The Catalan numbers have no forbidden residue modulo primes

Rob Burns

17th November 2018

Abstract

Let C_n be the nth Catalan number. For any prime $p \geq 5$ we show that the set \{ $C_n : n \in \mathbb{N}$ \} contains all residues mod p. In addition all residues are attained infinitely often. Any positive integer can be expressed as the product of central binomial coefficients modulo p. The directed sub-graph of the automata for C_n mod p consisting of the constant states and transitions between them has a cycle which visits all vertices.

1 Introduction

The Catalan numbers are defined by $C_n := \frac{1}{n+1} \binom{2n}{n}$.

This note is an addendum to our paper [1]. In that paper we analysed the Catalan numbers modulo primes ≥ 5 using automata. Refer to that paper and to [6] for details of how automata can be used to study Catalan numbers and other sequences.

A set S is said to have a forbidden residue r modulo p if no element of S is $\equiv r$ mod p. We show below that the Catalan numbers have no forbidden residue modulo any prime. Garaeva, Luca and Shparlinski [3] established this result for sufficiently large primes. They also showed that in a certain sense the distribution of C_n mod p amongst the non-zero residue classes is roughly equal. They also proved that the set \{ $C_n : n \leq p^{13/2} (\log p)^6$ \} already includes all residue classes modulo p. Our results do not say anything about how quickly C_n covers all residue classes or about how often proportionally each residue class is attained. We do show that each residue class is attained infinitely often. The result for C_n mod p differs from the situation for powers of primes. Eu, Liu and Yeh [2] showed that 3 is a forbidden residue for C_n modulo 4 and \{ 3, 7 \} are forbidden residues for C_n mod 8. Liu and Yeh in [5]
calculated $C_n \mod 16$ and $\mod 64$ and thereby determined the forbidden residues in each case. They also showed that C_n has forbidden residues $\mod 2^k$ for any k. Forbidden residues for C_n modulo $\{32, 64, 128, 256, 512\}$ were calculated by Rowland and Yassawi using automata in [6]. Kauers, Krattenthaler and Müller calculated the generating function for $C_n \mod 4096$ in terms of a special function and so, in theory, could determine forbidden residues in this case. Similarly Krattenthaler and Müller [4] determined the generating function for $C_n \mod 27$ in terms of a special function.

Another difference between the $\mod p$ case and when higher powers of p are involved is that in the $\mod p$ situation all residues are attained infinitely often. Rowland and Yassawi showed that some residues for $C_n \mod \{8, 16\}$ are attained only finitely many times.

2 Results

Let p be prime and let the set S be defined as the multiplicative closure in $\left(\frac{\mathbb{Z}}{p\mathbb{Z}}\right)^\times$ of the set of elements

$$\left\{ \binom{2d}{d} \mod p : 0 \leq d \leq \frac{p-1}{2} \right\}.$$

All elements of S are non-zero as $2d \leq p - 1$ for $d \leq \frac{p-1}{2}$. We showed in [1] that S is contained in the set of constant states of the automaton for $C_n \mod p$ and hence that the elements of S appear as residues of $C_n \mod p$ for some n. In explanation of this remark, as shown in [1] we have for $d \leq \frac{p-1}{2}$

$$\Lambda_{d,d}(1 \ast Q^{p-1}) = \binom{2d}{d}.$$

Then if $c_1 = \binom{2d_1}{d_1}$ and $c_2 = \binom{2d_2}{d_2}$ we have

$$c_1 c_2 = \Lambda_{d_1,d_1} \left(\Lambda_{d_2,d_2}(1 \ast Q^{p-1}) \right).$$

Therefore $c_1 c_2$ is also a constant state of the automaton for $C_n \mod p$ and therefore also a residue of $C_n \mod p$ for some n.

Lemma 2.1. The set S contains all non-zero residues modulo p.
Proof. Since S is multiplicatively closed it is enough to show that S contains all primes $q < p - 1$. We observe that if $c \in S$ then $c^{-1} \mod p = c^{p-2} \mod p$ is also in S. We proceed by induction on the set of primes. Firstly, $1 = \binom{0}{0}$ and $2 = \binom{2}{1} \in S$. Let $q < p - 1$ be prime. Then $\frac{q+1}{2} \leq \frac{p-1}{2}$ and

$$\binom{q+1}{\frac{q+1}{2}} \in S$$

with

$$\binom{q+1}{\frac{q+1}{2}} = qr$$

where r is the product of primes strictly less than q. Then by induction $r \in S$ and by the observation above $r^{-1} \in S$. So

$$q = \left(\frac{q+1}{2} \right) r^{-1} \in S.$$

\[\square \]

Corollary 2.2. For any prime $p \geq 5$, the Catalan numbers have no forbidden residue modulo p.

Proof. Lemma 2.1 shows that all non-zero residues appear in $C_n \mod p$. In addition, the values of $n : C_n \equiv 0 \mod p$ are plentiful, having asymptotic density 1 (see [1]). \[\square \]

Corollary 2.3. For p prime any $n \in \mathbb{N}$ can be written as

$$n = \prod_i \left(\frac{2d_i}{d_i} \right) \mod p$$

for suitable choices of $\{d_i \in \mathbb{N}\}$.

Proof. The same inductive argument as in Lemma 2.1 can be used to prove the corollary. The choice of $\{d_i\}$ is not necessarily unique. \[\square \]

The set of states and transitions for the automata of $C_n \mod p$ is a directed graph with the states as vertices and transitions as directed edges. The sub-graph G consisting of the non-zero constant states and transitions between them is also a directed graph.
Corollary 2.4. The directed graph G formed by the non-zero constant states and transitions has a cycle which visits all vertices in G.

Proof. Let c_1 and c_2 be two constant states. It is enough to show that there is a directed state path from c_1 to c_2. Firstly, $c_2c_1^{-1}$ is also a constant state by the multiplicative closure of the set S. From corollary 2.3 there are $\{d_i\}$ such that

$$c_2c_1^{-1} = \prod_i \left(\frac{2d_i}{d_i} \right) \mod p.$$

Then since for constants c

$$\Lambda_{d,d}(c \ast Q^{p-1}) = c \Lambda_{d,d}(1 \ast Q^{p-1}) = c \binom{2d}{d},$$

we have modulo p

$$\left(\prod_i \Lambda_{d_i,d_i}(c_1 \ast Q^{p-1}) \right) = c_1 \prod_i \left(\frac{2d_i}{d_i} \right) = c_2 \mod p.$$

Since the application of each Λ_{d_i,d_i} corresponds to a transition between states, the product of the Λ_{d,d_i} corresponds to a directed path from c_1 to c_2. \qed

Observation 2.5. Each residue is attained infinitely often. Firstly from [1] numbers n which have base p representations containing only digits from the set $\{0,1,\ldots,p-1\}$ have a state path which ends at a non-zero constant state. Since $C_n \mod p$ is the value of the end state of the state path for n, it is non-zero $\mod p$. So at least one non-zero constant state (and so at least one non-zero residue) is attained infinitely often. Secondly, the existence of a cycle in the directed graph of the constant states shows that all non-zero constant states are visited infinitely often.

References

[1] Rob Burns. Structure and asymptotics for Catalan numbers modulo primes using automata. 2017. 1, 2, 3, 4

[2] Sen-Peng Eu, Shu-Chung Liu, and Yeong-Nan Yeh. Catalan and Motzkin numbers modulo 4 and 8. *European Journal of Combinatorics*, 29:1449–1466, 2008. 1

[3] Moubariz Z. Garaeva, Florian Luca, and Igor E. Shparlinski. Catalan and Apéry numbers in residue classes. *Journal of Combinatorial Theory Series A*, 113(5):851 – 865, July 2006. 1

[4] Christian Krattenthaler and Thomas W. Müller. A method for determining the mod-3^k behaviour of recursive sequences. *ArXiv*, arXiv:1308.2856:82, 2013. 2
[5] S.-C. Liu and J. Yeh. Catalan numbers modulo 2^k. *J Integer Sequences*, 13, 2010. 1

[6] Eric Rowland and Reem Yassawi. Automatic congruences for diagonals of rational functions. *ArXiv*, arXiv:1310.8635:42, 2013. 1, 2