On averages of sums over regular integers modulo n

Waseem Alass

Abstract

In this paper, we provide formulas for partial sums of weighted averages over regular integers modulo n of the gcd-sum function with any arithmetic function. Many interesting applications of the results are also given.

1 Introduction and results

Let $\gcd(k, n)$ be the largest common divisor of the positive integers k and n. An integer k is called regular (mod n) if there exists an integer x such that $k^2 x \equiv k \pmod{n}$, namely, the residue class of k is a regular element of the ring \mathbb{Z}_n of residue classes (mod n). Then, k is regular (mod n) if and only if $\gcd(k, n)$ is a unitary divisor of n. We recall that d is a unitary divisor of n if $d | n$ and $\gcd(d, n/d) = 1$, notation $d || n$. The set Reg_n is defined by

$$\text{Reg}_n = \{k \in \mathbb{N} : 1 \leq k \leq n, \ k \text{ is regular (mod } n\}$$

and $\rho(n)$ denotes the number of the elements in Reg_n. Throughout the paper we use the notations: Let f and g be two arithmetic functions. We define the Dirichlet convolution and the unitary convolution of f and g by $(f * g)(n) = \sum_{d|n} f(d)g(n/d)$ and $(f \star g)(n) = \sum_{d|n} f(d)g(n/d)$, for every positive integer n, respectively. The arithmetic functions $1(n)$ and $\text{id}(n)$ are defined by $1(n) = 1$ and $\text{id}(n) = n$ for all n. Let $\phi(n)$ be the Euler totient function and let $\tau(n)$ be number of distinct divisors of n, namely $\tau(n) = \sum_{d|n} 1$. Let $\sigma_k(n)$ denote the sum of k-th powers of divisors of n, namely $\sigma_k(n) = \sum_{d|n} d^k$. The Jordan totient function is defined as $\phi_s(n) = n^s \prod_{p|n} (1 - 1/p^s)$ or $\sum_{d|n} d^s \mu(n/d)$ which is a generalization of the Euler totient function. The Möbius function is defined as follows

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1; \\ (-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes}; \\ 0 & \text{if } n \text{ is divisible by the square of a prime}. \end{cases}$$

Mathematics Subject Classification 2010: 11A25, 11N37.

Keywords: Regular integers modulo n, gcd-sum function, the Euler totient function, the divisor function.
The letter p always stands for a prime and ζ is the Riemann zeta function. The gcd-sum function, which is also known as Pillai’s arithmetic function, is defined by

$$P(n) = \sum_{k=1}^{n} \gcd(k, n).$$

In 1937, Pillai [7] derived the identity $P(n) = \sum_{d|n} d\phi(n/d)$. For a nice survey on the gcd-sum function see [13]. The gcd-sum function over regular integers modulo n was first introduced by Tóth [12] showing that $\tilde{P}(n) = \sum_{k \in \text{Reg}_{n}} \gcd(k, n)$. He proved that

$$\tilde{P}(n) = \sum_{d|n} d\phi\left(\frac{n}{d}\right), \quad (1)$$

and that

$$\sum_{n \leq x} \tilde{P}(n) = \frac{x^2}{2\zeta(2)} (K_1 \log x + K_2) + O\left(x^{3/2} \exp\left(-C \frac{(\log x)^{3/5}}{(\log \log x)^{1/5}}\right)\right), \quad (2)$$

where C is a positive constant and

$$K_1 = \prod_{p} \left(1 - \frac{1}{p(p+1)}\right), \quad (3)$$

$$K_2 = K_1 \left(2\gamma - \frac{1}{2} - 2 \frac{\zeta'(2)}{\zeta(2)}\right) - \sum_{n \geq 1} \frac{\mu(n)}{n} \frac{(\log n - \alpha(n) + 2\beta(n))}{n \psi(n)}, \quad (4)$$

with γ is the Euler constant and

$$\alpha(n) = \sum_{p|n} \frac{\log n}{p - 1}, \quad \beta(n) = \sum_{p|n} \frac{\log p}{p^2 - 1}.$$

Here the function $\psi(n)$ is well known as the Dedekind function defined by $\psi(n) = n \prod_{p|n} \left(1 + \frac{1}{p}\right)$. Recently, the error term in Eq (2) has been improved by Zhang and Zhai [16], under the Riemann hypothesis. They proved that

$$\sum_{n \leq x} \tilde{P}(n) = \frac{x^2}{2\zeta(2)} (K_1 \log x + K_2) + O\left(x^{15/11+\varepsilon}\right),$$

for any sufficiently small positive number $\varepsilon > 0$. In [11], Apostol and Tóth introduced the multidimensional generalization of ρ. They established identities for the power sums of regular integers (mod n), involving the Bernoulli polynomials, the Gamma function and the cyclotomic polynomials. More recently, Kiuchi and Matsuoka [5, Theorem 3.1] proved that, for any fixed positive integer r and any arithmetic function f, we have

$$\frac{1}{n^r} \sum_{k \in \text{Reg}_n} f(\gcd(k, n))k^r = \frac{f(n)}{2} + \frac{1}{r+1} \sum_{m=0}^{[r/2]} \binom{r+1}{2m} B_{2m} \sum_{d|n} f\left(\frac{n}{d}\right) \phi_{1-2m}(d),$$

where B_m is the mth Bernoulli number.
where B_m are the Bernoulli numbers. In the present paper, we give formulas for the partial sums of weighted averages over regular integers (mod n) of the gcd-sum function with any arithmetic function f. We prove that

Theorem 1.1. For any arithmetic function f, any sufficiently large positive number $x > 2$ and fixed positive integer r, we have

$$U_f(x) := \sum_{n \leq x} \frac{1}{n^{r+1}} \sum_{k \in \text{Reg}_n} f(\gcd(k,n)) k^r =$$

$$\frac{1}{2} \sum_{n \leq x} f(n) + \frac{1}{r+1} \sum_{m=0}^{[r/2]} \binom{r+1}{2m} B_{2m} \sum_{d \leq x \atop \gcd(d,\ell)=1} \frac{f(\ell) \phi_{1-2m}(d)}{\ell} \ .$$

When f satisfies the condition $f(n) \neq 0 \ \forall n \in \mathbb{N}$, we have

$$V_f(x) := \sum_{n \leq x} \frac{1}{n^r f(n)} \sum_{k \in \text{Reg}_n} f(\gcd(k,n)) k^r =$$

$$\frac{x}{2} - \frac{\theta(x)}{2} - \frac{1}{4} + \frac{1}{r+1} \sum_{m=0}^{[r/2]} \binom{r+1}{2m} B_{2m} \sum_{d \leq x \atop \gcd(d,\ell)=1} \frac{f(\ell) \phi_{1-2m}(d)}{f(d\ell)},$$

where $\theta(x) = x - \lfloor x \rfloor - 1/2$.

This theorem is actually easily deduced from the results in [5], but the advantage of it is that this theorem is a source of various interesting number-theoretic formulas. Next theorem provides applications of the above results for various multiplicative functions such as id, μ, τ and ϕ_2.

Theorem 1.2. Under the hypotheses of Theorem 1.1 we have

$$U_{\text{id}}(x) = \frac{K_1}{(r+1)\zeta(2)} x \log x$$

$$+ \left(\frac{1}{2} - \frac{K_1}{2(r+1)\zeta(2)} + \frac{K_2}{(r+1)\zeta(2)} + \frac{1}{r+1} \sum_{m=1}^{[r/2]} \binom{r+1}{2m} B_{2m} C_m \right) x$$

$$+ O_r \left(x^{1/2} \exp \left(-C \frac{(\log x)^{3/5}}{(\log \log x)^{1/5}} \right) \right) ,$$

where

$$C_m := \prod_p \left(1 - \frac{(p-1)(p^{2m-1} - 1)}{p(p^{2m+1} - 1)} \right) ,$$

and K_1, K_2 are defined by Eqs (3) and (4) respectively,
\[U_r(x) = \frac{x}{(r+1)\zeta(2)} \prod_p \left(1 + \frac{(2p^2-1)p}{(p-1)^2(p+1)^3}\right) + O_r \left((\log x)^5\right). \tag{9} \]

Moreover, we have
\[V_{\phi_s}(x) = \left(\frac{1}{2} + \frac{1}{r+1} \prod_p \left(1 + \frac{1}{(p+1)^2}\right)\right)x \]
\[+ \frac{x}{r+1} \sum_{m=0}^{[r/2]} \left(\frac{r+1}{2m}\right) \cot^{2m} \prod_p \left(1 - \frac{p(p^{2m-1} - 1)}{(p+1)(p^{2m^2} - 1)}\right) + O_r \left((\log x)^4\right). \tag{10} \]

2 Auxiliary results

Before we proceed the proof of our results, we need some auxiliary lemmas.

Lemma 2.1. For any positive integer \(t > 1 \), we have
\[\sum_{1 \leq n \leq x \atop (n,t)=1} 1 = \frac{\phi(t)}{t} x - \sum_{d \mid t} \mu(d) \left(\frac{x}{d}\right), \tag{11} \]
where \(\theta(x) = x - \lfloor x \rfloor - 1/2 \). Let \(\tau^* \) be the number of square-free divisors of \(t \). Then, we have
\[\sum_{1 \leq n \leq x \atop (n,t)=1} \frac{\phi(n)}{n} = \frac{t\phi(t)}{\zeta(2)\phi_2(t)} x + O \left(\tau^*(t) \log x\right). \tag{12} \]

For any positive integer \(s \geq 2 \), we have
\[\sum_{1 \leq n \leq x \atop (n,t)=1} \frac{\phi_{-s}(n)}{n} = O \left(\frac{\phi_s(t)}{t^s} \log x + \frac{\sigma(t)}{t} \log x\right). \tag{13} \]
and
\[\sum_{1 \leq n \leq x \atop (n,t)=1} \frac{\phi_{-1}(n)}{n} = O \left(\frac{\phi(t)}{t} (\log x)^2 + \frac{\phi(t)}{t} \log \log(3t) \log x + \frac{\phi(t)}{t} \log x + \tau(t) \log x\right). \tag{14} \]

Proof. For Eq. (11) see [5, Lemma 2.1]. The proof of Eq. (12) can be found in [10] or [9] Chapter 1, Section 1.24]. Eqs. (13) and (14) follow by the Abel identity and using the fact that
\[\sum_{1 \leq n \leq x \atop (n,t)=1} \phi_{-s}(n) = O \left(\frac{\phi_s(t)}{t^s} x + \frac{\sigma(t)}{t}\right), \quad (s \geq 2) \]
and
\[\sum_{n \leq x} \phi_1(n) = O\left(\frac{\phi(t)}{t} x \log x + x \frac{\phi(t)}{t} \log \log(3t) + x\tau(t)\right).\]

The proof of the above two sums can be found in \[5, Lemma 2.2, Lemma 2.3\].

\textbf{Lemma 2.2.} For \(x \geq 2\), we have
\[\sum_{n \leq x} \mu(n) \frac{n}{n} = O\left(\exp\left(-B(\log x)^{\frac{3}{5}}(\log \log x)^{-\frac{1}{5}}\right)\right),\]
(15)
\[\sum_{n \leq x} \phi(n) \frac{n}{n^2} = \frac{1}{\zeta(2)} \log x + \frac{1}{\zeta(2)} \left(\gamma - \frac{\zeta'(2)}{\zeta(2)}\right) + O\left(\frac{\log x}{x}\right),\]
(16)

where \(B > 0\) and \(\gamma\) is Euler’s constant. Furthermore, we have
\[\sum_{n \leq x} \tau(n) \frac{n}{n} = \frac{1}{2}(\log x)^2 + 2\gamma \log x + (2\gamma - 1) + O\left(x^{285/416}(\log x)^{26947/8320}\right),\]
(17)
\[\sum_{n \leq x} \tau^*(n) \frac{n}{n} = \frac{1}{2\zeta(2)}(\log x)^2 + \left(2\gamma + \frac{\zeta'(2)}{\zeta(2)}\right) \frac{\log x}{\zeta(2)} + \left(2\gamma - 1 + \frac{\zeta'(2)}{\zeta(2)}\right) \frac{1}{\zeta(2)} + O\left(x^{-1/2} \exp\left(A(\log x)^{3/5}(\log \log x)^{-1/5}\right)\right),\]
(18)

and
\[\sum_{n \leq x} \tau^2(n) \frac{n}{n} = \frac{(\log x)^4}{4\pi^2} + \left(\frac{B_1}{3} + \frac{1}{\pi^2}\right) (\log x)^3 + B_1 (\log x)^2 + C \log x + O(1),\]
(19)

where \(A > 0\) and \(B_1, C\) are constants.

\textbf{Proof.} For Eqs. (15) and (16) see \[3\] and \[4, Lemma 2.1\]. Eq. (17) follows at once by Abel’s identity and the following formula
\[\sum_{n \leq x} \tau(n) = x \log x + (2\gamma - 1)x + \Delta(x),\]
(20)

with \(\Delta(x) = O\left(x^{\theta + \varepsilon}\right)\). It is known that \(1/4 \leq \theta \leq 131/416\), and that the best upper bound we have for \(\Delta(x)\) is \(O\left(x^{131/416}(\log x)^{26947/8320}\right)\), which has been given by Huxley \[2\].

Eqs. (18) and (19) follow from the Abel identity and the formulas
\[\sum_{n \leq x} \tau^*(n) = \frac{x}{\zeta(2)} \left(\log x + 2\gamma - 1 + \frac{\zeta'(2)}{\zeta(2)}\right) + O\left(x^{1/2} \exp\left(-A_1(\log x)^{3/5}(\log \log x)^{-1/5}\right)\right)\]
and
\[\sum_{n \leq x} \tau^2(n) = \frac{1}{\pi^2} x (\log x)^3 + B_1 x (\log x)^2 + C x + D + O \left(x^{1/2 + \epsilon} \right), \quad (21) \]

where \(A_1 > 0 \) and \(B_1, C, D \) are constants and \(\epsilon > 0 \). The proof of the last two sums can be found in [11], [15] and [9, Chapter 2, Section II.13].

Lemma 2.3. For any sufficiently large positive number \(x > 2 \), we have
\[
\sum_{\ell > x} \frac{\tau(\ell)}{\ell^2} = O \left(\frac{\log x}{x} \right),
\]
\[
\sum_{\ell > x} \frac{\tau^2(\ell)}{\ell^2} = O \left(\frac{(\log x)^3}{x} \right),
\]
\[
\sum_{\ell > x} \frac{\tau(\ell)}{\ell^3} = O \left(\frac{(\log x)^2}{x^2} \right).
\]

Proof. In order to prove Eq. (22), we write
\[
\sum_{\ell > x} \frac{\tau(\ell)}{\ell^2} = 2 \sum_{\ell > x} \tau(\ell) \int_{\ell}^{\infty} \frac{dt}{t^3} = 2 \int_{x}^{\infty} \sum_{x < t \leq \ell} \frac{\tau(\ell)}{t^3} dt.
\]
From Eq. (20), we get the desired result. The treatment of Eqs. (23) and (24) is similar as in the above and with the help of Eqs. (20) and (21).

3 Proofs

3.1 Proof of Theorem 1.1

We recall that
\[
\frac{1}{n^r} \sum_{k \in \text{Reg}_n} f(\gcd(k, n))k^r = \frac{f(n)}{2} + \frac{1}{r + 1} \sum_{m=0}^{[r/2]} \binom{r + 1}{2m} B_{2m} \sum_{d | n} f \left(\frac{n}{d} \right) \phi_{1 - 2m}(d).
\]

Then, we have
\[
U_f(x) = \frac{1}{2} \sum_{n \leq x} \frac{f(n)}{n} + \frac{1}{r + 1} \sum_{m=0}^{[r/2]} \binom{r + 1}{2m} B_{2m} \sum_{n \leq x} \frac{1}{n} \sum_{d | n} f \left(\frac{n}{d} \right) \phi_{1 - 2m}(d).
\]
Here, the condition \(d \mid | n \) can be translated to \(d \mid n \) and \(\gcd(d, n/d) = 1 \). Then the last sum on the right-hand side above becomes

\[
\sum_{n \leq x} \frac{1}{n} \sum_{d \mid n} f\left(\frac{n}{d}\right) \phi_{1-2m}(d) = \sum_{n \leq x} \frac{1}{n} \sum_{d \mid n, \gcd(d,n/d)=1} f\left(\frac{n}{d}\right) \phi_{1-2m}(d)
\]

\[
= \sum_{n \leq x} \frac{1}{n} \sum_{\ell = d, \gcd(d,\ell)=1} f(\ell) \phi_{1-2m}(d)
\]

\[
= \sum_{d \ell \leq x, \gcd(d,\ell)=1} \frac{1}{d \ell} f(\ell) \phi_{1-2m}(d).
\]

Hence, we get

\[
U_f(x) = \frac{1}{2} \sum_{n \leq x} \frac{f(n)}{n} + \frac{1}{r+1} \sum_{m=0}^{\lfloor r/2 \rfloor} \left(\frac{r+1}{2m} \right) B_{2m} \sum_{d \ell \leq x, \gcd(d,\ell)=1} \frac{f(\ell) \phi_{1-2m}(d)}{d}.
\]

This completes the proof of Eq. (\ref{eq:5}). Similarly, if \(f(n) \neq 0 \) for all \(n \in \mathbb{N} \), we find that

\[
V_f(x) = \frac{1}{2} \sum_{n \leq x} 1 + \frac{1}{r+1} \sum_{m=0}^{\lfloor r/2 \rfloor} \left(\frac{r+1}{2m} \right) B_{2m} \sum_{d \ell \leq x, \gcd(d,\ell)=1} \frac{f(\ell) \phi_{1-2m}(d)}{f(d \ell)}.
\]

Using the fact that

\[
\sum_{n \leq x} 1 = x - \theta(x) - \frac{1}{2}, \quad (25)
\]

where \(\theta(x) = x - [x] - 1/2 \), we deduce

\[
V_f(x) = \frac{x}{2} - \frac{\theta(x)}{2} - \frac{1}{4} + \frac{1}{r+1} \sum_{m=0}^{\lfloor r/2 \rfloor} \left(\frac{r+1}{2m} \right) B_{2m} \sum_{d \ell \leq x, \gcd(d,\ell)=1} \frac{f(\ell) \phi_{1-2m}(d)}{f(d \ell)},
\]

as desired.

3.2 Proof of Theorem 1.2

By Eq. (\ref{eq:5}) of Theorem 1.1 with \(f \) replaced by \(\text{id} \), we find that

\[
U_{\text{id}}(x) = \frac{1}{2} \sum_{n \leq x} 1 + \frac{1}{r+1} \sum_{m=0}^{\lfloor r/2 \rfloor} \left(\frac{r+1}{2m} \right) B_{2m} \sum_{d \ell \leq x, \gcd(d,\ell)=1} \frac{\phi_{1-2m}(d)}{d}.
\]
Using Eq. (25), we get

\[
U_{id}(x) = \frac{x}{2} - \frac{\theta(x)}{2} - \frac{1}{4} + \frac{1}{r+1} \sum_{d \leq x} \frac{\phi(d)}{d} \sum_{\ell \leq x \atop \gcd(d,\ell) = 1} \frac{\phi(\ell)}{\ell} + \frac{1}{r+1} \sum_{m=1}^{\lfloor r/2 \rfloor} \left(\frac{r+1}{2m} \right) B_{2m} \sum_{d \leq x \atop \gcd(d,\ell) = 1} \frac{\phi_{1-2m}(d)}{d}.
\]

The first summation on the right-hand side above is just the case \(m = 0\) in the second summation, because \(B_0 = 1\). Put

\[
A_0(x) := \sum_{d \leq x \atop \gcd(d,\ell) = 1} \frac{\phi(d)}{d}, \quad A_m(x) := \sum_{d \leq x \atop \gcd(d,\ell) = 1} \frac{\phi_{1-2m}(d)}{d},
\]

and note that \(A_0(x)\) can be rewritten as follows

\[
A_0(x) = \sum_{n \leq x} \sum_{d \mid n} \frac{\phi(d)}{d} \sum_{n \leq x} \left(1 \ast \frac{\phi}{id} \right) (n) = \sum_{n \leq x} \hat{P}(n) / n,
\]

where the symbol \(\ast\) is the unitary convolution and \(\hat{P}(n)\) is the gcd-sum function over regular integers modulo \(n\) defined by Eq. (1). Using Eq. (2) and Abel’s identity, we get

\[
A_0(x) = \frac{x}{\zeta(2)} (K_1(\log x - 1/2) + K_2) + O \left(x^{1/2} \exp \left(-C \frac{(\log x)^3/5}{(\log \log x)^{1/5}} \right) \right). \tag{26}
\]

Moreover, \(A_m(x)\) is written as

\[
A_m(x) = \sum_{d \leq x} \frac{\phi_{1-2m}(d)}{d} \sum_{\ell \leq x/d \atop \gcd(\ell,d) = 1} 1.
\]

By Eq. (11), we get

\[
A_m(x) = x \sum_{d \leq x} \frac{\phi_{1-2m}(d) \phi(d)}{d^3} - \sum_{d \leq x} \frac{\phi_{1-2m}(d)}{d} \sum_{k \mid d} \mu(k) \theta \left(\frac{x}{kd} \right). \tag{27}
\]

Since the ordinary product of two multiplicative functions is a multiplicative function and \(\sum_{d \geq 1} |\phi_{1-2m}(d) \phi(d)|d^{-3} < \infty\), we can write the first term on the right-hand side of Eq. (27) by Euler’s product representation, namely

\[
\sum_{d \leq x} \frac{\phi_{1-2m}(d) \phi(d)}{d^3} = \prod_{p} \left(1 - \frac{(p-1)(p^{2m-1} - 1)}{p(p^{2m+1} - 1)} \right) + O \left(x^{-1} \right).
\]

8
because
\[\sum_{d \geq 1} \frac{\phi_{1-2m}(d) \phi(d)}{d^3} = \prod_p \left(1 - \frac{1}{p} \left(1 - \frac{p^{2m-1}}{p^{2m+1}-1} \right) \right),\]

and
\[\sum_{d > x} \frac{\phi_{1-2m}(d) \phi(d)}{d^3} = O \left(x^{-1} \right).\]

As for the second term on the right-hand side of Eq. (27), we have
\[\left| \sum_{d \leq x} \frac{\phi_{1-2m}(d)}{d} \sum_{k \mid d} \mu(k) \theta \left(\frac{x}{kd} \right) \right| \leq \sum_{d \leq x} \frac{\phi_{1-2m}(d) \tau(d)}{d}.\]

Then, we get
\[\sum_{d \leq x} \frac{\phi_{1-2m}(d)}{d} \sum_{k \mid d} \mu(k) \theta \left(\frac{x}{kd} \right) = O_m \left((\log x)^2 \right),\]
where we used Eq. (17) and the fact \(\phi_{1-2m}(d) \ll 1. \) From the above, we obtain
\[A_m(x) = \prod_p \left(1 - \frac{1}{p} \left(1 - \frac{p^{2m-1}}{p^{2m+1}-1} \right) \right) x + O_m((\log x)^2). \quad (28)\]

From Eqs. (26) and (28), we obtain the desired formula (7).

Next, we take \(f = \mu \) into Eq. (5) of Theorem 1.1 to get
\[U_\mu(x) = \frac{1}{r+1} \left(r + 1 \right) \sum_{m=0}^{\left\lfloor r/2 \right\rfloor} \left(\frac{r+1}{2m} \right) B_{2m} \sum_{\substack{d \leq x \\text{gcd}(d,\ell) = 1}} \frac{\phi_{1-2m}(d) \mu(\ell)}{d \ell} + O \left(\exp \left(-B(\log x)^{3/2}(\log \log x)^{-1/2} \right) \right).\]

Using Eq. (11) of Lemma 2.2, the above function is rewritten as
\[U_\mu(x) = \frac{1}{r+1} \sum_{m=0}^{\left\lfloor r/2 \right\rfloor} \left(\frac{r+1}{2m} \right) B_{2m} \sum_{\substack{d \leq x \\text{gcd}(d,\ell) = 1}} \frac{\phi_{1-2m}(d) \mu(\ell)}{d \ell} + O \left(\exp \left(-B(\log x)^{3/2}(\log \log x)^{-1/2} \right) \right).\]

We call the inner sum on the right-hand side above \(L_m(x) \), namely
\[L_m(x) := \sum_{\substack{d \ell \leq x \\text{gcd}(d,\ell) = 1}} \frac{\phi_{1-2m}(d) \mu(\ell)}{d \ell}.\]

For \(m = 0 \), we have
\[L_0(x) = \sum_{\substack{d \ell \leq x \\text{gcd}(d,\ell) = 1}} \frac{\phi(d) \mu(\ell)}{d \ell} = \sum_{\ell \leq x} \frac{\mu(\ell)}{\ell} \sum_{\substack{d \leq x/\ell \\text{gcd}(d,\ell) = 1}} \frac{\phi(d)}{d}.\]
Applying Eq (12) of Lemma 2.1 to the inner sum, we get

\[L_0(x) = \sum_{\ell \leq x} \frac{\mu(\ell)}{\ell} \left(\frac{\ell \phi(\ell)}{\zeta(2) \phi_2(\ell)} \frac{x}{\ell} + O \left(\tau^*(\ell) \log \left(\frac{x}{\ell} \right) \right) \right) \]

\[= \frac{x}{\zeta(2)} \sum_{\ell \leq x} \frac{\mu(\ell) \phi(\ell)}{\ell \phi_2(\ell)} + O \left(\log x \sum_{\ell \leq x} \frac{\mu(\ell) \tau^*(\ell)}{\ell} \right). \] (29)

Since \(\mu, \phi \) and \(\phi_2 \) are multiplicative functions and \(\sum_{\ell \geq 1} |\mu(\ell)\phi(\ell)/\phi_2(\ell)| \ell^{-1} < \infty \), the first sum of Eq (29) is rewritten as

\[\sum_{\ell \leq x} \frac{\mu(\ell) \phi(\ell)}{\ell \phi_2(\ell)} = \prod_p \left(1 - \frac{1}{p(p+1)} \right) + O \left(\frac{\log x}{x} \right), \]

because

\[\sum_{\ell \geq 1} \frac{\mu(\ell) \phi(\ell)}{\ell \phi_2(\ell)} = \prod_p \left(1 - \frac{1}{p(p+1)} \right) = 0.704442 \ldots, \quad \sum_{\ell > x} \frac{\mu(\ell) \phi(\ell)}{\ell \phi_2(\ell)} = O \left(\frac{\log x}{x} \right). \]

This latter is estimated by using the facts \(\phi(\ell) \ll \ell, \phi_2(\ell) \geq \ell^2/\tau(\ell) \), and Eq (22). Using Eq (18), the error term of \(L_0(x) \) is estimated by \((\log x)^3 \). Thus

\[L_0(x) = \frac{x}{\zeta(2)} \prod_p \left(1 - \frac{1}{p(p+1)} \right) + O \left((\log x)^3 \right). \]

For \(m = 1 \), we note that

\[L_{-1}(x) = \sum_{\substack{d \leq x \\gcd(d,\ell) = 1}} \frac{\phi^{-1}(d) \mu(\ell)}{d} = \sum_{\ell \leq x} \frac{\mu(\ell)}{\ell} \sum_{\substack{d \leq x/\ell \\gcd(d,\ell) = 1}} \frac{\phi^{-1}(d)}{d}. \]

Using Eq (14) of Lemma 2.1, we get

\[L_{-1}(x) = O \left(\sum_{\ell \leq x} \frac{\mu(\ell) \phi(\ell)}{\ell^2} (\log x/\ell)^2 + \sum_{\ell \leq x} \frac{\mu(\ell) \phi(\ell)}{\ell^2} \log(3\ell) \log(x/\ell) \right) \]

\[+ O \left(\sum_{\ell \leq x} \frac{\mu(\ell) \phi(\ell)}{\ell^2} \log(x/\ell) + \sum_{\ell \leq x} \frac{\mu(\ell) \tau(\ell)}{\ell} \log(x/\ell) \right). \]

From Eqs (16) and (17), the first two summations and the last one are estimated by \((\log x)^3 \). While the third one is estimated by \((\log x)^2 \). Hence, we deduce

\[L_{-1}(x) = O \left((\log x)^3 \right). \]

The inequality \(\phi_2(\ell) \geq \ell^2/\tau(\ell) \) can be found in [1, Chapter 1, Section I.4] or in [8].
As for \(L_m(x) \) with \(m \geq 2 \), we have

\[
L_m(x) = \sum_{d \ell \leq x} \frac{\phi_{1-2m}(d) \mu(\ell)}{d \ell} = \sum_{\ell \leq x} \frac{\mu(\ell)}{\ell} \sum_{d \ell \leq x} \frac{\phi_{1-2m}(d)}{d}.
\]

Applying Eq (13) of Lemma 2.1 to the inner sum, we get

\[
L_m(x) = O \left(\sum_{\ell \leq x} \frac{\mu(\ell) \phi_{2m-1}(\ell)}{\ell^{2m}} \log(x/\ell) + \sum_{\ell \leq x} \frac{\mu(\ell) \sigma(\ell)}{\ell^2} \log(x/\ell) \right).
\]

Using the following formulas, see [4, Lemma 2.1] and [14],

\[
\sum_{n \leq x} \frac{\phi_s(n)}{n} = \frac{x^s}{s \zeta(s+1)} + O_s \left(x^{s-1} \right), \quad (s \geq 2)
\]

\[
\sum_{n \leq x} \frac{\sigma(n)}{n^2} = \frac{\pi^2}{6} x - \frac{1}{2} \log x + O \left((\log x)^{2/3} \right),
\]

and the Abel identity, we obtain

\[
\sum_{n \leq x} \frac{\phi_s(n)}{n^{s+1}} = \frac{\log x}{\zeta(s+1)} + O_s \left(1 \right),
\]

and

\[
\sum_{n \leq x} \frac{\sigma(n)}{n^2} = \frac{\pi^2}{6} \log x + \frac{\pi^2}{6} - \frac{1}{2} + O \left(\frac{(\log x)^{2/3}}{x} \right).
\]

It follows that

\[
L_m(x) = O_m((\log x)^2).
\]

Putting everything together, we therefore conclude that

\[
U_\mu(x) = \frac{x}{(r+1)\zeta(2)} \prod_p \left(1 - \frac{1}{p(p+1)} \right) + O_r \left((\log x)^3 \right).
\]

This completes the proof of Eq (8).

Now, we proceed the proof as before. We let \(f = \tau \) in Eq (5) of Theorem 1.1. Then, we get

\[
U_\tau(x) = \frac{1}{2} \sum_{n \leq x} \frac{\tau(n)}{n} + \frac{1}{r+1} \sum_{m=0}^{[r/2]} \binom{r+1}{2m} B_{2m} \sum_{d \ell \leq x} \frac{\phi_{1-2m}(d) \tau(\ell)}{d \ell}.
\]
Using Eq \((17)\), we find that

\[
U_\tau(x) = \frac{1}{4} (\log x)^2 + \gamma \log x + \frac{(2\gamma - 1)}{2} + \frac{1}{r + 1} \sum_{m=0}^{[r/2]} \binom{r + 1}{2m} B_{2m} \sum_{\substack{d \leq x \\ \gcd(d,\ell) = 1}} \frac{\phi_{1-2m}(d) \tau(\ell)}{d} + O \left(x^{-285/416} (\log x)^{26947/8320} \right).
\]

Put

\[
G_m(x) = \sum_{\substack{d \leq x \\ \gcd(d,\ell) = 1}} \frac{\phi_{1-2m}(d) \tau(\ell)}{d} \ell.
\]

For \(m = 0\), we have

\[
G_0(x) = \sum_{\substack{d \leq x \\ \gcd(d,\ell) = 1}} \frac{\phi(d) \tau(\ell)}{d} = \sum_{\ell \leq x} \frac{\tau(\ell)}{\ell} \sum_{\substack{d \leq x/\ell \\ \gcd(d,\ell) = 1}} \frac{\phi(d)}{d}.
\]

Using Eq \((12)\) of Lemma 2.1, we infer

\[
G_0(x) = \frac{x}{\zeta(2)} \sum_{\ell \leq x} \frac{\tau(\ell) \phi(\ell)}{\ell \phi_2(\ell)} + O \left(\log x \sum_{\ell \leq x} \frac{\tau(\ell) \tau^*(\ell)}{\ell} \right).
\]

(30)

Repeating the previous argument in the preceding case, when \(f = \mu\), with \(L_0(x)\), but using Eq \((23)\) instead of Eq \((22)\), the first sum on the right-hand side is

\[
\sum_{\ell \leq x} \frac{\tau(\ell) \phi(\ell)}{\ell \phi_2(\ell)} = \prod_p \left(1 + \frac{(2p^2 - 1)p}{(p - 1)^2(p + 1)^3} \right) + O \left(\frac{(\log x)^3}{x} \right).
\]

By Eq \((19)\), the error term in Eq \((30)\) is estimated by \((\log x)^5\). From the above, we deduce that

\[
G_0(x) = \frac{x}{\zeta(2)} \prod_p \left(1 + \frac{(2p^2 - 1)p}{(p - 1)^2(p + 1)^3} \right) + O \left((\log x)^5 \right).
\]

As for the function \(G_{-1}(x)\). By an argument similar to the above, we write

\[
G_{-1}(x) = \sum_{\substack{d \leq x \\ \gcd(d,\ell) = 1}} \frac{\phi_{-1}(d) \tau(\ell)}{d} \ell = \sum_{\ell \leq x} \frac{\tau(\ell)}{\ell} \sum_{\substack{d \leq x/\ell \\ \gcd(d,\ell) = 1}} \frac{\phi_{-1}(d)}{d}.
\]

Applying Eq \((14)\) of Lemma 2.1 to the latter sum above, we get

\[
G_{-1}(x) = O \left(\sum_{\ell \leq x} \frac{\tau(\ell) \phi(\ell)}{\ell^2} (\log(x/\ell))^2 + \sum_{\ell \leq x} \frac{\tau^2(\ell)}{\ell} \log(x/\ell) \right).
\]
It is easy to check that the first sum above is estimated by \((\log x)^4\), while the second is \(O((\log x)^5)\), where we used Eq (17) and Eq (19). Thus

\[
G_{-1}(x) = O \left((\log x)^5 \right).
\]

For \(G_m(x)\) with \(m \geq 2\), it may be written as

\[
G_m(x) = \sum_{d \ell \leq x, \gcd(d, \ell) = 1} \frac{\phi_{1-2m}(d)}{d} \frac{\tau(\ell)}{\ell} = \sum_{\ell \leq x} \tau(\ell) \sum_{d \leq x/\ell, \gcd(d, \ell) = 1} \frac{\phi_{1-2m}(d)}{d}.
\]

By Eq (13), we get

\[
G_m(x) = O \left(\sum_{\ell \leq x} \frac{\tau(\ell)\phi_{2m-1}(\ell)}{\ell^{2m}} \log(x/\ell) + \sum_{\ell \leq x} \frac{\tau(\ell)\sigma(\ell)}{\ell^2} \log(x/\ell) \right).
\]

The first sum above is estimated at once by \((\log x)^3\), by using Eq (17) and \(\phi_{2m-1}(\ell) \ll \ell^{2m-1}\) for \(m \geq 1\). Since \(\sigma(\ell) + \phi(\ell) \leq \ell \tau(\ell)\) for \(\ell \geq 2\), see [6] or [9, Chapter 1, Section I.3], we have

\[
\sum_{\ell \leq x} \frac{\tau(\ell)\sigma(\ell)}{\ell^2} \log(x/\ell) \ll \log x \left(\sum_{\ell \leq x} \frac{\tau^2(\ell)}{\ell} + \sum_{\ell \leq x} \frac{\tau(\ell)\phi(\ell)}{\ell} \right).
\]

From Eqs (17) and (19) it follows that

\[
G_m(x) = O_m((\log x)^5).
\]

Putting everything together, we therefore conclude

\[
U_r(x) = \frac{x}{(r + 1)\zeta(2)} \prod_p \left(1 + \frac{(2p^2 - 1)p}{(p - 1)^2(p + 1)^3} \right) + O_r \left((\log x)^5 \right).
\]

Which completes the proof of Eq (9).

In order to prove Eq (10), we replace \(f\) by \(\phi_2\) in Eq (6) of Theorem 1.1

\[
V_{\phi_2}(x) = \frac{1}{2} \sum_{n \leq x} 1 + \frac{1}{r + 1} \sum_{m = 0}^{[r/2]} \binom{r + 1}{2m} B_{2m} \sum_{d \ell \leq x, \gcd(d, \ell) = 1} \frac{\phi_{1-2m}(d)}{\phi_2(d)}.
\]

Using Eq (25) for the first sum on the right-hand side, we get

\[
V_{\phi_2}(x) = \frac{x}{2} - \frac{\theta(x)}{2} - \frac{1}{4} + \frac{1}{r + 1} \sum_{m = 0}^{[r/2]} \binom{r + 1}{2m} B_{2m} \sum_{d \ell \leq x, \gcd(d, \ell) = 1} \frac{\phi_{1-2m}(d)}{\phi_2(d)}.
\]
where \(\theta(x) = x - \lfloor x \rfloor - 1/2 \). Put

\[
F_m(x) = \sum_{d \leq x, \gcd(d, d) = 1} \frac{\phi_{1-2m}(d)}{\phi_2(d)}, \quad F_0(x) = \sum_{d \leq x} \frac{\phi(d)}{\phi_2(d)} \sum_{\ell \leq x/d, \gcd(d, \ell) = 1} 1.
\]

Using Eq (11) of Lemma 2.1 we find that

\[
F_0(x) = x \sum_{d \leq x} \frac{\phi(d)^2}{d^2\phi_2(d)} - \sum_{d \leq x} \frac{\phi(d)}{\phi_2(d)} \sum_{k \mid d} \mu(k) \theta \left(\frac{x}{dk} \right). \quad (31)
\]

By arguing in the same manner as before and using \((\phi(d))^2 \leq \phi_2(d)\), the first sum of Eq. (31) is written

\[
\sum_{d \leq x} \frac{(\phi(d))^2}{d^2\phi_2(d)} = \prod_p \left(1 + \frac{1}{(p+1)^2} \right) + O(x^{-1}),
\]

because

\[
\sum_{d \geq 1} \frac{(\phi(d))^2}{d^2\phi_2(d)} = \prod_p \left(1 + \frac{1}{(p+1)^2} \right), \quad \sum_{d > x} \frac{(\phi(d))^2}{d^2\phi_2(d)} = O(x^{-1}).
\]

On the other hand, the second sum is estimated by \((\log x)^4\), because

\[
\sum_{d \leq x} \frac{\phi(d)}{\phi_2(d)} \sum_{k \mid d} \mu(k) \theta \left(\frac{x}{dk} \right) \ll \sum_{d \leq x} \frac{(\phi(d)\tau^2(d)}{d^2} \ll (\log x)^4.
\]

where we again used the inequality \(\phi_2(d)\tau(d) \geq d^2\), Eq (19) and \(\phi(d) \ll d\). This yields

\[
F_0(x) = \prod_p \left(1 + \frac{1}{(p+1)^2} \right) x + O((\log x)^4). \quad (32)
\]

For the function \(F_m(x)\) with \(m \geq 1\), we write

\[
F_m(x) = x \sum_{d \leq x} \frac{\phi_{1-2m}(d)\phi(d)}{d^2\phi_2(d)} - \sum_{d \leq x} \frac{\phi_{1-2m}(d)}{\phi_2(d)} \sum_{k \mid d} \mu(k) \theta \left(\frac{x}{dk} \right). \quad (33)
\]

Again the first sum on the right-hand side is

\[
\sum_{d \leq x} \frac{\phi_{1-2m}(d)\phi(d)}{d^2\phi_2(d)} = \prod_p \left(1 - \frac{p(p^{2m-1} - 1)}{(p+1)(p^{2m+2} - 1)} \right) + O_m \left(\frac{\log x}{x^2} \right),
\]

because

\[
\sum_{d \geq 1} \frac{\phi_{1-2m}(d)\phi(d)}{d^2\phi_2(d)} = \prod_p \left(1 - \frac{p(p^{2m-1} - 1)}{(p+1)(p^{2m+2} - 1)} \right), \quad \sum_{d > x} \frac{\phi_{1-2m}(d)\phi(d)}{d^2\phi_2(d)} = O_m \left(\frac{\log x}{x^2} \right).
\]

This latter follows from Eq (24). By Abel’s identity of Eq (19), the second sum of Eq (33) is estimated by \((\log x)^3/x\). Thus

\[
F_m(x) = \prod_p \left(1 - \frac{p(p^{2m-1} - 1)}{(p+1)(p^{2m+2} - 1)} \right) x + O_m \left(\frac{(\log x)^3}{x} \right). \quad (34)
\]

From Eq (32) and Eq (34), Eq (10) is proved.
Acknowledgement

A large portion of this paper was done during the author’s stay at Nagoya University. The author would like to thank professor Kohji Matsumoto for his guidance during this work, and gratefully acknowledges support, hospitality as well as the excellent environment for collaboration at Nagoya University. I would like to thank professor Isao Kiuchi for proposing the project and his proofreading.

References

[1] B. Apostol and L. Tóth, Some remarks on regular integers modulo n, Filomat 29 (2015), 687-701.

[2] M.N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. 87 (2003), 591-609.

[3] R.Q. Jia, Estimation of partial sums of series $\sum \mu(n)/n$, Kexue Tongbao 30 (1985), 575-578.

[4] I. Kiuchi, Sums of averages of gcd-sum functions, Journal of Number Theory 176 (2017), 449-472.

[5] I. Kiuchi and K. Matsuoka, Remarks on a paper by B. Apostol and L. Tóth, J. Ramanujan Math. Soc. (in press) (2017), 1-20.

[6] C.A. Nicol. Some Diophantine equations involving arithmetic functions. J. Math. Analysis Appl. 15 (1966), 154-161.

[7] S.S. Pillai, On an arithmetic function, J. Annamalai Univ. 2 (1937), 243-248.

[8] J. Sándor, On Jordan’s arithmetical function. Math. Student 52 (1984), 91-96.

[9] J. Sándor, D.S. Mitrinović and B. Crstici, Handbook of Number Theory I, Springer, (2006).

[10] D. Suryanarayana. The greatest divisor of n which is prime to k, Math. Student 37 (1969), 147-157.

[11] D. Suryanarayana and V.S.R. Prasad. The number of k-free divisors of an integer, Acta. Arith. 37 (1970/71), 345-354.

[12] L. Tóth. A gcd-sum function over regular integers modulo n, J. Integer Sequences 12 (2009), Article 09.2.5, 8 pp.

[13] L. Tóth. A survey of gcd-sum functions, J. Integer Sequences 13 (2010), Article 10.8.1, 23 pp.
[14] A. Walfisz. Weylsche Exponentialsummen in der neuren Zahlentheorie, *Berlin* (1963).

[15] B.M. Wilson. Proofs of some formulae enunciated by Ramanujan, *Proc. London Math. Soc.* 21 (1922), 235-255.

[16] D. Zhang and W. Zhai. Mean values of a gcd-sum function over regular integers modulo n, *J. Integer Sequences* 13 (2010), Article 10.3.8, 11 pp.

Waseem ALASS: Department of Mathematics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy. e-mail: alass.waseem@gmail.com