Alpha Lipoic Acid Antagonizes Cytotoxicity of Cobalt Nanoparticles by Inhibiting Ferroptosis-like Cell Death

Yake Liu
Affiliated Hospital of Nantong University

Wenfeng Zhu
Affiliated Hospital of Nantong University https://orcid.org/0000-0001-8424-3541

Dalong Ni
Department of Radiology, University of Wisconsin-Madison

Zihua Zhou
Affiliated Hospital of Nantong University

Jinhua Gu
Affiliated Maternity and Child Health Care Hospital of Nantong University

Wenan Zhang
Affiliated Hospital of Nantong University

Huanjian Sun
The Sixth Affiliated Hospital of Nantong University

Fan Liu (liufanntu19575@163.com)
https://orcid.org/0000-0003-0944-1550

Research

Keywords: Cobalt nanoparticles, Nanotoxicity, Ferroptosis, Alpha-lipoic acid, Detoxification

DOI: https://doi.org/10.21203/rs.3.rs-39550/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

As a main element in the hard metal industry, cobalt is one of the major components of human metal implants. Cobalt-containing implants, especially joint prostheses used for artificial joint replacement, can be corroded due to the complex physiological environment in vivo, producing a large number of nanoscale cobalt particles (Cobalt Nanoparticles, CoNPs). These CoNPs can be first accumulated around the implant to cause adverse local reactions and then enter into the blood vessels followed by reaching to the liver, heart, brain, kidney, and other organs through systematic circulation, which leads to multi-system toxicity symptoms. To ensure the long-term existence of cobalt-containing implants in the body, it is urgently required to find out a safe and effective detoxification drug. Herein, we have demonstrated that CoNPs could induce the ferroptosis-like cell death through the enhancement of intracellular reactive oxygen species (ROS) level, cytoplasmic Fe²⁺ level, lipid peroxidation and consumption of reduced glutathione (GSH) as well as inhibition of glutathione peroxidase 4 (GPX4) activity. Importantly, α-lipoic acid (ALA), a natural antioxidant with the capability to scavenge free radicals and chelate toxic metals, was found to efficiently alleviate the adverse effects of CoNPs. The present study illustrates a new mechanism of CoNPs mediated by ferroptosis-like cytotoxicity and discloses an effective method for the detoxification of CoNPs by employing the natural antioxidant of ALA, providing a basis for further in vivo detoxification study.

1. Introduction

Hard metal is an alloy based on tungsten carbide (WC) and cobalt (Co), which is the key component of the joint prosthesis for artificial joint replacement. When an artificial joint is implanted in the body, degradation of the prosthesis is inevitable due to different physical and chemical effects such as mechanical stress, fretting, or fatigue corrosion, leading to the generation of metal particles with different diameters. Among these particles, cobalt nanoparticles (CoNPs) are the most abundant ones with the highest toxicity[1, 2], which could cause early failure of artificial joints[3]. Tower well demonstrated the multiple systemic adverse reactions after metal-on-metal (MOM) joint replacement and named the disease as arthroprosthetic cobaltism syndrome (ACS)4–8. CoNPs produced by the reduction or wear of internal plants are first deposited around the internal fixation plate and artificial joint prosthesis to cause inflammatory pseudotumor around the implant, loosening of the prosthesis, as well as local osteoporosis. Meanwhile, due to their nano-size effect, CoNPs are more likely to enter into the blood and lymphatic system, followed by their broad distribution in multiple organs or tissues of the human body through systemic circulation, resulting in different adverse symptoms[4–6, 8–11]. Therefore, the patients undergoing MOM joint replacement need to be monitored and detoxified. It is urgent to investigate the detailed toxicity mechanism of CoNPs thoroughly and identify safe and effective antidote drugs, which is of great significance but has not been reported yet.

After the internalization of CoNPs into the cytoplasm through endocytosis, the nanoparticles can induce the decomposition of H₂O₂ into more toxic HO₂ radicals through a Fenton-like reaction and produce a large number of reactive oxygen species (ROS)[12]. Oxidative stress is found to be one of the key
mechanisms of cobalt cytotoxicity[1, 13–17]. However, the molecular mechanism of oxidative stress-induced cell death of CoNPs remains unclear. The clinical treatment for the cobalt-related toxic symptoms is mainly to reduce the plasma cobalt concentration through various means including prosthesis and implant removal, plasma exchange[18, 19], chelating agent EDTA[20, 21], and dimercapto propanol sulfonylic acid sodium[22]. However, all these strategies failed to exhibit the desired therapeutic effect[23]. For the treatment of systemic and local toxicity symptoms, no safe and effective therapeutic drugs have been reported until now.

Lipoic acid is an essential cofactor for mitochondrial metabolism and is required for the catalysis of various mitochondrial 2-keto acid dehydrogenase complexes. It plays an essential role in stabilizing and regulating these multienzyme complexes. Moreover, it is responsible for cellular growth and mitochondrial activity as well as necessary for the coordination of energy metabolism[24]. In the latest generation of antioxidants, lipoic acid can alleviate the hydroxyl radical, hypochlorous acid, singlet oxygen, and peroxy radicals[25]. In addition, they can chelate iron, copper, and other transition metals[26] by increasing intracellular reduced glutathione (GSH) levels[24]. It is worth investigating the therapeutic effect of lipoic acid in Ameliorating the toxicity caused by the CoNPs.

Herein, we found the mechanism of ferroptosis-like mediated cytotoxicity of CoNPs and further disclosed a new method for the detoxification of CoNPs by employing the natural antioxidant of ALA. The Balb/3T3 cells were incubated with CoNPs and α-lipoic acid (ALA) under different conditions. The results demonstrated that CoNPs could induce the elevation of the levels of Fe$^{2+}$ ion concentration, ROS, and lipid peroxidation. Moreover, the intracellular GSH was excessively consumed, and glutathione peroxidase-4 (GPx4) activity was greatly inhibited, leading to ferroptosis-like cell death. Importantly, alpha lipoic acid can antagonize the ferroptosis-like toxicity of CoNPs in Balb/3T3 cells. Overall, this study reveals a new insight into the mechanism of cobalt toxicity and provides a new method of detoxification by employing ALA.

2. Results

2.1. Cell viability assay(Figure1)

Balb/3T3 cells were exposed to varying concentrations of CoNPs for 6, 24, and 48 h, and the cell viability assay was determined using CCK-8 assay kit. The results showed that CoNPs treatment inhibited the proliferation of Balb/3T3 cells in a dose- and time-dependent manner. When the concentration was less than 200 µM or exposure time was less than 24 h (Fig. 1f), CoNPs could slightly stimulate cell proliferation. There was no significant decrease in cell viability for treatment of 6 h. However, there was around 50–60% reduction of viability of cells incubated with 400 µM of CoNPs for 24 h (Fig. 1a-d). Therefore, subsequent experiments were performed with 400 µM of CoNPs. It was observed that the low and medium concentrations of ALA could promote cell proliferation slightly. In contrast, the cell viability was significantly inhibited at higher concentrations (> 200 µM) of ALA (Fig. 1f). Interestingly, the co-
incubation of CoNPs (400 µM) and ALA at different concentrations for 24 h showed that the CoNPs-induced cytotoxicity was greatly inhibited by ALA in a dose-dependent manner (Fig. 1g).

2.2. Determination of intracellular ROS and MDA levels(Figure2).

Our experimental results showed that CoNPs treatment (400 µM, 24 h) induced a significant increase in ROS level of Balb/3T3 cells as compared to the control experiment, suggesting that the formation of ROS was one of the plausible mechanisms of CoNPs-mediated cell death. In addition, the CoNPs-induced formation of intracellular ROS was significantly inhibited when incubating CoNPs with ALA (200 µM), showing the important roles of ALA in scavenging ROS (Fig. 2a-e). Spectrophotometric results further revealed that CoNPs could elevated the level of cellular MDA, but it could be antagonized by ALA (Fig. 2f).

2.3. Apoptosis assay in Balb/3T3 cells(Figure3)

Flow cytometry results in Balb/3T3 cells showed that the apoptosis rate of cells treated with of CoNPs (9.78%) was increased slightly as compared to that of control group (5.42%). The ALA could also slightly alleviate the CoNPs-induced cell apoptosis(4.75%). It is worth mentioning that the apoptosis rate induced by CoNPs (9.78%) was significantly lower than the corresponding cell death rate (45%), as observed by the CCK-8 assay (Fig. 1g).

2.4. Determination of intracellular ferrous ion and GSH concentration in Balb/3T3 cells(Figure4)

The intracellular ferrous ion concentration was further performed and the spectrophotometry results illustrated that CoNPs treatment induced a significant increment of Fe\(^ {2+}\) ion concentration in Balb/3T3 cells as compared to control group. However, ALA exhibited a significant antagonistic effect on CoNPs induced enhancement of intracellular Fe\(^ {2+}\) ion concentration upon co-exposure of CoNPs and ALA toward cells. ALA treatment alone did not promote any increase of intracellular Fe\(^ {2+}\) ion concentration.

2.5. Measurement of intracellular GSH in Balb/3T3 cells(Figure5)

GSH is the key cellular endogenous antioxidant that can scavenge toxic free radicals, produced in response to various causes of oxidative stress, thereby relieving the oxidative damage. It should be mentioned here that the ferroptosis-like cell death is related to GSH depletion. To comprehend whether CoNPs could cause ferroptosis-like cell death, Balb/3T3 cells were exposed to CoNPs alone, ALA alone as well as CoNPs along with ALA for 24 h, and the corresponding cell lysates were subjected to spectrophotometric measurement of total GSH, GSH and GSSG. It was found that CoNPs can significantly reduce the intracellular level of total GSH, GSH and GSG/GSSH ratio as compared to the control group. The cells in the co-exposure group (CoNPs + ALA) did not exhibit any decrease of the level of total GSH, GSH and GSSG. The results altogether suggested that CoNPs treatment reduced the cell's
antioxidant function by depleting intracellular level of GSH, while ALA exhibited an effect of stabilizing the cell’s antioxidant function.

2.6 Western blot analysis for checking the intracellular level of GPx4(Figure6).

The western blot analysis in Balb/3T3 cells showed that CoNPs treatment inhibited the expression of GPx4 significantly as compared to the control group. In contrast, the co-exposure group (CoNPs + ALA) exhibited the significant increase of GPx4 level. When the cells were treated with ALA alone, the GPx4 expression was significantly increased in comparison with the control group. Overall, western blot analysis indicated that ALA could reverse the effect of CoNPs on GPx4 level.

3. Discussion

The detailed molecular mechanisms of cytotoxicity and genotoxicity of cobalt as well as cobalt compounds are still unclear. Based on the previous reports, there are some major aspects which are described below: 1) Oxidative stress: CoNPs and cobalt ions can produce excessive ROS through Fenton reaction[27, 28], as well as enhancement of intracellular antioxidant enzyme (e.g. catalase, glutathione peroxidase and heme oxygenase-1 etc.) to degrade ROS. Harmful biological effects and irreversible damage are generally caused because of the oxidation of proteins, lipids, carbohydrates, and DNA, induced by excessive ROS. At the same time, the excessive ROS could promote the release of inflammatory factors, deplete glutathione, and reduce the activity of antioxidant stress-related proteins such as GPx4, superoxide dismutase, catalase etc. As a result, chromosomal damage of cells, apoptosis, and necrosis are caused through various pathways[28–31]. 2) Hypersensitivity: Cobalt, chromium, and nickel are the well known immunosensitizers. The adverse reactions of MoM hip prosthesis wear particles might be caused by the metal ion hypersensitivity[32, 33]. Earlier studies have demonstrated that patients with MoM hip prosthesis have higher risk of lymphopenia and metal hypersensitivity reactions[34]. In vivo studies have also confirmed that micron-scale rather than nano-scale chromium-nickel particles cause type IV hypersensitivity reactions[35]. 3) Autophagy and endoplasmic reticulum stress: Metal particles generated from the wears often induce stress in the endoplasmic reticulum, mediating the expression of a variety of inflammatory factors (TNF-α, IL-6 and IL-1β). It is found that the autophagy is involved in promoting the apoptosis of osteoblasts which are caused by wear particles and inhibits the plasma reticulum stress. Moreover, autophagy can reduce inflammatory factor secretion and osteoclast production and alleviate the effects of wear particles on osteoblasts[36–38]. 4) Destroy cell structure: CoNPs and cobalt ions could directly bind to proteins with multiple functions in the cells including redox system enzymes, metabolism, molecular transport, cell signaling, and organelles[39]. Additionally, they can induce oxidation and the loss of biological function, as well as destroy skeleton of cells directly, leading to chromosome condensation and aberrations. Cobalt could also bind to several proteins involved in cellular redox systems and active oxygen scavenging. Furthermore, cobalt has also been shown to interact with various receptors, ion channels, and biomolecules[40, 41]. 5) Replace essential metal ions: Earlier report demonstrated that cobalt can interact with various metal based proteins (e.g.
zinc-finger protein, catalase etc.) and replace the corresponding metal ions (e.g. Mg$^{2+}$, Ca$^{2+}$, Zn$^{2+}$, etc.). Therefore, the functions of these proteins or enzymes are lost or altered[39]. All these previous reports altogether suggest that CoNPs can induce cell death through oxidative stress.

Our study also confirmed that the administration of CoNPs toward Balb/3T3 cells led to enhancement in the intracellular ROS level as compared to the control group (Fig. 2). However, the exact molecular mechanism of how ROS causes the cell death remains unclear. Although CoNPs-treatment caused a significant increase in the apoptosis rate of Balb/3T3 cells as compared to the control group (9.78% VS. 4.75%) (Fig. 3a, b, e), it was still much lower than the cell death rate, as observed by the CCK-8 assay under the same conditions (9.78% vs. 45%) (Fig. 1f). These results suggest that non-apoptotic mechanisms are involved in CoNPs-mediated cell death.

Ferroptosis is a process to regulate the cell death, discovered in recent years. It is different from other forms of cell death in terms of cellular morphology and molecular mechanism. It is characterized by iron-dependent accumulation of lipid hydroperoxide to lethal levels[42, 43]. The main features of ferroptosis are the cellular uptake of iron, formation of intracellular ROS through the Fenton reaction, excessive consumption of GSH in the cells, and the inactivation of GPx4. These processes ultimately cause lipid peroxidation and production of lethal reactive oxygen species to promote the cell death[43]. Ferroptosis is majorly associated with iron ion imbalance, oxidative stress, and GSH homeostasis. Although it has been reported that Ca$^{2+}$ influx and GSH depletion play an important role in ferroptosis[44] and oxidative death (Oxytosis), the specific mechanism by which iron ions induce cell death remains unclear[45].

Ferroptosis has widely been confirmed in different diseases such as tumors and neuropathy and is one of the current research hotspots. Due to the similarity of physical and chemical properties of cobalt and iron elements, the comparative study of the two elements is also meaningful. The mechanism of cobalt toxicity is highly similar to the characteristics of ferroptosis. The earlier study showed that cobalt treatment led to significant increase of intracellular ROS, lower GSH level, as well as the activation of Nrf2 signaling pathway. However, different antioxidants (such as N-acetylcysteine, alpha-Tocopherol, etc.) could exhibit antagonistic effects on cobalt toxicity and iron death[43, 46–56]. Our study reveals that CoNPs could induce the production of excessive ROS in Balb/3T3 cells, overproduction of lipid peroxidation products (MDA), and enhancement of cellular ferrous ion concentration. Moreover, CoNPs-treatment led to the reduction of intracellular GSH level and GPx4 activity. All these results suggest that CoNPs can activate ferroptosis in Balb/3T3 cells by stimulating oxidative stress, or directly induce ferroptosis-like death. Similar views was also provided by Gupta et al. when studying Parkinson's pathogenesis in neuronal cells[57].

According to different signaling pathways and molecular mechanisms, the current detoxification drugs for CoNPs toxicity in vitro or in vivo are following categories: 1) Antioxidants such as nitrogen-acetylcysteine (NAC)[50], L-ascorbic acid (LAA)[46], melatonin[58], alpha-tocopher[48], etc. 2) Antagonists, such as zinc[59, 60]; 3) Chelating agents, such as EDTA[20, 21] and dimercaptopropanol sulfonic acid sodium[22]; 4) Endoplasmic reticulum stress inhibitor, such as sodium 4-phenylbutyrate[36, 37]. Based on
previous studies, anti-oxidative stress is the key direction of detoxification research. The ideal medicine could be one that can resist oxidative stress and chelate with the metal ions. Moreover, it should be soluble in both water and fat as well as safe in vivo[61]. With this speculation, we discovered that ALA could effectively attenuate the CoNPs induced ferroptosis-like cell death in Balb/3T3 cells.

Lipoid acid (LA) is unique among different natural antioxidants and is a highly effective therapeutic agent associated with oxidative damage[62]. ALA is a dithiol compound that usually binds to the lysine residue of mitochondrial α-keto acid dehydrogenase. It is well-known that cytoplasmic and mitochondrial dehydrogenase can quickly reduce LA into dihydrolipoic acid (DHLA)[63]. Previous reports have demonstrated that ALA could bind iron or any divalent metal. Therefore, its iron chelating capability decreases the amount of free iron in the body system, thereby reducing oxidative stress by scavenging free radicals. Moreover, ALA could alleviate cytotoxicity during iron overload through reduction of glutathione content, mitochondrial dysfunction, as well as gene expression of heme oxygenase-1b and superoxide dismutase[64].

In the latest generation of antioxidants, lipoic acid is able to scavenge a variety of free radicals including hydroxyl radicals, hypochlorous acid, oxygen singlet, and peroxyl radicals, due to its solubility in both water and fat[25, 65]. On the other hand, the conventional antioxidants such as vitamins A, E, C and selenium can only interact with one or two free radicals[66]. In theory, lipoic acid seems to be the most effective drug among all antioxidants[62]. Additionally, lipoic acid can also interact with GSH and recycle endogenous GSH, stabilizing the antioxidant capacity of cells [64,67–69]. LA has changed arrangement on its fatty acid-like skeleton, which allows it to capture the copper and iron ions, thereby forming a stable complex with these metals to achieve chelation of iron, copper, cobalt, manganese, zinc, cadmium, lead, nickel, arsenic, mercury and other transition metal ions[26, 62, 69–71]. In the present study, we found that CoNPs significantly induced overproduction of intracellular ROS, enhancement of intracellular Fe$^{2+}$ (Fig. 4), inhibition of GPx4 activity (Fig. 6), and reduction of reduced intracellular GSH (Fig. 5) as compared to the control group. Importantly, ALA can significantly antagonize the CoNPs induced above adverse results, thereby maintaining the intracellular GSH homeostasis, stabilizing the cell’s antioxidant capacity, and inhibiting the ferroptosis-like cell death induced by CoNPs.

4. Conclusion

Cobalt is the key element in cemented carbide industry and one of the major components of human metal implants. CoNPs is not only an important cause of cobalt toxicity, but also one of the current hotspots in the field of nanomedicine research. The cobalt exposure to human and the related toxicity problems deserve to be studied. Previous studies have only focused on the oxidative stress mechanism of CoNPs. On the basis of oxidative stress, we further found that CoNPs can induce ferroptosis-like cell death in Balb/3T3 cells, while ALA exhibited a protective effect. The present study provides the basis for further investigation of exact molecular mechanism and related signal pathways of ferroptosis-like cell death induced by CoNPs in Balb/3T3 cells.
5. Materials And Methods

5.1. Reagent and chemicals

CoNPs (< 50 nm, #7440-48-4), alpha-lipoic acid (#1077-28-7), and dichlorofluorescin diacetate (DCFH-DA) (#4091-99-0) were purchased from Sigma-Aldrich (St. Louis, MO). Dulbecco's modified Eagle's medium (DMEM), fetal bovine serum (FBS), penicillin/streptomycin, and trypsin-EDTA were procured from Gibco (Life Technologies, Paisley, UK). CCK-8 kits were obtained from Dojindo (Kumamoto, Japan). Annexin V-FITC (#AP101-100-AVF) was purchased from Multi Sciences (Hanzhou, China). DMSO, GSH, and GSSG Assay Kit (#S0053) were procured from Beyotime (Shanghai, China). Iron Assay Kit (#ab83366), Anti-GPx4 antibody (#ab125066), Anti-Nrf2 antibody (#ab89443), Goat anti-rabbit IgG H&L (HRP) (ab205718), Goat anti-mouse IgG H&L (HRP) (ab205719) and β-actin antibody were obtained from Abcam Technology (Cambridge, UK).

5.2. Cell culture and preparation of stock solutions of CoNPs/ALA

Balb/3T3 cell line was procured from the Type Culture Collection of the Chinese Academy of Sciences (Shanghai, China). The cells were cultured in DMEM medium containing 10% FBS, 50 U/ml penicillin, and 50 mg/ml streptomycin at 37˚C in the presence of 5% CO₂. The cells were differentiated up to 6 days, and the cell medium of differentiating cells was replaced after every 2 days to ensure the availability of optimal nutrients and differentiation factors for the growth of cells. The cells were sub-cultured after every 3 to 4 days using 0.25% trypsin/1 mM EDTA solution and TNS.

The CoNPs were weighed the day before the experiment, sterilized at 180˚C for 4 h, and suspended in ultrapure water to prepare a stock solution of 6 mM. The freshly prepared stock solution was then ultrasonicated at room temperature at 40W for 30 min to minimize the particle aggregation and diluted with complete culture medium to achieve the required concentrations. The ultrasonicated fresh stock solution was continuously oscillated using a vortex shaker before adding to the sample well. The solution was distributed to various sample wells within 10 min because of the rapid precipitation of CoNPs. Alpha-lipoic acid of appropriate concentration was dissolved in DMSO. The final working concentration of DMSO was controlled below 0.1% to avoid its cytotoxicity.

5.3. CCK-8 cell viability assay

The cell viability assay was performed by employing the Cell Counting Kit-8 (CCK-8). The cells (1.5 × 10⁴ cells/well) were seeded into 96-well plates and adhered for about 8 h prior to being exposed toward different concentrations of CoNPs (20–800 µM) for 8–24 h at 37˚C to explore the IC50 value. The cells cultured with DMEM media without any CoNPs treatment served as the control group. Further, the cells were incubated with ALA of various concentrations (50-1200 µM) for 24 h to evaluate its cytotoxicity. To investigate the effects of ALA on the viability of Balb/3T3 cells exposed to CoNPs, the cells were first exposed to 400 µM (IC50) of CoNPs, and subsequently incubated with ALA (50–600 µM) for 24 h. After
that, CCK-8 solution (10 µl) was added to each well of the plate for 1 h at 37°C prior to the detection. The CCK-8 formazan product was measured at 450 nm using a microplate reader. The cell viability ratio was expressed as a percentage of the control experiment. Each experimental condition was repeated in triplicate.

5.4. Detection of intracellular iron ion concentration

The cells were seeded into a 6-well tissue culture plate. When the cells were in the logarithmic growth phase, the cells were pre-treated with ALA (200 µM) for 3 h, followed by incubation with CoNPs (400 µM) for a total of 24 h. The cells were collected, washed with 1 ml phosphate-buffered saline (PBS) and centrifuged for 5 min (1000 rpm) to remove the supernatant. The cells were then resuspended in 0.5 ml PBS, and the cell concentration was calculated using a cell counter. Next, 1 × 10^6 cells were again centrifuged at 1000 rpm for 5 min, and all the supernatant was carefully aspirated. After that, 500 µl of lysis buffer was added to the cells and placed on a shaker for 2 h to lyse them. The Iron Assay Kit was then employed according to the manufacturer's instructions to detect the intracellular Fe^{2+} ion concentration by spectrophotometry.

5.5. Detection of cell necrosis and apoptosis ratio

To compare the ratio of apoptosis and necrosis among the cells in each group, the Annexin V-FITC assay kit was conducted according to the manufacturer's protocol. Briefly, after incubating the cells with respective treatments for a total of 24 h as previously described, they were carefully washed with PBS solution and collected. The cells were resuspended gently with PBS and counted using a cell counter. Next, 1 × 10^6 cells were centrifuged at 1000 g for 5 min, and the supernatant was discarded. The cell pellet was incubated with Annexin V-FITC and propidium iodide staining solution for 10–20 min at room temperature (20–25 °C) in the dark and then placed in an ice bath. Flow cytometer (Becton Dickinson flow cytometer) was employed for the detection of cell necrosis and apoptosis. The ratios of apoptosis and necrosis were calculated separately.

5.6. Determination of intracellular ROS

To assess the ROS generation in cells exposed to target concentrations of CoNPs and the protective effects of ALA, spectrofluorometry and fluorescent microscopy were employed. For spectrofluorometry analysis, the cells (1 × 10^5/well) were seeded into 96-well tissue culture plates. After 8 h of adherence, the cells were incubated with CoNPs (400 µM) and ALA (200 µM) for 24 h. Following staining with DCFDA for 30 min, the cells were washed twice by 200 µl of PBS. The fluorescent intensity of the suspension was measured using a multi-well microplate reader (Varioskan LUX, Thermo Fisher, USA) at excitation and emission wavelengths of 485 nm and 525 nm, respectively. Values were expressed as the percentage of fluorescent intensity relative to the control wells. The intracellular fluorescence of cells was also measured using an upright fluorescent microscope equipped with a CCD camera (Nikon, Japan).

5.7. Lipid peroxidation (MDA) assay
The cells were treated as described earlier followed by centrifugation at 8000 × g for 4 min to obtain the supernatant cell lysate, which was used for measuring lipid peroxidation (MDA) according to the manufacturer's protocol. In brief, the samples and standards were incubated with TBA solution at 100 ºC for 30 min. The mixture was cooled in an ice bath, followed by centrifugation at room temperature for 10 min. Next, 200 µl of the supernatant was placed into a 96-well tissue culture plate, and the absorbance of each sample was measured at 450 nm, 532 nm, and 600 nm. The calculation was performed using following formula: \[\Delta A_{450} = A_{450}^{\text{measurement}} - A_{450}^{\text{blank}} \]
\[\Delta A_{532} = A_{532}^{\text{measurement}} - A_{532}^{\text{blank}} \]
\[\Delta A_{600} = A_{600}^{\text{measurement}} - A_{600}^{\text{blank}} \].

5.8. GSH /GSSH measurement

The cells were exposed to CoNPs (400 µM) and ALA (200 µM) for 24 h. The blank group, positive control group (CoNPs, 400 µM), and a negative control group (ALA, 200 µM) were also established at the same time. After the exposure, the cells were washed with PBS twice, scraped off, suspended in PBS, and centrifuged at 1000 × g. The cell pellet was then homogenized in 5% 5-sulfosalicylic acid. Next, the suspension was lysed by freezing and thawing twice after 5 min centrifuged at 10,000 × g for 10 min. Intracellular total GSH and GSSG concentrations were measured according to the supplier's protocol.

5.9. Western blot analysis to check the level of GPx4

The cells were treated as described above, collected, and washed twice with cold PBS, followed by lysing with RIPA buffer containing 1 mM phenylsulfonyl fluoride on ice for around 30 min. The lysed cells were centrifuged at 12,000 × g for 15 min to obtain the supernatant cell lysate, and protein concentrations were measured using the bicinchoninic acid (BCA) assay kit. The concentrated protein samples were subjected to 15% SDS polyacrylamide gel electrophoresis and transferred to a polyvinylidenedifluoride (PVDF) membrane by a transfer apparatus at 300 mA for 1 h. The membranes were then blocked and incubated with primary rabbit antibody specific for GPx4 at 4°C for overnight. After carefully washing with TBST, the membranes were incubated with HRP-conjugated secondary antibody for 2 h at room temperature. After that, the PVDF membranes were washed with TBST for four times, and the blot was developed using ECL reagent according to the manufacturer's protocol.

5.10. Statistical analysis

All the experiments were performed in triplicates, and the data were expressed as mean ± standard deviation (SD). All statistical analyses were performed by GraphPad Prism 8 software (La Jolla, California, USA) employing one-way analysis of variance, followed by Dunnett's test to evaluate the significance relative to the control experiment. Differences between groups were considered significant if p-value is less than 0.05.

6. Abbreviations

cobalt nanoparticles, CoNPs
reactive oxygen species, ROS
reduced glutathione, GSH

glutathione peroxidase 4, GPX4

lipid peroxidation, MDA

bicinchoninic acid, BCA

Lipoid acid, LA

α-lipoic acid, ALA

dihydrolipoic acid, DHLA

Declarations

- **Ethics approval and consent to participate**

 Not applicable

- **Consent for publication**

 Not applicable

- **Availability of data and materials**

 We ensure the authenticity and repeatability of the data obtained by this research. The datasets used and/or analysed during the current study are available from the corresponding author. All data generated or analysed during this study are included in this published article. For more information please email our Research Data Team (liufanntu19575@163.com).

- **Competing interests**

 The authors declare that they have no competing interests.

- **Funding**

 The funds used in this research come from the corresponding author's private funds.

- **Authors' contributions**

 LF, ND, GJ contributed to the idea of the study. ND, GJ participated in the research planning and experiment design. LY, ZW and ZZ carried out the concepts, design, definition of intellectual content, literature search, data acquisition, data analysis and manuscript preparation. ZW, LY performed the data analyses and wrote the manuscript. ZW, SH provided assistance for data acquisition, data analysis and
statistical analysis. LF finally checked all the data and the manuscript. All authors have read and approved the content of the manuscript.

- **Acknowledgements**

Not applicable

References

1. Sabbioni E, Fortaner S, Farina M, et al. Cytotoxicity and morphological transforming potential of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts: an in vitro model. Nanotoxicology. 2014 Jun;8(4):455–64.

2. Colognato R, Bonelli A, Ponti J, et al. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis. 2008;23(5):377–82.

3. Hart AJ, Quinn PD, Lali F, et al. Cobalt from metal-on-metal hip replacements may be the clinically relevant active agent responsible for periprosthetic tissue reactions. Acta biomaterialia. 2012;8(10):3865–73.

4. Tower S. Arthroprosthetic cobaltism: neurological and cardiac manifestations in two patients with metal-on-metal arthroplasty: a case report. J Bone Joint Surg Am. 2010;92(17):2847–51.

5. Tower S. Arthroprosthetic cobaltism: identification of the at-risk patient. Alaska Med. 2010;52:28–32.

6. Sotos JG, Tower SS. Systemic disease after hip replacement: aeromedical implications of arthroprosthetic cobaltism. Aviation, space, and environmental medicine. 2013;84(3):242–245.

7. Roessler PP, Witt F, Efe T, Schmitt J. Arthroprosthetic cobaltism and pseudotumour also occur in patients with small diameter femoral ball head metal-on-metal total hip arthroplasties. BMJ case reports. 2014;2014:bcr2013203362.

8. Charette R, Neuwirth A, Nelson C. Arthroprosthetic cobaltism associated with cardiomyopathy. Arthroplast Today. 2017 Dec 3(4):225–228.

9. Bradford D. Gessner TS, Woelber E, Stephen S. Tower. A Systematic Review of Systemic Cobaltism After Wear or Corrosion of Chrome-Cobalt Hip Implants. J Patient Saf. 2019 Jun;15(2):97–104.

10. HI C, JA H, MS K, et al. Severe Cardiomyopathy Due to Arthroprosthetic Cobaltism: Report of Two Cases with Different Outcomes. Cardiovasc Toxicol. 2019;19(1):82–9.

11. DW EW, GA VC, TS. G, S T. Explant Analysis from a Patient Exhibiting Rapid Acceleration of Parkinson Disease Symptoms and Hypercobaltemia Following Metal-on-Metal Total Hip Arthroplasty: A Case Report. JBJS case connector. 2016;6(2):e45.

12. Paustenbach D, Tvermoes B, Unice K, Finley B, Kerger B. a review of the health of hazards posed by cobalt. Crit Rev Toxicol. 2013;43(4):316–62.

13. Speer RMTT, Xie H, Liou L, Adam RM, Wise JP. Sr. The Cytotoxicity and Genotoxicity of Particulate and Soluble Cobalt in Human Urothelial Cells. Biol Trace Elem Res. 2017;180(1):48–55.
14. YH Z, DW W, SF X, et al. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol. 2018;14:535–48.

15. Kim EC, Kim MK, Leesungbok R, Lee SW, Ahn SJ. Co-Cr dental alloys induces cytotoxicity and inflammatory responses via activation of Nrf2/antioxidant signaling pathways in human gingival fibroblasts and osteoblasts. Dent Mater. 2016;32(11):1394–405.

16. Liu Y, Deng X, Yang H. Cytotoxicity and genotoxicity in liver cells induced by cobalt nanoparticles and ions. Bone Joint Res. 2016 Oct;5(10):461–9.

17. J X, J Y, A N, et al. Cobalt (II) ions and nanoparticles induce macrophage retention by ROS-mediated down-regulation of RhoA expression. Acta biomaterialia. 2018 May;72:434–446.

18. Ikeda T, Takahashi K, Kabata T, Sakagoshi D, Tomita K, Yamada M. Polyneuropathy caused by cobalt–chromium metallosis after total hip replacement. Muscle Nerve. 2010;42(1):140–3.

19. ML G, JK K, M P, N L, N H, JH H. Does therapeutic plasma exchange have a role in the treatment of prosthetic hip-associated cobalt toxicity? A case report and literature review. Transfusion. 2016;56(9):2368–73.

20. UE P, P A, T C, S C, M M, G Z. Cobalt, chromium and molybdenum ions kinetics in the human body: data gained from a total hip replacement with massive third body wear of the head and neuropathy by cobalt intoxication. Arch Orthop Trauma Surg. 2011;131(9):1299–308.

21. SW S. The role of chelation in the treatment of other metal poisonings. Journal of medical toxicology: official journal of the American College of Medical Toxicology. 2013;9(4):355–69.

22. Pelclova D, Sklensky M, Janicek P, Lach K. Severe cobalt intoxication following hip replacement revision: clinical features and outcome. Clin Toxicol (Phila). 2012;50(4):262–5.

23. Zywiel MG, Cherian JJ, Banerjee S, et al. Systemic cobalt toxicity from total hip arthroplasties: review of a rare condition Part 2. measurement, risk factors, and step-wise approach to treatment. Bone Joint J. 2016;98-b(1):14–20.

24. A S, RJ D. Lipoic acid metabolism and mitochondrial redox regulation. The Journal of biological chemistry. 2018;293(20):7522–7530.

25. L P, K K, G R. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition (Burbank, Los Angeles County, Calif). 2001;17(10):888–895.

26. C SG. R, C V, M Z, Y C, L R. Antioxidant properties of an endogenous thiol: Alpha-lipoic acid, useful in the prevention of cardiovascular diseases. J Cardiovasc Pharmacol. 2009;54(5):391–8.

27. Leonard S, Gannett P, Rojanasakul Y, et al. Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem. 1998;70(3–4):239–44.

28. Raghunathan V, Devey M, Hawkins S, et al. Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity. Biomaterials. 2013;34(14):3559–70.

29. Nyga A, Hart A, Tetley T. Importance of the HIF pathway in cobalt nanoparticle-induced cytotoxicity and inflammation in human macrophages. Nanotoxicology. 2015;9(7):905–17.
30. Ahamed M, Akhtar MJ, Khan MM, Alhadlaq HA, Alshamsan A. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids Surf. B: Biointerfaces. 2016;148:665–73.

31. Zhao J, Bowman L, Magaye R, Leonard SS, Castranova V, Ding M. Apoptosis induced by tungsten carbide-cobalt nanoparticles in JB6 cells involves ROS generation through both extrinsic and intrinsic apoptosis pathways. Int J Oncol. 2013;42(4):1349–59.

32. Kwon Y, Xia Z, Glyn-Jones S, Beard D, Gill H, Murray D. Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro. Biomed Mater. 2009;4(2):025018.

33. Migaud H, Putman S, Krantz N, Vasseur L, Girard J. Cementless metal-on-metal versus ceramic-on-polyethylene hip arthroplasty in patients less than fifty years of age: a comparative study with twelve to fourteen-year follow-up. J Bone Joint Surg Am. 2011;93(Suppl 2):137–42.

34. Reynolds M, Peterson-Roth E, Bespalov I, et al. Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links by both MutS dimers. Cancer Res. 2009;69(3):1071–9.

35. Brown C, Lacharme-Lora L, Mukonoweshuro B, et al. Consequences of exposure to peri-articular injections of micro- and nano-particle cobalt-chromium alloy. Biomaterials. 2013;34(34):8564–80.

36. Wang R, Wang Z, Ma Y, et al. Particle-induced osteolysis mediated by endoplasmic reticulum stress in prosthesis loosening. Biomaterials. 2013;34(11):2611–23.

37. Liu G, Liu N, Xu Y, et al. Endoplasmic reticulum stress-mediated inflammatory signaling pathways within the osteolytic periosteum and interface membrane in particle-induced osteolysis. Cell Tissue Res. 2016;363(2):427–47.

38. Liu N, Meng J, Wang Z, Zhou G, Shi T, Zhao J. Autophagy mediated TiAlV particle-induced peri-implant osteolysis by promoting expression of TNF-α. Biochem Biophys Res Commun. 2016;473(1):133–9.

39. Scharf B, Clement CC, Zolla V, et al. Molecular analysis of chromium and cobalt-related toxicity. Sci Rep. 2014;4:5729.

40. Simonsen L, Harbak H, Bennekou P. Cobalt metabolism and toxicology—a brief update. Sci Total Environ. 2012;432:210–5.

41. Paustenbach D, Tvermoes B, Unice K, Finley B, Kerger B. A review of the health hazards posed by cobalt. Crit Rev Toxicol. 2013;43(4):316–62.

42. SJ D, KM L. MR L, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

43. Stockwell B, Friedmann Angeli J, Bayir H, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017;171(2):273–85.

44. Maher P, van Leyen K, Dey PN, Honrath B, Dolga A, Methner A. The role of Ca(2+) in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium. 2018;70:47–55.

45. HL JLFC. Y, et al. Ferroptosis: past, present and future. Cell death disease. 2020;11(2):88.
46. Liu Y, Hong H, Lu X, Wang W, Liu F, Yang H. L-Ascorbic Acid Protected Against Extrinsic and Intrinsic Apoptosis Induced by Cobalt Nanoparticles Through ROS Attenuation. In. Biological trace element research. Vol 1752017:428–439.

47. MJ K. A O. The Roles of NRF2 in Modulating Cellular Iron Homeostasis. Antioxid Redox Signal. 2018;29(17):1756–73.

48. T X YL. F L. α-Tocopherol protected against cobalt nanoparticles and cocl induced cytotoxicity and inflammation in Balb/3T3 cells. %A Yan X. Immunopharmacol Immunotoxicol. 2018;40(2):179–85.

49. De Spirt S, Eckers A, Wehrend C, et al. Interplay between the chalcone cardamonin and selenium in the biosynthesis of Nrf2-regulated antioxidant enzymes in intestinal Caco-2 cells. Free Radical Biology Medicine. 2016;91:164–71.

50. Liu Yk Yk Y, Hw W, Wang Mh, Liu W, Yang Hl F. N-acetylcysteine Attenuates Cobalt Nanoparticle-Induced Cytotoxic Effects through Inhibition of Cell Death, Reactive Oxygen Species-related Signaling and Cytokines Expression. Orthopaedic surgery. 2016;8(4):496–502.

51. Zheng F, Luo Z, Zheng C, et al. Comparison of the neurotoxicity associated with cobalt nanoparticles and cobalt chloride in Wistar rats. Toxicol Appl Pharmacol. 2019;369:90–9.

52. Khurana A, Tekula S, Saifi MA, Venkatesh P; Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12.

53. Green S, Luczak M, Morse J, DeLoughery Z, Zhitkovich A. Uptake, p53 pathway activation, and cytotoxic responses for Co(II) and Ni(II) in human lung cells: implications for carcinogenicity. Toxicol Sci. 2013;136(2):467–77.

54. N LJ. K, TL, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57–62.

55. Karuppagounder SS, Alim I, Khim SJ, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 2016;8(328):328ra329.

56. Saini Y, Proper S, Dornbos P, et al. Loss of Hif-2α Rescues the Hif-1α Deletion Phenotype of Neonatal Respiratory Distress In Mice. PLoS One. 2015;10(9):e0139270.

57. Gupta G, Gliga A, Hedberg J, et al. Cobalt nanoparticles trigger ferroptosis-like cell death (oxytosis) in neuronal cells: Potential implications for neurodegenerative disease. Faseb j. 2020;34(4):5262–81.

58. YAKE LIU XY, WEI WANG, XUEFEI WU, HAI ZHU and FAN LIU. Melatonin counteracts cobalt nanoparticle–induced cytotoxicity and genotoxicity by deactivating reactive oxygen species–dependent mechanisms in the NRK cell line. MOLECULAR MEDICINE REPORTS. 2017;16:4413–20.

59. Liu YZH, Hong H, Wang W, Liu F. Can zinc protect cells from the cytotoxic effects of cobalt ions and nanoparticles derived from metal-on-metal joint arthroplasties? Bone Joint Research. 2017;6(12):649–55.

60. H Z YL. H H, W W, F L. Protective effects of Zn against cobalt nanoparticles and cobalt chloride-induced cytotoxicity of RAW 264.7 cells via ROS pathway. Biochem Biophys Res Commun. 2017;486(2):357–63.
61. K J, M V. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65–87.

62. Tibullo D, Li Volti G, Giallongo C, et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm Res. 2017;66(11):947–59.

63. Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. General Pharmacology: The Vascular System. 1997;29(3):315–31.

64. Camiolo G, Tibullo D, Giallongo C, et al. α-Lipoic Acid Reduces Iron-induced Toxicity and Oxidative Stress in a Model of Iron Overload. Int J Mol Sci. 2019;20(3).

65. B K, A B-W MD, et al. In vivo anti-inflammatory activity of lipoic acid derivatives in mice. Postepy higieny i medycyny doswiadczalnej (Online). 2013;67:331–8.

66. J Z, PA M. Lipoic Acid in the Prevention of Acute Kidney Injury. Nephron. 2016;134(3):133–140.

67. L R, C SG. R, M Z, Y C, C V. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Molecular nutrition food research. 2013;57(1):114–25.

68. Suh JH, Moreau R, Heath SH, Hagen TM. Dietary supplementation with (R)-alpha-lipoic acid reverses the age-related accumulation of iron and depletion of antioxidants in the rat cerebral cortex. Redox Rep. 2005;10(1):52–60.

69. Patrick L. Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Altern Med Rev. 2002;7(6):456–71.

70. Y W. H L, AB S, et al. Directly targeting glutathione peroxidase 4 may be more effective than disrupting glutathione on ferroptosis-based cancer therapy. Biochimica et biophysica acta General subjects. 2020;1864(4):129539.

71. JH S, BZ Z, d E. B F, TM H. Dihydrolipoic acid lowers the redox activity of transition metal ions but does not remove them from the active site of enzymes. Redox report: communications in free radical research. 2004;9(1):57–61.

Tables
Table 1
The effects of ALA and CoNPs on intracellular GSH and GSSG.

Group	T-GSH (nmol/mg)	GSH (nmol/mg)	GSSG (nmol/mg)	GSH/GSSG
Control	57.1 ± 9.1	52.6 ± 11.3	2.4 ± 1.1	22.1 ± 7.2
CoNPs	32.2 ± 10.2	17.8 ± 9.4	10.7 ± 3.1	2.4 ± 1.6
CoNPs + ALA	54.6 ± 7.3	46.8 ± 10.8	5.3 ± 1.9	9.3 ± 7.6
ALA	68.4 ± 13.4	64.9 ± 12.8	2.1 ± 0.9	31.8 ± 6.9

Values are Means ± SD, n = 9.

Figures
CoNPs induced Balb/3T3 cell death, while ALA significantly inhibited its cytotoxicity. a-d). The cells were incubated with CoNPs (400 μM) and ALA (200 μM) for 24 h. The cell morphology became round with smaller volume and the cell nucleus was concentrated in response to CoNPs treatment. Interestingly, ALA could reverse these changes induced by CoNPs. e). ALA exhibited low cytotoxicity toward Balb/3T3 cells, and it could significantly reduce the cell activity only when its concentration is greater than 1200 μM. f). CoNPs induced cytotoxicity in both dose- and time-dependent manner. g). ALA could reverse the cytotoxicity induced by CoNPs. All the data were expressed as mean ± SD of three independent experiments performed in triplicates. (*p<0.01, #p<0.05 vs. control,**p<0.01 vs. cobalt group).
CoNPs treatment enhanced the level of intracellular ROS in Balb/3T3 cells, while ALA significantly inhibited the formation of ROS. The cells were exposed to CoNPs (400μM) and ALA (200μM) for 24 h.a-d). The cells were visualized using a confocal laser scanning microscope. Each slide was scanned at ×40. The green fluorescence indicates the detected ROS production. e). The fluorescent intensity of cells with different treatment. f). The intracellular MDA concentration of cells with different treatments. All the data
were expressed as mean ± SD of three independent experiments performed in triplicates. *p<0.01, #p<0.05 vs. control.

Figure 3

Cell apoptosis and necrosis levels of Balb/3T3 cells in presence of CoNPs and ALA. The cells were exposed to CoNPs (400 μM) and ALA (200 μM) for 24 h. a-d). Flow cytometry results exhibited that CoNPs induced mild cellular apoptosis, which could be further alleviated by the exposure of ALA. The apoptosis rate for CoNPs treatment group was significantly different as compared to the control group. After 24 h of CoNPs exposure, the sum of apoptosis rate and necrosis rate was also significantly higher that of the control group, but the increasement was lower than the results of the cell viability experiment (CCK-8 assay, Figure 1g). All the data were expressed as mean ± SD of three independent experiments performed in triplicates. *p<0.01, #p<0.05 vs. control.
Figure 4

Spectrophotometry based determination of intracellular Fe2+ ion concentration in Balb/3T3 cells. The intracellular Fe2+ ion concentration of Balb/3T3 cells with different treatments. All the data were expressed as mean ± SD of three independent experiments performed in triplicates. *p<0.01 vs. control.
Figure 5

Spectrophotometric measurement of intracellular reduced and oxidized GSH in Balb/3T3 cells. The cells were exposed to CoNPs (400μM) and ALA (200μM) for 24 h. The administration of CoNPs led to reduction of the levels of T-GSH, GSH and GSH/GSSG ratio, as well as elevation of GSSG level significantly. Importantly, all the CoNPs-induced effects were alleviated by ALA significantly for the co-exposure group. All the data were expressed as mean ± SD of three independent experiments performed in triplicates. *p<0.01, #p<0.05 vs. control.
Figure 6

Western blot analysis in Balb/3T3 cells. The results exhibited that administration of CoNPs led to a lower expression of GPx4. However, ALA could significantly relieved decrease of GPx4 expression induced by the CoNPs when the cells were exposed with both CoNPs and ALA. *p<0.01, vs. control.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- GraphicalAbstract.jpg