Dietary water seems to improve skin hydration without influencing hemodynamics

A água da dieta parece favorecer a hidratação cutânea sem afectar a hemodinâmica.

Federica Tomasino1,2 Maria Lídia Palma1, Carla Monteiro2, Liliana Tavares2, Julia Bujan3 & L. Monteiro Rodrigues2,4

1 Università degli Studi di Palermo, School of Pharmacy, Dip. Scienze Tecnol. Biol. Chimihe e Farmaceutiche, Viale delle Scienze Ed., 16, 90128 Palermo, Italia
2 Universidade Lusófona (CBIOS – Research Center for Health Science and Technologies), Campo Grande, 376, 1749-024, Lisboa, Portugal
3 Universidad de Alcalá Henares, Faculty of Medicine, Madrid, Spain
4 Universidade de Lisboa (Faculty of Pharmacy)- Dep. Pharmacological Sciences
Email: p1814@ulusofona.pt; lidia.palma@ulusofona.pt

Abstract
The various studies on the importance of water in the hydration of human skin have suggested that an increased dietary intake might positively impact the physiology of normal skin. We evaluated the consequences of increasing water intake through drinking in skin hydration in vivo. Eating habits were maintained, evaluated by a Food Frequency Questionnaire and based on total water consumption. In two groups with different total water consumption, we evaluated the impact of 2L/day water after 30 days. This increase produced no hemodynamic changes or weight changes but an improvement in the epidermal hydration was suggested. The magnitude of the impact on skin hydration was higher in the group that regularly consumed less water, suggesting that the increase in water consumption has more beneficial effects on those individuals who habitually consume less water per day. These data are consistent with the published literature, justifying interest in looking further into this topic, in order to better understand the importance of dietary water in the context of cutaneous physiology, especially in the group of subjects with reduced consumption habits.

Keywords: dietary water; skin hydration; bioimpedance; in vivo.

Resumo
Os vários estudos sobre a importância da água na hidratação da pele humana vêm sugerindo que o aumento da ingestão de água pode ter um impacto positivo na fisiologia da pele normal. Mantendo os hábitos dietários, avaliados por Questionário de Frequência Alimentar e com base no consumo de água total, avaliamos as consequências do aumento de água bebida na bioimpedância e na hidratação da pele “in vivo”. Em dois grupos com diferentes consumos de água total, avaliamos, ao fim de um mês, o impacto do aumento do aporte de 2L/dia de água bebida. Este aumento não produziu alterações hemodinâmicas ou ponderais. Os resultados sugerem uma melhoria da hidratação epidérmica. A magnitude do impacto sobre a hidratação cutânea é maior no grupo que regularmente consome menos água, sugerindo que o aumento do consumo de água tem mais efeitos benéficos na saúde cutânea dos indivíduos que consomem menos água por dia. Estes dados estão de acordo, com a literatura publicada, justificando o interesse no aprofundamento do tema, de modo a contribuir para o conhecimento sobre a importância da água no contexto da fisiologia cutânea em especial no grupo de indivíduos com hábitos de menor consumo.

Palavras-chave: Água da dieta; Hidratação cutânea; bioimpedância; in vivo.
Introduction

Water is the main component of organs, tissues and cells and therefore the functioning of the human body critically depends on this nutrient as it is vital for all body functions. Water participates in all physiological processes of digestion and absorption, acts as a transport system for nutrients, helps to eliminate non-digestible metabolic waste, serves as a lubricant, and plays a role in the maintenance of body temperature. The water required for normal physiological processes comes from the metabolism of macronutrients (carbohydrates, proteins, lipids) from food and especially from fluid intake (water consumed by one's own will or determined by the thirst reflex). The body regulates the water balance independently through the hypothalamus, maintaining the required amount of water in order to prevent dehydration and to maintain a constant balance between water intake and elimination (urine, breath, feces and skin).

Water is an essential nutrient, but there is no clear definition regarding daily requirements. It is only possible to define a value of "adequate" water consumption sufficient to maintain normal hydration, which is dependent on the climatic conditions where one lives, on physical activity and on personal metabolism, which are different for each individual. With respect to the importance of water in the skin, the water content of the stratum corneum (SC) is a major determinant regulating its function, as with other keratinized tissues. Water affects the permeability and flexibility of SC and modulates the activity of various enzymes involved in the processes of formation and scaling of the skin barrier.

Considering that measurement of water consumption depends on its various origins, the 2010 study of the Portuguese population identified how the various types of water intake contributed to the total amount of water consumed (drunk water, water from food, and water contained in drinks). A food frequency questionnaire (FFQ) was used as a measuring instrument through which it was possible to measure the total water intake of the studied population as the sum of the drunk water (AgB), water from the diet (AgD) and metabolic water. In doing so, it was possible to measure the contribution of the various components to the total water supply. Based on the total water intake, we tried to assess the impact that an additional intake of water in the diet would have on skin hydration in vivo, without changing other aspects of daily eating habits.

Introdução

A água constitui o principal componente de órgãos, tecidos e células, pelo que, o funcionamento do corpo humano está, criticamente, dependente da água, encarada como um nutriente que assegura as funções vitais do organismo. A água participa em todos os processos fisiológicos de digestão e absorção, actua como sistema de transporte de nutrientes e na eliminação de resíduos metabólicos não digeríveis, funciona como lubrificante e desempenha um papel na manutenção da temperatura corporal.

A quantidade de água necessária para o funcionamento normal dos processos fisiológicos provém da metabolização dos macronutrientes (carbohidratos, proteínas, lipídios), dos alimentos e principalmente da ingestão de líquidos (água bebida por vontade própria ou por reflexo da sede). O organismo regula o balanço hídrico de modo autónomo através do hipotálamo mantendo a quantidade de água necessária para evitar a desidratação e mantendo um equilíbrio constante entre a água ingerida e a água eliminada (urina, respiração, fezes e pele).

Sendo a água um nutriente fundamental, não existe, contudo para a água uma definição clara sobre as necessidades diárias. Só é possível definir um valor “adequado” do consumo de água suficiente para manter uma hidratação normal, facto que, depende das condições climáticas em que cada um vive, da actividade física e do metabolismo pessoal que são diferentes para cada indivíduo.

Reconhecida que é a importância da água na pele, o teor em água do estrato córneo (EC) é o mais importante factor de regulação da sua função e de outros tecidos queratinizados. A água afecta a permeabilidade e a flexibilidade do EC e modula a actividade de várias enzimas envolvidas nos processos de formação e dimensionamento da barreira cutânea.

Considerando que a contabilização da água consumida deve atender as suas variedas origens, o estudo sobre o padrão de consumo na população portuguesa em 2010 permitiu identificar o contributo dos vários aportes na quantidade total de água consumida (água bebida, água dos alimentos, água contida nas bebidas), utilizando como instrumento de medida um inquérito de frequência alimentar (QFA), através do qual foi possível contabilizar o aporte total de água da população em estudo como o somatório da água bebida (AgB), água da dieta (AgD) e água metabólica e, o contributo das várias componentes no aporte total. Com base no aporte total de água, procurámos avaliar o impacto que o aporte dietário de uma quantidade adicional de água diária tem sobre a hidratação cutânea “in vivo”, sem alterar os hábitos alimentares quotidianos.
Materials and Methods

All procedures and methodologies were previously submitted and approved by the Institutional Ethics Committee, ensuring the general principles of good clinical practice applicable to studies involving human volunteers and the full compliance with all ethical standards laid down in the Declaration of Helsinki and subsequent amendments[11,12]. All subjects were informed in detail about the study objectives and phases, and expressed their written informed consent. 25 healthy female volunteers, aged between 20 and 37 (23.72 ± 4.75) years old and without any pathologies or addictions, were selected. The subjects involved represent an extremely varied sample regarding age, diet and the daily amount of consumed water. This variability is essential in ensuring that the target population is represented. We considered the volunteers’ dietary habits of water consumption through a food frequency questionnaire (FFQ)[13] developed in the Department of Hygiene and Epidemiology, Faculty of Medicine, University of Porto (FMUP). For the conversion of food into nutrients, the software Food Processor Plus®, version 5.0 (ESHA Research, USA) was applied. This uses the food composition of the U.S. Department of Agriculture and includes raw and processed foods. The nutritional content of Portuguese foods was added to this database.

Participating volunteers were grouped according to their level of water consumption, which included the sum of drunk water (AgB) as water consumed between meals (water, tea and infusions), water from diet (AgD) measured through the FFQ and which included water from foods, juices and soup, and water metabolized by the oxidative pathways of macronutrients[14].

The study took place between April and June of last year and lasted four weeks for each volunteer. Three measurements were performed: T0 at the beginning of the study, T1 after 15 days and T2 after 30 days at the end of the study. Five anatomical areas were selected: forehead, cheekbone, hand (dorsal), forearm (ventral) and leg (dorsal). The anatomical locations were previously marked to ensure measurements were taken in the same anatomical sites. Experimental procedures and techniques did not involve any significant risk or discomfort for patients. These are non-invasive techniques, widely tested and used in the study of human skin function in vivo. During the study, volunteers pledged to maintain their daily dietary and hygiene habits except on measurement days when clear restrictions regarding the use of hygiene products and body care must be observed.

Based on the analysis of total water content in the diet in T0 and using cluster analysis, two groups were constructed: group 1 (n = 17), with an average total

Materiais e Métodos

Todas os procedimentos e metodologias aplicadas foram, previamente, submetidas e aprovadas pela Comissão de Ética institucional, garantindo os princípios gerais das boas práticas clínicas aplicáveis aos estudos envolvendo voluntários humanos e o pleno cumprimento de todas as normas éticas previstas na Declaração de Helsínquia e emendas subsequentes[11,12]. Todas as voluntárias foram informadas de forma detalhada sobre os objetivos e etapas do estudo, tendo expresso, por escrito, o seu consentimento informado. Foram selecionadas 25 voluntárias do gênero feminino saudáveis, sem patologias ou qualquer tipo de adicção com idades compreendidas entre os 20 e 37 (23.72 ± 4.75) anos. As voluntárias incluídas constituem uma amostra extremamente variada no que respeita à idade, aos regimes alimentares e a quantidade de água consumida diariamente. Esta variabilidade é essencial para garantir a representatividade da população-alvo. Foram considerados os hábitos dietários de consumo de água dos voluntários através de questionário de frequência alimentar (QFA)[13] e inquérito de consumo diário de água O QFA utilizado foi desenvolvido no Serviço de Higiene e Epidemiologia da Faculdade de Medicina da Universidade do Porto (FMUP). Para a conversão dos alimentos em nutrientes foi utilizado o programa Food Processor Plus®, versão 5.0 (ESHA Research, USA), que utiliza a composição de alimentos do Departamento de Agricultura dos EUA e inclui alimentos crus e processados. A esta base de dados foram acrescentados os conteúdos nutricionais de alimentos portugueses.

As voluntárias que participaram no estudo foram selecionadas de acordo com a contabilização do consumo total de água, que inclui o somatório da água bebida (AgB) como a água consumida fora das refeições (água, chá e infusões), da água da dieta (AgD) contabilizada via QFA e que inclui a água dos alimentos, sumos e sopa e a água metabolizada através da via oxidativa dos macronutrientes[15].

O estudo decorreu entre Abril e Junho de 2012, e teve duração de 4 semanas para cada voluntária. Foram feitas 3 medições: T0 no início do estudo, T1- após 15 dias e T2- após 30 dias no final do estudo. Foram selecionadas cinco zonas anatômicas: fronte, zigomática, mão (dorsal), antebraço (ventral) e perna (dorsal). As zonas anatômicas foram marcadas para garantir a realização das medidas no mesmo local na zona anatômica em estudo. As técnicas e procedimentos experimentais não ofereciam qualquer tipo de risco ou desconforto relevantes para os pacientes. Trata-se de técnicas não invasivas, amplamente testadas e utilizadas no estudo da função cutânea humana, “in vivo”. Durante o estudo as voluntárias comprometeram-se a manter o seu padrão alimentar e os seus hábitos de administração tópica de produtos de higiene e cuidados.
water consumption of 1827.8 ± 366.13 ml/day and group 2 (n = 8) with an average water consumption of 3145.7 ± 424.12 ml/day (Table 1). Given the value indicated by EFSA[15] as the amount of water suitable for women, all volunteers were asked to drink 2L/day of bottled water (mineral water Vitalis ® Unicer SA) over the following 30 days. All measurements were made in the laboratory, with continuous monitoring of ambient humidity and temperature according to standard recommendations for this type of study (temperature between 20 and 22 °C, Humidity 40 to 60%). Volunteers were given about 15 minutes to acclimatize to the laboratory conditions. All volunteers had a normal[16] Body Mass Index (BMI) value (between 21.99 and 23.28 kg /m²).

The equipment used to measure the influence of the variation of input dietary water on skin physiology and the variables considered were: Bodystat QuadScan ® 4000 to evaluate the BMI and the volumes of water distribution in the body, Tewameter ® TM 300 (CK Electronics, Germany) for the measurement of transepidermal water loss (TEWL), the MoistureMeterSC (Delfin Technologies, Finland) for measuring the superficial hydration probe 2mm, the MoistureMeterD (Delfin Technologies, Finland) for measuring the deep hydration probe 55mm, and the esfingomanometer Mobil Tensoval Hartmann ® to measure blood pressure and heart rate.

Grupo/Group 1	N	Min	Max	Mean/Média	SD/DP
Group 1	17	1240,05	2211,97	1827,8576	366,13464
Group 2	8	2571,27	3667,11	3145,6975	424,12377

Table 1 - Descriptive analysis of the total water consumption (ml) in the studied population.
Tabela 1 - Análise descritiva do consumo de água total (em ml) na população em estudo.

Bodystat® QuadScan 4000

The Bodystat QuadScan 4000 ® unit (Bodystat, Isle of Man, UK) was used to perform the Bio-impedance analysis. It operates at various frequencies where Total Body Water (TBW) was calculated at 200 kHz and Extracellular Water (ECW) calculated at 5 kHz[17]. The Intracellular Water (ICW) values were indirectly obtained, by calculating the difference between TBW and ECW.
and ECW values. The device uses a regression equation adapted to the equipment. It also calculates BMI. Specific requirements before each measurement were: no food or drink in the six hours before the measurements; restraint from exercising in the twelve hours before the measurements; and no consumption of alcohol or caffeinated drinks in the 24 hours before measurements.

The biometric measurements were made by placing electrodes on the right upper limb (one immediately below the proximal phalanges, another under the radiocubital joint) and in the left lower limb (one immediately below the proximal phalanges, the other in the ankle joint) in dorsal decubitus position (Figure 1), according to manufacturer's specifications. This parameter was analyzed at T0 and T2.

Tewameter® TM 300

Transepidermal Water Loss (TEWL), considered as a reliable indicator of the epidermal "barrier" function was evaluated by the Tewameter TM 300® unit (Courage + Khazaka electronic GmbH (Cologne, Germany)). Measurements were performed on volunteers by putting the probe head (hollow cylinder, narrow 10 mm diameter and 20 mm height) perpendicular to the skin (in the precise measurement site) until an acoustic signal indicates a stable TEWL (this value is set depending on the tolerance limit for the standard deviation). The TEWL value is then analyzed by the microprocessor and, based on the

Figure 1 - Illustration of the positioning of the electrodes used by the system Bodystat® QuadScan 4000.

Figura 1 - Ilustração do posicionamento dos eléctrodos utilizados pelo sistema Bodystat® QuadScan 4000

Tewameter® TM 300

A Perda Transepidérmica de Água (PTEA) considerada como um indicador da função de "barreira" cutânea, foi avaliada através do sistema Tewameter® TM 300® (Courage+Khazaka electronic GmbH (Köln, Alemanha)). As medições foram executadas colocando a sonda (cilindro oco, estreito 10 mm de diâmetro e 20 mm de altura) perpendicularly sobre a pele (no sítio exacto da medição) até que um sinal sonoro indicasse um valor estável de PTEA, (este valor é estabelecido dependendo do limite de tolerância para o desvio padrão). Este valor é então analisado pelo
gradients of resulting moisture and temperature, is automatically calculated and shown on the display (unit) g / h m² with the standard deviation detected by a pair of sensors in the probe[19]. This parameter was analyzed at T0, T1, T2.

MoistureMeterSC®

The MoistureMeterSC® (Delfin Technologies Ltd., Kuopio, Finland) was used to measure the superficial hydration of SC. The MoistureMeterSC® probe, designed to measure the capacitance of the skin at low frequency (1.3 MHz), consists of a measuring unit and a probe with a diameter of 4.5 mm with a depth measurement that lies above 30μm. The probe is equipped with a force sensor (FSG-15NIA Honeywell, Honeywell Mornstown, NJ) to measure the pressure of the probe against the skin. During measurements, four diodes (LEDs) indicate various levels of contact pressure and allow for the selection of a suitable pressure range for each application. The contact force registered corresponds to a force N 1.37-2.06 (two LEDs). Each measurement is started automatically when the probe is placed in direct contact with the skin and perpendicular to the surface of the skin with a constant pressure for few seconds. For each participant, three consecutive measurements were made and the mean of the values was obtained. Superficial hydration was quantified in the T0, T1 and T2.

MoistureMeterD®

The MoistureMeterD® (Delfin Technologies Ltd., Kuopio, Finland) was used to measure the deep hydration of the skin. The device consists of a measuring unit and various probes, which are selected according to the desired measuring depth (0; 5-5mm). The device generates a frequency of 300 MHz, sending a low power electromagnetic wave to the coaxial probe and thus to the skin. The electromagnetic wave reflected is recorded, corresponding the reading obtained to the dielectric constant, this being directly proportional to the water content of the tissue measured. A 55 mm probe was used to measure the amount of water level in the dermis to a depth of 5 mm. Each measurement is started automatically when the probe is placed in direct contact with the skin and perpendicular to the surface of the skin with a constant pressure for a few seconds. For each participant, three consecutive measurements were made and evaluated at T0, T1 and T2. The device shows the measured values directly on the screen.

O MoistureMeterSC® (Delfin Technologies Ltd., Kuopio, Finlândia) foi utilizado para medir a hidratação superficial do EC. Concebido para medir a capacitância da pele a baixa frequência (1,3 MHz) é constituído por uma unidade de medição e uma sonda com um diâmetro de 4,5mm, com uma profundidade de medição que se situa acima dos 30μm. A sonda é equipada com um sensor de força (Honeywell FSG-15NIA, Honeywell, Mornstown, NJ, EUA) para medir a pressão da sonda contra a pele. Durante as medições, quatro diodos (LEDs) indicam os vários níveis de pressões de contacto e permitem selecionar a gama adequada de pressão para cada aplicação. A força de contacto registrada corresponde a uma força de 1,37-2.06 N (dois LEDs).

Cada medição foi iniciada automaticamente quando a sonda foi colocada em contacto directo com a pele e em posição perpendicular à superfície da pele com uma pressão constante durante poucos segundos. Para cada participante foram feitas três medições consecutivas e calculada a média dos valores obtidos. A hidratação superficial foi quantificada no tempo T0, T1 e T2.

O MoistureMeterD® (Delfin Technologies Ltd., Kuopio, Finlândia) foi utilizado para medir a hidratação profunda da pele. Este aparelho é constituído por uma unidade de medição e por diferentes sondas, que são seleccionadas em função da profundidade de medição pretendida (0,5-5mm). O aparelho gera uma frequência de 300 MHz, enviando uma onda electromagnética de baixa potencia para a sonda coaxial e, consequentemente para a pele. A onda electromagnética reflectida é registada, correspondendo a leitura obtida à constante dieléctrica, sendo esta directamente proporcional ao conteúdo hídrico do tecido medido. A sonda utilizada foi a de 55mm, que permite medir a quantidade de água ao nível da derme a uma profundidade de 5mm

Cada medição foi iniciada automaticamente, quando a sonda foi colocada em posição perpendicular e em contacto directo com a superfície da pele com uma pressão constante em poucos segundos. Para cada participante foram efectuadas três medições consecutivas e avaliadas em T0, T1 e T2. O dispositivo mostra directamente na ecrã os valores medidos.
Blood pressure
During the study the blood pressure value was monitored with sphygmomanometer Tensoval Mobil Hartmann®. All results were analyzed by the SPSS 20.0. Univariate descriptive statistics were applied including a calculation of frequencies, measures of central tendency and dispersion. Hypothesis tests included the Shapiro-Wilk test to verify the normality of the variables, and the Pearson correlation analysis to verify the existence of statistically significant differences. A 95% confidence level was adopted.

Results
Monitoring of blood pressure during the study demonstrates that there are no variations in the two groups, as a result of experimental methodology (Table 2).

The values of biometric variables and BMI value obtained in the two groups (Table 3) revealed no significant differences in the values of BMI, TBW, ECW, ICW for both groups, as shown in Figure 2 for Group 1 and figure 3 for Group 2. The results show that there were no changes in the distribution of water volume in the body which reflects the body's ability to maintain the fluid balance, whereby the results of the physiology of the skin can be directly connected with the dietary water supply.

GROUP 1 / GRUPO/ - N=17	GROUP 2 / GRUPO - N=8		
T0	T2	T0	T2
IMC 21,99±2,87	22,25±2,97	23,28±1,53	23,27±1,51
TBW 30,98±2,68	31,27±2,74	35,02±2,34	34,56±4,59
ECW 14,52±1,25	15,24±2,97	16,84±2,98	15,86±4,52
ICW 16,07±1,91	16,15±2,17	16,68±3,15	17,86±1,81

Dietary water and skin hydration
A água da dieta e a hidratação cutânea
In this sense (Table 4), a statistically significant increase of skin hydration on the face (forehead and zygomatic) and forearm was observed in group 1 in T1 and in the T2. In the hand, a significant increase was detected at the end of the study (T1 vs. T2). No statistically significant differences were detected in the leg. In group 2, a significant increase in hydration was noted in the face (figures 3 and 4).

Neste aspecto (Tabela 4), podemos observar no grupo 1 um aumento estatisticamente significativo da hidratação da pele na face (fronte e zigomática), e antebraço observadas em T1 e no final do estudo (T2). Na mão o aumento é significativo no final do estudo (T2 vs T1). Na perna não há diferença estatisticamente significativa. No grupo 2 o incremento da hidratação é significativo na face. É também possível observar estas variações dos valores médios nas figuras 3 e 4.

Table 4 - Superficial Hydration measure in Arbitrary Unit AU – MOISTUREMETER SC® 2mm.

Group / Grupo	T0	T1	T2	P-Value (T1 vs T0)	P-Value (T2 vs T1)	P-Value (T2 vs T0)
N=17						
Fronte/Forehead	66,55±22,81	75,02±15,73	81,18±10,53	0,046	0,047	0,008
Zygomatic/Cheek	54,00±29,94	73,11±19,97	80,16±16,79	0,004	0,179	0,000
Mão/Hand	40,17±20,37	47,58±18,64	52,61±18,32	0,136	0,202	0,005
Antebraço/Forearm	33,49±10,70	41,29±14,38	43,33±13,29	0,025	0,461	0,004
Perna/Leg	42,67±21,30	50,16±14,71	52,47±17,26	0,158	0,479	0,061
N=8						
Fronte/Forehead	61,33±18,14	62,21±15,19	80,29±16,39	0,899	0,002	0,048
Zygomatic/Cheek	63,04±29,48	62,97±19,14	84,75±16,01	0,995	0,007	0,117
Mão/Hand	46,88±22,67	48,03±12,34	48,62±10,04	0,916	0,920	0,844
Antebraço/Forearm	45,54±18,56	38,96±9,19	36,37±11,89	0,257	0,521	0,300
Perna/Leg	44,59±19,65	49,89±16,63	44,87±14,36	0,527	0,467	0,977
The impact of water supply on deep hydration is summarized in Table 5. The capacitance analysis shows that there is a statistically significant increase in deep hydration in group 1 in all the anatomical regions. For Group 2 variations are significant in the face (forehead and zygomatic). Figures 5 and 6 show variations in deep skin hydration during the study for both groups.

O impacto do aporte de água na hidratação profunda está resumido na Tabela 5. A análise dos valores da capacitância demonstra que existe um aumento estatisticamente significativo na hidratação profunda para o Grupo 1 em todas as zonas anatômicas. Para o Grupo 2 as variações são significativas na face (fronte e zigomática). As figuras 5 e 6 mostram a variação da hidratação profunda na pele ao longo do estudo respectivamente para o Grupo 1 e o Grupo 2.

Table 5 - Deep hydration measure in Arbitrary Unit AU – MOISTUREMETER D® 50mm.
Tabela 5 - Hidratação profunda expressa em Unidades Arbitrárias UA – MOISTUREMETER D® 50mm

Grupo/Group	T0	T1	T2	P - Value (T1 vs T0)	P - Value (T2 vs T1)	P - Value (T2 vs T0)
Group 1 N=17						
Fronte/Forehead	45.38±11.19	48.25±10.60	0.002	0.030	0.000	
Zigomática/Cheek	44.03±10.68	46.27±9.74	0.002	0.019	0.000	
Mão/Hand	52.43±11.39	55.07±10.97	0.004	0.097	0.000	
Antebraço/Forearm	36.87±11.12	36.15±8.91	0.002	0.053	0.001	
Perna/Leg	48.16±12.95	48.45±8.43	0.001	0.401	0.000	
Group 2 N=8						
Fronte/Forehead	46.09±9.92	51.45±3.94	0.047	0.095	0.001	
Zigomática/Cheek	46.79±10.81	52.37±4.57	0.162	0.145	0.000	
Mão/Hand	52.56±14.04	57.60±5.33	0.209	0.231	0.001	
Antebraço/Forearm	39.93±6.74	39.93±6.74	0.095	0.118	0.005	
Perna/Leg	45.10±13.36	51.76±8.07	0.262	0.237	0.002	
The positive impact of increased skin hydration especially in individuals whose total intake of water is lower, suggests an improvement in skin hydration, as already reported in previous studies[19]. The lower magnitude of the effect in the forehead and cheek probably results from these being exposed areas which are regularly treated (cosmetics). Results also show positive changes in deep hydration, which suggests

Figure 5 - Group 1 | Mean variations of deep hydration during the study (*p<0.05; **p<0.01; ***p=0.000).

Figure 6 - Group 2 | Mean variations of deep hydration during the study (*p<0.05; **p<0.01; ***p=0.000).

O impacto positivo na hidratação da pele especialmente nos indivíduos cujo aporte total de água é menor foi já sugerido em estudos[19] anteriores. A menor magnitude da alteração registada na fronte e na região zigomática deve-se, provavelmente, ao facto de, se tratarem de áreas mais expostas e alvo de cuidados complementares diários. Os resultados relativos registados na hidratação profunda, reforçam a ideia
an improvement in skin functions. Throughout the study, TEWL mean values of (Table 6) were statistically significant in the zygomatic, in the forearm and leg areas for group 1 and the forehead and leg for group 2, suggesting a moderate improvement in anatomical areas which are usually the driest. Figures 7 and 8 shows TEWL changes in both groups during the study. These changes suggest that a significant increase in the amount of water has little influence on the epidermal barrier function.

Figure 7 - Group 1 | Mean variations of transepidermal water loss during the study (*p<0,05; **p<0,01).

Figure 8 - Group 2 | Mean variations of transepidermal water loss during the study (*p<0,05).

de uma melhoria generalizada nas funções da pele. Ao longo do estudo as diferenças dos valores da PTEA (Tabela 6) revelaram-se significativas na região zigomática, no antebraço e na perna para o grup1 e na fronte e perna para o grupo 2, sugerindo um ligeiro aumento nas áreas anatômicas que geralmente são mais secas. As figuras 7 e 8 mostram as variações dos valores do PTEA encontradas no grupo 1 e no grupo 2 ao longo do estudo. Estas alterações sugerem que o aumento do aporte da água, nestas condições, pouco influencia a função barreira da pele.

Figure 7 - Grupo1 | Variações médias da Perda trans-epidérmica da água ao longo do estudo (*p<0,05; **p<0,01).

Figure 8 - Grupo2 | Variações médias da Perda trans-epidérmica da água ao longo do estudo (*p<0,05).
Conclusions

These results show a clear relationship between increased water intake and skin hydration. The magnitude of the impact is much more evident in those individuals who regularly consume less water. Thus, in the absence of any haemodinamical changes, water from the diet seems to be a major component of skin physiology.

Acknowledgements

to Professor Carla Maria Lopes de Moura, from the University of Porto, to all participating volunteers, the Pharmacy Guardiano (Marinha Grande) owner of the Bodystat QuadScan® 4000 and to UNICER that kindly offered the mineral water Vitalis. To all the authors, thank you for all the cooperation received.

Conflict of Interest

The authors declare that there is no financial or personal relationship that can be understood as representing a potential conflict of interest.

References / Referências

[1]. Lang F, Waldegger S. Regulating cell volume. Am. Scientist. 1997; 85:456-463.
[2]. Jéquier E, Constant F. Water as an essential nutrient: the physiological basis of hydration. European J Clinical Nutrition 2010; 64, 115-23.
[3]. Popkin B, Kristen E, Water, Hydration and Health. Nutr Rev 2010; 68(8):439-458.
[4]. Mandi J Bossingham, Nadine S Carnell, and Wayne W Campbell. Warwe Balance, hydration status, and fat-free mass hydration in younger and older adults. Am J Clin Nutr 2005; 81 :1342-50.
[5]. Guyton & Hall. Textbook of Medical Physiology, 10th edition. W B Saunders Company. 2000. Pag 270.
[6]. http://www.plataformacontraaobesidade.dgs.pt//Presentation_Layer/Roda_dos_alimentos.aspx?menuid=245&esMemulid=113&SeIdMenulid=245&SeIIdMenulid=309, 2005/2012.
[7]. Nicolaidis S. Physiology and thirst. In: Biomedicine[cited 28 April 2013]. Available from: http://www.wma.net/en/30publications/10policies/b3/17c.pdf
[8]. Rawlings A V, Matts P J. Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol, 2005: 124: 1099–1110.
[9]. Gopinathan K, Menon, Gary W. Cleary, Majella E. Lane. The structure and function of the stratum corneum. International Journal of Pharmaceutics, 2012, 435, 3-9.
[10]. Palma M, Monteiro C, Bujan M, Rodrigues Monteiro. Water intake and it’s relationship with the water content of the diet in a healthy population. Biomedical and Biopharmaceutical Research 2011(8):261-271
[11]. WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects. [cited 28 April 2013]. Available from: http://www.wma.net/en/30publications/10policies/h3/17c.pdf
[12]. Council of Europe – ETS no. 164 – Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine[cited 28 April 2013] Available from: http://conventions.coe.int/Treaty/en/Treaties/Html/164.htm
[13]. LOPES C, CABRAL S, BARROS H. QUESTIONÁRIOS DE FREQUÊNCIA ALIMENTAR: EFEITOS DA EXTENSÃO DAS LISTAS DE ALIMENTOS NA CLASSIFICAÇÃO DOS INQUIRIDOS. ARQ MED 1994;8:291-4
[14]. Krause’s. Alimentos, Nutrição e Dietoterapia, 12ªed. 2008, pag 146
[15]. European Food Safety Authority (EFSA) Scientific Opinion on Dietary Reference Values for water EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). EFSA Journal 2010; 8 (3): 1-4559.
[16]. http://www.minsaude.pt/portal/contenidos/enciclopedia+da+saude/obesidade/como+diagnosticar+obesidade.htm (2012/11/08).
[17]. Bodystat. Bodystat® QuadScan 4000 Hardware User's Guide. Isle of Man:2007.
[18]. Courage+Khazaka electronic GmbH,2003, Information and Operating Instruction for the Tewameter® TM 300 Stand-alone and with software.
[19]. S. Mac-Mary, P.Creidi, D. Marsaut, C. Courderot-Masuyer, V. Cochet, T. Gharbi, D. Guidicelli-Arranz, F. Tondu and P.Humbert. [19]. Assessment of effects of an additional dietary natural mineral water uptake on skin hydration in healthy subjects by dynamic barrier function measurements and clining. Skin Research and Technology, 2006 12,
Impact of overweight on the normal physiology of human in vivo skin

Impacto do excesso de peso sobre a fisiologia normal da pele humana in vivo

Liliana Tavares¹, Lídia Palma¹, Osvaldo Santos¹, Mª Angélica Almeida¹, Mª Julia Bujan⁴ & L. Monteiro Rodrigues¹,²

¹ Universidade Lusófona (CBIOS – Research Center for Health Science and Technologies), Campo Grande, 376, 1749-024, Lisboa, Portugal
² Dep. Pharmacological Sciences, Universidade de Lisboa – School of Pharmacy, Lisboa, Portugal
³ Serviço de Cirurgia Plástica e Reconstrutiva, HSJ-CHLC, Lisboa, Portugal
⁴ Universidade de Alcalá de Henares – School of Medicine, Madrid, Espanha

Email: f3872@ulp.pt; tavaresliliana@sapo.pt

Abstract

Obesity is an increasing public health issue, particularly in Portugal, where more than 50% of the population is obese. The pathophysiological consequences of being overweight have a severe cutaneous impact. However, there is still a lack of studies to link these alterations to BMI categories. This present work intends to identify the hydration and biomechanical behaviour changes related to weight augmentation. This transversal study was performed on a convenience sample of 57 volunteers, all females, aged between 20 and 46 (30±8) years old. Volunteers were divided in two groups – group I, with a BMI between 19,9 and 24,9 Kg/m² and group II, between 25 and 29,9 Kg/m². One single determination of the superficial hydration, transepidermal water loss and biomechanical behaviour of the skin, was obtained with non-invasive methods. The data showed that weight increase positively influences hydration levels and transepidermal water loss, and negatively influences the skin's biomechanical behaviour. Despite the relevance of these results, there is still a need for complementary studies, with a wider number of individuals, in order to better understand its nature and meaning.

Keywords: overweight; BMI; skin hydration; TEWL; elasticity.

Resumo

A obesidade é um problema de saúde pública com prevalência crescente, nomeadamente em Portugal, onde mais de 50% da população é obesa. As consequências fisiopatológicas do peso excessivo têm grande impacto a nível cutâneo. Contudo, existem ainda poucos estudos sobre a fisiologia cutânea, não existindo qualquer estratificação destas alterações em função do peso corporal. O presente estudo pretende contribuir para o estudo das alterações ao nível da hidratação e comportamento biomecânico com o aumento de peso. Este estudo transversal foi efetuado numa amostra de conveniência de 57 voluntárias, do sexo feminino, com idades compreendidas entre os 20 e os 46 (30±8) anos. As voluntárias foram divididas em dois grupos - Grupo I, com IMC entre 19,9 e 24,9 Kg/m² e Grupo II, entre 25 e 29,9 Kg/m². Foi efetuada uma única determinação da hidratação superficial, perda transepidermática de água e comportamento biomecânico da pele (métodos não-invasivos). Os dados obtidos permitem-nos verificar que o aumento de peso influencia positivamente os níveis de hidratação e perda transepidermática de água e de forma negativa o comportamento biomecânico da pele. Apesar do interesse destes resultados torna-se necessário realizar mais estudos, com maior número de indivíduos, de forma a melhor esclarecer a sua natureza e significado.

Palavras-chave: excesso de peso; IMC; hidratação cutânea, PTEA, elasticidade.