Online Supplement 1

Incidence and mortality of hospital- and ICU-treated sepsis:
results from an updated and expanded systematic review and meta-analysis

Fleischmann-Struzek C, Mellhammar L, Rose N, Cassini A, Rudd KE, Schlattmann P,
Allegranzi B, Reinhart K.
Supplementary Methods

M1. Search strategy

The following search strategy was used in PUBMED and adapted for the other databases.

Pubmed (and adapted for all other databases)

(((sepsis[Title] OR septic*[Title]) AND (Developing Countries*[Title/Abstract] OR Africa*[Title/Abstract] OR Asia*[Title/Abstract] OR Caribbean*[Title/Abstract] OR West Ind*[Title/Abstract] OR South America*[Title/Abstract] OR Latin America*[Title/Abstract] OR Central America*[Title/Abstract] OR Afghanistan* OR Albania*[Title/Abstract] OR Algeria*[Title/Abstract] OR Angola*[Title/Abstract] OR Antigua*[Title/Abstract] OR Barbuda*[Title/Abstract] OR Argentina*[Title/Abstract] OR Armenia*[Title/Abstract] OR Armeniantitle* OR Armenia*[Title/Abstract] OR Aruba*[Title/Abstract] OR Azerbaijan*[Title/Abstract] OR Bahrain*[Title/Abstract] OR Bangladesh*[Title/Abstract] OR Barbados*[Title/Abstract] OR Benin*[Title/Abstract] OR Byelarus*[Title/Abstract] OR Byelorussian*[Title/Abstract] OR Belarus*[Title/Abstract] OR Belorussian*[Title/Abstract] OR Belorussia*[Title/Abstract] OR Beliz*[Title/Abstract] OR Bhutan*[Title/Abstract] OR Bolivia*[Title/Abstract] OR Bosnia*[Title/Abstract] OR Herzegovina*[Title/Abstract] OR Herzegovina*[Title/Abstract] OR Botswana*[Title/Abstract] OR Brasil*[Title/Abstract] OR Brazil*[Title/Abstract] OR Bulgaria*[Title/Abstract] OR Burkina Faso*[Title/Abstract] OR Burkina Fasso*[Title/Abstract] OR Upper Volta*[Title/Abstract] OR Burundi*[Title/Abstract] OR Urundi*[Title/Abstract] OR Cambodia*[Title/Abstract] OR Khmer Republic*[Title/Abstract] OR Kampuchea*[Title/Abstract] OR Cameroon*[Title/Abstract] OR Cameroon*[Title/Abstract] OR Cape Verde*[Title/Abstract] OR Central African Republic*[Title/Abstract] OR Chad*[Title/Abstract] OR Chile*[Title/Abstract] OR China*[Title/Abstract] OR Colombia*[Title/Abstract] OR Comoros*[Title/Abstract] OR Comoro Island*[Title/Abstract] OR Comores*[Title/Abstract] OR Mayotte*[Title/Abstract] OR Congo*[Title/Abstract] OR Zaire*[Title/Abstract] OR Costa Rica*[Title/Abstract] OR Cote d'Ivoire*[Title/Abstract] OR Ivory Coast*[Title/Abstract] OR Croatia*[Title/Abstract] OR Cuba*[Title/Abstract] OR Cyprus*[Title/Abstract] OR Czechoslovakia*[Title/Abstract] OR Czech Republic*[Title/Abstract] OR Czechia*[Title/Abstract] OR Slovakia*[Title/Abstract] OR Slovak Republic*[Title/Abstract] OR Djibouti*[Title/Abstract] OR French Somaliland*[Title/Abstract] OR Dominica*[Title/Abstract] OR Dominican Republic*[Title/Abstract] OR East...
Pakistan*[Title/Abstract] OR Palau*[Title/Abstract] OR Palestine*[Title/Abstract] OR Panama*[Title/Abstract] OR Paraguay*[Title/Abstract] OR Peru*[Title/Abstract] OR Philippines*[Title/Abstract] OR Philippines*[Title/Abstract] OR Phillipines*[Title/Abstract] OR Phillippines*[Title/Abstract] OR Poland*[Title/Abstract] OR Portugal*[Title/Abstract] OR Puerto Rico*[Title/Abstract] OR Romania*[Title/Abstract] OR Rumania*[Title/Abstract] OR Roumania*[Title/Abstract] OR Russia*[Title/Abstract] OR Russian*[Title/Abstract] OR Rwanda*[Title/Abstract] OR Ruanda*[Title/Abstract] OR Saint Kitts*[Title/Abstract] OR St Kitts*[Title/Abstract] OR Nevis*[Title/Abstract] OR Saint Lucia*[Title/Abstract] OR St Lucia*[Title/Abstract] OR Saint Vincent*[Title/Abstract] OR St Vincent*[Title/Abstract] OR Grenadines*[Title/Abstract] OR Samoa*[Title/Abstract] OR Samoa Island*[Title/Abstract] OR Navigator Island*[Title/Abstract] OR Navigator Island*[Title/Abstract] OR Sao Tome*[Title/Abstract] OR Saudi Arabia*[Title/Abstract] OR Senegal*[Title/Abstract] OR Serbia*[Title/Abstract] OR Montenegro*[Title/Abstract] OR Seychelles*[Title/Abstract] OR Sierra Leone*[Title/Abstract] OR Slovenia*[Title/Abstract] OR Sri Lanka*[Title/Abstract] OR Ceylon*[Title/Abstract] OR Solomon Island*[Title/Abstract] OR Somalia*[Title/Abstract] OR South Africa*[Title/Abstract] OR Sudan*[Title/Abstract] OR Suriname*[Title/Abstract] OR Surinam*[Title/Abstract] OR Swaziland*[Title/Abstract] OR eSwatini*[Title/Abstract] OR Syria*[Title/Abstract] OR Tajikistan*[Title/Abstract] OR Tadzhikistan*[Title/Abstract] OR Tadjikistan*[Title/Abstract] OR Tadzhik*[Title/Abstract] OR Tanzania*[Title/Abstract] OR Thailand*[Title/Abstract] OR Togo*[Title/Abstract] OR Togolese Republic*[Title/Abstract] OR Tonga*[Title/Abstract] OR Trinidad*[Title/Abstract] OR Tobago*[Title/Abstract] OR Tunisia*[Title/Abstract] OR Turk*[Title/Abstract] OR Turkmenistan*[Title/Abstract] OR Turkmen*[Title/Abstract] OR Uganda*[Title/Abstract] OR Ukrain*[Title/Abstract] OR Uruguay*[Title/Abstract] OR USSR*[Title/Abstract] OR Soviet Union*[Title/Abstract] OR Union of Soviet Socialist Republics*[Title/Abstract] OR Uzbekistan*[Title/Abstract] OR Uzhek*[Title/Abstract] OR Vanuatu*[Title/Abstract] OR New Hebrides*[Title/Abstract] OR Venezuela*[Title/Abstract] OR Vietnam*[Title/Abstract] OR Viet Nam*[Title/Abstract] OR West Bank*[Title/Abstract] OR Yemen*[Title/Abstract] OR Yugoslavia*[Title/Abstract] OR Zambia*[Title/Abstract] OR Zimbabwe*[Title/Abstract] OR Rhodesia*[Title/Abstract] OR Cook Island*[Title/Abstract] OR Marshall Island*[Title/Abstract] OR Nauru*[Title/Abstract] OR Niue*[Title/Abstract] OR Papua New Guinea*[Title/Abstract] OR Tuvalu*[Title/Abstract] OR Vanuatu*[Title/Abstract]) AND ("1979/01/01"[PDat] : "3000/12/31"[PDat])) OR ((sepsis[Title] OR septic*[Title]) AND
(epidemiolog*[Title] OR incidence[Title] OR burden[Title] OR prevalence[Title]) AND ("2015/05/01"[PDat] : "3000/12/31"[PDat])) NOT "animals"[MeSH:noexp]
M2. Study selection process for the meta-analysis

The study selection and selection of estimates was performed as follows:

1. If one study applied different sepsis case definition on one data source, e.g. comparing different clinical criteria or ICD-based case abstraction strategies, we preferred
 - Sepsis-3 to sepsis-2 or -1 criteria
 - Explicit to implicit ICD-based definition
 - In case of multiple explicit case definitions, we chose the most conservative estimate

2. If two or more studies used the same data source or referred to the same population,
 - we included the most recent estimate
 - we allowed partial overlaps, e.g. if two studies used the same database observing sepsis incidence in several years, with just one year overlap

3. We included the most recent year of observation in the meta-analysis, or the most recent time frame

The following Table provides an overview of the study selection from different studies with overlapping or identical data sources:

Country	Data source	Years reported	Selection	
Spain	Alvaro Meca et al.	Minimum Basic Data Set	2009-2004, 2005-2009, 2010-2013	2010-2013
	Bouza et al.	Minimum Basic Data Set	2006, 2011	2011
	Bouza et al.	Minimum Basic Data Set	2006-2011	excluded
	Inigo et al.	Minimum Basic Data Set (Region Madrid)	2001	2001
	Ballesster et al.	hospital discharge data Valencian hospitals	1995-2004	1995-2004
	Yeboes et al.	Catalian Health System (CatSalut) Minimum Basic Data	2012	2012
US	Stoller et al.	National Inpatient Sample	2008-2012	2008-2012
	Lagu et al.	National Inpatient Sample	2003, 2007	excluded
	Lagu et al.	National Inpatient Sample	2007	excluded
	Kumar et al.	National Inpatient Sample	2000, 2007	excluded
	Dombrovsky et al.	National Inpatient Sample	1993, 2003	2003
	Geierski et al.	National Inpatient Sample	2004-2009	2004-2009
	Martin et al.	National Hospital Discharge Survey	1979, 2000	2000
	Danai et al.	National Hospital Discharge Survey	1979-2003	excluded
Taiwan	Shen et al.	random 1% sample of the national health insurance dataset	1997-2006	excluded
	Lee et al.	national health insurance data set	2002-2012	2002-2012
Germany	Fleischmann et al.	DRG statistics	2007-2013	2013
	Fleischmann-Brueck et al.	DRG statistics	2010-2015	2015
	Heubel et al.	DRG statistics	2011	2011
UK	Harrison et al.	ICNARC Database	1996, 2004	2004
	Padlon et al.	ICNARC Database	1997	1997
	Shankar-Hari et al.	ICNARC Database (England)	2011-2015	2011-2015
M3. Detailed description of statistical analyses

This part of the Supplement provides more details about the statistical modelling that we used for the meta-analyses of population-level incidence and mortality rates of hospital-treated and ICU-treated sepsis.

We chose generalized linear mixed models (GLMM) as the general class of models for the meta-analyses of incidence and mortality. The incidence is given by the ratio of the number of incident cases and the number of person-years, which can properly be modelled using Poisson models for count data. The natural logarithm \(\ln(p_i) \) of the person-years \(p_i \) of the underlying study \(i \) are included as an offset variable. The meta-analytic Poisson model can be written as a random intercept model:

\[
\ln(Y_i) = \gamma_i + \ln(p_i) \\
= \gamma_0 + u_i + \ln(p_i)
\]

The dependent variable \(Y_i \) is the number of sepsis cases. Hence, the random intercept \(\gamma_i \) is equal to logarithm of the ratio of incident cases and person-years in study \(i \). The expected value \(E(\gamma_i) \) of the random intercepts across the studies is \(\gamma_0 \). The variable \(u_i \) is the study-specific difference \(\gamma_i - \gamma_0 \) between the expected value and the random intercept. The systematic between-study variance is \(\tau^2 = Var(u_i) \).

Similarly, the meta-analytic logistic model of the mortality can be written as a random intercept model:

\[
\ln\left(\frac{M_i}{1-M_i}\right) = \lambda_i \\
= \lambda_0 + u_i
\]

\(M_i \) is the probability of hospital death among patients with sepsis. The logit of the mortality \(M_i \) in study \(i \) is equal to the random intercept \(\lambda_i \). The expected value \(E(\lambda_i) \) of the random intercepts across the studies is \(\lambda_0 \). Again \(u_i \) is the study-specific difference \(\lambda_i - \lambda_0 \) between the expected value and the random intercept of study \(i \), and the systematic between-study variance is given by \(\tau^2 = Var(u_i) \).

The parameters of interest are the expected values \(E(\gamma_i) = \gamma_0 \) and \(E(\lambda_i) = \lambda_0 \), as well as the between study variance \(\tau^2 \) in both models. However, it is important to note that the Poisson model and the logistic model incorporate nonlinear link functions. Hence, the model parameters are on the log-scale or the logit scale. For better interpretation, the model parameters can be back transformed into the natural metric of incident cases per 100,000 person-years or the probability metric in percent. In the case of the Poisson model for the incidence rates the exponential function can be used for back transformation. However, the exponential function \(\exp(\lambda_0) \) of the expected value \(\lambda_0 \) of the random intercepts \(\gamma_i \) is not equal to the average of the number of incident cases per person-years across the studies. From the Jensen’s inequality follows that \(\exp(\lambda_0) \) is smaller than the true average:

\[
\exp(\gamma_0) \leq E\left(\frac{\text{incident cases}}{100,000 \text{ person years}}\right)
\]

This is illustrated in Fig. E1a for the example of the incidence rate of the severe sepsis, which is presented in the main paper. The meta-analytic estimate \(\gamma_0 \) in the Poisson model is \(\approx -6.273 \).
(red line in the left graph of Fig. E1a). Using the back transformation $\exp(\gamma_0) \cdot 100,000$ gives the metaanalytic estimate on the scale of numbers of incident cases per 100,000 person-years. However, the distribution of the numbers of incident cases per 100,000 person-years across studies is highly skewed, which implies that the median and the average differ substantially. This is shown in the right graph of Fig. E1a. The back transformed parameter γ_0 (red line) is rather the median than the average (blue line).

Given these differences we decided to present both, the commonly reported estimate $\exp(\gamma_0) \cdot 100,000$ as well as an estimate of the average of the number of incident cases per 100,000 person-years, which can be approximated by the integral:

$$E\left(\frac{\text{incident cases}}{100,000 \text{ person years}}\right) = 100,000 \cdot \int_{\mathbb{R}} \exp(\gamma_i)d\gamma_i$$

The integral is over the distribution of the random intercepts, which are commonly assumed to follow a normal distribution $\gamma_i \sim N(\gamma_0, \tau)$ in GLMMs. The integral cannot be derived analytically, but can be approximated by means of numerical integration. We used Gauss-Hermite quadrature with 25 nodes.

The problem is essentially the same in logistic models. Using the logistic distribution function, the meta-analytic estimate of the percentage of death among sepsis cases is $1/[1 + \exp(-\lambda_0)] \cdot 100$. However, Jensen’s inequality implies

$$\frac{1}{\exp(-\lambda_0)} \leq E(M_i).$$

This is also be exemplified using the estimates of the meta-analysis of mortality of the sepsis, which is also reported in the main paper. The estimate of the average random intercept $\hat{\lambda}_0$ is
-1.013 (left graph of Figure E1b). Back transformation by means of the logistic distribution function gives an estimated mortality of 26.645% (right graph of Figure E1b). This is slightly lower than the model-implied average mortality rate, which is 27.602%.

![Figure E1b: Distributions of the random intercepts on the logit metric (left) and the mortality in % (right).](image)

The average can be approximated using the integral:

\[
E(M_i) = 100 \cdot \int_{\mathbb{R}} \frac{1}{1 + \exp(-\lambda_i)} d\lambda_i
\]

The integral is over the distribution of the random intercepts in the meta-analytic logistic regression model. According to the model assumptions in GLMMs a normal distribution \(\lambda_i \sim N(\lambda_0, \tau)\) is assumed. Again, the integral cannot be derived analytically. Therefore, it is approximated using Gauss-Hermite quadrature with 25 nodes.

In order to analyse differences in incidence and mortality rates across WHO regions we extended the meta-analytic random intercepts model to a meta-regression model by including predictors at the study level. The resulting meta-analytic Poisson model and logistic model are given by:

\[
\ln(Y_i) = \gamma_0 + u_j + \ln(p_i) + \gamma_A I_{AFRO} + \gamma_P I_{PAHO} + \gamma_W I_{WPRO}
\]

\[
\ln\left(\frac{M_i}{1-M_i}\right) = \gamma_0 + u_j + \lambda_A I_{AFRO} + \lambda_P I_{PAHO} + \lambda_W I_{WPRO}
\]

The dummy variables \(I_{AFRO}, I_{PAHO}\) and \(I_{WPRO}\) indicate the region of the study population. The EURO region was chosen as the reference region. The random intercepts in both models were assumed be follow a normal distribution within the WHO regions with \(\gamma_i \sim N(\gamma_0, \tau)\) and \(\lambda_i \sim N(\lambda_0, \tau)\). Based on these models an omnibus test was conducted which tested the Null hypothesis of no differences in incidence or mortality rates between all WHO regions. An \(F\)-Test according to Knapp and Hartung (1) was used. Post-hoc comparisons between all pairs...
of regions were conducted based on the general linear hypothesis. The *p*-values were adjusted for multiple testing based on the approach proposed by Hothorn et al. (2). The results of the subgroup analyses are presented in Table E8. The point estimates of the incidence and mortality rates for each WHO region are presented Table E6.

The same procedure was used to analyze the potential dependence of incidence and mortality rates from different sepsis case definitions that were applied in the included studies (clinical criteria (sepsis-1, -2 or -3) vs. ICD-case identification (implicit or explicit case identification)). The meta-regression models were specified as

\[
\ln \left(\frac{M_i}{1-M_i} \right) = \lambda_0 + \lambda_1 I_{\text{Sepsis-2}} + \lambda_2 I_{\text{Sepsis-3}} + \lambda_3 I_{\text{imp}} + \lambda_4 I_{\text{exp}}
\]

The dummy variables \(I_{\text{Sepsis-2}}, I_{\text{Sepsis-3}}, I_{\text{imp}}, \) and \(I_{\text{exp}} \) indicate the sepsis case definitions that were used in the study. The clinical sepsis definition Sepsis-1 served as the reference method. The random intercepts in both models were assumed to follow a normal distribution within each sepsis case definition with \(\gamma_i \sim N(\gamma_0, \tau) \) and \(\lambda_i \sim N(\lambda_0, \tau) \). The Null hypothesis of independence of incidence or mortality rates from the sepsis case definitions was tested with an *F*-Test proposed by Knapp and Hartung (1). Pairwise post-hoc comparisons between all sepsis case definitions were conducted based on the general linear hypothesis with adjusted *p*-values for multiple testing. The results are shown in Table E9. The point estimates of the incidence and mortality rates according to the different sepsis case definitions are presented Table E7.

Note that the Forest plots presented in the paper and the Supplement contain not only point estimates of incidence and mortality rates from the single studies, but also 95% confidence intervals. In the case of incidence rates 95% Poisson-CIs are reported and 95% Wilson score intervals for mortality rates.

For the meta-analytic estimates of the overall incidence and mortality rate, we report the model-based confidence intervals as well as the 95% prediction intervals for future studies. The latter does not quantify the accuracy of the overall estimate obtained by a meta-analysis. The prediction interval is meaningful regarding a single study in the future, which is representative for the studies that were included in the meta-analysis. In our case, it is the range in which the estimated incidence rate or mortality rate from a new single study can be expected with the probability of \(p = 0.95 \), given that the new study is representative for the studies included in the meta-analysis.
Supplementary Tables

Table E1: Overview on the included studies on hospital-treated sepsis incidence

Author, publication year, country	study duration in days (years covered)	population	patients observed	age range	total number of sepsis cases	incidence (per 100,000 person-years)	mean age	hospital case fatality (%)	remarks	
Prospective studies										
Todorovic, 2019, Denmark (3)	548 (2013-2015)	37,870	3,615	≥16 years	287	719	-	13.5 (sepsis with organ dysfunction), 75 (septic shock)	Prospective observational study, single center, sepsis definition: sepsis-1 Data on community-acquired sepsis only, thus not included in the meta-analysis	
Retrospective studies										
Mellhammar, 2016, Sweden (4)	4 (2015)	1,275,753	563	≥18 years	109	780	Median 80	17	Patient chart review, multi center study in 2 regions of Sweden, sepsis definition: sepsis-3 This estimate was included in the meta-analysis.	
Mellhammar, 2016, Sweden (4)	4 (2015)	1,275,753	563	≥18 years	96	687	Median 78	20	Patient chart review, multi center study in 2 regions of Sweden, sepsis definition: sepsis-2	
Study	Year, Location	Time Period	Population	Case Identification	Median Age (Years)	Cases	Deaths	Case Fatality Rate (%)	Study Details	
-------------------	----------------	-------------	-------------	---------------------	--------------------	-------	--------	------------------------	--	
Bouza, 2016, Spain (5)	2006-2011	- ≥18 years	277,024,827 †	Nationwide administrative data base, case identification: explicit ICD-9 sepsis codes Identical data source as Bouza et al. 2014 (6), thus not included in the meta-analysis.						
Stoller, 2016, US (7)	2008-2012	>18 years	308,745,538	National Inpatient Sample, case identification: explicit septicemia, bacteremia, fungemia + organ dysfunction ICD codes						
Knoop, 2017, Norway (8)	2011-2012	All ages	9,906,175	Nationwide administrative data base, case identification: explicit ICD-10 sepsis or infection + organ dysfunction codes						
Rhee, 2017, US (9)	2014	Adult	318,386,421	Electronic health records of 409 academic, community, and federal hospital, sepsis definition: sepsis-3						
Fleischmann-Struzek, 2018, Germany (10)	2010-2015	All ages	81,751,602 82,175,684	Nationwide administrative data base, case identification: explicit ICD-10 sepsis codes The 2015 estimate was included in the meta-analysis.						
Fleischmann-Struzek, 2018, Germany (10)	2010-2015	All ages	81,751,602 82,175,684	Nationwide administrative data base, case identification: implicit ICD-10 coding strategy (infection and organ dysfunction)						
Study	Year, Country (ID)	Year Range	Total Population	Admission Age Range	Total Cases	Rate per 100,000	Rate per 100,000	Study Duration	Case Identification Methodology	
-------	--------------------	------------	-----------------	--------------------	-------------	----------------	----------------	----------------	--------------------------------	
Kim, 2019, Korea (11)	365 (2005)	825,502	≥15 years	2,194	453	27 (6 months)	National sample cohort, case identification: implicit ICD-10 coding strategy (infection and organ dysfunction) + prescription of antibiotics			
Marques, 2007, Brazil (12)	365 (2005-2006)	5,200,000	All ages	11,067	-	-	-	Private health plans’ electronic claims, sepsis definition: sepsis-1		
Zhou, 2017, China (13)	730 (2012-2014)	128,695	≥18 years	498	194	26§ (only sepsis without organ dysfunction)	Patient chart review, all public hospitals in Yuetan Subdistrict, Beijing, sepsis definition: sepsis-1, 2012 Surviving Sepsis Campaign guidelines			
Lee, 2017, Taiwan (14)	4,015 (2002-2012)	230,112,717	All ages	230,112,717	1,259,578	639	23 (2002) -18 (2012)§	Nationwide administrative data base, case identification: implicit ICD-9 coding strategy (infection and organ dysfunction)		
Fleischmann, 2016, Germany (15)	365 (2013)	80,767,463	All ages	18,133,338	1,15,421	138	-	Nationwide administrative data base, case identification: explicit ICD-10 sepsis codes		
Álvaro-Meca, 2018, Spain (16)	1,825 (2000-2004)	207,799,359	All ages	686,062	330	19* 18*	Nationwide administrative data base, case identification: implicit ICD-9 coding strategy (infection and organ dysfunction)			
Study	Country	Year(s)	Total	Cases	Median	Study Details				
-------	---------	---------	-------	-------	--------	---------------				
Huggan, 2019, New Zealand (17)	1,825 (2007-2012)	403,368	209,730	All ages	1,643	82*	Median 38	19	Administrative data base of hospitals in the Waikato region of New Zealand, case identification: implicit ICD-10 coding strategy (infection and organ dysfunction)	
Goodwin, 2016, US (18)	365 (2010)	3,400,939	339,670	≥20 years	24,395	717*	-	18*	Administrative data base of nonfederal hospitals in South Carolina, case identification: explicit ICD-9 sepsis codes	
Dupuis 2017, France (19)	2,190 (2009-2014)	309,535,931 †	25,444,627	Adults	421,699 (septic shock only)	136 (septic shock only)	-	40 (septic shock only)	Nationwide administrative data base, case identification: ICD-10 septic shock codes or vasopressor use + infection codes, only data on septic shock, thus not included in the meta-analysis	
De Miguel Yanes, 2015, Spain (20)	1825 (2008-2012)	192,997,924 †	16,598,511	≥18 years	88,092 (septic shock only)	46* (septic shock only)	-	52* (septic shock only)	Nationwide administrative data base, multi center, case identification: explicit ICD-9 septic shock codes, only data on septic shock, thus not included in the meta-analysis	
Lorencio, 2018, Spain (21)	365 (2005)	365 (2016)	-	-	All ages	224,396 (all years)	160 390	-	26 17	Administrative data base in the region of Catalonia, case identification: implicit ICD-9 sepsis coding strategy (infection and organ dysfunction) Data partly included in other publication, missing population denominator, thus not included in
Bold letters highlight the studies or estimates that were included in the meta-analysis.

* recalculated based on the cases and population as provided in the publication and searched in national census registries or based on sepsis deaths and cases
searched in national census registries
† data provided by the author
§ case fatality estimates not included in meta-analysis
Table E2: Overview on the included studies on ICU-treated sepsis incidence

years	study duration (days)	population	patients observed	age range	total number of sepsis cases	incidence (per 100 000 person-years)	mean age	hospital case fatality (%)	remarks
	Prospective studies								
	Author, year								
Nzarora, 2016, Rwanda (22)	426 (2013-2014)	13,741,172#	504	≥ 16 years	220	2*	-	71	
Herran-Monge, 2017, Spain (23)	150	2,025,248	1,874	≥ 18 years	231	31	67	37	
Kübler, 2015, Poland (24)	1 (2012) 1 (2013)	38,533,000 38,496,000	1,398 860	All ages	364 191	69 60	-	-	
Machado, 2017, Brazil (25)	1 (2014)	144,483,698†	2,632	≥ 18 years	794	290	66	56	
Author, year	Study period	Population	Median Age	Case definition	Sepsis definition	Study Design	Median Age	95% CI	Study Details
--	--------------	------------	------------	-----------------	------------------	--------------	------------	--------	---
Bertullo, 2016, Uruguay (26)	2011-2012	800,000	≥ 18 years	153	19*	Prospective, multicenter study, 5 ICUs, sepsis definition: sepsis-1	55		
Azkárate, 2015, Spain (27)	2008-2013	700,000	Not specified	1,136	27*	Prospective observational study, single center, sepsis definition: sepsis-2	62-65	18*	
Almirall, 2016, Spain (28)	2002-2011	180,000	>16 years	917	52 (community acquired sepsis)	Prospective observational study, single-center, sepsis definition: sepsis definition not specified, limited to community-acquired sepsis cases, thus we excluded the study from the meta-analysis	65	19.7	
Rhee, 2017, US (9)	2014	318,386,421#	94,956	292*	-	Electronic health records of 409 academic, community, and federal hospital, sepsis definition: sepsis-3	-	-	
Fleischmann-Struzek, 2018, Germany (10)	2010	81,751,602 82,175,684	49,584	61	68	Nationwide administrative data base, case identification: explicit ICD-10 sepsis codes The 2015 estimate was included in the meta-analysis.	49	45	
Fleischmann-	2010	81,751,602	17,433,8	197,956	242*	Nationwide administrative data base, case identification: implicit	-	-	
Authors, Year, Location	Study Period	Number (Year)	Age	Number of Patients	Code Definition	ICUs	Year	Methodology	
--------------------------	--------------	---------------	-----	--------------------	----------------	------	------	-------------	
Struzek, 2018, Germany (10)	365 (2015)	82,175,684	All ages	289,183	ICD-10 sepsis codes (infection and organ dysfunction codes)				
Shankar-Hari, 2017, UK (29)	1,825 (2011-2015)	215,281,300#	Adults	197,724 (210,560 extrapolated for all ICUs)	National ICU database, sepsis definition: sepsis-2	102	63	31	
Shankar-Hari, 2017, UK (29)	1,825 (2011-2015)	215,281,300#	Adults	197,142 (209,948 extrapolated for all ICUs)	National ICU database, sepsis definition: sepsis-3	102	63	32	
Zhou, 2017, China (13)	730 (2012-2014)	128,695	≥18 years	191	Patient chart review, all public hospitals in Yuetan Subdistrict, Beijing, sepsis definition: sepsis-1	74*	-	-	
Kim, 2019, Korea (11)	365 (2005) 365 (2012)	825,502 863,820	≥15 years	747 1,208	National sample cohort, case identification: implicit ICD-10 coding strategy + prescription of antibiotics (infection and organ dysfunction)	91* 140*	-	-	
Yebenes, 2017, Spain (30)	1,825 (2008-2012)	38,009,065	All ages	23,236	Administrative data base in the region of Catalonia, case identification: implicit ICD-10 coding strategy (infection and organ dysfunction)	61*	-	-	
Study	Population Size	Study Population Size	Age Group	Cases	Incidence	Database/Identification Method			
--	-----------------	-----------------------	-----------	-------	-----------	--			
Huggan, 2019, New Zealand (17)	1,825 (2007-2012)	403,368	All ages	278	14*	Administrative data base of hospitals in the Waikato region of New Zealand, case identification: implicit ICD-10 coding strategy (infection and organ dysfunction)			

Bold letters highlight the studies or estimates that were included in the meta-analysis.

*recalculated based on the cases and population as provided in the publication and searched in national census registries or based on sepsis deaths and cases.

searched in national census registries.
Table E3: Overview on the included studies on ED-treated sepsis incidence

Author, year	years (study duration days)	population patients observed	population age range	total number of sepsis cases	incidence (per 100 000 person-years)	mean age	hospital case fatality (%)	Remarks
Cowan, 2015, UK (31)	14 (2013)	194,000	1,763	≥18 years	38	511	-	-
Vakkalanka, 2019, US (32)	3,285 (2005-2013)	3,035,354†	Not specified	154,019	707	-	-	State-wide hospital administrative database, sepsis case identification: implicit sepsis ICD-9 codes (infection and organ dysfunction codes)
Yu, 2018, Taiwan (33)	4,380 (2001-2012)	253,000,000	All ages	493,397	237 (2002) - 370 (2012) -	21	Nationwid health insurance database, case identification: implicit sepsis-9 codes	

† data provided by the author
Table E4: Risk of bias of the included studies

Study	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Rhee et al.	Yes	Low	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Nazor et al.	No	High	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Marques et al.	No	High	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Lorenzo et al.	No	High	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Lee et al.	Yes	Low	Yes	Low	Low	Yes	Low	No	High	Yes	Low
Kim et al.	Yes	Low	Yes	Low	Low	Yes	Low	No	High	Yes	Low
Dupuis et al.	Yes	Low	Yes	Low	Low	Yes	Low	No	High	Yes	Low
Yeboah et al.	No	High	Yes	Low	Low	Yes	Low	Yes	Low	Low	Low
Fleischmann-Struzek et al.	Yes	Low	Yes	Low	Low	Yes	Low	Yes	Low	Low	Low
Zhou et al.	No	High	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Vaikkalanka et al.	No	High	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Shankar-Hari et al.	Yes	Low	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Machado et al.	Yes	Low	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Bertullo et al.	No	High	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Yu et al.	Yes	Low	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Herrán-Monge et al.	No	High	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Goodwin et al.	No	High	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Cowan et al.	No	High	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
De Miguel Yanes et al.	Yes	Low	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Azkarte et al.	No	High	Yes	Low	Low	Yes	Low	No	High	Yes	Low
Knoop et al.	Yes	Low	Yes	Low	Low	Yes	Low	No	High	Yes	Low
Stoller et al.	Yes	Low	Yes	Low	Low	Yes	Low	No	High	Yes	Low
Kühler et al.	Unknown	Yes	Low	No	High	Yes	Low	Low	Low	Yes	Low
Huggan et al.	No	High	Yes	Low	Low	Yes	Low	No	High	Yes	Low
Mehlemann et al.	No	High	Yes	Low	Low	Yes	Low	Low	Low	Low	Low
Bouza et al.	Yes	Low	Yes	Low	Low	Yes	Low	No	High	Yes	Low
Álvaro-Meca et al.	Yes	Low	Yes	Low	Low	Yes	Low	No	High	Yes	Low
Fleischmann et al.	Yes	Low	Yes	Low	Low	Yes	Low	No	High	Yes	Low

Hoy Risk of Bias Assessment

1. Was the study’s target population a close representation of the national population in relation to relevant variables? (low/high risk of bias)

2. Was the sampling frame a true or close representation of the target population? (low/high risk of bias)
3. Was some form of random selection used to select the sample, OR was a census undertaken? (low/high risk of bias)

4. Was the likelihood of nonresponse bias minimal? (low/high risk of bias)

5. Were data collected directly from the subjects (as opposed to a proxy)? (low/high risk of bias)

6. Was an acceptable case definition used in the study? (low/high risk of bias)

7. Was the study instrument that measured the parameter of interest shown to have validity and reliability? (low/high risk of bias)

8. Was the same mode of data collection used for all subjects? (low/high risk of bias)

9. Was the length of the shortest prevalence period for the parameter of interest appropriate? (low/high risk of bias)

10. Were the numerator(s) and denominator(s) for the parameter of interest appropriate? (low/high risk of bias)

11. Summary item on the overall risk of study bias (low/moderate/high risk of bias)
Table E5: Data sources and coverage of data sources of the included studies

Data source	Studies
nation-wide or regional registries of inpatients	Norway – Knoop et al. – all hospitalizations, Flaatten et al. – all hospitalizations; US – Goodwin et al. – discharges from non-federal hospitals in South Carolina, Angus et al. – seven state hospital discharge database; Sweden – Wilhelms et al. – all hospitalizations, Australia – Sundararajan et al. – all hospitalizations, Spain – Yebenes 2015/2017 – CatSalut, full coverage, China – Zhou et al. – all hospitalizations of residents in Yuetan Subdistrict based on home address, Germany – Fleischmann-Struzek et al., Fleischmann et al., Heublein et al.: complete database except for military or prison hospitals as well as psychiatric facilities; Spain – Álvaro-Meca – approx. 92% coverage, Bouza 2015/2016 - 97% coverage, Inigo et al., Ballester et al., US – Barnato et al., excluded Veteran Admissions and military hospitals
(information on coverage as described in the publication)	
representative inpatient samples (weighted national projections)	US NIS – Stoller et al., Lagu et al. 2012a/b, Kumar et al., Dombrovskiy et al., Gaiski et al., US National Hospital Discharge Survey (NDHS) – Martin et al., Danai et al.
representative population sample	South Korea – Kim et al.
random population sample	Taiwan – Shen et al.
other population-based registries	Sweden – Mellhammar et al. - antibiotic surveillance tool
ICU sample with population-at risk given in the paper or provided by the author	Brazil – Machado et al. (national extrapolations according to sepsis incidence per ICU bed-days/national occupied ICU bed-days), Finland - Karlsson et al., Germany – Engel et al. (national extrapolations according to ICU admissions in the study sample/national ICU admissions), Uruguay – Bertullo et al., The Netherlands – van Gestel et al. (national extrapolation according to ICU bed in the study sample/ICU bed capacity in the Netherlands), Spain - Herran-Monge, Blanco et al., Slovak republic - Zahorec et al. (national extrapolation according to ICU admissions in the study sample/national ICU admissions), Poland – Kübler et al. 2007/2015 (national extrapolations according to ICU beds in the study sample/national ICU bed capacity), Italy – Sakr et al., Australia/New Zealand – Finfer et al. (national extrapolation according to ICU admission in the study sample/national ICU admissions)
Single ICU with population-at-risk given in the paper	Spain - Azkárate et al.
Hospital Type Description	Locations and Methods
--	---
Single or multiple hospital(s) with population-at-risk given in the paper	Australia - Davis et al., Spain – Esteban et al., US - Rhee et al. (national weighted incidence was estimated by projecting study hospital case counts into stratifications of US hospitals by region, size, and teaching status)
All hospitals in a region with population-at-risk given in the paper	Spain – Ballester et al.
All ICUs in a country with population at risk given in the paper or searched in national census registries	Slovenia – Beovic, Rwanda – Nzarora et al., Iceland – Vesteinsdottir et al.
ICU databases/registries	UK – Shankar-Hari et al. (national extrapolation of sepsis admissions in the sample to all ICUs in England), Padkin et al (national extrapolation of sepsis admissions in the sample to 235 ICUs in England and Wales), Harrison et al. (national extrapolation of sepsis admissions in the sample to 240 ICUs in England, Wales and Northern Ireland), France - Guidet et al. (national extrapolation according to ICU bed capacity in the study sample/ICU bed capacity in France), Brun-Buisson et al. (national extrapolation of incidence rates after adjustment for the type of hospital and ICU)
Screening of the defined population for hospitalizations with sepsis	Brazil – Marques et al. population sample of health insurance holders of a private health plan, New Zealand – Huggan et al. - publically funded healthcare program
Screening of the nearly entire populations for hospitalizations with sepsis	Taiwan – Lee et al., 99.7% coverage
Supplement Table E6: Random effects estimators for sepsis incidence rates per 100,000 person-years and case fatality in % according to WHO region.

WHO regions / number of studies	Incidence rate	Mortality		
	Estimate	Approximated Mean**	Estimate§	Approximated Mean*
Hospital-treated Sepsis				
EURO (n=13/12)	124.421 [78.415, 197.417]	178.505 [112.5014, 283.232]	30.117 [25.1432, 35.606]	30.852 [25.974, 36.181]
PAHO (n = 9/6)	289.359 [166.185, 503.828]	415.139 [238.423, 722.836]	22.108 [16.710, 28.650]	22.968 [17.55, 29.419]
WPRO (n = 6/7)	245.419 [124.291, 484.593]	352.099 [178.318, 695.240]	24.27685 [17.204, 33.095]	25.118 [18.053, 33.749]
ICU-treated Sepsis				
EURO (n = 21/11)	52.450 [38.888, 70.742]	66.943 [49.633, 90.289]	40.423 [34.944, 46.152]	40.737 [35.412, 46.281]
AFRO (n = 1/1)	1.598 [0.404, 6.321]	-	76.009 [58.540, 87.669]	-
PAHO (n = 5/4)	138.865 [75.208, 256.404]	177.236 [95.989, 327.252]	42.6964 [33.697, 52.207]	42.939 [34.195, 52.133]
WPRO (n = 7/3)	71.612 [42.560, 120.495]	91.397 [54.319, 153.787]	34.609 [25.387, 45.153]	35.085 [26.033, 45.316]

* Back transformed incidence rate using the exponential function with the average random intercept: exp(γ₀)*100,000.

** Estimated mean of the incidence rates per 100,000 person years based on numerical integration using Gauss-Hermite quadrature.

§ Back transformed mortality rate using the logistic distribution function with the average random intercept: 1/[1 +exp(-λ₀)]*100.

+ Estimated mean of the mortality rate in % based on numerical integration using Gauss-Hermite quadrature.
Supplement Table E7: Random effects estimators for sepsis incidence rates per 100,000 person-years and case fatality in % depending on sepsis case definitions.

Sepsis case definition / number of studies	Incidence rate		Mortality	
	Estimate	Approximated Mean	Estimate	Approximated Mean
	*	**	*	**
Hospital-treated Sepsis				
Sepsis-1 \((n = 4/2)\)	168.402 [75.860, 373.838]	234.514 [105.641, 520.600]	22.097 [13.540, 33.936]	22.821 [14.201, 34.468]
Sepsis-2 \((n = 0/0)\)	-	-	-	-
Sepsis-3 \((n = 2/2)\)	645.152 [209.090, 1990.632]	898.427 [291.175, 2772.116]	15.892 [9.435, 25.523]	16.592 [9.979, 26.220]
Explicit \((n = 13/10)\)	128.589 [82.646, 200.070]	179.070 [115.091, 278.615]	31.665 [26.598, 37.209]	32.253 [27.280, 37.649]
Implicit \((n = 9/8)\)	263.056 [154.509, 447.862]	366.327 [215.166, 623.684]	24.668 [19.909, 30.135]	25.374 [20.637, 30.756]
ICU-treated Sepsis				
Sepsis-1 \((n = 19/12)\)	45.641 [30.456, 68.396]	68.341 [45.603, 102.415]	46.648 [40.341, 53.064]	46.795 [40.751, 52.930]
Sepsis-2 \((n = 3/1)\)	35.443 [12.802, 98.125]	53.0713 [19.170, 146.928]	36.191 [18.725, 58.267]	-
Sepsis-3 \((n = 2/1)\)	167.523 [48.386, 580.007]	250.841 [72.450, 868.476]	29.1791 [14.856, 49.314]	-
Explicit \((n = 3/2)\)	58.276 [21.078, 161.123]	87.261 [31.561, 241.258]	38.772 [25.632, 53.778]	39.244 [26.473, 53.613]
Implicit \((n = 7/3)\)	102.681 [52.707, 200.040]	153.750 [78.921, 299.529]	32.524 [22.574, 44.349]	33.209 [23.449, 44.595]
ICU-treated Sepsis without Rwanda				
Sepsis-1 \((n = 18/11)\)	54.973 [39.996, 75.559]	69.595 [50.634, 95.656]	43.877 [38.802, 49.084]	44.039 [39.088, 49.109]
Sepsis-2 \((n = 3/1)\)	35.464 [16.272, 77.293]	44.896 [20.600, 97.850]	36.19324 [21.774, 53.617]	-
	back transformed incidence rate (Exp(γ0) * 100.000)	estimated mean of the incidence rates per 100.000 person years	back transformed mortality rate (1/[1 + exp(-λ0)]) * 100.000	estimated mean of the mortality rate in %
-------------------------	--	---	---	---
Sepsis-3 (n = 2/1)	167.531 [64.699, 433.802]	212.089 [81.907, 549.179]	29.179 [17.573, 44.327]	-
Explicit (n = 3/2)	58.2806 [26.788, 126.796]	73.781 [33.913, 160.519]	38.780 [28.433, 50.249]	39.067 [28.909, 50.243]
Implicit (n = 7/3)	103.084 [61.882, 171.717]	130.500 [78.341, 217.388]	32.505 [24.616, 41.530]	32.920 [25.130, 41.751]

* Back transformed incidence rate using the exponential function with the average random intercept: \(\exp(\gamma_0) \times 100.000 \).

** Estimated mean of the incidence rates per 100,000 person years based on numerical integration using Gauss-Hermite quadrature.

§ Back transformed mortality rate using the logistic distribution function with the average random intercept: \(1/[1 + \exp(-\lambda_0)] \times 100 \).

+ Estimated mean of the mortality rate in % based on numerical integration using Gauss-Hermite quadrature.
Supplement Table E8: Omnibus test and adjusted pairwise tests for differences in incidence rate and mortality between WHO regions.

	Incidence Differences on the log(event/person-year) scale	Mortality Differences on the logit scale	p	
Hospital-treated Sepsis				
Omnibus test: F(df1 = 2, df2 = 25) = 2.993, p = 0.068; τ = 0.850	Omnibus test: F(df1 = 2, df2 = 19) = 2.035, p = 0.158; τ = 0.4336			
PAHO - EURO	0.8440 [-0.01723, 1.70523]	0.0564	-0.4176 [-0.92696, 0.09171]	0.132
WPRO - EURO	0.6793 [-0.30188, 1.66048]	0.2357	-0.2958 [-0.89221, 0.30058]	0.474
WPRO - PAHO	-0.1647 [-1.21250, 0.88310]	0.9277	0.1218 [-0.54053, 0.78415]	0.902
ICU-treated Sepsis				
Omnibus test: F(df1 = 3, df2 = 30) = 11.682, p = < .001; τ = 0.699	Omnibus test: F(df1 = 3, df2 = 15) = 5.0169, p = 0.013; τ = 0.381			
AFRO - EURO	-3.4914 [-5.30443, -1.67840]	< 0.001	1.54107 [0.45185, 2.63029]	0.002
PAHO - EURO	0.9736 [0.09473, 1.85255]	0.0234	0.09362 [-0.48672, 0.67396]	0.975
WPRO - EURO	0.3114 [-0.46168, 1.08447]	0.7222	-0.24841 [-0.89545, 0.39862]	0.752
WPRO - AFRO	3.8028 [1.90868, 5.69693]	< 0.001	-1.78948 [-2.98199, -0.59697]	< 0.001
WPRO - PAHO	-0.6622 [-1.69812, 0.37362]	0.3482	-0.34203 [-1.09868, 0.41462]	0.645
PAHO - AFRO	4.4651 [2.52536, 6.40475]	< 0.001	-1.44745 [-2.60514, -0.28976]	0.008
Supplement Table E9: Omnibus test and adjusted pairwise tests for differences in incidence rate and mortality rates between studies with different sepsis case definitions.

	Incidence Differences on the log(event/person-year) scale	Mortality Differences on the logit scale
Hospital-treated Sepsis		
Omnibustest: $F(df1 = 3, df2 = 24) = 3.013, p = 0.0498; \tau = 0.814$		
Sepsis-3 - Sepsis-1	1.343 [-0.449, 3.136]	0.214
Explicit - Sepsis-1	-0.270 [-1.454, 0.914]	0.935
Implicit - Sepsis-1	0.446 [-0.800, 1.692]	0.791
Implicit - Explicit	0.716 [-0.183, 1.615]	0.169
Implicit - Sepsis-3	-0.897 [-2.516, 0.722]	0.479
Explicit - Sepsis-3	-1.613 [-3.186, -0.040]	0.042
ICU-treated Sepsis		
Omnibustest: $F(df1 = 4, df2 = 29) = 1.968, p = 0.126; \tau = 0.899$		
Sepsis-2 - Sepsis-1	-0.253 [-1.762, 1.257]	0.991
Sepsis-3 - Sepsis-1	1.300 [-0.498, 3.099]	0.274
Explicit - Sepsis-1	0.244 [-1.263, 1.752]	0.992
Implicit - Sepsis-1	0.811 [-0.264, 1.885]	0.234
Sepsis-3 - Sepsis-2	1.553 [-0.659, 3.766]	0.303

Omnibustest: $F(df1 = 3, df2 = 18) = 3.203, p = 0.048; \tau = 0.397$
Comparison	Mean [CI]	p-value (df2)	τ	p-value (df2)
Sepsis-3 - Implicit	0.490 [-1.452, 2.431]	0.957	-0.157 [-1.526, 1.212]	0.998
Sepsis-3 - Explicit	1.056 [-1.155, 3.267]	0.682	-0.430 [-1.877, 1.018]	0.924
Sepsis-2 - Implicit	-1.064 [-2.740, 0.613]	0.408	0.163 [-1.256, 1.581]	0.998
Sepsis-2 - Explicit	-0.497 [-2.480, 1.485]	0.958	-0.110 [-1.605, 1.384]	1.000
Implicit - Explicit	0.566 [-1.109, 2.242]	0.884	-0.273 [-1.358, 0.812]	0.958

ICU-treated Sepsis without Rwanda

Omnibustest: \(F(df1 = 4, df2 = 28) = 2.602, p = 0.057; \tau = 0.687\)
Omnibustest: \(F(df1 = 4, df2 = 13) = 1.801, p = 0.189; \tau = 0.336\)

Comparison	Mean [CI]	p-value (df2)	τ	p-value (df2)
Sepsis-2 - Sepsis-1	-0.438 [-1.597, 0.721]	0.836	-0.321 [-1.341, 0.700]	0.909
Sepsis-3 - Sepsis-1	1.114 [-0.267, 2.496]	0.177	-0.641 [-1.591, 0.310]	0.345
Explicit - Sepsis-1	0.058 [-1.098, 1.215]	1.000	-0.210 [-0.914, 0.493]	0.923
Implicit - Sepsis-1	0.629 [-0.200, 1.457]	0.229	-0.485 [-1.092, 0.123]	0.185
Sepsis-3 - Sepsis-2	1.553 [-0.141, 3.247]	0.090	-0.320 [-1.654, 1.014]	0.964
Sepsis-3 - Implicit	0.486 [-1.002, 1.973]	0.897	-0.156 [-1.208, 0.896]	0.994
Sepsis-3 - Explicit	1.056 [-0.636, 2.748]	0.426	-0.430 [-1.540, 0.680]	0.822
Sepsis-2 - Implicit	-1.067 [-2.350, 0.216]	0.153	0.164 [-0.952, 1.279]	0.994
Sepsis-2 - Explicit	-0.497 [-2.013, 1.019]	0.896	-0.110 [-1.281, 1.060]	0.999
Implicit - Explicit	0.570 [-0.711, 1.851]	0.737	-0.274 [-1.109, 0.561]	0.895
Supplementary Figures

Figure E2: Random effects meta-analysis estimators for the incidence of (A) hospital-treated sepsis, and (B) ICU-treated sepsis per 100,000 person-years in the past decade
Figure E3: Random effects meta-analysis estimators for the mortality of (A) hospital-treated sepsis, and (B) ICU-treated sepsis in the past decade

Publication (first year of obs.)	Fatality (%)	95% CI
Alvaro-Meca, 2018 (2010)	17.799	[17.723; 17.875]
Goodwin, 2016 (2010)	17.786	[17.312; 18.271]
Bouza, 2008 (2011)	40.199	[39.769; 40.631]
Heublein, 2013 (2011)	42.800	[42.474; 43.128]
Knoop, 2017 (2011)	26.403	[25.668; 27.151]
Kim, 2019 (2012)	31.750	[30.310; 33.225]
Yebehes, 2014 (2012)	19.700	[19.156; 20.554]
Fleischmann, 2016 (2013)	43.622	[43.336; 43.908]
Rhee, 2017 (2014)	15.004	[14.837; 15.173]
Fleischmann–Struzek, 2018 (2015)	41.654	[41.393; 41.916]
Melhammar, 2016 (2015)	17.431	[11.453; 25.627]

Random effects model

Prediction interval

27.352 [21.240; 34.452]

[9.268; 58.117]
Publication (first year of obs.)	Fatality (%)	95% CI
Vesteinsdottir, 2011 (2008)	29.665	[21.995; 38.457]
Bertullo, 2016 (2011)	54.902	[46.994; 62.570]
Herran–Monge, 2017 (2011)	36.245	[30.293; 42.650]
Shankar–Hari, 2017 (2011)	29.179	[28.979; 29.380]
Nzarora, 2010 (2010)	75.909	[69.045; 81.004]
Machado, 2017 (2014)	55.711	[52.223; 59.143]
Fleischmann–Struzek, 2018 (2015)	45.190	[44.830; 45.550]
Random effects model	**46.608**	**[34.717; 58.897]**
Prediction interval		**[13.493; 83.010]**
References

1. Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. *Statistics in medicine* 2003; 22: 2693-2710.

2. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. *Biom J* 2008; 50: 346-363.

3. Todorovic Markovic M, Pedersen C, Gottfredsson M, Todorovic Mitic M, Gaini S. Epidemiology of community-acquired sepsis in the Faroe Islands - a prospective observational study. *Infect Dis (Lond)* 2019; 51: 38-49.

4. Mellhammar L, Wullt S, Lindberg A, Lanbeck P, Christensson B, Linder A. Sepsis Incidence: A Population-Based Study. *Open forum infectious diseases* 2016; 3: ofw207.

5. Bouza C, Lopez-Cuadrado T, Amate-Blanco JM. Use of explicit ICD9-CM codes to identify adult severe sepsis: impacts on epidemiological estimates. *Crit Care* 2016; 20: 313.

6. Bouza C, Lopez-Cuadrado T, Saz-Parkinson Z, Amate-Blanco JM. Epidemiology and recent trends of severe sepsis in Spain: a nationwide population-based analysis (2006-2011). *BMC infectious diseases* 2014; 14: 3863.

7. Stoller J, Halpin L, Weis M, Aplin B, Qu W, Georgescu C, Nazral M. Epidemiology of severe sepsis: 2008-2012. *Journal of critical care* 2016; 31: 58-62.

8. Knoop ST, Skrede S, Langeland N, Flaatten HK. Epidemiology and impact on all-cause mortality of sepsis in Norwegian hospitals: A national retrospective study. *PloS one* 2017; 12: e0187990.

9. Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, Kadri SS, Angus DC, Danner RL, Fiore AE, Jernigan JA, Martin GS, Septimus E, Warren DK, Karcz A, Chan C, Menchaca JT, Wang R, Gruber S, Klompas M, Program CDCPE. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014. *JAMA : the journal of the American Medical Association* 2017; 318: 1241-1249.

10. Fleischmann-Struzek C, Mikolajetz A, Schwarzkopf D, Cohen J, Hartog C, Pletz M, Gastmeier P, Reinhart K. Challenges in Assessing the Burden of Sepsis and Understanding the Inequalities of Sepsis Outcomes between National Health Systems - Secular Trends in Sepsis and Infection Incidence and Mortality in Germany *Intensive care medicine* 2018; 44: 1826-1835.

11. Kim J, Kim K, Lee H, Ahn S. Epidemiology of sepsis in Korea: a population-based study of incidence, mortality, cost and risk factors for death in sepsis. *Clin Exp Emerg Med* 2019; 6: 49-63.

12. Marques AC, Janiszewski M, Houlis D. Analysis of incidence, resource use and costs of severe sepsis in Brazil and the economic impact of drotrecogin-alfa activated. *Value in Health* 2007; May-Jun: A162-A162.

13. Zhou J, Tian H, Du X, Xi X, An Y, Duan M, Weng L, Du B, for China Critical Care Clinical Trials G. Population-Based Epidemiology of Sepsis in a Subdistrict of Beijing. *Critical care medicine* 2017; 45: 1168-1176.

14. Lee CC, Yo CH, Lee MG, Tsai KC, Lee SH, Chen YS, Lee WC, Hsu TC, Lee SH, Chang SS. Adult sepsis - A nationwide study of trends and outcomes in a population of 23 million people. *The Journal of infection* 2017; 75: 409-419.

15. Fleischmann C, Thomas-Rueddel DO, Hartmann M, Hartog CS, Welte T, Heublein S, Heublein S, Dennler U, Reinhart K. Hospital Incidence and Mortality Rates of Sepsis. *Deutsches Arzteblatt international* 2016; 113: 159-166.

16. Alvaro-Meca A, Jimenez-Sousa MA, Micheloud D, Sanchez-Lopez A, Heredia-Rodriguez M, Tamayo E, Resino S, Group of Biomedical Research in Critical Care M. Epidemiological trends of sepsis in the twenty-first century (2000-2013): an
analysis of incidence, mortality, and associated costs in Spain. *Popul Health Metr* 2018; 16: 4.

17. Huggan PJ, Bell A, Waetford J, Obertova Z, Lawrenson R. Evidence of High Mortality and Increasing Burden of Sepsis in a Regional Sample of the New Zealand Population. *Open forum infectious diseases* 2017; 4: ofx106.

18. Goodwin AJ, Nadig NR, McElligott JT, Simpson KN, Ford DW. Where You Live Matters: The Impact of Place of Residence on Severe Sepsis Incidence and Mortality. *Chest* 2016; 150: 829-836.

19. Dupuis C, Boudalma L, Ruckly S, Perozziello A, Mourvillier B, Bailly S, Sonneville R, Timsit J-F. Septic shock in France from 2009 to 2014: Incidence, outcome, and associated costs of care. *Annals of Intensive Care* 2017; 7: 32-33.

20. de Miguel-Yanes JM, Mendez-Bailon M, Jimenez-Garcia R, Hernandez-Barrera V, Perez-Farinos N, Lopez-de-Andres A. Trends in sepsis incidence and outcomes among people with or without type 2 diabetes mellitus in Spain (2008-2012). *Diabetes Res Clin Pract* 2015; 110: 266-275.

21. Lorencio C, Yébenes JC, Gonzalez Londoño J, Cleriès M, Vela E, Espinosa L, Ruiz JC, Rodriguez A, Esteban E, Ferrer R, Artigas A. Incidence and mortality of multiple organ failure (MOF) in septic patients. An 11 year review in Catalonia. *Intensive Care Medicine Experimental* 2018; 6.

22. Nzorora J, Beach ML, Riviello ED, Twagirumugabe T. Epidemiology And Outcomes Of Sepsis In Two Intensive Care Units In Rwanda. *American journal of respiratory and critical care medicine* 2016; 193.

23. Herran-Monge R, Muriel-Bombin A, Garcia-Garcia MM, Merino-Garcia PA, Martinez-Barrios M, Andaluz D, Ballesteros JC, Domínguez-Berrot AM, Moradillo-González S, Macías S, Alvarez-Martínez B, Fernandez-Calavia MJ, Tarancon C, Villar J, Blanco J. Epidemiology and Changes in Mortality of Sepsis After the Implementation of Surviving Sepsis Campaign Guidelines. *Journal of intensive care medicine* 2019; 34: 740-750.

24. Kubler A, Adamik B, Ciszewicz-Adamiczka B, Ostrowska E. Severe sepsis in intensive care units in Poland--a point prevalence study in 2012 and 2013. *Anaesthesiol Intensive Ther* 2015; 47: 315-319.

25. Machado FR, Cavalcanti AB, Bozza FA, Ferreira EM, Angotti Carrara FS, Sousa JL, Caixeta N, Salomao R, Angus DC, Pontes Azevedo LC, Investigators S, Latin American Sepsis Institute N. The epidemiology of sepsis in Brazilian intensive care units (the Sepsis PREvalence Assessment Database, SPREAD): an observational study. *The Lancet infectious diseases* 2017; 17: 1180-1189.

26. Bertullo M, Carbone N, Brandes M, Silva M, Meiss H, Tejera D, Deicas A, Buroni M, Gerez J, Limongi G, Cancela M, Hurtado J. Epidemiología, diagnóstico y tratamiento de la sepsis severa en Uruguay: un estudio multicéntrico prospectivo. *Rev méd Urug* 2016; 32: 178-189.

27. Azkarate I, Choperena G, Salas E, Sebastian R, Lara G, Elosegui I, Barrutia L, Eguibar I, Salaberría R. Epidemiology and prognostic factors in severe sepsis/septic shock. Evolution over six years. *Medicina intensiva / Sociedad Española de Medicina Intensiva y Unidades Coronarias* 2016; 40: 18-25.

28. Almirall J, Guell E, Capdevila JA, Campins L, Palomera E, Martinez R, Miro G, de la Torre MC, Solsoma M, Yebenes JC. [Epidemiology of community-acquired severe sepsis. A population-based study]. *Med Clin (Barc)* 2016; 147: 139-143.

29. Shankar-Hari M, Harrison DA, Rubenfeld GD, Rowan K. Epidemiology of sepsis and septic shock in critical care units: comparison between sepsis-2 and sepsis-3
populations using a national critical care database. *British journal of anaesthesia* 2017; 119: 626-636.

30. Yebenes JC, Ruiz JC, Ferrer R, Artigas A, Lorencio C, Rodriguez A, Nuvials X, Martin-Loeches I, Bordeje L, Bosch A, Cleries M. Trends in incidence and hospital outcomes among patients with severe sepsis in catalonia during the 2008-2012 period. *Intensive Care Medicine, (September 2014) Vol 40, No 1, Supp SUPPL 1, pp S152 Abstract Number: 0537 2014.*

31. Cowan SL, Holland JA, Kane AD, Frost I, Boyle AA. The burden of sepsis in the Emergency Department: an observational snapshot. *Eur J Emerg Med* 2015; 22: 363-365.

32. Vakkalanka JP, Harland KK, Swanson MB, Mohr NM. Clinical and epidemiological variability in severe sepsis: an ecological study. *J Epidemiol Community Health* 2018; 72: 741-745.

33. Yu CW, Chang SS, Lai CC, Wu JY, Yen DW, Lee MG, Yeh CC, Chung JY, Lin YJ, Lee CC. Epidemiology of Emergency Department Sepsis: A National Cohort Study Between 2001 and 2012. *Shock* 2019; 51: 619-624.