A new aberrantly spliced BCR-ABL1 transcript variant (e13a1) identified in routine monitoring using different quantitative reverse transcription polymerase chain reaction techniques in a patient with chronic myeloid leukemia

Nicole Naumann1 | Ulrike Bross-Bach2 | Wolfgang Seifarth1 | Alice Fabarius1 | Wolf-Karsten Hofmann1 | Susanne Saußele1 | Birgit Spiess1

1Scientific Laboratory, Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
2Department of Internal Medicine, Clinic of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany

Correspondence
Nicole Naumann, Scientific Laboratory, Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Pettenkofer Str. 22, 68169 Mannheim, Germany.
Email: nicole.naumann@medma.uni-heidelberg.de

Abstract
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) of BCR-ABL1 transcript level is an essential part of routine disease monitoring in patients with chronic myeloid leukemia. One patient sample (e13a2 transcript detected by nested PCR) attracted attention by revealing an aberrantly spliced BCR-ABL1 transcript variant e13a1. The last 38 base pairs (bp) of BCR exon 13 were replaced by a 37 bp insertion of the ABL1 intron 1–2/exon 1 sequence. The rare aberrant BCR-ABL1 fusion transcript can cause discrepancies in molecular diagnostics. This scenario highlights the importance of an individual characterization of the BCR-ABL1 fusion sequence in case of unclear qRT-PCR results.

KEYWORDS
BCR-ABL1, CML, qRT-PCR, rare transcript, splice variant

1 | INTRODUCTION

The reciprocal translocation between chromosomes 9 and 22 (t(9;22)(q34;q11)) resulting in the Philadelphia chromosome (Ph) and the BCR-ABL1 fusion gene is causal to the development of chronic myeloid leukemia (CML). The occurrence of different BCR-ABL1 mRNA fusion variants (most commonly e13-a2, e14-a2, and e1-a2) results in the expression of an abnormal BCR-ABL1 fusion tyrosine kinase in the majority of the patients. In most cases, the breakpoints occur within the major breakpoint cluster region (M-bcr) within the BCR gene. The breakpoints are less often located in two other breakpoint cluster regions, termed minor (m-bcr) and micro (µ-bcr). Rare atypical BCR breakpoints outside these cluster regions, novel BCR-ABL1 transcripts with insertion and/or deletion of different BCR and ABL sequence sections, and atypical splicing events were detected [1–12]. Here, we report on the occurrence of a novel BCR-ABL1 transcript generating most likely a functional BCR-ABL1 tyrosine kinase in a Ph-positive CML patient where standard diagnostic quantitative reverse transcription polymerase chain reaction (qRT-PCR) procedure showed no amplification of the typical BCR-ABL1 transcripts.

2 | MATERIALS AND METHODS

A 69-year-old female patient was diagnosed with CML in 2005. At diagnosis, the translocation t(9;22)(q34;q11) and the transcript type e13a2 were determined extramurally. The patient samples were obtained with written informed consent in accordance with the declaration of
for LightCycler PCR systems is shown in red bold letters. The sense primer binding site for multiplex PCR is shown in blue bold letters and the sense primer for the TaqMan PCR system is underlined. Since the primer binding sites for multiplex and TaqMan PCRs are deleted, no PCR amplification products could be generated. However, the primer binding sites for nested and LightCycler PCR systems remained unaffected and, therefore, PCR products were amplified.

Helsinki, and the analysis was approved by the institutional review board of the Medical Faculty of Mannheim, Heidelberg University (Heidelberg, Germany). The first monitoring sample was investigated in our laboratory 6 months after the start of imatinib therapy. At this time, a qualitative multiplex PCR assay [13] for detection of the regular \(BCR-ABL1 \) transcript types (e13a2 and e14a2) was also performed in our laboratory in Mannheim. The molecular monitoring of the \(BCR-ABL1 \) fusion transcript was performed using two standard qRT-PCR methods (LightCycler [LC] and TaqMan [TM]) for molecular monitoring of usual fusion transcripts [14, 15]. Both methods differ in PCR amplicon length (LC: 596 bp; TM: 228 bp) and primer/probe combinations. In addition, the samples were retrospectively investigated with our nested PCR assay for regular transcripts and our one-step PCR assay for irregular transcripts. PCR amplicons were characterized by Sanger DNA sequencing.

3 RESULTS AND DISCUSSION

For evaluation of the externally transmitted (e13a2) transcript type, we performed our qualitative in-house multiplex PCR assay as previously described [13].

Since the patient received imatinib therapy over 6 months, the negative multiplex PCR result for any transcript variant could be explainable by a low \(BCR-ABL1 \) quotient or a binding failure of primer(s) or probe. Therefore, we performed a nested-PCR assay [16] and we succeeded in the detection of amplicons with typical e13a2 transcript length. To exclude target limiting effects in the nested PCR, we used a one-step PCR assay for atypical transcripts (in-house unpublished) with different primer combinations compared to multiplex PCR. These experiments confirmed the positivity of e13a2 transcript length.

Sanger DNA sequencing of one-step PCR products revealed an atypical \(BCR-ABL1 \) transcript variant (e13a1) as shown in Figure 1. The primer binding site for the \(BCR \) sense primer of the TM qRT-PCR method [15] and the qualitative multiplex PCR assay [13] was deleted (38 bp deletion) and replaced by a 37 bp insertion of \(ABL1 \) intron 1–2/exon 1 sequence. This sequence exchange resulted in missing PCR amplicons. Using the primer/probe combination of the LC qRT-PCR method [14], PCR amplicons were detectable (Figure 2). The binding site of the \(BCR \) sense primer was located 73 base pairs further upstream and was, therefore, not affected by the deletion/insertion.

In addition, the fusion of the 37 bp intron sequence (instead of the missing 38 bp \(BCR \) exon 13 fragment), resulted in the in-frame fusion \(\text{NM}_004327.4:\text{c.2670}_2707\text{delinsAACAGCTCTGCCTGGGAGCGGAGAGGACTGGGATAGAAA} \) of \(BCR \) and \(ABL1 \) (Figure 3). Because no frameshift occurred, it is assumed that the resulting fusion gene leads to functional \(BCR-ABL1 \) protein synthesis and is capable of propagating CML. To what extent the genetic rearrangement has an influence on the patient’s response to imatinib therapy is unclear since the patient ranged from MR4.5 to MMR during monitoring. Furthermore, a point mutation in the \(ABL1 \) exon 1 sequence leads to the exchange of glutamic acid against lysine (E27K). The potential impact of this amino acid exchange on protein folding and activity requires further investigations. For future monitoring, the qRT-PCR method for this patient has to be performed by LC instead of the TM PCR system.
FIGURE 3 Fusion sequence of e13a1 on cDNA basis with the respective amino acid code. The deletion/insertion event resulted in an in-frame fusion of the BCR and ABL1 genes. In red bold letters, the G>A mutation in the ABL1 exon 1 sequence insertion is shown resulting in an amino acid change from glutamine to lysine (E27K).

4 | CONCLUSION

Our scenario highlights the importance of an individual characterization of the BCR-ABL1 fusion sequence in case of unclear qRT-PCR results. It is of high advantage if various validated detection methods are available in parallel in diagnostic laboratories so that the occurrence of BCR-ABL1 transcript variants and changed primer binding sites do not have a negative influence on therapy decisions.

AUTHOR CONTRIBUTIONS
Naumann N contributed to manuscript drafting, data curation, and evaluation and reviewed the literature. Spiess B contributed to manuscript drafting, reviewed the literature, and was involved in supervision. Bross-Bach U provided patient material and reviewed the manuscript. Seifarth W, Fabarius A, Hofmann W-K, and Saußele S contributed to manuscript drafting, reviewing, and supervision. All authors issued final approval for the version to be submitted.

ACKNOWLEDGMENTS
None.

FUNDING
For the publication fee, we acknowledge financial support by Deutsche Forschungsgemeinschaft within the funding program "Open Access Publikationskosten" directed by Heidelberg University.

CONFLICT OF INTEREST
SS received honoraria from Novartis Pharma GmbH, Bristol-Myers Squibb (BMS), Pfizer, ARIAD, and research funding from Novartis Pharma GmbH and BMS. All other authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
All data that support the findings of this study are included in the manuscript.

ETHICS STATEMENT
The study design adhered to the tenets of the Declaration of Helsinki and was approved by the relevant institutional review board (Medical Faculty Mannheim, University of Heidelberg, 2013-509N-MA and 2020-593N). The patient gave written informed consent.

REFERENCES
1. Hochhaus A, Reiter A, Skladny H, Melo JV, Sick C, Berger U, et al. A novel BCR-ABL fusion gene (e6a2) in a patient with Philadelphia chromosome-negative chronic myelogenous leukemia. Blood. 1996;88(6):2236–40.
2. Melo JV. BCR-ABL gene variants. Bailliere Clin Haematol. 1997;10(2):203–22.
3. Amabile M, Martinelli G, Terragna C, Montefusco V, Tabilio A, Tura S. An atypical (b3/a3) junction of the bcr/abl gene lacking abl exon a2 in a patient with chronic myeloid leukemia. Haematologica. 1999;84(6):573–5.
4. Branford S, Rudzki Z, Hughes TP. A novel BCR-ABL transcript (e8a2) with the insertion of an inverted sequence of ABL intron 1b in a patient with Philadelphia-positive chronic myeloid leukaemia. Br J Haematol. 2000;109(3):635–7.
5. Sugimoto T, Ijima K, Hisatomi H, Murayama T, Mizuno I, Hato A, et al. Second case of CML with aberrant BCR-ABL fusion transcript (e8/a2) with insertion of an inverted ABL exon 1b sequence. Am J Hematol. 2000;77(2):164–6.
6. Shiratsuchi M, Muta K, Minami R, Motomura S, Suehiro Y, Abe Y, et al. aberrant BCR-ABL transcript with intronic insertion in a patient with Philadelphia chromosome-positive chronic myeloid leukemia: implications for disease progression. Leuk Lymphoma. 2001;41(3–4):411–5.
7. Sadia H, Siddiqui RT, Nasim A. A unique BCR-ABL1 transcript with the insertion of intronic sequence from BCR and ABL1 genes in a patient with Philadelphia-positive chronic myeloid leukemia: a case study. Cancer Genet Cyto genet. 2010;201(1):57–61.
8. Yuda J, Miyamoto T, Odawara J, Ohkawa Y, Semb Y, Hayashi M, et al. Persistent detection of alternatively spliced BCR-ABL variant results in a failure to achieve deep molecular response. Cancer Sci. 2017;108(11):2204–12.
9. Stella S, Massimino M, Tirrò E, Vitale SR, Accurso V, Puma A, et al. Detection and clinical implications of a novel BCR-ABL1 E12A2 insertion/deletion in a CML patient expressing the E13A2 isoform. Anticancer Res. 2019;39(12):6965–71.
10. Smith BM, Brewer D, Druker BJ, Braun TP. Navigating challenges in monitoring chronic myeloid leukemia with multiple BCR-ABL1 transcripts. Case Rep Oncol. 2021;14(3):1707–11.
11. McCarron SL, Haslam K, Kelly J, Duggan C, Langabeer SE. A novel variant BCR-ABL1 transcript not detected by standard real-time quantitative PCR in a patient with chronic myeloid leukaemia. Int J Lab Hematol. 2012;34(1):e1–2.
12. Crampe M, Haslam K, Kelly J, Conneally E, Langabeer SE. Characterization of a novel variant BCR-ABL1 fusion transcript in a patient with chronic myeloid leukemia: implications for molecular monitoring. Hematol/Oncol Stem Cell Ther. 2017;10(2):85–8.

ORCID
Nicole Naumann https://orcid.org/0000-0001-9177-9133
Birgit Spiess https://orcid.org/0000-0001-9930-7069
13. Cross NC, Melo JV, Feng L, Goldman JM. An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia. 1994;8(1):186–9.

14. Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A, et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia. 1999;13(11):1825–32.

15. Spiess B, Rinaldetti S, Naumann N, Galuschek N, Kossak-Roth U, Wuchter P, et al. Diagnostic performance of the molecular BCR-ABL1 monitoring system may impact on inclusion of CML patients in stopping trials. PLoS One. 2019;14(3):e0214305.

16. Cross NC, Feng L, Bungey J, Goldman JM. Minimal residual disease after bone marrow transplant for chronic myeloid leukaemia detected by the polymerase chain reaction. Leuk Lymphoma. 1993;11(Suppl 1):39–43.

How to cite this article: Naumann N, Bross-Bach U, Seifarth W, Fabarius A, Hofmann W-K, Saussele S, et al. A new aberrantly spliced BCR-ABL1 transcript variant (e13a1) identified in routine monitoring using different quantitative reverse transcription polymerase chain reaction techniques in a patient with chronic myeloid leukemia. eJHaem. 2022;3:1339–1342. https://doi.org/10.1002/jha2.553