Symmetric solutions to the four dimensional degenerate Painlevé type equation NY^4

Kazuo Kaneko

To cite this article: Kazuo Kaneko (2014) Symmetric solutions to the four dimensional degenerate Painlevé type equation NY^4, Journal of Nonlinear Mathematical Physics 21:3, 357–370, DOI: https://doi.org/10.1080/14029251.2014.936757

To link to this article: https://doi.org/10.1080/14029251.2014.936757

Published online: 04 January 2021
Symmetric solutions to the four dimensional degenerate Painlevé type equation NY^4.

Kazuo Kaneko
Seki Kowa Institute of Mathematics, Yokkaichi University,
1200, Kayauchyou, Yokkaichi City, Mie, 512-8512, Japan
dr_kaneko_k@yahoo.co.jp

Received 27 November 2013
Accepted 30 March 2014

Abstract: We have classified symmetric solutions around the origin to the four dimensional degenerate Painlevé type equation NY^4 with generic values of parameters. We obtained sixteen meromorphic solutions, which are transformed each other by the Bäcklund transformation. We calculated the linear monodromy for one of them, explicitly.

Keywords: the four dimensional degenerate Painlevé type equation, monodromy data, Bäcklund transformation.

2000 Mathematics Subject Classification: Primary 34M55; Secondary 33C15.

1. Introduction

The Painlevé equations $P_J (J = I, II, \cdots, VI)$ have the phase space of dimension two, while many higher dimensional Painlevé type equations are obtained recently as the extension of the sixth Painlevé equation.

For the four dimensional case, T. Oshima showed that any irreducible Fuchsian equation with four accessory parameters can be reduced to thirteen types of equations [20], among which H. Sakai found that only four types of equation have the isomonodromic deformation equation and these are the the source equations of all of the four dimensional Painlevé type equations. They are the well-known Garnier system with two variables [8], the Fuji-Suzuki system [7], the Sasano system [22] and the matrix Painlevé system. The last system is the new one which is found by H. Sakai by the monodromy preserving deformation of the Fuchsian differential equation [21].

The four dimensional Painlevé type equations have the degeneration diagram similar to the Painlevé equations [14], which is from the extension of the sixth Painlevé equation, step by step, to the extension of the second Painlevé equation. The extension of the first Painlevé equation is not yet found. The four dimensional degenerate Painlevé type equation NY^4 was proposed by V.E. Adler [1] and Noumi and Yamada [18] independently. In [14], NY^4 is obtained by degenerating the Fuji-Suzuki system as the extension of the fourth Painlevé equation P_V, which corresponds to the well-known Noumi-Yamada system [18]. The equation NY^4 is also derived by the isomonodromic deformation of the third kind, non Fuchsian ordinary differential equation, which has one regular singularity and one irregular singularity of Poincaré rank 2 on the Riemann sphere (See eq.(2.3)).

It has been important to have the relation between each Painlevé function and the monodromy data of the associated linear equation (we call the linear monodromy). By calculating the linear
monodromy, we can obtain the characteristics of each Painlevé function. R. Fuchs calculated first the linear monodromy for the Picard’s solution [6], which is a special solution to the sixth Painlevé equation with special values of parameters $\alpha = \beta = \gamma = \frac{1}{2} - \delta = 0$. For generic value of parameter, A. V. Kitaev calculated first the linear monodromy explicitly for the symmetric solutions by taking examples of the first and second Painlevé equations [16]. We call them the symmetric solutions, which are invariant under the symmetric transformations (see Remark 2.1). Based on A.V. Kitaev’s idea, we have studied special solutions with generic values of parameters for the fourth, fifth, sixth and third Painlevé equations, for which the linear monodromy can be calculated explicitly [10–13]. For NY^{A_4}, it is not easy to determine the linear monodromy for generic solutions, but we can determine the linear monodromy for the symmetric solutions under the transformation in Remark 2.1. We remark that P. Appell [2] also studied the symmetric solutions to the first and second Painlevé equations, but he did not study the linear monodromy problems.

There are few research for the special solutions to the four dimensional Painlevé type equations compared with the Painlevé equations. We will study the four dimensional degenerate Painlevé type equations by applying the same method to NY^{A_4} first, which we have used for the Painlevé equations above. Some new discovery is expected by viewing Painlevé equations from the four dimensional Painlevé type equations.

The aim of this paper is to give the symmetric solutions with generic values of parameters to NY^{A_4}, for which the linear monodromy $\{M_0 = S_1 S_2 S_3 S_4 e^{2\pi i f_0}, C, M_\infty \}$ can be calculated explicitly. We obtained the sixteen symmetric solutions with generic values of parameters around the origin, which are transformed each other by the Bäcklund transformations (see subsection 4.2 and Fig.1). Similar calculations were made by N. Tahara [23] and K. Matsuda [17] by using the Noumi-Yamada system [18]. N. Tahara gave the formal solutions with a pole of order one at any t and K. Matsuda completely classified the rational solutions to NY^{A_4}. Both papers treat neither the symmetric solutions nor the linear monodromy. For NY^{A_4}, the linear monodromy can be calculated only for the symmetric solutions (see Section 5). We calculated the linear monodromy for one of the obtained symmetric solutions, explicitly. For the other solutions, we can obtain the linear monodromy by using the Bäcklund transformations.

In Appendix, we show the Noumi-Yamada system and the transformation formulae to the Hamiltonian system $H_{NY}^{A_4}$.

2. The four dimensional degenerate Painlevé type equation NY^{A_4}

In this section, we write down the deformation equation and monodromy preserving deformation and Hamiltonian system $H_{NY}^{A_4}$ [14].

2.1. The system of the deformation equation

The system of the deformation equation for $H_{NY}^{A_4}$ is given as follows:

$$\frac{\partial Y}{\partial x} = \left(\frac{A_0^{(-2)}}{x^3} + \frac{A_0^{(-1)}}{x^2} + \frac{A_0^{(0)}}{x}\right) Y, \quad (2.1)$$

$$\frac{\partial Y}{\partial t} = \frac{A_0^{(-2)}}{x} Y, \quad (2.2)$$
Symmetric solutions to the NYA_4

where

\[A_0^{(j)} = U^{-1}P^{-1}\hat{A}_0^{(j)}PU, \quad j \in \{-2, -1, 0\}, \quad U = \text{diag}(1, u, v), \]

\[\frac{1}{u} \frac{du}{dt} = -p_1 - 2p_2 + q_1 + t, \quad \frac{1}{v} \frac{dv}{dt} = q_1 - 2p_1 - 2p_2 + t, \]

\[P = \begin{pmatrix}
1 & 0 & 0 \\
\frac{a}{\eta_1 - \eta_2} & 0 & 0 \\
\frac{b + \frac{ac}{\eta_1 - \eta_2}}{\eta_1 - \eta_2} & 0 & 1
\end{pmatrix}, \quad \hat{A}_0^{(-2)} = \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}, \]

\[\hat{A}_0^{(-1)} = \begin{pmatrix}
p_1 + p_2 - t & q_1 & 1 \\
-p_1 & -p_2 - p_2 & 0 \\
-p_1 & -p_1 - p_1 & 0
\end{pmatrix}, \quad \hat{A}_0^{(0)} = \begin{pmatrix}
-\theta_1^0 & 0 & 0 \\
-a - \theta_2^0 & 0 & 0 \\
-b - c - \theta_3^0 & 0 & 0
\end{pmatrix}, \]

\[a = p_2(p_2 - q_2 - t) + p_1p_2 + \theta_1^0 + \theta_2^0, \quad b = p_1(p_1 - q_1 - t) + p_1p_2 + \theta_3^0, \]

\[c = p_1(q_2 - q_1) + \theta_3^0. \]

The Riemann scheme of (2.1) is

\[P \begin{pmatrix}
x = 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & -t & 0
\end{pmatrix} \begin{pmatrix}
\theta_1^0 \\
\theta_2^0 \\
\theta_3^0
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}, \quad \theta_1^0 + \theta_2^0 + \theta_1^0 + \theta_2^0 + \theta_3^0 = 0. \tag{2.3}
\]

The formal solution of (2.1) around \(x = 0 \) has the form

\[Y^{(0)}(x) = \exp \left[\frac{1}{x^2} \text{diag}(0, 0, 1) + \frac{1}{x} \text{diag}(0, 0, 1) \right] x^\theta_0 \left(I_3 + \sum_{k=1}^{\infty} \tilde{Y}_k^{(0)} x^k \right), \]

where \(T_0 = \text{diag}(0, \theta_1^0, \theta_2^0) \). The series \(\tilde{Y}^{(0)} = I_3 + \sum_{k=1}^{\infty} \tilde{Y}_k^{(0)} x^k \) is divergent since \(x = 0 \) is an irregular singularity of Poincaré rank two.

The local solution of (2.1) around \(x = \infty \) has the form

\[Y^{(\infty)}(x) = x^{-T_\infty} \left(I_3 + \sum_{k=1}^{\infty} Y_k^{(\infty)} x^k \right), \]

where \(T_\infty = \text{diag}(\theta_1^\infty, \theta_2^\infty, \theta_3^\infty) \). This series is convergent, since \(x = \infty \) is a regular singular point. Since \(Y^{(\infty)}(x) \) is multi-valued functions, we take a branch of \(Y^{(\infty)}(x) \) on \(\{ x \mid \text{arg} x < \pi, |x| > R \} \).

The Stokes regions \(\mathcal{S}_j \) around \(x = 0 \) are given by

\[\mathcal{S}_j = \left\{ x \mid -\varepsilon + \frac{j - 1}{2} \pi < \text{arg} x < \frac{j\pi}{2} + \varepsilon, |x| < r \right\}, \]

where \(\varepsilon \) and \(r \) are sufficiently small. There exist a holomorphic function \(\tilde{Y}^j(x) \) of (2.1) on \(\mathcal{S}_j \) such that

\[\tilde{Y}^j(x) \sim \tilde{Y}^{(0)} \quad x \to 0 \]

and

\[Y^j(x) = \exp \left[\frac{1}{x^2} \text{diag}(0, 0, 1) + \frac{1}{x} \text{diag}(0, 0, 1) \right] x^{T_0} \tilde{Y}^j(x) \]
Kazuo Kaneko

is a solution of (2.1) on \(S_j \). The Stokes matrix \(S_j \) is defined by

\[
Y_{j+1}(x) = Y_j(x)S_j.
\]

We notice that \(Y_5(x) = Y_1(xe^{-2\pi i})e^{-2\pi i\partial_0} \).

The connection matrix \(C \) between \(x = 0 \) and \(x = \infty \) is given by \(Y^{(\infty)}(x) = Y^{(0)}C \).

The linear equation (2.1) has s data of the linear monodromy

\[
\{M_{\infty}, C, S_1, S_2, S_3, S_4, e^{2\pi iT_0}\},
\]

where \(M_{\infty} = e^{2\pi iT_0} \) is the local monodromy around \(x = \infty \) and \(e^{2\pi iT_0} \) is the formal monodromy around \(x = 0 \).

The linear monodromy are represented as follows:

\[
M_{\infty} = \begin{pmatrix}
\frac{e^{2\pi i\theta_1^\infty}}{C^{-1}} & 0 & 0 \\
0 & e^{2\pi i\theta_2^\infty} & 0 \\
0 & 0 & e^{2\pi i\theta_3^\infty}
\end{pmatrix},
\]

\[
e^{2\pi iT_0} = \begin{pmatrix}
1 & 0 & 0 \\
0 & e^{2\pi i\theta_1^0} & 0 \\
0 & 0 & e^{2\pi i\theta_2^0}
\end{pmatrix},
\]

\[
S_{2n-1} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix},
\]

\[
S_{2n} = \begin{pmatrix}
1 & 0 & s_{2n}^{(1)} \\
0 & 1 & s_{2n}^{(2)} \\
0 & 0 & 1
\end{pmatrix},
\]

\[
C = (e_{ij}), i, j = 1, 2, 3,
\]

\[
CM_{\infty}C^{-1}S_1S_2S_3S_4e^{2\pi iT_0} = I_5.
\]

2.2. Monodromy preserving deformation and Hamiltonian system

When the linear monodromy of (2.1) is independent of the parameter \(t \), \(Y = Y(x, t) \) satisfies both of (2.1) and (2.2). The monodromy preserving deformation equation is given by the compatibility condition of (2.1) and (2.2). This equation is expressed by the Hamiltonian system using the two Hamiltonians \(H_{IV} \) of the fourth Painlevé equation with different parameters and the coupled term:

\[
H^{A_4}_{IV}(\alpha, \beta; t; q_1, p_1; q_2, p_2) = H_{IV}(\beta, \alpha; t; q_1, p_1) + H_{IV}(\tilde{\beta}, \tilde{\alpha}; t; q_2, p_2) + 2q_1p_1p_2,
\]

where

\[
H_{IV}(\beta, \alpha; t; q, p) = qp(p - q - t) + \alpha p + \beta q,
\]

\[
\alpha = \theta_1^\infty - \theta_3^\infty - 1, \quad \beta = \theta_3^\infty, \quad \tilde{\alpha} = \theta_1^\infty - \theta_2^\infty - \theta_3^\infty - 1, \quad \tilde{\beta} = \theta_1^0 + \theta_2^0.
\]

The Hamiltonian system \(\mathcal{H}^{A_4}_{IV} \) is expressed as follows:

\[
\frac{dq_1}{dt} = \frac{\partial H^{A_4}_{IV}}{\partial p_1} = q_1(2p_1 - q_1 - t) + \alpha + 2q_1p_2,
\]

\[
-\frac{dp_1}{dt} = \frac{\partial H^{A_4}_{IV}}{\partial q_1} = p_1(p_1 - t - 2q_1) + \beta + 2p_1p_2,
\]

\[
\frac{dq_2}{dt} = \frac{\partial H^{A_4}_{IV}}{\partial p_2} = q_2(2p_2 - q_2 - t) + \tilde{\alpha} + 2q_1p_1,
\]

\[
-\frac{dp_2}{dt} = \frac{\partial H^{A_4}_{IV}}{\partial q_2} = p_2(p_2 - t - 2q_2) + \tilde{\beta}.
\]
Remark 2.1. The Hamiltonian system \(H_{NY}^{A_4} \) is invariant under the following symmetric transformations:

\[
q_1 \rightarrow -q_1, \quad p_1 \rightarrow -p_1, \quad q_2 \rightarrow -q_2, \quad p_2 \rightarrow -p_2, \quad t \rightarrow -t.
\]

\(q_1, p_1, q_2, p_2 \) are all odd functions.

By using this property, we can calculate the symmetric solutions to the Hamiltonian system \(H_{NY}^{A_4} \).

The system \(H_{NY}^{A_4} \) is the monodromy preserving deformation for (2.1). Therefore, there exists almost one-to-one correspondence between the monodromy data and the solutions of \(H_{NY}^{A_4} \). In this sense, we call the corresponding monodromy data the linear monodromy of the solution of \(H_{NY}^{A_4} \).

It is not easy to determine the linear monodromy for generic solutions, but we can determine the linear monodromy for the symmetric solutions under the transformation in Remark 2.1.

3. Symmetric solutions around the origin

In this section, we give the obtained symmetric solutions around \(t = 0 \), which are satisfied with the Hamiltonian system \(H_{NY}^{A_4} \).

When \(q_i \) and \(p_i \) (\(i = 1, 2 \)) are meromorphic, we can show that they have at most a simple pole around \(t = 0 \).

Since \(H_{NY}^{A_4} \) is the fourth order differential equations, the solution space of \(H_{NY}^{A_4} \) is dimensional. But we can show that the number of solutions which are invariant under the action in Remark 2.1 is finite.

Theorem 3.1. For generic values of parameters, the Hamiltonian system \(H_{NY}^{A_4} \) has the following sixteen symmetric solutions (1), (2), \(\cdots \), (16) around the origin:

\[
q_1 = \frac{a_{-1}}{t} + \sum_{k=1}^{\infty} a_{2k-1} t^{2k-1}, \quad p_1 = \frac{\tilde{a}_{-1}}{t} + \sum_{k=1}^{\infty} \tilde{a}_{2k-1} t^{2k-1},
\]

\[
q_2 = \frac{b_{-1}}{t} + \sum_{k=1}^{\infty} b_{2k-1} t^{2k-1}, \quad p_2 = \frac{\tilde{b}_{-1}}{t} + \sum_{k=1}^{\infty} \tilde{b}_{2k-1} t^{2k-1},
\]

- **One holomorphic solution (1):**

\[
(1): \quad a_{-1} = 0, \quad a_1 = \alpha, \quad a_3 = -\frac{\alpha}{3}(\alpha + 2\beta + 1 + 2\tilde{\beta}), \cdots,
\]

\[
\tilde{a}_{-1} = 0, \quad \tilde{a}_1 = -\beta, \quad \tilde{a}_3 = -\frac{\beta}{3}(2\alpha + \beta + 1 + 2\tilde{\beta}), \cdots,
\]

\[
b_{-1} = 0, \quad b_1 = \tilde{\alpha}, \quad b_3 = -\frac{1}{3}[\tilde{\alpha}(\tilde{\alpha} + 2\tilde{\beta} + 1) + 2\alpha\beta], \cdots,
\]

\[
\tilde{b}_{-1} = 0, \quad \tilde{b}_1 = -\tilde{\beta}, \quad \tilde{b}_3 = -\frac{\tilde{\beta}}{3}(2\tilde{\alpha} + \tilde{\beta} + 1), \cdots.
\]

- **Fifteen meromorphic solutions** (2), (3), \(\cdots \), (16) with a pole of order one:
4. Bäcklund transformation

In this section we show the Bäcklund transformation for the \(NY^{A_4}\) given by M. Noumi and Y. Yamada [18] and the operated results to the sixteen symmetric solutions.

4.1. the Bäcklund transformation for the \(NY^{A_4}\)

The Bäcklund transformations are given as follows:

\(x\)	\(s_0(x)\)	\(s_1(x)\)	\(s_2(x)\)	\(s_3(x)\)	\(s_4(x)\)	\(\pi(x)\)
\(q_1\)	\(q_1 - \frac{\alpha}{q_2 - p_1 - p_2 - t}\)	\(q_1\)	\(q_1 + \frac{\alpha}{p_1}\)	\(q_1\)	\(q_1\)	\(-p_1\)
\(p_1\)	\(p_1 - \frac{\alpha}{q_1}\)	\(p_1\)	\(p_1 - \frac{\alpha}{q_1 - q_2}\)	\(p_1\)	\(q_1 - q_2\)	
\(q_2\)	\(q_2 - \frac{\alpha}{q_2 - p_1 - p_2 - t}\)	\(q_2\)	\(q_2\)	\(q_2 + \frac{\alpha}{p_2}\)	\(-p_1 - p_2\)	
\(p_2\)	\(p_2 - \frac{\alpha}{q_2 - p_1 - p_2 - t}\)	\(p_2\)	\(p_2\)	\(p_2 + \frac{\alpha}{q_1 - q_2}\)	\(q_2 - p_1 - p_2 + t\)	
\(t\)	\(t\)	\(t\)	\(t\)	\(t\)	\(t\)	
\(\alpha_0\)	\(-\alpha_0\)	\(\alpha_0 + \alpha_1\)	\(\alpha_0\)	\(\alpha_0\)	\(\alpha_1\)	
\(\alpha_1\)	\(\alpha_1 + \alpha_0\)	\(-\alpha_1\)	\(\alpha_1 + \alpha_2\)	\(\alpha_1\)	\(\alpha_2\)	
\(\alpha_2\)	\(\alpha_2\)	\(\alpha_2 + \alpha_1\)	\(-\alpha_2\)	\(\alpha_2 + \alpha_3\)	\(\alpha_3\)	
\(\alpha_3\)	\(\alpha_3\)	\(\alpha_3\)	\(\alpha_3 + \alpha_2\)	\(-\alpha_3\)	\(\alpha_3 + \alpha_4\)	
\(\alpha_4\)	\(\alpha_4 + \alpha_0\)	\(\alpha_4\)	\(\alpha_4\)	\(\alpha_4 + \alpha_3\)	\(-\alpha_4\)	

\(s_1^2 = 1, \ \pi^5 = 1, \ \alpha = -\alpha_1, \ \beta = -\alpha_2, \ \tilde{\alpha} = -\alpha_1 - \alpha_3, \ \tilde{\beta} = -\alpha_4.\)
4.2. The operated results to the sixteen symmetric solutions

The operated results to the sixteen symmetric solutions are shown in Fig 1.

The sixteen symmetric solutions are arranged on the vertices of the concentric three pentagons and the center; the fifteen meromorphic solutions with a pole of order one are on the vertices and the holomorphic solution is on the center.

The fifteen solutions arranged on the vertices are transformed each other by the reflection \(s_i(i = 0, 1, 2, 3, 4)\) in the radial direction and by the rotation \(\pi\) in the counter clockwise direction along the edges of the pentagons. Besides these, there are five transformations by the reflection \(s_i\) from every vertex of the inner first pentagon to one of the vertices of the second pentagon.

These fifteen solutions are closed by the Bäcklund transformation \(\{s_i(i = 0, 1, 2, 3, 4), \pi\}\) but the holomorphic solution (1) arranged on the center jumps out from these three pentagons by the rotation \(\pi\) and the transformed holomorphic solution is not satisfied the Hamiltonian system \(\mathcal{H}_{NY}^A\).

We can see that the holomorphic solution (1) arranged on the center is the key solution. We show the calculated results of the linear monodromy for the solution (1) in the next section.

![Fig. 1. NYA1 16 solutions and Bäcklund transformations](image)

Remark 4.1. The fourth Painlevé equation \(P_{IV}\) has one holomorphic solution (1) and three meromorphic solutions with a pole of order one (2), (3) and (4), which are transformed each other by the Bäcklund transformation \(\{s_i(i = 0, 1, 2), \pi|\pi^3 = 1\}\) as shown in Fig 2.
Conjecture 4.1. For the $2n$ dimensional case, we will have $4n^2$ meromorphic solutions around the origin, which will be arranged on the vertices of $2n + 1$ concentric $2n - 1$ polygons and the center.

5. The linear monodromy for the symmetric solution (1)

In this section, we show the calculation results on the connection problem of the confluent hypergeometric equations $2F_2$ and the linear monodromy for the symmetric solution (1).

We can put $t = 0$ after substituting the symmetric solution (1) into the linear equation (2.1), since the monodromy preserving deformation theory tells the linear monodromy is invariant under any value change of the deformation parameter t. Only when putting $t = 0$ after substituting the symmetric solution (1) into the linear equation (2.1), the equation (2.1) can be reduced to the confluent hypergeometric equations $2F_2$ and we can calculate the linear monodromy. For $2F_2$, A. Duval and C. Mitchi calculated the connection matrix and the Stokes matrices in [4, 5].

In subsection 5.1, we review the results by Duval and Mitchi. In subsection 5.2, we determine the linear monodromy for the symmetric solution (1).

5.1. The confluent hypergeometric equation $2F_2$

The confluent hypergeometric equation $2F_2$ is

$$\eta^2 \frac{d^3 \phi}{d \eta^3} + (1 + \beta_1 + \beta_2 - \eta) \eta \frac{d^2 \phi}{d \eta^2} + (\beta_1 \beta_2 - (1 + \alpha_1 + \alpha_2) \eta) \frac{d \phi}{d \eta} - \alpha_1 \alpha_2 \phi = 0.$$

The local solutions (w_1^0, w_2^0, w_3^0) around $\eta = 0$ are given by the confluent hypergeometric series $2F_2$:

$$w_1^0 = 2F_2 \left(\begin{array}{c} \alpha_1, \alpha_2 ; \eta \\ \beta_1, \beta_2 \end{array} \right) = \sum_{k=0}^{\infty} \frac{(\alpha_1)_k(\alpha_2)_k}{(\beta_1)_k(\beta_2)_k} \eta^k,$$

$$w_2^0 = (-\eta)^{1-\beta_1} 2F_2 \left(\begin{array}{c} \alpha_1 - \beta_1 + 1, \alpha_2 - \beta_1 + 1 ; \eta \\ 2 - \beta_1, \beta_2 - \beta_1 + 1 \end{array} \right).$$
Symmetric solutions to the NYA_i

\[w^0_{3} = (-\eta)^{1-\beta_2} F_2 \left(\frac{\alpha_1 - \beta_2 + 1, \alpha_2 - \beta_2 + 1}{2 - \beta_2, \beta_1 - \beta_2 + 1} ; \eta \right). \]

Here \((\alpha)_k = \alpha(\alpha + 1)(\alpha + 2)\cdots(\alpha + k - 1)\). Since \(\eta = \infty\) is an irregular singular point of the Poincaré rank one, we have formal solutions slightly different from them:

\[\tilde{w}_1^\infty = \left(\frac{1}{1 - \eta} \right) \frac{\alpha}{3} \left(\frac{\alpha_1 - \beta_1 + 1, \alpha_1 - \beta_2 + 1}{\alpha_1 - \alpha_2 + 1} ; -\frac{1}{\eta} \right), \]

\[\tilde{w}_2^\infty = \left(\frac{1}{1 - \eta} \right) \frac{\alpha_2}{3} \left(\frac{\alpha_2 - \beta_1 + 1, \alpha_2 - \beta_2 + 1}{\alpha_2 - \alpha_1 + 1} ; -\frac{1}{\eta} \right), \]

\[\tilde{w}_3^\infty = \eta^\frac{\alpha_1 + \beta_2 - \alpha_2}{2} \left[1 + \frac{1}{\eta} ((\beta_1 + \beta_2 - \alpha_1 - \alpha_2)(1 - \alpha_1 - \alpha_2) + \beta_1 \beta_2 - \alpha_1 \alpha_2) + O \left(\frac{1}{\eta^2} \right) \right]. \]

The third solution around \(\eta = \infty\); \(\tilde{w}_3^\infty\) cannot be represented by the confluent hypergeometric series.

We take a branch of the solutions \((w^0_1, w^0_2, w^0_3)\) on \(\{x \mid |\arg x| < \pi\}\) since the \(F_2(x)\) converges on the entire plane. The Stokes regions \(\tilde{\mathcal{S}}_j\) around \(x = \infty\) are given by

\[\tilde{\mathcal{S}}_j = \{ x \mid -\varepsilon + (j - 1)\pi < \arg x < j\pi + \varepsilon, |x| > R \}, \]

where \(\varepsilon\) is sufficiently small and \(R\) is sufficiently large.

There exist holomorphic solutions \((w^\infty_1, w^\infty_2, w^\infty_3)\) on \(\tilde{\mathcal{S}}_j\), which is asymptotic to divergent series \((\tilde{w}^\infty_1, \tilde{w}^\infty_2, \tilde{w}^\infty_3)\). The Stokes matrices \(\Sigma_j\) are given by

\[(w^\infty_{1,j+1}, w^\infty_{2,j+1}, w^\infty_{3,j+1}) = (w^\infty_{1,j}, w^\infty_{2,j}, w^\infty_{3,j}) \Sigma_j. \]

And the connection matrix \(D\) is given by

\[(w^\infty_{1,1}, w^\infty_{2,1}, w^\infty_{3,1}) = (w^0_1, w^0_2, w^0_3)D. \]

The Stokes matrices have the following form:

\[\Sigma_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \sigma_1^{(1)} & \sigma_1^{(2)} & 1 \end{pmatrix}, \quad \Sigma_2 = \begin{pmatrix} 1 & 0 & \sigma_2^{(1)} \\ 0 & 1 & \sigma_2^{(2)} \\ 0 & 0 & 1 \end{pmatrix}. \]

We set \(\tilde{T}_0 = \text{diag}(1 - \beta_1, 1 - \beta_2)\), \(\tilde{T}_0 = \text{diag}(\alpha_1, \alpha_2, \alpha_0)\) and \(\alpha_0 = \beta_1 + \beta_2 - \alpha_1 - \alpha_2\). Then \(\tilde{M}_0 = \exp(2\pi i \tilde{T}_0)\) is a monodromy matrix around \(\eta = 0\) and we have a relation

\[D\tilde{M}_0 D^{-1} \Sigma_1 \Sigma_2 e^{2\pi i \tilde{T}_0} = I_3. \] \hspace{1cm} (5.1)

The following Proposition has been obtained in A. Duval and C. Mitchi [4, 5], but our form is slightly different from them:

Proposition 5.1. The monodromy data \((D = (d_{ij}), \Sigma_1, \Sigma_2)\) of \(F_2\) is as follows:

\[d_{11} = \frac{\Gamma(1 + \alpha_1 - \alpha_2)\Gamma(1 - \beta_1)\Gamma(1 - \beta_2)}{\Gamma(1 - \alpha_2)\Gamma(1 + \alpha_1 - \beta_1)\Gamma(1 + \alpha_1 - \beta_2)} e^{\pi i \alpha_1}, \]
Putting (2) Every after substituting the solution (1) into the linear equation (2.1), we have

\[d_{21} = \frac{\Gamma(1 + \alpha_1 - \alpha_2)\Gamma(\beta_1 - 1)\Gamma(\beta_1 - \beta_2)}{\Gamma(\alpha_1)\Gamma(1 + \alpha_1 - \beta_2)\Gamma(\beta_1 - \alpha_2)}e^{\pi i(1 + \alpha_1 - \beta_1)}, \]

\[d_{31} = \frac{\Gamma(1 + \alpha_1 - \alpha_2)\Gamma(\beta_2 - 1)\Gamma(\beta_2 - \beta_1)}{\Gamma(\alpha_1)\Gamma(1 + \alpha_1 - \beta_1)\Gamma(\beta_2 - \alpha_2)}e^{\pi i(1 + \alpha_1 - \beta_2)}, \]

\[d_{12} = \frac{\Gamma(1 + \alpha_2 - \alpha_1)\Gamma(1 - \beta_1)\Gamma(1 - \beta_2)}{\Gamma(1 + \alpha_2 - \beta_1)\Gamma(1 + \alpha_2 - \beta_2)}e^{\pi i\beta_1}, \]

\[d_{22} = \frac{\Gamma(1 + \alpha_2 - \alpha_1)\Gamma(\beta_1 - 1)\Gamma(\beta_1 - \beta_2)}{\Gamma(\alpha_2)\Gamma(1 + \alpha_2 - \beta_2)\Gamma(\beta_1 - \alpha_1)}e^{\pi i(1 + \alpha_1 - \beta_1)}, \]

\[d_{32} = \frac{\Gamma(1 + \alpha_2 - \alpha_1)\Gamma(\beta_2 - 1)\Gamma(\beta_2 - \beta_1)}{\Gamma(\alpha_2)\Gamma(1 + \alpha_2 - \beta_1)\Gamma(\beta_2 - \alpha_1)}e^{\pi i(1 + \alpha_1 - \beta_2)}, \]

\[d_{13} = \frac{\Gamma(1 - \beta_1)\Gamma(1 - \beta_2)}{\Gamma(1 - \alpha_1)\Gamma(1 - \alpha_2)}, \quad d_{23} = \frac{\Gamma(\beta_1 - \beta_2)\Gamma(\beta_1 - 1)}{\Gamma(\beta_1 - \alpha_1)\Gamma(\beta_1 - \alpha_2)}, \quad d_{33} = \frac{\Gamma(\beta_2 - \beta_1)\Gamma(\beta_2 - 1)}{\Gamma(\beta_2 - \alpha_1)\Gamma(\beta_2 - \alpha_2)}, \]

\[\sigma^{(1)}_2 = \frac{-2\pi i\Gamma(\alpha_2 - \alpha_1)}{\Gamma(1 - \alpha_1)\Gamma(\beta_1 - \alpha_1)\Gamma(\beta_2 - \alpha_1)}e^{\pi i(\alpha_1 - \alpha_2)}, \]

\[\sigma^{(2)}_2 = \frac{-2\pi i\Gamma(\alpha_1 - \alpha_2)\Gamma(\alpha_2 - \alpha_1)}{\Gamma(1 - \alpha_2)\Gamma(\beta_1 - \alpha_2)\Gamma(\beta_2 - \alpha_2)}e^{\pi i(\alpha_2 - \alpha_1)}, \]

\[\sigma^{(1)}_1 = \frac{\Gamma(\alpha_1)\Gamma(1 - \beta_1 + \alpha_1)\Gamma(1 - \beta_2 + \alpha_1)}{\Gamma(\alpha_2)\Gamma(1 - \beta_1 + \alpha_2)\Gamma(1 - \beta_2 + \alpha_2)} \]

\[\sigma^{(2)}_1 = \frac{-2\pi i\Gamma(1 - \alpha_1 + \alpha_2)}{\Gamma(1 - \alpha_1 + \alpha_2)} \]

Remark 5.1. (1) Every \(d_{ij} (i, j = 1, 2, 3) \) coincides with A. Duval and C. Mitschi’s calculation results except for \(d_{2j} \leftrightarrow d_{3j} \).

(2) Every \(\sigma^{(j)}_i (i, j = 1, 2) \) is the negative sign of A. Duval and C. Mitschi’s calculation results, since they use \(\Sigma^{-1} \) in our sense as the Stokes matrix.

5.2. Linear monodromy of the symmetric solution (1)

Putting \(t = 0 \) after substituting the solution (1) into the linear equation (2.1), we have

\[\frac{d}{dx}\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} \frac{\tilde{a}}{\alpha_1} & \frac{\tilde{b}}{\alpha_1} & \frac{1}{\alpha_1} \\ \frac{\tilde{p}_{21}}{\alpha_1} & \frac{\tilde{p}_{21}}{\alpha_1} & \frac{1}{\alpha_1} \\ \frac{\tilde{p}_{31}}{\alpha_1} & \frac{\tilde{p}_{31}}{\alpha_1} & \frac{1}{\alpha_1} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \]

\[\tilde{a} = \frac{\theta_{\infty}^0 \theta_{\infty}^1 + \theta_{\infty}^0 \theta_{\infty}^2}{(\theta_1^0 - \theta_2^0)(\theta_1^1 - \theta_2^1)}, \quad \tilde{b} = \frac{\theta_{\infty}^0}{\theta_2^0 - \theta_3^0}, \]

\[\tilde{p}_{21} = \frac{-\theta_1^0 + \theta_2^0}{\theta_1^0 - \theta_2^0}, \quad \tilde{p}_{31} = \frac{\theta_2^0 + \theta_3^0}{(\theta_1^0 - \theta_2^0)(\theta_2^0 - \theta_3^0)}. \]
The system of equations (5.2) can be reduced to the following confluent hypergeometric equations 2F2 with different parameters:

\[
\eta^2 \frac{d^3 \phi_i}{d \eta^3} + \left(1 + \beta_1^{(i)} + \beta_2^{(i)} - \eta \right) \eta \frac{d^2 \phi_i}{d \eta^2} + \left(\beta_1^{(i)} \beta_2^{(i)} - (1 + \alpha_1^{(i)} + \alpha_2^{(i)}) \eta \right) \frac{d \phi_i}{d \eta} - \alpha_1^{(i)} \alpha_2^{(i)} \phi_i = 0, \tag{5.3}
\]

\[
y_i = x^{-\theta}(\alpha_1^{(i)}), \quad x = (-2 \eta)^{-\frac{1}{4}}, \tag{5.4}
\]

\[
\begin{align*}
\alpha_1^{(1)} &= \frac{\theta_1^0}{2}, & \alpha_1^{(2)} &= \frac{\theta_1^0 + \theta_1^1}{2}, & \beta_1^{(1)} &= \frac{\theta_1^0 - \theta_2^0}{2}, & \beta_1^{(2)} &= \frac{\theta_1^0 - \theta_3^0}{2}, \\
\alpha_1^{(2)} &= \frac{\theta_2^0}{2}, & \alpha_1^{(3)} &= \frac{\theta_2^0 + \theta_3^0}{2}, & \beta_1^{(2)} &= \frac{\theta_2^0 - \theta_3^0}{2}, & \beta_1^{(3)} &= \frac{\theta_2^0 - \theta_4^0}{2},
\end{align*}
\]

whose Riemann scheme is

\[
P \begin{pmatrix}
\eta = 0 \\
0 \\
1 - \beta_1^{(i)} \\
1 - \beta_2^{(i)} \\
\alpha_1^{(i)} \\
\alpha_2^{(i)}
\end{pmatrix} =
\begin{pmatrix}
\eta = \infty \\
0 \\
1 - \beta_1^{(i)} \\
1 - \beta_2^{(i)} \\
\alpha_1^{(i)} \\
\alpha_2^{(i)}
\end{pmatrix}.
\]

A fundamental solution matrix is

\[
\begin{pmatrix}
F^{11} & (-\eta)^{1-\beta_1^{(i)}} F^{12} & (-\eta)^{1-\beta_1^{(i)}} F^{13} \\
k_1 (-\eta)^{1-\beta_2^{(i)}} F^{23} & k_2 F^{21} & k_3 (-\eta)^{1-\beta_2^{(i)}} F^{22} \\
k_4 (-\eta)^{1-\beta_1^{(i)}} F^{32} & k_5 (-\eta)^{1-\beta_2^{(i)}} F^{33} & k_6 F^{31}
\end{pmatrix},
\]

where

\[
F^{11} = 2F_2 \left(\alpha_1^{(i)} \alpha_2^{(i)} \left(\beta_1^{(i)} \beta_2^{(i)} ; \eta \right) \right), \quad F^{12} = 2F_2 \left(\alpha_1^{(i)} - \beta_1^{(i)} + 1, \alpha_2^{(i)} - \beta_1^{(i)} + 1 \right), \tag{5.5}
\]

\[
F^{13} = 2F_2 \left(\alpha_1^{(i)} - \beta_2^{(i)} + 1, \alpha_1^{(i)} - \beta_2^{(i)} + 1 \right), \quad (i = 1, 2, 3),
\]

\[
k_1 = \frac{2\beta_1^{(i)}}{u} \frac{\alpha_1^{(i)} \alpha_2^{(i)} (\beta_1^{(i)} - \beta_2^{(i)})}{\beta_1^{(i)} \beta_2^{(i)} (\beta_1^{(i)} + 1)}, \quad k_2 = \frac{2\beta_1^{(i)}}{u} \frac{(\beta_2^{(i)} - \beta_1^{(i)})(1 - \beta_1^{(i)})}{\alpha_1^{(i)} - \beta_1^{(i)}},
\]

\[
k_3 = -\frac{2\beta_1^{(i)}}{v} \frac{\alpha_2^{(i)} (1 - \beta_2^{(i)})}{\beta_2^{(i)} (\beta_2^{(i)} + 1)}, \quad k_4 = \frac{2\beta_1^{(i)}}{v} \frac{\alpha_1^{(i)} \alpha_2^{(i)} (\beta_2^{(i)} - \alpha_1^{(i)})(1 - \beta_1^{(i)})}{\beta_1^{(i)} \beta_2^{(i)} \beta_3^{(i)}},
\]

\[
k_5 = \frac{2\beta_1^{(i)}}{v} \frac{(\alpha_1^{(i)} - \beta_2^{(i)})(\alpha_2^{(i)} - \beta_2^{(i)})(1 - \beta_1^{(i)})}{\beta_1^{(i)} \beta_2^{(i)} (\beta_1^{(i)} + 1)(\beta_1^{(i)} - \beta_2^{(i)})}, \quad k_6 = \frac{2\beta_1^{(i)}}{v} (1 - \beta_2^{(i)}).
\]
Theorem 5.1. The linear equation

\[\sum \text{Comparing (5.1) and (5.6), we have} \]

\[C \left(e^{2\pi i\alpha} M_0 \right)^2 C^{-1} S_2 S_3 S_4 e^{2\pi i\theta_0} = I_3. \]

(5.5)

(5.6)

Comparing (5.1) and (5.6), we have

\[s_3^{(1)} = s_1^{(1)} e^{2\pi i(\alpha_0 - \alpha_1)}, s_3^{(2)} = s_1^{(2)} e^{2\pi i(\alpha_0 - \alpha_2)}, \]

\[s_4^{(1)} = s_2^{(1)} e^{2\pi i(\alpha_1 - \alpha_0)}, s_4^{(2)} = s_2^{(2)} e^{2\pi i(\alpha_2 - \alpha_0)}. \]

Summarizing the above calculation, we have the linear monodromy.

Theorem 5.1. The linear equation (2.1) has the linear monodromy \{M_\infty, C, S_1, S_2, S_3, S_4, e^{2\pi i\theta_0}\} for the symmetric solution (1) as follows:

\[M_\infty = \begin{pmatrix} e^{2\pi i\theta_1^\infty} & 0 & 0 \\ 0 & e^{2\pi i\theta_2^\infty} & 0 \\ 0 & 0 & e^{2\pi i\theta_3^\infty} \end{pmatrix}, \quad e^{2\pi i\theta_0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{2\pi i\theta_1^0} & 0 \\ 0 & 0 & e^{2\pi i\theta_2^0} \end{pmatrix}, \]

\[S_{2n-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ s_{2n-1}^{(1)} & s_{2n-1}^{(2)} \end{pmatrix}, \quad S_{2n} = \begin{pmatrix} 1 & s_{2n}^{(1)} & 0 \\ 0 & 1 & s_{2n}^{(2)} \end{pmatrix}, \quad C = (c_{ij})_{i,j=1,2,3}, \]

\[s_1^{(1)} = -2\pi i \Gamma(1 - \theta_1^0/2), \quad s_1^{(2)} = -2\pi i \Gamma(1 + \theta_1^0/2), \]

\[s_2^{(1)} = -2\pi i e^{\pi i(-\theta_0^0/2)} \Gamma(\theta_0^0/2), \quad s_2^{(2)} = -2\pi i e^{\pi i(-\theta_0^0/2)} \Gamma(-\theta_0^0/2), \]

\[s_3^{(1)} = -2\pi i e^{\pi i\theta_2^0} \Gamma(1 - \theta_0^0/2), \quad s_3^{(2)} = -2\pi i e^{\pi i\theta_2^0} \Gamma(1 + \theta_0^0/2), \]

\[s_4^{(1)} = -2\pi i e^{\pi i(-\theta_0^0/2)} \Gamma(\theta_0^0/2), \quad s_4^{(2)} = -2\pi i e^{\pi i(-\theta_0^0/2)} \Gamma(-\theta_0^0/2), \]

\[c_{11} = \frac{\Gamma(1 - \theta_0^0/2) \Gamma(1 - \theta_1^0 - \theta_2^0) \Gamma(1 - \theta_1^0 - \theta_2^0) e^{\pi i\theta_0^0}}{\Gamma(1 + \theta_0^0/2) \Gamma(1 + \theta_1^0/2) \Gamma(1 + \theta_2^0/2)} \].
Symmetric solutions to the N^{A_4}

\[c_{12} = \frac{(1+\theta_2^0)\Gamma(1-\theta_2^{-1}/2)\Gamma(1-\theta_3^{-1}/2)e^{\pi i \theta_1^0/2}}{(1+\theta_1^0/2)\Gamma(1+\theta_2^0/2)\Gamma(1-\theta_3^0/2)}, \quad c_{13} = \frac{(1-\theta_3^{-1}/2)e^{\pi i \theta_1^0/2}}{(1-\theta_2^{-1}/2)\Gamma(1-\theta_1^0/2)}\]

\[c_{21} = \frac{(1-\theta_1^0/2)\Gamma(1-\theta_2^{-1}/2-1)\Gamma(\theta_3^{-1}/2)e^{\pi i (1+\theta_1^0/2)}}{(1+\theta_2^0/2)\Gamma(-\theta_1^{-1}/2)\Gamma(\theta_3^{-1}/2)}, \quad c_{22} = \frac{(1+\theta_2^0/2)\Gamma(1-\theta_3^{-1}/2)\Gamma(\theta_1^{-1}/2)e^{\pi i (1+\theta_2^0/2)}}{(1+\theta_1^0/2)\Gamma(-\theta_3^{-1}/2)\Gamma(\theta_2^{-1}/2)}\]

\[c_{31} = \frac{(1-\theta_3^0/2)\Gamma(\theta_1^{-1}/2-1)\Gamma(\theta_2^{-1}/2)e^{\pi i (1+\theta_3^0/2)}}{(1+\theta_2^0/2)\Gamma(-\theta_3^{-1}/2)\Gamma(\theta_1^{-1}/2)}, \quad c_{32} = \frac{(1+\theta_2^0/2)\Gamma(1-\theta_1^{-1}/2-1)\Gamma(\theta_3^{-1}/2)e^{\pi i (1+\theta_2^0/2)}}{(1+\theta_3^0/2)\Gamma(-\theta_1^{-1}/2)\Gamma(\theta_2^{-1}/2)}\]

\[c_{33} = \frac{\Gamma(\theta_1^{-1}/2-1)\Gamma(\theta_2^{-1}/2)}{(1+\theta_3^0/2)\Gamma(-\theta_1^{-1}/2)\Gamma(-\theta_2^{-1}/2)}\]

\[CM_e S_1 S_2 S_3 S_4 e^{2\pi i \theta_0} = I_3\]

Acknowledgements The author wishes to thank Prof. Y. Ohyama for his constant guidance over time and useful suggestions to complete this work. This work was supported by JSPS KAKENHI Grant Number 22540237 and the Mitsubishi Foundation.

References

[1] V.E. Adler, Nonlinear chains and Painlevé equations, Phys. D, 73 (1994), 330–351.
[2] P. Appell, Sur les polynômes se rattachant à l’équations différentielle $y'' = 6y^2 + x$, Bull. Sci. Math. France 45 (1917) 150–153.
[3] C. Briot and J.-C. Bouquet, Recherches sur les propriétés des fonctions définies par des équations différentielles, Journal de l’Ecole Polytechnique, 36e Cahier, Tome 21 (1856), 133–198.
[4] A. Duval, Confluence procedures in the generalized hypergeometric family, J. Math. Sci. Univ. Tokyo, 5 (1998), 597–625.
[5] A. Duval et C. Mitschi, Matrices de Stokès et groupe de Galois des équations hypergéométriques confluentes généralisées, Pacific Journal of Math. 138, (1989), 25–56.
[6] R. Fuchs, Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei endlichen gelegenen wesentlich singulären Stellen. Math. Ann. 63 (1907), 301–321.
[7] K. Fuji and T. Suzuki, Drinfeld-Sokolov hierarchies of type A and fourth order Painlevé systems, Funkcial. Ekvac. 53 (2010), 143–167.
[8] R. Garnier, Sur des équations différentielles du troisième ordre dont intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont intégrale générale a ses points critiques fixes, Ann. Sci. École Norm. Sup. 29 (1912), 1–126.
[9] K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991.
[10] K. Kaneko, A new solution of the fourth Painlevé equation with a solvable monodromy, Proc. Japan Acad., 81, Ser.A. (2005), 75–79.
[11] K. Kaneko et Y. Ohyama, Fifth Painlevé transcendants which are analytic at the origin, Funkcial. Ekvac. 50 (2007), 187–212.
[12] K. Kaneko, Local expansion of Painlevé VI transcendants around a fixed singularity, J. Math. Phys. 50 (2009), 013531, 24 pp.
[13] K. Kaneko and Y. Ohyama, Meromorphic Painlevé transcendants at a fixed singularity, Math. Nachr., 286 (2013), 861–875.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
369
6. Appendix

In this section, we write down the Noumi-Yamada system and the transformation formulae to the Hamiltonian system \mathcal{H}^A_4.

6.1. The Noumi-Yamada system

The Noumi-Yamada system is expressed as follows:

\[
\begin{align*}
\frac{df_0}{dt} &= f_0(f_1 - f_2 + f_3 - f_4) + \alpha_0, \\
\frac{df_1}{dt} &= f_1(f_2 - f_3 + f_4 - f_0) + \alpha_1, \\
\frac{df_2}{dt} &= f_2(f_3 - f_4 + f_0 - f_1) + \alpha_2, \\
\frac{df_3}{dt} &= f_3(f_4 - f_0 + f_1 - f_2) + \alpha_3, \\
\frac{df_4}{dt} &= f_4(f_0 - f_1 + f_2 - f_3) + \alpha_4, \\
f_0 + f_1 + f_2 + f_3 + f_4 &= t, \quad \alpha_0 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 1.
\end{align*}
\]

6.2. The transformation formulae to the Hamiltonian system \mathcal{H}^A_4

We have the Hamiltonian system \mathcal{H}^A_4 by putting as follows:

\[
\begin{align*}
q_1 &= -f_1, & p_1 &= f_2, & q_2 &= -f_1 - f_3, & p_2 &= f_4, \\
\alpha &= -\alpha_1, & \beta &= -\alpha_2, & \tilde{\alpha} &= -\alpha_1 - \alpha_3, & \tilde{\beta} &= -\alpha_4.
\end{align*}
\]