Iron sulphates production being polarized by the direct and alternating currents

Bayeshova A. K.¹, Bayeshov A.², Zhumabay F. M.¹, Shakenova M. Sh.¹

¹Al-Farabi Kazakh National University, Almaty
²JSC Institute of Fuel, Catalysis and Electrochemistry named after D.V. Sokolsky, Almaty
Kazakhstan

Received: 07 October 2019 / Peer reviewed: 14 October 2019 / Accepted: 01 November 2019

Abstract. The process of iron oxidation in the sulfate electrolytes was studied by the method of electrochemical polarization by the steady and transient currents. Initially, in the first electrolyzer, the iron electrodes were oxidized under the influence of alternating current. The results of iron oxidation in the first electrolyzer were monitored by determining the weight loss of the iron electrodes. An almost rectilinear increase in the mass of iron is established to be observed, which passed into the solution in the form of Fe²⁺ ions when the current density changes in the range of 80-400 A / m². The current efficiency is close to 100%, and sometimes exceeds 100%, since the chemical dissolution of iron in sulfuric acid also occurs simultaneously. The iron sulfate (II) can be obtained by evaporation of the solution. After that, the sulfate solution containing iron ions (II) was sent to the second electrolyzer, in which the oxidation of iron (II) to iron (III) was carried out under the direct current. The electrode spaces were separated by an MA-40 anion exchange membrane. Over 90% of iron (II) was demonstrated to be transferred into the trivalent state within 1 hour in the second electrolyzer at a current density of 120 A / m². A change in the current density to 600 A / m² leads to an increase in the oxidation state to 97.5%, i.e. iron ions (II) are almost completely oxidized under the specified conditions. As a result of the experiments, an electrochemical method for producing iron sulfate (III) was developed.

Keywords: iron, electrolyte, sulfate, electrolysis, alternating current.

Introduction

Iron forms many compounds being an active element. Its compounds are widely used in various branches of technology and industry. Specifically, there is a research devoted to the development of a method for producing sulfate and iron oxide nanoparticles: when silica gel and aluminum oxide are impregnated with Fe (II) sulfate solutions, ferric hydroxide and oxysulfate nanoparticles are formed on the surface of silica gel, and iron oxide nanoparticles on the surface of aluminum oxide [1, 17,
18]. To say more, iron compounds, namely sulfates, are used in water purification as a coagulant [2-4]. In medicine, various compounds containing both ferrous and ferric iron are also used [5,6]. Iron sulfate (III) can be used as a mordant for dyeing wool and as a background for the enrichment of sour coal. Acidic solutions are used as an oxidizing medium in the extraction of useful components out of ores [7]. Iron ions (III), being active oxidizing agents, are widely used in the technology of subsurface leaching of uranium, although the authors of [8] note that the use of sulfate solutions of ferric iron is associated with the problem of its regeneration. Nevertheless, the researchers [9] used a solution of ferric iron along with the ammonium sulphate and sodium peroxoborate in the study of the comparative sulfuric acid catalytic oxidation of uranium (IV) to uranium (VI).

An existing and frequently used method for producing ferric sulfate is that, first, metallic iron is chemically dissolved in sulfuric acid when heated to produce ferrous ions [10]. Further, the iron ions (II) are oxidized in the presence of nitric acid, while the following reactions proceed:

\[
\text{Fe} + \text{H}_2\text{SO}_4 \rightarrow \text{FeSO}_4 + \text{H}_2
\]

\[
2\text{FeSO}_4 + \text{H}_2\text{SO}_4 + 2\text{HNO}_3 \rightarrow \text{Fe}_2(\text{SO}_4)_3 + 2\text{NO}_3^{-} + 2\text{H}_2\text{O}
\]

Grinding of iron to a state of sawdust is noted to be required for a more efficient process, in addition, nitrogen dioxide, a substance that is uncommon for the environment is released as a result of the reaction. This is result in the method has certain disadvantages. Iron sulfate (III) is also obtained by dissolving iron oxide (III) in 75-80% sulfuric acid. In addition, iron sulfate (III) solutions can be obtained by oxidation of pyrites with nitric acid:

\[
2\text{FeS}_2 + 10\text{HNO}_3 = \text{Fe}_2(\text{SO}_4)_3 + \text{H}_2\text{SO}_4 + 10\text{NO}_3^{-} + 4\text{H}_2\text{O}
\]

There is also a method for producing iron sulfate (III), which serves as a coagulant, by treating pyrite cinder with hot sulfuric acid. The sifted cinder must first be treated with concentrated nitric acid (in the amount of 8-10 kg per 1 g of coagulant). The oxidized cinder is mixed and kept before cooking the coagulant for 5-6 hours. All these methods are described in the monograph of Pozin M.Y. [7].

In order to increase the degree of conversion of ferrous iron to ferric, the authors of [11] propose adding a catalyst in the form of iron tetrasyulfophthalocyanine to the solution. The essence of the method lies in the fact that the catalyst is added to the sulfuric acid solution of iron sulfate (II) on carbon fabric and the mixture is stirred in a stream of oxygen. The degree of conversion reaches 83%. Using an anode made of graphite or platinum, it is proposed to oxidize iron sulfate (II) electrochemically at a temperature of 80°C [12]. The current yield of iron oxidation (II) to iron (III) reaches 95.8%. Considering that, iron sulfates are most widely used in various branches of technology and industry, as well as in medicine, but the existing methods of their producing are imperfect and complex, we believe that the development of new methods for producing iron compounds is an urgent problem. In this regard, the aim of our study is to develop a two-stage method for producing iron sulfate (III) by polarizing iron electrodes, first with alternating current of industrial frequency and then anodic oxidation of the resulting solution on a lead electrode.

Testing method

A set was assembled to conduct electrolysis with alternating and direct current, the circuit diagram of which is provided in Figure 1. The set consists of 1 and 2 electrolyzers (conventionally named “the first” and “the second” electrolyzers). The first electrolyzer and the cathode space of the second electrolyzer are filled with sulfate electrolyte (4). Iron (3) was used as electrodes in the first electrolyzer, a lead electrode (5) was used as the anode, and titanium (6) was used as the cathode. In the second electrolyzer, interelectrode spaces are separated by an MA-40 anion exchange membrane (7). We used LATR (8) to obtain alternating current, and as a constant current source - Matrix MPS - 3003D "(9). An alternating current ammeter E 538 (10) and a direct current ammeter (11) were used to measure the current strength.

A titanium plate cut from titanium sheets of the VT-1-0 brand was used as the electrodes in the experiments, iron of St. 3 brand and lead of C-1. Before electrolysis, the electrodes were cleaned with emery, thoroughly washed with distilled water, wiped with filter paper, and degreased with ethyl alcohol. A sulfuric acid of “chemically pure” was used for an electrolyte solution to be prepared. In the first electrolyzer, the concentration of sulfuric acid was equal to 250 g / dm³. Iron electrodes were polarized by industrial alternating current with a frequency of 50 Hz at various current densities. After dissolution of the iron electrodes by alternating current, the electrolyte from the first electrolyzer was fed into the anode space of the second electrolyzer, in which ferrous iron is oxidized to a trivalent state during anodic polarization. At the end of the experiment, the resulting solution was evaporated, the precipitated crystals were dried and identified by chemical, X-ray phase and X-ray fluorescence methods.
Results and discussion

When the electrodes are polarized in a sulfuric acid solution by alternating current in the first electrolyzer (1), the iron oxidation reaction takes place:

$$\text{Fe} - 2\text{e}^- \rightarrow \text{Fe}^{2+} \quad E^0 = -0.44 \text{ B} \quad (1)$$

This reaction proceeds in the anode half-cycle of the alternating current.

As the previous studies have established [13, 14], being polarized by alternating current, a targeted course of electrode processes is possible despite the fact that the current direction changes with a frequency of 50 Hz, i.e. within a second, each electrode 50 times becomes either the anode or the cathode. But unlike those processes that occur during polarization by direct current, in this case, the iron manages to oxidize in the anode half-cycle only to the divalent state. In the cathode half-cycle of alternating current, due to the low value of the overvoltage of ion recovery, hydrogen gas is released on the surface of the iron electrodes. Moreover, due to the negative value of the potential of the Fe (II) \leftrightarrow Fe0 system, the reverse cathodic reduction of iron ions (II) to the state of elements does not occur. The processes are repeated at a frequency of 50 Hz in cycle. Thus, in each anode half-cycle, iron electrodes dissolve according to the reaction (1).

A sulfate solution containing ferrous ions formed in the first electrolyzer (1) was fed into the anode space of the second electrolyzer (2), in which an MA-40 anion exchange membrane separated the electrode spaces. The membrane serves to prevent the reverse reduction of iron ions (III) at the cathode. On the surface of the anode from lead, ferrous ions are oxidized to a trivalent state:

$$\text{Fe}^{2+} - \text{e} \rightarrow \text{Fe}^{3+} \quad E^0 = -0.77 \text{ B}$$

The results of iron oxidation in the first electrolyzer were monitored by determining the weight loss of the iron electrodes. In the second electrolyzer, the amount of iron ions (III) formed was determined by the photocolorimetric analysis method [15]. The dependences of the decrease in the mass of the iron electrodes upon polarization by alternating current, and the current efficiency of their dissolution on the current density in the first electrolyzer (Fig. 2) and the dependence of the oxidation degree of iron ions (II) to iron ions (III) on the current density upon polarization with the direct current in the second electrolyzer are established (figure 3).

When the current density changes within 80–400 A/m2, an almost rectilinear increase in the mass of iron is observed, which transferred to the solution as Fe$^{2+}$ ions (Fig. 2, curve 1). The current efficiency (curve 2) is close to 100%, and sometimes exceeds 100%, since the chemical dissolution of iron in sulfuric acid also occurs simultaneously:

$$\text{Fe} + 2\text{H}^+ \rightarrow \text{Fe}^{2+} + \text{H}_2$$

Additional experiments were performed without current polarization with the same...
electrodes. It was found that at room temperature in sulfuric acid with a concentration of 200 g / dm³, the iron electrodes are dissolved chemically and within 30 minutes, the mass loss of the two electrodes does not exceed 0.0012 g, i.e. 1.2 mg. In this case, the concentration of sulfuric acid has a slight effect on the change in mass of the electrodes (Table).

A table Change in the mass of iron electrodes when dissolved in the sulfuric acid depending on its concentration with no current imposing

H₂SO₄, g/dm³	50	100	150	200
Δm, mg (1-electrode)	0.3	0.4	0.5	0.6
Δm, mg (2-electrode)	0.3	0.4	0.5	0.6

The sulfate solution obtained in the first electrolyzer is noted to be subjected to evaporation in order to obtain iron sulfate (II) as may be required. The testing carried out in the second electrolyzer with the same mass of Fe²⁺ ions provided that even at a current density of 120 A / m² for 1 hour more than 90% of iron (II) goes into the trivalent state. A change in the current density to 600 A / m² leads to an increase in the oxidation state to 97.5%, i.e. iron ions (II) are almost completely oxidized under the indicated conditions (Fig. 3). This is apparently due to the fact that, with an increase in the current density at the electrodes, according to the Tafel equation, the anode potential shifts in a more positive direction, i.e. more favorable conditions are created for the oxidation of iron (II).

Figure 3 Influence of the tocan density on the degree of iron oxidation (II) being polarized by direct current (mFe²⁺ = 104.1 mg, τ = 1 hour)

As the studies provide, an increase in the density of the token electrodes leads to an increase in the rate of the reaction, and accordingly, the efficiency of the process is intensified. We note that by adjusting the current density in the first electrolytic cell, respectively, in the second electrolytic cell, it is possible to control the rate of formation of the target product.

The sulfate solution containing iron ions (III) was evaporated after electrolysis to form a viscous pasty mass (according to the procedure described in [10]), while its temperature reaches 120°C. The mass was cooled to 45-50°C, the precipitated crystals were sucked off on a Buchner funnel and dried at a temperature of 65°C. The obtained crystals were identified by X-ray phase analysis (Fig. 4), X-ray fluorescence (Fig. 5) and chemical analysis. It was found that the composition of the compound corresponds to the formula: Fe₂(SO₄)₃ · 9H₂O.

Figure 4 X-ray diffraction pattern of iron sulfate (III)

Figure 5 X-ray fluorescence analysis of iron sulfate

Summarizing the results of testing, when the iron electrodes being polarized with the alternating current, the iron was found to be oxidized to a divalent state, and iron sulfate (II) is formed in the solution. With further polarization of the resulting solution by direct current, the iron ions (II) are oxidized to a trivalent state. Based on the results of the study, an electrochemical method for producing iron sulfate (III) was developed [16]. A patent of the Republic of Kazakhstan for a utility model defends the method. The differences and the advantages of the proposed method are that debris, scraps of iron, which are wastes from various technological
processes are used as the feedstock. There is no need to grind metal, making the process easier. The process takes place at room temperature; working conditions are improved, because there is no electrolyte vapor. In addition, there is no need to use nitric acid, respectively, the harmful effects of toxic gas - nitrogen dioxide on the environment are eliminated, and the target product is not contaminated with the nitrate anions.

Acknowledgement
The authors are grateful to A. Brodsky - to the head of the laboratory of physicochemical analysis methods, D.V.Sokolskiy Institute of Fuel, Catalysis and Electrochemistry as well as to Researcher at the Laboratory of Physical Analysis Methods, Al-Farabi Kazakh National University for carrying out x-ray phase and x-ray fluorescence analysis of the obtained compound.

Cite this article as: Bayeshova A. K., Bayeshov A., Zhumbay F. M., Shakenova M. Sh. Iron sulphates production being polarized by the direct and alternating currents // Kompleksnoe Ispol'zovanie Mineral'nogo Syr'a (Complex Use of Mineral Resources). 2019. 4 (311). P.: 57–63. https://doi.org/10.31643/2019/6445.38
ЛИТЕРАТУРА

[1] Бухтиярова Г.А., Мартынов О.Н., Якушкин С.С., Шуваева М.А., Баюкло О.А. Состояние железа в наночастицах, полученных методом пропитки силикагеля и оксида алюминия раствором FeSO$_4$ // Физика твердого тела, 2010. – Т. 52. – Вып. 4. – С.771-781.

[2] Кузубова Л.И., Морозов С.В. Очистка нефтесодержащих сточных вод // Аналитический обзор / СО РАН. ГПНТБ, НИОХ. – Новосибирск, 1992, 72 с.

[3] Мамченко А.В., Дешко И.И. Пустовит В.М., Якимова Т.И. Применение коагулянтов, содержащих железо, в процессах очистки природных и сточных вод // Химия и технология воды. 2006. № 4. – С.342-355

[4] Филатова Е.Г. Обзор технологий очистки сточных вод от ионов тяжелых металлов, основанных на физико-химических процессах // Известия вузов. Прикладная химия и биотехнология, 2015. №(13). – С.97-109.

[5] Трошин А.Н., Нечаева А.В. Препараты железа в медицине и ветеринарии вчера, сегодня и завтра // Научный журнал КубГАУ, № 28(4), апрель 2007 г. – С.1-10.

[6] Ulmans Encyclopedia of Industrial Chemistry 6th ed., 2002, WildermuthE. Iron(III)joumpds for the Treatment of Anemia.

[7] Позин М.Е. Технология минеральных солей (удобрений, пестицидов, промышленных солей, окислов и кислот, часть I, издание 3, переработанное и дополненное при участии Л.З.Арсеньевой, Ю.Я. Каганович, Г.С.Клебанова и др. / Изд-во «Химия». Ленинградское отделение, 1970. – 792 с.

[8] Балбанов Д.С., Тен О.А., Жаппар Н.К., Шайхутдинов В.М., Ханинов Р.А. Биотехнологические методы регенерации трехвалентного железа и сорбции редких и редкоземельных металлов из циркулирующих растворов подземных скважин // Комплексное использование минерального сырья. – 2017. – № 4. – С.21-26. https://doi.org/10.31643/2018/166445

[9] Kenzhaliyev B.K., Berkinbayeva A.N., Losymbayeva Z.D., Sharipov R.Ch., Chukmanova M.T. Extraction of uranium from uranium-containing raw materials // Комплексное использование минерального сырья . – 2016. - № 3. – С.29-34. https://doi.org/10.31643/2018/166445

[10] Ярккин Ю.В., Ангелов В.И. Чистые химические вещества. М.Химия, 1974. – 104-105 с.

[11] Борисенкова С.А., Позин В.С., Денисова Е.П., Калия О.Л., Лукьянец Е.А., Белов М.В., Деркачева В.М. и Иванов В.А. Способ получения сульфата трехвалентного железа // А.С.СССР № 1604743. – Опубл. 07.11.1990. Бюл.№ 41.

[12] Смоляг Н.Л., Жарский И.Н., Мартинович В.Л. и Капуцкий Ю.Н. Способ получения сернокислого окиси железа // A.S.SSR № 1155539. – Опубл. 07.04.1990. Бюл.№ 13.

[13] Баешов А., Баешова А.К. Электрохимические способы получения неорганических веществ. LambertAcademicPublishing. 2012. 72 с.

[14] Баешов А. Электрохимические процессы при поляризации нестационарными токами. Национальный доклад по науке «О состоянии и тенденциях развития мировой и отечественной науки» // Известия НАН РК (серия химии и технологии), 2011. – Н. 2. С.3-23.

[15] Степин В.В., Сылкаева Е.В., Курбатова В.И., Ханна Т.Л., Поносов В.И. Анализ цветных металлов и сплавов - москва: металлургия, 1965 - c.188

[16] Баешов А., Баешова А.К., Жұмабай Ф.М., Шакенова М.Ш. Способ получения сульфата трехвалентного железа // Патент РК № 4329 на полезную модель (получен 27.09.2019 по заявке № 2019/0254.2 от 18.03.2019).

[17] Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol'zovanie Mineral'nogo Syr'a (Complex Use of Mineral Resources). – 2019. – №3 (310). -Page: 64-75. https://doi.org/10.31643/2019/6445.30

[18] Bayeshov A.B., Makhanbetov A.B. Direct reduction of selenite ions from a hydrochloric acid solution of uranium from uranium-containing raw materials // Kompleksnoe Ispol'zovanie Mineral'nogo Syr'a (Complex Use of Mineral Resources). – 2019. – №3 (310). – Р. 27-33. https://doi.org/10.31643/2019/6445.25

REFERENCES

[1] Bukhtiyarova G.A., Mart'yanov O.N., Yakushkin S.S., Shuvayeva M.A., Bayukol O.A. Sostoyanie zheleza v nanochastisakh, poluchenikh metodom propitki silykagelya i oksida alyuminya rastvorom FeSO$_4$ // Fizika tverdogo tela, 2010. T.52. – Vyp. 4. – S.771-781. (in Russ.).

[2] Kuzubova L. I., Morozov S. V. Ochistka nefte soderzhashchikh stochnykh vod // Analiticheskiy obzor / SO RAN. GPNTB, NIOKH. Novosibirsk. 1992. 72 (in Russ.)

[3] Mamchenko A. V., Deshko I. I. Pustovit V. M., Yakimova T. I. Primenenii ekogulyantov, soderzhashchikh zhelezo, v protsessakh ochistki pri rodnikh I stochnykh vod // Khimiya technologii vody, 2006. № 4. T.28. 342-355 (in Russ.).

[4] Filatova Ye. G. Obzor teknologii ochistki strochnyk vo od ontion tyazhelykh metallov, osnovannykh na fiziko-khimicheskikh protessakh // Izvestiya vuzov. Prikladnaya khimiya I biotekhnologiya. 2015. № 2(13). 97-109 (in Russ.).
[5] Troshin A. N., Nechayeva A. V. *Preparaty zheleza v meditsineIveterinariivchera, segodnyaizavtra* // Nauchnyyzhurnal Kub GAU. № 28(4) apr'el 2007. 1-10. (in Russ.)

[6] Ulmans Encyclopedia of Industrial Chemistry 6th ed., 2002. Wildermuth E. Iron Compounds for the Treatment of Anemia. (in Eng.)

[7] Pozin M. Ye. *Tekhnologiya mineral'nykh soley* (udobreniy, pestitsidov, promyshlennykhsoley, okislov I kislot, chast' I, izdaniye 3, pererabotannoye I dopolnennoyepri uchastii L. Z. Arsen'yevoy, Yu. Ya. Kaganovich, G. S. Kleanovai dr. / Izd-vo «Khimiya»). Leningradskoye otdeleniye. 1970. 792 (in Russ.).

[8] Balpanov D. S., Ten O. A., Zhappar N. K., Shaykhutdinov V. M., Khannanov R. A. *Biotekhnologicheskie metody regeneratsii trekhvalentnogo zheleza I sorbtii redkikh I redkozemel'nykh metallov iztatarskiryashchikh rastvorov podzemno-skvazhinnoy dobychi urana // Kompleksnoe Ispol'zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). 2017. № 4. 21-26 (in Russ.). https://doi.org/10.31643/2018/166445

[9] Kenzhaliyev B. K., Berkimbayeva A. N., Losymbayeva Z. D., Sharipov R. Ch., Chukmanova M. T. *Extraction of uranium from uranium-containing raw materials // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). 2016. № 3. 29-34 (in Eng.). https://doi.org/10.31643/2018/166445

[10] Karyakin Yu. V., Angelov I. I. *Chistyye khimicheskiye veshchestva, M. Khimiya, 1974. 104 -105 (in Russ.).

[11] Borisenkova S. A., Poziy V. S., Denisova Ye. P., Kaliya O. L., Luk'yantenets Ye. A., Belov M. V., Derkacheva V. M., Ivanova V. A. *Sposob polucheniya sulpata trekhvalentnogo zheleza // A.S.SSSR № 1604743. Opubl. 07.11.1990. Byul.№ 41 (inRuss.).

[12] Smolyag N. L., Zharskiy I. N., Martinovich V. L. i Kaputskiy Yu. N. *Sposob hpolucheniya sernokislogo okisnogo zheleza// A.S.SSSR № 11555393. – Opubl. 07.04.1990. Byul.№ 13 (in Russ.).

[13] Bayeshov A., Bayeshova A.K. *Elektro khimicheskiye sposoby polucheniyane organicheskikh veshchestv. Lambert Academic Publishing. 2012. (in Russ.).

[14] Bayeshov A. *Elektrokhimicheskiye protsessy pri polyarizatsii nestatsionarnymi tokami. Natsional’nyy doklad po naume «O sostoyanii i tendentsiyakh razvitiya mirovoi i otechestvennoy nauki // Izvestiya NAN RK (seriya khim I itekhnologii). 2011. № 2. 3-23 (inRuss.).

[15] Stepin V. V., Silayeva Ye. V., Kurbatova V. I., Kharova T. F., Barbash T. L., Ponomov V. I. *Analiz ztsvetnykh metallov I splavov* - Moskva: Metallurgiya, 1965. 188 (in Russ.).

[16] Bayeshov A., Bayeshova A.K., Zhmabay F.M., Shakenova M.S.H. *Sposob polucheniya sulpata trekhvalentnogo zheleza // Patent RK № 4329 na poleznuyu model’ (poluchen 27.09.2019 po zayavke № 2019/0254.2 ot 18.03.2019). (in Russ.)

[17] Kenzhaliyev B. K. Innovative technologies providing enhancement of nonferrous, precious, rare and rare earth metals extraction // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). -Page: 64-75. (In Eng.). https://doi.org/10.31643/2019/6445.30

[18] Bayeshov A. B., Mokhanbetov A. B. Direct reduction of selenite-ionsfrom a hydrochloric acid solution of copper (II) chloride with selenium powder formation // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a (Complex Use of Mineral Resources). – 2019. – №3 (310). – P. 27-33 (In Eng.). https://doi.org/10.31643/2019/6445.25