Data Article

Dataset of microbial community structure in alcohol sprayed banana associated with ripening process

Fenny Martha Dwivany a, b, c,* , Fidya Syam a, Husna Nugrahapraja a, b, c, Ocky Karna Radjasa d, Maelita Ramdani Moeisa a, e, Susumu Uchiyama f

a School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
b Biosciences and Biotechnology Research Center, Institut Teknologi Bandung, Bandung 40132, Indonesia
c Bali International Research Center for Banana, Badung, Bali 80361, Indonesia
d Department of Marine Science, Faculty of Fishery and Marine Science, Diponegoro University, Semarang 50275, Central Java, Indonesia
e INABIG Research Institute, Bandung 40135, Indonesia
f Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

ARTICLE INFO

Article history:
Received 29 November 2019
Received in revised form 22 January 2020
Accepted 23 January 2020
Available online 5 February 2020

Keywords:
Amplicon sequencing
Musa acuminata AAA group
Endophytic
Epiphytic
Alcaligenes

ABSTRACT

Banana ripening is a complex molecular process that produces visible changes in the texture, aroma, taste and nutritional content. Ripening is controlled by genetic code, metabolic pathway and associated microbiome. We reported the microbial community structure during banana ripening with alcohol treatment to discover endophytic and epiphytic microbes. We observed the pulp and peel from the first and seventh days of Cavendish (Musa acuminata cv. Cavendish) from mature green fruit and treated with 70% alcohol or distilled water sum up to eight samples and applied the 16S rRNA Illumina sequencing from V3–V4 gene region. After quality check 144,368 sequences were obtained in the dataset comprising a total read length of 1,237,805 base pairs. A sum of 199 genera were successfully isolated, with genera Alcaligenes was the most dominant genera at 56.65% and followed by more than 1% were genera Acinetobacter, Enhydrobacter, Pseudomonas, Stenotrophomas, Thermus, and Aerococcus using mothur pipelines. The highest diversity sample with 101 unique genera was belongs to

* Corresponding author. School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
E-mail address: fenny@sith.itb.ac.id (F.M. Dwivany).

https://doi.org/10.1016/j.dib.2020.105216
2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
distilled water treated raw bananas peel (NN1K) and the lowest diversity at 38 was belongs to distilled water treated ripe bananas pulp (NN7D). The metagenome data are available at NCBI Sequence Read Archive (SRA) database and Biosample under accession number PRJNA590572. The data contribute to discover different bacterial communities during post-harvest treatment. © 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data description

A metagenome-based approach was used to assess the taxonomic affiliation and function potential of microbial populations in raw and ripe banana’s pulp and peel with sterilization using 70% alcohol to identify endophyte microbe and distilled water to identify whole microbe. Total raw reads from all samples before processed was 1,237,805 base pairs. Total number of amplicon sequences reads after
quality control, chimera and contaminant removal obtained from ripe banana was 136,479 reads and 7889 reads from raw banana were used in the metagenomic analyses, respectively. Taxonomic analysis yielded a total of 13 classifiable phyla with Proteobacteria was dominant in the entire sample.

Fig. 1 and Table 1 provide the species diversity by rarefaction curves and the overview of the sequence reads. Fig. 2 shows flower diagram based on shared OTUs distribution for alcohol and control sample, while an UPGMA cluster tree which was based on Jaccard coefficient rich estimator, species relative abundance and distribution in phylum level is shown in Fig. 3. Class level is shown in Fig. 4, order level is shown in Fig. 5, family level in Fig. 6, genera level in Fig. 7.

The data are useful for understanding the microbial diversity associated with fruit ripening, and how alcohol treatment may influence the dynamics of microbial communities. Therefore, the data will be useful to design a better postharvest technology using antimicrobial material to prolong banana fruit ripening.

2. Experimental design, materials, and methods

2.1. Materials

The mature green Cavendish (Musa acuminata AAA group) aged at ninth weeks were exposed to ethylene for 24 hours and delivered from PT. Sewu Segar Nusantara, Indonesia. Each banana finger then selected for absence of physical defects on the skin or the pulp and evenness of physiological age, colour and size [1,2].

2.2. Sterilization and DNA extraction

Bananas from the first and seventh day were sterilized by alcohol 70% or distilled water (as control). Sterilization was carried out by flowing distilled water or 70% alcohol 3 times throughout the body of banana [3]. Sample for DNA extraction was then prepared by separating peel and pulp of middle part sterilized banana in thick transverse section with width 2–3 cm. The sample was stored in –80 °C freezer. DNA extraction was carried out using the CTAB method [4] from banana’s peel and pulp with some modification.

2.3. Libraries preparation and amplicons generation

DNA isolates were then used as a template for the construction of 16s rRNA library and NGS Ilumina sequencing with metagenomic analysis approach by Macrogen Korea.
2.4. OTU clustering, species annotation, taxon relative abundance and phylogenetic reconstruction

Data sequence were then processed using the mothur v.1.42.0 program [5] with Miseq SOP procedure from the Schloss lab [6]. Analysis was started by merging forward and reverse sequence to make contig with Needleman alignment using minimum Phred score 20 [7]. Then, the data was getting quality control by making sure that sequence length is in around 440–480, having no ambiguous base.

Table 1
Details about the Illumina sequencing metagenome analysis on Cavendish banana during ripening.

Sample_name	Total_reads (PE)	After_Screening_Reads	After_Chimera_Removal_Reads	After_Chloroplast_and_Mitochondrial_DNA_Removal_Reads	Coverage	Sobs	Inverted_simpson
AN1D	157,002	134,740	128,257	128,210	0.99244	1153	1.89437
AN7K	161,216	137,187	135,032	4602	0.96371	281	6.68109
AN1K	142,660	120,829	119,089	2067	0.94001	185	1.84677
AN7D	170,241	145,037	143,551	914	0.90372	159	8.76686
NN1K	152,183	128,226	125,524	5545	0.95635	362	2.24349
NN7K	173,053	147,136	145,796	1841	0.96632	100	1.29589
NN1D	146,956	124,242	122,905	657	0.88736	118	6.10903
NN7D	134,494	113,356	111,443	532	0.89285	91	3.40532

Fig. 2. Shared OTU flower diagram a) alcohol b) control sample.

Fig. 3. Taxonomic diversity and relative abundance at phyla level a) pulp b) peel sample. Sample code, first and second letter: AN = Alcohol treatment NN = Distilled water treatment; third letter: 1: raw (day 1) banana 7: ripe (day 7) banana, fourth letter: D = banana’s pulp K = banana’s peel.

2.4. OTU clustering, species annotation, taxon relative abundance and phylogenetic reconstruction

Data sequence were then processed using the mothur v.1.42.0 program [5] with Miseq SOP procedure from the Schloss lab [6]. Analysis was started by merging forward and reverse sequence to make contig with Needleman alignment using minimum Phred score 20 [7]. Then, the data was getting quality control by making sure that sequence length is in around 440–480, having no ambiguous base.
calls and maximum homopolymer 8. Cleaned data then getting de-replicated into unique sequence and aligned with SILVA 132 database [8] with 1,861,569 rRNA gene sequence SSU bacteria [9]. Aligned sequence was then getting cleaned by removing chimeric sequence with UCHIME program [10] and by

Fig. 4. Taxonomic diversity and relative abundance at class level a) pulp b) peel sample. Sample code, first and second letter: AN = Alcohol treatment NN = Distilled water treatment; third letter: 1: raw (day 1) banana 7: ripe (day 7) banana, fourth letter: D = banana’s pulp K = banana’s peel.

Fig. 5. Taxonomic diversity and relative abundance at order level a) pulp b) peel sample. Sample code, first and second letter: AN = Alcohol treatment NN = Distilled water treatment; third letter: 1: raw (day 1) banana 7: ripe (day 7) banana, fourth letter: D = banana’s pulp K = banana’s peel.

Fig. 6. Taxonomic diversity and relative abundance at family level a) pulp b) peel sample. Sample code, first and second letter: AN = Alcohol treatment NN = Distilled water treatment; third letter: 1: raw (day 1) banana 7: ripe (day 7) banana, fourth letter: D = banana’s pulp K = banana’s peel.
removing contaminant (mitochondria and chloroplast). The remaining sequence then getting clustered with OTU similarity 97%. Taxonomic classification from OTU was done 100 times with cutoff value 80[11]. OTU alignment was done with Wang methods[12] with kmer size 8 based on SILVA 132 database. Phylogenetetic tree was visualized with iTOL (Interactive Tree of Life) tool[13].

2.5. Diversity analyses and indices

Alpha diversity was calculated with mothur pipeline in order to analyze the complexity of species diversity (Table 1) and species relative abundance and distribution in phylum (Fig. 3), class (Fig. 4), family (Fig. 5), order (Fig. 6), and genera (Fig. 7) level. Rarefaction curves (Fig. 1) were used to estimate coverage and to determine whether a data set is close to saturation[14]. Flower diagram was generated (Fig. 2) according to OTUs clustering. To evaluate the complexity differences between samples in terms of species complexity, beta diversity analysis was employed. An unweighted pair sample UPGMA clustering which made tree based on Jaccard coefficient rich estimator (Fig. 7).

Acknowledgement

This research was supported by World Class Professor Program Type A 2019 of The Ministry of Research and Higher Education (No T/43/D2.3/KK.04.05/2019) and ITB Research Scheme B 2019 (NK: 0109/II.B04.1/PI/2019).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105216.

References

[1] C. Lustriane, F.M. Dwivany, V. Suendo, M. Reza, Effect of chitosan and chitosan nanoparticles on post harvest quality on banana fruits, J. Plant Biotechnol. 43 (2018) 36–44.
[2] F.M. Dwivany, R.R. Esyanti, J. Robertlee, I.C. Paramaputra, R.K. Permatadewi, D.H. Tambun, R.H. Handayani, A.S. Pratiwi, H. Zaskia, Environment effect on fruit ripening related gene to develop a new post-harvest technology, AIP Conf. Proc. 1589 (2014) 285.
[3] W.A. Rutala, D.J. Weber, R.A. Weinstein, J.D. Siegel, M.L. Pearson, R.Y.W. Chinn, A. DeMaria, J.T. Lee, W.E. Scheckler, B.H. Stover, M.A. Underwood, Guideline for Disinfection and Sterilization in Healthcare Facilities, Dept. Health and Human Services, 2008, pp. 1–161.
[4] A. Healey, A. Furtado, T. Cooper, R.J. Henry, Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species, Plant Methods 10 (21) (2014) 1–8.

[5] P.D. Schloss, S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, J.W. Sahl, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol. 75 (23) (2009) 7537–7541.

[6] J.J. Kozich, S.L. Westcott, N.T. Baxter, S.K. Highlander, P.D. Schloss, Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq, Appl. Environ. Microbiol. 79 (17) (2013) 5112–5120.

[7] S.B. Needleman, C.D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins, J. Mol. Biol. 48 (3) (1970) 443–453.

[8] C. Quast, E. Pruesse, P. Yilmaz, L.W. Farfrey, P. Yarza, J. Gerken, F.O. Glöckner, The SILVA and “all-species living tree project (LTP)” taxonomic frameworks, Nucleic Acids Res. 42 (D1) (2013) 643–648.

[9] J.M. Janda, S.L. Abbott, 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls, J. Clin. Microbiol. 45 (9) (2007) 2761–2764.

[10] R.C. Edgar, B.J. Haas, J.C. Clemente, C. Quince, R. Knight, UCHIME improves sensitivity and speed of chimera detection, Bioinformatics 27 (16) (2011) 2194–2200.

[11] J. Masse, C.E. Prescott, S. Renaut, Y. Terrat, S.J. Grayston, Plant community and nitrogen deposition as drivers of alpha and beta diversities of prokaryotes in reconstructed oil sand soils and natural boreal forest soils, Appl. Environ. Microbiol. 83 (9) (2017) 1–17.

[12] L. Wang, L. Dong, Randomized algorithms for motif detection, J. Bioinf. Comput. Biol. 3 (05) (2005) 1039–1052.

[13] I. Letunic, P. Bork, Interactive Tree Of Life (iTOL) v4: recent updates and new developments, Nucleic Acids Res. 47 (W1) (2019) 256–259.

[14] L.M. Rodriguez-R, K.T. Konstantinidis, Estimating coverage in metagenomic data sets and why it matters, Int. Soc. Microbiol. Eco. 8 (2014) 2349–2351.