Microbiology and Chemical Preservation of Eggplants Sold in Five Popular Markets in Owerri, Imo State, Nigeria

MikeAnosike EE, Braide W*, Adeleye SA and Oguoma OI

Department of Microbiology, Nigeria

Received: January 12, 2019; Published: January 22, 2019

*Corresponding author: Braide W, Department of Microbiology, Owerri, Imo State, Nigeria

Abstract
Preservatives have been frequently used to improve the shelf life of food. The preservation of eggplants was determined using three chemical preservatives; ascorbic acid, sodium benzoate and sodium metabisulphite applied at different concentrations. The microbial load was determined to ascertain the efficacy of the preservatives. The microbiological population and diversity of the eggplant was assessed before and after treatment using standard methods. The plate count techniques were adopted to determine the total colony forming unit of the sample. Antimicrobial activities revealed that sodium benzoate inhibits the growth of bacterial and fungal species even at low concentration. Sodium metabisulphite was effective on bacteria while ascorbic acid showed a stimulatory response on the growth of fungi and bacteria.

Four bacteria species namely, Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus and Enterococcus faecalis and four fungal species, namely, Saccharomyces, Fusarium, Aspergillus and Rhizopus were isolated. Most of the isolates are soil and water borne which could serve as vehicle for contamination of the eggplants. Some of the isolates like Staphylococcus and Bacillus are involved in food spoilage and borne infections while Aspergillus and Fusarium species are notable causes of mycotoxocosis in man and animals. This study shows that preservatives applied at appropriate concentrations can create adequate protection from spoilage microorganisms, and therefore recommends the use of sodium benzoate to enhance the keeping quality of eggplants

Keywords: Eggplants; Microbiology; Preservatives

Abbreviations: GDP: Gross Domestic Product; NA: Nutrient Agar; PDA: Potato Dextrose Agar; MCA: MacConkey Agar

Introduction
The huge loss of fruits and vegetables to spoilage is becoming alarming. The enormous economic loss to farmers and reduction in gross domestic product (GDP) to producing nations has been the discourse in many international conferences. The high moisture contents and nutritional components of fruits and vegetables predispose it to both chemical and microbial spoilage [1-8]. Fruits, apart from its nutritional values have so many therapeutic potentials. Some contain phytochemical and antioxidant agents [9-11,5], while some have been employed in production of beverages, probiotics and prebiotics. Garden egg contains flavonoids, tropane, glycoalkaloids, arginine, lanosterol, gramisterol, aspartic acid as important constituents [9]. The plant is reported to have analgesia, antipyretic, antioxidant, anti-inflammatory, antihypertensive, hypolipidemic, hypotensive, antiplatelet, intraocular pressure reducing and anaphylactic reaction inhibitory activities [12].

The demand for garden egg is on the increase as it has gone beyond being a staple fruit to a more commercial commodity that is now a major source of income for producing households and marketers in the forest zone [13]. Since fruits are generally acidic, they are naturally amenable to preservation. Secondly, increased acidity can activate chemical reactions such as pectin which lowers water activity and reduces the possibility of microbial growth. Dehydration is among the oldest and most common forms of fruit preservation as moisture in the fruit is driven off; leaving a stable food that has moisture content below that at which microorganisms
can grow. This research reports the microbiological quality of garden eggs and different chemical preservation methods.

Materials and Methods

Sample Collection and Preparation

Four hundred fresh garden eggs were collected randomly from five markets (Ekeonnuwa, Ihaigwa, Relief, Ezeobodo and Nekede) in Imo state, Nigeria. Two hundred samples were subjected to microbiological analysis without treatment with preservatives, while the remaining two hundred were treated with different concentrations of preservatives before subjecting to routine microbiological analysis.

Microbiological Analyses of Samples

Ten grams of fresh eggplants were rinsed in ninety milliliters of sterile distilled water to obtain 101 dilution. Further dilutions were made decimally until 105 dilution was obtained. One-tenth milliliter (0.1ml) of the fifth dilution was plated in duplicates onto freshly prepared surface dried Nutrient agar (NA), Potato Dextrose Agar (PDA) and MacConkey agar (MCA). The inocula were spread evenly before incubated at ambient temperature (28°C) [14-16].

Preparation of Preservatives and Treatment of Samples

Two hundred milliliters of distilled water were sterilized in a 500ml conical flask. This was repeated in four sets. Different concentrations (10g, 5g, 3g, and 1g) of ascorbic acid was dissolved in the sterile distilled water and shaken vigorously. The procedure was repeated with sodium metabisulphite and sodium benzoate.

Preparation of preservatives and treatment of samples

Counts on Potato Dextrose Agar

Counts on Nutrient Agar

Counts on MacConkey Agar

Ten grams of fresh eggplants were rinsed in ninety milliliters of sterile distilled water to obtain 101 dilution. Further dilutions were made decimally until 105 dilution was obtained. One-tenth milliliter (0.1ml) of the fifth dilution was plated in duplicates onto freshly prepared surface dried Nutrient agar (NA), Potato Dextrose Agar (PDA) and MacConkey agar (MCA). The inocula were spread evenly before incubated at ambient temperature (28±0.2°C) [14-16].

Preparation of Preservatives and Treatment of Samples

Two hundred milliliters of distilled water were sterilized in a 500ml conical flask. This was repeated in four sets. Different concentrations (10g, 5g, 3g, and 1g) of ascorbic acid was dissolved in the sterile distilled water and shaken vigorously. The procedure was repeated with sodium metabisulphite and sodium benzoate.

Results

Table 1 shows the total microbial populations prior to the addition of preservatives. Counts ranged between 3.3×10^3 - 1.45×10^7 for heterotrophic bacteria, 1.0×10^3 - 1.45×10^7 for heterotrophic fungi and 1.0×10^3 - 3.2×10^4 for coliform bacteria. Table 2 shows the biochemical and carbohydrate characterization of bacteria isolated from the untreated samples. Four species of bacteria namely, *Staphylococcus aureus*, *Bacillus subtilis*, and *Micrococcus luteus* and *Enterococcus faecalis* were isolated. Four fungal species namely *Rhizopus nigricans*, *Saccharomyces cerevisiae*, *Aspergillus* and *Fusarium* species were isolated from the sample as shown in Table 3. Table 4 shows the total count and colony characterization of bacterial isolates after treatment with different concentrations of preservatives. Samples treated with ascorbic acid did not show any effect, especially at concentrations 1g and 3g, as the organisms grew luxuriantly. Remarkable result was evident at concentrations 5g and 10g as there was reduction on both microbial population and diversity.

Table 1: Total microbial population on garden eggs before treatment with preservatives.

Sample Code	Total Heterotrophic Bacterial Counts on Nutrient Agar	Total Heterotrophic Fungal Counts on Potato Dextrose Agar	Total Coliform Counts on Macconkey Agar
EKM1	4.5×10^3	1.2×10^4	1.0×10^4
EKM2	5.6×10^3	2.9×10^4	1.2×10^4
EKM3	6.2×10^3	2.6×10^4	1.5×10^4
EKM4	3.3×10^3	1.1×10^4	1.2×10^4
EKM5	3.8×10^3	7.1×10^4	1.0×10^4
IHM1	5.5×10^3	2.9×10^4	1.9×10^4
IHM2	6.0×10^3	3.3×10^4	1.5×10^4
IHM3	4.1×10^3	3.9×10^4	1.8×10^4
IHM4	4.4×10^3	1.0×10^4	1.0×10^4
IHM5	5.0×10^3	2.1×10^4	1.0×10^4
RFM1	1.11×10^7	1.22×10^4	1.1×10^4
RFM2	1.43×10^7	1.11×10^7	2.2×10^4
RFM3	1.23×10^7	1.28×10^7	1.4×10^4
RFM4	8.9×10^4	1.05×10^7	1.0×10^4
RFM5	6.9×10^3	1.45×10^7	1.0×10^4
EZM1	6.9×10^3	3.4×10^4	1.2×10^4
EZM2	5.5×10^3	3.0×10^4	1.9×10^4
EZM3	3.6×10^3	6.8×10^4	1.6×10^4
EZM4	4.0×10^3	4.5×10^4	1.0×10^4
Table 2: Biochemical characterization and carbohydrate formation test of bacteria isolated from samples.

Gram Morphology	Cat	Oxi	In	MR	Cit	NO₃	Urease	Carbohydrate Fermentation	Identity of Isolate
+S	+	-	+	-	+	+	-	+	Staphylococcus aureus
+R	+	-	-	-	+	+	+	+	Bacillus subtilis
+S	+	-	-	+	+	+	-	+	Micrococcus Luteus

Note: Cat, catalase; Oxi, oxidase; In, indole; MR, methyl red; Cit, citrate; NO₃, Nitrate reduction; Glu, glucose; Suc, sucrose; Mal, maltose; Mann, Mannose; Xyl, xylose; Lac, lactase: +S, gram positive spherical (round) shape: +R, gram positive rod shape.

Table 3: Colonies and microscopic characterization of fungal isolates.

Colony Characterization	Microscopic Characterization	Identification of Isolate
Tall white filamentous hyphae with orange spores.	Non septate hyphae	Rhizopus nigricans
Moist and shiny cream colonies	Gram positive oval budding cells	Saccharomyces spp.
Dull and dry domed shape cream colonies	Gram positive ellipsoidal budding cells	Saccharomyces ellipsoideus
Yellow colonies	Gram positive oval budding cells	Saccharomyces spp.
Moist and shiny	Gram positive budding cells	Saccharomyces spp.
Cream colonies, short mycelium with black spores and yellow background	Septate hyphae hyphae. Conidial attached to vascular	Aspergillus spp
Black spores raised hyphae	Septate hyphae	Aspergillus spp
Short white mycelia with red background	Conidia sickle sloped	Fusarium spp

Table 4: Total count and colony characterization of Bacteria isolated on samples treated with preservatives.

Preservatives	Concentration of Preservatives (g)	Total Bacterial Counts (Cfu/ml)	Identities of Bacterial Isolates
Ascorbic Acid	1	8.1 x 10³	Bacillus cereus, Staphylococcus aureus, Micrococcus luteus, Enterococcus faecalis
	3	7.2 x 10³	Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis
	5	2.1 x 10²	Bacillus cereus, Staphylococcus aureus
	10	1.3 x 10²	Bacillus cereus, Staphylococcus aureus
Sodium Benzoate	1	2.1 x 10²	Bacillus cereus, Staphylococcus aureus
	3	1.0 x 10²	Bacillus cereus, Staphylococcus aureus
	5	0	Bacillus cereus, Staphylococcus aureus
	10	0	Bacillus cereus
There was significant decrease in both cells counts and bacterial types in samples treated with sodium benzoate. The higher concentrations (5g and 10g) inhibited the growth of the organisms. Sodium metabisulphite was stimulatory and the bacterial populations increased with concentration of the preservatives. The effects of preservatives on the fungal isolates on the samples is shown in Table 5. The higher concentrations (5g and 10g) of sodium benzoate and sodium metabisulphite showed significant inhibition on the growth of the fungal isolates. Ascorbic acid showed a stimulatory effect on the growth of bacteria and fungi. The percentage occurrence of bacteria and fungi isolated from the samples is shown in Table 6. The yeasts, Saccharomyces species and the bacterium, Enterococcus faecalis were dominant species isolated from the samples. The distribution of the bacteria and fungi isolated across the sample locations (markets) is shown in Table 7. Saccharomyces, Bacillus and Enterococcus faecalis were isolated in the sample across the markets.

Table 5: Total count and colony characterization of Fungi isolated on samples treated with preservatives.

Preservatives	Concentration of Preservatives (g)	Total Fungal Counts (Cfu/ml)	Identities of Fungal Isolates
Ascorbic Acid	1	1.96 x 10⁴	Saccharomyces cerevisiae, Saccharomyces ellipsoideus, Aspergillus sp, Fusarium sp
	3	2.11 x 10⁴	Saccharomyces cerevisiae, Saccharomyces ellipsoideus, Aspergillus sp, Fusarium sp
	5	2.49 x 10⁴	Saccharomyces cerevisiae, Saccharomyces ellipsoideus, Aspergillus sp, Fusarium sp
	10	2.71 x 10⁴	Saccharomyces cerevisiae, Saccharomyces ellipsoideus, Aspergillus sp, Fusarium sp
Sodium Benzoate	1	3.1 x 10³	Saccharomyces cerevisiae, Saccharomyces ellipsoideus
	3	1.0 x 10²	Saccharomyces cerevisiae, Saccharomyces ellipsoideus
	5	0	Saccharomyces cerevisiae, Saccharomyces ellipsoideus
	10	0	Saccharomyces cerevisiae, Saccharomyces ellipsoideus
Sodium metabisulphite	1	1.9 x 10³	Saccharomyces cerevisiae, Saccharomyces ellipsoideus
	3	1.0 x 10²	Saccharomyces cerevisiae, Saccharomyces ellipsoideus
	5	0	Bacillus cereus, Staphylococcus aureus, Micrococcus luteus, Enterococcus faecalis
	10	0	Bacillus cereus, Staphylococcus aureus, Micrococcus luteus, Enterococcus faecalis
Table 6: Percentage distribution of Bacteria and Fungi in samples.

Bacterial Isolates	Percentage Occurrence (%)	Fungal Isolates	Percentage Occurrence (%)
Staphylococcus aureus	18 (16.7)	Saccharomyces cerevisiae	45 (38.8)
Bacillus cereus	21 (19.4)	Saccharomyces elipsoideus	39 (33.6)
Micrococcus luteus	14 (13.0)	Aspergillus sp	12 (10.3)
Enterococcus faecalis	45 (41.7)	Rhizopus nigricans	4 (3.4)
Bacillus subtilis	10 (9.3)	Fusarium sp	16 (13.8)

Table 7:

Sample Locations	Bacteria Distribution	Fungi Distribution
EKM	Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Micrococcus luteus	Rhizopus nigricans, Saccharomyces cerevisiae, Saccharomyces elipsoideus, Aspergillus sp, Fusarium sp
EZM	Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Micrococcus luteus	Rhizopus nigricans, Saccharomyces cerevisiae, Saccharomyces elipsoideus, Aspergillus sp, Fusarium sp
IHM	Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Micrococcus luteus	Rhizopus nigricans, Saccharomyces cerevisiae, Saccharomyces elipsoideus, Aspergillus sp, Fusarium sp
RPM	Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Micrococcus luteus	Saccharomyces cerevisiae, Saccharomyces elipsoideus, Aspergillus sp, Fusarium sp
NKM	Bacillus cereus, Bacillus subtilis, Enterococcus faecalis	Rhizopus nigricans, Saccharomyces cerevisiae, Saccharomyces elipsoideus, Aspergillus sp, Fusarium sp

Discussion

The results obtained shows that the eggplants were contaminated with diverse microorganisms. Some of these isolates have been found to be associated with certain food borne illnesses, most of which arise from improper handling, preparation and poor food storage facilities [22,23], also can cause food spoilage [23,24]. The presence of some pathogenic bacteria such as Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus and Staphylococcus aureus is worrisome because of their public health importance. Bacillus subtilis is a spore former that can withstand adverse effects of preservative(s). These structures pose resistant to environmental stress such as heat, ultraviolet radiation, chemical disinfectant and desiccation [23]. The presence of Enterococcus faecalis associated with faecal contamination is notable causative agent of food borne gastroenteritis and bacterial diarrhea disease [23,25-27].

Reported that some strains of Aspergillus flavus produce aflatoxins, which are carcinogenic in mammals including human. The presence of these microorganisms is an indication of the use of contaminated water by food handler and soil where they are cultivated [23,25,26]. Saccharomyces cerevisiae and Bacillus species are the major fermentative organisms and may influence microbial food deterioration and spoilage [26,28]. Results shows that the chemical preservatives used were effective against microbial growth at different concentrations. This was evident in the reduction of bacterial and fungal count over time. Chemical preservatives have been used to improve the shelf lives of food substances as they inhibit, retard or arrest the growth of microorganisms [7,29-31]. Investigation of antimicrobial activities of the three preservatives used showed that sodium benzoate was more effective on both bacterial and fungal species.

This was also reported by [32]. This was evident as samples treated with sodium benzoate had a lower microbial count as well as decrease in microbial diversities. The low hydrogen ion concentration, (pH) could account for the reduction in both microbial populations and diversities [32-34]. The higher bacteria contamination shown in samples treated with sodium metabisulphite indicates a stimulatory response rather than antagonistic response. Sodium metabisulphite was very effective against fungi at higher concentrations, whereas ascorbic acid was stimulatory to the growth of fungi, especially the yeasts, Saccharomyces. This study has established microbiological safety of eggplants treated with chemical preservatives. The use of chemical preservatives in appropriate concentration in addition to other hurdles techniques recommended by [30] could serve as a check in the control of microbial contamination.

References

1. Oranusi US, Braide W (2012) Microbiological safety assessment of apple fruits (Malus domestica Borkh) sold in Owerri, Imo State Nigeria. Advanced Journal of Food Science and Technology 4(2): 97-102.
2. Uzeh RE, Alade FA, Bankole, M (2009) The microbial quality of pre-packed mixed vegetables salad in some retail outlets in Lagos, Nigeria. African Journal of Food Science 3(9): 270-272.
3. Tournas VH (2005) Moulds and yeasts in fresh and minimally processed vegetables and sprouts. International Journal of Food Microbiology 99: 71-77.
4. Viswanathan P, Kaur R (2001) Prevalence and growth of pathogens on salad vetables, fruits and sprouts. Internal Journal Hygiene Environment Health 203(3): 105-213.
5. Okwuwe CL, Agwu MM, Orji CU, Bmide U, Uzoh CV (2015) Preliminary screening of the antimicrobial activities of some medicinal vegetables and spices indigenous to Abraka South-South, Nigeria. International Journal of Pure and Applied Biosciences 3(6): 70-75.
6. Oranusi S, Braide W, Nwankwo OE (2012) Microbial and geohelminthes population in different parts of Daucus carota L. (Carrot). Current Trends in Microbiology 8: 21-27.
7. Uzoh CV, Umezuruiche KC, Braide W, Orji CU, Iheuwumere IH (2016) Evaluation of antibacterial activities of some chemical food preservatives on food associated with bacteria. Research and Review: Journal of Microbiology and Biotechnology 5(2): 35-38.
8. Oranusi S, Braide W, Ethosa Okankan OJ (2013) Prevalence of geohelminthes on selected fruits and vegetables sold in Owerri, Imo State, Nigeria. African Journal of Food Science and Technology 4(2): 35-43.
9. Hasler CM, Blumberg JB (1999) Symposium on phytochemicals Biochemistry and Physiology Journal of Nutrition 129(3): 756-758.
10. Venkataswamy R, Doss A, Sukumar M, Mubarack HM (2010) Preliminary phytochemical screening and antimicrobial studies of Lantana indica roxb. Indian Journal of Pharmaceutical Science 72(2): 229-231.
11. Umesh KK, Vijay KB, Ngunji KB, Neha PB, Baljibhai AG (2015) Antioxidant and nutritional components of Eggplant (Solanum melongena L) fruit grown in Saurashtra Region. International Journal of Current Microbiology and Applied Sciences 4(2): 806-813.

Cite this article: Mike Anosike EE, Braide W, Ad-eye SA, Oguoma OI. Microbiological and Chemical Preservation of Eggplants Sold in Five Popular Markets in Owerri, Imo State, Nigeria. Biomed J Sci & Tech Res 13(3)-2019. BJSTR. MS.ID.002404. DOI: 10.26717/ BJSTR.2019.13.002404.
Biomedical Journal of Scientific & Technical Research

Volume 13- Issue 3: 2019

12. Eun Ju J, Myungi Suk B, Eun Kyung J, Young Hong J, Seung Cheol L (2011) Antioxidant activity of different parts of eggplant. Journal of Medicinal Plant Research 5(18): 4610-4615.
13. Danquah Jones A (2000) Variation and correlation among agronomic traits in Garden Eggs (Solanum gilo Radii). Department of Crop Science, Acra, University of Acra, Legon, p. 30.
14. Cheesbrough M (2002) Laboratory Practice in Tropical Countries Part 2. In: Cheesbrough M (Eds.), 2nd (edn.). Cambridge Education, UK, pp. 63-70.
15. Harrigan WF, McCance M (1990) Laboratory Methods in Food and Dairy Microbiology. Academic Press Inc., Amsterdam, Netherlands. pp. 321-356.
16. Fawole MO, Oshe BA (2002) Laboratory Manual of Microbiology. In: Fawole MO, Oshe BA (Eds.). Spectrum Book Ltd, Ibadan, Nigeria, p. 6-45.
17. Kregervan RN (1984) The Yeasts: A Taxonomic Study. In: Kregervan RN (Eds.), 5th (edn.). Elsevier Science Publishers, Amsterdam, Netherlands. pp. 301-312.
18. Barnett JA, Payne RW, Yarrow D (1987) Illustrated Genera of Imperfect Fungi. In: Barnett JA, Payne RW, Yarrow D (Eds.). 2nd (edn.). Cambridge University Press, Cambridge, UK, pp. 1002.
19. Claus DC (1992) A Standardized Gram Staining Procedure. World Journal of Microbiology and Biotechnology 8(4): 451-452.
20. Tsuneo W (2010) Pictorial Atlas of Soil and Seed Fungi: Morphologies and cultural Fungi and key to species. In: Tsuneo W (Eds.). 3rd (Edn.). CRC Press, Tsuneo Watanabe, Japan.
21. Perry JP, Staley JT (1997) Microbiology: Dynamics and Diversity. In: Perry JP, Staley JT (Eds.). Harcourt Brace College Publishers, New York, USA, pp. 430-502.
22. Prescott LM, Harley JP, Kleen DA (2002) Microbiology. In: Prescott LM, Harley JP, Kleen DA (Eds.). McGraw-Hill Publishers, New York, USA, pp. 965-972.
23. Stainer RY, Ingram J, Wheelis ML, Painter M (1987) General Microbiology. In: Stainer RY, Ingram J, Wheelis ML, Painter M (Eds.). London University Press, UK, pp. 137-141.
24. Pelczar JM, Harley JP, Kleen DA (2002) Microbiology. In: Pelczar JM, Harley JP, Kleen DA (Eds.). 5th (Edn.). Tata McGraw Hill Publishers, New York, USA. pp. 352-627.
25. Jay JM (2005) Food Microbiology. In: Jay James M, Loessner Martin J, Golden, David A (Eds.), 7th (edn.). Springer, USA. pp. 790.
26. Bothast RJ (1978) Fungal deterioration and related phenomena in cereals, legumes and oilseeds. Post-Harvest Biology and Biotechnology. Chapter 6, Northen Regional Research Center, Agricultural Research Services, U.S. Department of Agriculture, Peoria, IL 61604, pp. 210-243.
27. Frazier WC, Westhoff DC (1986) Food Microbiology. In: Frazier WC, Westhoff DC (Eds.), TMM edition, Cambridge University Press, UK, pp. 521-540.
28. Ihekoronye AI, Ngoddy PO (1995) Integrated Food Science and Technology for the Tropics. In: Ihekoronye AI, Ngoddy PO (Eds.). Macmillan Educational Ltd., UK. pp. 121-147.
29. Braide W, Oramusi S, Peter Ikechukwu AI (2012) Perspectives in the hurdle techniques in the preservation of a nonalcoholic beverage, Zobo. African Journal of Food Science and Technology 3(2): 46-52.
30. Efionwevhere BJO, Akoma O (1997) The effect of chemical preservatives and pasteurization of the microbial spoilage and shelf life of kunun zaki. Journal of Food Safety. 17: 203-213.
31. Kregervan RN, Nair NS, Sharp ME, Holt JG (1986) Bergey’s Manual of Systemic Bacteriology. In: Kregervan RN, Nair NS, Sharp ME, Holt JG (Eds.). Williams and Wilkins Co. Baltimore, Maryland. pp. 301-312.
32. Barnett JA, Payne RW, Yarrow D (1990) Yeast: Characteristics and Identification. In: Barnett JA, Payne RW, Yarrow D (Eds.). 2nd (Edn.). Cambridge University Press, Cambridge, UK, pp. 1002.
33. Frazier WC, Westhoff DC (1986) Food Microbiology. In: Frazier WC, Westhoff DC (Eds.), TMM edition, Cambridge University Press, UK, pp. 521-540.
34. Harrigan WF, McCance M (1990) Laboratory Methods in Food and Dairy Microbiology. Academic Press Inc., London, UK, pp. 25-28.
35. Leistner L (2000) Basic aspects of food preservation hurdle technology. In: Leistner L (Eds.), 5th (edn.), Elsevier Science Publishers, Amsterdam, Netherlands. pp. 657-659.
36. Krebs HA, Wiggins D, Stubbs M, Sols A, Bedoya F (1983) Studies in the mechanism of antifungal action of benzoate. Biochemistry Journal 3: 657-659.
37. Bothast RJ (1978) Fungal deterioration and related phenomena in cereals, legumes and oilseeds. Post-Harvest Biology and Biotechnology. Chapter 6, Northen Regional Research Center, Agricultural Research Services, U.S. Department of Agriculture, Peoria, IL 61604, pp. 210-243.
38. Frazier WC, Westhoff DC (1986) Food Microbiology. In: Frazier WC, Westhoff DC (Eds.), TMM edition, Cambridge University Press, UK, pp. 521-540.
39. Kregervan RN, Nair NS, Sharp ME, Holt JG (1986) Bergey’s Manual of Systemic Bacteriology. In: Kregervan RN, Nair NS, Sharp ME, Holt JG (Eds.). Williams and Wilkins Co. Baltimore, Maryland. pp. 301-312.
40. Barnett JA, Payne RW, Yarrow D (1990) Yeast: Characteristics and Identification. In: Barnett JA, Payne RW, Yarrow D (Eds.). 2nd (Edn.). Cambridge University Press, Cambridge, UK, pp. 1002.
41. Claus DC (1992) A Standardized Gram Staining Procedure. World Journal of Microbiology and Biotechnology 8(4): 451-452.
42. Tsuneo W (2010) Pictorial Atlas of Soil and Seed Fungi: Morphologies and cultural Fungi and key to species. In: Tsuneo W (Eds.). 3rd (Edn.). CRC Press, Tsuneo Watanabe, Japan.
43. Perry JP, Staley JT (1997) Microbiology: Dynamics and Diversity. In: Perry JP, Staley JT (Eds.). Harcourt Brace College Publishers, New York, USA, pp. 430-502.
44. Prescott LM, Harley JP, Kleen DA (2002) Microbiology. In: Prescott LM, Harley JP, Kleen DA (Eds.). McGraw-Hill Publishers, New York, USA, pp. 965-972.
45. Stainer RY, Ingram J, Wheelis ML, Painter M (1987) General Microbiology. In: Stainer RY, Ingram J, Wheelis ML, Painter M (Eds.). London University Press, UK, pp. 137-141.
46. Pelczar JM, Harley JP, Kleen DA (2002) Microbiology. In: Pelczar JM, Harley JP, Kleen DA (Eds.). 5th (Edn.). Tata McGraw Hill Publishers, New York, USA. pp. 352-627.
47. Jay JM (2005) Food Microbiology. In: Jay James M, Loessner Martin J, Golden, David A (Eds.), 7th (edn.). Springer, USA. pp. 790.
48. Bothast RJ (1978) Fungal deterioration and related phenomena in cereals, legumes and oilseeds. Post-Harvest Biology and Biotechnology. Chapter 6, Northen Regional Research Center, Agricultural Research Services, U.S. Department of Agriculture, Peoria, IL 61604, pp. 210-243.
49. Frazier WC, Westhoff DC (1986) Food Microbiology. In: Frazier WC, Westhoff DC (Eds.), TMM edition, Cambridge University Press, UK, pp. 521-540.
50. Ihekoronye AI, Ngoddy PO (1995) Integrated Food Science and Technology for the Tropics. In: Ihekoronye AI, Ngoddy PO (Eds.). Macmillan Educational Ltd., UK. pp. 121-147.
51. Braide W, Oramusi S, Peter Ikechukwu AI (2012) Perspectives in the hurdle techniques in the preservation of a nonalcoholic beverage, Zobo. African Journal of Food Science and Technology 3(2): 46-52.
52. Efiuvwevhere BJO, Akoma O (1997) The effect of chemical preservatives and pasteurization of the microbial spoilage and shelf life of kunun zaki. Journal of Food Safety. 17: 203-213.
53. Krebs HA, Wiggins D, Stubbs M, Sols A, Bedoya F (1983) Studies in the mechanism of antifungal action of benzoate. Biochemistry Journal 3: 657-659.
54. Barnet HL, Hunter BB (1987) Illustrated Genera of Imperfect Fungi. In: Barnet HL, Hunter BB (Eds.). 4th (Edn.). Burgess Publishing Company, Minnesot, USA. pp. 208.
55. Leistner L (2000) Basic aspects of food preservation hurdle technology. International Journal of Food Microbiology 55(1-3): 181-186.

ISSN: 2574-1241
DOI: 10.26717/BJSSTR.2019.13.002404
Braide W: Biomed J Sci & Tech Res

This work is licensed under Creative Commons Attribution 4.0 License
Submission Link: https://biomedres.us/submit-manuscript.php

Cite this article: Mike Anosike EE, Braide W, Adeleye SA, Oguoma OI. Microbiology and Chemical Preservation of Eggplants Sold in Five Popular Markets in Owerri, Imo State, Nigeria. Biomed J Sci & Tech Res 13(3):2019. BJSTR. MS.ID.002404. DOI: 10.26717/BJSSTR.2019.13.002404.