Equilibrative Nucleoside Transporter Family Members from *Leishmania donovani* Are Electrogenic Proton Symporters*

Alex Stein†‡‡, Gayatri Vaseduvan†, Nicola S. Carter‡, Buddy Ullman‡, Scott M. Landfear†‡**, and Michael P. Kavanaugh†‡‡

From the †Volllum Institute and the Departments of ‡Molecular Microbiology and Immunology and |Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239-3098

Leishmania donovani express two members of the equilibrative nucleoside transporter family; LdNT1 encoded by two closely related and linked genes, LdNT1.1 and LdNT1.2, that transport adenosine and pyrimidine nucleosides and LdNT2 that transports inosine and guanosine exclusively. LdNT1.1, LdNT1.2, and LdNT2 have been expressed in *Xenopus laevis* oocytes and found to be electrogenic in the presence of nucleoside ligands for which they mediate transport. Further analysis revealed that ligand uptake and transport currents through LdNT1-type transporters are proton-dependent. In addition to the flux of protons that is coupled to the transport reaction, LdNT1 transporters mediate a variable constitutive proton conductance that is blocked by substrates and dipyridamole. Surprisingly, LdNT1.1 and LdNT1.2 exhibit different electrogenic properties, despite their close sequence homology. This electrophysiological study provides the first demonstration that members of the equilibrative nucleoside transporter family can be electrogenic and establishes that these three permeases, unlike their mammalian counterparts, are probably concentrative rather than facilitative transporters.

Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis, a devastating and often fatal disease in humans. The parasite exhibits a digenetic life cycle; the extracellular, aflagellar, and nonmotile amastigote that exists within the phagolysosome of macrophages and other reticuloendothelial cells of the infected mammalian host. The drugs used to treat visceral leishmaniasis have been empirically derived and are toxic, require prolonged and multiple administrations, and are often ineffective. The toxicity can be ascribed to the lack of target specificity within the parasite. Thus, the need for more efficacious and specific drugs is acute.

The design of selective antiparasitic drugs depends on the exploitation of fundamental biochemical differences between parasite and host. Perhaps the most remarkable metabolic discrepancy between protozoan parasites and their human host is that the former are incapable of synthesizing the purine ring *de novo* (1). Thus, all protozoan parasites studied to date have evolved a unique series of purine salvage enzymes that enable parasites to scavenge purines from their host. Purine acquisition by the parasite is initiated by the translocation of extracellular purines across the parasite cell surface membranes, a process that is mediated by nutritionally indispensable nucleoside and nucleobase transporters.

Genetic and biochemical investigations (2, 3) have demonstrated that *L. donovani* express two nucleoside transporter activities of nonoverlapping ligand specificities; LdNT1, which recognizes adenosine and pyrimidine nucleosides, and LdNT2, which mediates the transport of inosine and guanosine. Subsequently, the genes encoding LdNT1 (4) and LdNT2 (5) were isolated by functional rescue of nucleoside transport-deficient *L. donovani*. The LdNT1 locus encompasses two closely related genes, LdNT1.1 and LdNT1.2, and although both are functional after expression in either *Xenopus laevis* oocytes or *L. donovani*, only LdNT1.1 transcript is detected by Northern blot analysis of promastigote mRNA (6). Predicted amino acid sequences and membrane topologies of LdNT1.1, LdNT1.2, and LdNT2 reveal that all three transporter proteins are members of the equilibrative nucleoside transporter (ENT) family (7). Mammalian cells and other eukaryotes also express a battery of ENTs, as well as sodium-dependent concentrative nucleoside transporters, which are unrelated in sequence to the ENTs (8).

Leishmania parasites maintain a large proton electrochemical gradient across the plasma membrane with a resting potential near −100 mV (9, 10), and it has been conjectured that these organisms generally exploit this electrochemical gradient to drive concentrative uptake of nutrients into the parasite (11). One example of proton driven transport emerged from studies on the proton/myo-inositol co-transporter of *L. donovani* (12, 13). In order to determine whether nucleoside uptake into *Leishmania* could utilize this proton gradient, LdNT1.1, LdNT1.2, and LdNT2 cRNAs were expressed into *X. laevis* oocytes. Two-electrode voltage clamp measurements on these oocytes revealed that all three carriers were electrogenic. It was further shown that LdNT1.1 and LdNT1.2 mediate two

The abbreviations used are: ENT, equilibrative nucleoside transporter; DPA, dipyridamole; I_{max}, maximum current; pC, picoCoulombs; RMP, resting membrane potential; TMD, transmembrane domain; V_{mem}, membrane potential; V_{max}, maximum transport velocity; V_{rev}, reversal potential; MES, 2-[N-morpholino]ethanesulfonic acid.
pharmacologically separable ion permeation mechanisms, a proton-dependent, inwardly rectifying transport current, and a tonic, linear, and reversible current carried by protons, respectively. From these results, we conclude that these three nucleoside permeases are likely concentrative proton symporters and that some members of the ENT family are thus active transporters.

EXPERIMENTAL PROCEDURES

Nucleoside Transporter cRNA Expression in Oocytes—Defolliculated stage V-VI *X. laevis* oocytes were microinjected with ~50 ng of capped mRNA that was transcribed with T7 RNA polymerase (Invitrogen) from linearized pl2–5 plasmids (14) containing either *LdNT1.1, LdNT1.2,* or *LdNT2* using a nanoliter injector from World Precision Instruments (Sarasota, FL). Oocytes were stored at 16°C in frog Ringer’s solution containing 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl₂, 1 mM MgCl₂, 5 mM Na₂-HEPES, pH 7.5, and 1.5% heat-inactivated horse serum. Electrophysiological and radiolabel uptake measurements were performed 4–7 days after cRNA injection.

Electrophysiological Recording—Unless otherwise indicated, recording solutions contained 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl₂, 1 mM MgCl₂, and a buffer of either 10 mM HEPES-Tris, pH 7.5, 10 mM MES-Tris, pH 5.5, 10 mM MES-Tris, pH 6.5, or 10 mM Tris-HEPES, pH 8.5. In experiments where Na⁺ was varied or replaced, equimolar concentrations of choline were substituted for the Na⁺. Two microelectrode voltage-clamp recordings were performed at room temperature using a Gene Clamp 500 interfaced to an IBM compatible PC-AT using a Digidata 1200 A/D controlled by the pCLAMP program suite (version 6.0.3; Axon Instruments). A MacLab/2e analog/digital converter (AD-Instruments) was used to continuously monitor currents. Microelectrodes were filled with a 3 M KCl solution and had resistances of less than 1.5 MΩ. Substrates and antagonists were introduced by gravity flow into a bath that was continuously perfused with Ringer’s solution. Dipyridamole (DPA) was dissolved in 0.1% Me₂SO, which did not induce a current itself in either LdNT-injected or uninjected oocytes (data not shown). Current-voltage measurements were made during 250-ms voltage pulses to a series of command potentials. Current data were digitized at 1 kHz. The normalized mean concentration response of currents induced by substrate was fitted by least squares to the Michaelis-Menten equation: $I = I_{\text{max}} \left(\frac{[S]}{[S] + K_m}\right)$, where S represents either nucleoside or protons. Unless otherwise indicated, K_m values are expressed as mean ± S.E. from fits to individual oocytes. Presteady-state current measurements were recorded at the lowest gain possible to avoid saturation of the amplifier response during the peak of the capacitance transient. For each oocyte, the charge movements carried by the capacitive transient currents were calculated by time integration of the substrate-dependent current after subtraction of steady-state current, which was defined as the current recorded during the last 10 ms of the voltage pulse (16). Charge movements were plotted versus voltage and fitted by least squares to the Boltzmann equation: $Q_{\text{tot}} = \left(1 + \exp\left[\frac{V_m - V_{0.5} - kT}{kT}\right]\right) + Q_{\text{offset}}$, where Q_{tot} is the total charge movement, $V_{0.5}$ is the midpoint of the charge movement, V_m is the membrane potential, kT is the product of the valence of the charge and apparent fraction of the field sensed by that charge, Q_{offset} is the offset that depended on the holding potential, e_0 is the elementary charge, h is the Boltzmann constant, and T is the absolute temperature. For comparisons among oocytes, charge movements were offset vertically by Q_{offset} and normalized to the Q_{tot} in the same oocytes.

Radiolabeled Nucleoside Flux—Oocytes expressing *LdNT1.1* or *LdNT1.2* were microinjected with 50 ng of capped cRNA (data not shown, $n = 4$).
RESULTS

Electric Nucleoside Transport—Inward currents were observed in oocytes that were voltage-clamped at −100 mV and injected with LdNT1.2 cRNA after application of adenosine, AMP, uridine, thymidine, or cytidine at a concentration of 10 μM (Fig. 1A). No current was observed when the same concentration of inosine, guanosine, adenine, ADP, or ATP, was added (Fig. 1A). In contrast, oocytes microinjected with LdNT1.1 cRNA exhibited an outward current in response to either adenosine or AMP but an inward current when the pyrimidine nucleosides uridine, cytidine, and thymidine were applied (Fig. 1B). No currents were observed in uninjected oocytes in response to the application of any substrate of LdNT1 permeases. No currents were observed in uninjected oocytes in response to the application of any substrate of LdNT1 permeases. No currents were observed in uninjected oocytes in response to the application of any substrate of LdNT1 permeases.

LdNT1.2 were incubated in wells containing either 10 μM [3H]adenosine or [3H]uridine (≈3 × 10⁻³ C/mmol; Amersham Biosciences) for 30 min. Oocytes were then washed for 20 s with Ringer’s buffer, transferred into a scintillation tube, solubilized in 1% SDS, and counted by liquid scintillation spectrometry.

Adenosine-elicited currents for LdNT1.1 were outwardly rectifying (Fig. 2A). In contrast, the shapes of the steady-state current-voltage curves for LdNT1.2 was inwardly rectifying (Fig. 2B). However, the shape of the LdNT1.2 current versus voltage curve for adenosine exhibited a negative slope conductance at membrane potentials more positive than Vₘ = −10 mV. In contrast, 10 μM uridine triggered inward currents in both LdNT1.1 and LdNT1.2.

The data in Fig. 2 were used to estimate molar charge to substrate flux ratios for the two transporters. First, uptake of [³H]adenosine and [³H]uridine over a 30 min time course was measured for each permease using 5 oocytes (Fig. 2C). Using the average resting membrane potential (RMP) measured for these oocytes (LdNT1.1: RMP = −53.0 ± 5.0 mV; LdNT1.2: RMP = −27.0 ± 0.6 mV), the integrated charge crossing the membrane over the 30 min time course of the uptake assay was calculated from the currents in the same group of oocytes defined at each RMP by the curves in Fig. 2, A and B. The molar amounts of charge thus calculated were divided by the molar amounts of radiolabeled ligand that crossed the membrane during the 30 min assay to estimate the charge to substrate flux ratios. According to these calculations, LdNT1.1 counter-transported 0.029 charges per molecule of adenosine and co-transported 0.13 charges per molecule of uridine. LdNT1.2 co-transported 0.0035 charges per molecule of adenosine and co-transported 0.46 charges per molecule of uridine. These non-integer charge to flux values clearly indicate that substrate flux is not tightly coupled to the total currents mediated by LdNT1 transporters. An explanation for charge to flux ratios significantly below unity is offered under “Discussion.” However, the charge to flux ratio of 0.46 for the uridine-induced currents in LdNT1.2 suggests that there is a substantial coupling of transmembrane charge movement to substrate import.

pH Dependence of Adenosine-induced Steady-state Currents—To further investigate the origin of the currents observed in Figs. 1 and 2, and to determine whether they might represent proton symport, the pH dependence of the steady-state adenosine-response currents was examined for LdNT1.1 and LdNT1.2. Oocytes expressing each permease were exposed to voltage jumps from a holding potential of −60 mV to a range of command potentials. Currents elicited in the absence of adenosine were then subtracted from those recorded in the presence of 30 μM adenosine, resulting in the current versus time traces shown in Fig. 3A. At pH 6.5, 7.5, and 8.5 LdNT1.1 and LdNT1.2-expressing oocytes revealed an initial transient capacitive or presteady-state current that then decayed to a steady-state value. No currents were observed in uninjected oocytes (data not shown, n > 5).

The steady-state adenosine response currents for LdNT1.2 were plotted as a current-voltage curve (Fig. 3B). Adenosine induced an inward rectifying current at pH 6.5, which is consistent with an inward flux of protons that is coupled to import of adenosine. Notably, the currents at pH 7.5 and 8.5 were considerably smaller than at pH 6.5, again consistent with a coupled flux of protons that experiences a smaller driving force at increased external pH values. There were some differences however in the shapes of the curves, with negative slope conductances at positive potentials at both pH 7.5 and 8.5.

In contrast, the shapes of the steady-state current-voltage curves for LdNT1.1 (Fig. 3C) were more complex than those for LdNT1.2. One notable difference between the two permeases is that the adenosine-elicited currents for LdNT1.1 generally exhibited negative slope conductances and reversal potentials that were shifted −25 mV per unit change in external pH, in contrast to LdNT1.2. These data suggest that a primary action of adenosine in LdNT1.1 is to block a membrane conductance.
that is carried in part by protons. It is notable that in contrast to the results at higher pH values, the outward current induced by LdNT1.1 at pH 6.5 decreased again at potentials more negative than -60 mV and again became inward at potentials more negative than -120 mV, resulting in an inverted U-shaped curve (Fig. 3C). These results suggest that at low pH, LdNT1.1, like LdNT1.2, mediates an adenosine-coupled proton symport process that gives rise to an inward current. This substrate-coupled import of protons would be of the largest magnitude at pH 6.5 and at the most polarized membrane potentials, as demonstrated in Fig. 3B for the corresponding current for LdNT1.2. The inverted U-shaped curve for LdNT1.1 at pH 6.5 could thus be explained by the additive combination of the blockage of a proton leak current by adenosine, which predominates above a membrane potential of -60 mV, and an adenosine-coupled proton symport current that becomes apparent below a membrane potential of -60 mV.

To further define the proton dependence of LdNT1.2 steady-state currents, the adenosine concentration dependence of these response currents was examined at $V_m = -100$ mV and at pH 6.5, 7.5, and 8.5 (Fig 4A). The magnitudes of the currents elicited by adenosine concentrations ranging from 0.1–100 μM adenosine were greatest at pH 6.5 and lowest at pH 8.5. The transporter affinity decreased and the maximal transport rate increased with increasing proton concentrations. Thus from the

Fig. 4. LdNT transporters are proton- but not sodium-dependent. A, different concentrations of adenosine were applied to voltage-clamped oocytes expressing LdNT1.2 at pH 6.5, 7.5, and 8.5. Adenosine dose responses at $V_m = -100$ mV are shown; curves are least squares fits of the data (normalized mean ± S.E., n = 4–5) to the Michaelis-Menten equation with K_m values of $2.63 \pm 0.45 \mu M$ (pH 6.5), $1.00 \pm 0.09 \mu M$ (pH 7.5), and $0.50 \pm 0.08 \mu M$ (pH 8.5). B, [3H]adenosine uptake in oocytes expressing LdNT1.1 and LdNT1.2 was not significantly different when sodium was completely replaced with choline during the assay (n = 5). C, LdNT1.2 adenosine dose responses at $V_m = -100$ mV in sodium and choline-substituted recording solutions are shown; curves are least squares fits of the data (normalized mean ± S.E., n = 3) to the Michaelis-Menten equation with K_m values of $0.999 \pm 0.09 \mu M$ (Na$^+$), $1.09 \pm 0.06 \mu M$ (choline$^+$). The dose response in choline was fitted with an normalized I_{max} of 1.1 ± 0.1.

Lack of Sodium Dependence of Adenosine Uptake or Adenosine-induced Currents—The observation of electrogenic transport for these protozoan nucleoside permeases contrasts with other members of the ENT family, which are equilibrative permeases and not electrogenic (7). In contrast another family of nucleoside transporters, the CNTs, are sodium-dependent electrogenic active transporters (15). Consequently, whether LdNT1.1- or LdNT1.2-mediated adenosine uptake might be sodium dependent was also determined. Replacement of sodium in the bath with equimolar choline did not significantly affect either LdNT1.1- or LdNT1.2-mediated adenosine uptake (Fig. 4B). Furthermore, the LdNT1.2 transporter exhibited no significant difference in either the affinity or maximal current when sodium was replaced with choline (Fig. 4C). Indeed, replacement of sodium with choline did not affect adenosine-induced currents for LdNT1.2 at any adenosine concentration, indicating that LdNT1.2 is not a sodium symporter.

Capacitive Gating Currents—As noted above (Fig. 3), application of voltage jumps to oocytes expressing LdNT1.1 or LdNT1.2 induced adenosine-dependent presteady-state or transient currents that decayed with exponential time constants of <100 msec. For some transporters, such transient currents have been linked to binding of a co-transported ion to the permease (16). To determine whether the adenosine-induced transient currents could be explained by binding of protons to the permeases, and could thus be useful for probing interaction of protons with the transporters, the kinetic properties of these pre-steady-state currents were examined at sev-
Fig. 5. Kinetics of the transient current blocked by adenosine transport in LdNT1.2. A, a family of subtracted current records in a representative LdNT1.2-expressing oocyte showing the voltage dependence of the capacitative transient current induced by 30 μM adenosine at pH 7.5 is shown (inset). A voltage command pulse to −60 mV was executed from a 0.250-s pre-pulse of from +60 to −160 mV (20-mV increments). Integrated charge movements from cells expressing LdNT1.2 at pH 6.5, 7.5, and 8.5 were normalized to the Q_m and fitted by least squares to a Boltzmann function (n = 5). B, the adenosine concentration dependence of the integrated charge movements was fitted to the Michaelis-Menten equation with a K_m of 1.35 ± 0.11 μM. C, the charge transfer rate of the LdNT1.2 transporter was calculated by adjusting the Q_m by zφ, and then dividing the steady-state current induced by 30 μM adenosine at V_m = −100 mV by the adjusted Q_m. The proton concentration dependence of the charge transfer rate was fitted to the Michaelis-Menten equation with a K_m of 0.62 ± 0.05 μM and V_m of 10.36 ± 0.23 per second.

Fig. 6. DPA blocks a tonic proton leak through LdNT1.1 and LdNT1.2. 30 μM DPA was applied to oocytes expressing LdNT1.1 or LdNT1.2, and uninjected oocytes at pH 6.5, 7.5, and 8.5. A, representative current records of the DPA response current at pH 7.5 are shown. Cells were voltage-clamped at −50 mV, and the membrane potential was stepped to between +60 and −140 mV. Data are subtractions of control currents from currents recorded during dipyridamole application. B, current-voltage relations for the LdNT1.1-mediated current induced by dipyridamole at pH 6.5, 7.5, and 8.5 are shown. The reversal potential (Vrev) of the response current is pH-dependent (n = 3). Vrev = −35 ± 6 mV (pH 6.5), −55 ± 8 mV (pH 7.5), −96 ± 7 mV (pH 8.5). C, current-voltage relations for LdNT1.2-mediated currents (n = 3). Vrev = −16 ± 3 mV (pH 6.5), −34 ± 3 mV (pH 7.5), −57 ± 3 mV (pH 8.5). D, DPA response currents in uninjected oocytes (n = 3).
Kinetics and Mechanism of L. donovani Proton/Nucleoside Cotransporters

Fig. 7. Kinetics of AMP transport in LdNT1.2. Oocytes expressing LdNT1.2 were voltage-clamped, and different concentrations of adenosine 5’-monophosphate were superfused into the recording chamber. A, the response currents at each voltage and at different concentrations of AMP were plotted (n = 3). B, at −100 mV, the concentration dependence of the current response was fitted to the Michaelis-Menten equation with a K_m of $9.1 \pm 3.2 \mu M$. Data represent mean ± S.E.

Fig. 8. Electrogenic nucleoside transport in LdNT2. Nucleosides and DPA were bath-applied to voltage-clamped LdNT2-expressing (A) and uninjected (B) oocytes at a concentration of 10 μM. Steps of the membrane potential to between +10 and −110 mV were executed, and the currents elicited at each voltage are indicated. Data are represented as mean ± S.E. (n = 4).

DISCUSSION

We have shown that adenosine/pyrimidine nucleoside transport through the LdNT1 transporters is associated with the activation of transmembrane currents. The magnitudes of the currents mediated by LdNT1.2 and the substrate fluxes mediated by both LdNT1.1 and LdNT1.2 were dependent on the proton, but not the sodium, gradient, strongly suggesting that these proteins are proton/nucleoside symporters. Unlike the *Leishmania* proton/myo-inositol symporter MIT, which transports myo-inositol with a charge to flux ratio of 1 (13), LdNT1 did not mediate substrate flux that was tightly coupled to total charge translocation. Although LdNT1.1 and LdNT1.2 are very similar in sequence, they exhibit striking differences with respect to their electrogenic properties, most notably that adenosine strongly blocks a leak current in LdNT1.1, whereas adenosine induces an inward proton current in LdNT1.2. It is likely that the adenosine blockage of the leak current in LdNT1.1 obscures an inward directed adenosine-coupled proton current similar to that observed in LdNT1.2. In fact, the inward directed current observed for LdNT1.1 at pH 6.5 below a trans-

S. M. Landfear, unpublished data.
membrane voltage of −120 mV (Fig. 3C) is likely to be such a transport-coupled current that overcomes the block of the leak current at this lower pH value and more negative membrane potential. Thus the essential difference between the two permeases may be that adenosine effects a more robust block of the leak current in LdNT1.1 compared with LdNT1.2.

We have also shown that LdNT1 transporters mediate a constitutive proton conductance that is blocked by the compound DPA. Unlike the mammalian ENTs, the *Leishmania* nucleoside transporters are not significantly inhibited by DPA at concentrations that obliterates transport by mammalian ENTs (2), and thus the precise nature of the interaction between this compound and the LdNTs is not clear. Nonetheless the ability of DPA, which is very lipophilic and known to affect the entry of many structurally unrelated compounds into mammalian cells (18, 19), to block the constitutive proton leak is instructive, as it likely reflects a similar block of this leak current that is induced by interaction of substrates with the LdNT1 permeases.

We hypothesize that part of the reason charge translocation appears to be loosely coupled to substrate flux in LdNT1.1 and LdNT1.2 is that adenosine transport blocks the constitutive proton conductance in a similar manner to DPA. By summing a linear current with a pH-dependent reversal potential such as the one observed upon application of DPA (Fig. 6, B and C) and a pH-dependent inwardly rectifying transport current such as that observed after application of adenosine to LdNT1.2 at pH 6.5 (Fig. 3B), it is possible to generate current-voltage curves with shapes corresponding to the adenosine response current-voltage curves. This hypothesis is supported by the observation that, while lower pH increases the relative contribution of inward adenosine response current at negative potentials in LdNT1.1, it also shifts the reversal potential of the current-voltage curve to more positive potentials (Fig. 3C), as would be expected for a current that represents blockade of a proton leak. The presence of this blocked proton conductance would cause our calculations of the charge to flux ratio to be significant underestimates of the actual value, especially when the measurements are made at the resting potentials of the oocytes (between −53 and −27 mV) rather than at highly polarized membrane potentials that favor the influx of protons that are coupled to adenosine transport. In summary, the blockage of a constitutive proton leak by substrates complicates the estimation of charge to substrate flux ratios for these protozoan nucleoside transporters. However, this constitutive leak is blocked less efficiently in LdNT1.2 than in LdNT1.1, and uridine blocks this leak less effectively in both transporters compared with adenosine (Fig. 2). Consequently, the charge to flux ratio calculated for uridine in LdNT1.2 (0.46 charges per molecule) is probably the estimate that most closely reflects the flux ratio calculated for uridine in LdNT1.2 (0.46 charges per molecule) is probably the estimate that most closely reflects the actual value, especially when these anionic metabolites are thought not to be transported across the plasma membranes of eukaryotic cells. We are currently pursuing further studies to determine the nature of the interaction of AMP with the LdNT1.1 and LdNT1.2 permeases.

REFERENCES

1. Carter, N. S., Rager, N., and Ullman, B. (2003) in *Molecular and Medical Parasitology* (Marr, J. J., Nilsen, T., and Komuniecki, R., eds) pp. 197–223, Academic Press, London.
2. Aronow, B., Kaur, K., McCarlan, K., and Ullman, B. (1987) Mol. Biochem. Parasitol. 22, 29–37.
3. Irazynska, D. M., Kaur, K., Young, L., and Ullman, B. (1984) Mol. Cell. Biol. 4, 1013–1019.
4. Vasudevan, G., Carter, N. S., Drew, M. E., Beverley, S. M., Sanchez, M. A., Seyfang, A., Ullman, B., and Landfear, S. M. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8873–8878.
5. Carter, N. S., Drew, M. E., Sanchez, M., Vasudevan, G., Landfear, S. M., and Ullman, B. (2000) J. Biol. Chem. 275, 20835–20841.
6. Vasudevan, G., Ullman, B., and Landfear, S. M. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 6092–6097.
7. Hyde, R. J., Casse, C. E., Young, J. D., and Baldwin, S. A. (2001) Mol. Membrane Biol. 18, 53–63.
8. Baldwin, S. A., Mackay, J. R., Casse, C. E., and Young, J. D. (1999) Mol. Membrane Biol. 16, 216–224.
9. Zilberstein, D., Philosoph, H., and Gepstein, A. (1989) Mol. Biochem. Parasitol. 36, 109–118.
10. Vieira, L., Slotik, I., and Cabantchik, Z. I. (1995) J. Biol. Chem. 270, 5309–5314.
11. Zilberstein, D. (1993) Adv. Parasitol. 32, 261–291.
12. Drew, M. E., Langford, C. K., Klamo, E. M., Russell, D. G., Kavanagh, M. P., and Landfear, S. M. (1995) Mol. Cell. Biol. 15, 5508–5515.
Kinetics and Mechanism of L. donovani Proton/Nucleoside Cotransporters

13. Klamo, E. M., Drew, M. E., Landfear, S. M., and Kavanaugh, M. P. (1996) *J. Biol. Chem.* **271**, 14937–14943
14. Arriza, J. L., Kavanaugh, M. P., Fairman, W. A., Wu, Y.-N., Murdoch, G. H., North, R. A., and Amara, S. G. (1993) *J. Biol. Chem.* **268**, 15329–15332
15. Yao, S. Y., Ng, A. M., Loewen, S. K., Cass, C. E., Baldwin, S. A., and Young, J. D. (2002) *Am. J. Physiol. Cell Physiol.* **283**, C155–168
16. Wadiche, J. I., Arriza, J. L., Amara, S. G., and Kavanaugh, M. P. (1995) *Neuron* **14**, 1019–1027
17. Woodhull, A. M. (1973) *J. Gen. Physiol.* **61**, 687–708
18. Kessel, D., and Dodd, D. C. (1972) *Biochim. Biophys. Acta* **288**, 190–194
19. Graff, J. C., Wahlen, R. M., and Plagemann, P. G. (1977) *J. Biol. Chem.* **252**, 4185–4190
20. de Koning, H. P., Watson, C. J., and Jarvis, S. M. (1998) *J. Biol. Chem.* **273**, 9486–9494
21. Mohlmann, T., Mezger, Z., Schwerdtfeger, G., and Neuhaus, H. E. (2001) *FEBS Lett.* **509**, 370–374