The spatial and velocity bias of linear density peaks and protohaloes in the Λ cold dark matter cosmology

Anna Elia,* Aaron D. Ludlow and Cristiano Porciani

Argelander Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany

Accepted 2012 January 15. Received 2011 December 20; in original form 2011 November 17

ABSTRACT

We use high-resolution N-body simulations to investigate the Lagrangian bias of cold dark matter haloes within the Λ cold dark matter cosmology. Our analysis focuses on ‘protohaloes’ that we identify in the simulation initial conditions with the subsets of particles belonging to individual redshift-zero haloes. We then calculate the number density and velocity divergence fields of protohaloes and estimate their autospectral densities. We also measure the corresponding cross-spectral densities with the linear matter distribution. We use our results to test a Lagrangian bias model presented by Desjacques & Sheth which is based on the assumption that haloes form out of local density maxima of a specific height. Our comparison validates the predicted functional form for the scale dependence of the bias for both the density and the velocity fields. We also show that the bias coefficients are accurately predicted for the velocity divergence. In contrast, the theoretical values for the density bias parameters do not accurately match the numerical results as a function of halo mass. This is likely due to the simplistic assumptions that relate virialized haloes to density peaks of a given height in the model. We also detect appreciable stochasticity for the Lagrangian density bias, even on very large scales. These are not included in the model at leading order but correspond to higher order corrections.

Key words: methods: analytical – methods: numerical – galaxies: haloes – cosmology: theory – large-scale structure of Universe.

1 INTRODUCTION

Galaxy redshift surveys are powerful probes of cosmology. The main observables able to constrain cosmological parameters are the overall shape of the galaxy power spectrum at wavenumbers \(k < 0.1 \text{ Mpc}^{-1} \) and the baryonic acoustic oscillations within it. These are treated as proxies for the matter power spectrum for which we can make robust theoretical predictions. Galaxies, however, are biased tracers of the cosmic mass distribution, and many features appearing in their power spectrum depend on how a specific observational sample was selected. To reconstruct the matter power spectrum, we thus need an accurate bias model whose free coefficients should be used as nuisance parameters and marginalized over. In the era of precision cosmology, where measurements of the matter power spectrum with per cent accuracy are required, this task is particularly demanding.

Bias models can be divided into two broad classes. Eulerian biasing schemes relate the galaxy density contrast, \(\delta_g(x, t) \), to the matter density distribution, \(\delta \), evaluated at the same time \(t \) (but not necessarily at the same spatial location). After smoothing the fields on large scales, so that \(|\delta| \) is typically much smaller than unity, one can write (Fry & Gaztañaga 1993)

\[
\delta_g(x) = B_0 + \int d^3x_1 B_1(x - x_1) \delta(x_1) + \frac{1}{2} \int d^3x_1 d^3x_2 B_2(x - x_1, x - x_2) \delta(x_1) \delta(x_2) + \cdots,
\]

(1)

where all fields are evaluated at the same time \(t \) and the details of the bias model are specified by the kernel functions, \(B_i \). If one further assumes that biasing is local (i.e. that all kernels can be written as products of Dirac delta distributions), then this reduces to

\[
\delta_g(x) = b_0 + b_1 \delta(x) + \frac{b_2}{2} \delta^2(x) + \cdots,
\]

(2)

where now the bias coefficients \(b_i \) are real numbers.

In Lagrangian bias models, on the other hand, one considers the regions in the initial conditions that will collapse to form galaxies [or their hosting dark matter (DM) haloes] at time \(t \) and writes their density contrast, \(\delta^L(q) \), in terms of the linear density contrast, \(\delta_0(q) \). Large-scale expansions analogous to equations (1) and (2) can also be written in this case. As a second step, one must determine the final position, \(x(q, t) \), of a fluid element initially located at \(q \), and compute \(\delta_g(x(q, t), t) \) out of \(\delta^L(q) \). This Lagrangian-to-Eulerian...
mapping (LEM) accounts for gravitationally induced motions that determine the final position of the objects.

Local Eulerian and Lagrangian bias schemes are not equivalent; they generate a different shape for the galaxy bispectrum (Catelan, Porciani & Kamionkowski 2000) and are not compatible within the framework of perturbation theory (Matsubara 2011). In fact, Catelan et al. (1998) have shown that a local Lagrangian biasing scheme generates a non-linear, non-local and stochastic bias in Eulerian space. On the other hand, non-local Eulerian and Lagrangian schemes are equivalent and can be seen as different mathematical representations of the same physical process (Matsubara 2011).

Due to its simplicity, the local Eulerian model is by far the most widely used in practical applications, such as perturbative calculations. However, it is purely phenomenological and does not have a strong theoretical motivation. Detailed comparison with numerical simulations has also evidenced its limited validity (e.g. Roth & Porciani 2011; Pollack, Smith & Porciani 2012). Physical models of bias are generally given in the Lagrangian framework as conditions on galaxy (halo) formation are more easily imposed on to the linear density field using some model for the collapse of density perturbations. Mo & White (1996, hereafter MW) used a Press–Schechter like argument (Press & Schechter 1974) to compute the bias coefficients of a local Lagrangian scheme as a function of halo mass. The same authors also showed how these parameters can be combined to calculate the bias coefficients of a local Eulerian scheme assuming that large-scale density perturbations follow the spherical collapse model. The effect of non-linear shear on the LEM was discussed by Catelan et al. (1998) using the Zel’ dovich approximation (Zel’ dovich 1970). For halo masses $M > M_* (z)$ where $M_* (z)$ is the characteristic mass for collapse at redshift z the MW formula for b_1 is in good agreement with the predictions of N-body simulations (Mo, Jing & White 1997). At lower masses, however, the agreement rapidly deteriorates (Jing 1998). Porciani, Catelan & Lacey (1999) and Jing (1999) showed that the discrepancy between the N-body simulations and the analytical predictions is already present in Lagrangian space and should thus be attributed to the limitations of the Press–Schechter formalism rather than to the approximated treatment of the LEM.

The Lagrangian bias emerging from the extended Press–Schechter model (Bond et al. 1991) was first derived by Porciani et al. (1998), rediscovered in Scannapieco & Barkana (2002) and tested against simulations by Scannapieco & Thacker (2005). This approach follows correlated trajectories of δ_0 at different Lagrangian locations as a function of the smoothing scale and looks for correlations in the first-crossing scales of a density threshold.

According to the peak-background-split argument (Bardeen et al. 1986; Cole & Kaiser 1989), long-wavelength density fluctuations modulate halo formation by modifying the collapse time of localized short-wavelength perturbations. This makes it possible to generalize the calculation of the Lagrangian MW bias coefficients to any model for the halo mass function (Sheth & Tormen 1999; Giannantonio & Porciani 2010; Tinker et al. 2010) and to improve the agreement with N-body simulations (Seljak & Warren 2004; Gao et al. 2005; Tinker et al. 2005; Pillepich, Porciani & Hahn 2010).

Kaiser (1984) explained the strong clustering of Abell clusters by assuming that they originate from the regions above a density threshold in the (suitably smoothed) linear density field. Following this line of reasoning, it is common to assume that DM haloes form out of linear density peaks, as an alternative to the Press–Schechter approach. Tests against N-body simulations have shown that this is a well-justified assumption, especially for massive haloes (Ludlow & Porciani 2011, see also Frenk et al. 1988). The statistical properties of the local maxima in a Gaussian random field have been extensively studied by Bardeen et al. (1986) (see also Hoffman & Shaham 1985; Peacock & Heavens 1985). Mo et al. (1997) introduced peaks theory in the MW formalism, while Matsubara (1999) evaluated the level of stochasticity in the Lagrangian clustering of density extrema.

Recently, Desjacques (2008) and Desjacques & Sheth (2010, hereafter DS) showed that the correlation of density peaks in real and redshift space can be interpreted in terms of a simple Lagrangian biasing scheme. Due to the peak constraint, the effective Lagrangian peak density at a given point not only depends on the local value of the mass density, but also on its Laplacian. The first-order peak bias depends on the mass and height of the peaks, and on the matter power spectrum. For high peaks, this reduces to the results by Matsubara (1999). Moreover, although peaks move with the matter at their positions, DS infer the existence of a statistical velocity bias due to the fact that local maxima can only exist at special locations. This also leads to a bias between the linear velocity spectra of peaks and matter which is predictable in quantitative terms.

In spite of the fact that the DS model provides the initial conditions for sophisticated models of the (Eulerian) halo distribution where the LEM is based either on resummed perturbation theory (Elia et al. 2011) or on the Zel’dovich approximation (Desjacques et al. 2010), its predictions for the Lagrangian clustering and velocities of the regions that will form collapsed structures have never been thoroughly tested against numerical simulations. This paper provides such a test, which is necessary if we are to use advanced bias models to extract useful information on the cosmological parameters through a comparison with observations.

The structure of this paper is as follows. In Section 2, we review the bias model first presented in DS. The details of our N-body simulations and analysis techniques are outlined in Section 3, and a comparison between the model and numerical results is presented in Section 4. Finally, we summarize our main results in Section 5.

2 THE DS MODEL

In this section, we summarize, for completeness, the peaks model described in Section 2 of DS. In order to do so, we first introduce and define some quantities relevant for peak statistics.

The spectral moments of the matter power spectrum are defined as

$$\sigma_n^2(R_*, z) = \frac{1}{2\pi^2} \int_0^\infty dk k^{2(n+1)} P(k, z) W(k, R_*)^2,$$

(3)

where $P(k, z)$ is the linear matter power spectrum at redshift z, and $W(k, R_*)$ is a smoothing kernel of characteristic length R_*. In terms of the moments, we define the spectral parameters:

$$\gamma_n = \frac{\sigma_n^2}{\sigma_{n-1}\sigma_{n+1}}.$$

(4)

There are two common choices for $W(k, R_*)$: the Gaussian filter

$$W_G(k, R_*) = e^{-k^2R_*^2},$$

(5)

and the top-hat filter

$$W_{TH}(k, R_*) = \left\{ \frac{3[\sin(kR_*^3) - kR_*^3\cos(kR_*^3)]}{k^3R_*^3} \right\}.$$

(6)

The mass contained within the comoving length R_* in these cases is $M_0(R_*) = \left(\frac{2\pi}{3}\right)^{3/2}\rho R_*^3$ and $M_{TH}(R_*) = \frac{4\pi}{3}\rho R_*^3$.

© 2012 The Authors, MNRAS 421, 3472–3480
Monthly Notices of the Royal Astronomical Society © 2012 RAS

3

Downloaded from http://academic.oup.com/mnras/article-abstract/421/4/3472/1097342 on 30 July 2018
We will often characterize peaks in terms of their dimensionless peak height, \(v \), defined as

\[
v(R_s, z_c) = \frac{\delta_p}{\sigma_0(R_s, z_c)}. \tag{8}
\]

Here \(\delta_p \) is the smoothed overdensity at the peak location linearly extrapolated to \(z = 0 \), and \(\sigma_0(R_s, z_c) \) is the linear rms mass fluctuation in spheres of radius \(R_s \). DS linked density maxima of height \(v(R_s, z) \) to DM haloes of mass \(M \), collapsing at redshift \(z_c \), assuming that \(\delta_p \) coincides with the threshold for collapse, \(\delta_c \).

Bardeen et al. (1986) and DS computed the cross-correlation between peaks and the underlying density field which also corresponds to the average density profile around density maxima. Similarly, Desjacques (2008) evaluated the leading-order expressions (on large spatial separations) for the peak autocorrelation function and the line-of-sight mean streaming for pairs of discrete local maxima of height \(v \). Desjacques (2008) and DS showed that the full expression for the cross-correlation and the large-scale asymptotic of the autocorrelation function are consistent with – and thus can be thought of as arising from – an effective bias relation. In the DS model, the number density and the velocity of peaks, \(\delta n_p \) and \(\nu_p \), are related to the DM density contrast and velocity fields, linearly extrapolated to \(z = 0 \), via, respectively,

\[
\delta n_p(x|z_c) = b_b \delta_b(x) - \nu_b \nabla^2 \delta_b(x) \tag{9}
\]

and

\[
v_p(x|z_c) = \nu_b(x) - \frac{\sigma_b^2}{\sigma_t^2} \nabla \delta_b(x). \tag{10}
\]

The subscript ’S’ indicates that the fields are smoothed on the scale \(R_s \), and the bias parameters, \(b_b \) and \(\nu_b \), are, respectively, given by

\[b_b = \frac{1}{\sigma_0} \left(\frac{v - \gamma_1 \bar{u}}{1 - \gamma_1^2} \right) \tag{11} \]

and

\[\nu_b = \frac{1}{\sigma_0} \left(\bar{u} - \frac{\gamma_1 v}{1 - \gamma_1^2} \right). \tag{12} \]

Here \(\bar{u} \) is the mean curvature of the peaks, which can be approximated by (Bardeen et al. 1986)

\[
\bar{u} = \gamma_1 v + \frac{3 \left(1 - \gamma_1^2 \right) + \left(12.16 - 0.99 \gamma_1^2 \right) \exp \left[-\frac{2}{3} \left(\frac{\nu}{\gamma_1^2} \right)^2 \right]}{\left[3 \left(1 - \gamma_1^2 \right) + 0.45 + \left(\frac{2 \gamma_1^2}{\nu} \right)^{3/2} \right]^{1/2} + \left(\frac{2 \gamma_1^2}{\nu} \right)} \tag{13}.
\]

Note that \(b_b \), coincides with the peak bias factor found by Bardeen et al. (1986) after neglecting the derivatives of the density correlation function.

Since, by definition, the gradient of the density field vanishes at peak locations, equation (10) suggests that the peak and DM velocity fields must be coincident there. By construction, peaks move with the DM flow, yet the spatial velocity induces a statistical velocity bias. We will consider the scaled velocity divergence,

\[\theta(x) = \nabla \times v(x)/(a Hf), \]

rather than the velocity field. Here \(a \) is the scale factor, \(H \) is the Hubble parameter, \(f = d \ln D/d \ln a \), with \(D \) the linear growth factor. In these units, both \(\theta(x) \) and \(\delta(x) \) are dimensionless quantities. With these changes, equations (9) and (10) can be rewritten in Fourier space as

\[
\delta n_p(k) = (b_b + b_k^2 \delta_b(k)) W(k, R_c) \tag{14}
\]

and

\[
\theta_p(k) = (1 - b_k^2) \theta(k) W(k, R_c) = b_{\theta0}(k) \theta(k), \tag{15}
\]

where we have defined

\[b_{\theta0} = \frac{\sigma_0}{\sigma_t}. \tag{16} \]

In the limit of high peaks (\(v > 1 \)) it can be shown that the bias parameters obey the following asymptotic relations: \(b_b \to v/\sigma_0 \) and \(\nu_b \to 0 \). This implies that the highest peaks are linearly biased tracers of the underlying matter field. This is consistent with the predictions of the peak-background split (Mo et al. 1997) and DS showed that, indeed, \(b_b \) is the appropriate generalization of the constant, large-scale bias for low \(v \). Unlike the density bias factors, \(b_{\theta0} \) does not depend on \(v \).

In order to test this model against \(N \)-body simulations, we will make use of the cross-spectra between the peak and DM densities and velocities (denoted by \(P_{\text{mp}} \) and \(P_{\text{mpv}} \), respectively) and of the corresponding peak autospectra (\(P_p \) and \(P_{\nu_p} \)). From equations (14) and (15) we obtain

\[
P_{\text{mp}}(k) = (b_b + b_k^2) P(k) W(k, R_c),
\]

\[
P_{\nu_p}(k) \simeq (1 - b_k^2) P(k) W(k, R_c),
\]

\[
\nu_{\nu_p}(k) \simeq (1 - b_k^2)^2 P(k) W(k, R_c),
\]

where \(P(k) \) and \(P(k) \) are the matter density and velocity divergence autospectra, respectively. We remind the reader that the expression for \(P_{\nu_p}(k) \) is only valid to first order in \(P(k) \) as \(k \to 0 \), and that higher order corrections should be included to improve its accuracy (see e.g. Desjacques et al. 2010). In contrast, the expression for the cross-spectrum \(P_{\text{mp}} \) is exact, as shown in Bardeen et al. (1986) and in appendix A of DS. Equation (17) has the same functional form as equation (57) in Matsubara (1999) who studied the clustering of density extrema. The DS coefficients \(b_b \) and \(b_k \) match those in Matsubara (1999) only in the limit \(v \gg 1 \), for which nearly all extrema are density maxima.

3 NUMERICAL ISSUES

In this section, we provide a brief description of the main numerical issues relevant for this work. This includes a brief description of our numerical simulations in Section 3.1, our main analysis techniques in Section 3.2, and a characterization of halo collapse barriers in Section 3.3.

3.1 N-body simulations

Our analysis focuses on two high-resolution \(N \)-body simulations of structure formation in the standard \(\Lambda \) cold dark matter (ΛCDM) cosmology. The cosmological parameters for our runs were chosen to be consistent with the fifth-year WMAP data release (Komatsu et al. 2009). These are \(h = 0.701, \sigma_8 = 0.817, n_s = 0.96, \Omega_m = 0.279, \Omega_b = 0.0462 \) and \(\Omega_\Lambda = 1 - \Omega_m = 0.721 \). Each simulation was run with a lean version of the Tree-PM code GADGET-2 (Springel 2005), and followed the DM using 1024 \(^3\) collisionless particles. One simulation had a box side-length of \(L_{\text{box}} = 1200 h^{-1} \) Mpc and a particle mass of \(m_{\text{part}} = 1.246 \times 10^{11} h^{-1} M_\odot \); the other used \(L_{\text{box}} = 150 h^{-1} \) Mpc and had \(m_{\text{part}} = 2.433 \times 10^9 h^{-1} M_\odot \). The initial redshifts of the simulations were \(z_{\text{in}} = 50 \) and 70 for the larger and smaller box, respectively. Using these simulations we are able to probe a wide range of halo masses, spanning \(8 \times 10^{13} M_\odot \) to \(8 \times 10^{14} M_\odot \). These simulations were first studied in Pillepich et al. (2010), and later by Ludlow & Porciani (2011), and we refer the reader to those papers for further details.
Haloes were identified at $z = 0$ using a Friends-of-Friends (FoF) algorithm (Davis et al. 1985) with a linking length of 0.2 times the mean interparticle distance. Protohaloes were identified by tracing backwards to the initial redshift of all subsets of the particles belonging to $z = 0$ FoF haloes. We use the centre-of-mass of each protohalo as a proxy for its spatial location; the mass-weighted linear velocity provides an estimate of the protohalo’s motion. As a test of the sensitivity of our results to the adopted halo finder, we also generated a spherical overdensity (SO) halo catalogue with an overdensity threshold of 200 times the critical density, ρ_c. For a fixed halo mass, the two halo finders produce results consistent within 10 per cent (in terms of all the bias coefficients) and so, in what follows, we will focus on results obtained for the FoF haloes, and only consider those containing at least 100 particles.

Haloes in each simulation are split into four separate mass bins in order to preserve their peculiar clustering properties. These bins are referred to as 1S–4S for the small box, and 1L–4L for the large one. To assess the impact of shot noise in the analysis of our small-box simulation, we consider an additional mass bin, labelled Bin 0S, which includes all haloes with $N \geq 100$. The mass ranges and total number of haloes in each bin are given in Table 1. We note that bins with label ‘S’ refer to masses $M < M^*$, for which DM haloes are not expected to be in one-to-one correspondence with linear peaks (Ludlow & Porciani 2011).

3.2 Analysis

We construct protohalo density and momentum fields using cloud-in-cell grid assignment on a 5123 mesh. Velocity fields are obtained by taking the ratio of the momentum and density fields, as described in Scoccimarro (2004). In the case of haloes, these distributions are smoothed to preclude the existence of empty cells; the smoothing scales used are $R_1 = 7 h^{-1}$ Mpc for the large box and $R_1 = 1.8 h^{-1}$ Mpc for the small one. These values are chosen in order to mask the effects of the grid, but we have explicitly verified that our results are not significantly affected by them. All power spectra have been computed using a fast Fourier transform technique.

The discreteness of DM particles and haloes gives rise to a shot-noise component in the spectra. For the density fields, the estimated power spectrum, \hat{P}, includes a shot-noise term which is inversely proportional to the number density of objects n (assuming Poisson sampling):

$$\hat{P} = P_{\text{true}} + \frac{1}{n}. \quad (19)$$

Shot noise is therefore negligible for the matter spectra but may be significant for that of the haloes. The issue is more severe in Lagrangian space, because fluctuations in the initial conditions are small. We will consider two alternative estimates of the protohalo bias: one is determined from the shot-noise-corrected autospectrum,

$$b(k) = \sqrt{\frac{P(k)}{\langle P(k) \rangle}}, \quad (20)$$

and the other from the cross-spectrum,

$$b_{\text{cl}}(k) = \frac{P_{\text{halo}}(k)}{P(k)}. \quad (21)$$

Here the subscript ‘h’ indicates the halo fields, and ‘m’ the matter field (the analogous fields for peaks are indicated with the subscript ‘p’). The relation between the two is

$$b_{\text{cl}}(k) = b(k) r(k), \quad (22)$$

where $r(k)$ is the linear correlation coefficient, defined as

$$r(k) = \frac{P_{\text{halo}}(k)}{\sqrt{P_h(k)P_m(k)}}. \quad (23)$$

These relations tell us that the two definitions of the bias are equivalent only if the bias is purely deterministic in Fourier space, that is, $r = 1$. At leading order, in the model presented by DS, $b_{\text{cl}}(k) = b + b_k k^2$ and $b(k) = |b_{\text{cl}}(k)|$ (neglecting the filter function). Any stochasticity (represented by the higher order corrections in P_h) will degrade the correlation, yielding different estimates for the bias. Because of this, we will consider both the cross- and auto-spectra to check for a potential stochastic element of the bias.1

As for the density, we can define two estimates for the velocity bias, which we denote by b_v and $b_{v,\text{cl}}$, with a correlation coefficient r_v. There is no conclusive way to subtract the shot noise for the velocity divergence spectrum. Hence, we used our simulations to gain some insight into this issue. We introduced an artificial shot noise in the matter spectrum P by randomly drawing a fraction of the particles and found that $P_{\text{shot}}(k) \propto A k^2 \propto k^2$ for large k. Therefore, we fitted the amplitude factor A to obtain shot-noise-corrected power spectra. Note, however, that other terms could be important at smaller wavenumbers; in this work, we only consider data for which $P_{\text{shot}}(k) < 0.1 P$.

Table 1. Mass range, number of haloes, average mass and bias parameters (both weighted by halo counts) for the nine different mass bins used in our study. The first five belong to the small-box simulation; the last four belong to the large-box simulation. The bias parameters are computed according to the two models for the peak height described in the text: the spherical and ellipsoidal collapse models. All values have been obtained adopting a Gaussian filter.

Bin	Mass range $(10^{12} h^{-1} M_\odot)$	\bar{M} $(10^{12} h^{-1} M_\odot)$	b_v $(h^{-2} \text{Mpc}^2)$	b_{cl} $(h^{-2} \text{Mpc}^2)$	b_a $(h^{-2} \text{Mpc}^2)$	R_S $(h^{-1} \text{Mpc})$
0S	0.08–0.8	106 746	0.2986	-0.31	-0.23	0.63
1S	0.08–0.1	21 990	0.08961	-0.30	-0.21	0.26
2S	0.1–0.15	30 610	0.1235	-0.30	-0.22	0.33
3S	0.15–0.3	32 322	0.2165	-0.31	-0.23	0.49
4S	0.3–0.8	21 824	0.4934	-0.31	-0.24	0.92
1L	12.46–16	146 839	14.15	0.05	-0.08	11.3
2L	16–25	182 006	20.25	0.18	-0.003	14.7
3L	25–40	121 146	32.05	0.40	0.12	20.5
4L	40–100	114 367	65.99	0.92	0.44	34.5

1 Although the effective first-order bias model by DS is deterministic in Fourier space, it is stochastic in configuration space (Matsubara 1999; DS).
The DS model describes the biasing of linear density peaks that are expected to form haloes of a given mass at a specified redshift according to some collapse model (which determines the value for \(\delta_c\)). However, we analyse the density and velocity fields for the actual FoF and SO protohaloes. These are the quantities of physical interest for studying galaxy clustering in terms of halo occupation models (e.g. Cooray & Sheth 2002). Ludlow & Porciani (2011) showed that the vast majority of haloes in our N-body simulations can be unambiguously associated with linear peaks in the initial conditions when smoothed on the mass scale of the halo. For example, \(\gtrsim 70\) per cent of all haloes can be matched with similar-mass peaks in \(\delta_1(r)\), and \(\gtrsim 90\) per cent for haloes with \(M \gtrsim 10^{14}\ h^{-1}\ M_\odot\).

Note, however, that the correspondence between the DS peaks and protohaloes will not be perfect.\(^2\) On a given mass scale, some peaks with overdensities at the collapse threshold will evolve into substructures contained within larger virialized haloes (the so-called cloud-in-cloud problem), or into haloes of significantly different mass. On top of this, numerical simulations have shown that the collapse threshold \(\delta_c\) for haloes of a given mass and redshift has a broad probabilistic distribution rather than a fixed value (Porciani, Dekel & Hoffman 2002; Robertson et al. 2009) and possibly also depends on the form of the adopted smoothing kernel. We consider some of these issues in the following section.

3.3 Barrier heights for top-hat and Gaussian filters

The peak model described in Section 2 requires well-defined spectral moments. However, due to its sharp boundary in real space, the top-hat filter decays very slowly in Fourier space so that the integral defining \(\sigma_z^2\) is divergent in a ΛCDM model. Since equations (11)–(13) depend on \(\sigma_z\), DS instead adopted a Gaussian filter and assumed \(\delta_c = \delta_{\text{sc}} = 1.68\). Here, \(\delta_c\) corresponds to the critical density for the collapse of a spherical top-hat perturbation in an otherwise unperturbed Einstein–de Sitter universe, and this does not necessarily apply to peaks in a smoothed Gaussian random field. Another issue is that the validity of the simple spherical collapse model is questionable, at best; the probability of a protohalo or a peak being spherical is null, since it would require the three eigenvalues of the tidal tensor being equal. Sheth, Mo & Tormen (2001) showed that the barrier height in the more general ellipsoidal collapse model (Bond & Myers 1996) can be approximated by

\[
\delta_{\text{sc}}(M, z) = \delta_c \left(1 + \alpha \frac{\sigma_0^2(R_c(M, z_c))}{\delta_c^2} \right)^{\beta},
\]

where \(\delta_c = \delta_{\text{sc}}\) is taken from the spherical collapse model, and \(\alpha = 0.47\) and \(\beta = 0.615\) are determined from fits to the model results. The presence of the dispersion, \(\sigma_0\), in equation (24) results in a mass-dependent barrier height: lower mass haloes require, on average, higher overdensities for collapse since they must hold themselves together against larger tidal forces. It should be emphasized that equation (24) describes the mean barrier height; the scatter about the mean can be approximated by \(\Sigma = 0.3\sigma_0\) (Robertson et al. 2009). These values are valid only for the top-hat filter.

What is the appropriate barrier height corresponding to a Gaussian filter? In Fig. 1, we show the linear overdensities measured at protohalo centres-of-mass after smoothing with a Gaussian filter on the halo mass scale. The shaded regions show the halo data and the connected circles the medians of the distribution. The open points correspond to results from our 150 Mpc box simulation and the solid points to our 1200 Mpc box run. The squares show the median \(\delta_c(M)\) for the same sample of haloes, but after smoothing the linear density field with a top-hat filter instead [note the good agreement with the result of Sheth et al. (2001), shown as a dot-dashed line in Fig. 1]. All values have been linearly extrapolated to \(z = 0\).

It is clear that adopting a Gaussian filter entails lower values of \(\delta_c\) at all masses.\(^3\) Nonetheless, our results are still accurately described by equation (24), albeit with slightly different values for the model parameters: \(\delta_c = 1.15\), \(\alpha = 0.37\) and \(\beta = 0.515\). We show this explicitly in Fig. 1 using a dashed line. The 1σ dispersion about the mean trend is well described by a simple power law, \(\Sigma = 0.4\sigma_0^{0.5}\), as seen in the upper panel of the plot.

4 RESULTS

In this section, we test the predictions of the DS model against the measured density and velocity bias of DM protohaloes. In order to do so, we calculate the (model-predicted) bias parameters \(b_v\) and \(b_c\) for each mass bin in both of our simulations. Since the values of \(b_v\) and \(b_c\) depend on peak height (and hence smoothing scale), we
adopt two models for the collapse barrier: one assumes the spherical collapse model (hereafter SG) and the other the ellipsoidal collapse model (hereafter EG). A Gaussian filter is used in both cases. Table 1 lists the bias parameters predicted by the DS model for these choices of collapse barrier.

4.1 Density spectra

In Fig. 2, we plot $b(k)$ and $b_{\text{eff}}(k)$ extracted from our simulations, along with the model prediction (equation 17). Although the model is not expected to work for very small scales, we nonetheless show the results for each box up to $k \approx 1/R_f$ (we remind that R_f is the smoothing scale needed for the velocity field). Overall, the model expression for the initial peak bias is able to describe the simulation results reasonably well. This can be seen from the solid lines in Fig. 2, where b_0 and b_1 have been treated as free parameters and fitted to both the cross- and auto-spectra. However, it is clear that the values for the fit parameters are different in the two cases (see Table 2), implying $b(k) \neq b_{\text{eff}}(k)$ or, equivalently, $r(k) \neq 1$. In particular, for the range of masses in Bin 0S, b_{eff} is negative, that is, $r < 0$. The predictions from the SG and EG barriers, as apparent from the dashed and dotted lines in the right-hand panel in Fig. 2, are also negative. Hence, the bias model matches more closely b_{eff} rather than b. This is completely expected, because equation (17) is exact only for the cross-correlation between peaks and matter while it neglects higher order corrections for the peak autocorrelation. However, neither the SG nor the EG barrier provides the appropriate values for the coefficients. In particular, the EG barrier performs better for low masses (Bin 0S), while the situation is reversed for the higher mass bins.

The performance of the model is characterized in another way in Fig. 3, where we compare directly the mass dependence of the bias $b_0(M)$. The predictions from the SG and EG barriers are highly correlated with density peaks in the initial conditions (Ludlow & Porciani 2011) and peaks follow equation (14), the relation between $b_0(k)$ and $\delta(k)$ is likely to be more deterministic for massive haloes. Note, however, that the estimate of r is affected by the shot-noise correction, which is large in our samples. Therefore, we cannot draw definitive conclusions regarding stochasticity.

Table 2. Best-fitting values for the density bias parameters from the cross- and auto-spectra. Uncertainties are always at the few per cent level. Haloes are identified either with the FoF or with the SO algorithm.

Bin	P_{nh}	b_0	P_h	P_{nh}	P_h
0S	0.25	0.24	0.31	0.30	0.86
1L	0.19	0.22	0.27	0.37	8.8
2L	0.29	0.31	0.40	0.39	10.3
3L	0.43	0.47	0.52	0.54	13.9
4L	0.73	0.75	0.73	0.73	21.8

Fig. 2 suggests that the stochasticity is more of a problem for haloes with $M < M_{\ast}$, and on smaller scales. Since high-mass haloes are highly correlated with density peaks in the initial conditions (Ludlow & Porciani 2011) and peaks follow equation (14), the relation between $b_0(k)$ and $\delta(k)$ is likely to be more deterministic for massive haloes. Note, however, that the estimate of r is affected by the shot-noise correction, which is large in our samples. Therefore, we cannot draw definitive conclusions regarding stochasticity.

The performance of the model is characterized in another way in Fig. 3, where we compare directly the mass dependence of the bias parameters $b_0(M)$ and $b_1(M)$ predicted by the SG and EG models to the best-fitting values obtained using the parametrization of the cross-spectrum in equation (17). We do not show the corresponding results from the auto-spectrum because of the uncertain shot-noise subtraction. Fig. 3 reveals that overall the b_1 values derived from the SG model are closer to the fitted ones. In contrast, there is almost no difference between the two models for b_0. For both parameters, the mass dependence follows a different trend when we compare the fits to the models. In particular, the prediction for b_1 and $M < M_{\ast}$ becomes more and more inaccurate with decreasing halo mass (up to a factor of ~ 3 for $M \approx M_{\ast}/15$). On the other hand, in the mass range

Copyright © 2012 The Authors, MNRAS 421, 3472–3480
Monthly Notices of the Royal Astronomical Society © 2012 RAS
for which the model was developed \((M > M_*)\), \(b_z\) is overpredicted by a factor of \(\sim 1.5\), independent of halo mass. Fig. 2 shows that the disagreement is even worse when \(b_e\) and \(b_z\) are obtained from \(P_b\). All of this demonstrates that equations (11) and (12) cannot accurately describe the mass dependence of the Lagrangian density bias, especially for \(M < M_*\). We will discuss possible reasons for this in Section 5, but first let us turn our attention to the velocity spectra.

4.2 Velocity spectra

Fig. 4 shows \(b_{\nu}(k)\) and \(b_{\nu, eff}(k)\) for Bins 1S–4S and 1L–4L; the theoretical model, \(b_{\nu, eff}(k)\), is also plotted. The data have been ‘de-smoothed’, that is, they have been divided by a filter function with smoothing scale \(R_s\), the same as used to smooth the velocity field in the first place. It is apparent that on large scales the two estimates of the bias coincide, that is, \(n_f \approx 1\), indicating a strong correlation between the fields. Overall, we can conclude that the velocity bias is deterministic to a good approximation.

There is an excellent agreement (better than 10 per cent) between the simulation results and the model predictions for all mass bins at scales \(k < 0.1 h\, \text{Mpc}^{-1}\) for the large box and at scales \(k < 0.3 h\, \text{Mpc}^{-1}\) for the small one. Therefore, the peak model provides a faithful description of the velocity bias.

5 SUMMARY

We have investigated the Lagrangian bias of DM haloes by testing the theoretical model proposed by DS against N-body simulations of structure formation. The model assumes that haloes form from density peaks and predicts a scale-dependent bias for both the density and the velocity fields. Our main results can be summarized as follows:

(i) When averaged over a spherical Lagrangian volume containing the appropriate mass, the linear density contrast measured at protohalo centres depends sensitively on the choice of smoothing kernel. For a Gaussian kernel, for example, the resulting density contrasts are systematically lower than those computed using a top-hat filter. This is because, at fixed mass, the smoothing length of a Gaussian kernel exceeds that of a top-hat filter by a factor of about 1.55, resulting in systematically lower density estimates. Nonetheless, the median barrier height computed with a Gaussian kernel can be accurately parametrized by the same fitting formula first advocated by Sheth et al. (2001) for the case of a top-hat filter, albeit with different values for the numerical parameters. We use this result to approximate the collapse threshold for DM halo formation when adopting a Gaussian filter.

(ii) The functional forms for the density and velocity bias relations derived by DS – our equations (17) and (18) – accurately describe the results obtained from our simulations, provided the parameters of the model are allowed to vary with respect to the model-predicted values. In both cases, the Lagrangian bias is characterized by a constant term that dominates on very large scales, and a scale-dependent term proportional to \(k^2\).

(iii) Quantitatively, the velocity bias predicted by the DS model is able to reproduce the measured protohalo velocity bias in our simulations to better than 10 per cent, provided we limit ourselves to quasi-linear scales \((k \leq 0.3 h\, \text{Mpc}^{-1})\). The predicted density bias (equations 11 and 12), on the other hand, does not match the Lagrangian density bias extracted from the simulations. This is likely due to the more complex nature of the density bias, which depends additionally on the peak height and the exact definition of a protohalo. These results are independent of whether one adopts a barrier height consistent with either the spherical or ellipsoidal collapse model.

(iv) We have measured the mass dependence of the density bias, \(b_e\) and \(b_z\), by fitting the density power spectra obtained for haloes in several different mass bins in each of our two simulations. The most massive haloes identified in our simulations are the most strongly biased, and have characteristic overdensities that correlate with the underlying matter density. In contrast, the distribution for low-mass haloes \((M_b < 10^{12} h^{-1} M_\odot)\) exhibits an anticorrelation. A similar
trend is also predicted by the DS model, although with noticeable differences (see Fig. 3). We emphasize that the best-fitting values for b_v and b_t obtained in our analysis apply for a ΛCDM cosmology (with our adopted cosmological parameters) and only over the limited mass range probed by our simulations. Future work should consider how the Lagrangian density bias depends on the underlying cosmology.

(v) Our comparison of the auto- and cross-spectra in Section 4 suggests the presence of a stochasticity in the Fourier-space density bias of DM protohaloes, but none for the velocity bias. This is in disagreement with the DS model for the bias at leading order, and seems to corroborate the need for higher order terms in the expression for the autospectrum of the protohaloes, as predicted in Desjacques et al. (2010). However, we cannot draw firm conclusions regarding stochasticity in the bias estimates due to uncertainties in the shot-noise subtraction.

We have tested the Lagrangian bias model of DS against a pair of high-resolution N-body simulations of structure formation and found that it is able to accurately reproduce the velocity bias, but not the density. Our analysis focused on protohaloes, the high-redshift progenitors of $z = 0$ DM haloes, whereas the model describes the biasing of density peaks. One possible explanation for the differences in the model predictions and simulation results comes from the differences between the expressions for the bias parameters: b_v, b_t and b_s. The latter of the three is solely determined by the linear matter power spectrum and the smoothing scale corresponding to a given mass, M. The density bias parameters, however, depend additionally on explicit properties of the peaks, such as their height, v, mean curvature, κ, and on an assumed collapse threshold for their identification as haloes of a given mass. Fig. 1 shows that there is a large halo-to-halo variation in v at any given mass scale; characterizing the collapse threshold as a single mass-dependent value may therefore be too simplistic. This added complexity introduces a significant margin for error in the model’s estimates of the density bias. It remains to be seen whether more realistic models of the collapse barrier – such as those that account for the statistical scatter in the linear overdensities of protohaloes at a given mass – will improve the model’s predictive power.

Another possibility for the discrepancies stems from the fact that we are identifying linear density peaks with protohaloes in our simulation initial conditions. Although the majority of our DM protohaloes form in the vicinity of linear density peaks of the same characteristic mass, the fate of all peaks with the same mass and overdensity is unclear. Uncertainties associated with the identification of protohaloes within the linear density field may have adverse effects on the predictive power of the density bias model. A more detailed understanding of how protohaloes map on to linear density peaks, and vice versa, will, no doubt, provide valuable insight into the mechanisms behind halo biasing.

ACKNOWLEDGMENTS

AE acknowledges financial support from the SFB-Transregio 33 ‘The Dark Universe’ by the Deutsche Forschungsgemeinschaft (DFG) and a scholarship from the Bonn–Cologne Graduate School. We acknowledge interesting discussion on halo finders with Steffen Knollmann and Andrea Macciò. We would like to thank Jeremy Tinker for providing us with his SO halo finder, and for help applying it to our simulations. We are very grateful to the referee, Vincent Desjacques, for useful suggestions and valuable insights.

REFERENCES

Bardeen J. M., Bond J. R., Kaiser N., Szalay A. S., 1986, ApJ, 304, 15
Bond J. R., Myers S. T., 1996, ApJS, 103, 1
Bond J. R., Cole S., Efstathiou G., Kaiser N., 1991, ApJ, 379, 440
Catelan P., Luccin F., Matarrese S., Porciani C., 1998, MNRAS, 297, 692
Catelan P., Porciani C., Kamionkowski M., 2000, MNRAS, 318, L39
Cole S., Kaiser N., 1989, MNRAS, 237, 1127
Cooray A., Sheth R. K., 2002, Phys. Rep., 372, 1
Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371
Desjacques V., 2008, Phys. Rev. D, 78, 103503
Desjacques V., Sheth R. K., 2010, Phys. Rev. D, 81, 023526 (DS)
Desjacques V., Crocce M., Scoccimarro R., Sheth R. K., 2010, Phys. Rev. D, 82, 103529

© 2012 The Authors, MNRAS 421, 3472–3480
Monthly Notices of the Royal Astronomical Society © 2012 RAS.
