Tick mitochondrial genomes: structural characteristics and phylogenetic implications

Tianhong Wang, Shiqi Zhang, Tingwei Pei, Zhijun Yu* and Jingze Liu*

Abstract
Ticks are obligate blood-sucking arachnid ectoparasites from the order Acarina, and many are notorious as vectors of a wide variety of zoonotic pathogens. However, the systematics of ticks in several genera is still controversial. The mitochondrial genome (mt-genome) has been widely used in arthropod phylogeny, molecular evolution and population genetics. With the development of sequencing technologies, an increasing number of tick mt-genomes have been sequenced and annotated. To date, 63 complete tick mt-genomes are available in the NCBI database, and these genomes have become an increasingly important genetic resource and source of molecular markers in phylogenetic studies of ticks in recent years. The present review summarizes all available complete mt-genomes of ticks in the NCBI database and analyses their characteristics, including structure, base composition and gene arrangement. Furthermore, a phylogenetic tree was constructed using mitochondrial protein-coding genes (PCGs) and ribosomal RNA (rRNA) genes from ticks. The results will provide important clues for deciphering new tick mt-genomes and establish a foundation for subsequent taxonomic research.

Keywords: Ticks, Mitochondrial genome (mt-genome), Gene structure, Phylogeny

Background
Ticks are obligate blood-sucking arachnid ectoparasites that can feed on a wide range of vertebrates, including mammals, birds and reptiles [1, 2]. Ticks are well-known zoonotic pathogen vectors, and tick-borne diseases (TBDs) are increasingly threatening animal and human health, thereby causing great economic damage [3, 4]. Many important tick-borne pathogens have been characterized from ticks in recent years, including *Anaplasma bovis*, *Babesia ovata*, *Rickettsia japonica*, *Chlamydiaceae* bacteria and severe fever with thrombocytopenia syndrome virus (SFTSV), which have attracted increasing attention in the field of public health [5–9]. Recently, a newly segmented virus with a febrile illness similar in its clinical manifestation to tick-borne encephalitis virus (TBEV) was discovered, which was designated as Alongshan virus (ALSV) and confirmed in 86 patients from several provinces in China [10]. Globally, the annual financial losses due to ticks and TBDs are in the billions of dollars [3, 11]. A total of 896 tick species have been described worldwide in three families: Ixodidae (hard ticks, 702 species), Argasidae (soft ticks, 193 species) and Nuttalliellidae (1 species) [12–14]. Hard ticks possess a sclerotized scutum in all life stages except eggs, have an apically located gnathostoma, usually feed for several days and ingest a large amount of blood [15, 16]. Soft ticks have no sclerotized scutum and mouthparts located anteroventrally. The ticks usually feed and expand the body within minutes to hours [17]. *Nuttalliella namaqua* is the unique species in the family Nuttalliellidae, and it displays many characteristics associated with hard and soft ticks and can engorge as rapidly as soft ticks [18]. The differences in life history, behaviour, and morphological characteristics are useful for the discrimination of soft ticks and hard ticks, but there are still numerous difficulties among the interspecies taxonomic characterization and geographical origin of ticks, especially for soft ticks [19]. Therefore, the increasing number of characterized mt-genomes has shown considerable potential in tick phylogeny, molecular evolution and population genetics.
The mt-genome is characterized by low molecular weight, high copy quantity and genetic conservation. The mt-genome has been widely used in molecular evolution, phylogeny and genealogy in recent years [20–22]. Similar to other arthropods, the tick mt-genome has a circular, double-stranded DNA structure with a length of 14–16 kb and a total of 37 genes, including 13 protein-coding genes, 22 transfer RNA genes (tRNAs) and 2 rRNA genes [20, 23]. With the development of next-generation sequencing (NGS) technology, increasing numbers of complete mt-genomes have been sequenced and annotated from various tick species [24]. The complete mt-genome sequences are necessary for advances in areas that are crucial for TBDs study and control [24]. To date, 63 complete tick mt-genomes are available in the NCBI database, and these genomes have become an increasingly important genetic resource and source of molecular markers in phylogenetic studies of ticks in recent years [19, 25]. Hence, in the present study, we used the MITOS online software (http://mitos.bioinf.uni-leipzig.de/index.py/) to annotate the complete mt-genomes of ticks and compare their characteristics, including structure, base composition and gene arrangement. Furthermore, a phylogenetic tree was constructed using PCGs and rRNA genes from ticks. The results will provide important clues for deciphering new tick mt-genomes and provide insights for subsequent taxonomic research.

Present state of research on tick mt-genomes

The first mt-genomes of ticks (Ixodes hexagonus and Rhipicephalus sanguineus) were reported by Black et al. [26] in 1998. As of May 2019, 63 complete tick mt-genomes have been deposited in the NCBI database. Most tick mt-genomes were published in this decade, and are from 3 families and 15 genera, including 35 species in the family Ixodidae: Ixodes (7 species); Amblyomma (7 species); Rhipicephalus (5 species); Rhipicentor (1 species); Dermacentor (4 species); Bothriocroton (2 species); Haemaphysalis (8 species); and Hyalomma (1 species) [26–41]; 27 species in the family Argasidae: Argas (8 species); Antricola (1 species); Carios (2 species); Ornithodoros (14 species); Otobius (1 species); and Nothoaspis (1 species) [19, 27, 42–44]; and 1 Nuttalliella species in family Nuttalliellidae [44] (Table 1). In recent years, phylogenetic studies based on mt-genome sequences have been effectively carried out for many tick species [21, 28–30, 36, 40]. These achievements are also essential for understanding the genetic differentiation and phylogeny of ticks [31–34]. However, the genera Anomalohimalaya, Compluriscutula, Margaropus and Nosomma still lack complete mt-genome information, and most species were sampled in a limited geographical area [45]. Complete mt-genome sequences have only been obtained for approximately 7% (63/896) of the tick species, and the general characteristics of most tick mt-genomes remain to be determined.

Basic features of tick mt-genomes

The length of the mt-genomes of ticks average 14,633 bp, with the longest reaching 15,227 bp (Ixodes tasmani) and the smallest measuring only 14,307 bp (Argas boueti) (Table 2). Generally, the length of the mt-genomes from hard ticks is slightly longer than that of soft ticks (14,796 and 14,429 bp, respectively). The length differences of the mt-genomes between ticks may be influenced by gene rearrangement and the length of the non-coding regions (NCRs) [46, 47]. MITOS online analysis showed no gene deletion or duplication in tick mt-genomes, which contain 13 PCGs, 2 rRNA genes and 22 tRNA genes. Among the 13 PCGs, 9 PCGs (nad2, cox1, cox2, atp8, atp6, cox3, nad3, nad6, cytb) are located in the majority strand (J strand) and 4 PCGs (nad5, nad4, nad4L, nad1) are located in the minority strand (N strand).

Metazoan mt-genomes usually have a higher adenine–thymine (AT) base content [22, 32, 42]. Analysis of base usage in tick mt-genomes showed that the AT content ranged from 80.45% (Amblyomma elaphense) to 65.23% (Ornithodoros savignyi) with an average content of 75.51% (Table 2). The difference in base usage within the family is generally small [48, 49], but the largest difference in AT content between soft and hard ticks reached 15.22%. This phenomenon may be attributed to the lower AT content in Ornithodoros species, which is 71.65% on average and is considerably lower than the average AT content of ticks. It is possible that the difference in AT content is related to the size of the NCRs, the repeat sequences and the complexity of the gene structure [50–52]. Additionally, the different living environments and survival strategies of soft and hard ticks influence base usage [53].

The base skew of tick mt-genomes is unique. In general, AT-skew is positive and guanine–cytosine (GC) skew is negative in the metazoan mt-genomes [54, 55], whereas the AT-skew of soft and hard ticks is different. In soft ticks, the AT-skew is positive. In hard ticks, the positive AT-skew is only observed in I. hexagonus and Ixodes uriae, whereas in other hard ticks, the AT skew is negative. In both soft and hard ticks, the average AT-skew is 0.0504 and −0.0187, respectively, and the average GC-skew is −0.3532 and −0.1701, respectively; notably the difference in AT-skew is smaller than that in GC-skew (Table 2).

Protein-coding genes and codon usage

The PCGs in mt-genomes encode several subunits: NADH dehydrogenase subunit, cytochrome _c_ oxidase
Family	Genus	Species	GenBank ID	Reference
Nuttalliellidae	Nuttalliella	*N. namaqua*	JQ665719	Mans et al. [44]
Argasidae	Argas	*A. africolumbae*	KJ133580	Mans et al. [44]
		A. boueti	KJ133580	Mans et al. [44]
		A. brumpti	KJ133580	Mans et al. [44]
		A. lagenoplois	KJ133580	Mans et al. [44]
		A. miniatus	KJ133580	Mans et al. [44]
		A. persicus	KJ133580	Mans et al. [44]
		A. striatus	KJ133580	Mans et al. [44]
		A. walkerae	KJ133580	Mans et al. [44]
	Antricola	*A. mexicanus*	KJ133580	Mans et al. [44]
	Carios	*C. capensis*	KJ133580	Mans et al. [44]
	Nothoaspis	*N. amazoniensis*	KJ133580	Mans et al. [44]
	Ommatodoros	*O. brasiliensis*	KJ133580	Mans et al. [44]
		O. compactus	KJ133580	Mans et al. [44]
		O. coriaceus	KJ133580	Mans et al. [44]
		O. costalis	KJ133580	Mans et al. [44]
		O. hermsi	KJ133580	Mans et al. [44]
		O. moubata	KJ133580	Mans et al. [44]
		O. parkeri	KJ133580	Mans et al. [44]
		O. porcinus	KJ133580	Mans et al. [44]
		O. rostratus	KJ133580	Mans et al. [44]
		O. savignyi	KJ133580	Mans et al. [44]
		O. sanrai	KJ133580	Mans et al. [44]
		O. tholozani	KJ133580	Mans et al. [44]
		O. turicata	KJ133580	Mans et al. [44]
		O. zumpti	KJ133580	Mans et al. [44]
	Otobius	*O. megnini*	KJ133580	Mans et al. [44]
	Ixodes	*I. hexagonus*	KJ133580	Mans et al. [44]
		I. holocyclus	KJ133580	Mans et al. [44]
		I. pavlovskyi	KJ133580	Mans et al. [44]
		I. persulcatus	KJ133580	Mans et al. [44]
		I. ricinus	KJ133580	Mans et al. [44]
		I. tasmani	KJ133580	Mans et al. [44]
		I. uriae	KJ133580	Mans et al. [44]
	Amblyomma	*A. americanum*	KJ133580	Mans et al. [44]
		A. cajennense	KJ133580	Mans et al. [44]
		A. elaphense	KJ133580	Mans et al. [44]
		A. fimbriatum	KJ133580	Mans et al. [44]
		A. sculptum	KJ133580	Mans et al. [44]
		A. sphenodonti	KJ133580	Mans et al. [44]
		A. triguttatum	KJ133580	Mans et al. [44]
	Rhipicephalus	*R. australis*	KJ133580	Mans et al. [44]
		R. geigyi	KJ133580	Mans et al. [44]
		R. microplus	KJ133580	Mans et al. [44]
		R. sanguineus	KJ133580	Mans et al. [44]
		R. turanicus	KJ133580	Mans et al. [44]
	Rhipicentor	*R. nuttalli*	KJ133580	Mans et al. [44]
	Dermacentor	*D. verestianus*	KJ133580	Mans et al. [44]
subunit, ATPase subunit and cytochrome b, which are mainly involved in the oxidative phosphorylation of cells [56]. The average length of mitochondrial PCGs in soft and hard ticks is 10,866 and 10,819 bp, respectively (Table 2). The AT content in PCGs of the soft ticks (71.81%) and hard ticks (77.36%) is also lower than that in the complete mt-genome level. The lowest AT content in PCGs is in *Rhipicephalus geigyi* (63.59%) and the highest is in *Ornithodoros savignyi* (80.47%). The base skew in PCGs of ticks is negative, and the skewness characteristics are similar in both soft and hard ticks. No obvious differences have been observed in different genera of ticks, and the level of AT-skew is higher than that of the GC-skew. The mitochondrial PCGs are involved in oxidative phosphorylation and energy production; therefore, the structure is relatively conserved, and the difference in base usage is lower than that of the whole genome. In addition, the higher AT content of tick mt-genomes may be influenced by gene sequences, with there being only a 0.11–1.64% gap between the AT content of PCGs and the whole mt-genome (Table 2).

Similarly to insects, ticks usually adopt the “ATN”-type codon as the initial codon in PCGs [31–34, 57]. Other codons, including some special initiation codons, can be edited to conventional start codons during transcription [58–60], which may help reduce the gene spacer region and overlapping region and not affect the normal translation of proteins [61]. The termination codons of ticks are mainly TAA and TAG [31, 34] and sometimes use “T” or “TA”, which may be converted into a complete termination codon by polyadenylation after translation [62, 63].

Table 1 (continued)

Family	Genus	Species	GenBank ID	Reference
D. nitens			KC503258	Burger et al. [27]
D. nuttalii			KT764942	Guo et al. [33]
D. silvarum			KP258209	Chang et al. [Unpublished]
Bothniocroton	B. concolor		JN863727	Burger et al. [28]
	B. undatum		JN863728	Burger et al. [28]
Haemaphysalis	H. bancrati		MHO43268	Burnard et al. [25]
	H. concinna		KY364906	Fu et al. [38]
	H. flavia		AB075954	Shao et al. [41]
	H. formosensis		JX573135	Burger et al. [29]
	H. hystricis		MHS50034	Tian et al. [Unpublished]
	H. japonica		MG253031	Fu et al. [Unpublished]
	H. longicornis		MG450553	Geng et al. [Unpublished]
	H. parva		JX573136	Burger et al. [29]
Hyalomma	H. asiaticum		MF101817	Liu et al. [34]

a Unpublished here refers to the sequences deposited into GenBank only without paper published

Transfer RNA and ribosomal RNA genes

The mitochondrial tRNA gene length in ticks ranges from 50 to 90 bp, and most tRNA genes have a complete cloverleaf structure, including four principal structures: amino acid acceptor (AA) arm; TVC (T) arm; anticodon (AC) arm; and dihydrouridine (DHU) arm [64]. No DHU arm structure exists in *trnS1* of the tick mt-genomes; a similar phenomenon is also observed in insects [20, 65, 66]. The distance from the anti-codon to the CCA terminator is hence maintained through the inverted L structure, which helps complete the gene function [67]. Additionally, base mismatches frequently occur in the secondary structure of the tick tRNA genes [68, 69]. These mismatches may be related to the evolutionary mutations and may not affect the function of tRNA genes due to being corrected later [71].

The mitochondrial rRNA genes display a complex functional structure with a relatively slow evolution rate; these have long been used as population genetics markers [72]. The tick mt-genomes contain two single copy 12S and 16S rRNA genes. In recent years, the mitochondrial 12S and 16S rRNA genes have been extensively used as genetic targets in phylogenetic research of ticks [27, 36, 73]. Due to gene rearrangement, the position of the rRNA genes shifts in ticks, whereas the gene order and the location in the N strand remain unchanged. Previous reports have shown that the average genetic distance of different tick taxa was still very slight even after tens of million years of evolution. Slow nucleotide variation in rRNA genes may be caused by strict structural and functional limitations [27]. Therefore, to this end, using
Species	Mitochondrial genome base content	PCGs base content						
	Length	A + T (%)	A	T	AT-skew	G	C	GC-skew
Nuttalliella namaqua	14,425	78.59	5864	5472	0.035	1097	1992	−0.290
Argas africolumbae	14,440	73.35	5579	5013	0.053	1311	2357	−0.319
Argas boueti	14,307	76.63	5768	5196	0.052	1152	2191	−0.311
Argas brumpti	14,516	69.91	5094	5054	0.004	1326	3042	−0.393
Argas lagenoplastis	14,478	72.64	5594	4923	0.064	1340	2621	−0.323
Argas minoritus	14,416	74.16	5452	5239	0.020	1252	2473	−0.328
Argas persicus	14,411	72.27	5427	5053	0.036	1264	2667	−0.357
Argas striatus	14,485	76.22	5739	5302	0.040	1167	2277	−0.322
Argas walkeriae	14,437	74.36	5488	5247	0.022	1213	2489	−0.345
Anticola mexicanus	14,415	74.60	5706	5047	0.061	1241	2418	−0.321
Carios capensis	14,418	73.54	5491	5112	0.036	1195	2620	−0.374
Carios faini	14,433	76.68	5902	5165	0.067	1096	2270	−0.349
Ornithodoros brasiliensis	14,489	73.16	5653	4947	0.006	1251	2638	−0.357
Ornithodoros compactus	14,400	72.14	5530	4858	0.005	1265	2747	−0.369
Ornithodoros coroaceus	14,423	69.75	5468	4592	0.087	1295	3068	−0.406
Ornithodoros costalis	14,442	72.32	5343	5101	0.023	1285	2713	−0.357
Ornithodoros hermsi	14,430	71.97	5368	5017	0.034	1348	2697	−0.333
Ornithodoros moubata	14,398	72.26	5548	4856	0.067	1240	2754	−0.379
Ornithodoros parkeri	14,437	74.45	5724	5024	0.005	1262	2427	−0.316
Ornithodoros porcinus	14,378	70.98	5405	4801	0.059	1346	2826	−0.355
Ornithodoros rostratus	14,452	72.96	5533	5011	0.050	1304	2604	−0.333
Ornithodoros savignyi	14,401	65.23	5461	3933	0.163	1263	3744	−0.496
Ornithodoros sonrai	14,430	74.02	5383	5298	0.008	1249	2500	−0.334
Ornithodoros tholozani	14,407	69.34	5138	4852	0.029	1425	2992	−0.355
Ornithodoros turicata	14,458	73.27	5653	4941	0.067	1325	2539	−0.314
Ornithodoros zumpti	14,438	69.61	5063	4988	0.007	1452	2935	−0.338
Otobius megnini	14,430	74.85	5609	5192	0.039	1172	2457	−0.354
Nothoaspis amazoniensis	14,416	72.93	5671	4842	0.079	1172	2731	−0.399
Ixodes hexagonus	15,339	72.66	5457	5107	0.033	1260	2715	−0.366
Ixodes holocyclus	15,007	77.38	5728	5884	0.013	1266	2129	−0.254
Ixodes pavlovskyi	14,575	78.09	5529	5852	0.028	1177	2017	−0.263
Ixodes persulcatus	14,539	77.35	5496	5750	0.023	1202	2091	−0.270
Ixodes ricinus	14,566	78.66	5594	5864	0.024	1147	1961	−0.262
Ixodes tasmani	15,227	77.92	5936	5929	0.001	1200	2162	−0.286
Table 2 (continued)

Species	Mitochondrial genome base content	PCGs base content						
	Length	A+T (%)	A	T	AT-skew	G	C	GC-skew
----------------------------------	--------	---------	---	---	---------	-----	-----	---------
Ixodes uriae	15,053	74.79	5667	5591	0.007	1275	2520	−0.328
Amblyomma americanum	14,709	76.78	5478	5816	−0.030	1458	1957	−0.016
Amblyomma cajennense	14,780	75.96	5444	5783	−0.030	1488	2064	−0.162
Amblyomma elaphotarsoni	14,627	80.45	5966	6072	−0.032	1243	1625	−0.137
Amblyomma fimbriatum	14,705	77.67	5601	5820	−0.019	1385	1899	−0.157
Amblyomma sculptum	14,780	76.10	5454	5794	−0.030	1482	2050	−0.161
Amblyomma sphenodonti	14,772	77.78	5585	5905	−0.028	1438	1844	−0.124
Amblyomma triguttatum	14,740	78.40	5653	5903	−0.022	1381	1803	−0.133
Rhipicephalus australis	14,891	79.89	5789	6108	−0.027	1307	1686	−0.127
Rhipicephalus georgyi	14,948	80.37	5886	6127	−0.020	1293	1642	−0.119
Rhipicephalus microplus	15,167	79.73	5888	6204	−0.026	1376	1698	−0.105
Rhipicephalus sanguineus	14,714	77.36	5545	5838	−0.026	1478	1853	−0.113
Rhipicephalus turanicus	14,717	77.81	5561	5890	−0.029	1452	1814	−0.111
Rhipicerentor nutalli	14,779	78.27	5581	5987	−0.035	1380	1831	−0.140
Dermacentor everestianus	15,191	78.80	5806	6165	−0.030	1436	1784	−0.108
Dermacentor nitens	14,839	77.42	5640	5849	−0.018	1410	1940	−0.158
Dermacentor nuttalli	15,086	78.93	5871	6036	−0.014	1324	1855	−0.167
Dermacentor silvarum	14,945	78.78	5812	5961	−0.013	1336	1836	−0.158
Bothriocroton concarlori	14,809	75.14	5443	5685	−0.022	1607	2704	−0.254
Bothriocroton undatum	14,769	76.90	5464	5893	−0.038	1540	1872	−0.097
Haemaphysalis bancrofti	14,673	78.35	5687	5810	−0.011	1381	1795	−0.130
Haemaphysalis concinna	14,675	77.98	5665	5778	−0.010	1350	1879	−0.164
Haemaphysalis flavus	14,689	76.88	5541	5752	−0.019	1498	1988	−0.118
Haemaphysalis formosensis	14,676	78.29	5667	5823	−0.014	1369	1817	−0.141
Haemaphysalis hystricus	14,716	77.22	5646	5718	−0.006	1448	1904	−0.136
Haemaphysalis japonica	14,685	77.58	5605	5788	−0.016	1435	1845	−0.125
Haemaphysalis longicornis	14,718	77.16	5618	5738	−0.011	1440	1922	−0.143
Haemaphysalis pravus	14,846	78.82	5806	5896	−0.008	1342	1802	−0.146
Hyalomma aegyptium	14,720	78.18	5600	5908	−0.027	1374	1838	−0.144

Length A A+T (%) A T AT-skew G C GC-skew Length A A+T (%) A T AT-skew G C GC-skew
combined PCGs and rRNA genes to reconstruct the phylogenetic relationships and resolve the controversial genealogy of soft ticks may be one of the best methods [19].

Gene rearrangement

The mt-genomes exhibit higher rearrangement potential, but in general, the gene arrangement most likely occurs at a higher taxonomic level, which can provide insights for systematic classification at higher taxa [74, 75]. There are three types of changes in tRNA gene position: shuffling (local rearrangements), translocation (cross-gene displacement) and inversion (change in the encoding or transcriptional direction) [76]. The rearrangements in the tick mt-genomes are mainly divided into two patterns (Fig. 1). The arrangement of the soft ticks and N. namaqua show more similarity with that in the genus Drosophila [77, 78], which represents the ancestral arrangement in insects. In detail, shuffle (minor rearrangement of the gene) is observed only in the trnL2 gene [48], which is moved from cox1–cox2 to nad1–trnL1 with the coding strand changed from the J strand to the N strand, whereas other genes remain unchanged. In hard ticks, a major gene rearrangement is observed in a large gene region (trnF–nad5–trnH–nad4–nad4L–trnP–cytB–trnS2), which is moved from trnE–nad1 to trnQ–trnM. The major gene rearrangement involves the translocation of three tRNA genes (trnL1, trnL2 and trnC) and the inversion of the trnC gene. The patterns in gene rearrangement might be associated with the rate of molecular evolution, and the different rearrangements between soft and hard ticks may have occurred from a very early period [74, 79].

Non-coding regions

In insects, the transcription termination of the mitochondrial NCRs is realized by combining transcription termination factors [80]. In ticks, the mt-genome features a compact structure, which usually contains two conserved site-specific NCRs and several genus-specific conserved NCRs [19, 27, 28, 34, 39]. The larger NCR is located between rrnS–trnI and is approximately 200–400 bp long (Table 3). The length of NCR in soft and hard

![Fig. 1](image-url)
Table 3 Distribution of NCRs in the tick mitochondrial genomes

Species	Conservative noncoding region	Nonconservative noncoding region								
	Length	Position	Length	Position	Length	Position	Length	Position		
Nuttalliella namaqua	182	rrnL–trnV	229	rmS–trnL	361	trnF–nad5				
Argas africolumbae	185	rrnL–trnV	293	rmS–trnL						
Argas brumpti	184	rrnL–trnV	280	rmS–trnL						
Argas boueti	553	rrnL–trnV	279	rmS–trnL						
Argas lagenoplatys	565	rrnL–trnV	238	rmS–trnL						
Argas miniator	178	rrnL–trnV	273	rmS–trnL						
Argas persicus	179	rrnL–trnV	248	rmS–trnL						
Argas striatus	182	rrnL–trnV	295	rmS–trnL	112	nad2–trnW				
Argas walkerae	177	rrnL–trnV	272	rmS–trnL						
Antricola mexicanus	189	rrnL–trnV	264	rmS–trnL	104	nad2–trnW				
Carrius capensis	177	rrnL–trnV	308	rmS–trnL						
Carrius faini	188	rrnL–trnV	259	rmS–trnL						
Nutaoaspiis amazoniensis	186	rrnL–trnV	264	rmS–trnL	124	trnF–nad5				
Ornithodoras brasiliensis	193	rrnL–trnV	294	rmS–trnL						
Ornithodoras compactus	176	rrnL–trnV	267	rmS–trnL						
Ornithodoras coriacus	189	rrnL–trnV	283	rmS–trnL						
Ornithodoras costalis	190	rrnL–trnV	254	rmS–trnL						
Ornithodoras hermsi	188	rrnL–trnV	269	rmS–trnL						
Ornithodoras moubata	176	rrnL–trnV	283	rmS–trnL						
Ornithodoras parkeri	192	rrnL–trnV	257	rmS–trnL						
Ornithodoras porcinus	174	rrnL–trnV	265	rmS–trnL						
Ornithodoras tratus	190	rrnL–trnV	289	rmS–trnL						
Ornithodoras avignyi	181	rrnL–trnV	266	rmS–trnL	125	trnF–nad5				
Ornithodoras sonrai	563	rrnL–trnV	255	rmS–trnL						
Ornithodoras tholozani	554	rrnL–trnV	292	rmS–trnL						
Ornithodoras turicata	189	rrnL–trnV	286	rmS–trnL	122	nad4–nad4L				
Ornithodoras zumpti	564	rrnL–trnV	271	rmS–trnL						
Otobius megmini	195	rrnL–trnV	290	rmS–trnL						
Ixodes hexagonus	189	rrnL–trnV	268	rmS–trnL						
Ixodes holocyclus	335	rrnL–trnV	349	rmS–trnL	335	trnL1–trnC				
Ixodes pavlovsyki	193	rrnL–trnV	351	rmS–trnL						
Ixodes persulcatus	183	rrnL–trnV	282	rmS–trnL	122	trnH–nad4				
Ixodes ricinus	197	rrnL–trnV	351	rmS–trnL	107	nad2–trnW				
Ixodes taismani	481	rrnL–trnV	366	rmS–trnL	145	nad4–nad4L				
Ixodes uriae	354	rrnL–trnV	385	rmS–trnL	354	trnL1–trnC				
Amblyomma americanum	169	rrnL–trnV	237	rmS–trnL	306	trnL1–trnC				
Amblyomma cajennense	172	rrnL–trnV	283	rmS–trnL	306	trnL1–trnC				
Amblyomma elaphense	515	rrnL–trnV	238	rmS–trnL	299	trnL1–trnC	127	nad2–trnW		
Amblyomma fimbriatum	165	rrnL–trnV	230	rmS–trnL	274	trnL1–trnC				
Amblyomma sculptum	172	rrnL–trnV	247	rmS–trnL	306	trnL1–trnC				
Amblyomma phaeononti	158	rrnL–trnV	297	rmS–trnL	328	trnL1–trnC				
Amblyomma triguttatum	155	rrnL–trnV	264	rmS–trnL	307	trnL1–trnC	123	nad2–trnW	185	trnF–nad5
Rhipicephalus australis	157	rrnL–trnV	265	rmS–trnL	305	trnL1–trnC				
Rhipicephalus geigyi	541	rrnL–trnV	244	rmS–trnL	303	trnL1–trnC	241	trnE–nad1		
Rhipicephalus microplus	561	rrnL–trnV	264	rmS–trnL	307	trnL1–trnC	124	nad2–trnW		
Rhipicephalus sanguineus	157	rrnL–trnV	233	rmS–trnL	303	trnL1–trnC				
Rhipicephalus turanicus	159	rrnL–trnV	240	rmS–trnL	304	trnL1–trnC				
Rhipicentor nuttalli	157	rrnL–trnV	82	rmS–trnL	308	trnL1–trnC	285	trnE–nad1		
ticks averages 274 and 261 bp, respectively. The longest NCR is observed in species of the genus *Ixodes* with an average length of 336 bp. The shortest NCR is only 82 bp in *Rhipicephalus nuttalli*, and the notably short NCR may be attributed to assembly errors. The other conservative NCRs are located between *rrnL* and *trnV*, and the length of this region varies greatly. The shortest is only 155 bp in *Amblyomma triguttatum*, and the longest reaches 565 bp in *Argas lagenoplastic*. The difference in the average length between the soft and hard ticks is only 1 bp (251 and 252 bp, respectively). The length difference of this type of NCR in ticks is often significant within a genus, except for the genus *Haemaphysalis*, which shares a similar length of 150 bp. In addition to the abovementioned two NCRs, there is another NCR located between *trnL1* and *trnC* in hard ticks. It is possible that the two related genes (*trnL1* and *trnC*) may be involved in gene rearrangement, and hence the NCRs may act as a fragment insertion and play specific roles during gene transcription [81, 82]. Additionally, some ticks also exhibit other NCRs, such as *Dermacentor nitens* and *A. triguttatum*, which display five NCRs. These NCRs may play important roles in protecting gene function during gene rearrangement, and there are currently four hypotheses to explain the formation of these particular NCRs [27, 33, 41, 74].

It is noteworthy that a common marker sequence is found in the NCRs of the tick mt-genomes, which are formed by degeneration during evolution and named the “Tick-box” [39]. This conserved sequence is located at the boundary of two gene rearrangement regions in the tick mt-genomes, which may be affected by the arrangement of mitochondrial genes in ticks [27, 36]. However, this sequence is not discarded during long-term evolution and likely functions as a transcriptional maturation or termination signal. Annotation of these sequences can help identify hidden molecular functions, which is useful for genetic analysis of higher taxa [39].

Mt-genome phylogeny

The mt-genomes play an important role in the molecular systematics and origin of ticks. In the present study, 13 PCGs and 2 rRNA genes from the MITOS analysis results of all available tick complete mt-genomes were used to construct a phylogenetic tree through the maximum likelihood method (ML) [83]. MEGA v.6.0 for Windows (https://www.megasoftware.net/) was first used for alignment and splicing, and then the IQ-Tree online server (http://iqtree.cibiv.univie.ac.at/) was used for establishment of the phylogenetic tree with 1000 bootstrap replications [84, 85]. The phylogenetic tree was constructed using the nucleotide sequences (12,150 bp) of 63 tick species. *Limulus polyphemus* (NC003057) was used as the outgroup and the percentage of the bootstrap support is given at each node.

In soft ticks, some species in *Argas* and *Ornithodoros* have previously been phylogenetically analyzed using 10 mitochondrial genes [27]. Recently, several new mt-genomes have become available for the genus *Argas* including *Ar. boueti*, *Ar. brumpti*, *Ar. persicus*, *Ar. striatus* and *Ar. walkerae*, and for the genus *Ornithodoros* including *O. compactus*, *O. coricateus*, *O. costalis*, *O. hermsi*,

Table 3 (continued)

Species	Conservative noncoding region	Nonconservative noncoding region						
	Length	Position	Length	Position	Length	Position	Length	Position
Dermacentor everestianus	569	rnl–tmV	292	rnS–tmC	306	trnL1–tmC	322	tmE-nad1
Dermacentor nitens	556	rnl–tmV	235	rnS–tmC	307	trnL1–tmC	168	tmE-nad1
Dermacentor nuttalli	556	rnl–tmV	235	rnS–tmC	307	trnL1–tmC	168	tmE-nad1
Dermacentor silverum	556	rnl–tmV	232	rnS–tmC	307	trnL1–tmC	167	tmE-nad1
Bothriocroton concolor	162	rnl–tmV	247	rnS–tmC	311	trnL1–tmC	116	trnQ–tmF
Bothriocroton undatum	157	rnl–tmV	230	rnS–tmC	310	trnL1–tmC	113	nad4–nad4L
Haemaphysalis bancrofti	163	rnl–tmV	262	rnS–tmC	307	trnL1–tmC	168	tmE-nad1
Haemaphysalis concinna	161	rnl–tmV	230	rnS–tmC	311	trnL1–tmC	116	trnQ–tmF
Haemaphysalis flavus	158	rnl–tmV	228	rnS–tmC	311	trnL1–tmC	113	nad4–nad4L
Haemaphysalis formosensis	160	rnl–tmV	265	rnS–tmC	311	trnL1–tmC	116	trnQ–tmF
Haemaphysalis hystricis	162	rnl–tmV	228	rnS–tmC	309	trnL1–tmC	116	trnQ–tmF
Haemaphysalis japonica	156	rnl–tmV	229	rnS–tmC	310	trnL1–tmC	116	trnQ–tmF
Haemaphysalis longicornis	159	rnl–tmV	240	rnS–tmC	309	trnL1–tmC	116	trnQ–tmF
Haemaphysalis parva	158	rnl–tmV	252	rnS–tmC	318	trnL1–tmC	211	trnE-nad1
Hyalomma asiaticum	160	rnl–tmV	287	rnS–tmC	307	trnL1–tmC	116	trnQ–tmF
O. parkeri, O. sonrai, O. tholozani, O. turicata and O. zumpti. These were incorporated into the present phylogenetic analysis using 13 PCGs and 2 rRNA genes. Results yielded ambiguous species delimitation and phylogenetic relationships of these two genera (Fig. 2), which are complicated with the existing of monophyly, paraphyly, or polyphyly phenomena. Possibly, the concatenation of present genes with other informative genes help a better phylogenetic resolution. The tick Ar. boueti was clustered within the subfamily Ornithodorinae with a minimum bootstrap of 51%. This clustering may influence the location of other genera, including Antricola, Nothoaspis and Carios. Additionally, the tick Carios faini was clustered first with Antricola mexicanus and Nothoaspis amazoniensis, as well as with C. capensis. Subsequently, the incongruence was apparent between phylogenetic configurations and morphological characteristics, which requires further evidential confirmation.

In hard ticks, Rhipicentor nuttalli was clustered with species within the genus Rhipicephalus, which provided corroborative evidence for their close relationship. Although most clades among the hard ticks in different genera showed moderate support and the clustering of the tick lineages were similar to previous studies [25], some particular species including Amblyomma elaphense, Am. spenodontii and Hylomma asiaticum require total evidence support. The only tick in the family Nuttalliellidae, Nuttalliella namaqua, is the sister group of the family Ixodidae, which is similar to the previous mt-genome phylogenetic analysis [27].

ML analysis of mitochondrial genes is widely used in the molecular systematics of ticks [19, 29, 34]. Although there were some changes in our results, the phylogenetic branching results were similar to those obtained based on ten PCGs [27]. This finding suggests that the combination of more mitochondrial genes may provide more robust evidence for tick taxonomy. Different mitochondrial genes or sites usually have different evolutionary rates, which may affect the topological structure and lower the support rate of the phylogenetic tree, thereby affecting the reliability of phylogenetic results [86, 87]. When the data matrix is partitioned according to both genes and coding sites, the phylogenetic calculation will be difficult to converge, which prevents phylogenetic analysis using a large number of mitochondrial genes simultaneously [88]. Thus, most studies usually adopt different PCGs or gene loci with proper partition, and the calculation can be optimized by modifying gene loci and selecting appropriate phylogenetic tree methods [89, 90].

Previous research based on morphological and nuclear rRNA data supported the cladistic results of Klompen et al. [19, 91]. The results obtained by combining multiple mitochondrial PCGs are partly different from those obtained using nuclear rRNA alone. Although some genera clades may change with the increasing number of mt-genomes, most genera remain clustered in the same clades [31–34] (Fig. 2). Molecular evidence based on the mt-genomes largely does not disagree with the recognized phylogenetic status of many tick species [12]. The description of new species and the characterization of new genetic markers will serve to systematically classify ticks [92].

Perspectives and future directions

Ticks and mites of the subphylum Chelicerata account for 53% of parasitic arthropods, which cause substantial losses in agriculture and human health [93]. In recent years, the mt-genomes have shown significant advantages and have been widely used in taxonomic and phylogenetic research [19, 36, 94]. However, challenges still exist in systematic investigations on the tick mt-genomes. The number of available mt-genomes remains limited, as only 63 complete tick mt-genomes are presently available in the NCBI database; the complete mt-genomes of approximately 93% of tick species remain unexplored. The absence of complete tick mt-genomes, especially for some soft ticks with geographical and taxonomic bias, will undoubtedly hinder the reliability of the cladistics (phylogenetic) of the species within subclass Acari, order Ixodida. The different evolution rates of mitochondrial genes may lead to variation in gene length of many species, and different sequences. It should be mentioned that the annotation methods would be also able to affect the sequence assembly [94, 95]. Furthermore, the mitochondrion is essential for energy metabolism and temperature regulation in metazoans [96]. Previous studies have shown that the mitochondrial genes have significantly different transcriptional activities during the freezing or anoxia adaptation and organism development [97–100]. The differential expression of specific functional genes may attribute to adaptive evolution [101]. Finally, no genes are encoded by the NCRs; therefore, NCRs receive less selection pressure during the process of evolution and are prone to base mutations [102]. NCRs can regulate gene expression and have many multiple tandem repeats and complex structures; hence, NCRs are more difficult to sequence [18, 102]. The tick mt-genomes are characterized by two typical conserved NCRs, but there are significant differences in the length, number, and location among the different species.

Due to the above challenges, several important directions for future research on the tick mt-genomes were prospected. First, more complete mt-genome sequences, combing with morphological characteristics and nuclear sequences, are required to integrately illuminate the phylogenetic relationships within Ixodida. Secondly, through
Fig. 2 The phylogenetic tree shows the evolutionary relationships among tick species based on the complete mt-genome (13 PCGs and 2 rRNA). The tree was constructed using ML analysis of the 13 PCGs and 2 rRNA nucleotide sequences (12,150 bp) of 63 tick species. *Limulus polyphemus* (NC003057) is the outgroup. In the phylogenetic tree, the scale-bar represents the number of expected changes per site. Percentage of the bootstrap support is given at each node. The gray, red and green areas indicate species of Nuttalliellidae, Argasidae and Ixodidae, respectively. GenBank accession numbers are listed in Table 1.
extensive practices, mt-genome annotation methods are constantly improving [94]. However, annotation of a genome is still challenging, as different annotation methods may result in annotation bias or errors [102]. Hence, it is important to use unified annotation methods to help reduce or eliminate incorrect sequencing errors, and more attention should be given to NCRs. Thirdly, the functions and physiological relevance of the tick mitochondrial genes, including mitochondrial transcription, proteomics analysis of mitochondrial proteins, and epigenetic regulation in mitochondria under environmental or physiological stress, warrant further investigation. Finally, it is of considerable practical and theoretical interest to determine whether insecticides and acaricides can act on tick mitochondrial PCGs, which have been previously proved in mites [103, 104]. This knowledge may provide new molecular biology information to further understand the genetic diversity of ticks, and shed light on novel strategies to control TBDs damage.

Conclusions

This study summarizes the basic features, including genomic structure, base difference and gene arrangement, of the tick mt-genomes available in the NCBI database. Research on tick mt-genomes has lagged behind that conducted in insects. Fortunately, an increasing number of mt-genomes have been published in recent years, and these have become important molecular markers for the phylogeny of ticks. Our study constructed a phylogenetic tree by maximum likelihood using 13 PCGs and 2 rRNA genes, and the results further supported the phylogenetic status of many tick species. Undoubtedly, the application of polygenic joint analysis and appropriate software will be widely applied in solving the phylogenetic and genetic evolution of diverse taxa of ticks, which will be of profound significance for the rapid identification of tick species.

Abbreviations

TBDs: tick-borne diseases; SFTSV: severe fever with thrombocytopenia syndrome virus; TBEV: tick-borne encephalitis virus; ALSV: Alongshan virus; PCGs: protein-coding genes; tRNA: transfer RNA; rRNA: ribosomal RNA; NGS: next-generation sequencing; NCRs: non-coding regions; J strand: majority strand; N strand: minority strand; ML: maximum likelihood.

Acknowledgements

We are very grateful to Dr Abolfazl Masoudi and Yankei Zhang from our laboratory for reviewing the manuscript and providing valuable comments.

Authors’ contributions

ZY and JL conceived the study. TW drafted the manuscript. JL revised the manuscript. SZ and TP participated in data collection and helped to revise the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (31672365), the Youth Top Talent Support Program of Hebei Province to ZY, the Natural Science Foundation of Hebei Province (C2019205064), the Natural Science Research Programmes of the Educational Department of Hebei Province (BJ2016032), the Financial Assistance for the Introduction of Overseas Researchers (C20190350) and the Science Foundation of Hebei Normal University (L2018X104).

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 13 May 2019 Accepted: 5 September 2019

Published online: 13 September 2019

References

1. Kaufman WR. Ticks: physiological aspects with implications for pathogen transmission.Ticks Tick Borne Dis. 2010;1:11–22.

2. Islam MS, You MJ. Expression patterns of host inflammatory cytokine genes during infestation with Haemaphysalis longicornis, a zoonotic vector, in blood-sucking periods. Korean J Parasitol. 2018;56:53–9.

3. Jongejans F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129:53–14.

4. Ros-García A, M’Ghirbi Y, Hurtado A, Bouaoutour A. Prevalence and genetic diversity of piroplasm species in horses and ticks from Tunisia. Infect Genet Evol. 2013;17:33–7.

5. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, et al. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013;26:757–702.

6. Takahashi T, Maeda K, Suzuki T, Ishido A. The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis. 2014;209:816–27.

7. Qin XR, Han FJ, Luo LM, Zhao FM, Han HJ, Zhang ZT, et al. Anaplasmia species detected in Haemaphysalis longicornis tick from china. Ticks Tick Borne Dis. 2018;9:940–3.

8. Zhang RL, Huang ZD, Yu GF, Zhang Z. Characterization of microbiota diversity of field-collected Haemaphysalis longicornis (Acari: Ixodidae) with regard to sex and blood meals. J Basic Microbiol. 2019. Microbiol. 2019;59:215–23.

9. Bburnard D, Weaver H, Gillett A, Loader J, Flanagan C, Polkinghome A. Novel Chlamydiales genotypes identified in ticks from austalian wildlife. Parasit Vectors. 2017;10:46.

10. Wang ZD, Wang B, Wei F, Han SZ, Zhang Y, Yang ZT, et al. A new segmented virus associated with human febrile illness in China. N Engl J Med. 2019;380:2116–25.

11. Scott JD, Foley JE. Detection of Borellia americana in the avian coastal tick, Ixodes perulatus (Acari: Ixodidae), collected from a bird captured in Canada. J Anim Sci. 2016;65:207–16.

12. Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Barker SC. The Argasidae, Ixodidae and Nuttalliiellidae (Acari: Ixodidae) of the world: a list of valid species names. Zootaxa. 2010;2528:1–28.

13. Chen Z, Yang X, Bu F, Yang XY, Yang XL, Liu JZ. Ticks (Acari: Ixodidae: Argasidae, Ixodidae) of China. Exp Appl Acarol. 2010;51:300–5.

14. Fernandes KK, Bitencourt VP, Roberts DW. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Exp Parasitol. 2012;130:300–5.

15. McKeever DJ. Bovine immunity-a driver for diversity in Theileria parasites? Trends Parasitol. 2009;25:269–76.

16. Nava S, Beati L, Labruna MB, Cáceres AG, Mangold AJ, Guglielmone AA. Reassessment of the taxonomic status of Amblyomma cajennense, with the description of three new species, Amblyomma tonelliae n. sp. and Amblyomma patinoi n. sp. and reinstatement of Amblyomma mixtum, and Amblyomma sculptum. Ticks Tick Borne Dis. 2014;5:252–76.
17. Nuttall GH. Notes on ticks II. Parasitology. 1912;5:50–60.
18. Mans BJ, Neitz AWH. Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochem Mol Biol. 2004;34:1–17.
19. Mans BJ, Featherston J, Kvas M, Pillay KA, Klerk DG, Pienaar R, et al. Argasid and ixodid systematics: implications for soft tick evolution and systematics, with a new argasid species list. Ticks Tick Borne Dis. 2019;10:219–40.
20. Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 2014;59:595–5.
21. Simon S, Hadrys H A. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol. 2013;69:393–403.
22. Li K, Liang AP. Hemiptera mitochondrial control region: new insights into the structural organization, phylogenetic utility, and roles of tandem repetitions of the non-coding segment. Int J Mol Sci. 2018;19:1292.
23. Simonsen TJ, Zakharov EV, Djernaes M, Cotton AM, Vane-Wright RI, Sperling FAH. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Tenopelus and Meandrusa. Cladistics. 2011;27:113–37.
24. Ramakodi MP, Klerk D, Pienaar R, Castro MH, Latif AA. The mitochondrial genome of the tick Amblyomma americanum (L.) (Acari: Ixodidae) represents a species complex. Int J Biol Sci. 2013;9:361–9.
25. Burger TD, Shao R, Barker SC. Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus evertsi evertsi (Acari: Ixodidae) represents a cryptic species. Mol Phylogenet Evol. 2013;70:589–604.
26. Yuan ML, Zhang QL, Guo ZL, Wang J, Shen YY. Comparative mitogenomic analysis of the tick Amblyomma hebraeum (Acari: Ixodidae) with australasian ixodes ticks. Mol Biol Evol. 2005;22:1787–90.
27. Li H, Liu HY, Song F, Shi AM, Zhou XG, Cai WZ. Comparative mitogenome analysis of Amblyomma sculptum (Acari: Ixodidae) with another hard tick Dermacentor nitens (Acari: Ixodidae). PLoS One. 2012;7:e49461.
28. Mans BJ, Klerk D, Pienaar R, Castro MH, Latif AA. Next-generation sequencing as means to retrieve tick systematic markers, with the focus on Nuttalliella namaqua (Ixodidae: Nuttalliellidae) and Argas ariocolumbii (Ixodidae: Argasidae): estimation of divergence dates for the major tick lineages and reconstruction of ancient blood-feeding characters. PLoS One. 2012;7:e49525.
29. Hua J, Li M, Dong PZ, Cui Y, Bu WJ. Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (Insecta: Heteroptera: Pentatomidae) and their phylogenetic implications. BMC Evol Biol. 2009;9:265–74.
30. Burger TD, Shao R, Barker SC. Phylogenetic analysis of the mitochondrial genome sequences of the tick Amblyomma americanum. Int J Biol Sci. 2013;9:361–9.
31. Nuttall GH. Complete mitochondrial genome of Meandrusa vespertina (Lepidoptera) with special reference to the enigmatic genera Meandrusa and Tenopelus. Mitochondrial DNA B. 2018;3:348–9.
59. Behura SK, Lobo NF, Haas B, Debruyne B, Lovin DD, Shumway MF, et al. Complete sequences of mitochondrial genomes of Aedes aegypti and Culex quinquefasciatus and comparative analysis of mitochondrial DNA fragments inserted in the nuclear genomes. Insect Biochem Mol Biol. 2011;41:790–7.

60. Sorokina SY, Andrianov BV, Mitrofanov VG. Complete mitochondrial genome sequence of Drosophila littoralis (Diptera: Drosophilidae). Comparative analysis of mitochondrial genomes in the Drosophila viridis group. Moscow Univ Biol Sci Bull. 2010;65:224–6.

61. Clary DO, Wollenholme DR. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22:252–71.

62. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470–4.

63. Yokobori SI, Paabo S. Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNAs. J Mol Biol. 1997;265:95–9.

64. Zhang M, Nie XP, Cao TW, Wang JP, Li T, Zhang XN, et al. Parasites Vectors (2019) 12:451

65. Fang Y, Liang AP. The complete mitochondrial genome of Ugyops sp. (Hemiptera: Delphacidae). J Insect Sci. 2018;18:1–13.

66. Wang Y, Cao JJ, Li WH. Complete mitochondrial genome of Apatura metis (Lepidoptera: Nymphalidae). Mol Biol Rep. 2012;39:6529–36.

67. Breinholt JW, Kawahara AY. Phylotranscriptomics: saturated third codon fragments inserted in the nuclear genomes. Insect Biochem Mol Biol. 2012;42:2833–45.

68. Bae JS, Kim I, Sohn HD, Jin BR. The mitochondrial genome of the firefly, Pyrocotella kuta: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol Phylogenet Evol. 2004;32:978–85.

69. Jühlögl F, Putz J, Bernt M, Donath A, Middendorf M, Florentz C, et al. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res. 2012;40:13215–28.

70. Hanada T, Suzuki T, Watanabe K. Translation activity of mitochondrial tRNA with unusual secondary structure. Nucleic Acids Symp Ser. 2000;44:249–50.

71. Bae JS, Kim I, Sohn HD, Jin BR. The mitochondrial genome of the firefly, Pyrocotella kuta: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol Phylogenet Evol. 2004;32:978–85.

72. Clark DO, Wollenholme DR. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22:252–71.

73. Hofacker IL, Fontanini G, Stadler PF. ViennaRNA: computational tools for nucleic acids, RNA secondary structures, and RNA secondary structure alignments. Bioinformatics. 2001;17:S94–101.

74. Xu W, Jameson D, Tong B, Higgs PG. The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. J Mol Evol. 2006;63:375–92.

75. Beckenbach AT. Mitochondrial genome sequences of Nematomorpha (lower Diptera): evidence of rearrangement following a complete genome duplication in a winter crane fly. Genome Biol Evol. 2012;4:899–101.

76. Cameron SL, Whiting MF. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene. 2008;408:112–23.

77. Mccooke JK, Guerrero FD, Barrero RA, Black M, Hunter A, Bell C, et al. The mitochondrial genome of a Texas outbreak strain of the cattle tick, Rhipicephalus (Boophilus) microplus, derived from whole genome sequencing pacific biosciences and illumina reads. Gene. 2015;571:135–41.

78. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

79. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

80. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1888–95.

81. Cameron SL, Whiting MF. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene. 2008;408:112–23.

82. Mccooke JK, Guerrero FD, Barrero RA, Black M, Hunter A, Bell C, et al. The mitochondrial genome of a Texas outbreak strain of the cattle tick, Rhipicephalus (Boophilus) microplus, derived from whole genome sequencing pacific biosciences and illumina reads. Gene. 2015;571:135–41.

83. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

84. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

85. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1888–95.

86. Caterino MS, Reed RD, Kuo MM, et al. A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera: Papilionidae). Syst Biol. 2001;50:106–27.

87. Megens HJ. Molecular phylogeny of the oriental butterfly genus Athro-pala (Lycanidae, Theclinae) inferred from mitochondrial and nuclear nuclear genes. Syst Entomol. 2004;29:115–31.

88. Castro LR, Dowton M. Mitochondrial genomes in the Hymenoptera and their utility as phylogenetic markers. Syst Entomol. 2007;32:60–9.

89. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:e214.

90. Shi QH, Sun XJ, Wang YL, Hao JS, Yang Q. Morphological characters are compatible with mitogenomic data in resolving the phylogeny of nymphalid butterflies (Lepidoptera: Papilionoidea: Nymphalidae). PLOS ONE. 2015;10:e0124349.

91. Kloppen JS, Oliver JH. Comparative analysis of mitochondrial genomes in the soft ticks (Acari: Ixodidae: Argasidae). Syst Entomol. 1993;18:31–31.

92. Mans BJ, De Castro MH, Penaar D, De Klerk D, Gaven P, Genu S, et al. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis. 2016;7:309–33.

93. Shao R, Barker SC. Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitol. 2007;134:153–67.

94. Cameron SL. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst Entomol. 2014;39:400–11.

95. Sheffield NC, Song H, Cameron SL, Whiting MF. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. Syst Biol. 2009;58:381–94.

96. Detmer SA, Chan DC. Functions and dysfunctions of dynamics. Nat Rev Genet. 2007;8:870–90.

97. Levin DB, Danks HV, Barber SA. Variations in mitochondrial DNA and gene transcription in freezing-tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Mol Biol. 2010;12:281–9.

98. Jain S, Al-Hasan Y, Thompson L. 251: prenatal hypoxia programs increased hepatic mitochondrial gene expression in guinea pig (GP) offspring. Am J Obstet Gynecol. 2013;208:5106.

99. Zhang JY, Lu BE, Yu DN, Zhang LP, Al-Attar R, Storey KB. The complete mitochondrial genome of Drosophytes versicolor: phylogenetic relationship among hyllids and mitochondrial protein-coding gene expression in response to freezing and anoxia. Int J Biol Macromol. 2019;132:461–9.

100. Wang TH, Zhang SQ, Pei TW, Yu ZJ, Liu JZ. The complete mitochondrial genome and expression profile of mitochondrial protein-coding genes in the bisexual and parthenogenetic Haemaphysalis longicornis (Diptera: Phlebotominae) and Haemaphysalis longicornis (Diptera: Phlebotominae). Front Physiol. 2019;10:982.

101. Ballard JWO, Pichaud N. Mitochondrial DNA: more than an evolutionary bystander. Funct Ecol. 2014;28:218–31.

102. Beckenbach AT, Joy JB. Evolution of the mitochondrial genomes of gall midges (Diptera: Cecidomyiidae): rearrangement and severe truncation of tRNA genes. Genome Biol Evol. 2009;1:278–87.

103. Jewess PJ. Insecticides and acaricides which act at the rotenone-binding site of mitochondrial NADH:ubiquinone oxidoreductase;
competitive displacement studies using a 3H-labelled rotenone analogue. Biochem Soc T. 1994;22:247–51.

104. Motoba K, Suzuki T, Uchida M. Effect of a new acaricide, fenpyroximate, on energy metabolism and mitochondrial morphology in adult female Tetranychus urticae (two-spotted spider mite). Pestic Biochem Phys. 1992;43:37–44.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.