DENSE SETS OF INTEGERS WITH PRESCRIBED REPRESENTATION FUNCTIONS

JAVIER CILLERUELO AND MELVYN B. NATHANSON

Abstract. Let \(A \) be a set of integers and let \(h \geq 2 \). For every integer \(n \), let \(r_{A,h}(n) \) denote the number of representations of \(n \) in the form \(n = a_1 + \cdots + a_h \), where \(a_i \in A \) for \(1 \leq i \leq h \), and \(a_1 \leq \cdots \leq a_h \). The function \(r_{A,h} : \mathbb{Z} \to \mathbb{N} \), where \(\mathbb{N} = \mathbb{Z} \cup \{0, \infty\} \), is the representation function of order \(h \) for \(A \).

We prove that every function \(f : \mathbb{Z} \to \mathbb{N} \) satisfying \(\lim \inf \left| n \right| \to \infty f(n) \geq g \) is the representation function of order \(h \) for a sequence \(A = \{a_k\} \) of integers, and that \(A \) can be constructed so that it increases “almost” as slowly as any given \(B_h[g] \) sequence. In particular, for every \(\varepsilon > 0 \) and \(g \geq g(h, \varepsilon) \), we can construct a sequence \(A \) satisfying \(r_{A,h} = f \) and \(A(x) \gg x^{1/h-\varepsilon} \).

1. Introduction

Let \(A \) be a set of integers and let \(h \geq 2 \). For every integer \(n \), let \(r_{A,h}(n) \) denote the number of representations of \(n \) in the form

\[
n = a_1 + \cdots + a_h
\]

where

\[
a_1 \leq \cdots \leq a_h \quad \text{and} \quad a_i \in A \quad \text{for} \quad 1 \leq i \leq h.
\]

The function \(r_{A,h} : \mathbb{Z} \to \mathbb{N} \) is the representation function of order \(h \) for \(A \), where \(\mathbb{N} = \mathbb{Z} \cup \{0, \infty\} \).

Nathanson proved \([8]\) that any function \(f : \mathbb{Z} \to \mathbb{N} \) satisfying \(\lim \inf_{|n| \to \infty} f(n) \geq 1 \) is the representation function of order \(h \) of a set of integers \(A \) such that

\[
A(x) \gg x^{1/(2h-1)},
\]

where \(A(x) \) counts the number of elements \(a \in A \) with \(|a| \leq x \). It is an open problem to determine how dense the sets \(A \) can be.

In this paper we study the connection between this problem and the problem of finding dense \(B_h[g] \) sequences. We recall that a set \(B \) of nonnegative integers is called a \(B_h[g] \) sequence if

\[
r_{B,h}(n) \leq g
\]

for every nonnegative integer \(n \). It is usual to write \(B_h \) to denote \(B_h[1] \) sequences.

1 The notation \(f(x) \gg g(x) \) means that there exists a constant \(C > 0 \) such that \(f(x) \geq Cg(x) \) for \(x \) large enough.
Luczak and Schoen proved that any B_h sequence satisfying an additional kind of Sidon property (see [7] for the definition of this property, which they call the S_h property) can be enlarged to obtain a sequence with any prescribed representation function given f satisfying that $\liminf_{|x| \to \infty} f(x) \geq 1$. In particular, since they prove that there exists a B_h sequence A satisfying the S_h property with $A(x) \gg x^{1/(2h-1)}$, they recover Nathanson’s result.

In this paper we prove that any $B_h[g]$ sequence can be modified slightly to have any prescribed representation function f satisfying $\liminf_{|x| \to \infty} f(x) \geq g$. Our main theorem is the following.

Theorem 1. Let $f : \mathbb{Z} \to \mathbb{N}$ any function such that $\liminf_{|n| \to \infty} f(n) \geq g$ and let B be any $B_h[g]$ sequence. Then, for any decreasing function $\epsilon(x) \to 0$ as $x \to \infty$, there exists a sequence A of integers such that

$$r_{A,h}(n) = f(n) \quad \text{for all } n \in \mathbb{Z}$$

and

$$A(x) \gg B(x\epsilon(x)).$$

It is difficult problem to construct dense B_h sequences. A trivial counting argument gives

$$B(x) \ll x^{1/h}$$

for these sequences. On the other hand, the greedy algorithm shows that there exists a B_h sequence B such that

$$B(x) \gg x^{1/(2h-1)}. \quad (2)$$

For B_2 sequences, also called Sidon sets, Ruzsa proved [11] that there exists a Sidon set B such that

$$B(x) \gg x^{\sqrt{2} - 1 + o(1)} \quad (3)$$

This result and Theorem 1 give the following corollary.

Corollary 1. Let $f : \mathbb{Z} \to \mathbb{N}$ any function such that $\liminf_{|n| \to \infty} f(n) \geq 1$. Then there exists a sequence of integers A such that

$$r_{A,2}(n) = f(n) \quad \text{for all } n \in \mathbb{Z}$$

and

$$A(x) \gg x^{\sqrt{2} - 1 + o(1)}.$$
Corollary 2. Given \(h \geq 2 \), for any \(\epsilon > 0 \), there exists \(g = g(h, \epsilon) \) such that, for any function \(f : \mathbb{Z} \to \mathbb{N} \) satisfying \(\liminf_{|n| \to \infty} f(n) \geq g \), there exists a sequence \(\mathcal{A} \) of integers such that

\[
 r_{\mathcal{A}, h}(n) = f(n) \quad \text{for all } n \in \mathbb{Z}
\]

and

\[
 \mathcal{A}(x) \gg x^{1-\epsilon}.
\]

The construction in [3] for the set \(\mathcal{A} \) satisfying the growth condition (1) was based on the greedy algorithm. In this paper we construct the set \(\mathcal{A} \) by adjoining a very sparse sequence \(\mathcal{U} = \{u_k\} \) to a suitable \(\mathcal{B}_h[g] \) sequence \(\mathcal{B} \). This idea was used in [2], but in a simpler way, to construct dense perfect difference sets, which are sets such that every nonzero integer has a unique representation as a difference of two elements of \(\mathcal{A} \). The proof of the main theorem in [2] can be adapted easily to our problem in the simplest case \(h = 2 \).

Theorem 2. Let \(f : \mathbb{Z} \to \mathbb{N} \) be a function such that \(\liminf_{|n| \to \infty} f(n) \geq g \), and let \(\mathcal{B} \) be a \(\mathcal{B}_2[g] \) sequence. Then there exists a sequence of integers \(\mathcal{A} \) such that

\[
 r_{\mathcal{A}, 2}(n) = f(n) \quad \text{for all } n \in \mathbb{Z}
\]

and

\[
 \mathcal{A}(x) \gg \mathcal{B}(x/3).
\]

We omit the proof because it is very close to the proof of the main theorem in [2]. Unfortunately, that proof cannot be adapted to the case \(h \geq 3 \). We need another definition of a “suitable” \(\mathcal{B}_h \) set. In section §2 we shall show how to modify a \(\mathcal{B}_h[g] \) sequence \(\mathcal{B} \) so that it becomes “suitable.” We do this by applying the “Inserting Zeros Transformation” to an arbitrary \(\mathcal{B}_h[g] \) set. This is the main ingredient in the proof of Theorem 1.

Chen [1] has proved that for any \(\epsilon > 0 \) there exists a unique representation basis \(\mathcal{A} \) (that is, a set \(\mathcal{A} \) with \(r_{\mathcal{A}, 2}(k) = 1 \) for all integers \(k \neq 0 \)) such that \(\limsup_{x \to \infty} \mathcal{A}(x)/x^{1/2-\epsilon} > 1 \). J. Lee [6] has improved this result by proving that for any increasing function \(\omega \) tending to infinity there exists a unique representation basis \(\mathcal{A} \) such that \(\limsup_{x \to \infty} \mathcal{A}(x)\omega(x)/\sqrt{x} > 0 \).

Theorem 2 and the classical constructions of Erdős [12] and Kruckéberg [5] of infinite Sidon sets \(\mathcal{B} \) such that \(\limsup_{x \to \infty} \mathcal{B}(x)/\sqrt{x} > 0 \) provide a unique representation basis \(\mathcal{A} \) such that \(\limsup_{x \to \infty} \mathcal{A}(x)/\sqrt{x} > 0 \). Indeed, we can easily adapt the proof of Theorem 1.3 in [2] to the case of the additive representation function \(r(n) \) (instead of the subtractive representation function \(d(n) = \#\{n = a-a', a, a' \in \mathcal{A}\} \)).

Theorem 3. There exists a unique representation basis \(\mathcal{A} \) such that

\[
 \limsup_{x \to \infty} \frac{\mathcal{A}(x)}{\sqrt{x}} \geq \frac{1}{\sqrt{2}}.
\]

Again we omit the proof because it is very close to the proof of Theorem 1.3 in [2].

Theorem above answers affirmatively the first open problem in [1]. Note also that if \(\mathcal{A} \) is an infinite Sidon set of integers, then the set

\[
 \mathcal{A}' = \{4a : a \geq 0\} \cup \{-4a + 1 : a < 0\}
\]

is also a Sidon set and, in this case, \(\liminf |\mathcal{A} \cap (-x, x)|/\sqrt{x} = \liminf \mathcal{A}'(4x)/\sqrt{x} \). A well known result of Erdős states that \(\liminf \mathcal{B}(x)/\sqrt{x} = 0 \) for any Sidon set \(\mathcal{B} \).
Then the above limit is zero, so it answers negatively the second open problem in [1].

We do not know if it is possible to obtain a similar result for \(h \geq 3 \), because it is open problem to determine if there exists an infinite \(B_h \) sequence \(B \) with \(\limsup_{x \to \infty} B(x)/x^{1/h} > 0 \). It is easy, however, to prove that for any function \(\omega \) tending to infinity there exists a unique representation basis of order \(h \) such that \(\limsup_{x \to \infty} B(x)\omega(x)/x^{1/h} > 1 \). We can construct the set \(B \) as follows: Let \(x_1, \ldots, x_k, \ldots \) be a sequence of positive integers such that \(\omega(x_k) > (hx_{k-1})^{1/h} \) and consider, for each \(k \), a \(B_h \) sequence \(B_k \subset [1, x_k/(hx_{k-1})] \) with \(|B_k| > (x_k/(hx_{k-1}))^{1/h} \). The set \(B = \cup_k (hx_{k-1}) \ast B_k \) satisfies the conditions, where we use the notation \(t \ast A = \{ ta, \ a \in A \} \).

The construction above and Theorem 1 yield the following Corollary, which extends Theorem 6 in [6] in several ways.

Corollary 3. Let \(f : \mathbb{Z} \to \mathbb{N} \) any function such that \(\liminf_{|n| \to \infty} f(n) \geq 1 \). For any increasing function \(\omega \) tending to infinity there exists a set \(A \) such that \(r_{A,h}(n) = f(n) \) for all integers \(n \), and

\[
\limsup_{x \to \infty} A(x)\omega(x)/x^{1/h} > 0.
\]

2. The Inserting Zeros Transformation

Consider the binary expansion of the elements of a set \(B \) of positive integers. We will modify these integers by inserting strings of zeros at fixed places. We will see that this transformation of the set \(B \) preserves certain additive properties.

In this paper we denote by \(\gamma \) any strictly increasing function \(\gamma : \mathbb{N}_0 \to \mathbb{N}_0 \) with \(\gamma(0) = 0 \). For every positive integer \(r \), we define the “Inserting Zeros Transformation” \(T^r_\gamma \) by

\[
T^r_\gamma \left(\sum_{i \geq 0} \varepsilon_i 2^i \right) = \sum_{k \geq 0} 2^{2r} \sum_{i = \gamma(k)}^{\gamma(k+1)-1} \varepsilon_i 2^i.
\]

In other words, if the integer \(b \) has the binary expansion

\[
b = \varepsilon_0 \cdots \varepsilon_{\gamma(1)-1} \varepsilon_{\gamma(1)} \cdots \varepsilon_{\gamma(2)-1} \varepsilon_{\gamma(2)} \cdots \varepsilon_{\gamma(k)-1} \varepsilon_{\gamma(k)} \cdots,
\]

then

\[
T^r_\gamma(b) = \varepsilon_0 \cdots \varepsilon_{\gamma(1)-1} 0 \cdots 0 \varepsilon_{\gamma(1)} \cdots \varepsilon_{\gamma(2)-1} 0 \cdots 0 \varepsilon_{\gamma(2)} \cdots \varepsilon_{\gamma(k)-1} 0 \cdots 0 \varepsilon_{\gamma(k)} \cdots,
\]

Note that if \(b < b' \), then \(T^r_\gamma(b) < T^r_\gamma(b') \). We define the set

\[
T^r_\gamma(B) = \{ T^r_\gamma(b) : b \in B \}.
\]

The next proposition proves that the function \(T^r_\gamma \) preserves some Sidon properties.

Proposition 1. Let \(2r > \log_2 h \). If \(b_1, \ldots, b_h, b'_1, \ldots, b'_h \) are positive integers such that

\[
T^r_\gamma(b_1) + \cdots + T^r_\gamma(b_h) = T^r_\gamma(b'_1) + \cdots + T^r_\gamma(b'_h),
\]

then

\[
b_1 + \cdots + b_h = b'_1 + \cdots + b'_h.
\]

In particular, if \(B \) is a \(B_h[\gamma] \) set and \(2r \geq \log_2 h \), then \(T^r_\gamma(B) \) is also a \(B_h[\gamma] \) set.
Proposition 2. For $k \geq 1$ and for any positive integer b

$$\|T_x^r(b)\|_{m_k} < \frac{m_k}{2^{2r}},$$

where m_k is defined in (7).

Proof. Let $b = \varepsilon_0 \varepsilon_1 \varepsilon_2 \ldots$ be the binary expansion of b. Then

$$T_x^r(b) \equiv \sum_{j=0}^{k-1} 2^{2rj} \sum_{i=\gamma(j)}^{\gamma(j+1)-1} \varepsilon_i 2^i \pmod{m_k}$$

and

$$0 \leq \sum_{j=0}^{k-1} 2^{2rj} \sum_{i=\gamma(j)}^{\gamma(j+1)-1} \varepsilon_i 2^i \leq 2^{r(k-1)+\gamma(k)-1} 2^i < \frac{m_k}{2^{2r}}.$$
This completes the proof.

3. Proof of Theorem

3.1. Two auxiliary sequences. Consider the sequence \(\{z_j\}_{j=1}^\infty \) defined by

\[
(8) \quad z_j = j - [\sqrt{j}][\sqrt{j}] + 1.
\]

For every positive integer \(j \) there is a unique positive integer \(s \) such that \(s^2 \leq j < (s+1)^2 \). Then \(j = s^2 + s + i \) for some \(i \in [-s, s] \) and \(z_j = i \). It follows that for every integer \(i \) there are infinitely many positive integers \(j \) such that \(z_j = i \). Moreover, \(|z_j| \leq s \leq \sqrt{j} \) for all \(j \geq 1 \).

Let \(f : \mathbb{Z} \to \mathbb{N} \) any function such that \(\liminf_{|n| \to \infty} f(n) \geq g \). Let \(n_0 \) be the least positive integer such that \(f(n) \geq g \) for all \(|n| \geq n_0 \). Choose an integer \(r > 1 + \log_2(h^2 + n_0) \). Then

\[
(9) \quad h^2 < 2^{r-1} \quad \text{and} \quad n_0 < 2^{r-1}.
\]

Let \(\gamma : \mathbb{N}_0 \to \mathbb{N}_0 \) be a strictly increasing function such that \(\gamma(0) = 0 \).

Consider the sequence \(\mathcal{U} = \{u_i\}_{i=1}^\infty \) defined by

\[
(10) \quad \left\{ \begin{array}{ll}
 u_{2k-1} & = -m_k2^{-r}, \\
 u_{2k} & = (h-1)m_k2^{-r} + z_k
 \end{array} \right.
\]

where \(m_k = 2^{r+k+\gamma(k)} \). We write

\[
(11) \quad \mathcal{U}_k = \{u_{2k-1}, u_{2k}\} \quad \text{and} \quad \mathcal{U}_{<k} = \bigcup_{s<k} \mathcal{U}_s.
\]

Note that for all \(j \leq k \) we have

\[
(12) \quad |z_j| \leq \sqrt{k} < 2^k < 2^{\gamma(k)} < 2^{2^{r(k-1)+\gamma(k)} = m_k2^{-2r}}.
\]

3.2. The recursive construction. For any \(B_{h}[g] \)-sequence \(B \) we consider the set \(T_\gamma^r(B) \) defined in \([5] \). Let \(f : \mathbb{Z} \to \mathbb{N} \) be a function such that \(f(n) \geq g \) for \(|n| \geq n_0 \). We construct an increasing sequence \(\{A_k\}_{k=0}^\infty \) of sets of integers as follows:

\[
(13) \quad A_0 = \{a \in T_\gamma^r(B) : a \geq n_0\}
\]

and, for \(k \geq 1 \),

\[
A_k = \begin{cases}
 A_{k-1} \cup \mathcal{U}_k & \text{if } r_{A_{k-1}, h}(z_k) < f(z_k) \\
 A_{k-1} & \text{otherwise}
\end{cases}
\]

where \(z_k \) and \(\mathcal{U}_k \) are defined in \([8] \) and \([11] \).

We shall prove that the set

\[
\mathcal{A} = \bigcup_{k=0}^\infty A_k
\]

satisfies \(r_{\mathcal{A},h}(n) = f(n) \) for all integers \(n \).

Lemma 1. Let \(k \geq 1 \). For nonnegative integers \(s \) and \(t \) with \(s + t \leq h \), let

\[
A_k^{(s,t)} = (h-s-t)A_{k-1} + su_{2k-1} + tu_{2k}.
\]

The sets \(A_k^{(s,t)} \) are pairwise disjoint, except possibly the sets \(A^{(0,0)} \) and \(A^{(h-1,1)} \).
Proof. If \(n \in \mathcal{A}_k^{(s,t)} \) then
\[
n = a_1 + \cdots + a_{h-s-t} + su_{2k-1} + tu_{2k} = a_1 + \cdots + a_{h-s-t} + ((h-1) - s)m_k2^{-r} + tz_k.
\]
If \(a_i \in A_0 \), then \(\|a_i\|_{m_k} \leq m_k2^{-2r} \) by Proposition \([2] \). If \(a_i \in U_{\leq k} \) then we use \([10] \) and \([12] \) to obtain
\[
\|a_i\|_{m_k} \leq |a_i| \leq (h-1)m_{k-1}2^{-r} + m_{k-1}2^{-2r} < hm_k2^{-2r}.
\]
Therefore,
\[
\|a_1 + \cdots + a_{h-s-t} + t\zeta_k\|_{m_k} \leq \|a_1\|_{m_k} + \cdots + \|a_{h-s-t}\|_{m_k} + \|t\zeta_k\|_{m_k} \\
\leq (h-s-t)m_k2^{-2r} + tm_k2^{-2r} \\
\leq h^2m_k2^{-2r}.
\]

Now suppose that \(n \in \mathcal{A}_k^{(s',t')} \) for some \((s',t') \neq (s,t)\). If \(\{(s,t), (s',t')\} \neq \{(0,0), (h-1,1)\} \), then
\[
t(h-1) - s \neq t'(h-1) - s'
\]
and
\[
m_k2^{-r} \leq \|(t(h-1) - s) - (t'(h-1) - s')\|_{m_k} \\
= \|(t(h-1) - s)m_k2^{-r} - (t'(h-1) - s')m_k2^{-r}\|_{m_k} \\
= \|(n - (t(h-1) - s)m_k2^{-r}) - (n - (t'(h-1) - s')m_k2^{-r})\|_{m_k} \\
\leq \|a_1 + \cdots + a_{h-s-t} + t\zeta_k\|_{m_k} + \|a'_1 + \cdots + a'_{h-s-t'} + t'\zeta_k\|_{m_k} \\
\leq 2h^2m_k2^{-2r}.
\]
It follows that \(h^2 \geq 2^{r-1} \), which contradicts \([9] \). This completes the proof. \(\square \)

Lemma 2. If \(n \in \mathcal{A}_k^{(s,t)} \) for some \(k \geq 1 \) and \((s,t) \notin \{(0,0), (h-1,1)\}\), then \(|n| > n_0\).

Proof. If \(n \in \mathcal{A}_k^{(s,t)} \), then
\[
n = a_1 + \cdots + a_{h-s-t} + ((h-1) - s)m_k2^{-r} + tz_k
\]
and
\[
|n| \geq \|n\|_{m_k} \\
= \|a_1 + \cdots + a_{h-s-t} + t\zeta_k + ((h-1)t - s)m_k2^{-r}\|_{m_k} \\
\geq \|((h-1)t - s)m_k2^{-r}\|_{m_k} - \|a_1 + \cdots + a_{h-s-t} + t\zeta_k\|_{m_k} \\
\geq \|((h-1)t - s)m_k2^{-r}\|_{m_k} - h^2m_k2^{-2r} \\
\geq m_k2^{-r} - h^2m_k2^{-2r} \geq m_k2^{-r-1} \geq 2^{2r-2r-1} \\
\geq 2^{r-1} > n_0.
\]
We have used that if \(\|(h-1)t - s)m_k2^{-r}\| < m_k/2 \), then
\[
\|((h-1)t - s)m_k2^{-r}\|_{m_k} = \|(h-1)t - s)m_k2^{-r}\| \geq m_k2^{-r}.
\]
Also we have used \((h-1)t - s \neq 0\) and \([10] \) in the last inequalities. \(\square \)
Lemma 3. For any $k \geq 0$, for any $h' < h$ and for any integer m we have that

$$r_{A_{k}, h'}(m) \leq g$$

Proof. By induction on k. Proposition 1 implies that $T'_r(B)$ and consequently A_0 are $B_r[g]$-sequences. In particular, A_0 is a $B_r[g]$ sequence. Then $r_{A_0, h'}(m) \leq g$ for any integer m.

Suppose that it is true that for any $h' < h$, and for any integer m we have that $r_{A_{k-1}, h'}(m) \leq g$.

Consider $m \in h'A_k$.

- Suppose $m \notin (h' - s - t)A_{k-1} + su_{2k-1} + tu_{2k}$ for any $(s, t) \neq (0, 0)$. Then $r_{A_{k}, h'}(m) = r_{A_{k-1}, h'}(m) \leq g$ by induction hypothesis.
- Suppose that $m \in (h' - s - t)A_{k-1} + su_{2k-1} + tu_{2k}$ for some $(s, t) \neq (0, 0)$. Consider an element $m \in A_{k-1}$. Then

$$m + (h' - h')a \in A_{k-1}^{(s,t)} = (h' - s - t)A_{k-1} + su_{2k-1} + tu_{2k}.$$

We apply lemma 1 and since $(s, t) \neq (h - 1, 1)$ (because $h' < h$) we have that

$$r_{A_{k}, h'}(m) \leq r_{A_{k-1}, h}((h' - h')a) = r_{A_{k-1}, h - s - t}(m + (h' - h')a - su_{2k-1} - tu_{2k}),$$

and we can apply induction hypothesis because $h - s - t < h$.

\[\Box\]

Proposition 3. The sequence \mathcal{A} defined above satisfies $r_{\mathcal{A}, h}(n) = f(n)$ for all integers n.

Proof. Since

$$\underbrace{u_{2k-1} + \cdots + u_{2k-1} + u_{2k}}_{h-1} = z_k$$

it follows that if $r_{A_{k-1}, h}(z_k) < f(z_k)$, then $\mathcal{A}_k = \mathcal{A}_{k-1} \cup \mathcal{U}_k$ and

$$r_{A_{k}, h}(z_k) \geq r_{A_{k-1}, h}(z_k) + 1.$$

For every integer n there are infinitely many integers k such that $z_k = n$ and so $r_{A_{k}, h}(n) \geq f(n)$ for some k.

Next we show that, for every integer k, the sequence \mathcal{A}_k satisfies $r_{A_{k}, h}(n) \leq f(n)$ for all n. The proof is by induction on k.

Let $k = 0$. Since \mathcal{A}_0 is a $B_h[g]$-sequences, we have $r_{A_{0}, h}(n) \leq g \leq f(n)$ for $n \geq n_0$. If $n < n_0$, then $r_{A_{0}, h}(n) = 0 \leq f(n)$.

Now, suppose that it is true for $k - 1$. In particular $r_{A_{k-1}, h}(z_k) \leq f(z_k)$. If $r_{A_{k-1}, h}(z_k) = f(z_k)$ there is nothing to prove because in that case $\mathcal{A}_k = \mathcal{A}_{k-1}$. But if $r_{A_{k-1}, h}(z_k) \leq f(z_k) - 1$, then $\mathcal{A}_k = \mathcal{A}_{k-1} \cup \mathcal{U}_k = \mathcal{A}_{k-1} \cup \{u_{2k-1}\} \cup \{u_{2k}\}$. We will assume that until the end of the proof.

If $n \notin h\mathcal{A}_k$ then $r_{A_{k}, h}(n) = 0 \leq f(n)$.

If $n \in h\mathcal{A}_k$, since $\mathcal{A}_k = \mathcal{A}_{k-1} \cap \mathcal{U}_k$ we can write

$$h\mathcal{A}_k = \bigcup_{s+t \leq h} \mathcal{A}_{k-1} = (h - s - t)A_{k-1} + su_{2k-1} + tu_{2k}.$$

Then

$$n = a_1 + \cdots + a_{h - s - t} + su_{2k-1} + tu_{2k}$$

(14)
for some \(s, t \), satisfying \(0 \leq s, t, s + t \leq h \) and for some \(a_1, \ldots, a_{k-s-t} \in A_{k-1} \).

For short we write \(r_{s,t}(n) \) for the number of solutions of (14).

- If \(n \in (h-s-t)A_{k-1} + su_{2k-1} + tu_{2k} \) for some \((s, t) \neq (0, 0), (s, t) \neq (h-1, 1) \) then, due to lemma 4, we have that \(r_{A_k, h}(n) = r_{s,t}(n) \).
 - For \(0 \leq n \leq n_0 \) we have that \(r_{s,t}(n) = 0 \leq f(n) \) (due to lemma 2).
 - For \(n > n_0 \) we apply lemma 3 in the first inequality below with \(h' = h - s - t \) and \(m = n - su_{2k-1} - tu_{2k} \),

\[
r_{s,t}(n) = r_{A_{k-1}, h-s-t}(n - su_{2k-1} - tu_{2k}) \leq g \leq f(n)
\]

- If \(n \notin (h-s-t)A_{k-1} + su_{2k-1} + tu_{2k} \) for any \((s, t) \neq (0, 0), (s, t) \neq (h-1, 1) \), then \(r_{A_k, h}(n) = r_{0,0}(n) + r_{h-1,1}(n) \). Notice that \(r_{0,0}(n) = r_{A_{k-1}, h}(n) \) and that \(r_{h-1,1}(n) = 1 \) if \(n = z_k \) and \(r_{h-1,1}(n) = 0 \) otherwise.
 - If \(n = z_k \), then \(r_{A_k, h}(n) = r_{A_{k-1}, h}(z_k) + r_{h-1,1}(z_k) \leq f(z_k) + 1 = f(n) \).

\[\square \]

3.3. The density of \(A \).

Recall that \(\gamma : N_0 \to N_0 \) is a strictly increasing function with \(\gamma(0) = 0 \). Let \(\mathbb{R}_{\geq 0} = \{ x \in \mathbb{R} : x \geq 0 \} \). We extend \(\gamma \) to a strictly increasing function \(\gamma : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \). (For example, define \(\gamma(x) = \gamma(k+1)(x-k) + \gamma(k)(k+1-x) \) for \(k \leq x \leq k+1 \).

We have

\[
A(x) \geq A_0(x) \geq T_\gamma^\ell(\mathcal{B})(x) - n_0.
\]

Thus, to find a lower bound for \(A(x) \) it suffices to find a lower bound for the density of \(T_\gamma^\ell(\mathcal{B}) \).

Lemma 4. \(T_\gamma^\ell(\mathcal{B})(x) > B(x2^{-2r\gamma^{-1}(\log_2 x)}) \).

Proof. Let \(b \) be a positive integer such that

\[
b \leq x2^{-2r\gamma^{-1}(\log_2 x)}.
\]

Let \(\ell \) be such that \(2^\gamma(\ell) \leq b < 2^\gamma(\ell+1) \). Then we can write

\[
b = \sum_{k=0}^{\ell} \sum_{i=\gamma(k)}^{\gamma(k+1)-1} \varepsilon_i 2^i.
\]

It follows from the definition 4 of the Zeros Inserting Transformation that

\[
T_\gamma^\ell(b) \leq 2^{2r\ell} b
\]

\[
\leq 2^{2r\gamma^{-1}(\log_2 b)} b
\]

\[
\leq 2^{2r(\gamma^{-1}(\log_2 b) - \gamma^{-1}(\log_2 x))} x
\]

\[
\leq x.
\]

\[\square \]
Recall that ϵ is a decreasing positive function defined on $[1, \infty)$ such that $\lim_{x \to \infty} \epsilon(x) = 0$. We complete the proof of Theorem 1 by choosing a function γ that satisfies the inequality

$$2^{2 - 2r \gamma^{-1}(\log_2 x)} \geq \epsilon(x).$$

It suffices to take $\gamma(x) > \log_2 (\epsilon^{-1}(2^{-2rx}))$.

References

[1] Y.-G. Chen, A problem on unique representation bases, European J. Combinatorics 28 (2007) 33-35.

[2] J. Cilleruelo and M. B. Nathanson, Perfect difference sets from Sidon sets, Combinatorica, to appear.

[3] P. Erdős and A. Rényi, Additive properties of random sequences of positive integers, Acta Arith. 6 (1960) 83–110.

[4] P. Erdős and P. Tetali. Representations of integers as the sum of k terms, Random Structures Algorithms 1 (1990), 245–261.

[5] F. Krückeberg, B_2-Folgen und verwandte Zahlenfolgen, J. Reine Angew. Math. 206 (1961), 53–60.

[6] J. Lee, Infinitely often dense bases of integers with a prescribed representation function, arXiv:math/0702279.

[7] T. Łuczak and T. Schoen, A note on unique representation bases for the integers, Funct. Approx. Comment. Math. 32 (2004), 67–70.

[8] M. B. Nathanson, The inverse problem for representation functions of additive bases, in: Number Theory: New York Seminar 2003, Springer, 2004, pages 253–262.

[9] M. B. Nathanson, Every function is the representation function of an additive basis for the integers, Port. Math. (N.S.) 62 (2005), no. 1, 55–72.

[10] M. B. Nathanson, Unique representation bases for the integers, Acta Arith. 108 (2003), 1–8.

[11] I. Ruzsa, An infinite Sidon sequence, J. Number Theory 68 (1998), 63–71.

[12] A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, J. reine angew. Math. 194 (1955), 40-65, 111–140.

[13] V. Vu, On a refinement of Waring’s problem, Duke Math. J. 105 (1) (2000), 107–134.