Trace fossils from the Desejosa Formation (Schist and Greywacke Complex, Douro Group, NE Portugal): new Cambrian age constraints

Í. DIAS DA SILVA1 S. JENSEN2 E. GONZÁLEZ-CLAVIJO1

1Instituto Geológico y Minero de España
Azafranal 48, 37001 Salamanca, Spain. Dias Da Silva Email: ipicaparopo@gmail.com. Phone number: +34637420747
González-Clavijo Email: e.clavijo@igme.es

2Área de Paleontología, Facultad de Ciencias, Universidad de Extremadura
06006 Badajoz, Spain. Email: soren@unex.es

ABSTRACT

Trace fossils from a new locality in the Desejosa Formation, Freixo de Espada à Cinta area, northeast Portugal, are described, including Teichichnus rectus and the first Cambrian record from Iberia of the ichnogenus Rosselia, identified as R. cf. socialis. A literary review of the Cambrian record of Rosselia reveals no occurrences older than Cambrian Age 3. The occurrence of Rosselia in the Desejosa Formation therefore adds evidence to that of earlier reports on trilobite remains from the upper part of the Desejosa Formation for a Cambrian age of this unit. Both Rosselia and Teichichnus are zindicative of the Cruziana ichnofacies, which is representative of a shallow-marine depositional environment, consistent with earlier interpretations for the depositional conditions of the upper part of the Desejosa Formation in this sector, and in the equivalent Cambrian units in Spain.

KEYWORDS Trace fossils. Rosselia socialis. Teichichnus rectus. Early Cambrian. Iberian Massif. Douro Group.

INTRODUCTION

Previous stratigraphic and paleontological studies (trace and body fossils) on the Spanish pre-Ordovician record of the Central Iberian Zone (CIZ) demonstrate that the age of the sequence is latest Ediacaran (Vidal et al., 1994a, b; Cortijo et al., 2010) to early Cambrian (e.g. Brasier et al., 1979; Díez Balda, 1986; San José et al., 1990; Gozalo et al., 2003; Díez Balda et al., 2004; Rodríguez Alonso et al., 2004; Jensen et al., 2010).

In Portugal, the pre-Ordovician stratigraphic units of the CIZ are grouped in the Schist and Graywacke Complex (Complexo Xisto-Grauváquico in Portuguese; Carrington da Costa, 1950; Teixeira, 1955) which has been classically divided into the Beiras and Douro groups (Sousa, 1982, 1984). The precise stratigraphic relationship between these two groups remains uncertain but recent studies suggest that at least portions of these units are time equivalent and they are late Ediacaran and Cambrian (e.g. Pereira et al., 2006; Pereira et al., 2012b). In the Caramulo-Buçaco region (Portugal) a succession attributed to the Beiras Group contains trace fossils identified as Planolites sp. and Phycodes? n. sp (Gámez Vintaned, personal communication in Medina et al., 1998). The Phycodes-like morphology suggests an age younger than ca. 550Ma (cf. Jensen, 2003), consistent with the maximum depositional age of 549.6 ± 4.4Ma (U-Pb in detrital zircons; Pereira et al., 2012b) from approximately the same stratigraphic interval. From the base, the Douro Group consists of the Bateiras, Ervedosa, Rio Pinhão, Pinhão, Desejosa and São Domingos formations. Sousa (1984) cited Planolites from the Pinhão Formation and suggested an age of less than 560Ma approximately. A younger age for the whole succession (<550Ma) can be expected if we adopt the correlation proposed by Sousa (1983b, 1984) of the
carbonate-bearing Bateiras Formation with the Cloudina-rich units (Vidal et al., 1994a) in the Salamanca province (Spain). Trace fossils have been reported as locally common in the Desejosa Formation (e.g. Coke, 2000; Coke et al., 2000) though without published detail to date. At present time, evidence for a Cambrian (or younger) age for the upper part of the Desejosa Formation is based on poorly preserved indeterminable trilobites (Rebelo and Romano, 1986), and its geochemical profile is also consistent with Cambrian age (Dias da Silva et al., 2011; Dias da Silva, 2014).

The first detailed documentation of trace fossils from the Desejosa Formation is here presented on the basis of material collected from a new trace fossil locality (Dias da Silva, 2014). These include Teichichnus rectus and some of the best preserved Cambrian material of Rossellina to date, providing important new age constraints on the Desejosa Formation, and also giving valuable information about the depositional setting of the Desejosa Formation. The regional stratigraphic implications of these new data are also discussed in the CIZ context.

GEOLOGICAL SETTING

The Iberian branch of the European Variscan Massif has been traditionally divided into several geological zones (Lotze, 1945; Julivert et al., 1972). On historical grounds these divisions were based mainly on stratigraphic features, but tectonic, magmatic and metamorphic characteristics were also considered. The CIZ, in its current definition (Julivert et al., 1972), is the most extensive zone in the Iberian Massif (Fig. 1).

It has been subdivided in several domains in Spain (Pérez-Estaún et al., 2004) and Portugal (Dias et al., 2006). One of its most outstanding stratigraphic features is the presence of a thick (>5km) and widespread basal metasedimentary unit known as the Schist and Greywacke Complex. It generally displays a (very) low metamorphic grade and little deformation, which allows the identification of the original lithologies and primary sedimentary structures thus suggesting a turbiditic nature for much of this sequence. The scarcity of lithological marker beds and fossil content has resulted in a poorly constrained age and an uncertain regional correlation. Several regional lithostratigraphic units have been established being recognized a general upward-shallowing environment from basinal and slope to platform deposits (e.g. Díez Balda, 1986; San José et al., 1990; Vidal et al., 1994a, b; Valladares et al., 2002). The age of the oldest part of the Schist and Graywacke Complex remains poorly known, nevertheless the earlier suggestions of a “Riphean” age (>650Ma) were based on microfossils without age significance, and the entire succession is now thought to be Ediacaran and younger (e.g. Pereira et al., 2012a,b).

The studied region is located next to the Douro River canyon which is the north-eastern border between Spain and Portugal for more than 100km, providing an impressive natural cross-section of the northern CIZ. Recent geological survey in this area has resulted in new stratigraphic and ichnologic data (Fig. 2; Dias da Silva, 2014). In the northern and central part of the canyon, sedimentary features of the older rocks are largely obliterated due to pervasive Variscan deformation which resulted in a high-temperature and low-pressure metamorphism (Escuder Viruete et al., 1994, 2000; Dias da Silva, 2014). The southern sector, near Freixo de Espada à Cinta (Portugal), shows more favourable conditions with well-preserved sedimentary structures and trace fossils. The geological structure of this area is mainly composed of cartographic-scale upright folds belonging to the late Variscan regional event (Fig. 2). The Desejosa Formation is extensively exposed in the region and has been affected by only very low metamorphism and gentle deformation during the Variscan Orogeny, which has made it possible to build up a synthetic stratigraphic column of the infra-Ordovician rocks, unveil the tectonic structure, and position the trace fossils described here inside the sedimentary sequence (Fig. 2). The Desejosa Formation was first described by Sousa (1982, 1983b). It typically consists of millimetre- to centimetre-scale alternations of generally parallel-laminated lutites and fine-grained sandstone, resulting in a striped appearance. The most common sedimentary structures are graded bedding and load-structures. More rarely there are greywacke beds up to half a metre thickness. In the study area, the Desejosa Formation consists of a terrigenous sequence more than 300m thick, which displays thin beds of black slates and sandstones, the latter frequently showing

FIGURE 1. Location of the studied area in the Iberian Massif (adapted from Pérez-Estaún et al., 2004).
bioturbation and sedimentary structures. Some scarce
and thin discontinuous beds of calc-silicate rocks and
carbonates are referred in Ferreira da Silva and Ribeiro
(1994). The uppermost beds (40m) present slump
structures (Fig. 2, synthetic column), broken beds and
microconglomeratic levels. The trace fossils described
here were recently identified in the Freixo de Espada à
Cinta area (Fig. 2) in a location that could be estimated
at about 100m below the top of Desejosa Formation. The
intensive bioturbation suggests a shallow depositional
environment as was proposed for the upper part of the
Douro group by Sousa (1982).

Concordantly overlying the Desejosa Formation, a
new informal unit has been defined and mapped. It was
first named Mazouco Formation (Dias da Silva et al.,
2011) after a small village which however is located out
of the exposure. For this reason we propose to change the
name to Montes Ermos unit, after a small hill located well
inside the exposure of this lithostratigraphic unit (Dias da
Silva, 2014). The Montes Ermos unit, with a thickness
greater than 150m, is roofed by the Ordovician basal
unconformity known as Toledanic (e.g. Gutiérrez Marco et al., 1990),
underlying the Lower Ordovician stratigraphic units of the
Vale de Bojas and Marião Formations (Sá et al., 2005; Dias
da Silva, 2014).

DESEJOZA FORMATION TRACE FOSSILS

A new ichnofossil locality in the Desejosa Formation
was found about 3.5km NE of Freixo de Espada à Cinta
village (Fig. 2). The trace fossils are observed on weathered
bedding-planes (Figs. 3A; 5D-E) on both sides of a small
valley with a moderately good geological exposure.

related to Variscan granitic stocks. This unit is made up of
a monotonous sequence of grey fine-grained sandstone and
siltstone beds ranging from 60 to 120cm. The boundaries
between beds are marked by dark millimetre-thick layers
displaying iron oxide when weathered. No fossils have
been found in this unit.

The above described are the only lithostratigraphic
units of the Schist and Graywacke Complex in the eastern
portion of the Moncorvo Synform. The São Domingos,
Pinhão and Rio Pinhão Formations as defined by Sousa
(1984) were not identified here. The upper limit of the
Douro Group is the regional angular unconformity
underlying the Lower Ordovician stratigraphic units of the
Vale de Bojas and Marião Formations (Sá et al., 2005; Dias
da Silva, 2014).
Trace fossil description

In order to obtain 3D views of the ichnofossil, vertically oriented parallel sections were produced with a rock-saw to show the disruption of primary sedimentary bedding by burrowing animals, including oblique sand-filled plugs with evidence for lateral displacement or short plug-shaped burrows. Only two ichnogenera were noteworthy of a detailed description in the sectioned material, namely Rosselia Dahmer, 1937, and Teichichnus Seilacher, 1955 (illustrated trace fossil material is housed in the collections of Area de Paleontología, Universidad de Extremadura, Badajoz).

Ichnogenus Rosselia Dahmer, 1937

Rosselia cf. socialis Dahmer, 1937 (Figs. 3A-E; 4B, D-G; 5A, D-F)

Description. Trace fossils with a vertical or oblique orientation made up of irregularly spaced and wavy
alternations of dark (muddy) and light (micaceous siltstone) concentric laminae (Fig. 3D, G), or with pronounced siltstone laminae (Fig. 4D). Vertical sections show elongated cone-shaped burrows, some being approximately cylindrical, 10 to 20mm wide and up to 30mm long (representing incomplete specimens). The horizontal section presents ovate or circular shapes (Fig. 5E, F) with a narrow mud or sand-filled central shaft (Fig. 5F). In some cases it was possible to see signs of vertical repetition of the burrowing (Fig. 4G).

Discussion. The assignation of this material to Rosselia is based in the general conical-shaped burrows with concentric laminae that surround a central shaft (sandy or muddy). The relationship between Rosselia and Cylindrichnus has been discussed by numerous authors (e.g. Frey and Howard, 1985; Nara, 1995; Uchman and Krenmayr, 1995), leading to the differentiation of both genera with Rosselia presenting conical to irregularly bulbous concentric lamellae and Cylindrichnus showing vertical to horizontal cylindrical or sub-cylindrical burrows (Frey and Howard, 1985). However, recent studies suggest that the type material of Cylindrichnus concentricus consist of U-shaped or bow-shaped burrows (see Belaústegui and Gibert 2013, for discussion), calling into question the identification of earlier reports of this ichnogenus. Vertical repetition in Rosselia probably represents examples of equilibrichnia (cf. Nara, 1997). Cretaceous and younger Rosselia typically have a spindle-shaped burrow-form, with conical forms as the result of erosional truncation (Nara, 1995). This is also seen in the type material of Rosselia socialis from the Devonian of Germany (Dahmer, 1937; Schlirf et al., 2002). In both cases the central portion of Rosselia socialis often is sand-filled. Another related form is Asterosoma von Otto, 1854, with concentrically layered horizontal or inclined burrows that radiate from a central point. Asterosoma has been described from the middle Cambrian of Jordan (Hofmann et al., 2012), but no evidence for a radiate arrangement has been observed in the Desejosa Formation material.
FIGURE 5. Trace fossils from the Desejosa Formation. A-B) Vertical sections through a slab with a *Teichichnus rectus*, with position of sections indicated in the lateral view diagram (taken from a sequence of thirteen vertical sections, including the sections represented in A and B). Near the right margin of A a mud-dominated *Rosselia cf. socialis* occurs, with indication for truncation. The trace fossil near the centre shows a sand-rich mantle surrounding a faintly developed concentric lamination. Scale bar in B represents 10mm (same scale as A); C) Field photograph showing bedding and several specimens of *Teichichnus rectus*. Scale bar represents 20mm; D) Field photograph of top bedding-plane view of a *Rosselia cf. socialis*. Scale bar represents 5mm; E) Field photograph of a weathered (and partly lichen-covered) top bedding-plane view with several poorly preserved *Rosselia cf. socialis*. Scale bar represents 10mm; F) Field photograph of top bedding-plane view of a *Rosselia cf. socialis* with a sand-filled central shaft. Scale bar represents 5mm. Legend as Figure 3.
The concentric lamellae observed in the Desejosa Formation materials are closely compared with the reports of *Rosselia socialis*, differing only in the predominantly mud-filled nature of the central shaft in this locality (only one specimen is sand filled; Fig. 5F). We consider that this difference is a reflection of the depositional conditions which created thin intercalations of sand, silt and mud beds, and therefore it does not present ichnotaxonomic significance. Well-developed specimens of *Rosselia socialis* are spindle-shaped, with conical forms being the result of erosional truncation. Because of the lack of evidence for spindle-shaped forms in the Desejosa Formation, this material is assigned to *Rosselia cf. socialis*. The *Rosselia* in Figure 4 D, F and G shows some similarity with burrows that Mata et al. (2012) interpreted as equilibrichnia behavior of sea anemones. Because the studied material always presents multiple concentric laminations with a mud or sandy central shaft and not a simple cylindrical burrow with a central shaft, the Desejosa material is better assigned to *Rosselia* than to plug-shaped burrows such as *Bergaueria*, *Conichnus*, or *Dolopichnus*.

The exact process by which the concentric lamination in *Rosselia* is formed is not well understood, although Cenozoic specimens, in particular, have been related to the feeding activity of terebellid polychaetes (i.e. Nara, 1995). However, the producers of Cambrian *Rosselia* are unknown as there exist no fossil evidence for Cambrian terebellids. In a model presented by Nara (1995) the organism was a surface detritus feeder that constructed the burrow walls from surface materials. On the other hand, Goldring (1996) distinguished between two mechanisms for the formation of concentrically laminated burrows, one made in response to the infilling sediment pushed aside by the producer, and a second produced by the addition of successive wall-layers by the living organism. With regard to the Desejosa material we consider it more likely that the burrow formed in response to sediment influx rather than the result of sediment manipulation from feeding activity.

Ichnogenus Teichichnus Seilacher, 1955

Teichichnus rectus Seilacher, 1955 (Figs. 4A-C, 5A-C).

Description. Retrusive spreiten-burrows with horizontal long axis. A specimen examined in a serially sectioned slab (Fig. 5A, B) has a spreite lamina that is 15 cm long and 3.5 cm high. The base of the lamina is gently inclined with a difference of close to 2 cm between the preserved extremities. The spreiten are crudely developed but show a retrusive pattern (Figs. 4C; 5A, B), and spreite lamellae indicate a successive displacement along the horizontal axis (see sketch in Fig. 4).

Discussion. These trace fossils can be assigned to *Teichichnus* in being wall-like vertically oriented spreiten. The lamellae are somewhat irregular but the burrows can be compared with material that Paczeńska (1996) attributed to *Teichichnus rectus* from the early and middle Cambrian of Poland. Axial displacement of the spreiten is also present in the type material of *Teichichnus rectus* material from the late early Cambrian Kussak Formation of Pakistan (Seilacher, 1955, plate 24, fig. 1).

DISCUSSION

The ichnogenus *Rosselia* has been typically reported from shallow-marine deposits (Uchman and Krenmayr, 1995) and its presence with *Teichichnus* is indicative of the Cruziana Ichnofacies, which is representative of a shallow-marine depositional environment between fair-weather and storm wave base, consistent with earlier interpretations of the depositional conditions of the upper part of the Desejosa Formation in this sector (Sousa, 1983a, b).

The age of the Douro Group has been problematic, being referred to as ante-Ordovician and probably late Precambrian to Cambrian in previous studies (Teixeira, 1955; Teixeira et al., 1964; Teixeira, 1981; Sousa, 1982, 1983a, b, 1984; Rebelo and Romano, 1986; Ferreira da Silva and Ribeiro, 1994; Coke et al., 1995; Coke and Gutiérrez-Marco, 2001; Pereira et al., 2006). Brachiopods (including *Lingulella major*) from strata in the Serra do Marão area (Portugal) that were originally attributed to the Desejosa Formation by Teixeira et al. (1964), were considered the oldest skeletal fossils of Portugal (Teixeira, 1981). A more recent study was made by Coke and Gutiérrez-Marco (2001), who failed to recover additional brachiopods from the Desejosa Formation in the Marão area, and remarked on inconsistencies in the locality description provided in the reports of these specimens. Sá et al. (2002) reported on the recovery of some of the type material of *L. major*, until that time thought to be lost. They concluded that the rock matrix is identical to that of the Ordovician “Quartzitos sem Ferro” formation (Marão Formation in Sá et al., 2003, 2005) cropping out in the same area.

The poorly preserved trilobites described by Rebelo and Romano (1986) are then the only fossil evidence for Phanerozoic age for the upper part of Desejosa Formation. This is now corroborated by the new discovery of trace fossils described here, as discussed below.

Trace fossils can be used to differentiate Phanerozoic and pre-Phanerozoic rocks, with some ichnogenera offering an additional age precision. The appearance of trace fossil genera through the Ediacaran-Cambrian boundary and into the Cambrian, led to an ichnofossil-based zonation (e.g. MacNaughton, 2007; Buatois and Mángano, 2011). The ichnotaxa described from the Desejosa Formation...
Early Cambrian ichnofossils from Desejosa Formation (NW Portugal)

I. Dias Da Silva et al.

can be considered within this zonation. The ichnogenus *Teichichnus* is an indicator for Cambrian (or later) age (e.g. Crimes, 1987; McIlroy et al., 1998). In Newfoundland the first appearance of *Teichichnus* belongs to the second Cambrian trace fossil-based zone – *Rusophycus avalonensis* Zone – and closely follows the appearance of *Rusophycus*. In the East European Platform, *Teichichnus* is common in the Lontova horizon, whereas there are no clear reports from the basal Cambrian Rovno horizon. The presence of *Teichichnus* point to an age of ca. 530Ma, or younger, with no additional precision.

The ichnogenus *Rosselia* is known from the early Cambrian to the Holocene (e.g. Nara and Haga, 2007), but early Palaeozoic examples are scarce, with the first appearance of this ichnogenus being poorly constrained. In order to assess the potential ichnostratigraphic implications of *Rosselia* we have undertaken a literature review of Cambrian occurrences of *Rosselia* and *Cylindrichnus* (Table I, Electronic Appendix available at www.geologica-acta.com). Direct comparison of the *Rosselia* found in the Desejosa Formation with the previously reported Cambrian localities is complicated by the general lack of cut material in those studies. Examples of early Cambrian *Rosselia* are frequently cited specimens from the Kussak Formation in Pakistan (Seilacher, 1955), being assigned to the Cambrian Stage 4. However, this author noted that the conical structure seemed to be connected to a vertical burrow and therefore this material could only be cautiously compared to *Rosselia*. Although Seilacher (1955) described *Rosselia* as abundant, we are not aware of any additional documentation of this material. Examples of *Rosselia* with sand-rich laminae were reported by Desjardins et al. (2010a, b) from the Lake Louise and St. Iran formations of the Gog Group, Alberta, Canada. These affected planar and hummocky cross-stratified sandstones with an upwards-flaring laminae and a cylindrical central shaft. The age of this group is constrained by acritarchs from the lower part of the St. Piran Formation that Downie (1982) compared to those of the Lükati horizon of the East European Platform (Cambrian Stage 3). Belaústegui and Gibert (2009) suggested that *Cylindrichnus operosus* (Orłowski, 1990) from the lower Cambrian of Poland is better assigned to *Rosselia*. Also, the *Cylindrichnus concentricus* reported from the middle Cambrian of Poland by Paczeńska (1996) is comparable to the *Rosselia* described here. There exist no previous reports of *Rosselia* from the Cambrian of Iberia, although there are several reports of *Cylindrichnus* especially in the middle Cambrian. The previous, earliest descriptions of Iberian occurrences of *Rosselia* were made in the upper and middle part of the Early Ordovician (Floian) in the Serra do Brejo Formation in Figueiró dos Vinhos, Portugal (Cooper and Romano, 1982). This material is in a facies sandier than that of Desejosa Formation but it can be compared to the material described here. The *Rosselia* of Desejosa Formation represents some of the finest examples of Cambrian *Rosselia* ichnogenus with clearly defined concentric muddy laminae.

The presence of *Rosselia cf. socialis* in the upper part of the Desejosa Formation combined with the earlier findings of indeterminate trilobites in a similar stratigraphic position, means that this part of the succession cannot be older than Cambrian Age 3 (ca. 522Ma). However, the stratigraphic relationships in the Desejosa Formation between the *Rosselia* and the trilobite localities are not clear, due to the strongly erosive Toledanic Unconformity which is topping Desejosa Formation in Açoreira village (at 20 km to the west of this ichnofossil site), were Rebelo and Romano (1986) found the trilobite remains. At present, the upper age limit of the Douro Group has to be based on lithostratigraphic correlation to units within the Spanish part of the CIZ. Sousa (1983a, b, 1984) suggested that much of the Douro Group can be correlated with the Aldeatejada Formation (Diez Balda, 1986) in the Salamanca area and the Pusa Formation (San José, 1983) in the Toledo Mountains. Similarly, Pereira et al. (2006) approximated the top of the Douro Group to the upper part of the Pusa Formation and parts of the Azorejo Formation (San José et al., 1974), which they positioned close to the transition of the Cordubian-Ovetian regional stages. A somewhat younger age for the upper part of the Pusa Formation was suggested by Jensen et al. (2010), placing it firmly within the Ovetian (Cambrian Stage 3). A circumstantial argument against a higher position of Desejosa Formation is the absence of prominent carbonate beds in the upper part of the Douro Group.

CONCLUSIONS

We present the first detailed description of discrete trace fossils from the Desejosa Formation on the basis of material from a new locality in the Freixo de Espada à Cinta area, Portugal. The most reliably identified forms are *Teichichnus rectus* and *Rosselia cf. socialis*, being the first report of the ichnogenus *Rosselia* from the Cambrian of Iberia, and some of the most conspicuous Cambrian examples of this ichnogenus to date.

A review of Cambrian occurrences of *Rosselia* and other vertical concentrically laminated burrows, show no record older than Cambrian Age 3. Together with the additional evidence of the previously described scarce remnants of unidentified trilobites, this demonstrates that the upper part of the Desejosa Formation is no older than Cambrian Age 3. Also the ichnogenera association (*Cruziana* Ichnofacies) described in this paper gives evidences of a shallow water depositional environment between fair-weather and storm wave base.
The Desejosa Formation is conformably overlain by a recently proposed lithostratigraphic unit, called Montes Ermos (Fig. 2). This is younger than the Cambrian Age 3 with no further precision. Nevertheless the absence of middle and late Cambrian rocks in the CIZ points to an age towards the later part of the early Cambrian. An upper age constraint for both formations is provided by the unconformably overlying Early Ordovician rocks.

ACKNOWLEDGMENTS

ÍD.S acknowledges the Instituto Geológico y Minero de España (IGME) for a PhD scholarship “Formación de Personal Investigador” and the institutional support provided to the project CGL2010-18905/BTE. SJ acknowledges funding from the Spanish Ministry of Science and Innovation through grants CGL-2008-0473 and CGL-2012-37237 (both co-financed by Fondo Europeo de Desarrollo Regional [FEDER]). The manuscript benefited from the reviews of Masakazu Nara and an anonymous reviewer. This work is a contribution to the IGCP project nº 597 Amalgamation and breakup of Pangaea.

REFERENCES

Aceñolaza, G.F., Nieva, S.M., 2003. Caracteres estratigráficos e i cnológicos de la Formación Candelaria (Cambio-Ordovícico) aflorante en el NE de la Provincia de Tucumán. Revista de la Asociación Geológica Argentina, 58, 434-446.

Belaústegui, Z., Gibert, J.M.de, 2009. Icnofábrica de Cylindrichnus en el Mioceno de la costa de Tarragona (Cataluña, España). Paleolusitana, 1, 97-104.

Belaústegui, Z., Gibert, J.M.de, 2013. Bow-shaped, concentrically laminated polychaete burrows: A Cylindrichnus concentricus ichnofabric from the Miocene of Tarragona, NE Spain. Palaeoecography, Palaeoclimatology, Palaeoecology, 381-382, 119-127.

Brasier, M.D., Perejón, A., San José, M.A., 1979. Discovery of an important fossiliferous Precambrian-Cambrian sequence in Spain. Estudios Geológicos, 35, 379-383.

Buatois, L.A., Mángano, M.G., 2011. Ichnology: The role of organism-substrate interactions in space and time. Cambridge, Cambridge University Press, 358pp.

Carrington da Costa, M., 1950. Notícia sobre uma carta geológica do Buçaco de Nery Delgado. Comunicações dos Serviços Geológicos de Portugal, 68, 73-82.

Coke, C., Dias, R., Ribeiro, A., 2000. Evolução geodinâmica da bacia do Douro durante o Cámbrico e Ordo dicóxico: um exemplo de sedimentação controlada pela tectónica. Comunicações Geológicas, 87, 5-12.

Cooper, A.H., Romano, M., 1982. The Lower Ordovician stratigraphy of the Dornes - Figueirê dos Vinhos area, Central Portugal, with descriptions of Merostomichnites ichnosp. and Rosselia socialis, two previously unrecorded trace fossils. Comunicações dos Serviços Geológicos de Portugal, 68, 73-82.

Cortijo, I., Martí Mus, M., Jensen, S., Palacios, T., 2010. A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Research, 176, 1-10.

Crimes, T.P., 1987. Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine, 124, 97-119.

Dahmer, G., 1937. Lebensspuren aus dem Taunussquarzit und den Siegener Schichten (Unterdoven). Preussischen Geologischen Landesanstalt zu Berlin Jahrbuch 1936, 57, 523-539.

Desjardins, P.R., Mángano, M.G., Buatois, L.A., Pratt, B.R., 2010a. Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia, 43, 507-528.

Desjardins, P.R., Pratt, B.R., Buatois, L.A., Mángano, M.G., 2010b. Stratigraphy and sedimentary environments of the Lower Cambrian Gog Group in the southern Rocky Mountains of Western Canada: transgressive sandstones on a broad continental margin. Bulletin of Canadian Petroleum Geology, 58, 403-439.

Dias da Silva, Í., González Clavijo, E., Barba, P., Valladares, M.I., Ugidos, J.M., 2011. Geochemistry of Lower Palaeozoic shales. A case study in a sector of the Iberian Variscides. In: Gutiérrez Marco, J.C., Rabano, I., García-Bellido, D. (eds.). 11th International Symposium on the Ordovician System, Alcalá de Henares, Ordovician of the World. Madrid, Instituto Geológico y Minero de España, 121-125.

Dias da Silva, I., 2014. Geología de las Zonas Centro Ibérica y Galicia – Trás-os-Montes en la parte oriental del Complejo de Mórais, Portugal/España. Nova Terra, Coruña, Instituto Universitario de Geología “Isidro Parga Pondal” - Área de Xeoloxía e Minería del Seminario de Estudos Galegos, 45, 424pp.

Dias, R., Coke, C., Ribeiro, A., 2006. Da Deformação na Serra do Marão e sua relação com o Cámbrico. In: Rodríguez Alonso, M.D., Gonzalo Corral, J.C. (eds.). Comunicaciones XIII Reunión de Geología del Oeste Peninsular. Salamanca, Reunión anual del PICG-319 y Encuentro Regional del PICG-320, 54-58.

Coke, C., Dias, R., 2000. Evolução geodinâmica da bacia do Douro durante o Cámbrico e Ordo dicóxico: um exemplo de sedimentação controlada pela tectónica. Comunicações Geológicas, 87, 5-12.

Cooper, A.H., Romano, M., 1982. The Lower Ordovician stratigraphy of the Dornes - Figueirê dos Vinhos area, Central Portugal, with descriptions of Merostomichnites ichnosp. and Rosselia socialis, two previously unrecorded trace fossils. Comunicações dos Serviços Geológicos de Portugal, 68, 73-82.

Cortijo, I., Martí Mus, M., Jensen, S., Palacios, T., 2010. A new species of Cloudina from the terminal Ediacaran of Spain. Precambrian Research, 176, 1-10.

Crimes, T.P., 1987. Trace fossils and correlation of late Precambrian and early Cambrian strata. Geological Magazine, 124, 97-119.

Dahmer, G., 1937. Lebensspuren aus dem Taunussquarzit und den Siegener Schichten (Unterdoven). Preussischen Geologischen Landesanstalt zu Berlin Jahrbuch 1936, 57, 523-539.

Desjardins, P.R., Mángano, M.G., Buatois, L.A., Pratt, B.R., 2010a. Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia, 43, 507-528.

Desjardins, P.R., Pratt, B.R., Buatois, L.A., Mángano, M.G., 2010b. Stratigraphy and sedimentary environments of the Lower Cambrian Gog Group in the southern Rocky Mountains of Western Canada: transgressive sandstones on a broad continental margin. Bulletin of Canadian Petroleum Geology, 58, 403-439.

Dias da Silva, Í., González Clavijo, E., Barba, P., Valladares, M.I., Ugidos, J.M., 2011. Geochemistry of Lower Palaeozoic shales. A case study in a sector of the Iberian Variscides. In: Gutiérrez Marco, J.C., Rabano, I., García-Bellido, D. (eds.). 11th International Symposium on the Ordovician System, Alcalá de Henares, Ordovician of the World. Madrid, Instituto Geológico y Minero de España, 121-125.

Dias da Silva, I., 2014. Geología de las Zonas Centro Ibérica y Galicia – Trás-os-Montes en la parte oriental del Complejo de Mórais, Portugal/España. Nova Terra, Coruña, Instituto Universitario de Geología “Isidro Parga Pondal” - Área de Xeoloxía e Minería del Seminario de Estudos Galegos, 45, 424pp.

Dias, R., Coke, C., Ribeiro, A., 2006. Da Deformação na Serra do Marão e sua relação com o Cámbrico. In: Rodríguez Alonso, M.D., Gonzalo Corral, J.C. (eds.). Comunicaciones XIII Reunión de Geología del Oeste Peninsular. Salamanca, Reunión anual del PICG-319 y Encuentro Regional del PICG-320, 54-58.
Díez Balda, M.A., Rodríguez Alonzo, M.D., Liñán, E., Gámez Vintaned, J.A., López Díaz, F., Moreno, F., Moreno-Eiris, A., Perejón, A., Pieren, A. P., Martínez Poyatos, D., Vegas, R., 2004. La transgresión cámbrica. In: Vera, J.A. (ed.). Geología de España. Madrid, Sociedad Geológica de España-Instituto Geológico y Minero de España, 81.

Downie, C., 1982. Lower Cambrian acritarchs from Scotland, Norway, Greenland and Canada. Transactions of the Royal Society of Edinburgh, Earth Sciences, 72, 257-285.

Escuder Viruete, J., Arenas, R., Martínez Catalán, J. R., 1994. Tectonothermal evolution associated with Variscan crustal extension, in the Tornes Gneiss dome (NW Salamanca, Iberian Massif, Spain). Tectonoophysics, 238, 117-138.

Frey, R.W., Howard, J.D., 1985. Trace fossils from the Panther Member, Star Point Formation (Upper Cretaceous), Coal Creek Canyon, Utah. Journal of Paleontology, 59, 370-404.

Gámez Vintaned, J.A., Mayoral Alfaro, E., 1995. Paleoecnología del grupo Mesones (Cámbrico Inferior-Medio) en Murero (Cadena Ibérica Occidental NE de España), In: Gámez Vintaned, J.A., Liñán, E. (eds.). La expansión de la vida en el Cámbrico. Libro homenaje al Prof. Klaus Sdzuy. Memorias de las IV Jornadas Aragonesas de Paleontología, 219-252.

Gómez Vintaned, J.A., Mayoral, E., Gozalo, R., 2000. Lower and Middle Cambrian trace fossils from the Llançara and Oville formations in the area of Presa del Porma (Cantabrian Zone, northern Spain). Insugeo, Serie Miscelánea, 6, 91-94.

Gómez Vintaned, J.A., Liñán, E., Mayoral, E., Díez, M.E., Gozalo, R., Muñiz, F., 2006. Trace and soft body fossils from the Pedroche Formation (Ovetian, Lower Cambrian of the Pedroche event. Geobios, 39, 443-468.

Goldring, R., 1996. The sedimentological significance of concentrically laminated burrows from Lower Cretaceous Ca-bentonites. Oxfordshire. Journal of the Geological Society, 153, 255-263.

Gózalo, R., Liñán, E., Mayoral, E., Gómez Vintaned, J.A., 2003. The Cambrian of the Iberian Peninsula: an overview. Geologica Acta, 1(1), 103-112.

Gutiérrez Marco, J.C., San José, M.A., Pieren, A.P., 1990. Post-Cambrian Paleozoic stratigraphy, In: Dallmeyer, R.D., Martínez García, E. (eds.). Pre-Mesozoic Geology of Iberia. Germany, Springer-Verlag, 160-171.

Hofmann, R., Mángano, M.G., Elicki, O., Shinaq, R., 2012: Paleocologic and biostratigraphic significance of trace fossils from shallow- to marginal marine environments from the Middle Cambrian (Stage 5) of Jordan. Journal of Palaeontology, 86, 931-955.

Jensen, S., 1997. Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata, 42, 1-111.

Jensen, S., 2003. The Proterozoic and Earliest Cambrian trace fossil record: patterns, problems and perspectives. Integrative and Comparative Biology, 43, 219-228.

Jensen, S., Palacios, T., Marti Mus, M., 2010. Revised biochronology of the Lower Cambrian of the Central Iberian Zone, southern Iberian massif, Spain. Geological Magazine, 147, 690-703.

Julivert, M., Fontboté, J.M., Ribeiro, A., Conde, L., 1972. Memoria explicativa del Mapa Tectónico de la Península Ibérica y Baleares. Escala 1:1.000.000. Madrid, Instituto Geológico y Minero de España, 113pp.

Liñán, E., Álvaro, J., Gozalo, R., Gómez Vintaned, J.A., Palacios, T., 1995. El Cámbrico Medio de la Sierra de Córdoba (Ossa-Morena, S de España): trilobites y paleoecología. Implicaciones bioestratigráficas y paleoambientales. Revista Española de Paleontología, 10, 219-238.

Lotze, F. 1945. Zur gliederung der Varisziden der Iberischen Meseta. Geotektonische Forschungen, 6, 78-92.

MacNaughton, R.B., 2007. The application of trace fossils to biostratigraphy. In: Miller, W. (ed.). Trace Fossils. Concepts, Problems, Prospects, 135-148.

Mángano, M.G., Buatois, L.A., Hofmann, R., Elicki, O., Shinaq, R., 2013. Exploring the aftermath of the Cambrian explosion: The evolutionary significance of marginal- to shallow-marine ichnofaunas of Jordan. Palaeogeoogy, Palaeoclimatology, Palaeoecology, 374, 1-15.

Mata, S.A., Corsetti, C.L., Corsetti, F.A., Awramik, S.M., Bottjer, D.J., 2012. Lower Cambrian anemone burrows from the upper member of the Wood Canyon Formation, Death Valley region, United States: Paleocological and Paleoenvironmental significance. PALAIOS, 27, 594-606.

McIlroy, D., Brasier, M.D., Moseley, J.B., 1998. The Proterozoic-Cambrian transition within the 'Charnian Supergroup' of central England and the antiquity of the Ediacara fauna. Journal of the Geological Society, 155, 401-411.

Medina, J., Rodríguez-Alonso, M.D., Alonso-Gavilán, G., 1998. Sedimentation in platform siliciclastic and the antiquity of the Ediacara fauna. Journal of the Geological Society, 155, 401-411.

Mickwitzia sandstone, south-central Sweden. Fossils and Strata, 42, 1-111.

Nara, M., 1997. Rosselia socialis: A dwelling structure of a probable terebellid polychaete. Lethaia, 28, 171-178.

Nara, M., 1997. High-resolution analytical method for event biostratigraphy. In: Miller, W. (ed.). Trace Fossils. Concepts, Problems, Prospects, 135-148.

Otkvorski, S., 1990. Trace fossils in the Lower Cambrian sequence in the Stigekelshyke Mountains, central Poland. Acta Palaeontologica Polonica, 34, 211-231.

Otto, E. von, 1854. Additamenta zur Floras des Quadergebirges in Sachsen. Leipzig, Heft, 2, 53pp.
Paczeńska, J., 1996. The Vendian and Cambrian ichnocoenoses of Lublin Region. Prace, Państwowego Instytutu Geologiczny, 355pp.
Pereira, E., Pereira, D.I., Rodrigues, J.F., Ribeiro, A., Noronha, F., Ferreira, N., Sá, C.M.d., Ramos, J.M.F., Moreira, A., Oliveira, A.F., 2006. Notícia Explicativa da Folha 2 da Carta Geológica de Portugal à Escala 1:200.000. Lisboa, Instituto Nacional de Engenharia, Tecnologia e Inovação, 119pp.
Pereira, M.F., Solá, A.R., Chichorro, M., Lopes, L., Gerdes, A., Silva, J.B., 2012a. North-Gondwana assembly, break-up and paleogeography: U/Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. Gondwana Research, 22, 866-881.
Pereira, M.F., Linnemann, U., Hofmann, M., Chichorro, M., Solá, A.R., Medina, J., Silva, J.B., 2012b. The provenance of Late Ediacaran and Early Ordovician siliciclastic rocks in the Southwest Central Iberian Zone: Constraints from detrital zircon data on northern Gondwana margin evolution during the late Neoproterozoic. Precambrian Research, 192-195, 166-189.
Pérez-Estain, A., Bea, F., Bastida, F., Marcos, A., Martínez Catalán, J. R., Martínez Poyatos, D., Arenas, R., Díaz García, F., Azor, A., Simancas, J.F., González Lodeiro, F., 2004. La Cordillera Variscana Europea: El Macizo Ibérico. In: Vera, J.A. (ed.). Geología de España. Madrid, Sociedad Geológica de España-Instituto Geológico y Minero de España, 22-24.
Pickerill, R.K., Peel, J.S., 1990. Trace fossils from the Lower Cambrian Bastion Formation of North-East Greenland. Géologique Underesgelse, 147, 5-43.
Rebelo, J.A., Romano, M., 1986. A contribution to the lithostratigraphy and palaeontology of the Lower Palaeozoic rocks of the Moncorvo Region, Northeast Portugal. Comunicações dos Serviços Geológicos de Portugal, 32, 45-57.
Rodríguez Alonso, M.D., Díez Balda, M.A., Perejón, A., Pieren, A.P., Líbán, E., López Díaz, F., Moreno, F., Gámez Vinented, J.A., González Lodeiro, F., Martínez Poyatos, D., Vegas, R., 2004. La Secuencia estratigráfica del Neoproterozoico-Cámbrico Inferior. In: Vera, J.A. (ed.). Geología de España. Madrid, SGE-IGME, 78-81.
Siegel, A., 1955. Spuren und Fazies im Unterkambrium. In: Schindewolf, O.H., Seilacher, A. (eds.). Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akademie der Wissenschaften und der Literatur, Mainz, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse 1955, 373-399.
Sousa, M.B., 1982. Litostatigrafia e estrutura do Complexo Xisto-Grauvácico - Grupo do Douro (NE de Portugal). PhD Thesis. Coimbra, Universidade de Coimbra, unpublished, 222pp.
Sousa, M.B., 1983a. Litostatigrafia do CXG - Grupo do Douro (NE Portugal). Coimbra, Universidade de Coimbra, Memórias e Notícias do Museu do Laboratório de Mineralogia e Geologia, 95, 3-63.
Sousa, M.B., 1983b. Considerações paleogeográficas e ensaio de correlação da formação do grupo do Douro (CXG) com as formações ante-Ordovícicas da Zona Centro-Ibérica. Coimbra, Universidade de Coimbra, Memórias e Notícias do Museu do Laboratório de Mineralogia e Geologia, 96, 65-98.
Sousa, M.B., 1984. Considerações sobre a estratigrafia do Complexo Xisto-Grauvácico (CXG) e sua relação com o Paleozoico Inferior. Cuadernos Geología Ibérica, 9, 9-36.
Teixeira, C., 1955. Notas sobre a Geología de Portugal: O Complexo Xisto-Grauvácico ante-Ordovícico. Porto Editora, 50pp.
Teixeira, C., 1981. Geología de Portugal, Vol. 1. Precámbrico, Paleozoico. Lisboa, Fundação Calouste Gulbenkian, 659pp.
Teixeira, C., Ribeiro, A., da Silva, L.C., 1964. La faune de Lingulellinae des formations anté-ordoviciennes de Marão. Boletim da Sociedade Geológica de Portugal, 15, 117-122.
Uchman, A., Krenmayr, H.G., 1995. Trace fossils from Lower Miocene (Ottangian) molasse deposits of Upper Austria. Paläontologische Zeitschrift, 69, 503-524.
Valladares, M.I., Barba, P., Ugidos, J.M., 2002. Precambrian. In: Gibbons, W., Moreno, M.J. (eds.). The Geology of Spain. London, Geological Society, 8-16.
Vidal, G., Jensen, S., Palacios, T., 1994a. Neoproterozoic (Vendian) ichnofossils from Lower Alcudian strata in central Spain. Geological Magazine, 131, 169-179.

Vidal, G., Palacios, T., Gámez-Vintaned, J.A., Díez Balda, M.A., Grant, S.W.F., 1994b. Neoproterozoic-early Cambrian geology and paleontology of Iberia. Geological Magazine, 131, 729-765.

Manuscript received May 2013; revision accepted March 2014; published Online May 2014.
Table I. Cambrian occurrences of *Rosselia* and *Cylindrichnus*

Original attribution	Reference	Stratigraphy and location	Chronostratigraphy	Characteristics	Comment
Rosselia isp.	Desjardins et al., 2010a, b	St Piran Fm., Gog Group, Alberta, Canada	Cambrian Stage 3, on acritarchs	Funnel-shaped concentric laminae, to 5 cm wide, sand-filled central tube	Abundant
	Mângano et al., 2013	Hanneh Mbr, Jordan	Cambrian Stage 5	-	-
	Aceñolaza and Nieva, 2003	Candelaria Fm., Argentina	Furongian-Lower Ord.	-	-
cf. *Rosselia* isp.	Seilacher, 1955	Kussak Fm. (Neobolus beds), Pakistan	Cambrian Stage 4	Nested laminae on top of cylindrical shaft	Seilacher (1955) thought attribution to *Rosselia*, doubtful
Rosselia socialis	Pickrell and Peel, 1990	Bastion Fm. (lower), Greenland	Cambrian Stage 3 or 4	Funnel-shaped, 1.15 cm at top, 0.4 mm at base 2 cm long (incomplete). Concentric laminae throughout	Three specimens
	Jensen, 1997	Mickwitzia sandstone mbr., File Haidar Fm., Sweden	Cambrian Stage 4	Conical to bulbous, 25-47 mm wide, up to 30 mm long, central tube 3 mm	-
Cylindrichnus isp.	Pickrell and Peel, 1990	Bastion Fm. (lower), Greenland	Cambrian Stage 3 or 4	Cylindrical 5.1 and 4.2 mm wide, with less than 1 mm thick laminae	Two specimens. Only observed in positive epirelief. Length unknown
Cylindrichnus operosus	Orłowski, 1990	Ociesński Fm., Poland	Cambrian Stage 3 or 4	Subconical, up to 25 mm wide, with 7 mm wide and 9 cm long central tube	*Rosselia* – Belaustegui and Gilbert (2009)
	Gámez Vintaned et al., 2006	Pedroches Fm., Cordoba area, Spain	Cambrian Stage 3 (Lower Ovetian)	Short, 2.4-3.5 mm wide, sand-filled core surrounded by fine-grained concentric laminae	Two specimens
	Gámez Vintaned and Mayoral Alfaro, 1995	Valdemiedes Fm., Spain	Cambrian Stage 4 and 75 (Mar. And Bilb.)	Cylindrical to subcylindrical, 7.6 to 13.7 mm in diameter	Associated with *Teichichnus* and *Sericichnus*
Cylindrichnus concentricus	Liñán et al., 1995	Los Villares Fm., Cordoba area, Spain	Cambrian Stage 5 (Leonian)	Cylindrical, 1.6-6 mm wide, up to 40 cm long, mud-rich	-
	Gámez Vintaned et al., 2000	Oville Fm., Spain	Cambrian Series 3	No published details	-
	Paczesina, 1996	Kostzyzn and Debi Fms, Poland	Cambrian Series 3 (oelandicus, parad.)	-	-