Corrélations cliniques et pathologiques de l'hyperplasie des cellules neuro-endocrines chez les patients atteints de colite ulcéreuse

Introduction. Plusieurs études ont montré que les cellules neuro-endocrines (CNE) sont accrues dans la muqueuse colorectale des patients atteints de colite ulcéreuse (CU) par rapport à la normale, principalement dans le côlon gauche. Un seuil de 3,2 NECs/crypt a été proposé par certains auteurs pour définir l'hyperplasie CNE dans ces patients. Cependant, les corrélations des changements de CNE avec les paramètres cliniques n'ont pas été décrites.

L'objectif de cette étude était d'analyser les modifications histologiques décrites par plusieurs auteurs, dans les patients atteints de colite ulcéreuse (CU) et d'identifier les corrélations clinico-pathologiques pertinentes.

Matériel et méthodes. Nous avons analysé les biopsies coliques de 42 patients avec CU en mettant en évidence les cellules neuro-endocrines avec une coloration immunohistochemique à la Chromogranine A.
INTRODUCTION

Intestinal neuroendocrine cells (NECs), also known as enteroendocrine cells (EEC), have important roles in modulating the mucosal immune response, gastrointestinal tract motility, digestion and metabolism by releasing specific products of secretion as consequence of their continuous interaction with luminal microbiota and nutrients. EEC are considered key players in the pathogenesis of inflammatory bowel disease (IBD) and possible therapeutic targets in these patients.

NEC hyperplasia has been described by various authors in patients with ulcerative colitis, Crohn’s disease, microscopic colitis and irritable bowel syndrome, probably as response to inflammation. Some authors also reported the presence of very small incidental NEC proliferations in ulcerative colitis patients. In these studies, immunohistochemical detection of Chromogranin A (CgA), a general neuroendocrine marker, has proved to be a valid marker for NEC identification, highlighting more neuroendocrine cells than synaptophysin. The results in the cited studies were usually described as densities (per crypt or per mm²) of NECs. However, no published research has evaluated the relation between NEC hyperplasia and severity of histological inflammation, nor has explored other NEC histological parameters to our knowledge.

THE OBJECTIVE OF THE STUDY was to determine if the presence of NECs hyperplasia and distribution of CgA-positive cells correlate with the severity of inflammation, reflected in the histological score in patients with ulcerative colitis. We intended to assess whether correlations exist between NEC histological parameters and clinical features, e.g. age, duration of disease, Mayo endoscopic score, treatment received by the patients.

MATERIAL AND METHODS

In this study, we retrospectively searched for patients with diagnoses of ulcerative colitis in the last three years, from 2017 to 2019, in the Pathology department of Elias University Emergency Hospital,
The histological slides were stained with hematoxylin and eosin. The level of inflammation was assessed using the Nancy index\(^1\) and Geboes score\(^2\). NECs were highlighted by immunohistochemistry, using Cell Marque Chromogranin A (LK2H10) mouse monoclonal antibody, dilution 1:100, and 3,3’-diaminobenzidine (DAB) chromogen, following the protocol for paraffin-embedded sections.

Image analysis

Image analysis was performed using QuPath software, version 0.2.0-m4\(^3\). The crypts were manually annotated. For positive cell detection, stain separation was achieved by color deconvolution and intensity thresholds were optimized. DAB-positive cell segmentation was automatically recorded hierarchically as objects per annotation. The automatic positive cell detection was checked visually. Automatic cell measurements were also based on documentary evidence and the data obtained were processed.

CgA positive-cells descriptors

The mean and maximum number of CgA-positive cells per crypt, and number of crypts showing linear hyperplasia were selected as descriptors for evaluation of neuroendocrine cells. Hyperplasia was designated if \(\geq 3.2\) CgA-positive cells per crypt were found, as defined in previous studies\(^4,5\). When 5 or more contiguous CgA-positive cells were detected, the feature was described as linear hyperplasia. A hotspot area was defined as 10 crypts with the most numerous Chromogranin A positive cells per crypt.

Histological variables describing NEC hyperplasia are presented as means.

| Table 1. Clinical and histopathological features of the patients |
|---|---|
| **Cases** | 42 |
| **Gender** | 17 Females, 25 Males |
| **Age** | Mean 38.21 years (18-70; median 47) |
| **Duration of disease** | Mean 40 months (1-172) |
| **Treatment** | Yes – 71.42%, No – 28.57% |
| **Conventional therapy** | 86.66% |
| **Biological therapy** | 23.33% |
| **Endoscopy** | Mayo score \(\geq 2\) – 90.47% of cases |
| **Mayo partial score** | E1 – 11.9%, E2 – 35.71%, E3 – 52.38% |
| **Montreal classification** | Right colon – 10.51% |
| **Colonic segment of origin** | Left colon – 29.81% |
| **Histopathology** | Rectum – 24.56% |
| **Inflammation score** | Not specified – 35.08% |
| **Nancy Index** | \(\geq\) grade 3 – 78.94% |
| **Geboes grade** | \(\geq\) grade 3.2 – 85.96% |
| **NEC\(^1\) hyperplasia** | 3.62 NECs/crypt |
| **Mean number of NECs/crypt** | 5.97 NECs/crypt |
| **Maximum number of NECs/crypt** | 18.85 NECs/crypt |
| **Mean number of crypts with LH\(^3\)** | 0.05 crypts/slide |
| **Mean number of crypts with LH in hotspot** | 2.7 crypts/10 crypts |

\(^1\) Neuroendocrine cell
\(^2\) Hotspot was defined as an area of 10 crypts with the most numerous Chromogranin A positive cells per crypt.
\(^3\) Linear hyperplasia, defined as 5 or more contiguous Chromogranin A positive cells in a crypt
and moderate or severe inflammation, as assessed by endoscopic and histological scoring systems.

Increased numbers of NECs were identified within the crypts of ulcerative colitis patients. A positive correlation between all the histological descriptors of NECs hyperplasia was detected by Pearson’s test, \(p \leq 0.001 \) (Table 2).

Statistically significant correlations between the increased NEC cells and clinical and histological variables in patients with ulcerative colitis are summarized in Table 3 and presented below.

The location, distribution and morphology of positive cells

The colonic biopsies showed increased counts of NECs within the crypts, as highlighted by Chromogranin A immunohistochemical stain. NECs were detected as scattered single cells or as multiple contiguous cells, which took the form of small nests within the base of the crypts.

The hyperplastic NECs were predominantly located in the lower half of the crypts, but were occasionally seen in the upper half, sometimes in a linear fashion, especially when their numbers were markedly increased. Single cells usually had the shapes displayed normally by NECs. However, when hyperplasia was marked, they frequently were larger and had abundant, granular cytoplasm, which strongly stained for CgA (Figures 1A to 1E).

Chromogranin positive cells were sporadically identified in the basal intercryptal lamina propria or within areas of basal lymphocytic infiltrates of the mucosa. A link to a crypt was usually readily identified on serial sections. Nonetheless, in one case we detected a neuroendocrine cell micronest in the basal lamina propria (Figure 1F).

Age

Linear hyperplasia of neuroendocrine cells negatively correlated with the age of the patients by Pearson’s test, with \(r_p = -0.328, p = 0.039 \).

Disease duration

Disease evolution over time influenced NEC counts. A moderate negative correlation between the mean number of NECs per crypt, both overall and in hotspot, and the disease duration was demonstrated by Pearson’s correlation test \(r_p = -0.388, p = 0.013 \); and

Table 2. Correlations between the histological descriptors of neuroendocrine cell hyperplasia

NEC descriptors	Clinical variable	Coefficient of correlation	p value
Mean NECs per crypt	Disease duration	\(r = -0.388 \)	0.013
Overall	\(r = -0.416 \)	0.008	
Hotspot			
Maximum NECs per crypt	Corticosteroid therapy	\(r_p = 0.332 \)	0.012
Linear hyperplasia	Histological score of inflammation		
Nancy Index	\(\rho = -0.326 \)	0.013	
Geboes grade	\(\rho = -0.368 \)	0.005	
Age	\(r_p = -0.328 \)	0.039	

Statistical tests used: Pearson’s test for disease duration and age; point biserial test for corticosteroid therapy; Spearman’s test for histological scores of inflammation.
The decreasing trend of mean NECs per crypt over time is presented in Figure 2A. The mean numbers of crypts showing neuroendocrine linear hyperplasia follow the same pattern, but without statistically significant correlation (Figure 2B).

Therapy

Patients under corticosteroid therapy had significantly higher counts of maximum NEC per crypt than patients not receiving the medication (Figure 3), as shown by the point biserial statistical test ($r_p = 0.332$, $p = 0.012$). This result suggests that a high count of maximum NEC per crypt might predict the need for corticoid therapy in the future. This finding requires further investigation.

Patients under biological therapy did not show statistically significant changes in NEC descriptors of hyperplasia when compared to those not receiving immunotherapy. Still, neuroendocrine linear
hyperplasia in the hotspot had a negative correlation coefficient $r_p=-0.244$, with a p value of 0.067.

Endoscopy

The biopsies we analysed were taken by colonoscopists mainly from the left colon and rectum. However, for a significant proportion of the biopsies, the segment of origin was not specified, instead they were labelled by the colonoscopists as being sampled from the area most severely affected by disease, which is usually the sigmoid and/or the rectal segment. (Figure 4). Therefore, the association between NEC hyperplasia and the intestinal segment of origin could not be tested for statistical significance.

The endoscopic Mayo score did not correlate with the numbers of neuroendocrine cells in our sample.

Histological inflammation

There was a moderate negative correlation between the histological score of inflammation, for both Nancy index and Geboes score (Figures 5A and 5B), and the mean NEC linear hyperplasia, by Spearman’s test ($\rho=-0.326$, $p=0.013$ for NI; $\rho=-0.368$, $p=0.005$ for GS). This finding could be explained by the fact that the biopsy fragments presented mostly acute injuries, in many cases in the form of granulation tissue.

NECs mean and maximum numbers seem to follow this trend but did not reach statistical significance in our sample.

Because of sampling mainly from the endoscopically injured area, no colonic biopsy showed a Nancy score of 0 or 1, and a Geboes grade < 3.0 respectively. Therefore, this study does not describe NEC
histology in biopsies with inactive inflammation, which might have different traits.

On the other hand, NEC counts were generally lower in the areas with altered versus normal architecture, but not statistically significant in this sample. An interesting finding is that the level of crypt alteration seems to influence the numbers of NECs per crypt – lower counts were observed when severe distortion was present, compared to mild distortion (Figures 6A and 6B).

DISCUSSION

In this study, we found increased NECs in ulcerative colitis patients, confirming the data in the literature. In previous studies, a threshold has been set for the definition of neuroendocrine hyperplasia at a mean of 3.2 NECs/crypt. According to this definition, the UC patients included in our study showed NE hyperplasia, having an overall mean of 3.62 NECs/crypt. In hotspot areas, the mean number of NEC was significantly higher. Another study, that also proposed a scoring system for assessment of inflammation in UC which included NEC hyperplasia evaluated on conventional stain, defined it as ">5 enlarged crypt epithelial cells with obvious subnuclear red granules". However, the studies showing increased NECs in ulcerative colitis show that Chromogranin A stain highlights a significantly higher number of NECs than numbers identified on hematoxylin and eosin stain. A consensus on the threshold for defining NEC hyperplasia still has to be reached.
Nonetheless, along with using the mean number per crypt to describe the NEC changes, we also evaluated other descriptors for assessing the CgA stain and searched for meaningful correlations. Thereby, we found that patients under corticosteroid treatment had significantly higher counts of maximum NECs per crypt ($p=0.012$), which frequently includes linear hyperplasia. This represents a relevant finding because the presence of this histological feature might predict the need for more sustained therapy. Though not statistically significant in this sample, patients receiving biological therapy had less crypts with linear NEC hyperplasia in the hotspot than those not on this treatment ($r_p=-0.244$, $p=0.067$). The lack of statistical significance could be due to the small number of patients on this type of therapy included in our study. This finding could be explained either by the fact that the patients had more severe disease activity and the biopsies included showed mostly ulceration and granulation tissue, or by the therapeutic effect of the biological agents. Further study on the histological changes in patients receiving biological therapy on a larger sample and over a longer period of time is necessary.

Another interesting finding was that the NEC counts were generally higher in biopsies with normal architecture and lower when distortion of the crypts was present, especially when the alterations were severe. This could mean that NEC hyperplasia appears after disease recurrences, paralleling the normalization of crypt architecture.

Mean NECs decreased with increasing duration of the disease. This could happen either because medication controls the disease or by other mechanisms. Another statistically significant finding was that linear hyperplasia decreased with age. This could also be related to therapy, but could also represent a normal change, since neuroendocrine cells in other organs tend to decrease with age.

A peculiar aspect detected on several biopsies was the presence of scattered CgA positive cells within the mucosal lamina propria, usually in the lower half, and sometimes without an apparent contact to the adjacent crypts on multiple sections. In one case, a NEC micro-nest was found. It is possible that the scattered stromal NECs are precursors for the micro-nests. This association needs further research.

A limitation of this study is the fact that we could not investigate the NEC histological aspects in patients without symptoms as the follow-up of the patients by colonoscopy and subsequent histological analysis of the biopsies is vastly replaced by the use of surrogate markers, such as calprotectin. Hence, we could only assess patients with histological scores or inflammation ranging from mildly to severely active inflammation activity, though patients with a Mayo score of 0 were included in the study.

Conclusion

NEC hyperplastic changes play an important role in the pathogenesis of ulcerative colitis. Further research focusing on NEC changes might have a major impact on the management of ulcerative colitis patients.

Author Contributions:

Conceptualization, A.C., and G.B.; methodology, A.C.; software, A.C.; formal analysis, A.C., M.C., C.N., and F.A.; resources, A.C. and F.A.; data curation, M.C., C.N., F.A., and C.T.; writing—original draft preparation, A.C.; writing— A.C., M.C., C.N.; supervision, G.B. and M.S. All the authors have read and agreed with the final version of the article.

Compliance with Ethics Requirements:

“The authors declare no conflict of interest regarding this article”

“The authors declare that all the procedures and experiments of this study respect the ethical standards in the Helsinki Declaration of 1975, as revised in 2008(5), as well as the national law. Informed consent was obtained from all the patients included in the study”

“This research received no specific grant from any funding agency in the public, commercial, or non-commercial sectors”

Acknowledgments:

None

References

1. Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol. 2018;11(1):3–20.
2. Yu Y, Yang W, Li Y, Cong Y. Enteroendocrine cells: sensing gut microbiota and regulating inflammatory bowel diseases. Inflamm Bowel Dis. 2020;26(1):11–20.
3. Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil. 2015/12/21. 2016;28(5):620–30.
4. Bohórquez D V, Shahid RA, Erdmann A, et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest. 2015;125(2):782–6.
5. El-Salhy M, Solomon T, Hausken T, Gilja OH, Harlebakk JG. Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel Disease. World J Gastroenterol. 2017;23(28):5068–85.
6. El-Salhy M, Hausken T. The role of the neuropeptide Y (NPY) family in the pathophysiology of inflammatory bowel disease (IBD). Neuropeptides. 2016;55:137–44.
7. Mazzawi T, Gundersen D, Haakensen T, El-Salhy M. Increased chromogranin A cell density in the large intestine of patients with irritable bowel syndrome after receiving dietary guidance. Gastroenterol Res Pract. 2015;2015:34–6.

8. Massironi S, Zilli A, Cavallotti F, Conte D, Peracchi M. Chromogranin A and other enteroendocrine markers in inflammatory bowel disease. Neuroptides. 2016;58:127–34.

9. Arevalo F, Zurita F, Vergara G, Ramirez R, Castillo J, Monge E. Neuroendocrine cell hyperplasia in ulcerative colitis and lymphocytic colitis. Archives of Digestive Disorders. 2017;2(2):2–4.

10. Meianu C, Becheanu G, Preda C-M, et al. Neuroendocrine cell densities alterations in colonic mucosa of patients with inflammatory bowel disease. J Crohn's Colitis. 2019;13(Supplement 1):S110–S110.

11. Wong M, Larson BK, Dhall D. Neuroendocrine proliferations in inflammatory bowel disease: differentiating neuroendocrine tumours from neuroendocrine cell micronests. Histopathology. 2019;74(3):415–23.

12. El-Salhy M, Danielsson Å, Stenling R, Grimelius L. Colonic endocrine cells in inflammatory bowel disease. J Intern Med. 1997;242(5):413–9.

13. Giuffrida P, Vanoli A, Biletta E, et al. Increase in chromogranin A- and serotonin-positive cells in pouch mucosa of patients with ulcerative colitis undergoing proctocolectomy. Dig Liver Dis. 2018;50(11):1205–13.

14. Chojnacki C, Wiśnieska-Jarosińska M, Kulig G, Majsterek I, Reiter RJ, Chojnacki J. Evaluation of enterochromaffin cells and melanin secretion exponents in ulcerative colitis. World J Gastroenterol. 2013;19(23):3602–7.

15. El-Salhy M, Lomholt-Beck B, Gundersen TD. High chromogranin A cell density in the colon of patients with lymphocytic colitis. Mol Med Rep. 2011;4(4):603–5.

16. Kanada S, Sugita A, Mikami T, Ohashi K, Hayashi H. Microcarcinoid arising in patients with long-standing ulcerative colitis: histological analysis. Human Pathology. 2017;64:28–36.

17. Marchal-Bressenot A, Salleron J, Boulagnon-Rombi C, et al. Development and validation of the Nancy histological index for UC. Gut. 2017;66(1):43–9.

18. Geboes K, Riddell R, Ost A, Jensfelt B, Persson T, Lofberg R. A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut. 2000;47(3):404–9.

19. Bankhead P, Loughrey MB, Fernandez JA, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878.

20. Nascimbeni R, Villanacci V, Di Fabio F, Gavazzi E, Fellegara G, Rindi G. Solitary microcarcinoid of the rectal stump in ulcerative colitis. Neuroendocrinology. 2005;81(6):400–4.

21. Naini BV, Cortina G. A histopathologic scoring system as a tool for standardized reporting of chronic (ileo)colitis and independent risk assessment for inflammatory bowel disease. Hum Pathol. 2012;43(12):2187–96.

22. DeLellis RA, Dayal Y. Markers of neuroendocrine cells. In: Mills SE, editor. Histology for Pathologists. 4th ed. Wolters Kluwer Lippincott Williams & Wilkins; 2017, p. 1262.

23. Magro F, Lopes S, Coelho R, et al. Accuracy of faecal calprotectin and neutrophil gelatinase B-associated lipocalin in evaluating subclinical inflammation in ulcerative colitis-the ACERTIVE study. J Crohn's Colitis. 2017;11(4):435–44.

24. Ginghina O, Negrei C, Hudita A, et al. In vitro impact of some natural compounds on HT-29 colorectal adenocarcinoma cells. Farmacia. 2017;65(6):947–953.