Insights from the predicted epitope similarity between *Mycobacterium tuberculosis* virulent factors and its human homologs

Venkata Ravi Gutlapalli1,2, Aparna Sykam1,2, Anuraj Nayarisseri3, Sujai Suneetha1, Lavanya M Suneetha*

1CODEWEL, Nireekshana-ACET, Hyderabad, Telangana-500029, India; 2Centre for Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India; 3Bioinformatics Research Laboratory, Eminent Biosciences, Vijaynagar, Indore - 452010, Madhya Pradesh, India; Lavanya M Suneetha – Email: drlavanyasuneetha@gmail.com; Phone: 9752295342; *Corresponding author

Received November 21, 2015; Revised December 13 2015; Accepted December 13, 2015; Published December 31, 2015

Abstract: *Mycobacterium tuberculosis* is known to be associated with several autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. This is attributed to sequence similarity between virulent factors and human proteins. Therefore, it is of interest to identify such regions in the virulent factors to assess potential autoimmune related information. *M. tb* specific virulent factors were downloaded from the VFDB database and its human homologs were identified using the sequence comparison search tool BLASTP. Both virulent proteins and their corresponding human homologs were further scanned for epitopes (B cell and HLA class I and II allele specific) using prediction programs (BCPRED and NETMHC). Data shows the presence of matching 22 B-cell, 79 HLA class II and 16 HLA class I specific predicted epitopes in these virulent factors having human homologs. A known peptide (HAFYLQYKNVKVDFA) associated with autoimmune atopic dermatitis is shown in the superoxide dismutase homolog structures of the bacterium (PDB ID: 1IDS) and human (PDB ID: 2QKC). This data provides insight into the understanding of infection-associated auto-immunity.

Methodology: Virulent Factors Database (VFDB) *M. tb* specific virulent factors (number) were downloaded in FASTA format from VFDB (a database of virulent factors) [21]. Basic Local Alignment Search Tool (BLAST) - 2.2.28 The Basic Local Alignment Search Tool (BLAST) is used to find regions of local similarity between *M. tb* virulent factor and human proteome [22].

Background: Pathogenic intracellular organisms have strategies of evading or suppressing the host’s immune response. Strategies against acquired immunity include antigenic variation, immune suppression and molecular mimicry. Molecular mimicry is well documented in viruses such as HIV, monkey pox and cow pox and its primary function is camouflage [1, 2]. Molecular mimicry can be defined as sequence or structural similarity between host and pathogen peptides resulting in immune evasion or cross reactivity leading to autoimmune response. Pathogens may also mimic host molecules to manipulate factors in signal transduction pathways via their receptors [3-6]. Previous studies have shown that cross reactive antibodies are produced in response to bacterial infections causing tissue damage [7-9]. Tuberculosis (TB) has been associated with several autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis [10-18]. *M. tb* induced T cell reactivity with foreign and self-antigens lead to autoimmune responses [11, 14, 15, 17]. Thus, detecting epitopes involved in cross reactivity could help in comprehending TB immuno-pathogenesis. The present study identified epitopes with sequence and structural similarities between *M. tuberculosis* virulent factors and host homologs for B-cells and T-cells (class I and II HLA alleles) specificity [19, 20].
Figure 1: A workflow showing steps involved in the identification of epitopes in the virulent factors of M. tb having human homologs. Epitopes were predicted in both virulent factors and their corresponding homologs. Both virulent proteins and their corresponding human homologs were further scanned for epitopes (B cell (BCPRED with score > 0.9) and HLA class I and II alleles (NETMHC with binding score < 50nM) prediction.

Phobius 1.0.1
Phobius was used to identify and exclude the signal region of the homologous proteins. [23].

Conserved Domain Database (CDD)
This database was used to identify conserved domains in homologous proteins of M.tb virulent factors and human.

B-cell epitope prediction server (BCPREDs)
Prediction of B cell epitopes (Table 1) for M.tb specific virulent factors and its corresponding human homologs using B cell epitope prediction server (BCPREDs) [24].

T-cell epitope prediction
Prediction of HLA class-I (Table 2) and class-II (Table 1) T cell epitopes was completed for virulent factors and its corresponding human homologs using NetMHC 2.2 and 3.0 [25].

Visual Molecular Dynamics 1.9.1(VMD)
This program was used to visualize the 3D structures of M. tb and human superoxide dismutase [26].

Workflow
M. tb virulent factors are obtained from VFDB and human proteins from Ensembl. Virulent factors are BLAST searched against human proteome using BLAST (version 2.2.28). Then homologs are extracted at E-value ≤ 0.01. The remaining M. tb proteins were run through Phobius to remove predicted N-terminal signal peptides from the protein sequence. Then sequences are run through CDD for getting domain coordinates. Further the collected sequences are run through BCPRED server for B cell epitopes of 20 amino acids length and the classifier specificity was 75% and overlap filter was used for analysis. Based on prior BLAST results, regions of amino acids (small peptides) that were similar between the human and M. tuberculosis proteins were selected for further analysis. BCPRED score of greater than 0.9 is considered for blast matched peptides in both pathogen and host homologs. NetMHC (version 2.2) was used for HLA class II and NetMHC (version 3.0) for HLA class I binding peptide prediction. Peptides were selected based on IC50 values <50 nM as high affinity, <500 nM as intermediate affinity and <5000 nM as low affinity [27]. The matched peptides in both pathogen and host with a binding score less than IC50 ≤ 50 are considered as...
strong binders. 3D structures of protein sequences matched to host are viewed and aligned structurally to find out whether these peptides are on the surface of the protein. The similarity between the predicted epitopes of virulent factors was found by multiple structural alignments using the STAMP algorithm in VMD. The detection of epitopes is shown in Figure 1. All calculations were performed using the local Linux server.

Results & Discussion:

The analysis of data obtained from the search between *M. tuberculosis* virulence factors and the human proteome revealed considerable similarities in sequences. A total of 25 best-hit homologous proteins with E-value cut off 1E-02 and similar regions of 9 or more amino acids were identified. The classification of the homologous virulent factor proteins are 21 metabolic proteins 3 membrane associated protein and a protein kinase (Table 3). Binding affinities of *M. tuberculosis* virulent factors vs. B cell epitopes and HLA class I and II alleles were measured by BCPRD and NetMHC. A peptide was considered having significant affinity to virulent factors if it had a BCPRD score ≥ 0.9 for B cell epitope (Table 4) and IC50 value ≤ 50 for HLA class II and I epitopes. The analysis of binding affinities of HLA class II peptides is 83% as compared to HLA class I (17%). Of 79 HLA class II host-pathogen epitopes highest affinity was to HLA-DRB10101 (57%) followed by HLA-DRB10701 (14%), HLA-DRB10401 (11%), HLA-DRB10301 (6%), HLA-DRB11101 (5%), HLA-DRB10302 (2.5%) and HLA-DRB11501 (2.5%). The analysis of HLA class I peptides indicated a maximum affinity of peptides binding to allele A*0201 (44%) followed by B*0702 (31%), 2 for A*1101 (13%) and 6 each for A*0101 & A*2402 (Figure 2, Table 1 & 4). HLA class II has significant number of high affinity binding peptides which could be involved in dys-regulation of T cell function and or autoimmunity [28]. The virulent factors binding to host tissue antigens could influence signaling and immune evasion [29].

The myco-bacterial virulent proteins of this study were classified into categories such as structural, metabolic, catalytic, kinases and transport proteins (Table 4, 1 & 2). Majority of the virulent factor epitopes having binding affinity for B and HLA class I and II alleles were involved in (i) lipid, protein and nucleotide metabolism/degradation pathways (ii) free radical mediated damage pathway (iii) ion transport (iv) degradation of proteins glycosylation/phosphorylation pathways. These similarities could impact metabolic rate of reactions, interfere in homeostasis of cell and could trigger cell damage by free radical mediated reactions [29]. Peptides, which have binding capacity to more than one allele of HLA class-I and II, are called promiscuous peptides. Promiscuous peptides for HLA class II were 24% (19/79) and none for HLA class I molecules. Interestingly, the presence of promiscuous peptides for HLA class II suggest that these peptides could have role in presentation of antigens for immune recognition and amplification of response against *M. tuberculosis* (Table 3 and 4) [30]. Genetic studies on HLA class I and II alleles are associated with susceptibility to disease and the present study indicates their similarities/binding to *M. tuberculosis* virulent factors.

This study identified a host peptide human manganese superoxide dismutase (MnSOD) sharing structural similarity with *M. tuberculosis* Superoxide dismutase (M. tb SOD) virulent factor. This epitope was previously implicated in diseases such as atopic dermatitis (AD), autoimmune hepatitis (AIH), Epstein-Barr virus (EBV) infection and fumigatus-allergy [31–34]. A peptide from *M. tuberculosis* Superoxide dismutase (M. tuberculosis SOD)
HAFYLQYKNVKVDFA, bound to allele HLA-DRB1*15:01 allele with high affinity is identified (Table 3). HLA-DRB1*15:01 is known to be responsible for susceptibility to tuberculosis. Further, there was a high structural similarity of M.tb SOD and human MnSOD at both primary and tertiary level (Figure 3) [35]. Clinical studies identified MnSOD cross-reactive autoimmune antibodies in patients with atopic dermatitis (AD) and has been implicated in disease pathogenesis [31]. This epitope is conserved and well investigated in Aspergillus fumigatus Mn SOD (IKKC) in relation to various autoimmune conditions [31–34], identifying the key homologous peptides of host pathogen similarity could help us design highly selective peptide blockers, which would be a valuable addition to complement the understanding of autoimmune diseases.

PDB crystal structures of superoxide dismutase M.tb, human and Aspergillus fumigatus were available. Superposition revealed a high measure of structural conservation and similarity with low RMSD having Qres score of 0.9 and showing high measure of the similarity of the ‘C-C alpha’ distances between residues of aligned proteins (Figure 3) [36]. These structurally similar regions of these three epitopes (which is known to cause atopic dermatitis) could be significant in tuberculosis in causing immune inflammatory processes characteristic of TB (Figure 3). It can be noted that many other mycobacterial antigens have been associated with autoimmune diseases [37–39]. There is no clear evidence that M.tb virulent factors are involved and further clinical investigations on epitope specificities involved in autoimmunity are warranted.

Although, computational tools have been used in the past to examine molecular mimics in other diseases [40]; the understanding of these epitopes need to be further probed. Utilizing these methods, we have identified potential auto-reactive B cell, HLA class II and class I epitopes that may elicit autoimmune response during M. tuberculosis infection. The findings of this study are as follows: (i) there were 95 auto reactive B cell, HLA class II and class I epitopes that are similar to peptides of myco-bacterial virulent factors; (ii) 22% of similarities were promiscuous that are binding to HLA class II cell epitopes (iii) high Qres score of 0.9 suggesting structural similarity between M.tb SOD and human Mn SOD and the epitope has an established evidence of autoimmunity. The similarities were observed across the spectrum of metabolic activities of host cell suggesting M.tb could use multiple split approach in causing tuberculosis.

Conclusions:
We report regions in the M.tb virulent factors having human homologs sharing predicted B-cell and T-cell epitopes. Data shows the presence of 22 B-cell, 79 HLA class II and 16 HLA class I specific predicted peptides in these virulent factors having human homologs. A known peptide (HAFYLQYKNVKVDFA) associated with autoimmune atopic dermatitis is shown in the superoxide dismutase homolog structures of the bacterium (PDB ID: 1IDS) and human (PDB ID: 2QKC). This data provides insights in understanding infection-associated auto-immunity.

Acknowledgement:
The authors gratefully thank CODEWEL Nireekshana-ACET for support.

References:
[1] Lambris JD et al. Nat Rev Microbiol 2008 6: 132 [PMID: 18197169]
[2] Srinivasappa J et al. J Virol 1986b 57: 397 [PMID: 3753614]
[3] Hide G et al. Mol Biochem Parasitol 1989 36: 51 [PMID: 2682237]
[4] Ghansah T et al. J Eurakot Microbiol 2002 49: 383 [PMID: 12425525]
[5] Spiliotis M et al. Gene 2003 323: 57 [PMID: 14659879]
[6] Vicogne J et al. J Biol Chem 2004 279: 37407 [PMID: 15231836]
[7] Sfriso P et al. J Leukoc Biol 2010 87: 385 [PMID: 20015961]
[8] Shahrizaila N & Yuki N, J Biomed Biotechnol. 2011 2011: 829129 [PMID: 21197269]
[9] Vardhini D et al. Infect Genet Evol. 2004 4: 21 [PMID: 15019586]
[10] Birnbaum G & Kotilinek L, Ann N Y Acad Sci. 1997 835: 157 [PMID: 9616771]
[11] Birnbaum G et al. Ann Neurol 1993 34: 18 [PMID: 8517675]
[12] Ghosh K et al. Rheumatol Int 2009 29: 1047 [PMID: 19360412]
[13] Mor F & Cohen IR, J Clin Invest 1992 90: 2447 [PMID: 1281835]
[14] Res PC et al. Lancet 1988 2: 478 [PMID: 2457140]
[15] Salvetti M et al. J Autoimmun. 1992 5: 691 [PMID: 1489484]
[16] Salvetti M et al. J Neuroimmunol 1996 65: 143 [PMID: 8964896]
[17] van Eden W et al. Proc Natl Acad Sci U S A 1985 82: 5117 [PMID: 3922797]
[18] van Eden W et al. Nature 1988 331: 171 [PMID: 2448638]
[19] Agewala JN & Wilkinson RJ, Eur J Immunol 1999 29: 1753 [PMID: 10382737]
[20] Gowthaman U & Agewala JN, J Proteome Res. 2008 7: 154 [PMID: 18034454]
[21] Chen L et al. Nucleic Acids Res 2012 40: D641 [PMID: 22067448]
[22] Boratynet GM et al. Nucleic Acids Res. 2013 41: W29 [PMID: 23609542]
[23] Käll L et al. J Mol Biol. 2004 338: 1027 [PMID: 15111065]
[24] El-Manzalawy E et al. Comput Syst Bioinformatics Conf. 2008 7: 121 [PMID: 19642274]
[25] Nielsen M et al. Bioinformatics 2004 20: 1388 [PMID: 14962912]
[26] Humphrey W et al. J Mol Graph. 1996 14: 33 [PMID: 8744570]
[27] Lundegaard C et al. Bioinformatics 2008 24: 1397 [PMID: 18413329]
[28] Sundberg EJ et al. Semin. Immunol. 2007 19: 262 [PMID: 17560120]
[29] Schmid-Hempel P, Philos Trans R Soc Lond B Biol Sci. 2009 364: 85 [PMID: 18930879]
[30] Mustafaei AS, PLoS One. 2014 9: e103679 [PMID: 25136958]
[31] Schmid-Grendelmeier P et al. J Allergy Clin Immunol. 2005 15: 1068 [PMID: 15867868]
[32] Cramer R et al. J Exp Med 1996 184: 265 [PMID: 8691141]
[33] Miyata M et al. Clin Rheumatol 1995 14: 673 [PMID: 8608687]
[34] Dalpke AH et al. J Med Virol. 2003 71: 408 [PMID: 12966547]
[35] Flückiger S et al. J Immunol. 2002 168: 1267 [PMID: 11801664]
[36] Eargle J et al. Bioinformatics 2006 22: 504 [PMID: 16339280]
[37] Wucherpfennig KW, J Clin Invest 2001 108: 1067 [PMID: 11801664]
Edited by P Kangueane

Citation: Gutlapalli et al. Bioinformation 11(12): 517-524 (2015)

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License.
Supplementary material:

Table 1: Predicted MHC class II restricted peptides in virulent factors having human homologs using NETMHC 2.2 (affinity score: IC50 < 50).

pos	matched peptide	affinity(nM)	Allele
7	NYLACTYSVLVTSAA	30.3	HLA-DRB10701
81	LLAFTNPTVNSYKRL	28.2	HLA-DRB10101
11	YLQYTSGRSTPAGV	38.8	HLA-DRB10401
85	FCLFSSGAAALLGSPG	7.5	HLA-DRB10101
68	RNTVQFAAAAVQAME	6.8	HLA-DRB10101
102	RNTVQFAAAAVQAME	35.6	HLA-DRB10701
17	YLQYTSGRSTPAGV	38.8	HLA-DRB10401
5	LGHFAAASAAATGLVV	3.7	HLA-DRB10101
8	QLTYRELADALRDLA	20.8	HLA-DRB10401
194	GNTVAMLRIPQSAMS	15.2	HLA-DRB10101
8	YARYLAEHGARRVL	4.8	HLA-DRB10701
11	RHRLLSDVTRALADE	17.9	HLA-DRB10301
148	ILAELGMDDTTTLLVA	34.4	HLA-DRB10101
12	LAEELGMDDTTTLVAAL	17.9	HLA-DRB10301
6	ERHTAINSLVTATHC	29.1	HLA-DRB10401
20	LDFIARLRSQGAIVV	4.9	HLA-DRB10101
157	LAYVLFSGSTGEPK	13.4	HLA-DRB10101
109	TLLADVLAAAPAEF	10.5	HLA-DRB10101
195	VQAEALSAAQHISAYP	15.7	HLA-DRB10101
219	GGHFLNNDHLDHAVAR	17.5	HLA-DRB10101
43	KSLVANDVDDTFVQYQ	39	HLA-DRB10301
303	AAQRAVRAALNGRTA	28.1	HLA-DRB10101
45	YHDMGLILIGICAPLV	12.6	HLA-DRB10101
64	RDFYEQLTAGQARIPC	18	HLA-DRB10101
120	LPLYHDMGLIGICA	34.2	HLA-DRB10101
40	AVYRAAALAAAGQVE	5.4	HLA-DRB10101
115	KLMTRIAAGAGMSGV	8.8	HLA-DRB10101
18	VVTGLNNSVASGRIA	16.5	HLA-DRB10101
43	LPYFHDMDGLVIGICA	14	HLA-DRB10101
50	VDYRLIPKHSGLMAL	17.8	HLA-DRB10101
6	DSAGGYLALALAQR	15.7	HLA-DRB10701
2	HAFYLYQKVNKVDFAPA	5.9	HLA-DRB10101
19	WYDAGEPHISGQIN	10	HLA-DRB11501
31	YGALEPHISGQINEL	15.8	HLA-DRB10101
50	PDDLWYDAGEPHIS	38.4	HLA-DRB10101
41	SLRLQVQGSKLPE	7.6	HLA-DRB10101
154	EGEYRPGYTLNNGY	40.6	HLA-DRB10101
169	PCDRLVLLQPNQCF	47.7	HLA-DRB10101
4	QWSSLAAQRAKALDS	3.8	HLA-DRB10101
111	LLATAARHMVTAWRR	8.8	HLA-DRB10101
163	DSIVALSVQQAR	12.2	HLA-DRB10101
165	QAAYVIFTSCTGTGTP	12.5	HLA-DRB10101
392	AYVIFTSCTGTGTPKG	34.4	HLA-DRB10101
438	GELVTVAEQTLGAL	42.3	HLA-DRB10101
129	DLDIRARVAALPE	10.4	HLA-DRB10101
54	GVDLDIRARVAAL	22.9	HLA-DRB10301
390	YLITSGTTGLPGKGV	41.8	HLA-DRB10101
59	ICYSYRTIGDIDLAR	24.4	HLA-DRB10101
111	VDALSANIVSAAVAD	13	HLA-DRB10101
34	RGERFVDALSANIVS	9.8	HLA-DRB10701
41	GERFVDALSANIVS	30.3	HLA-DRB11302
115	AANRLDVMAAQLRA	13.4	HLA-DRB10101
263	GHSILGVEAAAYLAG	40.6	HLA-DRB10101
90	VGHSLGVEAAAYLAG	39.8	HLA-DRB10701
102	LTVDTSCSSALAAFH	39.6	HLA-DRB10101
164	VQFVGPLSVDSALA	42.6	HLA-DRB10101
103	SFAILHPKYYEEIVR	24.3	HLA-DRB10101
53	GTKTTARVANILAG	12	HLA-DRB10101
133	TLLLGPGPTGKTSVA	39	HLA-DRB10101
Table 2: Predicted MHC class I restricted peptides in virulent factors having human homologs using NETMHC 2.2 (affinity score: IC50 < 50).

pos	matched peptide	affinity(nM)	Allele
18	ALLEGLLRA	26	A*0201
394	FIDAYALV	5	A*0201
438	AINTLLLY	26	A*1101
4	FLITVALAL	9	A*0201
281	LLAQAEQ	17	A*0201
420	LPRITSSKL	7	B*0702
433	APAGRCGLL	14	B*0702
272	TTAPATPV	20	B*0702
236	YPAVLTSVP	9	B*0702
685	PSDPTALAY	14	A*0101
862	SLGVYTPA	13	A*0201
218	FHYDMLV	42	A2402
166	YLQYKNVKV	9	A*0201
1530	ALAAILADV	7	A*0201
697	TSSTGEPK	41	A*1101
16	LPRRLAIAA	33	B*0702

Table 3: Human homologs of M. tuberculosis virulent factors identified using BLASTP search (cut-off E value < 0.01).

M. tuberculosis	Human	GenBank Description	Gene ID
Pyrroline-5-carboxylase (proC)		NP_07566	Pyrroline-5-carboxylate reductase 3
SAICAR synthetase (purC)		NP_001072993	Multi-functional protein ADE2 isoform 1
Fatty acyl-AMP ligase (fadD33)		XP_005257758	Acyl-CoA synthetase family member 2
Glutamine synthetase (GlnA1)		NP_0075655	Lengsin isoform A
Phenylazoxide synthase MtB		XP_005265782	Acyl-CoA synthetase isoform X5
Myco-cerotic acid synthase (Mas)		NP_004095	Fatty acid synthase
Esterase/lipase (LipF)		NP_997248	Aryl acetamide deacetylase-like 2 precursor
fbpC2		NP_001975	S-formyl glutathione hydrolase
Secreted antigen 85-B FbpB (85B)		XP_005266335	S-formylglutathione hydrolase isoform X1
Salicyl-S-ArcP synthetase		NP_00120208	Acyl-CoA synthetase family member 3
Peptide synthetase (MtB)		NP_115890	Acetyl-coenzyme A synthetase 2-like
Peptide synthetase (MtB)		XP_005265781	Acyl-CoA synthetase isoform X4
Poly ketide synthetase (MtBc)		NP_004095	Fatty acid synthase
Polyketidesynthetase (MtBc)		NP_004095	Fatty acid synthase
GTP pyrophosphokinase (RelA)		NP_940929	3'-pyrophospho-hydrolase MESH1
ESX-1 type VII secretion protein		XP_005264430	ATPase family AAA domain 2B isoform X2
Alkyd hydroperoxidereductase C		NP_054817	Thio-redoxin-dependent peroxide reductase
Fatty-acid-AMP ligase (FadD26)		NP_055789	Disco-interacting protein 2 homolog C
Fatty-acid-AMP ligase (FadD26)		NP_005252487	Disco-interacting protein 2 homolog C isoform X5
Superoxide dismutase [FE] (SodA)		NP_00190636	Superoxide dismutase [Mn]
Sensor histidine kinase (DevS)		NP_00137311	cGMP-dependent 3',5'-cyclic phosphodiesterase
Membrane-anchored mycosin (MycP1)		NP_777596	Proprotein convert a ses-ubtilisin
Cu, Zn Superoxide dismutase (sodC)		NP_005116	Copper chaperone for superoxide dismutase
Heat shock protein (HspX)		NP_077721	Outer dense fiber protein 1

Table 4: Predicted B cell epitopes in virulent factors and its corresponding human homologs using BCPRED (cut-off score < 0.9).

VFG	Epitope (M. tb)	Human AC #	Matched peptide (human)	Domain name			
139	STCA VTPVPGGIL	XP_005257758	NPSPVTAHFPEDTVEQKAES	Malonyl-CoA synthetase			
139	DAISGGWNTGAAE	NP_057655	QELVDGLYHTGANVESNSS	Glutamin synthetase			
140	FAGLGGATETAV	XP_005265782	IFNVEGYTEVSWATYRIP	Adenylate forming			
140	ADSGDDCPIPVAG	XP_005265782	RTNGFTIQQGESQVFLGGR	Adenylate forming			
140	JVDPPNEIQVFST	NP_054817	IDPNGVKHLSVNDLPVGR	Peroxedoxin (PRX)			
140	PKQTAQVFDALVP	NP_055789	GDESQDSDFNRSLFDGTQ	Adenylate forming			
140	AIVEEAPAASE	NP_004095	IILRPNQPPPAPAHATLP	Polyketide synthases			
140	VHGDNVANGYWWK	XP_005252487	VCAVATGSYGLSMTKNT	Adenylate forming			
142	AEYTLPLDLWDGD	NP_001019636	KHSLPDLDPDYGALEPHIA	Fe/Mn superoxide dismutases			
181	MAIPLWANGSKG	NP_001975	LPQLINANFPVDPQMSIFG	S-formylglutathione hydrolase			
ID	Sequence 1	Accession 1	Function	ID	Sequence 2	Accession 2	Function
------	--------------------------------	-------------------	---	------	--------------------------------	-------------------	---
1817	LLRAGAIPVMCLPGHRAAEL	NP_001230208	Malonyl-CoA synthetase	1820	RVAELRQTSAPVVIDEGVF	NP_115890	Malonyl-CoA synthetase
1820	DENALAAINVTEGPAATPPQT	NP_115890	Malonyl-CoA synthetase	1821	TSGTTGLPKGAVAVHPVRPAE	XP_005265781	Adenylate forming domain
1821	PKINTTMLHDSDLQPVPTG	XP_005265781	Adenylate forming domain	1823	LAGHDVCYVGAASELYGPA	NP_004095	Polyketide synthases
1823	GMVEGHGATATRLGRTELS	NP_004095	Polyketide synthases	2380	DEAYALVQERDGRTDPPQCE	XP_005264430	ATPase family AAA
2380	SPPPPDVPTLVPIPGTPGT	NP_055853	EspG family	2389	SPPPPDVPTLVPIPGTPGT	NP_055853	EspG family
2389	PPGAPVTPTPPTPTPTPTPT	NP_055853	EspG family	2391	DPGWNNQVTQTVTPAWYAPL	NP_777596	Peptidase S8 & S53
2391	HTLHEKGSQCGDPYGNAILN	XP_005264430	Peptidase S8 & S53	2401	HTLHEKGSQCGDPYGNAILN	XP_005264430	ATPase family AAA