The complete chloroplast genome of *Hevea camargoana*

Ying-Feng Niu\(^a\), Yan-Shi Hu\(^b\), Cheng Zheng\(^a\), Zi-Yan Liu\(^a\) and Jin Liu\(^c\)

\(^a\)Yunnan Institute of Tropical Crops, Xishuangbanna, China; \(^b\)Rubber Research Institute, Chinese Academy of Tropical Agriculture Science, Danzhou, China; \(^c\)Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China

ABSTRACT

Hevea camargoana is a natural latex producing tropical plant and a close relative of *H. brasiliensis*, the primary commercial source of natural rubber. This study sequenced and analyzed the chloroplast genome of *H. camargoana*. The circular chloroplast genome of *H. camargoana* contains 161,291 bp with a GC content of 35.72%. This region contains two inverted repeat regions (26,819 bp), a large single-copy region (89,281 bp), and a small single-copy (18,372 bp) region in the complete chloroplast genome. A total of 134 genes were annotated, including 86 protein-coding genes, 36 transfer RNA genes, 8 ribosomal RNA genes, and 4 pseudogenes. The results showed that *H. camargoana* and *H. brasiliensis* were closely related, suggesting that *H. camargoana* may be used for the future variety improvement of rubber trees.

Hevea camargoana is a tropical plant that produces natural latex, native to the Amazon Basin and belongs to the family Euphorbiaceae. It is a close relative of *H. brasiliensis*, which is the primary commercial source for high-quality natural rubber (Rahman et al. 2013) and accounts for more than 98% of the total production worldwide (Pootakham et al. 2017). The genus *Hevea* contains 11 species (Gonçalves et al. 1990), most of which are diploid with 36 chromosomes (Lau et al. 2016). In addition to *H. brasiliensis* and *H. camargoana*, the other nine species are *H. bethamiana*, *H. guianensis*, *H. microphylla*, *H. pauciflora*, *H. pauciflora*, *H. rigidifolia*, *H. spruceana*, *H. camorum* (Priyadarshan and Gonçalves 2002). The species *H. camargoana* has two specific characteristics: it is a dwarf plant with small leaves and it can be hybridized with *H. brasiliensis*. Therefore, it is a very important germplasm resource for the breeding of wind-resistant rubber trees, especially given the problem of a narrow genetic basis for utilizing its breeding potential (Tang et al. 2016).

The chloroplast is a plant organelle that contains its own genome with genes coding transcription and translation machinery as well as components of the photosynthetic complex (Tangphatsornruang et al. 2011). Sequencing information of the chloroplast is important for genetic improvement and toward an understanding of biological mechanisms of the plants (Shearman et al. 2014). Furthermore, the chloroplast sequences have often been used to study phylogenetic relationships between plants (Tangphatsornruang et al. 2010; Liu et al. 2018).

In this study, the chloroplast genome of *H. camargoana* has been sequenced and analyzed. Young leaves of *H. camargoana* were collected from The Rubber Tree Germplasm Resource Nursery of the Chinese Academy of Tropical Agriculture Science (N 19°34′31.53″ and E 109°31′17.97″). The genomic DNA was isolated from the leaves using the Rapid Plant Genomic DNA Isolation Kit (Sangon Biotech Shanghai Co. Ltd., China). The chloroplast genome of *H. camargoana* was assembled by CLC Genomics Workbench v3.6 (http://www.clcbio.com) and annotated by DOGMA (Wyman et al. 2004). The complete sequence and annotation results were submitted to GenBank, under the accession number MN781109.

The circular chloroplast genome of *H. camargoana* consists of 161,291 bp with a GC content of 35.72%, including 51,560 bp of A (31.97%), 52,117 bp of T (32.31%), 28,912 bp of G (17.93%), and 28,702 bp of C (17.80%). The complete chloroplast genome contains two inverted repeat regions (IRs, 26,819 bp), a large single-copy region (LSC, 89,281 bp), and a small single-copy (SSC, 18,372 bp) region. A total of 134 genes were annotated, including 86 protein-coding genes, 36 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 4 pseudo genes.

Phylogenetic analyses (Figure 1) of *H. camargoana* and 17 other species (six species of the Euphorbiaceae family, five species of the Salicaceae family, five species of the Passifloraceae family, and *Betula platyphylla*, which belongs to the Betulaceae family) were used as an outgroup were conducted by MUSCLE v.3.8.31 (http://www.drive5.com/muscle/).
A phylogenetic tree was built by RAxML8.1.5 (https://sco.h-its.org/exelixis/web/software/raxml/index.html) with a bootstrap value of 1000. The results showed that *H. camargoana* and *H. brasiliensis* were closely related, suggesting that *H. camargoana* may be used to improve the future variety of rubber trees.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by The project of postdoctoral orientation in Yunnan Province [39Y731741261]; The Technology Innovation Talents Project of Yunnan Province [2018H8086].

References

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5):1792–1797.

Gonçalves PDS, Cardoso M, Ortolani AA. 1990. Origin, variability and domestication of *Hevea*. Pesq Agropec Bras. 25:135–156.

Lau N-S, Makita Y, Kawashima M, Taylor TD, Kondo S, Othman AS, Shuchien AC, Matsu M. 2016. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Sci Rep. 6(1):28594.

Liu J, Niu Y-F, Ni S-B, He X-Y, Zheng C, Liu Z-Y, Cai H-H, Shi C. 2018. The whole chloroplast genome sequence of *Macadamia tetraphylla* (Proteaceae). Mitochondr DNA B. 3(2):1276–1277.

Pootakham W, Sonthirod C, Naktang C, Ruang-Areerate P, Yoocha T, Sangsrakru D, Theerawattanasuk K, Rattanawong R, Lekawipat N, Tangphatsornruang S, et al. 2017. De novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in *Hevea* species. Sci Rep. 7(1):41457.

Priyadarshan PM, Goncalves PS. 2002. Use of *Hevea* gene pool in rubber tree (*Hevea brasiliensis* Muell Arg.) breeding. Planter. 78:123–138.

Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, Hou S, Ong SY, Ng FL, Lee LS, et al. 2013. Draft genome sequence of the rubber tree *Hevea brasiliensis*. BMC Genomics. 14:75.

Shearman JR, Sangsrakru D, Ruang-Areerate P, Sonthirod C, Uthaipaisanwong P, Yoocha T, Poopear S, Theerawattanasuk K, Tragoonrung S, Tangphatsornruang S, et al. 2014. Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript. BMC Plant Biol. 14(1):45.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22(21):2688–2690.

Tang CR, Yang M, Fang YJ, Luo Y, Gao S, Xiao X, An Z, Zhou B, Zhang B, Tan X, et al. 2016. The rubber tree genome reveals new insights into rubber production and species adaptation. Nat Plants. 2(6):16073.

Tangphatsornruang S, Sangsrakru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S. 2010. The chloroplast genome sequence of *Mungbean* (*Vigna radiata*) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res. 17(1):1–22.

Tangphatsornruang S, Uthaipaisanwong P, Sangsrakru D, Chanprasert J, Yoocha T, Jomchai N, Tragoonrung S. 2011. Characterization of the complete chloroplast genome of *Hevea brasiliensis* reveals genome rearrangement, RNA editing sites and phylogenetic relationships. Gene. 475(2):104–112.

Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organelar genomes with DOGMA. Bioinformatics. 20(17):3252–3255.