Health risk assessment for people consuming agricultural products grown in the zone of aluminum production

S V Ivanova and I A Ryabchikova

Irkutsk National Research Technical University, Russia

E-mail: rjabchik@bk.ru

Abstract. Most of the Russian people consume products grown in their gardens located near large industrial centers. Toxic substances can enter the human body together with agricultural products grown on polluted land. The article aims to assess carcinogenic and non-carcinogenic risks to health of people consuming agricultural products (root and tuber crops) grown in the area affected by aluminum production (the Southern Baikal region). The risk was assessed using a model developed by U.S.EPA. The carcinogenic risk for average concentrations of benz(a)pyrene in vegetables was CR=1.09·10^{-4}. The value is between maximum permissible and unacceptable levels. The chronic non-carcinogenic risk exceeds the safe value four times (HI = 4.15) due to large doses of iron (HQ=2.47) and nickel (HQ=0.88). The total value of the hazard coefficient for fluorine (HQ=0.74) entering the human body with root and tuber crops does not exceed the permissible level, despite the fact that it is one of the main components of soil pollution near aluminum production plants.

1. Introduction

Traditionally, most of the Russian people eat products grown in their gardens located near cities and industrial centers. The territory of pollution can be located 50-200 km away from pollution sources. According to Russian researchers, almost 11% of soils are “dangerous” and “moderately dangerous” in terms of the content of heavy metals [1]. Harmful substances can accumulate in agricultural plants eaten by humans.

As a rule, the most powerful sources of soil pollution are mining enterprises, large plants of non-ferrous metallurgy and chemical enterprises [1-5]. The problem of technogenic soil pollution with TM and other toxicants is relevant in many countries [6–9]. Th researchers [10] say that soil is polluted with fluorine at a distance of 30 km away from the Norwegian aluminum smelters.

A large aluminum plant is located in the southern Baikal region of Russia (Shelehkov). In the 0.5-8 km zone of this industrial center, the agricultural land is contaminated with fluorine and benzo(a)pyrene (B(a)P) [11]. In this zone, there are three rural settlements and more than six thousand summer cottages growing vegetables. There is no regular control over their quality.

National hygienic food safety requirements include standards for the content of toxicants (lead, arsenic, cadmium and mercury) in vegetables. There are no permissible levels of other heavy metals, fluorine and B(a)P in vegetables. The only way to assess a potential threat to public health is a risk assessment method. This method is widely used by foreign experts to assess food safety [12-18].

The purpose of this article is to assess carcinogenic and non-carcinogenic risks to public health as a result of consuming vegetables (roots and tubers) grown in the zone of aluminum production (Shelehkov district, Irkutsk region) in the South Baikal region.
2. Materials and Methods
Shelekhov district is located in the south of Irkutsk region, 80 km away from the Baikal lake. Its administrative center is Shelekhov located in the valley of the Irkut and Olkha rivers. In the town, there is a large aluminum enterprise. The industrial profile of the town is determined by non-ferrous metallurgy.

The agriculture is an auxiliary branch presented by a small agricultural enterprise and six farms. All the lands are located within a small area between the Irkut and Olkha rivers.

A large number of industrial enterprises pollute air and soil in Shelekhov and its suburbs. The 2013 studies carried out as part of the project “Comprehensive Environmental Audit of the Baikal Natural Territory and the Lake Baikal Ecosystem — an area of the World Natural Heritage” [19] found that accumulation of B(a)P in soil near the industrial zone exceeds the permissible level 800 times, and the MAC— 120 times. According to L. Belykh and her co-authors [11], water-soluble fluorine and benzo(a)pyrene with a concentration exceeding national standards (MAC) 7 and 5 times pollutes soil in Shelekhov district. Concentrations of Fe, Ti, Mn, V, Pb did not exceed permissible levels with the exception of 2–4 background and 1.5–2 MAC of As, Ni, Zn in the areas of local pollution.

According to the official data, in 2016, more than 93% of the territory of Shelekhov district and 100% of the territory of Shelekhov did not meet the hygienic standards. In the town, fluorine content exceeded the MAC five times; in the suburban areas, it exceeded the MAC 2–5 times [20].

In 2017, the number of residents of Shelekhov district was 64.3 thousand. More than 80% of them live in the town consuming agricultural products (vegetables, fruits, berries) grown in the suburban area. Most of these products are root and tuber crops.

To assess non-carcinogenic and carcinogenic effects on the population consuming vegetables grown in the polluted area, a model developed by U.S.EPA was used. In Russia, this model is a basis of the P 2.1.10.1920-04 manual [21]. According to the model, the carcinogenic risk is a likelihood of developing malignant neoplasms throughout the human life due to the exposure to potential carcinogens. It is the upper limit of an additional lifetime risk. The non-carcinogenic risk is characterized by a "hazard coefficient" (HQ) determined as a ratio of the exposure dose / concentration of a chemical to its safe (reference) level of exposure (Hazard). If HQ <1, there is no danger or risk to health. If HQ> 1, there is a danger of a disease or poisoning which is greater the more the HQ exceeds 1. The risk indicators for carcinogenic and non-carcinogenic effects were assessed separately.

The calculations are based on scientific data on the content of harmful substances in vegetables grown in the zone of aluminum production in the southern Baikal region.

3. Results and Discussion
Priority components of soil pollution in the vicinity of aluminum production sources are fluorine and B(a)P; lead, zinc, nickel and B(a)P are identified near transport highways [11].

These harmful substances can accumulate in agricultural plants [4, 5, 14]. Researchers identified a positive relationship between fluorine content in plants and soil contamination [7, 9, 10]. Significant pollution of root and tuber crops with fluorine was identified by L.V. Pomazkina [22]. The author says that the average fluorine content in potato tubers at a soil contamination level of 6-10 MAC was 7.1-10 mg/kg; in carrots and beets, it varied from 4.0 to 8.0 mg/kg.

In addition, Zn, Ni, and Fe accumulate in potato tubers. The analysis of literature data showed that Zn content in potatoes can vary. However, beets accumulate it more than potatoes and carrots.

The work by L.I. Belykh and I.A. Ryabchikova [11] presents information on the content of B(a)P, fluorine and metals (Zn, Ni, Fe) in vegetables grown in Shelekhov district. Other harmful substances (arsenic, lead, manganese and vanadium) in roots and tubers were not identified. These data were used as a basis for calculating environmental effects on the population consuming vegetables grown on polluted soils (Table 1). It was taken into account main vegetables grown in the south of Irkutsk region are potatoes, carrots and beets. According to the official data of the Federal State Statistics Service of Russia (2017), in Irkutsk region, their consumption is 126; 37.5 and 12.8 kg per person. The share of local products in the total consumption was 100 %.
Table 1. The content of benzo(a)pyrene (mcg/kg), fluorine and metals (mg/kg) in vegetables grown in the zone of aluminum production.

Plant	B(a)P	Fluorine	Zinc	Iron	Nickel
Potatoes (n = 5-24)	0.46 ± 0.13	19.2 ± 8.1	9.0 ± 6.4	372 ± 593.8	8.64 ± 13.9
Carrots (n = 5-12)	9.1 ± 1.7	6.4 ± 1.5	-	-	-
Beets (n = 7)	0.9 ± 0.5	8.9 ± 6.5	-	-	-

Note: «-» - no data.

To assess the non-carcinogenic risk, the R 2.1.10.1920-04 method [21] was used. It is based on standard formulas for calculating average daily doses (I) and a hazard coefficient (HQ). Reference doses of harmful substances, as well as organs and systems affected by them are presented in Table 2.

Table 2. Reference doses in case of chronic oral intake of harmful substances.

CAS	Substance	RfD, mg/kg	Critical organs and systems
7782-41-4	Fluorine	0.06	teeth, bone system
7439-89-6	Iron	0.3	mucous membranes, skin, blood, immune system
7440-66-6	Zinc	0.3	blood, biochemical composition (superoxide dismutase)
7440-02-0	Nickel	0.02	liver, cardiovascular system, digestive tract, blood, weight

The hazard coefficient (HQ) was calculated on the basis of vegetable consumption. The results are presented in Tables 3 and 4.

Table 3. Health risks when consuming vegetables containing fluorine.

Plant	Average daily dose (I), mg/(kg·day)	Hazard Coefficient (HQ)
Potatoes	0.039	0.65
Carrot	0.004	0.06
Beet	0.002	0.03
ΣHQ		**0.74**

Table 4. Health risks when consuming potatoes containing metals.

Metal	Average daily dose (I), mg/(kg·day)	Hazard Coefficient (HQ)
Iron	0.742	2.47
Zinc	0.018	0.06
Nickel	0.018	0.88

In case of simultaneous intake of several substances, the hazard index (HI) is calculated as a sum of hazard coefficients for each substance. The HI was 4.15. The results indicate that there is a risk to human health when eating vegetables grown on contaminated soils. Iron is an essential element in the risk structure (Figure 1). Therefore, iron has the most negative impact on the hematopoietic and immune systems and integumentary tissues.
Figure 1. The share of toxicants in the structure of non-carcinogenic risks to health of the population of the Southern Baikal region, %.

An obligatory step in the assessment of carcinogenic risks is calculation of the average daily dose of carcinogen substances in the human body (LADD). According to the classification of the International Agency for Research on Cancer (IARC), B(a)P and nickel were referred to group 2 (probably carcinogenic substances). However, due to the absence of a carcinogenic potential factor \(SF_0 \) for nickel entering the human body perorally, the carcinogenic risk of B(a)P was assessed \(SF_0 = 7.3 \text{ mg/(kg·day)} \). Calculations were carried out using standard formulas [21]. According to our data, the average daily dose of B(a)P consumed with vegetables was LADD = 0.000015 mg/(kg·day), and the individual carcinogenic risk was CR = 1.09·10\(^{-4}\), the population risk (PCR) was 7 additional diseases to the background number. The value of CR was between maximum permissible and unacceptable levels.

4. Summary and Conclusion

The results indicate that vegetables grown on contaminated soils are dangerous. The non-carcinogenic risk (HQ = 4.15) is due to increased content of iron (59.5%) and nickel (21%), while the carcinogenic risk is caused by benzo(a)pyrene content (CR = 1.09·10\(^{-4}\)). Iron poses a non-carcinogenic risk. It affects the hematopoietic and immune systems, integumentary tissues and causes allergies. The non-cancerogenic risk is due to the high content of iron (HQ=2.47) and nickel (HQ=0.88); the cancerogenic risk is due to the high content of benz(a)pyrene (CR=1.09·10\(^{-4}\)).

The value of the hazard coefficient (HQ = 0.74) for fluorine entering the human body with roots and tubers does not exceed the permissible level despite the fact that it is one of the main components of soil pollution by aluminum production plants. The blood and immune systems are affected by such non-carcinogenic substances as iron and nickel entering the body perorally.

Despite a relatively high peroral risk level, it should be taken into account that it is part of the multi-environment impact of harmful substances in the zone of aluminum production. It is necessary to search for methods which can reduce them.

References

[1] Barsova N, Yakimenko O, Tolpeshta I and Motuzov G 2019 Current state and dynamics of heavy metal soil pollution in Russian Federation Environmental Pollution 249 pp 200–207
[2] Berasaluce M, Mondaca P, Schuhmacher M, Bravo M and Neaman A 2019 Soil and indoor dust as environmental media of human exposure to As, Cd, Cu, and Pb near a copper smelter in central Chile Trace Elements in Medicine and Biology 54 pp 156–162
[3] Wang M, Li X, He W-y, Li J-x and Yang X-e 2019 Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, southwest China Environmental Pollution 249 pp 423–433
[4] Franzaring J, Hrenn H, Schumm C, Klumpp A and Fangmeier A 2006 Environmental monitoring of fluoride emissions using precipitation, dust, plant and soil samples Environmental Pollution 144 (1) pp 158–165
[5] Yang Q, Li Z, Lu X, Duan Q and Bi J 2018 A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment Science of The Total Environment 642 pp 690–700
[6] Yadav K K, Kumar V, Gupta N, Kumar S and Singh N 2019 Human health risk assessment: Study of a population exposed to fluoride through groundwater of Agra city, India Regulatory Toxicology and Pharmacology 106 pp 68–80
[7] Brougham K M, Roberts S R, Davison A W and Port G R 2013 The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils Environmental Pollution 178 pp 89–96
[8] Yang W, Lang Y-H, Bai J and Li Z-Y 2015 Quantitative evaluation of carcinogenic and non-carcinogenic potential for PAHs in coastal wetland soils of China Ecological Engineering 74 pp 117–124
[9] Tandelov Y P 2012 Fluorine in the soil-plant system (Krasnoyarsk) p 146
[10] Arnesen A K M, Abrahamsen G, Sandvik G and Krogstad T 1995 Aluminium-smelters and fluoride pollution of soil and soil solution in Norway The Total Environment 163 (1-3) pp 39–53
[11] Belykh L I, Ryabchikova I A, Seryshev V A… and Smagunova A N 2006 Assessment of chemical contamination of the soil and vegetation cover of agroecosystems of the Southern Baikal Region Agrochemistry 5 pp 78–89
[12] Osipova N A, Yazikov E G and Yankovich E P 2013 Heavy metals in soil and vegetables as a risk factor for human health Fundamental research 8(3) pp 681–686
[13] Zolfaghari G, Zohreh A S A and Sazgar 2018 A Baseline heavy metals in plant species from some industrial and rural areas: Carcinogenic and non-carcinogenic risk assessment MethodsX 5 pp 43–60
[14] Ghasemidehkordi B, Malekirad A A, Nazem H, Fazilati M and Khaneghah A M 2018 Concentration of lead and mercury in collected vegetables and herbs from Markazi province, Iran: a non-carcinogenic risk assessment Food and Chemical Toxicology 113 pp 204–210
[15] Saleem M, Iqbal J and Shah M H 2014 Non-carcinogenic and carcinogenic health risk assessment of selected metals in soil around a natural water reservoir, Pakistan Ecotoxicology and Environmental Safety 108 pp 42–51
[16] Aendo P, Thongyuan S, Songserm T and Tulayakul P 2019 Carcinogenic and non-carcinogenic risk assessment of heavy metals contamination in duck eggs and meat as a warning scenario in Thailand The Total Environment 689 pp 215–222
[17] Taiwo A M, Oyebode A O, Salami F O, Okewole I and Davidson N 2018 Carcinogenic and non-carcinogenic evaluations of heavy metals in protein foods from southwestern Nigeria Food Composition and Analysis 7 60–66
[18] Varol M and Sünbü M R 2018 Multiple approaches to assess human health risks from carcinogenic and non-carcinogenic metals via consumption of five fish species from a large reservoir in Turkey The Total Environment 63 pp 684–694
[19] Marinaite I I, Gorshkov A G, Tarasenko E N, Chikalina E V and Hodger T V 2013 Distribution of polycyclic aromatic hydrocarbons in natural objects on the territory of dispersion of emissions from Irkutsk aluminum smelter emissions (Shelekhov, Irkutsk region) Chemistry for Sustainable Development 2(21) pp 143–154
[20] The government report On the state and protection of the environment of Irkutsk region in 2017 www.irkobl.ru/sites/ecology/picture
[21] Guidelines for assessing the risk to public health when exposed to chemicals that pollute the environment R 2.1.10.1920-04 2004 (Moscow: Federal Center for State Sanitary and Epidemiological Surveillance of the Ministry of Health of the Russian Federation) p 273
[22] Pomazkina L V and Lubina E V 2002 Monitoring of contamination of arable soil and field crops in the emission zone of Irkutsk Aluminum Plant Agrochemistry 2 pp 59–65