Abstract. In this work, by using measure of noncompactness, some results on the existence of n-tuple fixed points for multivalued contraction mappings are proved. As an application, the existence of solution for a system of integral inclusions is studied.

1. Introduction

Fixed point theory is an important area in mathematics which is closely related to real world problems and has many applications in different fields of science. It has played an important role in solving problems of uniqueness and existence of the nonlinear analysis, topology and geometry. In the literature, it has applications in many sciences like engineering [1], economy [2], optimization [3], game theory [4] and medicine [5]. Brouwer [6] proved fixed point theorem on n-dimensional space. Banach [7] established contraction principle which supplied fixed point theorem using contraction mapping. Later, Schauder [8] proved an extension of the Brouwer’s fixed point theorem to spaces of infinite dimension under compactness condition.

For fixed point theory of single valued mappings, one can consult in [9, 10, 11]. The case of multivalued mappings compared to single valued mappings directly applies to the real world problems [12, 13]. The literature is important in view of its. Along with that Kakutani [14] extended Brouwer’s fixed point theorem to multivalued mappings. Afterward, Nadler [15] extended Banach contraction principle from single valued mappings to multivalued mappings using Hausdorff metric. Later, classes of Nadler’s fixed point theorem was extended and generalized for various multivalued mappings in [16, 17].

Measure of noncompactness has played a fundamental role in the study of single valued and multivalued mappings, especially, in metric and topological fixed point theory. It is very useful tool to guarantee the existence of fixed point. The measure of noncompactness was defined and studied by Kuratowski [18]. Darbo [19] used this measure to generalize both Schauder’s fixed point theorem and Banach’s contraction principle for condensing operators. Recently, measure of noncompactness has been used in differential equations, integral equations, nonlinear equations as given in [20, 21, 22].

Partially ordered metric spaces are very important in fixed point theory. By using two basic concepts, Guo and Lakshmikantham [23] first gave some existence

2010 Mathematics Subject Classification. 47H9, 47H10, 34A60.

Key words and phrases. Measure of noncompactness, n-tuple fixed point, multivalued set contraction mapping, system of differential inclusions.
Theorems of the coupled fixed point for both continuous and discontinuous operators, and then they offered some applications to the initial value problems of ordinary differential equations with discontinuous right-hand sides. Bhaskar and Lakshmikantham [24] introduced coupled fixed point and established in a some coupled fixed point theorems in a partially ordered metric space. By a similar idea, Berinde and Borcut [25] established a tripled fixed point for nonlinear mapping in partially ordered complete metric spaces. Ertürk and Karakaya [26] introduced the concept of n-tuplet fixed point and studied existence and uniqueness of fixed point of contractive type mappings in partially ordered metric space. Moreover, by using the condensing operators, Aghajani et al. [27] presented some results on the existence of coupled fixed point Karakaya et al. [28] gave some results concerning the existence of tripled fixed point via measure of noncompactness. For different models of measure of noncompactness in [29].

The existence of fixed point for various contractive mappings has been studied by many authors under different conditions. The concept of coupled fixed point for multivalued mappings was introduced by Samet and Vetro [30] and they presented coupled fixed point theorem for multivalued nonlinear contraction mappings in a partially ordered metric space. Rao et al. [31] obtained a tripled coincidence fixed point theorems for multivalued mappings in a partially ordered metric space.

In this paper, by using condensing operator, we investigate n-tuplet fixed point of multivalued mappings on a Banach space. Finally, we also give an application of our result to solve a system of integral inclusions.

2. Preliminaries

Throughout this paper, E is a Banach space and $P(E)$ (or 2^E) is the set of all subsets of E. We denote the set

$$P_k(E) = \{X \subset E, \ X \text{ is nonempty and has a property } k\}.$$

So, $P_{rcp}(E), P_{cl,bd}(E), P_{cl,cv}(E)$ will denote the classes of all relatively compact, closed-bounded and closed-convex subsets of E, respectively.

A mapping $T : E \to P_k(E)$ is called a multivalued mapping or set valued mapping on E into E. A point $x \in E$ is called a fixed point of T if $x \in Tx$.

Definition 1 (see; [32]). A mapping $\mu : P_{cl,bd}(X) \to \mathbb{R}^+$ is called a measure of noncompactness if it satisfies the following conditions:

1. $(M_1) \emptyset \notin \mu^{-1}(0) \subset P_{rcp}(X)$,
2. $(M_2) \mu(\bar{A}) = \mu(A)$, where \bar{A} denotes the closure of A,
3. $(M_3) \mu(\text{conv } A) = \mu(A)$, where $\text{conv } A$ denotes the convex hull of A,
4. $(M_4) \mu$ is nondecreasing,
5. (M_5) If $\{A_n\}$ is a decreasing sequence of sets in $P_{cl,bd}(X)$ satisfying $\lim_{n \to \infty} \mu(A_n) = 0$, then the intersection $A_\infty = \bigcap_{n=1}^{\infty} A_n$ is nonempty.

If (M_4) holds, then $A_\infty \in P_{rcp}(X)$. For this, let $\lim_{n \to \infty} \mu(A_n) = 0$. As $A_\infty \subseteq A_n$ for each $n = 0, 1, 2, \ldots$; by the monotonicity of μ, we obtain

$$\mu(A_\infty) \leq \lim_{n \to \infty} \mu(A_n) = 0.$$

So, by (M_1), we get that A_∞ is nonempty and $A_\infty \in P_{rcp}(X)$.
Theorem 1 (see: [11]). Let X be a closed and convex subset of a Banach space E. Then every compact, continuous map $T : X \to X$ has at least one fixed point.

Theorem 2 (see: [20]). Let X be a nonempty, bounded, closed and convex subset of a Banach space E and let $T : X \to X$ be a continuous mapping. Suppose that there exists a constant $k \in [0, 1)$ such that
$$
\mu(T(X)) \leq k \mu(X)
$$
for any subset X of E, then T has a fixed point.

Definition 2 (see: [32]). A multivalued mapping $T : E \to P_{cl,bd}(E)$ is called D-set-Lipschitz if there exists a continuous nondecreasing function $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ such that
$$
\mu(T(X)) \leq \varphi(\mu(X))
$$
for all $X \in P_{cl,bd}(E)$ with $T(X) \in P_{cl,bd}(E)$, where $\varphi(0) = 0$. Generally, we call the function φ to be a D-function of T on E.

When $\varphi(r) = kr$, $k > 0$, T is called a k-set-Lipschitz mapping and if $k < 1$, then T is called a k-set-contraction on E.

If $\varphi(r) < r$ for $r > 0$, then T is called a nonlinear D-set-contraction on E.

Lemma 1 (see: [33]). If φ is a D-function with $\varphi(r) < r$ for $r > 0$, then
$$
\lim_{n \to \infty} \varphi^n(t) = 0
$$
for all $t \in [0, \infty)$.

Theorem 3 (see: [32]). Let X be a nonempty, bounded, closed and convex subset of a Banach space E and let $T : X \to P_{cl,cv}(X)$ be a closed and nonlinear D-set-contraction. Then T has a fixed point.

As a consequence of Theorem 3, we obtain a fixed point theorem of Darbo (20) type for linear set-contractions.

Corollary 1 (see: [32]). Let X be a bounded, closed and convex subset of a Banach space E and let $T : X \to P_{cl,cv}(X)$ be a closed and k-set-contraction. Then T has a fixed point.

Definition 3 (see: [34]). Let X be a topological space, 2^X the family of all subsets of X and T be a mapping of X into 2^X such that Tx is nonempty, for all $x \in X$. Then the mapping T is called upper semicontinuous if for each closed subset C of X,
$$
T^{-1}(C) = \{ x \in X : Tx \cap C \neq \emptyset \}
$$
is closed.

Definition 4 (see: [32]). A mapping $\mu : P_k(E) \to \mathbb{R}^+$ is called nondecreasing if $A, B \in P_k(E)$ are any two sets with $A \subseteq B$, then $\mu(A) \leq \mu(B)$, where \subseteq is order relation of inclusion of sets in $P_k(E)$.

Lemma 2 (see: [35]). Let X be a Banach space and F be a Carathéodory multivalued mapping. Let $\Phi : L^1(H;X) \to C(H;X)$ be linear continuous mapping. Then,
$$
\Phi \circ S_F : C(H;X) \to P_{cl,cv}(C(H;X))
$$
$$
u \to (\Phi \circ S_F)(\nu) := \Phi(S_F(\nu)),
$$
is a closed graph operator in $C(H;X) \times C(H;X)$.
Lemma 3 (see; [36]).

1. Let $A \subseteq C(H;X)$ be bounded. Then $\mu(A(t)) \leq \mu(A)$ for all $t \in H$, where $A(t) = \{y(t), y \in A\} \subset X$. Furthermore, if A is equicontinuous on H, then $\mu(A(t))$ is continuous on H and $\mu(A) = \sup\{\mu(A(t)), t \in H\}$.

2. If $A \subset C(H;X)$ is bounded and equicontinuous, then

$$\mu\left(\int_0^t A(s) \, ds\right) \leq \int_0^t \mu(A(s)) \, ds,$$

for all $t \in H$, where $\int_0^t A(s) \, ds = \left\{\int_0^t x(s) \, ds : x \in A\right\}$.

3. n-tuplet Fixed Point Theorems and Some Related Results

In this section, we investigate n-tuplet fixed point property of a multivalued mapping and give some applications for special cases $n = 2$, that is, coupled fixed point.

Definition 5. Let X be a nonempty set and $G : X^n \to P(X)$ be a given mapping. An element $(x_1, x_2, x_3, ..., x_n) \in X^n$ is called an n-tuplet fixed point of G if

$$x_1 \in G(x_1, x_2, x_3, ..., x_n)$$

$$x_2 \in G(x_2, x_3, ..., x_n, x_1)$$

$$\vdots$$

$$x_n \in G(x_n, x_1, x_2, ..., x_{n-1}).$$

Remark 1. If we take as special cases $n = 2$ and $n = 3$ in Definition 5, respectively, we get coupled fixed point (see; [30]) and tripled fixed point (see; [31]).

Theorem 4. (see; [37]) Let $\mu_1, \mu_2, ..., \mu_n$ be measures of noncompactness in Banach spaces $E_1, E_2, ..., E_n$ respectively. Suppose that the function $F : [0, \infty)^n \to [0, \infty)$ is convex and $F(x_1, x_2, ..., x_n) = 0$ if and only if $x_i = 0$ for $i = 1, 2, ..., n$. Then

$$\tilde{\mu}(X) = F(\mu_1(X_1), \mu_2(X_2), ..., \mu_n(X_n)),$$

defines a measure of noncompactness in $E_1 \times E_2 \times ... \times E_n$ where X_i denotes the natural projection of X onto E_i, for $i = 1, 2, ..., n$.

Remark 2. Notice that by taking

$$F(x_1, x_2, x_3, ..., x_n) = \max\{x_1, x_2, x_3, ..., x_n\},$$

or

$$F(x_1, x_2, x_3, ..., x_n) = x_1 + x_2 + x_3 + ... + x_n,$$

for any $(x_1, x_2, x_3, ..., x_n) \in [0, \infty)^n$, the conditions of Theorem 4 are satisfied. Therefore,

$$\tilde{\mu}(X) := \max(\mu(X_1), \mu(X_2), ..., \mu(X_n)),$$

or

$$\tilde{\mu}(X) := \mu(X_1) + \mu(X_2) + ... + \mu(X_n),$$

defines measures of noncompactness in the space E^n, where X_i, $i = 1, 2, ..., n$ are the natural projections of X on E_i.

We now give an important theorem for existence of fixed point of multivalued mapping under measure of noncompactness condition.
Theorem 5. Let X be a nonempty, bounded, closed and convex subset of a Banach space E and let μ be an arbitrary measure of noncompactness in it. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a nondecreasing and upper semicontinuous function such that $\varphi (r) < r$ for all $r > 0$. Suppose that $G : X_1 \times X_2 \times \cdots \times X_n \to P_{cl,cv}(X)$ is continuous multivalued operator satisfying

$$
\mu (G(X_1 \times X_2 \times \cdots \times X_n)) \leq \varphi \left(\frac{\mu (X_1) + \mu (X_2) + \cdots + \mu (X_n)}{n} \right)
$$

for all $X_1, X_2, \ldots, X_n \subset X$. Then G has at least one n-tuple fixed point.

Proof. As in Remark 2, we define the measure of noncompactness $\tilde{\mu}$ by

$$
\tilde{\mu} (X) := \mu (X_1) + \mu (X_2) + \cdots + \mu (X_n).
$$

Define the mapping $\tilde{G}(X) := G (X_1 \times X_2 \times \cdots \times X_n)$. We prove that \tilde{G} satisfies all the conditions of Theorem 4. Then

Clearly,

$$
\tilde{\mu} \left(\tilde{G} (X) \right) = \tilde{\mu} \left(G (X_1 \times X_2 \times \cdots \times X_n) \right)
= \tilde{\mu} \left(G(x_1, x_2, x_3, \ldots, x_n), G(x_2, x_3, \ldots, x_n, x_1), \ldots, G(x_n, x_1, x_2, \ldots, x_{n-1}) \right)
= \mu (G(x_1, x_2, x_3, \ldots, x_n)) + \mu (G(x_2, x_3, \ldots, x_n, x_1)) + \cdots + \mu (G(x_n, x_1, x_2, \ldots, x_{n-1}))
\leq \varphi \left(\frac{\mu (X_1) + \mu (X_2) + \cdots + \mu (X_n)}{n} \right) + \varphi \left(\frac{\mu (X_2) + \mu (X_3) + \cdots + \mu (X_1)}{n} \right)
+ \cdots + \varphi \left(\frac{\mu (X_n) + \mu (X_1) + \cdots + \mu (X_{n-1})}{n} \right)
= n \varphi \left(\frac{\mu (X_1) + \mu (X_2) + \cdots + \mu (X_n)}{n} \right).
$$

Now,

$$
\frac{1}{n} \tilde{\mu} \left(\tilde{G} (X) \right) \leq \varphi \left(\frac{\mu (X_1) + \mu (X_2) + \cdots + \mu (X_n)}{n} \right)
$$

and taking $\tilde{\mu}' = \frac{1}{n} \tilde{\mu}$, we get

$$
\tilde{\mu}' \left(\tilde{G} (X) \right) \leq \varphi \left(\tilde{\mu}' (X) \right).
$$

Also, $\tilde{\mu}'$ is a measure of noncompactness. Thus, by Theorem 4 we obtain that G has at least one n-tuple fixed point. \qed

Remark 3. If we take μ measure of noncompactness in Theorem 2 as

$$
\tilde{\mu} (X) := \max (\mu (X_1), \mu (X_2), \ldots, \mu (X_n)).
$$

We can obtain the same result.

4. Application to Inclusions Systems

The multivalued fixed point theorem of this paper has some nice applications to differential and integral systems of inclusions as an example we study the solvability of a system of differential inclusions.

Consider the following differential system

$$
\begin{cases}
 x'(t) \in A(t)x(t) + G(t, x(t), y(t)), & t \in [0, b] \\
 y'(t) \in A(t)y(t) + F(t, y(t), x(t)), & t \in [0, b]
\end{cases}
$$

(4.1)
Definition 6. A family \(\{ U(t,s) : t, s \in \Delta \} \) of bounded linear operators \(U(t,s) : X \rightarrow X \) where \((t,s) \in \Delta := \{(t,s) \in J \times J : 0 \leq s \leq t < +\infty \} \) for \(J = [0,b] \) is called an evolution system if the following properties are satisfied,

1. \(U(t,t) = I \) where \(I \) is the identity operator in \(X \) and \(U(t,s) U(s,\tau) = U(t,\tau) \) for \(0 \leq \tau \leq s \leq t < +\infty \),
2. The mapping \((t,s) \rightarrow U(t,s) \) is strongly continuous, that is, there exists a constant \(M > 0 \) such that

\[
\| U(t,s) \| \leq M \quad \text{for any} \quad (t,s) \in \Delta.
\]

An evolution system \(U(t,s) \) is said to be compact if \(U(t,s) \) is compact for any \(t-s > 0 \). \(U(t,s) \) is said to be equicontinuous if \(\{ U(t,s)x : x \in M \} \) is equicontinuous at \(0 \leq s < t \leq b \) for any bounded subset \(B \subset X \). Clearly, if \(U(t,s) \) is a compact evolution system, it must be equicontinuous. The converse is not necessarily true.

More details on evolution systems and their properties could be found in the books of Ahmed \[38\], Engel and Nagel \[39\] and Pazy \[40\].

Definition 7. We say that the couple \((x(t), y(t)) \) \(\in C([0,b], X) \times C([0,b], X) \) is a mild solution of the evolution system (4.1) - (4.2) if it satisfies the following integral system

\[
\begin{align*}
\dot{x}(t) &= U(t,0) \varphi(x,y) + \int_0^t U(t,s) g(s) \, ds \quad \text{for } g \in S_G(x,y) \\
\dot{y}(t) &= U(t,0) \varphi(y,x) + \int_0^t U(t,s) g(s) \, ds \quad \text{for } g \in S_G(y,x),
\end{align*}
\]

for all \(t \in [0,b] \).

Theorem 6. Assume the following hypotheses

\(H1 \) \(\{ A(t) : t \in J \} \) is a family of linear operators. \(A(t) : D(A) \subset X \rightarrow X \) generates an equicontinuous evolution system \(\{ U(t,s) : (t,s) \in \Delta \} \) and

\[|U(t,s)| \leq M. \]

\(H2 \) The multifunction \(G : J \times C([0,b] \times X \times X) \rightarrow P_{cl,cv}(X) \) is an upper Carathéodory with respect to \(x \) and \(y \) and \(\varphi : C(J;X) \rightarrow X \) is compact and

\[
\mu \left(G(t,W \times X) \right) < k\mu \left(\frac{W \times W}{2} \right) \quad \text{for any} \quad t \in J.
\]

\(H3 \) There exists a constant \(r > 0 \) such that

\[
M \left[||\varphi(x,y)|| + \left\{ \| g(t) \|_1 : g \in S_G(x,y), x \in A_0 \right\} \right] \leq r
\]

and

\[
M \left[||\varphi(y,x)|| + \left\{ \| g(t) \|_1 : g \in S_G(y,x), y \in A_0 \right\} \right] \leq r.
\]
Thus $A_0 = \{ z \in C(J; X) : \| z(t) \| \leq r \text{ for all } t \in J \}$ hold. Then the nonlocal system \((4.1) - (4.2)\) has at least one mild solution in the space $C(J; X)$.

Proof. To solve problem given in \((4.1) - (4.2)\), we transform it into the following fixed point problem.

Consider the multivalued operator $N : C([0, b] ; X) \rightarrow \mathcal{P}(C([0, b] ; X))$ defined by,

$$N(x, y) = \left\{ h \in C(J; X) : h(t) = U(t, 0) \varphi(x, y) + \int_0^t U(t, s) g(s) \, ds, \text{ with } g \in S_G(x, y) \right\}.$$

Clearly, coupled fixed points of the operator N are mild solutions of system \((4.2) - (4.3)\).

Obviously, for each $y \in C([0, b] ; X)$, the set $S_G(x, y)$ is nonempty since, by $(H2)$, G has a measurable selection (see (4.1)).

Let show that N has a coupled fixed point. For that, we need to verify all the conditions of Theorem 5.

Let $A_0 = \{ z \in C([0, b] ; X) : \| z(t) \| \leq r \text{ for all } t \in [0, b] \}$. We notice that A_0 is closed, bounded and convex.

To show that $N(A_0 \times A_0) \subseteq A_0$, we need first to prove that the family

$$\left\{ \int_0^t U(t, s) f(s) \, ds : f \in S_F(y) \text{ and } y \in A_0 \right\}$$

is equicontinuous for $t \in J$, that is, all the functions are continuous and they have equal variation over a given neighbourhood.

In view of $(H1)$ we have that functions in the set $\{ U(t, s) : (t, s) \in \Delta \}$ are equicontinuous, i.e., for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|t - \tau| < \delta$ implies $\| U(t, s) - U(\tau, s) \| < \varepsilon$ for all $U(t, s) \in \{ U(t, s) : (t, s) \in \Delta \}$.

Then, given some $\varepsilon > 0$ let $\delta = \frac{\varepsilon}{\| g \|_\infty}$ such that $|t - \tau| < \delta$, we have

$$\left| \int_0^t U(t, s) g(s) \, ds - \int_0^\tau U(\tau, s) g(s) \, ds \right| \leq \int_0^\tau |U(t, s) - U(\tau, s)| \| g(s) \| \, ds.$$

As $\{ U(t, s) : (t, s) \in \Delta \}$ is equicontinuous, so we have

$$\left| \int_0^t U(t, s) g(s) \, ds - \int_0^\tau U(\tau, s) g(s) \, ds \right| \leq \varepsilon \| g \|_\infty |t - \tau|$$

$$< \varepsilon \| g \|_\infty \frac{\varepsilon'}{\varepsilon \| g \|_\infty} = \varepsilon'.$$

Hence we conclude that $\left\{ \int_0^t U(t, s) g(s) \, ds : g \in S_G(x, y) \text{ and } (x, y) \in A_0 \times A_0 \right\}$ is equicontinuous for $t \in J$.

Now, we show that $N(A_0 \times A_0) \subseteq A_0$. For $t \in J$, we have

$$|h(t)| = \left| U(t, 0) \varphi(x, y) + \int_0^t U(t, s) g(s) \, ds \right|$$

$$\leq |U(t, 0) \varphi(x, y)| + \int_0^t |U(t, s) g(s)| \, ds$$

$$\leq M \| \varphi(x, y) \| + M \| g \|_1$$

$$= M \| \varphi(x, y) \| + \| g \|_1 \leq r.$$

Thus $N(A_0 \times A_0) \subseteq A_0$.

Further, it is easy to see that N is convex value.

Now, let us show that N has a closed graph, let $x_n \to x$, $y_n \to y$ and $h_n \to h$

such that $h_n(t) \in N(x_n, y_n)$ and we show that $h(t) \in N(x, y)$.

Now, there exists a sequence $g_n \in S_G(x_n, y_n)$ such that

$$ h_n(t) = U(t, 0) \varphi(x_n, y_n) + \int_0^t U(t, s) g_n(s) ds. $$

Consider the linear operator $\Phi : L^1([0, b]; X) \to C([0, b]; X)$ defined by

$$ \Phi f(t) = \int_0^t U(t, s) g(s) ds. $$

Clearly, Φ is linear and continuous. So by Lemma 2, we get that $\Phi \circ S_G(x, y)$ is a closed graph operator. Further, we have

$$ h_n(t) - U(t, 0) \varphi(x_n, y_n) \in \Phi \circ S_G(x, y). $$

Since $x_n \to x$, $y_n \to y$ and $h_n \to h$, therefore

$$ h(t) - U(t, 0) \varphi(x, y) \in \Phi \circ S_G(x, y). $$

That is, there exists a function $g \in S_G(x, y)$ such that

$$ h(t) = U(t, 0) \varphi(y) + \int_0^t U(t, s) g(s) ds. $$

Therefore N has a closed graph, hence N has closed values on $C([0, b] \times X \times X, X)$.

We know that the family $\left\{ \int_0^t U(t, s) f(s) ds, f \in S_F(W(t)) \right\}$ is equicontinuous, hence by Lemma 3, we have

$$ \mu \left(\int_0^t U(t, s) g(s) ds, g \in S_G(W(t) \times W(t)) \right) \leq \int_0^t \mu(U(t, s) g(s), g \in S_G(W(t) \times W(t))) ds $$

$$ \leq M \int_0^t \mu(g), g \in S_G(W(t) \times W(t))) ds $$

$$ \leq M t \mu(G(t, W(t))). $$

Therefore

$$ \mu(N(W \times W)) = \mu N \left(U(t, 0) \varphi(W(t) \times W(t)) + \int_0^t U(t, s) g(s) ds, g \in S_G(W(t) \times W(t)) \right) $$

$$ \leq \mu (U(t, 0) \varphi(W(t) \times W(t))) + \mu \left(\int_0^t U(t, s) g(s) ds, g \in S_G(W(t) \times W(t)) \right) $$

$$ \leq M \mu(\varphi(W(t) \times W(t))) + M t \mu(G(t, W(t))). $$

In view of $(H2)$, we get

$$ \mu(N(W \times W)) \leq M b k \mu \left(\frac{W \times W}{2} \right). $$

Therefore, for $M b k < 1$, we obtain that N has at least one coupled fixed point.

Hence, the system (1.1) - (1.2) has at least one solution.
References

[1] T. Fleiner, A fixed-point approach to stable matchings and some applications, Mathematics of Operations Research. 28 (2003), 103-126.
[2] E. A. Ok, Real analysis with economic applications, Princeton University, Princeton, (2007).
[3] L. C. Ceng, Q. Ansari, J. C. Yao, Some iterative methods for finding fixed points and for solving constrained convex minimization problems, Nonlinear Analysis. 74 (2011), 5286-5302.
[4] K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University, Cambridge, (1989).
[5] M. Chen, W. Lu, Q. Chen, K. J. Ruchala, G.H. Olivera, A simple fixed-point approach to invert a deformation field, Medical Physics. 35 (2008), 81-88.
[6] L. E. J. Brouwer, Über abbildung von mannigfaltigkeiten, Math. Ann. 71 (1912), 97-115.
[7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181.
[8] J. Schauder, Der fixpunktsatz in funktionalräumen, Studia Mathematika. 2 (1930), 171-180.
[9] L. P. Belluce, W. A. Kirk, Fixed point theorems for families of contraction mappings, Pacific J. Math. 18 (1966), 213-217.
[10] L. P. Belluce, W. A. Kirk, Nonexpansive mappings and fixed points in Banach spaces, Illinois J. Math. 11 (1967), 474-479.
[11] R. Agarwal, M. Meehan, D. O’Regan, Fixed point theory and applications, Cambridge University, Cambridge, (2004).
[12] J. F. Nash, Equilibrium points in n-person games, Proc. Nat. Acad. Sci. 36 (1950), 48-49.
[13] A. Petru¸ sel, Operatorial inclusions, House of the Book of Science, Cluj Napoka, (2002).
[14] S. Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. 8 (1941), 457-459.
[15] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[16] S. Reich, Fixed points of contractive functions, Boll Un Mat Ital. 5 (1972), 26-42.
[17] N. Mizoguchi, W. Takahashi, Fixed points theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177-188.
[18] K. Kuratowski, Sur les escapes complets, Fund. Math. 5 (1930), 301-309.
[19] G. Darbo, Punti uniti in transformazioni a condominio non compatto, Rend. Sem. Math. Univ. Padova 24 (1955), 84-92.
[20] J. Banas, K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, 60 (1980), Dekker, New York
[21] A. Aghajani, J. Banas, Y. Jalilian, Existence of solutions for a class of nonlinear volterra singular integral equations, Comput. Math. Appl. 62 (2011), 1215-1227.
[22] J. Banas, Measure of noncompactness in the spaces of continuous tempered functions, Demonstratio Math. 14 (1981), 127-133.
[23] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Analysis. 11 (1987), 623-632.
[24] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis. 65 (2006), 1379-1393.
[25] V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Analysis. 74 (2011), 4889-4897.
[26] M. Ertürk, V. Karakaya, n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Inequalities Appl. 2013 (2013),196.
[27] A. Aghajani, R. Allahyari, M. Mursaleen, A generalization of Darbo’s theorem with application to the solvability of systems of integral equations, J. Comp. Appl. Math. 260 (2014), 68-77.
[28] V. Karakaya, N. E. H. Bouzara, K. Doğan and Y. Atalan, Existence of tripled fixed points for a class of condensing operators in Banach spaces, The Scientific World Journal. 2014 (2014), Article ID 541862.
[29] A. R. Khan, A. A. Domlo, Random fixed points of multivalued inward random operators, J. Appl. Math. Stoch. Anal. Volume 2006, Art. ID 19428, P. 1-8.
[30] B. Samet, C. Vetro, Coupled fixed point theorems for multivalued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Analysis. 74 (12) (2011), 4260-4268.
[31] K. P. R. Rao, G. N. V. Kishore, T. Kenan, A unique common tripled fixed point theorem for hybrid pair of maps, Abstract and Applied Analysis. 2012, Article ID 750403.
[32] B. C. Dhage, Some generalization of multi-valued version of Schauder’s fixed point theorem with applications, CUBO A Mathematical J. 12 (2010), 139-151.
[33] B. C. Dhage, Asymptotic stability of nonlinear functional integral equations via measure of noncompactness, Comm. Appl. Nonlinear Anal. 15(2) (2008), 89-101.
[34] S. Itoh, W. Takahashi, The common fixed point theory of singlevalued mappings and multi-valued mappings, Pacific J. Math. 79(2) (1978), 493-508.
[35] H. Thiens, Integrated semigroup and integral solutions to abstract Cauchy problem, J. Math. Anal. Appl. 152 (1990), 416-447.
[36] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, Walter de Gruyter, Berlin-New York, (2001).
[37] R. R. Akmerov, M. I. Kamenski, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measure of noncompactness and condensing operators, Springer Basel, Birkhauser-Verlag, (1992).
[38] N. U. Ahmed, Semigroup theory with applications to systems and control, Harlow John Wiley & Sons Inc, New York, (1991).
[39] K. J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, New York, (2000).
[40] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, (1983).
[41] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math. 580, Springer-Verlag, New York, (1977).

DEPARTMENT OF MATHEMATICS, FACULTY OF ARTS AND SCIENCES, AHI EVRAN UNIVERSITY, 40100 KİRŞEHİR, TURKEY
E-mail address: deryasekman@gmail.com

FACULTY OF MATHEMATICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY HOUARI BOUMEDIÈNE, BÉBÉ-ÉZZOUIR, 16111 ALGIES, ALGERIA
E-mail address: bzc.nour@gmail.com

DEPARTMENT OF MATHEMATICAL ENGINEERING, YILDIZ TECHNICAL UNIVERSITY, 34210 ISTANBUL, TURKEY
E-mail address: vkkaya@yahoo.com