Rehabilitation and Creation of Favorable Conditions for the Improvement of the Comfort and Quality of Acrylates Used in the Sphere of Removable Dentures

RAMONA DIANA FEIER1, GABI TOPOR2, LUCREȚIA ANGHEL2*, ANDRA ELENA AUNGURENCEI2*, MAGDALENA RUSU NEGRAIA3

1Dimitrie Cantemir University, Faculty of Medicine and Pharmacy, 3-5 Bodoni Sandor Str., Targu Mures, Romania
2Dunarea de Jos University of Galati, Faculty of Medicine and Pharmacy, 47 Domnească Str., 800008, Galati, Romania
3Grigore T. Popa University of Medicine and Pharmacy, Faculty of Dental Medicine, 16 Universității str., 700115, Iasi, Romania

The total acrylic denture is a conventional prosthesis method in case of total edentation, when there are 1-2 remaining teeth on the arch. The purpose of these dentures is to recreate functionality and improve the esthetic condition, being the optimum solution for improving the life of patients who have lost their natural teeth. Acrylic resins have been used in dentistry since 1937, a date which marked the progressive and final replacement of vulcanized rubber (vulcanite). From a chemical point of view, acrylates are macromolecular resins derived from acrylic acid, obtained by polymerization of several substances which derive from the acrylic acid, methacrylic acid and the esters of these acids. Metallic inserts can be added in the structure of the plastic masses, under the form of wires, bars, grids, nets. Bar and wire reinforcement has been proved efficient in improving the mechanical properties of the bases of total dentures, compared to grids, which failed to constantly ensure significant improvement. The position and thickness of reinforcement inside the plastic mass hugely influences the efficiency of reinforcement; the reinforcement must be placed perpendicularly on the anticipated fracture line. Our study was carried out in the Dental Clinic and comprises a number of 17 patients. The lot included patients aged between 50 and 85. Clinical observations have been made on fracture cases of acrylic bases, followed by the analysis and assessment of certain clinical aspects with a high risk of fracture (maxillary/mandible, with a median/paramedian line, etc.) which, associated, increase the risk of fracture even more. Clinical observations have shown the presence of fracture risk in acrylic dentures, showing the necessity of a correct design and production of removable dentures but also of using inserts.

Keywords: acrylic prostheses, metallic inserts, polymers, reinforcement, plastics.

In 1843, the methacrylic acid was discovered. Caspary and Tollens managed to obtain, in 1873, the first acrylic plastics; in 1924 they were synthesized for the first time and in 1935 their use extended to the dental technique. These resins have witnessed multiple improvements, reaching a large variety in the present and they can still be potentially improved.

In dentistry polymerized methyl methacrylate products are used, under the name of metal polymethacrylate or PMMA, according to the FDI specifications.

Acrylic resins have dominated for decades the technology of dental prostheses, serving as a basis for removable dentures, artificial teeth, facings and even unilateral prostheses (s) jacket crowns, incrustations), immobilization tracks, etc.

Slowly, a series of deficiencies in these materials have been shown, especially when used for the production of artificial teeth, certain unilateral prostheses and for plating purposes. The researches have followed two directions: on the one hand, new types of acrylic resins have been elaborated, with improved properties, mostly in the polymerizablemethacryloyloxy group (from methyl methacrylate) and, on the other hand, other polymers have been created: diacrylic, epoxydic, polycarbonate, epiminic resins, with the intention of substituting the deficiencies of acrylic resins[1-4].

One of the landmark events that busted the development of polymers for the production of dental prostheses was triggered by Bowen who, in the period from 1958 to 1962, elaborated a new class of polymers based on aromatic dimethacrylate, which can also contain inorganic fillings (the bond between the two phases being ensured by a coupling agent), thus giving birth to composite diacrylic resins (RDC). These materials have taken acrylic resins out of the race in several fields of dental prostheses production, such as artificial teeth and plating materials.

At the moment, new types of non-composite, very compact resins have been introduced. They show higher density, high rigidity, hardness and resistance to wear, aiming at replacing even metallic alloys from certain dental prostheses: esthetic brackets, skeletal prostheses made exclusively of resins, orthogonal brackets, etc. Such a polymer is polyoxyethylene.

The weight of acrylic resins in dentistry is still high, as they are used for the production of fixed and removable denture bases, artificial teeth, temporary crowns, epimises, etc.

Dentistry has been revolutionized by the discovery of macromolecular compounds. In their continuous and accelerated development, chemistry and the technology of macromolecular compounds have made available for dentistry new high-performance materials and techniques, which otherwise would have been impossible using classical means[5-7].

Synthetic polymers are equally used in the dental cabinet and in the dental technical laboratory.

*email: langhel@yahoo.com; drdentaa@yahoo.com
Auto and thermo-polymerizable acrylic resins are used for the production of fixed and removable denture bases; the repair and optimization of fixed and removable dentures; surgical prostheses – epistheses; artificial teeth, conformatures, gutters and gum prostheses; uni-dental prostheses and temporary bridges, orthodontic devices.

Composite diacrylic resins (RDC) have superior properties, lowered contraction at polymerization, higher values of physical, mechanical, chemical and electrical resistance, better thermo-insulant and physical chemical features (uni-dental prostheses, dental bridges, plating materials, etc.).

Epiminicresins, whose structure resembles epoxyd resins (the oxygen atom from the epoxyd cycle was replaced with the iminic -NH group) have a lower n poly-condensation degree. They are auto-polymerizable and are used for the production of certain temporary prostheses.

Polyamide resins, with good mechanical resistance but a low module of elasticity.

Polyamides or polymers resulting from the condensation of a diacid with a diamide, giving birth to a variety of reaction products whose physical and mechanical properties depend on the groups that reticulate acid or amine radicals.

The first type of nylon used for the production of teeth was a failure, since the type used absorbed water excessively, leading to a certain degree of plasticization and even biodegradation of the material. The introduction of glass-reinforced nylon showed promising results. This type of material is reinforced with glass particles or fibers, which ensures a higher rigidity compared to glass pearls, being close to the rigidity of the thermo-polymerizable PMMA[9-12].

One of the advantages of polyamide resins as prosthetic materials is their good mechanical bending resistance but soon the disadvantages of these resins surfaced: low module of elasticity; limited ability to preserve shape and volume; evident chromatic modifications; poor ability of fixation and preservation of teeth and brackets; their manipulation and technology requires complicated equipment.

Polycarbonate resins are condensation derivatives of carbonic acid, with a dense structure and superior physical and mechanical properties compared to acrylic resins; they are processed by injection and used for the industrial production of certain temporary crowns.

Polyoxymethylene resins or acetal homopolymers, are obtained following the polymerization of formaldehyde and are recommended for partial brackets, temporary crowns and bridges, artificial teeth, orthodontic devices, skeletal prostheses, partial prostheses, total prostheses, etc.

At the moment, the properties of the polymers used for the production of total or partial prostheses bases have been improved at least three directions: ensuring a radiopacity of the material; increase of the impact resistance; increase of rigidity[13-16].

Photopolymerizable diacrylic resins - the weight of diacrylic resins in the production of dental prostheses has increased spectacularly, especially with regard to uni-dental prostheses: inlays, mixed crowns, on-lays, jacket crowns or temporary bridges (crowns). The origin of these materials is closely connected to the name of doctor Castang who, in 1938, synthesized an epoxyd resin, out of which he intended to manufacture artificial teeth.

Epoxyd resins constituted the starting point for the creation of the most important polymers used in the dental practice of our century, composite diacrylic resins.

After Dr. Castang’s failure, the first breakthrough in the field belongs to Bowen who, between 1957 and 1962 when he used to work for the US National Bureau of Standards, discovers a monomer based on which several types of diacrylic resins have been subsequently synthesized[17-19].

Diacrylic resins show lower contraction to polymerization, low thermal dilatation; low water absorption (between 0.13% and 1.7%, compared to 2% for PMMA), higher mechanical performance (bending and compression resistance, etc.) compared to PMMA, the possibility of physical and chemical adhesion to the metallic skeleton, while the bond between PMMA and metal is only macro-mechanical, low aging phenomena, better physiogonomic effects compared to the PMMA and relatively good long term chromatic stability[20-23].

From a chemical point of view, the organic matrix is a dimethylacrylate urethane reinforced with pyrolytic silica, acrylic pearsl and acrylic resins monomers with high molecular mass.

Metallic inserts: as early as the 60’s, orthodontic devices would be reinforced with nets, wire or plates of stainless steel. A unique and thick reinforcement provides resistance and rigidity, but the discontinuity it produces in the relief of the denture is uncomfortable and unwanted. That is why two or several reinforcements are preferred, of small thickness and placed several millimeters apart.

The low adhesion between the metallic particles and the polymer is the main problem at the basis of countless failures to reinforce acrylates. In view of improving this adhesion, various techniques of conditioning metallic particles have been promoted, such as sandblasting, silanization, the use of various adhesive resins. The rugosity thus obtained has a beneficial effect on the parts’ fracture resistance[24-26].

The best results were obtained following sand-blasting, the retention between the reinforcement and the resin being improved by the increase of interference between the two materials. The use of a 4-Meta type adhesive also yielded positive results to increase adhesion between inserts and resins. Another method of conditioning metallic inserts is silanization, its efficiency being proved by the increase of fracture resistance of the acrylate - metal structure.

Kevlar fibers have very high rigidity - 900cpa, are light yellow, light and very resistant. The reinforcement of polymers (PMMA and Bis-GMA based polymers) using these fibers leads to a spectacular increase of mechanical properties. Because they provide a less esthetic aspect, their use is limited to the oral faces of artificial teeth and total prostheses[27-30].

Carbon fibers give composite materials high resistance to fracture and significant rigidity. The construction of the denture base with carbon fibers requires a longer working time compared to PMMA, classic prostheses. The presence of the carbon fiber reinforcement considerably increases stress and flexion resistance (by more than 70%) and the torsion resistance (by more than 50%).

The results of experiments confirm the significant improvement of the mechanical properties of resins after having been reinforced with carbon fibers.

Perma Fiberevolutionary glass fibers, due to the fact that each fiber is impregnated, by means of computer, with acrylic resin (porous polymer) and silane, which allows the creation of a strong bond with all acrylic resins. Glass fibers are recommended for a simple technique, with multiple use possibilities, that leads to composite materials with higher physical characteristics compared to simple acrylics.
The proper adhesion of fibers to the polymer matrix is the most important factor in obtaining an increased hardness. The creation of this bond requires a proper impregnation of the fibers; with this bond, a smooth surface can be obtained following polishing, thus eliminating the possibility of tissue irritation [31-33].

Materials that create a chemical bond show a hardness that is 100 times higher than materials without reinforcement. That is due to the elimination of voids between the acrylic resin and the inserts. Polyethylene, Kevlar fibers, metal mashes fail to create such a good bond with acrylic resins [34-37].

Proper adhesion to the polymer matrix of the fibers is the most important factor in obtaining hardness. The creation of bond requires a proper moisturizing of fibers.

There are polyethylene fibers, vinyl polymers made of ethylene, that may have a branched or linear structure. Linear structure fibers have a higher degree of pliability and hardness than branched ones and, due to the denser structure, show higher resistance to forces.

Ribbond fibers prevent fractures in composite works and in acrylic resins and the prostheses maintain the same initial properties for a longer time. The unique combination of Ribbond fibers creates a very good bond and their structure increases the fracture resistance and hardness of the prostheses. These fibers are made of polyethylene fibers [38-40].

Total prostheses offer multiple benefits: the patients can chew much better diverse foods, pronunciation is improved and the denture also provides support for the lips and the cheeks, thus eliminating the sinking aging effect of edentulous patients, maintaining the health of the gums and maxillary [41-43].

The data base was managed by means of Excel from the Microsoft Office package and the statistical analysis benefited from the statistically dedicated software MedCalc and Epi Info 2000.

The statistical software used represents an environment for solving problems using mathematic statistics methods and techniques through the processing of data obtained through measurement and the realization of proper graphic representations, a dedicated software for the statistical data processing, the results yielding clear conclusions on the phenomena under investigation [44-46].

Experimental part

Material and methods

Our study was carried out in the Dental Clinic and comprises a number of 17 patients. The lot included patients aged between 50 and 85. They included 1 male and 5 females aged 55-64, 4 males and 2 females aged 65-74 and 3 males and 2 females in the last age group, 75-85 (Fig.1).

![Fig.1 Distribution of patients aged 50-85 years](http://www.revistadechimie.ro)
the metal being resilient and the base being smaller in size. Thus reinforced prostheses were created, which can successfully replace both acrylic resin bases and metal bases. The variety of reinforcement procedures and techniques make this possible.

The modern orientations in the therapeutic approach of total edentation focus on implants, but the clinical reality, correlated with multiple social aspects show the limits related to the general condition.

Conclusions
Prostheses ensure the patients a higher quality of life, a better aspect and nutrition, better phonation, all with positive aspects. The look, the smile and facial expression are very important in communication and prostheses have an impact in today's society which exceeds common perception.

The clinical observation showed the presence of a fracture risk in acrylic prostheses, which led to the necessity to correctly design and produce removable dentures in the first place, but also to use inserts.

A denture that restores, improves aspect and ensures all functions is something the dentist, the technician but also the patient take pride in.

References
1. ACOSTA-TORRES LS., BARCELO-SANTANA FH., ALVAREZ-GAYOSSO CAA., REYES-GASGA J. Synthesis and characterization of poly(methylmethacrylate) polymerized by microwave energy or conventional water bath. J.of Applied Polymers Science, 2008;109:3953-3960.
2. ANUSAVICE KJ. Phillips's Science of Dental Materials. 11th Edition Philadelphia, PA. Saunders,2003.
3. AVON SL., GOULET JP., DESLAUTRERS N. Removable acrylic resin disk as a sampling system for the study of denture biofilms in vivo. J. of Prosthetic Dentistry. 2007;97(1):32-38.
4. AZZARRI MJ., CORTIZO MS., ALESSANDRINI JL. Effect of the curing polymerization cycles on color stability of microwave-processed acrylic resins. J. of Biomedical Materials Research, 2006;76B(2):340-345.
5. BARBOSA DB., BARAOVA-MONTEIRO DR. et al. Bond strength of denture teeth to acrylic resin: effect of thermocycling and polymerisation methods. Gerodontology.2008; 25(4):237-244.
6. BARBOSA DB., SOUZA RF., PERO AC. et al. Flexural strength of acrylic resins polymerized by different cycles. J Appl Oral Sci.2007;15:424-428.
7. BAYRAKTAR G., GUVENER B., BURAL C. et al. Influence of polymerization method, curing process, and length of time of storage in water on the residual methyl methacrylate content in dental acrylic resins. J.of Biomedical Materials Research, 2006;76B(2):340-345.
8. BETTENCOURT AF., NEVES CB., de ALMEIDA M.et al. Biodegradation of acrylic based resins:Areview. Dental Materials, 2010;26(5):171-180.
9. BONNATIMR., CUNHATR., REGIS RR. et al. The effect of microwave-polymerised. J.of Dentistry, 2003;31(7): 463-468.
10. BRATU D., IEREMIA L., TUCULESCU S., Bazele clinice si tehnice ale protezarii edentatiei totale, Editura Imprimeriei de Vest, Oradea, 2003.
11. BURLUI V., MIHAELA SILIVAS, Clinica si terapia edentatiei totale, Editura Imprimeriei de Vest, Oradea, 2003.
12. BUYUKKEMEN B., OZTURKA., Effect of polymerisation techniques on residual monomer amount released from different acrylic resins.MaterialsResearchs Innovations. 2010;14:5(381-384).
13. MIRCEA SUCIU, FLORENTIN BERNEANU, DIANA CERGHIZAN: Aspecteclinico-tehnice ale tratamentului edentatiei partiale prin proteze mobilizabile, Litografia UMF Tg. Mures, 2006.
35. IORDACHE, C., GHIORGE, C.A., ANTOHE, M.E., et al., Temporo-mandibular joint involvement in rheumatoid arthritis and ankylosing spondylitis: a cross-sectional study. Rev. Chim., 99, 4, 2017, pg. 40-46
36. BARTOLO P., BIDANDA B., Biomaterials and prototyping applications in medicine, New York, Springer Science and Business Media, 2008.
37. ANTOHE, M.E., FORNA AGOP D., DASCALU, C.G., FORNA, N.C., The importance of observing the aesthetic requirements in partial edentulous rehabilitation-implications in medical-dental training. International journal of education and information technologies, 10, 199-203, 2016
38. POPA, C., STELEA, C.G., FILIOREANU, A.M., et al., PCR Analysis of the Herpesviruses presence in crevicular fluid in HIV-positive patients, Rev. Chim., (Bucharest), 68, no. 11, 2017, pg. 2672-2675
39. FORNA AGOP, D., POPESCU, E., COSTAN V.V., et al., Conventional maxillary reconstruction using service obturators, Romanian Journal of Oral rehabilitation, (8), 3, 2016, pg. 32-39
40. HRISTIAN, L., BORDEIANU, D.L., IUREA, P., et al. Study of the tensile properties of materials destined to manufacture protective clothing for firemen, Mat. Plast., 51, no. 4, 2014, pg. 405-409
41. DASCALU, C.G., CARAUSU, E.M., MANUC, D., Methods for Data Selection in Medical Databases: The Binary Logistic Regression - Relations with the Calculated Risks, Proceedings of world academy of science, engineering and technology, VOL 28 Book Series: Proceedings of World Academy of Science Engineering and Technology Volume: 28 Pages: 278+, Published: 2008
42. JUMANCA, D., GALUSCAN, A., PODARIU, A.C., et al., Anti-inflammatory action of toothpastes containing betulinnanocapsules, Rev. Chim. (Bucharest), 65, no. 12, 2014, pg. 1473-1476
43. AYKENT F., YONDEM Y., OZYESIL G., et al., Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J. of Prosth. Dentistry, 2010;4(103): 221-227.
44. SAVIN, C., ANTOHE, M.E., BALAN, A., et al., Study regarding the elastic impression biomaterials dimensional stability, Rev. Chim. (Bucharest), 70, no. 3, 2019, pg. 797-800
45. VITALARIU, A., TATARCIUC, M., LUCA, O., HOLBAN CIOLOCA, C., BULANCEA, B., AUNGURENCEI A., AUNGURENCEI, O., RAFTU, G., DIACONU, DIACONU POPA, D., Structural and thermal changes in dental resins enriched with silver nanoparticles Rev. Chim. (Bucharest), 70, no. 2, 2019, pg. 591-595
46. DROCHIOI, C., COSTAN V.V., ZAHARIA, M., et al., FT-IR Characterization of some biological materials used in reconstructive surgery, Rev. Chim. (Bucharest), 66, no. 9, 2015, pg. 1302-1305

Manuscript received: 8.05.2019