Number of sets with small sumset and the clique number of random Cayley graphs

Gyan Prakash

Abstract

Let G be a finite abelian group of order n. For any subset B of G with $B = -B$, the Cayley graph G_B is a graph on vertex set G in which $i j$ is an edge if and only if $i - j \in B$. It was shown by Ben Green [6] that when G is a vector space over a finite field $\mathbb{Z}/p\mathbb{Z}$, then there is a Cayley graph containing neither a complete subgraph nor an independent set of size more than $c \log n \log \log n$, where $c > 0$ is an absolute constant. In this article we observe that a modification of his arguments shows that for an arbitrary finite abelian group of order n, there is a Cayley graph containing neither a complete subgraph nor an independent set of size more than $c (\omega^2(n) \log \omega(n) + \log n \log \log n)$, where $c > 0$ is an absolute constant and $\omega(n)$ denotes the number of distinct prime divisors of n.

A graph $G = (V, E)$ consists of a finite nonempty set V (vertex set) together with a prescribed set E (edge set) of unordered pair of distinct elements of V. Each pair $x = \{u, v\} \in E$ is an edge of G and x is said to join u and v by an edge. The graph G is complete if any two elements in V are joined by an edge. A maximal complete subgraph of a graph is a clique and the clique number is the maximal order of a clique. An independent set of a graph $G = (V, E)$ is a subset V' of V such that no two points in V' are connected by an edge. Given a graph $G = (V, E)$ the complementary graph $G^c = (V', E')$ is a graph with vertex set $V' = V$ and two elements of V are joined by an edge in G^c if and only if they are not joined by an edge in G. A set is an independent set in G if and only if it spans a complete subgraph in G^c.

Ramsey proved that given any positive integer k, there is a Ramsey number $R(k)$ such that any graph G on n vertices, with $n \geq R(k)$, contains either a clique or an independent set which has more than k vertices. Erdős [8] showed that the Ramsey number $R(k)$ has at least an exponential growth in k. Using a probabilistic argument, Erdős proved that there exists a graph on n vertices which neither contains a clique nor an independent set of size more than $c \log n$ vertices with c being a positive absolute constant. An explicit construction of such a graph is not known. Chung [5] gave a construction of graphs on n vertices which contains neither a complete subgraph nor an independent set on more than $e^{c \log n}^{3/4} / (\log \log n)^{1/4}$ vertices.
Given a finite abelian group \(G \) of order \(n \) and a set \(B \subset G \), with \(B = -B \) and \(0 \not\in B \), the Cayley graph \(G_B \) is a graph on vertex set \(G \) in which \(ij \) is an edge if and only if \(i - j \in B \). It is expected that for most of primes \(q \) with \(q \equiv 1 \mod (4) \) the Paley graphs \(P_q \), which is a Cayley graph \(G_B \) with \(G = \mathbb{Z}/q\mathbb{Z} \) and \(B \) being a set of quadratic residues, is an example of a graph which contains neither a clique nor an independent set on more than \(c \log n \) vertices. However this is far from being proven and is expected to be a very difficult problem. It is easy to see that a lower bound for clique number of \(P_q \) is \(\frac{n(q)}{q} \), where \(n(q) \) denotes the least positive integer which is a quadratic nonresidue modulo \(q \). The best unconditional upper bound known for \(n(q) \) is \(q^{1/4\sqrt{e}+\epsilon} \) and under the assumption of generalised Riemann hypothesis one knows that \(n(q) \) is at most \(c \log^2 q \). The best known upper bound for clique number of \(P_q \) to our knowledge is \(\sqrt{q} \) [4, page 363, Theorem 13.14]. One may ask whether among Cayley graphs, there are graphs (not necessarily Paley graphs) which contains neither a complete subgraph nor an independent set of very large order. The following conjecture is due to Noga Alon.

Conjecture 1. [1] Conjecture 4.1 There exists an absolute constant \(b \) such that the following holds. For every group \(G \) on \(n \) elements there exists a set \(B \subset G \) such that the Cayley graph \(G_B \) neither contains a complete subgraph nor an independent set on more than \(b \log n \) vertices.

For the relation between this conjecture and certain other questions in information theory, one may see the article of Noga Alon [1]. A weaker version of this conjecture, obtained by replacing the term \(\log n \) by \(\log^2 n \), was proved by N. Alon and A. Orilitsky in [2].

Ben Green [6] proved the above conjecture in the case when \(G \) is cyclic. In the case when \(G = (\mathbb{Z}/p\mathbb{Z})^r \) with \(p \) being a prime, he proved a weaker version of the above conjecture with the term \(\log n \) replaced by \(\log n \log \log n \). It was shown by Green that if we select a subset \(B \) of \(G \) randomly, then almost surely the Cayley graph \(G_B \) contains neither a complete subgraph nor an independent set of large size. On the other hand, Green also proved that when \(G = (\mathbb{Z}/2\mathbb{Z})^r \), then for a random subset \(B \), the Cayley graph \(G_B \) almost surely contains a complete subgraph of size at least \(c \log n \log \log n \) and thus showing that the random methods alone can not prove the above conjecture for a general finite abelian groups. Moreover Ben Green remarked in [6] that his methods seems to work only for certain special groups.

In this article we observe that a modification of the arguments from [6] prove the following weaker version of the above conjecture for any finite abelian group.

Theorem 2. Let \(G \) be a finite abelian group of order \(n \). Then there exist a subset \(B \) of \(G \) with \(B = -B \) and \(0 \notin B \), such that the Cayley graph \(G_B \) neither contains a complete subgraph nor an independent set on more than...
Theorem 3. There exists an absolute constant after a minimal modification gives the same result for Cayley graphs and not for Cayley graphs. However as he remarked, his arguments denote the clique number of the Cayley graph G by Ben Green [6, Theorem 9], whereas we prove it for an arbitrary finite abelian group G.

In case $G = (\mathbb{Z}/p\mathbb{Z})^r$, then $\omega(n) = 1$ and we obtain the result of Ben Green mentioned above. Since sometimes $\omega(n)$ could be as large as $\log n \log \log n$, which happens when n has several small prime divisors, it is not possible to recover the result of Alon and Orilitsky from Theorem 3. When $\omega(n) = 1$, we recover the result of Theorem 3. When $\omega(n)$ is of the order $\log n \log \log n$, then taking $\alpha = 1$, we obtain the bound $c_1(\log n \log \log n)^2$.

The complementary graph of a Cayley graph G_B is the Cayley graph G_B^c with $B^c = G \setminus (B \cup \{0\})$. Thus to prove Theorem 2 we need to show the existence of set $B \subset G$ such that the clique number of G_B as well as that of G_B^c is small. We divide $G \setminus \{0\}$ into disjoint pairs of the form $(g, -g)$ with $g \in G \setminus \{0\}$. Then we choose a subset B of G randomly by choosing each such pair in B independently with probability $1/2$. We write $cl(B)$ to denote the clique number of the Cayley graph G_B.

In case $G = (\mathbb{Z}/p\mathbb{Z})^r$ with p being a prime, the following result was proved by Ben Green [6, Theorem 9], whereas we prove it for an arbitrary finite abelian group G. Green had stated and proved his results for Cayley sum graphs and not for Cayley graphs. However as he remarked, his arguments after a minimal modification gives the same result for Cayley graphs.

Theorem 3. There exists an absolute constant $c_1 > 0$ such that the following holds. For any finite abelian group G of order n we have that

$$\lim_{n \to \infty} \mathbb{P}\left(cl(B) \geq c_1(\omega^3(n) \log \omega(n) + \log n \log \log n) \right) = 0.$$

Remark 4. Using the arguments of this paper and the result [6, Proposition 19] proved by Green, one can show that the clique number of random Cayley graph is at most $c_1\omega^3(\log n \log \omega(n) + (\log n \log \log n)^{1+\alpha})$ for any $\alpha \in [0, 1]$. When $\omega(n) \leq \log n^{1/3}$, the choice of $\alpha = 0$ is optimal. Taking $\alpha = 0$, we recover the result of Theorem 3. When $\omega(n)$ is of the order $\log n \log \log n$, then taking $\alpha = 1$, we obtain the bound $c_1(\log n \log \log n)^2$.

We observe that Theorem 2 follows immediately from Theorem 3 using the following inequality:

$$\mathbb{P}(cl(B) \geq k_1 \text{ or } cl(B^c) \geq k_1) \leq \mathbb{P}(cl(B) \geq k_1) + \mathbb{P}(cl(B^c) \geq k_1) = 2\mathbb{P}(cl(B) \geq k_1),$$

where the last equality follows using the fact that for any pair $\{g, -g\}$ with $g \in G \setminus \{0\}$, the probability that the pair belongs to B is equal to the probability that it belongs to B^c.

For any positive integers k_1 and k_2 we set

$$S^-(k_1, k_2, G) = \{ A \subset G : \text{card}(A) = k_1, \text{card}(A - A) = k_2 \},$$

(1)
Theorem 5. [6, Proposition 26] For any prime \(p \) the arguments give the same result when \(A \) be written as a difference of two elements from \(G \), of the form (1, complete subgraph is at most \(S \) the arguments gives the same upper bound for \(\text{card}(S) \) graph and the cardinality of \(P \) if \(k \) if \(A \) is a positive absolute constant. Presently, we recall the arguments from [6] which prove (2). The probability that the clique number \(cl(B) \) of a random Cayley graph \(G_B \) is greater than or equal to \(k_1 \) is same as the probability that there exist a set \(A \subset G \) with \(\text{card}(A) = k_1 \) which spans a complete subgraph in \(G_B \). The subgraph of \(G_B \) spanned by the vertices of \(A \) is complete if and only if \((A - A) \setminus \{0\} \) is a subset of \(B \). If \(\text{card}(A - A) = k_2 \), it contains at least \(\frac{k_1}{2} + 1 \) disjoint pairs of the form \((g, -g) \) with \(g \in G \setminus \{0\} \). Thus the probability that \(A \) spans a complete subgraph is at most \(\frac{1}{2^{k_2 + 1}} \). Therefore we have

\[
\mathbb{P}(cl(B) \geq k_1) \leq \sum_{k_2 \geq k_1} \sum_{A \in S^{(k_1,k_2)}(G)} \mathbb{P}((A - A) \setminus \{0\} \subset B) \leq \sum_{k_2 \geq k_1} \frac{\text{Card}(S^{(k_1,k_2)}(G))}{2^{(k_2-1)/2}}.
\]

For any positive integers \(k_1 \) and \(k_2 \) we also set

\[
S(k_1, k_2, G) = \{ A \subset G : \text{card}(A) = k_1, \text{card}(A \hat{\cup} A) \leq k_2 \},
\]

where \(A \hat{\cup} A \) denotes those elements of \(G \) which can be written as a sum of two distinct elements of \(A \).

The following result was stated in [6] when \(G = (\mathbb{Z}/p\mathbb{Z})^r \) with \(p = 2 \), but the arguments give the same result when \(p \) is an arbitrary prime. Moreover the arguments gives the same upper bound for \(\text{card}(S^{(k_1,k_2)}(\mathbb{Z}/p\mathbb{Z})^r) \).

Theorem 5. [6, Proposition 26] For any prime \(p \), we have,

\[
\text{Card}(S(k_1, k_2, (\mathbb{Z}/p\mathbb{Z})^r)) \leq n \frac{4k_2 \log k_1}{k_1} \left(\frac{ek_2}{k_1} \right)^{k_1} \exp(k_1^{3/32})
\]

if \(k_2 \leq k_1^{31/30} \) and

\[
\text{Card}(S(k_1, k_2, (\mathbb{Z}/p\mathbb{Z})^r)) \leq n \frac{4k_2 \log k_1}{k_1} k_1^{4k_1}
\]

for all \(k_2 \). (Here \(n = p^r \) is the order of \((\mathbb{Z}/p\mathbb{Z})^r \).)

We prove the following result.

Theorem 6. Let \(G \) be a finite abelian group of order \(n \). Then the cardinality of \(S^{(k_1,k_2)}(G) \) as well as the cardinality of \(S(k_1, k_2, G) \) is at most

\[
n \frac{4k_2 \log k_1}{k_1} \min(k_1^{c\omega(n)(k_1k_2)^{1/3} \log k_1} \left(\frac{k_2}{k_1 - 1} \right), k_1^{4\omega(n)k_1}),
\]

where \(c \) is a positive absolute constant.
To prove Theorem 5, Green proved the following:

(i) an upper bound for the number of Freiman 2-isomorphism class of sets in \(S(k_1, k_2, G) \),

(ii) an upper bound for the cardinality of the set \(\text{Hom}_2(A, G) \), where \(\text{Hom}_2(A, G) \) consists of all Freiman homomorphism from \(A \) into \(G \),

when \(G = (\mathbb{Z}/p\mathbb{Z})^r \). We prove Theorem 6 by proving the same for general \(G \).

For obtaining an upper bound for \(\text{card}(\text{Hom}_2(A, G)) \), we observe that \(A \) is Freiman 2-isomorphic to a subset \(A_{r,2} \) of a possibly different group \(G' \) such that \(A_{r,2} \) have the following “universal” property. Any Freiman 2-homomorphism from \(A_{r,2} \) into \(G \) extends as a group homomorphism from the group \(\langle A_{r,2} \rangle \) into \(G \), where \(\langle A_{r,2} \rangle \) is the subgroup of \(G' \) generated by \(A_{r,2} \).

Hence the group \(\text{Hom}_2(A_{r,2}, G) \) is isomorphic to \(\text{Hom}(\langle A_{r,2} \rangle, G) \) (Lemma 8), where \(\text{Hom}(\langle A_{r,2} \rangle, G) \) is the group consisting of all group homomorphism from \(\langle A_{r,2} \rangle \) into \(G \). This shows that \(\text{card}(\text{Hom}_2(A, G)) \leq n^{r(\langle A_{r,2} \rangle)} \), where \(r(\langle A_{r,2} \rangle) \) is the rank of the group \(\langle A_{r,2} \rangle \). An upper bound for the rank of \(\langle A_{r,2} \rangle \) follows from a result proved by Green. The arguments used by Green in obtaining an upper bound for the number of Freiman 2-isomorphism classes of sets works for general \(G \) without much difficulty. We need to use Lemma 11 which follows from a standard inductive argument.

Given a positive integer \(s \), for any finite subset \(A \) of an \(F \)-module with \(F \) being one of the following two rings \(\mathbb{Z}/m\mathbb{Z} \) and \(\mathbb{Q} \), in Section 3 we define the Freiman \(s \)-rank \(r_s(A) \) to be the rank of the module \(\text{Hom}_s(A, F) \). We prove Corollary 24 which generalises the result [6, Corollary 14] proved in the case of \(F \) being a field. Although we do not require Corollary 24 to prove other results of this article, the result may be of an independent interest. The result shows that in case \(F = \mathbb{Q} \), the Freiman 2-rank of \(A \) as defined above is same as the rank of \(A \) as defined by Freiman. Using this fact Green observed that the factor \(n^{\frac{4k_1 \log k_2}{k_1^2}} \) in \([1]\) could be improved to \(n^{\frac{4k_2}{k_1}} \) for a cyclic group, which allowed him to prove Conjecture 1 for cyclic groups.

1 Number of sets with small sumset

Let \(m \) be a fixed positive integer. In the sequel, we fix \(F \) to be either \(\mathbb{Z}/m\mathbb{Z} \) or \(\mathbb{Q} \). Let \(M \) be a finitely generated \(F \)-module. If \(F = \mathbb{Z}/m\mathbb{Z} \), then \(M \) is a finite abelian group of exponent \(m' \) which is a divisor of \(m \) and in case \(F = \mathbb{Q} \) then \(M \) is a finite dimensional vector space over \(\mathbb{Q} \). Given any subset \(A \) of \(M \) we write \(\langle A \rangle \) to denote the submodule of \(M \) spanned by \(A \). Notice that if \(F = \mathbb{Z}/m\mathbb{Z} \), then \(\langle A \rangle \) is same as the subgroup generated by \(A \), but if \(F = \mathbb{Q} \) then in general the subgroup generated by \(A \) is a proper subset of \(\langle A \rangle \). Given any finite subset \(C \) of \(M \), we set

\[
S(k_1, k_2, C, M) = \{ A \in S(k_1, k_2, M) : A \subset C \},
\]
and \(S^-(k_1, k_2, C, M) \) = \(\{ A \in S^-(k_1, k_2, M) : A \subset C \} \),
where \(S(k_1, k_2, M) \) and \(S^-(k_1, k_2, M) \) are as defined in (3) and (4) respectively.

For the purpose of obtaining an upper bound for clique number of random
Cayley sum graphs in a cyclic group of order \(n \), an upper bound for the
 cardinality of \(S(k_1, k_2, C, M) \) with \(M = F = \mathbb{Q} \) and \(C = \{0, 1, \ldots, n - 1\} \) was used by Green in [6].

Freiman s-homomorphism: Let \(s \) be a positive integer, let \(A \) and \(B \) be
subsets of (possibly different) abelian groups and let \(\phi : A \rightarrow B \) be a map.
Then we say that \(\phi \) is a Freiman \(s \)-homomorphism if whenever
\(a_1, \ldots, a_s, a'_1, \ldots, a'_s \in A \) satisfy
\[
a_1 + a_2 + \ldots + a_s = a'_1 + a'_2 + \ldots + a'_s
\]
we have
\[
\phi(a_1) + \phi(a_2) + \ldots + \phi(a_s) = \phi(a'_1) + \phi(a'_2) + \ldots + \phi(a'_s).
\]

If \(\phi \) has an inverse which is also \(s \)-homomorphism then we say that it is a
Freiman \(s \)-isomorphism. We shall refer to Freiman \(2 \)-homomorphisms
simply as Freiman homomorphisms.

We shall obtain an upper bound for \(\text{card}(S(k_1, k_2, C, M)) \) by obtaining an
upper bound for the number \(c(k_1, k_2, C, M) \) of Freiman isomorphism classes
of sets in \(S(k_1, k_2, C, M) \) and an upper bound for the number \(n(A, C) \)
of subsets of \(C \) which are Freiman isomorphic to \(A \) for any given \(A \in S(k_1, k_2, C, G) \). Then we have
\[
\text{Card} (S(k_1, k_2, C, M)) \leq c(k_1, k_2, C, M) \max_{A \in S(k_1, k_2, C, M)} n(A, C). \tag{7}
\]

Using similar arguments we shall obtain an upper bound for \(\text{Card} (S^-(k_1, k_2, C, M)) \).

Let \(A \) be a subset of \(M \) with \(\text{card}(A) = k_1 \). Let \(e_1, e_2, \ldots, e_{k_1} \) be the
canonical basis of \(F^{k_1} \). We write \(R_s \) to denote the subset of \(F^{k_1} \) consisting
of the elements of the form
\[
e_{i_1} + e_{i_2} + \ldots + e_{i_s} - e_{j_1} - e_{j_2} - \ldots - e_{j_s},
\]
where \(i \)'s and \(j \)'s need not be distinct. For any subset \(A = \{a_1, a_2, \ldots, a_{k_1}\} \subset G \), let \(\phi : F^{k_1} \rightarrow G \) be the \(F \)-linear map with \(\phi(e_i) = a_i \). We write \(R_s(A) \) to
denote the set \(R_s \cap \ker(\phi) \). Let \(A_{r,s} = \{e_{i_1}, \ldots, e_{k_1}\} \) be the image of
\(\{e_1, e_2, \ldots, e_{k_1}\} \) in \(F^{k_1}/\langle R_s(A) \rangle \) under the natural projection map from \(F^{k_1} \) to \(F^{k_1}/\langle R_s(A) \rangle \). Then \(\phi \) induces a map \(\bar{\phi} : A_{r,s} \rightarrow A \).

Lemma 7. With the notations as above, the map \(\bar{\phi} : A_{r,s} \rightarrow A \) is a Freiman
\(s \)-isomorphism.
Proof. Since $\tilde{\phi}$ is a restriction of group homomorphism, it follows that it is a Freiman s-homomorphism. Moreover it is evident that $\tilde{\phi}$ is a bijective map. To prove that $\tilde{\phi}$ is a Freiman s-isomorphism we need to show that

$$
\tilde{\phi}(e_{i_1}) + \ldots + \tilde{\phi}(e_{i_s}) - \tilde{\phi}(e_{j_1}) - \ldots - \tilde{\phi}(e_{j_s}) = 0
$$

implies that

$$
e_{i_1} + \ldots + e_{i_s} - e_{j_1} - \ldots - e_{j_s} = 0.
$$

From (8), it follows that $e_{i_1} + \ldots + e_{i_s} - e_{j_1} - \ldots - e_{j_s} \in \ker(\phi) \cap R_s = R_s(A)$. Therefore it follows that (9) holds. Hence the lemma follows. \qed

1.1 Number of sets in a given Freiman 2-isomorphism class

Given any F-modules H, H' and a subset B of H', we write $Hom_s(B, H)$ to denote the space of Freiman s-isomorphism from B into H. We also write $Hom_F(\langle B \rangle, H)$ to denote the space of F-linear map from $\langle B \rangle$ into H. Notice that $Hom_s(B, H)$ and $Hom_F(\langle B \rangle, H)$ are F-modules.

Lemma 8. Let H be a F module. Then any $g \in Hom_s(A_{r,s}, H)$ extends as a F-linear map $\tilde{g} : \langle A_{r,s} \rangle \rightarrow H$. The map thus obtained from $Hom_s(A_{r,s}, H)$ to $Hom_F(\langle A_{r,s} \rangle, H)$ is an isomorphism of modules.

Proof. Let $g \in Hom_s(A_{r,s}, H)$. Since F^{k_1} is a free module and e_i's are canonical basis of F^{k_1} we have the following F-linear map $g' : F^{k_1} \rightarrow H$ with $g'(e_1) = g(e_1)$. Let $x \in R_s(A)$, then $x = e_{i_1} + e_{i_2} + \ldots + e_{i_s} - e_{j_1} - e_{j_2} - \ldots - e_{j_s}$. Then from the definition of g' and the fact that g is a Freiman s-homomorphism, it follows that $R_s(A) \subset \ker(g')$, implying that $\langle R_s(A) \rangle \subset \ker(g')$. Therefore we have the F-linear map $\tilde{g} : F^{k_1}/\langle R_s(A) \rangle \rightarrow H$ with $\tilde{g}(e_i) = g(e_i)$. Since $\langle A_{r,s} \rangle = F^{k_1}/\langle R_s(A) \rangle$, the map \tilde{g} is an extension of g. Therefore we have a F-linear map $f : Hom_s(A_{r,s}, H) \rightarrow Hom_F(\langle A_{r,s} \rangle, H)$ with $f(g) = \tilde{g}$ for any $g \in Hom_s(A_{r,s}, H)$. It is evident that f is injective. Moreover f is surjective, since the restriction of any map in $Hom_F(\langle A_{r,s} \rangle, H)$ to $A_{r,s}$ is a Freiman s-homomorphism. Thus f is an isomorphism of modules. \qed

Lemma 9. [6] Lemma 25] Let H be a F-module. Then for any finite subset B of H, there exists a subset X of B with $\text{card}(X) \leq \frac{4k_2 \log k_1}{k_1}$, where $k_1 = \text{card}(B)$ and k_2 is equal to $\min(\text{card}(B+B), \text{card}(B-B))$, such that $\langle X \rangle = \langle B \rangle$.

Proof. For any positive integer l, let lB denotes the subset of H consisting of those elements which can be written as a sum of l elements of H. Since $\text{card}(B + B) \leq \text{card}(B+B) + \text{card}(B)$, using Plünette-Ruzsa inequality, we verify that for any positive integer l, we have

$$
\text{card}(lB) \leq \left(\frac{k_2 + k_1}{k_1}\right)^l.
$$

7
Let \prec be an arbitrary ordering on H. Choose a subset X of B with the property that the sums $x_1 + x_2 + \cdots + x_l (x_1 \prec x_2 \prec \cdots \prec x_l)$ are all distinct, with $l = [\log_p k_1]$, and which is maximal with respect to this property. It follows from the definition of X that $B \subset hX - (h-1)X$ and thus $\langle X \rangle = \langle B \rangle$. Moreover from the definition of X we also have $\binom{\text{card}(X)}{l}$ is at most $\text{card}(IB)$. Using this we verify that $\text{card}(X) \leq \frac{4k_2 \log k_1}{k_1}$. Hence the lemma follows. \hfill \square

Proposition 10. Let M be a F-module and C is a finite subset of M. For any finite subset A of M, the number of subsets of C which are Freiman 2-isomorphic to A is at most $\text{card}(C) \frac{4k_2 \log k_1}{k_1}$, where k_1 is equal to $\text{card}(A)$ and k_2 is equal to $\min \left(\text{card}(A+A), \text{card}(A-A) \right)$.

Proof. The number of subsets of C which are Freiman 2-isomorphic to A is at most the number of g in $\text{Hom}_2(A, \langle C \rangle)$ with $g(A) \subset C$. Since A and $A_{r,2}$ are Freiman 2-isomorphic, this number is at most the number of g' in $\text{Hom}_2(A_{r,2}, \langle C \rangle)$ with $g'(A_{r,2}) \subset C$. Using Lemma 8 this is at most the number of F-linear map \tilde{g} in $\text{Hom}_F(\langle A_{r,2} \rangle, \langle C \rangle)$ with $\tilde{g}(A_{r,2}) \subset C$. Using Lemma 8 we have that the module $\langle A_{r,2} \rangle$ is spanned by a subset X of $A_{r,2}$ with $\text{card}(X) \leq \frac{4k_2 \log k_1}{k_1}$. Since \tilde{g} is uniquely determined by its value on X, the number of such \tilde{g} is at most $\text{card}(C) \frac{4k_2 \log k_1}{k_1}$. Hence the proposition follows. \hfill \square

1.2 Number of Freiman isomorphism classes

We set $g(F)$ to be equal to 1 in case F is a field and to be equal to the number of distinct prime divisors of m, when $F = \mathbb{Z}/m\mathbb{Z}$. We shall need the following lemma.

Lemma 11. For any subset R of F^k, there exists a subset R_0 of R with $\text{card}(R_0) \leq g(F)k$ such that $\langle R_0 \rangle = \langle R \rangle$.

Proof. When F is a field, the dimension of the subspace $\langle R \rangle$ of F^k is at most k and there exists a subset R_0 of R which forms a basis of the vector space $\langle R \rangle$. Thus the lemma follows in this case.

Now we need to prove the lemma in case when $F = \mathbb{Z}/m\mathbb{Z}$. In this case we shall prove the lemma by an induction on k.

We first prove the lemma in case $k = 1$. In this case $\langle R \rangle$ is equal to a subgroup of $\mathbb{Z}/m\mathbb{Z}$. Let $p : \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ be the natural projection map and for any $x \in \mathbb{Z}/m\mathbb{Z}$, we write \bar{x} to denote the integer in $[0, m-1]$ with $p(\bar{x}) = x$.

If the order of $\langle R \rangle$ is d, then $p^{-1}(\langle R \rangle) = \frac{m}{d} \mathbb{Z}$. Thus for any prime divisor p of m, there exists $r_p \in R$ such that $\bar{r_p} = \frac{m}{d} r'_p$ with p not dividing r'_p. Let $R_0 = \{ r_p \}_{p|m}$. We claim that $\langle R_0 \rangle = \langle R \rangle$.

Suppose the claim is not true. Then $\langle R_0 \rangle$ is a proper subgroup of $\langle R \rangle$ and there exists a positive integer d' which divides m such that $p^{-1}(\langle R_0 \rangle)$
Figure 9

consists of those integers which are divisible by \(\frac{m}{d}d' \). But by construction of \(R_0 \) we have that for any prime \(p|d' \) we verify that \(\tilde{r}_p \) is not divisible by \(\frac{m}{d}d' \). This contradiction proves the claim and \(\langle R_0 \rangle = \langle R \rangle \). Moreover by the construction of the \(R_0 \), we have \(\text{card}(R_0) \leq \omega(m) \). Hence the lemma follows in case \(k = 1 \).

Now suppose the lemma is true for any \(k \leq l - 1 \) with \(l \geq 2 \). We shall show that the lemma holds for \(k = l \). Let \(\pi_1 : F^l \rightarrow F \) be the projection map on the first co-ordinate. Then \(\pi_1((R)) \) is the module of \(F \) and using the fact that the lemma holds for \(k = 1 \), it follows that there exist \(R_0' \subset R \) with \(\text{card}(R_0') \leq g(F) \) such that \(\pi_1((R_0')) = \pi_1((R)) \). Thus for any \(r \in R \), there exist \(r_1 \in \langle R_0' \rangle \) such that \(\pi(r - r_1) = 0 \). Let \(\tilde{r}'' = \{r - r_1 : r \in R \} \). Then \(\tilde{r}'' \subset F^{l-1} \) and by the induction hypothesis there exist a subset \(R_0'' \) of \(R'' \) such that \(\text{card}(R_0'') \leq g(F)(k - 1) \) and \(\langle R'' \rangle = \langle R_0'' \rangle \). Let \(R_0 = R_0' \cup R_0'' \). Since \(\langle R \rangle = \langle R'' \rangle + \langle R_0' \rangle \), it follows that \(\langle R_0 \rangle = \langle R \rangle \). Moreover we have that \(\text{card}(R_0) \leq \text{card}(R_0') + \text{card}(R_0'') \leq g(F)k \). Hence the lemma follows.

The following lemma is a generalisation of [[6], Lemma 11].

Lemma 12. Let \(H \) be an \(F \)-module. Then the number of Freiman \(s \)-isomorphism classes of subsets of \(H \) of the cardinality \(k \) is at most \(k^{2^g(F)k} \).

Proof. Let \(c(k) \) be the number of Freiman \(s \)-isomorphism classes of subsets of \(H \) of the cardinality \(k \). From Lemma 7 any subset \(B \) of the cardinality \(k \) is isomorphic to \(B_{r,s} \), which is the image of canonical basis of \(F^k \) under the projection map from \(F^k \) to \(F^k/\langle R_s(B) \rangle \) where \(R_s(B) \) is a subset of \(R \). Thus \(c(k) \) is at most the number of submodules of \(F^k \) which are spanned by a subset of \(R_s \). Using Lemma 11 any such submodule is spanned by a subset \(R_0 \) of \(R_s \) of cardinality at most \(g(F)k \). Thus \(c(k) \leq \sum_{i=0}^{g(F)k} \binom{k^2}{i} \leq k^{2^g(F)k} \).

Using Lemma 7 the Freiman \(s \)-isomorphism class of any subset \(A \) of an \(F \)-module \(H \) is determined by \(s \)-relation satisfied by it. Using this and the arguments used in the proof of [[6], Lemma 16], we obtain the following result.

Lemma 13. [[6], Lemma 16] Let \(H \) be an \(F \)-module. Fix a non-negative integer \(t \) and a subset \(B \) of \(M \) with \(\text{card}(B) = l \). Then the number of mutually non-isomorphic sets \(A \) with \(\text{card}(A) = l + t \), such that there exists a subset \(A_0 \subset A \) satisfying \(A_0 \) is Freiman \(3 \)-isomorphic to \(B \) is at most \((l^3 + 1)^{d^4}\).

For any subset \(A \) of an \(F \)-module \(H \), let \(A_0 \) be a subset of \(A \) of the minimum possible cardinality among the subsets of \(A \) satisfying the property that there exists \(a^* \in A \) such that \(a^* + (A \setminus \{a^*\}) \subset A_0 \wedge A_0 \). Among all the possible choices of \(A_0 \), we choose the one with the minimum possible cardinality of \(A_0 \wedge A_0 \). For any positive integers \(s_1, s_2 \), we define the following subset of \(S(k_1, k_2, C, M) \).

\[
S(k_1, k_2, s_1, s_2, C, M) = \{ A \in S(k_1, k_2, C, M) : \text{card}(A_0) = s_1, \text{card}(A_0 \wedge A_0) = s_2 \}.
\]

(10)
For any \(A \in S^-(k_1, k_2, C, M) \), we also choose a subset \(A_0 \) of \(A \) which is of the minimum possible cardinality among the subsets of \(A \), satisfying that there exist an \(a^* \in A \) such that \(a^* - A \subset A_0 - A_0 \). Among all the possible choices of \(A_0 \) we choose a one with the cardinality of \(A_0 - A_0 \) minimal possible. For any positive integers \(s_1 \) and \(s_2 \) we set

\[
S^-(k_1, k_2, s_1, s_2, C, M) = \{ A \in S^-(k_1, k_2, C, M) : \text{card}(A_0) = s_1, \text{card}(A_0 - A_0) = s_2 \}.
\]

The following lemma is an easy exercise.

Lemma 14. [8 Lemma 16] Suppose that \(X \cong_0 X' \). Then \(X + X \cong_3 X' + X' \) and any subset \(B \subset X + X \) is 3-isomorphic to a subset of \(X' + X' \). Similarly \(X - X \cong_3 X' - X' \) and any subset \(B \) of \(X - X \) is Freiman 3-isomorphic to a subset of \(X' - X' \).

Using Lemmas 12, 13, 14 and the argument used in the proof of [6 Proposition 18] we obtain the following result.

Proposition 15. Let \(M \) be an \(F \)-module. Then the number of Freiman 2-isomorphism classes of sets in \(S(k_1, k_2, s_1, s_2, C, M) \) as well as in \(S^-(k_1, k_2, s_1, s_2, C, M) \) is at most \((s_1)^{12\sigma(F)}s_1(k_1^3 + 1) \).

Now we obtain an upper bound for the cardinality of \(A_0 \) for any \(A \in S(k_1, k_2, C, M) \).

Lemma 16. For any \(A \in S(k_1, k_2, C, M) \), there exist \(a^* \in A \), \(A_0' \subset A \) and \(A_1 \subset A \) with \(\text{card}(A_0') + \text{card}(A \setminus A_1) \ll (k_1k_2 \log k_1)^{1/3} \) such that \(a^* + A_1 \subset A_0' + A_0' \). Similarly for any \(A \in S^-(k_1, k_2, C, M) \), there exist \(a^* \in A \), \(A_0' \subset A \) and \(A_1 \subset A \) with \(\text{card}(A_0') + \text{card}(A \setminus A_1) \ll (k_1k_2 \log k_1)^{1/3} \) such that \(a^* - A_1 \subset A_0' - A_0' \).

Proof. The proof follows from the arguments used in the proof of [6 Proposition 15] with the choice of the parameters \(Q \) to be \(\left[\frac{k_1^{4/3}}{k_2^{2/3}} \log^{1/3} k_1 \right] \) and \(q \) to be \(100^{1/3}/k_2^{1/2} \sqrt{Q} \). In [6 Proposition 15] it was assumed that \(k_2 \leq k_1^{31/30} \) and the choice of parameters \(Q \) and \(q \) used were \([k_1^{1/5}] \) and \(k_1^{-1/15} \) respectively. \(\square \)

Corollary 17. For any \(A \in S(k_1, k_2, C, M) \), let \(A_0 \) be a subset of \(A \) as define above. Then we have \(\text{card}(A_0) \ll (k_1k_2 \log k_1)^{1/3} \). Similar statement holds for any \(A \in S^-(k_1, k_2, C, M) \).

Proof. For any \(A \in S(k_1, k_2, C, M) \), let \(A_1, A_0' \) be subsets of \(A \) as provided by the previous lemma. We take \(A_0'' = A_0' \cup \{a^*\} \cup (A \setminus A_1) \). Then it follows that \(a^* + (A \setminus \{a^*\}) \subset A_0'' + A_0'' \) and \(\text{card}(A_0'') \ll (k_1k_2 \log k_1)^{1/3} \). This proves the claim for any \(A \in S(k_1, k_2, C, M) \). Similar arguments prove the claim for any \(A \in S^-(k_1, k_2, C, M) \). \(\square \)
2 Proof of Theorems 6 and 3

Proof of Theorem 6. Using Proposition 13, Lemmas 17 and 12 with $F = \mathbb{Z}/m\mathbb{Z}$ and $M = C = G$, it follows that there exist an absolute constant $c > 0$ such that the number of Freiman isomorphism classes of sets in $S(k_1, k_2, G)$ is at most

$$\min \left(k_1^{\omega(n)(k_1 k_2 \log k_1)^{1/3}} \left(\frac{k_2}{k_1 - 1} \right)^{(k_1^3 + 1), k_1^4 k_1} \right).$$

For obtaining the above estimate we have also used the fact that $\text{card}(A_0 + A_0) \leq k_2$ and since m is the exponent of G, we have $\omega(m) = \omega(n)$. Similar arguments show that the same upper bound holds for the number of Freiman isomorphism classes of sets in $S^-(k_1, k_2, G)$. Then the theorem follows using (7) and Proposition 10 with $C = M = G$. \hfill \Box

Proof of Theorem 3. For any $A \in S^-(k_1, k_2, G)$, let A_0 be a subset of A as defined above. Since $\alpha^* - A \subset A_0 - A_0$, we have $\text{card}(A_0 - A_0) \geq k_1$. Moreover from Lemma 17 we have that $\text{card}(A_0) \ll (k_1 k_2 \log k_1)^{1/3}$. Thus if k_1 is sufficiently large, then there exists a subset A' of G with $A_0 \subset A' \subset A$ such that we have $\text{card}(A') \geq \frac{k_1}{100}$ and $\text{card}(A' - A') \geq 100 \text{card}(A')$. Now if A spans a complete subgraph in a random Cayley graph G_B then so does A'. Therefore we obtain

$$\mathbb{P}(\text{cl}(B) \geq k_1) \leq \sum_{k_1/100 \leq k'_2 \leq k_1, k'_2 \geq 100k'_1} \frac{\text{card}(S(k'_1, k'_2, G))}{2(k'_2 - 1)/2}. \quad (11)$$

Then using Theorem 6 we verify the following inequality.

$$\mathbb{P}(\text{cl}(B) \geq k_1) \leq \sum_{k_1/100 \leq k'_1 \leq k_1, k'_2 \geq 100k'_1} 2^{-k'_2 g(k'_1, k'_2, n)}, \quad (12)$$

with

$$g(k'_1, k'_2, n) = -\frac{\omega(n)(k'_1 \log k'_1)^{1/3} \log k'_1}{k'_2^{2/3}} - \frac{1}{k'_2 \log \left(\frac{k'_2}{k'_1 - 1} \right)} - \frac{4 \log k'_1 \log n}{k'_1} + 1/2 - \frac{1}{2k'_2}.$$

Since $k'_2 \geq 100k'_1$, using the inequality $\left(\frac{k'_2}{k'_1} \right)^{k'_1} \leq \left(\frac{e k'_1}{n} \right)^{k'_1}$, it follows that there exist an absolute constant c_1 such that for $k'_1 \geq c_1 (\omega^3(n) \log \omega(n) + \log n \log \log n)$, then $g(k'_1, k'_2, n) \geq c_2$, for some absolute constant $c_2 > 0$. Using this and (12), the theorem follows. \hfill \Box

3 Freiman rank of a set

In this section we prove Corollary 24 which was proven by Ben Green in 6, Corollary 14] in the case when F is a field. Although the result is not
required for proving other results of this article, it may be of an independent interest.

Rank of an F-module: For any F-module H, the rank of H is the least non negative integer r(H) such that there is a surjective F-linear map from \(F^{r(H)} \) to H.

Freiman s-rank: Given any finite subset B of a F module H and a positive integer s, we define Freiman s-rank \(r_s(B) \) to be \(r(\text{Hom}_s(B, F)) - 1 \). In case F is a field and \(s = 2, r_s(B) \) is the Freiman dimension of B as defined by Ben Green in [6].

We will need the following well known fact.

Lemma 18. Let \(F \) be either equal to \(\mathbb{Z}/m\mathbb{Z} \) or is equal to \(\mathbb{Q} \). For any finitely generated F-module H, the dual module \(\text{Hom}_F(H, F) \) is isomorphic to H.

Lemma 19. \(r_s(A) = r_s(A_{r,s}) = r(\langle A_{r,s} \rangle) - 1 \).

Proof. Since \(A \) and \(A_{r,s} \) are Freiman s-isomorphic, the first equality follows. From Lemma 8 the module \(\text{Hom}_s(A_{r,s}, F) \) is isomorphic to the module \(\text{Hom}_F(\langle A_{r,s} \rangle, F) \), which from Lemma 18 is isomorphic to \(\langle A_{r,s} \rangle \). Hence the second equality follows.

Lemma 20. There exists a unique F-linear map \(\phi_0 : \langle A_{r,s} \rangle \rightarrow F \) with \(\phi_0(x) = 1_F \) for any \(x \in A_{r,s} \). In case \(F = \mathbb{Z}/m\mathbb{Z} \), and hence \(\langle A_{r,s} \rangle \) is a finite abelian group, the order of any element in \(A_{r,s} \) is equal to m.

Proof. The constant map \(\phi'_0 : A_{r,s} \rightarrow F \) with \(\phi'_0(x) = 1_F \) for any \(x \in A_{r,s} \) is a Freiman s-homomorphism. Therefore using Lemma 8 there exists a unique F-linear map \(\phi_0 : \langle A_{r,s} \rangle \rightarrow F \) with \(\phi_0(x) = 1_F \) for any \(x \in A_{r,s} \). This proves the first part of the lemma. In case \(F = \mathbb{Z}/m\mathbb{Z} \), let \(x \) be any fixed element in \(A_{r,s} \) and \(d \) be the order of \(x \). Since \(\phi_0 \) is F-linear, it follows that \(\phi_0(dx) = d\phi_0(x) = 0 \). Since \(\phi_0(x) = 1_F \), it follows that \(d = m \).

Lemma 21. Let \(H \) be a finitely generated F-module. In case \(F = \mathbb{Z}/m\mathbb{Z} \) and hence \(H \) is a finite abelian group, then \(H = \bigoplus_{i=1}^r A_i \), where \(r = r(H) \) and \(A_i \)'s are cyclic groups. Moreover given any element \(x_1 \in H \) with order of \(x_1 \) being equal to the exponent of \(H \), there exist \(A_i \)'s as above with \(A_1 = \langle x_1 \rangle \).

Proof. From the structure theorem of finite abelian groups, we have that \(H = \bigoplus_{i=1}^r A_i \), where \(s \) is a positive integer and \(A_i \)'s are cyclic groups isomorphic to \(\mathbb{Z}/c_i\mathbb{Z} \) with \(c_i | c_{i-1} \) for all \(2 \leq i \leq s \). Moreover going through the proof of [7] Theorem 2.14.1] the last claim of the lemma follows. To prove the lemma we need to show that \(s = r \). A subset of \(H \) containing an element \(x_i \) from each \(A_i \) with \(x_i \) being a generator of \(A_i \) is of cardinality \(s \) and spans \(H \) as an F-module. Thus from the definition of the rank of an F-module we have \(r \leq s \).
Moreover using the definition of a rank of an F-module we have a surjective group homomorphism $f : \mathbb{Z}^r \to H$. Since \mathbb{Z}^r is a free module over the principle ideal domain \mathbb{Z}, we have that $\ker(f)$ is also a free module over \mathbb{Z}. Moreover there exist a basis $\{y_1, \ldots, y_r\}$ of \mathbb{Z}^r such that the basis of $\ker(f)$ is $\{u_1y_1, \ldots, u ry_r\}$, where u_i's are positive integers. Thus $\mathbb{Z}^r / \ker(f) = \bigoplus_{i=1}^{r} \mathbb{Z}/u_i \mathbb{Z}$. Since H is isomorphic to $\mathbb{Z}^r / \ker(f)$ it follows that H can be written as a direct sum of r cyclic groups. But we also have that H is isomorphic to $\bigoplus_{i=1}^{s} \mathbb{Z}/c_i \mathbb{Z}$ with $c_i | c_{i-1}$ for any i which satisfies $2 \leq i \leq s$. The condition that $c_i | c_{i-1}$ implies that s is the least positive integer d such that H can be written as a direct sum of d cyclic groups. Therefore we have

$$s \leq r. \quad (14)$$

Combining (13) and (14) we have $s = r$. Hence the lemma is proven. \hfill \square

Lemma 22. There exists a subset $X = \{x_1, \ldots, x_r\}$ of $\langle A_{r,s} \rangle$ of cardinality $r = r(\langle A_{r,s} \rangle)$ such that $x_1 \in A_{r,s}$ and $\langle X \rangle = \langle A_{r,s} \rangle$.

Proof. In case F is a field, we have a subset X of $A_{r,s}$ such that X forms a basis of the vector space $\langle A_{r,s} \rangle$. Thus the claim follows in this case. In case $F = \mathbb{Z}/m\mathbb{Z}$, then from Lemma 20 the order of any element in $A_{r,s}$ is equal to the exponent of H. Then using Lemma 21 we have that $\langle A_{r,s} \rangle = \bigoplus_{i=1}^{r} A_i$ with $A_i = \langle x_i \rangle$ and $x_1 \in A_{r,s}$. Therefore $X = \{x_1, \ldots, x_r\}$ is a subset of $\langle A_{r,s} \rangle$ satisfying the assertion of the lemma. \hfill \square

Proposition 23. Let $A_{r,s} = \{\bar{e}_1, \ldots, \bar{e}_{k_1}\}$ be as above. Then the rank of the submodule $H_A = \langle \bar{e}_2 - \bar{e}_1, \ldots, \bar{e}_{k_1} - \bar{e}_1 \rangle$ of $\langle A_{r,s} \rangle$ is equal to $r_s(A) = r(\langle A_{r,s} \rangle) - 1$.

Proof. Since $A_{r,s}$ is contained in $H_A + \bar{e}_1$ and from Lemma 19 the rank of $\langle A_{r,s} \rangle$ is equal to $r_s(A) + 1$, it follows that $r(H_A) \geq r_s(A)$. For proving the lemma we shall show that H_A is contained in a module H of rank at most $r_s(A)$. Let $X = \{x_1, \ldots, x_r\}$ be a subset of $A_{r,s}$ with $x_1 = \bar{e}_1$ and $r = r_s(A) + 1$ as provided by Lemma 22. Since $\langle X \rangle = \langle A_{r,s} \rangle$, for any i with $1 \leq i \leq k_1$, there exists $\lambda_{j,i} \in F$ such that

$$\bar{e}_i = \sum_{j=1}^{r} \lambda_{j,i} x_j. \quad (15)$$

Let ϕ_0 be the F-linear map as in Lemma 20. Then evaluating the value of the both sides of the above equality for the map ϕ_0, we obtain that

$$1_F = \sum_{j=1}^{r} \lambda_{j,i} \phi_0(x_j).$$

Moreover since $x_1 = \bar{e}_1$ and thus $\phi_0(x_1) = \phi_0(\bar{e}_1) = 1_F$, it follows that for any i, we have $\lambda_{1,i} = 1 - \sum_{j=2}^{r} \phi_0(x_j)$. Using this and (15) it follows that $A_{r,s} \subset x_1 + H$ where H is the module $\langle x_2 - \phi_0(x_1)x_1, \ldots, x_r - \phi_0(x_r)x_1 \rangle$. Thus H contains H_A and its rank is clearly less than or equal to $r - 1$. Therefore it follows that $r(H_A) \leq r - 1 = r_s(A)$. Hence the lemma follows. \hfill \square
Corollary 24. Let \(A \) be a finite subset of an \(F \)-module \(H \). Then \(r_s(A) \) is the largest integer \(d \) such that \(A \) is Freiman \(s \)-isomorphic to a subset \(X \) of a module \(H \) of rank \(d \) and \(X \) is not contained in a translate of any proper submodule of \(H \).

Proof. From Lemma 19 we have \(r_s(A) = r_s(A_{r,s}) \). Let \(B = \{ 0, \bar{e}_2 - \bar{e}_1, \ldots, \bar{e}_k - \bar{e}_1 \} \). Then we have a Freiman \(s \)-isomorphism \(f : A_{r,s} \to B \) defined by \(f(\bar{e}_i) = \bar{e}_i - \bar{e}_1 \). From Proposition 23 the rank of the module \(\langle B \rangle = H_A \) is equal to \(r_s(A) \). Moreover we observe that if \(B \) is contained in \(H' + x \) for some submodule \(H' \) of \(H \), then since \(B \) contains 0, it follows that \(x \in H' \) and \(H' = H_A = \langle B \rangle \). In other words \(B \) is not contained in a translate of any proper submodule of \(\langle B \rangle \). This implies that \(d \geq r_s(A) \).

Now using Lemma 8 any Freiman \(s \)-isomorphism \(f : A_{r,s} \to X \) extends as a \(F \)-linear map \(\tilde{f} : \langle A_{r,s} \rangle \to \langle X \rangle \). Since \(A_{r,s} \subset H_A + \bar{e}_1 \), we have that \(X \subset \tilde{f}(H_A) + \tilde{f}(\bar{e}_1) \). Since the rank of \(\tilde{f}(H_A) \) is at most the rank of \(H_A \) which is equal to \(r_s(A) \), it follows that any set isomorphic to \(A \) is contained in a translate of a module of rank at most \(r_s(A) \). This implies that \(d \leq r_s(A) \). Hence \(r_s(A) = d \).

4 Concluding remarks

A subset \(A \) of an abelian group \(G \) is said to be sum-free if there is no solution of the equation \(x + y = z \) with \(x, y, z \in A \). In [3] it was shown that the problem of obtaining an upper bound for the number of sum-free sets in certain types of finite abelian groups is equivalent to obtaining an upper bound for

\[
a(H) = \sum_{k_1,k_2} \frac{\text{Card}(S(k_1,k_2,H))}{2^{k_2}},
\]

with \(H = G/(\mathbb{Z}/m\mathbb{Z}) \), where \(m \) is the exponent of \(G \). Using the upper bound for \(\text{card}(S(k_1,k_2,H)) \) provided by Theorem 6 it follows that

\[
a(H) \leq n^{2/3 \log n},
\]

where \(n \) is the order of \(H \). One could also show that

\[
a(H) \geq \frac{s(H)}{2},
\]

where \(s(H) \) is the number of subgroups of \(H \). Using Theorem 6 one may verify that the main contribution in the right hand side of (16) comes from those summands with \((2 - \epsilon)k_1 \leq k_2 \leq (2 + \epsilon)k_1 \).

Acknowledgement

I thank R. Balasubramanian, D.S. Ramana for many helpful discussions and carefully reading the manuscript. I would also like to thank Jean-Marc Deshouillers, Imre Ruzsa and Gilles Zémor for making several useful comments. A part of this work was done when I was a post doctoral fellow at Harish-Chandra research institute (HRI), Allahabad, India. I am grateful for the support I received during my stay at HRI.
References

[1] N. Alon. Graph powers. In Contemporary Combinatorics, volume 10 of Bolyai Math. Soc. Stud., pages 11–28. Springer, 2002.

[2] N. Alon and A. Orlitsky. Repeated communications and Ramsey graphs. IEEE Transactions on Information Theory, 41:1276–1289, 1995.

[3] R. Balasubramanian, Gyan Prakash, and D.S. Ramana. Sum-free subsets of finite abelian groups of type III. http://arxiv.org/abs/0711.4317.

[4] B. Bollobas. Random Graphs, volume 73. Cambridge studies in advanced mathematics, second edition, 2001.

[5] F. R. K. Chung. A note on constructive methods for Ramsey numbers. J. Graph Theory, 5:109–113, 1981.

[6] Ben Green. Counting sets with small sumset, and the clique number of random Cayley graphs. Combinatorica, 25(3):307–326, 2005.

[7] I.N. Herstein. Topics in Algebra. Wiley Eastern Limited, 2nd edition, 1975.

[8] Paul Erdős. Some remarks on the theory of graphs. Bull. Amer. Math. Soc., 53:292–294, 1947.

Institute of Mathematical Sciences,
CIT Campus, Taramani,
Chennai-600113,
India
gyan.jp@gmail.com