Optimising the biosynthesis of oxygenated and acetylated Taxol precursors in Saccharomyces cerevisiae using advanced bioprocessing strategies

Laura Walls1, Koray Malci1, Behnaz Nowrouzi1, Rachel Li2, Leopold d’Espaux2, Jeff Wong2, Jonathan Dennis3, Andrea Semiao4, Stephen Wallace3, José Martínez5, Jay Keasling2, and Leonardo Rios-Solis1

1The University of Edinburgh Institute for Bioengineering
2Joint BioEnergy Institute
3Centre for Synthetic and Systems Biology (SynthSys)
4The University of Edinburgh School of Engineering Institute for Infrastructure and Environment
5Technical University of Denmark

June 9, 2020

Abstract

Taxadien-5α-hydroxylase and taxadien-5α-ol O-acetyltransferase catalyse the oxidation of taxadiene to taxadien-5α-ol and subsequent acetylation to taxadien-5α-yl-acetate in the biosynthesis of the blockbuster anti-cancer drug, paclitaxel (Taxol). Despite decades of research, the promiscuous and multispecific CYP725A4 enzyme remains a major bottleneck in microbial biosynthetic pathway development. In this study, an interdisciplinary approach was applied for the construction and optimisation of the early pathway in Saccharomyces cerevisiae, across a range of bioreactor scales. High-throughput microscale optimisation enhanced total oxygenated taxane titre to 39.0±5.7 mg/L and total taxane product titres were comparable at micro and mini-bioreactor scale at 95.4±18.0 and 98.9 mg/L, respectively. The introduction of pH control successfully mitigated a reduction of oxygenated taxane production, enhancing the potential taxadien-5α-ol isomer titre to 19.2 mg/L, comparable to the 23.8±3.7 mg/L achieved at microscale. A combination of bioprocess optimisation and increased GC-MS resolution at 1L bioreactor scale facilitated taxadien-5α-yl-acetate detection with a final titre of 3.7 mg/L. Total oxygenated taxane titres were improved 2.7-fold at this scale to 78 mg/L, the highest reported titre in yeast. Critical parameters affecting the productivity of the engineered strain were identified across a range of scales, providing a foundation for the development of robust integrated bioprocess control systems.

Hosted file

Manuscript_for_Submission.docx available at https://authorea.com/users/331623/articles/458257-optimising-the-biosynthesis-of-oxygenated-and-acetylated-taxol-precursors-in-saccharomyces-cerevisiae-using-advanced-bioprocessing-strategies
Hosted file

Table 1.docx available at https://authorea.com/users/331623/articles/458257-optimising-the-biosynthesis-of-oxygenated-and-acetylated-taxol-precursors-in-saccharomyces-cerevisiae-using-advanced-bioprocessing-strategies
