Magnetic Phase Transitions in One-dimensional Strongly Attractive Three-Component Ultracold Fermions

X.W. Guan1, M.T. Batchelor1,2, C. Lee3 and H.-Q. Zhou4

1Department of Theoretical Physics, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia
2Mathematical Sciences Institute, Australian National University, Canberra ACT 0200, Australia
3Nonlinear Physics Centre and ARC Centre of Excellence for Quantum-Atom Optics, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia and
4Centre for Modern Physics, Chongqing University, Chongqing 400044, P.R. China

(Dated: May 12, 2008)

We investigate the nature of trions, pairing and quantum phase transitions in one-dimensional strongly attractive three-component ultracold fermions in external fields. Exact results for the groundstate energy, critical fields, magnetization and phase diagrams are obtained analytically from the Bethe ansatz solutions. Driven by Zeeman splitting, the system shows exotic phases of trions, bound pairs, a normal Fermi liquid and four mixtures of these states. Particularly, a smooth phase transition from a trionic phase into a pairing phase occurs as the highest hyperfine level separates from the two lower energy levels. In contrast, there is a smooth phase transition from the trionic phase into a normal Fermi liquid as the lowest level separates from the two higher levels.

PACS numbers: 03.75.Ss, 03.75.Hh, 02.30.IK, 05.30.Fk

There is considerable interest in three-component ultracold fermions \cite{1, 2, 3, 4}. Atomic Fermi gases with internal degrees of freedom are tunable interacting many-body systems featuring novel and subtle quantum phase transitions. Two-component Fermi gases of ultracold atoms with population imbalance have been experimentally observed to undergo a quantum phase transition between the normal and superfluid states \cite{5}. The bound pairs form a Bardeen-Cooper-Schrieffer (BCS) superfluid, while the unpaired fermions remain as a separated normal Fermi-Liquid (FL). These exotic phases have revived interest in the one-dimensional (1D) integrable model of two-component fermions, which captures the physics involved in quantum phase transitions and magnetic ordering \cite{6, 7, 8, 9}.

Three-component fermions reveal more exotic features \cite{1, 2, 3, 4, 10, 11, 12, 13}. The scattering lengths between atoms in different low sublevels are again tunable via Feshbach resonances \cite{14, 15, 16}. As a consequence, BCS pairing can be favored by anisotropies in three different ways: specifically, atoms in three low sublevels denoted by $|1\rangle$, $|2\rangle$ and $|3\rangle$ can form the three possible pairs $|1\rangle + |2\rangle$, $|2\rangle + |3\rangle$ and $|1\rangle + |3\rangle$ \cite{14}. One may also have three internal spin states exhibiting $SU(3)$ symmetry via tuning three scattering lengths close to each other \cite{17}. Significantly, strongly attractive three-component atomic fermions can form spin-neutral three-body bound states called trions. Thus, a phase transition is expected to occur between pairing superfluid and trionic states \cite{1, 2, 3, 4, 10, 11}.

In this Letter, we consider 1D three-component ultracold fermions with δ-function interaction in external magnetic fields. Although this model was solved long ago by the Bethe ansatz (BA) \cite{18, 19}, its physics is far from being thoroughly understood. Here we study the precise nature of trions and pairing in this model, and calculate critical fields and full phase diagrams by solving the BA equations and related dressed energy equations. Our analytical results for magnetism and magnetic-field-driven quantum phase transitions in attractive fermions should provide benchmarks for experiments with ultracold Fermi atoms with multiple internal states.

The model. The Hamiltonian \cite{18} we consider

\begin{equation}
H = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} + g_{1D} \sum_{1 \leq i < j \leq N} \delta(x_i - x_j) \\
+ \sum_{i=1}^{3} N^i \epsilon_i^Z(\mu_B, B)
\end{equation}

describes N fermions of mass m and spin-independent s-wave scattering lengths, which can occupy three possible hyperfine levels ($|1\rangle$, $|2\rangle$ and $|3\rangle$) and are constrained to a line of length L with periodic boundary conditions. The last term denotes the Zeeman energy, where N^i is the number of fermions in state $|i\rangle$ with Zeeman energy ϵ_i^Z determined by the magnetic moments μ_B and the magnetic field B. The Zeeman energy term can also be expressed as $-H_1(N^1 - N^2) - H_2(N^2 - N^3) + N\bar{\epsilon}$, where the unequally spaced Zeeman splitting in three hyperfine levels can be characterized by two independent parameters $H_1 = \bar{\epsilon} - \epsilon_2^Z(\mu_B, B)$ and $H_2 = \epsilon_2^Z(\mu_B, B) - \bar{\epsilon}$, with $\bar{\epsilon} = \sum_{\sigma=1}^{3} \epsilon^Z_\sigma(\mu_B, B)/3$ the average Zeeman energy.

In general, the scattering lengths depend on spin states. However, it is plausible to tune three scattering lengths close to each other utilizing the broad Feshbach resonances \cite{14, 20}. Thus the difference in effective interaction parameters becomes negligible so that three
low spin states may have SU(3) degeneracy. The coupling constant \(g_{1D} = -\hbar^2 c/m \) with interaction strength \(c = -2/a_{1D} \) determined by the effective 1D scattering length \(a_{1D} \) \cite{21}. For simplicity, we define a dimensionless interaction strength \(\gamma = c/n \) with density \(n = N/L \).

The energy eigenspectrum is given in terms of the quasimomenta \(\{ k_i \} \) of the fermions via \(E = \frac{\hbar^2}{4m} \sum_{j=1}^{N} k_j^2 \) which in terms of the function \(e_{\alpha}(x) = (x + i c/2)/(x - i c/2) \) satisfy the nested BA equations \cite{18,19}

\[
\exp(ik_j L) = \prod_{\ell=1}^{M_1} e_1(k_j - \Lambda_\ell) \\
\prod_{\ell=1}^{N} e_1(\Lambda_\alpha - k_\ell) = -\prod_{\beta=1}^{M_1} e_2(\Lambda_\alpha - \Lambda_\beta) \prod_{\ell=1}^{M_2} e_{-1}(\Lambda_\alpha - \Lambda_\ell) \\
\prod_{\ell=1}^{M_1} e_1(\lambda_\lambda - \Lambda_\ell) = -\prod_{\ell=1}^{M_2} e_2(\lambda_\lambda - \Lambda_\ell)
\]

Eq. (2).

Here \(j = 1, \ldots, N \), \(\alpha = 1, \ldots, M_1 \), \(m = 1, \ldots, M_2 \), with quantum numbers \(M_1 = N^2 + N^3 \) and \(M_2 = N^3 \). The parameters \(\{ \Lambda_\alpha, \lambda_\lambda \} \) are the rapidities for the internal hyperfine spin degrees of freedom. For the irreducible representation \([3^{N_t} 2^{N_s} 1^{N_i}] \) three-column Young tableau encode the numbers of unpaired fermions, bound pairs and trions given by \(N_1 = N^1 - N^2 \), \(N_2 = N^2 - N^3 \) and \(N_3 = N^3 \), respectively.

\textbf{Trions and pairing}. In principle, different numbers of trions, pairs and unpaired fermions can be selected to populate the groundstate by carefully tuning \(H_1 \) and \(H_2 \). For a state with arbitrary spin polarization, i.e. \(N_3 \) with \(i = 1, 2, 3 \) arbitrary, there are \(10 \) (i) \(N_3 \) spin-neutral trions in the quasimomentum space accompanied by \(N_3 \) spin bound states in the \(\Lambda \)-parameter space and \(N_3 \) real roots in the \(\lambda \)-parameter space, (ii) \(N_2 \) BCS bound pairs in \(k \)-space accompanied by \(N_2 \) real roots in \(\Lambda \) space and (iii) \(N_1 \) unpaired fermions in \(k \)-space. With the above configuration, we solve the BA equations \cite{22} in the strong coupling regime \(L|c| \gg 1 \) to give the quasimomenta for trions, BCS pairs and unpaired fermions (see Fig. 1), from which the energy is given by

\[
\frac{E}{L} \approx \frac{\hbar^2}{2m} \left[\frac{\pi^2 n_1^3}{3} \left(1 + \frac{8n_2 + 4n_3}{|c|} \right) - \frac{n_2 c^2}{2} \right] + \frac{\pi^2 n_2^3}{6} \left(1 + \frac{12n_1 + 6n_2 + 16n_3}{3|c|} \right) - 2n_3 c^2 + \frac{\pi^2 n_3^3}{9} \left(1 + \frac{12n_1 + 32n_2 + 18n_3}{9|c|} \right).
\]

Eq. (3).

Here \(n_\alpha = N_\alpha/L \) with \(\alpha = 1, 2, 3 \) is the density for unpaired fermions, pairs and trions, respectively. This state can be viewed as a mixture of trionic fermions, hard-core bosons and unpaired fermions, which behave essentially like particles with different statistical signatures.\cite{2,8} The BCS pair binding energy \(\epsilon_\nu = \hbar^2 c^2/(4m) \) and the binding energy \(\epsilon_\ell = \hbar^2 c^2/m \) for a trion can be read off

\textbf{Thermodynamic Bethe Ansatz}. In the thermodynamic limit, i.e. \(L, N \to \infty \) with \(N/L \) finite, the grand partition function is \(Z = \text{tr}(e^{-N/T}) = e^{-G/T} \), where the Gibbs free energy is \(G = E + E_Z - \mu N - TS \) in terms of the Zeeman energy \(E_Z \), chemical potential \(\mu \) and entropy \(S \). For finite temperatures, besides complex BA roots for trions, BCS pairs and real roots for unpaired fermions, the quasimomenta \(\{ \Lambda_\alpha, \lambda_\lambda \} \) form complex strings. The Gibbs free energy can be given in terms of the densities of particles and holes for trions, bound pairs, unpaired fermions as well as spin degrees of freedom, which are determined from BA \cite{22}. Thus the true physical state is determined by the minimization of the Gibbs free energy with respect to these densities, which gives rise to a set of coupled nonlinear integral equations – the TBA equations \cite{23}.

Quantum phase transitions in the model may be analyzed via the dressed energy equations,

\[
\epsilon^{(3)}(\lambda) = 3\lambda^2 - 2c^2 - 3\mu - a_2 \cdot \epsilon^{(1)}(\lambda) - [a_1 + a_3] \cdot \epsilon^{(2)}(\lambda) - [a_2 + a_4] \cdot \epsilon^{(3)}(\lambda) \\
\epsilon^{(2)}(\Lambda) = 2\Lambda^2 - 2\mu - c^2 - H_2 - a_1 \cdot \epsilon^{(1)}(\Lambda) - a_2 \cdot \epsilon^{(2)}(\Lambda) - a_3 \cdot \epsilon^{(3)}(\Lambda) \\
\epsilon^{(1)}(k) = k^2 - \mu - H_1 - a_1 \cdot \epsilon^{(2)}(k) - a_2 \cdot \epsilon^{(3)}(k),
\]

which follow from the TBA equations in the limit \(T \to 0 \). Here the function \(a_j(x) = \frac{1}{2\pi} \int_{|Q_\alpha|}^{|Q_\alpha|} \frac{d|c|}{(|c|/2)^2 + x} \) and \(\epsilon^{(a)} \) are the dressed energies, \(a_j \cdot \epsilon^{(a)}(x) = \int_{|Q_\alpha|}^{Q_\alpha} a_j(x-y) \epsilon^{(a)}(y) dy \) is the convolution. The negative part of the dressed energies \(\epsilon^{(a)}(x) \) for \(x \leq |Q_\alpha| \) correspond to the occupied states in the Fermi seas of trions, bound pairs and unpaired fermions, with the positive part of \(\epsilon^{(a)} \) correspond-
ing to the unoccupied states. The integration boundaries Q_a characterize the “Fermi surfaces” at $\epsilon^{(a)}(\pm Q_a) = 0$. The zero-temperature Gibbs free energy per unit length is given by $G = \sum_{a=1}^{3} \frac{\sigma}{2\pi} \int_{-\infty}^{\infty} \epsilon^{(a)}(x) dx$. The chemical potential and magnetization per length are determined by H_1, H_2, g_{1D} and n through the relations

$$-rac{\partial G}{\partial \mu} = n, -\frac{\partial G}{\partial H_1} = n_1, -\frac{\partial G}{\partial H_2} = n_2,$$

(5)

In the absence of analytic solutions of Eq. (4), we obtain an exact expansion in the strong coupling regime $\gamma \gg 1$. Solved the dressed energy equations (4) by iteration among the relations (5) and $\epsilon^a(\pm Q_a) = 0$ with $a = 1, 2, 3$, gives the effective chemical potentials

$$\mu^t \approx \frac{n_1^2}{9} \left(1 + \frac{4n_1}{3|c|} + \frac{32n_2}{9|c|} + \frac{8n_3}{3|c|}\right) + \frac{4n_1^3}{9|c|} + \frac{8n_3^2}{27|c|},$$

$$\mu^b \approx \frac{n_2^2}{4} \left(1 + \frac{4n_1}{|c|} + \frac{8n_2}{3|c|} + \frac{16n_3}{3|c|}\right) + \frac{4n_2^3}{3|c|} + \frac{16n_3^2}{81|c|},$$

$$\mu^u \approx \frac{n_3^2}{3} \left(1 + \frac{8n_2}{|c|} + \frac{4n_3}{|c|}\right) + \frac{2n_2^3}{3|c|} + \frac{4n_3^2}{27|c|},$$

(6)

in units of $\hbar^2\pi^2/2m$. Here we denote $\mu^t = \mu + \epsilon_t/3$ for trions, $\mu^b = \mu + \epsilon_b/2 + H_2/2$ for bound pairs and $\mu^u = \mu + H_1$ for unpaired fermions. These relations give rise to a full characterization of three Fermi surfaces. It is important to note [25] that the energy for arbitrary population imbalances can be obtained from $E/L = \mu n + G + n_1H_1 + n_2H_2$, which coincides with (3) derived from the discrete BA [22]. This indicates that the trions and BCS bound pairs are possibly the true physical states, i.e., the BA roots comprise the equilibrium states in the thermodynamic limit.

Full phase diagram. In the strong coupling regime and in absence of Zeeman splitting, i.e., $H_1 = H_2 = 0$, the dressed energies ϵ^b and ϵ^t are always positive, i.e., $Q_1 = Q_2 = 0$. Thus trions form a singlet groundstate. However, the Zeeman splitting can lift the $SU(3)$ degeneracy and drive the system into different phases. Breaking a trion state requires a spin excitation energy to diminish an energy gap. From Eq. (4), the energy transfer relations among the binding energy, the Zeeman energy and the variation of chemical potentials between different Fermi seas are given by

$$H_1 = 2c^2/3 + (\mu^u - \mu^t), \quad H_2 = 5c^2/6 + 2(\mu^b - \mu^t),$$

$$H_1 - H_2/2 = c^2/4 + (\mu^u - \mu^b).$$

(7)

These equations determine the full phase diagram and the critical fields triggered by the Zeeman splitting H_1 and H_2. A similar energy transfer relation was identified in experiment for 1D polarized two-component fermions [20]. These relations hold for arbitrary interaction strength. However, for $\gamma \gg 1$, the chemical potentials are given by Eq. (6). Figure 2 shows the polarization, which clearly indicates novel magnetism, new quantum phases, multicritical points and phase transitions in terms of Zeeman splitting.

The groundstate energy vs Zeeman splitting parameters H_1 and H_2 can be evaluated from Eq. (3) with the densities n_1 and n_2 determined from (7). Figure 3 shows the energy surface for all possible phases shown in Figure 2. This figure demonstrates the interplay between different physical groundstates. We see a mixture of trions, BCS pairs and unpaired fermions ($A + B + C$) populates the groundstate for certain values of H_1 and H_2. There are six different phase transitions across the $A + B + C$ boundaries in the H_1-H_2 plane. All phase transitions between two phases are second order and reveal a universality class of linear-field-dependent magnetization with finitely divergent susceptibility in the vicinities of critical fields. Our analytical results (7) do not support the square-root-field-dependent behaviour of magnetization argued in [23], but do agree with results for the attractive Hubbard model [20].

For small H_1 (i.e., small splitting between the two lower levels), a smooth phase transition from a trionic state into a mixture of trions and pairs occurs as H_2 exceeds the lower critical value H_2^{11} (see Fig. 3). When H_2 is greater than the upper critical value H_2^{12}, the atoms within the two lower states form a pure pairing phase with $SU(2)$ symmetry and the highest level remains unpopulated. In this pure pairing phase, the three-level system is reduced to a two-level one. Trions and BCS pairs coexist when $H_2^{11} < H_2 < H_2^{12}$.

The critical fields $H_2^{11} \approx \frac{5\gamma}{2m} (\frac{5\gamma}{6} + \frac{\pi}{8} (1 + \frac{20}{\gamma})$ and $H_2^{12} \approx \frac{5\gamma}{2m} (\frac{5\gamma}{6} + \frac{\pi}{8} (1 + \frac{20}{\gamma})$ are uniquely determined by the second equation in (7). The polarization

FIG. 2: Phase diagram determined by the energy transfer relations (4) with chemical potentials (6) with $|c| = 10$ and $n = 1$. (a) and (b) show the polarizations n_1/n and n_2/n vs the fields H_1 and H_2. The figure reveals a novel trion phase C, a pairing phase B, an unpaired phase A and four different mixtures of these states.
critical fields, quantum phase transitions and full phase diagrams reveal the nature of spin-neutral trions and BCS pairing in three-component ultracold fermions in external fields. Particularly, we found transitions between trionic and BCS pairing phases and between trionic and normal FL phases may occur for certain types of Zeeman splitting. These exotic phases should stimulate further experimental interest in multi-component ultracold Fermi gases with mismatched Fermi surfaces.

This work has been supported by the Australian Research Council. The authors thank N. Andrei, M.A. Cazalilla, H. Frahm, W.V. Liu and M. Takahashi for helpful discussions. C.L. thanks Yu.S. Kivshar for support.

[1] Á. Rapp, G. Zaránd, C. Honerkamp and W. Hofstetter, Phys. Rev. Lett. 98, 160405 (2007); C. Honerkamp and W. Hofstetter, Phys. Rev. Lett. 92, 170403 (2004).
[2] P. Lecheminant, E. Boulou and P. Azaria, Phys. Rev. Lett. 95, 240402 (2005); S. Capponi et al., Phys. Rev. A 77, 013624 (2008).
[3] R.W. Cherng, G. Refael and E. Demler, Phys. Rev. Lett. 99, 130406 (2007).
[4] F. Wilczek, Nature Phys. 3, 375 (2007).
[5] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311, 492 (2006); M. W. Zwierlein, C. H. Schunck, A. Schirotzek and W. Ketterle, Nature 442, 54 (2006); G. B. Partridge et al., Science 311, 503 (2006).
[6] G. Orso, Phys. Rev. Lett. 98, 070402 (2007).
[7] H. Hu, X.-J. Liu and P. D. Drummond, Phys. Rev. Lett. 98, 070403 (2007).
[8] X.-W. Guan, M. T. Batchelor, C. Lee and M. Bortz, Phys. Rev. Lett. 98, 070403 (2007).
[9] T. Paananen, J.-P. Martikainen and P. Törnmä, Phys. Rev. A 73, 053606 (2006).
[10] Á. Rapp, W. Hofstetter and G. Zaránd, arXiv:0707.2378.
[11] H. Zhai, Phys. Rev. A 75, 031603(R) (2007).
[12] X.-J. Liu, H. Hu and P. D. Drummond, Phys. Rev. A 77, 013622 (2008).
[13] M. Bartenstein et al., Phys. Rev. Lett. 94, 103201 (2005).
[14] C. A. Regal and D. S. Jin, Phys. Rev. Lett. 90, 230404 (2003).
[15] E. R. I. Abraham et al., Phys. Rev. A 55, R3299 (1997).
[16] T. Lai and A. Schwenk, Phys. Rev. Lett. 98, 103202 (2007).
[17] B. Sutherland, Phys. Rev. Lett. 20, 98 (1968).
[18] M. Takahashi, Prog. Theor. Phys. 44, 899 (1970).
[19] H. Moritz et al., Phys. Rev. Lett. 94, 210401 (2005).
[20] T. Bergeman, M. G. Moore and M. Olshanii, Phys. Rev. Lett. 91, 163201 (2003).
[21] M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, Cambridge, 1999).
[22] P. Schlogl, Int. J. Mod. Phys. B 11, 355 (1997).
[23] M. T. Batchelor, X.-W. Guan, N. Oelkers and Z. Tsuboi, Adv. Phys. 56, 465 (2007).
[25] X.-W. Guan and M. T. Batchelor, in preparation.
[26] F. Woynarovich and K. Penc, Z. Phys. B, 85, 269 (1991).