SPLITTING OF THE VIRTUAL CLASS FOR GENUS ONE STABLE QUASIMAPS

SANGHYEON LEE AND MU-LIN LI

ABSTRACT. We analyse the local structure of moduli space of genus one stable quasimaps. Combining it with the p-fields theory developed in [9], we prove the splitting formula for the virtual cycle of stable quasimaps to complete intersections in \(\mathbb{P}^n \).

CONTENTS

1. Introduction 1
2. Local charts and local equations 3
2.1. Relative obstruction theories of quasi-map spaces 3
2.2. Local charts and local equations 4
3. Moduli of stable quasimaps with fields 7
3.1. Stable quasimaps with fields 7
3.2. Comparison of relative perfect obstruction theories 9
3.3. Decomposition of the intrinsic normal cone 11
4. Calculations 13
4.1. Proof of the Theorem 1.1 13
4.2. Proof of the Corollary 1.3 17
References 18

1. INTRODUCTION

The moduli space of stable quasimaps to arbitrary GIT quotient is a generalization of the moduli space of stable quotient defined by Marian, Oprea and Pandharipande [33], which was constructed and studied by Ciocan-Fontanine, Kim and Maulik [13]. When the target is a projective complete intersection, Ciocan-Fontanine and Kim [14] proved that the invariants of stable quasimaps can be related to the Gromov-Witten invariants by mirror map for all genus (see also [11], [12], [35] for different cases, and [15], [16] for different proofs). The genus zero stable quasimap (stable quotient) invariants of complete intersections are computed by Cooper and Zinger [18], and Ciocan-Fontanine and Kim [11]. Kim and Lho [26] calculate the genus one invariants of complete intersection without markings by using infinitesimal marked points.

Let \(X = (q_1(x) = \cdots = q_m(x) = 0) \subset \mathbb{P}^n \) be a smooth complete intersection. Let \(Q_{g,k}(X,d) \) be the moduli stack of genus \(g \) stable quasimaps to \(X \) with degree \(d \) and \(k \) markings. It is a proper Deligne Mumford (DM for short)-stack, and carries a canonical virtual cycle \([Q_{g,k}(X,d)]^{\text{vir}}\).

Especially, for \(k = 1 \), \(X = \mathbb{P}^n \) case, \(\mathcal{X} := Q_{1,1}(\mathbb{P}^n,d) \) has two smooth components by Theorem 2.11. One is the main component \(\mathcal{X}_{\text{red}} \), and the other component is the ghost component \(\mathcal{X}_{\text{gst}} \). Let \(\pi_{\mathcal{X}} : \mathcal{C}_X \to \mathcal{X} \) be the universal family, and \(\mathcal{L}_X \) be the universal line bundle over \(\mathcal{C}_X \). Then the restriction \(\pi_{\mathcal{X}}^* \mathcal{L}_X^{(r)}|_{\mathcal{X}_{\text{red}}} \) is locally free for all positive integers \(r \). In [13], we define the reduced virtual cycle \(A_{1,d}^{\text{red}} \) by the refined euler class of the bundle \(\pi_{\mathcal{X}}^* \mathcal{L}_X^{(r)}|_{\mathcal{X}_{\text{red}}} \). Then we have the following splitting formula for virtual cycle.
Theorem 1.1. Let $X = (q_1(x) = \cdots = q_m(x) = 0) \subset \mathbb{P}^n$ be a smooth complete intersection, then
\[
[Q_{1,1}(X,d)]^{vir} = A_{1,d}^{red} + \langle (-1)^{\sum \deg q_i} t^d \left(\frac{c(H^\vee \otimes ev_1^* TX)}{c(H^\vee \otimes L_2)} \right) \rangle_{n-m-1} \cap ([\overline{M}_{1,1}] \times [Q_{0,2}(X,d)]^{vir})
\]
where $\iota : \overline{M}_{1,1} \times Q_{0,2}(X,d) \to Q_{1,1}(X,d)$ is the node-identifying morphism, H is the Hodge bundle over $\overline{M}_{1,1}$, L_2 is the universal tangent bundle over $Q_{0,2}(\mathbb{P}^n, d)$ at the second marked point, which comes from splitting of the node and $A_{1,d}^{red}$ is the reduced virtual cycle defined by (4.3).

Let γ be the psi-class of $Q_{1,1}(X,d)$ at the marked point. For $\gamma \in H^{2k}(X, \mathbb{Q})$, $k \leq 1$, we can define the following stable quasimap invariants
\[
\langle \gamma^a ev^* \gamma \rangle_{1,1,d} := \int [Q_{1,1}(X,d)]^{vir} \gamma^a ev^* \gamma,
\]
when $a + k = \text{vdim} Q_{1,1}(X,d)$.

The reduced genus one invariants of stable quasimaps to smooth complete intersection $X \subset \mathbb{P}^n$ is defined as follows

Definition 1.2.
\[
(1.1) \quad \langle \gamma^a ev^* \gamma \rangle_{1,1,d}^{red} := \int A_{1,d}^{red} \gamma^a ev^* \gamma.
\]

Then we prove the following equality as formula (1.2) in the paper,
\[
(1.2) \quad \langle \gamma^a ev^* \gamma \rangle_{1,1,d}^{red} = \int_{\kappa_{red}} \gamma^a ev^* \gamma \cup e^{\text{ref}} \left(\sum_{i=1}^m \pi_{X*} L_{\mathcal{A}} \otimes \deg q_i |_{\kappa_{red}} \right).
\]

This reduced invariants can be calculated by using the localization formula similarly as Zinger [34] did in genus one Gromov-Witten invariants, and as the second author [32] did in genus one stable quasimap invariants without marking. We have the following formula which connect the reduced and standard stable quasimap invariants for complete intersections

Corollary 1.3. Let $X = (q_1(x) = \cdots = q_m(x) = 0) \subset \mathbb{P}^n$ be a smooth complete intersection. For $\gamma \in H^{2k}(X, \mathbb{Q})$ where $k \leq 1$, we have
\[
\langle \gamma^a ev^* \gamma \rangle_{1,1,d} = \langle \gamma^a ev^* \gamma \rangle_{1,1,d}^{red} - \frac{1}{24} \left(\int_{Q_{0,2}(X,d)} \gamma^a ev^*_1 \gamma \cup c_{n-m-2}(ev_2^* TX) \right. \\
- (n-m-1) \left. \int_{Q_{0,2}(X,d)} \gamma^a ev^*_2 \gamma \right),
\]
where $a + k = \text{vdim} Q_{1,1}(X,d)$. Furthermore, if X is a Calabi-Yau threefold, then $c_1(T_X) = 0$, and
\[
\langle \gamma^a ev^* \gamma \rangle_{1,1,d}^{red} = \langle \gamma^a ev^* \gamma \rangle_{1,1,d} + \frac{1}{12} \int_{Q_{0,2}(X,d)} \gamma^a ev^*_2 \gamma.
\]

The term $\langle \gamma^a \rangle_{1,1,d}^{red}$ plays an important role in Oh and the authors’ splitting formula [30] for genus two stable quasimap invariant of complete intersection Calabi-Yau threefolds in \mathbb{P}^n. Thus this paper can be seen as the first step in our approach to the calculation of genus two stable quasimap invariants.

Acknowledgment: The second author thanks Huai-Liang Chang, Bumsig Kim, Jun Li, and A. Zinger for helpful discussions. This work was supported by the Start-up Fund of Hunan University. The first author thanks Jeongseok Oh for helpful discussions. This work was supported by a KIAS Individual Grant MG070902 at Korea Institute for Advanced Study.
2. Local charts and local equations

2.1. Relative obstruction theories of quasi-map spaces. Here we introduce relative perfect obstruction theories of the quasi-map space $Q_{1,k}(P^n,d)$ and the quasi-map space with fields $Q_{1,k}(P^n,d)^P$. We introduce some Artin stacks, which will be used as bases of the relative perfect obstruction theories. Let $\mathcal{M}_{1,k}$ be the Artin stack of nodal curves of genus one with k-markings.

Definition 2.1. Let $\mathcal{M}_{1,k,d}^\text{wit}$ be the groupoid associating each scheme S to the set $\mathcal{M}_{1,k,d}^\text{wit}(S) = (c_{S}, \{ p_j : S \to c_{S} \}_{j=1}^{k})$ where $(\pi : c_{S} \to S, \chi)$ is a flat family of prestable genus one weighted nodal curves with k marked points. We will usually abbreviate it by $\mathcal{M}_{1,k,d}^\text{wit}$.

Definition 2.2. Let $\mathcal{M}_{1,k}^\text{line}$ be the groupoid associating each scheme S to the set $\mathcal{M}_{1,k}^\text{line}(S) = (c_{S}, \{ p_j : S \to c_{S} \}_{j=1}^{k}, L)$, where $\pi : c_{S} \to S$ is a flat family of connected genus one nodal curves and $\{ L \}$ is a line bundle on c_{S} of degree d along fibers of c_{S}/S. An arrow from $(c_{S}, \{ p_j : S \to c_{S} \}_{j=1}^{k}, L)$ to $(c'_{S}, \{ p'_j : S \to c'_{S} \}_{j=1}^{k}, L')$ consists of $f : c_{S} \to c'_{S}$ and an isomorphism $\theta_{f} : f^{*}L' \to L$, which preserve the markings and the sections.

Let $(C, (p_j)_{j=1}^{k}, D)$ be the k-pointed (connected) nodal elliptic curves C with effective divisors $D \subset C$ supported on the smooth loci of C. Then $(C, (p_j)_{j=1}^{k}, D)$ is stable if the induced weighted nodal curve $(C, (p_j)_{j=1}^{k}, \deg D)$ is stable.

Definition 2.3. Let $\mathcal{M}_{1,k,d}^\text{div}$ be the groupoid associating each scheme S to the set $\mathcal{M}_{1,k,d}^\text{div}(S) = (c_{S}, \{ p_j : S \to c_{S} \}_{j=1}^{k}, L)$, where $\pi : c_{S} \to S$ is a flat family of connected stable genus one nodal curves and $\{ L \}$ is an effective divisor on c_{S} whose degree is d on each fiber.

Note that $\mathcal{M}_{1,k}, \mathcal{M}_{1,k,d}^\text{wit}, \mathcal{M}_{1,k}^\text{line}$ and $\mathcal{M}_{1,k,d}^\text{div}$ are smooth Artin stacks. The morphism $\mathcal{M}_{1,k,d}^\text{div} \to \mathcal{M}_{1,k,d}^\text{wit}$ is smooth and proper with connected fibers, and the morphism $\mathcal{M}_{1,k} \to \mathcal{M}_{1,k}^\text{line}$ is étale. The natural (dual) relative obstruction theory of $Q_{1,k}(P^n,d)$ over $\mathcal{M}_{1,k}^\text{line}$ is defined by

\[
\mathcal{E}_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}^\text{line}}^\vee := R\pi_{*}L_{C}^{\text{div}},
\]

where $\pi : C \to Q_{1,k}(P^n,d)$ is the universal curve and L_{C} is the universal bundle over C, which coincides with the pull-back of the universal bundle L over $\mathcal{M}_{1,k}^\text{line}$ via the forgetful morphism $f : Q_{1,k}(P^n,d) \to \mathcal{M}_{1,k}^\text{line}$.

Next we consider a relative obstruction theory of $Q_{1,k}(P^n,d)$ over $\mathcal{M}_{1,k}$. The morphism $\mathcal{M}_{1,k}^\text{line} \to \mathcal{M}_{1,k}^\text{wit}$ is given by associating (C, L) to the weight on C, given by the degree of the line bundle L restricted on each irreducible component of C. Note that this morphism is smooth. Hence the morphism $\mathcal{M}_{1,k}^\text{line} \to \mathcal{M}_{1,k}$ is smooth. Hence there is a natural relative obstruction theory $\mathcal{E}_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}}$ to $L_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}}$, which is induced from the relative obstruction theory $\mathcal{E}_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}^\text{line}} \to L_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}^\text{line}}$ [1 Proposition 7.2].

From the definition of relative obstruction theories and octahedral axiom of derived categories, there is a natural distinguished triangle:

\[
f^{*}T_{\mathcal{M}_{1,k}^\text{line}/\mathcal{M}_{1,k}}[-1] \to \mathcal{E}_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}^\text{line}}^\vee \to \mathcal{E}_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}}^\vee +1
\]

which fits in to the commutative diagram of distinguished triangles:

\[
\begin{array}{ccc}
\mathcal{E}_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}^\text{line}}^\vee & \to & \mathcal{E}_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}}^\vee +1 \\
\downarrow & & \downarrow \\
T_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}^\text{line}} & \to & T_{Q_{1,k}(P^n,d)/\mathcal{M}_{1,k}} +1
\end{array}
\]

On the other hand, in a similar manner as in [2 Lemma 2.8] we have the following commutative diagram of distinguished triangles:
where $\pi : C_{Q_1,k}(\mathbb{P}^n, d) \to Q_1,k(\mathbb{P}^n, d)$ is the universal curve and L_C is the universal bundle over $C_{Q_1,k}(\mathbb{P}^n, d)$, $f : C_{Q_1,k}(\mathbb{P}^n, d) \to [\mathbb{C}^{n+1}/\mathbb{C}^*]$ is a universal morphism induced from the universal section (u_0, \ldots, u_n) of $L_C^{\oplus n+1}$. Note that the (pull-back of) the tangent complex $T_{\mathbb{C}^{n+1}/\mathbb{C}^*}$ of the quotient stack is the complex

$$O_{\mathbb{C}^{n+1}}(x_0, \ldots, x_n) \to O_{\mathbb{C}^{n+1}}$$

where x_0, \ldots, x_n is the coordinate functions of \mathbb{C}^{n+1}. Note that the distinguished triangle on the first horizontal arrow is obtained from the exact sequence

$$0 \to O_{Q_1,k}(\mathbb{P}^n, d) \to L_C^{\oplus n+1} \cong L_C \times \mathbb{C}^{n+1} \to f^* T_{[\mathbb{C}^{n+1}/\mathbb{C}^*]} \to 0$$

by taking the pull-back and the pushforward. Then we have

$$E^\vee_{Q_1,k}(\mathbb{P}^n, d) \cong \text{cone} \left(\begin{array}{c} \pi^* T^\vee_{M_{1,k}^{\text{div}} / \mathbb{P}^n, d} \to \pi^* T_{Q_1,k(\mathbb{P}^n, d) / M_{1,k}^{\text{div}}} \to \pi^* T_{Q_1,k(\mathbb{P}^n, d) / \mathbb{P}^n} \rightarrow \mathbb{C}^{n+1} \end{array} \right)$$

Remark 2.4. By the above argument, we can replace φ by φ', which is the morphism induced from the section $(u_0, \ldots, u_n) : O_{Q_1,k}(\mathbb{P}^n, d) \to L_C^{\oplus n+1}$ by taking the derived pushforward.

Next we define a local relative obstruction theory of $Q_1,k(\mathbb{P}^n, d)$ over $M_{1,k,d}^{\text{div}}$. Although there is no natural morphism from $Q_1,k(\mathbb{P}^n, d)$ to $M_{1,k,d}^{\text{div}}$, we can consider the morphism locally as follows. Consider a point $x = [(C, p_1, \ldots, p_k, L, \{u_i\}_{i=0}^n)] \in Q_1,k(\mathbb{P}^n, d)$ and an open subset $U_0 \subset Q_1,k(\mathbb{P}^n, d)$ defined by the condition $u_0 \neq 0$ containing x. Then there is a morphism $p : U_0 \to M_{1,k,d}^{\text{div}}$ defined by

$$p : U_0 \to M_{1,k,d}^{\text{div}},$$

$$[(C, p_1, \ldots, p_k, L, \{u_i\}_{i=0}^n)] \mapsto [(C, p_1, \ldots, p_k, u_0^{-1}(0))].$$

Over this local chart U_0 of $Q_1,k(\mathbb{P}^n, d)$, a (dual) relative obstruction theory $E^\vee_{U_0 / M_{1,k,d}^{\text{div}}}$ is defined by the following in [2]:

$$(2.4) \quad E^\vee_{U_0 / M_{1,k,d}^{\text{div}}} := R\pi_* O_C(D)^{\oplus n}$$

where $\pi : C \to U_0$ is the universal curve and $D \subset C$ is the universal divisor defined by the universal section s_0 of the universal bundle L_C on C.

2.2. Local charts and local equations. In this section, we will study the local structure of $Q_1,k(\mathbb{P}^n, d)$, parallel to [22] which studied local structure of the stable map space $M_{1,k}(\mathbb{P}^n, d)$.

Recall the the morphism from the open neighbourhood $U_0 \subset Q_1,k(\mathbb{P}^n, d)$ to the Artin stack $M_{1,k,d}^{\text{div}}$ defined in Section 2.1. We also consider a closed point

$$x = [(C, p_1, \ldots, p_k, L, \{u_i\}_{i=0}^n)] \in U_0.$$
Let us denote the divisor $u_0^{-1}(0)$ by D and let $\mathcal{V} \to \mathfrak{M}_{1,k,d}^{\text{div}}$ be a smooth affine chart with

$$[(\mathcal{C}_V)_0, p_1(0), \ldots, p_j(0), D_0] = [(C, p_1, \ldots, p_k, D)] = q(x).$$

Here, \mathcal{C}_V is a canonical curve over \mathcal{V}, $p_i : \mathcal{V} \to \mathcal{C}_V$ are universal sections and D is a universal divisor on \mathcal{C}_V. In fact, U_0 will be turned out as an open set of a total space of $\rho_* \mathcal{O}_{\mathcal{C}_V}(D)$ where D is a universal divisor on the universal curve $\rho : \mathcal{C}_V \to \mathcal{V}$. So we need to find a resolution of $\rho_* \mathcal{O}_{\mathcal{C}_V}(D)$. For this, we first show the following lemma.

Lemma 2.5. By taking \mathcal{V} small enough, there is an equivalence of line bundles:

$$\mathcal{O}_{\mathcal{C}_V}(rD) \cong \mathcal{O}_{\mathcal{C}_V}(D_1 + \cdots + D_{rd})$$

where $r \geq 1$ is an integer, D_1, \ldots, D_{rd} are sections $\mathcal{V} \to D$ disjoint to each others.

(Sketch of the proof). Basically the proof can be obtained similarly as [22] Lemma 2.1. Case 1) $d = 1$. It is clear that there is nothing to proof. So we will just sketch the proof.

Case 2) $d \geq 2$. Take the neighbourhood \mathcal{V} small enough. Then, from the degree condition,

$$\text{degree} \geq 2,$$

we can find two sections s_1, s_2 of $\mathcal{O}_{\mathcal{C}_V}(rD)$ which gives a family of degree $r \cdot d$ morphisms to \mathbb{P}^1. Since \mathcal{V} is small enough, we can find a linear combination $as_1 + bs_2$ whose zero is $D_1 + \cdots + D_{rd}$ where D_i are family of degree 1 effective divisors disjoint to each others. □

Same as the stable map spaces case [22]. We can choose sections $A, B : \mathcal{V} \to \mathcal{C}_V$ lies in core subcurves for each fiber, and disjoint with each others. Moreover we may assume that A, B are disjoint to the divisors D_1, \ldots, D_{rd}. Here, we define core subcurve of a genus g curve X by a minimal genus g subcurve of X.

Let $\mathcal{L} := \mathcal{O}_{\mathcal{C}_V}(D)$. By the above lemma, we have $\mathcal{L}^\otimes r \cong \mathcal{O}_{\mathcal{C}_V}(D_1 + \cdots D_{rd})$. We consider the inclusion of sheaves

$$\mathcal{M}_i := \mathcal{O}_{\mathcal{C}_V}(D_i + A - B) \subset \mathcal{M} := \mathcal{O}_{\mathcal{C}_V}\left(\sum_{i=1}^{rd} D_i + A - B\right)$$

and the induced inclusions

$$\eta_i : \rho_* \mathcal{M}_i \hookrightarrow \rho_* \mathcal{M}.$$

Both are locally free since $R^1 \rho_* \mathcal{M}_i$ and $R^1 \rho_* \mathcal{M} = 0$. By Riemann-Roch, $\rho_* \mathcal{M}_i$ is invertible and the rank of $\rho_* \mathcal{M}$ is d. We then let

$$\varphi : \rho_* \mathcal{M} \longrightarrow \rho_* \left(\mathcal{O}_{\mathcal{C}_V}\left(\sum_{i=1}^{rd} D_i + A - B\right)\right)_{|A} = \rho_* (\mathcal{O}_A(A))$$

and

$$\varphi_i : \rho_* \mathcal{M}_i \longrightarrow \rho_* (\mathcal{O}_{\mathcal{C}_V}\left(\sum_{i=1}^{rd} D_i + A - B\right)_{|A}) = \rho_* (\mathcal{O}_A(A))$$

be the evaluation homomorphisms. Obviously, $\varphi = \varphi \circ \eta_i$. Since we assumed that \mathcal{V} is affine, the sheaf $\rho_* (\mathcal{O}_A(A))$ is isomorphic to \mathcal{O}_V.

Lemma 2.6. [22] Lemma 4.10 We have

1. $\rho_* \mathcal{L}^\otimes r \cong \mathcal{O}_V \oplus \rho_* \mathcal{O}_{\mathcal{C}_V}\left(\sum_{i=1}^{rd} D_i - B\right)$;
2. $\rho_* \mathcal{O}_{\mathcal{C}_V}\left(\sum_{i=1}^{rd} D_i - B\right) \cong \ker \varphi$;
3. $\oplus_{i=1}^{rd} \eta_i : \bigoplus_{i=1}^{rd} \rho_* \mathcal{M}_i \longrightarrow \rho_* \mathcal{M}$ is an isomorphism, and $\oplus_{i=1}^{rd} \varphi_i = \varphi \circ \oplus_{i=1}^{rd} \eta_i$.

Note that $\rho_* \mathcal{M}_i \cong \mathcal{O}_V$ and $\rho_* (\mathcal{O}_A(A)) \cong \mathcal{O}_V$ since we may assume \mathcal{V} sufficiently small. Then φ_i is a morphism between trivial bundles. To describe each morphism φ explicitly, we review arguments in [22] Section 4.

For a weighted genus one nodal curve C, Let γ^0 be the associated dual graph. Then we contract a subgraph of γ^0 comes from the core subcurve, making the new graph γ^1. We denote the contracted vertex by ‘o’. o is also called the root of the graph. Using the following four operations on the rooted tree γ^1, pruning, collapsing, specialization, and
advancing, we obtain a terminally weighted tree γ. See [22 Section 3.2] for details. Here, ‘terminally weighted’ means weights are concentrated on the terminal (=maximal order) vertices. Note that the vertex set of every rooted tree has natural order having the root vertex as a minimal element.

Let γ be the terminally weighted tree associated to (C, p_1, \cdots, p_k, L). The weight is given by degrees of L on each components of C. For each vertex $v \in \gamma$ we define

$$\zeta_v = \zeta_q \in \Gamma(\mathcal{O}_\gamma),$$

where q is the associated node of v, and $\Sigma_q = \{\zeta_q = 0\}$ is the locus such that the node q is not smoothed. For any terminal vertex $i \in \text{Ver}(\gamma)^t$, we let

$$\zeta_{i,o} = \prod_{i \geq v > o} \zeta_v.$$

We have the following theorem,

Theorem 2.7. [22 Lemma 4.16] The direct image sheaf $\rho_*\mathcal{L}^\oplus$ is a direct sum of $\mathcal{O}_\mathcal{V}^{(rd-\ell+1)}$ with the kernel sheaf of the homomorphism

$$\varphi_i: \mathcal{O}_\mathcal{V}^\oplus \rightarrow \mathcal{O}_\gamma, \quad \varphi_i = c_i \cdot \zeta_{i,o}, \quad c_i \in \mathbb{C}$$

where ℓ is the number of terminals vertices of γ.

For a point in $Q_{1,1}(\mathbb{P}^n, d)$, let U be a small neighborhood of it. We pick a smooth chart $\mathcal{V} \rightarrow \mathfrak{M}^{\text{div}}_{1,1,k,d}$, which contains the image of $U \rightarrow \mathfrak{M}^{\text{div}}_{1,1,k,d}$. Let $U = \mathcal{V} \times_{\mathfrak{M}^{\text{div}}_{1,1,k,d}} \mathcal{E}_\gamma$ be the total space of the vector bundle $\rho_*\mathcal{L}(A)^\oplus_n$. Let $p: \mathcal{E}_\gamma \rightarrow \mathcal{V}$ be the projection. Then the tautological restriction homomorphism

$$\text{rest}: \rho_*\mathcal{L}(A)^{\oplus n} \rightarrow \rho_*\mathcal{L}(A)^{\oplus n}{|_A}$$

lifts to a section

$$F \in \Gamma(\mathcal{E}_\gamma, p^*\rho_*\mathcal{L}(A)^{\oplus n}{|_A}).$$

Then there is a canonical open immersion $U \rightarrow (F = 0) \subset \mathcal{E}_\gamma$. To a terminal vertex $b \in \text{Ver}(\gamma)^t$, we associate n coordinate functions $w_{b,1}, \cdots, w_{b,n} \in \Gamma(\mathcal{O}_{\mathcal{E}_\gamma})$. We then set

$$\Phi_\gamma = (\Phi_{\gamma,1}, \cdots, \Phi_{\gamma,n}), \quad \Phi_{\gamma,e} = \sum_{b \in \text{Ver}(\gamma)^t} \zeta_{b,o} w_{b,e}.$$

Similar to Hu and Li’s [22 Theorem 2.19], we have the following theorem

Theorem 2.8. For a point in $Q_{1,1}(\mathbb{P}^n, d)$, let γ be the associated weighted tree, choosing \mathcal{V} as above and shrinking it if necessary and fix an isomorphism $p^*\rho_*\mathcal{L}(A)^{\oplus n}{|_A} \cong \mathcal{O}_{\mathcal{E}_\gamma}^{\oplus n}$. Then we can find regular functions over $\mathcal{E}_\gamma, w_{b,1}, \cdots, w_{b,n}$, from coordinate functions of $\mathcal{O}_{\mathcal{E}_\gamma}^{\oplus n}$ and node-smoothing parameter functions ζ_i such that

$$F = (\Phi_{\gamma,1}, \cdots, \Phi_{\gamma,n}).$$

When $k = 1$, let γ be a stable terminally weighted rooted trees of total weight d. We can easily check that γ is a one path trees. Therefore γ has only one terminal vertex, so that we have

$$\Phi_{\gamma,e} = \zeta_1 w_e, \quad \Phi_\gamma = (\zeta_1 w_1, \cdots, \zeta_1 w_n)$$

where ζ_1 is a node-smoothing parameter correspond to the unique terminal vertex of γ. Let us denote ζ_1 by ζ. The local equation for $Q_{1,1}(\mathbb{P}^n, d)$ can be easily described as the following.

Corollary 2.9. For a point in $Q_{1,1}(\mathbb{P}^n, d)$, choosing \mathcal{V} as above and shrinking it if necessary and fix an isomorphism $p^*\rho_*\mathcal{L}(A)^{\oplus n}{|_A} \cong \mathcal{O}_{\mathcal{E}_\gamma}^{\oplus n}$, we can find $n+1$ regular functions w_1, \cdots, w_n, ζ over \mathcal{E}_γ such that

$$F = (w_1\zeta, \cdots, w_n\zeta).$$

Furthermore, each w_i and ζ has smooth vanishing locus, which intersect transversally to each others.
When \(k > 1 \), as in \[22\], let \(\Theta_s \) be the closure in \(\mathcal{M}^{\text{inst}}_{1,k} \) of the locus where the weight is zero on the genus one core component, and has \(s \) rational components attach to the genus one component. Let \(\mathcal{M}_{1,k}^{\text{red}} \) be the successive blow up \(\mathcal{M}_{1,k}^{\text{inst}} \) along \(\Theta_1, \ldots, \Theta_d \). Then irreducible components of \(\mathcal{Q}_{1,k}(\mathbb{P}, d) := \mathcal{Q}_{1,k}(\mathbb{P}, d)_{\mathcal{M}_{1,k}^{\text{inst}}} \times \mathcal{M}_{1,k}^{\text{red}} \) are smooth and intersect transversally, and we also have the following local equations. The following is a direct analogue of \[22\] Theorem 2.19 and \[28\] Proposition 2.1 in stable quasi-map spaces.

Theorem 2.10. For a point in \(\mathcal{Q}_{1,k}(\mathbb{P}, d) \) choosing an smooth affine chart \(\hat{Y} \) of \(\mathcal{M}_{1,k} \), shrinking it if necessary and fixed \(\phi^* \rho_*(\mathcal{L}(\mathcal{A})^{\oplus n}|_{\mathcal{A}}) \cong \mathcal{E}_{\mathcal{V}}^{\oplus n} \), we can find \(n + d' \) regular functions \(w_1, \ldots, w_n \) and \(\zeta_1, \ldots, \zeta_{d'} \) over \(\mathcal{E}_{\mathcal{V}} \) where \(d' = \min\{k, d\} \), such that
\[
F = (w_1 \tau, \ldots, w_n \tau), \quad \tau := \zeta_1 \cdots \zeta_{d'}.
\]
Furthermore, each \(w_i \) and \(\zeta_j \) has smooth vanishing locus, and they intersect transversally to each others.

Set \(\mathcal{X} = Q_{1,1}(\mathbb{P}^n, d) \), let \(\pi_X : \mathcal{C}_X \to \mathcal{X} \) be the universal family and \(\mathcal{L}_X \) be the universal line bundle over \(\mathcal{C}_X \). By the stability conditions, we know that \(\mathcal{X} \) has two different irreducible components, the main component \(\mathcal{X}_{\text{red}} \) (where the underlying curves of the generic points are smooth elliptic curves), and the other is the so called ghost component \(\mathcal{X}_{\text{gst}} \). Locally, \(\mathcal{X}_{\text{red}} = \{ w_1 = \cdots = w_n = 0 \} \) and \(\mathcal{X}_{\text{gst}} = \{ \tau = 0 \} \). Then by the proof of \[22\] Theorem 2.11, we have

Theorem 2.11. The direct image sheaf \(\pi_{\mathcal{X}_{\text{red}}}^* \left(\mathcal{L}_X^\otimes r|_{\mathcal{X}_{\text{red}}} \right) \) is locally free of rank \(rd \), and the direct image sheaf \(\pi_{\mathcal{X}_{\text{gst}}}^* \left(\mathcal{L}_X^\otimes r|_{\mathcal{X}_{\text{gst}}} \right) \) is locally free of rank \(rd + 1 \).

Remark 2.12. For \(k > 1 \), we can obtain similar result as Theorem 2.11. In this case, ghost component is not irreducible. For each irreducible component of \(Q_{1,k}(\mathbb{P}^n, d) \), denoted by \(\tilde{Q}_\gamma \), the direct image sheaves \(\pi_{\tilde{Q}_{\gamma}}^* \left(\mathcal{L}_{Q_{1,k}(\mathbb{P}^n, d)}^\otimes r \right) \) is locally free of rank \(rd + 1 \). Also, the direct image sheaf \(\pi_{\tilde{Q}_{\text{red}}}^* \left(\mathcal{L}_{Q_{1,k}(\mathbb{P}^n, d)}^\otimes r |_{\tilde{Q}_{\text{red}}} \right) \) is locally free of rank \(rd \), where \(\tilde{Q}_{\text{red}} \) denotes the main component.

3. Moduli of stable quasimaps with fields

3.1. **Stable quasimaps with fields.** First we recall the moduli stack of stable quasimaps with fields introduced in \[9\]. To simplify the notation, we will focus on the genus one case. Let us abbreviate \(Q := Q_{1,k}(\mathbb{P}^n, d) \). Let
\[
\pi_Q : \mathcal{C}_Q \to Q, \quad \mathcal{P}_Q^i = \mathcal{L}_Q^\otimes \deg q_i \otimes \omega_{\mathcal{C}_Q/Q}, \quad 1 \leq i \leq m.
\]
As in \[9\], let \(\mathcal{P} = \mathcal{P}_{1,k} = C(\oplus_{i=1}^m \pi_{Q*} \mathcal{P}_Q) \) be the cone stack over \(Q \). The relative perfect obstruction theory over \(\mathcal{P} \to \mathcal{M}^{\text{inst}}_{1,k} \) is given by
\[
(3.1) \quad \phi_{\mathcal{P}/\mathcal{M}^{\text{inst}}_{1,k}} : T_{\mathcal{P}/\mathcal{M}^{\text{inst}}_{1,k}} \to E_{\mathcal{P}/\mathcal{M}^{\text{inst}}_{1,k}}^\vee, \quad E_{\mathcal{P}/\mathcal{M}^{\text{inst}}_{1,k}}^\vee := R^* \pi_{\mathcal{P}*}(\mathcal{L}_\mathcal{P}^\otimes (n+1) \oplus_i \mathcal{P}_Q^i),
\]
where
\[
\pi_P : \mathcal{C}_P \to \mathcal{P}, \quad \mathcal{P}_P^i = \mathcal{L}_P^\otimes \deg q_i \otimes \omega_{\mathcal{C}_P/P}, \quad 1 \leq i \leq m
\]
is the universal curve and \(T_{\mathcal{P}/\mathcal{M}^{\text{inst}}_{1,k}} \) denotes the relative tangent complex.

According to the convention, we call the cohomology sheaf
\[
\mathcal{O}b_{\mathcal{P}/\mathcal{M}^{\text{inst}}_{1,k}} := H^1(E_{\mathcal{P}/\mathcal{M}^{\text{inst}}_{1,k}}^\vee) = R^1 \pi_{\mathcal{P}*}(\mathcal{L}_\mathcal{P}^\otimes (n+1) \oplus_i \mathcal{P}_P^i)
\]
the relative obstruction sheaf of \(\phi_{\mathcal{P}/\mathcal{M}^{\text{inst}}_{1,k}} \).

The authors \[9\] constructed a cosection of \(\mathcal{O}b_{\mathcal{P}/\mathcal{M}^{\text{inst}}_{1,k}} \) by using the defining polynomials \(q_1(x) = \cdots = q_m(x) = 0 \) of \(X \). Namely a homomorphism
\[
(3.2) \quad \sigma' : \mathcal{O}b_{\mathcal{P}/\mathcal{M}^{\text{inst}}_{1,k}} \to \mathcal{O}_P.
\]
This cosection can be lifted to a cosection $\tilde{\sigma} : \mathcal{O}_P \to \mathcal{O}_P$ of the obstruction sheaf \mathcal{O}_P. Note that the obstruction sheaf \mathcal{O}_P fits into the exact sequence

$$f_P^* T_{\mathfrak{m}_{1,k}^{\text{line}}} \longrightarrow \mathcal{O}_{P/\mathfrak{m}_{1,k}^{\text{line}}} \longrightarrow \mathcal{O}_P \longrightarrow 0.$$

The degeneracy locus $D(\sigma')$ of σ', where σ is not surjective, is the closed subset

$$D(\sigma') = Q_{1,k}(X, d) \subset \mathcal{P}.$$

Moreover we have $A_\ast D(\sigma') = A_\ast Q_{1,k}(X, d)$ by the result in [2]. Furthermore, in [2] the authors defined the (localized) virtual cycle for \mathcal{P} as

$$[\mathcal{P}]_{\text{loc}}^{\text{vir}} := [0]_{\sigma'_{\text{loc}}}[\mathcal{C}_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}} \in A_\ast D(\sigma') = A_\ast Q_{1,k}(X, d)$$

where $0_{\sigma'_{\text{loc}}}$ is the the localized Gysin map defined in [25] for the cosection σ', and $\mathcal{C}_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}$ is the relative intrinsic normal cone.

Theorem 3.1 ([9, 27]). We have

$$[\mathcal{P}]_{\text{loc}}^{\text{vir}} = (-1)^{\sum_i \deg g_i} [Q_{1,k}(X, d)]^{\text{vir}}.$$

We remark that this Theorem holds for all genus g and k. For our purpose here, we only state in the case $g = 1$. Set $\phi : \mathfrak{m}_{1,k}^{\text{line}} \to \mathfrak{m}_{1,k}$. Then we have the following distinguished triangles

$$f_P^* T_{\mathfrak{m}_{1,k}^{\text{line}}}[-1] \longrightarrow T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}} \longrightarrow T_P \longrightarrow f_P^* T_{\mathfrak{m}_{1,k}^{\text{line}}}.$$

By [2] Lemma 3.6, the composing with $\sigma' \circ H^1(\phi_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) : T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}} \longrightarrow \mathcal{E}_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}} \longrightarrow \mathcal{O}_P$ is zero. From the following commutative diagram, the cosection σ induces a cosection $\sigma : H^1(\mathcal{E}_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \to \mathcal{O}_P$.

$$H^1(f_P^* T_{\mathfrak{m}_{1,k}^{\text{line}}}[-1]) \longrightarrow H^1(f_P^* T_{\mathfrak{m}_{1,k}^{\text{line}}}[-1])$$

$$\downarrow$$

$$H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(E_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(\mathcal{E}_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}})$$

$$\phi_{\text{int}} \downarrow$$

$$H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(E_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(\mathcal{E}_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}})$$

$$\sigma' \downarrow$$

$$\sigma' \downarrow$$

$$H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(E_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(\mathcal{E}_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}})$$

By [2] Proposition 3.5, the following morphism

$$\eta : H^1(f_P^* T_{\mathfrak{m}_{1,k}^{\text{line}}}[-1]) \longrightarrow H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(E_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow \mathcal{O}_P$$

is zero. Let $g_P := \phi \circ f_P : \mathcal{P} \to \mathfrak{m}_{1,k}$. By the commutative diagram below

$$H^1(f_P^* T_{\mathfrak{m}_{1,k}^{\text{line}}}[-1]) \longrightarrow H^1(f_P^* T_{\mathfrak{m}_{1,k}^{\text{line}}}[-1]) \longrightarrow H^1(f_P^* T_{\mathfrak{m}_{1,k}^{\text{line}}}[-1])$$

$$\downarrow$$

$$H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}})$$

$$\eta_{\text{int}} \downarrow$$

$$H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}})$$

$$\phi_{\text{int}} \downarrow$$

$$H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}})$$

$$\sigma' \downarrow$$

$$\sigma' \downarrow$$

$$H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}})$$

the morphism

$$\eta' : H^1(g_P^* T_{\mathfrak{m}_{1,k}^{\text{line}}}[-1]) \longrightarrow H^1(T_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow H^1(\mathcal{E}_{\mathcal{P}/\mathfrak{m}_{1,k}^{\text{line}}}) \longrightarrow \mathcal{O}_P$$
obtained by the composition is zero. Thus the cosection \(\sigma : H^1(\mathcal{E}_P^\vee / \mathfrak{M}_{1,k}) \to \mathcal{O}_P \) can be lifted to the cosection \(\mathcal{O}_P \to \mathcal{O}_P \). Therefore we can define the following virtual cycle

\[
0^l_{\sigma, \text{loc}}(\mathcal{E}_P / \mathfrak{M}_{1,k})
\]

Since \(\phi : \mathfrak{M}_{1,k} \to \mathfrak{M}_{1,k} \) is smooth, we have the following commutative diagram:

\[
\begin{array}{ccc}
\quad & \quad & \\
\scriptstyle h^1/h^0(\mathcal{E}_P^\vee / \mathfrak{M}_{1,k}) & \xrightarrow{f} & h^1/h^0(\mathcal{E}_P^\vee / \mathfrak{M}_{1,k}) \\
\quad & \quad & \\
\scriptstyle h^1/h^0(\mathcal{E}_P^\vee / \mathfrak{M}_{1,k}) & \xrightarrow{\phi} & h^1/h^0(\mathcal{E}_P^\vee / \mathfrak{M}_{1,k}) \\
\end{array}
\]

\[
(3.10)
\]

Hence we have

\[
\quad
\]

\[
\quad
\]
From the cotangent complexes associated to the triples \(Y \to \mathcal{M}_{1,1}^{\text{line}} \to \mathcal{M}_{1,1} \) and \(X \to \mathcal{M}_{1,1}^{\text{line}} \to \mathcal{M}_{1,1} \), we obtain the diagram

\[
H^1(f_Y^* T_{\mathcal{M}_{1,1}^{\text{line}}/\mathcal{M}_{1,1}}[-1]) \longrightarrow H^1(f_Y^* T_{\mathcal{M}_{1,1}^{\text{line}}/\mathcal{M}_{1,1}}[-1])
\]

Furthermore, we have

\[
H^1(T_{Y/\mathcal{M}_{1,1}^{\text{line}}}) \longrightarrow p^* H^1(T_{X/\mathcal{M}_{1,1}^{\text{line}}})
\]

\[
H^1(T_{Y/\mathcal{M}_{1,1}^{\text{line}}}) \longrightarrow p^* H^1(T_{X/\mathcal{M}_{1,1}^{\text{line}}}).
\]

Furthermore, we have

\[
H^1(f_Y^* T_{\mathcal{M}_{1,1}^{\text{line}}/\mathcal{M}_{1,1}}[-1]) \longrightarrow H^1(f_Y^* T_{\mathcal{M}_{1,1}^{\text{line}}/\mathcal{M}_{1,1}}[-1])
\]

\[
H^1(E_{Y/\mathcal{M}_{1,1}^{\text{line}}}) \longrightarrow j^* H^1(E_{X/\mathcal{M}_{1,1}^{\text{line}}}).
\]

\[
H^1(E_{Y/\mathcal{M}_{1,1}^{\text{line}}}) \longrightarrow p^* H^1(E_{X/\mathcal{M}_{1,1}^{\text{line}}}).
\]

Here \(j \) is a morphism which gives the splitting (3.14) of \(H^1(E_{Y/\mathcal{M}_{1,1}^{\text{line}}}) \). Note that the vertical arrows \(H^1(E_{Y/\mathcal{M}_{1,1}^{\text{line}}}) \to H^1(E_{Y/\mathcal{M}_{1,1}^{\text{line}}}) \) and \(p^* H^1(E_{X/\mathcal{M}_{1,1}^{\text{line}}}) \to p^* H^1(E_{X/\mathcal{M}_{1,1}^{\text{line}}}) \) are surjective. Then, by chasing the diagram we can show that \(j \) induce the morphism \(\bar{j} \), which gives the splitting. So we obtain the decomposition

\[
H^1(E_{Y/\mathcal{M}_{1,1}^{\text{line}}}) = p^* H^1(E_{X/\mathcal{M}_{1,1}^{\text{line}}}) \bigoplus_i p^* H^1(R^i \pi_{X*}(\mathcal{P}_X)).
\]

Parallel to [29, Lemma 2.4], we will prove the following lemma.

Lemma 3.4. (1) For a sufficiently small open neighbourhood \(U \subset X \), and \(U_{\text{gst}} := U \times_X \mathcal{X}_{\text{gst}} \) we have

\[
H^1(E_{U/\mathcal{M}_{1,1}^{\text{line}}} |_{U_{\text{gst}}}) \cong H^1(E_{U'/\mathcal{M}_{1,1}^{\text{line}}} |_{U'_{\text{gst}}}).
\]

(2) Also, for a sufficiently small open neighbourhood \(U' \subset Y \), and \((U')_{\text{gst}} := U' \times_X \mathcal{X}_{\text{gst}} \) we have

\[
H^1(E_{U'/\mathcal{M}_{1,1}^{\text{line}}} |_{(U')_{\text{gst}}}) \cong H^1(E_{U'/\mathcal{M}_{1,1}^{\text{line}}} |_{U'_{\text{gst}}}).
\]

Proof. Since the proof of (2) is parallel to (1), we will only prove (1) here. We first consider the neighbourhood \(U \subset X \). We may assume that \(U \subset \mathcal{U}_0 \). Note that \(E_{X/\mathcal{M}_{1,1}^{\text{line}}} | U \cong R^i \pi_{X*} \mathcal{O}_{\mathcal{U}_t}(\mathcal{D}_t)^{\boxplus n+1} \) on the neighbourhood \(U \). Recall the remark [24] which says that the horizontal arrow \(\phi : R^i \pi_{X*} \mathcal{O}_{\mathcal{U}_t} | U \to E_{X/\mathcal{M}_{1,1}^{\text{line}}} | U \) in (2.2) is induced from the arrow

\[
\mathcal{O}_{\mathcal{U}_t} \xrightarrow{\phi} \mathcal{O}_{\mathcal{U}_t}(\mathcal{D}_t)^{\boxplus n+1}
\]

by taking \(R^i \pi_{X*}(-) \). Consider the exact sequence of complexes

\[
0 \to [0 \to \mathcal{O}_{\mathcal{U}_t}(\mathcal{D}_t)^{\boxplus n}] \to \mathcal{O}_{\mathcal{U}_t} \xrightarrow{\phi} \mathcal{O}_{\mathcal{U}_t}(\mathcal{D}_t)^{\boxplus n+1} \to \mathcal{O}_{\mathcal{U}_t} \to 0.
\]

Since \(E_{X/\mathcal{M}_{1,1}^{\text{line}}} | U \) is equivalent to the mapping cone \(\text{cone}(\phi) \), and \([\mathcal{O}_{\mathcal{U}_t} \xrightarrow{\phi} \mathcal{O}_{\mathcal{U}_t}(\mathcal{D}_t)] \cong \mathcal{O}_{\mathcal{U}_t} \), we have the distinguished triangle

\[
E_{X/\mathcal{M}_{1,1}^{\text{line}}} | U \to E_{X/\mathcal{M}_{1,1}^{\text{line}}} | U \to R^i \pi_{X*} \mathcal{O}_{\mathcal{U}_t}^{\boxplus 1}
\]
by taking $R^*\pi_{X*}$ to the sequence (3.18). Then, by taking the long exact sequence of this distinguished triangle, we obtain the exact sequence:

$$H^1(E^\vee_{X/\mathcal{O}m}^{|x|}) \rightarrow H^1(E^\vee_{\mathcal{O}m}^{|x|}) \rightarrow 0$$

for any closed point $x \in \mathcal{U}$.

On the other hand, we can consider the short exact sequence

$$0 \rightarrow \mathcal{O}_{\mathcal{U}} \xrightarrow{s_0} \mathcal{O}_{\mathcal{U}}(\mathcal{D}) \rightarrow \mathcal{O}_D \rightarrow 0$$

where $\mathcal{D} = s_0^{-1}(0)$ is the family of degree d divisors on the universal curve $\mathcal{C}_U \rightarrow \mathcal{U}$. Therefore we have the short exact sequence

$$0 \rightarrow \mathcal{O}_{\mathcal{U}} \xrightarrow{s_0} \mathcal{O}_{\mathcal{U}}(\mathcal{D})^\oplus \rightarrow \mathcal{O}_{\mathcal{U}}(\mathcal{D})^\oplus \oplus \mathcal{O}_D \rightarrow 0.$$

From the isomorphisms

$$E^\vee_{X/\mathcal{O}m}^{|x|} \simeq \text{Cone}[R^*\pi_{X*}\mathcal{O}_{\mathcal{U}} \rightarrow E^\vee_{\mathcal{O}m}^{|x|}],$$

and $E^\vee_{\mathcal{O}m}^{|x|} \simeq R^*\pi_{X*}\mathcal{O}_{\mathcal{U}}(\mathcal{D})^\oplus + \mathcal{O}_D$ we obtain

$$\dim H^0(E^\vee_{X/\mathcal{O}m}^{|x|}) = h^0(C_x, \mathcal{O}_{C_x}(D_x))^\oplus + h^0(C_x, \mathcal{O}_{D_x}) = n \cdot h^0(C_x, \mathcal{O}_{C_x}(D_x)) + d,$$

$$\dim H^1(E^\vee_{X/\mathcal{O}m}^{|x|}) = h^0(C_x, \mathcal{O}_{C_x}(D_x))^\oplus + h^1(C_x, \mathcal{O}_{D_x}) = n \cdot h^1(C_x, \mathcal{O}_{C_x}(D_x))$$

for each closed point $x \in \mathcal{U}$. The fiber $C_x = C_U|_x$ of the universal curve over x and the degree d divisor $D_x = D|_x$ on C_x, which is the fiber of the universal divisor \mathcal{D} over x. If $x \in \mathcal{U}_{\text{gst}}$, we observe that

$$\dim H^0(E^\vee_{X/\mathcal{O}m}^{|x|}) = n(d + 1) + d, \quad \dim H^1(E^\vee_{X/\mathcal{O}m}^{|x|}) = n$$

from (3.20). Also it is trivial that $\dim H^1(E^\vee_{X/\mathcal{O}m}^{|x|}) = n \cdot h^1(C_x, \mathcal{O}_{C_x}(D_x)) = 1$ for $x \in \mathcal{U}_{\text{gst}}$. Therefore, for an arbitrary closed points $x \in \mathcal{U}_{\text{gst}}$, the morphism

$$H^1(E^\vee_{X/\mathcal{O}m}^{|x|}) \rightarrow H^1(E^\vee_{X/\mathcal{O}m}^{|x|})$$

from (3.19) is an isomorphism since it is surjective and both vector spaces have same dimension n. Since \mathcal{U}_{gst} is a reduced scheme, we have an isomorphism

$$H^1(E^\vee_{X/\mathcal{O}m}^{|x|}) \xrightarrow{\cong} H^1(E^\vee_{X/\mathcal{O}m}^{|x|}).$$

Because the sheaf $H^1(E^\vee_{X/\mathcal{O}m}^{|x|})$ is locally free by Remark 3.3 we have the following.

Proposition 3.5. The obstruction sheaf $H^1(E^\vee_{X/\mathcal{O}m}^{|x|})$ is locally free.

3.3. Decomposition of the intrinsic normal cone

Let $R = \text{Spec}(B)$ be a smooth affine variety. Let $\tilde{R} := R \times \mathbb{C}^{n+m}$, and F be the section of \mathcal{O}^{n+m} with $F = (w_1z, \ldots, w_{n+m}z)$, where w_i are coordinates of \mathbb{C}^{n+m}, and $z \in B$ is a regular function. Denote by $Z = F^{-1}(0)$ the zero loci of F. Then Z has two different components, where $Z = Z_1 \cup Z_2$ with $Z_1 = \{w_1 = \cdots = w_{n+m} = 0\}$ and $Z_2 = \{z = 0\}$.

Lemma 3.6. Let Z_1/\tilde{R} be the normal cone of Z in \tilde{R}, then $C_{Z_1/\tilde{R}} = C_1 \cup C_2$ has two different irreducible components C_1 and C_2 support on Z_1 and Z_2 respectively, and there is a canonical dominant morphism

$$C_{Z_1/\tilde{R}} \rightarrow C_{Z_1/\tilde{R}}/Z_2.$$

Proof. Let $\mathfrak{R} := B[w_1, \ldots, w_{n+m}]/(w_1z_1, \ldots, w_{n+m}z_1)$ be the coordinate ring of Z. Consider the following surjective morphism

$$\mathfrak{R}[A_1 \cdots, A_{n+m}] \rightarrow \bigoplus_{k \geq 0} \mathfrak{R}[Z_1/\tilde{R}]/Z_1/\tilde{R}^{k+1} \quad A_i \mapsto w_i z_1.$$
Then $C_{Z/\hat{R}} = \text{Spec}\left(\mathcal{R}[A_1 \cdots , A_{n+m}]/(w_iA_j - w_jA_i) \right)$, which supports on Z_1 and Z_2. We have
\[
C_{Z/\hat{R}}|_{Z_1} = \text{Spec}\left(\mathcal{R}[A_1 \cdots , A_{n+m}]/(w_iA_j - w_jA_i) \otimes \mathcal{R}/(w_1, \cdots , w_{n+m}) \right)
\]
and
\[
C_{Z/\hat{R}}|_{Z_2} = \text{Spec}\left(B/[A_1 \cdots , A_{n+m}] \right),
\]
Thus the fiber over $C_{Z/\hat{R}}|_{Z_2}$ over Z_2 is the affine cone of the blowing up $\text{Bl}_0 \mathbb{C}^{n+m}$, and $C_{Z/\hat{R}}|_{Z_1}$ is a vector bundle over Z_1. They are all irreducible. Hence $C_{Z/\hat{R}}|_{Z_2}$ and $C_{Z/\hat{R}}|_{Z_1}$ are irreducible.

Because $Z_2 \subset Z \subset \hat{R}$, there is a canonical morphism
\[
C_{Z/\hat{R}} \rightarrow C_{Z/\hat{R}}|_{Z_2}.
\]
The ideal $I_{Z_2/\hat{R}}$ is equal to (ζ), the cone $C_{Z_2/\hat{R}}$ is isomorphic to $N_{Z_2/\hat{R}}$ which is a line bundle. Since $I_{Z_2/\hat{R}} = (w_1\zeta, \ldots , w_{n+m}\zeta)$, the composition of the morphism (3.24) with the inclusion $C_{Z/\hat{R}}|_{Z_2} \hookrightarrow Z_2 \times \mathbb{C}^{n+m}$ is given by
\[
N_{Z_2/\hat{R}} = C_{Z_2/\hat{R}} \rightarrow C_{Z/\hat{R}}|_{Z_2} \hookrightarrow Z_2 \times \mathbb{C}^{n+m}
\]
where 1 is a local generator of the line bundle. From the local description (3.23) of $C_{Z/\hat{R}}|_{Z_2}$, we can check that $C_{Z/\hat{R}}|_{Z_2}$ is a closure of the image of the above morphism. Hence (3.24) is dominant.

Let \mathcal{V} and \mathcal{U} be smooth affine charts of $\mathfrak{M}_{1,1}$ and \mathcal{V} as in Proposition 3.2. Denote by $\overline{\mathcal{U}} := \mathcal{V} \times \mathbb{C}^{dn} \times \mathbb{C}^{n+m}$. Then the cone $\mathcal{C}_{\mathcal{V}/\mathfrak{M}_{1,1}}|\mathcal{U} = [\mathcal{C}_{\mathcal{U}/\overline{\mathcal{U}}}/T_{\mathcal{U}/\overline{\mathcal{U}}}]$ has two different components by Proposition 3.2 and Lemma 3.4. Hence $\mathcal{C}_{\mathcal{V}/\mathfrak{M}_{1,1}}$ has two different components. Denote them by
\[
\mathcal{C}_{\mathcal{V}/\mathfrak{M}_{1,1}} = \mathcal{C}_{\text{red}} \cup \mathcal{C}_{\text{gst}},
\]
which are supported on \mathcal{V}_{red} and \mathcal{V}_{gst} respectively. Consequently,
\[
[\mathcal{V}]^\text{vir} = 0^\text{vir}_{\text{loc}}[\mathcal{C}_{\text{red}}] + 0^\text{vir}_{\text{loc}}[\mathcal{C}_{\text{gst}}].
\]
Let \mathcal{C}_{gst} be the coarse moduli space of \mathcal{C}_{gst}, then $\mathcal{C}_{\text{gst}} \subset H^1(\mathbb{E}_{\mathcal{V}/\mathfrak{M}_{1,1}})|_{\mathcal{V}_{\text{gst}}}.

Let us define $\mathfrak{M}_{\text{gst}} := \iota(\mathfrak{M}_{1,1} \times \mathfrak{M}_{0,2}) \subset \mathfrak{M}_{1,1}$ where ι is the node-identifying morphism. It is a substack whose general points are stable genus one curves attached by rational tails. Moreover let $\mathfrak{g}_{\mathcal{V}} : \mathcal{V} \rightarrow \mathfrak{M}_{1,1}$ be the forgetful morphism and $\mathfrak{g}_{\mathcal{V}_{\text{gst}}} : \mathcal{V}_{\text{gst}} \rightarrow \mathfrak{M}_{1,1}$ be the restriction of $\mathfrak{g}_{\mathcal{V}}$ on \mathcal{V}_{gst}. Consider the coarse moduli space $\mathcal{C}_{\mathcal{V}_{\text{gst}}/\mathfrak{M}_{1,1}}$ of the intrinsic normal cone $\mathcal{C}_{\mathcal{V}_{\text{gst}}/\mathfrak{M}_{1,1}}$. Note that we have
\[
\mathcal{C}_{\mathcal{V}_{\text{gst}}/\mathfrak{M}_{1,1}} = \mathfrak{g}_{\mathcal{V}_{\text{gst}}}^{*}N_{\mathfrak{M}_{\text{gst}}/\mathfrak{M}_{1,1}},
\]
where $N_{\mathfrak{M}_{\text{gst}}/\mathfrak{M}_{1,1}}$ is the normal bundle of $\mathfrak{M}_{\text{gst}} \subset \mathfrak{M}_{1,1}$. Since $\mathcal{V}_{\text{gst}} \subset \mathcal{V}$, there is a nature morphism
\[
\phi : \mathcal{C}_{\mathcal{V}_{\text{gst}}/\mathfrak{M}_{1,1}} \rightarrow \mathcal{C}_{\mathcal{V}/\mathfrak{M}_{1,1}}|_{\mathcal{V}_{\text{gst}}} = \mathcal{C}_{\text{gst}} \subset H^1(\mathbb{E}_{\mathcal{V}/\mathfrak{M}_{1,1}})|_{\mathcal{V}_{\text{gst}}}.
\]
By (3.26), ϕ is locally expressed by
\[
\phi|_{\mathcal{U}} : 1 \rightarrow (w_1, \ldots , w_{n+m}, 0, \cdots , 0).
\]
Moreover, from the above local computation for the normal cone, we observe that ϕ is a birational morphism. Hence C_{gst} is birational to the line bundle $g_{\text{gst}}^* N_{M_{\text{gst}}/\mathfrak{M}_{1,1}}$. We will use this to describe $\theta_{1,\text{loc}}(c_{\text{gst}})$ in the next section.

4. Calculations

4.1. Proof of the Theorem 1.1. Basically our proof follows contents in [29] Section 4, which proved a similar statement to our Theorem 1.1 in the case of stable map spaces.

Let $M := \mathcal{X}_{\text{gst}}$, and $\pi_M : \mathcal{C}_M \to M$ be the universal family. Let \mathcal{L}_M be the universal bundle over \mathcal{C}_M, and $\mathcal{P}^i_M = \mathcal{L}_{\mathcal{M}^i_{\text{gst}}/\mathcal{M}} \otimes \omega_{\mathcal{C}_M/M}$. By definition the component \mathcal{Y}_{gst} is the total space of a vector bundle \mathcal{L} on M, where

$$\mathcal{L} = \oplus_{i=1}^m \pi_M \mathcal{P}^i_M.$$

Furthermore, let

$$\gamma : W := \mathcal{Y}_{\text{gst}} = \text{Tot}(\mathcal{L}) \to M$$

be the induced (tautological) projection. Here $\text{Tot}(-)$ denote the total space of the bundle. We denote the bundles

$$V'_1 = R^1 \pi_{M *} \mathcal{L}^{\oplus (n+1)}_M, \quad V'_2 = \oplus_{i=1}^m R^1 \pi_M \mathcal{P}^i_M,$$

and $V' = V'_1 \oplus V'_2$.

By [9] Proposition 2.8], we have $H^1(\mathcal{T}_{M/\mathfrak{M}_{1,1}}) \cong V'_1$. For any point $x = (C, p_1, \{u_i\}) \in M$, we define

$$\xi'_1 : (V'_1 \otimes \mathcal{L})|_x \to \mathbb{C}, \quad \xi'(x)(\hat{u_i} \otimes \chi) = \sum_{i=1}^m \chi_i \partial q(u) \hat{u}_i,$$

$$\xi'_2 : V'_2|_x \to \mathbb{C}, \quad \xi'(x)(\hat{u_i}) = \sum_{i=1}^m \chi_i \partial q(u), \quad \chi = (\chi_1, \cdots, \chi_m) \in \Gamma(M, \mathcal{L})$$

On the other hand, let $\gamma_W : \mathcal{C}_W \to \mathcal{Y}$ be the universal family, and \mathcal{L}_W be the universal line bundle over \mathcal{C}_W. Denote $\pi_W : \mathcal{C}_W \to W$, $\mathcal{P}^i_W = \mathcal{P}^i_M|_W$ and $\mathcal{L}_W := \mathcal{L}_W|_{\mathcal{C}_W}$. Recall that the dual perfect obstruction theory of $\mathcal{Y}/\mathfrak{M}_{1,1}$ is $E_{\mathcal{Y}/\mathfrak{M}_{1,1}} = R^* \pi_{\mathcal{Y}*}(\mathcal{L}^{\oplus (n+1)}_W \oplus \oplus_{i=1}^m \mathcal{P}^i_W)$.

We let

$$\tilde{V}'_1 = H^1(R^* \pi_{W*} \mathcal{L}^{\oplus (n+1)}_{\mathcal{M}}) \cong \gamma^* V'_1, \quad \tilde{V}'_2 = H^1(\oplus_{i=1}^m R^* \pi_{W*} \mathcal{P}^i_W) \cong \gamma^* V'_2,$$

and $\tilde{V}' = \tilde{V}'_1 \oplus \tilde{V}'_2$. Both \tilde{V}'_1 and \tilde{V}'_2 are locally free on W.

Denote $\tilde{\xi}'_i = (\tilde{\xi}'_i, \tilde{\xi}'_2)$, where $\tilde{\xi}'_1 := \gamma^* (\xi'_1)(\cdot \otimes \epsilon), \epsilon \in \Gamma(W, \gamma^* \mathcal{L})$ is the tautological section and $\tilde{\xi}'_2 := \gamma^* (\xi'_2)$. Then we have

$$\tilde{\xi}' = \sigma'|_{\mathcal{Y}_{\text{gst}}} : \tilde{V}' \to \mathcal{O}_W,$$

where σ' is the cosection defined in (3.2). Next we consider the obstruction theory over the Artin stack $\mathfrak{M}_{1,1}$. Moreover we denote

$$V'_1 = R^1 \pi_{E*} f^*_E T_p \cong H^1(E'_{\mathcal{X}/\mathfrak{M}_{1,1}}|_{\mathcal{Y}_{\text{gst}}}), \quad V'_2 = \oplus_{i=1}^m R^1 \pi_M \mathcal{P}^i_M,$$

and $V = V'_1 \oplus V'_2$ where $\pi : \mathcal{C} \to M$ is the universal curve, $\mathcal{C}_E \subset \mathcal{C}$ is the universal family of minimal genus 1 subcurves, $\pi_E : \mathcal{C}_E \to M$ is the projection morphism, and $f_E : \mathcal{C}_E \to \mathcal{M}$ is the universal morphism. They are vector bundles (locally free sheaves) on M (c.f. Proposition 3.4). Let $\tilde{V}_1 := \gamma^* V_1$ and $\tilde{V}_2 := \gamma^* V_2$. Then $H^1(E'_{\mathcal{Y}/\mathfrak{M}_{1,1}}|_{\mathcal{Y}_{\text{gst}}}) = \tilde{V} := \tilde{V}_1 \oplus \tilde{V}_2$. Then the cosection $\tilde{\xi}' = (\tilde{\xi}'_1, \tilde{\xi}'_2)$ induces the cosection $\xi' = (\tilde{\xi}'_1, \tilde{\xi}'_2) : V = \tilde{V}_1 \oplus \tilde{V}_2 \to \mathcal{O}_W$.

Following [9] Proposition 3.2], the non-surjective locus $D(\xi)$ of $\xi = \sigma'|_{\mathcal{Y}_{\text{gst}}}$ is

$$D(\sigma) \times_X M = Q_{1,1}(X, d) \times_{Q_{1,1}(\mathbb{P}^n, d)} M,$$

which is proper. Let

$$\tilde{\nu}_1 = h^1/h^0(E'_{\mathcal{Y}/\mathfrak{M}_{1,1}}|_{\mathcal{Y}_{\text{gst}}}), \quad \tilde{\nu}_2 = h^1/h^0(\oplus_{i=1}^m R^\sigma \pi_{W*} \mathcal{P}^i_W), \quad \tilde{\nu} = \tilde{\nu}_1 \times_W \tilde{\nu}_2.$$

be the vector bundle stacks. Then there is a canonical morphism $\rho_j : \tilde{V}_j \to \tilde{V}_j$ from the bundle stack to its coarse moduli space, for $j = 1, 2$. Note that both ρ_j are proper morphisms.

By the base change property of the h^1/h^0-construction, and by the definition of \mathcal{C}_{gst}, we have

$$[\mathcal{C}_{gst}] \in Z_{*}\tilde{V}; \quad \tilde{V} = h^1/h^0(E_{\gamma}^{\gamma}/\mathcal{O}_{V})|_{V}.$$

Let C_{gst} be the coarse moduli of \mathcal{C}_{gst} relative to V, thus $C_{gst} \subset \tilde{V}$ since \tilde{V} is the coarse moduli of V. Further, since the projection $\rho := \rho_1 \times \rho_2 : \tilde{V} \to \tilde{V}$ is smooth, we have an identity of cycles $\rho^{*}[C_{gst}] = [\mathcal{C}_{gst}] \in Z_{*}\tilde{V}$. Finally, because $[\mathcal{C}_{gst}] \in Z_{*}\tilde{V}(\sigma)$, we have

$$[C_{gst}] \in Z_{*}\tilde{V}(\xi).$$

Therefore we have the following identity.

Proposition 4.1. [3 Proposition 6.3]

$$0^{1}_{loc}[\mathcal{C}_{gst}] = 0^{1}_{loc}[C_{gst}] \in A_{*}D(\xi).$$

Now we calculate the cycle $0^{1}_{loc}[C_{gst}]$. We first introduce the following notations.

- $\nabla := \mathbb{P}(L \oplus \mathcal{O}_{M})$ be a completion of $W = Y_{gst}$,
- $\gamma : \nabla \to \mathcal{X}_{gst}$ be the projection morphisms,
- $\gamma : \tilde{V} := \mathcal{V}_{1}(-D_{\infty}), \mathcal{V}_{2} := \mathcal{V}_{1} \oplus \mathcal{V}_{2}$,
- $\xi_{1} : \mathcal{V}_{1} \to \mathcal{O}_{\nabla}$ and $\xi_{2} : \mathcal{V}_{2} \to \mathcal{O}_{\nabla}$ are cosections induced from ξ_{1} and ξ_{2} respectively,
- $\xi := \xi_{1} + \xi_{2}$.

To calculate $0^{1}_{loc}[C_{gst}]$, we approximate the cone C_{gst} as a subvector bundle of ∇_{1}. To do this, we consider $R := C_{gst}/C_{gst}$ where $C_{gst} := C_{gst} \cap \text{Tot}(0 \oplus \mathcal{V}_{2})$. It is a deformation of C_{gst}.

We can easily check that R is embedded in $\text{Tot}(\tilde{V})$ and $[C_{gst}] = [R]$ in $A_{*}(\tilde{V}(\xi))$. Next we investigate the cone R and its completion \bar{R} in $\text{Tot}(\tilde{V})$. Similar to [29 (4.5)], by using a local computation we can check

$$C_{gst} \subset 0_{gst} \cup \gamma^{*}F$$

where $0_{gst} \subset Y_{gst} = \text{Tot}(L)$ is the zero section of the bundle L, $\Delta_{X} := \mathcal{X}_{gst} \cap \mathcal{X}_{red}$ and F is a rank m subbundle of $V_{2}|_{\Delta_{X}}$ defined in the below.

Recall the quasi-isomorphism

$$\oplus_{i=1}^{m} \pi_{X, \ast} \mathcal{P}_{\mathcal{X}}^{i} \xrightarrow{\text{loc}} \bigg(\big[\mathcal{O}_{\mathcal{X}} \xrightarrow{x_{i}} \mathcal{O}_{X} \big] \oplus \big[0 \to \mathcal{O}_{\mathcal{X}}^{\text{deg} q_{i}} \big] \bigg),$$

we observe that $H^{1}\left(\oplus_{i=1}^{m} \pi_{X, \ast} \mathcal{P}_{\mathcal{X}}^{i} \right)_{\text{tor}}|_{Y}$ is a rank m subbundle of V_{2}. Then we define $F := H^{1}\left(\oplus_{i=1}^{m} \pi_{X, \ast} \mathcal{P}_{\mathcal{X}}^{i} \right)_{\text{tor}}|_{\Delta_{X}} \subset V_{2}|_{\Delta_{X}}$.

Since R is a cone over $C_{gst} \subset \text{Tot}(\tilde{V}_{2})$, we can write

$$[R] = [R_{1}] + [R_{2}] \in A_{*}\left(\text{Tot}(\tilde{V}) \right)$$

where $R_{1} := R|_{0_{gst}}$ and $[R_{2}]$ is a cycle supported on $\text{Tot}(\gamma^{*}F)$. Parallel to [3 Lemma 8.1] and [28 p. 24], we can check that

$$0^{1}_{\xi, loc}[R_{2}] = 0$$

since $\text{dim} \text{Tot}(\gamma^{*}F)$ is smaller than the degree of $[R_{2}] \in A_{*}(\text{Tot}(\tilde{V}))$.

Hence we have

$$0^{1}_{\xi, loc}[C_{gst}] = 0^{1}_{\xi, loc}[R] = 0^{1}_{\xi, loc}[R_{1}]$$

(4.6)
Moreover, by [28, Proposition 5.3], we have
\begin{equation}
0^1_{\xi,\text{loc}}[R_1] = \tilde{\gamma}_*0^1_{\xi_2,\text{loc}} \cdot 0_{V_1}[\overline{R_1}]
\end{equation}
where $\overline{R_1}$ is the closure of R_1 in $\text{Tot}(\overline{V})$.

Next we investigate the cone R_1. Using a local computation of R_1 similar to [29, (4.8), (4.9)], we conclude that R_1 is of the form $R_1 = \gamma^*R_1$. Here R_1^\prime is given as the closure of the image of the natural composition morphism
\begin{equation}
\varphi : \overline{\mathfrak{g}}_{\text{Yost}}^* N_{\text{Yost}/\mathbb{P}^1} \cong C_{\mathbb{P}^1} \rightarrow C_{\mathbb{P}^1}/\mathbb{P}^1 |_{\text{Yost}} \rightarrow V.
\end{equation}

Similar to the local description of φ in (3.30), we can locally describe φ as follows:
\begin{equation}
\varphi|_{\mathcal{U}'} : \{w_1, \ldots, w_n,0,\ldots,0\}
\end{equation}
over some sufficiently small neighbourhood $\mathcal{U}' \subset X$. From this, we observe the degeneracy locus of the morphism φ is Δ_X. To resolve this, we consider the blow-up
\begin{equation}
\hat{M} := \text{Bl}_{\Delta_X} M, \quad p : \hat{M} \rightarrow M.
\end{equation}

Let E be the exceptional divisor. Then there is an induced morphism
\begin{equation}
\hat{\varphi} : \left(p^*\overline{\mathfrak{g}}_{\text{Yost}}^* N_{\text{Yost}/\mathbb{P}^1} \right)(E) \rightarrow p^*V
\end{equation}
which is an injective morphism of vector bundles. Thus its image $\text{Im}(\hat{\varphi})$ is a line subbundle of p^*V. Then we have
\begin{equation}
p(\text{Tot}(\text{Im}(\hat{\varphi}))) = R_1'.
\end{equation}

There is the following induced morphism
\begin{equation}
\hat{\varphi} : \left(\hat{\gamma}^* \left(p^*\overline{\mathfrak{g}}_{\text{Yost}}^* N_{\text{Yost}/\mathbb{P}^1} \right)(E) \right)(q^*D_\infty) \rightarrow q^*V
\end{equation}
where $q : \hat{W} := \overline{W} \times_M \hat{M} \rightarrow \overline{W}$ is the projection, $\hat{\gamma} : \hat{W} \rightarrow \hat{M}$ is the projection. Note that $\hat{\varphi}$ is an injective morphism of vector bundles. We have
\begin{equation}
q(\text{Tot}(\text{Im}(\hat{\varphi}))) = \overline{R_1}.
\end{equation}

Then we obtain
\begin{equation}
0^1_{V_1}[\overline{R_1}] = q_*0^1_{\hat{\varphi}}[\text{Tot}(\text{Im}(\hat{\varphi}))] = q_* \left(c_{\text{top}}(q^*V/\text{Im}(\hat{\varphi})) \cap [\hat{M}] \right).
\end{equation}

Hence, by combining the above computation with (4.6) and (4.7), we have
\begin{equation}
0^1_{\xi,\text{loc}}[C_{\text{Yost}}] = \tilde{\gamma}_*0^1_{\xi_2,\text{loc}} \cdot 0_{V_1}[\overline{R_1}] = 0^1_{\xi_2,\text{loc}} \left(\tilde{\gamma}_*0^1_{V_1}[\overline{R_1}]\right) = 0^1_{\xi_2,\text{loc}} \left(\tilde{\gamma}_* q_* \left(c_{\text{top}}(q^*V/\text{Im}(\hat{\varphi})) \cap [\hat{M}] \right)\right)
\end{equation}
where the second equality comes form the functorial property of localized Gysin homomorphisms [25].

By using [29, Lemma 4.2] and [29, (4.13)], we have
\begin{equation}
\tilde{\gamma}_*q_* \left(c_{\text{top}}(q^*V/\text{Im}(\hat{\varphi})) \cap [\hat{M}] \right) = \left(\frac{c(V_1)s(L')} {c(\overline{\mathfrak{g}}_{\text{Yost}}^* N_{\text{Yost}/\mathbb{P}^1})}\right) _{\text{rank} V_1-m-1}.\n\end{equation}

Therefore we have
\begin{equation}
0^1_{\xi,\text{loc}}[C_{\text{Yost}}] = \left(\frac{c(V_1)s(L')} {c(\overline{\mathfrak{g}}_{\text{Yost}}^* N_{\text{Yost}/\mathbb{P}^1})}\right) _{\text{rank} V_1-m-1} \cap 0^1_{\xi_2,\text{loc}}[M].
\end{equation}

Note that M is considered as a substack of $\text{Tot}(V_2)$ embedded by the zero section.

Next, consider the node-identifying morphism
\begin{equation}
\iota : \overline{M}_{1,1} \times Q_{0,2}(\mathbb{P}^n, d) \rightarrow Q_{1,1}(\mathbb{P}^n, d) = X
\end{equation}

Let \mathcal{H} be the Hodge bundle over $\overline{M}_{1,1}$, L_1 be the universal tangent bundle over $\overline{M}_{1,1}$ at the marked point, L_2 be the universal tangent bundle over $Q_{0,2}(\mathbb{P}^n, d)^p$ at the second

\footnote{Caution: φ is similarly defined as $\hat{\varphi} : C_{\text{Yost}/\mathbb{P}^1}$. But it is slightly different.}
marked point, which comes from splitting of the node. We have \(H^\vee \cong L_1 \). Moreover we have

\[
\begin{align*}
\circ \ i^* V_1 & \cong H \otimes ev_2^* T_{\mathbb{P}^n}, \\
\circ \ i^* C^\vee & \cong H \otimes (\oplus_1 ev_2^* O_{\mathbb{P}^n}(\deg q_i)), \\
\circ \ i^* g_{\text{gst}}^* N_{\text{gst}}/_{/\text{gst}} & \cong H^\vee \otimes L_2, \\
\circ \ i^{-1}[M] & = \overline{M}_{1,1} \times Q_{0,2}(\mathbb{P}^n, d), \\
\circ \ \partial_1^* [\xi_{\text{loc}}(\overline{M}_{1,1}) \times [Q_{0,2}(\mathbb{P}^n, d)]) & = \overline{M}_{1,1} \times [Q_{0,2}(X, d)]^\text{vir}.
\end{align*}
\]

Thus we have

\[
0_1^* [C_{\text{gst}}] = \left(\frac{c(V_1) s(C^\vee)}{c(g_{\text{gst}}^* N_{\text{gst}}/_{/\text{gst}})} \right) \cap 0_1^* [M] \oplus \text{rank} _{Y_1-m-1}^n
\]

\[
= (-1)^{(\sum_1 \deg q_i) d} s_{\ast} \left(\frac{c(H^\vee \otimes ev_2^* T_{\mathbb{P}^n}) s(H^\vee \otimes ev_2^* (\oplus_1 O_{\mathbb{P}^n}(\deg q_i)))}{c(H^\vee \otimes L_2)} \right) \cap \text{rank} _{Y_1-m-1}^n
\]

\[
(\overline{M}_{1,1} \times [Q_{0,2}(X, d)])^\text{vir}.
\]

where the last identity comes from the short exact sequence \(0 \to T_X \to T_{\mathbb{P}^n}|_X \to \oplus_1 O_{\mathbb{P}^n}(\deg q_i)|_X \to 0 \). Let us define

\[
A_{1,d}^{\red} := (-1)^{(\sum_1 \deg q_i) d} 0_1^* [c_\text{red}],
\]

We will call it the virtual cycle for reduced quasi-map invariants. We set

\[
N_{\text{red}} := \pi_* (\oplus_1 \mathbb{L}^q_\nu_{\ast} |_{\mathbb{P}}^\text{reg}), \quad \pi_* (\oplus_1 \mathbb{L}^q_\nu_{\ast} |_{\mathbb{P}}^\text{reg})
\]

for the universal curve \(\mathbb{P} := \pi|_{\mathbb{P}}: \mathbb{P}|_{\mathbb{P}} \to Y_{\text{red}} \). Then by Theorem 2.7, \(N_{\text{red}} \) is a vector bundle.

In the same manner as in [29, Section 4.3] we can show that

\[
(4.8) \quad A_{1,d}^{\red} = (-1)^{(\sum_1 \deg q_i) d} 0_1^* [Y_{\text{red}}] \in \mathcal{A}_s(Q_{1,1}(X, d)).
\]

where \(s \) is the natural section \(s: \mathcal{O}_{\mathbb{P}^n} \to N_{\text{red}} \) which is induced from the defining equations \(q_1, \ldots, q_m \) of \(X \subset \mathbb{P}^n \). Let \(e_{\text{ref}}(N_{\text{red}}) \) be the refined euler class localized by the section \(s \). Note that we have

\[
0_1^* [Y_{\text{red}}] = (-1)^{\text{rank}(N_{\text{red}})} e_{\text{ref}}(N_{\text{red}})[Y_{\text{red}}] = (-1)^{(\sum_1 \deg q_i) d} e_{\text{ref}}(N_{\text{red}})[Y_{\text{red}}]
\]

By the proof in [3, Section 5], we have

\[
(4.9) \quad A_{1,d}^{\red} = (-1)^{(\sum_1 \deg q_i) d} 0_1^* [Y_{\text{red}}] + e_{\text{ref}}(\oplus_1 \mathbb{L}^q_{\nu, \ast}) \cap \mathcal{X}_{\text{red}}.
\]

In summary, we obtain the following

\[
(4.10) \quad [Q_{1,1}(X, d)]^\text{vir}
\]

\[
= (-1)^{(\sum_1 \deg q_i) d} [Y]^\text{vir}
\]

\[
= (-1)^{(\sum_1 \deg q_i) d} \left(0_{\ast, \text{loc}}[c_{\text{pri}}] + 0_1^* [C_{\text{gst}}] \right)
\]

\[
= A_{1,d}^{\red} + i_* \left(\frac{c(H^\vee \otimes ev_2^* T_X)}{c(H^\vee \otimes L_2)} \right) \cap (\overline{M}_{1,1} \times [Q_{0,2}(X, d)]^\text{vir}
\]

where \(i: \overline{M}_{1,1} \times Q_{0,2}(X, d) \to Q_{1,1}(X, d) \) is the node-identifying morphism. It proves the main Theorem 1.1.
4.2. Proof of the Corollary 1.3. Let $X \subset \mathbb{P}^n$ be a complete intersection with dimension $n-m$, then the virtual dimension

\[\text{vdim } Q_{g,k}(X,d) = \int_{d[\mathbb{P}^1]} c_1(T_X) + (1-g)(n-m-3)+k. \]

Let $p_1: \overline{M}_{1,1} \times Q_{0,2}(X,d) \to \overline{M}_{1,1}$ and $p_2: \overline{M}_{1,1} \times Q_{0,2}(X,d) \to Q_{0,2}(X,d)$ be the two projections.

\[c(\mathcal{H}^\vee \boxtimes ev_2^* T_X) = \sum_{i=0}^{n-m} c_1(\mathcal{H}^\vee)^{r-i} p_2^* c_i(e_2^* T_X) \]
\[= 1 + p_1^* c_1(\mathcal{H}^\vee) \left(\sum_{i=0}^{n-m-1} p_2^* c_i(e_2^* T_X) \right) + \cdots , \]

where \(\cdots \) are the terms such that they contain factor of \(c_1(\mathcal{H}^\vee) \) with \(i > 1 \) and

\[\frac{1}{c(\mathcal{H}^\vee \boxtimes L_2)} = 1 + \sum_{i \geq 1} (-1)^i (p_1^* c_1(\mathcal{H}^\vee) + p_2^* c_1(L_2)) \]
\[= 1 + \sum_{i \geq 1} (-1)^i \left(\frac{i}{i} \right)^{\binom{n-m-1}{i}} p_1^* c_1(\mathcal{H}^\vee) p_2^* c_1(L_2)^{i-1} + \cdots . \]

\[\frac{c(\mathcal{H}^\vee \boxtimes ev_2^* T_X)}{c(\mathcal{H}^\vee \boxtimes L_2)} = \left(1 + p_1^* c_1(\mathcal{H}^\vee) \left(\sum_{i=0}^{n-m-1} p_2^* c_i(e_2^* T_X) \right) + \cdots \right) \]
\[\times \left(1 + \sum_{i \geq 1} (-1)^i \left(\frac{i}{i} \right)^{\binom{n-m-1}{i}} p_1^* c_1(\mathcal{H}^\vee) p_2^* c_1(L_2)^{i-1} + \cdots \right) \]
\[= 1 + p_1^* c_1(\mathcal{H}^\vee) \left(\sum_{i=0}^{n-m-1} p_2^* c_i(e_2^* T_X) + \sum_{i \geq 1} (-1)^i \left(\frac{i}{i} \right)^{\binom{n-m-1}{i}} p_2^* c_1(L_2)^{i-1} \right) + \cdots . \]

Let \(\psi_i \) be the psi class, which is the first Chern class of the universal cotangent line bundle for the \(i \)-th marking. Let \(\gamma \in H^{2k}(X, \mathbb{Q}) \) be a cohomology class such that \(k \leq 1 \), and let \(a \) be an integer satisfies \(a + k = \text{vdim } Q_{1,1}(X,d) \). By formula (1.10), we have the following formula for stable quasimap invariants

\[\langle \psi^a ev^* \gamma \rangle_{1,1,d} = \int_{\overline{M}_{1,1}} \psi^a ev^* \gamma + \int_{\overline{M}_{1,1}} \psi^a ev^* \gamma \]
\[= \langle \psi^a ev^* \gamma \rangle_{1,1,d} + \int_{\overline{M}_{1,1}} c_1(\mathcal{H}^\vee) \left(\int_{Q_{0,2}(X,d)} \psi^a ev^* \gamma c_{n-m-2}(e_2^* T_X) \right) \]
\[+ (-1)^{n-m-1} \binom{n-m-1}{1} \int_{Q_{0,2}(X,d)} \psi^a ev^* \gamma c_1(L_2)^{n-m-2} \]
\[= \langle \psi^a ev^* \gamma \rangle_{1,1,d} - \frac{1}{24} \left(\int_{Q_{0,2}(X,d)} \psi^a ev^* \gamma c_{n-m-2}(e_2^* T_X) \right) \]
\[- (n-m-1) \int_{Q_{0,2}(X,d)^{\rm{vir}}} \psi^a ev^* \gamma \psi_2^{n-m-2} \].

Here we denoted \(c_1(\mathcal{H}^\vee) = \psi \). If \(X \) is a Calabi-Yau threefold, then \(c_1(T_X) = 0 \), and \(n-m = 3 \). So we obtain

\[\langle \psi^a ev^* \gamma \rangle_{1,1,d} = \langle \psi^a ev^* \gamma \rangle_{1,1,d} + \frac{1}{12} \int_{Q_{0,2}(X,d)^{\rm{vir}}} \psi^a ev^* \gamma \psi_2. \]
References

1. K. Behrend and B. Fantechi, The intrinsic normal cone, Ann. of Math. (2), 128(1), 1997, pages 45–88.
2. H. -L. Chang and J. Li, Gromov-Witten invariants of stable maps with fields, Int. Math. Res. Not. IMRN, 2012(18), 2012, pages 4163–4217.
3. H. -L. Chang and J. Li, An algebraic proof of the hyperplane property of the genus one GW-invariants of quintics, J. Differ. Geom., 100(2), 2015, pages 251–299.
4. H. -L. Chang, J. Li, W. P. Li, and C. C. Melissa Liu, Mixed-Spin-P fields of Fermat quintic polynomials, arXiv:1505.07532.
5. H. -L. Chang, J. Li, W. P. Li, and C. C. Melissa Liu, An effective theory of GW and FJRW invariants of quintics Calabi-Yau manifolds, J. Differ. Geom., 120(2), 2022, pages 251–306.
6. H. -L. Chang, S. Guo, J. Li, and W. P. Li, The theory of N-Mixed-Spin-P fields, Geom. Topol., 25(2), 2021, pages 775–811.
7. H. -L. Chang, S. Guo, J. Li, and W. P. Li, Polynomial structure of Gromov-Witten potential of quintic 3-folds via NMSP, arXiv:1809.11058.
8. H. -L. Chang, S. Guo, J. Li, and W. P. Li, BCOV’s Feynman rule of quintic 3-folds, arXiv:1810.00394.
9. H. -L. Chang and M. -L. Li, Invariants of stable quasi-maps with fields, Trans. Amer. Math. Soc., 373(5), 2020, pages 3669–3691.
10. I. Ciocan-Fontanine and B. Kim, Moduli stacks of stable toric quasimaps, Adv. Math., 225(6), 2010, pages 3022–3051.
11. I. Ciocan-Fontanine and B. Kim, Wall-crossing in genus zero quasimap theory and mirror maps, Alg. Geom., 1(4), 2014, pages 400–448.
12. I. Ciocan-Fontanine and B. Kim, Higher genus quasimap theory wall-crossing for semi-positive targets, arXiv:1308.6377.
13. I. Ciocan-Fontanine, B. Kim, and D. Maulik, Stable quasimaps to GIT quotients, J. Geom. Phys., 75, 2014, pages 17–47.
14. I. Ciocan-Fontanine and B. Kim, Quasimap Wall-crossings and Mirror symmetry, Publ. Math. IHÉS, 131(1), 2020, pages 201–260.
15. E. Clader, F. Janda, and Y. Ruan, Higher-genus quasimap wall-crossing via localization, arXiv:1702.03427.
16. E. Clader, F. Janda, and Y. Ruan, Higher-genus wall-crossing in the gauged linear sigma model, Duke Math. J., 170(4), 2021, pages 697–773.
17. T. Coates and C. Manolache, A splitting of the virtual class for genus one stable maps, arXiv preprint arXiv:1809.04162.
18. Y. Cooper and A. Zinger, Mirror symmetry for stable quotients invariants, Michigan Math. J., 63(3), 2014, pages 571–621.
19. H. Fan, T. Jarvis, and Y. Ruan, A Mathematical Theory of the Gauged Linear Sigma Model, Geom. Topol., 22(1), 2017, pages 235–303.
20. W. Fulton, Intersection theory, Springer-Verlag, New York, 1984.
21. S. Guo, F. Janda, and Y. Ruan, A mirror theorem for genus two Gromov-Witten invariants of quintic threefolds, arXiv:1709.07392.
22. Y. Hu and J. Li, Genus-One Stable Maps, Local Equations and Vakil-Zinger’s desingularization, Math. Ann., 348(4), 2010, pages 929–963.
23. Y. Hu and J. Li, Derived Resolution Property for Stacks, Euler Classes and Applications, Math. Res. Lett., 18(4), 2011, pages 677–690.
24. Y. Hu, J. Li and J. Niu, Genus Two Stable Maps, Local Equations and Modular Resolutions, arXiv:1201.2427.
25. Y. H. Kiem and J. Li, Localized virtual cycle by cosections, J. Amer. Math. Soc., 26(4), 2013, pages 1025–1050.
26. B. Kim and H. Lho, Mirror Theorem for Elliptic Quasimap Invariants, Geom. Topol., 22(3), 2018, pages 1459–1481.
27. B. Kim and J. Oh, Localized Chern Characters for 2-periodic complexes, Selecta Math. (N.S.), 28(2), 2022, pages 1–26.
28. S. Lee and J. Oh, Algebraic reduced genus one Gromov-Witten invariants for complete intersections in projective spaces, Int. Math. Res. Not. IMRN, 2021(23), 2021, pages 18149–18180.
29. S. Lee and J. Oh, Algebraic reduced genus one Gromov-Witten invariants for complete intersections in projective spaces, Part 2, arXiv:2004.07436.
30. S. Lee, M. -L. Li, and J. Oh, Quantum Lefschetz property for genus two stable quasimap invariants, arXiv:2204.08757.
31. J. Li and A. Zinger, On the Genus-One Gromov-Witten Invariants of Complete Intersections, J. Differ. Geom., 82(3), 2009, pages 641–690.
32. M. -L. Li, Genus one stable quasimap invariants for projective complete intersections, arXiv:1706.09583.
33. A. Marian, D. Oprea, and R. Pandharipande, *The moduli space of stable quotients*, Geom. Topol., 15(3), 2011, pages 1651–1706.

34. A. Zinger, *The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces*, J. Amer. Math. Soc. 22(2009), no. 3, 691-737.

35. Y. Zhou, *Quasimap wall-crossing for GIT quotients*, Invent. Math., 227(2), 2022, pages 581–660.

Korea Institute for Advanced Study (KIAS), 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea

Email address: sanghyeon@kias.re.kr

School of Mathematics, Hunan University, China

Email address: mulin@hnu.edu.cn