ELECTRONEGATIVITY: EXPECTATION VALUE OF POWER OF AN ATOM IN A MOLECULE.

P Ramakrishnan.
Department of Chemical Engineering, NIT, Rourkela, Odisha.

Abstract
Advancing theory of electronegativity, new approach is established by the study of binding (or bonding) state in between two homo-atoms or hetero-atoms. Electronegativity is a confused as it is sandwiched among three entities such as i) energy ii) force iii) Charge. This paper interprets that Electronegativity (χ) is the expectation value of attracting or holding power of electron an atom in either of homo-atomic or hetero-atomic system. This value has been described in terms of von Neuman -minimax theorem: χ(maxA . min B) =χ (min A. max B) where max A and max B stands for atom’s maximum ability and min A and min B stands for atom’s minimum ability. Three structures(i)AB(Covalent structure) ;mini-max theorem,(ii)A+B-(ionic structure);right-side of mini-max theorem, (iii)A-B+(ionic structure);left-side of theorem for giving mathematical formulation electronegativity are established. Hellmann-Feynman force as an expectation value for electronegativity is established.

Introduction:-
Electronegativity is as old as chemical science. This chemical property cannot be measured directly. This can be calculated from other atomic or molecular properties. This is not a property of atom alone but a property of atom in a molecule. Electronegativity of the concerned atom varies with environment. In the year 1811, J.J.Berzelius, classified atoms as electronegative or electropositive. In the year 1809, Amen do Avogadro has also introduced ‘Oxygencity’ a correlated topic of electronegativity. In the year 1870 Baker had already inserted three atomic parameters like weight (quantity of matter), valence (quantity of an atom’s combining power), and electronegativity (quality of an atom’s combining power). The complete death of caloric theory of heat and the birth of thermo-chemistry from the laws of thermodynamics and kinetic molecular theory led the scientific community to think of a correlation between the heat of a reaction and electronegativity. The probable correlation between electronegativity and heat of reaction was suggested by Van’tHoff12, Caven & Lander1,3 and Sackur1,4. Electronegativity was defined with help of terminologies such as heterolytic/homolytic bond dissociation, electron affinity, ionization energy (adiabatic, ground state, ionization, ionization potential and vertical ionization), and power. The electronegativity is an intuitive construct. This is being used to sketch the distribution and rearrangement of electronic charge in molecule. The fundamental descriptors in chemical science like bond energies, bond polarity, dipole moments, and inductive effects are being conceptualized and modeled for evaluation. The scope of this concept is so broad that ionic bond, atom-atom polarizability, equalization of electronegativity, apicophilicity, group electronegativity, principle of maximum hardness, electronic chemical potential, polar effect (inductive effect, effective charge, pi-electron acceptor/donor group) field effect, conjugative mechanism, mesomeric effect could...
have been explained. The correlations between electronegativity and superconducting transition temperature for solid elements and high temperature superconductors\(^5\), the chemical shift in NMR spectroscopy\(^7\), isomer shift in Mossbauer spectroscopy\(^8\) have already been explained. This concept has also been utilized for the design of materials for energy conversion and storage device\(^9\). The quest for exact status of electronegativity is unending still to date. A vast number of qualitative and quantitative scales have been proposed intuitively by different researchers across the Globe.

Mathematical formulae of Electronegativity.

2.1 Pauling’s electronegativity formula:

Linus Pauling\(^10\) expressed mathematically the difference in electronegativity as a square root of extra ionic resonance energy (\(D\)). Again, Pauling et al. in 1937 paper have reported that (\(D\)) was not always positive for which Pauling replaced \(\frac{DE(A^2)_D + DE(B^2)_D}{2}\) in place of \(\frac{DE(A^2)_D + DE(B^2)_D}{2}\) for his electronegativity equation such as

\[
|C_A - C_B| = 0.208 D
\]

\[
D = \sqrt{DE_{AB} - 0.5(DE_{A^2} + DE_{B^2})}\text{ based on AM}
\]

\[
D = \sqrt{DE_{AB} - (DE_{A^2} - DE_{B^2})^{1/2}}\text{ based on GM}
\]

Pauling’s quantum mechanical approach also indicates the dipole moment due to the presence of significant ionic structure \(A^+ B^-\). The extra-ionic resonance energy(\(D\)) arises out of contribution of ionic canonical forms to bonding and it was experimentally verified\(^11,12\).

2.2 Mulliken’s (1934 and 1935) absolute electronegativity

Mulliken\(^14,27\) developed an alternative definition for the electronegativity shortly after Pauling’s definition based on energy concept. He considered three structures (i)AB, (ii)A+B-, (iii)A-B+ where the two ionic structures (ii) and (iii) would be of equal weights in the wave function containing ii and iii and so that the complete covalent structure will be possible under the condition

\[
IP_A - EA_B + V = IP_B - EA_A + V
\]

\[
\Rightarrow IP_A + EA_A = IP_B + EA_B
\]

Where \(IP_A + EA_A\) or \(IP_B + EA_B\) is a measure of electronegativity of atom A or B.

Mulliken electronegativity can be also termed as negative of chemical potential by incorporating energetic definitions of IP and EA so that Mulliken Chemical Potential will be a finite difference approximation of electronic energy with no of electrons.

\(X(M) = -\mu(M)\)

Lang and Smith\(^51,52\) defined electronegativity as a simple function of

\[\text{val } (Ia) + (1 - \text{val}(Ea)\]

where

\(\text{val} , Ia , Ea\) stand for a fraction less than 1, ionization energy (ionization potential IP), electron affinity respectively

The ionization energy values (Ia) have been adjusted for pairing and exchange interaction. They have reported a set of electronegativity values for elements from hydrogen to Astatine except zero group elements.

Other electronegativity formulae

Malone\(^9\) suggested in 1933 a rough proportionality between the dipole moment of the bond A-B and electronegativity difference as

\[
\mu \Box |X_A - X_B|_{Pauling}
\]
Gordy has reported various ways for calculation of electronegativity values\(^{41,42}\). One of all the three ways considers the electronegativity in terms of electrostatic potential and covalent radius.

\[
\chi_g = 0.62(Z'/r) + 0.5
\]

\(Z\) – screen charge by Gordy’s technique.

The screening factor for close shell electrons and valence electrons in Gordy’s technique are 1 and 0.5 respectively. For the atom with \(n\) valence electrons, \(Z'=0.5(n+1)\) the above expression is modified as

\[
\chi^G = 0.31 \times \left(\frac{n+1}{r} \right) + 0.5
\]

Gordy\(^{45}\) correlated the ionic character with electronegativity difference by the use of nuclear quadrupole couplings constants for halide molecules. Gordy has assumed the use of p-orbitals by halogen atoms in formation of single bonds and has established the ionic character equation

\[|\chi_A - \chi_B| = 2 \text{ for } 2 \quad \text{and for } |\chi_A - \chi_B| \geq 2.\]

Wilmshurst, Polansky and Derflinger \([J.A.Chem.Phy.30. 561(1959)]\) have reported different ionic relation:

\[|\chi_A - \chi_B|/|\chi_A + \chi_B| = [\text{Ionic(AB)}]\]

which is used to analyse quadrupole coupling constants.

2.3.4. Phillips\(^{46}\) has suggested dielectric definition of electronegativity by proposing the static electronic dielectric equation

\[
\varepsilon_0 = 1 + \frac{(h\omega_p/2\pi)^2}{\left[(E_g)^2 + (C_{AB})^2 \right] \times a}
\]

Where

\[
C_{AB} = 0.9e^2 \left(\frac{Z_A}{r_{A0}} - \frac{Z_B}{r_{B0}} \right) \exp \left(-k_s r_{A0} \right)
\]

\(C_{AB}\) – semi-classical charge transfer constant which represents dielectric electronegativity.

\(a\) – a number of order unity

\(h\omega_p/2\pi\) – plasma energy

\(k_s\) – Thomas Fermi screening radius for a free electron gas

This scale is exclusively used for calculation of electronegativity values for tetravalent elements like Carbon, Silicon, Germanium and Tin.

Simons\(^{25,47}\) has reported a theoretical scale to determine atomic electronegativity values where bonds are described by Gaussian Type orbitals. Simons defined the electronegativity difference as

\[|\chi_A - \chi_B| = k \times (f_{AB} - 0.5)\]
St. John and Bloch have reported quantum-defect electronegativity formula using “Pauli force” model potential. This force model potential represents the pseudo potential of a one-valence-electron ion except in the vicinity of nucleus and is applied in studies of atoms, molecules and solids. Energy of the orbital is represented as

\[E(n, l) = -0.5Z^2 \left[n + 1(l) - l \right]^2 \]

Where

- \(Z \) = core charge
- \(\tilde{l}(l) - l \) = quantum defect

The orbital electronegativity for valence orbital is defined as

\[\chi_{l}^{JB} \equiv \frac{1}{r_{l}} \equiv \frac{1}{\tilde{l}^{2}(l + 1) / Z} \]

where

- \(l = 0, 1, 2 \) represent s,p,d orbital respectively
- \(\chi_{JB} \) – orbital electronegativity for valence orbital
- \(r \) = radius for valence orbital
- \(l \) = orbital quantum number

Atomic electronegativity is represented as

\[\chi = 0.43 \times \sum_{l=0}^{2} \chi_{l}^{JB} + 0.24 \]

Jorgensen introduced optical electronegativity scale (\(\chi_{OP} \)) for rationalizing electron transfer spectra of transition metal complex (MX). In this scale a linear difference in \(\chi_{OP} \) represent the photon energy (\(h\gamma \)) as per the following relation.

\[h\gamma = [c_{OP}(X) - c_{OP}(M)] \times 3 \times 10^4 \text{ cm}^{-1} \]

A linear relationship of \(\chi_{OP} \) to the difference in eigen values as introduced by Jorgensen is an idea which can be rationalized in terms of density functional approach to \(\chi \).

Electronegativity formulae based on Energy and Charge

Iczkowski-Margrave, Hinze-Whitehead-Jaffe, Huheey, Sanderson, G Klopman, Ponec, Parr et al., Watson et al. have reported about direct relation of the total energy of the system with the charges.

Iczkowski & Margrave approach

RP Iczkowski and JL Margrave introduced the energy equation of atoms in terms of net-charge (number of electrons minus nuclear charge) on an atom relative to neutral atom. The energy is termed as valence state energy. The expression is represented as

\[E = aN + bN^2 + cN^3 + dN^4 \]

In above equation, \(N \) is the net-charge on the atom and the charge coefficients \(a, b, c, d \) are the constants that depend atom including its valence state. Electronegativity of the atom is defined in terms of the first derivative of \(E \) with \(N \) and this derivative represents the potential around the atom for a given atomic charge. This derivative measures the power of atom to attract electrons. In equation below, The quantity - \((dE / dN)_{N=0} \) (for neutral atom) represents electronegativity.

\[c = \frac{\delta E \delta}{\delta dN \delta} \]
\[\frac{IP + EA}{2} \]

Hinze-Whitehead-Jaffe formulation to Electronegativity

Hinze et al. defined orbital electronegativity as the first derivative of energy of an atomic orbital \((j) \) with respect to electron occupancy \((n_j) \) of the orbital i.e.

\[\chi_{A,j} = \frac{\delta E_A}{\delta n_j} \quad \text{……(i)} \]

The justification for the said definition is obtained from the fact that atomic electronegativity is reasonably considered because of its reference to the atomic orbital which half-filled orbital \((n_j=1) \) before the formation of bond,

\[dn_A = dn_B \]

\[\frac{dE_A}{dn_A} = \frac{dE_B}{dn_B} \quad \text{………(ii)} \]

R T Sanderson approach to electronegativity

R T Sanderson considered electronegativity is an explanation of chemical reaction where charge transfer takes place. The driving force for reaction comes from electronegativity equalization. The charge transfer occurs from atom with lower electronegativity (higher chemical potential) to atom with higher electronegativity (lower chemical potential) and Sanderson reported equalization of different atomic electronegativity values during the formation of a molecule or a radical. The final value is obtained by considering the geometric mean of all atomic electronegativity values for estimating the atomic charge. He introduced the ratio of electronegativity change in forming the compound to the change in acquisition of a unit positive or negative charge. The unit change in electronegativity \((\Delta SR) \) is obtained from the original electronegativity \((SR) \) with the help of the following relation \[\chi(\Delta S/\sqrt{\chi SR} = 2.08 \] and \(\chi SR \) value is expressed in terms value \[\sqrt{\chi P - 0.77}/0.21 \] where \(\chi P \) = Pauling’s value. Sanderson has also defined electronegativity in terms of electron density.

G Klopman’s atomic electronegativity

G Klopman used Rydberg formula for the calculation of the atomic spectra and proposed a modified formula for calculation of atomic electronegativity of the system in the valence state and also for quantitative determination of the diagonal matrix elements in self-consistent field calculation of a molecule. Modified Rydberg formula is represented as

\[E = \frac{R_y (Z - \sigma)^2}{(n - dn)^2} = \frac{13.5 (Z - \sigma)^2}{(n - dn)^2} \text{ eV} \]

\[R_y \] – Rydberg constant
\[n \] – Principal quantum number
\[\sigma \] – Screening constant
\[Z \] – atomic number
\[dn \] – Quantum defect

The screening constant \((\sigma) \) is represented as

\[\sigma = \sum_{j \neq i} q_j \sigma_j \]

Where
\[q_j \] is the occupation number of spin orbital \(j \)
σ_{ij} is the screening of the electron i by the electron j.

The value of σ (core electron – valence cell electron) is considered to be 1 because core electrons are not considered.

Quantum defect (dn) has been calculated from respective ionization potential i.e.

dn = 3.687(Z^*) / IP

Where,

n – Principal quantum number

Z^* – effective nuclear charge

IP – Ionization potential

Total electronic energy of Valence shell,

\[E_{\text{total}} = \hat{\alpha}_i q_i - \frac{13.6}{(n-\frac{d}{2})^2} \hat{\gamma}_i q_i \hat{\chi}_{j\mu} \frac{\partial}{\partial \mu} + \hat{\alpha}_j q_j A^\ast d_j + \frac{1}{2} \hat{\alpha}_i \hat{\alpha}_{j\mu} q_i q_j A^\ast + \hat{\alpha}_i q_i \hat{\chi}_{j\mu} q_j \frac{\partial}{\partial \mu} C_j \]

B_i = 13.6 - \frac{Z^2}{(n-\frac{d}{2})^2} \left[1 - 2 \frac{\Gamma}{(n-\frac{d}{2})^2} \right] Z s_j; \quad C_j = \frac{13.6}{(n-\frac{d}{2})^2} s_j^2

Further, Total electronic-energy equation of the diatomic system (AB) at barycenter is represented as,

\[E_{\text{total}} = \hat{\alpha}_i q_i B_i + \frac{1}{2} \hat{\alpha}_j \hat{\alpha}_{j\mu} q_j q_j A^\ast d_j + \frac{1}{2} \hat{\alpha}_i \hat{\alpha}_{j\mu} q_i q_j A^\ast (1- d_j) + \hat{\alpha}_i \hat{\alpha}_j q_i \hat{\chi}_{j\mu} q_j \frac{\partial}{\partial \mu} C_j \]

Klopman defined atomic electronegativity as the derivative of total electronic energy of the valence cell with respect to the charge q_i, as mentioned below.

\[c_{\text{Atomic Electronegativity}} = \frac{dE}{dq_i} = B_i + \frac{1}{2} \hat{\alpha}_j \hat{\alpha}_{j\mu} q_j q_j A^\ast d_j + \frac{1}{2} \hat{\alpha}_i \hat{\alpha}_{j\mu} q_i q_j A^\ast (1- d_j) + 2 \hat{\alpha}_i \hat{\alpha}_j q_i \hat{\chi}_{j\mu} q_j \frac{\partial}{\partial \mu} C_j \]

And also neutral atomic electronegativity is obtained from the above equation when all the values of q_j (the occupation number of particular atomic spin orbital by an electron) will be equal to 1 except for participating electrons in the bonds where q_j=1/2.

Ponec’s idea of Global electronegativity

R. Ponec has reported a generalization of the orbital electronegativity concept of Hinze et al. and it is based on the semi empirical Complete Neglect of Differential Overlap (CNDO) approximation. Ponec’s basic equation is written as,

\[\chi_{Aj} = -U^A_{j} - \left(P_A - 1/2 \right) \gamma_A \]

Where

\(\chi_{Aj} \) – orbital electronegativity

\(U^A_{j} \) – one electron energy of orbital j

\(\gamma_A \) – electron repulsion integ

Parr’s density functional electronegativity;

Parr et. al. defines Density functional electronegativity with the help of Density Functional Theory (DFT) which is based on the theorems of Hohenbrg and Kohn such as

Theorem I : \(E[r] = \hat{\Omega} r(1) \nu(1)dt + F[r] \)

Theorem II : \(E_v \hat{\Omega} \nu(1)dt + F \hat{\Omega} \nu(1)dt \)

However, theorem I implies that the ground state electronic energy is a functional of the density. Whereas, theorem II considers inequality with equality holding for \(p'=p \), \(E_v[p'] \geq E_v[p] \). The density \(\rho \) and energy \(E \) are determined from the stationary principle. The true energy \(E \) is obtained by minimizing the function with the constraint so that the density integrates to the total number of electrons. This constraint is Lagrange multiplier \(\mu = [\delta E/\delta \rho] \), constant external potential and Parr et al. identified electronegativity as the negative of Lagrange multiplier which is also considered as chemical potential. \(\mu = [-\delta E/\delta \rho] \), is an external potential. These authors have replaced \([dE/d\rho] \) by the
first derivative of energy with respect to N such as \[\frac{dE}{\delta N} \], on the basis work of Einhorn et al [124]. where \(y \) stands for fixed potential due to set of nuclei and external field. \(\rho \) represents for electronic density. Parr et. al.\(^{64}\) defined electronegativity as,
\[
c = - m = - \frac{\partial E}{\partial N}
\]
. Parr and Bartolotti\(^{65}\) proposed the formula for \(\mu \) as
\[
m = g \frac{\text{IP} \cdot \text{EA}}{\text{IP} - \text{EA}}
\]
Where, they have proposed the approximate constancy of \(\gamma \) (i.e. a fall-off parameter) in the following electron loss and gain process such as
\[
A^+ \rightarrow +(e) \rightarrow A \rightarrow +(e) \rightarrow A^-
\]
The geometric mean law constitutes a prediction on how molecular electronegativity are related to atom. Parr and Pearson\(^{66}\) have established an Global Electrophilicity Power index
\[
(w) = \mu \frac{2}{2\eta}
\]
where \(\eta = \text{chemical hardness} \)

Allen’s formula of Spectroscopic Electronegativity

Allen\(^{23,24}\) defines Electronegativity as the average one-electron energy of valence shell electrons in ground-state free atom and proposed it as third dimension and also energy dimension of periodic table. So, this type of electronegativity is a Free-atom-ground-state quantity with a single defining number which gains its meaning as an extension of periodic table. Allen has introduced two terms Energy index (in situ Xspec of free atom) and Bond polarity Index (projection operator being applied to a molecular orbital wave function to get in situ average one-electron energies for atoms in molecules i.e in situ \(\Delta X_{\text{spec}} \)). The fractional polarity defined from Bond polarity index is equivalent of Pauling’s dipole moment referenced ‘ionic character percent’. Allen has reported a new chemical pattern by mounting a series funnel-shaped potential energy plots(E vs r) along a line of increasing Z i.e along a row of periodic table where a composite curve one-electron energy (vertical axis) vs a part row of periodic table is obtained. This composite curve shows a strong correlation between magnitude of \(X_{\text{spec}} \) and energy level spacing (large \(X_{\text{spec}} \) with large spacing) like energy level like energy levels of Fermi-Thomas-Dirac atom and in case of other atoms.

Electronegativity for representative elements is independent of oxidation state because of the fact that the atomic charges carried by representative elements during the formation polar covalent bond are slightly close to their oxidation number there by negligible changes in electronegativity with change in molecular environmental system. For transition elements electronegativity is dependent on oxidation state because of closely spaced energy levels.

Electronegativity-for representative elements i.e. \(X_{\text{spec}} = (a \in s + b \in p)/a + b \) Eq. \(c_{\text{spec}} = \frac{a \hat{d} s + b \hat{d} d}{a + b} \)

Eq. for transition elements. Implies occupation weighed average per electron ionization energy of an atom where \(a,b \) are occupation number and \(\in p, \in s \) are spherically ionization potentials which are determined through multiplet averaging. But for transition elements, \(\in d, \in s \) are spherically ionization potentials and \(b,a \) are the valence-shell occupancies of d-orbitals and s-orbitals in overlap region.

\[
c_{\text{spec}} = \frac{a \hat{d} s + b \hat{d} d}{a + b}
\]

Mulliken-Jaffe Formula of Electronegativity

Mulliken-Jaffe\(^{14,27,32,37}\) electronegativity approach is based on the fact that the first ionization energy and the electron affinity are the simple sum of multiple ionization potential-electron affinity energies which fit a quadratic equation as follows.
Based on this approach the electronegativity of a few elements of the periodic table can be computed.

4.2. Politzer22 has reported the reaffirmation of the principle of electronegativity equalization as the dependence of the direction of migration of electronic charge on electronegativity difference. This new approach to the electronegativity like Hellmann-Feynman theorem27,91,92 has been deduced in terms two physical models where in one model, total energy of molecular system AB is a function of associated electrons with each atom (n\textsubscript{a} and n\textsubscript{b}), corresponding atomic numbers (Z\textsubscript{a} and Z\textsubscript{b}) and inter-nuclear distance (R).

\[E = f(n\textsubscript{a}, n\textsubscript{b}, Z\textsubscript{a}, Z\textsubscript{b}, R) \]

For a molecule ab in the ground state under equilibrium,
\[R = R\textsubscript{E}, \]
\[dE = 0 \]
\[dn = -dn\textsubscript{a} = dn\textsubscript{b} \]

Where \(R\textsubscript{E} \) – equilibrium inter nuclear separation between a and b
\(dn \) – Infinitesimal electronic charge under transfer from a to b

Here Electronegativity of A and B

\[-\left(\frac{\partial E}{\partial N\textsubscript{a}} \right)\textsubscript{RE, n\textsubscript{b}} = \chi\textsubscript{A}, \quad -\left(\frac{\partial E}{\partial N\textsubscript{b}} \right)\textsubscript{RE, n\textsubscript{a}} = \chi\textsubscript{B} \]

In another model, total energy of the molecular system AB, \(E = f(n\textsubscript{a}, n\textsubscript{b}, Z\textsubscript{a}, Z\textsubscript{b}, n_1, n_2,, R) \) is either a function of i.atomic numbers \(Z\textsubscript{a} \) and \(Z\textsubscript{b} \) atoms \(n\textsubscript{a}, n\textsubscript{b} \) and delocalized atoms inter-nuclear separation or a function of atomic number \(Z\textsubscript{a} \), \(Z\textsubscript{b} \) atoms \(n_1, n_2, n_3, \) Inter-nuclear separation \(E = f(Z\textsubscript{a}, Z\textsubscript{b}, n_1, n_2,, R) \) is either a function of i.atomic numbers \(Z\textsubscript{a} \), \(Z\textsubscript{b} \) atoms \(n\textsubscript{a}, n\textsubscript{b} \), the electronegativity values (or the chemical potential) are expressed56,60,64,68,93. This idea of electronegativity is not bound within a particular theory like Density Functional Theory, wave functions under quantum mechanics.

A. Therefore, electronegativity is termed as a function of oxidation number.

Zhang electronegativity is given by,
\[c\textsubscript{Z} = 0.241[F] + 0.775 \]
where
\(r \) = pauling’s covalent radius
\(Iz \) = ultimate ionization potential for outer electron

Yonghe Zhang has reported dual parameter equation101.

\[Z = \frac{Z}{r^2} - 7.7c\textsubscript{Z} + 8.0 \]
where \(Z=\text{Nuclear Charge}, \)
\(r (i)=\text{ionic radius} \)
This equation is used as a scale for the strength of Lewis acid.

Quantum-Mechanical formula of electronegativity;
Putz M.V102–105 defined electronegativity by a specialized affinity-ionization wave function within Fock Space having fermions(electrons) where quantum mechanical description of electronegativity was made through field perturbation on a valence state for chemical system. Putz electronegativity is termed as quantum electronegativity which is considered as viable quantum concept with observable character. The mathematical expression is represented as105.

\[\chi_{\text{Putz}} = - \frac{E_0}{\rho_0} = - \mu_0 \]

\[= \begin{cases} \infty, & \rho_0 \to 0 (E_0 < 0) \\ -E_0 = - \langle \psi_0 | H | \psi_0 \rangle, & \rho_0 \to 1 \end{cases} \]

This idea of quantum electronegativity helps in applying affinity-ionization wave function on the valence state of a chemical system to recover the Eigen energy value of that state within density functional chemical potential formulation. The density functional electronegativity of Parr et.al64 was confirmed with Putz’s fundamental quantum mechanical arguments which helped in identifying the flaws made by Bergmann and Hinze106.

Ionocovalency formula of electronegativity

Yonghe Zhang101,107,108 has reported ionocovalency model which is correlated with quantum mechanical potential. This model describes quantitatively the properties of effective ionic potential, charge density, charge distribution, effective polarizing power and bond strengths. Ionocovalency (IC) was defined as a product of the ionic function I(Z*) and the covalent function C(1/r). The expression, so obtained, Z*=n*[(Iz/R)] was used to correlate the bond properties to the quantum mechanics and IC model is represented as

\[I(Iz) \cdot C(n^*/r) = \left[\frac{Iz}{R} \right]^{1/2} \cdot \frac{n^*}{r} \]

The electronegativity defined in terms of Ionocovalency is correlated with Pauling’s electronegativity values and it is mathematically expressed as

(\chi_{ic}) = 0.412[n^* (Iz/R)]/r + 0.387

where

\[n^* = \text{effective principal quantum number} \]

\[Iz = \text{ultimate ionization energy} \]

\[1/r = \text{linear covalency or } \sigma\text{-covalency} \]

R=Rydberg Constant. The electronegativity values of elements from Hydrogen to Lawrencium in different cationic states have been calculated by Y Zhang on the basis of Ionocovalency model.

Allred and Rochow electronegativity formula

AL Allred and EG Rochow43 defined the electronegativity of an atom with electrostatic field and presented an equation for its evaluation and electronegativity will be equal to Coulomb force of attraction between the nucleus and an electron at the covalent radius.

\[X(AR) = \frac{Z^*e^2}{r^2} \]

Where, \(Z^* = \text{effective nuclear charge} \)

\(Z^* = Z - \sigma \) (slater constant=shielding constant), \(r = \text{mean radius of the orbital i.e. covalent radius for the atom(considering smaller value as well as outer radial maxima).} \)

The Coulomb force is a measure of power of an atom in a molecule with which is electron is dragged towards an atom. Thus electronegativity will be absolute one. X (AR) dimension is not straightforward as it is evaluated through expression (i). The quantity \(Z^*/\hbar^2 \) was calculated through Pauling’s work and Slater rules for determining the
effective nuclear charge43,94,95. The Pauling’s Scale and Allred-Rochow scale can be made to coincide by expressing the electronegativity from the electrostatic approach as the linear function of Z/r^2 mean radius is expressed in picometer96.

\[\chi_{AR} = 3590 \times \left(Z^* / r^2 \right) + 0.744 \]

Huheey11,25 formula for electronegativity is based on two assumptions, $r \sim (1/Z^*)$ and $Z^* \sim \delta$.

\[c^H = 0.36' \left(\frac{Z^* - 3d}{r^2} \right) + 0.74 \]

B. 9.3. Boyd and Markus11,97 has reported non-empirical formula where empirical covalent radius is replaced by relative covalent radius which is obtained from the free-atom wave function by density contour technique. The effective nuclear charge is obtained through integration of radial density function from nucleus to relative-distance. Electrostatic-electronegativity is expressed as,

\[c = Z / r^2 \int_0^r \rho(r) \, dr \]

Where

- Z – Atomic number
- r – Covalent radius
- $\rho(r)$ - radial charge density where $IP=\text{ionization potential}, r \to \text{infinity}$

The radial charge density $\rho(r)$ can be obtained from the Hartree Fock atomic orbitals data98,99. Mande et al.11,506 has used the value of effective nuclear (Z^*) charge form spectroscopic analysis. So the values are less arbitrary than Slater’s. This electronegativity scale is more fundamental and reliable. The correlation of the scale is excellent with that of Pauling’s scale. The electronegativity values obtained for 1st transition metals are more reasonable than Allred-Rochow scale.

The fourth extension of this scale was made by Yonghe Zhang11,101 where electronegativity has been calculated on the basis of electrostatic force $[F = n^* \sqrt{(Iz/R)/r^2}]$ terms of ultimate ionization potential for outer electron $(Iz=R.Z^*^2/n^*^2)$. This type of scale is based on the concept of different electron-attracting power of an element in different valence. Therefore, electronegativity is termed as a function of oxidation number. Zhang electronegativity is given by,

\[c_Z = 0.241 F + 0.775 \]

where

- r = Pauling’s covalent radius
- Iz = ultimate ionization potential for outer electron

The concept of B-O force for electronegativity arises from Born-Oppenheimer energy approximation109,110 which brings the systematic correspondence of the energy of electronic motion, nuclear vibration and rotation to the terms of power series in the fourth root of electron-nucleus mass ratio. Born-Oppenheimer has suggested that total wave function (ψ) can be written as the product of the nuclear wave function (ψ_e) and electronic wave function (ψ_e). This approximation simplifies complicated Schrödinger equation into electronic equation ($He\psi_e = E\psi_e$) and nuclear equation ($Hn\psi_e = E\psi_e$). The equation devised by them for the rotation represents a generalization of the treatment of Kramers and Pauli. This approximation also justifies Frank-Condon principle111,112 used in explaining the intensity of band lines. In the last several decades, rigorous mathematical works have been reported on the validity of the B-O approximation. Quite a more no of papers$^{66,70-81}$ contain the study of B-O and also have reported that a reduced Hamiltonian is an appreciable approximation to true molecular Hamiltonian but a few is closely related to works402,103,125 on semi-classical Schrödinger matrix operators. B-O approximation is based on “assumption of ignoring motions of nearly stationary nuclei with much larger mass and smaller velocity with respect
to motion of electron with much smaller mass and larger velocity‖. The approximation holds good for the ground state of molecule and breaks down for the excited state. Complete Hamiltonian is represented as

\[H = H_n + H_e \]

\[= T_n + T_e + V_{nn} + V_{en} + V_{ee} \]

\[= - \frac{1}{2} \hat{\alpha}_A \tilde{N}^2_A - \frac{1}{2} \hat{\alpha}_i \tilde{N}^2_i + \hat{\alpha}_{A,B} \frac{Z_A Z_B}{|R_B - R_A|} - \hat{\alpha}_{A,i} \frac{Z_A}{|r_i - R_A|} + \hat{\alpha}_{i,j} \frac{1}{|r_i - r_j|} \]

Again, Molecular Hamiltonian \(^{126}\) (\(H^{mol}\))

\[H^{mol} = - \frac{1}{2} \hat{\alpha}_A \tilde{N}^2_A - \frac{1}{2} \hat{\alpha}_i \tilde{N}^2_i + \hat{\alpha}_{A,B} l^2 Z_A Z_B \frac{l}{|R_B - R_A|} - \hat{\alpha}_{A,i} \frac{l Z_A}{|r_i - R_A|} + \hat{\alpha}_{i,j} \frac{l}{|r_i - r_j|} \]

Where \(\lambda\) is treated as parameter and it may vary between 0 and 1.

The exact solution to electronic to the electronic Schrödinger equation, obtained from B-O approximation can be reachable for one electron systems. For multi-electronic systems, Hartree-Fock approximation is a good enough to approximate the energies and wave function. The electronic Hamiltonian(i) and energy(ii) can be written as follows\(^{127}\).

(i)

\[\hat{H}_e = \hat{\alpha}_i z(A) + \hat{\alpha}_A h(A,B) + V_{nn}(R) \]

The first term represents a one-electron operator, the second term represents a two electron operator and third term is a constant for the fixed set of nuclei coordinates \(R\).

(ii)

\[E_{Hartree- Fock} = \left< Y_0(l) | H(l) | Y_0(l) \right> \]

\[= \hat{\alpha}_A \left< A | z | A \right> + \frac{1}{2} \hat{\alpha}_{AB} \left([AA|BB] - [AB|BA] \right). \]

Where the first term represents one-electron integral, the second as two-electron Coulomb integral, the third as exchange integral and all the integrals can be computed by existing computer algorithms. The energy difference between non-relativistic energy of the system and Hartree-Fock limit energy is considered as both static and dynamic electronic correlation energy. The derivative (-\(\partial H_e/\partial R\)) of electronic Hamiltonian operator with respect to distance of nucleus of atom from electron can also be defined in quantum mechanics. Further, within simple Born-Oppenheimer approximation, (Hartree-Fock approximation), Energy (E) plays the role of potential energy for actual motion and also \(-\partial E/ \partial R\) replaces the above derivative and it is equal to the B-O(also Hartree-Fock) force because nuclear co-ordinates are simply treated as external parameters. This term - (\(\partial H/\partial R = F\)) is the operator which represents the force on atom A due to electrons and other atom B. This force is better to be termed as B-O force in the steady state. The electronegativity will be equal to B-O force (also Hartree-Fock force).

Electronegativity in terms of Hellmann-Feynman Force

Hellmann - Feynman\(^{91,128-130}\) theorem is an intuitive topic. This theorem have already been reported by different authors\(^{130-134}\). This concept dictates that the actual force on any nucleus can be interpreted in terms of classical electrostatics if three dimensional charge distribution in a system of electrons and nuclei were known from quantum mechanical procedure. The force on a nucleus will be equal to charge on that nucleus times the electric field due to all electrons and other nuclei. R. Feynman further states that a three dimensional electron cloud in a molecule is restricted from collapsing as it obeys Schrödinger equation. The force concept explains the nature of chemical bonding, the change in molecular shape on excitation, chemical reaction. Energy concept is not proved to be satisfactory always because they lack the simplicity and elegant nature. A.C.Hurley\(^{135-138}\) has given the
theoretical justification of the actual use of such electrostatic approach and shown that the force calculations are valid even for approximate wave functions. H-F force concept have been used (i) by R.F.W.Bader139-143 for interpreting chemical binding, (ii) by Koga T and H.Nakatsuji144-146 for force modelling of molecular geometry, (iii) by P.Politzer and K.C.Daiker147,148 for models of Chemical Reactivity, (iv) by A.J.Coleman149-151 for calculation of first and second order reduced density matrices and also withstand the critical examination of theoretical physicists and chemists as well. This force concept has certain advantage over the concept of total energy even though the calculation of force always involves an approximate charge density function. The advantage of calculating charge density is possible through molecular orbital method and total force on a nucleus is simple sum of orbital contributions but total energy is not sum of orbital energies. The second advantage is that force is an expectation value of one-electron, momentum independent operator which is more sensitive to any change in wave functions than energy. T Berlin92 gave clear interpretation of this electrostatic force arising out of Hellmann and Feynman theorem. This force will be equivalent to infinitesimal change in energy per change in distance (parameter). Classical physics states that a force is the negative gradient of energy. He proposed a term binding (related force acting on the nucleus) in place of bonding (related to changes in energy) in the picture of chemical bonding. He has proposed the physical partitioning of three dimensional space of electrons of diatomic system into a binding region(f_i > 1), anti-binding region(f_i < 1) and the nonbinding region(f_i = 1). The charge density is positive everywhere and thus the sign of contribution to force to the charge in each volume element depends on the sign of f_i. The net value of f_i around 1 helps to assign the electronegativity to the concerned atom in molecule for the diatomic system with Z_B > Z_A the anti-binding region for A is closed while anti-binding region for B in the limit Z_B > Z_A approaches a plane perpendicular to inter-nuclear axis. The idea of closing of anti-binding region is used to justify to assign more electronegativity value to B. Hellmann-Feynman force equation can be written in various forms91,126,152.

Hellmann-Feynman force for steady state and non-steady state,

\[F_i = -\frac{\partial E}{\partial \lambda_i} \text{ and } F = -\frac{\partial \mathbf{E}}{\partial \lambda} \text{ where average energy } \mathbf{E} = \hat{\mathbf{O}} \mathbf{Y} \mathbf{H} \mathbf{y} \mathbf{^d} \mathbf{v} \]

Generalized form of Hellmann-Feynman force is represented as,

\[F_\lambda = -\frac{\partial \mathbf{E}}{\partial \lambda} = -\hat{\mathbf{O}} \mathbf{y} \mathbf{y} \mathbf{^*} \left(\frac{\mathbf{H}_\lambda}{l} \right) \mathbf{d} \mathbf{v} \]

Where \(H_\lambda = \mathbf{T} + \mathbf{V} \), \(\mathbf{H}_\lambda = \frac{\mathbf{V}}{l} \) and \(\hat{\mathbf{O}} \mathbf{y} \mathbf{y} \mathbf{^*} \frac{\mathbf{\partial \mathbf{V}}}{\partial \lambda} \mathbf{d} \mathbf{v} \).

\[F(R_A) = -\frac{\mathbf{E}}{\mathbf{X}_A} = - \hat{\mathbf{a}} \frac{Z_A Z_B}{R_B - R_A} + \hat{\mathbf{O}} \frac{Z_A}{|r_i - R_A|} r(r) \mathbf{d} r \]

Where the first term is independent of the electronic coordinates and is constant during integration over the coordinates. This term gives ordinary columnic force of repulsion between the nuclei. The second term represents charge density distribution due to ith electron.

\[F(R_A) = -\frac{\mathbf{E}^*}{\mathbf{X}_A} = - 2l \hat{\mathbf{a}} \frac{Z_A Z_B}{R_B - R_A} + \hat{\mathbf{O}} \frac{Z_A}{|r_i - R_A|} r(r, l) \mathbf{d} r \]

Where the \(\lambda \) is a parameter which solves two problems. Firstly, it helps to apply simultaneously to all nuclei. Secondly it is a continuous function between 0 and 1 so that differentiation of energy w.r.t. nuclear coordinates is made possible.

The other form of Hellmann-Feynman force equation can be written as

\[F_i(R_A) = \frac{Z_A}{R^2} \hat{\mathbf{a}} Z_B - \hat{\mathbf{a}} f_i(R_A) \hat{\mathbf{u}} \]

Where

\[f_i(R_A) = R^2 \hat{\mathbf{O}} r_i(cos q_{VA}) \mathbf{l} \mathbf{r}_{VA} \mathbf{^2} \mathbf{d} t \]

In the limiting condition \(\cos q_{VA} \rightarrow 1 \), \(r(VA) \rightarrow R \) and
\[f_i^A (R \to \infty) = \int \rho_i (B) d\tau = N_i B \]

In the above force equation, the electronic contribution to the force on either nucleus can be written as
\[F_A (R) = F_B (R) = \frac{1}{2} \left[F_A (R) + F_B (R) \right] = -\frac{1}{2} \int f(r) \rho(r) dr \]

And also the electronic contribution \(F_A (R) \) in terms of the quantum mechanical average of the electric field operator is mathematically represented as,
\[F_A (R) = Z_A \int dr... \int \psi^* \sum_{i=1}^{N} \nabla A \left(|r_i - R_A| \right)^{-1} \psi d_{r_N} \]

The equivalence of the electron in the above equation is equivalent to N times the average force exerted on an atom by one electron so the above equation can be written in the form of electronic charge density.
\[F_A (R) = Z_A \int \nabla A \left(|r - R_A| \right)^{-1} \rho(r) dr \]

where
\[\rho (r) = N \int ds_1 \int dx_2... \int \psi^* (x_1, x_2, ..., x_N) \psi (x_1, x_2, ..., x_N) dx_N \]

Where \(\rho(r) \) denotes electronic charge density in a stationary state, \(\rho(r) \, dr \) stands for amount of electronic charge in a volume element \(dv \) and \(x_i \) denotes the product of space co-ordinate \((r_i) \) and spin co-ordinate \((s_i) \) of the \(i \)th electron. The charge density difference distribution being combined with electrostatic HF theorem gives rise to a novel physical model to the chemical binding. The interpretation of \(\rho(r) \) as a physical model of the electrons in line with the HF theorem includes the possibility of ascribing a value to the electrostatic force exerted at atom A by each and every element \(\rho(r) dr \). By identifying \(\lambda \) as real parameter in H, \(\psi \) as a normalizable Eigen function, E as Eigen value.

This force arises out of two opposing terms such as one from nuclear-nuclear repulsions and other from electron-nuclear attractions. The electron-nuclear attractive force is expressed in terms of three dimensional electron density. H-F force concept follows from the Born-Oppenheimer energy approximation (in turn Hartree-Fock) since the rapid motion of electron allows electronic wave function and probability density will be adjusted immediately to changes in nuclear configuration. The fast motion of electron causes the sluggish nuclei to see electrons as charge cloud rather than discrete particles. The fact that "effective force on nuclei are electrostatic" affirms that there is no mysterious quantum mechanical force in mono-atomic, di-atomic as well as poly-atomic systems.

Electronegativity of an atom (A) in a molecule A-B may be defined as HF (Hellmann-Feynman) force which is also Hartree-Fock force in steady state and also in non-steady state. In steady state, \(\rho(r) \) may be interpreted as a number or charge density and \(\rho(r) dr \) as amount of electronic charge in the volume element.

\[\chi = \langle F_A \rangle = -\frac{\partial E}{\partial R_A} \]

\[\langle F_A \rangle = -Z_A \int \rho(r) \frac{R_A - r_s}{|R_A - r_s|^3} \, dr(i) + Z_A \sum_{B \neq A} Z_B \frac{R_A - R_B}{|R_A - R_B|^3} \quad \text{(ii)} \]

Where
(i) and (ii) represents nuclear state and bound-state respectively.
χ=Electronegativity

\[<F_A> = \text{Hellman-Feynman force is} \]

a sum of classical contribution due to electronic charge density (i) and classical nuclear contribution

\[F_A = \text{one electron, momentum-independent operator} \]

\[\rho(r) = \text{electronic charge density (always positive)} \]

\[x_i = \text{product of space coordinate } r_i \text{ and spin coordinate } s_i \text{ of the } i \text{th electron} \]

\[R_A = \text{Distance of nucleus of atom A from electron} \]

\[R_B = \text{Distance of nucleus of atom B from electron} \]

Computation of Electronegativity

Electronegativity values of some elements (Table-1) have been calculated from the force equation for diatomic AB molecule such as,

\[F_A = \frac{2}{\hbar} \frac{\partial}{\partial R} \left(Z_B - f_i \right) \]

where ‘i’ is subset of AB and electronegativity can be expressed as follows

\[c = \hat{a} f_i = \hat{a} f_i^{AA} + \hat{a} f_i^{BB} + \hat{a} f_i^{AB} \]

Table 1:-

Elements/Z	\(\sum f_i^{AA} \) Atomic force	\(\sum f_i^{BB} \) Screening force	\(\sum f_i^{AB} \) Overlap force	\(\chi \) Electronegativity
Fluorine/9	-1.949	8.381	2.505	8.937
Oxygen/8	-2.284	6.788	3.486	7.990
Nitrogen/7	-1.943	5.136	3.486	7.046
Carbon/6	-0.735	4.523	2.198	5.987
Boron/5	-0.644	3.887	1.708	4.951
Lithium/3	-0.563	2.591	0.927	2.955

Conclusion:-

Electronegativity is a confused in spite of a vast no of papers published by the various authors. Mathematical formulation is required for reification of this concept. Till today, there exists no unique mathematical formulation for which there had been scope of many scales of measurement. This attempt to define electronegativity is characterized by specific physical meaning and reliable theoretical basis since it is derived from Hellmann-Feynman theorem and Born-Oppenheimer (in turn conventional Hartree-Fock) approximation and min-max theorem. This various definitions of electronegativity such as in terms of energy or force or intrinsic strategy are logical ones to consider electronegativity equalization in a diatomic as well as polyatomic system. This new approach will be helpful to assign the more accurate electronegativity values to various elements of the periodic table and also more valuable in different areas of chemical science for example to predict the structure and property of materials and also to design efficiently new electrode materials, electrocatalysts with novel properties for energy conversion devices like Fuel cell, Solar cell etc.

N.B: Symbol for Electronegativity; C and X

Acknowledgement:-

The author wishes to thank his PhD mentor A Shau for many stimulating discussions, suggestions and critical comments along with her reading a preprint of this paper and making useful comments. The author is highly indebted to acknowledge the financial support of DST, Government of India for pursuing Doctoral program.

References:

1. Jensen WB. Electronegativity from Avogadro to Pauling: II. Late Nineteenth- and Early Twentieth-Century Developments. J Chem Educ. 2003;80(3):279. doi:10.1021/ed080p279.
2. van’t Hoff JH. Lectures on Theoretical and Physical Chemistry: III. Relations Between Properties and Composition. London, E Arnold. 1899:94. https://archive.org/details/theoreticallectu02hoffrich/page/94.

3. Caven RM, Lander GD. Systematic Inorganic Chemistry from the Standpoint of the Periodic Law. In: A Text-Book for Advanced Students. Blackie & Son, London; 1907:37-38.

4. Sackur O. A Text Book of Thermo-Chemistry and Thermodynamics. This Is A Translation of the 1912 German Edition. Macmillan: London; 1917.

5. Myers RT. Electronegativity, bond energy, and chemical reactivity. J Chem Educ. 1979;56(11):711. doi:10.1021/ed056p711.

6. Reddy RR, Rao TVR, Viswanath R. Correlation between electronegativity differences and bond energies. J Am Chem Soc. 1989;111(8):2914-2915. doi:10.1021/ja00190a028.

7. Gutowsky HS, Hoffman CJ. Nuclear Magnetic Shielding in Fluorine and Hydrogen Compounds. J Chem Phys. 1951;19(10):1259-1267. doi:10.1063/1.1748008.

8. Motiejūnas S, Baltrūnas D, Garasim VI, Starik PM. A Correlation between Ligand Electronegativity and the Value of the Mössbauer Isomer Shift of Stannous Chalcogenides. Phys status solidi. 1988;148(2):K161-K164. doi:10.1002/pssb.2221480247.

9. Arroyo-de Dompablo ME, Armand M, Tarascon JM, Amador U. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni). Electrochem commun. 2006;8(8):1292-1298. doi:10.1016/J.ELECOM.2006.06.003.

10. Pauling L. THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. J Am Chem Soc. 1932;54(9):3570-3582. doi:10.1021/ja01348a011.

11. Mullay J. Atomic and group electronegativities. J Am Chem Soc. 1984;106(20):5842-5847. doi:10.1021/ja00332a014.

12. Pauling L, Yost DM. The Additivity of the Energies of Normal Covalent Bonds. Proc Natl Acad Sci U S A. 1932;18(6):414-416. doi:10.1073/PNAS.18.6.414.

13. Allred AL. Electronegativity values from thermochemical data. J Inorg Nucl Chem. 1961;17(3-4):215-221. doi:10.1016/0022-1902(61)80142-5.

14. Mulliken RS. Electronic structures of molecules XII. Electroaffinity and molecular orbitals, polyatomic applications. J Chem Phys. 1935;3(9):586-591. doi:10.1063/1.1749732.

15. Pearson RG. The Calculation of Ionic Resonance Energies. J Chem Phys. 1949;17(10):969-971. doi:10.1063/1.1747096.

16. Pauling L. Chapter 2. In: The Nature of the Chemical Bond. Cornell University Press; 1939.

17. Haissinsky M. Scale of Pauling electronegativities and heats of formation of inorganic compounds. J Phys Radium. 1946;7(1):7-11.

18. Huggins ML. Bond Energies and Polarieties 1. J Am Chem Soc. 1953;75(17):4123-4126. doi:10.1021/ja01113a001.

19. Walsh AD. The properties of bonds involving carbon. Discuss Faraday Soc. 1947;2(0):18. doi:10.1039/df470200018.

20. Ferreira R. Electronegativity and Chemical Bonding. Adv Chem Phys. 1967;13:55-84. doi:10.1002/9780470140154.ch4.

21. Iczkowski RP, Margrave JL. Electronegativity. J Am Chem Soc. 1961;83(17):3547-3551. doi:10.1021/ja01478a001.

22. Pearson RG. Electronegativity Scales. Acc Chem Res. 1990;23(1):1-2. doi:10.1021/ar000169a001.

23. Allen LC. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J Am Chem Soc. 1989;111(25):9003-9014. doi:10.1021/ja000207a003.

24. Allen LC. Electronegativity scales. Acc Chem Res. 1990;23(6):175-176. doi:10.1021/ar000174a001.

25. Huheey JE. Variable electronegativity. J Inorg Nucl Chem. 1965;27(9):2127-2129. doi:10.1016/0022-1902(65)80077-X.

26. Huheey JE. Electronegativity, acids, and bases. IV. Concerning the inductive effect of alkyl groups. J Org Chem. 1971;36(1):204-205. doi:10.1021/jo00800a044.

27. Mulliken RS. A new electroaffinity scale; Together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys. 1934;2(11):782-793. doi:10.1063/1.1749394.

28. Stark J. Die Dissoziierung und Umwandlung chemischer Atome. Vieweg Braunschweig, Ger. 1903:7-8.

29. Martin G. Researches on the affinities of the elements and on the causes of the chemical similarity or dissimilarity of elements and compounds. 1905:226-228.
30. Fajans K. Über eine Beziehung zwischen der Art einer radioaktiven Umwandlung und dem elektrochemischen Verhalten der betreffenden Radioelemente. Phys Zeitschrift. 1913;14:131-136.
31. Moffitt W. Term Values in Hybrid States. Proc R Soc A Math Phys Eng Sci. 1950;202(1071):534-548. doi:10.1098/rspa.1950.0118.
32. Huheey JE, Keiter EA, Keiter RL, Medhi OK. Electronegativity. In: Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. Harper Collins college, New York; 1993:182.
33. Klopman G. Electronegativity. J Chem Phys. 1965;43(10):S124-S129. doi:10.1063/1.1701474.
34. Pritchard HO, Skinner HA. The Concept Of Electronegativity. Chem Rev. 1955;55(4):745-786. doi:10.1021/cr50044a005.
35. Pearson RG. Absolute electronegativity and absolute hardness of Lewis acids and bases. J Am Chem Soc. 1985;107(24):6801-6806. doi:10.1021/ja00310a009.
36. Hinze J. Jaffé HH. Electronegativity. I. Orbital Electronegativity of Neutral Atoms. J Am Chem Soc. 1962;84(4):540-546. doi:10.1021/ja00866a008.
37. Hinze, J. Whitehead MA, Jaffé HH. Electronegativity. II. Bond and Orbital Electronegativities. J Am Chem Soc. 1963;85(2):148-154. doi:10.1021/ja00885a008.
38. Mulliken RS, S. R. Quelques aspects de la théorie des orbitales moléculaires. J Chim Phys. 1949;46:547-548.
39. Maloney JG. The Electric Moment as a Measure of the Ionic Nature of Covalent Bonds. J Chem Phys. 1933;1(3):197-199. doi:10.1063/1.1749274.
40. Coulson CA. The dipole moment of the C—H bond. Trans Faraday Soc. 1942;38(0):433-444. doi:10.1039/TF9423800433.
59. Sanderson RT. Principles of electronegativity Part I. General nature. J Chem Educ. 1988;65(2):112. doi:10.1021/ed065p112.
60. Sanderson RT. Relation of Stability Ratios to Pauling Electronegativities. J Chem Phys. 1955;23(12):2467-2468. doi:10.1063/1.1741939.
61. Klopmann G. A Semiempirical Treatment of Molecular Structures. I. Electronegativity and Atomic Terms. J Am Chem Soc. 1964;86(8):1463-1469. doi:10.1021/ja01062a001.
62. Klopmann G. A Semiempirical Treatment of molecular Structures. II. Molecular Terms and Application to diatomic Molecules. J Am Chem Soc. 1964;86(21):4550-4557. doi:10.1021/ja01075a008.
63. Ponec R. Generalization of electronegativity concept. Theor Chim Acta. 1981;59(6):629-637. doi:10.1007/BF00552856.
64. Parr RG, Donnelly RA, Levy M, Palke WE. Electronegativity: The density functional viewpoint. J Chem Phys. 1978;68(8):3801-3807. doi:10.1063/1.436185.
65. Parr RG, Bartolotti LJ. On the geometric mean principle for electronegativity equalization. J Am Chem Soc. 1982;104(14):3801-3803. doi:10.1021/ja00378a004.
66. Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983;105(26):7512-7516. doi:10.1021/ja00387a005.
67. Watson RE, Bennett LH, Davenport JW. Ionic character of polar crystals: An extended Mulliken scheme for electronegativities. Phys Rev B. 1983;27(10):6428-6438. doi:10.1103/PhysRevB.27.6428.
68. Gyftopoulos EP, Hatsopoulos GN. Quantum-Thermodynamic Definition of Electronegativity. Proc Natl Acad Sci. 1968;60(3):786-793. doi:10.1073/pnas.60.3.786.
69. Einhorn MB, Blankenbecler R. Bounds on scattering amplitudes. Ann Phys (N Y). 1971;67(2):480-517. doi:10.1016/0003-4916(71)90151-5.
70. Gopinathan MS, Whitehead MA. On the Dependence of Total Energy on Occupation Numbers. Isr J Chem. 1980;19(1-4):209-214. doi:10.1002/ijch.198000022.
71. Geerlings P, De Proft F, Langenaeker W. Conceptual Density Functional Theory. Chem Rev. 2003;103(5):1793-1874. doi:10.1021/cr990029p.
72. Jørgensen CK. Orbitals in Atoms and Molecules. Academic Press Inc., New York; 1962.
73. Ferreira R. Principle of electronegativity equalization. Part 1.—Bond moments and force constants. Trans Faraday Soc. 1963;59(0):1064-1074. doi:10.1039/TF9635901064.
74. March NH. The ground-state energy of atomic and molecular ions and its variation with the number of electrons. In: Chemical Hardness. Berlin/Heidelberg: Springer-Verlag; 1993:71-86. doi:10.1007/BFb0036800.
75. Nguyen-Dang TT, Bader RFW, Essén H. Some properties of the Lagrange multiplier μ in density functional theory. Int J Quantum Chem. 1982;22(5):1049-1058. doi:10.1002/qua.560220517.
76. Hinze J. The concept of electronegativity of atoms in molecules. Theor Comput Chem. 1999;6:189-212. doi:10.1021/s1380-7323(99)80009-0.
77. Chermette H. Chemical reactivity indexes in density functional theory. J Comput Chem. 1999;20(1):129-154. doi:10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A.
78. Pritchard HO. Equalization of Electronegativity. J Am Chem Soc. 1963;85(12):1876. doi:10.1021/ja00895a043.
79. Evans RS, Huheey JE. Electronegativity, acids, and bases—II: Hard and soft acids and bases and Pauling's electronegativity equation. J Inorg Nucl Chem. 1970;32(2):373-381. doi:10.1016/0022-1902(70)80244-5.
80. Reed JL. Electronegativity. An isolated atom property. J Phys Chem. 1981;85(2):148-153. doi:10.1021/ja01075a008.
81. Bartolotti LJ, Cadre SR, Parr RG. Electronegativities of the Elements from Simple Xa Theory. J Am Chem Soc. 1980;102(9):2945-2948. doi:10.1021/ja00529a013.
82. Politzer P, Weinstein H. Some relations between electronic distribution and electronegativity. J Chem Phys. 1979;71(11):4218-4220. doi:10.1063/1.438228.
83. Whitehead MA, Baird NC, Kaplansky M. Group orbital electronegativities. Theor Chim Acta. 1965;3(2):135-146. doi:10.1007/BF00527344.
84. Bratsch SG. A group electronegativity method with Pauling units. J Chem Educ. 1985;62(2):101. doi:10.1021/ed062p101.
85. Hancock JR, Hardstaff WR, Johns PA, Langler RF, Mantle WS. Regiochemistry and reactivity in the chlorination of sulfides. Can J Chem. 1983;61(7):1472-1480. doi:10.1139/v83-257.
86. Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys Rev. 1964;136(3B):B864-B871. doi:10.1103/PhysRev.136.B864.
87. Miranda-Quintana RA, Ayers PW. Interpolation of property-values between electron numbers is inconsistent with ensemble averaging. J Chem Phys. 2016;144(24):244112. doi:10.1063/1.4953557.
88. Heidar-Zadeh F, Miranda-Quintana RA, Verstraeten T, Bultink P, Ayers PW. When is the Fukui Function Not Normalized? The Danger of Inconsistent Energy Interpolation Models in Density Functional Theory. J Chem Theory Comput. 2016;12(12):5777-5787. doi:10.1021/acs.jctc.6b00494.

89. Komorowski L. Electronegativity through the energy function. Chem Phys Lett. 1983;103(3):201-204. doi:10.1016/0009-2614(83)80381-9.

90. Datta D, Shee NK, Von Szentpály L. Chemical potential of molecules contrasted to averaged atomic electronegativities: Alarming differences and their theoretical rationalization. J Phys Chem A. 2013;117(1):200-206. doi:10.1021/jp303386.

91. Feynman RP. Forces in Molecules. Phys Rev. 1939;56(4):340-343. doi:10.1103/PhysRev.56.340.

92. Berlin T. Binding Regions in Diatomic Molecules. J Chem Phys. 1951;19(2):208-213. doi:10.1063/1.1748161.

93. Anderson AB, Parr RG. Vibrational Force Constants from Electron Densities. J Chem Phys. 1970;53(8):3375-3376. doi:10.1063/1.1674492.

94. Pauling L. Atomic Radii and Interatomic Distances in Metals. J Am Chem Soc. 1947;69(3):542-553. doi:10.1021/ja01195a024.

95. Slater JC. Atomic Shielding Constants. Phys Rev. 1930;36(1):57-64. doi:10.1103/PhysRev.36.57.

96. Housecroft C.E. and Sharpe A.G. Electronegativity values. In: Inorganic Chemistry. Pearson Education Limited; 2005:38.

97. Boyd RJ, Markus GE. Electronegativities of the elements from a nonempirical electrostatic model. J Chem Phys. 1981;75(11):5385-5388. doi:10.1063/1.441984.

98. Clementi E, Roetti C. Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z≤54. At Data Nucl Data Tables. 1974;14(3-4):177-478. doi:10.1016/S0092-640X(74)80016-1.

99. Bunge CF, Barrientos JA, Bunge AV. Roothaan-Hartree-Fock Ground-State Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z = 2-54. At Data Nucl Data Tables. 1993;53(1):113-162. doi:10.1006/ADND.1993.1003.

100. Mande C, Deshmukh P, Deshmukh P. A new scale of electronegativity on the basis of calculations of effective nuclear charges from X-ray spectroscopic data. J Phys B At Mol Phys. 1977;10(12):2293-2300. doi:10.1088/0022-3700/10/12/008.

101. Zhang Y. Electronegativities of Elements in Valence States and Their Applications. 2. A Scale for Strengths of Lewis Acids. Inorg Chem. 1982;21(11):3889-3893. doi:10.1021/si100440+13-9376-5.

102. Putz M V. Systematic formulizations for electronegativity and hardness and their atomic scales within density functional softness theory. Int J Quantum Chem. 2006;106(2):361-389. doi:10.1002/qua.20787.

103. Putz M V. SEMICLASSICAL ELECTRONEGATIVITY AND CHEMICAL HARDNESS. J Theor Comput Chem. 2007;6(6):33-47. doi:10.1142/S0219636707002861.

104. Putz M, Putz, V. M. Density Functionals of Chemical Bonding. Int J Mol Sci. 2008;9(6):1050-1095. doi:10.3390/ijms9061050.

105. Putz M V. Electronegativity: Quantum observable. Int J Quantum Chem. 2009;109(4):733-738. doi:10.1002/qua.21957.

106. Bergmann D, Hinze J. Electronegativity and charge distribution. In: Electronegativity. Berlin/Heidelberg: Springer-Verlag; 1987:145-190. doi:10.1007/BFb0029840.

107. Zhang Y. Electronegativity from Ionization Potentials. J Mol Sci(Chinese). 1981;1:125.

108. Zhang Y, Zhang, Yonghe. Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales. Int J Mol Sci. 2010;11(11):4381-4406. doi:10.3390/ijms11114381.

109. Jecko T. On the mathematical treatment of the Born-Oppenheimer approximation. J Math Phys. 2014;55(5):05304. doi:10.1063/1.4870855.

110. Born M, Oppenheimer R. Zur Quantentheorie der Molekeln. Ann Phys. 1927;389(20):457-484. doi:10.1002/anpd.19273892002.

111. Franck J, Society ED-T of the F. 1926 undefined. Elementary processes of photochemical reactions. pubs.rsc.org. http://pubs.rsc.org/en/content/articlepdf/1926/ft/ft9262100536. Accessed October 14, 2018.

112. Condon E. A Theory of Intensity Distribution in Band Systems. Phys Rev. 1926;28(6):1182-1201. doi:10.1103/PhysRev.28.1182.

113. Hagedorn GA. A time dependent Born-Oppenheimer approximation. Commun Math Phys. 1980;77(1):1-19. doi:10.1007/BF01205036.

114. Teufel S, Wachsmuth J. Spontaneous Decay of Resonant Energy Levels for Molecules with Moving Nuclei. Commun Math Phys. 2012;315(3):699-738. doi:10.1007/s00220-012-1547-3.
ISSN: 2320-5407

Int. J. Adv. Res. 7(5), 801-820

115. Sutcliffe BT, Woolley RG. On the quantum theory of molecules. J Chem Phys. 2012;137(22):22A544. doi:10.1063/1.4755287.

116. Sutcliffe BT, Woolley RG. Comment on “On the quantum theory of molecules” [J. Chem. Phys. 137, 22A544 (2012)]. J Chem Phys. 2014;140(3):0337101. doi:10.1063/1.4861897.

117. Hagedorn GA. High order corrections to the time-independent Born-Oppenheimer approximation II: Diatomic Coulomb systems. Commun Math Phys. 1988;116(1):23-44. doi:10.1007/BF01239023.

118. HAGEDORN GA. JOYE A. MOLECULAR PROPAGATION THROUGH SMALL AVOIDED CROSSINGS OF ELECTRON ENERGY LEVELS. Rev Math Phys. 1999;11(01):41-101. doi:10.1142/S0129055X99000040.

119. Hagedorn GA, Joye A. A Time-Dependent Born-Oppenheimer Approximation with Exponentially Small Error Estimates. Commun Math Phys. 2001;223(3):583-626. doi:10.1007/s002200100562.

120. HAGEDORN GA, JOYE A. A MATHEMATICAL THEORY FOR VIBRATIONAL LEVELS ASSOCIATED WITH HYDROGEN BONDS II: THE NON-SYMMETRIC CASE. Rev Math Phys. 2009;21(02):279-313. doi:10.1142/S0129055X09003621.

121. Klein M, Martinez A, Wang XP. On the Born-Oppenheimer approximation of wave operators in molecular scattering theory. Commun Math Phys. 1993;152(1):73-95. doi:10.1007/BF02097058.

122. Klein M, Martinez A, Wang XP. On the Born–Oppenheimer approximation of diatomic wave operators. II. Singular potentials. J Math Phys. 1998;38(3):1373. doi:10.1063/1.532189.

123. Martinez A, Messirdi B. Resonances of diatomic molecules in the born-oppenheimer approximation. Commun Partial Differ Equations. 1994;19(7-8):1139-1162. doi:10.1080/03605309408821048.

124. Spohn H, Teufel S. Adiabatic Decoupling and Time-Dependent Born–Oppenheimer Theory. Commun Math Phys. 2001:224(1):113-132. doi:10.1007/s002200100535.

125. Kammerer CF, Rousse V. Resolvent Estimates and Matrix-Valued Schrödinger Operator with Eigenvalue Crossings; Application to Strichartz Estimates. Commun Partial Differ Equations. 2008;33(1):19-44. doi:10.1080/03605300701454925.

126. Wilson EB. Four-Dimensional Electron Density Function. J Chem Phys. 1962;36(8):2232-2233. doi:10.1063/1.1732864.

127. Stanton RE. Hellmann-Feynman Theorem and Correlation Energies. J Chem Phys. 1962;36(5):1298-1300. doi:10.1063/1.1732731.

128. Andrae D, ed. Hans Hellmann: Einführung in Die Quantenchemie. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. doi:10.1007/978-3-662-45967-6.

129. Levine IN. Quantum Chemistry. 5th ed. Pearson/Prentice Hall; 2009.

130. Politzer P, Murray JS. The Hellmann-Feynman theorem: a perspective. J Mol Model. 2018;24(9):266. doi:10.1007/s00894-018-3784-7.

131. Pauli W. Die allgemeinen Prinzipien der Wellenmechanik. In: Quantentheorie. Berlin, Heidelberg: Springer Berlin Heidelberg; 1933:83-272. doi:10.1007/978-3-642-52619-0_2.

132. Hellmann H. Zur Rolle der kinetischen Elektronenenergie führte die zwischenatomaren Kräfte. Zeitschrift für Phys. 1933;85(5-6):180-190. doi:10.1007/BF01342053.

133. Güttinger P. Das Verhalten von Atomen im magnetischen Drehfeld. Zeitschrift für Phys. 1932;73(3-4):169-184. doi:10.1007/BF01351211.

134. Schrödinger E. Quantisierung als Eigenwertproblem. Ann Phys. 1926;385(13):437-490. doi:10.1002/andp.19263851302.

135. Hurley AC. The Electrostatic Calculation of Molecular Energies. I. Methods of Calculating Molecular Energies. Proc R Soc A Math Phys Eng Sci. 1954;226(1165):170-178. doi:10.1098/rspa.1954.0246.

136. Hurley AC. The Electrostatic Calculation of Molecular Energies. II. Approximate Wave Functions and the Electrostatic Method. Proc R Soc A Math Phys Eng Sci. 1954;226(1165):179-192. doi:10.1098/rspa.1954.0247.

137. Hurley AC. The Electrostatic Calculation of Molecular Energies. III. The Binding Energies of Saturated Molecules. Proc R Soc A Math Phys Eng Sci. 1954;226(1165):193-205. doi:10.1098/rspa.1954.0248.

138. Hurley AC. The Electrostatic Calculation of Molecular Energies. IV. Optimum Paired-Electron Orbitals and the Electrostatic Method. Proc R Soc A Math Phys Eng Sci. 1956;235(1201):224-234. doi:10.1098/rspa.1956.0078.

139. Bader RFW. Binding Regions in Polyatomic Molecules and Electron Density Distributions. J Am Chem Soc. 1964;86(23):5070-5075. doi:10.1021/ja01077a005.

140. Bader RFW, Henneker WH. The Ionic Bond. J Am Chem Soc. 1965;87(14):3063-3068. doi:10.1021/ja01092a008.

141. Bader RFW, Preston HJT. A CRITIQUE OF PAULI REPULSIONS AND MOLECULAR GEOMETRY. Can J Chem. 1966;44(10):1131-1145. doi:10.1139/v66-170.
142. Bader RFW. **THE USE OF THE HELLMANN–FEYNMAN THEOREM TO CALCULATE MOLECULAR ENERGIES.** Can J Chem. 1960;38(11):2117-2127. doi:10.1139/v60-287.

143. Bader RFW, Jones GA. The Hellmann–Feynman Theorem and Chemical Binding. Can J Chem. 1961;39(6):1253-1265. doi:10.1139/v61-159.

144. Koga T, Nakatsuji H. The Hellmann-Feynman theorem applied to long-range forces. Theor Chim Acta. 1976;41(2):119-131. doi:10.1007/BF01178072.

145. Koga T, Nakatsuji H, Yonezawa T. Generalized Berlin diagram for polyatomic molecules. J Am Chem Soc. 1978;100(24):7522-7527. doi:10.1021/ja00492a014.

146. Koga T, Nakatsuji H, Yonezawa T. Force and density study of the chemical reaction process OH 2 +H →OH 3 +. Mol Phys. 1980;39(1):239-249. doi:10.1080/00268978000100201.

147. Politzer P. A Study of the Bonding in the Hydrogen Molecule 1. J Phys Chem. 1966;70(4):1174-1178. doi:10.1021/j100876a033.

148. Politzer P, Daiker KC. Molecular electrostatic potentials. Negative potentials associated with some methyl and methylene groups. Chem Phys Lett. 1975;34(2):294-297. doi:10.1016/0009-2614(75)85277-8.

149. Coleman AJ. Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers. J Math Phys. 1965;6(9):1425-1431. doi:10.1063/1.1704794.

150. Coleman aj. Infinite range correlation and large eigenvalues of the 2-matrix. Can j phys. 1967;45(3):1271-1273. Doi:10.1139/p67-094.

151. Coleman AJ. Necessary Conditions for N -Representability of Reduced Density Matrices. J Math Phys. 1972;13(2):214-222. doi:10.1063/1.1665956.

152. Slater JC. Hellmann-Feynman and Virial Theorems in the X α Method. J Chem Phys. 1972;57(6):2389-2396. doi:10.1063/1.1678599.