Characterization of ZnO and TiO$_2$ Nanopowders and their Application for Photocatalytic Water Treatment

N. LAID*, N. BOUANIMBA, A. BEN AHMEDE, A. TOURECHE and T. SEHILI

Laboratoire des Sciences et Technologies de l’Environnement LSTE,
Département de Sciences Exactes, Faculté de chimie, Université Frères Mentouri Constantine, Algérie

(Received May 2, 2019; revised version October 12, 2019; in final form November 20, 2019)

Zinc oxide ZnO nanoparticles synthesized by sol-gel method and commercial titanium dioxide TiO$_2$ were studied in the present work. The structural properties of the ZnO and TiO$_2$ nanoparticles were determined by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Raman spectra techniques (RS). The average crystallite sizes were calculated by using the powder X-ray and were found to be 48 nm and 20 nm and the specific surface areas were about 1047 m2 g$^{-1}$ and 381 m2 g$^{-1}$ for ZnO and TiO$_2$, respectively. The FTIR and Raman spectroscopy results have shown high purity of the ZnO and TiO$_2$ samples and they are consistent with the one obtained from XRD. The ZnO and TiO$_2$ nanoparticles were used as catalysts for the elimination of an azo dye, Mordant Violet 5 (MV5), in aqueous solution, by an advanced oxidation process which is heterogeneous photocatalysis. Synthesized ZnO was more efficient than commercial TiO$_2$ to degrade MV5 under UV irradiation. The adsorption of MV5 on TiO$_2$ and ZnO was found favorable by the Langmuir approach. The MV5 adsorption constant on TiO$_2$ was higher than that obtained in the case of ZnO. The photocatalytic reaction of MV5 in presence of each catalyst was investigated at different concentration of the dye and at different conditions of pH. The solar radiation of MV5 in presence of each catalyst was also tested.

DOI: 10.12693/APhysPolA.137.305

PACS/topics: ZnO, TiO$_2$, XRD, FTIR, RS, photocatalysis

1. Introduction

Nanostructured semiconductors are of great interest because of their improved properties and promising technological applications, such as photochemical solar cells, photocatalysts, photosensors, electroluminescent displays, and biolabels.

Nanoscale zinc oxide (ZnO) and titanium dioxide (TiO$_2$) are absorbers of ultraviolet (UV) light and are considered as the more efficient semiconductors that promote photocatalysis [1–4]. This is because of their attractive properties, such as their low cost, non-toxic nature, and high catalytic efficiency [5, 6]. Both catalysts have been extensively studied for the removal of organic compounds from contaminated air by water and by using the photocatalysis process [6–8]. However, very few studies have directly compared the photocatalytic activity of ZnO to TiO$_2$ to degrade dyes under UV light.

ZnO and TiO$_2$ nanoparticles have nearly the same band gap and similar electronic properties [9, 10] and therefore, their photocatalytic capacity is expected to be similar. However, in the case of ZnO, photocorrosion frequently occurs with the illumination of UV light, leading to a decrease of photocatalytic activity in aqueous solutions [8]. However, in many works, ZnO has been reported to have higher photocatalytic efficiency for the degradation of some organic compounds in comparison to TiO$_2$ [11, 12]. ZnO (band gap of 3.37 eV) can absorb over a larger fraction of UV radiation, and the corresponding threshold of ZnO is 425 nm [13]. In the case of TiO$_2$, there is many crystalline forms, anatase (band gap of 3.2 eV (385 nm)) and rutile (band gap of 3.0 eV (410 nm)) are the most common forms. The photocatalytic activity of ZnO and TiO$_2$ depends on their phase structure, crystallite size, specific surface areas and pore structure. In fact, TiO$_2$ has longer known history for its photocatalysis properties and ZnO came in light much later and is relatively new in the field. Nowadays both are easily available at almost the same cost. One reason for the less attraction of ZnO could be the comparatively large solubility in acidic medium. However, by taking into account his high photocatalytic activity, this reason would not be enough to prevent its use in water purification application.

Colored waste waters pose an environmental problem because they contain dyes that can be toxic, non-biodegradable, and resistant to destruction by physicochemical treatment methods [14]. Mordant Violet 5 (MV5) was chosen as a model pollutant in this study, it is a dye that belongs to azo class. Azo dyes are considered as the largest class of dyes that are used in industry [15]. The presence of azo dyes in textile effluents is an issue of major concern because of their potential impact on the environment and human health [15, 16]. In fact, several toxic and potentially carcinogenic compounds such as aromatic amines can be formed during azo dye degradation [17].

The heterogeneous photocatalysis process in presence of nanopowders as catalysts allows the destruction of organic pollutants, such as dyes, while leading to complete mineralization [14]. The photocatalytic process depends mainly on the characteristics of the molecule to
be degraded, the light source and the structural properties of semiconductor, playing the role of the photocatalyst. Its main advantages are: low cost, ease of initiation and cessation of reaction, the possibility of using solar energy as a source of irradiation, the variety of degradable pollutants, and the high efficiency of mineralization of pollutants.

In the present study, nanoparticles of Zinc oxide were synthesized by the sol-gel method. The structural properties of the obtained ZnO and commercial TiO$_2$ nanoparticles were determined by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Raman spectra techniques (RS).

The application of the synthesized ZnO nanopowder and the commercial TiO$_2$ in the heterogeneous photocatalysis treatment of waters containing an azo dye: Mordant Violet 5 (MV5), used strongly in the textile industries, was investigated. Both nanopowders have not been tested and compared before as Mordant Violet 5 catalysts.

The study of the efficiency of the photocatalytic process in presence of each of the two catalysts has been carried at different concentration of the dye and at different conditions of solution pH. The solar radiation of MV5 in the presence of each catalyst was also tested.

2. Materials And Methods

2.1. Reagents and chemicals

The substrate chosen as a model pollutant is a dye that belongs to azo class: Mordant Violet 5 (MV5) (C$_{16}$H$_{11}$N$_2$NaO$_5$S). The chemical structure of MV5 is presented in Fig 1. The natural pH of the aqueous MV5 solution is 5.9. The pH of the solutions was adjusted using H$_2$SO$_4$ from Merck and NaOH from Carlo Erba. Water used to prepare experimental solutions was purified by Milli-Q system (Millipore).

2.2. Reactor and procedure

The photocatalysis experiments were carried out with 50 mL of solution with a desired dye concentration (10 mg/L) and catalyst loading (1 g/L) at natural pH. The suspension was placed in a glass reactor equipped with a jacket allowing the water circulation in order to control the temperature (20°C) and at a stirring speed of 500 rpm. The adsorption step is carried out in the dark until the equilibrium state of concentration is reached in the reactor. Once the adsorption equilibrium is reached, the photocatalytic process can be started. In photocatalysis, the procedure is simple and comprises the following steps: (i) Start of the irradiation (UV), (ii) Samples of 3 mL of suspension are taken at different reaction times using a syringe followed by filtration on a Millipore filter prior to analysis.

The irradiations were carried out using a Philips HPW125 (UV-A, λ_{max} = 365 nm) low-pressure mercury UV lamps, surrounded by a cylindrical mirror. The light intensity of the radiation (2.5 mW cm$^{-2}$) was measured using a UV radiometer (VLX-3W). The Pyrex reactor, equipped with a water cooling jacket, is placed in the system axis.

The decolorization of Mordant Violet 5 (MV5) in the solution was determined using a UV–Visible spectrophotometer (Helios α-Unicam spectronic) by measuring absorbance at 500 nm.

2.3. Catalysts

The semiconductors used in our study, are the most commonly known in photocatalysis, namely: ZnO and TiO$_2$. The Titanium dioxide used in this study is a commercial catalyst. The nanoparticles of Zinc oxide are synthesized by the sol-gel (citrate route) method, in this method the Zinc acetate (ZnC$_2$H$_3$O$_2$) is used as the starting material and the Citric acid C$_6$H$_8$O$_7$·H$_2$O is used as a complexing agent.

2.4. Structural characterization

Fourier transform infrared spectra (FTIR) have been studied to ascertain the purity and nature of the ZnO and TiO$_2$ particles. The FTIR spectrum was obtained on KBr pellets at ambient temperature using an 8201PC SHIMADZU FTIR spectrometer. The structural properties of the metals were determined by X-ray diffractometry using a BRUKER ADVANCE D8 diffractometer with Cu (λ = 1.5406 Å) radiation. A SENTERRA Raman spectrometer was used for characterization of crystal structures of ZnO and TiO$_2$ with a light source of Ar laser (532 nm). Raman spectroscopy is an effective supplement of XRD for structural characterization.

2.4.1. FTIR Spectroscopy

FTIR spectra of ZnO and TiO$_2$ particles are shown in Fig. 2. Generally all the metals and their oxides give the FTIR peaks at lower wave number than 1000 cm$^{-1}$ arising from inter-atomic vibrations. Hence, the distinct bands observed on the two FTIR spectrum frequencies below 1000 cm$^{-1}$ are characteristic of ZnO and TiO$_2$, and are due to the vibration of the Zn-O and Ti-O bonds, respectively [18].
The low peaks observed at 3487 cm\(^{-1}\) and at 1512 cm\(^{-1}\) for ZnO, and 3390 cm\(^{-1}\) and 1635 cm\(^{-1}\) for TiO\(_2\) corresponds to the stretching vibrations of the –OH group and the deformation of the H–O–H bond, which are associated with small amounts of water adsorbed on the zinc oxide and titanium oxide surfaces. The peaks corresponding to 2112 cm\(^{-1}\) and 2463 cm\(^{-1}\) for ZnO and TiO\(_2\), respectively, are related with CO\(_2\) molecules that exist on the surface of catalysts. These data are similar to the results observed by others [18, 19] for ZnO and [20] for TiO\(_2\). Anyhow, the FTIR results have shown high purity of the obtained ZnO and the commercial TiO\(_2\) particles.

2.4.2. X-ray diffraction (XRD) studies

Figure 3 shows X-ray diffraction patterns of ZnO and TiO\(_2\) powders in the wide range of 2\(\theta\) of 5 to 100\(^{\circ}\). The peaks appeared at 2\(\theta\) range of 31\(^{\circ}\), 34\(^{\circ}\), 36\(^{\circ}\), 47\(^{\circ}\), 56\(^{\circ}\), 63\(^{\circ}\) and 25\(^{\circ}\), 38\(^{\circ}\), 48\(^{\circ}\), 53\(^{\circ}\), 55\(^{\circ}\), 60\(^{\circ}\) for ZnO and TiO\(_2\), respectively. These values correspond to pure ZnO structure (JCPDS card No. 00-036-1451) and pure anatase TiO\(_2\) structure (JCPDS Card No. 21-1272). Diffraction pattern corresponding to impurities are found to be absent for both catalysts indicating that it have pure hexagonal structures.

To evaluate the mean crystallite size of the catalysts, the Debye–Scherrer formula was used:

\[
D = K \frac{\lambda}{\beta \cos \theta}
\]

where \(D\) (nm) is the mean crystallite size, \(K\) is a constant which is taken as 0.90, \(\lambda\) is the wavelength of the X-ray radiation, \(\beta\) is the reflection full-width at half maximum (FWHM), and \(\theta\) is the diffraction angle. From the XRD data, the average crystallite sizes were found to be 48 nm and 20 nm, and the specific surface areas were obtained using the Guassian method and were about 1047 m\(^2\)/g and 381 m\(^2\)/g for ZnO and TiO\(_2\), respectively.

2.4.3. Raman spectrometer

Figure 4 shows the Raman spectra of ZnO and TiO\(_2\) nanoparticles in the range 45–800 cm\(^{-1}\). The ZnO Raman spectrum presents peaks at 98, 332, 378, 438, 591, and 689 cm\(^{-1}\). The peak at 438 cm\(^{-1}\) was \(E_{2H}\) corresponding to the presence of crystalline wurtzite phase in ZnO. The peak at 98 cm\(^{-1}\) that is associated with vibration of the zinc sublattice \(E_{2L}\) is one of the most intense modes. The other weaker peak present at 332 cm\(^{-1}\) is due to the difference in frequency between \(E_{2H}\) and \(E_{2L}\). This can be attributed to a multiple-phonon scattering phenomena [21]. The peaks at 378 and 583 cm\(^{-1}\) are due to \(A_{1T}\) and \(E_{1L}\) modes, respectively. These results provided information regarding the good crystallinity of the ZnO structure, they are consistent with the one obtained from XRD and are in good agreement with other works [22, 23].
The analysis of TiO$_2$ Raman spectrum revealed pure anatase phase with high crystallinity, corresponding to five Raman active modes. The principal peak locating around 143 cm$^{-1}$ (E_g) was in good accordance with the XRD patterns. The other peaks centered around 199 cm$^{-1}$ (E_g), 398 cm$^{-1}$ (B_{1g}), 516 cm$^{-1}$ ($A_{1g} + B_{1g}$) and 642 cm$^{-1}$ (E_g) are modes of anatase TiO$_2$.

3. Result and discussion

3.1. Adsorption of MV5 on photocatalysts surfaces

The primary factor of photocatalytic degradation is the adsorption of dye onto the catalyst surface. Dark adsorption was performed to evaluate the adsorption of MV5 onto ZnO and TiO$_2$ surfaces. The amount of dye adsorbed onto the catalysts (mg/g) was calculated using the following relationship:

$$Q_{ads} = \frac{V}{m} (C_o - C_t)$$ \hspace{1cm} (2)

where Q_{ads} (mg/g) is the adsorbed quantity at time t, C_o (mg/L) is the initial dye concentration, C_t (mg/L) is the dye concentration at the moment of time t, the process of adsorption, V (L) is the volume of the solution, and m (g) is the weight of adsorbent.

The interaction behavior between the solutes and adsorbent can be best described by isotherm models. The dye solutions were magnetically stirred in the dark for 90 min with samples collected regularly. For both catalysts, the adsorption equilibrium was rapidly attained (in 15 min). This behavior looks like the Langmuir isotherm, the linear transformation of Langmuir equation is used to fit the experimental data:

$$\frac{1}{Q_e} = \frac{1}{Q_{max}} \left(1 + \frac{1}{K_L C_o} \right)$$ \hspace{1cm} (3)

where Q_e (mg/g) is the amount of the dye adsorbed on the catalyst when equilibrium is achieved, Q_{max} (mg/g) is the theoretical maximum amount of dye adsorbed on the catalyst surface, C_o is the dye concentration at adsorption equilibrium and K_L (L/mg) is the Langmuir adsorption constant.

The linear transforms are given in Fig. 5. The ordinate at the origin is equal to the reciprocal of Q_{max}, whereas K_L can be calculated from the slope ($Q_{max} K_L$ $^{-1}$).

The Langmuir isotherms of MV5 in presence of each of the two catalysts were found to be linear over the whole concentration range studied and the correlation coefficients R^2 were extremely high, indicating that the Langmuir isotherm represent well the experimental adsorption data of MV5 on ZnO and TiO$_2$. This model assumes unique adsorption sites, the adsorption is monolayer with a uniform distribution of sites and no interaction between the adsorption sites. It appears that the adsorption coverage is small for both catalysts and TiO$_2$ ($Q_{max} = 25.4$ mg/g and $K_L = 0.04$ L/mg) exhibits the higher adsorbed quantity than ZnO ($Q_{max} = 12.4$ mg/g and $K_L = 0.02$ L/mg).

![Fig. 5. Langmuir adsorption isotherm of MV5 on ZnO and TiO$_2$: $Q_e = f(C_o)$ In the inset: transformation of Langmuir isotherm: $1/Q_e = f(1/C_o)$: ([catalyst] = 1 g L$^{-1}$ and pH = 5.7 ± 0.2 and $T = 20^\circ$C).](image)

The inset of Fig. 5 ($Q_e = f(C_o)$) shows an isotherm of L-shape for both catalysts according to the classification of Giles et al. [24]. This type means that there is no strong competition between the solvent and the adsorbate to occupy the adsorbent surface sites [25, 26].

The dimensionless separation factor R_L indicates the shape of the Langmuir isotherm. It can be either favorable when $0 < R_L < 1$, unfavorable when ($R_L > 1$), linear for $R_L = 1$, or irreversible when $R_L = 0$ [27].

$$R_L = \frac{1}{1 + K_L C_o}$$ \hspace{1cm} (4)

where K_L is the Langmuir constant and C_o is the highest initial concentration. It was observed that the R_L values obtained with ZnO and TiO$_2$ are equal to 0.89 and 0.83, respectively, showing that the adsorption of MV5 on both catalysts was favorable at the experimental conditions that have been studied.

3.2. Kinetic of photocatalytic degradation

Figure 6 shows the kinetic of the photocatalytic degradation of two aqueous solution of MV5 (10 mg/L) at natural pH (pH = 5.9), where one contains a suspension of ZnO particles and the other contains a suspension of TiO$_2$ under UV irradiation at 365 nm, the mass of catalysts was taken at 1.0 g/L. The evolution of C_t/C_o as a function of irradiation time show that the time required for almost total elimination of this solution is about 30 min for ZnO and 60 min for TiO$_2$. The results indicate that the heterogeneous photocatalysis in presence of ZnO or TiO$_2$ as photocatalysts is a suitable method for a rapid degradation of organic pollutants such as dyes in aqueous solution.

To describe the kinetics of degradation of MV5, we are inspired by results reported in the literature. In most cases, the kinetics of the photodegradation of many dyes are described as those of apparent first order, with a rate that obeys the equation [28, 29]:

$$r = -\frac{dC_t}{dt} = k_{app} \times C_t,$$ \hspace{1cm} (5)
A study has been performed on different commercial catalysts performance. In our earlier works, a comparison of different catalysts shows that the surface area is not the only factor that affects the photodegradation of several synthesized samples of TiO₂, that TiO₂ surface area and particle size are only secondary factors influencing photodegradability, while other surface properties such as acidity, surface structure, and also extent of surface hydroxylation should play a major role in obtaining high performance of the photocatalytic process. In the case of ZnO, ZnO nanostructures of different morphologies were fabricated by Morales et al. [32], and compared for dye photodegradability. The results have shown that the photocatalytic activity of ZnO nanostructures depends not only on their sizes but also on the shape of the nanostructures and has also been shown to affect their photocatalytic performance strongly.

Comparative studies on ZnO and TiO₂ photocatalysts have been performed by some other researchers, where synthetic ZnO has shown a higher activity compared to TiO₂ regardless of which one has the larger surface area [33–36]. Hence, the activity of ZnO compared to TiO₂ in our study can not only be accounted by its higher surface area, but differences in the intrinsic characteristics of ZnO and TiO₂ might have a key role. The quantum efficiency is a factor that could explain the differences in photocatalysts activities. ZnO has a higher quantum efficiency than TiO₂ [37]. The results of the photocatalytic activities give indirect evidence that ZnO may have ability to absorb a larger fraction of photon energy more efficiently than TiO₂ [38].

3.3. Factor influencing MV₅ photodegradation

3.3.1. Influence of dye concentration

The rate of photocatalytic degradation of MV₅ solutions is shown in Fig. 7, where the curve was obtained with solute concentrations of 10 to 40 mg/L, at pH=5.9 and 1 and 0.1 g/L concentration of each of ZnO and TiO₂.

For both catalysts, the MV₅ decolorization rate constant decreases with increasing dye concentration. The rate constant of MV₅ degradation at 10 mg/L concentration was observed to be about 6.5 and 4 times higher than the rate constant at 40 mg/L of dye concentration for ZnO and TiO₂, respectively. Several explanations of this behavior can be envisaged. First, it is possible that the photogeneration of h⁺ holes and/or *OH radicals on the catalyst surface is reduced due to the covering of the active sites by the dye. This result is due to the fact that a high concentration of dye gives rise to a screen effect that prevents radiation from penetrating the aqueous suspension and reaching the entire semiconductor [39]. As a result, a significant quantity of light will be absorbed by the dye molecules rather that the photocatalyst, reducing its activity [39]. Another

![Fig. 6. Kinetic of MV₅ degradation by photocatalysis process in the presence of each of ZnO and TiO₂ as catalyst and UV light. In the inset: Representation of ln([MV₅]₀/[MV₅]ₜ) versus irradiation time. ([MV₅] = 10 mg L⁻¹, [catalyst] = 1.0 g L⁻¹, pH = 5.9 and T = 20 °C).](image-url)
3.3.2. Influence of pH

The parameter pH effects on the surface properties of solids and the state of the pollutant. This state has to be degraded depending on its pK\text{a} — a factor that characterizes the water to be treated. In fact, the dispersion of the particles and the surface charge of the catalyst are influenced by the pH of the mixture [40]. Figure 8 illustrates the variation of MV5 degradation rate constant as a function of pH of solution in presence of each of ZnO and TiO\textsubscript{2}.

The results obtained show that the pH influences the rate constant of MV5 degradation. For both catalysts, a higher efficiency of the photocatalytic process to degrade MV5 is obtained at free pH (pH = 5.9). It has also been noted that, for both catalysts, the dye degradation is faster in alkaline medium than in acidic medium.

Since the zero point charge (pH\text{zpc}) of ZnO is (9.0 ± 0.3) [41], the catalyst surface is positively charged at pH<9, whereas it is negatively charged at pH>9. In the case of TiO\textsubscript{2}, its zero point charge pH\text{zpc} is about 6.5. Hence, the catalyst surface is positively charged at pH<6.5 and it is negatively charged at pH>6.5.

On the other hand, the MV5 has a pK\text{a} of 6.25 [42]. Thus, one can expect the MV5 in molecular form to be at pH< pK\text{a} − 1 = 5.25, while in the anionic form at pH>pK\text{a} + 1 = 7.25.

For both catalysts, in alkaline pH media, the repulsion between the molecules of the MV5 dye in its anionic form and the negatively charged surface of the catalyst leads to a decrease in the rate of degradation compared to natural pH. However, with both catalysts, the efficiency of photodegradation in basic medium was higher than that obtained in acidic medium. This can be attributed to the production of hydroxyl radicals favored by the increase in the concentration of OH- ions which react with positive holes according to the following equation [43]:

\[
\text{HO}^- + h^+_\beta \rightarrow \text{OH}^*.
\]

In the case of ZnO, the important decrease in the rate of degradation at acidic pH, especially at pH<3, is attributed to the photodecomposition of ZnO in acidic solutions [44].

3.3.3. Solar photocatalysis of MV5

In order to be closer to natural conditions, two solutions of MV5 with a concentration of 10 mg/L, at free pH=5.9, and for a fixed concentration of catalyst of 1 g/L (ZnO or TiO\textsubscript{2}), were exposed to sunlight. The solar irradiations were carried out in Constantine (north Algeria) in a solar station during a sunny day. The suspension was placed in a cylindrical Pyrex reactor (40 cm long and 2.5 cm in diameter) placed vertically. The MV5 photocatalytic degradation kinetic is shown in Fig. 9.

Figure 9 shows that almost complete decolorization was obtained with an MV5 removal efficiency of 94% and 96% after 15 and 30 min of treatment for ZnO and TiO\textsubscript{2}, respectively. This confirms the effectiveness of sunlight in the photodegradation of the MV5 dye.

The comparison of the degradation rate of MV5 between the two systems in solar and artificial light (inset in Fig. 9) shows that the MV5 rate constant is relatively twice higher when solar light is used as source of irradiation with a ratio of 1.8 and 2.1 for ZnO and TiO\textsubscript{2}, respectively. This result was expected since the photon flux received by the solutions is more intense in sunlight compared to that of artificial light (365 nm). The rate of degradation increases in presence of solar irradiation because the more the photons fall on the photocatalyst, the more the OH radicals are produced. The photocatalytic activity increases when photogeneration of electrons and holes increases. All photons with energy larger than the photocatalyst band gap can be absorbed and used for photo-electron and hole generation. The use
Characterization of ZnO and TiO$_2$ Nanopowders and their Application... 311

The efficiency of ZnO and TiO$_2$ nanopowders as photocatalysts was investigated for the degradation of MV5 dye under monochromatic radiation at 365 nm. The adsorption in the dark of MV5 on both catalysts was found favorable by the Langmuir approach and TiO$_2$ exhibits the higher adsorbed quantity compared to ZnO.

The photocatalysis kinetic study showed that ZnO and TiO$_2$ are effective photocatalysts and MV5 at 10 mg/L was totally eliminated from the aqueous solution in only 30 min and 60 min of treatment and the apparent degradation constants in presence of ZnO was about 2.7 times higher than that obtained in presence of TiO$_2$. The synthesized ZnO appears than as the most powerful photocatalyst, the higher activity of ZnO in comparison of TiO$_2$ can not be only accounted by its larger surface area (1047 m2/g), but also may be due to its greater quantum efficiency.

The increase in the dye initial concentration results in a decrease in the yield of the photodegradation reaction as well as the degradation rate constant.

For both catalysts, the study of the pH effect showed that a better degradation of MV5 is obtained at free pH. However, the degradation is faster in basic medium compared to the acidic medium. The effect is attributed, on one hand, to the production of hydroxyl radicals favored by the increase in the concentration of OH$^-$ ions in basic medium, which react with the positive holes. On the other hand, the effect is attributed to the repulsion between the molecules of the MV5 dye in its anionic form and the negatively charged surface. In the case of ZnO, the important decrease in the rate of degradation at acid pH, especially at pH<3, is attributed to the photodecomposition of ZnO in acidic solutions.

The photocatalytic process in the presence of solar radiation is 1.8 times more effective for the MV5 degradation than in the presence of artificial UV radiation, with almost complete decolorization after 15 and 30 min for ZnO and TiO$_2$, respectively. Hence, despite its low stability in acidic medium, ZnO appears to be a suitable alternative to TiO$_2$ for water treatment either in UV or solar irradiation.

Acknowledgments

This work was financially supported by the Ministry of Higher Education and Scientific Research of Algeria. The authors thank Dr. S. Harouni, from Constantine 1 University, Algeria, for providing partial technical support.

References

[1] A. Tolosana-Moranchel, J.A. Casas, J. Carbajo, M. Faraldos, A. Bahamonde, Appl. Catal. B: Environ. 200, 164 (2016).
[2] M. Paszkiewicz, J. Luczak, W. Lisowski, P. Patyk, A. Zaleska-Medynska, Appl. Catal. B: Environ. 184, 223 (2016).
[3] N.A. Savastenko, I.I. Filatov, V.A. Lyushkevich, N.I. Chubrik, M.T. Gabdullin, T.S. Ramazanov, J. Appl. Spectrosc. 83, 757 (2016).
[4] J. Kaur, S. Bhukal, K. Gupta, M. Tripathy, S. Bansal, S. Singhal, Mater. Chem. Phys. 177, 512 (2016).
[5] A. Khan, M.M. Haque, N.A. Mir, M. Muneer, C. Boxall, Desalination 261, 169 (2010).
[6] A.M. Niyaz, A. Khan, M. Muneer, S. Vijayalakshmi, Sci. Total Environ. 458–460, 388 (2013).
[7] N. Bouanimba, R. Zouaghi, N. Laid, T. Sehili, Desalination 275, 224 (2011).
[8] C. Hariharan, Appl Catal A. 304, 55 (2006).
[9] R.J. Barnes, R. Molina, J. Xu, P.J. Dobson, IP. Thompson, J. Nanopart. Res. 15, 1432 (2013).
[10] P.V. Kamat, J. Phys. Chem. Lett. 1, 520 (2010).
[11] K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, P.P. Zamora, Chemosphere 40, 433–440 (2000).
[12] S. Dindar, J. Icli, J. Photochem. Photobiol. A. Chem. 140, 263–268 (2001).
[13] M.A. Behnajady, N. Modirshahla, R. Hamzavi, J. Hazard. Mater. B. 133, 226–232 (2006).
[14] M. Karkmaz, E. Puzenat, C. Guillard, J.M. Herrmann, Appl. Catal. B: Environ. 51, 183 (2004).
[15] K. Hunger, Industrial Dyes: Chemistry, Properties, Applications, Wiley-VCH, Weinheim (Germany) 2003.
[16] D.A. Yaseen, M. Scholz, Int. J. Environ. Sci. Technol. 16, 1193 (2019).
[17] K.T. Chung, J. Environ. Sci. Health Pt. C: Environ. Carcinog. Ecotoxicol. Rev. 34, 233–261 (2016).
[18] M. Alwan, A. Kadhim Quraish, M. Saham Kassim, A. Ali Rawaa, J. Mahdi Ron, A. Kassim Noor, N. Jassim Alwan, Nanosci. Nanotechnol. 51, 1 (2015).
[19] T. Thirugnanam, J. Nanomater. 2013, 362175 (2013).
[20] W. Mingyi, L. Weifeng, L. Yumei, T. Yifeng, Analytic Methods. 4, 2860 (2012).
[21] D. Das, P. Mondal, RSC Advances 4, 35735 (2014).
[22] C.J. Cong, Q.Y. Liu, J.C. Li, K.L. Zhang, Nanotechnology 17, 1520 (2006).
[23] Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, C. Wang, Nanotechnology 14, 11 (2003).
[24] C.H. Giles, A.P. D'Silva, I.A. Easton, J. Colloid Interface Sci. 47, 766 (1974).
[25] R. Moreira, T.P. Sauer, L. Casuril, L. Humeres, J. Appl. Electrochem. 35, 821 (2005).
[26] T. Sauer, G. Cesconeto Neto, H.J. Jose, R.F.P.M. Moreira, J. Photochem. Photobiol. A: Chem. 149, 147 (2002).
[27] T.W. Weber, R.K. Chakravorti, AIChE J. 20, 228 (1974).
[28] N. Guettai, H. Ait Amar, Desalination 185, 439 (2005).
[29] A. Lair, C. Ferronato, J.M. Chovelon, J.M. Herrmann, J. Photochem. Photobiol. A: Chem. 193, 193 (2008).
[30] N. Laid, N. Bouanimba, R. Zouaghi, T. Sehili, Desalin. Water Treat. 57, 19357 (2016).
[31] A.V. Vorontsov, E.N. Kabachkov, I.L. Balikhin, E.N. Kurkin, V.N. Troitski, P.G. Smirniotics, J. Adv. Oxid. Technol. 21, 127 (2018).
[32] N. Morales Flores, U. Pal, R. Galeazzzi, A. Sandovali, RSC Adv. 4, 41099 (2014).
[33] F.H. Hussein, T.A. Abass, Int. J. Chem. Sci. 8, 1353 (2010).
[34] S. Sakhivel, B. Neppolian, B.V. Shankar, B. Arabin, P. Palanichamy, V. Murugesan, Sol. Energy Mater. Sol. Cells 27, 65 (2003).
[35] M. Qamar, M. Muneer, Desalination 249, 535 (2009).
[36] J. Han, Y. Liu, N. Singhal, L. Wang, W. Gao, Chem. Eng. J. 213, 150–162 (2012).
[37] S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 141, 581 (2007).
[38] Dnyaneshwar R. Shinde, Popat S. Tambade, Manohar G. Chaskar, K.M. Gadave, Drink. Water Eng. Sci. 10, 109 (2017).
[39] M. Muruganandham, M. Swaminathan, Sol. Energy Mater. Sol. Cells 81, 439 (2004).
[40] M. Muruganandham, M. Swaminathan, Sol. Energy Mater. Sol. Cells 81, 439 (2004).
[41] A. Marrakchi, N. Takaishi, M. Saham Kassim, A. Ali Rawaa, J. Mahdi Ron, A. Kassim Noor, N. Jassim Alwan, Nanosci. Nanotechnol. 51, 1 (2015).
[42] T. Thirugnanam, J. Nanomater. 2013, 362175 (2013).
[43] F. Hocine, T. Sehili, J.F. Pilichowski, P. Boule, J. Photochem. Photobiol. A. 141, 231–239 (2001).
[44] A. Marrakchi, N. Takaishi, M. Saham Kassim, A. Ali Rawaa, J. Mahdi Ron, A. Kassim Noor, N. Jassim Alwan, Nanosci. Nanotechnol. 51, 1 (2015).
[45] L. Karimi, S. Zolhoori, M.E. Yazdanshenas, J. Saudi Chem. Soc. 18, 581–588 (2014).