Genetic Variations in TERT-CLPTM1L Genes and Risk of Lung Cancer in Chinese Women Nonsmokers

Cheng Li¹,², Zhihua Yin¹,², Wei Wu¹,², Xuelian Li¹,², Yangwu Ren¹,², Baosen Zhou¹,²*
¹ Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China, ² Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, China

Abstract

Background: The TERT gene is the reverse transcriptase component of telomerase and is essential for the maintenance of telomere DNA length, chromosomal stability and cellular immortality. CLPTM1L gene encodes a protein linked to cisplatin resistance, and it is well conserved and express in various normal or malignant tissues, including lung.

Methods: To test this hypothesis, we genotyped for two significant SNPs TERT-rs2736098 and CLPTM1L-rs4016981 in a case-control study with 501 cancer cases and 576 cancer-free controls in Chinese nonsmoking population. Information concerning demographic and risk factors was obtained for each case and control by a trained interviewer. Gene polymorphisms were determined by TaqMan methodology.

Results: We found that the homozygous variant genetic model of TERT gene was associated with a significantly increased risk of lung cancer with adjusted OR of 1.72(95%CI = 1.19–2.51, P = 0.004 for heterogeneity). The joint effect of TERT and CLPTM1L increased risk for lung cancer with adjusted OR is 1.31(95%CI = 1.00–1.74, P = 0.052 for heterogeneity).

Conclusion: Genetic variants in TERT and CLPTM1L may affect the susceptibility of lung cancer, especially adenocarcinoma in Chinese women nonsmokers.

Background

Worldwide, cancer is one of the most leading cause of cancer-related deaths. Most types of cancer are attributed to gene-environment interaction effect. A large number of surveys have focused on gene polymorphism and the cancer susceptibility. In addition to several types of inherited tumor, most sporadic cases is still undefined. The latest studies pay attention to telomerase reverse transcriptase(TERT), cleft lip and palate transmembrane 1-like(CLPTM1L) gene variation which locus at chromosome 5p15.33. Many genome-wide association studies(GWAS) of cancer have been reported and provided that the TERT-CLPTM1L genomic region associated the risk of lung cancer. In most of studies, the main of cases and controls were cigarette smokers that contained for the sake of the abnormally express of the telomere in malignant cells such as most of tumor cells. However this phenomenon have not revealed in health tissue or cells [6]. CLPTM1L gene encodes a protein linked to cisplatin resistance and it is well conserved and express in various normal or malignant tissues, such as skin, lung, breast, ovarian cervical [7].

Previous studies reported that TERT gene and CLPTM1L gene associated to the risk of many type of cancers. Recently, two genome-wide association studies have identified the same susceptible region for lung cancer. Among these sites, rs2736098 which locus in TERT gene has been identified the susceptible. Simultaneously, rs401681 are in a region of high linkage disequilibrium (LD) that includes the promoter regions of TERT and the entire coding region of the CLPTM1L gene also reported a lot. To test this hypothesis, we genotyped for two significant SNPs TERT-rs2736098 and CLPTM1L-rs4016981 in a case-control study with 501 cancer cases and 576 cancer-free controls in Chinese non-smoking population.

length, chromosomal stability and cellular immortality [4,5]. Telomerase activity was found in 85%–90% of human cancers. Furthermore, telomere length in most tumors would be maintained for the sake of the abnormally express of the telomere in malignant cells such as most of tumor cells. However this phenomenon have not revealed in health tissue or cells [6]. CLPTM1L gene encodes a protein linked to cisplatin resistance and it is well conserved and express in various normal or malignant tissues, such as skin, lung, breast, ovarian cervical [7].
Materials and Methods

Study Subject
We obtained ethics approval for our study. The name of the ethics committee is China Medical University Ethics Committee. We also upload a formal written waiver of ethics approval to your system.

This was a hospital-based case-control study in the northeast of China. All subjects were unrelated ethnic Han Chinese. There were no restriction of age and histology for the recruitment and the exclusion criteria of the cases included metastasized cancer, previous cancer and previous radiotherapy or chemotherapy. A total of 501 lung cancers cases were obtained from 2002 to 2010 at the first affiliated Hospital of China Medical University and Liaoning cancer histopathologically confirmed primary lung cancer. The 576 cancer-free controls were selected from the same hospital or present history of malignant disease during the same time period as the cases were recruited and they were frequency matched to case subjects by age (±5 years). Controls suffered mainly from bronchitis, pulmonary disease and emphysema. All individuals included in this study were only enrolled after providing written informed consent to participate.

Genotype Analysis

Genomic DNA was extracted from a leukocyte pellet using proteinase K digestion followed by phenol-chloroform extraction and ethanol precipitation as described previously [8]. SNPs in both TERT-rs2736098 and CLPTM1L-rs401681 were genotyped by investigators blinded to case-control status in order to avoid any genotyping bias, using TaqMan methodology and read with the Sequence Detection Software on an Applied Biosystems 7500 FAST Real-Time PCR System according to the manufacturer’s instructions (Applied Biosystems, Foster City, CA). PCR TaqMan primers and probes were supplied by Applied Biosystems. Each plate included one negative control (no DNA), duplicated commercial positive controls (TaqMan Control Genomic DNA; Applied Biosystems). Amplification was done under the following conditions: 95°C for 10 min followed by 47 cycles of 92°C for 30s and 60°C for 1 min. To validate the genotyping results, 10% randomly selected samples were duplicated and all duplicated were matched.

Statistical Analysis

Two-sided x^2 test was used to examine differences in the distributions of demographic characteristics, selected variables and genotypes among cases and controls. The associations of genotypes of TERT and CLPTM1L with risk of lung cancer were estimated by computing the odds ratios (ORs) and 95% confidence intervals (CIs) from both univariate and multivariate logistic regression models in case-control analysis. The Hardy-Weinberg equilibrium for each SNP was tested with multivariate logistic regression models in case-control analysis.

95% confidence interval (CIs) from both univariate and were estimated by computing the odds ratios (ORs) and Their distributions of demographic characteristics, selected variables and genotypes among cases and controls. The associations of TERT and CLPTM1L with risk of lung cancer and genotypes were estimated by computing the odds ratios (ORs) and their 95% confidence intervals (CIs) from both univariate and multivariate logistic regression models in case-control analysis. The Hardy-Weinberg equilibrium was tested with multivariate logistic regression models in case-control analysis.

Table 1. Characteristics of lung cancer cases and controls.

Characteristics	Cases (n = 501)	Controls (n = 576)	P value*
Female	501	576	
Mean age (±SD)	56.7±11.6	56.2±13.0	0.471
Histological type			
Adenocarcinoma	334		
Squamous cell carcinoma	90		
Other	77		
smoking status			
never smoker	501	576	

*Two-sided x^2 test. doi:10.1371/journal.pone.0064988.t001
Table 2. Genotype frequencies of the TERT and CLPTM1L polymorphisms among lung cancer cases and controls and their associations with risk of lung cancer.

Genotypes	Cases*	Controls*	OR(95%CI)	P value
TERT rs2736098				
CC	173(37.0)	227(41.7)	1.00	
CT	207(44.2)	250(46.0)	1.09(0.82–1.42)	0.884
TT	881(8.8)	67(12.3)	1.72(1.19–2.51)	0.004
CT+TT	295(63.0)	317(58.3)	1.22(0.95–1.57)	0.123
Trichotomize combineda	411(8.8)	58(10.8)	1.00	
CT	205(44.2)	234(43.7)	1.26(0.81–1.96)	0.772
CC	218(47.0)	244(45.5)	1.24(0.80–1.93)	0.018
CT+CC	423(91.2)	478(89.2)	1.25(0.82–1.91)	0.009
C allelesb	0.401	1.08(0.90–1.31)		

Table 3. The effect of the SNPs rs2736098 and rs401681 in the region on lung cancer risk in pathological subgroup.

Genotypes	Cases	Controls	OR(95%CI)	P value
TERT rs2736098				
AC	108(34.0)	227(41.7)	1.00	
CT	140(44.2)	250(46.0)	1.19(0.87–1.62)	0.001
TT	69(21.8)	67(12.3)	2.17(1.44–3.25)	0.001
CT+TT	209(66.0)	317(58.3)	1.40(1.05–1.86)	0.001
T allelesb		1.43(1.17–1.75)		

Table 3. The effect of the SNPs rs2736098 and rs401681 in the region on lung cancer risk in pathological subgroup.

Genotypes	Cases	Controls	OR(95%CI)	P value
AC	108(34.0)	227(41.7)	1.00	
CT	140(44.2)	250(46.0)	1.19(0.87–1.62)	0.001
TT	69(21.8)	67(12.3)	2.17(1.44–3.25)	0.001
CT+TT	209(66.0)	317(58.3)	1.40(1.05–1.86)	0.001
T allelesb		1.43(1.17–1.75)		

Discussion

To our knowledge, this is the first study that has investigated whether the two GWAS-identified genetic variants (TERT-rs2736098 and CLPTM1L-rs401681) at the 5p15.33 locus are associated with lung cancer risk in never-smoking Han-Chinese females. The results suggested that the variant allele gene of rs2736098 was significantly associated with increased risk of lung cancer, especially in lung adenocarcinoma. On the other side, our study obtained the data about the increased risk of lung cancer, especially in lung adenocarcinoma subgroup and the rs401681 C allele in CLPTM1L-rs401681 when stratified by pathology, the C allele in CLPTM1L-rs401681 increased the risk of lung adenocarcinoma subgroup and the adjusted OR is 1.23(95%CI = 1.00–1.52, P = 0.046 for heterogeneity). Therefore, our study suggested that CLPTM1L-rs401681...
variant genotypes may play different roles in different pathology subgroups of lung cancer. Looking back on previous studies, the results that have been reported were unsatisfactory and even conflicting. For example, an early study reported that the CLPTM1L T variant genotypes were not associated with risk of lung cancer in a Caucasian population [11]. Moreover, two researchers reported that CLPTM1L gene polymorphism was not associated with risk of lung cancer in an Asian population [15,16]. Both of them were hospital-based data sets. Nevertheless, eight association studies showed that rs401681 allele C marginally increased overall lung cancers risk both in a Caucasian and an Asian population[3,12,17–22]. Not long ago, a meta-analysis researched by Yin et al. found that individuals with the C allele genotypes had higher risk of lung cancer [23]. Though that study, strikingly increased risk was found in smoking related cancers, such as lung cancer. It may be explained that CLPTM1L protein may be involved in the apoptosis response of genotoxic stress. The possible explanation for these discrepancies could be that the allele frequencies in different ethnicity were quite different. Data in HapMap demonstrate that the T allele frequency in Caucasian population was 43%, but the data in Asian population was 29% (http://snp.cshl.org/cgi-perl/gbrowse/hapmap24_B36/). The distinct also could because of the great difference in each sample sizes. Most of the latest GWAS studies contained more than ten thousand cases as well as controls. Conversely, when using TaqMan or PCR-RFLP methodology, the other researches contained almost one thousand cases or just several hundred cancer cases. Moreover, the discrepancies could due to different source of control group or genotyping method. The exact functional of CLPTM1L remains unclear. The previous study speculated it may be in strong LD with other potential functional or causal SNPs [7]. Furthermore, a thousand cases or just several hundred cancer cases. Most of the latest GWAS studies contained more that the TERT-CLPTM1L genomic region have been extensively studies in many cancer sites in different populations, but the results are conflicting. Gago-Dominguez et al. [13] found that variant allele gene in both TERT-rs2736098 and CLPTM1L-rs401681 were significantly associated with increased risk of bladder cancer among Chinese population. Nevertheless, there was lack of association between common single nucleotide polymorphisms in the TERT-CLPTM1L locus and breast cancer in non-Hispanic whites. Also Chen et al. [14] reported that homozygous variant genetic model of TERT-rs2736098 increased risk of glioma. It is noteworthy that TERT-CLPTM1L genomic region among Asian population has been linked to increased risk of several cancer types. Conversely, lack of studies researched other ethnicities. More evidences should be provided in future regarding the association between TERT-CLPTM1L genomic region and cancer risk in different races. Further studies that take into consideration subgroup analysis and environmental stresses in this region are necessary.

Conclusion

In conclusion, our study revealed that TERT-rs2736098 polymorphism may increase the risk of lung cancer, especially in lung adenocarcinoma in women nonsmokers in Chinese population. Moreover, C allele in CLPTM1L-rs401680 gene may alter the risk of lung adenocarcinoma. Because genetic polymorphisms often vary between ethnic groups, this investigation could be extended in well-designed future studies in diverse ethnic women nonsmokers.

Author Contributions

Conceived and designed the experiments: CL. Performed the experiments: CL YWR XLL. Analyzed the data: CL WW ZHY. Contributed reagents/materials/analysis tools: CL ZHY XLL BSZ. Wrote the paper: CL.

References

1. Chanock SJ, Hunter DJ (2005) Genomics: when the smoke clears. Nature 2008, 452(7187): 537–538.
2. Lam WK (2011) Lung cancer in Asian women-the environment and genes. Respiratory, 10(6): 409–417.
3. Kohno T, Kimihito H, Minakshi S, Shirashi K, Kuchiba A, et al. (2011) Contribution of the TP53, OGG1, CHRNA3, and HLA-DQα1 genes to the risk for lung squamous cell carcinoma. J Thorac Oncol, 6(4): 813–817.
4. Weinrich SL, Puozan R, Ma L, Ouellette M, Tesmer VM, et al. (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTERT. Nat Genet, 17(4): 498–502.
5. Cong YS, Wen J, Bacchetti S (1999) The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet, 8(1): 137–142.
6. Jordef CR, Ernining-Finger I (2006) Mechanisms of chromosome instability in cancer. Crit Rev Oncol Hematol, 59(1): 1–14.
7. Yamamoto K, Okamoto A, Isinushi S, Ochiai K, Ohtake Y (2001) A novel gene, CRK9, which is up-regulated in CD14-negative ovarian tumor cell line, was associated with apoptosis. Biochem Biophys Res Commun, 290(4): 1148–1154.
8. Sanbong K (1980) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, NY.
9. Wick M, Zubov D, Haugen G (1999) Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene, 232(1): 97–106.
10. Choi JE, Kang HG, Jang JS, Choi YY, Kim MJ, et al. (2009) Polymorphisms in the TP53, OGG1, CHRNA3, and HLA-DQα1 genes to the risk for lung squamous cell carcinoma. J Thorac Oncol, 6(4): 813–817.
11. Sanbong K (1980) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, NY.
12. Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, et al. (2008) Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet, 40(12): 1407–1409.
13. Gago-Dominguez M, Jiang X, Comín DV, Castelan JE, Stern MC, et al. (2011) Genetic variations on chromosomes 5p15 and 15q25 and bladder cancer risk findings from the Los Angeles-Shanghai bladder case-control study. Carcinogenesis, 32(2): 197–202.
14. Chen H, Chen Y, Zhao Y, Fan W, Zhou K, et al. (2011) Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a Chinese population. Am J Epidemiol, 173(6): 915–922.
15. Chen X, Cai S, Chen QG, Ni ZH, Tang JH, et al. (2012) Multiple variants of TERT and CLPTM1L constitute risk factors for lung adenocarcinoma. Genet Mol Res, 11: 370–378.
16. Baro EY, Lee SY, Kang BK, Lee EJ, Choi YY, et al. (2008) Replication of results of genome-wide association studies on lung cancer susceptibility loci in a Korean population. Respiratory 2012.
17. McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, et al. (2008) Lung cancer susceptibility locus at 5p15.33. Nature Genetics, 40: 1404–1406.
18. Pande M, Spira MR, Wu X, Gorlov IP, Chen WV, et al. (2011) Novel genetic variants in the chromosome 5p15.33 region associate with lung cancer risk. Carcinogenesis, 32: 1493–1499.
19. Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, et al. (2011) Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet, 43: 221–227.
20. Miki D, Kubo M, Takahashi A, Yoon KA, Kim J, et al. (2010) Variation in 10p33 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations. Nat Genet, 42: 893–896.
22. Yoon KA, Park JH, Han J, Park S, Lee GK, et al. (2010) A genome-wide association study reveals susceptibility variants for non-small cell lung cancer in the Korean population. Hum Mol Genet, 19: 4948–4954.

23. Yin J, Li Y, Yin M, Sun J, Liu L, et al. (2012) TERT-CLPTM1L polymorphism rs401681 contributes to cancers risk: evidence from a meta-analysis based on 29 publications. PLoS One, 7(11).

24. Nan H, Qureshi AA, Prescott J, De Vivo I, Han J (2011) Genetic variants in telomere-maintaining genes and skin cancer risk. Hum Genet, 129: 247–253.