Applying the Polyhedral Model to Tile Loops in Devito

Dylan McCormick

Supervisor: Fabio Luporini
Co-Supervisor: Paul H. J. Kelly

MEng Computing Individual Project
June 2017
Abstract

The run time of many scientific computation applications for numerical methods is heavily dependent on just a few multi-dimensional loop nests. Since these applications are often limited by memory bandwidth rather than computational resources they can benefit greatly from any optimizations which decrease the run time of their loops by improving data reuse and thus reducing the total memory traffic. Some of the most effective of these optimizations are not suitable for development by hand or require advanced software engineering knowledge which is beyond the level of many researchers who are not specialists in code optimization. Several tools exist to automate the generation of high-performance code for numerical methods, such as Devito which produces code for finite-difference approximations typically used in the seismic imaging domain. We present a loop-tiling optimization which can be applied to Devito-generated loops and improves run time by up to 27.5%, and options for automating this optimization in the Devito framework.
Acknowledgements

I would like to express gratitude to my supervisor Fabio Luporini for his enthusiastic support, excellent advice and friendliness throughout this project, which he managed to give despite his own sizeable responsibilities. The guidance, expertise and teachings of Prof. Paul H J Kelly were invaluable to my taking interest in the domain of high-performance code and computer architecture, and even more so to my completion of this project. I certainly give my thanks as well to Sun Tianjiao who provided vital insight at several stages of the project and was always prepared to help in our regular meetings.

Finally, I owe this work and much more to my parents for believing in me and giving me the opportunity to be here.
Contents

Section	Page
Abstract	3
Acknowledgements	5
1 Introduction	1
1.1 Loop tiling	2
1.2 Contributions	3
1.3 Report Structure	3
2 Background	4
2.1 Fundamentals	4
2.1.1 Compilers	4
2.1.2 Loops	5
2.1.3 Iteration spaces	5
2.1.4 Stencils	7
2.1.5 Data Dependencies	7
2.1.6 Data locality	9
2.2 Loop optimizations	9
2.2.1 Polyhedral model	9
2.3 CLooG	10
2.3.1 Motivation	10
2.3.2 Implementation	11
Contents

2.3.3 Limitations .. 12
2.4 PLuTo ... 12
 2.4.1 Motivation ... 12
 2.4.2 Implementation .. 13
 2.4.3 Limitations ... 13
2.5 Pochoir ... 14
 2.5.1 Motivation .. 14
 2.5.2 Implementation .. 14
 2.5.3 Limitations ... 15
2.6 Summary ... 16

3 Devito ... 17
 3.1 Motivation .. 17
 3.2 Design .. 18
 3.3 Devito Loop Engine ... 19
 3.4 Summary ... 21

4 Tiling in the Polyhedral Model 23
 4.1 Polyhedral Representation 24
 4.1.1 Statement ... 24
 4.1.2 Statement Domains .. 24
 4.1.3 Statement Scheduling .. 25
 4.2 Tiling .. 26
 4.2.1 Implementation ... 26
 4.3 Legality of Tiling ... 31
 4.4 Skewed Tiling .. 32
 4.4.1 Loop Skewing .. 33
 4.4.2 Combining with Tiling 35
 4.5 Summary .. 37
5 Time-tiling for Devito stencils

5.1 Space Tiling in Devito 38
5.2 Skewing Dependencies 39
5.3 Time-Tiling .. 41
5.4 Comparison with space-tiling 41
5.5 Transformations in CLooG 44
 5.5.1 Input to CLooG 44
5.6 Summary ... 46

6 Evaluation .. 49

6.1 Objectives ... 49
6.2 Testing environment 50
 6.2.1 Hardware and Software 51
6.3 Test parameters 52
 6.3.1 Acoustic wave equation 53
 6.3.2 Time Dimension Buffering 55
 6.3.3 Simulation Grid Size 56
 6.3.4 Spatial Tile Size 56
6.4 Code Generation 56
6.5 Functional Correctness 56
6.6 Results ... 58
 6.6.1 Transformation Types 58
 6.6.2 Grid size 256 with full time dimension 60
 6.6.3 Grid size 256 with time dimension buffering 62
 6.6.4 Grid size 384 with time dimension buffering 63
 6.6.5 Roofline Model 64
6.7 Future experiments 66
6.8 Conclusion .. 66
7 Conclusion

7.1 Summary of Contributions ... 67

7.2 Future Work ... 69

7.2.1 Automating time-tiling in Devito 69

Bibliography ... 74
Chapter 1

Introduction

There are many established optimizations which improve the run-time performance of program loops and have been in use for decades. The theory of why these optimizations work has been researched extensively [1] and has been practically applied in modern optimizing compilers so transformed code need not always be hand-written. Some transformations (such as loop unrolling or tiling) can have a negative impact on the readability and maintainability of code (even if performed manually by a developer) by increasing code size and changing statement ordering. This can make them undesirable or even infeasible to develop and maintain by hand, in spite of their performance benefits. It is an attractive option to have a smart compiler or code generator make the transformations automatically so the original computation description remains concise.

Automatically identifying and taking advantage of opportunities for loop optimizations is a tremendous challenge for an optimizing tool which has to ensure program correctness based on the information available in the source code. If the tool cannot guarantee correctness or appreciate the logical implications of a piece of code then no transformation occurs, resulting in a potential performance opportunity cost. Some tools operate in a more domain-specific context where the problems they handle pertain to a particular field; for example, seismic imaging. Such tools have more knowledge about possible inputs and what requirements applications in the domain have. This allows them to rely on more assumptions and often apply more aggressive optimizations.

Automated code generation is an increasingly important solution to the problem of writing high-performance code for scientific applications. Decades of research into compiler optimiza-
tions and advanced computer architecture developments have uncovered a number of techniques that can be applied in translating high-level problem descriptions into low-level source code to achieve some form of performance increase. The complexity of modern systems and computational problems makes it difficult for a software engineer to produce maximally efficient code by hand even with the help of smart compilers. This is more challenging for scientists and researchers whose specialization is not in high-performance software engineering. Tools and frameworks for automatic generation of application-specific high-performance code from high-level or even symbolic input are a very attractive option for improving performance of numerical computations. Devito is one such tool that generates high-performance code from symbolic input which approximates partial differential equations typically applied in the seismic imaging domain. It currently applies a number of optimizations and analyses [2] when generating code, but could benefit from additional loop optimizations that improve performance for some problems by increasing data reuse. Loop bodies are typically where scientific computing applications spend most of their time [3], and when dealing with real-world large-scale problems run times can easily be on the order of hours, so every relative improvement in run time can have significant benefits for users.

1.1 Loop tiling

One optimization that can improve the performance of a loop nest is known as ‘loop tiling’ or ‘loop blocking’, which improves data locality and parallelism by transforming the way a loop nests iterates over its domain. Loop tiling is one of the primary optimizations researched during this project. Loops which have been tiled can sometimes be further optimized in ways that were previously impossible. For example, loop-invariant code motion (LICM) transformations on non-tiled code can be restricted by available memory when ‘moving’ statements from within a loop with a high number of iterations. This limitation can be overcome when LICM is applied to tiled code. Such loop nests and transformations lend themselves well to geometric reasoning as loops can be considered as dimensions in space and time and individual iterations as integral points within those dimensions, as in the polyhedral model [4]. This gives rise to a host of theory and tools (so-called polyhedral tools) which apply polyhedral techniques to reason about and optimize loop nests.
1.2 Contributions

The contributions of this project are as follows;

- A demonstration of loop-tiling optimizations that can be applied to space-time loop nests in Devito stencils using the polyhedral model. (chapter 5)

- Several time-tiled Devito stencil source files and the CLooG inputs used to generate their loops. [5]

- An evaluation of the functional correctness and runtime performance of the generated code. (chapter 6)

- Evidence that legal time-tiling transformations can reduce the run time of some Devito stencil loops by up to 27.5% (section 6.6)

- A discussion of potential implementations for automating time-tiling transformations in Devito to increase run-time performance gains realized by end users. (chapter 7)

1.3 Report Structure

This report describes the research and methods used to investigate the tiling of time loops in Devito stencil codes. To better communicate the motivation and findings of this research, we first define some of the core concepts, tools and techniques that factored into our work in chapter 2. With that understanding we introduce Devito, the code-generation framework in which the proposed optimizations are to operate. In chapter 4 we build on the fundamentals in chapter 2 and define the loop transformations which are used to perform the time-tiling optimization described in chapter 5. We present our methods for evaluating the correctness and performance of time-tiled code as well as results from a number of experiments in chapter 6. To conclude, we summarise our investigation and discuss possible choices for future work in automating time-tiling in Devito.
Chapter 2

Background

The study of automated loop optimizations brings together knowledge from compiler design, software engineering and computer architecture in the pursuit of generating high-performance code for a given application in a reliable manner. In the following sections we describe some of the core concepts in these fields and use this to motivate a discussion of three tools currently available for code generation and transformation in the polyhedral model; CLooG, PLuTo and Pochoir.

2.1 Fundamentals

In this section we introduce some of the fundamental concepts and terminology used throughout this research. In particular we cover the basics of compilers, loops, stencils, data dependencies and data locality.

2.1.1 Compilers

A compiler is a piece of software which produces code in a target language by assembling and interpreting input code in a source language. Typically, compilers are used to translate a high-level programming language which describes computation to a human developer (like C or Java) into a low-level programming language (like assembly) which is understood by a computer. Due to the complexity of modern languages, systems and computer architectures this is not a straightforward translation and compilers have a lot of freedom in how they choose to interpret, transform and analyse their input in order to produce output that meets certain requirements.
For example, a compiler might reorder certain instructions from the input program to produce output code which executes faster than without the instruction reordering.

In addition to common ‘general purpose compilers’ (such as gcc or javac which compile C and Java programs respectively), there are ‘high-level compilers’ which don’t generate low-level executable code and ‘domain-specific compilers’ which sometimes operate on custom language inputs and are designed for programs in a particular field.

2.1.2 Loops

A common construct in modern code, especially when implementing numerical methods, is the ‘loop’. The majority of programs spend most of their time executing loops [3], so compiler designers who are interested in optimization dedicate much research to loop transformations and analyses in an effort to reduce their performance impact. The type of loop dealt with in this project is the ‘for loop’ which is typically structured as in 2.1. A for loop has a ‘body’ of statements which are repeatedly executed while the ‘loop condition’ holds. There are no special constraints on the types of statements that can feature in the body of a for loop so it is possible and indeed very common to have a for loop present in the body of another for loop. Placement of loops within other loops in such a is called ‘nesting’ and gives rise to the ‘loop nest’ construct which refers to a group of nested loops. When a loop nest is structured such that all of its statements are found in the innermost loop body it is known as a ‘perfect loop nest’.

```c
// Loop header defines bounds and step operation
for (int i=0; i < LIMIT; i++){
    // Loop body contains code executed at each step...
}
```

Figure 2.1: The structure of a simple for loop in C

2.1.3 Iteration spaces

When analysing and describing iterative computations, particularly with nested iterative components, it can be useful to consider all of the iterations described by the code as points in an ‘iteration space’ [3]. Each point in an iteration space represents a particular assignment of
values to the loop indices. Iteration spaces provide a geometric description of loop nests which can be transformed and visualised. By considering connections between points in an iteration space, the order of iteration or inter-iteration dependencies can also be described. Iteration spaces are used throughout this paper to explain the research and results obtained.

Take this simple code fragment which iterates over a two-dimensional array and sets its elements to 0

```c
int array2d[5][10];
for(int i=0; i<5; i++){
    for(int j=0; j<10; j++){
        array2d[i][j] = 0;
    }
}
```

Figure 2.2: This loop nest iterates over a two-dimensional structure and sets all of its elements to 0. It is an example of a ‘perfect loop nest’.

Its iteration space is a rectangle of points representing all the combinations of the loop-indices that are within bounds.

![Iteration Space Figure](image)

Figure 2.3: A representation of the iteration space for 2.2 where the horizontal and vertical axes correspond to loops i and j respectively. Arrows indicate the direction of iteration.

A more complex two-dimensional loop nest might perform a computation at each iteration which requires a value from an earlier computation thereby creating a dependence of on previous
iterations. In 2.2 the computation is trivial and there are no inter-iteration dependencies since
the loop body makes no reference to array elements calculated in earlier iterations.

```c
int array2d[100][100];
for(int i=1; i<100; i++){
    for(int j=1; j<100; j++){
        array2d[i][j] = array2d[i-1][j] + 2*array2d[i][j-1];
    }
}
```

Figure 2.4: This loop nest iterates over a two-dimensional structure and updates the value of
all but the first elements in each dimension. The right hand of the assignment refers to two
array indices which were calculated in previous iterations of the i and j loops respectively. It
is an example of a ‘perfect loop nest’ as well as a ‘stencil loop’.

2.1.4 Stencils

A computation which iterates over a grid and performs nearest-neighbour computations is
known as a stencil. These are particularly common when implementing code that deals with
numerical methods and partial differential equations. Each point in the grid is updated some
weighted contributions from a subset of its neighbours [6]. 2.4 is an example of a stencil.

2.1.5 Data Dependencies

When any kind of loop transformations are being performed it is important that the loop’s
dependence structure in understood to ensure that dependencies are not violated. A data de-
pendence occurs between two statements if they both reference the same memory and at least
one of the statements writes to that memory [3]. The loop transformations presented in this
paper do not modify statements in a loop body, so rather than reasoning about dependencies
at the statement level, it is more helpful to consider how dependencies form between loop
iterations. Dependencies between different iterations of the same loop are called loop-carried
dependencies in contrast to loop-dependent dependencies which occur between statements in a
single iteration. Depending on the original ordering of the statements there are three funda-
mental types of dependency;

- **True dependence**: An assignment is used in a subsequent iteration (read-after-write).
 Also known as a ‘flow dependence’.
• **Anti dependence**: A location read in one iteration is overwritten in a subsequent iteration (write-after-read).

• **Output dependence**: An assignment is overridden by a later iteration. (write-after-write).

Dependency violation can occur any time statements (or iterations) are executed in a different order than the order in which they were written. This is particularly relevant for tiling transformations which group iteration points together into tiles and iterate over those tiles according to some order defined by the transformation, resulting in significant changes to the ordering of individual iterations.

Dependence distance vectors

A useful tool in understanding loop dependencies, particularly within the polyhedral model, is the *dependence distance vector*. Consider the following representation L^n of the set containing all iteration points of a loop nest with depth n:

$$L^n(\vec{I}) = \{(I_1, I_2, ..., I_n) : l_k \leq I_k < U_k \forall k. 1 \leq k \leq n\}$$

This representation assigns to each iteration of a loop nest a vector whose components are the values of the loop iterator at the corresponding depth. For example, at the beginning of the 250th iteration of the loop in 2.4, the i and j iterators will be 3 and 50 respectively so the vector representation would be

$$\vec{I} = (I_1, I_2) = (3, 50)$$

If a dependence exists between statements at iterations \vec{I}_1 and \vec{I}_2, then the *dependence distance* vector \vec{d} is given by

$$\vec{d} = (\vec{I}_2 - \vec{I}_1)$$

which measures the ‘distance’ (number of iterations) in each dimension between the two statements creating the dependency. By reasoning about this distance, we can determine what (if any) transformations are required to make a tiling legal.
2.1.6 Data locality

Modern computer architectures have a hierarchy of data caches which store data under locality assumptions that memory locations close to each other are likely to be used within a short period of time (spatial locality) and that a memory location is likely to be reused (temporal locality) [3]. When statements in a loop body access a memory location, it is loaded into the data cache hierarchy along with nearby memory locations to pre-empt probable future uses. However non-optimized loop structures may not make use of this data before it is evicted from the cache by another memory access. A common goal of loop optimizations is to improve data locality across iterations so that expensive fetches from slower memory can be avoided and caching techniques are more efficiently utilized.

2.2 Loop optimizations

Loops have a dominant impact on the performance of many programs that make use of them, particularly if loops are nested. Typically, loop optimizations reshape the way a loop nest traverses its iteration space to try and exploit data locality in the underlying computer architecture which manages the data used by the loop body. There are several common loop optimizations which transform a loop nest structure i.e) exchanging the order of loop headers to change the order of iteration, however the primary type of optimization considered in this research is loop tiling.

2.2.1 Polyhedral model

The Polyhedral model is a powerful abstraction for reasoning about loop nests and loop transformations [7] that builds on the geometric representation of loop iterations described in an iteration space. Each iteration of a statement is viewed as an integral point within a polyhedron that contains all iterations of the statement. With a polyhedron (or union of polyhedra) for each statement and an understanding of the dependencies between statements, linear algebra and linear programming techniques can be applied to transform and scan the iteration spaces they represent.
2.3 CLooG

The Polyhedral model is certainly useful for performing transformations on abstract representations of a loop nest, but it does not deal directly with code. Instead, a separate process is required to turn polyhedral specifications into code which matches those specifications. In this section we give background information and motivate our usage of the code generation tool CLooG.

CLooG (Chunky Loop Generator) [8] is a free software which generates loops that visit each integral point found within a convex polyhedron in lexicographical order. It is also designed to be the code generation back-end to tools that perform automatic parallelism and locality optimizations. Its output is pseudo-code loops which visit each integral point of a union of polyhedra in such a way as to minimize control overhead and produce efficient code.

2.3.1 Motivation

The polyhedral model [9] allows reasoning about and solving a wide range of problems related to program transformations, in particular where loop nests are involved. When performing these transformations, code generation is usually the last step after the abstract structure of the program has been analysed and mutated. There are often constraints on the size of the code that can be generated to ensure readability for developers and practicality for users attempting to run the code on their machine, however the most concise code is not always the most efficient, and some transformations may generate complicated loop bounds in an effort to reduce code size. This type of code can be difficult for a compiler to optimize and for a CPU to schedule in an optimal way due to poor control management. CLooG provides an interface for applying polyhedral reasoning techniques to generate code which is optimized for control and within the user’s requirements of size or complexity.

We considered CLooG as a candidate for the tiled code generation back-end for Devito because of its simplicity in use and its incorporation into other tools performing similar tasks as this project’s goal. The ability to manually build an input file for a simple example of Devito’s output provided an excellent starting point for understanding how both tools work and for obtaining initial results.
2.3.2 Implementation

CLooG provides a command-line interface which makes use of specially formatted input files (primarily composed of matrices representing the sets of inequalities defining an iteration space) to understand the loop nest structure as well as a C library that has structures and functions that permit programmatic configuration and execution of the tool. Although CLooG is frequently used to make loop-nests parallelizable or more control efficient, it is not concerned with the nature of the code found within a loop (apart from other loops), and makes no assumptions whatsoever about dependencies between statements. Statements in CLooG are represented abstractly by inequalities on the iterators which define upon which iterations the statements are executed. For example the loop body in 2.4 is described to CLooG by its domain, given by the inequalities

\[i \geq 1 \land i < 100 \land j \geq 1 \land j < 100 \]

Algorithm

The algorithm employed by CLooG for visiting the integral points of the specified polyhedra \cite{10} is presented in a simplified form. For each dimension in the iteration space described by the user input, proceeding from outermost to innermost loops;

1. Project the polyhedra onto the corresponding dimension

2. Separate the projections into disjoint polyhedra which represent, in this dimension, either the overlapped iteration space of multiple statements, or the unique iteration space of a single statement. At this stage, the constraints in the current dimension give loop bounds that scan the polyhedra in this dimension. The constraints in the other dimensions are guards on the statements in other dimensions.

3. Recursively repeat this process for each polyhedron, projecting in the next dimension.

4. Sort the resulting loops so that they scan the polyhedra in lexicographical order.

At this stage CLooG has enough information to ‘pretty-print’ the loops as compilable C code.
2.3.3 Limitations

CLooG is a tool usually used as a back-end to a more specialised tool such as PLUTO [7] or PrimeTile [11] which apply polyhedral theory to transform a given loop nest to enhance parallelism or data locality and delegate CLooG to generate efficient code to scan the new polyhedron. CLooG itself however, is not automated in any way and must be driven with a problem specification that includes inequalities defining the iteration space, and optional ‘scattering functions’ which encode the scheduling of statements. This makes standalone usage of CLooG somewhat restrictive, but integration into Devito’s code generation pipeline very attractive. An additional technical constraint of CLooG is that it provides a command-line interface and C libraries only, limiting its ability to interface with other languages such as Python which is common in scientific computing applications.

2.4 PLuTo

To best understand how loop optimizations can be automated, and how code generation can be driven from abstract code representation, it is worth considering existing automated loop optimization tools. In this section we discuss the a tool called PLuTo, its implementation and why it was not used for this research.

PLuTo [7] is an open-source tool for automatic polyhedral parallelization and locality optimization. Using CLooG as a code generation back-end, PLuTo applies analytical model-driven transformations in the polyhedral model [9] to improve the performance of regular programs containing loop nests. One of the primary features of PLuTo is its automatic exploration of the space of potential program transformations to identify and apply the most effective loop tiling.

2.4.1 Motivation

Like CLooG, PLuTo is motivated by the powerful abstraction provided by the Polyhedral model when reasoning about and optimizing loop nests. However PLuTo is more specifically concerned with how loop tiling can improve parallelism and data locality, especially for applications run on massively parallel architectures like those frequently seen in scientific computing applications. The framework takes a step further yet by applying analytical methods to intelligently find optimal transformations and tilings with code dependencies in mind. The tool’s design is
indicative of its intended usage in optimizing existing code, possibly developed before a tool as capable as PLuTo was developed.

2.4.2 Implementation

PLuTo operates as a source-to-source optimization tool, taking as input a sequence of nested loops in source-code format and producing a transformed sequences of loops in source code. The research and behind PLuTo is on automated transformations, not dependence analysis or source-code parsing, so it delegates the task of interpreting input and determining dependencies to another tool in the polyhedral space, LooPo. The transformation framework implemented in PLuTo takes polyhedral domains representing the iteration spaces of the original program, as well as dependence polyhedra which encode the dependence structure of the input source-code.

The transformation framework within PLuTo makes use of a bounding cost function to reason about dependences and iteration domains geometrically and to provide a target to minimise when identifying optimal transformations. The cost function can be formulated as a system of Integer Linear Programming (ILP) problems which encode legality and cost constraints and can be solved by the Simplex algorithm. The framework iteratively augments and solves ILP problems to find multiple independent solutions for each statement. With these solutions, PLuTo is able to construct matrices representing the transformed domains and statement dependencies which can be given as input to CLooG for code generation.

2.4.3 Limitations

PLuTo is a powerful tool that makes many informed analyses to drive its automated search for optimal transformations, and its integration with other polyhedral tools make it a well-documented practical tool for users looking to apply source-to-source loop transformations. It delivers a more specialised, automated solution than using CLooG alone, and allows with existing code to perform optimizations without having to analyse the loop and dependence structure of their program. However PLuTo’s generality and source-to-source nature make it unsuitable for direct application in the Devito pipeline. With the specific structure and nature of code generated by Devito, assumptions can be made that greatly reduce the work a tool like PLuTo would need to do in determining dependencies and optimal transformations, but
the general approach PLuTo takes prevents these assumptions from being made. The source-code level is also a low-level representation that restricts what can be done by Devito after the transformations take place and would require premature generation of source code to feed as input to PLuTo.

2.5 Pochoir

The scientific codes this research is concerned with are stencil loops, which are a specific type of computation that have common structures, limitations and optimization opportunities. In this section we provide some background on a stencil-oriented code generation and optimization tool called Pochoir [12].

Pochoir is a tool for implementing cache-efficient stencil codes on multi-core processors written in C++. It provides a domain-specific language embedded in C++ so developers can write functional problem specifications and automatically generate highly optimized, cache-efficient parallel code. A novel feature of Pochoir is its decomposition of the user workflow into two steps; safety-checking compilation with Pochoir libraries and the Intel C++ compiler followed by re-compilation with the Pochoir compiler, producing optimized parallel code.

2.5.1 Motivation

Stencil computations are often conceptually simple to develop using the intuitive single loop nest implementation that follows directly from the problem specification. However, such implementations are rarely cache-efficient and producing more performant, parallelized codes manually can be a significant challenge for a programmer. Pochoir aims to provide a solution to this challenge which offers a simple user workflow and automatically produces highly optimized code using advanced polyhedral techniques.

2.5.2 Implementation

Pochoir comprises two main components, the Pochoir Template Library and the Pochoir compiler, which provide the means to execute and optimize code written in the Pochoir DSL. The template library includes loop-based and trapezoidal algorithms for executing problem specifications written in the DSL and is used in both steps of the Pochoir workflow to generate code.
2.5. Pochoir

In the first step, the template library allows users to execute their Pochoir specification after compiling with the Intel Compiler [13]. This provides assurances of correctness and validity before the optimization stage as users can debug using standard toolchains and ensure that their specification is numerically correct. Following this, the source is re-compiled using the Pochoir compiler which performs optimizations at the DSL level before finally compiling with the Intel compiler and the Template library to produce optimized, parallel code. Pochoir uses the Intel CilkPlus framework [13] for data and task parallelism in its generated code.

The efficiency and parallelism offered by Pochoir is derived from its divide-and-conquer algorithm for recursively decomposing a loop’s iteration space into trapezoidal sections. The algorithm is relatively simple, but relies on complex results and lemmas regarding the legality of its transformations. To describe it simply, the algorithm applies hyperspace cuts and time cuts to the iteration space, which partition it in the spatial and time dimensions respectively, and then recursively applies the same procedure to the resulting partitions. By repeatedly analyzing how dependencies interact with the partitioned iteration spaces, the algorithm ensures that its cuts are valid. The number and placement of hyperspace and time cuts is chosen in a novel way which aims to maximize opportunities for parallelism. Following this recursive decomposition, a number of optimizations are applied which simplify and improve the efficiency of boundary condition code and loop indexing, before finally compiling the transformed specification using the Intel compiler and the Pochoir Template Library to produce efficient, parallel code.

2.5.3 Limitations

The Pochoir compiler offers a novel approach to domain-specific languages embedded in C++ coupled with an advanced process for creating a highly-parallel iteration space and optimized code to iterate through it. However, Pochoir is coupled to C++, the Intel compiler and the Cilk parallelism framework which make it a powerful tool for users working with Intel hardware in that environment, but limits its applicability to computing applications that use other languages, hardware and threading models. The Pochoir DSL is general and expressive, but is embedded in C++ which can be a challenging language for scientific work by researchers who do not specialise in high-performance, object-oriented development. The Template Library’s use of C++ template metaprogramming can also inhibit extension or modification of its algorithms. Additionally, Pochoir’s optimizations do not include code transformations to exploit
advanced vector capabilities of the underlying hardware, unlike Devito.

2.6 Summary

We have discussed some of the basic concepts which apply to optimizing scientific codes and introduce terminology which will be used throughout this report to talk about stencil codes, iteration spaces, data dependencies and more. We give a brief evaluation of three polyhedral tools which are related to the work we present here; CLooG (the primary tool we used to generate our own optimized code), PLuTo and Pochoir. With an understanding of these fundamentals and polyhedral tools we will next introduce Devito, the framework in which this work is meant to be applied.
Chapter 3

Devito

In this chapter we discuss the purpose, implementation and operation of Devito, the code-generation tool for which the optimizations evaluated in this research are intended. We outline the context in which Devito is used, describe its core algorithms, components and optimizations before comparing it to other tools in the same domain.

Devito \cite{2}, \cite{14}, is a domain-specific language (DSL) and code generation framework that produces highly-optimised code for finite-difference computations \cite{15}. It uses high-level symbolic problem descriptions that can be hand-written to automatically generate and optimise high-performance parallel C code for a range of computer architectures. The finite-difference kernels that Devito generates are used to solve partial differential equations that are primarily used for simulations typical in the oil and gas industry.

3.1 Motivation

Modern high-performance computing applications need to make use of the latest developments in computer architecture to produce truly powerful solutions. As modern technologies become more powerful they also become more complex with massively parallel systems like GPGPU (General Purpose Graphics Processing Unit) and advanced architectural capabilities such as vectorization providing opportunities to improve program performance at the cost of increased implementation complexity. For scientists looking to leverage efficient technologies in their programs the Python programming language is a common choice because of its natural form of expression, large collection of open-source packages that allow interaction with some of these
advanced architectures and its ease of use when compared with traditional languages like C. However, as an interpreted language Python is not suited for direct use in HPC applications, and currently available methods that reduce the interpreter overhead introduce additional complexity and are still not as efficient as straight C code.

Devito aims to combine the ease and expressiveness of Python, with the power and optimizations available to C code. By using a domain-specific language embedded in a python package, Devito can provide a specialized interface that describes numerical computations and perform code generation with aggressive optimizations to produce faster programs that require less HPC expertise from the developer.

3.2 Design

The high-level process architecture of Devito can be divided into five primary parts;

1. Create Devito data objects which associate SymPy function symbols with user data
2. Build symbolic stencil equations using the created data objects
3. Build Devito Operator object using symbolic equations
4. Instruct the Devito Operator to generate low-level optimized code applied to user data
5. Compile using user-defined compiler settings

One of the key benefits of using Devito is the automatic generation of abstract array accesses upon creation of the Operator object. This creates an intermediate representation (IR) of the stencil which is then optimized and translated into C when triggered by the user using the Operator in a process called ‘propagation’. It is during this propagation stage that loops are generated, and so would be the point where Devito could analyse the IR and delegate to a polyhedral tool to tile the structure being generated. The objects that make up the IR allow Devito to programmatically reason about the loop and dependence structure of the kernel which would form the primary input for polyhedral transformations.

Devito takes its form as a Python library that provides an API for users to create and manage objects that define and configure all of the components in the code generation pipeline. To make the most of the native Python environment and the practical benefits it brings, Devito does not
3.3. Devito Loop Engine

```python
from devito import TimeData, Operator
from sympy.abc import s, h

# Function symbol associated with user data
u = TimeData(name="u", shape=(nx, ny),
              time_order=1, space_order=2)
u.data[0, :] = ui[:]

# Symbolic equation
eqn = Eq(u.dt, a * (u.dx2 + u.dy2))
# Expand finite-difference stencils
stencil = solve(eqn, u.forward)[0]

# Devito operator that transforms stencils into array accesses
op = Operator(stencils=Eq(u.forward, stencil),
              subs={h: dx, s: dt}, nt=timesteps)

# Generate low-level code applied to data with Propagator
op.apply()
```

Figure 3.1: Python set-up code for generating a Diffusion kernel in Devito [14]

define its own high-level DSL in the traditional sense, instead it makes use of and extends the powerful SymPy Python library for symbolic mathematics. The familiar abstraction provided by a native python library allows users to separate implementation and optimization concerns from the numerical computation at hand.

3.3 Devito Loop Engine

The Devito Loop Engine (DLE) is a component of Devito which is responsible for applying loop optimizations and code transformations. At present, it is structured as a collection of core components for analysing and modifying ASTs with a number of ‘backends’ that specify custom optimizing transformations running on top. For both the time-tiled and standard Devito stencil codes evaluated in this paper, a number of optimizations provided by the DLE were enabled.

Denormals

Denormal or subnormal numbers are floating point numbers which are smaller than those typically allowed by the IEEE floating point specification [16]. These numbers have reduced precision compared to ‘normal’ numbers as the exponent used to represent denormals is already at its minimum, and so smaller values are achieved by truncating significant digits. While denormals facilitate gradual loss of precision rather than the usual total loss of precision, they
extern "C" int Operator(float *u_vec) {
 float (*u)[1000][1000] = (float (*)[1000][1000]) u_vec;
 {
 int t0;
 int t1;
 #pragma omp parallel
 for (int i3 = 0; i3<500; i3+=1)
 {
 #pragma omp single
 {
 t0 = (i3)%(2);
 t1 = (t0 + 1)%(2);
 }
 {
 #pragma omp for schedule(static)
 for (int i1 = 1; i1<999; i1++)
 {
 #pragma omp simd aligned(u :64)
 for (int i2 = 1; i2<999; i2++)
 {
 u[t1][i1][i2] = 2.5e-1F*u[t0][i1][i2-1]
 + 2.5e-1F*u[t0][i1][i2+1]
 + 2.5e-1F*u[t0][i1-1][i2]
 + 2.5e-1F*u[t0][i1+1][i2];
 }
 }
 }
 }
 }
}

Figure 3.2: Auto-generated C code to solve the diffusion example in 3.1 [14].

can have an impact on program performance. Devito provides an optimizing pass which ‘avoids
denormals’ by instructing the CPU to set denormal numbers to zero upon encountering them.

Parallelism

For large-scale stencil loops such as those generated by Devito, parallelism can offer invaluable
performance improvements. When instructing Devito to generate code using OpenMP parallelism directives [17], a transforming pass inserts two OMP pragma statements around each parallelizable loop nest. First, a #pragma omp parallel directive defines the region of code which will be executed in parallel. Then a #pragma omp for schedule(static) directive is placed directly above the outermost parallelizable loop which ensures that threads are used to execute different loop iterations in parallel according to a ‘static’ scheduling system. Upon reaching the for loop, each thread is statically assigned the set of iterations it should execute.
Vectorization

Another type of parallelism which Devito exploits is at the data level through the use of special single instruction multiple data (SIMD) instructions [18]. These instructions are also called vector instructions as they perform operations simultaneously on multiple elements within a block (vector) of data but only require the CPU to process a single instruction. After an analysis pass has determined which loops can be vectorized (typically the innermost stencil loops) the vectorizing transformation pass decorates the loop header with \#pragma omp ivdep and \#pragma omp simd directives. These directives instruct the compiler to ignore vector dependencies in the vectorized block (which is valid as dependencies are carried through time in Devito, and only the innermost space dimension is vectorized) and to use SIMD operations to execute multiple iterations of the loop simultaneously.

```c
for (int time = 1; time < time_size - 1; time += 1)
{
    #pragma omp parallel
    {
        _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
        _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
        #pragma omp for schedule (static)
        for (int x = 4; x < x_size - 4; x += 1)
        {
            for (int y = 4; y < y_size - 4; y += 1)
            {
                #pragma ivdep
                #pragma omp simd
                for (int z = 4; z < z_size - 4; z += 1)
                {
                    // Stencil code
                }
            }
        }
    }
}
```

Figure 3.3: A simplified excerpt from a stencil code generated by Devito which demonstrates the usage of instructions and directives for parallelism, vectorization and avoiding denormals.

3.4 Summary

Devito offers powerful abstractions and optimizations to users looking to perform high-performance, parallelized numerical methods calculations for finite-difference approximations without needing to be high-performance computing specialists. Its developers, the OPESCI group, have
active users in research and industry and are continue to develop the framework with new features and improvements. We have outlined some of the design and implementation details of Devito to give an understanding of the context in which our research into time-tiling transformations operates. We use this and the previous chapter to motivate the introduction of our own time-tiling transformation and how it can be applied in Devito, but first a discussion of more advanced tiling transformations is required to understand and validate our propositions.
Chapter 4

Tiling in the Polyhedral Model

In this chapter we discuss three well-known loop transformations to give important background information for understanding time-tiling. We build upon the fundamental concepts from the introduction and introduce notation from the polyhedral model to formally describe loop tiling, skewing and skewed tiling.

When tiling loops, there are a number of factors that affect the structure and efficiency of the resulting code. Choosing a good tile configuration is crucial to producing code with the desired improvements in locality or parallelism. Ultimately the parameters chosen when producing a transformation result in different dimensions, orientations and quantities of the tiles. This is represented at the code level by the structure and bounds of a loop nest or loop nest(s).

Transforming code with tiling has a direct influence on program performance both in terms of run time and memory utilization, as it changes the manner in which data is accessed or computed. For example, bounds in tiled loop nests often make use of ‘min’ and ‘max’ functions to account for partial tiles or feature more intensive calculations than are usually found in loop bounds, and so a tiling transformation that results in a large number of very small tiles can suffer from the higher relative control costs incurred by repeatedly executing loops with small trip counts. A worst-case transformation violates the data dependencies of the original code and results in logically different, and probably incorrect, behaviour.
4.1 Polyhedral Representation

The Polyhedral model provides powerful abstractions for formally reasoning about loops and iteration spaces. By treating iterations as integral lattice points within convex polyhedra, the model allows for generic mathematical expression of loop transformations and their composition. The framework lends itself well to efficient code generation and was a vital tool for researching and performing our optimizations. For the purposes of this research, and to better relate to the input data consumed by CLooG, we will work with a simplified interpretation of the framework presented in [4]. In this section we introduce the formal notation and definitions for these concepts.

4.1.1 Statement

In the polyhedral model the statements of interest are those found in the body of a loop nest. A code-level program statement in a loop body is represented as a tuple S comprising the statement’s iteration domain D^S and schedule θ^S such that $S = (D^S, \theta^S)$. This structure contains all the information about where in the iteration space (domain) and when in execution time (schedule) a statement is executed.

4.1.2 Statement Domains

A statement’s iteration domain is a convex polyhedron described by a matrix D^S of affine inequalities [19]. A statement’s domain is closely related to its instance set; the set of ‘dynamic execution instances’, or the set of executed instances of an abstracted piece of code (such as a statement which references the value of an iterator) in a loop body. The structure of D^S as a matrix varies between implementations so for clarity we will use set notation to describe these matrices of inequalities. D^S as a matrix is described in more detail in the next chapter in the context of CLooG’s input.

In 4.1, the domain D^{S_1} for statement S_1 is

$$D^{S_1} = \{(i, j) \mid 0 \leq i < i_{ub} \land 0 \leq j < j_{ub}\}$$

which represents a rectangular polyhedron in two-dimensional space bounded below by the lines...
4.1. Polyhedral Representation

```cpp
for (int i = 0; i < i_ub; t++) {
    for (int j = 0; j < j_ub; x++){
        S(i,j); //S1
    }
}
```

Figure 4.1: A simple two-dimensional loop $S(i, j)$ represents an arbitrary statement which depends upon the values of i and j.

$i = 0, j = 0$ and above by $i = i_{ub} - 1, j = j_{ub} - 1$. The corresponding instance set I^{S_1} is

$$I^{S_1} = \{S1[i,j] | 0 \leq i < i_{ub} \land 0 \leq j < j_{ub}\}$$

4.1.3 Statement Scheduling

In the polyhedral model [4] a schedule defines the sequential execution ordering of iterations of a statement S and is represented by an affine transformation matrix. A schedule is a mapping from statement instances or points in an iteration space to logical time-stamps. Again, the exact structure of a scheduling matrix varies between implementations and publications, so for clarity we describe schedules using a ‘mapping’ notation similar to the set notation employed above.

A time-stamp is a multi-dimensional vector used to represent the logical ‘execution time’ of a statement instance in terms of iterators. Time-stamps are compared and ordered according to their lexicographic ordering \ll such that a statement instance $S1[i,j]$ is executed before $S1[i',j']$ iff $\theta^{S1}(i,j) \ll \theta^{S1}(i',j')$ where i, i', j, j' are values of the iterators upon which $S1$ depends.

The schedule θ^{S1} for statement $S1$ in 4.1 is written

$$\theta^{S1} = \{S1[i,j] \rightarrow [i,j]\}$$

which demonstrates the mapping from arbitrary statement instance $S1[i,j]$ to time-stamp vector $[i, j]$. Schedules become more interesting when dealing with loop transformations. Consider loop interchange, a loop transformation which swaps the position of two loops in a nest and can result in better data locality by exploiting the layout of data in memory. This transformation could be applied to a statement $S = (D^S, \theta^S)$ by changing its schedule to

$$\theta^{S1} = \{S1[i,j] \rightarrow [j,i]\}$$
which essentially ‘re-times’ the loop nest so that all instances of i occur before each subsequent instance of j and produces the transformed code in 4.2. The domain of the loop in 4.2 is given by D_{i1}^{S1}

$$D_{i1}^{S1} = \{(j,i) | 0 \leq i < i_{ub} \land 0 \leq j \leq j_{ub}\}$$

```
for (int j = 0; j < j_ub; x++){
    for (int i = 0; i < i_ub; t++) {
        S(i,j); //S1
    }
}
```

Figure 4.2: The code from 4.1 with the i and j loops interchanged

4.2 Tiling

Loop tiling, also known as *strip-mine and interchange* or *loop blocking* [3], is an optimization that modifies a loop nest so that it iterates completely over ‘tiles’ or ‘blocks’ of its iteration space, rather than repeatedly iterating completely through each dimension of the iteration space until all points are visited. Tiling transformations group points of the original iteration space into blocks. The resulting blocks have smaller iteration bounds and so the innermost loops are completed more often thereby reducing the amount of time before nearby data accesses occur and improving data locality. The tile size can be chosen such that memory locations required in a full loop execution fit into the cache and prevent excessive eviction. In addition to improving data locality, loop tiling can also create opportunities for parallelism not present in the original code.

4.2.1 Implementation

As the name *strip-mine and interchange* suggests, loop tiling can be fundamentally considered as the composition of two basic loop transformations; *strip-mining* and *loop interchange*.

Strip-mining

Strip-mining as a loop transformation takes its name from the geological mining practice whereby large single strips of earth are removed before extracting materials from the ground
4.2. Tiling

(a) Tile size 8
(b) Tile size 16
(c) Tile size 32

Figure 4.3: A tiling transformation applied to the same iteration space with three different tile sizes. The grid shown is 92x92. [20]

below. The basic principle in both cases centres on designating a ‘strip’ of area and proceeding to work on the contiguous contents of the strip before moving onto the next strip, thereby creating two sequential processes reducing in granularity from the strip level, to the strip-contents level. Applying this methodology to a loop requires replacing it with two loops; one outer loop to iterate strip-by-strip (the ‘strip’ or ‘tile’ loop), and one inner loop which iterates over contiguous points within the strip. Applying this transformation to a single loop does not ultimately change the way the strip-mined loop iterates over its domain, in fact the transformation only serves to introduce additional control logic when compared to the original loop. Once a loop has been strip-mined however, other loop transformations can be applied to one or both of the resulting loops in ways which were not previously possible.

In the polyhedral representation, the domain of the loop nest in 4.4 has been transformed from

\[D^{S_1} = \{(i, j) \mid 0 \leq i < i_{ub} \land 0 \leq j \leq j_{ub}\} \]
to

\[D_{i}^{S1} = \{(i, jj, j) | 0 \leq i < i_{ub} \land jj \leq j < j_{ub} \land jj \leq j < T \cdot jj + T \land 0 \leq jj < \left\lfloor \frac{j_{ub}}{T} \right\rfloor \} \]

```c
for (int i = 0; i < i_ub; x++) {
    for (int jj = 0; j < floord(j_ub, T); t++) {
        for (int j = jj; j < min(j_ub, T*jj + T); t++) {
            S(i,j); //S1
        }
    }
}
```

Figure 4.4: The code from 4.1 but the j loop has been strip-mined. The new jj loop is the ‘strip’ or ‘tile’ loop and the tile size is T.
4.2. Tiling

Figure 4.5: A visualization of the iteration space for 4.4. The horizontal and vertical axes represent iterations in the i and j dimensions respectively. Tiles are highlighted in orange. i_{ub}, j_{ub} and T are 5, 20 and 5 respectively. Since the jj loop remains inside the i loop, a full column of the iteration space (containing four tiles in this case) must be executed before moving to the next column (by incrementing i), making the order of iteration identical to the loop before strip-mining. The arrows indicate the order and direction of iteration. [20]
Loop Interchange

Loop interchange refers to the practice of ‘swapping’ or interchanging the position of two loops in a loop nest so that relative to each other, the outer loop becomes the inner and vice versa. The effects of this can be seen in the transformation from 4.1 to 4.2. Loop interchange is one of the most basic loop transformations possible, but its impact on performance and logical behaviour can be significant as it changes the order iteration points are accessed significantly. Loop interchange is often used to ensure that memory accesses within a loop nest proceed according to the layout of data in memory e.g to change the accesses of a two-dimensional loop nest from row-by-row to column-by-column.

![Iteration spaces before and after loop interchange](image)

Figure 4.6: The iteration spaces for 4.1 and 4.2 after setting \(i_{ub} \) and \(j_{ub} \) to 20 and 5 respectively. Iteration proceeds sequentially from one column to the next. The red dots represent iteration points or statement instances. [20]

Combining strip-mining and loop interchange

Combining *strip-mining* and *loop interchange* on one or more loops in a loop nest results in a tiled iteration space. This is achieved by interchanging the ‘tile’ loop so that it is outside of one or more enclosing loops. Since the tile loop is now an outer loop, and the inner tiled loop bounds are defined in terms of the tile loop’s iterator, the new loop nest proceeds one tile at a time (a single iteration of the tile loop) and executes all iterations within that tile’s bounds before moving on to the next tile. Consider the code in 4.4, by applying a loop interchange transformation which exchanges the order of the \(i \) and \(j \) loops we obtain the code in 4.7. We also set the values of \(i_{ub}, j_{ub} \) and \(T \) to 10, 20 and 5 respectively to demonstrate the tiled iteration space in 4.8. This interchange transformation is represented by the polyhedral...
4.3. Legality of Tiling

The dependence distance vectors of a loop nest enforce a partial order on the execution of its iterations [21]. Tiling transformations may re-order iterations but in order to be legal...
transformations which preserve the logical behaviour of the underlying code, dependencies must be respected.

In general, a loop transformation is legal iff the data dependence vectors of the resulting code are lexicographically positive (the first non-zero element of the vector is positive) [21]. Otherwise it would be possible to have a loop nest where in one dimension an earlier iteration depends upon a later one (i.e. there is a negative dependence distance in that dimension) while any outer loops remain at the same iteration in their own dimensions (i.e. dependence distances of zero in all dimensions before the negative dependence carrying one). This would create a dependence on future iterations which have not yet been completed.

Strip-mining is not an iteration re-ordering transformation so dependence distance vectors do not change after its application. Loop interchange however, exchanges rows of the original dependence distance vectors and so is not always a legal transformation. Since loop interchange is a fundamental component of tiling transformations, tiling transformations can also be illegal by creating tiles which depend on subsequent tiles that have yet to be executed. Consider the code in 4.10, after applying an illegal rectangular tiling transformation we obtain the iteration space in 4.9 where all tiles in a row are executed sequentially before moving to the next row. In this case, the black arrow represents the data dependence whose dependence distance is negative. We can see by looking at any row of tiles that there is a black dependence arrow pointing from the last point in each tile to the first point in a subsequent tile located one row above, which is an illegal dependence on an iteration not yet executed.

The basic strip-mine and interchange operations applied to produce 4.9 were not inherently incorrect transformations, rather the dependence structure to which they were applied required additional transformations beforehand so that the resulting data dependencies were legal. Transformations like loop skewing can be used to remove negative dependence distances and ‘legalize’ further transformations.

4.4 Skewed Tiling

In order to tile stencil codes with negative data dependence distances in one or more of the tiled dimensions, the iteration space must first be manipulated such that iteration points in one tile do not depend on iteration points in a subsequent tile. This can be achieved through loop skewing, a transformation by which each iteration in the skewed dimension is ‘skewed’ or
4.4. Skewed Tiling

Figure 4.9: The iteration space for 4.10 after applying an illegal tiling transformation with a tile size of 3. The grey and black arrows represent dependences. [20]

‘offset’ by the product of the enclosing loop’s iterator and a chosen skewing factor, effectively offsetting dependence distances in the skewed dimension and potentially making them positive.

4.4.1 Loop Skewing

Skewing an iteration space is analogous to skewing an image or polyhedron on a graph, indeed iteration spaces are convex polyhedra (or unions of polyhedra) in the polyhedral model. A loop skewing transformation changes the bounds of an inner loop to depend on the outer loop with respect to which it is being skewed so that with each iteration of the outer loop, the skewed loop is ‘shifted’ further along its dimension. Often, skewing transformations are used to expose opportunities for parallelism, or enable further loop transformations that would not be possible without skewing. The transformation and its benefits can be more easily understood with the code snippets and corresponding iteration spaces shown below.

```c
for (int t = 0; t < M; t++) {
    for (int x = 0; x < N; x++){
        a[t][x] = a[t-1][x-1] + a[t-1][x+1];
    }
}
```

Figure 4.10: A simple two-dimensional stencil loop with dependencies carried along the t loop.
The loop nest in 4.10 features two ‘true dependencies’ carried along the \(t \) loop which are induced by two flow of data read from \(a[t-1][x-1] \) and \(a[t-1][x+1] \) into the assignment \(a[t][x] \).

The distance vectors for these two dependencies are, respectively, \(\vec{d}_1 = (1, 1) \) and \(\vec{d}_2 = (1, -1) \).

```c
for (int t = 0; t < M; t++) {
    for (int x = 2*t; x < N + 2*t; x++) {
        a[t][x - 2*t] = a[t-1][x - 1 - 2*t] + a[t-1][x + 1 - 2*t];
    }
}
```

Figure 4.11: The stencil from 4.10 but the \(x \) loop has been skewed by a factor of 2 relative to the \(t \) loop. Note that the bounds of the \(x \) loop and expressions in the body containing \(x \) have been modified to include the ‘skewing term’ \(2*time \). The transformed indices in the loop body correspond to a translation from the skewed iteration space of the loop to the original array index space to preserve logical correctness.

Figure 4.12: The iteration spaces for 4.10 and 4.11 after setting \(M \) and \(N \) to 9 and 5 respectively. Iteration proceeds sequentially from one column to the next. The grey and black arrows indicate data dependencies present in the loop body. Arrows point outward from one iteration point to all other points which calculate values it depends on. In this case the grey and black arrows correspond to the dependencies introduced by the \(a[t-1][x-1] \) and \(a[t-1][x+1] \) terms respectively. [20]

In 4.11, the skewing transformation enables a previously impossible rectangular tiling transformation by skewing the dependencies introduced by the \(a[t-1][x+1] \) term so they point ‘horizontally’ between \(t \) iterations as in 4.12b, rather than diagonally as in 4.12a. This is equivalent to increasing the dependence distances in the \(x \) dimension by 1 so that they are all non-negative, producing dependence distance vectors \(\vec{d}'_1 = (1, 2) \) and \(\vec{d}'_2 = (1, 0) \). Once skewed in this way, an iteration point only depends on other iteration points which are no further along the \(x \) dimension (i.e. no dependence arrows are pointing diagonally upward), permitting the tiling transformations shown in 4.14, 4.15.
 Executing 4.11 as it is presented above would not provide any performance gain over 4.10 (indeed the complex loop bounds introduced in the skewing transformation may make performance worse than its non-tiled counterpart), however by enabling further optimizing transformations 4.11 is a first step towards code with better data locality.

Formal description

Skewing alone does not affect the way in which a loop iterates over its own domain, instead the position of the loop’s iterations is changed relative to other loops around or within it. This can be seen in how the shape of a skewed loop’s iteration domain (the columns of 4.12a, 4.12b) is constant, but it is shifted relative to the other dimensions in the loop nest (the horizontal \(t \) axis in 4.12a, 4.12b). Using the polyhedral model, the skewing transformation for a statement \(S_1 \) can be represented by the schedule in 4.13

\[
\theta^{S_1} = \{ S_1[t, x] \rightarrow S[t, x + kt] \}
\]

\[D^{S_1} = \{ [t, x] | t_{lb} \leq t < t_{ub} \land x_{lb} \leq x < x_{ub} \}\]

\[D_1^{S_1} = \{ [t, x] | t_{lb} \leq t < t_{ub} \land x_{lb} + kt \leq x < x_{ub} + kt \}\]

Figure 4.13: A generic scheduling transformation for skewing a loop \(x \) with respect to a loop \(t \) by a skewing factor \(k \). \(D^{S_1} \) and \(D_1^{S_1} \) are the domains before and after skewing respectively.

4.4.2 Combining with Tiling

Skewing a loop can unlock opportunities for tiling that were not present in the original loop due to its dependence structure. Skewing a loop and then applying a tiling transformation is called *skewed tiling*. The order of these two transformations is very important. Tiling a loop nest and then skewing it with the schedule in 4.13 results in tiled loops whose bounds are then skewed only to be ‘unskewed’ in their bodies so that indexing refers to the original iteration space. The transformation produces tile shapes which are skewed relative to their original shape but maintain their original dimensions making the skewing transformation redundant.

Applying a skewing transformation before tiling a loop nest means the tiling transformation operates on skewed loop domains. In this case tiles maintain the shape given by the tiling configuration and are not skewed, however because the underlying iteration space is skewed,
some tiles may not be whole tiles with regular edges. A basic rectangular tiling transformation of the code in 4.11 and the iteration space in 4.12b gives 4.14 and 4.15.

```java
for (int xx = 0; xx < floor(N, T); x++){
    for (int t = 0; t < M; t++){
        for (int x = T*xx + 2*t; x < min(N+2*t, T*xx + T); x++) {
            a[t][x-2*t] = a[t-1][x-1-2*t] + a[t-1][x+1-2*t];
        }
    }
}
```

Figure 4.14: The stencil from 4.11 with a skewed tiling transformation applied.

Figure 4.15: The iteration space from 4.12b after applying a transformation to tile the x loop with a tile size of 3. Note that because of the interchange transformation which places the xx tile loop outside the t and x loops, iteration proceeds sequentially across all tiles in a row before moving to the next row of tiles (as described in 4.8). [20]

The tiling transformation presented in 4.14, 4.15 is valid because no tile depends on values computed in any subsequent tile. This can be seen in 4.15 by how no tile has dependence arrows which point to any subsequent tile along the tiled dimension and so tiles can be executed across multiple t iterations while respecting data dependencies.
4.5 Summary

We have introduced general-purpose loop tiling as a transformation in the polyhedral model and shown that it is a composition of two loop transformations; strip-mining and loop interchange. Adding loop skewing to this combination can result in skewed tiling, a more advanced transformation which can be applied to loops which would not ordinarily be suitable for tiling. In the next chapter we take the fundamental tiling transformations discussed above, apply them to the space-time loops seen in Devito, and introduce a further transformation; *time-tiling.*
Chapter 5

Time-tiling for Devito stencils

In this chapter we introduce the primary optimization researched in this project, time-tiling, and relate it to the spatial tiling techniques currently applied by Devito. This tiling transformation applies to space-time loops and creates iteration space tiles which contain multiple iterations in the outermost time dimension resulting in loop nests with improved data reuse in all dimensions. The following discussion is applicable to stencil loops with uniform dependencies which are fixed throughout program execution, and known at compile time.

Tiling through the dependence-carrying time dimension requires additional iteration space transformations which depend on the dependence structure of the stencil and is not currently implemented in Devito. Stencil codes in Devito carry dependencies along the time dimension as they update points in the spatial dimensions based on weighted contributions from nearby spatial points at previous time steps. In order to tile the time dimension and respect these dependencies, a skewed tiling transformation must be applied to the stencil loop.

5.1 Space Tiling in Devito

In Devito’s spatial tiling transformations, all but the innermost space loops are tiled according to the same tiling principles described in the previous chapter but without knowledge of the loop bounds. General-case parameterized loops are generated which explicitly handle edge cases for situations where the iteration space cannot be partitioned entirely into whole tiles. Since tiling is only applied to space loops and Devito stencil codes only have dependencies carried along the time dimension, no additional transformation of the iteration space is required for tiling to
be legal. This manner of tiling takes advantage of data locality in the space dimensions but does not benefit from reuse of data in subsequent time iterations.

```c
for (int time=1; time < time_size-1; time++){
    for (int x_b=4; x_b < x_size-(x_size-8)%(x_b_size)-4; x_b += x_b_size){
        for (int y_b=4; y_b < y_size-(y_size-8)%(y_b_size)-4; y_b += y_b_size){
            for (int y=y_b; y < y_b + y_b_size; y++){
                for (int z=4; z < z_size-4; z++){
                    // Stencil code
                }
            }
        }
    }
}
for (int x=x_size-(x_size-8)%(x_b_size)-4; x < x_size-4; x++){  
    for (int y=y_size-(y_size-8)%(y_b_size)-4; y++){  
        for (int z=4; z < z_size-4; z++){  
            // Stencil code
        }
    }
}
for (int x=x_size-(x_size-8)%(x_b_size)-4; x < x_size-4; x++){  
    for (int y=x_size-(y_size-8)%(y_b_size)-4; y++){  
        for (int z=4; z < z_size-4; z++){  
            // Stencil code
        }
    }
}
```

Figure 5.1: Devito cache-blocked code with tiled x and y dimensions. Formatted for clarity.

5.2 Skewing Dependencies

The acoustic wave equation stencil codes which were the primary targets for our transformations feature loop-carried dependencies which prevent regular tiling transformations from being applied. Depending on the space order (a parameter which affects how many nearby spatial points are considered in the stencil code) of the simulation being run, the AWE stencil updates an array with data from previous time steps at both previous/subsequent spatial points. Since the dependence is carried along the time dimension, there are no loop-carried dependencies in...
the spatial loops and so they can be readily tiled. Applying rectangular tiling to the whole loop
nest as-is would result in iteration points attempting to read from subsequent spatial points at
previous time steps which are located in tiles that have not yet been executed as demonstrated
(via a more simple example) in 4.9.

\[
\begin{align*}
\mathbf{u}[\text{time}][x][y][z] &= \ldots \\
-8.25142857142857 \times 10^{-5} \times & (u[\text{time}-1][x][y][z - 4] \div d1 \\
&+ u[\text{time}-1][x][y][z + 4] \div d2 \\
&+ u[\text{time}-1][x][y - 4][z] \div d3 \\
&+ u[\text{time}-1][x][y + 4][z] \div d4 \\
&+ u[\text{time}-1][x - 4][y][z] \div d5 \\
&+ u[\text{time}-1][x + 4][y][z] \div d6 \\
) \\
\ldots;
\end{align*}
\]

Figure 5.2: The left hand side and an isolated term from the right hand side of the acoustic
wave equation stencil calculation.

In 5.2 the dependencies which prevent tiling are ‘true dependencies’ introduced by terms which
index into the spatial dimensions with a positive offset (i.e \(u[\text{time}-1][x][y + 4][z]\)). For
the array accesses terms in 5.2 the dependence distance vectors are

\[
\begin{align*}
\vec{d}_1 &= (1, 0, 0, 4) & \vec{d}_2 &= (1, 0, 0, -4) \\
\vec{d}_3 &= (1, 0, 4, 0) & \vec{d}_4 &= (1, 0, -4, 0) \\
\vec{d}_5 &= (1, 4, 0, 0) & \vec{d}_6 &= (1, -4, 0, 0)
\end{align*}
\]

with \(\vec{d}_2\) and \(\vec{d}_4\) introducing the negative dependence distances which prevent tiling. To solve
this, each loop corresponding to a dimension along which a negative dependence exists must
be skewed relative to the outermost loop by a factor equal to the negated value of greatest
negative dependence in that dimension. This effectively ‘straightens’ all dependencies in each
dimension so that all dependence distance vectors have a distance greater than or equal to 0
in the skewed dimension, producing an change in iteration space similar to 4.12b. In the case
of the AWE stencils evaluated in this research, the \(z\) dimension is not tiled so only the \(x\) and
\(y\) loops require skewing.
5.3 Time-Tiling

Time-tiling brings the temporal and spatial locality improvements offered by tiling transformations to the time dimension of a space-time loop. Time-tiling can significantly reduce the time between data reuses as the stencil moves through time and shares many data points with previous time steps. 5.3c and 5.3b demonstrate the effect of these transformations on an iteration space, and visualize the locality improvements it brings about.

Unlike skewed tiling, time-tiling is not a general-purpose transformation with a formal definition as its implementation code varies depending on the dependencies in the loop structure being optimized. Fundamentally, time-tiling refers to a composition of loop transformations which when applied to a space-time loop nest featuring an outer time loop and multiple inner space loops, produces code which iterates through the spatial dimensions in a tiled fashion, and contains multiple time steps in a tile. This does not necessarily require strip-mining of the time loop, but at a minimum the time loop must be interchanged so that it is within the spatial tile loops, creating tiles which extend fully through the time dimension (Tilings of this kind are evaluated in 6.6). More advanced time-tiling transformations may tile the time loop as well, so that a spatial tile executes a fixed number of time steps that is less than the total number of time steps.

The challenge with time-tiling is that applications which benefit from it typically have complex dependence structures and work must be done to prepare the iteration space so that tiling the time dimension respects those dependencies. In the case of the acoustic wave equation stencil used in our evaluation of time-tiling, this preparation amounts to skewing the iteration space so that all dependence distance vectors are lexicographically positive.

5.4 Comparison with space-tiling

The iteration spaces in 5.3 are simplified representations of the 4D iteration space for Devito space-tiled code and our own time-tiled code. In 5.3b 5.3c, at each time step a 3D spatial tile is executed. With vectorization the third spatial dimension can be considered as a sequence of vector statements rather than a full loop, making the spatial tiles 2D. Dependence arrows have been added to indicate the most ‘extreme’ dependencies and how they change with tiling. 5.3a shows the iteration space of a normal Devito stencil that has no tiling optimizations and
executes each inner dimension in its entirety before moving to the next step of immediate outer dimension as in a normal loop nest.

In 5.3b the 1D tile shapes represent the ‘edge’ of a 2D spatial tile (in the x and y dimensions), like those shown in 4.3 but with a tile size of 4. In spatially-tiled code all spatial tiles are executed before moving to the next time step. Since time steps are completed in their entirety before moving to the next time step, all dependencies which point to previous time steps are respected even without any skewing.

The spatial tiling does not change in 5.3c, however the manner in which spatial tiles are executed changes significantly with the time-tiled approach. For each time tile (delimited by the vertical ‘bands’), each spatial tile (delimited by the horizontal ‘bands’) is executed through all the time steps within the time tile’s bounds (3 in this case) before moving to the next spatial tile. Since our AWE stencil codes update each spatial point based on surrounding points at two previous time steps, two sequential time steps will overlap many of their memory accesses. Tiling through time allows us to take advantage of this overlap and perform calculations for multiple time steps while the spatial data is still in cache memory from previous time steps. Compared to 4.12b, there is significantly more skewing in 5.3c to address the more far-reaching dependencies present in the real AWE stencil. Again, the dependence arrows (which extend in the same manner through the omitted y dimension) show that this skewing is sufficient to prevent any time tile from depending on future computations.
Figure 5.3: Three iteration spaces for a stencil loop nest with dependence arrows corresponding to the dependencies in 5.2. In all instances the horizontal axis is the time dimension and the vertical axis is the x spatial dimension. [20]
5.5 Transformations in CLooG

CLooG provides two primary interfaces for describing an iteration space and the transformations applied to it; a native C API, and a command-line interface which consumes specially formatted text files. All of the stencils produced in this research were generated using the command-line interface [8] and manually produced input files [5]. The formal structure of these input files is relatively complicated as it is designed to support arbitrarily complex problem descriptions. However, for the purposes of understanding the input files used in this research, a simplified presentation of the input file structure will suffice.

5.5.1 Input to CLooG

```c
for(int i = 0; i <= 10; i++){
    for(int j = i; j <= 12; j++){
        S1(i,j)
    }
}
```

Figure 5.4: A basic for loop and the CLooG input file which describes it.

Following the close relation between loop iteration spaces and more general polyhedral and integer set mathematics, CLooG input files comprise a number of matrices that encode inequalities from which loop domains and transformation matrices can be derived. For instance, the input
files used to produce our stencils contain two primary matrices as can be seen in 5.4; one to specify the ‘domain’ or iteration space of a statement, and another to specify a ‘scattering’ function to be applied to the loop dimensions when generating code. Since the loop nests we are interested in tiling consist only of one stencil computation and assignments to temporaries used in common sub-expression elimination, we configure CLooG to consider a single statement domain.

Domain

Each row of the input file’s domain matrix represents an inequality in terms of the iterators (the columns of the vector) of the loop nest being considered. The ordering of the columns and the iterators they represent is constant throughout the input file, and if there are no scattering functions which perform scheduling or interchange transformations, also dictates the loop order in generated code. The Devito stencil codes we transformed contained no conditional statements within the loop nest and so the loop body has one contiguous, regular iteration space. This means the inequalities used to describe the statement domain are effectively a translation of the bounds of the loops being transformed into inequalities. For example, the first two rows of the matrix in 5.4 are inequalities representing the lower and upper bounds of the loop in 5.4.

Loop tiling is a transformation of the iteration space which introduces new iterators and changes the bounds of existing ones. While the overall shape and volume of the iteration space does not change after a basic tiling transformation, the way the space is defined in terms of its iterators does. Because of this, the domain matrix in a CLooG input file is where our tiling transformation is configured and applied. Columns are introduced for the new loops which iterate over tiles, and inequalities are added which describe the tile loops’ bounds as well as their relation with their corresponding inner loop which iterates over points in the iteration space. For example, consider the simple case of the single loop in 5.5, The bounds of this loop are represented by the inequality

\[0 \leq i < 100\]

or, in the polyhedral representation, the domain \(D^{S_1}\)

\[D^{S_1} = \{ i | 0 \leq i < 100 \}\]

To tile this loop with a tile size of 8, we would introduce the tile loop \(ii\) and the inequalities
Chapter 5. Time-tiling for Devito stencils

representing the transformed loop nest would become

\[0 \leq i < 100 \land 0 \leq ii < \left\lfloor \frac{100}{8} \right\rfloor \land 8 \times ii \leq i < 8 \times ii + 8 \]

or in the polyhedral representation, the domain \(D_{1}^{S1} \)

\[D_{1}^{S1} = \{ (ii,i) \mid 0 \leq i < 100 \land 0 \leq ii < \left\lfloor \frac{100}{8} \right\rfloor \land 8 \times ii \leq i < 8 \times ii + 8 \} \]

This means that for each loop being tiled, we require 4 rows (two to specify the inner loop’s absolute bounds, and two to specify its bounds relative to the tile loop) in the domain matrix, as well as two iterator columns.

```c
for (int i = 0; i < 100; i++) {
    S1(i);
}
```

Figure 5.5: A basic 1-D for loop

Below, we give an excerpt 5.7 from one of the stencils evaluated in section 6.6 along with the CLooG input file 5.6 used to generate its loops.

5.6 Summary

We have given a basic definition and implementation of time-tiling as a composition of loop transformations which prepare an iteration space so that tiling is legal and then apply tiling to all spatial dimensions and possibly the time dimensions as well. Through the polyhedral descriptions and iteration spaces depicted, we show how time-tiling affects the iteration space of a space-time loop and where improvements in data locality emerge. In the next chapter we use this understanding of time-tiling and the how it can be achieved using CLooG to describe our evaluation methodology and results for determining the run time performance improvements time-tiling offers.
Figure 5.6: The CLooG input file used to generate code evaluated in 6.7 for tile size 16. To make the input files more easily modified and understood, parameters are defined at the top of the input file and used to control grid size, default loop bounds and tile size. To allow testing of the same tiled stencils on multiple simulation times, the time loop bound is parameterized (as it is in non-tiled Devito stencils) on a parameter time_size which is at least 3.
for (int tt=0; tt <= floor(time_size/2); tt++){
 for (int xx=2*tt; xx <= min(floor(time_size/2)+65,4*tt+18); xx++){
 for (int yy= max(2*tt, xx-17); yy <= min(min(floor(time_size/2)+65,4*tt+18), xx+17); yy++){
 for (int time = max(max(max(1,8*tt), 4*xx-67), 4*yy-67);
 time <= min(min(min(time_size/2-8*tt-7,4*xx+2), 4*yy+2), time++){
 int skew = 4*time; // Skewing factor
 int t0 = (time) % 8;
 int t1 = (time + 1) % 8;
 int t2 = (time - 1) % 8;
 #pragma omp parallel
 {
 /* Flush denormal numbers to zero in hardware */
 _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
 _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
 #pragma omp for schedule (static)
 for (int x= max(16*xx, 4*time+4); x <= min(4*time+271,16*xx+15); x++){
 for (int y= max(16*yy, 4*time+4); y <= min(4*time+271,16*yy+15); y++){
 #pragma ivdep
 #pragma omp simd
 for (int z = 4*time+4; z <= 4*time+271; z++){
 float tcse0 = 3.04d*damp[x-skew][y-skew][z-skew];
 u[time + 1][x-skew][y-skew][z-skew] =
 ((tcse0 - 2*m[x-skew][y-skew][z-skew])*
 u[time - 1][x-skew][y-skew][z-skew])
 - 8.25142857142857e-5F*(u[time][x-skew][y-skew][z-skew-4]
 +u[time][x-skew][y-skew][z-skew+4]
 +u[time][x-skew][y-skew-4][z-skew]
 +u[time][x-skew][y-skew+4][z-skew]
 +u[time][x-skew-4][y-skew][z-skew]
 +u[time][x-skew+4][y-skew][z-skew])
 + 1.17353650793651e-3F*(u[time][x-skew][y-skew][z-skew-3]
 +u[time][x-skew][y-skew][z-skew+3]
 +u[time][x-skew][y-skew-3][z-skew]
 +u[time][x-skew][y-skew+3][z-skew]
 +u[time][x-skew-3][y-skew][z-skew]
 +u[time][x-skew+3][y-skew][z-skew])
 - 9.2416e-3F*(u[time][x-skew][y-skew][z-skew-2]
 +u[time][x-skew][y-skew][z-skew+2]
 +u[time][x-skew][y-skew-2][z-skew]
 +u[time][x-skew][y-skew+2][z-skew]
 +u[time][x-skew-2][y-skew][z-skew]
 +u[time][x-skew+2][y-skew][z-skew])
 + 7.39328e-2F*(u[time][x-skew][y-skew][z-skew-1]
 +u[time][x-skew][y-skew][z-skew+1]
 +u[time][x-skew][y-skew-1][z-skew]
 +u[time][x-skew][y-skew+1][z-skew]
 +u[time][x-skew-1][y-skew][z-skew]
 +u[time][x-skew+1][y-skew][z-skew])
 + (4*m[x-skew][y-skew][z-skew]*
 u[time][x-skew][y-skew][z-skew])
 - 3.94693333333333e-1F*u[time][x-skew][y-skew][z-skew]
) / (tcse0 + 2*m[x-skew][y-skew][z-skew]);
 }
 }
 }
 }
 }
 }
 }
}

Figure 5.7: The time-tiled loop generated by the CLooG input file in 5.6, applied to the acoustic wave equation stencil. Formatted for clarity.
Chapter 6

Evaluation

Given the proven benefits of the spatial tiling already implemented in Devito [2], and our own understanding of how tiling affects data locality we were confident that time-tiling (with the right configuration) should experience at least the same performance improvement over non-tiled code as Devito’s spatial tiling. Our primary hypothesis was that time-tiled code would run faster than the fastest spatially-tiled code produced by Devito for a given AWE stencil simulation due to reduced memory reuse distance and, as a result, a reduction in cache misses. Here we present our methodology for evaluating this hypothesis as well as verifying functional correctness of time-tiled code. We present the results obtained from a range of runtime analyses and their implications.

6.1 Objectives

Our objective for these tests was to determine if the runtime of Devito stencils can be improved with tiled code generated using CLooG and whether such code produces numerical solutions that are suitably close to those produced by non-tiled stencils.

The Devito Loop Engine supports generalised loop tiling in the space dimensions so our evaluation focused on comparing code specifically tiled with CLooG using a number of different configurations against the existing loop tiling transformations offered by Devito as well as standard non-tiled stencils.
6.2 Testing environment

For our evaluation to be applicable to real Devito use-cases we had to ensure that a typical Devito workflow and environment was used to generate and execute ‘control’ code as well as custom-tiled code. The Devito repository contains an ‘examples’ directory with complete examples for symbolic problem description, code generation and data retrieval for two problem types. A ‘benchmark’ Python script exists as an interface into these examples and allows for the configuration of different simulations from the command line. This benchmark script served as our primary entry point for automating different tests. With a small modification to the code generation pipeline we enabled the insertion of custom code from a given file and in this way were able to compile and execute CLooG-tiled code in a Devito environment. The script also allowed for automated execution and simple modification of problem parameters such as grid dimensions, simulation time and the use of OpenMP for parallelism.

```bash
$ python benchmark.py run -P acoustic -dle advanced -d 512 512 512 -t 750 -so 8 -c
Applying Forward
DSE: extract_time_invariants [flops: 58, elapsed: 0.00] >>
    eliminate_inter_stencil_redundancies [flops: 58, elapsed: 0.00] >>
    eliminate_intra_stencil_redundancies [flops: 57, elapsed: 0.01] >>
    factorize [flops: 37, elapsed: 0.02] >>
    finalize [flops: 37, elapsed: 0.00]
[Total elapsed: 0.04 s]
DLE: analyze [elapsed: 0.01] >>
    avoid_denormals [elapsed: 0.00] >>
    simdize [elapsed: 0.07] >>
    ompize [elapsed: 0.01]
[Total elapsed: 0.08 s]
custom
IntelCompiler: compiled
/tmp/devito-1000/6d6c15236570f643a716141f63e58ad716078868.c [11.65 s]
===========================================================================
loop_p_src_1<246,1> with OI=0.90 computed in 0.000s [Perf:0.27 GFlops]
loop_p_rec_2<246,101> with OI=1.94 computed in 0.001s [Perf:3.44 GFlops]
main<246,528,528,528> with OI=2.25 computed in 88.240s [Perf:15.18 GFlops]
===========================================================================
```

Figure 6.1: Shell output from running an acoustic wave simulation with a grid size of 512 * 512 * 512 and a simulation time of 750ms using custom code and the ‘advanced’ mode of Devito optimizations.

The Devito framework has existing support for timing different stages of the stencil execution at the C-code level by recording the time at loop entry and exit in C structs. This timing data is propagated back to the python code and so our modified benchmark script could retrieve
these timing values and log them after each execution along with FLOP counts calculated by Devito. The numerical output of the stencil was also gathered in the same manner for testing correctness.

6.2.1 Hardware and Software

To maximize our control over the testing environment and take advantage of some of the latest architectural features, our performance testing was carried in a fresh install of Ubuntu 17.04 on a machine with a quad-core Intel i7-6700K Skylake processor running at 4.00 GHz with 16GB of DRAM. All CPU clock scaling was disabled in the BIOS to ensure experiments always ran with the same, constant processor speed. Additionally, no applications other than those required by the operating system were running during tests to minimize external influence on stencil run times and memory availability.

Cache hierarchy

Since the success of tiling transformations is heavily dependent on the target architecture, we had to make sure our Devito simulation parameters were chosen such that unoptimized code could benefit from improved data locality. Experiments were carried out to determine which tile configurations were beneficial for the cache hierarchy of the test system. In particular we needed to make sure that executing a single time step of a simulation required significantly more data than can fit in the L3 cache, which was 8MB for our test architecture. Running the acoustic wave simulation with grid sizes of 256 and greater ensured that a single time step would need at least 64MB of data

Cache Level	Capacity	Associativity	Line Size (bytes)	Fastest Latency (cycles)	Sustained Bandwidth (bytes/cycle)
L1-Data	32KB	8-way	64	4	81
L2	256KB	4-way	64	12	29
L3	8MB (2MB per core)	16-way	64	44	18

Table 6.1: Cache hierarchy information for Skylake processors [22]
Multithreading

In practice the stencil codes produced by Devito are often executed in parallel using multiple threads. To keep our performance testing realistic, we tested codes which made use of OpenMP directives to execute in parallel. Running stencils with multithreading also created an environment where processing and memory hardware would be used to their fullest and prevent any influence on performance by the limitations of serving a single-core application. In order to minimise nondeterminism and ensure even distribution of resources between threads, we used the Intel Thread Affinity Interface \cite{intel_thread_affinity} to ‘pin’ threads to individual cores. When compiling with the Intel Compiler \texttt{icc} \cite{intel Compiler}, the Thread Affinity Interface provides the environment variable \texttt{KMP_AFFINITY} for simple configuration of thread affinity. In our tests, setting the environment variable to \texttt{KMP_AFFINITY=verbose,scatter} gave verbose information on thread start-up to verify our configuration, and the \texttt{scatter} argument ensured that different threads were allocated to distinct cores. Since the execution of stencil codes Devito produces does not feature blocking or intermittent intensity and is instead constantly utilizing as many resources as it can while still being memory-bound, hyperthreading technologies would not have been beneficial. With hyperthreading disabled, the i7-6700K supports 4 threads with one per core and all of our parallel tests were executed using 4 threads.

Compilation

To take advantage of the its better understanding of Intel architecture-specific features, such as advanced vector extensions, all evaluated code was compiled using the Intel Compiler \texttt{icc}. The \texttt{-O3} flag was used in compilation to enable the highest optimization level offered by \texttt{icc}, and the \texttt{-qopenmp} enabled OpenMP parallelism. We also compiled using \texttt{icc} as it is used frequently in scientific computing applications for its advanced optimizations and the sometimes significant improvements in run time on Intel hardware when compared to more common compilers like \texttt{gcc}.

6.3 Test parameters

To best understand how different problem sizes reacted to different forms of time-tiling we varied a number of simulation and code transformation parameters throughout our experiments.
6.3. Test parameters

Below is a description of the primary test variables and their effect on code and its execution.

6.3.1 Acoustic wave equation

The primary simulation used for testing was the acoustic wave equation simulation for which problem set-up and code generation code already existed in the Devito ‘examples’ directory. Wave equations are linked to many physical phenomena [15] and the acoustic wave equation (AWE) describes the propagation of acoustic waves through a medium. AWE stencils typically have a few operations in the main loop body which update grid points over time based on the values at other grid points that are nearby in both space and time. The code in 6.2 is an example of the main loop kernel for the AWE in one dimension. The relative simplicity of this problem makes it suitable for manually-configured experiments as well as for understanding what transformations CLooG can perform and how to drive it to produce them.

```c
for(int t=1; t<T; t++) { // time loop
    for(int i=1; i<N; i++) { // 1D space loop
        u[i][n+1] = 2*u[i][n] - u[i][n-1] - pow(C, 2.0)*(u[i+1][n] - 2*u[i][n] + u[i-1][n]);
    }
}
```

Figure 6.2: A simplified presentation of the main loop for an acoustic wave equation kernel in 1D [15]. Here a point grid u at time n+1 is calculated by a weighted combination of nearby points i+1 and i−1 in the previous two time steps n and n−1 [15].

To make our experiments realistic, the AWE stencil which we transformed and evaluated was more complicated than the code in 6.2. In particular, our experiments considered a 4-dimensional (3-dimensional space + time) instance of the equation with space order of 8 and a time order of 2. A snippet of a non-tiled stencil produced by Devito for this problem is given in 6.3. Space order and time order are simulation parameters which change the nature of the equation being solved by adjusting how the equation considers nearby points at previous time steps. Higher values for these parameters changes the stencil to include points farther away in space and further back in time.
for (int time = 1; time < time_size - 1; time += 1) {
 for (int x = 4; x < x_size - 4; x += 1) {
 for (int y = 4; y < y_size - 4; y += 1) {
 for (int z = 4; z < z_size - 4; z += 1) {
 float tcse0 = 3.04* damp[x][y][z];
 u[time + 1][x][y][z] =
 (tcse0 - 2*m[x][y][z])*u[time - 1][x][y][z]
 - 8.25142857142857e-5F*(u[time][x][y][z - 4]
 +u[time][x][y][z + 4]
 +u[time][x][y - 4][z]
 +u[time][x][y + 4][z]
 +u[time][x - 4][y][z]
 +u[time][x + 4][y][z])
 + 1.17353660793651e-3F*(u[time][x][y][z - 3]
 +u[time][x][y][z + 3]
 +u[time][x][y - 3][z]
 +u[time][x][y + 3][z]
 +u[time][x - 3][y][z]
 +u[time][x + 3][y][z])
 - 9.2416e-3F*(u[time][x][y][z - 2]
 +u[time][x][y][z + 2]
 +u[time][x][y - 2][z]
 +u[time][x][y + 2][z]
 +u[time][x - 2][y][z]
 +u[time][x + 2][y][z])
 + 7.39328e-2F*(u[time][x][y][z - 1]
 +u[time][x][y][z + 1]
 +u[time][x][y - 1][z]
 +u[time][x][y + 1][z]
 +u[time][x - 1][y][z]
 +u[time][x + 1][y][z])
 + 4*m[x][y][z]*u[time][x][y][z]
 - 3.94693333333333e-1F*u[time][x][y][z]
)/(tcse0 + 2*m[x][y][z]);
 }
 }
 }
}
6.3.2 Time Dimension Buffering

Realistic simulations perform stencil computations over a large set of points for a large number of time steps, which can require significant amounts of memory. Consider a stencil which iterates for 100 time steps over a 600x600x600 array of floats saving the computation at each time step, the resulting data array has size $100 \times 600^3 \times 4$ bytes ≈ 80GB. To prevent large scale simulations from requiring prohibitively large amounts of memory, Devito supports ‘buffered’ time dimensions, whereby only a small set of previous time steps are saved rather than the entire history of the computation.

For our AWE problem, Devito by default buffers 3 time steps at a time so that regardless of the length of the simulation, only $(3 \times \text{GRID SIZE}^3 \times 4)$ bytes are required. At the code-level, this is achieved by using modular arithmetic to index into previous time steps as demonstrated in 5.7. Each instance of time, time-1 and time-2 in the stencil is replaced by a temporary variable which holds the corresponding value modulo 3. Since the entirety of a time step’s computations are completed before moving to the next time step, the modular indices are always consistent with the moving window of three time steps required by the stencil. Once a time step is no longer needed by a future computation it is overwritten by the new current time step, reducing memory requirements.

Time-tiling requires the execution of a single spatial tile through multiple time steps to maximise data locality. Even with a skewing transformation to prepare dependencies for tiling through time, the full time loop cannot be brought within the spatial tiling loops if a buffered time dimension is used. When a tile completes execution of its time steps and a subsequent tiles begin execution, the buffered time array will hold data computed for the last time steps of the previous tile while first time steps of the new tile depend on data from the first few time steps of the previous tile. To allow time-tiling in conjunction with time dimension buffering, the time loop is also tiled with a tile size no larger than the size of the buffered dimension or the modulus with respect to which buffered time indices are calculated. This means each spatial tile executes one ‘band’ of time steps which is small enough so that no buffered time values are overwritten before the next spatial tile begins execution, leaving the data in the correct position for the next tile to access it using the same modular calculations.
6.3.3 Simulation Grid Size

One of the primary simulations parameters which has a large impact on memory usage and runtime is the simulation grid size. This parameter defines how many spatial points are in the grid being simulated at each time step. The grid size is related to the size of the physical area through which acoustic wave propagation is being simulated, or the density of points in that area when considered with the parameter which controls spacing between points.

6.3.4 Spatial Tile Size

The dimensions of the spatial tile size impact the amount of data reuse possible within the tile and between tiles, as well as the relative cost of executing loop control statements. Our experiments gathered performance data for a number of spatial tile sizes ranging from 8*8 to 128*128.

6.4 Code Generation

When driven through its command-line interface, CLooG prints generated code to the command line. By running CLooG with the optional argument `-compilable 1`, CLooG prints an entire compilable C file which includes macro definitions for the min/max and floor/ceiling calculations it uses in loop bounds. For the results presented here, the tiled loop nest for each stencil was generated on the command line as compilable code with CLooG and saved to a file before having the necessary loop structure and definitions manually inserted into a standard Devito stencil source file. To compensate for the skewing transformation, all instances of the spatial iterators in the loop body were changed to include a subtraction of the skewing amount (the product of the skewing factor and the time iterator), translating the iterator values back to the original iteration space for logical correctness.

6.5 Functional Correctness

Tiling transformations can significantly change the manner in which an iteration space is traversed which in turn can change the value of iterative computations. Before applying tiling transformations it is important to understand the dependence structure of the code being tiled
and ensure that correct ordering is preserved for statements that require it. In the case of our Devito stencils, functionally incorrect tiling manifests itself (assuming the transformed code does not produce any runtime errors) in the numerical output data of the tiled stencil like the u data array in 3.1.

To simplify the challenge of tiling the acoustic wave stencil, a part of the equation which feeds data into certain grid points at each time step had to be removed as it introduced non-uniform dependencies which could not be handled by the time-tiling transformation we developed. Removing this ‘source’ term from the symbolic equation and the loops it produced from the stencil allowed us to apply time-tiling but resulted in an empty output data array as the source equation gives the data array its initial values. To compensate for this and allow for numerical verification of the tiling transformations, we modified the acoustic wave problem set-up so that the u data array was initialized with a ‘smooth’ gaussian distribution of values that made the stencil compute a measurable result.

```python
def initial(dim):
    x, y, z = np.mgrid[-1.0:1.0:404j, -1.0:1.0:404j, -1.0:1.0:404j]
    xyz = np.column_stack([x.flat, y.flat, z.flat])
    mu = np.array([0.0, 0.0, 0.0])
    sigma = np.array([0.40, 0.40, 0.40])
    covariance = np.diag(sigma**2)
    gc.collect()
    x = multivariate_normal.pdf(xyz, mean=mu, cov=covariance)
    x = x.reshape((404, 404, 404))
    return x
```

Figure 6.4: This code was added in the problem set-up phase to initialize the first time step of u data array with a gaussian distribution. In this case the array is for a grid of size 384*384*384, but with ‘ghost cells’ surrounding grid points, the data array is of size 404*404*404. multivariate_normal.pdf is a function provided by SciPy for calculating multivariate distributions. The standard deviations were chosen so that three standard deviations from the centre the value fell to near zero.

The NumPy library provides a numpy.allclose function for comparing the elements of two NumPy arrays. For verifying the numerical output of tiled code, an absolute tolerance of 10^{-6} was chosen in line with Devito’s own unit tests. Tiled code was deemed functionally incorrect if the ‘data’ output array did not satisfy this tolerance and produced a False return value from numpy.allclose. The code in 6.5 was added as additional operation mode in the benchmark script so that test parameters could easily be kept consistent between performance and functional testing.
Chapter 6. Evaluation

```python
# Simulate using custom code located in /tmp/devito-1000/custom.
_, _, _, [customrec, customdata] = acoustic_examples.run(custom=True, **parameters)
# Simulate with the same problem parameters, but using Devito code
_, _, _, [rec, data] = acoustic_examples.run(custom=False, **parameters)
# Compare data arrays
assert np.allclose(data, customdata, atol=1e-6, equal_nan=True)
# Compare receiver arrays
assert np.allclose(rec, customdata, atol=1e-6, equal_nan=True)
```

Figure 6.5: A snippet from the benchmark script which runs two distinct acoustic wave simulations and compares the resulting data using numpy

6.6 Results

All evaluated time-tiled codes can be found at [5]. In this section we visualize and summarise run times and GFLOPS recordings gathered by repeatedly executing different configurations of the AWE simulation. All run time and GFLOPS figures were calculated with Devito’s own timing mechanisms and represent only the performance of the main stencil loop to which our transformations have been applied.

6.6.1 Transformation Types

For each of the experiment results presented below, the following names are given to the transformations tested;

- **Devito-generated control stencils**
 - `normal`: A standard Devito-generated stencil with only SIMD vectorization and OMP parallelism optimizations enabled.
 - `blocked_auto`: A stencil generated with the same configuration as `normal` but also with the auto-tuned blocking optimization enabled.

- **Time-tiled stencils**: Each of these stencils was manually transformed using code generated by CLooG specifically for each spatial tile size and simulation grid size. Only the x and y spatial loops are tiled in these stencils, the z loop is kept as a full loop to match the approach taken by Devito’s own cache blocking optimization and to take better advantage of vectorization opportunities by having a higher trip count for the innermost loop. Stencil `time_tiled_X` has spatial tile dimensions of x^x in x and y.

We present results for stencils generated with and without time dimension buffering:

- **Full time dimensions**: Every time step of these simulations was saved in the data array and so no modulo computations were used for indexing in time allowing the time loop to be directly moved within the spatial tile loops to exploit reuse in the time dimension.

- **Buffered time dimensions**: The following stencils used a buffered time dimension of size 8 and the time loops were tiled accordingly with a tile size of 8.
6.6.2 Grid size 256 with full time dimension

Figure 6.6: Runtime (green, lower is better) and GFLOPS (red, higher is better) recordings for Devito-generated and time-tiled stencils. Each measurement is an average over 30 runs of the Acoustic Wave Equation simulation, on a $256 \times 256 \times 256$ grid with a simulation time of 100ms. At the bottom of the GFLOPS bars is the standard deviation of the results. For this problem the auto-tuned block dimensions are 128×128 in x and y (blocked_auto). Each time_tiled_X result is for a time-tiled stencil with a spatial tile size of $X \times X$. Time-tiling with a spatial tile size of 32×32 gave the lowest run times for this simulation, with a 27% improvement over Devito’s auto-tuned blocking.

In this experiment no time dimension buffering was used, meaning every time step of the computation was saved in the data array. This put a limit on both the grid size that could be used and the length of the simulation time. To have a realistic grid size and a simulation time long enough so that run time would not be too small to draw conclusions from but operate within the memory limits of our test architecture, a 100ms simulation time was chosen on a grid size of $256 \times 256 \times 256$.
Time-tiling with a spatial tile size of 32×32 gave the lowest run times for this simulation, with a 27.1% improvement over Devito’s auto-tuned blocking. Only the time-tiled code with spatial tiles of size 128×128 produced a slower run time than the auto-tuned blocking result despite the fact the two transformations used the same spatial tile size. This could be because the increased spatial tile size results in data being evicting data from the cache during a time step, preventing reuse along the time dimension.
6.6.3 Grid size 256 with time dimension buffering

Figure 6.7: Runtime (green, lower is better) and GFLOPS (red, higher is better) recordings for Devito-generated and time-tiled stencils. Each measurement is an average over 30 runs of the Acoustic Wave Equation simulation, on a $256 \times 256 \times 256$ grid with a simulation time of 750ms. The time dimensions are buffered with a buffer size of 8. At the bottom of the GFLOPS bars is the standard deviation of the results. For this problem the auto-tuned block dimensions are 32×32 in x and y (blocked_auto). Each time_tiled_X result is for a time-tiled stencil with a spatial tile size of X^2X. Time-tiled code using spatial tile sizes of 16×16 produced the lowest run time with a 22.4% improvement over Devito’s cache blocking.

With time dimension buffering enabled, we were free to increase the simulation time without being limited by memory capacity. To keep simulation time somewhat realistic and aid comparison with the results in 6.8 a simulation time of 750ms was chosen.

Time-tiled code using spatial tile sizes of 16×16 produced the lowest run time with a 22.4% improvement over Devito’s cache blocking.
6.6.4 Grid size 384 with time dimension buffering

![Figure 6.8: Runtime (green, lower is better) and GFLOPS (red, higher is better) recordings for Devito-generated time-tiled stencils. Each measurement is an average over 30 runs of the Acoustic Wave Equation simulation, on a 384 * 384 * 384 grid with a simulation time of 750ms. The time dimensions are buffered with a buffer size of 8. At the bottom of the GFLOPS bars is the standard deviation of the results. For this problem the auto-tuned block dimensions are 32 * 32 in x and y (blocked_auto). Each time_tiled_X result is for a time-tiled stencil with a spatial tile size of X*X. Time-tiled code using spatial tile sizes of 16 * 16 produced the lowest run time with a 27.5% improvement over Devito’s cache blocking.](image)

To investigate how time-tiling performed with larger more realistic spatial grids but still remain within the memory bounds for testing functional correctness, we chose a grid size of 384*384*384 which was close to the maximum grid size we could test. Time-tiled code using spatial tile sizes of 16*16 produced the lowest run time with a 27.5% improvement over Devito’s cache blocking.
6.6.5 Roofline Model

The roofline model is used to express how a program with given arithmetic intensity performs relative to the theoretical maximum limits imposed by a machine’s computational resources and memory bandwidth. It is typically a graphical representation of these figures and limits which demonstrates whether a computation is memory-bound or compute-bound. For simplicity, we take some of the calculations and comparisons of the roofline model and present them in a tabular format below.

The AWE stencil is a memory-bound computation and this is shown by a simple calculation of peak stencil GFLOPS. Using the STREAM [24] benchmark we calculated the peak memory bandwidth of our test architecture to be 15.168 GB/s. Devito calculates a stencil’s arithmetic intensity (the number of floating point operations required per byte of memory traffic) from its knowledge of the grid dimensions and the calculations performed by stencil. The peak FLOP count for our test architecture can be calculated as the product of FLOPS per cycle and clock speed (cycles per second). The Skylake architecture can execute 32 single-precision floating point operations per cycle using fused-multiply-add extensions [22], which at a clock speed of 4.00GHz gives us a peak performance of 128 GFLOPS. It is clear that the peak stencil GFLOPS presented in 6.2 are significantly lower than the peak GFLOPS of our test architecture. This means that our peak memory bandwidth prevents the AWE stencil it from reading data fast enough to ever use more than about 25% of the floating point resources that are available, making the computation memory-bound.

We compare our actual performance results from 6.6, 6.7, 6.8 with the calculated theoretical maxima to get an understanding for how much more performance can be obtained through optimizing the stencil’s memory usage. The actual floating point performance for our test architecture shouldn’t have an effect on the GFLOPS figure for a given stencil because the computation is memory-bound and so we are never operating at or near the peak architecture GFLOPS. However peak memory bandwidth does fluctuate during execution and will affect the actual performance of our stencils by changing the rate at which they can transfer data. Likely the largest cause for deviation from the calculated maxima however, is cache-misses due to poor data reuse. When the stencil attempts to access memory which it has already accessed but fails to find it in cache memory, it not only incurs a performance penalty as it waits for the data to be read from main memory, but it also increases the total memory traffic from the theoretical minimum. These effects can be seen in the Change columns of 6.3. The data suggest that for
6.6. Results

Despite the run time improvements achieved with time-tiling, there is still room for improving data reuse in long-running simulations that make use of time dimension buffering.

Grid size	Time buffering	Sim. time (ms)	Arithmetic Intensity	Stencil GFLOPS	Memory traffic (GB)	Run time (s)
256	No	100	2.15	32.612	11.101	0.732
256	Yes	750	2.20	33.37	83.089	5.478
384	Yes	500	2.25	34.129	174.079	11.477

Table 6.2: Theoretical minimum run time calculations for the stencils evaluated in 6.6. Arithmetic intensity (number of floating point operations per byte of memory traffic) and minimum memory traffic figures are derived by Devito from its knowledge of the stencil computation. We calculate peak GFLOPS for a given stencil as the product of its arithmetic intensity and the peak bandwidth of our architecture (measured as 15.168GB/S using the STREAM benchmark [24]). Theoretical minimum run time is calculated as the quotient of memory traffic and memory bandwidth. In practice, memory bandwidth and GFLOPS will not always be at their peak.

Grid size	Time buffering	Sim. time (ms)	Stencil GFLOPS	Actual GFLOPS	Change	Minimum run time (s)	Actual run time (s)	Change
256	No	100	32.612	31.625	-2.03%	0.732	0.753	-2.87%
256	Yes	750	33.37	28.862	-13.51%	5.478	6.346	-15.84%
384	Yes	500	34.129	28.929	-15.24%	11.477	13.727	-19.60%

Table 6.3: A comparison of peak theoretical performance figures calculated in 6.2 and actual performance results (the same average results plotted in 6.6). By comparing our actual performance to the maximum calculated performance, we get an understanding of how much room for optimization remains. Suboptimal data reuse in our stencils results in increased actual memory traffic for the stencils, which when combined with fluctuating memory bandwidth results in the deviations highlighted in the Change columns. The figures suggest there is room for improving the data locality of time-tiled stencils with long simulation times and time dimension buffering.
6.7 Future experiments

As well as the experiments presented above, we evaluated the AWE simulation on larger grid sizes (up to 512 x 512 x 512) but reached memory limits during the numerical verification phase, making the data gathered unreliable. Attempting to run Devito’s auto-tuned cache blocking optimization without any custom-tiled code was also restricted by memory resources due to the increased overall memory requirements by augmenting the time dimension to support tiling through time (typically a buffered time dimension has size 3, but to support tiling we enlarged the dimension to size 8). In addition to performance testing, memory analyses should be carried out to measure cache misses, cache miss rate, and total memory traffic to make certain that run time performance improvements result from better cache performance and data reuse.

6.8 Conclusion

In this chapter we have shown that for a simplified version of the acoustic wave equation stencil generated by Devito, time-tiling can offer significant improvements in run time. We evaluated time-tiling transformations on three different simulations, varying grid size and the use of time dimension buffering and saw improvements with time-tiling in every case. The simulation with the largest grid size (384 x 384 x 384) experienced the most significant speed-up due to time tiling. The results presented here are not enough to determine whether run time improvements are due to fewer cache misses and reduced data reuse distance, and so our hypothesis has been partially proven. However the data are enough to warrant further investigation with different simulations and tiling parameters.
Chapter 7

Conclusion

To conclude, we summarise the contributions of this research and its supporting evidence. Using the insight gained through this investigation, we comment on potential designs for automating time-tiling in Devito and what future work can be done to strengthen our claims and apply time-tiling to a broader range of stencil codes.

7.1 Summary of Contributions

This report documents our approach to investigating the nature and feasibility of time-tiling transformations which can improve the run time performance of space-time stencil loops within the Devito finite-difference code generation framework. We motivated our research with the fundamentals of code optimization within the polyhedral model, before presenting and evaluating a basic time-tiling transformation. We now summarise the main contributions of this project;

- We identify opportunities for tiling through the time dimension of Devito stencil loops to improve data reuse. Devito currently supports tiling in the spatial dimensions of its stencil loops, but by the nature of space-time stencil computations there is an often significant overlap of memory accesses between subsequent time steps which is not exploited by spatial tiling. By executing multiple time steps for each spatial tile, we benefit from improved cache performance by keeping spatial data in cache memory from one time step to the next so that it may be reused.
• We give conditions which define the legality of a time-tiling transformation. A Devito stencil’s iteration space cannot contain dependencies with positive dependence distances in any of the spatial dimensions.

• We propose time-tiling as a composition of loop transformations which prepare a stencil’s iteration space so that the time loop can be moved within the spatial tile loops. Our research in the context of uniform dependencies like those seen in the acoustic wave equation stencil find that time-tiling can be achieved by skewing the each spatial dimension according to the greatest positive dependence distance in that dimension, and then applying spatial tiling.

• We show that time-tiling can still be applied to Devito loops which make use of time-dimension buffering to reduce overall memory requirements. By tiling the time dimension in addition to the space dimensions, and ensuring the size of the tile in the time dimension is less than or equal to the modulus with respect to which time dimension buffering calculations are performed.

• We give our methodology for verifying the numerical correctness of time-tiled Devito stencils to validate our performance experiments.

• We evaluate the performance of time-tiling using the multi-threaded Devito acoustic wave equation stencil. Our experiments tested several simulation parameters for the AWE stencil, namely grid size, simulation time and full/buffered time dimensions. Multiple spatial tile dimensions were also tested to find out which spatial tile sizes offered the best run time improvements and how they compared to the best performing spatial tile sizes chosen in Devito’s own cache-blocking optimization.

• We find that time-tiling can offer run time improvements of up to 25.7% when applied to the AWE stencil with relatively small grid sizes and simulation times.

• We demonstrate that compared to theoretical maximum performance figures, our time-tiled stencils can still benefit from further improved data reuse and reduced overall memory traffic.

• We give our testing methodology to demonstrate how we ensured the reliability of our performance results.
7.2. Future Work

In acknowledgement of the shortcomings of this research, we propose areas where we feel future work would be particularly profitable.

- Carry out further evaluation of time-tiled AWE stencils produced with different tiling and simulation parameters.

- Investigate the statement and dependence structure of ‘source’ term injection loops to determine how to tile them.

- Develop the fundamental time-tiling transformations presented in this research to apply to more advanced Devito stencils.

- Automating general-case time-tiling transformations in Devito, possibly using the suggestions made in subsection 7.2.1.

7.2.1 Automating time-tiling in Devito

The transformations and results presented here serve as a proof-of-concept for time-tiling Devito stencils. However, for users to experience the claimed performance improvements when running more realistic simulations on arbitrary stencil problems, a robust system must be developed which uses the analytical and code generation power of Devito to automatically generate time-tiled stencil loops. In this section we discuss some of the available tools and possible designs that could be used to implement an automatic time-tiling optimization pass in Devito.

Grid size	Time dimension buffering	Auto-tuned blocking (s)	Time-tiling (s)	Improvement	Spatial tile size
256	No	1.033	0.753	27.1%	16
256	Yes	8.178	6.346	22.4%	32
384	Yes	18.929	13.727	27.5%	32

Table 7.1: Runtime results for the best performing time-tiled stencils in each evaluated simulation. ‘Spatial tile size’ refers to the size of the x and y dimensions of the spatial tiles in the time-tiled code. ‘Auto-tuned blocking’ results are the run times of Devito’s own auto-tuned spatial tiling transformation. All data presented here is taken from 6.6, 6.7, 6.8.
Tools

During this investigation, we researched several currently available tools for code generation in the polyhedral model. Each take different approaches to generating code (i.e loops) which scans the points of convex polyhedra and also provide different interfaces and outputs, affecting their suitability for use in automated time-tiling of Devito loops.

- **CLooG**: CLooG (section 2.3) uses the Quillere et al. algorithm [10] to generate loops which iterate over every point in a given union of convex polyhedra (statement domains) according to a given schedule. It provides a command-line interface [8] for producing code according to a specification provided as a specially-formatted text file and offers a number of command line options for controlling the size, complexity and syntax of the generated code. Additionally, CLooG can be used as a C library which gives finer control over CLooG’s options and facilitates programmatic description of arbitrary domains and schedules. Using CLooG as a library also gives direct access to generated code as an AST, which is preferable for further code generation analysis as it avoids working with strings. Being purpose-built for code generation, CLooG is the most attractive option for tiling code generation in Devito when not considering logistical details.

- **isl**: The integer set library (isl) is a C library for describing and manipulating sets of integer points bounded by affine constraints which is primarily developed by Sven Verdoolaege [25]. It is still in development, but isl provides a number of powerful features including dependence analysis, affine scheduling of iteration domains, and AST generation. CLooG uses isl as a polyhedral back-end for manipulating iteration spaces and determining how best to scan them. isl is a comprehensive library with thousands of functions so it is not designed to be a code-generation tool, though it can act as one. The library can be seen as the generalized implementation which a number of other polyhedral tools attempt to specialize and improve on. isl comes with extensive documentation.

- **islpy**: islpy is a set of largely auto-generated Python bindings for isl, and is developed by Andreas Kloeckner [26]. As a wrapper around isl, islpy allows developers to enjoy the naturally expressive syntax of Python along with the power structures of isl in C.
Challenges

Using these tools and developing an automated workflow for producing time-tiled stencil loops in Devito faces a number of challenges technical and conceptual in nature.

- **CLooG**: This report demonstrates clearly that CLooG is capable of generating high-performance time-tiled code for at least Devito’s acoustic wave equation stencil, however we have only demonstrated how to drive CLooG towards this using its command line interface and text-based input files. For efficient, robust interaction between Python-based Devito and CLI/C-based CLooG cannot rely on the creation and parsing of textual problem descriptions and output code, particularly for more complex Devito stencils. CLooG’s API is a more natural choice since it can produce abstract syntax trees, however there is some significant communication infrastructure which would need to be implemented for communicating between Devito and the C API, and translating CLooG’s AST output in C to the AST format used by Devito. The inclusion of CLooG would also create additional dependencies for the Devito project and could potentially complicate the build process/requirements for end users. The PLuTo project (which is largely written in C) shows that CLooG can be used as a code-generation back end for advanced loop optimizations, but makes use of different technologies than Devito.

- **isl and islpy**: Being a C library, isl faces the same interfacing problems as CLooG when considered for automating time-tiling in Devito. isl is not designed primarily as a code generation tool and so may not provide some of the advanced configurations or algorithms employed by CLooG. The size and complexity of isl also poses a significant challenge for a developer looking to use and understand its API. The python wrapper islpy offers a solution to the challenges of interfacing between Devito and isl, but would still be challenging during implementation. Our own experiments with isl following the few published examples for code generation were successful but only when using the ‘helper’ functions provided to simplify construction of domains and schedules using string representation, which is not suitable in an automated optimization context. If the initial challenge of developing a time-tiling workflow using isl functions could be overcome, islpy seems like the most suitable of the described tools for time-tiling Devito stencils.

- **Dependencies**: As well as the technical difficulties of Devito delegating to a polyhedral tool for time-tiling, it is possible that with more advanced applications, data dependen-
cies may pose a greater challenge than they do in the stencils we have evaluated. Our research has made clear the importance of ensuring a time-tiling is legal with respect to a stencil’s data dependencies. The stencils evaluated in this report featured relatively simple, uniform dependencies which were the same in all spatial dimensions. More complex stencils often feature similar dependence structures with increased arithmetic load, however for loops with non-uniform dependencies such as those featured in Devito ‘source’ and ‘receiver’ loops it may be difficult to determine what iteration space transformations are required for time-tiling to be legal. For time-tiling to be applicable to realistic Devito stencils, a solution to problem of tiling the ‘source’ and ‘receiver’ loops must be found.

- **Cost analysis**: The acoustic wave equation stencil considered in our research has its performance bounded by the memory bandwidth of the architecture it is being run on. It has a relatively low arithmetic intensity meaning that more load is placed on memory transfer resources than on arithmetic units, thus creating an opportunity for the stencil’s run time to be decreased by transformations which improve data locality (such as tiling). However other stencil have much higher arithmetic intensities, meaning their run time is bounded by the amount of arithmetic resources available rather than memory bandwidth. In this case tiling transformations may not be very profitable and could be detrimental to stencil performance, highlighting the need for some heuristic or process by which Devito determines if time-tiling transformations are worthwhile. This may not be very challenging given Devito’s understanding of the arithmetic and memory requirements for a given stencil and a user’s understanding of their hardware limitations.

Implementation

Putting aside the technical details of communication between Devito and a polyhedral tool used for generating time-tiled loops, we outline a possible high-level pathway for implementing automated time-tiling in Devito. Before beginning implementation of an time-tiling optimizing pass, it is important to carry out further experimental work to ensure the promising run time improvements presented in this research can be reproduced in more advanced Devito stencils.

1. Investigate whether time-tiling transformations are feasible for different types of stencil code and judge whether time-tiling is worth automating for the general case.
2. Implement an optimizing pass using the Devito Loop Engine which retrieves the following (readily available) information from Devito’s AST representation that can be used to drive a code-generation tool;

- Whether a loop should be vectorized and thus not tiled.
- Explicit bounds for all stencil loops being tiled to prevent code explosion which can occur when using parameterized polyhedra.
- For more complex loops it may be necessary to identify or derive conditionals which partition their iteration space and produce a representation of these conditionals in terms of the loop iterators so that they can be communicated to the code-generation tool.
- The dependence structure of the stencil. In particular, for uniform dependencies like those in the AWE stencil, we require the dependencies which have ‘the most negative’ dependence distance in each dimension. For time-tiling to be legal, each dimension should be skewed by the corresponding distance so that all dependencies in the tiled domain are lexicographically positive.
- Whether time dimension buffering is enabled.
- A representation of iterator names or identifiers for tracking the tiling parameters and stencil information pertaining to each loop.

3. Depending on the tiling configurations specified by the user or Devito’s settings, additional information should be attached to each domain which specifies the tile size and skewing factor required.

4. This data can be passed from the optimizing pass to an interfacing component which uses it to prepare domains and schedules in the accepted format of a polyhedral code-generation tool according to the tiling parameters and the information obtained from the AST. This component delegates to the tool to generate a time-tiled AST and handles parsing of input/output before returning the transformed AST to the DLE.

5. The time-tiling pass should augment the any references to loop iterators in the stencil body to correct for any skewing applied to their loop domains. An example of this can be seen in 5.7 and the subtraction of \texttt{skew} from all loop indices in the body.
6. The optimizing pass updates its AST with the new, time-tiled structure.
Bibliography

[1] W. Pugh, “Uniform techniques for loop optimization,” in *Proceedings of the 5th International Conference on Supercomputing*, ICS ’91, (New York, NY, USA), pp. 341–352, ACM, 1991.

[2] N. Kukreja, M. Louboutin, F. Vieira, F. Luporini, M. Lange, and G. Gorman, “Devito: automated fast finite difference computation,” *CoRR*, vol. abs/1608.08658, 2016.

[3] A. Aho, R. Sethi, and J. Ullman, *Compilers: Principles, Techniques, and Tools*. Addison-Wesley series in computer science and information processing, Addison-Wesley Publishing Company, 1986.

[4] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam, *Putting Polyhedral Loop Transformations to Work*, pp. 209–225. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

[5] D. McCormick, “Time-tiled devito stencil codes.” https://github.com/dymcc/opesci-meng/tree/master/codegen. Accessed: 2017-06-18.

[6] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures,” in *Proceedings of the 2008 ACM/IEEE Conference on Supercomputing*, SC ’08, (Piscataway, NJ, USA), pp. 4:1–4:12, IEEE Press, 2008.

[7] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practical automatic polyhedral parallelizer and locality optimizer,” *SIGPLAN Not.*, vol. 43, pp. 101–113, June 2008.

[8] C. Bastoul, “Generating loops for scanning polyhedra: Cloog users guide,” tech. rep., 2002.
[9] U. Bonduhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan, “Automatic transformations for communication-minimized parallelization and locality optimization in the polyhedral model,” in *Proceedings of the Joint European Conferences on Theory and Practice of Software 17th International Conference on Compiler Construction*, CC’08/ETAPS’08, (Berlin, Heidelberg), pp. 132–146, Springer-Verlag, 2008.

[10] F. Quilleré, S. Rajopadhye, and D. Wilde, “Generation of efficient nested loops from polyhedra,” *International Journal of Parallel Programming*, vol. 28, no. 5, pp. 469–498, 2000.

[11] A. Hartono, M. Manik, A. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy, B. Norris, and J. Ramanujam, “Primetile: A parametric multi-level tiler for imperfect loop nests.” Accessed: 2017-06-18.

[12] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson, “The pochoir stencil compiler,” in *Proceedings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures*, SPAA ’11, (New York, NY, USA), pp. 117–128, ACM, 2011.

[13] “Intel c++ compiler 17.0 developer guide and reference.” https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide. Accessed: 2017-06-18.

[14] M. Lange, N. Kukreja, M. Louboutin, F. Luporini, F. Vieira, V. Pandolfo, P. Velesko, P. Kazakas, and G. Gorman, “Devito: Towards a generic finite difference DSL using symbolic python,” *CoRR*, vol. abs/1609.03361, 2016.

[15] T. Sun, “Opesci-fd: Automatic code generation package for finite difference models,” *arXiv preprint arXiv:1605.06381*, 2016.

[16] “x87 and sse floating point assists in ia-32: Flush-to-zero (ftz) and denormals-are-zero (daz),” October 2008. Accessed: 2017-06-18.

[17] “Openmp loop scheduling.” https://software.intel.com/en-us/articles/openmp-loop-scheduling, August 2014. Accessed: 2017-06-18.

[18] “Introduction to intel advanced vector extensions,” June 2011. Accessed: 2017-06-18.
[19] S. Verdoolaege, “Presburger formulas and polyhedral compilation v0.02.” https://lirias.kuleuven.be/handle/123456789/523109, January 2016. Accessed: 2017-06-18.

[20] T. Grosser, “islplot.” https://github.com/tobig/islplot. Accessed: 2017-06-18.

[21] J. Xue, “On tiling as a loop transformation,” Parallel Processing Letters, vol. 07, no. 04, pp. 409–424, 1997.

[22] Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual, June 2016.

[23] “Intel thread affinity interface.” https://software.intel.com/en-us/node/522691. Accessed: 2017-06-18.

[24] J. McAlpin, “Stream: Sustainable memory bandwidth in high performance computers.” https://www.cs.virginia.edu/stream/. Accessed: 2017-06-18.

[25] isl Development Team, “Integer set library.” http://isl.gforge.inria.fr/. Accessed: 2017-06-18.

[26] A. Kloeckner, “Welcome to islpy’s documentation!” https://documen.tician.de/islpy/. Accessed: 2017-06-18.