Impact of Chronic Obstructive Pulmonary Disease on In-hospital Mortality in Patients with Aneurysmal Subarachnoid Hemorrhage: An Observational Cohort Study with Propensity Score Matching

Yu Zhang
Sichuan University West China Hospital
Linjie Li
Sichuan University West China Hospital
Wei Yao
affiliated hospital of chengdu university
Xing Wang
Sichuan University West China Hospital
Liyuan Peng
affiliated hospital of chengdu university
Yuanyuan Di
China Three Gorges University
Peng Wang
clinical medical college of chengdu university
Haidong Deng
clinical medical college of chengdu university
Huaqian Fan
clinical medical college of chengdu university
Ying Li
clinical medical college of chengdu university
Xin Cheng
Sichuan University West China Hospital
Younian Chen
Sichuan University West China Hospital
Weelic Chong
Thomas Jefferson University
Yang Hai
Thomas Jefferson University
Chao You
Sichuan University West China Hospital
Fang Fang (fang1057@outlook.com)
west china hospital
https://orcid.org/0000-0003-2961-1254

Research
Abstract

Objective: Chronic obstructive pulmonary disease (COPD) has been associated with several complications and mortality in acutely ill patients. For patients with aneurysmal subarachnoid hemorrhage (aSAH), the association between COPD and clinical outcomes remains unclear.

Methods: In this retrospective cohort study, we analyzed consecutive aSAH patients admitted to the West China Hospital between 2009 and 2019. Propensity score matching was performed to obtain the adjusted odds ratios (ORs) with 95% CI. The primary outcome was in hospital mortality.

Results: Using a ten-year clinical database from a large university medical center, 5643 patients with aSAH were identified, of whom 377 (7.9%) also had COPD. After matching, 289 patients were included in COPD group and 1156 in non-COPD groups. COPD was associated with increased in-hospital mortality (OR 1.63, 95% CI 1.02-2.62) and poor functional outcome at discharge (OR 1.37, 95% CI 1.04-1.80). Similarly, patients with COPD had significantly longer length of hospital stay, higher odds of seizure (OR 2.05, 95% CI 1.04-4.04), pneumonia (OR 3.10, 95% CI 2.38-4.04), intracranial infection (OR 1.62, 95% CI 1.14-2.29), urinary tract infection (OR 1.59, 95% CI 1.16-2.20) and bloodstream infection (OR 3.27, 95% CI 1.74-6.15).

Conclusions: Among aSAH patients, COPD is associated with increased mortality. COPD represents a significant risk factor for pneumonia and seizure.

Home Message

In this cohort study with propensity score matching of patients with aneurysmal subarachnoid hemorrhage, chronic obstructive pulmonary disease is associated with increased mortality. Chronic obstructive pulmonary disease represents a significant risk factor for infections and seizure.

Introduction

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the world[1] and is currently characterized by systemic involvement and multiple comorbidities[2]. Growing evidence indicated that COPD independently predicts mortality and morbidity in patients undergoing surgery and patients with critically ill.[3–6] However, the impact of COPD on outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH) remain unclear.[7] Only one observational study has addressed the association between COPD and mortality in patients with SAH.[8] That study demonstrated that COPD did not increased mortality. However, that study did not control for important confounders, such as severity of disease, smoking, or medical history. Moreover, there is no data identifying the impact of COPD on complications in patients with aSAH.

In the 2 largest phase III randomized clinical trials, use of prophylactic antibiotics for patients with stroke did not reduce the risk of pneumonia or death.[9, 10] A possible explanation for the lack of benefit of preventive antibiotics in randomized trials is that included patients have too low risk of infection, with 7% and 16% patients developing pneumonia, respectively. For patients with aSAH, about 20% of them develop a pneumonia.[11] COPD is also one of the most frequent comorbid conditions and a risk factor for developing pneumonia.[12] Patients with COPD and aSAH would have high risk of pneumonia and may benefit from prophylactic antibiotics.

With the increasing global incidence of COPD[13] and its high prevalence in patient with aSAH[8], we assessed the impact of COPD on outcomes of in patients with aSAH, using propensity score matching (PSM) to form groups for comparison with near-identical distributions of background and potential confounder variables.
Methods

Study Design

We performed a retrospective cohort study. We consecutively evaluated the electronic health record of patients with aSAH admitted to the West China Hospital, Sichuan University, from January 1, 2009 to June 31, 2019. This study was approved by the ethics committee of West China hospital (No. 20191133). The ethics committee has exempted written informed consent of patients included in the study because this study posed minimal-risk research and used only observational data.

Study Population

Patients were eligible if they had an intracranial aneurysm identified by imaging in the presence of SAH. Intracranial aneurysms were identified by cerebral angiography or by MRA or CTA > 3 mm. SAH was confirmed with neuroimaging (including CT, MRI, or angiography), cerebrospinal fluid analysis, or intraoperatively by a neurosurgeon. Aneurysms related to trauma, arteriovenous malformations, fusiform aneurysms, nondefinitive aneurysms, trauma SAH, nondefinitive SAH, or aneurysms that were treated before the presentation were excluded. Hospital length of stay less than 3 days were also excluded.

Exposures

The primary exposure was COPD. Diagnosis of COPD was based on the judgment of two independent physicians on the basis of medical reports and previous COPD medication.

Demographics Characteristics

Demographic and clinical data included age, sex, hypertension, diabetes mellitus, coronary heart disease, smoking (current, ever, never), and alcohol use. Hunt & Hess grade and Fisher grade were also obtained on admission.

Outcomes

The primary outcome was in-hospital mortality. Secondary outcomes included neurological complications, infectious complications, acute kidney injury, length of hospital stay, and poor functional outcome at the time of discharge. Infectious outcomes were pneumonia, intracranial infection, urinary tract infection, and bloodstream infection. Neurological complications were hydrocephalus, delayed neurological ischemic deficits, re-bleeding, and seizures.

Poor functional outcome was defined as modified Rankin Scale (mRS) 4–6. Re-bleeding was defined as acute worsening in neurologic status along with an increase in hemorrhage volume which was confirmed in a repeat CT or MRI scan. Delayed ischemic neurological deficits (DIND) was defined as angiographic vasospasm associated with a decline in neurological status lasting > 2 hours and with other causes being ruled out. Infections were diagnosed by treating physicians.

Statistical Analysis

We used SPSS, version 24 (SPSS Inc) and R software version R3.3.2 (Matching and Frailty pack packages, R Foundation for Statistical Computing) for statistical analyses. Normally distributed continuous variables are summarized as means (SDs), and nonnormally distributed variables were reported as medians (interquartile ranges [IQRs]). All tests of significance were 2-sided, and P < .05 was considered statistically significant.

PSM[14] was used to minimize bias from confounding variables when comparing patients with COPD and patients without COPD in the cohort study. From our experience and from previous reports, age, sex, hypertension, diabetes mellitus, chronic renal failure, coronary heart disease, smoking, alcohol use, Hunt & Hess grade and Fisher grade were
considered important confounders. We calculated a propensity score for each patient through logistic regression modeling of a 10^{-5} unit difference, and then patients with COPD and patients without COPD were matched 1:4. We compared the characteristics of patients with COPD and patients without COPD using absolute standardized differences; a difference more than 0.1 is considered meaningful.

For proportional outcomes comparing between patients with COPD and patients without COPD after PSM, the paired t-test was used for continuous variables, and univariable logistic regression was used for binary variables.

We used the E-value to measure the robustness of the association between COPD and mortality for unmeasured or unadjusted confounding.[15] E-values were computed with an online E-value calculator (https://mmathur.shinyapps.io/evalue/).[16]

Data availability

The data and statistical analytical methods of this study are available from the corresponding author upon reasonable request.

Results

We screened 18824 consecutive individuals with aneurysms in West China hospital during the study period. A total of 5643 patients with aSAH were included in this study. In patients with aSAH, 377 (6.7%) patients also had COPD (Fig. 1). Patient demographics stratified by COPD are shown in Table 1. Before matching, there were more male and old patients in the COPD group than in the non-COPD group. Compared with patients without COPD, patients with COPD more frequently had other co-morbidities such as diabetes, chronic renal failure, coronary heart disease. More patients with COPD are smokers. Patients with COPD have higher Hunt & Hess grade. There was a total of 289:1156 matched pairs (1:4). After matching, the variables were balanced between patients with COPD and patients without COPD.
Characteristics	Before matching	After matching	SMD	Before matching	After matching	SMD
	COPD (n = 377)	Non-COPD (n = 5266)		COPD (n = 289)	Non-COPD (n = 1156)	
Age, y, mean (SD)	53.8(11.8)	66.9(9.3)	1.24	64.5(8.3)	64.5(8.3)	0.001
Female	212(56.2)	3440(65.3)	0.19	169(58.5)	688(59.5)	0.02
Hypertension	105(27.9)	1281(24.3)	0.08	77(26.6)	331(28.6)	0.04
Diabetes	34(9.0)	263(5.0)	0.16	24(8.3)	91(7.9)	0.02
Coronary heart disease	19(5.0)	148(2.8)	0.12	11(3.8)	47(4.1)	0.01
Chronic renal failure	4(1.1)	18(0.3)	0.09	3(1.0)	6(0.5)	0.06
Smoking						
Current Smoking	87(23.1)	1009(19.2)	0.15	67(23.2)	244(21.1)	0.03
Ever smoking	24(6.4)	212(4.0)	15(5.2)	82(7.1)		
Never smoking	266(70.6)	4045(76.8)	207(71.6)	830(71.8)		
Alcohol abuse	81(21.5)	1023(19.4)	0.05	61(21.1)	250(21.6)	0.01
Anterior circulation ruptured aneurysm	302(80.1)	4350(82.6)	0.19	240(83.0)	965(83.5)	0.006
Hunt & Hess grade						
I	28(7.4)	500(9.5)	0.26	18(6.2)	72(6.2)	< 0.01
II	166(44.0)	2738(52.0)	149(51.6)	596(51.6)		
III	106(28.1)	1499(28.5)	85(29.4)	340(29.4)		
IV	71(18.8)	474(9.0)	37(12.8)	148(12.8)		
V	6(1.6)	55(1.0)	0(0)	0(0)		
Fisher grade						
I	16(4.2)	203(3.9)	0.06	14(4.8)	25(2.2)	0.02
II	63(16.7)	822(15.6)	54(18.7)	159(13.8)		
III	35(9.3)	665(12.6)	32(11.1)	99(8.6)		
IV	181(48.0)	2298(43.6)	126(43.6)	571(49.4)		
Operation						
Clipping	240(63.7)	3769(71.6)	0.14	196(67.8)	808(69.9)	0.04
Coil	51(13.5)	705(13.4)	40(13.8)	136(11.8)		
No treatment	86(22.8)	792(15.0)	53(18.3)	212(18.3)		

SMD: standardized mean difference; Chronic obstructive pulmonary disease
The univariable logistic regression and propensity-matched analysis for the association between COPD and outcomes were shown in Table 2. In univariate analysis, COPD was associated with increased odds of mortality (OR 2.05, 95% CI 1.44–2.93). Even after matching, our findings remained robust: COPD was associated with higher mortality (OR 1.63, 95% CI 1.02–2.62).

Table 2

Unadjusted and Propensity-Matched Analysis Results for in-hospital outcomes

Characteristics	Entire Cohort	Propensity Score-Matched Cohort					
	COPD (n = 377)	Non-COPD (n = 5266)	Unadjusted	COPD (n = 289)	Non-COPD (n = 1156)	Propensity-score matched	
Mortality in hospital			OR (95% CI)	p Value	OR (95% CI)	p Value	
	38(10.1)	273(5.2)	2.05(1.44–2.93)	<0.001	1.63(1.02–2.62)	0.04	
mRS 4–6 at discharge			2.28(1.84–2.83)	<0.001	1.37(1.04–1.80)	0.03	
Neurological complications							
Hydrocephalus	65(17.2)	520(9.9)	1.90(1.43–2.52)	<0.001	1.30(0.91–1.86)	0.15	
Re-bleeding	23(6.1)	185(3.5)	1.72(1.24–2.39)	0.001	1.08(0.68–1.73)	0.73	
DNIDs	74(19.6)	989(18.8)	1.06(0.81–1.37)	0.68	0.91(0.65–1.26)	0.56	
Seizures	21(5.6)	169(3.2)	1.78(1.12–2.84)	0.02	1.05(1.04–4.04)	0.04	
Infection complications							
Pneumonia	229(60.7)	1185(22.5)	5.33(4.29–6.62)	<0.001	3.10(2.38–4.04)	<0.001	
Intracranial infection	69(18.3)	555(10.5)	1.90(1.44–2.50)	<0.001	1.62(1.14–2.29)	0.007	
Urinary tract infection	92(24.4)	744(14.1)	1.96(1.53–2.51)	<0.001	1.59(1.16–2.20)	0.004	
Bloodstream infection	24(6.4)	117(2.2)	2.99(1.90–4.70)	<0.001	3.27(1.74–6.15)	<0.001	
Acute kidney injury	44(11.7)	241(4.6)	2.76(1.96–3.87)	<0.001	1.05(0.64–1.74)	0.84	
Length of hospital stay*	14(9–22)	19(9–16)	NA	<0.001	13(9–21)	0.006	

*day, median (IQR)

DNIDs: Delayed Neurological Ischemic Deficits

COPD: Chronic obstructive pulmonary disease
Before and after matching, COPD was associated with an increased risk in all infectious complications. Before matching, COPD was associated with several neurological complications (hydrocephalus [OR 1.90, 95% CI 1.43–2.52], re-bleeding [OR 1.72, 95% CI 1.24–2.39], and seizures [OR 1.78, 95% CI 1.12–2.84]). After matching, COPD was associated with an increased incidence of seizures, but not hydrocephalus and re-bleeding. After matching, the length of hospital stay was significantly longer in patients with COPD (p < 0.001).

The E-value obtained for the association between COPD and mortality after matching was 2.64 with a lower limit of 1.16, suggesting that unmeasured confounding was unlikely to explain the findings.

We further assessed interactions by other variables on COPD. There is no significant effect modification of the change in COPD and mortality on these variables (Fig. 2). Effect modification is present with Hunt & Hess grade (P for interaction = 0.002) in the analysis the association between COPD and pneumonia (Fig. 3).

Discussion

In this cohort study of patients with aSAH, we found that compared to patients without COPD, patients with COPD have increased odds of in-hospital death and poor functional outcome at discharge. Moreover, COPD is associated with an increased incidence of seizures and infectious complications, especially pneumonia, which may contribute to the increased mortality and poorer outcomes observed in aSAH patients with COPD.

Mechanisms

Several mechanisms may explain the association between COPD and poor outcomes. First, COPD causes spillover of multiple pro-inflammatory markers into the circulation, leading to chronic low-grade systemic inflammation, ultimately resulting in unstable plaque formation and prothrombotic events.[17] Second, COPD especially during exacerbation are hypoxemic and hypercapnic at baseline which may increase their susceptibility to brain injury. The intraneural hypoxemia can occur in approximately 40–50% of patients with mild COPD.[18] Third, COPD have associated comorbid conditions after stroke, such as seizure[19]. Fourth, COPD are commonly treated with corticosteroids, and hospitalized patients on corticosteroids have a heightened risk of nosocomial infection.

Mortality

Though COPD is known to be a risk for mortality in patients undergoing surgery and in the critically ill, there is a lack of scientific literature on COPD in patients with aSAH. The only study related to this topic assessed the association between mortality and COPD in stroke patients. In agreement with the current study, the previous study suggested that COPD was modestly associated with overall stroke mortality. In subgroup analysis of that study, the greater risks of mortality were seen in patients with intracerebral hemorrhage and patients with ischemic stroke, but not in patients with SAH (adjusted OR 0.98, 95% CI 0.85–1.13).[8] However, the previous study was limited by the epidemiologic study design that was unadjusted for important confounders (hemorrhage severity, smoking and any co-morbidity), which led to the uncertainty of their conclusions.

Functional outcome

This study found an association of COPD with poor functional outcome in patients with aSAH. While such an association has not been previously assessed in patients with aSAH, a study found that COPD increased the incidence of discharge to nursing homes and rehabilitation facilities after surgery[20], and another study found that the discharge
destination is a surrogate for mRS functional outcome in stroke survivors[21]. More research is needed to confirm the association of COPD with poor functional outcome in patients with aSAH.

Seizures

The association between seizures and COPD in patients were also found in patients with stroke from another study, where in a cohort of 237 patients with stroke, COPD was found to be a risk factor for seizures.[19] There are no reliable clinical guidelines for managing post-stroke seizures, and currently no evidence for prophylactic use in patients at risk of an epileptic episode as a complication from stroke[22]. The European Stroke Organization Guidelines do not support the prophylactic use of antiepileptic drugs (class IV, level C).[23] The American Heart Association/American Stroke Association Guidelines state that antiepileptic drugs may be considered in the immediate post-hemorrhagic period and for patients with known risk factors for delayed seizure disorder.[24] Our study provides evidence that COPD is a risk factor for seizures in patients with aSAH, suggesting that antiepileptic drugs may be considered in these patients.

Infection complications

In this study, COPD was associated with an increased frequency of a variety of infection complications. In a cohort study by Lee et al, COPD is an independent risk factor for pneumonia and septic shock after total shoulder arthroplasty.[25] Yakubek et al. published a study found that in patients undergoing total hip arthroplasty, patients with COPD are more likely to experience pneumonia and deep surgical site infection.[20]

Two large randomized clinical trials conducted in patients hospitalized for stroke found that prophylactic antibiotics did not reduce the incidence of pneumonia.[9, 10] A possible explanation for the lack of benefit is that the included patients have a general risk for pneumonia but not high risk, with 7–16% patients developing pneumonia in the control group. In the present study, half of the patients with COPD have pneumonia. The use of prophylactic antibiotics in patients with COPD may reduce the risk of progression to clinically overt pneumonia better than in general patients.

Strengths and limitations

One of the major strengths of our study is the high-quality, standardized, single-institution database, the large sample size, and the use of PSM to adjust for confounders. However, the limitations of this study must also be considered. First, pulmonary function testing was not recorded in our database, and long-term data were not available. This is a retrospective study, and thus data were not recorded for the aim of this study, limiting the strength of our conclusions. Moreover, recall bias may also be present because the medical history of a few cases with altered mental status were collected from their relatives.

Conclusions

In aSAH patients, COPD was associated with a significant increase in in-hospital mortality. COPD increased the risk of seizures and infectious complications, especially pneumonia. Since these complications can potentially be prevented by antibiotics and antiepileptic drugs, our findings are of clinical relevance and can open up new lines of inquiry.

Declarations

Author contributions:

Study concept and design: FF

Acquisition, analysis, or interpretation of data: XW, LP, YD, PW, HD, HF, YL, XC, YC
Statistical analysis: YZ and LL

Drafting of the manuscript: YZ and WC

Critical revision of the manuscript for important intellectual content: All authors

Funding:
None

Competing interests:
None

Acknowledgments:
None

Ethical approval:
The ethics committee of West China Hospital (No. 20191133)

Financial Disclosure Statement:
None

Consent for publication:
Not applicable.

Availability of supporting data:
All data are available for reasonable requests.

References

1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY et al: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England) 2012, 380(9859):2095-2128.

2. Corlateanu A, Covantev S, Mathioudakis AG, Botnaru V, Siafakas N: Prevalence and burden of comorbidities in Chronic Obstructive Pulmonary Disease. Respir Investig 2016, 54(6):387-396.

3. Efird JT, Griffin W, O’Neal WT, Davies SW, Shiue KY, Grzybowski M, Kindell LC, Kypson AP, Bowling M, Ferguson TB et al: Long-Term Survival after Cardiac Surgery in Patients with Chronic Obstructive Pulmonary Disease. Am J Crit Care 2016, 25(3):266-276.

4. Leavitt BJ, Ross CS, Spence B, Sugenor SD, Olmstead EM, Clough RA, Charlesworth DC, Kramer RS, O’Connor GT: Long-term survival of patients with chronic obstructive pulmonary disease undergoing coronary artery bypass surgery. Circulation 2006, 114(1 Suppl):I430-434.

5. Distelmaier K, Niessner A, Haider D, Lang IM, Heinz G, Maurer G, Koinig H, Steinlechner B, Goliasch G: Long-term mortality in patients with chronic obstructive pulmonary disease following extracorporeal membrane oxygenation for cardiac assist after cardiovascular surgery. Intensive care medicine 2013, 39(8):1444-1451.
6. Shin B, Lee H, Kang D, Jeong BH, Kang HK, Chon HR, Koh WJ, Chung MP, Guallar E, Cho J et al: Airflow limitation severity and post-operative pulmonary complications following extra-pulmonary surgery in COPD patients. *Respirology* 2017, **22**(5):935-941.

7. Corlateanu A, Covantev S, Mathioudakis AG, Botnaru V, Cazzola M, Siafakas N: Chronic Obstructive Pulmonary Disease and Stroke. *COPD* 2018, **15**(4):405-413.

8. Lekoubou A, Ovbiagele B: Prevalence and Influence of Chronic Obstructive Pulmonary Disease on Stroke Outcomes in Hospitalized Stroke Patients. *eNeurologicalSci* 2017, **6**(1-2):143-156.

9. Kalra L, Irshad S, Hodsoll J, Simpson M, Gulliford M, Smithard D, Patel A, Rebollo-Mesa I: Prophylactic antibiotics after acute stroke for reducing pneumonia in patients with dysphagia (STROKE-INF): a prospective, cluster-randomised, open-label, masked endpoint, controlled clinical trial. *Lancet (London, England)* 2015, **386**(10006):1835-1844.

10. Westendorp WF, Vermeij JD, Zock E, Hooijenga IJ, Kruyt ND, Bosboom HJ, Kwa VI, Weisfelt M, Remmers MJ, ten Houten R et al: The Preventive Antibiotics in Stroke Study (PASS): a pragmatic randomised open-label masked endpoint clinical trial. *Lancet (London, England)* 2015, **385**(9977):1519-1526.

11. Stevens RD, Nyquist PA: The systemic implications of aneurysmal subarachnoid hemorrhage. *Journal of the Neurological Sciences* 2007, **261**(1-2):143-156.

12. Restrepo MI, Sibila O, Anzueto A: Pneumonia in Patients with Chronic Obstructive Pulmonary Disease. *Tuberc Respir Dis (Seoul)* 2018, **81**(3):187-197.

13. Murray CJ, Lopez AD: Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. *Lancet (London, England)* 1997, **349**(9064):1498-1504.

14. Austin PC: A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. *Stat Med* 2008, **27**(12):2037-2049.

15. VanderWeele TJ, Ding P: Sensitivity Analysis in Observational Research: Introducing the E-Value. *Annals of internal medicine* 2017, **167**(4):268-274.

16. Mathur MB, Ding P, Riddell CA, VanderWeele TJ: Web Site and R Package for Computing E-values. *Epidemiology (Cambridge, Mass)* 2018, **29**(5):e45-e47.

17. Maclay JD, MacNee W: Cardiovascular disease in COPD: mechanisms. *Chest* 2013, **143**(3):798-807.

18. Stewart AG, Waterhouse JC, Howard P: Cardiovascular autonomic nerve function in patients with hypoxaemic chronic obstructive pulmonary disease. *Eur Respir J* 1991, **4**(10):1207-1214.

19. De Reuck J, Proot P, Van Maele G: Chronic obstructive pulmonary disease as a risk factor for stroke-related seizures. *European journal of neurology* 2007, **14**(9):989-992.

20. Yakubek GA, Curtis GL, Khlopas A, Faour M, Klika AK, Mont MA, Barsoum WK, Higuera CA: Chronic Obstructive Pulmonary Disease Is Associated With Short-Term Complications Following Total Knee Arthroplasty. *J Arthroplasty* 2018, **33**(8):2623-2626.

21. Qureshi AI, Chaudhry SA, Sapkota BL, Rodriguez GJ, Suri MF: Discharge destination as a surrogate for Modified Rankin Scale defined outcomes at 3- and 12-months poststroke among stroke survivors. *Archives of physical medicine and rehabilitation* 2012, **93**(8):1408-1413.e1401.

22. Xu MY: Poststroke seizure: optimising its management. *Stroke and vascular neurology* 2019, **4**(1).

23. Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G, European Stroke O: European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. *Cerebrovascular diseases (Basel, Switzerland)* 2013, **35**(2):93-112.

24. Connolly ES, Jr., Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS et al: Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for
healthcare professionals from the American Heart Association/american Stroke Association. *Stroke* 2012, 43(6):1711-1737.

25. Lee R, Lee D, Mamidi IS, Probasco WV, Heyer JH, Pandarinath R: Patients With Chronic Obstructive Pulmonary Disease Are at Higher Risk for Pneumonia, Septic Shock, and Blood Transfusions After Total Shoulder Arthroplasty. *Clin Orthop Relat Res* 2019, 477(2):416-423.

Figures

Figure 1

Flow diagram for selection of cohorts
Figure 1
Flow diagram for selection of cohorts
Figure 2

Subgroup analysis of association between COPD and in-hospital mortality after propensity score matching.
Figure 2

Subgroup analysis of association between COPD and in-hospital mortality after propensity score matching.
Subgroup	COPD(N=289)	Non-COPD(n=1156)	Risk Ratio(95%CI)	P Value
	Event/Total	Event/Total		
Age				
>=65	88/152(57.9)	213/623(34.3)	1.69(1.42-2.01)	0.04
<65	76/137(55.5)	131/535(24.5)	2.27(1.83-2.80)	
Sex				0.63
Male	73/120(60.8)	144/468(30.8)	1.85(1.54-2.22)	
Female	91/169(53.8)	200/688(29.1)	1.98(1.62-2.41)	
Hypertension				0.81
Yes	46/77(59.7)	101/331(30.5)	1.96(1.53-2.50)	
No	118/212(55.7)	243/825(29.5)	1.89(1.61-2.22)	
Diabetes				0.73
Yes	14/24(58.3)	30/91(33.0)	1.77(1.13-2.77)	
No	150/265(56.6)	314/1065(29.5)	1.92(1.67-2.21)	
Coronary heart disease				0.84
Yes	8/11(72.7)	17/47(36.2)	2.01(1.19-3.40)	
No	156/278(56.1)	327/1109(29.5)	1.90(1.66-2.19)	
Chronic renal failure				0.33
Yes	3/3(100.0)	4/6(66.7)	1.36(0.70-2.65)	
No	161/280(55.3)	340/1150(29.6)	1.90(1.66-2.18)	
Smoking				0.37
Current	38/67(56.7)	77/244(31.6)	1.80(1.36-2.38)	
Ever	11/15(73.3)	23/82(28.0)	2.61(1.65-4.15)	
Never	115/207(55.6)	244/830(29.4)	1.89(1.61-2.22)	
Alcohol abuse				0.42
Yes	34/63(55.7)	81/250(32.4)	1.72(1.29-2.99)	
No	130/228(57.0)	263/906(29.0)	1.96(1.69-2.29)	
Aneurysmal location				0.07
Anterior circulation	132/240(55.0)	265/965(27.5)	2.00(1.72-2.34)	
Posterior circulation	23/34(67.6)	61/132(46.2)	1.46(1.09-1.97)	
Hunt & Hess grade				0.002
I-III	133/252(52.8)	255/1008(25.3)	2.09(1.78-2.44)	
IV-V	31/37(83.8)	89/148(60.1)	1.39(1.15-1.69)	
Fisher grade				0.77
I-II	31/68(45.6)	43/184(23.4)	1.95(1.35-2.82)	
III-IV	101/158(63.9)	233/670(34.8)	1.84(1.57-2.15)	
Operation				0.93
Clipping	117/196(59.7)	248/808(30.7)	1.94(1.67-2.27)	
Coiling	19/40(47.5)	36/136(26.5)	1.79(1.17-2.76)	
No treatment	28/53(52.8)	60/212(28.3)	1.87(1.34-2.60)	

Figure 3

Subgroup analysis of association between COPD and Pneumonia after propensity score matching.
Figure 3

Subgroup analysis of association between COPD and Pneumonia after propensity score matching

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- STROBECochranelistcohort.docx
- STROBECochranelistcohort.docx