Introducing two New Sieves for Factorization Natural Odd Numbers

Ramazanali Maleki Chorei

Department of Mathematics, Roudbar Branch, Islamic Azad University, Roudbar, Iran

Corresponding author: Dr.Maleki@iaroudbar.ac.ir

Abstract

For each non-prime odd number as \(F = pq \), if we consider \(m/n \) as an approximation for \(q/p \) and choose \(k = mn \), then by proving some lemmas and theorems, we can compute the values of \(m \) and \(n \). Finally, by using Fermat’s factorization method for \(F \) and \(4kF \) as difference of two non-consecutive natural numbers, we should be able to find the values of \(p \) and \(q \). Then we introduce two new and powerful sieves for separating composite numbers from prime numbers.

Keywords: Prime numbers, lemmas and theorems, Fermat’s factorization method, sieve

1. Introduction

There are many features for identification of prime numbers from non-prime numbers. In this paper, we attempt to identify very important properties about non-prime odd numbers by proving some theorems and lemmas. In 1643, Fermat a French mathematician described a method for factorization of big odd numbers by a letter to Marin Mersenne. In composite numbers as \(F = pq \), by propose \(k_r = q/p \approx m/n \) and \(K = mn \), we introduce two new sieves for factorization of non-prime odd numbers by developing Fermat’s factorization method. The first sieve (\(\alpha - s \) sieve) based on the relation \((\sqrt{F} + \theta)^2 - F = \left(\frac{p-q}{2}\right)^2 \) and the second sieve (\(\beta - s \) sieve) based on the relation \((\sqrt{4kF} + \theta)^2 - 4kF = (mp - nq)^2 \) \((\theta \text{ is a natural number}) \). We show these sieves are very convenient for big numbers, because we don’t use long calculation within process of them.
2. Development of Fermat’s factorization method

We know each non-prime odd number as \(F = pq \) (3 \(\leq p < q \)), can be written as a difference of squares of two nonconsecutive natural numbers as following:

\[
\begin{align*}
\begin{cases}
 p = 2m + 1 & \Rightarrow F = pq = (m + n + 1)^2 - (m - n)^2 \\
 q = 2n + 1
\end{cases}
\end{align*}
\]

It is clear that by assuming \(k_r = \frac{q}{p} \), we have \(F = k_r p^2 \).

Therefore, for each natural number bigger than 1 as \(k \), we can write 4\(kF \) as difference of squares of two even numbers or odd numbers, in which \(F \) is a non-prime odd number:

\[
4kF = 4k(pq) = (2kp)(2q) = (q + kp)^2 - (q - kp)^2
\]

If we assume \(k = mn \), in this case, we can write:

\[
4kF = 4mnpq = (mp + nq)^2 - (mp - np)^2
\]

Definition: In this paper, the expressions \((\sqrt{4kF} + \theta)^2 - 4kF \) and \((\sqrt{F} + \theta)^2 - F \) are shown by \(\beta(k, \theta) \) and \(\alpha(\theta) \) respectively.

If \(F \) is a square number, this means that it’s a non-prime number and if \(F \) isn’t a square number, and \(\alpha(\theta) \) is a square, then according to the identity \(F = pq = \left(\frac{p+q}{2}\right)^2 - \left(\frac{p-q}{2}\right)^2 \) and definition of \(\alpha(\theta) \), we have:

\[
\alpha(\theta) = (\sqrt{F} + \theta)^2 - F \Rightarrow \begin{cases}
 p + q = \sqrt{F} + \theta \\
 p - q = \sqrt{\alpha(\theta)}
\end{cases} \Rightarrow \begin{cases}
 p = \left(\sqrt{F} + \theta\right) - \sqrt{\alpha(\theta)} \\
 q = \left(\sqrt{F} + \theta\right) + \sqrt{\alpha(\theta)}
\end{cases}
\]

If \(kF \) is a square number and assume \(k_r = \frac{q}{p} \), it means that:

\[
F = k_r p^2 \Rightarrow kF = kk_r p^2 \Rightarrow kk_r = t^2.
\]

Since \(t \) and \(k \) are natural numbers, so \(F \) will be divided on \(k_r \). This means that \(F \) is a non-prime number.

If \(kF \) isn’t a square number and \(\beta(k, \theta) \) is a square number, then we will have:

\[
4kF = (q + kp)^2 - (q - kp)^2 = \left(\sqrt{4kF} + \theta\right)^2 - \beta(k, \theta) \Rightarrow \begin{cases}
 q + kp = \sqrt{4kF} + \theta \\
 q - kp = \sqrt{\beta(k, \theta)}
\end{cases} \Rightarrow \begin{cases}
 p = \frac{\sqrt{4kF} + \theta - \sqrt{\beta(k, \theta)}}{2k} \\
 q = \frac{\sqrt{4kF} + \theta + \sqrt{\beta(k, \theta)}}{2}
\end{cases}
\]
By assuming \(k = mn \), we will have:

\[p = \frac{\left(\sqrt{4kF} + \theta \right) \mp \sqrt{\beta(k,\theta)}}{2m}, \quad q = \frac{\left(\sqrt{4kF} + \theta \right) \pm \sqrt{\beta(k,\theta)}}{2n} \]

When \(F \) is a non-prime number, both \(p \) and \(q \) are natural numbers bigger than 1.

Lemma 1: Whenever \(k \) is a natural even number such that \(x > \frac{(k-2)^2}{8} \) and \(x \) is a natural number, in this case, we will have:

\[\left\lfloor \sqrt{x^2 + kx} \right\rfloor = x + \frac{k - 2}{2} \]

Proof: From the basic algebra, we have:

\[(x + \frac{k}{2} - 1)^2 < x^2 + kx < (x + \frac{k}{2})^2 \Rightarrow x + \frac{k}{2} - 1 < \sqrt{x^2 + kx} < x + \frac{k}{2} \]

If \(x + \frac{k}{2} - 1 \) isn’t the biggest integer number smaller than \(\sqrt{x^2 + kx} \), we should have at least:

\[(x + \frac{k}{2} - 1) + 1 < \sqrt{x^2 + kx} \Rightarrow x^2 + kx + \frac{k^2}{4} < x^2 + kx \]

(1)

Since \(\frac{k^2}{4} > 0 \), therefore the inequality (1) isn’t correct. So \(x + \frac{k}{2} - 1 \) is the biggest integer number smaller than \(\sqrt{x^2 + kx} \) and based on the bracket function definition, we will have:

\[\left\lfloor \sqrt{x^2 + kx} \right\rfloor = x + \frac{k - 2}{2} \]

Because \(\left(x + \frac{k}{2} - 1\right)^2 < x^2 + kx \), so we will have \(x > \frac{(k-2)^2}{8} \).

Lemma 2: Suppose \(x \) is a natural number and \(k \) is a natural even number such that \(x > \frac{(k+2)^2}{8} \). Then, we will have:

\[\left\lfloor \sqrt{x^2 - kx} \right\rfloor = x - \frac{k + 2}{2} \]

Proof: From basic algebra, we have:

\[(x - \frac{k + 2}{2})^2 < x^2 - kx < (x - \frac{k}{2})^2 \Rightarrow x - \frac{k + 2}{2} < \sqrt{x^2 - kx} < x - \frac{k}{2} \]

If \(x - \frac{k+2}{2} \) isn’t the biggest integer component smaller than \(\sqrt{x^2 + kx} \), then we should have:
\[(x - \frac{k+2}{2}) + 1 < \sqrt{x^2 - kx} \implies (x^2 - kx) + \frac{k^2}{4} < x^2 - kx \quad (1)\]

Because \(\frac{k^2}{4} > 0\), so the inequality (1) is incorrect and \(x - \frac{k+2}{2}\) is the biggest integer number smaller than \(\sqrt{x^2 - kx}\) and from bracket function definition, we will have:

\[\lfloor \sqrt{x^2 - kx} \rfloor = x - \frac{k + 2}{2},\]

And so:

\[(x - \frac{k+2}{2})^2 < x^2 - kx \implies x > \frac{(k+2)^2}{8}. \quad \blacksquare\]

In this paper, the approximate value of a number as \(x\) will be shown in the form of \(~(x)\) or \(\hat{x}\).

Theorem 1: For each natural odd number as \(F = pq, (1 \leq p < q)\) if we assume \(\tilde{k}_r = \sim(q/p) = m/n\) and \(|\tilde{k}_r - k_r| = 0 \cdot a_1 \ldots a_s\), by choosing \(k = mn\), the result of \(\beta(k, 1)\) will be square when \(a_1 \ldots a_s p^2 < \sqrt{4F} \times 10^5 \pm 1\).

Proof: If \(\tilde{k}_r > k_r\), we can write:

\[\tilde{k}_r = \frac{m}{n} = \frac{q}{p} + 0 \cdot a_1 \ldots a_s = \frac{10^5 q + a_1 \ldots a_s p}{10^5 p}.\]

If we choose \(m = 10^5 q + a_1 \ldots a_s p\) and \(n = 10^5 p\), then we will have:

\[k = mn = 10^{2s} F + a_1 \ldots a_s p^2 \times 10^5 \implies 4kF = (2 \times 10^5 F)^2 + (2p^2 a_1 \ldots a_s)(2 \times 10^5 F) \quad (1)\]

Now, by assuming \(a_1 \ldots a_s (2p^2) = k'\) and \(x = 2 \times 10^5 F\), we arrive at \(4kF = x^2 + k'x\). Since \(k'\) is even, so by lemma (1), we get

\[\lfloor \sqrt{4kF} \rfloor = \lfloor \sqrt{x^2 + k'x} \rfloor = x + \frac{k' - 2}{2} = 2 \times 10^5 F + a_1 \ldots a_s p^2 - 1 \implies \beta(k, 1) = (\lfloor \sqrt{4kF} \rfloor + 1)^2 - 4kF = (2 \times 10^5 F + a_1 \ldots a_s p^2)^2 - 4kF,\]

and therefore, according to the relation (1), we will obtain \(\beta(k, 1) = (a_1 \ldots a_s p^2)^2\). Consequently, based on the lemma (1) and by assuming \(x > \frac{(k' - 2)^2}{8}\), we should have:

\[k' < \sqrt{8x} + 2 \implies a_1 \ldots a_s p^2 < \sqrt{4F} \times 10^5 + 1.\]

In the case that \(\tilde{k}_r < k_r\), the proof is similar to the above and we should have:

\[a_1 \ldots a_s p^2 < \sqrt{4F} \times 10^5 - 1. \quad \blacksquare\]
Note 1: For each natural odd number, when \(p = 1 \), then we have \(\beta(k, 1) = (\alpha_1 \ldots \alpha_s)^2 \).

Whenever \(|k_r - k_r| = 10^{-s} \), then we have \(\beta(k, 1) = 1 \).

Theorem 2: In a non-prime odd number as \(F = pq \) \((1 \leq p < q)\), if \(p > \sqrt{F} + 1 - \sqrt{(\sqrt{F} + 1)^2 - F} \), then the result of \(\alpha(1) \) will be square and we will have:

\[
\alpha(1) = (\lceil \sqrt{F} \rceil + 1)^2 - F = \left(\frac{\delta}{2} \right)^2 = \left(\frac{q - p}{2} \right)^2.
\]

Proof: Since \(\delta = q - p \) is even, then from lemma (2) we have:

\[
\sqrt{F} = \lceil \sqrt{pq} \rceil = \lceil \sqrt{p(p + \delta)} \rceil = \sqrt{p^2 + \delta P} = \frac{p + \delta}{2} = \frac{q + p}{2} - 1
\]

\[
\Rightarrow \alpha(1) = \left(\frac{p + q}{2} \right)^2 - pq = \left(\frac{q - p}{2} \right)^2 = \left(\frac{\delta}{2} \right)^2
\]

In this case, according to lemma (1), we have:

\[
\delta = q - p < \sqrt{8p} + 2 = 2\sqrt{2p} + 2 \Rightarrow \frac{F}{p} - p < 2\sqrt{2p} + 2 \Rightarrow F < (p + \sqrt{2p})^2
\]

\[
\Rightarrow p + \sqrt{2p} - \sqrt{F} > 0 \Rightarrow P > \sqrt{F} + 1 - \sqrt{(\sqrt{F} + 1)^2 - F} \quad \blacksquare
\]

Lemma 3: If \(k \) is a natural odd number and \(x \) is a natural number such that \(x > \left(\frac{k - 1}{2} \right)^2 \), then we will have:

\[
\lceil \sqrt{x^2 + kx} \rceil = x + \frac{k - 1}{2}.
\]

Proof: From the basic algebra, we will have:

\[
(x + \frac{k - 1}{2})^2 < x^2 + kx < (x + \frac{k}{2})^2 \Rightarrow x + \frac{k - 1}{2} < \sqrt{x^2 + kx} < x + \frac{k}{2}.
\]

If \(x + \frac{k - 1}{2} \) is not the biggest integer number smaller than \(\sqrt{x^2 + kx} \), then, we should have at least:

\[
\left(x + \frac{k - 1}{2} \right) + 1 < \sqrt{x^2 + kx} \Rightarrow \left(x + \frac{k + 1}{2} \right)^2 < x^2 + kx \Rightarrow (x^2 + kx) + x + \left(\frac{k + 1}{2} \right)^2 < x^2 + kx. \quad (1)
\]

Because \(x + \left(\frac{k + 1}{2} \right)^2 > 0 \), so the inequality (1) is not correct and therefore this means that \(x + \frac{k - 1}{2} \) is the biggest integer number smaller than \(\sqrt{x^2 + kx} \). Then, according to definition of the bracket function, we should have \(\lceil \sqrt{x^2 + kx} \rceil = x + \frac{k - 1}{2} \). But \((x + \frac{k - 1}{2})^2 < x^2 + kx \), so we should have
Theorem 3: In a natural odd number as \(F = pq \), \((1 \leq p < q)\), by assuming \(k_r = q/p \) and \(\bar{k}_r = -(q/p) = m/n \), we will have \(\beta(k, 1) = (mp - nq)^2 \).

In the case that \(\bar{k}_r > k_r \), we should have \(|mp - nq| = 0.\bar{a}_1 \ldots \bar{a}_s np < 2\sqrt{nq} + 1 \).

and in the case that \(\bar{k}_r < k_r \), we should have \(|mp - nq| = 0.\bar{a}_1 \ldots \bar{a}_s np < 2\sqrt{mp} + 1 \).

Proof: By assuming \(k = mn \), we have \(|\sqrt{4kF}| = |\sqrt{4mnpq}| = |\sqrt{PQ}| \) which \(P = 2mp \) and \(Q = 2nq \).

If \(\bar{k}_r > k_r \): \(\frac{m}{n} > \frac{q}{p} \Rightarrow k_r - \bar{k}_r = 0.\bar{a}_1 \ldots \bar{a}_s = \frac{m}{n} - \frac{q}{p} = \frac{mp - nq}{np} \). (1)

According to lemma (1), we will have:

\[
\delta = P - Q = 2mp - 2nq \Rightarrow |\sqrt{4kF}| = |\sqrt{PQ}| = |\sqrt{Q(Q + \delta)}| = Q + \frac{\delta - 2}{2}
\]

\[
= \frac{P + Q}{2} - 1 = (mp + nq) - 1 \Rightarrow \beta(k, 1) = (mp + nq)^2 - 4mnpq = (mp - nq)^2.
\]

Based on lemma (1), we have:

\[
\delta = P - Q < \sqrt{8Q} + 2 \Rightarrow mp - nq < 2\sqrt{nq} + 1,
\]

and according to the relation (1), we can write \(mp - nq < 2\sqrt{nq} + 1 \).

If \(\bar{k}_r < k_r \): \(\frac{m}{n} < \frac{q}{p} \Rightarrow k_r - \bar{k}_r = 0.\bar{a}_1 \ldots \bar{a}_s = \frac{q}{p} - \frac{m}{n} = \frac{q - m}{np} \). (2)

According to lemma (1), we have:

\[
\delta = Q - P = 2nq - 2mp \Rightarrow |\sqrt{4kF}| = |\sqrt{4mnpq}| = |\sqrt{PQ}| = |\sqrt{P(P + \delta)}| = |\sqrt{P^2 + P\delta}|
\]

\[
= P + \frac{\delta - 2}{2} = \frac{P + Q}{2} - 1 = nq + mp - 1 \Rightarrow \beta(k, 1) = (nq + mp)^2 - 4mnpq = (mp - nq)^2.
\]

According to lemma (1), we should have:

\[
\delta = Q - P < \sqrt{8P} + 2 \Rightarrow nq - mp < 2\sqrt{mp} + 1.
\]

Based on the relation (2), we will have: \(nq - mp = 0.\bar{a}_1 \ldots \bar{a}_s np < 2\sqrt{mp} + 1 \).
Theorem 4: For each natural odd number as \(F = pq, (1 \leq p < q) \), the value of \(\beta(k, 1) \) will be square when \(k \) lies in interval \((\sqrt{q+1}^2, \sqrt{q-1}^2)\) except in a case that \(k = k_r \).

Proof (1): If \(k > \frac{q}{p} \), in this case \(2kp > 2q \) and because the result of \(\delta = 2kp - 2q \) is even, then from lemma (1), we will have:

\[
\sqrt{4kF} = \sqrt{(2kp)(2q)} = \sqrt{2q(2q + \delta)} = \sqrt{(2q)^2 + 2q\delta} = 2q + \frac{\delta - 2}{2} = q + kp - 1
\]

\(\Rightarrow \beta(k, 1) = (q + kp)^2 - 4kpq = (q - kp)^2. \)

According to lemma (1), we should have:

\[
\delta = 2kp - 2q < \sqrt{8(2q) + 2} \Rightarrow kp - q - 1 < 2\sqrt{q} \Rightarrow kp < (\sqrt{q} + 1)^2 \Rightarrow k < \frac{(\sqrt{q}+1)^2}{p}.
\] (1)

If \(k < \frac{q}{p} \), in this case \(2kp < 2q \) and because the result of \(\delta = 2q - 2kp \) is even, then from lemma (1), we will get:

\[
\sqrt{4kF} = \sqrt{(2kp)(2q)} = \sqrt{(2kp)(2kp + \delta)} = \sqrt{(2kp)^2 + 2kp\delta} = 2kp + \frac{\delta - 2}{2}
\]

\(= q + kp - 1 \Rightarrow \beta(k, 1) = (q + kp)^2 - 4kpq = (q - kp)^2. \)

Based on the lemma (1), we should have:

\[
\delta = 2q - 2kp < \sqrt{8(2kp) + 2} \Rightarrow q - kp < 2\sqrt{kp} + 1 \Rightarrow q < (\sqrt{kp} + 1)^2 \Rightarrow k > \frac{(\sqrt{q}-1)^2}{p}.
\] (2)

Now, from (1) and (2), we will have \(\frac{(\sqrt{q}-1)^2}{p} < k < \frac{(\sqrt{q}+1)^2}{p} \), thus if \(k = k_r \), we can write:

\(k = k_r = \frac{q}{p} \Rightarrow 4kF = 4q^2 \Rightarrow \beta(k, 1) = (2q + 1)^2 - 4q^2 = 4q + 1 \neq |kp - q| = 0 \)

so, we can conclude \(k \neq k_r \).

Proof (2): According to theorem(3), when we assume \(k = \tilde{k}_r = m \) and \(n = 1 \), we will have:

\[
\begin{align*}
\tilde{k}_r > k_r & \Rightarrow kp - q < 2\sqrt{q} + 1 \\
k_r < k_r & \Rightarrow q - kp < 2\sqrt{kp} + 1
\end{align*}
\]

or \(\left(\frac{\sqrt{F} - \sqrt{F}}{p}\right)^2 < k < \left(\frac{\sqrt{F} + \sqrt{F}}{p}\right)^2 \)

7
If we propose \(k_{\min} = \frac{(\sqrt{q} - 1)^2}{p} \) and \(k_{\max} = \frac{(\sqrt{q} + 1)^2}{p} \) and shown the difference of \(K_{\min} \) and \(K_{\max} \) by \(\delta \) then for every integer number which is lied in that interval, the result of \(\beta(k, 1) \) will be square. Therefore, we have \(\delta = k_{\max} - k_{\min} = \frac{4\sqrt{q}}{p} \).

We will have the Maximum value of \(\delta \) when \(P = 1 \). In this case, we have \(\delta_{\max} = 4\sqrt{F} \).

If the number of natural numbers located in interval \((k_{\min}, k_{\max}) \) are demonstrated by \(N \), so we will have \(N = |k_{\max} - k_{\min}| \).

If \(k = k_r \) and it is located in interval \((K_{\min}, K_{\max}) \), then we will have \(N = |K_{\max} - K_{\min}| - 1 \).

When the value of \(\delta \) is maximum, then the value of \(N \) will be maximum too.

\[
\begin{align*}
|P + 1| & \Rightarrow \left\lfloor k_{\min} \right\rfloor = \left\lfloor (\sqrt{F} - 1)^2 \right\rfloor \Rightarrow N_{\max} = |k_{\max} - k_{\min}| - 1 \\
|P - 1| & \Rightarrow \left\lfloor k_{\max} \right\rfloor = \left\lfloor (\sqrt{F} + 1)^2 \right\rfloor
\end{align*}
\]

\[
= |F + 2\sqrt{F} + 1| - |F - 2\sqrt{F} + 1| - 1 = (F + 1) + |2\sqrt{F}| - (F + 1) - |2\sqrt{F}| - 1
\]

\[
= |2\sqrt{F}| - (-|2\sqrt{F}|) - 1 = 4\sqrt{F}.
\]

Example 1: Find the value of \(N \) in \(F = 17 \times 43 = 6851 \).

Answer: \(p = 17, q = 43 \Rightarrow 21 < k \leq 26 \Rightarrow N = 26 - 21 = 5 \).

Then we can see that:

\[
\begin{align*}
k &= 22 \Rightarrow \beta(22, 1) = 5^2, k &= 23 \Rightarrow \beta(23, 1) = 12^2, k &= 24 \Rightarrow \beta(24, 1) = 5^2,
\end{align*}
\]

\[
k &= 25 \Rightarrow \beta(25, 1) = 44^2, k &= 26 \Rightarrow \beta(26, 1) = 39^2.
\]

Theorem 5: For odd natural numbers as \(F = pq \), by propose \(k_r = \frac{m}{n} \approx \frac{m}{n} \) \((m, n) = 1\) and choose \(k = r^2mn \), when \(r \) is a natural number, then the value of \(\beta(k, 1) \) will be square.

Proof: For proof in the first case, we propose \(\frac{m}{n} > \frac{q}{p} \)

Therefore \(\frac{rm}{rn} > \frac{q}{p} \Rightarrow rmp > rnp \Rightarrow \sqrt{4km} = \sqrt{(2rpm)(2rnq)} = \sqrt{PQ} \). If \(P = 2rpm, Q = 2rnq \), then we have \(\delta = p - Q = 2rpm - 2rnq > 0 \).

Based on lemma (1), we should have:
\[\sqrt{PQ} = \sqrt{Q(Q + \delta)} = Q + \frac{\delta - 2}{2} = \frac{P + Q}{2} - 1 = rmp - rnq - 1 \Rightarrow \]

\[\beta(k, 1) = (\sqrt{4kF} + 1)^2 - 4kF = (rmp + rnq)^2 - 4r^2mnpq = (rmp - rnq)^2. \]

Therefore we should have \(rmp - rnq < 2\sqrt{rnq} + 1 \).

In the case \(\frac{m}{n} < \frac{q}{p} \), the proof is similar as above.

Theorem 5: For each non-prime odd number as \(F = pq(1 \leq p < q) \), if we assume

\[\theta = \left[(\sqrt{kp} - \sqrt{q})^2 \right] + 1 \quad \text{and} \quad kF \text{ doesn't be square}, \quad \text{then the value of} \quad \beta(k, \theta) \text{ will be square so that} \]

\[\left(\frac{\sqrt{q} + \sqrt{\theta - 1}}{p} \right)^2 \leq k < \left(\frac{\sqrt{q} + \sqrt{\theta}}{p} \right)^2 \quad \text{and} \quad \left(\frac{\sqrt{q} - \sqrt{\theta}}{p} \right)^2 < k < \left(\frac{\sqrt{q} - \sqrt{\theta - 1}}{p} \right)^2. \]

Proof: In the identity \(4kF = 4(kpq) = (q + kp)^2 - (q - kp)^2 \), since \(kF \) can not be square, thus we have \(\theta = [kp + q - \sqrt{4kpq}] + 1 = kp + q + \left[-\sqrt{4kpq} \right] + 1 = kp + q + (\sqrt{4kpq} - 1) + 1 \)

\[= kp + q - \sqrt{4kpq} \Rightarrow \beta(k, \theta) = (kp + q)^2 - 4kpq = (kp - q)^2. \]

At that rate for any \(k \) value, we can write:

\[\theta = \left[(\sqrt{kp} - \sqrt{q})^2 \right] + 1 \Rightarrow \theta - 1 \leq (\sqrt{kp} - \sqrt{q})^2 < \theta \Rightarrow \sqrt{\theta - 1} \leq \sqrt{kp} - \sqrt{q} < \sqrt{\theta} \Rightarrow \]

\[\left(\frac{\sqrt{q} + \sqrt{\theta - 1}}{p} \right)^2 \leq k < \left(\frac{\sqrt{q} + \sqrt{\theta}}{p} \right)^2 \quad \text{and} \quad \left(\frac{\sqrt{q} - \sqrt{\theta}}{p} \right)^2 < k < \left(\frac{\sqrt{q} - \sqrt{\theta - 1}}{p} \right)^2. \]

In the sequel we have:

\[
\begin{array}{cccccccc}
\frac{\sqrt{q} - \sqrt{3}}{p} & \frac{\sqrt{q} - \sqrt{2}}{p} & \frac{\sqrt{q} - 1}{p} & \frac{\sqrt{q} + \sqrt{3}}{p} & \frac{\sqrt{q} + \sqrt{2}}{p} & \frac{\sqrt{q} + 1}{p} & \frac{\sqrt{q} + \sqrt{3}}{p} \\
\hline
\theta = 3 & \theta = 2 & \theta = 1 & & & \theta = 2 & \theta = 3
\end{array}
\]

For example when \(F = 89 \times 911 = 81,079 \) and \(\theta = 7 \), we can calculate \(k \) values as bellow:

\[\left(\frac{\sqrt{q} + \sqrt{\theta - 1}}{p} \right)^2 \leq k < \left(\frac{\sqrt{q} + \sqrt{\theta}}{p} \right)^2 \Rightarrow \left(\sqrt{911} + \sqrt{7} \right)^2 < k < \left(\sqrt{911} + \sqrt{6} \right)^2 \Rightarrow \]

\[11/9 \leq k < 12/1 \Rightarrow k = 12 \Rightarrow \beta(k, \theta) = \beta(12, 7) = (1972 + 7)^2 - 3,891,792 = 157^2 \]
We can observe when $\theta = 6$, we can’t find any value for k.

Note 2: For any value of k as a natural number, exist a nonnegative integer number as θ

\[
(\theta = \left\lfloor (\sqrt{kp} - \sqrt{q})^2 \right\rfloor + 1), \text{ so that } \beta(k, \theta) \text{ should be square. While for any value of } \theta, \text{ may don’t be exist a value for } k.
\]

Generalized form of theorem 6: For each non-prime odd number as $F = pq (1 \leq p < q)$, by assuming $m > n$ (m,n are natural numbers), if we choose $\theta = \left\lfloor (\sqrt{mp} - \sqrt{nq})^2 \right\rfloor + 1$ and mpq doesn’t be square, then the value of $\beta(k, \theta)$ will be square.

Proof: According to the identity $4kF = 4mpq = (mp + nq)^2 - (mp - np)^2$ and if $4mpq$ doesn’t be square, so we should have:

\[
\theta = \left\lfloor (\sqrt{mp} - \sqrt{nq})^2 \right\rfloor + 1 = mp + nq + \left\lfloor \sqrt{4mpq} \right\rfloor + 1
\]

\[
= mp + nq + \left(-\sqrt{4mpq} - 1 \right) + 1 = mp + nq - \sqrt{4mpq}
\]

\[
\Rightarrow \beta(k, \theta) = (\sqrt{4mpq} + \theta)^2 - 4mpq = (mp - nq)^2.
\]

For example, when $F = 17 \times 23 = 391$ and propose $m=5$ and $n=2$, then we should have:

\[
\theta = \left\lfloor (\sqrt{5 \times 17} - \sqrt{2 \times 23})^2 \right\rfloor + 1 = 6 \text{ and } k = mn = 10 \Rightarrow
\]

\[
\beta(10,6) = (125 + 6)^2 - 15640 = 1521 = 39^2
\]

Generalized form of theorem 4: For each non-prime natural numbers as $F = pq (1 \leq p < q)$, if we have $k_r = \sim(q/p) = m/n$ and $k = mn$, then the value of $\beta(k, 1)$ would be square whenever:

\[
\frac{(\sqrt{mp} - 1)^2}{p} < m < \frac{(\sqrt{mp} + 1)^2}{p}.
\]

Proof: From theorem (3), we have:

\[
\begin{align*}
\begin{cases}
\tilde{k}_r > k_r \Rightarrow mp - nq < 2\sqrt{mp} + 1 \Rightarrow mp < (\sqrt{mp} + 1)^2 \Rightarrow m < \frac{(\sqrt{mp} + 1)^2}{p} \\
\tilde{k}_r < k_r \Rightarrow nq - mp < 2\sqrt{nq} + 1 \Rightarrow nq < (\sqrt{nq} + 1)^2 \Rightarrow m > \frac{(\sqrt{nq} - 1)^2}{p}
\end{cases}
\end{align*}
\]

\[
\Rightarrow \frac{(\sqrt{mp} - 1)^2}{p} < m < \frac{(\sqrt{mp} + 1)^2}{p}.
\]
According to \(q = \sqrt{k_r F} \) and \(P = \frac{F}{\sqrt{k_r}} \) as well as assuming \(M_{max} = \frac{(\sqrt{nq}+1)^2}{p} \) and \(M_{min} = \frac{(\sqrt{nq}-1)^2}{p} \), if difference of \(M_{min} \) and \(M_{max} \) will be shown by \(\delta \), so we will get:

\[
\delta = M_{max} - M_{min} \Rightarrow \delta = 4\sqrt{nq} \frac{p}{F} = 4 \sqrt{\frac{nF}{p^3}} = 4 \sqrt{\frac{k_r^2 n^2}{F}}.
\]

If we propose \(\tilde{k}_r = m = a \cdot b_1 b_2 \ldots b_s = \frac{ab_1 \cdots b_s}{10^s} \) then by choosing \(n = 10^s \) and \(\dfrac{\tilde{a}}{b_i} \), we should have:

\[
\left(\frac{\sqrt{10^s q - 1}}{p} \right)^2 < m < \left(\frac{\sqrt{10^s q + 1}}{p} \right)^2 \quad \text{or} \quad \left(\frac{\sqrt{10^s F - \sqrt{F}}}{p} \right)^2 < m < \left(\frac{\sqrt{10^s F + \sqrt{F}}}{p} \right)^2.
\]

\[
\Rightarrow \delta = 4\sqrt{10^s q} \frac{p}{F} = 4 \sqrt{\frac{10^s F}{p^3}} = 4 \sqrt{\frac{k_r^2 \times 10^{2s}}{F}}.
\]

If we show the number of natural numbers that is located in interval \((M_{min}, M_{max})\) by \(N \), so for any \(k_r \) we should have:

\[
|M_{max}| - |M_{min}| = N \Rightarrow N - 1 < \delta < N + 1 \quad \text{or} \quad \delta - 1 < N < \delta + 1
\]

In other way \(\lfloor \delta \rfloor = N \) or \(\lfloor \delta \rfloor = N - 1 \), therefore for each value of \(s \) and \(N \), we can conclude:

\[
\sqrt{\left(\frac{N - 1}{4} \right)^4 \frac{F}{10^{2s}}} < k_r < \sqrt{\left(\frac{N + 1}{4} \right)^4 \frac{F}{10^{2s}}}
\]

For any value of \(S \), we define \(k_{(S):i} \) as below

\[
k_{(S):i} = \sqrt{\left(\frac{i}{4} \right)^4 \frac{F}{10^{2s}}} \Rightarrow \begin{cases} N = 1 \Rightarrow 1 \leq k_r < k_{(S):2} \\ N = 2 \Rightarrow k_{(S):1} \leq k_r < k_{(S):3} \\ \vdots \\ N = i + 1 \Rightarrow k_{(S):i} \leq k_r < k_{(S):(i+2)} \\ \end{cases}
\]

Then for any \(k_{(S):i} \) we have:

\[
\begin{cases} \delta = 4\sqrt{k_r^2 \times 10^{2s}} / F \\ k_{(S):1} = \sqrt{\left(\frac{i}{4} \right)^4 \frac{F}{10^{2s}}} \end{cases} \Rightarrow \delta = i \Rightarrow N = i
\]

Since we have \(k_{(S):i} \leq k_{(S-1):i} \), therefore we should have:
\[3 \left(\frac{1}{4} \right)^4 \frac{F}{10^{2s}} \leq 3 \left(\frac{1}{4} \right)^4 \frac{F}{10^{2(s-1)}} \Rightarrow i < \sqrt{10} \Rightarrow i_{\text{max}} = \left[\sqrt{10} \right] = 3 \]

We can calculate \(s_{\text{max}} \) for \(F \) as below:

\[3 \left(\frac{1}{4} \right)^4 \frac{F}{10^{2s}} = 1 \Rightarrow s = \log_{\frac{16}{F}} \Rightarrow s_{\text{max}} = \left[\log_{\frac{16}{F}} \right] \]

If we propose \(i \) as a natural number from zero to \(s_{\text{max}} \), then define \(s \) value as \(s = s_{\text{max}} - i \).

For any \(s \) we have:

\[k(s)_1 \quad k(s)_2 \quad k(s)_3 \quad k(s-1)_1 \]

For any \(s \) we have:

\[k(s)_1 = 3 \left(\frac{1}{4} \right)^4 \frac{F}{10^{2(s_{\text{max}}-i)}} < 3 \left(\frac{1}{4} \right)^4 \frac{F}{10^{2(s-1)}} \]

In this case from \(s = \log_{\frac{16}{F}} \) we should have:

\[k(s)_1 < \frac{3}{10^{2i}} \]

Therefore:

\[\sqrt{10^0} = 1 \quad \sqrt{10^2} \quad \sqrt{10^4} \quad \sqrt{\frac{256}{F}} \]

\[k(s_{\text{max}})_1 \quad k(s_{\text{max}}-1)_1 \quad k(s_{\text{max}}-2)_1 \quad k(0)_1 \]

For calculated the value of \(P(s)_1 \), we should have:

\[\begin{cases} P(s)_1 = \frac{F}{\sqrt{k(s)_1}} \\ k(s)_1 = 3 \left(\frac{1}{4} \right)^4 \frac{F}{10^{2s}} \end{cases} \Rightarrow P(s)_1 = \frac{1}{16} \times 10^8 \times F \]

\[s_{\text{max}} = \left[\log_{\frac{16}{F}} \right], \quad s = s_{\text{max}} - i \Rightarrow P(s)_1 > \frac{\sqrt{F}}{10^i} \]

Therefore:

\[\frac{\sqrt{F}}{10^{s_{\text{max}}}} \]
Since $s_{\text{max}} = \left[\log\frac{\sqrt{F}}{16}\right]$, thus for any $s_{\text{max}},$ we have $256 \times 10^{2(s_{\text{max}}-1)} < F \leq 256 \times 10^{2s_{\text{max}}}$

Therefore in $\beta(k,1)$ test we can do as bellow:

$k_{(s):1} < k_r < k_{(s-1):1} \Rightarrow n = 10^s = \Rightarrow k = 10^s m$

If $k_r = n^2$, by choose $1 \leq n < \sqrt{10},$ then k_r located in s_{max} zone because we have $< \sqrt{100}.$

We can observe in any s zone for a natural number as F, when the value of F increases, then the difference between \sqrt{F} and $p_{(s):1}$ increases, because:

$$\sqrt{F} - p_{(s):1} = \sqrt{F} - p_{(s_{\text{max}}-1):1} = \sqrt{F} - \frac{F}{\sqrt{10}^{i}} = \sqrt{F} \left(1 - \frac{1}{\sqrt{10}^{i}}\right)$$

3. Introducing $\alpha - s$ Sieve

Since for each odd composite number we have:

$$\{ F = pq, \quad 3 \leq p \leq q \quad \Rightarrow F = 4xy + 2(x + y) + 1 = 2k + 1 $$

Therefore, if we propose $S=x+y+1$ and $R=xy,$ then we will have:

$$K = \frac{F - 1}{2} = 2xy + x + y = 2R + S - 1$$

By assuming $\alpha = S^2 - F$ so that α becomes a square number, we will to have:

$$S = \frac{p + q}{2} \Rightarrow \alpha = S^2 - F = \left(\frac{p + q}{2}\right)^2 - pq = \left(\frac{p - q}{2}\right)^2$$

In general case, for each value of $S,$ we can obtain its corresponding p as follows:

$S = \frac{p + q}{2} \Rightarrow q = 2S - p \Rightarrow F = pq = p(2S - p) \Rightarrow \begin{cases} p = S - \sqrt{S^2 - F} \\ q = S + \sqrt{S^2 - F} \end{cases}$

Therefore by assuming $\alpha = S^2 - F = t^2,$ we will have $P = S - t$ and $q = S + t.$

For any $F=pq$ we can conclude that $S = \frac{F+p^2}{2p}$ or $S = \left(\frac{k_r+1}{2}\right)\sqrt{\frac{F}{k_r}}$ and for any of the two different values of $P,$ we have:
\[p_1 < p_2 \Rightarrow S_{p_1} > S_{p_2} \Rightarrow \Delta S_{p_1,p_2} = S_{p_1} - S_{p_2} = \frac{\Delta p}{2} \left(\frac{F}{p_1 p_2} - 1 \right) \]

It is seen that for one definite number as \(F \) and a constant value of \(\Delta p \), with increase in values of \(p_1 \) and \(p_2 \), the \(\Delta S \) is decreased. In other words, with decrease in \(p \) values, the \(S_p \) values, increase.

When the difference between \(S_p \) and \(S_{\sqrt{F}} \) is represented by \(n \), we will have:

\[n = S_p - S_{\sqrt{F}} = \frac{F + p^2}{2p} - \sqrt{F} \Rightarrow n = \left(\sqrt{F} - p \right)^2 \Rightarrow \begin{cases} p = (n + \sqrt{F}) - \sqrt{(n + \sqrt{F})^2 - F} \\ q = (n + \sqrt{F}) + \sqrt{(n + \sqrt{F})^2 - F} \end{cases} \]

In this case we have:

\[S = \frac{p + q}{2} = \lfloor \sqrt{F} \rfloor + n \Rightarrow \alpha = S^2 - F = t^2 = \left(\frac{p - q}{2} \right)^2 \]

By considering the points mentioned, we can recommend a sieve to identify an odd composite number is prime or composite. This is based on the premise that if we are able to find values of \(S \) in a way that the value of \(\alpha \) becomes square, therefore \(F \) will be a composite number.

By considering the relation \(K=2R+S-l \) we will have:

\[
\begin{align*}
\text{if } k = \text{an odd number } & \Rightarrow S = \text{an even number} \\
\text{if } k = \text{an even number } & \Rightarrow S = \text{an odd number}
\end{align*}
\]

The process of calculating the value of \(\alpha = S^2 - F \) and establishing the fact that whether it is square numbers or not, is called \(\alpha \) test. Any interval of 10 consecutive \(S \) is called the test domain. The reason for defining such a concept as the test domain is due to the repetition of the first digit on the right side of \(S \) values in it. For any natural odd number as \(F \), considering the oddness or evenness of \(K \) and the digit on the right side of it, a unique array for values of \(S \) can be stated as follows; in which \(o \) represents the oddness of \(S \) and \(e \) represents the evenness of it. Therefore for any odd number in the form of \(F = \ldots f_2 f_1 \)

on the condition that \(K \) is even or odd, we define \(S_{e or o}^{f_1} \) as

\[S_{e or o}^{f_1} = (\text{digits on the right side of } S \text{ in one domain}). \]

Therefore, for different cases, we have:

\[
\begin{align*}
F = 2k + 1 = \ldots 1 \Rightarrow \begin{cases} k = \text{odd }, & S_1^e = (0,4,6) \\
 k = \text{even }, & S_1^o = (1,5,9) \end{cases} \\
F = 2k + 1 = \ldots 3 \Rightarrow \begin{cases} k = \text{odd }, & S_3^e = (2,8) \\
 k = \text{even }, & S_3^o = (3,7) \end{cases}
\end{align*}
\]
It is noteworthy to mention that in this sieve by finding the first response point, the compositeness of the F number will become obvious. From now the S of any response point will be represented by S_r. In this case we will have $S_r = S_{min} + (n - 1) \times 10$.

Here n represents the number of the test domain which contains the response point (S_r) and S_{min} also is the value of S in first test domain which has a digit on the right side equal to S_r. Therefore for each response point we will have $S_r = \frac{p+q}{2}$.

For any α test, we will eliminate the values of S in test domains as much as possible. In other words, some values of S for which α does not become square number (or perfect square) will be eliminated. These processes of eliminating the S values and reaching the response points are called α - S sieve. When F has more than two numbers as p, then the probability of reaching the first response point will be much.

One of the significant points about this sieve is the increase in density of the existence probability of P values by decreasing S value. In order to establish the compositeness of an odd number, we only need to reach the first response point.

One of the benefits of this sieve is the fact that in many cases we do not need α test for all values of S in order to identify whether α is a square number. By using only a few digits on the right side of S and F, then we will be able to eliminate many values of S. If $\alpha = e_m e_{m-1} \ldots e_3 e_2 e_1$ is a prefect square number, then we will be able to use the following notes in this sieve.

Note 3: e_1 can only have the values as 0, 1, 4, 5, 6, 9.

Note 4: If $e_1 = 5$, then $E_3 = \overline{e_3 e_2 e_1}$ must be as one of the member of the set $\{025, 225, 625\}$.

For proving, by assume $\alpha = (\ldots l_3 l_2 l_1)^2$ we should have:

\[
(\overline{l_3 l_2 l_1})^2 = (\overline{l_3 l_2 5})^2 = 10^3 l_3^2 + (2l_1 l_3 + l_3) \times 10^3 + (l_2^2 + l_2) \times 10^2 + 5^2
\]

\[
= \begin{cases}
\overline{e_3 e_1} = 5^2 = 25 \\
e_3 = l_2^2 + l_2 l_2; 0 \to 9 \Rightarrow e_3 \in \{0, 2, 6\}
\end{cases}
\]

Note 5: If $e_1 = 0$, then $E_3 = \overline{e_3 e_2 e_1}$ will necessarily a member of the set $\{000, 100, 400, 500, 600, 900\}$.

For perfect square numbers with the digit zero on their right side, the number of zeros on their right side must always be even.

Note 6: In the case that α is an even number, we have $E_3 - 0 = 8m$ or $E_3 - 4 = 8m$ and in the case
that \(\alpha \) is an odd number, we have \(E_3 - 1 = 8m \).

Therefore, by selecting \(E_N \) for big value of \(N \) we can eliminate more test points in a way that fewer test points will remain for \(\alpha \) test and this is very suitable for large numbers. In doing so, we will utilize the following theorems.

Theorem 7: If the natural number as \(\alpha = e_M e_{M-1} \ldots e_3 e_2 e_1 \) is a square number and the \(N \) digit on the right side is represented by \(E_N = e_N e_{N-1} \ldots e_2 e_1 \), then in a way that \(\alpha \) is odd, we have:

\[
E_N - (2i - 1)^2 = 2^N m_i \quad (1 \leq i \leq 2^{N-3}, N > 3)
\]

and in a way that \(\alpha \) is even, we have:

\[
E_N - (2i - 2)^2 = 2^N m_i \quad (1 \leq i \leq 2^{N-3}, N > 3)
\]

\((m_i \) is a natural number)

Proof: Since any natural number can be represented by \(2k_r + l_r \) in a way that if the number is even, then \(l_r = 0 \) and if it is odd, then \(l_r = 1 \) and that \(k_r \) is a non-negative integer number; therefore, by assuming that \(\Delta \) is a perfect square number, we will have:

\[
\alpha = e_M e_{M-1} \ldots e_3 e_2 e_1 = (2k_1 + l_1)^2 = (2(2k_2 + l_2) + l_1)^2 = (2(2(2k_3 + l_3) + l_2) + l_1)^2 = \ldots = [2^N k_N + (2^{N-1} \times l_N + 2^{N-2} \times l_{N-1} + \ldots + 2 l_2 + l_1)]^2
\]

We will continue the operation above until the value of \(k_r \) in \(2k_r + l_r \) equal to 1.

When we assume:

\[
A = 2^{N-1} \times l_N + 2^{N-2} \times l_{N-1} + 000 + 2l_2 + l_1
\]

It can be seen that \(A \) equivalent to a number in base 2 as below:

\[
A = (l_N l_{N-1} \ldots l_3 l_2 l_1)_2
\]

Therefore:

\[
\alpha = (2^N k_N + A)^2 = (2^N k_N^2 + 2k_N A) \times 2^N + A^2
\]

By assuming \(T = 2^N k_N^2 + 2k_N A \), we will have:

\[
\alpha = T \times 2^N + A^2 \quad (1)
\]

On the other hand, we can write:

\[
\alpha = e_M e_{M-1} \ldots e_3 e_2 e_1 = e_M e_{M-1} \ldots e_{N+1} \times 10^N + e_N e_{N-1} \ldots e_1
\]

By assuming \(E_N = e_N e_{N-1} \ldots e_1 \) and \(S = e_M e_{M-1} \ldots e_{N+1} \), we will have:

\[
\alpha = S \times 10^N + E_N \quad (2)
\]
From (1) and (2) we can conclude that:

$$E_N - A^2 = (T - S \times 5^N) \times 2^N = 2^N \times Q$$

It means that 2^N counts the number $E_N - A^2$.

Since we have:

$$A_{\text{max}} = (111 \ldots 1)_2 = 2^{N-1} + 2^{N-2} + \cdots + 2 + 1 \Rightarrow A_{\text{max}} = 2^N - 1$$

Therefore the number of the tests that we can do in a definite E_N will be as below:

$$
\begin{align*}
E_N - 1^2 &= 2^N m_1 \\
E_N - 3^2 &= 2^N m_2 \\
&\vdots \\
E_N - (2n_1 - 1)^2 &= 2^N m_{n_1}
\end{align*}
$$

Thus we will have:

$$2^N - 1 = 2n_1 - 1 \Rightarrow n_1 = 2^{N-1}$$

Therefore:

$$E_N - (2i - 1)^2 = 2^N m_i \quad , \quad 1 \leq i \leq 2^{N-1}$$

For the case that α is even, we have $l_1 = 0$ and its proof is like the previous one; then for this case we will have:

$$A_{\text{max}} = (111 \ldots 1)_2 = 2^{N-1} + 2^{N-2} + \cdots + 2 + 0 \Rightarrow A_{\text{max}} = 2^N - 2$$

Therefore, the number of E_N tests, when Δ is even, will be as below:

$$
\begin{align*}
E_N - 0^2 &= 2^N m_1 \\
E_N - 2^2 &= 2^N m_2 \\
&\vdots \\
E_N - (2n_1 - 2)^2 &= 2^N m_{n_1}
\end{align*}
$$

Thus we have:

$$2^N - 2 = 2n_1 - 2 \Rightarrow n_1 = 2^{N-1}$$

Then in general case we will have:

$$E_N - (2i - 2)^2 = 2^N m \quad , \quad 1 \leq i \leq 2^{N-1}$$

To continue the proof, we first consider a case in which α is odd and for a definite E_N test with the arrangement of A values in ascending order, therefore we should have:
\[E_N - 1^2 = 2^N m_1 \\
E_N - 3^2 = 2^N m_2 \\
\ldots \ldots \ldots \ldots \\
E_N - (2x - 1)^2 = 2^N m_x \\
\ldots \ldots \ldots \ldots \\
E_N - (2y - 1)^2 = 2^N m_y \\
\ldots \ldots \ldots \ldots \\
E_N - (2n_1 - 1)^2 = 2^N m_{n_1} \\
\]

Since we have \(\Delta A_{\text{max}} = (2n_1 - 1) - (-1) = 2n_1 = 2^N \) therefore for two value of \(A \) with difference \(2^{N-1} \) so that \((2x - 1) = 2 \times 2^{N-2} - i \) and \((2y - 1) = 2 \times 2^{N-1} - i \) (when \(i \) is a odd number and located in interval from 1 to \(2^{N-1} - 1 \)) then we have:

\[(2y - 1)^2 - (2x - 1)^2 = (2^{N-1}) \times (2x + 2y - 2) = 2^N(y + x - 1)\]

Therefore the number of \(E_N \) tests can be calculated by \(n_2 = 2^{N-2} \).

In an ascending arrangement of the \(A \) values, for both of its values which lie in a symmetrical position, we will have:

\[E_N - 1^2 = 2^N m_1 \\
E_N - 3^2 = 2^N m_2 \\
\ldots \ldots \ldots \ldots \\
E_N - [2(i + 1) - 1]^2 = 2^N m_{i+1} \\
\ldots \ldots \ldots \ldots \\
E_N - [2(n_2 - i) - 1]^2 = 2^N m_{n_2-i} \\
\ldots \ldots \ldots \ldots \\
E_N - [2(n_2 - 3)]^2 = 2^N m_{n_2-1} \\
E_N - [2n_2 - 1]^2 = 2^N m_{n_2} \\
\]

\[\Rightarrow [2(n_2 - i) - 1]^2 - [2(i + 1) - 1]^2 = (2n_2 - 4i - 2)(2n_2) \]

\[= (2 \times 2^{N-2} - 4i - 2)(2 \times 2^{N-2}) = (2^{N-2} - 2i - 1) \times 2^N \]

Since the result of \((2^{N-2} - 2i - 1) \) is positive, then \(N \) must be a number greater than 3. Therefore the total number of the remaining values of \(A \) decreases from \(2^{N-2} \) to \(2^{N-3} \), which is represented by \(n_N \).

Thus in general case when \(\alpha \) is odd, for every \(E_N \) test we will have:

\[E_N - 1^2 = 2^N m_1 \\
E_N - 3^2 = 2^N m_2 \\
\ldots \ldots \ldots \ldots \\
E_N - (2n_N - 1)^2 = 2^N m_{n_N} \\
\]

Then the total number of \(E_N \) tests equal to \(n_N = 2^{N-3} \).

For the case in which \(\alpha \) is even, the proof process is completely similar and for each \(E_N \) test we have:
\[E_N - 0^2 = 2^N m_1 \\
E_N - 2^2 = 2^N m_2 \\
\ldots \ldots \ldots \ldots \\
E_N - (2n_N - 2)^2 = 2^N m_{n_N} \]

In a way that the total number of each \(E_N \) test is calculated like that of the previous case, thus we will have \(n_N = 2^{N-3} \), therefore the proof is complete. ■

Theorem 8: When \(E_N - x^2 \) by assuming that \(E_N = \tilde{a}_N a_{N-1} \ldots a_1 - f_N f_{N-1} \ldots f_1 \) can be counts by \(2^N \), and when we replace \(a_N \) with another digit like as \(\tilde{a}_N \) and represent the result of \(\tilde{a}_N a_{N-1} \ldots a_1 - f_N f_{N-1} \ldots f_1 \) by \(E_N \), therefore \(E_N - x^2 \) can also count \(2^N \).

Proof: If in \(E_N = \tilde{a}_N a_{N-1} \ldots a_1 - f_N f_{N-1} \ldots f_1 = 2^N + x^2 \), we replace \(a_N \) with the digit \(\tilde{a}_N \) in a way that a \(\tilde{a}_N = a_N \pm r \), and \(r \) can have one of the digits from 1 to 9, then we will have:

\[
E'_N = \tilde{a}_N a_{N-1} \ldots a_1 - f_N f_{N-1} \ldots f_1 = (a_N \pm r) a_{N-1} \ldots a_1 - f_N f_{N-1} \ldots f_1 \\
= (a_N \pm r) a_{N-1} \ldots a_1 - f_N f_{N-1} \ldots f_1 = ((\pm r) \times 10^{N-1} + a_N a_{N-1} \ldots a_1) \times 2^N - f_N f_{N-1} \ldots f_1 \\
= r^2 \times 10^{2N-2} \pm 2r \times 10^{N-1} \times a_N a_{N-1} \ldots a_1 + a_N a_{N-1} \ldots a_1 - f_N f_{N-1} \ldots f_1 \\
= r^2 \times 5^{2N-2} \times 2^{N-2} \pm r \times 5^{N-2} \times a_N a_{N-1} \ldots a_1 \times 2^N + a_N a_{N-1} \ldots a_1 - f_N f_{N-1} \ldots f_1
\]

By assuming \(T = r^2 \times 5^{2N-2} \times 2^{N-2} \pm r \times 5^{N-2} \times a_N a_{N-1} \ldots a_1 \), we will have:

\[
E_N = T \times 2^N + E_N \Rightarrow E'_N = T \times 2^N + 2^N m + x^2 \Rightarrow E'_N - x^2 = (T + m) \times 2^N
\]

It means \(E'_N - x^2 \) can be count by \(2^N \) and the proof is complete. ■

Note 7: When the values of \(E_N \) are even, we can decrease the number of \(E_N \) test. As an example, for \(E_5 \) to \(E_7 \) we have:

\[
N = 5 \Rightarrow \begin{align*}
E_5 - 0^2 &= 32 m \\
E_5 - 2^2 &= 32 m \\
E_5 - 4^2 &= 32 m
\end{align*} \quad , \quad N = 6 \Rightarrow \begin{align*}
E_6 - 0^2 &= 64 m \\
E_6 - 2^2 &= 64 m \\
E_6 - 4^2 &= 64 m
\end{align*} \quad , \quad N = 7 \Rightarrow \begin{align*}
E_7 - 0^2 &= 128 m \\
E_7 - 2^2 &= 128 m \\
E_7 - 4^2 &= 128 m
\end{align*}
\]

In this sieve we can use theorems 7 and 8 in \(E_N \) tests as below.

- **if** \(E'_1 \) **then**

\[
\begin{align*}
0a_{l-1} \ldots a_1 &\checkmark \\
1a_{l-1} \ldots a_1 &\checkmark \\
\ldots &
\end{align*}
\]

All the \(S \) values eliminated from \(E_{l+1} \) tests.

- **if** \(E'_1 \) **then**

\[
\begin{align*}
0a_{l-1} \ldots a_1 &\checkmark \\
1a_{l-1} \ldots a_1 &\checkmark \\
\ldots &
\end{align*}
\]

All the \(S \) values remain for \(E_{l+1} \) tests.
Theorem 9: When E_N test for a definite S is positive, then E_{N-r} test is positive for that S.

Proof: From theorem (4) we have:

$$E_N - x^2 = 2^N m \Rightarrow \overline{e_N e_{N-1} \ldots e_1} - x^2 = 2^N m_1$$

$$\Rightarrow \overline{e_N e_{N-1} \ldots e_{N-r+1}} \times 10^{N-r} + \overline{e_{N-r} \ldots e_1} - x^2 = 2^N m_1$$

$$\Rightarrow \overline{e_{N-r} \ldots e_1} - x^2 = 2^N m_1 - \overline{e_N e_{N-1} \ldots e_{N-r+1}} \times 5^{N-r} \times 2^{N-r}$$

$$= 2^{N-i}(m_1 - \overline{e_N e_{N-1} \ldots e_{N-r+1}} \times 5^{N-r}) = 2^{N-r} m_2 \Rightarrow E_{N-r} - x^2 = 2^{N-r} m_2$$

It means the number 2^{N-r} counts $E_{N-r} - x^2$. In other words E_{N-r} test is positive and the proof is complete. ■

Therefore in every E_N test for a definite S except for values of x for which E_{N-1} test is positive, all the tests related to the other values of x are eliminated from the E_N tests. Thus total number of E_N tests can be calculated as follows:

$$n_{E_N} \approx 2^{N-3} = 2^{N-4} + 1 = 2^{N-4} + 1$$

Theorem 10: If $E_N - x^2 = 2^N m$, i.e. E_N test will be positive, then $E_M - x^2$ for each M greater than N can be count by 2^N.

Proof:

$$E_N - x^2 = 2^N m \Rightarrow \overline{e_N e_{N-1} \ldots e_1} - x^2 = 2^N m_1$$

$$\Rightarrow \overline{e_N e_{N-1} \ldots e_{N+1}} \times 10^N + \overline{e_{N+1} \ldots e_1} - x^2$$

$$= 2^N m_1 + \overline{e_N e_{N-1} \ldots e_{N+1}} \times 10^N = 2^N (m_1 + \overline{e_{N+1} \ldots e_1} \times 5^N) = 2^N m_2$$

$$\Rightarrow \overline{e_{N+1} \ldots e_2 e_1} - x^2 = 2^N m_2 \Rightarrow E_M - x^2 = 2^N m_2$$

It means that the 2^N counts $E_M - x^2$ and the proof is complete. ■

In E_N tests for a definite S, only for a one value of x, the test result is positive. It is because if we assume for the two different values x_1 and x_2 the test result is positive, then it means x_1 and x_2 will have the same outcome.

Theorem 11: If values of E_N for two values of S with a difference equal to 10, from the two domains of the consecutive test is represented by $E_{N(i+1)}$ and $E_{N(i)}$ in a way that i represents the number of the test domain, then values of $\Delta E_N(i+1) = E_{N(i+1)} - E_{N(i)}$ for the two consecutive domains of the E_N tests form an arithmetic progression with 200 as common difference.

Proof: From E_N definition, we have:

$$E_N(1) = S_{min}^2 - \overline{f_{N-1}} f_1$$

$$E_N(i) = (S_{min} + 10(i-1))^2 - \overline{f_{N-1}} f_1$$

$$\Rightarrow E_{N(i)} = E_{N(1)} + 20(i-1)S_{min} + 100(i-1)^2$$

20
\[
\begin{align*}
E_{N(i+1)} &= E_{N(1)} + 20iS_{\text{min}} + 100i^2 \\
E_{N(i)} &= E_{N(1)} + 20(i - 1)S_{\text{min}} + 100(i - 1)^2 \\
E_{N(i-1)} &= E_{N(1)} + 20(i - 2)S_{\text{min}} + 100(i - 2)^2
\end{align*}
\]

\[\Delta E_{N(i+1)} = 20S_{\text{min}} + 100(2i - 3) \quad \Delta E_{N(i, i+1)} = 20S_{\text{min}} + 100(2i - 1)\]

\[\Rightarrow \Delta E_{N(i, i+1)} - \Delta E_{N(i-1, i)} = 200\]

It means the values of \(\Delta E_{N(i, i+1)}\) forms an arithmetic progression with 200 as common difference value.

Therefore we will have:

\[X = \Delta E_{N(1,2)} \Rightarrow \Delta E_{N(2,3)} \Rightarrow \Delta E_{N(3,4)} \Rightarrow \ldots\]

\[\Rightarrow E_{N(1)} \Rightarrow E_{N(2)} \Rightarrow E_{N(3)} \Rightarrow E_{N(4)} \Rightarrow E_{N(5)} \Rightarrow \ldots\]

\[\Rightarrow E_{N(i)} - E_{N(i-1)} = X + (i - 2) \times 200 \Rightarrow E_{N(i)} = E_{N(1)} + (i - 1)X + (i - 1)(i - 2) \times 100\]

If we represent the \(i\)th group of the \(S\) values with the number \(10^N\) by \(H_{N(i)}\) and the \(j\)th group of the \(S\) values with the number \(10^{N-1}\) by \(A_{N(j)}\), in a way that \(i\) in them is from 1 to \(\frac{S_{\text{max}} - S_{\text{min}}}{10^N}\) and \(j\) is from 1 to 10, then according to theorem 8 it will suffice to do the \(E_N\) tests only for \(A_{N(1)}\), i.e. the first group with the number \(10^{N-1}\) in the \(H_{N(1)}\) group. If the test result for one definite \(S\) in \(A_{N(1)}\) will be positive, it means the result of this test is positive for all the \(S\) values that contain \(N-1\) similar digits on the right side and are only different in the first digit on the left side and are located in other nine groups of \(A\). But if the result of \(E_N\) test is negative for one of the \(S\) values in \(A_{N(1)}\), then this test is negative for all the \(S\) values which are only different in their first digit on the left side and are located in the other nine groups of \(A\). If in the first \(A_{N(1)}\), all the tests of \(E_N\) are negative, it means that the odd number under the test is a prime number.

\[\begin{array}{c|c}
A_{N(1)} & \text{We must do the } E_N \text{ tests only} \\
A_{N(2)} & \text{in } A_{N(1)} \\
\cdots & \cdots \\
A_{N(9)} & \\
A_{N(10)} & \\
\end{array}\]

If we assume that the number of \(E_N^+\) tests in \(A_{N(1)}\) is equal to \(w\), then the total number of \(\alpha\) tests in \(\alpha - S\) sieve can be calculated by \(n_{\alpha - E_N} = \frac{S_{\text{max}} - S_{\text{min}}}{10^N} \times 10w\).

Note 8: If \(\alpha = e_m e_{m-1} \ldots e_3 e_2 e_1\) will be a prefect square number, then we must have:

\[\sum_{i=1}^{m} e_i = 9k^2 \sum_{i=1}^{m} e_i = 3k + 1 \quad \text{or}\]

21
In the $\alpha - S$ sieve it is better to do the E_N tests for the two value of N_1 and N_2 in which N_1 is less than N_2 so that we should have fewer E_N tests.

D	S	E_{N_1}	E_{N_2}	testα
D_1				
D_2				

If for very large numbers, E_N tests are done by bigger value of N, then the number of α tests will be decreased. It should be noted that working on some digits on the right side of a large number is much easier than working on all of its digits and takes much less time. We can observe the number of E_N tests will be rigorous decreased, which is one of the important properties of this sieve.

Example 2: Show that $F = 251,953,878,652,772,860,514,325,499,229$ is a composite number.

Answer

$\sqrt{F} = 501,950,075,865,935$, $k = \frac{F - 1}{2}$ = even , $S_{min} = 501,950,075,865,927 \Rightarrow S^0 = (3,5,7)$

The first set of S by 10^3 length	E_3	E_5	
E_3	E_5^+	E_5^-	
E_3	E_5	E_5	
D$_1$	501,950,075,865,927	501,950,075,865,933	501,950,075,865,935
D$_2$	501,950,075,865,937	501,950,075,865,943	501,950,075,865,945
D$_3$	501,950,075,865,947	501,950,075,865,953	501,950,075,865,955
D$_4$	501,950,075,865,957	501,950,075,865,963	501,950,075,865,965
It can be seen that for \(S = 504,037,195,361,823 \), \(\alpha \) is a perfect square number and for this first \(S_r \) we have:

\[
S_r = 504,037,195,361,823 \rightarrow \alpha = S_r^2 - F = t^2 \Rightarrow \begin{cases} p = 458,215,632,147,113 \\ q = 594,858,758,576,533 \end{cases}
\]

It is observed that only by \(E_5 \) test, the \(S \) values are eliminated from 5 domains.

The most important notes regarding to the \(\alpha - S \) sieve are mentioned as follows:

1. There is no need to know the prime numbers less than the square root of the number under test.
2. The results of \(E_N \) tests do not depend on the largeness of the numbers under test. They only depend on the type and the arrangement of \(N \) digits on the right side.
3. When we use \(E_N \) test for \(N \) digits on the right side of a definite \(S \) in a way that the test result becomes negative, all the \(S \) values which contain \(N - 1 \) similar digits on the right side, will be eliminated from the \(\alpha \) test.
4. For large numbers, by this sieve, we will reach the answer more quickly and more easily than by tests divisibility test for prime numbers less than its square root. The largeness of the number allows us to do \(E_N \) tests for greater \(N \) value.
5. We will not need time-consuming and big computations with this sieve because in \(E_N \) tests we only use \(N \) digits on the right side of the numbers.

4. Introduce \(\beta - S \) Sieve

Whenever by assuming \((1 \leq p \leq q) \) \(F = pq \) and \((1 \leq n \leq m)k = mn \) the result of \(\beta(k, \theta) \) is a square number and by representing the phrase \(\sqrt{4kF} + \theta \) by \(S \), therefore the values of \(p \) and \(q \) can be calculated as follows:

\[
\beta(k, \theta) = S^2 - 4kF = t^2 \Rightarrow \begin{cases} p = \frac{S + t}{2m} \\ q = \frac{S - t}{2n} \end{cases}
\]

For any \(k \) values we can calculate the values of \(S \) and \(\beta(k, \theta) \) by placing the consecutive values of natural numbers in \((\theta \geq 1)\theta\). By Considering the theorems and the notes mentioned, from a few number of digits on the right side of \(\beta(k, \theta) \) value, we will be able to eliminate many value of \(S \) from the test for which the result of \(\beta(k, \theta) \) is not square. This method of sieve, in which by eliminating \(S \) values, we want that \(\beta(k, \theta) \) to be a square number, is called \(\beta - S \) sieve. In this sieve, we represent \(N \) digits on the right side
of \(\beta(k, \theta) \) value by \(E_N \) and we do the \(E_N \) tests like \(\alpha - S \) sieve. The sieving \(S \) values only from \(k_r = 1 \) to
\(k_r = \sqrt{100} \) (in \(S_{max} \) zone), is equal to sieve the \(p \) values from \(\sqrt{F} \) to \(\sqrt{P} \) in probable interval containing \(p \) values. This is one of the most important benefits of this sieve. In this sieve for one definite \(\theta \) and \(K \), we can assume:

\[
\begin{align*}
\sqrt{4kF} + \theta = S &= \ldots a_N \ldots a_2 a_1 \\
4kF &= \ldots b_N \ldots b_2 b_1
\end{align*}
\]

\[\Rightarrow \beta(k, 1) = S^2 - 4kF = ...e_N \ldots e_2 e_1 \Rightarrow E_N = e_N \ldots e_2 e_1 \]

If we represent the odd values of \(a_1 \) for \(n_1 \) by \(S^b_{a_1} \) and the even values of \(a_1 \) for \(n_1 \) by \(S^e_{a_1} \), thus we will have:

\[\begin{align*}
\text{odd} &: b_1 = 2 \Rightarrow \begin{cases} S^b_0 = (1, 9) \\ S^e_0 = (4, 6) \end{cases} \\
\text{even} &: b_1 = 4 \Rightarrow \begin{cases} S^b_0 = (3, 5, 7, 9) \\ S^e_0 = (0, 2, 8) \end{cases} \\
\text{odd} &: b_1 = 6 \Rightarrow \begin{cases} S^b_0 = (1, 5, 9) \\ S^e_0 = (0, 4, 6) \end{cases} \\
\text{even} &: b_1 = 8 \Rightarrow \begin{cases} S^b_0 = (3, 7) \\ S^e_0 = (2, 8) \end{cases}
\end{align*} \]

When the result of \(\beta(k, 1) \) is a square number, we will have:

\[\beta(k, \theta) = S^2 - 4kF = (mp + nq)^2 - 4(mn)(pq) = (mp - nq)^2 = t^2 \]

Therefore, when we have \(S = mp + nq \), the value of \(\beta(k, \theta) \) will be a square number and the desired \(S \) value, will be \(S_r = mp + nq \). Considering that the values of \(m \) and \(n \) are odd or even, through \(k = mn \) we can determine if the values of \(S \) are odd or even.

\[\begin{align*}
\begin{cases} m = \text{odd} \\ n = \text{odd} \end{cases} & \Rightarrow S = \text{even} \\
\begin{cases} m = \text{even} \\ n = \text{odd} \end{cases} & \Rightarrow S = \text{odd}
\end{align*} \]

In order to use this sieve between two values of \(k_r \), we will do as follows:

\[
\Delta_k
\]

By calculating the minimum value of \(S \) in the sieve interval of \(\Delta \), we will have:

\[S_d = \sqrt{4kF} = \sqrt{4x_1y_1F} \]

To calculate the maximum value of \(S \) in the sieve interval of \(\Delta \), we will do as follows:

\[
k_r = \frac{q}{p} = \frac{x_2}{y_2}, \quad F = k_r p^2 \Rightarrow \begin{cases} p = \sqrt{\frac{F}{k_r}} = \sqrt{\frac{y_2F}{x_2}} \\
q = \frac{x_2}{y} \sqrt{\frac{y_2F}{x_2}} \Rightarrow S_u = x_1p + y_1q = (x_1 + x_2) \sqrt{\frac{y_2F}{x_2}}
\end{cases}
\]

In the best case, if we consider \(x_1 \) and \(x_2 \) as consecutive integer number and \(y_1 = y_2 = y \), then we
will have:

\[S_u = (2x_1 + 1)\left\lfloor \frac{yF}{x_1+1} \right\rfloor, \quad S_d = \left\lfloor \sqrt{4x_1yF} \right\rfloor \]

If one \(S_r \) is located in the sieve interval of \(\Delta \), we represented it by \(\Delta_r \). For each \(S_r \) in a sieve interval of \(\Delta_r \), we have:

\[
\begin{aligned}
S_r &= S_d + \theta = mp + nq \\
\theta &= \left\lfloor (\sqrt{x_1p} - \sqrt{yq})^2 \right\rfloor + 1 \Rightarrow \beta(k, \theta) = (mp - nq)^2 = t^2
\end{aligned}
\]

In orders that the sieve should be easier, between the two consecutive integer values of \(k_r \), especially for big values of \(F \), it is better to divide the distance into \(y \) equal parts in which each part is an independent sieve zone.

\[\Delta_{k-i} \]

\[k = \frac{ky}{y} \quad \frac{ky+1}{y} \quad \frac{ky+2}{y} \quad \frac{ky+y-1}{y} \]

\[k + 1 = \frac{(k+1)y}{y} \]

\(\Delta_{k-i} \) represents the \(i \)th of sieve zone related to \(K \). In a particular case when the distance between the two integer values of consecutive \(k_r \) is selected as one sieve zone, we will do as follows:

\[\Delta_k \]

\[k \quad \frac{1}{y} \quad k + 1 \quad \frac{1}{y} \]

\[S_d = \left\lfloor \sqrt{4kF} \right\rfloor, \quad S_u = \left\lfloor \frac{F}{\sqrt{k+1}} \right\rfloor \]

In zones of \(\Delta_{k-i} \), the length of the sieve intervals is decreased by increasing the \(i \). In other words:

\[L_{\Delta_{k-i}} = S_{u_{k-i}} - S_{d_{k-i}} \Rightarrow L_{\Delta_{k-1}} > L_{\Delta_{k-2}} > L_{\Delta_{k-3}} > \cdots \]

Therefore, for the sieve zones between the consecutive integer values of \(k_r \), the length of the intervals are decreased.

\[\Delta_1 \quad \Delta_2 \quad \Delta_3 \quad \cdots \]

\[1 \quad 2 \quad 3 \quad 4 \]

Therefore:

\[L_{\Delta_1} > L_{\Delta_2} > L_{\Delta_3} > \cdots \]

The decreasing of the length of consecutive sieve zones for \(k_r \) values which are located in \(S = 0 \) zone finally to get at zero. In a way that for some consecutive integer value of \(k_r \), the result of \(\beta(k, 1) \) will be a square number. With the increase in \(k_r \) values in this zone, the number of consecutive integer values of \(k_r \) are increased accordingly. Therefore it is only necessary to do a \(\beta(k, 1) \) test for one value of \(k_r \).
based on the theorem (4). In general case, for an odd number as F, it is better to do the β − S sieve as follows:

\[
k = 1 \, , \, \Delta_{1-1} \Rightarrow k_r = \frac{y}{y} \rightarrow 4kF \rightarrow S_{e or o}^{b_1} , S_{d_{1-1}} , \, S_{u_{1-1}}
\]

D	S	\(E_{N_1}\)	\(E_{N_2}\)
\(D_1\)			
\(D_2\)			

\[
k = 2 \, , \, \Delta_{2-1} \Rightarrow k_r = \frac{2y}{y} \rightarrow 4kF \rightarrow S_{e or o}^{b_1} , S_{d_{2-1}} , \, S_{u_{2-1}}
\]

D	S	\(E_{N_1}\)	\(E_{N_2}\)
\(D_{2-1}\)			
\(D_{2-2}\)			

Example 3: By selecting \(y = 2\) and \(k = 2\) prove that \(F = 9,640,669\) is a composite number.

Answer:

\[
\Delta_{2-1} \rightarrow 4 \rightarrow 5 \rightarrow 6
\]

\[
\Delta_{2-2} \rightarrow \frac{2}{5} \rightarrow \frac{3}{5} \rightarrow \frac{6}{5}
\]

\[
S_{d_{2-1}} = 17,564 \, , \, S_{u_{2-1}} = \left\lfloor \frac{9 \times 2 \times 5}{5} \right\rfloor = 17,673 \quad 4kF = 4 \times 4 \times 2 \times F = 308,501,408
\]

We can see, when \(S = 17,626\) then \(\beta\) is a prefect square number, since we have

\[
\beta = S_r^2 - 4kF = (17,622)^2 - 308,501,608 = 1426^2 = t^2
\]

\[
\begin{align*}
|m = 4 \Rightarrow p &= \frac{S - t}{2m} = \frac{17,622 - 1426}{2 \times 4} = 2381 \\
|n = 2 \Rightarrow q &= \frac{S + t}{2n} = \frac{17,622 + 1426}{2 \times 2} = 4049
\end{align*}
\]

The important benefits of \(\beta - S\) sieve is that we can easily select a certain sieve zone within any distance from \(k_r\) values (from 1 to F). This is particularly very important for some values of \(k_r\) since it includes a large part of the interval containing the p values.

Example 4: By the \(\beta - S\) sieve show that the number \(F = 34,873,477\) in the sieve zone of \(\Delta_{3-1}\) has an response point.
Answer

\[k = 3 \quad , \quad 12F = 418,481,724 \quad , \quad S_{d_1} = 20,456 \quad , \quad S_{u_3} = 20,668 \]

\(D \)	\(S \)	\(E_3 \)	\(\beta \) tests
\(D_{3-1} \)	20,458	040 → ✗	
	20,460	776 → +	\(\beta \neq t^2 \)
	20,462	720 → ✗	
\(D_{3-2} \)	20,468	300 → ✗	
	20,470	176 → +	\(\beta \neq t^2 \)
	20,472	60 → ✗	
\(D_{3-3} \)	20,478	760 → ✗	
	20,480	676 → +	\(\beta = 974^2 = t^2 \)
	20,482	600 → +	\(\beta \neq t^2 \)

In order to utilize the \(\beta - S \) sieve in the zone of \(S = 0 \), it will only suffice to use the integer values of \(k_r \), located in this zone, as the \(k \) in \(\beta(k, 1) \) tests.

If the value of \(\sqrt[3]{\frac{F}{256}} \) is represented by \(I \), therefore in the zone of \(S=0 \), from relations \(\delta = 4 \sqrt[4]{\frac{k_r^3}{F}} \) and \(k_r(n) = \sqrt[n]{\frac{4}{n}} F \), we will have \(k_r(n) = n \sqrt{\frac{n}{I}} \) then we can conclude that \(\delta = N = n \).

In a way that \(N \) represents the number of \(k \) values for one value of \(k_r \) in order to have the same result for the \(\beta(k, 1) \) tests. Therefore it is suggested that the distance from \(I \) to \(F \) can be divided as follows:

\[
\begin{align*}
& k_r = 1 & k_r = 2 \sqrt[3]{2I} & k_r = 3 \sqrt[3]{3I} & k_r = 4 \sqrt[3]{4I} & k_r = 5 \sqrt[3]{5I} & \ldots \ldots & k_r = F \\
& \Phi_1 & \Phi_2 & \Phi_3 & \Phi_4 & \\
\end{align*}
\]

s=0 zone

In an arbitrary interval as \(\Phi_n \), some values of \(k \) must be used in \(\beta(k, 1) \) test which are obtained from the \(k_n + nI \) in a way that \(k_n = \left\lfloor \frac{n}{\sqrt{n}I} \right\rfloor \) is the minimum value of \(k \) and \(k_{n+1} = \left\lceil \frac{(n + 1)}{\sqrt{n} + 1I} \right\rceil \) is the maximum value of \(k \).
\[k_n = \left\lfloor \sqrt[n]{n!} \right\rfloor \quad k_n, k_n + 2n, k_n + 3n \ldots \quad \left\lfloor (n + 1)\sqrt[n]{n!} \right\rfloor = k_{n+1} \]

We represent the numbers of \(k \) that can be chose for \(\beta(k,1) \) tests in \(\Phi_n \) interval by \(N_n \), that is:

\[N_n = \left\lfloor \frac{(n + 1)\sqrt[n]{n!} - n^n}{n} \right\rfloor = \left\lfloor \frac{L_n}{n} \right\rfloor \]

It is observed that by increase in \(n \), the length of the \(\Phi_n \) intervals, i.e. \(L_n \), will also increase. In other words we have:

\[(2\sqrt[3]{2} - 1) < (3\sqrt[3]{3} - 2\sqrt[3]{2}) < (4\sqrt[3]{4} - 3\sqrt[3]{3}) < \ldots \Rightarrow L_1 < L_2 < L_3 < \ldots < L_m < L_{m+1} < \ldots \]

\(\Rightarrow N_1 \geq N_2 \geq N_3 \geq \ldots \geq 1 \)

In order to calculate the maximum value of \(n \) in \(S=0 \) zone, we will have:

\[(n + 1)\sqrt[n]{n!} = \frac{3}{\sqrt[3]{(n + 1)^4}} \times \frac{3}{\sqrt[3]{256}} = F \Rightarrow n_{\text{max}} = \left\lfloor 4\sqrt{F} \right\rfloor - 1 \]

Therefore if we want to have \(N=1 \), from differential calculus, we have:

\[(n + 1)\sqrt[n]{n!} - n^n = \left(\frac{3}{\sqrt[3]{(n + 1)^4}} - \frac{3}{\sqrt[3]{n^4}} \right) I \approx \left(\frac{4}{3} \frac{3}{\sqrt[3]{n}} \right) I < n \Rightarrow n \geq \left\lfloor \frac{\sqrt[3]{3F}}{18} \right\rfloor \]

As an example, for the number \(F = 631,523 \) we will have \(\left\lfloor \frac{\sqrt[3]{3F}}{18} \right\rfloor = 77 \), therefore if \(n=77 \) then we should have:

\[L_{77} = 78\sqrt[3]{78} - 77\sqrt[3]{77} = 76.737 \Rightarrow N_{77} = \left\lfloor \frac{L_{77}}{77} \right\rfloor = 1 \]

It means that for values of \(n \) which are greater than 77, it will be suffice to select an integer number for the \(\beta \) test in each \(\Phi \) interval.

For example, in \(S=0 \) zone, for the number \(F = 67,813 \), we have:

\[25\sqrt[3]{25} \quad 36\sqrt[3]{36} \quad 1040\sqrt[3]{1040} \quad F \]

\[\approx 476 \quad \approx 492 \quad \approx 67,435 \quad 67,812 \]

It is observed that:

\[(L_{25} = 16, N_{25} = 1), \ldots \]

\[(L_{1040} = 378, N_{1040} = 1) \]

From differential calculus, we know that:
f(n + Δn) − f(n) ≈ f'(n)Δn, f(n) = \sqrt[3]{n^4}, f'(n) = \frac{4 \sqrt[3]{n^4}}{3}

Δn = 1 \Rightarrow \sqrt[3]{(n + 1)^4} - \sqrt[3]{n^4} \approx \frac{4 \sqrt[3]{n^4}}{3} \Rightarrow nN = \frac{256 \sqrt{F}}{108n^2} \Rightarrow n = \left(\frac{1}{6N} \sqrt{3N} \right)

⇒ N = \left(\frac{3 \sqrt{F}}{108n^2} \right) \Rightarrow N_{max} = \left(\frac{3 \sqrt{F}}{108} \right)

For any \(\beta(k, 1)\) value in \(\Phi_n\) intervals, we can use \(E_N\) tests.

Acknowledgments

The author would like to express his sincere gratitude to Dr. Amir Jafari, associated professor of Sharif University, for his guidance in all steps. I also want to thank my wife, Fariba, and my son Alireza, for their kind encouragement in all conditions.

References:

1. D.M. Burton, “Elementary Number Theory”, Mc Graw Hill Companies, 2007.
2. R. Cranial, C. Pomerance, “Prime Numbers”, Springer, 2005.
3. D. Wells, “Prime Numbers”, John Wiley & Sons, 2005.
4. P. Hackman, “Elementary Number Theory”, HHH. Production, 2009.
5. T. Koshy, “Elementary Number Theory with Application”, Elsevier, 2007.
6. K.C. Chowdhury, “A First course in Number theory”, Asian Books Private Limited, 2007.
7. W. Narkiewicz, “The Development of Prime Number theory”, Spring, 2000.
8. H.M. Stark, “An Introduction to Number theory”, MIT Press, 1987.
9. A. Baker, “A Comprehensive Course in Number theory”, Cambridge University Press, 2012.
10. K.H. Rosen, “Elementary Number theory”, Pearson Addison Wisely, 2005.
11. J.J. Tattersall, “Elementary Number Theory”, Cambridge University Press, 2005.
12. G.A. Jones, M. Jones, “Elementary Number Theory”, Springer, 2005.
13. W. Sierpinsky, “Elementary Theory of Numbers”, PWN-Polish Scientific Publishers, 1991.
14. M.B. Nathanson. “Elementary Methods in Number Theory”, Springer, 2000.
15. O. Ore, “Number Theory and Its History”, Mc Graw Hill Companies, 1948.