Control Complexity in Bucklin, Fallback, and Plurality Voting: An Experimental Approach*

Jörg Rothe and Lena Schend
Institut für Informatik
Heinrich-Heine-Universität Düsseldorf
40225 Düsseldorf, Germany

May 5, 2014

Walsh [Wal10, Wal09], Davies et al. [DKNW10, DKNW11], and Narodytska et al. [NWX11] studied various voting systems empirically and showed that they can often be manipulated effectively, despite their manipulation problems being NP-hard. Such an experimental approach is sorely missing for NP-hard control problems, where control refers to attempts to tamper with the outcome of elections by adding/deleting/partitioning either voters or candidates. We experimentally tackle NP-hard control problems for Bucklin and fallback voting. Among natural voting systems with efficient winner determination, fallback voting is currently known to display the broadest resistance to control in terms of NP-hardness, and Bucklin voting has been shown to behave almost as well in terms of control resistance [ER10, EPR11, EFPR11]. We also investigate control resistance experimentally for plurality voting, one of the first voting systems analyzed with respect to electoral control [BTT92, HHR07].

Our findings indicate that NP-hard control problems can often be solved effectively in practice. Moreover, our experiments allow a more fine-grained analysis and comparison—across various control scenarios, vote distribution models, and voting systems—than merely stating NP-hardness for all these control problems.

*This work was supported in part by DFG grants RO 1202/15-1 and RO 1202/12-1 (within the EUROCORES programme LogiCCC of the ESF), SFF grant “Cooperative Normsetting” of HHU Düsseldorf, and a DAAD grant for a PPP project in the PROCOPE programme. Author URLs: ccc.cs.uni-duesseldorf.de/~rothe, ccc.cs.uni-duesseldorf.de/~schend.
Contents

1. Introduction and Motivation ... 5

2. Preliminaries ... 6
 2.1. Elections and Voting Systems 6
 2.2. Electoral Control and Control Complexity 6
 2.3. Control Complexity in Bucklin, Fallback, and Plurality Voting 8

3. Experimental Setting .. 8

4. A High-Level Description of the Algorithms 9
 4.1. Algorithms for Voter Control 10
 4.2. Algorithms for Candidate Control 11

5. Summary of Experimental Results 12

6. Discussion and Conclusions ... 17

A. Fallback Voting ... 21
 A.1. Constructive Control by Adding Candidates 21
 A.1.1. Computation Costs 25
 A.2. Destructive Control by Adding Candidates 28
 A.2.1. Computational Costs 32
 A.3. Constructive Control by Deleting Candidates 35
 A.3.1. Computation Costs 39
 A.4. Destructive Control by Deleting Candidates 42
 A.4.1. Computational Costs 46
 A.5. Constructive Control by Partition of Candidates in Model TE 49
 A.5.1. Computational Costs 53
 A.6. Destructive Control by Partition of Candidates in Model TE 56
 A.6.1. Computational Costs 60
 A.7. Constructive Control by Partition of Candidates in Model TP 63
 A.7.1. Computational Costs 67
 A.8. Destructive Control by Partition of Candidates in Model TP 70
 A.8.1. Computational Costs 74
 A.9. Constructive Control by Runoff Partition of Candidates in Model TE 77
 A.9.1. Computational Costs 81
 A.10. Destructive Control by Runoff Partition of Candidates in Model TE 84
 A.10.1. Computational Costs 88
 A.11. Constructive Control by Runoff Partition of Candidates in Model TP 91
 A.11.1. Computational Costs 95
 A.12. Destructive Control by Runoff Partition of Candidates in Model TP 98
 A.12.1. Computational Costs 102
 A.13. Constructive Control by Adding Voters 105
 A.13.1. Computational Costs 109
 A.14. Constructive Control by Deleting Voters 112
 A.14.1. Computational Costs 116
 A.15. Constructive Control by Partition of Voters in Model TE 119
 A.15.1. Computational Costs 123
A. Destructive Control by Partition of Voters in Model TE
- **A.16.** Computational Costs

A. Constructive Control by Partition of Voters in Model TP
- **A.17.** Computational Costs

A. Destructive Control by Partition of Voters in Model TP
- **A.18.** Computational Costs

B. Bucklin Voting
- **B.** Bucklin Voting

B.1. Constructive Control by Adding Candidates
- **B.1.1.** Computational Costs

B.2. Destructive Control by Adding Candidates
- **B.2.1.** Computational Costs

B.3. Constructive Control by Deleting Candidates
- **B.3.1.** Computational Costs

B.4. Destructive Control by Deleting Candidates
- **B.4.1.** Computational Costs

B.5. Constructive Control by Partition of Candidates in Model TE
- **B.5.1.** Computational Costs

B.6. Destructive Control by Partition of Candidates in Model TE
- **B.6.1.** Computational Costs

B.7. Constructive Control by Partition of Candidates in Model TP
- **B.7.1.** Computational Costs

B.8. Destructive Control by Partition of Candidates in Model TP
- **B.8.1.** Computational Costs

B.9. Constructive Control by Runoff Partition of Candidates in Model TE
- **B.9.1.** Computational Costs

B.10. Destructive Control by Runoff Partition of Candidates in Model TE
- **B.10.1.** Computational Costs

B.11. Constructive Control by Runoff Partition of Candidates in Model TP
- **B.11.1.** Computational Costs

B.12. Destructive Control by Runoff Partition of Candidates in Model TP
- **B.12.1.** Computational Costs

B.13. Constructive Control by Adding Voters
- **B.13.1.** Computational Costs

B.14. Constructive Control by Deleting Voters
- **B.14.1.** Computational Costs

B.15. Destructive Control by Partition of Voters in Model TE
- **B.15.1.** Computational Costs

B.16. Destructive Control by Partition of Voters in Model TP
- **B.16.1.** Computational Costs

B.17. Constructive Control by Partition of Voters in Model TP
- **B.17.1.** Computational Costs

B.18. Destructive Control by Partition of Voters in Model TP
- **B.18.1.** Computational Costs

C. Plurality Voting
- **C.** Plurality Voting

C.1. Constructive Control by Adding Candidates
- **C.1.1.** Computational Costs

C.2. Destructive Control by Adding Candidates
- **C.2.1.** Computational Costs
C.3. Constructive Control by Deleting Candidates ... 287
C.3.1. Computational Costs ... 291
C.4. Destructive Control by Deleting Candidates .. 294
C.4.1. Computational Costs ... 298
C.5. Constructive Control by Partition of Candidates in Model TE 301
C.5.1. Computational Costs ... 305
C.6. Destructive Control by Partition of Candidates in Model TE 308
C.6.1. Computational Costs ... 312
C.7. Constructive Control by Partition of Candidates in Model TP 315
C.7.1. Computational Costs ... 319
C.8. Destructive Control by Partition of Candidates in Model TP 322
C.8.1. Computational Costs ... 326
C.9. Constructive Control by Runoff Partition of Candidates in Model TE 329
C.9.1. Computational Costs ... 333
C.10. Destructive Control by Runoff Partition of Candidates in Model TE 336
C.10.1. Computational Costs .. 340
C.11. Constructive Control by Runoff Partition of Candidates in Model TP 343
C.11.1. Computational Costs .. 347
C.12. Destructive Control by Runoff Partition of Candidates in Model TP 350
C.12.1. Computational Costs .. 354
C.13. Constructive Control by Partition of Voters in Model TP 357
C.13.1. Computational Costs .. 361
C.14. Destructive Control by Partition of Voters in Model TP 364
C.14.1. Computational Costs .. 368
Electoral control [BTT92, HHR07] refers to attempts to tamper with the outcome of elections by adding/deleting/partitioning either the voters or the candidates. To protect elections against such control attempts and other ways of manipulation (see, e.g., the surveys [FHH10, FP10]), much work has been done recently to show that the attacker’s task can be computationally hard: Certain voting systems are resistant to manipulation [FHH10, FP10, CSL07] or control [BTT92, HHR07, ER10, EPR11] in certain scenarios. However, most of this work is concerned with NP-hardness results, which is a worst-case measure of complexity and leaves open the possibility that many elections can still be manipulated or controlled in a reasonable amount of time.

To avoid this disadvantage, manipulation and control problems have also been tackled from different angles. For example, from a theoretical perspective, Zuckerman et al. [ZPR09] proposed approximation algorithms for NP-hard manipulation problems and Faliszewski et al. [FFHR11] showed that restricting to single-peaked electorates may strip manipulation and control problems off their NP-hardness shields. From an experimental perspective, in a series of papers Walsh et al. [Wal10, Wal09, DKNW10, DKNW11] (see also [CT07]) studied various voting systems empirically, such as single transferable vote (STV), veto, and Borda, and showed that they can often be manipulated effectively, even though their manipulation problems are NP-hard. Such an experimental approach is sorely missing for NP-hard control problems to date.

This paper is the first attempt to tackle NP-hard control problems via an experimental analysis. Among natural voting systems with efficient winner determination, the system currently known to display the broadest resistance (NP-hardness) to control is fallback voting, proposed by Brams and Sanver [BS09] via combining approval with Bucklin voting. Erdélyi et al. [ER10, EPR11] showed that fallback voting is resistant to 20 out of the 22 standard types of control and that Bucklin voting behaves almost as good. Shortly after these results with all proofs were made public in a technical report dated March 11, 2011, [EFPR11], Menton [Men12] reported analogous results for normalized range voting (the version of his technical report that establishes a matching number of resistances is dated April 25, 2011).

We empirically investigate six voter control scenarios for Bucklin and fallback voting and two for plurality voting. Furthermore we investigate twelve candidate control scenarios for all three voting systems[1] i.e., while Walsh et al. [Wal10, Wal09, DKNW10, DKNW11] focused on constructive manipulation problems only (where the aim is to make a candidate win), we study both constructive and destructive control problems (the latter aiming at preventing some candidate’s victory). When generating random elections in our experiments, we consider two probability distributions: the Impartial Culture model (where votes are distributed uniformly and are drawn independently) and the Two Mainstreams model, introduced here to model two mainstreams in society by adapting the Polya Eggenberger urn model [Ber85].

After introducing the investigated voting systems and types of electoral controls in Section 2, we present the experimental setting and implemented algorithms in Sections 3 and 4. Section 5 summarizes some of our findings and observations for particular control scenarios. We conclude by providing a brief discussion of the main findings of our experiments in Section 6 which allow a more fine-grained analysis and comparison—across various control scenarios, vote distribution models, and voting systems—than merely stating NP-hardness for all these problems. A comprehensive presentation of all results can be found in the appendix.

Note that there are overall eight voter control scenarios but we only analyze those where for the corresponding control problem no deterministic polynomial-time algorithm is known. Furthermore we do not analyze two types of control by adding candidates, namely the case where the number of candidates that can be added is not limited, so that we investigate 18 of the 22 known types of electoral control.

1Note that there are overall eight voter control scenarios but we only analyze those where for the corresponding control problem no deterministic polynomial-time algorithm is known. Furthermore we do not analyze two types of control by adding candidates, namely the case where the number of candidates that can be added is not limited, so that we investigate 18 of the 22 known types of electoral control.
2. Preliminaries

2.1. Elections and Voting Systems

An election is a pair \((C, V)\) consisting of a finite candidate set \(C = \{c_1, c_2, \ldots, c_n\}\) and a finite list of voters \(V = \{v_1, v_2, \ldots, v_n\}\) expressing their preferences over the candidates in \(C\). How the votes are represented depends on the voting system used. A voting system \(\mathcal{E}\) determines how the voters’ ballots are cast and who has won a given election \((C, V)\), where the set \(W \subseteq C\) of winners may be empty or have one or more elements. We call an election with votes cast according to a voting system \(\mathcal{E}\) an \(\mathcal{E}\) election. Here we focus on the systems Bucklin voting, fallback voting, and plurality voting.

Bucklin voting is a preference-based voting system named after James W. Bucklin [HH26]. “Preference-based” means that the voters’ ballots are (strict) linear orders over all candidates in \(C\). For example, if \(C = \{c_1, c_2, c_3\}\) and a vote \(v\) is given by \(c_2 c_1 c_3\), then this voter \(v\) strictly prefers \(c_2\) to \(c_1\) and \(c_1\) to \(c_3\).

Let \((C, V)\) be a given Bucklin election. The level \(i\) score of a candidate \(c \in C\) \(\text{score}_{(C, V)}^i(c)\), for short) is the number of voters in \(V\) ranking \(c\) among their top \(i\) positions. Letting the strict majority threshold of a list \(V\) of votes be \(\text{maj}(V) = \left\lceil |V|/2 \right\rceil + 1\), the Bucklin score of \(c \in C\) is defined to be the smallest \(i\) such that \(\text{score}_{(C, V)}^i(c) \geq \text{maj}(V)\). Every candidate with the smallest Bucklin score (say \(\ell\)) and the highest level \(\ell\) score is a level \(\ell\) Bucklin winner (BV winner, for short). Note that there always exists a Bucklin winner, level 1 Bucklin winners are always unique, but on levels \(\ell \geq 2\) there can be more than one BV winner.

Fallback voting is a hybrid voting system introduced by Brams and Sanver [BS09]. It combines Bucklin voting with approval voting [BF83]. In a fallback election, each voter determines those candidates he or she approves of and provides a linear order of the approved candidates. So for \(C = \{c_1, c_2, c_3\}\) a vote in a fallback election could be of the form \(c_3 c_1\), meaning that this voter approves of \(c_3\) and \(c_1\), and disapproves of \(c_2\).

Winners are determined as follows in fallback voting: Given a fallback election \((C, V)\), the notions of level \(i\) score of a candidate \(c \in C\) and level \(i\) fallback winner are defined analogously as in Bucklin voting. If there is a level \(\ell\) fallback winner with \(\ell \leq |C|\), then he or she is the fallback winner in \((C, V)\). Otherwise (i.e., if no fallback winner exists in \((C, V)\)), every candidate with a highest approval score (which is the number of voters approving of this candidate) is a fallback winner in \((C, V)\). The second case can occur in fallback elections, since the voters can prevent the candidates from gaining points, and so it is possible that no candidate reaches or exceeds the strict majority threshold on any level.

Note that Bucklin elections can be seen as fallback elections where each voter approves of all candidates. So Bucklin voting is a special case of fallback voting.

In plurality voting, the most preferred candidate in each vote gains one point, and the candidates with the most points are the plurality winners. Note that there always exists at least one plurality winner. This voting rule is preference-based as well, even though the ranking of the candidates after the top candidate is irrelevant.

2.2. Electoral Control and Control Complexity

Electoral control is a way to tamper with the outcome of an election by changing the structure of the election itself [BTT92, HHR07]. These structural changes include adding, deleting, and partitioning voters or candidates. In the model of electoral control these changes are exerted by an external actor, the “chair,” having full knowledge of the voters’ preferences. For a detailed discussion of why and where this assumption is appropriate when investigating control complexity, see [HHR07]. Bartholdi et al. [BTT92] introduced the notion of constructive control where the chair’s goal is to make a distinguished candidate end up winning alone the resulting election. The case where the chair’s control action aims at preventing a given candidate from being a unique winner is called destructive control and has been introduced by Hemaspaandra et al. [HHR07].

To study the complexity of control in different scenarios, a decision problem is defined for each type of electoral control.
destructive cases, we simply ask whether it is possible to introduce the tie-handling rules “Ties Promote” (TP) in which all subelection winner, yielding the destructive control problems (“Ties Eliminate” (TE) in which only a unique winner from either subelection can move on to the runoff, and “Ties Eliminate” (TE) in which only a unique winner from either subelection can move on to the runoff (if there is more than one winner, none of them moves on).

Depending on the tie-handling rule used, we obtain the problems δ-CCPV-TP and δ-CCPV-TE. For the destructive cases, we simply ask whether it is possible to prevent the distinguished candidate from being a unique winner, yielding the destructive control problems δ-DCDV, δ-DCAVδ-DCPV-TP, and δ-DCPV-TE. Each of the four problems just defined models “two-district gerrymandering.”

δ-CONSTRUCTIVE CONTROL BY DELETING VOTERS (δ-CCDV)
Given: An δ election (C,V), a distinguished candidate $c \in C$, and a positive integer $k \leq \|V\|$.
Question: Is there a subset $V' \subseteq V$ with $\|V'\| \leq k$ such that c is the unique δ winner of election $(C,V - V')$?

δ-CONSTRUCTIVE CONTROL BY ADDING VOTERS (δ-CCAV)
Given: An δ election $(C,V \cup V')$, where $V \cap V' = \emptyset$ and V is the list of registered voters and V' is the list of unregistered voters, a distinguished candidate $c \in C$, and a positive integer $k \leq \|V'\|$.
Question: Is there a subset $V'' \subseteq V'$ with $\|V''\| \leq k$ such that c is the unique δ winner of election $(C,V \cup V'')$?

δ-CONSTRUCTIVE CONTROL BY PARTITION OF VOTERS (δ-CCPV)
Given: An δ election (C,V) and a distinguished candidate $c \in C$.
Question: Is there a partition (V_1,V_2) of V such that c is the unique δ winner of election $(W_i \cup W_2,V)$, where $W_i, i \in \{1,2\}$, is the set of δ winners of subelection (C,V_i) surviving the tie-handling rule?

δ-CONSTRUCTIVE CONTROL BY DELETING CANDIDATES (δ-CCDC)
Given: An δ election (C,V) and a distinguished candidate $c \in C$.
Question: Does there exist a subset $C' \subseteq C$ such that $\|C'\| \leq k$ and c is the unique δ winner of election $(C - C',V)$?

δ-CONSTRUCTIVE CONTROL BY ADDING CANDIDATES (δ-CCAC)
Given: An δ election $(C \cup D,V)$, $C \cap D = \emptyset$, a distinguished candidate $c \in C$, and a nonnegative integer k. (C is the set of originally qualified candidates and D is the set of spoiler candidates that may be added.)
Question: Does there exist a subset $D' \subseteq D$ such that $\|D'\| \leq k$ and c is the unique δ winner of election $(C \cup D',V)$?

δ-CONSTRUCTIVE CONTROL BY PARTITION OF CANDIDATES (δ-CCPC)
Given: An δ election (C,V) and a distinguished candidate $c \in C$.
Question: Is it possible to partition C into C_1 and C_2 such that c is the unique δ winner of election $(W_i \cup C_2,V)$, where W_i is the set of δ winners of subelection (C_i,V)?

δ-CONSTRUCTIVE CONTROL BY RUNOFF-PARTITION OF CANDIDATES (δ-CCroPC)
Given: An δ election (C,V) and a distinguished candidate $c \in C$.
Question: Is it possible to partition C into C_1 and C_2 such that c is the unique δ winner of election $(W_i \cup W_2,V)$, where $W_i, i \in \{1,2\}$, is the set of δ winners of subelection (C_i,V)?
Summing up, we now have defined twelve candidate control problems and thus a total of 20 control problems. Note that the classic standard control scenarios include a version of control by adding candidates where the number of candidates that may be added is not bound by a constant given in the instance. With that we have fourteen candidate control problems and 22 different types of control but we do not consider these two cases in our experimental analysis.

Let \mathcal{C} be a type of electoral control. Using the notions defined by Bartholdi et al. \cite{BTT92} (see also \cite{HHR07}), we say a voting system \mathcal{E} is immune to \mathcal{C} if the chair never succeeds in exerting control of type \mathcal{C}. If \mathcal{E} is not immune to \mathcal{C}, it is susceptible to \mathcal{C}. If \mathcal{E} is susceptible to a control type \mathcal{C}, we say it is vulnerable to \mathcal{C} if the corresponding decision problem is decidable in deterministic polynomial time, and we say it is resistant to \mathcal{C} if the corresponding decision problem is NP-hard.

2.3. Control Complexity in Bucklin, Fallback, and Plurality Voting

Plurality voting is one of the first voting systems for which the complexity of constructive control \cite{BTT92} and destructive control \cite{HHR07} has been studied in the above scenarios. Control in fallback voting and Bucklin voting has been previously studied by Erdélyi et al. \cite{ER10, EPR11} with respect to classical complexity and also with respect to parameterized complexity \cite{EF10}. In terms of NP-hardness, among natural systems with polynomial-time winner determination fallback voting has the most resistances to control (namely, 20 out of the 22 standard control types) and Bucklin voting behaves similarly well—just one case is open (Bucklin-DCPV-TP). Table 1 gives an overview of known complexity results for electoral control in these three systems.

3. Experimental Setting

In this section we describe the experimental setting. As stated in Section 2.2, the instances of control by adding and deleting both candidates and voters contain a parameter k bounding the number of candidates/voters that can be deleted or added. In our experiments, we confine ourselves to the case of $k = \lfloor n/3 \rfloor$, where n is the number of voters. Since every yes-instance for a given k is also a yes-instance for $k' \geq k$, the number of yes-instances found in our experiments are a lower bound for the number of yes-instances when more voters can be deleted or added.

We randomly generated elections (C,V) with $m = \|C\|$ and $n = \|V\|$ for all combinations of $n,m \in \{4, 8, 16, 32, 64, 128\}$. Each combination of n and m is one data point for which we evaluated 500 of these
elections, trying to determine for each given election whether or not control is possible. How the elections have been generated and how the algorithms are designed will be described below.

Before we specify the different distribution models underlying our election generation, we explain how random votes can be cast in Bucklin and fallback voting and how many different votes exist in both voting systems.

Assuming that the generated election has \(m \) candidates, in Bucklin voting a random vote can be obtained by generating a random permutation over the \(m \) different candidates. Clearly, the overall number of different votes in Bucklin elections is \(m! \).

In fallback voting random votes can be generated as follows: In a first step, a preference (i.e., linear order) \(p \) over all \(m \) candidates is drawn randomly under a certain distribution (see below) from all \(m! \) possible preferences. In a second step, the number of approved candidates, say \(\ell \), is drawn from the possible numbers \(\{0, 1, 2, \ldots, m\} \). The preference \(p \) and \(\ell \) are drawn independently. Then, the generated vote consists of the first \(\ell \) candidates in \(p \). Generalizing this, we know that there can be \(\sum_{\ell=0}^{m} \binom{m}{\ell} \ell! \) different votes in fallback elections with \(m \) candidates. With this in mind, we now specify the two distribution models we will be working with.

In the Impartial Culture model (IC model) we assume uniformly distributed votes and draw each vote independently out of all possible preferences.

In the second model, which we call the Two Mainstreams model (TM model), we adapt the Polya Eggenberger urn model (PE model, see [Ber83]) that has been used by Walsh [Wal10] in the following way: We draw two votes out of an urn containing all possible, say \(t \), votes (with \(t = m! \) or \(t = \sum_{\ell=0}^{m} \binom{m}{\ell} \ell! \), depending on the voting system). Each of these votes can be interpreted as a representative of one "main stream" in society (e.g., liberal and conservative). Then each vote is put back into the urn with \(k \) additional votes of the same form. Out of this urn the votes for the election are drawn randomly with replacement. So we have that each voter’s preference is with probability \(1/3 \) from the first mainstream, with probability \(1/3 \) from the second mainstream, and with probability \(1/3 \) it is a different preference. The main difference to the above-mentioned Polya Eggenberger urn model is that the voters do not influence each other. We do have correlated votes in the sense that with a certain probability voters vote like other voters but there are no direct dependencies between the voters, whereas in the PE model the preference of the first voter influences the preference of the second voter, who in turn influences the preference of the third voter, and so on. Of course, an investigation of control in elections generated in this model could be interesting as well but we postpone this to future work.

Note that for control by adding voters, a second list of votes has to be generated, namely the ballots of the unregistered voters that may be added. In our setting, the list of unregistered voters is of the same size as the list of registered voters and both lists are generated with the same underlying distribution model.

4. A High-Level Description of the Algorithms

All algorithms for the different types of control share the same essential method of testing various subsets, and they differ only in the type of preordering and internal testing.

Before actually searching for a successful sublist of voters or subset of candidates, the algorithms check conditions that would indicate that the given instance is a no-instance. If the tested conditions do not hold the candidates or voters are preordered to ensure that the algorithm tries promising subsets or sublists first. Depending on the control type at hand some of the following conditions are tested.

Condition 1: The distinguished candidate is positioned on the last place in every vote, or is positioned on the last place or is disapproved by every voter if \((C, V)\) is a fallback election.

Condition 2: For each \(k' \leq k \), determine the smallest \(i \) and \(j \) such that

\[
\text{score}_{(C,V)}(c') \geq \left\lceil \frac{|V|-k'}/2 \right\rceil + 1 + k' \quad \text{and} \quad \text{score}_{(C,V)}(c) \geq \left\lceil \frac{|V|-k'}/2 \right\rceil + 1
\]

hold for \(c' \in C - \{c\} \). It holds that \(i \leq j - 1 \) for all \(k' \leq k \).
Condition 3: For each $k' \leq k$ determine the smallest i and j such that

$$\text{score}_{i(C,V)}(c') \geq \left\lfloor \frac{(\|V\| + k')/2}{2} \right\rfloor + 1$$

and $\text{score}_{i(C,V)}(c) \geq \left\lfloor \frac{(\|V\| + k')/2}{2} \right\rfloor - k'$

hold for $c' \in C - \{c\}$. It holds that $i \leq j - 1$ for all $k' \leq k$.

Condition 4: In the given election, the winner has a strict majority on the first level.

Condition 1 is tested for every constructive control type except the partition of candidates cases (with and without runoff).

In the following sections we will describe the different algorithms for the different types of electoral controls and the implemented preorderings.

4.1. Algorithms for Voter Control

We begin with the algorithms for the voter control cases. For both constructive control by adding and deleting voters, Condition 1 is tested. Note that for the adding voter cases this condition has to hold for both voter lists, the registered voters and the unregistered voters.

For constructive control by deleting voters, Condition 2 is additionally tested. If Condition 2 holds, c cannot be made a unique winner by deleting at most k voters because even if all k voters would harm the strongest rival c' of c the most and c not at all, the rival would still reach a strict majority on a lower level than c.

For constructive control by adding voters, Condition 1 and 3 are tested. If Condition 3 holds for the given election and the given distinguished candidate c, then even if all added voters helped only c on the lowest level, there would still be at least one other candidate reaching a strict majority on a level lower than c.

For the voter-partition cases, we have Condition 4 indicating that control is not possible for both the constructive and destructive case, namely that in the given election there is a unique winner on the first level. It is easy to see that for every possible partition (V_1, V_2) of V a level 1 winner is also a level 1 winner in at least one of the subelections. Since level 1 winners are always unique, independent of the tie-handling model, this candidate always participates in the runoff and will therefore always be the unique level 1 winner of the resulting two-stage election. So no distinguished candidate can ever be made the unique winner by partitioning the voters. So the algorithms for destructive and constructive control by partition of voters first check Condition 4 where the latter checks Condition 1 as well.

After having excluded these trivial cases, the different algorithms search for a successful sublist of V after having ordered the voters.

We will describe this procedure for constructive control by deleting voters where the voters are ordered ascending for c. That is, after the preordering v_1 is a voter positioning c worst and v_n is a voter positioning c best among all voters. In fallback voting, the “worst position” for a candidate is to be not approved at all. The algorithm now starts with deleting those votes c benefits least of. It follows the procedure of a depth-first search on a tree of height k that is structured as shown in Figure[1].

In each node, it is tested whether deleting the voters on the path is a successful control action. So on the path $s \rightarrow 1 \rightarrow 2 \rightarrow 3$ the algorithm tests the sublists (v_1), (v_1, v_2), (v_1, v_2, v_3) and then tracks back testing the sublists (v_1, v_2, v_4), (v_1, v_2, v_5), (v_1, v_3), (v_1, v_3, v_4), and so on. The branches on the left side are visited first and due to the preordering of the votes, these are the votes c benefits least of.

For the adding-voters case, the voters in the list of unregistered voters are ordered in a descending order for the distinguished candidate and the algorithm proceeds similar to the algorithm for the deleting-voters case, trying to find a successful sublist for the control. With this preordering, the algorithm first tests those voters the distinguished candidate can benefit most from when these are added to the voter list.

For the partition cases the algorithm considers every possible sublist of the voter list up to size $k = \lfloor n/2 \rfloor$ as V_1, sets $V_2 = V - V_1$, and tests whether this is a successful control action or not. For the constructive cases the voters are preordered descendingly with respect to the distinguished candidate whereas for the destructive control cases no preordering is implemented.
4.2. Algorithms for Candidate Control

The algorithms for the candidate control scenarios test Condition 1 in the constructive cases except where the candidates are partitioned. For the destructive cases, on the other hand, Condition 4 is always tested. Note that for the adding candidates cases both conditions must hold in the election over both the registered and the unregistered candidates.

After testing for trivial instances the algorithms make use of the same approach of testing systematically preordered candidate subsets to find a successful control action. Here, the candidates are also ordered with respect to the distinguished candidate, where a descending order means that the first candidate has the most voters positioning him or her before the distinguished candidate and the last candidate has the fewest voters doing that. An ascending order is defined analogously. Again, in the adding candidates case, the votes over all candidates (including the unregistered) are considered.

The descending ordering is used for finding control actions for the constructive case of deleting candidates and the destructive cases of adding and partitioning candidates with and without runoff. In the constructive case of the deleting candidates scenario we want to make the distinguished candidate the winner, so the algorithm tries to delete those candidates whose deletion moves the distinguished candidate forward in as many votes as possible. On the contrary the algorithm for destructive control by adding candidates tries to prevent the distinguished candidate from winning, so candidates are added that move the distinguished candidate back in as many votes as possible. The algorithm for both destructive cases of partition of candidates assigns the distinguished candidate to the subset C_1 and tries to prevent him or her from moving to the final election. So the other participants in C_1 are chosen from the remaining candidates after having ordered them descending with respect to the distinguished candidate.

With analog arguments it is obvious that an ascending order of the candidates with respect to the distinguished candidate is used for the constructive case of deleting candidates, the destructive case of adding candidates, and the constructive case of partition of candidates. Note that the algorithm for constructive control by partition of candidates positions the distinguished candidate in C_2 and assigns those other candidates to C_2 that are positioned behind the distinguished candidate in as many votes as possible since those are direct rivals for the distinguished candidate in the final election.

Obviously, in the worst-case, the algorithms check all possible subsets of size at most k, so they have a worst-case running time of $\sum_{i=1}^{k} \binom{n}{i}$. To handle the worst-case scenarios, a time limit of ten minutes has been

\footnote{Recall that the candidates in C_2 participate directly in the final round whereas those candidates in C_1 have to compete against each other in a pre-round election.}
implemented such that the algorithms stop when exceeding this limit, indicating by the output that the search process is aborted unsuccessfully. Setting the time limit higher can only increase the number of yes-instances, so again, the results obtained in our experiments give a lower bound for the number of yes-instances in the generated elections. In our experiments we implemented the same timeout value for all investigated types of control. As our results in Section 5 will show, the different control types react differently to this constant timeout threshold, so tuning of the timeout-parameter would be an interesting issue for further experiments. Also, varying the timeout value with respect to the election size at hand might be an interesting approach.

The algorithms and data-generation programs are implemented in Octave 3.2 and the experiments were run on a 2.67 GHz Core-I5 750 with 8GB RAM.

5. Summary of Experimental Results

Tables 2 and 3 summarize our experimental results on control in Bucklin, fallback, and plurality voting. We investigated the three voting systems only for those control types they are not known to be vulnerable to, which is indicated by an R- or an S-entry in Table 1. That is, destructive control by adding and by deleting voters (DCAV and DCDV) are omitted in Tables 2 and 3. Also, since our algorithms use the parameter k bounding the number of candidates to be added, constructive and destructive control by adding an unlimited number of candidates (CCAUC and DCAUC) are not considered either. For each combination of any of the remaining 18 control types, any of the two voting systems Bucklin and fallback voting, and any of the two distribution models (IC and TM), we tested a total of 18,000 = 36 · 500 elections, varying over the 36 data points with different values for m and n, as explained above. This gives a total of 1,296,000 = 18 · 4 · 18,000 generated and tested elections. For plurality voting we investigated fourteen types of electoral control leading to 504,000 = 14 · 2 · 18,000 generated and tested elections.

Tables 2 and 3 give an overview of the percentage of timeouts for each such combination of control type/voting system/distribution model, and also the minimal and maximal percentage of yes-instances observed. We do not discuss the results for all these cases in detail here. Rather, we will focus on adding/deleting candidates/voters and partition of voters to very briefly discuss some observations from our experiments, to exemplify some of the numbers in Tables 2 and 3. For those cases that we discuss in detail, we provide plots giving the percentage of yes-instances, timeouts, and average computational costs for all different election sizes that were tested. Note that a comprehensive presentation of all results containing the above information for all cases can be found in the appendix.

Constructive Control by Deleting and by Adding Voters:

We here briefly discuss some results for control by deleting voters only, since those for control by adding voters are very similar, in both Bucklin and fallback voting.

In the IC model, increasing the number of candidates decreases the number of yes-instances in the generated Bucklin elections as can be seen in Figure 2 showing the results for control by deleting voters for Bucklin voting in the IC model. On the other hand, the number of yes-instances increases with the number of voters growing. In the Two Mainstreams model, the same correlations can be observed but here, again, the total number and percentage of yes-instances is smaller than in the IC model.

Fallback voting behaves very similarly, so for both distributions and both voting systems increasing the number of candidates makes successful actions of control by deleting voters less likely.

In both voting systems and in both distribution models, timeouts occur whenever the number of voters exceeds 32. If the number of candidates is 128, we have timeouts already with 16 voters. This can also be seen in the development of the computational costs shown in Figure 2 after the peak for $n = 16$. For bigger electorates the average computational costs drop since the number of timeouts increases with the number of no-instances diminishing.
Table 2: Overview of experimental results on control in Bucklin and fallback voting. Key: The “min” and “max” columns give the minimal and maximal percentage of yes-instances observed in all tested instances for the given control type, including those elections where timeouts occurred; “to” gives the percentage of timeouts that occurred for the total of 18,000 elections tested in this control case.

Control Type	IC	TM	IC	TM	IC	TM	IC	TM
CCAC	1	0	11	7	51	50	0	0
DCAC	53	39	92	71	11	14	71	42
CCDC	13	15	33	36	37	37	13	17
DCDC	8	12	78	63	15	22	48	25
CCPC-TE	0	0	19	18	62	64	1	0
DCPC-TE	8	16	88	65	18	29	49	29
CCPC-TP	1	0	17	17	62	64	1	0
DCPC-TP	8	16	87	61	18	29	49	29
CCRPC-TE	1	1	18	14	62	63	1	0
DCRPC-TE	8	16	86	68	20	29	46	29
CCRPC-TP	1	0	19	14	62	63	1	1
DCRPC-TP	8	16	85	68	21	29	45	27
CCAV	4	1	99	41	13	13	2	1
CDDV	2	1	97	39	16	12	2	1
CCPC-TE	2	0	97	34	9	45	2	0
DCPV-TE	50	34	100	88	4	16	64	40
CCRPC-TP	1	1	53	20	40	50	1	0
DCPV-TP	37	27	100	87	6	17	60	39

Table 3: Overview of experimental results on control in plurality voting. Key: The “min” and “max” columns give the minimal and maximal percentage of yes-instances observed in all tested instances for the given control type, including those elections where timeouts occurred; “to” gives the percentage of timeouts that occurred for the total of 18,000 elections tested in this control case.

Control Type	IC	TM	IC	TM	IC	TM	IC	TM
CCAC	0	0	20	3	50	34	0	0
DCAC	70	47	99	60	7	25	71	42
CCDC	5	22	66	40	37	35	13	17
DCDC	8	12	78	63	15	22	48	25
CCPC-TE	0	0	60	21	58	65	1	0
DCPC-TE	1	2	100	59	22	41	64	40
CCPC-TP	0	0	64	24	58	65	1	0
DCPC-TP	1	3	100	59	22	44	60	39
CCRPC-TE	0	0	65	19	50	63	0	0
DCRPC-TE	25	14	100	61	12	37	60	39
CCRPC-TP	0	0	65	21	50	61	0	0
DCRPC-TP	23	14	100	61	13	35	60	39

Table 2: Overview of experimental results on control in Bucklin and fallback voting. Key: The “min” and “max” columns give the minimal and maximal percentage of yes-instances observed in all tested instances for the given control type, including those elections where timeouts occurred; “to” gives the percentage of timeouts that occurred for the total of 18,000 elections tested in this control case.

Table 3: Overview of experimental results on control in plurality voting. Key: The “min” and “max” columns give the minimal and maximal percentage of yes-instances observed in all tested instances for the given control type, including those elections where timeouts occurred; “to” gives the percentage of timeouts that occurred for the total of 18,000 elections tested in this control case.
Control By Partition of Voters:

As mentioned in Section 2, control by partition of voters comes in four problem variants, where each case must be investigated separately.

For constructive control by partition of voters in model TP we made the following observations: Similarly to control by deleting or by adding voters, the number of controllable elections increases with the number of voters increasing. This was observed for all three voting systems investigated. We have seen that in at most 13% of the tested plurality elections in the TM model a successful control action can be found. Note that no timeouts occur for up to 32 candidates, so more than 87% of the elections tested are demonstrably not controllable in these cases. For both distribution models, plurality elections produce fewer timeouts than the corresponding fallback or Bucklin elections. This suggests that the control problem for plurality voting is easier to solve on average than for fallback or Bucklin voting. Using the tie-handling model TE instead of TP, in both Bucklin and fallback voting an increase of yes-instances in the constructive cases is evident. By contrast, in the destructive counterparts no significant difference can be observed with respect to the tie-handling rule used.

The most striking results are those obtained for the destructive cases. Here we have that, for all three voting
systems (and both tie-handling models for fallback and Bucklin voting) in the TM model, the average number of controllable elections is very high; and in the IC model, control is almost always possible, see Figure 3.

In light of the fact that for these cases the resistance proofs of Erdélyi et al. [ER10, EPR11] for fallback and Bucklin voting tend to be the most involved ones (yielding the most complex instances for showing NP-hardness), these results might be surprising at first glance. However, one explanation for the observed results can be found in exactly this fact: The elections constructed in these reductions have a very complex structure which seems to be unlikely to occur in randomly generated elections (at least in elections generated under the distribution models discussed in this paper). Another explanation is that the problems used to reduce from in [ER10, EPR11] tend to be easy to solve for small input sizes, but due to the complexity of the reduction, the resulting elections have many voters/candidates compared to the elections generated for the conducted experiments.

In the destructive cases, the number of timeouts is for all three voting systems the lowest among all control types investigated. In Bucklin elections with uniformly distributed votes and for destructive control by partition of voters in model TP, for only 3.32% of the elections no decision can be made within the time limit. As can be seen in the table, timeouts begin to occur for those elections where the number of voters exceeds 16. But, again, we have to emphasize that these values are very low compared to other types of con-

m \ n	4	8	16	32	64	128
4	0	0	0	18	40	61
8	0	0	0	3	15	29
16	0	0	0	1	5	15
32	0	0	0	0	3	9
64	0	0	0	0	1	5
128	0	0	0	0	0	1

Figure 3: Fallback voting in the IC model for DCPV-TP.
trol. This explains the plateaus all graphs show. On the one hand, increasing the number of voters increases the number of yes-instances. But on the other hand, for more than 16 voters timeouts begin to diminish the fraction of observed yes-instances. Also, the average running time of the algorithm for those instances where the time limit is not exceeded is rather low, compared to other types of control, see Figure 3c. The highest computational costs occur for those election sizes where the most no-instances were observed. As expected, in the corresponding constructive cases the number of timeouts is significantly higher and so are the average computational costs.

Control By Adding Candidates:

(a) Percentage of yes-instances.

(b) Percentage of timeouts.

(c) Average time the algorithm needs to give a definite output, instances where timeouts occur are excluded.

Figure 4: Fallback voting in the TM model for CCAC.

So far, the results for constructive control by adding candidates show the highest number of timeouts. For those election sizes where no timeouts occur (i.e., where the determination of yes- or no-instances is successful), we have that not many elections can be controlled successfully in either of the two voting systems. In Figure 4, we see the results for fallback voting in the TM model, exemplifying in Figure 4c the low number of yes-instances for this type of control. For example, in the “max” column in Table 2, the highest percentage of controllable fallback elections is 11% in the IC model and only 7% in the TM model. Plurality voting
shows similar results as fallback voting with at most 20% yes-instances in the IC model and less than 4% in the TM model.

Figure 4b gives the detailed occurrence of timeouts for the different election sizes and Figure 4c shows the average time needed to determine whether a given fallback election generated under the TM model can be controlled by adding candidates or not. Remember that in the latter figure the average values do not consider those elections where the algorithm exceeded the time limit of 600 seconds. Together with the timeout table we can see in Figure 4a that in elections with up to 16 candidates the number of non-controllable elections is very high and increases with the number of candidates increasing. When more than 16 candidates participate in an election the number of no-instances diminishes as drastically as the timeout rate grows. Looking at the computational costs in Figure 4c we can see this in the peaks for $m = 16$. Since by design our algorithm needs generally more time to determine that an instance is a no-instance than finding a yes-instance, the high number of no-instances for 16 candidates inflates the average computing time. Knowing that the average computing time for finding yes-instances is not particularly high for this type of control (see Figure 12 in the appendix) we might conjecture that for the bigger election sizes the instances where no distinction could be made by our algorithm are no-instances rather than yes-instances. This indicates that this control type presumably has the lowest overall number of yes-instances. Thus, even for small election sizes, this type of control seems to be hard to exert successfully.

Turning now to the destructive variant of control by adding candidates, for Bucklin elections generated with the IC model, 71% is a lower bound for the number of controllable elections. For up to 16 candidates, a successful control action can be found in nearly all elections. The results for the TM model reconfirm the observation made before, namely that the tendencies in both models are similar, but with at most 77% and at least 42% of controllable elections the overall numbers are again lower than in the IC model. The latter results hold for fallback elections generated in the TM model as well, whereas in the IC model at least 53% and no more than 92% of the fallback elections are controllable. In the tested plurality elections generated with the IC model, similarly to Bucklin voting, more than 70% and nearly up to 100% are controllable. In the TM model, roughly between 50% and 60% of yes-instances are found for those election sizes where no timeouts occur, so between 40% and 50% of these plurality elections are not controllable. In this control scenario, for about 46% of the elections no definite output is given in the constructive case, whereas in only about 8% of the elections timeouts occur in the destructive case.

6. Discussion and Conclusions

We have empirically studied the complexity of NP-hard control problems for plurality, fallback, and Bucklin voting in the most important of the common control scenarios. This is the first such study for control problems in voting and complements the corresponding results [Wal10, Wal09, DKNW10, DKNW11, NWX11, CT07] for manipulating elections. In general, our findings indicate that control can often be exerted effectively in practice, despite the NP-hardness of the corresponding problems. Our experiments also allow a more fine-grained analysis and comparison—across various control scenarios, vote distribution models, and voting systems—than merely stating NP-hardness for all these problems. Our experimental results allow a more fine-grained analysis and comparison—across various control scenarios, vote distribution models, and voting systems—than merely stating NP-hardness for all these problems. Tables 2 and 3 give an overview of our experimental results. A detailed analysis and discussion follows here, and a comprehensive presentation of all experimental data and results can be found in the appendix.

IC versus TM:

Comparing the results for the different distribution models, we see that in every voting system for all control types studied (except fallback voting in constructive control by deleting candidates) the overall number of yes-instances is higher in the IC than in the TM model. This may result from the fact that in elections with uniformly distributed votes, all candidates are likely to be approximately equally preferred by the voters. So both constructive and destructive control actions are easier to find. This also explains the observation that the IC model mostly produces fewer timeouts.
Constructive versus Destructive Control:

For all investigated types of control where both constructive and destructive control was investigated, we found that the destructive control types are experimentally much easier than their constructive counterparts, culminating in almost 100% of controllable elections for certain control types in the IC model. These findings confirm—and strengthen—the theoretical insight of Hemaspaandra et al. [HHR07] that the destructive control problems disjunctively truth-table-reduce to their constructive counterparts and thus are never harder to solve, up to a polynomial factor (see also the corresponding observation of Conitzer et al. [CSL07] regarding manipulation): In fact, destructive control tends to be even much easier than constructive control.

Comparison Across Voting Systems:

For constructive control, we have seen that fallback and Bucklin voting show similar tendencies and numbers of yes-instances, especially regarding voter control. We also observed that their constructive voter control problems are in general harder to solve than those for plurality voting. In all three voting systems, constructive control by adding candidates seems to be one of the hardest control problems showing the smallest numbers of yes-instances in the TM model. Only for the constructive partition-of-candidates cases higher numbers of timeouts were observed.

Adding Candidates versus Deleting Candidates:

Comparing control by adding candidates to control by deleting candidates in the constructive case we observed that the number of yes-instances for control by deleting candidates is significantly higher. These findings are perhaps not overly surprising, since in the voting systems considered here adding candidates to an election can only worsen the position of the designated candidate in the votes. That is, constructive control can be exerted successfully only if by adding candidates rivals of the designated candidate lose enough points so as to get defeated by him or her. This, in turn, can happen only if the designated candidate was already a highly preferred candidate in the original election.

Voter Control versus Candidate Control:

For fallback and Bucklin voting, we can also compare constructive candidate and voter control directly. In both voting systems and both distribution models, the number of yes-instances for constructive control by adding voters is around four times higher than the number of yes-instances in the corresponding candidate control type, which confirms the argument above, saying that adding candidates cannot push the designated candidate directly. Constructive control by deleting voters can be successfully exerted more frequently when votes are less correlated, whereas the proportion of successful control actions for deleting candidates is about the same for both considered distribution models. The observed differences between these types of voter and candidate control may result from the fact that adding or deleting candidates only shifts the position of the designated candidate, which may not influence the outcome of the election as directly as increasing or decreasing the candidates’ scores by adding or deleting voters does. This explains why voter control can be tackled more easily than candidate control by greedy approaches such as ours.

Concluding Remarks:

Just as Walsh [Wal09, Wal10] observes for manipulation in the veto rule and in STV, for all types of control investigated in our experiments, the curves do not show the typical phase transition known for “really hard” computational problems such as the satisfiability problem (see [GW95, CKT91] for a detailed discussion of this issue).

These observations raise the question of how other distribution models influence the outcome of such experiments. Furthermore, the algorithms implemented could be improved in terms of considering a higher
number of elections per data point, increasing the election sizes, or allowing a higher number of voters or candidates to be deleted or added in the corresponding control scenarios. Besides this, other voting systems can be analyzed since only their winner determination has to be implemented in addition to a few minor adjustments such as trivial-case checks for the investigated control scenarios tailored to the voting system at hand.

Acknowledgments:

We thank Toby Walsh for interesting discussions, Volker Aurich for giving us access to his computer lab, and Guido Königstein for his help in setting up our experiments.

References

[Ber85] S. Berg. Paradox of voting under an urn model: The effect of homogeneity. *Public Choice*, 47(2):377–387, 1985.

[BF83] S. Brams and P. Fishburn. *Approval Voting*. Birkhäuser, Boston, 1983.

[BS09] S. Brams and R. Sanver. Voting systems that combine approval and preference. In S. Brams, W. Gehrlein, and F. Roberts, editors, *The Mathematics of Preference, Choice, and Order: Essays in Honor of Peter C. Fishburn*, pages 215–237. Springer, 2009.

[BTT92] J. Bartholdi, III, C. Tovey, and M. Trick. How hard is it to control an election? *Mathematical and Computer Modelling*, 16(8/9):27–40, 1992.

[CKT91] P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard problems are. In *Proceedings of the 13th International Joint Conference on Artificial Intelligence*, pages 331–337. Morgan Kaufmann, 1991.

[CSL07] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard to manipulate? *Journal of the ACM*, 54(3):Article 14, 2007.

[CT07] T. Coleman and V. Teague. On the complexity of manipulating elections. In *Proceedings of Computing: the 13th Australasian Theory Symposium*, volume 65, pages 25–33, 2007.

[DKNW10] J. Davies, G. Katsirelos, N. Narodystka, and T. Walsh. An empirical study of Borda manipulation. In V. Conitzer and J. Rothe, editors, *Proceedings of the 3rd International Workshop on Computational Social Choice*, pages 91–102. Universität Düsseldorf, September 2010.

[DKNW11] J. Davies, G. Katsirelos, N. Narodystka, and T. Walsh. Complexity of and algorithms for Borda manipulation. In *Proceedings of the 25th AAAI Conference on Artificial Intelligence*, pages 657–662. AAAI Press, August 2011.

[EF10] G. Erdélyi and M. Fellows. Parameterized control complexity in Bucklin voting and in fallback voting. In V. Conitzer and J. Rothe, editors, *Proceedings of the 3rd International Workshop on Computational Social Choice*, pages 163–174. Universität Düsseldorf, September 2010.

[EFPR11] G. Erdélyi, M. Fellows, L. Piras, and J. Rothe. Control complexity in Bucklin and fallback voting. Technical Report arXiv:1103.2230v1 [cs.CC], Computing Research Repository, arXiv.org/cond-mat, March 2011.

[EPR11] G. Erdélyi, L. Piras, and J. Rothe. The complexity of voter partition in Bucklin and fallback voting: Solving three open problems. In *Proceedings of the 10th International Joint Conference on Autonomous Agents and Multiagent Systems*, pages 837–844. IFAAMAS, May 2011.
G. Erdélyi and J. Rothe. Control complexity in fallback voting. In *Proceedings of Computing: the 16th Australasian Theory Symposium*, pages 39–48. Australian Computer Society Conferences in Research and Practice in Information Technology Series, vol. 32, no. 8, January 2010.

P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Using complexity to protect elections. *Communications of the ACM*, 53(11):74–82, 2010.

P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. The shield that never was: Societies with single-peaked preferences are more open to manipulation and control. *Information and Computation*, 209(2):89–107, 2011.

P. Faliszewski and A. Procaccia. AI’s war on manipulation: Are we winning? *AI Magazine*, 31(4):53–64, 2010.

I. Gent and T. Walsh. Phase transitions from real computational problems. In *Proceedings of the 8th International Symposium on Artificial Intelligence*, pages 356–364, 1995.

C. Hoag and G. Hallett. *Proportional Representation*. Macmillan, 1926.

E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but him: The complexity of precluding an alternative. *Artificial Intelligence*, 171(5–6):255–285, 2007.

C. Menton. Normalized range voting broadly resists control. Technical Report [arXiv:1005.5698](https://arxiv.org/abs/1005.5698) [cs.GT], Computing Research Repository, arXiv.org/abs/, June 2012.

N. Narodytska, T. Walsh, and L. Xia. Manipulation of Nanson’s and Baldwin’s rules. In *Proceedings of the 25th AAAI Conference on Artificial Intelligence*, pages 713–718. AAAI Press, August 2011.

T. Walsh. Where are the really hard manipulation problems? The phase transition in manipulating the veto rule. In *Proceedings of the 21st International Joint Conference on Artificial Intelligence*, pages 324–329. IJCAI, July 2009.

T. Walsh. An empirical study of the manipulability of single transferable voting. In *Proceedings of the 19th European Conference on Artificial Intelligence*, pages 257–262. IOS Press, August 2010.

M. Zuckerman, A. Procaccia, and J. Rosenschein. Algorithms for the coalitional manipulation problem. *Artificial Intelligence*, 173(2):392–412, 2009.
A. Fallback Voting

A.1. Constructive Control by Adding Candidates

Figure 5: Results for fallback voting in the IC model for constructive control by adding candidates. Number of candidates is fixed.

	$m = 4$	$m = 8$	$m = 16$	$m = 32$	$m = 64$	$m = 128$	
	$n = 4$	4	8	16	32	64	128
	$n = 8$	13	15	27	26	22	20
	$n = 16$	16	31	29	35	33	34
	$n = 32$	487	485	473	474	478	480
	$n = 64$	484	469	471	465	467	466
	$n = 128$	0	0	0	0	0	0
	$m = 16$	4	8	16	32	64	128
	$m = 32$	16	27	51	52	40	40
	$m = 64$	484	473	449	448	460	0
	$m = 128$	0	0	0	0	0	460
	$n = 64$	453	477	485	487	483	483
	$n = 128$	466	495	495	494	497	496
	$m = 128$	472	497	497	499	497	499
	$m = 128$	21					
Figure 6: Results for fallback voting in the IC model for constructive control by adding candidates. Number of voters is fixed.

m	4	8	16	32	64	128
# cp	13	16	16	11	6	2
# ci	487	484	484	36	28	26
# to	0	0	453	466	472	
n = 16	15	31	27	20	5	1
# cp	27	29	51	15	5	3
# ci	473	471	449	0	0	0
# to	0	0	485	495	497	
n = 32	485	469	473	3	0	3
# cp	22	33	40	17	3	3
# ci	478	467	460	0	0	0
# to	0	0	483	497	497	
n = 64	480	466	0	0	0	
# cp	20	34	40	17	4	1
# ci	478	467	460	0	0	0
# to	0	0	483	497	497	
n = 128	480	466	0	0	0	

m	4	8	16	32	64	128
# cp	13	16	16	11	6	2
# ci	487	484	484	36	28	26
# to	0	0	453	466	472	
n = 16	15	31	27	20	5	1
# cp	27	29	51	15	5	3
# ci	473	471	449	0	0	0
# to	0	0	485	495	497	
n = 32	485	469	473	3	0	3
# cp	22	33	40	17	3	3
# ci	478	467	460	0	0	0
# to	0	0	483	497	497	
n = 64	480	466	0	0	0	
# cp	20	34	40	17	4	1
# ci	478	467	460	0	0	0
# to	0	0	483	497	497	
n = 128	480	466	0	0	0	
Figure 7: Results for fallback voting in the TM model for constructive control by adding candidates. Number of candidates is fixed.

	$m=4$		$m=8$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	14 12 17 21 31 25	9 19 13 25 27 23	
# ci	486 488 483 479 469 475	491 481 487 475 473 477	
# to	0 0 0 0 0 0	0 0 0 0 0 0	

	$m=16$		$m=32$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	11 17 21 9 13 17	5 9 5 6 7 8	
# ci	489 483 479 491 487 0	82 26 6 0 0 0	
# to	0 0 0 0 0 0	413 465 489 494 493 492	

	$m=64$		$m=128$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	1 5 1 4 0 1	1 0 2 0 0 0	
# ci	92 33 5 0 0 0	95 36 10 0 0 0	
# to	407 462 494 496 500 499	404 464 488 500 500 500	
Figure 8: Results for fallback voting in the TM model for constructive control by adding candidates. Number of voters is fixed.

	$n = 4$		$n = 8$									
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	14	9	11	5	1	1	12	19	17	9	5	0
# ci	486	491	489	82	92	95	488	481	483	26	33	36
# to	0	0	0	413	407	404	0	0	0	465	462	464

	$n = 16$		$n = 32$									
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	17	13	21	5	1	2	21	25	9	6	4	0
# ci	483	487	479	6	5	10	479	475	491	0	0	0
# to	0	0	0	489	494	488	0	0	0	494	496	500

	$n = 64$		$n = 128$									
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	31	27	13	7	0	0	25	23	17	8	1	0
# ci	469	473	487	0	0	0	475	477	0	0	0	0
# to	0	0	0	493	500	500	0	0	483	492	499	500
A.1.1. Computation Costs

Figure 9: Average time the algorithm needs to find a successful control action for constructive control by adding candidates in fallback elections in the IC model. The maximum is 194.7 seconds.

Figure 10: Average time the algorithm needs to determine no-instance of constructive control by adding candidates in fallback elections in the IC model. The maximum is 459.54 seconds.
Figure 11: Average time the algorithm needs to give a definite output for constructive control by adding candidates in fallback elections in the IC model. The maximum is 425.43 seconds.

Figure 12: Average time the algorithm needs to find a successful control action for constructive control by adding candidates in fallback elections in the TM model. The maximum is 159.22 seconds.
Figure 13: Average time the algorithm needs to determine no-instance of constructive control by adding candidates in fallback elections in the TM model. The maximum is 451.05 seconds.

Figure 14: Average time the algorithm needs to give a definite output for constructive control by adding candidates in fallback elections in the TM model. The maximum is 439.68 seconds.
A.2. Destructive Control by Adding Candidates

Figure 15: Results for fallback voting in the IC model for destructive control by adding candidates. Number of candidates is fixed.

	\(m = 4 \)		\(m = 8 \)									
\(n \)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	266	302	309	301	304	299	335	363	375	389	404	368
\# ci	234	198	191	199	196	201	165	137	125	111	96	132
\# to	0	0	0	0	0	0	0	0	0	0	0	0
\(m = 16 \)												
\(n \)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	356	418	433	456	452	459	372	414	418	434	442	423
\# ci	144	82	67	44	48	0	0	0	0	0	0	0
\# to	0	0	0	0	0	41	128	86	82	66	58	77
\(m = 32 \)												
\(n \)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	376	373	394	383	403	388	362	373	361	367	375	376
\# ci	0	0	0	0	0	0	0	0	0	0	0	0
\# to	124	127	106	117	97	112	138	127	139	133	125	124
Figure 16: Results for fallback voting in the IC model for destructive control by adding candidates. Number of voters is fixed.

m	$n = 4$	$n = 8$	
$n = 16$	$n = 32$	$n = 64$	$n = 128$
$n = 32$	$n = 64$	$n = 128$	
$n = 64$	$n = 128$		

m	$n = 4$	$n = 8$	
$n = 16$	$n = 32$	$n = 64$	$n = 128$
$n = 32$	$n = 64$	$n = 128$	
$n = 64$	$n = 128$		

m	$n = 4$	$n = 8$	
$n = 16$	$n = 32$	$n = 64$	$n = 128$
$n = 32$	$n = 64$	$n = 128$	
$n = 64$	$n = 128$		
Figure 17: Results for fallback voting in the TM model for destructive control by adding candidates. Number of candidates is fixed.
Figure 18: Results for fallback voting in the TM model for destructive control by adding candidates. Number of voters is fixed.

m	4	8	16	32	64	128	m	4	8	16	32	64	128
# cp	194	212	266	255	272	267	211	257	290	296	280	284	
# ci	306	288	234	123	118	135	289	243	210	99	108	105	
# to	0	0	0	122	110	98	0	0	0	105	112	111	

m	4	8	16	32	64	128	m	4	8	16	32	64	128
# cp	261	296	323	304	322	338	254	315	352	329	334	353	
# ci	239	204	177	62	58	58	246	185	148	27	19	20	
# to	0	0	0	134	120	104	0	0	0	144	147	127	

m	4	8	16	32	64	128	m	4	8	16	32	64	128
# cp	276	305	352	348	342	337	266	319	355	350	335	336	
# ci	224	195	148	5	4	6	234	181	13	7	6	0	
# to	0	0	0	147	154	157	0	0	132	143	159	164	
A.2.1. Computational Costs

Figure 19: Average time the algorithm needs to find a successful control action for destructive control by adding candidates in fallback elections in the IC model. The maximum is 18,53 seconds.

Figure 20: Average time the algorithm needs to determine no-instance of destructive control by adding candidates in fallback elections in the IC model. The maximum is 453, 8 seconds.
Figure 21: Average time the algorithm needs to give a definite output for destructive control by adding candidates in fallback elections in the IC model. The maximum is 46.48 seconds.

Figure 22: Average time the algorithm needs to find a successful control action for destructive control by adding candidates in fallback elections in the TM model. The maximum is 11.33 seconds.
Figure 23: Average time the algorithm needs to determine no-instance of destructive control by adding candidates in fallback elections in the TM model. The maximum is 366.67 seconds.

Figure 24: Average time the algorithm needs to give a definite output for destructive control by adding candidates in fallback elections in the TM model. The maximum is 113.63 seconds.
A.3. Constructive Control by Deleting Candidates

Figure 25: Results for fallback voting in the IC model for constructive control by deleting candidates. Number of candidates is fixed.

	$m = 4$		$m = 8$		$m = 16$		$m = 32$		$m = 64$		$m = 128$
n	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128					
# cp	115 129 131 140 153 159	98 103 154 114 121 146	98 103 154 114 121 146	98 103 154 114 121 146	98 103 154 114 121 146	98 103 154 114 121 146					
# ci	385 371 369 360 347 341	402 397 346 386 379 354	402 397 346 386 379 354	402 397 346 386 379 354	402 397 346 386 379 354	402 397 346 386 379 354					
# to	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0					

	$m = 16$		$m = 32$		$m = 64$		$m = 128$
n	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	106 133 158 167 166 152	109 129 144 123 139 148	109 129 144 123 139 148	109 129 144 123 139 148	109 129 144 123 139 148	109 129 144 123 139 148	
# ci	394 367 342 333 334 348	33 2 0 0 0 0	33 2 0 0 0 0	33 2 0 0 0 0	33 2 0 0 0 0	33 2 0 0 0 0	
# to	0 0 0 0 0 0	358 369 356 377 361 352	358 369 356 377 361 352	358 369 356 377 361 352	358 369 356 377 361 352	358 369 356 377 361 352	

	$m = 64$		$m = 128$
n	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	86 85 99 103 110 90	71 76 78 63 74 63	71 76 78 63 74 63
# ci	29 1 0 0 0 0	0 28 30 23 0 0	0 28 30 23 0 0
# to	385 414 401 397 390 410	429 396 392 414 426 437	429 396 392 414 426 437
Figure 26: Results for fallback voting in the IC model for constructive control by deleting candidates. Number of voters is fixed.

	$n = 4$		$n = 8$		$n = 16$		$n = 32$		$n = 64$		$n = 128$	
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	115	98	106	109	86	71	129	103	133	129	85	76
# ci	385	402	394	33	29	0	371	397	367	2	1	28
# to	0	0	0	358	385	429	0	0	0	369	414	396
	$n = 4$		$n = 8$		$n = 16$		$n = 32$		$n = 64$		$n = 128$	
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	131	154	158	144	99	78	140	114	167	123	103	63
# ci	369	346	342	0	0	30	360	386	333	0	0	23
# to	0	0	0	356	401	392	0	0	0	377	397	414
	$n = 4$		$n = 8$		$n = 16$		$n = 32$		$n = 64$		$n = 128$	
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	153	121	166	139	110	74	159	146	152	148	90	63
# ci	347	379	334	0	0	0	341	354	348	0	0	0
# to	0	0	0	361	390	426	0	0	0	352	410	437
Figure 27: Results for fallback voting in the TM model for constructive control by deleting candidates. Number of candidates is fixed.

	\(m = 4\)	\(m = 8\)
\(n\)	4 8 16 32 64 128	4 8 16 32 64 128
\# cp	116 138 162 145 161 176	104 132 134 134 153 140
\# ci	384 362 338 355 339 324	396 368 366 347 347 360
\# to	0 0 0 0 0 0	0 0 0 0 0 0
\(m = 16\)		
\# cp	137 146 166 180 169 174	119 137 153 137 130 140
\# ci	363 354 334 320 331 326	66 29 0 0 0 0
\# to	0 0 0 0 0 0	315 334 347 363 370 360
\(m = 32\)		
\# cp	106 96 124 102 105 109	82 106 86 77 91 89
\# ci	76 33 10 0 0 0	77 0 0 0 0 0
\# to	318 371 366 398 395 391	341 394 414 423 409 411
\(m = 64\)		
\# cp		
\# ci		
\# to		
\(m = 128\)		
\# cp		
\# ci		
\# to		

37
Figure 28: Results for fallback voting in the TM model for constructive control by deleting candidates. Number of voters is fixed.

n	4	8	16	32	64	128
m	4	8	16	32	64	128
# cp	116	104	137	119	106	82
# ci	384	396	363	66	76	77
# to	0	0	0	315	318	341

n	4	8	16	32	64	128
m	4	8	16	32	64	128
# cp	162	132	166	153	124	86
# ci	338	368	334	0	0	0
# to	0	0	0	347	366	414

n	4	8	16	32	64	128
m	4	8	16	32	64	128
# cp	161	153	169	130	105	91
# ci	339	347	331	0	0	0
# to	0	0	0	370	395	409

n	4	8	16	32	64	128
m	4	8	16	32	64	128
# cp	161	153	169	130	105	91
# ci	339	347	331	0	0	0
# to	0	0	0	370	395	409
A.3.1. Computation Costs

Figure 29: Average time the algorithm needs to find a successful control action for constructive control by deleting candidates in fallback elections in the IC model. The maximum is 64.05 seconds.

Figure 30: Average time the algorithm needs to determine no-instance of constructive control by deleting candidates in fallback elections in the IC model. The maximum is 356.18 seconds.
Figure 31: Average time the algorithm needs to give a definite output for constructive control by deleting candidates in fallback elections in the IC model. The maximum is 250.39 seconds.

Figure 32: Average time the algorithm needs to find a successful control action for constructive control by deleting candidates in fallback elections in the TM model. The maximum is 49.05 seconds.
Figure 33: Average time the algorithm needs to determine no-instance of constructive control by deleting candidates in fallback elections in the TM model. The maximum is 347.06 seconds.

Figure 34: Average time the algorithm needs to give a definite output for constructive control by deleting candidates in fallback elections in the TM model. The maximum is 227.76 seconds.
A.4. Destructive Control by Deleting Candidates

Figure 35: Results for fallback voting in the IC model for destructive control by deleting candidates. Number of candidates is fixed.

	m = 4		m = 8									
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	84	97	107	75	68	39	181	228	257	248	250	247
# ci	416	403	393	425	432	461	319	272	243	252	250	253
# to	0	0	0	0	0	0	0	0	0	0	0	0
m = 16												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	303	387	389	99	411	401	336	364	415	406	433	406
# ci	197	113	111	99	89	99	1	0	0	0	0	0
# to	0	0	0	0	0	0	0	0	0	0	0	0
m = 32												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	271	335	361	371	377	371	243	274	306	319	315	344
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	229	165	139	129	123	129	257	226	194	181	185	156

42
Figure 36: Results for fallback voting in the IC model for destructive control by deleting candidates. Number of voters is fixed.

m	n = 4		n = 8		n = 16		n = 32		n = 64		n = 128	
-----	-------		-------		-------		-------		-------		-------	
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	84	181	303	336	271	243	97	228	387	364	335	274
# ci	416	319	197	1	607	0	403	272	113	0	0	0
# to	0	0	0	0	0	0	0	0	0	0	0	0
n = 16												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	107	257	389	415	361	306	75	248	401	405	371	319
# ci	393	243	111	0	0	0	425	252	99	0	0	0
# to	0	0	0	0	0	0	0	0	0	0	0	0
n = 32												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	68	250	411	433	377	315	39	247	401	406	371	344
# ci	432	250	89	0	0	0	461	253	99	0	0	0
# to	0	0	0	0	0	0	0	0	0	0	0	0
n = 64												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	84	181	303	336	271	243	97	228	387	364	335	274
# ci	416	319	197	1	607	0	403	272	113	0	0	0
# to	0	0	0	0	0	0	0	0	0	0	0	0
n = 128												

43
Figure 37: Results for fallback voting in the TM model for destructive control by deleting candidates. Number of candidates is fixed.

	\(m = 4\)		\(m = 8\)										
	\(n\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)
	\# cp	60 69 67 85 120 116	127 130 163 180 209 193	60 69 67 85 120 116	127 130 163 180 209 193								
	\# ci	440 431 433 415 380 384	373 370 337 320 291 307	440 431 433 415 380 384	373 370 337 320 291 307								
	\# to	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0								
	\(m = 16\)			\(m = 32\)									
	\# cp	189 252 276 286 305 300	238 302 293 305 316 254	189 252 276 286 305 300	238 302 293 305 316 254								
	\# ci	311 248 224 214 195 200	153 104 81 34 21 15	311 248 224 214 195 200	153 104 81 34 21 15								
	\# to	0 0 0 0 0 0	109 94 126 161 163 231	0 0 0 0 0 0	109 94 126 161 163 231								
	\(m = 64\)			\(m = 128\)									
	\# cp	221 221 222 26 207 191	147 183 193 205 174 142	221 221 222 26 207 191	147 183 193 205 174 142								
	\# ci	110 96 69 23 8 6	123 101 66 18 7 7	110 96 69 23 8 6	123 101 66 18 7 7								
	\# to	169 183 209 231 285 303	230 216 241 277 319 351	169 183 209 231 285 303	230 216 241 277 319 351								
Figure 38: Results for fallback voting in the TM model for destructive control by deleting candidates. Number of voters is fixed.

m	n = 4	n = 8				
	cp	ci	to	cp	ci	to
4	60	440	0	69	431	0
8	127	373	0	130	370	0
16	189	311	0	221	110	0
32	238	153	0	147	123	0
64	221	110	0	221	96	0
128	183	96	0	183	101	0

m	n = 16	n = 32				
	cp	ci	to	cp	ci	to
4	67	433	0	85	415	0
8	163	337	0	180	320	0
16	276	224	0	286	214	0
32	293	81	0	305	34	0
64	222	69	0	246	23	0
128	193	66	0	205	18	0

m	n = 64	n = 128				
	cp	ci	to	cp	ci	to
4	120	380	0	116	384	0
8	209	291	0	193	307	0
16	305	195	0	300	200	0
32	316	21	0	254	15	0
64	207	8	0	191	6	0
128	174	7	0	142	0	0

m	n = 4	n = 8				
	cp	ci	to	cp	ci	to
4	60	440	0	69	431	0
8	127	373	0	130	370	0
16	189	311	0	221	110	0
32	238	153	0	147	123	0
64	221	110	0	221	96	0
128	183	96	0	183	101	0

m	n = 16	n = 32				
	cp	ci	to	cp	ci	to
4	67	433	0	85	415	0
8	163	337	0	180	320	0
16	276	224	0	286	214	0
32	293	81	0	305	34	0
64	222	69	0	246	23	0
128	193	66	0	205	18	0

m	n = 64	n = 128				
	cp	ci	to	cp	ci	to
4	120	380	0	116	384	0
8	209	291	0	193	307	0
16	305	195	0	300	200	0
32	316	21	0	254	15	0
64	207	8	0	191	6	0
128	174	7	0	142	0	0
A.4.1. Computational Costs

Figure 39: Average time the algorithm needs to find a successful control action for destructive control by deleting candidates in fallback elections in the IC model. The maximum is 29.04 seconds.

Figure 40: Average time the algorithm needs to determine no-instance of destructive control by deleting candidates in fallback elections in the IC model. The maximum is 345.94 seconds.
Figure 41: Average time the algorithm needs to give a definite output for destructive control by deleting candidates in fallback elections in the IC model. The maximum is 75.5 seconds.

Figure 42: Average time the algorithm needs to find a successful control action for destructive control by deleting candidates in fallback elections in the TM model. The maximum is 63.71 seconds.
Figure 43: Average time the algorithm needs to determine no-instance of destructive control by deleting candidates in fallback elections in the TM model. The maximum is 290.26 seconds.

Figure 44: Average time the algorithm needs to give a definite output for destructive control by deleting candidates in fallback elections in the TM model. The maximum is 122.72 seconds.
A.5. Constructive Control by Partition of Candidates in Model TE

Figure 45: Results for fallback voting in the IC model for constructive control by partition of candidates in model TE. Number of candidates is fixed.

	\(m=4\)	\(m=8\)	\(m=16\)	\(m=32\)	\(m=64\)	\(m=128\)						
\(n\)	10	26	27	16	11	39	68	87	77	72	71	
\# cp	490	474	476	473	484	489	461	432	413	423	428	429
\# ci	52	0	0	0	0	0	0	0	0	0	0	0
\# to	429	404	405	422	424	448	483	459	460	468	461	473

	\(m=16\)	\(m=32\)	\(m=64\)	\(m=128\)								
\(n\)	11	13	21	11	11	7	1	6	5	7	8	
\# cp	0	0	0	0	0	0	0	0	0	0	0	
\# ci	0	0	0	0	0	0	0	0	0	0	0	
\# to	489	487	479	489	489	489	493	499	494	495	493	492
Figure 46: Results for fallback voting in the IC model for constructive control by partition of candidates in model TE. Number of voters is fixed.

	$n = 4$	$n = 8$
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	10 39 71 11 17 11 7	26 68 96 41 13 1
# ci	490 461 0 0 0 0 0	474 432 0 0 0 0 0
# to	0 0 429 483 489 493	0 0 404 459 487 499

$n = 16$	$n = 32$	
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	24 87 95 40 21 6 6	27 77 78 32 11 5
# ci	476 413 0 0 0 0 0	473 423 0 0 0 0 0
# to	0 0 405 460 479 494	0 0 422 468 489 495

$n = 64$	$n = 128$	
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	16 72 76 39 11 7	11 71 52 27 11 8
# ci	484 428 0 0 0 0	489 429 0 0 0 0
# to	0 0 424 461 489 493	0 0 448 473 489 492
Figure 47: Results for fallback voting in the TM model for constructive control by partition of candidates in model TE. Number of candidates is fixed.

	m = 4	m = 8
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	7 24 20 61 50 0	25 42 55 81 91 70
# ci	493 476 471 439 450	475 458 445 419 409 430
# to	0 0 0 0 0 0	0 0 0 0 0 0
	m = 16	m = 32
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	51 73 70 66 48 0	11 21 16 23 14 20
# ci	0 0 0 0 0 0	0 0 0 0 0 0
# to	449 427 430 440 452	489 479 484 477 486 480
	m = 64	m = 128
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	5 9 11 9 3 6	1 4 6 2 5 0
# ci	0 0 0 0 0 0	0 0 0 0 0 0
# to	495 491 489 491 497 494	499 496 494 498 495 500
Figure 48: Results for fallback voting in the TM model for constructive control by partition of candidates in model TE. Number of voters is fixed.

n = 4	n = 8											
m												
4	8	16	32	64	128	4	8	16	32	64	128	
# cp												
7	25	51	11	5	1	24	42	73	21	9	4	
# ci												
493	475	0	0	0	0	476	458	0	0	0	0	
# to												
0	0	449	489	495	499	0	0	427	479	491	496	
n = 16												
m												
4	8	16	32	64	128	4	8	16	32	64	128	
# cp												
20	55	70	16	11	6	29	81	68	23	9	2	
# ci												
480	455	0	0	0	0	471	419	0	0	0	0	
# to												
0	0	430	484	489	494	0	0	432	477	491	498	
n = 32												
m												
4	8	16	32	64	128	4	8	16	32	64	128	
# cp												
61	91	60	14	3	5	5	70	48	20	6	0	
# ci												
439	409	0	0	0	0	495	430	0	0	0	0	
# to												
0	0	440	486	497	495	0	0	452	480	494	500	
A.5.1. Computational Costs

Figure 49: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TE in fallback elections in the IC model. The maximum is 160, 89 seconds.

Figure 50: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TE in fallback elections in the IC model. The maximum is 24, 34 seconds.
Figure 51: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TE in fallback elections in the IC model. The maximum is 425.43 seconds.

Figure 52: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TE in fallback elections in the TM model. The maximum is 211.22 seconds.
Figure 53: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TE in fallback elections in the TM model. The maximum is 23.89 seconds.

Figure 54: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TE in fallback elections in the TM model. The maximum is 211.22 seconds.
A.6. Destructive Control by Partition of Candidates in Model TE

Figure 55: Results for fallback voting in the IC model for destructive control by partition of candidates in model TE. Number of candidates is fixed.

n	4	8	16	32	64	128	m = 4	4	8	16	32	64	128	m = 8
# cp	107	122	131	95	76	40	248	301	324	314	303	292	130	
# ci	393	378	369	405	424	460	252	199	176	186	197	208	130	
# to	0	0	0	0	0	0	0	0	0	0	0	0	0	

n	4	8	16	32	64	128	m = 16	4	8	16	32	64	128	m = 32
# cp	370	429	436	439	438	419	253	363	424	416	435	419	130	
# ci	9	0	0	0	0	0	1	0	0	0	0	0	0	
# to	121	71	64	61	62	81	246	137	76	84	65	81	130	

n	4	8	16	32	64	128	m = 64	4	8	16	32	64	128	m = 128
# cp	224	279	346	393	402	390	205	273	314	341	357	361	130	
# ci	0	0	0	0	0	0	0	0	0	0	0	0	0	
# to	276	221	154	107	98	110	295	227	186	159	143	139	130	
Figure 56: Results for fallback voting in the IC model for destructive control by partition of candidates in model TE. Number of voters is fixed.

m	4	8	16	32	64	128	n = 4	4	8	16	32	64	128
# cp	107	248	370	253	224	205	122	301	429	363	279	273	
# ci	393	252	9	1	0	0	378	199	0	0	0	0	0
# to	0	0	121	246	276	295	0	0	71	137	221	227	

m	4	8	16	32	64	128	n = 16	4	8	16	32	64	128
# cp	131	324	436	424	346	314	95	314	439	416	393	341	
# ci	369	176	0	0	0	0	405	186	0	0	0	0	0
# to	0	0	64	76	154	186	0	0	61	84	107	159	

m	4	8	16	32	64	128	n = 64	4	8	16	32	64	128
# cp	76	303	438	435	402	357	40	292	419	419	390	361	
# ci	424	197	0	0	0	0	460	208	0	0	0	0	0
# to	0	0	62	65	98	143	0	0	81	81	110	139	
Figure 57: Results for fallback voting in the TM model for destructive control by partition of candidates in model TE. Number of candidates is fixed.

	m = 4	m = 8
n	m = 4	m = 8
	4 8 16 32 64 128	4 8 16 32 64 128
# cp	82 88 88 105 163 138	178 187 215 258 286 277
# ci	418 412 412 395 337 362	322 313 285 242 214 223
# to	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0

	m = 16	m = 32
	4 8 16 32 64 128	4 8 16 32 64 128
# cp	229 279 318 307 326 304	151 222 228 228 264 226
# ci	159 138 83 56 30 29	153 104 81 34 21 15
# to	112 83 99 137 144 167	196 174 191 238 215 259

	m = 64	m = 128
	4 8 16 32 64 128	4 8 16 32 64 128
# cp	144 159 169 208 212 198	123 177 154 195 203 173
# ci	110 96 69 23 8 6	123 101 60 18 7 7
# to	246 245 262 269 280 296	254 222 242 287 290 320

58
Figure 58: Results for fallback voting in the TM model for destructive control by partition of candidates in model TE. Number of voters is fixed.

m	n = 4		n = 8									
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	82	178	229	151	144	123	88	187	279	222	159	177
# ci	418	322	159	153	110	123	412	313	138	104	96	101
# to	0	0	112	196	246	254	0	0	83	174	245	222
m	n = 16		n = 32									
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	88	215	318	228	169	154	105	258	307	228	208	195
# ci	412	285	83	69	60	395	242	56	34	23	18	18
# to	0	0	99	191	262	242	0	0	137	238	269	287
m	n = 64		n = 128									
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	163	286	326	264	212	203	138	277	304	226	198	173
# ci	337	214	30	21	8	7	362	223	29	15	6	7
# to	0	0	144	215	280	290	0	0	167	259	296	320
A.6.1. Computational Costs

Figure 59: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TE in fallback elections in the IC model. The maximum is 93.6 seconds.

Figure 60: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TE in fallback elections in the IC model. The maximum is 23.03 seconds.
Figure 61: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TE in fallback elections in the IC model. The maximum is 93.6 seconds.

Figure 62: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TE in fallback elections in the TM model. The maximum is 108.15 seconds.
Figure 63: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TE in fallback elections in the TM model. The maximum is 18.22 seconds.

Figure 64: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TE in fallback elections in the TM model. The maximum is 103.95 seconds.
A.7. Constructive Control by Partition of Candidates in Model TP

Figure 65: Results for fallback voting in the IC model for constructive control by partition of candidates in model TP. Number of candidates is fixed.

m = 4	m = 8											
n												
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	9	25	25	31	25	7	45	69	68	69	74	64
# ci	491	475	475	469	475	493	455	431	432	431	426	436
# to	0	0	0	0	0	0	0	0	0	0	0	0
m = 16												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	63	86	87	78	82	70	24	32	44	32	30	26
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	437	414	413	422	418	430	476	468	486	468	470	474
m = 32												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	10	15	14	10	14	17	3	8	10	7	5	3
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	490	485	486	490	486	483	497	492	490	493	495	497
Figure 66: Results for fallback voting in the IC model for constructive control by partition of candidates in model TP. Number of voters is fixed.

	n = 4					n = 8				
m	4	8	16	32	64	128	4	8	16	32
	# cp	9	45	63	24	10	3	25	69	86
	# ci	491	455	0	0	0	0	475	431	0
	# to	0	0	437	476	490	497	0	0	414
n = 16	128									
m	4	8	16	32	64	128	4	8	16	32
	# cp	25	68	87	44	14	10	31	69	78
	# ci	475	432	0	0	0	0	469	431	0
	# to	0	0	413	456	486	490	0	0	422
n = 32	128									
m	4	8	16	32	64	128	4	8	16	32
	# cp	25	74	82	30	14	5	7	64	7
	# ci	475	426	0	0	0	0	493	436	0
	# to	0	0	418	470	486	495	0	0	493
Figure 67: Results for fallback voting in the TM model for constructive control by partition of candidates in model TP. Number of candidates is fixed.

	$m = 4$		$m = 8$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	9 24 24 44 47 50	35 64 62 59 83 86	
# ci	491 476 476 456 453 450	465 436 438 441 417 414	
# to	0 0 0 0 0 0	0 0 0 0 0 0	

$m = 16$

	$m = 16$		$m = 32$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	53 74 54 66 53 40	20 14 20 23 22 21	
# ci	0 0 0 0 0 0	0 0 0 0 0 0	
# to	447 426 446 434 447 460	480 486 480 477 478 479	

$m = 64$

	$m = 64$		$m = 128$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	6 6 8 14 5 4	7 6 4 2 2 2	
# ci	0 0 0 0 0 0	0 0 0 0 0 0	
# to	494 494 492 486 495 496	493 494 496 498 498 498	
Figure 68: Results for fallback voting in the TM model for constructive control by partition of candidates in model TP. Number of voters is fixed.

	\(n = 4 \)	\(n = 8 \)										
	\(m = 4 \)	\(n = 4 \)	\(m = 8 \)	\(n = 8 \)	\(m = 16 \)	\(n = 16 \)	\(m = 32 \)	\(n = 32 \)	\(m = 64 \)	\(n = 64 \)	\(m = 128 \)	\(n = 128 \)
\(n = 4 \)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	9	35	53	20	6	7	24	64	74	14	6	6
# ci	491	465	0	0	0	0	476	436	0	0	0	0
# to	0	0	447	480	494	493	0	0	426	486	494	494
\(n = 8 \)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	24	62	54	20	8	4	44	59	66	23	14	2
# ci	476	438	0	0	0	0	456	441	0	0	0	0
# to	0	0	446	480	492	496	0	0	434	477	486	498
\(n = 64 \)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	47	83	53	22	5	2	50	86	40	21	4	2
# ci	453	417	0	0	0	0	450	414	0	0	0	0
# to	0	0	447	478	495	498	0	0	460	479	496	498

66
A.7.1. Computational Costs

Figure 69: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TP in fallback elections in the IC model. The maximum is 136.83 seconds.

Figure 70: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TP in fallback elections in the IC model. The maximum is 33.13 seconds.
Figure 71: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TP in fallback elections in the IC model. The maximum is 136.83 seconds.

Figure 72: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TP in fallback elections in the TM model. The maximum is 179.79 seconds.
Figure 73: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TP in fallback elections in the TM model. The maximum is 32.92 seconds.

Figure 74: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TP in fallback elections in the TM model. The maximum is 179.19 seconds.
A.8. Destructive Control by Partition of Candidates in Model TP

Figure 75: Results for fallback voting in the IC model for destructive control by partition of candidates in model TP. Number of candidates is fixed.

	m = 4		m = 8		m = 16		m = 32		m = 64		m = 128	
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	107	122	131	95	76	40	248	301	324	314	303	292
# ci	393	378	369	405	424	460	252	199	176	186	197	208
# to	0	0	0	0	0	0	0	0	0	0	0	0

	m = 16		m = 32		m = 64		m = 128					
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	367	426	432	433	434	416	250	356	415	412	434	416
# ci	9	0	0	0	0	0	1	0	0	0	0	0
# to	124	74	68	67	66	84	249	144	85	88	66	84

	m = 64		m = 128									
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	224	279	346	393	402	390	205	273	314	341	357	361
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	276	221	154	107	98	110	295	227	186	159	143	139
Figure 76: Results for fallback voting in the IC model for destructive control by partition of candidates in model TP. Number of voters is fixed.

	$n = 4$		$n = 8$
m	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	107 248 367 250 224 205	122 301 426 356 279 273	
# ci	393 252 9 1 0 0	378 199 0 0 0 0	
# to	0 0 124 249 276 295	0 0 74 144 221 227	
$n = 16$			
$n = 32$			
$n = 64$			
$n = 128$			
m	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	131 324 432 415 346 314	95 314 433 412 393 341	
# ci	369 176 0 0 0 0	405 186 0 0 0 0	
# to	0 0 68 85 154 186	0 0 67 88 107 159	
$n = 64$			
$n = 128$			
m	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	76 303 434 434 402 357	40 292 416 416 390 361	
# ci	424 197 0 0 0 0	460 208 0 0 0 0	
# to	0 0 66 66 98 143	0 0 84 84 110 139	
Figure 77: Results for fallback voting in the TM model for destructive control by partition of candidates in model TP. Number of candidates is fixed.

m	n	4	8	16	32	64	128
$m=4$	# cp	82	88	88	105	163	138
	# ci	418	412	412	395	337	362
	# to	0	0	0	0	0	0
$m=8$	# cp	178	187	215	258	286	277
	# ci	322	313	285	242	214	223
	# to	0	0	0	0	0	0
$m=16$	# cp	221	276	301	321	304	222
	# ci	159	137	83	56	30	29
	# to	120	87	111	143	149	167
$m=32$	# cp	151	222	228	228	264	226
	# ci	153	104	81	34	21	15
	# to	196	174	191	238	215	259
$m=64$	# cp	123	177	168	194	203	173
	# ci	123	101	66	18	7	7
	# to	254	222	266	288	290	320

$|m|_{n}$
Figure 78: Results for fallback voting in the TM model for destructive control by partition of candidates in model TP. Number of voters is fixed.

m	n = 4		n = 8		n = 16		n = 32		n = 64		n = 128	
	4	8	16	32	64	128	4	8	16	32	64	128
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	82	178	221	151	144	123	88	187	276	222	159	177
# ci	418	322	159	153	110	123	412	313	137	104	96	101
# to	0	0	120	196	246	254	0	0	87	174	245	222
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	88	215	306	228	169	168	105	258	301	228	208	194
# ci	412	285	83	81	69	66	395	242	56	34	23	18
# to	0	0	111	191	262	266	0	0	143	238	269	288
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	163	286	321	264	212	203	138	277	304	226	198	173
# ci	337	214	30	21	8	7	362	223	29	15	6	7
# to	0	0	149	215	280	290	0	0	167	259	296	320
A.8.1. Computational Costs

Figure 79: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TP in fallback elections in the IC model. The maximum is 93.92 seconds.

Figure 80: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TP in fallback elections in the IC model. The maximum is 31.75 seconds.
Figure 81: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TP in fallback elections in the IC model. The maximum is 93.92 seconds.

Figure 82: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TP in fallback elections in the TM model. The maximum is 108.35 seconds.
Figure 83: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TP in fallback elections in the TM model. The maximum is 24.8 seconds.

Figure 84: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TP in fallback elections in the TM model. The maximum is 104.12 seconds.
Figure 85: Results for fallback voting in the IC model for constructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

	m = 4	m = 8	m = 16	m = 32	m = 64	m = 128
n	4 8 16 32	4 8 16 32	4 8 16 32	4 8 16 32	4 8 16 32	4 8 16 32
# cp	8 27 23 29	23 47 60 65	60 64 128	60 64 128	60 64 128	60 64 128
# ci	492 473 471	477 487 487	477 453 440	435 440 460	435 440 460	435 440 460
# to	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
	m = 16	m = 32	m = 64	m = 128	m = 64	m = 128
n	4 8 16 32	4 8 16 32	4 8 16 32	4 8 16 32	4 8 16 32	4 8 16 32
# cp	45 81 92 80	87 57 36 59	47 50 41 43	47 50 41 43	47 50 41 43	47 50 41 43
# ci	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
# to	455 419 408	420 413 443	464 441 453	450 459 457	450 459 457	450 459 457
	m = 64	m = 128	m = 64	m = 128	m = 64	m = 128
n	4 8 16 32	4 8 16 32	4 8 16 32	4 8 16 32	4 8 16 32	4 8 16 32
# cp	11 21 25 33	22 19 7 8	10 15 9 10	10 15 9 10	10 15 9 10	10 15 9 10
# ci	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
# to	489 479 475	467 478 481	493 492 490	485 491 490	485 491 490	485 491 490
Figure 86: Results for fallback voting in the IC model for constructive control by runoff-partition of candidates in model TE. Number of voters is fixed.

	$n = 4$		$n = 8$		$n = 16$		$n = 32$		$n = 64$		$n = 128$		
m	4 8 16 32 64 128	m	4 8 16 32 64 128	m	4 8 16 32 64 128	m	4 8 16 32 64 128	m	4 8 16 32 64 128	m	4 8 16 32 64 128		
# cp	8 23 45 36 11 7	# cp	27 47 81 59 21 8	# cp	29 65 80 50 33 15	# cp	29 65 80 50 33 15	# cp	29 65 80 50 33 15	# cp	29 65 80 50 33 15		
# ci	492 477 0 0 0 0	# ci	473 453 0 0 0 0	# ci	473 453 0 0 0 0	# ci	473 453 0 0 0 0	# ci	473 453 0 0 0 0	# ci	473 453 0 0 0 0		
# to	0 0 455 464 489 493	# to	0 0 419 441 479 492	# to	0 0 419 441 479 492	# to	0 0 419 441 479 492	# to	0 0 419 441 479 492	# to	0 0 419 441 479 492	# to	0 0 419 441 479 492

78
Figure 87: Results for fallback voting in the TM model for constructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

m	n	4	8	16	32	64	128
	# cp	5	15	21	34	56	47
	# ci	495	485	479	466	444	453
	# to	0	0	0	0	0	0
$m=4$	$m=8$	$m=16$	$m=32$	$m=64$	$m=128$		
	# cp	26	37	59	68	63	52
	# ci	0	0	0	0	0	0
	# to	461	463	441	432	437	448
$m=16$	$m=32$	$m=64$	$m=128$				
	# cp	8	15	10	18	11	11
	# ci	0	0	0	0	0	0
	# to	492	485	490	482	489	489
$m=64$	$m=128$	$m=128$					
Figure 88: Results for fallback voting in the TM model for constructive control by runoff-partition of candidates in model TE. Number of voters is fixed.

	n = 4	n = 8										
	4	8	16	32	64	128	4	8	16	32	64	128
	5	18	26	9	8	4	15	42	37	28	15	5
# cp	495	482	13	0	0	0	485	458	0	0	0	0
# to	0	0	461	491	492	496	0	0	463	472	485	495
	4	8	16	32	64	128	4	8	16	32	64	128
	21	43	59	34	10	5	34	54	68	33	18	4
# cp	479	457	0	0	0	0	466	446	0	0	0	0
# to	0	0	441	466	490	495	0	0	432	467	482	496
	4	8	16	32	64	128	4	8	16	32	64	128
	56	62	63	33	11	7	47	55	52	32	11	5
# cp	444	438	0	0	0	0	453	445	0	0	0	0
# to	0	0	437	467	489	493	0	0	448	468	489	495
A.9.1. Computational Costs

Figure 89: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TE in fallback elections in the IC model. The maximum is 214.19 seconds.

Figure 90: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TE in fallback elections in the IC model. The maximum is 20.2 seconds.
Figure 91: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TE in fallback elections in the IC model. The maximum is 214.19 seconds.

Figure 92: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TE in fallback elections in the TM model. The maximum is 229.26 seconds.
Figure 93: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TE in fallback elections in the TM model. The maximum is 592.3 seconds.

Figure 94: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TE in fallback elections in the TM model. The maximum is 229.26 seconds.
A.10. Destructive Control by Runoff Partition of Candidates in Model TE

Figure 95: Results for fallback voting in the IC model for destructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

	m = 4		m = 8											
	n	4	8	16	32	64	128	n	4	8	16	32	64	128
# cp								# cp						
	102	105	109	90	73	40		236	285	310	292	288	270	
# ci	398	395	391	410	427	460		264	215	190	208	212	230	
# to	0	0	0	0	0	0		0	0	0	0	0	0	
	m = 16													
# cp	361	428	432	429	416	397		292	371	409	407	414	381	
# ci	9	0	0	0	0	0		1	0	0	0	0	0	
# to	130	72	68	71	84	103		207	129	91	93	86	119	
	m = 64													
# cp	241	284	336	370	386	335		233	272	287	302	319	313	
# ci	0	0	0	0	0	0		0	0	0	0	0	0	
# to	259	216	164	130	114	165		267	228	213	198	181	187	
Figure 96: Results for fallback voting in the IC model for destructive control by runoff-partition of candidates in model TE. Number of voters is fixed.

m	n = 4						n = 8					
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	102	236	361	292	241	233	105	285	428	371	284	272
# ci	398	264	9	1	0	0	395	215	0	0	0	0
# to	0	0	130	207	259	267	0	0	72	129	216	228

m	n = 16						n = 32					
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	109	310	432	409	336	287	90	292	429	407	370	302
# ci	391	190	0	0	0	0	410	208	0	0	0	0
# to	0	0	68	91	164	213	0	0	71	93	130	198

m	n = 64						n = 128					
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	73	288	416	414	386	319	40	270	397	381	335	313
# ci	427	212	0	0	0	0	460	230	0	0	0	0
# to	0	0	84	86	114	181	0	0	103	119	165	187
Figure 97: Results for fallback voting in the TM model for destructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

	m = 4	m = 8
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	79 84 80 148 126	168 180 204 247 280 271
# ci	421 416 420 400 352 374	332 320 296 253 220 229
# to	0 0 0 0 0 0	0 0 0 0 0 0

	m = 16	m = 32
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	227 276 324 319 340 319	169 233 230 243 276 230
# ci	159 137 83 30 29	153 104 81 34 21 15
# to	114 87 93 125 130 152	178 163 189 223 203 255

	m = 64	m = 128
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	149 167 171 205 217 183	126 163 162 179 172 153
# ci	110 96 69 23 8 6	123 101 66 18 7 7
# to	241 237 260 272 275 311	251 236 272 303 321 340
Figure 98: Results for fallback voting in the TM model for destructive control by runoff-partition of candidates in model TE. Number of voters is fixed.

m	4	8	16	32	64	128	n = 4	n = 8				
# cp	79	168	227	169	149	126	84	180	276	233	167	163
# ci	421	332	159	153	110	123	416	320	137	104	96	101
# to	0	0	114	178	241	251	0	0	87	163	237	236
n = 16												
m	4	8	16	32	64	128	n = 8	n = 32	n = 64	n = 128		
# cp	80	204	324	230	171	162	100	247	319	243	205	179
# ci	420	296	83	81	69	66	400	253	56	34	23	18
# to	0	0	93	189	260	272	0	125	223	272	303	
n = 64												
m	4	8	16	32	64	128	n = 128	n = 128	n = 128	n = 128		
# cp	148	280	340	276	217	172	126	271	319	230	183	153
# ci	352	220	30	21	8	7	374	374	6	15	6	7
# to	0	0	130	203	275	321	0	0	311	255	311	340
A.10.1. Computational Costs

Figure 99: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TE in fallback elections in the IC model. The maximum is 59.44 seconds.

Figure 100: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TE in fallback elections in the IC model. The maximum is 20.16 seconds.
Figure 101: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TE in fallback elections in the IC model. The maximum is 59.44 seconds.

Figure 102: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TE in fallback elections in the TM model. The maximum is 58.6 seconds.
Figure 103: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TE in fallback elections in the TM model. The maximum is 15.84 seconds.

Figure 104: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TE in fallback elections in the TM model. The maximum is 56.03 seconds.
A.11. Constructive Control by Runoff Partition of Candidates in Model TP

Figure 105: Results for fallback voting in the IC model for constructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

m = 4	m = 8	
n	# cp	# cp
4	14 20 20 30 22	31 45 65 71 55
8	486 480 470 478	469 455 435 429
16	0 0 0 0 0 0	0 0 0 0 0 0
32	42 85 73 89 95	29 58 50 55 48
64	0 0 0 0 0 0	0 0 0 0 0 0
128	458 415 427 411	471 442 450 445
m = 16	# ci	# ci
4	0 0 0 0 0 0	0 0 0 0 0 0
8	458 415 427 411	471 442 450 445
16	0 0 0 0 0 0	0 0 0 0 0 0
32	42 85 73 89 95	29 58 50 55 48
64	0 0 0 0 0 0	0 0 0 0 0 0
128	458 415 427 411	471 442 450 445
m = 32	# to	# to
4	458 415 427 411	471 442 450 445
8	0 0 0 0 0 0	0 0 0 0 0 0
16	42 85 73 89 95	29 58 50 55 48
32	0 0 0 0 0 0	0 0 0 0 0 0
64	458 415 427 411	471 442 450 445
128	0 0 0 0 0 0	0 0 0 0 0 0
Figure 106: Results for fallback voting in the IC model for constructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

m	n = 4							n = 8							
# cp	140	31	42	29	12	5	20	45	85	58	20	9	20	45	85
# ci	486	469	0	0	0	0	480	455	0	0	0	0	480	455	0
# to	0	0	458	471	488	495	0	0	415	442	480	491			

m	n = 16							n = 32							
# cp	20	65	73	50	21	11	30	71	89	55	19	10	20	65	73
# ci	480	435	0	0	0	0	470	429	0	0	0	0	480	435	0
# to	0	0	427	450	479	489	0	0	411	445	481	490			

m	n = 64							n = 128							
# cp	22	55	95	48	23	4	11	43	59	46	19	9	22	55	95
# ci	478	445	0	0	0	0	489	457	0	0	0	0	478	445	0
# to	0	0	405	452	477	496	0	0	441	454	481	491			
Figure 107: Results for fallback voting in the TM model for constructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	9	19	23	35	54	43	21	36	49	59	68	
# ci	491	481	477	465	446	457	479	464	457	451	441	432
# to	0	0	0	0	0	0	0	0	0	0	0	0

$m = 16$

m	32	53	52	69	69	61	14	29	27	44	32	31
# cp	23	0	0	0	0	0	0	0	0	0	0	0
# ci	445	447	448	431	431	439	486	471	473	456	468	469
# to	488	482	488	485	484	487	500	495	493	495	494	491

$m = 32$

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	12	18	15	16	13	13	0	5	7	5	6	9
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	488	482	488	485	484	487	500	495	493	495	494	491
Figure 108: Results for fallback voting in the TM model for constructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

	n = 4	n = 8
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	9 21 32 14 12 0	19 36 53 29 18 5
# ci	491 479 23 0 0 0	481 464 0 0 0 0
# to	0 0 445 486 488 500	0 0 447 471 482 495

	n = 16	n = 32
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	23 43 52 27 12 7	35 49 69 44 15 5
# ci	477 457 0 0 0 0	465 451 0 0 0 0
# to	0 0 448 473 488 493	0 0 431 456 485 495

	n = 64	n = 128
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	54 59 69 32 16 6	43 68 61 31 13 9
# ci	446 441 0 0 0 0	457 432 0 0 0 0
# to	0 0 431 468 484 494	0 0 439 469 487 491
A.11.1. Computational Costs

Figure 109: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TP in fallback elections in the IC model. The maximum is 168.02 seconds.

Figure 110: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TP in fallback elections in the IC model. The maximum is 20.47 seconds.
Figure 111: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TP in fallback elections in the IC model. The maximum is 168.02 seconds.

Figure 112: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TP in fallback elections in the TM model. The maximum is 123.59 seconds.
Figure 113: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TP in fallback elections in the TM model. The maximum is 587.95 seconds.

Figure 114: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TP in fallback elections in the TM model. The maximum is 263.04 seconds.
Figure 115: Results for fallback voting in the IC model for destructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.
Figure 116: Results for fallback voting in the IC model for destructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

$n = 4$	$n = 8$											
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	102	222	347	277	225	223	105	268	421	357	272	262
# ci	398	278	9	1	0	0	395	232	0	0	0	0
# to	0	0	144	222	275	277	0	0	79	143	228	238
$n = 16$	4	8	16	32	64	128	4	8	16	32	64	128
# cp	109	300	423	399	325	284	89	281	422	399	363	294
# ci	391	200	0	0	0	0	411	219	0	0	0	0
# to	0	0	77	101	175	216	0	0	78	101	137	206
$n = 32$	4	8	16	32	64	128	4	8	16	32	64	128
# cp	73	275	414	407	382	314	40	266	389	374	327	312
# ci	427	225	0	0	0	0	460	234	0	0	0	0
# to	0	0	86	93	118	186	0	0	111	126	173	188
Figure 117: Results for fallback voting in the TM model for destructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

m = 4	m = 8					
n						
	4	8	16	32	64	128
	4	8	16	32	64	128
# cp	79	84	80	100	148	126
# ci	421	416	420	400	352	374
# to	0	0	0	0	0	0

m = 16
n
cp
ci
to

m = 32
n
cp
ci
to

m = 64
n
cp
ci
to

m = 128
n
cp
ci
to
Figure 118: Results for fallback voting in the TM model for destructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	79	159	212	156	141	122	84	172	268	228	163	159
# ci	421	341	159	153	110	123	416	328	137	104	96	101
# to	0	0	129	191	249	255	0	0	95	168	241	240

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	80	197	320	220	169	159	100	242	317	240	202	178
# ci	420	303	83	81	69	66	400	258	56	34	23	18
# to	0	0	97	199	262	275	0	0	127	226	275	304

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	148	278	339	276	216	171	126	271	319	230	182	152
# ci	352	222	30	21	8	7	374	229	29	15	6	7
# to	0	0	131	203	276	322	0	0	152	255	312	341
A.12.1. Computational Costs

Figure 119: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TP in fallback elections in the IC model. The maximum is 60.76 seconds.

Figure 120: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TP in fallback elections in the IC model. The maximum is 19.94 seconds.
Figure 121: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TP in fallback elections in the IC model. The maximum is 60.76 seconds.

Figure 122: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TP in fallback elections in the TM model. The maximum is 58.04 seconds.
Figure 123: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TP in fallback elections in the TM model. The maximum is 15.75 seconds.

Figure 124: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TP in fallback elections in the TM model. The maximum is 55.48 seconds.
A.13. Constructive Control by Adding Voters

Figure 125: Results for fallback voting in the IC model for constructive control by adding voters. Number of candidates is fixed.

	$m = 4$	$m = 8$	$m = 16$	$m = 32$	$m = 64$	$m = 128$						
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	100	154	277	395	474	492	55	119	239	365	447	494
# ci	400	346	223	1	0	0	445	381	261	1	0	0
# to	0	0	104	26	8	0	0	134	53	6	0	0
Figure 126: Results for fallback voting in the IC model for constructive control by adding voters. Number of
voters is fixed.

n = 4	n = 8											
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	100	55	42	21	11	4	154	119	98	60	40	19
# ci	400	445	458	479	479	496	346	381	402	440	460	481
# to	0	0	0	0	0	0	0	0	0	0	0	0
n = 16	n = 32											
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	277	239	186	163	98	68	395	365	299	273	199	152
# ci	223	261	314	337	376	225	1	1	2	12	23	28
# to	0	0	0	0	26	207	104	134	199	215	278	320
n = 64	n = 128											
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	474	447	417	393	328	292	492	494	482	491	464	446
# ci	0	0	0	0	0	1	0	0	0	0	0	0
# to	26	53	83	107	172	207	8	6	18	9	36	54

106
Figure 127: Results for fallback voting in the TM model for constructive control by adding voters. Number of candidates is fixed.

	$m = 4$		$m = 8$			
n	4	8	16	32	64	128
m	4	8	16	32	64	128
# cp	75	98	142	147	187	206
# ci	425	402	358	157	130	151
# to	0	0	0	196	183	143
	$m = 16$		$m = 32$			
n	4	8	16	32	64	128
m	16	32	64	128		
# cp	27	45	69	86	114	134
# ci	473	455	432	291	282	266
# to	0	0	0	123	104	100
	$m = 64$		$m = 128$			
n	4	8	16	32	64	128
m	64	128				
# cp	9	17	19	23	31	56
# ci	491	483	411	390	378	377
# to	0	0	70	87	91	67
Figure 128: Results for fallback voting in the TM model for constructive control by adding voters. Number of voters is fixed.

	\(n = 4\)	\(n = 8\)	\(n = 16\)	\(n = 32\)	\(n = 64\)	\(n = 128\)
\(m\)	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
\# cp	75 48 27 15 9 7	98 63 45 34 17 7	157 226 291 350 390 423	157 226 291 350 390 423	157 226 291 350 390 423	157 226 291 350 390 423
\# ci	425 452 473 485 491 493	402 437 455 466 483 493	402 437 455 466 483 493	402 437 455 466 483 493	402 437 455 466 483 493	402 437 455 466 483 493
\# to	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
\(m\)	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
\# cp	142 116 69 44 19 10	147 119 86 41 23 8	147 119 86 41 23 8	147 119 86 41 23 8	147 119 86 41 23 8	147 119 86 41 23 8
\# ci	358 384 431 347 411 423	157 226 291 350 390 423	157 226 291 350 390 423	157 226 291 350 390 423	157 226 291 350 390 423	157 226 291 350 390 423
\# to	0 0 0 109 70 67	196 155 123 109 87 69	196 155 123 109 87 69	196 155 123 109 87 69	196 155 123 109 87 69	196 155 123 109 87 69
\(m\)	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
\# cp	187 161 114 76 31 18	206 169 134 95 56 28	206 169 134 95 56 28	206 169 134 95 56 28	206 169 134 95 56 28	206 169 134 95 56 28
\# ci	130 188 282 327 378 421	151 183 266 319 377 425	151 183 266 319 377 425	151 183 266 319 377 425	151 183 266 319 377 425	151 183 266 319 377 425
\# to	183 151 104 97 91 61	143 148 100 86 67 47	143 148 100 86 67 47	143 148 100 86 67 47	143 148 100 86 67 47	143 148 100 86 67 47
A.13.1. Computational Costs

Figure 129: Average time the algorithm needs to find a successful control action for constructive control by adding voters in fallback elections in the IC model. The maximum is 71,62 seconds.

Figure 130: Average time the algorithm needs to determine no-instance of constructive control by adding voters in fallback elections in the IC model. The maximum is 210,51 seconds.
Figure 131: Average time the algorithm needs to give a definite output for constructive control by adding voters in fallback elections in the IC model. The maximum is 110.45 seconds.

Figure 132: Average time the algorithm needs to find a successful control action for constructive control by adding voters in fallback elections in the TM model. The maximum is 74.8 seconds.
Figure 133: Average time the algorithm needs to determine no-instance of constructive control by adding voters in fallback elections in the TM model. The maximum is 233.48 seconds.

Figure 134: Average time the algorithm needs to give a definite output for constructive control by adding voters in fallback elections in the TM model. The maximum is 29.26 seconds.
A.14. Constructive Control by Deleting Voters

Figure 135: Results for fallback voting in the IC model for constructive control by deleting voters. Number of candidates is fixed.

	m = 4	m = 8
n	4	8
	16	32
	64	128
# cp	100	203
	418	442
	463	487
# ci	400	297
	82	0
	0	0
# to	0	0
	58	37
	13	

	m = 16	m = 32
n	4	8
	16	32
	64	128
# cp	44	92
	277	348
	372	431
# ci	456	408
	223	7
	0	0
# to	0	0
	145	128
	69	

	m = 64	m = 128
n	4	8
	16	32
	64	128
# cp	17	43
	151	198
	258	348
# ci	483	457
	349	29
	0	0
# to	0	0
	237	242
	152	

112
Figure 136: Results for fallback voting in the IC model for constructive control by deleting voters. Number of voters is fixed.

	$n=4$		$n=8$			
m	4	8	16	32	64	128
# cp	100	57	44	25	17	8
# ci	400	443	456	475	483	492
# to	0	0	0	0	0	0

	$n=16$		$n=32$	
m	4	8	16	32
# cp	418	350	277	212
# ci	82	150	223	288
# to	0	0	2	7

	$n=64$		$n=128$	
m	4	8	16	32
# cp	463	422	372	307
# ci	0	0	0	0
# to	37	78	128	193
Figure 137: Results for fallback voting in the TM model for constructive control by deleting voters. Number of candidates is fixed.

	\(m = 4 \)		\(m = 8 \)
\(n \)	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	66 91 191 196 174 159	43 68 124 118 131 145	
# ci	434 409 309 135 132 133	457 432 376 241 219 210	
# to	0 0 0 169 194 208	0 0 0 141 150 145	

	\(m = 16 \)		\(m = 32 \)
\(n \)	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	33 32 83 86 82 105	18 27 64 52 63 62	
# ci	467 468 417 284 285 264	482 473 436 359 328 332	
# to	0 0 0 130 133 131	0 0 0 89 109 106	

	\(m = 64 \)		\(m = 128 \)
\(n \)	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	4 17 27 36 48 44	6 8 16 23 27 26	
# ci	496 483 473 384 383 388	494 492 473 415 425 415	
# to	0 0 0 80 69 68	0 0 11 62 48 59	
Figure 138: Results for fallback voting in the TM model for constructive control by deleting voters. Number of voters is fixed.

	$n = 4$		$n = 8$		$n = 16$		$n = 32$		$n = 64$		$n = 128$	
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	66	43	33	18	4	6	91	68	32	27	17	8
# ci	434	457	467	482	496	494	409	432	468	473	483	492
# to	0	0	0	0	0	0	0	0	0	0	0	0
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	191	124	83	64	27	16	196	118	86	52	36	23
# ci	309	376	417	436	473	473	135	241	284	359	384	415
# to	0	0	0	0	0	11	169	141	130	89	80	62
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	174	131	82	63	48	27	159	145	105	62	44	26
# ci	132	219	285	328	383	425	133	210	264	332	388	415
# to	194	150	133	109	69	48	208	145	131	106	68	59
A.14.1. Computational Costs

Figure 139: Average time the algorithm needs to find a successful control action for constructive control by deleting voters in fallback elections in the IC model. The maximum is 79.32 seconds.

Figure 140: Average time the algorithm needs to determine no-instance of constructive control by deleting voters in fallback elections in the IC model. The maximum is 114.99 seconds.
Figure 141: Average time the algorithm needs to give a definite output for constructive control by deleting voters in fallback elections in the IC model. The maximum is 88.57 seconds.

Figure 142: Average time the algorithm needs to find a successful control action for constructive control by deleting voters in fallback elections in the TM model. The maximum is 65.48 seconds.
Figure 143: Average time the algorithm needs to determine no-instance of constructive control by deleting voters in fallback elections in the TM model. The maximum is 42.8 seconds.

Figure 144: Average time the algorithm needs to give a definite output for constructive control by deleting voters in fallback elections in the TM model. The maximum is 42.28 seconds.
A.15. Constructive Control by Partition of Voters in Model TE

![Graph showing percentage of elections where control is possible vs. number of voters for different values of m and n.](image)

Figure 145: Results for fallback voting in the IC model for constructive control by partition of voters in model TE. Number of candidates is fixed.

	\(m = 4 \)		\(m = 8 \)		\(m = 16 \)		\(m = 32 \)		\(m = 64 \)		\(m = 128 \)													
\(n \)	4	8	16	32	64	128	4	8	16	32	64	128	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	125	311	451	464	434	353	97	276	457	485	470	448	0	0	0	0	0	0	0	0	0	0	0	0
\# ci	375	189	49	0	0	0	403	224	43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\# to	0	0	36	66	147	0	0	0	15	30	52	0	0	0	0	0	0	0	0	0	0	0	0	0
	\(m = 16 \)		\(m = 32 \)		\(m = 64 \)		\(m = 128 \)																	
\(n \)	4	8	16	32	64	128	4	8	16	32	64	128	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	61	192	441	461	417	469	44	152	388	449	467	480	0	0	0	0	0	0	0	0	0	0	0	
\# ci	439	308	1	0	0	0	456	348	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
\# to	0	0	58	39	29	31	0	0	112	51	33	20	0	0	0	0	0	0	0	0	0	0	0	
	\(m = 64 \)		\(m = 128 \)																					
\(n \)	4	8	16	32	64	128	4	8	16	32	64	128	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	21	94	323	369	446	481	11	47	239	314	403	461	489	453	0	0	0	0	0	0	0	0		
\# ci	479	406	0	0	0	0	0	0	261	186	97	39	0	0	0	0	0	0	0	0	0	0		

119
Figure 146: Results for fallback voting in the IC model for constructive control by partition of voters in model TE. Number of voters is fixed.
Figure 147: Results for fallback voting in the TM model for constructive control by partition of voters in model TE. Number of candidates is fixed.

	\(m = 4\)	\(m = 8\)	\(m = 16\)	\(m = 32\)	\(m = 64\)	\(m = 128\)
\(n\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)
# cp	70	126	172	164	143	130
# ci	430	374	328	111	97	82
# to	0	0	0	225	260	288

	\(m = 16\)	\(m = 32\)	\(m = 64\)	\(m = 128\)		
\(n\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)
# cp	34	68	104	95	100	124
# ci	466	432	136	51	40	26
# to	0	0	260	354	360	350

	\(m = 64\)	\(m = 128\)				
\(n\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)
# cp	14	27	58	31	41	45
# ci	486	473	63	29	8	7
# to	0	0	379	440	451	448
Figure 148: Results for fallback voting in the TM model for constructive control by partition of voters in model TE. Number of voters is fixed.

m	n = 4	n = 8	n = 16	n = 32	n = 64	n = 128
	# cp	# ci	# to	# cp	# ci	# to
4	70	430	0	126	374	0
8	60	440	0	94	406	0
16	34	466	0	14	432	0
32	18	482	0	1	453	0
64	14	499	0	1	472	0
128	1	374	0	1	484	0

m	n = 4	n = 8	n = 16	n = 32	n = 64	n = 128
	# cp	# ci	# to	# cp	# ci	# to
4	172	328	0	164	225	0
8	149	351	0	127	278	0
16	104	136	0	72	95	0
32	74	63	0	63	51	0
64	37	56	0	37	32	0
128	37	111	0	111	29	0
		95	0	95	9	0

m	n = 4	n = 8	n = 16	n = 32	n = 64	n = 128
	# cp	# ci	# to	# cp	# ci	# to
4	143	97	0	130	82	0
8	130	55	0	127	49	0
16	100	40	0	124	26	0
32	80	22	0	80	22	0
64	41	8	0	41	10	0
128	28	2	0	28	2	0

m	n = 4	n = 8	n = 16	n = 32	n = 64	n = 128
	# cp	# ci	# to	# cp	# ci	# to
4	260	288	0	324	388	0
8	315	336	0	350	398	0
16	360	451	0	350	462	0
32	398	462	0	398	462	0
64	451	462	0	462	467	0
128	462	467	0	462	467	0
A.15.1. Computational Costs

Figure 149: Average time the algorithm needs to find a successful control action for constructive control by partition of voters in model TE in fallback elections in the IC model. The maximum is 53,51 seconds.

Figure 150: Average time the algorithm needs to determine no-instance of constructive control by partition of voters in model TE in fallback elections in the IC model. The maximum is 586,56 seconds.
Figure 151: Average time the algorithm needs to give a definite output for constructive control by adding voters in fallback elections in the IC model. The maximum is 53.51 seconds.

Figure 152: Average time the algorithm needs to find a successful control action for constructive control by partition of voters in model TE in fallback elections in the TM model. The maximum is 61.41 seconds.
Figure 153: Average time the algorithm needs to determine no-instance of constructive control by partition of voters in model TE in fallback elections in the TM model. The maximum is 289.18 seconds.

Figure 154: Average time the algorithm needs to give a definite output for constructive control by partition of voters in model TE in fallback elections in the TM model. The maximum is 208.95 seconds.
A.16. Destructive Control by Partition of Voters in Model TE

Figure 155: Results for fallback voting in the IC model for destructive control by partition of voters in model TE. Number of candidates is fixed.

n	m = 4	m = 8	m = 16	m = 32	m = 64	m = 128
	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	251 391 478 474 405 287	369 477 500 493 454 406	432 491 499 479 458	465 497 500 499 482 466	480 498 500 494 474	489 500 500 499 497 493
# ci	249 109 22 0 0 0	131 23 0 0 0 0	68 9 1 0 0 0	35 3 0 0 0 0	20 2 0 0 0 0	11 0 0 0 0 0
# to	0 0 0 26 95 213	0 0 0 7 46 94	0 0 0 2 21 42	0 0 0 1 18 34	0 0 0 6 26 6	0 0 0 1 3 7
Figure 156: Results for fallback voting in the IC model for destructive control by partition of voters in model TE. Number of voters is fixed.

n	m	cp	ci	to
4	4	251	249	0
8	8	369	131	0
16	16	432	68	0
32	32	465	35	0
64	64	480	20	0
128	128	489	11	0

n	m	cp	ci	to
4	4	391	109	0
8	8	477	23	0
16	16	491	9	0
32	32	497	3	0
64	64	498	2	0
128	128	500	0	0

n	m	cp	ci	to
16	4	478	22	0
8	8	500	0	0
16	16	500	0	0
32	32	500	0	0
64	64	500	0	0
128	128	500	0	0

n	m	cp	ci	to
16	4	474	0	0
8	8	493	0	0
16	16	498	0	0
32	32	499	0	0
64	64	499	0	0
128	128	500	0	0

n	m	cp	ci	to
64	4	405	0	0
8	8	454	0	0
16	16	479	0	0
32	32	482	0	0
64	64	494	0	0
128	128	497	0	0

n	m	cp	ci	to
64	4	287	0	0
8	8	406	0	0
16	16	458	0	0
32	32	466	0	0
64	64	474	0	0
128	128	493	0	0

n	m	cp	ci	to
128	4	213	95	0
128	8	94	46	0
128	16	42	21	0
128	32	34	18	0
128	64	26	14	0
128	128	7	6	0
Figure 157: Results for fallback voting in the TM model for destructive control by partition of voters in model TE. Number of candidates is fixed.

	\(m = 4\)		\(m = 8\)		\(m = 16\)		\(m = 32\)		\(m = 64\)		\(m = 128\)	
\(n\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	178	237	247	218	169	153	217	294	325	321	231	229
\# ci	322	263	253	132	95	79	283	206	175	86	64	49
\# to	0	0	0	150	236	268	0	0	0	93	205	222
\(m = 16\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	272	320	373	383	300	244	325	369	410	399	334	266
\# ci	228	180	110	48	41	35	175	131	63	35	16	17
\# to	0	0	17	69	159	221	0	0	27	66	150	217
\(m = 64\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	352	375	414	425	333	258	343	384	437	440	354	283
\# ci	148	125	64	23	10	11	157	116	46	31	3	5
\# to	0	0	0	52	157	231	0	0	17	29	143	212
Figure 158: Results for fallback voting in the TM model for destructive control by partition of voters in model TE. Number of voters is fixed.

	$n = 4$		$n = 8$									
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	178	217	272	325	352	343	237	294	320	369	375	384
# ci	322	283	228	175	148	157	263	206	180	131	125	116
# to	0	0	0	0	0	0	0	0	0	0	0	0

	$n = 16$		$n = 32$									
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	247	325	373	410	414	437	218	321	383	399	425	440
# ci	253	175	110	63	64	46	132	86	48	35	23	31
# to	0	0	17	27	22	17	150	93	69	66	52	29

	$n = 64$		$n = 128$									
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	169	231	300	334	333	354	153	229	244	266	258	283
# ci	95	64	41	16	10	3	79	49	35	17	11	5
# to	236	205	159	150	157	143	268	222	221	217	231	212
A.16.1. Computational Costs

Figure 159: Average time the algorithm needs to find a successful control action for destructive control by partition of voters in model TE in fallback elections in the IC model. The maximum is 35.22 seconds.

Figure 160: Average time the algorithm needs to determine no-instance of destructive control by partition of voters in model TE in fallback elections in the IC model. The maximum is 596.35 seconds.
Figure 161: Average time the algorithm needs to give a definite output for destructive control by partition of voters in model TE in fallback elections in the IC model. The maximum is 35.22 seconds.

Figure 162: Average time the algorithm needs to find a successful control action for destructive control by partition of voters in model TE in fallback elections in the TM model. The maximum is 29.74 seconds.
Figure 163: Average time the algorithm needs to determine no-instance of destructive control by partition of voters in model TE in fallback elections in the TM model. The maximum is 121, 13 seconds.

Figure 164: Average time the algorithm needs to give a definite output for destructive control by partition of voters in model TE in fallback elections in the TM model. The maximum is 48, 7 seconds.
A.17. Constructive Control by Partition of Voters in Model TP

Figure 165: Results for fallback voting in the IC model for constructive control by partition of voters in model TP. Number of candidates is fixed.

	$m = 4$		$m = 8$		$m = 16$		$m = 32$		$m = 64$		$m = 128$
	n=4	n=8	n=16	n=32	n=64	n=128	n=4	n=8	n=16	n=32	n=64
# cp	62	108	207	206	162	112	46	108	236	242	195
# ci	438	392	293	0	0	0	454	392	232	0	0
# to	0	0	294	338	388	0	0	32	258	305	371

	$m = 16$		$m = 32$		$m = 64$		$m = 128$				
	n=4	n=8	n=16	n=32	n=64	n=128	n=4	n=8	n=16	n=32	n=64
# cp	34	117	263	252	166	122	30	91	201	231	166
# ci	466	383	0	0	0	0	470	409	0	0	0
# to	0	0	237	248	334	378	0	0	299	269	334

	$m = 64$		$m = 128$								
	n=4	n=8	n=16	n=32	n=64	n=128	n=4	n=8	n=16	n=32	n=64
# cp	5	69	182	188	160	102	10	46	139	194	122
# ci	495	431	0	0	0	0	490	454	0	0	0
# to	0	0	318	312	340	398	0	0	361	306	378

133
Figure 166: Results for fallback voting in the IC model for constructive control by partition of voters in model TP. Number of voters is fixed.

	\(n=4\)	\(n=8\)	\(n=16\)	\(n=32\)	\(n=64\)	\(n=128\)								
			\(m\) \(=4\)	\(m\) \(=8\)	\(m\) \(=16\)	\(m\) \(=32\)	\(m\) \(=64\)	\(m\) \(=128\)						
\(#\ cp\)			4	8	16	32	64	128	4	8	16	32	64	128
\(#\ ci\)			438	454	466	470	495	490	392	392	383	409	431	454
\(#\ to\)			0	0	0	0	0	0	0	0	0	0	0	0

	\(n=64\)	\(n=128\)												
\(m\)		\(m\) \(=4\)	\(m\) \(=8\)	\(m\) \(=16\)	\(m\) \(=32\)	\(m\) \(=64\)	\(m\) \(=128\)							
\(#\ cp\)			4	8	16	32	64	128	4	8	16	32	64	128
\(#\ ci\)			0	0	0	0	0	0	0	0	0	0	0	0
\(#\ to\)			338	305	334	334	340	378	388	371	378	383	398	369
Figure 167: Results for fallback voting in the TM model for constructive control by partition of voters in model TP. Number of candidates is fixed.

n	m = 4	m = 8				
	4	8	16	32	64	128
	4	8	16	32	64	128
# cp	61	76	99	85	67	66
# cp	61	76	99	85	67	66
# ci	439	424	401	111	97	82
# ci	471	436	390	95	55	49
# to	0	0	304	336	352	0
# to	0	0	304	336	352	0

n	m = 16	m = 32				
	4	8	16	32	64	128
	4	8	16	32	64	128
# cp	17	52	72	57	42	48
# cp	17	32	60	34	41	40
# ci	483	448	89	50	40	26
# ci	483	468	70	33	22	14
# to	0	0	304	336	352	0
# to	0	0	304	336	352	0

n	m = 64	m = 128				
	4	8	16	32	64	128
	4	8	16	32	64	128
# cp	12	25	49	20	27	25
# cp	12	25	49	20	27	25
# ci	488	475	62	27	8	7
# ci	488	475	62	27	8	7
# to	0	0	389	453	465	468
# to	0	0	389	453	465	468
Figure 168: Results for fallback voting in the TM model for constructive control by partition of voters in model TP. Number of voters is fixed.

	$n=4$		$n=8$		$n=16$		$n=32$		$n=64$		$n=128$	
	m 4 8 16 32 64 128		m 4 8 16 32 64 128									
# cp	61 29 17 12 5 64 52 25 10		76 64 52 32 25 10									
# ci	439 471 483 488 495		424 436 448 468 475 490									
# to	0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0									
	$n=16$		$n=32$									
# cp	99 96 72 60 49 31 85 76 57 34 20 6		85 76 57 34 20 6									
# ci	401 390 89 70 62 57 111 95 50 33 27 23		111 95 50 33 27 23									
# to	0 14 339 370 389 412		304 329 393 433 453 471									
	$n=64$		$n=128$									
# cp	67 71 42 41 27 14 66 51 48 40 25 13		82 49 26 14 7 2									
# ci	97 55 40 22 8 1 82 49 26 14 7 2		82 49 26 14 7 2									
# to	336 374 418 437 465 476		352 400 446 446 468 485									
A.17.1. Computational Costs

Figure 169: Average time the algorithm needs to find a successful control action for constructive control by partition of voters in model TP in fallback elections in the IC model. The maximum is 89.37 seconds.

Figure 170: Average time the algorithm needs to determine no-instance of constructive control by partition of voters in model TP in fallback elections in the IC model. The maximum is 564.65 seconds.
Figure 171: Average time the algorithm needs to give a definite output for constructive control by partition of voters in model TP in fallback elections in the IC model. The maximum is 301,87 seconds.

Figure 172: Average time the algorithm needs to find a successful control action for constructive control by partition of voters in model TP in fallback elections in the TM model. The maximum is 106,58 seconds.
Figure 173: Average time the algorithm needs to determine no-instance of constructive control by partition of voters in model TP in fallback elections in the TM model. The maximum is 393,18 seconds.

Figure 174: Average time the algorithm needs to give a definite output for constructive control by partition of voters in model TP in fallback elections in the TM model. The maximum is 336,56 seconds.
A.18. Destructive Control by Partition of Voters in Model TP

Figure 175: Results for fallback voting in the IC model for destructive control by partition of voters in model TP. Number of candidates is fixed.

\[
\begin{array}{c|cccccc}
\text{n} & 4 & 8 & 16 & 32 & 64 & 128 \\
\text{# cp} & 185 & 267 & 411 & 302 & 196 & \\
\text{# ci} & 315 & 233 & 79 & 0 & 0 & 0 \\
\text{# to} & 0 & 0 & 0 & 89 & 198 & 304 \\
\end{array}
\]

\[
\begin{array}{c|cccccc}
\text{m=16} & 4 & 8 & 16 & 32 & 64 & 128 \\
\text{# cp} & 407 & 480 & 498 & 473 & 425 & \\
\text{# ci} & 93 & 20 & 0 & 0 & 0 & 0 \\
\text{# to} & 0 & 0 & 2 & 4 & 27 & 75 \\
\end{array}
\]

\[
\begin{array}{c|cccccc}
\text{m=32} & 4 & 8 & 16 & 32 & 64 & 128 \\
\text{# cp} & 480 & 494 & 500 & 499 & 495 & 474 \\
\text{# ci} & 20 & 6 & 0 & 0 & 0 & 0 \\
\text{# to} & 0 & 0 & 0 & 1 & 5 & 26 \\
\end{array}
\]

\[
\begin{array}{c|cccccc}
\text{m=64} & 4 & 8 & 16 & 32 & 64 & 128 \\
\text{# cp} & 489 & 500 & 499 & 495 & 474 & 489 \\
\text{# ci} & 20 & 6 & 0 & 0 & 0 & 0 \\
\text{# to} & 0 & 0 & 0 & 1 & 3 & 7 \\
\end{array}
\]
Figure 176: Results for fallback voting in the IC model for destructive control by partition of voters in model TP. Number of voters is fixed.

n	m	# cp	# ci	# to	n	m	# cp	# ci	# to
	4	8	16	32	64	128	4	8	16
		4	8	16	32	64	128		
		185	310	407	455	480	489	267	435
		315	190	93	45	20	11	233	65
		0	0	0	0	0	0	0	0
n = 16		421	497	498	500	500	500	411	484
n = 16		79	3	0	0	0	0	0	0
n = 16		0	0	2	0	0	0	0	0
n = 16		89	16	4	2	1	1		
n = 32									
n = 64									
n = 64									
n = 64									
n = 128									
n = 128									
n = 128									

n	m	# cp	# ci	# to	n	m	# cp	# ci	# to
4	8	16	32	64	128	4	8	16	32
		4	8	16	32	64	128		
		198	73	27	15	5	3	304	143
		0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0
		198	73	27	15	5	3	304	143
		0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0
Figure 177: Results for fallback voting in the TM model for destructive control by partition of voters in model TP. Number of candidates is fixed.

	$m = 4$		$m = 8$	$m = 16$		$m = 32$	$m = 64$		$m = 128$
n	4 8	16	32	64 128	4 8	16 32	64 128	4 8	16 32
# cp	148 192 218 173 145 133	194 265 317 301 228 234	260 315 364 374 304 258	319 365 407 391 340 283	351 375 413 420 340 281	341 385 436 437 361 297	149 125 64 23 10 11	159 115 46 31 3 5	
# ci	352 308 282 132 95 79	306 235 182 86 64 49	0 0 1 113 208 217	234 181 63 35 16 17	0 0 40 78 155 207	0 0 30 74 144 200	149 125 64 23 10 11	159 115 46 31 3 5	
# to	0 0 195 260 288	0 0 1 113 208 217	260 315 364 374 304 258	319 365 407 391 340 283	351 375 413 420 340 281	341 385 436 437 361 297	149 125 64 23 10 11	159 115 46 31 3 5	

	$m = 4$		$m = 8$	$m = 16$		$m = 32$	$m = 64$		$m = 128$
n	4 8	16	32	64 128	4 8	16 32	64 128	4 8	16 32
# cp	148 192 218 173 145 133	194 265 317 301 228 234	260 315 364 374 304 258	319 365 407 391 340 283	351 375 413 420 340 281	341 385 436 437 361 297	149 125 64 23 10 11	159 115 46 31 3 5	
# ci	352 308 282 132 95 79	306 235 182 86 64 49	0 0 1 113 208 217	234 181 63 35 16 17	0 0 40 78 155 207	0 0 30 74 144 200	149 125 64 23 10 11	159 115 46 31 3 5	
# to	0 0 195 260 288	0 0 1 113 208 217	260 315 364 374 304 258	319 365 407 391 340 283	351 375 413 420 340 281	341 385 436 437 361 297	149 125 64 23 10 11	159 115 46 31 3 5	
Figure 178: Results for fallback voting in the TM model for destructive control by partition of voters in model TP. Number of voters is fixed.

	n = 4		n = 8										
	m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	148	194	260	319	351	341	192	265	315	365	375	385	
# ci	352	306	240	181	149	159	308	235	185	135	125	115	
# to	0	0	0	0	0	0	0	0	0	0	0	0	
	n = 16		n = 32										
	m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	218	317	364	407	413	436	173	301	374	391	420	437	
# ci	282	182	96	63	64	46	132	86	48	35	23	31	
# to	0	1	40	30	23	18	195	113	78	74	57	32	
	n = 64		n = 128										
	m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	145	228	304	340	340	361	133	234	258	283	281	297	
# ci	95	64	41	16	10	3	79	49	35	17	11	5	
# to	260	208	155	144	150	136	288	217	207	200	208	198	
A.18.1. Computational Costs

Figure 179: Average time the algorithm needs to find a successful control action for destructive control by partition of voters in model TP in fallback elections in the IC model. The maximum is 60.49 seconds.

Figure 180: Average time the algorithm needs to determine no-instance of destructive control by partition of voters in model TP in fallback elections in the IC model. The maximum is 527.4 seconds.
Figure 181: Average time the algorithm needs to give a definite output for destructive control by partition of voters in model TP in fallback elections in the IC model. The maximum is 82.22 seconds.

Figure 182: Average time the algorithm needs to find a successful control action for destructive control by partition of voters in model TP in fallback elections in the TM model. The maximum is 42 seconds.
Figure 183: Average time the algorithm needs to determine no-instance of destructive control by partition of voters in model TP in fallback elections in the TM model. The maximum is 173.62 seconds.

Figure 184: Average time the algorithm needs to give a definite output for destructive control by partition of voters in model TP in fallback elections in the TM model. The maximum is 93.34 seconds.
B. Bucklin Voting

B.1. Constructive Control by Adding Candidates

Figure 185: Results for Bucklin voting in the IC model for constructive control by adding candidates. Number of candidates is fixed.

	\(m = 4\)	\(m = 8\)	\(m = 16\)	\(m = 32\)														
\(n\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)
\# cp	40	62	73	77	78	107	42	48	77	78	85	95	42	48	77	78	85	95
\# ci	460	438	427	423	422	393	458	452	423	422	415	405	458	452	423	422	415	405
\# to	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	\(m = 16\)	\(m = 32\)																	
\(n\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)	
\# cp	29	61	70	108	115	117	17	25	30	38	44	64	17	25	30	38	44	64	
\# ci	471	439	430	392	385	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\# to	0	0	0	0	0	0	483	475	470	462	456	436	0	0	0	0	0	0	0

	\(m = 64\)	\(m = 128\)																
\(n\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)
\# cp	5	12	10	15	16	15	0	4	2	7	5	8	0	4	2	7	5	8
\# ci	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\# to	495	488	490	485	484	485	500	496	498	493	495	492	500	496	498	493	495	492
Figure 186: Results for Bucklin voting in the IC model for constructive control by adding candidates. Number of voters is fixed.

$n = 4$	$n = 8$					
m	# cp	# ci	# to	# cp	# ci	# to
4	40	460	0	4	40	460
8	42	458	0	8	42	458
16	42	471	0	16	42	471
32	42	471	0	32	42	471
64	42	471	0	64	42	471
128	10	471	0	128	10	471

$n = 16$	$n = 32$					
m	# cp	# ci	# to	# cp	# ci	# to
4	40	460	0	4	40	460
8	42	458	0	8	42	458
16	42	471	0	16	42	471
32	42	471	0	32	42	471
64	42	471	0	64	42	471
128	10	471	0	128	10	471

$n = 64$	$n = 128$					
m	# cp	# ci	# to	# cp	# ci	# to
4	40	460	0	4	40	460
8	42	458	0	8	42	458
16	42	471	0	16	42	471
32	42	471	0	32	42	471
64	42	471	0	64	42	471
128	10	471	0	128	10	471

$n = 4$	$n = 8$					
m	# cp	# ci	# to	# cp	# ci	# to
4	40	460	0	4	40	460
8	42	458	0	8	42	458
16	42	471	0	16	42	471
32	42	471	0	32	42	471
64	42	471	0	64	42	471
128	10	471	0	128	10	471
Figure 187: Results for Bucklin voting in the TM model for constructive control by adding candidates. Number of candidates is fixed.

	\(m = 4\)		\(m = 8\)		\(m = 16\)		\(m = 32\)		\(m = 64\)		\(m = 128\)
\(n\)	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128					
\# cp	33 33 39 43 53	19 28 31 38 40 50	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0					
\# ci	467 467 461 457 465 447	481 472 469 462 460 450	487 485 476 463 468 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0					
\# to	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0					
\(m = 16\)	\(m = 32\)	\(m = 64\)	\(m = 128\)	\(m = 64\)	\(m = 128\)						
\# cp	13 15 24 37 32 32	10 20 12 8 8 4	5 4 1 3 3 1	0 1 2 2 0 1	0 0 0 0 0 0	0 0 0 0 0 0					
\# ci	487 485 476 463 468 0	0 0 0 0 0 0	490 480 488 492 492 492	495 496 499 497 497 499	500 499 498 498 500 499	500 499 498 498 500 499					
Figure 188: Results for Bucklin voting in the TM model for constructive control by adding candidates. Number of voters is fixed.

	$n=4$		$n=8$	
m	4 8 16 32 64 128	$n=4$	4 8 16 32 64 128	$n=8$
# cp	33 19 13 10 5 0	# cp	33 28 15 20 4 1	
# ci	467 481 487 0 0 0	# ci	467 472 485 0 0 0	
# to	0 0 0 490 495 500	# to	0 0 0 480 496 499	
	$n=16$		$n=32$	
m	4 8 16 32 64 128	$n=16$	4 8 16 32 64 128	$n=32$
# cp	39 31 24 12 1 2	# cp	43 38 37 8 3 2	
# ci	461 469 476 0 0 0	# ci	457 462 463 0 0 0	
# to	0 0 0 488 499 498	# to	0 0 0 492 497 498	
	$n=64$		$n=128$	
m	4 8 16 32 64 128	$n=64$	4 8 16 32 64 128	$n=128$
# cp	35 40 32 8 3 0	# cp	53 50 32 4 1 1	
# ci	465 460 468 0 0 0	# ci	447 450 0 0 0 0	
# to	0 0 0 492 497 500	# to	0 0 468 496 499 499	
B.1.1. Computational Costs

Figure 189: Average time the algorithm needs to find a successful control action for constructive control by adding candidates in Bucklin elections in the IC model. The maximum is 148 seconds.

Figure 190: Average time the algorithm needs to determine no-instance of constructive control by adding candidates in Bucklin elections in the IC model. The maximum is 537.35 seconds.
Figure 191: Average time the algorithm needs to give a definite output for constructive control by adding candidates in Bucklin elections in the IC model. The maximum is 427.51 seconds.

Figure 192: Average time the algorithm needs to find a successful control action for constructive control by adding candidates in Bucklin elections in the TM model. The maximum is 85.81 seconds.
Figure 193: Average time the algorithm needs to determine no-instance of constructive control by adding candidates in Bucklin elections in the TM model. The maximum is 523.05 seconds.

Figure 194: Average time the algorithm needs to give a definite output for constructive control by adding candidates in Bucklin elections in the TM model. The maximum is 491.13 seconds.
B.2. Destructive Control by Adding Candidates

Figure 195: Results for Bucklin voting in the IC model for destructive control by adding candidates. Number of candidates is fixed.

m = 4	m = 8		
n	m	n	m
4	357	4	405
8	374	8	426
16	360	16	444
32	377	32	456
64	371	64	468
128	389	128	447

m = 16	m = 32		
n	m	n	m
4	430	4	597
8	463	8	453
16	483	16	468
32	492	32	484
64	493	64	486
128	497	128	485

m = 64	m = 128		
n	m	n	m
4	399	4	487
8	420	8	449
16	427	16	409
32	456	32	409
64	456	64	435
128	459	128	438

m = 16	m = 128		
n	m	n	m
4	101	4	113
8	80	8	89
16	73	16	91
32	44	32	91
64	44	64	65
128	41	128	62
Figure 196: Results for Bucklin voting in the IC model for destructive control by adding candidates. Number of voters is fixed.

m	n = 4	n = 8										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	357	405	430	397	399	387	374	426	463	453	420	411
# ci	143	95	70	1	0	0	126	74	37	0	0	0
# to	0	0	0	102	101	113	0	0	0	47	80	89

m	n = 16	n = 32										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	360	444	483	468	427	409	377	456	492	484	456	409
# ci	140	56	17	0	0	0	123	44	8	0	0	0
# to	0	0	0	32	73	91	0	0	0	16	44	91

m	n = 64	n = 128										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	371	468	493	486	456	435	389	447	497	485	459	438
# ci	129	32	7	0	0	0	111	53	0	0	0	0
# to	0	0	0	14	44	65	0	0	3	15	41	62
Figure 197: Results for Bucklin voting in the TM model for destructive control by adding candidates. Number of candidates is fixed.

m	n = 4	m = 8										
4	8	16	32	64	128	4	8	16	32	64	128	
# cp	211	218	240	263	284	305	237	283	325	350	343	349
# ci	289	282	260	237	216	195	263	217	175	150	157	151
# to	0	0	0	0	0	0	0	0	0	0	0	0

m	n = 16	m = 32										
4	8	16	32	64	128	4	8	16	32	64	128	
# cp	254	306	315	370	385	362	274	305	339	355	356	361
# ci	246	194	185	130	115	19	135	104	62	27	9	6
# to	0	0	0	0	0	119	91	91	99	118	135	133

m	n = 64	m = 128										
4	8	16	32	64	128	4	8	16	32	64	128	
# cp	275	306	321	368	356	369	294	299	326	344	340	365
# ci	124	105	61	24	6	8	109	94	64	22	7	1
# to	101	89	118	108	138	123	97	107	110	134	153	134
Figure 198: Results for Bucklin voting in the TM model for destructive control by adding candidates. Number of voters is fixed.

	m	n	# cp	# ci	# to
4	8	16	32	64	128
# cp	211	237	254	274	275
# ci	289	263	246	135	124
# to	0	0	91	101	97
8	16	32	64	128	
# cp	218	283	306	305	306
# ci	282	217	194	104	105
# to	0	0	91	89	

	m	n	# cp	# ci	# to
4	8	16	32	64	128
# cp	240	325	315	339	321
# ci	26	175	185	62	61
# to	0	0	99	118	110
8	16	32	64	128	
# cp	263	350	370	355	368
# ci	237	150	130	27	24
# to	0	0	99	118	108

	m	n	# cp	# ci	# to
4	8	16	32	64	128
# cp	284	343	385	356	356
# ci	216	157	115	9	6
# to	0	0	135	138	153
8	16	32	64	128	
# cp	305	349	362	361	369
# ci	195	151	19	6	8
# to	0	0	119	133	123
B.2.1. Computational Costs

Figure 199: Average time the algorithm needs to find a successful control action for destructive control by adding candidates in Bucklin elections in the IC model. The maximum is 13,77 seconds.

Figure 200: Average time the algorithm needs to determine no-instance of destructive control by adding candidates in Bucklin elections in the IC model. The maximum is 532,06 seconds.
Figure 201: Average time the algorithm needs to give a definite output for destructive control by adding candidates in Bucklin elections in the IC model. The maximum is 13.77 seconds.

Figure 202: Average time the algorithm needs to find a successful control action for destructive control by adding candidates in Bucklin elections in the TM model. The maximum is 9.61 seconds.
Figure 203: Average time the algorithm needs to determine no-instance of destructive control by adding candidates in Bucklin elections in the TM model. The maximum is 444.22 seconds.

Figure 204: Average time the algorithm needs to give a definite output for destructive control by adding candidates in Bucklin elections in the TM model. The maximum is 107.28 seconds.
B.3. Constructive Control by Deleting Candidates

Figure 205: Results for Bucklin voting in the IC model for constructive control by deleting candidates. Number of candidates is fixed.

m = 4	m = 8					
n	4	8	16	32	64	128
cp	124	187	154	205	186	198
ci	376	313	346	295	314	302
to	0	0	0	0	0	0
m = 16						
n	4	8	16	32	64	128
cp	181	218	251	265	288	302
ci	319	282	249	235	212	198
to	0	0	0	0	0	0
m = 32						
n	4	8	16	32	64	128
cp	132	149	136	122	151	137
ci	0	0	0	0	0	0
to	368	351	364	378	349	363
Figure 206: Results for Bucklin voting in the IC model for constructive control by deleting candidates. Number of voters is fixed.

	n = 4	n = 8
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	124 167 181 163 132 89	187 154 218 194 149 78
# ci	376 333 319 0 0 0	313 346 282 0 0 0
# to	0 0 0 337 368 411	0 0 0 306 351 422

	n = 16	n = 32
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	154 175 251 203 136 98	205 212 265 235 122 70
# ci	346 325 249 0 0 0	295 288 235 0 0 0
# to	0 0 0 297 364 402	0 0 0 265 378 430

	n = 64	n = 128
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	186 185 288 254 151 67	198 221 302 245 137 81
# ci	314 315 212 0 0 0	302 279 198 0 0 0
# to	0 0 0 246 349 433	0 0 0 255 363 419
Figure 207: Results for Bucklin voting in the TM model for constructive control by deleting candidates. Number of candidates is fixed.

n	4	8	16	32	64	128	m = 4	4	8	16	32	64	128	m = 8				
# cp	124	172	191	197	206	185	151	138	146	166	189	182	151	138	146	166	189	182
# ci	376	328	309	303	294	315	349	362	354	334	311	318	349	362	354	334	311	318
# to	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

n	4	8	16	32	64	128	m = 16	4	8	16	32	64	128	m = 32				
# cp	176	182	203	223	202	207	153	152	176	162	154	165	153	152	176	162	154	165
# ci	324	318	297	277	298	293	0	0	0	0	0	0	0	0	0	0	0	0
# to	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

n	4	8	16	32	64	128	m = 64	4	8	16	32	64	128	m = 128				
# cp	133	127	131	136	111	122	128	107	91	87	97	93	128	107	91	87	97	93
# ci	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
# to	365	373	369	364	389	378	372	393	409	413	403	407	372	393	409	413	403	407
Figure 208: Results for Bucklin voting in the TM model for constructive control by deleting candidates. Number of voters is fixed.

	\(n = 4 \)	\(n = 8 \)						
\(m \)	\(n = 16 \)	\(n = 32 \)	\(n = 64 \)	\(n = 128 \)	\(n = 64 \)	\(n = 128 \)	\(n = 64 \)	\(n = 128 \)
# cp	124 151 176 153 133 128	172 138 182 152 127 107	191 146 203 176 131 91	197 166 223 162 136 87				
# ci	376 349 324 0 2 0	328 362 318 0 0 0	309 354 297 0 0 0	303 334 277 0 0 0				
# to	0 0 0 347 365 372	0 0 0 348 373 393	0 0 0 324 369 409	0 0 0 338 364 413				
# cp	206 189 202 154 111 97	185 182 207 165 122 93	294 311 298 0 0 0	315 318 293 0 0 0				
# ci	0 0 0 346 389 403	0 0 0 335 378 407	0 0 0 346 389 403	0 0 0 335 378 407				
B.3.1. Computational Costs

Figure 209: Average time the algorithm needs to find a successful control action for constructive control by deleting candidates in Bucklin elections in the IC model. The maximum is 61.64 seconds.

Figure 210: Average time the algorithm needs to determine no-instance of constructive control by deleting candidates in Bucklin elections in the IC model. The maximum is 428.06 seconds.
Figure 211: Average time the algorithm needs to give a definite output for constructive control by deleting candidates in Bucklin elections in the IC model. The maximum is 178.54 seconds.

Figure 212: Average time the algorithm needs to find a successful control action for constructive control by deleting candidates in Bucklin elections in the TM model. The maximum is 42.25 seconds.
Figure 213: Average time the algorithm needs to determine no-instance of constructive control by deleting candidates in Bucklin elections in the TM model. The maximum is 415.02 seconds.

Figure 214: Average time the algorithm needs to give a definite output for constructive control by deleting candidates in Bucklin elections in the TM model. The maximum is 247.38 seconds.
B.4. Destructive Control by Deleting Candidates

Figure 215: Results for Bucklin voting in the IC model for destructive control by deleting candidates. Number of candidates is fixed.

\[
\begin{array}{cccccccc}
\text{\# cp} & 241 & 251 & 266 & 281 & 286 & 276 & 349 & 385 & 422 & 426 & 430 & 441 \\
\text{\# ci} & 259 & 249 & 234 & 219 & 214 & 224 & 151 & 115 & 78 & 74 & 70 & 59 \\
\text{\# to} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{\# cp} & 453 & 481 & 490 & 495 & 497 & 496 & 415 & 465 & 480 & 489 & 495 & 493 \\
\text{\# ci} & 47 & 19 & 10 & 5 & 3 & 4 & 1 & 0 & 0 & 0 & 0 & 0 \\
\text{\# to} & 0 & 0 & 0 & 0 & 0 & 0 & 84 & 35 & 20 & 11 & 5 & 7 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{\# cp} & 349 & 394 & 436 & 470 & 478 & 475 & 247 & 340 & 381 & 392 & 434 & 458 \\
\text{\# ci} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\text{\# to} & 151 & 106 & 64 & 30 & 22 & 25 & 253 & 160 & 119 & 108 & 66 & 42 \\
\end{array}
\]
Figure 216: Results for Bucklin voting in the IC model for destructive control by deleting candidates. Number of voters is fixed.

	$n = 4$		$n = 8$
m	4 8 16 32 64 128	4 8 16 32 64	128
# cp	241 349 453 415 349 247	251 385 481 465 394 340	
# ci	259 151 47 1 0 0	249 115 19 0 0 0	
# to	0 0 0 84 151 253	0 0 0 35 106 160	
$n = 16$			
m	4 8 16 32 64 128	4 8 16 32 64	128
# cp	266 422 490 480 436 381	281 426 495 489 470 392	
# ci	234 78 10 0 0 0	219 74 5 0 0 0	
# to	0 0 0 20 64 119	0 0 0 11 30 108	
$n = 32$			
m	4 8 16 32 64 128	4 8 16 32 64	128
# cp	286 430 497 495 478 434	276 441 496 493 475 458	
# ci	214 70 3 0 0 0	224 59 4 0 0 0	
# to	0 0 0 5 22 66	0 0 0 7 25 42	
Figure 217: Results for Bucklin voting in the TM model for destructive control by deleting candidates. Number of candidates is fixed.

	\(m = 4\)	\(m = 8\)
\(n\)	4 8 16 32 64 128	4 8 16 32 64 128
# cp	143 123 143 137 182 193	206 232 261 282 319 276
# ci	357 377 357 363 318 307	294 268 239 218 181 224
# to	0 0 0 0 0 0	0 0 0 0 0 0

	\(m = 16\)	\(m = 32\)
\(n\)	4 8 16 32 64 128	4 8 16 32 64 128
# cp	296 304 354 379 386 354	297 314 344 352 316 322
# ci	204 196 146 121 114 146	146 129 78 46 18 14
# to	0 0 0 0 0 0	0 0 0 0 0 0

	\(m = 64\)	\(m = 128\)
\(n\)	4 8 16 32 64 128	4 8 16 32 64 128
# cp	239 274 286 280 270 219	172 198 208 202 192 170
# ci	137 91 68 29 11 10	114 89 75 23 9 4
# to	124 135 146 191 219 271	214 213 217 275 299 326
Figure 218: Results for Bucklin voting in the TM model for destructive control by deleting candidates. Number of voters is fixed.

	$n = 4$	$n = 8$										
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	143	206	296	297	239	172	123	232	304	314	274	198
# ci	357	294	204	146	137	114	377	268	196	129	91	89
# to	0	0	0	57	124	214	0	0	0	57	135	213
$n = 16$												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	143	261	354	344	286	208	137	282	379	352	280	202
# ci	357	239	146	78	68	75	363	218	121	46	29	23
# to	0	0	0	78	146	217	0	0	0	102	191	275
$n = 32$												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	182	319	386	316	270	192	193	276	354	322	219	170
# ci	318	181	114	18	11	9	307	224	146	14	10	4
# to	0	0	0	166	219	299	0	0	0	164	271	326
B.4.1. Computational Costs

Figure 219: Average time the algorithm needs to find a successful control action for destructive control by deleting candidates in Bucklin elections in the IC model. The maximum is 25.59 seconds.

Figure 220: Average time the algorithm needs to determine no-instance of destructive control by deleting candidates in Bucklin elections in the IC model. The maximum is 420.05 seconds.
Figure 221: Average time the algorithm needs to give a definite output for destructive control by deleting candidates in Bucklin elections in the IC model. The maximum is 25.59 seconds.

Figure 222: Average time the algorithm needs to find a successful control action for destructive control by deleting candidates in Bucklin elections in the TM model. The maximum is 63.26 seconds.
Figure 223: Average time the algorithm needs to determine no-instance of destructive control by deleting candidates in Bucklin elections in the TM model. The maximum is 309.1 seconds.

Figure 224: Average time the algorithm needs to give a definite output for destructive control by deleting candidates in Bucklin elections in the TM model. The maximum is 106.02 seconds.
B.5. Constructive Control by Partition of Candidates in Model TE

![Diagram](image)

Figure 225: Results for Bucklin voting in the IC model for constructive control by partition of candidates in model TE. Number of voters is fixed.

	m = 4	m = 8	m = 16	m = 32	m = 64	m = 128
n	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	42 93 114 127 150 172	147 205 231 284 284 300	353 295 269 216 216 200	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
# ci	458 407 386 373 350 328	353 295 269 216 216 200	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
# to	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0

	m = 16	m = 32	m = 64	m = 128
n	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	196 256 252 223 200 191	41 39 62 63 66 55	0 0 0 0 0 0	0 0 0 0 0 0
# ci	304 244 248 277 300 309	459 461 438 437 434 445	0 0 0 0 0 0	0 0 0 0 0 0
# to	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0

175
Figure 226: Results for Bucklin voting in the IC model for constructive control by partition of candidates in model TE. Number of voters is fixed.

n = 4	n = 8					
m						
4	8	16	32	64	128	
# cp	42	147	196	41	15	6
# ci	458	353	0	0	0	0
# to	0	0	304	459	485	494
m						
4	8	16	32	64	128	
# cp	114	231	252	62	11	3
# ci	386	269	0	0	0	0
# to	0	0	248	438	489	497
m						
4	8	16	32	64	128	
# cp	150	284	200	66	23	8
# ci	350	216	0	0	0	0
# to	0	0	300	434	477	492

176
Figure 227: Results for Bucklin voting in the TM model for constructive control by partition of candidates in model TE. Number of candidates is fixed.

	$m = 4$		$m = 8$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	27 50 87 87 120 126	94 125 150 168 187 223	
# ci	473 450 413 413 380 374	406 375 350 332 313 277	
# to	0 0 0 0 0 0	0 0 0 0 0 0	
$m = 16$		$m = 32$	
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	105 126 142 99 114 80	27 32 40 36 29 120	
# ci	0 0 0 0 0 0	0 0 0 0 0 0	
# to	395 374 358 401 386 420	473 468 460 464 471 488	
$m = 64$		$m = 128$	
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	8 13 7 10 10 11	9 4 1 3 2 1	
# ci	0 0 0 0 0 0	0 0 0 0 0 0	
# to	492 487 493 490 490 489	491 496 499 497 498 499	
Figure 228: Results for Bucklin voting in the TM model for constructive control by partition of candidates in model TE. Number of voters is fixed.

m	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	27	94	105	27	8	9	50	125	126	32	13	4
\# ci	473	406	0	0	0	0	450	375	0	0	0	0
\# to	0	0	305	473	492	491	0	0	374	468	487	496
n = 16	n = 32											
m	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	87	150	142	40	7	1	87	168	99	36	10	30
\# ci	413	350	0	0	0	0	413	332	0	0	0	0
\# to	0	0	358	460	493	499	0	0	401	464	490	497
n = 64	n = 128											
m	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	120	187	114	29	10	2	126	223	80	12	11	1
\# ci	380	313	0	0	0	0	374	277	0	0	0	0
\# to	0	0	386	471	490	498	0	0	420	488	489	499
B.5.1. Computational Costs

Figure 229: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 286.05 seconds.

Figure 230: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 26.26 seconds.
Figure 231: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 286.05 seconds.

Figure 232: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 142.58 seconds.
Figure 233: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 26.14 seconds.

Figure 234: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 142.58 seconds.
B.6. Destructive Control by Partition of Candidates in Model TE

Figure 235: Results for Bucklin voting in the IC model for destructive control by partition of candidates in model TE. Number of candidates is fixed.

	m = 4		m = 8									
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	288	316	312	320	340	312	429	465	480	486	487	484
# ci	212	184	188	180	160	188	71	35	20	14	13	16
# to	0	0	0	0	0	0	0	0	0	0	0	0
m = 16												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	488	496	500	499	498	499	353	438	478	494	494	495
# ci	4	0	0	0	0	0	1	0	0	0	0	0
# to	1		1	2	1		146	62	22	6	6	5
m = 32												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	244	349	417	462	465	472	244	325	379	406	426	446
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	356	151	83	38	35	28	256	175	121	94	74	54
m = 64												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp												
# ci												
# to												
m = 128												

182
Figure 236: Results for Bucklin voting in the IC model for destructive control by partition of candidates in model TE. Number of voters is fixed.

	$n = 4$		$n = 8$	
m	4 8 16 32 64 128		4 8 16 32 64 128	
# cp	288 429 488 353 244 244		316 465 496 438 349 325	
# ci	212 71 4 1 0 0		184 35 0 0 0 0	
# to	0 0 8 146 256 256		0 0 4 62 151 175	
$n = 16$				
m	4 8 16 32 64 128		4 8 16 32 64 128	
# cp	312 480 500 478 417 379		320 486 499 494 462 406	
# ci	188 20 0 0 0 0		180 14 0 0 0 0	
# to	0 0 0 22 83 121		0 0 1 6 38 94	
$n = 32$				
m	4 8 16 32 64 128		4 8 16 32 64 128	
# cp	340 487 498 494 465 426		312 484 499 495 472 446	
# ci	160 13 0 0 0 0		188 16 0 0 0 0	
# to	0 0 2 6 35 74		0 0 1 5 28 54	
Figure 237: Results for Bucklin voting in the TM model for destructive control by partition of candidates in model TE. Number of candidates is fixed.

m	n	4	8	16	32	64	128
m = 4	# cp	213	174	199	197	250	280
	# ci	287	326	301	303	250	220
	# to	0	0	0	0	0	0
m = 16	# cp	320	325	365	389	387	343
	# ci	165	152	105	61	43	37
	# to	15	23	3	50	70	120
m = 64	# cp	160	193	237	240	246	213
	# ci	137	91	68	29	11	10
	# to	203	216	195	231	243	277
m = 8	# cp	270	302	322	381	408	394
	# ci	230	198	178	119	92	106
	# to	0	0	0	0	0	0
m = 16	# cp	216	247	273	291	282	285
	# ci	146	129	78	46	18	14
	# to	138	124	149	163	200	201
m = 32	# cp	147	191	198	223	183	185
	# ci	114	89	75	23	9	4
	# to	239	220	227	254	308	311
Figure 238: Results for Bucklin voting in the TM model for destructive control by partition of candidates in model TE. Number of voters is fixed.

n = 4	n = 8			
m	n = 16	n = 32	n = 64	n = 128
m	n = 16	n = 32	n = 64	n = 128
# cp	213 270 320 216 160 147	174 302 325 247 193 191		
# ci	287 230 165 146 114 114	326 198 152 129 91 89		
# to	0 0 15 138 203 239	0 0 23 124 216 220		
m	n = 64	n = 128		
# cp	199 322 365 273 237 198	197 381 389 291 240 223		
# ci	301 178 105 78 68 75	303 119 61 46 29 23		
# to	0 0 30 149 195 227	0 0 50 163 231 254		
m	n = 64	n = 128		
# cp	250 408 387 282 246 183	280 394 343 285 213 185		
# ci	250 92 43 18 11 9	220 106 37 14 10 4		
# to	0 0 70 200 243 308	0 0 120 201 277 311		
B.6.1. Computational Costs

Figure 239: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 36.79 seconds.

Figure 240: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 77.9 seconds.
Figure 241: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 77.9 seconds.

Figure 242: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 48.67 seconds.
Figure 243: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 36.79 seconds.

Figure 244: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 43.14 seconds.
B.7. Constructive Control by Partition of Candidates in Model TP

Figure 245: Results for Bucklin voting in the IC model for constructive control by partition of candidates in model TP. Number of candidates is fixed.

$m=4$	$m=8$											
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	43	77	101	128	151	151	136	206	240	280	270	301
# ci	457	423	399	372	349	349	364	294	260	220	230	199
# to	0	0	0	0	0	0	0	0	0	0	0	0
$m=16$												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	227	239	222	221	191	189	47	57	66	73	66	61
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	273	261	278	279	309	311	453	443	434	427	434	439
$m=32$												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	11	16	16	16	17	24	5	4	9	11	11	8
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	489	484	484	484	483	476	495	496	491	489	489	492
Figure 246: Results for Bucklin voting in the IC model for constructive control by partition of candidates in model TP. Number of voters is fixed.

	\(n = 4 \)		\(n = 8 \)
\(m \)	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	43 136 227 47 11 5	77 206 239 57 16 4	
# ci	457 364 0 0 0 0	423 294 0 0 0 0	
# to	0 0 273 453 489 495	0 0 261 443 484 496	
\(n = 16 \)		\(n = 32 \)	
# cp	101 240 222 66 16 9	128 280 221 73 16 11	
# ci	399 260 0 0 0 0	372 220 0 0 0 0	
# to	0 0 278 434 484 491	0 0 279 427 484 489	
\(n = 64 \)		\(n = 128 \)	
# cp	151 270 191 66 17 11	151 301 189 61 24 8	
# ci	349 230 0 0 0 0	349 199 0 0 0 0	
# to	0 0 309 434 483 489	0 0 311 439 476 492	
Figure 247: Results for Bucklin voting in the TM model for constructive control by partition of candidates in model TP. Number of candidates is fixed.

	$m = 4$		$m = 8$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	22 53 76 100 120 114	93 114 148 155 187 192	
# ci	478 447 424 400 380 368	407 386 352 345 313 308	
# to	0 0 0 0 0 0	0 0 0 0 0 0	
$m = 16$		$m = 32$	
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	113 136 132 108 109 86	35 26 30 25 25 32	
# ci	0 0 0 0 0 0	0 0 0 0 0 0	
# to	387 364 368 392 391 414	465 474 470 475 475 468	
$m = 64$		$m = 128$	
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	20 11 15 13 6 6	5 5 3 1 3 2	
# ci	0 0 0 0 0 0	0 0 0 0 0 0	
# to	480 489 485 487 494 494	495 495 497 499 497 498	
Figure 248: Results for Bucklin voting in the TM model for constructive control by partition of candidates in model TP. Number of voters is fixed.

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	22	93	113	35	20	5	53	114	136	26	11	5
# ci	478	407	0	0	0	0	447	386	0	0	0	0
# to	0	0	387	465	480	495	0	0	364	474	489	495

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	76	148	132	30	15	3	100	155	108	25	13	1
# ci	424	352	0	0	0	0	400	345	0	0	0	0
# to	0	0	368	470	485	497	0	0	392	475	487	499

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	120	187	109	25	6	3	114	192	86	32	6	2
# ci	38	313	0	0	0	0	386	308	0	0	0	0
# to	0	0	391	475	494	497	0	0	414	468	494	498
B.7.1. Computational Costs

Figure 249: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 164.65 seconds.

Figure 250: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 36.09 seconds.
Figure 251: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 164.65 seconds.

Figure 252: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 155.73 seconds.
Figure 253: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 36.83 seconds.

Figure 254: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 155.73 seconds.
Figure 255: Results for Bucklin voting in the IC model for destructive control by partition of candidates in model TP. Number of candidates is fixed.

m = 4	m = 8											
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	288	316	312	320	340	312	429	465	480	486	487	484
# ci	212	184	188	180	160	188	71	35	20	14	13	16
# to	0	0	0	0	0	0	0	0	0	0	0	0
m = 16	m = 32											
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	486	496	500	499	498	499	353	438	478	494	494	495
# ci	4	0	0	0	0	0	1	0	0	0	0	0
# to	10	4	0	1	2	1	146	62	22	6	6	5
m = 64	m = 128											
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	244	349	417	462	465	472	244	325	379	406	426	446
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	256	151	83	38	35	28	256	175	121	94	74	54
Figure 256: Results for Bucklin voting in the IC model for destructive control by partition of candidates in model TP. Number of voters is fixed.

m	$n=4$	$n=8$	$n=16$	$n=32$	$n=64$	$n=128$
	# cp	# ci	# to	# cp	# ci	# to
4	288	212	0	312	188	0
8	429	71	0	480	20	0
16	486	4	0	500	0	0
32	353	1	0	478	0	0
64	244	0	0	417	0	0
128	244	0	0	379	0	0
	316	184	0	478	180	0
	465	35	0	417	14	0
	496	0	0	379	0	0
	438	0	0	417	0	0
	349	0	0	379	0	0
	325	0	0	379	0	0

m	$n=16$	$n=32$	$n=64$	$n=128$		
	# cp	# ci	# to	# cp	# ci	# to
4	312	188	0	340	160	0
8	480	20	0	487	13	0
16	500	0	0	498	0	0
32	478	0	0	494	0	0
64	417	0	0	465	0	0
128	379	0	0	426	0	0
	478	180	0	494	188	0
	496	14	0	494	16	0
	438	0	0	494	0	0
	349	0	0	494	0	0
	325	0	0	494	0	0
	325	0	0	494	0	0
Figure 257: Results for Bucklin voting in the TM model for destructive control by partition of candidates in model TP. Number of candidates is fixed.

m	4	8	16	32	64	128	4	8	16	32	64	128
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	213	174	199	197	250	280	270	302	322	381	408	394
# ci	287	326	301	303	250	220	230	198	178	119	92	106
# to	0	0	0	0	0	0	0	0	0	0	0	0

m = 16

m	4	8	16	32	64	128	4	8	16	32	64	128
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	319	324	365	389	387	343	216	247	273	291	282	284
# ci	165	152	105	61	43	37	146	129	78	46	18	14
# to	16	24	30	50	70	120	138	124	149	163	200	202

m = 32

m	4	8	16	32	64	128	4	8	16	32	64	128
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	160	193	237	240	245	213	147	191	198	223	183	185
# ci	137	91	68	29	11	10	114	89	75	23	9	4
# to	203	216	195	231	244	277	239	220	227	254	308	311

198
Figure 258: Results for Bucklin voting in the TM model for destructive control by partition of candidates in model TP. Number of voters is fixed.

m	n = 4	n = 8										
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	213	270	319	216	160	147	174	302	324	247	193	191
# ci	287	230	165	146	137	114	326	198	152	129	91	89
# to	0	0	16	138	203	239	0	0	24	124	216	220

m	n = 16	n = 32										
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	199	322	365	273	237	198	197	381	389	291	240	223
# ci	301	178	105	78	68	75	303	119	61	46	29	23
# to	0	0	30	149	195	227	0	0	50	163	231	254

m	n = 64	n = 128										
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	250	408	387	282	245	183	280	394	343	284	213	185
# ci	250	92	43	18	11	9	220	106	37	14	10	4
# to	0	0	70	200	244	308	0	0	120	202	277	311

199
B.8.1. Computational Costs

Figure 259: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 75,81 seconds.

Figure 260: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 36,71 seconds.
Figure 261: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 75,81 seconds.

Figure 262: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 122,89 seconds.
Figure 263: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 10.36 seconds.

Figure 264: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 120.28 seconds.
B.9. Constructive Control by Runoff Partition of Candidates in Model TE

Figure 265: Results for Bucklin voting in the IC model for constructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

	m = 4		m = 8									
n		n										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	34	77	87	118	122	131	64	148	177	218	225	237
# ci	466	423	413	382	378	369	436	352	323	282	275	263
# to	0	0	0	0	0	0	0	0	0	0	0	0

	m = 16		m = 32									
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	139	250	268	283	266	254	61	104	121	132	122	125
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	361	250	232	217	234	246	439	396	379	368	378	375

	m = 64		m = 128									
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	20	32	50	49	51	63	3	11	16	29	33	24
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	480	468	450	451	449	437	497	489	484	471	467	476
Figure 266: Results for Bucklin voting in the IC model for constructive control by runoff—partition of candidates in model TE. Number of voters is fixed.

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	34	64	139	61	20	3	77	148	250	104	32	11
# ci	466	436	0	0	0	0	423	352	0	0	0	0
# to	0	0	361	439	480	497	0	0	250	396	468	489

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	87	177	268	121	50	16	118	218	283	132	49	29
# ci	413	323	0	0	0	0	382	282	0	0	0	0
# to	0	0	232	379	450	484	0	0	217	368	451	471

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	122	225	266	122	51	33	131	237	254	125	63	24
# ci	378	275	0	0	0	0	369	263	0	0	0	0
# to	0	0	234	378	449	467	0	0	246	375	437	476
Figure 267: Results for Bucklin voting in the TM model for constructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

n	4	8	16	32	64	128	4	8	16	32	64	128
$m = 4$												
# cp	25	36	55	68	87	88	52	74	84	106	111	122
# ci	475	464	445	432	413	412	448	426	416	394	389	378
# to	0	0	0	0	0	0	0	0	0	0	0	0
$m = 16$												
# cp	60	103	105	109	105	104	21	45	53	45	29	28
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	440	397	395	391	395	396	479	455	447	455	471	472
$m = 32$												
# cp	18	14	15	19	22	21	9	7	7	7	9	9
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	482	486	485	481	478	479	491	493	493	493	491	491
$m = 64$												
# cp												
# ci												
# to												
$m = 128$												
# cp												
# ci												
# to												
Figure 268: Results for Bucklin voting in the TM model for constructive control by runoff-partition of candidates in model TE. Number of voters is fixed.

	$n = 4$		$n = 8$		$n = 16$		$n = 32$		$n = 64$		$n = 128$
m	4 8 16 32 64 128		4 8 16 32 64 128		4 8 16 32 64 128		4 8 16 32 64 128		4 8 16 32 64 128		4 8 16 32 64 128
# cp	25 52 60 21 18 9		36 74 103 45 14 7		464 426 0 0 0 0		397 455 486 493		453 426 0 0 0 0		432 394 0 0 0 0
# ci	475 448 0 0 0 0		464 426 0 0 0 0		397 455 486 493		453 426 0 0 0 0		432 394 0 0 0 0		432 394 0 0 0 0
# to	0 0 440 479 482 491		0 0 397 455 486 493		0 0 397 455 486 493		0 0 397 455 486 493		0 0 397 455 486 493		0 0 397 455 486 493
B.9.1. Computational Costs

Figure 269: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 154.23 seconds.

Figure 270: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 22.8 seconds.
Figure 271: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 154.23 seconds.

Figure 272: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 128.41 seconds.
Figure 273: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 22.56 seconds.

Figure 274: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 128.41 seconds.
B.10. Destructive Control by Runoff Partition of Candidates in Model TE

![Figure 275](image)

Figure 275: Results for Bucklin voting in the IC model for destructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

	$m = 4$		$m = 8$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	288 299 286 290 312 288	418 446 467 478 486 478	
# ci	212 201 214 210 188 212	82 54 33 22 14 22	
# to	0 0 0 0 0 0	0 0 0 0 0 0	

	$m = 16$		$m = 32$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	490 498 500 499 500 499	378 451 480 492 494 488	
# ci	4 0 0 0 0 0	1 0 0 0 0 0	
# to	6 2 0 1 0 1	121 49 20 8 6 12	

	$m = 64$		$m = 128$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	256 356 406 451 461 464	232 317 369 386 407 419	
# ci	0 0 0 0 0 0	0 0 0 0 0 0	
# to	244 144 94 49 39 36	268 183 131 114 93 81	
Figure 276: Results for Bucklin voting in the IC model for destructive control by runoff—partition of candidates in model TE. Number of voters is fixed.

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	288	418	490	378	256	232	299	446	498	451	356	317
# ci	212	82	4	1	0	0	201	54	0	0	0	0
# to	0	0	6	121	244	268	0	0	2	49	144	183

m	4	8	16	32	64	128					
# cp	286	467	500	480	406	369					
# ci	214	33	0	0	0	0					
# to	0	0	20	94	131	0	0	1	8	49	114

m	4	8	16	32	64	128					
# cp	312	486	500	494	461	407					
# ci	188	14	0	0	0	0					
# to	0	0	6	39	93	0	0	1	12	36	81
Figure 277: Results for Bucklin voting in the TM model for destructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

m	n	# cp	# ci	# to
4	4	213	287	0
4	8	169	307	0
4	16	193	307	0
4	32	193	254	0
4	64	246	229	0
4	128	271	236	0
8	4	169	287	0
8	8	193	307	0
8	16	193	307	0
8	32	246	229	0
8	64	271	236	0
8	128	293	264	0

$m = 16$

m	n	# cp	# ci	# to
4	4	330	287	0
4	8	169	307	0
4	16	193	307	0
4	32	246	229	0
4	64	271	236	0
4	128	293	264	0
8	4	330	287	0
8	8	169	307	0
8	16	193	307	0
8	32	246	229	0
8	64	271	236	0
8	128	293	264	0

$m = 32$

m	n	# cp	# ci	# to
4	4	330	287	0
4	8	339	307	0
4	16	382	307	0
4	32	418	254	0
4	64	411	229	0
4	128	379	236	0
8	4	330	287	0
8	8	339	307	0
8	16	382	307	0
8	32	418	254	0
8	64	411	229	0
8	128	379	236	0

$m = 64$

m	n	# cp	# ci	# to
4	4	330	287	0
4	8	339	307	0
4	16	382	307	0
4	32	418	254	0
4	64	411	229	0
4	128	379	236	0
8	4	330	287	0
8	8	339	307	0
8	16	382	307	0
8	32	418	254	0
8	64	411	229	0
8	128	379	236	0

$m = 128$

m	n	# cp	# ci	# to
4	4	169	91	29
4	8	193	91	29
4	16	240	236	29
4	32	236	239	11
4	64	239	208	10
4	128	208	114	4
8	4	169	91	29
8	8	193	91	29
8	16	240	236	29
8	32	236	239	11
8	64	239	208	10
8	128	208	114	4

$m = 256$

m	n	# cp	# ci	# to
4	4	169	91	29
4	8	193	91	29
4	16	240	236	29
4	32	236	239	11
4	64	239	208	10
4	128	208	114	4
8	4	169	91	29
8	8	193	91	29
8	16	240	236	29
8	32	236	239	11
8	64	239	208	10
8	128	208	114	4

$m = 512$

m	n	# cp	# ci	# to
4	4	169	91	29
4	8	193	91	29
4	16	240	236	29
4	32	236	239	11
4	64	239	208	10
4	128	208	114	4
8	4	169	91	29
8	8	193	91	29
8	16	240	236	29
8	32	236	239	11
8	64	239	208	10
8	128	208	114	4
Figure 278: Results for Bucklin voting in the TM model for destructive control by runoff-partition of candidates in model TE. Number of voters is fixed.

	\(n = 4\)		\(n = 8\)									
\(m\)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	213	264	330	231	169	146	169	293	339	258	193	179
# ci	287	236	165	146	137	114	331	207	152	129	91	89
# to	0	0	5	123	194	240	0	0	9	113	216	232
	\(n = 16\)		\(n = 32\)									
\(m\)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	193	317	382	290	240	182	193	373	418	306	236	208
# ci	307	183	105	78	68	75	307	127	61	46	29	23
# to	0	0	13	132	192	243	0	0	21	148	235	269
	\(n = 64\)		\(n = 128\)									
\(m\)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	246	404	411	295	239	168	271	389	379	290	208	158
# ci	254	96	43	18	11	9	229	111	37	14	10	4
# to	0	0	46	187	250	323	0	0	84	196	282	338
B.10.1. Computational Costs

Figure 279: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 43.52 seconds.

Figure 280: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 22.78 seconds.
Figure 281: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TE in Bucklin elections in the IC model. The maximum is 43.52 seconds.

Figure 282: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 80.81 seconds.
Figure 283: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 7.23 seconds.

Figure 284: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TE in Bucklin elections in the TM model. The maximum is 78.82 seconds.
B.11. Constructive Control by Runoff Partition of Candidates in Model TP

Figure 285: Results for Bucklin voting in the IC model for constructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

	m = 4	m = 8	m = 16	m = 32	m = 64	m = 128
n	4 8 16	4 8 16	4 8 16	4 8 16	4 8 16	4 8 16
# cp	29 78 95	69 174 211	431 326 289	329 288 274		
# ci	471 422 405	374 373	374 373	374 373		
# to	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0		
	m = 16	m = 32				
n	4 8 16	4 8 16	4 8 16	4 8 16	4 8 16	4 8 16
# cp	138 247 267	251 237	44 111 120	115 134 122		
# ci	0 0 0 0 0 0 0 0 0 0 0 0 0 0					
# to	362 253 233	219 249	263 456 389	380 385 366	378 382 398	
	m = 64	m = 128				
n	4 8 16	4 8 16	4 8 16	4 8 16	4 8 16	4 8 16
# cp	13 45 65	66 46	6 18 16	29 33 24		
# ci	0 0 0 0 0 0 0 0 0 0 0 0 0 0					
# to	487 455 435	440 454	494 482 484	471 467 476		

217
Figure 286: Results for Bucklin voting in the IC model for constructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

m	n=4		n=8		n=16	n=32	n=64	n=128				
	4	8	16	32	64	128	4	8	16	32	64	128
# cp					78	174	247	111	45	18		
# ci	471	431	0	0	422	326	0	0	0	0		
# to	0	0	362	456	487	494	0	0	253	389	455	482

m	n=16		n=32		n=64	n=128						
	4	8	16	32	64	128						
# cp	95	171	267	120	65	16						
# ci	405	329	0	0	389	289	0	0	0	0		
# to	0	0	233	380	435	484	0	0	219	385	448	471

m	n=64		n=128									
	4	8	16	32	64	128						
# cp	126	212	251	134	60	33						
# ci	374	288	0	0	0	373	274	0	0	0		
# to	0	0	249	366	440	467	0	0	263	378	454	476
Figure 287: Results for Bucklin voting in the TM model for constructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

	$m = 4$		$m = 8$		$m = 16$		$m = 32$		$m = 64$		$m = 128$	
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	19	43	58	79	87	82	51	73	84	98	120	125
# ci	481	457	442	421	413	418	449	427	416	402	380	375
# to	0	0	0	0	0	0	0	0	0	0	0	0
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	71	104	101	118	104	103	25	46	51	61	43	23
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	429	396	399	382	396	397	475	454	449	439	457	477
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	13	11	14	27	20	15	7	10	9	7	10	5
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	487	489	486	473	480	485	493	490	491	493	490	495
Figure 288: Results for Bucklin voting in the TM model for constructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

	\(n=4\)	\(n=8\)	\(n=16\)	\(n=32\)	\(n=64\)	\(n=128\)						
\(m\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	19	51	71	25	13	7	43	73	104	46	11	10
\# ci	481	449	0	0	0	0	457	427	0	0	0	0
\# to	0	0	429	475	487	493	0	0	396	454	489	490
\(n=4\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	58	84	101	51	14	9	79	98	118	61	27	7
\# ci	442	416	0	0	0	0	421	402	0	0	0	0
\# to	0	0	399	449	486	491	0	0	382	439	473	493
\(n=8\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	87	120	104	43	20	10	82	125	103	23	15	5
\# ci	413	380	0	0	0	0	418	375	0	0	0	0
\# to	0	0	396	457	480	490	0	0	397	477	485	495

220
B.11.1. Computational Costs

Figure 289: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 152.45 seconds.

Figure 290: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 23.19 seconds.
Figure 291: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 152.45 seconds.

Figure 292: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 140.93 seconds.
Figure 293: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 22.53 seconds.

Figure 294: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 140.93 seconds.
B.12. Destructive Control by Runoff Partition of Candidates in Model TP

Figure 295: Results for Bucklin voting in the IC model for destructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

n	4	8	16	32	64	128
# cp	288	299	286	290	312	288
# ci	212	201	214	210	188	212
# to	0	0	0	0	0	0

m = 16
n
cp
ci
to

m = 32
n
cp
ci
to

m = 64
n
cp
ci
to

m = 128
n
cp
ci
to
Figure 296: Results for Bucklin voting in the IC model for destructive control by runoff—partition of candidates in model TP. Number of voters is fixed.

	n = 4		n = 8		n = 16		n = 32		n = 64		n = 128	
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	288	400	355	235	223		299	427	494	434	340	304
# ci	212	10	4	1	0	0	201	73	0	0	0	0
# to	0	0	17	144	265	277	0	0	6	66	160	196
n = 16												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	286	467	499	472	397	359	290	474	499	487	445	379
# ci	214	33	0	0	0	0	210	26	0	0	0	0
# to	0	0	1	28	103	141	0	0	1	13	55	121
n = 32												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	312	485	500	493	456	401	288	478	499	486	459	413
# ci	188	15	0	0	0	0	212	22	0	0	0	0
# to	0	0	0	7	44	99	0	0	1	14	41	87
Figure 297: Results for Bucklin voting in the TM model for destructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

n	4	8	16	32	64	128	$m = 4$	4	8	16	32	64	128
# cp	213	169	193	193	246	271	256	286	316	373	404	389	
# ci	287	331	307	307	254	229	244	214	184	127	96	111	
# to	0	0	0	0	0	0	0	0	0	0	0	0	

n	4	8	16	32	64	128	$m = 16$	4	8	16	32	64	128
# cp	316	334	380	417	411	379	216	248	276	302	293	289	
# ci	165	152	105	61	43	37	146	129	78	46	18	14	
# to	19	14	15	22	46	84	138	123	146	152	189	197	

n	4	8	16	32	64	128	$m = 64$	4	8	16	32	64	128
# cp	160	187	234	235	238	208	136	174	180	208	167	156	
# ci	137	91	68	29	11	10	114	89	75	23	9	4	
# to	203	222	198	236	251	282	250	237	245	269	324	340	

226
Figure 298: Results for Bucklin voting in the TM model for destructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

m	$n = 4$	$n = 8$	$n = 16$	$n = 32$	$n = 64$	$n = 128$
	4	8	16	32	64	128
# cp	213	256	316	216	160	136
# ci	287	244	165	146	137	114
# to	0	0	19	138	203	250

m	$n = 16$	$n = 32$	$n = 64$	$n = 128$
	4	8	16	32
# cp	193	316	380	276
# ci	307	184	105	78
# to	0	0	15	146

m	$n = 64$	$n = 128$
	4	8
# cp	246	404
# ci	254	96
# to	0	0
B.12.1. Computational Costs

Figure 299: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 44.23 seconds.

Figure 300: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 22.47 seconds.
Figure 301: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TP in Bucklin elections in the IC model. The maximum is 44.23 seconds.

Figure 302: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 80.1 seconds.
Figure 303: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 7.15 seconds.

Figure 304: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TP in Bucklin elections in the TM model. The maximum is 78.09 seconds.
B.13. Constructive Control by Adding Voters

![Graph showing the percentage of elections where control is possible against the number of voters, n.](image)

Figure 305: Results for Bucklin voting in the IC model for constructive control by adding voters. Number of candidates is fixed.

	m = 4	m = 8
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	87 159 280 409 481 497	71 124 280 357 461 485
# ci	413 341 220 7 0 0	429 376 220 6 0 0
# to	0 0 84 19 3	0 0 0 137 39 15

	m = 16	m = 32
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	44 80 208 308 429 490	15 59 163 261 410 479
# ci	456 420 292 21 0 0	485 441 337 35 0 0
# to	0 0 0 171 71 10	0 0 0 204 90 21

	m = 64	m = 128
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	12 42 121 197 359 479	9 20 103 146 324 457
# ci	488 458 377 72 1 0	491 480 232 94 2 0
# to	0 0 2 231 140 21	0 0 165 260 174 43
Figure 306: Results for Bucklin voting in the IC model for constructive control by adding voters. Number of voters is fixed.

	$n = 4$		$n = 8$		$n = 16$		$n = 32$		$n = 64$		$n = 128$
m	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128			
# cp	87 71 44 15 12 9	159 124 80 59 42 20	341 376 420 441 458 480	280 280 208 163 121 103	409 357 308 261 197 146	481 461 429 410 359 324	497 489 490 479 479 457	280 280 208 163 121 103			
# ci	413 429 456 485 488 491	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0			
# to	71 44 15 12 9	159 124 80 59 42 20	341 376 420 441 458 480	280 280 208 163 121 103	409 357 308 261 197 146	481 461 429 410 359 324	497 489 490 479 479 457	280 280 208 163 121 103			
Figure 307: Results for Bucklin voting in the TM model for constructive control by adding voters. Number of candidates is fixed.

m	4	8	16	32	64	128
n						
	4	8	16	32	64	128
# cp	64	84	159	175	190	203
# ci	436	416	341	203	231	229
# to	0	0	0	122	79	68

m	16	32	64	128		
n						
	4	8	16	32	64	128
# cp	23	45	69	79	85	139
# ci	477	455	431	357	352	314
# to	0	0	0	64	63	47

m	64	128				
n						
	4	8	16	32	64	128
# cp	10	11	28	26	40	53
# ci	490	489	472	422	403	406
# to	0	0	0	52	57	41
Figure 308: Results for Bucklin voting in the TM model for constructive control by adding voters. Number of voters is fixed.

n	m	# cp	# ci	# to
4	4	64	436	0
	8	57	443	0
	16	23	477	0
	32	18	485	0
	64	30	490	0
	128	10	497	0
	4	84	416	0
	8	66	434	0
	16	45	455	0
	32	30	470	0
	64	11	489	0
	128	5	495	0
8	4	84	416	0
	8	66	434	0
	16	45	455	0
	32	30	470	0
	64	11	489	0
	128	5	495	0

n	m	# cp	# ci	# to
16	4	159	341	0
	8	92	408	0
	16	69	431	0
	32	30	470	0
	64	28	472	0
	128	12	442	0
	4	175	203	0
	8	113	302	0
	16	79	357	0
	32	58	390	0
	64	30	422	0
	128	26	438	0
32	4	175	203	0
	8	113	302	0
	16	79	357	0
	32	58	390	0
	64	30	422	0
	128	26	438	0
64	4	190	231	79
	8	133	296	71
	16	85	352	63
	32	51	391	58
	64	40	403	57
	128	22	442	36
	4	203	229	68
	8	142	298	60
	16	139	314	47
	32	80	376	44
	64	53	406	41
	128	21	442	37
128	4	190	231	79
	8	133	296	71
	16	85	352	63
	32	51	391	58
	64	40	403	57
	128	22	442	36
	4	203	229	68
	8	142	298	60
	16	139	314	47
	32	80	376	44
	64	53	406	41
	128	21	442	37
B.13.1. Computational Costs

Figure 309: Average time the algorithm needs to find a successful control action for constructive control by adding voters in Bucklin elections in the IC model. The maximum is 106.7 seconds.

Figure 310: Average time the algorithm needs to determine no-instance of constructive control by adding voters in Bucklin elections in the IC model. The maximum is 242.32 seconds.
Figure 311: Average time the algorithm needs to give a definite output for constructive control by adding voters in Bucklin elections in the IC model. The maximum is 184.92 seconds.

Figure 312: Average time the algorithm needs to find a successful control action for constructive control by adding voters in Bucklin elections in the TM model. The maximum is 29.3 seconds.
Figure 313: Average time the algorithm needs to determine no-instance of constructive control by adding voters in Bucklin elections in the TM model. The maximum is 66.06 seconds.

Figure 314: Average time the algorithm needs to give a definite output for constructive control by adding voters in Bucklin elections in the TM model. The maximum is 62.9 seconds.
B.14. Constructive Control by Deleting Voters

Figure 315: Results for Bucklin voting in the IC model for constructive control by deleting voters. Number of candidates is fixed.

n	$m=4$	$m=8$	$m=16$	$m=32$	$m=64$	$m=128$	$m=128$
# cp	88	214	346	441	484	497	514
# ci	412	286	154	10	0	427	360
# to	0	0	49	16	3	0	0

n	$m=64$	$m=128$
# cp	15	34
# ci	485	466
# to	0	0

238
Figure 316: Results for Bucklin voting in the IC model for constructive control by deleting voters. Number of voters is fixed.

	n = 4		n = 8
m	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	88 73 47 32 15 10	214 140 100 70 34 25	
# ci	412 427 453 468 485 490	286 360 400 430 466 475	
# to	0 0 0 0 0 0	0 0 0 0 0 0	

	n = 16		n = 32
m	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	346 323 244 178 139 90	441 394 369 266 197 144	
# ci	154 177 256 322 357 253	10 7 14 40 58 93	
# to	0 0 0 0 0 4 157	49 99 117 194 245 263	

	n = 64		n = 128
m	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	484 467 404 366 309 262	497 499 484 478 414 417	
# ci	0 0 0 0 2 2	0 0 0 0 0 0	
# to	16 33 96 134 189 236	3 1 16 22 86 83	
Figure 317: Results for Bucklin voting in the TM model for constructive control by deleting voters. Number of candidates is fixed.

m	n	# cp	# ci	# to
4	4	75	425	0
8	8	131	369	0
16	16	190	310	0
32	32	209	216	0
64	64	176	222	0
128	128	192	227	0
4	4	45	455	0
8	8	76	424	0
16	16	126	374	0
32	32	129	298	0
64	64	140	283	0
128	128	162	275	0

m	n	# cp	# ci	# to
16	4	27	473	0
8	8	42	458	0
16	16	77	423	0
32	32	84	351	0
64	64	85	342	0
128	128	101	330	0
4	4	21	479	0
8	8	26	474	0
16	16	45	394	0
32	32	49	403	0
64	64	49	386	0
128	128	101	368	0

m	n	# cp	# ci	# to
32	4	47	490	0
16	8	28	488	0
32	16	25	427	0
64	32	33	430	0
128	64	46	410	0
4	4	5	495	0
8	8	7	493	0
16	16	10	443	0
32	32	12	445	0
64	64	20	439	0
128	128	23	443	0

m	n	# cp	# ci	# to
64	4	10	490	0
32	8	12	488	0
64	16	25	427	0
128	32	33	430	0
4	4	5	495	0
8	8	7	493	0
16	16	10	443	0
32	32	12	445	0
64	64	20	439	0
128	128	23	443	0
Figure 318: Results for Bucklin voting in the TM model for constructive control by deleting voters. Number of voters is fixed.

	n = 4		n = 8									
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	75	45	27	21	10	5	131	76	42	26	12	7
# ci	425	455	473	479	490	495	369	424	458	474	484	493
# to	0	0	0	0	0	0	0	0	0	0	0	0
n = 16												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	190	126	77	45	28	10	209	129	84	49	25	12
# ci	310	374	423	394	427	443	216	298	351	403	430	445
# to	0	0	0	61	45	47	75	73	65	48	45	43
n = 32												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	176	140	85	64	33	20	192	162	101	68	46	23
# ci	222	283	342	386	410	439	227	275	333	368	408	443
# to	102	77	73	50	57	41	81	63	66	64	46	34
n = 64												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	176	140	85	64	33	20	192	162	101	68	46	23
# ci	222	283	342	386	410	439	227	275	333	368	408	443
# to	102	77	73	50	57	41	81	63	66	64	46	34
B.14.1. Computational Costs

Figure 319: Average time the algorithm needs to find a successful control action for constructive control by deleting voters in Bucklin elections in the IC model. The maximum is 46.5 seconds.

Figure 320: Average time the algorithm needs to determine no-instance of constructive control by deleting voters in Bucklin elections in the IC model. The maximum is 247.02 seconds.
Figure 321: Average time the algorithm needs to give a definite output for constructive control by deleting voters in Bucklin elections in the IC model. The maximum is 188.16 seconds.

Figure 322: Average time the algorithm needs to find a successful control action for constructive control by deleting voters in Bucklin elections in the TM model. The maximum is 158.2 seconds.
Figure 323: Average time the algorithm needs to determine no-instance of constructive control by deleting voters in Bucklin elections in the TM model. The maximum is 37.76 seconds.

Figure 324: Average time the algorithm needs to give a definite output for constructive control by deleting voters in Bucklin elections in the TM model. The maximum is 35.6 seconds.
B.15. Constructive Control by Partition of Voters in Model TE

Figure 325: Results for Bucklin voting in the IC model for constructive control by partition of voters in model TE. Number of candidates is fixed.

	\(m = 4 \)	\(m = 8 \)	\(m = 16 \)	\(m = 32 \)	\(m = 64 \)	\(m = 128 \)
\(n \)	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
\# cp	97 282 431 471 398 355	84 284 468 489 458 437	0 0 29 102 145 0 0 11 42 63	0 0 29 102 145 0 0 11 42 63	0 0 29 102 145 0 0 11 42 63	0 0 29 102 145 0 0 11 42 63
\# ci	403 218 69 0 0 0 416 216 32 0 0 0 416 216 32 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
\# to	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0
Figure 326: Results for Bucklin voting in the IC model for constructive control by partition of voters in model TE. Number of voters is fixed.

	n = 4		n = 8										
m	4	8	16	32	64	128	4	8	16	32	64	128	
# cp	97	84	32	23	12	9	282	284	219	162	87	41	
# ci	403	416	468	477	488	491	218	216	281	338	413	459	
# to	0	0	0	0	0	0	0	0	0	0	0	0	
	n = 16		n = 32										
m	4	8	16	32	64	128	4	8	16	32	64	128	
# cp	431	468	444	408	322	239	471	489	491	471	471	429	380
# ci	69	32	0	0	0	0	0	0	0	0	0	0	0
# to	0	0	56	92	178	261	29	11	29	71	71	120	
	n = 64		n = 128										
m	4	8	16	32	64	128	4	8	16	32	64	128	
# cp	398	458	480	475	471	465	355	437	456	469	471	476	
# ci	0	0	0	0	0	0	0	0	0	0	0	0	
# to	102	42	20	25	29	35	145	63	44	31	29	24	

246
Figure 327: Results for Bucklin voting in the TM model for constructive control by partition of voters in model TE. Number of candidates is fixed.

	\(m = 4\)		\(m = 8\)									
\(n\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	54	130	142	149	128	158	45	86	145	120	120	125
\# ci	446	370	358	189	159	115	455	414	355	106	84	67
\# to	0	0	162	213	227	0	0	0	274	296	308	

	\(m = 16\)		\(m = 32\)									
\(n\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	17	51	117	81	99	115	15	36	66	58	75	79
\# ci	483	449	97	54	26	34	485	464	63	35	14	18
\# to	0	0	286	365	375	351	0	0	371	407	411	403

	\(m = 64\)		\(m = 128\)									
\(n\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	0	21	49	28	46	57	6	5	28	17	25	45
\# ci	500	479	60	28	5	8	494	495	40	20	6	0
\# to	0	0	392	444	449	435	0	0	432	463	469	455
Figure 328: Results for Bucklin voting in the TM model for constructive control by partition of voters in model TE. Number of voters is fixed.

n	m	4	8	16	32	64	128	4	8	16	32	64	128
	# cp	54	45	17	15	0	6	130	86	51	36	21	5
	# ci	446	455	483	485	500	494	370	414	449	464	479	495
	# to	0	0	0	0	0	0	0	0	0	0	0	0
$n=16$	$n=32$	$n=64$	$n=128$										
	# cp	142	145	117	66	49	28	149	120	81	58	28	17
	# ci	358	355	97	63	60	40	189	106	54	35	28	20
	# to	0	0	286	371	392	432	162	274	365	407	444	463
$n=64$	$n=128$	$n=256$	$n=512$										
	# cp	128	120	99	75	46	25	158	125	115	79	57	45
	# ci	159	84	26	14	5	6	115	67	34	18	8	0
	# to	213	296	375	411	449	469	227	308	351	403	435	455
B.15.1. Computational Costs

Figure 329: Average time the algorithm needs to find a successful control action for constructive control by partition of voters in model TE in Bucklin elections in the IC model. The maximum is 47 seconds.

Figure 330: Average time the algorithm needs to determine no-instance of constructive control by partition of voters in model TE in Bucklin elections in the IC model. The maximum is 475.79 seconds.
Figure 331: Average time the algorithm needs to give a definite output for constructive control by partition of voters in model TE in Bucklin elections in the IC model. The maximum is 47 seconds.

Figure 332: Average time the algorithm needs to find a successful control action for constructive control by partition of voters in model TE in Bucklin elections in the TM model. The maximum is 57.39 seconds.
Figure 333: Average time the algorithm needs to determine no-instance of constructive control by partition of voters in model TE in Bucklin elections in the TM model. The maximum is 274.43 seconds.

Figure 334: Average time the algorithm needs to give a definite output for constructive control by partition of voters in model TE in Bucklin elections in the TM model. The maximum is 203.24 seconds.
B.16. Destructive Control by Partition of Voters in Model TE

Figure 335: Results for Bucklin voting in the IC model for destructive control by partition of voters in model TE. Number of candidates is fixed.

n	m = 4	m = 8	m = 16	m = 32	m = 64	m = 128
	cp					
4	339	403	480	464	351	319
8	427	479	496	494	444	424
16	73	21	4	0	0	0
32	0	0	30	149	181	
64	0	0	0	6	56	76
128						
	ci					
4	161	97	20	6	0	0
8	73	21	4	0	0	0
16	0	0	30	149	181	
32	0	0	6	56	76	
64	0	0	0	6	56	76
128						
	to					
4	0	0	0	30	149	181
8	0	0	0	6	56	76
16	0	0	0	6	56	76
32	0	0	0	6	56	76
64	0	0	0	6	56	76
128						

252
Figure 336: Results for Bucklin voting in the IC model for destructive control by partition of voters in model TE. Number of voters is fixed.

	\(n = 4 \)	\(n = 8 \)	\(n = 16 \)	\(n = 32 \)	\(n = 64 \)	\(n = 128 \)
\(m \)	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
\# cp	339 427 476 478 491 498	403 479 488 496 500 500	480 496 499 500 500 500	464 494 497 499 500 500	351 444 479 488 492 492	319 424 465 473 485 485
\# ci	161 73 24 22 9 2	97 21 12 4 0 0	20 4 0 0 0 0	6 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
\# to	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
	\(n = 16 \)	\(n = 32 \)	\(n = 64 \)	\(n = 128 \)		
\(m \)	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128		
\# cp	480 496 499 500 500 500	464 494 497 499 500 500	351 444 479 488 492 492	319 424 465 473 485 485		
\# ci	20 4 0 0 0 0	6 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0		
\# to	0 0 1 0 0 0	30 6 3 1 1 0	0 0 0 0 0 0	0 0 0 0 0 0		
	\(n = 64 \)	\(n = 128 \)				
\(m \)	4 8 16 32 64 128	4 8 16 32 64 128				
\# cp	351 444 479 488 492 492	319 424 465 473 485 485				
\# ci	0 0 0 0 0 0	0 0 0 0 0 0				
\# to	149 56 21 12 8 8	181 76 35 27 15 15				
Figure 337: Results for Bucklin voting in the TM model for destructive control by partition of voters in model TE. Number of candidates is fixed.

	\(m = 4 \)	\(m = 8 \)	\(m = 16 \)	\(m = 32 \)	\(m = 64 \)	\(m = 128 \)																		
\(n \)	4	8	16	32	64	128	4	8	16	32	64	128	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	203	208	230	216	199	205	261	280	321	352	303	288	203	208	230	216	199	205	261	280	321	352	303	288
\# ci	297	292	270	205	170	120	239	220	179	92	83	69	297	292	270	205	170	120	239	220	179	92	83	69
\# to	0	0	0	79	131	175	0	0	0	56	114	143	0	0	0	79	131	175	0	0	0	56	114	143
\(m = 16 \)	4	8	16	32	64	128	4	8	16	32	64	128	350	367	402	432	409	365	350	367	402	432	409	365
\# cp	326	337	374	390	352	328	350	367	402	432	409	365	326	337	374	390	352	328	350	367	402	432	409	365
\# ci	174	163	94	66	35	30	150	133	82	25	13	19	174	163	94	66	35	30	150	133	82	25	13	19
\# to	0	0	32	44	113	142	0	0	16	43	78	116	0	0	32	44	113	142	0	0	16	43	78	116
\(m = 64 \)	4	8	16	32	64	128	4	8	16	32	64	128	363	381	443	438	408	365	363	381	443	438	408	365
\# cp	361	371	415	443	416	379	363	381	443	438	408	365	361	371	415	443	416	379	363	381	443	438	408	365
\# ci	139	129	71	27	8	6	137	119	45	24	4	5	139	129	71	27	8	6	137	119	45	24	4	5
\# to	0	0	14	30	76	115	0	0	12	38	88	130	0	0	14	30	76	115	0	0	12	38	88	130
Figure 338: Results for Bucklin voting in the TM model for destructive control by partition of voters in model TE. Number of voters is fixed.

	\(n = 4 \)		\(n = 8 \)		\(n = 16 \)		\(n = 32 \)		\(n = 64 \)		\(n = 128 \)	
	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	203	261	326	350	361	363	208	280	337	367	371	381
\# ci	297	239	174	150	139	137	292	220	163	133	129	119
\# to	0	0	0	0	0	0	0	0	0	0	0	0
	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	230	321	374	402	415	443	216	352	390	432	443	438
\# ci	270	179	94	82	71	45	205	92	66	25	27	24
\# to	0	0	32	16	14	12	79	56	44	43	30	38
	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	199	303	352	409	416	408	205	288	328	365	379	365
\# ci	170	83	35	13	8	4	120	69	3	19	6	5
\# to	131	114	113	78	76	88	175	143	142	116	115	130
B.16.1. Computational Costs

Figure 339: Average time the algorithm needs to find a successful control action for destructive control by partition of voters in model TE in Bucklin elections in the IC model. The maximum is 22,15 seconds.

Figure 340: Average time the algorithm needs to determine no-instance of destructive control by partition of voters in model TE in Bucklin elections in the IC model. The maximum is 325,26 seconds.
Figure 341: Average time the algorithm needs to give a definite output for destructive control by partition of voters in model TE in Bucklin elections in the IC model. The maximum is 21.87 seconds.

Figure 342: Average time the algorithm needs to find a successful control action for destructive control by partition of voters in model TE in Bucklin elections in the TM model. The maximum is 17.19 seconds.
Figure 343: Average time the algorithm needs to determine no-instance of destructive control by partition of voters in model TE in Bucklin elections in the TM model. The maximum is 57.94 seconds.

Figure 344: Average time the algorithm needs to give a definite output for destructive control by partition of voters in model TE in Bucklin elections in the TM model. The maximum is 24.63 seconds.
B.17. Constructive Control by Partition of Voters in Model TP

Figure 345: Results for Bucklin voting in the IC model for constructive control by partition of voters in model TP. Number of candidates is fixed.

m = 4	m = 8	m = 16	m = 32	m = 64	m = 128	
n	4	8	16	32	64	128
# cp	49	151	231	239	199	139
# ci	451	349	269	0	0	0
# to	0	0	261	301	361	0

m = 4	m = 8	m = 16	m = 32	m = 64	m = 128	
n	4	8	16	32	64	128
# cp	19	154	307	362	283	196
# ci	481	346	0	0	0	0
# to	0	0	193	138	217	304

m = 4	m = 8	m = 16	m = 32	m = 64	m = 128	
n	4	8	16	32	64	128
# cp	11	80	245	319	281	199
# ci	489	420	0	0	0	0
# to	0	0	255	181	219	301
Figure 346: Results for Bucklin voting in the IC model for constructive control by partition of voters in model TP. Number of voters is fixed.

	n = 4	n = 8	n = 16	n = 32	n = 64	n = 128			
m	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128			
# cp	49 34 19 20 11 5	151 158 154 108 80 38	349 342 346 392 420 462	231 331 307 287 245 183	239 331 362 357 319 279	199 246 283 263 281 269			
# ci	451 466 481 480 489 495	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0		
# to	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	
	n = 64	n = 128	n = 64	n = 128	n = 64	n = 128			
m	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128			
# cp	199 246 283 263 281 269	139 204 196 208 199 222	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0			
# ci	0 0 0 0 0 0	0 0 0 0 0 0	361 296 304 292 301 278	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	
# to	301 254 217 237 219 231	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
Figure 347: Results for Bucklin voting in the TM model for constructive control by partition of voters in model TP. Number of candidates is fixed.

n	$m = 4$	$m = 8$	$m = 16$	$m = 32$	$m = 64$	$m = 128$
	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	28 91 93 109 100 104	25 67 113 84 80 88	25 67 113 84 80 88	25 67 113 84 80 88	25 67 113 84 80 88	25 67 113 84 80 88
# ci	472 409 407 189 159 151	475 433 319 106 84 67	475 433 319 106 84 67	475 433 319 106 84 67	475 433 319 106 84 67	475 433 319 106 84 67
# to	0 0 0 202 241 281	0 0 0 68 310 336	0 0 0 68 310 336	0 0 0 68 310 336	0 0 0 68 310 336	0 0 0 68 310 336

n	$m = 4$	$m = 8$	$m = 16$	$m = 32$	$m = 64$	$m = 128$
	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	18 45 100 45 53 66	12 30 67 40 42 63	12 30 67 40 42 63	12 30 67 40 42 63	12 30 67 40 42 63	12 30 67 40 42 63
# ci	482 455 97 54 26 34	488 470 63 35 14 18	488 470 63 35 14 18	488 470 63 35 14 18	488 470 63 35 14 18	488 470 63 35 14 18
# to	0 0 303 401 421 400	0 0 370 425 444 419	0 0 370 425 444 419	0 0 370 425 444 419	0 0 370 425 444 419	0 0 370 425 444 419

n	$m = 4$	$m = 8$	$m = 16$	$m = 32$	$m = 64$	$m = 128$
	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	2 19 37 24 24 28	1 13 22 7 12 20	1 13 22 7 12 20	1 13 22 7 12 20	1 13 22 7 12 20	1 13 22 7 12 20
# ci	498 481 60 28 5 8	499 487 40 20 6 0	499 487 40 20 6 0	499 487 40 20 6 0	499 487 40 20 6 0	499 487 40 20 6 0
# to	0 0 403 448 471 464	0 0 438 473 482 480	0 0 438 473 482 480	0 0 438 473 482 480	0 0 438 473 482 480	0 0 438 473 482 480
Figure 348: Results for Bucklin voting in the TM model for constructive control by partition of voters in model TP. Number of voters is fixed.

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	28	25	18	12	2	1	91	67	45	30	19	13
# ci	472	475	482	488	498	499	409	433	455	470	481	487
# to	0	0	0	0	0	0	0	0	0	0	0	0

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	93	113	100	67	37	22	109	84	45	40	24	7
# ci	407	319	97	63	40	4	189	106	54	35	28	20
# to	0	68	303	370	438	438	202	310	401	425	448	473

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	100	80	53	42	24	12	104	88	66	63	28	20
# ci	159	84	26	14	5	6	115	67	34	18	8	0
# to	241	336	421	444	471	482	281	345	400	419	464	480

262
B.17.1. Computational Costs

Figure 349: Average time the algorithm needs to find a successful control action for constructive control by partition of voters in model TP in Bucklin elections in the IC model. The maximum is 71,61 seconds.

Figure 350: Average time the algorithm needs to determine no-instance of constructive control by partition of voters in model TP in Bucklin elections in the IC model. The maximum is 588.49 seconds.
Figure 351: Average time the algorithm needs to give a definite output for constructive control by partition of voters in model TP in Bucklin elections in the IC model. The maximum is 259.19 seconds.

Figure 352: Average time the algorithm needs to find a successful control action for constructive control by partition of voters in model TP in Bucklin elections in the TM model. The maximum is 76.56 seconds.
Figure 353: Average time the algorithm needs to determine no-instance of constructive control by partition of voters in model TP in Bucklin elections in the TM model. The maximum is 308,87 seconds.

Figure 354: Average time the algorithm needs to give a definite output for constructive control by partition of voters in model TP in Bucklin elections in the TM model. The maximum is 243,35 seconds.
B.18. Destructive Control by Partition of Voters in Model TP

Figure 355: Results for Bucklin voting in the IC model for destructive control by partition of voters in model TP. Number of candidates is fixed.

m = 4	m = 8	m = 16	m = 32	m = 64	m = 128							
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	299	328	460	429	339	326	402	448	495	486	462	442
# ci	201	172	40	6	0	0	98	52	5	0	0	0
# to	0	0	65	161	174		0	0	14	38	58	
m = 16	m = 32	m = 64	m = 128									
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	469	481	499	499	489	474	473	496	500	500	493	490
# ci	31	19	0	0	0	0	27	4	0	0	0	0
# to	0	0	1	11	26		0	0	7	10		
m = 64	m = 128											
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	491	500	500	500	497	487	496	500	500	500	494	490
# ci	1	0	0	0	0	0	4	0	0	0	0	0
# to	0	0	0	3	13		0	0	0	6	10	
Figure 356: Results for Bucklin voting in the IC model for destructive control by partition of voters in model TP. Number of voters is fixed.

m	n = 4	n = 8										
# cp	4	8	16	32	64	128	4	8	16	32	64	128
# ci	299	402	469	473	491	496	328	448	481	496	500	500
# to	201	98	31	27	9	4	172	52	19	4	0	0

m	n = 16	n = 32										
# cp	460	495	499	500	500	500	429	486	499	500	500	500
# ci	40	5	0	0	0	0	6	0	0	0	0	0
# to	0	0	1	0	0	0	65	14	1	0	0	0

m	n = 64	n = 128										
# cp	339	462	489	493	497	494	326	442	474	490	487	490
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	161	38	11	7	3	6	174	58	26	10	13	10
Figure 357: Results for Bucklin voting in the TM model for destructive control by partition of voters in model TP. Number of candidates is fixed.

m = 4	m = 8	
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	195 203 228 212 202 212	254 278 315 345 307 300
# ci	305 297 272 205 170 120	246 222 185 92 83 69
# to	0 0 0 83 128 168	0 0 0 63 110 131

m = 16	m = 32	
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	321 336 379 386 348 337	349 364 401 424 407 377
# ci	179 164 94 66 35 30	151 136 82 25 13 19
# to	0 0 0 27 48 117	0 0 17 51 80 104

m = 64	m = 128	
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	361 372 414 443 418 385	363 381 442 438 412 373
# ci	139 128 71 27 8 6	137 119 45 24 4 5
# to	0 0 15 30 74 109	0 0 13 38 84 122
Figure 358: Results for Bucklin voting in the TM model for destructive control by partition of voters in model TP. Number of voters is fixed.

	\(m\)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	195	254	321	349	361	363	203	278	336	364	372	381	
# ci	305	246	179	151	139	137	297	222	164	136	128	119	
# to	0	0	0	0	0	0	0	0	0	0	0	0	

	\(m\)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	228	315	379	401	414	442	212	345	386	424	443	438	
# ci	272	185	94	82	71	45	205	92	66	25	27	24	
# to	0	0	27	17	15	13	83	63	48	30	30	38	

	\(m\)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	202	307	348	407	418	412	212	212	300	377	385	373	
# ci	170	83	35	13	8	4	120	120	69	19	6	5	
# to	128	110	117	80	74	84	168	168	131	104	109	122	
B.18.1. Computational Costs

Figure 359: Average time the algorithm needs to find a successful control action for destructive control by partition of voters in model TP in Bucklin elections in the IC model. The maximum is 26,14 seconds.

Figure 360: Average time the algorithm needs to determine no-instance of destructive control by partition of voters in model TP in Bucklin elections in the IC model. The maximum is 452,32 seconds.
Figure 361: Average time the algorithm needs to give a definite output for destructive control by partition of voters in model TP in Bucklin elections in the IC model. The maximum is 30.3 seconds.

Figure 362: Average time the algorithm needs to find a successful control action for destructive control by partition of voters in model TP in Bucklin elections in the TM model. The maximum is 13.68 seconds.
Figure 363: Average time the algorithm needs to determine no-instance of destructive control by partition of voters in model TP in Bucklin elections in the TM model. The maximum is 89.22 seconds.

Figure 364: Average time the algorithm needs to give a definite output for destructive control by partition of voters in model TP in Bucklin elections in the TM model. The maximum is 36.57 seconds.
C. Plurality Voting

C.1. Constructive Control by Adding Candidates

Figure 365: Results for plurality voting in the IC model for constructive control by adding candidates. Number of candidates is fixed.

	\(n \)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	\(m = 4 \)	22	27	34	20	24	15	3	32	37	47	39	52
\# ci	478	473	466	480	476	485	497	468	463	453	461	448	
\# to	0	0	0	0	0	0	0	0	0	0	0	0	
\# cp	\(m = 16 \)	0	10	21	49	72	100	0	5	13	13	17	26
\# ci	500	490	479	451	428	310	0	0	0	0	0	7	
\# to	0	0	0	0	0	0	0	0	0	0	0	0	
\# cp	\(m = 32 \)	0	0	2	6	8	5	0	0	1	0	1	1
\# ci	0	0	0	0	0	0	0	0	0	0	0	0	
\# to	500	500	498	496	492	495	500	500	499	500	499	499	

273
Figure 366: Results for plurality voting in the IC model for constructive control by adding candidates. Number of voters is fixed.

	$n=4$	$n=8$	$n=16$	$n=32$	$n=64$	$n=128$
m	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	22 3 0 0 0 0	27 32 10 5 0 0	27 32 10 5 0 0	27 32 10 5 0 0	27 32 10 5 0 0	27 32 10 5 0 0
# ci	478 497 500 0 0 0	473 468 490 0 0 0	473 468 490 0 0 0	473 468 490 0 0 0	473 468 490 0 0 0	473 468 490 0 0 0
# to	0 0 0 500 500 500	0 0 0 495 500 500	0 0 0 495 500 500	0 0 0 495 500 500	0 0 0 495 500 500	0 0 0 495 500 500

	$n=16$	$n=32$	$n=64$	$n=128$
m	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	34 37 21 13 2 1	20 47 49 13 6 0	20 47 49 13 6 0	20 47 49 13 6 0
# ci	466 463 479 0 0 0	480 453 451 0 0 0	480 453 451 0 0 0	480 453 451 0 0 0
# to	0 0 0 487 498 499	0 0 0 487 494 500	0 0 0 487 494 500	0 0 0 487 494 500

	$n=64$	$n=128$
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	24 39 72 17 8 1	15 52 100 26 5 1
# ci	476 461 428 0 0 0	485 448 310 7 0 0
# to	0 0 0 483 492 499	0 0 90 467 495 499
Figure 367: Results for plurality voting in the TM model for constructive control by adding candidates. Number of candidates is fixed.

| | $m = 4$ | | $m = 8$ | | $m = 16$ | | $m = 32$ | | $m = 64$ | | $m = 128$ | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| n | 4 | 8 | 16 | 32 | 64 | 128 | 4 | 8 | 16 | 32 | 64 | 128 |
| # cp | 13 | 17 | 12 | 9 | 10 | 3 | 1 | 6 | 5 | 5 | 3 | 1 |
| # ci | 487 | 483 | 488 | 491 | 490 | 497 | 499 | 494 | 494 | 495 | 497 | 499 |
| # to | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $m = 16$ | | | | | | | | | | | | |
| # cp | 0 | 3 | 1 | 0 | 3 | 6 | 0 | 0 | 1 | 0 | 0 | 0 |
| # ci | 500 | 497 | 499 | 500 | 497 | 487 | 1 | 0 | 28 | 452 | 482 | 485 |
| # to | 0 | 0 | 0 | 0 | 0 | 7 | 499 | 500 | 471 | 48 | 18 | 14 |
| $m = 32$ | | | | | | | | | | | | |
| # cp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| # ci | 0 | 0 | 0 | 6 | 447 | 491 | 0 | 0 | 0 | 0 | 0 | 456 |
| # to | 500 | 500 | 500 | 494 | 52 | 9 | 500 | 500 | 500 | 500 | 500 | 44 |
Figure 368: Results for plurality voting in the TM model for constructive control by adding candidates. Number of voters is fixed.

	\(n = 4 \)		\(n = 8 \)									
\(m \)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	13	1	0	0	0	0	17	6	3	0	0	0
\# ci	487	499	500	1	0	0	483	494	497	0	0	0
\# to	0	0	0	499	500	500	0	0	0	500	500	500

\(n = 16 \)

	\(n = 4 \)		\(n = 8 \)									
\(m \)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	12	6	1	1	0	0	9	5	0	0	0	0
\# ci	488	494	499	28	0	0	491	495	500	452	6	0
\# to	0	0	0	471	500	500	0	0	0	48	494	500

\(n = 32 \)

	\(n = 4 \)		\(n = 8 \)									
\(m \)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	10	3	3	0	1	0	3	10	6	1	0	0
\# ci	490	497	497	482	447	0	497	490	487	485	491	456
\# to	0	0	0	18	52	500	0	0	7	14	9	44

276
C.1.1. Computational Costs

Figure 369: Average time the algorithm needs to find a successful control action for constructive control by adding candidates in plurality elections in the IC model. The maximum is 562.76 seconds.

Figure 370: Average time the algorithm needs to determine no-instance of constructive control by adding candidates in plurality elections in the IC model. The maximum is 178.74 seconds.
Figure 371: Average time the algorithm needs to give a definite output for constructive control by adding candidates in plurality elections in the IC model. The maximum is 562.76 seconds.

Figure 372: Average time the algorithm needs to find a successful control action for constructive control by adding candidates in plurality elections in the TM model. The maximum is 71.66 seconds.
Figure 373: Average time the algorithm needs to determine no-instance of constructive control by adding candidates in plurality elections in the TM model. The maximum is 47,64 seconds.

Figure 374: Average time the algorithm needs to give a definite output for constructive control by adding candidates in plurality elections in the TM model. The maximum is 47,35 seconds.
C.2. Destructive Control by Adding Candidates

Figure 375: Results for plurality voting in the IC model for destructive control by adding candidates. Number of candidates is fixed.

	\(m = 4\)		\(m = 8\)	\(m = 16\)	\(m = 32\)	\(m = 64\)	\(m = 128\)					
\(n\)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	351	356	376	364	386	380	380	417	440	450	462	466
# ci	149	144	124	136	114	120	120	83	60	50	38	34
# to	0	0	0	0	0	0	0	0	0	0	0	0

	\(m = 16\)		\(m = 32\)	\(m = 64\)	\(m = 128\)								
\(n\)	4	8	16	32	64	128	4	8	16	32	64	128	
# cp	394	426	445	466	493	497	379	404	435	464	470	489	
# ci	106	74	55	34	7	0	0	0	0	0	0	0	
# to	0	0	0	0	0	0	3	121	96	65	36	30	11

	\(m = 64\)		\(m = 128\)									
\(n\)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	374	398	436	450	470	473	352	393	407	448	461	460
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	126	102	64	50	30	27	148	107	93	52	39	40
Figure 376: Results for plurality voting in the IC model for destructive control by adding candidates. Number of voters is fixed.

m	n = 4	n = 4	n = 8	n = 8	n = 8	n = 8	n = 8	n = 8
# cp								
# ci								
# to								

m	n = 16	n = 32	n = 64	n = 128				
# cp								
# ci								
# to								
Figure 377: Results for plurality voting in the TM model for destructive control by adding candidates. Number of candidates is fixed.

n	$m = 4$	$m = 8$	$m = 16$	$m = 32$	$m = 64$	$m = 128$							
	n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	302	289	275	289	269	298	286	270	288	278	283	286	
# ci	198	211	225	211	231	202	214	230	212	222	217	214	
# to	0	0	0	0	0	0	0	0	0	0	0	0	
$m = 16$	4	8	16	32	64	128	4	8	16	32	64	128	
# cp	276	273	281	274	302	287	260	271	262	255	279		
# ci	224	227	219	219	226	0	6	0	0	0	0		
# to	0	0	0	0	0	198	207	240	229	238	245	221	
$m = 32$	4	8	16	32	64	128	4	8	16	32	64	128	
# cp	260	256	249	277	255	260	264	275	236	260	264	261	
# ci	11	0	0	0	0	8	0	0	0	0	0		
# to	229	244	251	223	245	240	228	225	264	240	236	239	
Figure 378: Results for plurality voting in the TM model for destructive control by adding candidates. Number of voters is fixed.

	$n = 4$		$n = 8$
	4 8 16 32 64 128		4 8 16 32 64 128
# cp	302 286 276 287 260 264	# cp	289 270 273 260 256 275
# ci	198 214 224 6 11 8	# ci	211 230 227 0 0 0
# to	0 0 0 229 229 228	# to	0 0 0 240 244 225
	$n = 16$		$n = 32$
# cp	275 288 281 271 249 236	# cp	289 278 281 262 277 260
# ci	225 212 219 0 0 0	# ci	211 222 219 0 0 0
# to	0 0 0 229 251 264	# to	0 0 0 238 223 240
	$n = 64$		$n = 128$
# cp	269 283 274 255 255 264	# cp	298 286 302 279 260 261
# ci	231 217 226 0 0 0	# ci	202 214 0 0 0 0
# to	0 0 0 245 245 236	# to	0 0 198 221 240 239
C.2.1. Computational Costs

Figure 379: Average time the algorithm needs to find a successful control action for destructive control by adding candidates in plurality elections in the IC model. The maximum is 16.32 seconds.

Figure 380: Average time the algorithm needs to determine no-instance of destructive control by adding candidates in plurality elections in the IC model. The maximum is 356.7 seconds.
Figure 381: Average time the algorithm needs to give a definite output for destructive control by adding candidates in plurality elections in the IC model. The maximum is 16, 32 seconds.

Figure 382: Average time the algorithm needs to find a successful control action for destructive control by adding candidates in plurality elections in the TM model. The maximum is 4, 23 seconds.
Figure 383: Average time the algorithm needs to determine no-instance of destructive control by adding candidates in plurality elections in the TM model. The maximum is 356.7 seconds.

Figure 384: Average time the algorithm needs to give a definite output for destructive control by adding candidates in plurality elections in the TM model. The maximum is 287.86 seconds.
C.3. Constructive Control by Deleting Candidates

Figure 385: Results for plurality voting in the IC model for constructive control by deleting candidates. Number of candidates is fixed.

	m = 4		m = 8									
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	165	139	182	193	199	199	146	151	174	194	207	209
# ci	335	361	361	307	301	301	354	349	326	306	293	291
# to	0	0	0	0	0	0	0	0	0	0	0	0
m = 16												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	176	251	303	298	317	328	124	218	223	252	220	215
# ci	324	249	197	202	183	172	0	0	0	0	0	0
# to	0	0	0	0	0	0	376	282	277	248	280	285
m = 32												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	66	108	123	110	107	86	31	35	47	42	34	27
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	434	392	377	390	393	414	469	465	453	458	466	473

287
Figure 386: Results for plurality voting in the IC model for constructive control by deleting candidates. Number of voters is fixed.

	$n = 4$		$n = 8$		$n = 16$		$n = 32$		$n = 64$		$n = 128$	
m	4	8	16	32	64	128	4	8	16	32	64	
# cp	165	146	176	124	66	31	139	151	251	218	108	35
# ci	335	354	324	0	0	0	361	349	249	0	0	0
# to	0	0	0	376	434	469	0	0	0	282	392	465
$n = 16$							$n = 32$					
m	4	8	16	32	64	128	4	8	16	32	64	
# cp	182	174	303	223	123	47	193	194	398	252	110	42
# ci	318	326	197	0	0	0	307	306	202	0	0	0
# to	0	0	0	277	377	453	0	0	0	248	390	458
$n = 64$							$n = 128$					
m	4	8	16	32	64	128	4	8	16	32	64	
# cp	199	207	317	220	107	34	199	209	328	215	86	27
# ci	301	293	183	0	0	0	301	291	172	0	0	0
# to	0	0	0	280	393	466	0	0	0	285	414	473
Figure 387: Results for plurality voting in the TM model for constructive control by deleting candidates. Number of candidates is fixed.

	$m=4$		$m=8$		$m=16$		$m=32$		$m=64$		$m=128$	
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	149	163	172	188	173	183	124	159	161	163	162	173
# ci	351	337	328	312	327	317	376	341	339	337	338	327
# to	0	0	0	0	0	0	0	0	0	0	0	0
$m=16$												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	161	166	198	186	201	184	124	131	162	165	185	164
# ci	339	334	302	314	299	316	1	0	0	0	0	0
# to	0	0	0	0	0	0	375	369	338	335	315	336
$m=32$												
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	117	149	164	171	140	157	110	168	151	143	137	156
# ci	1	0	0	0	0	0	0	0	0	0	0	0
# to	382	351	336	329	360	343	390	332	349	357	363	344
Figure 388: Results for plurality voting in the TM model for constructive control by deleting candidates. Number of voters is fixed.

	\(n = 4\)		\(n = 8\)									
\(m\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	149	124	161	124	117	110	163	159	166	131	149	168
\# ci	351	376	339	1	1	0	337	341	334	0	0	0
\# to	0	0	0	375	382	390	0	0	0	369	351	332

	\(n = 16\)		\(n = 32\)									
\(m\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	172	161	198	162	164	151	188	163	186	165	171	143
\# ci	328	339	302	0	0	0	312	337	314	0	0	0
\# to	0	0	0	338	336	349	0	0	0	335	329	357

	\(n = 64\)		\(n = 128\)									
\(m\)	4	8	16	32	64	128	4	8	16	32	64	128
\# cp	173	162	201	185	140	137	183	173	184	164	157	156
\# ci	327	338	299	0	0	0	317	327	316	0	0	0
\# to	0	0	0	315	360	363	0	0	0	336	343	344
C.3.1. Computational Costs

Figure 389: Average time the algorithm needs to find a successful control action for constructive control by deleting candidates in plurality elections in the IC model. The maximum is 153.26 seconds.

Figure 390: Average time the algorithm needs to determine no-instance of constructive control by deleting candidates in plurality elections in the IC model. The maximum is 283.07 seconds.
Figure 391: Average time the algorithm needs to give a definite output for constructive control by deleting candidates in plurality elections in the IC model. The maximum is 153.26 seconds.

Figure 392: Average time the algorithm needs to find a successful control action for constructive control by deleting candidates in plurality elections in the TM model. The maximum is 24.32 seconds.
Figure 393: Average time the algorithm needs to determine no-instance of constructive control by deleting candidates in plurality elections in the TM model. The maximum is 279.1 seconds.

Figure 394: Average time the algorithm needs to give a definite output for constructive control by deleting candidates in plurality elections in the TM model. The maximum is 177.03 seconds.
C.4. Destructive Control by Deleting Candidates

Figure 395: Results for plurality voting in the IC model for destructive control by deleting candidates. Number of candidates is fixed.

	m = 4	m = 8	m = 16	m = 32	m = 64	m = 128
n	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	220 218 208 217 243 224	239 334 374 404 415 420	261 166 126 96 85 80	245 471 469 485 485 487	244 29 31 15 15 13	34 284 454 457 474 444
# ci	280 282 292 283 257 276	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
# to	0 0 0 0 0 0	280 282 292 283 257 276	261 166 126 96 85 80	245 471 469 485 485 487	244 29 31 15 15 13	34 284 454 457 474 444

294
Figure 396: Results for plurality voting in the IC model for destructive control by deleting candidates. Number of voters is fixed.

n = 4	n = 8	
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	220 239 336 245 90 34	218 334 467 471 461 284
# ci	280 261 164 11 5 3	282 166 33 0 0 0
# to	0 0 0 244 405 463	0 0 0 29 39 216
n = 16		
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	208 374 483 469 465 454	217 404 488 485 478 457
# ci	292 126 17 0 0 0	283 96 12 0 0 0
# to	0 0 0 31 35 46	0 0 0 15 22 43
n = 32		
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	243 415 497 485 475 474	224 420 497 487 474 444
# ci	257 85 3 0 0 0	276 80 3 0 0 0
# to	0 0 0 15 25 26	0 0 0 13 26 56
n = 64		
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	243 415 497 485 475 474	224 420 497 487 474 444
# ci	257 85 3 0 0 0	276 80 3 0 0 0
# to	0 0 0 15 25 26	0 0 0 13 26 56
n = 128		
Figure 397: Results for plurality voting in the TM model for destructive control by deleting candidates. Number of candidates is fixed.

m = 4	m = 8		
n	m	n	m
4	4	4	4
8	8	8	8
16	16	16	16
32	32	32	32
64	64	64	64
128	128	128	128
# cp	# cp	# cp	# cp
145	143	93	125
93	90	80	117
80	73	70	131
73	80	80	145
80	117	131	145
117	145	145	130
# ci	# ci	# ci	# ci
355	357	407	375
407	420	405	383
420	427	420	369
427	420	420	355
420	375	383	370
375	357	375	383
# to	# to	# to	# to
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
m = 16	m = 32	m = 16	m = 32
n	m	n	m
4	4	4	4
8	8	8	8
16	16	16	16
32	32	32	32
64	64	64	64
128	128	128	128
# cp	# cp	# cp	# cp
249	161	193	145
193	156	190	156
190	138	199	138
199	122	182	122
182	126	195	126
# ci	# ci	# ci	# ci
251	192	307	141
307	318	310	66
310	305	301	41
301	305	318	19
318	310	301	17
# to	# to	# to	# to
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
Figure 398: Results for plurality voting in the TM model for destructive control by deleting candidates. Number of voters is fixed.

$n = 4$	$n = 8$								
m	$n = 16$	$n = 32$	$n = 64$	$n = 128$	$n = 4$	$n = 8$	$n = 32$	$n = 64$	$n = 128$
m	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128				
# cp	145 143 249 161 44 20	93 125 193 145 70 43	407 375 307 141 122 106	0 0 0 214 308 351					
# ci	355 357 251 192 169 177	407 375 307 141 122 106	193 153 118 41 28 25	32 311 395 419					
# to	0 0 0 147 287 303	0 0 0 214 308 351	0 0 0 214 308 351	0 0 0 214 308 351					

$n = 64$	$n = 128$	
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	80 117 190 156 79 33	95 131 199 138 77 56
# ci	420 383 310 66 77 43	405 369 301 41 28 25
# to	0 0 0 278 344 424	0 0 0 321 395 419

$n = 64$	$n = 128$	
m	4 8 16 32 64 128	4 8 16 32 64 128
# cp	73 145 182 122 87 30	80 130 195 126 95 25
# ci	427 355 318 19 10 5	420 370 305 17 4 3
# to	0 0 0 359 403 465	0 0 0 357 401 472
C.4.1. Computational Costs

Figure 399: Average time the algorithm needs to find a successful control action for destructive control by deleting candidates in plurality elections in the IC model. The maximum is 100.99 seconds.

Figure 400: Average time the algorithm needs to determine no-instance of destructive control by deleting candidates in plurality elections in the IC model. The maximum is 283.09 seconds.
Figure 401: Average time the algorithm needs to give a definite output for destructive control by deleting candidates in plurality elections in the IC model. The maximum is 96.65 seconds.

Figure 402: Average time the algorithm needs to find a successful control action for destructive control by deleting candidates in plurality elections in the TM model. The maximum is 137.95 seconds.
Figure 403: Average time the algorithm needs to determine no-instance of destructive control by deleting candidates in plurality elections in the TM model. The maximum is 247.8 seconds.

Figure 404: Average time the algorithm needs to give a definite output for destructive control by deleting candidates in plurality elections in the TM model. The maximum is 160.46 seconds.
C.5. Constructive Control by Partition of Candidates in Model TE

Figure 405: Results for plurality voting in the IC model for constructive control by partition of candidates in model TE. Number of voters is fixed.

	\(m = 4\)	\(m = 8\)	\(m = 16\)	\(m = 32\)	\(m = 64\)	\(m = 128\)
\(n\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)
\# cp	23 60 115 100 122 139	98 164 254 268 298 314	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
\# ci	477 440 385 400 378 361	402 336 246 232 202 186	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
\# to	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
\(m = 16\)	\(m = 32\)	\(m = 64\)	\(m = 128\)			
\(n\)	\(4\)	\(8\)	\(16\)	\(32\)	\(64\)	\(128\)
\# cp	102 208 235 204 210 181	12 37 45 47 68 67	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
\# ci	398 292 265 296 290 319	488 463 455 453 432 433	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
\# to	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
Figure 406: Results for plurality voting in the IC model for constructive control by partition of candidates in model TE. Number of voters is fixed.

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	23	98	102	12	0	0	60	164	208	37	5	3
# ci	477	402	0	0	0	0	440	336	0	0	0	0
# to	0	0	398	488	500	500	0	0	292	463	495	497

m	4	8	16	32	64	128
# cp	115	254	235	45	5	3
# ci	385	246	0	0	0	0
# to	0	0	265	455	495	497

m	4	8	16	32	64	128
# cp	122	298	210	68	22	5
# ci	378	202	0	0	0	0
# to	0	0	290	432	478	495

m	4	8	16	32	64	128
# cp	139	314	181	67	23	8
# ci	361	186	0	0	0	0
# to	0	0	319	433	477	492
Figure 407: Results for plurality voting in the TM model for constructive control by partition of candidates in model TE. Number of candidates is fixed.

$m = 4$	$m = 8$											
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	6	21	35	43	54	57	15	47	70	69	101	93
# ci	494	479	465	457	446	443	485	453	430	431	399	407
# to	0	0	0	0	0	0	0	0	0	0	0	0

$m = 16$

n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	29	62	53	43	46	34	3	12	8	15	17	8
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	471	438	447	457	454	466	497	488	492	485	483	492

$m = 32$

n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	2	1	4	2	4	2	0	0	3	2	2	1
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	498	499	496	498	496	498	500	500	497	498	498	499
Figure 408: Results for plurality voting in the TM model for constructive control by partition of candidates in model TE. Number of voters is fixed.

m	n=4	n=8				
	4	8	16	32	64	128
	4	8	16	32	64	128
# cp	6	15	29	3	2	0
# cp	6	15	29	3	2	0
# ci	494	485	0	0	0	0
# ci	494	485	0	0	0	0
# to	0	0	471	497	498	500
# to	0	0	471	497	498	500
	n=16					
# cp	35	70	53	8	4	3
# cp	35	70	53	8	4	3
# ci	465	430	0	0	0	0
# ci	465	430	0	0	0	0
# to	0	0	447	492	496	497
# to	0	0	447	492	496	497
	n=64					
# cp	54	101	46	17	4	2
# cp	54	101	46	17	4	2
# ci	446	399	0	0	0	0
# ci	446	399	0	0	0	0
# to	0	0	454	483	496	498
# to	0	0	454	483	496	498
C.5.1. Computational Costs

Figure 409: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TE in plurality elections in the IC model. The maximum is 158.73 seconds.

Figure 410: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TE in plurality elections in the IC model. The maximum is 27.99 seconds.
Figure 411: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TE in plurality elections in the IC model. The maximum is 158, 11 seconds.

Figure 412: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TE in plurality elections in the TM model. The maximum is 188, 89 seconds.
Figure 413: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TE in plurality elections in the TM model. The maximum is 27.64 seconds.

Figure 414: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TE in plurality elections in the TM model. The maximum is 188.89 seconds.
C.6. Destructive Control by Partition of Candidates in Model TE

Figure 415: Results for plurality voting in the IC model for destructive control by partition of candidates in model TE. Number of candidates is fixed.

	m = 4		m = 8
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	288 282 290 293 308 294	379 445 459 477 476 485	
# ci	212 218 210 207 192 206	121 55 41 23 24 15	
# to	0 0 0 0 0 0	0 0 0 0 0 0	

	m = 16		m = 32
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	394 485 494 498 499	19 332 375 444 473 485	
# ci	0 0 0 0 0 0	11 0 0 0 0 0	
# to	106 15 6 2 2 1	470 168 125 56 27 15	

	m = 64		m = 128
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	2 133 343 367 411 432	2 43 266 293 352 395	
# ci	5 0 0 0 0 0	3 0 0 0 0 0	
# to	493 367 157 133 89 68	495 457 234 207 148 105	
Figure 416: Results for plurality voting in the IC model for destructive control by partition of candidates in model TE. Number of voters is fixed.

	$n = 4$		$n = 8$		$n = 16$		$n = 32$		$n = 64$		$n = 128$	
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	288	379	394	19	2	2	282	445	485	332	133	43
# ci	212	121	0	11	5	3	218	55	0	0	0	0
# to	0	0	106	470	493	495	0	0	15	168	367	457
$n = 16$												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	290	459	494	375	343	266	293	477	498	444	367	293
# ci	210	41	0	0	0	0	207	23	0	0	0	0
# to	0	0	6	125	157	234	0	0	2	56	133	207
$n = 32$												
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	308	476	498	473	411	352	294	485	499	485	432	395
# ci	192	24	0	0	0	0	206	15	0	0	0	0
# to	0	0	2	27	89	148	0	0	1	15	68	105
Figure 417: Results for plurality voting in the TM model for destructive control by partition of candidates in model TE. Number of candidates is fixed.

m = 4	m = 8						
n	# cp	# ci	# to	n	# cp	# ci	# to
4	188	312	0	4	234	366	0
8	147	353	0	8	200	378	0
16	130	370	0	16	137	384	0
32	116	363	0	32	116	378	0
64	122	384	0	64	122	378	0
128	234	353	0	128	234	378	0
m = 16	# cp	# ci	# to	m = 32	# cp	# ci	# to
n	295	161	44	n	295	161	44
4	244	154	102	8	244	154	102
8	242	105	153	16	242	105	153
16	243	70	187	32	243	70	187
32	237	105	244	64	237	105	244
64	237	105	244	128	237	105	244
128	237	105	244	128	237	105	244

m = 64	m = 128						
n	# cp	# ci	# to	n	# cp	# ci	# to
4	10	169	321	4	10	169	321
8	19	122	345	8	19	122	345
16	33	28	425	16	33	28	425
32	10	47	432	32	10	47	432
64	4	58	438	64	4	58	438
128	4	58	438	128	4	58	438
m = 64	# cp	# ci	# to	m = 128	# cp	# ci	# to
n	10	169	321	n	10	169	321
4	19	122	345	4	19	122	345
8	33	28	425	8	33	28	425
16	10	47	432	16	10	47	432
32	4	58	438	32	4	58	438
64	4	58	438	64	4	58	438
128	4	58	438	128	4	58	438
m = 64	# cp	# ci	# to	m = 128	# cp	# ci	# to
n	10	169	321	n	10	169	321
4	19	122	345	4	19	122	345
8	33	28	425	8	33	28	425
16	10	47	432	16	10	47	432
32	4	58	438	32	4	58	438
64	4	58	438	64	4	58	438
128	4	58	438	128	4	58	438
Figure 418: Results for plurality voting in the TM model for destructive control by partition of candidates in model TE. Number of voters is fixed.

n	4	8	16	32	64	128	4	8	16	32	64	128
m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	188	234	295	29	10	12	147	200	244	57	33	29
# ci	312	266	161	192	169	177	353	300	154	141	122	106
# to	0	0	44	279	321	311	0	0	102	302	345	365
$n = 16$												
C.6.1. Computational Costs

Figure 419: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TE in plurality elections in the IC model. The maximum is 172.19 seconds.

Figure 420: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TE in plurality elections in the IC model. The maximum is 28.26 seconds.
Figure 421: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TE in plurality elections in the IC model. The maximum is 172,19 seconds.

Figure 422: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TE in plurality elections in the TM model. The maximum is 115,89 seconds.
Figure 423: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TE in plurality elections in the TM model. The maximum is 20.15 seconds.

Figure 424: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TE in plurality elections in the TM model. The maximum is 97.65 seconds.
C.7. Constructive Control by Partition of Candidates in Model TP

Figure 425: Results for plurality voting in the IC model for constructive control by partition of candidates in model TP. Number of candidates is fixed.

	$m = 4$		$m = 8$		$m = 16$		$m = 32$		$m = 64$		$m = 128$	
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	17	54	120	100	132	147	82	164	241	246	275	318
# ci	483	446	380	400	368	353	418	336	259	254	225	182
# to	0	0	0	0	0	0	0	0	0	0	0	0
	16	64	128	4	8	16	32	64	128	4	8	16
# cp	90	219	254	231	212	202	18	42	45	56	57	57
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	410	281	246	269	288	298	482	458	455	444	443	443
	64	128	4	8	16	32	64	128	4	8	16	32
# cp	4	8	12	15	23	17	0	1	3	3	10	7
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	496	492	488	485	477	483	500	499	497	497	490	493
Figure 426: Results for plurality voting in the IC model for constructive control by partition of candidates in model TP. Number of voters is fixed.
Figure 427: Results for plurality voting in the TM model for constructive control by partition of candidates in model TP. Number of candidates is fixed.

	$m=4$	$m=8$	$m=16$	$m=32$	$m=64$	$m=128$
n	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	7 23 35 46 66	21 48 77 69 99 117	21 48 77 69 99 117	21 48 77 69 99 117	21 48 77 69 99 117	21 48 77 69 99 117
# ci	493 477 465 465 454 434	479 452 423 431 401 383	479 452 423 431 401 383	479 452 423 431 401 383	479 452 423 431 401 383	479 452 423 431 401 383
# to	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
	$m=16$	$m=32$	$m=64$	$m=128$	$m=64$	$m=128$
n	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	26 54 48 49 48 48	2 13 6 14 14 14	2 13 6 14 14 14	2 13 6 14 14 14	2 13 6 14 14 14	2 13 6 14 14 14
# ci	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
# to	474 446 452 451 452 452	498 487 494 486 486 496	498 487 494 486 486 496	498 487 494 486 486 496	498 487 494 486 486 496	498 487 494 486 486 496
	$m=64$	$m=128$	$m=64$	$m=128$	$m=64$	$m=128$
n	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128
# cp	0 2 3 6 2 2	0 0 0 1 2 2	0 0 0 1 2 2	0 0 0 1 2 2	0 0 0 1 2 2	0 0 0 1 2 2
# ci	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
# to	500 498 497 494 498 498	500 500 500 499 498 498	500 500 500 499 498 498	500 500 500 499 498 498	500 500 500 499 498 498	500 500 500 499 498 498
Figure 428: Results for plurality voting in the TM model for constructive control by partition of candidates in model TP. Number of voters is fixed.

m	4	8	16	32	64	128
$#\,cp$	7	21	26	2	0	0
$#\,ci$	493	479	0	0	0	0
$#\,to$	0	0	474	498	500	500

$n = 4$

m	4	8	16	32	64	128
$#\,cp$	35	77	48	6	3	0
$#\,ci$	465	423	0	0	0	0
$#\,to$	0	0	452	494	497	500

$n = 16$

m	4	8	16	32	64	128
$#\,cp$	46	99	48	14	2	2
$#\,ci$	454	401	0	0	0	0
$#\,to$	0	0	452	486	498	498

$n = 64$

m	4	8	16	32	64	128
$#\,cp$	23	48	54	13	2	0
$#\,ci$	477	452	0	0	0	0
$#\,to$	0	0	446	487	498	500

$n = 8$

m	4	8	16	32	64	128
$#\,cp$	40	69	49	14	6	1
$#\,ci$	460	431	0	0	0	0
$#\,to$	0	0	451	486	494	499

$n = 32$

m	4	8	16	32	64	128
$#\,cp$	66	117	48	4	2	2
$#\,ci$	434	383	0	0	0	0
$#\,to$	0	0	452	496	498	498

$n = 128$
C.7.1. Computational Costs

Figure 429: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TP in plurality elections in the IC model. The maximum is 174.14 seconds.

Figure 430: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TP in plurality elections in the IC model. The maximum is 27.68 seconds.
Figure 431: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TP in plurality elections in the IC model. The maximum is 174, 14 seconds.

Figure 432: Average time the algorithm needs to find a successful control action for constructive control by partition of candidates in model TP in plurality elections in the TM model. The maximum is 294, 18 seconds.
Figure 433: Average time the algorithm needs to determine no-instance of constructive control by partition of candidates in model TP in plurality elections in the TM model. The maximum is 28.05 seconds.

Figure 434: Average time the algorithm needs to give a definite output for constructive control by partition of candidates in model TP in plurality elections in the TM model. The maximum is 294.18 seconds.
C.8. Destructive Control by Partition of Candidates in Model TP

Figure 435: Results for plurality voting in the IC model for destructive control by partition of candidates in model TP. Number of candidates is fixed.

	m = 4	m = 8
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	288 282 290 293 308 294	379 445 459 477 476 485
# ci	212 218 210 207 192 206	121 55 41 23 24 15
# to	0 0 0 0 0 0	0 0 0 0 0 0
m = 16	m = 32	m = 64
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	393 484 494 498 498 499	19 332 375 444 473 485
# ci	28 2 0 0 0 0	11 0 0 0 0 0
# to	79 14 6 2 2 1	470 168 125 56 27 15
m = 64	m = 128	m = 128
n	4 8 16 32 64 128	4 8 16 32 64 128
# cp	2 133 343 367 411 432	2 43 266 293 352 395
# ci	5 0 0 0 0 0	3 0 0 0 0 0
# to	493 367 157 133 89 68	495 457 234 207 148 105
Figure 436: Results for plurality voting in the IC model for destructive control by partition of candidates in model TP. Number of voters is fixed.

m	n = 4	n = 8										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	288	379	393	19	2	2	282	445	484	332	133	43
# ci	212	121	28	11	5	3	218	55	2	0	0	0
# to	0	0	79	470	493	495	0	0	14	168	367	457

m	n = 16	n = 32										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	290	459	494	375	343	266	293	477	498	444	367	293
# ci	210	41	0	0	0	0	207	23	0	0	0	0
# to	0	0	6	125	157	234	0	0	2	56	133	207

m	n = 64	n = 128										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	308	476	498	473	411	352	294	485	499	485	432	395
# ci	192	24	0	0	0	0	206	15	0	0	0	0
# to	0	0	2	87	148	0	0	0	1	15	68	105
Figure 437: Results for plurality voting in the TM model for destructive control by partition of candidates in model TP. Number of candidates is fixed.

	$m = 4$		$m = 8$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	188 147 130 137 116 122	234 200 230 232 260 230	
# ci	312 353 370 363 384 378	266 300 270 268 240 270	
# to	0 0 0 0 0 0	0 0 0 0 0 0	
	$m = 16$		$m = 32$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	295 244 242 243 217 237	29 57 74 88 91 97	
# ci	161 154 105 70 39 36	192 141 66 41 19 17	
# to	44 102 153 187 244 227	279 302 360 371 390 386	
	$m = 64$		$m = 128$
n	4 8 16 32 64 128	4 8 16 32 64 128	
# cp	10 33 34 47 58 58	12 29 13 31 31 34	
# ci	169 122 77 28 10 4	177 106 43 25 5 3	
# to	321 345 389 425 432 438	311 365 444 464 464 463	
Figure 438: Results for plurality voting in the TM model for destructive control by partition of candidates in model TP. Number of voters is fixed.

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	188	234	295	29	10	12	147	200	244	57	33	29
# ci	312	266	161	192	169	177	353	300	154	141	122	106
# to	0	44	279	321	311	62	0	102	302	345	365	128

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	130	230	242	74	34	13	137	232	243	88	47	31
# ci	370	270	105	66	77	43	363	268	70	41	28	25
# to	0	153	360	389	444	0	0	187	371	425	444	0

m	4	8	16	32	64	128	4	8	16	32	64	128
# cp	116	260	217	91	58	31	122	230	237	97	58	34
# ci	384	240	39	19	10	5	378	270	36	17	4	3
# to	0	244	390	432	464	0	0	227	386	438	463	0
C.8.1. Computational Costs

Figure 439: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TP in plurality elections in the IC model. The maximum is 174.36 seconds.

Figure 440: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TP in plurality elections in the IC model. The maximum is 28.46 seconds.
Figure 441: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TP in plurality elections in the IC model. The maximum is 162.76 seconds.

Figure 442: Average time the algorithm needs to find a successful control action for destructive control by partition of candidates in model TP in plurality elections in the TM model. The maximum is 117.3 seconds.
Figure 443: Average time the algorithm needs to determine no-instance of destructive control by partition of candidates in model TP in plurality elections in the TM model. The maximum is 20.17 seconds.

Figure 444: Average time the algorithm needs to give a definite output for destructive control by partition of candidates in model TP in plurality elections in the TM model. The maximum is 96.35 seconds.
C.9. Constructive Control by Runoff Partition of Candidates in Model TE

Figure 445: Results for plurality voting in the IC model for constructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

	\(m = 4 \)		\(m = 8 \)		\(m = 16 \)		\(m = 32 \)		\(m = 64 \)	
\(n \)	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128						
# cp	17 35 103 91 112 131	71 109 192 194 230 249	0 0 0 0 0 0	0 0 0 0 0 0						
# ci	483 465 397 409 388 369	429 391 308 306 270 251	0 0 0 0 0 0	0 0 0 0 0 0						
# to	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0						

	\(m = 16 \)		\(m = 32 \)		\(m = 64 \)	
\(n \)	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128	4 8 16 32 64 128		
# cp	74 223 310 310 321 301	11 79 124 160 167 152	0 0 0 0 0 0	0 0 0 0 0 0		
# ci	426 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0		
# to	0 277 190 190 179 199	489 421 376 340 333 348	0 0 0 0 0 0	0 0 0 0 0 0		

| | \(m = 64 \) | | \(m = 128 \) |
|-------|-------------|-------|
| \(n \) | 4 8 16 32 64 128 | 4 8 16 32 64 128 |
| # cp | 3 14 47 50 55 51 | 0 1 16 18 19 11 |
| # ci | 0 0 0 0 0 0 | 0 0 0 0 0 0 |
| # to | 497 486 453 450 445 449 | 500 499 484 482 481 489 |
Figure 446: Results for plurality voting in the IC model for constructive control by runoff-partition of candidates in model TE. Number of voters is fixed.

m	n = 4	n = 8	n = 16	n = 32	n = 64	n = 128
	4	8	16	32	64	128
# cp	17	71	74	11	3	0
# ci	483	429	426	0	0	0
# to	0	0	0	489	497	500
n = 16	35	109	223	79	14	1
n = 32	465	391	0	0	0	0
n = 64	0	0	277	421	486	499
n = 128						
m	n = 4	n = 8	n = 16	n = 32	n = 64	n = 128
	4	8	16	32	64	128
# cp	103	192	310	124	47	16
# ci	397	308	0	0	0	0
# to	0	0	190	376	453	484
n = 16	91	194	310	160	50	18
n = 32	409	306	0	0	0	0
n = 64	0	0	190	340	450	482
n = 128						
m	n = 4	n = 8	n = 16	n = 32	n = 64	n = 128
	4	8	16	32	64	128
# cp	112	230	321	167	55	19
# ci	388	270	0	0	0	0
# to	0	0	179	333	445	481
n = 16	131	249	301	152	51	11
n = 32	369	251	0	0	0	0
n = 64	0	0	199	348	449	489
n = 128						
Figure 447: Results for plurality voting in the TM model for constructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

n	4	8	16	32	64	128	n	4	8	16	32	64	128
$m=4$							$m=8$						
# cp	7	21	34	46	44	66	15	43	68	65	88	95	
# ci	493	479	466	454	456	434	485	457	432	435	412	405	
# to	0	0	0	0	0	0	0	0	0	0	0	0	0
$m=16$							$m=32$						
# cp	21	62	64	75	75	64	3	20	26	19	19	35	
# ci	88	0	0	0	0	0	0	0	0	0	0	0	0
# to	391	438	436	425	425	436	497	480	474	481	481	465	
$m=64$							$m=128$						
# cp	0	6	17	3	6	8	0	1	5	2	6	2	
# ci	0	0	0	0	0	0	0	0	0	0	0	0	0
# to	500	494	483	497	494	492	500	499	495	498	494	498	
Figure 448: Results for plurality voting in the TM model for constructive control by runoff-partition of candidates in model TE. Number of voters is fixed.

	\(n = 4 \)	\(n = 8 \)										
\(m \)	\(n = 16 \)	\(n = 32 \)	\(n = 64 \)	\(n = 128 \)	\(n = 16 \)	\(n = 32 \)	\(n = 64 \)	\(n = 128 \)				
\(\# \text{ cp} \)	7	15	21	3	0	0	21	43	62	20	6	1
\(\# \text{ ci} \)	493	485	88	0	0	0	479	457	0	0	0	0
\(\# \text{ to} \)	0	0	391	497	500	500	0	0	438	480	494	499

332
C.9.1. Computational Costs

Figure 449: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TE in plurality elections in the IC model. The maximum is 378.02 seconds.

Figure 450: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TE in plurality elections in the IC model. The maximum is 495.26 seconds.
Figure 451: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TE in plurality elections in the IC model. The maximum is 430.08 seconds.

Figure 452: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TE in plurality elections in the TM model. The maximum is 265.22 seconds.
Figure 453: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TE in plurality elections in the TM model. The maximum is 562.86 seconds.

Figure 454: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TE in plurality elections in the TM model. The maximum is 469.62 seconds.
C.10. Destructive Control by Runoff Partition of Candidates in Model TE

Figure 455: Results for plurality voting in the IC model for destructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

m = 4	m = 8											
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	291	276	269	275	284	274	379	442	441	467	466	474
# ci	209	224	231	225	216	226	121	58	59	33	34	26
# to	0	0	0	0	0	0	0	0	0	0	0	0

m = 16	m = 32											
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	414	495	494	500	499	500	196	439	444	484	489	491
# ci	86	2	0	0	0	0	11	0	0	0	0	0
# to	0	3	6	0	1	0	293	61	56	16	11	9

m = 64	m = 128											
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	161	332	433	440	455	461	123	278	403	406	434	445
# ci	5	0	0	0	0	0	3	0	0	0	0	0
# to	334	168	67	60	45	39	374	222	97	94	66	55

336
Figure 456: Results for plurality voting in the IC model for destructive control by runoff-partition of candidates in model TE. Number of voters is fixed.

n	m	# cp	# ci	# to	
$n=4$	$m=4$	4	291	209	0
		8	379	121	0
		16	414	86	0
		32	196	11	0
		64	161	5	0
		128	123	0	0
$n=8$	$m=4$	4	276	224	0
		8	442	58	0
		16	495	2	0
		32	439	0	0
		64	332	0	0
		128	278	0	0

$n=4$	$m=16$	4	196	224	0
		8	442	58	0
		16	495	2	0
		32	439	0	0
		64	332	0	0
		128	278	0	0

$n=8$	$m=16$	4	276	224	0
		8	442	58	0
		16	495	2	0
		32	439	0	0
		64	332	0	0
		128	278	0	0

$n=4$	$m=32$	4	196	224	0
		8	442	58	0
		16	495	2	0
		32	439	0	0
		64	332	0	0
		128	278	0	0

$n=8$	$m=32$	4	276	224	0
		8	442	58	0
		16	495	2	0
		32	439	0	0
		64	332	0	0
		128	278	0	0

$n=4$	$m=64$	4	196	224	0
		8	442	58	0
		16	495	2	0
		32	439	0	0
		64	332	0	0
		128	278	0	0

$n=8$	$m=64$	4	276	224	0
		8	442	58	0
		16	495	2	0
		32	439	0	0
		64	332	0	0
		128	278	0	0

$n=4$	$m=128$	4	196	224	0
		8	442	58	0
		16	495	2	0
		32	439	0	0
		64	332	0	0
		128	278	0	0

$n=8$	$m=128$	4	276	224	0
		8	442	58	0
		16	495	2	0
		32	439	0	0
		64	332	0	0
		128	278	0	0
Figure 457: Results for plurality voting in the TM model for destructive control by runoff-partition of candidates in model TE. Number of candidates is fixed.

m	n	4	8	16	32	64	128	m	n	4	8	16	32	64	128
	# cp	188	144	124	129	106	115	234	197	214	218	239	219		
	# ci	312	356	376	371	394	385	266	303	286	282	261	281		
	# to	0	0	0	0	0	0	0	0	0	0	0	0	0	
m = 16	# cp	305	281	276	258	257	265	130	139	138	119	119	130		
	# ci	195	154	105	70	39	36	192	141	66	41	19	17		
	# to	0	65	119	172	204	199	178	220	296	340	362	353		
m = 32	# cp	93	95	82	87	96	86	88	106	71	86	75	68		
	# ci	169	122	77	28	10	4	177	106	43	25	5	3		
	# to	238	283	341	385	394	410	235	286	386	389	420	429		

338
Figure 458: Results for plurality voting in the TM model for destructive control by runoff-partition of candidates in model TE. Number of voters is fixed.

m	n = 4	n = 8										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp												
	188	234	305	130	93	88	144	197	281	139	95	106
# ci	312	266	195	192	169	177	356	303	154	141	122	106
# to	0	0	178	238	235		0	65	220	283	288	
n = 16												
m	n = 32											
	4	8	16	32	64	128	4	8	16	32	64	128
# cp												
	124	214	276	138	82	71	129	218	258	119	87	86
# ci	376	286	105	66	77	43	371	282	70	41	28	25
# to	0	0	178	238	235		0	65	220	283	288	
n = 64												
m	n = 128											
	4	8	16	32	64	128	4	8	16	32	64	128
# cp												
	106	239	257	119	96	75	115	219	265	130	86	68
# ci	394	261	39	19	15	10	385	281	36	17	4	3
# to	0	0	204	362	394	420	0	199	353	410	429	

339
C.10.1. Computational Costs

Figure 459: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TE in plurality elections in the IC model. The maximum is 35.3 seconds.

Figure 460: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TE in plurality elections in the IC model. The maximum is 348.65 seconds.
Figure 461: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TE in plurality elections in the IC model. The maximum is 73.6 seconds.

Figure 462: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TE in plurality elections in the TM model. The maximum is 75.31 seconds.
Figure 463: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TE in plurality elections in the TM model. The maximum is 89.69 seconds.

Figure 464: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TE in plurality elections in the TM model. The maximum is 65.39 seconds.
C.11. Constructive Control by Runoff Partition of Candidates in Model TP

Figure 465: Results for plurality voting in the IC model for constructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

m = 4	m = 8											
n												
	4	8	16	32	64	128						
cp	15	46	100	97	118	124	69	138	201	188	228	243
ci	485	454	400	403	382	376	431	362	299	312	272	257
to	0	0	0	0	0	0	0	0	0	0	0	0
m = 16												
n												
cp	67	222	317	322	316	295	12	63	147	172	161	140
ci	433	0	0	0	0	0	0	0	0	0	0	0
to	0	278	183	178	184	205	488	437	353	328	339	360
m = 32												
n												
cp	4	16	41	55	48	52	0	0	13	13	13	24
ci	0	0	0	0	0	0	0	0	0	0	0	0
to	498	484	459	445	452	448	500	500	487	487	487	476
Figure 466: Results for plurality voting in the IC model for constructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

n	m	4	8	16	32	64	128	4	8	16	32	64	128
	$\# cp$	15	69	67	12	2	0	46	138	222	63	16	0
	$\# ci$	485	431	433	0	0	0	454	362	0	0	0	0
	$\# to$	0	0	0	488	498	500	0	0	278	437	484	500

n	m	4	8	16	32	64	128	4	8	16	32	64	128
	$\# cp$	100	201	317	147	41	13	97	188	322	172	55	13
	$\# ci$	400	299	0	0	0	0	403	312	0	0	0	0
	$\# to$	0	0	0	183	353	459	487	0	178	328	445	487

n	m	4	8	16	32	64	128	4	8	16	32	64	128
	$\# cp$	118	228	316	161	48	13	124	243	295	140	52	24
	$\# ci$	382	272	0	0	0	0	376	257	0	0	0	0
	$\# to$	0	0	0	184	339	452	487	0	205	360	448	476

344
Figure 467: Results for plurality voting in the TM model for constructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

	m = 4		m = 8		m = 16		m = 32		m = 64		m = 128	
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	5	22	33	52	65	12	35	35	75	76	103	
# ci	495	478	467	457	448	435	488	465	465	425	424	397
# to	0	0	0	0	0	0	0	0	0	0	0	

	m = 16		m = 32		m = 64		m = 128					
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	18	61	65	78	80	69	0	23	15	29	20	23
# ci	482	0	0	0	0	0	0	0	0	0	0	
# to	0	439	435	422	420	431	500	477	485	471	480	477

	m = 64		m = 128									
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	1	4	1	8	9	8	0	4	0	2	5	7
# ci	0	0	0	0	0	0	0	0	0	0	0	
# to	499	496	499	492	491	492	500	496	500	498	495	493
Figure 468: Results for plurality voting in the TM model for constructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

n	m	cp	ci	to	m	cp	ci	to										
n=4	4	8	16	32	64	128	4	8	16	32	64	128						
4	8	16	32	64	128	5	12	0	2	5	7	22	35	61	23	4	4	
n=8	0	0	0	0	0	0	478	465	0	0	0	0	0	0	0	0	0	
n=16	0	496	500	498	495	493	0	0	439	477	496	496	n=32	n=64	n=128			
m	4	8	16	32	64	128	4	8	16	32	64	128	4	8	16	32	64	128
5	12	0	2	5	7	22	35	61	23	4	4	43	56	78	29	8	2	
n=32	n=64	n=128																
m	0	0	435	485	499	500	0	0	422	471	492	498	0	0	431	477	492	493
C.11.1. Computational Costs

Figure 469: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TP in plurality elections in the IC model. The maximum is 130,91 seconds.

Figure 470: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TP in plurality elections in the IC model. The maximum is 518,67 seconds.
Figure 471: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TP in plurality elections in the IC model. The maximum is 130.91 seconds.

Figure 472: Average time the algorithm needs to find a successful control action for constructive control by runoff-partition of candidates in model TP in plurality elections in the TM model. The maximum is 114.84 seconds.
Figure 473: Average time the algorithm needs to determine no-instance of constructive control by runoff-partition of candidates in model TP in plurality elections in the TM model. The maximum is 514.44 seconds.

Figure 474: Average time the algorithm needs to give a definite output for constructive control by runoff-partition of candidates in model TP in plurality elections in the TM model. The maximum is 497.07 seconds.
C.12. Destructive Control by Runoff Partition of Candidates in Model TP

Figure 475: Results for plurality voting in the IC model for destructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

	m = 4			m = 8		
n	4	8	16	32	64	128
# cp	288	276	269	275	284	274
# ci	212	224	231	225	216	226
# to	0	0	0	0	0	0
n	4	8	16	32	64	128
# cp	414	491	490	499	499	500
# ci	86	2	0	0	0	0
# to	0	7	10	1	1	0
n	4	8	16	32	64	128
# cp	154	316	409	431	445	450
# ci	5	0	0	0	0	0
# to	341	184	91	69	55	50
Figure 476: Results for plurality voting in the IC model for destructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

m	n = 4	n = 8	n = 16	n = 32	n = 64	n = 128
# cp	288	379	414	177	154	116
# ci	212	121	86	11	5	3
# to	0	0	0	312	341	381
m	n = 16	n = 32	n = 64	n = 128		
# cp	269	424	490	441	409	389
# ci	231	76	0	0	0	0
# to	0	0	0	35	14	28
m	n = 64	n = 128				
# cp	284	466	499	486	445	419
# ci	216	34	0	0	0	0
# to	0	0	0	14	55	81

351
Figure 477: Results for plurality voting in the TM model for destructive control by runoff-partition of candidates in model TP. Number of candidates is fixed.

	$m=4$		$m=8$		$m=16$		$m=32$		$m=64$		$m=128$	
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	188	143	124	129	106	115	234	194	210	214	236	216
# ci	312	357	376	371	394	385	266	306	290	286	264	284
# to	0	0	0	0	0	0	0	0	0	0	0	0
	$m=16$		$m=32$		$m=64$		$m=128$					
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	305	277	271	256	257	265	130	133	136	115	117	126
# ci	195	154	105	70	39	36	192	141	66	41	19	17
# to	0	69	124	174	204	199	178	226	298	344	364	357
	$m=64$		$m=128$									
n	4	8	16	32	64	128	4	8	16	32	64	128
# cp	93	94	82	85	95	84	88	106	70	86	75	67
# ci	169	122	77	28	10	4	177	106	43	25	5	3
# to	238	284	341	387	395	412	235	288	387	389	420	430

352
Figure 478: Results for plurality voting in the TM model for destructive control by runoff-partition of candidates in model TP. Number of voters is fixed.

	n = 4		n = 8
n	4 8 16 32 64 128	n	4 8 16 32 64 128
# cp	188 234 305 130 93 88	# cp	143 194 277 133 94 106
# ci	312 266 195 192 169 177	# ci	357 306 154 141 122 106
# to	0 0 0 178 238 235	# to	0 0 69 226 284 288
m			
m			
m			
m			
m			

	n = 16		n = 32
m	4 8 16 32 64 128	m	4 8 16 32 64 128
# cp	124 210 271 136 82 70	# cp	129 214 256 115 85 86
# ci	376 290 105 66 77 43	# ci	371 286 7 41 28 25
# to	0 0 124 298 341 387	# to	0 0 174 344 387 389
n			
n			
n			
n			
n			

	n = 64		n = 128
m	4 8 16 32 64 128	m	4 8 16 32 64 128
# cp	106 236 257 117 95 75	# cp	115 216 265 126 84 67
# ci	394 264 39 19 10 5	# ci	385 284 36 17 4 3
# to	0 0 204 364 395 420	# to	0 0 199 357 412 430
C.12.1. Computational Costs

Figure 479: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TP in plurality elections in the IC model. The maximum is 42.85 seconds.

Figure 480: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TP in plurality elections in the IC model. The maximum is 348.43 seconds.
Figure 481: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TP in plurality elections in the IC model. The maximum is 78.7 seconds.

Figure 482: Average time the algorithm needs to find a successful control action for destructive control by runoff-partition of candidates in model TP in plurality elections in the TM model. The maximum is 78.26 seconds.
Figure 483: Average time the algorithm needs to determine no-instance of destructive control by runoff-partition of candidates in model TP in plurality elections in the TM model. The maximum is 89.53 seconds.

Figure 484: Average time the algorithm needs to give a definite output for destructive control by runoff-partition of candidates in model TP in plurality elections in the TM model. The maximum is 67.95 seconds.
C.13. Constructive Control by Partition of Voters in Model TP

Figure 485: Results for plurality voting in the IC model for constructive control by partition of voters in model TP. Number of candidates is fixed.

	$m=4$		$m=8$		$m=16$		$m=32$		$m=64$		$m=128$		
	$n=4$	8	16	32	64	128	4	8	16	32	64	128	
# cp	0	68	170	206	188	193	0	94	169	229	256	248	
# ci	500	432	330	0	0	0	500	406	331	5	0	0	
# to	0	0	294	312	307	0	0	0	266	244	252		
	$n=16$	4	8	16	32	64	128	4	8	16	32	64	128
# cp	0	63	173	150	237	271	0	29	126	106	156	225	
# ci	500	437	327	73	8	0	500	471	302	195	64	9	
# to	0	0	277	277	229	0	0	72	199	280	266		
	$n=32$	4	8	16	32	64	128	4	8	16	32	64	128
# cp	0	6	64	58	103	151	0	4	22	29	62	109	
# ci	500	494	401	323	179	77	500	496	429	387	306	188	
# to	0	0	35	119	218	272	0	0	44	84	133	204	
Figure 486: Results for plurality voting in the IC model for constructive control by partition of voters in model TP. Number of voters is fixed.

m	4	8	16	32	64	128	n = 4		m	4	8	16	32	64	128	n = 8
------	-----	-----	-----	-----	-----	-----	-------			-----	-----	-----	-----	-----	-----	-------
# cp	0	0	0	0	0	0	68		# cp	0	0	0	0	0	0	6
# ci	500	500	500	500	500	500	432		# ci	432	406	437	471	494	496	500
# to	0	0	0	0	0	0	0		# to	0	0	0	0	0	0	0

m	4	8	16	32	64	128	n = 16		m	4	8	16	32	64	128	n = 32
------	-----	-----	-----	-----	-----	-----	--------		------	-----	-----	-----	-----	-----	-----	--------
# cp	170	169	173	126	64	22	206		# cp	150	106	58	29	0	0	72
# ci	330	331	327	302	401	429	302		# ci	429	0	5	73	195	323	302
# to	0	0	72	35	44	294	0		# to	294	266	277	199	119	84	0

m	4	8	16	32	64	128	n = 64		m	4	8	16	32	64	128	n = 128
------	-----	-----	-----	-----	-----	-----	--------		------	-----	-----	-----	-----	-----	-----	--------
# cp	188	256	237	156	103	62	193		# cp	271	225	151	109	0	0	0
# ci	0	0	8	64	179	306	0		# ci	77	188	0	0	77	188	0
# to	312	244	255	280	218	133	307		# to	252	229	266	272	204	0	0
Figure 487: Results for plurality voting in the TM model for constructive control by partition of voters in model TP. Number of candidates is fixed.

	\(m = 4 \)	\(m = 8 \)										
\(n \)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	0	29	49	41	52	65	0	20	32	38	50	51
# ci	500	471	451	198	158	131	500	480	468	191	89	68
# to	0	0	0	261	290	304	0	0	0	271	361	381
	\(m = 16 \)	\(m = 32 \)										
\(n \)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	0	18	32	26	34	48	0	9	23	18	28	33
# ci	500	482	468	266	144	59	500	491	416	335	254	140
# to	0	0	0	208	322	393	0	0	0	61	147	218
	\(m = 64 \)	\(m = 128 \)										
\(n \)	4	8	16	32	64	128	4	8	16	32	64	128
# cp	0	1	13	7	15	22	0	2	2	3	9	19
# ci	500	499	457	423	344	250	500	498	479	455	433	350
# to	0	0	3	7	141	280	0	0	19	42	58	131
Figure 488: Results for plurality voting in the TM model for constructive control by partition of voters in model TP. Number of voters is fixed.

n	m	4	8	16	32	64	128
$n=4$	4	0	0	0	0	0	0
	8	29	20	18	9	1	2
	16	500	500	500	500	500	500
	32	0	0	0	0	0	0
	64	0	0	0	0	0	0
	128	0	0	0	0	0	0
$n=8$	4	49	32	32	23	13	2
	8	41	38	26	18	7	3
	16	451	468	468	416	457	479
	32	198	191	266	335	423	455
	64	0	0	61	3	19	
	128	261	271	208	147	7	42
$n=16$	4	49	32	32	23	13	2
	8	41	38	26	18	7	3
	16	451	468	468	416	457	479
	32	198	191	266	335	423	455
	64	0	0	61	3	19	
	128	261	271	208	147	7	42
$n=32$	4	52	50	34	28	15	9
	8	65	51	48	33	22	19
	16	158	144	254	344	433	131
	32	131	68	59	140	250	350
	64	304	381	393	327	228	131
$n=64$	4	52	50	34	28	15	9
	8	65	51	48	33	22	19
	16	158	144	254	344	433	131
	32	131	68	59	140	250	350
	64	304	381	393	327	228	131
$n=128$	4	52	50	34	28	15	9
	8	65	51	48	33	22	19
	16	158	144	254	344	433	131
	32	131	68	59	140	250	350
	64	304	381	393	327	228	131
C.13.1. Computational Costs

Figure 489: Average time the algorithm needs to find a successful control action for constructive control by partition of voters in model TP in plurality elections in the IC model. The maximum is 126.26 seconds.

Figure 490: Average time the algorithm needs to determine no-instance of constructive control by partition of voters in model TP in plurality elections in the IC model. The maximum is 329.07 seconds.
Figure 491: Average time the algorithm needs to give a definite output for constructive control by partition of voters in model TP in plurality elections in the IC model. The maximum is 226.68 seconds.

Figure 492: Average time the algorithm needs to find a successful control action for constructive control by partition of voters in model TP in plurality elections in the TM model. The maximum is 246.85 seconds.
Figure 493: Average time the algorithm needs to determine no-instance of constructive control by partition of voters in model TP in plurality elections in the TM model. The maximum is 156.07 seconds.

Figure 494: Average time the algorithm needs to give a definite output for constructive control by partition of voters in model TP in plurality elections in the TM model. The maximum is 149.9 seconds.
C.14. Destructive Control by Partition of Voters in Model TP

Figure 495: Results for plurality voting in the IC model for destructive control by partition of voters in model TP. Number of candidates is fixed.

n	m = 4	m = 8
4	276	352
8	273	410
16	334	455
32	315	464
64	308	451
128	352	442

n	m = 4	m = 8
4	224	148
8	227	90
16	147	45
32	0	0
64	0	0
128	166	36
256	185	49
512	192	58

n	m = 4	m = 8
4	136	131
8	0	8
16	0	0
32	12	16
64	16	27
128	0	0
256	0	7
512	0	6
1024	0	10

n	m = 4	m = 8
4	365	372
8	500	499
16	500	498
32	497	497
64	496	497
128	497	498

n	m = 4	m = 8
4	135	128
8	0	1
16	0	0
32	0	0
64	0	0
128	3	2
256	4	3
512	3	2

364
Figure 496: Results for plurality voting in the IC model for destructive control by partition of voters in model TP. Number of voters is fixed.

m	n = 4	n = 8										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	276	352	364	365	372	273	410	482	492	500	499	
# ci	224	148	136	131	135	127	90	18	8	0	1	
# to	0	0	0	0	0	0	0	0	0	0	0	

m	n = 16	n = 32										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	353	455	498	500	500	334	464	488	493	497	498	
# ci	147	45	2	0	0	0	0	0	0	0	0	
# to	0	0	0	0	0	0	0	0	0	0	0	

m	n = 64	n = 128										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	315	451	484	494	496	497	308	442	473	490	497	498
# ci	0	0	0	0	0	0	0	0	0	0	0	0
# to	185	49	16	6	4	3	192	58	27	10	3	2
Figure 497: Results for plurality voting in the TM model for destructive control by partition of voters in model TP. Number of candidates is fixed.

n	m = 4	m = 8										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	174	151	160	100	73	80	190	209	219	116	121	97
# ci	326	349	340	208	168	118	310	291	281	119	81	60
# to	0	0	0	192	259	302	0	0	0	265	298	343

n	m = 16	m = 32										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	222	244	273	134	127	138	241	278	273	150	125	135
# ci	278	256	227	64	41	26	259	222	92	46	20	14
# to	0	0	0	302	332	336	0	0	135	304	355	351

n	m = 64	m = 128										
	4	8	16	32	64	128	4	8	16	32	64	128
# cp	237	283	292	137	142	121	266	295	232	146	128	133
# ci	263	217	71	28	7	9	234	205	66	22	10	4
# to	0	0	137	335	351	370	0	0	202	332	362	363
Figure 498: Results for plurality voting in the TM model for destructive control by partition of voters in model TP. Number of voters is fixed.

m	4	8	16	32	64	128
# cp	174	190	222	241	237	266
# ci	326	310	278	259	263	234
# to	0	0	0	0	0	0

m	4	8	16	32	64	128
# cp	160	219	273	273	292	232
# ci	340	281	227	92	71	66
# to	0	0	0	135	137	202

m	4	8	16	32	64	128
# cp	73	121	127	125	142	128
# ci	168	81	41	20	7	0
# to	259	298	332	355	351	362

m	4	8	16	32	64	128
# cp	118	60	26	14	9	0
# ci	302	343	336	351	370	363

367
C.14.1. Computational Costs

Figure 499: Average time the algorithm needs to find a successful control action for destructive control by partition of voters in model TP in plurality elections in the IC model. The maximum is 29,37 seconds.

Figure 500: Average time the algorithm needs to determine no-instance of destructive control by partition of voters in model TP in plurality elections in the IC model. The maximum is 550,39 seconds.
Figure 501: Average time the algorithm needs to give a definite output for destructive control by partition of voters in model TP in plurality elections in the IC model. The maximum is 91.41 seconds.

Figure 502: Average time the algorithm needs to find a successful control action for destructive control by partition of voters in model TP in plurality elections in the TM model. The maximum is 114 seconds.
Figure 503: Average time the algorithm needs to determine no-instance of destructive control by partition of voters in model TP in plurality elections in the TM model. The maximum is 289.7 seconds.

Figure 504: Average time the algorithm needs to give a definite output for destructive control by partition of voters in model TP in plurality elections in the TM model. The maximum is 168.63 seconds.