low- and high-amplitude vibrations shown in Figs. 3 and 7, Q_m under the small amplitude is almost constant whereas that under the large amplitude slightly decreases with increasing temperature. It is generally considered that the mechanical loss is mainly due to the domain wall motion under high-amplitude vibration. Therefore, it is supposed that domain wall motion is activated with increasing temperature under high-amplitude vibration even in the BNLKT ceramic. Taken together, v_{0-p} for the PZT ceramic decreased owing to the decrease in Q_m as a function of temperature.

4. Summary

High-power piezoelectric characteristics at a high temperature ($\sim 130^\circ$C) were compared between BNT-based ceramics and PZT ceramic. The mechanical quality factor Q_m and vibration velocity v_{0-p} of the PZT ceramic markedly decreased with increasing temperature. On the other hand, Q_m and v_{0-p} for the BNT-based ceramics were nearly constant or slightly decreased with increasing temperature. The decrease in piezoelectric characteristics with increasing temperature was due to the mechanical and elastic losses resulting from the vibration of the domain walls at a high power. From these results, the high-power piezoelectric characteristics of BNT-based ceramics at a high temperature were more stable than those of the PZT ceramic. Therefore, BNT-based ceramics promising candidate materials for lead-free high-power piezoelectric devices.

References

1) S. Takahashi and S. Hirose, Jpn. J. Appl. Phys., 31, 3055–3057 (1992).
2) S. Kawada, H. Ogawa, M. Kimura, K. Shiratsuyu and H. Niimi, Jpn. J. Appl. Phys., 45, 7455–7459 (2006).
3) S. Kawada, H. Ogawa, M. Kimura, K. Shiratsuyu and Y. Higuchi, Jpn. J. Appl. Phys., 46, 7079–7083 (2007).
4) Y. Doshida, S. Kishimoto, K. Ishii, H. Kishi, H. Tamura, Y. Tomikawa and S. Hirose, Jpn. J. Appl. Phys., 46, 4921–4925 (2007).
5) S. Hirose, K. Nakamura, Y. Adachi and H. Shimizu, Nihon Onkyo Gakkai Koen Ronbunsyu, 845 (1991)[in Japanese].
6) E. Li, H. Kakemoto, T. Hoshina and T. Tsurumi, Jpn. J. Appl. Phys., 47, 7702–7706 (2008).
7) A. Safari and M. Abazari, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 2165–2176 (2010).
8) D. Tanaka, J. Yamazaki, M. Furukawa and T. Tsukada, Jpn. J. Appl. Phys., 49, 09MD03 (2010).
9) S. Zhang, H. J. Lee and T. R. Shrou, Patent Application US2010/ 0133461, A1 (2009).
10) H. J. Lee, S. O. Ural, L. Chen, K. Uchino and S. J. Zhang, J. Am. Ceram. Soc., 95, 3383–3386 (2012).
11) T. Tou, Y. Hamaguti, Y. Maeda, H. Yamamori, K. Takahashi and Y. Terasima, Jpn. J. Appl. Phys., 48, 07GM03 (2009).
12) Y. Hiruma, T. Watanabe, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 47, 7659–7663 (2008).
13) T. Watanabe, Y. Hiruma, H. Nagata and T. Takenaka, Ferroelectrics, 385, 135–140 (2009).
14) Y. Hiruma, H. Nagata and T. Takenaka, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 2493–2499 (2007).
15) T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys., 30, 2236–2239 (1991).
16) Y. Doshida, H. Shimizu, Y. Mizuno and H. Tamura, Jpn. J. Appl. Phys., 52, 07HE01 (2013).
17) M. Umeda, K. Nakamura and S. Ueha, Jpn. J. Appl. Phys., 37, 5322–5325 (1998).
18) M. Umeda, K. Nakamura, S. Takahashi and S. Ueha, Jpn. J. Appl. Phys., 40, 5735–5739 (2001).
19) Y. Sasaki, M. Umeda, S. Takahashi, M. Yamamoto, A. Ochi and T. Inoue, Jpn. J. Appl. Phys., 40, 5743–5746 (2001).