The reconstruction of preservice elementary teachers’ conception about free fall using cognitive conflict strategy

S Anggoro1,2*, A Widodo3 and A Suhandi4

1 Doctor Study Program of Basic Education, Postgraduate School, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi, Bandung, Indonesia
2 Teacher Training of Elementary Education Study Program, Universitas Muhammadiyah Purwokerto, Dukuhwaluh, Kembaran, Banyumas, Indonesia
3 Biology Education Department, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi, Bandung, Indonesia
4 Physics Education Department, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi, Bandung, Indonesia

*Corresponding author’s email: subuhanggoro@student.upi.edu

Abstract. Misconception about Free Fall have many experienced by preservice elementary teachers. It was caused by their teachers has not understood these concepts and how to teach it. This study aim analyzed a conceptions reconstruction on remedial teaching using Cognitive Conflict Strategies developed about Free Fall concept. The research method used is mixed methods with Intervention Mixed Methods Design. The participants are preservice elementary teachers’ in one of private university in Central Java who take the Second Basic Concept course. The results have shown that Cognitive Conflict Strategy is effective to reconstructing the conception of preservice elementary teachers on Free Fall using remedial teaching. This is indicated by most of them have experienced conceptual change with the revision level in every misconception that occurred in the prior conception. The research recommendations are the lecturer of Basic Science, which have elementary school graduates background generally, should have to collaborate with Physics and Biology lecturer to develop a scientific concept understanding by using learning model that can reconstruct the student conception.

1. Introduction
Preservice elementary teachers' have been experienced misconception about Free Fall concept [1]. The results of a survey of a first and third year of them in one of the private university at Central Java showed that 92.5% of them had misconceptions about it. This results have corresponded with previous research [2-6]. The misconception may occur because the teacher does not understand the concept and/or how to teach it [7-9]. In addition, many teachers are not prepared for the teaching of science that is compatible with accepted scientific theory [10]. So that students' understanding tends to rely on intuition and gave tactile experiences [3-4,11-12].

Cognitive conflict strategies have been widely used in improving misconceptions of students', teachers' and preservice teachers' on various science concepts. Hermita et al. explained that cognitive conflict strategies reconstruct the misconceptions of preservice elementary teachers' about electrical concepts [13]. Later, Laburu and Niaz reported that this strategy could reconstruct conceptions of thermal energy and temperature [14]. Thus, Akpinar explained his study about misconceptions
The reconstruction of Turkish science teachers used this strategy [15]. Several previous research findings explained how cognitive conflict strategies can reconstruct the misconceptions of some concepts in physics, chemistry, and biology [16-19].

The use of remedial learning can remediate misconceptions, constructs, and reconstructions of scientific understanding, thinking strategies, and improving learning outcomes [13, 20-21]. The reconstruction process of conception can be done with classroom learning, CCText or laboratory practice. This study aims to describe the reconstruction of conceptions that occur in preservice elementary school teachers' using cognitive conflict strategy on the remedial teaching about Free Fall with their conceptual change viewed.

2. Methods

2.1. Participants
The participants were preservice elementary teachers’ who taking of Second Science Basic Concept (57 participants from Science Class at Senior High School Graduates and 48 non-Science). Meanwhile, to see the conceptual reconstruction (or conceptual change), the participants used remedial teaching to 34 elementary teachers who consisted of 17 participants from science and 17 participants from non-science.

2.2. Research procedures
Mixed methods with Intervention Mixed Methods Design Research was used [22-23]. The data sources were based on a conception that written at before and after learning. The data were collected by participant's conception of an of Free Fall phenomenon. The data were classified based on the similarity of conceptions. Then, data were analyzed to obtain the level conceptual change of participants. The conceptual category and conceptual change level adapted the response model to the discrepant event developed by Kaltakci & Didis, Kaltakci-Gurel, Eryilmaz & McDermott and Kristianti [24-26].

3. Result and Discussion
Freefall is a basic concept of physics and the subject of study from Aristotle, Galileo to the time this study was conducted [1, 4, 6, 27-28]. The reconstruction of the conception of preservice elementary teachers' is presented in Figure 1 and 2.

Figure 1 shows the conception change of participants about Free Fall concept. Most of them have a misconception preconception that heavier objects will fall faster. Through a cognitive conflict strategy, most participants then believe that the weight of the object has no effect on the speed time of object fall. Even, more than half of participants have a scientific conception that the speed of falling objects is affected by gravity and altitude.

There are some participants who know the concept of free falling body motion correctly, but the concept is still intuitive. This is indicated by the explanation of some participants who understand that the object falling speed have not influenced by it mass but does not provide an explanation of factors that affect it scientifically. Besides, it is still a small percentage of participants who have misconceptions at the end of learning. This indicates that misconceptions are not easily converted into scientific conceptions in a short time.
Whereas Yin et al argue to facilitate the reconstruction of the conception on this concept. Most of participants, both of Science and non-Science backgrounds, have conception reconstructed at the revision level after experimenting with different weight balls and dropping at the same altitude and time. However, only a half of participants had scientific conception. Thus, the final conception of most of them, referring to Vosniadou & Brewer's opinion is on synthetic conception [29-30].

Figure 1. Preservice Elementary Teachers’ Conception Change on Free Fall

In a cognitive perspective, the reconstruction of the conceptions of learners using cognitive conflict strategies in remedial teaching of Free Fall Movement leads to a change of knowledge scheme through a process of imbalance (disequilibrium) [31]. The reconstruction of the conception that occurs begins with the identification of the initial conception and through a structured learning process, resulting in the restructuring or assimilation of knowledge of learners or knowledge acquisition [31]. Sfard argues that conception as "like acquiring them and then adding to them or revising them over time" [32]. Whereas Yin et al argue to facilitate the reconstruction of the conceptions of learners to a scientific of
natural phenomena or scientific concept, teachers should (a) identify the current early conceptions of learners about the topics to be taught; (b) guide learners to be aware of the lack of the conceptions; and (c) guiding learners to recognize the scientific conception [33].

Students' observations are often contrary to their predictions, it's because of their misconceptions. By creating a discrepant event with their initial conception, cognitive conflict strategies helped learners to understand of their misconceptions and accept the scientific concepts easily. The effectiveness of a cognitive conflict strategy relies on reconstructed their misconceptions, through the argumentation and social construction of scientific explanations. Through cognitive conflict strategy, students' are guided to build scientific conceptions through hands-on activities and multimedia visuals [34-35]. Thus, learners developed and accepted a scientific conception [33].

In a constructivist view, students must build their own knowledge. There assumption that students must activated and motivated learning. Sinatra & Pintrich argued that in the conceptions reconstruction process, students as active learners [36]. It means, the reconstruction of conception depends cognitive, metacognitive and affective factors [36]. The main purposes of science learning is to develop scientific knowledge consciously [37].

Learning models influenced the cognitive conflict of learners [17]. This means when the students received the contradictory or anomalous data, they would compare it with their knowledge before. In addition, students' who are given learned using meaningful learning would respond to the problem by asking themselves, then connecting and elaborating ideas [38]. This contributes to learning successfully.

Cognitive conflict strategies effective to remedial teaching has been proven through research results that have been conducted in various subjects [39-40]. Cooperative learning using cognitive conflict strategies in Mathematics courses has increased critical and creative thinking skill [39]. In addition, cognitive conflict increases the students’ understanding of the concepts of physics better than traditional learning [40]. Students that used cognitive conflict strategies have better analyzed and understood the anomaly between anomalous phenomena or discrepant event, scientific concepts and their conception [41].

Learning with aided simulations based on cognitive conflict strategy has been increased meaningful conflicts [42]. Then, visual multimedia-aided this strategies can be used to higher conceptual understanding [43]. This suggests that the combination of the effectiveness of cognitive conflict strategies along with visual multimedia can make learning process meaningfully.

Deeper learning can occur when teachers used integrated media [44-45]. Self-exploration, collaboration, and active participation were enabled students to solve problems by use visual multimedia. Through integrated media simulation, modeling and media-riched materials (such as image utilization, animation, video, and audio) [46].

The result shows that traditional teaching methods such as lectures or media such as textbooks are not effective in reconstructed misconceptions [47-50]. Hands-on activities, CCText and visual multimedia are several alternative models, methods or learning media that used to improve the student conception [35,50].

4. Conclusions
According to this study, the reconstruction of conception can be used by remedial teaching with visual multimedia-aided cognitive conflict strategy. Through this strategy, students were challenged to reconstruct their conception by solve problems through self-exploration, collaboration, and active participation. Students have better analyzed and understood the anomaly between phenomena in the universe, scientific concepts and their conception.

5. References
[1] Anggoro S, Sopandi W and Sholehuddin M 2017 Influence of joyful learning on elementary school students’ attitudes toward science. In Journal of Physics: Conference Series 812 1 012001
[2] Chia T C 1996 Common misconceptions in frictional force among university physics students. In Teaching and Learning 16 2
[3] Vicvaro M 2012 Intuitive physics of collision effects on simulated spheres differing in size, velocity, and material. In Psicológic, 33 3
[4] Vicvaro M. 2014. Intuitive physics of free fall: an information integration approach to the mass-speed belief Psicológic 35 3
[5] Ferreira A, Seyffert A S and Lemmer M 2017 Developing a graphical tool for students to understand air resistance and free fall: when heavier objects do fall faster. In Physics Education 52 3
[6] Bani-Salameh H N 2016 How persistent are the misconceptions about force and motion held by college students? Physics Education 52 1
[7] Barke H, Hazari A and Yitbarek S 2009 Misconceptions in chemistry: Addressing perceptions in chemistry (Berlin, Germany: Springer-Verlag)
[8] Burgoon J N, Heddle M L and Duran E 2011 Re-examining the similarities between teacher and student conceptions about physical science. In Journal of Science Teacher Education 22 2
[9] Stein M, Larrabee T G and Barman C R 2008 A study of common beliefs and misconceptions in physical science. In Journal of Elementary Science Education 20 2
[10] Halim L, Yong T K and Meerah T S M 2014 Overcoming students’ misconceptions on forces in equilibrium: An action research study. In Creative Education 5 11
[11] Galili I and Bar V 1997 Children's operational knowledge about weight. In International Journal of Science Education 19 3
[12] Galili I 2001 Weight versus gravitational force: Historical and educational perspectives. In International Journal of Science Education 23 10
[13] Hermita N, Suhandi A, Syaodih E, Samsudin A, Mahbubah K, Noviana E and Kurniaman O 2018 Constructing VMMSCCText for Re-conceptualizing Students’ Conception. In Journal of Applied Environment Biological Science 8 3
[14] Laburú C E and Niaz M 2002 A Lakatosian framework to analyze situations of cognitive conflict and controversy in students' understanding of heat energy and temperature. In Journal of Science Education and Technology 11 3
[15] Akpınar Y, Ardaç D and Er-Amuçe N 2014 Development and validation of an argumentation based multimedia science learning environment: Preliminary findings. In Procedia-Social and Behavioral Sciences 116
[16] Madu B and Orji E 2015 Effects of Cognitive Conflict Instructional Strategy on Students’ Conceptual Change in Temperature and Heat. In SAGE Open 5 3
[17] Ab Rahim R, Noor N M and Zaid N M 2015 Meta-analysis on element of cognitive conflict strategies with a focus on multimedia learning material development. In International Education Studies 8 13
[18] Singh S 2014 Blunder lecture to reeducate physics concepts by cognitive conflict strategy. Advances in Physiology Education 38 3
[19] Zimmerman B J and Blom D E 1983 Toward an empirical test of the role of cognitive conflict in learning. In Developmental Review 3 1
[20] Oyekan S O 2013 Effect of diagnostic remedial teaching strategy on students’ achievement in biology. In Journal of Educational and Social Research 3 7
[21] Jangid N and Inda U S 2016 The effectiveness of Remedial Teaching on Thinking Strategies of Slow Learners. In The International Journal of Indian Psychology 4 1
[22] Creswell J W 2013 Steps in conducting a scholarly mixed methods study
[23] Creswell J W and Plano C V 2011 Designing and Conducting Mixed Methods Research 2nd. (Los Angeles: Sage)
[24] Kaltakçi D and Didiş N 2007 Identification of Pre-Service Physics Teachers’ Misconceptions on Gravity Concept: A Study with a 3-Tier Misconception Test. Paper presented at the AIP Conference Proceedings.
[25] Gurel D K, Eryılmaz A and McDermott L C 2015 A Review and Comparison of Diagnostic Instruments to Identify Students’ Misconceptions in Science. In Eurasia Journal of Mathematics, Science and Technology Education 11 5
[26] Kristianti T 2016 Representasi Multiple Bioinformatika dalam Memfasilitasi Conceptual Change
Konsep Ekologi Molekuler. (Dissertation UPI: Bandung)

Franco J A 2011 Relativistic Gravitational Potential Energy and General Free Fall: A Fundamental Topic in Physics. In Journal of Vectorial Relativity 6 2

Valerianian M 2009 The Transformation of Aristotle's Mechanical Questions: A Bridge Between the Italian Renaissance Architects and Galileo's First New Science. In Annals of Science 66 2

Vosniadou S and Brewer W F 1992 Mental models of the earth: A study of conceptual change in childhood. In Cognitive psychology 24 4

Vosniadou S and Brewer W F. (1994). Mental models of the day/night cycle. Cognitive science, 18 1

Tregust D F and Duit R 2008 Mental models of the day/night cycle. Conceptual change: A discussion of theoretical, methodological and practical challenges for science education. In Cultural Studies of Science Education 3 2

Sfard A 1998 On two metaphors for learning and the dangers of choosing just one. In Educational Researcher 27 2

Yin Y, Tomita M K, and Shavelson R J 2008 Diagnosing and dealing with student misconceptions: floating and sinking. Science Scope 31 8

Tomita M, and Yin Y 2007 Promoting conceptual change through formative assessment in the Science classroom. Paper presented at the Hawaii Educational Research Association annual conference, Honolulu.

Unal S 2008 Changing students’ misconceptions of floating and sinking using hands-on activities. In Journal of Baltic Science Education 7 3

Sinatra G M 2005 The" warming trend" in conceptual change research: The legacy of Paul R. Pintrich. Educational Psychologist 40 2

Tyson L M, Venville G J, Harrison A G and Tregust D F 1997 A multidimensional framework for interpreting conceptual change events in the classroom. In Science education 81 4

Anggoro S, Widodo A and Suhandi A 2017 Pre-service Elementary Teachers Understanding on Force and Motion. In Journal of Physics: Conference Series 895 1 012151

Dahlan J A and Rohayati A 2012 Implementasi Strategi Pembelajaran Konflik Kognitif Dalam Upaya Meningkatkan High Order Mathematical Thinking Siswa. In Jurnal Pendidikan 13 2

Baser M 2006 Fostering conceptual change by cognitive conflict based instruction on students’ understanding of heat and temperature concepts. In Eurasia Journal of Mathematics, Science and Technology Education 2 2

Kang S, Scharmann L C and Noh T 2004 Reexamining the role of cognitive conflict in science concept learning. In Research in Science Education 34 1

Nilsson, W and del Barrio Castro T 2013 Simulation Assisted Learning in Statistics: How important are students’ characteristics? http://ecompapers.repec.org/paper/ubideawps/56.htm

Baddock M and Bucat R 2008 Effectiveness of a classroom chemistry demonstration using the cognitive conflict strategy. In International Journal of Science Education 30 8

Mayer R E 2002 Cognitive theory and the design of multimedia instruction: an example of the two-way street between cognition and instruction. In New Directions for Teaching and Learning 89

Moreno R 2004 Decreasing cognitive load for novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. In Instructional Science 32 1-2

de Sousa L, Richter B and Nel C 2017 The effect of multimedia use on the teaching and learning of Social Sciences at tertiary level: a case study. In Yesterday and Today 17

Klopfner L E, Champagne A B and Gunstone R F (1983). Research in Science and Technological Education, 1 2

Driver R and Easley J 1978 Pupils and paradigms: A review of literature related to concept development in adolescent science students. In Studies in Science Education 5

Guzzetti B J 2000 Learning counter-intuitive science concepts: What have we learned from over a decade of research? In Reading & Writing Quarterly 16 2

Thompson F and Logue S 2006 An exploration of common student misconceptions in science. In International Education Journal 7 4
Acknowledgment
This study was funded by Ministry of Research, Technology and Higher Education of the Republic of Indonesia. We thank our colleagues from Universitas Pendidikan Indonesia who provided insight and expertise that greatly assisted the research, although they may not agree with all of the interpretations/conclusions of this paper.