Genome–lamina interactions are established de novo in the early mouse embryo

Máté Borsos1,4,5, Sara M. Perricone2,5, Tamás Schauer3, Julien Pontabry1, Kim L. de Luca2, Sandra S. de Vries2, Elias R. Ruiz-Morales1, Maria-Elena Torres-Padilla1,4,6, & Jop Kind2,6*

In mammals, the emergence of totipotency after fertilization involves extensive rearrangements of the spatial positioning of the genome1–3. However, the contribution of spatial genome organization to the regulation of developmental programs is unclear3. Here we generate high-resolution maps of genomic interactions with the nuclear lamina (a filamentous meshwork that lines the inner nuclear membrane) in mouse pre-implantation embryos. We reveal that nuclear organization is not inherited from the maternal germline but is instead established de novo shortly after fertilization. The two parental genomes establish lamina-associated domains (LADs)4 with different features that converge after the 8-cell stage. We find that the mechanism of LAD establishment is unrelated to DNA replication. Instead, we show that paternal LAD formation in zygotes is prevented by ectopic expression of Kdm5b, which suggests that LAD establishment may be dependent on remodelling of H3K4 methylation. Our data suggest a step-wise assembly model whereby early LAD formation precedes consolidation of topologically associating domains.

We established an experimental procedure to map lamina-associated domains (LADs) using DNA adenine methyltransferase identification (DamID)5 with lamin B1, and the untethered DNA adenine methyltransferase (Dam) enzyme as control. Lamin B1 is expressed throughout development and is therefore reliable for profiling LADs (Extended Data Fig. 1a). Temporal control of Dam expression was ensured by using the auxin-inducible degron (AID) system6 (Extended Data Fig. 1b, c) and the AAATracer7 enabled visualization of N°-methyladenosine (m°A)-modified genome (Fig. 1a, Extended Data Fig. 1b). The experimental conditions did not interfere with embryonic development (Extended Data Fig. 1d, e).

We mapped LADs in fully grown interphase oocytes (GV) arrested at the diplotene stage of prophase, zygotes, 2-cell and 8-cell embryos in populations and single-cell samples. The population replicates and single-cell average profiles displayed high concordance (Extended Data Fig. 1f, g). We also generated LAD profiles in trophectoderm and inner-cell-mass (ICM) cells, and in clonal mouse embryonic stem cells. LADs in embryonic stem cells correlate highly with previously published data (Extended Data Fig. 1h) and the similarity in LAD profiles between ICM and embryonic stem cell populations corresponds to the blastocyst origin of embryonic stem cells (Fig. 1b, Extended Data Fig. 1i). Genome–nuclear lamina contacts on autosomes in zygotes, 2-cell, 8-cell and blastocyst-stage embryos revealed broad continuous regions of m°A enrichment, characteristic of LADs in somatic cells (Extended Data Fig. 1f), in contrast to those in the Dam-injected embryos (Extended Data Fig. 2a). We conclude that the embryonic genome organizes into LADs in zygotes.

LADs in pre-implantation development display broad domains with a median size of between 1 Mb and 1.9 Mb, and a genomic coverage of between 42% and 61% (Fig. 1b, c). The 2-cell and 8-cell stages exhibit a larger number of smaller LADs compared with the other stages (Fig. 1b, Extended Data Fig. 3). At the 2-cell and 8-cell stages, 42% of the zygotic LADs reposition to the nuclear interior, but 70% of these zygotic LADs regain association with the nuclear lamina in blastocysts (Fig. 1d). Notably, 86% of LADs in zygotes overlap with LADs in the ICM and share a clear resemblance in associated genomic features (Extended Data Fig. 2b). Zygotic LADs are typified by high AT content, low CpG density and a 67% overlap with previously identified cell-type-invariable constitutive LADs (cLADs)8 (Extended Data Fig. 2c). The CpG density and AT content are relatively low in LADs at the 2-cell stage. We postulate that this is the result of a major reorganization of the genome at the 2-cell stage; genomic regions with typical LAD features dislodge from the nuclear lamina, whereas regions with intermediate LAD features associate with the nuclear lamina (Extended Data Fig. 2d). This reorganization in 2-cell embryos involves large, characteristic LAD domains. cLADs make up 77% of the dissociated LADs, further emphasizing the unusual nuclear positioning at the 2-cell stage (Extended Data Fig. 2e). Despite the unusual spatial rearrangements at this stage, repositioning coincides with typical upregulation and downregulation of gene expression in de novo inter-LADs (iLAD) and LADs, respectively (Fig. 1e). LADs that are specific to the 2-cell stage contain genes (n = 155) that are mainly expressed in the zygote and at later stages of development, but are generally silent at the mid and late 2-cell stage (Extended Data Fig. 2f). The association between transcriptional changes and spatial repositioning at the 2-cell stage is further illustrated by the markedly stronger repression of minor zygotic genome activation (ZGA) genes in LADs (23% minor ZGA gene density), versus iLADs (15% minor ZGA gene density) (Extended Data Fig. 2g, d). Between the 2-cell and 8-cell stages, differential gene expression also occurs concomitantly with the spatial repositioning of genomic regions (Fig. 1e), and—globally—genes in LADs are transcribed at low levels at the 2-cell and 8-cell stages in comparison to genes in iLADs (Fig. 1f). Examples of transitioning LADs at the 2-cell stage and genes within them are shown in Extended Data Fig. 2h. The less-pronounced differences in gene activity between LADs and iLADs at the 2-cell stage compared with the 8-cell stage may be attributed to a more open chromatin structure at the beginning of development9–11 (Extended Data Fig. 2b).

In fully grown oocytes, Dam–lamin B1 profiles appeared indistinguishable from the Dam controls (Fig. 1g, Extended Data Fig. 2i) and lacked LADs typical for all oocyte samples, including single cells. By contrast, reproducible LAD patterns were detected across all zygote samples (Extended Data Fig. 2j). These results suggest that fully grown interphase oocytes are largely devoid of LADs. Together, these data reveal dynamic rearrangements of LADs in accordance with transcription changes, which is suggestive of a gene-regulatory

---

1Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, Munich, Germany. 2OncoD Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Utrecht, the Netherlands. 3Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University, Planegg, Martinsried, Germany. 4Faculty of Biology, Ludwig-Maximilians Universität, Munich, Germany. 5These authors contributed equally: Máté Borsos, Sara M. Perricone. 6These authors jointly supervised this work: Maria-Elena Torres-Padilla, Jop Kind. *e-mail: tores-padilla@helmholtz-muenchen.de; j.kind@hubrecht.eu
of chromatin topology, we analysed published Hi-C data\(^1\) and encly between spatial genome organization and the establishment of topologically associating domains (TADs) are largely absent in LADs that are extensively rearranged during the transition from zygote to 2-cell stage, whereas the paternal genome exhibits clearly defined nuclear lamina contacts initiate in the zygote and become reinforced at the nuclear lamina more consistently than do maternal-specific LADs (Extended Data Fig. 4d). However, allele-specific DNA FISH indicates that paternal-specific LADs associate with the nuclear lamina more consistently than do maternal-specific LADs (Extended Data Fig. 4e). Alleclic differences persisted until the 8-cell stage, as revealed by t-distributed stochastic neighbour embedding (t-SNE) (Extended Data Fig. 4f), albeit much less pronounced than in the zygote. DamID on physically separated pronuclei from non-hybrid zygotes confirmed that our observations do not result from a genetic bias derived from different strains (Extended Data Fig. 4g). Of note, unlike the paternal zygotic LADs, the maternal LADs are less enriched for typical LAD features and even contain increased DNaseI hypersensitivity (Extended Data Fig. 4h). From the 2-cell stage onwards, LADs showed reduced DNaseI hypersensitivity, which became more pronounced at the 8-cell stage and in embryonic stem cells (Extended Data Fig. 2b). The Pearson correlation between the paternal zygote and 2-cell stage samples is 0.16, which is markedly different from the value of 0.53 for the maternal zygotic versus 2-cell stage (Extended Data Fig. 4e). Jaccard similarity coefficients confirmed these observations (Extended Data Fig. 4f). It therefore appears that the maternal genome–nuclear lamina contacts initiate in the zygote and become reinforced at the 2-cell stage, whereas the paternal genome exhibits clearly defined LADs that are extensively rearranged during the transition from zygote to 2-cell stage.

Fig. 1 | LADs establish de novo after fertilization. a, Experimental design. LAD methylation upon auxin removal, highlighted by GFP-\(\text{GFP}^+\)A-Tracer. GAP43–eGFP expression marks cell membrane. Scale bar, 5 μm. Experiments were repeated at least five times. ES, embryonic stem cell. b, Distribution of LAD domain length. Violin plots show the 25th and 75th percentiles (black lines), median (circles) and the smallest and largest values within 1.5 × the interquartile range (IQR). \(n\) = number of LADs, shown above violin plots. TE, trophectoderm. c, Genomic LAD coverage. d, Alluvial plot showing LAD reorganization during pre-implantation development. e, Alluvial plot showing median fold change (\(\log_2\)) in expression of genes\(^2\) for changing LADs between zygotes, 2-cell and 8-cell stages. f, RNA-sequencing (RNA-seq) expression values\(^3\) of genes within LADs or iLADs. Box plots show the 25th and 75th percentiles (box), median (circles) and the smallest and largest values within 1.5 × IQR of the hinge (whiskers) and outliers (black circles). \(n\) = number of genes, shown below the boxes. g, Genome-wide scatter plots (100-kb bins) of Dam and Dam–lamin B1 scores in oocytes and zygotes. \(n\) = 3 biologically independent samples. role of LADs in the early embryo. Furthermore, because typical LADs are undetectable in oocytes, we conclude that in the maternal pronucleus genome–lamina contacts are established de novo after fertilization.

Intra-embryonic heterogeneity in mouse pre-implantation embryos has been linked to cell-fate decisions emerging in the blastocyst\(^1\). To address whether LADs display intra-embryonic heterogeneity, we converted single-cell DamID scores to binary contact frequency maps as previously described\(^2\). Single-cell and population-average LAD profiles display high concordance (Extended Data Fig. 4a). We find that genome–nuclear lamina contacts occur over a wide range of frequencies at all stages (Fig. 2a); nevertheless, overall variability in contact frequency is comparable between individual cells of the three developmental stages (Fig. 2b). Similarly, contact-frequency distributions for zygotes, 2-cell embryos and 8-cell embryos are consistent between variable and constant LADs (Fig. 2a). However, the spatial segmentation in embryonic stem cells appears more consistent, as indicated by the lower coefficient of variation for LADs and iLADs (Fig. 2b). DNA fluorescence in situ hybridization (FISH) coupled with 3D distance measurements on selected LADs and iLADs confirmed the DamID results (Fig. 2c, Extended Data Fig. 4b, c); the mean distance values of DNA FISH showed high positive correlation with the DamID contact frequency scores (Fig. 2d). In addition, DNA FISH confirmed the relocation of selected changing LADs between the 2-cell and 8-cell stages (Extended Data Fig. 4c). Thus, specific and robust nuclear lamina contacts form as early as the zygote and are largely maintained as development progresses.

Next, we used hybrid embryos from mating of F1 (CBA × C57BL/6j) female mice with CAST/EiJ males to address whether parental differences exist in LADs. Notably, the paternal zygotic genome appears more defined, with broad domains, as opposed to more fragmented patterns with fewer genome–nuclear lamina contacts in the maternal pronucleus (Fig. 2e–g). LAD regions determined by DamID are positioned with similar average distances to the nuclear periphery to those measured by DNA FISH (Extended Data Fig. 4d). However, allele-specific DNA FISH indicates that paternal-specific LADs associate with the nuclear lamina more consistently than do maternal-specific LADs (Extended Data Fig. 4e). Allelic differences persisted until the 8-cell stage, as revealed by t-distributed stochastic neighbour embedding (t-SNE) (Extended Data Fig. 4f), albeit much less pronounced than in the zygote. DamID on physically separated pronuclei from non-hybrid zygotes confirmed that our observations do not result from a genetic bias derived from different strains (Extended Data Fig. 4g). Of note, unlike the paternal zygotic LADs, the maternal LADs are less enriched for typical LAD features and even contain increased DNaseI hypersensitivity (Extended Data Fig. 4h). From the 2-cell stage onwards, LADs showed reduced DNaseI hypersensitivity, which became more pronounced at the 8-cell stage and in embryonic stem cells (Extended Data Fig. 2b). The Pearson correlation between the paternal zygote and 2-cell stage samples is 0.16, which is markedly different from the value of 0.53 for the maternal zygotic versus 2-cell stage (Extended Data Fig. 4e). Jaccard similarity coefficients confirmed these observations (Extended Data Fig. 4f). It therefore appears that the maternal genome–nuclear lamina contacts initiate in the zygote and become reinforced at the 2-cell stage, whereas the paternal genome exhibits clearly defined LADs that are extensively rearranged during the transition from zygote to 2-cell stage.

Whereas LADs are established immediately after fertilization, topologically associating domains (TADs) are largely absent in zygotes and gradually consolidate to form ‘mature’ TADs at late cleavage stages\(^13,14\). To address the largely unexplored interdependency between spatial genome organization and the establishment of chromatin topology, we analysed published Hi-C data\(^15\) and determined insulation scores in the zygote, 2-cell stage, 8-cell stage and ICM at TAD boundaries defined in embryonic stem cells. The insulation scores provide a measure of the overall level of contacts
that occur over a given genomic region. Because only limited interactions occur between neighbouring TADs, insulation scores are lowest at TAD boundaries. As previously shown, TAD boundaries become progressively insulated as development proceeds (Fig. 3a). By contrast, DamID scores projected on per-stage LAD boundaries, reveal that LADs are already clearly defined in zygotes (Fig. 3b), and insulation scores progressively consolidate at the boundaries of zygotic LADs (Fig. 3c). These findings suggest that LADs may precede TAD establishment, and that chromatin scaffolding at the nuclear lamina in the zygote may direct the formation of higher-order chromatin topology throughout early development. Unlike mature TADs, A and B compartments can be observed as early as the zygotic stage, albeit with higher compartment strength in the paternal genome. The majority of LADs overlapped with B compartments in zygotes, 8-cell embryos, ICM and embryonic stem cells (Fig. 3d), consistent with previous findings in embryonic stem cells. However, unexpectedly, a substantial proportion of LADs in 2-cell embryos occupies A compartments (39%). This prompted us to investigate whether LADs may help to prime future B compartments. We determined compartment scores stratified for different patterns of LAD dynamics (Extended Data Fig. 5a). Constant iLADs and LADs, respectively, persist as A and B compartments throughout early development (Fig. 3e), which suggests that LAD and compartment formation occur simultaneously for these regions (~50% genome coverage). By contrast, de novo 2-cell-stage LADs that persist as LADs throughout early development (10.8% genome coverage) precede the establishment of B compartments (Fig. 3f). Thus, for certain genomic regions, LADs may help prime the formation of B compartments; however, alternative scenarios exist (Fig. 3f). Interestingly, regions that constitute LADs in zygotes and dislodge from the nuclear lamina at the 2-cell and/or 8-cell stage persist as B compartments throughout early development (Fig. 3g). This is notable, especially because detachment of these regions from the nuclear lamina during the zygote-to-2-cell transition is associated with global transcriptional upregulation of these regions (Fig. 1e). Conversely, nuclear-lamina-associated regions at the 2-cell stage remain as A compartments, yet are associated with global gene repression (Fig. 1e). These data suggest that LADs may be more directive in gene regulation at this stage of development than the not-yet-fully consolidated TADs and compartments.

Finally, we investigated whether LADs, similar to TADs, are affected by blocking replication with aphidicolin. Unlike TADs, zygotic and 2-cell stage LADs remained globally unaffected after aphidicolin treatment, although the patterns appeared less distinctive (Fig. 3h, Extended Data Fig. 5b, c). Similarly to LADs, analysis of published Hi-C data indicated that compartment formation is not affected by aphidicolin (Fig. 3h, Extended Data Fig. 5c). These results indicate that LADs and compartments are established independently of DNA replication. Collectively, our data support a model in which scaffolding of the genome at the nuclear lamina occurs simultaneously with compartment formation but precedes TAD consolidation.

We next investigated the mechanism(s) underlying LAD formation in the zygote. Because LADs are enriched for H3K9me2 and H3K9me3 (hereafter, H3K9me2/me3) in somatic cells, we first tested whether LAD establishment is dependent on H3K9 methylation. We expressed the H3K9 demethylase KDM4D (encoded by Kdm4d) in zygotes and performed DamID (Fig. 4a). Lowering global H3K9me2/me3 levels via ectopic expression of Kdm4d (Fig. 4b, Extended Data Fig. 6a) had no gross effect on LAD structure (Fig. 4c).

The maternal chromatin contains non-canonical ‘broad’ H3K4me3 domains, which are established during oocyte growth and persist until ZGA. By contrast, paternal chromatin has significantly lower H3K4me3 levels at fertilization. LADs and iLADs are progressively demarcated by H3K4me3 levels as development proceeds (Fig. 4d); however, only the paternal genome displays clear alternating patterns of H3K4me3 and LAD domains (Extended Data Fig. 6b, c). To address
a potential role for H3K4me3 in LAD establishment, we expressed the H3K4me3 demethylase KDM5B (encoded by Kdm5b) and performed DamID on physically isolated pronuclei (Fig. 4a). Kdm5b expression led to a pronounced reduction of H3K4me3 in both pronuclei compared to controls (Fig. 4e, Extended Data Fig. 6d). Notably, lamin B1 localization, H3K9me2/me3 and global transcriptional activity were unaffected by ectopic expression of Kdm5b (Extended Data Fig. 6e–h). Notably, expression of wild-type Kdm5b, but not the catalytically inactive mutant, resulted in a near-complete erasure of LAD structure of the paternal genome, with little or no effect on maternal LADs (Fig. 4f, g). The erasure of LAD profiles was consistent across experiments and individual pronuclei analysed (Extended Data Fig. 6i). The same experiment performed in hybrid embryos confirmed these findings (Extended Data Fig. 6j). We conclude that Kdm5b is critically involved in de novo establishment of LADs in the paternal pronucleus.

In summary, we show that LADs are established immediately after fertilization without inheritance from the maternal germline. Paternal inheritance cannot be excluded; however, the de novo acquisition of H3K4me318,21 and the abrogation of LADs upon Kdm5b expression in the paternal pronucleus suggests that LADs are formed de novo. The absence of H3K4me3 demarcation of LADs in sperm supports this (Extended Data Fig. 6k, l). De novo H3K4 methylation may support LAD formation or, alternatively, an intact euchromatin compartment may be important for segregating heterochromatin to the nuclear lamina. However, alternative mechanisms that are mediated by KDM5B demethylase activities cannot be formally excluded. Additional investigations are required to further dissect the role of KDM5B and/or H3K4me3 in LAD organization. Our analyses indicate that LAD formation precedes TAD consolidation and may help to further dissect the temporal and molecular interdependence of the different levels of nuclear organization. In sum, our work sheds light on the principles behind the establishment of nuclear organization and higher-order chromatin structure during early mammalian development.
Fig. 4 | Overexpression of Kdm5b histone demethylase abrogates paternal LAD establishment in the zygote. a, Experimental design. b, H3K9me3 immunostaining in zygotes expressing wild-type (WT) or mutant Kdm4d. c, Average Dam–lamin B1 signal at LAD boundaries in H3K9me3-manipulated embryos. Signal in maternal pronuclei and paternal pronuclei. d, Average H3K4me3 signal at LAD boundaries. e, H3K4me3 immunostaining in zygotes expressing wild-type and mutant Kdm5b mRNA. Scale bars, 10 μm. f, Average Dam–lamin B1 signal at LAD boundaries. g, Dam–lamin B1 profiles on maternal and paternal alleles in non-manipulated controls or zygotes expressing wild-type or mutant Kdm5b. RPKM, reads per kilobase of transcript per million mapped reads.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-019-1233-0.

Received: 6 April 2018; Accepted: 12 April 2019; Published online 22 May 2019.

1. Burton, A. & Torres-Padilla, M. E. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 15, 723–735 (2014).
2. Xu, Q. & Xie, W. Epigenome in early mammalian development: inheritance, reprogramming and establishment. Trends Cell Biol. 28, 237–253 (2018).
3. Jachowicz, J. W., Santenard, A., Bender, A., Muller, J. & Torres-Padilla, M. E. Heterochromatin establishment at pericentromeres depends on nuclear position. Genes Dev. 27, 2427–2432 (2013).
4. van Steensel, B. & Belmont, A. S. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791 (2017).
5. van Steensel, B., Delrow, J. & Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nat. Genet. 34, 304–308 (2001).
6. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).
7. Kind, J. et al. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153, 178–192 (2013).
8. Meuleman, W. et al. Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res. 23, 270–280 (2013).
9. Bolković, A. et al. Higher chromatin mobility supports totipotency and precedes pluripotency in vivo. Genes Dev. 15, 1042–1047 (2014).
10. Lu, F. et al. Establishing chromatin regulatory landscape during mouse preimplantation development. Cell 165, 1375–1388 (2016).
11. Wu, J. et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657 (2016).
12. Kind, J. et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134–147 (2015).
13. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).
14. Ke, Y. et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170, 367–381 (2017).
15. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).
16. Pope, B. D. et al. Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402–405 (2014).
17. Wen, B., Wu, H., Shinkai, Y., Izarzary, A. R. & Feinberg, A. Parental histone H3 lysine 9 dimethylated chromatin blocks distinguished differentiate from embryonic stem cells. Nat. Genet. 41, 246–250 (2009).
18. Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552 (2016).
19. Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562 (2016).
20. Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557 (2016).
21. Lepikhov, K. & Walter, J. Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev. Biol. 4, 12 (2004).
22. Torres-Padilla, M. E., Bannister, A. J., Hur, P. J., Kouzarides, T. & Zernicka-Goetz, M. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int. J. Dev. Biol. 50, 455–461 (2006).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019
METHODS

Oocyte and embryo collection and manipulation. Experiments with animals were carried out according to valid legislation in France and under the authorization of the Comité d'Ethique des Sciences de la Vie et de la Santé (CESVS), Centre d'Éthique des Sciences de la Vie et de la Sante (CE2V), and the French National Institute for Health and Medical Research (INSERM). All plasmids generated in this study are available at Addgene under the BlackPadilla lab plasmid. The Centre d'Éthique des Sciences de la Vie et de la Sante (CE2V) and the French National Institute for Health and Medical Research (INSERM) approved the experimental protocols.

Immunofluorescence. Embryos were treated with 0.5% pronase in M2 to remove zona pellucida at 37°C, washed in PBS and fixed in 4% PFA for 15 min at room temperature. After permeabilization in 0.5% Triton-X 100 in PBS for 20 min, embryos were kept in blocking buffer (3% BSA in PBS) from one hour to overnight. Embryos were incubated overnight in primary antibody mixes (Supplementary Table 1) diluted in blocking buffer, washed three times in PBS and stained with secondary antibodies conjugated with Alexa Fluor 488, Alexa Fluor 594 or Alexa Fluor 647 in blocking buffer for one hour. After washing three times in PBS, embryos were mounted in Vectashield containing DAPI. Lamin B1 is also known to be expressed in oocytes and blastocysts, as assessed by western blot. For visualizing global transcription, zygotes were pulsed with 50 μM Eu for one hour (26–27 h post hCG) and visualized with the Click-IT RNA Alexa Fluor 594 Imaging Kit (Thermo Fisher) according to the manufacturer’s instructions. For visualizing global DNA replication, zygotes or 2-cell embryos were pulsed with 10 μM EdU and visualized with the Click-IT Edu Alexa Fluor 594 Imaging Kit according to the manufacturer’s instructions (Thermo Fisher).

DNA FISH. DNA FISH was performed as previously described, using a protocol that preserves 3D information. BACs were obtained from BACPAC or RIKEN DNABank (Supplementary Table 1) and purified with NucleoBond Xtra Midi Plus kit (Macheray-Nagel). BACs were nick-translated with 5-TAMRA, Atto594 and Atto647N conjugated dUTPs according to the manufacturer’s instructions (Roche). To combine nuclear envelope staining with DNA FISH, immunostaining was performed with mAb414 (1:1,000; Abcam) as described above, followed by post-fixation in 2% PFA for 10 min. Next, embryos were washed in 0.5% Triton-X 100 for 10 min and treated with HCl solution (0.1N HCl, 0.5 Triton-X 100 and 1 mg/ml PVP in water) for 90 s, washed into prehybridization buffer (50% formamide, 1 mg/ml PVP, 0.05% Triton X, 0.5 mg/ml BSA) and incubated at 37°C for one hour. Embryos were transferred into drops of 0.2 μl hybridization buffer (prehybridization buffer containing 1 μg/ml mouse Cot-1 DNA) under mineral oil, denatured at 80°C for 10 min and incubated at 37°C for one hour. Embryos were transferred into drops of 0.2 μl hybridization buffer containing a mixture of three probes, each at 5 μg/ml which were previously denatured at 80°C for 10 min under oil. After overnight hybridization at 37°C, embryos were washed twice in 2× SSC, 0. Triton-X 100, 1 mg/ml PVP at room temperature followed by washing three times 10 min in 2× SSC, 0. Triton-X 100, 1 mg/ml PVP at 55°C and mounted in Vectashield containing DAPI. FISH slides were imaged with Leica SP8 confocal microscope equipped with a Plan Apochromat 63×1.4 oil objective at 1.5-μm z-steps for immunofluorescence and at 0.3-μm z-steps for DNA FISH. H2B4m3e, or 1 mg/ml PVP, 0.05% Triton X, 0.5 mg/ml BSA) and incubated at 37°C for one hour. Embryos were transferred into drops of 0.2 μl hybridization buffer (prehybridization buffer containing 1 μg/ml mouse Cot-1 DNA) under mineral oil, denatured at 80°C for 10 min and incubated at 37°C for one hour. Embryos were transferred into drops of 0.2 μl hybridization buffer containing a mixture of three probes, each at 5 μg/ml which were previously denatured at 80°C for 10 min under oil. After overnight hybridization at 37°C, embryos were washed twice in 2× SSC, 0. Triton-X 100, 1 mg/ml PVP at room temperature followed by washing three times 10 min in 2× SSC, 0. Triton-X 100, 1 mg/ml PVP at 55°C and mounted in Vectashield containing DAPI. The centre of the DNA mask was defined as 0 and the location of FISH spots along the unit vector from the centre (0) to the periphery (1) was determined. Immunofluorescence signal intensities of all experimental groups were normalized to the median of the control group’s (KDM5B mutant) intensity separately for each biological replicate. The differences in signal intensity and FISH spot distance were subjected to Wilcoxon signed-rank test between groups or stages of development. For each stage, between 71 and 220 FISH spots were analysed.

Hi-C data analysis. Data for untreated embryos were used from GSE82185, for the aphicidolin-treated and their control 2-cell embryos from PRJCA000241. Raw files from all biological replicates were pooled and analysed with Hi-C-Pro (version 2.10.0) as described in ref. 13, but aligning to the mm10 mouse reference genome. Compartments were called using the HiTC package. Iterative correction and eigenvalue decomposition-normalization 100-kb interaction matrices were binned with a bin size of 500 kb and a step size of 100 kb. Observed/expected matrices were used to generate correlation matrices and perform principal component analysis. A and B compartments were defined by the first principal component and gene density. TADs and insulation scores were calculated as described in ref.

Cell culture. F1 hybrid 129/Sv–Cst/Eij mouse embryonic stem cells24 were cultured at 37°C, 5% CO2 on primary mouse embryonic fibroblasts, in Glowing's minimum essential medium (G-MEM; Gibco cat. no. 2171002S) supplemented with 10% fetal bovine serum (FBS; Sigma cat. no. F7524), 1% penicillin–streptomycin (Gibco cat. no. 15140122), 1% GlutaMAX (Gibco cat. no. 35050038), 1% non-essential amino acids (Gibco cat. no. 11400035), 1% sodium pyruvate (Gibco cat. no. 11360034) and 1:1,000 human leukaemia inhibitor factor (LIF; in-house production). F1 hybrid 129/Sv–Cst/Eij mouse embryonic stem cells were not authenticated; they tested negative for mycoplasma.
Generating cell lines. Stable clonal Dam and Dam–lamin B1 lines were created by transfection of EF1alpha-Tir1-neo with hPGK-AID-Dam–lamin B1 or hPGK-AID-Dam plasmids in a ratio of 1:5 plasmids with Effectene (Qiagen cat. no. 10131035) and selection of the clones was based on methylation levels as determined by DpnII-qPCR assays as previously described. To reduce the background methylation levels in the presence of 1.0 mM IAA (Sigma cat. no. 15148), we transduced the selected clones of both Adenovirus 15 U/ul Dam with the same hPGK-Tir1-puro followed by selection with 0.8 g/ml puromycin (Sigma cat. no. P8833-10mg). Positive clones were screened for IAA induction by DpnII-qPCR assays and DamID PCR products.

DamID induction and collection. Expression of Ad-DM and DAM–lamin B1 was suppressed by culturing the cells in the presence of 1.0 mM IAA for 48 h. DamID was induced by IAA washout 12 h before collection. Twelve hours after IAA washout, cells were collected in G-MEM supplemented with 10% FBS and 1% Penicillin–streptomycin and stained with 10 g/ml Hoechst 34580 (Sigma cat. no. 911004450) for 45 min at 37 °C. Single- or 2-cell populations were sorted in 96-well plates at G2/M phase of the cell cycle based on the DNA content histogram.

Single-cell DamID. We sequenced three independent population samples (of 15, 20 or 24 cells for zygotes, 2-cell and 8-cell stage, respectively, and a total of 327 single cells for all stages. Single cells or populations of cells were manually sorted in 8-well PCR strips in 2 μl of DamID buffer (10 mM TRIS acetate pH 7.5 (Sigma cat. no. T1258); 10 mM magnesium acetate (Sigma cat. no. 63052); 50 mM potassium acetate (Sigma cat. no. 95843); 2.0% Tween-20 (Sigma cat. no. P2287)); One microtitre lysis buffer with proteinase K (10 mM TRIS acetate pH 7.5 (Sigma cat. no. T1258); 10 mM magnesium acetate (Sigma cat. no. 63052); 50 mM potassium acetate (Sigma cat. no. 95843); 2.0% Tween-20 (Sigma cat. no. P2287)); 2.0% Igepal (Sigma cat. no. 88896) and 2.0 mg/ml proteinase K (Roche cat. no. 03115828001)) was added to the samples, followed by proteinase K digestion at 42 °C for 12 h in a thermoblock with heated lid. Proteinase K was inactivated by heating the samples for 20 min at 80 °C. In the following steps, reagents were added with an Eppendorf Multipipette mounted with a 0.1-μl Combibit (Eppendorf cat. no. 0030089405). The surface of the reaction volume was never touched by the pipette tip. Genomic DNA (gDNA) was digested for 8 h by the addition of 7 μl of DpnI reaction mix (0.1 μl DpnI (10 U/μl), New England Biolabs cat. no. R0176); 0.7 μl 10× One-phor-all buffer-plus (100 μM TRIS acetate pH 7.5; 100 mM magnesium acetate; 500 mM potassium acetate) and 6.2 μl nuclease-free H2O) and incubation at 37 °C in a PCR block, followed by heat inactivation at 80 °C for 20 min. Adapter ligation was performed by the addition of 10 μl ligation mix (2 μl 2× T4 ligation buffer; 0.5 μl T4 ligation (5 U/μl), Roche cat. no. 10799900001); 0.05 μl 50 μM double-stranded DamID adaptor20) and 7.3 μl nuclease-free H2O and incubation in a PCR block at 16 °C overnight. Heat inactivation at 65 °C for 10 min the next day was followed by PCR amplification by the addition of 30 μl PCR mix (10 μl of the PCR reaction buffer (Sigma cat. no. 25043); 1.5 μl PCR barcoded primer (50 μM) NNNNNNNBCRDODGGTCGGCCGGCCGAGGATC (Supplementary Table 2), 0.5 μl MyTaq DNA polymerase (Bioline cat. no. 25043) and 18.25 μl nuclease-free H2O). The PCR primer carries 6 random nucleotides at the 5′ end to meet the Illumina software requirements of generating reads with diverse starting sequences and a 6-nucleotide sample barcode (Supplementary Table 2). The thermal cycling scheme is as follows: (1) 72 °C for 10 min; (2) 94 °C for 1 min, 65 °C for 5 min and 72 °C for 15 min; (3) 94 °C for 1 min, 65 °C for 1 min and 72 °C for 10 min (4 times); (4) 94 °C for 1 min, 65 °C for 1 min and 72 °C for 2 min (29 times, or 27 times for the population samples).

Of the resulting PCR product, 8 μl was used for standard 1% agarose gel electrophoresis for analytical purpose and estimation of DNA concentration. All samples were pooled and prepared for Illumina sequencing.

Single-cell DamID Illumina library preparation and sequencing. Of 300 ng purified PCR product the 3′ or 5′ overhanging ends were blunted in a 50-μl PCR reaction following the manufacturer’s instructions (End-It DNA End-Repair Kit, Epicentre cat. no. ER81050). Theblunted DNA samples were again purified using the PCR purification columns of Qiagen with elution at 20 μl nuclease-free H2O. Next, a 3′ adenine was added by incubation for 30 min at 37 °C in a 50-μl reaction mix (1 × New England Biolabs restriction buffer 2, 200 μM dATP (Roche cat. no. 11051440001) and 25 units of Klenow 3′→5′ exo– (New England Biolabs cat. no. M0212M). After heat inactivation at 75 °C for 20 min, the DNA was purified with Agencourt AMPure beads (Beckman Coulter cat. no. A63881). A 1.8 × volume of beads over DNA sample was used, manufacturer’s instructions were followed and the DNA was eluted at 20 μl nuclease-free H2O. To the purified DNA, the Illumina indexed Y-shaped adapters (TruSeq Nano DNA LT Library Prep Kit cat. no. FC-121–4402) were then ligated for 2 hours at room temperature in a 40 μl reaction mix (10 μl MyTaq Red reaction buffer (Bioline cat. no. M0212M), 50 μM MyTaq Red, 1.25 μl PCR barcoded primer (50 μM) NNNNNNNBCRDODGGTCGGCCGGCCGAGGATC (Supplementary Table 2), 0.5 μl PCR polymerase (Bioline cat. no. 25043) and 18.25 μl nuclease-free H2O). The PCR primer carries 6 random nucleotides at the 5′ end to meet the Illumina software requirements of generating reads with diverse starting sequences and a 6-nucleotide sample barcode (Supplementary Table 2). The thermal cycling scheme is as follows: (1) 72 °C for 10 min; (2) 94 °C for 1 min, 65 °C for 5 min and 72 °C for 15 min; (3) 94 °C for 1 min, 65 °C for 1 min and 72 °C for 10 min (4 times); (4) 94 °C for 1 min, 65 °C for 1 min and 72 °C for 2 min (29 times, or 27 times for the population samples).

Of the resulting PCR product, 8 μl was used for standard 1% agarose gel electrophoresis for analytical purpose and estimation of DNA concentration. All samples were pooled and prepared for Illumina sequencing.

Identification of parental-specific reads. For hybrid samples C57BL/6 × CAST/Eij or 129/Sv × CAST/Eij, CAST/Eij and 129/Sv genomes were de novo–compiled by nucleotide substitution of strain specific single nucleotide polymorphisms (SNPs) using the SNPsplt_genome_preparation tool (v.0.3.0) (http://www.bioinformatics.babraham.ac.uk/projects/SNPsplt/) in the original mm10 genome assembly. The database of annotated SNPs between different mouse strains was obtained from ftp://ftp-mouse.sanger.ac.uk/current_snps/strain_specific_vcfs/). The reads were separately aligned to the parental (mm10 or hybrid) genomes using the above described parameters. The edit distance of the alignments of pre-filtered reads (quality score ≥ 25) was compared to the two genomes. The reads aligning with the lowest edit distance were assigned to the appropriate parental genome. The reads aligning with equal edit distance between the parental genomes were not assigned to the parental genomes but were kept for ‘non-allelic’ profiles.

Comparative genomics to published datasets. Low-input chromatin immunoprecipitation (ChIP) data for H3K4me3 and DNA-hypersensitivity data were obtained from Gene Expression Omnibus (GEO) accession numbers GSE71434 and GSE76642, respectively. Alignment was carried out as described for the DamID sequencing reads. Picard tools (v.1.130) (http://picard.sourceforge.net) was used to remove PCR duplicates. Additionally, as the H3K4me3 arises from a mouse mixed genetic background C57BL/6 J or 129/Sv mixed genetic background C57BL/6 J × PWK, the assignment of reads belonging to parental genomes was carried out as described for the DamID libraries. Normalization in reads per million (RPM) was then carried out in fixed genomic windows of 5 kb or 100 kb to allow direct comparison with DamID data. Gene expression data were obtained from GEO accession GSE71434. The samples were aligned to the mm10 genome assembly using hisat2 (v.2.0.3-beta) with default parameters. Reads mapping with quality score lower than 200 were discarded. htseq-count (v.0.6.0)22 was then used to assign the mapped reads to a transcriptional start site (gencodegenes.org). Only genes annotated in the refFlat (http://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/) were considered for downstream analysis. The RPKM values were calculated for each gene by normalizing the total
number of mapped reads per gene by the gene length in kb and sample size. A gene transcription start site was considered to be located within a LAD when the region surrounding its transcription site site (± 250 bp) was located within a LAD. edger was used to perform differential expression analysis between consecutive stages. A given gene was considered significantly changing if the associated false-discovery-rate (FDR)-corrected P values is ≤ 0.01. Maternal-specific genes were depleted from this analysis. For the expression of minor ZGA genes, the datasets identified in ref. were used (clusters 5–8). Minor ZGA genes undergo downregulation by the 4-cell stage. The minor ZGA gene dataset was omitted for the differential expression analysis to compare the 2-cell stage and 8-cell stages in Fig. 1g. For the heat map in Extended Fig. 2e, we defined the expression of the genes inside the LADs using the single-cell RNA-seq data in ref. The counts were quantified using kallisto software (v=0.44.0). An RPMK normalization was applied to the raw counts using the R package edgeR only those genes with counts > 1 RPMK on average were considered as expressed. We calculated the mean expression of each gene per developmental stage and their z-scores were computed to visualize the relative gene expression between the stages, these values were plotted as a heat map using the R package Pheatmap. For the comparison with previously obtained DamID data on LADs in embryonic stem cells, the processed data were obtained from GEO accession GSM426758 in the form of log2 Dam–lamin B1 scores. To directly compare this dataset to the data generated in our study, average log2 Dam–lamin B1 scores were calculated for fixed genomic windows of 100 kb. HMM was then applied to call LADs in the different cell types obtained from GSM426758. Regions (100 kb) were finally defined as ‘LADs’ if they were classified as LADs in each of the individual cell types described in. For Fig. 1g, genes were considered significantly changing if the associated FDR-corrected P ≤ 0.01, edger was used to perform differential expression analysis between consecutive stages. Only the fold change (expressed in log2) of significantly differentially expressed genes between zygote and 2-cell, and 2-cell and 8-cell stages were included in the analysis. Figure 1g displays the median log2 fold change for changing LADs between zygote and 2-cell stage and 2-cell and 8-cell stage. Maternally specific genes as defined in ref. were removed from this analysis to prevent confounding effects owing to mRNA degradation. For similar reasons, the minor ZGA gene dataset based on ref. (clusters 5–8) was omitted for the differential expression analysis between the 2-cell and 8-cell stages. This was decided because these mRNAs gradually decrease from the 2-cell to 8-cell transition but are still relatively highly abundant at the 2-cell stage compared to the 8-cell stage. Because of the unequal abundance of minor ZGA mRNA, gene expression appears artificially inflated at the 2-cell stage. As a result, gene expression at the 8-cell stage would appear downregulated overall compared to the 2-cell stage if not corrected for minor ZGA genes.

Statistical testing. No statistical methods were used to predetermined sample size. The experiments were not randomized. The investigators were not blinded to allocation during experiments and outcome assessment. Statistical tests were computed to test the correlation between datasets and/or the significance of specific features. The R programming language (v=3.1.2 and v=3.4.0) was widely used for this purpose. In general, before applying any test, the normality of the distributions was tested by the Anderson–Darling normality test (two-sided, unless otherwise specified) or Pearson and Spearman correlation coefficients were carried out using the core statistics functions in R. Pair-wise Pearson correlation coefficients were calculated across conditions on the averaged, binned OE data and visualized as heat maps with hierarchical clustering (Extended Data Fig. 4h).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability
The sequencing DamID data from this study are available from the Gene Expression Omnibus, accession number GSE112551.

Code availability
Custom code generated to perform the analysis in this study is available upon request.
Extended Data Fig. 1 | See next page for caption.
Extended Data Fig. 1 | Establishment of DamID in mouse pre-implantation embryos. a, Immunostaining of lamin A/C and lamin B1 in oocytes, zygotes, 2-cell and 8-cell embryos and blastocysts. Scale bars, 5 μm. Levels were previously quantified by western blot in ref. 24. Experiments were repeated at least three times. b, m6ATracer signals with and without auxin. Scale bar, 20 μm. Experiments were repeated at least three times with similar results. c, PCR smears amplified from ten 2-cell embryos injected with varying amounts of mRNA encoding Dam–lamin B1 and developed in the presence or absence of auxin. Experiments were repeated at least three times with similar results. d, Development to the blastocyst in the absence or presence of auxin. e, Development to the blastocyst of zygotes injected with Dam or Dam–lamin B1 mRNA in the absence or presence of auxin. f, Dam–lamin B1 profiles on chromosome 11. Black boxes represent LAD domains. g, Hierarchical clustering of Dam–lamin B1 population (n = 3) and average single cell profiles in oocyte (n = 56), zygote (n = 19), 2-cell (n = 47) and 8-cell stage (n = 42). n = number of biologically independent samples. h, Comparison of genomic profiles obtained by DamID sequencing (this study) to previous DamID on micro-arrays. Black boxes represent LAD domains called by HMM. r = Spearman's rho. i, Venn diagram showing overlap between LADs in embryonic stem cells, ICM and trophectoderm (TE).
Extended Data Fig. 2 | See next page for caption.
Extended Data Fig. 2 | Features of embryonic LADs, analysis of gene expression and oocyte DamID. a, Left, chromosome plots comparing Dam and Dam–lamin B1 DamID profiles in 2-cell embryos, 8-cell embryos and embryonic stem cells. Right, genome-wide comparison scatter plots of Dam and Dam–lamin B1 scores per 100-kb bin in 2- and 8-cell embryos and embryonic stem cells (right panel). DamID scores were calculated based on \( n = 3 \) independent biological replicates. \( r = \) Spearman’s rho. b, Average CpG density, AT content and DNase hypersensitivity sites (DHS)\(^{10}\) over LAD boundaries. c, Percentage overlap of LADs in embryos with constitutive LADs (associating with the lamina in embryonic stem cells, astrocytes, neural precursor cells and mouse embryonic fibroblasts)\(^{8,37}\). d, CpG density, AT content, DNase hypersensitivity (DHS) and minor ZGA gene expression at the 2-cell stage in genomic regions reorganizing in respect to the nuclear periphery during the zygote to 2-cell stage transition. Violin plots show the 25th and 75th percentiles (white boxes), median (black horizontal line) and values at most \( 1.5 \times \) IQR. For CpG density, AT content and DHS, \( n = \) number of bins; for minor ZGA expression, \( n = \) number of minor ZGA genes. Wilcoxon rank-sum test \( P \) values shown (two-sided). DHS data from ref. \(^{11}\), expression data from ref. \(^{19}\). e, Percentage overlap of the de novo iLAD at the 2-cell stage with constitutive LADs (as defined for c). f, Heat map of gene expression Z-scores at different stages of early embryonic development, depicting only genes in LADs specific to the 2-cell stage. These genomic regions contain 937 genes of which the 155 expressed genes are presented in the heat map (see Methods). g, Percentage of minor ZGA genes of total number of genes in iLADs (purple) and LADs (green). h, Example regions of LAD dynamics between the zygote and 2-cell stage (left top) and the 2-cell and 8-cell stage (right top). For each region, the mRNA expression levels are depicted in RPKM (red). The bottom panels display two examples of LAD dynamics between the zygote, 2-cell and 8-cell stages. The location of two genes in the 2-cell-specific LADs is indicated with a dotted line and the expression levels (RPKM) of the corresponding genes is displayed as violin plots. Violin plots show median (black points) and values at most \( 1.5 \times \) IQR. \( n = \) biologically independent samples; zygote (\( n = 4 \)), 2-cell (\( n = 10 \)) and 8-cell (\( n = 28 \)). i, Chromosome plot comparing Dam and Dam–lamin B1 profiles in oocytes and zygotes. j, Chromosome plots comparing Dam and Dam–lamin B1 DamID population and single-cell profiles in oocytes and zygotes.
Extended Data Fig. 3 | Chromosome interaction profiles of Dam–lamin B1 triplicate samples. Dam–lamin B1 chromosomal interaction maps from three biological replicate DamID population samples for each embryonic stage. Coloured blocks represent HMM-called LAD domains. Black bars on the left represent centromeres, red highlights indicate unmappable regions.
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | Single cells show consistent LAD patterning within the same developmental stages but parental genomes display distinct features. a, Chromosome profiles of population average (n = 3) and single-cell average Dam–lamin B1 signals. Black boxes represent LAD domains called by HMM. b, Genomic location of example DNA FISH probes projected on Dam–lamin B1 chromosome profiles. c, Quantification of 3D preserved DNA FISH spot distances to the nuclear periphery in 2-cell and 8-cell embryos of probes in regions that change LAD status between 2-cell and 8-cell stages according to DamID. Box plots show the 25th and 75th percentiles (box), median (solid lines), the smallest and largest values within 1.5 × IQR of the hinge (whiskers) and outliers (grey circles). n = number of DNA FISH spots from at least three biologically independent samples. Wilcoxon rank-sum test P values shown (two-sided). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. d, Images of 3D DNA FISH in zygote pronuclei. Quantification shows distance to the nuclear periphery. Scale bars, 10 μm. Box plots show the 25th and 75th percentiles (box), median (solid lines), the smallest and largest values within 1.5 × IQR of the hinge (whiskers) and outliers (grey circles). n = number of DNA FISH spots from at least three biologically independent samples. e, Distance quantification of DNA FISH probes in maternal and paternal specific LADs in zygotes. Box plots show the 25th and 75th percentiles (box), median (solid lines), the smallest and largest values within 1.5 × IQR of the hinge (whiskers) and outliers (grey circles). n = number of DNA FISH spots from at least three biologically independent samples. Wilcoxon rank-sum test P values shown (two-sided). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. f, t-SNE representation of the triplicate allelic Dam–lamin B1 population samples, including 2-cell embryos from reciprocal crosses. n = 3 biologically independent samples. Scatter plot comparison between average Dam–lamin B1 signals obtained from pronucleus separated and hybrid zygote DamID. n = biologically independent samples. Maternal pronucleus (n = 10), paternal pronucleus (n = 15) and hybrid zygote (n = 3). r = Spearman’s rho. g, Average CpG density, AT content and DHS sites over LAD boundaries ± 1.5 Mb defined specifically for maternal and paternal alleles in zygotes. h, Allelic correlation matrix (Pearson) of OE scores from Dam–lamin B1 embryos. j, Jaccard indexes calculated over HMM-called LAD domains.
Extended Data Fig. 5 | Compartment status of regions with different LAD dynamics during embryonic development. a, Violin plots of compartment scores calculated for 100-kb genomic regions with different LAD dynamics. Number in parentheses represents the percentage of the genome covered by each of the 16 different categories of defined LAD reorganizations from zygote to embryonic stem cell. Violin plots show the values at most 1.5 × IQR and median (red lines). Compartment scores are calculated based on three biologically independent samples. b, Experimental schemes of DamID in aphidicolin-treated zygotes and 2-cell embryos. Images show global DNA replication measured by EdU incorporation in control and replication-inhibited embryos. \( n = \) number of images of independent experiments. Scale bars, 10 μm. c, Chromosome plots of compartment scores from Hi-C and DamID scores in control and aphidicoline treated zygotes and 2-cell embryos. \( n = \) number of 100-kb bins.
Extended Data Fig. 6 | See next page for caption.
Extended Data Fig. 6 | Overexpression of \textit{Kdm5b} histone demethylase abrogates paternal LAD establishment in the zygote. 

\textbf{a}, Quantifications of immunostaining with H3K9me3 in zygotes injected with wild-type and mutant KDM4D. Violin plots show the values at most $1.5 \times$ IQR and median (red lines). $n = \text{at least three biologically independent samples.}$ Wilcoxon rank-sum test $P$ values shown (two-sided).

\textbf{b}, Average paternal-specific H3K4me3 signal at paternal-specific LAD boundaries of each respective embryonic stage.

\textbf{c}, Average maternal specific H3K4me3 signal at maternal specific LAD boundaries of each respective embryonic stage.

\textbf{d}, Quantification as described for \textbf{a} but with H3K4me3.

\textbf{e}, Immunostaining and quantification of lamin B1 localization in the \textit{Kdm5b}-expressing zygotes.

\textbf{f}, Global transcription detection (EU incorporation) and quantification in H3K4me3 in the \textit{Kdm5b}-expressing zygotes.

\textbf{g}, Immunofluorescent staining of H3K9me3 in mutant and wild-type KDM5B-expressing embryos.

\textbf{h}, Immunofluorescent staining of H3K9me2 in mutant and wild-type KDM5B injected embryos.

\textbf{i}, Hierarchical clustering based on Pearson correlation of Dam–lamin B1 signal from single pronuclei of wild-type and mutant \textit{Kdm5b}-injected zygotes (samples from three independent experiments). For comparison, population average Dam and Dam–lamin B1 signals are included as grey and black squares, respectively.

\textbf{j}, Average Dam–lamin B1 signal at LAD boundaries in hybrid H3K4me3 manipulated embryos. Signal shown in maternal genome (top) and paternal genome (bottom).

\textbf{k}, Chromosome profiles of H3K4me3 ChIP with sequencing (ChIP-seq)\textsuperscript{20} signal from sperm, early zygotes and late zygotes. 

\textbf{l}, Average H3K4me3 levels in sperm, early zygotes and late zygotes at paternal zygotic LAD borders. In e–h, violin plots show the values at most $1.5 \times$ IQR and median (red lines); Wilcoxon rank-sum test $P$ values shown (two-sided). Scale bars, 10 $\mu$m.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

| n/a | Confirmed |
|-----|-----------|
| ☐   | ☒         |
| ☐   | ☒         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |
| ☐   | ☐         |

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated
- Clearly defined error bars
- State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection | No software was used for data collection.
Data analysis

DNA-FISH images were analyzed with Icy - Version 1.9.5.1 (http://icy.bioimageanalysis.org) with a custom made protocol available upon request. HiC data was analyzed with HiC-Pro (version 2.10.0) (DOI: 10.1186/s13059-015-0831-x). Compartments were called using the HiTC Bioconductor package Release (3.6) (10.1093/bioinformatics/bts521). Cutadapt (http://dx.doi.org/10.14806/ej.17.1.200) was used to trim the fastq reads; pre-processed reads were aligned to the reference genome using bwa (version bwa-0.7.12) (DOI: 10.1093/bioinformatics/btp324) ; SNPsplit_genome_preparation (version SNPsplit_v0.3.0/) (http://www.bioinformatics.babraham.ac.uk/projects/SNPsplit/) was used for the nucleotide substitution in the mm10 genome assembly; PCR duplicates were removed using picard tools (version picard-tools-1.130) (http://broadinstitute.github.io/picard/); hisat2 (version hisat2-2.0.3-beta) (DOI: 10.1038/nmeth.3317) was used to align mRNA reads to a the mm10 transcriptional model and htseq-count (version 0.6.0) (DOI: 10.1101/002824) and kallisto (version 0.44.0) (DOI: 10.1038/nbt.3519) were used to quantify the counts; the R programming language (versions R-3.1.2, R-3.4.0 and R-3.4.3) (https://www.R-project.org/) was widely used within the study for statistical analysis and data plotting. The R package edgeR (DOI: 10.1093/bioinformatics/btp616) was used for RNA expression differential analysis. Pheatmap was used for the generation of heatmaps of relative gene expression (version 1.10.12) (https://cran.r-project.org/web/packages/pheatmap/). Basecalling and filtering were performed using standard software of the Illumina HiSeq 2500 (https://www.illumina.com/systems/sequencing-platforms/hiseq-2500.html).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Data produced in this study is available at GSE112551. Publicly available data used for RNAseq and H3K4me3 ChiPseq can be found under the accession numbers GSE45719 and GSE71434; for HiC data at GSE82185 and PRJCA000241. Figures with associated raw data: figure 1b, figure 1c, figure 1d, figure 1e, figure 1f, figure 1h, figure 1j, figure 2a, figure 2b, figure 2d, figure 2e, figure 2f, figure 2g, figure 3b, figure 3d, figure 3h, figure 4c, figure 4f, figure 4g, figure 4i, figure s1f, figure s1g, figure s1h, figure s2a, figure s2b, figure s2h, figure s2l, figure s3, figure s4a, figure s4b, figure s4f, figure s4g, figure s4i, figure s4j, figure s5c, figure s6h, figure s6g, figure s6i.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☒ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

| Sample size | Three biological replicates were generated for all stages. These biological replicates showed high concordance and increasing sample size beyond three would not result in increased data quality improvement (reduce false positives/negatives). |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data exclusions | Samples with less than 30,000 unique GATCs were excluded from the data. |
| Replication | Experiments were successfully replicated n=3 or more |
| Randomization | In each experiment embryos from 4-8 female mice were pooled and randomly allocated to experimental groups. |
| Blinding | No blinding was done, since no manual assessment of images or experiments was performed |

Reporting for specific materials, systems and methods
Materials & experimental systems

| Involved in the study |
|-----------------------|
| ✘ Unique biological materials |
| ✘ Antibodies |
| ✘ Eukaryotic cell lines |
| ✘ Palaeontology |
| ✘ Animals and other organisms |
| ✘ Human research participants |

Methods

| Involved in the study |
|-----------------------|
| ✘ ChIP-seq |
| ✘ Flow cytometry |
| ✘ MRI-based neuroimaging |

Unique biological materials

Policy information about availability of materials

Obtaining unique materials: No restricted availability.

Antibodies

| Antibodies used |
|-----------------|
| Lamin B1 sc-6216 Santa Cruz (1:100) |
| Lamin A/C 39288 Active Motif (1:200) |
| mAb414 (nuclear pores) ab24609 Abcam (1:1000) |
| HA-tag 11867423001 Roche (1:250) |
| H3K4me3 C15410003 Diagenode (1:250) |
| H3K9me2 07-441 Millipore Upstate (1:250) |
| H3K9me3 17-625 Millipore Upstate (1:250) |
| 488 GAR Life Tech A11034 (1:500) |
| 488 GAM Invitrogen A11001 (1:500) |
| 647 GAR Life Tech A21245 (1:500) |
| 647 GAM Life Tech A21236 (1:500) |

Validation

Lamin B1 antibody was validated in KO mESC (DOI: 10.1126/science.1211222). mAb414 antibody was validated in preimplantation embryo (doi:10.1038/nsmb.2839). HA-tag antibody is validated by the manufacturer (https://www.sigmaaldrich.com/catalog/product/roche/roahaha?lang=de&region=DE). H3K4me3 antibody is validated on dot-blot by the manufacturer (https://www.diagenode.com/en/p/h3k4me3-polyclonal-antibody-premium-50-ug-50-ul). Lamin A/C antibody is validated on KO mESC (doi:10.4161/nucl.23384).

H3K9me2 antibody was validated by the manufacturer (http://www.merckmillipore.com/HU/hu/product/Anti-dimethyl-Histone-H3-Lys9-Antibody,MM_NF-07-441?ReferrerURL=https%3A%2F%2Fwww.google.hu%2F). H3K9me3 antibody was validated by the manufacturer (http://www.merckmillipore.com/HU/hu/product/ChIPAb+-Trimethyl-Histone-H3-Lys9-ChIP-Validated-Antibody-and-Primer-Set,MM_NF-17-625?ReferrerURL=https%3A%2F%2Fwww.google.hu%2F).

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s): F1 hybrid 129/Sv:Cast/Eij mouse embryonic stem cells (doi:10.1016/j.cell.2007.12.036)

Authentication: F1 hybrid 129/Sv:Cast/Eij mouse embryonic stem cells were not authenticated

Mycoplasma contamination: The F1 hybrid 129/Sv:Cast/Eij mouse embryonic stem cells has been tested negative for mycoplasma

Commonly misidentified lines (See ICLAC register): No commonly misidentified cell lines were used

Animals and other organisms

Policy information about studies involving animals: ARRIVE guidelines recommended for reporting animal research

Laboratory animals: Preimplantation embryos were collected from 5-8 weeks old F1 (CBAxC57BL/6i) females mated with CAST/EU males for hybrid crosses and with F1 males for non-hybrid crosses.

Wild animals: This study did not involve wild animals

Field-collected samples: This study did not involve field-collected samples