Aspergillus penicillioides differentiation and cell division at 0.585 water activity

Stevenson, A., Hamill, P. G., O’Kane, C. J., Kminek, G., Rummel, J. D., Voytek, M. A., Dijksterhuis, J., & Hallsworth, J. E. (2017). Aspergillus penicillioides differentiation and cell division at 0.585 water activity. Environmental Microbiology, 19(2), 687-697. https://doi.org/10.1111/1462-2920.13597

Published in:
Environmental Microbiology

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2017 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Aspergillus penicillioides differentiation and cell division at 0.585 water activity

Andrew Stevenson,1 Philip G. Hamill,1 Callum J. O’Kane,1 Gerhard Kmínek,2 John D. Rummel,3 Mary A. Voytek,4 Jan Dijksterhuis5 and John E. Hallsworth1*
1Institute for Global Food Security, School of Biological Sciences, MBC, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland.
2Independent Safety Office, European Space Agency, 2200 AG, Noordwijk, The Netherlands.
3SETI Institute, Mountain View, CA 94043, USA.
4NASA Headquarters, Washington, DC 20546-0001, USA.
5CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands.

Summary

Water availability acts as the most stringent constraint for life on Earth. Thus, understanding the water relations of microbial extremophiles is imperative to our ability to increase agricultural productivity (e.g., by enhancing the processing and turnover of dead organic matter in soils of arid regions), reduce human exposure to mycotoxins in buildings and our food-supply chain, prevent the spoilage of foods/animal feeds, books, museum specimens and artworks and better control microbiology of industrial fermentations. Only a small number of microbial systems can retain activity at <0.710 water activity (ISME J 2015 9: 1333–1351). It has long-been considered that the most resilient of these is Xeromyces bisporus, which inhabits sugar-rich substrates (Appl Environ Microbiol 1968 16: 1853–1858). The current study focused on germination of Aspergillus penicillioides, a xerophile which is also able to grow under low humidity and saline conditions. Investigations of germination differed from those reported earlier: firstly, aerially borne conidia were harvested, and then used for inoculations, in their dry condition; secondly, cultures were incubated at 24°C, i.e. below optimum germination temperature, to minimize the possibility of water loss from the substrate; thirdly, cultures remained sealed throughout the 73-day study period (microscopic examination was carried out directly 48 through the Petri plate lid); fourthly, the germination parameters determined were: rates and extent of conidial swelling, production of differentiated germination-structures and septate germlings, and subsequent development of mycelium and/or sporulation; fifthly, assessments were carried out over a range of water-activity values and time points to obtain a complete profile of the germination process. Conidia swelled, formed differentiated germination-structures and then produced septate germlings at a water-activity of just 0.585 (=58.5% relative humidity), outside the currently understood thermodynamic window for life. Furthermore, analyses of these data suggest a theoretical water-activity minimum of 0.565 for germination of A. penicillioides. In relation to astrobiology, these findings have an application in understanding the limits to life in extraterrestrial environments. In light of current plans for exploration missions to Mars and other places, and the need to safeguard martian scientific sites and potential resources (including water) for future human habitation, a knowledge-based and effective policy for planetary protection is essential. As it is, Mars-bound spacecraft may frequently be contaminated with aspergilli (including A. penicillioides) and other organisms which, when transported to other planetary bodies, pose a contamination risk. In crafting countermeasures to offset this, it is important to know as precisely as possible the capabilities of these potential interplanetary visitors.

Introduction

A number of recent studies indicate that Aspergillus penicillioides is active close to the water-activity limit of Earth’s biosphere (Stevenson et al., 2015a; 2015b; Stevenson et al., in press-a; in press-b). This species, sometimes implicated in aspergillosis (Gupta et al., 2015; Paulussen et al., in press), has also been the focus of studies on production of secondary metabolites, ecology of hypersaline environments, food spoilage, damage to cultural artefacts

Received 19 September, 2016; revised 3 November, 2016; accepted 16 November, 2016. *For correspondence. E-mail: j.hallsworth@qub.ac.uk.

© 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
and coal-mine bioaerosols (Zhao et al., 2014; Nazareth and Gonsalves, 2014; Okano et al., 2015; Wei et al., 2015; Micheluz et al., 2016). A. penicillioioideis is at the same time xerophilic, osmophilic and halophilic (in relation to low water activity, high sugar- and NaCl concentrations, respectively), grows close to 0°C (and almost certainly at sub-zero temperatures, as well) and can function anaerobically (Chin et al., 2010; Zhang et al., 2013; Nazareth and Gonsalves, 2014; Rummel et al., 2014). When growing in saline conditions, xerophilic aspergilli synthesize and accumulate molar concentrations of glycerol at low water-activity (Nazareth and Gonsalves, 2014; de Lima Alves et al., 2015). Brines which existed in early Mars (and likely also present-day on Mars and other planetary bodies) have a peculiar composition and their exceptional high ionic strength can be the life-limiting parameter in relation to their habitability with terrestrial microbes (Tosca et al., 2011; Fox-Powell et al., 2016). Experiments carried out using analogue martian brines revealed that members of the Eukarya, including fungi, can be prevalent members of the communities which develop following inoculation with microbial consortia obtained from terrestrial environmental samples (Fox-Powell et al., 2016).

Glycerol, a biophysically and physiologically versatile stress protectant, can mitigate chaotropicity-mediated stresses caused by MgCl₂, ethanol and benzene (or other chaotropes and hydrophobes), as well as those induced by high turgor, low water-activity and other, mechanistically diverse stresses (Hallsworth et al., 2003; Bhaganna et al., 2010; de Lima Alves et al., 2015; Bhaganna et al., 2016). It is likely that the synthesis and accumulation of glycerol, the polyol of choice for osmotic adjustment in xerophilic fungi at high salt/low water-activity (de Lima Alves et al., 2015), could facilitate fungal colonization of martian brines by mitigating against osmotic stress, low water-activity and ionic strength.

There are very few reports of microbial growth or metabolism at <0.710 water activity, due to the extreme thermodynamic constraints imposed by molecular crowding in the cytoplasm (Pitt, 1975; Grant, 2004; Williams and Hallsworth, 2009; Miermont et al., 2013; Nakano et al., 2013; Stevenson et al., 2015a; 2015b; in press-a; in press-b; Lee et al., in press). The most xerophilic microbe thus far identified was the sugar-tolerant xerophile Xeromyces bisporus (FRR 0025) (Pitt and Christian, 1968; Stevenson et al., 2015a). Due to the importance and impacts of water activity on all aspects of cellular and ecosystem function, there has been an effort to detect biotic activity of microbes at very low water activity which spans a 50-year period (e.g. Pitt, 1975; Grant, 2004; Lievens et al., 2015; Stevenson et al., 2015b). Nevertheless, the 0.605 water-activity germination of X. bisporus has never been surpassed or repeated and, indeed, there have been no reliable reports of either cell division or any other kind of biotic activity below this value (see Stevenson and Hallsworth, 2014; Stevenson et al., 2015a; 2015b; in press-a). This has given rise to a maxim that this 0.605 water-activity (equivalent to 60.5% relative humidity) acts as an insurmountable thermodynamic barrier for life (Kminek et al., 2010; Rummel et al., 2014). Furthermore, the anomalous performance of X. bisporus at low water activity has found little application beyond the spoilage of high-sugar foods due to its intolerance of salts. Microbial cells are extremely sensitive to differences of water activity, even at ±0.001 (equivalent to 0.1% relative humidity). Recent studies of several fungal xerophiles documented that high intra- and extracellular concentrations of glycerol can enhance spore germination close to the water-activity limit for life (Stevenson et al., in press-a; in press-b). However, there was no empirical evidence of A. penicillioioideis germination below 0.640 water activity, so the current study was carried out to seek evidence for metabolic activity of A. penicillioideis conidia below this value, or even below the 0.605 limit established by Pitt and Christian (1968). The specific aims were to devise a novel system, which is both permissive for germination and ecologically pertinent, and characterize morphological changes in conidia that are indicative of metabolic activity, at extreme water activities.

Results and discussion

Germination protocol

By utilizing spores which had accumulated glycerol, and supplementing germination media with molar concentrations of glycerol or glycerol plus other stressors, vigorous germination of A. penicillioioideis and other xerophiles has been observed at extremely low water-activity (Stevenson et al., in press-a; in press-b). Nevertheless, germination of A. penicillioioideis did not occur on any media in the water-activity range 0.639–0.575 in these studies, even though 18 media that had been designed to be biologically permissive were assayed in this range (Stevenson et al., in press-a). Here, we developed a germination protocol including the same high-glycerol element, but based a number of key modifications (Fig. S1). First, in earlier studies, spores were harvested in stressor solutions thereby introducing a mid-stage between the dehydrated condition of the spore and the germination-assay medium (Stevenson et al., in press-a; in press-b); in the current study, conidia were both harvested and inoculated in their dry condition (Fig. S1). Second, germination assays in previous studies were carried out at 30°C, which may have accelerated water loss from media thereby reducing water-activity (Stevenson et al., in press-a; in press-b); assays were carried out in the current study at 24°C (Fig. S1). Third, in previous studies, plates were continuously opened throughout the 50-d study period (such that
small but significant quantities of water were lost from the medium during the assay period (Stevenson et al., in press-a); in the current study, plates remained sealed throughout the (extended, 73 days) period of the germination assay. This was achieved by carrying out microscopic examination directly through the Petri-plate lid (Fig. S1). Fourth, in the previous study, germination was determined according to whether germ-tube length exceeded the diameter of the spore, germ-tube length was also quantified (Stevenson et al., in press-a; in press-b); the current study quantified (i) rates and extent of conidial swelling during the uptake of water; production of (ii) differentiated germination structures and (iii) septate germlings and (iv) development of mycelium and/or sporulation: elaboration of branched, adventitious germ-tubes followed by production of aerial hyphae and/or production of conidiophores and conidia (Fig. S1). Some earlier studies, which have produced seminal findings, reported only single data-points (e.g., Pitt and Christian, 1968); here, we carried out assessments over a range of water-activity values and time points to obtain a complete profile of the germination process (Figs 1 and S1).

Conidial swelling during uptake of water

During conidial swelling, water rehydrates the cytosol and the spore's macromolecular systems, facilitates cell turgor and enables metabolic activity. The process can be part-mechanical, and part-ATP-driven, and represents the first stage of germination (Liu et al., 2016; Turgeman et al., 2016). Differentiation of conidia into tapered germination structures (see below) did not take place until after conidial volume had increased by a threshold value of $\geq 40\%$, so this criterion was used as an indicator for the pre-germination phase (Fig. 1). Conidia had swollen to $\geq 40\%$ (volume) at all water-activity values by days 2–7.9, depending on the medium (Figs 1 and S2–S4). Significant differences ($P \leq 0.05$) were observed between mean volume-increases observed at time zero (time of inoculation) and day 4, regardless of the medium (Fig. 2).

Fig. 1. Key stages of conidial germination of, and subsequent development of mycelium and/or spore production from, *Aspergillus penicilliodes* (JH06THJ) conidia which had been inoculated onto malt extract yeast extract phosphate agar supplemented with either glycerol + NaCl; glycerol + sucrose; glycerol only; or glycerol + NaCl + sucrose (Table S1): (yellow) swelling of $\geq 40\%$ mean by volume; (orange) differentiation to form polarized, tapered germination structures; (red) production of fully-formed, septate germlings and (black) development of mycelium and/or sporulation of the newly established mycelia colony. Conidia used in germination assays had been harvested from cultures grown on malt extract yeast extract phosphate agar supplemented with 5.5 M glycerol (0.821 water activity), at 24°C; intracellular glycerol content was 70.1 mg g dry weight$^{-1}$ (Stevenson et al., in press-a). White regions indicate times at which swelling to $\geq 40\%$ of initial volume was not observed in the sample of 50 conidia inspected. Methodological approach is detailed in ‘Experimental procedures’ section and outlined Fig. S1.
Maximum conidial volume was attained on the highest water-activity media by days 7.9, 4.0 and 21.1 at 0.741, 0.734 and 0.707 water activity, respectively (Fig. 2A–C) and by day 57 and 28.1 at low water-activities, i.e., 0.601 (data not shown) and 0.585 (Fig. 2F). On some media, e.g., at 0.598 swelling took place but did not pass the 40% threshold-value, and there was no evidence of further development (Figs 1 and 2E). Likewise, there was no further development of differentiated germination structures at 0.623 water activity (Fig. 1), even though there was a volume increase of 49.6% by day 35.1 (Fig. S3O). Given the evidence that water uptake by conidia is, in part at least, an active process, these data are indicative of both (i) cellular metabolism at water activities as low as 0.601 and 0.585, which is unprecedented for any type of microbial system, and (ii) a capacity to differentiate and germinate down to 0.585 water activity.

Differentiation and germ-tube formation

The production of differentiated germination structures was the first visually identifiable stage of germ-tube formation (Fig. 3A). During this process, the cytoskeleton, and other components of the cell's ultrastructural machinery, drive the localized deposition of cell-wall material and germ-tube emergence (Harris and Momany, 2004). These tapered structures were produced throughout the water-activity range by days 4–18.1, depending on the medium, with the exception of the 0.640 (glycerol + NaCl) medium (Figs 1 and S4). Upon completion of the swelling process (Figs 1 and 2), S2 and S3) and formation of differentiated, tapered germination structures, there was a substantial increase in conidial size; equivalent to a two-fold increase in spore diameter and approximately four-fold increase in spore area (Fig. 3A). This is consistent with previous studies of conidial germination, whereby the germination process is characterized by two distinct stages: the initial, isotropic swelling of the conidium, followed by polarized development of germ-tubes (Hayer et al., 2013). On 13 out of the 18 germination media used in the current study, these differentiated structures went on to produce germings which had clearly visible septa within 6–73 days (Figs 1 and S4). Nevertheless, septate germings were clearly visible by days 57 and 73 at 0.585 and 0.601 water activity, respectively (Fig. 2a and 3B), indicating that microbial metabolism, cellular differentiation and cell division take place beyond the currently understood 0.605 water-activity limit for life. This finding is consistent with the theoretical 0.600–0.570 water-activity minima for germination of A. penicillioides that were reported previously (Stevenson et al., in press-a). The window from 0.690 to 0.605, considered to be the biophysical fringe of Earth's biosphere (Stevenson et al., 2015b), actually, therefore, spans the range from 0.690 to 0.585 water activity; in other words, the findings reported here represent a 24% increase in the window, and a 5% increase in the 1–0.605 water-activity window-for-life. The equivalent temperature window for microbial metabolism on Earth, approximately –40 to +121°C, spans a range of 161°C (see reviews in Stevenson et al., 2015b; Rummel et al., 2014). A 5% increase in the water-activity window for life is, therefore, equivalent to an 8°C expansion of the temperature limit for the functional biosphere.

Generally, the period during which differentiated germing structures are visible, but before septate germings have formed, lasts for >7 days (Figs 1 and S4). By
contrast, the period between the appearance of septate germlings and production of mycelium and/or sporulation of colonies was typically shorter, <7 days (Figs 1 and S4). At one level, this is counterintuitive because the former process involves one to three cell-divisions (see Fig. 3), whereas the latter involves development of mycelium, conidiophores and conidiogenesis, which requires a greater number of cell divisions as well as further differentiation. However, the delay between formation of differentiated germination structures and septate germlings is consistent with fundamental changes known to take place early on during germination of conidia. These include the initiation of respiration, or fermentation followed by respiration; synthesis of proteins, including aquaporins and those involved in substrate uptake; synthesis of DNA and RNA; critical changes in compatible-solute metabolism (assimilation and/or synthesis of trehalose and specific polyols); generation of cell-available energy; and additional changes including upregulation of other genes involved in sensing the environment, substrate uptake, stress responses and developmental processes (Osherov and May, 2001; van Leeuwen et al., 2013; Hagiwara et al., 2016; Novodvorská et al., 2016; Turgeman et al., 2016).

The inability to form germlings on the 0.651, 0.640, 0.635, 0.623 and 0.598 water-activity media by day 73 may relate to unfavorable combinations of chaotropes, kosmotropes, water activity, temperature, nutrients and/or turgor (Williams and Hallsworth, 2009; Chin et al., 2010; Stevenson et al., 2015a; de Lima Alves et al., 2015; Wyatt et al., 2015a). Such windows-of-inactivity have been observed previously in studies of mycelial growth of xerophiles at extreme water activities (Williams and Hallsworth, 2009; Stevenson et al., 2015a). The lack of germlings on glycerol-supplemented media at 0.635 water activity, even by day 73, appears anomalous given that germlings were produced by day 57 on glycerol-only media at 0.585 water activity (Fig. 1). At extreme glycerol concentrations, however, biophysical aspects of molecular motion, cytosolic viscosity and flexibility-stability of biomacromolecules are both complex and dynamic. It may be that viscosity of the cytosol is prohibitively high at 7.4 M glycerol in the 0.635 water-activity medium (Wyatt et al., 2015a), whereas the extreme chaotropicity observed at 7.7 M glycerol in the 0.585 water-activity medium (Hallsworth et al., 2007; Williams and Hallsworth, 2009; Cray et al., 2013a; de Lima Alves et al., 2015) can offset this biophysical constraint (Ball and Hallsworth, 2015; Wyatt et al., 2015a). The lack of germling formation on the media listed above is consistent with the slow progress and relatively low level of water intake by the conidia (Figs 3, S2 and S3). Hostile combinations of stress parameters, i.e., ‘black holes’ in relation to functionality of biological systems, are the rule rather than the exception under very extreme conditions (Williams and Hallsworth, 2009; Yakimov et al., 2015; Cray et al., 2016).

Germination of diverse xerophile species was observed in the water-activity range 0.738–0.605 by between 19 and 120 days by Pitt and Christian (1968). By contrast, the production of A. penicillioides germination structures reported here was observed after unprecedented periods of only 4 days at 0.734 water activity, 7.9 days at 0.635 water activity and 11.3 days at 0.585 water activity (Figs 1 and S4).

Production of mycelium and sporulation: the culmination of development

Upon germination, both the development of new mycelium and subsequent sporulation are key events in the natural ecology of fungi. These processes facilitate survival, dispersal, and ultimately enable location of new resources, colonization of new habitats, etc. In the context of space-exploration missions, bacterial and fungal spores may act as an effective vehicle for the transfer of life from Earth to extraterrestrial locations in a dormant yet viable state (Rummel et al., 2014; Gibney, 2016; Nagler et al., 2016). Spores of aspergilli and closely related fungi are highly stress resistant (van Leeuwen et al., 2013; Rangel et al., 2015; Wyatt et al., 2015b) and can remain viable after exposure to space at least 22 months, as demonstrated by the EXPOSE-R experiment performed on the outer surface of the International Space Station (Novikova et al., 2015), though may potentially do so for decades. In the current study, production of aerial hyphae and/or conidiophores and lawns of (pigmented) spores were recorded on 10 out of the 18 germination media (Figs 1 and S4). The lowest water-activity at which this level of development occurred during the experimental period was 0.654 (Fig. 1). In previous studies, germination of xerophilic aspergilli occurred in a comparable time period only at the relatively high water activity of 0.771; production of spores was only recorded 64–116 days in the water-activity range 0.708–0.663; and no sporulation occurred below 0.663 (Pitt and Christian, 1968). In the current study, mycelium developed and/or sporulation had occurred at 0.734, 0.674 and 0.654 water activity by 7.9, 14.2 and 28.1 days, respectively (Fig. 2). Extrapolations of the time zone in which each dataset lies indicate that mycelial development and/or sporulation may take up to 131 days on 0.585 water-activity media (Fig. S4C). Further studies are needed to determine whether conidiogenesis occurs at, and whether germination takes place below, 0.585 water activity.

Concluding remarks

The current study reveals unprecedented rates of metabolism, active cellular differentiation, and cell division at extremely, low water-activity. Furthermore, it demonstrated microbial cell differentiation and cell division at a water activity outside the currently understood window-for-life.
Understanding the constraints on microbial systems is essential to understanding habitability in relation to hostile conditions on Earth, within industrial systems, and in extraterrestrial locations (Kminek et al., 2010; Rummel et al., 2014; Hu et al., 2016). A number of policies, protocols and processes are based on the water-activity limit for life; in light of the data presented here, which revealed fungal germination at 0.585 water activity, and the circumstantial evidence of potential microbial germination and growth at even lower water-activity values, these may now require revision. They include: water-activity and relative-humidity thresholds considered safe for preservation of foods and feeds (Brown, 1990; Shehbal, 2012); relative humidities considered safe to prevent growth of mycotoxin-producing fungi within habitations (van Laarhoven et al., 2016); conditions needed to preserve books, artworks and museum specimens; and the international policy for planetary protection in relation to exploratory space missions which has been formulated based (albeit with some safety margin, to allow for potential new findings) on previous data that no microbe could multiply below 0.605 water activity (Rummel et al., 2014; Stevenson et al., 2015b; Kminek et al., 2016). Intriguingly, abiotic glycerol (and structurally similar molecules) has been identified in both terrestrial and extraterrestrial environments (Cooper et al., 2001; Kaiser et al., 2015; McCollom et al., 2015), and fungi – like other microbes – efficiently take up extracellular glycerol when present at nanomolar concentrations, and possibly even below this range (Hallsworth and Magan, 1995; Lages et al., 1999; Holst et al., 2000). Application of our findings may also help to protect health by reducing exposure to mycotoxins in airborne spores for inhabitants of buildings or astronauts within spacecraft, or via the food-supply chain.

The finding that A. penicillioides cells can function at 0.585 water activity in experimental high-glycerol media (current study) – rather than 0.680 in the absence of extracellular glycerol (Pitt and Hocking, 2009) – represents a profound change in its window, equivalent to 9.55% relative humidity or, in terms of typical temperature windows for growth, ~6°C (Stevenson et al., 2015b). A recent study revealed cell division of Bacteria and Archaea close down to 0.635 water activity (Stevenson et al., 2015a), and in the current study, the rate of A. penicillioides germination at 0.585 water activity was more rapid than we had anticipated, and lines of best fit in which each dataset lies suggested the that differentiated germination structures could plausibly be produced by 20 days, and septate germings by 82 days, at 0.565 water activity (Fig. S4B). Collectively, these findings hint that microbial metabolism and cell division may function in nature at <0.585, or even <0.565, water activity. Furthermore, they provide proof-of-principle that the currently understood water-activity limit for life not an insurmountable thermodynamic barrier, but can be circumvented by microbial cells (and biotechnologists and microbiologists). Recent studies suggest that both water activity and glycerol are key drivers for the evolutionary biology of microbial systems (e.g. Cray et al., 2013b; Stevenson et al., 2015b; Mattenberger et al., in press; Oren, in press). Studies based on the use of transcriptomics have provided insights into the biophysical limit of the functional biosphere in chaotropic habitats (Hallsworth et al., 2007; Yakimov et al., 2015); it will be intriguing to discover whether such approaches can also be employed to determine in situ activity(ies) of microbes within the stressed ecosystems of terrestrial, water-constrained environments, and to answer the question whether (or how much) microbial metabolism occurs below the water-activity threshold for cell division? As water activity is a key determinant for many biological, biochemical and biotechnological systems/processes, a reassessment of the biophysical constraints which determine their functionality, may now be warranted.

Experimental procedures

Aspergillus penicillioides strain

Aspergillus penicillioides strain JH06THJ was maintained on malt-extract yeast-extract phosphate agar (MYPiA: 1% malt extract, 1% yeast extract, 0.1% anhydrous K2HPO4 and 1.5% w/v agar) supplemented with 5.5 M glycerol (0.821 water activity) and incubated at 30°C. This strain was originally isolated in 2006 from an antique wooden artefact (country of origin, Thailand) by Williams and Hallsworth (2009) and is available from the corresponding author. The water-, pH- and temperature-relations for spore germination and mycelial growth of A. penicillioides (JH06THJ) have been characterized on glycerol-supplemented medium (Williams and Hallsworth, 2009; Stevenson et al., in press-b); both germination and hyphal growth have been observed down to 0.640 water activity (Williams and Hallsworth, 2009; Stevenson et al., in press-a).

Production and dry-harvesting of high-glycerol conidia

Cultures were incubated on MYPiA supplemented with 5.5 M glycerol 30°C for 10–14 days; until sporulation was sufficiently advanced to be clearly visible by eye (Stevenson et al., in press-a). High-glycerol conidia (up to 7% dry wt; see Stevenson et al., in press-a) were harvested from these cultures by gently stroking the surface of colonies with a sterile glass-rod; in the same motion, this glass rod was immediately used to inoculate germination assays (see below).

Inoculation and incubation of germination assays

The MYPiA-based media used for germination assays were supplemented with either glycerol + NaCl; glycerol + sucrose; glycerol only; or glycerol + NaCl + sucrose (Table S1); and were chosen to represent the high-solute environments (both natural and anthropogenic) in which A. penicillioides and other
microbes occur (Hallsworth and Magan, 1995; Wang et al., 2001; Sformo et al., 2010; Santos et al., 2015; Stevenson et al., 2015a; Cray et al., 2015; 2016). The water activities of these media ranged from 0.741 to 0.585 (Table S1); the same batch of media was used for the study Stevenson and colleagues (in press-a). Water activity was determined using a Novasina Humidat-IC-II water-activity machine fitted with an alcohol-resistant humidity sensor and eVALC alcohol filter (Novasina, Pfäffikon, Switzerland), as described previously (Hallsworth and Nomura, 1999; Stevenson et al., 2015a). Conidia were inoculated onto germination-assay media by stroking with the glass rod that had been used to harvest spores (see above). Petri plates were then immediately sealed with Parafilm® and incubated in polythene bags at 24°C.

Inspection of spores, germinating and mycelia through sealed Petri plates

Once inoculated, Petri plates remained sealed with Parafilm® throughout the 73-days duration of the study. Conidia and other structures were examined through the lids of Petri plates, and images were captured at regular intervals using a MULTI-ZOOM AZ100 microscope (Nikon Corporation Instruments) at 400× magnification.

Criteria for assessment of the germination process and subsequent sporulation

Photomicrographs of conidia were taken at regular time intervals (at 400× magnification) and analyzed using Adobe Bridge CS5.1 (Adobe Systems Incorporated, CA, USA) to determine the cross-sectional areas of 50 individual spores which were spatially separate from any others. The Magnetic Lasso Tool within Adobe Bridge CS5.1 was used to delineate the edge of each spore, and the number of pixels within this outline was determined using the Adobe Bridge CS5.1 pixel counter. Cross-sectional areas of conidia were, therefore, initially determined according to the number of pixels. Mean cross-sectional area was determined for conidia at each water activity and at each time point (Fig. S2).

Cross-sectional areas in pixels (A) were converted to spore volumes in pixels² (Vpix) using the equation:

\[
V_{pix} = \frac{4}{3} \pi \times \left(\frac{A}{\pi} \right)
\]

based on the spherical form of the conidia. All cross-sectional areas (and corresponding volumes) were recorded only for conidia which had not yet differentiated. The mean diameter of conidia at time zero (upon inoculation) was 4.75 μm, as determined from 1800 measurements made using a graticulated eyepiece and calibration slide (data not shown). This value was used to calculate the initial cross-sectional area of conidia, which was 17.72 μm². Accordingly, the mean volume of conidia upon inoculation was 56.12 μm³; this value was used to convert all volumes expressed in pixels² to volumes expressed in μm³ (Vmic) (Fig. S3). For each water activity and at each time point, Vmic was determined via the equation:

\[
\text{Vmic} = \left(\frac{V_{pix}}{MV_{pix}} \times 100 \right) \times 56.12 / 100
\]

where MVpix is the mean volume of all spores at time zero in pixels². For the three highest and three lowest water-activity media, log-transformed values for Vmic were tested for significant differences (P ≤ 0.05) in relation to incubation time via one-way ANOVA followed by Tukey’s multiple comparison test (Fig. 2).

For each water activity and time point, the first appearance of differentiated conidia (Figs 3A and S1) was recorded upon inspection of at least 200 individual conidia. For each water activity and time point, the appearance of the first germings was recorded once germ tubes were longer than the diameter of the conidium and septa were visible (Figs 1 and S1). Following germination, production of mycelium and production of pigmented spores were visible by eye. Sporulation (production of aerial hyphae, conidiophores and conidia) was verified by light microscope and then recorded (Figs 1 and S1).

Acknowledgements

This article is based on work funded by the Department of Agriculture, Environment and Rural Affairs (DAERA, Northern Ireland) who supported A. Stevenson and P.G. Hamill and Biotechnology and Biological Sciences Research Council (BBBRC, United Kingdom) project BBF003471. We would like to thank D. Blain (Queen’s University Belfast) for the technical assistance provided.

References

de Lima Alves, F., Stevenson, A., Baxter, E., Gillion, J.L., Hejazi, F., Hayes, S., et al. (2015) Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window. Curr Genet 61: 457–477.

Ball, P., and Hallsworth, J.E. (2015) Water structure and chaotropicity: their uses and abuses. Phys Chem Chem Phys 17: 8297–8305.

Bhaganna, P., Bielecka, A., Molinari, G., and Hallsworth, J.E. (2016) Protective role of glycerol against benzene stress: insights from the Pseudomonas putida proteome. Curr Genet 62: 419–429.

Bhaganna, P., Volkers, R.J.M., Bell, A.N.W., Kluge, K., Timson, D.J., McGrath, J.W., et al. (2010) Hydrophobic substances induce water stress in microbial cells. Microb Biotechnol 3: 701–716.

Brown AD (ed) (1990). Microbial Water Stress Physiology: Principles and Perspectives. Chichester: John Wiley and Sons.

Chin, J.P., Megaw, J., Magill, C.L., Nowotarski, K., Williams, J.P., Bhaganna, P., et al. (2010) Solutes determine the temperature windows for microbial survival and growth. Proc Natl Acad Sci USA 107: 7835–7840.

Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabha, K., and Garrel, L. (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early earth. Nature 414: 879–883.

© 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. Environmental Microbiology, 19, 687–697
Cray, J.A., Russell, J.T., Timson, D.J., Singhal, R.S., and Hallsworth, J.E. (2013a) A universal measure of chaotropicity and kosmotropicity. *Environ Microbiol* 15: 287–296.

Cray, J.A., Bell, A.N., Bhaganna, P., Mswaka, A.Y., Timson, D.J., and Hallsworth, J.E. (2013b) The biology of habitat dominance; can microbes behave as weeds? *J Microbiol Biotech* 6: 453–492.

Cray, J.A., Stevenson, A., Ball, P., Bankar, S.B., Eleutherio, E.C., Ezeji, T.C., et al. (2015) Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. *Curr Opin Biotechnol* 33: 258–259.

Cray, J.A., et al. (2016) Biocontrol agents promote growth of potato pathogens, depending on environmental conditions. *Microbiol Biotechnol* 9: 330–354.

Fox-Powell, M.G., Hallsworth, J.E., Cousins, C.R., and Cockell, C.S. (2016) Ionic strength is a barrier to the habitability of Mars. *Astrobiology* 16: 427–442.

Gibney E. (2016) Computing glitch may have doomed Mars lander. *Nature* 538: 435–436.

Grant, W.D. (2004) Life at low water activity. *Philos Trans R Soc London B: Biol Sci* 359: 1249–1266.

Gupta, K., Gupta, P., Mathew, J.L., Bansal, A., Singh, G., Singh, M., and Chakrabarti, A. (2015) Fatal disseminated *Aspergillus penicilloides* infection in a three-month-old infant with suspected cystic fibrosis: autopsy case with review of literature. *Pediatr Dev Pathol* doi: https://doi.org/10.2350/15-10-1729-CR.1.

Hagiwara, D., et al. (2016) Comparative transcriptome analysis revealing dormant conidia and germination associated genes in *Aspergillus* species: an essential role for AflA in conidial dormancy. *BMC Genomics* 17: 358.

Hallsworth, J.E., and Magan, N. (1995) Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. *Microbiology* 141: 1109–1115.

Hallsworth, J.E., and Nomura, Y. (1999) A simple method to determine the water activity of ethanol-containing samples. *Biotechnol Bioeng* 62: 242–245.

Hallsworth, J.E., Prior, B.A., Nomura, Y., Iwahara, M., and Timmis, K.N. (2003) Compatible solutes protect against chaotrope (ethanol)-induced, nonosmotic water stress. *Appl Environ Microbiol* 69: 7032–7034.

Hallsworth, J.E., et al. (2007) Limits of life in MgCl₂-containing environments: chaotropy defines the window. *Environ Microbiol* 9: 803–813.

Harris, S.D., Momany, M. (2004) Polarity in filamentous fungi: moving beyond the yeast paradigm. *Fungal Genet Biol* 41: 391–400.

Hayer, K., Stratford, M., and Archer, D.B. (2013) Structural features of sugars that trigger or support conidial germination in the filamentous fungus *Aspergillus niger*. *Appl Environ Microbiol* 79: 6924–6931.

Holst, B., et al. (2000) GUP1 and its close homologue GUP2, encoding multimembrane-spanning proteins involved in active glycerol uptake in *Saccharomyces cerevisiae*. *Mol Microbiol* 37: 108–124.

Hu, Q., et al. (2016) FeO₂ and FeOOH under deep mantle conditions and Earth’s oxygen–hydrogen cycles. *Nature* 534: 241–244.

Kaiser, R.I., Maiti, S., and Jones, B.M. (2015) Synthesis of prebiotic glycerol in interstellar ices. *Angew Chem Int Ed* 54: 195–200.

Kminek, G., et al. (2010) Report of the COSPAR Mars special regions colloquium. *Adv Space Res* 46: 811–829.

Kminek, G., et al. (2016). Meeting report: COSPAR Panel on Planetary Protection colloquium, Bern, Switzerland, September 2015. *Space Res Today* 195: 42–51.

van Laarhoven, K.A., Huinink, H.P., and Adan, O.C.G. (2016) A microscopy study of hyphal growth of *Penicillium rubens* on gypsum under dynamic humidity conditions. *Microb Biotechnol* 9: 408–418.

Lages, F., Silva-Graca, M., and Lucas, C. (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. *Microbiology* 145: 2577–2585.

Lee, C.J.C., McMullen, P.E., O’Kane, C.J., Stevenson, A., Ghosh, W., Mancinelli, R., et al. (in press) NaCl-saturated brines are moderate, rather than extreme, microbial habitats. *Environ Microbiol* van Leeuwen, M.R., Wyatt, T.T., Golovina, E.A., Stam, H., Menke, H., Dekker, A., et al. (2013) The effect of natamycin on the transcriptome of conidia of *Aspergillus niger*. *Stud Mycol* 74: 71–85.

Lievens, B., Hallsworth, J.E., Pozo, M.I., Belgacem, Z.B., Stevenson, A., Willems, K.A., Jacquemyn, H. (2015) Microbiology of sugar-rich environments: diversity, ecology and system constraints. *Environ Microbiol* 17: 278–298.

Liu, S.L., Wu, W.J., and Yu, P.T. (2016) Effect of sonic stimulation on *Bacillus* endospore germination. *FEMS Microbiol Lett* 363: fnv217.

Mattenberger, F., Sabater-Muñoz, B., Hallsworth, J.E., and Fares, M.A. (In press) Glycerol stress in Saccharomyces cerevisiae: cellular responses and evolved adaptations. *Environ Microbiol DOI*: 10.1111/1462-2920.13603 McCollum, T.M., Seewald, J.S., and German, C.R. (2015) Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge. *Geochim Cosmochim Acta* 156: 122–144.

Micheluz, A., et al. (2016) Fungal secondary metabolite analysis applied to Cultural Heritage: the case of a contaminated library in Venice. *World Mycotoxin J* 9: 397–407.

Miermont, A., Waharte, F., Hu, S., McClean, M. N., Bottani, S., Léon, S., and Hersen, P. (2013) Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. *Proc Natl Acad Sci* 110: 5725–5730.

Nagler, K., Julius, C., and Moeller, R. (2016) Germination of spores of astrobiologically relevant *Bacillus* species in high-salinity environments. *Astrobiology* 16: 500–512.

Nakano, S.I., Miyoshi, D., and Sugimoto, N. (2013) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. *Chem Rev* 114: 2733–2758.

Nazareth, S., and Gonsalves, V. (2014) *Aspergillus penicilloides* – a true halophile existing in hypersaline and polyhaline eoniches. *Front Microbiol* 5: 412.

Novikova, N., et al. (2015) Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the ‘EXPOSE-R’ experiment. *Int J Astrobiol* 14: 137–142.

Novodvorská, M., et al. (2016) Metabolic activity in dormant conidia of *Aspergillus niger* and developmental changes during conidial outgrowth. *Fungal Genet Biol* 94: 23–31.

© 2017 The Authors. *Environmental Microbiology* published by Society for Applied Microbiology and John Wiley & Sons Ltd, *Environmental Microbiology*, 19, 687–697
Okano, K., et al. (2015) Inhibition of aflatoxin production and fungal growth on stored corn by allyl isothiocyanate vapor. Shokuhin Eisai gaku Zasshi 56: 1–7.

Oren, A. (in press) Glycerol metabolism in hypersaline environments. Environ Microbiol. DOI: 10.1111/1462-2920.13493

Osherov, N., and May, G.S. (2001) The molecular mechanisms of conidial germination. FEMS Microb Lett 199: 153–160.

Paulussen, C., Hallsworth, J.E., Álvarez-Pérez, S., Nierman W.C, Hamill, P.G., Blain, D., Rediers, H., and Lievens, B. (in press) Ecology of xerophilic fungi: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microbial Biotechnol. Doi: 10.1111/1751-7915.12367

Pitt, J.I., and Christian, J.H.B. (1968) Water relations of xerophilic fungi isolated from prunes. Appl Environ Microbiol 16: 1853–1858.

Pitt, J.I. (1975). Xerophilic fungi and the spoilage of foods of plant origin. In Water Relations of Foods. Duckworth, R.B. (ed). London: Academic Press.

Pitt, J.I., and Hocking, A.D. (2009) Spoilage of stored, processed and preserved foods. In: Fungi and Food Spoilage, 3rd Ed., Pitt, J.I. and Hocking A.D. (eds.). Springer US, pp. 401-421.

Rangel, D.E., Braga, G.U., Fernandes, É.K., Keyser, C.A., Hallsworth, J.E., and Roberts, D.W. (2015) Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation.Curr Genet 61: 383–404.

Rummel, J.D., Beaty, D.W., Jones, M.A., Bakermans, C., Barlow, N.G., Boston, P., et al. (2014) A new analysis of Mars ‘Special Regions’, findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 14: 887–968.

Santos, R., de Carvalho, C.C.R., Stevenson, A., Grant, I.R., and Hallsworth, J.E. (2015) Extraordinary solute-stress tolerance contributes to the environmental tenacity of mycobacteria. Environ Microbial Rep 7: 746–764.

Shehbal, J. (ed) (2012). Controlled atmosphere storage of grains. In Developments in Agricultural Engineering. New York: Elsevier Science.

Sformo, T., et al. (2010) Deep supercooling, vitrification and limited survival to −100°C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J Exp Biol 213: 502–509.

Stevenson, A., Hallsworth, J.E. (2014) Water and temperature relations of soil Actinobacteria. Environ Microbiol Rep 6: 744–755.

Stevenson, A., Cray, J.A., Williams, J.P., Santos, R., Sahay, R., Neuenkirchen, N., et al. (2015a) Is there a common water-activity limit for the three domains of life? ISME J 9: 1333–1351.

Stevenson, A., Burkhardt, J., Cockell, C.S., Cray, J.A., Dijksterhuis, J., Fox-Powell, M., et al. (2015b) Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ Microbiol 2: 257–277.

Stevenson, A., Hamill, P.G., Medina, Á., Kmínek, G., Rummel, J., et al. Glycerol enhances fungal germination at the water-activity limit for life. Environ Microbiol (in press-a). doi:10.1111/1462-2920.13530.

Stevenson, A., Hamill, P.G., Dijksterhuis, J., and Hallsworth, J.E. Water-, pH- and temperature relations of germination for the extreme xerophiles Xeromyces bisporus (FR 0025), Aspergillus penicillioides (JH06TH) and Eurotium halophilicum (FR 2471). Microbiol Biotechnol. (in press-b). doi:10.1111/1751-7915.12406.

Tosca, N.J., McLennan, S.M., Lamb, M.P., and Grotzinger, J.P. (2011) Physicochemical properties of concentrated martian surface waters. J Geophys Res 116: E5.

Turgeman, T., et al. (2016) The role of aquaporins in pH-dependent germination of Rhizopus delenar spores. PLoS ONE 11: e0150543.

Wang, J.E., et al. (2001) Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun 69: 2402–2406.

Wei, M., Yu, Z.S., and Zhang, H.X. (2015) Molecular characterization of microbial communities in bioaerosols of a coal mine by 454 pyrosequencing and real-time PCR. J Environ Sci 30: 241–251.

Williams, J.P., and Hallsworth, J.E. (2009) Limits of life in hostile environments; no limits to biosphere function? Environ Microbiol. 11: 3292–3308.

Wyatt, T.T., Golovina, E.A., Leeuwen, R., Hallsworth, J.E., Wosten, H.A., and Dijksterhuis, J. (2015a) A decrease in bulk water and mannitol and accumulation of trehalose and trehalose-based oligosaccharides define a two-stage maturation process towards extreme stress resistance in ascospores of Neosartorya fischeri (Aspergillus fischeri). Environ Microbiol 17: 383–394.

Wyatt, T.T., van Leeuwen, M.R., Golovina, E.A., Hoekstra, F.A., Kuenstner E.J., Palumbo, E.A., et al. (2015b) Functionality and prevalence of trehalose-based oligosaccharides as novel compatible solutes in ascospores of Neosartorya fischeri (Aspergillus fischeri) and other fungi. Environ Microbiol 17: 395–411.

Yakimov, M.M., et al. (2015) Microbial community of the deep-sea brine Lake Kryos seawater-brine interface is active below the chaotropicity limit of life as revealed by recovery of mRNA. Environ Microbiol 17: 364–382.

Zhang, X.Y., Zhang, Y., Xu, X.Y., and Qi, S.H. (2013) Diverse deep-sea fungi from the South China Sea and their antimicrobial activity. Curr Microbiol 67: 525–530.

Zhao, S., et al. (2014) Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil. Biol Fert Soils 50: 765–774. 2014.

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Fig. S1. Flow diagram showing the experimental approaches used (A) in the current study that reports germination of A. penicillioides at 0.585 water activity, (B) the study that demonstrated that glycerol can enhance xerophile germination at low water-activity, and reported germination of A. penicillioides at 0.640 water activity but used extrapolations to predict water-activity minima for germination of < 0.600 (6) and (C) the study that reported germination of Xeromyces bisporus aleuriospores at 0.605 water.
activity (Pitt and Christian, 1968). For full methodological
details, see ‘Experimental procedures’ section.

Fig. S2. Cross-sectional areas of *Aspergillus penicillioides*
(JH06THJ) conidia, which had been inoculated onto malt
extract yeast extract phosphate agar supplemented with
either glycerol + NaCl; glycerol + sucrose; glycerol only; or
glycerol + NaCl + sucrose (Table S1) to give water activity
values of (A) 0.741, (B) 0.734, (C) 0.707, (D) 0.701, (E)
0.699, (F) 0.692, (G) 0.685, (H) 0.674, (I) 0.668, (J) 0.654,
(K) 0.651, (L) 0.640, (M) 0.637, (N) 0.635, (O) 0.623, (P)
0.601, (Q) 0.598 and (R) 0.585. Grey columns indicate
cross-sectional areas of conidia (arbitrary units) during the
swelling process; black columns indicate the maximum
spore size attained (which was generally followed by forma-
tion of sporulating mycelium; see Fig. 1). Further details of
each germination-assay medium are given in Table S1; the
methodological approach is detailed in the ‘Experimental
procedures’ section and outlined in Fig. S1.

Fig. S3. Volumes of *Aspergillus penicillioides* (JH06THJ)
conidia, which had been inoculated onto malt extract yeast
extract phosphate agar supplemented with diverse stressors (Table S1) to give water-activity values of: (A) 0.741,
(B) 0.734, (C) 0.707, (D) 0.701, (E) 0.699, (F) 0.692, (G)
0.685, (H) 0.674, (I) 0.668, (J) 0.654, (K) 0.651, (L) 0.640,
(M) 0.637, (N) 0.635, (O) 0.623, (P) 0.601, (Q) 0.598 and
(R) 0.585. Volumes (μm³) were calculated from the empiri-
cally determined cross-sectional areas (Fig. S2), as
explained in the ‘Experimental procedures’ section. Grey
columns indicate volumes of conidia during the swelling pro-
cess; black columns indicate the maximum spore size
attained (which was generally followed by formation of
sporulating mycelium; see Fig. 1). Further details of each
germination-assay medium are given in Table S1; the meth-
odological approach is detailed in the ‘Experimental
procedures’ section and outlined in Fig. S1.

Fig. S4. Key stages of conidial germination of, and subse-
quently spore production from, *Aspergillus penicillioides*
(JH06THJ) conidia which had been inoculated onto malt
extract yeast extract phosphate agar supplemented with
diverse stressors (Table S1) showing: (A) the scatter of
data, (B) lines of best fit and (C) the time zone in which
each dataset lies; for (yellow) swelling of ≥40% by volume;
(orange) differentiation to form polarised, tapered germina-
tion structures; (red) production of fully-formed, septate
germlings and (black) sporulation of the newly established
mycelia colony. Conidia used in germination assays had
been harvested from cultures grown on malt extract yeast
extract phosphate agar supplemented with 5.5 M glycerol
(0.821 water activity), at 24 ± 8°C; intracellular glycerol content
was 70.1 mg g dry weight⁻¹ (41). The shaded regions indi-
cate extrapolated domains where: (yellow) swelling of
≥40% by volume; (orange) differentiation to form polarized,
tapered germination structures; (red) production of fully-
formed, septate germlings; and (black) sporulation of the
newly established mycelia colony may occur beyond the
time frame of the current study. Methodological approach is
detailed in the ‘Experimental procedures’ section and out-
lined in Fig. S1.

Table S1. Media used for germination assays of *Aspergillus
penicillioides* JH06GBM.

© 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd,
Environmental Microbiology, 19, 687–697