DRVC: A FRAMEWORK OF ANY-TO-ANY VOICE CONVERSION WITH SELF-SUPERVISED LEARNING
Authors: Qiqi Wang, Xulong Zhang, Jianzong Wang, Ning Cheng, Jing Xiao

Speaker: Qiqi Wang (virtual)

10th April 2022

Outline

• Background
• DRVC
• Experiments
• Conclusion
Background

• Voice Conversion

Speaker A

It’s my honor to attend ICASSP2022.

Speaker B

Qiqi Wang (Virtual)

One-to-one VC

Source Speaker

Speaker A

Target Speaker

Speaker B

Many-to-Many VC

Source Speakers

Speaker A

Speaker C

Speaker B

Speaker D

Target Speaker

Speaker B

Or

Speaker C

Any-to-Any VC

Source Speakers

Speaker A

Speaker C

Speaker B

Speaker D

Target Speaker

Speaker E

Or

Speaker F

Qiqi Wang (Virtual)
Background

- Voice Conversion
 - Previous method (Disentanglement-based)

Assumption: *Speech information consists of speaker style and content information.*
Background

• Voice Conversion
 • Shortages

DRVC

• Speech Distanglement
 • Two encoders
 • Speaker Style Encoder: E_S
 • Content Encoder: E_{Con}

\[
\{x_c, x_s\} = \{E_{Con}(X), E_S(X)\}
\]
DRVC

- **Speech Distanglement**
 - Generator G

\[
\bar{x} = G(y_c, x_s) = G((E_{Con}(Y), E_{S}(X)))
\]

DRVC

- **Two Stage Conversion**
 - First Conversion
DRVC

- Two Stage Conversion
 - Second Conversion

![Diagram of DRVC](image)

DRVC

- Loss Function
 - Cycle Loss

![Diagram of DRVC](image)

\[L_{cycle} = E_{x,y} [||\tilde{x} - x|| + ||\tilde{y} - y||] \]
DRVC

• Loss Function
 • Same Loss

\[
\mathcal{L}_{\text{same}} = E[|\tilde{y}_c - x_c| + |\tilde{x}_c - y_c|] + E[|\tilde{x}_s - x_s| + |\tilde{y}_s - y_s|]
\]

Speaker A
Speech X
\(x_c\)
\(x_s\)

Speaker B
Speech Y
\(y_c\)
\(y_s\)

DRVC

• Loss Function
 • Domain Loss

\[
\mathcal{L}_{\text{domain}} = -\frac{1}{2} \left(\sum_i A(i)\mathcal{L}(x_i) + \sum_i B(i)\mathcal{L}(y_i) \right)
\]

Classifier
Speaker ID

Speaker A
Speech X
\(x_c\)
\(x_s\)

Classifier
Speaker ID

Speaker B
Speech Y
\(y_c\)
\(y_s\)

Qiqi Wang (Virtual)
DRVC

• Loss Function
 • Adversarial Loss

Experiments

• Data
 • VCC2018

Sources Speakers	Target Speakers
VCC2SF1	VCC2SM1
VCC2SF2	VCC2SM2
VCC2SF4	VCC2SM4
VCC2TF2	VCC2TM2

Many-to-Many VC

Target Speakers
VCC2SF4
VCC2TF2

Any-to-Any VC

Target Speakers
VCC2SF3
VCC2TF1
Experiments

• Result
 • MCD & MOS

Table 1. Comparison of different models in any-to-any and many-to-many. ↓ means lower score is better, and ↑ means bigger score is better.

Methods	Any-to-Any	Many-to-Many		
	MCD ↓	MOS ↑	MCD ↓	MOS ↑
Real	-	4.65 ± 0.12	-	4.66 ± 0.21
VQVC+	7.47 ± 0.07	2.52 ± 0.42	7.78 ± 0.07	2.62 ± 0.22
AutoVC	7.69 ± 0.21	2.95 ± 0.56	7.61 ± 0.17	3.17 ± 0.65
AGAIN-VC	7.42 ± 0.19	2.45 ± 0.34	7.64 ± 0.21	2.47 ± 0.58
DRVC	7.39 ± 0.05	3.32 ± 0.36	7.59 ± 0.04	3.51 ± 0.52

Experiments

• Result
 • Human Evaluation
Experiments

• Result
 • Ablation experiments

Model	MCD \(\downarrow\)
DRVC w/o Cycle Loss	7.68 ± 0.26
DRVC w/o Identity Loss	7.63 ± 0.14
DRVC w/o Domain Loss	7.72 ± 0.12
DRVC w/o Voice Same Loss	7.75 ± 0.32
DRVC w/o Content Same Loss	7.50 ± 0.32
DRVC w/o Adversarial Loss	7.72 ± 0.35
DRVC	7.39 ± 0.05

Conclusion

• Contribution

 • We propose a end-to-end framework, DRVC, to address the untangle overlapping problem without circumspection choose the content sizes.

 • Both the subjective and objective results show our model has better performance.
Thanks for you listening

Acknowledge & Notes:
- All anime character images are from the ‘The Legend of LUOXIAOHUI’.
- The presentation speech video, including the voice and personal video, is auto synthesis by PingAn Technology Co. Ltd.