Association of infertility cause with perinatal outcomes in a freeze-all policy: an analysis including 10,151 singleton newborns

Mengjie Wei, MS; Di Chen, MD; Guangen Feng, MS; Xiaoyan Mao, MD; Ling Wu, PhD; Weiran Chai, PhD; Jie Zhang, MD

BACKGROUND: In vitro fertilization-conceived babies, even singletons, are at a higher risk of poor birth outcomes such as low birthweight and preterm birth than naturally conceived counterparts. It remains unclear as to what extent these adverse outcomes are attributed to the underlying causes of infertility. Evidence on this topic is scarce and has mainly focused on fresh embryo transfer cycles.

OBJECTIVE: This study aimed to investigate the effect of infertility cause on perinatal outcomes when a freeze-all strategy is applied.

STUDY DESIGN: We conducted a retrospective cohort study involving singleton live births born to women who had undergone frozen-thawed embryo transfer during the period from January 2014 to December 2019 at a single center. Subjects were categorized into 7 groups as follows according to the sole cause of infertility: tubal disorder, polycystic ovary syndrome, diminished ovarian reserve, uterine factor infertility, endometriosis, male factor, and unexplained infertility. The perinatal outcomes evaluated were as follows: birthweight, newborn gender, gestational age, preterm birth, low birthweight, small for gestational age, large for gestational age, and macrosomia. Multivariable regression analyses were introduced to control for several important confounders, with unexplained infertility as a reference group.

RESULTS: A total of 10,151 women were included for the final analysis. The most common maternal infertility diagnosis of the entire cohort was tubal disorder (42.5%), followed by diminished ovarian reserve (9.5%), endometriosis (9.4%), polycystic ovary syndrome (5.7%), and uterine factor infertility (1.6%). Male factor infertility was present in 19.8% of cycles, and infertility was diagnosed as unexplained in 11.4% of cycles. In the unadjusted analyses, the prevalence of low birthweight (odds ratio, 2.05; 95% confidence interval, 1.24−3.38) and preterm birth (odds ratio, 1.97; 95% confidence interval, 1.33−2.92) was higher among singletons in the polycystic ovary syndrome group than in those from the unexplained infertility group. However, these differences were no longer significant after correction for parental characteristics, treatment variables, and pregnancy complications (adjusted odds ratio, 1.50; 95% confidence interval, 0.98−2.28 for preterm birth; adjusted odds ratio, 1.70; 95% confidence interval, 0.99−2.91 for low birthweight). The risks of preterm birth (adjusted odds ratio, 2.66; 95% confidence interval, 1.53−4.63) and low birthweight (adjusted odds ratio, 3.51; 95% confidence interval, 1.79−6.90) with uterine factor infertility were significantly increased vs the reference group in both unadjusted and adjusted analyses. In addition, the perinatal outcomes in women with other infertility causes were comparable with unexplained infertility in terms of the rates of preterm birth, low birthweight, small for gestational age, large for gestational age, and macrosomia.

CONCLUSION: With the exception of uterine factor infertility, other infertility causes do not seem to compromise perinatal outcomes when compared with unexplained infertility in a freeze-all approach. With the ever-increasing use of frozen-thawed embryo transfer globally, our data hold relevant clinical implications, as they can guide physicians in patient counseling.

Key words: ART, frozen-thawed embryo transfer, infertility cause, in vitro fertilization, perinatal outcome

From the Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

M.W. and D.C. have contributed equally to this work.

The authors report no conflict of interest.

This study was supported by The Fund for Excellent Young Scholars of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (grant number JYYQ004); the Clinical Research Program of the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine (grant number JYLJ2020002); and the National Natural Science Foundation of China (grant number 82171685).

Patient consent was not required because no personal information or details were included in the study.

Cite this article as: Wei M, Chen D, Feng G, et al. Association of infertility cause with perinatal outcomes in a freeze-all policy: an analysis including 10,151 singleton newborns. Am J Obstet Gynecol Glob Rep 2022;XX:x.ex−x.ex.

Corresponding authors. 316049@sh9hospital.org.cn, chaiwrcn@163.com, dr.zhangjie@qq.com

2666-5778/36.00 © 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://dx.doi.org/10.1016/j.xagr.2022.100098
AJOG Global Reports at a Glance

Why was this study conducted?
Emerging evidence has demonstrated that in vitro fertilization-conceived babies were more likely to have a higher risk of adverse perinatal outcomes than naturally conceived peers. It remains unclear as to what extent this excess risk is attributed to the underlying causes of infertility, particularly in women undergoing frozen embryo transfer (FET).

Key findings
The cause of infertility, with the exception of uterine factor infertility, does not seem to have a negative impact on perinatal outcomes when compared with unexplained infertility in FET cycles.

What does this add to what is known?
In the context of the increasing use of FET globally, our work holds relevant clinical implications, as it can guide physicians in patient counseling.

Introduction
From the time the first pregnancy and live birth conceived by in vitro fertilization (IVF) was reported in 1978,1 >8 million babies have been born as a result of this technology.2 In 2016, the total number of infants born through IVF in China exceeded 300,000, representing 1.69% of the total national birth cohort.3 In some European countries, the percentage of children born subsequent to IVF is substantially higher; for instance in Spain, it is estimated that approximately 8% of children born originate from IVF treatment.4 Safety monitoring of IVF offspring is of utmost importance to the future generations.5 In general, most IVF babies are healthy. However, evidence from epidemiologic studies indicates that IVF pregnancies, even those limited to singletons, are associated with an increased risk of adverse perinatal outcomes than naturally conceived peers.6–9 Although the exact mechanism behind this difference remains obscure, infertility itself or parental characteristics are believed to be an important contributor to the poor perinatal outcomes in IVF singletons.8,9 In addition, it has been well documented that the specific IVF process (including controlled ovarian stimulation [COS]), fertilization method, and embryo cryopreservation may also play a role.10–12 Furthermore, laboratory parameters such as the type of embryo culture media and incubator systems could also be involved.13,14

An unresolved question in research into adverse outcomes following IVF is how much of this excess risk is reproductive technology-related, and how much of it is the result of the biology of infertile couples?11 Separating the contribution of these 2 key elements from outcomes is difficult, as selecting an appropriate control group for children born after IVF remains a major challenge for fertility specialists.8 In fact, most of the literature available in this area compared IVF pregnancies with those of fertile women rather than with those of infertile cohorts who did not undergo IVF.11,15–17 Thereafter, the pure influence of underlying infertility disorder on the birth outcomes is still not well understood.

Few studies have been designed to specially look at the relationship between the perinatal outcomes following IVF and the causes of infertility.18–21 Of note, most of these studies were established on data obtained from national registers and therefore may be biased by the inconsistent IVF practices and different laboratory conditions between clinics. Moreover, existing literature has mainly focused on fresh transfer cycles without eliminating the possibility of adverse fetal growth caused by a hyperestrogenic milieu.10,22 As opposed to fresh cycles, frozen-thawed embryo transfer (FET) appears to provide a better and more physiological uterine environment for early implantation and fetal development.23,24 In the context of the increasing adoption of FET globally, additional data would be more than welcome to explore whether the type of infertility cause may have any significant influence on birth outcomes resulting from FET cycles. The objective of this study was therefore to investigate the effect of infertility cause on perinatal outcomes when a freeze-all strategy was applied from a single center.

Materials and Methods

Study design and population
A retrospective study was carried out at the Center for Reproductive Medicine of the Ninth People’s Hospital of Shanghai Jiao Tong University School of Medicine. FET cycles performed during the period from January 2014 to December 2019 and resulting in a singleton live birth were screened for potential inclusion. Women with the following criteria were excluded: (1) preexisting medical conditions (eg, hypertension, diabetes mellitus, and thyroid dysfunction); (2) donor cycles; (3) more than 1 infertility cause; (4) smoking history; and (5) vanishing twin syndrome. Couples with chromosomal abnormalities were also excluded. If more than 1 delivery for the same women was in the database, only the first pregnancy was retained. Notably, preimplantation genetic diagnosis is not available in our center, and none of the women included in the present study used this technology. Furthermore, a nonelective freeze-all policy has been adopted in our center as a routine practice, and the reason for employing this strategy has been discussed in detail in our previous statement.25–27 The vitrification and thawing procedures have been previously described by Kuwayama et al.28 A maximum of 2 embryos were allowed to be transferred in compliance with the national regulations of China.29

Patients were grouped into 7 groups based on a single infertility cause, namely, tubal disorder, polycystic ovary syndrome (PCOS), endometriosis, male factor, diminished ovarian reserve (DOR), uterine factor, and unexplained. The cause of infertility was diagnosed by medical history or assessed by a
baseline fertility work-up, and unexplained infertility was defined in case no cause could be found.

Data source

Data for couples who initiated IVF treatments were captured from the database of our fertility center, which contains comprehensive information on parental demographics, detailed medical history, indication for fertility treatment, cycle-specific treatment parameters, and pregnancy and delivery outcomes. On accessing the database via a unique identification number allocated to each couple, highly trained staff collected and updated the treatment data continuously along with the IVF procedures until embryo transfer. The follow-up programs have been extensively discussed in our previous publications. Any adverse outcomes were adjudicated by a dedicated research nurse.

Outcome measures and definitions

Live birth was defined as the delivery of a viable infant at ≥22 weeks’ gestation.²² The gestational age (GA) for FET was calculated by the number of culture days and the date of embryo transfer, defined as day 17 of the cycle for cleavage-stage embryo and day 19 for the blastocyst transfer. Occurrence of live birth at <37 weeks’ GA was defined as a preterm birth (PTB) and a birthweight <2500 g was classified as low birthweight (LBW). Small for gestational age (SGA) was considered as neonatal birthweight below the 10th percentile, whereas large for gestational-age (LGA) was considered as having a birthweight above the 90th percentile, after being adjusted for the GA and gender, according to the updated nationwide neonatal birthweight curve in China.³³

Statistical analyses

Data were analyzed by SPSS software, version 26.0 (IBM Corp, Armonk, NY). Continuous variables were expressed as mean±standard deviation, whereas categorical variables were described as the number of cases (n) with percentage (%). The maternal and treatment characteristics and perinatal outcomes were compared between groups by one-way analysis of variance for continuous data and Pearson chi-square test or Fisher exact test for categorical data as appropriate.

To detect the relationship between the infertility cause and the main perinatal outcomes, univariable and multivariable regression analyses were introduced. The following potential confounders were entered in the multivariable models: parental age and body mass index (BMI), parity, infertility duration, educational level, FET cycle rank, type of infertility, insemination method, embryonic stage at transfer, number of embryos transferred, year of treatment, and pregnancy complications including gestational diabetes and hypertensive disorders of pregnancy. Unexplained infertility was considered as a reference group in the multivariable models in accordance with previous studies.¹⁸,³⁴

Of note, 4 additional sensitivity analyses were undertaken to check the robustness of the main findings. The first was based on the number of embryos transferred. Given that previous labor and delivery might affect subsequent perinatal outcomes, subgroup analysis restricted to nulliparous women was carried out. Moreover, considering that performing IVF or intracytoplasmic sperm injection (ICSI) might affect early embryonic development, placentation and consequently the birth outcome, the perinatal outcomes were separately presented according to the insemination method. Finally, the cohort was subdivided according to the developmental stage of embryos transferred.

Results

A total of 10,151 women who met the inclusion criteria and delivered a live-born singleton were included for final analysis. The most common maternal infertility diagnosis of the entire cohort was tubal disorder (42.5%), followed by DOR (9.5%), endometriosis (9.4%), PCOS (5.7%), and uterine factor infertility (1.6%). Male factor infertility was present in 19.8% of cycles, and infertility was diagnosed as unexplained in 11.4% of cycles.

Demographics

Parental demographics and main cycle characteristics stratified by the infertility cause are depicted in Table 1. As expected, women and men in the DOR group were older (35.27±4.56 years for mothers and 36.85±5.63 years for fathers) compared with their counterparts in other groups. In addition, the youngest parents were in the PCOS (30.49±3.29 years for mothers and 32.19±3.92 years for fathers) group, and women with PCOS were more likely to have a greater BMI (24.04±4.19 kg/m²) than groups with other infertility diagnoses. Most of our study population (90.6%) was nulliparous. IVF was the common insemination method in the cohorts apart from male factor causes that predominantly had ICSI. Notably, 2 day-3 embryos were transferred in most of the patients, except that a single embryo transfer was performed in a higher proportion of women with uterine factor infertility (58.4%). Pregnancy-related complications such as gestational diabetes mellitus and hypertensive disorders of pregnancy occurred more frequently in women with PCOS.

Perinatal outcomes

The perinatal outcomes are summarized in Table 2. Apart from the singletons born to women with uterine-related infertility (mean birthweight of 3006.77±542.14 g), mean birthweight in the other 6 groups averaged >3300 g. Specifically, singletons from the unexplained infertility group had the highest birthweight (3409.07±457.73 g), whereas those from the PCOS group had the lowest birthweight (3315.91±563.33 g). The GA across groups exceeded 37 weeks. However, babies resulting from the uterine infertility group had a 0.6–1.1 weeks shorter GA than those resulting from other groups. The proportion of PTB across cohorts was the highest among singletons from uterine factor infertility at 14.3%, followed by 8.9% of singletons derived from women with PCOS. The incidence
Characteristic	Tubal factor (n=4313)	Polycystic ovary syndrome (n=583)	Endometriosis (n=963)	Diminished ovarian reserve (n=964)	Uterine factor (n=161)	Male factor (n=2005)	Unexplained (n=1162)	P value
Maternal age (y)	31.88±4.06	30.49±3.29	32.07±3.84	35.27±4.56	31.63±3.88	31.71±4.32	32.38±3.58	<.001
Maternal BMI (kg/m²)	21.64±2.93	24.04±4.19	21.10±2.86	21.76±2.77	21.89±3.09	21.63±2.97	21.44±2.99	<.001
Maternal education level, university	1690 (39.2)	279 (47.9)	553 (57.4)	525 (54.5)	80 (49.7)	1009 (50.3)	652 (56.1)	<.001
Paternal age (y)	33.55±5.04	32.19±3.92	33.59±4.94	36.85±5.63	33.20±5.24	34.03±5.78	34.08±4.70	<.001
Paternal BMI (kg/m²)	24.22±3.45	24.55±3.44	24.16±3.36	24.36±3.32	24.16±3.04	24.14±3.44	24.32±3.29	.164
Paternal education level, university	1804 (41.8)	274 (47.0)	545 (56.6)	561 (58.2)	89 (55.3)	1026 (51.2)	653 (56.2)	<.001
Infertility duration (y)	2.81±2.67	3.50±2.71	3.03±2.43	3.37±3.19	2.66±2.07	3.36±2.79	3.30±2.60	<.001
Parity								<.001
First	3815 (88.5)	558 (95.7)	910 (94.5)	829 (86.0)	150 (93.2)	1860 (92.8)	1071 (92.2)	
High order	498 (11.5)	25 (4.3)	53 (5.5)	135 (14.0)	11 (6.8)	145 (7.2)	91 (7.8)	
Frozen-thawed embryo transfer cycle rank								.004
First	2544 (59.0)	378 (64.8)	592 (61.5)	579 (60.1)	78 (48.4)	1228 (61.2)	709 (61.0)	
High order	1769 (41.0)	205 (35.2)	371 (38.5)	385 (39.9)	83 (51.6)	777 (38.8)	453 (39.0)	
Insemination method								<.001
IVF	3681 (85.3)	307 (52.7)	752 (78.1)	724 (75.1)	118 (73.3)	193 (9.6)	584 (50.3)	
ICSI	408 (9.5)	59 (10.1)	133 (13.8)	193 (20.0)	23 (14.3)	1602 (79.9)	165 (14.2)	
IVF+ICSI	224 (5.2)	217 (37.2)	78 (8.1)	47 (4.9)	20 (12.4)	210 (10.5)	413 (35.5)	
Number of embryos transferred								<.001
1	941 (21.8)	146 (25.0)	226 (23.5)	326 (33.8)	94 (58.4)	457 (22.8)	262 (22.5)	
2	3372 (78.2)	437 (75.0)	737 (76.5)	638 (66.2)	67 (41.6)	1548 (77.2)	901 (77.5)	
Developmental stage								<.001
Day 3	3478 (80.6)	488 (83.7)	803 (83.4)	820 (85.1)	118 (73.3)	1674 (83.5)	931 (80.1)	
Day 5 or 6	835 (19.4)	95 (16.3)	160 (16.6)	144 (14.9)	43 (26.7)	331 (16.5)	231 (19.9)	

(continued)
of LBW ranged between 2.7% and 9.9%, with the DOR and unexplained infertility groups having the lowest rates (2.7% and 2.8%, respectively), whereas the PCOS and uterine factor groups had the highest rates (5.5% and 9.9%, respectively). In contrast, fewer babies in the uterine factor group were born as LGA and with macrosomia than their peers from other groups.

In the crude analyses (Table 3), the prevalence of PTB was 3 times higher (odds ratio [OR], 3.36; 95% confidence interval [CI], 2.00–5.63), and that of LBW was 3.9 times higher (OR, 3.90; 95% CI, 2.09–7.28) in singletons from the uterine factor infertility group than in those from the unexplained infertility group. These differences remained statistically significant in multivariable analyses (adjusted OR [aOR], 2.66; 95% CI, 1.53–4.63 for PTB; aOR, 3.51; 95% CI, 1.79–6.90 for LBW). In addition, infants in the uterine factor group were at a lower risk of being LGA and being with macrosomia, and no significant difference was observed with regard to the incidence of SGA between the uterine factor and the reference groups.

The odds of PTB (OR, 1.97; 95% CI, 1.33–2.92) and LBW (OR, 2.05; 95% CI, 1.24–3.38) were elevated among neonates born to women with PCOS in the unadjusted analysis. Of note was that this association disappeared after adjustment for parental demographics, treatment characteristics, and pregnancy complications (aOR, 1.50; 95% CI, 0.98–2.28 for PTB; aOR, 1.70; 95% CI, 0.99–2.91 for LBW). The other perinatal parameters such as macrosomia, LGA, and SGA were similar between the PCOS and reference groups. Most importantly, there was no increased risk of adverse birth outcomes in singletons born to women diagnosed with tubal disorder, endometriosis, DOR, or male factor infertility vs those resulting from the reference group.

Of note, all the sensitivity analyses yielded similar results to those of the main findings (Supplementary Tables 1–14), except for when analyses were restricted to women who received the ICSI procedure and those who

TABLE 1	Overall demographics and baseline in vitro fertilization characteristics by infertility causes (continued)					
Characteristic	Tubal factor	Polycystic ovary syndrome	Endometriosis	Diminished ovarian reserve	Male factor	Uterine factor
	(n=4313)	(n=583)	(n=963)	(n=964)	(n=2005)	(n=161)
Year of treatment						
2014–2015	1491 (34.6)	121 (20.8)	121 (20.8)	121 (20.8)	121 (20.8)	121 (20.8)
2016–2017	1699 (39.4)	250 (42.9)	250 (42.9)	250 (42.9)	250 (42.9)	250 (42.9)
2018–2019	1123 (26.0)	212 (36.4)	212 (36.4)	212 (36.4)	212 (36.4)	212 (36.4)
Gestational diabetes mellitus	389 (8.0)	81 (13.9)	81 (13.9)	81 (13.9)	81 (13.9)	81 (13.9)
Hypertensive disorders of pregnancy	120 (2.8)	24 (2.5)	24 (2.5)	24 (2.5)	24 (2.5)	24 (2.5)
Data are mean±standard deviation or number (percentage). All P values were assessed with the use of the Pearson chi-square test or one-way analysis of variance (ANOVA). BMI, body mass index; ICSI, intracytoplasmic sperm injection; IVF, in vitro fertilization.						
TABLE 2
Perinatal outcomes in singleton live births based on infertility causes

Outcome	Tubal factor (n=4313)	Polycystic ovary syndrome (n=583)	Endometriosis (n=963)	Diminished ovarian reserve (n=964)	Uterine factor (n=161)	Male factor (n=2005)	Unexplained (n=1162)	P value
Gestational age (wk)	38.63±1.52	38.25±1.89	38.66±1.52	38.60±1.49	37.63±2.25	38.64±1.54	38.76±1.37	<.001
Newborn gender								.102
Female	2019 (46.8)	275 (47.2)	461 (47.9)	478 (49.6)	84 (52.2)	982 (49.0)	514 (44.2)	
Male	2294 (53.2)	308 (52.8)	502 (52.1)	486 (50.4)	77 (47.8)	1023 (51.0)	648 (55.8)	
Preterm birth (<37 wk)	251 (5.8)	52 (8.9)	54 (5.6)	42 (4.4)	23 (14.3)	97 (4.8)	55 (4.7)	<.001
Birthweight	3381.33±496.30	3315.93±565.33	3359.89±470.68	3378.20±458.50	3006.77±542.14	3367.45±490.88	3409.07±457.73	<.001
Low birthweight (<2500g)	149 (3.5)	32(5.5)	34(3.5)	26(2.7)	16(9.9)	66(3.3)	32(2.8)	<.001
Macrosomia (≥4000g)	431 (10.0)	57 (9.8)	75 (7.8)	81 (8.4)	1 (0.6)	183 (9.1)	96 (8.3)	.001
Small for gestational age (<10th percentile)	192 (4.5)	23 (3.9)	42 (4.4)	44 (4.6)	11 (6.8)	90 (4.5)	45 (3.9)	.751
Large for gestational age (>90th percentile)	1046 (24.3)	147 (25.2)	210 (21.8)	221 (22.9)	17 (10.6)	444 (22.1)	258 (22.2)	.002

Data are means±standard deviation or number (percentage). All P values were assessed with the use of Pearson chi-square test or one-way analysis of variance (ANOVA).

Results in the context of what is known

A whole analysis restricted to IVF babies evaluating the perinatal outcomes stratified by the diagnosis of infertility was scarce. Wang and colleagues reported that the probability of PTB and LBW in both IVF singleton and twin pregnancies was significantly increased for female factor infertility compared with male factor infertility. Nonetheless, caution should be taken as the authors grouped all types of female infertility into 1 category in the multivariate analyses. An analysis of national data from the United Kingdom showed that when compared with unexplained infertility, a modest but considerably increased likelihood of PTB (aOR, 1.22; 95% CI, 1.06–1.41) with tubal factor infertility 1.68 (95% CI, 1.04–2.72) and male factor infertility 1.54 (95% CI, 1.08–2.19) was observed. However, these results should be treated with caution due to potential biases, such as the higher likelihood of receiving ICSI and single embryo transfer in patients with unexplained infertility.

Principle findings

Over the past 4 decades, there has been an ongoing debate regarding whether the poor birth outcomes following IVF are attributed to the reproductive technology per se, to factors related to inherent infertility, or both. This study, isolating one of the many contributing factors, namely causes of infertility, independently explored its potential relationship with perinatal outcomes within an IVF population. Our findings demonstrated that except for the uterine factor infertility, the other causes of infertility, including tubal disorder, PCOS, endometriosis, DOR, and male factor cause, did not seem to have a negative impact on perinatal outcomes following IVF when a freeze-only policy was applied. This observation was largely owing to the limited number of cases in these 2 subcategories, with merely 23 and 94 women with uterine factor infertility receiving ICSI and single embryo transfer, respectively.

Comment

The likelihood of PTB among women with uterine factor infertility undergoing single embryo transfer, in which though the odds of PTB and LBW were higher among women with uterine factor infertility vs those with unexplained infertility, the difference was not statistically significant. This observation was largely owing to the limited number of cases in these 2 subcategories, with merely 23 and 94 women with uterine factor infertility receiving ICSI and single embryo transfer, respectively.
TABLE 3

Unadjusted and adjusted odds ratios of preterm birth, low birthweight, macrosomia, small for gestational age, large for gestational age

Characteristic	Tubal factor	Polycystic ovary syndrome	Endometriosis	Diminished ovarian reserve	Uterine factor	Male factor	Unexplained
PTB (<37 wk)							
OR (95% CI)	1.24 (0.92−1.68)	1.97 (1.33−2.92)	1.20 (0.81−1.76)	0.92 (0.61−1.38)	3.36 (2.00−5.63)	1.02 (0.73−1.44)	Reference
aOR (95% CI)	1.01 (0.73−1.38)	1.50 (0.98−2.28)	1.07 (0.72−1.60)	0.76 (0.49−1.17)	2.66 (1.53−4.63)	1.01 (0.68−1.49)	Reference
LBW (<2500 g)							
OR (95% CI)	1.26 (0.86−1.86)	2.05 (1.24−3.38)	1.29 (0.79−2.11)	0.98 (0.58−1.65)	3.90 (2.09−7.28)	1.20 (0.78−1.85)	Reference
aOR (95% CI)	1.11 (0.73−1.68)	1.70 (0.99−2.91)	1.18 (0.70−1.97)	0.79 (0.45−1.38)	3.51 (1.79−6.90)	1.18 (0.72−1.93)	Reference
Macrosomia (≥4000 g)							
OR (95% CI)	1.23 (0.98−1.55)	1.20 (0.85−1.70)	0.94 (0.68−1.29)	1.02 (0.75−1.39)	0.07 (0.01−0.50)	1.12 (0.86−1.44)	Reference
aOR (95% CI)	1.18 (0.92−1.52)	0.88 (0.62−1.26)	1.01 (0.73−1.39)	1.12 (0.81−1.55)	0.07 (0.01−0.51)	1.02 (0.76−1.37)	Reference
SGA (<10th percentile)							
OR (95% CI)	1.16 (0.83−1.61)	1.02 (0.61−1.70)	1.13 (0.74−1.74)	1.19 (0.78−1.82)	1.82 (0.92−3.60)	1.17 (0.81−1.68)	Reference
aOR (95% CI)	1.22 (0.86−1.74)	1.14 (0.68−1.93)	1.12 (0.72−1.74)	1.23 (0.79−1.91)	1.85 (0.92−3.72)	1.06 (0.70−1.60)	Reference
LGA (>90th percentile)							
OR (95% CI)	1.12 (0.96−1.31)	1.18 (0.94−1.49)	0.98 (0.80−1.20)	1.04 (0.85−1.28)	0.41 (0.25−0.70)	0.99 (0.84−1.19)	Reference
aOR (95% CI)	1.07 (0.91−1.27)	0.93 (0.73−1.18)	1.03 (0.83−1.28)	1.05 (0.84−1.30)	0.40 (0.24−0.68)	1.02 (0.84−1.25)	Reference

Analyses were adjusted for maternal age, maternal BMI, maternal education level, paternal age, paternal BMI, paternal education level, infertility duration, parity, frozen-thawed embryo transfer cycle rank, insemination method, number of embryos transferred, embryo developmental stage, year of treatment, gestational diabetes, hypertensive disorders of pregnancy.

BMI, body mass index; CI, confidence interval; LBW, low birthweight; LGA, large for gestational age; OR, odds ratio; PTB, preterm birth; SGA, small for gestational age.
do so, as the registry dataset was unable to discern the particular type of ovulation dysfunction. Further, as pointed out by authors as a weakness, Sunkara et al.xx were unable to control for key confounders such as BMI, previous medical history, and pregnancy complications, which might have affected their results. In line with our findings, data from a single fertility center reported an increased risk of PTB with PCOS relative to control subjects in the crude analysis. Nevertheless, this difference was not longer significant once additionally adjusting for the pregnancy complications in a separate multivariable analysis.37

Regarding tubal factor infertility, attention has been shifted to its potential role in the later development of future birth outcomes. The prevalence of PTB and LBW following IVF was reported to be significantly higher in neonates born to women with tubal disorder compared with either male factor38 or unexplained infertility.39 It has been suggested, though speculatively, that a chronic inflammatory state may predispose women with tubal disorder to the onset of specific fetal complications.40,41 The same mechanism may also apply to women with endometriosis,42 who showed an increased risk of poor obstetrical and neonatal outcomes such as PTB and cesarean delivery, compared with controls without this disease.43 Nonetheless, such differences were not seen in our work. It may be informative to investigate whether the freeze-thaw process may have a protective effect against PTB and LBW.44

Not surprisingly, our results identified that the presence of uterine factor infertility was associated with a range of adverse perinatal outcomes. In the present study, uterine factor infertility referred to any congenital uterine abnormality, and its negative impact on pregnancy and child outcomes has been well documented in a number of studies.45,46 Yet, careful interpretation of our findings is needed, owing to the small number of cases in this subgroup. In addition, this study only included women with congenital uterine malformation. Hence, our results may not be applicable to other causes of uterine factor infertility. Future research on a wider range of patients with uterine factor infertility involving large cohorts is warranted. It is worth mentioning that the diagnosis of DOR was also included in our study, though not all published studies on this topic have consistently done so. Concurring with previous studies,22,47,48 our data suggested that once pregnancy was achieved, no detrimental effect on gestation duration and fetal weight was found among women with DOR in IVF pregnancies.

To investigate the impact of infertility cause on perinatal outcomes in an IVF setting, the selection of the control group is always a challenge. Some researchers chose male factor infertility as a control19,49, whereas others selected unexplained infertility as a reference group18,34, and a quite recent study adopted women with previous tubal ligation as their control group.50 The decision regarding the choice of unexplained infertility as a control group in the present study was not just based on previous literature but also on the studies showing that the overall perinatal outcomes among couples with unexplained infertility treated by IVF were good and with similar outcomes compared with spontaneous pregnancies.51

Strengths and limitations
The primary weakness of this study is its retrospective design, and potential bias cannot be neglected. Another limitation of this study was the lack of a non-IVF control group. Nonetheless, by restricting the analysis to women undergoing IVF, we were able to isolate the relationship between infertility diagnosis and perinatal outcomes, which is a crucial strength of our research. In addition, most current patients receive day 3 embryo transfers, as transfer of cleavage-stage embryos is still a dominant strategy in most clinics in China.52 However, recently, the practice has moved toward a single blastocyst transfer policy, particularly in women aged <38 years. It is also important to mention that the main cause of infertility varied considerably between countries. In China, the most common indication for IVF is tubal factor infertility.53 Thus, the distribution of diagnosis for infertility in the present study was skewed with a higher percentage of tubal disease and with relatively lower percentages of other common diagnoses, particularly uterine factors, which may raise concerns regarding the potential generalizability to other patient populations. However, in light of the increasing use of FET globally, our findings are still of clinical relevance, as this is the largest study in the literature to date looking at the perinatal outcomes in relation to infertility causes based on a freeze-all policy. We also need to point out that the BMI of the included women with PCOS was relatively lower than the counterparts of other ethnic groups. Thus, caution should be made when extrapolating our results to obese PCOS patients, in whom certain complication rates may be increased even further.

The major strength of the present study is the large sample size, the inclusion of only FET cycles, and the contemporary time period. Moreover, this was a single-center study where differences in IVF protocols and laboratory conditions were eliminated as opposed to those studies relying on a national register-based database. Finally, we also accounted for several outcome-related confounding variables, which might have biased the findings.

Conclusions and clinical implications
In summary, the present large single-center study provided valuable information that the cause of infertility, with the exception of uterine factor infertility, does not seem to have a negative impact on perinatal outcomes compared with unexplained infertility in freeze-all cycles. FET is becoming a widely adopted technology in modern IVF, and our findings are clinically useful not only to guide patient counseling before treatment but also to guide appropriate antenatal care and surveillance.

Supplementary materials
Supplementary material associated with this article can be found in the online version at doi:10.1016/j.xagr.2022.100098.
REFERENCES
1. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet 1978;2:366.
2. de Mouzon J, Chambers GM, Zegers-Hochschild F, et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology 2012; Hum Reprod 2020;35:1900–13.
3. Bai F, Wang DY, Fan YJ, et al. Assisted reproductive technology service availability, efficacy and safety in mainland China: 2016. Hum Reprod 2020;35:1466–52.
4. European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Wynn C, De Geyer C, et al. ART in Europe, 2017: results generated from European registries by ESHRE. Hum Reprod Open 2021;2021:hoab026.
5. Sunde A. A duty to our grandchildren. Hum Reprod Update 2019;25:135–6.
6. Berntsen S, Söderström-Anttila V, Wennerholm UB, et al. The health of children conceived by ART: ‘the chicken or the egg?’ Hum Reprod Update 2019;25:137–58.
7. Luke B, Gopal D, Cabral H, Stern JE, Diop P. Preimplantation genetic testing for single gene disorders and the wrong question being asked in infertility research? J Assist Reprod Genet 2016;33:3–8.
8. Sunkara SK, Anthonyasamy B, Redla AC, Kamath MS. Female causes of infertility are associated with higher risk of preterm birth and low birth weight: analysis of 117 401 singleton live births following IVF. Hum Reprod 2021;36:676–82.
9. Luke B, Stern JE, Horinstein MD, et al. Does the type of culture medium used in assisted reproduction technology service availability, efficacy and safety in mainland China: 2016. Hum Reprod 2020;35:1900–13.
10. Luke B, Arneborg A, Wennerholm UB, Romundstad ER, Cohen B, Diop H. Birth outcomes by infertility diagnosis analyses of the Massachusetts outcomes study of assisted reproductive technologies (MOSART). J Reprod Med 2015;60:480–90.
11. Wang YA, Sullivan EA, Black D, Dean J, Bryant J, Chapman M. Time to preterm delivery and birth weight after assisted reproductive technology-related pregnancy in Australia between 1996 and 2000. Fertil Steril 2005;83:1650–8.
12. Nelson SM, Lawlor DA. Predicting live birth, preterm delivery, and low birth weight in infants born in vitro fertilisation: a prospective study of 144,018 treatment cycles. PLoS Med 2011;8:e1000971.
13. Sunkara SK, La Marca A, Seed PT, Khalaf Y. Increased risk of preterm birth and low birth weight with very high number of oocytes following IVF: an analysis of 65 888 singleton live birth outcomes. Hum Reprod 2015;30:1473–80.
14. Wei D, Ma J, Chen ZJ. Fresh versus Frozen Embryo Transfer in PCOS: arguments for and Against. Semin Reprod Med 2017;35:359–63.
15. Järvelä IY, Pelkonen S, Uimari O, et al. Controlled ovarian hyperstimulation leads to high progesterone and estradiol levels during early pregnancy, Hum Reprod 2014;29:2393–401.
16. Zhu Q, Chen Q, Wang L, et al. Live birth rates in the first complete IVF cycle among 20 687 women using a freeze-all strategy. Hum Reprod 2018;33:324–9.
17. Yang X, Zhang J, Wu J, et al. Association between the number of oocytes retrieved and neonatal outcomes after freeze-all IVF cycles. Hum Reprod 2019;34:1397–47.
18. Huang J, Lu X, Xie Q, Lin J, Cai R, Kuang Y. Timing of frozen-thawed embryo transfer after controlled ovarian stimulation in a non-elective freeze-all policy. Ann Transl Med 2019;7:752.
19. Kuwayama M, Vajta G, Kato O, Leibo SP. Superphysiologic estradiol is an independent predictor of low birth weight in full-term singletons born after fresh embryo transfer. Hum Reprod 2017;32:1410–7.
20. Luke B, Brown MB, Wantman E, et al. The risk of birth defects with conception by ART. Hum Reprod 2021;36:116–29.
21. Shapiro BS, Daneshmand ST, Bedient CE, Garner FC. Comparison of birth weights in patients randomly assigned to fresh or frozen-thawed embryo transfer. Fertil Steril 2016;106:317–21.
22. Zandstra H, Van Montfoort AP, Dumoulin JC. Does the type of culture medium used influence birthweight of children born after IVF? Hum Reprod 2015;30:2693.
23. Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update 2016;22:2–22.
24. Fauque P, De Mouzon J, Devaux A, et al. Do in vitro fertilization, intrauterine insemination or female infertility impact the risk of congenital anomalies in singletons? A longitudinal national French study, Hum Reprod 2021;36:808–16.
25. Spangmose AL, Giström Ernstad E, Malchau S, et al. Obstetric and perinatal risks in 4601 singletons and 884 twins conceived after fresh blastocyst transfers: a Nordic study from the CoNARTaS group. Hum Reprod 2020;35:805–15.
26. Luke B, Stern JE, Horinstein MD, et al. Is frozen embryo transfer cycle associated with a significantly lower incidence of ectopic pregnancy? An analysis of more than 30,000 cycles. Fertil Steril 2014;102:1345–9.
27. Du T, Wang Y, Fan Y, et al. Fertility and neonatal outcomes of embryos achieving blastulation on Day 7: are they of clinical value? Hum Reprod 2018;33:1038–51.
28. Chen H, Wang Y, Lu Y, et al. Comparison of live-birth defects after luteal-phase ovarian stimulation vs. conventional ovarian stimulation for in vitro fertilization and vitrified embryo transfer cycles. Fertil Steril 2015;103:1194–201. e2.
29. Zegers-Hochschild F, Adamson GD, Dyer S, et al. The international glossary on infertility and fertility care, 2017. Hum Reprod 2017;32:1786–801.
30. Capital Institute of Pediatrics, Coordinating Study Group of Nine Cities on the Physical Growth and Development of Children. Growth standard curves of birth weight, length and head circumference of Chinese newborns of different gestation. Zhonghua Er Ke Za Zhi 2020;58:738–46.
31. Lintsen AM, Pasker-de Jong PC, de Boer EJ, et al. Effects of subfertility cause, smoking and body weight on the success rate of IVF. Hum Reprod 2005;20:1867–75.
32. Mak W, Kondapalli LA, Celia G, Gordon J, DiMattina M, Payson M. Natural cycle IVF reduces the risk of low birthweight infants compared with conventional stimulated IVF. Hum Reprod 2016;31:789–94.
33. Maheshwari A, Raja EA, Bhattacharya S. Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer; an analysis of 112,432 singleton pregnancies recorded in the Human Fertilisation and Embryology Authority anonymized dataset. Fertil Steril 2016;106:1703–8.
34. Sterling L, Liu J, Okun N, Sakhuja A, Sierra S, Greenblatt E. Pregnancy outcomes in women with polycystic ovary syndrome undergoing in vitro fertilization. Fertil Steril 2016;105:791–7.e2.
35. Kaywass JF, Crawford S, Kissin DM, Sessions DR, Boulet S, Jamieson DJ. Tubal factor infertility and perinatal risk after assisted reproductive technology. Obstet Gynecol 2013;121:1263–71.
36. Omiland AK, Abyholm T, Fedorcsák P, et al. Pregnancy outcome after IVF and ICSI in unexplained, endometriosis-associated and tubal factor infertility. Hum Reprod 2005;20:722–7.
37. Stern JE, Luke B, Tobias M, Gopal D, Horinstein MD, Diop H. Adverse pregnancy and birth outcomes associated with underlying diagnosis with and without assisted reproductive technology treatment. Fertil Steril 2015;103:1438–45.
38. Chouinard M, Mayrand MH, Ayoub A, Healy-Profítós J, Auger N. Ectopic pregnancy and outcomes of future intrauterine pregnancy. Fertil Steril 2019;112:112–9.
39. Vannuccini S, Clifton VL, Fraser IS, et al. Infertility and reproductive disorders: impact of hormonal and inflammatory mechanisms on pregnancy.
pregnancy outcome. Hum Reprod Update 2016;22:104–15.

43. Horton J, Sterrenburg M, Lane S, Maheshwari A, Li TC, Cheong Y. Reproductive, obstetric, and perinatal outcomes of women with adenomyosis and endometriosis: a systematic review and meta-analysis. Hum Reprod Update 2019;25:592–632.

44. Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril 2012;98:368–77.e1.

45. Chan YY, Jayaprakasan K, Tan A, Thornton JG, Coomarasamy A, Raine-Fenning NJ. Reproductive outcomes in women with congenital uterine anomalies: a systematic review. Ultrasound Obstet Gynecol 2011;38:371–82.

46. Li X, Ouyang Y, Yi Y, Lin G, Lu G, Gong F. Pregnancy outcomes of women with a congenital unicornuate uterus after IVF-embryo transfer. Reprod Biomed Online 2017;35:583–91.

47. Hu S, Xu B, Jin L. Perinatal outcome in young patients with diminished ovarian reserve undergoing assisted reproductive technology. Fertil Steril 2020;114:118–24.e1.

48. Calhoun KC, Fritz MA, Steiner AZ. Examining the relationship between ovarian reserve, as measured by basal FSH levels, and the risk of poor obstetric outcome in singleton IVF gestations. Hum Reprod 2011;26:3424–30.

49. Gibbons WE, Cedars M, Neiss RB. Society for Assisted Reproductive Technologies Writing Group. Toward understanding obstetrical outcome in advanced assisted reproduction: varying sperm, oocyte, and uterine source and diagnosis. Fertil Steril 2011;95:1645–9.e1.

50. Libby V, Devillibiss E, Chung M, et al. Obstetric outcomes in pregnancies resulting from in vitro fertilization are not different in fertile, sterilized women compared to infertile women: a Society for Assisted Reproductive Technology database analysis. Fertil Steril 2021;115:617–26.

51. Isaksson R, Gissler M, Tiitinen A. Obstetric outcome among women with unexplained infertility after IVF: a matched case-control study. Hum Reprod 2002;17:1755–61.

52. Gu F, Li S, Zheng L, et al. Perinatal outcomes of singletons following vitrification versus slow-freezing of embryos: a multicenter cohort study using propensity score analysis. Hum Reprod 2019;34:1788–98.

53. Wei D, Liu JY, Sun Y, et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet 2019;393:1310–8.