ALGEBRAIC CYCLES OF A FIXED DEGREE

WENCHUAN HU

(Communicated by Jon G. Wolfson)

Abstract. In this paper, the homotopy groups of Chow variety $C_{p,d}(\mathbb{P}^n)$ of effective p-cycles of degree d are proved to be stable in the sense that p or n increases. We also obtain a negative answer to a question by Lawson and Michelsohn on homotopy groups for the space of degree two cycles.

1. Introduction

Let \mathbb{P}^n be the complex projective space of dimension n and let $C_{p,d}(\mathbb{P}^n)$ be the space of effective algebraic p-cycles of degree d on \mathbb{P}^n. A fact proved by Chow and Van der Waerden is that $C_{p,d}(\mathbb{P}^n)$ carries the structure of a closed complex algebraic variety $[CW]$. Hence it carries the structure of a compact Hausdorff space.

Consider the spaces $D(d) := \lim_{p,q \to \infty} C_{p,d}(\mathbb{P}^{p+q})$ of cycles of a fixed degree (with arbitrary dimension and codimension), as introduced in $[LM]$, where the limit for p is given by suspension $\Sigma : C_{p,d}(\mathbb{P}^n) \to C_{p+1,d}(\mathbb{P}^{n+1})$ and the limit for q is induced by the inclusion $\mathbb{P}^{p+q} \subset \mathbb{P}^{p+q+1}$; i.e., a p-cycle in $C_{p,d}(\mathbb{P}^{p+q})$ is viewed as a p-cycle in $C_{p,d}(\mathbb{P}^{p+q+1})$.

Then there is a filtration (cf. $[LM]$ §7, $[L1]$)

$$BU = D(1) \subset D(2) \subset \cdots \subset D(\infty) = K(\text{even}, \mathbb{Z}),$$

where $BU = \lim_{q \to \infty} BU_q$ and $K(\text{even}, \mathbb{Z}) = \prod_{i=1}^{\infty} K(2i, \mathbb{Z})$ (the weak product of Eilenberg-MacLane spaces).

The inclusion map $D(d) \subset D(\infty)$ induces maps on homology and homotopy groups. It was proved in $[LM]$ that $D(1) \subset D(\infty)$ induces an injective map on homotopy groups. Moreover, as abstract groups $\pi_*(D(1)) \cong \pi_*(D(\infty))$.

The following natural question was proposed in $[LM]$:

Question 1.1. Is $\pi_*(D(d)) \to \pi_*(D(\infty))$ injective for $d \geq 1$?

An affirmative answer to Question $[LM]$ implies that $\pi_*(D(d)) \cong \pi_*(D(\infty))$ as abstract groups.

The first main result in this paper is the following negative answer to Question $[LM]$ for $d = 2$.

Received by the editors October 16, 2009, and, in revised form, November 27, 2009.

2010 Mathematics Subject Classification. Primary 14C25; Secondary 14F35, 14F45.

Key words and phrases. Algebraic cycle, Chow variety, homotopy group.

This material is based upon work supported by the NSF under agreement No. DMS-0635607.

©2010 American Mathematical Society

Reverts to public domain 28 years from publication
Theorem 1.2. There is an integer $k > 0$ such that the induced map $\pi_k(D(2)) \to \pi_k(D(\infty))$ from the inclusion $D(2) \subset D(\infty)$ is not injective. Moreover, there is an integer $k > 0$ such that, as abstract groups, $\pi_k(D(2)) \not\cong \pi_k(D(\infty))$.

The proof of this theorem is based on Theorem 1.3 below and direct calculations under the assumption of a positive answer to Question 1.1.

The second main result is the following:

Theorem 1.3. $\pi_k(D(d)) \cong \pi_k(C_{p,d}(\mathbb{P}^n))$ for $k \leq \min\{2p + 1, 2(n - p)\}$.

The proof of Theorem 1.3 is given in section 3.

2. Homology groups of the space of algebraic cycles with degree two

Note that $C_{p,1}(\mathbb{P}^n)$ is the Grassmannian $G(p + 1, n + 1)$ of linear p-spaces in \mathbb{P}^n. Furthermore,

\begin{equation}
C_{p,2}(\mathbb{P}^n) = SP^2(G(p + 1, n + 1)) \cup Q_{p,n},
\end{equation}

where $SP^i(X)$ denotes the i-th symmetric product X and $Q_{p,n}$ consists of effective irreducible p-cycles of degree 2 in \mathbb{P}^n. Every degree 2 variety of dimension p in \mathbb{P}^n is contained as a hypersurface in a linear space of dimension $p + 1$ (cf. [GH, pp. 173-4]). Hence $Q_{p,n}$ is a fiber bundle over the Grassmannian $G(p + 2, n + 1)$ with fiber S, the space of all smooth quadrics in \mathbb{P}^{p+1}. Note that S is isomorphic to $\mathbb{P}^{(n+1)-1} - SP^2(\mathbb{P}^{p+1})$, i.e., the complement of non-irreducible quadrics (which is a pair of p-planes) in the space of all quadric hypersurfaces in \mathbb{P}^{p+1}.

To prove Theorem 1.2 we assume that the answer to Question 1.1 is affirmative for $d = 2$. Then $\pi_{2k}(D(2))$ is a subgroup of \mathbb{Z} and so $\pi_{2k}(D(2)) \cong 0$ or \mathbb{Z}. Note that the map $\pi_{2k}(D(1)) \to \pi_{2k}(D(\infty)) \cong \mathbb{Z}$ is multiplication by $(k - 1)!$ (cf. [LM], Theorem 4.4) and it factors through $\pi_{2k}(D(2))$. So $\pi_{2k}(D(2))$ is non-trivial and $\pi_{2k}(D(2)) \cong \mathbb{Z}$ for all k if Question 1.1 has a positive answer. Similarly, $\pi_{2k-1}(D(2)) = 0$ by assuming a positive answer to Question 1.1.

By Theorem 1.3 we have

$$\pi_k(C_{p,2}(\mathbb{P}^n)) \cong \pi_k(D(2)) = \left\{ \begin{array}{ll} \mathbb{Z}, & k \leq 2p + 1 \text{ and even}, \\ 0, & k \leq 2p + 1 \text{ and odd}. \end{array} \right.$$

In the following computation, we take $p = 4, d = 2$ as our example.

Lemma 2.1. Let $X \to B$ be a fibration between CW complexes with fiber F. Suppose that B is simply connected, $H_{2q}(B, Q)$ is finite dimensional, and $H_{2i-1}(B, Q)$ and $H_{2i-1}(F, Q)$ vanish. Then $H_k(X, Q) \cong \bigoplus_{i+j=k} H_i(B, Q) \otimes H_j(F, Q)$; that is, the Leray spectral sequence degenerates at E^2.

Proof. By Leray’s Theorem for singular homology, we get the E^2 term

$$E^2_{p,q} = H_p(B, H_q(F, Q)) \cong H_p(B, Q) \otimes H_q(F, Q), \quad d^2 : E^2_{p,q} \to E^2_{p-2,q+1}$$

since B is simply connected.

From the assumption, all odd dimensional homology groups of B and F vanish, so at least one of $E^2_{p,q}$ and $E^2_{p-3,q+2}$ vanishes. This implies that d^2 is a zero map. Hence we get $E^3_{p,q} = E^2_{p,q}$ and $d^3 : E^2_{p,q} \to E^2_{p-3,q+2}$. By the same reason, $d^3 = d^4 = \cdots = 0$. Therefore, the Leray spectral sequence degenerates at E^2, i.e.,

$$\bigoplus_{p+q=k} H_p(B, Q) \otimes H_q(F, Q) \cong \bigoplus_{p+q=k} E^2_{p,q} = \bigoplus_{p+q=k} E^\infty = H_k(X, Q).$$

\[\square\]
Proposition 2.2. Let X be a connected CW complex such that

$$\pi_k(X) = \begin{cases}
\mathbb{Z}, & 0 < k \leq 9 \text{ and even;} \\
0, & k \leq 9 \text{ and odd.}
\end{cases}$$

Then the first 10 Betti numbers $\beta_i(X)$ of X are

$$\beta_i(X) = \begin{cases}
1, 1, 2, 3, 5, & \text{for } i = 0, 2, 4, 6, 8, \\
0, & \text{for } i = 1, 3, 5, 7, 9.
\end{cases}$$

Proof. Let $\cdots \to Y_n \to Y_{n-1} \to \cdots \to Y_1 = K(\pi_1(X), 1)$ be the Postnikov approximation of X, where $Y_n \to Y_{n-1}$ is a fibration with $K(\pi_n(X), n)$ as fibers (cf. [W], Chapter IX). For a fixed n, we have isomorphisms of homotopy groups $\pi_q(X) \cong \pi_q(Y_n)$ and homology groups $H_q(X, \mathbb{Q}) \cong H_q(Y_n, \mathbb{Q})$ for $1 \leq q \leq n$. Therefore, the first 10 Betti numbers of X coincide with those of Y_n.

Note that Y_2 is homotopy equivalent (denoted by \simeq) to $K(\mathbb{Z}, 2)$ since Y_1 is contractible. Since $Y_3 \to Y_2$ is a fibration with $K(\pi_3(X), 3) \simeq \ast$ as fibers, we get $Y_3 \simeq Y_2$. Note that $Y_4 \to Y_3$ is a fibration with $K(\pi_4(X), 4) = K(\mathbb{Z}, 4)$ as fibers, we obtain $H_k(X, \mathbb{Q}) \cong \bigoplus_{i+j=k} H_i(Y_3, \mathbb{Q}) \otimes H_j(K(\mathbb{Z}, 4), \mathbb{Q})$ by Lemma 2.1. Using Lemma 2.1 for several times, we get (modulo $H_*(\ast, \mathbb{Q})$ for $* > 9$)

$$H_*(X, \mathbb{Q}) \cong H_*(Y_9, \mathbb{Q}) \\
\cong H_*(Y_8, \mathbb{Q}) \quad (\text{since } Y_5 \simeq Y_6) \\
\cong H_*(Y_7, \mathbb{Q}) \otimes H_*(K(\mathbb{Z}, 8), \mathbb{Q}) \quad (\text{since } K(\mathbb{Z}, 8) \to Y_6 \to Y_7 \text{ is a fibration}) \\
\cong H_*(Y_6, \mathbb{Q}) \otimes H_*(K(\mathbb{Z}, 8), \mathbb{Q}) \\
\cong H_*(Y_5, \mathbb{Q}) \otimes H_*(K(\mathbb{Z}, 6), \mathbb{Q}) \otimes H_*(K(\mathbb{Z}, 8), \mathbb{Q}) \\
\cong H_*(K(\mathbb{Z}, 2), \mathbb{Q}) \otimes H_*(K(\mathbb{Z}, 4), \mathbb{Q}) \otimes H_*(K(\mathbb{Z}, 6), \mathbb{Q}) \otimes H_*(K(\mathbb{Z}, 8), \mathbb{Q}).$$

Therefore, the first 10 Betti numbers $\beta_i(X)$ of X are given as follows:

$$\beta_i(X) = \begin{cases}
1, 1, 2, 3, 5, & \text{for } i = 0, 2, 4, 6, 8; \\
0, & \text{for } i = 1, 3, 5, 7, 9.
\end{cases} \quad \square$$

The combination of Theorem 1.3 and Proposition 2.2 implies the following result:

Corollary 2.3. If the answer to Question 1.1 is affirmative for $d = 2$, then the first 10 Betti numbers of $C_{4,2}(\mathbb{P}^n)$ $(n \geq 9)$ are given by

$$\beta_i(C_{4,2}(\mathbb{P}^n)) = \begin{cases}
1, 1, 2, 3, 5, & \text{for } i = 0, 2, 4, 6, 8; \\
0, & \text{for } i = 1, 3, 5, 7, 9.
\end{cases}$$

The proof of Proposition 2.2 actually shows the following result:

Remark 2.4. Let M be a connected CW complex such that $\pi_k(X) = 0$ for k odd and $\pi_k(M) \cong \mathbb{Z}$ for k positive even integers. Then

$$\text{rank}(H_k(M)) = \begin{cases}
p(k), & \text{if } k \text{ is even}, \\
0, & \text{if } k \text{ is odd},
\end{cases}$$

where $p(k)$ represents the number of all possible partitions of k.

Examples of such a CW complex M include the infinite product $\prod_{i=1}^{\infty} K(\mathbb{Z}, 2i)$ (with the weak topology) of Eilenberg-MacLane spaces and $BU = \lim_{q \to \infty} BU_q$. Although the homotopy types of these topological spaces are different, their corresponding Betti numbers coincide.
Now we will compute Betti numbers of \(C_{4,2}(\mathbb{P}^n) \) \((n \geq 9)\) in a different way. Since \(C_{p,2}(\mathbb{P}^n) - \text{SP}^2(G(p+1,n+1)) = Q_{p,n} \), we have \(H_i(C_{p,2}(\mathbb{P}^n),\text{SP}^2(G(p+1,n+1)) \cong H_i^{BM}(Q_{p,n}) \) for all \(i \), where \(H_i^{BM} \) denotes the Borel-Moore homology. Let \(A_{p,n} \) be the fiber bundle over \(G(p+2,n+1) \) whose fiber is the space of all quadric hypersurfaces in \(\mathbb{P}^{p+1} \) and let \(B_{p,n} \) be the fiber bundle over \(G(p+2,n+1) \) whose fiber is the space of pairs of hyperplanes in \(\mathbb{P}^{p+1} \). From the definition of \(Q_{p,n} \), we have \(H_i(A_{p,n},B_{p,n}) \cong H_i^{BM}(Q_{p,n}) \) for all \(i \). In particular,

\[
H_i(C_{4,2}(\mathbb{P}^n),\text{SP}^2(G(5,n+1)) \cong H_i(A_{4,n},B_{4,n})
\]

for \(i \geq 0 \) and \(n \geq 9 \).

Lemma 2.5. Let \(A_{4,n}, B_{4,n} \) be defined as above,

\[
\beta_i(\text{SP}^2(G(5,n+1))) = \begin{cases}
1, 1, 3, 5, 11, & \text{for } i = 0, 2, 4, 6, 8; \\
0, & \text{for } i \text{ odd;}
\end{cases}
\]

\[
\beta_i(A_{4,n}) = \begin{cases}
1, 2, 4, 7, 12, & \text{for } i = 0, 2, 4, 6, 8; \\
0, & \text{for } i \text{ odd;}
\end{cases}
\]

\[
\beta_i(B_{4,n}) = \begin{cases}
1, 2, 5, 9, 17, & \text{for } i = 0, 2, 4, 6, 8; \\
0, & \text{for } i \text{ odd.}
\end{cases}
\]

Proof. To show the first formula, we note that all the odd Betti numbers of \(G(5,n+1) \) are zero and the first five even Betti numbers of \(G(5,n+1) \) are given by

\[
\beta_i(G(5,n+1)) = 1, 1, 2, 3, 5 \text{ for } i = 0, 2, 4, 6, 8.
\]

Therefore all the odd Betti numbers of \(\text{SP}^2(G(5,n+1)) \) vanish and the first five even Betti numbers of \(\text{SP}^2(G(5,n+1)) \) are given by (a special case of MacDonald’s formula \[M\])

\[
\beta_i(\text{SP}^2(G(5,n+1))) = 1, 1, 3, 5, 11 \text{ for } i = 0, 2, 4, 6, 8.
\]

To show the second formula, we note that \(A_{4,n} \) is a fiber bundle over \(G(6,n+1) \) with fibers the space of all quadric hypersurfaces in \(\mathbb{P}^5 \); i.e., fibers are isomorphic to \(\mathbb{P}^{20} \). By Lemma 2.1 all the odd Betti numbers of \(A_{4,n} \) vanish since both \(G(6,n+1) \) and \(\mathbb{P}^{20} \) only carry non-vanishing even Betti numbers. Again, by Lemma 2.1

\[
\beta_k(A_{4,n}) = \bigoplus_{i+j=k} \beta_{2i}(G(6,n+1)) \cdot \beta_{2j}(\mathbb{P}^{20}).
\]

The first five even Betti numbers of \(G(6,n+1) \) are given by

\[
\beta_k(G(6,n+1)) = 1, 1, 2, 3, 5 \text{ for } i = 0, 2, 4, 6, 8.
\]

Hence from equation (2.4), we get the first five even Betti numbers of \(\tilde{Y} \):

\[
\beta_k(A_{4,n}) = 1, 2, 4, 7, 12 \text{ for } i = 0, 2, 4, 6, 8.
\]

To show the third formula, we note that \(B_{4,n} \) is a fiber bundle over \(G(6,n+1) \) with fibers the space of pairs of hyperplanes in \(\mathbb{P}^{p+1} \); i.e., fibers are isomorphic to \(\text{SP}^2(\mathbb{P}^5) \). By Lemma 2.1 all the odd Betti numbers of \(B_{4,n} \) vanish and the even Betti numbers of \(B_{4,n} \) are given by the formula

\[
\beta_k(B_{4,n}) = \bigoplus_{i+j=k} \beta_{2i}(G(6,n+1)) \cdot \beta_{2j}(\text{SP}^2(\mathbb{P}^5)).
\]
The first five Betti numbers of $\text{SP}^2(\mathbb{P}^5)$ are given as follows (cf. [M]):

$$\beta_i(\text{SP}^2(\mathbb{P}^5)) = 1, 1, 2, 2, 3 \text{ for } i = 0, 2, 4, 6, 8.$$

Therefore the five Betti numbers of Z are given by the formula

(2.7) \hspace{1cm} \beta_i(B_{4,n}) = 1, 2, 5, 9, 17 \text{ for } i = 0, 2, 4, 6, 8. \hspace{1cm} \square

Proposition 2.6. The relations among the first 10 Betti numbers of $C_{4,2}(\mathbb{P}^n)$ ($n \geq 9$) are given as follows:

$$\beta_{2i}(C_{4,2}(\mathbb{P}^n)) - \beta_{2i+1}(C_{p,2}(\mathbb{P}^n)) = 1, 1, 2, 3, 6 \text{ for } i = 0, 1, 2, 3, 4.$$

In particular, $\beta_5(C_{4,2}(\mathbb{P}^n)) \geq 6$.

Proof. Set $M = C_{4,2}(\mathbb{P}^n)$ and $X = \text{SP}^2G(5, n + 1)$. From the long exact sequence of homology groups for the pair (M, X), we have

(2.8) \hspace{1cm} \cdots \rightarrow H_i(X) \rightarrow H_i(M) \rightarrow H_i(M, X) \rightarrow H_{i-1}(X) \rightarrow \cdots.

Since $H_{2i-1}(X) = 0$ for all i, equation (2.8) breaks into exact sequences

(2.9) \hspace{1cm} 0 \rightarrow H_{2i+1}(M) \rightarrow H_{2i+1}(M, X) \rightarrow H_{2i}(X) \rightarrow H_{2i}(M) \rightarrow H_{2i}(M, X) \rightarrow 0.

Set $Y = A_{4,n}$ and $Z = B_{4,n}$. From the long exact sequence of homology groups for the pair (Y, Z), we have

(2.10) \hspace{1cm} \cdots \rightarrow H_i(Z) \rightarrow H_i(Y) \rightarrow H_i(Y, Z) \rightarrow H_{i-1}(Z) \rightarrow \cdots.

Since $H_{2i-1}(Y) = 0$ and $H_{2i-1}(Z) = 0$ for all i, equation (2.10) breaks into exact sequences

(2.11) \hspace{1cm} 0 \rightarrow H_{2i+1}(Y, Z) \rightarrow H_{2i}(Z) \rightarrow H_{2i}(Y) \rightarrow H_{2i}(Y, Z) \rightarrow 0.

From equations (2.3), (2.4) and (2.11), we have

$$\beta_{2i+1}(M) - \beta_{2i}(Z) + \beta_{2i}(Y) + \beta_{2i}(X) - \beta_{2i}(M) = 0$$

i.e.,

(2.12) \hspace{1cm} \beta_{2i+1}(C_{4,2}(\mathbb{P}^n)) - \beta_{2i}(B_{4,n}) + \beta_{2i}(A_{4,n}) + \beta_{2i}(\text{SP}^2G(5, n + 1)) - \beta_{2i}(C_{4,2}(\mathbb{P}^n)) = 0.

Now the proposition follows from equation (2.12) and Lemma 2.5. \hspace{1cm} \square

The contradiction between Corollary 2.3 and Proposition 2.6 comes from the assumption that the answer to Question 1.1 for $d = 2$ is affirmative. Therefore the answer to Question 1.1 for $d = 2$ is negative; i.e., the induced map $\pi_*(\mathcal{D}(d)) \rightarrow \pi_*(\mathcal{D}(\infty))$ by inclusion is not always injective for $d = 2$. This completes the proof of Theorem 1.2.

Remark 2.7. We actually used the assumption that $\pi_*(\mathcal{D}(d)) \cong \pi_*(\mathcal{D}(\infty))$ are isomorphisms as abstract groups for $k \leq 9$ in the proof of Theorem 1.2. Hence $\pi_*(\mathcal{D}(2))$ is not isomorphic to $\pi_*(\mathcal{D}(\infty))$ for all $*$ as abstract abelian groups.
3. Proof of Theorem [L3]

In this section we will prove Theorem [L3]. The method comes from Lawson’s proof of the Complex Suspension Theorem [L1]; i.e., the complex suspension to the space of \(p \)-cycles yields a homotopy equivalence to the space of \((p+1) \)-cycles. Here we briefly review the general construction of such a homotopy equivalence. For details, the reader is referred to [L1], [L2] and [F].

Fix a hyperplane \(\mathbb{P}^n \subset \mathbb{P}^{n+1} \) and a point \(\mathbb{P}^0 \in \mathbb{P}^{n+1} - \mathbb{P}^n \). For any non-negative integer \(p \) and \(d \), set

\[
T_{p+1,d}(\mathbb{P}^{n+1}) := \{ c = \sum n_i V_i \in C_{p+1,d}(\mathbb{P}^{n+1}) | \dim(V_i \cap \mathbb{P}^n) = p, \forall i \}
\]

(where \(d = 0 \), \(C_{p,0}(\mathbb{P}^n) \) is defined to be the empty cycle).

Proposition 3.1 ([L1]). The set \(T_{p+1,d}(\mathbb{P}^{n+1}) \) is Zariski open in \(C_{p+1,d}(\mathbb{P}^{n+1}) \). Moreover, \(T_{p+1,d}(\mathbb{P}^{n+1}) \) is homotopy equivalent to \(C_{p,d}(\mathbb{P}^n) \). In particular, their corresponding homotopy groups are isomorphic, i.e.,

\[
\pi_*(T_{p+1,d}(\mathbb{P}^{n+1})) \cong \pi_*(C_{p,d}(\mathbb{P}^n)).
\]

Fix a linear embedding \(\mathbb{P}^{n+1} \subset \mathbb{P}^{n+2} \) and two points \(x_0, x_1 \in \mathbb{P}^{n+2} - \mathbb{P}^n \). Each projection \(p_i : \mathbb{P}^{n+2} - \{x_0\} \to \mathbb{P}^{n+1} \) \((i = 0,1) \) gives us a holomorphic line bundle over \(\mathbb{P}^{n+1} \).

Let \(D \in C_{p+1,e}(\mathbb{P}^{n+2}) \) be an effective divisor of degree \(e \) in \(\mathbb{P}^{n+2} \) such that \(x_0, x_1 \) are not in \(D \). Any effective cycle \(c \in C_{p+1,d}(\mathbb{P}^{n+1}) \) can be lifted to a cycle with support in \(D \), defined as follows:

\[
\Psi_D(c) = (\Sigma x_0 c) \cdot D.
\]

The map \(\Psi(c,D) := \Psi_D \) is a continuous map in the variables \(c \) and \(D \). Hence we have a continuous map \(\Phi_D : C_{p+1,d}(\mathbb{P}^{n+1}) \to C_{p+1,de}(\mathbb{P}^{n+2} - \{x_0, x_1\}) \). The composition of \(\Phi_D \) with the projection \((p_0)_* \) is \((p_0)_* \circ \Phi_D = e \) (multiplication by the integer \(e \) in the monoid, \(e \cdot c = c + \cdots + c \) for \(e \) times). The composition of \(\Phi_D \) with the projection \((p_1)_* \) gives us a transformation of cycles in \(\mathbb{P}^{n+1} \) which makes most of them intersect properly to \(\mathbb{P}^n \). To see this, consider the family of divisors \(tD, \ 0 \leq t \leq 1 \), given by scalar multiplication by \(t \) in the line bundle \(p_0 : \mathbb{P}^{n+2} - \{x_0\} \to \mathbb{P}^{n+1} \).

Assume \(x_1 \) is not in \(tD \) for all \(t \). Then the above construction gives us a family transformation

\[
F_{tD} := (p_1)_* \circ \Psi_{tD} : C_{p+1,d}(\mathbb{P}^{n+1}) \to C_{p+1,de}(\mathbb{P}^{n+2})
\]

for \(0 \leq t \leq 1 \). Note that \(F_{0D} \equiv d(\text{multiplication by } d) \).

The question is for a fixed \(c \), which divisors \(D \in C_{n+1,e}(\mathbb{P}^{n+2}) \) \((x_0 \notin D) \) and \(x_1 \) is not in \(\bigcup_{0 \leq t \leq 1} tD \) have the property that

\[
F_{tD}(c) \in T_{p+1,de}(\mathbb{P}^{n+1})
\]

for all \(0 < t \leq 1 \).

Set \(B_c := \{ D \in C_{n+1,e}(\mathbb{P}^{n+2}) | F_{tD}(c) \text{ is not in } T_{p+1,de}(\mathbb{P}^{n+1}) \text{ for some } 0 < t \leq 1 \} \), i.e., all degree \(e \) divisors on \(\mathbb{P}^{n+2} \) such that some component of

\[
(p_1)_* \circ \Psi_{tD}(c) \subset \mathbb{P}^n
\]

for some \(t > 0 \).

Proposition 3.2 ([L1]). For \(c \in C_{p+1,d}(\mathbb{P}^{n+1}) \), \(\text{codim}_C B_c \geq \binom{p+e+1}{e} \).
In this construction, if we take $e = 1$, then F_{tD} maps $C_{p+1,d}(\mathbb{P}^{n+1})$ to itself, i.e.,

$$F_{tD} := (p_1)_* \circ \Psi_{tD} : C_{p+1,d}(\mathbb{P}^{n+1}) \to C_{p+1,d}(\mathbb{P}^{n+1}).$$

Moreover, the image of F_{tD} is in the Zariski open subset $T_{p+1,d}(\mathbb{P}^{n+1})$ if D is not B_c. We can find such a D if codim$\mathbb{C}B_c \geq \binom{n+1+1}{p+1+1} = p + 2$ is positive.

Suppose now that $f : S^k \to C_{p+1,d}(\mathbb{P}^{n+1})$ is a continuous map for $0 < k \leq 2p+2$. We may assume that f is piecewise linear up to homotopy. Then the map f is homotopic to a map $S^k \to T_{p+1,d}(\mathbb{P}^{n+1})$. To see this, we consider the family

$$F_{tD} \circ f : S^k \to C_{p+1,d}(\mathbb{P}^{n+1}), \quad 0 \leq t \leq 1,$$

where D lies outside the union $\bigcup_{x \in S^n} B_{f(x)}$. This is a set of real codimension larger than or equal to $2(p + 2) - (k + 1)$. Therefore, $2(p + 2) - (k + 1) \geq 1$, i.e., $k \leq 2p + 2$, so such a D exists. This proves that the map $i_* : \pi_k(T_{p+1,d}(\mathbb{P}^{n+1})) \to \pi_k(C_{p+1,d}(\mathbb{P}^{n+1}))$ induced by inclusion $i : T_{p+1,d}(\mathbb{P}^{n+1}) \hookrightarrow C_{p+1,d}(\mathbb{P}^{n+1})$ is surjective if $k \leq 2p + 2$.

Similarly, suppose that $g : (D^{k+1}, S^k) \to (C_{p+1,d}(\mathbb{P}^{n+1}), T_{p+1,d}(\mathbb{P}^{n+1}))$ is a pair of continuous maps for $0 < k \leq 2p+1$. Then the map g can be deformed through a map of pairs to $\tilde{g} : (D^{k+1}, S^k) \to (T_{p+1,d}(\mathbb{P}^{n+1}), T_{p+1,d}(\mathbb{P}^{n+1}))$ if $2(p + 2) - (k + 2) \geq 1$, i.e., $k \leq 2p + 1$. This proves that the map $i_* : \pi_k(T_{p+1,d}(\mathbb{P}^{n+1})) \to \pi_k(C_{p+1,d}(\mathbb{P}^{n+1}))$ induced by inclusion $i : T_{p+1,d}(\mathbb{P}^{n+1}) \hookrightarrow C_{p+1,d}(\mathbb{P}^{n+1})$ is injective if $k \leq 2p + 1$.

Therefore,

$$(3.2) \quad \pi_k(T_{p+1,d}(\mathbb{P}^{n+1})) \cong \pi_k(C_{p+1,d}(\mathbb{P}^{n+1}))$$

for $0 \leq k \leq 2p + 1$.

The combination of equations (3.1) and (3.2) gives us the following result:

Proposition 3.3. The complex suspension $\Sigma : C_{p,d}(\mathbb{P}^{n}) \to C_{p+1,d}(\mathbb{P}^{n+1})$ induces an isomorphism

$$(3.3) \quad \Sigma_* : \pi_k(C_{p,d}(\mathbb{P}^{n})) \cong \pi_k(C_{p+1,d}(\mathbb{P}^{n+1}))$$

for $0 \leq k \leq 2p + 1$.

As a corollary, we get the simply connectedness of $C_{p,d}(\mathbb{P}^{n})$, which has been obtained using general position arguments by Lawson (LI), the proof of Lemma 2.6):

Corollary 3.4 (LI). The Chow variety $C_{p,d}(\mathbb{P}^{n})$ is simply connected for integers $p, d, n \geq 0$.

Proof. Since $C_{0,d}(\mathbb{P}^{n})$ can be identified with the d-th symmetric product $SP^d(\mathbb{P}^{n})$ of \mathbb{P}^{n} and $SP^d(\mathbb{P}^{n})$ is path connected, we have $\pi_0(C_{0,d}(\mathbb{P}^{n})) = 0$ for all $d, n \geq 0$. Repeating using equation (3.3), we know $\pi_0(C_{p,d}(\mathbb{P}^{n})) = 0$ for all $p, d, n \geq 0$. Moreover, since $SP^d(\mathbb{P}^{n})$ is simply connected for all $d, n \geq 0$, we have $\pi_1(C_{0,d}(\mathbb{P}^{n})) = 0$ for all $d, n \geq 0$. Repeating using equation (3.3), we get

$$\pi_1(C_{p,d}(\mathbb{P}^{n})) \cong \pi_1(C_{p-1,d}(\mathbb{P}^{n-1})) \cong \cdots \cong \pi_1(C_{0,d}(\mathbb{P}^{n-p})) = 0$$

for all $p, d, n \geq 0$. \qed

Now we study the connectedness of maps induced by the inclusion $i : \mathbb{P}^{n} \hookrightarrow \mathbb{P}^{n+1}$.
Proposition 3.5. For any integer \(d \geq 1 \), the inclusion \(i : C_{p,d}(\mathbb{P}^n) \hookrightarrow C_{p,d}(\mathbb{P}^{n+1}) \) induces an isomorphism

\[
\pi_k(C_{p,d}(\mathbb{P}^n)) \cong \pi_k(C_{p,d}(\mathbb{P}^{n+1}))
\]

for \(0 \leq k \leq 2(n-p) \).

Remark 3.6. By using Proposition 3.5 we give another possibly more elementary proof of Corollary 3.4. If \(n = p \), then \(C_{p,d}(\mathbb{P}^n) \) is a point and so it is simply connected. If \(n = p + 1 \), then \(C_{p,d}(\mathbb{P}^n) \cong \mathbb{P}^{(n+1) - 1} \) so it is simply connected. If \(n - p \geq 2 \), then \(\pi_k(C_{p,d}(\mathbb{P}^n)) \cong \pi_k(C_{p,d}(\mathbb{P}^{n-1})) \cong \cdots \cong \pi_k(C_{p,d}(\mathbb{P}^{p+1})) = 0 \) for \(k \leq 1 \) by using Proposition 3.5 and so \(C_{p,d}(\mathbb{P}^n) \) is simply connected.

Proposition 3.5 can be used to compute the second homotopy group of Chow varieties.

Corollary 3.7. For \(d \geq 1 \) and \(n > p \geq 0 \), we have \(\pi_2(C_{p,d}(\mathbb{P}^n)) \cong \mathbb{Z} \) and hence \(H_2(C_{p,d}(\mathbb{P}^n)) \cong \mathbb{Z} \).

Proof. Replacing \(\pi_k \) by \(\pi_2 \) in Remark 3.6 yields the proof of the first statement. The second statement is a result of the first statement, Corollary 3.4 and the Hurewicz isomorphism theorem.

Lawson’s idea in the proof of the Complex Suspension Theorem in [L1] can be used to prove Proposition 3.5.

For any non-negative integer \(p \) and \(d \), set

\[
U_{p,d}(\mathbb{P}^{n+1}) := \{ c = \sum n_i V_i \in C_{p,d}(\mathbb{P}^{n+1})| V^0 \text{ is not in } \bigcup V_i \}.
\]

Proposition 3.5 follows directly from the combination of Lemmas 3.8 and 3.9 below:

Lemma 3.8. \(U_{p,d}(\mathbb{P}^{n+1}) \) is homotopy equivalent to \(C_{p,d}(\mathbb{P}^n) \). In particular, their corresponding homotopy groups are isomorphic, i.e.,

\[
\pi_*(U_{p,d}(\mathbb{P}^{n+1})) \cong \pi_*(C_{p,d}(\mathbb{P}^n)).
\]

Proof. Let \(p_0 : \mathbb{P}^{n+1} - \mathbb{P}^0 \to \mathbb{P}^n \) be the canonical projection away from \(\mathbb{P}^0 \in \mathbb{P}^{n+1} - \mathbb{P}^n \). Then \(p_0 \) induces a deformation retract from \(U_{p,d}(\mathbb{P}^{n+1}) \) to \(C_{p,d}(\mathbb{P}^n) \).

To see this, note that \(p_0 \) is a holomorphic line bundle and let \(F_t : (\mathbb{P}^{n+1} - \mathbb{P}^0) \times \mathbb{C} \to \mathbb{P}^{n+1} - \mathbb{P}^0 \) denote the scalar multiplication by \(t \in \mathbb{C} \) in this bundle. This map \(F_t \) is holomorphic (in fact, algebraic) and satisfies \(F_1 = id_{\mathbb{P}^{n+1} - \mathbb{P}^0} \) and \(F_0 = p_0 \). Hence \(F_t \) induces a family of continuous maps \((F_t)_* : U_{p,d}(\mathbb{P}^{n+1}) \to C_{p,d}(\mathbb{P}^n) \).

Therefore, \((p_0)_* \) is a deformation retraction.

Lemma 3.9. The inclusion \(i : U_{p,d}(\mathbb{P}^{n+1}) \hookrightarrow C_{p,d}(\mathbb{P}^{n+1}) \) is \(2(n-p) \)-connected.

Proof. By definition, it is enough to show that the induced maps on homotopy groups

\[
i_* : \pi_k(U_{p,d}(\mathbb{P}^{n+1})) \to \pi_k(C_{p,d}(\mathbb{P}^{n+1}))
\]

are isomorphisms for \(k \leq 2(n-p) \). Let \(f : S^k \to C_{p,d}(\mathbb{P}^{n+1}) \) be a continuous map for \(k \leq 2(n-p) \). We may assume \(f \) to be piecewise linear up to homotopy. Then \(f \) is homotopic to a map \(S^k \to U_{p,d}(\mathbb{P}^{n+1}) \). To see this, we first note that the union

\[
\bigcup_{x \in S^k} f(x)
\]
is a set of real codimension $\geq 2(n + 1) - 2p - k \geq 2 > 0$. So we can find a point $Q \in \mathbb{P}^{n+1} - \mathbb{P}^n$ such that Q is not in $\bigcup_{x \in S^k} f(x)$. Let G_t be a family of automorphism of \mathbb{P}^{n+1} mapping \mathbb{P}^0 to Q but preserving \mathbb{P}^n. Composing with the automorphism G_t, we obtain the family $G_t \circ f : S^k \to C_{p,d}(\mathbb{P}^{n+1})$ such that $G_0 \circ f = f$ and $G_1 \circ f : S^k \to U_{p,d}(\mathbb{P}^{n+1})$. Hence $i_* f$ is surjective for $k \leq 2(n - p)$.

Similarly, suppose g is a map of pairs $g : (D_{k+1}, S^k) \to (C_{p,d}(\mathbb{P}^{n+1}), U_{p,d}(\mathbb{P}^{n+1}))$. Then the map can be deformed through a map of pairs to one with image in $U_{p,d}(\mathbb{P}^{n+1})$ if $k \leq 2(n - p)$. Therefore, $i_* f$ is injective for $k \leq 2(n - p)$. □

The proof of Theorem 1.3 By Proposition 3.3, $\pi_k(C_{p,d}(\mathbb{P}^n))$ is stable when $n \to \infty$. By the combination of equations (3.3) and (3.4), we have the isomorphism $\pi_k(C_{p,d}(\mathbb{P}^n)) \cong \lim_{m,q \to \infty} \pi_k(C_{p,q,d}(\mathbb{P}^{n+m+q}))$ for $0 \leq k \leq 2p + 1$ and $k \leq 2(n - p)$. This completes the proof of Theorem 1.3 □

ACKNOWLEDGEMENT

I would like to thank the referee for helpful comments and suggestions which improved the article’s readability.

REFERENCES

[CW] W-L. Chow and B. L. van der Waerden, Zur algebraischen Geometrie. IX (German). Math. Ann. 113 (1937), no. 1, 692–704. MR1513117

[F] E. Friedlander, Algebraic cycles, Chow varieties, and Lawson homology. Compositio Math. 77 (1991), no. 1, 55–93. MR1091892 (92a:14005)

[GH] P. Griffiths and J. Harris, Principles of algebraic geometry. Reprint of the 1978 original. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994. MR1288523 (95d:14001)

[L1] H. B. Lawson, Algebraic cycles and homotopy theory. Ann. of Math. (2) 129 (1989), 253-291. MR986794 (90h:14008)

[L2] H. B. Lawson, Spaces of algebraic cycles. pp. 137-213 in Surveys in Differential Geometry, vol. 2, International Press, Cambridge, MA, 1995. MR1375256 (97m:14006)

[LM] H. B. Lawson and M. L. Michelsohn, Algebraic cycles, Bott periodicity, and the Chern characteristic map. The mathematical heritage of Hermann Weyl (Durham, NC, 1987), 241–263, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, 1988. MR974339 (90d:14010)

[M] I. G. Macdonald, The Poincaré polynomial of a symmetric product. Proc. Cambridge Philos. Soc. 58 (1962), 563–568. MR0143204 (26:764)

[W] George W. Whitehead, Elements of homotopy theory. Graduate Texts in Mathematics, 61. Springer-Verlag, New York-Berlin, 1978. MR516508 (80b:55001)