A note on $L(1)$ of Hecke L–series associated to the elliptic curves with CM by $\sqrt{-3}$

Derong Qiu *
(School of Mathematical Sciences, Institute of Mathematics and Interdisciplinary Science, Capital Normal University, Beijing 100048, P.R.China)

Abstract Consider elliptic curves $E : y^2 = x^3 + D^3$ defined over the quadratic field $\mathbb{Q}(\sqrt{-3})$. Hecke L–series attached to E are studied, formulae for their values at $s = 1$, and bound of 3-adic valuations of these values are given. These results are complementary to those in [Q] and [QZ], and are consistent with the predictions of the conjecture of Birch and Swinnerton-Dyer.

Keywords: Elliptic curve, L-function, complex multiplication, Birch and Swinnerton-Dyer conjecture.

2000 Mathematics Subject Classification: 14H52 (primary), 11G05, 11G20 (Secondary).

1. Introduction and statement of main results

This note is a complement of [Q] and [QZ]. Let $\tau = (-1 + \sqrt{-3})/2$ be a primitive cubic root of unity and $O_K = \mathbb{Z}[\tau]$ the ring of integers of the imaginary quadratic field $K = \mathbb{Q}(\sqrt{-3})$. In this note, we consider the elliptic curves

$$E = E_{D^3} : y^2 = x^3 + D^3, \text{ with } D = \pi_1 \cdots \pi_n, \quad (1.1)$$

* E-mail: derong@mail.cnu.edu.cn
where \(\pi_k \equiv 1 \pmod{12} \) \((k = 1, \cdots, n) \) are distinct prime elements in \(O_K \). Obviously, \(E \) has complex multiplication by \(O_K \). Let \(S = \{ \pi_1 \cdots \pi_n \} \). For any subset \(T \) of \(\{1, \cdots, n\} \), denote \(D_T = \prod_{k \in T} \pi_k \), \(\hat{D}_T = D/D_T \) and put \(D_\emptyset = 1 \) when \(T = \emptyset \) (empty set). Let \(\psi_{D_T^3} \) be the Hecke character (i.e., Gr"ossencharacter) of \(K \) attached to the elliptic curve \(E_{D_T^3} : y^2 = x^3 + D_T^3 \), and let \(L_S(\overline{\psi}_{D_T^3}, s) \) be the Hecke \(L \)-series of \(\overline{\psi}_{D_T^3} \) (the complex conjugate of \(\psi_{D_T^3} \)) with the Euler factors omitted at all primes in \(S \) (for the definition of such Hecke \(L \)-series attached to an elliptic curve, see [Sil2]). We have the following result about the special value of \(L_S(\overline{\psi}_{D_T^3}, s) \) at \(s = 1 \).

Theorem 1.1 Let \(D = \pi_1 \cdots \pi_n \), where \(\pi_k \equiv 1 \pmod{12} \) \((k = 1, \cdots, n) \). Then, for any factor \(D_T \) of \(D \) and the corresponding Hecke character \(\psi_{D_T^3} \), we have

\[
- \frac{D}{\omega} \left(\frac{2}{D_T} \right)_2 L_S(\overline{\psi}_{D_T^3}, 1) = \frac{\sqrt{3}}{4} \sum_{c \in C} \left(\frac{c}{D_T} \right)_2 \frac{1}{\wp(\sqrt{-3} c \omega_D)} + \frac{\sqrt{3}}{2} \sum_{c \in C} \left(\frac{c}{D_T} \right)_2,
\]

where \((\cdot)_2 \) is the quadratic residue symbol in \(K \), \(C \) is any complete set of representatives of the relatively prime residue classes of \(O_K \) modulo \(D \), \(\wp(z) \) is the Weierstrass \(\wp \)-function satisfying \(\wp'(z)^2 = 4\wp(z)^3 - 1 \) with period lattice \(L_\omega = \omega O_K \) (corresponding to the elliptic curve \(y^2 = x^3 - \frac{1}{4} \)) and \(\omega = 3.059908 \cdots \) is an absolute constant.

There is much literature studying the special values \(L(1) \) associated to the CM elliptic curves (see e.g., [BSD], [Z1 \sim 3], [Q], [QZ]). In [Q], a similar result of \(L(1) \) was obtained for the Hecke character attached to some special elliptic curves \(y^2 = x^3 - 2^4 3^3 D^3 \). Now for the elliptic curves (1.1) above, to obtain an explicit formula of
L(1) need to overcome more difficulties, especially in calculating the key values of Weierstrass zeta function \(\zeta(z, L_\omega) \), Weierstrass \(\wp \)-function \(\wp(z) (= \wp(z, L_\omega)) \) and its derivative \(\wp'(z) \) (see the proof of Theorem 1.1 in the following).

Let \(\mathbb{Q}_2 \) be the completion of \(\mathbb{Q} \) at the \(2 \)-adic valuation, \(\overline{\mathbb{Q}} \) and \(\overline{\mathbb{Q}}_2 \) be the algebraic closures of \(\mathbb{Q} \) and \(\mathbb{Q}_p \) respectively, and let \(v_2 \) be the normalized \(2 \)-adic additive valuation of \(\overline{\mathbb{Q}}_2 \) (i.e., \(v_2(2) = 1 \)). Fix an isomorphic embedding \(\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}}_2 \). Then, via this embedding, \(v_2(\alpha) \) is defined for any algebraic number \(\alpha \) in \(\overline{\mathbb{Q}} \). The value \(v_2(\alpha) \) for \(\alpha \in \overline{\mathbb{Q}} \) depends on the choice of the embedding \(\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}}_2 \), but this does not affect our discussion in this paper.

By Corollary 22 of [CW], we know that \(L(\psi_{D^3}, 1)/\omega \) is an algebraic number, i.e., \(L(\psi_{D^3}, 1)/\omega \in \overline{\mathbb{Q}} \). For its \(2 \)-adic valuation, we have

Theorem 1.2. Let \(D = \pi_1 \cdots \pi_n \), where \(\pi_k \equiv 1 \pmod{12} \) are distinct prime elements of \(\mathbb{Z}[\tau] \) \((k = 1, \cdots, n)\), and let \(\psi_{D^3} \) be the Hecke character of \(\mathbb{Q}(\sqrt{-3}) \) attached to the elliptic curve \(E_{D^3} : y^2 = x^3 + D^3 \). Then, for the \(2 \)-adic valuation of \(L(\psi_{D^3}, 1)/\omega \) we have

\[
v_2 \left(L(\psi_{D^3}, 1)/\omega \right) \geq n - 1.
\]

2. Proofs of Theorems

Proof of Theorem 1.1. For the elliptic curve \(E_{D^3_T} : y^2 = x^3 + D_{T_1}^3 \), it has complex multiplication by \(O_K \). Since the class number of \(K \) is 1, the period lattice of \(E_{D^3_T} \) should be \(L_T = \omega_T O_K \) for some \(\omega_T \in \mathbb{C}^\times \). Let \(\omega_T = \alpha_T \omega \), \(\alpha_T \in \mathbb{C}^\times \). By Tate's algorithm [T], it is easy to show that the conductor of \(E_{D^3_T} \) is \(N_{E_{D^3_T}} = 12D_{T_1}^2 \), and the conductor of \(\psi_{D^3_T} \) is \(f_{\psi_{D^3_T}} = (2\sqrt{-3}D_T) \). In Prop.A of [QZ] (for a general form,
see Prop. 5.5 in [GS]), putting \(k = 1, \mathfrak{h} = O_K, \mathfrak{g} = (2\sqrt{-3}D), \rho = \frac{\omega_T}{2\sqrt{-3}D}, \phi = \psi_D^{\mathfrak{h}}, \)

then the ray class field of \(K \) modulo \(\mathfrak{g} \) is \(K((E_D^{\mathfrak{h}})_\mathfrak{g}) \) (see the Lemma 4.7 in [GS]), and then

\[
\frac{\bar{\rho}}{|\rho|^2} L_\mathfrak{g} (\overline{\psi}_D^{3\mathfrak{h}}, s) = \sum_{b \in \mathcal{B}} H_1 \left(\frac{\psi_D^{3\mathfrak{h}}(b)\omega_T}{2\sqrt{-3}D}, 0, s, L_T \right) \quad (\text{Re}(s) > 3/2)
\]

with \(\mathcal{B} = \{(6c + D) : c \in \mathcal{C} \} \), such that \(\{\sigma_b : b \in \mathcal{B}\} = \text{Gal} \left(K((E_D^{3\mathfrak{h}})_\mathfrak{g})/K \right) \cong (O_K/(2\sqrt{-3}D))^{\times}/O_K^{\times} \) (via Artin map), where \(\mathcal{C} \) is as in Theorem 1.1, a set of representatives of \((O_K/(D))^{\times} \). Then

\[
\frac{\bar{\rho}}{|\rho|^2} L_\mathfrak{g} (\overline{\psi}_D^{3\mathfrak{h}}, s) = \sum_{c \in \mathcal{C}} E^*_1 \left(\frac{\psi_D^{3\mathfrak{h}}(6c + D)\omega_T}{2\sqrt{-3}D}, 0, s, \omega_T O_K \right) \quad (\text{Re}(s) > 3/2).
\]

Note that \(H_1 (z, 0, 1, L) \) could be analytically continued by the Eisenstein \(E^*_1 \)-function

(see [W]): \(H_1 (z, 0, 1, L) = E^*_1 (z, L) = E^*_1 (z, L) \). Hence we get

\[
\frac{2\sqrt{-3}D}{\alpha T \omega} L_\mathfrak{g} (\overline{\psi}_D^{3\mathfrak{h}}, 1) = \sum_{c \in \mathcal{C}} E^*_1 \left(\frac{\psi_D^{3\mathfrak{h}}(6c + D)\omega_T}{2\sqrt{-3}D}, \alpha T \omega O_K \right) \quad (2.1)
\]

Since \(D \equiv 1 \pmod{12} \), we have \(6c + D \equiv 1 \pmod{6} \) for any \(c \in \mathcal{C} \). In particular,

\[
\left(\frac{2}{6c + D} \right)_3 = 1 \quad \text{(see [IR], P.119).}
\]

So by definition (see[Sil2], p.178),

\[
\psi_D^{3\mathfrak{h}}(6c + D) = \frac{4D_T^3}{6c + D} (6c + D) = \left(\frac{D_T}{6c + D} \right)^2 (6c + D).
\]

Moreover, by the quadratic reciprocity law in \(K \) (see [Le], pp.256~260), we have

\[
\left(\frac{D_T}{6c + D} \right)_2 = \left(\frac{6c + D}{D_T} \right)_2 = \left(\frac{6c}{D_T} \right)_2 = \left(\frac{-2 \cdot (\sqrt{-3})^2 c}{D_T} \right)_2 = \left(\frac{-2c}{D_T} \right)_2 = \left(\frac{2c}{D_T} \right)_2,
\]

the last equality holds because \(\left(\frac{1}{D_T} \right)_2 = 1 \) (see [Le], p.111). Therefore, by (2.1) above, and note that \(L_\mathfrak{g} (\overline{\psi}_D^{3\mathfrak{h}}, 1) = L_S (\overline{\psi}_D^{3\mathfrak{h}}, 1) \), we obtain

\[
\frac{2\sqrt{-3}D}{\alpha T \omega} L_S (\overline{\psi}_D^{3\mathfrak{h}}, 1) = \sum_{c \in \mathcal{C}} E^*_1 \left(\left(\frac{-\sqrt{-3}c \omega}{D} - \sqrt{-3} \omega \right) \alpha T \left(\frac{2c}{D_T} \right)_2, \alpha T \omega O_K \right).
\]

(2.2)
Let $\lambda = -\alpha_T \left(\frac{2c}{D_T} \right)^2$, then $\alpha_T \omega O_K = \lambda \omega O_K = \lambda L_\omega$. By formula $E_1^*(\lambda z, \lambda L) = \lambda^{-1} E_1^*(z, L)$, we obtain

$$E_1^* \left(\left(-\frac{\sqrt{-3} c \omega}{D} - \frac{\sqrt{-3} \omega}{6} \right), \alpha_T \left(\frac{2c}{D_T} \right)_2, \alpha_T \omega O_K \right) = E_1^* \left(\left(\frac{\sqrt{-3} c \omega}{D} + \frac{\sqrt{-3} \omega}{6} \right) \lambda, \lambda \omega \right) = -\alpha_T^{-1} \left(\frac{2c}{D_T} \right)_2 E_1^* \left(\frac{\sqrt{-3} c \omega}{D} + \frac{\sqrt{-3} \omega}{6}, L_\omega \right).$$

So by (2.2) above, we get

$$-\frac{D}{\omega} \left(\frac{2}{D_T} \right)_2 L_S(\overline{\psi D}_2^3, 1) = \frac{1}{2\sqrt{-3}} \sum_{c \in \mathbb{C}} \left(\frac{c}{D_T} \right)_2 E_1^* \left(\frac{\sqrt{-3} c \omega}{D} + \frac{\sqrt{-3} \omega}{6}, L_\omega \right). \tag{2.3}$$

By [QZ], it is easy to see that

$$E_1^*(z, L_\omega) = \zeta(z, L_\omega) - \frac{2\pi \varpi}{\sqrt{3} \omega^2}, \tag{2.4}$$

where $\zeta(z, L) = \frac{1}{z} + \sum_{\alpha \in L - \{0\}} \left(\frac{1}{z - \alpha} + \frac{1}{\overline{\alpha} - \overline{z}} \right)$ is the Weierstrass Zeta-function, an odd function, i.e., $\zeta(-z, L) = -\zeta(z, L)$ (see [Sil 2]). By the addition formula (see [Law])

$$\zeta(z_1 + z_2, L_\omega) = \zeta(z_1, L_\omega) + \zeta(z_2, L_\omega) + \frac{1}{2} \varphi' \left(\frac{z_1}{\varphi(z_1) - \varphi(z_2)} \right), \quad \text{we obtain}$$

$$\zeta \left(\frac{\sqrt{-3} c \omega}{D} + \frac{\sqrt{-3} \omega}{6}, L_\omega \right)$$

$$= \zeta \left(\frac{\sqrt{-3} c \omega}{D}, L_\omega \right) + \zeta \left(\frac{\sqrt{-3} \omega}{6}, L_\omega \right) + \frac{1}{2} \varphi' \left(\frac{\sqrt{-3} c \omega}{D} \right) \varphi' \left(\frac{\sqrt{-3} \omega}{6} \right). \tag{2.5}$$

Now we compute the values of $\zeta \left(\frac{\sqrt{-3} \omega}{6}, L_\omega \right), \varphi \left(\frac{\sqrt{-3} \omega}{6} \right)$ and $\varphi' \left(\frac{\sqrt{-3} \omega}{6} \right)$. Note that $\sqrt{-3} = 1 + 2\tau$, $\tau O_K = O_K$, $\tau L_\omega = L_\omega \varphi(\tau z, L_\omega) = \tau \varphi(z, L_\omega), \varphi'(\tau z, L_\omega) = \varphi'(z, L_\omega)$ and $\zeta(\tau z, L_\omega) = \tau^2 \zeta(z, L_\omega)$ (see [La], p.16, p.240). Also by [St] and [QZ], we know that

$$\varphi \left(\frac{\omega}{3}, L_\omega \right) = 1, \quad \varphi' \left(\frac{\omega}{3}, L_\omega \right) = -\sqrt{3}, \quad \varphi'' \left(\frac{\omega}{3}, L_\omega \right) = 6, \quad \zeta \left(\frac{\omega}{2}, L_\omega \right) = \frac{\pi}{\sqrt{3} \omega},$$

$$\zeta \left(\frac{\omega}{3}, L_\omega \right) = \frac{2\pi \sqrt{3}}{3\sqrt{3}}, \quad \zeta \left(\frac{2\omega}{3}, L_\omega \right) = \frac{4\pi}{3\sqrt{3}} - \frac{1}{\sqrt{3}}. \tag{2.6}$$
For $O_K = \mathbb{Z}[\tau]$, it is easy to see that the Eisenstein series $G_{2k}(O_K)$ is a real number for each positive integer $k \geq 2$. So by the Laurent series expansion $\varphi(z, O_K) = z^{-2} + \sum_{k=1}^{\infty} (2k + 1) G_{2k+2}(O_K) z^{2k}$ (see [Sil1], p.169), it is easy to see that $\varphi(\frac{1}{2}, O_K) \in \mathbb{R}$, a real number, so $\varphi(\frac{\omega}{2}, L_\omega) = \omega^{-2} \varphi(\frac{1}{2}, O_K) \in \mathbb{R}$. Then, since $(\varphi(\frac{\omega}{2}, L_\omega), \frac{1}{2} \varphi'(\frac{\omega}{2}, L_\omega))$ is a point of order 2 of the elliptic curve $y^2 = x^3 - \frac{1}{4}$ mentioned above, one can easily obtain that

$$\varphi'(\frac{\omega}{2}, L_\omega) = 0, \quad \varphi\left(\frac{2\omega}{3}, L_\omega\right) = 1, \quad \varphi'\left(\frac{2\omega}{3}, L_\omega\right) = \sqrt{3}, \quad \varphi\left(\frac{\omega}{2}, L_\omega\right) = \frac{3\sqrt{2}}{2}. \quad (2.7)$$

So by the addition formula of $\zeta(z, L_\omega)$ above, we get

$$\zeta\left(\frac{5\omega}{6}, L_\omega\right) = \zeta\left(\frac{\omega}{2} + \frac{\omega}{3}, L_\omega\right) = \zeta\left(\frac{\omega}{2}, L_\omega\right) + \zeta\left(\frac{\omega}{3}, L_\omega\right) + \frac{1}{2} \cdot \frac{\varphi'(\frac{\omega}{2}) - \varphi'(\frac{\omega}{3})}{\varphi(\frac{\omega}{2}) - \varphi(\frac{\omega}{3})}$$

$$= \frac{5\pi}{3\sqrt{3}\omega} + \frac{1}{\sqrt{3}} + \frac{\sqrt{3}}{\sqrt{2} - 2}. \quad (2.8)$$

Moreover, for any $\alpha \in L_\omega$, we have

$$\zeta(z + \alpha, L_\omega) - \zeta(z, L_\omega) = \eta(\alpha, L_\omega) = \alpha s_2(L_\omega) + \pi A(L_\omega)^{-1} = \frac{2\pi \alpha}{\sqrt{3}\omega^2}$$

because $s_2(L_\omega) = \frac{2\pi}{\omega} \zeta(\frac{\omega}{2}, L_\omega) - \frac{2\pi}{\sqrt{3}\omega^2} = 0$ and $A(L_\omega) = \frac{\sqrt{3} \omega^2}{2\pi}$ (see [QZ]). Putting $z = -\frac{\omega}{6}$ and $\alpha = \omega$, then we obtain

$$\zeta\left(\frac{5\omega}{6}, L_\omega\right) + \zeta\left(\frac{\omega}{6}, L_\omega\right) = \frac{2\pi}{\sqrt{3}\omega}. \quad \text{So by (2.8), we get}$$

$$\zeta\left(\frac{\omega}{6}, L_\omega\right) = \frac{\pi}{3\sqrt{3}\omega} - \frac{1}{\sqrt{3}} - \frac{\sqrt{3}}{\sqrt{2} - 2}. \quad (2.9)$$

Also by taking $u = \frac{2\omega}{3}$ and $v = \frac{\omega}{6}$ in the formula (see [Law], p.161)

$$\zeta(u + v, L_\omega) + \zeta(u - v, L_\omega) - 2\zeta(u, L_\omega) = \frac{\varphi'(u)}{\varphi(u) - \varphi(v)}, \quad (2.10)$$

we get

$$\zeta\left(\frac{2\omega}{3} + \frac{\omega}{6}, L_\omega\right) + \zeta\left(\frac{2\omega}{3} - \frac{\omega}{6}, L_\omega\right) - 2\zeta\left(\frac{2\omega}{3}, L_\omega\right) = \frac{\varphi'(\frac{2\omega}{3})}{\varphi(\frac{2\omega}{3}) - \varphi(\frac{\omega}{6})},$$

which implies

$$\varphi\left(\frac{\omega}{6}\right) = 1 + \sqrt{2} + \sqrt{4.} \quad (2.11)$$
Then by taking \(u = \frac{\omega}{6} \) and \(v = \frac{\tau \omega}{3} \) in the formula (2.10) above, we get

\[
\wp' \left(\frac{\omega}{6} \right) = -\sqrt{3} \left(3 + 2 \cdot \sqrt{2} + 2 \cdot \sqrt{4} \right). \tag{2.12}
\]

Now, by substituting these values into the addition formula of \(\wp(z) \) (see [Law], p.162), we have

\[
\wp \left(\sqrt{-\frac{3\omega}{6}} \right) = \wp \left(\frac{\omega}{6} + \frac{\tau \omega}{3} \right) = \frac{1}{4} \left(\frac{\wp' \left(\frac{\omega}{6} \right) - \wp' \left(\frac{\tau \omega}{3} \right)}{\wp \left(\frac{\omega}{6} \right) - \wp \left(\frac{\tau \omega}{3} \right)} \right)^2 - \wp \left(\frac{\omega}{6} \right) - \tau \wp \left(\frac{\omega}{3} \right) = -\sqrt{3},
\]

that is \(\wp \left(\sqrt{-\frac{3\omega}{6}} \right) = -\sqrt{3} \). \tag{2.13}

Next, by putting \(u = \frac{\omega}{6} \) and \(v = \frac{\tau \omega}{3} \) into the following formula (see [Law], p.183, Exer. 15)

\[
\frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)} = \frac{\wp'(v) + \wp'(u + v)}{\wp(v) - \wp(u + v)}, \quad \text{we obtain} \quad \wp' \left(\sqrt{-\frac{3\omega}{6}} \right) = -3\sqrt{3} \cdot \sqrt{1}. \tag{2.14}
\]

Again by the addition formula of \(\zeta(z, L_\omega) \) above, we get

\[
\zeta \left(\sqrt{-\frac{3\omega}{6}}, L_\omega \right) = \zeta \left(\frac{\omega}{6} + \frac{\tau \omega}{3}, L_\omega \right) = \zeta \left(\frac{\omega}{6}, L_\omega \right) + \zeta \left(\frac{\tau \omega}{3}, L_\omega \right) + \frac{1}{2} \cdot \frac{\wp' \left(\frac{\omega}{6} \right) - \wp' \left(\frac{\tau \omega}{3} \right)}{\wp \left(\frac{\omega}{6} \right) - \wp \left(\frac{\tau \omega}{3} \right)}
\]

\[
= -\frac{\pi \cdot \sqrt{-1}}{3\omega} - \frac{\sqrt{-1}}{2} \cdot \sqrt{4}, \quad \text{and then by (2.5) we obtain}
\]

\[
\zeta \left(\sqrt{-\frac{3\omega}{6}}, L_\omega \right) = \zeta \left(\frac{\sqrt{-3\omega}}{D}, L_\omega \right) - \frac{\pi \cdot \sqrt{-1}}{3\omega} - \frac{\sqrt{-1}}{2} \cdot \sqrt{4} + \frac{1}{2} \cdot \frac{\wp' \left(\sqrt{-\frac{3\omega}{6}} \right)}{\wp \left(\sqrt{-\frac{3\omega}{6}} \right)} + 3\sqrt{-1} \tag{2.16}
\]
Substituting it into (2.4) and (2.3), we obtain
\[- \frac{D}{\omega} \left(\frac{2}{D_T} \right)_2 L_S(\bar{\psi}_{D_T^1}, 1) = \frac{\sqrt{3}}{4} \sum_{c \in C} \left(\frac{c}{D_T} \right)_2 \frac{1}{\varphi \left(\frac{\sqrt{-3c\omega}}{D} \right)} + \frac{3}{\sqrt{2}} - \frac{\sqrt{4}}{4\sqrt{3}} \sum_{c \in C} \left(\frac{c}{D_T} \right)_2 \frac{1}{\varphi \left(\frac{\sqrt{-3c\omega}}{D} \right)} + \frac{3}{\sqrt{2}}.
\]

\[+ \frac{1}{2\sqrt{-3}} \sum_{c \in C} \left(\frac{c}{D_T} \right)_2 \left(\zeta \left(\frac{\sqrt{-3c\omega}}{D}, L_\omega \right) + \frac{1}{2} \cdot \frac{\varphi' \left(\frac{\sqrt{-3c\omega}}{D} \right)}{\varphi \left(\frac{\sqrt{-3c\omega}}{D} \right)} + \frac{3}{\sqrt{2}} + \frac{2\pi \sqrt{-1}}{\omega} \cdot \frac{c}{D} \right).
\]

Since \(D = \pi_1 \cdots \pi_n \) with \(\pi_k \equiv 1 \pmod{12} \), so we may choose the set \(C \) in such a way that \(-c \in C \) when \(c \in C \). Obviously \((-c/D_T)_2 = (c/D_T)_2\). Also since \(\zeta(z, L_\omega) \) and \(\varphi'(z, L_\omega) \) are odd functions, and \(\varphi(z, L_\omega) \) is an even function, so
\[\sum_{c \in C} \left(\frac{c}{D_T} \right)_2 \zeta \left(\frac{\sqrt{-3c\omega}}{D}, L_\omega \right) = \sum_{c \in C} \left(\frac{c}{D_T} \right)_2 \frac{\varphi' \left(\frac{\sqrt{-3c\omega}}{D} \right)}{\varphi \left(\frac{\sqrt{-3c\omega}}{D} \right)} + \frac{3}{\sqrt{2}} = \sum_{c \in C} \left(\frac{c}{D_T} \right)_2 \frac{c}{D} = 0.
\]

Therefore
\[- \frac{D}{\omega} \left(\frac{2}{D_T} \right)_2 L_S(\bar{\psi}_{D_T^1}, 1) = \frac{\sqrt{3}}{4} \sum_{c \in C} \left(\frac{c}{D_T} \right)_2 \frac{1}{\varphi \left(\frac{\sqrt{-3c\omega}}{D} \right)} + \frac{3}{\sqrt{2}} - \frac{\sqrt{4}}{4\sqrt{3}} \sum_{c \in C} \left(\frac{c}{D_T} \right)_2 \frac{1}{\varphi \left(\frac{\sqrt{-3c\omega}}{D} \right)} + \frac{3}{\sqrt{2}}.
\]

This proves Theorem 1.1. \(\square \)

Remark 2.1. (1) It follows from the above proof that Theorem 1.1 holds for all \(D = \pi_1 \cdots \pi_n \) with \(\pi_k \equiv 1 \pmod{4\sqrt{-3}} \).

(2) In particular, by taking \(D = 1 \) in the formula of Theorem 1.1, it is easy to see that \(L(E_1/Q, 1) = L(\bar{\psi}_1, 1) = \frac{3\sqrt{3}}{4\sqrt{3}} \cdot \omega \) for the elliptic curve \(E_1 : y^2 = x^3 + 1 \).

Lemma 2.2. For the Weierstrass \(\varphi \)-function \(\varphi(z, L_\omega) \) in Theorem 1.1 and any \(c \in C \), we have
\[v_2 \left(\varphi \left(\frac{\sqrt{-3c\omega}}{D}, L_\omega \right) + \sqrt{2} \right) = 0.
\]

Proof. Taking \(r = 1, \gamma = 1, \Delta = D, \beta = \sqrt{-3c} \) and \(\lambda = \frac{1}{2}(1 - 3^{1-r}) = 0 \) in the lemmas 2 and 1 in [St], by the above (2.14), it then follows that
\[v_2 \left(\varphi \left(\frac{\sqrt{-3c\omega}}{D} \right) \right) = 0, \text{ so } v_2 \left(\varphi \left(\frac{\sqrt{-3c\omega}}{D} \right) + \sqrt{2} \right) = 0.
\]
The proof is completed. □

Proof of Theorem 1.2. Add up the two sides of the formula in Theorem 1.1 over all subsets T of $\{1, \ldots, n\}$, we obtain

$$-\sum_T \frac{D}{\omega} \left(\frac{2}{D_T} \right)^2 L_S(\overline{\psi}_{D_T^2}, 1) = \frac{\sqrt{3}}{4} \sum_{c \in \mathcal{C}} \frac{1}{\psi(\sqrt{3/\omega} D_T)} + \sqrt{2} \sum_T \left(\frac{c}{D_T} \right)^2 - \frac{\sqrt{7}}{4\sqrt{3}} \# \mathcal{C}. \tag{2.17}$$

By assumption,

$$v_2 \left(\frac{\sqrt{4}}{4\sqrt{3}} \cdot \# \mathcal{C} \right) = v_2 \left(\frac{\sqrt{4}}{4\sqrt{3}} \cdot \prod_{k=1}^n (\pi_k \pi_k - 1) \right) \geq \frac{2}{3} - 2 + 2n = 2n - \frac{4}{3}. \quad (n \geq 1)$$

Note that by our choice $-c \in \mathcal{C}$ when $c \in \mathcal{C}$, and $\left(\frac{-c}{D_T} \right)^2 = \left(\frac{c}{D_T} \right)^2$, so by Lemma 2.2 we know that the first term in the right side of (2.17) has 2–adic valuation $\geq -2 + 1 + n = n - 1$. Therefore

$$v_2 \left(\sum_T \frac{D}{\omega} \left(\frac{2}{D_T} \right)^2 L_S(\overline{\psi}_{D_T^2}, 1) \right) \geq n - 1. \tag{2.18}$$

By definition, we know that, if $T = \{1, \ldots, n\}$, then $L_S(\overline{\psi}_{D_T^2}, 1) = L(\overline{\psi}_{D^2}, 1)$; and if $T = \emptyset$, then $L_S(\overline{\psi}_{D_T^2}, 1) = L(\overline{\psi}, 1) = L(\overline{\psi}, 1) \prod_{k=1}^n \left(1 - \frac{1}{\pi_k} \right) = \frac{\sqrt{4}}{4\sqrt{3}} \cdot \omega \prod_{k=1}^n \left(1 - \frac{1}{\pi_k} \right)$ (see the above Remark 2.1.(2)). So we have

$$v_2 \left(L_S(\overline{\psi}, 1)/\omega \right) \geq -\frac{4}{3} + 2n \geq n - 1 \quad (\text{Since } v_2(\pi_{k-1} - 1) \geq 2). \tag{2.19}$$

Now we use induction method on n to prove $v_2 \left(L(\overline{\psi}_{D^2}, 1)/\omega \right) \geq n - 1$. When $n = 1$, $D = \pi_1$, $v_2 \left(L(\overline{\psi}, 1)/\omega \right) \geq -\frac{4}{3} + 2 = \frac{2}{3}$. Also by taking $n = 1$ in (2.18),

$$v_2 \left(\frac{\pi_1}{\omega} \left(\frac{2}{D_0} \right)^2 L(\overline{\psi}, 1) + \frac{\pi_1}{\omega} \left(\frac{2}{\pi_1} \right)^2 L(\overline{\psi}, 1) \right) \geq 1 - 1 = 0.$$

So $v_2 \left(L(\overline{\psi}, 1)/\omega \right) = v_2 \left(\frac{\pi_1}{\omega} \left(\frac{2}{\pi_1} \right)^2 L(\overline{\psi}, 1) \right) \geq 0$. Assume our conclusion is true for $1, 2, \ldots, n-1$, and consider the case n, $D = \pi_1 \cdots \pi_n$. For any non-trivial subset
T of $\{1, \cdots, n\}$, denote $t = t(T) = \sharp T$, by definition, we have

$$v_2 \left(\frac{D}{\omega} \left(\frac{2}{D_T} \right)_2 L_S(\overline{\psi_{D_T^3}}, 1) \right) = v_2 \left(\frac{D}{\omega} \left(\frac{2}{D_T} \right)_2 L(\overline{\psi_{D_T^3}}, 1) \prod_{\pi_k|\hat{D}_T} \left(1 - \left(\frac{D_T}{\pi_k} \right)^2 \frac{1}{\pi_k} \right) \right)$$

$$= v_2 \left(L(\overline{\psi_{D_T^3}}, 1)/\omega \right) + \sum_{\pi_k|\hat{D}_T} v_2 \left(1 - \left(\frac{D_T}{\pi_k} \right)^2 \frac{1}{\pi_k} \right). \quad (2.20)$$

Note that $0 < t(T) < n$, by induction assumption we have $v_2 \left(L(\overline{\psi_{D_T^3}}, 1)/\omega \right) \geq t(T) - 1$. Also $\left(\frac{D_T}{\pi_k} \right)^2 = 1$ or -1 for each $\pi_k|\hat{D}_T$. So by (2.20) above, we get

$$v_2 \left(\frac{D}{\omega} \left(\frac{2}{D_T} \right)_2 L_S(\overline{\psi_{D_T^3}}, 1) \right) \geq t(T) - 1 + n - t(T) = n - 1.$$

Then together with (2.19) of the case $T = \emptyset$, we obtain

$$v_2 \left(L(\overline{\psi_{D_T^3}}, 1)/\omega \right) = v_2 \left(\frac{D}{\omega} \left(\frac{2}{D_T} \right)_2 L_S(\overline{\psi_{D_T^3}}, 1) \right)$$

$$= v_2 \left(\left(\sum_{T \subset \{1, \cdots, n\}} \frac{D}{\omega} \left(\frac{2}{D_T} \right)_2 L_S(\overline{\psi_{D_T^3}}, 1) \right) - \left(\sum_{T \subset \{1, \cdots, n\}} \frac{D}{\omega} \left(\frac{2}{D_T} \right)_2 L_S(\overline{\psi_{D_T^3}}, 1) \right) \right)$$

$$\geq n - 1.$$

This proves our conclusion by induction, and the proof is completed. □

References

[BSD] B.J.Birch and H.P.F.Swinnerton-Dyer, Notes on elliptic curves II, J. Reine Angew. Math. 218(1965), 79-108.

[CW] J. Coates and A. Wiles, on the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), No.3, 223-251.

[GS] C.Coldstein and N.Schappacher, S´eries d’ Eisenstein et fonction L de courbes elliptiques `a multiplication complexe, J. Reine Agew. Math., 327(1981), 184-218.

[IR] K.Ireland and M.Rosen, A Classical Introduction to Modern Number Theory, GTM 84, New York: Springer-Verlag, 1990.

[La] S. Lang, Elliptic Functions, second edition, GTM 112, New York: Springer-Verlag, 1987.

[Law] D.F.Lawden, Elliptic Functions and Applications, Applied Mathematical Sciences Vol.80, New York: Springer-Verlag, 1989.

[Le] F. Lemmermeyer, Reciprocity Laws, New York: Springer-Verlag, 2000.
[Q] D. Qiu, On p–adic valuations of $L(1)$ of elliptic curves with CM by $\sqrt{-3}$, Proceedings of the Royal Society of Edinburgh, 133A (2003), 1389-1407.

[QZ] D. Qiu, X. Zhang, Elliptic curves with CM by $\sqrt{-3}$ and 3–adic valuations of their L–series, manuscripta math. 108 (2002), 385-397.

[Sil 1] J.H. Silverman, “The Arithmetic of Elliptic Curves”, GTM 106, Springer-Verlag, New York, 1986.

[Sil 2] J.H. Silverman, “Advanced Topics in the Arithmetic of Elliptic Curves”, GTM 151, Springer-Verlag, 1994.

[St] N.M. Stephens, The diophantine equation $x^3 + y^3 = Dz^3$ and the conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math., 231(1968), 121-162.

[T] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, 1972), 33-52. LNM 476, Springer, Berlin, 1975.

[W] A. Weil, Elliptic functions according to Eisenstein and Kronecker, Springer, 1976.

[Z1] C. Zhao, A criterion for elliptic curves with lowest 2-power in $L(1)$, Math. Proc. Cambridge Philos. Soc. 121(1997), 385-400.

[Z2] C. Zhao, A criterion for elliptic curves with second lowest 2-power in $L(1)$, Math. Proc. Cambridge Philos. Soc. 131(2001), 385-404.

[Z3] Chunlai Zhao, A criterion for elliptic curves with lowest 2-power in $L(1)$ (II), Math. Proc. Cambridge Philos. Soc. 134(2003), 407-420.