Facet-dependent electrochemical properties of Co$_3$O$_4$ nanocrystals toward heavy metal ions

Xin-Yao Yu1, Qiang-Qiang Meng2, Tao Luo1, Yong Jia1, Bai Sun1, Qun-Xiang Li2, Jin-Huai Liu1 & Xing-Jiu Huang1

1Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China, 2Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, PR China.

We revealed an interesting facet-dependent electrochemical behavior toward heavy metal ions (HMIs) based on their adsorption behaviors. The (111) facet of Co$_3$O$_4$ nanoplates has better electrochemical sensing performance than that of the (001) facet of Co$_3$O$_4$ nanocubes. Adsorption measurements and density-functional theory (DFT) calculations reveals that adsorption of HMIs is responsible for the difference of electrochemical properties. Our combined experimental and theoretical studies provide a solid hint to explain the mechanism of electrochemical detection of HMIs using nanoscale metal oxides. Furthermore, this study not only suggests a promising new strategy for designing high performance electrochemical sensing interface through the selective synthesis of nanoscale materials exposed with different well-defined facets, but also provides a deep understanding for a more sensitive and selective electroanalysis at nanomaterials modified electrodes.

Aiming at a more sensitive electroanalysis, a variety of nanomaterials or nanocomposites modified electrodes were very often explored for electrochemical detection of very trace levels of toxic heavy metal ions (HMIs). Very recently, nanoscale metal oxides as novel modifiers have been reported in electrochemical detection of HMIs$^{1-5}$. Compared with traditional modifiers such as noble metals and biomolecules, the electrodes fabricated with nanoscale metal oxides are easy to synthesize with low cost1,3,5. However, as is often claimed, increased currents and increased analytical sensitivity are simply reflections of an increased microscopic surface area and not electrocatalytic activity or any other nano-effects. That is, the mechanism of using nanoscale metal oxides in electrochemical sensing of HMIs has not been proposed by considering their insulating property. Therefore, the design and implementation of new experimental approach combined with theoretical studies are extremely needed.

For a crystalline nanoscale material, different facets may have different geometric and electronic structures, and exhibit different physical and chemical properties$^{6-8}$. Much more attention has been given to investigate the facet effects on catalysts, photocatalysts, electrocatalysts, Li-ion battery, supercapacitors and so on$^{9-22}$. Take Co$_3$O$_4$ nanoscale materials as an example; Li et al. investigated the facet effect of Co$_3$O$_4$ on catalytic property for methane combustion16. Xiao et al. reported that the exposed facets of Co$_3$O$_4$ nanocrystals are very important for Li$^+$ transport in Li-ion battery17. Although oriented Co$_3$O$_4$ nanostructures have attracted wide attention, the direct experimental detection of HMIs with controlled crystalline morphology and orientation remains a significant challenge- that is, the facet effect in electrochemical sensor especially detection of HMIs is not proposed. Further, till now nanoscale Co$_3$O$_4$ has not been used to examine the electrochemical sensing of HMIs. It should be also pointed out that plenary theoretical investigations are expected to help to get deeper insight into the crystal facet effect, but most reports on the crystal facet effect did not adequately combined first-principles theoretical studies at atomic level with the experimental results$^{13,14,17,19-21,24}$.

In this work, we report the facile synthesis of Co$_3$O$_4$ with two different shapes. Using this non-conductive nanomaterial-modified electrode, we try to demonstrate the facet-dependent electrochemical behaviour of Co$_3$O$_4$ nanocrystals toward HMIs by combining the adsorption measurements and the density-functional theory (DFT) calculations. It has been recognized that the (111) facet of Co$_3$O$_4$ nanoplates has better electrochemical sensing performance than that of the (001) facet of Co$_3$O$_4$ nanocubes. Adsorption measurements and DFT calculations reveal that adsorption of Pb(II) is responsible for the difference of electrochemical...
properties. To the best of our knowledge, this is the first study to investigate the effect of facet on electrochemical sensing behaviour toward HMIs. Our combined experimental and theoretical studies provide a solid hint to explain the mechanism of electrochemical detection of HMIs using nanoscale metal oxides. This strategy may be extended to other electrochemical sensors based on nanoscale metal oxides.

Results
Two simple routes have been designed to fabricate Co_3O_4 nanocubes and nanoplates (Supporting Information, Figure S1). Co_3O_4 nanocubes were synthesized by a one-step hydrothermal method with $\text{Co(CH}_3\text{COO})_2$ as the only reactant. The Co_3O_4 nanoplates were obtained by a solvothermal method in ethylene glycol (EG) followed by a calcination treatment in air. Figure 1 shows the representative scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) images of Co_3O_4 nanoplates and nanocubes. The TEM and HRTEM images of Co_3O_4 nanocubes are presented in Figure 1a and b, respectively. As seen, the particle size of Co_3O_4 nanocubes is about 20 \times 40 nm. HRTEM (Figure 1b) and corresponding selected area electron diffraction (SAED) pattern (Inset in Figure 1b) indicate that the lattice fringe is 0.28 nm and the nanocube is exposed with six (001) facets. A typical SEM image taken for Co_3O_4 nanoplates is shown in Figure 1c. The low magnification SEM and TEM images in Figure S2 demonstrated the homogeneity of Co_3O_4 nanoplates. It is seen that most of the nanoplates display well-defined hexagonal shape. The width and the thickness of the plates is determined to be 700 \sim 900 nm and 50 \sim 60 nm, respectively. The HRTEM image in Figure 1d clearly shows that the spacing between lattice fringes with an angle of 60$^\circ$ is 0.28 nm, which is consistent with the (202) and (022) planes of cubic Co_3O_4. And it is also confirmed by the SAED pattern (Inset in Figure 1d) revealing a single crystal structure. Thus, the resulting dominant exposed plates of Co_3O_4 nanoplates are (111) facets. Powder X-ray diffraction patterns (XRD) (Supporting Information, Figure S3) of both nanocubes and nanoplates have identical peaks, which can be perfectly indexed to that of cubic spinel Co_3O_4 (Joint Committee on Powder Diffraction Standards (JCPDS) card no. 42-1467). No impurities have been detected, indicating the formation of pure cobalt oxides. The crystal sizes were calculated according to Sherrer equation based on the (311) diffraction peak of XRD data. The crystal size of Co_3O_4 nanocubes was 32.5 nm, which was consistent with the TEM observation. However, the crystal size of Co_3O_4 nanoplates was calculated to be 21.3 nm, which may be due to its porous structure. The specific surface areas of Co_3O_4 nanocubes and nanoplates have been measured by the Brunauer–Emmett–Teller (BET) method (Supporting Information, Figure S4). The measured specific surface areas for Co_3O_4 nanocubes and nanoplates are 20 and 13 m2 g$^{-1}$, respectively.

In general, the obtaining of metal oxides requires a basic medium, and usually NaOH is employed for this purpose. However, in the fabrication of Co_3O_4 nanocubes, the hydrolysis of acetate anions from $\text{Co(CH}_3\text{COO})_2$ becomes a good source of hydroxyl anions (Equation (1)). The O_2 dissolved in the deionized water is supposed to act as the main oxidant. Partial Co(II) is transformed into Co(III) and the coexistence of Co(II) and Co(III) under the ambient environment prefers the formation of Co_3O_4 (Equation (2)). The low amount of hydroxyl anions in the solution may promote the formation of Co_3O_4 nanocubes with (001) planes. Similar result has also been reported by Xiao et al.12.

\[
\text{CH}_3\text{COO}^- + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{COOH} + \text{OH}^- \quad (1)
\]
From the SEM and TEM images of the Co$_3$O$_4$ nanoplates precursors before calcination (Data not shown), we can see that the plate-like structures of Co$_3$O$_4$ are inherited from these precursors. The typical XRD pattern of the precursors is shown (Supporting Information, Figure S3, black line). A strong diffraction peak around 10° in the XRD pattern is the characteristic of metal glycolates. It has been assumed that EG would lose its two protons and the dianion complex with metal center. Xia et al. has discussed the oligomerization process of metal glycolates. Longer chains of cobalt glycolate oligomers could self-assemble into ordered bundles (i.e., nanoplates) through van der Waals interactions and then precipitate out from the reaction medium. After calcination, Co$_3$O$_4$ exposed mainly with (111) facets are obtained. However, the reason for the exposed (111) facets after calcination is not clear.

Co$_3$O$_4$ nanocubes and nanoplates modified glassy carbon electrodes (GCEs) are first electrochemically characterized by cyclic voltammetric (CV) and electrochemical impedance spectrum (EIS) (Supporting Information, Figure S5). As compared with the bare GCE, the anodic and cathodic peaks decrease at the Co$_3$O$_4$ modified electrode, which demonstrates that Co$_3$O$_4$ nanomaterials have been modified onto the surface of the GCE (Supporting Information, Figure S5a). It also indicates that the rate of electron transfer at the electrode surface is hindered with the attachment Co$_3$O$_4$ onto the GCE surface. In a typical Nyquist plot, the semicircle proton corresponding to the electron-transfer resistance (R_{ct}) at higher frequency range while a linear part at lower frequency range represents the diffusion limited process. The value corresponding to the bare GCE is about 27 Ω (Supporting Information, Figure S5b). And the value of Co$_3$O$_4$ nanocubes modified GCE (48 Ω) is comparable to that of Co$_3$O$_4$ nanoplates (50 Ω) (Supporting Information, Figure S5b). In this case, the surface area of the modified electrodes were calculated to be 0.0534 (nanoplates), 0.0519 (nanocubes), and 0.07065 (bare GCE) cm2. This may be due to the insulating property of Co$_3$O$_4$ nanostructures, as such, the direct contribution of microscopical surface area could be avoided, which is very helpful to understand the difference of electrochemical behavior is indeed from the effect of crystal facet (as will be discussed in the following).

Among all of the HMIIs, lead has been identified as one of the most toxic heavy metals because of its detrimental effects on the human nervous system, blood circulation system, kidneys, and reproductive system. Subsequently, the performances of these two types of Co$_3$O$_4$ with different exposed facets in electrochemical detection of heavy metal ions are comprehensively investigated. Pb(II) is used as a heavy metal ion. We first examined the square wave stripping voltamograms (SWASV) responses to Pb(II) in 0.1 M NaAc-HAc (pH = 5.0) at Co$_3$O$_4$ nanocubes and nanoplates modified electrodes (Figure S6). There is almost no obvious response at bare GCE, and at the meanwhile, a weak stripping response for nanocubes/GCE is observed. However, a strong and well-defined peak at -0.584 V is clearly seen for nanoparticles modified GCE. And the peak current obtained is about 8 times and 13 times that of nanocubes/GCE and bare GCE, respectively. Moreover, the stripping peak shifts toward more negative potential and become progressively less symmetrical. This is the consequence of having more ions on the electrode (this is fully consistent with that more ions are adsorbed by nanoparticles and release to the bare GCE, see Discussion section), and therefore requiring a longer sweep to remove the metal from the surface entirely. Figure 2 shows that the current densities increase linearly versus the Pb(II) concentrations. For nanocubes/GCE, the linearization equation is $j/(\mu A \cdot cm^{-2}) = -122.9 + 174.4 \cdot c/\mu M$. While for nanoplates/GCE, the linearization equation is $j/(\mu A \cdot cm^{-2}) = -131.1 + 372.7 \cdot c/\mu M$. The results indicate that Co$_3$O$_4$ nanoplates with (111) facet exhibit better electrochemical detection performance than Co$_3$O$_4$ nanocubes with (001) facet. The sensitivity of Co$_3$O$_4$ nanoplates/GCE (372.7 $\mu A \cdot cm^{-2}/\mu M$) is over 2 times that of Co$_3$O$_4$ nanocubes/GCE (174.4 $\mu A \cdot cm^{-2}/\mu M$). The SWASV responses toward Pb(II) at various concentrations on Co$_3$O$_4$ nanocubes and nanocubes modified electrodes were seen in Figure S7. The limit of detection (LOD) as low as 0.12 nM and 0.16 nM (3σ method) for Co$_3$O$_4$ nanoplates and nanocubes, respectively was achieved. This meets the requirements of the World Health Organization (WHO) maximum permissible limit for lead concentration in drinking water of 10 μg L$^{-1}$. The LODs are better than existing methods based on noble metal and ion-imprinted polymers, such as gold nanofilm (0.1 μM) and nano-sized Pb$^{2+}$ imprinted polymer (0.6 nM), etc. The LODs are also superior to some oxides, such as tube-in-tube SnO$_2$ (1.6 nM) and SnO$_2$/graphene nanocomposites (0.18 nM).

Discussion

We suggest that the difference in electrochemical behavior may have a relationship with the adsorption capacities of different nanoscale Co$_3$O$_4$ toward Pb(II). To confirm this contribution, the adsorption measurement is conducted in 0.1 M NaAc-HAc (pH = 5.0) in order to be consistent with electrochemical sensing conditions. Co$_3$O$_4$ nanocubes and nanoplates are incubated in Pb(II) solutions with different initial concentrations for 24 h to reach the adsorption equilibrium. The adsorption isotherms are shown in Figure 3a and b. Both the adsorption isotherms fit the Langmuir isotherm very well (Supporting Information, Figure S8a and b). The maximum adsorption capacity (q_{max}) of Co$_3$O$_4$ nanoplates (33.8 mg g$^{-1}$) is about 19 times that of Co$_3$O$_4$ nanocubes (1.8 mg g$^{-1}$). In previous result we have shown that Co$_3$O$_4$ is non-conductive material (Supporting Information, Figure S5). We believe that the higher adsorption performance of Co$_3$O$_4$ nanoparticles than that of Co$_3$O$_4$ nanocubes lead to its better performance in electrochemical detection. It is important to emphasize that as the adsorption experiments were done in solution with dispersed Co$_3$O$_4$, while the Co$_3$O$_4$ were just coated onto the surface of the GCE, the electrochemical sensitivities for two types of Co$_3$O$_4$ would be not proportional to the adsorption capacities of them.

The above results and discussions experimentally show that Co$_3$O$_4$ nanocubes and nanoplates exhibit obviously different electrochemical sensing and adsorption performances. Co$_3$O$_4$ nanoplates with (111) planes exhibit larger sensitivity and adsorption capacity for heavy metal ions. Besides, we suggest that Pb(II) on the (111) facet are easier to diffuse onto GCE for reduction and
stripping reaction than those on the (001) facet. Regarding the above surface area analysis of two kinds of Co$_3$O$_4$ (nanocubes > nanocubes), this further confirms that the differences in their electrochemical sensing performances are due to the facet effect.

To better understand the effect of facet on electrochemical behavior of Pb(II) on Co$_3$O$_4$ nanoplates and nanocubes, we perform DFT calculations to explore the adsorption and diffusion behaviors of Pb on Co$_3$O$_4$(001) and (111) surfaces. The adopted computational models are similar to the recent report on Li storage capability of Ti$_3$C$_2$ and Ti$_3$C$_2$X$_2$ (X = F, OH) monolayer\(^4\). The adsorption configurations of Pb atom on Co$_3$O$_4$(001) and (111) surfaces are optimized without any symmetry constraint. In the most energetically stable configuration of Pb/Co$_3$O$_4$(001) system, the Pb atom is four-coordinated by two oxygen and two Co surface atoms of Co$_3$O$_4$(001) surface (Supporting Information, Figure S9), and the Pb-O and Pb-Co bond lengths are 2.40 and 2.27 Å, respectively. For Pb/Co$_3$O$_4$(111) adsorption system, the Pb atom locates at the three-fold hollow site (Supporting Information, Figure S10), and the Pb-O bond length is 2.27 Å. Two corresponding adsorption configurations of Pb atom on Co$_3$O$_4$(001) and (111) surfaces are illustrated in top panel of Figure 4 labeled with i and ii, respectively. The calculated adsorption energy of Pb atom on Co$_3$O$_4$(111) surface is -4.11 eV, which is larger than that on Co$_3$O$_4$(001) surface (-3.70 eV). The relative large adsorption energy for Pb/Co$_3$O$_4$(111) system mainly originates from the relative short Pb-O bond length. The Bader charge analysis\(^35\) (Supporting Information, Figure S11) shows that the adsorbed Pb atom carries positive +0.36 and +0.10 |e| (e, the electron charge) on Co$_3$O$_4$(111) and (001) surfaces, respectively, which gives the quantitative proof of the relative strong Pb-substrate interaction for Pb/Co$_3$O$_4$(111) system. Note that there are four equivalent stable adsorption sites in a Co$_3$O$_4$(001) – ($\sqrt{2} \times \sqrt{2}$) cell and Co$_3$O$_4$(111) – (1 × 1) cell (Supporting Information, Figure S9 and S10), but the area of the former cell is larger than that of the latter one. In addition, the adsorption energy for Pb atom locating at the second stable adsorption site (labeled with II symbol within twelve cyan circles in Supporting Information, Figure S10c) on Co$_3$O$_4$(111) surface is predicted to be -3.81 eV, which is also larger than that of the most stable adsorption configuration of Pb/Co$_3$O$_4$(001) system. On the other hand, we have examined the full-coverage of Pb on the stable adsorption sites. The adsorption energy of each Pb on Co$_3$O$_4$(001) and (111) surfaces is predicted to be -3.38 and -3.69 eV, respectively. It is clear that they are consistent with the calculated results of low-coverage of Pb on Co$_3$O$_4$ facets. Thus, the Pb atom adsorption ability on Co$_3$O$_4$(111) surface is significantly larger than that on Co$_3$O$_4$(001) surface. Moreover, the high adsorption energies and the large charge transfer suggest that
the adsorbed Pb can form a strong Coulomb interaction with the Co3O4 surface.

Now we turn to calculate the energy barriers of Pb diffusing on Co3O4(001) and (111) surfaces using the climbing image nudged elastic band (CI-NEB) method. The Pb has two diffusion paths from the most stable adsorption site to its nearest neighboring stable site on Co3O4(001) surface, while there are six diffusion directions for Pb/Co3O4(111) adsorption system (Supporting Information, Figure S12). The geometric structures of the transition-states for Pb on Co3O4(001) and (111) surfaces are shown in Figure 4 labeled with TS-i and TS-ii, respectively. The calculated diffusion energy barrier of Pb on Co3O4(001) and (111) surfaces are predicted to be 1.12 and 0.74 eV, respectively. The relative low transition-state barrier results in the Pb fast diffusing on Co3O4(111) surface. These DFT results confirm that Co3O4(111) surface can capture more Pb than Co3O4(001) surface, and the adsorbed Pb diffuse more easily on the Co3O4(111) surface, consistent well with experimental observations.

Based on the above experimental and DFT calculated results, a schematic illustration of how adsorptive nanoscale materials with different exposed crystal facets could be designed for electrochemical sensing interface through the selective synthesis of nanoscale materials exposed with different well-defined facets, but also provides a deep understanding for a more sensitive and selective electroanalysis at nanomaterials modified electrodes.

Methods

Materials. All reagents were commercially available from Sinopharm Chemical Reagent Co., Ltd (China) with analytical grade. Stock solution used in electrochemical measurement of Pb(II) was prepared by dissolving Pb(NO3)2 in deionized water. 0.1 M acetate buffer (NaAc-HAc) solution of pH 5.0 was prepared with NaAc and HAc. Ultrapure fresh water obtained from a Millipore water purification system (MilliQ, specific resistivity > 18 MΩ cm, S.A., Mol, Belgium, France) are used in all runs.

Synthesis of Co3O4 nanocubes. 0.25 g of Co(CH3COO)2·4H2O was loaded into a 23 ml poly(tetrafluoroethylene) (PTFE)-lined stainless steel autoclave, which was then filled with 18 ml water. The autoclave was sealed and maintained at 200 °C for 12 h, and then cooled down to room temperature. The final products were centrifuged, rinsed with distilled water and ethanol for several times to remove any impurities.

Synthesis of Co3O4 nanoplates. 0.25 g of Co(CH3COO)2·4H2O was loaded into a 23 ml poly(tetrafluoroethylene) (PTFE)-lined stainless steel autoclave, which was then filled with 18 ml ethylene glycol. The autoclave was sealed and maintained at 200 °C for 12 h, and then cooled down to room temperature. The final products were centrifuged, rinsed with distilled water and ethanol several times to remove any impurities. The as-prepared precursors were finally calcined at 350 °C in air for 3 h.

Characterization. The SEM images were taken by a FEI Quanta 200 FEG field emission scanning electron microscope. The TEM and HRTEM images analyses were carried out on a JEM-2100 microscope. XRD was performed on a D/MaxIIIA X-ray diffractometer (Rigaku Co., Japan), using Cu Kα (λ(Kα1) = 1.5418 Å) as the radiation source. The nitrogen adsorption and desorption isotherms at 77 K were measured with a Micromeritics ASAP 2020 M analyzer. The Brunauer, Emmett, and Teller (BET) equation was used to obtain the specific surface areas. The Pb(II) concentrations were determined in the liquid phase using inductively coupled plasma atomic emission spectrometry (ICP-AES, Jarrell-Ash model ICAP 9000). Electrochemical experiments were recorded using a CSI 660D computer-controlled

Figure 5 | Schematics of how adsorptive nanoscale materials exposed with different crystal facets could be designed to enhance the performance of electrochemical sensing. (a), Bare GCE. (b), Co3O4 nanocubes modified GCE. (c), Co3O4 nanoplates modified GCE. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions (e.g. Pb2+) are investigated. The (111)-bound Co3O4 nanocubes are superior to (001)-bound Co3O4 nanocubes. Adsorption measurements reveal that Co3O4(111) facet can adsorb more metal ions than the (001) facet. DFT calculations demonstrate that Pb on Co3O4(111) facet exhibits larger adsorption energies, more adsorption sites, and faster diffusion than on (001) facet.
potentiostat (ChenHua Instruments Co., Shanghai, China). A conventional three-electrode system consisted of a glassy carbon working electrode (GCE, 3 mm diameter), an Ag/AgCl as the reference electrode and a platinum wire as the counter electrode.

Fabrication of modified electrode. 2 mg of the as-prepared Co 3O 4 nanocubes and nanobelts were dispersed in 4 mL water with ultrasonic agitation to give a homogeneous solution. Prior to each modification, the bare GCE was sequentially polished with 1.0 µm and 0.05 µm alumina power slurries to a mirror shiny surface, and then sonicated with 1:1 HNO 3 solution, absolute ethanol and deionized water.

The construction of Co 3O 4 on the surface of GCE was performed as follows: 5.0 µL of Co 3O 4 solution dripped onto the surface of a freshly polished GCE and then evaporating it at room temperature in the air.

Electrochemical measurements. The electrochemical measurement was carried out in SWASV mode for Pb(II) detection in 0.1 M NaAc-HAc solution. A deposition potential of −1.2 V was applied for 180 s to the working electrode under stirring. The SWASV responses were recorded between −1.0 to −0.2 V with step potential of 5 mV, amplitude of 20 mV, and frequency of 25 Hz. A desorption potential of 0 V for 210 s was performed to remove the residual metals under stirring condition.

Adsortion experiments. Experiments were carried out at 298 K in 10 mL polyethylene centrifuge tubes containing 1 g 2 diameter), an Ag/AgCl as the reference electrode and a platinum wire as the counter electrode. The values of adsorbent (gm) and the energy of adsorption, respectively. The values of adsorbent (gm) and the energy of adsorption, respectively.

Computational methods. The DFT calculations were performed by using the Vienna ab-initio simulation package (VASP) 49,50 with the Perdew-Burke-Ernzerh parameterization of the generalized gradient approximation (GGA) adopted for the exchange correlation potential 51. An energy cut-off of 400 eV were consistently used in our calculations. The atomic positions were fully relaxed with the conjugate gradient procedure until the residual forces vanishing within 0.02 eV/Å. A 2 × 2 × 1 Monkhorst-Pack k-point was used to sample the surface Brillouin zone. Because Co 3O 4 is a strongly 3 supercells were used to model the Co 3O 4 (001) and (111) surfaces, respectively, in which a 12 Å of vacuum is adopted. During the structural optimizations, we allowed the atoms in the top four layers in the supercells to relax freely, and fixed other atoms in the bulk configuration. The side and top views of the optimized Co 3O 4 (001) and (111) surfaces are shown in Figures S9 and S10, respectively. These optimized geometric structures agree well with the previous reports on the surface atoms arrangement of the Co 3O 4 nanocrystals with different crystal planes 52,53,54,55,56.

Adsortion energy. To compare the Pb adsorption ability on two different crystal planes, we define the Pb adsorption energy as Eads = Eads−surface − (Eads−gas + Eads). Here, Eads−surface and Eads−gas are the total energies of the surface and the Pb atom adsorbing on surface, respectively, and Eads is the atomic energy of single isolated Pb atom. Under this definition, the more negative value stands for the more energetically stable adsorption.

Bader charge analysis and diffusion paths. To address the Pb-substrate interaction, we conduct the Bader charge analysis for Pb atom adsorbing on Co 3O 4 (111) and (001) surfaces. The corresponding results are presented in Figure S11. For clarity, the diffusion directions of Pb on Co 3O 4 (111) and (001) surfaces are illustrated in Figure S12.
33. Wei, Y. et al. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): An interesting favorable mutual interference. J. Phys. Chem. C 116, 1034–1041 (2012).

34. Tang, Q., Zhou, Z. & Shen, P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012).

35. Sanville, E. et al. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 28, 899–908 (2007).

36. Henkelman, G., Uberuaga, B. P. & Jonsson, H. J. Chem. Phys. 113, 9901 (2000).

37. Hou, C. et al. Metal-organic framework templated synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection. Analyst 137, 5803–5808 (2012).

38. Xu, J. et al. Facile synthesis of hierarchically porous Co3O4 nanowire arrays with enhanced electrochemical catalysis. Electrochem. Commun. 25, 119–123 (2012).

39. Li, Y. G., Tan, B. & Wu, Y. Y. Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. J. Am. Chem. Soc. 128, 14258–14259 (2006).

40. Ye, D. X. et al. Fabrication of Co3O4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Analyst 137, 2840–2845 (2012).

41. Li, Y. G., Tan, B. & Wu, Y. Y. Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. J. Am. Chem. Soc. 128, 14258–14259 (2006).

42. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

43. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

45. Anisimov, V. V., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

46. Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys.: Condens. Matter 9, 767–808 (1997).

47. Montoya, A. & Haynes, B. S. Periodic density functional study of Co3O4 surfaces. Chem. Phys. Lett. 502, 63–68 (2011).

48. Grabowski, B., Hickel, T. & Neugebauer, J. Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends. Phys. Rev. B 76 (2007).

49. Xu, X.-L. et al. Bulk and surface properties of spinel Co3O4 by density functional calculations. Surf. Sci. 603, 653–658 (2009).

Acknowledgement

This work was supported by the National Basic Research Program of China (2011CB93700, 2011CB921404, and 2014CB921101), the Natural Science Foundation of China (21073197, 21103198, 11205204, 11074235, and 11034006), and the China Postdoctoral Science Foundation (20110490386 and 2011M501073). X.J. H. acknowledges the One Hundred Person Project of the Chinese Academy of Sciences, China, for financial support.

Author contributions

X.J.H. conceived the electrochemical studies of nanocrystals with different facets. Q.X.L. designed the calculations. X.Y.Y. carried out all the experiments and Q.Q.M. performed calculation and contributed equally to this work. X.Y.Y. and Q.Q.M. co-wrote the paper. T.L., Y.J., B.S., and J.H.L. contributed data analysis and interpretation equally.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Yu, X. et al. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions. Sci. Rep. 3, 2886; DOI:10.1038/srep02886 (2013).