Domain Kernels for Word Sense Disambiguation

Alfio Gliozzo, Claudio Giuliano and Carlo Strapparava, ACL 2005

Discussed by: Mahesh Joshi
University of Minnesota, Duluth
joshi031@d.umn.edu

14th October 2005

Overview

- Background about Kernel Methods
- Domain Models
- Kernel Methods for WSD
- Results and Discussion
Support Vector Machines

- Machine Learning algorithms based on the principle of Structural Risk Minimization from Statistical Learning Theory
- Maximal Margin classifiers

The Classic SVM Diagram

Image Source: http://www.cac.science.ru.nl/people/ustun/SVM.JPG
Basic SVM Equation

- Hyperplane equation is \(<w, x> + b = 0\)
- If the input space is N dimensional, i.e. there are N features, then the hyperplane is N-1 dimensional
- Requires that the data be linearly separable (maybe with just a few misclassified examples)

Duality

- \(w\) has dimensions equal to the number of features
- Turns out that \(w\) can be formulated as a linear combination of the training examples
 - \(w = \sum \alpha_i x_i\) for \(i = 1\) to \(k\) where \(k\) is the number of examples
Duality

- This fact, put together with the original equation for SVM, yields the dual form:

\[\sum_{i=1}^{l} \alpha_i < x_i, x > + b \]

- Notice the Dot Product or the Inner Product

Duality

- Now the algorithm needs to find the *dual variables* \(\alpha_i \)

- In this case \(i \) ranges from 1 through \(k \) where \(k \) is the number of training examples

- This can help efficiency if \(k < N \), i.e. if the number of examples is less than the number of features
Why the Hallelujah About Kernels?

- Many problems are not linearly separable
- So linear hyperplanes cannot help, since some non-linear surface separates the data

Kernels at Work

\[\phi : (x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2) \]

\[(\frac{x_1}{a})^2 + (\frac{x_2}{b})^2 = 1 \quad \text{and} \quad \frac{x_1}{a} + \frac{x_2}{b} = 1 \]

Image Source: http://omega.albany.edu:8008/machine-learning-dir/notes-dir/ker1/phiplot.gif
Input Space to Feature Space

- Need a function (ϕ) that operates upon the input space and yields a feature space
- Should to do this in such a way that the data which was not linearly separable in input space, becomes linearly separable in the feature space

Dual formulation in Feature Space

$$\sum_{i=1}^{l} \alpha_i < \phi(x_i), \phi(x) > + b$$

Increase in the dimensionality due to transformation will not affect efficiency of learning, assuming constant time for transformation.
Kernels

- Instead of
 \[\sum_{i=1}^{l} \alpha_i \phi(x_i), \phi(x) > + b \]

- Make use of
 \[\sum_{i=1}^{l} \alpha_i k(x_i, x) + b \]

- \(k \) is the kernel function which gives you the inner product of the input examples in feature space.

- For \(k \) to be a valid kernel function, it needs to satisfy certain conditions.

- In very simplistic terms, it should be such a function that gives you a valid inner product of the examples when they are transformed into the feature space.
Kernel Computation

With respect to the transformation ϕ on slide 10:

$$< \phi(x), \phi(z) > = < (x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) >$$

$$= x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2$$

$$= (x_1z_1 + x_2z_2)^2 = < x, z >^2$$

What does a Kernel Function Evaluate?

Since the output of the kernel function is an inner product, it evaluates the similarity between 2 examples.

Put another way, the kernel is a measure of the distance between 2 examples.

So formulating a new kernel involves finding a meaningful way to represent distance among the training examples, subject to certain validity conditions.
Domain Kernels for WSD

- Addresses the knowledge acquisition bottleneck
- A form of semi-supervised learning

Key Ideas

- Use of unlabeled corpora for acquiring external knowledge - specifically domain knowledge (domain is used in a more general sense)
- Reducing the required amount of training data (for obtaining a given accuracy) by means of above augmentation
Vector Space Model

- Classical *term-by-document* matrix representation, words along rows and documents along columns
- Cell values are frequencies of the ith word in the jth document
- A given document represented by the corresponding column vector
- Similarity among documents found using cosine measure

VSM Drawbacks

- Lack of understanding *variability* - two documents may be similar even though they do not share any *lexical terms*
- Lack of resolving *ambiguity* - two documents might appear similar due to an ambiguous terms in both of them
Domain Models

- Enhancement over Vector Space Model
- Represents the domain relevance of the terms / words, by making use of a domain matrix D
- Words along rows and domains along columns
- *Again*, think of a domain as an abstract group of related concepts and terms

Advantages of Domain Matrix

- Capture variability in columns, the same domain or similar concept can have multiple words associated with it
- Capture ambiguity in rows, the same word can belong to multiple domains
Transformation

- Transform document vectors from VSM to Domain Model
- Make use of Inverse Document Frequency for each term, in addition to the domain matrix D

Learning a Domain Matrix

- Using Latent Semantic Analysis
- The reduced number of dimensions represent the different domains
- This domain matrix is plugged into the Equation (1) from the paper
- Similarity is then calculated among these domain vectors
Kernel Methods

- The WSD kernel is a combination of several other kernels
 - Bag-of-Words kernel
 - Part-of-Speech kernel
 - Collocation kernel
 - Domain kernel

Domain Kernels

- Aim to use the domain similarity among the context of ambiguous words
- Require a domain matrix which is learned from unlabeled data
- Bab-of-Words kernel is a special case of the domain kernel
Syntagmatic Kernels

- Dealing with sub-sequences of strings
- e.g. n-grams, part of speech tags
- The strings are the contexts
- Sub-sequence length can vary

Salient Results

- The combination containing domain kernels yielded best results
- Reduced the required training data to approximately 50%
- In case of English and Spanish tasks, results exceeded human annotator agreement
References

- A. Gliozzo, C. Giuliano, C. Strapparava: Domain Kernels for Word Sense Disambiguation. Proceedings of the 43rd Annual Meeting of the ACL, pages 403--410, Ann Arbor, June 2005.

- J. Shawe-Taylor and N. Cristianini. 2004. Kernel Methods for Pattern Analysis. Cambridge University Press.