Mitogenomic phylogenetic analyses of Leptogorgia virgulata and Leptogorgia hebes (Anthozoa: Octocorallia) from the Gulf of Mexico provides insight on Gorgoniidae divergence between Pacific and Atlantic lineages

Samantha Silvestri
Diego F. Figueroa
David Hicks
Nicolle J. Figueroa
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/eems_fac

Part of the Earth Sciences Commons, Environmental Sciences Commons, and the Marine Biology Commons

Recommended Citation
Silvestri, S., Figueroa, D. F., Hicks, D., & Figueroa, N. J. (2019). Mitogenomic phylogenetic analyses of Leptogorgia virgulata and Leptogorgia hebes (Anthozoa: Octocorallia) from the Gulf of Mexico provides insight on Gorgoniidae divergence between Pacific and Atlantic lineages. Ecology and Evolution, 9(24), 14114–14129. https://doi.org/10.1002/ece3.5847

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Earth, Environmental, and Marine Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.
INTRODUCTION

There are 54 valid species in the genus *Leptogorgia* belonging to the family Gorgoniidae (Milne-Edwards & Haime, 1857). They are classified as soft corals due to their lack of a protective calcium carbonate exoskeleton. Instead, for support and protection, they rely on small, calcitic structures called sclerites (O'Neal & Pawlik, 2002), from which their white, translucent polyps protrude, and they range in color from yellow to orange to red to purple (White & Strychar, 2010).

Leptogorgia and other octocorals provide habitat heterogeneity and therefore allow for large aggregations of diverse fauna (Quattrini et al., 2014). Greater habitat complexity has been shown to be significantly correlated with higher red snapper abundance, an economically important fish species in the Gulf of Mexico and Western Atlantic Ocean (Szedlmayer, 2007). There are nine species of *Leptogorgia* in the Gulf of Mexico, including *Leptogorgia hebes* and *Leptogorgia virgulata* (Cairns & Bayer, 2009). They are found at depths ranging from 2 to 309 m, with the depth range of *L. hebes* ranging from 9 to 37 m and that of *L. virgulata* from 3 to 82 m (Cairns & Bayer, 2009; Williamson, Strychar, & Withers, 2011). *Leptogorgia hebes* and *L. virgulata* reach reproductive maturity within 2 years, and both are broadcast spawners, releasing eggs, and sperm into the water column (Beasley, Dardeau, & Schroeder, 2003; Gotelli, 1991).
The larvae in *L. virgulata* can spend 3–20 days in the water column before settlement (Gotelli, 1991). The duration of the larval stage for *L. hebes* is unknown. Both *L. hebes* and *L. virgulata* have been successful at colonizing artificial structures in the Gulf of Mexico, including jetties within the subtidal zone (Williamson et al., 2011). A strong holdfast and a rigid, yet flexible skeleton, allows these two species to colonize habitats with swift currents and wave action such as that found in jetties (Williamson et al., 2011). These life history characteristics of *L. hebes* and *L. virgulata* include relatively fast maturation, broadcast spawning, long survival of larval stages, and adaptations for successful establishment in high energy environments, demonstrate the high potential for dispersal and colonization of new regions of these species.

Old, incomplete, or damaged records in addition to a lack of easily identifiable morphological traits among species make gorgonians particularly difficult to classify (Sánchez, 2007). For example, the genus *Leptogorgia* was initially split into two genera—*Leptogorgia* and *Lophogorgia*—by Milne-Edwards and Haime (1857). Species in the *Leptogorgia* genus are described as having disk-spindles in the outer coenenchyme, while *Lophogorgia* species have spindles more closely resembling flat rods and were described mostly in the Eastern Pacific, Western Atlantic, Caribbean, and along the eastern and southern coasts of Africa (Bayer, 1961). However, in 1988 these morphological distinctions were questioned and the two genera were united into one as *Leptogorgia* (Grashoff, 1988). In 2017, Poliseno et al. conducted a phylogenetic study of *Leptogorgia*, using specimens from a wide geographical area, including the eastern and Western Atlantic, the Eastern Pacific, and the Mediterranean. They reconstructed two phylogenies, one based on complete mitochondrial genomes and the other based on a partial fragment of the mitochondrial MutS gene (*mtMutS*). While their phylogeny based on complete mitochondrial genomes only has eleven species of the family Gorgoniidae, including six species of *Leptogorgia*, the one based on the single *mtMutS* gene includes 109 species, providing greater taxonomic resolution. In their study, Poliseno et al. (2017) also estimate divergence times with a fossil calibration point of 28.4 Ma based on the stratigraphy and dating of the presence of substitution saturation and long branch attraction (i.e., Kitahara et al., 2014), it is only an issue within the Hexacorallia and it does not affect the Octocorallia, such as the gorgonian corals in our study (Figueroa & Baco, 2015). Complete mitochondrial genomes have been demonstrated to provide robust and well-supported phylogenies for Octocorallia (e.g., Figueroa & Baco, 2014; Figueroa & Baco, 2015; Kayal, Roure, Philippe, Collins, & Lavrov, 2013; Poliseno et al., 2017), while the use of single mitochondrial genes has been demonstrated to result in incongruent largely unresolved trees across a wide range of taxa (Havird & Santos, 2014; Knaus, Cronn, Liston, Pilgrim, & Schwartz, 2011; Luo et al., 2011; Nadimi, Daubois, & Hijri, 2016; Pacheco et al., 2011; Rohland et al., 2007; Urantowka, Kroczak, & Mackiewicz, 2017; Wang et al., 2017; Willerslev et al., 2009). Therefore, we expect that the taxonomic position of *L. hebes* and *L. virgulata* weakly supported. Therefore, in our study, we analyze both complete mitochondrial genomes and the *mtMutS* gene.

Our study focuses on two species of *Leptogorgia* from the Gulf of Mexico, *L. hebes* and *L. virgulata*. We have two main goals. The first is to determine the taxonomic position of *L. hebes* (formerly classified in the genus *Lophogorgia* by Bayer, 1961) and of *L. virgulata*. The analyses by Poliseno et al. (2017) did not include complete mitochondrial genomes for these two species and their phylogeny based on the partial *mtMutS* gene leaves the phylogenetic position of both *L. hebes* and *L. virgulata* weakly supported. Therefore, in our study, we analyze both complete mitochondrial genomes and the *mtMutS* gene. Although mitochondrial genomes have been shown to be problematic for phylogenetic reconstruction of scleractinian corals due to the presence of substitution saturation and long branch attraction (i.e., Kitahara et al., 2014), it is only an issue within the Hexacorallia and it does not affect the Octocorallia, such as the gorgonian corals in our study (Figueroa & Baco, 2015). Complete mitochondrial genomes have been demonstrated to provide robust and well-supported phylogenies for Octocorallia (e.g., Figueroa & Baco, 2014; Figueroa & Baco, 2015; Kayal, Roure, Philippe, Collins, & Lavrov, 2013; Poliseno et al., 2017), while the use of single mitochondrial genes has been demonstrated to result in incongruent largely unresolved trees across a wide range of taxa (Havird & Santos, 2014; Knaus, Cronn, Liston, Pilgrim, & Schwartz, 2011; Luo et al., 2011; Nadimi, Daubois, & Hijri, 2016; Pacheco et al., 2011; Rohland et al., 2007; Urantowka, Kroczak, & Mackiewicz, 2017; Wang et al., 2017; Willerslev et al., 2009). Therefore, we expect that the taxonomic position of *L. hebes* and *L. virgulata* will be fully resolved by reconstructing their phylogeny using mitochondrial genomes.

Our second goal is to estimate divergence times of Eastern Pacific and Western Atlantic *Leptogorgia* species. Since previous research has shown that fossil-calibrated phylogenetic reconstruction based on single mitochondrial genes results in an overestimation of divergence times (Duchêne, Archer, Vilstrup, Caballero, & Morin, 2011; McCormack, Heled, Delaney, Peterson, & Knowles, 2011), we will base our estimates of diversification times between Eastern Pacific and Western Atlantic lineages of *Leptogorgia* to targeting complete mitochondrial genomes. We reconstruct a fossil-calibrated phylogenetic tree for *Leptogorgia* species based on complete mitochondrial genomes and using *Eunicella* as an outgroup. We use a fossil calibration point of 28.4 Ma based on the stratigraphy and dating of the Red Bluff Formation in Mississippi where the oldest fossils of *Eunicella* have been recovered (Cushing, Boswell, & Hosman, 1964; Demchuk & Gary, 2009; Kocurko & Kocurko, 1992; Prothero, Ivany, & Nesbitt, 2003; Tew, 1992). Among Octocorallia, skeletal diversity, such as morphology of sclerites, is a key character for taxonomic identification (Goffredo & Dubinsky, 2016). Sclerites with a balloon club shape are a distinguishing characteristic that is unique to the genus *Eunicella* (Goffredo & Dubinsky, 2016; Kocurko & Kocurko, 2016).
Fossil sclerites with balloon club shape have been found in the Red Bluff Formation in Mississippi and have been clearly attributed to *Eunicella* (Kocurko & Kocurko, 1992). Stratigraphy of the Red Bluff Formation and dating of this layer within the Oligocene (23–34 Ma) has been intensely studied (i.e., Cushing et al., 1964; Demchuk & Gary, 2009; Hosman, 1996; Prothero et al., 2003; Tew, 1992).

The timeline proposed by Poliseno et al. (2017) for the divergence between Eastern Pacific and Western Atlantic *Leptogorgia* species coincides with evidence that a land bridge between North and South America began to emerge between 23 and 25 Ma when the Panama Arc collided with South America (Bacon et al., 2015). However, despite this initial emergence and given the life history characteristics of shallow water *Leptogorgia* species such as *L. hebes* and *L. virgulata* that enhance dispersal and colonization (Beasley & Dardeau, 2003; Cairns & Bayer, 2009; Gotelli, 1988, 1991; Williamson et al., 2011), gene flow is likely to have continued between the Western Atlantic and Eastern Pacific until full closure of the Central American Seaway (Bacon et al., 2015; Cowman & Bellwood, 2013; Lessios, 2008; Thacker, 2017). Therefore, we hypothesize that the divergence times of Eastern Pacific and Western Atlantic *Leptogorgia* lineages to be younger than previously suggested (Poliseno et al., 2017) with the majority of speciation events occurring after 10 Ma when significant seawater exchange between the Pacific and Atlantic Ocean ceased (i.e., Bacon et al., 2015; Montes et al., 2015; O’Dea et al., 2016).

2 | MATERIALS AND METHODS

2.1 | Study sites and sample collection

Six sites in the Gulf of Mexico off the coast of the United States in South Padre Island, Texas, were sampled for 24 *Leptogorgia* specimens (seven *L. hebes* and 17 *L. virgulata*) by divers collecting coral fragments between June 2014 and July 2017 (Table 1). Once collected, samples were preserved in ethanol and stored at 0°C. Voucher specimens are deposited and curated at the University of Texas Rio Grande Valley’s Coastal Studies Laboratory and are available upon request under GenBank accession numbers MK0301586–MK0301592 for specimens of *L. virgulata* and MN052675–MN052677 for specimens of *L. hebes*.

Table 1. *Leptogorgia* sp. found at all sites and site types with respective dates, coordinates, and depths

Location	Date	Lat	Lon	Depth (m)	# of samples/species collected
Port Isabel Reef	6/3/2014	25.9684	-97.0669	22	1 *L. hebes*; 1 *L. virgulata*
Port Mansfield Liberty Ship	12/12/2014	26.4296	-97.0241	24	1 *L. hebes*; 1 *L. virgulata*
Jack up Rigs/East Bank	7/7/2016	26.1021	-96.9377	32	1 *L. virgulata*
Port Mansfield Liberty Ship	9/2/2016	26.4296	-97.0241	24	1 *L. virgulata*
Port Isabel Reef	9/15/2016	25.9684	-97.0669	22	1 *L. hebes*; 1 *L. virgulata*
Port Mansfield Liberty Ship	3/20/2017	26.4296	-97.0241	24	1 *L. hebes*
MU 726 A	6/8/2017	27.8146	-96.7622	24	4 *L. virgulata*
Texas Clipper	7/8/2017	26.1903	-96.8614	15-41	2 *L. virgulata*
SPI Jetty	7/30/2017	26.0674	-97.1504	5	3 *L. hebes*; 6 *L. virgulata*

Three to five individual polyps were picked off from each coral sample, depending on the size and quality of preservation of the coral fragment. Polyps were visually inspected under a stereo microscope and picked off the coral stalk using forceps. Forceps were sterilized in between each sample using 100% bleach and 100% ethanol. If individual polyps were difficult to distinguish, an ~0.5 cm long piece was broken off of the coral fragment. The PureLink Genomic DNA Mini Kit (Thermo Fisher Scientific) was used to extract DNA from each sample following the manufacturer’s standard protocol. Prior to extraction, coral polyps were rehydrated for 1–2 hr in molecular grade water and then digested for at least 5 hr. The final DNA product was eluted two times for maximum yield. The elution buffer was heated to 55°C prior to use, and 60 µl of were used for both elutions. The concentration of the extracted DNA was measured using a Qubit fluorometer (Life Technologies Inc.).

Polymerase Chain Reaction (PCR) amplification was performed on 0.1–5.0 ng template DNA from 24 samples in order to target the mtMutS gene with forward primer ND42599F (GCCATTATGGTTAACTATTAC; France & Hoover, 2002) and reverse primer Mut3458R (TSGAGCAAAAGCCACTCC; Sanchez, McFadden, France, & Lasker, 2003). The PCR mix consisted of the following in 25 µl total volume: 16.05 µl nuclease free water, 2.5
TABLE 2 All 182 Leptogorgia mtMutS sequences incorporated into the mtMutS phylogeny with corresponding GenBank accession numbers

Species	Accession #						
Leptogorgia virgulata	MN159153	Leptogorgia alba	KX721205	Leptogorgia obscura	KX721210	Leptogorgia taboguilla	LT221102
Leptogorgia virgulata	MN159154	Leptogorgia alba	KX721203	Leptogorgia pictcola	KY683795	Leptogorgia tricora	LT221111
Leptogorgia virgulata	MN159155	Leptogorgia alba	KX721202	Leptogorgia pulcherrima	KY683794	Leptogorgia viridula	LT221109
Leptogorgia virgulata	MN159156	Leptogorgia alba	KX721201	Leptogorgia pulcherrima	KY683793	Leptogorgia viridula	KY683796
Leptogorgia virgulata	MN159157	Leptogorgia alba	KX721195	Leptogorgia pulcherrima	KY683793	Leptogorgia viridula	KY683796
Leptogorgia virgulata	MN159158	Leptogorgia alba	KY559410	Leptogorgia pulcherrima	KY68443	Leptogorgia violacea	KY68448
Leptogorgia virgulata	MN159159	Leptogorgia barnardi	KY767314	Leptogorgia pulmila	KY767312	Leptogorgia violette	KY68446
Leptogorgia virgulata	MN159160	Leptogorgia alba	HG170363	Leptogorgia pulmila	LT221116	Leptogorgia virgulata	KY68458
Leptogorgia virgulata	MN159161	Leptogorgia alba	HG170357	Leptogorgia pulmila	KY68449	Leptogorgia virgulata	KY68458
Leptogorgia virgulata	MN159162	Leptogorgia alba	HG170304	Leptogorgia ramulus	KY68451	Pacifigorgia bayeri	HG917044
Leptogorgia virgulata	MN159163	Leptogorgia alba	AY268452	Leptogorgia ramulus	KX767322	Pacifigorgia cairns	KY59409
Leptogorgia virgulata	MN159164	Leptogorgia alba	LT221108	Leptogorgia regis	LT221101	Pacifigorgia cairns	KY68451
Leptogorgia virgulata	MN159165	Leptogorgia alba	LT221113	Leptogorgia regis	LT221100	Pacifigorgia cairns	KY68451
Leptogorgia virgulata	MN159166	Leptogorgia barnardi	KY236043	Leptogorgia regis	LT221099	Pacifigorgia cairns	KY68451
Leptogorgia virgulata	MN159167	Leptogorgia barnardi	KY553145	Leptogorgia regis	LT221098	Pacifigorgia cairns	KY68451
Leptogorgia virgulata	MN159168	Leptogorgia cf.palmata	KY559406	Leptogorgia rigida	GQ342496	Pacifigorgia exilis	KX351871
Leptogorgia virgulata	MN159169	Leptogorgia cf.palmata	KY236042	Leptogorgia rubra	KX767323	Pacifigorgia firma	KX351872
Leptogorgia hebes	MN159170	Leptogorgia cf.palmata	KY236030	Leptogorgia sarmentosa	KY559411	Pacifigorgia firma	KX351872
Leptogorgia hebes	MN159171	Leptogorgia cf.palmata	KY236031	Leptogorgia sp.	KX767315	Pacifigorgia irene	KX351873
Leptogorgia hebes	MN159172	Leptogorgia cf.palmata	AY268460	Leptogorgia sp.	KX721204	Pacifigorgia irene	KX687024
Leptogorgia hebes	MN159173	Leptogorgia chilensis	JN866554	Leptogorgia sp.	KX59412	Pacifigorgia macalilla	KX351876
Leptogorgia hebes	MN159174	Leptogorgia chilensis	HG170373	Leptogorgia sp.	KX236033	Pacifigorgia macalilla	KX351874
Leptogorgia hebes	MN159175	Leptogorgia chilensis	HG170374	Leptogorgia sp.	KX236032	Pacifigorgia macalilla	KX351875
Leptogorgia hebes	MN159176	Leptogorgia chilensis	HG170375	Leptogorgia sp.	KX683791	Pacifigorgia medio	GQ342497
Acanthogorgia sp	AY268461	Leptogorgia cf.palmata	HG170385	Leptogorgia sp.	LT221114	Pacifigorgia rubicunda	HG917027
Antillogorgia acerosa	JX152763	Leptogorgia cortes	LT221105	Leptogorgia sp.	LT221115	Pacifigorgia sculpta	KX351877
Antillogorgia sp. 1	JX152764	Leptogorgia cepidata	KX767318	Leptogorgia sp.	LT221106	Pacifigorgia senta	LT221107
Antillogorgia sp. 2	JX152765	Leptogorgia cepidata	AY268450	Leptogorgia sp.	KX236035	Pacifigorgia smithsoniana	HG917023
Eugorgia ampla	KX767336	Leptogorgia cepidata	HG17047	Leptogorgia sp.	KX236034	Pacifigorgia stenobrochis	HG917018
Eugorgia daniana	HG917048	Leptogorgia cepidata	AY268445	Leptogorgia sp.	KX236037	Pacifigorgia stenobrochis	AY166240
Eugorgia daniana	LT221110	Leptogorgia cepidata	KX767319	Leptogorgia sp.	KX236036	Phyllogorgia dilata	AY166248
Eugorgia multifida	GQ342494	Leptogorgia cepidata	KX721209	Leptogorgia sp.	KX236039	Pseudopterogorgia acerosa	AY166241
Eugorgia mutabilis	KY559405	Leptogorgia cepidata	KX767326	Leptogorgia sp.	KX236038	Pseudopterogorgia americana	AY166243
Eugorgia mutabilis	LT221112	Leptogorgia cepidata	KX767329	Leptogorgia sp.	KX236041	Pseudopterogorgia australiensis	AY166242
TABLE 2

Species Accession #	Species Accession #	Species Accession #	Species Accession #
KY236040	JN866557	Leptogorgia flexilis	b KX767328
Eugorgia rubens	Pseudopterogorgia elisabethae	Leptogorgia sp.	b KX767327
Eugorgia siedenburgae	Leptogorgia flexilis	b KX767325	
Leptogorgia flexilis	b KX767324		
Eunicella cavolinii	Leptogorgia flexilis	b KX767323	
Leptogorgia flexilis	b KX767322		
Eunicella albicans	Leptogorgia flexilis	b KX767321	
Leptogorgia flexilis	b KX767320		
Eunicella cavolinii	Leptogorgia flexilis	b KX767319	
Leptogorgia flexilis	b KX767318		
Eunicella albicans	Leptogorgia flexilis	b KX767317	
Leptogorgia flexilis	b KX767316		
Eunicella cavolinii	Leptogorgia flexilis	b KX767315	
Leptogorgia flexilis	b KX767314		
Eunicella cavolinii	Leptogorgia flexilis	b KX767313	

Sequences from this study.
New sequences from GenBank.
Sequences used by Poliseno et al. (2017).

2.3 | Sequence assembly and alignment

For each specimen, the sequences for the forward and reverse strands were assembled with the software CLC Workbench 7.9.1 (CLC Bio) using the settings: minimum aligned read length = 500 bp, alignment stringency = high, conflicts = ambiguity nucleotides, trim sequence ends and trim using quality scores limit = 0.05. A cutoff was used were only bases with Phred scores of 20 or more were kept. A consensus sequence was generated from each assembly. Qiagen's CLC Workbench 7.9.1 was used to align the mtMutS sequences. The mtMutS sequences were aligned using Qiagen's CLC Main Workbench 7 software and include 24 sequences from this study, the 114 sequences examined in Poliseno et al. (2017) and 43 novel sequences available in GenBank for a total of 182 sequences (Table 2). The alignment was visually inspected for errors and inconsistencies. The final mtMutS alignment was 766 bp in length.

The Illumina sequence reads were assembled using the software CLC Genomics Workbench 11. Default settings were used with reads mapped back to contigs (mismatch cost = 2, insertion cost = 3, deletion cost = 3, length fraction = 0.5, similarity fraction = 0.8). The sequences obtained from the assemblies included the full mitochondrial genome for each specimen with an average read coverage of over 100 and a minimum coverage of 35. The assembled
TABLE 3 All 21 gorgonian mitochondrial genomes and their corresponding GenBank accession number

Species	Size (bp)	GenBank Accession #
Leptogorgia virgulata	18,845	MK301586
Leptogorgia virgulata	18,845	MK301587
Leptogorgia virgulata	18,824	MK301588
Leptogorgia virgulata	18,845	MK301589
Leptogorgia virgulata	18,824	MK301591
Leptogorgia virgulata	18,845	MK301592
Leptogorgia hebes	19,247	MN052675
Leptogorgia hebes	19,247	MN052676
Leptogorgia hebes	19,247	MN052677
Pseudopterogorgia bipinnata	18,733	DQ640646
Leptogorgia capverdensis	18,722	KY553145
Leptogorgia gaini	19,682	KY559404
Eugorgia mutabilis	19,157	KY559405
Leptogorgia cf. palma	18,731	KY559406
Eunicella albicans	19,175	KY559407
Eunicella cavolinii	19,316	KY559408
Pacificigorgia caimsi	19,156	KY559409
Leptogorgia alba	18,848	KY559410
Leptogorgia sarmentosa	18,722	KY559411
Leptogorgia sp.	18,849	KY559412

*The 10 novel mt genomes sequenced in this study.

TABLE 4 Data block definitions for partition analysis

Region	Codon positions		
	1	2	3
(A)	1–708	2–708	3–708
Atp6	709–924	710–924	711–924
Cox1	925–2,550	926–2,550	927–2,550
Cox2	2,551–3,312	2,552–3,312	2,553–3,312
Cox3	3,313–4,098	3,314–4,098	3,315–4,098
Cytb	4,099–5,273	4,100–5,273	4,101–5,273
MutS	5,274–8,231	5,275–8,231	5,276–8,231
Nad1	8,232–9,203	8,233–9,203	8,234–9,203
Nad2	9,204–10,361	9,205–10,361	9,206–10,361
Nad3	10,362–10,734	10,363–10,734	10,364–10,734
Nad4	10,735–12,183	10,736–12,183	10,737–12,183
Nad4L	12,184–12,477	12,185–12,477	12,186–12,477
Nad5	12,478–14,320	12,479–14,320	12,480–14,320
Nad6	14,321–14,878	14,322–14,878	14,323–14,878
rRNA (12s)	14,879–15,807	14,879–15,807	
rRNA (16s)	15,808–17,999	15,808–17,999	

(B) MutS 1–766 2–766 3–766

Note: (A) Mitochondrial genome concatenated alignment including 14 protein-coding genes and 2 RNAs. (B) mtMutS alignment.

2.4 Phylogenetic analyses

Both mtMutS and complete mt genome alignments were used in phylogenetic analyses using maximum likelihood (ML) and Bayesian methods. The model of evolution and partitioning scheme was determined by PartitionFinder v1.1.1 (Lanfear, Calcott, Kainer, Mayer, & Stamatakis, 2014) using linked branches and the Akaike information criterion (AIC). The RAxML v8.0.0 program (Stamatakis, 2017) was used to conduct the ML analyses and Mr. Bayes 3.1 (Ronquist & Huelsenbeck, 2003) was used for the Bayesian analyses. Data blocks were created for mtMutS based on codon position (Table 4). PartitionFinder selected GTR + G as the best evolutionary model for three partitions: (a) mtMutS1; (b) mtMutS2; and (c) mtMutS3.

For the mitochondrial genome analyses, data blocks were created based on codon positions for all 14 protein-coding genes (Cox1, Nad1, CytB, Nad2, Nad3, Nad4L, mtMutS, Nad2, Nad5, Nad4, Cox3, Atp6, Atp8, and Cox2) and two ribosomal RNAs (Table 4). For the ML analysis, PartitionFinder selected General Time Reversible plus Gamma (GTR + G) as the best evolutionary model for 11 partition subsets and GTR + I+G for three subsets (Table 5). For the Bayesian analysis, the data were partitioned into 16 subsets. PartitionFinder selected GTR + I as the best model for two subsets, F81 for one subset, GTR + G for four subsets, GTR + I+G for two subsets, GTR for one subset, HKY for two subsets, HKY + G for two subsets, and HKY + I+G for one subset (Table 5).

The best maximum likelihood tree was reconstructed with RAxML for both, the mtMutS alignment and the mt genome alignment, using bootstrap values from 10,000 replicates. Note that in RAxML partitions cannot be analyzed with different evolutionary models and one model must be used for all partitions. Therefore, the mt genome alignment was analyzed under a GTR + G model given that PartitionFinder selected this as the best model for 11 of the 14 partitions. Phylogenetic trees were also reconstructed for both by Bayesian methods. Using Mr. Bayes, four chains were carried out for 1,100,000 generations, sampling every 200th generation. After inspecting the trace files generated by the Bayesian Markov Chain Monte Carlo (MCMC) runs, the initial 100,000 of sampled generations were omitted prior to building the consensus
An uncorrelated log-normal relaxed clock model was used along with the calibrated yule speciation model. The tree was calibrated based on the earliest fossil evidence for Eunicella (Kocurko & Kocurko, 1992) with a date of origination set to 28.4 Ma (mean = 1 and standard deviation = 1). One chain was carried out for 10,000,000 generations, sampling every 1,000th generation. After inspecting the trace files generated by the Bayesian Markov Chain Monte Carlo (MCMC) runs, the initial 25% of sampled generations were omitted prior to building the tree. Mean divergence times were summarized with TreeAnnotator.

3 | RESULTS

3.1 | Mitochondrial MutS phylogeny

The 17 sequences of mtMutS of L. virgulata are identical, while the seven sequences of L. hebes range from 99.74% to 100% identity. The phylogenetic reconstruction based on mtMutS included the 17 sequences of L. virgulata and the seven sequences of L. hebes generated by this study (Figure 1). These 24 sequences were combined with 158 additional Leptogorgia mtMutS sequences and two of Eunicella (outgroup), downloaded from GenBank. The topology between the Bayesian and maximum likelihood analyses is relatively similar. There are nine major clades (A–I) that are strongly supported (>70 bootstrap and >95 posterior probability) except for Clade F (<50 bootstrap and <50 posterior probability), each corresponding to taxa from a particular geographic region (Figure 1).

Clade A corresponds to species found in the Eastern Atlantic and Mediterranean. Clade A is sister to Clade B, which corresponds to species found in South Africa. Clade A and B, along with Pseudopterogorgia fredericki and Pseudopterogorgia australiensis form a clade that is weakly supported (51 bootstrap and 85 posterior probability) and sister to all other species (Figure 1). This sister clade with the remaining species is moderately supported (77 bootstrap and 86 posterior probability) and contains clades C–I.

Clade C (100 bootstrap and posterior probability) consists of 11 different species representing multiple genera (Pseudopterogorgia, Antillogorgia, Gorgonia, and Phyllogorgia). All species in Clade C are found in the Caribbean (Figure 1). Clade C is sister to the remaining species which form a strongly supported group (97 bootstrap and 86 posterior probability) containing clades D–I. Clade D (100 bootstrap and posterior probability) is made up of species of Pacificigorgia along with a few species of Leptogorgia, all of which are from the Eastern Pacific (Figure 1). Clade D is sister to a strongly supported clade (100 bootstrap and 100 posterior probability) that consist of the remaining species within clades E–I. Clade E (89 bootstrap and 100 posterior probability) consists of several species of Leptogorgia and Eugorgia all from the Eastern Pacific (Figure 1). Clade E is sister to a strongly supported group (91 bootstrap and 100 posterior probability) containing clades F–I. Clade F does not have statistical support (<50 bootstrap and <50 posterior probability). Within clade F are Leptogorgia violacea, L. punicea, and L. rubra along with a well-supported clade (90 bootstrap and 99 posterior probability).

Table 5: Partition scheme for the concatenated mitochondrial genome alignment for ML and Bayesian analyses

Subset	Best model	# of Sites	Maximum likelihood partitions
1	GTR + G	808	NAD2, ATP6, NAD6
2	GTR + I+G	2,333	NAD6, NAD4, CYTb, NAD5, ATP6, NAD4L, NAD12
3	GTR + G	1,423	CYTb2, CYTb3, ATP6
4	GTR + I+G	3,193	ATP8, 16S rRNA, 12S rRNA
5	GTR + G	582	NAD2, ATP8, NAD3
6	GTR + G	782	NAD2, NAD1, ATP3
7	GTR + G	1,605	CYTb2, NAD4L, NAD3, CYTb3, NAD1, NAD1
8	GTR + G	1,058	CYTb2, CYTb3, CYT1
9	GTR + G	546	NAD6, NAD4L, CYT3
10	GTR + I+G	1,490	NAD5, CYTb, NAD4
11	GTR + G	1,110	MUT1, NAD3
12	GTR + G	986	MUT5
13	GTR + G	1,600	NAD5, MUT5
14	GTR + G	483	NAD4

Subset	Best model	# of Sites	Bayesian partitions
1	GTR + I	808	NAD6, ATP6, NAD2
2	F81	720	NAD2, NAD4L, ATP6
3	GTR + G	1,788	ATP8, CYT1, CYTb2, ATP6, NAD1, NAD4L, CYT3
4	HKY + I+G	3,193	ATP8, 16S rRNA, 12S rRNA
5	HKY	196	NAD3, ATP8
6	GTR + I	1,351	CYT1, NAD1, CYTb3, NAD4L, NAD3
7	GTR + I	1,382	CYT1, NAD2, CYTb3, CYT2
8	HKY	254	CYT2
9	GTR + I+G	1,490	CYTb1, NAD4, NAD1
10	GTR + I+G	1,675	CYTb2, NAD5, NAD4, NAD6
11	HKY + G	1,563	NAD6, MUT5, CYTb3
12	HKY + G	1,110	MUT5, NAD3
13	GTR + G	986	MUT5
14	GTR	386	NAD2
15	GTR + G	483	NAD4
16	GTR + G	614	NAD5

Note: Superscript numbers indicate codon position 1, 2, or 3.
containing all specimens of *L. hebes* (Figure 1). All species in clade F are from the Western Atlantic and Gulf of Mexico. Clade F is sister to a clade with no statistical support (<50 bootstrap and <50 posterior probability) containing the remaining species within clades G-I. Clade G (100 bootstrap and posterior probability) contains several species of *Eugorgia* along with *Leptogorgia pumila*, all from the Eastern Pacific (Figure 1). Clade G is sister to a group that is not statistically supported (<50 bootstrap and <50 posterior probability) and contains clades H and I. Clade H (100 bootstrap and posterior probability) consists of species from the Western Atlantic and Gulf of Mexico, *Leptogorgia gracilis* and *L. virgulata* (Figure 1). Specimens of *L. virgulata* form a clade that is moderately supported in the ML tree (64 bootstrap) and strongly supported in the Bayesian tree (100 posterior probability). This *L. virgulata* clade is sister to *L. gracilis*. Clade H is sister to Clade I (100 bootstrap and posterior probability) which contains numerous species of *Leptogorgia* from the Eastern Pacific (Figure 1).

3.2 Mitochondrial genomes

A total of ten new *Leptogorgia* mitochondrial genomes were obtained—seven *L. virgulata* mt genomes and three *L. hebes* mt genomes. The *L. virgulata* mt genomes range in length from 18,824 to 18,845, and all *L. hebes* mt genomes are 19,247 bp. The *L. virgulata* mt genomes range from 99.87% to 100% identity while those for *L. hebes* range
from 99.5% to 99.98% identity. All ten mt genomes consist of 14 protein-coding genes (Cox1, Nad1, CytB, Nad6, Nad3, Nad4L, mtMutS, Nad2, Nad5, Nad4, Cox3, Atp6, Atp8, and Cox2, in respective order) and two ribosomal RNAs (Figure 2). Both species have what is presumed to be the ancestral gene order found in octocorals (Brugler & France, 2008; Figueroa & Baco, 2014, 2015; Medina, Collins, Takaoka, Kuehl, & Boore, 2006; Park et al., 2012; Uda et al., 2011).

3.3 Mitogenomic phylogeny

The phylogenetic reconstruction based on full mitochondrial genomes included 7 mt genomes of L. virgulata and 3 mt genomes of L. hebes generated by this study. These mt genomes were combined with 11 additional mt genomes from the family Gorgoniidae and two mt genomes of Eunicella (outgroup), downloaded from GenBank (Table 3). Maximum likelihood and Bayesian analyses resulted in similar topology (Figure 3). There are nine well-supported clades (clades I–IX) that roughly match those identified in the mtMuS phylogeny (Figure 3). Clade I (96 bootstrap and 100 posterior probability) is made up of Leptogorgia palma (mtMuS clade B) as sister to clade II (100 bootstrap and posterior probability, mtMuS clade A) which contains Leptogorgia capverdensis and Leptogorgia sarmientosa. Clade I is sister to all other Leptogorgia, but this sister clade is weakly supported (61 bootstrap and 85 posterior probability) and contains Pseudopterogorgia bipinnata (mtMuS clade C) as sister to clade III. Clade III (100 bootstrap and posterior probability) contains Pacifigorgia cairnsi (mtMuS clade D) as sister to clade IV (100 bootstrap and posterior probability). Clade IV contains Leptogorgia sp. (KY559412) as sister to clade V (89 bootstrap and 100 posterior probability). Clade V consists of clade VI (90 bootstrap and 100 posterior probability) as sister to clade VII (65 bootstrap and 100 posterior probability). Clade VI has Leptogorgia alba (mtMuS clade I) as sister to Eugorgia mutabilis (mtMuS clade E). Clade VII contains clade VIII (mtMuS clade F) as sister to clade IX (mtMuS clade H). Clade VIII (100 bootstrap and 100 posterior probability) consists of seven specimens of L. hebes. Clade IX (100 bootstrap and posterior probability) consists of seven specimens of L. virgulata. Within the L. hebes clade, two individuals (accession #s MN052676 and MN052675) form a strongly supported clade (97 bootstrap and 81 posterior probability). The L. virgulata clade also has two individuals (accession #s MK0301589 and MK0301591) forming an internal clade, strongly supported by maximum likelihood only (96 bootstrap).

3.4 Mitogenomic divergence time estimation

The phylogenetic reconstruction based on mitochondrial genomes using fossil-calibrated coalescent methods as implemented by Bayesian analyses in BEAST (Figure 4) resulted in topology similar to the maximum likelihood (ML) and Bayesian analysis with RaxML and Mr. Bayes. Emerging from the root are two main clades which diverged from one another 25.96 Ma. Within the first main
clade, there are two branches containing a single species each—*P. bipinnata* and *Leptogorgia cf. palma* which diverged 25.01 and 21.95 Ma, respectively. Following these two branches is a branch containing *Leptogorgia gaini*, which diverged 12.75 Ma from a sister subclade consisting of *L. sarmentosa* and *L. capverdensis*. *Leptogorgia sarmentosa* and *L. capverdensis* diverged from one another 0.46 Ma. However, this subclade is weakly supported. The grouping of the five aforementioned species is consistent between all three mitogenomic trees, with the exception of *P. bipinnata*. On the ML and Mr. Bayes’ Bayesian trees, *P. bipinnata* does not emerge until after the 4 other species—*L. cf. palma*, *L. gaini*, *L. sarmentosa*, and *L. capverdensis*—and it forms a basal branch.

In the second main clade, *P. cairnsi* diverges at 20.38 Ma and forms a basal branch to a subclade containing *L. hebes*, *E. mutabilis*, *Leptogorgia sp.* (KY559412), *L. alba*, and *L. virgulata*. *Leptogorgia hebes* is the first species to diverge from this subclade at 10.89 Ma. Following the *L. hebes* group are two branches containing *E. mutabilis* and *Leptogorgia sp.* (KY559412), diverging at 9.88 and 6.75 Ma, respectively. *Leptogorgia alba* and *L. virgulata* then diverged from one another at 5.82 Ma. In the ML and Mr. Bayes’ Bayesian trees, *E. mutabilis* and *L. alba* are sister to one another, but on the BEAST tree *L. alba* is sister to *L. virgulata*.

4 | DISCUSSION
4.1 | Mitochondrial MutS phylogeny

The reconstructed *mtMutS* phylogeny uses 68 new *mtMutS* sequences (24 from this study and 44 from GenBank) added to the sequences used in the phylogenetic tree by Poliseno et al. (2017). This new *mtMutS* phylogeny agrees with the phylogeny presented by Poliseno et al. (2017). The *Leptogorgia* species from South Africa form a sister clade to species from the Eastern Atlantic and Mediterranean
(Figure 1). The Caribbean clade from Poliseno et al. (2017) is also recovered (clade C, Figure 1). There are several clades with species exclusively from the Eastern Pacific. Most notably, Eastern Pacific clade I is sister to the Western Atlantic and Gulf of Mexico clade H that contains *L. virgulata* and *L. gracilis*. As in Poliseno et al. (2017), the major clades identified (A–I) have species that are exclusive to a particular geographic region. And while all of these clades are strongly supported (except for clade F), relationships between several of these clades is not clear due to low or no statistical support. The South African clade (clade B, Figure 1) contains *L. palma*, formerly known as *Lophogorgia crista*, which is the type species for the *Lophogorgia* genus (Poliseno et al., 2017). Because this South African group is monophyletic and strongly supported, Poliseno et al. (2017) recommend that the genus *Lophogorgia* be resurrected and assigned to this clade. This complicates matters when it comes to other species formerly classified as *Lophogorgia* by Bayer (1961) which are not in the South African clade-specifically, *L. dichotoma*, *L. capverdensis*, *L. gaini*, *Lophogorgia viminalis*, *L. hebes*, *L. punicea*, and *L. violacea*. The former four all belong to the eastern Atlantic clade, while the latter three are Western Atlantic species. Further morphological and genetic analyses of these species in particular will be necessary in order to more accurately classify them and determine whether resurrecting the genus *Lophogorgia* would be appropriate.

If the South African clade is recognized as its own genus, whether through the resurrection of *Lophogorgia* or by a new name, it would complicate the taxonomy of the remaining *Leptogorgia* species. The issue is that the type species for the genus *Leptogorgia* is *L. viminalis*, formerly known as *Gorgonia viminalis* (Breedy & Guzman, 2007) is within a monophyletic group with eastern Atlantic-Mediterranean species, sister to the South African group. Therefore, if the South
African group is granted species status, then any species that are not in the sister clade with L. viminalis (which are the majority of *Leptogorgia* species) could not be classified as *Leptogorgia* and would have to be renamed. This supports Poliseno et al.’s (2017) call to reclassify almost all *Leptogorgia* species and revise the genus in its entirety, which leaves the case of *L. hebes* all the more ambiguous, as it does not fit in either *Leptogorgia* or *Lophogorgia*. It is likely that new genera need to be defined within this group to resolve these taxonomic issues.

4.2 Mitogenomic phylogeny

The complete mitochondrial genomes of 21 gorgonian specimens were examined to elucidate phylogenetic relationships and to test the efficacy of using complete mt genome over the single mtMutS gene. This is the first study to sequence complete mitochondrial genomes for *L. virgulata* and *L. hebes*, and the resulting mitogenomic phylogeny is in agreement with our mtMutS phylogeny and with that of Poliseno et al.’s (2017), albeit with stronger branch support. The tree topology also matches that of the mitogenomic phylogeny presented by Poliseno et al. (2017) while adding *L. hebes* and *L. virgulata* from the Gulf of Mexico as a sister clade to *E. mutabilis* and *L. alba* from the Eastern Pacific. These observations support Poliseno et al.’s conclusions that Western Atlantic gorgonians are more closely related to Eastern Pacific gorgonians than to eastern Atlantic gorgonians (*L. cf. palma*, *L. gaini*, *L. sarmentosa* and *L. capverdensis*).

4.3 Divergence time estimation

This is the first study to place divergence time estimates on complete mitochondrial genomes of *Leptogorgia* species. Poliseno et al. (2017) suggested the first divergence event between Eastern Pacific and Western Atlantic species occurred about 28 Ma (with error bars ranging from 12 to 45 Ma). However, the fossil-calibrated mitogenomic phylogeny presented in this study suggests that this first split between Eastern Pacific and western Atlantic species occurred later between 11 and 20 Ma (Figure 4), which is within Poliseno et al.’s (2017) lower error range. According to O’Dea et al. (2016), the formation of the Isthmus of Panama was not a singular event, but rather a series of geological events that took place over the course of the last 30 million years. Between 20 and 10 Ma, the Panama Arc island chain began to rise, based on O’Dea et al.’s (2016) estimated rates of Arc uplift. Gene flow by the exchange of gametes and larvae through the CAS was likely high up to 10 Ma, while there was still significant seawater exchange between the Atlantic and Pacific oceans (O’Dea et al., 2016). Both, *L. hebes* and *L. virgulata* are adapted to shallow water habitat ranging from 3 to 82 m (Cairns & Bayer, 2009; Williamson et al., 2011). They mature rapidly (<2 years) and are broadcasts spawners, releasing eggs and sperm into the water column (Beasley & Dardeau, 2003; Gotelli, 1991). While larval duration in *L. hebes* is not known, it can last up to 20 days in *L. virgulata* (Gotelli, 1991). These characteristics indicate a potential for high dispersal and suggest that genetic and larval connectivity likely occurred between the Pacific and Atlantic oceans through a shallow CAS. Divergence of *Leptogorgia* between these basins likely increased after 10 Ma as seawater exchange became more constricted. Our data suggests that the *L. hebes* speculated at about 11 Ma and it forms the first Western Atlantic clade on the mitogenomic tree. This divergence time coincides with the timing of more restricted water flow between the two basins.

O’Dea et al.’s (2016) uplift data show that after this uplifting period between 20 and 10 Ma, a deepening event occurred between 10 and 6 Ma, in which the Panama Arc began to drop, resulting in greater connectivity between the ocean basins. This span of time is also characterized by shifts in migration rates of both terrestrial and marine fauna, referred to as migration pulses, by Bacon et al. (2015). They specifically highlight a migration shift among marine organisms at around 7.96 Ma, based on their free model migration estimate. The synchrony of submergence of the Panama Arc and a migration event in marine organisms suggest that gene flow could have increased between the Eastern Pacific and Western Atlantic during this time. Following this period of subsidence, at around 6 Ma the Panama Arc began to emerge again and has continued to rise until the present day (O’Dea et al., 2016). Divergences of marine organisms begin to increase at this time, peaking at about 4 million years ago (O’Dea et al., 2016). This timing of events supports the divergence estimate of the Western Atlantic *Leptogorgia* sp. (KY559412) at 6.75 Ma and the divergence of the Western Atlantic *L. virgulata* clade at 5.82 Ma, both diverging from sister clades in the Eastern Pacific. The estimated times of *Leptogorgia* species divergence obtained from this study are concordant with geologic data and historic migration data (Bacon et al., 2015; O’Dea et al., 2016), supporting an initial divergence between Eastern Pacific and Western Atlantic species at about 20–11 Ma with extant lineages arising in each basin in an alternating pattern at 11 (Western Atlantic), 10 (Eastern Pacific), 7 (Western Atlantic), and 6 (Eastern Pacific) Ma (Figure 4).

The divergence times obtained from this study are more recent than those presented by Poliseno et al. (2017) and with lower error estimates (2–4 million-year range as opposed to a 12–40 million-year range). This discrepancy is most likely attributed to our use of complete mitochondrial genomes that include fourteen protein-coding genes and two RNAs instead of a single, partial gene (mtMutS). There are numerous studies of multiple taxa showing a pattern of incongruent tree topology between single mitochondrial markers and complete mitochondrial genomes despite the fact that they are the same locus and therefore share the same phylogenetic history (Havird & Santos, 2014; Knaus et al., 2011; Luo et al., 2011; Nadimi et al., 2016; Pacheco et al., 2011; Rohland et al., 2007; Urantowka et al., 2017; Wang et al., 2017; Williamslev et al., 2009). For example, Havird, Santos Scott, and Schierwater, (2014) analyze the performance of single and concatenated sets of mitochondrial genes relative to complete mitochondrial genomes for phylogenetic reconstruction of metazoans. Their findings show
that single genes are not able to reproduce the topology of a mitochondrial phylogeny (Havird & Santos, 2014). A similar study, but focusing on birds, showed that single mitochondrial genes resulted in incorrect and contradictory phylogenetic relationships, while the use of complete mitochondrial genomes accurately reflected the species tree (Urantowka et al., 2017). The same pattern has been observed in insects, where individual mitochondrial genes can result in different and contradicting tree topologies, while using the complete mitochondrial genome performs well at various taxonomic levels (Wang et al., 2017). In fungi, the phylogenetic signal differs between single mitochondrial genes, subsets of concatenated mitochondrial genes, and complete mitochondrial genomes, despite all being the same locus (Nadimi et al., 2016).

In addition to potentially generating different and contradicting tree topologies, there are numerous examples across widespread taxa on how single mitochondrial genes oftentimes result in poorly supported phylogenetic trees that become fully resolved and well supported when using complete mitochondrial genomes (i.e., Arquez, Colgan, & Castro, 2014; Justice, Weese, & Santos, 2016; Perseke, Golombek, Schлегel, & Struck, 2013; Williams, Foster, & Littlewood, 2014; Yu, Li, Ryder, & Zhang, 2007). Phylogenies in Octocorals present a similar issue; previous research shows that it is difficult to distinguish between species when using the single gene mtMutS and that even using a concatenated set of 2–3 different mitochondrial regions only allows to distinguish 70%–80% of morphological species (i.e., Baco & Cairns, 2012; McFadden et al., 2011). The low resolution provided by the use of a single mitochondrial region explains the low support for many clades in the mtMutS phylogeny presented in this study and that of Poliseno et al. (2017). Greater resolution and strong support of clades within the Octocorallia is achieved by using complete mitochondrial genomes, as demonstrated in our present study and in previous research (i.e., Figueroa & Baco, 2015, 2014; Kayal et al., 2013; Poliseno et al., 2017).

In addition to incongruent topologies and weakly supported clades, the use of single genes can result in overestimation of calibrated divergence times (Duchêne et al., 2011; McCormack et al., 2011). McCormack et al. (2011) demonstrates that divergence estimation from single mitochondrial genes results in earlier divergence times compared to the use of several markers from the mitochondrial and nuclear genome. They show that the gene tree reconstructed from single mitochondrial markers is not as robust and differs from the species tree reconstructed by using multiple markers from various loci (McCormack et al., 2011). While McCormack et al. (2011) did not examine if complete mitochondrial genomes alone would yield better results, similar to those obtained when using several mitochondrial and nuclear markers, the research by Duchêne et al. (2011) suggests that this might be the case. In their study, Duchêne et al. (2011) compared phylogenetic divergence estimates for cetaceans based on single mitochondrial genes, different combinations of concatenated genes, and complete mitochondrial genomes. Their results show that tree topology from single genes can differ from each other due to different substitution rates and that single gene divergence time estimates consistently resulted in overestimation of divergence times when compared to the use of complete mitochondrial genomes (Duchêne et al., 2011). These results from previous research are congruent with our observations that in octocorals, such as the gorgonians analyzed in our study, the use of complete mitochondrial genomes as opposed to single mitochondrial genes, results in better resolved, well supported, trees that have earlier and more precise divergence time estimates. Since our divergence time estimates are concordant with regional geological events and divergence patterns of other organisms, it supports our hypothesis that the divergence times of Eastern Pacific and Western Atlantic Leptogorgia lineages is younger than previously suggested (Poliseno et al., 2017) with the majority of speciation events occurring after 10 Ma when significant seawater exchange between the Pacific and Atlantic Ocean ceased (e.g., Bacon et al., 2015; Montes et al., 2015; O’Dea et al., 2016). However, future work that includes multiple nuclear markers in addition to mitochondrial genomes is necessary to fully test this hypothesis.

ACKNOWLEDGMENTS

We would like to thank the various UTRGV divers who collected coral specimens and the anonymous reviewers whose suggestions helped improve and clarify this manuscript. Specimen collections of the south Texas coast were supported by TPWD-ARP (Grant No. 475342, 2016–2018) to David Hicks. Research reported in this publication was supported in part by startup funds from the University of Texas Rio Grande Valley to Diego Figueroa, by the Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine under the Grant Agreement number 2000007266 to Diego Figueroa, and by an Institutional Grant (NA14OAR4170102 to Diego Figueroa and David Hicks) to the Texas Sea Grant College Program from the National Sea Grant Office, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program or the National Academies of Sciences, Engineering, and Medicine.

CONFLICT OF INTEREST
The authors declare they have no conflicts of interest.

AUTHOR CONTRIBUTIONS

DFF conceived the ideas and designed methodology; DH collected the specimens; SS, NJF, and DFF generated the genetic data; SS and NJF analyzed the data; DFF and DH supervised research and analyses; SS and DFF wrote the manuscript; SS, DFF, NJF, and DH contributed to the interpretation of data. All authors contributed critically to the drafts and gave final approval for publication.

ORCID

Diego F. Figueroa https://orcid.org/0000-0002-0220-2912
OPEN RESEARCH BADGES

This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/genbank/.

DATA AVAILABILITY STATEMENT

Mitochondrial genome and mtMutS sequences can be accessed online through GenBank (accession numbers listed in Table 4).

REFERENCES

Arquez, M., Colgan, D., & Castro, L. R. (2014). Sequence and comparison of mitochondrial genomes in the genus Nerita (Gastropoda: Neritimorpha: Neritidae) and phylogenetic considerations among gastropods. Marine Genomics, 15, 45–54. https://doi.org/10.1016/j.magen.2014.04.007

Baco, A. R., & Cairns, S. D. (2012). Comparing molecular variation to morphological species designations in the deep-sea coral Narella reveals new insights into seamount coral ranges. PLoS ONE, 7, e55555. https://doi.org/10.1371/journal.pone.005555

Bacon, C. D., Silvestro, D., Jaramillo, C., Smith, B. T., Chakraborty, P., & Antonelli, A. (2015). Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proceedings of the National Academy of Sciences of the United States of America, 112, 6110–6115. https://doi.org/10.1073/pnas.1423853112

Bayer, F. M. (1961). The shallow-water Octocorallia of the West Indian region: A manual for marine biologists. The Hague, The Netherlands: M. Nijhoff.

Beasley, S. E., Dardeau, M. R., Schroeder, W. W. (2003). Reproductive biology of the gorgonian Leptoprgia hebes (verrill). American Academy of Underwater Sciences. http://archive.rubiconfoundation.org/xmuli/handle/123456789/4735

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., ... Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650

Breed, O., & Guzman, H. M. (2007). A revision of the genus Leptogorgia Milne Edwards & Haime, 1857 (Coelenterata: Octocorallia: Gorgonidae) in the eastern Pacific. Zootaxa, 1419, 1–90. https://doi.org/10.11646/zootaxa.1419.1.1

Brugler, M. R., & France, S. C. (2008). The mitochondrial genome of a deep-sea bamboo coral (Cnidaria, Anthozoa, Octocorallia, Isididae): Genome structure and putative origins of replication are not conserved among octocorals. Journal of Molecular Evolution, 67, 125–136. https://doi.org/10.1007/s00239-008-9116-2

Cairns, S. D., & Bayer, F. M. (2009). Chapter 13. Octocorallia (Cnidaria) of the Gulf of Mexico. In D. L. Felder, and D. K. Camp (Eds), Gulf of Mexico-Origins, Waters, and Biota. Volume I. Biodiversity, College Station, Texas: Texas A&M Press. 321–331.

Cowman, P. F., & Bellwood, D. R. (2013). Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proceedings of the Royal Society B: Biological Sciences, 280, 20131541. https://doi.org/10.1098/rspb.2013.1541

Cushing, E. M., Boswell, E. H., & Hosman, R. L. (1964). General geology of the Mississippi embayment. (Report No. 4488), Professional Paper. https://doi.org/10.3133/pp4488

Demchuk, T. D., & Gary, A. C. (2009). Geologic Problem solving with microfossils: A volume in honor of Garry D. Jones. Tulsa, OK: SEPM Society for Sedimentary Geology.

Duchêne, S., Archer, F. L., Vikstrup, J., Caballero, S., & Morin, P. A. (2011). Mitogenome phylogenetics: The impact of using single regions and partitioning schemes on topology, substitution rate and divergence time estimation. PLoS ONE, 6, e27138. https://doi.org/10.1371/journal.pone.0027138

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340

Figueroa, D. F., & Baco, A. R. (2014). Complete mitochondrial genomes elucidate phylogenetic relationships of the deep-sea octocoral families Coralliidae and Paragorgiidae. Deep Sea Research Part II: Topical Studies in Oceanography, 99, 83–91. https://doi.org/10.1016/j.dsr2.2013.06.001

Figueroa, D. F., & Baco, A. R. (2015). Octocoral mitochondrial genomes provide insights into the phylogenetic history of gene order rearrangements, order reversals, and clidian phylogenetics. Genome Biology and Evolution, 7, 391–409. https://doi.org/10.1093/gbe/evu286

France, S. C., & Hoover, L. L. (2002). DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa). Hydrobiologia, 471, 149–155. https://doi.org/10.1023/A:1016517724749

Goffredo, S., & Dubinsky, Z. (2016). The Cnidaria. Past, Present and Future: The world of Medusa and her sisters. Springer. http://dx.doi.org/10.1007/978-3-319-31305-4

Gotelli, N. J. (1988). Determinants of recruitment, juvenile growth, and spatial distribution of a shallow-water gorgonian. Ecology, 69, 157–166. https://doi.org/10.2307/1943170

Gotelli, N. J. (1991). Demographic models for Leptogorgia virgulata, a shallow-water gorgonian. Ecology, 72, 457–467. https://doi.org/10.2307/2937187

Grashoff, M. (1988). The genus leptogorgia octocorallia gorgonidae in West Africa. In: Atlantide report. Retrieved from https://eurekamag.com/research/007/903/007903490.php

Havird, J. C., & Santos, S. R. (2014). Performance of single and concatenated sets of mitochondrial genes at inferring metazoan relationships relative to full mitogenome data. PLoS ONE, 9, e84080. https://doi.org/10.1371/journal.pone.0084080

Havird, Justin C., Santos, Scott R., & Schierwater, B. (2014). Performance of Single and Concatenated Sets of Mitochondrial Genes at Inferring Metazoan Relationships Relative to Full Mitogenome Data. PLoS ONE, 9(1), e84080.

Hosman, R. L. (1996). Regional stratigraphy and subsurface geology of Cenozoic deposits, Gulf Coastal Plain, south-central United States. USGS Professional Paper 1416- G. https://doi.org/10.3133/pp1416G

Justice, J. L., Weese, D. A., & Santos, S. R. (2016). Phylogenetic utility, and variability in structure and content, of complete mitochondrial genomes among genetic lineages of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis 1963 (Atyidae:Decapoda). Mitochondrial DNA Part A, 27, 2710–2718. https://doi.org/10.3109/19401736.2015.1046161

Kajal, E., Roure, B., Philippe, H., Collins, A. G., & Lavrov, D. V. (2013). Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evolutionary Biology, 13, 5. https://doi.org/10.1186/1471-2148-13-5

Kitahara, M. V., Lin, M.-F., Forêt, S., Huttley, G., Miller, D. J., & Chen, C. A. (2014). The “Naked Coral” hypothesis revisited – Evidence for and against scleractinian monophyly. PLoS ONE, 9, e94774. https://doi.org/10.1371/journal.pone.0094774

Knaus, B. J., Cronn, R., Liston, A., Pilgrim, K., & Schwartz, M. K. (2011). Mitochondrial genome sequences illuminate maternal lineages of
conservation concern in a rare carnivore. BMC Ecology, 11, 10. https://doi.org/10.1186/s12862-017-0109-4

Kocurko, M. J., & Kocurko, D. J. (1992). Fossil Octocorallia of the Red Bluff Formation, Lower Oligocene, Mississippi. Journal of Paleontology, 66, 594–602. https://doi.org/10.1017/S00223360000024458

Lanfear, R., Calcott, B., Kainer, D., Mayer, C., & Stamatakis, A. (2014). Selecting optimal partitioning schemes for phylogenetic datasets. Molecular Biology and Evolution, 31, 176–188. https://doi.org/10.1093/molbev/msu303

Lessios, H. A. (2008). The great American schism: Divergence of marine organisms after the rise of the Central American Isthmus. Annual Review of Ecology, Evolution, and Systematics, 39(1), 63–91. https://doi.org/10.1146/annurev.ecolsys.39.091206.095815

Luo, A., Zhang, A., Ho, S. Y. W., Xu, W., Zhang, Y., Shi, W., ... Zhu, C. (2008). Comparative mitogenomics, phylogeny and evolutionary history of Leptogorgia (Gorgoniidae). Molecular Phylogenetics and Evolution, 47, 146–159. https://doi.org/10.1016/j.ympev.2008.05.011

Mccormack, J. E., Heled, J., Delaney, K. S., Peterson, A. T., & Knowles, L. L. (2011). Calibrating divergence times on species trees versus gene trees: Implications for speciation history of aphelocoma Mayajs. Evolution, 65, 184–202. https://doi.org/10.1111/j.1558-5646.2010.01097.x

McFadden, C. S., Benayahu, Y., Pante, E., Thoma, J. N., Nevarez, P. A., & France, S. C. (2011). Limitations of mitochondrial gene barcoding in Octocorallia. Molecular Ecology Resources, 11, 19–31. https://doi.org/10.1111/j.1755-0998.2010.02875.x

Medina, M., Collins, A. G., Takaoka, T. L., Kuehl, J. V., & Boore, J. L. (2006). Naked corals: Skeleton loss in Scleractinia. Molecular Phylogenetics and Evolution, 36, 226. https://doi.org/10.1016/j.ympev.2006.03.016

Müller-Edwards, H., & Haime, J. (1857). Paris, France: Roret.

Muñoz, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, A., ... Stamos, D. (2013). The influence of increasing sea temperature and turbulence on coral morphology and recruitment of Porites lutea in the Caribbean. Aquatic Ecology, 47, 49–59. https://doi.org/10.1007/s10452-012-9416-z

O’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., Cione, A. L., ... Jackson, J. B. C. (2016). Formation of the Isthmus of Panama. Science Advances, 2, e1600883. https://doi.org/10.1126/sciadv.1600883

O’Neil, W., & Pawlik, J. (2002). A reappraisal of the chemical and physical defenses of Caribbean gorgonian corals against predatory fishes. Marine Ecology Progress Series, 240, 117–126. https://doi.org/10.3354/meps240117

Pacheco, M. A., Battistuzzi, F. U., Lentinio, M., Aguilar, R. F., Kumar, S., & Escalante, A. A. (2011). Evolution of modern birds revealed by mitogenomics: Timing the radiation and origin of major orders. Molecular Biology and Evolution, 28, 1927–1942. https://doi.org/10.1093/molbe v/vms014

Pastor-Bibian, A., Martin-Neto, A., Bensasson, D., ... Sn帳, C. (2017). Phylogenetic relationships among Bidens (Asteraceae: Asteroideae) based on nuclear and mitochondrial markers. Molecular Phylogenetics and Evolution, 113, 89–103. https://doi.org/10.1016/j.ympev.2017.02.001

Pereke, M., Golombek, A., Schlegel, M., & Struck, T. H. (2013). The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny. Molecular Phylogenetics and Evolution, 66, 898–905. https://doi.org/10.1016/j.ympev.2012.11.019

Poliseno, A., Feregrino, C., Sartoretto, S., Aurelle, D., Wörheide, G., McFadden, C. S., & Vargas, S. (2017). Comparative mitogenomics, phylogeny and evolutionary history of Leptogorgia (Gorgoniidae).

Rohland, N., Malaspina, A.-S., Pollack, J. L., Slatkin, M., Matheus, P., & Hofreiter, M. (2007). Proboscidean mitogenomics: Chronology and mode of elephant evolution using mastodon as outgroup. PLoS Biology, 5, e207. https://doi.org/10.1371/journal.pbio.0050207

Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Sánchez, J. A. (2007). A new genus of Atlantic octocorals (Octocorallia: Gorgoniidae): Systematics of gorgonoids with asymmetric sclerites. Journal of Natural History, 41, 493–509. https://doi.org/10.1080/00222930701237315

Sanchez, J. A., McFadden, C. S., France, S. C., & Lasker, H. R. (2003). Molecular phylogenetic analyses of shallow-water Caribbean octocorals. Marine Biology, 142, 975–987. https://doi.org/10.1007/s00227-003-1018-7

Stamatakis, A. (2017). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu333

Szeldmayer, S. T. (2007). An Evaluation of the Benefits of Artificial Habitats for Red Snapper, Lutjanus campechanus, in the Northeast Gulf of Mexico. Proceedings of the Gulf of Mexico and Caribbean Fisheries institute. 59:223–230.

Tew, B. H. (1992). Sequence stratigraphy, lithofacies relationships, and palaeogeography of oloigocene strata in southeastern Mississippi and southwestern Alabama. Tuscaloosa, AL: Geological Survey of Alabama, Stratigraphy and Paleontology Division.

Thacker, C. E. (2017). Patterns of divergence in fish species separated by the Isthmus of Panama. BMC Evolutionary Biology, 17:14. https://doi.org/10.1186/s12862-017-0957-4

Uda, K., Komeda, Y., Koyama, H., Koga, K., Fujita, T., Iwasaki, N., & Suzuki, T. (2011). Complete mitochondrial genomes of two Japanese precious corals, Paracorallium japonicum and Corallium konojoi (Cnidaria, Octocorallia, Corallidae): Notable differences in gene arrangement. Gene, 476, 27–37. https://doi.org/10.1016/j.gene.2011.01.019

Urantowka, A. D., Kroczak, A., & Mackiewicz, P. (2017). The influence of molecular markers and methods on inferring the phylogenetic relationships between the representatives of the Arini (parrots, Psittaciformes), determined on the basis of their complete mitochondrial genomes. BMC Evolutionary Biology, 17, 166. https://doi.org/10.1186/s12862-017-0102-1

Wang, J., Zhang, L. I., Zhang, Q.-L., Zhou, M.-Q., Wang, X.-T., Yang, X.-Z., & Yuan, M.-L. (2017). Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers. PeerJ, 5, e3661. https://doi.org/10.7717/peerj.3661

White, M. L., & Strychar, K. B. (2010). Coral as environmental bioindicators of oceanic conditions following the rise of the Central American Isthmus. Review of Ecology, Evolution, and Systematics, 59, 14–82. https://doi.org/10.1111/j.1558-5646.2010.01097.x

Willerslev, E., Gilbert, M. T. P., Binladen, J., Ho, S. Y. W., Campos, P. F., Ratan, A., ... Schuster, S. C. (2009). Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution. BMC Evolutionary Biology, 9, 95. https://doi.org/10.1186/1471-2148-9-95
Williams, S. T., Foster, P. G., & Littlewood, D. T. J. (2014). The complete mitochondrial genome of a turbinid vetigastropod from MiSeq Illumina sequencing of genomic DNA and steps towards a resolved gastropod phylogeny. *Gene*, 533, 38–47. https://doi.org/10.1016/j.gene.2013.10.005

Williamson, E. A., Strychar, K. B., & Withers, K. (2011). Populations of the Gorgonian genus Leptogorgia at two jetties in the Northwestern Gulf of Mexico. *Gulf of Mexico Science*, 29(2):1-5. https://doi.org/10.18785/goms.2902.06

Yu, L., Li, Y.-W., Ryder, O. A., & Zhang, Y.-P. (2007). Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. *BMC Evolutionary Biology*, 7, 198. https://doi.org/10.1186/1471-2148-7-198

How to cite this article: Silvestri S, Figueroa DF, Hicks D, Figueroa NJ. Mitogenomic phylogenetic analyses of *Leptogorgia virgulata* and *Leptogorgia hebes* (Anthozoa: Octocorallia) from the Gulf of Mexico provides insight on Gorgoniidae divergence between Pacific and Atlantic lineages. *Ecol Evol*. 2019;9:14114–14129. https://doi.org/10.1002/ece3.5847