A Bulk-Parallel Priority Queue in External Memory with STXXL

Timo Bingmann, Thomas Keh, and Peter Sanders
Karlsruhe Institute of Technology, Karlsruhe, Germany
{bingmann,sanders}@kit.edu

Abstract. We propose the design and an implementation of a bulk-parallel external memory priority queue to take advantage of both shared-memory parallelism and high external memory transfer speeds to parallel disks. To achieve higher performance by decoupling item insertions and extractions, we offer two parallelization interfaces: one using “bulk” sequences, the other by defining “limit” items. In the design, we discuss how to parallelize insertions using multiple heaps, and how to calculate a dynamic prediction sequence to prefetch blocks and apply parallel multiway merge for extraction. Our experimental results show that in the selected benchmarks the priority queue reaches 64% of the full parallel I/O bandwidth of SSDs and 49% of rotational disks, or the speed of sorting in external memory when bounded by computation.

1 Introduction

Priority queues (PQs) are fundamental data structures which have numerous applications like job scheduling, graph algorithms, time forward processing [9], discrete event simulation, and many greedy algorithms or heuristics. They manage a dynamic set of items, and support operations for inserting new items (push), and reading and deleting (top/pop) the item smallest w.r.t. some order.

Since the performance of such applications usually heavily depends on the PQ, it is unavoidable to consider parallelized variants of PQs as parallelism is today the only way to get further performance out of Moore’s law. However, even the basic semantics of a parallel priority queue (PPQ) are unclear, since PQ operations inherently sequentialize and synchronize algorithms. Researchers have previously focused on parallelizing main memory PQs which provide lock-free concurrent access, and/or relaxed operations delivering some small item.

In this work we propose a PPQ for applications where data does not fit into internal memory and thus requires efficient external memory techniques. Parallelizing external memory algorithms is one of the main algorithmic challenges termed as “Big Data”. We propose a “bulk” and a “limit” parallelization interface for PQs, since the requirements of external memory applications are different from those working on smaller PQ instances. One application of these interfaces is bulk-parallel time forward processing, where one uses the graph’s structure to identify layers of nodes that can be processed independently. For example, the
inducing process of an external memory suffix sorting algorithm [5] follows this pattern. This paper continues work started in Thomas Keh’s bachelor thesis [15].

We implemented our PPQ design in C++ with OpenMP and STXXL [10], and compare it using four benchmarks against the fastest EM priority queue implementations available. In our experiments we achieve 49% of the full I/O throughput of parallel rotational disks and 64% of four parallel solid-state-disks (SSDs) with about 2.0/1.6 GiB/s read/write performance. We reach these percentages in all experiments except when internal work is clearly the limitation, where our PPQ performs equally well as a highly tuned sorter. For smaller bulk sequences, the PPQ’s performance gradually degrades, however, already for bulks larger than 20 K or 80 K 64-bit integers (depending on the platform) our PPQ outperforms the best existing parallelized external memory PQ.

After preliminaries and related work, we discuss our parallelization interfaces in Section 2. Central is our PPQ design in Section 3 where we deal with parallel insertion and extraction. Details of our implementation, the rationale of our experiments, and their results are discussed in Section 4.

1.1 Preliminaries

A PQ is a data structure holding a set of items, which can be ordered w.r.t some relation. All PQs support two operations: insert or push to add an item, and deleteMin or top and pop to retrieve and (optionally) remove the smallest item from the set. In this paper we use the push, top, pop notation, since our implementation’s interface aims to be compatible to the C++ Standard Template Library (STL). Addressable PQs additionally provide a decreaseKey operation, which most notably is used by Dijkstra’s shortest path algorithm; but we omit this function since it is difficult to provide efficiently in external memory.

We use the external memory (EM) model [27], which assumes an internal memory (called RAM) containing up to M items, and D disks containing space for N items, used for input, output and temporary data. Transfer of B items between disks and internal memory costs one I/O operation, whereas internal computation is free. While the EM model is good to describe asymptotically optimal I/O efficient algorithms, omitting computation time makes the model less and less practical as I/O throughput increases. For example, data transfer to a single modern SSD reaches more than 450 MiB/s (MiB = 2^{20} bytes), while sorting 1 GiB of random 64-bit integers sequentially reaches only about 85 MiB/s on a current machine.

Thus exploiting parallelism in modern machines is unavoidable to achieve good performance with I/O efficient algorithms. For this experimental paper, we assume a shared memory system with p processors or threads, which have a simple set of explicit synchronization primitives. In future, one could consider a detailed theoretical analysis using the parallel external memory model [3].
1.2 Related Work

Much work has already been done on incorporating parallelism into PQs for internal memory. Very different approaches have emerged from it, and we only present a few here, since our external memory setting is different.

In the 1990s, many PPQs were developed for the PRAM. Pinotti and Pucci proposed \(n \)-bandwidth-heaps [19], which store \(n \) sorted items in a heap node, and allow bulk insertion and extraction of \(n \) items by sorting and merging using an \(n \)-processor CREW-PRAM. Similarly, Deo and Prasad describe a parallel heap [12], which allows insertion and extractions of \(\Theta(n) \) items with \(n \) processors by using more advanced PRAM algorithms. Brodal et al. [8] extend these ideas to allow decrease\(\text{Key} \) of \(m \) arbitrary elements in \(O(n) \) time and \(O(m \log n) \) work on an EREW-PRAM. Sanders [21] developed a randomized PPQ for \(p \) distributed memory machines, where each processor keeps a set of local elements and insertions are randomly distributed among the processors. The PPQ's extract\(\text{Min} \) operation retrieves the \(p \) globally smallest elements, one per processor, using an exchange algorithm with probabilistic time guarantees.

In the year 2000 and later, many researchers focused on concurrent PQs [23,25,17,16], which aim to synchronize frequent access to a common data structure. Each processor usually wishes to extracts only a single item, as often needed during task scheduling, and the main goals are to guarantee fairness and avoiding starvation of processors. The developed PPQs are mostly based on skip lists and use expensive atomic operations to allow concurrent access to the data structure without any locks.

Recently, interest has arisen in relaxed PPQs [13,20,1], since the performance of concurrent PQs does not scale with the higher number of processors available in newer machines. Instead of returning the smallest item(s), relaxed PPQs return some smallest items, and the quality of the relaxed PPQs is measured by both performance and the introduced errors. Bulk-parallel PQs can be viewed as synchronous relaxed PQs with simple and clear semantics.

External memory PQs are a well-established field, and one can choose from different I/O optimal designs. The older theoretical designs [2] involve complex buffering of insertion and deletion to reach optimal \(O((1/B) \log_{M/B} N/B) \) amortized I/O complexity, and the hidden constants are high. By using buffered multi-way merging of pre-sorted EM lists [7], the theoretical algorithms were soon simplified. In 1999, Brengel et al. [6] carried out an experimental study of PQs in EM that resulted in two very practical external memory PQ designs.

First, they adapted a radix heap for external memory. However, the resulting monotone PQ's I/O complexity depends on the radix and key universe, and is usually higher than optimal. Their second approach is called an external array-heap. It consists of an internal memory heap and a set of sorted arrays in external memory. The arrays have a fixed size and are arranged in slots, assigned to a level. The heap can be viewed as the lowest level. Insert operations go to the lowest level and overflows in one level cause a transfer into the next higher level after sorting and merging as necessary.
Sanders [22] followed a similar approach and improved it among other things by paying much more attention to cache efficiency. The data structure is called a sequence heap. Here, the sorted external arrays are organized in groups of size \(k \), with \(k = \mathcal{O}(M/B) \) being chosen small enough that merging all members of a group will be cache-efficient using \(k \)-way-merge. Similar to Brengel’s approach, an overflow in one group (respective level) causes the creation of a larger array in the next group. All groups are connected by an \(R \)-way-merger, where \(R \) is the number of groups. This PQ design was implemented for external memory in STXXL [10], and later also in TPIE [18], so it is probably the most widely used today.

The only previous attempt at parallelizing a PQ for EM, that we could find in literature, was done in conjunction with a study of asynchronous pipelining in STXXL [4]. They partially parallelized the sequence heap without touching the sequential PQ semantics. However, this gives only little opportunity for parallelization – mostly for merging in groups with large external arrays.

The most sophisticated parallelization tool we use in our PPQ is the parallel \(k \)-way merge algorithm first proposed by Varman et al. [26], and engineered by Singler et al. in the MCSTL [24] and later the GNU Parallel Mode library [24]. Since this algorithm’s details and implementation are important for our PPQ design, we briefly describe it: given \(p \) processors and \(k \) sorted arrays with in total \(n \) items and of maximum length \(m \), each array is split into \(p \) range-disjoint parts where the sum of each processor’s parts are of equal size. The partition is calculated by running \(p \) intertwined multisequence selection algorithms, which take \(\mathcal{O}(k \log k \log m) \). After partitioning, the work of merging the \(p \) disjoint areas can be done independently by the processors, e.g., using a \(k \)-way tournament tree in time \(\mathcal{O}(\frac{n}{p} \log k) \). For our EM setting it is important that the output is generated as \(p \) equal-sized parts in parallel, with each part being written in sequence. We also note that the multisequence selection is implemented sequentially.

2 Bulk-Parallel Interface and Limit Items

Before we discuss our PPQ design, we focus on the proposed application interface. As suggested by the related work on PQs, substantial performance gains from parallelization are only achievable when loosening some semantics of the PQ. Put plainly, an alternating sequence of dependent push/pop is inherently sequential. Since we focus on large amounts of data, the more natural relaxation of a PQ is to require insertion and extraction of multiple items, or “bulks” of items. This looser semantic decouples insert and delete operations both among themselves (i.e., items within a bulk) as well as the operation phases from another. This enables us to apply parallel algorithms on larger amounts of items, and our experiments in Section 4 show how speedup depends on the bulk sizes.

Thus the primary interface of our EM PPQ is bulk insertion and extraction (see Listing 1). A bulk insertion phase is started with \(\text{bulk_push_begin}(k) \), where \(k \) is an estimate of the bulk size, which we will use to optimize preparation in the PPQ. Thereafter, the application may insert a bulk of items using \(\text{bulk_push} \),
possibly concurrently from multiple threads, and terminate the sequence with \texttt{bulk_push_end}. There are two bulk extraction primitives: \texttt{bulk_pop(v,k)} which extracts up to \(k\) items into \(v\), and \texttt{bulk_pop_limit(v,L,k)} which extracts at most \(k\) items strictly smaller than a limit item \(L\). The limit extraction also indicates whether more items smaller than \(L\) are available.

Beyond the primary bulk interface, we also propose a second interface (see Listing 2), which is geared towards the canonical processing loop found in most sequential applications using a PQ: extract an item, inspect it, and reinsert zero or more items into the PQ. To decouple insertions and extractions in this loop, we let the application define a “limit item” \(L\), and require that all insertions thereafter are larger or equal to \(L\) (see Figure 1). By defining this limit, all extractions of items less than \(L\) become decoupled from insertions. The drawback of this second interface is that the application does not process items in parallel. However, parallel processing of items \(< L\) can easily be accomplished by using \texttt{bulk_pop_limit} in the Bulk Pop/Push Loop example.

\section{Design of a Bulk-Parallel Priority Queue}

Our PPQ design (see Figure 2) is based on Sanders’ sequence heap\cite{22}, but we have to reevaluate the implicit assumptions, duplicate data structures for independent parallel operations and apply parallel algorithms where possible. After briefly following the lifetime of an item in the PPQ, we first discuss separately how insertions and extractions can be processed in parallel, and then focus on the difficulty of balancing both.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Decoupling insertion and extraction operations with a limit item \(L\).}
\end{figure}
An item is first inserted into an insertion heap, which is kept in heap order. As simple binary heaps are not particularly cache-efficient, they are given a fixed maximum size. When full, an insertion heap is sorted and transformed into an internal array. To limit the number of internal arrays, they may be merged with others to form longer internal arrays. When memory is exhausted, all internal arrays and the extract buffer are merged into one sorted external array which is written to disk. Again, shorter external arrays may also be merged together. Extracts from the set of external arrays are amortized using the extract buffer.

Insertion, Multilevel Merging, and External Writing. To accelerate parallel push operations, the first obvious step is to have p insertion heaps, one for each processor. This decouples insertions on different processors and parallelizes the work of maintaining the heaps. Once a heap is full, the processor can independently sort the heap using a general sorter (heap sort is usually slower). Remarkably, these initial steps are among the most time consuming in a sequence heap, and can be parallelized well. In our PPQ design, we then use a critical section primitive to synchronize adding the new internal array to the common list. This was never a bottleneck, since such operations happen only when an insertion heap is full; however, one could also use a lock-free queue or array to boost performance.

In bulk push sequences, we can accelerate individual push operations much further. While pushing, no items from the insertion heap can be extracted, thus we can postpone reestablishing heap order to `bulk_push_end`; a `bulk_push` just appends to the insertion heap’s array. If the heap overflows, then the array is sorted anyway. In our experiments, this turned out to be the best option, probably because the loop sifting items up the heap becomes very tight and cache efficient. For larger bulk operations (as indicated by the user’s estimation) we even let the insertion heap’s array grow beyond the usual limit to fill up the available RAM, since sorting is more cache efficient than keeping a heap.

Instead of separating internal arrays into groups, as in a sequence heap, we label them using a level number starting at zero. If the number of internal arrays
on one level grows larger than a tuning parameter (about 64) and there is enough RAM available, then all internal arrays of one level are merged together and added to the next higher level.

The decisive difference of parallel multiway merge over sequentially merging sorted arrays is that no state is kept to amortize operations. Hence, in our PPQ design the indicated tournament trees over the insertion heaps and arrays are useless for parallel operations. When applying parallel multiway merge, we want to have the total number of items as large as possible, however, at the same time the number of sequences should be kept as small as possible, especially since the multisequence selection is currently implemented sequentially. In Appendix A we report on preliminary experiments to find a good balance.

When the PPQ’s allotted memory is exhausted, mostly due to long internal arrays, one large parallel multiway merge is performed directly into EM. This is possible without an extra copy buffer, by using just \(\Theta(p)\) write buffers and overlapping I/O and computation, since parallel multiway merge outputs \(p\) sorted sub-sequences. We use \(\geq 2p\) write buffer blocks to keep the merge boundaries in memory; thus avoiding any rereading of blocks from disk during the merge. Another method would be to round the ranks during multisequence selection to block boundaries. This would slightly disbalance work, but removes all access conflicts within blocks.

An item may travel multiple times to disk and back, since the extract buffer is included while merging into EM. However, as in the sequence heap structure, this only occurs when internal memory is exhausted and all items are written to disk; thus we can amortize the extra I/Os for the extract buffer with the \(\Theta(M/B)\) I/Os needed to flush main memory.

Extraction, Prediction, and Minimum of Minima. To support fast non-bulk `pop` operations, we keep a hierarchy of tournament trees to save results of pairwise comparisons of items. The trees are built over the insertion heaps, internal arrays, and extract buffer. External arrays need not be included, since extraction from them is buffered using the extract buffer. The tournament trees need to be updated each time an insertion heap’s minimum element changes, or a heap is flushed into an internal array. In bulk push operations these actions are obviously postponed until the bulk’s end.

When merging external arrays with parallel multiway merge we are posed (again) with the discrepancy between parallelism, which requires large item counts for efficiency, and relatively small disk blocks (by default 2–8 MiB). To alleviate the problem, we increase the number of read buffers and calculate an optimal block prediction sequence, as also done for sorting [14], which contains the order in which the EM blocks are needed during merging and fetch as many as fit into RAM. In sorting, the prediction sequence is fixed and can be determined by sorting the smallest items of each block as a representative (also called “trigger” element). In the parallel disk model, the independent disks need to be considered as well. In our PPQ setting, the prediction sequence becomes a dynamic problem, since external arrays may be added. We define four states for an external block: in external memory, hinted for prefetching, loaded in RAM,
and finished (see Figure 3). To limit the main memory usage of the PPQ, the number of prefetched and blocks loaded in RAM must be restricted.

Since the next k external blocks needed for merging are determined by the k smallest block minima, we keep track of these items in a tournament tree over the block minima sequences of the external arrays (see items h_i in Figure 3). This allows fast calculation of the next block when another can be prefetched. However, when a new external array is added, the dynamic prediction sequence changes, and we may have to cancel prefetch hints. This is done by resetting the tournament tree back to the first block minima merely hinted for prefetching, but not loaded in RAM, and replaying it till the new k smallest block minima are determined. This costs less than $k + k \log S$ comparisons, where S is the number of sequences. We then compare the new predictions with the old ones simply by checking how many blocks are to be prefetched in each array, and cancel or add prefetch hints.

For parallel merging, however, we need to solve another problem: the merge ranges within the blocks in RAM must be limited to items smaller than (or equal to) the smallest item still in EM, since otherwise the PQ invariant may be violated. To determine the smallest item in EM we reuse the block minima sequences, and build a second tournament tree over them containing the smallest items of the next “loadable” block, not guaranteed to be in RAM (items m_i in Figure 3). When performing a parallel multiway merge into the extract buffer, all hinted external blocks are first checked (in order) whether the prefetch is complete, and the tournament tree containing the smallest external items is updated. The tip then contains $\overline{m} = \min_i m_i$, the overall smallest external item, which serves as merge limit. We then use binary search within the loaded blocks of each array and find the largest items smaller than \overline{m}, (or if one sacrifices stability of the PPQ, the largest items smaller or equal to \overline{m}; if one defines stability appropriately).

We thus limit the multisequence selection and merge range on each array by \overline{m}. Additionally, by using smaller selection ranks during parallel multiway merging one can adapt the total number of elements merged. These rank limits enable us to efficiently limit the extract buffer’s size and the output size of $\text{bulk_pop}(v, k)$ and $\text{bulk_pop_limit}(v, L, k)$ operations. To limit extraction up to L, we simply use $\min(L, \overline{m})$ as merge limit.
As with internal arrays, the number of external arrays should be kept small for multiway merge to be efficient. One may suspect that merging from EM is I/O bound, however, if the merge output buffers are smaller than the read buffers, then this is obviously not the case. Thus, the parallelization bottleneck of refilling the extract buffer or of bulk_pop operations largely depends on the number of arrays. We also adapt the number of read buffers (both for prefetching and holding blocks in RAM) dynamically to the number of external arrays. Each newly added external array requires at least one additional read buffer, since otherwise one cannot guarantee that the first block is loadable if needed.

As with internal arrays, instead of keeping external arrays in separate groups, we label them with a level number, and merge levels when the contained number grows too large. This enables more dynamic memory pooling than in the rigid sequence heap data structure, while maintaining the optimal I/O complexity.

Trade-Offs between Insertion and Extraction. As already discussed, to enable non-bulk pop operations we keep a hierarchy of tournament trees. Using this hierarchy instead of one large tournament tree skews the depth of nodes in the tree, making replays after pops from the extract buffer and the insertion heaps cheaper than from internal arrays.

When a new external array is created, then the read prediction sequence may change and previous prefetch requests need to be canceled and new ones issued. In long bulk push sequences (as the ascending sequence in our experiments), this can amount to many superfluous prefetch reads of blocks. Thus we disable prefetching during bulk_push operations and issue all hints at the end. This suggests that bulk push sequences should be as long as possible, and that they are interleaved with bulk_pop operations.

4 Implementation in STXXL and Experimental Results

We implemented our PPQ design in C++ with OpenMP and the STXXL library [10], since it provides a well-designed interface to asynchronous I/O, and allowing easy overlapping of I/O and computation. It also contains two other PQ implementations that we compare our implementation to. Our implementation will be available as part of the next STXXL release 1.4.2, which will be publicly available under the liberal Boost software license. At the time of submission it is available in the public development repository.

Concerning actual use of the PPQ, we must point out that contrary to the previous description in this paper, the implementation extracts the largest items w.r.t. the given order first. This is because the EM containers in STXXL follow the C++ STL’s interface and std::priority_queue is a max-heap.

Other PQ Implementations. In these experiments we compare our PPQ implementation (PPQ) with the sequential sequence heap [22] (SPQS) contained in the STXXL, a partially parallelized version [4] of it (SPQP), which uses parallel multiway merging only when merging external arrays, and with the STXXL’s highly tuned stream sorting implementation [11] (Sorter) as a baseline.
Experimental Platforms. We run the experiments on two platforms (see also Table 2 in the appendix). Platform **A-Rot** is an Intel Xeon X5550 from 2009 with 2 sockets, 4 cores and 4 Hyperthreading cores per socket at 2.66 GHz clock speed and 48 GiB RAM, and eight rotational Western Digital Blue disks with 1 TB capacity and about 127 MiB/s transfer speed each, which are attached via an Adaptec ASR-5805 RAID controller. Platform **B-SSD** is an Intel Xenon E5-2650 v2 from 2014 with 2 sockets, 8 cores and 8 Hyperthreading cores per socket at 2.6 GHz clock speed with 128 GiB RAM. There are four Samsung SSD 840 EVO disks with 1 TB each attached via an Adaptec ASA-7805H Host adapter, yielding together 2 GiB/s read and 1.6 GiB/s write transfer speed to/from EM. The platforms run Ubuntu Linux 12.04 and 14.04, respectively, and all our programs were compiled with gcc 4.6.4 and 4.8.2 in *Release* performance mode using STXXL’s CMake build system.

Experiments and Parameters. To compare the three PQs we report results of four sets of experiments. In all experiments the PQ’s items are plain 64-bit integer keys (8 bytes), which places the spotlight on internal comparison work as payload only increases I/O volume. (See Figure 6 and Tables 4–5 in the appendix for additional results with 24 byte items.) The PQs are allotted 16 GiB of RAM on both platforms, since in a real EM application multiple data structures exist simultaneously and thus have to share RAM.

In the first two experiments, called a) **push-rand-pop** and b) **push-asc-pop**, the PQ is filled a) with n uniformly random generated integer items, or b) with n ascending integers, and then the n items are extracted again. In these canonical benchmarks, the PQ is used to just sort the items, but it enables us to compare the PQs against the highly optimized sorting implementation, which also employs parallelism where possible. In the ascending sequence, the first items inserted are removed first, forcing the PQs to cycle items. Considering the amount of internal sorting and merging work, the **push-asc-pop** benchmark is an easy case, since all buffers are sorted and merging is skewed. Thus the focus of this benchmark is on I/O overlapping. On the other hand, in the **push-rand-pop** benchmark the internal work to sort and merge the random numbers is very high, which makes it a test of internal processing speed. We ran the experiments for $n = 2^{27}, \ldots, 2^{35}$, which is an item volume of 1 GiB, \ldots, 256 GiB.

The third and forth experiments, **asc-rbulk-rewrite** and **bulk-rewrite**, fully rewrite the PQ in bulks: the PQ is filled with n ascending integers, then the n items are extracted in bulks of random or fixed size v, and after each bulk extraction v items are pushed again. During the rewrite, in total n items are extracted and n items inserted with higher ids. We measure only the bulk pop/push cycles as these experiments are designed to emulate traversing a graph for time forward processing. We use bulk rewriting in two different experiment scenarios: in the first, we select the bulk size uniformly at random from 0 to 640 000, and let n increase as in the first two experiments. For the second, $n = 4 \cdot 2^{30}$ items (32 GiB) is fixed and the bulk size v is varied from 5 000 to 5 120 000.

All experiments were run only once due to long execution times and little variation in the results over large ranges of input size. During the runs we pinned
the OpenMP threads to cores, which is important since it keeps the insertion heaps local. Due to the large I/O bandwidth of the SSDs, we increased the number of write buffers of the PPQ to 2 GiB on B-SSD to better overlap I/O and computation. Likewise, we allotted 128 MiB read buffers per external array. On A-Rot we set only 256 MiB write buffers and 32 MiB read buffers per array. For the STXXL PQ, of the 16 GiB of RAM one fourth is allocated for read and one fourth for write buffers. We used in all experiments the new “linuxao” I/O interface of STXXL 1.4.1, which uses direct system calls to Linux’s asynchronous I/O interface with native command queuing (NCQ) and bypasses system disk cache.

While STXXL bypasses the system disk cache, we did not disable the write cache/buffering inside the disks themselves. Disabling these features prohibits the disks from doing request reordering and asynchronous operation scheduling. On the SSDs the performance reduction would have been around 20%, on the rotation disks about 10%.

Results and Interpretation. The results measured in our experiments are shown in Figure 4 as throughput in items per second, and in MiB/s in Table 3 in the appendix. We measured “throughput” at the PQ interface, and this is not necessarily the I/O throughput to/from disk, since the PQs may keep items in RAM. In all four experiments, items are read or written twice, so throughput is two times item size divided by time. If one assumes that a container writes and reads all items once to/from disk (as the sorter does), then on A-Rot at most 39 million items/s and on B-SSD at most 106 million item/s could be processed, considering the maximum I/O bandwidth as measured using `stxxl_tool`.

In all our experiments, except the bulk size benchmark, our PPQ is faster than the parallelized and sequential STXXL PQ. Assuming the PQs use 12 GiB of the 16 GiB RAM for storing items, then the containers only need EM for about $n \geq 2^{30.5}$ (indicated by dashed horizontal line in plots). In Table 1 we show the average execution time speedups of our PPQ for the available competitors, averaged over all inputs where the input cannot fit into RAM. Remarkably, on both platforms the PPQ is faster than the sorter for both inputs except random on A-Rot, which indicates that I/O overlaps computation work very well, often even better than the sorter. We may investigate how to increase the sorter’s speed using our techniques. Comparing to SPQS, we achieved speedups of 3.6–4.7 on A-Rot (which has 8 real cores), and speedups of 3.4–6.7 on B-SSD (16

Experiment	Platform A-Rot	Platform B-SSD				
	SPQP	SPQS	Sorter	SPQP	SPQS	Sorter
push-rand-pop	1.39	3.58	0.87	2.25	4.83	0.83
push-asc-pop	1.81	3.40	1.37	4.29	6.71	1.20
asc-rlbulk-rewrite	1.89	4.70		2.91	3.43	

Table 1. Speedup of PPQ over parallelized STXXL PQ (SPQP), sequential STXXL PQ (SPQS), and STXXL Sorter for 64-bit integers, averaged for all experiments with $n \geq 2^{30.5}$.

11
number of items \([\log_2(n)]\)

Platform A-Rot

Platform B-SSD

number of items \([\log_2(n)]\)

Our PPQ
Sequential STXXL PQ
Parallelized STXXL PQ
STXXL Sorter

Fig. 4. Experimental results of our four benchmarks with 64-bit integer items.
real cores). Compared to the previously parallelized SPQP, we only gain 1.4–1.9 on A-Rot and 2.2–4.3 speedup on B-SSD. While this relative comparison may not seem much, by comparing the PPQ’s throughput to the sorter and the absolute I/O bandwidth of the disks (Table 3 in appendix), one can see that the PPQ reaches 64% of the available I/O bandwidth in push-asc-pop on B-SSD, and 49% on A-Rot. For asc-rbulk-rewrite the PQ-throughput is naturally higher than the possible I/O bandwidth, since the PQs keep items in RAM. In push-rand-pop, the PPQ is limited by compute time of sorting random integers, just as the STXXL sorter is. For asc-rbulk-rewrite, which is a main focus of the PPQ, we achieve a speedup of 1.9 on A-Rot and 2.7 on B-SSD for bulk sizes of on average 320,000 items. Considering the increasing bulk sizes in the bulk-rewrite experiment, we see that larger bulks yield better performance up to a certain sweet spot (on B-SSD it is probably even higher), but the break even of the PPQ over the SPQP is quite low: 20 K items for A-Rot and 80 K items for B-SSD.

5 Conclusions and Future Work

We presented a PPQ design and implementation for EM, and successfully demonstrated that for specific benchmarks the high I/O bandwidth of parallel disks and even SSDs can be utilized. By relaxing semantics, our bulk-parallel interface enables parallelized processing of larger amounts of items in the PPQ. In the future, we want to apply our PPQ’s bulk-parallel processing to the eSAIS external suffix and LCP sorting algorithm [5], where in the largest recursion level each alphabet character (and repetition count) is a bulk.

During our work on the PPQ two important issues remained untouched: how does one balance work in an EM algorithm library when the user application, the EM containers, and I/O overlapping require parallel work? We left this to the operating system scheduler and block the user application during parallel merging, which is not desirable. As indicated by theory and experiments, bulk_pop_limit requires large bulks to work efficiently, however, the PPQ cannot know the resulting bulk sizes without performing a costly multisequence selection. One could require the user application to provide an estimate of the resulting size, or develop an online oracle. Finally, experiments with other internal memory PPQs and d-ary heaps may improve performance by using larger insertion heaps.

References

1. Alistarh, D., Kopinsky, J., Li, J., Shavit, N.: The SprayList: A scalable relaxed priority queue. Tech. Rep. MSR-TR-2014-16, Microsoft Research (September 2014)
2. Arge, L.: The buffer tree: A technique for designing batched external data structures. Algorithmica 37(1), 1–24 (2003)
3. Arge, L., Goodrich, M.T., Nelson, M., Sitchinava, N.: Fundamental parallel algorithms for private-cache chip multiprocessors. In: SPAA. pp. 197–206. ACM (2008)
4. Beckmann, A., Dementiev, R., Singler, J.: Building a parallel pipelined external memory algorithm library. In: IPDPS’09. pp. 1–10. IEEE (2009)
5. Bingmann, T., Fischer, J., Osipov, V.: Inducing suffix and LCP arrays in external memory. In: ALENEX’13. pp. 88–102. SIAM (2013)
6. Brodal, K., Crauser, A., Ferragina, P., Meyer, U.: An experimental study of priority queues in external memory. JEA 5, 17 (2000)
7. Brodal, G.S., Katajainen, J.: Worst-case efficient external-memory priority queues. In: SWAT’98. LNCS, vol. 1432, pp. 107–118. Springer (1998)
8. Brodal, G.S., Träff, J.L., Zaroliagis, C.D.: A parallel priority queue with constant time operations. Journal of Parallel and Distributed Computing 49(1), 4–21 (1998)
9. Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-memory graph algorithms. In: SODA’95. pp. 139–149. SIAM (1995)
10. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard template library for XXL data sets. Software & Practice and Experience 38(6), 589—637 (2008)
11. Dementiev, R., Sanders, P.: Asynchronous parallel disk sorting. In: SPAA’03. pp. 138–148. ACM (2003)
12. Deo, N., Prasad, S.: Parallel heap: An optimal parallel priority queue. The Journal of Supercomputing 6(1), 87–98 (1992)
13. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative relaxation of concurrent data structures. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages POPL’13. vol. 48, pp. 317–328. ACM (2013)
14. Hutchinson, D.A., Sanders, P., Vitter, J.S.: Duality between prefetching and queued writing with parallel disks. SIAM Journal on Computing 34(6) (2005)
15. Keh, T.: Bulk-parallel priority queue in external memory (2014), Bachelor Thesis, Karlsruhe Institute of Technology, Germany
16. Lindén, J., Jonsson, B.: A skiplist-based concurrent priority queue with minimal memory contention. In: Principles of Distributed Systems, pp. 206–220. No. 8304 in LNCS, Springer (2013)
17. Liu, Y., Spear, M.F.: A lock-free, array-based priority queue. In: 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP’12. vol. 47, pp. 323–324. ACM (2012)
18. Petersen, L.H.: External Priority Queues in Practice. Master’s thesis, Aarhus Universitet, Datalogisk Institut, Denmark (2007)
19. Pinotti, M.C., Pucci, G.: Parallel priority queues. IPL 40(1), 33–40 (1991)
20. Rihani, H., Sanders, P., Dementiev, R.: Multiqueues: Simpler, faster, and better relaxed concurrent priority queues. arXiv preprint arXiv:1411.1209 (2014)
21. Sanders, P.: Randomized priority queues for fast parallel access. Journal of Parallel and Distributed Computing 49(1), 86–97 (1998)
22. Sanders, P.: Fast priority queues for cached memory. JEA 5, 7 (2000)
23. Shavit, N., Lotan, I.: Skiplist-based concurrent priority queues. In: Parallel and Distributed Processing Symposium, IPDPS’00. pp. 263–268. IEEE (2000)
24. Singler, J., Sanders, P., Putze, F.: MCSTL: The multi-core standard template library. In: Euro-Par 2007 Parallel Processing, pp. 682–694. Springer (Jan 2007)
25. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-thread systems. In: IPDPS’03. pp. 11–pp. IEEE (2003)
26. Varman, P.J., Scheufler, S.D., Iyer, B.R., Ricard, G.R.: Merging multiple lists on hierarchical-memory multiprocessors. Journal of Parallel and Distributed Computing 12(2), 171–177 (1991)
27. Vitter, J.S., Shriver, E.A.: Algorithms for parallel memory, ii: Two-level memories. Algorithmica 12(2-3), 110–147 (1994)
A Performance of Parallel Multiway-Merge

Folk cache-efficiency wisdom dictates that one should only merge a small number of sequences using tournament trees, such that the data structures and heads of sequences fit into cache. The EM sequence heap implementation in the STXXL merges a fixed maximum of 64 sequences.

For parallel multiway merging we have to reevaluate these assumptions to find good balances. Due to the asymptotic complexities discussed at the end of Section 1.2, it is obvious that merging longer sequences is better, since the work is divided evenly among processors and only effects the sequential runtime logarithmically. However, due to cache effects and critical sequential path, it is unclear how the number of sequences affects performance, so we performed a basic experiment merging an increasing number of fixed length sequences of 2 MiB size in RAM on our platforms. The results for 64-bit integers and a larger structure are shown in Figure 5.

Obviously the merging speed decreases with the number of sequences, but we cannot determine any precise number of sequences that is best: the range 10–100 seems acceptable for both data types. It is not obvious how fast merging larger number of sequences in two steps would be, since in the second step longer sequences are merged.

![Figure 5. Speed of parallel multiway merging in RAM, median of at least 15 repetitions.](image)

name	processor, host bus adapter	clock [GHz]	cores × sockets × HT	L1 cache: [KiB] × L2 cache: [KiB] × L3 cache: [MiB] × RAM [GiB]
A-Rot	Intel Xenon X5550	2.66	2 × 4 × 2	4 × 64 4 × 256 8 × 48
B-SSD	Intel Xenon E5-2650 v2	2.60	2 × 8 × 2	8 × 64 8 × 256 20 × 128

name	hard drives	link	capacity [GB]	R/W speed [MiB/s]	parallel speed [MiB/s]
A-Rot	WD Blue WD10EZEX SATAv2	8 × 1000	170 – 85	748 – 731	
B-SSD	Samsung SSD 840 EVO SATAv3	4 × 1000 512 R	475 W 2006 R 1616 W		

Table 2. Hardware characteristics of experimental platforms. Read/write speeds vary on rotational disks due to geometry, and on SSDs due to circuitry.
Table 3.
Experimental results shown as MiB/s PQ-throughput, where one item is eight bytes. The PQ implementations are abbreviated as Parallel PQ (PPQ), parallelized STXXL PQ (SPQP), sequential STXXL PQ (SPQS), and STXXL Sorter (Sort).

log₂ n	item vol. [GiB]	push-rand-pop PPQ	push-asc-pop PPQ	asc-rbulk-rewrite PPQ	Platform A-Rot			
27	1	405	222	86 305	1 030 262	127 290	2 045 766	251
28	2	371	219	83 304	999 262	127 286	1 725 738	248
29	4	350	202	81 304	944 259	126 283	1 517 718	246
30	8	344	201	75 293	874 236	113 239	1 688 685	252
31	16	273	194	76 316	359 216	111 255	2 027 572	233
32	32	258	200	76 333	362 207	109 265	1 057 569	229
33	64	261	190	74 293	359 198	106 266	1 064 565	226
34	128	272	196	76 241	359 195	105 262	1 057 549	223
35	256	270	180	75 316	364 192	104 253	1 000 533	220

bulk size n/1000	bulk vol. [KiB]	A-Rot PPQ	A-Rot SPQP	A-Rot SPQS	B-SSD PPQ	B-SSD SPQP	B-SSD SPQS
5	39	289	576	229	157	934	787
10	78	453	577	229	280	939	793
20	156	644	575	230	495	929	798
40	312	793	575	230	870	922	797
80	625	910	575	230	1 418	961	797
160	1 250	991	572	229	2 107	938	779
320	2 500	1 064	569	229	2 883	949	798
640	5 000	1 041	558	230	3 521	975	732
1 280	10 000	1 025	554	220	3 903	909	736
2 560	20 000	1 024	494	207	4 172	893	637
5 120	40 000	1 004	486	207	3 499	908	649
Fig. 6. Experimental results of our four benchmarks with 24-byte items.							
items	item vol.	push-rand-pop	push-asc-pop	asc-rbulk-rewrite			
-------	-----------	---------------	--------------	------------------			
log₂ n	[GiB]	PPQ SPQP SPQS Sort	PPQ SPQP SPQS Sort	PPQ SPQP SPQS			
		Platform A-Rot					
25.4	0	1 310 430 220 408	1 983 475 308 341	11 333 1145 589			
26.4	1	1 111 404 214 490	1 904 468 306 336	10 843 1082 588			
27.4	3	1 293 355 198 406	1 614 447 306 334	9 025 983 578			
28.4	7	1 249 354 169 371	1 658 363 241 277	8 361 772 496			
29.4	15	344 362 167 349	421 329 252 183	651 450 340			
30.4	31	337 341 173 464	425 306 222 1055	643 430 304			
31.4	63	330 298 157 371	426 287 210 336	629 426 301			
32.4	127	363 335 174 289	429 281 205 344	614 417 300			
33.4	255	357 299 173 504	432 275 203 347	599 409 299			
		Platform B-SSD					
25.4	0	449 448 262 768	2 521 499 263 932	1 468 1 528			
26.4	1	1 074 376 254 764	2 456 489 267 993	1 380 1 545			
27.4	3	1 475 285 245 793	2 135 450 267 1054	1 065 1 478			
28.4	7	1 447 370 203 807	2 267 423 235 1043	1 478 1 011			
29.4	15	825 359 206 842	1 329 399 230 1357	1 188 961			
30.4	31	1 031 349 204 927	1 327 391 228 1309	1 190 904			
31.4	63	1 013 342 203 955	1 348 380 222 1400	1 168 910			
32.4	127	745 286 200 969	1 272 376 222 1429	1 102 933			
33.4	255	853 223 204 947	1 230 364 222 1396	1 168 929			

Table 4. Experimental results shown as MiB/s PQ-throughput, where one item is 24 bytes. The PQ implementations are abbreviated as Parallel PQ (PPQ), parallelized STXXL PQ (SPQP), sequential STXXL PQ (SPQS), and STXXL Sorter (Sort).

bulk size	bulk vol. [KiB]	A-Rot	B-SSD				
n/1000	PPQ SPQP SPQS	PPQ SPQP SPQS					
5	117	577	680	488	377	1359	1014
10	234	800	687	477	666	1382	1040
20	468	959	675	473	1115	1386	1028
40	937	1048	679	480	1791	1353	1027
80	1 875	1 048	677	480	2 667	1 360	1 032
160	3 750	1 080	681	479	3 541	1 344	998
320	7 500	1 046	670	479	4 130	1 340	1 025
640	15 000	1 039	600	390	4 473	1 077	866
1 280	30 000	1 055	596	389	4 597	1 096	929
2 560	60 000	994	598	390	4 609	1 118	881

Table 5. Speedup of PPQ over parallelized STXXL PQ, sequential STXXL PQ, and STXXL Sorter for 24 byte structures, averaged for all experiments with $n \geq 2^{30.5}$.

Experiment	Platform A-Rot	Platform B-SSD
push-rand-pop	1.11 2.09 0.89	3.00 4.19 0.90
push-asc-pop	1.52 2.09 1.25	3.39 5.73 0.89
asc-rbulk-rewrite	1.69 2.49	3.22 3.72