Data and text mining

Homologue series detection and management in LC-MS data with homologueDiscoverer

Kevin Mildau 1,*, Justin J. J. van der Hooft 1,2,3, Mira Flasch 4, Benedikt Warth 4, Yasin El Abiead 1, Gunda Koellensperger 1, Jürgen Zanghellini 1,* and Christoph Büschl 1,*

1Department of Analytical Chemistry, University of Vienna, Vienna A-1090, Austria, 2Bioinformatics Group, Wageningen University, Wageningen 6708PB, the Netherlands, 3Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa and 4Department of Food Chemistry and Toxicology, University of Vienna, Vienna A-1090, Austria

*To whom correspondence should be addressed.

Received on July 8, 2022; revised on September 20, 2022; editorial decision on September 20, 2022; accepted on September 23, 2022

Abstract

Summary: Untargeted metabolomics data analysis is highly labour intensive and can be severely frustrated by both experimental noise and redundant features. Homologous polymer series is a particular case of features that can either represent large numbers of noise features or alternatively represent features of interest with large peak redundancy. Here, we present homologueDiscoverer, an R package that allows for the targeted and untargeted detection of homologue series as well as their evaluation and management using interactive plots and simple local database functionalities.

Availability and implementation: homologueDiscoverer is freely available at GitHub https://github.com/kevinmildau/homologueDiscoverer.

Contact: kevin.mildau@univie.ac.at or christoph.bueschl@boku.ac.at or juergen.zanghellini@univie.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Untargeted metabolomics techniques based on High-Resolution Liquid Chromatography Tandem Mass Spectrometry (LC-HRMS/MS) allow for the generation of comprehensive snapshots of the chemical composition of samples and find wide use in diverse fields ranging from clinical biomarker discovery to natural product discovery (Kennedy et al., 2018; Tsugawa et al., 2021). However, Liquid Chromatography Mass Spectrometry (LC-MS) data are plagued by bioinformatic and chemical noise as well as redundancies which can hamper data analysis steps such as metabolite annotation or molecular networking (da Silva et al., 2019; Schiffman et al., 2019). One common type of contamination is caused by homologue series, i.e. groups of compounds with differing numbers of the same repeating unit. Tools that allow for the inspection of homologue series in LC-HRMS data are presented in da Silva et al. (2019) and Loos and Singer (2017). The tool of da Silva et al. (2019) requires the user to specify the increment of the series to be searched for and is thus limited in its scope to virtually known series or increments. On the other hand, Loos and Singer (2017) present a more advanced algorithm that finds complex patterns in an untargeted manner (without predefined m/z increments). One drawback of their implementation is that it tends to combine several close-by eluting series and thus presents the user with non-unique series that need manual separation and inspection. For this task, Loos and Singer (2017) also provide a limited version of their tool as a convenient web-based server allowing to illustrate and manipulate these results.

In this work, we present homologueDiscoverer (HD), an R package that allows for the detection and processing of homologues within LC-MS/MS peak tables. Homologues are frequently encountered in LC-MSMS runs and tend to exhibit highly regular MS1 patterns (da Silva et al., 2019; Loos and Singer, 2017). Indeed, groups of peaks stemming from the same homologue polymer but with different numbers of the repetitive unit exhibit nearly identical mass-to-charge ratio steps between peaks while also showing systematic trends in retention time. homologueDiscoverer capitalizes on these systematic trends by extracting homologue series using either pre-specified increments or untargeted search windows. Homologue detection allows reducing data complexity through meaningful feature grouping and provision of feature sets for exclusion from further analysis, thereby allowing researchers to focus on biologically relevant information.

2 Application features

homologueDiscoverer provides pre-specified step size (targeted) and untargeted homologue detection algorithms. In both cases, the algorithm iterates through the m/z and rt sorted peak table and deploys a
two-phase series detection routine from each peak. In the initialization phase of the algorithm, it is checked whether a second peak lies within the search window of the algorithm relative to the root peak. In the targeted search mode, specific mass-to-charge ratio increments or decrements in conjunction with retention time constraints lead to the establishment of very few 2-tuples. In contrast, the untargeted mode creates long lists of 2-tuples of peaks that are a combination of the current root peak and any peak within the specified search window. Once initialized, the algorithm proceeds to the second phase of series extension, where for each 2-tuple created in the first phase, the corresponding mass-to-charge ratio increment and retention time constraints are used to screen the peak table for any potential candidates for series extension. At three series, candidates or more the algorithm deploys further heuristics to restrict retention time windows. Specifically, the retention time step trend of the first three series members is used to assess whether retention time steps are either independent of mass, or respectively increasing or decreasing with mass. These trends are used to constrain search windows accordingly. Candidate series are grown until no further candidates match the constraints imposed, and the longest series exceeding the minimum series length is selected as a homologue series (more detailed description in Supplementary Information). Our greedy algorithm set-up extracts any peaks grouped to belong to a homologue series from the peak table before continuing its search, thereby guaranteeing that each peak will be annotated to belong to only one homologue series. This feature leads to a very concise and readable output which can be evaluated in interactive shiny graphs (Fig. 1) or stored in augmented peak tables for use in homologue annotation of new samples using functions provided by homologueDiscoverer.

4 Conclusion

homologueDiscoverer makes the detection and management of homologues easier, providing a complete suite of detection algorithms, interactive visualizations and storage functions. We expect that homologueDiscoverer will benefit researchers working with samples that are routinely polluted with homologue series or who wish to study biologically relevant homologue series in their data. This will be especially useful when homologue series cannot be removed from data via blank subtraction or when they present a biologically meaningful feature.

Acknowledgements

The authors thank the members of the Mass Spectrometry Center at the University of Vienna.

Funding

This work was supported by open access funding by the University of Vienna. Furthermore, the Austrian Science Fund is acknowledged for financial support [project SFB-Fusarium-37 (-11, -15)].

Conflict of interest: J.J.v.d.H. is a member of the Scientific Advisory Board of NAICONS Srl., Milano, Italy. All other authors declare no conflict of interest.

References

da Silva, R.R. et al. (2019) Computational removal of undesired mass spectral features possessing repeat units via a Kendrick mass filter. J. Am. Soc. Mass Spectrom., 30, 268–277.

Flasch, M. et al. (2020) Stable isotope-assisted metabolomics for deciphering xenobiotic metabolism in mammalian cell culture. ACS Chem. Biol., 15, 970–981.

Kennedy, A.D. et al. (2018) Metabolomics in the clinic: a review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. J. Mass Spectrom., 53, 1143–1154.

Loos, M. and Singer, H. (2017) Nontargeted homologue series extraction from hyphenated high resolution mass spectrometry data. J. Cheminform., 9, 12.

Schifman, C. et al. (2019) Filtering procedures for untargeted LC-MS metabolomics data. BMC Bioinformatics, 20, 1–10.

Tusgawa, H. et al. (2021) Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat. Prod. Rep., 38, 1729–1759.