Time-series of tritium, stable isotopes and chloride reveal short-term variations in groundwater contribution to a stream

C. Duvert¹, M. K. Stewart², D. I. Cendón³, and M. Raiber⁴

¹Queensland University of Technology, Brisbane, QLD 4001, Australia
²Aquifer Dynamics Ltd & GNS Science, PO Box 30368, Lower Hutt, 5040, New Zealand
³Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232, Australia
⁴CSIRO Land & Water, Dutton Park, Brisbane, QLD 4102, Australia

Received: 23 July 2015 – Accepted: 3 August 2015 – Published: 18 August 2015

Correspondence to: C. Duvert (clement.duvert@gmail.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

A major limitation to the accurate assessment of streamwater transit time (TT) stems from the use of stable isotopes or chloride as hydrological tracers, because these tracers are blind to older contributions. Also, while catchment processes are highly non-stationary, the importance of temporal dynamics in older water TT has often been overlooked. In this study we used lumped convolution models to examine time-series of tritium, stable isotopes and chloride in rainfall, streamwater and groundwater of a catchment located in subtropical Australia. Our objectives were to assess the different contributions to streamflow and their variations over time, and to understand the relationships between streamwater TT and groundwater residence time. Stable isotopes and chloride provided consistent estimates of TT in the upstream part of the catchment. A young component to streamflow was identified that was partitioned into quickflow (mean TT ≈ 2 weeks) and discharge from the fractured igneous rocks forming the headwaters (mean TT ≈ 0.3 years). The use of tritium was beneficial for determining an older contribution to streamflow in the downstream area. The best fits were obtained for a mean TT of 16–25 years for this older groundwater component. This was significantly lower than the residence time calculated for the alluvial aquifer feeding the stream downstream (≈ 76–102 years), outlining the fact that water exiting the catchment and water stored in it had distinctive age distributions. When simulations were run separately on each tritium streamwater sample, the TT of old water fraction varied substantially over time, with values averaging 17 ± 6 years at low flow and 38 ± 15 years after major recharge events. This was interpreted as the flushing out of deeper, older waters shortly after recharge by the resulting pressure wave propagation. Overall, this study shows the usefulness of collecting tritium data in streamwater to document short-term variations in the older component of the TT distribution. Our results also shed light on the complex relationships between stored water and water in transit, which are highly nonlinear and remain poorly understood.
Streamwater transit time (TT) can be defined as the time water spends travelling through a catchment, from infiltrating precipitation until its exit through the stream network (McDonnell et al., 2010). Because this parameter integrates information on storage, flow pathways and source of water in a single value, it has been increasingly used as a generic indicator of catchment dynamics (McGuire and McDonnell, 2006). Accurate quantification of TT is of prime importance for water resource management issues, in particular for the assessment of catchment sensitivity to anthropogenic inputs (e.g. van der Velde et al., 2010; Benettin et al., 2013) and for the provision of additional constraints on catchment-scale hydrological models (e.g. Gusyev et al., 2013). TT is estimated by relating the concentration of a tracer measured in a sample taken at the outlet of a catchment to the history of the tracer input in recharge water. Interpretation of TT data is often problematic because a single sample typically contains water parcels with different recharge histories, different flowpaths to the stream and thus different ages. This is exacerbated when the catchment is underlain by heterogeneous aquifers, as dispersion and mixing of different water sources can lead to very broad spectra of ages (Weissmann et al., 2002). Rather than a single scalar value, samples are therefore characterised by a transit time distribution (TTD, i.e. probability density function of the TTs contained in the sample). The residence time distribution (RTD) is another useful indicator that refers to the distribution of ages of water resident within the system, rather than exiting it. RTDs are generally used to characterise subsurface water or deeper groundwater that is stored in the catchment.

Simple models called lumped-parameter models have been developed since the 1960s to interpret age tracer data for the assessment of TTDs and RTDs (Vogel, 1967; Eriksson, 1971; Maloszewski and Zuber, 1982). These models require minimal input information, and are based on the assumptions that the shape of the TTD/RTD function is a priori known and that the system is at steady state. The relationship between input and output concentrations is determined analytically using a convolution integral, i.e. the amount of overlap of the TTD/RTD function as it is shifted over the input concentration function. Some of the lumped models consider only the mechanical advection of water as driver of tracer transport (e.g. exponential model), while others also account for the effects of dispersion–diffusion processes (e.g. dispersion model). Non-parametric forms of RTD functions have recently been developed (Engdahl et al., 2013; Massoudieh et al., 2014b; McCallum et al., 2014), but they generally require a higher amount of input data.

In the last two decades, a great deal of effort has been directed to the determination of streamwater TTs in a variety of catchments worldwide (e.g. Maloszewski et al., 1992; Burns et al., 1998; Soulsby et al., 2000; Rodgers et al., 2005; Dunn et al., 2010). Attempts have been made to correlate the TTs to catchment characteristics such as topography (McGuire et al., 2005; Mueller et al., 2013; Seeger and Weiler, 2014), geology (Katsuyama et al., 2010) or soil type (Tetzlaff et al., 2009, 2011; Timbe et al., 2014). Assessment of the relationship between groundwater residence time (RT) and streamwater TT has also been undertaken occasionally (Stewart and McDonnell, 1991; Matsutani et al., 1993; Reddy et al., 2006; Muñoz-Villers and McDonnell, 2012). Because catchment storage is highly non-stationary, streamwater TTs are known to vary over time, yet the importance of temporal dynamics in TTDs has been overlooked until recently. One of the reasons is that this non-stationarity is not accounted for in the lumped models. In the last five years, an ever-growing number of studies has transferred its focus to assessing dynamic TTDs (Hrachowitz et al., 2010, 2013; Roa-García and Weiler, 2010; Rinaldo et al., 2011; Cvetkovic et al., 2012; Heidbüchel et al., 2012, 2013; McMillan et al., 2012; Tetzlaff et al., 2014; Birkel et al., 2015; van der Velde et al., 2015; Benettin et al., 2015; Harman, 2015; Klaus et al., 2015a; Kirchner, 2015). Most of these studies agreed on the importance of considering storage dynamics, because the RTD of storage water and the TTD of water transiting at the outlet of the catchment are likely to be very different. Concurrently to these recent advances in catchment hydrology, groundwater scientists have also developed new theoretical bases for the incorporation of transient conditions in RTD functions (Massoudieh, 2013; Leray et al., 2013; McMillan et al., 2012; Tetzla ff et al., 2010; Rinaldo et al., 2011; Cvetkovic et al., 2012; Heidbüchel et al., 2012, 2013; McMillan et al., 2012; Tetzlaff et al., 2014; Birkel et al., 2015; van der Velde et al., 2015; Benettin et al., 2015; Harman, 2015; Klaus et al., 2015a; Kirchner, 2015).
2014). However, the determination of time-variant TTDs and RTDs still requires data-intensive computing, which largely limits its use for the time being (Seeger and Weiler, 2014).

Commonly used in TT studies are the stable isotopes of hydrogen and oxygen (δ^2H and δ^{18}O). Because they are constituents of the water molecule itself, δ^2H and δ^{18}O follow almost the same response function as the traced material, hence are generally referred to as "ideal" tracers. Another tracer that behaves relatively conservatively and has been largely used in the literature is chloride. Stewart et al. (2010, 2012) criticised the use of these tracers to assess streamwater TTs, arguing that TTDs are likely to be truncated when only δ^2H and/or δ^{18}O are used. In an earlier study, Stewart et al. (2007) reported differences of up to an order of magnitude between the streamwater TTs determined using stable isotopes as compared to those determined using tritium (3H). Later works by Seeger and Weiler (2014) and Kirchner (2015) reinforced the point that "stable isotopes are effectively blind to the long tails of TTDs" (Kirchner, 2015). The effect of older groundwater contribution to streamflow has largely been ignored until recently (Smerdon et al., 2012; Frisbee et al., 2013), and according to Stewart et al. (2012), new research efforts need to be focused on relating deeper groundwater flow processes to catchment response. Accounting for potential delayed contributions from deeper groundwater systems therefore requires addition of a tracer, such as 3H, that is capable of determining longer TTs to the analysis of streamwater.

Tritium is a radioactive isotope of hydrogen with a half-life of 12.32 years. Like δ^2H and δ^{18}O it is part of the water molecule and can therefore be considered an "ideal" tracer. Fractionation effects are small and can be ignored relative to measurement uncertainties and to its radioactive decay (Michel, 2005). In the Southern Hemisphere, the bomb pulse 3H peak that occurred in the 1960s was several orders of magnitude lower than in the Northern Hemisphere (Freeze and Cherry, 1979; Clark and Fritz, 1997), and the 3H concentrations of remnant bomb pulse water have now decayed well below that of modern rainfall (Morgenstern and Daughney, 2012). These characteristics allow the detection of relatively older groundwater (<100 years) and the calculation of unique TTDs from a single 3H value, provided the measurement is accurate enough (Morgenstern et al., 2010; Stewart et al., 2010). Other age tracers such as chlorofluorocarbons and sulfur hexafluoride have shown potential for estimating groundwater RT (e.g. Cook and Solomon, 1997; Lamontagne et al., 2015), however these tracers are less suitable for streamwater because of gas exchange with the atmosphere (Plummer et al., 2001).

Long-term evolution of 3H activity within catchments has been reported in a number of studies, both for the determination of RT in groundwater systems (e.g. Zuber et al., 2005; Stewart and Thomas, 2008; Einsiedl et al., 2009; Manning et al., 2012; Blavoux et al., 2013) and for the assessment of TT in surface water studies (Matsutani et al., 1993; Stewart et al., 2007; Morgenstern et al., 2010; Stolp et al., 2010; Stewart, 2012; Gusyev et al., 2013; Kralik et al., 2014). Most of these studies assumed stationarity of the observed system by deriving a unique estimate of TT or RT from 3H time-series data. Morgenstern et al. (2010) were the first to use repeated streamwater 3H data to assess the temporal variations in TTDs. Using simple lumped parameter models calibrated to each 3H sample, they established that streamwater TT was highly variable and a function of discharge rate. Following the same approach, Cartwright and Morgenstern (2015) explored the seasonal variability of 3H activities in streamwater and their spatial variations from headwater tributaries to a lowland stream. They showed that different flowpaths were likely activated under varying flow conditions, resulting in a wide range of TTs. To the extent of our knowledge, shorter term (i.e. < monthly) variations in streamwater 3H and their potential to document rapid fluctuations in the older groundwater component in streamflow have not been considered in the literature.

This study investigates the different contributions to streamflow in a subtropical headwater catchment subjected to highly seasonal rainfall, as well as their variations over time. The overarching goal is to advance our fundamental understanding of the temporal dynamics in groundwater contributions to streams, through the collection of time-series of seasonal tracers (stable isotopes and chloride) and 3H. We postulate that 3H time-series data may provide further insight into the nonlinear processes of deeper
groundwater contribution to rivers, but also in the limitations of using single 3H samples to calculate streamwater TTs. To be more specific, the questions to be addressed are:

i. Can simple lumped models provide reliable estimates of streamwater transit times in catchments characterised by intermittent recharge and high evapotranspiration rates?

ii. Can short-term variations in older (5–100 years) groundwater contributions be captured by tritium time-series data?

iii. How dissimilar are the residence time of aquifers adjacent to streams (i.e. storage water) and the transit time of streamwater (i.e. exiting water)?

2 Study area

2.1 Physical setting

The upper Teviot Brook catchment is located southwest of Brisbane (Southeast Queensland, Australia), with its headwaters in the Great Dividing Range (Fig. 1). It covers an area of 95 km2, and elevations range between 160 and 1375 m a.s.l. Climate in the region is humid subtropical with extremely variable rainfall, most of which falls from November to April. While Teviot Brook is a perennial stream, the distribution of discharge is uneven throughout the year. The headwaters support undisturbed subtropical rainforest, while the valley supports open woodland and grassland.

The first sampling location (S1) is situated in a steep, narrow valley where the stream erodes into the fractured igneous rocks forming the headwaters. At this upstream location, boulders, gravel and sand constitute the streambed substrate as well as near-channel deposits. The second sampling location (S2) lies further downstream where the valley is flatter and forms a wide alluvial plain. At this downstream location the stream is incised into the alluvial deposits, and hydraulic gradient analysis indicates that the alluvium mostly drains into the stream. Hydrochemical and isotopic data also revealed a close connection between the alluvium and surface water in the Teviot Brook catchment (Duvert et al., 2015b). Underlying the alluvial deposits is a sedimentary bedrock formation (Wallaroo Coal Measures) consisting of irregular beds of sandstone, siltstone, shale and coal, some of which contain significant volumes of groundwater. The alluvium at borehole G1 is composed of fine-grained material, i.e. mostly gravel and silty clay. The borehole is 13.9 m deep and it is screened in the alluvial stratum from 12.3 m to its bottom. The horizontal distance between G1 and S2 is 60 m.

2.2 Catchment hydrology

The monitoring period spans over two years, from mid-2012 to late 2014. Daily streamflow data was obtained from a gauging station operated by the Queensland Department of Natural Resources and Mines (Croftby station; 145011A) and located 2 km upstream of S2 (Fig. 1). Daily precipitation data was available at three rain gauges spread across the catchment and operated by the Australian Bureau of Meteorology. Average precipitation was calculated from the three records using the Thiessen method. Annual precipitation amounted to 1010 mm in 2012, 1190 mm in 2013 and 960 mm in 2014. The rainfall depths recorded in the headwaters were 100 to 250 mm higher than those in the floodplain. The maximum daily rainfall amount was 275 mm and occurred in late January 2013, with a weekly value of 470 mm for this same event (Fig. 3a). This intense episode of rainfall generated a daily peak flow of 137 m3 s$^{-1}$ upstream of S2 (Fig. 3b), which corresponds to a 22 year return period event at that station – calculated by fitting long-term data to a Galton distribution. Earlier work has shown that this major event contributed significantly to recharge of the alluvial and bedrock aquifers in the headwaters (Duvert et al., 2015a, b). Another high flow event occurred in late March 2014, with a daily peak flow of 39 m3 s$^{-1}$. Generally, examination of the hydrograph reveals that extended recession periods followed peak flows. Low flow conditions ($Q < 0.01$ m3 s$^{-1}$) occurred towards the end of the dry season, i.e. approximately from November through
to January (Fig. 3b). The stream did not dry up during the study period although very low flow ($Q < 0.001 \text{ m}^3\text{s}^{-1}$) occurred for 30 consecutive days in February–March 2014.

3 Methods

3.1 Sample collection and analysis

Bulk samples of precipitation were collected at R1 (Fig. 1) at fortnightly to monthly intervals using a Palmex RS1 rainfall collector, which allows virtually evaporation-free sampling (Gröning et al., 2012). Streamwater and groundwater samples were collected at S1 and S2 (stream sampling locations) and G1 (alluvial aquifer) following the same sampling scheme as the rainfall samples (Fig. 1). Samples at G1 were taken after measuring the water table level and purging a minimum of three casing volumes with a stainless steel submersible pump (Hurricane XL, Proactive). All samples were filtered through 0.45 µm membrane filters, and care was taken to seal the bottles and vials tightly to avoid evaporation. Stable isotopes and chemical elements were measured for all samples at R1, S1, S2, and G1. Tritium (^3H) activity was determined at S2 for most samples, and at G1 for one sample. Chloride concentrations were measured using ion chromatography (ICS-2100, Dionex), while iron and silicon were measured using inductively coupled plasma optical emission spectrometry (Optima 8300, Perkin Elmer). Total alkalinity was obtained by titrating water samples with hydrochloric acid to a pH endpoint of 4.5. Samples were also analysed for oxygen ($\delta^{18}\text{O}$) and deuterium ($\delta^2\text{H}$) stable isotopes, using a Los Gatos Research water isotope analyser. All isotopic compositions in this study are expressed relative to the VSMOW-standard. Replicate analyses indicate that analytical error was ± 1.1 ‰ for $\delta^2\text{H}$ and ± 0.3 ‰ for $\delta^{18}\text{O}$. All these analyses were conducted at the Queensland University of Technology (QUT) in Brisbane. In addition, tritium was analysed at the Australian Nuclear Science and Technology Organisation (ANSTO) in Sydney. Samples were distilled and electrolytically enriched 68-fold prior to counting with a liquid scintillation counter for several weeks. The limit of quantification was 0.05 tritium units (TU) for all samples, and uncertainty was ± 0.06 TU. A sample collected in August 2013 was excluded from the dataset since it was analysed twice and yielded inconsistent results.

3.2 Tracer-based calculation of transit and residence times

3.2.1 Using stable isotopes and chloride

Mean TTs were determined through adjustment of a TTD function to observations of fortnightly input and output concentrations. An input recharge function was initially computed from the measured input data that accounts for loss due to evapotranspiration (e.g. Bergmann et al., 1986; Stewart and Thomas, 2008):

\[C_i(t) = \frac{R(t)}{R} (C_p(t) - \overline{C_r}) + \overline{C_r} \tag{1} \]

where $C_i(t)$ is the weighted input recharge concentration at time t; $\overline{C_r}$ is the average recharge concentration (taken at G1); $C_p(t)$ is the input rainfall concentration; and $R(t)$ is the fortnightly recharge as calculated by the difference between precipitation and evapotranspiration.

The weighted input was then convoluted to the selected TTD function (g) to obtain output concentrations (Maloszewski and Zuber, 1982):

\[C_{out}(t) = [g \cdot C_i](t) = \int_0^\infty C_i(t - t_e)g(t_e)dt_e \tag{2} \]

where t_e is time of entry; $C_{out}(t)$ is the output concentration; $C_i(t)$ is the weighted input concentration; and $g(t_e)$ is an appropriate TTD function. In this study we used both the exponential and dispersion models; the reader is referred to Maloszewski and Zuber (1982) and Stewart and McDonnell (1991) for a detailed overview of TTD functions.
In some instances, two models were combined to represent more complex systems on the basis of our understanding of the catchment behaviour (Fig. 2). This was to distinguish between a shallower and a deeper flow component with shorter and longer TT, respectively. Bimodal models were obtained by linearly combining two TTDs:

$$C_{\text{out}}(t) = \phi \int_0^\infty C_r(t - t_e)g_2(t_e)dt_e + (1 - \phi) \int_0^\infty C_r(t - t_e)g_1(t_e)dt_e$$ \hspace{1cm} (3)$$

where ϕ is the fraction of the older component ($0 < \phi < 1$), and $g_2(t_e)$ and $g_1(t_e)$ are the TTD functions of the older and younger components, respectively (Fig. 2). Bimodal distributions combined either two dispersion models or one exponential and one dispersion model. The mean TTs, noted τ, were then derived from the fitted distributions by calculating their first moment:

$$\tau = \int_0^\infty t g(t)dt.$$ \hspace{1cm} (4)$$

In the following the mean TT of the younger component is referred to as τ_y (subdivided into τ_{y1} and τ_{y2}), while the mean TT of the older component is referred to as τ_o, and the mean RT of storage groundwater is referred to as τ_r (subdivided into τ_{r1} and τ_{r2}) (Fig. 2).

For chloride, the measured input and output series were highly dissimilar due to the significant effect of evaporative enrichment in soils. To get around this issue, a correction factor was applied to the predictions obtained using Eqs. (2) and (3): $C_{\text{out}}(t)$ values were multiplied by $F = \frac{P}{P_{\text{ET}}}$ (i.e. ratio between precipitation and recharge over the preceding 12 months). The reasoning behind the use of this correction factor was that all chloride ions find their way through the soil, whereas much of the rainfall is evaporated off.

To estimate the fraction of older water that contributed to streamflow, a simple two-component hydrograph separation was carried out (Klaus and McDonnell, 2013) based on fortnightly data of each of the three seasonal tracers. This allowed obtaining time-varying values of ϕ:

$$\phi(t) = \frac{\delta_{S1}(t) - \delta_{R1}(t)}{\delta_{G1} - \delta_{R1}(t)}$$ \hspace{1cm} (5)$$

where δ_{S1}, δ_{R1} and δ_{G1} are the tracer values of streamflow, rainfall and groundwater, respectively. In addition, baseflow was numerically separated using the recursive digital filter described by Nathan and McMahon (1990) as a control for the tracer-based partitioning results.

3.2.2 Using tritium

The occurrence of seasonal variations in rainfall 3H concentrations has been widely documented (e.g. Stewart and Taylor, 1981; Tadros et al., 2014). These variations can be significant and have to be considered for achieving reliable estimates of TTDs. Monthly 3H precipitation data measured by ANSTO from bulk samples collected at Brisbane Aero were used to estimate the 3H input function for the Teviot Brook catchment. Because Brisbane Aero is ca. 100 km northeast of Teviot Brook, the rainfall 3H concentrations are likely to be significantly different between these two locations due to oceanic and altitudinal effects. According to Tadros et al. (2014), 3H values for Toowoomba (i.e. located in the Great Dividing Range near Teviot Brook) were about 0.4 TU above those for Brisbane Aero for the period 2005–2011. Based on this work, an increment of +0.4 TU was applied to values measured at Brisbane Aero in order to obtain a first estimate of rainfall 3H concentrations for Teviot Brook (input series A2 in Table 1). A second estimate was obtained by comparing the historical 3H data between Toowoomba and Brisbane Aero for the period with overlap between the two stations, i.e. 1968–1982. All monthly values with precipitation > 100 mm, corresponding to rainfall likely contributing to recharge, were included in the analysis ($n = 31$). A scaling
factor of 1.24 was derived from the correlation between the two stations ($R^2 = 0.80$). This factor was used to compute input series B2 (Table 1).

To account for losses due to evapotranspiration as rainfall infiltrates into the ground, a weighting procedure similar to the one reported by Stewart et al. (2007) was developed. Monthly 3H recharge was estimated by subtracting monthly evapotranspiration from monthly precipitation, and weighting the 3H rainfall concentrations by the resulting recharge. Instead of calculating single annual values, 6 months and 1 yr sliding windows were used to obtain monthly values as follows:

$$C_i = \frac{\sum_{i-t}^C j f_i}{\sum_{i-t}^f j}$$

where C_i is the monthly tritium recharge for the ith month, C_i and r_i are the monthly tritium precipitation and monthly recharge rate for the ith month, and t is 6 or 12 depending on the span of the sliding interval used. To avoid edge effects, a Tukey filter with coefficient 0.6 was applied to the sliding windows.

Input (recharge) and output (streamwater) 3H concentrations were then related using the same convolution integral as the one used for stable isotopes (Eqs. 2 and 3), except that the term $e^{-\lambda t}$ was added to account for radioactive decay of 3H. λ is the 3H decay constant, such that $\lambda = 1.54 \times 10^{-4}$ day$^{-1}$. To account for the uncertainty in input parameters and to assess the sensitivity of TTD calculations to the input function, a total of six input time-series were computed and subsequently used in the calculations (Table 1). Least square regressions were used, and root mean square errors (RMSE) were calculated to find the best fit for each simulation using a trial and error process. All data processing and analyses were performed using Matlab version 8.4.0 (R2014b), with the Statistics toolbox version 9.1.

4 Results

This section provides only a summary of the obtained tracer data, and the reader can refer to the complete dataset in the Supplement.

4.1 Seasonal tracers in precipitation, streamwater and groundwater

Stable isotope ratios and chloride concentrations in precipitation were highly variable throughout the study period (Figs. 3c and 4). The δ^2H and $\delta^{18}O$ rainfall values ranged between -40.7 to $+11.7$‰ (average -11.5‰) and -6.5 to -0.1‰ (average -3.1‰), respectively, while chloride concentrations ranged between 0.6 to 3.2 mgL$^{-1}$ (average 1.8 mgL$^{-1}$). Generally, the most significant rainfall events had isotopically depleted signatures. As an example, there was a considerable drop in all tracers during the January 2013 event (e.g. for δ^2H: decrease from -16.1 to -40.7‰; Fig. 3c). The local meteoric water line derived from rainfall samples had an intercept of 15.8 and a slope of 8.4 (Duvert et al., 2015b), similar to that of Brisbane (Fig. 4a). The stable isotope ratios measured in streamwater at S1 (Fig. 3d) and S2 (Fig. 3e) also covered a wide range of values, and followed similar temporal patterns to those for rainfall. However, the overall variations were less pronounced in streamwater with evident dampening of input signals. Average values were lower for S1 ($\delta^2H = -25.4$ and $\delta^{18}O = -4.9$‰) than for S2 ($\delta^2H = -20.3$ and $\delta^{18}O = -3.7$‰), both locations having lower average values than rainfall. All S1 samples aligned close to the meteoric water line, whereas most S2 samples plotted along a linear trend to the right of the line (Fig. 4a). Chloride concentrations in streamwater ranged between 6.4 and 12.8 mgL$^{-1}$ at S1, and between 35.1 and 111.1 mgL$^{-1}$ at S2 (Figs. 3d and e, 4b). At S2, higher chloride values were consistent with higher $\delta^{18}O$ values and vice versa, whereas there was a weaker correlation between the two tracers at S1 (Fig. 4b). The fluctuations in stable isotopes and chloride in groundwater were considerably attenuated as compared to rain and streamwater (Figs. 3f and 4). The δ^2H, $\delta^{18}O$ and chloride values recorded at G1 tended to slightly decrease during the rainy season, although they stayed within the ranges -21.5 ± 2.7,
−3.9 ± 0.4 ‰ and 60 ± 10 mgL⁻¹, respectively (Fig. 3f). Consistent displacement to the right of the meteoric line was observed for all G1 samples (Fig. 4a).

4.2 Tritium in streamwater and groundwater

The groundwater sample collected at G1 in October 2012 yielded a 3H activity of 1.07 ± 0.06 TU. Additional data was obtained from Please et al. (1997), who collected a sample at the same location in 1994. This earlier sample had an activity of 1.80 ± 0.20 TU. The 20 samples of streamwater collected at S2 showed variable 3H activities ranging between 1.16 ± 0.06 and 1.43 ± 0.06 TU (Fig. 5).

In order to estimate a 3H input signal for the Teviot Brook catchment, several precipitation time-series were calculated from Brisbane Aero monthly 3H dataset, as detailed in Table 1. Recharge time-series were then derived from these precipitation time-series using Eq. (6). An example of the calculated monthly precipitation and recharge time-series for the 2003–2014 period is presented in Fig. 6 for scenario A2. The 3H activity in rainfall showed considerable month-to-month variability, with values ranging between 1.1 and 6.4 TU for A2, but most of the rainfall events contributing to recharge (i.e. for which monthly precipitation prevailed over monthly evapotranspiration; red circles in Fig. 6) remained in the narrower range 1.5–2.5 TU.

5 Discussion

In this section, a stepwise approach is followed to evaluate the different contributions to streamflow as well as their temporal dynamics. First, the variations in seasonal tracers are discussed, and the seasonal tracer time-series are used to describe the TT of a younger component to streamflow τ_y (Sect. 5.1). Second, the 3H data collected in groundwater are interpreted in order to assess the RT of water stored in the alluvial aquifer τ_r (Sect. 5.2). Third, an older component in streamwater is identified through the use of 3H (Sect. 5.3), and the variations over time of the TTs of this older component τ_o are further quantified (Sect. 5.4) and elucidated (Sect. 5.5).

5.1 Identification of a younger component (< 2 years) in streamflow using seasonal tracers

The large temporal variability observed in rainfall isotopic and chloride records (Fig. 3c) may be attributed to a combination of factors that include precipitation amount, but also an apparent seasonal cycle. Values were higher in the dry season and tended to decrease during the wet season. These are well-known features for rainfall that can be related to the "amount effect" (Dansgaard, 1964) where raindrops during drier periods experience partial evaporation below the cloud base, typical in tropical to subtropical areas (Rozanski et al., 1993). Depletion of stable isotopes during significant precipitation events (Fig. 3c) has been reported in other parts of eastern Australia (Hughes and Crawford, 2013; King et al., 2015). In streamwater, average isotopic ratios were lower for S1 and S2 than the weighted average for rainfall, which most likely reflects the predominant contribution of depleted rainfall to recharge (Duvert et al., 2015b). Also, the position of S1 and S2 samples relative to the meteoric line (Fig. 4a) indicates that fractionation due to evaporation occurred at S2, because unlike those measured at S1, isotopic ratios measured at S2 followed a clear evaporation trend. Elevated chloride concentrations are further evidence of the occurrence of evaporative enrichment downstream, with values one order of magnitude higher at S2 than at S1 (Fig. 4b).

In order to define a first end-member – which would represent the contribution of younger water from rapid recharge through the highly fractured igneous rocks in the headwaters (Duvert et al., 2015b), lumped parameter models were adjusted to the stable isotope and chloride time-series at S1. Due to the limited number of fortnightly data, all values were included in the analysis, i.e. samples collected under both low baseflow and higher flow conditions. Two models were tested and compared for this purpose, a unimodal exponential model and a bimodal exponential-dispersion model...
yield as accurate results as those for stable isotopes at S1 and to a higher extent at S2, which may be attributed to the higher effects of evaporative enrichment on chloride. Based on flux tracking methods, Hrachowitz et al. (2013) showed that processes such as evaporation can result in considerable biases in TTD estimates when using chloride as a tracer.

It is increasingly recognised that stable isotopes cannot provide realistic estimates of longer TT waters, regardless of the lumped model used (Stewart et al., 2012; Seeger and Weiler, 2014; Kirchner, 2015). In this study, it is very likely that "older water" (i.e. > 5 years) contributed to streamflow at S2 (see Sect. 5.3) but also possibly at S1, and the sole use of stable isotopes and chloride did not allow detection of such contribution. Therefore all the mean TTs defined above should be regarded as partial mean TTs that reflect the short-term and/or intermediate portions of the overall TTD, rather than actual mean TTs (Seeger and Weiler, 2014).

5.2 Identification of the residence time of storage water

The sample collected at G1 in October 2012 ($^3\text{H} = 1.07 \pm 0.06 \text{TU}$) suggests that groundwaters stored in the alluvial aquifer contain a substantial modern component. An earlier ^3H value reported by Please et al. (1997) was re-interpreted and combined with our more recent measurement to provide additional constraints on the residence time (RT) at G1. Two steady-state models were adjusted to the data points. The first model to be tested was a unimodal distribution model while the second one was a bimodal exponential–dispersion model. Simulations using ^3H as a tracer are generally insensitive to the type of lumped parameter model chosen, given that ambient tritium levels are now almost at pre-bomb levels (e.g. Stewart and Thomas, 2008). Therefore the choice of a priori distributions may not affect the results significantly. For the bimodal model, the mean RT of younger components τ_{y1} was constrained to 1 year, and the fraction of younger water was constrained to 57 % as these parameters provided best fits on average.
Results for both models are presented in Table 3 and the two fits using A2 as an input function are shown in Fig. 8. As expected, mean RTs varied as a function of the input function chosen: values were generally lowest with A1 and B1 and highest with B3. Both models provided reasonably good fits, although for all simulations the bimodal distribution described more accurately the measured data (median RMSE 0.04 vs. 0.20 TU; Table 3). Unimodal distributions had τ_y ranging between 40 (using A3 as input series) and 62 years (using B2 as input series), with a standard deviation of 7 years among all simulations. The older water fraction of bimodal models had τ_y between 76 (using A1 as input series) and 102 years (using B3 as input series), with a standard deviation of 9 years. The better fits obtained for bimodal functions (e.g. in Fig. 8) may be interpreted as the probable partitioning of groundwater at G1 into one contribution of younger waters by diffuse recharge or flood-derived recharge (mean RT \approx 1 years) coupled with a second contribution of older waters, potentially seeping from the underlying sedimentary bedrock aquifer (mean RT \approx 80 to 100 years). It was reported that the 3H activity in the sedimentary bedrock aquifer was on average lower than the 3H activity in the alluvial aquifer (Duvert et al., 2015b).

Although the assumption of steady state is more likely to hold for groundwater systems than for streamwater, the somewhat reduced number of samples was a limitation for a definitive assessment of the RT of storage water at G1. Using a 13 yr record of 3H (and other age tracers) in a mountainous aquifer, Manning et al. (2012) showed that temporal variations in RT could be significant even for groundwater, and that these variations can be related to variations in recharge due to changing climatic conditions.

5.3 Identification of an older component (5–100 years) in streamflow using tritium

The 3H activity in rainfall showed considerable month-to-month variability, with values ranging between 1.1 and 6.4 TU for A2 (Fig. 6). Winter (dry season) values generally were higher than summer (wet season) values, consistent with results from Tadros et al. (2014). Among the 20 3H values obtained at S2, higher values tended to coincide with higher flow conditions, although it was not systematic (Fig. 5). For instance, the sample collected in January 2013 under low flow conditions yielded 1.35 ± 0.06 TU; by contrast, the sample collected in April 2014 during the falling limb of a major runoff event yielded 1.19 ± 0.06 TU, i.e. among the lowest values on record. Kendall’s rank correlation and Pearson’s coefficients were calculated between the 3H measurements in streamwater and other hydrological, hydrochemical and isotopic variables (Table 4). Tritium activity was not significantly correlated with any of the other variables. Unlike in Morgenstern et al. (2010) and Cartwright and Morgenstern (2015), there was no strong linear relationship between flow rate and 3H activity in the stream. The lack of strong correlation between 3H and variables such as antecedent wetness conditions and the number of days since the last high flow event occurred, implies that more complex mechanisms governed the short-term fluctuations of 3H in streamwater.

In order to characterise a potential older contribution to the stream at S2, a lumped parameter model was fitted to the six samples that were taken under low baseflow conditions, i.e. $Q < 0.01 \text{m}^3\text{s}^{-1}$. The model chosen for this purpose was a bimodal exponential-dispersion model that would reflect (i) the younger contribution from the headwaters (quick flow + soil water + discharge from fractured igneous rocks) as identified in Sect. 5.1, and (ii) an older groundwater contribution (alluvial water + potentially bedrock seepage) to be determined. This older fraction may originate from the stored groundwater as identified in Sect. 5.2. The fitting procedure was as follows:

- The dispersion parameter of the older component was loosely constrained to around 0.3 in order to mimic the shape of the TTD identified at G1 (Sect. 5.2). The old water fraction ϕ was constrained to 82 %, i.e. the average value obtained for the six baseflow samples using tracer-based hydrograph separation following Eq. (5).

- Initial simulations were run using the six input series with no further model constraint. For the six scenarios, τ_y consistently converged to 0.33 ± 0.08 years.
5.4 Short-term variations in older water transit time as revealed by tritium in streamwater

Unlike for rainfall 3H values where high temporal variability was observed, the derived time-series for recharge were relatively constant over the last decade (Fig. 6). This characteristic in principle allows reliable assessment of streamwater TTs with single 3H measurements, providing the 3H remaining in the hydrosphere is too small to cause ambiguous ages, as it is in the Southern Hemisphere (Morgenstern et al., 2010; Stewart et al., 2010). All 20 samples collected at S2 were fitted separately using the same previously established lumped model for each point, so that the only parameter to be determined by fitting was τ_o. The model parameters were chosen according to the best fit obtained for baseflow samples (i.e. mean TT of young component τ_y 0.33 years, dispersion parameter of old component 0.3; Sect. 5.3). In addition, for each sample the fraction of old water ϕ_o was constrained to the value obtained using tracer-based hydrograph separation according to Eq. (5).

Conceptually, this approach appeared more meaningful than another option that would have consisted in constraining τ_o and subsequently determining the old water fractions ϕ, because there was no indication that τ_o remained constant over time. Simulations were carried out for all three hydrograph separation tracers and all six input series, and the sensitivity of simulations to the 3H measurement uncertainty (±0.06 TU) was also tested for each sample.

Time-series of τ_o were derived for each input function, and Fig. 10 shows the results obtained with A2 as an input series. The old water fraction ϕ varied between 0.39 and 1, and while there was a good agreement between the three tracers, hydrograph separation based on chloride generally yielded lower variations in ϕ over time (Fig. 10a). The separation carried out using the recursive digital filter provided comparable results to those based on seasonal tracers. Generally, the older component was lowest during high flow conditions and greatest during recession periods. The simulated τ_o values varied considerably over time, and variations exceeded the uncertain-
ties related to measurement errors and input estimates (Fig. 10b–d). All three tracers provided similar results, with a consistent shift in values either upwards or downwards. As a general rule, there was a negative correlation between \(\phi \) and \(\tau_o \). When using A2 as input function, \(\tau_o \) fluctuated between 11.9 and 58.0 years \((\delta^2\text{H}; \text{Fig. 10b})\), 11.6 and 63.2 years \((\delta^{18}\text{O}; \text{Fig. 10c})\) and 11.5 and 42.1 years \((\text{chloride}; \text{Fig. 10d})\). For clarity purposes the \(\tau_o \) values reported in the text do not consider errors related to measurement uncertainty. Values were highest after the major recharge events that occurred in January and February 2013, with \(\tau_o \) between 26.8 and 63.2 years in late February, and in April 2014, with \(\tau_o \) between 28.3 and 55.1 years. They were lowest during periods undergoing sustained low flow such as in September 2012 \((\tau_o \text{ between 11.6 years for } \delta^{18}\text{O} \text{ and 13.1 years for } \delta^2\text{H})\) and in September 2013 \((\tau_o \text{ between 11.5 years for chloride and 11.9 years for } \delta^2\text{H})\). Of note is the timing of the highest \(\tau_o \) value in late February 2013, i.e. one month after the major recharge episode. These are rather unexpected results that may be interpreted as the activation of longer, deeper flowpaths carrying older waters shortly after high flow events.

5.5 Drivers of the variability in older water transit time

In order to better apprehend the factors influencing the variations in \(\tau_o \), the obtained values were compared to other hydrological and hydrochemical variables, particularly the antecedent wetness conditions, dissolved Fe concentrations and the old water discharge rate (Fig. 11). Under sustained dry conditions \((P_{15} < 5 \text{ mm})\), there was no consistent relationship between \(\tau_o \) and the amount of precipitation during the 15 days prior to sampling, with \(\tau_o \) ranging between 14.9 and 23.1 years \((n = 3; \text{Fig. 11a})\). For higher values of \(P_{15} \) \((\text{i.e. } P_{15} \geq 10 \text{ mm})\), there was a positive and unequivocal correlation between the two variables \((n = 17)\). The transit time of old water fraction was lowest for \(P_{15} \) between 10 and 50 mm \((\tau_o \text{ 11.9 to 25.5 years})\), and it increased when antecedent wetness conditions increased \((\tau_o \text{ 25.6 to 58.0 years for } P_{15} > 100 \text{ mm})\). Generally, values averaged 17.0 ± 5.6 years at low flow and 38.3 ± 14.7 years after major high flow events. This was in accordance with results from Fig. 10, and suggestive of the predominant contribution of older alluvial and/or bedrock waters shortly after recharge episodes. There was also a positive relationship between \(\tau_o \) and Fe concentrations at S2, with all the values > 0.2 mg L\(^{-1}\) corresponding to \(\tau_o > 30 \) years (Fig. 11b). In contrast, no significant relationship was observed at S1, as Fe values at this station ranged between 0.01 to 0.96 mg L\(^{-1}\). Duvert et al. (2015a) reported increasing Fe concentrations after a major recharge event for some groundwaterwaters of the sedimentary bedrock. The increase in streamflow Fe might therefore be a result of enhanced discharge of these waters into the drainage network, which is coherent with older \(\tau_o \) values. However, other chemical parameters distinctive of the bedrock groundwaterers did not produce a characteristic signature in streamflow during high flow conditions. Or else, high Fe concentrations may be simply due to higher weathering rates at higher flows, although this hypothesis disregards the high value measured for the April 2014 sample \((\text{Fe} = 4.15 \text{ mg L}^{-1})\) despite relatively low discharge \((Q = 0.095 \text{ m}^3 \text{s}^{-1})\).

As discussed previously, a modification in storage due to a change in recharge dynamics may have activated different groundwater flowpaths and hence water parcels with different RTs (Heidbüchel et al., 2013; van der Velde et al., 2015; Cartwright and Morgenstern, 2015). When the rate of recharge was highest, flushing out of waters located in the deeper, older bedrock aquifer may have been triggered by the resulting pressure wave propagation. By contrast, the relatively younger \(\tau_o \) observed during lower flow conditions may be attributed to waters that originate from shallower parts of the alluvium and/or from subsurface layers. This is reflected in the relationship between \(\tau_o \) and \(Q_o \), i.e. the portion of streamflow provided by the older component \((Q_o = Q \cdot \phi; \text{Fig. 11c})\). In this figure the groundwater end-member corresponds to \(\tau_o \) (using the highest recorded \(Q_o \) through the study period), while the baseflow end-member corresponds to the \(\tau_o \) value calculated using the six baseflow samples. The two end-members were linearly connected in an area that represents the extent of possible fluctuations of \(\tau_o \), from lower old water contributions to higher old water contributions. The individual \(\tau_o \) values broadly followed this mixing trend (Fig. 11c), which lends support
to the assumptions that (i) the TT of the older end-member may not be characterised by a single value but rather by a range of possible ages that fluctuate depending on flow conditions, and (ii) during and shortly after higher flows, a near steady-state was reached in which the TT of the old water fraction increased and approached the RT of stored water (i.e. $\tau_o \rightarrow \tau_r$). Overall, the large scattering observed in Fig. 11 suggests that many processes led to the variations in τ_o, and that these processes were largely nonlinear.

Importantly, our results differ from the previous observation by Morgenstern et al. (2010) and Cartwright and Morgenstern (2015) that 3H-derived TTs were higher at low flow conditions and lower at high flow conditions. However, these two studies did not account for a younger component to streamflow (i.e. ϕ constrained to 1 for all samples), which may explain the disagreement with our results. We also recognise that the results reported here might be due to partially incorrect interpretation of the obtained dataset: underestimation of the old water fraction ϕ during high flow events might be responsible for the apparent positive correlation between Q_o and τ_o, although this is unlikely because the three seasonal tracers and the recursive filter yielded very similar flow partitions. Another potential bias in our calculations is the possible lack of representation of the discharge from the fractured igneous rocks in the headwaters, which might contribute significantly to the young component during high flow events. Such enhanced contribution might result in slightly longer τ_y, hence shorter τ_o. Because no 3H measurement was conducted at S1, this hypothesis could not be tested further (see Sect. 5.1). More generally, our work emphasises the current lack of understanding of the role and dynamics of deeper groundwater contributions to streams, and suggests that more multi-tracer data is needed to better assess the TTs of the old water fraction. Our findings also indicate that the so-called “old water fraction” (also referred to as “pre-event water” or “baseflow component” in tracer studies; Klaus and McDonnell, 2013; Stewart, 2015) should not be regarded as one single, time-invariant entity, but rather as a complex component made up of a wide range of flowpaths that can be hydrologically disconnected – and subsequently reactivated – as recharge and flow conditions evolve.

5.6 Limitations of this study and way forward

Several assumptions have been put forward in this study that need to be carefully acknowledged. Firstly, there are limitations related to the use of seasonal tracers (i.e. stable isotopes and chloride):

1. The lumped convolution approach used for the assessment of TTs of the younger contribution to streamflow relied on assumptions of stationarity. Such assumptions are very likely not satisfied in headwater catchments, particularly those characterised by high responsiveness and high seasonal variability in their climate drivers (Rinaldo et al., 2011; McDonnell and Beven, 2014). Unfortunately, the dataset obtained as part of this study did not enable characterisation of time-varying TTD functions, since this approach would require longer tracer records (e.g. Hrachowitz et al., 2013; Birkel et al., 2015) and/or higher sampling frequencies (e.g. Birkel et al., 2012; Benettin et al., 2013, 2015). Nonetheless, Seeger and Weiler (2014) recently noted that in the current state of research, the calculation of time-invariant TTDs from lumped models still represents a useful alternative to more complex, computer-intensive modelling methods.

2. Using tracers that are notoriously sensitive to evapotranspiration in environments where this process commonly occurs can be problematic. Hrachowitz et al. (2013) established that evaporation can severely affect the calculations of TTs when chloride is used as an input-output tracer. Although evapotranspiration was considered in our recharge calculations (Eq. 1), a detailed analysis of catchment internal processes would be needed to verify whether evapotranspiration modifies the storage water RTs and subsequent streamwater TTs. Using data from a catchment subjected to high rainfall seasonal variability, van der Velde et al. (2015)
showed that younger water was more likely to contribute to evapotranspiration, which tended to result in longer streamwater TTs.

3. The partitioning of streamflow relied on the assumption that two main components contributed to streamwater, although this may not be the case at S2 because soil water may explain the higher chloride concentration and more enriched δ¹⁸O observed at this location (Klaus and McDonnell, 2013; Fig. 4). However, we hypothesise that the occurrence of this third end-member would not significantly affect the calculation of \(\tau_o \), because the TT of soil water is likely to be considerably shorter than that of the older streamflow component (e.g. Matsutani et al., 1993; Muñoz-Villers and McDonnell, 2012).

Secondly, there are a number of limitations related to the use of \(^3\)H:

1. The most significant uncertainties were those related to the computed \(^3\)H input functions. These may be reduced by regularly collecting rainfall \(^3\)H on site. The accuracy of \(^3\)H measurements was another source of uncertainty, and further improving analytical precision of \(^3\)H activity in water samples may allow more rigorous assessment of short-term TT variations (e.g. Morgenstern and Daughney, 2012).

2. Changes in \(^3\)H concentrations due to phase changes such as evaporation are commonly ignored because they are usually considered negligible. However, high evaporation environments such as that of the lower Teviot Brook catchment might significantly affect \(^3\)H activity in streamwater. If the fractionation factor for \(^\text{D}_\text{H} \) is twice that for \(^\text{D}_\text{H} \), then an enrichment of 10% in \(\delta^{2} \text{H} \) would correspond to an enrichment of 20% for \(^3\)H. For a sample with an assumed \(^3\)H activity of 1.30 TU, the measured value would then be 1.30 × 1.02 = 1.33 TU. Such effect may have led to slight overestimations of the \(^3\)H activity in low flow, high evaporation samples collected at S2. Future research is needed to examine more thoroughly the potential interferences on \(^3\)H due to evaporation.

3. While stationarity may be a reasonable assumption for groundwater, inter-annual variations in recharge can affect RTs substantially (Manning et al., 2012). Further work aimed at providing additional constraints on RT variability is therefore required, by routinely collecting age tracer data in groundwater. Massoudieh et al. (2014a) showed that using multiple years of tracer records can allow more realistic quantification of the uncertainty on RTDs.

4. Despite yielding longer TTs than seasonal tracers, the use of \(^3\)H did not preclude the potential omission of any older contribution (i.e. > 100 years) to the stream. Frisbee et al. (2013) argued that even studies based on \(^3\)H measurements might miss a significant part of the TTDs rather than just their tail. In our case, the likelihood of waters with much longer RTs seeping from the sedimentary bedrock could not be verified using \(^3\)H only. Other tracers that can capture older water footprints, such as terrigenic helium-4 (Smerdon et al., 2012) or carbon-14 (Bourke et al., 2014) would need to be tested for that purpose.

5. Another issue that has been raised recently is the potential aggregation biases affecting the calculation of TTDs in complex systems (Kirchner, 2015). Based on the use of seasonal tracers, the author demonstrated that mean TTs are likely to be underestimated in heterogeneous catchments, i.e. those composed of subcatchments with contrasting TTDs. A similar benchmark study should be undertaken for \(^3\)H in order to verify whether TTs derived from \(^3\)H measurements in heterogeneous catchments are also biased.

6 Conclusions

Based on time-series observations of seasonal tracers (stable isotopes and chloride) and tritium (\(^3\)H) in a subtropical mountainous catchment, we assessed the different contributions to streamflow as well as the variations in streamwater transit time (TT) and groundwater residence time (RT). Calibrating lumped parameter models to
seasonal tracer data provided consistent estimates of TTs in the upstream part of the catchment, where evaporation was not a major process. A young component to streamflow was identified that was partitioned into quickflow (mean TT ≈ 2 weeks) and discharge from the fractured igneous rocks forming the headwaters (mean TT ≈ 0.3 years). In the downstream location, lumped models reproduced the tracers’ output signals less accurately, partly because evapotranspiration complicated the input–output relationships, but also because of the increased hydrological complexity due to higher heterogeneity at this scale (i.e. interactions with alluvial waters and potentially deeper sedimentary bedrock waters).

In this context, the use of \(^3\)H time-series was highly beneficial for (i) determining an older groundwater contribution to streamflow in the downstream area, and (ii) providing insight into the temporal variations of this old water fraction. The best fits to \(^3\)H baseflow values were obtained when considering a younger component with mean TT ≈ 0.3 years, which reflected the upstream contributions previously quantified, and an older groundwater component with mean TT ≈ 16–25 years. The latter value was significantly lower than the RT calculated for the shallow alluvial aquifer feeding the stream downstream (RT ≈ 76–102 years). Such discrepancy between groundwater RT and TT of the older component streamwater outlines the necessary distinction between transit and storage waters, and the non-stationary catchment flow processes that govern the variations in TTs. When simulations were run separately on each \(^3\)H streamwater sample, the TT of old water fraction was found to vary substantially over time, with values averaging 17 ± 6 years at low flow (antecedent precipitation < 10 mm) and 38 ± 15 years after major recharge events (antecedent precipitation > 100 mm) – other parameters being held constant. These variations were highly nonlinear and broadly correlated with antecedent wetness conditions and recession dynamics.

Overall, this study suggests that collecting high-resolution \(^3\)H data in streamwater can be valuable to document short-term variations in the TT of old water fraction. If confirmed by further studies and corroborated by the use of other dating tracers, the occurrence of fluctuations in older contributions to streamflow may have important implications for water resource management and particularly contamination issues, because these fluctuations may control the time scales of retention and release of contaminants. It is therefore essential to collect longer-term experimental data that will contribute to identifying older groundwater contributions and to quantifying them with more confidence.

The Supplement related to this article is available online at doi:10.5194/hessd-12-8035-2015-supplement.

Acknowledgements. Funding for the tritium analyses was provided by the Australian Institute of Nuclear Science and Engineering (ALNGRA14026). Continuous financial support from the School of Earth, Environmental & Biological Sciences and M. E. Cox (QUT) are greatly appreciated. We would like to thank A. Bonfanti, M. Citati, G. Destefano, J. López and C. Ranchoux for their assistance with fieldwork. R. Chisari (ANSTO) and J. Brady (QUT) carried out most laboratory analyses. The Brisbane Aero tritium rainfall dataset was kindly provided by S. Hollins (ANSTO). Insightful discussion with S. Lamontagne (CSIRO) during the course of this study is gratefully acknowledged. C. Duvert is supported by an Endeavour Scholarship (Australian Government).

References

Benettin, P., van der Velde, Y., van der Zee, S. E. A. T. M., Rinaldo, A., and Botter, G.: Chloride circulation in a lowland catchment and the formulation of transport by travel time distributions, Water Resour. Res., 49, 4619–4632, doi:10.1002/wrcr.20309, 2013. 8037, 8060

Benettin, P., Kirchner, J. W., Rinaldo, A., and Botter, G.: Modeling chloride transport using travel time distributions at Plynlimon, Wales, Water Resour. Res., 51, 3259–3276, doi:10.1002/2014WR016600, 2015. 8038, 8055, 8060

Bergmann, H., Sackl, B., Maloszewski, P., and Stichler, W.: Hydrological investigation in a small catchment area using isotope data series, in: Fifth International Symposium on Un-
Heidbüchel, I., Troch, P. A., Lyon, S. W., and Weiler, M.: The master transit time distribution of variable flow systems, Water Resour. Res., 48, W06520, doi:10.1029/2011WR011293, 2012. 8038

Heidbüchel, I., Troch, P. A., and Lyon, S. W.: Separating physical and meteorological controls of variable transit times in zero-order catchments, Water Resour. Res., 49, 7644–7657, doi:10.1002/2012WR013149, 2013. 8038, 8058

Hrachowitz, M., Soulsby, C., Tetzlaff, D., Malcolm, I. A., and Schoups, G.: Gamma distribution models for transit time estimation in catchments: physical interpretation of parameters and implications for time-variant transit time assessment, Water Resour. Res., 46, W10536, doi:10.1029/2010WR009148, 2010. 8038

Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., and Soulsby, C.: What can flux tracking teach us about water age distribution patterns and their temporal dynamics?, Hydrol. Earth Syst. Sci., 17, 533–564, doi:10.5194/hess-17-533-2013, 2013. 8038, 8052, 8055, 8060

Hughes, C. E. and Crawford, J.: Spatial and temporal variation in precipitation isotopes in the Sydney Basin, Australia, J. Hydrol., 489, 42–55, doi:10.1016/j.jhydrol.2013.02.036, 2013. 8050

Katsuyama, M., Tani, M., and Nishimoto, S.: Connection between streamwater mean residence time and bedrock groundwater recharge/discharge dynamics in weathered granite catchments, Hydrol. Process., 24, 2287–2299, doi:10.1002/hyp.7741, 2010. 8038

King, A. C., Raiber, M., Cendón, D. I., Cox, M. E., and Hollins, S. E.: Identifying flood recharge and inter-aquifer connectivity using multiple isotopes in subtropical Australia, Hydrol. Earth Syst. Sci., 19, 2315–2335, doi:10.5194/hess-19-2315-2015, 2015. 8050

Kirchner, J. W.: Aggregation in environmental seasons: seasonal tracer cycles quantify young water systems, but not mean transit times, in spatially heterogeneous catchments, Hydrol. Earth Syst. Sci. Discuss., 12, 3059–3103, doi:10.5194/hessd-12-3059-2015, 2015. 8038, 8039, 8052, 8062

Klaus, J. and McDonnell, J. J.: Hydrograph separation using stable isotopes: Review and evaluation, J. Hydrol., 505, 47–64, doi:10.1016/j.jhydrol.2013.09.006, 2013. 8046, 8051, 8059, 8061

Klaus, J., Chun, K. P., McGuire, K. J., and McDonnell, J. J.: Temporal dynamics of catchment transit times from stable isotope data, Water Resour. Res., 51, 4208–4223, doi:10.1002/2014WR016247, 2015a. 8038

Klaus, J., McDonnell, J. J., Jackson, C. R., Du, E., and Griffiths, N. A.: Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach, Hydrol. Earth Syst. Sci., 19, 125–135, doi:10.5194/hess-19-125-2015, 2015b. 8051

Kralik, M., Humer, F., Fank, J., Harum, T., Klammler, G., Gooddy, D., Sülenfuss, J., Gerber, C., and Pürtscher, R.: Using 18O2, δ2H2He, 85Kr and CFCs to determine mean residence times and water origin in the Grazer and Leibnitzer Feld groundwater bodies (Austria), Appl. Geochem., 50, 150–163, doi:10.1016/j.apgeochem.2014.04.001, 2014. 8040

Lamontagne, S., Taylor, A. R., Battle-Aguilar, J., Suckow, A., Cook, P. G., Smith, S. D., Morgenstern, U., and Stewart, M. K.: River infiltration to a subtropical alluvial aquifer inferred using multiple environmental tracers, Water Resour. Res., 51, 4532–4549, doi:10.1002/2015WR015663, 2015. 8040

Leray, S., de Dreuzy, J.-R., Aquilina, L., Vergnaud-Ayraud, V., Labasque, T., Bour, O., and Borgne, T. L.: Temporal evolution of age data under transient pumping conditions, J. Hydrol., 511, 555–566, doi:10.1016/j.jhydrol.2014.01.064, 2014. 8038

Maloszewski, P. and Zuber, A.: Determining the turnover time of groundwater systems with the aid of environmental tracers: 1. Models and their applicability, J. Hydrol., 57, 207–231, doi:10.1016/0022-1694(82)90147-S, 1982. 8037, 8044

Maloszewski, P., Rauert, W., Trimborn, P., Herrmann, A., and Rau, R.: Isotope hydrological study of mean transit times in an alpine basin (Wimbachtal, Germany), J. Hydrol., 140, 343–360, doi:10.1016/0022-1694(92)90247-S, 1992. 8038

Manning, A. H., Clark, J. F., Diaz, S. H., Radenac, L. K., Earman, S., and Plummer, L. N.: Evolution of groundwater age in a mountain watershed over a period of thirteen years, J. Hydrol., 460–461, 13–28, doi:10.1016/j.jhydrol.2012.06.030, 2012. 8040, 8053, 8062

Massoudieh, A.: Inference of long-term groundwater flow transience using environmental tracers: a theoretical approach, Water Resour. Res., 49, 8039–8052, doi:10.1002/2013WR014548, 2013. 8038

Massoudieh, A., Leray, S., and de Dreuzy, J.-R.: Assessment of the value of groundwater age time-series for characterizing complex steady-state flow systems using a Bayesian approach, Appl. Geochem., 50, 240–251, doi:10.1016/j.apgeochem.2013.10.006, 2014a. 8062

Massoudieh, A., Visser, A., Shariff, S., and Broers, H. P.: A Bayesian modeling approach for estimation of a shape-free groundwater age distribution using multiple tracers, Appl. Geochem., 50, 252–264, doi:10.1016/j.apgeochem.2013.10.004, 2014b. 8038
Matsutani, J., Tanaka, T., and Tsujimura, M.: Residence times of soil water, ground, and discharge waters in a mountainous headwater basin, central Japan, traced by tritium, in: Tracers in Hydrology, edited by: Peters, N. E., Hoehn, E., Leibundgut, C., Tase, N., and Walling, D. E., IAHS Publication no. 215, International Association for Hydrological Science, Wallingford, UK, 57–63, 1993. 8038, 8040, 8055, 8061

McCallum, J. L., Engdahl, N. B., Ginn, T. R., and Cook, P. G.: Nonparametric estimation of groundwater residence time distributions: what can environmental tracer data tell us about groundwater residence time?, Water Resour. Res., 50, 2022–2038, doi:10.1002/2013WR014974, 2014. 8038

McDonnell, J. J. and Beven, K.: Debates – the future of hydrological sciences: a common path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph, Water Resour. Res., 50, 5342–5350, doi:10.1002/2013WR015141, 2014. 8060

McDonnell, J. J., McGuire, K., Aggarwal, P., Beven, K. J., Biondi, D., Destouni, G., Dunn, S., James, A., Kirchner, J., Kraft, P., Lyon, S., Maloszewski, P., Newman, B., Pfister, L., Rinaldo, A., Rodhe, A., Sayama, T., Seibert, J., Solomon, K., Soulsby, C., Stewart, M., Tetzlaff, D., Tobin, C., Troch, P., Weiler, M., Western, A., Wörman, A., and Wrede, S.: How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis, Hydrol. Process., 24, 1745–1754, doi:10.1002/hyp.7796, 2010. 8037

McGuire, K. J. and McDonnell, J. J.: A review and evaluation of catchment transit time modeling, J. Hydrol., 330, 543–563, doi:10.1016/j.jhydrol.2006.04.020, 2006. 8037

McGuire, K. J., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B. L., Welker, J. M., and Seibert, J.: The role of topography on catchment-scale water residence time, Water Resour. Res., 41, W05002, doi:10.1029/2004WR003657, 2005. 8038

McMillan, H., Tetzlaff, D., Clark, M., and Soulsby, C.: Do time-variable tracers aid the evaluation of hydrological model structure? A multimodel approach, Water Resour. Res., 48, W05501, doi:10.1029/2011WR011688, 2012. 8038

Michel, R. L.: Tritium in the hydrologic cycle, in: Isotopes in the Water Cycle: Past, Present, and Future of a Developing Science, edited by: Aggarwal, P. K., Gat, J. R., and Froehlich, K. F. O., Springer, Dordrecht, the Netherlands, doi:10.1007/1-4020-3023-1, 53–66, 2005. 8039

Morgenstern, U. and Daughney, C. J.: Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification – the National Groundwater Monitoring Programme of New Zealand, J. Hydrol., 456–457, 79–93, doi:10.1016/j.jhydrol.2012.06.010, 2012. 8039, 8061

Morgenstern, U., Stewart, M. K., and Stenger, R.: Dating of streamwater using tritium in a post nuclear bomb pulse world: continuous variation of mean transit time with streamflow, Hydrol. Earth Syst. Sci., 14, 2289–2301, doi:10.5194/hess-14-2289-2010, 2010. 8040, 8054, 8056, 8059

Mueller, M. H., Weingartner, R., and Alewell, C.: Importance of vegetation, topography and flow paths for water transit times of base flow in alpine headwater catchments, Hydrol. Earth Syst. Sci., 17, 1661–1679, doi:10.5194/hess-17-1661-2013, 2013. 8038

Mufoz-Villers, L. E. and McDonnell, J. J.: Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate, Water Resour. Res., 48, W09528, doi:10.1029/2011WR011316, 2012. 8038, 8061

Nathan, R. J. and McMahon, T. A.: Evaluation of automated techniques for base flow and recession analyses, Water Resour. Res., 26, 1465–1473, doi:10.1029/WR026i007p01465, 1990. 8046, 8088

Please, P. M., Baud, J., and Watkins, K. L.: A groundwater quality assessment of the alluvial aquifers in the Logan-Albert catchment, SE Queensland, Tech. Rep. 1996/048, Australian Geological Survey Organisation, Canberra, Australia, 1997. 8049, 8052, 8086

Plummer, L., Busenberg, E., Böhlke, J., Nelm, D., Michel, R., and Schlosser, P.: Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach, Chem. Geol., 179, 93–111, doi:10.1016/S0009-2541(01)00317-5, 2001. 8040

Reddy, M. M., Schuster, P., Kendall, C., and Reddy, M. B.: Characterization of surface and ground water δ^{18}O seasonal variation and its use for estimating groundwater residence times, Hydrol. Process., 20, 1753–1772, doi:10.1002/hyp.5953, 2006. 8038

Rinaldo, A., Beven, K. J., Bertuzzo, E., Nicotina, L., Davies, J., Fiori, A., Russo, D., and Botter, G.: Catchment travel time distributions and water flow in soils, Water Resour. Res., 47, W07S37, doi:10.1029/2011WR010478, 2011. 8038, 8060

Roa-García, M. C. and Weiler, M.: Integrated response and transit time distributions of watersheds by combining hydrograph separation and long-term transit time modeling, Hydrol. Earth Syst. Sci., 14, 1537–1549, doi:10.5194/hess-14-1537-2010, 2010. 8038
Table 1. Description of the different 3H input series computed for the Teviot Brook catchment.

Input series	Description of input parameters
A1	A2 – 25%
A2	Brisbane Aero 3H values + 0.4 TU
A3	A2 + 25%
B1	B2 – 90% CI slope
B2	Brisbane Aero 3H values x 1.24 TU
B3	B2 + 90% CI slope

CI refers to the confidence interval on the Toowoomba vs. Brisbane Aero regression slope.
Table 2. Results of model simulations of transit time for S1 and S2 using δ^2H, δ^{18}O and chloride.

Sampling location	Tracer	τ_y (days)	RMSE	τ_{y1} (days)	RMSE	τ_{y2} (days)	RMSE
S1	δ^{18}O	69 ±0.09‰	15	121 ±0.08‰			
	δ^2H	65 ±0.58‰	15	113 ±0.52‰			
	chloride	70 ±0.28 mg L$^{-1}$	16	146 ±0.26 mg L$^{-1}$			
S2	δ^{18}O	85 ±0.16‰	23	109 ±0.16‰			
	δ^2H	71 ±0.75‰	24	99 ±0.72‰			
	chloride	76 ±4.89 mg L$^{-1}$	24	106 ±4.68 mg L$^{-1}$			

EM stands for exponential model; EM–DM stands for exponential–dispersion model. For the EM–DM, the dispersion parameter of the second mode was 0.3 and the fraction of younger water was 27%.

Table 3. Results of model simulations of residence time for G1 using 3H as an age tracer.

Input series	Unimodal DM	Bimodal EM–DM					
	τ_r (years)	D_p	RMSE (TU)	τ_{r1} (years)	D_p	RMSE (TU)	
A1	46.9	0.70	±0.19	1	75.8	0.29	±0.02
A2	48.2	0.71	±0.18	1	82.9	0.30	±0.01
A3	39.8	0.71	±0.18	1	89.0	0.28	±0.03
B1	48.5	0.69	±0.22	1	86.8	0.30	±0.06
B2	61.6	0.70	±0.20	1	95.0	0.29	±0.05
B3	54.6	0.69	±0.21	1	102.6	0.29	±0.05

DM stands for dispersion model; EM–DM stands for exponential–dispersion model; D_p stands for dispersion parameter. For the EM–DM, τ_{r1} was constrained to 1 years, and the fraction of younger water was constrained to 57%.
Table 4. Kendall’s τ and Pearson’s r correlation coefficients between 2H and other variables at S2.

Variable	r	τ
Mean daily discharge (m³ s⁻¹)	0.47	0.06
δ^2H (%)	-0.27	-0.06
δ^{18}O (%)	-0.23	0.02
Cl (mg L⁻¹)	-0.12	0.03
Si (mg L⁻¹)	0.35	0.11
Alkalinity (mg L⁻¹)	-0.32	-0.13
one Fe (mg L⁻¹)	0.25	0.11
Antecedent P in the last 15 days (mm)	0.32	-0.01
Last day with $P > 2$ mm (–)	0.11	0.03

No value was statistically significant at $p<0.05$ for both tests.

Table 5. Results of model simulations of transit time for S2 under low baseflow conditions (i.e. daily $Q < 0.01$ m³ s⁻¹), using 2H as an age tracer and an exponential–dispersion model.

Input series	τ_y (years)	RMSE (TU)
A1	15.8 ±0.15	
A2	20.2 ±0.15	
A3	24.5 ±0.15	
B1	15.8 ±0.14	
B2	19.8 ±0.16	
B3	24.4 ±0.16	

The mean TT of younger components (τ_y) was constrained to 0.33 years, the dispersion parameter of older components was constrained to 0.3, and the ratio of older water was constrained to 82%.
Figure 1. Upper Teviot Brook catchment and location of sampling sites. The stream gauging station corresponds to Teviot Brook at Croftby (145011A; operated by the Queensland Department of Natural Resources and Mines). The rainfall gauges correspond to Wilsons Peak Alert (040876), Carneys Creek The Ranch (040490) and Croftby Alert (040947), all run by the Bureau of Meteorology.

Figure 2. Conceptual diagram showing the flow components and their transit times to be characterised in this study.
Figure 3. Time-series of Thiessen-averaged precipitation (a), daily discharge at Croftby (DNRM station 145011A) (b), and δ²H, δ¹⁸O and chloride at R1 (rainfall) (c), S1 (d) and S2 (streamwater) (e), and G1 (groundwater) (f). Note that the y axes of δ²H, δ¹⁸O and chloride have different scales for each individual plot.

Figure 4. Relationships between (a) δ²H and δ¹⁸O and (b) chloride and δ¹⁸O for rainfall, streamwater and groundwater of the Teviot Brook catchment. The local meteoric water line plotted in (a) follows the equation δ²H = 8.4 · δ¹⁸O + 15.8 (Duvert et al., 2015b).
Figure 5. Time-series of 3H activity at S2 and daily discharge data (left panel). Flow duration curve at S2 (right panel). The six red circles correspond to samples used to fit the low baseflow model (see Fig. 9). The whiskers correspond to measurement uncertainty (±0.06 TU for all samples).

Figure 6. Temporal evolution of input 3H in precipitation (circles) and recharge (black line) for the Teviot Brook catchment considering the A2 scenario. The plotted circles correspond to rainfall collected at Brisbane Aero and adjusted to Teviot Brook according to A2. The recharge time-series was obtained using Eq. (6) and a 12 month sliding window. The marker size for rainfall contributing to recharge (red circles) reflects the recharge rate.
Figure 7. Exponential (blue) and exponential–dispersion (black) models calibrated to the δ^{18}O (a), δ^{2}H (d) and chloride (g) time-series at S1. Whiskers correspond to the measurement uncertainty as given in the Methods section. Root mean square errors (RMSE) of the exponential model as a function of τ_y for the three tracers (b, e, h). RMSE of the exponential–dispersion model (27 % younger component; dispersion parameter 0.3) as a function of mean transit times of the younger (τ_{y1}) and older (τ_{y2}) fractions for the three tracers (c, f and i). Lighter colours are for lower RMSE, and the smallest contours correspond to the range of acceptable fit, arbitrarily defined as the values for which the RMSE are lower than the lowest RMSE obtained with the exponential models. Results for these simulations are reported in Table 2.

Figure 8. Fits of two models at G1 using A2 as input 3H series. The unimodal model is a dispersion model with first moment 48.2 years and dispersion parameter 0.71. The bimodal model is an exponential–dispersion model: a younger component (exponential distribution; fraction 57 %) with first moment 1 years and an older component (dispersion distribution; fraction 43 %) with first moment 82.9 years and dispersion parameter 0.30. The 1994 measurement is from Please et al. (1997).
Figure 9. Bimodal model fitted to the 3H activities at S2 under low baseflow conditions (i.e. daily $Q < 0.01$ m3s$^{-1}$). A2 was used as input 3H series for this case. Results using other input series are listed in Table 5.

Figure 10. Variations in the older component fraction ϕ according to the three seasonal tracers (using Eq. 5) and a recursive digital filter (Nathan and McMahon, 1990) (a). Variations in the transit time of older fraction at S2 based on hydrograph separation using $\delta^{2}H$ (b), $\delta^{18}O$ (c) and chloride (d). Values in (b–d) were obtained through the adjustment of exponential–dispersion models to each 3H sample separately, and using A2 as input series and a 12 month sliding window. Whiskers represent the error range due to the measurement uncertainty on each sample (i.e. ±0.06 TU). The grey shaded area represents the range of values due to uncertainties in the estimation of recharge input (i.e. for the six 3H input time-series).
Figure 11. Relationship between the transit time of old water fraction (τ_o) and antecedent precipitation P_{15}, i.e. precipitation depth over the catchment during the 15 days prior to sampling (a). Relationship between τ_o and dissolved Fe concentrations (b). Relationship between τ_o and Q_o ($Q_o = Q \cdot \phi$) (c). Values were obtained using A2 as input series and deuterium as a hydrograph separation tracer. Whiskers correspond to simulations using upper and lower measurement uncertainty errors. The size of markers in (a and b) provides an indication on the value of Q_o during sampling. In (c), the groundwater (red) end-member corresponds to the residence time calculated at G1, while the baseflow (orange) end-member corresponds to the transit time of the old water fraction calculated at S2 using the six baseflow samples. The shaded area in (c) represents simple linear mixing between the two end-members.