Attacks as Defenses: Designing Robust Audio CAPTCHAs Using Attacks on Automatic Speech Recognition Systems

Hadi Abdullah, Aditya Karlekar, Saurabh Prasad, Muhammad Sajidur Rahman, Logan Blue, Luke A. Bauer, Vincent Bindschaedler, Patrick Traynor

NDSS Symposium 2023
March 1, 2023
Understanding Can be Dangerous
Audio CAPTCHAs

Garbage
Audio CAPTCHAs
Goal

Design *high quality* audio CAPTCHAs that are *robust* to ASRs based on the differences between how humans and machines understand audio.
Criteria

• Human Intelligibility
• ASR UnIntelligibility
• Adaptive Adversary
• Misuse Detection
Criteria

- Human Intelligibility
- ASR UnIntelligibility
- Adaptive Adversary
- Misuse Detection

Abc123
Criteria

- Human Intelligibility
- ASR UnIntelligibility
- Adaptive Adversary
- Misuse Detection
Criteria

- Human Intelligibility
- ASR UnIntelligibility
- Adaptive Adversary
- Misuse Detection
Criteria

• Human Intelligibility
• ASR UnIntelligibility
• Adaptive Adversary
• Misuse Detection
Evaluating Current Methods

- Human Intelligibility
- ASR UnIntelligibility
- Adaptive Adversary
- Misuse Detection

Reference
Taori et al. [92]
M. Azalnot et al. [25]
HVC (2) [39]
Cocaine Noodles [94]
Dolphin Attack [102]
Light Commands [89]
Roy et al. [72]
HVC (1) [39]
CW [40]
Houdini [45]
Schonherr et al. [79]
Kreuk et al. [57]
Qin et al. [69]
Yakura et al. [99]
Commander Song [101]
Devil’s Whisper [42]
Abdoli et al. [18]
P-PGD [22]
Kenansville Attack [21]
Abdulllah et al. [19]
Human Intelligibility

- ASR UnIntelligibility
- Adaptive Adversary
- Misuse Detection
ASR UnIntelligibility

- Human Intelligibility
- ASR UnIntelligibility
- Adaptive Adversary
- Misuse Detection

Method	Intelligible	Opt
CW [40]	✔	Opt
Houdini [45]	✔	Opt
Schonherr et al. [79]	✔	Intelligible
Kreuk et al. [57]	✔	Intelligible
Qin et al. [69]	✔	Intelligible
Yakura et al. [99]	✔	Intelligible
Commander Song [101]	✔	Intelligible
Devil’s Whisper [42]	✔	Intelligible
Abdoli et al. [18]	✔	Intelligible
P-PGD [22]	✔	Intelligible
Kenansville Attack [21]	✔	Intelligible

Sig Proc
ASR UnIntelligibility

- Human Intelligibility
- ASR UnIntelligibility
- Adaptive Adversary
- Misuse Detection

- CW [40]
- Houdini [45]
- Schonherr et al. [79]
- Kreuk et al. [57]
- Qin et al. [69]
- Yakura et al. [99]
- Commander Song [101]
- Devil’s Whisper [42]
- Abdoli et al. [18]
- P-PGD [22]
ASR UnIntelligibility

- Human Intelligibility
- ASR UnIntelligibility
- Adaptive Adversary
- Misuse Detection

Method	Intelligible	Opt	
CW [40]	✓	Intelligible	Opt
Houdini [45]	✓	Intelligible	Opt
Schonherr et al. [79]	✓	Intelligible	Opt
Kreuk et al. [57]	✓	Intelligible	Opt
Qin et al. [69]	✓	Intelligible	Opt
Yakura et al. [99]	✓	Intelligible	Opt
Commander Song [101]	✓	Intelligible	Opt
Devil's Whisper [42]	✓	Intelligible	Opt
Abdoli et al. [18]	✓	Intelligible	Opt
P-PGD [22]	✓	Intelligible	Opt
Kenansville Attack [21]	✓	Intelligible	Sig Proc
Adaptive Adversary

- Kenansville Attack [21]
- Add Gaussian Noise

“123”

- Human Intelligibility
- ASR UnIntelligibility
- Adaptive Adversary
- Misuse Detection
Key Takeaways:

- Human Intelligibility
- ASR UnIntelligibility
- Adaptive Adversary Misuse Detection
New Attack Strategy

Simplified ASR Pipeline

- Feature Extraction
- CNN
- RNN
- char
- Dictionary
- Language Model
Feature Extraction

\[F_k = \sum_{n=0}^{N-1} s_n \left(\cos \left(\frac{\pi}{N} (n + \frac{1}{2})k \right) - i \cdot \sin \left(\frac{\pi}{N} (n + \frac{1}{2})k \right) \right) \]

\[F_k = |F_k| \]

\[m_k = 2595 \log_{10} \left(1 + \frac{|F_k|}{700} \right) \]

\[F_k = \sum_{n=0}^{N-1} s_n \cos \left(\frac{(2n + 1)k\pi}{2N} \right) \]
Feature Extraction Ignores Psychoacoustics

\[F_k = \sum_{n=0}^{N-1} s_n \left(\cos\left(\frac{\pi}{N} (n + \frac{1}{2})k\right) - i \cdot \sin\left(\frac{\pi}{N} (n + \frac{1}{2})k\right) \right) \]

\[F_k = |F_k| \]

\[s_k = 2595 \log_{10} \left(1 + \frac{F_k}{700} \right) \]

\[F_k = \sum_{n=0}^{N-1} s_n \cos\left(\frac{(2n + 1)k\pi}{2N}\right) \]

1. Lossy
2. Psychoacoustics

Psychoacoustics far more complex:
1. Frequency masking.
2. Cocktail-party effect.
3. Ignoring low intensity frequencies.
4. ...etc
Intuition

Human Ear: Formant Dependence
1. Can understand modified formants.

ASRs :(

Clipping formants:
1. Maintain audio quality for the human ear.
2. Force ASRs to output Empty String.
Algorithm

Original Audio Sample → YeeHaw Junction Algorithm → Perturbed Audio Sample → ASR

Empty String
YeeHaw Junction is better than reCaptcha

reCAPTCHA	YeeHaw Junction
Vulnerability Against Bots	✔️ Human Intelligibility
User Error Rate (via User Study)	✔️ ASR UnIntelligibility
	• Adaptive Adversary
	• Misuse Detection
Final Takeaways

	Optimization Attacks	Signal Processing Attacks	Yeehaw Junction
Human Intelligibility	✓	✓	✓
ASR Unintelligibility	✗	✓	✓
Adaptive Adversary	✗	✗	✓
Misuse Detection			✓
Final Takeaways

- We design Yeehaw Junction, a principles technique to make Audio CAPTCHAs
- ASR transcribes at a rate of 0.004%
- Improved audio quality compared to existing techniques

Hadi Abdullah
hadiabdullah.github.io
habdulla@visa.com

Logan Blue
lblue.us
bluel@ufl.edu