June 2008

The Peculiar Volatile Composition of Comet 8P/Tuttle: A Contact Binary of Chemically Distinct Cometesimals?

Boncho Bonev
Goddard Space Flight Center

Michael Mumma
Goddard Space Flight Center

Yana Radeva
Goddard Space Flight Center

Michael DiSanti
Goddard Space Flight Center

Erika Gibb
University of Missouri–St. Louis

See next page for additional authors

Follow this and additional works at: https://irl.umsl.edu/physics-faculty

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Recommended Citation
Bonev, Boncho; Mumma, Michael; Radeva, Yana; DiSanti, Michael; Gibb, Erika; and Villanueva, Geronimo, "The Peculiar Volatile Composition of Comet 8P/Tuttle: A Contact Binary of Chemically Distinct Cometesimals?" (2008). Physics Faculty Works. 27.
DOI: https://doi.org/10.1086/589649
Available at: https://irl.umsl.edu/physics-faculty/27

This Article is brought to you for free and open access by the Department of Physics at IRL @ UMSL. It has been accepted for inclusion in Physics Faculty Works by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.
THE PECULIAR VOLATILE COMPOSITION OF COMET 8P/TUTTLE: A CONTACT BINARY OF CHEMICALLY DISTINCT COMETESIMALS?

Boncho P. Bonev, Michael J. Mumma, Yana L. Radeva, Michael A. DiSanti, Erika L. Gibb, and Geronimo L. Villanueva

Received 2008 March 27; accepted 2008 April 24; published 2008 May 22

ABSTRACT

We report measurements of eight native (i.e., released directly from the comet nucleus) volatiles (H2O, HCN, CH4, C2H2, C2H6, CO, H2CO, and CH3OH) in comet 8P/Tuttle using NIRSPEC at Keck 2. Comet Tuttle reveals a truly unusual composition, distinct from that of any comet observed to date at infrared wavelengths. The prominent enrichment of methanol relative to water contrasts with the depletions of other molecules, especially C2H2, HCN, and H2CO. We suggest that the nucleus of 8P/Tuttle may contain two cometary families characterized by distinct volatile composition. The relative abundances C2/CN, C3/C2, and CN/OH in 8P/Tuttle (measured at optical/near-UV wavelengths) differ substantially from the mixing ratios of their potential parents (C2H2/HCN, C2H2/H2O, and HCN/H2O) found in this work. Based on this comparison, our results do not support C2H2 and HCN being the principal precursors for respectively C2 and CN in Tuttle. The peculiar native composition observed in 8P/Tuttle (compared to other comets) provides new strong evidence for chemical diversity in the volatile materials stored in comet nuclei. We discuss the implications of this diversity for expected variations in the deuterium enrichment of water among comets.

Subject headings: comets: general — comets: individual (8P/Tuttle) — infrared: solar system

Online material: color figure

1. COMET TAXONOMIES

Revealing the compositional diversity of comets has high value for understanding solar system formation (Mumma et al. 1993; Irvine et al. 2000; Bockelée-Morvan et al. 2004; Crovisier 2006), the (significant) processing history experienced by organic matter during the transition from interstellar cloud cores to planetary systems (Charnley & Rodgers 2008; Ehrenfreund et al. 2006), and the possibility of exogenous delivery of water and prebiotic organics to early Earth (Delsemme 1999, 2000).

Comet nuclei were among the first objects to accrete in the cold regions (beyond ∼5 AU) of the early solar nebula. Many of these bodies were subsequently incorporated into the growing giant planets. Gravitational scattering redistributed the remaining nuclei by either sending them to the inner solar system, where they may have enriched the early terrestrial biosphere, or scattering them into their present-day dynamical reservoirs: the distant Oort Cloud and the Edgeworth-Kuiper Belt. The interiors of comet nuclei have remained to a large degree unaltered during the long (∼4.5 Gyr) residence in their dynamical reservoir. Thus comet nuclei are believed to be the most primitive (although not pristine) objects in the solar system.

Today, various processes (e.g., Galactic tides) can perturb the orbits of individual nuclei from their dynamical reservoir to the inner solar system. Isotropic comets (“dynamically new,” “long period,” and “Halley type”) originate from the Oort Cloud, while the scattered Kuiper Disk (a subpopulation from the Edgeworth-Kuiper Belt) is considered the main reservoir of ecliptic comets (Levison 1996; Bernstein et al. 2004; Gladman 2005). When a comet enters the inner solar system, sublimation is activated by sunlight, leading to the development of a coma (escaping atmosphere). The molecules that sublimate directly from ices stored in the nucleus (native ices) are referred to as “parent” volatiles, while molecules produced in the coma via photodissociation and other chemical processes are referred to as “daughter” (“granddaughter,” etc.) species.

Daughter fragments (CN, C2, C3, OH) emit at optical and near-UV wavelengths and have long been observed. By the early 1990s extensive multicomet data sets led to taxonomic classifications based on the measured abundances of daughter species (A’Hearn et al. 1995; Fink & Hicks 1996). A’Hearn and coworkers revealed substantial compositional differences and outlined two taxonomic groups of comets, “typical” and “depleted,” based on the abundance ratio C2/CN. While these differences likely relate to a place of comet formation in the early solar system, cosmogonic interpretation is obscured, because the observed radicals are not released directly from the comet nucleus and their parents are unknown. The native precursors of CN and C2 have been disputed for decades, but their identities remain uncertain (see Feldman et al. 2004). Moreover, the principal precursors may in fact vary among comets.

A new chemical taxonomy of comets is now emerging. It is based on the composition of native ices revealed through the emissions of parent volatiles such as H2O, C2H2, HCN, and other organics (Bockelée-Morvan et al. 2004; Mumma et al. 2003; Biver et al. 2002). Infrared (IR) and radio telescopes play complementary and equally important roles in building this new compositional taxonomy, since parent volatiles emit efficiently via their rovibrational (IR) and rotational (radio) transitions. Near-IR (2–5 μm) molecular spectroscopy offers several unique capabilities. Symmetric species (such as CH4, C2H2, C2H6) can be sensed only through their rovibrational emissions in the near-IR, since they have no permanent dipole moments and therefore have no allowed pure rotational tran-
sitions, while their excited electronic states predissociate, precluding detections in the UV. The principal native volatile (H₂O) can be detected from ground-based observations via its nonresonant fluorescence bands between 2 and 5 μm. IR observations are characterized by small beam sizes and therefore are most sensitive to emission in the inner 10⁻¹–10⁻³ km from the nucleus where densities of parent volatiles are highest. This makes the IR ideal for studying native ices in comets.

2. THE “ANOMALOUS” VOLATILE COMPOSITION OF 8P/Tuttle AS REVEALED BY NIRSPEC AT KECK 2

This work highlights the “anomalous” native volatile composition of comet 8P/Tuttle revealed for the first time through near-IR spectroscopy. Discovered in the mid-1800s, 8P/Tuttle (present orbital period of 13.6 yr) has been observed during 13 perihelion passages. While previous optical studies classified this comet as “typical” in its C₂ and CN abundances, the exceptionally favorable apparition in 2007–2008 offered a great opportunity for direct detections of multiple parent molecules.

We observed 8P/Tuttle on UT 2007 December 22–23 with the Near Infrared Echelle Spectrograph (NIRSPEC) (McLean et al. 1998) at the W. M. Keck Observatory atop Mauna Kea, Hawaii. NIRSPEC is especially powerful because of its cross-dispersed capability. Equipped with a 1024 × 1024 InSb detector array, six spectral orders are sampled simultaneously in the L band (2.9–4.0 μm). In the M band H₂O and CO can be detected together near 4.7 μm within a single order. Thus, using only three instrument settings (KL1, KL2, and MWA) we were able to sense all targeted molecules, in particular, C₂H₂, CH₃OH, and H₂O (KL1), HCN, CH₃O, C₂H₂, CH₄, CO, and H₂O (KL2), and CO and H₂O (MWA). The ability to always co-measure water is significant. As the dominant parent volatile H₂O serves as a natural “meter stick” against which the abundances of all other trace constituents are measured.

We nodded the telescope along the 24” long slit in an ABBA sequence with 12” beam separation. The operation (A – B – B + A) provided cancellation (to second order in air mass) of thermal background emission and of “sky” line emission from the terrestrial atmosphere. A slit width of 0.43” resulted in spectral resolving power λ/Δλ ≈ 25,000.

We used well-tested custom-designed algorithms for data processing, flux calibration (based on observation of standard star), and spectral extraction that were developed specifically for our comet observations. These algorithms along with recent developments are described in detail elsewhere (Bonev 2005; DiSanti et al. 2006; Villanueva et al. 2008 and references therein). For frequency calibration and correction of telluric absorption we utilize the GENLN2 (ver. 4) line-by-line radiative transfer code for synthesizing the terrestrial atmospheric transmittance (Edwards 1992).

We isolated “residual” molecular emission by subtracting a best-fit telluric transmittance model normalized to the comet dust continuum. The dashed curve represents a best-fit terrestrial atmospheric transmittance model. The dashed lines envelope the photon noise (± 1 σ). The Q-branch of the CH₃OH ν₁ band (panel d) is commonly used to quantify methanol production rates in comets from IR observations. Fluorescence models for HCN and C₂H₂ emission are shown (panel f) above the comet spectrum. The HCN lines are weak because of its low abundance. Acetylene is not detected; the modeled spectrum assumes a C₂H₂ abundance of 0.04% relative to H₂O. [See the electronic edition of the Journal for a color version of this figure.]

\[T_{\text{rot}}(\text{HCN}) = 51 \pm 10 \text{ K} \] (2007 December 23). We adopted the measured temperatures of water for all other comeasured molecules and verified that our measured production rates are only weakly influenced by uncertainties in \(T_{\text{rot}} \) except for methane, where the uncertainty in rotational temperature is propagated to the uncertainty in the reported mixing ratio.

Figure 1 shows detections of H₂O, C₂H₂, CH₃OH, HCN, and CH₄. We did not detect H₂CO, C₂H₂, and CO, but report sensitive (3 σ) upper limits for these species. All measured abundances of parent volatiles in comet 8P/Tuttle are summarized in Table 1.

3. DISCUSSION

While studies of daughter fragments have placed 8P/Tuttle in the “typical” compositional group (A’Hearn et al. 1995; Schleicher 2007), its parent volatile chemistry as revealed by NIRSPEC is substantially distinct from that of any comet observed to date. Figure 2 compares the abundances of HCN, CH₄, C₂H₂, C₂H₆, CO, H₂CO, and CH₃OH in 8P/Tuttle, C/1999 S4 (LINEAR) (Mumma et al. 2001), and C/2001 A2 (LINEAR) (Magee-Sauer et al. 2008). Displaying drastically “deviant” compositions, C/2001 A2 was classified as “organics enriched.”
while C/1999 S4 as “organics depleted.” In comparison with these two (current) compositional “end member” comets, 8P/Tuttle is “S4 like” in its abundances of C2H2 and HCN. The upper limit of C2H2 (0.04%) is the lowest observed among Oort Cloud comets. The depletion of C2H2 in 8P/Tuttle is less severe than in S4 (LINEAR), yet its abundance (0.24%) in 8P falls distinctly below the commonly observed range (0.5%–0.7%). The severely depleted C2H2 and fairly low C2H6 abundances distinctly below the commonly observed range (0.5%–0.7%).

Two aspects of the low C2H2 and HCN abundances draw attention. First, the abundance ratio of acetylene to hydrogen species are not chemically related. Interestingly, C2H2 and HCN absorption lines were measured in disks surrounding T Tauri stars IRS 46 (Lahius et al. 2006) and GV Tau (Gibb et al. 2007b) with C2H2/HCN (~0.6 and ~2.0 respectively) resembling that found in comets. Gas-phase acetylene and hydrogen cyanide were detected in the young circumstellar disk around AA Tauri (Carr & Najita 2008). The corresponding ratio C2H2/HCN (~0.12) is consistent with that found in Tuttle (<0.57), but the enrichments of C2H2 1.25% ± 0.67% and HCN 10% ± 6% relative to H2O seem substantially higher than those found in comets.

Second, C2H2 and HCN have long been considered candidates for native precursors of the C2 and CN radicals, respectively. Debated for decades, the question of C2 and CN parentage remains critical, in particular for interpreting the valuable data from optical observations of a great number of comets. The production of C2 from C2H2 and CN from HCN is favored by photolysis. However, the relative abundances C2/H2O and CN/OH in 8P/Tuttle are substantially different from the corresponding mixing ratios of their potential parents (Table 2). Based on this comparison, our results do not support C2H2 and HCN being the principal precursors for respectively C2 and CN in Tuttle.

In contrast to other species, the CH3OH abundance in 8P/Tuttle is closer to that in C/2001 A2, but much higher than in the organics-depleted C/1999 S4 (Fig. 2). Overall, the native composition of 8P/Tuttle does not fit any of the suggested classes of comets (organics-rich, organics-depleted, organics-normal) based on IR observations.

Table 1

NIRSPEC Setting	R_a (AU)	Δ (AU)	Δ (km s⁻¹)	Molecule	T_rot (K)	Q (10⁻³ s⁻¹)	Mixing Ratio (%)
KL1	1.161	0.319	-19.2	H2O	60 ± 15	2280 ± 50	100
				C2H2 (60)	5.49 ± 0.3	300 ± 0.05	0.24 ± 0.03
				CH3OH (60)	49.65 ± 1.22	2.18 ± 0.07	
				C2H2 (50)	<0.922	0.04	
				HCN	51 ± 10	1.74 ± 0.13	0.07 ± 0.01
				CH4	8.71 ± 0.50	0.37 ± 0.07	
				H2CO (50)	<0.96	0.04	
MWA	1.154	0.308	-18.0	H2O	50 ± 10	2128 ± 111	100
				CO	<7.92	<0.37	

Notes.—R_a, Δ, and Δ are, respectively, heliocentric distance, geocentric distance, and radial velocity with respect to the observing site. Rotational temperatures in parentheses are assumed.

Table 2

Optical	CN/OH	C2/H2O	C2/CN
1980	-2.54	-2.59	0.15
2007	-2.58	-2.41	0.17

This Work

HCN/H2O	C2H2/H2O	C2H2/HCN
<3.41	<2.04	<0.26

Notes.—Following A’Hearn et al. (1995), each mixing ratio is expressed as the logarithm of the ratio between the production rates (Q-values) of the two species (e.g., log(Q(CN)/Q(OH))). "Typical" comets are characterized with C2-to-CN mixing ratios in the range ~0.09 to 0.29. "Depleted" comets are characterized by mixing ratios in the range ~1.22 to ~0.21. The optical results were originally reported by A’Hearn et al. (1995) and more recently by Schleicher (2007). The errors reported for the optical data are 2%–3% of the measurements (A’Hearn et al.).
C/2001 A2 is long-period comet, C/1999 S4 was dynamically new, while 8P/Tuttle has a “Halley type” orbit. Dynamical models imply that such comets all come from the Oort Cloud (Levison 1996), so it is unlikely that the distinct orbital classification relates a priori to different chemistry. In contrast with C/2001 A2 and C/1999 S4, Tuttle has evolved (dynamically) to a short-period orbit and has experienced numerous passages in the inner solar system. A plausible suggestion is that thermal processing could lead to depleted organics in the near surface layers of a nucleus after multiple perihelion passages. The low abundances of C\textsubscript{2}H\textsubscript{2} and HCN are consistent with this scenario, but not conclusive. Severe depletion was also observed in C/1999 S4 (dynamically new) during its sudden disruption, when “fresh” material from the comet interior was released.

The overall deviant volatile chemistry of 8P/Tuttle invites its qualification as a “peculiar” comet. The contrast between the high methanol abundance and the relative depletion (to various degrees) of other native molecules (especially C\textsubscript{2}H\textsubscript{2} and HCN) in 8P/Tuttle implies that interpretation of an overall enrichment or depletion in organics is not sufficient to define a taxonomic cometary chemical class. An interesting scenario arises from the possible binary nature of the nucleus of 8P/Tuttle suggested from radar images (Harmon et al. 2008a, 2008b). If the nucleus is comprised of “contact binary” formed by two chemically distinct cometsimals (organics-depleted like C/1999 S4, and organics-enriched like C/2001 A2), the relative abundances observed in the coma would then depend on the volatile inventory of and relative degree of outgassing from each component. Radial migration of small bodies in the young solar system could permit cometsimals formed at substantially different locations in the protoplanetary disk to collide and merge, thereby forming a heterogeneous nucleus or a contact binary. Presenting unambiguous evidence for such heterogeneity remains a frontier area in cometary science (Gibb et al. 2007a).

Comet taxonomy based on native volatile composition has not been fully developed, but the evidence for diversity in organic abundances is very strong (indisputable). At the same time, another critical cosmogonic indicator—the deuterium enrichment of water—is quite often assumed to be universally (i.e., common to the entire comet population) twice that of standard mean ocean water (SMOW). The fundamental implication of this assumption is that comets could not have played a major role in the delivery of water and prebiotic organic matter to early Earth, thereby enabling the development of the biosphere. In fact HDO/H\textsubscript{2}O has been measured (with different level of confidences) in only a few comets (Halley, Hale-Bopp, Hyakutake). We point out that their organic volatile composition is different from that of the three comets discussed in this work (see Eberhardt 1999; Mumma et al. 2003). Therefore, the assumption of universal 2-SMOW enrichment is at odds with the observed variations in native composition among comets. A more plausible paradigm would be that there is a chemical diversity among the comet population, which still needs to be fully explored along with correlated measurements of D/H.

This work was supported by the NASA Astrobiology (RTOP to M. J. M.) and Planetary Astronomy (RTOPs to M. J. M. and M. A. D.) programs. Our observations were conducted at the W. M. Keck Observatory, operated as a scientific partnership among Caltech, UCLA, and NASA. This observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

REFERENCES

A’Hearn, M. F., Millis, R. I., Schleicher, D. G., Osip, D. J., & Birch, P. V. 1995, Icarus, 118, 223
Bernstein, G. M., Trilling, D. E., Allen, R. L., Brown, M. E., Holman, M., & Malhotra, R. 2004, AJ, 128, 1364
Biver, N., et al. 2002, Earth Moon Planets, 90, 323
Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., & Weaver, H. A. 2004, in Comets II, ed. M. C. Festou, H. U. Keller, & H. A. Weaver (Tucson: Univ. Arizona Press), 391
Bonev, B. P. 2005, Ph.D. thesis, Univ. Toledo, http://astrobiology.gsfc.nasa.gov/Bonev_thesis.pdf
Bonev, B. P., Mumma, M. J., Disanti, M. A., dello Russo, N., Magee-Sauer, K., Ellis, R. S., & Stark, D. P. 2006, ApJ, 653, 774
Carr, J. S., & Najita, J. R. 2008, Science, 319, 1504
Charnley, S. B., & Rodgers, S. D. 2008, Space Sci. Rev, in press
Crovisier, J. 2006, Mol. Phys., 104, 2737
Delsemme, A. H. 1999, Planet. Space Sci., 47, 125
———. 2000, Icarus, 146, 313
DiSanti, M. A., Bonev, B. P., Magee-Sauer, K., dello Russo, N., Mumma, M. J., Reuter, D. C., & Villanueva, G. L. 2006, ApJ, 650, 470
Eberhardt, P. 1999, Space Sci. Rev., 90, 45
Edwardwards, D. P. 1992, NCAR/TN-367-STR (Boulder: NCAR)
Ehrenfreund, P., Rasmussen, S., Cleaves, J., & Chen, L. 2006, Astrobiology, 6, 490
Feldman, P. D., Cochran, A. L., & Combi, M. R. 2004, in Comets II, ed. M. C. Festou, H. U. Keller, & H. A. Weaver (Tucson: Univ. Arizona Press), 425
Fink, U., & Hicks, M. D. 1996, ApJ, 459, 729
Gibb, E. L., Disanti, M. A., Magee-Sauer, K., dello Russo, N., Bonev, B. P., & Mumma, M. J. 2007a, Icarus, 188, 224
Gibb, E. L., Van Brunt, K. A., Brittain, S. D., & Rettig, T. W. 2007b, ApJ, 660, 1572
Gladman, B. 2005, Science, 307, 71
Harmon, J. K., Nolan, M. C., Howell, E. S., & Giorgini, J. D. 2008a, IAU Circ. 8909
Harmon, J. K., Nolan, M. C., Howell, E. S., & Jiordini, J. D. 2008b, in Asteroid, Comets, Meteors 2008, abstract 8025
Irving, W. M., Schloerb, F. P., Crovisier, J., Fegley, B., Jr., & Mumma, M. J. 2000, in Protostars and Planets IV, ed. V. Mannings, A. P. Boss, & S. S. Russell (Tucson: Univ. Arizona Press), 1159
Lahuis, F., et al. 2006, ApJ, 636, L145
Levison, H. F. 1996, in ASP Conf. Ser. 107, Completing the Inventory of the Solar System, ed. T. W. Rettig & J. M. Hahn (San Francisco: ASP), 173
Magee-Sauer, K., Mumma, M. J., Disanti, M. A., dello Russo, N., Gibb, E. L., Bonev, B. P., & Villanueva, G. L. 2008, Icarus, 194, 347
McLean, I. S., et al. 1998, Proc. SPIE, 3354, 566
Mumma, M. J., Disanti, M. A., dello Russo, N., Magee-Sauer, K., Gibb, E., & Novak, R. 2003, Adv. Space Res., 31, 2563
Mumma, M. J., Weissman, P. R., & Stern, S. A. 1993, in Protostars and Planets III, ed. E. H. Levy & J. I. Lunine (Tucson: Univ. Arizona Press), 1177
Mumma, M. J., et al. 2001, Science, 292, 1334
Schleicher, D. G. 2007, IAU Circ., 8903, 2
Villanueva, G. L., Mumma, M. J., Novak, R. E., & Hewagama, T. 2008, Icarus, 195, 34