Gamma radiation induced contraction of alkyne modified polymer hydrogels

Tobias G. Brevé, Huanhuan Liu, Antonia G. Denkova, and Rienk Eelkema*

*Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.

**Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.

*corresponding author. email: r.eelkema@tudelft.nl

KEYWORDS: hydrogel contraction, gamma radiation, controlled release, hydrogel fusion.
Polymer hydrogels are formed by physically or chemically crosslinking hydrophilic polymers, with the degree of crosslinking having a large impact on the mechanical and chemical properties of the hydrogel. A wide range of methods exists to make chemical crosslinks, including photo polymerization, radical induced crosslinking, and click chemistry approaches such as copper catalyzed alkyne azide coupling and Michael additions.\(^1\) Having control over the crosslink density enables control over the release of (bio) molecules, hydrogel stiffness, cellular signaling\(^2^–^4\), and eventually over the internal water volume. Crosslink density can be controlled by degradative or constructive molecular events, which depend on the desired application and can be controlled by triggers such as (UV) light, pH, enzymatic activity or reactive oxygen species (ROS). Degradative processes such as triggered crosslinker cleavage\(^5\), are typically employed to release (bio) molecules from the hydrogel matrix. In contrast, in constructive molecular events the crosslink density is increased, through sequential or stepwise crosslink strategies.

Figure 1 A) Schematic representation of dextran hydrogels, which are loaded with cargo and upon γ-irradiation contract and 'squeeze out' the cargo from the hydrogel network. Blue: dextran backbone, red: alkyne functionality, black: bis-azide PEG crosslinks and orange: loaded cargo. B) Synthetic pathway starting with the modification of dextran (500 kDa) using propargyl glycidyl ether in 0.1 M NaOH (35 °C). Subsequently, a hydrogel is prepared by crosslinking the dextran backbone and bis-azide-PEG\(_{19}\) using standard Cu-click conditions (activating ligand: tris(benzyltriazolylmethyl)amine (THTPA)). In the final step the residual alkyne moieties are further crosslinked by γ-irradiation, resulting in contraction.
such as secondary radical-mediated crosslinking\(^3\) or by sequential photo-induced crosslinking\(^2^4\). Crosslink density increase is typically employed for increasing mechanical properties such as stiffness or yield stress, or to heal damage. Here, we present a novel \(\gamma\)-radiation triggered secondary crosslink strategy that enables us to have direct control over the crosslink density and eventually the macroscopic contraction of dextran hydrogels. With this finding we demonstrate that a molecular event, such as secondary crosslinking, can be translated into macroscopic motion (hydrogel contraction). Most strategies for hydrogel contraction in literature rely on physical transitions. A well-known physical strategy for hydrogel contraction is the temperature triggered phase transition of poly(N-isopropylacrylamide) (PNIPAM) based hydrogels. When such hydrogels are heated above 32 \(^\circ\)C, a sharp decrease in material volume is observed which is caused by the polymer switching from a hydrophilic phase to a hydrophobic phase.\(^6^10\) Alternatively, photoredox responsive hydrogels can undergo macroscopic contraction as a result of polymer chain folding. Blue light, via an excited ruthenium photocatalyst, triggers the folding of polyviologen chains in the hydrogel network resulting in a reduction of the hydrogel volume.\(^11\) Mechanical entanglement can also be used for material contraction using a UV light driven molecular motor to entangle a polymer network.\(^12, 13\) Finally, enzymatic activity is employed to trigger a secondary crosslinker strategy leading to hydrogel contraction accompanied by an increased hydrogel stiffness.\(^14\)

Hydrogels find many different applications where they provide a protective environment to a loaded cargo. These loaded hydrogels enable controlled release of the cargo, through either an active or a passive release mechanism. Passive release is typically described by the standard Fickian diffusion model, where the hydrogel structure remains intact. On the contrary, active release can be controlled using external triggers such as (UV) light, temperature, pH, biological molecules or oxidative stress and changes the integrity of the hydrogel network or the hydrogel completely disintegrates. A less common trigger is ionizing radiation. A few examples exist where \(\gamma\)-radiation induces scissions in dendrimer structures,\(^15\) generates reactive oxygen species (ROS) which damage the bilayer of liposomes and promote cargo release\(^16\) or the cleavage of doxorubicin from nanoparticle drug carriers.\(^17\) \(\gamma\)-radiation is a powerful tool to generate radicals on unsaturated polymer chains, leading to crosslink formation, which is widely applied.\(^18, 19\) Crosslinking by gamma radiation is an efficient technique to form hydrogels as no monomers, initiators or catalysts are used, which are potentially harmful or toxic and are thus problematic when these hydrogels find a biological application. In general, the crosslink density can be controlled by varying the radiation dose, this enables control over the degree of swelling and material properties such as stiffness.\(^20, 21\) When prolonged irradiation is used, the formed material continues to form crosslinks which eventually results in material contraction. This effect was observed by Angelini et al., who reported material contraction when 3\% gelatin solutions were exposed to \(\gamma\)-irradiation dose higher than 50 kGy.\(^22\) In our research we demonstrate contraction of stable pre-crosslinked hydrogels, where \(\gamma\)-irradiation leads to immediate contraction, indicating high sensitivity.

Here, we present a method to contract dextran hydrogels using a covalent secondary crosslink strategy using \(\gamma\)-irradiation as an external stimulus. We use chemically crosslinked dextran-based hydrogels that are modified with extra alkyne functionalities on the dextran backbone. We started from dextran (MW = 500 kDa) that is randomly modified with terminal alkyne side chain groups (degree of substitution =}
36%, Figure S1) using propargyl glycidyl ether chemistry. We then formed a hydrogel by chemically crosslinking a fraction of the alkyne moieties (theoretical maximum is 8%) via copper catalyzed azide alkyne cycloaddition with a bis-azide-PEG19 crosslinker (Figure 1B). This procedure afforded transparent, self-supporting hydrogels with a storage modulus (G’) of 1.6 * 10^3 Pa and tan δ (G''/G’) of 8.0 * 10^{-3} (Figure 2E). Next, we exposed centimeter-sized gel cubes to γ-irradiation from a 60Co source, at doses up to 14.4 kGy. We observed that the gel cubes would shrink considerably from the start of the experiment with increasing dose, and that these contracted gels had an increased stiffness (Figure 2A and S3). Control hydrogels remained virtually unchanged during the course of the 24-hour experiment, whereas the irradiated hydrogels linearly reduced in weight (Figure 2C). The contraction rate of hydrogels swollen in PB is lower (Figure 2B, blue data) compared to the contraction rate of hydrogels swollen in demineralized water (Figure 2B, black data). After 24 hours irradiation (14.4 kGy) the weight reduction of the PB swollen gels and the demineralized water swollen gels is 39% and 74%, respectively. Figure 2F and 2G show a set of photographs that illustrate the volume reduction. Figure 2G shows a transparent water swollen hydrogel at the start of the γ-irradiation experiment (left) and the contracted hydrogel after 24 hours of γ-irradiation (right). During hydrogel contraction, the gels remain transparent and contract in all three dimensions equally, holding their cubic shape. A similar but less pronounced effect is observed for the PB swollen hydrogel (Figure 2F, left the hydrogel at t = 0 and...
right at \(t = 24 \) hours \(\gamma \)-irradiation). We then conducted a frequency sweep experiment on the rheometer to determine the rheological properties of the hydrogel before and after \(\gamma \)-irradiation. The storage modulus (\(G' \)) increased a factor 3-fold (PB swollen) or 2-fold (\(H_2O \) swollen) after 24 hours of irradiation, indicating a more elastic material which is probably a result of additional crosslink formation (Figure 2B and S3). Additionally, the hydrogels were analyzed by scanning electron microscopy (SEM) before and after \(\gamma \)-irradiation. SEM analysis revealed that the hydrogels have multiple morphologies which have different pore sizes (Figure S4). To demonstrate the effect of \(\gamma \)-irradiation on the micro-scale sized pores, a similar area in a non-irradiated hydrogel and an \(\gamma \)-irradiated hydrogel are shown in Figure 2H, I. In the non-irradiated control hydrogel, the pore structure has a more open character compared to the \(\gamma \)-irradiated hydrogel. This implies that additional crosslinks are formed induced by \(\gamma \)-irradiation which is in agreement with the increased hydrogel stiffness (Figure 2A and S3). To get more insight in the mechanism of \(\gamma \)-irradiation induced contraction, a control experiment was conducted in which solutions of unmodified dextran (500 kDa, 10 wt% in \(H_2O \)) and alkyne modified dextran were subjected to \(\gamma \)-irradiation (\(^{60}Co \) source, 0.6 kGy/h) (Figure 2D). No changes could be observed for the unmodified dextran solution. In contrast, we found that the alkyne modified dextran solution gels overnight (14.4 kGy), which implies that the alkyne functionalities are crucial for hydrogel formation, and thus likely play a role in the observed contraction and increased stiffness. Crosslink formation may occur via the formation of reactive terminal alkynyl radicals, which could be generated directly by \(\gamma \)-irradiation or indirectly via the reaction products which emerge from water radiolysis. The main products of water radiolysis are hydrated electrons, \(HO^- \) (hydroxyl radical), \(H_2 \), \(H_2O_2 \) and the \(H_2O^- \) (hydroperoxyl radical). The \(HO^- \) is the most abundant radical which can further react and create alkyne radicals.\(^{23}\)

Subsequently, these alkyne radicals can form crosslinks with adjacent alkyne groups resulting in the observed hydrogel contraction. Propagation can occur via an attack on the radical C1 carbon or to the cationic C2 carbon of adjacent alkyne moieties forming new C-C bonds.\(^{24}\) Another possible secondary crosslink mechanism is by an attack of a radical C1 carbon on carbon C3, C4 or C5.\(^{25}\) Additionally, phosphate buffer is found to act as a radical scavenger, which might explain the lower degree of hydrogel contraction we have observed in our \(\gamma \)-irradiation experiments (Figure 2B and 2C).\(^{26}\)

The reactivity of the residual alkyne groups suggested that it should be possible to glue\(^{27,28}\) or fuse hydrogel objects using \(\gamma \)-irradiation (Figure 3A). We designed an experiment in which two hydrogel cubes where placed on top of each other inside a closed glass vial. Prior to initial gelation, a pipet tip was placed in the liquid dextran solution to provide for an easy grip handle used for lifting the hydrogels and assessing the \(\gamma \)-irradiation induced fusion. One set of hydrogel gel cubes was then placed in a \(^{60}Co \) source for 24 hours and one set was kept aside as a control experiment. We found that the hydrogel cubes in the control experiment did not fuse together. When lifting the top hydrogel, the bottom hydrogel immediately detached indicating that capillary forces do not play any significant role (Figure 3B and 3C). In contrast, the \(\gamma \)-irradiated set of hydrogels had fused together and could be lifted with the top hydrogel cube holding the weight of the bottom hydrogel cube (Figure 3D and 3E).

Finally, we were curious if we could release a loaded cargo from the hydrogel matrix, as a result of \(\gamma \)-irradiation triggered hydrogel contraction (Figure 3F). In this experiment, we used hydrogels loaded with...
model compound 1,4-phthalic acid. The hydrogel cubes were isolated from the surrounding water volume by placing them on a glass plateau inside a closed glass vial (Figure S5). This experiment setup allowed us to limit passive diffusion of 1,4-phthalic acid from the hydrogel matrix and only observe the 'squeezing' effect by contraction. We found that the UV/Vis absorbance (240 nm) of the water volume of the \(\gamma \)-irradiated hydrogel increases over time, indicating the release of 1,4-phthalic acid, while the absorbance of the water volume of the control gel stayed stable over time (Figure 3G).

In conclusion, we here demonstrate a versatile \(\gamma \)-irradiation triggered hydrogel crosslinking strategy that enables control over hydrogel stiffness, contraction, release and fusion. We found a linear relationship between the \(\gamma \)-irradiation dose and the degree of hydrogel contraction, with a more pronounced effect in water than in phosphate buffer. The stiffness of the hydrogels increased 2-fold for \(\text{H}_2\text{O} \) swollen hydrogel and 3-fold for \(\text{PB} \) swollen hydrogels after \(\gamma \)-irradiation, which is the result of the increased crosslink density. \(\gamma \)-irradiation triggered crosslinking enables fusion of hydrogel objects. In addition, we show that \(\gamma \)-irradiation triggered hydrogel contraction can be used to squeeze out a cargo. All together our finding provides for a \(\gamma \)-irradiation sensitive material having potential in material science and triggered release applications.
1. Fan, B.; Zhang, K.; Liu, Q.; Eelkema, R., Self-Healing Injectable Polymer Hydrogel via Dynamic Thiol-Alkyne Double Addition Cross-Links. ACS Macro Lett. 2020, 9 (6), 776-780.
2. Hörner, M.; Raute, K.; Hummel, B.; Madl, J.; Creusen, G.; Thomas, O. S.; Christen, E. H.; Hotz, N.; Gübeli, R. J.; Engesser, R.; Rebmann, B.; Lauer, J.; Rolauffs, B.; Timmer, J.; Schamel, W. W. A.; Pruszak, J.; Römer, W.; Zurbriggen, M. D.; Friedrich, C.; Walther, A.; Minguet, S.; Sawarkar, R.; Weber, W., Phytochrome-Based Extracellular Matrix with Reversibly Tunable Mechanical Properties. Adv. Mater. 2019, 31 (12), 1806727.
3. Guvendiren, M.; Burdick, J. A., Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Comm. 2012, 3 (1), 792.
4. Kalayci, K.; Frisch, H.; Barner-Kowollik, C.; Truong, V. X., Wavelength-Dependent Stiffening of Hydrogel Matrices via Redshifted [2+2] Photocycloadditions. Adv. Funct. Mater. 2020, 30 (15), 1908171.
5. Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S., Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties. Science 2009, 324 (5923), 59.
6. Zadražil, A.; Tokárová, V.; Štěpánek, F., Remotely triggered release from composite hydrogel sponges. Soft Matter 2012, 8 (6), 1811-1816.
7. Kim, H.; Lee, H.; Seong, K.-Y.; Lee, E.; Yang, S. Y.; Yoon, J., Visible Light-Triggered On-Demand Drug Release from Hybrid Hydrogels and its Application in Transdermal Patches. Advanced Healthcare Materials 2015, 4 (14), 2071-2077.
8. Gutowska, A.; Seok Bark, J.; Chan Kwon, I.; Han Bae, Y.; Cha, Y.; Wan Kim, S., Squeezing hydrogels for controlled oral drug delivery. Journal of Controlled Release 1997, 48 (2), 141-148.
9. Satarkar, N. S.; Hilt, J. Z., Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. Journal of Controlled Release 2008, 130 (3), 246-251.
10. Chung, J. E.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T., Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(1,2-butylene)glycol). Journal of Controlled Release 1999, 62 (1), 115-127.
11. Liles, K. P.; Greene, A. F.; Danielson, M. K.; Colley, N. D.; Wellen, A.; Fisher, J. M.; Barnes, J. C., Photoredox-Based Actuation of an Artificial Molecular Muscle. Macromol. Rapid Commun. 2018, 39 (17), 1700781.
12. Foy, J. T.; Li, Q.; Goujon, A.; Colard-Itté, J.-R.; Fuks, G.; Moulin, E.; Schiffmann, O.; Dattler, D.; Funeriu, D. P.; Giuseppone, N., Dual-light control of nanomachines that integrate motor and modulator subunits. Nature Nanotechnology 2017, 12 (6), 540-545.
13. Li, Q.; Fuks, G.; Moulin, E.; Maaloum, M.; Rawiso, M.; Kulic, I.; Foy, J. T.; Giuseppone, N., Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nature Nanotechnology 2015, 10 (2), 161-165.
14. Arkenberg, M. R.; Lin, C.-C., Orthogonal enzymatic reactions for rapid crosslinking and dynamic tuning of PEG–peptide hydrogels. Biomaterials Science 2017, 5 (11), 2231-2240.
15. Wu, S.-Y.; Chou, H.-Y.; Yuh, C.-H.; Mekuria, S. L.; Kao, Y.-C.; Tsai, H.-C., Radiation-Sensitive Dendrimer-Based Drug Delivery System. Advanced Science 2018, 5 (2), 1700339.
16. Deng, W.; Chen, W.; Clement, S.; Guller, A.; Zhao, Z.; Engel, A.; Goldys, E. M., Controlled gene and drug release from a liposomal oral delivery platform triggered by X-ray radiation. Nat. Comm. 2018, 9 (1), 2713.
17. Starkewolf, Z. B.; Miyachi, L.; Wong, J.; Guo, T., X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chem. Commun. 2013, 49 (25), 2545-2547.
18. Hennink, W. E.; van Nostrum, C. F., Novel crosslinking methods to design hydrogels. Adv. Drug Del. Rev. 2002, 54 (1), 13-36.
19. Szafułera, K.; Wach, R. A.; Olejnik, A. K.; Rosiak, J. M.; Ulariski, P., Radiation synthesis of biocompatible hydrogels of dextran methacrylate. Radiat. Phys. Chem. 2018, 142, 115-120.
20. Fei, B.; Wach, R. A.; Mitomo, H.; Yoshii, F.; Kume, T., Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J. Appl. Polym. Sci. 2000, 78 (2), 278-283.
21. Singh, B.; Bala, R., Development of hydrogels by radiation induced polymerization for use in slow drug delivery. Radiat. Phys. Chem. 2014, 103, 178-187.
22. Cataldo, F.; Ursini, O.; Lilla, E.; Angelini, G., Radiation-induced crosslinking of collagen gelatin into a stable hydrogel. J. Radioanal. Nucl. Chem. 2008, 275 (1), 125-131.
23. Clement, S.; Campbell, J. M.; Deng, W.; Guller, A.; Nisar, S.; Liu, G.; Wilson, B. C.; Goldys, E. M., Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Advanced Science 2020, 7 (24), 2003584.
24. Bassetti, M.; Fratoddi, I.; Lilla, L.; Pasquini, C.; Vittoria Russo, M.; Ursini, O., Synthesis of polyarylacetylenes by γ- ray-induced polymerization of terminal alkynes. Nanostructures of ortho-substituted derivatives. J. Polym. Sci., Part A: Polym. Chem. 2012, 50 (24), 5097-5106.
25. Liu, Z.-Q.; Sun, L.; Wang, J.-G.; Han, J.; Zhao, Y.-K.; Zhou, B., Free-Radical-Initiated Coupling Reaction of Alcohols and Alkynes: Not C–O but C–C Bond Formation. Org. Lett. **2009**, *11* (6), 1437-1439.

26. M. Khosravifarsani, A. S.-M., M. Pouramir, E. Zabihi Hydroxyl Radical (ºOH) Scavenger Power of Tris (hydroxymethyl) Compared to Phosphate Buffer. *Journal of Molecular Biology Research* **2016**, *6*, 52-57.

27. Lovrak, M.; Picken, S. J.; Eelkema, R.; van Esch, J. H., Supramolecular Gluing of Polymeric Hydrogels. *ChemNanoMat* **2018**, *4* (8), 772-775.

28. Yang, J.; Bai, R.; Chen, B.; Suo, Z., Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. *Adv. Funct. Mater.* **2020**, *30* (2), 1901693.