Review

Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties

Muhammad Abdul Mojid Mondol 1, Hee Jae Shin 2,*, M. Aminur Rahman 3 and Mohamad Tofazzal Islam 4,*

1 School of Science and Technology, Bangladesh Open University, Board Bazar, Gazipur 1705, Bangladesh; drmojdmondol@gmail.com
2 Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, 787 Haeanro, Ansan 427-744, Korea
3 World Fisheries University Pilot Programme, Pukyong National University (PKNU), 45 Yongso-ro, Nam-gu, Busan 48513, Korea; aminur1963@gmail.com
4 Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
* Correspondence: shinhj@kiost.ac.kr (H.J.S.); tofazzalislam@yahoo.com (M.T.I.);
Tel.: +82-31-400-6172 (H.J.S.); +880-2920-5310-14 (ext. 2252) (M.T.I.);
Fax: +82-31-400-6170 (H.J.S.); +880-2920-5333 (M.T.I.)
Received: 27 June 2017; Accepted: 11 October 2017; Published: 17 October 2017

Abstract: Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of D-xylose, 3-O-methyl-D-xylose, D-glucose, 3-O-methyl-D-glucose, and D-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural–activity relationships (SARs) of sea cucumber glycosides are also discussed briefly.

Keywords: holostane; nonholostane; cucumarioside; cytotoxic; antifungal; glycosides

1. Introduction

Nature is the largest source of pharmaceutical lead drugs for the remedies of many diseases. Earlier scientists mainly focused on terrestrial samples (plants and microorganisms) for the discovery of lead bioactive compounds. With the passage of time, the search for new drugs or agrochemicals has been switching from land to ocean due to re-isolation of known natural products from terrestrial samples. Marine organisms produce diversified bioactive compounds because of large species biodiversities and living in extremely harsh environment.

Among so many sources, numerous bioactive metabolites have been isolated from marine invertebrates such as echinoderms with a broad spectrum of biological activities [1]. The echinoderms are divided into five classes, i.e., Holothuroidea (sea cucumbers), Asteroidea (starfishes), Echinoidea (sea urchins), Crinoidea (sea lilies), and Ophiuroidea (brittle stars and basket stars), which live exclusively in the marine habitat, distributed in almost all depths and latitudes, as well as reef...
environments or shallow shores [2,3]. The importance of these echinoderms as a potential source of bioactive compounds for the development of new therapeutic drugs/agrochemicals has been growing rapidly [1]. Compounds isolated from echinoderms showed numerous biological activities including antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, anti-inflammatory, antitumor, and antiviral activities [1].

Sea cucumber traditionally has been used as tonic food in China and other Asian countries for thousands of years. Besides being used as food, sea cucumbers are also promising source of bioactive natural products which predominantly belong to triterpene glycosides exhibiting antifungal, cytotoxic, hemolytic, cytostatic, and immunomodulatory and antiviral activities [4]. Several monographs concerning the structures and biological properties of triterpene glycosides obtained from sea cucumbers have been published but not presented in a systematic way [5,6]. This report comprehensively reviews in depth structural features of sea cucumber glycosides with corresponding producing species. Important biological activities, mechanism of action, and structure-activity relationships (SARs) of the diverse glycosides produced by the different species of sea cucumber are also discussed briefly.

2. Taxonomy, Distribution and Nutritive Value of Sea Cucumbers

One of the predominant invertebrate lives in marine environment is sea cucumber, which belong to the class Holothuroidea under the phylum Echinodermata. Holothuroidea has been divided into three subclasses, Aspidochirotacea, Apodacea and Dendrochirotacea, and further into six orders, Apodida, Elasipodida, Aspidochirotida, Molpadida, Dendrochirotida and Dactylochirotida [7]. Majority of the harvestable species of sea cucumbers belong to three families, viz., Holothuriidae (genera Holothuria and Bohadschia), Stichopodidae (genera Stichopus, Actinopyga, Thelenota, Parastichopus and Isostichopus), and Cucumariidae (genus Cucumaria) [8].

Sea cucumbers are elongated tubular or flattened soft-bodied marine benthic invertebrates, typically with leathery skin, ranging in length from a few millimeters to a meter [9]. Holothuroids encompass 14,000 known species occur in most benthic marine habitats worldwide, in both temperate and tropical oceans, and from the intertidal zone to the deep sea, and are considered as the very important parts of oceanic ecosystem [10].

Economically, sea cucumbers are important in two reasons: first, some species produce triterpene glycosides that are interested to pharmaceutical companies finding their medical use and second, use as food item. About 70 species of sea cucumbers have been exploited worldwide; out of which 11 species have been found to be commercially important [11]. Sea cucumbers have been well recognized as a tonic and traditional remedy in Chinese and Malaysian literature for their effectiveness against hypertension, asthma, rheumatism, cuts and burns, impotency and constipation [12,13]. Nutritiously, sea cucumbers have an impressive profile of valuable nutrients such as vitamin A, vitamin B₁ (thiamine), vitamin B₂ (riboflavin), vitamin B₃ (niacin), and minerals, especially calcium, magnesium, iron and zinc [14,15].

3. Extraction, Purification and Characterization

To extract glycosides, first sea cucumbers will be freeze dried, then cut into pieces and extracted twice with refluxing EtOH. The combined extracts will be concentrated under reduced temperature and the residue will be dissolved in H₂O. Desalting will be carried out by passing this fraction through a Polychrom column (Teflon), eluting first the inorganic salts and crude polar impurities with H₂O and then the glycosides fraction with 50% EtOH. The fraction will be sub-fractionated by silica gel column chromatography using suitable gradient solvent system. The glycosides from each sub-fraction can be purified by reverse phase HPLC developing suitable solvent system (MeOH-H₂O).

Triterpene glycosides have two parts: carbohydrate and triterpene. The number of monosaccharide units present in the carbohydrate chain can be deduced by observing the number of anomic carbons (~103 ppm) and protons (~5 ppm, d) resonances in 13C and 1H NMR spectra, respectively. The sequence...
of monosaccharide units in the carbohydrate chain can be established by the analysis of anomeric H/C correlations in the HMBC spectrum which can also be confirmed by NOE corrections between anomeric protons and MALDI-TOF mass spectroscopic data analysis. The position of attachment of glycone with aglycone can be confirmed by the HMBC experiment.

The presence of diverse types of monosaccharide units and their repetitions in the carbohydrate chain can be established by acid hydrolysis followed by GC-MS analysis of the corresponding aldononitrile peracetates [16]. The site of attachment of sulfate group at monosaccharide units can be determined by observing chemical shift of esterification carbon atoms. The chemical shifts of α (esterification) and β-carbons are shifted ~5 ppm downfield and ~2 ppm up field, respectively, compare to their corresponding nonsulfated derivatives.

The structure of the aglycone can be established based on its spectroscopic data (1H NMR, 13C NMR, COSY, HMBC, HSQC, and TOCSY) and by comparing with the literature data. Configuration can be determined by the analysis of NOE data, stable conformers, coupling constants and comparing chemical shifts of chiral centers with literature.

4. Structural Features of Triterpene Glycosides Isolated from Sea Cucumbers

Triterpene glycosides, also known as holothurins or saponins, are secondary metabolites typically produced by sea cucumbers (class Holothuroidea). These glycosides are amphiphilic in nature having two parts: aglycone (lipophilic, lipid-soluble) and glycone (hydrophilic, water-soluble). The majority of the glycosides contain so called holostane type aglycone comprise of lanostane-3β-ol with a γ(18,20)-lactone in the E-ring of the pentacyclic triterpene [(3β,20S-dihydroxy-5α-lanostan-γ(18,20)-lactone] (Figure 1). A few of the glycosides contain nonholostane type aglycone which do not have γ(18,20)-lactone in the tetracyclic triterpene.

The glycone parts may contain up to six monosaccharide units covalently connected to C-3 of the aglycone. The sugar moieties mainly consist of D-xylose (Xyl), D-quinovose (Qui), D-glucose (Glc), 3-O-methyl-D-glucose (MeGlc), 3-O-methyl-D-xylose (MeXyl) (Figure 2) and sometimes 3-O-methyl-D-quinovose (MeQui), 3-O-methyl-D-glucuronic acid (MeGlcA) and 6-O-acetyl-D-glucose (AcGlc). In the carbohydrate chain, the first sugar unit is always a xylose and a majority case second is quinovose, whereas 3-O-methyl-D-glucose and/or 3-O-methyl-D-xylose are always the terminal monosaccharide units. The presence of two quinovose residues in a carbohydrate chain is unique for sea cucumber and starfish glycosides.

In glycone part, the sugar units are generally arranged in a straight or branched chain (Figure 3). The majority of tetrasaccharides show a linear chain with the most common 3-O-Me-Glc-(1→3)-Glc-(1→4)-Qui-(1→2)-Xyl. Hexaglycosides are generally nonsulfated with a linear 3-O-Me-Glc (1→3)-Glc (1→4)-Xyl (2→1)-Qui (4→1)-Glc (3→1)-3-O-MeGlc unit. Pentasaccharides have a linear chain like tetrasaccharides but a branching at C-2 of quinovose (Figure 3).

Sixty percent of the triterpene glycosides isolated so far from sea cucumbers have sulfate groups linked to the monosaccharide units of the carbohydrate chain. Most of them are monosulfated, but many di- and trisulfated glycosides have also been isolated. Most tetrasaccharides and pentasaccharides are sulfated at C-4 of xylose unit. In both the cases, additional sulfate groups at C-6 of the 3-O-methylglucose and glucose units have also been found. The term “Ds” stands for desulfated. Sea cucumber triterpene glycosides are chemotaxonomic markers specific for groups of genera within each family.
4.1. Holostane Type Triterpene Glycosides

Mar. Drugs 2017, 15, 317

Triterpene glycosides can be classified as holostane type having 3β-hydroxy-5α-lanostano-γ(18,20)-lactone structural feature and nonholostane type do not have a γ(18,20)-lactone but have other structural features like holostane type glycosides.

4.1. Holostane Type Triterpene Glycosides

Depending on the position of double bond in the B and C ring of the aglycone (Figure 1), holostane type glycosides can be further subdivided into three groups: glycosides with 3β-hydroxyholost-7(8)-ene, 3β-hydroxyholost-9(11)-ene, and 3β-hydroxyholost-8(9)-ene aglycone skeletons. There are eight pentacyclic triterpene and 30 alkane side chain aglycone architectures commonly found in holostane type glycosides (Figure 4). In these architectures, certain functional groups are generally attached to the specific carbons: keto and β-acetoxy groups at C-16, and α-hydroxy group at C-12 and C-17.

Figure 1. Structures of lanostane, holostane and holostanol.

Figure 2. Common sugar units present in sea cucumber glycosides.

Figure 3. Some common carbohydrate architectures found in sea cucumber glycosides.

Figure 4. Cont.
The species *Eupentacta fraudatrix*, *Holothuria lessoni*, *Bohadschia marmorata*, *Stichopus chloronotus* produce most of the compounds in this group. For convenience, the large *Staurocucumis liouvillei* group is totally absent in this group of compounds. 3-α this category are the presence of references are summarized in Table 1 and Figure 5. The most common features of glycosides in *Holostane Glycosides with 3*
The number of compounds in this category can be further subdivided into four groups depending on the number of sugar units.

4.1.1. 3β-Hydroxyholost-7(8)-ene Skeleton Containing Holostane Glycosides

Substantial number of triterpene glycosides in this category is produced by sea cucumbers. The species *Eupentacta fraudatrix*, *Holothuria lessoni*, *Bohadschia marmorata*, *Stichopus chloronotus* and *Staurocucumis liouvillei* produce most of the compounds in this group. For convenience, the large number of compounds in this category can be further subdivided into four groups depending on the number of sugar units.

Holostane Glycosides with 3β-Hydroxyholost-7(8)-ene Skeleton and Six Sugar Units

The name of the compounds in this group, their producing species, chemical structures and references are summarized in Table 1 and Figure 5. The most common features of glycosides in this category are the presence of α-acetoxy group at C-23, double bond at C-25(C-26) and terminal 3-O-methyl-D-glucose in carbohydrate chain. An interesting point to be noted in here is that the sulfate group is totally absent in this group of compounds.

![Figure 4](image-url)

Figure 4. Pentacyclic triterpene and alkane side chain skeletons are commonly found in holostane type glycosides. (a) Pentacyclic triterpene skeletons. Substitution by selective functional groups and unsaturation generally take place in the alkane side chain (2-methylpentane) attached to C-20 of the E-ring of aglycone; (b) Alkane side chain architectures.

Compound Name	Producing Species	Reference
Holotoxin E (13)	*S. japonicus*	[22]
Stichloroside B1 (11)	*S. nozawai*	[16]
Variegatuside F (12)	*S. variegates*	[21]
Stichloroside B2 (7)	*S. chloronotus*	[20]
Stichloroside A2 (5)	*S. chloronotus*	[20]
Stichloroside C2 (9)	*S. chloronotus*	[20]
Stichloroside A1 (4)	*S. chloronotus*	[20]
Stichloroside B1 (6)	*S. chloronotus*	[20]
Stichoposide D (2)	*Thelenota anax*	[18]
Stichoposide C (1)	*Thelenota anax*	[17]

Table 1. Name and producing species of glycosides with 3β-hydroxyholost-7(8)-ene and six sugar units.
Holostane Glycosides with 3β-Hydroxyholost-7(8)-ene Skeleton and Five Sugar Units

The name of the compounds in this group, their producing species, chemical structures and references are summarized in Table 2 and Figure 6. The most common structural features in this group are the sulfate groups at C-4 of xylose and C-6 of glucose and methylglucose with either β-acetoxy or keto group at C-16 and C-25(26) double bond. A quite number of compounds contain a keto group at C-23. The rare structural features of triterpene glycoside are the presence of 16,22-epoxy group (33), ethoxy group (34), –OH instead of OAc, and Δ25(26) group at C-23. The only example of triterpene glycosides containing an acetate group at C-6 of the terminal sugar unit. Carbohydrate chain can be one branched (14-48 and 52-54) or straight (49-51). 3-O-methyl-D-xylose as a terminal monosaccharide unit that is a characteristic feature of all the glycosides isolated from Eupentacta fraudatrix.

Table 2. Name and producing species of glycosides with 3β-hydroxyholost-7(8)-ene and five sugar units.

Compound Name	Producing Species	Reference	Compound Name	Producing Species	Reference
Cucumarioside A₁-1(14)	Cucumaria japonica	[23]	Cucumarioside A₁-2(15)	C. japonica	[23]
Cucumarioside A₂-3(16)	C. japonica	[23]	Cucurumarioside A₁-2(17)	C. japonica	[23]
Cucumarioside A₂-2(18)	C. japonica	[23]	Cucumarioside A₃-3(19)	C. japonica	[23]
Cucumarioside A₂-4(20)	C. japonica	[24]	Cucumarioside A₃-5(21)	C. conicospermium	[26]
Cucumarioside A₃-2(22)	C. japonica	[24]	Cucumarioside A₄-2(23)	C. japonica	[27]
Cucumarioside A₄-1(24)	C. japonica	[28]	Cucumarioside A₄-2(25)	C. japonica	[28]
Cucumarioside A₅-3(26)	C. japonica	[28]	Cucumarioside H(27)	E. fraudatrix	[28]
Cucumarioside H₁(28)	E. fraudatrix	[30]	Cucumarioside H₂(29)	E. fraudatrix	[30]
Cucumarioside H₃(30)	E. fraudatrix	[30]	Cucumarioside H₄(31)	E. fraudatrix	[29]
Cucumarioside H₅(32)	E. fraudatrix	[29]	Cucumarioside H₆(33)	E. fraudatrix	[29]
Cucumarioside I₁(34)	E. fraudatrix	[31]	Cucumarioside I₂(35)	E. fraudatrix	[32]
Cucumarioside I₂(36)	E. fraudatrix	[31]	Frondoside A(37)	C. frondosa	[33]
Frondoside B(38)	C. frondosa	[34]	Frondoside A₁-1(39)	C. frondosa	[35]
Frondoside A₁-2(40)	C. frondosa	[35]	Frondoside A₂-3(41)	C. frondosa	[35]
Frondoside A₁-4(42)	C. frondosa	[36]	Calcigeroside C₁(43)	P. calcigera	[37]
Calcigeroside D₁(44)	P. calcigera	[38]	Calcigeroside E(45)	P. calcigera	[38]
Colochiricoside A₁(46)	C. anepos	[39]	Cucumarioside C₁(47)	E. fraudatrix	[40]
Cucumarioside A₂(48)	E. fraudatrix	[40]	Synallactoside B₂(49)	S. nozawai	[16]
Synallactoside B₁(50)	S. nozawai	[16]	Synapta A(51)	Synapta maculata	[41]
Okhtoside A₁-1(52)	C. okhtosensis	[42]	Frondoside A₁-1(53)	C. frondosa	[43]
Frondoside A₁-2(54)	C. frondosa	[43]			
Figure 6. Cont.
Holostane Glycosides with 3β-Hydroxyholost-7(8)-ene Skeleton and Four Sugar Units

Several compounds in this group were isolated from the species of *Staurocucumis liouvillei* and *Eupenita fraudatrix* (Table 3). The most common characteristic of glycosides in the group is the presence of sulfate at C-4 of xylose and either keto or β-acetoxy group at C-16 (Figure 7). Some of the compounds in this series, especially liouvillosides, violaceusosides and cucumechinosides, may contain up to three sulfates in their carbohydrate chain. The presence of α-hydroxy at C-12 and C-17 (78 and 79), artifact n-butoxy (113) and ethoxy (114) groups at C-25, and three consecutive xylose sugar units in carbohydrate chain (72) are rare structural features in this category. Cucumariosides A1 (111), A2 (115) and A3 (118) are the desulfated derivatives of cucumariosides G1 (123), G3 (124) and G4 (125), respectively.

Table 3. Name and producing species of glycosides with 3β-hydroxyholost-7(8)-ene and four sugar units.

Compound Name	Producing Species	Reference	Compound Name	Producing Species	Reference
Liouvilloside A (55)	*Staurocucumis liouvillei*	[44]	Liouvilloside A1 (56)	*S. liouvillei*	[45]
Liouvilloside A2 (57)	*S. liouvillei*	[45]	Liouvilloside A3 (58)	*S. liouvillei*	[45]
Liouvilloside A3 (59)	*S. liouvillei*	[46]	Liouvilloside B (60)	*S. liouvillei*	[44]
Liouvilloside B (61)	*S. liouvillei*	[45]	Liouvilloside B1 (62)	*S. liouvillei*	[45]
Violaceusoid A (63)	*P. violeceus*	[47]	Violaceusoid B (64)	*P. violeceus*	[47]
Violaceusoid I (65)	*P. violeceus*	[48]	Violaceusoid II (66)	*P. violeceus*	[49]
Table 3. Cont.

Compound Name	Producing Species	Reference	Compound Name	Producing Species	Reference
Violaceuside III (67)	*P. violaceus*	[48]	Intercedenside A (68)	*M. intercedens*	[49]
Intercedenside B (67)	*M. intercedens*	[49]	Intercedenside C (70)	*M. intercedens*	[49]
Intercedenside D (71)	*M. intercedens*	[50]	Intercedenside E (72)	*M. intercedens*	[50]
Intercedenside F (73)	*M. intercedens*	[50]	Intercedenside G (74)	*M. intercedens*	[50]
Intercedenside H (75)	*M. intercedens*	[50]	Intercedenside I (76)	*M. intercedens*	[50]
Patagonicoside A (77)	*P. patagonicus*	[51]	Patagonicoside B (78)	*P. patagonicus*	[52]
Patagonicoside C (79)	*P. patagonicus*	[52]	Philinopside A (80)	*P. quadrangularis*	[53]
Philinopside B (81)	*P. quadrangularis*	[54]	Philinopside E (82)	*P. quadrangularis*	[54]
Philinopside F (83)	*P. quadrangularis*	[54]	Mollisoside A (84)	*A. mollis*	[55]
Mollisoside B2 (85)	*Australostichopus mollis*	[55]	Eximisolide A (86)	*P. eximius*	[56]
Pseudostochnopside A (87)	*Pseudostochnopus trachus*	[57]	Cucumarioside A (90)	*S. lefevrei*	[57]
Typicoside A1 (91)	*Actinocodium typicum*	[60]	Typticoside A2 (92)	*A. typica*	[60]
Typticoside B1 (93)	*A. typica*	[60]	Typticoside C1 (94)	*A. typica*	[60]
Typticoside C2 (95)	*A. typica*	[60]	Typticoside A1 (96)	*C. okhotensis*	[61]
Okhotoside A1-1 (97)	*Cucumaria okhotensis*	[61]	Okhotoside B1 (98)	*C. okhotensis*	[62]
Okhotoside B2 (99)	*C. okhotensis*	[62]	Okhotoside B2 (100)	*C. okhotensis*	[62]
Colochiroside A1 (101)	*Colochirus robustus*	[63]	Colochiroside A2 (102)	*C. robustus*	[63]
Colochiroside A3 (103)	*C. robustus*	[63]	Colochiroside B1 (104)	*C. robustus*	[64]
Colochiroside B2 (105)	*C. robustus*	[64]	Colochiroside B3 (106)	*C. robustus*	[64]
Violaericosides C (107)	*P. violaceus*	[65]	Violaericosides D (108)	*P. violaceus*	[65]
Violaericosides E (109)	*P. violaceus*	[65]	Violaericosides G (110)	*P. violaceus*	[65]
Cucumarioside A1 (111)	*E. fraudatrix*	[66]	Cucumarioside A2 (112)	*E. fraudatrix*	[67]
Cucumarioside A2 (113)	*E. fraudatrix*	[66]	Cucumarioside A3 (114)	*E. fraudatrix*	[66]
Cucumarioside A3 (115)	*E. fraudatrix*	[66]	Cucumarioside A4 (116)	*E. fraudatrix*	[66]
Cucumarioside A4 (117)	*E. fraudatrix*	[66]	Cucumarioside A11 (118)	*E. fraudatrix*	[67]
Cucumarioside A5 (119)	*E. fraudatrix*	[66]	Cucumarioside A13 (120)	*E. fraudatrix*	[67]
Cucumarioside A6 (121)	*E. fraudatrix*	[67]	Cucumarioside A15 (122)	*E. fraudatrix*	[66]
Cucumarioside A1 (123)	*C. echinata*	[68]	Cucumarioside G1 (124)	*E. fraudatrix*	[69]
Cucumarioside G2 (125)	*E. fraudatrix*	[70]	Pentactaside B (126)	*P. quadrangularis*	[71]
Pentactaside C (127)	*P. quadrangularis*	[71]	Pseudostochnopside B (128)	*P. trachus*	[72]
Variegatuside A (129)	*S. variegata*	[73]	Variegatuside C (130)	*S. variegata*	[21]
Synallactoside A1 (131)	*S. nozawae*	[16]	Thelenotoside A (132)	*T. ananas*	[74]
Cucumemichinoside B (135)	*C. echinata*	[75]	Cucumemichinoside C (136)	*C. echinata*	[75]
Cucumemichinoside D (137)	*C. echinata*	[75]	Cucumemichinoside E (138)	*C. echinata*	[75]
Cucumemichinoside F (139)	*C. echinata*	[75]	Lefevreoside A1 (140)	*C. lefevrei*	[76]
Lefevreoside A2 (141)	*C. lefevrei*	[76]	Lefevreoside C (142)	*C. lefevrei*	[76]

![Figure 7. Cont.](image_url)
Figure 7. Cont.

59 Liouvilloside A R1=SO3Na, R2=CH3, R3=CH2OSO3Na, R4=CH2OH, R5=OAc, R6=H, R7=OAc, R8=OAc, R9=OAc
60 Liouvilloside B R1=H, R2=CH3, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=OAc, R6=H, R7=OAc, R8=OAc
61 Liouvilloside C R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
62 Liouvilloside D R1=SO3Na, R2=CH3, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=OAc, R6=H, R7=OAc, R8=OAc
63 Liouvilloside E R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
64 Liouvilloside F R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
65 Liouvilloside G R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
66 Liouvilloside H R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
67 Liouvilloside I R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
68 Liouvilloside J R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
69 Liouvilloside K R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
70 Liouvilloside L R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
71 Liouvilloside M R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
72 Liouvilloside N R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
73 Liouvilloside O R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
74 Liouvilloside P R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
75 Liouvilloside Q R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
76 Liouvilloside R R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
77 Liouvilloside S R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
78 Liouvilloside T R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
79 Liouvilloside U R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
80 Liouvilloside V R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
81 Liouvilloside W R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
82 Liouvilloside X R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
83 Liouvilloside Y R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
84 Liouvilloside Z R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
85 Liouvilloside a R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
86 Liouvilloside b R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
87 Liouvilloside c R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
88 Liouvilloside d R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
89 Liouvilloside e R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
90 Liouvilloside f R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
91 Liouvilloside g R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
92 Liouvilloside h R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
93 Liouvilloside i R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
94 Liouvilloside j R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc
95 Liouvilloside k R1=SO3Na, R2=CH2OH, R3=CH2OSO3Na, R4=CH2OSO3Na, R5=O, R6=H, R7=OAc

Figure 7. Cont.
Figure 7. Cont.
Holostane Glycosides with 3β-Hydroxyholost-7(8)-ene Skeleton and 1–3 Sugar Units

The name of the compounds in this group, their producing species, chemical structures and references are summarized in Table 4 and Figure 8. The most common feature of triterpene glycosides is the presence of double bond at C-25(26). Cucumarioside B1 (144) and pentactaside III (148) is the positional isomer of stichoposide A (153).

Table 4. Name and producing species of glycosides with 3β-hydroxyholost-7(8)-ene and 1–3 sugar units.

Compound Name	Producing Species	Reference	Compound Name	Producing Species	Reference
Pentactaside I (144)	Pentacta quadrangularis	[77]	Pentactaside II (145)	Pentacta quadrangularis	[77]
Cucumarioside B1 (146)	E. fraudatrix	[78]	Cucumarioside B2 (147)	E. fraudatrix	[78]
Pentactaside II (148)	P. quadrangularis	[77]	Stichoposide A (149)	Stichopus cloronotus	[79]
Stichoposide B (150)	Stichopus cloronotus	[79]	Stichorrenoside A (151)	Stichopus horrens	[80]
Stichorrenoside B (152)	S. horrens	[80]	Stichorrenoside C (153)	S. horrens	[80]
Stichorrenoside D (154)	S. horrens	[80]	Hillaside A (155)	H. hilla	[81]
4.1.2. 3β-Hydroxyholost-9(11)-ene Skeleton Containing Holostane Glycosides

The species *Holothuria lessoni*, *Bohadschia marmorata* and *Bohadschia bivittata* produce most of the compounds in this group. For convenience, the large number of compounds in this category can also be further subdivided into four groups depending on the number of sugar units.

Holostane Glycosides with 3β-Hydroxyholost-9(11)-ene Skeleton and Six Sugar Units

Similar to 3β-hydroxyholost-7(8)-ene skeleton with six sugar units (Figure 5), 3β-hydroxyholost-9(11)-ene skeleton with six sugar units glycosides also do not have any sulfate group in their carbohydrate chain (Figure 9 and Table 5) except cladolosides K1, K2 and L1 (197–199). The most common structural feature of triterpene glycosides in this category is the presence of 3-O-methyl-D-glucose at the both end of the straight carbohydrate chain. Holotoxin and parvimoside series (156–166) of compounds have a keto group at position C-16. Double bond at C-25(26) among holotoxins (156–163) is common, except 26-nor-25-oxo-holotoxin A1 (159), where the double bond is replaced by a keto group. The α-hydroxy groups at C-12 and C-17 are commonly found in the aglycone part of lessonsioside series of glycosides (175–177). The α-hydroxy group at C-12 and C-17, and 22,25-epoxy are common structural characteristics of holothurinosides (183–188). Acetoxy group at C-16 and C-22 are frequently observed in cladoloside glycosides (189–199).
Table 5. Name and producing species of glycosides with 3β-hydroxyholost-9(11)-ene and six sugar units.

Compound Name	Producing Species	Reference	Compound Name	Producing Species	Reference
Holotoxin A	*Stichopus japonicus*	[82]	Holotoxin A1	*Apostichopus japonicus*	[83]
25,26-dihydroxyholotoxin A1	*Apostichopus japonicus*	[83]	Oxo-holotoxin A1	*Apostichopus japonicus*	[83]
Holotoxin B	*S. japonicus*	[22]	Holotoxin B1	*S. japonicus*	[22]
Holotoxin D	*B. marmorata*	[86]	Holotoxin D1	*B. argus*	[87]
Parvimoside A	*Stichopus parvimensis*	[84]	Parvimoside B1	*Stichopus japonicus*	[84]
Bivittoside C	*Bohadschia bivittata*	[85]	Bivittoside D1	*B. bivittata*	[85]
25-acetoxybivittoside D	*Arguside B*	[86]			
Arguside C	*B. argus*	[83]			
Marmoratoside B	*B. marmorata*	[86]			
17α-hydroxyimpatienside A1	*C. schmeltzii*	[84]	Holothurinoside K1	*H. lessoni*	[88]
Holothurinoside H	*C. schmeltzii*	[88]	Holothurinoside I1	*C. schmeltzii*	[88]
Holothurinoside I	*C. schmeltzii*	[88]	Holothurinoside H1	*C. schmeltzii*	[88]
Holothurinoside F	*C. schmeltzii*	[88]			
26-nor-25-oxo-holotoxin A1	*B. subrubra*	[89]	Holothurinoside H1	*B. subrubra*	[89]
Holothurinoside I	*B. subrubra*	[89]	Holothurinoside H1	*B. subrubra*	[89]
Holothurinoside K1	*B. subrubra*	[89]	Cladoloside C1	*C. schmeltzii*	[90]
Cladoloside C1	*Cladolobes schmelzii*	[90]	Cladoloside C2	*C. schmeltzii*	[90]
Cladoloside C2	*C. schmelzii*	[91]	Cladoloside D1	*C. schmelzii*	[91]
Cladoloside D1	*C. schmelzii*	[91]	Cladoloside H1	*C. schmelzii*	[91]
Cladoloside H1	*C. schmelzii*	[91]	Cladoloside K1	*C. schmelzii*	[91]
Cladoloside K1	*C. schmelzii*	[92]	Cladoloside L1	*C. schmelzii*	[92]

Figure 9. Cont.
Bivittoside D $R_1=R_4=R_5=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$, 25-OH

25-acetoxy bivittoside D $R_1=R_4=R_5=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$, 25-OAc

Arguside B $R_1=R_4=R_5=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$

Arguside C $R_1=R_3=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$

Marmoratoside A $R_1=R_4=R_5=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$

Marmoratoside B $R_1=R_4=R_5=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$

Impatienside A $R_1=R_4=R_5=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$

17α-hydroxy impatienside A $R_1=R_4=R_5=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$, 25-OH

Lessonioside A $R_1=R_4=R_5=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$

Lessonioside B $R_1=R_4=R_5=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$

Lessonioside D $R_1=R_4=R_5=\text{CH}_3$, $R_2=\text{H}$, $R_3=\text{CH}_3$, $R_6=\text{CH}_2\text{OH}$, $R_7=\text{H}$, $R_8=\text{OH}$

Variegatuside E $R_1=R_4=R_5=\text{CH}_3$, $R_2=R_3=\text{CH}_2\text{OH}$, $R_6=\text{H}$, $R_7=\text{H}$, $R_8=\text{OH}$

Lessonioside C $R_1=\text{CH}_3$, $R_2=R_4=R_5=\text{H}$, $R_3=\text{CH}_3$, 25-OAc

Lessonioside E $R_1=\text{CH}_3$, $R_2=\text{CH}_2\text{OH}$, $R_3=R_4=R_5=\text{H}$, 25-OAc

Lessonioside F $R_1=\text{CH}_3$, $R_2=R_4=R_5=\text{CH}_2\text{OH}$, $R_3=\text{H}$, Δ25(26)

Lessonioside G $R_1=R_4=R_5=\text{CH}_3$, $R_2=\text{H}$, $R_3=\text{CH}_3$, Δ25(26)

Holothurinoside F $R_1=R_2=\text{CH}_3$, $R_3=R_4=\text{H}$, $R_5=\text{OH}$

Holothurinoside H $R_1=R_3=\text{CH}_3$, $R_2=\text{CH}_2\text{OH}$, $R_4=\text{H}$, $R_5=\text{OH}$

Holothurinoside H$_1$ $R_1=R_2=\text{CH}_2\text{OH}$, $R_3=\text{CH}_3$, $R_4=R_5=\text{H}$

Holothurinoside I $R_1=R_3=\text{CH}_3$, $R_2=\text{CH}_2\text{OH}$, $R_4=\text{OH}$, $R_5=\text{OH}$

Holothurinoside I$_1$ $R_1=R_2=\text{CH}_2\text{OH}$, $R_3=\text{CH}_3$, $R_4=\text{OH}$, $R_5=\text{H}$

Holothurinoside K$_1$ $R_1=R_2=\text{CH}_2\text{OH}$, $R_3=\text{CH}_3$, $R_4=\text{OH}$, $R_5=\text{OH}$

Figure 9. Cont.
Holostane Glycosides with 3β-Hydroxyholost-9(11)-ene Skeleton and Five Sugar Units

The carbohydrate chains of glycosides in this group are either straight (200–218 and 223–229) or branched (219–222) (Figure 10 and Table 6). The 22,25-epoxy (200–202, 213–215) and two acetoxyl groups, one at C-16 and another at C-22 (211, 212, 223–228), are common in holothurinosides and cladolosides, respectively. Kolgaosides (204 and 205) and achlioniceosides (216–218) within their own groups have the same carbohydrate chains and the only difference is in their respective aglycone side chains.

Table 6. Name and producing species of glycosides with 3β-hydroxyholost-9(11)-ene and five sugar units.

Compound Name	Producing Species	Reference	Compound Name	Producing Species	Reference
Holothurinoside A (200)	Holothuria forskali	[93]	Holothurina gresii	[94]	
Holothurinoside A1 (202)	H. lesami	[95]	Holothurinoside B (203)	H. forskali	[96]
Kolgaoside A (204)	Kolga hyalina	[97]	Kolgaoside B (205)	K. hyalina	[96]
Griseaside A (206)	H. grisea	[98]	Impatientside B (207)	H. azeloga	[97]
Arguside F (208)	Holothuria azeloga	[99]	Pervicoside D (209)	H. azeloga	[97]
Cladoloside B (210)	A. japonicus	[22]	Cladoloside B1 (211)	C. schmelzii	[22]
Cladoloside B1 (212)	C. schmelzii	[22]	Holothurinoside E (213)	H. lesami	[22]
Holothurinoside E1 (214)	H. lesami	[22]	Holothurinoside M (215)	H. lesami	[22]
Achlioniceoside A1 (216)	A. violaceipudata	[98]	Achlioniceoside A2 (217)	A. violaceipudata	[98]
Achlioniceoside A3 (218)	A. violaceipudata	[98]	De-penaustroside C (219)	P. australis	[99]
De-penaustroside D (220)	Pentacta australis	[99]	Frondoside A2-6 (221)	C. frondosa	[99]
Cladoloside F1 (222)	C. schmelzii	[91]	Cladoloside F2 (223)	C. schmelzii	[91]
Cladoloside F2 (224)	C. schmelzii	[91]	Cladoloside F3 (225)	C. schmelzii	[91]
Cercodemaside A (226)	C. andreae	[100]	Cladoloside J1 (227)	C. schmelzii	[92]
Cladoloside I1 (228)	C. schmelzii	[92]	Cladoloside J2 (229)	C. schmelzii	[92]
Figure 10. Cont.
Holostane Glycosides with 3β-Hydroxyholost-9(11)-ene Skeleton and Four Sugar Units

The names and structures of the glycosides belonging to this group are summarized in the Table 7 and Figure 11. Almost all the saponins in this group contain sulfate group at C-4 of xylose sugar. The most common features of holothurins (230–233), scabrasides (235–237) and echinosides (243–249) are the presence of hydroxy groups at C-12 and C-17 (Figure 11). Among the cladoloside series of compounds (266–271), either keto or acetoxy group is commonly found at position C-16 and 22. The uncommon linear sugar chain [3-O-MeGlc (1→3)-Glc (1→4)-Xyl (2→1)-Qui] is observed in bivittoside B (262). Another exceptional feature has been found in this category of compounds is the presence of three consecutive glucose unit in the linear carbohydrate chain (258 and 259).

Table 7. Name and producing species of glycosides with 3β-hydroxyholost-9(11)-ene and four sugar units.

Compound Name	Producing Species	Reference	Compound Name	Producing Species	Reference
Holothurin A (230)	Actinopyga agassizi	[101]	Holothurin A1 (231)	H. grisea	[102]
Holothurin A (232)	Holothuria scabrosa	[103]	Holothurin A2 (233)	H. scabra	[103]
Holothurinose C (234)	H. forskali	[93]	Scabraside A (235)	H. scabra	[104]
Scabraside B (236)	H. scabra	[104]	Scabraside D (237)	H. scabra	[105]
Fuscocineroside A (238)	H. fuscocinerea	[106]	Fuscocineroside B (239)	H. fuscocinerea	[106]
17-hydroxy fuscocineroside B (240)	B. narcina	[107]	25-hydroxy-fuscocineroside B (241)	B. narcina	[107]
Fuscocineroside C (242)	H. fuscocinerea	[108]	Echinoside A (243)	A. echinata	[108]
De-echinoside A (244)	P. graeffei	[109]	24-dehydroechinoside A (245)	H. scabra	[105]
22-hydroxy-24-dehydroechinoside A (246)	Actinopyga flavina	[110]	24-hydroxy-25-dehydroechinoside A (247)	A. flumina	[110]
25-hydroxydehydroechinoside A (248)	A. flumina	[110]	22-acetoxyechinoside A (249)	A. flumina	[110]
Desholothurin A (250)	P. graeffei	[93]	Pervicoside A (251)	H. perrivex	[111]
Pervicoside B (252)	H. perrivex	[111]	Pervicoside C (253)	H. perrivex	[111]
Arguside A (254)	Bohadschia argus	[112]	Holothurinoside A1 (255)	P. graeffei	[93]
Hemoiedemoside A (256)	H. spectabilis	[113]	Hemoiedemoside B (257)	H. spectabilis	[113]
Arguside D (258)	B. argus	[114]	Arguside E (259)	B. argus	[114]
Pseudoloside A (260)	Pseudos fabricii	[115]	Lisuvilloside A (261)	S. luteus	[46]
Bivittoside B (262)	Bohadschia brevita	[85]	Holothurinoside S (263)	H. lesamii	[116]
Holothurinoside Y (264)	H. lesamii	[116]	Holothurinoside Z (265)	H. lesamii	[116]
Cladodeside A1 (266)	Cladolides echinellii	[117]	Cladoloside A2 (267)	C. echinellii	[117]
Cladoloside A2 (268)	C. echinellii	[117]	Cladoloside A3 (269)	C. echinellii	[117]
Cladoloside A3 (270)	C. echinellii	[117]	Cladoloside A1 (271)	C. echinellii	[117]
Colochiroside C (272)	C. echinellii	[64]	Colochiroside D (273)	C. robustus	[63]
Melloloside B (274)	A. melis	[53]	Neothyonidioside (275)	A. melis	[118]
Figure 11. Cont.
Holostane Glycosides with 3β-Hydroxyholost-9(11)-ene Skeleton and 1–3 Sugar Units

Only one type of carbohydrate chain, D-xylose-D-quinovose, is found in all glycosides in this group having two monosaccharide units (275–291), except 291 where carbohydrate chain is D-xylose-D-xylose (Figure 12 and Table 8); sulfate groups at C-4 of xylose units are also commonly found as well, except 285, 288 and 291. Hydroxy groups at either C-12 or C-17, or both positions, are observed in all the compounds in this category (Figure 12), except cercodemasoides (276–279).

Table 8. Name and producing species of glycosides with 3β-hydroxyholost-9(11)-ene and 1–3 sugar units.

Compound Name	Producing Species	Reference	Compound Name	Producing Species	Reference
Cercodemasoide B (276)	Cercodemas anceps	[100]	Cercodemasoide C (277)	C. anceps	[100]
Cercodemasoide D (278)	C. anceps	[100]	Cercodemasoide E (279)	C. anceps	[100]
Holothurin B (280)	Holothuria lessoni	[119]	Holothurin B1 (281)	H. lessoni	[120]
Holothurin B3 (282)	H. polii	[121]	Holothurin B3 (283)	H. polii	[121]
Holothurin B4 (284)	H. polii	[121]	Holothurininoside D (285)	H. forskali	[93]
Leucospilotaside A (286)	Holothuria leucopilota	[122]	Leucospilotaside B (287)	H. leucopilota	[122]
Bivittoside A (288)	Bovinda brevissima	[85]	Echinoside B (289)	A. echnites	[108]
24-dehydroechinoside B (290)	Actinopyga maeritiana	[123]	Hillaside C (291)	Holothuria hilla	[124]
Hillaside B (292)	H. hilla	[81]			
4.1.3. Holostane Glycosides with 3β-Hydroxyholost-8(9)-ene Skeleton

Only three glycosides belong to this group with carbohydrate chain consisting of 4–5 monosaccharide units (Table 9 and Figure 13). Among holostane sea cucumber glycosides, only one glycoside, synaptoside A1 (293), contains keto group at C-7.

Table 9. Name and producing species of holostane glycosides with 3β-hydroxyholost-8(9)-ene skeleton.

Compound Name	Producing Species	Reference
Synaptoside A1 (293)	Synapta maculata	[41]
Variegatuside D (295)	Stichopus variegates	[21]
Variegatuside B (294)	Stichopus variegates	[23]

Figure 12. Chemical structure of holostane glycosides with 3β-hydroxyholost-9(11)-ene and 1–3 sugar units.

Figure 13. Chemical structures of holostane glycosides with 3β-hydroxyholost-8(9)-ene skeleton.
4.2. Nonholostane Glycosides

As mention earlier, like holostane glycosides, nonholostane glycosides do not have γ(18,20)-lactone structural unit (Figures 14 and 15, Table 10). There are six different structural units (Figure 14). Instead of γ(18,20)-lactone, some glycosides in this group contain γ(16,18)-lactone (296-300, 314, 322, 332-340 and 341). Cucumariosides A₈ (305) and A₀ (306) contain uncommon hydroxy group at C-18. Fallaxosides B₁ (322) and D₃ (327) are novel glycosides with unprecedented skeletons of aglycones. Psolusoside B (314) and Kuriloside C (316) have four members sugar architecture which are uncommon in both holostane and nonholostane glycosides. Another uncommon feature of this group of compounds is the presence of keto group at C-11 (323 and 325). Sulfate group is commonly found at C-4 of first xylose unit (Figure 15). Most of the nonholostane glycosides have branched five members carbohydrate chain (Figure 15).

![Figure 14. D- and E-ring structural architectures present in nonholostane glycosides.](image)

Compound Name	Producing Species	Reference	Compound Name	Producing Species	Reference
Cucumarioside A₂ (296)	E. fraudatrix	[125]	Cucumarioside A₁₈ (297)	E. fraudatrix	[67]
Cucumarioside B (296)	P. calcigera	[37]	Calcigeroside C₁ (299)	P. calcigera	[37]
Cucumarioside H₁ (300)	E. fraudatrix	[30]	Cucumarioside A₂-2 (301)	C. conicopermium	[26]
Cucumarioside A₂₋₃ (302)	C. conicopermium	[26]	Koreoside A (303)	C. koraiensis	[126]
Isokoreoside A (304)	C. conicopermium	[26]	Cucumarioside A₈ (305)	E. fraudatrix	[67]
Cucumarioside A₀ (306)	E. fraudatrix	[67]	Holotoxin F (307)	A. japonicus	[22]
Holotoxin G (308)	A. japonicus	[22]	Holotoxin H (309)	S. japonicus	[127]
Holotoxin I (310)	S. japonicus	[127]	Ds-penaustroside A (311)	P. australis	[99]
Psolusoside B (314)	Psolus fabricii	[129]	Frondoside C (313)	C. frondosa	[128]
Kuriloside C (316)	D. kurilensi	[130]	Kuriloside A (315)	D. kurilensi	[130]
Frondoside A₂₋₈ (318)	C. frondosa	[36]	Frondoside A₂₋₇ (317)	C. frondosa	[36]
Frondoside A₀₋₄ (320)	C. frondosa	[43]	Isocuriloside C (321)	C. frondosa	[43]
Fallaxoside B₁ (322)	C. fallax	[131]	Fallaxoside C₁ (323)	C. fallax	[132]
Fallaxoside C₂ (324)	C. fallax	[132]	Fallaxoside D₁ (325)	C. fallax	[132]
Fallaxoside D₂ (326)	C. fallax	[132]	Fallaxoside D₂ (327)	C. fallax	[132]
Fallaxoside D₃ (328)	C. fallax	[133]	Fallaxoside D₃ (329)	C. fallax	[133]
Fallaxoside D₄ (330)	C. fallax	[133]	Fallaxoside D₄ (331)	C. fallax	[133]
Magnumoside A₁ (332)	Massinimum magnus	[134]	Magnumoside A₁ (333)	M. magnus	[134]
Magnumoside A₂ (334)	M. magnus	[134]	Magnumoside A₁ (335)	M. magnus	[134]
Magnumoside B₁ (336)	M. magnus	[134]	Magnumoside B₂ (337)	M. magnus	[134]
Magnumoside C₁ (338)	M. magnus	[134]	Magnumoside C₂ (339)	M. magnus	[134]
Magnumoside C₂ (340)	M. magnus	[134]	Colochiroside E (341)	C. robustus	[135]
Magnumoside A3

Magnumoside A4

Magnumoside B1

Magnumoside B2

Magnumoside C1

Magnumoside C2

Magnumoside C4

Colochiroside E

Figure 15. Cont.
Figure 15. Cont.
5. The Important Biological Properties of Sea Cucumber Glycosides

Triterpene glycosides are the prime bioactive metabolites of sea cucumbers, and are commonly known as toxins of sea cucumbers to eukaryotic cells. These glycosides showed a wide range of biological activities including cytotoxic, antifungal, antiviral, hemolytic, antiprotozoal and immunomodulatory activities. Sea cucumbers produce some major glycosides in sufficient amount to carry out a wide range of biological activity tests [37, 94]. Besides major glycosides, they also produce minor glycosides insufficient to test a range of biological activities [66, 67]. The point to be noted here is that sea cucumber glycosides are able to exhibit biological activities in both in vitro and in vivo models [5]. The remarkable biological properties showed by some triterpene glycosides are summarized in Table 11. Triterpene glycosides do not exhibit antibacterial activity, indicating that these glycosides are probably produced by sea cucumbers for defence against eukaryotic predators.

Table 11. Remarkable biological activities exhibited by some sea cucumber glycosides.

Compound	Activity	Against/For	Activity Result	Reference
Hillsaside C (285)	Cytotoxic	Human tumor cell lines	IC₅₀: 0.15–3.20 µg/mL	[124]
Hemoideoisone A (251)	Antifungal	C. cucumerinum	20 µg/disc: 23 mm zone	[113]
Fuscospirotide B (284)	Cytotoxic	Human tumor cell lines	IC₅₀: 0.88 and 0.58 µg/mL	[106]
Intercedenside C (66)	Cytotoxic	Human tumor cell lines	ED₅₀: 0.96–4.0 µg/mL	[49]
Intercedenside B (67)	Cytotoxic	Human tumor cell lines	ED₅₀: 0.61–2.0 µg/mL	[49]
Holothurin A (195)	Cytotoxic	Human tumor cell lines	IC₅₀: 0.33–0.71 µg/mL	[95]
Holothurin C (229)	Cytotoxic	Human tumor cell lines	IC₅₀: 0.16–0.93 µg/mL	[93]
Liouvilleidoside A (83)	Virucidal	Herpes simplex virus	<10 µg/mL	[44]
Lescopilotaside B (281)	Cytotoxic	Human tumor cell lines	IC₅₀: 0.44–2.62 µg/mL	[122]
Arguside B (164)	Cytotoxic	Human tumor cell lines	IC₅₀: 0.38–2.60 µg/mL	[97]
Arguside C (165)	Cytotoxic	Human tumor cell lines	IC₅₀: 0.38–2.60 µg/mL	[97]
Phlinopside A (78)	Cytotoxic	Human tumor cell lines	IC₅₀: 1.70–3.50 µg/mL	[52]
Phlinopside B (79)	Cytotoxic	Human tumor cell lines	IC₅₀: 0.75–3.0 µg/mL	[33]
Cucumarioside A2-2 (18)	Hemolytic	Erythrocyte of mouse	ED50: 0.87 at 10⁻⁵ M	[136]
Holothurin A (274)	Antifungal	T. mentagrophytes	MIC: 1.5 µg/mL	[137]
Holothurin A1 (227)	Cytotoxic	Human tumor cell lines	IC₅₀: 0.32–0.87 µg/mL	[103]
Holothurin A2 (228)	Cytotoxic	Human tumor cell lines	IC₅₀: 0.57–1.12 µg/mL	[103]
Scabraside A (230)	Antifungal	Eight pathogenic fungal strains	MIC₅₀: 2–8 µg/mL	[138]
Echinicoside A (238)	Antifungal	Eight pathogenic fungal strains	MIC₅₀: 1–8 µg/mL	[108]
Cucumarioside A1-2 (18)	immunomodulatory	Increased lysosomal activity	0.2–20 mg/mouse	[139]
Frondoside A (37)	immunomodulatory	Enhanced phagocytosis	0.001 µg/mL	[140]
Phlinopside E (80)	Cytoxicity	Ten tumor cell lines	ED₅₀: 0.75–3.50 µg/mL	[54]
Holotoxin A1 (152)	Antifungal	Five pathogenic fungi	MIC: 0.5–1.0 µg/mL	[22]
Cucumarioside A1 (106)	Hemolytic	Mouse erythrocytes	MIC₅₀: 0.7 ± 0.1 µg/mL	[66]
6. Mechanisms of Action

Natural products derived from marine organisms have incredible structural and functional diversity. The mechanism by which triterpene glycosides exhibit anticancer activity primarily involve induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases and increase of the sub-G0/G1 cell population; regulation of nuclear factor NF-κB expression; reduction in cancer cell adhesion; suppression of cell migration and tube formation; suppression of angiogenesis; inhibition of cell proliferation, colony formation, and tumor invasion [141]. However, the detailed mechanism(s) of the anticancer activities of these glycosides remains largely unclear.

Marked membranolytic effects such as increased membrane permeability, loss of barrier function, and the rupture of cell membrane are considered the basic mechanisms underlying a variety of biological activities exerted by triterpene glycosides of sea cucumbers. The glycosides form complex with Δ5(6)-sterols of cellular membrane especially cholesterol. This interaction induces significant changes in the physicochemical properties of cell membranes, such as variations in their stability, microviscosity, and permeability. Saponins form complexes with membrane sterols, leading to cell disruption by the formation of pores. Due to this irreversible interaction, the selective permeability of cell membranes is impaired and cell compounds are transferred into the extracellular matrix, ultimately resulting in cell death [142,143].

7. Structure–Activity Relationships (SARs)

Both glycone and aglycone parts are important for biological activities of sea cucumber glycosides. The structure–activity relationships among sea cucumber glycosides are presumably more complicated. The most important structural characteristics of glycosides that probably contribute in biological activities are mentioned below.

The cytotoxicity not only depends on the chemical structures of the glycosides but also cell types [144]. The presence of 12α-hydroxy and 9(11)-ene structural units in holostane aglycone play key role in cytotoxicity [144]. Number of monosaccharide units in sugar chains and the substitution in side chain of aglycone could affect cytotoxicity. The presence of hydroxy groups in the side chains of glycosides significantly reduces cytotoxicity of the glycosides with increasing distance of hydroxyl group from the 18(20)-lactone [30,31]. Linear tetraoside unit plays important role in different biological activities of sea cucumber glycosides [144]. Hexaoside chain containing glycosides show stronger cytotoxic activity than pentaoside chain containing glycosides. Glycosides with hexaosides residue with xylose or quinovose in the fifth position are the most active cytotoxins [144]. Different activities test result indicates that the number of sulfate groups and their position in the carbohydrate chains affect cytotoxicity [144]. It has been shown that the sulfate group attached to C-6 of terminal 3-O-methylglucose unit greatly decrease and attached to C-6 of glucose (the third monosaccharide unit) generally increase membranotropic activity [145].

8. Conclusions

Sea cucumbers (or holothurians), a class of marine invertebrates, are used as human food and traditional medicine, especially in some parts of Asia. The majority of the sea cucumbers synthesize glycosides with a polycyclic aglycone that contain either 7(8)- or 9(11)-double bond with up to six monosaccharide residues containing carbohydrate chain. A few of them are known to synthesize aglycone with 8(9)-ene. Sea cucumber glycosides are cytotoxic to eukaryotes; probably produce for escaping from predation by marine eukaryotic organisms. These cucumber metabolites have shown profound cytotoxic and hemolytic activities against eukaryotic organisms but not prokaryotic organisms. Due to significant cytotoxic and antifungal activities, extensive differential SAR studies of these glycosides can be helpful to develop new drugs and agrochemicals.
Acknowledgments: We are also thankful to the World Bank for partial funding of this work through a subproject of Higher Education Quality Enhancement Project (HEQEP), Supplementary Complete Proposal #2071. This research was also supported in part by the Ministry of Oceans and Fisheries (Grant PM60300), Korea. Sincere thanks are due to Prodip Kumar Roy of OIST, Okinawa, Japan for help in literature collection.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gomes, A.R.; Freitas, A.C.; Rocha-Santos, T.A.P.; Duarte, A.C. Bioactive compounds derived from echinoderms. RSC Adv. 2014, 4, 29365–29382. [CrossRef]

2. Brusca, R.C.; Brusca, G.J. Invertebrates, 2nd ed.; Sinauer: Sunderland, MA, USA, 2003; pp. 808–826.

3. Leal, M.C.; Madeira, C.; Brandão, C.A.; Puga, J.; Calado, R. Bioprospecting of marine invertebrates for new natural products-A chemical and zoogeographical perspective. Molecules 2012, 17, 9842–9854. [CrossRef] [PubMed]

4. Shixiu, L.; Nina, A.; Yongjun, M.; Shujuan, S.; Wenjing, F.; Song, H. Bioactive compounds of sea cucumbers and their therapeutic effects. Chin. J. Oceanol. Limnol. 2016, 34, 549–558. [CrossRef]

5. Janakiram, N.B.; Mohammed, A.; Rao, C.V. Sea cucumbers metabolites as potent anti-cancer agents. Mar. Drugs 2015, 13, 2909–2923. [CrossRef] [PubMed]

6. Caulier, G.; Dyck, S.; Gerbaux, P.; Eeckhaut, I.; Flammang, P. Review of saponin diversity in sea cucumbers belonging to the family Holothuriidae. SPC Beche-de-mer Inf. Bull. 2011, 31, 48–54.

7. Hyman, L.H. The Invertebrates. In Echinodermata; McGraw Hill: New York, NY, USA, 1955; Volume 4.

8. Bruckner, A.W.; Johnson, K.; Field, J. Conservation strategies for sea cucumbers: Can a CITES Appendix II listing promote sustainable international trade? SPC Beche-de-mer Inf. Bull. 2003, 18, 24–33.

9. Lawrence, J. A Functional Biology of Echinoderms = Functional Biology Series 6; Calow, P., Ed.; Croom Helm Ltd.: London, UK, 1987; p. 340; ISBN 0-7099-1642-6.

10. Higgins, M. Sea cucumbers in a deep pickle. Environmental News Network, 30 August 2000.

11. Purcell, S.W.; Samyn, Y.; Conand, C. Commercially important sea cucumbers of the world. In FAO Species Catalogue for Fishery Purposes; FAO: Rome, Italy, 2012; Volume 6, p. 150.

12. Weici, T. Chinese medicinal materials from the sea. Abstr. Chin. Med. 1987, 4, 571–600.

13. Yaacob, H.B.; Kim, K.H.; Shahimi, M.; Aziz, N.S.; Sahil, S.M. Malaysian sea cucumber (Gamut): A prospect in health food and therapeutic. In Proceedings of the Asian Food Technology Seminar, Kuala Lumpur, Malaysia, 6–7 October 1997; p. 6.

14. Bordbar, S.; Anwar, F.; Saari, N. High-value components and bioactives from sea cucumbers for functional foods—A review. Mar. Drugs 2011, 9, 1761–1805. [CrossRef] [PubMed]

15. Wen, J.; Hu, C.; Fan, S. Chemical composition and nutritional quality of sea cucumbers. J. Sci. Food Agric. 2010, 90, 2469–2474. [CrossRef] [PubMed]

16. Silchenko, A.S.; Avilov, S.A.; Antonov, A.A.; Kalinin, V.I.; Kalinovsky, A.I.; Smirnov, A.V.; Riguera, R.; Jimenez, C. Triterpene Glycosides from the deep-water North-Pacific sea cucumber Synallactes nozawai Mitsukuri. J. Nat. Prod. 2002, 65, 1802–1808. [CrossRef] [PubMed]

17. Yun, S.H.; Park, E.S.; Shin, S.W.; Na, Y.W.; Han, J.Y.; Jeong, J.S.; Shastina, V.V.; Stonik, V.A.; Park, J.I.; Kwak, J.Y. Stichoposide C induces apoptosis through the generation of ceramide in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin. Cancer Res. 2012, 18, 5934–5948. [CrossRef] [PubMed]

18. Stonik, V.A.; Mal’sev, I.I.; Kalinovsky, A.I.; Conde, K.; Elyakov, G.B. Glycosides of marine-invertebrates. XI. Two novel triterpene glycosides from holothurians of Stichopodidae family. Chem. Nat. Prod. 1982, 2, 194–199.

19. Mal’tsev, I.I.; Stonik, V.A.; Kalinovskii, A.I. Stichoposide E-A new triterpene glycoside from holothurians of the family Stichopodidae. Chem. Nat. Prod. 1983, 19, 292–295. [CrossRef]

20. Kitagawa, I.; Kobuyashi, M.; Inamoto, T.; Yusuzaawa, T.; Kyogoku, Y.; Kido, M. The structures of six antifungal oligoglycosides, stichlorosides A1, A2, B1, B2, C1 and C2 from the sea cucumber Stichopus chloronotus (Brandt). Chem. Pharm. Bull. 1981, 29, 2387–2391. [CrossRef]

21. Wang, X.-H.; Zou, Z.-R.; Yi, Y.-H.; Han, H.; Li, L.; Pan, M.-X. Variegatusides: New non-sulphated triterpene glycosides from the sea cucumber Stichopus variegates. Mar. Drugs 2014, 12, 2004–2018. [CrossRef] [PubMed]
22. Wang, Z.; Zhang, H.; Yuan, W.; Gong, W.; Tang, H.; Liu, B.; Krohn, K.; Li, L.; Yi, Y.; Zhang, W. Antifungal nor-triterpene and triterpene glycosides from the sea cucumber Apostichopus japonicas Selenka. Food Chem. 2012, 1, 295–300. [CrossRef] [PubMed]

23. Drozdova, O.A.; Avilov, S.A.; Kalinovskii, A.I.; Stonik, V.A.; Mil’grom, Y.M.; Rashkes, Y.V. New glycosides from the holothurian Cucumaria japonica. Chem. Nat. Compd. 1993, 29, 200–205. [CrossRef]

24. Avilov, S.A.; Stonik, V.A.; Kalinovskii, A.I. Structures of four new triterpene glycosides from the holothurian Cucumaria japonica. Chem. Nat. Compd. 1990, 26, 670–675. [CrossRef]

25. Avilov, S.; Tishchenko, L.Y.; Stonik, V.A. Structure of cucumarioside A. Can. J. Chem. 1997, 75, 2351–2356. [CrossRef]

26. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Stonik, V.A.; Riguera, R.; Jimenez, C. Triterpene Glycosides from the Far Eastern sea cucumber Cucumaria conicospermium. J. Nat. Prod. 2003, 66, 910–916. [CrossRef] [PubMed]

27. Drozdova, O.A.; Avilov, S.A.; Kalinovskii, A.I.; Stonik, V.A.; Riguera, R.; Jiménez, C. Cytotoxic triterpene glycosides from Far-Eastern sea cucumbers belonging to the genus Cucumaria. Liebigs Ann. Chem. 1997, 11, 2351–2356. [CrossRef]

28. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Yurchenko, E.A.; Kalinin, V.I. Structures and cytotoxic properties of cucumariosides H2, H3, H4 and H5 from the sea cucumber Eupentacta fraudatrix. Structure and biological action of cucumariosides I7, I8, I9, three new minor disulfated pentaosides. Nat. Prod. Commun. 2013, 8, 1053–1058. [PubMed]

29. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Martyyas, E.A.; Kalinin, V.I. Structure of cucumariosides H2, H3, H4 and H5 from the sea cucumber Eupentacta fraudatrix. Chem. Nat. Compd. 1993, 29, 309–313. [CrossRef]
40. Afiatulloev, S.S.; Kalinovskii, A.I.; Stonik, V.A. Structures of cumarinesides C1 and C2. Two new triterpene glycosides from the holothurians Eupentacta fraudatrix. *Chem. Nat. Compd.* 1987, 23, 691–696. [CrossRef]

41. Avilov, S.A.; Silchenko, A.S.; Antonov, A.S.; Kalinovsky, V.I.; Kalinovskii, A.I.; Dmitrenok, P.S.; Evtushenko, E.V.; Fedorov, S.N.; Savina, A.S.; et al. Synaptosides A and A1, triterpene glycosides from the sea cucumber Synaptula maculata containing 3-O-methylglucuronic acid and their cytotoxic activity against tumor cells. *J. Nat. Prod.* 2008, 71, 525–531. [CrossRef] [PubMed]

42. Silchenko, A.S.; Avilov, S.A.; Kalinovskii, A.I. Monosulfated triterpene glycosides from Cucumaria okhotensis Levin et Stepanov, a new species of sea cucumbers from sea of Okhotsk. *Russ. J. Bioorg. Chem.* 2007, 33, 73–82. [CrossRef]

43. Silchenko, A.S.; Avilov, S.A.; Kalinovsky, A.I.; Dmitrenok, P.S.; Kalinin, V.I.; Morre, J.; Deinzer, M.L.; Woodward, C.; Collin, P.D. Glycosides from the North Atlantic sea cucumber *Cucumaria frondosa* V. Structures of five new monosulfated triterpene oligoglycosides, frondosides A7–1, A7–2, A7–3, A7–4, and iso-frondoside C. *Can. J. Chem.* 2007, 85, 626–636. [CrossRef]

44. Maier, M.S.; Roccatagliata, A.; Kuriss, A.; Chludil, H.; Seldes, A.M.; Pujol, C.A.; Damonte, E.B. Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. *J. Nat. Prod.* 2001, 64, 732–736. [CrossRef] [PubMed]

45. Antonov, A.S.; Avilov, S.A.; Kalinovsky, A.I.; Anastyuk, S.D.; Dmitrenok, P.S.; Evtushenko, E.V.; Kalinin, V.I.; Smirnov, A.V.; Taboada, S.; Ballesteros, M.; et al. Triterpene glycosides from Antarctic sea cucumbers. 1. Structure of liouvillosides A1, A2, A3, B1, and B2 from the sea cucumber Staurocucumis liouvillei. New procedure for separation of highly polar glycoside fractions and taxonomic revision. *J. Nat. Prod.* 2008, 71, 1677–1685. [CrossRef] [PubMed]

46. Antonov, A.S.; Avilov, S.A.; Kalinovsky, A.I.; Dmitrenok, P.S.; Kalinin, V.I.; Taboada, S.; Ballesteros, M.; Avila, C. Triterpene glycosides from Antarctic sea cucumbers III. Structures of liouvillosides A4 and A5, two minor disulfated tetraosides containing 3-O-methylquinoose as terminal monosaccharide units from the sea cucumber Staurocucumis liouvillei (Vaney). *Nat. Prod. Res.* 2011, 25, 1324–1333. [CrossRef] [PubMed]

47. Zhang, S.Y.; Yi, Y.H.; Tang, H.F.; Li, L.; Sun, P.; Wu, J. Two new bioactive triterpene glycosides from the sea cucumber Pseudocolochirus violaceus. *J. Asian Nat. Prod. Res.* 2006, 8, 1–8. [CrossRef] [PubMed]

48. Zhang, S.L.; Li, L.; Yi, Y.H.; Sun, P. Philinopsides E and F, two new sulfated triterpene glycosides from the sea cucumber *Pseudocolochirus violaceus*. *Chem. Biodivers.* 2006, 3, 807–817. [CrossRef] [PubMed]

49. Zou, Z.-R.; Yi, Y.-H.; Wu, H.-M.; Wu, J.-H.; Liaw, C.C.; Lee, K.H. Intercedensides A–C, three new cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens Lampert. *J. Nat. Prod.* 2003, 66, 1055–1060. [CrossRef] [PubMed]

50. Zou, Z.; Yi, Y.; Wu, H.; Yao, X.; Du, L.; Jiuhong, W.; Liaw, C.C.; Lee, K.H. Intercedensides D–I, cytotoxic triterpene glycosides from the sea cucumber Mensamaria intercedens Lampert. *J. Nat. Prod.* 2005, 68, 540–546. [CrossRef] [PubMed]

51. Murray, A.P.; Muníaín, C.; Seldes, A.M.; Maier, M.S. Patagonicoside A: A novel antifungal disulfated triterpene glycoside from the sea cucumber *Psolus patagonicus*. *Tetrahedron* 2001, 57, 9563–9568. [CrossRef]

52. Careaga, V.P.; Muníaín, C.; Maier, M.S. Patagonicosides B and C, two antifungal sulfated triterpene glycosides from the sea cucumber *Psolus patagonicus*. *Chem. Biodivers.* 2011, 8, 467–475. [CrossRef] [PubMed]

53. Yi, Y.H.; Xu, Q.Z.; Li, L.; Zhang, S.L.; Wu, H.M.; Ding, J.; Tong, Y.G.; Tan, W.F.; Li, M.H.; Tian, F.; et al. Philinopsides A and B, two new sulfated triterpene glycosides from the sea cucumber *Pentacta quadrangularis*. *Heli. Chim. Acta* 2006, 9, 54–63. [CrossRef]

54. Zhang, S.L.; Li, L.; Yi, Y.H.; Sun, P. Philinopsides E and F, two new sulfated triterpene glycosides from the sea cucumber *Pentacta quadrangularis*. *Nat. Prod. Res.* 2006, 20, 399–407. [CrossRef] [PubMed]

55. Moraes, G.; Northcote, P.T.; Silchenko, A.S.; Antonov, A.S.; Kalinovsky, A.I.; Dmitrenok, P.S.; Avilov, S.A.; Kalinin, V.I.; Stonik, V.A. Monosulfated triterpene glycosides from Pseudocolochirus violaceus, a new species of sea cucumber from the South Australian sea cucumber *Pseudocolochirus violaceus*. *J. Nat. Prod.* 2005, 68, 842–847. [CrossRef] [PubMed]

56. Kalinin, V.I.; Avilov, S.A.; Kalinina, E.Y.; Korolkova, O.G.; Kalinovsky, A.I.; Stonik, V.A.; Riguera, R.; Jiménez, C. Structure of eximisoside A, a novel triterpene glycoside from the far-eastern sea cucumber *Psolus eximius*. *J. Nat. Prod.* 1997, 60, 817–819. [CrossRef] [PubMed]

57. Kalinin, V.I.; Stonik, V.A.; Kalinovskii, A.I.; Isakov, V.V. Structure of pseudostichoposide A. The main triterpene glycoside from the holothurian *Pseudostichopus trachus*. *Chem. Nat. Compd.* 1989, 25, 577–582. [CrossRef]
58. Popov, R.S.; Avilov, S.A.; Silchenko, A.S.; Kalinovsky, A.I.; Dmitrenok, P.S.; Grebnev, B.B.; Ivanchina, N.V.; Kalinin, V.I. Cucumariosides F1 and F2, two new triterpene glycosides from the sea cucumber *Eupentacta fraudatrix* and their LC-ESI MS/MS identification in the starfish *Patria pectinifera*, a predator of the sea cucumber. *Biochem. Syst. Ecol.* 2014, 57, 191–197. [CrossRef] [PubMed]

59. Careaga, V.P.; Bueno, C.; Muniaín, C.; Alché, L.; Maier, M.S. Pseudocnoside A, a new cytotoxic and antiproliferative triterpene glycoside from the sea cucumber *Pseudocirus dubious* lionensis. *Nat. Prod. Res.* 2014, 28, 213–220. [CrossRef] [PubMed]

60. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Martyyas, E.A.; Kalinin, V.I.; Jayasandhya, P.; Rajan, G.C.; Padmakumar, K.P. Structures and biological activities of typicosides A1, A2, B1, C1 and C2, triterpene glycosides from the sea cucumber *Actinocucumis typica*. *Nat. Prod. Commun.* 2013, 8, 301–310. [PubMed]

61. Aminin, D.L.; Silchenko, A.S.; Kalinovskii, A.I.; Stepanov, V.G.; Kalinin, V.I. Immunomodulatory action of monosulfated triterpene glycosides from the sea cucumber *Cucumaria okhotensis*: Stimulation of activity of mouse peritoneal macrophages. *Nat. Prod. Commun.* 2010, 5, 1877–1880. [PubMed]

62. Silchenko, A.S.; Avilov, S.A.; Kalinovsky, A.I.; Dmitrenok, P.S.; Yurchenko, E.A.; Dong, Z.; Stonik, V.A. Constituents of the sea cucumber *Cucumaria okhotensis*. Structures of okhtosides B1–B3 and cytotoxic activities of some glycosides from this species. *J. Nat. Prod.* 2008, 71, 351–356. [CrossRef] [PubMed]

63. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Yurchenko, E.A.; Kalinin, V.I.; Dolmatov, I.Y. Colochirosides A1, A2, A3, and D, four novel sulfated triterpene glycosides from the sea cucumber *Colochirus robustus* (Cucumariidae, Dendrochirotida). *Nat. Prod. Commun.* 2016, 11, 381–386.

64. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Yurchenko, E.A.; Kalinin, V.I.; Dolmatov, I.Y. Colochirosides B1, B2, B3 and C, novel sulfated triterpene glycosides from the sea cucumber *Colochirus robustus* (Cucumariidae, Dendrochirotida). *Nat. Prod. Commun.* 2015, 10, 687–694.

65. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Kalinin, V.I.; Yurchenko, E.A.; Dautov, S.S. Structures of violaceuosides C, D, E and G, sulfated triterpene glycosides from the sea cucumber *Pseudocolochirus violaceus* (Cucumariidae, Dendrochirotida). *Nat. Prod. Commun.* 2014, 9, 391–399. [PubMed]

66. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Martyyas, E.A.; Kalinin, V.I. Triterpene glycosides from the sea cucumber *Eupentacta fraudatrix*. Structure and biological action of cucumariosides A1, A3, A4, A5, A6, A12 and A15, seven new minor non-sulfated tetraosides and unprecedented 25-keto, 27-norholostane aglycone. *Nat. Prod. Commun.* 2012, 7, 517–525. [PubMed]

67. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Martyyas, E.A.; Kalinin, V.I. Triterpene glycosides from the sea cucumber *Eupentacta fraudatrix*. Structure and cytotoxic action of cucumariosides A2, A7, A9, A10, A11, A13 and A14, seven new minor non-sulfated tetraosides and an aglycone with an uncommon 18-hydroxy group. *Nat. Prod. Commun.* 2012, 7, 845–852. [PubMed]

68. Afiyatullov, S.S.; Tishchenko, L.Y.; Stonik, V.A.; Kalinovskii, A.I.; Elyakov, G.B. Structure of cucumarioside G1-A new triterpene glycoside from the holothurians *Cucumaria fraudatrix*. *Chem. Nat. Compd.* 1985, 21, 228–232. [CrossRef]

69. Kalinin, V.I.; Avilov, S.A.; Kalinovsky, A.I.; Stonik, V.A. Cucumarioside G3-A minor triterpene glycoside from the holothurian *Eupentacta fraudatrix*. *Chem. Nat. Compd.* 1992, 28, 635–636. [CrossRef]

70. Kalinin, V.I.; Avilov, S.A.; Kalinovsky, A.I.; Stonik, V.A.; Mil’grom, Y.M.; Rashkes, Y.V. Cucumarioside G4-A new triterpengl glycoside from the holothurian *Eupentacta fraudatrix*. *Chem. Nat. Compd.* 1992, 28, 600–603. [CrossRef]

71. Han, H.; Xu, Q.Z.; Yi, Y.H.; Gong, W.; Jiao, B.H. Two new cytotoxic disulfated holostane glycosides from the sea cucumber *Pentacta quadrangularis*. *Chem. Biodivers.* 2010, 7, 158–167. [CrossRef] [PubMed]

72. Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I.; Kalinovsky, A.I.; Stonik, V.A.; Smirnov, A.V. Pseudostichopside B-New triterpene glycoside with unprecedented type of sulfatation from the deep-water North-Pacific Sea cucumber *Pseudostichopus trachus*. *Nat. Prod. Res.* 2004, 18, 565–570. [CrossRef] [PubMed]

73. Wang, X.-H.; Li, L.; Yi, Y.-H.; Sun, P.; Yan, B.; Fan, M.-X.; Han, H.; Wang, X.-D. Two new triterpene glycosides from sea cucumber *Stichopus variegatus*. *Chem. J. Nat. Med.* 2006, 4, 177–180.
74. Stonik, V.A.; Mal’tsev, I.I.; Elyakov, G.B. The structure of thelenotosides A and B from the holothurians Thelenota ananas. Chem. Nat. Compd. 1982, 18, 590–593. [CrossRef]

75. Miyamoto, T.; Togawa, K.; Higuchi, R.; Komori, T.; Sasaki, T. Constituents of holothuroidea. II. Six newly identified biologically active triterpenoid glycoside sulfates from the sea cucumber Cucumaria echinata. Liebigs Ann. Chem. 1990, 5, 453–460. [CrossRef]

76. Rodriguez, J.; Riguera, R. Lefevreiosides: Four new triterpene glycosides from the sea cucumber Cucumaria lefevrei. J. Chem. Res. 1989, 11, 342–343.

77. Han, H.; Xu, Q.Z.; Tang, H.F.; Yi, Y.H.; Gong, W. Cytotoxic holostane-type triterpene glycosides from the sea cucumber Pentacta quadrangularis. Planta Med. 2010, 76, 1900–1904. [CrossRef] [PubMed]

78. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Chingizova, E.A.; Kalinin, V.I. Triterpene glycosides from the sea cucumber Esputacta fraudatrix. Structure and biological activity of cumariosides B1 and B2, two new minor non-sulfated unprecedented triosides. Nat. Prod. Commun. 2012, 7, 1157–1162. [PubMed]

79. Sharypov, V.F.; Chumak, A.D.; Stonik, V.A.; Elyakov, G.B. Glycosides of marine invertebrates. X. The structure of the sea cucumber Bohadschia argus. J. Nat. Prod. 2005, 68, 1669–1673. [CrossRef] [PubMed]

80. Cuong, N.X.; Vien, L.T.; Hoang, L.; Hanh, T.T.H.; Thao, D.T.; Thanh, N.V.; Nam, N.H.; Thung, D.C.; Kiem, P.V.; Minh, C.V. Cytotoxic triterpene diglycosides from the sea cucumber Stichopus horrens. Bioorg. Med. Chem. Lett. 2017, 27, 2939–2942. [CrossRef] [PubMed]

81. Wu, J.; Yi, Y.H.; Tang, H.F.; Wu, H.M.; Zhou, Z.R. Hillasides A and B, two new cytotoxic triterpene glycosides from the sea cucumber Holothuria hilla Lesson. J. Asian Nat. Prod. Res. 2007, 9, 609–615. [CrossRef] [PubMed]

82. Dong, P.; Xue, C.-H.; Yu, L.-F.; Xu, J.; Chen, S.-G. Determination of triterpene glycosides in sea cucumber (Stichopus japonicus) and its related products by high-performance liquid chromatography. J. Agric. Food Chem. 2008, 56, 4937–4942. [CrossRef]

83. Wang, Z.; Gong, W.; Sun, G.; Tang, H.; Liu, B.; Li, L.; Yi, Y.; Zhang, W. New holostan-type triterpene glycosides from the sea cucumber Apostichopus japonicus. Bioorg. Med. Chem. Lett. 2010, 20, 1819–1822. [CrossRef] [PubMed]

84. Iñiguez-Martinez, A.M.; Guerra-Rivas, G.; Rios, T.; Quijano, L. Triterpenoid oligoglycosides from the sea cucumber Cladolabes schmeltzii. Carbohydr. Res. 2008, 343, 579–583. [CrossRef]

85. Ohta, T.; Hijino, H. Structures of four new triterpenoidal oligosides, bivittosides A, B, C and D from the sea cucumber Bohadschia bivittata Mitsukuri. Chem. Pharm. Bull. 1981, 29, 282–285.

86. Yuan, W.H.; Yi, Y.H.; Tang, H.F.; Liu, B.S.; Wang, Z.L.; Sun, G.Q.; Zhang, W.; Li, L.; Sun, P. Antifungal triterpene glycosides from the sea cucumber Bohadschia marmorata. Planta Med. 2009, 75, 168–173. [CrossRef] [PubMed]

87. Liu, B.S.; Yi, Y.H.; Li, L.; Sun, P.; Yuan, W.H.; Sun, G.Q.; Han, H.; Xue, M. Argusides B and C, two new cytotoxic triterpene glycosides from the sea cucumber Bohadschia argus. Chem. Biodivers. 2008, 5, 1288–1297. [CrossRef] [PubMed]

88. Babrami, Y.; Franco, C.M.M. Structure elucidation of new acetylated saponins, lessioniosides A, B, C, D, and E, and non-acetylated saponins, lessioniosides F and G, from the viscera of the sea cucumber Holothuria lessonii. Mar. Drugs 2015, 13, 597–617. [CrossRef] [PubMed]

89. Dyck, S.V.; Gerbaux, P.; Flammang, P. Qualitative and quantitative saponin contents in five sea cucumbers from the Indian Ocean. Mar. Drugs 2010, 8, 173–189. [CrossRef] [PubMed]

90. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Yurchenko, E.A.; Dolmatov, I.Y.; Kalinin, V.I.; Stonik, V.A. Structure and biological action of cladolosides B1, B2, C, C1, C2 and D, six new triterpene glycosides from the sea cucumber Cladolabes schmeltzii. Nat. Prod. Commun. 2013, 8, 1527–1534. [CrossRef] [PubMed]

91. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Yurchenko, E.A.; Dolmatov, I.Y.; Kalinin, V.I. Structures and biological activities of cladolosides C3, E1, E2, F1, F2, G, H1 and H2, eight triterpene glycosides from the sea cucumber Cladolabes schmeltzii with one known and four new carbohydrate chains. Carbohydr. Res. 2015, 375, 27–34. [CrossRef] [PubMed]
93. Rodriguez, J.; Castro, R.; Rigueru, R. Holothurinosides: New antitumour non sulphated triterpenoid glycosides from the sea cucumber Holothuria forskalii. Tetrahedron 1991, 47, 4753–4762. [CrossRef]

94. Sun, G.-Q.; Li, L.; Yi, Y.-H.; Yuan, W.-H.; Liu, B.-S.; Weng, Y.-Y.; Zhang, S.-L.; Sun, P.; Wang, Z.-L. Two new cytotoxic nonsulfated pentasaccharide holostane (=20-hydroxylanostan-18-ol 18-oic acid gamma-lactone) glycosides from the sea cucumber Holothuria grisea. Helv. Chim. Acta 2008, 9, 1453–1460. [CrossRef]

95. Bahrami, Y.; Zhang, W.; Franco, C. Discovery of novel saponins from the viscera of the sea cucumber Holothuria forskalii. J. Nat. Prod. 2014, 8, 1259–1264. [PubMed]

96. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjashchenko, P.V.; Fedorov, S.N.; Dmitrenok, P.S.; Kalinin, V.I.; Taboada, S.; Yurchenko, E.A.; Rogacheva, A.V.; Begek, A.V. Kolgasides A and B, two new triterpene glycosides from the Arctic deep water sea cucumber Kolga hyalina (Elastipodida: Elpidiidae). J. Nat. Prod. 2014, 72, 33–38. [CrossRef] [PubMed]

97. Yuan, W.H.; Yi, Y.H.; Tan, R.X.; Wang, Z.L.; Sun, G.Q.; Xue, M.; Zhang, W.; Liu, B.; Li, L.; Sun, P. Two new holostan-type antifungal triterpene glycosides from the sea cucumber Holothuria (Microthele) axiloga. Planta Med. 2009, 75, 647–653. [CrossRef] [PubMed]

98. Antonov, A.S.; Avilov, S.A.; Kalinovsky, A.I.; Anastyuk, S.D.; Dmitrenok, P.S.; Kalinin, V.L.; Taboada, S.; Bosh, A.; Avila, C.; Stonik, V.A. Triterpene glycosides from Antarctic sea cucumbers. 2. Structure of achilominoses A1, A2, and A3 from the sea cucumber Achilomnices violaccuspidata (=Rhipidothurida racovitzaei). J. Nat. Prod. 2009, 72, 124–129. [CrossRef] [PubMed]

99. Miyamoto, T.; Togawa, K.; Higuchi, R.; Komori, T.; Sasaki, T. Structures of four new triterpenoid oligoglycosides: D3-Penaustrasides A, B, C, D from the sea cucumber Pentacta australis. J. Nat. Prod. 1992, 55, 940–946. [CrossRef] [PubMed]

100. Cuong, N.X.; Vien, L.T.; Hanh, T.T.; Thao, N.P.; Thaodo, T.; Thanh, N.V.; Nam, N.H.; Thungdo, C.; Kiem, P.V.; Minh, C.V. Cytotoxic triterpene saponins from Cercedemas aniceps. Bioorg. Med. Chem. Lett. 2015, 15, 3151–3156. [CrossRef] [PubMed]

101. Chanley, J.D.; Ledeen, R.; Wax, J.; Nigrelli, R.F.; Sobotka, H. Holothurin I. The isolation, properties and sugar components of holothurin A. J. Am. Chem. Soc. 1959, 81, 5180–5183. [CrossRef]

102. Oleinikova, G.K.; Kuznetsova, T.A.; Ivanova, N.S.; Kalinovskyy, A.I.; Rovnykh, N.V.; Elyakov, G.B. Glycosides of marine invertebrates. XV. A new triterpene glycoside-Holothurin A1 from Caribbean holothurians of the family Holothuriidae. Chem. Nat. Compd. 1982, 18, 430–434. [CrossRef]

103. Dang, N.H.; Thanh, N.V.; Kim, Y.H. Two new triterpene glycosides from the Vietnamese sea cucumber Holothuria scabra. Arch. Pharm. Res. 2007, 30, 1387–1391. [CrossRef] [PubMed]

104. Han, H.; Yi, Y.; Xu, Q.; La, M.; Zhang, H. Two new cytotoxic triterpene glycosides from the sea cucumber Holothuria scabra. Planta Med. 2009, 75, 1608–1612. [CrossRef] [PubMed]

105. Han, H.; Li, L.; Yi, Y.-H.; Wang, X.-H.; Pan, M.-X. Triterpene glycosides from sea cucumber Holothuria scabra with cytotoxic activity. Chin. Herb. Med. 2012, 4, 183–188. [CrossRef]

106. Zhang, S.-Y.; Yi, Y.-H.; Tang, H.-F. Bioactive Triterpene glycosides from the sea cucumber Holothuria fuscocinerea. J. Nat. Prod. 2006, 69, 1492–1495. [CrossRef] [PubMed]

107. Yuan, W.; Yi, Y.; Tang, H.; Xue, M.; Wang, Z.; Sun, G.; Zhang, W.; Liu, B.; Li, L.; Sun, P. Two new holostan-type triterpene glycosides from the sea cucumber Bohadschia marmorata. Chem. Pharm. Bull. 2008, 56, 1207–1211. [CrossRef] [PubMed]

108. Kitagawa, I.; Inamoto, T.; Fuchida, M.; Okada, S.; Kobayashi, M.; Nishino, T.; Kyogokub, Y. Structures of echinosides A and B, two antifungal oligoglycosides from the sea cucumber Actinopyga echinites. Chem. Pharm. Bull. 1980, 28, 1651–1653. [CrossRef]

109. Zhao, Q.; Liu, Z.-D.; Xue, Y.; Wang, J.F.; Li, H.; Tang, Q.J.; Wang, Y.M.; Dong, P.; Xue, C.H. Ds-echinoside A, a new triterpene glycoside derived from sea cucumber, exhibits antitumor activity via the inhibition of NF-kB-dependent MMP-9 and VEGF expressions. J. Zhejiang Univ. Sci. B 2011, 12, 534–544. [CrossRef] [PubMed]

110. Bhatnagar, S.; Dudouet, B.; Ahond, A.; Poupat, C.; Thoison, O. Cestodes, A.; Laurent, D.; Potier, P. Invertebrés marins du lagon de Tahiti. IV: Saponines et sapogénines d’une holothurie, Actinopyga flammea. Bull. Soc. Chim. Fr. 1985, 1, 124–129. (In French)
112. Liu, B.-S.; Yi, Y.-H.; Li, L.; Zhang, S.L.; Han, H.; Weng, Y.Y.; Pan, M. Arguside A: A new cytotoxic triterpene glycoside from the sea cucumber Bohadschia argus. Chem. Biodivers. 2007, 4, 2845–2851. [CrossRef] [PubMed]

113. Chludil, H.D.; Munia, C.C.; Seldes, A.M.; Maier, M.S. Cytotoxic and antifungal triterpene glycosides from the patagonian sea cucumber Hemoideapectabilis. J. Nat. Prod. 2002, 65, 860–865. [CrossRef] [PubMed]

114. Liu, B.-S.; Yi, Y.-H.; Li, L.; Sun, P.; Han, H.; Sun, G.Q.; Wang, X.H.; Wang, Z.L. Argusides D and E, two new cytotoxic triterpene glycosides from the sea cucumber Bohadschia argus. Chem. Biodivers. 2008, 5, 1425–1433. [CrossRef] [PubMed]

115. Kalinin, V.I.; Kalinovsky, A.I.; Stonik, V.A. Structure of psolusoside A—the major triterpene glycoside from holothurian Psolus fabricii. Chem. Nat. Compd. 1985, 21, 197–202. [CrossRef]

116. Bahrami, Y.; Zhang, W.; Chataway, T.; Franco, C. Structural elucidation of novel saponins in the sea cucumber Holothuria lessonii. Mar. Drugs 2014, 12, 4439–4473. [CrossRef] [PubMed]

117. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Yurchenko, E.A.; Jimenez, C. Frondoside C, a new nonholostane triterpene glycoside from the sea cucumber Cucumaria frondosa. J. Nat. Prod. 2005, 68, 564–567. [CrossRef] [PubMed]

118. Yibmantasiri, P.; Leahy, D.C.; Busby, B.P.; Angermayr, S.A.; Sorgo, A.G.; Boeger, K.; Heathcott, R.; Barber, J.M.; Kuznetsova, T.A.; Kalinovskaya, N.I.; Kalinovskii, A.I.; Oleinikova, G.K.; Rovnykh, N.V.; Elyakov, G.V. Triterpene glycosides from the sea cucumber Cladolabes schmeltzii. II. Structure and biological action of cladoloses A₁–A₆. Nat. Prod. Commun. 2014, 9, 1421–1428. [PubMed]

119. Kitagawa, I.; Nishino, T.; Matsuno, T.; Akutsu, H.; Kyogoku, Y. Structure of holothurin B—a pharmacologically active triterpene-oligoglycoside from the sea cucumber Holothuria leucospirolota (Brandt). Tetrahedron Lett. 1978, 19, 985–988. [CrossRef]

120. Kuznetsova, T.A.; Kalinovskaya, N.I.; Kalinovskii, A.I.; Oleinikova, G.K.; Rovnykh, N.V.; Elyakov, G.V. Glycosides of marine invertebrates. XIV. Structure of holothurin B₁ from the holothurians Holothuria floridana. Chem. Nat. Compd. 1982, 18, 449–451. [CrossRef]

121. Silchenko, A.S.; Stonik, V.A.; Avilov, S.A.; Kalinin, V.I.; Kalinovsky, A.I.; Zaharenko, A.M.; Smirnov, A.V.; Mollo, E.; Cimino, G. Holothurins B₂, B₃, and B₄, new triterpene glycosides from mediterranean sea cucumbers of the genus Holothuria. J. Nat. Prod. 2005, 68, 564–567. [CrossRef] [PubMed]

122. Hua, H.; Yi, Y.-H.; Li, L.; Liu, B.-S.; Pan, M.-X.; Yan, B.; Wang, X.-H. Triterpene glycosides from sea cucumber Holothuria leucospirolota. Chin. J. Nat. Med. 2010, 7, 346–350. [CrossRef]

123. Kobayashi, M.; Hori, M.; Kan, K.; Yasuzawa, T.; Matsu, M.; Shigeki, S.; Kitagawa, I. Marine Natural Products. XVII. Distribution of lanostane-type triterpene oligoglycosides in ten kinds of okinawan sea cucumbers. Chem. Biodivers. 2006, 3, 1249–1254. [CrossRef] [PubMed]

124. Wu, J.; Yi, Y.H.; Tang, H.F.; Zou, Z.R.; Wu, H.M. Structure and cytotoxicity of a new lanostane-type triterpene glycoside from the sea cucumber Holothuria leucospirolota. J. Nat. Prod. 2004, 67, 808–810. [CrossRef] [PubMed]

125. Liu, B.-S.; Zhang, H.-W.; Zhang, W.; Yi, Y.H.; Li, L.; Tang, H.; Wang, Z.-L.; Yuan, W.-H. Triterpene Glycosides-Antifungal Compounds of Sea Cucumber Holotoxins D-I and Preparation Method Thereof. Chinese Patent CN101671385 B, 30 May 2012.

126. Avilov, S.A.; Dolmatov, I.Y.; Kalinin, V.I.; Kalinovsky, A.I.; Stonik, V.A.; Riguera, R.; Jimenez, C. Koreoside A, a novel nonholostane glycoside from the sea cucumber Eupentacta fraudatrix. J. Nat. Prod. 2005, 68, 1166–1171. [CrossRef] [PubMed]

127. Liu, B.-S.; Zhang, H.-W.; Zhang, W.; Yi, Y.H.; Li, L.; Tang, H.; Wang, Z.-L.; Yuan, W.-H. Triterpene Glycosides-Antifungal Compounds of Sea Cucumber Holotoxins D-I and Preparation Method Thereof. Chinese Patent CN101671385 B, 30 May 2012.

128. Avilov, S.A.; Dolmatov, I.Y.; Kalinin, V.I.; Kalinovsky, A.I.; Stonik, V.A.; Gudimova, E.N.; Riguera, R.; Jimenez, C. Frondoside C, a new nonholostane triterpene glycoside from the sea cucumber Cucumaria koreiensis. J. Nat. Prod. 1997, 60, 808–810. [CrossRef] [PubMed]

129. Kalinin, V.I.; Kalinovskii, A.I.; Stonik, V.A.; Dmitrenok, P.S.; El'kin, Y.N. Structure of psolusoside B—a nonholostane triterpene glycoside of the holothurian genus Psolus. Chem. Nat. Compd. 1989, 25, 311–317. [CrossRef] [PubMed]
131. Silchenkoa, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Dmitrenok, P.S.; Kalinin, V.I.; Berdyshiev, D.V.; Chingizova, E.A.; Andryjaschenko, P.V.; Minin, K.V.; Stonika, V. Fallaxosides B₁ and D₃, triterpene glycosides with novel skeleton types of aglycones from the sea cucumber *Cucumaria fallax*. *Tetrahedron* 2017, 73, 2333–2341. [CrossRef] [PubMed]

132. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Kalinin, V.I.; Martyyyas, E.A.; Minin, K.V. Fallaxosides C₁, C₂, D₁ and D₂, unusual oligosulfated triterpene glycosides from the sea cucumber *Cucumaria fallax* (Cucumariidae, Dendrochirotida, Holothuroidea) and taxonomic status of this animal. *Nat. Prod. Commun.* 2016, 11, 939–945.

133. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Kalinin, V.I.; Chingizova, E.A.; Minin, K.V.; Stonik, V.A. Structures and biogenesis of fallaxosides D₄, D₅, D₆ and D₇, trisulfated non-holostane triterpene glycosides from the sea cucumber *Cucumaria fallax*. *Molecules* 2016, 21, 939. [CrossRef] [PubMed]

134. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Kalinin, V.I.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Chingizova, E.A.; Ermakova, S.F.; Malyarenko, O.S.; Dautova, T.N. Nine new triterpene glycosides, magnumosides A₁–A₄, B₁, B₂, C₁, C₂ and C₄, from the Vietnamese sea cucumber *Neothyoneidium (=Massinium) magnum*: Structures and activities against tumor cells independently and in synergy with radioactive irradiation. *Mar. Drugs* 2017, 16, 256. [CrossRef] [PubMed]

135. Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andryjaschenko, P.V.; Dmitrenok, P.S.; Yurchenko, E.A.; Dolmatov, I.V.; Dautov, S.S.; Stonik, V.A.; Kalinin, V.I. Colochiroside E, an unusual non-holostane triterpene sulfated trioside from the sea cucumber *Colochirus robustus* and evidence of the impossibility of a 7(8)-double bond migration in lanostane derivatives having an 18(16)-lactone. *Nat. Prod. Commun.* 2016, 11, 741–746. [PubMed]

136. Kalinin, V.I.; Prkofieva, N.G.; Likhatskaya, G.N. Hemolytic activities of triterpene glycosides from the holothurian order Dendrochirotida: Some trends in the evolution of this group of toxins. *Toxicon* 1996, 34, 475–483. [CrossRef]

137. Kumar, R.; Chaturvedi, A.K.; Shukla, P.K.; Lakshmi, V. Antifungal activity in triterpene glycosides from sea cucumbers (Holothurioidae, Echinodermata), biological activities and functions. In *Studies in Natural Product Chemistry* (Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam, The Netherlands, 2016; Volume 49, pp. 55–105; ISBN 978-0-444-63601-0).

138. Aminin, D.L.; Pislyagin, E.A.; Menchinskaya, E.S.; Silchenko, A.S.; Kalinin, V.I.; Avilov, S.A.; Kalinin, V.I.; Aminin, D.L.; Agafonova, I.G.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; Stonik, V.A.; Collin, P.D.; Woodward, C. Immunomodulatory and anticancer activity of sea cucumber triterpene glycosides. In *Studies in Natural Products Chemistry* (Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam, The Netherlands, 2013; Volume 41, pp. 75–94. [CrossRef] [PubMed]

139. Wang, J.; Han, H.; Chen, X.; Yi, Y.; Sun, H. Cytotoxic and apoptosis-inducing activity of triterpene glycosides from Holothuria scabra and Cucumaria frondosa against HepG2 cells. *Mar. Drugs* 2014, 24, 4274–4290. [CrossRef] [PubMed]

140. Popov, A.; Kalinovskaja, N.; Kuznetsova, T.; Agafonova, I.; Anisimov, M. Role of sterols in the membranotropic activity of triterpene glycosides. *Antibiotik* 1983, 28, 656–659. [PubMed]

141. Segal, R.; Schlosser, E. Role of glycosides in the membranolytic, antifungal action of saponins. *Arch. Microbiol.* 1975, 104, 147–150. [CrossRef] [PubMed]

142. Aminin, D.L.; Menchinskaya, E.S.; Pislyagin, E.A.; Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I. Sea cucumber triterpene glycosides as anticancer agents. In *Studies in Natural Products Chemistry*, 1st ed.; Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam, The Netherlands, 2016; Volume 49, pp. 55–105; ISBN 978-0-444-63601-0.

143. Kalinin, V.I.; Aminin, D.L.; Avilov, S.A.; Silchenko, A.S.; Stonik, V.A. Triterpene glycosides from sea cucumbers (Holothuroidea, Echinodermata), biological activities and functions. In *Studies in Natural Product Chemistry* (Bioactive Natural Products) (Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam, The Netherlands, 2008; Volume 35, pp. 135–196.
