EDITORIAL

Radiological evaluation of oncologic treatment response: current update

Srinivasa R Prasad and Sanjay Saini

Department of Radiology, Massachusetts General Hospital and Harvard Medical School, White 270, 55 Fruit Street, Boston, MA 02114, USA

Corresponding address: Dr Sanjay Saini, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, White 270, 55 Fruit Street, Boston, MA 02114, USA. E-mail: ssaini@partners.org

Date accepted for publication December 2002

Keywords: CT; cancer; WHO; RECIST.

During pharmaceutical trials, clinical, laboratory and imaging methods are frequently used as surrogate endpoints that serve as early indicators of clinical endpoints and to reliably predict clinical outcomes. In cancer patients, objective tumor burden evaluation is commonly accomplished by radiological methods. Radiological monitoring of tumor burden is accurate, easily reproducible and provides an objective evidence of treatment response.

During oncology clinical drug trials, change in tumor size has long been considered as a surrogate marker of therapeutic efficacy that provides objective evidence about the drug efficacy and supplements subjective clinical endpoints such as quality of life[1,2]. Drug regulating agencies such as the US Food and Drug Administration (FDA) provide expedited approval of drugs for debilitating and life-threatening illnesses based on radiological evidence of tumor shrinkage[3]. Indeed, the FDA approved capecitabine following a phase-II trial based in part on reduction of tumor burden on CT scans[4].

Since the early 1980s, World Health Organization (WHO) guidelines based on bi-dimensional measurement of tumors have been followed for evaluation of treatment response[5,6]. According to these guidelines, individual tumor size is determined by a ‘cross-product’ obtained by multiplying the longest diameter in the axial plane by its largest perpendicular diameter (Table 1). Baseline and post-treatment measurements are then compared to categorise a patient’s response to treatment into one of four categories described below. These consist of complete response (CR) indicating tumor disappearance, partial response (PR) indicating >50% decrease in cross-product, disease progression (DP) indicating >25% increase in cross-product, or stable disease (SD) representing <50% reduction to <25% increase in cross-product. For patients with multiple lesions, the cross-

Table 1 Treatment response categories and tumor measurement techniques

Category	Bi-dimensional[5,6]	Uni-dimensional[8]	Volumetric[8]
	*Cross-product	Diameter	Volume
CR	Tumor disappearance	Tumor disappearance	Tumor disappearance
PR	>50% reduction in cross-product	>30% reduction in diameter	>65% reduction in volume
SD	Size intermediate to that for partial response and that for progressive disease		
DP	>25% increase in cross-product	>20% increase in diameter	>73% increase in volume

*Cross-product: the largest diameter and its maximum perpendicular diameter are multiplied to obtain cross-product. The individual cross-products are summed in patients with multiple lesions. **Volume: volumetric measurement is obtained by multiplying the sum of areas from each slice with the reconstruction interval.

This paper is available online at http://www.cancerimaging.org. In the event of a change in the URL address, please use the DOI provided to locate the paper.

DOI: 10.1102/1470-7330.2003.0013
product of several ‘target’ lesions is simply added to
categorise the patient’s response.
Lavin and Flowerdew concluded that due to variability
in measurements, there was a one in four chance of
declaring that DP had occurred if one considers the
WHO criteria for DP[7]. Also, the measurements and
mathematics involved to categorise patient response
according to WHO criteria were cumbersome and time-
consuming. In addition, assuming that most tumors grow
as spheres, a single linear measurement would suffice to
measure changes in tumor size.
In an effort to standardise tumor measurement tech-
niques to achieve greater rigor in response and endpoint
definitions, the European Organization for Research and
Treatment in Oncology, National Cancer Institute of the
United States and the National Cancer Institute of Canada
Clinical Trials Group set up a task force in 1994. Based
on retrospective statistical evaluation of measurements
obtained in more than 4000 patients in 14 different trials,
a uniform set of criteria for reporting treatment outcomes
called the ‘response evaluation criteria in solid tumors
(RECIST)’ guidelines were formulated in 1999 (Table 1).
RECIST guidelines are more specific than the WHO
criteria in the measurement of baseline tumor burden,
the number of lesions that need to be measured on serial
studies and the way the tumors are measured.
RECIST guidelines advocated that uni-dimensional
measurement alone (largest diameter in the axial
plane) be used for quantifying tumor burden[8]. Also,
lesions are to be categorised as measurable or non-
measurable. Measurable lesions consist of those that
measure ≥ 20 mm using conventional imaging techniques
(including incremental CT) or ≥ 10 mm using helical
CT equipment. Non-measurable lesions are those with
smaller dimensions. Furthermore, measurements are
limited to an arbitrary five measurable lesions per organ
(also called ‘target’ lesions) and up to 10 per patient
with tumors in multiple organs[9]. These target lesions
are selected based on size and suitability for reproducible
measurements. For the uni-dimensional measurement
approach, the criteria for treatment response categorisation
were also modified with PR being defined as $>30\%$
decrease in tumor diameter, SD being $<30\%$ reduction to
$<20\%$ increase in diameter and DP being $>20\%$ increase
in tumor diameter[8]. A 20% increase in diameter (criteria
for DP by RECIST guidelines) corresponds to an
approximately 73% increase in tumor volume while a 25%
increase in cross-product (criteria for DP by WHO guide-
lines) corresponds to an approximately 40% increase in
tumor volume. Thus, according to RECIST criteria, the
threshold for classifying patients as having DP has been
increased. The criterion for CR was identical to that of the
WHO criteria comprising of total tumor disappearance.
However, there are several drawbacks with the RECIST
criteria. RECIST criteria do not specify toxicity criteria,
a key component of other treatment response criteria[9].
In addition, uni-dimensional measurements may be inac-
curate when measuring tumors of variable morphology;
specifically when the lesion length exceeds twice its
width[10]. Measurement errors in estimating change in
the size of small lesions can thus result in misclassification
of response. According to RECIST criteria, lesions
measuring less than 1 cm (helical CT) and 2 cm (con-
ventional CT) are not considered as target lesions; hence
treatment response in patients with subcentimetre lesions
cannot be adequately evaluated[11]. RECIST criteria also
exclude cystic or necrotic lesions when evaluating re-
response. In addition, since the edges of irregular, confluent
or infiltrating lesions are often difficult to define, it may
be better to obtain volumetric tumor burden.
Accurate estimation of change in tumor burden is of
importance since even small differences in response rate
could affect the conduct of phase I and II trials. Assuming
spherical growth of tumors, there is a predictable
mathematical relationship between the diameter, cross-
sectional area and volume of a sphere for estimating tu-
mor size. Recent advances in CT technology, specifically
volumetric data acquisition and image processing, permit
volumetric tumor burden quantification[12]. However, the
value of volumetric tumor measurements has not been
definitively established in clinical practice. Some prelim-
inary studies have supported the use of three-dimensional
measurement techniques for assessing tumor size[13,14].
Other studies have not found significant added benefit of
volumetric tumor measurement for evaluating therapeutic
response when compared to linear measurements[15,16].
However the results of a study by Hopper et al. showed
considerable inter-observer variation among radiologists
in CT linear tumor measurement, especially for ill
defined and irregular lesions[17]. In a recent study
involving patients with breast metastases to liver, the
volumetric assessment produced different results in one-
third of patients when compared with linear measurement
techniques. Discordance between volumetric and linear
measurements occurred in patients with considerable
tumor burden or tumors that show asymmetric changes in
tumor size[18].
An important theoretical advantage of volumetric
measurements is that simply estimating overall tumor
burden in an organ can eliminate the limitation of
measuring five target lesions per organ (RECIST criteria).
In addition, volumetric measurement might be a better
method to measure size changes of lesions that are
confluent. However, tracing individual tumor margins is a
time-consuming process and special software for volume
estimations may be required. In addition, different
formule for volume estimation need to be applied
when considering non-spherical tumors. However, with
advances in image processing and automation, volumetric
tumor burden estimation may become simpler[19].
In conclusion, radiology plays a central role in
quantifying disease burden and accurately evaluating
response to treatment. With advances in cancer drug
treatments, and our ability to accurately assess changes in
tumor size, it is imperative to develop consistent criteria to evaluate treatment response on a global scale.

References

[1] Saini S. Radiologic measurement of tumor size in clinical trials: past, present, and future. Am J Roentgenol 2001; 176: 333–4.
[2] Hopper KD, Singapuri K, Finkel A. Body CT and oncologic imaging. Radiology 2000; 215: 27–40.
[3] Henney JE. http://www.fda.gov/oc/speeches/surrogates.html.
[4] Blum JL, Jones SE, Buzdar AU et al. Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 1999; 17: 485–93.
[5] World Health Organization. WHO Handbook for Reporting Results of Cancer Treatment, WHO offset publication no. 48. Geneva, Switzerland: World Health Organization, 1979.
[6] Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer 1981; 47: 207–14.
[7] Lavin PT, Flowerdew G. Studies in variation associated with the measurement of solid tumors. Cancer 1980; 46: 1286–90.
[8] Therasse P, Arbuck SG, Eisenhauer EA et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000; 92: 205–16.
[9] Gehan EA, Tefft MC. Will there be resistance to the RECIST (response evaluation criteria in solid tumors)? J Natl Cancer Inst 2000; 92: 179–81.
[10] Spears CP. Volume doubling measurement of spherical and ellipsoidal tumors. Med Pediatr Oncol 1984; 12: 212–7.
[11] Kimura M, Tominaga T. Outstanding problems with Response Evaluation Criteria in Solid Tumors (RECIST) in breast cancer. Breast Cancer 2002; 9: 153–9.
[12] Zeman RK, Fox SH, Silverman PM et al. Helical (spiral) CT of the abdomen. Am J Roentgenol 1993; 160: 719–25.
[13] Van Hoe L, Van Cutsem E, Vergote I et al. Size quantification of liver metastases in patients undergoing cancer treatment: reproducibility of one-, two-, three-dimensional measurements determined with spiral CT. Radiology 1997; 202: 671–5.
[14] Hopper KD, Kasales CJ, Eggli KD et al. The impact of 2D versus 3D quantification of tumor bulk determination on current methods of assessing response to treatment. J Comput Assist Tomogr 1996; 20: 930–7.
[15] Dachman AH, MacEneaney PM, Adedipe A, Carlin M, Phillip L. Tumor size on computed tomography scans. Cancer 2001; 91: 555–60.
[16] Sohaib SA, Turner B, Hanson JA, Farquharson M, Oliver RT, Reznik RH. CT assessment of tumour response to treatment: comparison of linear, cross-sectional and volumetric measures of tumour size. Br J Radiol 2000; 73: 1178–84.
[17] Hopper KD, Kasales CJ, Van Slyke MA, Schwartz TA, TenHave TR, Jozefiak JA. Analysis of interobserver and intraobserver variability in CT tumor measurements. Am J Roentgenol 1996; 167: 851–4.
[18] Prasad SR, Jhaveri KS, Saini S et al. CT tumor measurement for therapeutic response assessment: comparison between uni-dimensional, bidimensional and volumetric techniques—inital observations. Radiology (in press).
[19] Schwartz LH, Ginsberg MS, DeCorato D, Rothenberg LN, Einsein S, Kijewski P, Panicek DM. Evaluation of tumor measurements in oncology: use of film-based and electronic techniques. J Clin Oncol 2000; 18: 2179–84.