Search for a Fermiophobic Higgs Boson Decaying into Diphotons in pp-bar Collisions at sqrt[s]=1.96 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	CDF Collaboration et al. “Search for a Fermiophobic Higgs Boson Decaying into Diphotons in pp-bar Collisions at s=1.96 TeV.” Physical Review Letters 103.6 (2009): 061803. © 2009 The American Physical Society
As Published	http://dx.doi.org/10.1103/PhysRevLett.103.061803
Publisher	The American Physical Society
Version	Final published version
Accessed	Tue Dec 18 20:41:41 EST 2018
Citable Link	http://hdl.handle.net/1721.1/51927
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Detailed Terms	
Search for a Fermiophobic Higgs Boson Decaying into Dihadrons in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

T. Aalto, 24 J. Adelman, 14 T. Akimoto, 56 B. Álvarez González, 2,2 A. Amerio, 44b,44a D. Amidei, 35 A. Anastassov, 39 A. Anno, 20 J. Antos, 15 G. Apollinari, 18 A. Apresyan, 49 T. Arisawa, 58 A. Artikov, 16 W. Ashmanaka, 18 A. Attali, 4 A. Aurisano, 54 F. Aznar, 20 P. Azzurri, 47b,47a W. Badgett, 18 A. Barbaro-Galtieri, 23 V. E. Barnes, 26 B. A. Barnett, 26 V. Bartsch, 31 G. Bauer, 3 P.-H. Beauchemin, 34 F. Bedeschi, 47b,47a D. Beecher, 31 S. Behari, 26 G. Bellelotti, 47b,47a J. Bellinger, 60 D. Benjamin, 17 A. Beretvas, 2 J. Beringer, 29 A. Bhatti, 51 M. Binkley, 18 D. Bisello, 44b,44a I. Bizjak, 23,33 R. E. Blair, 2 C. Blocker, 7 B. Blumenfeld, 26 A. Bocci, 17 A. Bodek, 50 V. Boisvert, 50 G. Bolla, 49 D. Bortoletto, 49 J. Boudreau, 48 A. Boveia, 11 B. Brau, 11,1b A. Bridgeman, 25 L. Briglia, 44a C. Bromberg, 36 E. Brubaker, 14 J. Budagov, 16 H. S. Budd, 50 A. Boveia, 11 B. Brau, 11,1b A. Bridgeman, 25 L. Briglia, 44a C. Bromberg, 36 E. Brubaker, 14 J. Budagov, 16 H. S. Budd, 50 A. Boveia, 11 B. Brau, 11,1b A. Bridgeman, 25 L. Briglia, 44a C. Bromberg, 36 E. Brubaker, 14 J. Budagov, 16 H. S. Budd, 50 A. Boveia, 11 B. Brau, 11,1b A. Bridgeman, 25 L. Briglia, 44a C. Bromberg, 36 E. Brubaker, 14 J. Budagov, 16 H. S. Budd, 50 A. Boveia, 11 B. Brau, 11,1b A. Bridgeman, 25 L. Briglia, 44a C. Bromberg, 36 E. Brubaker, 14 J. Budagov, 16 H. S. Budd, 50
A search for a narrow diphoton mass resonance is presented based on data from 3.0 fb$^{-1}$ of integrated luminosity from $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV collected by the CDF experiment. No evidence of a resonance in the diphoton mass spectrum is observed, and upper limits are set on the cross section times branching fraction of the resonant state as a function of Higgs boson mass. The resulting limits exclude...
Higgs bosons with masses below 106 GeV/c^2 at a 95% Bayesian credibility level for one fermiophobic benchmark model.

DOI: 10.1103/PhysRevLett.103.061803

The standard model (SM) of particle physics has proven to be an extremely robust theory through its accurate predictions of many experimental results obtained over the last few decades. Although the Higgs mechanism [1] was proposed in the 1960s, the particle it predicts, the Higgs boson (h), has yet to be observed in nature.

The SM prediction for the h → γγ branching fraction is extremely small (reaching a maximal value of only about 0.2% at a Higgs boson mass (m_H) ~ 120 GeV/c^2) [2]; however, in “fermiophobic” models, where the coupling of the Higgs boson to fermions is suppressed, the diphoton decay can be greatly enhanced. This phenomenon has been shown to arise in a variety of extensions to the SM [3–7], and the resulting collider phenomenology has been described [8–10]. For this fermiophobic case, the diphoton final state dominates at low Higgs boson masses and is therefore the preferred search channel.

A benchmark fermiophobic model is considered in which the Higgs boson does not couple to fermions, yet retains its SM couplings to bosons. In this model, the fermiophobic Higgs boson production is dominated by two processes: associated production [shown in Fig. 1(a)], and vector boson fusion [abbreviated VBF, shown in Fig. 1(b)].

Each of the four experiments [11–14] at the LEP electron-positron collider at CERN place 95% C.L. lower limits on the fermiophobic Higgs boson mass (the most stringent being 105.5 GeV/c^2), while a combination of these results obtains a 95% C.L. limit of 109.7 GeV/c^2 [15]. The CDF and D0 experiments at the Tevatron also searched for a fermiophobic Higgs boson [16,17]. Most recently, the D0 experiment set limits on the production cross section of the fermiophobic Higgs boson with 1.1 fb^-1 of data, resulting in a 95% C.L. lower limit on m_h of 100 GeV/c^2 [18]. In this Letter, we search the diphoton mass distribution from the Collider Detector at Fermilab (CDF) for a narrow resonance that could reveal the presence of a fermiophobic Higgs boson.

We use the CDF II detector [19,20] to identify (ID) photon candidate events produced in pp collisions at √s = 1.96 TeV. The innermost detector component is the silicon vertex tracker [21] which is surrounded by an open-cell drift chamber (COT, [22]). Both sample the trajectories of charged particles and determine their momentum as they curve in the presence of a 1.4 T axial magnetic field. Particles that pass through the COT reach the electromagnetic and hadronic calorimeters [23–25], which are divided into two regions: central (|η| < 1.1) and forward or “plug” (1.1 < |η| < 3.6). At the approximate electromagnetic shower maximum, the calorimeters contain fine-grained detectors [26] that measure the shower shape and centroid position in the two dimensions transverse to the shower development.

Three levels of real-time event selection (trigger) systems are used to filter events. The trigger paths used here require two clusters of deposited energy in the electromagnetic calorimeter. One path requires that both clusters have a transverse energy E_T > 12 GeV [20] and be isolated from other energy clusters in the calorimeter [27]. A second trigger has a cluster transverse energy requirement of E_T > 18 GeV without the requirement of cluster isolation. By combining these two trigger paths, virtually all of the identifiable diphoton events are recorded.

The analysis is divided into two independent subsamples according to the position of the photons: the first requires that both photons be located within the fiducial region of the central electromagnetic calorimeter (|η| < 1.05), and the second requires that one photon be located in this region and the other in the plug calorimeter (1.2 < |η| < 2.8). The former will be referred to as central-central (CC) events, and the latter as central-plug (CP) events [28]. The data were recorded between February 2002 and April 2008, corresponding to an integrated luminosity of 3.0 fb^-1 for CC and 2.9 fb^-1 for CP events.

A series of baseline selection criteria helps to remove background events and to ID high-energy photon candidates for the analysis. Individual photons are required to have E_T > 15 GeV, while the diphoton pair is required to have mass m_{γγ} > 30 GeV/c^2. Photons are required to pass CDF standard photon ID requirements including the following [27,29]: transverse shower profiles consistent with single photon expectation from test beam studies [30], additional transverse energy in the calorimeter in a cone of angular radius R = \sqrt{(Δφ)^2 + (Δη)^2} = 0.4 [20] around the photon candidate be less than 2 GeV, and the scalar sum of the p_T of the tracks in the same cone be less than 2 GeV/c. Central photons must also be isolated in the shower maximum detector.

The above selection criteria define an inclusive diphoton sample. However, the fermiophobic Higgs boson is only
produced at a non-negligible rate in association with a W or Z boson or via the VBF process. In order to improve sensitivity, the event selection was further extended to take advantage of the final state features present in these production modes. Associated production dominates the production process (for production modes. Associated production dominates the production process alone. A selection based on the following observables was optimized: diphoton transverse momentum \(p_T^{\gamma\gamma} \), transverse momentum of the second highest \(p_T \) jet \(p_T^{j2} \) for hadronic decays of \(W/Z \), and missing transverse energy \(\not E_T \) or transverse momentum of an isolated track \(p_T^{\text{iso}} \) for leptonic decays of \(W/Z \).

For the optimization study, a Bayesian method with a flat prior probability was used to estimate the expected limits based on signal and background event expectations in a 10 GeV/\(c^2 \) mass window centered at 100 GeV/\(c^2 \). The diphoton background is composed of SM diphoton events \(\sim 25\% \) and events in which either one or both photon candidates are actually quark or gluon jets which were misidentified as photons \(\sim 75\% \). Higgs boson events with only the diphoton decay mode and SM diphoton events were generated using the PYTHIA 6.2 [31] Monte Carlo event generator and a parametrized response of the CDF II detector [32,33]. All PYTHIA samples were made with CTEQ5L [34] parton distribution functions, where the PYTHIA underlying event model is tuned to CDF jet data [35]. The background component arising from jets misidentified as photons was estimated using photon identification control regions from data. The control regions do not overlap with the signal region, as the events in the control region are required to fail at least one of the standard electromagnetic energy fraction or isolation requirements, yet pass a looser set of these requirements.

The optimization shows that a requirement of \(p_T^{\gamma\gamma} \sim 75 \text{ GeV}/c \) is approximately as sensitive as any combination of the other selection criteria. With this requirement on \(p_T^{\gamma\gamma} \), roughly 30\% of the signal remains (slightly varying with \(m_h \)) while more than 99.5\% of the background is removed. Although the cut was optimized based on associated production, VBF also has a higher average \(p_T^{\gamma\gamma} \) than the background processes and is included in the analysis with the same selection.

The detector acceptance for signal events is calculated using the PYTHIA event generator samples described above. Since a pure sample of reconstructed photons is not available in the data, corrections to the photon identification efficiencies due to imperfections in the detector simulation are derived using electrons from Z boson decays. This is justified since the energy deposition in the EM calorimeter by electrons and photons is almost indistinguishable. The electrons are selected with a slightly modified version of the photon ID requirements to allow the presence of a high \(p_T \) track. A correction factor to the ID efficiency of the simulation of 0.97 (0.94) is derived for central (plug) photons by comparing ID efficiencies from the detector simulation with the ID efficiencies measured in data.

The largest systematic uncertainties on the expected number of Higgs boson events arise from the luminosity measurement (6\%), varying the parameters controlling the amount of initial and final state radiation from the parton shower model of PYTHIA (4\%) [36], and the PYTHIA modeling of the shape of the \(p_T^{\gamma\gamma} \) distribution for the signal (4\%). The latter uncertainty was obtained by studying the effect on the acceptance from the differences in the shape of the \(p_T^{\gamma\gamma} \) distribution from leading-order, next-to-leading-order, and PYTHIA predictions [37]. Other systematic uncertainties were also considered due to uncertainties in photon ID efficiency, the electromagnetic energy scale, and parton distribution functions [38,39]. The signal acceptances are included in Table I and they have a relative uncertainty of 8\% (9\%) for CC (CP).

The decay of a Higgs boson into a diphoton pair appears as a very narrow peak in the invariant mass distribution of these two photons. The diphoton mass resolution as deter-

Table I. Observed and expected 95\% C.L. limits on the production cross section and branching fraction and theory predictions for the fermiophobic benchmark Higgs boson model. Total signal acceptance is also included. Note that the CP channel is not included for the 90 GeV/\(c^2 \) point [28].

\(m_h \) (GeV/\(c^2 \))	Acceptance (%)	\(\sigma \times \mathcal{B}(h \rightarrow \gamma\gamma) \) (fb)	\(\mathcal{B}(h \rightarrow \gamma\gamma) \) (%)	
	(CC + CP)	Limits	Limits	
70	4.8	88.1	68.2	1240
80	6.2	68.3	95.4	749
90	4.4	70.7	70.8	312
100	8.8	48.3	44.5	104
110	10	41.8	46.2	25.8
120	11	36.3	30.2	9.3
130	12	27.8	22.6	5.0
140	13	26.6	24.4	1.2
150	15	23.5	23.9	0.3

061803-5
The invariant mass distribution of central-central (a) and central-plug (b) photon pairs after the requirement of $p_T \gamma \gamma > 75$ GeV/c, shown with the fit to the data for the hypothesis of a m_h of 100 GeV/c2. The gap in the fit centered at 100 GeV/c2 represents the signal region for this mass point that was excluded from the fit. The error bands show the statistical uncertainty in the fit. The expected shape of the signal from simulation is shown in the insets.

The results of the limit calculation are included in Table I and displayed graphically in Fig. 3. The SM cross sections assumed in the benchmark fermiophobic model are used to convert the limits on $\sigma \times B(h \rightarrow \gamma \gamma)$ into limits on $B(h \rightarrow \gamma \gamma)$. The result excludes the benchmark model predictions (at 95% C.L.) for m_h of less than 106 GeV/c2.

This Letter presents the results of a search for a narrow resonance in the diphoton mass spectrum using data taken by the CDF II detector at the Tevatron. There is no evidence of a narrow resonance. Limits are placed on the production cross section and the branching fraction for the Higgs boson decay into a photon pair and compared to the predictions of a benchmark fermiophobic model resulting in a limit on the Higgs boson mass of $m_h > 106$ GeV/c2 at the 95% C.L. This mass limit is approximately as strong as any previous single experiment, and the result significantly extends the excluded region of $B(h \rightarrow \gamma \gamma)$ for m_h above 106 GeV/c2.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Foundation of China; the Ministry of Science and Technology of China; the European Commission; the Japanese Ministry of Education, Culture, Sports, Science and Technology; the Korea Ministry of Science and Technology; the Ministry of Education and Research of Sweden; the Bundesministerium für Bildung und Forschung, Germany; the Science and Technology Facilities Council, United Kingdom; the Natural Sciences and Engineering Research Council of Canada; and the A. P. Sloan Foundation.
Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U.K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministry of Education and Science of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science Foundation; the Science and Technology Facilities Council and the Royal Society, U.K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

aDeceased.
bVisitor from University of Massachusetts Amherst, Amherst, MA 01003, USA.
cVisitor from Universiteit Antwerpen, B-2610 Antwerp, Belgium.
dVisitor from University of Bristol, Bristol BS8 1TL, U.K.
eVisitor from Chinese Academy of Sciences, Beijing 100864, China.
fVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
gVisitor from University of California Irvine, Irvine, CA 92697, USA.
hVisitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.
iVisitor from Cornell University, Ithaca, NY 14853, USA.
jVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.
kVisitor from University College Dublin, Dublin 4, Ireland.
lVisitor from Royal Society of Edinburgh, Edinburgh EH2 2PQ, U.K.
mVisitor from University of Edinburgh, Edinburgh EH9 3JZ, U.K.
nVisitor from Universidad Iberoamericana, Mexico D.F., Mexico.
oVisitor from Queen Mary, University of London, London, E1 4NS, U.K.
pVisitor from University of Manchester, Manchester M13 9PL, U.K.
qVisitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.
rVisitor from University of Notre Dame, Notre Dame, IN 46556, USA.
sVisitor from University de Oviedo, E-33007 Oviedo, Spain.
tVisitor from Texas Tech University, Lubbock, TX 79409, USA.
uVisitor from IFIC(CSIC-Universitat de Valencia), 46071 Valencia, Spain.
vVisitor from University of Virginia, Charlottesville, VA 22904, USA.
wOn leave from J. Stefan Institute, Ljubljana, Slovenia.

[1] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).
[2] A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys. Commun. 108, 56 (1998).
[3] H. E. Haber, G. L. Kane, and T. Sterling, Nucl. Phys. B161, 493 (1979).
[4] J. F. Gunion, R. Vega, and J. Wudka, Phys. Rev. D 42, 1673 (1990).
[5] J. L. Basdevant et al., Phys. Lett. B 313, 402 (1993).
[6] V. Barger et al., arXiv:hep-ph/9211234.
[7] A. G. Akeroyd, Phys. Lett. B 368, 89 (1996).
[8] B. A. Dobrescu, Phys. Rev. D 63, 015004 (2000).
[9] G. L. Landsberg and K. T. Matchev, Phys. Rev. D 62, 035004 (2000).
[10] S. Mrenna and J. D. Wells, Phys. Rev. D 63, 015006 (2000).
[11] A. Heister et al. (ALEPH Collaboration), Phys. Lett. B 544, 16 (2002).
[12] J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 35, 313 (2004).
[13] P. Achard et al. (L3 Collaboration), Phys. Lett. B 568, 191 (2003).
[14] G. Abbiendi et al. (OPAL Collaboration), Phys. Lett. B 544, 44 (2002).
[15] A. Rosca (LEP), arXiv:hep-ex/0212038.
[16] A. A. Affolder et al. (CDF Collaboration), Phys. Rev. D 64, 092002 (2001).
[17] B. Abbott et al. (D0 Collaboration), Phys. Rev. Lett. 82, 2244 (1999).
[18] V. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 051801 (2008).
[19] D. E. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[20] We use a cylindrical coordinate system with its origin in the center of the detector, where θ and ϕ are the polar and azimuthal angles, respectively, and pseudorapidity is $\eta = -\ln(\tan(\theta/2))$. The missing E_T is defined by $E_T = -\sum_i E_T h_i$, $i = \text{calorimeter tower number}$, where h_i is a unit vector perpendicular to the beam axis and pointing at the ith calorimeter tower. E_T is corrected for high-energy muons and also jet energy corrections. We define $p_T = |E_T|$. The transverse momentum p_T is defined to be $p \sin \theta$.
[21] A. Sill (CDF Collaboration), Nucl. Instrum. Methods 447, 1 (2000).
[22] A. A. Affolder et al. (CDF Collaboration), Nucl. Instrum. Methods 526, 249 (2004).
[23] L. Balka et al. (CDF Collaboration), Nucl. Instrum. Methods 267, 272 (1988).
[24] S. Bertolucci et al. (CDF Collaboration), Nucl. Instrum. Methods 267, 301 (1988).
[25] M. G. Albrow et al. (CDF Collaboration), Nucl. Instrum. Methods 480, 524 (2002).
[26] G. Apollinari et al., Nucl. Instrum. Methods 412, 515 (1998).
[27] S. Wynne, Ph.D. thesis, Liverpool University [FERMILAB Report No. FERMILAB-THESIS-2007-17].
[28] The CP channel is not used for the 90 GeV/c^2 Higgs mass hypothesis due to reduced sensitivity caused by contamination from the Z boson mass peak.
[29] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 99, 171801 (2007).
[30] F. Abe et al. (CDF Collaboration), Phys. Rev. D 48, 2998 (1993).
[31] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001).
[32] R. Brun et al., CERN Report No. CERN-DD/EE/84-1, 1987 (unpublished).
[33] G. Grindhammer, M. Rudowicz, and S. Peters, Nucl. Instrum. Methods 290, 469 (1990).
[34] H. L. Lai et al. (CTEQ Collaboration), Eur. Phys. J. C 12, 375 (2000).
[35] R. Field and R. C. Group (CDF Collaboration), arXiv:hep-ph/0510198.

[36] We constrain the rate of initial state radiation using Drell-Yan events in data.
[37] S. Mrenna and C. P. Yuan, Phys. Lett. B 416, 200 (1998).
[38] D. Stump et al., J. High Energy Phys. 10 (2003) 046.
[39] D. Bourilkov, R. C. Group, and M. R. Whalley, arXiv:hep-ph/0605240.
[40] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).