Oxygen-containing groups in cellulose and lignin biochar: their roles in U(VI) adsorption

Yongzhong Feng1 · Xiaoyi Qiu1 · Zhuolin Tao1 · Zhengyang E2,4 · Jiayu Song2,4 · Yaqiong Dong2,4 · Jianjun Liang2,3 · Ping Li2,3 · Qiaohui Fan2,3

Received: 11 March 2022 / Accepted: 17 May 2022 / Published online: 7 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

The adsorption behaviors of cellulose-rich and lignin-rich biochars were prepared from pakchoi and corncob, respectively. Their structure–function relationships were in-depth studied via the combination of the adsorption experiments of U(VI) and comprehensive spectral analyses. The maximal adsorption capacity of PBC 300, obtained at 300 °C, was measured as 46.62 mg g⁻¹ for U(VI), which was 1.3 times higher than 35.60 mg g⁻¹ of CBC 300. U(VI) adsorption on PBC and CBC were predominantly ascribed to the coordination interaction between oxygen-containing groups and U(VI). Interestingly, the main complexation groups were distinct in both biochars due to the different inherent evolutions of cellulose and lignin. Volatile d-glucose chains in cellulose were apt to degrade rapidly, and the formed carboxyls acted as the most important sites in PBC. However, the stable aromatic network in lignin led to a slow degradation, and more hydroxyls thus remained in CBC, which controlled U(VI) adsorption. In this study, we obtained greatly cost-effective adsorbents of U(VI) and provided some essential insights into understanding the structural evolution–function relationship of cellulose and lignin biochar.

Keywords Biochar · Lignin · Cellulose · Uranium · Oxygen-containing groups · Adsorption

Introduction

Uranium is one of the most important radionuclides (Abdel-Karim et al. 2016; Liu et al. 2017; Wang et al. 2020a) in the whole nuclear industry (Wen et al. 2016; Wang et al. 2020a). Once discharged into the environment, U(VI) would result in intense threat for ecological safety and human health owing to its horrible radioactive and chemical toxicities (Li et al. 2019a, b). Therefore, the efficient removal of U(VI) from the environment is urgent and desirable. Numerous physical and chemical techniques have been employed for U(VI) removal, such as adsorption (Li et al. 2019b; Philippou et al. 2019), chemical precipitation (Foster et al. 2019), ion exchange (Cheng et al. 2019), photocatalysis (Wang et al. 2020b), and solvent extraction (Prabhu et al. 2017), and so on. Especially, the adsorption has been identified as the most promising and reliable approach owing to its cost-effective advantage and convenient operation (Ahmed et al. 2021a, 2021d). To date, extensive adsorbents for U(VI) have been designed reported, including zeolites (Wu et al. 2019), minerals (Liu et al. 2017), and artificial materials. By contrast, biochar is undoubtedly an optimal choice because of its low-cost, huge surface area, abundant functional groups, and superior stability (Inyang et al. 2016; Ahmed et al. 2021c).

Various biochar has shown excellent adsorption capacities for U(VI) pollutants (Liu et al. 2017; Li et al. 2019c; Ahmed et al. 2021b). The in-depth researches suggest that the adsorption performance of biochar depends on their
chemical compositions, microstructures, and preparation methods (Enders et al. 2012; Suliman et al. 2016; Yoon et al. 2019). As the major composition of biomasses, cellulose and lignin decide the microstructures and functions of the resulting biochar to some extent (Li et al. 2014). It is important to illuminate the microstructural evolution of cellulose and lignin during the pyrolysis procedure, in particular, their oxygen-containing group transformations.

Cellulose is mainly composed of regular D-glucose chains with β-1,4 glycosidic connections and thus shows the chemical properties of alkyl alcohol and ether (Rey-Raap et al. 2019; He et al. 2020; Zhao et al. 2019; Cheng et al. 2021). Lignin is usually regarded as a complicated three-dimensional network consisted of aliphatic and aromatic polymer, in which phenylpropane, interconnected by ether bonds, is the major units (Sharma et al. 2004; Kijima et al. 2011; Meng et al. 2021). As heated in nitrogen or inert atmosphere, cellulose and lignin experience a series of complicated deoxidation reactions (Bradbury and Shafizadeh 1980), as well as polyaromatic crosslinking and stack (Ishimaru et al. 2007). Due to the aliphatic feature, cellulose readily decomposes and transforms at a relatively low temperature. During 300–400 °C, the pyrolysis of cellulose involved the rearrangement and oxidation of C = C, C = O, COO, paraffinic, aromatic groups, etc. (Shafizadeh and Sekiguchi 1984). As the main substructure, the glycosyl units decompose rapidly to levoglucosan (Shafizadeh et al. 1979). Meanwhile, the aliphatic chains in cellulose entangle irregularly, resulting in abundant disordered structures (Bradbury et al. 1979; Shafizadeh and Lai 1975). By contrast, lignin is more stable and slowly decomposes at a much wider range (160–900 °C) (Sharma et al. 2004). Above 400 °C, plenty of CO₂, CO, CH₄, furan, methanol, and large-molecule volatiles are released due to the breakage of the C-O bond, C = O, -OCH₃, and -CH₃ (Suzuki et al. 2001) in lignin (Cao et al. 2013). Consequently, the formed lignin carbon shows stronger stability than cellulose carbon because of its higher content of aromatic structures (Xie et al. 2009).

These variable structures lead to significant differences in the adsorption behaviors of cellulose and lignin biochar. Rutherford et al. (2012) have found that the degradation products of cellulose in case of low temperature charring would likely dominate the properties of biochar due to its more oxidized groups than lignin biochar. Cellulose biochar is superior in Cd(II) enrichment than lignin biochar, because its plentiful mesopores provide effective channels to facilitate the pollutant penetrations, and abundant oxygen-containing groups guarantee large numbers of lone pair electrons to coordinate with Cd(II) ions (Chen et al. 2018). Sawdust biochar, rich in cellulose, may provide excellent removal efficiency for heavy metals due to a large quantity of oxygen-containing groups and thus negative-charged surface (Komnitsas et al. 2016). In comparison, Pb(II) immobilization on lignin biochar demonstrated a competitive method owning to its fast mineral precipitation and surface complexion (Wu et al. 2021). For anionic pollutants, lignin biochar can also provide efficient hydrogen bond sites and beneficial surficial electrostatic attraction (Yoon et al. 2019). Biochar from various precursors has been extensively explored to elucidate their adsorption behaviors. However, current studies focus more on the adsorption capacity of biochar and miss the in-depth understanding of the correlation between their structural differences and immobilization capacities, especially for cellulose and lignin biochar. Moreover, U(VI) sequestration on biochar is also rarely reported.

In this study, we chose cellulose-rich pakchoi biochar (PBC) and lignin-rich corncob biochar (CBC) as adsorbents to explore their adsorption behavior for U(VI). According to Klassen method (Benouadah et al. 2019), the contents of cellulose and lignin were measured as 47.40% and 15.64% in pakchoi, as well as 20.46% and 44.86% in corncob, respectively. A series of PBC and CBC were prepared via charring at 300, 400, and 500 °C, respectively. The obtained biochar was thus donated as PBC 300, PBC 400, PBC 500, CBC 300, CBC 400, and CBC 500, respectively. Batch experiments were performed to evaluate the adsorption kinetics and durability of PBC and CBC. The corresponding mechanisms were revealed via the comprehensive spectroscopic analyses. These findings are important for the large-scale practical application of biochar in the sequestration of U(VI).

Materials and methods

Materials

Uranium nitrate (UO₂(NO₃)₂·6H₂O) was purchased from Jieke Chemapol and was dissolved in the Milli-Q water (18.2 MΩ) to prepare U(VI) stock solution. The pH values were measured by Mettler-Toledo composite electrode. All chemicals in the subsequent experiments were of analytical grade and used without further purification. The preparation method, characterization, and determination of cellulose and lignin content of biochar were described in Appendix A Text S1–S3.

Adsorption experiments

The biochar adsorbent was added into the tubes, making the mass-to-volume ratio (m/v) equal to 0.3 g L⁻¹. The effect of pH was studied at constant uranium concentration of 10⁻⁵ mol L⁻¹ and NaCl background electrolyte of 0.01 mol L⁻¹. Milli-Q water was injected to maintain the total volume of 8.0 mL. The pH values of the suspension were adjusted by dropping a negligible volume of HCl and/or NaOH solution
and then was shaken at 150 rpm. At pre-set time intervals, the dispersion was partially collected and filtered with a 0.22 μm membrane. The concentration of U(VI) in the filtrates was measured using spectrophotometry at 652 nm with arsenazo III as chromogenic reagent (Li et al. 2019a). The corresponding calculations were stated in Appendix A Text S4, including the adsorption rate of U(VI) and the simulations of the kinetics.

Regeneration and recycling experiments were conducted to investigate the stability of PBC and CBC in the environment. Forty mL Na₂CO₃ solutions (0.1 mol L⁻¹), acted as eluent, were injected to adsorption–equilibrium PBC and CBC (12 mg) to desorb the loading U(VI). The sample was shaken for an hour and then filtered. The U(VI) concentration was measured with the above method. The processes repeated six cycles to evaluate the stability of PBC and CBC.

Results and discussion

Characterization

The microscopic morphologies have been recorded for PBC and CBC prepared at the variable temperatures, respectively. As shown in Fig. 1a and c, PBC displayed multilevel fibrous porous that spread in the whole framework regularly. PBC 300 showed a rough surface. Compared with PBC 300, the regular and loose pores were further developed in the PBC 400 and PBC 500 due to the pyrolysis of cellulose. For CBC, irregular folds constructed large quantities of disordered channels, and small carbon sphere particles were observed on their surface (Fig. 1d and f). The blurred pores and broken fragments were observed in CBC 500 owing to the deterioration of the carbon skeleton at the high pyrolysis temperature. These characteristic morphologies were consistent with previous findings (Ahmed et al. 2021d).

There were obvious differences in the surficial oxygen-containing functional groups of cellulose-rich PBC and lignin-rich CBC (Fig. 2a and b). PBC 300 showed a quite strong band at ~ 1593 cm⁻¹ with a broad halfwidth, which could be assigned to a combined band of ν(C = O) and ν(C = C) (Zhang et al. 2021). Meanwhile, a weak vibration was observed at 1031 cm⁻¹ ascribed to ν(C–O–C) (Li et al. 2019d). These bands indicated a high content of carbonyls and carboxyls but much less ether groups in PBC 300. In fact, the difference in oxygen-containing groups could be ascribed to unstable D-glucose chains in cellulose. The complicated chemical reactions during the hydrolyzation possibly caused the crack of β-1,4 glycosidic connections resulting in a

![Fig. 1 SEM images of PBC 300, PBC400, and PBC500 (a, b, c) and CBC 300, CBC400, and CBC500 (d, e, f)](image-url)
decreasing ether content. Simultaneously, a large number of hydroxyls were oxidized into carbonyls and carboxyls (Meng et al. 2021). This hypothesis could be proved by the analysis of XPS. In the O 1s spectrum of PBC 300 (Fig. 2c), two peaks could be observed including a strong peak at 531.2 eV and another tiny one at 533.3 eV, which corresponded to C=O and C-O moieties, respectively (Xu et al. 2020). The great difference in the integral areas indicated that PBC 300 had abundant carbonyls and carboxyls but a small number of hydroxyls and ether.
In the case of CBC 300, an ultra-strong peak was observed at 1057 cm\(^{-1}\), and three comparable strong ones were also found at 1049, 1261, and 1698 cm\(^{-1}\), which were, respectively, relative to \(\nu(C-O-C)\), \(\nu(C-OH)\), and \(\nu(C=O)\) (Ahmed et al. 2021b). It seemed to indicate a large number of ether groups, as well as plentiful carboxyls and hydroxyls in CBC 300. Correspondingly, the O 1s spectrum of CBC 300 determined an integral area ratio of 0.38:1 for C=O:C-O, and hydroxyls and ether groups thus proved to be dominant in CBC 300 (Fig. 2d). The abundant C-O moieties in CBC 300 could be explained by the unique phenyl ether units in lignin. The aromatic majority in lignin led to a relatively stable structure and slow degradation of the corncob biochar at 300 °C. Therefore, large quantities of ether bonds remained in CBC 300.

Structural transformations of PBC and CBC were aggravated with the increasing pyrolysis temperatures. Interestingly, no significant differences were observed in the FT-IR patterns of PBC 300 and PBC 400. The similar spectra indicated a relatively stable structure in cellulose-rich PBC in the range of 300 to 400 °C, which could be also demonstrated by their element analyses and XPS patterns. As listed in (Appendix A Table S1), a series of comparable data were observed for C, N, H, and O elements in PBC 300 and PBC 400, suggesting close elemental compositions and relatively stable structures. Moreover, similar outlines were found in the survey XPS spectra of PBC 300 and PBC 400 (Fig. 2e), except for a slight decline of O 1s in PBC 400. The O 1s fine spectra also exhibited similar plots for the both biochar, indicating the stable structures. The relative stability was broken at 500 °C. After charring, some significant changes were observed in the FT-IR spectrum of PBC 500, in particular, in the fingerprint region concerning the aromatic C-H groups (Li et al. 2019a; Zhao et al. 2019). It indicated an obvious aromatization procedure in PBC 500, which could be attributed to the varying skeleton of cellulose at high temperatures. Meanwhile, a sharp increase was found in the carbon percentage of PBC 500, followed by a corresponding decrease of oxygen content (Table S1), which also indicated intense aromatization and deoxidation reactions. Due to the drastic decomposition, some characteristic bands of metal and silicon appeared in the survey XPS analysis of PBC 500 (Fig. 2e). By contrast, CBC revealed a regular decomposition due to the stable aromatic skeleton in lignin.

U(VI) adsorption on PBC and CBC

Effect of pH on U(VI) adsorption

Zeta potentials of PBC and CBC were investigated to further understand the surface charge densities and adsorption abilities. As shown in Fig. 3a and b, the surface charge densities of PBC and CBC were decreased with the increasing pH value. It was associated with the deprotonation of oxygenous groups retained on the biochar surface. At pH ~ 3.0, the zeta potential of PBC 300 was ~ -10.70 mV while ~ -3.25 mV for CBC 300. Obviously, more carboxyls occurred in PBC 300 in comparison with CBC 300. It was the deprotonation reaction of partial carboxyls that led to the higher negative charge in PBC 300. As pH value increased to 5.0, more carboxyls and small amounts of hydroxyls lost their protons, causing an obvious rise of surficial negative charges. Zeta potentials of PBC 300 and CBC 300 thus grew up to ~ -26.50 and ~ -6.61 mV, respectively. At pH ~ 7.0, all carboxyls lost the protons and so did most of the hydroxyls. Zeta potentials thus increased to ~ -34.70 mV for PBC 300 and ~ -31.70 mV for CBC 300.

Faster growth was observed in the zeta potentials of CBC 300 in comparison with that of PBC 300, as pH values increased from 5.0 to 7.0. It could be attributed to more hydroxyls in CBC 300 than PBC 300. Similar fast growths were also observed in zeta potentials of CBC 400 and CBC 500, indicating that plentiful hydroxyls remained in their skeletons. For CBC 400 and CBC 500, positive potentials were even determined at pH ~ 5.0, suggesting their low contents of carboxyl groups. These conclusions were consistent with the previous discussion of FT-IR and XPS analyses.

To understand the effect of pH, the adsorption edges were performed for U(VI) adsorption on biochar. The pH values were maintained in the range of 2.0–10.0, and the contents of biochar and the initial U(VI) were 0.3 g L\(^{-1}\) and \(10^{-5}\) mol L\(^{-1}\), respectively. As depicted in Fig. 3c and d, the adsorption of U(VI) on biochar initially increased in the pH range from 2.0 to 6.0 and then decreased gradually until pH ~ 10.0. Such phenomenon was mainly related to the changes of U(VI) species in aqueous phase and surface charge density of biochar. U(VI) existed mainly in the form of divalent cations under the acidic environment (Ahmed et al. 2021b), i.e., \(\text{UO}_2^{2+}\). In the cases of PBC 300 and CBC 300, the electrostatic attraction was gradually strengthened between U(VI) and negative-charged biochar as pH values increased from 2.0 to 6.0. The electrostatic adsorption of U(VI) on the biochar surface led to an increasing surficial concentration, which was also beneficial to the next coordination of U(VI), and thus resulted in increasing immobilization capacity. Above pH ~ 6.0, negatively charged species of U(VI) became more and more, and strong electrostatic repulsion thus inhibited U(VI) adsorption on biochar.

Notably, close capacities were observed for U(VI) adsorption on PBC 400 and PBC 500 at pH ~ 5.0 despite the various surficial potentials. A similar phenomenon was found on three kinds of CBC in the whole pH range. These phenomena could be ascribed to the fact that the coordination interaction, rather than electrostatic attraction, dominated the surficial adsorption of U(VI).
Effect of initial U(VI) concentration

U(VI) adsorption on PBC and CBC were investigated at variable initial concentrations of U(VI) from 0.0 to 10^{-4} mol L$^{-1}$. In the batch experiments, the contents of biochar were maintained to be 0.3 g·L$^{-1}$, and the pH value was set as 5.0. As shown in Fig. 4a and b, the adsorption capacity of U(VI) rapidly rose with the increasing initial concentration of U(VI). When U(VI) concentration exceeded 1.0×10^{-4} mol L$^{-1}$, the adsorption on biochar reached equilibrium because of the saturated active sites. Maximum adsorption capacities were determined at 46.62 mg g$^{-1}$ for PBC 300, 37.55 mg g$^{-1}$ for PBC 400, and 24.59 mg g$^{-1}$ for PBC 500, respectively. The declined sequences in the adsorption capacities of PBC were well consistent with the decay in their surficial potentials. Under the same tested conditions, PBC showed better performances than corresponding CBC. Interestingly, CBC 300 and CBC 400, with the distinct surficial potentials, suggested similar adsorption capacities (35.60 mg g$^{-1}$ and 33.01 mg g$^{-1}$, respectively). It could be attributed to the increased micropores in CBC 400 due to the enhanced decomposition. For CBC 500, adsorption property of 21.67 mg g$^{-1}$ was determined, which was ~ 1.64 times lower than that of CBC300. Furthermore, previous studies about biochar adsorbents were listed in Appendix A Table S3 to compare with our work. Results suggest that PBC300 and CBC300 showed the moderate efficiencies for U(VI) removal among these adsorbents, regardless of various carbon sources. As the unmodified biochar, the performances of PBC300 and CBC300 were only inferior to some carbonaceous nanofibers or modified biochar (Sun et al. 2016; Liatsou et al. 2017). Taking into account of their simple preparations and readily available sources, PBC300 and CBC300 can be regarded as excellent adsorbents of U(VI).
Fig. 4 Effect of initial concentration, time on adsorption capacity, and pseudo-second sorption model of PBC (a, c, e) and CBC (b, d, f) (T = 298 K, m/v = 0.3 g L⁻¹, pH = 5.0)
Fig. 5 FT-IR and O 1s high-resolution XPS spectra of PBC 300 (a, e) and CBC 300 (b, f) before and after U(VI) loading (the bottom patterns were collected from the biochar immersed in the solution of background electrolyte), U 4f high-resolution XPS spectrum of PBC 300 (c), and CBC 300 (d).
Effect of contact time

The adsorption kinetics of the biochar were also investigated. As shown in Fig. 4c and d, the immobilization of U(VI) was remarkably fast for all the biochar within the initial 4 h. Then, slow equilibriums were achieved at approximately 8 h. The rapid adsorption could be due to the abundant available sites on the biochar surface, i.e., carboxyls in PBC and hydroxyls in CBC (Sun et al. 2012; Lan et al. 2017; Xie et al. 2019). The latter plateau demonstrated the gradual saturation of adsorption sites on external surface (Gu et al. 2018).

The related simulation parameters of the two kinetics models were listed in Appendix A Table S2, and the fitting curves were also depicted in Fig. 4e and f. The higher R-squared value was observed for the pseudo-second-order model, indicating the better fitting degree. Moreover, the calculated qe values from the pseudo-second-order model were quite close to the experimental data. This demonstrated that the adsorption of U(VI) on the PBC and CBC was primarily attributed to the chemisorption (Sun et al. 2016). The rapid adsorption rate might be due to the strong surface complexation for U(VI) from the oxygen-containing groups, rather than physical adsorption (Sun et al. 2012).

Reusable performance of PBC and CBC for U(VI) adsorption

Cycle experiments were conducted to investigate the recycling of PBC 300 and CBC 300 in the natural environment. A 0.1 mol L−1 of Na2CO3 solution was chosen as the eluent because of the stronger complexation competition of CO3−2 for U(VI) than the oxygen-containing groups on biochar surface. As presented in Appendix A Fig. S1, after six cycles of adsorption and regeneration, PBC 300 and CBC 300 maintained an approximately 88% activities with respect to initial adsorption of U(VI), which suggest quite stable structures during the adsorption and regeneration processes. The wide application should be expected in the practical treatment of wastewater containing U(VI). The slight decrease of adsorption ability for PBC 300 and CBC 300 could be due to the soft extractant, i.e., Na2CO3, which was hard to extract the stable complexes of U(VI) on biochar. Therefore, the occupied adsorption sites of biochar lost the activities in the next cycles (Yoon et al. 2019; Ahmed et al. 2021b).

Adsorption mechanism of U(VI) on biochar

FT-IR and XPS analyses were performed to reveal the adsorption mechanism of U(VI) on biochar. As shown in Fig. 5a, the stretching vibration of C = O redshifted from 1696.4 to 1636.8 cm−1 in PBC 300, while ν(C–OH) in carboxyl blue-shifted from 1383.4 to 1404.7 cm−1. This phenomenon verified that carboxyls coordinated with U(VI) (Han et al. 2017). Moreover, a significant red-shift from 1456.4 to 1413.2 cm−1 was observed for ν(C–OH) of hydroxyls in CBC 300 (Fig. 5b), indicating the strong coordination between hydroxyls and U(VI). After being captured, U 4f7/2 and U 4f5/2 occurred at 392.85 eV and 382.10 eV in PBC 300 while 393.18 eV and 382.40 eV in CBC 300 (Fig. 5c and d). Notably, the different binding energies of U 4f5/2 in U(VI) species on PBC 300 and CBC 300 could be roughly ascribed to their different main coordination groups, i.e., carboxyls in PBC and hydroxyls in CBC.

O 1s fine spectra were also measured to explore the adsorption mechanism of U(VI). A new band appeared at 531.10 eV in O 1s spectra of PBC 300 and CBC 300 after the adsorption equilibrium of U(VI), which could be assigned to O = U = O fraction in UO22+ (Schindler et al. 2009) (Fig. 5e and f). In addition, a significant shift from 531.39 to 531.15 eV occurred in the C = O moiety of PBC 300, indicating the coordination between carboxyls and U(VI). Similar red-shifts were also observed in C-O bands in CBC 300, indicating the coordination between hydroxyls and U(VI). This phenomenon could be explained that oxygen atoms in carboxyls or hydroxyls attracted partial electrons of U(VI) due to the higher electronegativity. The deviated outer electrons resulted in an increased electrostatic repulsion and consequently reduced the binding property of the nucleus for the inner electrons (Hüfner 2003).

Conclusions

In this work, a series of biochar was prepared from cellulose-rich pakchoi and lignin-rich corncob for U(VI) adsorption. The comprehensive characterizations were performed to elucidate the decomposition and evolution of biomasses at different temperatures. The adsorption equilibrium of U(VI) could be reached on all of the biochar within 8 h. The best adsorption capacity (qe) of PBC300 was determined to be 45.62 mg g−1, ~1.28 times higher than that of CBC300 (35.60 mg g−1), which benefitted from more carboxyls in PBC in comparison with CBC. U(VI) adsorption on PBC and CBC was mainly ascribed to the coordination interaction of oxygen-containing groups. Carboxyls in PBC and hydroxyls in CBC, respectively, acted as the main active sites. The significant differences in adsorption behaviors of PBC and CBC could be ascribed to the distinct evolution of cellulose and lignin. Our study proves that the readily available pakchoi biochar can act as an effective absorbent for U(VI) removal. These findings provide essential insights into understanding the oxygen-containing structural evolution and the structure–function relationship of cellulose- and lignin-rich biochar.

© Springer
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-022-20981-w.

Author contribution Yongzhong Feng, investigation and writing — original draft preparation. Xiaoyi Qiu and Zhuolin Tao, methodology. Jiayu Song, visualization. Yaqiong Dong and Ping Li, formal analysis. Zhengyang E, Jianjun Liang, and Qiaohui Fan, conceptualization, project administration, and writing — reviewing, editing, and supervision. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This work was supported by the National Natural Science Foundation of China (21876172), the Science and Technology Program of Gansu Province (21CX6ZA035), the “Youth Innovation Promotion Association, CAS,” the Gansu Talent and Intelligence Center for Remediation of Closed and Old Deposits, and the Key Laboratory Project of Gansu Province (1309RTSAA041).

Data availability The data that support the findings of this study are available on request from the corresponding author Jianjun Liang. The data are not publicly available due to containing information that could compromise research participant privacy/consent.

Declarations

Ethics approval We confirm that the manuscript is an original work, not published or under consideration for publication elsewhere, either in whole or in part. We promised that the results presented in our work are clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation (including image-based manipulation). All the authors listed have approved this submission.

Consent to participate and for publication Not applicable.

Competing interests The authors declare no competing interests.

References

Abdel-Karim A-AM, Zaki AA et al (2016) Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Appl Clay Sci 391–401
Ahmed W, Mehmood S, Núñez-Delgado A et al (2021) Utilization of Citrullus lanatus L. seeds to synthesize a novel MnFe2O4-biochar adsorbent for the removal of U(VI) from wastewater: insights and comparison between modified and raw biochar. Sci Total Environ 771:144955
Ahmed W, Mehmood S, Núñez-Delgado A et al (2021b) Fabrication, characterization and U(VI) sorption properties of a novel biochar derived from Tribulus terrestris via two different approaches. Sci Total Environ 780:146617
Ahmed W, Mehmood S, Qaswar M, Ali S et al (2021c) Oxidized biochar obtained from rice straw as adsorbent to remove U(VI) from aqueous solutions. J Environ Chem Eng 9:105104
Ahmed W, Núñez-Delgado A, Mehmood S et al (2021d) Highly efficient U(VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: adsorption behavior and mechanism. Environ Res 201:111518
Bradbury AGW, Sakai Y, Shaﬁzadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23:3271–3280
Bradbury AGW, Shaﬁzadeh F (1980) Chemisorption of oxygen on cellulose char. Carbon 18:109–116
Benouadah N, Aliouche D, Pranovich A, Willför S (2019) Chemical characterization of Pinus halepensis sapwood and heartwood. Wood Mater Sci Eng 14:157–164
Cao J, Xiao G, Xu X, Shen D, Jin B (2013) Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process Technol 106:41–47
Chen Q, Zheng J, Zheng L, Dang Z, Zhang L (2018) Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations. Chem Eng J 350:1000–1009
Cheng F, Zhang X, Yang X, Li R, Wu Y (2021) Research on carbonization kinetic of cellulose-based materials and its application. J Anal Appl Pyrolysis 158:105232
Cheng Y, He P, Dong FS et al (2019) Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(VI) from real uranium mine water. Chem Eng J 367:198–207
Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol 114:644–653
Foster RI, Kim K-W, Oh M-K, Lee K-Y (2019) Effective removal of uranium via phosphate addition for the treatment of uranium laden process effluents. Water Res 158:82–93
Gu P, Zhang S, Li X et al (2018) Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut 240:493–505
Han L, Sun H, Ro KS, Sun K, Libra JA, Xing B (2017) Removal of Sr(II) and Cd(II) from aqueous solution using animal manure-derived hydrochars and pyrochars. Bioresour Technol 234:77–85
He Y, Luan C, Fang Y, Feng X, Peng X, Yang G, Tsubaki N (2020) Low-temperature direct conversion of methane to methanol over carbon materials supported Pd-Au nanoparticles. Catal Today 339:48–53
Hüfner S (2003) Photoelectron spectroscopy principles and applications, 3rd edn. Springer Science & Business Media, New York
Inyang MI, Gao B, Yao Y et al (2016) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46:406–433
Ishimaru K, Hata T, Bronsveld P, Meier D, Imamura Y (2007) Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin. J Mater Sci 42:122–129
Kijima M, Hirukawa T, Hanawa F, Hata T (2011) Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials. Bioresour Technol 102:6279–6285
Komittis K, Zaharaki D, Bartzas G, Kaliakatsou G, Kritikaki A (2016) Efficiency of pecan shells and sawdust biochar on Pb and Cu adsorption. Desalin Water Treat 57:3237–3246
Lan J-H, Chai Z-F, Shi W-Q (2017) A combined DFT and molecular dynamics study of U(VI)/calcite interaction in aqueous solution. Sci Bull 62:1064–1073
Li J, Li Y, Wu Y, Zheng M (2014) A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant. J Hazard Mater 280:450–457
Li M, Liu H, Chen T, Dong C, Sun Y (2019a) Synthesis of magnetic biochar composites for enhanced U(VI) adsorption. Sci Total Environ 651:1020–1028
Li N, Yin M, Tsang DCW et al (2019b) Mechanisms of U(VI) removal by biochar derived from ficus microcarpa aerial root: a comparison between raw and modified biochar. Sci Total Environ 697:134115
Li P, Wang J, Wang Y et al (2019c) Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem Eng J 365:231–241
Li P, Wang J, Wang Y et al (2019d) An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI). J Photochem Photobiol C Photochem Rev 41:100320
Liu H, Li M, Chen T, Chen C et al (2017) New synthesis of nZVI/C composites as an efficient adsorbent for the uptake of U(VI) from aqueous solutions. Environ Sci Technol 51:9227–9234
Liatsou I, Michail G, Demetriou M, Pashalidis I (2017) Uranium binding by biochar fibres derived from Luffa cylindrica after controlled surface oxidation. J Radioanal Nucl Chem 311:871–875
Meng Y, Contescu CI, Liu P, Wang S, Lee S-H, Guo J, Young TM (2021) Understanding the local structure of disordered carbons from cellulose and lignin. Wood Sci Technol 55:587–606
Philippou K, Anastopoulos I, Dosche C, Pashalidis I (2019) Synthesis and characterization of a novel Fe3O4-loaded oxidized biochar from pine needles and its application for uranium removal. Kinetic, thermodynamic, and mechanistic analysis. J Environ Manage 252:109626
Prabhu DR, Mohapatra PK, Raut DR, Pathak P, Billard I (2017) Extraction of U(VI) from nitric acid solutions using N, N-dihexyloctanamide in ionic liquids: solvent extraction and spectroscopic studies. Solvent Extr Ion Exch 35:423–438
Rey-Raap N, Ribeiro LS, de Órfão JJM, Pereira MFR (2016) Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 84:37–48
Schindler M, Hawthorne FC, Freund MS, Burns PC (2009) XPS spectra of uranyl minerals and synthetic uranyl compounds. II: The O 1s spectrum. Geochim Cosmochim Acta 73:2488–2509
Shafizadeh F, Lai Y-Z (1975) Thermal degradation of 2-deoxy-D-arabino-hexonic acid and 3-deoxy-D-ribo-hexono-1,4-lactone. Carbohydr Res 42:39–53
Shafizadeh F, Sekiguchi Y (1984) Oxidation of chars during smoldering combustion of cellulosic materials. Combust Flame 55:171–179
Sharma RK, Wooten JB, Baliga VL et al (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482
Sun Y, Yang S, Sheng G, Guo Z, Wang X (2012) The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J Environ Radioact 105:40–47
Suliman W, Harsh JB, Abu-Lail NI, Fortuna A-M, Dallmeyer I, Garcia-Perez M (2016) Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 84:37–48
Sun Y, Wu ZY, Wang X, Ding C, Cheng W, Yu SH, Wang X (2016) Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol 50:4459–4467
Suzuki T, Yamada T, Okazaki N, Tada A, Nakanishi M, Futamata M, Chen H-T (2001) Electromagnetic shielding capacity of wood char loaded with nickel. Mater Sci Res Int 7:206–212
Wang J, Wang Y, Wang W et al (2020a) Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI). Chem Eng J 383:123193
Wang J, Wang Y, Wang W et al (2020b) Visible light driven Ti3+ self-doped TiO2 for adsorption-photocatalysis of aqueous U(VI). Environ Pollut 262:114373
Wen T, Wang X, Wang J et al (2016) A strategically designed porous magnetic N-doped FeFe3C@C matrix and its highly efficient U(VI) remediation. Inorg Chem Front 3:1227–1235
Wu F, Chen L, Hu P, Wang Y, Deng J, Mi B (2021) Industrial alkali lignin-derived biochar as highly efficient and low-cost adsorption material for Pb(II) from aquatic environment. Bioresour Technol 322:124539
Wu Y, Chen D, Kong L, Tsang DCW, Su M (2019) Rapid and effective removal of U(VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres. J Hazard Mater 371:397–405
Xie Y, Goodell B, Zhang D, Nagle DC et al (2009) Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Bioresour Technol 100:1797–1802
Xie Y, Chen C, Ren X, Wang X, Wang H, Wang X (2019) Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog Mater Sci 103:180–234
Xu Z, Xing Y, Ren A, Ma D, Li Y, Hu S (2020) Study on adsorption properties of water hyacinth-derived biochar for U(VI). J Radioanal Nucl Chem 324:1317–1327
Yoon K, Cho D-W, Tsang YF, Tsang DCW, Kwon EE, Song H (2019) Synthesis of functionalised biochar using red mud, lignin, and carbon dioxide as raw materials. Chem Eng J 361:1597–1604
Zhang Q, Wang Y, Wang Z, Zhang Z, Wang X, Yang Z (2021) Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water. J Alloys Compd 852:156993
Zhao Y, Liu Y, Du J, Zhang X et al (2019) Facile synthesis of interconnected carbon network decorated with Co9O4 nanoparticles for potential supercapacitor applications. Appl Surf Sci 487:442–451
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.