Caudal osteology and its application to reconstruct phylogenetic relationship in the genus Garra

Kaudal osteoloji ve Garra cinsi filogenesi uygulaması

Sevil Sungur 1* • Soheil Eagderi 2 • Parya Jalili 3 • Erdogan Cicek 4

1 Vocational School of Health Services, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
2 Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
3 Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
4 Department of Biology, Faculty of Art and Science, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey

How to cite this paper:
Sungur, S., Eagderi, S., Jalili, P., & Cicek, E. (2020). Caudal osteology and its application to reconstruct phylogenetic relationship in the genus Garra. Ege Journal of Fisheries and Aquatic Sciences, 37(3), 245-249. DOI: 10.12714/egejfas.37.3.06

Abstract: Among cyprinid family, little information is available about the phylogenetic relationships of the members of genus Garra in Iran. The structure of caudal skeleton as a valuable source in taxonomic studies of fishes can help to determine their systematic position. Hence, this study was conducted to compare the osteological features of caudal fin skeleton and reconstructing phylogenetic tree of the Iranian members of genus Garra. For this purpose, five specimens of every selected (except Iran blind carp with two specimens from each morphotype) taxa were cleared and stained to examine the osteological characteristics of their caudal fin skeleton. Also, Kura barbel (Barbus cyri) and Barzam (Capoeta trutta) were designed as outgroup. The results showed that members of Garra constitute a monophyletic group. The results revealed that the caudal skeleton features cannot discriminate the members of genus Garra at the level of species because of small number of extractable characters and their states.

Keywords: Phylogeny, osteology, Iran blind carp, Garra

Oz: Cyprinidae familyasını isterlerinde, İran'da dağılım gösteren Garra cinsi üyelerinin filogenetik ilişkileri ile ilgili az sayıda araştırma bulunmaktadır. Kaudal yüzgeç iskelet yapısı, balıkların sistemik pozisyonlarının belirlenmesine yardımcı olan, taksonomik çalışmalarla kullanılabilecek bir karakterdir. Bu sebeple, bu çalışmada Garra cinsinin İran'daki türlerinin filogenetik ilişkileri belirlenmek amacı ile kaudal yüzgeç iskeletinin kemik yapısı kafesleme çalıştırılmıştır. Bu amaçla seçilen taksonlara ait çeşitli kaudal yüzgeç iskeletinin osteologik karakterlerinin belirlenmesi amaçlı iletiflendirilmiş yöntem (cleared-stained) uygulanmıştır. Çalışmada Barbus cyri ve Capoeta trutta dış grup olarak kullanılmıştır. Elde edilen sonuçlara göre; Garra üyelerini monofiletik bir grup oluşturmuştur. Sonuçta kaudal yüzgeç iskeletinin Garra cinsi için tür düzeyinde ayrımsız kullanılmayacağı gösterilmiştir.

Anahtar kelimeler: Filogeni, osteoloji, Iran kör balığı, Garra

INTRODUCTION

Caudal skeleton of fishes consists of the vertebral columns, vertebral processes and fin rays, and they are valuable structures in taxonomic studies of fish taxa (Fujita, 1990). In this regard, Monod (1968), and Schultz and Arratia (1989) used the caudal-fin skeleton as a taxonomic source for the classification of teleost. Development of techniques in the osteological studies such as clearing and staining, made it possible to use caudal skeletal structure for taxonomic studies in fishes.

About 300 fish species have been reported from Iranian inland waters, of which 111 belong to the family Cyprinidae (Esmaeili et al., 2018). Members of this family are important in terms of aquaculture and scientific studies (Nelson, 2006) and their phylogeny, ecology, physiology and distribution are of great importance (Chen and Mayden, 2009). Among the cyprinids, members of the genus Garra are found from the Southeast Asia to Africa (Coad, 2019). About 75 species of this genus have been reported, with 10 members in the inland waters of Iran (Esmaeili et al., 2016; Mousavi-Sabet et al., 2016a, b; Hashemzadeh Segherloo et al., 2017). The members of this genus have small to medium-size body, almost fusiform, with inferior mouth in crescent shape (Coad, 2019) and horny-lip corners (Stiassny and Getahun, 2007), and 1-2 pairs of the short barbels. They are found in mountainous streams with high-velocity currents and can be fixed their position by sucker-mouth disc, although they have also been reported in low-flow rivers (Esmaeili et al., 2016; Coad, 2019).

This study aimed to investigate the osteological structure of caudal fin in different populations of seven Garra species in Iran and the possibility of using the caudal skeleton characters to study their phylogeny based on cladistic method. Hence, this study investigate the efficacy of the caudal-fín skeleton...
application to study phylogeny of Iranian cyprinids and the results may help to clarify the relationships of this genus in Iran as well.

MATERIAL AND METHODS

For this study, *Garra* species, including *G. rufa* from the Tazeh-Ab River (Tigris river drainage) and Iloud Spring (Hormuzgan basin), *G. gymnothorax* from the Karkheh River (Tigris river drainage), *G. persica* from the Kash, Sanderk and Sarbaz rivers (Makran basin), *G. rossica* from the Nahang River (Makran basin) and *G. lorestanensis* and *G. typhlops* from the Bagh-e Loveh, Lorestan Province (Tigris river drainage) as in-group and *Capoeta trutta* and *Barbus cyri* as out-groups were collected, each 10 with specimens except *G. lorestanensis* and *G. typhlops* with two specimens due to their conservation status (Table 1).

Table 1. Sampling stations of this study

Species	River	Basin	Latitude	longitude	Above Sea Level
Garra rufa	Iloud	Hormuzgan	27°12′28″N	54°40′9″E	438
Garra gymnnothorax	Karkheh	Tigris	48°20′45″N	31°52'5″E	332
Garra rufa	Tazeh-Ab	Tigris	34°4′41″N	46°11′54″E	1099
Garra persica	Kash	Makran	25°55′7″N	57°44′57″N	155
Garra persica	Sanderk	Makran	26°50′24″N	57°15′54.7″E	54
Garra persica	Sarbaz	Makran	26°37′53″N	61°15′35″E	894
Garra rossica	Nahang	Makran	26°50′36″N	61°35′27″E	1345
Garra typhlops	Bagh-e Loveh	Tigris	33°4′38″N	48°35′33″E	812
Garra lorestanensis	Bagh-e Loveh	Tigris	33°4′38″N	48°35′33″E	812
Capoeta trutta	Semiram	Tigris	31°11′15″N	51°15′25″E	1548
Barbus cyri	Sefid	Caspian Sea	37°12′9″N	37°12′9″E	81

For osteological examination, the specimens were cleared and stained based on Taylor and Van Dyke (1985) using alizarin red and alcian blue for bone and cartilage staining, respectively. The caudal skeleton of all species were separated and examined under a stereo microscope (Leica M55). Their structures were then scanned by a scanner (Epson V600) equipped with a glycerin bath, and drawn and labeled using CorelDraw X6 software. Nomenclature of the skeletal elements is followed Rojo (2009), and Jalili and Eagderi (2014).

The hypothesis of phylogenetic relationships was performed based on cladistic method (Swartford et al., 1996). By examination and comparison of the samples, the morphological characteristics of different taxa were selected and described as character states. Polarity of the characters were determined according to Watrous and Wheeler (1981). Seven character states were used in phylogenetic tree reconstruction to investigate the evolutionary model and unspecified data were labeled as? To understand the effect of unspecified data, parsimony analysis was performed separately with and without these data.

Phylogenetic reconstruction was performed based on maximum parsimony criterion using PAUP4 software (Swartford, 1999). Data matrix were executed using Heuristic search algorithm by selecting 100 Tree-bisection-and-reconnection iterations and deleting in-informative characters. Character states distribution was evaluated using ACCTRAN (Accelerated Transformation) and bootstrap analysis with 100 iterations was performed using Heuristic search algorithm.

RESULTS

Comparison of the caudal-fin skeleton: The caudal fins of the studied taxa, similar to other cyprinids, possesses the hypural, epural, uroneural, parhypural and pleurostilid bones (Figure 1h). The hemipinal bones of the first vertebrate i.e. ural centra are transformed as the hypural and parhypural bones to support the caudal-fin rays. In members of the genus Garra, number of the hypurals varies 5-7. *Garra rufa* has six hypurals, *G. gymnothorax* five (Figure 1a, b, c) and *G. perica* and *G. rossica* six, whereas those of *G. perica* from the Sanderk River have five. *Garra typhlops* and *G. lorestanensis* also have six or seven hypurals, respectively.

The first hypural is fused to the parhypural, and this complex is connected to the first vertebrate. The parhypural is long and almost wide bearing a hyurapophysis in its base. The hypural-II and pleurostilid are also fused to the last vertebrate. The anterior part of the third hypural is attached to the urostyle, and the hypural IV-VII are freely located in the posterior part of the pleurostilid. The epural is neural spine of the first vertebrate to be separated. This long bone is unpaired with different sizes and shapes. In all studied species, the ventral part of this bony element is wider than its dorsal part. In *G. perica* populations of the Kash River, the dorsal part is wider, but it has same width throughout its length as *G. rossica*.

The uroneural is small and narrow, except in *G. perica* of the Sarbaz River, which it is absent. In others, this bone is paired. The uroneural is situated on the anterior margin of the pleurostilid having diverse sizes. In the antero-dorsal part of the
first vertebral center, a neural process is usually seen, which it is narrow and pointed at its end. In *G. rufa* of the Iloud Spring, the first vertebrate of the caudal skeleton bears two processes. In the members of the genus Garra, there are several differences in the structure and shape of the second neural spine (PU2).

Such differences were also observed in members of the same species. The second neural spine is usually broad at its base and narrow at the end. In *G. typhlops*, this spine is modified as a process, whereas the two neural spines are observed in *G. lorestanensis*, which the posterior one is narrower seems to be developed from the Zygappophysis. One specimen of *G. persica* of the Sanderk River had an inter-neural spin bone in the anterior part of PU2. A total of seven characters were defined as Table 2.

Figure 1. Caudal-fin skeleton of (a) *Barbus cyri*, (b) *Capoeta trutta*, (c) *Garra typhlops*, (d) *G. lorestanensis*, (e) *G. rossica*, (f) *Gymnothorax*, (g) *G. rufa* (Iloud), (h) *G. rufa* (Tazeh-Ab), (i) *G. persica* (Kash), (j) *G. persica* (Sarbaz) and (k) *G. persica* (Sanderk) (Epu: epural; Hp: hypurals; Np: neural process; Ns: neural spine; Ph: parhypurale; Un: uroneural; Ust: pleurostyle)
Three characters were not informative at the species level in the parsimony analysis (Figure 2).

REFERENCES

Chen, W.J. & Mayden, R.L. (2009). Molecular systematics of the Cyprinoidea (Teleostei: Cypriniformes), the world’s largest clade of freshwater fishes: Further evidence from six nuclear genes. *Molecular Phylogenetic and Evolution*, 52(2), 544-549. DOI: 10.1016/j.ympev.2009.01.006

Coad, B.W. (2019). Fresh water fishes of Iran. Retrieved from http://www.briancoad.com. (11.12.2019).

Esmaeili, H.R., Sayyadzadeh, G. & Eagderi, S. (2016). Review of the genus Garra Hamilton, 1822 in Iran with description of a new species: a morpho-molecular approach (Teleostei: Cyprinidae). *Iranian Journal of Ichthyology*, 3(2), 82-121.

Esmaeili, H.R., Sayyadzadeh, G., Eagderi, S. & Abbasi, K. (2018). Checklist of freshwater fishes of Iran. *FishTaxa*, 3(3), 1-85.

Fujita, K. (1990). The caudal skeleton of teleostean fishes. Tokyo University Press, Tokyo.

Hashemzadeh Segherloo, I., Abdoli, A., Eagderi, S., Esmaeili, H.R., Sayyadzadeh, G., Bematchez, L., Hallerman, E., Geiger, M.F., Özulug, M., Laroche, J. & Freyhof, J. (2017). Dressing down: convergent reduction of the mental disc in Garra (Teleostei: Cyprinidae) in the Middle East. *Hydrobiologia*, 785(1), 47-59. DOI: 10.1007/s10750-016-2902-8

Jalili, P. & Eagderi, S. (2014). Osteological description of Iran cave barb (I ranocypris typhlops Bruun & Kaiser, 1944). *University Journal of Zoology*, Rajshahi University, 33, 01-07

Monod, T. (1968). Le complexe urophore des poissons téléostéens. Mém. Inst. Fond. Afrique Noire, Ifan Dakar, 81, 1-705.
Mousavi-Sabet, H, & Eagderi, S. (2016a). Garra lorestanensis, a new cave fish from the Tigris River drainage with remarks on the subterranean fishes in Iran (Teleostei: Cyprinidae). *FishTaxa*, 1(1), 45-54.

Mousavi-Sabet, H., Vatandoust, S., Fatemi, Y. & Eagderi, S., (2016b). Tashan Cave a new cave fish locality for Iran; and Garra tashanensis, a new blind species from the Tigris River drainage (Teleostei: Cyprinidae). *FishTaxa*, 1(3), 133-148.

Nelson, J.S. (2006). *Fishes of the world*, John Wiley, New Jersey, USA

Rojo, L.A. (2009). *Dictionary of evolutionary fish osteology*, CRC Press.

Schultze, H.P. & Arratia, G. (1988). Re-evolution of the caudal skeleton of some actinopterygian fishes: II. Hiodon, Elops, and Albula. *Journal of Morphology*, 195, 257-303. DOI: 10.1002/jmor.1051950304

Stiassny, M.L.J. & Getahun, A., (2007). An overview of labeonin relationships and the phylogenetic placement of the Afro-Asian genus Garra Hamilton, 1922 (Teleostei: Cyprinidae), with the description of five new species of Garra from Ethiopia, and a key to all African species. *Zoological Journal of the Linnean Society*, 150, 41-83. DOI: 10.1111/j.1096-3642.2007.00281.x

Swofford, D.L., Olsen, G.J., Waddell, P.J. & Hillis, D.M. (1996). Phylogenetic Inference. In: Hillis DM, Moritz D, and Mable BK (eds), *Molecular Systematics*, Sinauer Associates, Sunderland, Massachusetts. pp. 407-514.

Swofford, D.L. (1999). PAUP* 4.0 vers. b2. Phylogenetic analysis using parsimony and other methods. Sinauer Associates, Sunderland, Massachusetts.

Taylor, W.R. & Van Dyke, G.C. (1985). Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. *Cybium*, 9, 107-119.

Watrous, L.E. & Wheeler, Q.D. (1981). The out-group comparision method of character analysis. *Systematic Zoology*, 30(1), 1-11. DOI: 10.2307/2992297