New evidence for preservation of contemporary marine organic carbon by iron in Arctic shelf sediments

Johan C Faust, Philippa Ascough, Robert G Hilton, Mark A Stevenson, Katharine R Hendry and Christian März

1 MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse 8, 28359 Bremen, Germany
2 NEIF Radiocarbon Laboratory, SUERC, Rankine Avenue, East Kilbride G75 0QF, United Kingdom
3 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom
4 Department of Geography, Durham University, Durham DH1 3LE, United Kingdom
5 Polar Oceans Team, British Antarctic Survey, Madingley Road, Cambridge CB3 0ET, United Kingdom
6 School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, United Kingdom
7 Institute for Geosciences, University of Bonn, Nussallee 8, 53115 Bonn, Germany
8 School of Earth and Environment, University of Leeds, LS2 9JT Leeds, United Kingdom

* Author to whom any correspondence should be addressed.

E-mail: JFaust@marum.de

Keywords: Barents Sea, OC-Fe, marine shelf sediments, radiocarbon, carbon isotopes, carbon sequestration

Abstract

The protection of organic carbon through association with iron minerals (Fe_{org}) is an important factor in its stabilisation, long-term storage, and burial efficiency in marine sediments. However, large uncertainties still exist concerning the sources, lability, age, and composition of the organic matter associated with Fe_{org} in natural sediments. Therefore, the timing and environmental setting of the carbon–iron bonding process remain elusive. Here we use radiocarbon (Δ¹⁴C) and stable isotopes (δ¹³C) of downcore bulk sedimentary organic matter, benthic foraminifera and the organic carbon fraction bound to Fe_{org} to interrogate the source and age of the organic carbon pool associated with Fe_{org} in Arctic marine sediments. The comparison to other investigations of OC–Fe_{org} origins reveals that in large parts of Arctic shelf regions Fe_{org} associated organic carbon is radiocarbon enriched and has a higher δ¹³C_{org} value compared to the bulk sediment, irrespective of sediment depth/age. Our findings suggest a rapid and preferential binding of fresh and marine organic matter with Fe_{org}. Hence, labile organic matter prone to decomposition is protected and stabilised, underlining the potential of the organic carbon–iron association as an efficient carbon burial mechanism.

1. Introduction

Organic carbon sequestration in marine sediments is a major control on atmospheric CO₂ and O₂ concentrations over geological time (Berner 2003), while being a poorly constrained pathway of contemporary carbon burial (Regnier et al. 2022). The majority (approximately 90%) of organic carbon deposited at the global seafloor is buried in shelf and slope sediments (Hedges And Keil 1995, Smith et al. 2015). A set of physical, biological and chemical processes combine to control organic carbon preservation, including sedimentation rate (Müller and Suess 1979, Ingall and Vancappellen 1990), the presence and absence of oxygen (Pedersen and Calvert 1990, Canfield 1994, Hartnett et al. 1998), selective preservation of biochemically unreactive compounds (Hatcher et al. 1983, Burdige 2007), and the protection of organic matter through interactions with a mineral matrix (Mayer 1994, Hedges and Keil 1995, Hemingway et al. 2019). However, the relative importance of these factors remains poorly constrained. Moreover, sedimentary organic matter on marine shelves consists of a diverse mixture of terrestrial and marine components that exhibit different ages, degradation states and maturities. A major challenge
in evaluating the burial of organic carbon in marine sediments is the need to constrain degradation rates of these different organic components in relation to the environmental factors that control spatial and temporal changes in carbon sequestration (Arndt et al 2013).

Over the past four decades, enhanced atmospheric heat transport and inflow of Atlantic water have dramatically warmed the Arctic (e.g. Lind et al 2018). One of the most apparent signs of this warming trend and current global climate change is Arctic sea ice loss. For instance, the Barents Sea (figure 1) summer sea ice extent has drastically decreased by over 30% during the past decades (Meier et al 2014, Fetterer et al 2017). The ongoing transformation of the Arctic Ocean from an ‘icy land’ into an open ocean system forces the entire Arctic ecosystem to adapt and restructure, changing the Arctic carbon cycle, i.e. atmospheric CO₂ uptake, pelagic-benthic coupling, organic matter sedimentation and long-term sequestration (Piepenburg 2005, Wassmann et al 2008, Arrigo and Van Dijken 2011, Wassmann 2011, Post et al 2013, Dalpadado et al 2014). However, future productivity and carbon burial in the Arctic and the Barents Sea remain uncertain, partly due to the challenges of linking of ongoing changes in the Arctic Ocean to organic carbon burial, sedimentary biogeochemical cycles and the marine ecosystems (Stein and Macdonald 2004, Wassmann 2011, Haug et al 2017).

Sedimentary organic matter can be protected and stabilised via association with inorganic components (Mayer 1994, Hedges and Keil 1995, Hemingway et al 2019). Clay minerals are viewed as a
major inorganic host for sedimentary organic matter, enhancing preservation (e.g. Mayer 1994, Kennedy et al 2002). However, as previously discovered in terrestrial soils, a chemical association between organic carbon and reactive iron oxides (nanoparticulate and amorphous phases of ferric (oxyhydr)oxides, e.g. ferrirhydrite) could also play a central role in organic carbon preservation in marine sediments (Lalonde et al 2012). Organic carbon has a strong affinity to reactive iron phases (Fe$_R$), and the resultant association of organic carbon and iron (OC-Fe$_R$) is thought to promote long-term stabilisation and protection of sedimentary organic matter against microbial degradation (Lalonde et al 2012, Riedel et al 2013, Chen et al 2014, Chen and Sparks 2018). Investigations of global marine surface sediments revealed that the fraction of the total organic carbon bound to Fe$_R$ (fOC-Fe$_R$) is on average 10%–20%, with values ranging from ~0.5% to 40% (Lalonde et al 2012, Salvadó et al 2015, Ma et al 2018, Zhao et al 2018, Wang et al 2019, Faust et al 2020) and even up to 80% (Longman et al 2021). Moreover, recent investigations of the association between organic carbon and Fe$_R$ following sediment burial showed a millennial-scale OC-Fe$_R$ persistence, underlining the importance of OC-Fe$_R$ as an important carbon sequestration mechanism (Faust et al 2021). However, large uncertainties still remain concerning the sources, lability, age and composition of the organic matter (preferentially) associated with Fe$_R$ in natural sediments. In particular, the timing and environmental setting of the carbon-iron bonding process remains elusive—information that is crucial to better quantify the role of OC-Fe$_R$ in the global carbon cycle, both in the past and into the future.

The source and age of organic carbon at the seafloor can be recorded by radioactive and stable carbon isotopes (14C and 13C) of sedimentary organic matter (e.g. Eglinton et al 1997, Tesi et al 2011, Goñi et al 2013). The stable isotope composition of sedimentary fOC-Fe$_R$ has refined our understanding about different sources and cycling of organic carbon in marine sediments (Lalonde et al 2012, Salvadó et al 2015, Shields et al 2016, Ma et al 2018, Zhao et al 2018, Wang et al 2019). However, the various modes of chemical binding and physical associations between organic carbon and reactive metal phases have mainly been investigated in the uppermost (0–3 cm) horizon of the seafloor (Faust et al 2021). Hence, longer-term OC-Fe$_R$ burial mechanisms in natural marine sediments are not well characterized. Recent work on sediment cores from the western Barents Sea (figure 1) revealed that a substantial fraction of the OC-Fe$_R$ pool is probably allochthonous, suggesting that the OC-Fe association is generated prior to deposition at the seafloor and not, for example, during authigenic precipitation of iron (oxyhydr)oxides at the Fe(II)/(III) redox boundary in the sediments (Faust et al 2021). To interrogate the source and age of the organic carbon pool associated with reactive iron in Arctic marine sediments, here we use radiocarbon and stable isotopes of downcore bulk sedimentary organic matter, carbonate (benthic foraminifera) and chemically extracted organic carbon bound to reactive iron.

2. Material and methods

2.1. Study area

The Barents Sea is located between 70 and 81° N off the northern Norwegian coast and is the largest of the six pan-Arctic shelf seas. It covers an area of 1.6 million square kilometres with an average water depth of 230 m (Carmack et al 2006). For a detailed descriptions about the modern climate setting and ecosystem of the Barents Sea, we refer to extensive overviews and reviews published during the past two decades (Loeng et al 1997, Wassmann et al 2006, Jakobsen and Ozhigin 2011, Smedsrud et al 2013, Dalpadado et al 2014, Jørgensen et al 2015). In brief, the oceanic circulation pattern of the western Barents Sea is dominated by the relatively warm northward-flowing North Atlantic Current (temperature 2 °C–8 °C, salinity >35‰) and cold Arctic currents (Spitsbergen and Persey; temperature <0 °C, salinity <35‰) entering the Barents Sea from the northeast. The relatively sharp boundary between these water masses forms the oceanographic polar front (figure 1) (Harris et al 1998) which is mainly determined by the shelf bathymetry and is, therefore, relatively stable from year to year (Drinkwater 2011). The northern Barents Sea is seasonally ice-covered with maximum and minimum ice coverage in March–April and August–September, respectively. The heat content of the Atlantic water keeps the southern Barents Sea permanently ice-free. River runoff into the Barents Sea is very limited. Only one larger river, the Pechora River, enters directly into the south-eastern Barents Sea in Russia. Rivers on the Kola Peninsula, on Svalbard and in Norway are small. Thus, sediment discharge through river inflow is low (e.g. Politova et al 2020) and the main processes responsible for Barents Sea surface sediment distribution are re-deposition by winnowing from shallow banks into troughs and depressions, and deposition from sea ice. Hence, sedimentation rates are generally low, 0.04–2.1 mm y$^{-1}$ since the last glacial period (Faust et al 2020), but can be much higher proximal to glacier outlets, for instance in places close to Svalbard. The present ecological setting, as in all Arctic shelf seas, is characterized by very pronounced seasonal fluctuations in insolation and primary production. Despite the relatively short duration of the growing season in the Arctic, the Barents Sea is a high productivity shelf area where 40% of the total primary production of the Arctic Ocean takes place (Sakshaug 2004).
Throughout the western Barents Sea, oxygen penetration was repeatedly analysed by direct measurements and indirect indicators (e.g. pore water profiles), and was found to be between ~2 and 6 cm below the sediment–water interface (Vandieken et al 2006, Nickel et al 2008, Freitas et al 2020, Stevenson et al 2020, Faust et al 2021). In addition, 210Pb profiles and direct measurements of benthic faunal activity show a distinct sediment mixed layer in the Barents Sea that extends to a sediment depth of approximately 2 cm (Carroll et al 2008, Solan et al 2020).

2.2. Sediment sampling

Four sediment cores were collected by using a multicorer along a south-north gradient in the western Barents Sea during the Changing Arctic Ocean Sea-floor cruise (JR16006) in summer 2017 (figure 1). Sediment cores from station B13, B14, B15, B16 (supplementary table S1) were sliced in 0.5 cm intervals from 0 to 2 cm and in 1 cm intervals thereafter. Samples were stored in plastic bags at −20 °C immediately after recovery on-board the Royal Research Ship James Clark Ross. Prior to any chemical sediment analysis, all samples were freeze-dried and weighed after the experiment to account for mass loss. Decarbonated samples were rinsed three times with artificial seawater and then freeze-dried. To quantify potential 14C contamination from the organic carbon fraction modern (F14C) was also reported where 14C enrichment of organic carbon in each sample was calculated for the mass loss during the extraction experiment we applied the mass balance calculation of Salvadó et al (2015).

The δ13C and Δ14C of organic carbon associated with reactive iron were determined by difference from the control and the reductive leach residue and compared to bulk untreated sediments (supplementary tables S2 and S3). In more detail, bulk sediment samples before and after the reduction and control experiments were moistened with a small amount of deionised water, covered by glass fibre filter papers and placed into a sealed glass desiccator vessel together with a beaker of concentrated hydrochloric acid to hydrolyse any carbonate in the sample over three days via acid fumigation at the Natural Environment Research Council Radiocarbon Facility. Decarbonated samples were freeze-dried before combustion to CO2 in a sealed quartz tube. After combustion, sample CO2 was cryogenically recovered on a vacuum line. An aliquot of recovered sample CO2 was used to measure δ13C on a dual inlet stable isotope mass spectrometer (Thermo Fisher Delta V). This value was used for normalisation of the measured sample 14C/13C ratio. A second aliquot of sample CO2 was prepared to graphite and the sample 14C/13C ratio was measured by accelerator mass spectrometry at the Scottish Universities Environmental Research Centre AMS laboratory. The 14C enrichment of organic carbon in each sample was calculated as Δ13Corg based on the relative difference between the isotope ratio of the absolute international standard (relative to the year of measurement, 2021) and the age-corrected sample isotope ratio, where the latter was first normalised to −25% Vienna Pee Dee Belemnite (VPDB), using the measured δ13Corg value described above (Stuiver and Polach 1977). The fraction modern (F14C) is also reported where F14C = (Δ14Corg + 1000)/991.448 based on the correction factor for measurement in 2021. To quantify potential 14C contamination from the organic carbon extraction process, three process standards, modern (TIRI Barley Mash; TBM), background (Anthracite) and carbon free silica sand, were separately processed alongside the natural sediment samples in both the control and the reaction experiment. The aliquots of Anthracite standard show slightly elevated values above the laboratory blank (i.e. 14C added during
sample treatment), indicating an addition of a small amount of modern carbon during the extraction procedure. Accordingly, we applied a background correction to samples and TBM standards of a value of $F^{14}C = 0.006 \pm 0.001$. This value was obtained via the average of measured values for Anthracite processing blanks. This addition of a small quantity of carbon during processing is consistent with results for silica blanks, which showed a carbon content of 0.01%–0.02%.

\[
\Delta^{14}C-Fe_R = 1/fOC-Fe_R \times (\Delta^{14}C-Fe_R\,control - \Delta^{14}C-Fe_R\,reaction) + \Delta^{14}C-Fe_R\,reaction
\]

\[
\delta^{13}C-Fe_R = 1/fOC-Fe_R \times (\delta^{13}C-Fe_R\,control - \delta^{13}C-Fe_R\,reaction) + \delta^{13}C-Fe_R\,reaction
\]

where fOC-Fe$_R$ is the fraction of total organic carbon bond to reactive iron from Faust et al (2021).

To determine the 14C carbonate contents of benthic foraminifera, providing constraint on the 14C activity of marine dissolved inorganic carbon (DIC) at time of deposition, aliquots of bulk sediment samples were washed through a 63 μm sieve before being dried at 50°C, and microfossils were picked using a Leica MZ12 binocular microscope. All benthic foraminifera used for radiocarbon analyses were a mixture epifaunal or shallow infaunal species, dominated by rotaliids (>90%). *Pyrgo* and other miliolid species, which have previously been associated with anomalous radiocarbon measurements in the Arctic (Ezat et al 2017), were not analysed. The radiocarbon activities of the carbonate microfossils were obtained via the Mini Carbon Dating System at the Bristol Radiocarbon Accelerator Mass Spectrometry facility. Carbonate specimens were acidified to release CO$_2$ (<100 μgC), which was measured directly without graphitisation (Tuna et al 2018).

3. Results and discussion

To evaluate the age and origin of the organic carbon bound to reactive iron phases (OC-Fe$_R$) over long time scales of about 6 kyr before present (BP) (figure 2), we analysed Δ^{14}C and δ^{13}C signatures in sediment samples (Δ^{14}C$_{org}$ and δ^{13}C$_{org}$) and in the organic carbon fraction bound to Fe$_R$ (Δ^{14}C$_{FeR}$ and δ^{13}C$_{FeR}$). To place these in the context of the radiocarbon activity of the marine dissolved inorganic carbon reservoir at the time of deposition, we compare the organic matter to the Δ^{14}C content of benthic foraminifera (carbonate). In summary, we first discuss the origin of the bulk organic matter and show that its mainly marine-derived, but is significantly aged prior to deposition. We then compare our bulk Δ^{14}C$_{org}$ and δ^{13}C$_{org}$ signatures with Δ^{14}C$_{FeR}$, δ^{13}C$_{FeR}$ and Δ^{14}C carbonate, finding that OC-Fe$_R$ in the Barents Sea is younger overall than the bulk organic matter and probably marine derived. Finally, we relate our findings to other investigations of OC-Fe$_R$ origins and reveal that in large parts of Arctic shelf regions iron associated organic carbon is radiocarbon enriched and has a higher δ^{13}C$_{org}$ value compared to the bulk sedimentary, irrespective of sediment depth/age, which indicates rapid sequestration of contemporary organic carbon.

3.1. Origin of the bulk organic matter

The stable carbon isotope signature of organic matter (δ^{13}C$_{org}$) in marine sediments reflects the isotopic composition of the carbon source and the fractionation between 12C and 13C during photosynthesis (Hayes 1993). As the contribution of C$_3$ plant types is insignificant in the Arctic region (Collins and Jones 1986, Still et al 2003), δ^{13}C$_{org}$ can be a reliable proxy to identify marine versus terrigenous organic matter in Barents Sea sediments (e.g. Schubert and Calvert 2001). Marine organic carbon is isotopically enriched in 13C compared to terrestrial C$_3$ plant material (Arthur et al 1985) and typical endmember values are \sim20.1‰ and \sim26.1‰ for marine and terrigenous organic matter, respectively, in the Barents Sea region (Knies and Martínez 2009, Pathirana et al 2014). Our results show that δ^{13}C$_{org}$ signatures of all bulk untreated surface sediment samples vary between \sim22.1‰ and \sim23.7‰ (average \sim22.5‰) suggesting a bulk organic matter pool more dominated by marine organic matter (Martens et al 2021 and ref. therein). The δ^{13}C$_{org}$ values show a slight decrease with sediment depth (figure 2 and supplementary figure 1). The decline in δ^{13}C$_{org}$ is correlated with a Δ^{14}C$_{org}$ decrease ($r = 0.8$; supplementary
figure S2) which occurs as total organic carbon contents and related biomarker records documenting relatively steady first-order organic matter decay with depth (Stevenson et al 2020, Faust et al 2021). This indicates no significant changes in the type of organic matter deposited at the seafloor, hence, we attribute these changes to a preferential degradation of labile marine organic matter, and not to a gradual change in organic carbon sources over time.

14C is commonly utilized for age determination of the carbon-bearing component. The 14C signature of marine organic matter (Δ^{14}C$_{org}$) is a marker for modern, pre-aged or fossil carbon and, therefore, provides some information about the organic matter source, especially if combined with δ^{13}C$_{org}$ signatures. Marine surface sediments from circum-Arctic shelf regions reveal a substantial range of published Δ^{14}C$_{org}$ values, outlining large-scale differences in organic carbon sources to the present seafloor (Martens et al 2021). The Laptev and East Siberian Seas receive substantial carbon contributions from remobilization of thawing permafrost or other older deposits. In contrast, terrigenous organic carbon input in the Kara Sea is mainly contemporary (i.e. recent plant cover), and Barents and Chukchi Sea sediments are dominated by modern carbon derived from marine primary producers (Martens et al 2021).

The organic carbon Δ^{14}C$_{org}$ signatures of our bulk untreated Barents Sea sediment samples vary between $-260\%_{\text{o}}$ and $-760\%_{\text{o}}$ and decrease with sediment depth due to the time-dependant decay of 14C (figure 2, supplementary figure S1). Bulk Δ^{14}C$_{org}$ values in the first centimetre of each core are in accordance with published Δ^{14}C$_{org}$ data of bulk surface sediments from the western Barents Sea, which range from $-245\%_{\text{o}}$ to $-504\%_{\text{o}}$ ($n = 11$) (Martens et al 2021). Sediment cores from stations B13, B14 and B16 show very similar Δ^{14}C$_{org}$ values ($-260\%_{\text{o}}$, $-292\%_{\text{o}}$, $-291\%_{\text{o}}$) in the first centimetre. At station B15, Δ^{14}C$_{org}$ is lower ($-558\%_{\text{o}}$) as is δ^{13}C$_{org}$. Due to a very shallow mean bioturbation depth (<2 cm) at all investigated stations (Carroll et al 2008, Solan et al 2020), the presence of old bulk organic matter at the seafloor can be explained by a combination of generally low sedimentation rates in the Barents Sea (figure 2), leading to long residence times of material at the seafloor (Griffith et al 2010), and the lateral transport of material across the shelf, which could include pre-aged organic matter from terrestrial or marine sources (e.g. Vonk et al 2014).

3.2. Evidence for young and marine OC-Fe$_R$ in Barents Sea sediments

Dissimilatory iron reduction is an important process in the anaerobic degradation of organic matter in marine sediments. Iron (oxyhydr)oxides are reduced, and Fe$^{2+}$ is released into the pore waters (Burdige 1993). Following upward diffusion out of the iron reduction zone, this Fe$^{2+}$ is oxidised mainly by molecular O$_2$, but also by NO$_3^-$ and solid Mn (oxyhydr)oxides (Burdige 1993). This oxidation usually occurs in the upper centimetres of a shelf sediment profile below the oxygenated, strongly bioturbated surface sediment layer, and leads to an authigenic enrichment of sedimentary Fe$_R$ (Froelich et al 1978) below the sediment-water interface. Organic carbon
has a strong affinity to such freshly precipitating Fe(III) phases (e.g. ferrihydrite), and it has therefore been proposed that coreprecipitation of organic carbon with or adsorption to, this authigenic Fe₉ within the sediment is the main OC-Fe₉ coupling process that promotes the stabilization of sedimentary organic matter (Lalonde et al. 2012, Riedel et al. 2013, Chen et al. 2014, Barber et al. 2017, Chen and Sparks 2018). However, several recent investigations indicate that the fraction of the total organic carbon content bound to Fe₉ (fOC-Fe₉) is not generally controlled by Fe₉ availability (Sirois et al. 2018, Faust et al. 2020, 2021). Downcore IOC-Fe₉ profiles in combination with pore water composition and sedimentary Fe₉ contents reveal that iron redox cycling and associated authigenic Fe₉ formation within the sediment are less important for the coupling of Fe₉ to organic carbon than assumed (Faust et al. 2021). Indeed, substantial amounts (>10%) of the total organic carbon content is bound to Fe₉ at the sediment-water interface above the zone of authigenic Fe₉ precipitation. This raises the question of how much of the OC-Fe₉ is allochthonous, i.e. formed in the overlying water column, in sea ice, or on land; and how much is autochthonous, i.e. formed by biogeochemical processes within the sediments.

To further validate and characterise a potential allochthonous OC-Fe₉ source in Arctic marine sediments, we compare our bulk $\Delta^{14}C_{\text{org}}$ and $\delta^{13}C_{\text{org}}$ signatures with those of $\Delta^{13}C$-Fe₉ and $\delta^{13}C$-Fe₉ as well as $\Delta^{14}C$ content of benthic foraminifera. To identify the type and amount of organic carbon bound to Fe₉ we conducted an iron oxide extraction (reaction experiment) based on the method originally developed by Mehra and Jackson (1958), modified for marine sediments by Lalonde et al. (2012). To account for organic carbon released during the reaction experiment that was not related to iron phases, we conducted a sodium chloride extraction (control experiment) without the complexing and reducing agents trisodium citrate and sodium dithionate. The comparison of the $\delta^{13}C_{\text{org}}$ and $\Delta^{14}C_{\text{org}}$ values between the reaction experiment and control experiment reveal slightly more depleted values in the control experiment at station B13 (11.5 cm), B14 (22.5 cm) and B16 (2.5 cm, 6.5 cm; figure 2). Such differences have been reported before (e.g. Salvadó et al. 2015) and they indicate that in some cases the sodium chloride treatment, washed out labile unbound organic matter. This could be an effect of different organic matter sources, degradation state or liberation of very labile OC-Fe₉ during sodium chloride treatment (Fisher et al. 2020). Nevertheless, following extraction treatment of our sediment samples, the isotopic signatures of $\Delta^{14}C_{\text{org}}$ and $\delta^{13}C_{\text{org}}$ in the solid residues of the control versus reaction experiments show clear differences from the bulk sediment samples at all stations (figure 2). The reaction and control experiment residues have mostly lower (more negative) $\Delta^{14}C_{\text{org}}$ and $\delta^{13}C_{\text{org}}$ values. It follows that the treatment liberated organic carbon that was relatively enriched in ^{13}C and ^{14}C from the sediments and selectively liberated organic matter with a more marine and younger isotopic signature. When we calculate the $\delta^{13}C$ and $\Delta^{14}C$ signatures of the organic carbon bound to reactive iron phases ($\delta^{13}C$-Fe₉; $\Delta^{14}C$-Fe₉, equations (1) and (2)), we find they are considerably higher than the respective values in most of the studied bulk samples (figure 2). To further investigate these isotopic disequilibria between organic carbon fractions of the bulk, control and reaction residues, we calculate the respective ‘fraction modern’ ($F^{14}C$) offsets (see Soulet et al. 2016 for details) of the contemporaneous carbon reservoirs of $F^{14}C$-Fe₉, bulk organic carbon and carbonate (benthic foraminifera; figure 3).

Benthic calcareous fossils (e.g. foraminifera) are commonly used to derive age-depth relationships for marine sediments over the last ~50 ka. In comparison to bulk organic carbon, which represents a mixture of organic carbon from various sources, of various ages and different degradation states, the calcareous material of benthic organisms reflects bottom-water radiocarbon activity (i.e. a single carbon source) that is not significantly influenced by processes within the sediment. Thus, radiocarbon ages based on $\Delta^{14}C$ content of benthic calcareous fossils are assumed to reveal the most accurate ages of sediment deposition (e.g. Skinner and Bard 2022). The ^{14}C offsets of $F^{14}C$-Fe₉ and benthic foraminifera (carbonate) in relation to bulk organic carbon show that over time (downcore), the offsets between carbonate and bulk organic carbon show an increasing trend (figure 3). As bioturbation activity is low at all investigated stations (Solan et al. 2020, Faust et al. 2021), we assume that this is a function of decomposition and preferential degradation of fresh and young marine organic matter in the bulk sediment. However, we cannot completely exclude the possibility that the observed offset change is caused by a variation in local ^{14}C reservoir effect i.e. bottom water dissolved inorganic carbon age changes e.g. due to oceanographic variability. The $F^{14}C$-Fe₉ offset is (apart from sample B16; 6.5 cm) always >1 and is relatively stable, ranging between 1.23 and 1.64. Thus, the organic carbon bound to iron is considerably younger than the bulk organic carbon. Moreover, the $F^{14}C$-Fe₉ offset relative to biogenic carbonate shows that $F^{14}C$-Fe₉ at the top of the sediment cores is of similar age, or even younger, than carbonate. The downcore decrease in the Fe₉-carbonate offset could be related to the loss of some fresh and labile organic carbon bound to iron. Alternatively, the type/source of the organic carbon bound to Fe₉ could have changed in the past. But irrespective of the reason, our $F^{14}C$-Fe₉ data show that the organic carbon bound to iron is young in all samples, indicating rapid and lasting sequestration of CO₂ and a direct link to
contemporaneous terrestrial and/or marine primary productivity.

3.3. Wider evidence for contemporary iron associated organic carbon

Previous work on OC–Fe$_R$ coupling in marine sediments further afield, has focused primarily on bulk carbon content, and/or δ^{13}C$_{org}$ (δ^{13}C$_{org}$-Fe$_R$) in surface sediments (Lalonde et al 2012, Barber et al 2014, Ma et al 2018, Zhao et al 2018, Wang et al 2019). In accordance with our bulk δ^{13}C$_{org}$ and δ^{13}C$_{org}$-Fe$_R$ findings, a global data set of sediment from various depositional environments, including freshwaters, estuaries, river deltas, shelf sediments and the deep sea, shows that, in most cases, δ^{13}C$_{org}$-Fe$_R$ is enriched in 13C relative to the bulk organic matter (Lalonde et al 2012). The authors attributed the isotopic shift towards higher values to selective association of certain types of organic matter rich in proteins and carbohydrates, as these are more likely to establish protective inner-sphere complexes with reactive iron phases. Follow-up studies on surface sediments from the shelf areas of China indicated more complex δ^{13}C$_{org}$-Fe$_R$ signatures with values ranging from -49% to -4% (mean -23%) (Zhao et al 2018, Wang et al 2019). Their finding of larger regions with substantially enriched and/or depleted δ^{13}C$_{org}$-Fe$_R$ values relative to bulk organic matter, and a trend of more enriched values towards the continental margin, indicated a preference for terrigenous organic carbon binding with iron. Presuming that the organic carbon–Fe$_R$ binding occurs mainly in the sediment, the authors suggested that the observed δ^{13}C$_{org}$-Fe$_R$ variability was caused by selective sequestration and release of 13C-depleted organic carbon either during the OC–Fe$_R$ binding process or by its reduction under anoxic conditions (Wang et al 2019). Our downcore δ^{13}C$_{org}$-Fe$_R$ signatures from

![Figure 3](image-url)
the Barents Sea do not support the assumption of preferential binding of terrigenous organic carbon in
the oxic part of the core, although the slight down-core decrease (13C depletion) might indeed be related
to selective release of 13C-enriched organic carbon. But the driving force(s) for the OC-Fe$_R$ binding is
still not known and it could be physical, chemical and/or biological mechanisms that initiate an iso-
topic fractionation. This hinders the assignment of the δ^{13}C$_{org}$ as organic carbon source indicator.

A more robust attempt to identify the type and origin of the organic carbon bound to Fe$_R$ in marine
sediment is a dual-carbon isotope approach similar to ours. To the best of our knowledge, only one study used both δ^{13}C$_{org}$ and Δ^{14}C$_{org}$ to evaluate the origin of the OC-Fe$_R$ in marine sediments (Salvadó et al 2015). They showed that along the Eurasian Arctic shelf, δ^{13}C$_{org}$-Fe$_R$ and Δ^{14}C$_{org}$-Fe$_R$ signatures point towards an older and more terrestrial source in the Laptev Sea, probably related to coastal erosion and thawing permafrost. However, in areas where marine phytoplankton is an important sedimentary organic carbon source, e.g. in the East Siberian Sea and towards the outer shelf areas, their data imply a younger and marine plankton-dominated source of the organic carbon bound to Fe$_R$. Thus, the δ^{13}C$_{org}$-Fe$_R$ and Δ^{14}C$_{org}$-Fe$_R$ spatial variability in Chinese and Eurasian shelf sediments implies that the origin of the organic carbon varies distinctly with proximity
to land and is related to the dominant organic matter source (marine versus terrigenous), of the bulk sedi-
mentary composition.

Remarkable though is that, disregarding the spatial variability of the δ^{13}C$_{org}$-Fe$_R$ and Δ^{14}C$_{org}$-Fe$_R$
signatures in Eurasian Arctic shelf surface sediments, a re-examination of these data reveals that the δ^{13}C$_{org}$ and Δ^{14}C$_{org}$ offsets between bulk and Fe$_R$-bound organic carbon show F^{14}C offsets >1 and enriched δ^{13}C$_{org}$ values compared to the bulk sediment composition the East- and West-East Siberian Sea (figure 4). In a similar way, the four sediment cores from the Barents Sea have organic carbon bound to Fe$_R$ that is enriched in 13C and 14C com-
pared to the bulk organic carbon content, irrespective of sediment depth/age. These findings indicate a rapid and preferential binding of fresh and marine organic matter with Fe$_R$. Thus, Fe$_R$ not only protects organic matter from degradation in marine sediments over millennial time scales (Faust et al 2021), Fe$_R$ also sequestered contemporary carbon across the Arctic Shelf which further highlights the potential efficiency of this ‘rusty carbon sink’.

4. Implications and concluding remarks

To better understand the sources and overall fate of organic carbon in the marine realm, both the com-
position and mode of binding of organic carbon that
accumulates in sediments must be determined. The previous findings of the occurrence of large fractions of total organic carbon bound to Fe(0) (>10%) at the sediment-water interface (above the iron redox zone) in the Barents Sea (Faust et al. 2021), as well as possibly in the surface sediments from the Eurasian Arctic and Chinese shelf seas, suggests the important role of allochthonous OC-Fe(0) source. Based on the new data of this study and in concert with the findings from the Eurasian Arctic and the Chinese shelves, we propose that areas dominated by a marine carbon pool see a coupling of Fe(0) to relatively fresh and young organic carbon Furthermore, these investigations combined indicate that the origin of OC-Fe(0) varies distinctly with proximity to land, indicating that Fe(0) tends to associate with the pervasive type of organic carbon available. Nevertheless, enriched 13C-Fe(0) and 14C-Fe(0) signatures compared to the bulk organic carbon content indicate a rapid and preferential binding of fresh and marine organic matter with Fe(0) even in Arctic shelf areas containing larger fractions of terrigenous organic carbon. Hence, labile organic matter prone to decomposition seems to be protected and stabilised, underlining the potential of OC-Fe(0) as an efficient carbon burial mechanism. Additionally, young and marine Δ^{14}Corg-Fe(0) and δ^{13}Corg-Fe(0) signatures imply a binding process in the water column, for example, during the formation of particulate iron-oxyhydroxides formed by oxidation of dissolved Fe(II) in the euphotic zone (Gelting et al. 2010). To better understand the formation and source of OC-Fe(0) in the marine environment further investigations of the organic carbon type and source as well as a possible allochthonous OC-Fe(0) binding process, prior organic carbon and Fe(0) sedimentation, needs to be investigated. This is crucial for a better estimation of the efficiency of the ‘rusty carbon sink’, its contribution to the global cycles of carbon and oxygen and its carbon burial function in warming Arctic Ocean.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

We thank the crew of the RRS James Clark Ross for their professional support during our expedition. Further, we would like to express our gratitude to Sonia Papadaki and Timothy Knowles for their help with the laboratory work at BRAMS. This work resulted from the ChAOS project (NE/P006493/1), part of the Changing Arctic Ocean programme, jointly funded by the UKRI Natural Environment Research Council (NERC) and the German Federal Ministry of Education and Research (BMBF). Furthermore, this work was supported by the NERC Environmental Isotope Facility, NEIF, under Grant NE/S011587/1 (allocation number 2095.0218) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Germany’s Excellence Strategy to the Cluster of Excellence ‘The Ocean Floor—Earth’s Uncharted Interface’ (EXC-2077 (Grant No. 390741603)).

Conflict of interest

The authors declare no competing interests.

ORCID iDs

Johan C Faust https://orcid.org/0000-0001-8177-7097
Robert G Hilton https://orcid.org/0000-0002-0499-3332
Mark A Stevenson https://orcid.org/0000-0002-8955-0855

References

Arndt S, Jorgensen B B, Larowe D E, Middelburg J J, Pancost R D and Regnier P 2013 Quantifying the degradation of organic matter in marine sediments: a review and synthesis Earth-Sci. Rev. 123 53–96
Arrigo K R and Van Dijken G L 2011 Secular trends in Arctic Ocean net primary production J. Geophys. Res. 116 C09011
Arthur M A, Dean W E and Claypool G E 1985 Anomalous 13C enrichment in modern marine organic carbon Nature 315 216
Barber A, Brandes J, Leri A, Lalonde K, Balind K, Wirick S, Wang J and Gelinus Y 2017 Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron Sci. Rep. 7 366
Barber A, Lalonde K, Mucci A and Gelinus Y 2014 The role of iron in the diagenesis of organic carbon and nitrogen in sediments: a long-term incubation experiment Mar. Chem. 162 1–9
Berner R A 2003 The long-term carbon cycle, fossil fuels and atmospheric composition Nature 426 323–6
Burdige D J 1993 The biogeochemistry of manganese and iron reduction in marine sediments Earth-Sci. Rev. 35 249–84
Burdige D J 2007 Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets Chem. Rev. 107 467–85
Canfield D E 1994 Factors influencing organic carbon preservation in marine sediments Chem. Geol. 114 315–29
Carmack E, Barber D, Christensen J, Macdonald R, Rudels B and Sakshaug E 2006 Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves Prog. Oceanogr. 71 145–81
Carroll M L, Denisenko S G, Renaud P E and Ambrose W G 2008 Benthic infusana of the seasonally ice-covered western Barents Sea: patterns and relationships to environmental forcing Deep-Sea Res. II 55 2340–51
Chen C, Dynes J J, Wang J and Sparks D L 2014 Properties of Fe-organic matter associations via coprecipitation versus adsorption Environ. Sci. Technol. 48 15751–9
Chen C and Sparks D L 2018 Fe(II)-induced mineral transformation of ferrhydrate–organic matter adsorption and co-precipitation complexes in the absence and presence of As(III) ACS Earth Space Chem. 2 1095–101
Collins R P and Jones M B 1986 The influence of climatic factors on the distribution of C4 species in Europe Vegetat 64 121–9
Dalpadado P, Arrigo K R, Hjollo S S, REY F, Ingvaldsen R B, Sperfeld E, Van Dijken G L, Stige L C, Olsen A and Ottersen G 2014 Productivity in the Barents sea—response to recent climate variability PLoS One 9 e95273
Drinkwater K F 2011 The influence of climate variability and change on the ecosystems of the Barents Sea and adjacent waters: review and synthesis of recent studies from the NESSAS project Prog. Oceanogr. 90 47–61
Eglinton T I, Benitez-Nelson B C, Pearson A, Mcnichol A P, Bauer J E and Druffel E R M 1997 Variability in radiocarbon ages of individual organic compounds from marine sediments Science 277 796–9
Eratz M M, Rasmussen T L, Thornalley D J R, Olsen J, Skinner L C, Honisch B and Groeneveld J 2017 Ventilation history of Nordic Seas turnovers during the last (de)glacial period revealed by species-specific benthic foraminifer 14C dates Paleoclimatology 32 172–81
Faust J C, Stevenson M A, Abbott G D, Knies J, Tessin A, Mannion I, Ford A, Hilton R, Peacock C L and März C 2020 Does Arctic warming reduce preservation of organic matter in Barents Sea sediments? Phil. Trans. A. 378 20190364
Faust J C, Tessin A, Fisher B J, Zindorf M, Papadaki S, Hendry K R, Doyle K A and März C 2021 Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments Nat. Commun. 12 1275
Fetterer F, Knowles K, Meier W N, Savoie M and Windnagel A K 2017 Sea Ice Index, Version 3 (Boulder, CO: NSIDC: National Snow and Ice Data Center)
Fisher B J, Moore O W, Faust J C, Peacock C L and März C 2020 Experimental evaluation of the extractability of iron bound organic carbon in sediments as a function of carboxyl content Chem. Geol. 536 119853
Freitas F S, Hendry K R, Henley S F, Faust J C, Jessen A C, Stevenson M A, Abbott G D, Marx C and Arndt S 2020 Benthic-pelagic coupling in the Barents Sea: an integrated data-model framework Phil. Trans. A. 378 20190359
 Froehlich P N, Klinkhammer G P, Bender M L, Luedtke N A, Heath G R, Cullen D and Dauphin P 1978 Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis Geochim. Cosmochim. Acta 43 1075–90
Getling J, Breitharz E, Stolpe B, Hasseløv M and Ingri J 2010 Fractionation of iron species and iron isotopes in the Baltic Sea euphotic zone Biogeosciences 7 2489–508
Goñi M A, O’connor A E, Kuzk Y Z, Zunker M B, Gobeil C and Macdonald R W 2013 Distribution and sources of organic matter in surface marine sediments across the northern American Arctic margin J. Geophys. Res. Oceans 118 4017–35
Griffith D R, Martin W R and Eglinton T I 2010 The radiocarbon age of organic carbon in marine surface sediments Geochim. Cosmochim. Acta 74 6788–800
Harris C L, Plueddemann A J and Gawkarxivicz G G 1998 Water mass distribution and pola front structure in the western Barents Sea J. Geophys. Res. Oceans 103 2905–17
Hartnett H E, Keil R G, Hedges J I 1998 Influence of oxygen exposure time on organic carbon preservation in continental margin sediments Nature 391 572–4
Hatcher P G, Spiker E C, Szeverenyi N M and Maciel G E 1983 Selective preservation and origin of petroleum-forming aquatic kerogen Nature 305 498–501
Haug T et al 2017 Future harvest of living resources in the Arctic Ocean north of the Nordic and Barents Seas: a review of possibilities and constraints Fish. Res. 188 38–57
Hayes J M 1993 Factors controlling 14C contents of sedimentary organic compounds: principles and evidence Mar. Geol. 113 111–25
Hedges J I and Keil R G 1995 Sedimentary organic matter preservation: an assessment and speculative synthesis Mar. Chem. 49 81–115
Hemingsway J D, Rothman D H, Grant K E, Rosengard S Z, Eglinton T I, Derry J A and Galy V 2019 Mineral protection regulates long-term global preservation of natural organic carbon Nature 570 228–31
Inglad E D and Vancappellen P 1990 Relation between sedimentation-rate and burial of organic phosphorus and organic-carbon in marine-sediments Geochim. Cosmochim. Acta, 54 373–80
Jaksøen T, O’zihgvin V K 2011 The Barents Sea—ecosystem, Resources, Management. Half a Century of Russian—Norwegian Cooperation (Bergen: Tapir Akademisk Forlag)
Jørgensen L L, Ljubin P, Skjoldal H R, Ingvaldsen R B, Anisimova N and Manushin I 2015 Distribution of benthic megafauna in the Barents Sea: baseline for an ecosystem approach to management ICES J. Mar. Sci. 72 593–613
Kennedy M J, Peever D R and Hill R J 2002 Mineral surface control of organic carbon in black shale Science 295 657–60
Knies J and Martinez P 2009 Organic matter sedimentation in the western Barents Sea region: terrestrial and marine contribution based on isotopic composition and organic nitrogen content Nor. J. Geol. 89 79–89
Lalonde K, Mucci A, Ouellet A and Gelinas Y 2012 Preservation of organic matter in sediments promoted by iron Nature Geosci. 5 377–80
Lind S, Ingvaldsen R B and Furevik T 2018 Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import Nat. Clim. Change 8 634–9
Loeng H, Ožihgvin V and Adlandsvik B 1997 Water fluxes through the Barents Sea ICES J. Mar. Sci. 54 310–7
Longman J, Gernon T M, Palmer M R and Manners H R 2021 Tephra deposition and bonding with reactive oxides enhances burial of organic carbon in the Bering Sea Glob. Biogeochem. Cycles 35 e2021GB007140
Ma W-W, Zhu M-X, Yang G-P and Li T 2018 Iron geochemistry and organic carbon preservation by iron (oxy)hydroxides in surface sediments of the East China Sea and the yellow Sea J. Mar. Syst. 178 62–74
Martens J et al 2021 CASCADE—the circum-Arctic sediment Carbon database Earth Syst. Sci. Data 13 2561–72
Mayer I M 1994 Relationships between mineral surfaces and organic-carbon concentrations in soils and sediments Chem. Geol. 114 347–63
Mehra O P and Jackson M L 1958 Iron oxide removal from soils and clays by a diithionite-citrate systembuffered with sodium bicarbonate Clayes Clay Miner. 7 317–27
Meier W N et al 2014 Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity J. Geophys. Res. 52 185–217
Müller P J and Suess E 1979 Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation Deep-Sea Res. A 26 1347–62
Nickel M, Vandelken V, Brüchert V and Jørgensen B B 2008 Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition Deep-Sea Res. II 55 2390–8
Oziel L, Sirven J and Gascard J C 2016 The Barents Sea frontal hotspot in the northern Barents Sea linked to declining sea-ice import Nat. Clim. Change 8 634–9
Piepenburg D 2005 Recent research on Arctic benthos: common notions need to be revised Polar Biol. 28 733–55
Politova N V, Kravchishina M D, Navigatsy A N and Lokhov A S 2020 Dispersed sedimentary matter of the Barents Sea Oceanology 59 697–714
Post E, Bhatt U S, Ritz C M, Brodie J F, Fulton T L, Hebblewhite M, Kerby J, Kutz S J, Stirling I and Walker D A 2013 Ecological consequences of sea-ice decline *Science* 341 519–24

Regnier P, Resplandy L, Najjar R G and Caiss P 2022 The land-to-ocean loops of the global carbon cycle *Nature* 603 401–10

Riedel T, Zak D, Biester H and Dittmar T 2013 Iron traps terrestrially derived dissolved organic matter at redox interfaces *Proc. Natl Acad. Sci. USA* 110 10101–5

Sakshaug E 2004 Primary and secondary production in the Arctic *Sea* *The Organic Carbon Cycle in the Arctic Ocean* ed R Stein and R W Macdonald (Berlin: Springer)

Salvadó J A, Tesi T, Andersson A, Ingri J, Dudarev O V, Semiletov I P and Gustafsson Ö 2015 Organic carbon remobilized from thawing permafrost is resequenced by reactive iron on the Eurasian Arctic Shelf *Geophys. Res. Lett.* 42 8122–30

Schubert C J and Calvert S E 2001 Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition *Deep-Sea Res.* 1 48 789–810

Shields M R, Bianchi T S, Gélinas Y, Allison M A and Twilley R R 2016 Enhanced terrestrial carbon preservation promoted by reactive iron in deltalic sediments *Geophys. Res. Lett.* 43 1149–57

Sirois M, Couturier M, Barber A, Gélinas Y and Chaillou G 2018 Interactions between iron and organic carbon in a sandy beach subterranean estuary *Mar. Chem.* 202 86–96

Skinner L C and Bard E 2022 Radiocarbon as a dating tool and reporting of reservoir *Environ. Res. Lett.* 18 014006

Stein R and Macdonald R W 2004 *The Organic Carbon Cycle in the Arctic Ocean* (Berlin: Springer)

Stevenson M A et al 2020 Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes *Phil. Trans. A* 378 20200223

Still C J, Berry J A, Collatzi G J and Defries R S 2003 Global distribution of C3 and C4 vegetation: carbon cycle implications *Glob. Biogeochem. Cycles* 17 1006

Stuiver M and Polach H A 1977 Discussion reporting of 14C data *Radiocarbon* 19 355–63

Tesi T, Misrocchi S, Gori M A, Turchetto M, Langone L, De Lazzari A, Albertazzi S and Correggiari A 2011 Influence of distributary channels on sediment and organic matter supply in event-dominated coastal margins: the Po prodelta as a study case *Biogeosciences* 8 365–85

Tuna T, Fagault Y, Bonvalot L, Capano M and Bard E 2018 Development of small CO2 gas measurements with AixMICADAS *Nucl. Instrum. Methods Phys. Res.* B 437 93–97

Vandieken V, Nickel M and Jorgensen B B 2006 Carbon mineralization in Arctic sediments northeast of Svalbard: Mn(IV) and Fe(II) reduction as principal anaerobic respiratory pathways *Mar. Ecol. Prog. Ser.* 322 15–27

Vonk J E, Semiletov I P, Dudarev O V, Eglinton T I, Andersson A, Shakhlova N, Charkin A, Heim B and Gustafsson Ö 2014 Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters *J. Geophys. Res. Oceans* 119 8410–21

Wang D, Zhu M X, Yang G P and Ma W W 2019 reactive iron and iron-bound organic carbon in surface sediments of the river-dominated Bohai Sea (China) Versus the Southern Yellow Sea *J. Geophys. Res. Biogeosci.* 124 79–98

Wassmann P et al 2006 Food webs and carbon flux in the Barents Sea *Prog. Oceanogr.* 71 232–87

Wassmann P 2011 Arctic marine ecosystems in an era of rapid climate change *Prog. Oceanogr.* 90 1–17

Wassmann P, Carroll J and Bellerby R G J 2008 Carbon flux and ecosystem feedback in the northern Barents Sea in an era of climate change: an introduction *Deep-Sea Res. II* 55 2143–53

Zhao B, Yao P, Bianchi T S, Shields M R, Cui X Q, Zhang X W, Huang X Y, Schroeder C, Zhao J and Yu Z G 2018 The role of reactive iron in the preservation of terrestrial organic carbon in estuarine sediments *J. Geophys. Res. Biogeosci.* 123 3556–69