Genetic connections and convergent evolution of tropical indigenous peoples in Asia

Running title: Convergent evolution of the tropical indigenous peoples

Lian Deng,1,12 Yuwen Pan,2,12 Yinan Wang,2,3 Hao Chen,2 Kai Yuan,2 Sihan Chen,4 Dongsheng Lu,2 Yan Lu1, Siti Shuhada Mokhtar,5 Thuhairah Abdul Rahman,6 Boon-Peng Hoh,2,7 Shuhua Xu1,2,3,4,8,9,10,11*

1State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China;
2Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
3Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
4Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200438, China;
5Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000 Sungai Buloh, Selangor, Malaysia;
6Clinical Pathology Diagnostic Centre Research Laboratory, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000 Sungai Buloh, Selangor, Malaysia;
7Faculty of Medicine and Health Sciences, UCSI University, Jalan Menara Gading, UCSI Heights 56000 Cheras, Kuala Lumpur, Malaysia;
8School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
9Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China;
10Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China;
11Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
12These authors contributed equally to this work.

*Correspondence: xushua@fudan.edu.cn (S.X.)

Emails: Lian Deng, denglian@picb.ac.cn; Yuwen Pan, panyuwen2017@sibs.ac.cn; Yinan Wang, wangyinan@picb.ac.cn; Hao Chen, chenhao@picb.ac.cn; Kai Yuan, yuankai@picb.ac.cn; Sihan Chen, Sihanchen1217@163.com; Dongsheng Lu, ludongsheng@picb.ac.cn; Yan Lu, lueyan@fudan.edu.cn; Siti Shuhada Mokhtar, shuhadamokhtar86@gmail.com; Thuhairah Abdul Rahman, thuhairah@uitm.edu.my; Boon-Peng Hoh, hoh.boonpeng@gmail.com; Shuhua Xu, xushua@fudan.edu.cn

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract (250 words)

Tropical indigenous peoples in Asia (TIA) attract much attention for their unique appearance, while their genetic history and adaptive evolution remain mysteries. We conducted a comprehensive study to characterize the genetic distinction and connection of broad geographical TIAS. Despite the diverse genetic makeup and large inter-area genetic differentiation between the TIA groups, we identified a basal Asian ancestry (bASN) specifically shared by these populations. The bASN ancestry was relatively enriched in ancient Asian human genomes dated as early as ~50,000 years before the present, and diminished in more recent history. Notably, the bASN ancestry is unlikely to be derived from archaic hominins. Instead, we suggest it may be better modeled as a survived lineage of the initial peopling of Asia. Shared adaptations inherited from the ancient Asian ancestry were detected among the TIA groups (e.g., LIMS1 for hair morphology, and COL24A1 for bone formation), and they are enriched in neurological functions either at an identical locus (e.g., NKAIN3), or different loci in an identical gene (e.g., TENM4). The bASN ancestry could also have formed the substrate of the genetic architecture of the dark pigmentation observed in the TIA peoples. We hypothesize that phenotypic convergence of the dark pigmentation in TIAS could have resulted from parallel (e.g., DDB1/DAK) or genetic convergence driven by admixture (e.g., MTHFD1 and RAD18), new mutations (e.g., STK11), or notably purifying selection (e.g., MC1R). Our results provide new insights into the initial peopling of Asia and an advanced understanding of the phenotypic convergence of the TIA peoples.

Keywords: Tropical indigenous populations; Population admixture; Genetic diversity; Local adaptation; Skin pigmentation; Convergent evolution

Introduction

Asia is home to approximately 370 million self-identified indigenous peoples, comprising two-thirds of the total indigenous population in the world (Asia Indigenous Peoples Pact 2014). These populations are culturally and physiologically diverse and have been largely shaped by their local environment and subsistence. These unique characteristics offer an incredible opportunity to study human evolution and have long been a topic of interest and speculation. Archaeological records document a long history of modern human occupation in Asia, which probably occurred 50–70 thousand years ago (KYA) along the coast of the Indian subcontinent to the Sundaland, subsequently reaching the Sahul Shelf (Bae, et al. 2017). Several rainforest tribal populations scattered throughout the tropical areas of Asia and Oceania are thought to be descended from the original inhabitants of Asia, including the Melanesians, the Aboriginal Australians, and the Negritos currently found in the Andaman Islands, Peninsular Malaysia, and the Philippine Islands (Bae, et al. 2017). This hypothesis was first proposed based on morphological features of these people and has received substantial attention in recent years due to mounting evidence from anthropologic and genetic
efforts have been made to investigate the full landscape of human genomic diversity in Asia (The HUGO Pan-Asian SNP Consortium 2009; GenomeAsia100K Consortium 2019), and the importance of genetic data of minority groups in understanding human evolution and disease has been highlighted (Ben-
Eghan, et al. 2020). However, the lack of comprehensive geographical samples and full characterization of the genomic variants have limited our understanding of the genetic relationship and local adaptations of the tropical indigenous Asian (hereafter abbreviated as TIA) populations. In this study, we aim to explore the genetic connections of the TIA populations that share similar phenotypes, and further illustrate the putative genetic mechanisms underlying their phenotypic convergence. We compiled and analyzed genome-wide single nucleotide polymorphism (SNP) data of 2,845 sequenced samples and 3,214 genotyped samples from global populations. These data provide especially high geographical coverage for the TIA populations that can be contextualized using very dense non-TIA samples, including tropical samples from Africa and the Americas, and a wide range of non-indigenous samples in Asia (supplementary fig. S1A–C). The TIA populations were further split into two subcategories – one is the anthropologically identified Negrito with the above-mentioned outstanding aboriginal phenotypes, denoted herein as Negrito-like TIA (NL-TIA); the other includes the non-Negrito-like TIA (nNL-TIA) populations. Detailed information on the samples and the groupings can be found in supplementary note S2. We note that the Oceanic populations, although not located in the Asia continent, were also included in our analyses as a group of TIA, considering that Southeast Asia and the Pacific islands are tightly related in modern human migration history (Gibbons 2001; Xu, et al. 2012). We investigated the genetic relationship and ancestry makeup of the TIA populations, based on which we characterized the natural selections by focusing on the genetic architecture of previously identified pigmentation-related loci. We further explored the adaptive hypothesis of convergent evolution by evaluating these candidates, and finally developed a comprehensive model for the evolution of the dark skin phenotype in different geographical TIA populations.

Results

Genetic affinity and distinction of the TIA populations Tropical indigenous populations are highly structured in genetics, consistent with their geographic relatedness (fig. 1, supplementary fig. S1D–E). The TIA did not show any observable connections with their counterparts from Africa and the Americas (fig. 1, supplementary fig. S1–2). Principal component analysis (PCA) showed that they formed distinct clusters along the longitude on PC1 and largely corresponded to the Asia mainland and the Oceanic islands on PC2 (supplementary fig. S1E). TIA from South Asia and Oceania were more widely distributed along PC1 than those from Southeast Asia. The NL-TIA from the Andaman Islands (ADM), Malaysia (MLS), and the Philippines (PHI) compacted against the long stretches of the Oceanic populations, but were distinguished after we removed all the other populations (supplementary fig. S1F). We observed that the largest population differentiation (measured by F_{ST}) in Asia was among the NL-TIA populations (i.e. ADM, MLS, and PHI), and the Papuans (PNG) (fig. 1A), and was enriched in genes involved in olfactory transduction (hsa04740; false discovery rate (FDR)-corrected p-value = 0.2×10$^{-4}$ by clusterProfiler (Yu, et al. 2012)).
Despite the fact that most of the global populations have multiple sources of genetic components, ADM, MLS, and the Oceanic populations contributed three additional ancestry components and showed minimal evidence of recent admixture (fig. 1B). This result is consistent with the small effective population size and long identical-by-descent (IBD) tracts of these populations (supplementary fig. S3). The ancestry makeup of these three populations was more homogeneous than the African rainforest hunter-gatherers, who are also dominated by a group-specific genetic component. However, PHI was characterized as admixed descendants of the Oceanic populations and the Austronesians (fig. 1B). The nNL tropical indigenous populations from South Asia, island Southeast Asia, and the Americas showed similar patterns of ancestry makeup with the non-indigenous populations in these three regions, respectively, and were less likely to be affected by the NL-TIAs.

Consistent with the autosomal genetic pattern, mitochondrial DNA (mtDNA) haplogroups were generally restricted in local regions. Populations with shared genetic ancestry may share the same mtDNA haplogroups (fig. 1B, supplementary table S1). For instance, haplogroup M21, which possibly represents the ancient maternal components in Southeast Asia (Macaulay, et al. 2005; Hill, et al. 2006; Hill, et al. 2007), is the major haplogroup in NL- (65%) and nNL-TIAs (60%) of mainland Southeast Asia; Haplogroup P, which is commonly found in Oceania (Friedlaender, et al. 2005), was identified in PNG (24%) and PHI (12%). The Y-chromosome data confirmed the cross-continent barrier but showed some levels of interaction among populations within the continent (fig. 1B, supplementary table S1). For example, the haplogroup S, which was thought to be centered on the highlands of Papua New Guinea, was identified in several males of PHI and MLS. Although different subtypes of haplogroup S were assigned to each region (S1d and S1a in PNG, S3a in PHI, and unspecified types noted as S* in MLS), they could have been inherited from a common paternal lineage dated back to 48 KYA. In addition, ADM shared the D1 haplogroups with Tibetans (supplementary table S1), a group of highland indigenous peoples neighboring South Asians. These results collectively suggest sex-biased and ancestry-biased human migration and admixture history of the TIA populations.

A shared genetic ancestry of the TIA populations The intrinsic genetic connections among the TIA populations indicated by the Y chromosome was further consolidated on the autosomes by the unsupervised ADMIXTURE analysis at K=5, where we found one basal component specifically prevailing in Asia, with leading proportions in the Oceanic populations, followed by some South and Southeast Asian populations (fig. 2A, supplementary fig. S4A). Interestingly, this ancestry was substantially enriched in the TIA populations, especially in the NL-TIAs. This result was supported by 8 of the 10 replication analyses of ADMIXTURE with random seeds (supplementary fig. S4B). The basal component is unlikely a result of random genetic drift, which may have large effects on the isolated populations but would casually shape
them to different directions; nor is it likely driven by recent gene flow, as it is enriched in geographically
discrete TIA populations that are largely hindered by geographical discontinuity.

We speculate this basal Asian (bASN) ancestry to be an ancient lineage, as evident by the following.
First, the bASN ancestry is negatively correlated with the Altai Neanderthal introgression in Asian
populations ($r^2 = 0.62$ and $p = 1.26 \times 10^{-6}$ for the mainland populations; $r^2 = 0.56$ and $p = 0.005$ for the
island populations), suggesting that the peopling of Asia might have occurred prior to the Altai Neanderthal
introgression (directly or indirectly) to the modern human populations in this region (fig. 2B). Second, the
bASN-specific alleles (represented by the Papuan-specific alleles) possibly originated from the ancient gene
pool of the modern human ancestry, as they share a deep root with the Africans and archaic hominins on
the maximum-likelihood tree (fig. 2C), in contrast to those specific to the European and East Asian
ancestries (represented by present-day Europeans and East Asians, respectively) (supplementary fig. S5).
Moreover, we recapitulated this shared ancestry in some ancient genomes yielded from Neolithic Southeast
Asians when they were projected in the ADMIXTURE analysis (fig. 2D). Intriguingly, the bASN ancestry
is centered in the Indo-China Peninsula, and is positively correlated with time ($r^2 = 0.35$, $p = 0.001$;
supplementary fig. S6). We then examined the sharing of 14,353 bASN-derived alleles, which were
identified from the bASN-enriched TIA populations (i.e., ADM, MLS, PHI, and PNG) and were
representative of the bASN ancestry (see Materials and Methods, supplementary fig. S7A), in global
Neolithic-to-Paleolithic human samples (0–50,000 KYA). We found a significant positive correlation
between the time and genetic score (GS) of bASN-derived alleles in East Eurasian samples ($p = 0.03$), but
this was not observed in West Eurasian samples ($p = 0.89$) (fig. 2E, supplementary fig. S7B). The bASN-
derived alleles were also relatively enriched in the Denisovan sequence (Reich, et al. 2010) (fig. 2C), but
this ancestry cannot be fully explained by a shared event of archaic introgression in the TIAs, as >80% of
the bASN-derived alleles were not found in the Denisovan introgressed segments (supplementary fig. S7C).
The significant positive correlation between bASN ancestry and Denisovan introgression in the island
Southeast Asians ($r^2 = 0.82$; $p = 5.27 \times 10^{-5}$) (fig. 2B) possibly reflects recent gene flow cross the Wallace-
Huxley’s line, which is indicated by the TreeMix analysis (fig. 2A, supplementary fig. S8).

MixMapper (Lipson, et al. 2014) fit all the tested TIA populations, including the Melanesians from
Bougainville, PHI, Malaysian Orang Asli, and ADM, as combinations of two ancestry components: one
closely related to PNG branch (representing the bASN ancestry); another split deeply from the East Asians
(supplementary fig. S9A). Intriguingly, the relative proportions are highly correlated with those inferred
using ADMIXTURE (supplementary fig. S9B). Admixture graphs constructed using AdmixtureBayes
(Nielsen 2018) and qpGraph (Patterson, et al. 2012) showed that PNG, ADM, and MLS received ancestries
that split deeply with Europeans (fig. 2F), and they contributed greatly to their surrounding nNL-TIAs and
non-indigenous populations in Asia. For the South Asian groups, the Onge-related ancestor contributes 80%
ancestry to Irula (nNL) and 48% ancestry to Gujarati (non-indigenous), with the remaining ancestry contributed by the European ancestor (supplementary fig. S10A); for groups in Malaysia, the Negrito ancestor contributes 59% to Temiar (nNL) and a lesser extent to Malay (non-indigenous) (supplementary fig. S10B). However, PHI genomes were almost equally contributed by PNG and the non-indigenous populations in East Asia, possibly due to replacement by Austronesian expansion (supplementary fig. S10C). This observation is in agreement with the genetic makeup of PHI inferred by ADMIXTURE. These collective findings therefore strongly support the basal role of the indigenous populations in modern human migration to Asia (fig. 2A).

Shared adaptations of the TIA populations Given the wide range of geographical TIA populations studied and the shared bASN ancestry identified, we intended to trace the footprints of this common ancestry and explore its possible functional effects on present-day TIA populations. We estimated the density of the bASN-affected SNPs and the frequency of the bASN-derived haplotypes along the genome, and found some genomic regions were enriched with the bASN ancestry, and thus could be regarded as putative candidates of bASN-related adaptations (supplementary table S2). We focused on the shared adaptations in at least two out of the four representative TIA populations, which implies possible parallel or convergent evolution (table 1). Although some other TIA populations also showed enriched bASN ancestry, the sample size for these populations was insufficient (<5 samples for each) for unbiased frequency estimation. One of the outstanding examples is a bASN-derived haplotype in LIMS1. It consists of 40 bASN alleles spanning the entire gene (~150 kb), all of which are derived alleles. The frequency of this haplotype is 0.97 in PNG, 0.8 in ADM, <0.3 in MLS and PHI, and is very rare in other worldwide populations. The high frequency and long stretch of this haplotype suggested that it could be adaptive in PNG and ADM (supplementary fig. S11). LIMS1 encodes an adaptor protein that plays a role in integrin-mediated cell adhesion or spreading. It has also been reported to be hairiness-associated in East Asians (Endo, et al. 2018). Downstream to LIMS1 is EDAR, a well-recognized gene that is responsible for the facial and hair features of East Asians (Adhikari, et al. 2016; Wu, et al. 2016). The Asian prevalent allele at the key missense variant in EDAR, rs3827760-G, appears in lower frequency in the Southeast Asian indigenous populations (frequency = 0.25–0.44), but did not show signals of adaptation in any of these populations. We also identified a group of candidate haplotypes (~51 kb) in COL24A1, the frequency of which is higher in PNG (0.47), MLS (0.31), Vellalar (a nNL-TIA population in South Asia; 0.28), CheWong (a nNL-TIA population in Southeast Asia; 0.25), Tibetan (0.20), and African populations (0.25–0.42) than the rest of populations studied. COL24A1 encodes for collagen XXIV predominantly functioning in osteoblast differentiation and bone formation and is associated with some morphological traits in humans, such as waist-hip ratio and height (Lotta, et al. 2018; Kichaev, et al. 2019). More interestingly, a 56.9-kb adaptive haplotype in DDB1/DAK was identified in ADM (0.95), PHI (0.5), and African populations (0.52–
0.83), and it included a key missense variant (rs2260655, c.553G>A, p. A185T) associated with the melanin index of Africans (Crawford, et al. 2017). This observation supports the shared evolution of skin pigmentation between African and Asian populations proposed by Crawford et al. (Crawford, et al. 2017), by complementing the hypothesis with more significant evidence via the understudied tropical indigenous populations in South and Southeast Asia. Other shared signatures of selection in several TIA populations include LRBA aiding the secretion and membrane deposition of immune effector molecules, NRXN3 encoding neurexins that function in the vertebrate nervous system as cell adhesion molecules and receptors, and several genes involved in the metabolic pathways (e.g., ACBD6, FDXR, INPP4B, and SH3PXD2A) (table 1).

We alternatively employed a de novo screening strategy to search for more shared selective sweeps, by estimating a composite statistic called \(F_{cs} \) based on the integrated haplotype score (iHS) and locus-specific branch length (LSBL) (see Materials and Methods). Remarkably, we identified two genomic regions that exhibited sweep signals in all four populations (supplementary fig. S12A). One of these regions lies in NKAIN3, which encodes a member of the Na\(^+\)/K\(^+\)-ATPase \(\beta \)-subunit interacting protein family that is involved in the regulation of the Na\(^+\) transport (supplementary fig. S12B). This gene is specifically expressed in the brain and nerves according to the Genotype-Tissue Expression (GTEx) database (https://gtexportal.org/home/), and is associated with certain neurological diseases. Notably, it has been reported to be height-associated in the Europeans (Tachmazidou, et al. 2017). The other signal is in C16orf97, a lncRNA gene. GTEx shows that this gene expresses significantly in testis as opposed to other organs. We also found that several genes showed different adaptive loci among the four populations. One example is TENM4, which encodes the teneurin transmembrane protein 4 that plays a role in establishing proper neuronal connectivity during development (supplementary fig. S12C). Adaptive genes shared by at least two of the four populations were significantly enriched in neurological functions (supplementary fig. S12D). There was also evidence for shared adaptation on the Negrito-like phenotypes, attributing to identical candidate genes across TIA populations or different genes for similar biological processes (table 2). Notably, there were a larger number of candidate genes shared across the Wallace-Huxley’s line (between ADM/MLS and PHI/PNG), than those identified specifically in population grouping located at either side (within ADM/MLS or PHI/PNG), suggesting that those shared signals are unlikely to be consequences of recent gene flow between populations. These results indicate complex genetic mechanisms underlying the phenotypic convergence of TIA populations.

Evolution scenarios of pigmentation alleles in the T1As To characterize the genetic architecture of skin pigmentation primarily in the four representative TIA populations (again, some populations with enriched bASN ancestry and even darker skin pigmentation, such as Melanesians from Bougainville, were excluded due to limited samples size), we compiled a comprehensive list of 1,057 pigmentation genes in human from
previous genetic studies or biological pathways (supplementary table S3, see Materials and Methods). At
103 of these variants that affect 85 genes (supplementary table S4, supplementary fig. S13-15), the risk
alleles were reported in previous association studies and were further determined as dark pigmentation
alleles (DPAs) reported in the Africans or light pigmentation alleles (LPAs) reported in the Eurasians (see
Materials and Methods). Since most of these risk alleles were identified under the additive model in
association studies, we assumed that the two alleles at a candidate SNP have opposite effects on human
coloration. Approximately 88.8% of the pigmentary variants are standing variants in the Africans, and 11.2%
or less (some DPAs possibly drifted out in the Africans after the “Out of Africa” event) of them are possible
de novo DPAs. The pigmentary variants collected in this study were biased to the LPAs reported in
Europeans because previous association studies were conducted predominantly in individuals of European
descent. Moreover, the LPAs reported in Europeans and those reported in East Asians (although with a
limited number) were specifically enriched in these two populations, respectively (supplementary fig.
S16A), supporting the convergent evolution of the light skin phenotype in Europeans and East Asians.
When focusing on the DPAs reported in Africans, we revealed a substantial excess of DPAs in the Africans
and the representative TIA populations over those in Europeans and East Asians (supplementary fig. S16B–
C), thereby confirming the genetic basis for the dark skin phenotype.

We hypothesized that the dark pigmentation of the TIAs may have originated from the bASN
ancestry, as we observed that the DPA-based unweighted polygenic risk score (PRS) – number of DPAs in
each individual – is positively correlated with the bASN ancestry in mainland Southeast Asia ($r^2 = 0.23$ and
$p = 2.25 \times 10^{-4}$ across individuals; $r^2 = 0.77$ and $p = 0.006$ across populations) and South Asia ($r^2 = 0.51$ and
$p = 3.28 \times 10^{-10}$ across individuals; $r^2 = 0.59$ and $p = 0.016$ across populations) (fig. 3, supplementary fig.
S17). We further analyzed the flanking haplotypes of the key DPAs reported in Africans, and found that
most of these are identical by descent in the African and non-African populations and are likely to be the
ancestral states of the modern human, implying possible parallel evolution. Notably, the derived allele (G)
at rs872257, an intronic variant of the antisense gene \textit{RP11-125B21.2}, had an excess of frequency in all the
African populations, NL-TIAs, and PNG (allele frequency (AF) = 0.5–0.94) over the other Eurasians (AF
= 0.20–0.45), and two DPAs (rs6510760-A and rs112332856-C) in \textit{MFSID12} were enriched in the TIA
populations in each geographic region. However, in most of the cases, the DPAs were lost in several of the
TIA populations during evolution. For instance, we observed the accumulation of three \textit{DDBI-DAK} DPAs
(rs11230664-C, rs376397-G, and rs2513329-T) in ADM and PHI (0.95 in ADM; 0.5 in PHI; 0.17–0.89 in
the Africans; 0–0.23 in other Eurasians), which are in strong linkage disequilibrium (LD) with the
aforementioned missense mutation at rs2260655 (fig. 4). Although selective sweep at this site was only
detected in PHI, we suspect that these DPAs are also beneficial in ADM as these show extremely high
frequency and share homologous haplotypes with those in PHI. Other examples include two variants
(rs6497271-A and rs4932620-T) in HERC2 in ADM (AF = 0.5 in ADM; AF < 0.23 in the non-indigenous Eurasians). In the DPAs reported in Europeans, we also found such examples like the ancestral allele (T) at an intronic variant TRPS1-rs2737212 (AF > 0.9 in the Africans and the representative TIAs; AF = 0.52–0.89 in the non-indigenous Eurasians). As for other pigmentary variants without determined effect alleles associated with pigmentation or de-pigmentation, we assumed that the alleles showing higher frequencies in the representative TIAs than in the non-indigenous Eurasians are more likely to be DPAs (hereafter denoted as putative DPAs). Interestingly, the population-specific putative DPAs, presenting in at least one representative TIA population but missing in all the non-indigenous Eurasians (see Materials and Methods), tend to show in the Africans ($p = 1.7 \times 10^{-8}$, odds ratio (OR) = 0.36, Fisher’s exact test), whereas those population-specific non-pigmentary alleles are more likely to be novel mutations in the representative TIAs ($p = 3.2 \times 10^{-12}$, OR = 1.5, Fisher’s exact test) (supplementary table S5). For example, we found a 112.6-kb haplotype involving two PNG-specific missense pigmentary alleles (rs7699637 and rs7682296; AF = 0.1 in PNG) in FRAS1. This haplotype is constituted of 60 alleles, including 42 putative DPAs, and is likely an ancient haplotype harbored by the archaic hominins and some African individuals. A similar example is a 21.5-kb haplotype carrying a highly conserved regulatory variant (rs113432620-G; an MLS-specific allele, AF = 0.25) and other 13 putative DPAs at RP11-6N13.1. The allele age at rs113432620-G was estimated to be older than 400 KYA. This result, again, suggests that dark skin in the TIAs could be one of the most important phenotypes inherited from African ancestry. However, the adaptation of inherited DPAs mingled with that of LPAs in the skin-color determination of TIAs. We identified adaptation at the OCA2 loci in the TIA populations and found that the adaptive alleles matched the Asian prevalent alleles, which could be a consequence of recent admixture (supplementary fig. S16D).

In addition, gene flow plays an essential role in facilitating the convergent evolution of dark pigmentation. For instance, the only putative DPA shared by the four representative TIA populations, MTHFD1-rs138662720-T, is related to different haplotypes between Africans and TIAs. The haplotypes in TIAs are similar to the Altai Neanderthal sequences and were inferred to be introgressed haplotypes by ArchaicSeeker 2.0 (Yuan, et al. 2021). They were clustered on an independent basal branch in the haplotype network, while those in Africans were on the shared branches with other Eurasians (fig. 4). MTHFD1 plays a role in the folate-mediated 1-carbon transfer process, which is influenced by the environmental UV levels and possibly evolves in parallel with skin pigmentation (Jones, et al. 2018). Interestingly, rs138662720 is located in the promoter and enhancer elements of MTHFD1 with signals of H3K4me3+ and H3K27Ac+ in melanocyte, and thus may affect MTHFD1 expression (supplementary fig. S18). Archaic introgression also facilitates the convergent evolution at different sites of the same gene across the TIA populations. One notable example is RAD18, which is recruited to replication forks and facilitates the DNA repair after UV exposure (Liu, et al. 2012). MLS and PNG showed differentiated signals of positive selection at this gene,
and the adaptive haplotype in MLS is likely an introgressed haplotype from Altai Neanderthal (fig. 5A–B). This haplotype reaches a frequency of 0.23 in MLS, but is absent in other worldwide populations. We also observed that some TIA populations share new mutations in the pigmentation-related genes. The derived allele (T) at rs529613543 in STK11 (also known as LKB1), a protein-coding gene modeled as a UV-induced DNA damage sensor in mice (Esteve-Puig, et al. 2014), specifically presented in MLS (AF = 0.14) and PNG (AF = 0.13) (fig. 4). The allele age was estimated to be 5.0 KYA and 8.8 KYA in the two populations, respectively. Although identical mutations across human populations more likely reflect an ancestral event, we could not rule out the possibility of independent de novo mutations in this case. This locus is around the enhancer and promoter region of STK11 with high DNase sensitivity (supplementary fig. S19). Therefore, we speculated any mutations at this locus could have altered the pattern of gene expression hence phenotypic consequences.

Hard sweeps of population-specific de novo mutations may also contribute to skin color evolution in TIA populations. For instance, a 36.9 kb-haplotype in USH2A was under strong positive selection in PNG (AF = 0.43) (supplementary fig. S20A). The adaptive haplotype could have been introduced to PHI (AF = 0.17) via gene flow. A recent study showed that USH2A showed abnormal pigment deposition and reduced expressions of some melanin metabolism-related genes, such as TYR and OCA2, in retinal cells derived from induced pluripotent stem cells, indicating potential involvement of USH2A in the pigmentation pathway (Deng, et al. 2017). Moreover, we identified some de novo mutations with severe consequences and under adaptation, and thus could have functional importance, such as rs20161507, a missense mutant carried by a 436.2-kb extended haplotype in ZRANB3 in PHI (AF = 0.22) (supplementary fig. S20B). ZRANB3 functions in response to UV exposure by regulating DNA replication and repair (Vujanovic, et al. 2017).

Genetic convergence of pigmentation on the gene level. Although identical adaptive variants were identified across the TIA populations, considerable variations showed how different a pigmentation gene functions in response to the selective pressure on skin color in different populations. Except for the aforementioned example of RAD18, several examples of convergent evolution at the gene level were discovered. Notably, NRG1 involved in melanocyte development (Buac, et al. 2009) showed distinct signals in ADM and MLS (fig. 5C); different CEP112 signal loci were identified in PHI and PNG (fig. 5D), and this gene is associated with iris color in South Asians (Jonnalagadda, et al. 2019).

Previous studies have suggested that the dark skin phenotype in Africans could be a result of strong functional constraints on pigmentation genes, while relaxation of the constraints in the Eurasians leads to the light skin phenotype in these populations. MC1R is an exemplar gene under purifying selection in the Africans (Harding, et al. 2000; Sturm, et al. 2001; Makova and Norton 2005). In our data, we found a significant excess of mutation burden on the collective pigmentation-related genes compared to the whole
genome in most Eurasian populations, except for some TIAs such as PNG and ADM (supplementary fig. S21A). This observation may be largely attributed to the accumulation of functional mutations in the Eurasian populations, as most of the pigmentation-related genes were reported in these populations, and to a lesser extent, constraint relaxation could have occurred in some genes in Eurasians. MC1R showed signs of purifying selection in PNG and ADM, including the low mutation burden and small nucleotide diversity in the coding sequences of this gene that are comparable to those in Africans (supplementary fig. S21B–C). PNG and ADM also showed a close genetic affinity with Africans on this gene (supplementary fig. S21D). Moreover, the segregating sites in the four representative TIA populations were highly consistent (fig. 5E). These polymorphisms were also observed in the other Eurasian populations but did not overlap with those shown in Africans. These results suggest that purifying selection of MC1R could be a consequence of convergent evolution in the African and Asian indigenous populations.

Discussion

In this study, we reveal that different geographical TIA populations are genetically distinct from each other, but also provide compelling evidence for the shared ancient Asian ancestry of TIAs. Our analysis showed no supporting evidence that the identified bASN ancestry resulted from shared evolution of archaic introgression, recent admixture, or other random effects. Rather, it is more likely a sign of an independent pulse of human migration to Asia, involving the ancestors of the present-day Negritos and Oceanic populations. Previous genetic studies focusing on ancient genomes or single present-day indigenous populations have suggested an ancient initial occupation of Southeast Asia, followed by several layers of migrations from different ancestry sources and different places (Rasmussen, et al. 2011; Xu, et al. 2012; Lipson, et al. 2018; McColl, et al. 2018). The whole-genome sequencing data of diverse TIA populations we analyzed poses an additional advantage on tracing the ancestry footprints in the present-day human, and connecting the genomes with traits.

Taking advantage of the whole-genome sequences that we generated for the Malaysian Orang Asli samples and those collected from other published studies, we present the first genome-wide survey of local adaptations in multiple geographically dispersed groups of TIA populations and show that these populations have adapted to the challenging habitats of the tropical rainforest via both shared and distinct genetic determinants. For instance, we found evidence of strong sweeps shared by the four representative TIA groups, targeting a hair-associated gene LIMSI, and a height-related gene COL24A1. Evidence for the shared adaptations of the Negrito-like phenotypes across TIA populations was elaborated on the gene level and the pathway level. Meanwhile, plenty of differentiated adaptations were reported by previous studies and also observed in our data.

An inevitable issue regarding the studies on TIA populations is the genetic mechanism of the dark skin color phenotype. We explored the dark pigmentation evolution primarily based on the four
representative TIA populations for several advantages, including outstanding dark skin phenotype evidenced by the literature, long population history supported by the enriched bASN ancestry, and less genetic interaction with the surrounding non-indigenous populations compared with other nNL-TIAs. This study provides a full landscape of the pigmentary variants and genes in TIA populations. Despite the lack of a comprehensive assessment of the skin color phenotype in the samples studied, we referred to the reported data in previous studies, and found that the TIA populations we focused on here have a higher melanin index than other populations inhabiting similar latitudes (supplementary note S1). Therefore, it is conceivable to summarize the overall pattern of skin color evolution based on the genetic architecture of pigmentary variants in populations qualitatively differentiated in skin color. The priori pigmentary variants were obtained from the GWAS studies primarily carried out in the major continental groups, as very few results were reported in other minority populations. Kenny et al. reported a missense variant in TYRPI that is associated with blond hair in Melanesians (Kenny, et al. 2012), but this variant was not captured in the sequences we analyzed.

Five conclusions can be drawn from the present analyses. First, the dark skin phenotype is likely characterized by extreme genetic heterogeneity, as a higher genetic load has been observed in the indigenous populations than in the non-indigenous populations in each geographic area. Second, a large number of the DPAs are likely to be identical by descent among TIA populations and were probably inherited from the modern human ancestry. These results support that the early dispersal of the dark-skinned people out of Africa was not accompanied by significant changes in skin color (Jablonski 2018), and this is consistent with an individual case observed by Crawford et al. (Crawford, et al. 2017). Third, we observed some putative DPAs are likely de novo mutations in TIAs, or adapted from the archaic introgression, suggesting the possibility of convergent evolution. Previous studies have suggested convergent evolution of light skin in Europeans and East Asians and that of the dark skin among African groups (Norton, et al. 2007; Martin, et al. 2017), and our analyses complement the hypothesis by providing additional supporting evidence. Fourth, the convergent purifying selection also drives pigmentation in the tropical indigenous populations, such as MC1R in the Africans, PNG, and ADM. A previous study did not support the strong selective constraint on MC1R in the Melanesians (Norton, et al. 2015), possibly due to the genetic differentiation between near and remote Oceanic populations. Finally, some of the LPAs are also adaptive in TIA groups, which could evolve from standing variants or gene flows between populations, again suggesting the complexity of the skin color phenotype. Based on our data, we conclude that the phenotypic convergence in skin color across the geographically diverse TIA populations is likely a joint consequence of shared genetic ancestry and convergent molecular adaptation.

Our results supported the hypothesis that the dark-pigmented skin evolved in early hominins in Africa, and that formed the substrate of the skin color of the ancient Asian ancestry. Populations dispersing
and living along the coasts of southern and southeastern Asia in the Late Pleistocene experienced strong
and seasonally relatively invariant UV levels, and that favored the maintenance of dark pigmentation,
probably involving selection on ancestral gene variants and recent mutations (Jablonski 2021). Evidenced
by the adaptive introgressed haplotypes in MTHFD1 and RAD18, we established the genetic contribution
of Neanderthals to the skin pigmentation in TIA populations, which was not recognized before despite that
such connection was only identified in the light-skinned modern Eurasians (Dannemann and Kelso 2017;
Rotival and Quintana-Murci 2020). Human skin pigmentation is jointly determined by different
combinations of genetic and cultural conditions over time and through space (Jablonski 2021). Our results
showed that UV-induced folate degradation could be related to the dark skin phenotype in TIA populations.
MTHFD1 plays a role in the development of neural tube defects – a congenital disorder due to folic acid
deficiency in pregnant mothers. Therefore, adaptation at MTHFD1 may help to improve reproductive
success. Notably, folate-dependent reproduction is not necessarily a driving force of human skin color
adaptation to UV. MTHFD1 and other folate-related genes could have evolved in parallel with the causal
variants determining pigmentation (Jones, et al. 2018). Further studies are needed to investigate the
interaction of folate, skin pigmentation, and UV conditions, and to figure out how the identified MTHFD1
variant affects skin pigmentation. In addition to UV, selective pressures on the immune function could also
be a reason, as eumelanin is important in enhancing the barrier function of the skin. The tropical indigenous
populations have been facing extreme epidermal environments, and some of the adaptive genes (e.g., LRBA)
we identified are involved in immune processes. It should be noted that the effects of material culture and
traditions must also be considered, even if the strength of these influences cannot be easily quantified. Some
TIA populations usually wear few clothes and their diets were rich in fish (Bolton 1972; Sreenathan, et al.
2008; Headland 2015), and these may have contributed to the selective constraint on pigmentation. It was
also proved that dark-pigmented people can achieve sufficient vitamin D with adequate duration of sun
exposure (Nimitphong and Holick 2013).

Despite the lack of experimental evidence for direct connection between the shared adaptive alleles
and the shared phenotypes across TIA populations, those specific patterns of population allele sharing and
reported genotype-phenotype associations could help to establish such connections. We caution that the
model provided in the present study is greatly simplified. Since human skin color is a highly complex
polygenic trait, we would not be able to quantify the effects of parallel and convergent adaptation without
variant functional validations. However, our efforts on demonstrating the molecular evolutionary pattern
enable the life science communities to better understand the human evolutionary process via skin color
adaptation, and provide insights into the nature of parallel or convergent evolution. With in-depth genetic
and phenotypic studies, as well as functional assessments of the putatively selected variants, it is therefore
plausible to characterize genetic mechanisms of human skin color adaptation.
Materials and Methods

Sample collection and data processing Peripheral blood samples were collected from 50 Orang Asli Individuals from Peninsular Malaysia (supplementary note S2). Written informed consent was obtained from all participants. Research/ethics approval and permits were obtained from the Research and Ethics Committee of Universiti Teknologi MARA [Ref no: 600-RMI (5/1/6)], the Department of Orang Asli Development (Jabatan Kemajuan Orang Asli Malaysia, JAKOA) [JHEOA.PP.30.052.Jld 5(17)], as well as the district offices, village chief, and the chairperson of the Committee of Village Development and Security. Sample collection was also approved by the Biomedical Research Ethics Committee of Shanghai Institutes for Biological Sciences (ER-SIBS-261903). The family history, pedigree, and self-reported ethnicity were recorded via an interview using the local dialect. All procedures were in accordance with the ethical standards of the Responsible Committee on Human Experimentation (approved by the Biomedical Research Ethics Committee of Shanghai Institutes for Biological Sciences) and the Helsinki Declaration of 1975, as revised in 2000.

All the samples were sequenced at 30× coverage for 150 bp paired-end reads, using Illumina Hiseq X10 version 2.5 by Wuxi NextCODE in Shanghai. The raw reads were aligned to the reference GRCh37 human genome using BWA (Li and Durbin 2010). The low mapping quality reads (MAPQ < 20) and potential duplicates were removed using SAMtools (Li, et al. 2009) and Picard toolkit, respectively. We then realigned the indels using IndelRealigner from GATK (McKenna, et al. 2010), and used the GATK variant quality score recalibration to adjust the base quality score bias from the sequencer. Variant calling was performed using HaplotypeCaller (McKenna, et al. 2010; Depristo, et al. 2011). After filtering out the low-quality variants, we finally obtained 51,722,790 biallelic SNPs for further analyses. All of these samples were self-reported to be unrelated, but we identified first-, second-, and third-degree relatedness involving 21 of them, as suggested by KING version 2.1.2 (Manichaikul, et al. 2010). Considering that these indigenous populations are highly inbred, we only removed four individuals showing the first-degree relatedness and combined the rest genomes with public datasets. A detailed description of samples and data can be found in supplementary note S2.

Population data collected from public resources We obtained the following datasets of present-day modern humans to contextualize the TIA samples (supplementary note S2): 1) the 1000 Genomes Project Phase 3 data (The 1000 Genomes Project Consortium 2015); 2) the Simons Genome Diversity Project (Mallick, et al. 2016); 3) the Estonian Biocentre Human Genome Diversity Panel (Pagani, et al. 2016); 4) high-coverage genomes of indigenous populations from South and East Asia (Lu, et al. 2016; Mondal, et al. 2016; Lu, et al. 2017); 5) high-density SNP-array data of worldwide populations (Reich, et al. 2011; Henn, et al. 2012; Schlebusch, et al. 2012; Petersen, et al. 2013; Pugach, et al. 2013; Deng, et al. 2014; Ko, et al. 2014; Lazaridis, et al. 2014; Patin, et al. 2014; Aghakhanian, et al. 2015; Liu, et al. 2015). We
generated two combined datasets. One was compiled from all the sequencing and SNP-array data, including 49,545 autosomal SNPs of 6,059 samples, which was used for inferring the general genetic relationship and ancestry makeup of populations; The second was restricted to the genome sequences, including 17,242,884 autosomal SNPs of 2,845 samples, used for the investigation of genome variations. Archaic and ancient data used in this study include: 1) high-coverage genomes of the archaic hominins, including Altai Neanderthal (Prufer, et al. 2014) and Denisovan (Reich, et al. 2010); 2) worldwide Neolithic-to-Paleolithic ancient human genomes (Allen Ancient DNA Resource, https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data, version 44.3).

Variants annotation, genotype imputation, and phasing Functional consequences and the pathogenicity of the variants were assessed using the Variants Effect Predictor (McLaren, et al. 2016). The ancestral allele at each variant was determined according to the ancestral sequences (e71) released by the 1000 Genomes Project. Variants were mapped to genes according to Ensembl 96 (GRCh37). Functional enrichment for genes was obtained using the annotation tool clusterProfiler v3.10.1 (Yu, et al. 2012) and ToppGene (https://toppgene.cchmc.org/enrichment.jsp) (Chen, et al. 2009). Haplotype phasing and imputation were carried out using Shapeit2 (Delaneau, et al. 2011) (supplementary note S2).

Collection of the pigmentation-related pathways, genes, and variants We focused on the evolution patterns of some genes of particular interest, including genes involved in pigmentation-related pathways and ontologies defined by KEGG and Gene Ontology (provided by clusterProfiler v3.10.1 (Yu, et al. 2012)), and genes previously reported to be associated with pigmentation (including iris, hair and skin color with a shared genetic basis to some extent (Rees 2003; Sulem, et al. 2007)) in human populations (supplementary table S3). The final priori pigmentary gene list contains 1,057 genes in total. A list of 103 pigmentary alleles was further selected from the priori pigmentary variants for their reported effects on pigmentation or depigmentation in previous association studies (supplementary table S4). According to the relative effects of the alleles shown in the additive model of association studies, we named the two alleles at a site as LPA and DPA, respectively.

PCA and inference of the ancestry components We carried out approximate LD-pruning of SNPs by selecting a SNP in each of the 200-kb non-overlapping windows, and then performed flashPCA (Abraham and Inouye 2014) and ADMIXTURE version 1.3.0 (Alexander, et al. 2009) with all the options set to default. We specified K = 2–26 in the ADMIXTURE analysis and performed 10 replications for each K using random seeds. The cross-validation error was measured to assess the number of clusters with the best fit for each analysis.

Population genetic differentiation (F_{ST}) F_{ST} was assessed following Weir and Cockerham (Weir and Cockerham 1984) to evaluate the overall population genetic distance and to identify local regions that are highly differentiated among the representative TIA populations. F_{ST} was calculated for every single SNP,
and was then weighted over the whole genome to construct the population phylogeny shown in fig. 1A. We also estimated the 4-population F_{ST} for the four representative TIA populations, based on a 10 kb sliding window along the chromosome, stepping by 1 kb. The 4-population F_{ST} value for each gene was represented by that of the top window overlapping this gene. We normalized the F_{ST} of all genes by square roots transformations, and genes showing normalized $F_{ST} > 1.96$ were selected as outliers.

Mitochondrial DNA and Y-chromosome analysis The mtDNA haplogroups were identified using HaploGrep2 (Weissensteiner, et al. 2016) based on PhyloTree 17 (van Oven 2015). The Y chromosome haplogroups were determined based on known Y-SNP markers from the International Society of Genetic Genealogy (ISOGG) phylogenetic tree 2019-2020 using in-house scripts. The Filippino mtDNA haplogroups were obtained from 75 individuals from Delfin et al. (Delfin, et al. 2014). We filtered out individuals with a lower resolution of haplogroup classification, including the individuals with an overall rank < 0.6 (provided by HaploGrep2 (Weissensteiner, et al. 2016)) for the mtDNA, and those with estimated Y haplogroups staying on the ISOGG Y-DNA phylogenetic tree trunk. We performed BEAST v.2.6.0 (Bouckaert, et al. 2014) to estimate the coalescent time of haplogroups. The age of mtDNA haplogroup MN (77,000 years, 95% CI = 61,400–93,200) (Fu, et al. 2013) and NRY haplogroup CT-M168 (71,760 years, 95% CI = 69,777–73,799) (Karmin, et al. 2015) were used for calibration of age estimation of mtDNA and NRY haplogroups, respectively.

Identification of the bASN-derived alleles We inferred the bASN-derived alleles from the whole-genome sequences of ADM, MLS, PHI, and PNG, following Watanabe et al. (Watanabe and Ohashi 2020). We first identified alleles with frequency > 0.2 in any of the above four populations but < 0.1 in European and East Asian populations. Considering possible gene flow between TIA and the surrounding non-TIA populations in South and Southeast Asia, we did not exclude those alleles carried by South and Southeast Asians. Next, LD coefficients (r^2) were calculated between SNPs located within 500 kb from each other using PLINK v1.90 (Purcell, et al. 2007). Alleles with $r^2 > 0.5$ were counted in as bASN-derived alleles.

Estimating the genetic score of bASN-derived alleles We estimated the unweighted genetic score (GS) of the bASN-derived alleles in each ancient sample as follows:

$$GS_{unweighted} = \frac{1}{m} \sum_{i=1}^{m} d_i$$

where m is the number of bASN-affected SNPs genotyped in the individuals and d_i is the presence of the bASN-derived alleles at the i^{th} SNP. The 14,353 bASN-derived alleles were assigned into 1,551 blocks using a threshold of between-SNP-distance of 500 kb. We then calculated the weighted GS for each sample as:

$$GS_{weighted} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{n_j} d_{ij}$$
where N is the number of blocks, n_i is the number of bASN-derived SNPs in the j^{th} block, d_{ij} is the presence of the bASN-derived alleles at the i^{th} SNP of the j^{th} block. We used linear regression to examine the association between the GS and time for samples. Samples with a total number of genotyped SNPs less than the 1^{st} quantile of all the ancient samples were excluded from this analysis. Geographic coordinates of the samples, i.e., latitude and longitude, and the first ten PCs were included as covariates in the model:

$$GS = \alpha + \beta_{\text{time}}X_{\text{time}} + \beta_{\text{lat}}X_{\text{lat}} + \beta_{\text{lon}}X_{\text{lon}} + \beta_{PC1}X_{PC1} + \beta_{PC2}X_{PC2} + \cdots + \beta_{PC10}X_{PC10}$$

Modeling of admixture graphs We first applied AdmixtureBayes (Nielsen 2018) to estimate the top posterior admixture graphs, based on the covariance matrix of the allele frequency profiles. Only 148,416 variants with allele frequency in 0.05–0.95 in any of the populations used in our study and those with between-SNP-distance >10 kb were used in this analysis. For each AdmixtureBayes run, a total of 1,000,000 MCMC steps were carried out, with other parameters set to default. Multiple sets of populations were analyzed to obtain a full picture of the admixture graphs, with each graph inferred from an independent dataset. The chimpanzee was used as the outgroup. We finally input the graphs estimated from AdmixtureBayes to qpGraph (Patterson, et al. 2012) to test the goodness of fit. We accept only the graphs with an absolute value of the Z-score of the worst f_{st}-statistic <3. The parameters of qpGraph include: outpop = NULL, blgsize = 0.05, lsqmode = YES, and diag = 0.0001.

Constructing the haplotype networks Given the frequency (f) of an allele of interest, we identified the related haplotypes for this allele using the following procedures. First, we screened for the allele frequency block involving this allele in each by 1) screening for the alleles at frequency f in the non-overlapping 50-kb windows, 2) selecting out the windows with at least 5 alleles at frequency f, and 3) merging the adjacent windows and selecting the one with the target variant included. Second, we collected the union of the allele frequency blocks identified in each population. Then, the haplotype networks were constructed and visualized at genomic regions of interest using NETWORK 10.1.0.0. To construct the haplotype networks, we selected 50% of the samples in populations with sample size >50, and make sure that the samples carrying the target alleles are included. We first calculated the median-joining network (Bandelt, et al. 1999), and then removed the superfluous nodes using the maximum-parsimony algorithm (Polzina and Daneshmand 2003).

Detection of natural selection We calculated iHS using Selscan v1.2.0 (Szpiech and Hernandez 2014) for polymorphic sites in each population, and LSBL for whole-genome variants using in-house scripts. For each SNP, we combined iHS and LSBL scores into a Fisher’s score (F_{CS}) following Lopez et al. (Lopez, et al. 2019):

$$F_{CS} = -log_{10}(p_{\text{iHS}}) + -log_{10}(p_{\text{LSBL}})$$

where p is the empirical p value across the genome. When calculating the LSBL statistic, we chose Han Chinese (CHB) as an outgroup, and a neighbor population with the closest genetic relationship (measured
by F_{ST}) as a reference for each representative TIA population: BEB for ADM, Burmese for MLS, and Dusun for PHI and PNG. An outlier SNP was defined as a SNP with an F_{CS} among the 5% highest of the genome. A putatively selected genomic region was defined as a 100-kb window presenting a proportion of outlier SNPs among the 5% highest of all windows, in four bins of SNP numbers. Windows containing less than 10 SNPs were discarded.

Estimating the allele age Allele ages were estimated using the Genealogical Estimation of Variant Age (GEVA) (v1 beta) based on the mutation clock model (Albers and McVean 2020). The initial effective population size and mutation rate were set to be 10^4 and 1.25×10^{-8}, respectively, as recommended in the manual.

Estimating mutation load Variants were grouped into three categories according to the genomic evolutionary rate profiling (GERP) score, corresponding to different deleterious levels (2–4, mild; 4–6, moderate; >6, critical). We assigned a selection coefficient (s) for variants in each category following Boyko et al. (Boyko, et al. 2008): $s = -4.5 \times 10^{-4}$ for GERP in 2–4, $s = -4.5 \times 10^{-3}$ for GERP in 4–6, and $s = -1 \times 10^{-2}$ for GERP >6. The total mutation load (L) is the sum of load for each locus (Kimura, et al. 1963) under an additive model:

$$L = 2shf(1 - f) + sf^2$$

where f is the derived allele frequency, and $h = 0.5$. We estimated L for the whole genome, for a set of genes (e.g., pigmentation genes), and the coding sequence region of $MC1R$ in this study. To make it comparable across genes or gene sets, we averaged L by SNPs.

Declarations

Ethics approval and consent to participate Written informed consent was obtained from all the Malaysian Orang Asli participants. Research/ethics approval and permits were obtained from the Research and Ethics Committee of Universiti Teknologi MARA [Ref no: 600-RMI (5/1/6)], the Department of Orang Asli Development (Jabatan Kemajuan Orang Asli Malaysia, JAKOA) [JHEOA.PP.30.052.Jld 5(17)], as well as the district offices, village chief, and the chairperson of the Committee of Village Development and Security. Sample collection was also approved by the Biomedical Research Ethics Committee of Shanghai Institutes for Biological Sciences (ER-SIBS-261903). The family history, pedigree, and self-reported ethnicity were recorded via an interview using the local dialect. All procedures were in accordance with the ethical standards of the Responsible Committee on Human Experimentation (approved by the Biomedical Research Ethics Committee of Shanghai Institutes for Biological Sciences) and the Helsinki Declaration of 1975, as revised in 2000.

Consent for publication Not applicable.
Data availability Genome data of the 50 Orang Asli samples generated during this study are available at NODE (http://www.biosino.org/node) with the accession number OEP001210.

Competing interests The authors declare no competing interests.

Funding This study was supported by the National Natural Science Foundation of China (NSFC) grants (32030020, 32041008, 31771388, 31961130380, and 31900418), the Strategic Priority Research Program (XDPB17; XDB38000000) of the Chinese Academy of Sciences (CAS), the CAS President’s International Fellowship Initiatives (2017VBA0008), the UK Royal Society-Newton Advanced Fellowship (NAF/R1/191094), the National Key Research and Development Program (2016YFC0906403), Science and Technology Commission of Shanghai Municipality (19YF1455200), the Youth Innovation Promotion Association, CAS (2021260), the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the Fundamental Research Grant Scheme (FRGS) from the Ministry of Higher Education Malaysia (FRGS/1/2015/ST03/UCSI/01/1), and Ministry of Science, Technology and Innovation (MOSTI) erBiTec Grant (#100-RM/BIOTEK 16/6/2B (1/2011) and [100-RMI/GOV 16/6/2 (19/2011)]. The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Authors’ contributions S.X. conceived and designed the study and supervised the project. B.P.H., S.S.M., and T.A.R. contributed to sample collection. Y.L. managed laboratory work. D.L. developed a pipeline for processing NGS data and performed variants calling analysis. Y.P. phased and imputed the data. H.C. analyzed the mtDNA and Y-chromosome data. K.Y. analyzed archaic introgression. Y.W. analyzed the purifying selection. S.C analyzed the ancient human genomes. L.D. and Y.P. performed other population genetic analyses presented in the manuscript. S.X. B.P.H., and L.D. prepared the manuscript. S.X. and L.D. prepared the additional materials. All authors discussed the results and implications and commented on the manuscript.

Acknowledgments We thank all the indigenous participants and the Department of the Orang Asli Development (Jabatan Kemajuan Orang Asli, JAKOA) for their full cooperation and assistance during the various field trips, and the medical team from the Faculty of Medicine Universiti Teknologi MARA for their involvement during sample collection. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript. We thank the two anonymous reviewers who provided helpful comments on earlier drafts of the manuscript.

References

Abraham G, Inouye M. 2014. Fast principal component analysis of large-scale genome-wide data. PLoS One 9:e93766.

Adhikari K, Fuentes-Guajardo M, Quinto-Sanchez M, Mendoza-Revilla J, Camilo Chacon-Duque J, Acuna-Alonzo V, Jaramillo C, Arias W, Lozano RB, Perez GM, et al. 2016. A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat Commun 7:11616.

Aghakhanian F, Yunus Y, Naidu R, Jinam T, Manica A, Hoh BP, Phipps ME. 2015. Unravelling the genetic
history of Negritos and indigenous populations of Southeast Asia. Genome Biology and Evolution 7:1206-1215.
2. Albers PK, McVejan G. 2020. Dating genomic variants and shared ancestry in population-scale sequencing data. PLoS Biol 18:e3000586.
3. Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655-1664.
4. Asia Indigenous Peoples Pact. 2014. Overview of the State of Indigenous Peoples in Asia. In. Thailand.
5. Bae CJ, Douka K, Petraglia MD. 2017. On the origin of modern humans: Asian perspectives. Science 358:eaai9067.
6. Bandelt HJ, Forster P, Rohl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37-48.
7. Beleza S, Johnson NA, Candille SI, Absher DM, Coram MA, Lopes J, Campos J, Araujo, II, Anderson TM, Vilhjalmsson BJ, et al. 2013. Genetic architecture of skin and eye color in an African-European admixed population. PLoS Genet 9:e1003372.
8. Bellwood P. 2007. Prehistory of the Indo-Malaysian Archipelago. Canberra: ANU E Press.
9. Ben-Egham C, Sun R, Hleaf JS, Diaz-Papkovich A, Munter HM, Grant AV, Dupras C, Gravel S. 2020. Don't ignore genetic data from minority populations. Nature 585:184-186.
10. Bergey CM, Lopez M, Harrison GF, Patin E, Cohen JA, Quintana-Murci L, Barreiro LB, Perry GH. 2018. Polygenic adaptation and convergent evolution on growth and cardiac genetic pathways in African and Asian rainforest hunter-gatherers. Proc Natl Acad Sci U S A 115:E11256-E11263.
11. Bolton JM. 1972. Food taboos among the Orang Asli in West Malaysia: a potential nutritional hazard. Am J Clin Nutr 25:789-799.
12. Bonilla C, Boxill LA, McDonald SA, Williams T, Sylvester N, Parra E, Dios N, Norton H, Shriver MD, Kittles RA. 2005. The 8818G allele of the agouti signaling protein (ASIP) gene is ancestral and is associated with darker skin color in African Americans. Human Genetics 116:402-406.
13. Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537.
14. Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, Adams MD, Schmidt S, Sninsky JJ, Sunyaev SR, et al. 2008. Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet 4:e1000083.
15. Buac K, Xu M, Cronin J, Weerraratna AT, Hewitt SM, Pavan WJ. 2009. NRG1/ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation. Pigment Cell & Melanoma Research 22:773-784.
16. Chen J, Bardes EE, Aronow BJ, Jegga AG. 2009. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305-W311.
17. Crawford NG, Kelly DE, Hansen MEB, Beltrame MH, Fan S, Bowman SL, Jewett E, Ranciaro A, Thompson S, Lo Y, et al. 2017. Loci associated with skin pigmentation identified in African populations. Science 358:eaan8433.
18. Dannemann M, Kelso J. 2017. The contribution of Neanderthals to phenotypic variation in modern humans. Am J Hum Genet 101:578-589.
19. Delaneau O, Marchini J, Zagury JF. 2011. A linear complexity phasing method for thousands of genomes. Nat Methods 9:179-181.
20. Delfin F, Min-Shan Ko A, Li M, Gunnarsdottir ED, Tabbada KA, Salvador JM, Calacal GC, Sagum MS, Datar FA, Padilla SG, et al. 2014. Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region. Eur J Hum Genet 22:228-237.
21. Deng L, Hoh BP, Lu D, Fu R, Phipps ME, Li S, Nur-Shafawati AR, Hatin WI, Ismail E, Mokhtar SS, et al. 2014. The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia. Hum Genet 133:1169-1185.
22. Deng X, Song L, Zhao W, Wei Y, Guo X-b. 2017. HAX-1 protects glioblastoma cells from apoptosis through the Akt1 pathway. Frontiers in Cellular Neuroscience 11:420.
23. Depristo MA, Banks E, Poplin R, Garimella KV, Daly MJ. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491-498.
24. Endicott P, Gilbert MT, Stringer C, Lalueza-Fox C, Willerslev E, Hansen AJ, Cooper A. 2003. The genetic origins of the Andaman Islanders. Am J Hum Genet 72:178-184.
Endo C, Johnson TA, Morino R, Nakazono K, Kamitsuji S, Akita M, Kawajiri M, Yamasaki T, Kami A, Hoshi Y, et al. 2018. Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations. Sci Rep 8:8974.

Esteve-Puig R, Gil R, González-Sánchez E, Bech-Serra JJ, Grueso J, Hernández-Losa J, Moliné T, Canals F, Ferrer B, Cortés J, et al. 2014. A mouse model uncovers LKB1 as an UVB-induced DNA damage sensor mediating CDKN1A (p21WAF1/CIP1) degradation. Plos Genetics 10:e1004721.

Friedlaender J, Schurr T, Gentz F, Koki G, Friedlaender F, Horvat G, Babb P, Cerchio S, Kaestle F, Schanfield M, et al. 2005. Expanding Southwest Pacific mitochondrial haplogroups P and Q. Mol Biol Evol 22:1506-1517.

Fu Q, Mittnik A, Johnson PLF, Bos K, Lari M, Bollongino R, Sun C, Giensch L, Schmitz R, Burger J, et al. 2013. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr Biol 23:553-559.

GenomeAsia100K Consortium. 2019. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature 576:106-111.

Gibbons A. 2001. The peopling of the Pacific. Science 291:1735-1737.

Harding RM, Healy E, Ray AJ, Ellis NS, Flanagan N, Todd C, Dixon C, Sajantila A, Jackson IJ, Birch-Machin MA, et al. 2000. Evidence for variable selective pressures at MC1R. American Journal of Human Genetics 66:1351-1361.

Headland T. 2015. How Negrito foragers live in a Philippine rainforest: What they eat and what they don't Eat. Henn BM, Botigue LR, Gravel S, Wang W, Brisbin A, Byrnes JK, Fadhlouai-Zid K, Zalloua PA, Moreno-Estrada A, Bertranpetit J, et al. 2012. Genomic ancestry of North Africans supports back-to-Africa migrations. PLoS Genet 8:e1002397.

Hernandez-Pacheco N, Flores C, Alonso S, Eng C, Mak AC, Hunstman S, Hu D, White MJ, Oh SS, Meade K, et al. 2017. Identification of a novel locus associated with skin colour in African-admixed populations. Sci Rep 7:44548.

Hill C, Soares P, Mormina M, Macaulay V, Clarke D, Blumbach PB, Vizuete-Forster M, Forster P, Bulbeck D, Oppenheimer S, et al. 2007. A mitochondrial stratigraphy for island southeast Asia. Am J Hum Genet 80:29-43.

Hill C, Soares P, Mormina M, Macaulay V, Meehan W, Blackburn J, Clarke D, Raja JM, Ismail P, Bulbeck D, et al. 2006. Phylogeography and ethnogenesis of aboriginal Southeast Asians. Mol Biol Evol 23:2480-2491.

Hoh BP, Zhang X, Yuan K, Yew CW, Saw WY, Hoque MZ, Aghakhanian F, Phipps ME, Teo YY, et al. 2020. Shared Signature of Recent Positive Selection on the TSBP1-DRA Genes in Five Native Populations from North Borneo. Genome Biology and Evolution 12:2245-2257.

Jablonski NG. 2018. Chapter 3 - Evolution of Human Skin Color and Vitamin D. In: Feldman D, editor. Vitamin D (Fourth Edition): Academic Press. p. 29-44.

Jablonski NG. 2021. The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables. Pigment Cell Melanoma Res 34:707-729.

Jinam TA, Hong LC, Phipps ME, Stoneking M, Ameen M, Edo J, Saitou N, Consortium HP-AS. 2012. Evolutionary history of continental Southeast Asians: "Early Train" hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Molecular Biology and Evolution 29:3513-3527.

Jinam TA, Phipps ME, Aghakhanian F, Majumder PP, Datar F, Stoneking M, Sawai H, Nishida N, Tokunaga K, Kawamura S, et al. 2017. Discerning the origins of the Negritos, first Sundaland people: deep divergence and archaic admixture. Genome Biology and Evolution 9:2013-2022.

Jones P, Lucock M, Veysey M, Jablonski N, Chaplin G, Beckett E. 2018. Frequency of folate-related polymorphisms varies by skin pigmentation. Am J Hum Biol 30.

Jonnalagadda M, Faizan MA, Ozarkar S, Ashma R, Kulkarni S, Norton HL, Parra E. 2019. A Genome-Wide Association Study of Skin and Iris Pigmentation among Individuals of South Asian Ancestry. Genome Biology and Evolution 11:1066-1076.

Karmin M, Saag L, Vicente M, Wilson Sayres MA, Jarve M, Talas UG, Rootsi S, Ilumae AM, Magi R, Mitt M, et al. 2015. A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res 25:459-466.

Kenny EE, Timpson NJ, Sikora M, Yee MC, Moreno-Estrada A, Eng C, Huntsman S, Burchard EG, Stoneking M, Bustamante CD, et al. 2012. Melanesian blond hair Is caused by an amino acid change in TYRP1. Science 336:554-554.

Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, Schoech A, Pasaniuc B, Price AL. 2019. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet 104:65-75.
Kimura M, Maruyama T, Crow JF. 1963. The mutation load in small populations. Genetics 48:1303-1312.

Ko AM, Chen CY, Fu Q, Delfin F, Li M, Chiu HL, Stoneking M, Ko YC. 2014. Early Austronesians: into and out of Taiwan. Am J Hum Genet 94:426-436.

Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K, Sudmant PH, Schraiber JG, Castellano S, Lipson M, et al. 2014. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513:409-413.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589-595.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078-2079.

Lipson M, Cheronet O, Mallick S, Rohland N, Oxenham M, Pietrusewsky M, Pryce TO, Willis A, Matsumura H, Buckley H, et al. 2018. Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science 361:92-95.

Lipson M, Loh PR, Patterson N, Moorjani P, Ko YC, Stoneking M, Berger B, Reich D. 2014. Reconstructing Austronesian population history in Island Southeast Asia. Nat Commun 5:4689.

Liu T, Chen H, Kim H, Huen MS, Chen J, Huang J. 2012. RAD18-BRCTx interaction is required for efficient repair of UV-induced DNA damage. DNA Repair (Amst) 11:131-138.

Liu X, Yunus Y, Lu D, Aghakhanian F, Saw WY, Deng L, Ali M, Wang X, Ghazali F, Rahman TA, et al. 2015. Differential positive selection of malaria resistance genes in three indigenous populations of Peninsular Malaysia. Human Genetics 134:375-392.

Lloyd-Jones LR, Robinson MR, Moser G, Zeng J, Beleza S, Barsh GS, Tang H, Visscher PM. 2017. Inference on the genetic basis of eye and skin color in an admixed population via bayesian linear mixed models. Genetics 206:1113-1126.

Lopez M, Choi J, Sikora M, Siddle K, Harmant C, Costa HA, Silvert M, Mouguia-Daouda P, Hombert JM, Froment A, et al. 2019. Genomic evidence for local adaptation of hunter-gatherers to the African rainforest. Current Biology 29:2926-2935 e2924.

Lotta LA, Wittemans LBL, Zuber V, Stewart ID, Sharp SJ, Luan J, Day FR, Li C, Bowker N, Cai L, et al. 2018. Association of genetic variants related to glucosefemoral vs abdominal fat distribution with type 2 diabetes, coronary disease, and cardiovascular risk factors. JAMA 320:2553-2563.

Lu D, Lou H, Yuan K, Wang X, Wang Y, Zhang C, Lu Y, Yang X, Deng L, Zhou Y, et al. 2016. Ancestral origins and genetic history of Tibetan highlanders. Am J Hum Genet 99:580-594.

Lu J, Lou H, Fu R, Lu D, Zhang F, Wu Z, Zhang X, Li C, Fang B, Pu F, et al. 2017. Assessing genome-wide copy number variation in the Han Chinese population. J Med Genet 54:685-692.

Macaulay V, Hill C, Achilli A, Rengo C, Clarke D, Mechan W, Blackburn J, Semin O, Scrozzari R, Cruciani F, et al. 2005. Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science 308:1034-1036.

Makova K, Norton H. 2005. Worldwide polymorphism at the MC1R locus and normal pigmentation variation in humans. Peptides 26:1901-2012.

Malaspinas AS, Westaway MC, Muller C, Sousa VC, Lao O, Alves I, Bergstrom A, Athanasiadis G, Cheng JY, Crawford JE, et al. 2016. A genomic history of Aboriginal Australia. Nature 538:207-214.

Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, Zhao M, Chennagiri N, Nordenfelt S, Tandon A, et al. 2016. The Simons Genome Diversity Project: 143 genomes from 142 diverse populations. Nature 538:201-206.

Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. 2010. Robust relationship inference in genome-wide association studies. Bioinformatics 26:2867-2873.

Martin AR, Lin M, Granka JM, Myrick JW, Liu X, Sockell A, Atkinson EG, Werely CJ, Moller M, Sandhu MS, et al. 2017. An unexpectedly complex architecture for skin pigmentation in Africans. Cell 171:1340-1353 e1314.

McColl H, Racimo F, Vinner L, Demeter F, Gakuhari T, Moreno-Mayar JV, Driem Gv, Wilken UG, Seguin-Orlando A, Castro CdlF, et al. 2018. The prehistoric peopling of Southeast Asia. Science 361:88-92.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297-1303.

McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. 2016. The Ensembl
Variant Effect Predictor. Genome Biol 17:122.

Migliano AB, Romero IG, Metspalu M, Leavesley M, Pagani L, Antao T, Huang DW, Sherman BT, Siddle K, Scholes C, et al. 2013. Evolution of the pygmy phenotype: evidence of positive selection for genome-wide scans in African, Asian, and Melanesian pygmies. Hum Biol 85:251-284.

Mondal M, Casals F, Xu T, Dall'Olio GM, Pybus M, Netea MG, Comas D, Laayouni H, Li Q, Majumder PP, et al. 2016. Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nature Genetics 48:1066-1070.

Nielsen SV. 2018. Inferring gene flow between populations with statistical methods. ([Aarhus, Denmark]: Aarhus Universitet).

Nimitphong H, Holick MF. 2013. Vitamin D status and sun exposure in southeast Asia. Dermatoendocrinol 5:34-37.

Norton HL, Kittles RA, Parra E, Mao X, Chong K, Canfield VA, Bradley DG, McEvoy B, Shriver MD. 2007. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol Biol Evol 24:710-722.

Norton HL, Werren E, Friedlaender J. 2015. MC1R diversity in Northern Island Melanesia has not been constrained by strong purifying selection and cannot explain pigmentation phenotype variation in the region. BMC Genet 16:122.

Oppenheimer S. 2009. The great arc of dispersal of modern humans: Africa to Australia. Quaternary International 202:2-13.

Pagani L, Lawson DJ, Jagoda E, Morseburg A, Eriksson A, Mitt M, Clemente F, Hudjashov G, DeGiorgio M, Saag L, et al. 2016. Genomic analyses inform on migration events during the peopling of Eurasia. Nature 538:238-242.

Patin E, Siddle KJ, Laval G, Quach H, Harmant C, Becker N, Froment A, Regnault B, Lemeec L, Gravel S, et al. 2014. The impact of agricultural emergence on the genetic history of African rainforest hunter-gatherers and agriculturalists. Nat Commun 5:3163.

Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T, Webster T, Reich D. 2012. Ancient admixture in human history. Genetics 192:1065-1093.

Petersen DC, Libiger O, Tindall EA, Hardie RA, Hannick LI, Glashoff RH, Muckerji M, Indian Genome Variation C, Fernandez P, Haacke W, et al. 2013. Complex patterns of genomic admixture within southern Africa. PLoS Genet 9:e1003309.

Polzina T, Daneshmand SV. 2003. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters 31:12-20.

Prufer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinz A, Renaud G, Sudmant PH, de Filippo C, et al. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43-49.

Pugach I, Delfin F, Gunnarsdottir E, Kayser M, Stoneking M. 2013. Genome-wide data substantiate Holocene gene flow from India to Australia. Proc Natl Acad Sci U S A 110:1803-1808.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559-575.

Rasmussen M, Guo X, Wang Y, Lohmueller KE, Rasmussen S, Albrechtsen A, Skotte L, Lindgreen S, Metspalu M, Jombart T, et al. 2011. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334:94-98.

Rees JL. 2003. Genetics of hair and skin color. Annu Rev Genet 37:67-90.

Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B, Briggs AW, Stenzel U, Johnson PL, et al. 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468:1053-1060.

Reich D, Patterson N, Kircher M, Delfin F, Nandineni MR, Pugach I, Ko AM, Ko YC, Jinam TA, Phipps ME, et al. 2011. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am J Hum Genet 89:516-528.

Rotival M, Quintana-Murci L. 2020. Functional consequences of archaic introgression and their impact on fitness. Genome Biology 21:3.

Schlebusch CM, Skoglund P, Sjodin P, Gattepaille LM, Hernandez D, Jay F, Li S, De Jongh M, Singleton A, Blum MG, et al. 2012. Genomic variation in seven Khoe-San groups reveals adaptation and complex African
1. history. Science 338:374-379.
2. Skoglund P, Posth C, Sirak K, Spriggs M, Valentin F, Bedford S, Clark GR, Reepmeyer C, Petchey F, Fernandes D, et al. 2016. Genomic insights into the peopling of the Southwest Pacific. Nature 538:510-513.
3. Sreenathan M, Rao VR, Bednarik R. 2008. Palaeolithic cognitive inheritance in aesthetic behavior of the Jarawas of the Andaman Islands. Anthropos 103:367-392.
4. Sturm RA, Teasdale RD, Box NF. 2001. Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene 277:49-62.
5. Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, Manolescu A, Karason A, Palsson A, Thorleifsson G, et al. 2007. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature Genetics 39:1443-1452.
6. Szpiech ZA, Hernandez RD. 2014. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Molecular Biology and Evolution 31:2824-2827.
7. Tachmazidou I, Suveges D, Min JL, Ritchie GRS, Steinberg J, Walter K, Iotchkova V, Schwartzentruber J, Huang J, Memari Y, et al. 2017. Whole-genome sequencing coupled to imputation discovers genetic signals for anthropometric traits. American Journal of Human Genetics 100:865-884.
8. van Oven M. 2015. PhyloTree Build 17: Growing the human mitochondrial DNA tree. Forensic Science International: Genetics Supplement Series 5:e392-e394.
9. Vujanovic M, Krietsch J, Raso MC, Terraneo N, Zellweger R, Schmid JA, Taglialetela A, Huang JW, Holland CL, Zwicky K, et al. 2017. Replication fork slowing and reversal upon DNA damage require PCNA polyubiquitination and ZRANB3 DNA translocase activity. Molecular Cell 67:882-890.e885.
10. Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358-1370.
11. Yelmen B, Mondal M, Marnetto D, Pathak AK, Montinaro F, Gallego Romero I, Kivisild T, Metspalu M, Pagani L. 2019. Ancestry-specific analyses reveal differential demographic histories and opposite selective pressures in modern South Asian populations. Molecular Biology and Evolution 36:1628-1642.
12. Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284-287.
Fig. 1. Population phylogeny and ancestry inference of worldwide tropical indigenous groups. (A) A population neighbor-joining tree constructed based on F_{ST} using 49,489 genome-wide SNPs. The Chimpanzee genome was used as an outgroup. The Negrito-like (NL) tropical indigenous populations in Asia (TIA) are highlighted with thick red branches. (B) The ancestry components were inferred based on autosomal SNPs, mtDNA, and Y-chromosome data. The autosome-based inference is provided by ADMIXTURE analysis at $K = 13$. The mtDNA and Y haplogroups for some populations were obtained from the literature, while those for the others were estimated from the SNP-array or NGS data analyzed in this study (see supplementary table S1 for more details). One portrait is shown for each group of tropical indigenous peoples, representing 1, San from southern Africa; 2, Batwa from central Africa; 3, Irula from mainland India; 4, Jarawa from the Andaman Islands; 5, Bateq from Peninsular Malaysia; 6, CheWong from Peninsular Malaysia; 7, Bajo from Indonesia; 8, Aeta from the Philippines; 9, Papuan from Papua New Guinea; 10, Ticuna from Central America; 11, Quechua from South America. Photo sources: https://www.gettyimages.in/ for 1, 2, 4, and 8–11; https://www.pinterest.com for 3; https://www.vladivlad.com for 7; Photos 5 and 6 were taken from the fieldwork. NL; Negrito-like; nNL, non-Negrito-like; AFR, Africa; SAS, South Asia; MSEA, mainland Southeast Asia; ISEA, island Southeast Asia; OCN, Oceania; EAS, East Asia; AMR, the Americas.
Fig. 2. Evidence for the basal Asian (bASN) ancestry. (A) Global distribution of the bASN ancestry, inferred by the ADMIXTURE analysis at $K = 5$. The purple arrows denote the possible route of the independent pulse of early migration to Asia. The bar plots show the bASN component proportions across populations. Populations are sorted according to the bASN proportions, and only the top 10 populations are presented for each region. (B) Correlation between lengths of the introgressed segments from the archaic hominins and proportion of the bASN ancestry in Asian populations. The mainland populations include South Asians, mainland Southeast Asians, and East Asians; the island populations include island Southeast Asians. (C) Maximum-likelihood tree for the Papuan (PNG)-specific loci and sharing of the PNG-specific alleles (%). (D) Inferred bASN ancestry in Neolithic Southeast Asian samples when they were projected in the ADMIXTURE analysis. The red dashed line indicates the bASN ancestry level of 0.1. (E) Genetic score (GS) of the bASN alleles in Neolithic-Paleolithic Eurasian samples. (F) An admixture graph fitting the indigenous genomes within the broader scenario of global population splits and subsequent admixtures. The purple arrows indicate the path for the bASN ancestry, and the yellow arrows indicate the modern East Asian ancestry. Lengths and admixture proportions are shown for the branches. RHG, rainforest hunter-gatherers in Africa; PHI, Philippine Negrito; ADM, Andaman Negrito; BTQ, Bateq Negrito; TMR, Temiar;
MDQ, Mendriq Negrito; CWG, CheWong; BIR, Birhor; ILA, Irula. Other modern human populations are from the 1000 Genomes Project dataset.
Fig. 3. Polygenic risk score (PRS) calculated based on 24 dark pigmentation alleles (DPAs) reported in the Africans are positively correlated with the bASN ancestry. Each dot represents an individual, and the short horizontal line indicates the mean level across samples in a population. The grey dashed lines are linear regressions on individuals, and the grey solid lines are those on populations. MSEA, mainland Southeast Asia; SAS, South Asia
Fig. 4. A putative model of pigmentary variants evolution. (A) A simplified model involving three possible scenarios of pigmentary variants evolution. The evolutionary path and frequency distribution for the dark pigmentation alleles (DPAs) of several outstanding examples are shown in the model. In the four examples, \(DDB1/DAK\)-rs11230664-C is associated with skin pigmentation in Africans, and the other two are located in the enhancer/promoter regions of genes involved in the response to ultraviolet radiation. (B) Haplotype networks for each example in (A). Haplotypes carrying the key DPAs are framed in black-edged boxes. RHG, rainforest hunter-gatherer; NL, Negrito-like; nNL, non-Negrito-like.
Fig. 5 Examples of convergent evolution on the gene level. (A) Differentiated signals of adaptation at *RAD18* in the Malaysian Negritos (MLS) and the Papuans (PNG). (B) Haplotypes structure of *RAD18* in the Altai Neanderthal, MLS, and PNG. Each row indicates a haplotype. Only segregating sites with minor allele count > 2 in the total sequences are shown in this plot. The adaptive haplotype in MLS is likely an introgressed haplotype from the Altai Neanderthal (denoted by the top-left black-edged box), while that of PNG is inherited from the modern human ancestry (denoted by the bottom-right black-edged box). (C) Distinct adaptive signals in Andaman Negritos (ADM) and MLS at *NRG1*. (D) Distinct adaptive signals in the Philippine Negritos (PHI) and PNG at *CEP112*. In (A), (C) and (D), the pink bar indicates gene location. (E) Variation in the coding sequence (CDS) of *MC1R*. Segregating sites in each population are shown in color. Allele frequency is proportional to the height of the letter.
Table 1 Top 20 bASN-enriched genomic regions showing shared adaptation among TIA populations.

No.	Chr	Region (Mb)	# Total SNPs	# bASN SNPs	% bASN SNPs	Protein-coding Genes	ADM # SNPs	f_{mean}	f_{max}	MLS # SNPs	f_{mean}	f_{max}	PHI # SNPs	f_{mean}	f_{max}	PNG # SNPs	f_{mean}	f_{max}		
1	13	53.25-53.3	280	42	15.0	SUGT1, LECT1		-	-	42	0.28 0.28		28	0.28 0.28		28	0.28 0.28		42	0.27 0.27
2	4	151.55-151.6	189	28	14.8	LRBA	28	0.40 0.40		28	0.31 0.31		28	0.28 0.28		28	0.43 0.43			
3	1	86.2-86.25	254	34	13.4	COL24A1		-	-	34	0.31 0.31		33	0.36 0.47		33	0.36 0.47			
4	15	37.05-37.1	347	40	11.5	CI5orf41	31	0.23 0.25		-	-		-	-		-	-		40	0.43 0.43
5	1	180.4-180.45	302	34	11.3	ACBD6	2	0.43 -		31	0.22 0.22		32	0.31 0.33		32	1.00 1.00			
6	13	53.2-53.25	267	29	10.9	SUGT1, HNRNPA1L2		-	-	29	0.28 0.28		-	-		-	-		29	0.27 0.27
7	4	142.95-143	329	30	9.1	INPP4B	-	-	-	5	0.28 0.28		30	0.29 0.33		30	0.27 0.27			
8	1	61.6-61.65	253	23	9.1	NFI A	7	0.20 0.20		23	0.44 0.44		-	-		-	-		-	-
9	15	57.95-58	332	29	8.7	GCOM1, MYZAP,		-	-	29	0.25 0.25		-	-		26	0.52 0.60			
10	2	109.15-109.2	305	25	8.2	LIMS1	25	0.80 0.80		25	0.22 0.22		25	0.97 0.97		25	0.56 0.57			
11	10	105.6-105.65	313	25	8.0	OBFC1, SH3PXD2A	25	0.45 0.45		24	0.23 0.22		24	0.32 0.33		24	1.00 1.00			
12	1	180.35-180.4	327	26	8.0	ACBD6	2	0.45 -		21	0.22 0.22		21	0.31 0.33		21	1.00 1.00			
13	1	180.45-180.5	306	24	7.8	ACBD6	3	0.42 -		21	0.22 0.22		21	0.31 0.33		21	1.00 1.00			
14	11	61.1-61.15	217	16	7.4	DDB1, DAK, CYB561A3, TMEM138	16	0.96 0.95		16	0.51 0.50		4	0.20 -		4	0.20 -			
15	17	72.85-72.9	383	28	7.3	GRN2C, FADS6, FDXR	28	0.21 0.20		-	-		-	-		-	-		28	0.20 0.20
16	14	79.55-79.6	290	21	7.2	NRXN3	1	0.20 -		21	0.33 0.33		1	0.33 -		21	0.23 0.23			
17	7	158.15-158.2	444	32	7.2	PTPRN2	-	-	-	32	0.23 0.25		-	-		5	0.30 0.30			
18	11	61.05-61.1	222	16	7.2	DDB1, VWCE	16	0.95 0.95		-	-		16	0.51 0.50		-	-		-	-
19	12	71.95-72	352	25	7.1	LGR5	25	0.25 0.25		-	-		-	-		25	0.27 0.27			
20	6	168.9-168.95	493	34	6.9	SMOC2	34	0.41 0.45		-	-		1	0.22 -		5	0.27 0.27			

² f_{mean}, average bASN-derived allele frequency; f_{max}, maximum bASN-derived allele frequency, obtained from the bASN-allele frequency block consisting of at least five bASN-derived alleles. ADM, Andaman Negrito; MLS, Malaysian Negrito; PHI, Philippine Negrito; PNG, Papuan.
Table 2: Putative signals of local adaptation related to the “Negrito-like” phenotypes in TIA populations.

Trait	ADM	MLS	PHI	PNG
Height	MKL1, NUCB2, ZBTB24, RP11-219B17.1, RORA, SEPT2, FER, TTLL5, PDE11A, TEAD1, DYM, UQCC1, PLAG1, CEP250, ZFAS1, GDF5, HHIP, ITH3, MICAL1, CCDC91, RP11-110H11.9, RP11-326A19.4, PLEKHA1, EXT3, ZNF438, STAU1, VGLL4, TRIP11, MYO9A, SLIT3, AMZ1, ZNF367, HHIP-AS1, MAP3K3, PEMT, TMED10, FILIP1, TNRC6B, PPIL6, PTPN14, VAT1, GNA12, LCORL	ATAD5, MEF2C-AS1, SCMH1, AC007091.1, MAGI2, CTD-2349P21.11, DLL2, EDEM2, UQCC1, PLAG1, CEP250, ZFAS1, GDF5, ANKS1A, ERC1, DCLK1, CTU2, PPARD, COLGALT2, H6PD, GLI2, FADS2, ZBTB7C, ZNF678, ETF6, FADS1, ZNF76, FGF18, PAPP2, RAD51B, TSEN15	ATAD5, NUCB2, ZBTB24, MEF2C-AS1, SCMH1, FER, TTLL5, PDE11A, CTD-2349P21.11, TEAD1, DLL2, EDEM2, LPAR1, PHF21A, DNM3, CDH13, PRKCA, SUCLG2, SYTL2, FSTL5, PASK, SLBP, RP1-35C21.2, LRR3C7B, RP1-977G19.10, CS, SBN01, DLEU1, ZFAT, DOCK3, SERPINA1, INSR, TTLL4, IPPK, ANTXR1, ZNF142, PTN1, HMGA2	MKL1, RP11-219B17.1, RORA, SEPT2, AC007091.1, MAGI2, DYM, LPAR1, PHF21A, DNM3, CDH13, PRKCA, SUCLG2, SYTL2, FSTL5, PASK, SLBP, RP1-35C21.2, LRR3C7B, RP1-977G19.10, CS, SBN01, DLEU1, ZFAT, DOCK3, SERPINA1, INSR, TTLL4, IPPK, ANTXR1, ZNF142, PTN1, HMGA2
Sitting height ratio	TEAD1	JAK1, PTPRM, EXOC2	TEAD1, ATAD2B, UBXN2A	JAK1, EPHB1, CTB-33018.1
Hair color: black	HNRNPA1P36, SNX16, MARK3, RP13-923023.6, ERMP1, FRAS1, KIAA2026, RP11-556I14.2, VGLL4, PTAFR, ATP1B3, PEX14, TCF20, NTM	GPR98, ERMP1, FRAS1, KIAA2026, AL163953.3, TEMEM258, RP11-459E5.1, EXOC2, IL16, PEBP4, GAB2, IRF4, RP11-452H21.1, MED13L, CDC42BPA, RAD51B	HNRNPA1P36, SNX16, MARK3, AC092614.2, LHX2, AC003958.6, CHL1, MITF, RPL34-AS1, NFI1, KRT31, ZNF831	GPR98, MARK3, AC092614.2, LHX2, AC003958.6, CHL1, MITF, RPL34-AS1, NFI1, KRT31, ZNF831
Hair shape	PTK6, FRAS1	FRAS1	PTK6	PTK6
Skin pigmentation	TUSC3, AC016682.1, AC113610.1, PRTFD1	MEGF11, IRF4	RNF111, SLFN12L	TUSC3, LINC00504, PLEKHA6
Skin reflectance	RP11-184D12.1	TNFRSF10B, RIMBP2	RP11-6N13.1, CTD-2374C24.1, SYN3	RP11-6N13.1, SBF1, USH2A, SEMA6D
Nose morphology	-	HS3ST4	-	AC004158.2, VPS13B
Nose width	DSCAML1, EIF2B5	-	PCCA	IKZF2
Nose size	DLC1, EIF2B5	ROBO1, LINC0086, BMP7, RAD51B, CACNA2D3	MSRA	ROBO1, MSRA

1. Adapative genes shared by at least two of the four populations (underlined and bolded, shared among populations across the Wallace-Huxley’s line; bolded, presented in only one side of the Wallace-Huxley’s line) are highlighted. Trait-associated genes are reported by the GWAS catalog. ADM, Andaman Negrito; MLS, Malaysian Negrito; PHI, Philippine Negrito; PNG, Papuan.