Effect of Different Chemicals on Yield and Quality of Mango (*Mangifera indica* L.) cvs. Bombay Green, Dashehari and Langra

Manoj Kumar Singh¹*, Vinod Bahadur Singh², S.S. Singh¹ and Anil Kumar Singh²

¹Department of Crop Science, Faculty of Agriculture, Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya Chitrakoot-485780 Satna (M.P.), India
²Krishi Vigyan Kendra, Basuli, Maharajganj (NDUA&T, Kumarganj, Ayodhya, U.P.), India

*Corresponding author

An experiment was carried out at mango orchard, Department of Crop Sciences, Faculty of Agriculture, Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya Chitrakoot, Satna (M.P.) India, during 2016-17 and 2017-18 to study the response of different mango cultivars viz. Bombay Green, Dashehari and Langra to various chemicals namely potassium nitrate, potassium di-hydrogen orthophosphate, di-potassium hydrogen orthophosphate in respect of yield, quality and shelf-life of fruits. The results of the experiment indicated that the fruit yield among the test cultivars was highest significantly with KH₂PO₄-1%+KNO₃-1% treatment.

Introduction

Mango (*Mangifera indica* L.) is only fruit that created mango mania in its consumer’s choice due to its excellent fragrance and flavour, attractive blushes, delicious taste and high nutraceutical value. Its genus *Mangifera*, belongs to the family Anacardiaceae, has 41 valid species of *Mangifera* distributed throughout the world. Mango is a cross pollinated allopolyploid crop having chromosome number 2n=40. All the commercial cultivars of mango are integrated in single species *Mangifera indica*. The majority of the mango varieties are area specific (Rymbai, 2014).

In general, the productivity of mango is revealed to be decreasing annually. There is a need to take productivity enhancing measures in mango cultivation for quality fruit production. Several workers have also
suggested that foliar feeding of nutrients directly to the site of metabolism as a substitute for or supplement to soil application noticeably improved fruit yield and quality attributes (Samra et al., 1977; Singh et al., 1994). It has also been considered that mango leaves absorb most of the nutrients within 24-72 hours after spray and, thereafter, depletion of leaf nutrient content is seen owing to translocation of N, P, K to actively developing organs within the plant system (Singh, 2002). Potassium is macronutrient attributed to the invigorating effect of K on phloem loading, photosynthesis and translocation and large molecular weight synthesis in the developing fruits (Rabeh and Sweelam, 1990). Singh et al., (2008) opined that potassium is an important nutrient for fruit filling in terms of size and weight of fruits. They also stated that, potassium is required for production and transport of plant sugars that increases the weight of mango fruits. Potassium helps in energy transformation and activation of enzymes in carbohydrate metabolism which subsequently partitioning of photosynthates to the developing fruits.

Moreover, induction of early flowering results in early maturity of mango fruits which fetch the higher price in the market as compared to late maturing mango fruits. In view of above research work was undertaken to ascertain the effect of different chemical alone and in combination on yield and quality attribute of mango fruits cultivars viz. Bombay Green, Dashehari and Langra.

Materials and Methods

The present investigation was conducted to ascertain the effect of different chemicals on fruit quality and yield of different commercial cultivars of mango during 2016-17 and 2017-18 at mango orchard, Department of Horticulture, CSA University of Agriculture Technology, Kanpur (UP). There were nine treatments associated with different chemicals along with control and replicated three times. During the investigation, the efficacy of different chemicals containing, nitrogen, phosphorus and potassium viz. Potassium di hydrogen orthophosphoric acid (KH₂PO₄), Dipotassium hydrogen orthophosphate (K₂HPO₄), Potassium nitrate (KNO₃) and Thiourea (CH₄N₂S) alone and in combination were tried foliar application in different cultivars of mango viz. Bombay Green, Dashehari and Langra. The observations on the yield per tree were recorded after harvesting of the mature fruits. With regard to quality parameters of fruits in different cultivars of mango, total soluble solids (TSS) in the fruits were estimated with the help of a LCD Digital pocket refractometer. Acidity of fruits, under different treatment was determined as per the methods suggested by AOAC (1990). Reducing and total sugars were estimated by Lane and Eynon (1923). Non-reducing sugar was estimated by deducting the estimated value of reducing sugar in estimated value of total sugar of the particular replication and treatment.

Results and Discussion

In the present investigation, the highest yield per tree was recorded with KH₂PO₄-1% + KNO₃-1% treatment in all the tested cultivars of mango. The highest yield with KH₂PO₄-1% + KNO₃-1% treatment may be attributed due to maximum per cent of flowering shoot, fruit set, increase in fruit set per panicle, prevention of abscission of young fruit lets, and increase in the number of fruits per tree would have resulted in the increase in yield in the trees sprayed with the above treatment in the present study. Moreover, early flowering, fruiting and better retention of fruits would have facilitated the better utilization of nutritional resources within the tree resulting in maximum yields (Kumar and Reddy, 2008). Phosphoric acid and potassium nitrate may
have acted synergistically to increase the number of flowering shoots thereby increasing in fruit yield of mango cv. Alphonso (Reddy and Kurian, 2012). Similar results were also reported in mango by MC Kenzie (1994) in cv. Sensation, Rojas (1996) in cv. Haden, Srihari and Rao (1998) in cv. Alphonso, Nahar et al., (2010) in cv. Amrapali, Elkhishen (2015) in cv. Zebda, Dheeraj et al., (2016) in cv. Banganapalli, Amarcholi et al., (2016) in cv. Kesar.

Among all the test cultivars, Langra was found to be superior over other cultivars in respect of total soluble solids found in the fruits. However, the maximum increase in Total Soluble Solids (TSS) was observed with KNO$_3$-1% followed by K$_2$HPO$_4$-1% + KNO$_3$ -1% in all the test cultivars as compared to K$_2$HPO$_4$-1% treatment and control. Increase in TSS content with potassium nitrate confirmed by Khayyat et al., (2012), Sarker and Rahim (2013) Yadav et al., (2014), Baiea et al., (2015) and Patolia et al., (2017b) in mango. Increase in TSS may be due to the hydrolysis of the polysaccharides, conversion of organic acids into soluble sugars and enhanced solubilisation of insoluble starch and pectin present in cell wall and middle lamella (Gupta and Brahmchari, 2004). Gharge et al., (2014) in mango confirmed Increase in TSS with potassium nitrate in combination with di potassium hydrogen phosphate treated trees. It was observed that the titratable acidity of fruits (in terms of citric acid) was decreased when thiourea or di potassium hydrogen phosphate applied singly or alone during both years of studies. The Maximum decrease in acidity was recorded with K2HPO4 1% + Thiourea (1%). Decrease in acidity of fruits following Potassium is in accordance with reports of Kumar and Reddy (2008) and Baiea et al., (2015). The highest acidity was recorded with KH$_2$PO$_4$-1% + KNO$_3$ -1% treatment. The findings of the present study indicated that the total sugar was markedly increased by spraying of chemicals, however, KHPO4 (1%) + KNO$_3$ (1%) were most effective. The findings are in the line of earlier reports of Dutta et al., (2011), Baiea et al., (2015), Elkhishen (2015), Patolia et al., (2017b) and Singh and Kaur (2018) in mango fruits itself (Table 1–6).

Table.1 Effect of chemicals on yield per tree in mango cv. bombay green, dashehari and langra

Treatments	Bombay Green Yield per Tree (kg)	Dashehari Yield per Tree (kg)	Langra Yield per Tree (kg)			
	2016-18	2017-18	2016-18	2017-18		
KNO$_3$-1%						
KH$_2$PO$_4$-1%						
K$_2$HPO$_4$-1%						
CH$_4$N$_2$S-1%						
KH$_2$PO$_4$-1% + KNO$_3$-1%						
K$_2$HPO$_4$-1% + KNO$_3$-1%						
KNO$_3$-1% + CH$_4$N$_2$S-1%						
K$_2$HPO$_4$-1% + CH$_4$N$_2$S-1%						
Control	26.77	27.15	25.95	34.93		
C.D. (at 5%)	3.5	1.78	3.9	2.9	6.5	12.5
Table.2 Effect of chemicals on TSS in the fruits of mango cv. bombay green, dashehari and langra

Treatments	Bombay Green	TSS (°brix)	Dashehari	Langra		
	2016-17	2017-18	2016-17	2017-18	2016-17	2017-18
KNO₃ -1%	23.60	23.80	22.00	22.20	24.50	24.65
KH₂PO₄ -1%	22.80	22.85	21.75	21.85	23.85	23.80
K₂HPO₄ -1%	21.60	21.70	21.50	21.52	21.80	21.78
CH₄N₂S-1%	22.00	22.05	21.85	22.00	23.85	23.84
KH₂PO₄-1% + KNO₃ -1%	22.60	22.80	21.60	21.80	23.95	24.00
K₂HPO₄-1% + KNO₃ -1%	22.90	23.50	23.00	23.20	24.00	24.40
KNO₃ -1% + CH₄N₂S-1%	22.40	22.50	21.80	22.05	24.02	24.04
K₂HPO₄-1% + CH₄N₂S-1%	22.60	22.80	22.00	22.25	22.80	23.85
Control	21.80	21.75	21.66	21.70	23.40	23.50
C.D. (at 5%)	0.15	0.16	0.15	0.17	0.09	0.09

Table.3 Effect of chemicals on titratable acidity in the fruits of mango cv. bombay green, dashehari and langra

Treatments	Titratable Acidity (%)	Bombay Green	Dashehari	Langra		
	2016-17	2017-18	2016-17	2017-18	2016-17	2017-18
KNO₃ -1%	0.31	0.31	0.19	0.19	0.27	0.27
KH₂PO₄ -1%	0.32	0.33	0.20	0.21	0.28	0.29
K₂HPO₄ -1%	0.29	0.28	0.16	0.16	0.24	0.25
CH₄N₂S-1%	0.30	0.30	0.17	0.17	0.26	0.25
KH₂PO₄-1% + KNO₃ -1%	0.33	0.33	0.21	0.22	0.29	0.29
K₂HPO₄-1% + KNO₃ -1%	0.30	0.30	0.18	0.18	0.27	0.26
KNO₃ -1% + CH₄N₂S-1%	0.30	0.29	0.19	0.18	0.27	0.27
K₂HPO₄-1% + CH₄N₂S-1%	0.28	0.28	0.15	0.15	0.24	0.24
Control	0.31	0.31	0.18	0.19	0.26	0.27
C.D. (at 5%)	0.01	0.02	0.02	0.01	0.01	0.01
Table 4 Effect of chemicals on reducing sugar in the fruits of mango cv. bombay green, dashehari and langra

Treatments	Reducing Sugar (%)					
	Bombay Green	Dashehari	Langra			
	2016-17	2017-18	2016-17	2017-18	2016-17	2017-18
KNO₃ -1%	8.37	8.46	7.65	7.74	8.78	8.84
KH₂PO₄ -1%	8.27	8.29	7.59	7.63	8.73	8.71
K₂HPO₄ -1%	8.80	8.88	8.75	8.80	8.90	8.93
CH₄N₂S-1%	8.93	8.95	8.85	8.93	9.87	9.48
KH₂PO₄ -1% + KNO₃ -1%	10.30	10.40	9.30	9.40	10.48	10.50
K₂HPO₄ -1% + KNO₃ -1%	9.26	9.56	9.28	9.38	9.31	9.51
KNO₃ -1% + CH₄N₂S-1%	9.44	9.49	9.13	9.26	10.28	10.29
K₂HPO₄-1% + CH₄N₂S-1%	9.36	9.46	9.05	9.18	9.46	10.00
Control	8.75	8.82	7.83	7.85	9.10	9.21
C.D. (at 5%)	0.16	0.17	0.09	0.11	0.13	0.11

Table 5 Effect of chemicals on total sugar in the fruits of mango cv. bombay green, dashehari and langra

Treatments	Total Sugar (%)					
	Bombay Green	Dashehari	Langra			
	2016-17	2017-18	2016-17	2017-18	2016-17	2017-18
KNO₃ -1%	18.60	18.80	17.00	17.20	19.50	19.65
KH₂PO₄ -1%	18.80	18.85	17.25	17.35	19.85	19.80
K₂HPO₄ -1%	17.60	17.75	17.50	17.60	17.80	17.85
CH₄N₂S-1%	17.50	17.55	17.35	17.50	19.35	18.59
KH₂PO₄ -1% + KNO₃ -1%	20.60	20.80	18.60	18.80	20.95	21.00
K₂HPO₄-1% + KNO₃ -1%	18.15	18.75	18.25	18.45	18.25	18.65
KNO₃ -1% + CH₄N₂S-1%	18.15	18.25	17.55	17.80	19.77	19.79
K₂HPO₄-1% + CH₄N₂S-1%	18.35	18.55	17.75	18.00	18.55	19.60
Control	17.15	17.30	15.35	15.40	17.85	18.05
C.D. (at 5%)	0.72	0.68	0.64	0.43	0.51	0.42
Table 6 Effect of chemicals on non-reducing sugar in mango cv. bombay green, dashehari and langra

Treatments	Non-Reducing Sugar (%)	2016-17	2017-18	2016-17	2017-18	2016-17	2017-18
KNO$_3$ - 1%		10.23	10.34	9.35	9.46	10.73	10.81
KH$_2$PO$_4$ - 1%		10.53	10.56	9.66	9.72	11.12	11.09
K$_2$HPO$_4$ - 1%		8.80	8.88	8.75	8.80	8.90	8.93
CH$_4$N$_2$S - 1%		8.58	8.60	8.50	8.58	9.48	9.11
KH$_2$PO$_4$ - 1% + KNO$_3$ - 1%		10.30	10.40	9.30	9.40	10.48	10.50
K$_2$H$_2$O$_4$ - 1% + KNO$_3$ - 1%		8.89	9.19	8.94	9.04	8.94	9.14
KNO$_3$ - 1% + CH$_4$N$_2$S - 1%		8.71	8.76	8.42	8.54	9.49	9.50
K$_2$HPO$_4$ - 1% + CH$_4$N$_2$S - 1%		8.99	9.09	8.70	8.82	9.09	9.60
Control		8.40	8.48	7.52	7.55	8.75	8.84
C.D. (at 5%)		0.36	0.31	0.29	0.19	0.41	0.23

Higher sugar content might be due to the role of potassium in carbohydrate metabolism, protein synthesis and neutralization of organic acids. Datta et al., (2011) showed that the foliar ‘K’ application favours the conversion of starch into simple sugar during ripening by activating the sucrose synthase enzyme. The data showed that the fruits treated with potassium nitrate in combination with potassium di hydrogen ortho phosphate exerted highest TSS, total sugars, reducing sugars and reducing sugars. It might be possible due to the reason that potassium treatment could be attributed to enhance photosynthetic efficiency of the leaves and a possible increase in translocation of assimilates into the fruit (Singh et al., 1982).

The present findings are in accordance with Kaur et al., (2012) in peach fruits and Prasad et al., (2015) in pear fruits. Maximum increase in this line was noted with KH$_2$PO$_4$ (1.5%) + KNO$_3$ (1%). These findings are in conformity with several workers along with Kumar and Reddy (2008), Sarker and Rahim (2013), Baiea et al., (2015) in mango fruit. Increase in this ratio is directly due to increase in sugar content and decrease in acidity of fruits.

The effects of pre-harvest sprays of various chemicals on self-life of mango fruits were also observed after 7th days of harvest. The physiological loss in weight of fruits increased gradually and progressively under all treatments with prolongation of duration of storage. Although all the treatments under study reduced the loss (PLW) but fruits sprayed with KH$_2$PO$_4$ (1.5%) with KNO$_3$ (1%) showed least loss in weight. The possible region for reduction in weight loss by chemicals used in the experiment might be due to some chemical changes caused by them within fruits so that the fruits could retain more water against the force of evaporation and possibly they may also alter some of the proteinaceous constituent of the cell so as to increase the affinity for water (Rydahl et al., 2018). The treated fruits exhibited low incidence of rotting or spoilage as compared to control. The incidence of
rotting (spoilage) was effectively minimized by the application of KH$_2$PO$_4$-1% + KNO$_3$-1%.

In conclusion, the treatment K$_2$HPO$_4$ -1% + KNO$_3$-1% proved superiority in improving the quality of fruits regarding total soluble solids and titratable acidity however acidity was lowest in fruits produced by treated trees with K$_2$HPO$_4$-1% + CH$_4$N$_2$S-1% and K$_2$HPO$_4$-1%. With regard to reducing sugar per cent, it was noticed that total sugar and reducing sugar were highest with KH$_2$PO$_4$ -1% + KNO$_3$-1% treatment over control in all the cultivars of mango cultivar Bombay Green, Dashehari and Langra, respectively. The non-reducing sugar was the highest with KH$_2$PO$_4$-1% followed by KH$_2$PO$_4$-1% + KNO$_3$-1% and KNO$_3$-1% among all the test cultivars of mango.

References

A.O.A.C. 1990. Association of official analytical chemists” official and tentative methods of analysis. The A.O.A.C., Washington D.C., USA.
Amarcholi, J.J., Singh, V., Sharma, K. M., Momin, S.K. and Patel, R.J. 2016. The impact Of Chemicals on Fruiting Parameters, Quality Parameters And B:C Ratio of ’Kesar’ mango. Multilogic in Science, 5: 279-282.
Baiea, M. H. M., El-Sharony, T. F., El-Moneim, E.A.A.A. 2015. Effect of different forms of potassium on growth, yield and fruit quality of mango cv. Hindi. International Journal of Chem Tech Research, 8(4): 1582-1587.
Dheeraj, G., Bhagwan, A., Rajkumar, M. and Venkatlaxmi, A. 2016. Studies on the effect of bioregulators on flowering and yield of mango (Mangifera indica L.) cv. Banganpalli. International Journal of Agricultural Science and Research, 6(3): 55-64.
Dutta, P.B., Ahmed and S. Kundu. 2011. Effect of different sources of potassium on yield, quality and leaf mineral content of mango in West Bengal. Better crops. 16-18.
Ebeer, S. and El-Migeed A.M.M.M. 2005. Effect of spraying sucrose and some nutrient elements on Fagri Kalan mango trees. J. App. Sci. Res., 1: 341-346.
Elkhishen, M.A. 2015. Enhancing Flowering and Fruiting Attributes of Mango (Mangifera indica) CV. Zebda in the Off-Year by Binary Application of KNO3, Ethrel and Paclobutrazol. Journal of Horticultural Science & Ornamental Plants, 7 (3): 87-93.
El-Razek, E. A., Abd-Allah, A. S. E. and Saleh, M.M.S. 2013. Foliar spray of some nutrient elements and antioxidants for improving yield and fruit quality of Hindi mango trees. Middle East Journal of Scientific Research, 14 (10): 1257-1262.
Gcharge, V.R., M. P. Sanas and S. M. Shinde (2014). Influence of Post flowering application of nutrients on yield and quality attributes of mango (Mangifera indica L.) cv. Alphonso. IJTA, 32 (3-4):365-368.
Gupta, R. and Brahmachari, V.S. (2004). Effect of foliar application of Urea, Potassium nitrate and NAA on fruit retention yield and quality of mango cv. Bombay. The Orissa J. of Hort., 32(2): 7-9.
Kaur, A.P., H., Singh and Jawandha, S.K., (2012) Effect of pre-harvest application of nutrients and growth regulator on fruit quality of sub-tropical peach. Asian Journal of Horticulture, 7:565-568.
Khayyat, L., Sorour, J., Rawi M. A. and Essawy, A. 2012. histological, ultrastructural and physiological studies on the effect of different kinds of energy drinks on the liver of Swiss Albino Rat. J. Am. Sci., 8: 688-697.
Kumar, M.A. and Reddy, Y.N. 2008. Preliminary investigations on the effect of foliar spray of chemicals on flowering and fruiting characters of mango cv. Baneshan. *Indian Journal of Agricultural Research*, 42(3): 164-170.

Lane, J. H. and L. Eynon. 1923. Determination of reducing sugar by Fehling’s solution with methylene blue indicator. *J. Sci. Chem. Ind.*, 42:32T.

Marschner, H. 1995. Functions of Mineral Nutrients: Micronutrients. In: *Mineral Nutrition of Higher Plants*, 2nd Edition, Academic Press, London, 313-404.

McKenzie, C. B. 1994. Preliminary results of calcium and potassium uptake from foliar sprays on Sensation mango. *Yearbook - South African Mango Growers’ Association*, 14: 24-25.

Nahar, N., Choudhury, M.S.H. and Rahim, M.A., 2010. Effects of KClO₃, KNO₃ and urea on the flowering and fruiting of mango and longan. *J. Agrofor. Environ.*, 4 (1): 31-34.

Patoliya, R.M., Tandel, B.M., Unnati, A., Patil, S.J. and Hiralal, C. 2017. Response of foliar spray of different chemicals on yield and quality of Dashehari mango under ultra-high density plantation. *International Journal of chemical studies*, 5(4): 1495-1497.

Prasad, B., Dimri, D.C. and Bora, L. 2015. Effect of pre-harvest foliar spray of calcium and potassium on fruit quality of Pear cv. Pathernak. *Scientific Research and Essays*, 10(11): 376-380.

Rabeh, M.R. and Sweelam, M. 1990. Efficiency of potassium, nematicide and their combination in relation to absorption of potassium, population of citrus nematode (*Tylenchulus semipenetrans*) and yield of Mandarin (*Citrus reticulate*). *Indian J. Agri. Sci.*, 60(4):52-55.

Rojas, E. 1996. Effect of moderate pruning, potassium nitrate and calcium nitrate on flowering in mango (*Mangifera indica* L.) cv. Haden. *Revista de la Facultad de Agronomia, Universidad Central de Venezuela*, 42: 47-56.

Rydahl, M.G., Hansen Aleksander R., Kračun Stepean K., Mravec Jozef. 2018. Report on the Current Inventory of the Toolbox for Plant Cell Wall Analysis: Proteinaceous and Small Molecular Probes. *Frontiers in Plant Scie.*, 9: 581.

Rymbai, H., Laxman, R. H., Dinesh, M. R., Johnsunoy, V. S., Ravishankar, K. V. and Jha, A. K. 2014. Diversity in leaf morphology and physiological characteristics among mango (*Mangifera indica*) cultivars popular in different agro-climatic regions of India. *Sci. Hort.*, 176: 189–193.

Samra, J.S., Thakur, R.S. and Chadha, K.L. 1977. Effect of foliar application of urea on yield and yield parameters of mango. *Ind. J. Hort.*, 34:26-29.

Sarker, B.C. and Rahim, M.A. 2013. Yield and Quality of Mango (*Mangifera indica* L.) as influenced by foliar application of Potassium Nitrate and Urea. *Bangladesh J. Agril. Res.* 38(1): 145-154.

Singh, B.P., Gupta, O.P. and Chauhan, K.S. 1982. Effect of pre-harvest calcium nitrate spray on peach on the storage life of fruits. *Indian Journal of Agricultre Science*, 52: 235-239.

Singh, J.N., D.K. Singh, and D. Chakravarthy 1994. Effect of urea and NAA on fruit retention and physicochemical composition of mango (*Mangifera indica* L.) cv. Langra. *Orissa J. Hort.*, 22:26-30.

Singh, P.C. 2002. Effect of different levels of nitrogen and phosphorus on yield, yield components and oil content of mustard (*Brassica juncea*) cv. Varuna. *J. Living World*, 9(1): 1-4.

Singh, V. and Kaur, G. 2018. Effect of...
Potassium Nitrate, GA3 and Salicylic acid on Fruit Yield and Quality of Peach [Prunus persica (L) Batsch] cv. Shan-i-Punjab. Int. J. Curr. Res. Aca. Rev., 6(3): 20-26.

Srihari, D. and Rao, M.M. 1998. Effect of spraying nutrients and chemicals on vegetative growth and flowering in “off” phase Alphonso mango trees. Karnataka Journal of Agricultural Sciences, 11(1): 257-259.

Taha R.A., Hassan, H.S.A. and Shaaban, E.A. 2014. Effect of different potassium fertilizer forms on yield, fruit quality and leaf mineral content of Zebda Mango trees. Middle-East Journal of Scientific Research., 21 (3): 518-524.

Yadav, D., Singh, S.P. and Singh, S. 2014. Effect of foliar application of potassium compounds on yield and quality of ber (Zizyphus mauritiana) cv. Banarasi Karaka. International Journal of Research in Applied, natural and social sciences, 2: 89-92.

How to cite this article:

Manoj Kumar Singh, Vinod Bahadur Singh, S.S. Singh and Anil Kumar Singh. 2019. Effect of Different Chemicals on Yield and Quality of Mango (Mangifera indica L.) cvs. Bombay Green, Dashehari and Langra. Int.J.Curr.Microbiol.App.Sci. 8(01): 1320-1328.
doi: https://doi.org/10.20546/ijcmas.2019.801.141