Traumatic Spondylolisthesis of the Fourth Lumbar Vertebra Without Neurologic Deficit or Fracture of the Posterior Elements

Ioannis Papaioannou 1, Thomas Repantis 2, Georgia Pantazidou 3, Andreas Baikousis 1, Panagiotis Korovessis 3

1. Orthopedics, General Hospital of Patras, Patras, GRC 2. Orthopedics, Karamdaneion Hospital, Patras, GRC 3. Otolaryngology - Head and Neck Surgery, General Hospital of Patras, Patras, GRC

Corresponding author: Ioannis Papaioannou, john.pane1984@gmail.com

Abstract

Acute traumatic spondylolisthesis in the lumbosacral spine is an uncommon injury. Traumatic dislocation of the fourth lumbar vertebra over the fifth lumbar vertebra (L4/L5) is extremely rare since few studies have been reported in the current literature. We report on a 53-year-old man, who had a motor vehicle accident and sustained an injury of the lumbar spine without neurological impairment. The radiographic evaluation disclosed an L4/L5 traumatic spondylolisthesis, classified as Meyerding grade III without any fracture of the posterior vertebral elements. To the best of our knowledge, this is the sixth case of L4 traumatic spondylolisthesis without concomitant fracture of the posterior vertebral elements and the third case without any neurological deficit among them. The patient underwent open reduction and posterior instrumentation. Intraoperatively, the posterior ligamentous complex, the capsules of the facet joints and also the disc were found torn, although facets, neural arch, and pedicles were intact. Following decompression and reduction of the spondylolisthesis without any neurologic complications, we performed pedicle screws and rods fixation from the third to the fifth lumbar vertebra (L3-L5). The patient had an uneventful recovery and returned to his previous activity three months after surgery. The four-year follow-up evaluation showed normal spinal alignment, successful pain-free fusion without neurologic complications. Flexion/distraction injury without simultaneous rotation at the L4/L5 segment during traffic accidents or the fall of a heavy object on the bent back accompanied with posterior ligament weakness is thought to be the probable mechanism for this type of injury. Concomitant neurologic impairment is associated with the majority of L4/L5 spondylolisthesis cases. Posterior decompression, reduction, and posterior instrumentation enhances bony fusion, improves the patient’s neurologic status and restores the sagittal alignment.

Introduction

Traumatic lumbar and lumbosacral spondylolisthesis is an uncommon injury. Especially, spondylolisthesis of the fourth lumbar vertebra (L4) is very rarely reported, while several cases with dislocation of the fifth lumbar vertebra (L5) over the first sacral vertebra (S1) have been described [1]. To our knowledge, there are only 16 studies with 18 patients reporting on L4 traumatic anterolisthesis, retrolisthesis, and spondyloptosis with or without concomitant fracture of the posterior vertebral elements [2-17]. Most of the patients in these reports were treated operatively with open reduction, intervertebral cages, pedicle screws, and rods fixation via the posterior approach. The purpose of this study is to report a rare case of L4 anterolisthesis without concomitant fracture of the posterior spinal elements, and also without neurologic impairment as well as to describe its operative treatment. We will also review all the published cases (according to our search on PubMed and Google Scholar) of L4 fracture-dislocation and pure dislocation, focusing on the mechanism of injuries, sagittal balance restoration, and neurological outcome following surgery.

Case Presentation

A 53-year-old man, with a body mass index (BMI) of 27.6 Kg/m2, was driving wearing his security belt with a velocity of about 70 Km/hour, when he lost control (with the same velocity) of his car and fell in a ditch from a height of about 1.5 meters. On admission, the patient was hemodynamically stable, while the physical examination disclosed swelling over the lower lumbar spine with severe pain on pressure without any neurologic impairment of the lower extremities. Plain roentgenograms in lying position revealed a traumatic dislocation of the fourth lumbar vertebra (L4), classified as Meyerding grade III spondylolisthesis (Figures 1, 2)
FIGURE 1: Preoperative supine lateral roentgenogram on admission of the lumbar spine showing Meyerding III anterolisthesis of L4. The black arrow shows the avulsion fracture of the anterior–superior vertebral corner.
FIGURE 2: Preoperative anteroposterior roentgenogram of the lumbar spine showing narrowing of the intervertebral space (black arrows).

A full-body computed tomography confirmed the anterior dislocation of L4 vertebra associated with an avulsion fracture of the anterior/superior corner of the fifth lumbar vertebra (L5), accompanied by fractures of the transverse processes of the second, the third, and the fourth lumbar vertebrae, without, however, any fracture of the facet joints and neural arches (Figures 3, 4)
FIGURE 3: Preoperative lateral supine CT scan with sagittal reconstruction showing the anterolisthesis of L4 and the avulsion L5 fracture (black arrow).
The patient underwent open posterior decompression, reduction, and pedicle screw fixation within 24 hours following admission. Continuous neuromonitoring was used. During exposure, the posterior spinal ligamentous complex and facet joint capsules were found completely torn accompanied by bilateral anterior facet dislocation and rupture of the intervertebral disc, without any fracture of the facets or neural arches of L4 and L5 vertebrae. Decompressive laminectomy was made to facilitate the reduction of L4 vertebra and inspection of nerve roots and dural sac during the reduction maneuvers. Reduction of the dislocation was achieved using flexion/distraction maneuvers (leverage of the L4 vertebra using a laminar spreader, Cobb elevators, and reduction pedicle screws through L4 pedicles) and it was temporarily secured with a unilateral longitudinal rod. An interbody expandable cage (transforaminal lumbar interbody fusion [TLIF]) was inserted in the L4/L5 intervertebral space after meticulous removal of the annulus fibrosus and the cartilage of the adjacent vertebral endplates. Autologous cortico-cancellous bone graft was impacted into the L4/L5 disc space. Finally, two lordotic contoured longitudinal rods were assembled with the screws and an autologous bone graft was placed posterolaterally to enhance fusion. The postoperative course was uneventful. The patient was mobilized on the first postoperative day with a brace and discharged on the third postoperative day. After a three-month follow-up, the patient was encouraged to progressively regain his previous activity as a pastry chef (Figures 5, 6).
FIGURE 5: Postoperative (three months follow-up) standing roentgenogram of the lumbar spine showing excellent sagittal balance and pedicle screw-rod fixation in situ.
FIGURE 6: Postoperative (three months follow up) standing anteroposterior roentgenogram of the lumbar spine. The black arrows show the level of the interbody fusion.

At the latest follow-up, four years postoperatively, the patient was symptom-free with normal spinal alignment and complete posterolateral spinal fusion (Figures 7, 8)
FIGURE 7: Postoperative lateral standing roentgenogram of the lumbar spine four years postoperatively. Note the completed fusion (white arrow) and excellent sagittal balance.
FIGURE 8: Postoperative anteroposterior standing lateral roentgenogram of the lumbar spine in the last evaluation, four years postoperatively.

Discussion

Acute traumatic spondylolisthesis in the lumbosacral spine is not common. The combination of hyperextension, hyperflexion, and rotation has been described [1] as a pathogenic mechanism. Moreover, L4/L5 traumatic dislocation is extremely rare, since only 16 studies in the literature have reported anterolisthesis, retrolisthesis, or even spondyloptosis of L4, with or without neurologic impairment [2-17]. Among the 18 patients reported, only five cases have been reported with L4-anterolisthesis Meyerding III with "locked" but not fractured facets [5,15-17]. Concomitant neurologic impairment was reported in the majority of the cases (11 out of 18 cases) [5,9-15,15-17] (Table 1).
No	Authors	Year	Cases	Gender	Age	Neurologic impairment on admission	Type of Injury	Posterior vertebral elements fracture	Trauma to Surgery time	Type of surgery	Open/MIS	Follow up	Neurologic impairment on Follow up
1	Abdel-Fattah et al. [9]	2000	1	Female	16	ASIA E	fracture retrolisthesis L4, fall from 3-m height	fracture/dislocation retrolisthesis L4, all posterior elements fractured	Not available	sacral rod and two Harrington rods	Revision surgery	7 months	ASIA E
2	Moti et al. [5]	2002	1	Female	32	ASIA E	Traumatic bilateral locked facet at L4-5	pure dislocation associated with locked facet at L4-5	2 weeks	L4-LS posterior pedicle screw plus PLIF	Open	18 months	ASIA E
3	Song et al. [9]	2005	1	Female	34	ASIA E	fracture dislocation L4, traffic	LS facets fractures	3 months	Posterior L4-LS plus PLIF	Open	12 months	ASIA E
4	Ahmed et al. [9]	2005	1	Female	34	Claudis Epiaire	traffic stacked/traction/dislocation retrolisthesis L4	LS facets fractures	10 days	Posterior, decompression, L4-LS PLIF titanium interbody cage, pedicle screws L3-L5	Open	24 months	ASIA E
5	Deniz et al. [5]	2008	1	Male	44	ASIA E	fracture dislocation L4, Mayerding I. Driver of a tractor that has crashed to a tree	L4 inferior facet fracture & bilateral facet dislocation	4 months	Posterior, decompression, L4-LS interbody cage, pedicle screws L3-L5	Open	3 months	ASIA E
6a	Lim et al. [17]	2009	1	Male	41	Claudis Epiaire	a 600-kg container fell onto his back	fracture of the anterior-superior corner of L5 associated with a Chance-type fracture-dislocation through the L4/5 disc space and bilateral prechondral facets with grade 3 spondylolisthesis of L4 on L5	4 hours	Posterior decompression, L4-LS pedicle screws and TLIF	Open	1 year	Almost full caudal function recovery
6b	Lim et al. [17]	2009	1	Male	56	ASIA E	falling from a height of 3 metres	comminuted fracture of L5 and grade-1 anterolisthesis of L4 on L5	24 hours	Posterior decompression, L3-S1 pedicle screw fixation, L4-LS TLIF	Open	1 Year	ASIA E
7a	Zhou et al. [3]	2010	1	Male	19	Claudis Epiaire	L4 spondylolisthesis, heavy object fell on his back	LS facets fractures	10 days	L4-L5 pedicle screws plus PLIF	Open	78 months	Almost full caudal function recovery
7b	Zhou et al. [3]	2010	1	Male	13	Claudis Epiaire	L4 spondylolisthesis, heavy object fell on his back	facets and lamina of LS fracture	5 days	L3-S1 pedicle screws	Open	12 months	Drop foot only
8	Chandrasekharan et al. [11]	2011	1	Male	10	Claudis Epiaire	spondylolisthesis L4 over LS. He fell from a running truck	L3 and L4 facet fracture	Not available	Pedicle screws L3-LS	Open	Not mentioned	MB improvement
9	Zanzar-Kilgusse et al. [10]	2012	1	Male	20	Claudis Epiaire	traffic accident dislocation of L4-LS. Influence of alcohol was in a car that rolled over	L4 and LS facet fracture	3 days	Traction, thee surgery L3-S1 pedicle screws	Open	12 months	ASIA D
10	Tang et al. [12]	2012	1	Female	46	Claudis Epiaire	incomplete cauda equina syndrome	Traffic stuck on a car	13 hours	single stage combined anterior and posterior approach (anterior)	Open	24 months	ASIA D
To the best of our knowledge, our case is the sixth traumatic L4 anterolisthesis. Meyerding III reported, without associated fracture of the posterior vertebral elements (pedicles, facets, and neural arch), and the third case without neurological deficits caused by a trauma of moderate energy. According to the Denis classification, this is an unstable three-column injury, which requires surgical stabilization, as in all previously published cases. In our case, the probable mechanism for L4 olisthesis is a severe flexion-distraction injury in the lumbar spine with the safety belt acting as the fulcrum for the bending force applied to the spine. There was initially rupture of the posterior ligamentous complex (supraspinous, interspinous, ligamentum flavum, posterior longitudinal ligament, facet joint capsule, and intervertebral disc) and subsequently dislocation of the facet joints without fracture. All these were intraoperatively certified. Facet joints and their well-developed capsules play a crucial role in the stability of the lumbar spine [18]. Usually, a flexion-rotation injury is required to provoke dislocation of these structures [18]. In biomechanical studies, it has been reported that when vertebral displacement in the lumbar spine is observed, facet fracture is suspected, which permits abnormal axial rotation and subsequent dislocation [18]. However, in five previous cases [5,15-17] and in our case, no fracture was associated with the L4-L5 anterolisthesis. Among these five previously reported cases, only two patients were without neurologic deficits on admission [5,17]. So, our case is the third one which is associated with traumatic L4/L5 spondylolisthesis without fracture of the posterior elements and also without neurological impairment. Sullivan and Farfan [19] showed in a biomechanical study that axial rotation > 30° of the lumbar spine caused the failure of the neural arc, progressing from facet joint dislocation to fracture of the articular process. Thirteen out of 18 previously published cases with L4 spondylolisthesis were associated with facet fracture, while in our case and those of Mori et al. [5], Im et al. [15], N’Dri-Oka et al. [16], and Lim et al. [17], there was no facet fracture, but locking facets and pure dislocation. Apparently, the rupture of the facet joint capsule has occurred without simultaneous spinal rotation, resulting thus in a pure anterolisthesis. Aside from the mechanical forces that act in the lower lumbar spine, weakness of the posterior ligament complex has been suggested as a predisposing factor for lumbar fracture-dislocation in 21% of subjects aged > 20 years [20]. Patients’ age averaged 31.9±14.52 years in the published papers, but there were four patients with ages lower than 20 years [5,8,11] (Table 1). Eleven out of the 18 patients were admitted with neurologic impairment [5,6,9,15-17]. Neurologic injury was more common in patients with L4 retrolisthesis. However, all patients who had on admission neurological deficits showed worth noting improvement in the final observation (Table 1). Successful pedicle screw fixation was applied in all the patients, except in two cases with L4-L5 spondylolisthesis [8,13]. The insertion of an intervertebral cage in 12 out of 18 cases [5,5,6,9,12-14,16,17] resulted in solid fusion and reportedly restoration of sagittal balance.

Conclusions

Case	Year	Age	Sex	Mechanism	Level	Fracture	Decompression	Fusion	Surgery	Follow-up	Notes
11	2012	37	Male	Spondylolisthesis	L4	Facet fracture	Yes	Open	L4-L5 pedicle screw plus PLIF	6 months	ASIA E
12	2014	34	Male	L4 spondylolisthesis	L4-L5	Facet fracture	No	Open	L4-L5 pedicle screws	2 months	ASIA D
13	2016	36	Male	Traction	L4	Fracture	Yes	Open	L3-L5 fusion pedicle screws	3 months	ASIA E
14	2016	33	Male	Traffic accident	L4	Fracture	No	Open	Decompression, L4-L5 pedicle screws plus TLIF	16 months	ASIA D
15	2016	34	Female	Locked facet dislocation, traffic	L5	Fracture	Yes	Open	L4-L5 pedicle screw plus PLIF	12 months	ASIA E
16	2019	60	Male	Grade 3 traumatic spondylolisthesis of L4	L3 & L4	Fracture	Yes	Open	2 stage anterior & posterior surgery/ 11 days interval plus PEEK vs oblique lumbar interbody approach/ L2-S1	24 months	ASIA D

TABLE 1: Cumulative data on 16 published cases with traumatic olisthesis of L4. Case 2, 6a, 6b, 11, and 14 concern those without facet fracture, similar to our case.
In conclusion in our case, high-energy trauma resulted in disruption of the already weakened posterior ligamentous complex, anterior sliding of the L4 vertebra body, and a subsequent three-column injury, according to Denis classification. Open decompression, reduction with internal segmental pedicle screw fixation, and fusion is the most accepted treatment resulting in excellent short- and long-term clinical and radiological results and neurologic recovery of the patients. Clinicians and spine surgeons should be aware that traumatic lumbar spondylolisthesis can take place even with the absence of neurologic impairment and/or without any fracture of the posterior vertebral elements.

Additional Information

Disclosures

Human subjects: Consent was obtained by all participants in this study. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Tsirikos AI, Saiifuddin AS, Noordeen MH, Tucker SK: Traumatic lumbar-sacral dislocation: report of two cases. Spine. 2004, 29:164-168. 10.1097/00007632-200404150-00026
2. Deniz FF, Zileli MR, Çaglı SE, Kanyilmaz H: Traumatic L4-L5 spondylolisthesis: case report. Eur Spine J. 2008, 17:232-235. 10.1007/s00586-007-0496-6
3. Zhou TH, Tang XU, Xu YQ, Zhu YL: Traumatic spondyloptosis of L4. Spine. 2010, 35:855-859. 10.1097/BRS.0b013e3181d798d2
4. Amesiya RO, Orotoho NO, Niyai MA, Mugaruura R, Mwaka ES: Traumatic spondyloptosis of the lumbar spine: a case report. J Med Case Rep. 2014, 8:453. 10.1186/1752-1947-8-453
5. Mori KA, Hukuda SI, Katsura RA, Saruhashi Y, Asajima S: Traumatic bilateral locked facet at L4-5: report of a case associated with incorrect use of a three-point seatbelt. Eur Spine J. 2002, 11:602-605. 10.1007/s00586-002-0596-8
6. Song KJ, Lee KB: Bilateral facet dislocation on L4-L5 without neurologic deficit. J Spinal Disord Tech. 2005, 18:462-464.
7. Zhenos A, Agarwal N, Monaco E, Okonkwo DO, Kanter AS: Traumatic L4-S bilateral locked facet joints. Eur Spine J. 2016, 25:129-133. 10.1007/s00586-015-4245-y
8. Abdel-Fattah H, Rizk AH: Complete fracture-dislocation of the lower lumbar spine with spontaneous neurologic decompression. Clin Orthop Relat Res. 1990, 251:140-143.
9. Ahmed AB, Meahesh BH, Shamshery FK, Jayaaral A: Traumatic retrolisthesis of the L4 vertebra. J Trauma Inj Infect Crit Care. 2005, 58:395-394. 10.1097/01.TAI.0000073998.54089.D1
10. Zarate-Kalfopulos BA, Romero-Vargas SA, Alcántara-Canseco CE, Rosales-Olivarez LM, Alpizar-Aguirre A, Reyes-Sánchez A: Traumatic posterior L4-L5 fracture dislocation of the lumbar spine: a case report. Glob Spine J. 2012, 2:235-238. 10.1055/s-0032-1329889
11. Chandraleshkara SH, Kamar AS, Gamanagatti SH, Mekand A, Sinha S: Unusual traumatic spondylolisthesis causing complete transaction of spinal cord. Int Orthop. 2011, 35:1671-1673. 10.1007/s00264-010-1190-6
12. Tang SH, Reinholt B: Single-stage treatment of lumbar fracture-dislocation using a combined anterior and posterior approach. J Orthop Sci. 2012, 17:659-662. 10.1007/s00776-011-0104-9
13. Sasagawa TA: Minimally invasive surgery for traumatic spondylolisthesis of L4: a case report [In Press]. J Orthop Sci. 2019, 10.1016/j.jos.2019.04.010
14. Park HY, Ha KY, Kim YH, et al.: Delayed bilateral facet dislocation at L4-5: a case report. Medicine. 2018, 97:e12485. 10.1097/MD.0000000000012485
15. Im SH, Lee KY, Bong HI, Park YS, Kim IT: Bilateral locked facets at lower lumbar spine without facet fracture: a case report. Korean J Spine. 2012, 9:278. 10.14245/kjs.2012.9.3.278
16. N’Dri-Oka DO, Sarki SI, Konan LA, Haro Y: Traumatic lumbar spondylolisthesis without facet fracture at L4/5: a case report and literature review. Chinese Neurosurg J. 2016, 2,8. 10.1186/s41016-016-0027-6
17. Lim CT, Hee HT, Liu GA: Traumatic spondylolisthesis of the lumbar spine: a report of three cases. J Orthop Surg. 2009, 17:561-566. 10.1186/2059-4990-17:561-566
18. Ponner IR, White AA, Edwards WT, Hayes WC: A biomechanical analysis of the clinical stability of the lumbar and lumbar-sacral spine. Spine. 1982, 7:574-589. 10.1097/00007632-198207000-00008
19. Sullivan JD, Farfan HF: Thoraco-lumbar neural arch. Orthop Clin North Am. 1975, 6:199-214.
20. Rissanel PM: The surgical anatomy and pathology of the supraspinous and interspinous ligaments of the lumbar spine with special reference to ligament ruptures. Acta Orthop Scand. 1960, 31:5-100. 10.3109/ort.1960.31.suppl-46.01