Mutation-in-Brief

A case of a Japanese patient with neonatal diabetes mellitus caused by a novel mutation in the ABCC8 gene and successfully controlled with oral glibenclamide

Ryojun Takeda1, Masaki Takagi1, Kentaro Miyai1, Hiroyuki Shinohara1, Hiroko Yagi2, Maki Moritani3, Ichiro Yokota3,4, and Yukihiro Hasegawa1,2

1 Department of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
2 Department of Genetic Research, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
3 Laboratory of Pediatric Genomic Medicine, Department of Clinical Research, Shikoku Medical Center for Children and Adults, Kagawa, Japan
4 Department of Endocrinology, Shikoku Medical Center for Children and Adults, Kagawa, Japan

Key words: ABCC8, PNDM, sulfonylurea

Introduction

Permanent neonatal diabetes mellitus (PNDM) is a rare form of insulin-dependent diabetes mellitus that presents within the first 6 months after birth and may require lifelong insulin treatment. Approximately 40% of all PNDM cases are caused by activating mutations in either the KCNJ11 gene or ABCC8 gene, which encode the Kir6.2 or sulfonylurea receptor (SUR) 1 subunit of the ATP-sensitive potassium channel (KATP channel), respectively (1–3).

The KATP channel is expressed on the surface of pancreatic beta cells. In this context, a heterozygous gain-of-function mutation in ABCC8 or KCNJ11 causes PNDM.

High-dose oral sulfonylurea has been reported to be an effective treatment agent for PNDM with ABCC8 and KCNJ11 gene mutations compared with insulin injection (4). Here we report a patient with PNDM caused by a novel heterozygous missense mutation in ABCC8 and controlled with oral glibenclamide for more than 3 yr.

Case Report

The present case was a boy born through normal delivery at 40 wk of gestation with a birth weight of 2,784 g. He had no family history of any type of diabetes. At 3 mo of age, he was diagnosed with neonatal diabetes mellitus (NDM) based on an episode of diabetic ketoacidosis and an absence of diabetes-related autoantibodies. Diabetes treatment with multiple daily insulin injections was started immediately and switched to pump therapy when the patient was 2 yr old. At that time, his total daily insulin dose was 0.7 U·kg⁻¹·day⁻¹, and his HbA1c level was 9.2%. Developmental delay and impaired motor
development without epilepsy were observed, and the patient was diagnosed with intermediate DEND (developmental delay, epilepsy, and neonatal diabetes mellitus) syndrome.

When the patient was 3 yr old, glibenclamide therapy was started at a dose of 0.2 mg·kg\(^{-1}\)·day\(^{-1}\), and the dose was increased daily by 0.2 mg·kg\(^{-1}\) to a total dose of 1.0 mg·kg\(^{-1}\)·day\(^{-1}\). His insulin injections were simultaneously reduced, and they were completely discontinued when the glibenclamide dose reached 1.0 mg·kg\(^{-1}\)·day\(^{-1}\). Six months after starting the oral glibenclamide therapy, the dose was stabilized at 0.6 mg·kg\(^{-1}\)·day\(^{-1}\); the HbA1c level had reduced to 5.4%, and it remained at similar levels for 3 yr. He also exhibited remarkably increased spontaneous speech and improvements in muscle tone and motor coordination after the initiation of glibenclamide.

Genetic Analysis

Blood samples were collected from the patient and his parents, and genomic DNA was extracted from peripheral blood leukocytes after obtaining informed consent from the patient’s parents. All coding regions of the \(ABCC8\) gene were amplified by using polymerase chain reaction (Fig. 1). Sequencing analysis revealed a novel heterozygous missense mutation (p.V587G) in exon 12 of the patient’s \(ABCC8\) gene, but this mutation was not detected in his parents. This mutation is located in the sixth transmembrane helix of transmembrane domain 1 at a residue that is highly conservative from humans to zebrafish. By using the PolyPhen-2 tool, the mutation was predicted to be possibly damaging, with a prediction score of 0.971. This mutation was not detected in 100 healthy Japanese individuals or registered in the Human Genome Mutation Database (HGMD Professional, www.hgmd.cf.ac.uk).

Discussion

Based on the results of the genetic analysis previously described, the \(ABCC8\) gene mutation was responsible for the boy’s PNDM. A previous report revealed that a heterozygous \(ABCC8\) gene mutation overactivates \(K_{ATP}\) channels and inhibits insulin secretion from pancreatic beta cells by increasing the magnesium-nucleotide-dependent stimulatory action of SUR1 on the Kir pore (4).

Several reports indicated that sulfonylurea treatment provides effective glycemic control and improves the developmental and behavioral functions of patients with PNDM and \(K_{ATP}\) channel mutations (5), as in our patient. Therefore, patients with NDM should be tested for \(K_{ATP}\) channel gene mutations in order to determine if glibenclamide might be useful.

References

1. Rubio-Cabezas O, Ellard S. Diabetes mellitus in neonates and infants: genetic heterogeneity,
clinical approach to diagnosis, and therapeutic options. Horm Res Paediatr 2013;80: 137–46. [Medline] [CrossRef]

2. Ashcroft FM, Rorsman P. K(ATP) channels and islet hormone secretion: new insights and controversies. Nat Rev Endocrinol 2013;9: 660–9. [Medline] [CrossRef]

3. Edghill EL, Flanagan SE, Patch AM, Boustred C, Parrish A, Shields B, et al. Neonatal Diabetes International Collaborative Group Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 2008;57: 1034–42. [Medline] [CrossRef]

4. Babenko AP, Polak M, Cavé H, Busiah K, Czernichow P, Scharfmann R, et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 2006;355: 456–66. [Medline] [CrossRef]

5. Aguilar-Bryan L, Bryan J. Neonatal diabetes mellitus. Endocr Rev 2008;29: 265–91. [Medline] [CrossRef]